Snapshot of upstream SQLite 3.38.2
[sqlcipher.git] / src / btree.c
blob116342390b29fbce0a849808c71f7f0282fe3223
1 /*
2 ** 2004 April 6
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file implements an external (disk-based) database using BTrees.
13 ** See the header comment on "btreeInt.h" for additional information.
14 ** Including a description of file format and an overview of operation.
16 #include "btreeInt.h"
19 ** The header string that appears at the beginning of every
20 ** SQLite database.
22 static const char zMagicHeader[] = SQLITE_FILE_HEADER;
25 ** Set this global variable to 1 to enable tracing using the TRACE
26 ** macro.
28 #if 0
29 int sqlite3BtreeTrace=1; /* True to enable tracing */
30 # define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31 #else
32 # define TRACE(X)
33 #endif
36 ** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37 ** But if the value is zero, make it 65536.
39 ** This routine is used to extract the "offset to cell content area" value
40 ** from the header of a btree page. If the page size is 65536 and the page
41 ** is empty, the offset should be 65536, but the 2-byte value stores zero.
42 ** This routine makes the necessary adjustment to 65536.
44 #define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
47 ** Values passed as the 5th argument to allocateBtreePage()
49 #define BTALLOC_ANY 0 /* Allocate any page */
50 #define BTALLOC_EXACT 1 /* Allocate exact page if possible */
51 #define BTALLOC_LE 2 /* Allocate any page <= the parameter */
54 ** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55 ** defined, or 0 if it is. For example:
57 ** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
59 #ifndef SQLITE_OMIT_AUTOVACUUM
60 #define IfNotOmitAV(expr) (expr)
61 #else
62 #define IfNotOmitAV(expr) 0
63 #endif
65 #ifndef SQLITE_OMIT_SHARED_CACHE
67 ** A list of BtShared objects that are eligible for participation
68 ** in shared cache. This variable has file scope during normal builds,
69 ** but the test harness needs to access it so we make it global for
70 ** test builds.
72 ** Access to this variable is protected by SQLITE_MUTEX_STATIC_MAIN.
74 #ifdef SQLITE_TEST
75 BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
76 #else
77 static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
78 #endif
79 #endif /* SQLITE_OMIT_SHARED_CACHE */
81 #ifndef SQLITE_OMIT_SHARED_CACHE
83 ** Enable or disable the shared pager and schema features.
85 ** This routine has no effect on existing database connections.
86 ** The shared cache setting effects only future calls to
87 ** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
89 int sqlite3_enable_shared_cache(int enable){
90 sqlite3GlobalConfig.sharedCacheEnabled = enable;
91 return SQLITE_OK;
93 #endif
97 #ifdef SQLITE_OMIT_SHARED_CACHE
99 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100 ** and clearAllSharedCacheTableLocks()
101 ** manipulate entries in the BtShared.pLock linked list used to store
102 ** shared-cache table level locks. If the library is compiled with the
103 ** shared-cache feature disabled, then there is only ever one user
104 ** of each BtShared structure and so this locking is not necessary.
105 ** So define the lock related functions as no-ops.
107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109 #define clearAllSharedCacheTableLocks(a)
110 #define downgradeAllSharedCacheTableLocks(a)
111 #define hasSharedCacheTableLock(a,b,c,d) 1
112 #define hasReadConflicts(a, b) 0
113 #endif
115 #ifdef SQLITE_DEBUG
117 ** Return and reset the seek counter for a Btree object.
119 sqlite3_uint64 sqlite3BtreeSeekCount(Btree *pBt){
120 u64 n = pBt->nSeek;
121 pBt->nSeek = 0;
122 return n;
124 #endif
127 ** Implementation of the SQLITE_CORRUPT_PAGE() macro. Takes a single
128 ** (MemPage*) as an argument. The (MemPage*) must not be NULL.
130 ** If SQLITE_DEBUG is not defined, then this macro is equivalent to
131 ** SQLITE_CORRUPT_BKPT. Or, if SQLITE_DEBUG is set, then the log message
132 ** normally produced as a side-effect of SQLITE_CORRUPT_BKPT is augmented
133 ** with the page number and filename associated with the (MemPage*).
135 #ifdef SQLITE_DEBUG
136 int corruptPageError(int lineno, MemPage *p){
137 char *zMsg;
138 sqlite3BeginBenignMalloc();
139 zMsg = sqlite3_mprintf("database corruption page %d of %s",
140 (int)p->pgno, sqlite3PagerFilename(p->pBt->pPager, 0)
142 sqlite3EndBenignMalloc();
143 if( zMsg ){
144 sqlite3ReportError(SQLITE_CORRUPT, lineno, zMsg);
146 sqlite3_free(zMsg);
147 return SQLITE_CORRUPT_BKPT;
149 # define SQLITE_CORRUPT_PAGE(pMemPage) corruptPageError(__LINE__, pMemPage)
150 #else
151 # define SQLITE_CORRUPT_PAGE(pMemPage) SQLITE_CORRUPT_PGNO(pMemPage->pgno)
152 #endif
154 #ifndef SQLITE_OMIT_SHARED_CACHE
156 #ifdef SQLITE_DEBUG
158 **** This function is only used as part of an assert() statement. ***
160 ** Check to see if pBtree holds the required locks to read or write to the
161 ** table with root page iRoot. Return 1 if it does and 0 if not.
163 ** For example, when writing to a table with root-page iRoot via
164 ** Btree connection pBtree:
166 ** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
168 ** When writing to an index that resides in a sharable database, the
169 ** caller should have first obtained a lock specifying the root page of
170 ** the corresponding table. This makes things a bit more complicated,
171 ** as this module treats each table as a separate structure. To determine
172 ** the table corresponding to the index being written, this
173 ** function has to search through the database schema.
175 ** Instead of a lock on the table/index rooted at page iRoot, the caller may
176 ** hold a write-lock on the schema table (root page 1). This is also
177 ** acceptable.
179 static int hasSharedCacheTableLock(
180 Btree *pBtree, /* Handle that must hold lock */
181 Pgno iRoot, /* Root page of b-tree */
182 int isIndex, /* True if iRoot is the root of an index b-tree */
183 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
185 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
186 Pgno iTab = 0;
187 BtLock *pLock;
189 /* If this database is not shareable, or if the client is reading
190 ** and has the read-uncommitted flag set, then no lock is required.
191 ** Return true immediately.
193 if( (pBtree->sharable==0)
194 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommit))
196 return 1;
199 /* If the client is reading or writing an index and the schema is
200 ** not loaded, then it is too difficult to actually check to see if
201 ** the correct locks are held. So do not bother - just return true.
202 ** This case does not come up very often anyhow.
204 if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){
205 return 1;
208 /* Figure out the root-page that the lock should be held on. For table
209 ** b-trees, this is just the root page of the b-tree being read or
210 ** written. For index b-trees, it is the root page of the associated
211 ** table. */
212 if( isIndex ){
213 HashElem *p;
214 int bSeen = 0;
215 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
216 Index *pIdx = (Index *)sqliteHashData(p);
217 if( pIdx->tnum==(int)iRoot ){
218 if( bSeen ){
219 /* Two or more indexes share the same root page. There must
220 ** be imposter tables. So just return true. The assert is not
221 ** useful in that case. */
222 return 1;
224 iTab = pIdx->pTable->tnum;
225 bSeen = 1;
228 }else{
229 iTab = iRoot;
232 /* Search for the required lock. Either a write-lock on root-page iTab, a
233 ** write-lock on the schema table, or (if the client is reading) a
234 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
235 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
236 if( pLock->pBtree==pBtree
237 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
238 && pLock->eLock>=eLockType
240 return 1;
244 /* Failed to find the required lock. */
245 return 0;
247 #endif /* SQLITE_DEBUG */
249 #ifdef SQLITE_DEBUG
251 **** This function may be used as part of assert() statements only. ****
253 ** Return true if it would be illegal for pBtree to write into the
254 ** table or index rooted at iRoot because other shared connections are
255 ** simultaneously reading that same table or index.
257 ** It is illegal for pBtree to write if some other Btree object that
258 ** shares the same BtShared object is currently reading or writing
259 ** the iRoot table. Except, if the other Btree object has the
260 ** read-uncommitted flag set, then it is OK for the other object to
261 ** have a read cursor.
263 ** For example, before writing to any part of the table or index
264 ** rooted at page iRoot, one should call:
266 ** assert( !hasReadConflicts(pBtree, iRoot) );
268 static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
269 BtCursor *p;
270 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
271 if( p->pgnoRoot==iRoot
272 && p->pBtree!=pBtree
273 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommit)
275 return 1;
278 return 0;
280 #endif /* #ifdef SQLITE_DEBUG */
283 ** Query to see if Btree handle p may obtain a lock of type eLock
284 ** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
285 ** SQLITE_OK if the lock may be obtained (by calling
286 ** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
288 static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
289 BtShared *pBt = p->pBt;
290 BtLock *pIter;
292 assert( sqlite3BtreeHoldsMutex(p) );
293 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
294 assert( p->db!=0 );
295 assert( !(p->db->flags&SQLITE_ReadUncommit)||eLock==WRITE_LOCK||iTab==1 );
297 /* If requesting a write-lock, then the Btree must have an open write
298 ** transaction on this file. And, obviously, for this to be so there
299 ** must be an open write transaction on the file itself.
301 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
302 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
304 /* This routine is a no-op if the shared-cache is not enabled */
305 if( !p->sharable ){
306 return SQLITE_OK;
309 /* If some other connection is holding an exclusive lock, the
310 ** requested lock may not be obtained.
312 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
313 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
314 return SQLITE_LOCKED_SHAREDCACHE;
317 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
318 /* The condition (pIter->eLock!=eLock) in the following if(...)
319 ** statement is a simplification of:
321 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
323 ** since we know that if eLock==WRITE_LOCK, then no other connection
324 ** may hold a WRITE_LOCK on any table in this file (since there can
325 ** only be a single writer).
327 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
328 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
329 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
330 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
331 if( eLock==WRITE_LOCK ){
332 assert( p==pBt->pWriter );
333 pBt->btsFlags |= BTS_PENDING;
335 return SQLITE_LOCKED_SHAREDCACHE;
338 return SQLITE_OK;
340 #endif /* !SQLITE_OMIT_SHARED_CACHE */
342 #ifndef SQLITE_OMIT_SHARED_CACHE
344 ** Add a lock on the table with root-page iTable to the shared-btree used
345 ** by Btree handle p. Parameter eLock must be either READ_LOCK or
346 ** WRITE_LOCK.
348 ** This function assumes the following:
350 ** (a) The specified Btree object p is connected to a sharable
351 ** database (one with the BtShared.sharable flag set), and
353 ** (b) No other Btree objects hold a lock that conflicts
354 ** with the requested lock (i.e. querySharedCacheTableLock() has
355 ** already been called and returned SQLITE_OK).
357 ** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
358 ** is returned if a malloc attempt fails.
360 static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
361 BtShared *pBt = p->pBt;
362 BtLock *pLock = 0;
363 BtLock *pIter;
365 assert( sqlite3BtreeHoldsMutex(p) );
366 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
367 assert( p->db!=0 );
369 /* A connection with the read-uncommitted flag set will never try to
370 ** obtain a read-lock using this function. The only read-lock obtained
371 ** by a connection in read-uncommitted mode is on the sqlite_schema
372 ** table, and that lock is obtained in BtreeBeginTrans(). */
373 assert( 0==(p->db->flags&SQLITE_ReadUncommit) || eLock==WRITE_LOCK );
375 /* This function should only be called on a sharable b-tree after it
376 ** has been determined that no other b-tree holds a conflicting lock. */
377 assert( p->sharable );
378 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
380 /* First search the list for an existing lock on this table. */
381 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
382 if( pIter->iTable==iTable && pIter->pBtree==p ){
383 pLock = pIter;
384 break;
388 /* If the above search did not find a BtLock struct associating Btree p
389 ** with table iTable, allocate one and link it into the list.
391 if( !pLock ){
392 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
393 if( !pLock ){
394 return SQLITE_NOMEM_BKPT;
396 pLock->iTable = iTable;
397 pLock->pBtree = p;
398 pLock->pNext = pBt->pLock;
399 pBt->pLock = pLock;
402 /* Set the BtLock.eLock variable to the maximum of the current lock
403 ** and the requested lock. This means if a write-lock was already held
404 ** and a read-lock requested, we don't incorrectly downgrade the lock.
406 assert( WRITE_LOCK>READ_LOCK );
407 if( eLock>pLock->eLock ){
408 pLock->eLock = eLock;
411 return SQLITE_OK;
413 #endif /* !SQLITE_OMIT_SHARED_CACHE */
415 #ifndef SQLITE_OMIT_SHARED_CACHE
417 ** Release all the table locks (locks obtained via calls to
418 ** the setSharedCacheTableLock() procedure) held by Btree object p.
420 ** This function assumes that Btree p has an open read or write
421 ** transaction. If it does not, then the BTS_PENDING flag
422 ** may be incorrectly cleared.
424 static void clearAllSharedCacheTableLocks(Btree *p){
425 BtShared *pBt = p->pBt;
426 BtLock **ppIter = &pBt->pLock;
428 assert( sqlite3BtreeHoldsMutex(p) );
429 assert( p->sharable || 0==*ppIter );
430 assert( p->inTrans>0 );
432 while( *ppIter ){
433 BtLock *pLock = *ppIter;
434 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
435 assert( pLock->pBtree->inTrans>=pLock->eLock );
436 if( pLock->pBtree==p ){
437 *ppIter = pLock->pNext;
438 assert( pLock->iTable!=1 || pLock==&p->lock );
439 if( pLock->iTable!=1 ){
440 sqlite3_free(pLock);
442 }else{
443 ppIter = &pLock->pNext;
447 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
448 if( pBt->pWriter==p ){
449 pBt->pWriter = 0;
450 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
451 }else if( pBt->nTransaction==2 ){
452 /* This function is called when Btree p is concluding its
453 ** transaction. If there currently exists a writer, and p is not
454 ** that writer, then the number of locks held by connections other
455 ** than the writer must be about to drop to zero. In this case
456 ** set the BTS_PENDING flag to 0.
458 ** If there is not currently a writer, then BTS_PENDING must
459 ** be zero already. So this next line is harmless in that case.
461 pBt->btsFlags &= ~BTS_PENDING;
466 ** This function changes all write-locks held by Btree p into read-locks.
468 static void downgradeAllSharedCacheTableLocks(Btree *p){
469 BtShared *pBt = p->pBt;
470 if( pBt->pWriter==p ){
471 BtLock *pLock;
472 pBt->pWriter = 0;
473 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
474 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
475 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
476 pLock->eLock = READ_LOCK;
481 #endif /* SQLITE_OMIT_SHARED_CACHE */
483 static void releasePage(MemPage *pPage); /* Forward reference */
484 static void releasePageOne(MemPage *pPage); /* Forward reference */
485 static void releasePageNotNull(MemPage *pPage); /* Forward reference */
488 ***** This routine is used inside of assert() only ****
490 ** Verify that the cursor holds the mutex on its BtShared
492 #ifdef SQLITE_DEBUG
493 static int cursorHoldsMutex(BtCursor *p){
494 return sqlite3_mutex_held(p->pBt->mutex);
497 /* Verify that the cursor and the BtShared agree about what is the current
498 ** database connetion. This is important in shared-cache mode. If the database
499 ** connection pointers get out-of-sync, it is possible for routines like
500 ** btreeInitPage() to reference an stale connection pointer that references a
501 ** a connection that has already closed. This routine is used inside assert()
502 ** statements only and for the purpose of double-checking that the btree code
503 ** does keep the database connection pointers up-to-date.
505 static int cursorOwnsBtShared(BtCursor *p){
506 assert( cursorHoldsMutex(p) );
507 return (p->pBtree->db==p->pBt->db);
509 #endif
512 ** Invalidate the overflow cache of the cursor passed as the first argument.
513 ** on the shared btree structure pBt.
515 #define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
518 ** Invalidate the overflow page-list cache for all cursors opened
519 ** on the shared btree structure pBt.
521 static void invalidateAllOverflowCache(BtShared *pBt){
522 BtCursor *p;
523 assert( sqlite3_mutex_held(pBt->mutex) );
524 for(p=pBt->pCursor; p; p=p->pNext){
525 invalidateOverflowCache(p);
529 #ifndef SQLITE_OMIT_INCRBLOB
531 ** This function is called before modifying the contents of a table
532 ** to invalidate any incrblob cursors that are open on the
533 ** row or one of the rows being modified.
535 ** If argument isClearTable is true, then the entire contents of the
536 ** table is about to be deleted. In this case invalidate all incrblob
537 ** cursors open on any row within the table with root-page pgnoRoot.
539 ** Otherwise, if argument isClearTable is false, then the row with
540 ** rowid iRow is being replaced or deleted. In this case invalidate
541 ** only those incrblob cursors open on that specific row.
543 static void invalidateIncrblobCursors(
544 Btree *pBtree, /* The database file to check */
545 Pgno pgnoRoot, /* The table that might be changing */
546 i64 iRow, /* The rowid that might be changing */
547 int isClearTable /* True if all rows are being deleted */
549 BtCursor *p;
550 assert( pBtree->hasIncrblobCur );
551 assert( sqlite3BtreeHoldsMutex(pBtree) );
552 pBtree->hasIncrblobCur = 0;
553 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
554 if( (p->curFlags & BTCF_Incrblob)!=0 ){
555 pBtree->hasIncrblobCur = 1;
556 if( p->pgnoRoot==pgnoRoot && (isClearTable || p->info.nKey==iRow) ){
557 p->eState = CURSOR_INVALID;
563 #else
564 /* Stub function when INCRBLOB is omitted */
565 #define invalidateIncrblobCursors(w,x,y,z)
566 #endif /* SQLITE_OMIT_INCRBLOB */
569 ** Set bit pgno of the BtShared.pHasContent bitvec. This is called
570 ** when a page that previously contained data becomes a free-list leaf
571 ** page.
573 ** The BtShared.pHasContent bitvec exists to work around an obscure
574 ** bug caused by the interaction of two useful IO optimizations surrounding
575 ** free-list leaf pages:
577 ** 1) When all data is deleted from a page and the page becomes
578 ** a free-list leaf page, the page is not written to the database
579 ** (as free-list leaf pages contain no meaningful data). Sometimes
580 ** such a page is not even journalled (as it will not be modified,
581 ** why bother journalling it?).
583 ** 2) When a free-list leaf page is reused, its content is not read
584 ** from the database or written to the journal file (why should it
585 ** be, if it is not at all meaningful?).
587 ** By themselves, these optimizations work fine and provide a handy
588 ** performance boost to bulk delete or insert operations. However, if
589 ** a page is moved to the free-list and then reused within the same
590 ** transaction, a problem comes up. If the page is not journalled when
591 ** it is moved to the free-list and it is also not journalled when it
592 ** is extracted from the free-list and reused, then the original data
593 ** may be lost. In the event of a rollback, it may not be possible
594 ** to restore the database to its original configuration.
596 ** The solution is the BtShared.pHasContent bitvec. Whenever a page is
597 ** moved to become a free-list leaf page, the corresponding bit is
598 ** set in the bitvec. Whenever a leaf page is extracted from the free-list,
599 ** optimization 2 above is omitted if the corresponding bit is already
600 ** set in BtShared.pHasContent. The contents of the bitvec are cleared
601 ** at the end of every transaction.
603 static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
604 int rc = SQLITE_OK;
605 if( !pBt->pHasContent ){
606 assert( pgno<=pBt->nPage );
607 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
608 if( !pBt->pHasContent ){
609 rc = SQLITE_NOMEM_BKPT;
612 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
613 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
615 return rc;
619 ** Query the BtShared.pHasContent vector.
621 ** This function is called when a free-list leaf page is removed from the
622 ** free-list for reuse. It returns false if it is safe to retrieve the
623 ** page from the pager layer with the 'no-content' flag set. True otherwise.
625 static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
626 Bitvec *p = pBt->pHasContent;
627 return p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTestNotNull(p, pgno));
631 ** Clear (destroy) the BtShared.pHasContent bitvec. This should be
632 ** invoked at the conclusion of each write-transaction.
634 static void btreeClearHasContent(BtShared *pBt){
635 sqlite3BitvecDestroy(pBt->pHasContent);
636 pBt->pHasContent = 0;
640 ** Release all of the apPage[] pages for a cursor.
642 static void btreeReleaseAllCursorPages(BtCursor *pCur){
643 int i;
644 if( pCur->iPage>=0 ){
645 for(i=0; i<pCur->iPage; i++){
646 releasePageNotNull(pCur->apPage[i]);
648 releasePageNotNull(pCur->pPage);
649 pCur->iPage = -1;
654 ** The cursor passed as the only argument must point to a valid entry
655 ** when this function is called (i.e. have eState==CURSOR_VALID). This
656 ** function saves the current cursor key in variables pCur->nKey and
657 ** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error
658 ** code otherwise.
660 ** If the cursor is open on an intkey table, then the integer key
661 ** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to
662 ** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is
663 ** set to point to a malloced buffer pCur->nKey bytes in size containing
664 ** the key.
666 static int saveCursorKey(BtCursor *pCur){
667 int rc = SQLITE_OK;
668 assert( CURSOR_VALID==pCur->eState );
669 assert( 0==pCur->pKey );
670 assert( cursorHoldsMutex(pCur) );
672 if( pCur->curIntKey ){
673 /* Only the rowid is required for a table btree */
674 pCur->nKey = sqlite3BtreeIntegerKey(pCur);
675 }else{
676 /* For an index btree, save the complete key content. It is possible
677 ** that the current key is corrupt. In that case, it is possible that
678 ** the sqlite3VdbeRecordUnpack() function may overread the buffer by
679 ** up to the size of 1 varint plus 1 8-byte value when the cursor
680 ** position is restored. Hence the 17 bytes of padding allocated
681 ** below. */
682 void *pKey;
683 pCur->nKey = sqlite3BtreePayloadSize(pCur);
684 pKey = sqlite3Malloc( pCur->nKey + 9 + 8 );
685 if( pKey ){
686 rc = sqlite3BtreePayload(pCur, 0, (int)pCur->nKey, pKey);
687 if( rc==SQLITE_OK ){
688 memset(((u8*)pKey)+pCur->nKey, 0, 9+8);
689 pCur->pKey = pKey;
690 }else{
691 sqlite3_free(pKey);
693 }else{
694 rc = SQLITE_NOMEM_BKPT;
697 assert( !pCur->curIntKey || !pCur->pKey );
698 return rc;
702 ** Save the current cursor position in the variables BtCursor.nKey
703 ** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
705 ** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
706 ** prior to calling this routine.
708 static int saveCursorPosition(BtCursor *pCur){
709 int rc;
711 assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState );
712 assert( 0==pCur->pKey );
713 assert( cursorHoldsMutex(pCur) );
715 if( pCur->curFlags & BTCF_Pinned ){
716 return SQLITE_CONSTRAINT_PINNED;
718 if( pCur->eState==CURSOR_SKIPNEXT ){
719 pCur->eState = CURSOR_VALID;
720 }else{
721 pCur->skipNext = 0;
724 rc = saveCursorKey(pCur);
725 if( rc==SQLITE_OK ){
726 btreeReleaseAllCursorPages(pCur);
727 pCur->eState = CURSOR_REQUIRESEEK;
730 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast);
731 return rc;
734 /* Forward reference */
735 static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*);
738 ** Save the positions of all cursors (except pExcept) that are open on
739 ** the table with root-page iRoot. "Saving the cursor position" means that
740 ** the location in the btree is remembered in such a way that it can be
741 ** moved back to the same spot after the btree has been modified. This
742 ** routine is called just before cursor pExcept is used to modify the
743 ** table, for example in BtreeDelete() or BtreeInsert().
745 ** If there are two or more cursors on the same btree, then all such
746 ** cursors should have their BTCF_Multiple flag set. The btreeCursor()
747 ** routine enforces that rule. This routine only needs to be called in
748 ** the uncommon case when pExpect has the BTCF_Multiple flag set.
750 ** If pExpect!=NULL and if no other cursors are found on the same root-page,
751 ** then the BTCF_Multiple flag on pExpect is cleared, to avoid another
752 ** pointless call to this routine.
754 ** Implementation note: This routine merely checks to see if any cursors
755 ** need to be saved. It calls out to saveCursorsOnList() in the (unusual)
756 ** event that cursors are in need to being saved.
758 static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
759 BtCursor *p;
760 assert( sqlite3_mutex_held(pBt->mutex) );
761 assert( pExcept==0 || pExcept->pBt==pBt );
762 for(p=pBt->pCursor; p; p=p->pNext){
763 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break;
765 if( p ) return saveCursorsOnList(p, iRoot, pExcept);
766 if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple;
767 return SQLITE_OK;
770 /* This helper routine to saveAllCursors does the actual work of saving
771 ** the cursors if and when a cursor is found that actually requires saving.
772 ** The common case is that no cursors need to be saved, so this routine is
773 ** broken out from its caller to avoid unnecessary stack pointer movement.
775 static int SQLITE_NOINLINE saveCursorsOnList(
776 BtCursor *p, /* The first cursor that needs saving */
777 Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */
778 BtCursor *pExcept /* Do not save this cursor */
781 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
782 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
783 int rc = saveCursorPosition(p);
784 if( SQLITE_OK!=rc ){
785 return rc;
787 }else{
788 testcase( p->iPage>=0 );
789 btreeReleaseAllCursorPages(p);
792 p = p->pNext;
793 }while( p );
794 return SQLITE_OK;
798 ** Clear the current cursor position.
800 void sqlite3BtreeClearCursor(BtCursor *pCur){
801 assert( cursorHoldsMutex(pCur) );
802 sqlite3_free(pCur->pKey);
803 pCur->pKey = 0;
804 pCur->eState = CURSOR_INVALID;
808 ** In this version of BtreeMoveto, pKey is a packed index record
809 ** such as is generated by the OP_MakeRecord opcode. Unpack the
810 ** record and then call BtreeMovetoUnpacked() to do the work.
812 static int btreeMoveto(
813 BtCursor *pCur, /* Cursor open on the btree to be searched */
814 const void *pKey, /* Packed key if the btree is an index */
815 i64 nKey, /* Integer key for tables. Size of pKey for indices */
816 int bias, /* Bias search to the high end */
817 int *pRes /* Write search results here */
819 int rc; /* Status code */
820 UnpackedRecord *pIdxKey; /* Unpacked index key */
822 if( pKey ){
823 KeyInfo *pKeyInfo = pCur->pKeyInfo;
824 assert( nKey==(i64)(int)nKey );
825 pIdxKey = sqlite3VdbeAllocUnpackedRecord(pKeyInfo);
826 if( pIdxKey==0 ) return SQLITE_NOMEM_BKPT;
827 sqlite3VdbeRecordUnpack(pKeyInfo, (int)nKey, pKey, pIdxKey);
828 if( pIdxKey->nField==0 || pIdxKey->nField>pKeyInfo->nAllField ){
829 rc = SQLITE_CORRUPT_BKPT;
830 }else{
831 rc = sqlite3BtreeIndexMoveto(pCur, pIdxKey, pRes);
833 sqlite3DbFree(pCur->pKeyInfo->db, pIdxKey);
834 }else{
835 pIdxKey = 0;
836 rc = sqlite3BtreeTableMoveto(pCur, nKey, bias, pRes);
838 return rc;
842 ** Restore the cursor to the position it was in (or as close to as possible)
843 ** when saveCursorPosition() was called. Note that this call deletes the
844 ** saved position info stored by saveCursorPosition(), so there can be
845 ** at most one effective restoreCursorPosition() call after each
846 ** saveCursorPosition().
848 static int btreeRestoreCursorPosition(BtCursor *pCur){
849 int rc;
850 int skipNext = 0;
851 assert( cursorOwnsBtShared(pCur) );
852 assert( pCur->eState>=CURSOR_REQUIRESEEK );
853 if( pCur->eState==CURSOR_FAULT ){
854 return pCur->skipNext;
856 pCur->eState = CURSOR_INVALID;
857 if( sqlite3FaultSim(410) ){
858 rc = SQLITE_IOERR;
859 }else{
860 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext);
862 if( rc==SQLITE_OK ){
863 sqlite3_free(pCur->pKey);
864 pCur->pKey = 0;
865 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
866 if( skipNext ) pCur->skipNext = skipNext;
867 if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
868 pCur->eState = CURSOR_SKIPNEXT;
871 return rc;
874 #define restoreCursorPosition(p) \
875 (p->eState>=CURSOR_REQUIRESEEK ? \
876 btreeRestoreCursorPosition(p) : \
877 SQLITE_OK)
880 ** Determine whether or not a cursor has moved from the position where
881 ** it was last placed, or has been invalidated for any other reason.
882 ** Cursors can move when the row they are pointing at is deleted out
883 ** from under them, for example. Cursor might also move if a btree
884 ** is rebalanced.
886 ** Calling this routine with a NULL cursor pointer returns false.
888 ** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
889 ** back to where it ought to be if this routine returns true.
891 int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
892 assert( EIGHT_BYTE_ALIGNMENT(pCur)
893 || pCur==sqlite3BtreeFakeValidCursor() );
894 assert( offsetof(BtCursor, eState)==0 );
895 assert( sizeof(pCur->eState)==1 );
896 return CURSOR_VALID != *(u8*)pCur;
900 ** Return a pointer to a fake BtCursor object that will always answer
901 ** false to the sqlite3BtreeCursorHasMoved() routine above. The fake
902 ** cursor returned must not be used with any other Btree interface.
904 BtCursor *sqlite3BtreeFakeValidCursor(void){
905 static u8 fakeCursor = CURSOR_VALID;
906 assert( offsetof(BtCursor, eState)==0 );
907 return (BtCursor*)&fakeCursor;
911 ** This routine restores a cursor back to its original position after it
912 ** has been moved by some outside activity (such as a btree rebalance or
913 ** a row having been deleted out from under the cursor).
915 ** On success, the *pDifferentRow parameter is false if the cursor is left
916 ** pointing at exactly the same row. *pDifferntRow is the row the cursor
917 ** was pointing to has been deleted, forcing the cursor to point to some
918 ** nearby row.
920 ** This routine should only be called for a cursor that just returned
921 ** TRUE from sqlite3BtreeCursorHasMoved().
923 int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){
924 int rc;
926 assert( pCur!=0 );
927 assert( pCur->eState!=CURSOR_VALID );
928 rc = restoreCursorPosition(pCur);
929 if( rc ){
930 *pDifferentRow = 1;
931 return rc;
933 if( pCur->eState!=CURSOR_VALID ){
934 *pDifferentRow = 1;
935 }else{
936 *pDifferentRow = 0;
938 return SQLITE_OK;
941 #ifdef SQLITE_ENABLE_CURSOR_HINTS
943 ** Provide hints to the cursor. The particular hint given (and the type
944 ** and number of the varargs parameters) is determined by the eHintType
945 ** parameter. See the definitions of the BTREE_HINT_* macros for details.
947 void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){
948 /* Used only by system that substitute their own storage engine */
950 #endif
953 ** Provide flag hints to the cursor.
955 void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){
956 assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 );
957 pCur->hints = x;
961 #ifndef SQLITE_OMIT_AUTOVACUUM
963 ** Given a page number of a regular database page, return the page
964 ** number for the pointer-map page that contains the entry for the
965 ** input page number.
967 ** Return 0 (not a valid page) for pgno==1 since there is
968 ** no pointer map associated with page 1. The integrity_check logic
969 ** requires that ptrmapPageno(*,1)!=1.
971 static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
972 int nPagesPerMapPage;
973 Pgno iPtrMap, ret;
974 assert( sqlite3_mutex_held(pBt->mutex) );
975 if( pgno<2 ) return 0;
976 nPagesPerMapPage = (pBt->usableSize/5)+1;
977 iPtrMap = (pgno-2)/nPagesPerMapPage;
978 ret = (iPtrMap*nPagesPerMapPage) + 2;
979 if( ret==PENDING_BYTE_PAGE(pBt) ){
980 ret++;
982 return ret;
986 ** Write an entry into the pointer map.
988 ** This routine updates the pointer map entry for page number 'key'
989 ** so that it maps to type 'eType' and parent page number 'pgno'.
991 ** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
992 ** a no-op. If an error occurs, the appropriate error code is written
993 ** into *pRC.
995 static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
996 DbPage *pDbPage; /* The pointer map page */
997 u8 *pPtrmap; /* The pointer map data */
998 Pgno iPtrmap; /* The pointer map page number */
999 int offset; /* Offset in pointer map page */
1000 int rc; /* Return code from subfunctions */
1002 if( *pRC ) return;
1004 assert( sqlite3_mutex_held(pBt->mutex) );
1005 /* The super-journal page number must never be used as a pointer map page */
1006 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
1008 assert( pBt->autoVacuum );
1009 if( key==0 ){
1010 *pRC = SQLITE_CORRUPT_BKPT;
1011 return;
1013 iPtrmap = PTRMAP_PAGENO(pBt, key);
1014 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
1015 if( rc!=SQLITE_OK ){
1016 *pRC = rc;
1017 return;
1019 if( ((char*)sqlite3PagerGetExtra(pDbPage))[0]!=0 ){
1020 /* The first byte of the extra data is the MemPage.isInit byte.
1021 ** If that byte is set, it means this page is also being used
1022 ** as a btree page. */
1023 *pRC = SQLITE_CORRUPT_BKPT;
1024 goto ptrmap_exit;
1026 offset = PTRMAP_PTROFFSET(iPtrmap, key);
1027 if( offset<0 ){
1028 *pRC = SQLITE_CORRUPT_BKPT;
1029 goto ptrmap_exit;
1031 assert( offset <= (int)pBt->usableSize-5 );
1032 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
1034 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
1035 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
1036 *pRC= rc = sqlite3PagerWrite(pDbPage);
1037 if( rc==SQLITE_OK ){
1038 pPtrmap[offset] = eType;
1039 put4byte(&pPtrmap[offset+1], parent);
1043 ptrmap_exit:
1044 sqlite3PagerUnref(pDbPage);
1048 ** Read an entry from the pointer map.
1050 ** This routine retrieves the pointer map entry for page 'key', writing
1051 ** the type and parent page number to *pEType and *pPgno respectively.
1052 ** An error code is returned if something goes wrong, otherwise SQLITE_OK.
1054 static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
1055 DbPage *pDbPage; /* The pointer map page */
1056 int iPtrmap; /* Pointer map page index */
1057 u8 *pPtrmap; /* Pointer map page data */
1058 int offset; /* Offset of entry in pointer map */
1059 int rc;
1061 assert( sqlite3_mutex_held(pBt->mutex) );
1063 iPtrmap = PTRMAP_PAGENO(pBt, key);
1064 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
1065 if( rc!=0 ){
1066 return rc;
1068 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
1070 offset = PTRMAP_PTROFFSET(iPtrmap, key);
1071 if( offset<0 ){
1072 sqlite3PagerUnref(pDbPage);
1073 return SQLITE_CORRUPT_BKPT;
1075 assert( offset <= (int)pBt->usableSize-5 );
1076 assert( pEType!=0 );
1077 *pEType = pPtrmap[offset];
1078 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
1080 sqlite3PagerUnref(pDbPage);
1081 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_PGNO(iPtrmap);
1082 return SQLITE_OK;
1085 #else /* if defined SQLITE_OMIT_AUTOVACUUM */
1086 #define ptrmapPut(w,x,y,z,rc)
1087 #define ptrmapGet(w,x,y,z) SQLITE_OK
1088 #define ptrmapPutOvflPtr(x, y, z, rc)
1089 #endif
1092 ** Given a btree page and a cell index (0 means the first cell on
1093 ** the page, 1 means the second cell, and so forth) return a pointer
1094 ** to the cell content.
1096 ** findCellPastPtr() does the same except it skips past the initial
1097 ** 4-byte child pointer found on interior pages, if there is one.
1099 ** This routine works only for pages that do not contain overflow cells.
1101 #define findCell(P,I) \
1102 ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
1103 #define findCellPastPtr(P,I) \
1104 ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
1108 ** This is common tail processing for btreeParseCellPtr() and
1109 ** btreeParseCellPtrIndex() for the case when the cell does not fit entirely
1110 ** on a single B-tree page. Make necessary adjustments to the CellInfo
1111 ** structure.
1113 static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow(
1114 MemPage *pPage, /* Page containing the cell */
1115 u8 *pCell, /* Pointer to the cell text. */
1116 CellInfo *pInfo /* Fill in this structure */
1118 /* If the payload will not fit completely on the local page, we have
1119 ** to decide how much to store locally and how much to spill onto
1120 ** overflow pages. The strategy is to minimize the amount of unused
1121 ** space on overflow pages while keeping the amount of local storage
1122 ** in between minLocal and maxLocal.
1124 ** Warning: changing the way overflow payload is distributed in any
1125 ** way will result in an incompatible file format.
1127 int minLocal; /* Minimum amount of payload held locally */
1128 int maxLocal; /* Maximum amount of payload held locally */
1129 int surplus; /* Overflow payload available for local storage */
1131 minLocal = pPage->minLocal;
1132 maxLocal = pPage->maxLocal;
1133 surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4);
1134 testcase( surplus==maxLocal );
1135 testcase( surplus==maxLocal+1 );
1136 if( surplus <= maxLocal ){
1137 pInfo->nLocal = (u16)surplus;
1138 }else{
1139 pInfo->nLocal = (u16)minLocal;
1141 pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4;
1145 ** Given a record with nPayload bytes of payload stored within btree
1146 ** page pPage, return the number of bytes of payload stored locally.
1148 static int btreePayloadToLocal(MemPage *pPage, i64 nPayload){
1149 int maxLocal; /* Maximum amount of payload held locally */
1150 maxLocal = pPage->maxLocal;
1151 if( nPayload<=maxLocal ){
1152 return nPayload;
1153 }else{
1154 int minLocal; /* Minimum amount of payload held locally */
1155 int surplus; /* Overflow payload available for local storage */
1156 minLocal = pPage->minLocal;
1157 surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize-4);
1158 return ( surplus <= maxLocal ) ? surplus : minLocal;
1163 ** The following routines are implementations of the MemPage.xParseCell()
1164 ** method.
1166 ** Parse a cell content block and fill in the CellInfo structure.
1168 ** btreeParseCellPtr() => table btree leaf nodes
1169 ** btreeParseCellNoPayload() => table btree internal nodes
1170 ** btreeParseCellPtrIndex() => index btree nodes
1172 ** There is also a wrapper function btreeParseCell() that works for
1173 ** all MemPage types and that references the cell by index rather than
1174 ** by pointer.
1176 static void btreeParseCellPtrNoPayload(
1177 MemPage *pPage, /* Page containing the cell */
1178 u8 *pCell, /* Pointer to the cell text. */
1179 CellInfo *pInfo /* Fill in this structure */
1181 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1182 assert( pPage->leaf==0 );
1183 assert( pPage->childPtrSize==4 );
1184 #ifndef SQLITE_DEBUG
1185 UNUSED_PARAMETER(pPage);
1186 #endif
1187 pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
1188 pInfo->nPayload = 0;
1189 pInfo->nLocal = 0;
1190 pInfo->pPayload = 0;
1191 return;
1193 static void btreeParseCellPtr(
1194 MemPage *pPage, /* Page containing the cell */
1195 u8 *pCell, /* Pointer to the cell text. */
1196 CellInfo *pInfo /* Fill in this structure */
1198 u8 *pIter; /* For scanning through pCell */
1199 u32 nPayload; /* Number of bytes of cell payload */
1200 u64 iKey; /* Extracted Key value */
1202 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1203 assert( pPage->leaf==0 || pPage->leaf==1 );
1204 assert( pPage->intKeyLeaf );
1205 assert( pPage->childPtrSize==0 );
1206 pIter = pCell;
1208 /* The next block of code is equivalent to:
1210 ** pIter += getVarint32(pIter, nPayload);
1212 ** The code is inlined to avoid a function call.
1214 nPayload = *pIter;
1215 if( nPayload>=0x80 ){
1216 u8 *pEnd = &pIter[8];
1217 nPayload &= 0x7f;
1219 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1220 }while( (*pIter)>=0x80 && pIter<pEnd );
1222 pIter++;
1224 /* The next block of code is equivalent to:
1226 ** pIter += getVarint(pIter, (u64*)&pInfo->nKey);
1228 ** The code is inlined and the loop is unrolled for performance.
1229 ** This routine is a high-runner.
1231 iKey = *pIter;
1232 if( iKey>=0x80 ){
1233 u8 x;
1234 iKey = ((iKey&0x7f)<<7) | ((x = *++pIter) & 0x7f);
1235 if( x>=0x80 ){
1236 iKey = (iKey<<7) | ((x =*++pIter) & 0x7f);
1237 if( x>=0x80 ){
1238 iKey = (iKey<<7) | ((x = *++pIter) & 0x7f);
1239 if( x>=0x80 ){
1240 iKey = (iKey<<7) | ((x = *++pIter) & 0x7f);
1241 if( x>=0x80 ){
1242 iKey = (iKey<<7) | ((x = *++pIter) & 0x7f);
1243 if( x>=0x80 ){
1244 iKey = (iKey<<7) | ((x = *++pIter) & 0x7f);
1245 if( x>=0x80 ){
1246 iKey = (iKey<<7) | ((x = *++pIter) & 0x7f);
1247 if( x>=0x80 ){
1248 iKey = (iKey<<8) | (*++pIter);
1257 pIter++;
1259 pInfo->nKey = *(i64*)&iKey;
1260 pInfo->nPayload = nPayload;
1261 pInfo->pPayload = pIter;
1262 testcase( nPayload==pPage->maxLocal );
1263 testcase( nPayload==(u32)pPage->maxLocal+1 );
1264 if( nPayload<=pPage->maxLocal ){
1265 /* This is the (easy) common case where the entire payload fits
1266 ** on the local page. No overflow is required.
1268 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1269 if( pInfo->nSize<4 ) pInfo->nSize = 4;
1270 pInfo->nLocal = (u16)nPayload;
1271 }else{
1272 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
1275 static void btreeParseCellPtrIndex(
1276 MemPage *pPage, /* Page containing the cell */
1277 u8 *pCell, /* Pointer to the cell text. */
1278 CellInfo *pInfo /* Fill in this structure */
1280 u8 *pIter; /* For scanning through pCell */
1281 u32 nPayload; /* Number of bytes of cell payload */
1283 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1284 assert( pPage->leaf==0 || pPage->leaf==1 );
1285 assert( pPage->intKeyLeaf==0 );
1286 pIter = pCell + pPage->childPtrSize;
1287 nPayload = *pIter;
1288 if( nPayload>=0x80 ){
1289 u8 *pEnd = &pIter[8];
1290 nPayload &= 0x7f;
1292 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1293 }while( *(pIter)>=0x80 && pIter<pEnd );
1295 pIter++;
1296 pInfo->nKey = nPayload;
1297 pInfo->nPayload = nPayload;
1298 pInfo->pPayload = pIter;
1299 testcase( nPayload==pPage->maxLocal );
1300 testcase( nPayload==(u32)pPage->maxLocal+1 );
1301 if( nPayload<=pPage->maxLocal ){
1302 /* This is the (easy) common case where the entire payload fits
1303 ** on the local page. No overflow is required.
1305 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1306 if( pInfo->nSize<4 ) pInfo->nSize = 4;
1307 pInfo->nLocal = (u16)nPayload;
1308 }else{
1309 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
1312 static void btreeParseCell(
1313 MemPage *pPage, /* Page containing the cell */
1314 int iCell, /* The cell index. First cell is 0 */
1315 CellInfo *pInfo /* Fill in this structure */
1317 pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo);
1321 ** The following routines are implementations of the MemPage.xCellSize
1322 ** method.
1324 ** Compute the total number of bytes that a Cell needs in the cell
1325 ** data area of the btree-page. The return number includes the cell
1326 ** data header and the local payload, but not any overflow page or
1327 ** the space used by the cell pointer.
1329 ** cellSizePtrNoPayload() => table internal nodes
1330 ** cellSizePtr() => all index nodes & table leaf nodes
1332 static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
1333 u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */
1334 u8 *pEnd; /* End mark for a varint */
1335 u32 nSize; /* Size value to return */
1337 #ifdef SQLITE_DEBUG
1338 /* The value returned by this function should always be the same as
1339 ** the (CellInfo.nSize) value found by doing a full parse of the
1340 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1341 ** this function verifies that this invariant is not violated. */
1342 CellInfo debuginfo;
1343 pPage->xParseCell(pPage, pCell, &debuginfo);
1344 #endif
1346 nSize = *pIter;
1347 if( nSize>=0x80 ){
1348 pEnd = &pIter[8];
1349 nSize &= 0x7f;
1351 nSize = (nSize<<7) | (*++pIter & 0x7f);
1352 }while( *(pIter)>=0x80 && pIter<pEnd );
1354 pIter++;
1355 if( pPage->intKey ){
1356 /* pIter now points at the 64-bit integer key value, a variable length
1357 ** integer. The following block moves pIter to point at the first byte
1358 ** past the end of the key value. */
1359 pEnd = &pIter[9];
1360 while( (*pIter++)&0x80 && pIter<pEnd );
1362 testcase( nSize==pPage->maxLocal );
1363 testcase( nSize==(u32)pPage->maxLocal+1 );
1364 if( nSize<=pPage->maxLocal ){
1365 nSize += (u32)(pIter - pCell);
1366 if( nSize<4 ) nSize = 4;
1367 }else{
1368 int minLocal = pPage->minLocal;
1369 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
1370 testcase( nSize==pPage->maxLocal );
1371 testcase( nSize==(u32)pPage->maxLocal+1 );
1372 if( nSize>pPage->maxLocal ){
1373 nSize = minLocal;
1375 nSize += 4 + (u16)(pIter - pCell);
1377 assert( nSize==debuginfo.nSize || CORRUPT_DB );
1378 return (u16)nSize;
1380 static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){
1381 u8 *pIter = pCell + 4; /* For looping over bytes of pCell */
1382 u8 *pEnd; /* End mark for a varint */
1384 #ifdef SQLITE_DEBUG
1385 /* The value returned by this function should always be the same as
1386 ** the (CellInfo.nSize) value found by doing a full parse of the
1387 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1388 ** this function verifies that this invariant is not violated. */
1389 CellInfo debuginfo;
1390 pPage->xParseCell(pPage, pCell, &debuginfo);
1391 #else
1392 UNUSED_PARAMETER(pPage);
1393 #endif
1395 assert( pPage->childPtrSize==4 );
1396 pEnd = pIter + 9;
1397 while( (*pIter++)&0x80 && pIter<pEnd );
1398 assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB );
1399 return (u16)(pIter - pCell);
1403 #ifdef SQLITE_DEBUG
1404 /* This variation on cellSizePtr() is used inside of assert() statements
1405 ** only. */
1406 static u16 cellSize(MemPage *pPage, int iCell){
1407 return pPage->xCellSize(pPage, findCell(pPage, iCell));
1409 #endif
1411 #ifndef SQLITE_OMIT_AUTOVACUUM
1413 ** The cell pCell is currently part of page pSrc but will ultimately be part
1414 ** of pPage. (pSrc and pPager are often the same.) If pCell contains a
1415 ** pointer to an overflow page, insert an entry into the pointer-map for
1416 ** the overflow page that will be valid after pCell has been moved to pPage.
1418 static void ptrmapPutOvflPtr(MemPage *pPage, MemPage *pSrc, u8 *pCell,int *pRC){
1419 CellInfo info;
1420 if( *pRC ) return;
1421 assert( pCell!=0 );
1422 pPage->xParseCell(pPage, pCell, &info);
1423 if( info.nLocal<info.nPayload ){
1424 Pgno ovfl;
1425 if( SQLITE_WITHIN(pSrc->aDataEnd, pCell, pCell+info.nLocal) ){
1426 testcase( pSrc!=pPage );
1427 *pRC = SQLITE_CORRUPT_BKPT;
1428 return;
1430 ovfl = get4byte(&pCell[info.nSize-4]);
1431 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
1434 #endif
1438 ** Defragment the page given. This routine reorganizes cells within the
1439 ** page so that there are no free-blocks on the free-block list.
1441 ** Parameter nMaxFrag is the maximum amount of fragmented space that may be
1442 ** present in the page after this routine returns.
1444 ** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
1445 ** b-tree page so that there are no freeblocks or fragment bytes, all
1446 ** unused bytes are contained in the unallocated space region, and all
1447 ** cells are packed tightly at the end of the page.
1449 static int defragmentPage(MemPage *pPage, int nMaxFrag){
1450 int i; /* Loop counter */
1451 int pc; /* Address of the i-th cell */
1452 int hdr; /* Offset to the page header */
1453 int size; /* Size of a cell */
1454 int usableSize; /* Number of usable bytes on a page */
1455 int cellOffset; /* Offset to the cell pointer array */
1456 int cbrk; /* Offset to the cell content area */
1457 int nCell; /* Number of cells on the page */
1458 unsigned char *data; /* The page data */
1459 unsigned char *temp; /* Temp area for cell content */
1460 unsigned char *src; /* Source of content */
1461 int iCellFirst; /* First allowable cell index */
1462 int iCellLast; /* Last possible cell index */
1463 int iCellStart; /* First cell offset in input */
1465 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1466 assert( pPage->pBt!=0 );
1467 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
1468 assert( pPage->nOverflow==0 );
1469 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1470 temp = 0;
1471 src = data = pPage->aData;
1472 hdr = pPage->hdrOffset;
1473 cellOffset = pPage->cellOffset;
1474 nCell = pPage->nCell;
1475 assert( nCell==get2byte(&data[hdr+3]) || CORRUPT_DB );
1476 iCellFirst = cellOffset + 2*nCell;
1477 usableSize = pPage->pBt->usableSize;
1479 /* This block handles pages with two or fewer free blocks and nMaxFrag
1480 ** or fewer fragmented bytes. In this case it is faster to move the
1481 ** two (or one) blocks of cells using memmove() and add the required
1482 ** offsets to each pointer in the cell-pointer array than it is to
1483 ** reconstruct the entire page. */
1484 if( (int)data[hdr+7]<=nMaxFrag ){
1485 int iFree = get2byte(&data[hdr+1]);
1486 if( iFree>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage);
1487 if( iFree ){
1488 int iFree2 = get2byte(&data[iFree]);
1489 if( iFree2>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage);
1490 if( 0==iFree2 || (data[iFree2]==0 && data[iFree2+1]==0) ){
1491 u8 *pEnd = &data[cellOffset + nCell*2];
1492 u8 *pAddr;
1493 int sz2 = 0;
1494 int sz = get2byte(&data[iFree+2]);
1495 int top = get2byte(&data[hdr+5]);
1496 if( top>=iFree ){
1497 return SQLITE_CORRUPT_PAGE(pPage);
1499 if( iFree2 ){
1500 if( iFree+sz>iFree2 ) return SQLITE_CORRUPT_PAGE(pPage);
1501 sz2 = get2byte(&data[iFree2+2]);
1502 if( iFree2+sz2 > usableSize ) return SQLITE_CORRUPT_PAGE(pPage);
1503 memmove(&data[iFree+sz+sz2], &data[iFree+sz], iFree2-(iFree+sz));
1504 sz += sz2;
1505 }else if( NEVER(iFree+sz>usableSize) ){
1506 return SQLITE_CORRUPT_PAGE(pPage);
1509 cbrk = top+sz;
1510 assert( cbrk+(iFree-top) <= usableSize );
1511 memmove(&data[cbrk], &data[top], iFree-top);
1512 for(pAddr=&data[cellOffset]; pAddr<pEnd; pAddr+=2){
1513 pc = get2byte(pAddr);
1514 if( pc<iFree ){ put2byte(pAddr, pc+sz); }
1515 else if( pc<iFree2 ){ put2byte(pAddr, pc+sz2); }
1517 goto defragment_out;
1522 cbrk = usableSize;
1523 iCellLast = usableSize - 4;
1524 iCellStart = get2byte(&data[hdr+5]);
1525 for(i=0; i<nCell; i++){
1526 u8 *pAddr; /* The i-th cell pointer */
1527 pAddr = &data[cellOffset + i*2];
1528 pc = get2byte(pAddr);
1529 testcase( pc==iCellFirst );
1530 testcase( pc==iCellLast );
1531 /* These conditions have already been verified in btreeInitPage()
1532 ** if PRAGMA cell_size_check=ON.
1534 if( pc<iCellStart || pc>iCellLast ){
1535 return SQLITE_CORRUPT_PAGE(pPage);
1537 assert( pc>=iCellStart && pc<=iCellLast );
1538 size = pPage->xCellSize(pPage, &src[pc]);
1539 cbrk -= size;
1540 if( cbrk<iCellStart || pc+size>usableSize ){
1541 return SQLITE_CORRUPT_PAGE(pPage);
1543 assert( cbrk+size<=usableSize && cbrk>=iCellStart );
1544 testcase( cbrk+size==usableSize );
1545 testcase( pc+size==usableSize );
1546 put2byte(pAddr, cbrk);
1547 if( temp==0 ){
1548 if( cbrk==pc ) continue;
1549 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
1550 memcpy(&temp[iCellStart], &data[iCellStart], usableSize - iCellStart);
1551 src = temp;
1553 memcpy(&data[cbrk], &src[pc], size);
1555 data[hdr+7] = 0;
1557 defragment_out:
1558 assert( pPage->nFree>=0 );
1559 if( data[hdr+7]+cbrk-iCellFirst!=pPage->nFree ){
1560 return SQLITE_CORRUPT_PAGE(pPage);
1562 assert( cbrk>=iCellFirst );
1563 put2byte(&data[hdr+5], cbrk);
1564 data[hdr+1] = 0;
1565 data[hdr+2] = 0;
1566 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
1567 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1568 return SQLITE_OK;
1572 ** Search the free-list on page pPg for space to store a cell nByte bytes in
1573 ** size. If one can be found, return a pointer to the space and remove it
1574 ** from the free-list.
1576 ** If no suitable space can be found on the free-list, return NULL.
1578 ** This function may detect corruption within pPg. If corruption is
1579 ** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned.
1581 ** Slots on the free list that are between 1 and 3 bytes larger than nByte
1582 ** will be ignored if adding the extra space to the fragmentation count
1583 ** causes the fragmentation count to exceed 60.
1585 static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){
1586 const int hdr = pPg->hdrOffset; /* Offset to page header */
1587 u8 * const aData = pPg->aData; /* Page data */
1588 int iAddr = hdr + 1; /* Address of ptr to pc */
1589 int pc = get2byte(&aData[iAddr]); /* Address of a free slot */
1590 int x; /* Excess size of the slot */
1591 int maxPC = pPg->pBt->usableSize - nByte; /* Max address for a usable slot */
1592 int size; /* Size of the free slot */
1594 assert( pc>0 );
1595 while( pc<=maxPC ){
1596 /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
1597 ** freeblock form a big-endian integer which is the size of the freeblock
1598 ** in bytes, including the 4-byte header. */
1599 size = get2byte(&aData[pc+2]);
1600 if( (x = size - nByte)>=0 ){
1601 testcase( x==4 );
1602 testcase( x==3 );
1603 if( x<4 ){
1604 /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
1605 ** number of bytes in fragments may not exceed 60. */
1606 if( aData[hdr+7]>57 ) return 0;
1608 /* Remove the slot from the free-list. Update the number of
1609 ** fragmented bytes within the page. */
1610 memcpy(&aData[iAddr], &aData[pc], 2);
1611 aData[hdr+7] += (u8)x;
1612 }else if( x+pc > maxPC ){
1613 /* This slot extends off the end of the usable part of the page */
1614 *pRc = SQLITE_CORRUPT_PAGE(pPg);
1615 return 0;
1616 }else{
1617 /* The slot remains on the free-list. Reduce its size to account
1618 ** for the portion used by the new allocation. */
1619 put2byte(&aData[pc+2], x);
1621 return &aData[pc + x];
1623 iAddr = pc;
1624 pc = get2byte(&aData[pc]);
1625 if( pc<=iAddr+size ){
1626 if( pc ){
1627 /* The next slot in the chain is not past the end of the current slot */
1628 *pRc = SQLITE_CORRUPT_PAGE(pPg);
1630 return 0;
1633 if( pc>maxPC+nByte-4 ){
1634 /* The free slot chain extends off the end of the page */
1635 *pRc = SQLITE_CORRUPT_PAGE(pPg);
1637 return 0;
1641 ** Allocate nByte bytes of space from within the B-Tree page passed
1642 ** as the first argument. Write into *pIdx the index into pPage->aData[]
1643 ** of the first byte of allocated space. Return either SQLITE_OK or
1644 ** an error code (usually SQLITE_CORRUPT).
1646 ** The caller guarantees that there is sufficient space to make the
1647 ** allocation. This routine might need to defragment in order to bring
1648 ** all the space together, however. This routine will avoid using
1649 ** the first two bytes past the cell pointer area since presumably this
1650 ** allocation is being made in order to insert a new cell, so we will
1651 ** also end up needing a new cell pointer.
1653 static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
1654 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1655 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
1656 int top; /* First byte of cell content area */
1657 int rc = SQLITE_OK; /* Integer return code */
1658 int gap; /* First byte of gap between cell pointers and cell content */
1660 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1661 assert( pPage->pBt );
1662 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1663 assert( nByte>=0 ); /* Minimum cell size is 4 */
1664 assert( pPage->nFree>=nByte );
1665 assert( pPage->nOverflow==0 );
1666 assert( nByte < (int)(pPage->pBt->usableSize-8) );
1668 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1669 gap = pPage->cellOffset + 2*pPage->nCell;
1670 assert( gap<=65536 );
1671 /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
1672 ** and the reserved space is zero (the usual value for reserved space)
1673 ** then the cell content offset of an empty page wants to be 65536.
1674 ** However, that integer is too large to be stored in a 2-byte unsigned
1675 ** integer, so a value of 0 is used in its place. */
1676 top = get2byte(&data[hdr+5]);
1677 assert( top<=(int)pPage->pBt->usableSize ); /* by btreeComputeFreeSpace() */
1678 if( gap>top ){
1679 if( top==0 && pPage->pBt->usableSize==65536 ){
1680 top = 65536;
1681 }else{
1682 return SQLITE_CORRUPT_PAGE(pPage);
1686 /* If there is enough space between gap and top for one more cell pointer,
1687 ** and if the freelist is not empty, then search the
1688 ** freelist looking for a slot big enough to satisfy the request.
1690 testcase( gap+2==top );
1691 testcase( gap+1==top );
1692 testcase( gap==top );
1693 if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){
1694 u8 *pSpace = pageFindSlot(pPage, nByte, &rc);
1695 if( pSpace ){
1696 int g2;
1697 assert( pSpace+nByte<=data+pPage->pBt->usableSize );
1698 *pIdx = g2 = (int)(pSpace-data);
1699 if( g2<=gap ){
1700 return SQLITE_CORRUPT_PAGE(pPage);
1701 }else{
1702 return SQLITE_OK;
1704 }else if( rc ){
1705 return rc;
1709 /* The request could not be fulfilled using a freelist slot. Check
1710 ** to see if defragmentation is necessary.
1712 testcase( gap+2+nByte==top );
1713 if( gap+2+nByte>top ){
1714 assert( pPage->nCell>0 || CORRUPT_DB );
1715 assert( pPage->nFree>=0 );
1716 rc = defragmentPage(pPage, MIN(4, pPage->nFree - (2+nByte)));
1717 if( rc ) return rc;
1718 top = get2byteNotZero(&data[hdr+5]);
1719 assert( gap+2+nByte<=top );
1723 /* Allocate memory from the gap in between the cell pointer array
1724 ** and the cell content area. The btreeComputeFreeSpace() call has already
1725 ** validated the freelist. Given that the freelist is valid, there
1726 ** is no way that the allocation can extend off the end of the page.
1727 ** The assert() below verifies the previous sentence.
1729 top -= nByte;
1730 put2byte(&data[hdr+5], top);
1731 assert( top+nByte <= (int)pPage->pBt->usableSize );
1732 *pIdx = top;
1733 return SQLITE_OK;
1737 ** Return a section of the pPage->aData to the freelist.
1738 ** The first byte of the new free block is pPage->aData[iStart]
1739 ** and the size of the block is iSize bytes.
1741 ** Adjacent freeblocks are coalesced.
1743 ** Even though the freeblock list was checked by btreeComputeFreeSpace(),
1744 ** that routine will not detect overlap between cells or freeblocks. Nor
1745 ** does it detect cells or freeblocks that encrouch into the reserved bytes
1746 ** at the end of the page. So do additional corruption checks inside this
1747 ** routine and return SQLITE_CORRUPT if any problems are found.
1749 static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){
1750 u16 iPtr; /* Address of ptr to next freeblock */
1751 u16 iFreeBlk; /* Address of the next freeblock */
1752 u8 hdr; /* Page header size. 0 or 100 */
1753 u8 nFrag = 0; /* Reduction in fragmentation */
1754 u16 iOrigSize = iSize; /* Original value of iSize */
1755 u16 x; /* Offset to cell content area */
1756 u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */
1757 unsigned char *data = pPage->aData; /* Page content */
1759 assert( pPage->pBt!=0 );
1760 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1761 assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
1762 assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize );
1763 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1764 assert( iSize>=4 ); /* Minimum cell size is 4 */
1765 assert( iStart<=pPage->pBt->usableSize-4 );
1767 /* The list of freeblocks must be in ascending order. Find the
1768 ** spot on the list where iStart should be inserted.
1770 hdr = pPage->hdrOffset;
1771 iPtr = hdr + 1;
1772 if( data[iPtr+1]==0 && data[iPtr]==0 ){
1773 iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */
1774 }else{
1775 while( (iFreeBlk = get2byte(&data[iPtr]))<iStart ){
1776 if( iFreeBlk<iPtr+4 ){
1777 if( iFreeBlk==0 ) break; /* TH3: corrupt082.100 */
1778 return SQLITE_CORRUPT_PAGE(pPage);
1780 iPtr = iFreeBlk;
1782 if( iFreeBlk>pPage->pBt->usableSize-4 ){ /* TH3: corrupt081.100 */
1783 return SQLITE_CORRUPT_PAGE(pPage);
1785 assert( iFreeBlk>iPtr || iFreeBlk==0 || CORRUPT_DB );
1787 /* At this point:
1788 ** iFreeBlk: First freeblock after iStart, or zero if none
1789 ** iPtr: The address of a pointer to iFreeBlk
1791 ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
1793 if( iFreeBlk && iEnd+3>=iFreeBlk ){
1794 nFrag = iFreeBlk - iEnd;
1795 if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_PAGE(pPage);
1796 iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
1797 if( iEnd > pPage->pBt->usableSize ){
1798 return SQLITE_CORRUPT_PAGE(pPage);
1800 iSize = iEnd - iStart;
1801 iFreeBlk = get2byte(&data[iFreeBlk]);
1804 /* If iPtr is another freeblock (that is, if iPtr is not the freelist
1805 ** pointer in the page header) then check to see if iStart should be
1806 ** coalesced onto the end of iPtr.
1808 if( iPtr>hdr+1 ){
1809 int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
1810 if( iPtrEnd+3>=iStart ){
1811 if( iPtrEnd>iStart ) return SQLITE_CORRUPT_PAGE(pPage);
1812 nFrag += iStart - iPtrEnd;
1813 iSize = iEnd - iPtr;
1814 iStart = iPtr;
1817 if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_PAGE(pPage);
1818 data[hdr+7] -= nFrag;
1820 x = get2byte(&data[hdr+5]);
1821 if( iStart<=x ){
1822 /* The new freeblock is at the beginning of the cell content area,
1823 ** so just extend the cell content area rather than create another
1824 ** freelist entry */
1825 if( iStart<x ) return SQLITE_CORRUPT_PAGE(pPage);
1826 if( iPtr!=hdr+1 ) return SQLITE_CORRUPT_PAGE(pPage);
1827 put2byte(&data[hdr+1], iFreeBlk);
1828 put2byte(&data[hdr+5], iEnd);
1829 }else{
1830 /* Insert the new freeblock into the freelist */
1831 put2byte(&data[iPtr], iStart);
1833 if( pPage->pBt->btsFlags & BTS_FAST_SECURE ){
1834 /* Overwrite deleted information with zeros when the secure_delete
1835 ** option is enabled */
1836 memset(&data[iStart], 0, iSize);
1838 put2byte(&data[iStart], iFreeBlk);
1839 put2byte(&data[iStart+2], iSize);
1840 pPage->nFree += iOrigSize;
1841 return SQLITE_OK;
1845 ** Decode the flags byte (the first byte of the header) for a page
1846 ** and initialize fields of the MemPage structure accordingly.
1848 ** Only the following combinations are supported. Anything different
1849 ** indicates a corrupt database files:
1851 ** PTF_ZERODATA
1852 ** PTF_ZERODATA | PTF_LEAF
1853 ** PTF_LEAFDATA | PTF_INTKEY
1854 ** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
1856 static int decodeFlags(MemPage *pPage, int flagByte){
1857 BtShared *pBt; /* A copy of pPage->pBt */
1859 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
1860 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1861 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
1862 flagByte &= ~PTF_LEAF;
1863 pPage->childPtrSize = 4-4*pPage->leaf;
1864 pPage->xCellSize = cellSizePtr;
1865 pBt = pPage->pBt;
1866 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
1867 /* EVIDENCE-OF: R-07291-35328 A value of 5 (0x05) means the page is an
1868 ** interior table b-tree page. */
1869 assert( (PTF_LEAFDATA|PTF_INTKEY)==5 );
1870 /* EVIDENCE-OF: R-26900-09176 A value of 13 (0x0d) means the page is a
1871 ** leaf table b-tree page. */
1872 assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 );
1873 pPage->intKey = 1;
1874 if( pPage->leaf ){
1875 pPage->intKeyLeaf = 1;
1876 pPage->xParseCell = btreeParseCellPtr;
1877 }else{
1878 pPage->intKeyLeaf = 0;
1879 pPage->xCellSize = cellSizePtrNoPayload;
1880 pPage->xParseCell = btreeParseCellPtrNoPayload;
1882 pPage->maxLocal = pBt->maxLeaf;
1883 pPage->minLocal = pBt->minLeaf;
1884 }else if( flagByte==PTF_ZERODATA ){
1885 /* EVIDENCE-OF: R-43316-37308 A value of 2 (0x02) means the page is an
1886 ** interior index b-tree page. */
1887 assert( (PTF_ZERODATA)==2 );
1888 /* EVIDENCE-OF: R-59615-42828 A value of 10 (0x0a) means the page is a
1889 ** leaf index b-tree page. */
1890 assert( (PTF_ZERODATA|PTF_LEAF)==10 );
1891 pPage->intKey = 0;
1892 pPage->intKeyLeaf = 0;
1893 pPage->xParseCell = btreeParseCellPtrIndex;
1894 pPage->maxLocal = pBt->maxLocal;
1895 pPage->minLocal = pBt->minLocal;
1896 }else{
1897 /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is
1898 ** an error. */
1899 return SQLITE_CORRUPT_PAGE(pPage);
1901 pPage->max1bytePayload = pBt->max1bytePayload;
1902 return SQLITE_OK;
1906 ** Compute the amount of freespace on the page. In other words, fill
1907 ** in the pPage->nFree field.
1909 static int btreeComputeFreeSpace(MemPage *pPage){
1910 int pc; /* Address of a freeblock within pPage->aData[] */
1911 u8 hdr; /* Offset to beginning of page header */
1912 u8 *data; /* Equal to pPage->aData */
1913 int usableSize; /* Amount of usable space on each page */
1914 int nFree; /* Number of unused bytes on the page */
1915 int top; /* First byte of the cell content area */
1916 int iCellFirst; /* First allowable cell or freeblock offset */
1917 int iCellLast; /* Last possible cell or freeblock offset */
1919 assert( pPage->pBt!=0 );
1920 assert( pPage->pBt->db!=0 );
1921 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1922 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
1923 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1924 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
1925 assert( pPage->isInit==1 );
1926 assert( pPage->nFree<0 );
1928 usableSize = pPage->pBt->usableSize;
1929 hdr = pPage->hdrOffset;
1930 data = pPage->aData;
1931 /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
1932 ** the start of the cell content area. A zero value for this integer is
1933 ** interpreted as 65536. */
1934 top = get2byteNotZero(&data[hdr+5]);
1935 iCellFirst = hdr + 8 + pPage->childPtrSize + 2*pPage->nCell;
1936 iCellLast = usableSize - 4;
1938 /* Compute the total free space on the page
1939 ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
1940 ** start of the first freeblock on the page, or is zero if there are no
1941 ** freeblocks. */
1942 pc = get2byte(&data[hdr+1]);
1943 nFree = data[hdr+7] + top; /* Init nFree to non-freeblock free space */
1944 if( pc>0 ){
1945 u32 next, size;
1946 if( pc<top ){
1947 /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
1948 ** always be at least one cell before the first freeblock.
1950 return SQLITE_CORRUPT_PAGE(pPage);
1952 while( 1 ){
1953 if( pc>iCellLast ){
1954 /* Freeblock off the end of the page */
1955 return SQLITE_CORRUPT_PAGE(pPage);
1957 next = get2byte(&data[pc]);
1958 size = get2byte(&data[pc+2]);
1959 nFree = nFree + size;
1960 if( next<=pc+size+3 ) break;
1961 pc = next;
1963 if( next>0 ){
1964 /* Freeblock not in ascending order */
1965 return SQLITE_CORRUPT_PAGE(pPage);
1967 if( pc+size>(unsigned int)usableSize ){
1968 /* Last freeblock extends past page end */
1969 return SQLITE_CORRUPT_PAGE(pPage);
1973 /* At this point, nFree contains the sum of the offset to the start
1974 ** of the cell-content area plus the number of free bytes within
1975 ** the cell-content area. If this is greater than the usable-size
1976 ** of the page, then the page must be corrupted. This check also
1977 ** serves to verify that the offset to the start of the cell-content
1978 ** area, according to the page header, lies within the page.
1980 if( nFree>usableSize || nFree<iCellFirst ){
1981 return SQLITE_CORRUPT_PAGE(pPage);
1983 pPage->nFree = (u16)(nFree - iCellFirst);
1984 return SQLITE_OK;
1988 ** Do additional sanity check after btreeInitPage() if
1989 ** PRAGMA cell_size_check=ON
1991 static SQLITE_NOINLINE int btreeCellSizeCheck(MemPage *pPage){
1992 int iCellFirst; /* First allowable cell or freeblock offset */
1993 int iCellLast; /* Last possible cell or freeblock offset */
1994 int i; /* Index into the cell pointer array */
1995 int sz; /* Size of a cell */
1996 int pc; /* Address of a freeblock within pPage->aData[] */
1997 u8 *data; /* Equal to pPage->aData */
1998 int usableSize; /* Maximum usable space on the page */
1999 int cellOffset; /* Start of cell content area */
2001 iCellFirst = pPage->cellOffset + 2*pPage->nCell;
2002 usableSize = pPage->pBt->usableSize;
2003 iCellLast = usableSize - 4;
2004 data = pPage->aData;
2005 cellOffset = pPage->cellOffset;
2006 if( !pPage->leaf ) iCellLast--;
2007 for(i=0; i<pPage->nCell; i++){
2008 pc = get2byteAligned(&data[cellOffset+i*2]);
2009 testcase( pc==iCellFirst );
2010 testcase( pc==iCellLast );
2011 if( pc<iCellFirst || pc>iCellLast ){
2012 return SQLITE_CORRUPT_PAGE(pPage);
2014 sz = pPage->xCellSize(pPage, &data[pc]);
2015 testcase( pc+sz==usableSize );
2016 if( pc+sz>usableSize ){
2017 return SQLITE_CORRUPT_PAGE(pPage);
2020 return SQLITE_OK;
2024 ** Initialize the auxiliary information for a disk block.
2026 ** Return SQLITE_OK on success. If we see that the page does
2027 ** not contain a well-formed database page, then return
2028 ** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
2029 ** guarantee that the page is well-formed. It only shows that
2030 ** we failed to detect any corruption.
2032 static int btreeInitPage(MemPage *pPage){
2033 u8 *data; /* Equal to pPage->aData */
2034 BtShared *pBt; /* The main btree structure */
2036 assert( pPage->pBt!=0 );
2037 assert( pPage->pBt->db!=0 );
2038 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2039 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
2040 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
2041 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
2042 assert( pPage->isInit==0 );
2044 pBt = pPage->pBt;
2045 data = pPage->aData + pPage->hdrOffset;
2046 /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
2047 ** the b-tree page type. */
2048 if( decodeFlags(pPage, data[0]) ){
2049 return SQLITE_CORRUPT_PAGE(pPage);
2051 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
2052 pPage->maskPage = (u16)(pBt->pageSize - 1);
2053 pPage->nOverflow = 0;
2054 pPage->cellOffset = pPage->hdrOffset + 8 + pPage->childPtrSize;
2055 pPage->aCellIdx = data + pPage->childPtrSize + 8;
2056 pPage->aDataEnd = pPage->aData + pBt->pageSize;
2057 pPage->aDataOfst = pPage->aData + pPage->childPtrSize;
2058 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
2059 ** number of cells on the page. */
2060 pPage->nCell = get2byte(&data[3]);
2061 if( pPage->nCell>MX_CELL(pBt) ){
2062 /* To many cells for a single page. The page must be corrupt */
2063 return SQLITE_CORRUPT_PAGE(pPage);
2065 testcase( pPage->nCell==MX_CELL(pBt) );
2066 /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
2067 ** possible for a root page of a table that contains no rows) then the
2068 ** offset to the cell content area will equal the page size minus the
2069 ** bytes of reserved space. */
2070 assert( pPage->nCell>0
2071 || get2byteNotZero(&data[5])==(int)pBt->usableSize
2072 || CORRUPT_DB );
2073 pPage->nFree = -1; /* Indicate that this value is yet uncomputed */
2074 pPage->isInit = 1;
2075 if( pBt->db->flags & SQLITE_CellSizeCk ){
2076 return btreeCellSizeCheck(pPage);
2078 return SQLITE_OK;
2082 ** Set up a raw page so that it looks like a database page holding
2083 ** no entries.
2085 static void zeroPage(MemPage *pPage, int flags){
2086 unsigned char *data = pPage->aData;
2087 BtShared *pBt = pPage->pBt;
2088 u8 hdr = pPage->hdrOffset;
2089 u16 first;
2091 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno || CORRUPT_DB );
2092 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2093 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
2094 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
2095 assert( sqlite3_mutex_held(pBt->mutex) );
2096 if( pBt->btsFlags & BTS_FAST_SECURE ){
2097 memset(&data[hdr], 0, pBt->usableSize - hdr);
2099 data[hdr] = (char)flags;
2100 first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
2101 memset(&data[hdr+1], 0, 4);
2102 data[hdr+7] = 0;
2103 put2byte(&data[hdr+5], pBt->usableSize);
2104 pPage->nFree = (u16)(pBt->usableSize - first);
2105 decodeFlags(pPage, flags);
2106 pPage->cellOffset = first;
2107 pPage->aDataEnd = &data[pBt->pageSize];
2108 pPage->aCellIdx = &data[first];
2109 pPage->aDataOfst = &data[pPage->childPtrSize];
2110 pPage->nOverflow = 0;
2111 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
2112 pPage->maskPage = (u16)(pBt->pageSize - 1);
2113 pPage->nCell = 0;
2114 pPage->isInit = 1;
2119 ** Convert a DbPage obtained from the pager into a MemPage used by
2120 ** the btree layer.
2122 static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
2123 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
2124 if( pgno!=pPage->pgno ){
2125 pPage->aData = sqlite3PagerGetData(pDbPage);
2126 pPage->pDbPage = pDbPage;
2127 pPage->pBt = pBt;
2128 pPage->pgno = pgno;
2129 pPage->hdrOffset = pgno==1 ? 100 : 0;
2131 assert( pPage->aData==sqlite3PagerGetData(pDbPage) );
2132 return pPage;
2136 ** Get a page from the pager. Initialize the MemPage.pBt and
2137 ** MemPage.aData elements if needed. See also: btreeGetUnusedPage().
2139 ** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care
2140 ** about the content of the page at this time. So do not go to the disk
2141 ** to fetch the content. Just fill in the content with zeros for now.
2142 ** If in the future we call sqlite3PagerWrite() on this page, that
2143 ** means we have started to be concerned about content and the disk
2144 ** read should occur at that point.
2146 static int btreeGetPage(
2147 BtShared *pBt, /* The btree */
2148 Pgno pgno, /* Number of the page to fetch */
2149 MemPage **ppPage, /* Return the page in this parameter */
2150 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2152 int rc;
2153 DbPage *pDbPage;
2155 assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
2156 assert( sqlite3_mutex_held(pBt->mutex) );
2157 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
2158 if( rc ) return rc;
2159 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
2160 return SQLITE_OK;
2164 ** Retrieve a page from the pager cache. If the requested page is not
2165 ** already in the pager cache return NULL. Initialize the MemPage.pBt and
2166 ** MemPage.aData elements if needed.
2168 static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
2169 DbPage *pDbPage;
2170 assert( sqlite3_mutex_held(pBt->mutex) );
2171 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
2172 if( pDbPage ){
2173 return btreePageFromDbPage(pDbPage, pgno, pBt);
2175 return 0;
2179 ** Return the size of the database file in pages. If there is any kind of
2180 ** error, return ((unsigned int)-1).
2182 static Pgno btreePagecount(BtShared *pBt){
2183 return pBt->nPage;
2185 Pgno sqlite3BtreeLastPage(Btree *p){
2186 assert( sqlite3BtreeHoldsMutex(p) );
2187 return btreePagecount(p->pBt);
2191 ** Get a page from the pager and initialize it.
2193 ** If pCur!=0 then the page is being fetched as part of a moveToChild()
2194 ** call. Do additional sanity checking on the page in this case.
2195 ** And if the fetch fails, this routine must decrement pCur->iPage.
2197 ** The page is fetched as read-write unless pCur is not NULL and is
2198 ** a read-only cursor.
2200 ** If an error occurs, then *ppPage is undefined. It
2201 ** may remain unchanged, or it may be set to an invalid value.
2203 static int getAndInitPage(
2204 BtShared *pBt, /* The database file */
2205 Pgno pgno, /* Number of the page to get */
2206 MemPage **ppPage, /* Write the page pointer here */
2207 BtCursor *pCur, /* Cursor to receive the page, or NULL */
2208 int bReadOnly /* True for a read-only page */
2210 int rc;
2211 DbPage *pDbPage;
2212 assert( sqlite3_mutex_held(pBt->mutex) );
2213 assert( pCur==0 || ppPage==&pCur->pPage );
2214 assert( pCur==0 || bReadOnly==pCur->curPagerFlags );
2215 assert( pCur==0 || pCur->iPage>0 );
2217 if( pgno>btreePagecount(pBt) ){
2218 rc = SQLITE_CORRUPT_BKPT;
2219 goto getAndInitPage_error1;
2221 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly);
2222 if( rc ){
2223 goto getAndInitPage_error1;
2225 *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
2226 if( (*ppPage)->isInit==0 ){
2227 btreePageFromDbPage(pDbPage, pgno, pBt);
2228 rc = btreeInitPage(*ppPage);
2229 if( rc!=SQLITE_OK ){
2230 goto getAndInitPage_error2;
2233 assert( (*ppPage)->pgno==pgno || CORRUPT_DB );
2234 assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) );
2236 /* If obtaining a child page for a cursor, we must verify that the page is
2237 ** compatible with the root page. */
2238 if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){
2239 rc = SQLITE_CORRUPT_PGNO(pgno);
2240 goto getAndInitPage_error2;
2242 return SQLITE_OK;
2244 getAndInitPage_error2:
2245 releasePage(*ppPage);
2246 getAndInitPage_error1:
2247 if( pCur ){
2248 pCur->iPage--;
2249 pCur->pPage = pCur->apPage[pCur->iPage];
2251 testcase( pgno==0 );
2252 assert( pgno!=0 || rc==SQLITE_CORRUPT );
2253 return rc;
2257 ** Release a MemPage. This should be called once for each prior
2258 ** call to btreeGetPage.
2260 ** Page1 is a special case and must be released using releasePageOne().
2262 static void releasePageNotNull(MemPage *pPage){
2263 assert( pPage->aData );
2264 assert( pPage->pBt );
2265 assert( pPage->pDbPage!=0 );
2266 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2267 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2268 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2269 sqlite3PagerUnrefNotNull(pPage->pDbPage);
2271 static void releasePage(MemPage *pPage){
2272 if( pPage ) releasePageNotNull(pPage);
2274 static void releasePageOne(MemPage *pPage){
2275 assert( pPage!=0 );
2276 assert( pPage->aData );
2277 assert( pPage->pBt );
2278 assert( pPage->pDbPage!=0 );
2279 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2280 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2281 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2282 sqlite3PagerUnrefPageOne(pPage->pDbPage);
2286 ** Get an unused page.
2288 ** This works just like btreeGetPage() with the addition:
2290 ** * If the page is already in use for some other purpose, immediately
2291 ** release it and return an SQLITE_CURRUPT error.
2292 ** * Make sure the isInit flag is clear
2294 static int btreeGetUnusedPage(
2295 BtShared *pBt, /* The btree */
2296 Pgno pgno, /* Number of the page to fetch */
2297 MemPage **ppPage, /* Return the page in this parameter */
2298 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2300 int rc = btreeGetPage(pBt, pgno, ppPage, flags);
2301 if( rc==SQLITE_OK ){
2302 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
2303 releasePage(*ppPage);
2304 *ppPage = 0;
2305 return SQLITE_CORRUPT_BKPT;
2307 (*ppPage)->isInit = 0;
2308 }else{
2309 *ppPage = 0;
2311 return rc;
2316 ** During a rollback, when the pager reloads information into the cache
2317 ** so that the cache is restored to its original state at the start of
2318 ** the transaction, for each page restored this routine is called.
2320 ** This routine needs to reset the extra data section at the end of the
2321 ** page to agree with the restored data.
2323 static void pageReinit(DbPage *pData){
2324 MemPage *pPage;
2325 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
2326 assert( sqlite3PagerPageRefcount(pData)>0 );
2327 if( pPage->isInit ){
2328 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2329 pPage->isInit = 0;
2330 if( sqlite3PagerPageRefcount(pData)>1 ){
2331 /* pPage might not be a btree page; it might be an overflow page
2332 ** or ptrmap page or a free page. In those cases, the following
2333 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
2334 ** But no harm is done by this. And it is very important that
2335 ** btreeInitPage() be called on every btree page so we make
2336 ** the call for every page that comes in for re-initing. */
2337 btreeInitPage(pPage);
2343 ** Invoke the busy handler for a btree.
2345 static int btreeInvokeBusyHandler(void *pArg){
2346 BtShared *pBt = (BtShared*)pArg;
2347 assert( pBt->db );
2348 assert( sqlite3_mutex_held(pBt->db->mutex) );
2349 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
2353 ** Open a database file.
2355 ** zFilename is the name of the database file. If zFilename is NULL
2356 ** then an ephemeral database is created. The ephemeral database might
2357 ** be exclusively in memory, or it might use a disk-based memory cache.
2358 ** Either way, the ephemeral database will be automatically deleted
2359 ** when sqlite3BtreeClose() is called.
2361 ** If zFilename is ":memory:" then an in-memory database is created
2362 ** that is automatically destroyed when it is closed.
2364 ** The "flags" parameter is a bitmask that might contain bits like
2365 ** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
2367 ** If the database is already opened in the same database connection
2368 ** and we are in shared cache mode, then the open will fail with an
2369 ** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
2370 ** objects in the same database connection since doing so will lead
2371 ** to problems with locking.
2373 int sqlite3BtreeOpen(
2374 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */
2375 const char *zFilename, /* Name of the file containing the BTree database */
2376 sqlite3 *db, /* Associated database handle */
2377 Btree **ppBtree, /* Pointer to new Btree object written here */
2378 int flags, /* Options */
2379 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
2381 BtShared *pBt = 0; /* Shared part of btree structure */
2382 Btree *p; /* Handle to return */
2383 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
2384 int rc = SQLITE_OK; /* Result code from this function */
2385 u8 nReserve; /* Byte of unused space on each page */
2386 unsigned char zDbHeader[100]; /* Database header content */
2388 /* True if opening an ephemeral, temporary database */
2389 const int isTempDb = zFilename==0 || zFilename[0]==0;
2391 /* Set the variable isMemdb to true for an in-memory database, or
2392 ** false for a file-based database.
2394 #ifdef SQLITE_OMIT_MEMORYDB
2395 const int isMemdb = 0;
2396 #else
2397 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
2398 || (isTempDb && sqlite3TempInMemory(db))
2399 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
2400 #endif
2402 assert( db!=0 );
2403 assert( pVfs!=0 );
2404 assert( sqlite3_mutex_held(db->mutex) );
2405 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */
2407 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
2408 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
2410 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
2411 assert( (flags & BTREE_SINGLE)==0 || isTempDb );
2413 if( isMemdb ){
2414 flags |= BTREE_MEMORY;
2416 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
2417 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
2419 p = sqlite3MallocZero(sizeof(Btree));
2420 if( !p ){
2421 return SQLITE_NOMEM_BKPT;
2423 p->inTrans = TRANS_NONE;
2424 p->db = db;
2425 #ifndef SQLITE_OMIT_SHARED_CACHE
2426 p->lock.pBtree = p;
2427 p->lock.iTable = 1;
2428 #endif
2430 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2432 ** If this Btree is a candidate for shared cache, try to find an
2433 ** existing BtShared object that we can share with
2435 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
2436 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
2437 int nFilename = sqlite3Strlen30(zFilename)+1;
2438 int nFullPathname = pVfs->mxPathname+1;
2439 char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename));
2440 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
2442 p->sharable = 1;
2443 if( !zFullPathname ){
2444 sqlite3_free(p);
2445 return SQLITE_NOMEM_BKPT;
2447 if( isMemdb ){
2448 memcpy(zFullPathname, zFilename, nFilename);
2449 }else{
2450 rc = sqlite3OsFullPathname(pVfs, zFilename,
2451 nFullPathname, zFullPathname);
2452 if( rc ){
2453 if( rc==SQLITE_OK_SYMLINK ){
2454 rc = SQLITE_OK;
2455 }else{
2456 sqlite3_free(zFullPathname);
2457 sqlite3_free(p);
2458 return rc;
2462 #if SQLITE_THREADSAFE
2463 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
2464 sqlite3_mutex_enter(mutexOpen);
2465 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN);
2466 sqlite3_mutex_enter(mutexShared);
2467 #endif
2468 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
2469 assert( pBt->nRef>0 );
2470 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
2471 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
2472 int iDb;
2473 for(iDb=db->nDb-1; iDb>=0; iDb--){
2474 Btree *pExisting = db->aDb[iDb].pBt;
2475 if( pExisting && pExisting->pBt==pBt ){
2476 sqlite3_mutex_leave(mutexShared);
2477 sqlite3_mutex_leave(mutexOpen);
2478 sqlite3_free(zFullPathname);
2479 sqlite3_free(p);
2480 return SQLITE_CONSTRAINT;
2483 p->pBt = pBt;
2484 pBt->nRef++;
2485 break;
2488 sqlite3_mutex_leave(mutexShared);
2489 sqlite3_free(zFullPathname);
2491 #ifdef SQLITE_DEBUG
2492 else{
2493 /* In debug mode, we mark all persistent databases as sharable
2494 ** even when they are not. This exercises the locking code and
2495 ** gives more opportunity for asserts(sqlite3_mutex_held())
2496 ** statements to find locking problems.
2498 p->sharable = 1;
2500 #endif
2502 #endif
2503 if( pBt==0 ){
2505 ** The following asserts make sure that structures used by the btree are
2506 ** the right size. This is to guard against size changes that result
2507 ** when compiling on a different architecture.
2509 assert( sizeof(i64)==8 );
2510 assert( sizeof(u64)==8 );
2511 assert( sizeof(u32)==4 );
2512 assert( sizeof(u16)==2 );
2513 assert( sizeof(Pgno)==4 );
2515 pBt = sqlite3MallocZero( sizeof(*pBt) );
2516 if( pBt==0 ){
2517 rc = SQLITE_NOMEM_BKPT;
2518 goto btree_open_out;
2520 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
2521 sizeof(MemPage), flags, vfsFlags, pageReinit);
2522 if( rc==SQLITE_OK ){
2523 sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
2524 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
2526 if( rc!=SQLITE_OK ){
2527 goto btree_open_out;
2529 pBt->openFlags = (u8)flags;
2530 pBt->db = db;
2531 sqlite3PagerSetBusyHandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
2532 p->pBt = pBt;
2534 pBt->pCursor = 0;
2535 pBt->pPage1 = 0;
2536 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
2537 #if defined(SQLITE_SECURE_DELETE)
2538 pBt->btsFlags |= BTS_SECURE_DELETE;
2539 #elif defined(SQLITE_FAST_SECURE_DELETE)
2540 pBt->btsFlags |= BTS_OVERWRITE;
2541 #endif
2542 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2543 ** determined by the 2-byte integer located at an offset of 16 bytes from
2544 ** the beginning of the database file. */
2545 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
2546 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
2547 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
2548 pBt->pageSize = 0;
2549 #ifndef SQLITE_OMIT_AUTOVACUUM
2550 /* If the magic name ":memory:" will create an in-memory database, then
2551 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
2552 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
2553 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
2554 ** regular file-name. In this case the auto-vacuum applies as per normal.
2556 if( zFilename && !isMemdb ){
2557 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
2558 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
2560 #endif
2561 nReserve = 0;
2562 }else{
2563 /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2564 ** determined by the one-byte unsigned integer found at an offset of 20
2565 ** into the database file header. */
2566 nReserve = zDbHeader[20];
2567 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
2568 #ifndef SQLITE_OMIT_AUTOVACUUM
2569 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
2570 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
2571 #endif
2573 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
2574 if( rc ) goto btree_open_out;
2575 pBt->usableSize = pBt->pageSize - nReserve;
2576 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
2578 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2579 /* Add the new BtShared object to the linked list sharable BtShareds.
2581 pBt->nRef = 1;
2582 if( p->sharable ){
2583 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
2584 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN);)
2585 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
2586 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
2587 if( pBt->mutex==0 ){
2588 rc = SQLITE_NOMEM_BKPT;
2589 goto btree_open_out;
2592 sqlite3_mutex_enter(mutexShared);
2593 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
2594 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
2595 sqlite3_mutex_leave(mutexShared);
2597 #endif
2600 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2601 /* If the new Btree uses a sharable pBtShared, then link the new
2602 ** Btree into the list of all sharable Btrees for the same connection.
2603 ** The list is kept in ascending order by pBt address.
2605 if( p->sharable ){
2606 int i;
2607 Btree *pSib;
2608 for(i=0; i<db->nDb; i++){
2609 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
2610 while( pSib->pPrev ){ pSib = pSib->pPrev; }
2611 if( (uptr)p->pBt<(uptr)pSib->pBt ){
2612 p->pNext = pSib;
2613 p->pPrev = 0;
2614 pSib->pPrev = p;
2615 }else{
2616 while( pSib->pNext && (uptr)pSib->pNext->pBt<(uptr)p->pBt ){
2617 pSib = pSib->pNext;
2619 p->pNext = pSib->pNext;
2620 p->pPrev = pSib;
2621 if( p->pNext ){
2622 p->pNext->pPrev = p;
2624 pSib->pNext = p;
2626 break;
2630 #endif
2631 *ppBtree = p;
2633 btree_open_out:
2634 if( rc!=SQLITE_OK ){
2635 if( pBt && pBt->pPager ){
2636 sqlite3PagerClose(pBt->pPager, 0);
2638 sqlite3_free(pBt);
2639 sqlite3_free(p);
2640 *ppBtree = 0;
2641 }else{
2642 sqlite3_file *pFile;
2644 /* If the B-Tree was successfully opened, set the pager-cache size to the
2645 ** default value. Except, when opening on an existing shared pager-cache,
2646 ** do not change the pager-cache size.
2648 if( sqlite3BtreeSchema(p, 0, 0)==0 ){
2649 sqlite3BtreeSetCacheSize(p, SQLITE_DEFAULT_CACHE_SIZE);
2652 pFile = sqlite3PagerFile(pBt->pPager);
2653 if( pFile->pMethods ){
2654 sqlite3OsFileControlHint(pFile, SQLITE_FCNTL_PDB, (void*)&pBt->db);
2657 if( mutexOpen ){
2658 assert( sqlite3_mutex_held(mutexOpen) );
2659 sqlite3_mutex_leave(mutexOpen);
2661 assert( rc!=SQLITE_OK || sqlite3BtreeConnectionCount(*ppBtree)>0 );
2662 return rc;
2666 ** Decrement the BtShared.nRef counter. When it reaches zero,
2667 ** remove the BtShared structure from the sharing list. Return
2668 ** true if the BtShared.nRef counter reaches zero and return
2669 ** false if it is still positive.
2671 static int removeFromSharingList(BtShared *pBt){
2672 #ifndef SQLITE_OMIT_SHARED_CACHE
2673 MUTEX_LOGIC( sqlite3_mutex *pMainMtx; )
2674 BtShared *pList;
2675 int removed = 0;
2677 assert( sqlite3_mutex_notheld(pBt->mutex) );
2678 MUTEX_LOGIC( pMainMtx = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); )
2679 sqlite3_mutex_enter(pMainMtx);
2680 pBt->nRef--;
2681 if( pBt->nRef<=0 ){
2682 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
2683 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
2684 }else{
2685 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
2686 while( ALWAYS(pList) && pList->pNext!=pBt ){
2687 pList=pList->pNext;
2689 if( ALWAYS(pList) ){
2690 pList->pNext = pBt->pNext;
2693 if( SQLITE_THREADSAFE ){
2694 sqlite3_mutex_free(pBt->mutex);
2696 removed = 1;
2698 sqlite3_mutex_leave(pMainMtx);
2699 return removed;
2700 #else
2701 return 1;
2702 #endif
2706 ** Make sure pBt->pTmpSpace points to an allocation of
2707 ** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
2708 ** pointer.
2710 static SQLITE_NOINLINE int allocateTempSpace(BtShared *pBt){
2711 assert( pBt!=0 );
2712 assert( pBt->pTmpSpace==0 );
2713 /* This routine is called only by btreeCursor() when allocating the
2714 ** first write cursor for the BtShared object */
2715 assert( pBt->pCursor!=0 && (pBt->pCursor->curFlags & BTCF_WriteFlag)!=0 );
2716 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
2717 if( pBt->pTmpSpace==0 ){
2718 BtCursor *pCur = pBt->pCursor;
2719 pBt->pCursor = pCur->pNext; /* Unlink the cursor */
2720 memset(pCur, 0, sizeof(*pCur));
2721 return SQLITE_NOMEM_BKPT;
2724 /* One of the uses of pBt->pTmpSpace is to format cells before
2725 ** inserting them into a leaf page (function fillInCell()). If
2726 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2727 ** by the various routines that manipulate binary cells. Which
2728 ** can mean that fillInCell() only initializes the first 2 or 3
2729 ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2730 ** it into a database page. This is not actually a problem, but it
2731 ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2732 ** data is passed to system call write(). So to avoid this error,
2733 ** zero the first 4 bytes of temp space here.
2735 ** Also: Provide four bytes of initialized space before the
2736 ** beginning of pTmpSpace as an area available to prepend the
2737 ** left-child pointer to the beginning of a cell.
2739 memset(pBt->pTmpSpace, 0, 8);
2740 pBt->pTmpSpace += 4;
2741 return SQLITE_OK;
2745 ** Free the pBt->pTmpSpace allocation
2747 static void freeTempSpace(BtShared *pBt){
2748 if( pBt->pTmpSpace ){
2749 pBt->pTmpSpace -= 4;
2750 sqlite3PageFree(pBt->pTmpSpace);
2751 pBt->pTmpSpace = 0;
2756 ** Close an open database and invalidate all cursors.
2758 int sqlite3BtreeClose(Btree *p){
2759 BtShared *pBt = p->pBt;
2761 /* Close all cursors opened via this handle. */
2762 assert( sqlite3_mutex_held(p->db->mutex) );
2763 sqlite3BtreeEnter(p);
2765 /* Verify that no other cursors have this Btree open */
2766 #ifdef SQLITE_DEBUG
2768 BtCursor *pCur = pBt->pCursor;
2769 while( pCur ){
2770 BtCursor *pTmp = pCur;
2771 pCur = pCur->pNext;
2772 assert( pTmp->pBtree!=p );
2776 #endif
2778 /* Rollback any active transaction and free the handle structure.
2779 ** The call to sqlite3BtreeRollback() drops any table-locks held by
2780 ** this handle.
2782 sqlite3BtreeRollback(p, SQLITE_OK, 0);
2783 sqlite3BtreeLeave(p);
2785 /* If there are still other outstanding references to the shared-btree
2786 ** structure, return now. The remainder of this procedure cleans
2787 ** up the shared-btree.
2789 assert( p->wantToLock==0 && p->locked==0 );
2790 if( !p->sharable || removeFromSharingList(pBt) ){
2791 /* The pBt is no longer on the sharing list, so we can access
2792 ** it without having to hold the mutex.
2794 ** Clean out and delete the BtShared object.
2796 assert( !pBt->pCursor );
2797 sqlite3PagerClose(pBt->pPager, p->db);
2798 if( pBt->xFreeSchema && pBt->pSchema ){
2799 pBt->xFreeSchema(pBt->pSchema);
2801 sqlite3DbFree(0, pBt->pSchema);
2802 freeTempSpace(pBt);
2803 sqlite3_free(pBt);
2806 #ifndef SQLITE_OMIT_SHARED_CACHE
2807 assert( p->wantToLock==0 );
2808 assert( p->locked==0 );
2809 if( p->pPrev ) p->pPrev->pNext = p->pNext;
2810 if( p->pNext ) p->pNext->pPrev = p->pPrev;
2811 #endif
2813 sqlite3_free(p);
2814 return SQLITE_OK;
2818 ** Change the "soft" limit on the number of pages in the cache.
2819 ** Unused and unmodified pages will be recycled when the number of
2820 ** pages in the cache exceeds this soft limit. But the size of the
2821 ** cache is allowed to grow larger than this limit if it contains
2822 ** dirty pages or pages still in active use.
2824 int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2825 BtShared *pBt = p->pBt;
2826 assert( sqlite3_mutex_held(p->db->mutex) );
2827 sqlite3BtreeEnter(p);
2828 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
2829 sqlite3BtreeLeave(p);
2830 return SQLITE_OK;
2834 ** Change the "spill" limit on the number of pages in the cache.
2835 ** If the number of pages exceeds this limit during a write transaction,
2836 ** the pager might attempt to "spill" pages to the journal early in
2837 ** order to free up memory.
2839 ** The value returned is the current spill size. If zero is passed
2840 ** as an argument, no changes are made to the spill size setting, so
2841 ** using mxPage of 0 is a way to query the current spill size.
2843 int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){
2844 BtShared *pBt = p->pBt;
2845 int res;
2846 assert( sqlite3_mutex_held(p->db->mutex) );
2847 sqlite3BtreeEnter(p);
2848 res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage);
2849 sqlite3BtreeLeave(p);
2850 return res;
2853 #if SQLITE_MAX_MMAP_SIZE>0
2855 ** Change the limit on the amount of the database file that may be
2856 ** memory mapped.
2858 int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
2859 BtShared *pBt = p->pBt;
2860 assert( sqlite3_mutex_held(p->db->mutex) );
2861 sqlite3BtreeEnter(p);
2862 sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
2863 sqlite3BtreeLeave(p);
2864 return SQLITE_OK;
2866 #endif /* SQLITE_MAX_MMAP_SIZE>0 */
2869 ** Change the way data is synced to disk in order to increase or decrease
2870 ** how well the database resists damage due to OS crashes and power
2871 ** failures. Level 1 is the same as asynchronous (no syncs() occur and
2872 ** there is a high probability of damage) Level 2 is the default. There
2873 ** is a very low but non-zero probability of damage. Level 3 reduces the
2874 ** probability of damage to near zero but with a write performance reduction.
2876 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
2877 int sqlite3BtreeSetPagerFlags(
2878 Btree *p, /* The btree to set the safety level on */
2879 unsigned pgFlags /* Various PAGER_* flags */
2881 BtShared *pBt = p->pBt;
2882 assert( sqlite3_mutex_held(p->db->mutex) );
2883 sqlite3BtreeEnter(p);
2884 sqlite3PagerSetFlags(pBt->pPager, pgFlags);
2885 sqlite3BtreeLeave(p);
2886 return SQLITE_OK;
2888 #endif
2891 ** Change the default pages size and the number of reserved bytes per page.
2892 ** Or, if the page size has already been fixed, return SQLITE_READONLY
2893 ** without changing anything.
2895 ** The page size must be a power of 2 between 512 and 65536. If the page
2896 ** size supplied does not meet this constraint then the page size is not
2897 ** changed.
2899 ** Page sizes are constrained to be a power of two so that the region
2900 ** of the database file used for locking (beginning at PENDING_BYTE,
2901 ** the first byte past the 1GB boundary, 0x40000000) needs to occur
2902 ** at the beginning of a page.
2904 ** If parameter nReserve is less than zero, then the number of reserved
2905 ** bytes per page is left unchanged.
2907 ** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
2908 ** and autovacuum mode can no longer be changed.
2910 int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
2911 int rc = SQLITE_OK;
2912 int x;
2913 BtShared *pBt = p->pBt;
2914 assert( nReserve>=0 && nReserve<=255 );
2915 sqlite3BtreeEnter(p);
2916 pBt->nReserveWanted = nReserve;
2917 x = pBt->pageSize - pBt->usableSize;
2918 if( nReserve<x ) nReserve = x;
2919 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
2920 sqlite3BtreeLeave(p);
2921 return SQLITE_READONLY;
2923 assert( nReserve>=0 && nReserve<=255 );
2924 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2925 ((pageSize-1)&pageSize)==0 ){
2926 assert( (pageSize & 7)==0 );
2927 assert( !pBt->pCursor );
2928 if( nReserve>32 && pageSize==512 ) pageSize = 1024;
2929 pBt->pageSize = (u32)pageSize;
2930 freeTempSpace(pBt);
2932 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
2933 pBt->usableSize = pBt->pageSize - (u16)nReserve;
2934 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
2935 sqlite3BtreeLeave(p);
2936 return rc;
2940 ** Return the currently defined page size
2942 int sqlite3BtreeGetPageSize(Btree *p){
2943 return p->pBt->pageSize;
2947 ** This function is similar to sqlite3BtreeGetReserve(), except that it
2948 ** may only be called if it is guaranteed that the b-tree mutex is already
2949 ** held.
2951 ** This is useful in one special case in the backup API code where it is
2952 ** known that the shared b-tree mutex is held, but the mutex on the
2953 ** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2954 ** were to be called, it might collide with some other operation on the
2955 ** database handle that owns *p, causing undefined behavior.
2957 int sqlite3BtreeGetReserveNoMutex(Btree *p){
2958 int n;
2959 assert( sqlite3_mutex_held(p->pBt->mutex) );
2960 n = p->pBt->pageSize - p->pBt->usableSize;
2961 return n;
2965 ** Return the number of bytes of space at the end of every page that
2966 ** are intentually left unused. This is the "reserved" space that is
2967 ** sometimes used by extensions.
2969 ** The value returned is the larger of the current reserve size and
2970 ** the latest reserve size requested by SQLITE_FILECTRL_RESERVE_BYTES.
2971 ** The amount of reserve can only grow - never shrink.
2973 int sqlite3BtreeGetRequestedReserve(Btree *p){
2974 int n1, n2;
2975 sqlite3BtreeEnter(p);
2976 n1 = (int)p->pBt->nReserveWanted;
2977 n2 = sqlite3BtreeGetReserveNoMutex(p);
2978 sqlite3BtreeLeave(p);
2979 return n1>n2 ? n1 : n2;
2984 ** Set the maximum page count for a database if mxPage is positive.
2985 ** No changes are made if mxPage is 0 or negative.
2986 ** Regardless of the value of mxPage, return the maximum page count.
2988 Pgno sqlite3BtreeMaxPageCount(Btree *p, Pgno mxPage){
2989 Pgno n;
2990 sqlite3BtreeEnter(p);
2991 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2992 sqlite3BtreeLeave(p);
2993 return n;
2997 ** Change the values for the BTS_SECURE_DELETE and BTS_OVERWRITE flags:
2999 ** newFlag==0 Both BTS_SECURE_DELETE and BTS_OVERWRITE are cleared
3000 ** newFlag==1 BTS_SECURE_DELETE set and BTS_OVERWRITE is cleared
3001 ** newFlag==2 BTS_SECURE_DELETE cleared and BTS_OVERWRITE is set
3002 ** newFlag==(-1) No changes
3004 ** This routine acts as a query if newFlag is less than zero
3006 ** With BTS_OVERWRITE set, deleted content is overwritten by zeros, but
3007 ** freelist leaf pages are not written back to the database. Thus in-page
3008 ** deleted content is cleared, but freelist deleted content is not.
3010 ** With BTS_SECURE_DELETE, operation is like BTS_OVERWRITE with the addition
3011 ** that freelist leaf pages are written back into the database, increasing
3012 ** the amount of disk I/O.
3014 int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
3015 int b;
3016 if( p==0 ) return 0;
3017 sqlite3BtreeEnter(p);
3018 assert( BTS_OVERWRITE==BTS_SECURE_DELETE*2 );
3019 assert( BTS_FAST_SECURE==(BTS_OVERWRITE|BTS_SECURE_DELETE) );
3020 if( newFlag>=0 ){
3021 p->pBt->btsFlags &= ~BTS_FAST_SECURE;
3022 p->pBt->btsFlags |= BTS_SECURE_DELETE*newFlag;
3024 b = (p->pBt->btsFlags & BTS_FAST_SECURE)/BTS_SECURE_DELETE;
3025 sqlite3BtreeLeave(p);
3026 return b;
3030 ** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
3031 ** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
3032 ** is disabled. The default value for the auto-vacuum property is
3033 ** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
3035 int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
3036 #ifdef SQLITE_OMIT_AUTOVACUUM
3037 return SQLITE_READONLY;
3038 #else
3039 BtShared *pBt = p->pBt;
3040 int rc = SQLITE_OK;
3041 u8 av = (u8)autoVacuum;
3043 sqlite3BtreeEnter(p);
3044 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
3045 rc = SQLITE_READONLY;
3046 }else{
3047 pBt->autoVacuum = av ?1:0;
3048 pBt->incrVacuum = av==2 ?1:0;
3050 sqlite3BtreeLeave(p);
3051 return rc;
3052 #endif
3056 ** Return the value of the 'auto-vacuum' property. If auto-vacuum is
3057 ** enabled 1 is returned. Otherwise 0.
3059 int sqlite3BtreeGetAutoVacuum(Btree *p){
3060 #ifdef SQLITE_OMIT_AUTOVACUUM
3061 return BTREE_AUTOVACUUM_NONE;
3062 #else
3063 int rc;
3064 sqlite3BtreeEnter(p);
3065 rc = (
3066 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
3067 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
3068 BTREE_AUTOVACUUM_INCR
3070 sqlite3BtreeLeave(p);
3071 return rc;
3072 #endif
3076 ** If the user has not set the safety-level for this database connection
3077 ** using "PRAGMA synchronous", and if the safety-level is not already
3078 ** set to the value passed to this function as the second parameter,
3079 ** set it so.
3081 #if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS \
3082 && !defined(SQLITE_OMIT_WAL)
3083 static void setDefaultSyncFlag(BtShared *pBt, u8 safety_level){
3084 sqlite3 *db;
3085 Db *pDb;
3086 if( (db=pBt->db)!=0 && (pDb=db->aDb)!=0 ){
3087 while( pDb->pBt==0 || pDb->pBt->pBt!=pBt ){ pDb++; }
3088 if( pDb->bSyncSet==0
3089 && pDb->safety_level!=safety_level
3090 && pDb!=&db->aDb[1]
3092 pDb->safety_level = safety_level;
3093 sqlite3PagerSetFlags(pBt->pPager,
3094 pDb->safety_level | (db->flags & PAGER_FLAGS_MASK));
3098 #else
3099 # define setDefaultSyncFlag(pBt,safety_level)
3100 #endif
3102 /* Forward declaration */
3103 static int newDatabase(BtShared*);
3107 ** Get a reference to pPage1 of the database file. This will
3108 ** also acquire a readlock on that file.
3110 ** SQLITE_OK is returned on success. If the file is not a
3111 ** well-formed database file, then SQLITE_CORRUPT is returned.
3112 ** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
3113 ** is returned if we run out of memory.
3115 static int lockBtree(BtShared *pBt){
3116 int rc; /* Result code from subfunctions */
3117 MemPage *pPage1; /* Page 1 of the database file */
3118 u32 nPage; /* Number of pages in the database */
3119 u32 nPageFile = 0; /* Number of pages in the database file */
3121 assert( sqlite3_mutex_held(pBt->mutex) );
3122 assert( pBt->pPage1==0 );
3123 rc = sqlite3PagerSharedLock(pBt->pPager);
3124 if( rc!=SQLITE_OK ) return rc;
3125 rc = btreeGetPage(pBt, 1, &pPage1, 0);
3126 if( rc!=SQLITE_OK ) return rc;
3128 /* Do some checking to help insure the file we opened really is
3129 ** a valid database file.
3131 nPage = get4byte(28+(u8*)pPage1->aData);
3132 sqlite3PagerPagecount(pBt->pPager, (int*)&nPageFile);
3133 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
3134 nPage = nPageFile;
3136 if( (pBt->db->flags & SQLITE_ResetDatabase)!=0 ){
3137 nPage = 0;
3139 if( nPage>0 ){
3140 u32 pageSize;
3141 u32 usableSize;
3142 u8 *page1 = pPage1->aData;
3143 rc = SQLITE_NOTADB;
3144 /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
3145 ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
3146 ** 61 74 20 33 00. */
3147 if( memcmp(page1, zMagicHeader, 16)!=0 ){
3148 goto page1_init_failed;
3151 #ifdef SQLITE_OMIT_WAL
3152 if( page1[18]>1 ){
3153 pBt->btsFlags |= BTS_READ_ONLY;
3155 if( page1[19]>1 ){
3156 goto page1_init_failed;
3158 #else
3159 if( page1[18]>2 ){
3160 pBt->btsFlags |= BTS_READ_ONLY;
3162 if( page1[19]>2 ){
3163 goto page1_init_failed;
3166 /* If the read version is set to 2, this database should be accessed
3167 ** in WAL mode. If the log is not already open, open it now. Then
3168 ** return SQLITE_OK and return without populating BtShared.pPage1.
3169 ** The caller detects this and calls this function again. This is
3170 ** required as the version of page 1 currently in the page1 buffer
3171 ** may not be the latest version - there may be a newer one in the log
3172 ** file.
3174 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
3175 int isOpen = 0;
3176 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
3177 if( rc!=SQLITE_OK ){
3178 goto page1_init_failed;
3179 }else{
3180 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_WAL_SYNCHRONOUS+1);
3181 if( isOpen==0 ){
3182 releasePageOne(pPage1);
3183 return SQLITE_OK;
3186 rc = SQLITE_NOTADB;
3187 }else{
3188 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_SYNCHRONOUS+1);
3190 #endif
3192 /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
3193 ** fractions and the leaf payload fraction values must be 64, 32, and 32.
3195 ** The original design allowed these amounts to vary, but as of
3196 ** version 3.6.0, we require them to be fixed.
3198 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
3199 goto page1_init_failed;
3201 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
3202 ** determined by the 2-byte integer located at an offset of 16 bytes from
3203 ** the beginning of the database file. */
3204 pageSize = (page1[16]<<8) | (page1[17]<<16);
3205 /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
3206 ** between 512 and 65536 inclusive. */
3207 if( ((pageSize-1)&pageSize)!=0
3208 || pageSize>SQLITE_MAX_PAGE_SIZE
3209 || pageSize<=256
3211 goto page1_init_failed;
3213 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
3214 assert( (pageSize & 7)==0 );
3215 /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
3216 ** integer at offset 20 is the number of bytes of space at the end of
3217 ** each page to reserve for extensions.
3219 ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
3220 ** determined by the one-byte unsigned integer found at an offset of 20
3221 ** into the database file header. */
3222 usableSize = pageSize - page1[20];
3223 if( (u32)pageSize!=pBt->pageSize ){
3224 /* After reading the first page of the database assuming a page size
3225 ** of BtShared.pageSize, we have discovered that the page-size is
3226 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
3227 ** zero and return SQLITE_OK. The caller will call this function
3228 ** again with the correct page-size.
3230 releasePageOne(pPage1);
3231 pBt->usableSize = usableSize;
3232 pBt->pageSize = pageSize;
3233 freeTempSpace(pBt);
3234 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
3235 pageSize-usableSize);
3236 return rc;
3238 if( nPage>nPageFile ){
3239 if( sqlite3WritableSchema(pBt->db)==0 ){
3240 rc = SQLITE_CORRUPT_BKPT;
3241 goto page1_init_failed;
3242 }else{
3243 nPage = nPageFile;
3246 /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
3247 ** be less than 480. In other words, if the page size is 512, then the
3248 ** reserved space size cannot exceed 32. */
3249 if( usableSize<480 ){
3250 goto page1_init_failed;
3252 pBt->pageSize = pageSize;
3253 pBt->usableSize = usableSize;
3254 #ifndef SQLITE_OMIT_AUTOVACUUM
3255 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
3256 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
3257 #endif
3260 /* maxLocal is the maximum amount of payload to store locally for
3261 ** a cell. Make sure it is small enough so that at least minFanout
3262 ** cells can will fit on one page. We assume a 10-byte page header.
3263 ** Besides the payload, the cell must store:
3264 ** 2-byte pointer to the cell
3265 ** 4-byte child pointer
3266 ** 9-byte nKey value
3267 ** 4-byte nData value
3268 ** 4-byte overflow page pointer
3269 ** So a cell consists of a 2-byte pointer, a header which is as much as
3270 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
3271 ** page pointer.
3273 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
3274 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
3275 pBt->maxLeaf = (u16)(pBt->usableSize - 35);
3276 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
3277 if( pBt->maxLocal>127 ){
3278 pBt->max1bytePayload = 127;
3279 }else{
3280 pBt->max1bytePayload = (u8)pBt->maxLocal;
3282 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
3283 pBt->pPage1 = pPage1;
3284 pBt->nPage = nPage;
3285 return SQLITE_OK;
3287 page1_init_failed:
3288 releasePageOne(pPage1);
3289 pBt->pPage1 = 0;
3290 return rc;
3293 #ifndef NDEBUG
3295 ** Return the number of cursors open on pBt. This is for use
3296 ** in assert() expressions, so it is only compiled if NDEBUG is not
3297 ** defined.
3299 ** Only write cursors are counted if wrOnly is true. If wrOnly is
3300 ** false then all cursors are counted.
3302 ** For the purposes of this routine, a cursor is any cursor that
3303 ** is capable of reading or writing to the database. Cursors that
3304 ** have been tripped into the CURSOR_FAULT state are not counted.
3306 static int countValidCursors(BtShared *pBt, int wrOnly){
3307 BtCursor *pCur;
3308 int r = 0;
3309 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
3310 if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
3311 && pCur->eState!=CURSOR_FAULT ) r++;
3313 return r;
3315 #endif
3318 ** If there are no outstanding cursors and we are not in the middle
3319 ** of a transaction but there is a read lock on the database, then
3320 ** this routine unrefs the first page of the database file which
3321 ** has the effect of releasing the read lock.
3323 ** If there is a transaction in progress, this routine is a no-op.
3325 static void unlockBtreeIfUnused(BtShared *pBt){
3326 assert( sqlite3_mutex_held(pBt->mutex) );
3327 assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
3328 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
3329 MemPage *pPage1 = pBt->pPage1;
3330 assert( pPage1->aData );
3331 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
3332 pBt->pPage1 = 0;
3333 releasePageOne(pPage1);
3338 ** If pBt points to an empty file then convert that empty file
3339 ** into a new empty database by initializing the first page of
3340 ** the database.
3342 static int newDatabase(BtShared *pBt){
3343 MemPage *pP1;
3344 unsigned char *data;
3345 int rc;
3347 assert( sqlite3_mutex_held(pBt->mutex) );
3348 if( pBt->nPage>0 ){
3349 return SQLITE_OK;
3351 pP1 = pBt->pPage1;
3352 assert( pP1!=0 );
3353 data = pP1->aData;
3354 rc = sqlite3PagerWrite(pP1->pDbPage);
3355 if( rc ) return rc;
3356 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
3357 assert( sizeof(zMagicHeader)==16 );
3358 data[16] = (u8)((pBt->pageSize>>8)&0xff);
3359 data[17] = (u8)((pBt->pageSize>>16)&0xff);
3360 data[18] = 1;
3361 data[19] = 1;
3362 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
3363 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
3364 data[21] = 64;
3365 data[22] = 32;
3366 data[23] = 32;
3367 memset(&data[24], 0, 100-24);
3368 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
3369 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
3370 #ifndef SQLITE_OMIT_AUTOVACUUM
3371 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
3372 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
3373 put4byte(&data[36 + 4*4], pBt->autoVacuum);
3374 put4byte(&data[36 + 7*4], pBt->incrVacuum);
3375 #endif
3376 pBt->nPage = 1;
3377 data[31] = 1;
3378 return SQLITE_OK;
3382 ** Initialize the first page of the database file (creating a database
3383 ** consisting of a single page and no schema objects). Return SQLITE_OK
3384 ** if successful, or an SQLite error code otherwise.
3386 int sqlite3BtreeNewDb(Btree *p){
3387 int rc;
3388 sqlite3BtreeEnter(p);
3389 p->pBt->nPage = 0;
3390 rc = newDatabase(p->pBt);
3391 sqlite3BtreeLeave(p);
3392 return rc;
3396 ** Attempt to start a new transaction. A write-transaction
3397 ** is started if the second argument is nonzero, otherwise a read-
3398 ** transaction. If the second argument is 2 or more and exclusive
3399 ** transaction is started, meaning that no other process is allowed
3400 ** to access the database. A preexisting transaction may not be
3401 ** upgraded to exclusive by calling this routine a second time - the
3402 ** exclusivity flag only works for a new transaction.
3404 ** A write-transaction must be started before attempting any
3405 ** changes to the database. None of the following routines
3406 ** will work unless a transaction is started first:
3408 ** sqlite3BtreeCreateTable()
3409 ** sqlite3BtreeCreateIndex()
3410 ** sqlite3BtreeClearTable()
3411 ** sqlite3BtreeDropTable()
3412 ** sqlite3BtreeInsert()
3413 ** sqlite3BtreeDelete()
3414 ** sqlite3BtreeUpdateMeta()
3416 ** If an initial attempt to acquire the lock fails because of lock contention
3417 ** and the database was previously unlocked, then invoke the busy handler
3418 ** if there is one. But if there was previously a read-lock, do not
3419 ** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
3420 ** returned when there is already a read-lock in order to avoid a deadlock.
3422 ** Suppose there are two processes A and B. A has a read lock and B has
3423 ** a reserved lock. B tries to promote to exclusive but is blocked because
3424 ** of A's read lock. A tries to promote to reserved but is blocked by B.
3425 ** One or the other of the two processes must give way or there can be
3426 ** no progress. By returning SQLITE_BUSY and not invoking the busy callback
3427 ** when A already has a read lock, we encourage A to give up and let B
3428 ** proceed.
3430 int sqlite3BtreeBeginTrans(Btree *p, int wrflag, int *pSchemaVersion){
3431 BtShared *pBt = p->pBt;
3432 Pager *pPager = pBt->pPager;
3433 int rc = SQLITE_OK;
3435 sqlite3BtreeEnter(p);
3436 btreeIntegrity(p);
3438 /* If the btree is already in a write-transaction, or it
3439 ** is already in a read-transaction and a read-transaction
3440 ** is requested, this is a no-op.
3442 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
3443 goto trans_begun;
3445 assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
3447 if( (p->db->flags & SQLITE_ResetDatabase)
3448 && sqlite3PagerIsreadonly(pPager)==0
3450 pBt->btsFlags &= ~BTS_READ_ONLY;
3453 /* Write transactions are not possible on a read-only database */
3454 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
3455 rc = SQLITE_READONLY;
3456 goto trans_begun;
3459 #ifndef SQLITE_OMIT_SHARED_CACHE
3461 sqlite3 *pBlock = 0;
3462 /* If another database handle has already opened a write transaction
3463 ** on this shared-btree structure and a second write transaction is
3464 ** requested, return SQLITE_LOCKED.
3466 if( (wrflag && pBt->inTransaction==TRANS_WRITE)
3467 || (pBt->btsFlags & BTS_PENDING)!=0
3469 pBlock = pBt->pWriter->db;
3470 }else if( wrflag>1 ){
3471 BtLock *pIter;
3472 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
3473 if( pIter->pBtree!=p ){
3474 pBlock = pIter->pBtree->db;
3475 break;
3479 if( pBlock ){
3480 sqlite3ConnectionBlocked(p->db, pBlock);
3481 rc = SQLITE_LOCKED_SHAREDCACHE;
3482 goto trans_begun;
3485 #endif
3487 /* Any read-only or read-write transaction implies a read-lock on
3488 ** page 1. So if some other shared-cache client already has a write-lock
3489 ** on page 1, the transaction cannot be opened. */
3490 rc = querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK);
3491 if( SQLITE_OK!=rc ) goto trans_begun;
3493 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
3494 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
3495 do {
3496 sqlite3PagerWalDb(pPager, p->db);
3498 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
3499 /* If transitioning from no transaction directly to a write transaction,
3500 ** block for the WRITER lock first if possible. */
3501 if( pBt->pPage1==0 && wrflag ){
3502 assert( pBt->inTransaction==TRANS_NONE );
3503 rc = sqlite3PagerWalWriteLock(pPager, 1);
3504 if( rc!=SQLITE_BUSY && rc!=SQLITE_OK ) break;
3506 #endif
3508 /* Call lockBtree() until either pBt->pPage1 is populated or
3509 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
3510 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
3511 ** reading page 1 it discovers that the page-size of the database
3512 ** file is not pBt->pageSize. In this case lockBtree() will update
3513 ** pBt->pageSize to the page-size of the file on disk.
3515 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
3517 if( rc==SQLITE_OK && wrflag ){
3518 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
3519 rc = SQLITE_READONLY;
3520 }else{
3521 rc = sqlite3PagerBegin(pPager, wrflag>1, sqlite3TempInMemory(p->db));
3522 if( rc==SQLITE_OK ){
3523 rc = newDatabase(pBt);
3524 }else if( rc==SQLITE_BUSY_SNAPSHOT && pBt->inTransaction==TRANS_NONE ){
3525 /* if there was no transaction opened when this function was
3526 ** called and SQLITE_BUSY_SNAPSHOT is returned, change the error
3527 ** code to SQLITE_BUSY. */
3528 rc = SQLITE_BUSY;
3533 if( rc!=SQLITE_OK ){
3534 (void)sqlite3PagerWalWriteLock(pPager, 0);
3535 unlockBtreeIfUnused(pBt);
3537 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
3538 btreeInvokeBusyHandler(pBt) );
3539 sqlite3PagerWalDb(pPager, 0);
3540 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
3541 if( rc==SQLITE_BUSY_TIMEOUT ) rc = SQLITE_BUSY;
3542 #endif
3544 if( rc==SQLITE_OK ){
3545 if( p->inTrans==TRANS_NONE ){
3546 pBt->nTransaction++;
3547 #ifndef SQLITE_OMIT_SHARED_CACHE
3548 if( p->sharable ){
3549 assert( p->lock.pBtree==p && p->lock.iTable==1 );
3550 p->lock.eLock = READ_LOCK;
3551 p->lock.pNext = pBt->pLock;
3552 pBt->pLock = &p->lock;
3554 #endif
3556 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
3557 if( p->inTrans>pBt->inTransaction ){
3558 pBt->inTransaction = p->inTrans;
3560 if( wrflag ){
3561 MemPage *pPage1 = pBt->pPage1;
3562 #ifndef SQLITE_OMIT_SHARED_CACHE
3563 assert( !pBt->pWriter );
3564 pBt->pWriter = p;
3565 pBt->btsFlags &= ~BTS_EXCLUSIVE;
3566 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
3567 #endif
3569 /* If the db-size header field is incorrect (as it may be if an old
3570 ** client has been writing the database file), update it now. Doing
3571 ** this sooner rather than later means the database size can safely
3572 ** re-read the database size from page 1 if a savepoint or transaction
3573 ** rollback occurs within the transaction.
3575 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
3576 rc = sqlite3PagerWrite(pPage1->pDbPage);
3577 if( rc==SQLITE_OK ){
3578 put4byte(&pPage1->aData[28], pBt->nPage);
3584 trans_begun:
3585 if( rc==SQLITE_OK ){
3586 if( pSchemaVersion ){
3587 *pSchemaVersion = get4byte(&pBt->pPage1->aData[40]);
3589 if( wrflag ){
3590 /* This call makes sure that the pager has the correct number of
3591 ** open savepoints. If the second parameter is greater than 0 and
3592 ** the sub-journal is not already open, then it will be opened here.
3594 rc = sqlite3PagerOpenSavepoint(pPager, p->db->nSavepoint);
3598 btreeIntegrity(p);
3599 sqlite3BtreeLeave(p);
3600 return rc;
3603 #ifndef SQLITE_OMIT_AUTOVACUUM
3606 ** Set the pointer-map entries for all children of page pPage. Also, if
3607 ** pPage contains cells that point to overflow pages, set the pointer
3608 ** map entries for the overflow pages as well.
3610 static int setChildPtrmaps(MemPage *pPage){
3611 int i; /* Counter variable */
3612 int nCell; /* Number of cells in page pPage */
3613 int rc; /* Return code */
3614 BtShared *pBt = pPage->pBt;
3615 Pgno pgno = pPage->pgno;
3617 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
3618 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
3619 if( rc!=SQLITE_OK ) return rc;
3620 nCell = pPage->nCell;
3622 for(i=0; i<nCell; i++){
3623 u8 *pCell = findCell(pPage, i);
3625 ptrmapPutOvflPtr(pPage, pPage, pCell, &rc);
3627 if( !pPage->leaf ){
3628 Pgno childPgno = get4byte(pCell);
3629 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
3633 if( !pPage->leaf ){
3634 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
3635 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
3638 return rc;
3642 ** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
3643 ** that it points to iTo. Parameter eType describes the type of pointer to
3644 ** be modified, as follows:
3646 ** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
3647 ** page of pPage.
3649 ** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
3650 ** page pointed to by one of the cells on pPage.
3652 ** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
3653 ** overflow page in the list.
3655 static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
3656 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
3657 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
3658 if( eType==PTRMAP_OVERFLOW2 ){
3659 /* The pointer is always the first 4 bytes of the page in this case. */
3660 if( get4byte(pPage->aData)!=iFrom ){
3661 return SQLITE_CORRUPT_PAGE(pPage);
3663 put4byte(pPage->aData, iTo);
3664 }else{
3665 int i;
3666 int nCell;
3667 int rc;
3669 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
3670 if( rc ) return rc;
3671 nCell = pPage->nCell;
3673 for(i=0; i<nCell; i++){
3674 u8 *pCell = findCell(pPage, i);
3675 if( eType==PTRMAP_OVERFLOW1 ){
3676 CellInfo info;
3677 pPage->xParseCell(pPage, pCell, &info);
3678 if( info.nLocal<info.nPayload ){
3679 if( pCell+info.nSize > pPage->aData+pPage->pBt->usableSize ){
3680 return SQLITE_CORRUPT_PAGE(pPage);
3682 if( iFrom==get4byte(pCell+info.nSize-4) ){
3683 put4byte(pCell+info.nSize-4, iTo);
3684 break;
3687 }else{
3688 if( get4byte(pCell)==iFrom ){
3689 put4byte(pCell, iTo);
3690 break;
3695 if( i==nCell ){
3696 if( eType!=PTRMAP_BTREE ||
3697 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
3698 return SQLITE_CORRUPT_PAGE(pPage);
3700 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
3703 return SQLITE_OK;
3708 ** Move the open database page pDbPage to location iFreePage in the
3709 ** database. The pDbPage reference remains valid.
3711 ** The isCommit flag indicates that there is no need to remember that
3712 ** the journal needs to be sync()ed before database page pDbPage->pgno
3713 ** can be written to. The caller has already promised not to write to that
3714 ** page.
3716 static int relocatePage(
3717 BtShared *pBt, /* Btree */
3718 MemPage *pDbPage, /* Open page to move */
3719 u8 eType, /* Pointer map 'type' entry for pDbPage */
3720 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
3721 Pgno iFreePage, /* The location to move pDbPage to */
3722 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
3724 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
3725 Pgno iDbPage = pDbPage->pgno;
3726 Pager *pPager = pBt->pPager;
3727 int rc;
3729 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
3730 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
3731 assert( sqlite3_mutex_held(pBt->mutex) );
3732 assert( pDbPage->pBt==pBt );
3733 if( iDbPage<3 ) return SQLITE_CORRUPT_BKPT;
3735 /* Move page iDbPage from its current location to page number iFreePage */
3736 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
3737 iDbPage, iFreePage, iPtrPage, eType));
3738 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
3739 if( rc!=SQLITE_OK ){
3740 return rc;
3742 pDbPage->pgno = iFreePage;
3744 /* If pDbPage was a btree-page, then it may have child pages and/or cells
3745 ** that point to overflow pages. The pointer map entries for all these
3746 ** pages need to be changed.
3748 ** If pDbPage is an overflow page, then the first 4 bytes may store a
3749 ** pointer to a subsequent overflow page. If this is the case, then
3750 ** the pointer map needs to be updated for the subsequent overflow page.
3752 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
3753 rc = setChildPtrmaps(pDbPage);
3754 if( rc!=SQLITE_OK ){
3755 return rc;
3757 }else{
3758 Pgno nextOvfl = get4byte(pDbPage->aData);
3759 if( nextOvfl!=0 ){
3760 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
3761 if( rc!=SQLITE_OK ){
3762 return rc;
3767 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
3768 ** that it points at iFreePage. Also fix the pointer map entry for
3769 ** iPtrPage.
3771 if( eType!=PTRMAP_ROOTPAGE ){
3772 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
3773 if( rc!=SQLITE_OK ){
3774 return rc;
3776 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
3777 if( rc!=SQLITE_OK ){
3778 releasePage(pPtrPage);
3779 return rc;
3781 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
3782 releasePage(pPtrPage);
3783 if( rc==SQLITE_OK ){
3784 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
3787 return rc;
3790 /* Forward declaration required by incrVacuumStep(). */
3791 static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
3794 ** Perform a single step of an incremental-vacuum. If successful, return
3795 ** SQLITE_OK. If there is no work to do (and therefore no point in
3796 ** calling this function again), return SQLITE_DONE. Or, if an error
3797 ** occurs, return some other error code.
3799 ** More specifically, this function attempts to re-organize the database so
3800 ** that the last page of the file currently in use is no longer in use.
3802 ** Parameter nFin is the number of pages that this database would contain
3803 ** were this function called until it returns SQLITE_DONE.
3805 ** If the bCommit parameter is non-zero, this function assumes that the
3806 ** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
3807 ** or an error. bCommit is passed true for an auto-vacuum-on-commit
3808 ** operation, or false for an incremental vacuum.
3810 static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
3811 Pgno nFreeList; /* Number of pages still on the free-list */
3812 int rc;
3814 assert( sqlite3_mutex_held(pBt->mutex) );
3815 assert( iLastPg>nFin );
3817 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
3818 u8 eType;
3819 Pgno iPtrPage;
3821 nFreeList = get4byte(&pBt->pPage1->aData[36]);
3822 if( nFreeList==0 ){
3823 return SQLITE_DONE;
3826 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
3827 if( rc!=SQLITE_OK ){
3828 return rc;
3830 if( eType==PTRMAP_ROOTPAGE ){
3831 return SQLITE_CORRUPT_BKPT;
3834 if( eType==PTRMAP_FREEPAGE ){
3835 if( bCommit==0 ){
3836 /* Remove the page from the files free-list. This is not required
3837 ** if bCommit is non-zero. In that case, the free-list will be
3838 ** truncated to zero after this function returns, so it doesn't
3839 ** matter if it still contains some garbage entries.
3841 Pgno iFreePg;
3842 MemPage *pFreePg;
3843 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
3844 if( rc!=SQLITE_OK ){
3845 return rc;
3847 assert( iFreePg==iLastPg );
3848 releasePage(pFreePg);
3850 } else {
3851 Pgno iFreePg; /* Index of free page to move pLastPg to */
3852 MemPage *pLastPg;
3853 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */
3854 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */
3856 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
3857 if( rc!=SQLITE_OK ){
3858 return rc;
3861 /* If bCommit is zero, this loop runs exactly once and page pLastPg
3862 ** is swapped with the first free page pulled off the free list.
3864 ** On the other hand, if bCommit is greater than zero, then keep
3865 ** looping until a free-page located within the first nFin pages
3866 ** of the file is found.
3868 if( bCommit==0 ){
3869 eMode = BTALLOC_LE;
3870 iNear = nFin;
3872 do {
3873 MemPage *pFreePg;
3874 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
3875 if( rc!=SQLITE_OK ){
3876 releasePage(pLastPg);
3877 return rc;
3879 releasePage(pFreePg);
3880 }while( bCommit && iFreePg>nFin );
3881 assert( iFreePg<iLastPg );
3883 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
3884 releasePage(pLastPg);
3885 if( rc!=SQLITE_OK ){
3886 return rc;
3891 if( bCommit==0 ){
3892 do {
3893 iLastPg--;
3894 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
3895 pBt->bDoTruncate = 1;
3896 pBt->nPage = iLastPg;
3898 return SQLITE_OK;
3902 ** The database opened by the first argument is an auto-vacuum database
3903 ** nOrig pages in size containing nFree free pages. Return the expected
3904 ** size of the database in pages following an auto-vacuum operation.
3906 static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3907 int nEntry; /* Number of entries on one ptrmap page */
3908 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
3909 Pgno nFin; /* Return value */
3911 nEntry = pBt->usableSize/5;
3912 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3913 nFin = nOrig - nFree - nPtrmap;
3914 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3915 nFin--;
3917 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3918 nFin--;
3921 return nFin;
3925 ** A write-transaction must be opened before calling this function.
3926 ** It performs a single unit of work towards an incremental vacuum.
3928 ** If the incremental vacuum is finished after this function has run,
3929 ** SQLITE_DONE is returned. If it is not finished, but no error occurred,
3930 ** SQLITE_OK is returned. Otherwise an SQLite error code.
3932 int sqlite3BtreeIncrVacuum(Btree *p){
3933 int rc;
3934 BtShared *pBt = p->pBt;
3936 sqlite3BtreeEnter(p);
3937 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3938 if( !pBt->autoVacuum ){
3939 rc = SQLITE_DONE;
3940 }else{
3941 Pgno nOrig = btreePagecount(pBt);
3942 Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
3943 Pgno nFin = finalDbSize(pBt, nOrig, nFree);
3945 if( nOrig<nFin || nFree>=nOrig ){
3946 rc = SQLITE_CORRUPT_BKPT;
3947 }else if( nFree>0 ){
3948 rc = saveAllCursors(pBt, 0, 0);
3949 if( rc==SQLITE_OK ){
3950 invalidateAllOverflowCache(pBt);
3951 rc = incrVacuumStep(pBt, nFin, nOrig, 0);
3953 if( rc==SQLITE_OK ){
3954 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3955 put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3957 }else{
3958 rc = SQLITE_DONE;
3961 sqlite3BtreeLeave(p);
3962 return rc;
3966 ** This routine is called prior to sqlite3PagerCommit when a transaction
3967 ** is committed for an auto-vacuum database.
3969 static int autoVacuumCommit(Btree *p){
3970 int rc = SQLITE_OK;
3971 Pager *pPager;
3972 BtShared *pBt;
3973 sqlite3 *db;
3974 VVA_ONLY( int nRef );
3976 assert( p!=0 );
3977 pBt = p->pBt;
3978 pPager = pBt->pPager;
3979 VVA_ONLY( nRef = sqlite3PagerRefcount(pPager); )
3981 assert( sqlite3_mutex_held(pBt->mutex) );
3982 invalidateAllOverflowCache(pBt);
3983 assert(pBt->autoVacuum);
3984 if( !pBt->incrVacuum ){
3985 Pgno nFin; /* Number of pages in database after autovacuuming */
3986 Pgno nFree; /* Number of pages on the freelist initially */
3987 Pgno nVac; /* Number of pages to vacuum */
3988 Pgno iFree; /* The next page to be freed */
3989 Pgno nOrig; /* Database size before freeing */
3991 nOrig = btreePagecount(pBt);
3992 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3993 /* It is not possible to create a database for which the final page
3994 ** is either a pointer-map page or the pending-byte page. If one
3995 ** is encountered, this indicates corruption.
3997 return SQLITE_CORRUPT_BKPT;
4000 nFree = get4byte(&pBt->pPage1->aData[36]);
4001 db = p->db;
4002 if( db->xAutovacPages ){
4003 int iDb;
4004 for(iDb=0; ALWAYS(iDb<db->nDb); iDb++){
4005 if( db->aDb[iDb].pBt==p ) break;
4007 nVac = db->xAutovacPages(
4008 db->pAutovacPagesArg,
4009 db->aDb[iDb].zDbSName,
4010 nOrig,
4011 nFree,
4012 pBt->pageSize
4014 if( nVac>nFree ){
4015 nVac = nFree;
4017 if( nVac==0 ){
4018 return SQLITE_OK;
4020 }else{
4021 nVac = nFree;
4023 nFin = finalDbSize(pBt, nOrig, nVac);
4024 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
4025 if( nFin<nOrig ){
4026 rc = saveAllCursors(pBt, 0, 0);
4028 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
4029 rc = incrVacuumStep(pBt, nFin, iFree, nVac==nFree);
4031 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
4032 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
4033 if( nVac==nFree ){
4034 put4byte(&pBt->pPage1->aData[32], 0);
4035 put4byte(&pBt->pPage1->aData[36], 0);
4037 put4byte(&pBt->pPage1->aData[28], nFin);
4038 pBt->bDoTruncate = 1;
4039 pBt->nPage = nFin;
4041 if( rc!=SQLITE_OK ){
4042 sqlite3PagerRollback(pPager);
4046 assert( nRef>=sqlite3PagerRefcount(pPager) );
4047 return rc;
4050 #else /* ifndef SQLITE_OMIT_AUTOVACUUM */
4051 # define setChildPtrmaps(x) SQLITE_OK
4052 #endif
4055 ** This routine does the first phase of a two-phase commit. This routine
4056 ** causes a rollback journal to be created (if it does not already exist)
4057 ** and populated with enough information so that if a power loss occurs
4058 ** the database can be restored to its original state by playing back
4059 ** the journal. Then the contents of the journal are flushed out to
4060 ** the disk. After the journal is safely on oxide, the changes to the
4061 ** database are written into the database file and flushed to oxide.
4062 ** At the end of this call, the rollback journal still exists on the
4063 ** disk and we are still holding all locks, so the transaction has not
4064 ** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
4065 ** commit process.
4067 ** This call is a no-op if no write-transaction is currently active on pBt.
4069 ** Otherwise, sync the database file for the btree pBt. zSuperJrnl points to
4070 ** the name of a super-journal file that should be written into the
4071 ** individual journal file, or is NULL, indicating no super-journal file
4072 ** (single database transaction).
4074 ** When this is called, the super-journal should already have been
4075 ** created, populated with this journal pointer and synced to disk.
4077 ** Once this is routine has returned, the only thing required to commit
4078 ** the write-transaction for this database file is to delete the journal.
4080 int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zSuperJrnl){
4081 int rc = SQLITE_OK;
4082 if( p->inTrans==TRANS_WRITE ){
4083 BtShared *pBt = p->pBt;
4084 sqlite3BtreeEnter(p);
4085 #ifndef SQLITE_OMIT_AUTOVACUUM
4086 if( pBt->autoVacuum ){
4087 rc = autoVacuumCommit(p);
4088 if( rc!=SQLITE_OK ){
4089 sqlite3BtreeLeave(p);
4090 return rc;
4093 if( pBt->bDoTruncate ){
4094 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
4096 #endif
4097 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zSuperJrnl, 0);
4098 sqlite3BtreeLeave(p);
4100 return rc;
4104 ** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
4105 ** at the conclusion of a transaction.
4107 static void btreeEndTransaction(Btree *p){
4108 BtShared *pBt = p->pBt;
4109 sqlite3 *db = p->db;
4110 assert( sqlite3BtreeHoldsMutex(p) );
4112 #ifndef SQLITE_OMIT_AUTOVACUUM
4113 pBt->bDoTruncate = 0;
4114 #endif
4115 if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
4116 /* If there are other active statements that belong to this database
4117 ** handle, downgrade to a read-only transaction. The other statements
4118 ** may still be reading from the database. */
4119 downgradeAllSharedCacheTableLocks(p);
4120 p->inTrans = TRANS_READ;
4121 }else{
4122 /* If the handle had any kind of transaction open, decrement the
4123 ** transaction count of the shared btree. If the transaction count
4124 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
4125 ** call below will unlock the pager. */
4126 if( p->inTrans!=TRANS_NONE ){
4127 clearAllSharedCacheTableLocks(p);
4128 pBt->nTransaction--;
4129 if( 0==pBt->nTransaction ){
4130 pBt->inTransaction = TRANS_NONE;
4134 /* Set the current transaction state to TRANS_NONE and unlock the
4135 ** pager if this call closed the only read or write transaction. */
4136 p->inTrans = TRANS_NONE;
4137 unlockBtreeIfUnused(pBt);
4140 btreeIntegrity(p);
4144 ** Commit the transaction currently in progress.
4146 ** This routine implements the second phase of a 2-phase commit. The
4147 ** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
4148 ** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
4149 ** routine did all the work of writing information out to disk and flushing the
4150 ** contents so that they are written onto the disk platter. All this
4151 ** routine has to do is delete or truncate or zero the header in the
4152 ** the rollback journal (which causes the transaction to commit) and
4153 ** drop locks.
4155 ** Normally, if an error occurs while the pager layer is attempting to
4156 ** finalize the underlying journal file, this function returns an error and
4157 ** the upper layer will attempt a rollback. However, if the second argument
4158 ** is non-zero then this b-tree transaction is part of a multi-file
4159 ** transaction. In this case, the transaction has already been committed
4160 ** (by deleting a super-journal file) and the caller will ignore this
4161 ** functions return code. So, even if an error occurs in the pager layer,
4162 ** reset the b-tree objects internal state to indicate that the write
4163 ** transaction has been closed. This is quite safe, as the pager will have
4164 ** transitioned to the error state.
4166 ** This will release the write lock on the database file. If there
4167 ** are no active cursors, it also releases the read lock.
4169 int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
4171 if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
4172 sqlite3BtreeEnter(p);
4173 btreeIntegrity(p);
4175 /* If the handle has a write-transaction open, commit the shared-btrees
4176 ** transaction and set the shared state to TRANS_READ.
4178 if( p->inTrans==TRANS_WRITE ){
4179 int rc;
4180 BtShared *pBt = p->pBt;
4181 assert( pBt->inTransaction==TRANS_WRITE );
4182 assert( pBt->nTransaction>0 );
4183 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
4184 if( rc!=SQLITE_OK && bCleanup==0 ){
4185 sqlite3BtreeLeave(p);
4186 return rc;
4188 p->iBDataVersion--; /* Compensate for pPager->iDataVersion++; */
4189 pBt->inTransaction = TRANS_READ;
4190 btreeClearHasContent(pBt);
4193 btreeEndTransaction(p);
4194 sqlite3BtreeLeave(p);
4195 return SQLITE_OK;
4199 ** Do both phases of a commit.
4201 int sqlite3BtreeCommit(Btree *p){
4202 int rc;
4203 sqlite3BtreeEnter(p);
4204 rc = sqlite3BtreeCommitPhaseOne(p, 0);
4205 if( rc==SQLITE_OK ){
4206 rc = sqlite3BtreeCommitPhaseTwo(p, 0);
4208 sqlite3BtreeLeave(p);
4209 return rc;
4213 ** This routine sets the state to CURSOR_FAULT and the error
4214 ** code to errCode for every cursor on any BtShared that pBtree
4215 ** references. Or if the writeOnly flag is set to 1, then only
4216 ** trip write cursors and leave read cursors unchanged.
4218 ** Every cursor is a candidate to be tripped, including cursors
4219 ** that belong to other database connections that happen to be
4220 ** sharing the cache with pBtree.
4222 ** This routine gets called when a rollback occurs. If the writeOnly
4223 ** flag is true, then only write-cursors need be tripped - read-only
4224 ** cursors save their current positions so that they may continue
4225 ** following the rollback. Or, if writeOnly is false, all cursors are
4226 ** tripped. In general, writeOnly is false if the transaction being
4227 ** rolled back modified the database schema. In this case b-tree root
4228 ** pages may be moved or deleted from the database altogether, making
4229 ** it unsafe for read cursors to continue.
4231 ** If the writeOnly flag is true and an error is encountered while
4232 ** saving the current position of a read-only cursor, all cursors,
4233 ** including all read-cursors are tripped.
4235 ** SQLITE_OK is returned if successful, or if an error occurs while
4236 ** saving a cursor position, an SQLite error code.
4238 int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){
4239 BtCursor *p;
4240 int rc = SQLITE_OK;
4242 assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 );
4243 if( pBtree ){
4244 sqlite3BtreeEnter(pBtree);
4245 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
4246 if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){
4247 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
4248 rc = saveCursorPosition(p);
4249 if( rc!=SQLITE_OK ){
4250 (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0);
4251 break;
4254 }else{
4255 sqlite3BtreeClearCursor(p);
4256 p->eState = CURSOR_FAULT;
4257 p->skipNext = errCode;
4259 btreeReleaseAllCursorPages(p);
4261 sqlite3BtreeLeave(pBtree);
4263 return rc;
4267 ** Set the pBt->nPage field correctly, according to the current
4268 ** state of the database. Assume pBt->pPage1 is valid.
4270 static void btreeSetNPage(BtShared *pBt, MemPage *pPage1){
4271 int nPage = get4byte(&pPage1->aData[28]);
4272 testcase( nPage==0 );
4273 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
4274 testcase( pBt->nPage!=(u32)nPage );
4275 pBt->nPage = nPage;
4279 ** Rollback the transaction in progress.
4281 ** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
4282 ** Only write cursors are tripped if writeOnly is true but all cursors are
4283 ** tripped if writeOnly is false. Any attempt to use
4284 ** a tripped cursor will result in an error.
4286 ** This will release the write lock on the database file. If there
4287 ** are no active cursors, it also releases the read lock.
4289 int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){
4290 int rc;
4291 BtShared *pBt = p->pBt;
4292 MemPage *pPage1;
4294 assert( writeOnly==1 || writeOnly==0 );
4295 assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK );
4296 sqlite3BtreeEnter(p);
4297 if( tripCode==SQLITE_OK ){
4298 rc = tripCode = saveAllCursors(pBt, 0, 0);
4299 if( rc ) writeOnly = 0;
4300 }else{
4301 rc = SQLITE_OK;
4303 if( tripCode ){
4304 int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly);
4305 assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) );
4306 if( rc2!=SQLITE_OK ) rc = rc2;
4308 btreeIntegrity(p);
4310 if( p->inTrans==TRANS_WRITE ){
4311 int rc2;
4313 assert( TRANS_WRITE==pBt->inTransaction );
4314 rc2 = sqlite3PagerRollback(pBt->pPager);
4315 if( rc2!=SQLITE_OK ){
4316 rc = rc2;
4319 /* The rollback may have destroyed the pPage1->aData value. So
4320 ** call btreeGetPage() on page 1 again to make
4321 ** sure pPage1->aData is set correctly. */
4322 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
4323 btreeSetNPage(pBt, pPage1);
4324 releasePageOne(pPage1);
4326 assert( countValidCursors(pBt, 1)==0 );
4327 pBt->inTransaction = TRANS_READ;
4328 btreeClearHasContent(pBt);
4331 btreeEndTransaction(p);
4332 sqlite3BtreeLeave(p);
4333 return rc;
4337 ** Start a statement subtransaction. The subtransaction can be rolled
4338 ** back independently of the main transaction. You must start a transaction
4339 ** before starting a subtransaction. The subtransaction is ended automatically
4340 ** if the main transaction commits or rolls back.
4342 ** Statement subtransactions are used around individual SQL statements
4343 ** that are contained within a BEGIN...COMMIT block. If a constraint
4344 ** error occurs within the statement, the effect of that one statement
4345 ** can be rolled back without having to rollback the entire transaction.
4347 ** A statement sub-transaction is implemented as an anonymous savepoint. The
4348 ** value passed as the second parameter is the total number of savepoints,
4349 ** including the new anonymous savepoint, open on the B-Tree. i.e. if there
4350 ** are no active savepoints and no other statement-transactions open,
4351 ** iStatement is 1. This anonymous savepoint can be released or rolled back
4352 ** using the sqlite3BtreeSavepoint() function.
4354 int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
4355 int rc;
4356 BtShared *pBt = p->pBt;
4357 sqlite3BtreeEnter(p);
4358 assert( p->inTrans==TRANS_WRITE );
4359 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
4360 assert( iStatement>0 );
4361 assert( iStatement>p->db->nSavepoint );
4362 assert( pBt->inTransaction==TRANS_WRITE );
4363 /* At the pager level, a statement transaction is a savepoint with
4364 ** an index greater than all savepoints created explicitly using
4365 ** SQL statements. It is illegal to open, release or rollback any
4366 ** such savepoints while the statement transaction savepoint is active.
4368 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
4369 sqlite3BtreeLeave(p);
4370 return rc;
4374 ** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
4375 ** or SAVEPOINT_RELEASE. This function either releases or rolls back the
4376 ** savepoint identified by parameter iSavepoint, depending on the value
4377 ** of op.
4379 ** Normally, iSavepoint is greater than or equal to zero. However, if op is
4380 ** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
4381 ** contents of the entire transaction are rolled back. This is different
4382 ** from a normal transaction rollback, as no locks are released and the
4383 ** transaction remains open.
4385 int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
4386 int rc = SQLITE_OK;
4387 if( p && p->inTrans==TRANS_WRITE ){
4388 BtShared *pBt = p->pBt;
4389 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
4390 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
4391 sqlite3BtreeEnter(p);
4392 if( op==SAVEPOINT_ROLLBACK ){
4393 rc = saveAllCursors(pBt, 0, 0);
4395 if( rc==SQLITE_OK ){
4396 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
4398 if( rc==SQLITE_OK ){
4399 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
4400 pBt->nPage = 0;
4402 rc = newDatabase(pBt);
4403 btreeSetNPage(pBt, pBt->pPage1);
4405 /* pBt->nPage might be zero if the database was corrupt when
4406 ** the transaction was started. Otherwise, it must be at least 1. */
4407 assert( CORRUPT_DB || pBt->nPage>0 );
4409 sqlite3BtreeLeave(p);
4411 return rc;
4415 ** Create a new cursor for the BTree whose root is on the page
4416 ** iTable. If a read-only cursor is requested, it is assumed that
4417 ** the caller already has at least a read-only transaction open
4418 ** on the database already. If a write-cursor is requested, then
4419 ** the caller is assumed to have an open write transaction.
4421 ** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only
4422 ** be used for reading. If the BTREE_WRCSR bit is set, then the cursor
4423 ** can be used for reading or for writing if other conditions for writing
4424 ** are also met. These are the conditions that must be met in order
4425 ** for writing to be allowed:
4427 ** 1: The cursor must have been opened with wrFlag containing BTREE_WRCSR
4429 ** 2: Other database connections that share the same pager cache
4430 ** but which are not in the READ_UNCOMMITTED state may not have
4431 ** cursors open with wrFlag==0 on the same table. Otherwise
4432 ** the changes made by this write cursor would be visible to
4433 ** the read cursors in the other database connection.
4435 ** 3: The database must be writable (not on read-only media)
4437 ** 4: There must be an active transaction.
4439 ** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR
4440 ** is set. If FORDELETE is set, that is a hint to the implementation that
4441 ** this cursor will only be used to seek to and delete entries of an index
4442 ** as part of a larger DELETE statement. The FORDELETE hint is not used by
4443 ** this implementation. But in a hypothetical alternative storage engine
4444 ** in which index entries are automatically deleted when corresponding table
4445 ** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE
4446 ** operations on this cursor can be no-ops and all READ operations can
4447 ** return a null row (2-bytes: 0x01 0x00).
4449 ** No checking is done to make sure that page iTable really is the
4450 ** root page of a b-tree. If it is not, then the cursor acquired
4451 ** will not work correctly.
4453 ** It is assumed that the sqlite3BtreeCursorZero() has been called
4454 ** on pCur to initialize the memory space prior to invoking this routine.
4456 static int btreeCursor(
4457 Btree *p, /* The btree */
4458 Pgno iTable, /* Root page of table to open */
4459 int wrFlag, /* 1 to write. 0 read-only */
4460 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
4461 BtCursor *pCur /* Space for new cursor */
4463 BtShared *pBt = p->pBt; /* Shared b-tree handle */
4464 BtCursor *pX; /* Looping over other all cursors */
4466 assert( sqlite3BtreeHoldsMutex(p) );
4467 assert( wrFlag==0
4468 || wrFlag==BTREE_WRCSR
4469 || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE)
4472 /* The following assert statements verify that if this is a sharable
4473 ** b-tree database, the connection is holding the required table locks,
4474 ** and that no other connection has any open cursor that conflicts with
4475 ** this lock. The iTable<1 term disables the check for corrupt schemas. */
4476 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1))
4477 || iTable<1 );
4478 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
4480 /* Assert that the caller has opened the required transaction. */
4481 assert( p->inTrans>TRANS_NONE );
4482 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
4483 assert( pBt->pPage1 && pBt->pPage1->aData );
4484 assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 );
4486 if( iTable<=1 ){
4487 if( iTable<1 ){
4488 return SQLITE_CORRUPT_BKPT;
4489 }else if( btreePagecount(pBt)==0 ){
4490 assert( wrFlag==0 );
4491 iTable = 0;
4495 /* Now that no other errors can occur, finish filling in the BtCursor
4496 ** variables and link the cursor into the BtShared list. */
4497 pCur->pgnoRoot = iTable;
4498 pCur->iPage = -1;
4499 pCur->pKeyInfo = pKeyInfo;
4500 pCur->pBtree = p;
4501 pCur->pBt = pBt;
4502 pCur->curFlags = 0;
4503 /* If there are two or more cursors on the same btree, then all such
4504 ** cursors *must* have the BTCF_Multiple flag set. */
4505 for(pX=pBt->pCursor; pX; pX=pX->pNext){
4506 if( pX->pgnoRoot==iTable ){
4507 pX->curFlags |= BTCF_Multiple;
4508 pCur->curFlags = BTCF_Multiple;
4511 pCur->eState = CURSOR_INVALID;
4512 pCur->pNext = pBt->pCursor;
4513 pBt->pCursor = pCur;
4514 if( wrFlag ){
4515 pCur->curFlags |= BTCF_WriteFlag;
4516 pCur->curPagerFlags = 0;
4517 if( pBt->pTmpSpace==0 ) return allocateTempSpace(pBt);
4518 }else{
4519 pCur->curPagerFlags = PAGER_GET_READONLY;
4521 return SQLITE_OK;
4523 static int btreeCursorWithLock(
4524 Btree *p, /* The btree */
4525 Pgno iTable, /* Root page of table to open */
4526 int wrFlag, /* 1 to write. 0 read-only */
4527 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
4528 BtCursor *pCur /* Space for new cursor */
4530 int rc;
4531 sqlite3BtreeEnter(p);
4532 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
4533 sqlite3BtreeLeave(p);
4534 return rc;
4536 int sqlite3BtreeCursor(
4537 Btree *p, /* The btree */
4538 Pgno iTable, /* Root page of table to open */
4539 int wrFlag, /* 1 to write. 0 read-only */
4540 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
4541 BtCursor *pCur /* Write new cursor here */
4543 if( p->sharable ){
4544 return btreeCursorWithLock(p, iTable, wrFlag, pKeyInfo, pCur);
4545 }else{
4546 return btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
4551 ** Return the size of a BtCursor object in bytes.
4553 ** This interfaces is needed so that users of cursors can preallocate
4554 ** sufficient storage to hold a cursor. The BtCursor object is opaque
4555 ** to users so they cannot do the sizeof() themselves - they must call
4556 ** this routine.
4558 int sqlite3BtreeCursorSize(void){
4559 return ROUND8(sizeof(BtCursor));
4563 ** Initialize memory that will be converted into a BtCursor object.
4565 ** The simple approach here would be to memset() the entire object
4566 ** to zero. But it turns out that the apPage[] and aiIdx[] arrays
4567 ** do not need to be zeroed and they are large, so we can save a lot
4568 ** of run-time by skipping the initialization of those elements.
4570 void sqlite3BtreeCursorZero(BtCursor *p){
4571 memset(p, 0, offsetof(BtCursor, BTCURSOR_FIRST_UNINIT));
4575 ** Close a cursor. The read lock on the database file is released
4576 ** when the last cursor is closed.
4578 int sqlite3BtreeCloseCursor(BtCursor *pCur){
4579 Btree *pBtree = pCur->pBtree;
4580 if( pBtree ){
4581 BtShared *pBt = pCur->pBt;
4582 sqlite3BtreeEnter(pBtree);
4583 assert( pBt->pCursor!=0 );
4584 if( pBt->pCursor==pCur ){
4585 pBt->pCursor = pCur->pNext;
4586 }else{
4587 BtCursor *pPrev = pBt->pCursor;
4589 if( pPrev->pNext==pCur ){
4590 pPrev->pNext = pCur->pNext;
4591 break;
4593 pPrev = pPrev->pNext;
4594 }while( ALWAYS(pPrev) );
4596 btreeReleaseAllCursorPages(pCur);
4597 unlockBtreeIfUnused(pBt);
4598 sqlite3_free(pCur->aOverflow);
4599 sqlite3_free(pCur->pKey);
4600 if( (pBt->openFlags & BTREE_SINGLE) && pBt->pCursor==0 ){
4601 /* Since the BtShared is not sharable, there is no need to
4602 ** worry about the missing sqlite3BtreeLeave() call here. */
4603 assert( pBtree->sharable==0 );
4604 sqlite3BtreeClose(pBtree);
4605 }else{
4606 sqlite3BtreeLeave(pBtree);
4608 pCur->pBtree = 0;
4610 return SQLITE_OK;
4614 ** Make sure the BtCursor* given in the argument has a valid
4615 ** BtCursor.info structure. If it is not already valid, call
4616 ** btreeParseCell() to fill it in.
4618 ** BtCursor.info is a cache of the information in the current cell.
4619 ** Using this cache reduces the number of calls to btreeParseCell().
4621 #ifndef NDEBUG
4622 static int cellInfoEqual(CellInfo *a, CellInfo *b){
4623 if( a->nKey!=b->nKey ) return 0;
4624 if( a->pPayload!=b->pPayload ) return 0;
4625 if( a->nPayload!=b->nPayload ) return 0;
4626 if( a->nLocal!=b->nLocal ) return 0;
4627 if( a->nSize!=b->nSize ) return 0;
4628 return 1;
4630 static void assertCellInfo(BtCursor *pCur){
4631 CellInfo info;
4632 memset(&info, 0, sizeof(info));
4633 btreeParseCell(pCur->pPage, pCur->ix, &info);
4634 assert( CORRUPT_DB || cellInfoEqual(&info, &pCur->info) );
4636 #else
4637 #define assertCellInfo(x)
4638 #endif
4639 static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){
4640 if( pCur->info.nSize==0 ){
4641 pCur->curFlags |= BTCF_ValidNKey;
4642 btreeParseCell(pCur->pPage,pCur->ix,&pCur->info);
4643 }else{
4644 assertCellInfo(pCur);
4648 #ifndef NDEBUG /* The next routine used only within assert() statements */
4650 ** Return true if the given BtCursor is valid. A valid cursor is one
4651 ** that is currently pointing to a row in a (non-empty) table.
4652 ** This is a verification routine is used only within assert() statements.
4654 int sqlite3BtreeCursorIsValid(BtCursor *pCur){
4655 return pCur && pCur->eState==CURSOR_VALID;
4657 #endif /* NDEBUG */
4658 int sqlite3BtreeCursorIsValidNN(BtCursor *pCur){
4659 assert( pCur!=0 );
4660 return pCur->eState==CURSOR_VALID;
4664 ** Return the value of the integer key or "rowid" for a table btree.
4665 ** This routine is only valid for a cursor that is pointing into a
4666 ** ordinary table btree. If the cursor points to an index btree or
4667 ** is invalid, the result of this routine is undefined.
4669 i64 sqlite3BtreeIntegerKey(BtCursor *pCur){
4670 assert( cursorHoldsMutex(pCur) );
4671 assert( pCur->eState==CURSOR_VALID );
4672 assert( pCur->curIntKey );
4673 getCellInfo(pCur);
4674 return pCur->info.nKey;
4678 ** Pin or unpin a cursor.
4680 void sqlite3BtreeCursorPin(BtCursor *pCur){
4681 assert( (pCur->curFlags & BTCF_Pinned)==0 );
4682 pCur->curFlags |= BTCF_Pinned;
4684 void sqlite3BtreeCursorUnpin(BtCursor *pCur){
4685 assert( (pCur->curFlags & BTCF_Pinned)!=0 );
4686 pCur->curFlags &= ~BTCF_Pinned;
4689 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
4691 ** Return the offset into the database file for the start of the
4692 ** payload to which the cursor is pointing.
4694 i64 sqlite3BtreeOffset(BtCursor *pCur){
4695 assert( cursorHoldsMutex(pCur) );
4696 assert( pCur->eState==CURSOR_VALID );
4697 getCellInfo(pCur);
4698 return (i64)pCur->pBt->pageSize*((i64)pCur->pPage->pgno - 1) +
4699 (i64)(pCur->info.pPayload - pCur->pPage->aData);
4701 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */
4704 ** Return the number of bytes of payload for the entry that pCur is
4705 ** currently pointing to. For table btrees, this will be the amount
4706 ** of data. For index btrees, this will be the size of the key.
4708 ** The caller must guarantee that the cursor is pointing to a non-NULL
4709 ** valid entry. In other words, the calling procedure must guarantee
4710 ** that the cursor has Cursor.eState==CURSOR_VALID.
4712 u32 sqlite3BtreePayloadSize(BtCursor *pCur){
4713 assert( cursorHoldsMutex(pCur) );
4714 assert( pCur->eState==CURSOR_VALID );
4715 getCellInfo(pCur);
4716 return pCur->info.nPayload;
4720 ** Return an upper bound on the size of any record for the table
4721 ** that the cursor is pointing into.
4723 ** This is an optimization. Everything will still work if this
4724 ** routine always returns 2147483647 (which is the largest record
4725 ** that SQLite can handle) or more. But returning a smaller value might
4726 ** prevent large memory allocations when trying to interpret a
4727 ** corrupt datrabase.
4729 ** The current implementation merely returns the size of the underlying
4730 ** database file.
4732 sqlite3_int64 sqlite3BtreeMaxRecordSize(BtCursor *pCur){
4733 assert( cursorHoldsMutex(pCur) );
4734 assert( pCur->eState==CURSOR_VALID );
4735 return pCur->pBt->pageSize * (sqlite3_int64)pCur->pBt->nPage;
4739 ** Given the page number of an overflow page in the database (parameter
4740 ** ovfl), this function finds the page number of the next page in the
4741 ** linked list of overflow pages. If possible, it uses the auto-vacuum
4742 ** pointer-map data instead of reading the content of page ovfl to do so.
4744 ** If an error occurs an SQLite error code is returned. Otherwise:
4746 ** The page number of the next overflow page in the linked list is
4747 ** written to *pPgnoNext. If page ovfl is the last page in its linked
4748 ** list, *pPgnoNext is set to zero.
4750 ** If ppPage is not NULL, and a reference to the MemPage object corresponding
4751 ** to page number pOvfl was obtained, then *ppPage is set to point to that
4752 ** reference. It is the responsibility of the caller to call releasePage()
4753 ** on *ppPage to free the reference. In no reference was obtained (because
4754 ** the pointer-map was used to obtain the value for *pPgnoNext), then
4755 ** *ppPage is set to zero.
4757 static int getOverflowPage(
4758 BtShared *pBt, /* The database file */
4759 Pgno ovfl, /* Current overflow page number */
4760 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
4761 Pgno *pPgnoNext /* OUT: Next overflow page number */
4763 Pgno next = 0;
4764 MemPage *pPage = 0;
4765 int rc = SQLITE_OK;
4767 assert( sqlite3_mutex_held(pBt->mutex) );
4768 assert(pPgnoNext);
4770 #ifndef SQLITE_OMIT_AUTOVACUUM
4771 /* Try to find the next page in the overflow list using the
4772 ** autovacuum pointer-map pages. Guess that the next page in
4773 ** the overflow list is page number (ovfl+1). If that guess turns
4774 ** out to be wrong, fall back to loading the data of page
4775 ** number ovfl to determine the next page number.
4777 if( pBt->autoVacuum ){
4778 Pgno pgno;
4779 Pgno iGuess = ovfl+1;
4780 u8 eType;
4782 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
4783 iGuess++;
4786 if( iGuess<=btreePagecount(pBt) ){
4787 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
4788 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
4789 next = iGuess;
4790 rc = SQLITE_DONE;
4794 #endif
4796 assert( next==0 || rc==SQLITE_DONE );
4797 if( rc==SQLITE_OK ){
4798 rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
4799 assert( rc==SQLITE_OK || pPage==0 );
4800 if( rc==SQLITE_OK ){
4801 next = get4byte(pPage->aData);
4805 *pPgnoNext = next;
4806 if( ppPage ){
4807 *ppPage = pPage;
4808 }else{
4809 releasePage(pPage);
4811 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
4815 ** Copy data from a buffer to a page, or from a page to a buffer.
4817 ** pPayload is a pointer to data stored on database page pDbPage.
4818 ** If argument eOp is false, then nByte bytes of data are copied
4819 ** from pPayload to the buffer pointed at by pBuf. If eOp is true,
4820 ** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
4821 ** of data are copied from the buffer pBuf to pPayload.
4823 ** SQLITE_OK is returned on success, otherwise an error code.
4825 static int copyPayload(
4826 void *pPayload, /* Pointer to page data */
4827 void *pBuf, /* Pointer to buffer */
4828 int nByte, /* Number of bytes to copy */
4829 int eOp, /* 0 -> copy from page, 1 -> copy to page */
4830 DbPage *pDbPage /* Page containing pPayload */
4832 if( eOp ){
4833 /* Copy data from buffer to page (a write operation) */
4834 int rc = sqlite3PagerWrite(pDbPage);
4835 if( rc!=SQLITE_OK ){
4836 return rc;
4838 memcpy(pPayload, pBuf, nByte);
4839 }else{
4840 /* Copy data from page to buffer (a read operation) */
4841 memcpy(pBuf, pPayload, nByte);
4843 return SQLITE_OK;
4847 ** This function is used to read or overwrite payload information
4848 ** for the entry that the pCur cursor is pointing to. The eOp
4849 ** argument is interpreted as follows:
4851 ** 0: The operation is a read. Populate the overflow cache.
4852 ** 1: The operation is a write. Populate the overflow cache.
4854 ** A total of "amt" bytes are read or written beginning at "offset".
4855 ** Data is read to or from the buffer pBuf.
4857 ** The content being read or written might appear on the main page
4858 ** or be scattered out on multiple overflow pages.
4860 ** If the current cursor entry uses one or more overflow pages
4861 ** this function may allocate space for and lazily populate
4862 ** the overflow page-list cache array (BtCursor.aOverflow).
4863 ** Subsequent calls use this cache to make seeking to the supplied offset
4864 ** more efficient.
4866 ** Once an overflow page-list cache has been allocated, it must be
4867 ** invalidated if some other cursor writes to the same table, or if
4868 ** the cursor is moved to a different row. Additionally, in auto-vacuum
4869 ** mode, the following events may invalidate an overflow page-list cache.
4871 ** * An incremental vacuum,
4872 ** * A commit in auto_vacuum="full" mode,
4873 ** * Creating a table (may require moving an overflow page).
4875 static int accessPayload(
4876 BtCursor *pCur, /* Cursor pointing to entry to read from */
4877 u32 offset, /* Begin reading this far into payload */
4878 u32 amt, /* Read this many bytes */
4879 unsigned char *pBuf, /* Write the bytes into this buffer */
4880 int eOp /* zero to read. non-zero to write. */
4882 unsigned char *aPayload;
4883 int rc = SQLITE_OK;
4884 int iIdx = 0;
4885 MemPage *pPage = pCur->pPage; /* Btree page of current entry */
4886 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
4887 #ifdef SQLITE_DIRECT_OVERFLOW_READ
4888 unsigned char * const pBufStart = pBuf; /* Start of original out buffer */
4889 #endif
4891 assert( pPage );
4892 assert( eOp==0 || eOp==1 );
4893 assert( pCur->eState==CURSOR_VALID );
4894 if( pCur->ix>=pPage->nCell ){
4895 return SQLITE_CORRUPT_PAGE(pPage);
4897 assert( cursorHoldsMutex(pCur) );
4899 getCellInfo(pCur);
4900 aPayload = pCur->info.pPayload;
4901 assert( offset+amt <= pCur->info.nPayload );
4903 assert( aPayload > pPage->aData );
4904 if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){
4905 /* Trying to read or write past the end of the data is an error. The
4906 ** conditional above is really:
4907 ** &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
4908 ** but is recast into its current form to avoid integer overflow problems
4910 return SQLITE_CORRUPT_PAGE(pPage);
4913 /* Check if data must be read/written to/from the btree page itself. */
4914 if( offset<pCur->info.nLocal ){
4915 int a = amt;
4916 if( a+offset>pCur->info.nLocal ){
4917 a = pCur->info.nLocal - offset;
4919 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
4920 offset = 0;
4921 pBuf += a;
4922 amt -= a;
4923 }else{
4924 offset -= pCur->info.nLocal;
4928 if( rc==SQLITE_OK && amt>0 ){
4929 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
4930 Pgno nextPage;
4932 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
4934 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
4936 ** The aOverflow[] array is sized at one entry for each overflow page
4937 ** in the overflow chain. The page number of the first overflow page is
4938 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
4939 ** means "not yet known" (the cache is lazily populated).
4941 if( (pCur->curFlags & BTCF_ValidOvfl)==0 ){
4942 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
4943 if( pCur->aOverflow==0
4944 || nOvfl*(int)sizeof(Pgno) > sqlite3MallocSize(pCur->aOverflow)
4946 Pgno *aNew = (Pgno*)sqlite3Realloc(
4947 pCur->aOverflow, nOvfl*2*sizeof(Pgno)
4949 if( aNew==0 ){
4950 return SQLITE_NOMEM_BKPT;
4951 }else{
4952 pCur->aOverflow = aNew;
4955 memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
4956 pCur->curFlags |= BTCF_ValidOvfl;
4957 }else{
4958 /* If the overflow page-list cache has been allocated and the
4959 ** entry for the first required overflow page is valid, skip
4960 ** directly to it.
4962 if( pCur->aOverflow[offset/ovflSize] ){
4963 iIdx = (offset/ovflSize);
4964 nextPage = pCur->aOverflow[iIdx];
4965 offset = (offset%ovflSize);
4969 assert( rc==SQLITE_OK && amt>0 );
4970 while( nextPage ){
4971 /* If required, populate the overflow page-list cache. */
4972 if( nextPage > pBt->nPage ) return SQLITE_CORRUPT_BKPT;
4973 assert( pCur->aOverflow[iIdx]==0
4974 || pCur->aOverflow[iIdx]==nextPage
4975 || CORRUPT_DB );
4976 pCur->aOverflow[iIdx] = nextPage;
4978 if( offset>=ovflSize ){
4979 /* The only reason to read this page is to obtain the page
4980 ** number for the next page in the overflow chain. The page
4981 ** data is not required. So first try to lookup the overflow
4982 ** page-list cache, if any, then fall back to the getOverflowPage()
4983 ** function.
4985 assert( pCur->curFlags & BTCF_ValidOvfl );
4986 assert( pCur->pBtree->db==pBt->db );
4987 if( pCur->aOverflow[iIdx+1] ){
4988 nextPage = pCur->aOverflow[iIdx+1];
4989 }else{
4990 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
4992 offset -= ovflSize;
4993 }else{
4994 /* Need to read this page properly. It contains some of the
4995 ** range of data that is being read (eOp==0) or written (eOp!=0).
4997 int a = amt;
4998 if( a + offset > ovflSize ){
4999 a = ovflSize - offset;
5002 #ifdef SQLITE_DIRECT_OVERFLOW_READ
5003 /* If all the following are true:
5005 ** 1) this is a read operation, and
5006 ** 2) data is required from the start of this overflow page, and
5007 ** 3) there are no dirty pages in the page-cache
5008 ** 4) the database is file-backed, and
5009 ** 5) the page is not in the WAL file
5010 ** 6) at least 4 bytes have already been read into the output buffer
5012 ** then data can be read directly from the database file into the
5013 ** output buffer, bypassing the page-cache altogether. This speeds
5014 ** up loading large records that span many overflow pages.
5016 if( eOp==0 /* (1) */
5017 && offset==0 /* (2) */
5018 && sqlite3PagerDirectReadOk(pBt->pPager, nextPage) /* (3,4,5) */
5019 && &pBuf[-4]>=pBufStart /* (6) */
5021 sqlite3_file *fd = sqlite3PagerFile(pBt->pPager);
5022 u8 aSave[4];
5023 u8 *aWrite = &pBuf[-4];
5024 assert( aWrite>=pBufStart ); /* due to (6) */
5025 memcpy(aSave, aWrite, 4);
5026 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
5027 if( rc && nextPage>pBt->nPage ) rc = SQLITE_CORRUPT_BKPT;
5028 nextPage = get4byte(aWrite);
5029 memcpy(aWrite, aSave, 4);
5030 }else
5031 #endif
5034 DbPage *pDbPage;
5035 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage,
5036 (eOp==0 ? PAGER_GET_READONLY : 0)
5038 if( rc==SQLITE_OK ){
5039 aPayload = sqlite3PagerGetData(pDbPage);
5040 nextPage = get4byte(aPayload);
5041 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
5042 sqlite3PagerUnref(pDbPage);
5043 offset = 0;
5046 amt -= a;
5047 if( amt==0 ) return rc;
5048 pBuf += a;
5050 if( rc ) break;
5051 iIdx++;
5055 if( rc==SQLITE_OK && amt>0 ){
5056 /* Overflow chain ends prematurely */
5057 return SQLITE_CORRUPT_PAGE(pPage);
5059 return rc;
5063 ** Read part of the payload for the row at which that cursor pCur is currently
5064 ** pointing. "amt" bytes will be transferred into pBuf[]. The transfer
5065 ** begins at "offset".
5067 ** pCur can be pointing to either a table or an index b-tree.
5068 ** If pointing to a table btree, then the content section is read. If
5069 ** pCur is pointing to an index b-tree then the key section is read.
5071 ** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing
5072 ** to a valid row in the table. For sqlite3BtreePayloadChecked(), the
5073 ** cursor might be invalid or might need to be restored before being read.
5075 ** Return SQLITE_OK on success or an error code if anything goes
5076 ** wrong. An error is returned if "offset+amt" is larger than
5077 ** the available payload.
5079 int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
5080 assert( cursorHoldsMutex(pCur) );
5081 assert( pCur->eState==CURSOR_VALID );
5082 assert( pCur->iPage>=0 && pCur->pPage );
5083 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
5087 ** This variant of sqlite3BtreePayload() works even if the cursor has not
5088 ** in the CURSOR_VALID state. It is only used by the sqlite3_blob_read()
5089 ** interface.
5091 #ifndef SQLITE_OMIT_INCRBLOB
5092 static SQLITE_NOINLINE int accessPayloadChecked(
5093 BtCursor *pCur,
5094 u32 offset,
5095 u32 amt,
5096 void *pBuf
5098 int rc;
5099 if ( pCur->eState==CURSOR_INVALID ){
5100 return SQLITE_ABORT;
5102 assert( cursorOwnsBtShared(pCur) );
5103 rc = btreeRestoreCursorPosition(pCur);
5104 return rc ? rc : accessPayload(pCur, offset, amt, pBuf, 0);
5106 int sqlite3BtreePayloadChecked(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
5107 if( pCur->eState==CURSOR_VALID ){
5108 assert( cursorOwnsBtShared(pCur) );
5109 return accessPayload(pCur, offset, amt, pBuf, 0);
5110 }else{
5111 return accessPayloadChecked(pCur, offset, amt, pBuf);
5114 #endif /* SQLITE_OMIT_INCRBLOB */
5117 ** Return a pointer to payload information from the entry that the
5118 ** pCur cursor is pointing to. The pointer is to the beginning of
5119 ** the key if index btrees (pPage->intKey==0) and is the data for
5120 ** table btrees (pPage->intKey==1). The number of bytes of available
5121 ** key/data is written into *pAmt. If *pAmt==0, then the value
5122 ** returned will not be a valid pointer.
5124 ** This routine is an optimization. It is common for the entire key
5125 ** and data to fit on the local page and for there to be no overflow
5126 ** pages. When that is so, this routine can be used to access the
5127 ** key and data without making a copy. If the key and/or data spills
5128 ** onto overflow pages, then accessPayload() must be used to reassemble
5129 ** the key/data and copy it into a preallocated buffer.
5131 ** The pointer returned by this routine looks directly into the cached
5132 ** page of the database. The data might change or move the next time
5133 ** any btree routine is called.
5135 static const void *fetchPayload(
5136 BtCursor *pCur, /* Cursor pointing to entry to read from */
5137 u32 *pAmt /* Write the number of available bytes here */
5139 int amt;
5140 assert( pCur!=0 && pCur->iPage>=0 && pCur->pPage);
5141 assert( pCur->eState==CURSOR_VALID );
5142 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5143 assert( cursorOwnsBtShared(pCur) );
5144 assert( pCur->ix<pCur->pPage->nCell || CORRUPT_DB );
5145 assert( pCur->info.nSize>0 );
5146 assert( pCur->info.pPayload>pCur->pPage->aData || CORRUPT_DB );
5147 assert( pCur->info.pPayload<pCur->pPage->aDataEnd ||CORRUPT_DB);
5148 amt = pCur->info.nLocal;
5149 if( amt>(int)(pCur->pPage->aDataEnd - pCur->info.pPayload) ){
5150 /* There is too little space on the page for the expected amount
5151 ** of local content. Database must be corrupt. */
5152 assert( CORRUPT_DB );
5153 amt = MAX(0, (int)(pCur->pPage->aDataEnd - pCur->info.pPayload));
5155 *pAmt = (u32)amt;
5156 return (void*)pCur->info.pPayload;
5161 ** For the entry that cursor pCur is point to, return as
5162 ** many bytes of the key or data as are available on the local
5163 ** b-tree page. Write the number of available bytes into *pAmt.
5165 ** The pointer returned is ephemeral. The key/data may move
5166 ** or be destroyed on the next call to any Btree routine,
5167 ** including calls from other threads against the same cache.
5168 ** Hence, a mutex on the BtShared should be held prior to calling
5169 ** this routine.
5171 ** These routines is used to get quick access to key and data
5172 ** in the common case where no overflow pages are used.
5174 const void *sqlite3BtreePayloadFetch(BtCursor *pCur, u32 *pAmt){
5175 return fetchPayload(pCur, pAmt);
5180 ** Move the cursor down to a new child page. The newPgno argument is the
5181 ** page number of the child page to move to.
5183 ** This function returns SQLITE_CORRUPT if the page-header flags field of
5184 ** the new child page does not match the flags field of the parent (i.e.
5185 ** if an intkey page appears to be the parent of a non-intkey page, or
5186 ** vice-versa).
5188 static int moveToChild(BtCursor *pCur, u32 newPgno){
5189 BtShared *pBt = pCur->pBt;
5191 assert( cursorOwnsBtShared(pCur) );
5192 assert( pCur->eState==CURSOR_VALID );
5193 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
5194 assert( pCur->iPage>=0 );
5195 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
5196 return SQLITE_CORRUPT_BKPT;
5198 pCur->info.nSize = 0;
5199 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
5200 pCur->aiIdx[pCur->iPage] = pCur->ix;
5201 pCur->apPage[pCur->iPage] = pCur->pPage;
5202 pCur->ix = 0;
5203 pCur->iPage++;
5204 return getAndInitPage(pBt, newPgno, &pCur->pPage, pCur, pCur->curPagerFlags);
5207 #ifdef SQLITE_DEBUG
5209 ** Page pParent is an internal (non-leaf) tree page. This function
5210 ** asserts that page number iChild is the left-child if the iIdx'th
5211 ** cell in page pParent. Or, if iIdx is equal to the total number of
5212 ** cells in pParent, that page number iChild is the right-child of
5213 ** the page.
5215 static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
5216 if( CORRUPT_DB ) return; /* The conditions tested below might not be true
5217 ** in a corrupt database */
5218 assert( iIdx<=pParent->nCell );
5219 if( iIdx==pParent->nCell ){
5220 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
5221 }else{
5222 assert( get4byte(findCell(pParent, iIdx))==iChild );
5225 #else
5226 # define assertParentIndex(x,y,z)
5227 #endif
5230 ** Move the cursor up to the parent page.
5232 ** pCur->idx is set to the cell index that contains the pointer
5233 ** to the page we are coming from. If we are coming from the
5234 ** right-most child page then pCur->idx is set to one more than
5235 ** the largest cell index.
5237 static void moveToParent(BtCursor *pCur){
5238 MemPage *pLeaf;
5239 assert( cursorOwnsBtShared(pCur) );
5240 assert( pCur->eState==CURSOR_VALID );
5241 assert( pCur->iPage>0 );
5242 assert( pCur->pPage );
5243 assertParentIndex(
5244 pCur->apPage[pCur->iPage-1],
5245 pCur->aiIdx[pCur->iPage-1],
5246 pCur->pPage->pgno
5248 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
5249 pCur->info.nSize = 0;
5250 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
5251 pCur->ix = pCur->aiIdx[pCur->iPage-1];
5252 pLeaf = pCur->pPage;
5253 pCur->pPage = pCur->apPage[--pCur->iPage];
5254 releasePageNotNull(pLeaf);
5258 ** Move the cursor to point to the root page of its b-tree structure.
5260 ** If the table has a virtual root page, then the cursor is moved to point
5261 ** to the virtual root page instead of the actual root page. A table has a
5262 ** virtual root page when the actual root page contains no cells and a
5263 ** single child page. This can only happen with the table rooted at page 1.
5265 ** If the b-tree structure is empty, the cursor state is set to
5266 ** CURSOR_INVALID and this routine returns SQLITE_EMPTY. Otherwise,
5267 ** the cursor is set to point to the first cell located on the root
5268 ** (or virtual root) page and the cursor state is set to CURSOR_VALID.
5270 ** If this function returns successfully, it may be assumed that the
5271 ** page-header flags indicate that the [virtual] root-page is the expected
5272 ** kind of b-tree page (i.e. if when opening the cursor the caller did not
5273 ** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
5274 ** indicating a table b-tree, or if the caller did specify a KeyInfo
5275 ** structure the flags byte is set to 0x02 or 0x0A, indicating an index
5276 ** b-tree).
5278 static int moveToRoot(BtCursor *pCur){
5279 MemPage *pRoot;
5280 int rc = SQLITE_OK;
5282 assert( cursorOwnsBtShared(pCur) );
5283 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
5284 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
5285 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
5286 assert( pCur->eState < CURSOR_REQUIRESEEK || pCur->iPage<0 );
5287 assert( pCur->pgnoRoot>0 || pCur->iPage<0 );
5289 if( pCur->iPage>=0 ){
5290 if( pCur->iPage ){
5291 releasePageNotNull(pCur->pPage);
5292 while( --pCur->iPage ){
5293 releasePageNotNull(pCur->apPage[pCur->iPage]);
5295 pRoot = pCur->pPage = pCur->apPage[0];
5296 goto skip_init;
5298 }else if( pCur->pgnoRoot==0 ){
5299 pCur->eState = CURSOR_INVALID;
5300 return SQLITE_EMPTY;
5301 }else{
5302 assert( pCur->iPage==(-1) );
5303 if( pCur->eState>=CURSOR_REQUIRESEEK ){
5304 if( pCur->eState==CURSOR_FAULT ){
5305 assert( pCur->skipNext!=SQLITE_OK );
5306 return pCur->skipNext;
5308 sqlite3BtreeClearCursor(pCur);
5310 rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->pPage,
5311 0, pCur->curPagerFlags);
5312 if( rc!=SQLITE_OK ){
5313 pCur->eState = CURSOR_INVALID;
5314 return rc;
5316 pCur->iPage = 0;
5317 pCur->curIntKey = pCur->pPage->intKey;
5319 pRoot = pCur->pPage;
5320 assert( pRoot->pgno==pCur->pgnoRoot || CORRUPT_DB );
5322 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
5323 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
5324 ** NULL, the caller expects a table b-tree. If this is not the case,
5325 ** return an SQLITE_CORRUPT error.
5327 ** Earlier versions of SQLite assumed that this test could not fail
5328 ** if the root page was already loaded when this function was called (i.e.
5329 ** if pCur->iPage>=0). But this is not so if the database is corrupted
5330 ** in such a way that page pRoot is linked into a second b-tree table
5331 ** (or the freelist). */
5332 assert( pRoot->intKey==1 || pRoot->intKey==0 );
5333 if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
5334 return SQLITE_CORRUPT_PAGE(pCur->pPage);
5337 skip_init:
5338 pCur->ix = 0;
5339 pCur->info.nSize = 0;
5340 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);
5342 if( pRoot->nCell>0 ){
5343 pCur->eState = CURSOR_VALID;
5344 }else if( !pRoot->leaf ){
5345 Pgno subpage;
5346 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
5347 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
5348 pCur->eState = CURSOR_VALID;
5349 rc = moveToChild(pCur, subpage);
5350 }else{
5351 pCur->eState = CURSOR_INVALID;
5352 rc = SQLITE_EMPTY;
5354 return rc;
5358 ** Move the cursor down to the left-most leaf entry beneath the
5359 ** entry to which it is currently pointing.
5361 ** The left-most leaf is the one with the smallest key - the first
5362 ** in ascending order.
5364 static int moveToLeftmost(BtCursor *pCur){
5365 Pgno pgno;
5366 int rc = SQLITE_OK;
5367 MemPage *pPage;
5369 assert( cursorOwnsBtShared(pCur) );
5370 assert( pCur->eState==CURSOR_VALID );
5371 while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){
5372 assert( pCur->ix<pPage->nCell );
5373 pgno = get4byte(findCell(pPage, pCur->ix));
5374 rc = moveToChild(pCur, pgno);
5376 return rc;
5380 ** Move the cursor down to the right-most leaf entry beneath the
5381 ** page to which it is currently pointing. Notice the difference
5382 ** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
5383 ** finds the left-most entry beneath the *entry* whereas moveToRightmost()
5384 ** finds the right-most entry beneath the *page*.
5386 ** The right-most entry is the one with the largest key - the last
5387 ** key in ascending order.
5389 static int moveToRightmost(BtCursor *pCur){
5390 Pgno pgno;
5391 int rc = SQLITE_OK;
5392 MemPage *pPage = 0;
5394 assert( cursorOwnsBtShared(pCur) );
5395 assert( pCur->eState==CURSOR_VALID );
5396 while( !(pPage = pCur->pPage)->leaf ){
5397 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5398 pCur->ix = pPage->nCell;
5399 rc = moveToChild(pCur, pgno);
5400 if( rc ) return rc;
5402 pCur->ix = pPage->nCell-1;
5403 assert( pCur->info.nSize==0 );
5404 assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
5405 return SQLITE_OK;
5408 /* Move the cursor to the first entry in the table. Return SQLITE_OK
5409 ** on success. Set *pRes to 0 if the cursor actually points to something
5410 ** or set *pRes to 1 if the table is empty.
5412 int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
5413 int rc;
5415 assert( cursorOwnsBtShared(pCur) );
5416 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5417 rc = moveToRoot(pCur);
5418 if( rc==SQLITE_OK ){
5419 assert( pCur->pPage->nCell>0 );
5420 *pRes = 0;
5421 rc = moveToLeftmost(pCur);
5422 }else if( rc==SQLITE_EMPTY ){
5423 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
5424 *pRes = 1;
5425 rc = SQLITE_OK;
5427 return rc;
5430 /* Move the cursor to the last entry in the table. Return SQLITE_OK
5431 ** on success. Set *pRes to 0 if the cursor actually points to something
5432 ** or set *pRes to 1 if the table is empty.
5434 int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
5435 int rc;
5437 assert( cursorOwnsBtShared(pCur) );
5438 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5440 /* If the cursor already points to the last entry, this is a no-op. */
5441 if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
5442 #ifdef SQLITE_DEBUG
5443 /* This block serves to assert() that the cursor really does point
5444 ** to the last entry in the b-tree. */
5445 int ii;
5446 for(ii=0; ii<pCur->iPage; ii++){
5447 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
5449 assert( pCur->ix==pCur->pPage->nCell-1 || CORRUPT_DB );
5450 testcase( pCur->ix!=pCur->pPage->nCell-1 );
5451 /* ^-- dbsqlfuzz b92b72e4de80b5140c30ab71372ca719b8feb618 */
5452 assert( pCur->pPage->leaf );
5453 #endif
5454 *pRes = 0;
5455 return SQLITE_OK;
5458 rc = moveToRoot(pCur);
5459 if( rc==SQLITE_OK ){
5460 assert( pCur->eState==CURSOR_VALID );
5461 *pRes = 0;
5462 rc = moveToRightmost(pCur);
5463 if( rc==SQLITE_OK ){
5464 pCur->curFlags |= BTCF_AtLast;
5465 }else{
5466 pCur->curFlags &= ~BTCF_AtLast;
5468 }else if( rc==SQLITE_EMPTY ){
5469 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
5470 *pRes = 1;
5471 rc = SQLITE_OK;
5473 return rc;
5476 /* Move the cursor so that it points to an entry in a table (a.k.a INTKEY)
5477 ** table near the key intKey. Return a success code.
5479 ** If an exact match is not found, then the cursor is always
5480 ** left pointing at a leaf page which would hold the entry if it
5481 ** were present. The cursor might point to an entry that comes
5482 ** before or after the key.
5484 ** An integer is written into *pRes which is the result of
5485 ** comparing the key with the entry to which the cursor is
5486 ** pointing. The meaning of the integer written into
5487 ** *pRes is as follows:
5489 ** *pRes<0 The cursor is left pointing at an entry that
5490 ** is smaller than intKey or if the table is empty
5491 ** and the cursor is therefore left point to nothing.
5493 ** *pRes==0 The cursor is left pointing at an entry that
5494 ** exactly matches intKey.
5496 ** *pRes>0 The cursor is left pointing at an entry that
5497 ** is larger than intKey.
5499 int sqlite3BtreeTableMoveto(
5500 BtCursor *pCur, /* The cursor to be moved */
5501 i64 intKey, /* The table key */
5502 int biasRight, /* If true, bias the search to the high end */
5503 int *pRes /* Write search results here */
5505 int rc;
5507 assert( cursorOwnsBtShared(pCur) );
5508 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5509 assert( pRes );
5510 assert( pCur->pKeyInfo==0 );
5511 assert( pCur->eState!=CURSOR_VALID || pCur->curIntKey!=0 );
5513 /* If the cursor is already positioned at the point we are trying
5514 ** to move to, then just return without doing any work */
5515 if( pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0 ){
5516 if( pCur->info.nKey==intKey ){
5517 *pRes = 0;
5518 return SQLITE_OK;
5520 if( pCur->info.nKey<intKey ){
5521 if( (pCur->curFlags & BTCF_AtLast)!=0 ){
5522 *pRes = -1;
5523 return SQLITE_OK;
5525 /* If the requested key is one more than the previous key, then
5526 ** try to get there using sqlite3BtreeNext() rather than a full
5527 ** binary search. This is an optimization only. The correct answer
5528 ** is still obtained without this case, only a little more slowely */
5529 if( pCur->info.nKey+1==intKey ){
5530 *pRes = 0;
5531 rc = sqlite3BtreeNext(pCur, 0);
5532 if( rc==SQLITE_OK ){
5533 getCellInfo(pCur);
5534 if( pCur->info.nKey==intKey ){
5535 return SQLITE_OK;
5537 }else if( rc!=SQLITE_DONE ){
5538 return rc;
5544 #ifdef SQLITE_DEBUG
5545 pCur->pBtree->nSeek++; /* Performance measurement during testing */
5546 #endif
5548 rc = moveToRoot(pCur);
5549 if( rc ){
5550 if( rc==SQLITE_EMPTY ){
5551 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
5552 *pRes = -1;
5553 return SQLITE_OK;
5555 return rc;
5557 assert( pCur->pPage );
5558 assert( pCur->pPage->isInit );
5559 assert( pCur->eState==CURSOR_VALID );
5560 assert( pCur->pPage->nCell > 0 );
5561 assert( pCur->iPage==0 || pCur->apPage[0]->intKey==pCur->curIntKey );
5562 assert( pCur->curIntKey );
5564 for(;;){
5565 int lwr, upr, idx, c;
5566 Pgno chldPg;
5567 MemPage *pPage = pCur->pPage;
5568 u8 *pCell; /* Pointer to current cell in pPage */
5570 /* pPage->nCell must be greater than zero. If this is the root-page
5571 ** the cursor would have been INVALID above and this for(;;) loop
5572 ** not run. If this is not the root-page, then the moveToChild() routine
5573 ** would have already detected db corruption. Similarly, pPage must
5574 ** be the right kind (index or table) of b-tree page. Otherwise
5575 ** a moveToChild() or moveToRoot() call would have detected corruption. */
5576 assert( pPage->nCell>0 );
5577 assert( pPage->intKey );
5578 lwr = 0;
5579 upr = pPage->nCell-1;
5580 assert( biasRight==0 || biasRight==1 );
5581 idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
5582 for(;;){
5583 i64 nCellKey;
5584 pCell = findCellPastPtr(pPage, idx);
5585 if( pPage->intKeyLeaf ){
5586 while( 0x80 <= *(pCell++) ){
5587 if( pCell>=pPage->aDataEnd ){
5588 return SQLITE_CORRUPT_PAGE(pPage);
5592 getVarint(pCell, (u64*)&nCellKey);
5593 if( nCellKey<intKey ){
5594 lwr = idx+1;
5595 if( lwr>upr ){ c = -1; break; }
5596 }else if( nCellKey>intKey ){
5597 upr = idx-1;
5598 if( lwr>upr ){ c = +1; break; }
5599 }else{
5600 assert( nCellKey==intKey );
5601 pCur->ix = (u16)idx;
5602 if( !pPage->leaf ){
5603 lwr = idx;
5604 goto moveto_table_next_layer;
5605 }else{
5606 pCur->curFlags |= BTCF_ValidNKey;
5607 pCur->info.nKey = nCellKey;
5608 pCur->info.nSize = 0;
5609 *pRes = 0;
5610 return SQLITE_OK;
5613 assert( lwr+upr>=0 );
5614 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */
5616 assert( lwr==upr+1 || !pPage->leaf );
5617 assert( pPage->isInit );
5618 if( pPage->leaf ){
5619 assert( pCur->ix<pCur->pPage->nCell );
5620 pCur->ix = (u16)idx;
5621 *pRes = c;
5622 rc = SQLITE_OK;
5623 goto moveto_table_finish;
5625 moveto_table_next_layer:
5626 if( lwr>=pPage->nCell ){
5627 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5628 }else{
5629 chldPg = get4byte(findCell(pPage, lwr));
5631 pCur->ix = (u16)lwr;
5632 rc = moveToChild(pCur, chldPg);
5633 if( rc ) break;
5635 moveto_table_finish:
5636 pCur->info.nSize = 0;
5637 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
5638 return rc;
5641 /* Move the cursor so that it points to an entry in an index table
5642 ** near the key pIdxKey. Return a success code.
5644 ** If an exact match is not found, then the cursor is always
5645 ** left pointing at a leaf page which would hold the entry if it
5646 ** were present. The cursor might point to an entry that comes
5647 ** before or after the key.
5649 ** An integer is written into *pRes which is the result of
5650 ** comparing the key with the entry to which the cursor is
5651 ** pointing. The meaning of the integer written into
5652 ** *pRes is as follows:
5654 ** *pRes<0 The cursor is left pointing at an entry that
5655 ** is smaller than pIdxKey or if the table is empty
5656 ** and the cursor is therefore left point to nothing.
5658 ** *pRes==0 The cursor is left pointing at an entry that
5659 ** exactly matches pIdxKey.
5661 ** *pRes>0 The cursor is left pointing at an entry that
5662 ** is larger than pIdxKey.
5664 ** The pIdxKey->eqSeen field is set to 1 if there
5665 ** exists an entry in the table that exactly matches pIdxKey.
5667 int sqlite3BtreeIndexMoveto(
5668 BtCursor *pCur, /* The cursor to be moved */
5669 UnpackedRecord *pIdxKey, /* Unpacked index key */
5670 int *pRes /* Write search results here */
5672 int rc;
5673 RecordCompare xRecordCompare;
5675 assert( cursorOwnsBtShared(pCur) );
5676 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5677 assert( pRes );
5678 assert( pCur->pKeyInfo!=0 );
5680 #ifdef SQLITE_DEBUG
5681 pCur->pBtree->nSeek++; /* Performance measurement during testing */
5682 #endif
5684 xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
5685 pIdxKey->errCode = 0;
5686 assert( pIdxKey->default_rc==1
5687 || pIdxKey->default_rc==0
5688 || pIdxKey->default_rc==-1
5691 rc = moveToRoot(pCur);
5692 if( rc ){
5693 if( rc==SQLITE_EMPTY ){
5694 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
5695 *pRes = -1;
5696 return SQLITE_OK;
5698 return rc;
5700 assert( pCur->pPage );
5701 assert( pCur->pPage->isInit );
5702 assert( pCur->eState==CURSOR_VALID );
5703 assert( pCur->pPage->nCell > 0 );
5704 assert( pCur->iPage==0 || pCur->apPage[0]->intKey==pCur->curIntKey );
5705 assert( pCur->curIntKey || pIdxKey );
5706 for(;;){
5707 int lwr, upr, idx, c;
5708 Pgno chldPg;
5709 MemPage *pPage = pCur->pPage;
5710 u8 *pCell; /* Pointer to current cell in pPage */
5712 /* pPage->nCell must be greater than zero. If this is the root-page
5713 ** the cursor would have been INVALID above and this for(;;) loop
5714 ** not run. If this is not the root-page, then the moveToChild() routine
5715 ** would have already detected db corruption. Similarly, pPage must
5716 ** be the right kind (index or table) of b-tree page. Otherwise
5717 ** a moveToChild() or moveToRoot() call would have detected corruption. */
5718 assert( pPage->nCell>0 );
5719 assert( pPage->intKey==(pIdxKey==0) );
5720 lwr = 0;
5721 upr = pPage->nCell-1;
5722 idx = upr>>1; /* idx = (lwr+upr)/2; */
5723 for(;;){
5724 int nCell; /* Size of the pCell cell in bytes */
5725 pCell = findCellPastPtr(pPage, idx);
5727 /* The maximum supported page-size is 65536 bytes. This means that
5728 ** the maximum number of record bytes stored on an index B-Tree
5729 ** page is less than 16384 bytes and may be stored as a 2-byte
5730 ** varint. This information is used to attempt to avoid parsing
5731 ** the entire cell by checking for the cases where the record is
5732 ** stored entirely within the b-tree page by inspecting the first
5733 ** 2 bytes of the cell.
5735 nCell = pCell[0];
5736 if( nCell<=pPage->max1bytePayload ){
5737 /* This branch runs if the record-size field of the cell is a
5738 ** single byte varint and the record fits entirely on the main
5739 ** b-tree page. */
5740 testcase( pCell+nCell+1==pPage->aDataEnd );
5741 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
5742 }else if( !(pCell[1] & 0x80)
5743 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
5745 /* The record-size field is a 2 byte varint and the record
5746 ** fits entirely on the main b-tree page. */
5747 testcase( pCell+nCell+2==pPage->aDataEnd );
5748 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
5749 }else{
5750 /* The record flows over onto one or more overflow pages. In
5751 ** this case the whole cell needs to be parsed, a buffer allocated
5752 ** and accessPayload() used to retrieve the record into the
5753 ** buffer before VdbeRecordCompare() can be called.
5755 ** If the record is corrupt, the xRecordCompare routine may read
5756 ** up to two varints past the end of the buffer. An extra 18
5757 ** bytes of padding is allocated at the end of the buffer in
5758 ** case this happens. */
5759 void *pCellKey;
5760 u8 * const pCellBody = pCell - pPage->childPtrSize;
5761 const int nOverrun = 18; /* Size of the overrun padding */
5762 pPage->xParseCell(pPage, pCellBody, &pCur->info);
5763 nCell = (int)pCur->info.nKey;
5764 testcase( nCell<0 ); /* True if key size is 2^32 or more */
5765 testcase( nCell==0 ); /* Invalid key size: 0x80 0x80 0x00 */
5766 testcase( nCell==1 ); /* Invalid key size: 0x80 0x80 0x01 */
5767 testcase( nCell==2 ); /* Minimum legal index key size */
5768 if( nCell<2 || nCell/pCur->pBt->usableSize>pCur->pBt->nPage ){
5769 rc = SQLITE_CORRUPT_PAGE(pPage);
5770 goto moveto_index_finish;
5772 pCellKey = sqlite3Malloc( nCell+nOverrun );
5773 if( pCellKey==0 ){
5774 rc = SQLITE_NOMEM_BKPT;
5775 goto moveto_index_finish;
5777 pCur->ix = (u16)idx;
5778 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
5779 memset(((u8*)pCellKey)+nCell,0,nOverrun); /* Fix uninit warnings */
5780 pCur->curFlags &= ~BTCF_ValidOvfl;
5781 if( rc ){
5782 sqlite3_free(pCellKey);
5783 goto moveto_index_finish;
5785 c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey);
5786 sqlite3_free(pCellKey);
5788 assert(
5789 (pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
5790 && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
5792 if( c<0 ){
5793 lwr = idx+1;
5794 }else if( c>0 ){
5795 upr = idx-1;
5796 }else{
5797 assert( c==0 );
5798 *pRes = 0;
5799 rc = SQLITE_OK;
5800 pCur->ix = (u16)idx;
5801 if( pIdxKey->errCode ) rc = SQLITE_CORRUPT_BKPT;
5802 goto moveto_index_finish;
5804 if( lwr>upr ) break;
5805 assert( lwr+upr>=0 );
5806 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */
5808 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
5809 assert( pPage->isInit );
5810 if( pPage->leaf ){
5811 assert( pCur->ix<pCur->pPage->nCell );
5812 pCur->ix = (u16)idx;
5813 *pRes = c;
5814 rc = SQLITE_OK;
5815 goto moveto_index_finish;
5817 if( lwr>=pPage->nCell ){
5818 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5819 }else{
5820 chldPg = get4byte(findCell(pPage, lwr));
5822 pCur->ix = (u16)lwr;
5823 rc = moveToChild(pCur, chldPg);
5824 if( rc ) break;
5826 moveto_index_finish:
5827 pCur->info.nSize = 0;
5828 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
5829 return rc;
5834 ** Return TRUE if the cursor is not pointing at an entry of the table.
5836 ** TRUE will be returned after a call to sqlite3BtreeNext() moves
5837 ** past the last entry in the table or sqlite3BtreePrev() moves past
5838 ** the first entry. TRUE is also returned if the table is empty.
5840 int sqlite3BtreeEof(BtCursor *pCur){
5841 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
5842 ** have been deleted? This API will need to change to return an error code
5843 ** as well as the boolean result value.
5845 return (CURSOR_VALID!=pCur->eState);
5849 ** Return an estimate for the number of rows in the table that pCur is
5850 ** pointing to. Return a negative number if no estimate is currently
5851 ** available.
5853 i64 sqlite3BtreeRowCountEst(BtCursor *pCur){
5854 i64 n;
5855 u8 i;
5857 assert( cursorOwnsBtShared(pCur) );
5858 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5860 /* Currently this interface is only called by the OP_IfSmaller
5861 ** opcode, and it that case the cursor will always be valid and
5862 ** will always point to a leaf node. */
5863 if( NEVER(pCur->eState!=CURSOR_VALID) ) return -1;
5864 if( NEVER(pCur->pPage->leaf==0) ) return -1;
5866 n = pCur->pPage->nCell;
5867 for(i=0; i<pCur->iPage; i++){
5868 n *= pCur->apPage[i]->nCell;
5870 return n;
5874 ** Advance the cursor to the next entry in the database.
5875 ** Return value:
5877 ** SQLITE_OK success
5878 ** SQLITE_DONE cursor is already pointing at the last element
5879 ** otherwise some kind of error occurred
5881 ** The main entry point is sqlite3BtreeNext(). That routine is optimized
5882 ** for the common case of merely incrementing the cell counter BtCursor.aiIdx
5883 ** to the next cell on the current page. The (slower) btreeNext() helper
5884 ** routine is called when it is necessary to move to a different page or
5885 ** to restore the cursor.
5887 ** If bit 0x01 of the F argument in sqlite3BtreeNext(C,F) is 1, then the
5888 ** cursor corresponds to an SQL index and this routine could have been
5889 ** skipped if the SQL index had been a unique index. The F argument
5890 ** is a hint to the implement. SQLite btree implementation does not use
5891 ** this hint, but COMDB2 does.
5893 static SQLITE_NOINLINE int btreeNext(BtCursor *pCur){
5894 int rc;
5895 int idx;
5896 MemPage *pPage;
5898 assert( cursorOwnsBtShared(pCur) );
5899 if( pCur->eState!=CURSOR_VALID ){
5900 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
5901 rc = restoreCursorPosition(pCur);
5902 if( rc!=SQLITE_OK ){
5903 return rc;
5905 if( CURSOR_INVALID==pCur->eState ){
5906 return SQLITE_DONE;
5908 if( pCur->eState==CURSOR_SKIPNEXT ){
5909 pCur->eState = CURSOR_VALID;
5910 if( pCur->skipNext>0 ) return SQLITE_OK;
5914 pPage = pCur->pPage;
5915 idx = ++pCur->ix;
5916 if( !pPage->isInit || sqlite3FaultSim(412) ){
5917 /* The only known way for this to happen is for there to be a
5918 ** recursive SQL function that does a DELETE operation as part of a
5919 ** SELECT which deletes content out from under an active cursor
5920 ** in a corrupt database file where the table being DELETE-ed from
5921 ** has pages in common with the table being queried. See TH3
5922 ** module cov1/btree78.test testcase 220 (2018-06-08) for an
5923 ** example. */
5924 return SQLITE_CORRUPT_BKPT;
5927 if( idx>=pPage->nCell ){
5928 if( !pPage->leaf ){
5929 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
5930 if( rc ) return rc;
5931 return moveToLeftmost(pCur);
5934 if( pCur->iPage==0 ){
5935 pCur->eState = CURSOR_INVALID;
5936 return SQLITE_DONE;
5938 moveToParent(pCur);
5939 pPage = pCur->pPage;
5940 }while( pCur->ix>=pPage->nCell );
5941 if( pPage->intKey ){
5942 return sqlite3BtreeNext(pCur, 0);
5943 }else{
5944 return SQLITE_OK;
5947 if( pPage->leaf ){
5948 return SQLITE_OK;
5949 }else{
5950 return moveToLeftmost(pCur);
5953 int sqlite3BtreeNext(BtCursor *pCur, int flags){
5954 MemPage *pPage;
5955 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */
5956 assert( cursorOwnsBtShared(pCur) );
5957 assert( flags==0 || flags==1 );
5958 pCur->info.nSize = 0;
5959 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
5960 if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur);
5961 pPage = pCur->pPage;
5962 if( (++pCur->ix)>=pPage->nCell ){
5963 pCur->ix--;
5964 return btreeNext(pCur);
5966 if( pPage->leaf ){
5967 return SQLITE_OK;
5968 }else{
5969 return moveToLeftmost(pCur);
5974 ** Step the cursor to the back to the previous entry in the database.
5975 ** Return values:
5977 ** SQLITE_OK success
5978 ** SQLITE_DONE the cursor is already on the first element of the table
5979 ** otherwise some kind of error occurred
5981 ** The main entry point is sqlite3BtreePrevious(). That routine is optimized
5982 ** for the common case of merely decrementing the cell counter BtCursor.aiIdx
5983 ** to the previous cell on the current page. The (slower) btreePrevious()
5984 ** helper routine is called when it is necessary to move to a different page
5985 ** or to restore the cursor.
5987 ** If bit 0x01 of the F argument to sqlite3BtreePrevious(C,F) is 1, then
5988 ** the cursor corresponds to an SQL index and this routine could have been
5989 ** skipped if the SQL index had been a unique index. The F argument is a
5990 ** hint to the implement. The native SQLite btree implementation does not
5991 ** use this hint, but COMDB2 does.
5993 static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur){
5994 int rc;
5995 MemPage *pPage;
5997 assert( cursorOwnsBtShared(pCur) );
5998 assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
5999 assert( pCur->info.nSize==0 );
6000 if( pCur->eState!=CURSOR_VALID ){
6001 rc = restoreCursorPosition(pCur);
6002 if( rc!=SQLITE_OK ){
6003 return rc;
6005 if( CURSOR_INVALID==pCur->eState ){
6006 return SQLITE_DONE;
6008 if( CURSOR_SKIPNEXT==pCur->eState ){
6009 pCur->eState = CURSOR_VALID;
6010 if( pCur->skipNext<0 ) return SQLITE_OK;
6014 pPage = pCur->pPage;
6015 assert( pPage->isInit );
6016 if( !pPage->leaf ){
6017 int idx = pCur->ix;
6018 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
6019 if( rc ) return rc;
6020 rc = moveToRightmost(pCur);
6021 }else{
6022 while( pCur->ix==0 ){
6023 if( pCur->iPage==0 ){
6024 pCur->eState = CURSOR_INVALID;
6025 return SQLITE_DONE;
6027 moveToParent(pCur);
6029 assert( pCur->info.nSize==0 );
6030 assert( (pCur->curFlags & (BTCF_ValidOvfl))==0 );
6032 pCur->ix--;
6033 pPage = pCur->pPage;
6034 if( pPage->intKey && !pPage->leaf ){
6035 rc = sqlite3BtreePrevious(pCur, 0);
6036 }else{
6037 rc = SQLITE_OK;
6040 return rc;
6042 int sqlite3BtreePrevious(BtCursor *pCur, int flags){
6043 assert( cursorOwnsBtShared(pCur) );
6044 assert( flags==0 || flags==1 );
6045 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */
6046 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
6047 pCur->info.nSize = 0;
6048 if( pCur->eState!=CURSOR_VALID
6049 || pCur->ix==0
6050 || pCur->pPage->leaf==0
6052 return btreePrevious(pCur);
6054 pCur->ix--;
6055 return SQLITE_OK;
6059 ** Allocate a new page from the database file.
6061 ** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
6062 ** has already been called on the new page.) The new page has also
6063 ** been referenced and the calling routine is responsible for calling
6064 ** sqlite3PagerUnref() on the new page when it is done.
6066 ** SQLITE_OK is returned on success. Any other return value indicates
6067 ** an error. *ppPage is set to NULL in the event of an error.
6069 ** If the "nearby" parameter is not 0, then an effort is made to
6070 ** locate a page close to the page number "nearby". This can be used in an
6071 ** attempt to keep related pages close to each other in the database file,
6072 ** which in turn can make database access faster.
6074 ** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
6075 ** anywhere on the free-list, then it is guaranteed to be returned. If
6076 ** eMode is BTALLOC_LT then the page returned will be less than or equal
6077 ** to nearby if any such page exists. If eMode is BTALLOC_ANY then there
6078 ** are no restrictions on which page is returned.
6080 static int allocateBtreePage(
6081 BtShared *pBt, /* The btree */
6082 MemPage **ppPage, /* Store pointer to the allocated page here */
6083 Pgno *pPgno, /* Store the page number here */
6084 Pgno nearby, /* Search for a page near this one */
6085 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
6087 MemPage *pPage1;
6088 int rc;
6089 u32 n; /* Number of pages on the freelist */
6090 u32 k; /* Number of leaves on the trunk of the freelist */
6091 MemPage *pTrunk = 0;
6092 MemPage *pPrevTrunk = 0;
6093 Pgno mxPage; /* Total size of the database file */
6095 assert( sqlite3_mutex_held(pBt->mutex) );
6096 assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
6097 pPage1 = pBt->pPage1;
6098 mxPage = btreePagecount(pBt);
6099 /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36
6100 ** stores stores the total number of pages on the freelist. */
6101 n = get4byte(&pPage1->aData[36]);
6102 testcase( n==mxPage-1 );
6103 if( n>=mxPage ){
6104 return SQLITE_CORRUPT_BKPT;
6106 if( n>0 ){
6107 /* There are pages on the freelist. Reuse one of those pages. */
6108 Pgno iTrunk;
6109 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
6110 u32 nSearch = 0; /* Count of the number of search attempts */
6112 /* If eMode==BTALLOC_EXACT and a query of the pointer-map
6113 ** shows that the page 'nearby' is somewhere on the free-list, then
6114 ** the entire-list will be searched for that page.
6116 #ifndef SQLITE_OMIT_AUTOVACUUM
6117 if( eMode==BTALLOC_EXACT ){
6118 if( nearby<=mxPage ){
6119 u8 eType;
6120 assert( nearby>0 );
6121 assert( pBt->autoVacuum );
6122 rc = ptrmapGet(pBt, nearby, &eType, 0);
6123 if( rc ) return rc;
6124 if( eType==PTRMAP_FREEPAGE ){
6125 searchList = 1;
6128 }else if( eMode==BTALLOC_LE ){
6129 searchList = 1;
6131 #endif
6133 /* Decrement the free-list count by 1. Set iTrunk to the index of the
6134 ** first free-list trunk page. iPrevTrunk is initially 1.
6136 rc = sqlite3PagerWrite(pPage1->pDbPage);
6137 if( rc ) return rc;
6138 put4byte(&pPage1->aData[36], n-1);
6140 /* The code within this loop is run only once if the 'searchList' variable
6141 ** is not true. Otherwise, it runs once for each trunk-page on the
6142 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
6143 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
6145 do {
6146 pPrevTrunk = pTrunk;
6147 if( pPrevTrunk ){
6148 /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
6149 ** is the page number of the next freelist trunk page in the list or
6150 ** zero if this is the last freelist trunk page. */
6151 iTrunk = get4byte(&pPrevTrunk->aData[0]);
6152 }else{
6153 /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
6154 ** stores the page number of the first page of the freelist, or zero if
6155 ** the freelist is empty. */
6156 iTrunk = get4byte(&pPage1->aData[32]);
6158 testcase( iTrunk==mxPage );
6159 if( iTrunk>mxPage || nSearch++ > n ){
6160 rc = SQLITE_CORRUPT_PGNO(pPrevTrunk ? pPrevTrunk->pgno : 1);
6161 }else{
6162 rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0);
6164 if( rc ){
6165 pTrunk = 0;
6166 goto end_allocate_page;
6168 assert( pTrunk!=0 );
6169 assert( pTrunk->aData!=0 );
6170 /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
6171 ** is the number of leaf page pointers to follow. */
6172 k = get4byte(&pTrunk->aData[4]);
6173 if( k==0 && !searchList ){
6174 /* The trunk has no leaves and the list is not being searched.
6175 ** So extract the trunk page itself and use it as the newly
6176 ** allocated page */
6177 assert( pPrevTrunk==0 );
6178 rc = sqlite3PagerWrite(pTrunk->pDbPage);
6179 if( rc ){
6180 goto end_allocate_page;
6182 *pPgno = iTrunk;
6183 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
6184 *ppPage = pTrunk;
6185 pTrunk = 0;
6186 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
6187 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
6188 /* Value of k is out of range. Database corruption */
6189 rc = SQLITE_CORRUPT_PGNO(iTrunk);
6190 goto end_allocate_page;
6191 #ifndef SQLITE_OMIT_AUTOVACUUM
6192 }else if( searchList
6193 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
6195 /* The list is being searched and this trunk page is the page
6196 ** to allocate, regardless of whether it has leaves.
6198 *pPgno = iTrunk;
6199 *ppPage = pTrunk;
6200 searchList = 0;
6201 rc = sqlite3PagerWrite(pTrunk->pDbPage);
6202 if( rc ){
6203 goto end_allocate_page;
6205 if( k==0 ){
6206 if( !pPrevTrunk ){
6207 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
6208 }else{
6209 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
6210 if( rc!=SQLITE_OK ){
6211 goto end_allocate_page;
6213 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
6215 }else{
6216 /* The trunk page is required by the caller but it contains
6217 ** pointers to free-list leaves. The first leaf becomes a trunk
6218 ** page in this case.
6220 MemPage *pNewTrunk;
6221 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
6222 if( iNewTrunk>mxPage ){
6223 rc = SQLITE_CORRUPT_PGNO(iTrunk);
6224 goto end_allocate_page;
6226 testcase( iNewTrunk==mxPage );
6227 rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0);
6228 if( rc!=SQLITE_OK ){
6229 goto end_allocate_page;
6231 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
6232 if( rc!=SQLITE_OK ){
6233 releasePage(pNewTrunk);
6234 goto end_allocate_page;
6236 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
6237 put4byte(&pNewTrunk->aData[4], k-1);
6238 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
6239 releasePage(pNewTrunk);
6240 if( !pPrevTrunk ){
6241 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
6242 put4byte(&pPage1->aData[32], iNewTrunk);
6243 }else{
6244 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
6245 if( rc ){
6246 goto end_allocate_page;
6248 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
6251 pTrunk = 0;
6252 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
6253 #endif
6254 }else if( k>0 ){
6255 /* Extract a leaf from the trunk */
6256 u32 closest;
6257 Pgno iPage;
6258 unsigned char *aData = pTrunk->aData;
6259 if( nearby>0 ){
6260 u32 i;
6261 closest = 0;
6262 if( eMode==BTALLOC_LE ){
6263 for(i=0; i<k; i++){
6264 iPage = get4byte(&aData[8+i*4]);
6265 if( iPage<=nearby ){
6266 closest = i;
6267 break;
6270 }else{
6271 int dist;
6272 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
6273 for(i=1; i<k; i++){
6274 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
6275 if( d2<dist ){
6276 closest = i;
6277 dist = d2;
6281 }else{
6282 closest = 0;
6285 iPage = get4byte(&aData[8+closest*4]);
6286 testcase( iPage==mxPage );
6287 if( iPage>mxPage || iPage<2 ){
6288 rc = SQLITE_CORRUPT_PGNO(iTrunk);
6289 goto end_allocate_page;
6291 testcase( iPage==mxPage );
6292 if( !searchList
6293 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
6295 int noContent;
6296 *pPgno = iPage;
6297 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
6298 ": %d more free pages\n",
6299 *pPgno, closest+1, k, pTrunk->pgno, n-1));
6300 rc = sqlite3PagerWrite(pTrunk->pDbPage);
6301 if( rc ) goto end_allocate_page;
6302 if( closest<k-1 ){
6303 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
6305 put4byte(&aData[4], k-1);
6306 noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0;
6307 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent);
6308 if( rc==SQLITE_OK ){
6309 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
6310 if( rc!=SQLITE_OK ){
6311 releasePage(*ppPage);
6312 *ppPage = 0;
6315 searchList = 0;
6318 releasePage(pPrevTrunk);
6319 pPrevTrunk = 0;
6320 }while( searchList );
6321 }else{
6322 /* There are no pages on the freelist, so append a new page to the
6323 ** database image.
6325 ** Normally, new pages allocated by this block can be requested from the
6326 ** pager layer with the 'no-content' flag set. This prevents the pager
6327 ** from trying to read the pages content from disk. However, if the
6328 ** current transaction has already run one or more incremental-vacuum
6329 ** steps, then the page we are about to allocate may contain content
6330 ** that is required in the event of a rollback. In this case, do
6331 ** not set the no-content flag. This causes the pager to load and journal
6332 ** the current page content before overwriting it.
6334 ** Note that the pager will not actually attempt to load or journal
6335 ** content for any page that really does lie past the end of the database
6336 ** file on disk. So the effects of disabling the no-content optimization
6337 ** here are confined to those pages that lie between the end of the
6338 ** database image and the end of the database file.
6340 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0;
6342 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
6343 if( rc ) return rc;
6344 pBt->nPage++;
6345 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
6347 #ifndef SQLITE_OMIT_AUTOVACUUM
6348 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
6349 /* If *pPgno refers to a pointer-map page, allocate two new pages
6350 ** at the end of the file instead of one. The first allocated page
6351 ** becomes a new pointer-map page, the second is used by the caller.
6353 MemPage *pPg = 0;
6354 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
6355 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
6356 rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent);
6357 if( rc==SQLITE_OK ){
6358 rc = sqlite3PagerWrite(pPg->pDbPage);
6359 releasePage(pPg);
6361 if( rc ) return rc;
6362 pBt->nPage++;
6363 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
6365 #endif
6366 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
6367 *pPgno = pBt->nPage;
6369 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
6370 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent);
6371 if( rc ) return rc;
6372 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
6373 if( rc!=SQLITE_OK ){
6374 releasePage(*ppPage);
6375 *ppPage = 0;
6377 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
6380 assert( CORRUPT_DB || *pPgno!=PENDING_BYTE_PAGE(pBt) );
6382 end_allocate_page:
6383 releasePage(pTrunk);
6384 releasePage(pPrevTrunk);
6385 assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 );
6386 assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 );
6387 return rc;
6391 ** This function is used to add page iPage to the database file free-list.
6392 ** It is assumed that the page is not already a part of the free-list.
6394 ** The value passed as the second argument to this function is optional.
6395 ** If the caller happens to have a pointer to the MemPage object
6396 ** corresponding to page iPage handy, it may pass it as the second value.
6397 ** Otherwise, it may pass NULL.
6399 ** If a pointer to a MemPage object is passed as the second argument,
6400 ** its reference count is not altered by this function.
6402 static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
6403 MemPage *pTrunk = 0; /* Free-list trunk page */
6404 Pgno iTrunk = 0; /* Page number of free-list trunk page */
6405 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
6406 MemPage *pPage; /* Page being freed. May be NULL. */
6407 int rc; /* Return Code */
6408 u32 nFree; /* Initial number of pages on free-list */
6410 assert( sqlite3_mutex_held(pBt->mutex) );
6411 assert( CORRUPT_DB || iPage>1 );
6412 assert( !pMemPage || pMemPage->pgno==iPage );
6414 if( iPage<2 || iPage>pBt->nPage ){
6415 return SQLITE_CORRUPT_BKPT;
6417 if( pMemPage ){
6418 pPage = pMemPage;
6419 sqlite3PagerRef(pPage->pDbPage);
6420 }else{
6421 pPage = btreePageLookup(pBt, iPage);
6424 /* Increment the free page count on pPage1 */
6425 rc = sqlite3PagerWrite(pPage1->pDbPage);
6426 if( rc ) goto freepage_out;
6427 nFree = get4byte(&pPage1->aData[36]);
6428 put4byte(&pPage1->aData[36], nFree+1);
6430 if( pBt->btsFlags & BTS_SECURE_DELETE ){
6431 /* If the secure_delete option is enabled, then
6432 ** always fully overwrite deleted information with zeros.
6434 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
6435 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
6437 goto freepage_out;
6439 memset(pPage->aData, 0, pPage->pBt->pageSize);
6442 /* If the database supports auto-vacuum, write an entry in the pointer-map
6443 ** to indicate that the page is free.
6445 if( ISAUTOVACUUM ){
6446 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
6447 if( rc ) goto freepage_out;
6450 /* Now manipulate the actual database free-list structure. There are two
6451 ** possibilities. If the free-list is currently empty, or if the first
6452 ** trunk page in the free-list is full, then this page will become a
6453 ** new free-list trunk page. Otherwise, it will become a leaf of the
6454 ** first trunk page in the current free-list. This block tests if it
6455 ** is possible to add the page as a new free-list leaf.
6457 if( nFree!=0 ){
6458 u32 nLeaf; /* Initial number of leaf cells on trunk page */
6460 iTrunk = get4byte(&pPage1->aData[32]);
6461 if( iTrunk>btreePagecount(pBt) ){
6462 rc = SQLITE_CORRUPT_BKPT;
6463 goto freepage_out;
6465 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
6466 if( rc!=SQLITE_OK ){
6467 goto freepage_out;
6470 nLeaf = get4byte(&pTrunk->aData[4]);
6471 assert( pBt->usableSize>32 );
6472 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
6473 rc = SQLITE_CORRUPT_BKPT;
6474 goto freepage_out;
6476 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
6477 /* In this case there is room on the trunk page to insert the page
6478 ** being freed as a new leaf.
6480 ** Note that the trunk page is not really full until it contains
6481 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
6482 ** coded. But due to a coding error in versions of SQLite prior to
6483 ** 3.6.0, databases with freelist trunk pages holding more than
6484 ** usableSize/4 - 8 entries will be reported as corrupt. In order
6485 ** to maintain backwards compatibility with older versions of SQLite,
6486 ** we will continue to restrict the number of entries to usableSize/4 - 8
6487 ** for now. At some point in the future (once everyone has upgraded
6488 ** to 3.6.0 or later) we should consider fixing the conditional above
6489 ** to read "usableSize/4-2" instead of "usableSize/4-8".
6491 ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
6492 ** avoid using the last six entries in the freelist trunk page array in
6493 ** order that database files created by newer versions of SQLite can be
6494 ** read by older versions of SQLite.
6496 rc = sqlite3PagerWrite(pTrunk->pDbPage);
6497 if( rc==SQLITE_OK ){
6498 put4byte(&pTrunk->aData[4], nLeaf+1);
6499 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
6500 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
6501 sqlite3PagerDontWrite(pPage->pDbPage);
6503 rc = btreeSetHasContent(pBt, iPage);
6505 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
6506 goto freepage_out;
6510 /* If control flows to this point, then it was not possible to add the
6511 ** the page being freed as a leaf page of the first trunk in the free-list.
6512 ** Possibly because the free-list is empty, or possibly because the
6513 ** first trunk in the free-list is full. Either way, the page being freed
6514 ** will become the new first trunk page in the free-list.
6516 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
6517 goto freepage_out;
6519 rc = sqlite3PagerWrite(pPage->pDbPage);
6520 if( rc!=SQLITE_OK ){
6521 goto freepage_out;
6523 put4byte(pPage->aData, iTrunk);
6524 put4byte(&pPage->aData[4], 0);
6525 put4byte(&pPage1->aData[32], iPage);
6526 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
6528 freepage_out:
6529 if( pPage ){
6530 pPage->isInit = 0;
6532 releasePage(pPage);
6533 releasePage(pTrunk);
6534 return rc;
6536 static void freePage(MemPage *pPage, int *pRC){
6537 if( (*pRC)==SQLITE_OK ){
6538 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
6543 ** Free the overflow pages associated with the given Cell.
6545 static SQLITE_NOINLINE int clearCellOverflow(
6546 MemPage *pPage, /* The page that contains the Cell */
6547 unsigned char *pCell, /* First byte of the Cell */
6548 CellInfo *pInfo /* Size information about the cell */
6550 BtShared *pBt;
6551 Pgno ovflPgno;
6552 int rc;
6553 int nOvfl;
6554 u32 ovflPageSize;
6556 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6557 assert( pInfo->nLocal!=pInfo->nPayload );
6558 testcase( pCell + pInfo->nSize == pPage->aDataEnd );
6559 testcase( pCell + (pInfo->nSize-1) == pPage->aDataEnd );
6560 if( pCell + pInfo->nSize > pPage->aDataEnd ){
6561 /* Cell extends past end of page */
6562 return SQLITE_CORRUPT_PAGE(pPage);
6564 ovflPgno = get4byte(pCell + pInfo->nSize - 4);
6565 pBt = pPage->pBt;
6566 assert( pBt->usableSize > 4 );
6567 ovflPageSize = pBt->usableSize - 4;
6568 nOvfl = (pInfo->nPayload - pInfo->nLocal + ovflPageSize - 1)/ovflPageSize;
6569 assert( nOvfl>0 ||
6570 (CORRUPT_DB && (pInfo->nPayload + ovflPageSize)<ovflPageSize)
6572 while( nOvfl-- ){
6573 Pgno iNext = 0;
6574 MemPage *pOvfl = 0;
6575 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
6576 /* 0 is not a legal page number and page 1 cannot be an
6577 ** overflow page. Therefore if ovflPgno<2 or past the end of the
6578 ** file the database must be corrupt. */
6579 return SQLITE_CORRUPT_BKPT;
6581 if( nOvfl ){
6582 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
6583 if( rc ) return rc;
6586 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
6587 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
6589 /* There is no reason any cursor should have an outstanding reference
6590 ** to an overflow page belonging to a cell that is being deleted/updated.
6591 ** So if there exists more than one reference to this page, then it
6592 ** must not really be an overflow page and the database must be corrupt.
6593 ** It is helpful to detect this before calling freePage2(), as
6594 ** freePage2() may zero the page contents if secure-delete mode is
6595 ** enabled. If this 'overflow' page happens to be a page that the
6596 ** caller is iterating through or using in some other way, this
6597 ** can be problematic.
6599 rc = SQLITE_CORRUPT_BKPT;
6600 }else{
6601 rc = freePage2(pBt, pOvfl, ovflPgno);
6604 if( pOvfl ){
6605 sqlite3PagerUnref(pOvfl->pDbPage);
6607 if( rc ) return rc;
6608 ovflPgno = iNext;
6610 return SQLITE_OK;
6613 /* Call xParseCell to compute the size of a cell. If the cell contains
6614 ** overflow, then invoke cellClearOverflow to clear out that overflow.
6615 ** STore the result code (SQLITE_OK or some error code) in rc.
6617 ** Implemented as macro to force inlining for performance.
6619 #define BTREE_CLEAR_CELL(rc, pPage, pCell, sInfo) \
6620 pPage->xParseCell(pPage, pCell, &sInfo); \
6621 if( sInfo.nLocal!=sInfo.nPayload ){ \
6622 rc = clearCellOverflow(pPage, pCell, &sInfo); \
6623 }else{ \
6624 rc = SQLITE_OK; \
6629 ** Create the byte sequence used to represent a cell on page pPage
6630 ** and write that byte sequence into pCell[]. Overflow pages are
6631 ** allocated and filled in as necessary. The calling procedure
6632 ** is responsible for making sure sufficient space has been allocated
6633 ** for pCell[].
6635 ** Note that pCell does not necessary need to point to the pPage->aData
6636 ** area. pCell might point to some temporary storage. The cell will
6637 ** be constructed in this temporary area then copied into pPage->aData
6638 ** later.
6640 static int fillInCell(
6641 MemPage *pPage, /* The page that contains the cell */
6642 unsigned char *pCell, /* Complete text of the cell */
6643 const BtreePayload *pX, /* Payload with which to construct the cell */
6644 int *pnSize /* Write cell size here */
6646 int nPayload;
6647 const u8 *pSrc;
6648 int nSrc, n, rc, mn;
6649 int spaceLeft;
6650 MemPage *pToRelease;
6651 unsigned char *pPrior;
6652 unsigned char *pPayload;
6653 BtShared *pBt;
6654 Pgno pgnoOvfl;
6655 int nHeader;
6657 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6659 /* pPage is not necessarily writeable since pCell might be auxiliary
6660 ** buffer space that is separate from the pPage buffer area */
6661 assert( pCell<pPage->aData || pCell>=&pPage->aData[pPage->pBt->pageSize]
6662 || sqlite3PagerIswriteable(pPage->pDbPage) );
6664 /* Fill in the header. */
6665 nHeader = pPage->childPtrSize;
6666 if( pPage->intKey ){
6667 nPayload = pX->nData + pX->nZero;
6668 pSrc = pX->pData;
6669 nSrc = pX->nData;
6670 assert( pPage->intKeyLeaf ); /* fillInCell() only called for leaves */
6671 nHeader += putVarint32(&pCell[nHeader], nPayload);
6672 nHeader += putVarint(&pCell[nHeader], *(u64*)&pX->nKey);
6673 }else{
6674 assert( pX->nKey<=0x7fffffff && pX->pKey!=0 );
6675 nSrc = nPayload = (int)pX->nKey;
6676 pSrc = pX->pKey;
6677 nHeader += putVarint32(&pCell[nHeader], nPayload);
6680 /* Fill in the payload */
6681 pPayload = &pCell[nHeader];
6682 if( nPayload<=pPage->maxLocal ){
6683 /* This is the common case where everything fits on the btree page
6684 ** and no overflow pages are required. */
6685 n = nHeader + nPayload;
6686 testcase( n==3 );
6687 testcase( n==4 );
6688 if( n<4 ) n = 4;
6689 *pnSize = n;
6690 assert( nSrc<=nPayload );
6691 testcase( nSrc<nPayload );
6692 memcpy(pPayload, pSrc, nSrc);
6693 memset(pPayload+nSrc, 0, nPayload-nSrc);
6694 return SQLITE_OK;
6697 /* If we reach this point, it means that some of the content will need
6698 ** to spill onto overflow pages.
6700 mn = pPage->minLocal;
6701 n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4);
6702 testcase( n==pPage->maxLocal );
6703 testcase( n==pPage->maxLocal+1 );
6704 if( n > pPage->maxLocal ) n = mn;
6705 spaceLeft = n;
6706 *pnSize = n + nHeader + 4;
6707 pPrior = &pCell[nHeader+n];
6708 pToRelease = 0;
6709 pgnoOvfl = 0;
6710 pBt = pPage->pBt;
6712 /* At this point variables should be set as follows:
6714 ** nPayload Total payload size in bytes
6715 ** pPayload Begin writing payload here
6716 ** spaceLeft Space available at pPayload. If nPayload>spaceLeft,
6717 ** that means content must spill into overflow pages.
6718 ** *pnSize Size of the local cell (not counting overflow pages)
6719 ** pPrior Where to write the pgno of the first overflow page
6721 ** Use a call to btreeParseCellPtr() to verify that the values above
6722 ** were computed correctly.
6724 #ifdef SQLITE_DEBUG
6726 CellInfo info;
6727 pPage->xParseCell(pPage, pCell, &info);
6728 assert( nHeader==(int)(info.pPayload - pCell) );
6729 assert( info.nKey==pX->nKey );
6730 assert( *pnSize == info.nSize );
6731 assert( spaceLeft == info.nLocal );
6733 #endif
6735 /* Write the payload into the local Cell and any extra into overflow pages */
6736 while( 1 ){
6737 n = nPayload;
6738 if( n>spaceLeft ) n = spaceLeft;
6740 /* If pToRelease is not zero than pPayload points into the data area
6741 ** of pToRelease. Make sure pToRelease is still writeable. */
6742 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6744 /* If pPayload is part of the data area of pPage, then make sure pPage
6745 ** is still writeable */
6746 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
6747 || sqlite3PagerIswriteable(pPage->pDbPage) );
6749 if( nSrc>=n ){
6750 memcpy(pPayload, pSrc, n);
6751 }else if( nSrc>0 ){
6752 n = nSrc;
6753 memcpy(pPayload, pSrc, n);
6754 }else{
6755 memset(pPayload, 0, n);
6757 nPayload -= n;
6758 if( nPayload<=0 ) break;
6759 pPayload += n;
6760 pSrc += n;
6761 nSrc -= n;
6762 spaceLeft -= n;
6763 if( spaceLeft==0 ){
6764 MemPage *pOvfl = 0;
6765 #ifndef SQLITE_OMIT_AUTOVACUUM
6766 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
6767 if( pBt->autoVacuum ){
6769 pgnoOvfl++;
6770 } while(
6771 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
6774 #endif
6775 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
6776 #ifndef SQLITE_OMIT_AUTOVACUUM
6777 /* If the database supports auto-vacuum, and the second or subsequent
6778 ** overflow page is being allocated, add an entry to the pointer-map
6779 ** for that page now.
6781 ** If this is the first overflow page, then write a partial entry
6782 ** to the pointer-map. If we write nothing to this pointer-map slot,
6783 ** then the optimistic overflow chain processing in clearCell()
6784 ** may misinterpret the uninitialized values and delete the
6785 ** wrong pages from the database.
6787 if( pBt->autoVacuum && rc==SQLITE_OK ){
6788 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
6789 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
6790 if( rc ){
6791 releasePage(pOvfl);
6794 #endif
6795 if( rc ){
6796 releasePage(pToRelease);
6797 return rc;
6800 /* If pToRelease is not zero than pPrior points into the data area
6801 ** of pToRelease. Make sure pToRelease is still writeable. */
6802 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6804 /* If pPrior is part of the data area of pPage, then make sure pPage
6805 ** is still writeable */
6806 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
6807 || sqlite3PagerIswriteable(pPage->pDbPage) );
6809 put4byte(pPrior, pgnoOvfl);
6810 releasePage(pToRelease);
6811 pToRelease = pOvfl;
6812 pPrior = pOvfl->aData;
6813 put4byte(pPrior, 0);
6814 pPayload = &pOvfl->aData[4];
6815 spaceLeft = pBt->usableSize - 4;
6818 releasePage(pToRelease);
6819 return SQLITE_OK;
6823 ** Remove the i-th cell from pPage. This routine effects pPage only.
6824 ** The cell content is not freed or deallocated. It is assumed that
6825 ** the cell content has been copied someplace else. This routine just
6826 ** removes the reference to the cell from pPage.
6828 ** "sz" must be the number of bytes in the cell.
6830 static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
6831 u32 pc; /* Offset to cell content of cell being deleted */
6832 u8 *data; /* pPage->aData */
6833 u8 *ptr; /* Used to move bytes around within data[] */
6834 int rc; /* The return code */
6835 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
6837 if( *pRC ) return;
6838 assert( idx>=0 );
6839 assert( idx<pPage->nCell );
6840 assert( CORRUPT_DB || sz==cellSize(pPage, idx) );
6841 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
6842 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6843 assert( pPage->nFree>=0 );
6844 data = pPage->aData;
6845 ptr = &pPage->aCellIdx[2*idx];
6846 assert( pPage->pBt->usableSize > (u32)(ptr-data) );
6847 pc = get2byte(ptr);
6848 hdr = pPage->hdrOffset;
6849 #if 0 /* Not required. Omit for efficiency */
6850 if( pc<hdr+pPage->nCell*2 ){
6851 *pRC = SQLITE_CORRUPT_BKPT;
6852 return;
6854 #endif
6855 testcase( pc==(u32)get2byte(&data[hdr+5]) );
6856 testcase( pc+sz==pPage->pBt->usableSize );
6857 if( pc+sz > pPage->pBt->usableSize ){
6858 *pRC = SQLITE_CORRUPT_BKPT;
6859 return;
6861 rc = freeSpace(pPage, pc, sz);
6862 if( rc ){
6863 *pRC = rc;
6864 return;
6866 pPage->nCell--;
6867 if( pPage->nCell==0 ){
6868 memset(&data[hdr+1], 0, 4);
6869 data[hdr+7] = 0;
6870 put2byte(&data[hdr+5], pPage->pBt->usableSize);
6871 pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset
6872 - pPage->childPtrSize - 8;
6873 }else{
6874 memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
6875 put2byte(&data[hdr+3], pPage->nCell);
6876 pPage->nFree += 2;
6881 ** Insert a new cell on pPage at cell index "i". pCell points to the
6882 ** content of the cell.
6884 ** If the cell content will fit on the page, then put it there. If it
6885 ** will not fit, then make a copy of the cell content into pTemp if
6886 ** pTemp is not null. Regardless of pTemp, allocate a new entry
6887 ** in pPage->apOvfl[] and make it point to the cell content (either
6888 ** in pTemp or the original pCell) and also record its index.
6889 ** Allocating a new entry in pPage->aCell[] implies that
6890 ** pPage->nOverflow is incremented.
6892 ** *pRC must be SQLITE_OK when this routine is called.
6894 static void insertCell(
6895 MemPage *pPage, /* Page into which we are copying */
6896 int i, /* New cell becomes the i-th cell of the page */
6897 u8 *pCell, /* Content of the new cell */
6898 int sz, /* Bytes of content in pCell */
6899 u8 *pTemp, /* Temp storage space for pCell, if needed */
6900 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
6901 int *pRC /* Read and write return code from here */
6903 int idx = 0; /* Where to write new cell content in data[] */
6904 int j; /* Loop counter */
6905 u8 *data; /* The content of the whole page */
6906 u8 *pIns; /* The point in pPage->aCellIdx[] where no cell inserted */
6908 assert( *pRC==SQLITE_OK );
6909 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
6910 assert( MX_CELL(pPage->pBt)<=10921 );
6911 assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
6912 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
6913 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
6914 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6915 assert( sz==pPage->xCellSize(pPage, pCell) || CORRUPT_DB );
6916 assert( pPage->nFree>=0 );
6917 if( pPage->nOverflow || sz+2>pPage->nFree ){
6918 if( pTemp ){
6919 memcpy(pTemp, pCell, sz);
6920 pCell = pTemp;
6922 if( iChild ){
6923 put4byte(pCell, iChild);
6925 j = pPage->nOverflow++;
6926 /* Comparison against ArraySize-1 since we hold back one extra slot
6927 ** as a contingency. In other words, never need more than 3 overflow
6928 ** slots but 4 are allocated, just to be safe. */
6929 assert( j < ArraySize(pPage->apOvfl)-1 );
6930 pPage->apOvfl[j] = pCell;
6931 pPage->aiOvfl[j] = (u16)i;
6933 /* When multiple overflows occur, they are always sequential and in
6934 ** sorted order. This invariants arise because multiple overflows can
6935 ** only occur when inserting divider cells into the parent page during
6936 ** balancing, and the dividers are adjacent and sorted.
6938 assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */
6939 assert( j==0 || i==pPage->aiOvfl[j-1]+1 ); /* Overflows are sequential */
6940 }else{
6941 int rc = sqlite3PagerWrite(pPage->pDbPage);
6942 if( rc!=SQLITE_OK ){
6943 *pRC = rc;
6944 return;
6946 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
6947 data = pPage->aData;
6948 assert( &data[pPage->cellOffset]==pPage->aCellIdx );
6949 rc = allocateSpace(pPage, sz, &idx);
6950 if( rc ){ *pRC = rc; return; }
6951 /* The allocateSpace() routine guarantees the following properties
6952 ** if it returns successfully */
6953 assert( idx >= 0 );
6954 assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB );
6955 assert( idx+sz <= (int)pPage->pBt->usableSize );
6956 pPage->nFree -= (u16)(2 + sz);
6957 if( iChild ){
6958 /* In a corrupt database where an entry in the cell index section of
6959 ** a btree page has a value of 3 or less, the pCell value might point
6960 ** as many as 4 bytes in front of the start of the aData buffer for
6961 ** the source page. Make sure this does not cause problems by not
6962 ** reading the first 4 bytes */
6963 memcpy(&data[idx+4], pCell+4, sz-4);
6964 put4byte(&data[idx], iChild);
6965 }else{
6966 memcpy(&data[idx], pCell, sz);
6968 pIns = pPage->aCellIdx + i*2;
6969 memmove(pIns+2, pIns, 2*(pPage->nCell - i));
6970 put2byte(pIns, idx);
6971 pPage->nCell++;
6972 /* increment the cell count */
6973 if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++;
6974 assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell || CORRUPT_DB );
6975 #ifndef SQLITE_OMIT_AUTOVACUUM
6976 if( pPage->pBt->autoVacuum ){
6977 /* The cell may contain a pointer to an overflow page. If so, write
6978 ** the entry for the overflow page into the pointer map.
6980 ptrmapPutOvflPtr(pPage, pPage, pCell, pRC);
6982 #endif
6987 ** The following parameters determine how many adjacent pages get involved
6988 ** in a balancing operation. NN is the number of neighbors on either side
6989 ** of the page that participate in the balancing operation. NB is the
6990 ** total number of pages that participate, including the target page and
6991 ** NN neighbors on either side.
6993 ** The minimum value of NN is 1 (of course). Increasing NN above 1
6994 ** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
6995 ** in exchange for a larger degradation in INSERT and UPDATE performance.
6996 ** The value of NN appears to give the best results overall.
6998 ** (Later:) The description above makes it seem as if these values are
6999 ** tunable - as if you could change them and recompile and it would all work.
7000 ** But that is unlikely. NB has been 3 since the inception of SQLite and
7001 ** we have never tested any other value.
7003 #define NN 1 /* Number of neighbors on either side of pPage */
7004 #define NB 3 /* (NN*2+1): Total pages involved in the balance */
7007 ** A CellArray object contains a cache of pointers and sizes for a
7008 ** consecutive sequence of cells that might be held on multiple pages.
7010 ** The cells in this array are the divider cell or cells from the pParent
7011 ** page plus up to three child pages. There are a total of nCell cells.
7013 ** pRef is a pointer to one of the pages that contributes cells. This is
7014 ** used to access information such as MemPage.intKey and MemPage.pBt->pageSize
7015 ** which should be common to all pages that contribute cells to this array.
7017 ** apCell[] and szCell[] hold, respectively, pointers to the start of each
7018 ** cell and the size of each cell. Some of the apCell[] pointers might refer
7019 ** to overflow cells. In other words, some apCel[] pointers might not point
7020 ** to content area of the pages.
7022 ** A szCell[] of zero means the size of that cell has not yet been computed.
7024 ** The cells come from as many as four different pages:
7026 ** -----------
7027 ** | Parent |
7028 ** -----------
7029 ** / | \
7030 ** / | \
7031 ** --------- --------- ---------
7032 ** |Child-1| |Child-2| |Child-3|
7033 ** --------- --------- ---------
7035 ** The order of cells is in the array is for an index btree is:
7037 ** 1. All cells from Child-1 in order
7038 ** 2. The first divider cell from Parent
7039 ** 3. All cells from Child-2 in order
7040 ** 4. The second divider cell from Parent
7041 ** 5. All cells from Child-3 in order
7043 ** For a table-btree (with rowids) the items 2 and 4 are empty because
7044 ** content exists only in leaves and there are no divider cells.
7046 ** For an index btree, the apEnd[] array holds pointer to the end of page
7047 ** for Child-1, the Parent, Child-2, the Parent (again), and Child-3,
7048 ** respectively. The ixNx[] array holds the number of cells contained in
7049 ** each of these 5 stages, and all stages to the left. Hence:
7051 ** ixNx[0] = Number of cells in Child-1.
7052 ** ixNx[1] = Number of cells in Child-1 plus 1 for first divider.
7053 ** ixNx[2] = Number of cells in Child-1 and Child-2 + 1 for 1st divider.
7054 ** ixNx[3] = Number of cells in Child-1 and Child-2 + both divider cells
7055 ** ixNx[4] = Total number of cells.
7057 ** For a table-btree, the concept is similar, except only apEnd[0]..apEnd[2]
7058 ** are used and they point to the leaf pages only, and the ixNx value are:
7060 ** ixNx[0] = Number of cells in Child-1.
7061 ** ixNx[1] = Number of cells in Child-1 and Child-2.
7062 ** ixNx[2] = Total number of cells.
7064 ** Sometimes when deleting, a child page can have zero cells. In those
7065 ** cases, ixNx[] entries with higher indexes, and the corresponding apEnd[]
7066 ** entries, shift down. The end result is that each ixNx[] entry should
7067 ** be larger than the previous
7069 typedef struct CellArray CellArray;
7070 struct CellArray {
7071 int nCell; /* Number of cells in apCell[] */
7072 MemPage *pRef; /* Reference page */
7073 u8 **apCell; /* All cells begin balanced */
7074 u16 *szCell; /* Local size of all cells in apCell[] */
7075 u8 *apEnd[NB*2]; /* MemPage.aDataEnd values */
7076 int ixNx[NB*2]; /* Index of at which we move to the next apEnd[] */
7080 ** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been
7081 ** computed.
7083 static void populateCellCache(CellArray *p, int idx, int N){
7084 assert( idx>=0 && idx+N<=p->nCell );
7085 while( N>0 ){
7086 assert( p->apCell[idx]!=0 );
7087 if( p->szCell[idx]==0 ){
7088 p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]);
7089 }else{
7090 assert( CORRUPT_DB ||
7091 p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) );
7093 idx++;
7094 N--;
7099 ** Return the size of the Nth element of the cell array
7101 static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){
7102 assert( N>=0 && N<p->nCell );
7103 assert( p->szCell[N]==0 );
7104 p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]);
7105 return p->szCell[N];
7107 static u16 cachedCellSize(CellArray *p, int N){
7108 assert( N>=0 && N<p->nCell );
7109 if( p->szCell[N] ) return p->szCell[N];
7110 return computeCellSize(p, N);
7114 ** Array apCell[] contains pointers to nCell b-tree page cells. The
7115 ** szCell[] array contains the size in bytes of each cell. This function
7116 ** replaces the current contents of page pPg with the contents of the cell
7117 ** array.
7119 ** Some of the cells in apCell[] may currently be stored in pPg. This
7120 ** function works around problems caused by this by making a copy of any
7121 ** such cells before overwriting the page data.
7123 ** The MemPage.nFree field is invalidated by this function. It is the
7124 ** responsibility of the caller to set it correctly.
7126 static int rebuildPage(
7127 CellArray *pCArray, /* Content to be added to page pPg */
7128 int iFirst, /* First cell in pCArray to use */
7129 int nCell, /* Final number of cells on page */
7130 MemPage *pPg /* The page to be reconstructed */
7132 const int hdr = pPg->hdrOffset; /* Offset of header on pPg */
7133 u8 * const aData = pPg->aData; /* Pointer to data for pPg */
7134 const int usableSize = pPg->pBt->usableSize;
7135 u8 * const pEnd = &aData[usableSize];
7136 int i = iFirst; /* Which cell to copy from pCArray*/
7137 u32 j; /* Start of cell content area */
7138 int iEnd = i+nCell; /* Loop terminator */
7139 u8 *pCellptr = pPg->aCellIdx;
7140 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
7141 u8 *pData;
7142 int k; /* Current slot in pCArray->apEnd[] */
7143 u8 *pSrcEnd; /* Current pCArray->apEnd[k] value */
7145 assert( i<iEnd );
7146 j = get2byte(&aData[hdr+5]);
7147 if( j>(u32)usableSize ){ j = 0; }
7148 memcpy(&pTmp[j], &aData[j], usableSize - j);
7150 for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){}
7151 pSrcEnd = pCArray->apEnd[k];
7153 pData = pEnd;
7154 while( 1/*exit by break*/ ){
7155 u8 *pCell = pCArray->apCell[i];
7156 u16 sz = pCArray->szCell[i];
7157 assert( sz>0 );
7158 if( SQLITE_WITHIN(pCell,aData+j,pEnd) ){
7159 if( ((uptr)(pCell+sz))>(uptr)pEnd ) return SQLITE_CORRUPT_BKPT;
7160 pCell = &pTmp[pCell - aData];
7161 }else if( (uptr)(pCell+sz)>(uptr)pSrcEnd
7162 && (uptr)(pCell)<(uptr)pSrcEnd
7164 return SQLITE_CORRUPT_BKPT;
7167 pData -= sz;
7168 put2byte(pCellptr, (pData - aData));
7169 pCellptr += 2;
7170 if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT;
7171 memmove(pData, pCell, sz);
7172 assert( sz==pPg->xCellSize(pPg, pCell) || CORRUPT_DB );
7173 i++;
7174 if( i>=iEnd ) break;
7175 if( pCArray->ixNx[k]<=i ){
7176 k++;
7177 pSrcEnd = pCArray->apEnd[k];
7181 /* The pPg->nFree field is now set incorrectly. The caller will fix it. */
7182 pPg->nCell = nCell;
7183 pPg->nOverflow = 0;
7185 put2byte(&aData[hdr+1], 0);
7186 put2byte(&aData[hdr+3], pPg->nCell);
7187 put2byte(&aData[hdr+5], pData - aData);
7188 aData[hdr+7] = 0x00;
7189 return SQLITE_OK;
7193 ** The pCArray objects contains pointers to b-tree cells and the cell sizes.
7194 ** This function attempts to add the cells stored in the array to page pPg.
7195 ** If it cannot (because the page needs to be defragmented before the cells
7196 ** will fit), non-zero is returned. Otherwise, if the cells are added
7197 ** successfully, zero is returned.
7199 ** Argument pCellptr points to the first entry in the cell-pointer array
7200 ** (part of page pPg) to populate. After cell apCell[0] is written to the
7201 ** page body, a 16-bit offset is written to pCellptr. And so on, for each
7202 ** cell in the array. It is the responsibility of the caller to ensure
7203 ** that it is safe to overwrite this part of the cell-pointer array.
7205 ** When this function is called, *ppData points to the start of the
7206 ** content area on page pPg. If the size of the content area is extended,
7207 ** *ppData is updated to point to the new start of the content area
7208 ** before returning.
7210 ** Finally, argument pBegin points to the byte immediately following the
7211 ** end of the space required by this page for the cell-pointer area (for
7212 ** all cells - not just those inserted by the current call). If the content
7213 ** area must be extended to before this point in order to accomodate all
7214 ** cells in apCell[], then the cells do not fit and non-zero is returned.
7216 static int pageInsertArray(
7217 MemPage *pPg, /* Page to add cells to */
7218 u8 *pBegin, /* End of cell-pointer array */
7219 u8 **ppData, /* IN/OUT: Page content-area pointer */
7220 u8 *pCellptr, /* Pointer to cell-pointer area */
7221 int iFirst, /* Index of first cell to add */
7222 int nCell, /* Number of cells to add to pPg */
7223 CellArray *pCArray /* Array of cells */
7225 int i = iFirst; /* Loop counter - cell index to insert */
7226 u8 *aData = pPg->aData; /* Complete page */
7227 u8 *pData = *ppData; /* Content area. A subset of aData[] */
7228 int iEnd = iFirst + nCell; /* End of loop. One past last cell to ins */
7229 int k; /* Current slot in pCArray->apEnd[] */
7230 u8 *pEnd; /* Maximum extent of cell data */
7231 assert( CORRUPT_DB || pPg->hdrOffset==0 ); /* Never called on page 1 */
7232 if( iEnd<=iFirst ) return 0;
7233 for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){}
7234 pEnd = pCArray->apEnd[k];
7235 while( 1 /*Exit by break*/ ){
7236 int sz, rc;
7237 u8 *pSlot;
7238 assert( pCArray->szCell[i]!=0 );
7239 sz = pCArray->szCell[i];
7240 if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){
7241 if( (pData - pBegin)<sz ) return 1;
7242 pData -= sz;
7243 pSlot = pData;
7245 /* pSlot and pCArray->apCell[i] will never overlap on a well-formed
7246 ** database. But they might for a corrupt database. Hence use memmove()
7247 ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */
7248 assert( (pSlot+sz)<=pCArray->apCell[i]
7249 || pSlot>=(pCArray->apCell[i]+sz)
7250 || CORRUPT_DB );
7251 if( (uptr)(pCArray->apCell[i]+sz)>(uptr)pEnd
7252 && (uptr)(pCArray->apCell[i])<(uptr)pEnd
7254 assert( CORRUPT_DB );
7255 (void)SQLITE_CORRUPT_BKPT;
7256 return 1;
7258 memmove(pSlot, pCArray->apCell[i], sz);
7259 put2byte(pCellptr, (pSlot - aData));
7260 pCellptr += 2;
7261 i++;
7262 if( i>=iEnd ) break;
7263 if( pCArray->ixNx[k]<=i ){
7264 k++;
7265 pEnd = pCArray->apEnd[k];
7268 *ppData = pData;
7269 return 0;
7273 ** The pCArray object contains pointers to b-tree cells and their sizes.
7275 ** This function adds the space associated with each cell in the array
7276 ** that is currently stored within the body of pPg to the pPg free-list.
7277 ** The cell-pointers and other fields of the page are not updated.
7279 ** This function returns the total number of cells added to the free-list.
7281 static int pageFreeArray(
7282 MemPage *pPg, /* Page to edit */
7283 int iFirst, /* First cell to delete */
7284 int nCell, /* Cells to delete */
7285 CellArray *pCArray /* Array of cells */
7287 u8 * const aData = pPg->aData;
7288 u8 * const pEnd = &aData[pPg->pBt->usableSize];
7289 u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize];
7290 int nRet = 0;
7291 int i;
7292 int iEnd = iFirst + nCell;
7293 u8 *pFree = 0;
7294 int szFree = 0;
7296 for(i=iFirst; i<iEnd; i++){
7297 u8 *pCell = pCArray->apCell[i];
7298 if( SQLITE_WITHIN(pCell, pStart, pEnd) ){
7299 int sz;
7300 /* No need to use cachedCellSize() here. The sizes of all cells that
7301 ** are to be freed have already been computing while deciding which
7302 ** cells need freeing */
7303 sz = pCArray->szCell[i]; assert( sz>0 );
7304 if( pFree!=(pCell + sz) ){
7305 if( pFree ){
7306 assert( pFree>aData && (pFree - aData)<65536 );
7307 freeSpace(pPg, (u16)(pFree - aData), szFree);
7309 pFree = pCell;
7310 szFree = sz;
7311 if( pFree+sz>pEnd ){
7312 return 0;
7314 }else{
7315 pFree = pCell;
7316 szFree += sz;
7318 nRet++;
7321 if( pFree ){
7322 assert( pFree>aData && (pFree - aData)<65536 );
7323 freeSpace(pPg, (u16)(pFree - aData), szFree);
7325 return nRet;
7329 ** pCArray contains pointers to and sizes of all cells in the page being
7330 ** balanced. The current page, pPg, has pPg->nCell cells starting with
7331 ** pCArray->apCell[iOld]. After balancing, this page should hold nNew cells
7332 ** starting at apCell[iNew].
7334 ** This routine makes the necessary adjustments to pPg so that it contains
7335 ** the correct cells after being balanced.
7337 ** The pPg->nFree field is invalid when this function returns. It is the
7338 ** responsibility of the caller to set it correctly.
7340 static int editPage(
7341 MemPage *pPg, /* Edit this page */
7342 int iOld, /* Index of first cell currently on page */
7343 int iNew, /* Index of new first cell on page */
7344 int nNew, /* Final number of cells on page */
7345 CellArray *pCArray /* Array of cells and sizes */
7347 u8 * const aData = pPg->aData;
7348 const int hdr = pPg->hdrOffset;
7349 u8 *pBegin = &pPg->aCellIdx[nNew * 2];
7350 int nCell = pPg->nCell; /* Cells stored on pPg */
7351 u8 *pData;
7352 u8 *pCellptr;
7353 int i;
7354 int iOldEnd = iOld + pPg->nCell + pPg->nOverflow;
7355 int iNewEnd = iNew + nNew;
7357 #ifdef SQLITE_DEBUG
7358 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
7359 memcpy(pTmp, aData, pPg->pBt->usableSize);
7360 #endif
7362 /* Remove cells from the start and end of the page */
7363 assert( nCell>=0 );
7364 if( iOld<iNew ){
7365 int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray);
7366 if( NEVER(nShift>nCell) ) return SQLITE_CORRUPT_BKPT;
7367 memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2);
7368 nCell -= nShift;
7370 if( iNewEnd < iOldEnd ){
7371 int nTail = pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray);
7372 assert( nCell>=nTail );
7373 nCell -= nTail;
7376 pData = &aData[get2byteNotZero(&aData[hdr+5])];
7377 if( pData<pBegin ) goto editpage_fail;
7378 if( pData>pPg->aDataEnd ) goto editpage_fail;
7380 /* Add cells to the start of the page */
7381 if( iNew<iOld ){
7382 int nAdd = MIN(nNew,iOld-iNew);
7383 assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB );
7384 assert( nAdd>=0 );
7385 pCellptr = pPg->aCellIdx;
7386 memmove(&pCellptr[nAdd*2], pCellptr, nCell*2);
7387 if( pageInsertArray(
7388 pPg, pBegin, &pData, pCellptr,
7389 iNew, nAdd, pCArray
7390 ) ) goto editpage_fail;
7391 nCell += nAdd;
7394 /* Add any overflow cells */
7395 for(i=0; i<pPg->nOverflow; i++){
7396 int iCell = (iOld + pPg->aiOvfl[i]) - iNew;
7397 if( iCell>=0 && iCell<nNew ){
7398 pCellptr = &pPg->aCellIdx[iCell * 2];
7399 if( nCell>iCell ){
7400 memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2);
7402 nCell++;
7403 cachedCellSize(pCArray, iCell+iNew);
7404 if( pageInsertArray(
7405 pPg, pBegin, &pData, pCellptr,
7406 iCell+iNew, 1, pCArray
7407 ) ) goto editpage_fail;
7411 /* Append cells to the end of the page */
7412 assert( nCell>=0 );
7413 pCellptr = &pPg->aCellIdx[nCell*2];
7414 if( pageInsertArray(
7415 pPg, pBegin, &pData, pCellptr,
7416 iNew+nCell, nNew-nCell, pCArray
7417 ) ) goto editpage_fail;
7419 pPg->nCell = nNew;
7420 pPg->nOverflow = 0;
7422 put2byte(&aData[hdr+3], pPg->nCell);
7423 put2byte(&aData[hdr+5], pData - aData);
7425 #ifdef SQLITE_DEBUG
7426 for(i=0; i<nNew && !CORRUPT_DB; i++){
7427 u8 *pCell = pCArray->apCell[i+iNew];
7428 int iOff = get2byteAligned(&pPg->aCellIdx[i*2]);
7429 if( SQLITE_WITHIN(pCell, aData, &aData[pPg->pBt->usableSize]) ){
7430 pCell = &pTmp[pCell - aData];
7432 assert( 0==memcmp(pCell, &aData[iOff],
7433 pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) );
7435 #endif
7437 return SQLITE_OK;
7438 editpage_fail:
7439 /* Unable to edit this page. Rebuild it from scratch instead. */
7440 populateCellCache(pCArray, iNew, nNew);
7441 return rebuildPage(pCArray, iNew, nNew, pPg);
7445 #ifndef SQLITE_OMIT_QUICKBALANCE
7447 ** This version of balance() handles the common special case where
7448 ** a new entry is being inserted on the extreme right-end of the
7449 ** tree, in other words, when the new entry will become the largest
7450 ** entry in the tree.
7452 ** Instead of trying to balance the 3 right-most leaf pages, just add
7453 ** a new page to the right-hand side and put the one new entry in
7454 ** that page. This leaves the right side of the tree somewhat
7455 ** unbalanced. But odds are that we will be inserting new entries
7456 ** at the end soon afterwards so the nearly empty page will quickly
7457 ** fill up. On average.
7459 ** pPage is the leaf page which is the right-most page in the tree.
7460 ** pParent is its parent. pPage must have a single overflow entry
7461 ** which is also the right-most entry on the page.
7463 ** The pSpace buffer is used to store a temporary copy of the divider
7464 ** cell that will be inserted into pParent. Such a cell consists of a 4
7465 ** byte page number followed by a variable length integer. In other
7466 ** words, at most 13 bytes. Hence the pSpace buffer must be at
7467 ** least 13 bytes in size.
7469 static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
7470 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
7471 MemPage *pNew; /* Newly allocated page */
7472 int rc; /* Return Code */
7473 Pgno pgnoNew; /* Page number of pNew */
7475 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
7476 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7477 assert( pPage->nOverflow==1 );
7479 if( pPage->nCell==0 ) return SQLITE_CORRUPT_BKPT; /* dbfuzz001.test */
7480 assert( pPage->nFree>=0 );
7481 assert( pParent->nFree>=0 );
7483 /* Allocate a new page. This page will become the right-sibling of
7484 ** pPage. Make the parent page writable, so that the new divider cell
7485 ** may be inserted. If both these operations are successful, proceed.
7487 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
7489 if( rc==SQLITE_OK ){
7491 u8 *pOut = &pSpace[4];
7492 u8 *pCell = pPage->apOvfl[0];
7493 u16 szCell = pPage->xCellSize(pPage, pCell);
7494 u8 *pStop;
7495 CellArray b;
7497 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
7498 assert( CORRUPT_DB || pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
7499 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
7500 b.nCell = 1;
7501 b.pRef = pPage;
7502 b.apCell = &pCell;
7503 b.szCell = &szCell;
7504 b.apEnd[0] = pPage->aDataEnd;
7505 b.ixNx[0] = 2;
7506 rc = rebuildPage(&b, 0, 1, pNew);
7507 if( NEVER(rc) ){
7508 releasePage(pNew);
7509 return rc;
7511 pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell;
7513 /* If this is an auto-vacuum database, update the pointer map
7514 ** with entries for the new page, and any pointer from the
7515 ** cell on the page to an overflow page. If either of these
7516 ** operations fails, the return code is set, but the contents
7517 ** of the parent page are still manipulated by thh code below.
7518 ** That is Ok, at this point the parent page is guaranteed to
7519 ** be marked as dirty. Returning an error code will cause a
7520 ** rollback, undoing any changes made to the parent page.
7522 if( ISAUTOVACUUM ){
7523 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
7524 if( szCell>pNew->minLocal ){
7525 ptrmapPutOvflPtr(pNew, pNew, pCell, &rc);
7529 /* Create a divider cell to insert into pParent. The divider cell
7530 ** consists of a 4-byte page number (the page number of pPage) and
7531 ** a variable length key value (which must be the same value as the
7532 ** largest key on pPage).
7534 ** To find the largest key value on pPage, first find the right-most
7535 ** cell on pPage. The first two fields of this cell are the
7536 ** record-length (a variable length integer at most 32-bits in size)
7537 ** and the key value (a variable length integer, may have any value).
7538 ** The first of the while(...) loops below skips over the record-length
7539 ** field. The second while(...) loop copies the key value from the
7540 ** cell on pPage into the pSpace buffer.
7542 pCell = findCell(pPage, pPage->nCell-1);
7543 pStop = &pCell[9];
7544 while( (*(pCell++)&0x80) && pCell<pStop );
7545 pStop = &pCell[9];
7546 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
7548 /* Insert the new divider cell into pParent. */
7549 if( rc==SQLITE_OK ){
7550 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
7551 0, pPage->pgno, &rc);
7554 /* Set the right-child pointer of pParent to point to the new page. */
7555 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
7557 /* Release the reference to the new page. */
7558 releasePage(pNew);
7561 return rc;
7563 #endif /* SQLITE_OMIT_QUICKBALANCE */
7565 #if 0
7567 ** This function does not contribute anything to the operation of SQLite.
7568 ** it is sometimes activated temporarily while debugging code responsible
7569 ** for setting pointer-map entries.
7571 static int ptrmapCheckPages(MemPage **apPage, int nPage){
7572 int i, j;
7573 for(i=0; i<nPage; i++){
7574 Pgno n;
7575 u8 e;
7576 MemPage *pPage = apPage[i];
7577 BtShared *pBt = pPage->pBt;
7578 assert( pPage->isInit );
7580 for(j=0; j<pPage->nCell; j++){
7581 CellInfo info;
7582 u8 *z;
7584 z = findCell(pPage, j);
7585 pPage->xParseCell(pPage, z, &info);
7586 if( info.nLocal<info.nPayload ){
7587 Pgno ovfl = get4byte(&z[info.nSize-4]);
7588 ptrmapGet(pBt, ovfl, &e, &n);
7589 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
7591 if( !pPage->leaf ){
7592 Pgno child = get4byte(z);
7593 ptrmapGet(pBt, child, &e, &n);
7594 assert( n==pPage->pgno && e==PTRMAP_BTREE );
7597 if( !pPage->leaf ){
7598 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
7599 ptrmapGet(pBt, child, &e, &n);
7600 assert( n==pPage->pgno && e==PTRMAP_BTREE );
7603 return 1;
7605 #endif
7608 ** This function is used to copy the contents of the b-tree node stored
7609 ** on page pFrom to page pTo. If page pFrom was not a leaf page, then
7610 ** the pointer-map entries for each child page are updated so that the
7611 ** parent page stored in the pointer map is page pTo. If pFrom contained
7612 ** any cells with overflow page pointers, then the corresponding pointer
7613 ** map entries are also updated so that the parent page is page pTo.
7615 ** If pFrom is currently carrying any overflow cells (entries in the
7616 ** MemPage.apOvfl[] array), they are not copied to pTo.
7618 ** Before returning, page pTo is reinitialized using btreeInitPage().
7620 ** The performance of this function is not critical. It is only used by
7621 ** the balance_shallower() and balance_deeper() procedures, neither of
7622 ** which are called often under normal circumstances.
7624 static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
7625 if( (*pRC)==SQLITE_OK ){
7626 BtShared * const pBt = pFrom->pBt;
7627 u8 * const aFrom = pFrom->aData;
7628 u8 * const aTo = pTo->aData;
7629 int const iFromHdr = pFrom->hdrOffset;
7630 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
7631 int rc;
7632 int iData;
7635 assert( pFrom->isInit );
7636 assert( pFrom->nFree>=iToHdr );
7637 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
7639 /* Copy the b-tree node content from page pFrom to page pTo. */
7640 iData = get2byte(&aFrom[iFromHdr+5]);
7641 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
7642 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
7644 /* Reinitialize page pTo so that the contents of the MemPage structure
7645 ** match the new data. The initialization of pTo can actually fail under
7646 ** fairly obscure circumstances, even though it is a copy of initialized
7647 ** page pFrom.
7649 pTo->isInit = 0;
7650 rc = btreeInitPage(pTo);
7651 if( rc==SQLITE_OK ) rc = btreeComputeFreeSpace(pTo);
7652 if( rc!=SQLITE_OK ){
7653 *pRC = rc;
7654 return;
7657 /* If this is an auto-vacuum database, update the pointer-map entries
7658 ** for any b-tree or overflow pages that pTo now contains the pointers to.
7660 if( ISAUTOVACUUM ){
7661 *pRC = setChildPtrmaps(pTo);
7667 ** This routine redistributes cells on the iParentIdx'th child of pParent
7668 ** (hereafter "the page") and up to 2 siblings so that all pages have about the
7669 ** same amount of free space. Usually a single sibling on either side of the
7670 ** page are used in the balancing, though both siblings might come from one
7671 ** side if the page is the first or last child of its parent. If the page
7672 ** has fewer than 2 siblings (something which can only happen if the page
7673 ** is a root page or a child of a root page) then all available siblings
7674 ** participate in the balancing.
7676 ** The number of siblings of the page might be increased or decreased by
7677 ** one or two in an effort to keep pages nearly full but not over full.
7679 ** Note that when this routine is called, some of the cells on the page
7680 ** might not actually be stored in MemPage.aData[]. This can happen
7681 ** if the page is overfull. This routine ensures that all cells allocated
7682 ** to the page and its siblings fit into MemPage.aData[] before returning.
7684 ** In the course of balancing the page and its siblings, cells may be
7685 ** inserted into or removed from the parent page (pParent). Doing so
7686 ** may cause the parent page to become overfull or underfull. If this
7687 ** happens, it is the responsibility of the caller to invoke the correct
7688 ** balancing routine to fix this problem (see the balance() routine).
7690 ** If this routine fails for any reason, it might leave the database
7691 ** in a corrupted state. So if this routine fails, the database should
7692 ** be rolled back.
7694 ** The third argument to this function, aOvflSpace, is a pointer to a
7695 ** buffer big enough to hold one page. If while inserting cells into the parent
7696 ** page (pParent) the parent page becomes overfull, this buffer is
7697 ** used to store the parent's overflow cells. Because this function inserts
7698 ** a maximum of four divider cells into the parent page, and the maximum
7699 ** size of a cell stored within an internal node is always less than 1/4
7700 ** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
7701 ** enough for all overflow cells.
7703 ** If aOvflSpace is set to a null pointer, this function returns
7704 ** SQLITE_NOMEM.
7706 static int balance_nonroot(
7707 MemPage *pParent, /* Parent page of siblings being balanced */
7708 int iParentIdx, /* Index of "the page" in pParent */
7709 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
7710 int isRoot, /* True if pParent is a root-page */
7711 int bBulk /* True if this call is part of a bulk load */
7713 BtShared *pBt; /* The whole database */
7714 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
7715 int nNew = 0; /* Number of pages in apNew[] */
7716 int nOld; /* Number of pages in apOld[] */
7717 int i, j, k; /* Loop counters */
7718 int nxDiv; /* Next divider slot in pParent->aCell[] */
7719 int rc = SQLITE_OK; /* The return code */
7720 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
7721 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
7722 int usableSpace; /* Bytes in pPage beyond the header */
7723 int pageFlags; /* Value of pPage->aData[0] */
7724 int iSpace1 = 0; /* First unused byte of aSpace1[] */
7725 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
7726 int szScratch; /* Size of scratch memory requested */
7727 MemPage *apOld[NB]; /* pPage and up to two siblings */
7728 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
7729 u8 *pRight; /* Location in parent of right-sibling pointer */
7730 u8 *apDiv[NB-1]; /* Divider cells in pParent */
7731 int cntNew[NB+2]; /* Index in b.paCell[] of cell after i-th page */
7732 int cntOld[NB+2]; /* Old index in b.apCell[] */
7733 int szNew[NB+2]; /* Combined size of cells placed on i-th page */
7734 u8 *aSpace1; /* Space for copies of dividers cells */
7735 Pgno pgno; /* Temp var to store a page number in */
7736 u8 abDone[NB+2]; /* True after i'th new page is populated */
7737 Pgno aPgno[NB+2]; /* Page numbers of new pages before shuffling */
7738 Pgno aPgOrder[NB+2]; /* Copy of aPgno[] used for sorting pages */
7739 u16 aPgFlags[NB+2]; /* flags field of new pages before shuffling */
7740 CellArray b; /* Parsed information on cells being balanced */
7742 memset(abDone, 0, sizeof(abDone));
7743 memset(&b, 0, sizeof(b));
7744 pBt = pParent->pBt;
7745 assert( sqlite3_mutex_held(pBt->mutex) );
7746 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7748 /* At this point pParent may have at most one overflow cell. And if
7749 ** this overflow cell is present, it must be the cell with
7750 ** index iParentIdx. This scenario comes about when this function
7751 ** is called (indirectly) from sqlite3BtreeDelete().
7753 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
7754 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
7756 if( !aOvflSpace ){
7757 return SQLITE_NOMEM_BKPT;
7759 assert( pParent->nFree>=0 );
7761 /* Find the sibling pages to balance. Also locate the cells in pParent
7762 ** that divide the siblings. An attempt is made to find NN siblings on
7763 ** either side of pPage. More siblings are taken from one side, however,
7764 ** if there are fewer than NN siblings on the other side. If pParent
7765 ** has NB or fewer children then all children of pParent are taken.
7767 ** This loop also drops the divider cells from the parent page. This
7768 ** way, the remainder of the function does not have to deal with any
7769 ** overflow cells in the parent page, since if any existed they will
7770 ** have already been removed.
7772 i = pParent->nOverflow + pParent->nCell;
7773 if( i<2 ){
7774 nxDiv = 0;
7775 }else{
7776 assert( bBulk==0 || bBulk==1 );
7777 if( iParentIdx==0 ){
7778 nxDiv = 0;
7779 }else if( iParentIdx==i ){
7780 nxDiv = i-2+bBulk;
7781 }else{
7782 nxDiv = iParentIdx-1;
7784 i = 2-bBulk;
7786 nOld = i+1;
7787 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
7788 pRight = &pParent->aData[pParent->hdrOffset+8];
7789 }else{
7790 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
7792 pgno = get4byte(pRight);
7793 while( 1 ){
7794 if( rc==SQLITE_OK ){
7795 rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0);
7797 if( rc ){
7798 memset(apOld, 0, (i+1)*sizeof(MemPage*));
7799 goto balance_cleanup;
7801 if( apOld[i]->nFree<0 ){
7802 rc = btreeComputeFreeSpace(apOld[i]);
7803 if( rc ){
7804 memset(apOld, 0, (i)*sizeof(MemPage*));
7805 goto balance_cleanup;
7808 nMaxCells += apOld[i]->nCell + ArraySize(pParent->apOvfl);
7809 if( (i--)==0 ) break;
7811 if( pParent->nOverflow && i+nxDiv==pParent->aiOvfl[0] ){
7812 apDiv[i] = pParent->apOvfl[0];
7813 pgno = get4byte(apDiv[i]);
7814 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
7815 pParent->nOverflow = 0;
7816 }else{
7817 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
7818 pgno = get4byte(apDiv[i]);
7819 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
7821 /* Drop the cell from the parent page. apDiv[i] still points to
7822 ** the cell within the parent, even though it has been dropped.
7823 ** This is safe because dropping a cell only overwrites the first
7824 ** four bytes of it, and this function does not need the first
7825 ** four bytes of the divider cell. So the pointer is safe to use
7826 ** later on.
7828 ** But not if we are in secure-delete mode. In secure-delete mode,
7829 ** the dropCell() routine will overwrite the entire cell with zeroes.
7830 ** In this case, temporarily copy the cell into the aOvflSpace[]
7831 ** buffer. It will be copied out again as soon as the aSpace[] buffer
7832 ** is allocated. */
7833 if( pBt->btsFlags & BTS_FAST_SECURE ){
7834 int iOff;
7836 /* If the following if() condition is not true, the db is corrupted.
7837 ** The call to dropCell() below will detect this. */
7838 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
7839 if( (iOff+szNew[i])<=(int)pBt->usableSize ){
7840 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
7841 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
7844 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
7848 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
7849 ** alignment */
7850 nMaxCells = (nMaxCells + 3)&~3;
7853 ** Allocate space for memory structures
7855 szScratch =
7856 nMaxCells*sizeof(u8*) /* b.apCell */
7857 + nMaxCells*sizeof(u16) /* b.szCell */
7858 + pBt->pageSize; /* aSpace1 */
7860 assert( szScratch<=7*(int)pBt->pageSize );
7861 b.apCell = sqlite3StackAllocRaw(0, szScratch );
7862 if( b.apCell==0 ){
7863 rc = SQLITE_NOMEM_BKPT;
7864 goto balance_cleanup;
7866 b.szCell = (u16*)&b.apCell[nMaxCells];
7867 aSpace1 = (u8*)&b.szCell[nMaxCells];
7868 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
7871 ** Load pointers to all cells on sibling pages and the divider cells
7872 ** into the local b.apCell[] array. Make copies of the divider cells
7873 ** into space obtained from aSpace1[]. The divider cells have already
7874 ** been removed from pParent.
7876 ** If the siblings are on leaf pages, then the child pointers of the
7877 ** divider cells are stripped from the cells before they are copied
7878 ** into aSpace1[]. In this way, all cells in b.apCell[] are without
7879 ** child pointers. If siblings are not leaves, then all cell in
7880 ** b.apCell[] include child pointers. Either way, all cells in b.apCell[]
7881 ** are alike.
7883 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
7884 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
7886 b.pRef = apOld[0];
7887 leafCorrection = b.pRef->leaf*4;
7888 leafData = b.pRef->intKeyLeaf;
7889 for(i=0; i<nOld; i++){
7890 MemPage *pOld = apOld[i];
7891 int limit = pOld->nCell;
7892 u8 *aData = pOld->aData;
7893 u16 maskPage = pOld->maskPage;
7894 u8 *piCell = aData + pOld->cellOffset;
7895 u8 *piEnd;
7896 VVA_ONLY( int nCellAtStart = b.nCell; )
7898 /* Verify that all sibling pages are of the same "type" (table-leaf,
7899 ** table-interior, index-leaf, or index-interior).
7901 if( pOld->aData[0]!=apOld[0]->aData[0] ){
7902 rc = SQLITE_CORRUPT_BKPT;
7903 goto balance_cleanup;
7906 /* Load b.apCell[] with pointers to all cells in pOld. If pOld
7907 ** contains overflow cells, include them in the b.apCell[] array
7908 ** in the correct spot.
7910 ** Note that when there are multiple overflow cells, it is always the
7911 ** case that they are sequential and adjacent. This invariant arises
7912 ** because multiple overflows can only occurs when inserting divider
7913 ** cells into a parent on a prior balance, and divider cells are always
7914 ** adjacent and are inserted in order. There is an assert() tagged
7915 ** with "NOTE 1" in the overflow cell insertion loop to prove this
7916 ** invariant.
7918 ** This must be done in advance. Once the balance starts, the cell
7919 ** offset section of the btree page will be overwritten and we will no
7920 ** long be able to find the cells if a pointer to each cell is not saved
7921 ** first.
7923 memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow));
7924 if( pOld->nOverflow>0 ){
7925 if( NEVER(limit<pOld->aiOvfl[0]) ){
7926 rc = SQLITE_CORRUPT_BKPT;
7927 goto balance_cleanup;
7929 limit = pOld->aiOvfl[0];
7930 for(j=0; j<limit; j++){
7931 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
7932 piCell += 2;
7933 b.nCell++;
7935 for(k=0; k<pOld->nOverflow; k++){
7936 assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */
7937 b.apCell[b.nCell] = pOld->apOvfl[k];
7938 b.nCell++;
7941 piEnd = aData + pOld->cellOffset + 2*pOld->nCell;
7942 while( piCell<piEnd ){
7943 assert( b.nCell<nMaxCells );
7944 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
7945 piCell += 2;
7946 b.nCell++;
7948 assert( (b.nCell-nCellAtStart)==(pOld->nCell+pOld->nOverflow) );
7950 cntOld[i] = b.nCell;
7951 if( i<nOld-1 && !leafData){
7952 u16 sz = (u16)szNew[i];
7953 u8 *pTemp;
7954 assert( b.nCell<nMaxCells );
7955 b.szCell[b.nCell] = sz;
7956 pTemp = &aSpace1[iSpace1];
7957 iSpace1 += sz;
7958 assert( sz<=pBt->maxLocal+23 );
7959 assert( iSpace1 <= (int)pBt->pageSize );
7960 memcpy(pTemp, apDiv[i], sz);
7961 b.apCell[b.nCell] = pTemp+leafCorrection;
7962 assert( leafCorrection==0 || leafCorrection==4 );
7963 b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection;
7964 if( !pOld->leaf ){
7965 assert( leafCorrection==0 );
7966 assert( pOld->hdrOffset==0 || CORRUPT_DB );
7967 /* The right pointer of the child page pOld becomes the left
7968 ** pointer of the divider cell */
7969 memcpy(b.apCell[b.nCell], &pOld->aData[8], 4);
7970 }else{
7971 assert( leafCorrection==4 );
7972 while( b.szCell[b.nCell]<4 ){
7973 /* Do not allow any cells smaller than 4 bytes. If a smaller cell
7974 ** does exist, pad it with 0x00 bytes. */
7975 assert( b.szCell[b.nCell]==3 || CORRUPT_DB );
7976 assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB );
7977 aSpace1[iSpace1++] = 0x00;
7978 b.szCell[b.nCell]++;
7981 b.nCell++;
7986 ** Figure out the number of pages needed to hold all b.nCell cells.
7987 ** Store this number in "k". Also compute szNew[] which is the total
7988 ** size of all cells on the i-th page and cntNew[] which is the index
7989 ** in b.apCell[] of the cell that divides page i from page i+1.
7990 ** cntNew[k] should equal b.nCell.
7992 ** Values computed by this block:
7994 ** k: The total number of sibling pages
7995 ** szNew[i]: Spaced used on the i-th sibling page.
7996 ** cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to
7997 ** the right of the i-th sibling page.
7998 ** usableSpace: Number of bytes of space available on each sibling.
8001 usableSpace = pBt->usableSize - 12 + leafCorrection;
8002 for(i=k=0; i<nOld; i++, k++){
8003 MemPage *p = apOld[i];
8004 b.apEnd[k] = p->aDataEnd;
8005 b.ixNx[k] = cntOld[i];
8006 if( k && b.ixNx[k]==b.ixNx[k-1] ){
8007 k--; /* Omit b.ixNx[] entry for child pages with no cells */
8009 if( !leafData ){
8010 k++;
8011 b.apEnd[k] = pParent->aDataEnd;
8012 b.ixNx[k] = cntOld[i]+1;
8014 assert( p->nFree>=0 );
8015 szNew[i] = usableSpace - p->nFree;
8016 for(j=0; j<p->nOverflow; j++){
8017 szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]);
8019 cntNew[i] = cntOld[i];
8021 k = nOld;
8022 for(i=0; i<k; i++){
8023 int sz;
8024 while( szNew[i]>usableSpace ){
8025 if( i+1>=k ){
8026 k = i+2;
8027 if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
8028 szNew[k-1] = 0;
8029 cntNew[k-1] = b.nCell;
8031 sz = 2 + cachedCellSize(&b, cntNew[i]-1);
8032 szNew[i] -= sz;
8033 if( !leafData ){
8034 if( cntNew[i]<b.nCell ){
8035 sz = 2 + cachedCellSize(&b, cntNew[i]);
8036 }else{
8037 sz = 0;
8040 szNew[i+1] += sz;
8041 cntNew[i]--;
8043 while( cntNew[i]<b.nCell ){
8044 sz = 2 + cachedCellSize(&b, cntNew[i]);
8045 if( szNew[i]+sz>usableSpace ) break;
8046 szNew[i] += sz;
8047 cntNew[i]++;
8048 if( !leafData ){
8049 if( cntNew[i]<b.nCell ){
8050 sz = 2 + cachedCellSize(&b, cntNew[i]);
8051 }else{
8052 sz = 0;
8055 szNew[i+1] -= sz;
8057 if( cntNew[i]>=b.nCell ){
8058 k = i+1;
8059 }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){
8060 rc = SQLITE_CORRUPT_BKPT;
8061 goto balance_cleanup;
8066 ** The packing computed by the previous block is biased toward the siblings
8067 ** on the left side (siblings with smaller keys). The left siblings are
8068 ** always nearly full, while the right-most sibling might be nearly empty.
8069 ** The next block of code attempts to adjust the packing of siblings to
8070 ** get a better balance.
8072 ** This adjustment is more than an optimization. The packing above might
8073 ** be so out of balance as to be illegal. For example, the right-most
8074 ** sibling might be completely empty. This adjustment is not optional.
8076 for(i=k-1; i>0; i--){
8077 int szRight = szNew[i]; /* Size of sibling on the right */
8078 int szLeft = szNew[i-1]; /* Size of sibling on the left */
8079 int r; /* Index of right-most cell in left sibling */
8080 int d; /* Index of first cell to the left of right sibling */
8082 r = cntNew[i-1] - 1;
8083 d = r + 1 - leafData;
8084 (void)cachedCellSize(&b, d);
8086 assert( d<nMaxCells );
8087 assert( r<nMaxCells );
8088 (void)cachedCellSize(&b, r);
8089 if( szRight!=0
8090 && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+(i==k-1?0:2)))){
8091 break;
8093 szRight += b.szCell[d] + 2;
8094 szLeft -= b.szCell[r] + 2;
8095 cntNew[i-1] = r;
8096 r--;
8097 d--;
8098 }while( r>=0 );
8099 szNew[i] = szRight;
8100 szNew[i-1] = szLeft;
8101 if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){
8102 rc = SQLITE_CORRUPT_BKPT;
8103 goto balance_cleanup;
8107 /* Sanity check: For a non-corrupt database file one of the follwing
8108 ** must be true:
8109 ** (1) We found one or more cells (cntNew[0])>0), or
8110 ** (2) pPage is a virtual root page. A virtual root page is when
8111 ** the real root page is page 1 and we are the only child of
8112 ** that page.
8114 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB);
8115 TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n",
8116 apOld[0]->pgno, apOld[0]->nCell,
8117 nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0,
8118 nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0
8122 ** Allocate k new pages. Reuse old pages where possible.
8124 pageFlags = apOld[0]->aData[0];
8125 for(i=0; i<k; i++){
8126 MemPage *pNew;
8127 if( i<nOld ){
8128 pNew = apNew[i] = apOld[i];
8129 apOld[i] = 0;
8130 rc = sqlite3PagerWrite(pNew->pDbPage);
8131 nNew++;
8132 if( sqlite3PagerPageRefcount(pNew->pDbPage)!=1+(i==(iParentIdx-nxDiv))
8133 && rc==SQLITE_OK
8135 rc = SQLITE_CORRUPT_BKPT;
8137 if( rc ) goto balance_cleanup;
8138 }else{
8139 assert( i>0 );
8140 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
8141 if( rc ) goto balance_cleanup;
8142 zeroPage(pNew, pageFlags);
8143 apNew[i] = pNew;
8144 nNew++;
8145 cntOld[i] = b.nCell;
8147 /* Set the pointer-map entry for the new sibling page. */
8148 if( ISAUTOVACUUM ){
8149 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
8150 if( rc!=SQLITE_OK ){
8151 goto balance_cleanup;
8158 ** Reassign page numbers so that the new pages are in ascending order.
8159 ** This helps to keep entries in the disk file in order so that a scan
8160 ** of the table is closer to a linear scan through the file. That in turn
8161 ** helps the operating system to deliver pages from the disk more rapidly.
8163 ** An O(n^2) insertion sort algorithm is used, but since n is never more
8164 ** than (NB+2) (a small constant), that should not be a problem.
8166 ** When NB==3, this one optimization makes the database about 25% faster
8167 ** for large insertions and deletions.
8169 for(i=0; i<nNew; i++){
8170 aPgOrder[i] = aPgno[i] = apNew[i]->pgno;
8171 aPgFlags[i] = apNew[i]->pDbPage->flags;
8172 for(j=0; j<i; j++){
8173 if( NEVER(aPgno[j]==aPgno[i]) ){
8174 /* This branch is taken if the set of sibling pages somehow contains
8175 ** duplicate entries. This can happen if the database is corrupt.
8176 ** It would be simpler to detect this as part of the loop below, but
8177 ** we do the detection here in order to avoid populating the pager
8178 ** cache with two separate objects associated with the same
8179 ** page number. */
8180 assert( CORRUPT_DB );
8181 rc = SQLITE_CORRUPT_BKPT;
8182 goto balance_cleanup;
8186 for(i=0; i<nNew; i++){
8187 int iBest = 0; /* aPgno[] index of page number to use */
8188 for(j=1; j<nNew; j++){
8189 if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j;
8191 pgno = aPgOrder[iBest];
8192 aPgOrder[iBest] = 0xffffffff;
8193 if( iBest!=i ){
8194 if( iBest>i ){
8195 sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0);
8197 sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]);
8198 apNew[i]->pgno = pgno;
8202 TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) "
8203 "%d(%d nc=%d) %d(%d nc=%d)\n",
8204 apNew[0]->pgno, szNew[0], cntNew[0],
8205 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
8206 nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0,
8207 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
8208 nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0,
8209 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
8210 nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0,
8211 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0,
8212 nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0
8215 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
8216 assert( nNew>=1 && nNew<=ArraySize(apNew) );
8217 assert( apNew[nNew-1]!=0 );
8218 put4byte(pRight, apNew[nNew-1]->pgno);
8220 /* If the sibling pages are not leaves, ensure that the right-child pointer
8221 ** of the right-most new sibling page is set to the value that was
8222 ** originally in the same field of the right-most old sibling page. */
8223 if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){
8224 MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1];
8225 memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4);
8228 /* Make any required updates to pointer map entries associated with
8229 ** cells stored on sibling pages following the balance operation. Pointer
8230 ** map entries associated with divider cells are set by the insertCell()
8231 ** routine. The associated pointer map entries are:
8233 ** a) if the cell contains a reference to an overflow chain, the
8234 ** entry associated with the first page in the overflow chain, and
8236 ** b) if the sibling pages are not leaves, the child page associated
8237 ** with the cell.
8239 ** If the sibling pages are not leaves, then the pointer map entry
8240 ** associated with the right-child of each sibling may also need to be
8241 ** updated. This happens below, after the sibling pages have been
8242 ** populated, not here.
8244 if( ISAUTOVACUUM ){
8245 MemPage *pOld;
8246 MemPage *pNew = pOld = apNew[0];
8247 int cntOldNext = pNew->nCell + pNew->nOverflow;
8248 int iNew = 0;
8249 int iOld = 0;
8251 for(i=0; i<b.nCell; i++){
8252 u8 *pCell = b.apCell[i];
8253 while( i==cntOldNext ){
8254 iOld++;
8255 assert( iOld<nNew || iOld<nOld );
8256 assert( iOld>=0 && iOld<NB );
8257 pOld = iOld<nNew ? apNew[iOld] : apOld[iOld];
8258 cntOldNext += pOld->nCell + pOld->nOverflow + !leafData;
8260 if( i==cntNew[iNew] ){
8261 pNew = apNew[++iNew];
8262 if( !leafData ) continue;
8265 /* Cell pCell is destined for new sibling page pNew. Originally, it
8266 ** was either part of sibling page iOld (possibly an overflow cell),
8267 ** or else the divider cell to the left of sibling page iOld. So,
8268 ** if sibling page iOld had the same page number as pNew, and if
8269 ** pCell really was a part of sibling page iOld (not a divider or
8270 ** overflow cell), we can skip updating the pointer map entries. */
8271 if( iOld>=nNew
8272 || pNew->pgno!=aPgno[iOld]
8273 || !SQLITE_WITHIN(pCell,pOld->aData,pOld->aDataEnd)
8275 if( !leafCorrection ){
8276 ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc);
8278 if( cachedCellSize(&b,i)>pNew->minLocal ){
8279 ptrmapPutOvflPtr(pNew, pOld, pCell, &rc);
8281 if( rc ) goto balance_cleanup;
8286 /* Insert new divider cells into pParent. */
8287 for(i=0; i<nNew-1; i++){
8288 u8 *pCell;
8289 u8 *pTemp;
8290 int sz;
8291 u8 *pSrcEnd;
8292 MemPage *pNew = apNew[i];
8293 j = cntNew[i];
8295 assert( j<nMaxCells );
8296 assert( b.apCell[j]!=0 );
8297 pCell = b.apCell[j];
8298 sz = b.szCell[j] + leafCorrection;
8299 pTemp = &aOvflSpace[iOvflSpace];
8300 if( !pNew->leaf ){
8301 memcpy(&pNew->aData[8], pCell, 4);
8302 }else if( leafData ){
8303 /* If the tree is a leaf-data tree, and the siblings are leaves,
8304 ** then there is no divider cell in b.apCell[]. Instead, the divider
8305 ** cell consists of the integer key for the right-most cell of
8306 ** the sibling-page assembled above only.
8308 CellInfo info;
8309 j--;
8310 pNew->xParseCell(pNew, b.apCell[j], &info);
8311 pCell = pTemp;
8312 sz = 4 + putVarint(&pCell[4], info.nKey);
8313 pTemp = 0;
8314 }else{
8315 pCell -= 4;
8316 /* Obscure case for non-leaf-data trees: If the cell at pCell was
8317 ** previously stored on a leaf node, and its reported size was 4
8318 ** bytes, then it may actually be smaller than this
8319 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
8320 ** any cell). But it is important to pass the correct size to
8321 ** insertCell(), so reparse the cell now.
8323 ** This can only happen for b-trees used to evaluate "IN (SELECT ...)"
8324 ** and WITHOUT ROWID tables with exactly one column which is the
8325 ** primary key.
8327 if( b.szCell[j]==4 ){
8328 assert(leafCorrection==4);
8329 sz = pParent->xCellSize(pParent, pCell);
8332 iOvflSpace += sz;
8333 assert( sz<=pBt->maxLocal+23 );
8334 assert( iOvflSpace <= (int)pBt->pageSize );
8335 for(k=0; b.ixNx[k]<=i && ALWAYS(k<NB*2); k++){}
8336 pSrcEnd = b.apEnd[k];
8337 if( SQLITE_WITHIN(pSrcEnd, pCell, pCell+sz) ){
8338 rc = SQLITE_CORRUPT_BKPT;
8339 goto balance_cleanup;
8341 insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc);
8342 if( rc!=SQLITE_OK ) goto balance_cleanup;
8343 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
8346 /* Now update the actual sibling pages. The order in which they are updated
8347 ** is important, as this code needs to avoid disrupting any page from which
8348 ** cells may still to be read. In practice, this means:
8350 ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1])
8351 ** then it is not safe to update page apNew[iPg] until after
8352 ** the left-hand sibling apNew[iPg-1] has been updated.
8354 ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1])
8355 ** then it is not safe to update page apNew[iPg] until after
8356 ** the right-hand sibling apNew[iPg+1] has been updated.
8358 ** If neither of the above apply, the page is safe to update.
8360 ** The iPg value in the following loop starts at nNew-1 goes down
8361 ** to 0, then back up to nNew-1 again, thus making two passes over
8362 ** the pages. On the initial downward pass, only condition (1) above
8363 ** needs to be tested because (2) will always be true from the previous
8364 ** step. On the upward pass, both conditions are always true, so the
8365 ** upwards pass simply processes pages that were missed on the downward
8366 ** pass.
8368 for(i=1-nNew; i<nNew; i++){
8369 int iPg = i<0 ? -i : i;
8370 assert( iPg>=0 && iPg<nNew );
8371 if( abDone[iPg] ) continue; /* Skip pages already processed */
8372 if( i>=0 /* On the upwards pass, or... */
8373 || cntOld[iPg-1]>=cntNew[iPg-1] /* Condition (1) is true */
8375 int iNew;
8376 int iOld;
8377 int nNewCell;
8379 /* Verify condition (1): If cells are moving left, update iPg
8380 ** only after iPg-1 has already been updated. */
8381 assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] );
8383 /* Verify condition (2): If cells are moving right, update iPg
8384 ** only after iPg+1 has already been updated. */
8385 assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] );
8387 if( iPg==0 ){
8388 iNew = iOld = 0;
8389 nNewCell = cntNew[0];
8390 }else{
8391 iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell;
8392 iNew = cntNew[iPg-1] + !leafData;
8393 nNewCell = cntNew[iPg] - iNew;
8396 rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b);
8397 if( rc ) goto balance_cleanup;
8398 abDone[iPg]++;
8399 apNew[iPg]->nFree = usableSpace-szNew[iPg];
8400 assert( apNew[iPg]->nOverflow==0 );
8401 assert( apNew[iPg]->nCell==nNewCell );
8405 /* All pages have been processed exactly once */
8406 assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 );
8408 assert( nOld>0 );
8409 assert( nNew>0 );
8411 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
8412 /* The root page of the b-tree now contains no cells. The only sibling
8413 ** page is the right-child of the parent. Copy the contents of the
8414 ** child page into the parent, decreasing the overall height of the
8415 ** b-tree structure by one. This is described as the "balance-shallower"
8416 ** sub-algorithm in some documentation.
8418 ** If this is an auto-vacuum database, the call to copyNodeContent()
8419 ** sets all pointer-map entries corresponding to database image pages
8420 ** for which the pointer is stored within the content being copied.
8422 ** It is critical that the child page be defragmented before being
8423 ** copied into the parent, because if the parent is page 1 then it will
8424 ** by smaller than the child due to the database header, and so all the
8425 ** free space needs to be up front.
8427 assert( nNew==1 || CORRUPT_DB );
8428 rc = defragmentPage(apNew[0], -1);
8429 testcase( rc!=SQLITE_OK );
8430 assert( apNew[0]->nFree ==
8431 (get2byteNotZero(&apNew[0]->aData[5]) - apNew[0]->cellOffset
8432 - apNew[0]->nCell*2)
8433 || rc!=SQLITE_OK
8435 copyNodeContent(apNew[0], pParent, &rc);
8436 freePage(apNew[0], &rc);
8437 }else if( ISAUTOVACUUM && !leafCorrection ){
8438 /* Fix the pointer map entries associated with the right-child of each
8439 ** sibling page. All other pointer map entries have already been taken
8440 ** care of. */
8441 for(i=0; i<nNew; i++){
8442 u32 key = get4byte(&apNew[i]->aData[8]);
8443 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
8447 assert( pParent->isInit );
8448 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
8449 nOld, nNew, b.nCell));
8451 /* Free any old pages that were not reused as new pages.
8453 for(i=nNew; i<nOld; i++){
8454 freePage(apOld[i], &rc);
8457 #if 0
8458 if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){
8459 /* The ptrmapCheckPages() contains assert() statements that verify that
8460 ** all pointer map pages are set correctly. This is helpful while
8461 ** debugging. This is usually disabled because a corrupt database may
8462 ** cause an assert() statement to fail. */
8463 ptrmapCheckPages(apNew, nNew);
8464 ptrmapCheckPages(&pParent, 1);
8466 #endif
8469 ** Cleanup before returning.
8471 balance_cleanup:
8472 sqlite3StackFree(0, b.apCell);
8473 for(i=0; i<nOld; i++){
8474 releasePage(apOld[i]);
8476 for(i=0; i<nNew; i++){
8477 releasePage(apNew[i]);
8480 return rc;
8485 ** This function is called when the root page of a b-tree structure is
8486 ** overfull (has one or more overflow pages).
8488 ** A new child page is allocated and the contents of the current root
8489 ** page, including overflow cells, are copied into the child. The root
8490 ** page is then overwritten to make it an empty page with the right-child
8491 ** pointer pointing to the new page.
8493 ** Before returning, all pointer-map entries corresponding to pages
8494 ** that the new child-page now contains pointers to are updated. The
8495 ** entry corresponding to the new right-child pointer of the root
8496 ** page is also updated.
8498 ** If successful, *ppChild is set to contain a reference to the child
8499 ** page and SQLITE_OK is returned. In this case the caller is required
8500 ** to call releasePage() on *ppChild exactly once. If an error occurs,
8501 ** an error code is returned and *ppChild is set to 0.
8503 static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
8504 int rc; /* Return value from subprocedures */
8505 MemPage *pChild = 0; /* Pointer to a new child page */
8506 Pgno pgnoChild = 0; /* Page number of the new child page */
8507 BtShared *pBt = pRoot->pBt; /* The BTree */
8509 assert( pRoot->nOverflow>0 );
8510 assert( sqlite3_mutex_held(pBt->mutex) );
8512 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
8513 ** page that will become the new right-child of pPage. Copy the contents
8514 ** of the node stored on pRoot into the new child page.
8516 rc = sqlite3PagerWrite(pRoot->pDbPage);
8517 if( rc==SQLITE_OK ){
8518 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
8519 copyNodeContent(pRoot, pChild, &rc);
8520 if( ISAUTOVACUUM ){
8521 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
8524 if( rc ){
8525 *ppChild = 0;
8526 releasePage(pChild);
8527 return rc;
8529 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
8530 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
8531 assert( pChild->nCell==pRoot->nCell || CORRUPT_DB );
8533 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
8535 /* Copy the overflow cells from pRoot to pChild */
8536 memcpy(pChild->aiOvfl, pRoot->aiOvfl,
8537 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
8538 memcpy(pChild->apOvfl, pRoot->apOvfl,
8539 pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
8540 pChild->nOverflow = pRoot->nOverflow;
8542 /* Zero the contents of pRoot. Then install pChild as the right-child. */
8543 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
8544 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
8546 *ppChild = pChild;
8547 return SQLITE_OK;
8551 ** Return SQLITE_CORRUPT if any cursor other than pCur is currently valid
8552 ** on the same B-tree as pCur.
8554 ** This can occur if a database is corrupt with two or more SQL tables
8555 ** pointing to the same b-tree. If an insert occurs on one SQL table
8556 ** and causes a BEFORE TRIGGER to do a secondary insert on the other SQL
8557 ** table linked to the same b-tree. If the secondary insert causes a
8558 ** rebalance, that can change content out from under the cursor on the
8559 ** first SQL table, violating invariants on the first insert.
8561 static int anotherValidCursor(BtCursor *pCur){
8562 BtCursor *pOther;
8563 for(pOther=pCur->pBt->pCursor; pOther; pOther=pOther->pNext){
8564 if( pOther!=pCur
8565 && pOther->eState==CURSOR_VALID
8566 && pOther->pPage==pCur->pPage
8568 return SQLITE_CORRUPT_BKPT;
8571 return SQLITE_OK;
8575 ** The page that pCur currently points to has just been modified in
8576 ** some way. This function figures out if this modification means the
8577 ** tree needs to be balanced, and if so calls the appropriate balancing
8578 ** routine. Balancing routines are:
8580 ** balance_quick()
8581 ** balance_deeper()
8582 ** balance_nonroot()
8584 static int balance(BtCursor *pCur){
8585 int rc = SQLITE_OK;
8586 const int nMin = pCur->pBt->usableSize * 2 / 3;
8587 u8 aBalanceQuickSpace[13];
8588 u8 *pFree = 0;
8590 VVA_ONLY( int balance_quick_called = 0 );
8591 VVA_ONLY( int balance_deeper_called = 0 );
8593 do {
8594 int iPage;
8595 MemPage *pPage = pCur->pPage;
8597 if( NEVER(pPage->nFree<0) && btreeComputeFreeSpace(pPage) ) break;
8598 if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
8599 break;
8600 }else if( (iPage = pCur->iPage)==0 ){
8601 if( pPage->nOverflow && (rc = anotherValidCursor(pCur))==SQLITE_OK ){
8602 /* The root page of the b-tree is overfull. In this case call the
8603 ** balance_deeper() function to create a new child for the root-page
8604 ** and copy the current contents of the root-page to it. The
8605 ** next iteration of the do-loop will balance the child page.
8607 assert( balance_deeper_called==0 );
8608 VVA_ONLY( balance_deeper_called++ );
8609 rc = balance_deeper(pPage, &pCur->apPage[1]);
8610 if( rc==SQLITE_OK ){
8611 pCur->iPage = 1;
8612 pCur->ix = 0;
8613 pCur->aiIdx[0] = 0;
8614 pCur->apPage[0] = pPage;
8615 pCur->pPage = pCur->apPage[1];
8616 assert( pCur->pPage->nOverflow );
8618 }else{
8619 break;
8621 }else{
8622 MemPage * const pParent = pCur->apPage[iPage-1];
8623 int const iIdx = pCur->aiIdx[iPage-1];
8625 rc = sqlite3PagerWrite(pParent->pDbPage);
8626 if( rc==SQLITE_OK && pParent->nFree<0 ){
8627 rc = btreeComputeFreeSpace(pParent);
8629 if( rc==SQLITE_OK ){
8630 #ifndef SQLITE_OMIT_QUICKBALANCE
8631 if( pPage->intKeyLeaf
8632 && pPage->nOverflow==1
8633 && pPage->aiOvfl[0]==pPage->nCell
8634 && pParent->pgno!=1
8635 && pParent->nCell==iIdx
8637 /* Call balance_quick() to create a new sibling of pPage on which
8638 ** to store the overflow cell. balance_quick() inserts a new cell
8639 ** into pParent, which may cause pParent overflow. If this
8640 ** happens, the next iteration of the do-loop will balance pParent
8641 ** use either balance_nonroot() or balance_deeper(). Until this
8642 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
8643 ** buffer.
8645 ** The purpose of the following assert() is to check that only a
8646 ** single call to balance_quick() is made for each call to this
8647 ** function. If this were not verified, a subtle bug involving reuse
8648 ** of the aBalanceQuickSpace[] might sneak in.
8650 assert( balance_quick_called==0 );
8651 VVA_ONLY( balance_quick_called++ );
8652 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
8653 }else
8654 #endif
8656 /* In this case, call balance_nonroot() to redistribute cells
8657 ** between pPage and up to 2 of its sibling pages. This involves
8658 ** modifying the contents of pParent, which may cause pParent to
8659 ** become overfull or underfull. The next iteration of the do-loop
8660 ** will balance the parent page to correct this.
8662 ** If the parent page becomes overfull, the overflow cell or cells
8663 ** are stored in the pSpace buffer allocated immediately below.
8664 ** A subsequent iteration of the do-loop will deal with this by
8665 ** calling balance_nonroot() (balance_deeper() may be called first,
8666 ** but it doesn't deal with overflow cells - just moves them to a
8667 ** different page). Once this subsequent call to balance_nonroot()
8668 ** has completed, it is safe to release the pSpace buffer used by
8669 ** the previous call, as the overflow cell data will have been
8670 ** copied either into the body of a database page or into the new
8671 ** pSpace buffer passed to the latter call to balance_nonroot().
8673 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
8674 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1,
8675 pCur->hints&BTREE_BULKLOAD);
8676 if( pFree ){
8677 /* If pFree is not NULL, it points to the pSpace buffer used
8678 ** by a previous call to balance_nonroot(). Its contents are
8679 ** now stored either on real database pages or within the
8680 ** new pSpace buffer, so it may be safely freed here. */
8681 sqlite3PageFree(pFree);
8684 /* The pSpace buffer will be freed after the next call to
8685 ** balance_nonroot(), or just before this function returns, whichever
8686 ** comes first. */
8687 pFree = pSpace;
8691 pPage->nOverflow = 0;
8693 /* The next iteration of the do-loop balances the parent page. */
8694 releasePage(pPage);
8695 pCur->iPage--;
8696 assert( pCur->iPage>=0 );
8697 pCur->pPage = pCur->apPage[pCur->iPage];
8699 }while( rc==SQLITE_OK );
8701 if( pFree ){
8702 sqlite3PageFree(pFree);
8704 return rc;
8707 /* Overwrite content from pX into pDest. Only do the write if the
8708 ** content is different from what is already there.
8710 static int btreeOverwriteContent(
8711 MemPage *pPage, /* MemPage on which writing will occur */
8712 u8 *pDest, /* Pointer to the place to start writing */
8713 const BtreePayload *pX, /* Source of data to write */
8714 int iOffset, /* Offset of first byte to write */
8715 int iAmt /* Number of bytes to be written */
8717 int nData = pX->nData - iOffset;
8718 if( nData<=0 ){
8719 /* Overwritting with zeros */
8720 int i;
8721 for(i=0; i<iAmt && pDest[i]==0; i++){}
8722 if( i<iAmt ){
8723 int rc = sqlite3PagerWrite(pPage->pDbPage);
8724 if( rc ) return rc;
8725 memset(pDest + i, 0, iAmt - i);
8727 }else{
8728 if( nData<iAmt ){
8729 /* Mixed read data and zeros at the end. Make a recursive call
8730 ** to write the zeros then fall through to write the real data */
8731 int rc = btreeOverwriteContent(pPage, pDest+nData, pX, iOffset+nData,
8732 iAmt-nData);
8733 if( rc ) return rc;
8734 iAmt = nData;
8736 if( memcmp(pDest, ((u8*)pX->pData) + iOffset, iAmt)!=0 ){
8737 int rc = sqlite3PagerWrite(pPage->pDbPage);
8738 if( rc ) return rc;
8739 /* In a corrupt database, it is possible for the source and destination
8740 ** buffers to overlap. This is harmless since the database is already
8741 ** corrupt but it does cause valgrind and ASAN warnings. So use
8742 ** memmove(). */
8743 memmove(pDest, ((u8*)pX->pData) + iOffset, iAmt);
8746 return SQLITE_OK;
8750 ** Overwrite the cell that cursor pCur is pointing to with fresh content
8751 ** contained in pX.
8753 static int btreeOverwriteCell(BtCursor *pCur, const BtreePayload *pX){
8754 int iOffset; /* Next byte of pX->pData to write */
8755 int nTotal = pX->nData + pX->nZero; /* Total bytes of to write */
8756 int rc; /* Return code */
8757 MemPage *pPage = pCur->pPage; /* Page being written */
8758 BtShared *pBt; /* Btree */
8759 Pgno ovflPgno; /* Next overflow page to write */
8760 u32 ovflPageSize; /* Size to write on overflow page */
8762 if( pCur->info.pPayload + pCur->info.nLocal > pPage->aDataEnd
8763 || pCur->info.pPayload < pPage->aData + pPage->cellOffset
8765 return SQLITE_CORRUPT_BKPT;
8767 /* Overwrite the local portion first */
8768 rc = btreeOverwriteContent(pPage, pCur->info.pPayload, pX,
8769 0, pCur->info.nLocal);
8770 if( rc ) return rc;
8771 if( pCur->info.nLocal==nTotal ) return SQLITE_OK;
8773 /* Now overwrite the overflow pages */
8774 iOffset = pCur->info.nLocal;
8775 assert( nTotal>=0 );
8776 assert( iOffset>=0 );
8777 ovflPgno = get4byte(pCur->info.pPayload + iOffset);
8778 pBt = pPage->pBt;
8779 ovflPageSize = pBt->usableSize - 4;
8781 rc = btreeGetPage(pBt, ovflPgno, &pPage, 0);
8782 if( rc ) return rc;
8783 if( sqlite3PagerPageRefcount(pPage->pDbPage)!=1 || pPage->isInit ){
8784 rc = SQLITE_CORRUPT_BKPT;
8785 }else{
8786 if( iOffset+ovflPageSize<(u32)nTotal ){
8787 ovflPgno = get4byte(pPage->aData);
8788 }else{
8789 ovflPageSize = nTotal - iOffset;
8791 rc = btreeOverwriteContent(pPage, pPage->aData+4, pX,
8792 iOffset, ovflPageSize);
8794 sqlite3PagerUnref(pPage->pDbPage);
8795 if( rc ) return rc;
8796 iOffset += ovflPageSize;
8797 }while( iOffset<nTotal );
8798 return SQLITE_OK;
8803 ** Insert a new record into the BTree. The content of the new record
8804 ** is described by the pX object. The pCur cursor is used only to
8805 ** define what table the record should be inserted into, and is left
8806 ** pointing at a random location.
8808 ** For a table btree (used for rowid tables), only the pX.nKey value of
8809 ** the key is used. The pX.pKey value must be NULL. The pX.nKey is the
8810 ** rowid or INTEGER PRIMARY KEY of the row. The pX.nData,pData,nZero fields
8811 ** hold the content of the row.
8813 ** For an index btree (used for indexes and WITHOUT ROWID tables), the
8814 ** key is an arbitrary byte sequence stored in pX.pKey,nKey. The
8815 ** pX.pData,nData,nZero fields must be zero.
8817 ** If the seekResult parameter is non-zero, then a successful call to
8818 ** MovetoUnpacked() to seek cursor pCur to (pKey,nKey) has already
8819 ** been performed. In other words, if seekResult!=0 then the cursor
8820 ** is currently pointing to a cell that will be adjacent to the cell
8821 ** to be inserted. If seekResult<0 then pCur points to a cell that is
8822 ** smaller then (pKey,nKey). If seekResult>0 then pCur points to a cell
8823 ** that is larger than (pKey,nKey).
8825 ** If seekResult==0, that means pCur is pointing at some unknown location.
8826 ** In that case, this routine must seek the cursor to the correct insertion
8827 ** point for (pKey,nKey) before doing the insertion. For index btrees,
8828 ** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked
8829 ** key values and pX->aMem can be used instead of pX->pKey to avoid having
8830 ** to decode the key.
8832 int sqlite3BtreeInsert(
8833 BtCursor *pCur, /* Insert data into the table of this cursor */
8834 const BtreePayload *pX, /* Content of the row to be inserted */
8835 int flags, /* True if this is likely an append */
8836 int seekResult /* Result of prior MovetoUnpacked() call */
8838 int rc;
8839 int loc = seekResult; /* -1: before desired location +1: after */
8840 int szNew = 0;
8841 int idx;
8842 MemPage *pPage;
8843 Btree *p = pCur->pBtree;
8844 BtShared *pBt = p->pBt;
8845 unsigned char *oldCell;
8846 unsigned char *newCell = 0;
8848 assert( (flags & (BTREE_SAVEPOSITION|BTREE_APPEND|BTREE_PREFORMAT))==flags );
8849 assert( (flags & BTREE_PREFORMAT)==0 || seekResult || pCur->pKeyInfo==0 );
8851 /* Save the positions of any other cursors open on this table.
8853 ** In some cases, the call to btreeMoveto() below is a no-op. For
8854 ** example, when inserting data into a table with auto-generated integer
8855 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
8856 ** integer key to use. It then calls this function to actually insert the
8857 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
8858 ** that the cursor is already where it needs to be and returns without
8859 ** doing any work. To avoid thwarting these optimizations, it is important
8860 ** not to clear the cursor here.
8862 if( pCur->curFlags & BTCF_Multiple ){
8863 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8864 if( rc ) return rc;
8865 if( loc && pCur->iPage<0 ){
8866 /* This can only happen if the schema is corrupt such that there is more
8867 ** than one table or index with the same root page as used by the cursor.
8868 ** Which can only happen if the SQLITE_NoSchemaError flag was set when
8869 ** the schema was loaded. This cannot be asserted though, as a user might
8870 ** set the flag, load the schema, and then unset the flag. */
8871 return SQLITE_CORRUPT_BKPT;
8875 if( pCur->eState>=CURSOR_REQUIRESEEK ){
8876 rc = moveToRoot(pCur);
8877 if( rc && rc!=SQLITE_EMPTY ) return rc;
8880 assert( cursorOwnsBtShared(pCur) );
8881 assert( (pCur->curFlags & BTCF_WriteFlag)!=0
8882 && pBt->inTransaction==TRANS_WRITE
8883 && (pBt->btsFlags & BTS_READ_ONLY)==0 );
8884 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8886 /* Assert that the caller has been consistent. If this cursor was opened
8887 ** expecting an index b-tree, then the caller should be inserting blob
8888 ** keys with no associated data. If the cursor was opened expecting an
8889 ** intkey table, the caller should be inserting integer keys with a
8890 ** blob of associated data. */
8891 assert( (flags & BTREE_PREFORMAT) || (pX->pKey==0)==(pCur->pKeyInfo==0) );
8893 if( pCur->pKeyInfo==0 ){
8894 assert( pX->pKey==0 );
8895 /* If this is an insert into a table b-tree, invalidate any incrblob
8896 ** cursors open on the row being replaced */
8897 if( p->hasIncrblobCur ){
8898 invalidateIncrblobCursors(p, pCur->pgnoRoot, pX->nKey, 0);
8901 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
8902 ** to a row with the same key as the new entry being inserted.
8904 #ifdef SQLITE_DEBUG
8905 if( flags & BTREE_SAVEPOSITION ){
8906 assert( pCur->curFlags & BTCF_ValidNKey );
8907 assert( pX->nKey==pCur->info.nKey );
8908 assert( loc==0 );
8910 #endif
8912 /* On the other hand, BTREE_SAVEPOSITION==0 does not imply
8913 ** that the cursor is not pointing to a row to be overwritten.
8914 ** So do a complete check.
8916 if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){
8917 /* The cursor is pointing to the entry that is to be
8918 ** overwritten */
8919 assert( pX->nData>=0 && pX->nZero>=0 );
8920 if( pCur->info.nSize!=0
8921 && pCur->info.nPayload==(u32)pX->nData+pX->nZero
8923 /* New entry is the same size as the old. Do an overwrite */
8924 return btreeOverwriteCell(pCur, pX);
8926 assert( loc==0 );
8927 }else if( loc==0 ){
8928 /* The cursor is *not* pointing to the cell to be overwritten, nor
8929 ** to an adjacent cell. Move the cursor so that it is pointing either
8930 ** to the cell to be overwritten or an adjacent cell.
8932 rc = sqlite3BtreeTableMoveto(pCur, pX->nKey,
8933 (flags & BTREE_APPEND)!=0, &loc);
8934 if( rc ) return rc;
8936 }else{
8937 /* This is an index or a WITHOUT ROWID table */
8939 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
8940 ** to a row with the same key as the new entry being inserted.
8942 assert( (flags & BTREE_SAVEPOSITION)==0 || loc==0 );
8944 /* If the cursor is not already pointing either to the cell to be
8945 ** overwritten, or if a new cell is being inserted, if the cursor is
8946 ** not pointing to an immediately adjacent cell, then move the cursor
8947 ** so that it does.
8949 if( loc==0 && (flags & BTREE_SAVEPOSITION)==0 ){
8950 if( pX->nMem ){
8951 UnpackedRecord r;
8952 r.pKeyInfo = pCur->pKeyInfo;
8953 r.aMem = pX->aMem;
8954 r.nField = pX->nMem;
8955 r.default_rc = 0;
8956 r.eqSeen = 0;
8957 rc = sqlite3BtreeIndexMoveto(pCur, &r, &loc);
8958 }else{
8959 rc = btreeMoveto(pCur, pX->pKey, pX->nKey,
8960 (flags & BTREE_APPEND)!=0, &loc);
8962 if( rc ) return rc;
8965 /* If the cursor is currently pointing to an entry to be overwritten
8966 ** and the new content is the same as as the old, then use the
8967 ** overwrite optimization.
8969 if( loc==0 ){
8970 getCellInfo(pCur);
8971 if( pCur->info.nKey==pX->nKey ){
8972 BtreePayload x2;
8973 x2.pData = pX->pKey;
8974 x2.nData = pX->nKey;
8975 x2.nZero = 0;
8976 return btreeOverwriteCell(pCur, &x2);
8980 assert( pCur->eState==CURSOR_VALID
8981 || (pCur->eState==CURSOR_INVALID && loc) );
8983 pPage = pCur->pPage;
8984 assert( pPage->intKey || pX->nKey>=0 || (flags & BTREE_PREFORMAT) );
8985 assert( pPage->leaf || !pPage->intKey );
8986 if( pPage->nFree<0 ){
8987 if( pCur->eState>CURSOR_INVALID ){
8988 rc = SQLITE_CORRUPT_BKPT;
8989 }else{
8990 rc = btreeComputeFreeSpace(pPage);
8992 if( rc ) return rc;
8995 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
8996 pCur->pgnoRoot, pX->nKey, pX->nData, pPage->pgno,
8997 loc==0 ? "overwrite" : "new entry"));
8998 assert( pPage->isInit );
8999 newCell = pBt->pTmpSpace;
9000 assert( newCell!=0 );
9001 if( flags & BTREE_PREFORMAT ){
9002 rc = SQLITE_OK;
9003 szNew = pBt->nPreformatSize;
9004 if( szNew<4 ) szNew = 4;
9005 if( ISAUTOVACUUM && szNew>pPage->maxLocal ){
9006 CellInfo info;
9007 pPage->xParseCell(pPage, newCell, &info);
9008 if( info.nPayload!=info.nLocal ){
9009 Pgno ovfl = get4byte(&newCell[szNew-4]);
9010 ptrmapPut(pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, &rc);
9013 }else{
9014 rc = fillInCell(pPage, newCell, pX, &szNew);
9016 if( rc ) goto end_insert;
9017 assert( szNew==pPage->xCellSize(pPage, newCell) );
9018 assert( szNew <= MX_CELL_SIZE(pBt) );
9019 idx = pCur->ix;
9020 if( loc==0 ){
9021 CellInfo info;
9022 assert( idx>=0 );
9023 if( idx>=pPage->nCell ){
9024 return SQLITE_CORRUPT_BKPT;
9026 rc = sqlite3PagerWrite(pPage->pDbPage);
9027 if( rc ){
9028 goto end_insert;
9030 oldCell = findCell(pPage, idx);
9031 if( !pPage->leaf ){
9032 memcpy(newCell, oldCell, 4);
9034 BTREE_CLEAR_CELL(rc, pPage, oldCell, info);
9035 testcase( pCur->curFlags & BTCF_ValidOvfl );
9036 invalidateOverflowCache(pCur);
9037 if( info.nSize==szNew && info.nLocal==info.nPayload
9038 && (!ISAUTOVACUUM || szNew<pPage->minLocal)
9040 /* Overwrite the old cell with the new if they are the same size.
9041 ** We could also try to do this if the old cell is smaller, then add
9042 ** the leftover space to the free list. But experiments show that
9043 ** doing that is no faster then skipping this optimization and just
9044 ** calling dropCell() and insertCell().
9046 ** This optimization cannot be used on an autovacuum database if the
9047 ** new entry uses overflow pages, as the insertCell() call below is
9048 ** necessary to add the PTRMAP_OVERFLOW1 pointer-map entry. */
9049 assert( rc==SQLITE_OK ); /* clearCell never fails when nLocal==nPayload */
9050 if( oldCell < pPage->aData+pPage->hdrOffset+10 ){
9051 return SQLITE_CORRUPT_BKPT;
9053 if( oldCell+szNew > pPage->aDataEnd ){
9054 return SQLITE_CORRUPT_BKPT;
9056 memcpy(oldCell, newCell, szNew);
9057 return SQLITE_OK;
9059 dropCell(pPage, idx, info.nSize, &rc);
9060 if( rc ) goto end_insert;
9061 }else if( loc<0 && pPage->nCell>0 ){
9062 assert( pPage->leaf );
9063 idx = ++pCur->ix;
9064 pCur->curFlags &= ~BTCF_ValidNKey;
9065 }else{
9066 assert( pPage->leaf );
9068 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
9069 assert( pPage->nOverflow==0 || rc==SQLITE_OK );
9070 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
9072 /* If no error has occurred and pPage has an overflow cell, call balance()
9073 ** to redistribute the cells within the tree. Since balance() may move
9074 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
9075 ** variables.
9077 ** Previous versions of SQLite called moveToRoot() to move the cursor
9078 ** back to the root page as balance() used to invalidate the contents
9079 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
9080 ** set the cursor state to "invalid". This makes common insert operations
9081 ** slightly faster.
9083 ** There is a subtle but important optimization here too. When inserting
9084 ** multiple records into an intkey b-tree using a single cursor (as can
9085 ** happen while processing an "INSERT INTO ... SELECT" statement), it
9086 ** is advantageous to leave the cursor pointing to the last entry in
9087 ** the b-tree if possible. If the cursor is left pointing to the last
9088 ** entry in the table, and the next row inserted has an integer key
9089 ** larger than the largest existing key, it is possible to insert the
9090 ** row without seeking the cursor. This can be a big performance boost.
9092 pCur->info.nSize = 0;
9093 if( pPage->nOverflow ){
9094 assert( rc==SQLITE_OK );
9095 pCur->curFlags &= ~(BTCF_ValidNKey);
9096 rc = balance(pCur);
9098 /* Must make sure nOverflow is reset to zero even if the balance()
9099 ** fails. Internal data structure corruption will result otherwise.
9100 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
9101 ** from trying to save the current position of the cursor. */
9102 pCur->pPage->nOverflow = 0;
9103 pCur->eState = CURSOR_INVALID;
9104 if( (flags & BTREE_SAVEPOSITION) && rc==SQLITE_OK ){
9105 btreeReleaseAllCursorPages(pCur);
9106 if( pCur->pKeyInfo ){
9107 assert( pCur->pKey==0 );
9108 pCur->pKey = sqlite3Malloc( pX->nKey );
9109 if( pCur->pKey==0 ){
9110 rc = SQLITE_NOMEM;
9111 }else{
9112 memcpy(pCur->pKey, pX->pKey, pX->nKey);
9115 pCur->eState = CURSOR_REQUIRESEEK;
9116 pCur->nKey = pX->nKey;
9119 assert( pCur->iPage<0 || pCur->pPage->nOverflow==0 );
9121 end_insert:
9122 return rc;
9126 ** This function is used as part of copying the current row from cursor
9127 ** pSrc into cursor pDest. If the cursors are open on intkey tables, then
9128 ** parameter iKey is used as the rowid value when the record is copied
9129 ** into pDest. Otherwise, the record is copied verbatim.
9131 ** This function does not actually write the new value to cursor pDest.
9132 ** Instead, it creates and populates any required overflow pages and
9133 ** writes the data for the new cell into the BtShared.pTmpSpace buffer
9134 ** for the destination database. The size of the cell, in bytes, is left
9135 ** in BtShared.nPreformatSize. The caller completes the insertion by
9136 ** calling sqlite3BtreeInsert() with the BTREE_PREFORMAT flag specified.
9138 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
9140 int sqlite3BtreeTransferRow(BtCursor *pDest, BtCursor *pSrc, i64 iKey){
9141 int rc = SQLITE_OK;
9142 BtShared *pBt = pDest->pBt;
9143 u8 *aOut = pBt->pTmpSpace; /* Pointer to next output buffer */
9144 const u8 *aIn; /* Pointer to next input buffer */
9145 u32 nIn; /* Size of input buffer aIn[] */
9146 u32 nRem; /* Bytes of data still to copy */
9148 getCellInfo(pSrc);
9149 aOut += putVarint32(aOut, pSrc->info.nPayload);
9150 if( pDest->pKeyInfo==0 ) aOut += putVarint(aOut, iKey);
9151 nIn = pSrc->info.nLocal;
9152 aIn = pSrc->info.pPayload;
9153 if( aIn+nIn>pSrc->pPage->aDataEnd ){
9154 return SQLITE_CORRUPT_BKPT;
9156 nRem = pSrc->info.nPayload;
9157 if( nIn==nRem && nIn<pDest->pPage->maxLocal ){
9158 memcpy(aOut, aIn, nIn);
9159 pBt->nPreformatSize = nIn + (aOut - pBt->pTmpSpace);
9160 }else{
9161 Pager *pSrcPager = pSrc->pBt->pPager;
9162 u8 *pPgnoOut = 0;
9163 Pgno ovflIn = 0;
9164 DbPage *pPageIn = 0;
9165 MemPage *pPageOut = 0;
9166 u32 nOut; /* Size of output buffer aOut[] */
9168 nOut = btreePayloadToLocal(pDest->pPage, pSrc->info.nPayload);
9169 pBt->nPreformatSize = nOut + (aOut - pBt->pTmpSpace);
9170 if( nOut<pSrc->info.nPayload ){
9171 pPgnoOut = &aOut[nOut];
9172 pBt->nPreformatSize += 4;
9175 if( nRem>nIn ){
9176 if( aIn+nIn+4>pSrc->pPage->aDataEnd ){
9177 return SQLITE_CORRUPT_BKPT;
9179 ovflIn = get4byte(&pSrc->info.pPayload[nIn]);
9182 do {
9183 nRem -= nOut;
9185 assert( nOut>0 );
9186 if( nIn>0 ){
9187 int nCopy = MIN(nOut, nIn);
9188 memcpy(aOut, aIn, nCopy);
9189 nOut -= nCopy;
9190 nIn -= nCopy;
9191 aOut += nCopy;
9192 aIn += nCopy;
9194 if( nOut>0 ){
9195 sqlite3PagerUnref(pPageIn);
9196 pPageIn = 0;
9197 rc = sqlite3PagerGet(pSrcPager, ovflIn, &pPageIn, PAGER_GET_READONLY);
9198 if( rc==SQLITE_OK ){
9199 aIn = (const u8*)sqlite3PagerGetData(pPageIn);
9200 ovflIn = get4byte(aIn);
9201 aIn += 4;
9202 nIn = pSrc->pBt->usableSize - 4;
9205 }while( rc==SQLITE_OK && nOut>0 );
9207 if( rc==SQLITE_OK && nRem>0 && ALWAYS(pPgnoOut) ){
9208 Pgno pgnoNew;
9209 MemPage *pNew = 0;
9210 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
9211 put4byte(pPgnoOut, pgnoNew);
9212 if( ISAUTOVACUUM && pPageOut ){
9213 ptrmapPut(pBt, pgnoNew, PTRMAP_OVERFLOW2, pPageOut->pgno, &rc);
9215 releasePage(pPageOut);
9216 pPageOut = pNew;
9217 if( pPageOut ){
9218 pPgnoOut = pPageOut->aData;
9219 put4byte(pPgnoOut, 0);
9220 aOut = &pPgnoOut[4];
9221 nOut = MIN(pBt->usableSize - 4, nRem);
9224 }while( nRem>0 && rc==SQLITE_OK );
9226 releasePage(pPageOut);
9227 sqlite3PagerUnref(pPageIn);
9230 return rc;
9234 ** Delete the entry that the cursor is pointing to.
9236 ** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then
9237 ** the cursor is left pointing at an arbitrary location after the delete.
9238 ** But if that bit is set, then the cursor is left in a state such that
9239 ** the next call to BtreeNext() or BtreePrev() moves it to the same row
9240 ** as it would have been on if the call to BtreeDelete() had been omitted.
9242 ** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes
9243 ** associated with a single table entry and its indexes. Only one of those
9244 ** deletes is considered the "primary" delete. The primary delete occurs
9245 ** on a cursor that is not a BTREE_FORDELETE cursor. All but one delete
9246 ** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag.
9247 ** The BTREE_AUXDELETE bit is a hint that is not used by this implementation,
9248 ** but which might be used by alternative storage engines.
9250 int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){
9251 Btree *p = pCur->pBtree;
9252 BtShared *pBt = p->pBt;
9253 int rc; /* Return code */
9254 MemPage *pPage; /* Page to delete cell from */
9255 unsigned char *pCell; /* Pointer to cell to delete */
9256 int iCellIdx; /* Index of cell to delete */
9257 int iCellDepth; /* Depth of node containing pCell */
9258 CellInfo info; /* Size of the cell being deleted */
9259 u8 bPreserve; /* Keep cursor valid. 2 for CURSOR_SKIPNEXT */
9261 assert( cursorOwnsBtShared(pCur) );
9262 assert( pBt->inTransaction==TRANS_WRITE );
9263 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
9264 assert( pCur->curFlags & BTCF_WriteFlag );
9265 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
9266 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
9267 assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 );
9268 if( pCur->eState!=CURSOR_VALID ){
9269 if( pCur->eState>=CURSOR_REQUIRESEEK ){
9270 rc = btreeRestoreCursorPosition(pCur);
9271 assert( rc!=SQLITE_OK || CORRUPT_DB || pCur->eState==CURSOR_VALID );
9272 if( rc || pCur->eState!=CURSOR_VALID ) return rc;
9273 }else{
9274 return SQLITE_CORRUPT_BKPT;
9277 assert( pCur->eState==CURSOR_VALID );
9279 iCellDepth = pCur->iPage;
9280 iCellIdx = pCur->ix;
9281 pPage = pCur->pPage;
9282 if( pPage->nCell<=iCellIdx ){
9283 return SQLITE_CORRUPT_BKPT;
9285 pCell = findCell(pPage, iCellIdx);
9286 if( pPage->nFree<0 && btreeComputeFreeSpace(pPage) ){
9287 return SQLITE_CORRUPT_BKPT;
9290 /* If the BTREE_SAVEPOSITION bit is on, then the cursor position must
9291 ** be preserved following this delete operation. If the current delete
9292 ** will cause a b-tree rebalance, then this is done by saving the cursor
9293 ** key and leaving the cursor in CURSOR_REQUIRESEEK state before
9294 ** returning.
9296 ** If the current delete will not cause a rebalance, then the cursor
9297 ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately
9298 ** before or after the deleted entry.
9300 ** The bPreserve value records which path is required:
9302 ** bPreserve==0 Not necessary to save the cursor position
9303 ** bPreserve==1 Use CURSOR_REQUIRESEEK to save the cursor position
9304 ** bPreserve==2 Cursor won't move. Set CURSOR_SKIPNEXT.
9306 bPreserve = (flags & BTREE_SAVEPOSITION)!=0;
9307 if( bPreserve ){
9308 if( !pPage->leaf
9309 || (pPage->nFree+cellSizePtr(pPage,pCell)+2)>(int)(pBt->usableSize*2/3)
9310 || pPage->nCell==1 /* See dbfuzz001.test for a test case */
9312 /* A b-tree rebalance will be required after deleting this entry.
9313 ** Save the cursor key. */
9314 rc = saveCursorKey(pCur);
9315 if( rc ) return rc;
9316 }else{
9317 bPreserve = 2;
9321 /* If the page containing the entry to delete is not a leaf page, move
9322 ** the cursor to the largest entry in the tree that is smaller than
9323 ** the entry being deleted. This cell will replace the cell being deleted
9324 ** from the internal node. The 'previous' entry is used for this instead
9325 ** of the 'next' entry, as the previous entry is always a part of the
9326 ** sub-tree headed by the child page of the cell being deleted. This makes
9327 ** balancing the tree following the delete operation easier. */
9328 if( !pPage->leaf ){
9329 rc = sqlite3BtreePrevious(pCur, 0);
9330 assert( rc!=SQLITE_DONE );
9331 if( rc ) return rc;
9334 /* Save the positions of any other cursors open on this table before
9335 ** making any modifications. */
9336 if( pCur->curFlags & BTCF_Multiple ){
9337 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
9338 if( rc ) return rc;
9341 /* If this is a delete operation to remove a row from a table b-tree,
9342 ** invalidate any incrblob cursors open on the row being deleted. */
9343 if( pCur->pKeyInfo==0 && p->hasIncrblobCur ){
9344 invalidateIncrblobCursors(p, pCur->pgnoRoot, pCur->info.nKey, 0);
9347 /* Make the page containing the entry to be deleted writable. Then free any
9348 ** overflow pages associated with the entry and finally remove the cell
9349 ** itself from within the page. */
9350 rc = sqlite3PagerWrite(pPage->pDbPage);
9351 if( rc ) return rc;
9352 BTREE_CLEAR_CELL(rc, pPage, pCell, info);
9353 dropCell(pPage, iCellIdx, info.nSize, &rc);
9354 if( rc ) return rc;
9356 /* If the cell deleted was not located on a leaf page, then the cursor
9357 ** is currently pointing to the largest entry in the sub-tree headed
9358 ** by the child-page of the cell that was just deleted from an internal
9359 ** node. The cell from the leaf node needs to be moved to the internal
9360 ** node to replace the deleted cell. */
9361 if( !pPage->leaf ){
9362 MemPage *pLeaf = pCur->pPage;
9363 int nCell;
9364 Pgno n;
9365 unsigned char *pTmp;
9367 if( pLeaf->nFree<0 ){
9368 rc = btreeComputeFreeSpace(pLeaf);
9369 if( rc ) return rc;
9371 if( iCellDepth<pCur->iPage-1 ){
9372 n = pCur->apPage[iCellDepth+1]->pgno;
9373 }else{
9374 n = pCur->pPage->pgno;
9376 pCell = findCell(pLeaf, pLeaf->nCell-1);
9377 if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT;
9378 nCell = pLeaf->xCellSize(pLeaf, pCell);
9379 assert( MX_CELL_SIZE(pBt) >= nCell );
9380 pTmp = pBt->pTmpSpace;
9381 assert( pTmp!=0 );
9382 rc = sqlite3PagerWrite(pLeaf->pDbPage);
9383 if( rc==SQLITE_OK ){
9384 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
9386 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
9387 if( rc ) return rc;
9390 /* Balance the tree. If the entry deleted was located on a leaf page,
9391 ** then the cursor still points to that page. In this case the first
9392 ** call to balance() repairs the tree, and the if(...) condition is
9393 ** never true.
9395 ** Otherwise, if the entry deleted was on an internal node page, then
9396 ** pCur is pointing to the leaf page from which a cell was removed to
9397 ** replace the cell deleted from the internal node. This is slightly
9398 ** tricky as the leaf node may be underfull, and the internal node may
9399 ** be either under or overfull. In this case run the balancing algorithm
9400 ** on the leaf node first. If the balance proceeds far enough up the
9401 ** tree that we can be sure that any problem in the internal node has
9402 ** been corrected, so be it. Otherwise, after balancing the leaf node,
9403 ** walk the cursor up the tree to the internal node and balance it as
9404 ** well. */
9405 rc = balance(pCur);
9406 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
9407 releasePageNotNull(pCur->pPage);
9408 pCur->iPage--;
9409 while( pCur->iPage>iCellDepth ){
9410 releasePage(pCur->apPage[pCur->iPage--]);
9412 pCur->pPage = pCur->apPage[pCur->iPage];
9413 rc = balance(pCur);
9416 if( rc==SQLITE_OK ){
9417 if( bPreserve>1 ){
9418 assert( (pCur->iPage==iCellDepth || CORRUPT_DB) );
9419 assert( pPage==pCur->pPage || CORRUPT_DB );
9420 assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell );
9421 pCur->eState = CURSOR_SKIPNEXT;
9422 if( iCellIdx>=pPage->nCell ){
9423 pCur->skipNext = -1;
9424 pCur->ix = pPage->nCell-1;
9425 }else{
9426 pCur->skipNext = 1;
9428 }else{
9429 rc = moveToRoot(pCur);
9430 if( bPreserve ){
9431 btreeReleaseAllCursorPages(pCur);
9432 pCur->eState = CURSOR_REQUIRESEEK;
9434 if( rc==SQLITE_EMPTY ) rc = SQLITE_OK;
9437 return rc;
9441 ** Create a new BTree table. Write into *piTable the page
9442 ** number for the root page of the new table.
9444 ** The type of type is determined by the flags parameter. Only the
9445 ** following values of flags are currently in use. Other values for
9446 ** flags might not work:
9448 ** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
9449 ** BTREE_ZERODATA Used for SQL indices
9451 static int btreeCreateTable(Btree *p, Pgno *piTable, int createTabFlags){
9452 BtShared *pBt = p->pBt;
9453 MemPage *pRoot;
9454 Pgno pgnoRoot;
9455 int rc;
9456 int ptfFlags; /* Page-type flage for the root page of new table */
9458 assert( sqlite3BtreeHoldsMutex(p) );
9459 assert( pBt->inTransaction==TRANS_WRITE );
9460 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
9462 #ifdef SQLITE_OMIT_AUTOVACUUM
9463 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
9464 if( rc ){
9465 return rc;
9467 #else
9468 if( pBt->autoVacuum ){
9469 Pgno pgnoMove; /* Move a page here to make room for the root-page */
9470 MemPage *pPageMove; /* The page to move to. */
9472 /* Creating a new table may probably require moving an existing database
9473 ** to make room for the new tables root page. In case this page turns
9474 ** out to be an overflow page, delete all overflow page-map caches
9475 ** held by open cursors.
9477 invalidateAllOverflowCache(pBt);
9479 /* Read the value of meta[3] from the database to determine where the
9480 ** root page of the new table should go. meta[3] is the largest root-page
9481 ** created so far, so the new root-page is (meta[3]+1).
9483 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
9484 if( pgnoRoot>btreePagecount(pBt) ){
9485 return SQLITE_CORRUPT_BKPT;
9487 pgnoRoot++;
9489 /* The new root-page may not be allocated on a pointer-map page, or the
9490 ** PENDING_BYTE page.
9492 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
9493 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
9494 pgnoRoot++;
9496 assert( pgnoRoot>=3 );
9498 /* Allocate a page. The page that currently resides at pgnoRoot will
9499 ** be moved to the allocated page (unless the allocated page happens
9500 ** to reside at pgnoRoot).
9502 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
9503 if( rc!=SQLITE_OK ){
9504 return rc;
9507 if( pgnoMove!=pgnoRoot ){
9508 /* pgnoRoot is the page that will be used for the root-page of
9509 ** the new table (assuming an error did not occur). But we were
9510 ** allocated pgnoMove. If required (i.e. if it was not allocated
9511 ** by extending the file), the current page at position pgnoMove
9512 ** is already journaled.
9514 u8 eType = 0;
9515 Pgno iPtrPage = 0;
9517 /* Save the positions of any open cursors. This is required in
9518 ** case they are holding a reference to an xFetch reference
9519 ** corresponding to page pgnoRoot. */
9520 rc = saveAllCursors(pBt, 0, 0);
9521 releasePage(pPageMove);
9522 if( rc!=SQLITE_OK ){
9523 return rc;
9526 /* Move the page currently at pgnoRoot to pgnoMove. */
9527 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
9528 if( rc!=SQLITE_OK ){
9529 return rc;
9531 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
9532 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
9533 rc = SQLITE_CORRUPT_BKPT;
9535 if( rc!=SQLITE_OK ){
9536 releasePage(pRoot);
9537 return rc;
9539 assert( eType!=PTRMAP_ROOTPAGE );
9540 assert( eType!=PTRMAP_FREEPAGE );
9541 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
9542 releasePage(pRoot);
9544 /* Obtain the page at pgnoRoot */
9545 if( rc!=SQLITE_OK ){
9546 return rc;
9548 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
9549 if( rc!=SQLITE_OK ){
9550 return rc;
9552 rc = sqlite3PagerWrite(pRoot->pDbPage);
9553 if( rc!=SQLITE_OK ){
9554 releasePage(pRoot);
9555 return rc;
9557 }else{
9558 pRoot = pPageMove;
9561 /* Update the pointer-map and meta-data with the new root-page number. */
9562 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
9563 if( rc ){
9564 releasePage(pRoot);
9565 return rc;
9568 /* When the new root page was allocated, page 1 was made writable in
9569 ** order either to increase the database filesize, or to decrement the
9570 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
9572 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
9573 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
9574 if( NEVER(rc) ){
9575 releasePage(pRoot);
9576 return rc;
9579 }else{
9580 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
9581 if( rc ) return rc;
9583 #endif
9584 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
9585 if( createTabFlags & BTREE_INTKEY ){
9586 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
9587 }else{
9588 ptfFlags = PTF_ZERODATA | PTF_LEAF;
9590 zeroPage(pRoot, ptfFlags);
9591 sqlite3PagerUnref(pRoot->pDbPage);
9592 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
9593 *piTable = pgnoRoot;
9594 return SQLITE_OK;
9596 int sqlite3BtreeCreateTable(Btree *p, Pgno *piTable, int flags){
9597 int rc;
9598 sqlite3BtreeEnter(p);
9599 rc = btreeCreateTable(p, piTable, flags);
9600 sqlite3BtreeLeave(p);
9601 return rc;
9605 ** Erase the given database page and all its children. Return
9606 ** the page to the freelist.
9608 static int clearDatabasePage(
9609 BtShared *pBt, /* The BTree that contains the table */
9610 Pgno pgno, /* Page number to clear */
9611 int freePageFlag, /* Deallocate page if true */
9612 i64 *pnChange /* Add number of Cells freed to this counter */
9614 MemPage *pPage;
9615 int rc;
9616 unsigned char *pCell;
9617 int i;
9618 int hdr;
9619 CellInfo info;
9621 assert( sqlite3_mutex_held(pBt->mutex) );
9622 if( pgno>btreePagecount(pBt) ){
9623 return SQLITE_CORRUPT_BKPT;
9625 rc = getAndInitPage(pBt, pgno, &pPage, 0, 0);
9626 if( rc ) return rc;
9627 if( (pBt->openFlags & BTREE_SINGLE)==0
9628 && sqlite3PagerPageRefcount(pPage->pDbPage) != (1 + (pgno==1))
9630 rc = SQLITE_CORRUPT_BKPT;
9631 goto cleardatabasepage_out;
9633 hdr = pPage->hdrOffset;
9634 for(i=0; i<pPage->nCell; i++){
9635 pCell = findCell(pPage, i);
9636 if( !pPage->leaf ){
9637 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
9638 if( rc ) goto cleardatabasepage_out;
9640 BTREE_CLEAR_CELL(rc, pPage, pCell, info);
9641 if( rc ) goto cleardatabasepage_out;
9643 if( !pPage->leaf ){
9644 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
9645 if( rc ) goto cleardatabasepage_out;
9646 if( pPage->intKey ) pnChange = 0;
9648 if( pnChange ){
9649 testcase( !pPage->intKey );
9650 *pnChange += pPage->nCell;
9652 if( freePageFlag ){
9653 freePage(pPage, &rc);
9654 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
9655 zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
9658 cleardatabasepage_out:
9659 releasePage(pPage);
9660 return rc;
9664 ** Delete all information from a single table in the database. iTable is
9665 ** the page number of the root of the table. After this routine returns,
9666 ** the root page is empty, but still exists.
9668 ** This routine will fail with SQLITE_LOCKED if there are any open
9669 ** read cursors on the table. Open write cursors are moved to the
9670 ** root of the table.
9672 ** If pnChange is not NULL, then the integer value pointed to by pnChange
9673 ** is incremented by the number of entries in the table.
9675 int sqlite3BtreeClearTable(Btree *p, int iTable, i64 *pnChange){
9676 int rc;
9677 BtShared *pBt = p->pBt;
9678 sqlite3BtreeEnter(p);
9679 assert( p->inTrans==TRANS_WRITE );
9681 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
9683 if( SQLITE_OK==rc ){
9684 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
9685 ** is the root of a table b-tree - if it is not, the following call is
9686 ** a no-op). */
9687 if( p->hasIncrblobCur ){
9688 invalidateIncrblobCursors(p, (Pgno)iTable, 0, 1);
9690 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
9692 sqlite3BtreeLeave(p);
9693 return rc;
9697 ** Delete all information from the single table that pCur is open on.
9699 ** This routine only work for pCur on an ephemeral table.
9701 int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
9702 return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
9706 ** Erase all information in a table and add the root of the table to
9707 ** the freelist. Except, the root of the principle table (the one on
9708 ** page 1) is never added to the freelist.
9710 ** This routine will fail with SQLITE_LOCKED if there are any open
9711 ** cursors on the table.
9713 ** If AUTOVACUUM is enabled and the page at iTable is not the last
9714 ** root page in the database file, then the last root page
9715 ** in the database file is moved into the slot formerly occupied by
9716 ** iTable and that last slot formerly occupied by the last root page
9717 ** is added to the freelist instead of iTable. In this say, all
9718 ** root pages are kept at the beginning of the database file, which
9719 ** is necessary for AUTOVACUUM to work right. *piMoved is set to the
9720 ** page number that used to be the last root page in the file before
9721 ** the move. If no page gets moved, *piMoved is set to 0.
9722 ** The last root page is recorded in meta[3] and the value of
9723 ** meta[3] is updated by this procedure.
9725 static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
9726 int rc;
9727 MemPage *pPage = 0;
9728 BtShared *pBt = p->pBt;
9730 assert( sqlite3BtreeHoldsMutex(p) );
9731 assert( p->inTrans==TRANS_WRITE );
9732 assert( iTable>=2 );
9733 if( iTable>btreePagecount(pBt) ){
9734 return SQLITE_CORRUPT_BKPT;
9737 rc = sqlite3BtreeClearTable(p, iTable, 0);
9738 if( rc ) return rc;
9739 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
9740 if( NEVER(rc) ){
9741 releasePage(pPage);
9742 return rc;
9745 *piMoved = 0;
9747 #ifdef SQLITE_OMIT_AUTOVACUUM
9748 freePage(pPage, &rc);
9749 releasePage(pPage);
9750 #else
9751 if( pBt->autoVacuum ){
9752 Pgno maxRootPgno;
9753 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
9755 if( iTable==maxRootPgno ){
9756 /* If the table being dropped is the table with the largest root-page
9757 ** number in the database, put the root page on the free list.
9759 freePage(pPage, &rc);
9760 releasePage(pPage);
9761 if( rc!=SQLITE_OK ){
9762 return rc;
9764 }else{
9765 /* The table being dropped does not have the largest root-page
9766 ** number in the database. So move the page that does into the
9767 ** gap left by the deleted root-page.
9769 MemPage *pMove;
9770 releasePage(pPage);
9771 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
9772 if( rc!=SQLITE_OK ){
9773 return rc;
9775 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
9776 releasePage(pMove);
9777 if( rc!=SQLITE_OK ){
9778 return rc;
9780 pMove = 0;
9781 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
9782 freePage(pMove, &rc);
9783 releasePage(pMove);
9784 if( rc!=SQLITE_OK ){
9785 return rc;
9787 *piMoved = maxRootPgno;
9790 /* Set the new 'max-root-page' value in the database header. This
9791 ** is the old value less one, less one more if that happens to
9792 ** be a root-page number, less one again if that is the
9793 ** PENDING_BYTE_PAGE.
9795 maxRootPgno--;
9796 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
9797 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
9798 maxRootPgno--;
9800 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
9802 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
9803 }else{
9804 freePage(pPage, &rc);
9805 releasePage(pPage);
9807 #endif
9808 return rc;
9810 int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
9811 int rc;
9812 sqlite3BtreeEnter(p);
9813 rc = btreeDropTable(p, iTable, piMoved);
9814 sqlite3BtreeLeave(p);
9815 return rc;
9820 ** This function may only be called if the b-tree connection already
9821 ** has a read or write transaction open on the database.
9823 ** Read the meta-information out of a database file. Meta[0]
9824 ** is the number of free pages currently in the database. Meta[1]
9825 ** through meta[15] are available for use by higher layers. Meta[0]
9826 ** is read-only, the others are read/write.
9828 ** The schema layer numbers meta values differently. At the schema
9829 ** layer (and the SetCookie and ReadCookie opcodes) the number of
9830 ** free pages is not visible. So Cookie[0] is the same as Meta[1].
9832 ** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead
9833 ** of reading the value out of the header, it instead loads the "DataVersion"
9834 ** from the pager. The BTREE_DATA_VERSION value is not actually stored in the
9835 ** database file. It is a number computed by the pager. But its access
9836 ** pattern is the same as header meta values, and so it is convenient to
9837 ** read it from this routine.
9839 void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
9840 BtShared *pBt = p->pBt;
9842 sqlite3BtreeEnter(p);
9843 assert( p->inTrans>TRANS_NONE );
9844 assert( SQLITE_OK==querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK) );
9845 assert( pBt->pPage1 );
9846 assert( idx>=0 && idx<=15 );
9848 if( idx==BTREE_DATA_VERSION ){
9849 *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iBDataVersion;
9850 }else{
9851 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
9854 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
9855 ** database, mark the database as read-only. */
9856 #ifdef SQLITE_OMIT_AUTOVACUUM
9857 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
9858 pBt->btsFlags |= BTS_READ_ONLY;
9860 #endif
9862 sqlite3BtreeLeave(p);
9866 ** Write meta-information back into the database. Meta[0] is
9867 ** read-only and may not be written.
9869 int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
9870 BtShared *pBt = p->pBt;
9871 unsigned char *pP1;
9872 int rc;
9873 assert( idx>=1 && idx<=15 );
9874 sqlite3BtreeEnter(p);
9875 assert( p->inTrans==TRANS_WRITE );
9876 assert( pBt->pPage1!=0 );
9877 pP1 = pBt->pPage1->aData;
9878 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
9879 if( rc==SQLITE_OK ){
9880 put4byte(&pP1[36 + idx*4], iMeta);
9881 #ifndef SQLITE_OMIT_AUTOVACUUM
9882 if( idx==BTREE_INCR_VACUUM ){
9883 assert( pBt->autoVacuum || iMeta==0 );
9884 assert( iMeta==0 || iMeta==1 );
9885 pBt->incrVacuum = (u8)iMeta;
9887 #endif
9889 sqlite3BtreeLeave(p);
9890 return rc;
9894 ** The first argument, pCur, is a cursor opened on some b-tree. Count the
9895 ** number of entries in the b-tree and write the result to *pnEntry.
9897 ** SQLITE_OK is returned if the operation is successfully executed.
9898 ** Otherwise, if an error is encountered (i.e. an IO error or database
9899 ** corruption) an SQLite error code is returned.
9901 int sqlite3BtreeCount(sqlite3 *db, BtCursor *pCur, i64 *pnEntry){
9902 i64 nEntry = 0; /* Value to return in *pnEntry */
9903 int rc; /* Return code */
9905 rc = moveToRoot(pCur);
9906 if( rc==SQLITE_EMPTY ){
9907 *pnEntry = 0;
9908 return SQLITE_OK;
9911 /* Unless an error occurs, the following loop runs one iteration for each
9912 ** page in the B-Tree structure (not including overflow pages).
9914 while( rc==SQLITE_OK && !AtomicLoad(&db->u1.isInterrupted) ){
9915 int iIdx; /* Index of child node in parent */
9916 MemPage *pPage; /* Current page of the b-tree */
9918 /* If this is a leaf page or the tree is not an int-key tree, then
9919 ** this page contains countable entries. Increment the entry counter
9920 ** accordingly.
9922 pPage = pCur->pPage;
9923 if( pPage->leaf || !pPage->intKey ){
9924 nEntry += pPage->nCell;
9927 /* pPage is a leaf node. This loop navigates the cursor so that it
9928 ** points to the first interior cell that it points to the parent of
9929 ** the next page in the tree that has not yet been visited. The
9930 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
9931 ** of the page, or to the number of cells in the page if the next page
9932 ** to visit is the right-child of its parent.
9934 ** If all pages in the tree have been visited, return SQLITE_OK to the
9935 ** caller.
9937 if( pPage->leaf ){
9938 do {
9939 if( pCur->iPage==0 ){
9940 /* All pages of the b-tree have been visited. Return successfully. */
9941 *pnEntry = nEntry;
9942 return moveToRoot(pCur);
9944 moveToParent(pCur);
9945 }while ( pCur->ix>=pCur->pPage->nCell );
9947 pCur->ix++;
9948 pPage = pCur->pPage;
9951 /* Descend to the child node of the cell that the cursor currently
9952 ** points at. This is the right-child if (iIdx==pPage->nCell).
9954 iIdx = pCur->ix;
9955 if( iIdx==pPage->nCell ){
9956 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
9957 }else{
9958 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
9962 /* An error has occurred. Return an error code. */
9963 return rc;
9967 ** Return the pager associated with a BTree. This routine is used for
9968 ** testing and debugging only.
9970 Pager *sqlite3BtreePager(Btree *p){
9971 return p->pBt->pPager;
9974 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
9976 ** Append a message to the error message string.
9978 static void checkAppendMsg(
9979 IntegrityCk *pCheck,
9980 const char *zFormat,
9983 va_list ap;
9984 if( !pCheck->mxErr ) return;
9985 pCheck->mxErr--;
9986 pCheck->nErr++;
9987 va_start(ap, zFormat);
9988 if( pCheck->errMsg.nChar ){
9989 sqlite3_str_append(&pCheck->errMsg, "\n", 1);
9991 if( pCheck->zPfx ){
9992 sqlite3_str_appendf(&pCheck->errMsg, pCheck->zPfx, pCheck->v1, pCheck->v2);
9994 sqlite3_str_vappendf(&pCheck->errMsg, zFormat, ap);
9995 va_end(ap);
9996 if( pCheck->errMsg.accError==SQLITE_NOMEM ){
9997 pCheck->bOomFault = 1;
10000 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
10002 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
10005 ** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
10006 ** corresponds to page iPg is already set.
10008 static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
10009 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
10010 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
10014 ** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
10016 static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
10017 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
10018 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
10023 ** Add 1 to the reference count for page iPage. If this is the second
10024 ** reference to the page, add an error message to pCheck->zErrMsg.
10025 ** Return 1 if there are 2 or more references to the page and 0 if
10026 ** if this is the first reference to the page.
10028 ** Also check that the page number is in bounds.
10030 static int checkRef(IntegrityCk *pCheck, Pgno iPage){
10031 if( iPage>pCheck->nPage || iPage==0 ){
10032 checkAppendMsg(pCheck, "invalid page number %d", iPage);
10033 return 1;
10035 if( getPageReferenced(pCheck, iPage) ){
10036 checkAppendMsg(pCheck, "2nd reference to page %d", iPage);
10037 return 1;
10039 if( AtomicLoad(&pCheck->db->u1.isInterrupted) ) return 1;
10040 setPageReferenced(pCheck, iPage);
10041 return 0;
10044 #ifndef SQLITE_OMIT_AUTOVACUUM
10046 ** Check that the entry in the pointer-map for page iChild maps to
10047 ** page iParent, pointer type ptrType. If not, append an error message
10048 ** to pCheck.
10050 static void checkPtrmap(
10051 IntegrityCk *pCheck, /* Integrity check context */
10052 Pgno iChild, /* Child page number */
10053 u8 eType, /* Expected pointer map type */
10054 Pgno iParent /* Expected pointer map parent page number */
10056 int rc;
10057 u8 ePtrmapType;
10058 Pgno iPtrmapParent;
10060 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
10061 if( rc!=SQLITE_OK ){
10062 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->bOomFault = 1;
10063 checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild);
10064 return;
10067 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
10068 checkAppendMsg(pCheck,
10069 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
10070 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
10073 #endif
10076 ** Check the integrity of the freelist or of an overflow page list.
10077 ** Verify that the number of pages on the list is N.
10079 static void checkList(
10080 IntegrityCk *pCheck, /* Integrity checking context */
10081 int isFreeList, /* True for a freelist. False for overflow page list */
10082 Pgno iPage, /* Page number for first page in the list */
10083 u32 N /* Expected number of pages in the list */
10085 int i;
10086 u32 expected = N;
10087 int nErrAtStart = pCheck->nErr;
10088 while( iPage!=0 && pCheck->mxErr ){
10089 DbPage *pOvflPage;
10090 unsigned char *pOvflData;
10091 if( checkRef(pCheck, iPage) ) break;
10092 N--;
10093 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){
10094 checkAppendMsg(pCheck, "failed to get page %d", iPage);
10095 break;
10097 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
10098 if( isFreeList ){
10099 u32 n = (u32)get4byte(&pOvflData[4]);
10100 #ifndef SQLITE_OMIT_AUTOVACUUM
10101 if( pCheck->pBt->autoVacuum ){
10102 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0);
10104 #endif
10105 if( n>pCheck->pBt->usableSize/4-2 ){
10106 checkAppendMsg(pCheck,
10107 "freelist leaf count too big on page %d", iPage);
10108 N--;
10109 }else{
10110 for(i=0; i<(int)n; i++){
10111 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
10112 #ifndef SQLITE_OMIT_AUTOVACUUM
10113 if( pCheck->pBt->autoVacuum ){
10114 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0);
10116 #endif
10117 checkRef(pCheck, iFreePage);
10119 N -= n;
10122 #ifndef SQLITE_OMIT_AUTOVACUUM
10123 else{
10124 /* If this database supports auto-vacuum and iPage is not the last
10125 ** page in this overflow list, check that the pointer-map entry for
10126 ** the following page matches iPage.
10128 if( pCheck->pBt->autoVacuum && N>0 ){
10129 i = get4byte(pOvflData);
10130 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage);
10133 #endif
10134 iPage = get4byte(pOvflData);
10135 sqlite3PagerUnref(pOvflPage);
10137 if( N && nErrAtStart==pCheck->nErr ){
10138 checkAppendMsg(pCheck,
10139 "%s is %d but should be %d",
10140 isFreeList ? "size" : "overflow list length",
10141 expected-N, expected);
10144 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
10147 ** An implementation of a min-heap.
10149 ** aHeap[0] is the number of elements on the heap. aHeap[1] is the
10150 ** root element. The daughter nodes of aHeap[N] are aHeap[N*2]
10151 ** and aHeap[N*2+1].
10153 ** The heap property is this: Every node is less than or equal to both
10154 ** of its daughter nodes. A consequence of the heap property is that the
10155 ** root node aHeap[1] is always the minimum value currently in the heap.
10157 ** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto
10158 ** the heap, preserving the heap property. The btreeHeapPull() routine
10159 ** removes the root element from the heap (the minimum value in the heap)
10160 ** and then moves other nodes around as necessary to preserve the heap
10161 ** property.
10163 ** This heap is used for cell overlap and coverage testing. Each u32
10164 ** entry represents the span of a cell or freeblock on a btree page.
10165 ** The upper 16 bits are the index of the first byte of a range and the
10166 ** lower 16 bits are the index of the last byte of that range.
10168 static void btreeHeapInsert(u32 *aHeap, u32 x){
10169 u32 j, i = ++aHeap[0];
10170 aHeap[i] = x;
10171 while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){
10172 x = aHeap[j];
10173 aHeap[j] = aHeap[i];
10174 aHeap[i] = x;
10175 i = j;
10178 static int btreeHeapPull(u32 *aHeap, u32 *pOut){
10179 u32 j, i, x;
10180 if( (x = aHeap[0])==0 ) return 0;
10181 *pOut = aHeap[1];
10182 aHeap[1] = aHeap[x];
10183 aHeap[x] = 0xffffffff;
10184 aHeap[0]--;
10185 i = 1;
10186 while( (j = i*2)<=aHeap[0] ){
10187 if( aHeap[j]>aHeap[j+1] ) j++;
10188 if( aHeap[i]<aHeap[j] ) break;
10189 x = aHeap[i];
10190 aHeap[i] = aHeap[j];
10191 aHeap[j] = x;
10192 i = j;
10194 return 1;
10197 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
10199 ** Do various sanity checks on a single page of a tree. Return
10200 ** the tree depth. Root pages return 0. Parents of root pages
10201 ** return 1, and so forth.
10203 ** These checks are done:
10205 ** 1. Make sure that cells and freeblocks do not overlap
10206 ** but combine to completely cover the page.
10207 ** 2. Make sure integer cell keys are in order.
10208 ** 3. Check the integrity of overflow pages.
10209 ** 4. Recursively call checkTreePage on all children.
10210 ** 5. Verify that the depth of all children is the same.
10212 static int checkTreePage(
10213 IntegrityCk *pCheck, /* Context for the sanity check */
10214 Pgno iPage, /* Page number of the page to check */
10215 i64 *piMinKey, /* Write minimum integer primary key here */
10216 i64 maxKey /* Error if integer primary key greater than this */
10218 MemPage *pPage = 0; /* The page being analyzed */
10219 int i; /* Loop counter */
10220 int rc; /* Result code from subroutine call */
10221 int depth = -1, d2; /* Depth of a subtree */
10222 int pgno; /* Page number */
10223 int nFrag; /* Number of fragmented bytes on the page */
10224 int hdr; /* Offset to the page header */
10225 int cellStart; /* Offset to the start of the cell pointer array */
10226 int nCell; /* Number of cells */
10227 int doCoverageCheck = 1; /* True if cell coverage checking should be done */
10228 int keyCanBeEqual = 1; /* True if IPK can be equal to maxKey
10229 ** False if IPK must be strictly less than maxKey */
10230 u8 *data; /* Page content */
10231 u8 *pCell; /* Cell content */
10232 u8 *pCellIdx; /* Next element of the cell pointer array */
10233 BtShared *pBt; /* The BtShared object that owns pPage */
10234 u32 pc; /* Address of a cell */
10235 u32 usableSize; /* Usable size of the page */
10236 u32 contentOffset; /* Offset to the start of the cell content area */
10237 u32 *heap = 0; /* Min-heap used for checking cell coverage */
10238 u32 x, prev = 0; /* Next and previous entry on the min-heap */
10239 const char *saved_zPfx = pCheck->zPfx;
10240 int saved_v1 = pCheck->v1;
10241 int saved_v2 = pCheck->v2;
10242 u8 savedIsInit = 0;
10244 /* Check that the page exists
10246 pBt = pCheck->pBt;
10247 usableSize = pBt->usableSize;
10248 if( iPage==0 ) return 0;
10249 if( checkRef(pCheck, iPage) ) return 0;
10250 pCheck->zPfx = "Page %u: ";
10251 pCheck->v1 = iPage;
10252 if( (rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0 ){
10253 checkAppendMsg(pCheck,
10254 "unable to get the page. error code=%d", rc);
10255 goto end_of_check;
10258 /* Clear MemPage.isInit to make sure the corruption detection code in
10259 ** btreeInitPage() is executed. */
10260 savedIsInit = pPage->isInit;
10261 pPage->isInit = 0;
10262 if( (rc = btreeInitPage(pPage))!=0 ){
10263 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
10264 checkAppendMsg(pCheck,
10265 "btreeInitPage() returns error code %d", rc);
10266 goto end_of_check;
10268 if( (rc = btreeComputeFreeSpace(pPage))!=0 ){
10269 assert( rc==SQLITE_CORRUPT );
10270 checkAppendMsg(pCheck, "free space corruption", rc);
10271 goto end_of_check;
10273 data = pPage->aData;
10274 hdr = pPage->hdrOffset;
10276 /* Set up for cell analysis */
10277 pCheck->zPfx = "On tree page %u cell %d: ";
10278 contentOffset = get2byteNotZero(&data[hdr+5]);
10279 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
10281 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
10282 ** number of cells on the page. */
10283 nCell = get2byte(&data[hdr+3]);
10284 assert( pPage->nCell==nCell );
10286 /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
10287 ** immediately follows the b-tree page header. */
10288 cellStart = hdr + 12 - 4*pPage->leaf;
10289 assert( pPage->aCellIdx==&data[cellStart] );
10290 pCellIdx = &data[cellStart + 2*(nCell-1)];
10292 if( !pPage->leaf ){
10293 /* Analyze the right-child page of internal pages */
10294 pgno = get4byte(&data[hdr+8]);
10295 #ifndef SQLITE_OMIT_AUTOVACUUM
10296 if( pBt->autoVacuum ){
10297 pCheck->zPfx = "On page %u at right child: ";
10298 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
10300 #endif
10301 depth = checkTreePage(pCheck, pgno, &maxKey, maxKey);
10302 keyCanBeEqual = 0;
10303 }else{
10304 /* For leaf pages, the coverage check will occur in the same loop
10305 ** as the other cell checks, so initialize the heap. */
10306 heap = pCheck->heap;
10307 heap[0] = 0;
10310 /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
10311 ** integer offsets to the cell contents. */
10312 for(i=nCell-1; i>=0 && pCheck->mxErr; i--){
10313 CellInfo info;
10315 /* Check cell size */
10316 pCheck->v2 = i;
10317 assert( pCellIdx==&data[cellStart + i*2] );
10318 pc = get2byteAligned(pCellIdx);
10319 pCellIdx -= 2;
10320 if( pc<contentOffset || pc>usableSize-4 ){
10321 checkAppendMsg(pCheck, "Offset %d out of range %d..%d",
10322 pc, contentOffset, usableSize-4);
10323 doCoverageCheck = 0;
10324 continue;
10326 pCell = &data[pc];
10327 pPage->xParseCell(pPage, pCell, &info);
10328 if( pc+info.nSize>usableSize ){
10329 checkAppendMsg(pCheck, "Extends off end of page");
10330 doCoverageCheck = 0;
10331 continue;
10334 /* Check for integer primary key out of range */
10335 if( pPage->intKey ){
10336 if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){
10337 checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey);
10339 maxKey = info.nKey;
10340 keyCanBeEqual = 0; /* Only the first key on the page may ==maxKey */
10343 /* Check the content overflow list */
10344 if( info.nPayload>info.nLocal ){
10345 u32 nPage; /* Number of pages on the overflow chain */
10346 Pgno pgnoOvfl; /* First page of the overflow chain */
10347 assert( pc + info.nSize - 4 <= usableSize );
10348 nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4);
10349 pgnoOvfl = get4byte(&pCell[info.nSize - 4]);
10350 #ifndef SQLITE_OMIT_AUTOVACUUM
10351 if( pBt->autoVacuum ){
10352 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage);
10354 #endif
10355 checkList(pCheck, 0, pgnoOvfl, nPage);
10358 if( !pPage->leaf ){
10359 /* Check sanity of left child page for internal pages */
10360 pgno = get4byte(pCell);
10361 #ifndef SQLITE_OMIT_AUTOVACUUM
10362 if( pBt->autoVacuum ){
10363 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
10365 #endif
10366 d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey);
10367 keyCanBeEqual = 0;
10368 if( d2!=depth ){
10369 checkAppendMsg(pCheck, "Child page depth differs");
10370 depth = d2;
10372 }else{
10373 /* Populate the coverage-checking heap for leaf pages */
10374 btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1));
10377 *piMinKey = maxKey;
10379 /* Check for complete coverage of the page
10381 pCheck->zPfx = 0;
10382 if( doCoverageCheck && pCheck->mxErr>0 ){
10383 /* For leaf pages, the min-heap has already been initialized and the
10384 ** cells have already been inserted. But for internal pages, that has
10385 ** not yet been done, so do it now */
10386 if( !pPage->leaf ){
10387 heap = pCheck->heap;
10388 heap[0] = 0;
10389 for(i=nCell-1; i>=0; i--){
10390 u32 size;
10391 pc = get2byteAligned(&data[cellStart+i*2]);
10392 size = pPage->xCellSize(pPage, &data[pc]);
10393 btreeHeapInsert(heap, (pc<<16)|(pc+size-1));
10396 /* Add the freeblocks to the min-heap
10398 ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
10399 ** is the offset of the first freeblock, or zero if there are no
10400 ** freeblocks on the page.
10402 i = get2byte(&data[hdr+1]);
10403 while( i>0 ){
10404 int size, j;
10405 assert( (u32)i<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */
10406 size = get2byte(&data[i+2]);
10407 assert( (u32)(i+size)<=usableSize ); /* due to btreeComputeFreeSpace() */
10408 btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1));
10409 /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
10410 ** big-endian integer which is the offset in the b-tree page of the next
10411 ** freeblock in the chain, or zero if the freeblock is the last on the
10412 ** chain. */
10413 j = get2byte(&data[i]);
10414 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
10415 ** increasing offset. */
10416 assert( j==0 || j>i+size ); /* Enforced by btreeComputeFreeSpace() */
10417 assert( (u32)j<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */
10418 i = j;
10420 /* Analyze the min-heap looking for overlap between cells and/or
10421 ** freeblocks, and counting the number of untracked bytes in nFrag.
10423 ** Each min-heap entry is of the form: (start_address<<16)|end_address.
10424 ** There is an implied first entry the covers the page header, the cell
10425 ** pointer index, and the gap between the cell pointer index and the start
10426 ** of cell content.
10428 ** The loop below pulls entries from the min-heap in order and compares
10429 ** the start_address against the previous end_address. If there is an
10430 ** overlap, that means bytes are used multiple times. If there is a gap,
10431 ** that gap is added to the fragmentation count.
10433 nFrag = 0;
10434 prev = contentOffset - 1; /* Implied first min-heap entry */
10435 while( btreeHeapPull(heap,&x) ){
10436 if( (prev&0xffff)>=(x>>16) ){
10437 checkAppendMsg(pCheck,
10438 "Multiple uses for byte %u of page %u", x>>16, iPage);
10439 break;
10440 }else{
10441 nFrag += (x>>16) - (prev&0xffff) - 1;
10442 prev = x;
10445 nFrag += usableSize - (prev&0xffff) - 1;
10446 /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
10447 ** is stored in the fifth field of the b-tree page header.
10448 ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
10449 ** number of fragmented free bytes within the cell content area.
10451 if( heap[0]==0 && nFrag!=data[hdr+7] ){
10452 checkAppendMsg(pCheck,
10453 "Fragmentation of %d bytes reported as %d on page %u",
10454 nFrag, data[hdr+7], iPage);
10458 end_of_check:
10459 if( !doCoverageCheck ) pPage->isInit = savedIsInit;
10460 releasePage(pPage);
10461 pCheck->zPfx = saved_zPfx;
10462 pCheck->v1 = saved_v1;
10463 pCheck->v2 = saved_v2;
10464 return depth+1;
10466 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
10468 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
10470 ** This routine does a complete check of the given BTree file. aRoot[] is
10471 ** an array of pages numbers were each page number is the root page of
10472 ** a table. nRoot is the number of entries in aRoot.
10474 ** A read-only or read-write transaction must be opened before calling
10475 ** this function.
10477 ** Write the number of error seen in *pnErr. Except for some memory
10478 ** allocation errors, an error message held in memory obtained from
10479 ** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
10480 ** returned. If a memory allocation error occurs, NULL is returned.
10482 ** If the first entry in aRoot[] is 0, that indicates that the list of
10483 ** root pages is incomplete. This is a "partial integrity-check". This
10484 ** happens when performing an integrity check on a single table. The
10485 ** zero is skipped, of course. But in addition, the freelist checks
10486 ** and the checks to make sure every page is referenced are also skipped,
10487 ** since obviously it is not possible to know which pages are covered by
10488 ** the unverified btrees. Except, if aRoot[1] is 1, then the freelist
10489 ** checks are still performed.
10491 char *sqlite3BtreeIntegrityCheck(
10492 sqlite3 *db, /* Database connection that is running the check */
10493 Btree *p, /* The btree to be checked */
10494 Pgno *aRoot, /* An array of root pages numbers for individual trees */
10495 int nRoot, /* Number of entries in aRoot[] */
10496 int mxErr, /* Stop reporting errors after this many */
10497 int *pnErr /* Write number of errors seen to this variable */
10499 Pgno i;
10500 IntegrityCk sCheck;
10501 BtShared *pBt = p->pBt;
10502 u64 savedDbFlags = pBt->db->flags;
10503 char zErr[100];
10504 int bPartial = 0; /* True if not checking all btrees */
10505 int bCkFreelist = 1; /* True to scan the freelist */
10506 VVA_ONLY( int nRef );
10507 assert( nRoot>0 );
10509 /* aRoot[0]==0 means this is a partial check */
10510 if( aRoot[0]==0 ){
10511 assert( nRoot>1 );
10512 bPartial = 1;
10513 if( aRoot[1]!=1 ) bCkFreelist = 0;
10516 sqlite3BtreeEnter(p);
10517 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
10518 VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) );
10519 assert( nRef>=0 );
10520 sCheck.db = db;
10521 sCheck.pBt = pBt;
10522 sCheck.pPager = pBt->pPager;
10523 sCheck.nPage = btreePagecount(sCheck.pBt);
10524 sCheck.mxErr = mxErr;
10525 sCheck.nErr = 0;
10526 sCheck.bOomFault = 0;
10527 sCheck.zPfx = 0;
10528 sCheck.v1 = 0;
10529 sCheck.v2 = 0;
10530 sCheck.aPgRef = 0;
10531 sCheck.heap = 0;
10532 sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
10533 sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL;
10534 if( sCheck.nPage==0 ){
10535 goto integrity_ck_cleanup;
10538 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
10539 if( !sCheck.aPgRef ){
10540 sCheck.bOomFault = 1;
10541 goto integrity_ck_cleanup;
10543 sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize );
10544 if( sCheck.heap==0 ){
10545 sCheck.bOomFault = 1;
10546 goto integrity_ck_cleanup;
10549 i = PENDING_BYTE_PAGE(pBt);
10550 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
10552 /* Check the integrity of the freelist
10554 if( bCkFreelist ){
10555 sCheck.zPfx = "Main freelist: ";
10556 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
10557 get4byte(&pBt->pPage1->aData[36]));
10558 sCheck.zPfx = 0;
10561 /* Check all the tables.
10563 #ifndef SQLITE_OMIT_AUTOVACUUM
10564 if( !bPartial ){
10565 if( pBt->autoVacuum ){
10566 Pgno mx = 0;
10567 Pgno mxInHdr;
10568 for(i=0; (int)i<nRoot; i++) if( mx<aRoot[i] ) mx = aRoot[i];
10569 mxInHdr = get4byte(&pBt->pPage1->aData[52]);
10570 if( mx!=mxInHdr ){
10571 checkAppendMsg(&sCheck,
10572 "max rootpage (%d) disagrees with header (%d)",
10573 mx, mxInHdr
10576 }else if( get4byte(&pBt->pPage1->aData[64])!=0 ){
10577 checkAppendMsg(&sCheck,
10578 "incremental_vacuum enabled with a max rootpage of zero"
10582 #endif
10583 testcase( pBt->db->flags & SQLITE_CellSizeCk );
10584 pBt->db->flags &= ~(u64)SQLITE_CellSizeCk;
10585 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
10586 i64 notUsed;
10587 if( aRoot[i]==0 ) continue;
10588 #ifndef SQLITE_OMIT_AUTOVACUUM
10589 if( pBt->autoVacuum && aRoot[i]>1 && !bPartial ){
10590 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
10592 #endif
10593 checkTreePage(&sCheck, aRoot[i], &notUsed, LARGEST_INT64);
10595 pBt->db->flags = savedDbFlags;
10597 /* Make sure every page in the file is referenced
10599 if( !bPartial ){
10600 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
10601 #ifdef SQLITE_OMIT_AUTOVACUUM
10602 if( getPageReferenced(&sCheck, i)==0 ){
10603 checkAppendMsg(&sCheck, "Page %d is never used", i);
10605 #else
10606 /* If the database supports auto-vacuum, make sure no tables contain
10607 ** references to pointer-map pages.
10609 if( getPageReferenced(&sCheck, i)==0 &&
10610 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
10611 checkAppendMsg(&sCheck, "Page %d is never used", i);
10613 if( getPageReferenced(&sCheck, i)!=0 &&
10614 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
10615 checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i);
10617 #endif
10621 /* Clean up and report errors.
10623 integrity_ck_cleanup:
10624 sqlite3PageFree(sCheck.heap);
10625 sqlite3_free(sCheck.aPgRef);
10626 if( sCheck.bOomFault ){
10627 sqlite3_str_reset(&sCheck.errMsg);
10628 sCheck.nErr++;
10630 *pnErr = sCheck.nErr;
10631 if( sCheck.nErr==0 ) sqlite3_str_reset(&sCheck.errMsg);
10632 /* Make sure this analysis did not leave any unref() pages. */
10633 assert( nRef==sqlite3PagerRefcount(pBt->pPager) );
10634 sqlite3BtreeLeave(p);
10635 return sqlite3StrAccumFinish(&sCheck.errMsg);
10637 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
10640 ** Return the full pathname of the underlying database file. Return
10641 ** an empty string if the database is in-memory or a TEMP database.
10643 ** The pager filename is invariant as long as the pager is
10644 ** open so it is safe to access without the BtShared mutex.
10646 const char *sqlite3BtreeGetFilename(Btree *p){
10647 assert( p->pBt->pPager!=0 );
10648 return sqlite3PagerFilename(p->pBt->pPager, 1);
10652 ** Return the pathname of the journal file for this database. The return
10653 ** value of this routine is the same regardless of whether the journal file
10654 ** has been created or not.
10656 ** The pager journal filename is invariant as long as the pager is
10657 ** open so it is safe to access without the BtShared mutex.
10659 const char *sqlite3BtreeGetJournalname(Btree *p){
10660 assert( p->pBt->pPager!=0 );
10661 return sqlite3PagerJournalname(p->pBt->pPager);
10665 ** Return one of SQLITE_TXN_NONE, SQLITE_TXN_READ, or SQLITE_TXN_WRITE
10666 ** to describe the current transaction state of Btree p.
10668 int sqlite3BtreeTxnState(Btree *p){
10669 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
10670 return p ? p->inTrans : 0;
10673 #ifndef SQLITE_OMIT_WAL
10675 ** Run a checkpoint on the Btree passed as the first argument.
10677 ** Return SQLITE_LOCKED if this or any other connection has an open
10678 ** transaction on the shared-cache the argument Btree is connected to.
10680 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
10682 int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
10683 int rc = SQLITE_OK;
10684 if( p ){
10685 BtShared *pBt = p->pBt;
10686 sqlite3BtreeEnter(p);
10687 if( pBt->inTransaction!=TRANS_NONE ){
10688 rc = SQLITE_LOCKED;
10689 }else{
10690 rc = sqlite3PagerCheckpoint(pBt->pPager, p->db, eMode, pnLog, pnCkpt);
10692 sqlite3BtreeLeave(p);
10694 return rc;
10696 #endif
10699 ** Return true if there is currently a backup running on Btree p.
10701 int sqlite3BtreeIsInBackup(Btree *p){
10702 assert( p );
10703 assert( sqlite3_mutex_held(p->db->mutex) );
10704 return p->nBackup!=0;
10708 ** This function returns a pointer to a blob of memory associated with
10709 ** a single shared-btree. The memory is used by client code for its own
10710 ** purposes (for example, to store a high-level schema associated with
10711 ** the shared-btree). The btree layer manages reference counting issues.
10713 ** The first time this is called on a shared-btree, nBytes bytes of memory
10714 ** are allocated, zeroed, and returned to the caller. For each subsequent
10715 ** call the nBytes parameter is ignored and a pointer to the same blob
10716 ** of memory returned.
10718 ** If the nBytes parameter is 0 and the blob of memory has not yet been
10719 ** allocated, a null pointer is returned. If the blob has already been
10720 ** allocated, it is returned as normal.
10722 ** Just before the shared-btree is closed, the function passed as the
10723 ** xFree argument when the memory allocation was made is invoked on the
10724 ** blob of allocated memory. The xFree function should not call sqlite3_free()
10725 ** on the memory, the btree layer does that.
10727 void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
10728 BtShared *pBt = p->pBt;
10729 sqlite3BtreeEnter(p);
10730 if( !pBt->pSchema && nBytes ){
10731 pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
10732 pBt->xFreeSchema = xFree;
10734 sqlite3BtreeLeave(p);
10735 return pBt->pSchema;
10739 ** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
10740 ** btree as the argument handle holds an exclusive lock on the
10741 ** sqlite_schema table. Otherwise SQLITE_OK.
10743 int sqlite3BtreeSchemaLocked(Btree *p){
10744 int rc;
10745 assert( sqlite3_mutex_held(p->db->mutex) );
10746 sqlite3BtreeEnter(p);
10747 rc = querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK);
10748 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
10749 sqlite3BtreeLeave(p);
10750 return rc;
10754 #ifndef SQLITE_OMIT_SHARED_CACHE
10756 ** Obtain a lock on the table whose root page is iTab. The
10757 ** lock is a write lock if isWritelock is true or a read lock
10758 ** if it is false.
10760 int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
10761 int rc = SQLITE_OK;
10762 assert( p->inTrans!=TRANS_NONE );
10763 if( p->sharable ){
10764 u8 lockType = READ_LOCK + isWriteLock;
10765 assert( READ_LOCK+1==WRITE_LOCK );
10766 assert( isWriteLock==0 || isWriteLock==1 );
10768 sqlite3BtreeEnter(p);
10769 rc = querySharedCacheTableLock(p, iTab, lockType);
10770 if( rc==SQLITE_OK ){
10771 rc = setSharedCacheTableLock(p, iTab, lockType);
10773 sqlite3BtreeLeave(p);
10775 return rc;
10777 #endif
10779 #ifndef SQLITE_OMIT_INCRBLOB
10781 ** Argument pCsr must be a cursor opened for writing on an
10782 ** INTKEY table currently pointing at a valid table entry.
10783 ** This function modifies the data stored as part of that entry.
10785 ** Only the data content may only be modified, it is not possible to
10786 ** change the length of the data stored. If this function is called with
10787 ** parameters that attempt to write past the end of the existing data,
10788 ** no modifications are made and SQLITE_CORRUPT is returned.
10790 int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
10791 int rc;
10792 assert( cursorOwnsBtShared(pCsr) );
10793 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
10794 assert( pCsr->curFlags & BTCF_Incrblob );
10796 rc = restoreCursorPosition(pCsr);
10797 if( rc!=SQLITE_OK ){
10798 return rc;
10800 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
10801 if( pCsr->eState!=CURSOR_VALID ){
10802 return SQLITE_ABORT;
10805 /* Save the positions of all other cursors open on this table. This is
10806 ** required in case any of them are holding references to an xFetch
10807 ** version of the b-tree page modified by the accessPayload call below.
10809 ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
10810 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
10811 ** saveAllCursors can only return SQLITE_OK.
10813 VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
10814 assert( rc==SQLITE_OK );
10816 /* Check some assumptions:
10817 ** (a) the cursor is open for writing,
10818 ** (b) there is a read/write transaction open,
10819 ** (c) the connection holds a write-lock on the table (if required),
10820 ** (d) there are no conflicting read-locks, and
10821 ** (e) the cursor points at a valid row of an intKey table.
10823 if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
10824 return SQLITE_READONLY;
10826 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
10827 && pCsr->pBt->inTransaction==TRANS_WRITE );
10828 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
10829 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
10830 assert( pCsr->pPage->intKey );
10832 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
10836 ** Mark this cursor as an incremental blob cursor.
10838 void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
10839 pCur->curFlags |= BTCF_Incrblob;
10840 pCur->pBtree->hasIncrblobCur = 1;
10842 #endif
10845 ** Set both the "read version" (single byte at byte offset 18) and
10846 ** "write version" (single byte at byte offset 19) fields in the database
10847 ** header to iVersion.
10849 int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
10850 BtShared *pBt = pBtree->pBt;
10851 int rc; /* Return code */
10853 assert( iVersion==1 || iVersion==2 );
10855 /* If setting the version fields to 1, do not automatically open the
10856 ** WAL connection, even if the version fields are currently set to 2.
10858 pBt->btsFlags &= ~BTS_NO_WAL;
10859 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
10861 rc = sqlite3BtreeBeginTrans(pBtree, 0, 0);
10862 if( rc==SQLITE_OK ){
10863 u8 *aData = pBt->pPage1->aData;
10864 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
10865 rc = sqlite3BtreeBeginTrans(pBtree, 2, 0);
10866 if( rc==SQLITE_OK ){
10867 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
10868 if( rc==SQLITE_OK ){
10869 aData[18] = (u8)iVersion;
10870 aData[19] = (u8)iVersion;
10876 pBt->btsFlags &= ~BTS_NO_WAL;
10877 return rc;
10881 ** Return true if the cursor has a hint specified. This routine is
10882 ** only used from within assert() statements
10884 int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){
10885 return (pCsr->hints & mask)!=0;
10889 ** Return true if the given Btree is read-only.
10891 int sqlite3BtreeIsReadonly(Btree *p){
10892 return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
10896 ** Return the size of the header added to each page by this module.
10898 int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); }
10900 #if !defined(SQLITE_OMIT_SHARED_CACHE)
10902 ** Return true if the Btree passed as the only argument is sharable.
10904 int sqlite3BtreeSharable(Btree *p){
10905 return p->sharable;
10909 ** Return the number of connections to the BtShared object accessed by
10910 ** the Btree handle passed as the only argument. For private caches
10911 ** this is always 1. For shared caches it may be 1 or greater.
10913 int sqlite3BtreeConnectionCount(Btree *p){
10914 testcase( p->sharable );
10915 return p->pBt->nRef;
10917 #endif