4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
13 ** Memory allocation functions used throughout sqlite.
15 #include "sqliteInt.h"
19 ** Attempt to release up to n bytes of non-essential memory currently
20 ** held by SQLite. An example of non-essential memory is memory used to
21 ** cache database pages that are not currently in use.
23 int sqlite3_release_memory(int n
){
24 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
25 return sqlite3PcacheReleaseMemory(n
);
27 /* IMPLEMENTATION-OF: R-34391-24921 The sqlite3_release_memory() routine
28 ** is a no-op returning zero if SQLite is not compiled with
29 ** SQLITE_ENABLE_MEMORY_MANAGEMENT. */
36 ** Default value of the hard heap limit. 0 means "no limit".
38 #ifndef SQLITE_MAX_MEMORY
39 # define SQLITE_MAX_MEMORY 0
43 ** State information local to the memory allocation subsystem.
45 static SQLITE_WSD
struct Mem0Global
{
46 sqlite3_mutex
*mutex
; /* Mutex to serialize access */
47 sqlite3_int64 alarmThreshold
; /* The soft heap limit */
48 sqlite3_int64 hardLimit
; /* The hard upper bound on memory */
51 ** True if heap is nearly "full" where "full" is defined by the
52 ** sqlite3_soft_heap_limit() setting.
55 } mem0
= { 0, SQLITE_MAX_MEMORY
, SQLITE_MAX_MEMORY
, 0 };
57 #define mem0 GLOBAL(struct Mem0Global, mem0)
60 ** Return the memory allocator mutex. sqlite3_status() needs it.
62 sqlite3_mutex
*sqlite3MallocMutex(void){
66 #ifndef SQLITE_OMIT_DEPRECATED
68 ** Deprecated external interface. It used to set an alarm callback
69 ** that was invoked when memory usage grew too large. Now it is a
72 int sqlite3_memory_alarm(
73 void(*xCallback
)(void *pArg
, sqlite3_int64 used
,int N
),
75 sqlite3_int64 iThreshold
85 ** Set the soft heap-size limit for the library. An argument of
86 ** zero disables the limit. A negative argument is a no-op used to
87 ** obtain the return value.
89 ** The return value is the value of the heap limit just before this
90 ** interface was called.
92 ** If the hard heap limit is enabled, then the soft heap limit cannot
93 ** be disabled nor raised above the hard heap limit.
95 sqlite3_int64
sqlite3_soft_heap_limit64(sqlite3_int64 n
){
96 sqlite3_int64 priorLimit
;
99 #ifndef SQLITE_OMIT_AUTOINIT
100 int rc
= sqlite3_initialize();
103 sqlite3_mutex_enter(mem0
.mutex
);
104 priorLimit
= mem0
.alarmThreshold
;
106 sqlite3_mutex_leave(mem0
.mutex
);
109 if( mem0
.hardLimit
>0 && (n
>mem0
.hardLimit
|| n
==0) ){
112 mem0
.alarmThreshold
= n
;
113 nUsed
= sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED
);
114 AtomicStore(&mem0
.nearlyFull
, n
>0 && n
<=nUsed
);
115 sqlite3_mutex_leave(mem0
.mutex
);
116 excess
= sqlite3_memory_used() - n
;
117 if( excess
>0 ) sqlite3_release_memory((int)(excess
& 0x7fffffff));
120 void sqlite3_soft_heap_limit(int n
){
122 sqlite3_soft_heap_limit64(n
);
126 ** Set the hard heap-size limit for the library. An argument of zero
127 ** disables the hard heap limit. A negative argument is a no-op used
128 ** to obtain the return value without affecting the hard heap limit.
130 ** The return value is the value of the hard heap limit just prior to
131 ** calling this interface.
133 ** Setting the hard heap limit will also activate the soft heap limit
134 ** and constrain the soft heap limit to be no more than the hard heap
137 sqlite3_int64
sqlite3_hard_heap_limit64(sqlite3_int64 n
){
138 sqlite3_int64 priorLimit
;
139 #ifndef SQLITE_OMIT_AUTOINIT
140 int rc
= sqlite3_initialize();
143 sqlite3_mutex_enter(mem0
.mutex
);
144 priorLimit
= mem0
.hardLimit
;
147 if( n
<mem0
.alarmThreshold
|| mem0
.alarmThreshold
==0 ){
148 mem0
.alarmThreshold
= n
;
151 sqlite3_mutex_leave(mem0
.mutex
);
157 ** Initialize the memory allocation subsystem.
159 int sqlite3MallocInit(void){
161 if( sqlite3GlobalConfig
.m
.xMalloc
==0 ){
162 sqlite3MemSetDefault();
164 mem0
.mutex
= sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM
);
165 if( sqlite3GlobalConfig
.pPage
==0 || sqlite3GlobalConfig
.szPage
<512
166 || sqlite3GlobalConfig
.nPage
<=0 ){
167 sqlite3GlobalConfig
.pPage
= 0;
168 sqlite3GlobalConfig
.szPage
= 0;
170 rc
= sqlite3GlobalConfig
.m
.xInit(sqlite3GlobalConfig
.m
.pAppData
);
171 if( rc
!=SQLITE_OK
) memset(&mem0
, 0, sizeof(mem0
));
172 /* BEGIN SQLCIPHER */
173 #ifdef SQLITE_HAS_CODEC
174 /* install wrapping functions for memory management
175 that will wipe all memory allocated by SQLite
177 if( rc
==SQLITE_OK
) {
178 extern void sqlcipher_init_memmethods(void);
179 sqlcipher_init_memmethods();
187 ** Return true if the heap is currently under memory pressure - in other
188 ** words if the amount of heap used is close to the limit set by
189 ** sqlite3_soft_heap_limit().
191 int sqlite3HeapNearlyFull(void){
192 return AtomicLoad(&mem0
.nearlyFull
);
196 ** Deinitialize the memory allocation subsystem.
198 void sqlite3MallocEnd(void){
199 if( sqlite3GlobalConfig
.m
.xShutdown
){
200 sqlite3GlobalConfig
.m
.xShutdown(sqlite3GlobalConfig
.m
.pAppData
);
202 memset(&mem0
, 0, sizeof(mem0
));
206 ** Return the amount of memory currently checked out.
208 sqlite3_int64
sqlite3_memory_used(void){
209 sqlite3_int64 res
, mx
;
210 sqlite3_status64(SQLITE_STATUS_MEMORY_USED
, &res
, &mx
, 0);
215 ** Return the maximum amount of memory that has ever been
216 ** checked out since either the beginning of this process
217 ** or since the most recent reset.
219 sqlite3_int64
sqlite3_memory_highwater(int resetFlag
){
220 sqlite3_int64 res
, mx
;
221 sqlite3_status64(SQLITE_STATUS_MEMORY_USED
, &res
, &mx
, resetFlag
);
228 static void sqlite3MallocAlarm(int nByte
){
229 if( mem0
.alarmThreshold
<=0 ) return;
230 sqlite3_mutex_leave(mem0
.mutex
);
231 sqlite3_release_memory(nByte
);
232 sqlite3_mutex_enter(mem0
.mutex
);
237 ** This routine is called whenever an out-of-memory condition is seen,
238 ** It's only purpose to to serve as a breakpoint for gdb or similar
239 ** code debuggers when working on out-of-memory conditions, for example
240 ** caused by PRAGMA hard_heap_limit=N.
242 static SQLITE_NOINLINE
void test_oom_breakpoint(u64 n
){
243 static u64 nOomFault
= 0;
245 /* The assert() is never reached in a human lifetime. It is here mostly
246 ** to prevent code optimizers from optimizing out this function. */
247 assert( (nOomFault
>>32) < 0xffffffff );
250 # define test_oom_breakpoint(X) /* No-op for production builds */
254 ** Do a memory allocation with statistics and alarms. Assume the
255 ** lock is already held.
257 static void mallocWithAlarm(int n
, void **pp
){
260 assert( sqlite3_mutex_held(mem0
.mutex
) );
263 /* In Firefox (circa 2017-02-08), xRoundup() is remapped to an internal
264 ** implementation of malloc_good_size(), which must be called in debug
265 ** mode and specifically when the DMD "Dark Matter Detector" is enabled
266 ** or else a crash results. Hence, do not attempt to optimize out the
267 ** following xRoundup() call. */
268 nFull
= sqlite3GlobalConfig
.m
.xRoundup(n
);
270 sqlite3StatusHighwater(SQLITE_STATUS_MALLOC_SIZE
, n
);
271 if( mem0
.alarmThreshold
>0 ){
272 sqlite3_int64 nUsed
= sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED
);
273 if( nUsed
>= mem0
.alarmThreshold
- nFull
){
274 AtomicStore(&mem0
.nearlyFull
, 1);
275 sqlite3MallocAlarm(nFull
);
276 if( mem0
.hardLimit
){
277 nUsed
= sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED
);
278 if( nUsed
>= mem0
.hardLimit
- nFull
){
279 test_oom_breakpoint(1);
285 AtomicStore(&mem0
.nearlyFull
, 0);
288 p
= sqlite3GlobalConfig
.m
.xMalloc(nFull
);
289 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
290 if( p
==0 && mem0
.alarmThreshold
>0 ){
291 sqlite3MallocAlarm(nFull
);
292 p
= sqlite3GlobalConfig
.m
.xMalloc(nFull
);
296 nFull
= sqlite3MallocSize(p
);
297 sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED
, nFull
);
298 sqlite3StatusUp(SQLITE_STATUS_MALLOC_COUNT
, 1);
304 ** Maximum size of any single memory allocation.
306 ** This is not a limit on the total amount of memory used. This is
307 ** a limit on the size parameter to sqlite3_malloc() and sqlite3_realloc().
309 ** The upper bound is slightly less than 2GiB: 0x7ffffeff == 2,147,483,391
310 ** This provides a 256-byte safety margin for defense against 32-bit
311 ** signed integer overflow bugs when computing memory allocation sizes.
312 ** Paranoid applications might want to reduce the maximum allocation size
313 ** further for an even larger safety margin. 0x3fffffff or 0x0fffffff
314 ** or even smaller would be reasonable upper bounds on the size of a memory
315 ** allocations for most applications.
317 #ifndef SQLITE_MAX_ALLOCATION_SIZE
318 # define SQLITE_MAX_ALLOCATION_SIZE 2147483391
320 #if SQLITE_MAX_ALLOCATION_SIZE>2147483391
321 # error Maximum size for SQLITE_MAX_ALLOCATION_SIZE is 2147483391
325 ** Allocate memory. This routine is like sqlite3_malloc() except that it
326 ** assumes the memory subsystem has already been initialized.
328 void *sqlite3Malloc(u64 n
){
330 if( n
==0 || n
>SQLITE_MAX_ALLOCATION_SIZE
){
332 }else if( sqlite3GlobalConfig
.bMemstat
){
333 sqlite3_mutex_enter(mem0
.mutex
);
334 mallocWithAlarm((int)n
, &p
);
335 sqlite3_mutex_leave(mem0
.mutex
);
337 p
= sqlite3GlobalConfig
.m
.xMalloc((int)n
);
339 assert( EIGHT_BYTE_ALIGNMENT(p
) ); /* IMP: R-11148-40995 */
344 ** This version of the memory allocation is for use by the application.
345 ** First make sure the memory subsystem is initialized, then do the
348 void *sqlite3_malloc(int n
){
349 #ifndef SQLITE_OMIT_AUTOINIT
350 if( sqlite3_initialize() ) return 0;
352 return n
<=0 ? 0 : sqlite3Malloc(n
);
354 void *sqlite3_malloc64(sqlite3_uint64 n
){
355 #ifndef SQLITE_OMIT_AUTOINIT
356 if( sqlite3_initialize() ) return 0;
358 return sqlite3Malloc(n
);
362 ** TRUE if p is a lookaside memory allocation from db
364 #ifndef SQLITE_OMIT_LOOKASIDE
365 static int isLookaside(sqlite3
*db
, const void *p
){
366 return SQLITE_WITHIN(p
, db
->lookaside
.pStart
, db
->lookaside
.pTrueEnd
);
369 #define isLookaside(A,B) 0
373 ** Return the size of a memory allocation previously obtained from
374 ** sqlite3Malloc() or sqlite3_malloc().
376 int sqlite3MallocSize(const void *p
){
377 assert( sqlite3MemdebugHasType(p
, MEMTYPE_HEAP
) );
378 return sqlite3GlobalConfig
.m
.xSize((void*)p
);
380 static int lookasideMallocSize(sqlite3
*db
, const void *p
){
381 #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE
382 return p
<db
->lookaside
.pMiddle
? db
->lookaside
.szTrue
: LOOKASIDE_SMALL
;
384 return db
->lookaside
.szTrue
;
387 int sqlite3DbMallocSize(sqlite3
*db
, const void *p
){
391 assert( sqlite3MemdebugNoType(p
, (u8
)~MEMTYPE_HEAP
) );
392 assert( sqlite3MemdebugHasType(p
, MEMTYPE_HEAP
) );
393 }else if( !isLookaside(db
,p
) ){
394 assert( sqlite3MemdebugHasType(p
, (MEMTYPE_LOOKASIDE
|MEMTYPE_HEAP
)) );
395 assert( sqlite3MemdebugNoType(p
, (u8
)~(MEMTYPE_LOOKASIDE
|MEMTYPE_HEAP
)) );
399 if( ((uptr
)p
)<(uptr
)(db
->lookaside
.pTrueEnd
) ){
400 #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE
401 if( ((uptr
)p
)>=(uptr
)(db
->lookaside
.pMiddle
) ){
402 assert( sqlite3_mutex_held(db
->mutex
) );
403 return LOOKASIDE_SMALL
;
406 if( ((uptr
)p
)>=(uptr
)(db
->lookaside
.pStart
) ){
407 assert( sqlite3_mutex_held(db
->mutex
) );
408 return db
->lookaside
.szTrue
;
412 return sqlite3GlobalConfig
.m
.xSize((void*)p
);
414 sqlite3_uint64
sqlite3_msize(void *p
){
415 assert( sqlite3MemdebugNoType(p
, (u8
)~MEMTYPE_HEAP
) );
416 assert( sqlite3MemdebugHasType(p
, MEMTYPE_HEAP
) );
417 return p
? sqlite3GlobalConfig
.m
.xSize(p
) : 0;
421 ** Free memory previously obtained from sqlite3Malloc().
423 void sqlite3_free(void *p
){
424 if( p
==0 ) return; /* IMP: R-49053-54554 */
425 assert( sqlite3MemdebugHasType(p
, MEMTYPE_HEAP
) );
426 assert( sqlite3MemdebugNoType(p
, (u8
)~MEMTYPE_HEAP
) );
427 if( sqlite3GlobalConfig
.bMemstat
){
428 sqlite3_mutex_enter(mem0
.mutex
);
429 sqlite3StatusDown(SQLITE_STATUS_MEMORY_USED
, sqlite3MallocSize(p
));
430 sqlite3StatusDown(SQLITE_STATUS_MALLOC_COUNT
, 1);
431 sqlite3GlobalConfig
.m
.xFree(p
);
432 sqlite3_mutex_leave(mem0
.mutex
);
434 sqlite3GlobalConfig
.m
.xFree(p
);
439 ** Add the size of memory allocation "p" to the count in
440 ** *db->pnBytesFreed.
442 static SQLITE_NOINLINE
void measureAllocationSize(sqlite3
*db
, void *p
){
443 *db
->pnBytesFreed
+= sqlite3DbMallocSize(db
,p
);
447 ** Free memory that might be associated with a particular database
448 ** connection. Calling sqlite3DbFree(D,X) for X==0 is a harmless no-op.
449 ** The sqlite3DbFreeNN(D,X) version requires that X be non-NULL.
451 void sqlite3DbFreeNN(sqlite3
*db
, void *p
){
452 assert( db
==0 || sqlite3_mutex_held(db
->mutex
) );
455 if( ((uptr
)p
)<(uptr
)(db
->lookaside
.pEnd
) ){
456 #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE
457 if( ((uptr
)p
)>=(uptr
)(db
->lookaside
.pMiddle
) ){
458 LookasideSlot
*pBuf
= (LookasideSlot
*)p
;
459 assert( db
->pnBytesFreed
==0 );
461 memset(p
, 0xaa, LOOKASIDE_SMALL
); /* Trash freed content */
463 pBuf
->pNext
= db
->lookaside
.pSmallFree
;
464 db
->lookaside
.pSmallFree
= pBuf
;
467 #endif /* SQLITE_OMIT_TWOSIZE_LOOKASIDE */
468 if( ((uptr
)p
)>=(uptr
)(db
->lookaside
.pStart
) ){
469 LookasideSlot
*pBuf
= (LookasideSlot
*)p
;
470 assert( db
->pnBytesFreed
==0 );
472 memset(p
, 0xaa, db
->lookaside
.szTrue
); /* Trash freed content */
474 pBuf
->pNext
= db
->lookaside
.pFree
;
475 db
->lookaside
.pFree
= pBuf
;
479 if( db
->pnBytesFreed
){
480 measureAllocationSize(db
, p
);
484 assert( sqlite3MemdebugHasType(p
, (MEMTYPE_LOOKASIDE
|MEMTYPE_HEAP
)) );
485 assert( sqlite3MemdebugNoType(p
, (u8
)~(MEMTYPE_LOOKASIDE
|MEMTYPE_HEAP
)) );
486 assert( db
!=0 || sqlite3MemdebugNoType(p
, MEMTYPE_LOOKASIDE
) );
487 sqlite3MemdebugSetType(p
, MEMTYPE_HEAP
);
490 void sqlite3DbNNFreeNN(sqlite3
*db
, void *p
){
492 assert( sqlite3_mutex_held(db
->mutex
) );
494 if( ((uptr
)p
)<(uptr
)(db
->lookaside
.pEnd
) ){
495 #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE
496 if( ((uptr
)p
)>=(uptr
)(db
->lookaside
.pMiddle
) ){
497 LookasideSlot
*pBuf
= (LookasideSlot
*)p
;
498 assert( db
->pnBytesFreed
==0 );
500 memset(p
, 0xaa, LOOKASIDE_SMALL
); /* Trash freed content */
502 pBuf
->pNext
= db
->lookaside
.pSmallFree
;
503 db
->lookaside
.pSmallFree
= pBuf
;
506 #endif /* SQLITE_OMIT_TWOSIZE_LOOKASIDE */
507 if( ((uptr
)p
)>=(uptr
)(db
->lookaside
.pStart
) ){
508 LookasideSlot
*pBuf
= (LookasideSlot
*)p
;
509 assert( db
->pnBytesFreed
==0 );
511 memset(p
, 0xaa, db
->lookaside
.szTrue
); /* Trash freed content */
513 pBuf
->pNext
= db
->lookaside
.pFree
;
514 db
->lookaside
.pFree
= pBuf
;
518 if( db
->pnBytesFreed
){
519 measureAllocationSize(db
, p
);
522 assert( sqlite3MemdebugHasType(p
, (MEMTYPE_LOOKASIDE
|MEMTYPE_HEAP
)) );
523 assert( sqlite3MemdebugNoType(p
, (u8
)~(MEMTYPE_LOOKASIDE
|MEMTYPE_HEAP
)) );
524 sqlite3MemdebugSetType(p
, MEMTYPE_HEAP
);
527 void sqlite3DbFree(sqlite3
*db
, void *p
){
528 assert( db
==0 || sqlite3_mutex_held(db
->mutex
) );
529 if( p
) sqlite3DbFreeNN(db
, p
);
533 ** Change the size of an existing memory allocation
535 void *sqlite3Realloc(void *pOld
, u64 nBytes
){
536 int nOld
, nNew
, nDiff
;
538 assert( sqlite3MemdebugHasType(pOld
, MEMTYPE_HEAP
) );
539 assert( sqlite3MemdebugNoType(pOld
, (u8
)~MEMTYPE_HEAP
) );
541 return sqlite3Malloc(nBytes
); /* IMP: R-04300-56712 */
544 sqlite3_free(pOld
); /* IMP: R-26507-47431 */
547 if( nBytes
>=0x7fffff00 ){
548 /* The 0x7ffff00 limit term is explained in comments on sqlite3Malloc() */
551 nOld
= sqlite3MallocSize(pOld
);
552 /* IMPLEMENTATION-OF: R-46199-30249 SQLite guarantees that the second
553 ** argument to xRealloc is always a value returned by a prior call to
555 nNew
= sqlite3GlobalConfig
.m
.xRoundup((int)nBytes
);
558 }else if( sqlite3GlobalConfig
.bMemstat
){
560 sqlite3_mutex_enter(mem0
.mutex
);
561 sqlite3StatusHighwater(SQLITE_STATUS_MALLOC_SIZE
, (int)nBytes
);
563 if( nDiff
>0 && (nUsed
= sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED
)) >=
564 mem0
.alarmThreshold
-nDiff
){
565 sqlite3MallocAlarm(nDiff
);
566 if( mem0
.hardLimit
>0 && nUsed
>= mem0
.hardLimit
- nDiff
){
567 sqlite3_mutex_leave(mem0
.mutex
);
568 test_oom_breakpoint(1);
572 pNew
= sqlite3GlobalConfig
.m
.xRealloc(pOld
, nNew
);
573 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
574 if( pNew
==0 && mem0
.alarmThreshold
>0 ){
575 sqlite3MallocAlarm((int)nBytes
);
576 pNew
= sqlite3GlobalConfig
.m
.xRealloc(pOld
, nNew
);
580 nNew
= sqlite3MallocSize(pNew
);
581 sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED
, nNew
-nOld
);
583 sqlite3_mutex_leave(mem0
.mutex
);
585 pNew
= sqlite3GlobalConfig
.m
.xRealloc(pOld
, nNew
);
587 assert( EIGHT_BYTE_ALIGNMENT(pNew
) ); /* IMP: R-11148-40995 */
592 ** The public interface to sqlite3Realloc. Make sure that the memory
593 ** subsystem is initialized prior to invoking sqliteRealloc.
595 void *sqlite3_realloc(void *pOld
, int n
){
596 #ifndef SQLITE_OMIT_AUTOINIT
597 if( sqlite3_initialize() ) return 0;
599 if( n
<0 ) n
= 0; /* IMP: R-26507-47431 */
600 return sqlite3Realloc(pOld
, n
);
602 void *sqlite3_realloc64(void *pOld
, sqlite3_uint64 n
){
603 #ifndef SQLITE_OMIT_AUTOINIT
604 if( sqlite3_initialize() ) return 0;
606 return sqlite3Realloc(pOld
, n
);
611 ** Allocate and zero memory.
613 void *sqlite3MallocZero(u64 n
){
614 void *p
= sqlite3Malloc(n
);
616 memset(p
, 0, (size_t)n
);
622 ** Allocate and zero memory. If the allocation fails, make
623 ** the mallocFailed flag in the connection pointer.
625 void *sqlite3DbMallocZero(sqlite3
*db
, u64 n
){
628 p
= sqlite3DbMallocRaw(db
, n
);
629 if( p
) memset(p
, 0, (size_t)n
);
634 /* Finish the work of sqlite3DbMallocRawNN for the unusual and
635 ** slower case when the allocation cannot be fulfilled using lookaside.
637 static SQLITE_NOINLINE
void *dbMallocRawFinish(sqlite3
*db
, u64 n
){
640 p
= sqlite3Malloc(n
);
641 if( !p
) sqlite3OomFault(db
);
642 sqlite3MemdebugSetType(p
,
643 (db
->lookaside
.bDisable
==0) ? MEMTYPE_LOOKASIDE
: MEMTYPE_HEAP
);
648 ** Allocate memory, either lookaside (if possible) or heap.
649 ** If the allocation fails, set the mallocFailed flag in
650 ** the connection pointer.
652 ** If db!=0 and db->mallocFailed is true (indicating a prior malloc
653 ** failure on the same database connection) then always return 0.
654 ** Hence for a particular database connection, once malloc starts
655 ** failing, it fails consistently until mallocFailed is reset.
656 ** This is an important assumption. There are many places in the
657 ** code that do things like this:
659 ** int *a = (int*)sqlite3DbMallocRaw(db, 100);
660 ** int *b = (int*)sqlite3DbMallocRaw(db, 200);
661 ** if( b ) a[10] = 9;
663 ** In other words, if a subsequent malloc (ex: "b") worked, it is assumed
664 ** that all prior mallocs (ex: "a") worked too.
666 ** The sqlite3MallocRawNN() variant guarantees that the "db" parameter is
667 ** not a NULL pointer.
669 void *sqlite3DbMallocRaw(sqlite3
*db
, u64 n
){
671 if( db
) return sqlite3DbMallocRawNN(db
, n
);
672 p
= sqlite3Malloc(n
);
673 sqlite3MemdebugSetType(p
, MEMTYPE_HEAP
);
676 void *sqlite3DbMallocRawNN(sqlite3
*db
, u64 n
){
677 #ifndef SQLITE_OMIT_LOOKASIDE
680 assert( sqlite3_mutex_held(db
->mutex
) );
681 assert( db
->pnBytesFreed
==0 );
682 if( n
>db
->lookaside
.sz
){
683 if( !db
->lookaside
.bDisable
){
684 db
->lookaside
.anStat
[1]++;
685 }else if( db
->mallocFailed
){
688 return dbMallocRawFinish(db
, n
);
690 #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE
691 if( n
<=LOOKASIDE_SMALL
){
692 if( (pBuf
= db
->lookaside
.pSmallFree
)!=0 ){
693 db
->lookaside
.pSmallFree
= pBuf
->pNext
;
694 db
->lookaside
.anStat
[0]++;
696 }else if( (pBuf
= db
->lookaside
.pSmallInit
)!=0 ){
697 db
->lookaside
.pSmallInit
= pBuf
->pNext
;
698 db
->lookaside
.anStat
[0]++;
703 if( (pBuf
= db
->lookaside
.pFree
)!=0 ){
704 db
->lookaside
.pFree
= pBuf
->pNext
;
705 db
->lookaside
.anStat
[0]++;
707 }else if( (pBuf
= db
->lookaside
.pInit
)!=0 ){
708 db
->lookaside
.pInit
= pBuf
->pNext
;
709 db
->lookaside
.anStat
[0]++;
712 db
->lookaside
.anStat
[2]++;
716 assert( sqlite3_mutex_held(db
->mutex
) );
717 assert( db
->pnBytesFreed
==0 );
718 if( db
->mallocFailed
){
722 return dbMallocRawFinish(db
, n
);
725 /* Forward declaration */
726 static SQLITE_NOINLINE
void *dbReallocFinish(sqlite3
*db
, void *p
, u64 n
);
729 ** Resize the block of memory pointed to by p to n bytes. If the
730 ** resize fails, set the mallocFailed flag in the connection object.
732 void *sqlite3DbRealloc(sqlite3
*db
, void *p
, u64 n
){
734 if( p
==0 ) return sqlite3DbMallocRawNN(db
, n
);
735 assert( sqlite3_mutex_held(db
->mutex
) );
736 if( ((uptr
)p
)<(uptr
)db
->lookaside
.pEnd
){
737 #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE
738 if( ((uptr
)p
)>=(uptr
)db
->lookaside
.pMiddle
){
739 if( n
<=LOOKASIDE_SMALL
) return p
;
742 if( ((uptr
)p
)>=(uptr
)db
->lookaside
.pStart
){
743 if( n
<=db
->lookaside
.szTrue
) return p
;
746 return dbReallocFinish(db
, p
, n
);
748 static SQLITE_NOINLINE
void *dbReallocFinish(sqlite3
*db
, void *p
, u64 n
){
752 if( db
->mallocFailed
==0 ){
753 if( isLookaside(db
, p
) ){
754 pNew
= sqlite3DbMallocRawNN(db
, n
);
756 memcpy(pNew
, p
, lookasideMallocSize(db
, p
));
757 sqlite3DbFree(db
, p
);
760 assert( sqlite3MemdebugHasType(p
, (MEMTYPE_LOOKASIDE
|MEMTYPE_HEAP
)) );
761 assert( sqlite3MemdebugNoType(p
, (u8
)~(MEMTYPE_LOOKASIDE
|MEMTYPE_HEAP
)) );
762 sqlite3MemdebugSetType(p
, MEMTYPE_HEAP
);
763 pNew
= sqlite3Realloc(p
, n
);
767 sqlite3MemdebugSetType(pNew
,
768 (db
->lookaside
.bDisable
==0 ? MEMTYPE_LOOKASIDE
: MEMTYPE_HEAP
));
775 ** Attempt to reallocate p. If the reallocation fails, then free p
776 ** and set the mallocFailed flag in the database connection.
778 void *sqlite3DbReallocOrFree(sqlite3
*db
, void *p
, u64 n
){
780 pNew
= sqlite3DbRealloc(db
, p
, n
);
782 sqlite3DbFree(db
, p
);
788 ** Make a copy of a string in memory obtained from sqliteMalloc(). These
789 ** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This
790 ** is because when memory debugging is turned on, these two functions are
791 ** called via macros that record the current file and line number in the
792 ** ThreadData structure.
794 char *sqlite3DbStrDup(sqlite3
*db
, const char *z
){
801 zNew
= sqlite3DbMallocRaw(db
, n
);
807 char *sqlite3DbStrNDup(sqlite3
*db
, const char *z
, u64 n
){
810 assert( z
!=0 || n
==0 );
811 assert( (n
&0x7fffffff)==n
);
812 zNew
= z
? sqlite3DbMallocRawNN(db
, n
+1) : 0;
814 memcpy(zNew
, z
, (size_t)n
);
821 ** The text between zStart and zEnd represents a phrase within a larger
822 ** SQL statement. Make a copy of this phrase in space obtained form
823 ** sqlite3DbMalloc(). Omit leading and trailing whitespace.
825 char *sqlite3DbSpanDup(sqlite3
*db
, const char *zStart
, const char *zEnd
){
828 /* Because of the way the parser works, the span is guaranteed to contain
829 ** at least one non-space character */
830 for(n
=0; sqlite3Isspace(zStart
[n
]); n
++){ assert( &zStart
[n
]<zEnd
); }
832 while( sqlite3Isspace(zStart
[0]) ) zStart
++;
833 n
= (int)(zEnd
- zStart
);
834 while( sqlite3Isspace(zStart
[n
-1]) ) n
--;
835 return sqlite3DbStrNDup(db
, zStart
, n
);
839 ** Free any prior content in *pz and replace it with a copy of zNew.
841 void sqlite3SetString(char **pz
, sqlite3
*db
, const char *zNew
){
842 char *z
= sqlite3DbStrDup(db
, zNew
);
843 sqlite3DbFree(db
, *pz
);
848 ** Call this routine to record the fact that an OOM (out-of-memory) error
849 ** has happened. This routine will set db->mallocFailed, and also
850 ** temporarily disable the lookaside memory allocator and interrupt
851 ** any running VDBEs.
853 ** Always return a NULL pointer so that this routine can be invoked using
855 ** return sqlite3OomFault(db);
857 ** and thereby avoid unnecessary stack frame allocations for the overwhelmingly
858 ** common case where no OOM occurs.
860 void *sqlite3OomFault(sqlite3
*db
){
861 if( db
->mallocFailed
==0 && db
->bBenignMalloc
==0 ){
862 db
->mallocFailed
= 1;
863 if( db
->nVdbeExec
>0 ){
864 AtomicStore(&db
->u1
.isInterrupted
, 1);
869 sqlite3ErrorMsg(db
->pParse
, "out of memory");
870 db
->pParse
->rc
= SQLITE_NOMEM_BKPT
;
871 for(pParse
=db
->pParse
->pOuterParse
; pParse
; pParse
= pParse
->pOuterParse
){
873 pParse
->rc
= SQLITE_NOMEM
;
881 ** This routine reactivates the memory allocator and clears the
882 ** db->mallocFailed flag as necessary.
884 ** The memory allocator is not restarted if there are running
887 void sqlite3OomClear(sqlite3
*db
){
888 if( db
->mallocFailed
&& db
->nVdbeExec
==0 ){
889 db
->mallocFailed
= 0;
890 AtomicStore(&db
->u1
.isInterrupted
, 0);
891 assert( db
->lookaside
.bDisable
>0 );
897 ** Take actions at the end of an API call to deal with error codes.
899 static SQLITE_NOINLINE
int apiHandleError(sqlite3
*db
, int rc
){
900 if( db
->mallocFailed
|| rc
==SQLITE_IOERR_NOMEM
){
902 sqlite3Error(db
, SQLITE_NOMEM
);
903 return SQLITE_NOMEM_BKPT
;
905 return rc
& db
->errMask
;
909 ** This function must be called before exiting any API function (i.e.
910 ** returning control to the user) that has called sqlite3_malloc or
913 ** The returned value is normally a copy of the second argument to this
914 ** function. However, if a malloc() failure has occurred since the previous
915 ** invocation SQLITE_NOMEM is returned instead.
917 ** If an OOM as occurred, then the connection error-code (the value
918 ** returned by sqlite3_errcode()) is set to SQLITE_NOMEM.
920 int sqlite3ApiExit(sqlite3
* db
, int rc
){
921 /* If the db handle must hold the connection handle mutex here.
922 ** Otherwise the read (and possible write) of db->mallocFailed
923 ** is unsafe, as is the call to sqlite3Error().
926 assert( sqlite3_mutex_held(db
->mutex
) );
927 if( db
->mallocFailed
|| rc
){
928 return apiHandleError(db
, rc
);