4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file implements an external (disk-based) database using BTrees.
13 ** See the header comment on "btreeInt.h" for additional information.
14 ** Including a description of file format and an overview of operation.
19 ** The header string that appears at the beginning of every
22 static const char zMagicHeader
[] = SQLITE_FILE_HEADER
;
25 ** Set this global variable to 1 to enable tracing using the TRACE
29 int sqlite3BtreeTrace
=1; /* True to enable tracing */
30 # define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
36 ** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37 ** But if the value is zero, make it 65536.
39 ** This routine is used to extract the "offset to cell content area" value
40 ** from the header of a btree page. If the page size is 65536 and the page
41 ** is empty, the offset should be 65536, but the 2-byte value stores zero.
42 ** This routine makes the necessary adjustment to 65536.
44 #define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
47 ** Values passed as the 5th argument to allocateBtreePage()
49 #define BTALLOC_ANY 0 /* Allocate any page */
50 #define BTALLOC_EXACT 1 /* Allocate exact page if possible */
51 #define BTALLOC_LE 2 /* Allocate any page <= the parameter */
54 ** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55 ** defined, or 0 if it is. For example:
57 ** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
59 #ifndef SQLITE_OMIT_AUTOVACUUM
60 #define IfNotOmitAV(expr) (expr)
62 #define IfNotOmitAV(expr) 0
65 #ifndef SQLITE_OMIT_SHARED_CACHE
67 ** A list of BtShared objects that are eligible for participation
68 ** in shared cache. This variable has file scope during normal builds,
69 ** but the test harness needs to access it so we make it global for
72 ** Access to this variable is protected by SQLITE_MUTEX_STATIC_MAIN.
75 BtShared
*SQLITE_WSD sqlite3SharedCacheList
= 0;
77 static BtShared
*SQLITE_WSD sqlite3SharedCacheList
= 0;
79 #endif /* SQLITE_OMIT_SHARED_CACHE */
81 #ifndef SQLITE_OMIT_SHARED_CACHE
83 ** Enable or disable the shared pager and schema features.
85 ** This routine has no effect on existing database connections.
86 ** The shared cache setting effects only future calls to
87 ** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
89 int sqlite3_enable_shared_cache(int enable
){
90 sqlite3GlobalConfig
.sharedCacheEnabled
= enable
;
97 #ifdef SQLITE_OMIT_SHARED_CACHE
99 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100 ** and clearAllSharedCacheTableLocks()
101 ** manipulate entries in the BtShared.pLock linked list used to store
102 ** shared-cache table level locks. If the library is compiled with the
103 ** shared-cache feature disabled, then there is only ever one user
104 ** of each BtShared structure and so this locking is not necessary.
105 ** So define the lock related functions as no-ops.
107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109 #define clearAllSharedCacheTableLocks(a)
110 #define downgradeAllSharedCacheTableLocks(a)
111 #define hasSharedCacheTableLock(a,b,c,d) 1
112 #define hasReadConflicts(a, b) 0
117 ** Return and reset the seek counter for a Btree object.
119 sqlite3_uint64
sqlite3BtreeSeekCount(Btree
*pBt
){
127 ** Implementation of the SQLITE_CORRUPT_PAGE() macro. Takes a single
128 ** (MemPage*) as an argument. The (MemPage*) must not be NULL.
130 ** If SQLITE_DEBUG is not defined, then this macro is equivalent to
131 ** SQLITE_CORRUPT_BKPT. Or, if SQLITE_DEBUG is set, then the log message
132 ** normally produced as a side-effect of SQLITE_CORRUPT_BKPT is augmented
133 ** with the page number and filename associated with the (MemPage*).
136 int corruptPageError(int lineno
, MemPage
*p
){
138 sqlite3BeginBenignMalloc();
139 zMsg
= sqlite3_mprintf("database corruption page %d of %s",
140 (int)p
->pgno
, sqlite3PagerFilename(p
->pBt
->pPager
, 0)
142 sqlite3EndBenignMalloc();
144 sqlite3ReportError(SQLITE_CORRUPT
, lineno
, zMsg
);
147 return SQLITE_CORRUPT_BKPT
;
149 # define SQLITE_CORRUPT_PAGE(pMemPage) corruptPageError(__LINE__, pMemPage)
151 # define SQLITE_CORRUPT_PAGE(pMemPage) SQLITE_CORRUPT_PGNO(pMemPage->pgno)
154 #ifndef SQLITE_OMIT_SHARED_CACHE
158 **** This function is only used as part of an assert() statement. ***
160 ** Check to see if pBtree holds the required locks to read or write to the
161 ** table with root page iRoot. Return 1 if it does and 0 if not.
163 ** For example, when writing to a table with root-page iRoot via
164 ** Btree connection pBtree:
166 ** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
168 ** When writing to an index that resides in a sharable database, the
169 ** caller should have first obtained a lock specifying the root page of
170 ** the corresponding table. This makes things a bit more complicated,
171 ** as this module treats each table as a separate structure. To determine
172 ** the table corresponding to the index being written, this
173 ** function has to search through the database schema.
175 ** Instead of a lock on the table/index rooted at page iRoot, the caller may
176 ** hold a write-lock on the schema table (root page 1). This is also
179 static int hasSharedCacheTableLock(
180 Btree
*pBtree
, /* Handle that must hold lock */
181 Pgno iRoot
, /* Root page of b-tree */
182 int isIndex
, /* True if iRoot is the root of an index b-tree */
183 int eLockType
/* Required lock type (READ_LOCK or WRITE_LOCK) */
185 Schema
*pSchema
= (Schema
*)pBtree
->pBt
->pSchema
;
189 /* If this database is not shareable, or if the client is reading
190 ** and has the read-uncommitted flag set, then no lock is required.
191 ** Return true immediately.
193 if( (pBtree
->sharable
==0)
194 || (eLockType
==READ_LOCK
&& (pBtree
->db
->flags
& SQLITE_ReadUncommit
))
199 /* If the client is reading or writing an index and the schema is
200 ** not loaded, then it is too difficult to actually check to see if
201 ** the correct locks are held. So do not bother - just return true.
202 ** This case does not come up very often anyhow.
204 if( isIndex
&& (!pSchema
|| (pSchema
->schemaFlags
&DB_SchemaLoaded
)==0) ){
208 /* Figure out the root-page that the lock should be held on. For table
209 ** b-trees, this is just the root page of the b-tree being read or
210 ** written. For index b-trees, it is the root page of the associated
215 for(p
=sqliteHashFirst(&pSchema
->idxHash
); p
; p
=sqliteHashNext(p
)){
216 Index
*pIdx
= (Index
*)sqliteHashData(p
);
217 if( pIdx
->tnum
==(int)iRoot
){
219 /* Two or more indexes share the same root page. There must
220 ** be imposter tables. So just return true. The assert is not
221 ** useful in that case. */
224 iTab
= pIdx
->pTable
->tnum
;
232 /* Search for the required lock. Either a write-lock on root-page iTab, a
233 ** write-lock on the schema table, or (if the client is reading) a
234 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
235 for(pLock
=pBtree
->pBt
->pLock
; pLock
; pLock
=pLock
->pNext
){
236 if( pLock
->pBtree
==pBtree
237 && (pLock
->iTable
==iTab
|| (pLock
->eLock
==WRITE_LOCK
&& pLock
->iTable
==1))
238 && pLock
->eLock
>=eLockType
244 /* Failed to find the required lock. */
247 #endif /* SQLITE_DEBUG */
251 **** This function may be used as part of assert() statements only. ****
253 ** Return true if it would be illegal for pBtree to write into the
254 ** table or index rooted at iRoot because other shared connections are
255 ** simultaneously reading that same table or index.
257 ** It is illegal for pBtree to write if some other Btree object that
258 ** shares the same BtShared object is currently reading or writing
259 ** the iRoot table. Except, if the other Btree object has the
260 ** read-uncommitted flag set, then it is OK for the other object to
261 ** have a read cursor.
263 ** For example, before writing to any part of the table or index
264 ** rooted at page iRoot, one should call:
266 ** assert( !hasReadConflicts(pBtree, iRoot) );
268 static int hasReadConflicts(Btree
*pBtree
, Pgno iRoot
){
270 for(p
=pBtree
->pBt
->pCursor
; p
; p
=p
->pNext
){
271 if( p
->pgnoRoot
==iRoot
273 && 0==(p
->pBtree
->db
->flags
& SQLITE_ReadUncommit
)
280 #endif /* #ifdef SQLITE_DEBUG */
283 ** Query to see if Btree handle p may obtain a lock of type eLock
284 ** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
285 ** SQLITE_OK if the lock may be obtained (by calling
286 ** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
288 static int querySharedCacheTableLock(Btree
*p
, Pgno iTab
, u8 eLock
){
289 BtShared
*pBt
= p
->pBt
;
292 assert( sqlite3BtreeHoldsMutex(p
) );
293 assert( eLock
==READ_LOCK
|| eLock
==WRITE_LOCK
);
295 assert( !(p
->db
->flags
&SQLITE_ReadUncommit
)||eLock
==WRITE_LOCK
||iTab
==1 );
297 /* If requesting a write-lock, then the Btree must have an open write
298 ** transaction on this file. And, obviously, for this to be so there
299 ** must be an open write transaction on the file itself.
301 assert( eLock
==READ_LOCK
|| (p
==pBt
->pWriter
&& p
->inTrans
==TRANS_WRITE
) );
302 assert( eLock
==READ_LOCK
|| pBt
->inTransaction
==TRANS_WRITE
);
304 /* This routine is a no-op if the shared-cache is not enabled */
309 /* If some other connection is holding an exclusive lock, the
310 ** requested lock may not be obtained.
312 if( pBt
->pWriter
!=p
&& (pBt
->btsFlags
& BTS_EXCLUSIVE
)!=0 ){
313 sqlite3ConnectionBlocked(p
->db
, pBt
->pWriter
->db
);
314 return SQLITE_LOCKED_SHAREDCACHE
;
317 for(pIter
=pBt
->pLock
; pIter
; pIter
=pIter
->pNext
){
318 /* The condition (pIter->eLock!=eLock) in the following if(...)
319 ** statement is a simplification of:
321 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
323 ** since we know that if eLock==WRITE_LOCK, then no other connection
324 ** may hold a WRITE_LOCK on any table in this file (since there can
325 ** only be a single writer).
327 assert( pIter
->eLock
==READ_LOCK
|| pIter
->eLock
==WRITE_LOCK
);
328 assert( eLock
==READ_LOCK
|| pIter
->pBtree
==p
|| pIter
->eLock
==READ_LOCK
);
329 if( pIter
->pBtree
!=p
&& pIter
->iTable
==iTab
&& pIter
->eLock
!=eLock
){
330 sqlite3ConnectionBlocked(p
->db
, pIter
->pBtree
->db
);
331 if( eLock
==WRITE_LOCK
){
332 assert( p
==pBt
->pWriter
);
333 pBt
->btsFlags
|= BTS_PENDING
;
335 return SQLITE_LOCKED_SHAREDCACHE
;
340 #endif /* !SQLITE_OMIT_SHARED_CACHE */
342 #ifndef SQLITE_OMIT_SHARED_CACHE
344 ** Add a lock on the table with root-page iTable to the shared-btree used
345 ** by Btree handle p. Parameter eLock must be either READ_LOCK or
348 ** This function assumes the following:
350 ** (a) The specified Btree object p is connected to a sharable
351 ** database (one with the BtShared.sharable flag set), and
353 ** (b) No other Btree objects hold a lock that conflicts
354 ** with the requested lock (i.e. querySharedCacheTableLock() has
355 ** already been called and returned SQLITE_OK).
357 ** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
358 ** is returned if a malloc attempt fails.
360 static int setSharedCacheTableLock(Btree
*p
, Pgno iTable
, u8 eLock
){
361 BtShared
*pBt
= p
->pBt
;
365 assert( sqlite3BtreeHoldsMutex(p
) );
366 assert( eLock
==READ_LOCK
|| eLock
==WRITE_LOCK
);
369 /* A connection with the read-uncommitted flag set will never try to
370 ** obtain a read-lock using this function. The only read-lock obtained
371 ** by a connection in read-uncommitted mode is on the sqlite_schema
372 ** table, and that lock is obtained in BtreeBeginTrans(). */
373 assert( 0==(p
->db
->flags
&SQLITE_ReadUncommit
) || eLock
==WRITE_LOCK
);
375 /* This function should only be called on a sharable b-tree after it
376 ** has been determined that no other b-tree holds a conflicting lock. */
377 assert( p
->sharable
);
378 assert( SQLITE_OK
==querySharedCacheTableLock(p
, iTable
, eLock
) );
380 /* First search the list for an existing lock on this table. */
381 for(pIter
=pBt
->pLock
; pIter
; pIter
=pIter
->pNext
){
382 if( pIter
->iTable
==iTable
&& pIter
->pBtree
==p
){
388 /* If the above search did not find a BtLock struct associating Btree p
389 ** with table iTable, allocate one and link it into the list.
392 pLock
= (BtLock
*)sqlite3MallocZero(sizeof(BtLock
));
394 return SQLITE_NOMEM_BKPT
;
396 pLock
->iTable
= iTable
;
398 pLock
->pNext
= pBt
->pLock
;
402 /* Set the BtLock.eLock variable to the maximum of the current lock
403 ** and the requested lock. This means if a write-lock was already held
404 ** and a read-lock requested, we don't incorrectly downgrade the lock.
406 assert( WRITE_LOCK
>READ_LOCK
);
407 if( eLock
>pLock
->eLock
){
408 pLock
->eLock
= eLock
;
413 #endif /* !SQLITE_OMIT_SHARED_CACHE */
415 #ifndef SQLITE_OMIT_SHARED_CACHE
417 ** Release all the table locks (locks obtained via calls to
418 ** the setSharedCacheTableLock() procedure) held by Btree object p.
420 ** This function assumes that Btree p has an open read or write
421 ** transaction. If it does not, then the BTS_PENDING flag
422 ** may be incorrectly cleared.
424 static void clearAllSharedCacheTableLocks(Btree
*p
){
425 BtShared
*pBt
= p
->pBt
;
426 BtLock
**ppIter
= &pBt
->pLock
;
428 assert( sqlite3BtreeHoldsMutex(p
) );
429 assert( p
->sharable
|| 0==*ppIter
);
430 assert( p
->inTrans
>0 );
433 BtLock
*pLock
= *ppIter
;
434 assert( (pBt
->btsFlags
& BTS_EXCLUSIVE
)==0 || pBt
->pWriter
==pLock
->pBtree
);
435 assert( pLock
->pBtree
->inTrans
>=pLock
->eLock
);
436 if( pLock
->pBtree
==p
){
437 *ppIter
= pLock
->pNext
;
438 assert( pLock
->iTable
!=1 || pLock
==&p
->lock
);
439 if( pLock
->iTable
!=1 ){
443 ppIter
= &pLock
->pNext
;
447 assert( (pBt
->btsFlags
& BTS_PENDING
)==0 || pBt
->pWriter
);
448 if( pBt
->pWriter
==p
){
450 pBt
->btsFlags
&= ~(BTS_EXCLUSIVE
|BTS_PENDING
);
451 }else if( pBt
->nTransaction
==2 ){
452 /* This function is called when Btree p is concluding its
453 ** transaction. If there currently exists a writer, and p is not
454 ** that writer, then the number of locks held by connections other
455 ** than the writer must be about to drop to zero. In this case
456 ** set the BTS_PENDING flag to 0.
458 ** If there is not currently a writer, then BTS_PENDING must
459 ** be zero already. So this next line is harmless in that case.
461 pBt
->btsFlags
&= ~BTS_PENDING
;
466 ** This function changes all write-locks held by Btree p into read-locks.
468 static void downgradeAllSharedCacheTableLocks(Btree
*p
){
469 BtShared
*pBt
= p
->pBt
;
470 if( pBt
->pWriter
==p
){
473 pBt
->btsFlags
&= ~(BTS_EXCLUSIVE
|BTS_PENDING
);
474 for(pLock
=pBt
->pLock
; pLock
; pLock
=pLock
->pNext
){
475 assert( pLock
->eLock
==READ_LOCK
|| pLock
->pBtree
==p
);
476 pLock
->eLock
= READ_LOCK
;
481 #endif /* SQLITE_OMIT_SHARED_CACHE */
483 static void releasePage(MemPage
*pPage
); /* Forward reference */
484 static void releasePageOne(MemPage
*pPage
); /* Forward reference */
485 static void releasePageNotNull(MemPage
*pPage
); /* Forward reference */
488 ***** This routine is used inside of assert() only ****
490 ** Verify that the cursor holds the mutex on its BtShared
493 static int cursorHoldsMutex(BtCursor
*p
){
494 return sqlite3_mutex_held(p
->pBt
->mutex
);
497 /* Verify that the cursor and the BtShared agree about what is the current
498 ** database connetion. This is important in shared-cache mode. If the database
499 ** connection pointers get out-of-sync, it is possible for routines like
500 ** btreeInitPage() to reference an stale connection pointer that references a
501 ** a connection that has already closed. This routine is used inside assert()
502 ** statements only and for the purpose of double-checking that the btree code
503 ** does keep the database connection pointers up-to-date.
505 static int cursorOwnsBtShared(BtCursor
*p
){
506 assert( cursorHoldsMutex(p
) );
507 return (p
->pBtree
->db
==p
->pBt
->db
);
512 ** Invalidate the overflow cache of the cursor passed as the first argument.
513 ** on the shared btree structure pBt.
515 #define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
518 ** Invalidate the overflow page-list cache for all cursors opened
519 ** on the shared btree structure pBt.
521 static void invalidateAllOverflowCache(BtShared
*pBt
){
523 assert( sqlite3_mutex_held(pBt
->mutex
) );
524 for(p
=pBt
->pCursor
; p
; p
=p
->pNext
){
525 invalidateOverflowCache(p
);
529 #ifndef SQLITE_OMIT_INCRBLOB
531 ** This function is called before modifying the contents of a table
532 ** to invalidate any incrblob cursors that are open on the
533 ** row or one of the rows being modified.
535 ** If argument isClearTable is true, then the entire contents of the
536 ** table is about to be deleted. In this case invalidate all incrblob
537 ** cursors open on any row within the table with root-page pgnoRoot.
539 ** Otherwise, if argument isClearTable is false, then the row with
540 ** rowid iRow is being replaced or deleted. In this case invalidate
541 ** only those incrblob cursors open on that specific row.
543 static void invalidateIncrblobCursors(
544 Btree
*pBtree
, /* The database file to check */
545 Pgno pgnoRoot
, /* The table that might be changing */
546 i64 iRow
, /* The rowid that might be changing */
547 int isClearTable
/* True if all rows are being deleted */
550 assert( pBtree
->hasIncrblobCur
);
551 assert( sqlite3BtreeHoldsMutex(pBtree
) );
552 pBtree
->hasIncrblobCur
= 0;
553 for(p
=pBtree
->pBt
->pCursor
; p
; p
=p
->pNext
){
554 if( (p
->curFlags
& BTCF_Incrblob
)!=0 ){
555 pBtree
->hasIncrblobCur
= 1;
556 if( p
->pgnoRoot
==pgnoRoot
&& (isClearTable
|| p
->info
.nKey
==iRow
) ){
557 p
->eState
= CURSOR_INVALID
;
564 /* Stub function when INCRBLOB is omitted */
565 #define invalidateIncrblobCursors(w,x,y,z)
566 #endif /* SQLITE_OMIT_INCRBLOB */
569 ** Set bit pgno of the BtShared.pHasContent bitvec. This is called
570 ** when a page that previously contained data becomes a free-list leaf
573 ** The BtShared.pHasContent bitvec exists to work around an obscure
574 ** bug caused by the interaction of two useful IO optimizations surrounding
575 ** free-list leaf pages:
577 ** 1) When all data is deleted from a page and the page becomes
578 ** a free-list leaf page, the page is not written to the database
579 ** (as free-list leaf pages contain no meaningful data). Sometimes
580 ** such a page is not even journalled (as it will not be modified,
581 ** why bother journalling it?).
583 ** 2) When a free-list leaf page is reused, its content is not read
584 ** from the database or written to the journal file (why should it
585 ** be, if it is not at all meaningful?).
587 ** By themselves, these optimizations work fine and provide a handy
588 ** performance boost to bulk delete or insert operations. However, if
589 ** a page is moved to the free-list and then reused within the same
590 ** transaction, a problem comes up. If the page is not journalled when
591 ** it is moved to the free-list and it is also not journalled when it
592 ** is extracted from the free-list and reused, then the original data
593 ** may be lost. In the event of a rollback, it may not be possible
594 ** to restore the database to its original configuration.
596 ** The solution is the BtShared.pHasContent bitvec. Whenever a page is
597 ** moved to become a free-list leaf page, the corresponding bit is
598 ** set in the bitvec. Whenever a leaf page is extracted from the free-list,
599 ** optimization 2 above is omitted if the corresponding bit is already
600 ** set in BtShared.pHasContent. The contents of the bitvec are cleared
601 ** at the end of every transaction.
603 static int btreeSetHasContent(BtShared
*pBt
, Pgno pgno
){
605 if( !pBt
->pHasContent
){
606 assert( pgno
<=pBt
->nPage
);
607 pBt
->pHasContent
= sqlite3BitvecCreate(pBt
->nPage
);
608 if( !pBt
->pHasContent
){
609 rc
= SQLITE_NOMEM_BKPT
;
612 if( rc
==SQLITE_OK
&& pgno
<=sqlite3BitvecSize(pBt
->pHasContent
) ){
613 rc
= sqlite3BitvecSet(pBt
->pHasContent
, pgno
);
619 ** Query the BtShared.pHasContent vector.
621 ** This function is called when a free-list leaf page is removed from the
622 ** free-list for reuse. It returns false if it is safe to retrieve the
623 ** page from the pager layer with the 'no-content' flag set. True otherwise.
625 static int btreeGetHasContent(BtShared
*pBt
, Pgno pgno
){
626 Bitvec
*p
= pBt
->pHasContent
;
627 return p
&& (pgno
>sqlite3BitvecSize(p
) || sqlite3BitvecTestNotNull(p
, pgno
));
631 ** Clear (destroy) the BtShared.pHasContent bitvec. This should be
632 ** invoked at the conclusion of each write-transaction.
634 static void btreeClearHasContent(BtShared
*pBt
){
635 sqlite3BitvecDestroy(pBt
->pHasContent
);
636 pBt
->pHasContent
= 0;
640 ** Release all of the apPage[] pages for a cursor.
642 static void btreeReleaseAllCursorPages(BtCursor
*pCur
){
644 if( pCur
->iPage
>=0 ){
645 for(i
=0; i
<pCur
->iPage
; i
++){
646 releasePageNotNull(pCur
->apPage
[i
]);
648 releasePageNotNull(pCur
->pPage
);
654 ** The cursor passed as the only argument must point to a valid entry
655 ** when this function is called (i.e. have eState==CURSOR_VALID). This
656 ** function saves the current cursor key in variables pCur->nKey and
657 ** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error
660 ** If the cursor is open on an intkey table, then the integer key
661 ** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to
662 ** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is
663 ** set to point to a malloced buffer pCur->nKey bytes in size containing
666 static int saveCursorKey(BtCursor
*pCur
){
668 assert( CURSOR_VALID
==pCur
->eState
);
669 assert( 0==pCur
->pKey
);
670 assert( cursorHoldsMutex(pCur
) );
672 if( pCur
->curIntKey
){
673 /* Only the rowid is required for a table btree */
674 pCur
->nKey
= sqlite3BtreeIntegerKey(pCur
);
676 /* For an index btree, save the complete key content. It is possible
677 ** that the current key is corrupt. In that case, it is possible that
678 ** the sqlite3VdbeRecordUnpack() function may overread the buffer by
679 ** up to the size of 1 varint plus 1 8-byte value when the cursor
680 ** position is restored. Hence the 17 bytes of padding allocated
683 pCur
->nKey
= sqlite3BtreePayloadSize(pCur
);
684 pKey
= sqlite3Malloc( pCur
->nKey
+ 9 + 8 );
686 rc
= sqlite3BtreePayload(pCur
, 0, (int)pCur
->nKey
, pKey
);
688 memset(((u8
*)pKey
)+pCur
->nKey
, 0, 9+8);
694 rc
= SQLITE_NOMEM_BKPT
;
697 assert( !pCur
->curIntKey
|| !pCur
->pKey
);
702 ** Save the current cursor position in the variables BtCursor.nKey
703 ** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
705 ** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
706 ** prior to calling this routine.
708 static int saveCursorPosition(BtCursor
*pCur
){
711 assert( CURSOR_VALID
==pCur
->eState
|| CURSOR_SKIPNEXT
==pCur
->eState
);
712 assert( 0==pCur
->pKey
);
713 assert( cursorHoldsMutex(pCur
) );
715 if( pCur
->curFlags
& BTCF_Pinned
){
716 return SQLITE_CONSTRAINT_PINNED
;
718 if( pCur
->eState
==CURSOR_SKIPNEXT
){
719 pCur
->eState
= CURSOR_VALID
;
724 rc
= saveCursorKey(pCur
);
726 btreeReleaseAllCursorPages(pCur
);
727 pCur
->eState
= CURSOR_REQUIRESEEK
;
730 pCur
->curFlags
&= ~(BTCF_ValidNKey
|BTCF_ValidOvfl
|BTCF_AtLast
);
734 /* Forward reference */
735 static int SQLITE_NOINLINE
saveCursorsOnList(BtCursor
*,Pgno
,BtCursor
*);
738 ** Save the positions of all cursors (except pExcept) that are open on
739 ** the table with root-page iRoot. "Saving the cursor position" means that
740 ** the location in the btree is remembered in such a way that it can be
741 ** moved back to the same spot after the btree has been modified. This
742 ** routine is called just before cursor pExcept is used to modify the
743 ** table, for example in BtreeDelete() or BtreeInsert().
745 ** If there are two or more cursors on the same btree, then all such
746 ** cursors should have their BTCF_Multiple flag set. The btreeCursor()
747 ** routine enforces that rule. This routine only needs to be called in
748 ** the uncommon case when pExpect has the BTCF_Multiple flag set.
750 ** If pExpect!=NULL and if no other cursors are found on the same root-page,
751 ** then the BTCF_Multiple flag on pExpect is cleared, to avoid another
752 ** pointless call to this routine.
754 ** Implementation note: This routine merely checks to see if any cursors
755 ** need to be saved. It calls out to saveCursorsOnList() in the (unusual)
756 ** event that cursors are in need to being saved.
758 static int saveAllCursors(BtShared
*pBt
, Pgno iRoot
, BtCursor
*pExcept
){
760 assert( sqlite3_mutex_held(pBt
->mutex
) );
761 assert( pExcept
==0 || pExcept
->pBt
==pBt
);
762 for(p
=pBt
->pCursor
; p
; p
=p
->pNext
){
763 if( p
!=pExcept
&& (0==iRoot
|| p
->pgnoRoot
==iRoot
) ) break;
765 if( p
) return saveCursorsOnList(p
, iRoot
, pExcept
);
766 if( pExcept
) pExcept
->curFlags
&= ~BTCF_Multiple
;
770 /* This helper routine to saveAllCursors does the actual work of saving
771 ** the cursors if and when a cursor is found that actually requires saving.
772 ** The common case is that no cursors need to be saved, so this routine is
773 ** broken out from its caller to avoid unnecessary stack pointer movement.
775 static int SQLITE_NOINLINE
saveCursorsOnList(
776 BtCursor
*p
, /* The first cursor that needs saving */
777 Pgno iRoot
, /* Only save cursor with this iRoot. Save all if zero */
778 BtCursor
*pExcept
/* Do not save this cursor */
781 if( p
!=pExcept
&& (0==iRoot
|| p
->pgnoRoot
==iRoot
) ){
782 if( p
->eState
==CURSOR_VALID
|| p
->eState
==CURSOR_SKIPNEXT
){
783 int rc
= saveCursorPosition(p
);
788 testcase( p
->iPage
>=0 );
789 btreeReleaseAllCursorPages(p
);
798 ** Clear the current cursor position.
800 void sqlite3BtreeClearCursor(BtCursor
*pCur
){
801 assert( cursorHoldsMutex(pCur
) );
802 sqlite3_free(pCur
->pKey
);
804 pCur
->eState
= CURSOR_INVALID
;
808 ** In this version of BtreeMoveto, pKey is a packed index record
809 ** such as is generated by the OP_MakeRecord opcode. Unpack the
810 ** record and then call BtreeMovetoUnpacked() to do the work.
812 static int btreeMoveto(
813 BtCursor
*pCur
, /* Cursor open on the btree to be searched */
814 const void *pKey
, /* Packed key if the btree is an index */
815 i64 nKey
, /* Integer key for tables. Size of pKey for indices */
816 int bias
, /* Bias search to the high end */
817 int *pRes
/* Write search results here */
819 int rc
; /* Status code */
820 UnpackedRecord
*pIdxKey
; /* Unpacked index key */
823 KeyInfo
*pKeyInfo
= pCur
->pKeyInfo
;
824 assert( nKey
==(i64
)(int)nKey
);
825 pIdxKey
= sqlite3VdbeAllocUnpackedRecord(pKeyInfo
);
826 if( pIdxKey
==0 ) return SQLITE_NOMEM_BKPT
;
827 sqlite3VdbeRecordUnpack(pKeyInfo
, (int)nKey
, pKey
, pIdxKey
);
828 if( pIdxKey
->nField
==0 || pIdxKey
->nField
>pKeyInfo
->nAllField
){
829 rc
= SQLITE_CORRUPT_BKPT
;
831 rc
= sqlite3BtreeIndexMoveto(pCur
, pIdxKey
, pRes
);
833 sqlite3DbFree(pCur
->pKeyInfo
->db
, pIdxKey
);
836 rc
= sqlite3BtreeTableMoveto(pCur
, nKey
, bias
, pRes
);
842 ** Restore the cursor to the position it was in (or as close to as possible)
843 ** when saveCursorPosition() was called. Note that this call deletes the
844 ** saved position info stored by saveCursorPosition(), so there can be
845 ** at most one effective restoreCursorPosition() call after each
846 ** saveCursorPosition().
848 static int btreeRestoreCursorPosition(BtCursor
*pCur
){
851 assert( cursorOwnsBtShared(pCur
) );
852 assert( pCur
->eState
>=CURSOR_REQUIRESEEK
);
853 if( pCur
->eState
==CURSOR_FAULT
){
854 return pCur
->skipNext
;
856 pCur
->eState
= CURSOR_INVALID
;
857 if( sqlite3FaultSim(410) ){
860 rc
= btreeMoveto(pCur
, pCur
->pKey
, pCur
->nKey
, 0, &skipNext
);
863 sqlite3_free(pCur
->pKey
);
865 assert( pCur
->eState
==CURSOR_VALID
|| pCur
->eState
==CURSOR_INVALID
);
866 if( skipNext
) pCur
->skipNext
= skipNext
;
867 if( pCur
->skipNext
&& pCur
->eState
==CURSOR_VALID
){
868 pCur
->eState
= CURSOR_SKIPNEXT
;
874 #define restoreCursorPosition(p) \
875 (p->eState>=CURSOR_REQUIRESEEK ? \
876 btreeRestoreCursorPosition(p) : \
880 ** Determine whether or not a cursor has moved from the position where
881 ** it was last placed, or has been invalidated for any other reason.
882 ** Cursors can move when the row they are pointing at is deleted out
883 ** from under them, for example. Cursor might also move if a btree
886 ** Calling this routine with a NULL cursor pointer returns false.
888 ** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
889 ** back to where it ought to be if this routine returns true.
891 int sqlite3BtreeCursorHasMoved(BtCursor
*pCur
){
892 assert( EIGHT_BYTE_ALIGNMENT(pCur
)
893 || pCur
==sqlite3BtreeFakeValidCursor() );
894 assert( offsetof(BtCursor
, eState
)==0 );
895 assert( sizeof(pCur
->eState
)==1 );
896 return CURSOR_VALID
!= *(u8
*)pCur
;
900 ** Return a pointer to a fake BtCursor object that will always answer
901 ** false to the sqlite3BtreeCursorHasMoved() routine above. The fake
902 ** cursor returned must not be used with any other Btree interface.
904 BtCursor
*sqlite3BtreeFakeValidCursor(void){
905 static u8 fakeCursor
= CURSOR_VALID
;
906 assert( offsetof(BtCursor
, eState
)==0 );
907 return (BtCursor
*)&fakeCursor
;
911 ** This routine restores a cursor back to its original position after it
912 ** has been moved by some outside activity (such as a btree rebalance or
913 ** a row having been deleted out from under the cursor).
915 ** On success, the *pDifferentRow parameter is false if the cursor is left
916 ** pointing at exactly the same row. *pDifferntRow is the row the cursor
917 ** was pointing to has been deleted, forcing the cursor to point to some
920 ** This routine should only be called for a cursor that just returned
921 ** TRUE from sqlite3BtreeCursorHasMoved().
923 int sqlite3BtreeCursorRestore(BtCursor
*pCur
, int *pDifferentRow
){
927 assert( pCur
->eState
!=CURSOR_VALID
);
928 rc
= restoreCursorPosition(pCur
);
933 if( pCur
->eState
!=CURSOR_VALID
){
941 #ifdef SQLITE_ENABLE_CURSOR_HINTS
943 ** Provide hints to the cursor. The particular hint given (and the type
944 ** and number of the varargs parameters) is determined by the eHintType
945 ** parameter. See the definitions of the BTREE_HINT_* macros for details.
947 void sqlite3BtreeCursorHint(BtCursor
*pCur
, int eHintType
, ...){
948 /* Used only by system that substitute their own storage engine */
953 ** Provide flag hints to the cursor.
955 void sqlite3BtreeCursorHintFlags(BtCursor
*pCur
, unsigned x
){
956 assert( x
==BTREE_SEEK_EQ
|| x
==BTREE_BULKLOAD
|| x
==0 );
961 #ifndef SQLITE_OMIT_AUTOVACUUM
963 ** Given a page number of a regular database page, return the page
964 ** number for the pointer-map page that contains the entry for the
965 ** input page number.
967 ** Return 0 (not a valid page) for pgno==1 since there is
968 ** no pointer map associated with page 1. The integrity_check logic
969 ** requires that ptrmapPageno(*,1)!=1.
971 static Pgno
ptrmapPageno(BtShared
*pBt
, Pgno pgno
){
972 int nPagesPerMapPage
;
974 assert( sqlite3_mutex_held(pBt
->mutex
) );
975 if( pgno
<2 ) return 0;
976 nPagesPerMapPage
= (pBt
->usableSize
/5)+1;
977 iPtrMap
= (pgno
-2)/nPagesPerMapPage
;
978 ret
= (iPtrMap
*nPagesPerMapPage
) + 2;
979 if( ret
==PENDING_BYTE_PAGE(pBt
) ){
986 ** Write an entry into the pointer map.
988 ** This routine updates the pointer map entry for page number 'key'
989 ** so that it maps to type 'eType' and parent page number 'pgno'.
991 ** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
992 ** a no-op. If an error occurs, the appropriate error code is written
995 static void ptrmapPut(BtShared
*pBt
, Pgno key
, u8 eType
, Pgno parent
, int *pRC
){
996 DbPage
*pDbPage
; /* The pointer map page */
997 u8
*pPtrmap
; /* The pointer map data */
998 Pgno iPtrmap
; /* The pointer map page number */
999 int offset
; /* Offset in pointer map page */
1000 int rc
; /* Return code from subfunctions */
1004 assert( sqlite3_mutex_held(pBt
->mutex
) );
1005 /* The super-journal page number must never be used as a pointer map page */
1006 assert( 0==PTRMAP_ISPAGE(pBt
, PENDING_BYTE_PAGE(pBt
)) );
1008 assert( pBt
->autoVacuum
);
1010 *pRC
= SQLITE_CORRUPT_BKPT
;
1013 iPtrmap
= PTRMAP_PAGENO(pBt
, key
);
1014 rc
= sqlite3PagerGet(pBt
->pPager
, iPtrmap
, &pDbPage
, 0);
1015 if( rc
!=SQLITE_OK
){
1019 if( ((char*)sqlite3PagerGetExtra(pDbPage
))[0]!=0 ){
1020 /* The first byte of the extra data is the MemPage.isInit byte.
1021 ** If that byte is set, it means this page is also being used
1022 ** as a btree page. */
1023 *pRC
= SQLITE_CORRUPT_BKPT
;
1026 offset
= PTRMAP_PTROFFSET(iPtrmap
, key
);
1028 *pRC
= SQLITE_CORRUPT_BKPT
;
1031 assert( offset
<= (int)pBt
->usableSize
-5 );
1032 pPtrmap
= (u8
*)sqlite3PagerGetData(pDbPage
);
1034 if( eType
!=pPtrmap
[offset
] || get4byte(&pPtrmap
[offset
+1])!=parent
){
1035 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key
, eType
, parent
));
1036 *pRC
= rc
= sqlite3PagerWrite(pDbPage
);
1037 if( rc
==SQLITE_OK
){
1038 pPtrmap
[offset
] = eType
;
1039 put4byte(&pPtrmap
[offset
+1], parent
);
1044 sqlite3PagerUnref(pDbPage
);
1048 ** Read an entry from the pointer map.
1050 ** This routine retrieves the pointer map entry for page 'key', writing
1051 ** the type and parent page number to *pEType and *pPgno respectively.
1052 ** An error code is returned if something goes wrong, otherwise SQLITE_OK.
1054 static int ptrmapGet(BtShared
*pBt
, Pgno key
, u8
*pEType
, Pgno
*pPgno
){
1055 DbPage
*pDbPage
; /* The pointer map page */
1056 int iPtrmap
; /* Pointer map page index */
1057 u8
*pPtrmap
; /* Pointer map page data */
1058 int offset
; /* Offset of entry in pointer map */
1061 assert( sqlite3_mutex_held(pBt
->mutex
) );
1063 iPtrmap
= PTRMAP_PAGENO(pBt
, key
);
1064 rc
= sqlite3PagerGet(pBt
->pPager
, iPtrmap
, &pDbPage
, 0);
1068 pPtrmap
= (u8
*)sqlite3PagerGetData(pDbPage
);
1070 offset
= PTRMAP_PTROFFSET(iPtrmap
, key
);
1072 sqlite3PagerUnref(pDbPage
);
1073 return SQLITE_CORRUPT_BKPT
;
1075 assert( offset
<= (int)pBt
->usableSize
-5 );
1076 assert( pEType
!=0 );
1077 *pEType
= pPtrmap
[offset
];
1078 if( pPgno
) *pPgno
= get4byte(&pPtrmap
[offset
+1]);
1080 sqlite3PagerUnref(pDbPage
);
1081 if( *pEType
<1 || *pEType
>5 ) return SQLITE_CORRUPT_PGNO(iPtrmap
);
1085 #else /* if defined SQLITE_OMIT_AUTOVACUUM */
1086 #define ptrmapPut(w,x,y,z,rc)
1087 #define ptrmapGet(w,x,y,z) SQLITE_OK
1088 #define ptrmapPutOvflPtr(x, y, z, rc)
1092 ** Given a btree page and a cell index (0 means the first cell on
1093 ** the page, 1 means the second cell, and so forth) return a pointer
1094 ** to the cell content.
1096 ** findCellPastPtr() does the same except it skips past the initial
1097 ** 4-byte child pointer found on interior pages, if there is one.
1099 ** This routine works only for pages that do not contain overflow cells.
1101 #define findCell(P,I) \
1102 ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
1103 #define findCellPastPtr(P,I) \
1104 ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
1108 ** This is common tail processing for btreeParseCellPtr() and
1109 ** btreeParseCellPtrIndex() for the case when the cell does not fit entirely
1110 ** on a single B-tree page. Make necessary adjustments to the CellInfo
1113 static SQLITE_NOINLINE
void btreeParseCellAdjustSizeForOverflow(
1114 MemPage
*pPage
, /* Page containing the cell */
1115 u8
*pCell
, /* Pointer to the cell text. */
1116 CellInfo
*pInfo
/* Fill in this structure */
1118 /* If the payload will not fit completely on the local page, we have
1119 ** to decide how much to store locally and how much to spill onto
1120 ** overflow pages. The strategy is to minimize the amount of unused
1121 ** space on overflow pages while keeping the amount of local storage
1122 ** in between minLocal and maxLocal.
1124 ** Warning: changing the way overflow payload is distributed in any
1125 ** way will result in an incompatible file format.
1127 int minLocal
; /* Minimum amount of payload held locally */
1128 int maxLocal
; /* Maximum amount of payload held locally */
1129 int surplus
; /* Overflow payload available for local storage */
1131 minLocal
= pPage
->minLocal
;
1132 maxLocal
= pPage
->maxLocal
;
1133 surplus
= minLocal
+ (pInfo
->nPayload
- minLocal
)%(pPage
->pBt
->usableSize
-4);
1134 testcase( surplus
==maxLocal
);
1135 testcase( surplus
==maxLocal
+1 );
1136 if( surplus
<= maxLocal
){
1137 pInfo
->nLocal
= (u16
)surplus
;
1139 pInfo
->nLocal
= (u16
)minLocal
;
1141 pInfo
->nSize
= (u16
)(&pInfo
->pPayload
[pInfo
->nLocal
] - pCell
) + 4;
1145 ** Given a record with nPayload bytes of payload stored within btree
1146 ** page pPage, return the number of bytes of payload stored locally.
1148 static int btreePayloadToLocal(MemPage
*pPage
, i64 nPayload
){
1149 int maxLocal
; /* Maximum amount of payload held locally */
1150 maxLocal
= pPage
->maxLocal
;
1151 if( nPayload
<=maxLocal
){
1154 int minLocal
; /* Minimum amount of payload held locally */
1155 int surplus
; /* Overflow payload available for local storage */
1156 minLocal
= pPage
->minLocal
;
1157 surplus
= minLocal
+ (nPayload
- minLocal
)%(pPage
->pBt
->usableSize
-4);
1158 return ( surplus
<= maxLocal
) ? surplus
: minLocal
;
1163 ** The following routines are implementations of the MemPage.xParseCell()
1166 ** Parse a cell content block and fill in the CellInfo structure.
1168 ** btreeParseCellPtr() => table btree leaf nodes
1169 ** btreeParseCellNoPayload() => table btree internal nodes
1170 ** btreeParseCellPtrIndex() => index btree nodes
1172 ** There is also a wrapper function btreeParseCell() that works for
1173 ** all MemPage types and that references the cell by index rather than
1176 static void btreeParseCellPtrNoPayload(
1177 MemPage
*pPage
, /* Page containing the cell */
1178 u8
*pCell
, /* Pointer to the cell text. */
1179 CellInfo
*pInfo
/* Fill in this structure */
1181 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
1182 assert( pPage
->leaf
==0 );
1183 assert( pPage
->childPtrSize
==4 );
1184 #ifndef SQLITE_DEBUG
1185 UNUSED_PARAMETER(pPage
);
1187 pInfo
->nSize
= 4 + getVarint(&pCell
[4], (u64
*)&pInfo
->nKey
);
1188 pInfo
->nPayload
= 0;
1190 pInfo
->pPayload
= 0;
1193 static void btreeParseCellPtr(
1194 MemPage
*pPage
, /* Page containing the cell */
1195 u8
*pCell
, /* Pointer to the cell text. */
1196 CellInfo
*pInfo
/* Fill in this structure */
1198 u8
*pIter
; /* For scanning through pCell */
1199 u32 nPayload
; /* Number of bytes of cell payload */
1200 u64 iKey
; /* Extracted Key value */
1202 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
1203 assert( pPage
->leaf
==0 || pPage
->leaf
==1 );
1204 assert( pPage
->intKeyLeaf
);
1205 assert( pPage
->childPtrSize
==0 );
1208 /* The next block of code is equivalent to:
1210 ** pIter += getVarint32(pIter, nPayload);
1212 ** The code is inlined to avoid a function call.
1215 if( nPayload
>=0x80 ){
1216 u8
*pEnd
= &pIter
[8];
1219 nPayload
= (nPayload
<<7) | (*++pIter
& 0x7f);
1220 }while( (*pIter
)>=0x80 && pIter
<pEnd
);
1224 /* The next block of code is equivalent to:
1226 ** pIter += getVarint(pIter, (u64*)&pInfo->nKey);
1228 ** The code is inlined and the loop is unrolled for performance.
1229 ** This routine is a high-runner.
1234 iKey
= ((iKey
&0x7f)<<7) | ((x
= *++pIter
) & 0x7f);
1236 iKey
= (iKey
<<7) | ((x
=*++pIter
) & 0x7f);
1238 iKey
= (iKey
<<7) | ((x
= *++pIter
) & 0x7f);
1240 iKey
= (iKey
<<7) | ((x
= *++pIter
) & 0x7f);
1242 iKey
= (iKey
<<7) | ((x
= *++pIter
) & 0x7f);
1244 iKey
= (iKey
<<7) | ((x
= *++pIter
) & 0x7f);
1246 iKey
= (iKey
<<7) | ((x
= *++pIter
) & 0x7f);
1248 iKey
= (iKey
<<8) | (*++pIter
);
1259 pInfo
->nKey
= *(i64
*)&iKey
;
1260 pInfo
->nPayload
= nPayload
;
1261 pInfo
->pPayload
= pIter
;
1262 testcase( nPayload
==pPage
->maxLocal
);
1263 testcase( nPayload
==(u32
)pPage
->maxLocal
+1 );
1264 if( nPayload
<=pPage
->maxLocal
){
1265 /* This is the (easy) common case where the entire payload fits
1266 ** on the local page. No overflow is required.
1268 pInfo
->nSize
= nPayload
+ (u16
)(pIter
- pCell
);
1269 if( pInfo
->nSize
<4 ) pInfo
->nSize
= 4;
1270 pInfo
->nLocal
= (u16
)nPayload
;
1272 btreeParseCellAdjustSizeForOverflow(pPage
, pCell
, pInfo
);
1275 static void btreeParseCellPtrIndex(
1276 MemPage
*pPage
, /* Page containing the cell */
1277 u8
*pCell
, /* Pointer to the cell text. */
1278 CellInfo
*pInfo
/* Fill in this structure */
1280 u8
*pIter
; /* For scanning through pCell */
1281 u32 nPayload
; /* Number of bytes of cell payload */
1283 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
1284 assert( pPage
->leaf
==0 || pPage
->leaf
==1 );
1285 assert( pPage
->intKeyLeaf
==0 );
1286 pIter
= pCell
+ pPage
->childPtrSize
;
1288 if( nPayload
>=0x80 ){
1289 u8
*pEnd
= &pIter
[8];
1292 nPayload
= (nPayload
<<7) | (*++pIter
& 0x7f);
1293 }while( *(pIter
)>=0x80 && pIter
<pEnd
);
1296 pInfo
->nKey
= nPayload
;
1297 pInfo
->nPayload
= nPayload
;
1298 pInfo
->pPayload
= pIter
;
1299 testcase( nPayload
==pPage
->maxLocal
);
1300 testcase( nPayload
==(u32
)pPage
->maxLocal
+1 );
1301 if( nPayload
<=pPage
->maxLocal
){
1302 /* This is the (easy) common case where the entire payload fits
1303 ** on the local page. No overflow is required.
1305 pInfo
->nSize
= nPayload
+ (u16
)(pIter
- pCell
);
1306 if( pInfo
->nSize
<4 ) pInfo
->nSize
= 4;
1307 pInfo
->nLocal
= (u16
)nPayload
;
1309 btreeParseCellAdjustSizeForOverflow(pPage
, pCell
, pInfo
);
1312 static void btreeParseCell(
1313 MemPage
*pPage
, /* Page containing the cell */
1314 int iCell
, /* The cell index. First cell is 0 */
1315 CellInfo
*pInfo
/* Fill in this structure */
1317 pPage
->xParseCell(pPage
, findCell(pPage
, iCell
), pInfo
);
1321 ** The following routines are implementations of the MemPage.xCellSize
1324 ** Compute the total number of bytes that a Cell needs in the cell
1325 ** data area of the btree-page. The return number includes the cell
1326 ** data header and the local payload, but not any overflow page or
1327 ** the space used by the cell pointer.
1329 ** cellSizePtrNoPayload() => table internal nodes
1330 ** cellSizePtr() => all index nodes & table leaf nodes
1332 static u16
cellSizePtr(MemPage
*pPage
, u8
*pCell
){
1333 u8
*pIter
= pCell
+ pPage
->childPtrSize
; /* For looping over bytes of pCell */
1334 u8
*pEnd
; /* End mark for a varint */
1335 u32 nSize
; /* Size value to return */
1338 /* The value returned by this function should always be the same as
1339 ** the (CellInfo.nSize) value found by doing a full parse of the
1340 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1341 ** this function verifies that this invariant is not violated. */
1343 pPage
->xParseCell(pPage
, pCell
, &debuginfo
);
1351 nSize
= (nSize
<<7) | (*++pIter
& 0x7f);
1352 }while( *(pIter
)>=0x80 && pIter
<pEnd
);
1355 if( pPage
->intKey
){
1356 /* pIter now points at the 64-bit integer key value, a variable length
1357 ** integer. The following block moves pIter to point at the first byte
1358 ** past the end of the key value. */
1360 while( (*pIter
++)&0x80 && pIter
<pEnd
);
1362 testcase( nSize
==pPage
->maxLocal
);
1363 testcase( nSize
==(u32
)pPage
->maxLocal
+1 );
1364 if( nSize
<=pPage
->maxLocal
){
1365 nSize
+= (u32
)(pIter
- pCell
);
1366 if( nSize
<4 ) nSize
= 4;
1368 int minLocal
= pPage
->minLocal
;
1369 nSize
= minLocal
+ (nSize
- minLocal
) % (pPage
->pBt
->usableSize
- 4);
1370 testcase( nSize
==pPage
->maxLocal
);
1371 testcase( nSize
==(u32
)pPage
->maxLocal
+1 );
1372 if( nSize
>pPage
->maxLocal
){
1375 nSize
+= 4 + (u16
)(pIter
- pCell
);
1377 assert( nSize
==debuginfo
.nSize
|| CORRUPT_DB
);
1380 static u16
cellSizePtrNoPayload(MemPage
*pPage
, u8
*pCell
){
1381 u8
*pIter
= pCell
+ 4; /* For looping over bytes of pCell */
1382 u8
*pEnd
; /* End mark for a varint */
1385 /* The value returned by this function should always be the same as
1386 ** the (CellInfo.nSize) value found by doing a full parse of the
1387 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1388 ** this function verifies that this invariant is not violated. */
1390 pPage
->xParseCell(pPage
, pCell
, &debuginfo
);
1392 UNUSED_PARAMETER(pPage
);
1395 assert( pPage
->childPtrSize
==4 );
1397 while( (*pIter
++)&0x80 && pIter
<pEnd
);
1398 assert( debuginfo
.nSize
==(u16
)(pIter
- pCell
) || CORRUPT_DB
);
1399 return (u16
)(pIter
- pCell
);
1404 /* This variation on cellSizePtr() is used inside of assert() statements
1406 static u16
cellSize(MemPage
*pPage
, int iCell
){
1407 return pPage
->xCellSize(pPage
, findCell(pPage
, iCell
));
1411 #ifndef SQLITE_OMIT_AUTOVACUUM
1413 ** The cell pCell is currently part of page pSrc but will ultimately be part
1414 ** of pPage. (pSrc and pPager are often the same.) If pCell contains a
1415 ** pointer to an overflow page, insert an entry into the pointer-map for
1416 ** the overflow page that will be valid after pCell has been moved to pPage.
1418 static void ptrmapPutOvflPtr(MemPage
*pPage
, MemPage
*pSrc
, u8
*pCell
,int *pRC
){
1422 pPage
->xParseCell(pPage
, pCell
, &info
);
1423 if( info
.nLocal
<info
.nPayload
){
1425 if( SQLITE_WITHIN(pSrc
->aDataEnd
, pCell
, pCell
+info
.nLocal
) ){
1426 testcase( pSrc
!=pPage
);
1427 *pRC
= SQLITE_CORRUPT_BKPT
;
1430 ovfl
= get4byte(&pCell
[info
.nSize
-4]);
1431 ptrmapPut(pPage
->pBt
, ovfl
, PTRMAP_OVERFLOW1
, pPage
->pgno
, pRC
);
1438 ** Defragment the page given. This routine reorganizes cells within the
1439 ** page so that there are no free-blocks on the free-block list.
1441 ** Parameter nMaxFrag is the maximum amount of fragmented space that may be
1442 ** present in the page after this routine returns.
1444 ** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
1445 ** b-tree page so that there are no freeblocks or fragment bytes, all
1446 ** unused bytes are contained in the unallocated space region, and all
1447 ** cells are packed tightly at the end of the page.
1449 static int defragmentPage(MemPage
*pPage
, int nMaxFrag
){
1450 int i
; /* Loop counter */
1451 int pc
; /* Address of the i-th cell */
1452 int hdr
; /* Offset to the page header */
1453 int size
; /* Size of a cell */
1454 int usableSize
; /* Number of usable bytes on a page */
1455 int cellOffset
; /* Offset to the cell pointer array */
1456 int cbrk
; /* Offset to the cell content area */
1457 int nCell
; /* Number of cells on the page */
1458 unsigned char *data
; /* The page data */
1459 unsigned char *temp
; /* Temp area for cell content */
1460 unsigned char *src
; /* Source of content */
1461 int iCellFirst
; /* First allowable cell index */
1462 int iCellLast
; /* Last possible cell index */
1463 int iCellStart
; /* First cell offset in input */
1465 assert( sqlite3PagerIswriteable(pPage
->pDbPage
) );
1466 assert( pPage
->pBt
!=0 );
1467 assert( pPage
->pBt
->usableSize
<= SQLITE_MAX_PAGE_SIZE
);
1468 assert( pPage
->nOverflow
==0 );
1469 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
1471 src
= data
= pPage
->aData
;
1472 hdr
= pPage
->hdrOffset
;
1473 cellOffset
= pPage
->cellOffset
;
1474 nCell
= pPage
->nCell
;
1475 assert( nCell
==get2byte(&data
[hdr
+3]) || CORRUPT_DB
);
1476 iCellFirst
= cellOffset
+ 2*nCell
;
1477 usableSize
= pPage
->pBt
->usableSize
;
1479 /* This block handles pages with two or fewer free blocks and nMaxFrag
1480 ** or fewer fragmented bytes. In this case it is faster to move the
1481 ** two (or one) blocks of cells using memmove() and add the required
1482 ** offsets to each pointer in the cell-pointer array than it is to
1483 ** reconstruct the entire page. */
1484 if( (int)data
[hdr
+7]<=nMaxFrag
){
1485 int iFree
= get2byte(&data
[hdr
+1]);
1486 if( iFree
>usableSize
-4 ) return SQLITE_CORRUPT_PAGE(pPage
);
1488 int iFree2
= get2byte(&data
[iFree
]);
1489 if( iFree2
>usableSize
-4 ) return SQLITE_CORRUPT_PAGE(pPage
);
1490 if( 0==iFree2
|| (data
[iFree2
]==0 && data
[iFree2
+1]==0) ){
1491 u8
*pEnd
= &data
[cellOffset
+ nCell
*2];
1494 int sz
= get2byte(&data
[iFree
+2]);
1495 int top
= get2byte(&data
[hdr
+5]);
1497 return SQLITE_CORRUPT_PAGE(pPage
);
1500 if( iFree
+sz
>iFree2
) return SQLITE_CORRUPT_PAGE(pPage
);
1501 sz2
= get2byte(&data
[iFree2
+2]);
1502 if( iFree2
+sz2
> usableSize
) return SQLITE_CORRUPT_PAGE(pPage
);
1503 memmove(&data
[iFree
+sz
+sz2
], &data
[iFree
+sz
], iFree2
-(iFree
+sz
));
1505 }else if( NEVER(iFree
+sz
>usableSize
) ){
1506 return SQLITE_CORRUPT_PAGE(pPage
);
1510 assert( cbrk
+(iFree
-top
) <= usableSize
);
1511 memmove(&data
[cbrk
], &data
[top
], iFree
-top
);
1512 for(pAddr
=&data
[cellOffset
]; pAddr
<pEnd
; pAddr
+=2){
1513 pc
= get2byte(pAddr
);
1514 if( pc
<iFree
){ put2byte(pAddr
, pc
+sz
); }
1515 else if( pc
<iFree2
){ put2byte(pAddr
, pc
+sz2
); }
1517 goto defragment_out
;
1523 iCellLast
= usableSize
- 4;
1524 iCellStart
= get2byte(&data
[hdr
+5]);
1525 for(i
=0; i
<nCell
; i
++){
1526 u8
*pAddr
; /* The i-th cell pointer */
1527 pAddr
= &data
[cellOffset
+ i
*2];
1528 pc
= get2byte(pAddr
);
1529 testcase( pc
==iCellFirst
);
1530 testcase( pc
==iCellLast
);
1531 /* These conditions have already been verified in btreeInitPage()
1532 ** if PRAGMA cell_size_check=ON.
1534 if( pc
<iCellStart
|| pc
>iCellLast
){
1535 return SQLITE_CORRUPT_PAGE(pPage
);
1537 assert( pc
>=iCellStart
&& pc
<=iCellLast
);
1538 size
= pPage
->xCellSize(pPage
, &src
[pc
]);
1540 if( cbrk
<iCellStart
|| pc
+size
>usableSize
){
1541 return SQLITE_CORRUPT_PAGE(pPage
);
1543 assert( cbrk
+size
<=usableSize
&& cbrk
>=iCellStart
);
1544 testcase( cbrk
+size
==usableSize
);
1545 testcase( pc
+size
==usableSize
);
1546 put2byte(pAddr
, cbrk
);
1548 if( cbrk
==pc
) continue;
1549 temp
= sqlite3PagerTempSpace(pPage
->pBt
->pPager
);
1550 memcpy(&temp
[iCellStart
], &data
[iCellStart
], usableSize
- iCellStart
);
1553 memcpy(&data
[cbrk
], &src
[pc
], size
);
1558 assert( pPage
->nFree
>=0 );
1559 if( data
[hdr
+7]+cbrk
-iCellFirst
!=pPage
->nFree
){
1560 return SQLITE_CORRUPT_PAGE(pPage
);
1562 assert( cbrk
>=iCellFirst
);
1563 put2byte(&data
[hdr
+5], cbrk
);
1566 memset(&data
[iCellFirst
], 0, cbrk
-iCellFirst
);
1567 assert( sqlite3PagerIswriteable(pPage
->pDbPage
) );
1572 ** Search the free-list on page pPg for space to store a cell nByte bytes in
1573 ** size. If one can be found, return a pointer to the space and remove it
1574 ** from the free-list.
1576 ** If no suitable space can be found on the free-list, return NULL.
1578 ** This function may detect corruption within pPg. If corruption is
1579 ** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned.
1581 ** Slots on the free list that are between 1 and 3 bytes larger than nByte
1582 ** will be ignored if adding the extra space to the fragmentation count
1583 ** causes the fragmentation count to exceed 60.
1585 static u8
*pageFindSlot(MemPage
*pPg
, int nByte
, int *pRc
){
1586 const int hdr
= pPg
->hdrOffset
; /* Offset to page header */
1587 u8
* const aData
= pPg
->aData
; /* Page data */
1588 int iAddr
= hdr
+ 1; /* Address of ptr to pc */
1589 int pc
= get2byte(&aData
[iAddr
]); /* Address of a free slot */
1590 int x
; /* Excess size of the slot */
1591 int maxPC
= pPg
->pBt
->usableSize
- nByte
; /* Max address for a usable slot */
1592 int size
; /* Size of the free slot */
1596 /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
1597 ** freeblock form a big-endian integer which is the size of the freeblock
1598 ** in bytes, including the 4-byte header. */
1599 size
= get2byte(&aData
[pc
+2]);
1600 if( (x
= size
- nByte
)>=0 ){
1604 /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
1605 ** number of bytes in fragments may not exceed 60. */
1606 if( aData
[hdr
+7]>57 ) return 0;
1608 /* Remove the slot from the free-list. Update the number of
1609 ** fragmented bytes within the page. */
1610 memcpy(&aData
[iAddr
], &aData
[pc
], 2);
1611 aData
[hdr
+7] += (u8
)x
;
1612 }else if( x
+pc
> maxPC
){
1613 /* This slot extends off the end of the usable part of the page */
1614 *pRc
= SQLITE_CORRUPT_PAGE(pPg
);
1617 /* The slot remains on the free-list. Reduce its size to account
1618 ** for the portion used by the new allocation. */
1619 put2byte(&aData
[pc
+2], x
);
1621 return &aData
[pc
+ x
];
1624 pc
= get2byte(&aData
[pc
]);
1625 if( pc
<=iAddr
+size
){
1627 /* The next slot in the chain is not past the end of the current slot */
1628 *pRc
= SQLITE_CORRUPT_PAGE(pPg
);
1633 if( pc
>maxPC
+nByte
-4 ){
1634 /* The free slot chain extends off the end of the page */
1635 *pRc
= SQLITE_CORRUPT_PAGE(pPg
);
1641 ** Allocate nByte bytes of space from within the B-Tree page passed
1642 ** as the first argument. Write into *pIdx the index into pPage->aData[]
1643 ** of the first byte of allocated space. Return either SQLITE_OK or
1644 ** an error code (usually SQLITE_CORRUPT).
1646 ** The caller guarantees that there is sufficient space to make the
1647 ** allocation. This routine might need to defragment in order to bring
1648 ** all the space together, however. This routine will avoid using
1649 ** the first two bytes past the cell pointer area since presumably this
1650 ** allocation is being made in order to insert a new cell, so we will
1651 ** also end up needing a new cell pointer.
1653 static int allocateSpace(MemPage
*pPage
, int nByte
, int *pIdx
){
1654 const int hdr
= pPage
->hdrOffset
; /* Local cache of pPage->hdrOffset */
1655 u8
* const data
= pPage
->aData
; /* Local cache of pPage->aData */
1656 int top
; /* First byte of cell content area */
1657 int rc
= SQLITE_OK
; /* Integer return code */
1658 int gap
; /* First byte of gap between cell pointers and cell content */
1660 assert( sqlite3PagerIswriteable(pPage
->pDbPage
) );
1661 assert( pPage
->pBt
);
1662 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
1663 assert( nByte
>=0 ); /* Minimum cell size is 4 */
1664 assert( pPage
->nFree
>=nByte
);
1665 assert( pPage
->nOverflow
==0 );
1666 assert( nByte
< (int)(pPage
->pBt
->usableSize
-8) );
1668 assert( pPage
->cellOffset
== hdr
+ 12 - 4*pPage
->leaf
);
1669 gap
= pPage
->cellOffset
+ 2*pPage
->nCell
;
1670 assert( gap
<=65536 );
1671 /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
1672 ** and the reserved space is zero (the usual value for reserved space)
1673 ** then the cell content offset of an empty page wants to be 65536.
1674 ** However, that integer is too large to be stored in a 2-byte unsigned
1675 ** integer, so a value of 0 is used in its place. */
1676 top
= get2byte(&data
[hdr
+5]);
1677 assert( top
<=(int)pPage
->pBt
->usableSize
); /* by btreeComputeFreeSpace() */
1679 if( top
==0 && pPage
->pBt
->usableSize
==65536 ){
1682 return SQLITE_CORRUPT_PAGE(pPage
);
1686 /* If there is enough space between gap and top for one more cell pointer,
1687 ** and if the freelist is not empty, then search the
1688 ** freelist looking for a slot big enough to satisfy the request.
1690 testcase( gap
+2==top
);
1691 testcase( gap
+1==top
);
1692 testcase( gap
==top
);
1693 if( (data
[hdr
+2] || data
[hdr
+1]) && gap
+2<=top
){
1694 u8
*pSpace
= pageFindSlot(pPage
, nByte
, &rc
);
1697 assert( pSpace
+nByte
<=data
+pPage
->pBt
->usableSize
);
1698 *pIdx
= g2
= (int)(pSpace
-data
);
1700 return SQLITE_CORRUPT_PAGE(pPage
);
1709 /* The request could not be fulfilled using a freelist slot. Check
1710 ** to see if defragmentation is necessary.
1712 testcase( gap
+2+nByte
==top
);
1713 if( gap
+2+nByte
>top
){
1714 assert( pPage
->nCell
>0 || CORRUPT_DB
);
1715 assert( pPage
->nFree
>=0 );
1716 rc
= defragmentPage(pPage
, MIN(4, pPage
->nFree
- (2+nByte
)));
1718 top
= get2byteNotZero(&data
[hdr
+5]);
1719 assert( gap
+2+nByte
<=top
);
1723 /* Allocate memory from the gap in between the cell pointer array
1724 ** and the cell content area. The btreeComputeFreeSpace() call has already
1725 ** validated the freelist. Given that the freelist is valid, there
1726 ** is no way that the allocation can extend off the end of the page.
1727 ** The assert() below verifies the previous sentence.
1730 put2byte(&data
[hdr
+5], top
);
1731 assert( top
+nByte
<= (int)pPage
->pBt
->usableSize
);
1737 ** Return a section of the pPage->aData to the freelist.
1738 ** The first byte of the new free block is pPage->aData[iStart]
1739 ** and the size of the block is iSize bytes.
1741 ** Adjacent freeblocks are coalesced.
1743 ** Even though the freeblock list was checked by btreeComputeFreeSpace(),
1744 ** that routine will not detect overlap between cells or freeblocks. Nor
1745 ** does it detect cells or freeblocks that encrouch into the reserved bytes
1746 ** at the end of the page. So do additional corruption checks inside this
1747 ** routine and return SQLITE_CORRUPT if any problems are found.
1749 static int freeSpace(MemPage
*pPage
, u16 iStart
, u16 iSize
){
1750 u16 iPtr
; /* Address of ptr to next freeblock */
1751 u16 iFreeBlk
; /* Address of the next freeblock */
1752 u8 hdr
; /* Page header size. 0 or 100 */
1753 u8 nFrag
= 0; /* Reduction in fragmentation */
1754 u16 iOrigSize
= iSize
; /* Original value of iSize */
1755 u16 x
; /* Offset to cell content area */
1756 u32 iEnd
= iStart
+ iSize
; /* First byte past the iStart buffer */
1757 unsigned char *data
= pPage
->aData
; /* Page content */
1759 assert( pPage
->pBt
!=0 );
1760 assert( sqlite3PagerIswriteable(pPage
->pDbPage
) );
1761 assert( CORRUPT_DB
|| iStart
>=pPage
->hdrOffset
+6+pPage
->childPtrSize
);
1762 assert( CORRUPT_DB
|| iEnd
<= pPage
->pBt
->usableSize
);
1763 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
1764 assert( iSize
>=4 ); /* Minimum cell size is 4 */
1765 assert( iStart
<=pPage
->pBt
->usableSize
-4 );
1767 /* The list of freeblocks must be in ascending order. Find the
1768 ** spot on the list where iStart should be inserted.
1770 hdr
= pPage
->hdrOffset
;
1772 if( data
[iPtr
+1]==0 && data
[iPtr
]==0 ){
1773 iFreeBlk
= 0; /* Shortcut for the case when the freelist is empty */
1775 while( (iFreeBlk
= get2byte(&data
[iPtr
]))<iStart
){
1776 if( iFreeBlk
<iPtr
+4 ){
1777 if( iFreeBlk
==0 ) break; /* TH3: corrupt082.100 */
1778 return SQLITE_CORRUPT_PAGE(pPage
);
1782 if( iFreeBlk
>pPage
->pBt
->usableSize
-4 ){ /* TH3: corrupt081.100 */
1783 return SQLITE_CORRUPT_PAGE(pPage
);
1785 assert( iFreeBlk
>iPtr
|| iFreeBlk
==0 || CORRUPT_DB
);
1788 ** iFreeBlk: First freeblock after iStart, or zero if none
1789 ** iPtr: The address of a pointer to iFreeBlk
1791 ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
1793 if( iFreeBlk
&& iEnd
+3>=iFreeBlk
){
1794 nFrag
= iFreeBlk
- iEnd
;
1795 if( iEnd
>iFreeBlk
) return SQLITE_CORRUPT_PAGE(pPage
);
1796 iEnd
= iFreeBlk
+ get2byte(&data
[iFreeBlk
+2]);
1797 if( iEnd
> pPage
->pBt
->usableSize
){
1798 return SQLITE_CORRUPT_PAGE(pPage
);
1800 iSize
= iEnd
- iStart
;
1801 iFreeBlk
= get2byte(&data
[iFreeBlk
]);
1804 /* If iPtr is another freeblock (that is, if iPtr is not the freelist
1805 ** pointer in the page header) then check to see if iStart should be
1806 ** coalesced onto the end of iPtr.
1809 int iPtrEnd
= iPtr
+ get2byte(&data
[iPtr
+2]);
1810 if( iPtrEnd
+3>=iStart
){
1811 if( iPtrEnd
>iStart
) return SQLITE_CORRUPT_PAGE(pPage
);
1812 nFrag
+= iStart
- iPtrEnd
;
1813 iSize
= iEnd
- iPtr
;
1817 if( nFrag
>data
[hdr
+7] ) return SQLITE_CORRUPT_PAGE(pPage
);
1818 data
[hdr
+7] -= nFrag
;
1820 x
= get2byte(&data
[hdr
+5]);
1822 /* The new freeblock is at the beginning of the cell content area,
1823 ** so just extend the cell content area rather than create another
1824 ** freelist entry */
1825 if( iStart
<x
) return SQLITE_CORRUPT_PAGE(pPage
);
1826 if( iPtr
!=hdr
+1 ) return SQLITE_CORRUPT_PAGE(pPage
);
1827 put2byte(&data
[hdr
+1], iFreeBlk
);
1828 put2byte(&data
[hdr
+5], iEnd
);
1830 /* Insert the new freeblock into the freelist */
1831 put2byte(&data
[iPtr
], iStart
);
1833 if( pPage
->pBt
->btsFlags
& BTS_FAST_SECURE
){
1834 /* Overwrite deleted information with zeros when the secure_delete
1835 ** option is enabled */
1836 memset(&data
[iStart
], 0, iSize
);
1838 put2byte(&data
[iStart
], iFreeBlk
);
1839 put2byte(&data
[iStart
+2], iSize
);
1840 pPage
->nFree
+= iOrigSize
;
1845 ** Decode the flags byte (the first byte of the header) for a page
1846 ** and initialize fields of the MemPage structure accordingly.
1848 ** Only the following combinations are supported. Anything different
1849 ** indicates a corrupt database files:
1852 ** PTF_ZERODATA | PTF_LEAF
1853 ** PTF_LEAFDATA | PTF_INTKEY
1854 ** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
1856 static int decodeFlags(MemPage
*pPage
, int flagByte
){
1857 BtShared
*pBt
; /* A copy of pPage->pBt */
1859 assert( pPage
->hdrOffset
==(pPage
->pgno
==1 ? 100 : 0) );
1860 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
1861 pPage
->leaf
= (u8
)(flagByte
>>3); assert( PTF_LEAF
== 1<<3 );
1862 flagByte
&= ~PTF_LEAF
;
1863 pPage
->childPtrSize
= 4-4*pPage
->leaf
;
1864 pPage
->xCellSize
= cellSizePtr
;
1866 if( flagByte
==(PTF_LEAFDATA
| PTF_INTKEY
) ){
1867 /* EVIDENCE-OF: R-07291-35328 A value of 5 (0x05) means the page is an
1868 ** interior table b-tree page. */
1869 assert( (PTF_LEAFDATA
|PTF_INTKEY
)==5 );
1870 /* EVIDENCE-OF: R-26900-09176 A value of 13 (0x0d) means the page is a
1871 ** leaf table b-tree page. */
1872 assert( (PTF_LEAFDATA
|PTF_INTKEY
|PTF_LEAF
)==13 );
1875 pPage
->intKeyLeaf
= 1;
1876 pPage
->xParseCell
= btreeParseCellPtr
;
1878 pPage
->intKeyLeaf
= 0;
1879 pPage
->xCellSize
= cellSizePtrNoPayload
;
1880 pPage
->xParseCell
= btreeParseCellPtrNoPayload
;
1882 pPage
->maxLocal
= pBt
->maxLeaf
;
1883 pPage
->minLocal
= pBt
->minLeaf
;
1884 }else if( flagByte
==PTF_ZERODATA
){
1885 /* EVIDENCE-OF: R-43316-37308 A value of 2 (0x02) means the page is an
1886 ** interior index b-tree page. */
1887 assert( (PTF_ZERODATA
)==2 );
1888 /* EVIDENCE-OF: R-59615-42828 A value of 10 (0x0a) means the page is a
1889 ** leaf index b-tree page. */
1890 assert( (PTF_ZERODATA
|PTF_LEAF
)==10 );
1892 pPage
->intKeyLeaf
= 0;
1893 pPage
->xParseCell
= btreeParseCellPtrIndex
;
1894 pPage
->maxLocal
= pBt
->maxLocal
;
1895 pPage
->minLocal
= pBt
->minLocal
;
1897 /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is
1899 return SQLITE_CORRUPT_PAGE(pPage
);
1901 pPage
->max1bytePayload
= pBt
->max1bytePayload
;
1906 ** Compute the amount of freespace on the page. In other words, fill
1907 ** in the pPage->nFree field.
1909 static int btreeComputeFreeSpace(MemPage
*pPage
){
1910 int pc
; /* Address of a freeblock within pPage->aData[] */
1911 u8 hdr
; /* Offset to beginning of page header */
1912 u8
*data
; /* Equal to pPage->aData */
1913 int usableSize
; /* Amount of usable space on each page */
1914 int nFree
; /* Number of unused bytes on the page */
1915 int top
; /* First byte of the cell content area */
1916 int iCellFirst
; /* First allowable cell or freeblock offset */
1917 int iCellLast
; /* Last possible cell or freeblock offset */
1919 assert( pPage
->pBt
!=0 );
1920 assert( pPage
->pBt
->db
!=0 );
1921 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
1922 assert( pPage
->pgno
==sqlite3PagerPagenumber(pPage
->pDbPage
) );
1923 assert( pPage
== sqlite3PagerGetExtra(pPage
->pDbPage
) );
1924 assert( pPage
->aData
== sqlite3PagerGetData(pPage
->pDbPage
) );
1925 assert( pPage
->isInit
==1 );
1926 assert( pPage
->nFree
<0 );
1928 usableSize
= pPage
->pBt
->usableSize
;
1929 hdr
= pPage
->hdrOffset
;
1930 data
= pPage
->aData
;
1931 /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
1932 ** the start of the cell content area. A zero value for this integer is
1933 ** interpreted as 65536. */
1934 top
= get2byteNotZero(&data
[hdr
+5]);
1935 iCellFirst
= hdr
+ 8 + pPage
->childPtrSize
+ 2*pPage
->nCell
;
1936 iCellLast
= usableSize
- 4;
1938 /* Compute the total free space on the page
1939 ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
1940 ** start of the first freeblock on the page, or is zero if there are no
1942 pc
= get2byte(&data
[hdr
+1]);
1943 nFree
= data
[hdr
+7] + top
; /* Init nFree to non-freeblock free space */
1947 /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
1948 ** always be at least one cell before the first freeblock.
1950 return SQLITE_CORRUPT_PAGE(pPage
);
1954 /* Freeblock off the end of the page */
1955 return SQLITE_CORRUPT_PAGE(pPage
);
1957 next
= get2byte(&data
[pc
]);
1958 size
= get2byte(&data
[pc
+2]);
1959 nFree
= nFree
+ size
;
1960 if( next
<=pc
+size
+3 ) break;
1964 /* Freeblock not in ascending order */
1965 return SQLITE_CORRUPT_PAGE(pPage
);
1967 if( pc
+size
>(unsigned int)usableSize
){
1968 /* Last freeblock extends past page end */
1969 return SQLITE_CORRUPT_PAGE(pPage
);
1973 /* At this point, nFree contains the sum of the offset to the start
1974 ** of the cell-content area plus the number of free bytes within
1975 ** the cell-content area. If this is greater than the usable-size
1976 ** of the page, then the page must be corrupted. This check also
1977 ** serves to verify that the offset to the start of the cell-content
1978 ** area, according to the page header, lies within the page.
1980 if( nFree
>usableSize
|| nFree
<iCellFirst
){
1981 return SQLITE_CORRUPT_PAGE(pPage
);
1983 pPage
->nFree
= (u16
)(nFree
- iCellFirst
);
1988 ** Do additional sanity check after btreeInitPage() if
1989 ** PRAGMA cell_size_check=ON
1991 static SQLITE_NOINLINE
int btreeCellSizeCheck(MemPage
*pPage
){
1992 int iCellFirst
; /* First allowable cell or freeblock offset */
1993 int iCellLast
; /* Last possible cell or freeblock offset */
1994 int i
; /* Index into the cell pointer array */
1995 int sz
; /* Size of a cell */
1996 int pc
; /* Address of a freeblock within pPage->aData[] */
1997 u8
*data
; /* Equal to pPage->aData */
1998 int usableSize
; /* Maximum usable space on the page */
1999 int cellOffset
; /* Start of cell content area */
2001 iCellFirst
= pPage
->cellOffset
+ 2*pPage
->nCell
;
2002 usableSize
= pPage
->pBt
->usableSize
;
2003 iCellLast
= usableSize
- 4;
2004 data
= pPage
->aData
;
2005 cellOffset
= pPage
->cellOffset
;
2006 if( !pPage
->leaf
) iCellLast
--;
2007 for(i
=0; i
<pPage
->nCell
; i
++){
2008 pc
= get2byteAligned(&data
[cellOffset
+i
*2]);
2009 testcase( pc
==iCellFirst
);
2010 testcase( pc
==iCellLast
);
2011 if( pc
<iCellFirst
|| pc
>iCellLast
){
2012 return SQLITE_CORRUPT_PAGE(pPage
);
2014 sz
= pPage
->xCellSize(pPage
, &data
[pc
]);
2015 testcase( pc
+sz
==usableSize
);
2016 if( pc
+sz
>usableSize
){
2017 return SQLITE_CORRUPT_PAGE(pPage
);
2024 ** Initialize the auxiliary information for a disk block.
2026 ** Return SQLITE_OK on success. If we see that the page does
2027 ** not contain a well-formed database page, then return
2028 ** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
2029 ** guarantee that the page is well-formed. It only shows that
2030 ** we failed to detect any corruption.
2032 static int btreeInitPage(MemPage
*pPage
){
2033 u8
*data
; /* Equal to pPage->aData */
2034 BtShared
*pBt
; /* The main btree structure */
2036 assert( pPage
->pBt
!=0 );
2037 assert( pPage
->pBt
->db
!=0 );
2038 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
2039 assert( pPage
->pgno
==sqlite3PagerPagenumber(pPage
->pDbPage
) );
2040 assert( pPage
== sqlite3PagerGetExtra(pPage
->pDbPage
) );
2041 assert( pPage
->aData
== sqlite3PagerGetData(pPage
->pDbPage
) );
2042 assert( pPage
->isInit
==0 );
2045 data
= pPage
->aData
+ pPage
->hdrOffset
;
2046 /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
2047 ** the b-tree page type. */
2048 if( decodeFlags(pPage
, data
[0]) ){
2049 return SQLITE_CORRUPT_PAGE(pPage
);
2051 assert( pBt
->pageSize
>=512 && pBt
->pageSize
<=65536 );
2052 pPage
->maskPage
= (u16
)(pBt
->pageSize
- 1);
2053 pPage
->nOverflow
= 0;
2054 pPage
->cellOffset
= pPage
->hdrOffset
+ 8 + pPage
->childPtrSize
;
2055 pPage
->aCellIdx
= data
+ pPage
->childPtrSize
+ 8;
2056 pPage
->aDataEnd
= pPage
->aData
+ pBt
->pageSize
;
2057 pPage
->aDataOfst
= pPage
->aData
+ pPage
->childPtrSize
;
2058 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
2059 ** number of cells on the page. */
2060 pPage
->nCell
= get2byte(&data
[3]);
2061 if( pPage
->nCell
>MX_CELL(pBt
) ){
2062 /* To many cells for a single page. The page must be corrupt */
2063 return SQLITE_CORRUPT_PAGE(pPage
);
2065 testcase( pPage
->nCell
==MX_CELL(pBt
) );
2066 /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
2067 ** possible for a root page of a table that contains no rows) then the
2068 ** offset to the cell content area will equal the page size minus the
2069 ** bytes of reserved space. */
2070 assert( pPage
->nCell
>0
2071 || get2byteNotZero(&data
[5])==(int)pBt
->usableSize
2073 pPage
->nFree
= -1; /* Indicate that this value is yet uncomputed */
2075 if( pBt
->db
->flags
& SQLITE_CellSizeCk
){
2076 return btreeCellSizeCheck(pPage
);
2082 ** Set up a raw page so that it looks like a database page holding
2085 static void zeroPage(MemPage
*pPage
, int flags
){
2086 unsigned char *data
= pPage
->aData
;
2087 BtShared
*pBt
= pPage
->pBt
;
2088 u8 hdr
= pPage
->hdrOffset
;
2091 assert( sqlite3PagerPagenumber(pPage
->pDbPage
)==pPage
->pgno
|| CORRUPT_DB
);
2092 assert( sqlite3PagerGetExtra(pPage
->pDbPage
) == (void*)pPage
);
2093 assert( sqlite3PagerGetData(pPage
->pDbPage
) == data
);
2094 assert( sqlite3PagerIswriteable(pPage
->pDbPage
) );
2095 assert( sqlite3_mutex_held(pBt
->mutex
) );
2096 if( pBt
->btsFlags
& BTS_FAST_SECURE
){
2097 memset(&data
[hdr
], 0, pBt
->usableSize
- hdr
);
2099 data
[hdr
] = (char)flags
;
2100 first
= hdr
+ ((flags
&PTF_LEAF
)==0 ? 12 : 8);
2101 memset(&data
[hdr
+1], 0, 4);
2103 put2byte(&data
[hdr
+5], pBt
->usableSize
);
2104 pPage
->nFree
= (u16
)(pBt
->usableSize
- first
);
2105 decodeFlags(pPage
, flags
);
2106 pPage
->cellOffset
= first
;
2107 pPage
->aDataEnd
= &data
[pBt
->pageSize
];
2108 pPage
->aCellIdx
= &data
[first
];
2109 pPage
->aDataOfst
= &data
[pPage
->childPtrSize
];
2110 pPage
->nOverflow
= 0;
2111 assert( pBt
->pageSize
>=512 && pBt
->pageSize
<=65536 );
2112 pPage
->maskPage
= (u16
)(pBt
->pageSize
- 1);
2119 ** Convert a DbPage obtained from the pager into a MemPage used by
2122 static MemPage
*btreePageFromDbPage(DbPage
*pDbPage
, Pgno pgno
, BtShared
*pBt
){
2123 MemPage
*pPage
= (MemPage
*)sqlite3PagerGetExtra(pDbPage
);
2124 if( pgno
!=pPage
->pgno
){
2125 pPage
->aData
= sqlite3PagerGetData(pDbPage
);
2126 pPage
->pDbPage
= pDbPage
;
2129 pPage
->hdrOffset
= pgno
==1 ? 100 : 0;
2131 assert( pPage
->aData
==sqlite3PagerGetData(pDbPage
) );
2136 ** Get a page from the pager. Initialize the MemPage.pBt and
2137 ** MemPage.aData elements if needed. See also: btreeGetUnusedPage().
2139 ** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care
2140 ** about the content of the page at this time. So do not go to the disk
2141 ** to fetch the content. Just fill in the content with zeros for now.
2142 ** If in the future we call sqlite3PagerWrite() on this page, that
2143 ** means we have started to be concerned about content and the disk
2144 ** read should occur at that point.
2146 static int btreeGetPage(
2147 BtShared
*pBt
, /* The btree */
2148 Pgno pgno
, /* Number of the page to fetch */
2149 MemPage
**ppPage
, /* Return the page in this parameter */
2150 int flags
/* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2155 assert( flags
==0 || flags
==PAGER_GET_NOCONTENT
|| flags
==PAGER_GET_READONLY
);
2156 assert( sqlite3_mutex_held(pBt
->mutex
) );
2157 rc
= sqlite3PagerGet(pBt
->pPager
, pgno
, (DbPage
**)&pDbPage
, flags
);
2159 *ppPage
= btreePageFromDbPage(pDbPage
, pgno
, pBt
);
2164 ** Retrieve a page from the pager cache. If the requested page is not
2165 ** already in the pager cache return NULL. Initialize the MemPage.pBt and
2166 ** MemPage.aData elements if needed.
2168 static MemPage
*btreePageLookup(BtShared
*pBt
, Pgno pgno
){
2170 assert( sqlite3_mutex_held(pBt
->mutex
) );
2171 pDbPage
= sqlite3PagerLookup(pBt
->pPager
, pgno
);
2173 return btreePageFromDbPage(pDbPage
, pgno
, pBt
);
2179 ** Return the size of the database file in pages. If there is any kind of
2180 ** error, return ((unsigned int)-1).
2182 static Pgno
btreePagecount(BtShared
*pBt
){
2185 Pgno
sqlite3BtreeLastPage(Btree
*p
){
2186 assert( sqlite3BtreeHoldsMutex(p
) );
2187 return btreePagecount(p
->pBt
);
2191 ** Get a page from the pager and initialize it.
2193 ** If pCur!=0 then the page is being fetched as part of a moveToChild()
2194 ** call. Do additional sanity checking on the page in this case.
2195 ** And if the fetch fails, this routine must decrement pCur->iPage.
2197 ** The page is fetched as read-write unless pCur is not NULL and is
2198 ** a read-only cursor.
2200 ** If an error occurs, then *ppPage is undefined. It
2201 ** may remain unchanged, or it may be set to an invalid value.
2203 static int getAndInitPage(
2204 BtShared
*pBt
, /* The database file */
2205 Pgno pgno
, /* Number of the page to get */
2206 MemPage
**ppPage
, /* Write the page pointer here */
2207 BtCursor
*pCur
, /* Cursor to receive the page, or NULL */
2208 int bReadOnly
/* True for a read-only page */
2212 assert( sqlite3_mutex_held(pBt
->mutex
) );
2213 assert( pCur
==0 || ppPage
==&pCur
->pPage
);
2214 assert( pCur
==0 || bReadOnly
==pCur
->curPagerFlags
);
2215 assert( pCur
==0 || pCur
->iPage
>0 );
2217 if( pgno
>btreePagecount(pBt
) ){
2218 rc
= SQLITE_CORRUPT_BKPT
;
2219 goto getAndInitPage_error1
;
2221 rc
= sqlite3PagerGet(pBt
->pPager
, pgno
, (DbPage
**)&pDbPage
, bReadOnly
);
2223 goto getAndInitPage_error1
;
2225 *ppPage
= (MemPage
*)sqlite3PagerGetExtra(pDbPage
);
2226 if( (*ppPage
)->isInit
==0 ){
2227 btreePageFromDbPage(pDbPage
, pgno
, pBt
);
2228 rc
= btreeInitPage(*ppPage
);
2229 if( rc
!=SQLITE_OK
){
2230 goto getAndInitPage_error2
;
2233 assert( (*ppPage
)->pgno
==pgno
|| CORRUPT_DB
);
2234 assert( (*ppPage
)->aData
==sqlite3PagerGetData(pDbPage
) );
2236 /* If obtaining a child page for a cursor, we must verify that the page is
2237 ** compatible with the root page. */
2238 if( pCur
&& ((*ppPage
)->nCell
<1 || (*ppPage
)->intKey
!=pCur
->curIntKey
) ){
2239 rc
= SQLITE_CORRUPT_PGNO(pgno
);
2240 goto getAndInitPage_error2
;
2244 getAndInitPage_error2
:
2245 releasePage(*ppPage
);
2246 getAndInitPage_error1
:
2249 pCur
->pPage
= pCur
->apPage
[pCur
->iPage
];
2251 testcase( pgno
==0 );
2252 assert( pgno
!=0 || rc
==SQLITE_CORRUPT
);
2257 ** Release a MemPage. This should be called once for each prior
2258 ** call to btreeGetPage.
2260 ** Page1 is a special case and must be released using releasePageOne().
2262 static void releasePageNotNull(MemPage
*pPage
){
2263 assert( pPage
->aData
);
2264 assert( pPage
->pBt
);
2265 assert( pPage
->pDbPage
!=0 );
2266 assert( sqlite3PagerGetExtra(pPage
->pDbPage
) == (void*)pPage
);
2267 assert( sqlite3PagerGetData(pPage
->pDbPage
)==pPage
->aData
);
2268 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
2269 sqlite3PagerUnrefNotNull(pPage
->pDbPage
);
2271 static void releasePage(MemPage
*pPage
){
2272 if( pPage
) releasePageNotNull(pPage
);
2274 static void releasePageOne(MemPage
*pPage
){
2276 assert( pPage
->aData
);
2277 assert( pPage
->pBt
);
2278 assert( pPage
->pDbPage
!=0 );
2279 assert( sqlite3PagerGetExtra(pPage
->pDbPage
) == (void*)pPage
);
2280 assert( sqlite3PagerGetData(pPage
->pDbPage
)==pPage
->aData
);
2281 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
2282 sqlite3PagerUnrefPageOne(pPage
->pDbPage
);
2286 ** Get an unused page.
2288 ** This works just like btreeGetPage() with the addition:
2290 ** * If the page is already in use for some other purpose, immediately
2291 ** release it and return an SQLITE_CURRUPT error.
2292 ** * Make sure the isInit flag is clear
2294 static int btreeGetUnusedPage(
2295 BtShared
*pBt
, /* The btree */
2296 Pgno pgno
, /* Number of the page to fetch */
2297 MemPage
**ppPage
, /* Return the page in this parameter */
2298 int flags
/* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2300 int rc
= btreeGetPage(pBt
, pgno
, ppPage
, flags
);
2301 if( rc
==SQLITE_OK
){
2302 if( sqlite3PagerPageRefcount((*ppPage
)->pDbPage
)>1 ){
2303 releasePage(*ppPage
);
2305 return SQLITE_CORRUPT_BKPT
;
2307 (*ppPage
)->isInit
= 0;
2316 ** During a rollback, when the pager reloads information into the cache
2317 ** so that the cache is restored to its original state at the start of
2318 ** the transaction, for each page restored this routine is called.
2320 ** This routine needs to reset the extra data section at the end of the
2321 ** page to agree with the restored data.
2323 static void pageReinit(DbPage
*pData
){
2325 pPage
= (MemPage
*)sqlite3PagerGetExtra(pData
);
2326 assert( sqlite3PagerPageRefcount(pData
)>0 );
2327 if( pPage
->isInit
){
2328 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
2330 if( sqlite3PagerPageRefcount(pData
)>1 ){
2331 /* pPage might not be a btree page; it might be an overflow page
2332 ** or ptrmap page or a free page. In those cases, the following
2333 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
2334 ** But no harm is done by this. And it is very important that
2335 ** btreeInitPage() be called on every btree page so we make
2336 ** the call for every page that comes in for re-initing. */
2337 btreeInitPage(pPage
);
2343 ** Invoke the busy handler for a btree.
2345 static int btreeInvokeBusyHandler(void *pArg
){
2346 BtShared
*pBt
= (BtShared
*)pArg
;
2348 assert( sqlite3_mutex_held(pBt
->db
->mutex
) );
2349 return sqlite3InvokeBusyHandler(&pBt
->db
->busyHandler
);
2353 ** Open a database file.
2355 ** zFilename is the name of the database file. If zFilename is NULL
2356 ** then an ephemeral database is created. The ephemeral database might
2357 ** be exclusively in memory, or it might use a disk-based memory cache.
2358 ** Either way, the ephemeral database will be automatically deleted
2359 ** when sqlite3BtreeClose() is called.
2361 ** If zFilename is ":memory:" then an in-memory database is created
2362 ** that is automatically destroyed when it is closed.
2364 ** The "flags" parameter is a bitmask that might contain bits like
2365 ** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
2367 ** If the database is already opened in the same database connection
2368 ** and we are in shared cache mode, then the open will fail with an
2369 ** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
2370 ** objects in the same database connection since doing so will lead
2371 ** to problems with locking.
2373 int sqlite3BtreeOpen(
2374 sqlite3_vfs
*pVfs
, /* VFS to use for this b-tree */
2375 const char *zFilename
, /* Name of the file containing the BTree database */
2376 sqlite3
*db
, /* Associated database handle */
2377 Btree
**ppBtree
, /* Pointer to new Btree object written here */
2378 int flags
, /* Options */
2379 int vfsFlags
/* Flags passed through to sqlite3_vfs.xOpen() */
2381 BtShared
*pBt
= 0; /* Shared part of btree structure */
2382 Btree
*p
; /* Handle to return */
2383 sqlite3_mutex
*mutexOpen
= 0; /* Prevents a race condition. Ticket #3537 */
2384 int rc
= SQLITE_OK
; /* Result code from this function */
2385 u8 nReserve
; /* Byte of unused space on each page */
2386 unsigned char zDbHeader
[100]; /* Database header content */
2388 /* True if opening an ephemeral, temporary database */
2389 const int isTempDb
= zFilename
==0 || zFilename
[0]==0;
2391 /* Set the variable isMemdb to true for an in-memory database, or
2392 ** false for a file-based database.
2394 #ifdef SQLITE_OMIT_MEMORYDB
2395 const int isMemdb
= 0;
2397 const int isMemdb
= (zFilename
&& strcmp(zFilename
, ":memory:")==0)
2398 || (isTempDb
&& sqlite3TempInMemory(db
))
2399 || (vfsFlags
& SQLITE_OPEN_MEMORY
)!=0;
2404 assert( sqlite3_mutex_held(db
->mutex
) );
2405 assert( (flags
&0xff)==flags
); /* flags fit in 8 bits */
2407 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
2408 assert( (flags
& BTREE_UNORDERED
)==0 || (flags
& BTREE_SINGLE
)!=0 );
2410 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
2411 assert( (flags
& BTREE_SINGLE
)==0 || isTempDb
);
2414 flags
|= BTREE_MEMORY
;
2416 if( (vfsFlags
& SQLITE_OPEN_MAIN_DB
)!=0 && (isMemdb
|| isTempDb
) ){
2417 vfsFlags
= (vfsFlags
& ~SQLITE_OPEN_MAIN_DB
) | SQLITE_OPEN_TEMP_DB
;
2419 p
= sqlite3MallocZero(sizeof(Btree
));
2421 return SQLITE_NOMEM_BKPT
;
2423 p
->inTrans
= TRANS_NONE
;
2425 #ifndef SQLITE_OMIT_SHARED_CACHE
2430 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2432 ** If this Btree is a candidate for shared cache, try to find an
2433 ** existing BtShared object that we can share with
2435 if( isTempDb
==0 && (isMemdb
==0 || (vfsFlags
&SQLITE_OPEN_URI
)!=0) ){
2436 if( vfsFlags
& SQLITE_OPEN_SHAREDCACHE
){
2437 int nFilename
= sqlite3Strlen30(zFilename
)+1;
2438 int nFullPathname
= pVfs
->mxPathname
+1;
2439 char *zFullPathname
= sqlite3Malloc(MAX(nFullPathname
,nFilename
));
2440 MUTEX_LOGIC( sqlite3_mutex
*mutexShared
; )
2443 if( !zFullPathname
){
2445 return SQLITE_NOMEM_BKPT
;
2448 memcpy(zFullPathname
, zFilename
, nFilename
);
2450 rc
= sqlite3OsFullPathname(pVfs
, zFilename
,
2451 nFullPathname
, zFullPathname
);
2453 if( rc
==SQLITE_OK_SYMLINK
){
2456 sqlite3_free(zFullPathname
);
2462 #if SQLITE_THREADSAFE
2463 mutexOpen
= sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN
);
2464 sqlite3_mutex_enter(mutexOpen
);
2465 mutexShared
= sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN
);
2466 sqlite3_mutex_enter(mutexShared
);
2468 for(pBt
=GLOBAL(BtShared
*,sqlite3SharedCacheList
); pBt
; pBt
=pBt
->pNext
){
2469 assert( pBt
->nRef
>0 );
2470 if( 0==strcmp(zFullPathname
, sqlite3PagerFilename(pBt
->pPager
, 0))
2471 && sqlite3PagerVfs(pBt
->pPager
)==pVfs
){
2473 for(iDb
=db
->nDb
-1; iDb
>=0; iDb
--){
2474 Btree
*pExisting
= db
->aDb
[iDb
].pBt
;
2475 if( pExisting
&& pExisting
->pBt
==pBt
){
2476 sqlite3_mutex_leave(mutexShared
);
2477 sqlite3_mutex_leave(mutexOpen
);
2478 sqlite3_free(zFullPathname
);
2480 return SQLITE_CONSTRAINT
;
2488 sqlite3_mutex_leave(mutexShared
);
2489 sqlite3_free(zFullPathname
);
2493 /* In debug mode, we mark all persistent databases as sharable
2494 ** even when they are not. This exercises the locking code and
2495 ** gives more opportunity for asserts(sqlite3_mutex_held())
2496 ** statements to find locking problems.
2505 ** The following asserts make sure that structures used by the btree are
2506 ** the right size. This is to guard against size changes that result
2507 ** when compiling on a different architecture.
2509 assert( sizeof(i64
)==8 );
2510 assert( sizeof(u64
)==8 );
2511 assert( sizeof(u32
)==4 );
2512 assert( sizeof(u16
)==2 );
2513 assert( sizeof(Pgno
)==4 );
2515 pBt
= sqlite3MallocZero( sizeof(*pBt
) );
2517 rc
= SQLITE_NOMEM_BKPT
;
2518 goto btree_open_out
;
2520 rc
= sqlite3PagerOpen(pVfs
, &pBt
->pPager
, zFilename
,
2521 sizeof(MemPage
), flags
, vfsFlags
, pageReinit
);
2522 if( rc
==SQLITE_OK
){
2523 sqlite3PagerSetMmapLimit(pBt
->pPager
, db
->szMmap
);
2524 rc
= sqlite3PagerReadFileheader(pBt
->pPager
,sizeof(zDbHeader
),zDbHeader
);
2526 if( rc
!=SQLITE_OK
){
2527 goto btree_open_out
;
2529 pBt
->openFlags
= (u8
)flags
;
2531 sqlite3PagerSetBusyHandler(pBt
->pPager
, btreeInvokeBusyHandler
, pBt
);
2536 if( sqlite3PagerIsreadonly(pBt
->pPager
) ) pBt
->btsFlags
|= BTS_READ_ONLY
;
2537 #if defined(SQLITE_SECURE_DELETE)
2538 pBt
->btsFlags
|= BTS_SECURE_DELETE
;
2539 #elif defined(SQLITE_FAST_SECURE_DELETE)
2540 pBt
->btsFlags
|= BTS_OVERWRITE
;
2542 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2543 ** determined by the 2-byte integer located at an offset of 16 bytes from
2544 ** the beginning of the database file. */
2545 pBt
->pageSize
= (zDbHeader
[16]<<8) | (zDbHeader
[17]<<16);
2546 if( pBt
->pageSize
<512 || pBt
->pageSize
>SQLITE_MAX_PAGE_SIZE
2547 || ((pBt
->pageSize
-1)&pBt
->pageSize
)!=0 ){
2549 #ifndef SQLITE_OMIT_AUTOVACUUM
2550 /* If the magic name ":memory:" will create an in-memory database, then
2551 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
2552 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
2553 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
2554 ** regular file-name. In this case the auto-vacuum applies as per normal.
2556 if( zFilename
&& !isMemdb
){
2557 pBt
->autoVacuum
= (SQLITE_DEFAULT_AUTOVACUUM
? 1 : 0);
2558 pBt
->incrVacuum
= (SQLITE_DEFAULT_AUTOVACUUM
==2 ? 1 : 0);
2563 /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2564 ** determined by the one-byte unsigned integer found at an offset of 20
2565 ** into the database file header. */
2566 nReserve
= zDbHeader
[20];
2567 pBt
->btsFlags
|= BTS_PAGESIZE_FIXED
;
2568 #ifndef SQLITE_OMIT_AUTOVACUUM
2569 pBt
->autoVacuum
= (get4byte(&zDbHeader
[36 + 4*4])?1:0);
2570 pBt
->incrVacuum
= (get4byte(&zDbHeader
[36 + 7*4])?1:0);
2573 rc
= sqlite3PagerSetPagesize(pBt
->pPager
, &pBt
->pageSize
, nReserve
);
2574 if( rc
) goto btree_open_out
;
2575 pBt
->usableSize
= pBt
->pageSize
- nReserve
;
2576 assert( (pBt
->pageSize
& 7)==0 ); /* 8-byte alignment of pageSize */
2578 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2579 /* Add the new BtShared object to the linked list sharable BtShareds.
2583 MUTEX_LOGIC( sqlite3_mutex
*mutexShared
; )
2584 MUTEX_LOGIC( mutexShared
= sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN
);)
2585 if( SQLITE_THREADSAFE
&& sqlite3GlobalConfig
.bCoreMutex
){
2586 pBt
->mutex
= sqlite3MutexAlloc(SQLITE_MUTEX_FAST
);
2587 if( pBt
->mutex
==0 ){
2588 rc
= SQLITE_NOMEM_BKPT
;
2589 goto btree_open_out
;
2592 sqlite3_mutex_enter(mutexShared
);
2593 pBt
->pNext
= GLOBAL(BtShared
*,sqlite3SharedCacheList
);
2594 GLOBAL(BtShared
*,sqlite3SharedCacheList
) = pBt
;
2595 sqlite3_mutex_leave(mutexShared
);
2600 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2601 /* If the new Btree uses a sharable pBtShared, then link the new
2602 ** Btree into the list of all sharable Btrees for the same connection.
2603 ** The list is kept in ascending order by pBt address.
2608 for(i
=0; i
<db
->nDb
; i
++){
2609 if( (pSib
= db
->aDb
[i
].pBt
)!=0 && pSib
->sharable
){
2610 while( pSib
->pPrev
){ pSib
= pSib
->pPrev
; }
2611 if( (uptr
)p
->pBt
<(uptr
)pSib
->pBt
){
2616 while( pSib
->pNext
&& (uptr
)pSib
->pNext
->pBt
<(uptr
)p
->pBt
){
2619 p
->pNext
= pSib
->pNext
;
2622 p
->pNext
->pPrev
= p
;
2634 if( rc
!=SQLITE_OK
){
2635 if( pBt
&& pBt
->pPager
){
2636 sqlite3PagerClose(pBt
->pPager
, 0);
2642 sqlite3_file
*pFile
;
2644 /* If the B-Tree was successfully opened, set the pager-cache size to the
2645 ** default value. Except, when opening on an existing shared pager-cache,
2646 ** do not change the pager-cache size.
2648 if( sqlite3BtreeSchema(p
, 0, 0)==0 ){
2649 sqlite3BtreeSetCacheSize(p
, SQLITE_DEFAULT_CACHE_SIZE
);
2652 pFile
= sqlite3PagerFile(pBt
->pPager
);
2653 if( pFile
->pMethods
){
2654 sqlite3OsFileControlHint(pFile
, SQLITE_FCNTL_PDB
, (void*)&pBt
->db
);
2658 assert( sqlite3_mutex_held(mutexOpen
) );
2659 sqlite3_mutex_leave(mutexOpen
);
2661 assert( rc
!=SQLITE_OK
|| sqlite3BtreeConnectionCount(*ppBtree
)>0 );
2666 ** Decrement the BtShared.nRef counter. When it reaches zero,
2667 ** remove the BtShared structure from the sharing list. Return
2668 ** true if the BtShared.nRef counter reaches zero and return
2669 ** false if it is still positive.
2671 static int removeFromSharingList(BtShared
*pBt
){
2672 #ifndef SQLITE_OMIT_SHARED_CACHE
2673 MUTEX_LOGIC( sqlite3_mutex
*pMainMtx
; )
2677 assert( sqlite3_mutex_notheld(pBt
->mutex
) );
2678 MUTEX_LOGIC( pMainMtx
= sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN
); )
2679 sqlite3_mutex_enter(pMainMtx
);
2682 if( GLOBAL(BtShared
*,sqlite3SharedCacheList
)==pBt
){
2683 GLOBAL(BtShared
*,sqlite3SharedCacheList
) = pBt
->pNext
;
2685 pList
= GLOBAL(BtShared
*,sqlite3SharedCacheList
);
2686 while( ALWAYS(pList
) && pList
->pNext
!=pBt
){
2689 if( ALWAYS(pList
) ){
2690 pList
->pNext
= pBt
->pNext
;
2693 if( SQLITE_THREADSAFE
){
2694 sqlite3_mutex_free(pBt
->mutex
);
2698 sqlite3_mutex_leave(pMainMtx
);
2706 ** Make sure pBt->pTmpSpace points to an allocation of
2707 ** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
2710 static SQLITE_NOINLINE
int allocateTempSpace(BtShared
*pBt
){
2712 assert( pBt
->pTmpSpace
==0 );
2713 /* This routine is called only by btreeCursor() when allocating the
2714 ** first write cursor for the BtShared object */
2715 assert( pBt
->pCursor
!=0 && (pBt
->pCursor
->curFlags
& BTCF_WriteFlag
)!=0 );
2716 pBt
->pTmpSpace
= sqlite3PageMalloc( pBt
->pageSize
);
2717 if( pBt
->pTmpSpace
==0 ){
2718 BtCursor
*pCur
= pBt
->pCursor
;
2719 pBt
->pCursor
= pCur
->pNext
; /* Unlink the cursor */
2720 memset(pCur
, 0, sizeof(*pCur
));
2721 return SQLITE_NOMEM_BKPT
;
2724 /* One of the uses of pBt->pTmpSpace is to format cells before
2725 ** inserting them into a leaf page (function fillInCell()). If
2726 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2727 ** by the various routines that manipulate binary cells. Which
2728 ** can mean that fillInCell() only initializes the first 2 or 3
2729 ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2730 ** it into a database page. This is not actually a problem, but it
2731 ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2732 ** data is passed to system call write(). So to avoid this error,
2733 ** zero the first 4 bytes of temp space here.
2735 ** Also: Provide four bytes of initialized space before the
2736 ** beginning of pTmpSpace as an area available to prepend the
2737 ** left-child pointer to the beginning of a cell.
2739 memset(pBt
->pTmpSpace
, 0, 8);
2740 pBt
->pTmpSpace
+= 4;
2745 ** Free the pBt->pTmpSpace allocation
2747 static void freeTempSpace(BtShared
*pBt
){
2748 if( pBt
->pTmpSpace
){
2749 pBt
->pTmpSpace
-= 4;
2750 sqlite3PageFree(pBt
->pTmpSpace
);
2756 ** Close an open database and invalidate all cursors.
2758 int sqlite3BtreeClose(Btree
*p
){
2759 BtShared
*pBt
= p
->pBt
;
2761 /* Close all cursors opened via this handle. */
2762 assert( sqlite3_mutex_held(p
->db
->mutex
) );
2763 sqlite3BtreeEnter(p
);
2765 /* Verify that no other cursors have this Btree open */
2768 BtCursor
*pCur
= pBt
->pCursor
;
2770 BtCursor
*pTmp
= pCur
;
2772 assert( pTmp
->pBtree
!=p
);
2778 /* Rollback any active transaction and free the handle structure.
2779 ** The call to sqlite3BtreeRollback() drops any table-locks held by
2782 sqlite3BtreeRollback(p
, SQLITE_OK
, 0);
2783 sqlite3BtreeLeave(p
);
2785 /* If there are still other outstanding references to the shared-btree
2786 ** structure, return now. The remainder of this procedure cleans
2787 ** up the shared-btree.
2789 assert( p
->wantToLock
==0 && p
->locked
==0 );
2790 if( !p
->sharable
|| removeFromSharingList(pBt
) ){
2791 /* The pBt is no longer on the sharing list, so we can access
2792 ** it without having to hold the mutex.
2794 ** Clean out and delete the BtShared object.
2796 assert( !pBt
->pCursor
);
2797 sqlite3PagerClose(pBt
->pPager
, p
->db
);
2798 if( pBt
->xFreeSchema
&& pBt
->pSchema
){
2799 pBt
->xFreeSchema(pBt
->pSchema
);
2801 sqlite3DbFree(0, pBt
->pSchema
);
2806 #ifndef SQLITE_OMIT_SHARED_CACHE
2807 assert( p
->wantToLock
==0 );
2808 assert( p
->locked
==0 );
2809 if( p
->pPrev
) p
->pPrev
->pNext
= p
->pNext
;
2810 if( p
->pNext
) p
->pNext
->pPrev
= p
->pPrev
;
2818 ** Change the "soft" limit on the number of pages in the cache.
2819 ** Unused and unmodified pages will be recycled when the number of
2820 ** pages in the cache exceeds this soft limit. But the size of the
2821 ** cache is allowed to grow larger than this limit if it contains
2822 ** dirty pages or pages still in active use.
2824 int sqlite3BtreeSetCacheSize(Btree
*p
, int mxPage
){
2825 BtShared
*pBt
= p
->pBt
;
2826 assert( sqlite3_mutex_held(p
->db
->mutex
) );
2827 sqlite3BtreeEnter(p
);
2828 sqlite3PagerSetCachesize(pBt
->pPager
, mxPage
);
2829 sqlite3BtreeLeave(p
);
2834 ** Change the "spill" limit on the number of pages in the cache.
2835 ** If the number of pages exceeds this limit during a write transaction,
2836 ** the pager might attempt to "spill" pages to the journal early in
2837 ** order to free up memory.
2839 ** The value returned is the current spill size. If zero is passed
2840 ** as an argument, no changes are made to the spill size setting, so
2841 ** using mxPage of 0 is a way to query the current spill size.
2843 int sqlite3BtreeSetSpillSize(Btree
*p
, int mxPage
){
2844 BtShared
*pBt
= p
->pBt
;
2846 assert( sqlite3_mutex_held(p
->db
->mutex
) );
2847 sqlite3BtreeEnter(p
);
2848 res
= sqlite3PagerSetSpillsize(pBt
->pPager
, mxPage
);
2849 sqlite3BtreeLeave(p
);
2853 #if SQLITE_MAX_MMAP_SIZE>0
2855 ** Change the limit on the amount of the database file that may be
2858 int sqlite3BtreeSetMmapLimit(Btree
*p
, sqlite3_int64 szMmap
){
2859 BtShared
*pBt
= p
->pBt
;
2860 assert( sqlite3_mutex_held(p
->db
->mutex
) );
2861 sqlite3BtreeEnter(p
);
2862 sqlite3PagerSetMmapLimit(pBt
->pPager
, szMmap
);
2863 sqlite3BtreeLeave(p
);
2866 #endif /* SQLITE_MAX_MMAP_SIZE>0 */
2869 ** Change the way data is synced to disk in order to increase or decrease
2870 ** how well the database resists damage due to OS crashes and power
2871 ** failures. Level 1 is the same as asynchronous (no syncs() occur and
2872 ** there is a high probability of damage) Level 2 is the default. There
2873 ** is a very low but non-zero probability of damage. Level 3 reduces the
2874 ** probability of damage to near zero but with a write performance reduction.
2876 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
2877 int sqlite3BtreeSetPagerFlags(
2878 Btree
*p
, /* The btree to set the safety level on */
2879 unsigned pgFlags
/* Various PAGER_* flags */
2881 BtShared
*pBt
= p
->pBt
;
2882 assert( sqlite3_mutex_held(p
->db
->mutex
) );
2883 sqlite3BtreeEnter(p
);
2884 sqlite3PagerSetFlags(pBt
->pPager
, pgFlags
);
2885 sqlite3BtreeLeave(p
);
2891 ** Change the default pages size and the number of reserved bytes per page.
2892 ** Or, if the page size has already been fixed, return SQLITE_READONLY
2893 ** without changing anything.
2895 ** The page size must be a power of 2 between 512 and 65536. If the page
2896 ** size supplied does not meet this constraint then the page size is not
2899 ** Page sizes are constrained to be a power of two so that the region
2900 ** of the database file used for locking (beginning at PENDING_BYTE,
2901 ** the first byte past the 1GB boundary, 0x40000000) needs to occur
2902 ** at the beginning of a page.
2904 ** If parameter nReserve is less than zero, then the number of reserved
2905 ** bytes per page is left unchanged.
2907 ** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
2908 ** and autovacuum mode can no longer be changed.
2910 int sqlite3BtreeSetPageSize(Btree
*p
, int pageSize
, int nReserve
, int iFix
){
2913 BtShared
*pBt
= p
->pBt
;
2914 assert( nReserve
>=0 && nReserve
<=255 );
2915 sqlite3BtreeEnter(p
);
2916 pBt
->nReserveWanted
= nReserve
;
2917 x
= pBt
->pageSize
- pBt
->usableSize
;
2918 if( nReserve
<x
) nReserve
= x
;
2919 if( pBt
->btsFlags
& BTS_PAGESIZE_FIXED
){
2920 sqlite3BtreeLeave(p
);
2921 return SQLITE_READONLY
;
2923 assert( nReserve
>=0 && nReserve
<=255 );
2924 if( pageSize
>=512 && pageSize
<=SQLITE_MAX_PAGE_SIZE
&&
2925 ((pageSize
-1)&pageSize
)==0 ){
2926 assert( (pageSize
& 7)==0 );
2927 assert( !pBt
->pCursor
);
2928 if( nReserve
>32 && pageSize
==512 ) pageSize
= 1024;
2929 pBt
->pageSize
= (u32
)pageSize
;
2932 rc
= sqlite3PagerSetPagesize(pBt
->pPager
, &pBt
->pageSize
, nReserve
);
2933 pBt
->usableSize
= pBt
->pageSize
- (u16
)nReserve
;
2934 if( iFix
) pBt
->btsFlags
|= BTS_PAGESIZE_FIXED
;
2935 sqlite3BtreeLeave(p
);
2940 ** Return the currently defined page size
2942 int sqlite3BtreeGetPageSize(Btree
*p
){
2943 return p
->pBt
->pageSize
;
2947 ** This function is similar to sqlite3BtreeGetReserve(), except that it
2948 ** may only be called if it is guaranteed that the b-tree mutex is already
2951 ** This is useful in one special case in the backup API code where it is
2952 ** known that the shared b-tree mutex is held, but the mutex on the
2953 ** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2954 ** were to be called, it might collide with some other operation on the
2955 ** database handle that owns *p, causing undefined behavior.
2957 int sqlite3BtreeGetReserveNoMutex(Btree
*p
){
2959 assert( sqlite3_mutex_held(p
->pBt
->mutex
) );
2960 n
= p
->pBt
->pageSize
- p
->pBt
->usableSize
;
2965 ** Return the number of bytes of space at the end of every page that
2966 ** are intentually left unused. This is the "reserved" space that is
2967 ** sometimes used by extensions.
2969 ** The value returned is the larger of the current reserve size and
2970 ** the latest reserve size requested by SQLITE_FILECTRL_RESERVE_BYTES.
2971 ** The amount of reserve can only grow - never shrink.
2973 int sqlite3BtreeGetRequestedReserve(Btree
*p
){
2975 sqlite3BtreeEnter(p
);
2976 n1
= (int)p
->pBt
->nReserveWanted
;
2977 n2
= sqlite3BtreeGetReserveNoMutex(p
);
2978 sqlite3BtreeLeave(p
);
2979 return n1
>n2
? n1
: n2
;
2984 ** Set the maximum page count for a database if mxPage is positive.
2985 ** No changes are made if mxPage is 0 or negative.
2986 ** Regardless of the value of mxPage, return the maximum page count.
2988 Pgno
sqlite3BtreeMaxPageCount(Btree
*p
, Pgno mxPage
){
2990 sqlite3BtreeEnter(p
);
2991 n
= sqlite3PagerMaxPageCount(p
->pBt
->pPager
, mxPage
);
2992 sqlite3BtreeLeave(p
);
2997 ** Change the values for the BTS_SECURE_DELETE and BTS_OVERWRITE flags:
2999 ** newFlag==0 Both BTS_SECURE_DELETE and BTS_OVERWRITE are cleared
3000 ** newFlag==1 BTS_SECURE_DELETE set and BTS_OVERWRITE is cleared
3001 ** newFlag==2 BTS_SECURE_DELETE cleared and BTS_OVERWRITE is set
3002 ** newFlag==(-1) No changes
3004 ** This routine acts as a query if newFlag is less than zero
3006 ** With BTS_OVERWRITE set, deleted content is overwritten by zeros, but
3007 ** freelist leaf pages are not written back to the database. Thus in-page
3008 ** deleted content is cleared, but freelist deleted content is not.
3010 ** With BTS_SECURE_DELETE, operation is like BTS_OVERWRITE with the addition
3011 ** that freelist leaf pages are written back into the database, increasing
3012 ** the amount of disk I/O.
3014 int sqlite3BtreeSecureDelete(Btree
*p
, int newFlag
){
3016 if( p
==0 ) return 0;
3017 sqlite3BtreeEnter(p
);
3018 assert( BTS_OVERWRITE
==BTS_SECURE_DELETE
*2 );
3019 assert( BTS_FAST_SECURE
==(BTS_OVERWRITE
|BTS_SECURE_DELETE
) );
3021 p
->pBt
->btsFlags
&= ~BTS_FAST_SECURE
;
3022 p
->pBt
->btsFlags
|= BTS_SECURE_DELETE
*newFlag
;
3024 b
= (p
->pBt
->btsFlags
& BTS_FAST_SECURE
)/BTS_SECURE_DELETE
;
3025 sqlite3BtreeLeave(p
);
3030 ** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
3031 ** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
3032 ** is disabled. The default value for the auto-vacuum property is
3033 ** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
3035 int sqlite3BtreeSetAutoVacuum(Btree
*p
, int autoVacuum
){
3036 #ifdef SQLITE_OMIT_AUTOVACUUM
3037 return SQLITE_READONLY
;
3039 BtShared
*pBt
= p
->pBt
;
3041 u8 av
= (u8
)autoVacuum
;
3043 sqlite3BtreeEnter(p
);
3044 if( (pBt
->btsFlags
& BTS_PAGESIZE_FIXED
)!=0 && (av
?1:0)!=pBt
->autoVacuum
){
3045 rc
= SQLITE_READONLY
;
3047 pBt
->autoVacuum
= av
?1:0;
3048 pBt
->incrVacuum
= av
==2 ?1:0;
3050 sqlite3BtreeLeave(p
);
3056 ** Return the value of the 'auto-vacuum' property. If auto-vacuum is
3057 ** enabled 1 is returned. Otherwise 0.
3059 int sqlite3BtreeGetAutoVacuum(Btree
*p
){
3060 #ifdef SQLITE_OMIT_AUTOVACUUM
3061 return BTREE_AUTOVACUUM_NONE
;
3064 sqlite3BtreeEnter(p
);
3066 (!p
->pBt
->autoVacuum
)?BTREE_AUTOVACUUM_NONE
:
3067 (!p
->pBt
->incrVacuum
)?BTREE_AUTOVACUUM_FULL
:
3068 BTREE_AUTOVACUUM_INCR
3070 sqlite3BtreeLeave(p
);
3076 ** If the user has not set the safety-level for this database connection
3077 ** using "PRAGMA synchronous", and if the safety-level is not already
3078 ** set to the value passed to this function as the second parameter,
3081 #if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS \
3082 && !defined(SQLITE_OMIT_WAL)
3083 static void setDefaultSyncFlag(BtShared
*pBt
, u8 safety_level
){
3086 if( (db
=pBt
->db
)!=0 && (pDb
=db
->aDb
)!=0 ){
3087 while( pDb
->pBt
==0 || pDb
->pBt
->pBt
!=pBt
){ pDb
++; }
3088 if( pDb
->bSyncSet
==0
3089 && pDb
->safety_level
!=safety_level
3092 pDb
->safety_level
= safety_level
;
3093 sqlite3PagerSetFlags(pBt
->pPager
,
3094 pDb
->safety_level
| (db
->flags
& PAGER_FLAGS_MASK
));
3099 # define setDefaultSyncFlag(pBt,safety_level)
3102 /* Forward declaration */
3103 static int newDatabase(BtShared
*);
3107 ** Get a reference to pPage1 of the database file. This will
3108 ** also acquire a readlock on that file.
3110 ** SQLITE_OK is returned on success. If the file is not a
3111 ** well-formed database file, then SQLITE_CORRUPT is returned.
3112 ** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
3113 ** is returned if we run out of memory.
3115 static int lockBtree(BtShared
*pBt
){
3116 int rc
; /* Result code from subfunctions */
3117 MemPage
*pPage1
; /* Page 1 of the database file */
3118 u32 nPage
; /* Number of pages in the database */
3119 u32 nPageFile
= 0; /* Number of pages in the database file */
3121 assert( sqlite3_mutex_held(pBt
->mutex
) );
3122 assert( pBt
->pPage1
==0 );
3123 rc
= sqlite3PagerSharedLock(pBt
->pPager
);
3124 if( rc
!=SQLITE_OK
) return rc
;
3125 rc
= btreeGetPage(pBt
, 1, &pPage1
, 0);
3126 if( rc
!=SQLITE_OK
) return rc
;
3128 /* Do some checking to help insure the file we opened really is
3129 ** a valid database file.
3131 nPage
= get4byte(28+(u8
*)pPage1
->aData
);
3132 sqlite3PagerPagecount(pBt
->pPager
, (int*)&nPageFile
);
3133 if( nPage
==0 || memcmp(24+(u8
*)pPage1
->aData
, 92+(u8
*)pPage1
->aData
,4)!=0 ){
3136 if( (pBt
->db
->flags
& SQLITE_ResetDatabase
)!=0 ){
3142 u8
*page1
= pPage1
->aData
;
3144 /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
3145 ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
3146 ** 61 74 20 33 00. */
3147 if( memcmp(page1
, zMagicHeader
, 16)!=0 ){
3148 goto page1_init_failed
;
3151 #ifdef SQLITE_OMIT_WAL
3153 pBt
->btsFlags
|= BTS_READ_ONLY
;
3156 goto page1_init_failed
;
3160 pBt
->btsFlags
|= BTS_READ_ONLY
;
3163 goto page1_init_failed
;
3166 /* If the read version is set to 2, this database should be accessed
3167 ** in WAL mode. If the log is not already open, open it now. Then
3168 ** return SQLITE_OK and return without populating BtShared.pPage1.
3169 ** The caller detects this and calls this function again. This is
3170 ** required as the version of page 1 currently in the page1 buffer
3171 ** may not be the latest version - there may be a newer one in the log
3174 if( page1
[19]==2 && (pBt
->btsFlags
& BTS_NO_WAL
)==0 ){
3176 rc
= sqlite3PagerOpenWal(pBt
->pPager
, &isOpen
);
3177 if( rc
!=SQLITE_OK
){
3178 goto page1_init_failed
;
3180 setDefaultSyncFlag(pBt
, SQLITE_DEFAULT_WAL_SYNCHRONOUS
+1);
3182 releasePageOne(pPage1
);
3188 setDefaultSyncFlag(pBt
, SQLITE_DEFAULT_SYNCHRONOUS
+1);
3192 /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
3193 ** fractions and the leaf payload fraction values must be 64, 32, and 32.
3195 ** The original design allowed these amounts to vary, but as of
3196 ** version 3.6.0, we require them to be fixed.
3198 if( memcmp(&page1
[21], "\100\040\040",3)!=0 ){
3199 goto page1_init_failed
;
3201 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
3202 ** determined by the 2-byte integer located at an offset of 16 bytes from
3203 ** the beginning of the database file. */
3204 pageSize
= (page1
[16]<<8) | (page1
[17]<<16);
3205 /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
3206 ** between 512 and 65536 inclusive. */
3207 if( ((pageSize
-1)&pageSize
)!=0
3208 || pageSize
>SQLITE_MAX_PAGE_SIZE
3211 goto page1_init_failed
;
3213 pBt
->btsFlags
|= BTS_PAGESIZE_FIXED
;
3214 assert( (pageSize
& 7)==0 );
3215 /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
3216 ** integer at offset 20 is the number of bytes of space at the end of
3217 ** each page to reserve for extensions.
3219 ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
3220 ** determined by the one-byte unsigned integer found at an offset of 20
3221 ** into the database file header. */
3222 usableSize
= pageSize
- page1
[20];
3223 if( (u32
)pageSize
!=pBt
->pageSize
){
3224 /* After reading the first page of the database assuming a page size
3225 ** of BtShared.pageSize, we have discovered that the page-size is
3226 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
3227 ** zero and return SQLITE_OK. The caller will call this function
3228 ** again with the correct page-size.
3230 releasePageOne(pPage1
);
3231 pBt
->usableSize
= usableSize
;
3232 pBt
->pageSize
= pageSize
;
3234 rc
= sqlite3PagerSetPagesize(pBt
->pPager
, &pBt
->pageSize
,
3235 pageSize
-usableSize
);
3238 if( nPage
>nPageFile
){
3239 if( sqlite3WritableSchema(pBt
->db
)==0 ){
3240 rc
= SQLITE_CORRUPT_BKPT
;
3241 goto page1_init_failed
;
3246 /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
3247 ** be less than 480. In other words, if the page size is 512, then the
3248 ** reserved space size cannot exceed 32. */
3249 if( usableSize
<480 ){
3250 goto page1_init_failed
;
3252 pBt
->pageSize
= pageSize
;
3253 pBt
->usableSize
= usableSize
;
3254 #ifndef SQLITE_OMIT_AUTOVACUUM
3255 pBt
->autoVacuum
= (get4byte(&page1
[36 + 4*4])?1:0);
3256 pBt
->incrVacuum
= (get4byte(&page1
[36 + 7*4])?1:0);
3260 /* maxLocal is the maximum amount of payload to store locally for
3261 ** a cell. Make sure it is small enough so that at least minFanout
3262 ** cells can will fit on one page. We assume a 10-byte page header.
3263 ** Besides the payload, the cell must store:
3264 ** 2-byte pointer to the cell
3265 ** 4-byte child pointer
3266 ** 9-byte nKey value
3267 ** 4-byte nData value
3268 ** 4-byte overflow page pointer
3269 ** So a cell consists of a 2-byte pointer, a header which is as much as
3270 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
3273 pBt
->maxLocal
= (u16
)((pBt
->usableSize
-12)*64/255 - 23);
3274 pBt
->minLocal
= (u16
)((pBt
->usableSize
-12)*32/255 - 23);
3275 pBt
->maxLeaf
= (u16
)(pBt
->usableSize
- 35);
3276 pBt
->minLeaf
= (u16
)((pBt
->usableSize
-12)*32/255 - 23);
3277 if( pBt
->maxLocal
>127 ){
3278 pBt
->max1bytePayload
= 127;
3280 pBt
->max1bytePayload
= (u8
)pBt
->maxLocal
;
3282 assert( pBt
->maxLeaf
+ 23 <= MX_CELL_SIZE(pBt
) );
3283 pBt
->pPage1
= pPage1
;
3288 releasePageOne(pPage1
);
3295 ** Return the number of cursors open on pBt. This is for use
3296 ** in assert() expressions, so it is only compiled if NDEBUG is not
3299 ** Only write cursors are counted if wrOnly is true. If wrOnly is
3300 ** false then all cursors are counted.
3302 ** For the purposes of this routine, a cursor is any cursor that
3303 ** is capable of reading or writing to the database. Cursors that
3304 ** have been tripped into the CURSOR_FAULT state are not counted.
3306 static int countValidCursors(BtShared
*pBt
, int wrOnly
){
3309 for(pCur
=pBt
->pCursor
; pCur
; pCur
=pCur
->pNext
){
3310 if( (wrOnly
==0 || (pCur
->curFlags
& BTCF_WriteFlag
)!=0)
3311 && pCur
->eState
!=CURSOR_FAULT
) r
++;
3318 ** If there are no outstanding cursors and we are not in the middle
3319 ** of a transaction but there is a read lock on the database, then
3320 ** this routine unrefs the first page of the database file which
3321 ** has the effect of releasing the read lock.
3323 ** If there is a transaction in progress, this routine is a no-op.
3325 static void unlockBtreeIfUnused(BtShared
*pBt
){
3326 assert( sqlite3_mutex_held(pBt
->mutex
) );
3327 assert( countValidCursors(pBt
,0)==0 || pBt
->inTransaction
>TRANS_NONE
);
3328 if( pBt
->inTransaction
==TRANS_NONE
&& pBt
->pPage1
!=0 ){
3329 MemPage
*pPage1
= pBt
->pPage1
;
3330 assert( pPage1
->aData
);
3331 assert( sqlite3PagerRefcount(pBt
->pPager
)==1 );
3333 releasePageOne(pPage1
);
3338 ** If pBt points to an empty file then convert that empty file
3339 ** into a new empty database by initializing the first page of
3342 static int newDatabase(BtShared
*pBt
){
3344 unsigned char *data
;
3347 assert( sqlite3_mutex_held(pBt
->mutex
) );
3354 rc
= sqlite3PagerWrite(pP1
->pDbPage
);
3356 memcpy(data
, zMagicHeader
, sizeof(zMagicHeader
));
3357 assert( sizeof(zMagicHeader
)==16 );
3358 data
[16] = (u8
)((pBt
->pageSize
>>8)&0xff);
3359 data
[17] = (u8
)((pBt
->pageSize
>>16)&0xff);
3362 assert( pBt
->usableSize
<=pBt
->pageSize
&& pBt
->usableSize
+255>=pBt
->pageSize
);
3363 data
[20] = (u8
)(pBt
->pageSize
- pBt
->usableSize
);
3367 memset(&data
[24], 0, 100-24);
3368 zeroPage(pP1
, PTF_INTKEY
|PTF_LEAF
|PTF_LEAFDATA
);
3369 pBt
->btsFlags
|= BTS_PAGESIZE_FIXED
;
3370 #ifndef SQLITE_OMIT_AUTOVACUUM
3371 assert( pBt
->autoVacuum
==1 || pBt
->autoVacuum
==0 );
3372 assert( pBt
->incrVacuum
==1 || pBt
->incrVacuum
==0 );
3373 put4byte(&data
[36 + 4*4], pBt
->autoVacuum
);
3374 put4byte(&data
[36 + 7*4], pBt
->incrVacuum
);
3382 ** Initialize the first page of the database file (creating a database
3383 ** consisting of a single page and no schema objects). Return SQLITE_OK
3384 ** if successful, or an SQLite error code otherwise.
3386 int sqlite3BtreeNewDb(Btree
*p
){
3388 sqlite3BtreeEnter(p
);
3390 rc
= newDatabase(p
->pBt
);
3391 sqlite3BtreeLeave(p
);
3396 ** Attempt to start a new transaction. A write-transaction
3397 ** is started if the second argument is nonzero, otherwise a read-
3398 ** transaction. If the second argument is 2 or more and exclusive
3399 ** transaction is started, meaning that no other process is allowed
3400 ** to access the database. A preexisting transaction may not be
3401 ** upgraded to exclusive by calling this routine a second time - the
3402 ** exclusivity flag only works for a new transaction.
3404 ** A write-transaction must be started before attempting any
3405 ** changes to the database. None of the following routines
3406 ** will work unless a transaction is started first:
3408 ** sqlite3BtreeCreateTable()
3409 ** sqlite3BtreeCreateIndex()
3410 ** sqlite3BtreeClearTable()
3411 ** sqlite3BtreeDropTable()
3412 ** sqlite3BtreeInsert()
3413 ** sqlite3BtreeDelete()
3414 ** sqlite3BtreeUpdateMeta()
3416 ** If an initial attempt to acquire the lock fails because of lock contention
3417 ** and the database was previously unlocked, then invoke the busy handler
3418 ** if there is one. But if there was previously a read-lock, do not
3419 ** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
3420 ** returned when there is already a read-lock in order to avoid a deadlock.
3422 ** Suppose there are two processes A and B. A has a read lock and B has
3423 ** a reserved lock. B tries to promote to exclusive but is blocked because
3424 ** of A's read lock. A tries to promote to reserved but is blocked by B.
3425 ** One or the other of the two processes must give way or there can be
3426 ** no progress. By returning SQLITE_BUSY and not invoking the busy callback
3427 ** when A already has a read lock, we encourage A to give up and let B
3430 int sqlite3BtreeBeginTrans(Btree
*p
, int wrflag
, int *pSchemaVersion
){
3431 BtShared
*pBt
= p
->pBt
;
3432 Pager
*pPager
= pBt
->pPager
;
3435 sqlite3BtreeEnter(p
);
3438 /* If the btree is already in a write-transaction, or it
3439 ** is already in a read-transaction and a read-transaction
3440 ** is requested, this is a no-op.
3442 if( p
->inTrans
==TRANS_WRITE
|| (p
->inTrans
==TRANS_READ
&& !wrflag
) ){
3445 assert( pBt
->inTransaction
==TRANS_WRITE
|| IfNotOmitAV(pBt
->bDoTruncate
)==0 );
3447 if( (p
->db
->flags
& SQLITE_ResetDatabase
)
3448 && sqlite3PagerIsreadonly(pPager
)==0
3450 pBt
->btsFlags
&= ~BTS_READ_ONLY
;
3453 /* Write transactions are not possible on a read-only database */
3454 if( (pBt
->btsFlags
& BTS_READ_ONLY
)!=0 && wrflag
){
3455 rc
= SQLITE_READONLY
;
3459 #ifndef SQLITE_OMIT_SHARED_CACHE
3461 sqlite3
*pBlock
= 0;
3462 /* If another database handle has already opened a write transaction
3463 ** on this shared-btree structure and a second write transaction is
3464 ** requested, return SQLITE_LOCKED.
3466 if( (wrflag
&& pBt
->inTransaction
==TRANS_WRITE
)
3467 || (pBt
->btsFlags
& BTS_PENDING
)!=0
3469 pBlock
= pBt
->pWriter
->db
;
3470 }else if( wrflag
>1 ){
3472 for(pIter
=pBt
->pLock
; pIter
; pIter
=pIter
->pNext
){
3473 if( pIter
->pBtree
!=p
){
3474 pBlock
= pIter
->pBtree
->db
;
3480 sqlite3ConnectionBlocked(p
->db
, pBlock
);
3481 rc
= SQLITE_LOCKED_SHAREDCACHE
;
3487 /* Any read-only or read-write transaction implies a read-lock on
3488 ** page 1. So if some other shared-cache client already has a write-lock
3489 ** on page 1, the transaction cannot be opened. */
3490 rc
= querySharedCacheTableLock(p
, SCHEMA_ROOT
, READ_LOCK
);
3491 if( SQLITE_OK
!=rc
) goto trans_begun
;
3493 pBt
->btsFlags
&= ~BTS_INITIALLY_EMPTY
;
3494 if( pBt
->nPage
==0 ) pBt
->btsFlags
|= BTS_INITIALLY_EMPTY
;
3496 sqlite3PagerWalDb(pPager
, p
->db
);
3498 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
3499 /* If transitioning from no transaction directly to a write transaction,
3500 ** block for the WRITER lock first if possible. */
3501 if( pBt
->pPage1
==0 && wrflag
){
3502 assert( pBt
->inTransaction
==TRANS_NONE
);
3503 rc
= sqlite3PagerWalWriteLock(pPager
, 1);
3504 if( rc
!=SQLITE_BUSY
&& rc
!=SQLITE_OK
) break;
3508 /* Call lockBtree() until either pBt->pPage1 is populated or
3509 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
3510 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
3511 ** reading page 1 it discovers that the page-size of the database
3512 ** file is not pBt->pageSize. In this case lockBtree() will update
3513 ** pBt->pageSize to the page-size of the file on disk.
3515 while( pBt
->pPage1
==0 && SQLITE_OK
==(rc
= lockBtree(pBt
)) );
3517 if( rc
==SQLITE_OK
&& wrflag
){
3518 if( (pBt
->btsFlags
& BTS_READ_ONLY
)!=0 ){
3519 rc
= SQLITE_READONLY
;
3521 rc
= sqlite3PagerBegin(pPager
, wrflag
>1, sqlite3TempInMemory(p
->db
));
3522 if( rc
==SQLITE_OK
){
3523 rc
= newDatabase(pBt
);
3524 }else if( rc
==SQLITE_BUSY_SNAPSHOT
&& pBt
->inTransaction
==TRANS_NONE
){
3525 /* if there was no transaction opened when this function was
3526 ** called and SQLITE_BUSY_SNAPSHOT is returned, change the error
3527 ** code to SQLITE_BUSY. */
3533 if( rc
!=SQLITE_OK
){
3534 (void)sqlite3PagerWalWriteLock(pPager
, 0);
3535 unlockBtreeIfUnused(pBt
);
3537 }while( (rc
&0xFF)==SQLITE_BUSY
&& pBt
->inTransaction
==TRANS_NONE
&&
3538 btreeInvokeBusyHandler(pBt
) );
3539 sqlite3PagerWalDb(pPager
, 0);
3540 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
3541 if( rc
==SQLITE_BUSY_TIMEOUT
) rc
= SQLITE_BUSY
;
3544 if( rc
==SQLITE_OK
){
3545 if( p
->inTrans
==TRANS_NONE
){
3546 pBt
->nTransaction
++;
3547 #ifndef SQLITE_OMIT_SHARED_CACHE
3549 assert( p
->lock
.pBtree
==p
&& p
->lock
.iTable
==1 );
3550 p
->lock
.eLock
= READ_LOCK
;
3551 p
->lock
.pNext
= pBt
->pLock
;
3552 pBt
->pLock
= &p
->lock
;
3556 p
->inTrans
= (wrflag
?TRANS_WRITE
:TRANS_READ
);
3557 if( p
->inTrans
>pBt
->inTransaction
){
3558 pBt
->inTransaction
= p
->inTrans
;
3561 MemPage
*pPage1
= pBt
->pPage1
;
3562 #ifndef SQLITE_OMIT_SHARED_CACHE
3563 assert( !pBt
->pWriter
);
3565 pBt
->btsFlags
&= ~BTS_EXCLUSIVE
;
3566 if( wrflag
>1 ) pBt
->btsFlags
|= BTS_EXCLUSIVE
;
3569 /* If the db-size header field is incorrect (as it may be if an old
3570 ** client has been writing the database file), update it now. Doing
3571 ** this sooner rather than later means the database size can safely
3572 ** re-read the database size from page 1 if a savepoint or transaction
3573 ** rollback occurs within the transaction.
3575 if( pBt
->nPage
!=get4byte(&pPage1
->aData
[28]) ){
3576 rc
= sqlite3PagerWrite(pPage1
->pDbPage
);
3577 if( rc
==SQLITE_OK
){
3578 put4byte(&pPage1
->aData
[28], pBt
->nPage
);
3585 if( rc
==SQLITE_OK
){
3586 if( pSchemaVersion
){
3587 *pSchemaVersion
= get4byte(&pBt
->pPage1
->aData
[40]);
3590 /* This call makes sure that the pager has the correct number of
3591 ** open savepoints. If the second parameter is greater than 0 and
3592 ** the sub-journal is not already open, then it will be opened here.
3594 rc
= sqlite3PagerOpenSavepoint(pPager
, p
->db
->nSavepoint
);
3599 sqlite3BtreeLeave(p
);
3603 #ifndef SQLITE_OMIT_AUTOVACUUM
3606 ** Set the pointer-map entries for all children of page pPage. Also, if
3607 ** pPage contains cells that point to overflow pages, set the pointer
3608 ** map entries for the overflow pages as well.
3610 static int setChildPtrmaps(MemPage
*pPage
){
3611 int i
; /* Counter variable */
3612 int nCell
; /* Number of cells in page pPage */
3613 int rc
; /* Return code */
3614 BtShared
*pBt
= pPage
->pBt
;
3615 Pgno pgno
= pPage
->pgno
;
3617 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
3618 rc
= pPage
->isInit
? SQLITE_OK
: btreeInitPage(pPage
);
3619 if( rc
!=SQLITE_OK
) return rc
;
3620 nCell
= pPage
->nCell
;
3622 for(i
=0; i
<nCell
; i
++){
3623 u8
*pCell
= findCell(pPage
, i
);
3625 ptrmapPutOvflPtr(pPage
, pPage
, pCell
, &rc
);
3628 Pgno childPgno
= get4byte(pCell
);
3629 ptrmapPut(pBt
, childPgno
, PTRMAP_BTREE
, pgno
, &rc
);
3634 Pgno childPgno
= get4byte(&pPage
->aData
[pPage
->hdrOffset
+8]);
3635 ptrmapPut(pBt
, childPgno
, PTRMAP_BTREE
, pgno
, &rc
);
3642 ** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
3643 ** that it points to iTo. Parameter eType describes the type of pointer to
3644 ** be modified, as follows:
3646 ** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
3649 ** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
3650 ** page pointed to by one of the cells on pPage.
3652 ** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
3653 ** overflow page in the list.
3655 static int modifyPagePointer(MemPage
*pPage
, Pgno iFrom
, Pgno iTo
, u8 eType
){
3656 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
3657 assert( sqlite3PagerIswriteable(pPage
->pDbPage
) );
3658 if( eType
==PTRMAP_OVERFLOW2
){
3659 /* The pointer is always the first 4 bytes of the page in this case. */
3660 if( get4byte(pPage
->aData
)!=iFrom
){
3661 return SQLITE_CORRUPT_PAGE(pPage
);
3663 put4byte(pPage
->aData
, iTo
);
3669 rc
= pPage
->isInit
? SQLITE_OK
: btreeInitPage(pPage
);
3671 nCell
= pPage
->nCell
;
3673 for(i
=0; i
<nCell
; i
++){
3674 u8
*pCell
= findCell(pPage
, i
);
3675 if( eType
==PTRMAP_OVERFLOW1
){
3677 pPage
->xParseCell(pPage
, pCell
, &info
);
3678 if( info
.nLocal
<info
.nPayload
){
3679 if( pCell
+info
.nSize
> pPage
->aData
+pPage
->pBt
->usableSize
){
3680 return SQLITE_CORRUPT_PAGE(pPage
);
3682 if( iFrom
==get4byte(pCell
+info
.nSize
-4) ){
3683 put4byte(pCell
+info
.nSize
-4, iTo
);
3688 if( get4byte(pCell
)==iFrom
){
3689 put4byte(pCell
, iTo
);
3696 if( eType
!=PTRMAP_BTREE
||
3697 get4byte(&pPage
->aData
[pPage
->hdrOffset
+8])!=iFrom
){
3698 return SQLITE_CORRUPT_PAGE(pPage
);
3700 put4byte(&pPage
->aData
[pPage
->hdrOffset
+8], iTo
);
3708 ** Move the open database page pDbPage to location iFreePage in the
3709 ** database. The pDbPage reference remains valid.
3711 ** The isCommit flag indicates that there is no need to remember that
3712 ** the journal needs to be sync()ed before database page pDbPage->pgno
3713 ** can be written to. The caller has already promised not to write to that
3716 static int relocatePage(
3717 BtShared
*pBt
, /* Btree */
3718 MemPage
*pDbPage
, /* Open page to move */
3719 u8 eType
, /* Pointer map 'type' entry for pDbPage */
3720 Pgno iPtrPage
, /* Pointer map 'page-no' entry for pDbPage */
3721 Pgno iFreePage
, /* The location to move pDbPage to */
3722 int isCommit
/* isCommit flag passed to sqlite3PagerMovepage */
3724 MemPage
*pPtrPage
; /* The page that contains a pointer to pDbPage */
3725 Pgno iDbPage
= pDbPage
->pgno
;
3726 Pager
*pPager
= pBt
->pPager
;
3729 assert( eType
==PTRMAP_OVERFLOW2
|| eType
==PTRMAP_OVERFLOW1
||
3730 eType
==PTRMAP_BTREE
|| eType
==PTRMAP_ROOTPAGE
);
3731 assert( sqlite3_mutex_held(pBt
->mutex
) );
3732 assert( pDbPage
->pBt
==pBt
);
3733 if( iDbPage
<3 ) return SQLITE_CORRUPT_BKPT
;
3735 /* Move page iDbPage from its current location to page number iFreePage */
3736 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
3737 iDbPage
, iFreePage
, iPtrPage
, eType
));
3738 rc
= sqlite3PagerMovepage(pPager
, pDbPage
->pDbPage
, iFreePage
, isCommit
);
3739 if( rc
!=SQLITE_OK
){
3742 pDbPage
->pgno
= iFreePage
;
3744 /* If pDbPage was a btree-page, then it may have child pages and/or cells
3745 ** that point to overflow pages. The pointer map entries for all these
3746 ** pages need to be changed.
3748 ** If pDbPage is an overflow page, then the first 4 bytes may store a
3749 ** pointer to a subsequent overflow page. If this is the case, then
3750 ** the pointer map needs to be updated for the subsequent overflow page.
3752 if( eType
==PTRMAP_BTREE
|| eType
==PTRMAP_ROOTPAGE
){
3753 rc
= setChildPtrmaps(pDbPage
);
3754 if( rc
!=SQLITE_OK
){
3758 Pgno nextOvfl
= get4byte(pDbPage
->aData
);
3760 ptrmapPut(pBt
, nextOvfl
, PTRMAP_OVERFLOW2
, iFreePage
, &rc
);
3761 if( rc
!=SQLITE_OK
){
3767 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
3768 ** that it points at iFreePage. Also fix the pointer map entry for
3771 if( eType
!=PTRMAP_ROOTPAGE
){
3772 rc
= btreeGetPage(pBt
, iPtrPage
, &pPtrPage
, 0);
3773 if( rc
!=SQLITE_OK
){
3776 rc
= sqlite3PagerWrite(pPtrPage
->pDbPage
);
3777 if( rc
!=SQLITE_OK
){
3778 releasePage(pPtrPage
);
3781 rc
= modifyPagePointer(pPtrPage
, iDbPage
, iFreePage
, eType
);
3782 releasePage(pPtrPage
);
3783 if( rc
==SQLITE_OK
){
3784 ptrmapPut(pBt
, iFreePage
, eType
, iPtrPage
, &rc
);
3790 /* Forward declaration required by incrVacuumStep(). */
3791 static int allocateBtreePage(BtShared
*, MemPage
**, Pgno
*, Pgno
, u8
);
3794 ** Perform a single step of an incremental-vacuum. If successful, return
3795 ** SQLITE_OK. If there is no work to do (and therefore no point in
3796 ** calling this function again), return SQLITE_DONE. Or, if an error
3797 ** occurs, return some other error code.
3799 ** More specifically, this function attempts to re-organize the database so
3800 ** that the last page of the file currently in use is no longer in use.
3802 ** Parameter nFin is the number of pages that this database would contain
3803 ** were this function called until it returns SQLITE_DONE.
3805 ** If the bCommit parameter is non-zero, this function assumes that the
3806 ** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
3807 ** or an error. bCommit is passed true for an auto-vacuum-on-commit
3808 ** operation, or false for an incremental vacuum.
3810 static int incrVacuumStep(BtShared
*pBt
, Pgno nFin
, Pgno iLastPg
, int bCommit
){
3811 Pgno nFreeList
; /* Number of pages still on the free-list */
3814 assert( sqlite3_mutex_held(pBt
->mutex
) );
3815 assert( iLastPg
>nFin
);
3817 if( !PTRMAP_ISPAGE(pBt
, iLastPg
) && iLastPg
!=PENDING_BYTE_PAGE(pBt
) ){
3821 nFreeList
= get4byte(&pBt
->pPage1
->aData
[36]);
3826 rc
= ptrmapGet(pBt
, iLastPg
, &eType
, &iPtrPage
);
3827 if( rc
!=SQLITE_OK
){
3830 if( eType
==PTRMAP_ROOTPAGE
){
3831 return SQLITE_CORRUPT_BKPT
;
3834 if( eType
==PTRMAP_FREEPAGE
){
3836 /* Remove the page from the files free-list. This is not required
3837 ** if bCommit is non-zero. In that case, the free-list will be
3838 ** truncated to zero after this function returns, so it doesn't
3839 ** matter if it still contains some garbage entries.
3843 rc
= allocateBtreePage(pBt
, &pFreePg
, &iFreePg
, iLastPg
, BTALLOC_EXACT
);
3844 if( rc
!=SQLITE_OK
){
3847 assert( iFreePg
==iLastPg
);
3848 releasePage(pFreePg
);
3851 Pgno iFreePg
; /* Index of free page to move pLastPg to */
3853 u8 eMode
= BTALLOC_ANY
; /* Mode parameter for allocateBtreePage() */
3854 Pgno iNear
= 0; /* nearby parameter for allocateBtreePage() */
3856 rc
= btreeGetPage(pBt
, iLastPg
, &pLastPg
, 0);
3857 if( rc
!=SQLITE_OK
){
3861 /* If bCommit is zero, this loop runs exactly once and page pLastPg
3862 ** is swapped with the first free page pulled off the free list.
3864 ** On the other hand, if bCommit is greater than zero, then keep
3865 ** looping until a free-page located within the first nFin pages
3866 ** of the file is found.
3874 rc
= allocateBtreePage(pBt
, &pFreePg
, &iFreePg
, iNear
, eMode
);
3875 if( rc
!=SQLITE_OK
){
3876 releasePage(pLastPg
);
3879 releasePage(pFreePg
);
3880 }while( bCommit
&& iFreePg
>nFin
);
3881 assert( iFreePg
<iLastPg
);
3883 rc
= relocatePage(pBt
, pLastPg
, eType
, iPtrPage
, iFreePg
, bCommit
);
3884 releasePage(pLastPg
);
3885 if( rc
!=SQLITE_OK
){
3894 }while( iLastPg
==PENDING_BYTE_PAGE(pBt
) || PTRMAP_ISPAGE(pBt
, iLastPg
) );
3895 pBt
->bDoTruncate
= 1;
3896 pBt
->nPage
= iLastPg
;
3902 ** The database opened by the first argument is an auto-vacuum database
3903 ** nOrig pages in size containing nFree free pages. Return the expected
3904 ** size of the database in pages following an auto-vacuum operation.
3906 static Pgno
finalDbSize(BtShared
*pBt
, Pgno nOrig
, Pgno nFree
){
3907 int nEntry
; /* Number of entries on one ptrmap page */
3908 Pgno nPtrmap
; /* Number of PtrMap pages to be freed */
3909 Pgno nFin
; /* Return value */
3911 nEntry
= pBt
->usableSize
/5;
3912 nPtrmap
= (nFree
-nOrig
+PTRMAP_PAGENO(pBt
, nOrig
)+nEntry
)/nEntry
;
3913 nFin
= nOrig
- nFree
- nPtrmap
;
3914 if( nOrig
>PENDING_BYTE_PAGE(pBt
) && nFin
<PENDING_BYTE_PAGE(pBt
) ){
3917 while( PTRMAP_ISPAGE(pBt
, nFin
) || nFin
==PENDING_BYTE_PAGE(pBt
) ){
3925 ** A write-transaction must be opened before calling this function.
3926 ** It performs a single unit of work towards an incremental vacuum.
3928 ** If the incremental vacuum is finished after this function has run,
3929 ** SQLITE_DONE is returned. If it is not finished, but no error occurred,
3930 ** SQLITE_OK is returned. Otherwise an SQLite error code.
3932 int sqlite3BtreeIncrVacuum(Btree
*p
){
3934 BtShared
*pBt
= p
->pBt
;
3936 sqlite3BtreeEnter(p
);
3937 assert( pBt
->inTransaction
==TRANS_WRITE
&& p
->inTrans
==TRANS_WRITE
);
3938 if( !pBt
->autoVacuum
){
3941 Pgno nOrig
= btreePagecount(pBt
);
3942 Pgno nFree
= get4byte(&pBt
->pPage1
->aData
[36]);
3943 Pgno nFin
= finalDbSize(pBt
, nOrig
, nFree
);
3945 if( nOrig
<nFin
|| nFree
>=nOrig
){
3946 rc
= SQLITE_CORRUPT_BKPT
;
3947 }else if( nFree
>0 ){
3948 rc
= saveAllCursors(pBt
, 0, 0);
3949 if( rc
==SQLITE_OK
){
3950 invalidateAllOverflowCache(pBt
);
3951 rc
= incrVacuumStep(pBt
, nFin
, nOrig
, 0);
3953 if( rc
==SQLITE_OK
){
3954 rc
= sqlite3PagerWrite(pBt
->pPage1
->pDbPage
);
3955 put4byte(&pBt
->pPage1
->aData
[28], pBt
->nPage
);
3961 sqlite3BtreeLeave(p
);
3966 ** This routine is called prior to sqlite3PagerCommit when a transaction
3967 ** is committed for an auto-vacuum database.
3969 static int autoVacuumCommit(Btree
*p
){
3974 VVA_ONLY( int nRef
);
3978 pPager
= pBt
->pPager
;
3979 VVA_ONLY( nRef
= sqlite3PagerRefcount(pPager
); )
3981 assert( sqlite3_mutex_held(pBt
->mutex
) );
3982 invalidateAllOverflowCache(pBt
);
3983 assert(pBt
->autoVacuum
);
3984 if( !pBt
->incrVacuum
){
3985 Pgno nFin
; /* Number of pages in database after autovacuuming */
3986 Pgno nFree
; /* Number of pages on the freelist initially */
3987 Pgno nVac
; /* Number of pages to vacuum */
3988 Pgno iFree
; /* The next page to be freed */
3989 Pgno nOrig
; /* Database size before freeing */
3991 nOrig
= btreePagecount(pBt
);
3992 if( PTRMAP_ISPAGE(pBt
, nOrig
) || nOrig
==PENDING_BYTE_PAGE(pBt
) ){
3993 /* It is not possible to create a database for which the final page
3994 ** is either a pointer-map page or the pending-byte page. If one
3995 ** is encountered, this indicates corruption.
3997 return SQLITE_CORRUPT_BKPT
;
4000 nFree
= get4byte(&pBt
->pPage1
->aData
[36]);
4002 if( db
->xAutovacPages
){
4004 for(iDb
=0; ALWAYS(iDb
<db
->nDb
); iDb
++){
4005 if( db
->aDb
[iDb
].pBt
==p
) break;
4007 nVac
= db
->xAutovacPages(
4008 db
->pAutovacPagesArg
,
4009 db
->aDb
[iDb
].zDbSName
,
4023 nFin
= finalDbSize(pBt
, nOrig
, nVac
);
4024 if( nFin
>nOrig
) return SQLITE_CORRUPT_BKPT
;
4026 rc
= saveAllCursors(pBt
, 0, 0);
4028 for(iFree
=nOrig
; iFree
>nFin
&& rc
==SQLITE_OK
; iFree
--){
4029 rc
= incrVacuumStep(pBt
, nFin
, iFree
, nVac
==nFree
);
4031 if( (rc
==SQLITE_DONE
|| rc
==SQLITE_OK
) && nFree
>0 ){
4032 rc
= sqlite3PagerWrite(pBt
->pPage1
->pDbPage
);
4034 put4byte(&pBt
->pPage1
->aData
[32], 0);
4035 put4byte(&pBt
->pPage1
->aData
[36], 0);
4037 put4byte(&pBt
->pPage1
->aData
[28], nFin
);
4038 pBt
->bDoTruncate
= 1;
4041 if( rc
!=SQLITE_OK
){
4042 sqlite3PagerRollback(pPager
);
4046 assert( nRef
>=sqlite3PagerRefcount(pPager
) );
4050 #else /* ifndef SQLITE_OMIT_AUTOVACUUM */
4051 # define setChildPtrmaps(x) SQLITE_OK
4055 ** This routine does the first phase of a two-phase commit. This routine
4056 ** causes a rollback journal to be created (if it does not already exist)
4057 ** and populated with enough information so that if a power loss occurs
4058 ** the database can be restored to its original state by playing back
4059 ** the journal. Then the contents of the journal are flushed out to
4060 ** the disk. After the journal is safely on oxide, the changes to the
4061 ** database are written into the database file and flushed to oxide.
4062 ** At the end of this call, the rollback journal still exists on the
4063 ** disk and we are still holding all locks, so the transaction has not
4064 ** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
4067 ** This call is a no-op if no write-transaction is currently active on pBt.
4069 ** Otherwise, sync the database file for the btree pBt. zSuperJrnl points to
4070 ** the name of a super-journal file that should be written into the
4071 ** individual journal file, or is NULL, indicating no super-journal file
4072 ** (single database transaction).
4074 ** When this is called, the super-journal should already have been
4075 ** created, populated with this journal pointer and synced to disk.
4077 ** Once this is routine has returned, the only thing required to commit
4078 ** the write-transaction for this database file is to delete the journal.
4080 int sqlite3BtreeCommitPhaseOne(Btree
*p
, const char *zSuperJrnl
){
4082 if( p
->inTrans
==TRANS_WRITE
){
4083 BtShared
*pBt
= p
->pBt
;
4084 sqlite3BtreeEnter(p
);
4085 #ifndef SQLITE_OMIT_AUTOVACUUM
4086 if( pBt
->autoVacuum
){
4087 rc
= autoVacuumCommit(p
);
4088 if( rc
!=SQLITE_OK
){
4089 sqlite3BtreeLeave(p
);
4093 if( pBt
->bDoTruncate
){
4094 sqlite3PagerTruncateImage(pBt
->pPager
, pBt
->nPage
);
4097 rc
= sqlite3PagerCommitPhaseOne(pBt
->pPager
, zSuperJrnl
, 0);
4098 sqlite3BtreeLeave(p
);
4104 ** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
4105 ** at the conclusion of a transaction.
4107 static void btreeEndTransaction(Btree
*p
){
4108 BtShared
*pBt
= p
->pBt
;
4109 sqlite3
*db
= p
->db
;
4110 assert( sqlite3BtreeHoldsMutex(p
) );
4112 #ifndef SQLITE_OMIT_AUTOVACUUM
4113 pBt
->bDoTruncate
= 0;
4115 if( p
->inTrans
>TRANS_NONE
&& db
->nVdbeRead
>1 ){
4116 /* If there are other active statements that belong to this database
4117 ** handle, downgrade to a read-only transaction. The other statements
4118 ** may still be reading from the database. */
4119 downgradeAllSharedCacheTableLocks(p
);
4120 p
->inTrans
= TRANS_READ
;
4122 /* If the handle had any kind of transaction open, decrement the
4123 ** transaction count of the shared btree. If the transaction count
4124 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
4125 ** call below will unlock the pager. */
4126 if( p
->inTrans
!=TRANS_NONE
){
4127 clearAllSharedCacheTableLocks(p
);
4128 pBt
->nTransaction
--;
4129 if( 0==pBt
->nTransaction
){
4130 pBt
->inTransaction
= TRANS_NONE
;
4134 /* Set the current transaction state to TRANS_NONE and unlock the
4135 ** pager if this call closed the only read or write transaction. */
4136 p
->inTrans
= TRANS_NONE
;
4137 unlockBtreeIfUnused(pBt
);
4144 ** Commit the transaction currently in progress.
4146 ** This routine implements the second phase of a 2-phase commit. The
4147 ** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
4148 ** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
4149 ** routine did all the work of writing information out to disk and flushing the
4150 ** contents so that they are written onto the disk platter. All this
4151 ** routine has to do is delete or truncate or zero the header in the
4152 ** the rollback journal (which causes the transaction to commit) and
4155 ** Normally, if an error occurs while the pager layer is attempting to
4156 ** finalize the underlying journal file, this function returns an error and
4157 ** the upper layer will attempt a rollback. However, if the second argument
4158 ** is non-zero then this b-tree transaction is part of a multi-file
4159 ** transaction. In this case, the transaction has already been committed
4160 ** (by deleting a super-journal file) and the caller will ignore this
4161 ** functions return code. So, even if an error occurs in the pager layer,
4162 ** reset the b-tree objects internal state to indicate that the write
4163 ** transaction has been closed. This is quite safe, as the pager will have
4164 ** transitioned to the error state.
4166 ** This will release the write lock on the database file. If there
4167 ** are no active cursors, it also releases the read lock.
4169 int sqlite3BtreeCommitPhaseTwo(Btree
*p
, int bCleanup
){
4171 if( p
->inTrans
==TRANS_NONE
) return SQLITE_OK
;
4172 sqlite3BtreeEnter(p
);
4175 /* If the handle has a write-transaction open, commit the shared-btrees
4176 ** transaction and set the shared state to TRANS_READ.
4178 if( p
->inTrans
==TRANS_WRITE
){
4180 BtShared
*pBt
= p
->pBt
;
4181 assert( pBt
->inTransaction
==TRANS_WRITE
);
4182 assert( pBt
->nTransaction
>0 );
4183 rc
= sqlite3PagerCommitPhaseTwo(pBt
->pPager
);
4184 if( rc
!=SQLITE_OK
&& bCleanup
==0 ){
4185 sqlite3BtreeLeave(p
);
4188 p
->iBDataVersion
--; /* Compensate for pPager->iDataVersion++; */
4189 pBt
->inTransaction
= TRANS_READ
;
4190 btreeClearHasContent(pBt
);
4193 btreeEndTransaction(p
);
4194 sqlite3BtreeLeave(p
);
4199 ** Do both phases of a commit.
4201 int sqlite3BtreeCommit(Btree
*p
){
4203 sqlite3BtreeEnter(p
);
4204 rc
= sqlite3BtreeCommitPhaseOne(p
, 0);
4205 if( rc
==SQLITE_OK
){
4206 rc
= sqlite3BtreeCommitPhaseTwo(p
, 0);
4208 sqlite3BtreeLeave(p
);
4213 ** This routine sets the state to CURSOR_FAULT and the error
4214 ** code to errCode for every cursor on any BtShared that pBtree
4215 ** references. Or if the writeOnly flag is set to 1, then only
4216 ** trip write cursors and leave read cursors unchanged.
4218 ** Every cursor is a candidate to be tripped, including cursors
4219 ** that belong to other database connections that happen to be
4220 ** sharing the cache with pBtree.
4222 ** This routine gets called when a rollback occurs. If the writeOnly
4223 ** flag is true, then only write-cursors need be tripped - read-only
4224 ** cursors save their current positions so that they may continue
4225 ** following the rollback. Or, if writeOnly is false, all cursors are
4226 ** tripped. In general, writeOnly is false if the transaction being
4227 ** rolled back modified the database schema. In this case b-tree root
4228 ** pages may be moved or deleted from the database altogether, making
4229 ** it unsafe for read cursors to continue.
4231 ** If the writeOnly flag is true and an error is encountered while
4232 ** saving the current position of a read-only cursor, all cursors,
4233 ** including all read-cursors are tripped.
4235 ** SQLITE_OK is returned if successful, or if an error occurs while
4236 ** saving a cursor position, an SQLite error code.
4238 int sqlite3BtreeTripAllCursors(Btree
*pBtree
, int errCode
, int writeOnly
){
4242 assert( (writeOnly
==0 || writeOnly
==1) && BTCF_WriteFlag
==1 );
4244 sqlite3BtreeEnter(pBtree
);
4245 for(p
=pBtree
->pBt
->pCursor
; p
; p
=p
->pNext
){
4246 if( writeOnly
&& (p
->curFlags
& BTCF_WriteFlag
)==0 ){
4247 if( p
->eState
==CURSOR_VALID
|| p
->eState
==CURSOR_SKIPNEXT
){
4248 rc
= saveCursorPosition(p
);
4249 if( rc
!=SQLITE_OK
){
4250 (void)sqlite3BtreeTripAllCursors(pBtree
, rc
, 0);
4255 sqlite3BtreeClearCursor(p
);
4256 p
->eState
= CURSOR_FAULT
;
4257 p
->skipNext
= errCode
;
4259 btreeReleaseAllCursorPages(p
);
4261 sqlite3BtreeLeave(pBtree
);
4267 ** Set the pBt->nPage field correctly, according to the current
4268 ** state of the database. Assume pBt->pPage1 is valid.
4270 static void btreeSetNPage(BtShared
*pBt
, MemPage
*pPage1
){
4271 int nPage
= get4byte(&pPage1
->aData
[28]);
4272 testcase( nPage
==0 );
4273 if( nPage
==0 ) sqlite3PagerPagecount(pBt
->pPager
, &nPage
);
4274 testcase( pBt
->nPage
!=(u32
)nPage
);
4279 ** Rollback the transaction in progress.
4281 ** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
4282 ** Only write cursors are tripped if writeOnly is true but all cursors are
4283 ** tripped if writeOnly is false. Any attempt to use
4284 ** a tripped cursor will result in an error.
4286 ** This will release the write lock on the database file. If there
4287 ** are no active cursors, it also releases the read lock.
4289 int sqlite3BtreeRollback(Btree
*p
, int tripCode
, int writeOnly
){
4291 BtShared
*pBt
= p
->pBt
;
4294 assert( writeOnly
==1 || writeOnly
==0 );
4295 assert( tripCode
==SQLITE_ABORT_ROLLBACK
|| tripCode
==SQLITE_OK
);
4296 sqlite3BtreeEnter(p
);
4297 if( tripCode
==SQLITE_OK
){
4298 rc
= tripCode
= saveAllCursors(pBt
, 0, 0);
4299 if( rc
) writeOnly
= 0;
4304 int rc2
= sqlite3BtreeTripAllCursors(p
, tripCode
, writeOnly
);
4305 assert( rc
==SQLITE_OK
|| (writeOnly
==0 && rc2
==SQLITE_OK
) );
4306 if( rc2
!=SQLITE_OK
) rc
= rc2
;
4310 if( p
->inTrans
==TRANS_WRITE
){
4313 assert( TRANS_WRITE
==pBt
->inTransaction
);
4314 rc2
= sqlite3PagerRollback(pBt
->pPager
);
4315 if( rc2
!=SQLITE_OK
){
4319 /* The rollback may have destroyed the pPage1->aData value. So
4320 ** call btreeGetPage() on page 1 again to make
4321 ** sure pPage1->aData is set correctly. */
4322 if( btreeGetPage(pBt
, 1, &pPage1
, 0)==SQLITE_OK
){
4323 btreeSetNPage(pBt
, pPage1
);
4324 releasePageOne(pPage1
);
4326 assert( countValidCursors(pBt
, 1)==0 );
4327 pBt
->inTransaction
= TRANS_READ
;
4328 btreeClearHasContent(pBt
);
4331 btreeEndTransaction(p
);
4332 sqlite3BtreeLeave(p
);
4337 ** Start a statement subtransaction. The subtransaction can be rolled
4338 ** back independently of the main transaction. You must start a transaction
4339 ** before starting a subtransaction. The subtransaction is ended automatically
4340 ** if the main transaction commits or rolls back.
4342 ** Statement subtransactions are used around individual SQL statements
4343 ** that are contained within a BEGIN...COMMIT block. If a constraint
4344 ** error occurs within the statement, the effect of that one statement
4345 ** can be rolled back without having to rollback the entire transaction.
4347 ** A statement sub-transaction is implemented as an anonymous savepoint. The
4348 ** value passed as the second parameter is the total number of savepoints,
4349 ** including the new anonymous savepoint, open on the B-Tree. i.e. if there
4350 ** are no active savepoints and no other statement-transactions open,
4351 ** iStatement is 1. This anonymous savepoint can be released or rolled back
4352 ** using the sqlite3BtreeSavepoint() function.
4354 int sqlite3BtreeBeginStmt(Btree
*p
, int iStatement
){
4356 BtShared
*pBt
= p
->pBt
;
4357 sqlite3BtreeEnter(p
);
4358 assert( p
->inTrans
==TRANS_WRITE
);
4359 assert( (pBt
->btsFlags
& BTS_READ_ONLY
)==0 );
4360 assert( iStatement
>0 );
4361 assert( iStatement
>p
->db
->nSavepoint
);
4362 assert( pBt
->inTransaction
==TRANS_WRITE
);
4363 /* At the pager level, a statement transaction is a savepoint with
4364 ** an index greater than all savepoints created explicitly using
4365 ** SQL statements. It is illegal to open, release or rollback any
4366 ** such savepoints while the statement transaction savepoint is active.
4368 rc
= sqlite3PagerOpenSavepoint(pBt
->pPager
, iStatement
);
4369 sqlite3BtreeLeave(p
);
4374 ** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
4375 ** or SAVEPOINT_RELEASE. This function either releases or rolls back the
4376 ** savepoint identified by parameter iSavepoint, depending on the value
4379 ** Normally, iSavepoint is greater than or equal to zero. However, if op is
4380 ** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
4381 ** contents of the entire transaction are rolled back. This is different
4382 ** from a normal transaction rollback, as no locks are released and the
4383 ** transaction remains open.
4385 int sqlite3BtreeSavepoint(Btree
*p
, int op
, int iSavepoint
){
4387 if( p
&& p
->inTrans
==TRANS_WRITE
){
4388 BtShared
*pBt
= p
->pBt
;
4389 assert( op
==SAVEPOINT_RELEASE
|| op
==SAVEPOINT_ROLLBACK
);
4390 assert( iSavepoint
>=0 || (iSavepoint
==-1 && op
==SAVEPOINT_ROLLBACK
) );
4391 sqlite3BtreeEnter(p
);
4392 if( op
==SAVEPOINT_ROLLBACK
){
4393 rc
= saveAllCursors(pBt
, 0, 0);
4395 if( rc
==SQLITE_OK
){
4396 rc
= sqlite3PagerSavepoint(pBt
->pPager
, op
, iSavepoint
);
4398 if( rc
==SQLITE_OK
){
4399 if( iSavepoint
<0 && (pBt
->btsFlags
& BTS_INITIALLY_EMPTY
)!=0 ){
4402 rc
= newDatabase(pBt
);
4403 btreeSetNPage(pBt
, pBt
->pPage1
);
4405 /* pBt->nPage might be zero if the database was corrupt when
4406 ** the transaction was started. Otherwise, it must be at least 1. */
4407 assert( CORRUPT_DB
|| pBt
->nPage
>0 );
4409 sqlite3BtreeLeave(p
);
4415 ** Create a new cursor for the BTree whose root is on the page
4416 ** iTable. If a read-only cursor is requested, it is assumed that
4417 ** the caller already has at least a read-only transaction open
4418 ** on the database already. If a write-cursor is requested, then
4419 ** the caller is assumed to have an open write transaction.
4421 ** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only
4422 ** be used for reading. If the BTREE_WRCSR bit is set, then the cursor
4423 ** can be used for reading or for writing if other conditions for writing
4424 ** are also met. These are the conditions that must be met in order
4425 ** for writing to be allowed:
4427 ** 1: The cursor must have been opened with wrFlag containing BTREE_WRCSR
4429 ** 2: Other database connections that share the same pager cache
4430 ** but which are not in the READ_UNCOMMITTED state may not have
4431 ** cursors open with wrFlag==0 on the same table. Otherwise
4432 ** the changes made by this write cursor would be visible to
4433 ** the read cursors in the other database connection.
4435 ** 3: The database must be writable (not on read-only media)
4437 ** 4: There must be an active transaction.
4439 ** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR
4440 ** is set. If FORDELETE is set, that is a hint to the implementation that
4441 ** this cursor will only be used to seek to and delete entries of an index
4442 ** as part of a larger DELETE statement. The FORDELETE hint is not used by
4443 ** this implementation. But in a hypothetical alternative storage engine
4444 ** in which index entries are automatically deleted when corresponding table
4445 ** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE
4446 ** operations on this cursor can be no-ops and all READ operations can
4447 ** return a null row (2-bytes: 0x01 0x00).
4449 ** No checking is done to make sure that page iTable really is the
4450 ** root page of a b-tree. If it is not, then the cursor acquired
4451 ** will not work correctly.
4453 ** It is assumed that the sqlite3BtreeCursorZero() has been called
4454 ** on pCur to initialize the memory space prior to invoking this routine.
4456 static int btreeCursor(
4457 Btree
*p
, /* The btree */
4458 Pgno iTable
, /* Root page of table to open */
4459 int wrFlag
, /* 1 to write. 0 read-only */
4460 struct KeyInfo
*pKeyInfo
, /* First arg to comparison function */
4461 BtCursor
*pCur
/* Space for new cursor */
4463 BtShared
*pBt
= p
->pBt
; /* Shared b-tree handle */
4464 BtCursor
*pX
; /* Looping over other all cursors */
4466 assert( sqlite3BtreeHoldsMutex(p
) );
4468 || wrFlag
==BTREE_WRCSR
4469 || wrFlag
==(BTREE_WRCSR
|BTREE_FORDELETE
)
4472 /* The following assert statements verify that if this is a sharable
4473 ** b-tree database, the connection is holding the required table locks,
4474 ** and that no other connection has any open cursor that conflicts with
4475 ** this lock. The iTable<1 term disables the check for corrupt schemas. */
4476 assert( hasSharedCacheTableLock(p
, iTable
, pKeyInfo
!=0, (wrFlag
?2:1))
4478 assert( wrFlag
==0 || !hasReadConflicts(p
, iTable
) );
4480 /* Assert that the caller has opened the required transaction. */
4481 assert( p
->inTrans
>TRANS_NONE
);
4482 assert( wrFlag
==0 || p
->inTrans
==TRANS_WRITE
);
4483 assert( pBt
->pPage1
&& pBt
->pPage1
->aData
);
4484 assert( wrFlag
==0 || (pBt
->btsFlags
& BTS_READ_ONLY
)==0 );
4488 return SQLITE_CORRUPT_BKPT
;
4489 }else if( btreePagecount(pBt
)==0 ){
4490 assert( wrFlag
==0 );
4495 /* Now that no other errors can occur, finish filling in the BtCursor
4496 ** variables and link the cursor into the BtShared list. */
4497 pCur
->pgnoRoot
= iTable
;
4499 pCur
->pKeyInfo
= pKeyInfo
;
4503 /* If there are two or more cursors on the same btree, then all such
4504 ** cursors *must* have the BTCF_Multiple flag set. */
4505 for(pX
=pBt
->pCursor
; pX
; pX
=pX
->pNext
){
4506 if( pX
->pgnoRoot
==iTable
){
4507 pX
->curFlags
|= BTCF_Multiple
;
4508 pCur
->curFlags
= BTCF_Multiple
;
4511 pCur
->eState
= CURSOR_INVALID
;
4512 pCur
->pNext
= pBt
->pCursor
;
4513 pBt
->pCursor
= pCur
;
4515 pCur
->curFlags
|= BTCF_WriteFlag
;
4516 pCur
->curPagerFlags
= 0;
4517 if( pBt
->pTmpSpace
==0 ) return allocateTempSpace(pBt
);
4519 pCur
->curPagerFlags
= PAGER_GET_READONLY
;
4523 static int btreeCursorWithLock(
4524 Btree
*p
, /* The btree */
4525 Pgno iTable
, /* Root page of table to open */
4526 int wrFlag
, /* 1 to write. 0 read-only */
4527 struct KeyInfo
*pKeyInfo
, /* First arg to comparison function */
4528 BtCursor
*pCur
/* Space for new cursor */
4531 sqlite3BtreeEnter(p
);
4532 rc
= btreeCursor(p
, iTable
, wrFlag
, pKeyInfo
, pCur
);
4533 sqlite3BtreeLeave(p
);
4536 int sqlite3BtreeCursor(
4537 Btree
*p
, /* The btree */
4538 Pgno iTable
, /* Root page of table to open */
4539 int wrFlag
, /* 1 to write. 0 read-only */
4540 struct KeyInfo
*pKeyInfo
, /* First arg to xCompare() */
4541 BtCursor
*pCur
/* Write new cursor here */
4544 return btreeCursorWithLock(p
, iTable
, wrFlag
, pKeyInfo
, pCur
);
4546 return btreeCursor(p
, iTable
, wrFlag
, pKeyInfo
, pCur
);
4551 ** Return the size of a BtCursor object in bytes.
4553 ** This interfaces is needed so that users of cursors can preallocate
4554 ** sufficient storage to hold a cursor. The BtCursor object is opaque
4555 ** to users so they cannot do the sizeof() themselves - they must call
4558 int sqlite3BtreeCursorSize(void){
4559 return ROUND8(sizeof(BtCursor
));
4563 ** Initialize memory that will be converted into a BtCursor object.
4565 ** The simple approach here would be to memset() the entire object
4566 ** to zero. But it turns out that the apPage[] and aiIdx[] arrays
4567 ** do not need to be zeroed and they are large, so we can save a lot
4568 ** of run-time by skipping the initialization of those elements.
4570 void sqlite3BtreeCursorZero(BtCursor
*p
){
4571 memset(p
, 0, offsetof(BtCursor
, BTCURSOR_FIRST_UNINIT
));
4575 ** Close a cursor. The read lock on the database file is released
4576 ** when the last cursor is closed.
4578 int sqlite3BtreeCloseCursor(BtCursor
*pCur
){
4579 Btree
*pBtree
= pCur
->pBtree
;
4581 BtShared
*pBt
= pCur
->pBt
;
4582 sqlite3BtreeEnter(pBtree
);
4583 assert( pBt
->pCursor
!=0 );
4584 if( pBt
->pCursor
==pCur
){
4585 pBt
->pCursor
= pCur
->pNext
;
4587 BtCursor
*pPrev
= pBt
->pCursor
;
4589 if( pPrev
->pNext
==pCur
){
4590 pPrev
->pNext
= pCur
->pNext
;
4593 pPrev
= pPrev
->pNext
;
4594 }while( ALWAYS(pPrev
) );
4596 btreeReleaseAllCursorPages(pCur
);
4597 unlockBtreeIfUnused(pBt
);
4598 sqlite3_free(pCur
->aOverflow
);
4599 sqlite3_free(pCur
->pKey
);
4600 if( (pBt
->openFlags
& BTREE_SINGLE
) && pBt
->pCursor
==0 ){
4601 /* Since the BtShared is not sharable, there is no need to
4602 ** worry about the missing sqlite3BtreeLeave() call here. */
4603 assert( pBtree
->sharable
==0 );
4604 sqlite3BtreeClose(pBtree
);
4606 sqlite3BtreeLeave(pBtree
);
4614 ** Make sure the BtCursor* given in the argument has a valid
4615 ** BtCursor.info structure. If it is not already valid, call
4616 ** btreeParseCell() to fill it in.
4618 ** BtCursor.info is a cache of the information in the current cell.
4619 ** Using this cache reduces the number of calls to btreeParseCell().
4622 static int cellInfoEqual(CellInfo
*a
, CellInfo
*b
){
4623 if( a
->nKey
!=b
->nKey
) return 0;
4624 if( a
->pPayload
!=b
->pPayload
) return 0;
4625 if( a
->nPayload
!=b
->nPayload
) return 0;
4626 if( a
->nLocal
!=b
->nLocal
) return 0;
4627 if( a
->nSize
!=b
->nSize
) return 0;
4630 static void assertCellInfo(BtCursor
*pCur
){
4632 memset(&info
, 0, sizeof(info
));
4633 btreeParseCell(pCur
->pPage
, pCur
->ix
, &info
);
4634 assert( CORRUPT_DB
|| cellInfoEqual(&info
, &pCur
->info
) );
4637 #define assertCellInfo(x)
4639 static SQLITE_NOINLINE
void getCellInfo(BtCursor
*pCur
){
4640 if( pCur
->info
.nSize
==0 ){
4641 pCur
->curFlags
|= BTCF_ValidNKey
;
4642 btreeParseCell(pCur
->pPage
,pCur
->ix
,&pCur
->info
);
4644 assertCellInfo(pCur
);
4648 #ifndef NDEBUG /* The next routine used only within assert() statements */
4650 ** Return true if the given BtCursor is valid. A valid cursor is one
4651 ** that is currently pointing to a row in a (non-empty) table.
4652 ** This is a verification routine is used only within assert() statements.
4654 int sqlite3BtreeCursorIsValid(BtCursor
*pCur
){
4655 return pCur
&& pCur
->eState
==CURSOR_VALID
;
4658 int sqlite3BtreeCursorIsValidNN(BtCursor
*pCur
){
4660 return pCur
->eState
==CURSOR_VALID
;
4664 ** Return the value of the integer key or "rowid" for a table btree.
4665 ** This routine is only valid for a cursor that is pointing into a
4666 ** ordinary table btree. If the cursor points to an index btree or
4667 ** is invalid, the result of this routine is undefined.
4669 i64
sqlite3BtreeIntegerKey(BtCursor
*pCur
){
4670 assert( cursorHoldsMutex(pCur
) );
4671 assert( pCur
->eState
==CURSOR_VALID
);
4672 assert( pCur
->curIntKey
);
4674 return pCur
->info
.nKey
;
4678 ** Pin or unpin a cursor.
4680 void sqlite3BtreeCursorPin(BtCursor
*pCur
){
4681 assert( (pCur
->curFlags
& BTCF_Pinned
)==0 );
4682 pCur
->curFlags
|= BTCF_Pinned
;
4684 void sqlite3BtreeCursorUnpin(BtCursor
*pCur
){
4685 assert( (pCur
->curFlags
& BTCF_Pinned
)!=0 );
4686 pCur
->curFlags
&= ~BTCF_Pinned
;
4689 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
4691 ** Return the offset into the database file for the start of the
4692 ** payload to which the cursor is pointing.
4694 i64
sqlite3BtreeOffset(BtCursor
*pCur
){
4695 assert( cursorHoldsMutex(pCur
) );
4696 assert( pCur
->eState
==CURSOR_VALID
);
4698 return (i64
)pCur
->pBt
->pageSize
*((i64
)pCur
->pPage
->pgno
- 1) +
4699 (i64
)(pCur
->info
.pPayload
- pCur
->pPage
->aData
);
4701 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */
4704 ** Return the number of bytes of payload for the entry that pCur is
4705 ** currently pointing to. For table btrees, this will be the amount
4706 ** of data. For index btrees, this will be the size of the key.
4708 ** The caller must guarantee that the cursor is pointing to a non-NULL
4709 ** valid entry. In other words, the calling procedure must guarantee
4710 ** that the cursor has Cursor.eState==CURSOR_VALID.
4712 u32
sqlite3BtreePayloadSize(BtCursor
*pCur
){
4713 assert( cursorHoldsMutex(pCur
) );
4714 assert( pCur
->eState
==CURSOR_VALID
);
4716 return pCur
->info
.nPayload
;
4720 ** Return an upper bound on the size of any record for the table
4721 ** that the cursor is pointing into.
4723 ** This is an optimization. Everything will still work if this
4724 ** routine always returns 2147483647 (which is the largest record
4725 ** that SQLite can handle) or more. But returning a smaller value might
4726 ** prevent large memory allocations when trying to interpret a
4727 ** corrupt datrabase.
4729 ** The current implementation merely returns the size of the underlying
4732 sqlite3_int64
sqlite3BtreeMaxRecordSize(BtCursor
*pCur
){
4733 assert( cursorHoldsMutex(pCur
) );
4734 assert( pCur
->eState
==CURSOR_VALID
);
4735 return pCur
->pBt
->pageSize
* (sqlite3_int64
)pCur
->pBt
->nPage
;
4739 ** Given the page number of an overflow page in the database (parameter
4740 ** ovfl), this function finds the page number of the next page in the
4741 ** linked list of overflow pages. If possible, it uses the auto-vacuum
4742 ** pointer-map data instead of reading the content of page ovfl to do so.
4744 ** If an error occurs an SQLite error code is returned. Otherwise:
4746 ** The page number of the next overflow page in the linked list is
4747 ** written to *pPgnoNext. If page ovfl is the last page in its linked
4748 ** list, *pPgnoNext is set to zero.
4750 ** If ppPage is not NULL, and a reference to the MemPage object corresponding
4751 ** to page number pOvfl was obtained, then *ppPage is set to point to that
4752 ** reference. It is the responsibility of the caller to call releasePage()
4753 ** on *ppPage to free the reference. In no reference was obtained (because
4754 ** the pointer-map was used to obtain the value for *pPgnoNext), then
4755 ** *ppPage is set to zero.
4757 static int getOverflowPage(
4758 BtShared
*pBt
, /* The database file */
4759 Pgno ovfl
, /* Current overflow page number */
4760 MemPage
**ppPage
, /* OUT: MemPage handle (may be NULL) */
4761 Pgno
*pPgnoNext
/* OUT: Next overflow page number */
4767 assert( sqlite3_mutex_held(pBt
->mutex
) );
4770 #ifndef SQLITE_OMIT_AUTOVACUUM
4771 /* Try to find the next page in the overflow list using the
4772 ** autovacuum pointer-map pages. Guess that the next page in
4773 ** the overflow list is page number (ovfl+1). If that guess turns
4774 ** out to be wrong, fall back to loading the data of page
4775 ** number ovfl to determine the next page number.
4777 if( pBt
->autoVacuum
){
4779 Pgno iGuess
= ovfl
+1;
4782 while( PTRMAP_ISPAGE(pBt
, iGuess
) || iGuess
==PENDING_BYTE_PAGE(pBt
) ){
4786 if( iGuess
<=btreePagecount(pBt
) ){
4787 rc
= ptrmapGet(pBt
, iGuess
, &eType
, &pgno
);
4788 if( rc
==SQLITE_OK
&& eType
==PTRMAP_OVERFLOW2
&& pgno
==ovfl
){
4796 assert( next
==0 || rc
==SQLITE_DONE
);
4797 if( rc
==SQLITE_OK
){
4798 rc
= btreeGetPage(pBt
, ovfl
, &pPage
, (ppPage
==0) ? PAGER_GET_READONLY
: 0);
4799 assert( rc
==SQLITE_OK
|| pPage
==0 );
4800 if( rc
==SQLITE_OK
){
4801 next
= get4byte(pPage
->aData
);
4811 return (rc
==SQLITE_DONE
? SQLITE_OK
: rc
);
4815 ** Copy data from a buffer to a page, or from a page to a buffer.
4817 ** pPayload is a pointer to data stored on database page pDbPage.
4818 ** If argument eOp is false, then nByte bytes of data are copied
4819 ** from pPayload to the buffer pointed at by pBuf. If eOp is true,
4820 ** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
4821 ** of data are copied from the buffer pBuf to pPayload.
4823 ** SQLITE_OK is returned on success, otherwise an error code.
4825 static int copyPayload(
4826 void *pPayload
, /* Pointer to page data */
4827 void *pBuf
, /* Pointer to buffer */
4828 int nByte
, /* Number of bytes to copy */
4829 int eOp
, /* 0 -> copy from page, 1 -> copy to page */
4830 DbPage
*pDbPage
/* Page containing pPayload */
4833 /* Copy data from buffer to page (a write operation) */
4834 int rc
= sqlite3PagerWrite(pDbPage
);
4835 if( rc
!=SQLITE_OK
){
4838 memcpy(pPayload
, pBuf
, nByte
);
4840 /* Copy data from page to buffer (a read operation) */
4841 memcpy(pBuf
, pPayload
, nByte
);
4847 ** This function is used to read or overwrite payload information
4848 ** for the entry that the pCur cursor is pointing to. The eOp
4849 ** argument is interpreted as follows:
4851 ** 0: The operation is a read. Populate the overflow cache.
4852 ** 1: The operation is a write. Populate the overflow cache.
4854 ** A total of "amt" bytes are read or written beginning at "offset".
4855 ** Data is read to or from the buffer pBuf.
4857 ** The content being read or written might appear on the main page
4858 ** or be scattered out on multiple overflow pages.
4860 ** If the current cursor entry uses one or more overflow pages
4861 ** this function may allocate space for and lazily populate
4862 ** the overflow page-list cache array (BtCursor.aOverflow).
4863 ** Subsequent calls use this cache to make seeking to the supplied offset
4866 ** Once an overflow page-list cache has been allocated, it must be
4867 ** invalidated if some other cursor writes to the same table, or if
4868 ** the cursor is moved to a different row. Additionally, in auto-vacuum
4869 ** mode, the following events may invalidate an overflow page-list cache.
4871 ** * An incremental vacuum,
4872 ** * A commit in auto_vacuum="full" mode,
4873 ** * Creating a table (may require moving an overflow page).
4875 static int accessPayload(
4876 BtCursor
*pCur
, /* Cursor pointing to entry to read from */
4877 u32 offset
, /* Begin reading this far into payload */
4878 u32 amt
, /* Read this many bytes */
4879 unsigned char *pBuf
, /* Write the bytes into this buffer */
4880 int eOp
/* zero to read. non-zero to write. */
4882 unsigned char *aPayload
;
4885 MemPage
*pPage
= pCur
->pPage
; /* Btree page of current entry */
4886 BtShared
*pBt
= pCur
->pBt
; /* Btree this cursor belongs to */
4887 #ifdef SQLITE_DIRECT_OVERFLOW_READ
4888 unsigned char * const pBufStart
= pBuf
; /* Start of original out buffer */
4892 assert( eOp
==0 || eOp
==1 );
4893 assert( pCur
->eState
==CURSOR_VALID
);
4894 if( pCur
->ix
>=pPage
->nCell
){
4895 return SQLITE_CORRUPT_PAGE(pPage
);
4897 assert( cursorHoldsMutex(pCur
) );
4900 aPayload
= pCur
->info
.pPayload
;
4901 assert( offset
+amt
<= pCur
->info
.nPayload
);
4903 assert( aPayload
> pPage
->aData
);
4904 if( (uptr
)(aPayload
- pPage
->aData
) > (pBt
->usableSize
- pCur
->info
.nLocal
) ){
4905 /* Trying to read or write past the end of the data is an error. The
4906 ** conditional above is really:
4907 ** &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
4908 ** but is recast into its current form to avoid integer overflow problems
4910 return SQLITE_CORRUPT_PAGE(pPage
);
4913 /* Check if data must be read/written to/from the btree page itself. */
4914 if( offset
<pCur
->info
.nLocal
){
4916 if( a
+offset
>pCur
->info
.nLocal
){
4917 a
= pCur
->info
.nLocal
- offset
;
4919 rc
= copyPayload(&aPayload
[offset
], pBuf
, a
, eOp
, pPage
->pDbPage
);
4924 offset
-= pCur
->info
.nLocal
;
4928 if( rc
==SQLITE_OK
&& amt
>0 ){
4929 const u32 ovflSize
= pBt
->usableSize
- 4; /* Bytes content per ovfl page */
4932 nextPage
= get4byte(&aPayload
[pCur
->info
.nLocal
]);
4934 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
4936 ** The aOverflow[] array is sized at one entry for each overflow page
4937 ** in the overflow chain. The page number of the first overflow page is
4938 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
4939 ** means "not yet known" (the cache is lazily populated).
4941 if( (pCur
->curFlags
& BTCF_ValidOvfl
)==0 ){
4942 int nOvfl
= (pCur
->info
.nPayload
-pCur
->info
.nLocal
+ovflSize
-1)/ovflSize
;
4943 if( pCur
->aOverflow
==0
4944 || nOvfl
*(int)sizeof(Pgno
) > sqlite3MallocSize(pCur
->aOverflow
)
4946 Pgno
*aNew
= (Pgno
*)sqlite3Realloc(
4947 pCur
->aOverflow
, nOvfl
*2*sizeof(Pgno
)
4950 return SQLITE_NOMEM_BKPT
;
4952 pCur
->aOverflow
= aNew
;
4955 memset(pCur
->aOverflow
, 0, nOvfl
*sizeof(Pgno
));
4956 pCur
->curFlags
|= BTCF_ValidOvfl
;
4958 /* If the overflow page-list cache has been allocated and the
4959 ** entry for the first required overflow page is valid, skip
4962 if( pCur
->aOverflow
[offset
/ovflSize
] ){
4963 iIdx
= (offset
/ovflSize
);
4964 nextPage
= pCur
->aOverflow
[iIdx
];
4965 offset
= (offset
%ovflSize
);
4969 assert( rc
==SQLITE_OK
&& amt
>0 );
4971 /* If required, populate the overflow page-list cache. */
4972 if( nextPage
> pBt
->nPage
) return SQLITE_CORRUPT_BKPT
;
4973 assert( pCur
->aOverflow
[iIdx
]==0
4974 || pCur
->aOverflow
[iIdx
]==nextPage
4976 pCur
->aOverflow
[iIdx
] = nextPage
;
4978 if( offset
>=ovflSize
){
4979 /* The only reason to read this page is to obtain the page
4980 ** number for the next page in the overflow chain. The page
4981 ** data is not required. So first try to lookup the overflow
4982 ** page-list cache, if any, then fall back to the getOverflowPage()
4985 assert( pCur
->curFlags
& BTCF_ValidOvfl
);
4986 assert( pCur
->pBtree
->db
==pBt
->db
);
4987 if( pCur
->aOverflow
[iIdx
+1] ){
4988 nextPage
= pCur
->aOverflow
[iIdx
+1];
4990 rc
= getOverflowPage(pBt
, nextPage
, 0, &nextPage
);
4994 /* Need to read this page properly. It contains some of the
4995 ** range of data that is being read (eOp==0) or written (eOp!=0).
4998 if( a
+ offset
> ovflSize
){
4999 a
= ovflSize
- offset
;
5002 #ifdef SQLITE_DIRECT_OVERFLOW_READ
5003 /* If all the following are true:
5005 ** 1) this is a read operation, and
5006 ** 2) data is required from the start of this overflow page, and
5007 ** 3) there are no dirty pages in the page-cache
5008 ** 4) the database is file-backed, and
5009 ** 5) the page is not in the WAL file
5010 ** 6) at least 4 bytes have already been read into the output buffer
5012 ** then data can be read directly from the database file into the
5013 ** output buffer, bypassing the page-cache altogether. This speeds
5014 ** up loading large records that span many overflow pages.
5016 if( eOp
==0 /* (1) */
5017 && offset
==0 /* (2) */
5018 && sqlite3PagerDirectReadOk(pBt
->pPager
, nextPage
) /* (3,4,5) */
5019 && &pBuf
[-4]>=pBufStart
/* (6) */
5021 sqlite3_file
*fd
= sqlite3PagerFile(pBt
->pPager
);
5023 u8
*aWrite
= &pBuf
[-4];
5024 assert( aWrite
>=pBufStart
); /* due to (6) */
5025 memcpy(aSave
, aWrite
, 4);
5026 rc
= sqlite3OsRead(fd
, aWrite
, a
+4, (i64
)pBt
->pageSize
*(nextPage
-1));
5027 if( rc
&& nextPage
>pBt
->nPage
) rc
= SQLITE_CORRUPT_BKPT
;
5028 nextPage
= get4byte(aWrite
);
5029 memcpy(aWrite
, aSave
, 4);
5035 rc
= sqlite3PagerGet(pBt
->pPager
, nextPage
, &pDbPage
,
5036 (eOp
==0 ? PAGER_GET_READONLY
: 0)
5038 if( rc
==SQLITE_OK
){
5039 aPayload
= sqlite3PagerGetData(pDbPage
);
5040 nextPage
= get4byte(aPayload
);
5041 rc
= copyPayload(&aPayload
[offset
+4], pBuf
, a
, eOp
, pDbPage
);
5042 sqlite3PagerUnref(pDbPage
);
5047 if( amt
==0 ) return rc
;
5055 if( rc
==SQLITE_OK
&& amt
>0 ){
5056 /* Overflow chain ends prematurely */
5057 return SQLITE_CORRUPT_PAGE(pPage
);
5063 ** Read part of the payload for the row at which that cursor pCur is currently
5064 ** pointing. "amt" bytes will be transferred into pBuf[]. The transfer
5065 ** begins at "offset".
5067 ** pCur can be pointing to either a table or an index b-tree.
5068 ** If pointing to a table btree, then the content section is read. If
5069 ** pCur is pointing to an index b-tree then the key section is read.
5071 ** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing
5072 ** to a valid row in the table. For sqlite3BtreePayloadChecked(), the
5073 ** cursor might be invalid or might need to be restored before being read.
5075 ** Return SQLITE_OK on success or an error code if anything goes
5076 ** wrong. An error is returned if "offset+amt" is larger than
5077 ** the available payload.
5079 int sqlite3BtreePayload(BtCursor
*pCur
, u32 offset
, u32 amt
, void *pBuf
){
5080 assert( cursorHoldsMutex(pCur
) );
5081 assert( pCur
->eState
==CURSOR_VALID
);
5082 assert( pCur
->iPage
>=0 && pCur
->pPage
);
5083 return accessPayload(pCur
, offset
, amt
, (unsigned char*)pBuf
, 0);
5087 ** This variant of sqlite3BtreePayload() works even if the cursor has not
5088 ** in the CURSOR_VALID state. It is only used by the sqlite3_blob_read()
5091 #ifndef SQLITE_OMIT_INCRBLOB
5092 static SQLITE_NOINLINE
int accessPayloadChecked(
5099 if ( pCur
->eState
==CURSOR_INVALID
){
5100 return SQLITE_ABORT
;
5102 assert( cursorOwnsBtShared(pCur
) );
5103 rc
= btreeRestoreCursorPosition(pCur
);
5104 return rc
? rc
: accessPayload(pCur
, offset
, amt
, pBuf
, 0);
5106 int sqlite3BtreePayloadChecked(BtCursor
*pCur
, u32 offset
, u32 amt
, void *pBuf
){
5107 if( pCur
->eState
==CURSOR_VALID
){
5108 assert( cursorOwnsBtShared(pCur
) );
5109 return accessPayload(pCur
, offset
, amt
, pBuf
, 0);
5111 return accessPayloadChecked(pCur
, offset
, amt
, pBuf
);
5114 #endif /* SQLITE_OMIT_INCRBLOB */
5117 ** Return a pointer to payload information from the entry that the
5118 ** pCur cursor is pointing to. The pointer is to the beginning of
5119 ** the key if index btrees (pPage->intKey==0) and is the data for
5120 ** table btrees (pPage->intKey==1). The number of bytes of available
5121 ** key/data is written into *pAmt. If *pAmt==0, then the value
5122 ** returned will not be a valid pointer.
5124 ** This routine is an optimization. It is common for the entire key
5125 ** and data to fit on the local page and for there to be no overflow
5126 ** pages. When that is so, this routine can be used to access the
5127 ** key and data without making a copy. If the key and/or data spills
5128 ** onto overflow pages, then accessPayload() must be used to reassemble
5129 ** the key/data and copy it into a preallocated buffer.
5131 ** The pointer returned by this routine looks directly into the cached
5132 ** page of the database. The data might change or move the next time
5133 ** any btree routine is called.
5135 static const void *fetchPayload(
5136 BtCursor
*pCur
, /* Cursor pointing to entry to read from */
5137 u32
*pAmt
/* Write the number of available bytes here */
5140 assert( pCur
!=0 && pCur
->iPage
>=0 && pCur
->pPage
);
5141 assert( pCur
->eState
==CURSOR_VALID
);
5142 assert( sqlite3_mutex_held(pCur
->pBtree
->db
->mutex
) );
5143 assert( cursorOwnsBtShared(pCur
) );
5144 assert( pCur
->ix
<pCur
->pPage
->nCell
|| CORRUPT_DB
);
5145 assert( pCur
->info
.nSize
>0 );
5146 assert( pCur
->info
.pPayload
>pCur
->pPage
->aData
|| CORRUPT_DB
);
5147 assert( pCur
->info
.pPayload
<pCur
->pPage
->aDataEnd
||CORRUPT_DB
);
5148 amt
= pCur
->info
.nLocal
;
5149 if( amt
>(int)(pCur
->pPage
->aDataEnd
- pCur
->info
.pPayload
) ){
5150 /* There is too little space on the page for the expected amount
5151 ** of local content. Database must be corrupt. */
5152 assert( CORRUPT_DB
);
5153 amt
= MAX(0, (int)(pCur
->pPage
->aDataEnd
- pCur
->info
.pPayload
));
5156 return (void*)pCur
->info
.pPayload
;
5161 ** For the entry that cursor pCur is point to, return as
5162 ** many bytes of the key or data as are available on the local
5163 ** b-tree page. Write the number of available bytes into *pAmt.
5165 ** The pointer returned is ephemeral. The key/data may move
5166 ** or be destroyed on the next call to any Btree routine,
5167 ** including calls from other threads against the same cache.
5168 ** Hence, a mutex on the BtShared should be held prior to calling
5171 ** These routines is used to get quick access to key and data
5172 ** in the common case where no overflow pages are used.
5174 const void *sqlite3BtreePayloadFetch(BtCursor
*pCur
, u32
*pAmt
){
5175 return fetchPayload(pCur
, pAmt
);
5180 ** Move the cursor down to a new child page. The newPgno argument is the
5181 ** page number of the child page to move to.
5183 ** This function returns SQLITE_CORRUPT if the page-header flags field of
5184 ** the new child page does not match the flags field of the parent (i.e.
5185 ** if an intkey page appears to be the parent of a non-intkey page, or
5188 static int moveToChild(BtCursor
*pCur
, u32 newPgno
){
5189 BtShared
*pBt
= pCur
->pBt
;
5191 assert( cursorOwnsBtShared(pCur
) );
5192 assert( pCur
->eState
==CURSOR_VALID
);
5193 assert( pCur
->iPage
<BTCURSOR_MAX_DEPTH
);
5194 assert( pCur
->iPage
>=0 );
5195 if( pCur
->iPage
>=(BTCURSOR_MAX_DEPTH
-1) ){
5196 return SQLITE_CORRUPT_BKPT
;
5198 pCur
->info
.nSize
= 0;
5199 pCur
->curFlags
&= ~(BTCF_ValidNKey
|BTCF_ValidOvfl
);
5200 pCur
->aiIdx
[pCur
->iPage
] = pCur
->ix
;
5201 pCur
->apPage
[pCur
->iPage
] = pCur
->pPage
;
5204 return getAndInitPage(pBt
, newPgno
, &pCur
->pPage
, pCur
, pCur
->curPagerFlags
);
5209 ** Page pParent is an internal (non-leaf) tree page. This function
5210 ** asserts that page number iChild is the left-child if the iIdx'th
5211 ** cell in page pParent. Or, if iIdx is equal to the total number of
5212 ** cells in pParent, that page number iChild is the right-child of
5215 static void assertParentIndex(MemPage
*pParent
, int iIdx
, Pgno iChild
){
5216 if( CORRUPT_DB
) return; /* The conditions tested below might not be true
5217 ** in a corrupt database */
5218 assert( iIdx
<=pParent
->nCell
);
5219 if( iIdx
==pParent
->nCell
){
5220 assert( get4byte(&pParent
->aData
[pParent
->hdrOffset
+8])==iChild
);
5222 assert( get4byte(findCell(pParent
, iIdx
))==iChild
);
5226 # define assertParentIndex(x,y,z)
5230 ** Move the cursor up to the parent page.
5232 ** pCur->idx is set to the cell index that contains the pointer
5233 ** to the page we are coming from. If we are coming from the
5234 ** right-most child page then pCur->idx is set to one more than
5235 ** the largest cell index.
5237 static void moveToParent(BtCursor
*pCur
){
5239 assert( cursorOwnsBtShared(pCur
) );
5240 assert( pCur
->eState
==CURSOR_VALID
);
5241 assert( pCur
->iPage
>0 );
5242 assert( pCur
->pPage
);
5244 pCur
->apPage
[pCur
->iPage
-1],
5245 pCur
->aiIdx
[pCur
->iPage
-1],
5248 testcase( pCur
->aiIdx
[pCur
->iPage
-1] > pCur
->apPage
[pCur
->iPage
-1]->nCell
);
5249 pCur
->info
.nSize
= 0;
5250 pCur
->curFlags
&= ~(BTCF_ValidNKey
|BTCF_ValidOvfl
);
5251 pCur
->ix
= pCur
->aiIdx
[pCur
->iPage
-1];
5252 pLeaf
= pCur
->pPage
;
5253 pCur
->pPage
= pCur
->apPage
[--pCur
->iPage
];
5254 releasePageNotNull(pLeaf
);
5258 ** Move the cursor to point to the root page of its b-tree structure.
5260 ** If the table has a virtual root page, then the cursor is moved to point
5261 ** to the virtual root page instead of the actual root page. A table has a
5262 ** virtual root page when the actual root page contains no cells and a
5263 ** single child page. This can only happen with the table rooted at page 1.
5265 ** If the b-tree structure is empty, the cursor state is set to
5266 ** CURSOR_INVALID and this routine returns SQLITE_EMPTY. Otherwise,
5267 ** the cursor is set to point to the first cell located on the root
5268 ** (or virtual root) page and the cursor state is set to CURSOR_VALID.
5270 ** If this function returns successfully, it may be assumed that the
5271 ** page-header flags indicate that the [virtual] root-page is the expected
5272 ** kind of b-tree page (i.e. if when opening the cursor the caller did not
5273 ** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
5274 ** indicating a table b-tree, or if the caller did specify a KeyInfo
5275 ** structure the flags byte is set to 0x02 or 0x0A, indicating an index
5278 static int moveToRoot(BtCursor
*pCur
){
5282 assert( cursorOwnsBtShared(pCur
) );
5283 assert( CURSOR_INVALID
< CURSOR_REQUIRESEEK
);
5284 assert( CURSOR_VALID
< CURSOR_REQUIRESEEK
);
5285 assert( CURSOR_FAULT
> CURSOR_REQUIRESEEK
);
5286 assert( pCur
->eState
< CURSOR_REQUIRESEEK
|| pCur
->iPage
<0 );
5287 assert( pCur
->pgnoRoot
>0 || pCur
->iPage
<0 );
5289 if( pCur
->iPage
>=0 ){
5291 releasePageNotNull(pCur
->pPage
);
5292 while( --pCur
->iPage
){
5293 releasePageNotNull(pCur
->apPage
[pCur
->iPage
]);
5295 pRoot
= pCur
->pPage
= pCur
->apPage
[0];
5298 }else if( pCur
->pgnoRoot
==0 ){
5299 pCur
->eState
= CURSOR_INVALID
;
5300 return SQLITE_EMPTY
;
5302 assert( pCur
->iPage
==(-1) );
5303 if( pCur
->eState
>=CURSOR_REQUIRESEEK
){
5304 if( pCur
->eState
==CURSOR_FAULT
){
5305 assert( pCur
->skipNext
!=SQLITE_OK
);
5306 return pCur
->skipNext
;
5308 sqlite3BtreeClearCursor(pCur
);
5310 rc
= getAndInitPage(pCur
->pBtree
->pBt
, pCur
->pgnoRoot
, &pCur
->pPage
,
5311 0, pCur
->curPagerFlags
);
5312 if( rc
!=SQLITE_OK
){
5313 pCur
->eState
= CURSOR_INVALID
;
5317 pCur
->curIntKey
= pCur
->pPage
->intKey
;
5319 pRoot
= pCur
->pPage
;
5320 assert( pRoot
->pgno
==pCur
->pgnoRoot
|| CORRUPT_DB
);
5322 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
5323 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
5324 ** NULL, the caller expects a table b-tree. If this is not the case,
5325 ** return an SQLITE_CORRUPT error.
5327 ** Earlier versions of SQLite assumed that this test could not fail
5328 ** if the root page was already loaded when this function was called (i.e.
5329 ** if pCur->iPage>=0). But this is not so if the database is corrupted
5330 ** in such a way that page pRoot is linked into a second b-tree table
5331 ** (or the freelist). */
5332 assert( pRoot
->intKey
==1 || pRoot
->intKey
==0 );
5333 if( pRoot
->isInit
==0 || (pCur
->pKeyInfo
==0)!=pRoot
->intKey
){
5334 return SQLITE_CORRUPT_PAGE(pCur
->pPage
);
5339 pCur
->info
.nSize
= 0;
5340 pCur
->curFlags
&= ~(BTCF_AtLast
|BTCF_ValidNKey
|BTCF_ValidOvfl
);
5342 if( pRoot
->nCell
>0 ){
5343 pCur
->eState
= CURSOR_VALID
;
5344 }else if( !pRoot
->leaf
){
5346 if( pRoot
->pgno
!=1 ) return SQLITE_CORRUPT_BKPT
;
5347 subpage
= get4byte(&pRoot
->aData
[pRoot
->hdrOffset
+8]);
5348 pCur
->eState
= CURSOR_VALID
;
5349 rc
= moveToChild(pCur
, subpage
);
5351 pCur
->eState
= CURSOR_INVALID
;
5358 ** Move the cursor down to the left-most leaf entry beneath the
5359 ** entry to which it is currently pointing.
5361 ** The left-most leaf is the one with the smallest key - the first
5362 ** in ascending order.
5364 static int moveToLeftmost(BtCursor
*pCur
){
5369 assert( cursorOwnsBtShared(pCur
) );
5370 assert( pCur
->eState
==CURSOR_VALID
);
5371 while( rc
==SQLITE_OK
&& !(pPage
= pCur
->pPage
)->leaf
){
5372 assert( pCur
->ix
<pPage
->nCell
);
5373 pgno
= get4byte(findCell(pPage
, pCur
->ix
));
5374 rc
= moveToChild(pCur
, pgno
);
5380 ** Move the cursor down to the right-most leaf entry beneath the
5381 ** page to which it is currently pointing. Notice the difference
5382 ** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
5383 ** finds the left-most entry beneath the *entry* whereas moveToRightmost()
5384 ** finds the right-most entry beneath the *page*.
5386 ** The right-most entry is the one with the largest key - the last
5387 ** key in ascending order.
5389 static int moveToRightmost(BtCursor
*pCur
){
5394 assert( cursorOwnsBtShared(pCur
) );
5395 assert( pCur
->eState
==CURSOR_VALID
);
5396 while( !(pPage
= pCur
->pPage
)->leaf
){
5397 pgno
= get4byte(&pPage
->aData
[pPage
->hdrOffset
+8]);
5398 pCur
->ix
= pPage
->nCell
;
5399 rc
= moveToChild(pCur
, pgno
);
5402 pCur
->ix
= pPage
->nCell
-1;
5403 assert( pCur
->info
.nSize
==0 );
5404 assert( (pCur
->curFlags
& BTCF_ValidNKey
)==0 );
5408 /* Move the cursor to the first entry in the table. Return SQLITE_OK
5409 ** on success. Set *pRes to 0 if the cursor actually points to something
5410 ** or set *pRes to 1 if the table is empty.
5412 int sqlite3BtreeFirst(BtCursor
*pCur
, int *pRes
){
5415 assert( cursorOwnsBtShared(pCur
) );
5416 assert( sqlite3_mutex_held(pCur
->pBtree
->db
->mutex
) );
5417 rc
= moveToRoot(pCur
);
5418 if( rc
==SQLITE_OK
){
5419 assert( pCur
->pPage
->nCell
>0 );
5421 rc
= moveToLeftmost(pCur
);
5422 }else if( rc
==SQLITE_EMPTY
){
5423 assert( pCur
->pgnoRoot
==0 || pCur
->pPage
->nCell
==0 );
5430 /* Move the cursor to the last entry in the table. Return SQLITE_OK
5431 ** on success. Set *pRes to 0 if the cursor actually points to something
5432 ** or set *pRes to 1 if the table is empty.
5434 int sqlite3BtreeLast(BtCursor
*pCur
, int *pRes
){
5437 assert( cursorOwnsBtShared(pCur
) );
5438 assert( sqlite3_mutex_held(pCur
->pBtree
->db
->mutex
) );
5440 /* If the cursor already points to the last entry, this is a no-op. */
5441 if( CURSOR_VALID
==pCur
->eState
&& (pCur
->curFlags
& BTCF_AtLast
)!=0 ){
5443 /* This block serves to assert() that the cursor really does point
5444 ** to the last entry in the b-tree. */
5446 for(ii
=0; ii
<pCur
->iPage
; ii
++){
5447 assert( pCur
->aiIdx
[ii
]==pCur
->apPage
[ii
]->nCell
);
5449 assert( pCur
->ix
==pCur
->pPage
->nCell
-1 || CORRUPT_DB
);
5450 testcase( pCur
->ix
!=pCur
->pPage
->nCell
-1 );
5451 /* ^-- dbsqlfuzz b92b72e4de80b5140c30ab71372ca719b8feb618 */
5452 assert( pCur
->pPage
->leaf
);
5458 rc
= moveToRoot(pCur
);
5459 if( rc
==SQLITE_OK
){
5460 assert( pCur
->eState
==CURSOR_VALID
);
5462 rc
= moveToRightmost(pCur
);
5463 if( rc
==SQLITE_OK
){
5464 pCur
->curFlags
|= BTCF_AtLast
;
5466 pCur
->curFlags
&= ~BTCF_AtLast
;
5468 }else if( rc
==SQLITE_EMPTY
){
5469 assert( pCur
->pgnoRoot
==0 || pCur
->pPage
->nCell
==0 );
5476 /* Move the cursor so that it points to an entry in a table (a.k.a INTKEY)
5477 ** table near the key intKey. Return a success code.
5479 ** If an exact match is not found, then the cursor is always
5480 ** left pointing at a leaf page which would hold the entry if it
5481 ** were present. The cursor might point to an entry that comes
5482 ** before or after the key.
5484 ** An integer is written into *pRes which is the result of
5485 ** comparing the key with the entry to which the cursor is
5486 ** pointing. The meaning of the integer written into
5487 ** *pRes is as follows:
5489 ** *pRes<0 The cursor is left pointing at an entry that
5490 ** is smaller than intKey or if the table is empty
5491 ** and the cursor is therefore left point to nothing.
5493 ** *pRes==0 The cursor is left pointing at an entry that
5494 ** exactly matches intKey.
5496 ** *pRes>0 The cursor is left pointing at an entry that
5497 ** is larger than intKey.
5499 int sqlite3BtreeTableMoveto(
5500 BtCursor
*pCur
, /* The cursor to be moved */
5501 i64 intKey
, /* The table key */
5502 int biasRight
, /* If true, bias the search to the high end */
5503 int *pRes
/* Write search results here */
5507 assert( cursorOwnsBtShared(pCur
) );
5508 assert( sqlite3_mutex_held(pCur
->pBtree
->db
->mutex
) );
5510 assert( pCur
->pKeyInfo
==0 );
5511 assert( pCur
->eState
!=CURSOR_VALID
|| pCur
->curIntKey
!=0 );
5513 /* If the cursor is already positioned at the point we are trying
5514 ** to move to, then just return without doing any work */
5515 if( pCur
->eState
==CURSOR_VALID
&& (pCur
->curFlags
& BTCF_ValidNKey
)!=0 ){
5516 if( pCur
->info
.nKey
==intKey
){
5520 if( pCur
->info
.nKey
<intKey
){
5521 if( (pCur
->curFlags
& BTCF_AtLast
)!=0 ){
5525 /* If the requested key is one more than the previous key, then
5526 ** try to get there using sqlite3BtreeNext() rather than a full
5527 ** binary search. This is an optimization only. The correct answer
5528 ** is still obtained without this case, only a little more slowely */
5529 if( pCur
->info
.nKey
+1==intKey
){
5531 rc
= sqlite3BtreeNext(pCur
, 0);
5532 if( rc
==SQLITE_OK
){
5534 if( pCur
->info
.nKey
==intKey
){
5537 }else if( rc
!=SQLITE_DONE
){
5545 pCur
->pBtree
->nSeek
++; /* Performance measurement during testing */
5548 rc
= moveToRoot(pCur
);
5550 if( rc
==SQLITE_EMPTY
){
5551 assert( pCur
->pgnoRoot
==0 || pCur
->pPage
->nCell
==0 );
5557 assert( pCur
->pPage
);
5558 assert( pCur
->pPage
->isInit
);
5559 assert( pCur
->eState
==CURSOR_VALID
);
5560 assert( pCur
->pPage
->nCell
> 0 );
5561 assert( pCur
->iPage
==0 || pCur
->apPage
[0]->intKey
==pCur
->curIntKey
);
5562 assert( pCur
->curIntKey
);
5565 int lwr
, upr
, idx
, c
;
5567 MemPage
*pPage
= pCur
->pPage
;
5568 u8
*pCell
; /* Pointer to current cell in pPage */
5570 /* pPage->nCell must be greater than zero. If this is the root-page
5571 ** the cursor would have been INVALID above and this for(;;) loop
5572 ** not run. If this is not the root-page, then the moveToChild() routine
5573 ** would have already detected db corruption. Similarly, pPage must
5574 ** be the right kind (index or table) of b-tree page. Otherwise
5575 ** a moveToChild() or moveToRoot() call would have detected corruption. */
5576 assert( pPage
->nCell
>0 );
5577 assert( pPage
->intKey
);
5579 upr
= pPage
->nCell
-1;
5580 assert( biasRight
==0 || biasRight
==1 );
5581 idx
= upr
>>(1-biasRight
); /* idx = biasRight ? upr : (lwr+upr)/2; */
5584 pCell
= findCellPastPtr(pPage
, idx
);
5585 if( pPage
->intKeyLeaf
){
5586 while( 0x80 <= *(pCell
++) ){
5587 if( pCell
>=pPage
->aDataEnd
){
5588 return SQLITE_CORRUPT_PAGE(pPage
);
5592 getVarint(pCell
, (u64
*)&nCellKey
);
5593 if( nCellKey
<intKey
){
5595 if( lwr
>upr
){ c
= -1; break; }
5596 }else if( nCellKey
>intKey
){
5598 if( lwr
>upr
){ c
= +1; break; }
5600 assert( nCellKey
==intKey
);
5601 pCur
->ix
= (u16
)idx
;
5604 goto moveto_table_next_layer
;
5606 pCur
->curFlags
|= BTCF_ValidNKey
;
5607 pCur
->info
.nKey
= nCellKey
;
5608 pCur
->info
.nSize
= 0;
5613 assert( lwr
+upr
>=0 );
5614 idx
= (lwr
+upr
)>>1; /* idx = (lwr+upr)/2; */
5616 assert( lwr
==upr
+1 || !pPage
->leaf
);
5617 assert( pPage
->isInit
);
5619 assert( pCur
->ix
<pCur
->pPage
->nCell
);
5620 pCur
->ix
= (u16
)idx
;
5623 goto moveto_table_finish
;
5625 moveto_table_next_layer
:
5626 if( lwr
>=pPage
->nCell
){
5627 chldPg
= get4byte(&pPage
->aData
[pPage
->hdrOffset
+8]);
5629 chldPg
= get4byte(findCell(pPage
, lwr
));
5631 pCur
->ix
= (u16
)lwr
;
5632 rc
= moveToChild(pCur
, chldPg
);
5635 moveto_table_finish
:
5636 pCur
->info
.nSize
= 0;
5637 assert( (pCur
->curFlags
& BTCF_ValidOvfl
)==0 );
5641 /* Move the cursor so that it points to an entry in an index table
5642 ** near the key pIdxKey. Return a success code.
5644 ** If an exact match is not found, then the cursor is always
5645 ** left pointing at a leaf page which would hold the entry if it
5646 ** were present. The cursor might point to an entry that comes
5647 ** before or after the key.
5649 ** An integer is written into *pRes which is the result of
5650 ** comparing the key with the entry to which the cursor is
5651 ** pointing. The meaning of the integer written into
5652 ** *pRes is as follows:
5654 ** *pRes<0 The cursor is left pointing at an entry that
5655 ** is smaller than pIdxKey or if the table is empty
5656 ** and the cursor is therefore left point to nothing.
5658 ** *pRes==0 The cursor is left pointing at an entry that
5659 ** exactly matches pIdxKey.
5661 ** *pRes>0 The cursor is left pointing at an entry that
5662 ** is larger than pIdxKey.
5664 ** The pIdxKey->eqSeen field is set to 1 if there
5665 ** exists an entry in the table that exactly matches pIdxKey.
5667 int sqlite3BtreeIndexMoveto(
5668 BtCursor
*pCur
, /* The cursor to be moved */
5669 UnpackedRecord
*pIdxKey
, /* Unpacked index key */
5670 int *pRes
/* Write search results here */
5673 RecordCompare xRecordCompare
;
5675 assert( cursorOwnsBtShared(pCur
) );
5676 assert( sqlite3_mutex_held(pCur
->pBtree
->db
->mutex
) );
5678 assert( pCur
->pKeyInfo
!=0 );
5681 pCur
->pBtree
->nSeek
++; /* Performance measurement during testing */
5684 xRecordCompare
= sqlite3VdbeFindCompare(pIdxKey
);
5685 pIdxKey
->errCode
= 0;
5686 assert( pIdxKey
->default_rc
==1
5687 || pIdxKey
->default_rc
==0
5688 || pIdxKey
->default_rc
==-1
5691 rc
= moveToRoot(pCur
);
5693 if( rc
==SQLITE_EMPTY
){
5694 assert( pCur
->pgnoRoot
==0 || pCur
->pPage
->nCell
==0 );
5700 assert( pCur
->pPage
);
5701 assert( pCur
->pPage
->isInit
);
5702 assert( pCur
->eState
==CURSOR_VALID
);
5703 assert( pCur
->pPage
->nCell
> 0 );
5704 assert( pCur
->iPage
==0 || pCur
->apPage
[0]->intKey
==pCur
->curIntKey
);
5705 assert( pCur
->curIntKey
|| pIdxKey
);
5707 int lwr
, upr
, idx
, c
;
5709 MemPage
*pPage
= pCur
->pPage
;
5710 u8
*pCell
; /* Pointer to current cell in pPage */
5712 /* pPage->nCell must be greater than zero. If this is the root-page
5713 ** the cursor would have been INVALID above and this for(;;) loop
5714 ** not run. If this is not the root-page, then the moveToChild() routine
5715 ** would have already detected db corruption. Similarly, pPage must
5716 ** be the right kind (index or table) of b-tree page. Otherwise
5717 ** a moveToChild() or moveToRoot() call would have detected corruption. */
5718 assert( pPage
->nCell
>0 );
5719 assert( pPage
->intKey
==(pIdxKey
==0) );
5721 upr
= pPage
->nCell
-1;
5722 idx
= upr
>>1; /* idx = (lwr+upr)/2; */
5724 int nCell
; /* Size of the pCell cell in bytes */
5725 pCell
= findCellPastPtr(pPage
, idx
);
5727 /* The maximum supported page-size is 65536 bytes. This means that
5728 ** the maximum number of record bytes stored on an index B-Tree
5729 ** page is less than 16384 bytes and may be stored as a 2-byte
5730 ** varint. This information is used to attempt to avoid parsing
5731 ** the entire cell by checking for the cases where the record is
5732 ** stored entirely within the b-tree page by inspecting the first
5733 ** 2 bytes of the cell.
5736 if( nCell
<=pPage
->max1bytePayload
){
5737 /* This branch runs if the record-size field of the cell is a
5738 ** single byte varint and the record fits entirely on the main
5740 testcase( pCell
+nCell
+1==pPage
->aDataEnd
);
5741 c
= xRecordCompare(nCell
, (void*)&pCell
[1], pIdxKey
);
5742 }else if( !(pCell
[1] & 0x80)
5743 && (nCell
= ((nCell
&0x7f)<<7) + pCell
[1])<=pPage
->maxLocal
5745 /* The record-size field is a 2 byte varint and the record
5746 ** fits entirely on the main b-tree page. */
5747 testcase( pCell
+nCell
+2==pPage
->aDataEnd
);
5748 c
= xRecordCompare(nCell
, (void*)&pCell
[2], pIdxKey
);
5750 /* The record flows over onto one or more overflow pages. In
5751 ** this case the whole cell needs to be parsed, a buffer allocated
5752 ** and accessPayload() used to retrieve the record into the
5753 ** buffer before VdbeRecordCompare() can be called.
5755 ** If the record is corrupt, the xRecordCompare routine may read
5756 ** up to two varints past the end of the buffer. An extra 18
5757 ** bytes of padding is allocated at the end of the buffer in
5758 ** case this happens. */
5760 u8
* const pCellBody
= pCell
- pPage
->childPtrSize
;
5761 const int nOverrun
= 18; /* Size of the overrun padding */
5762 pPage
->xParseCell(pPage
, pCellBody
, &pCur
->info
);
5763 nCell
= (int)pCur
->info
.nKey
;
5764 testcase( nCell
<0 ); /* True if key size is 2^32 or more */
5765 testcase( nCell
==0 ); /* Invalid key size: 0x80 0x80 0x00 */
5766 testcase( nCell
==1 ); /* Invalid key size: 0x80 0x80 0x01 */
5767 testcase( nCell
==2 ); /* Minimum legal index key size */
5768 if( nCell
<2 || nCell
/pCur
->pBt
->usableSize
>pCur
->pBt
->nPage
){
5769 rc
= SQLITE_CORRUPT_PAGE(pPage
);
5770 goto moveto_index_finish
;
5772 pCellKey
= sqlite3Malloc( nCell
+nOverrun
);
5774 rc
= SQLITE_NOMEM_BKPT
;
5775 goto moveto_index_finish
;
5777 pCur
->ix
= (u16
)idx
;
5778 rc
= accessPayload(pCur
, 0, nCell
, (unsigned char*)pCellKey
, 0);
5779 memset(((u8
*)pCellKey
)+nCell
,0,nOverrun
); /* Fix uninit warnings */
5780 pCur
->curFlags
&= ~BTCF_ValidOvfl
;
5782 sqlite3_free(pCellKey
);
5783 goto moveto_index_finish
;
5785 c
= sqlite3VdbeRecordCompare(nCell
, pCellKey
, pIdxKey
);
5786 sqlite3_free(pCellKey
);
5789 (pIdxKey
->errCode
!=SQLITE_CORRUPT
|| c
==0)
5790 && (pIdxKey
->errCode
!=SQLITE_NOMEM
|| pCur
->pBtree
->db
->mallocFailed
)
5800 pCur
->ix
= (u16
)idx
;
5801 if( pIdxKey
->errCode
) rc
= SQLITE_CORRUPT_BKPT
;
5802 goto moveto_index_finish
;
5804 if( lwr
>upr
) break;
5805 assert( lwr
+upr
>=0 );
5806 idx
= (lwr
+upr
)>>1; /* idx = (lwr+upr)/2 */
5808 assert( lwr
==upr
+1 || (pPage
->intKey
&& !pPage
->leaf
) );
5809 assert( pPage
->isInit
);
5811 assert( pCur
->ix
<pCur
->pPage
->nCell
);
5812 pCur
->ix
= (u16
)idx
;
5815 goto moveto_index_finish
;
5817 if( lwr
>=pPage
->nCell
){
5818 chldPg
= get4byte(&pPage
->aData
[pPage
->hdrOffset
+8]);
5820 chldPg
= get4byte(findCell(pPage
, lwr
));
5822 pCur
->ix
= (u16
)lwr
;
5823 rc
= moveToChild(pCur
, chldPg
);
5826 moveto_index_finish
:
5827 pCur
->info
.nSize
= 0;
5828 assert( (pCur
->curFlags
& BTCF_ValidOvfl
)==0 );
5834 ** Return TRUE if the cursor is not pointing at an entry of the table.
5836 ** TRUE will be returned after a call to sqlite3BtreeNext() moves
5837 ** past the last entry in the table or sqlite3BtreePrev() moves past
5838 ** the first entry. TRUE is also returned if the table is empty.
5840 int sqlite3BtreeEof(BtCursor
*pCur
){
5841 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
5842 ** have been deleted? This API will need to change to return an error code
5843 ** as well as the boolean result value.
5845 return (CURSOR_VALID
!=pCur
->eState
);
5849 ** Return an estimate for the number of rows in the table that pCur is
5850 ** pointing to. Return a negative number if no estimate is currently
5853 i64
sqlite3BtreeRowCountEst(BtCursor
*pCur
){
5857 assert( cursorOwnsBtShared(pCur
) );
5858 assert( sqlite3_mutex_held(pCur
->pBtree
->db
->mutex
) );
5860 /* Currently this interface is only called by the OP_IfSmaller
5861 ** opcode, and it that case the cursor will always be valid and
5862 ** will always point to a leaf node. */
5863 if( NEVER(pCur
->eState
!=CURSOR_VALID
) ) return -1;
5864 if( NEVER(pCur
->pPage
->leaf
==0) ) return -1;
5866 n
= pCur
->pPage
->nCell
;
5867 for(i
=0; i
<pCur
->iPage
; i
++){
5868 n
*= pCur
->apPage
[i
]->nCell
;
5874 ** Advance the cursor to the next entry in the database.
5877 ** SQLITE_OK success
5878 ** SQLITE_DONE cursor is already pointing at the last element
5879 ** otherwise some kind of error occurred
5881 ** The main entry point is sqlite3BtreeNext(). That routine is optimized
5882 ** for the common case of merely incrementing the cell counter BtCursor.aiIdx
5883 ** to the next cell on the current page. The (slower) btreeNext() helper
5884 ** routine is called when it is necessary to move to a different page or
5885 ** to restore the cursor.
5887 ** If bit 0x01 of the F argument in sqlite3BtreeNext(C,F) is 1, then the
5888 ** cursor corresponds to an SQL index and this routine could have been
5889 ** skipped if the SQL index had been a unique index. The F argument
5890 ** is a hint to the implement. SQLite btree implementation does not use
5891 ** this hint, but COMDB2 does.
5893 static SQLITE_NOINLINE
int btreeNext(BtCursor
*pCur
){
5898 assert( cursorOwnsBtShared(pCur
) );
5899 if( pCur
->eState
!=CURSOR_VALID
){
5900 assert( (pCur
->curFlags
& BTCF_ValidOvfl
)==0 );
5901 rc
= restoreCursorPosition(pCur
);
5902 if( rc
!=SQLITE_OK
){
5905 if( CURSOR_INVALID
==pCur
->eState
){
5908 if( pCur
->eState
==CURSOR_SKIPNEXT
){
5909 pCur
->eState
= CURSOR_VALID
;
5910 if( pCur
->skipNext
>0 ) return SQLITE_OK
;
5914 pPage
= pCur
->pPage
;
5916 if( !pPage
->isInit
|| sqlite3FaultSim(412) ){
5917 /* The only known way for this to happen is for there to be a
5918 ** recursive SQL function that does a DELETE operation as part of a
5919 ** SELECT which deletes content out from under an active cursor
5920 ** in a corrupt database file where the table being DELETE-ed from
5921 ** has pages in common with the table being queried. See TH3
5922 ** module cov1/btree78.test testcase 220 (2018-06-08) for an
5924 return SQLITE_CORRUPT_BKPT
;
5927 if( idx
>=pPage
->nCell
){
5929 rc
= moveToChild(pCur
, get4byte(&pPage
->aData
[pPage
->hdrOffset
+8]));
5931 return moveToLeftmost(pCur
);
5934 if( pCur
->iPage
==0 ){
5935 pCur
->eState
= CURSOR_INVALID
;
5939 pPage
= pCur
->pPage
;
5940 }while( pCur
->ix
>=pPage
->nCell
);
5941 if( pPage
->intKey
){
5942 return sqlite3BtreeNext(pCur
, 0);
5950 return moveToLeftmost(pCur
);
5953 int sqlite3BtreeNext(BtCursor
*pCur
, int flags
){
5955 UNUSED_PARAMETER( flags
); /* Used in COMDB2 but not native SQLite */
5956 assert( cursorOwnsBtShared(pCur
) );
5957 assert( flags
==0 || flags
==1 );
5958 pCur
->info
.nSize
= 0;
5959 pCur
->curFlags
&= ~(BTCF_ValidNKey
|BTCF_ValidOvfl
);
5960 if( pCur
->eState
!=CURSOR_VALID
) return btreeNext(pCur
);
5961 pPage
= pCur
->pPage
;
5962 if( (++pCur
->ix
)>=pPage
->nCell
){
5964 return btreeNext(pCur
);
5969 return moveToLeftmost(pCur
);
5974 ** Step the cursor to the back to the previous entry in the database.
5977 ** SQLITE_OK success
5978 ** SQLITE_DONE the cursor is already on the first element of the table
5979 ** otherwise some kind of error occurred
5981 ** The main entry point is sqlite3BtreePrevious(). That routine is optimized
5982 ** for the common case of merely decrementing the cell counter BtCursor.aiIdx
5983 ** to the previous cell on the current page. The (slower) btreePrevious()
5984 ** helper routine is called when it is necessary to move to a different page
5985 ** or to restore the cursor.
5987 ** If bit 0x01 of the F argument to sqlite3BtreePrevious(C,F) is 1, then
5988 ** the cursor corresponds to an SQL index and this routine could have been
5989 ** skipped if the SQL index had been a unique index. The F argument is a
5990 ** hint to the implement. The native SQLite btree implementation does not
5991 ** use this hint, but COMDB2 does.
5993 static SQLITE_NOINLINE
int btreePrevious(BtCursor
*pCur
){
5997 assert( cursorOwnsBtShared(pCur
) );
5998 assert( (pCur
->curFlags
& (BTCF_AtLast
|BTCF_ValidOvfl
|BTCF_ValidNKey
))==0 );
5999 assert( pCur
->info
.nSize
==0 );
6000 if( pCur
->eState
!=CURSOR_VALID
){
6001 rc
= restoreCursorPosition(pCur
);
6002 if( rc
!=SQLITE_OK
){
6005 if( CURSOR_INVALID
==pCur
->eState
){
6008 if( CURSOR_SKIPNEXT
==pCur
->eState
){
6009 pCur
->eState
= CURSOR_VALID
;
6010 if( pCur
->skipNext
<0 ) return SQLITE_OK
;
6014 pPage
= pCur
->pPage
;
6015 assert( pPage
->isInit
);
6018 rc
= moveToChild(pCur
, get4byte(findCell(pPage
, idx
)));
6020 rc
= moveToRightmost(pCur
);
6022 while( pCur
->ix
==0 ){
6023 if( pCur
->iPage
==0 ){
6024 pCur
->eState
= CURSOR_INVALID
;
6029 assert( pCur
->info
.nSize
==0 );
6030 assert( (pCur
->curFlags
& (BTCF_ValidOvfl
))==0 );
6033 pPage
= pCur
->pPage
;
6034 if( pPage
->intKey
&& !pPage
->leaf
){
6035 rc
= sqlite3BtreePrevious(pCur
, 0);
6042 int sqlite3BtreePrevious(BtCursor
*pCur
, int flags
){
6043 assert( cursorOwnsBtShared(pCur
) );
6044 assert( flags
==0 || flags
==1 );
6045 UNUSED_PARAMETER( flags
); /* Used in COMDB2 but not native SQLite */
6046 pCur
->curFlags
&= ~(BTCF_AtLast
|BTCF_ValidOvfl
|BTCF_ValidNKey
);
6047 pCur
->info
.nSize
= 0;
6048 if( pCur
->eState
!=CURSOR_VALID
6050 || pCur
->pPage
->leaf
==0
6052 return btreePrevious(pCur
);
6059 ** Allocate a new page from the database file.
6061 ** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
6062 ** has already been called on the new page.) The new page has also
6063 ** been referenced and the calling routine is responsible for calling
6064 ** sqlite3PagerUnref() on the new page when it is done.
6066 ** SQLITE_OK is returned on success. Any other return value indicates
6067 ** an error. *ppPage is set to NULL in the event of an error.
6069 ** If the "nearby" parameter is not 0, then an effort is made to
6070 ** locate a page close to the page number "nearby". This can be used in an
6071 ** attempt to keep related pages close to each other in the database file,
6072 ** which in turn can make database access faster.
6074 ** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
6075 ** anywhere on the free-list, then it is guaranteed to be returned. If
6076 ** eMode is BTALLOC_LT then the page returned will be less than or equal
6077 ** to nearby if any such page exists. If eMode is BTALLOC_ANY then there
6078 ** are no restrictions on which page is returned.
6080 static int allocateBtreePage(
6081 BtShared
*pBt
, /* The btree */
6082 MemPage
**ppPage
, /* Store pointer to the allocated page here */
6083 Pgno
*pPgno
, /* Store the page number here */
6084 Pgno nearby
, /* Search for a page near this one */
6085 u8 eMode
/* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
6089 u32 n
; /* Number of pages on the freelist */
6090 u32 k
; /* Number of leaves on the trunk of the freelist */
6091 MemPage
*pTrunk
= 0;
6092 MemPage
*pPrevTrunk
= 0;
6093 Pgno mxPage
; /* Total size of the database file */
6095 assert( sqlite3_mutex_held(pBt
->mutex
) );
6096 assert( eMode
==BTALLOC_ANY
|| (nearby
>0 && IfNotOmitAV(pBt
->autoVacuum
)) );
6097 pPage1
= pBt
->pPage1
;
6098 mxPage
= btreePagecount(pBt
);
6099 /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36
6100 ** stores stores the total number of pages on the freelist. */
6101 n
= get4byte(&pPage1
->aData
[36]);
6102 testcase( n
==mxPage
-1 );
6104 return SQLITE_CORRUPT_BKPT
;
6107 /* There are pages on the freelist. Reuse one of those pages. */
6109 u8 searchList
= 0; /* If the free-list must be searched for 'nearby' */
6110 u32 nSearch
= 0; /* Count of the number of search attempts */
6112 /* If eMode==BTALLOC_EXACT and a query of the pointer-map
6113 ** shows that the page 'nearby' is somewhere on the free-list, then
6114 ** the entire-list will be searched for that page.
6116 #ifndef SQLITE_OMIT_AUTOVACUUM
6117 if( eMode
==BTALLOC_EXACT
){
6118 if( nearby
<=mxPage
){
6121 assert( pBt
->autoVacuum
);
6122 rc
= ptrmapGet(pBt
, nearby
, &eType
, 0);
6124 if( eType
==PTRMAP_FREEPAGE
){
6128 }else if( eMode
==BTALLOC_LE
){
6133 /* Decrement the free-list count by 1. Set iTrunk to the index of the
6134 ** first free-list trunk page. iPrevTrunk is initially 1.
6136 rc
= sqlite3PagerWrite(pPage1
->pDbPage
);
6138 put4byte(&pPage1
->aData
[36], n
-1);
6140 /* The code within this loop is run only once if the 'searchList' variable
6141 ** is not true. Otherwise, it runs once for each trunk-page on the
6142 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
6143 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
6146 pPrevTrunk
= pTrunk
;
6148 /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
6149 ** is the page number of the next freelist trunk page in the list or
6150 ** zero if this is the last freelist trunk page. */
6151 iTrunk
= get4byte(&pPrevTrunk
->aData
[0]);
6153 /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
6154 ** stores the page number of the first page of the freelist, or zero if
6155 ** the freelist is empty. */
6156 iTrunk
= get4byte(&pPage1
->aData
[32]);
6158 testcase( iTrunk
==mxPage
);
6159 if( iTrunk
>mxPage
|| nSearch
++ > n
){
6160 rc
= SQLITE_CORRUPT_PGNO(pPrevTrunk
? pPrevTrunk
->pgno
: 1);
6162 rc
= btreeGetUnusedPage(pBt
, iTrunk
, &pTrunk
, 0);
6166 goto end_allocate_page
;
6168 assert( pTrunk
!=0 );
6169 assert( pTrunk
->aData
!=0 );
6170 /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
6171 ** is the number of leaf page pointers to follow. */
6172 k
= get4byte(&pTrunk
->aData
[4]);
6173 if( k
==0 && !searchList
){
6174 /* The trunk has no leaves and the list is not being searched.
6175 ** So extract the trunk page itself and use it as the newly
6176 ** allocated page */
6177 assert( pPrevTrunk
==0 );
6178 rc
= sqlite3PagerWrite(pTrunk
->pDbPage
);
6180 goto end_allocate_page
;
6183 memcpy(&pPage1
->aData
[32], &pTrunk
->aData
[0], 4);
6186 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno
, n
-1));
6187 }else if( k
>(u32
)(pBt
->usableSize
/4 - 2) ){
6188 /* Value of k is out of range. Database corruption */
6189 rc
= SQLITE_CORRUPT_PGNO(iTrunk
);
6190 goto end_allocate_page
;
6191 #ifndef SQLITE_OMIT_AUTOVACUUM
6192 }else if( searchList
6193 && (nearby
==iTrunk
|| (iTrunk
<nearby
&& eMode
==BTALLOC_LE
))
6195 /* The list is being searched and this trunk page is the page
6196 ** to allocate, regardless of whether it has leaves.
6201 rc
= sqlite3PagerWrite(pTrunk
->pDbPage
);
6203 goto end_allocate_page
;
6207 memcpy(&pPage1
->aData
[32], &pTrunk
->aData
[0], 4);
6209 rc
= sqlite3PagerWrite(pPrevTrunk
->pDbPage
);
6210 if( rc
!=SQLITE_OK
){
6211 goto end_allocate_page
;
6213 memcpy(&pPrevTrunk
->aData
[0], &pTrunk
->aData
[0], 4);
6216 /* The trunk page is required by the caller but it contains
6217 ** pointers to free-list leaves. The first leaf becomes a trunk
6218 ** page in this case.
6221 Pgno iNewTrunk
= get4byte(&pTrunk
->aData
[8]);
6222 if( iNewTrunk
>mxPage
){
6223 rc
= SQLITE_CORRUPT_PGNO(iTrunk
);
6224 goto end_allocate_page
;
6226 testcase( iNewTrunk
==mxPage
);
6227 rc
= btreeGetUnusedPage(pBt
, iNewTrunk
, &pNewTrunk
, 0);
6228 if( rc
!=SQLITE_OK
){
6229 goto end_allocate_page
;
6231 rc
= sqlite3PagerWrite(pNewTrunk
->pDbPage
);
6232 if( rc
!=SQLITE_OK
){
6233 releasePage(pNewTrunk
);
6234 goto end_allocate_page
;
6236 memcpy(&pNewTrunk
->aData
[0], &pTrunk
->aData
[0], 4);
6237 put4byte(&pNewTrunk
->aData
[4], k
-1);
6238 memcpy(&pNewTrunk
->aData
[8], &pTrunk
->aData
[12], (k
-1)*4);
6239 releasePage(pNewTrunk
);
6241 assert( sqlite3PagerIswriteable(pPage1
->pDbPage
) );
6242 put4byte(&pPage1
->aData
[32], iNewTrunk
);
6244 rc
= sqlite3PagerWrite(pPrevTrunk
->pDbPage
);
6246 goto end_allocate_page
;
6248 put4byte(&pPrevTrunk
->aData
[0], iNewTrunk
);
6252 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno
, n
-1));
6255 /* Extract a leaf from the trunk */
6258 unsigned char *aData
= pTrunk
->aData
;
6262 if( eMode
==BTALLOC_LE
){
6264 iPage
= get4byte(&aData
[8+i
*4]);
6265 if( iPage
<=nearby
){
6272 dist
= sqlite3AbsInt32(get4byte(&aData
[8]) - nearby
);
6274 int d2
= sqlite3AbsInt32(get4byte(&aData
[8+i
*4]) - nearby
);
6285 iPage
= get4byte(&aData
[8+closest
*4]);
6286 testcase( iPage
==mxPage
);
6287 if( iPage
>mxPage
|| iPage
<2 ){
6288 rc
= SQLITE_CORRUPT_PGNO(iTrunk
);
6289 goto end_allocate_page
;
6291 testcase( iPage
==mxPage
);
6293 || (iPage
==nearby
|| (iPage
<nearby
&& eMode
==BTALLOC_LE
))
6297 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
6298 ": %d more free pages\n",
6299 *pPgno
, closest
+1, k
, pTrunk
->pgno
, n
-1));
6300 rc
= sqlite3PagerWrite(pTrunk
->pDbPage
);
6301 if( rc
) goto end_allocate_page
;
6303 memcpy(&aData
[8+closest
*4], &aData
[4+k
*4], 4);
6305 put4byte(&aData
[4], k
-1);
6306 noContent
= !btreeGetHasContent(pBt
, *pPgno
)? PAGER_GET_NOCONTENT
: 0;
6307 rc
= btreeGetUnusedPage(pBt
, *pPgno
, ppPage
, noContent
);
6308 if( rc
==SQLITE_OK
){
6309 rc
= sqlite3PagerWrite((*ppPage
)->pDbPage
);
6310 if( rc
!=SQLITE_OK
){
6311 releasePage(*ppPage
);
6318 releasePage(pPrevTrunk
);
6320 }while( searchList
);
6322 /* There are no pages on the freelist, so append a new page to the
6325 ** Normally, new pages allocated by this block can be requested from the
6326 ** pager layer with the 'no-content' flag set. This prevents the pager
6327 ** from trying to read the pages content from disk. However, if the
6328 ** current transaction has already run one or more incremental-vacuum
6329 ** steps, then the page we are about to allocate may contain content
6330 ** that is required in the event of a rollback. In this case, do
6331 ** not set the no-content flag. This causes the pager to load and journal
6332 ** the current page content before overwriting it.
6334 ** Note that the pager will not actually attempt to load or journal
6335 ** content for any page that really does lie past the end of the database
6336 ** file on disk. So the effects of disabling the no-content optimization
6337 ** here are confined to those pages that lie between the end of the
6338 ** database image and the end of the database file.
6340 int bNoContent
= (0==IfNotOmitAV(pBt
->bDoTruncate
))? PAGER_GET_NOCONTENT
:0;
6342 rc
= sqlite3PagerWrite(pBt
->pPage1
->pDbPage
);
6345 if( pBt
->nPage
==PENDING_BYTE_PAGE(pBt
) ) pBt
->nPage
++;
6347 #ifndef SQLITE_OMIT_AUTOVACUUM
6348 if( pBt
->autoVacuum
&& PTRMAP_ISPAGE(pBt
, pBt
->nPage
) ){
6349 /* If *pPgno refers to a pointer-map page, allocate two new pages
6350 ** at the end of the file instead of one. The first allocated page
6351 ** becomes a new pointer-map page, the second is used by the caller.
6354 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt
->nPage
));
6355 assert( pBt
->nPage
!=PENDING_BYTE_PAGE(pBt
) );
6356 rc
= btreeGetUnusedPage(pBt
, pBt
->nPage
, &pPg
, bNoContent
);
6357 if( rc
==SQLITE_OK
){
6358 rc
= sqlite3PagerWrite(pPg
->pDbPage
);
6363 if( pBt
->nPage
==PENDING_BYTE_PAGE(pBt
) ){ pBt
->nPage
++; }
6366 put4byte(28 + (u8
*)pBt
->pPage1
->aData
, pBt
->nPage
);
6367 *pPgno
= pBt
->nPage
;
6369 assert( *pPgno
!=PENDING_BYTE_PAGE(pBt
) );
6370 rc
= btreeGetUnusedPage(pBt
, *pPgno
, ppPage
, bNoContent
);
6372 rc
= sqlite3PagerWrite((*ppPage
)->pDbPage
);
6373 if( rc
!=SQLITE_OK
){
6374 releasePage(*ppPage
);
6377 TRACE(("ALLOCATE: %d from end of file\n", *pPgno
));
6380 assert( CORRUPT_DB
|| *pPgno
!=PENDING_BYTE_PAGE(pBt
) );
6383 releasePage(pTrunk
);
6384 releasePage(pPrevTrunk
);
6385 assert( rc
!=SQLITE_OK
|| sqlite3PagerPageRefcount((*ppPage
)->pDbPage
)<=1 );
6386 assert( rc
!=SQLITE_OK
|| (*ppPage
)->isInit
==0 );
6391 ** This function is used to add page iPage to the database file free-list.
6392 ** It is assumed that the page is not already a part of the free-list.
6394 ** The value passed as the second argument to this function is optional.
6395 ** If the caller happens to have a pointer to the MemPage object
6396 ** corresponding to page iPage handy, it may pass it as the second value.
6397 ** Otherwise, it may pass NULL.
6399 ** If a pointer to a MemPage object is passed as the second argument,
6400 ** its reference count is not altered by this function.
6402 static int freePage2(BtShared
*pBt
, MemPage
*pMemPage
, Pgno iPage
){
6403 MemPage
*pTrunk
= 0; /* Free-list trunk page */
6404 Pgno iTrunk
= 0; /* Page number of free-list trunk page */
6405 MemPage
*pPage1
= pBt
->pPage1
; /* Local reference to page 1 */
6406 MemPage
*pPage
; /* Page being freed. May be NULL. */
6407 int rc
; /* Return Code */
6408 u32 nFree
; /* Initial number of pages on free-list */
6410 assert( sqlite3_mutex_held(pBt
->mutex
) );
6411 assert( CORRUPT_DB
|| iPage
>1 );
6412 assert( !pMemPage
|| pMemPage
->pgno
==iPage
);
6414 if( iPage
<2 || iPage
>pBt
->nPage
){
6415 return SQLITE_CORRUPT_BKPT
;
6419 sqlite3PagerRef(pPage
->pDbPage
);
6421 pPage
= btreePageLookup(pBt
, iPage
);
6424 /* Increment the free page count on pPage1 */
6425 rc
= sqlite3PagerWrite(pPage1
->pDbPage
);
6426 if( rc
) goto freepage_out
;
6427 nFree
= get4byte(&pPage1
->aData
[36]);
6428 put4byte(&pPage1
->aData
[36], nFree
+1);
6430 if( pBt
->btsFlags
& BTS_SECURE_DELETE
){
6431 /* If the secure_delete option is enabled, then
6432 ** always fully overwrite deleted information with zeros.
6434 if( (!pPage
&& ((rc
= btreeGetPage(pBt
, iPage
, &pPage
, 0))!=0) )
6435 || ((rc
= sqlite3PagerWrite(pPage
->pDbPage
))!=0)
6439 memset(pPage
->aData
, 0, pPage
->pBt
->pageSize
);
6442 /* If the database supports auto-vacuum, write an entry in the pointer-map
6443 ** to indicate that the page is free.
6446 ptrmapPut(pBt
, iPage
, PTRMAP_FREEPAGE
, 0, &rc
);
6447 if( rc
) goto freepage_out
;
6450 /* Now manipulate the actual database free-list structure. There are two
6451 ** possibilities. If the free-list is currently empty, or if the first
6452 ** trunk page in the free-list is full, then this page will become a
6453 ** new free-list trunk page. Otherwise, it will become a leaf of the
6454 ** first trunk page in the current free-list. This block tests if it
6455 ** is possible to add the page as a new free-list leaf.
6458 u32 nLeaf
; /* Initial number of leaf cells on trunk page */
6460 iTrunk
= get4byte(&pPage1
->aData
[32]);
6461 if( iTrunk
>btreePagecount(pBt
) ){
6462 rc
= SQLITE_CORRUPT_BKPT
;
6465 rc
= btreeGetPage(pBt
, iTrunk
, &pTrunk
, 0);
6466 if( rc
!=SQLITE_OK
){
6470 nLeaf
= get4byte(&pTrunk
->aData
[4]);
6471 assert( pBt
->usableSize
>32 );
6472 if( nLeaf
> (u32
)pBt
->usableSize
/4 - 2 ){
6473 rc
= SQLITE_CORRUPT_BKPT
;
6476 if( nLeaf
< (u32
)pBt
->usableSize
/4 - 8 ){
6477 /* In this case there is room on the trunk page to insert the page
6478 ** being freed as a new leaf.
6480 ** Note that the trunk page is not really full until it contains
6481 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
6482 ** coded. But due to a coding error in versions of SQLite prior to
6483 ** 3.6.0, databases with freelist trunk pages holding more than
6484 ** usableSize/4 - 8 entries will be reported as corrupt. In order
6485 ** to maintain backwards compatibility with older versions of SQLite,
6486 ** we will continue to restrict the number of entries to usableSize/4 - 8
6487 ** for now. At some point in the future (once everyone has upgraded
6488 ** to 3.6.0 or later) we should consider fixing the conditional above
6489 ** to read "usableSize/4-2" instead of "usableSize/4-8".
6491 ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
6492 ** avoid using the last six entries in the freelist trunk page array in
6493 ** order that database files created by newer versions of SQLite can be
6494 ** read by older versions of SQLite.
6496 rc
= sqlite3PagerWrite(pTrunk
->pDbPage
);
6497 if( rc
==SQLITE_OK
){
6498 put4byte(&pTrunk
->aData
[4], nLeaf
+1);
6499 put4byte(&pTrunk
->aData
[8+nLeaf
*4], iPage
);
6500 if( pPage
&& (pBt
->btsFlags
& BTS_SECURE_DELETE
)==0 ){
6501 sqlite3PagerDontWrite(pPage
->pDbPage
);
6503 rc
= btreeSetHasContent(pBt
, iPage
);
6505 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage
->pgno
,pTrunk
->pgno
));
6510 /* If control flows to this point, then it was not possible to add the
6511 ** the page being freed as a leaf page of the first trunk in the free-list.
6512 ** Possibly because the free-list is empty, or possibly because the
6513 ** first trunk in the free-list is full. Either way, the page being freed
6514 ** will become the new first trunk page in the free-list.
6516 if( pPage
==0 && SQLITE_OK
!=(rc
= btreeGetPage(pBt
, iPage
, &pPage
, 0)) ){
6519 rc
= sqlite3PagerWrite(pPage
->pDbPage
);
6520 if( rc
!=SQLITE_OK
){
6523 put4byte(pPage
->aData
, iTrunk
);
6524 put4byte(&pPage
->aData
[4], 0);
6525 put4byte(&pPage1
->aData
[32], iPage
);
6526 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage
->pgno
, iTrunk
));
6533 releasePage(pTrunk
);
6536 static void freePage(MemPage
*pPage
, int *pRC
){
6537 if( (*pRC
)==SQLITE_OK
){
6538 *pRC
= freePage2(pPage
->pBt
, pPage
, pPage
->pgno
);
6543 ** Free the overflow pages associated with the given Cell.
6545 static SQLITE_NOINLINE
int clearCellOverflow(
6546 MemPage
*pPage
, /* The page that contains the Cell */
6547 unsigned char *pCell
, /* First byte of the Cell */
6548 CellInfo
*pInfo
/* Size information about the cell */
6556 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
6557 assert( pInfo
->nLocal
!=pInfo
->nPayload
);
6558 testcase( pCell
+ pInfo
->nSize
== pPage
->aDataEnd
);
6559 testcase( pCell
+ (pInfo
->nSize
-1) == pPage
->aDataEnd
);
6560 if( pCell
+ pInfo
->nSize
> pPage
->aDataEnd
){
6561 /* Cell extends past end of page */
6562 return SQLITE_CORRUPT_PAGE(pPage
);
6564 ovflPgno
= get4byte(pCell
+ pInfo
->nSize
- 4);
6566 assert( pBt
->usableSize
> 4 );
6567 ovflPageSize
= pBt
->usableSize
- 4;
6568 nOvfl
= (pInfo
->nPayload
- pInfo
->nLocal
+ ovflPageSize
- 1)/ovflPageSize
;
6570 (CORRUPT_DB
&& (pInfo
->nPayload
+ ovflPageSize
)<ovflPageSize
)
6575 if( ovflPgno
<2 || ovflPgno
>btreePagecount(pBt
) ){
6576 /* 0 is not a legal page number and page 1 cannot be an
6577 ** overflow page. Therefore if ovflPgno<2 or past the end of the
6578 ** file the database must be corrupt. */
6579 return SQLITE_CORRUPT_BKPT
;
6582 rc
= getOverflowPage(pBt
, ovflPgno
, &pOvfl
, &iNext
);
6586 if( ( pOvfl
|| ((pOvfl
= btreePageLookup(pBt
, ovflPgno
))!=0) )
6587 && sqlite3PagerPageRefcount(pOvfl
->pDbPage
)!=1
6589 /* There is no reason any cursor should have an outstanding reference
6590 ** to an overflow page belonging to a cell that is being deleted/updated.
6591 ** So if there exists more than one reference to this page, then it
6592 ** must not really be an overflow page and the database must be corrupt.
6593 ** It is helpful to detect this before calling freePage2(), as
6594 ** freePage2() may zero the page contents if secure-delete mode is
6595 ** enabled. If this 'overflow' page happens to be a page that the
6596 ** caller is iterating through or using in some other way, this
6597 ** can be problematic.
6599 rc
= SQLITE_CORRUPT_BKPT
;
6601 rc
= freePage2(pBt
, pOvfl
, ovflPgno
);
6605 sqlite3PagerUnref(pOvfl
->pDbPage
);
6613 /* Call xParseCell to compute the size of a cell. If the cell contains
6614 ** overflow, then invoke cellClearOverflow to clear out that overflow.
6615 ** STore the result code (SQLITE_OK or some error code) in rc.
6617 ** Implemented as macro to force inlining for performance.
6619 #define BTREE_CLEAR_CELL(rc, pPage, pCell, sInfo) \
6620 pPage->xParseCell(pPage, pCell, &sInfo); \
6621 if( sInfo.nLocal!=sInfo.nPayload ){ \
6622 rc = clearCellOverflow(pPage, pCell, &sInfo); \
6629 ** Create the byte sequence used to represent a cell on page pPage
6630 ** and write that byte sequence into pCell[]. Overflow pages are
6631 ** allocated and filled in as necessary. The calling procedure
6632 ** is responsible for making sure sufficient space has been allocated
6635 ** Note that pCell does not necessary need to point to the pPage->aData
6636 ** area. pCell might point to some temporary storage. The cell will
6637 ** be constructed in this temporary area then copied into pPage->aData
6640 static int fillInCell(
6641 MemPage
*pPage
, /* The page that contains the cell */
6642 unsigned char *pCell
, /* Complete text of the cell */
6643 const BtreePayload
*pX
, /* Payload with which to construct the cell */
6644 int *pnSize
/* Write cell size here */
6648 int nSrc
, n
, rc
, mn
;
6650 MemPage
*pToRelease
;
6651 unsigned char *pPrior
;
6652 unsigned char *pPayload
;
6657 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
6659 /* pPage is not necessarily writeable since pCell might be auxiliary
6660 ** buffer space that is separate from the pPage buffer area */
6661 assert( pCell
<pPage
->aData
|| pCell
>=&pPage
->aData
[pPage
->pBt
->pageSize
]
6662 || sqlite3PagerIswriteable(pPage
->pDbPage
) );
6664 /* Fill in the header. */
6665 nHeader
= pPage
->childPtrSize
;
6666 if( pPage
->intKey
){
6667 nPayload
= pX
->nData
+ pX
->nZero
;
6670 assert( pPage
->intKeyLeaf
); /* fillInCell() only called for leaves */
6671 nHeader
+= putVarint32(&pCell
[nHeader
], nPayload
);
6672 nHeader
+= putVarint(&pCell
[nHeader
], *(u64
*)&pX
->nKey
);
6674 assert( pX
->nKey
<=0x7fffffff && pX
->pKey
!=0 );
6675 nSrc
= nPayload
= (int)pX
->nKey
;
6677 nHeader
+= putVarint32(&pCell
[nHeader
], nPayload
);
6680 /* Fill in the payload */
6681 pPayload
= &pCell
[nHeader
];
6682 if( nPayload
<=pPage
->maxLocal
){
6683 /* This is the common case where everything fits on the btree page
6684 ** and no overflow pages are required. */
6685 n
= nHeader
+ nPayload
;
6690 assert( nSrc
<=nPayload
);
6691 testcase( nSrc
<nPayload
);
6692 memcpy(pPayload
, pSrc
, nSrc
);
6693 memset(pPayload
+nSrc
, 0, nPayload
-nSrc
);
6697 /* If we reach this point, it means that some of the content will need
6698 ** to spill onto overflow pages.
6700 mn
= pPage
->minLocal
;
6701 n
= mn
+ (nPayload
- mn
) % (pPage
->pBt
->usableSize
- 4);
6702 testcase( n
==pPage
->maxLocal
);
6703 testcase( n
==pPage
->maxLocal
+1 );
6704 if( n
> pPage
->maxLocal
) n
= mn
;
6706 *pnSize
= n
+ nHeader
+ 4;
6707 pPrior
= &pCell
[nHeader
+n
];
6712 /* At this point variables should be set as follows:
6714 ** nPayload Total payload size in bytes
6715 ** pPayload Begin writing payload here
6716 ** spaceLeft Space available at pPayload. If nPayload>spaceLeft,
6717 ** that means content must spill into overflow pages.
6718 ** *pnSize Size of the local cell (not counting overflow pages)
6719 ** pPrior Where to write the pgno of the first overflow page
6721 ** Use a call to btreeParseCellPtr() to verify that the values above
6722 ** were computed correctly.
6727 pPage
->xParseCell(pPage
, pCell
, &info
);
6728 assert( nHeader
==(int)(info
.pPayload
- pCell
) );
6729 assert( info
.nKey
==pX
->nKey
);
6730 assert( *pnSize
== info
.nSize
);
6731 assert( spaceLeft
== info
.nLocal
);
6735 /* Write the payload into the local Cell and any extra into overflow pages */
6738 if( n
>spaceLeft
) n
= spaceLeft
;
6740 /* If pToRelease is not zero than pPayload points into the data area
6741 ** of pToRelease. Make sure pToRelease is still writeable. */
6742 assert( pToRelease
==0 || sqlite3PagerIswriteable(pToRelease
->pDbPage
) );
6744 /* If pPayload is part of the data area of pPage, then make sure pPage
6745 ** is still writeable */
6746 assert( pPayload
<pPage
->aData
|| pPayload
>=&pPage
->aData
[pBt
->pageSize
]
6747 || sqlite3PagerIswriteable(pPage
->pDbPage
) );
6750 memcpy(pPayload
, pSrc
, n
);
6753 memcpy(pPayload
, pSrc
, n
);
6755 memset(pPayload
, 0, n
);
6758 if( nPayload
<=0 ) break;
6765 #ifndef SQLITE_OMIT_AUTOVACUUM
6766 Pgno pgnoPtrmap
= pgnoOvfl
; /* Overflow page pointer-map entry page */
6767 if( pBt
->autoVacuum
){
6771 PTRMAP_ISPAGE(pBt
, pgnoOvfl
) || pgnoOvfl
==PENDING_BYTE_PAGE(pBt
)
6775 rc
= allocateBtreePage(pBt
, &pOvfl
, &pgnoOvfl
, pgnoOvfl
, 0);
6776 #ifndef SQLITE_OMIT_AUTOVACUUM
6777 /* If the database supports auto-vacuum, and the second or subsequent
6778 ** overflow page is being allocated, add an entry to the pointer-map
6779 ** for that page now.
6781 ** If this is the first overflow page, then write a partial entry
6782 ** to the pointer-map. If we write nothing to this pointer-map slot,
6783 ** then the optimistic overflow chain processing in clearCell()
6784 ** may misinterpret the uninitialized values and delete the
6785 ** wrong pages from the database.
6787 if( pBt
->autoVacuum
&& rc
==SQLITE_OK
){
6788 u8 eType
= (pgnoPtrmap
?PTRMAP_OVERFLOW2
:PTRMAP_OVERFLOW1
);
6789 ptrmapPut(pBt
, pgnoOvfl
, eType
, pgnoPtrmap
, &rc
);
6796 releasePage(pToRelease
);
6800 /* If pToRelease is not zero than pPrior points into the data area
6801 ** of pToRelease. Make sure pToRelease is still writeable. */
6802 assert( pToRelease
==0 || sqlite3PagerIswriteable(pToRelease
->pDbPage
) );
6804 /* If pPrior is part of the data area of pPage, then make sure pPage
6805 ** is still writeable */
6806 assert( pPrior
<pPage
->aData
|| pPrior
>=&pPage
->aData
[pBt
->pageSize
]
6807 || sqlite3PagerIswriteable(pPage
->pDbPage
) );
6809 put4byte(pPrior
, pgnoOvfl
);
6810 releasePage(pToRelease
);
6812 pPrior
= pOvfl
->aData
;
6813 put4byte(pPrior
, 0);
6814 pPayload
= &pOvfl
->aData
[4];
6815 spaceLeft
= pBt
->usableSize
- 4;
6818 releasePage(pToRelease
);
6823 ** Remove the i-th cell from pPage. This routine effects pPage only.
6824 ** The cell content is not freed or deallocated. It is assumed that
6825 ** the cell content has been copied someplace else. This routine just
6826 ** removes the reference to the cell from pPage.
6828 ** "sz" must be the number of bytes in the cell.
6830 static void dropCell(MemPage
*pPage
, int idx
, int sz
, int *pRC
){
6831 u32 pc
; /* Offset to cell content of cell being deleted */
6832 u8
*data
; /* pPage->aData */
6833 u8
*ptr
; /* Used to move bytes around within data[] */
6834 int rc
; /* The return code */
6835 int hdr
; /* Beginning of the header. 0 most pages. 100 page 1 */
6839 assert( idx
<pPage
->nCell
);
6840 assert( CORRUPT_DB
|| sz
==cellSize(pPage
, idx
) );
6841 assert( sqlite3PagerIswriteable(pPage
->pDbPage
) );
6842 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
6843 assert( pPage
->nFree
>=0 );
6844 data
= pPage
->aData
;
6845 ptr
= &pPage
->aCellIdx
[2*idx
];
6846 assert( pPage
->pBt
->usableSize
> (u32
)(ptr
-data
) );
6848 hdr
= pPage
->hdrOffset
;
6849 #if 0 /* Not required. Omit for efficiency */
6850 if( pc
<hdr
+pPage
->nCell
*2 ){
6851 *pRC
= SQLITE_CORRUPT_BKPT
;
6855 testcase( pc
==(u32
)get2byte(&data
[hdr
+5]) );
6856 testcase( pc
+sz
==pPage
->pBt
->usableSize
);
6857 if( pc
+sz
> pPage
->pBt
->usableSize
){
6858 *pRC
= SQLITE_CORRUPT_BKPT
;
6861 rc
= freeSpace(pPage
, pc
, sz
);
6867 if( pPage
->nCell
==0 ){
6868 memset(&data
[hdr
+1], 0, 4);
6870 put2byte(&data
[hdr
+5], pPage
->pBt
->usableSize
);
6871 pPage
->nFree
= pPage
->pBt
->usableSize
- pPage
->hdrOffset
6872 - pPage
->childPtrSize
- 8;
6874 memmove(ptr
, ptr
+2, 2*(pPage
->nCell
- idx
));
6875 put2byte(&data
[hdr
+3], pPage
->nCell
);
6881 ** Insert a new cell on pPage at cell index "i". pCell points to the
6882 ** content of the cell.
6884 ** If the cell content will fit on the page, then put it there. If it
6885 ** will not fit, then make a copy of the cell content into pTemp if
6886 ** pTemp is not null. Regardless of pTemp, allocate a new entry
6887 ** in pPage->apOvfl[] and make it point to the cell content (either
6888 ** in pTemp or the original pCell) and also record its index.
6889 ** Allocating a new entry in pPage->aCell[] implies that
6890 ** pPage->nOverflow is incremented.
6892 ** *pRC must be SQLITE_OK when this routine is called.
6894 static void insertCell(
6895 MemPage
*pPage
, /* Page into which we are copying */
6896 int i
, /* New cell becomes the i-th cell of the page */
6897 u8
*pCell
, /* Content of the new cell */
6898 int sz
, /* Bytes of content in pCell */
6899 u8
*pTemp
, /* Temp storage space for pCell, if needed */
6900 Pgno iChild
, /* If non-zero, replace first 4 bytes with this value */
6901 int *pRC
/* Read and write return code from here */
6903 int idx
= 0; /* Where to write new cell content in data[] */
6904 int j
; /* Loop counter */
6905 u8
*data
; /* The content of the whole page */
6906 u8
*pIns
; /* The point in pPage->aCellIdx[] where no cell inserted */
6908 assert( *pRC
==SQLITE_OK
);
6909 assert( i
>=0 && i
<=pPage
->nCell
+pPage
->nOverflow
);
6910 assert( MX_CELL(pPage
->pBt
)<=10921 );
6911 assert( pPage
->nCell
<=MX_CELL(pPage
->pBt
) || CORRUPT_DB
);
6912 assert( pPage
->nOverflow
<=ArraySize(pPage
->apOvfl
) );
6913 assert( ArraySize(pPage
->apOvfl
)==ArraySize(pPage
->aiOvfl
) );
6914 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
6915 assert( sz
==pPage
->xCellSize(pPage
, pCell
) || CORRUPT_DB
);
6916 assert( pPage
->nFree
>=0 );
6917 if( pPage
->nOverflow
|| sz
+2>pPage
->nFree
){
6919 memcpy(pTemp
, pCell
, sz
);
6923 put4byte(pCell
, iChild
);
6925 j
= pPage
->nOverflow
++;
6926 /* Comparison against ArraySize-1 since we hold back one extra slot
6927 ** as a contingency. In other words, never need more than 3 overflow
6928 ** slots but 4 are allocated, just to be safe. */
6929 assert( j
< ArraySize(pPage
->apOvfl
)-1 );
6930 pPage
->apOvfl
[j
] = pCell
;
6931 pPage
->aiOvfl
[j
] = (u16
)i
;
6933 /* When multiple overflows occur, they are always sequential and in
6934 ** sorted order. This invariants arise because multiple overflows can
6935 ** only occur when inserting divider cells into the parent page during
6936 ** balancing, and the dividers are adjacent and sorted.
6938 assert( j
==0 || pPage
->aiOvfl
[j
-1]<(u16
)i
); /* Overflows in sorted order */
6939 assert( j
==0 || i
==pPage
->aiOvfl
[j
-1]+1 ); /* Overflows are sequential */
6941 int rc
= sqlite3PagerWrite(pPage
->pDbPage
);
6942 if( rc
!=SQLITE_OK
){
6946 assert( sqlite3PagerIswriteable(pPage
->pDbPage
) );
6947 data
= pPage
->aData
;
6948 assert( &data
[pPage
->cellOffset
]==pPage
->aCellIdx
);
6949 rc
= allocateSpace(pPage
, sz
, &idx
);
6950 if( rc
){ *pRC
= rc
; return; }
6951 /* The allocateSpace() routine guarantees the following properties
6952 ** if it returns successfully */
6954 assert( idx
>= pPage
->cellOffset
+2*pPage
->nCell
+2 || CORRUPT_DB
);
6955 assert( idx
+sz
<= (int)pPage
->pBt
->usableSize
);
6956 pPage
->nFree
-= (u16
)(2 + sz
);
6958 /* In a corrupt database where an entry in the cell index section of
6959 ** a btree page has a value of 3 or less, the pCell value might point
6960 ** as many as 4 bytes in front of the start of the aData buffer for
6961 ** the source page. Make sure this does not cause problems by not
6962 ** reading the first 4 bytes */
6963 memcpy(&data
[idx
+4], pCell
+4, sz
-4);
6964 put4byte(&data
[idx
], iChild
);
6966 memcpy(&data
[idx
], pCell
, sz
);
6968 pIns
= pPage
->aCellIdx
+ i
*2;
6969 memmove(pIns
+2, pIns
, 2*(pPage
->nCell
- i
));
6970 put2byte(pIns
, idx
);
6972 /* increment the cell count */
6973 if( (++data
[pPage
->hdrOffset
+4])==0 ) data
[pPage
->hdrOffset
+3]++;
6974 assert( get2byte(&data
[pPage
->hdrOffset
+3])==pPage
->nCell
|| CORRUPT_DB
);
6975 #ifndef SQLITE_OMIT_AUTOVACUUM
6976 if( pPage
->pBt
->autoVacuum
){
6977 /* The cell may contain a pointer to an overflow page. If so, write
6978 ** the entry for the overflow page into the pointer map.
6980 ptrmapPutOvflPtr(pPage
, pPage
, pCell
, pRC
);
6987 ** The following parameters determine how many adjacent pages get involved
6988 ** in a balancing operation. NN is the number of neighbors on either side
6989 ** of the page that participate in the balancing operation. NB is the
6990 ** total number of pages that participate, including the target page and
6991 ** NN neighbors on either side.
6993 ** The minimum value of NN is 1 (of course). Increasing NN above 1
6994 ** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
6995 ** in exchange for a larger degradation in INSERT and UPDATE performance.
6996 ** The value of NN appears to give the best results overall.
6998 ** (Later:) The description above makes it seem as if these values are
6999 ** tunable - as if you could change them and recompile and it would all work.
7000 ** But that is unlikely. NB has been 3 since the inception of SQLite and
7001 ** we have never tested any other value.
7003 #define NN 1 /* Number of neighbors on either side of pPage */
7004 #define NB 3 /* (NN*2+1): Total pages involved in the balance */
7007 ** A CellArray object contains a cache of pointers and sizes for a
7008 ** consecutive sequence of cells that might be held on multiple pages.
7010 ** The cells in this array are the divider cell or cells from the pParent
7011 ** page plus up to three child pages. There are a total of nCell cells.
7013 ** pRef is a pointer to one of the pages that contributes cells. This is
7014 ** used to access information such as MemPage.intKey and MemPage.pBt->pageSize
7015 ** which should be common to all pages that contribute cells to this array.
7017 ** apCell[] and szCell[] hold, respectively, pointers to the start of each
7018 ** cell and the size of each cell. Some of the apCell[] pointers might refer
7019 ** to overflow cells. In other words, some apCel[] pointers might not point
7020 ** to content area of the pages.
7022 ** A szCell[] of zero means the size of that cell has not yet been computed.
7024 ** The cells come from as many as four different pages:
7031 ** --------- --------- ---------
7032 ** |Child-1| |Child-2| |Child-3|
7033 ** --------- --------- ---------
7035 ** The order of cells is in the array is for an index btree is:
7037 ** 1. All cells from Child-1 in order
7038 ** 2. The first divider cell from Parent
7039 ** 3. All cells from Child-2 in order
7040 ** 4. The second divider cell from Parent
7041 ** 5. All cells from Child-3 in order
7043 ** For a table-btree (with rowids) the items 2 and 4 are empty because
7044 ** content exists only in leaves and there are no divider cells.
7046 ** For an index btree, the apEnd[] array holds pointer to the end of page
7047 ** for Child-1, the Parent, Child-2, the Parent (again), and Child-3,
7048 ** respectively. The ixNx[] array holds the number of cells contained in
7049 ** each of these 5 stages, and all stages to the left. Hence:
7051 ** ixNx[0] = Number of cells in Child-1.
7052 ** ixNx[1] = Number of cells in Child-1 plus 1 for first divider.
7053 ** ixNx[2] = Number of cells in Child-1 and Child-2 + 1 for 1st divider.
7054 ** ixNx[3] = Number of cells in Child-1 and Child-2 + both divider cells
7055 ** ixNx[4] = Total number of cells.
7057 ** For a table-btree, the concept is similar, except only apEnd[0]..apEnd[2]
7058 ** are used and they point to the leaf pages only, and the ixNx value are:
7060 ** ixNx[0] = Number of cells in Child-1.
7061 ** ixNx[1] = Number of cells in Child-1 and Child-2.
7062 ** ixNx[2] = Total number of cells.
7064 ** Sometimes when deleting, a child page can have zero cells. In those
7065 ** cases, ixNx[] entries with higher indexes, and the corresponding apEnd[]
7066 ** entries, shift down. The end result is that each ixNx[] entry should
7067 ** be larger than the previous
7069 typedef struct CellArray CellArray
;
7071 int nCell
; /* Number of cells in apCell[] */
7072 MemPage
*pRef
; /* Reference page */
7073 u8
**apCell
; /* All cells begin balanced */
7074 u16
*szCell
; /* Local size of all cells in apCell[] */
7075 u8
*apEnd
[NB
*2]; /* MemPage.aDataEnd values */
7076 int ixNx
[NB
*2]; /* Index of at which we move to the next apEnd[] */
7080 ** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been
7083 static void populateCellCache(CellArray
*p
, int idx
, int N
){
7084 assert( idx
>=0 && idx
+N
<=p
->nCell
);
7086 assert( p
->apCell
[idx
]!=0 );
7087 if( p
->szCell
[idx
]==0 ){
7088 p
->szCell
[idx
] = p
->pRef
->xCellSize(p
->pRef
, p
->apCell
[idx
]);
7090 assert( CORRUPT_DB
||
7091 p
->szCell
[idx
]==p
->pRef
->xCellSize(p
->pRef
, p
->apCell
[idx
]) );
7099 ** Return the size of the Nth element of the cell array
7101 static SQLITE_NOINLINE u16
computeCellSize(CellArray
*p
, int N
){
7102 assert( N
>=0 && N
<p
->nCell
);
7103 assert( p
->szCell
[N
]==0 );
7104 p
->szCell
[N
] = p
->pRef
->xCellSize(p
->pRef
, p
->apCell
[N
]);
7105 return p
->szCell
[N
];
7107 static u16
cachedCellSize(CellArray
*p
, int N
){
7108 assert( N
>=0 && N
<p
->nCell
);
7109 if( p
->szCell
[N
] ) return p
->szCell
[N
];
7110 return computeCellSize(p
, N
);
7114 ** Array apCell[] contains pointers to nCell b-tree page cells. The
7115 ** szCell[] array contains the size in bytes of each cell. This function
7116 ** replaces the current contents of page pPg with the contents of the cell
7119 ** Some of the cells in apCell[] may currently be stored in pPg. This
7120 ** function works around problems caused by this by making a copy of any
7121 ** such cells before overwriting the page data.
7123 ** The MemPage.nFree field is invalidated by this function. It is the
7124 ** responsibility of the caller to set it correctly.
7126 static int rebuildPage(
7127 CellArray
*pCArray
, /* Content to be added to page pPg */
7128 int iFirst
, /* First cell in pCArray to use */
7129 int nCell
, /* Final number of cells on page */
7130 MemPage
*pPg
/* The page to be reconstructed */
7132 const int hdr
= pPg
->hdrOffset
; /* Offset of header on pPg */
7133 u8
* const aData
= pPg
->aData
; /* Pointer to data for pPg */
7134 const int usableSize
= pPg
->pBt
->usableSize
;
7135 u8
* const pEnd
= &aData
[usableSize
];
7136 int i
= iFirst
; /* Which cell to copy from pCArray*/
7137 u32 j
; /* Start of cell content area */
7138 int iEnd
= i
+nCell
; /* Loop terminator */
7139 u8
*pCellptr
= pPg
->aCellIdx
;
7140 u8
*pTmp
= sqlite3PagerTempSpace(pPg
->pBt
->pPager
);
7142 int k
; /* Current slot in pCArray->apEnd[] */
7143 u8
*pSrcEnd
; /* Current pCArray->apEnd[k] value */
7146 j
= get2byte(&aData
[hdr
+5]);
7147 if( j
>(u32
)usableSize
){ j
= 0; }
7148 memcpy(&pTmp
[j
], &aData
[j
], usableSize
- j
);
7150 for(k
=0; pCArray
->ixNx
[k
]<=i
&& ALWAYS(k
<NB
*2); k
++){}
7151 pSrcEnd
= pCArray
->apEnd
[k
];
7154 while( 1/*exit by break*/ ){
7155 u8
*pCell
= pCArray
->apCell
[i
];
7156 u16 sz
= pCArray
->szCell
[i
];
7158 if( SQLITE_WITHIN(pCell
,aData
+j
,pEnd
) ){
7159 if( ((uptr
)(pCell
+sz
))>(uptr
)pEnd
) return SQLITE_CORRUPT_BKPT
;
7160 pCell
= &pTmp
[pCell
- aData
];
7161 }else if( (uptr
)(pCell
+sz
)>(uptr
)pSrcEnd
7162 && (uptr
)(pCell
)<(uptr
)pSrcEnd
7164 return SQLITE_CORRUPT_BKPT
;
7168 put2byte(pCellptr
, (pData
- aData
));
7170 if( pData
< pCellptr
) return SQLITE_CORRUPT_BKPT
;
7171 memmove(pData
, pCell
, sz
);
7172 assert( sz
==pPg
->xCellSize(pPg
, pCell
) || CORRUPT_DB
);
7174 if( i
>=iEnd
) break;
7175 if( pCArray
->ixNx
[k
]<=i
){
7177 pSrcEnd
= pCArray
->apEnd
[k
];
7181 /* The pPg->nFree field is now set incorrectly. The caller will fix it. */
7185 put2byte(&aData
[hdr
+1], 0);
7186 put2byte(&aData
[hdr
+3], pPg
->nCell
);
7187 put2byte(&aData
[hdr
+5], pData
- aData
);
7188 aData
[hdr
+7] = 0x00;
7193 ** The pCArray objects contains pointers to b-tree cells and the cell sizes.
7194 ** This function attempts to add the cells stored in the array to page pPg.
7195 ** If it cannot (because the page needs to be defragmented before the cells
7196 ** will fit), non-zero is returned. Otherwise, if the cells are added
7197 ** successfully, zero is returned.
7199 ** Argument pCellptr points to the first entry in the cell-pointer array
7200 ** (part of page pPg) to populate. After cell apCell[0] is written to the
7201 ** page body, a 16-bit offset is written to pCellptr. And so on, for each
7202 ** cell in the array. It is the responsibility of the caller to ensure
7203 ** that it is safe to overwrite this part of the cell-pointer array.
7205 ** When this function is called, *ppData points to the start of the
7206 ** content area on page pPg. If the size of the content area is extended,
7207 ** *ppData is updated to point to the new start of the content area
7208 ** before returning.
7210 ** Finally, argument pBegin points to the byte immediately following the
7211 ** end of the space required by this page for the cell-pointer area (for
7212 ** all cells - not just those inserted by the current call). If the content
7213 ** area must be extended to before this point in order to accomodate all
7214 ** cells in apCell[], then the cells do not fit and non-zero is returned.
7216 static int pageInsertArray(
7217 MemPage
*pPg
, /* Page to add cells to */
7218 u8
*pBegin
, /* End of cell-pointer array */
7219 u8
**ppData
, /* IN/OUT: Page content-area pointer */
7220 u8
*pCellptr
, /* Pointer to cell-pointer area */
7221 int iFirst
, /* Index of first cell to add */
7222 int nCell
, /* Number of cells to add to pPg */
7223 CellArray
*pCArray
/* Array of cells */
7225 int i
= iFirst
; /* Loop counter - cell index to insert */
7226 u8
*aData
= pPg
->aData
; /* Complete page */
7227 u8
*pData
= *ppData
; /* Content area. A subset of aData[] */
7228 int iEnd
= iFirst
+ nCell
; /* End of loop. One past last cell to ins */
7229 int k
; /* Current slot in pCArray->apEnd[] */
7230 u8
*pEnd
; /* Maximum extent of cell data */
7231 assert( CORRUPT_DB
|| pPg
->hdrOffset
==0 ); /* Never called on page 1 */
7232 if( iEnd
<=iFirst
) return 0;
7233 for(k
=0; pCArray
->ixNx
[k
]<=i
&& ALWAYS(k
<NB
*2); k
++){}
7234 pEnd
= pCArray
->apEnd
[k
];
7235 while( 1 /*Exit by break*/ ){
7238 assert( pCArray
->szCell
[i
]!=0 );
7239 sz
= pCArray
->szCell
[i
];
7240 if( (aData
[1]==0 && aData
[2]==0) || (pSlot
= pageFindSlot(pPg
,sz
,&rc
))==0 ){
7241 if( (pData
- pBegin
)<sz
) return 1;
7245 /* pSlot and pCArray->apCell[i] will never overlap on a well-formed
7246 ** database. But they might for a corrupt database. Hence use memmove()
7247 ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */
7248 assert( (pSlot
+sz
)<=pCArray
->apCell
[i
]
7249 || pSlot
>=(pCArray
->apCell
[i
]+sz
)
7251 if( (uptr
)(pCArray
->apCell
[i
]+sz
)>(uptr
)pEnd
7252 && (uptr
)(pCArray
->apCell
[i
])<(uptr
)pEnd
7254 assert( CORRUPT_DB
);
7255 (void)SQLITE_CORRUPT_BKPT
;
7258 memmove(pSlot
, pCArray
->apCell
[i
], sz
);
7259 put2byte(pCellptr
, (pSlot
- aData
));
7262 if( i
>=iEnd
) break;
7263 if( pCArray
->ixNx
[k
]<=i
){
7265 pEnd
= pCArray
->apEnd
[k
];
7273 ** The pCArray object contains pointers to b-tree cells and their sizes.
7275 ** This function adds the space associated with each cell in the array
7276 ** that is currently stored within the body of pPg to the pPg free-list.
7277 ** The cell-pointers and other fields of the page are not updated.
7279 ** This function returns the total number of cells added to the free-list.
7281 static int pageFreeArray(
7282 MemPage
*pPg
, /* Page to edit */
7283 int iFirst
, /* First cell to delete */
7284 int nCell
, /* Cells to delete */
7285 CellArray
*pCArray
/* Array of cells */
7287 u8
* const aData
= pPg
->aData
;
7288 u8
* const pEnd
= &aData
[pPg
->pBt
->usableSize
];
7289 u8
* const pStart
= &aData
[pPg
->hdrOffset
+ 8 + pPg
->childPtrSize
];
7292 int iEnd
= iFirst
+ nCell
;
7296 for(i
=iFirst
; i
<iEnd
; i
++){
7297 u8
*pCell
= pCArray
->apCell
[i
];
7298 if( SQLITE_WITHIN(pCell
, pStart
, pEnd
) ){
7300 /* No need to use cachedCellSize() here. The sizes of all cells that
7301 ** are to be freed have already been computing while deciding which
7302 ** cells need freeing */
7303 sz
= pCArray
->szCell
[i
]; assert( sz
>0 );
7304 if( pFree
!=(pCell
+ sz
) ){
7306 assert( pFree
>aData
&& (pFree
- aData
)<65536 );
7307 freeSpace(pPg
, (u16
)(pFree
- aData
), szFree
);
7311 if( pFree
+sz
>pEnd
){
7322 assert( pFree
>aData
&& (pFree
- aData
)<65536 );
7323 freeSpace(pPg
, (u16
)(pFree
- aData
), szFree
);
7329 ** pCArray contains pointers to and sizes of all cells in the page being
7330 ** balanced. The current page, pPg, has pPg->nCell cells starting with
7331 ** pCArray->apCell[iOld]. After balancing, this page should hold nNew cells
7332 ** starting at apCell[iNew].
7334 ** This routine makes the necessary adjustments to pPg so that it contains
7335 ** the correct cells after being balanced.
7337 ** The pPg->nFree field is invalid when this function returns. It is the
7338 ** responsibility of the caller to set it correctly.
7340 static int editPage(
7341 MemPage
*pPg
, /* Edit this page */
7342 int iOld
, /* Index of first cell currently on page */
7343 int iNew
, /* Index of new first cell on page */
7344 int nNew
, /* Final number of cells on page */
7345 CellArray
*pCArray
/* Array of cells and sizes */
7347 u8
* const aData
= pPg
->aData
;
7348 const int hdr
= pPg
->hdrOffset
;
7349 u8
*pBegin
= &pPg
->aCellIdx
[nNew
* 2];
7350 int nCell
= pPg
->nCell
; /* Cells stored on pPg */
7354 int iOldEnd
= iOld
+ pPg
->nCell
+ pPg
->nOverflow
;
7355 int iNewEnd
= iNew
+ nNew
;
7358 u8
*pTmp
= sqlite3PagerTempSpace(pPg
->pBt
->pPager
);
7359 memcpy(pTmp
, aData
, pPg
->pBt
->usableSize
);
7362 /* Remove cells from the start and end of the page */
7365 int nShift
= pageFreeArray(pPg
, iOld
, iNew
-iOld
, pCArray
);
7366 if( NEVER(nShift
>nCell
) ) return SQLITE_CORRUPT_BKPT
;
7367 memmove(pPg
->aCellIdx
, &pPg
->aCellIdx
[nShift
*2], nCell
*2);
7370 if( iNewEnd
< iOldEnd
){
7371 int nTail
= pageFreeArray(pPg
, iNewEnd
, iOldEnd
- iNewEnd
, pCArray
);
7372 assert( nCell
>=nTail
);
7376 pData
= &aData
[get2byteNotZero(&aData
[hdr
+5])];
7377 if( pData
<pBegin
) goto editpage_fail
;
7378 if( pData
>pPg
->aDataEnd
) goto editpage_fail
;
7380 /* Add cells to the start of the page */
7382 int nAdd
= MIN(nNew
,iOld
-iNew
);
7383 assert( (iOld
-iNew
)<nNew
|| nCell
==0 || CORRUPT_DB
);
7385 pCellptr
= pPg
->aCellIdx
;
7386 memmove(&pCellptr
[nAdd
*2], pCellptr
, nCell
*2);
7387 if( pageInsertArray(
7388 pPg
, pBegin
, &pData
, pCellptr
,
7390 ) ) goto editpage_fail
;
7394 /* Add any overflow cells */
7395 for(i
=0; i
<pPg
->nOverflow
; i
++){
7396 int iCell
= (iOld
+ pPg
->aiOvfl
[i
]) - iNew
;
7397 if( iCell
>=0 && iCell
<nNew
){
7398 pCellptr
= &pPg
->aCellIdx
[iCell
* 2];
7400 memmove(&pCellptr
[2], pCellptr
, (nCell
- iCell
) * 2);
7403 cachedCellSize(pCArray
, iCell
+iNew
);
7404 if( pageInsertArray(
7405 pPg
, pBegin
, &pData
, pCellptr
,
7406 iCell
+iNew
, 1, pCArray
7407 ) ) goto editpage_fail
;
7411 /* Append cells to the end of the page */
7413 pCellptr
= &pPg
->aCellIdx
[nCell
*2];
7414 if( pageInsertArray(
7415 pPg
, pBegin
, &pData
, pCellptr
,
7416 iNew
+nCell
, nNew
-nCell
, pCArray
7417 ) ) goto editpage_fail
;
7422 put2byte(&aData
[hdr
+3], pPg
->nCell
);
7423 put2byte(&aData
[hdr
+5], pData
- aData
);
7426 for(i
=0; i
<nNew
&& !CORRUPT_DB
; i
++){
7427 u8
*pCell
= pCArray
->apCell
[i
+iNew
];
7428 int iOff
= get2byteAligned(&pPg
->aCellIdx
[i
*2]);
7429 if( SQLITE_WITHIN(pCell
, aData
, &aData
[pPg
->pBt
->usableSize
]) ){
7430 pCell
= &pTmp
[pCell
- aData
];
7432 assert( 0==memcmp(pCell
, &aData
[iOff
],
7433 pCArray
->pRef
->xCellSize(pCArray
->pRef
, pCArray
->apCell
[i
+iNew
])) );
7439 /* Unable to edit this page. Rebuild it from scratch instead. */
7440 populateCellCache(pCArray
, iNew
, nNew
);
7441 return rebuildPage(pCArray
, iNew
, nNew
, pPg
);
7445 #ifndef SQLITE_OMIT_QUICKBALANCE
7447 ** This version of balance() handles the common special case where
7448 ** a new entry is being inserted on the extreme right-end of the
7449 ** tree, in other words, when the new entry will become the largest
7450 ** entry in the tree.
7452 ** Instead of trying to balance the 3 right-most leaf pages, just add
7453 ** a new page to the right-hand side and put the one new entry in
7454 ** that page. This leaves the right side of the tree somewhat
7455 ** unbalanced. But odds are that we will be inserting new entries
7456 ** at the end soon afterwards so the nearly empty page will quickly
7457 ** fill up. On average.
7459 ** pPage is the leaf page which is the right-most page in the tree.
7460 ** pParent is its parent. pPage must have a single overflow entry
7461 ** which is also the right-most entry on the page.
7463 ** The pSpace buffer is used to store a temporary copy of the divider
7464 ** cell that will be inserted into pParent. Such a cell consists of a 4
7465 ** byte page number followed by a variable length integer. In other
7466 ** words, at most 13 bytes. Hence the pSpace buffer must be at
7467 ** least 13 bytes in size.
7469 static int balance_quick(MemPage
*pParent
, MemPage
*pPage
, u8
*pSpace
){
7470 BtShared
*const pBt
= pPage
->pBt
; /* B-Tree Database */
7471 MemPage
*pNew
; /* Newly allocated page */
7472 int rc
; /* Return Code */
7473 Pgno pgnoNew
; /* Page number of pNew */
7475 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
7476 assert( sqlite3PagerIswriteable(pParent
->pDbPage
) );
7477 assert( pPage
->nOverflow
==1 );
7479 if( pPage
->nCell
==0 ) return SQLITE_CORRUPT_BKPT
; /* dbfuzz001.test */
7480 assert( pPage
->nFree
>=0 );
7481 assert( pParent
->nFree
>=0 );
7483 /* Allocate a new page. This page will become the right-sibling of
7484 ** pPage. Make the parent page writable, so that the new divider cell
7485 ** may be inserted. If both these operations are successful, proceed.
7487 rc
= allocateBtreePage(pBt
, &pNew
, &pgnoNew
, 0, 0);
7489 if( rc
==SQLITE_OK
){
7491 u8
*pOut
= &pSpace
[4];
7492 u8
*pCell
= pPage
->apOvfl
[0];
7493 u16 szCell
= pPage
->xCellSize(pPage
, pCell
);
7497 assert( sqlite3PagerIswriteable(pNew
->pDbPage
) );
7498 assert( CORRUPT_DB
|| pPage
->aData
[0]==(PTF_INTKEY
|PTF_LEAFDATA
|PTF_LEAF
) );
7499 zeroPage(pNew
, PTF_INTKEY
|PTF_LEAFDATA
|PTF_LEAF
);
7504 b
.apEnd
[0] = pPage
->aDataEnd
;
7506 rc
= rebuildPage(&b
, 0, 1, pNew
);
7511 pNew
->nFree
= pBt
->usableSize
- pNew
->cellOffset
- 2 - szCell
;
7513 /* If this is an auto-vacuum database, update the pointer map
7514 ** with entries for the new page, and any pointer from the
7515 ** cell on the page to an overflow page. If either of these
7516 ** operations fails, the return code is set, but the contents
7517 ** of the parent page are still manipulated by thh code below.
7518 ** That is Ok, at this point the parent page is guaranteed to
7519 ** be marked as dirty. Returning an error code will cause a
7520 ** rollback, undoing any changes made to the parent page.
7523 ptrmapPut(pBt
, pgnoNew
, PTRMAP_BTREE
, pParent
->pgno
, &rc
);
7524 if( szCell
>pNew
->minLocal
){
7525 ptrmapPutOvflPtr(pNew
, pNew
, pCell
, &rc
);
7529 /* Create a divider cell to insert into pParent. The divider cell
7530 ** consists of a 4-byte page number (the page number of pPage) and
7531 ** a variable length key value (which must be the same value as the
7532 ** largest key on pPage).
7534 ** To find the largest key value on pPage, first find the right-most
7535 ** cell on pPage. The first two fields of this cell are the
7536 ** record-length (a variable length integer at most 32-bits in size)
7537 ** and the key value (a variable length integer, may have any value).
7538 ** The first of the while(...) loops below skips over the record-length
7539 ** field. The second while(...) loop copies the key value from the
7540 ** cell on pPage into the pSpace buffer.
7542 pCell
= findCell(pPage
, pPage
->nCell
-1);
7544 while( (*(pCell
++)&0x80) && pCell
<pStop
);
7546 while( ((*(pOut
++) = *(pCell
++))&0x80) && pCell
<pStop
);
7548 /* Insert the new divider cell into pParent. */
7549 if( rc
==SQLITE_OK
){
7550 insertCell(pParent
, pParent
->nCell
, pSpace
, (int)(pOut
-pSpace
),
7551 0, pPage
->pgno
, &rc
);
7554 /* Set the right-child pointer of pParent to point to the new page. */
7555 put4byte(&pParent
->aData
[pParent
->hdrOffset
+8], pgnoNew
);
7557 /* Release the reference to the new page. */
7563 #endif /* SQLITE_OMIT_QUICKBALANCE */
7567 ** This function does not contribute anything to the operation of SQLite.
7568 ** it is sometimes activated temporarily while debugging code responsible
7569 ** for setting pointer-map entries.
7571 static int ptrmapCheckPages(MemPage
**apPage
, int nPage
){
7573 for(i
=0; i
<nPage
; i
++){
7576 MemPage
*pPage
= apPage
[i
];
7577 BtShared
*pBt
= pPage
->pBt
;
7578 assert( pPage
->isInit
);
7580 for(j
=0; j
<pPage
->nCell
; j
++){
7584 z
= findCell(pPage
, j
);
7585 pPage
->xParseCell(pPage
, z
, &info
);
7586 if( info
.nLocal
<info
.nPayload
){
7587 Pgno ovfl
= get4byte(&z
[info
.nSize
-4]);
7588 ptrmapGet(pBt
, ovfl
, &e
, &n
);
7589 assert( n
==pPage
->pgno
&& e
==PTRMAP_OVERFLOW1
);
7592 Pgno child
= get4byte(z
);
7593 ptrmapGet(pBt
, child
, &e
, &n
);
7594 assert( n
==pPage
->pgno
&& e
==PTRMAP_BTREE
);
7598 Pgno child
= get4byte(&pPage
->aData
[pPage
->hdrOffset
+8]);
7599 ptrmapGet(pBt
, child
, &e
, &n
);
7600 assert( n
==pPage
->pgno
&& e
==PTRMAP_BTREE
);
7608 ** This function is used to copy the contents of the b-tree node stored
7609 ** on page pFrom to page pTo. If page pFrom was not a leaf page, then
7610 ** the pointer-map entries for each child page are updated so that the
7611 ** parent page stored in the pointer map is page pTo. If pFrom contained
7612 ** any cells with overflow page pointers, then the corresponding pointer
7613 ** map entries are also updated so that the parent page is page pTo.
7615 ** If pFrom is currently carrying any overflow cells (entries in the
7616 ** MemPage.apOvfl[] array), they are not copied to pTo.
7618 ** Before returning, page pTo is reinitialized using btreeInitPage().
7620 ** The performance of this function is not critical. It is only used by
7621 ** the balance_shallower() and balance_deeper() procedures, neither of
7622 ** which are called often under normal circumstances.
7624 static void copyNodeContent(MemPage
*pFrom
, MemPage
*pTo
, int *pRC
){
7625 if( (*pRC
)==SQLITE_OK
){
7626 BtShared
* const pBt
= pFrom
->pBt
;
7627 u8
* const aFrom
= pFrom
->aData
;
7628 u8
* const aTo
= pTo
->aData
;
7629 int const iFromHdr
= pFrom
->hdrOffset
;
7630 int const iToHdr
= ((pTo
->pgno
==1) ? 100 : 0);
7635 assert( pFrom
->isInit
);
7636 assert( pFrom
->nFree
>=iToHdr
);
7637 assert( get2byte(&aFrom
[iFromHdr
+5]) <= (int)pBt
->usableSize
);
7639 /* Copy the b-tree node content from page pFrom to page pTo. */
7640 iData
= get2byte(&aFrom
[iFromHdr
+5]);
7641 memcpy(&aTo
[iData
], &aFrom
[iData
], pBt
->usableSize
-iData
);
7642 memcpy(&aTo
[iToHdr
], &aFrom
[iFromHdr
], pFrom
->cellOffset
+ 2*pFrom
->nCell
);
7644 /* Reinitialize page pTo so that the contents of the MemPage structure
7645 ** match the new data. The initialization of pTo can actually fail under
7646 ** fairly obscure circumstances, even though it is a copy of initialized
7650 rc
= btreeInitPage(pTo
);
7651 if( rc
==SQLITE_OK
) rc
= btreeComputeFreeSpace(pTo
);
7652 if( rc
!=SQLITE_OK
){
7657 /* If this is an auto-vacuum database, update the pointer-map entries
7658 ** for any b-tree or overflow pages that pTo now contains the pointers to.
7661 *pRC
= setChildPtrmaps(pTo
);
7667 ** This routine redistributes cells on the iParentIdx'th child of pParent
7668 ** (hereafter "the page") and up to 2 siblings so that all pages have about the
7669 ** same amount of free space. Usually a single sibling on either side of the
7670 ** page are used in the balancing, though both siblings might come from one
7671 ** side if the page is the first or last child of its parent. If the page
7672 ** has fewer than 2 siblings (something which can only happen if the page
7673 ** is a root page or a child of a root page) then all available siblings
7674 ** participate in the balancing.
7676 ** The number of siblings of the page might be increased or decreased by
7677 ** one or two in an effort to keep pages nearly full but not over full.
7679 ** Note that when this routine is called, some of the cells on the page
7680 ** might not actually be stored in MemPage.aData[]. This can happen
7681 ** if the page is overfull. This routine ensures that all cells allocated
7682 ** to the page and its siblings fit into MemPage.aData[] before returning.
7684 ** In the course of balancing the page and its siblings, cells may be
7685 ** inserted into or removed from the parent page (pParent). Doing so
7686 ** may cause the parent page to become overfull or underfull. If this
7687 ** happens, it is the responsibility of the caller to invoke the correct
7688 ** balancing routine to fix this problem (see the balance() routine).
7690 ** If this routine fails for any reason, it might leave the database
7691 ** in a corrupted state. So if this routine fails, the database should
7694 ** The third argument to this function, aOvflSpace, is a pointer to a
7695 ** buffer big enough to hold one page. If while inserting cells into the parent
7696 ** page (pParent) the parent page becomes overfull, this buffer is
7697 ** used to store the parent's overflow cells. Because this function inserts
7698 ** a maximum of four divider cells into the parent page, and the maximum
7699 ** size of a cell stored within an internal node is always less than 1/4
7700 ** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
7701 ** enough for all overflow cells.
7703 ** If aOvflSpace is set to a null pointer, this function returns
7706 static int balance_nonroot(
7707 MemPage
*pParent
, /* Parent page of siblings being balanced */
7708 int iParentIdx
, /* Index of "the page" in pParent */
7709 u8
*aOvflSpace
, /* page-size bytes of space for parent ovfl */
7710 int isRoot
, /* True if pParent is a root-page */
7711 int bBulk
/* True if this call is part of a bulk load */
7713 BtShared
*pBt
; /* The whole database */
7714 int nMaxCells
= 0; /* Allocated size of apCell, szCell, aFrom. */
7715 int nNew
= 0; /* Number of pages in apNew[] */
7716 int nOld
; /* Number of pages in apOld[] */
7717 int i
, j
, k
; /* Loop counters */
7718 int nxDiv
; /* Next divider slot in pParent->aCell[] */
7719 int rc
= SQLITE_OK
; /* The return code */
7720 u16 leafCorrection
; /* 4 if pPage is a leaf. 0 if not */
7721 int leafData
; /* True if pPage is a leaf of a LEAFDATA tree */
7722 int usableSpace
; /* Bytes in pPage beyond the header */
7723 int pageFlags
; /* Value of pPage->aData[0] */
7724 int iSpace1
= 0; /* First unused byte of aSpace1[] */
7725 int iOvflSpace
= 0; /* First unused byte of aOvflSpace[] */
7726 int szScratch
; /* Size of scratch memory requested */
7727 MemPage
*apOld
[NB
]; /* pPage and up to two siblings */
7728 MemPage
*apNew
[NB
+2]; /* pPage and up to NB siblings after balancing */
7729 u8
*pRight
; /* Location in parent of right-sibling pointer */
7730 u8
*apDiv
[NB
-1]; /* Divider cells in pParent */
7731 int cntNew
[NB
+2]; /* Index in b.paCell[] of cell after i-th page */
7732 int cntOld
[NB
+2]; /* Old index in b.apCell[] */
7733 int szNew
[NB
+2]; /* Combined size of cells placed on i-th page */
7734 u8
*aSpace1
; /* Space for copies of dividers cells */
7735 Pgno pgno
; /* Temp var to store a page number in */
7736 u8 abDone
[NB
+2]; /* True after i'th new page is populated */
7737 Pgno aPgno
[NB
+2]; /* Page numbers of new pages before shuffling */
7738 Pgno aPgOrder
[NB
+2]; /* Copy of aPgno[] used for sorting pages */
7739 u16 aPgFlags
[NB
+2]; /* flags field of new pages before shuffling */
7740 CellArray b
; /* Parsed information on cells being balanced */
7742 memset(abDone
, 0, sizeof(abDone
));
7743 memset(&b
, 0, sizeof(b
));
7745 assert( sqlite3_mutex_held(pBt
->mutex
) );
7746 assert( sqlite3PagerIswriteable(pParent
->pDbPage
) );
7748 /* At this point pParent may have at most one overflow cell. And if
7749 ** this overflow cell is present, it must be the cell with
7750 ** index iParentIdx. This scenario comes about when this function
7751 ** is called (indirectly) from sqlite3BtreeDelete().
7753 assert( pParent
->nOverflow
==0 || pParent
->nOverflow
==1 );
7754 assert( pParent
->nOverflow
==0 || pParent
->aiOvfl
[0]==iParentIdx
);
7757 return SQLITE_NOMEM_BKPT
;
7759 assert( pParent
->nFree
>=0 );
7761 /* Find the sibling pages to balance. Also locate the cells in pParent
7762 ** that divide the siblings. An attempt is made to find NN siblings on
7763 ** either side of pPage. More siblings are taken from one side, however,
7764 ** if there are fewer than NN siblings on the other side. If pParent
7765 ** has NB or fewer children then all children of pParent are taken.
7767 ** This loop also drops the divider cells from the parent page. This
7768 ** way, the remainder of the function does not have to deal with any
7769 ** overflow cells in the parent page, since if any existed they will
7770 ** have already been removed.
7772 i
= pParent
->nOverflow
+ pParent
->nCell
;
7776 assert( bBulk
==0 || bBulk
==1 );
7777 if( iParentIdx
==0 ){
7779 }else if( iParentIdx
==i
){
7782 nxDiv
= iParentIdx
-1;
7787 if( (i
+nxDiv
-pParent
->nOverflow
)==pParent
->nCell
){
7788 pRight
= &pParent
->aData
[pParent
->hdrOffset
+8];
7790 pRight
= findCell(pParent
, i
+nxDiv
-pParent
->nOverflow
);
7792 pgno
= get4byte(pRight
);
7794 if( rc
==SQLITE_OK
){
7795 rc
= getAndInitPage(pBt
, pgno
, &apOld
[i
], 0, 0);
7798 memset(apOld
, 0, (i
+1)*sizeof(MemPage
*));
7799 goto balance_cleanup
;
7801 if( apOld
[i
]->nFree
<0 ){
7802 rc
= btreeComputeFreeSpace(apOld
[i
]);
7804 memset(apOld
, 0, (i
)*sizeof(MemPage
*));
7805 goto balance_cleanup
;
7808 nMaxCells
+= apOld
[i
]->nCell
+ ArraySize(pParent
->apOvfl
);
7809 if( (i
--)==0 ) break;
7811 if( pParent
->nOverflow
&& i
+nxDiv
==pParent
->aiOvfl
[0] ){
7812 apDiv
[i
] = pParent
->apOvfl
[0];
7813 pgno
= get4byte(apDiv
[i
]);
7814 szNew
[i
] = pParent
->xCellSize(pParent
, apDiv
[i
]);
7815 pParent
->nOverflow
= 0;
7817 apDiv
[i
] = findCell(pParent
, i
+nxDiv
-pParent
->nOverflow
);
7818 pgno
= get4byte(apDiv
[i
]);
7819 szNew
[i
] = pParent
->xCellSize(pParent
, apDiv
[i
]);
7821 /* Drop the cell from the parent page. apDiv[i] still points to
7822 ** the cell within the parent, even though it has been dropped.
7823 ** This is safe because dropping a cell only overwrites the first
7824 ** four bytes of it, and this function does not need the first
7825 ** four bytes of the divider cell. So the pointer is safe to use
7828 ** But not if we are in secure-delete mode. In secure-delete mode,
7829 ** the dropCell() routine will overwrite the entire cell with zeroes.
7830 ** In this case, temporarily copy the cell into the aOvflSpace[]
7831 ** buffer. It will be copied out again as soon as the aSpace[] buffer
7833 if( pBt
->btsFlags
& BTS_FAST_SECURE
){
7836 /* If the following if() condition is not true, the db is corrupted.
7837 ** The call to dropCell() below will detect this. */
7838 iOff
= SQLITE_PTR_TO_INT(apDiv
[i
]) - SQLITE_PTR_TO_INT(pParent
->aData
);
7839 if( (iOff
+szNew
[i
])<=(int)pBt
->usableSize
){
7840 memcpy(&aOvflSpace
[iOff
], apDiv
[i
], szNew
[i
]);
7841 apDiv
[i
] = &aOvflSpace
[apDiv
[i
]-pParent
->aData
];
7844 dropCell(pParent
, i
+nxDiv
-pParent
->nOverflow
, szNew
[i
], &rc
);
7848 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
7850 nMaxCells
= (nMaxCells
+ 3)&~3;
7853 ** Allocate space for memory structures
7856 nMaxCells
*sizeof(u8
*) /* b.apCell */
7857 + nMaxCells
*sizeof(u16
) /* b.szCell */
7858 + pBt
->pageSize
; /* aSpace1 */
7860 assert( szScratch
<=7*(int)pBt
->pageSize
);
7861 b
.apCell
= sqlite3StackAllocRaw(0, szScratch
);
7863 rc
= SQLITE_NOMEM_BKPT
;
7864 goto balance_cleanup
;
7866 b
.szCell
= (u16
*)&b
.apCell
[nMaxCells
];
7867 aSpace1
= (u8
*)&b
.szCell
[nMaxCells
];
7868 assert( EIGHT_BYTE_ALIGNMENT(aSpace1
) );
7871 ** Load pointers to all cells on sibling pages and the divider cells
7872 ** into the local b.apCell[] array. Make copies of the divider cells
7873 ** into space obtained from aSpace1[]. The divider cells have already
7874 ** been removed from pParent.
7876 ** If the siblings are on leaf pages, then the child pointers of the
7877 ** divider cells are stripped from the cells before they are copied
7878 ** into aSpace1[]. In this way, all cells in b.apCell[] are without
7879 ** child pointers. If siblings are not leaves, then all cell in
7880 ** b.apCell[] include child pointers. Either way, all cells in b.apCell[]
7883 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
7884 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
7887 leafCorrection
= b
.pRef
->leaf
*4;
7888 leafData
= b
.pRef
->intKeyLeaf
;
7889 for(i
=0; i
<nOld
; i
++){
7890 MemPage
*pOld
= apOld
[i
];
7891 int limit
= pOld
->nCell
;
7892 u8
*aData
= pOld
->aData
;
7893 u16 maskPage
= pOld
->maskPage
;
7894 u8
*piCell
= aData
+ pOld
->cellOffset
;
7896 VVA_ONLY( int nCellAtStart
= b
.nCell
; )
7898 /* Verify that all sibling pages are of the same "type" (table-leaf,
7899 ** table-interior, index-leaf, or index-interior).
7901 if( pOld
->aData
[0]!=apOld
[0]->aData
[0] ){
7902 rc
= SQLITE_CORRUPT_BKPT
;
7903 goto balance_cleanup
;
7906 /* Load b.apCell[] with pointers to all cells in pOld. If pOld
7907 ** contains overflow cells, include them in the b.apCell[] array
7908 ** in the correct spot.
7910 ** Note that when there are multiple overflow cells, it is always the
7911 ** case that they are sequential and adjacent. This invariant arises
7912 ** because multiple overflows can only occurs when inserting divider
7913 ** cells into a parent on a prior balance, and divider cells are always
7914 ** adjacent and are inserted in order. There is an assert() tagged
7915 ** with "NOTE 1" in the overflow cell insertion loop to prove this
7918 ** This must be done in advance. Once the balance starts, the cell
7919 ** offset section of the btree page will be overwritten and we will no
7920 ** long be able to find the cells if a pointer to each cell is not saved
7923 memset(&b
.szCell
[b
.nCell
], 0, sizeof(b
.szCell
[0])*(limit
+pOld
->nOverflow
));
7924 if( pOld
->nOverflow
>0 ){
7925 if( NEVER(limit
<pOld
->aiOvfl
[0]) ){
7926 rc
= SQLITE_CORRUPT_BKPT
;
7927 goto balance_cleanup
;
7929 limit
= pOld
->aiOvfl
[0];
7930 for(j
=0; j
<limit
; j
++){
7931 b
.apCell
[b
.nCell
] = aData
+ (maskPage
& get2byteAligned(piCell
));
7935 for(k
=0; k
<pOld
->nOverflow
; k
++){
7936 assert( k
==0 || pOld
->aiOvfl
[k
-1]+1==pOld
->aiOvfl
[k
] );/* NOTE 1 */
7937 b
.apCell
[b
.nCell
] = pOld
->apOvfl
[k
];
7941 piEnd
= aData
+ pOld
->cellOffset
+ 2*pOld
->nCell
;
7942 while( piCell
<piEnd
){
7943 assert( b
.nCell
<nMaxCells
);
7944 b
.apCell
[b
.nCell
] = aData
+ (maskPage
& get2byteAligned(piCell
));
7948 assert( (b
.nCell
-nCellAtStart
)==(pOld
->nCell
+pOld
->nOverflow
) );
7950 cntOld
[i
] = b
.nCell
;
7951 if( i
<nOld
-1 && !leafData
){
7952 u16 sz
= (u16
)szNew
[i
];
7954 assert( b
.nCell
<nMaxCells
);
7955 b
.szCell
[b
.nCell
] = sz
;
7956 pTemp
= &aSpace1
[iSpace1
];
7958 assert( sz
<=pBt
->maxLocal
+23 );
7959 assert( iSpace1
<= (int)pBt
->pageSize
);
7960 memcpy(pTemp
, apDiv
[i
], sz
);
7961 b
.apCell
[b
.nCell
] = pTemp
+leafCorrection
;
7962 assert( leafCorrection
==0 || leafCorrection
==4 );
7963 b
.szCell
[b
.nCell
] = b
.szCell
[b
.nCell
] - leafCorrection
;
7965 assert( leafCorrection
==0 );
7966 assert( pOld
->hdrOffset
==0 || CORRUPT_DB
);
7967 /* The right pointer of the child page pOld becomes the left
7968 ** pointer of the divider cell */
7969 memcpy(b
.apCell
[b
.nCell
], &pOld
->aData
[8], 4);
7971 assert( leafCorrection
==4 );
7972 while( b
.szCell
[b
.nCell
]<4 ){
7973 /* Do not allow any cells smaller than 4 bytes. If a smaller cell
7974 ** does exist, pad it with 0x00 bytes. */
7975 assert( b
.szCell
[b
.nCell
]==3 || CORRUPT_DB
);
7976 assert( b
.apCell
[b
.nCell
]==&aSpace1
[iSpace1
-3] || CORRUPT_DB
);
7977 aSpace1
[iSpace1
++] = 0x00;
7978 b
.szCell
[b
.nCell
]++;
7986 ** Figure out the number of pages needed to hold all b.nCell cells.
7987 ** Store this number in "k". Also compute szNew[] which is the total
7988 ** size of all cells on the i-th page and cntNew[] which is the index
7989 ** in b.apCell[] of the cell that divides page i from page i+1.
7990 ** cntNew[k] should equal b.nCell.
7992 ** Values computed by this block:
7994 ** k: The total number of sibling pages
7995 ** szNew[i]: Spaced used on the i-th sibling page.
7996 ** cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to
7997 ** the right of the i-th sibling page.
7998 ** usableSpace: Number of bytes of space available on each sibling.
8001 usableSpace
= pBt
->usableSize
- 12 + leafCorrection
;
8002 for(i
=k
=0; i
<nOld
; i
++, k
++){
8003 MemPage
*p
= apOld
[i
];
8004 b
.apEnd
[k
] = p
->aDataEnd
;
8005 b
.ixNx
[k
] = cntOld
[i
];
8006 if( k
&& b
.ixNx
[k
]==b
.ixNx
[k
-1] ){
8007 k
--; /* Omit b.ixNx[] entry for child pages with no cells */
8011 b
.apEnd
[k
] = pParent
->aDataEnd
;
8012 b
.ixNx
[k
] = cntOld
[i
]+1;
8014 assert( p
->nFree
>=0 );
8015 szNew
[i
] = usableSpace
- p
->nFree
;
8016 for(j
=0; j
<p
->nOverflow
; j
++){
8017 szNew
[i
] += 2 + p
->xCellSize(p
, p
->apOvfl
[j
]);
8019 cntNew
[i
] = cntOld
[i
];
8024 while( szNew
[i
]>usableSpace
){
8027 if( k
>NB
+2 ){ rc
= SQLITE_CORRUPT_BKPT
; goto balance_cleanup
; }
8029 cntNew
[k
-1] = b
.nCell
;
8031 sz
= 2 + cachedCellSize(&b
, cntNew
[i
]-1);
8034 if( cntNew
[i
]<b
.nCell
){
8035 sz
= 2 + cachedCellSize(&b
, cntNew
[i
]);
8043 while( cntNew
[i
]<b
.nCell
){
8044 sz
= 2 + cachedCellSize(&b
, cntNew
[i
]);
8045 if( szNew
[i
]+sz
>usableSpace
) break;
8049 if( cntNew
[i
]<b
.nCell
){
8050 sz
= 2 + cachedCellSize(&b
, cntNew
[i
]);
8057 if( cntNew
[i
]>=b
.nCell
){
8059 }else if( cntNew
[i
] <= (i
>0 ? cntNew
[i
-1] : 0) ){
8060 rc
= SQLITE_CORRUPT_BKPT
;
8061 goto balance_cleanup
;
8066 ** The packing computed by the previous block is biased toward the siblings
8067 ** on the left side (siblings with smaller keys). The left siblings are
8068 ** always nearly full, while the right-most sibling might be nearly empty.
8069 ** The next block of code attempts to adjust the packing of siblings to
8070 ** get a better balance.
8072 ** This adjustment is more than an optimization. The packing above might
8073 ** be so out of balance as to be illegal. For example, the right-most
8074 ** sibling might be completely empty. This adjustment is not optional.
8076 for(i
=k
-1; i
>0; i
--){
8077 int szRight
= szNew
[i
]; /* Size of sibling on the right */
8078 int szLeft
= szNew
[i
-1]; /* Size of sibling on the left */
8079 int r
; /* Index of right-most cell in left sibling */
8080 int d
; /* Index of first cell to the left of right sibling */
8082 r
= cntNew
[i
-1] - 1;
8083 d
= r
+ 1 - leafData
;
8084 (void)cachedCellSize(&b
, d
);
8086 assert( d
<nMaxCells
);
8087 assert( r
<nMaxCells
);
8088 (void)cachedCellSize(&b
, r
);
8090 && (bBulk
|| szRight
+b
.szCell
[d
]+2 > szLeft
-(b
.szCell
[r
]+(i
==k
-1?0:2)))){
8093 szRight
+= b
.szCell
[d
] + 2;
8094 szLeft
-= b
.szCell
[r
] + 2;
8100 szNew
[i
-1] = szLeft
;
8101 if( cntNew
[i
-1] <= (i
>1 ? cntNew
[i
-2] : 0) ){
8102 rc
= SQLITE_CORRUPT_BKPT
;
8103 goto balance_cleanup
;
8107 /* Sanity check: For a non-corrupt database file one of the follwing
8109 ** (1) We found one or more cells (cntNew[0])>0), or
8110 ** (2) pPage is a virtual root page. A virtual root page is when
8111 ** the real root page is page 1 and we are the only child of
8114 assert( cntNew
[0]>0 || (pParent
->pgno
==1 && pParent
->nCell
==0) || CORRUPT_DB
);
8115 TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n",
8116 apOld
[0]->pgno
, apOld
[0]->nCell
,
8117 nOld
>=2 ? apOld
[1]->pgno
: 0, nOld
>=2 ? apOld
[1]->nCell
: 0,
8118 nOld
>=3 ? apOld
[2]->pgno
: 0, nOld
>=3 ? apOld
[2]->nCell
: 0
8122 ** Allocate k new pages. Reuse old pages where possible.
8124 pageFlags
= apOld
[0]->aData
[0];
8128 pNew
= apNew
[i
] = apOld
[i
];
8130 rc
= sqlite3PagerWrite(pNew
->pDbPage
);
8132 if( sqlite3PagerPageRefcount(pNew
->pDbPage
)!=1+(i
==(iParentIdx
-nxDiv
))
8135 rc
= SQLITE_CORRUPT_BKPT
;
8137 if( rc
) goto balance_cleanup
;
8140 rc
= allocateBtreePage(pBt
, &pNew
, &pgno
, (bBulk
? 1 : pgno
), 0);
8141 if( rc
) goto balance_cleanup
;
8142 zeroPage(pNew
, pageFlags
);
8145 cntOld
[i
] = b
.nCell
;
8147 /* Set the pointer-map entry for the new sibling page. */
8149 ptrmapPut(pBt
, pNew
->pgno
, PTRMAP_BTREE
, pParent
->pgno
, &rc
);
8150 if( rc
!=SQLITE_OK
){
8151 goto balance_cleanup
;
8158 ** Reassign page numbers so that the new pages are in ascending order.
8159 ** This helps to keep entries in the disk file in order so that a scan
8160 ** of the table is closer to a linear scan through the file. That in turn
8161 ** helps the operating system to deliver pages from the disk more rapidly.
8163 ** An O(n^2) insertion sort algorithm is used, but since n is never more
8164 ** than (NB+2) (a small constant), that should not be a problem.
8166 ** When NB==3, this one optimization makes the database about 25% faster
8167 ** for large insertions and deletions.
8169 for(i
=0; i
<nNew
; i
++){
8170 aPgOrder
[i
] = aPgno
[i
] = apNew
[i
]->pgno
;
8171 aPgFlags
[i
] = apNew
[i
]->pDbPage
->flags
;
8173 if( NEVER(aPgno
[j
]==aPgno
[i
]) ){
8174 /* This branch is taken if the set of sibling pages somehow contains
8175 ** duplicate entries. This can happen if the database is corrupt.
8176 ** It would be simpler to detect this as part of the loop below, but
8177 ** we do the detection here in order to avoid populating the pager
8178 ** cache with two separate objects associated with the same
8180 assert( CORRUPT_DB
);
8181 rc
= SQLITE_CORRUPT_BKPT
;
8182 goto balance_cleanup
;
8186 for(i
=0; i
<nNew
; i
++){
8187 int iBest
= 0; /* aPgno[] index of page number to use */
8188 for(j
=1; j
<nNew
; j
++){
8189 if( aPgOrder
[j
]<aPgOrder
[iBest
] ) iBest
= j
;
8191 pgno
= aPgOrder
[iBest
];
8192 aPgOrder
[iBest
] = 0xffffffff;
8195 sqlite3PagerRekey(apNew
[iBest
]->pDbPage
, pBt
->nPage
+iBest
+1, 0);
8197 sqlite3PagerRekey(apNew
[i
]->pDbPage
, pgno
, aPgFlags
[iBest
]);
8198 apNew
[i
]->pgno
= pgno
;
8202 TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) "
8203 "%d(%d nc=%d) %d(%d nc=%d)\n",
8204 apNew
[0]->pgno
, szNew
[0], cntNew
[0],
8205 nNew
>=2 ? apNew
[1]->pgno
: 0, nNew
>=2 ? szNew
[1] : 0,
8206 nNew
>=2 ? cntNew
[1] - cntNew
[0] - !leafData
: 0,
8207 nNew
>=3 ? apNew
[2]->pgno
: 0, nNew
>=3 ? szNew
[2] : 0,
8208 nNew
>=3 ? cntNew
[2] - cntNew
[1] - !leafData
: 0,
8209 nNew
>=4 ? apNew
[3]->pgno
: 0, nNew
>=4 ? szNew
[3] : 0,
8210 nNew
>=4 ? cntNew
[3] - cntNew
[2] - !leafData
: 0,
8211 nNew
>=5 ? apNew
[4]->pgno
: 0, nNew
>=5 ? szNew
[4] : 0,
8212 nNew
>=5 ? cntNew
[4] - cntNew
[3] - !leafData
: 0
8215 assert( sqlite3PagerIswriteable(pParent
->pDbPage
) );
8216 assert( nNew
>=1 && nNew
<=ArraySize(apNew
) );
8217 assert( apNew
[nNew
-1]!=0 );
8218 put4byte(pRight
, apNew
[nNew
-1]->pgno
);
8220 /* If the sibling pages are not leaves, ensure that the right-child pointer
8221 ** of the right-most new sibling page is set to the value that was
8222 ** originally in the same field of the right-most old sibling page. */
8223 if( (pageFlags
& PTF_LEAF
)==0 && nOld
!=nNew
){
8224 MemPage
*pOld
= (nNew
>nOld
? apNew
: apOld
)[nOld
-1];
8225 memcpy(&apNew
[nNew
-1]->aData
[8], &pOld
->aData
[8], 4);
8228 /* Make any required updates to pointer map entries associated with
8229 ** cells stored on sibling pages following the balance operation. Pointer
8230 ** map entries associated with divider cells are set by the insertCell()
8231 ** routine. The associated pointer map entries are:
8233 ** a) if the cell contains a reference to an overflow chain, the
8234 ** entry associated with the first page in the overflow chain, and
8236 ** b) if the sibling pages are not leaves, the child page associated
8239 ** If the sibling pages are not leaves, then the pointer map entry
8240 ** associated with the right-child of each sibling may also need to be
8241 ** updated. This happens below, after the sibling pages have been
8242 ** populated, not here.
8246 MemPage
*pNew
= pOld
= apNew
[0];
8247 int cntOldNext
= pNew
->nCell
+ pNew
->nOverflow
;
8251 for(i
=0; i
<b
.nCell
; i
++){
8252 u8
*pCell
= b
.apCell
[i
];
8253 while( i
==cntOldNext
){
8255 assert( iOld
<nNew
|| iOld
<nOld
);
8256 assert( iOld
>=0 && iOld
<NB
);
8257 pOld
= iOld
<nNew
? apNew
[iOld
] : apOld
[iOld
];
8258 cntOldNext
+= pOld
->nCell
+ pOld
->nOverflow
+ !leafData
;
8260 if( i
==cntNew
[iNew
] ){
8261 pNew
= apNew
[++iNew
];
8262 if( !leafData
) continue;
8265 /* Cell pCell is destined for new sibling page pNew. Originally, it
8266 ** was either part of sibling page iOld (possibly an overflow cell),
8267 ** or else the divider cell to the left of sibling page iOld. So,
8268 ** if sibling page iOld had the same page number as pNew, and if
8269 ** pCell really was a part of sibling page iOld (not a divider or
8270 ** overflow cell), we can skip updating the pointer map entries. */
8272 || pNew
->pgno
!=aPgno
[iOld
]
8273 || !SQLITE_WITHIN(pCell
,pOld
->aData
,pOld
->aDataEnd
)
8275 if( !leafCorrection
){
8276 ptrmapPut(pBt
, get4byte(pCell
), PTRMAP_BTREE
, pNew
->pgno
, &rc
);
8278 if( cachedCellSize(&b
,i
)>pNew
->minLocal
){
8279 ptrmapPutOvflPtr(pNew
, pOld
, pCell
, &rc
);
8281 if( rc
) goto balance_cleanup
;
8286 /* Insert new divider cells into pParent. */
8287 for(i
=0; i
<nNew
-1; i
++){
8292 MemPage
*pNew
= apNew
[i
];
8295 assert( j
<nMaxCells
);
8296 assert( b
.apCell
[j
]!=0 );
8297 pCell
= b
.apCell
[j
];
8298 sz
= b
.szCell
[j
] + leafCorrection
;
8299 pTemp
= &aOvflSpace
[iOvflSpace
];
8301 memcpy(&pNew
->aData
[8], pCell
, 4);
8302 }else if( leafData
){
8303 /* If the tree is a leaf-data tree, and the siblings are leaves,
8304 ** then there is no divider cell in b.apCell[]. Instead, the divider
8305 ** cell consists of the integer key for the right-most cell of
8306 ** the sibling-page assembled above only.
8310 pNew
->xParseCell(pNew
, b
.apCell
[j
], &info
);
8312 sz
= 4 + putVarint(&pCell
[4], info
.nKey
);
8316 /* Obscure case for non-leaf-data trees: If the cell at pCell was
8317 ** previously stored on a leaf node, and its reported size was 4
8318 ** bytes, then it may actually be smaller than this
8319 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
8320 ** any cell). But it is important to pass the correct size to
8321 ** insertCell(), so reparse the cell now.
8323 ** This can only happen for b-trees used to evaluate "IN (SELECT ...)"
8324 ** and WITHOUT ROWID tables with exactly one column which is the
8327 if( b
.szCell
[j
]==4 ){
8328 assert(leafCorrection
==4);
8329 sz
= pParent
->xCellSize(pParent
, pCell
);
8333 assert( sz
<=pBt
->maxLocal
+23 );
8334 assert( iOvflSpace
<= (int)pBt
->pageSize
);
8335 for(k
=0; b
.ixNx
[k
]<=i
&& ALWAYS(k
<NB
*2); k
++){}
8336 pSrcEnd
= b
.apEnd
[k
];
8337 if( SQLITE_WITHIN(pSrcEnd
, pCell
, pCell
+sz
) ){
8338 rc
= SQLITE_CORRUPT_BKPT
;
8339 goto balance_cleanup
;
8341 insertCell(pParent
, nxDiv
+i
, pCell
, sz
, pTemp
, pNew
->pgno
, &rc
);
8342 if( rc
!=SQLITE_OK
) goto balance_cleanup
;
8343 assert( sqlite3PagerIswriteable(pParent
->pDbPage
) );
8346 /* Now update the actual sibling pages. The order in which they are updated
8347 ** is important, as this code needs to avoid disrupting any page from which
8348 ** cells may still to be read. In practice, this means:
8350 ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1])
8351 ** then it is not safe to update page apNew[iPg] until after
8352 ** the left-hand sibling apNew[iPg-1] has been updated.
8354 ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1])
8355 ** then it is not safe to update page apNew[iPg] until after
8356 ** the right-hand sibling apNew[iPg+1] has been updated.
8358 ** If neither of the above apply, the page is safe to update.
8360 ** The iPg value in the following loop starts at nNew-1 goes down
8361 ** to 0, then back up to nNew-1 again, thus making two passes over
8362 ** the pages. On the initial downward pass, only condition (1) above
8363 ** needs to be tested because (2) will always be true from the previous
8364 ** step. On the upward pass, both conditions are always true, so the
8365 ** upwards pass simply processes pages that were missed on the downward
8368 for(i
=1-nNew
; i
<nNew
; i
++){
8369 int iPg
= i
<0 ? -i
: i
;
8370 assert( iPg
>=0 && iPg
<nNew
);
8371 if( abDone
[iPg
] ) continue; /* Skip pages already processed */
8372 if( i
>=0 /* On the upwards pass, or... */
8373 || cntOld
[iPg
-1]>=cntNew
[iPg
-1] /* Condition (1) is true */
8379 /* Verify condition (1): If cells are moving left, update iPg
8380 ** only after iPg-1 has already been updated. */
8381 assert( iPg
==0 || cntOld
[iPg
-1]>=cntNew
[iPg
-1] || abDone
[iPg
-1] );
8383 /* Verify condition (2): If cells are moving right, update iPg
8384 ** only after iPg+1 has already been updated. */
8385 assert( cntNew
[iPg
]>=cntOld
[iPg
] || abDone
[iPg
+1] );
8389 nNewCell
= cntNew
[0];
8391 iOld
= iPg
<nOld
? (cntOld
[iPg
-1] + !leafData
) : b
.nCell
;
8392 iNew
= cntNew
[iPg
-1] + !leafData
;
8393 nNewCell
= cntNew
[iPg
] - iNew
;
8396 rc
= editPage(apNew
[iPg
], iOld
, iNew
, nNewCell
, &b
);
8397 if( rc
) goto balance_cleanup
;
8399 apNew
[iPg
]->nFree
= usableSpace
-szNew
[iPg
];
8400 assert( apNew
[iPg
]->nOverflow
==0 );
8401 assert( apNew
[iPg
]->nCell
==nNewCell
);
8405 /* All pages have been processed exactly once */
8406 assert( memcmp(abDone
, "\01\01\01\01\01", nNew
)==0 );
8411 if( isRoot
&& pParent
->nCell
==0 && pParent
->hdrOffset
<=apNew
[0]->nFree
){
8412 /* The root page of the b-tree now contains no cells. The only sibling
8413 ** page is the right-child of the parent. Copy the contents of the
8414 ** child page into the parent, decreasing the overall height of the
8415 ** b-tree structure by one. This is described as the "balance-shallower"
8416 ** sub-algorithm in some documentation.
8418 ** If this is an auto-vacuum database, the call to copyNodeContent()
8419 ** sets all pointer-map entries corresponding to database image pages
8420 ** for which the pointer is stored within the content being copied.
8422 ** It is critical that the child page be defragmented before being
8423 ** copied into the parent, because if the parent is page 1 then it will
8424 ** by smaller than the child due to the database header, and so all the
8425 ** free space needs to be up front.
8427 assert( nNew
==1 || CORRUPT_DB
);
8428 rc
= defragmentPage(apNew
[0], -1);
8429 testcase( rc
!=SQLITE_OK
);
8430 assert( apNew
[0]->nFree
==
8431 (get2byteNotZero(&apNew
[0]->aData
[5]) - apNew
[0]->cellOffset
8432 - apNew
[0]->nCell
*2)
8435 copyNodeContent(apNew
[0], pParent
, &rc
);
8436 freePage(apNew
[0], &rc
);
8437 }else if( ISAUTOVACUUM
&& !leafCorrection
){
8438 /* Fix the pointer map entries associated with the right-child of each
8439 ** sibling page. All other pointer map entries have already been taken
8441 for(i
=0; i
<nNew
; i
++){
8442 u32 key
= get4byte(&apNew
[i
]->aData
[8]);
8443 ptrmapPut(pBt
, key
, PTRMAP_BTREE
, apNew
[i
]->pgno
, &rc
);
8447 assert( pParent
->isInit
);
8448 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
8449 nOld
, nNew
, b
.nCell
));
8451 /* Free any old pages that were not reused as new pages.
8453 for(i
=nNew
; i
<nOld
; i
++){
8454 freePage(apOld
[i
], &rc
);
8458 if( ISAUTOVACUUM
&& rc
==SQLITE_OK
&& apNew
[0]->isInit
){
8459 /* The ptrmapCheckPages() contains assert() statements that verify that
8460 ** all pointer map pages are set correctly. This is helpful while
8461 ** debugging. This is usually disabled because a corrupt database may
8462 ** cause an assert() statement to fail. */
8463 ptrmapCheckPages(apNew
, nNew
);
8464 ptrmapCheckPages(&pParent
, 1);
8469 ** Cleanup before returning.
8472 sqlite3StackFree(0, b
.apCell
);
8473 for(i
=0; i
<nOld
; i
++){
8474 releasePage(apOld
[i
]);
8476 for(i
=0; i
<nNew
; i
++){
8477 releasePage(apNew
[i
]);
8485 ** This function is called when the root page of a b-tree structure is
8486 ** overfull (has one or more overflow pages).
8488 ** A new child page is allocated and the contents of the current root
8489 ** page, including overflow cells, are copied into the child. The root
8490 ** page is then overwritten to make it an empty page with the right-child
8491 ** pointer pointing to the new page.
8493 ** Before returning, all pointer-map entries corresponding to pages
8494 ** that the new child-page now contains pointers to are updated. The
8495 ** entry corresponding to the new right-child pointer of the root
8496 ** page is also updated.
8498 ** If successful, *ppChild is set to contain a reference to the child
8499 ** page and SQLITE_OK is returned. In this case the caller is required
8500 ** to call releasePage() on *ppChild exactly once. If an error occurs,
8501 ** an error code is returned and *ppChild is set to 0.
8503 static int balance_deeper(MemPage
*pRoot
, MemPage
**ppChild
){
8504 int rc
; /* Return value from subprocedures */
8505 MemPage
*pChild
= 0; /* Pointer to a new child page */
8506 Pgno pgnoChild
= 0; /* Page number of the new child page */
8507 BtShared
*pBt
= pRoot
->pBt
; /* The BTree */
8509 assert( pRoot
->nOverflow
>0 );
8510 assert( sqlite3_mutex_held(pBt
->mutex
) );
8512 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
8513 ** page that will become the new right-child of pPage. Copy the contents
8514 ** of the node stored on pRoot into the new child page.
8516 rc
= sqlite3PagerWrite(pRoot
->pDbPage
);
8517 if( rc
==SQLITE_OK
){
8518 rc
= allocateBtreePage(pBt
,&pChild
,&pgnoChild
,pRoot
->pgno
,0);
8519 copyNodeContent(pRoot
, pChild
, &rc
);
8521 ptrmapPut(pBt
, pgnoChild
, PTRMAP_BTREE
, pRoot
->pgno
, &rc
);
8526 releasePage(pChild
);
8529 assert( sqlite3PagerIswriteable(pChild
->pDbPage
) );
8530 assert( sqlite3PagerIswriteable(pRoot
->pDbPage
) );
8531 assert( pChild
->nCell
==pRoot
->nCell
|| CORRUPT_DB
);
8533 TRACE(("BALANCE: copy root %d into %d\n", pRoot
->pgno
, pChild
->pgno
));
8535 /* Copy the overflow cells from pRoot to pChild */
8536 memcpy(pChild
->aiOvfl
, pRoot
->aiOvfl
,
8537 pRoot
->nOverflow
*sizeof(pRoot
->aiOvfl
[0]));
8538 memcpy(pChild
->apOvfl
, pRoot
->apOvfl
,
8539 pRoot
->nOverflow
*sizeof(pRoot
->apOvfl
[0]));
8540 pChild
->nOverflow
= pRoot
->nOverflow
;
8542 /* Zero the contents of pRoot. Then install pChild as the right-child. */
8543 zeroPage(pRoot
, pChild
->aData
[0] & ~PTF_LEAF
);
8544 put4byte(&pRoot
->aData
[pRoot
->hdrOffset
+8], pgnoChild
);
8551 ** Return SQLITE_CORRUPT if any cursor other than pCur is currently valid
8552 ** on the same B-tree as pCur.
8554 ** This can occur if a database is corrupt with two or more SQL tables
8555 ** pointing to the same b-tree. If an insert occurs on one SQL table
8556 ** and causes a BEFORE TRIGGER to do a secondary insert on the other SQL
8557 ** table linked to the same b-tree. If the secondary insert causes a
8558 ** rebalance, that can change content out from under the cursor on the
8559 ** first SQL table, violating invariants on the first insert.
8561 static int anotherValidCursor(BtCursor
*pCur
){
8563 for(pOther
=pCur
->pBt
->pCursor
; pOther
; pOther
=pOther
->pNext
){
8565 && pOther
->eState
==CURSOR_VALID
8566 && pOther
->pPage
==pCur
->pPage
8568 return SQLITE_CORRUPT_BKPT
;
8575 ** The page that pCur currently points to has just been modified in
8576 ** some way. This function figures out if this modification means the
8577 ** tree needs to be balanced, and if so calls the appropriate balancing
8578 ** routine. Balancing routines are:
8582 ** balance_nonroot()
8584 static int balance(BtCursor
*pCur
){
8586 const int nMin
= pCur
->pBt
->usableSize
* 2 / 3;
8587 u8 aBalanceQuickSpace
[13];
8590 VVA_ONLY( int balance_quick_called
= 0 );
8591 VVA_ONLY( int balance_deeper_called
= 0 );
8595 MemPage
*pPage
= pCur
->pPage
;
8597 if( NEVER(pPage
->nFree
<0) && btreeComputeFreeSpace(pPage
) ) break;
8598 if( pPage
->nOverflow
==0 && pPage
->nFree
<=nMin
){
8600 }else if( (iPage
= pCur
->iPage
)==0 ){
8601 if( pPage
->nOverflow
&& (rc
= anotherValidCursor(pCur
))==SQLITE_OK
){
8602 /* The root page of the b-tree is overfull. In this case call the
8603 ** balance_deeper() function to create a new child for the root-page
8604 ** and copy the current contents of the root-page to it. The
8605 ** next iteration of the do-loop will balance the child page.
8607 assert( balance_deeper_called
==0 );
8608 VVA_ONLY( balance_deeper_called
++ );
8609 rc
= balance_deeper(pPage
, &pCur
->apPage
[1]);
8610 if( rc
==SQLITE_OK
){
8614 pCur
->apPage
[0] = pPage
;
8615 pCur
->pPage
= pCur
->apPage
[1];
8616 assert( pCur
->pPage
->nOverflow
);
8622 MemPage
* const pParent
= pCur
->apPage
[iPage
-1];
8623 int const iIdx
= pCur
->aiIdx
[iPage
-1];
8625 rc
= sqlite3PagerWrite(pParent
->pDbPage
);
8626 if( rc
==SQLITE_OK
&& pParent
->nFree
<0 ){
8627 rc
= btreeComputeFreeSpace(pParent
);
8629 if( rc
==SQLITE_OK
){
8630 #ifndef SQLITE_OMIT_QUICKBALANCE
8631 if( pPage
->intKeyLeaf
8632 && pPage
->nOverflow
==1
8633 && pPage
->aiOvfl
[0]==pPage
->nCell
8635 && pParent
->nCell
==iIdx
8637 /* Call balance_quick() to create a new sibling of pPage on which
8638 ** to store the overflow cell. balance_quick() inserts a new cell
8639 ** into pParent, which may cause pParent overflow. If this
8640 ** happens, the next iteration of the do-loop will balance pParent
8641 ** use either balance_nonroot() or balance_deeper(). Until this
8642 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
8645 ** The purpose of the following assert() is to check that only a
8646 ** single call to balance_quick() is made for each call to this
8647 ** function. If this were not verified, a subtle bug involving reuse
8648 ** of the aBalanceQuickSpace[] might sneak in.
8650 assert( balance_quick_called
==0 );
8651 VVA_ONLY( balance_quick_called
++ );
8652 rc
= balance_quick(pParent
, pPage
, aBalanceQuickSpace
);
8656 /* In this case, call balance_nonroot() to redistribute cells
8657 ** between pPage and up to 2 of its sibling pages. This involves
8658 ** modifying the contents of pParent, which may cause pParent to
8659 ** become overfull or underfull. The next iteration of the do-loop
8660 ** will balance the parent page to correct this.
8662 ** If the parent page becomes overfull, the overflow cell or cells
8663 ** are stored in the pSpace buffer allocated immediately below.
8664 ** A subsequent iteration of the do-loop will deal with this by
8665 ** calling balance_nonroot() (balance_deeper() may be called first,
8666 ** but it doesn't deal with overflow cells - just moves them to a
8667 ** different page). Once this subsequent call to balance_nonroot()
8668 ** has completed, it is safe to release the pSpace buffer used by
8669 ** the previous call, as the overflow cell data will have been
8670 ** copied either into the body of a database page or into the new
8671 ** pSpace buffer passed to the latter call to balance_nonroot().
8673 u8
*pSpace
= sqlite3PageMalloc(pCur
->pBt
->pageSize
);
8674 rc
= balance_nonroot(pParent
, iIdx
, pSpace
, iPage
==1,
8675 pCur
->hints
&BTREE_BULKLOAD
);
8677 /* If pFree is not NULL, it points to the pSpace buffer used
8678 ** by a previous call to balance_nonroot(). Its contents are
8679 ** now stored either on real database pages or within the
8680 ** new pSpace buffer, so it may be safely freed here. */
8681 sqlite3PageFree(pFree
);
8684 /* The pSpace buffer will be freed after the next call to
8685 ** balance_nonroot(), or just before this function returns, whichever
8691 pPage
->nOverflow
= 0;
8693 /* The next iteration of the do-loop balances the parent page. */
8696 assert( pCur
->iPage
>=0 );
8697 pCur
->pPage
= pCur
->apPage
[pCur
->iPage
];
8699 }while( rc
==SQLITE_OK
);
8702 sqlite3PageFree(pFree
);
8707 /* Overwrite content from pX into pDest. Only do the write if the
8708 ** content is different from what is already there.
8710 static int btreeOverwriteContent(
8711 MemPage
*pPage
, /* MemPage on which writing will occur */
8712 u8
*pDest
, /* Pointer to the place to start writing */
8713 const BtreePayload
*pX
, /* Source of data to write */
8714 int iOffset
, /* Offset of first byte to write */
8715 int iAmt
/* Number of bytes to be written */
8717 int nData
= pX
->nData
- iOffset
;
8719 /* Overwritting with zeros */
8721 for(i
=0; i
<iAmt
&& pDest
[i
]==0; i
++){}
8723 int rc
= sqlite3PagerWrite(pPage
->pDbPage
);
8725 memset(pDest
+ i
, 0, iAmt
- i
);
8729 /* Mixed read data and zeros at the end. Make a recursive call
8730 ** to write the zeros then fall through to write the real data */
8731 int rc
= btreeOverwriteContent(pPage
, pDest
+nData
, pX
, iOffset
+nData
,
8736 if( memcmp(pDest
, ((u8
*)pX
->pData
) + iOffset
, iAmt
)!=0 ){
8737 int rc
= sqlite3PagerWrite(pPage
->pDbPage
);
8739 /* In a corrupt database, it is possible for the source and destination
8740 ** buffers to overlap. This is harmless since the database is already
8741 ** corrupt but it does cause valgrind and ASAN warnings. So use
8743 memmove(pDest
, ((u8
*)pX
->pData
) + iOffset
, iAmt
);
8750 ** Overwrite the cell that cursor pCur is pointing to with fresh content
8753 static int btreeOverwriteCell(BtCursor
*pCur
, const BtreePayload
*pX
){
8754 int iOffset
; /* Next byte of pX->pData to write */
8755 int nTotal
= pX
->nData
+ pX
->nZero
; /* Total bytes of to write */
8756 int rc
; /* Return code */
8757 MemPage
*pPage
= pCur
->pPage
; /* Page being written */
8758 BtShared
*pBt
; /* Btree */
8759 Pgno ovflPgno
; /* Next overflow page to write */
8760 u32 ovflPageSize
; /* Size to write on overflow page */
8762 if( pCur
->info
.pPayload
+ pCur
->info
.nLocal
> pPage
->aDataEnd
8763 || pCur
->info
.pPayload
< pPage
->aData
+ pPage
->cellOffset
8765 return SQLITE_CORRUPT_BKPT
;
8767 /* Overwrite the local portion first */
8768 rc
= btreeOverwriteContent(pPage
, pCur
->info
.pPayload
, pX
,
8769 0, pCur
->info
.nLocal
);
8771 if( pCur
->info
.nLocal
==nTotal
) return SQLITE_OK
;
8773 /* Now overwrite the overflow pages */
8774 iOffset
= pCur
->info
.nLocal
;
8775 assert( nTotal
>=0 );
8776 assert( iOffset
>=0 );
8777 ovflPgno
= get4byte(pCur
->info
.pPayload
+ iOffset
);
8779 ovflPageSize
= pBt
->usableSize
- 4;
8781 rc
= btreeGetPage(pBt
, ovflPgno
, &pPage
, 0);
8783 if( sqlite3PagerPageRefcount(pPage
->pDbPage
)!=1 || pPage
->isInit
){
8784 rc
= SQLITE_CORRUPT_BKPT
;
8786 if( iOffset
+ovflPageSize
<(u32
)nTotal
){
8787 ovflPgno
= get4byte(pPage
->aData
);
8789 ovflPageSize
= nTotal
- iOffset
;
8791 rc
= btreeOverwriteContent(pPage
, pPage
->aData
+4, pX
,
8792 iOffset
, ovflPageSize
);
8794 sqlite3PagerUnref(pPage
->pDbPage
);
8796 iOffset
+= ovflPageSize
;
8797 }while( iOffset
<nTotal
);
8803 ** Insert a new record into the BTree. The content of the new record
8804 ** is described by the pX object. The pCur cursor is used only to
8805 ** define what table the record should be inserted into, and is left
8806 ** pointing at a random location.
8808 ** For a table btree (used for rowid tables), only the pX.nKey value of
8809 ** the key is used. The pX.pKey value must be NULL. The pX.nKey is the
8810 ** rowid or INTEGER PRIMARY KEY of the row. The pX.nData,pData,nZero fields
8811 ** hold the content of the row.
8813 ** For an index btree (used for indexes and WITHOUT ROWID tables), the
8814 ** key is an arbitrary byte sequence stored in pX.pKey,nKey. The
8815 ** pX.pData,nData,nZero fields must be zero.
8817 ** If the seekResult parameter is non-zero, then a successful call to
8818 ** MovetoUnpacked() to seek cursor pCur to (pKey,nKey) has already
8819 ** been performed. In other words, if seekResult!=0 then the cursor
8820 ** is currently pointing to a cell that will be adjacent to the cell
8821 ** to be inserted. If seekResult<0 then pCur points to a cell that is
8822 ** smaller then (pKey,nKey). If seekResult>0 then pCur points to a cell
8823 ** that is larger than (pKey,nKey).
8825 ** If seekResult==0, that means pCur is pointing at some unknown location.
8826 ** In that case, this routine must seek the cursor to the correct insertion
8827 ** point for (pKey,nKey) before doing the insertion. For index btrees,
8828 ** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked
8829 ** key values and pX->aMem can be used instead of pX->pKey to avoid having
8830 ** to decode the key.
8832 int sqlite3BtreeInsert(
8833 BtCursor
*pCur
, /* Insert data into the table of this cursor */
8834 const BtreePayload
*pX
, /* Content of the row to be inserted */
8835 int flags
, /* True if this is likely an append */
8836 int seekResult
/* Result of prior MovetoUnpacked() call */
8839 int loc
= seekResult
; /* -1: before desired location +1: after */
8843 Btree
*p
= pCur
->pBtree
;
8844 BtShared
*pBt
= p
->pBt
;
8845 unsigned char *oldCell
;
8846 unsigned char *newCell
= 0;
8848 assert( (flags
& (BTREE_SAVEPOSITION
|BTREE_APPEND
|BTREE_PREFORMAT
))==flags
);
8849 assert( (flags
& BTREE_PREFORMAT
)==0 || seekResult
|| pCur
->pKeyInfo
==0 );
8851 /* Save the positions of any other cursors open on this table.
8853 ** In some cases, the call to btreeMoveto() below is a no-op. For
8854 ** example, when inserting data into a table with auto-generated integer
8855 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
8856 ** integer key to use. It then calls this function to actually insert the
8857 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
8858 ** that the cursor is already where it needs to be and returns without
8859 ** doing any work. To avoid thwarting these optimizations, it is important
8860 ** not to clear the cursor here.
8862 if( pCur
->curFlags
& BTCF_Multiple
){
8863 rc
= saveAllCursors(pBt
, pCur
->pgnoRoot
, pCur
);
8865 if( loc
&& pCur
->iPage
<0 ){
8866 /* This can only happen if the schema is corrupt such that there is more
8867 ** than one table or index with the same root page as used by the cursor.
8868 ** Which can only happen if the SQLITE_NoSchemaError flag was set when
8869 ** the schema was loaded. This cannot be asserted though, as a user might
8870 ** set the flag, load the schema, and then unset the flag. */
8871 return SQLITE_CORRUPT_BKPT
;
8875 if( pCur
->eState
>=CURSOR_REQUIRESEEK
){
8876 rc
= moveToRoot(pCur
);
8877 if( rc
&& rc
!=SQLITE_EMPTY
) return rc
;
8880 assert( cursorOwnsBtShared(pCur
) );
8881 assert( (pCur
->curFlags
& BTCF_WriteFlag
)!=0
8882 && pBt
->inTransaction
==TRANS_WRITE
8883 && (pBt
->btsFlags
& BTS_READ_ONLY
)==0 );
8884 assert( hasSharedCacheTableLock(p
, pCur
->pgnoRoot
, pCur
->pKeyInfo
!=0, 2) );
8886 /* Assert that the caller has been consistent. If this cursor was opened
8887 ** expecting an index b-tree, then the caller should be inserting blob
8888 ** keys with no associated data. If the cursor was opened expecting an
8889 ** intkey table, the caller should be inserting integer keys with a
8890 ** blob of associated data. */
8891 assert( (flags
& BTREE_PREFORMAT
) || (pX
->pKey
==0)==(pCur
->pKeyInfo
==0) );
8893 if( pCur
->pKeyInfo
==0 ){
8894 assert( pX
->pKey
==0 );
8895 /* If this is an insert into a table b-tree, invalidate any incrblob
8896 ** cursors open on the row being replaced */
8897 if( p
->hasIncrblobCur
){
8898 invalidateIncrblobCursors(p
, pCur
->pgnoRoot
, pX
->nKey
, 0);
8901 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
8902 ** to a row with the same key as the new entry being inserted.
8905 if( flags
& BTREE_SAVEPOSITION
){
8906 assert( pCur
->curFlags
& BTCF_ValidNKey
);
8907 assert( pX
->nKey
==pCur
->info
.nKey
);
8912 /* On the other hand, BTREE_SAVEPOSITION==0 does not imply
8913 ** that the cursor is not pointing to a row to be overwritten.
8914 ** So do a complete check.
8916 if( (pCur
->curFlags
&BTCF_ValidNKey
)!=0 && pX
->nKey
==pCur
->info
.nKey
){
8917 /* The cursor is pointing to the entry that is to be
8919 assert( pX
->nData
>=0 && pX
->nZero
>=0 );
8920 if( pCur
->info
.nSize
!=0
8921 && pCur
->info
.nPayload
==(u32
)pX
->nData
+pX
->nZero
8923 /* New entry is the same size as the old. Do an overwrite */
8924 return btreeOverwriteCell(pCur
, pX
);
8928 /* The cursor is *not* pointing to the cell to be overwritten, nor
8929 ** to an adjacent cell. Move the cursor so that it is pointing either
8930 ** to the cell to be overwritten or an adjacent cell.
8932 rc
= sqlite3BtreeTableMoveto(pCur
, pX
->nKey
,
8933 (flags
& BTREE_APPEND
)!=0, &loc
);
8937 /* This is an index or a WITHOUT ROWID table */
8939 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
8940 ** to a row with the same key as the new entry being inserted.
8942 assert( (flags
& BTREE_SAVEPOSITION
)==0 || loc
==0 );
8944 /* If the cursor is not already pointing either to the cell to be
8945 ** overwritten, or if a new cell is being inserted, if the cursor is
8946 ** not pointing to an immediately adjacent cell, then move the cursor
8949 if( loc
==0 && (flags
& BTREE_SAVEPOSITION
)==0 ){
8952 r
.pKeyInfo
= pCur
->pKeyInfo
;
8954 r
.nField
= pX
->nMem
;
8957 rc
= sqlite3BtreeIndexMoveto(pCur
, &r
, &loc
);
8959 rc
= btreeMoveto(pCur
, pX
->pKey
, pX
->nKey
,
8960 (flags
& BTREE_APPEND
)!=0, &loc
);
8965 /* If the cursor is currently pointing to an entry to be overwritten
8966 ** and the new content is the same as as the old, then use the
8967 ** overwrite optimization.
8971 if( pCur
->info
.nKey
==pX
->nKey
){
8973 x2
.pData
= pX
->pKey
;
8974 x2
.nData
= pX
->nKey
;
8976 return btreeOverwriteCell(pCur
, &x2
);
8980 assert( pCur
->eState
==CURSOR_VALID
8981 || (pCur
->eState
==CURSOR_INVALID
&& loc
) );
8983 pPage
= pCur
->pPage
;
8984 assert( pPage
->intKey
|| pX
->nKey
>=0 || (flags
& BTREE_PREFORMAT
) );
8985 assert( pPage
->leaf
|| !pPage
->intKey
);
8986 if( pPage
->nFree
<0 ){
8987 if( pCur
->eState
>CURSOR_INVALID
){
8988 rc
= SQLITE_CORRUPT_BKPT
;
8990 rc
= btreeComputeFreeSpace(pPage
);
8995 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
8996 pCur
->pgnoRoot
, pX
->nKey
, pX
->nData
, pPage
->pgno
,
8997 loc
==0 ? "overwrite" : "new entry"));
8998 assert( pPage
->isInit
);
8999 newCell
= pBt
->pTmpSpace
;
9000 assert( newCell
!=0 );
9001 if( flags
& BTREE_PREFORMAT
){
9003 szNew
= pBt
->nPreformatSize
;
9004 if( szNew
<4 ) szNew
= 4;
9005 if( ISAUTOVACUUM
&& szNew
>pPage
->maxLocal
){
9007 pPage
->xParseCell(pPage
, newCell
, &info
);
9008 if( info
.nPayload
!=info
.nLocal
){
9009 Pgno ovfl
= get4byte(&newCell
[szNew
-4]);
9010 ptrmapPut(pBt
, ovfl
, PTRMAP_OVERFLOW1
, pPage
->pgno
, &rc
);
9014 rc
= fillInCell(pPage
, newCell
, pX
, &szNew
);
9016 if( rc
) goto end_insert
;
9017 assert( szNew
==pPage
->xCellSize(pPage
, newCell
) );
9018 assert( szNew
<= MX_CELL_SIZE(pBt
) );
9023 if( idx
>=pPage
->nCell
){
9024 return SQLITE_CORRUPT_BKPT
;
9026 rc
= sqlite3PagerWrite(pPage
->pDbPage
);
9030 oldCell
= findCell(pPage
, idx
);
9032 memcpy(newCell
, oldCell
, 4);
9034 BTREE_CLEAR_CELL(rc
, pPage
, oldCell
, info
);
9035 testcase( pCur
->curFlags
& BTCF_ValidOvfl
);
9036 invalidateOverflowCache(pCur
);
9037 if( info
.nSize
==szNew
&& info
.nLocal
==info
.nPayload
9038 && (!ISAUTOVACUUM
|| szNew
<pPage
->minLocal
)
9040 /* Overwrite the old cell with the new if they are the same size.
9041 ** We could also try to do this if the old cell is smaller, then add
9042 ** the leftover space to the free list. But experiments show that
9043 ** doing that is no faster then skipping this optimization and just
9044 ** calling dropCell() and insertCell().
9046 ** This optimization cannot be used on an autovacuum database if the
9047 ** new entry uses overflow pages, as the insertCell() call below is
9048 ** necessary to add the PTRMAP_OVERFLOW1 pointer-map entry. */
9049 assert( rc
==SQLITE_OK
); /* clearCell never fails when nLocal==nPayload */
9050 if( oldCell
< pPage
->aData
+pPage
->hdrOffset
+10 ){
9051 return SQLITE_CORRUPT_BKPT
;
9053 if( oldCell
+szNew
> pPage
->aDataEnd
){
9054 return SQLITE_CORRUPT_BKPT
;
9056 memcpy(oldCell
, newCell
, szNew
);
9059 dropCell(pPage
, idx
, info
.nSize
, &rc
);
9060 if( rc
) goto end_insert
;
9061 }else if( loc
<0 && pPage
->nCell
>0 ){
9062 assert( pPage
->leaf
);
9064 pCur
->curFlags
&= ~BTCF_ValidNKey
;
9066 assert( pPage
->leaf
);
9068 insertCell(pPage
, idx
, newCell
, szNew
, 0, 0, &rc
);
9069 assert( pPage
->nOverflow
==0 || rc
==SQLITE_OK
);
9070 assert( rc
!=SQLITE_OK
|| pPage
->nCell
>0 || pPage
->nOverflow
>0 );
9072 /* If no error has occurred and pPage has an overflow cell, call balance()
9073 ** to redistribute the cells within the tree. Since balance() may move
9074 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
9077 ** Previous versions of SQLite called moveToRoot() to move the cursor
9078 ** back to the root page as balance() used to invalidate the contents
9079 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
9080 ** set the cursor state to "invalid". This makes common insert operations
9083 ** There is a subtle but important optimization here too. When inserting
9084 ** multiple records into an intkey b-tree using a single cursor (as can
9085 ** happen while processing an "INSERT INTO ... SELECT" statement), it
9086 ** is advantageous to leave the cursor pointing to the last entry in
9087 ** the b-tree if possible. If the cursor is left pointing to the last
9088 ** entry in the table, and the next row inserted has an integer key
9089 ** larger than the largest existing key, it is possible to insert the
9090 ** row without seeking the cursor. This can be a big performance boost.
9092 pCur
->info
.nSize
= 0;
9093 if( pPage
->nOverflow
){
9094 assert( rc
==SQLITE_OK
);
9095 pCur
->curFlags
&= ~(BTCF_ValidNKey
);
9098 /* Must make sure nOverflow is reset to zero even if the balance()
9099 ** fails. Internal data structure corruption will result otherwise.
9100 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
9101 ** from trying to save the current position of the cursor. */
9102 pCur
->pPage
->nOverflow
= 0;
9103 pCur
->eState
= CURSOR_INVALID
;
9104 if( (flags
& BTREE_SAVEPOSITION
) && rc
==SQLITE_OK
){
9105 btreeReleaseAllCursorPages(pCur
);
9106 if( pCur
->pKeyInfo
){
9107 assert( pCur
->pKey
==0 );
9108 pCur
->pKey
= sqlite3Malloc( pX
->nKey
);
9109 if( pCur
->pKey
==0 ){
9112 memcpy(pCur
->pKey
, pX
->pKey
, pX
->nKey
);
9115 pCur
->eState
= CURSOR_REQUIRESEEK
;
9116 pCur
->nKey
= pX
->nKey
;
9119 assert( pCur
->iPage
<0 || pCur
->pPage
->nOverflow
==0 );
9126 ** This function is used as part of copying the current row from cursor
9127 ** pSrc into cursor pDest. If the cursors are open on intkey tables, then
9128 ** parameter iKey is used as the rowid value when the record is copied
9129 ** into pDest. Otherwise, the record is copied verbatim.
9131 ** This function does not actually write the new value to cursor pDest.
9132 ** Instead, it creates and populates any required overflow pages and
9133 ** writes the data for the new cell into the BtShared.pTmpSpace buffer
9134 ** for the destination database. The size of the cell, in bytes, is left
9135 ** in BtShared.nPreformatSize. The caller completes the insertion by
9136 ** calling sqlite3BtreeInsert() with the BTREE_PREFORMAT flag specified.
9138 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
9140 int sqlite3BtreeTransferRow(BtCursor
*pDest
, BtCursor
*pSrc
, i64 iKey
){
9142 BtShared
*pBt
= pDest
->pBt
;
9143 u8
*aOut
= pBt
->pTmpSpace
; /* Pointer to next output buffer */
9144 const u8
*aIn
; /* Pointer to next input buffer */
9145 u32 nIn
; /* Size of input buffer aIn[] */
9146 u32 nRem
; /* Bytes of data still to copy */
9149 aOut
+= putVarint32(aOut
, pSrc
->info
.nPayload
);
9150 if( pDest
->pKeyInfo
==0 ) aOut
+= putVarint(aOut
, iKey
);
9151 nIn
= pSrc
->info
.nLocal
;
9152 aIn
= pSrc
->info
.pPayload
;
9153 if( aIn
+nIn
>pSrc
->pPage
->aDataEnd
){
9154 return SQLITE_CORRUPT_BKPT
;
9156 nRem
= pSrc
->info
.nPayload
;
9157 if( nIn
==nRem
&& nIn
<pDest
->pPage
->maxLocal
){
9158 memcpy(aOut
, aIn
, nIn
);
9159 pBt
->nPreformatSize
= nIn
+ (aOut
- pBt
->pTmpSpace
);
9161 Pager
*pSrcPager
= pSrc
->pBt
->pPager
;
9164 DbPage
*pPageIn
= 0;
9165 MemPage
*pPageOut
= 0;
9166 u32 nOut
; /* Size of output buffer aOut[] */
9168 nOut
= btreePayloadToLocal(pDest
->pPage
, pSrc
->info
.nPayload
);
9169 pBt
->nPreformatSize
= nOut
+ (aOut
- pBt
->pTmpSpace
);
9170 if( nOut
<pSrc
->info
.nPayload
){
9171 pPgnoOut
= &aOut
[nOut
];
9172 pBt
->nPreformatSize
+= 4;
9176 if( aIn
+nIn
+4>pSrc
->pPage
->aDataEnd
){
9177 return SQLITE_CORRUPT_BKPT
;
9179 ovflIn
= get4byte(&pSrc
->info
.pPayload
[nIn
]);
9187 int nCopy
= MIN(nOut
, nIn
);
9188 memcpy(aOut
, aIn
, nCopy
);
9195 sqlite3PagerUnref(pPageIn
);
9197 rc
= sqlite3PagerGet(pSrcPager
, ovflIn
, &pPageIn
, PAGER_GET_READONLY
);
9198 if( rc
==SQLITE_OK
){
9199 aIn
= (const u8
*)sqlite3PagerGetData(pPageIn
);
9200 ovflIn
= get4byte(aIn
);
9202 nIn
= pSrc
->pBt
->usableSize
- 4;
9205 }while( rc
==SQLITE_OK
&& nOut
>0 );
9207 if( rc
==SQLITE_OK
&& nRem
>0 && ALWAYS(pPgnoOut
) ){
9210 rc
= allocateBtreePage(pBt
, &pNew
, &pgnoNew
, 0, 0);
9211 put4byte(pPgnoOut
, pgnoNew
);
9212 if( ISAUTOVACUUM
&& pPageOut
){
9213 ptrmapPut(pBt
, pgnoNew
, PTRMAP_OVERFLOW2
, pPageOut
->pgno
, &rc
);
9215 releasePage(pPageOut
);
9218 pPgnoOut
= pPageOut
->aData
;
9219 put4byte(pPgnoOut
, 0);
9220 aOut
= &pPgnoOut
[4];
9221 nOut
= MIN(pBt
->usableSize
- 4, nRem
);
9224 }while( nRem
>0 && rc
==SQLITE_OK
);
9226 releasePage(pPageOut
);
9227 sqlite3PagerUnref(pPageIn
);
9234 ** Delete the entry that the cursor is pointing to.
9236 ** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then
9237 ** the cursor is left pointing at an arbitrary location after the delete.
9238 ** But if that bit is set, then the cursor is left in a state such that
9239 ** the next call to BtreeNext() or BtreePrev() moves it to the same row
9240 ** as it would have been on if the call to BtreeDelete() had been omitted.
9242 ** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes
9243 ** associated with a single table entry and its indexes. Only one of those
9244 ** deletes is considered the "primary" delete. The primary delete occurs
9245 ** on a cursor that is not a BTREE_FORDELETE cursor. All but one delete
9246 ** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag.
9247 ** The BTREE_AUXDELETE bit is a hint that is not used by this implementation,
9248 ** but which might be used by alternative storage engines.
9250 int sqlite3BtreeDelete(BtCursor
*pCur
, u8 flags
){
9251 Btree
*p
= pCur
->pBtree
;
9252 BtShared
*pBt
= p
->pBt
;
9253 int rc
; /* Return code */
9254 MemPage
*pPage
; /* Page to delete cell from */
9255 unsigned char *pCell
; /* Pointer to cell to delete */
9256 int iCellIdx
; /* Index of cell to delete */
9257 int iCellDepth
; /* Depth of node containing pCell */
9258 CellInfo info
; /* Size of the cell being deleted */
9259 u8 bPreserve
; /* Keep cursor valid. 2 for CURSOR_SKIPNEXT */
9261 assert( cursorOwnsBtShared(pCur
) );
9262 assert( pBt
->inTransaction
==TRANS_WRITE
);
9263 assert( (pBt
->btsFlags
& BTS_READ_ONLY
)==0 );
9264 assert( pCur
->curFlags
& BTCF_WriteFlag
);
9265 assert( hasSharedCacheTableLock(p
, pCur
->pgnoRoot
, pCur
->pKeyInfo
!=0, 2) );
9266 assert( !hasReadConflicts(p
, pCur
->pgnoRoot
) );
9267 assert( (flags
& ~(BTREE_SAVEPOSITION
| BTREE_AUXDELETE
))==0 );
9268 if( pCur
->eState
!=CURSOR_VALID
){
9269 if( pCur
->eState
>=CURSOR_REQUIRESEEK
){
9270 rc
= btreeRestoreCursorPosition(pCur
);
9271 assert( rc
!=SQLITE_OK
|| CORRUPT_DB
|| pCur
->eState
==CURSOR_VALID
);
9272 if( rc
|| pCur
->eState
!=CURSOR_VALID
) return rc
;
9274 return SQLITE_CORRUPT_BKPT
;
9277 assert( pCur
->eState
==CURSOR_VALID
);
9279 iCellDepth
= pCur
->iPage
;
9280 iCellIdx
= pCur
->ix
;
9281 pPage
= pCur
->pPage
;
9282 if( pPage
->nCell
<=iCellIdx
){
9283 return SQLITE_CORRUPT_BKPT
;
9285 pCell
= findCell(pPage
, iCellIdx
);
9286 if( pPage
->nFree
<0 && btreeComputeFreeSpace(pPage
) ){
9287 return SQLITE_CORRUPT_BKPT
;
9290 /* If the BTREE_SAVEPOSITION bit is on, then the cursor position must
9291 ** be preserved following this delete operation. If the current delete
9292 ** will cause a b-tree rebalance, then this is done by saving the cursor
9293 ** key and leaving the cursor in CURSOR_REQUIRESEEK state before
9296 ** If the current delete will not cause a rebalance, then the cursor
9297 ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately
9298 ** before or after the deleted entry.
9300 ** The bPreserve value records which path is required:
9302 ** bPreserve==0 Not necessary to save the cursor position
9303 ** bPreserve==1 Use CURSOR_REQUIRESEEK to save the cursor position
9304 ** bPreserve==2 Cursor won't move. Set CURSOR_SKIPNEXT.
9306 bPreserve
= (flags
& BTREE_SAVEPOSITION
)!=0;
9309 || (pPage
->nFree
+cellSizePtr(pPage
,pCell
)+2)>(int)(pBt
->usableSize
*2/3)
9310 || pPage
->nCell
==1 /* See dbfuzz001.test for a test case */
9312 /* A b-tree rebalance will be required after deleting this entry.
9313 ** Save the cursor key. */
9314 rc
= saveCursorKey(pCur
);
9321 /* If the page containing the entry to delete is not a leaf page, move
9322 ** the cursor to the largest entry in the tree that is smaller than
9323 ** the entry being deleted. This cell will replace the cell being deleted
9324 ** from the internal node. The 'previous' entry is used for this instead
9325 ** of the 'next' entry, as the previous entry is always a part of the
9326 ** sub-tree headed by the child page of the cell being deleted. This makes
9327 ** balancing the tree following the delete operation easier. */
9329 rc
= sqlite3BtreePrevious(pCur
, 0);
9330 assert( rc
!=SQLITE_DONE
);
9334 /* Save the positions of any other cursors open on this table before
9335 ** making any modifications. */
9336 if( pCur
->curFlags
& BTCF_Multiple
){
9337 rc
= saveAllCursors(pBt
, pCur
->pgnoRoot
, pCur
);
9341 /* If this is a delete operation to remove a row from a table b-tree,
9342 ** invalidate any incrblob cursors open on the row being deleted. */
9343 if( pCur
->pKeyInfo
==0 && p
->hasIncrblobCur
){
9344 invalidateIncrblobCursors(p
, pCur
->pgnoRoot
, pCur
->info
.nKey
, 0);
9347 /* Make the page containing the entry to be deleted writable. Then free any
9348 ** overflow pages associated with the entry and finally remove the cell
9349 ** itself from within the page. */
9350 rc
= sqlite3PagerWrite(pPage
->pDbPage
);
9352 BTREE_CLEAR_CELL(rc
, pPage
, pCell
, info
);
9353 dropCell(pPage
, iCellIdx
, info
.nSize
, &rc
);
9356 /* If the cell deleted was not located on a leaf page, then the cursor
9357 ** is currently pointing to the largest entry in the sub-tree headed
9358 ** by the child-page of the cell that was just deleted from an internal
9359 ** node. The cell from the leaf node needs to be moved to the internal
9360 ** node to replace the deleted cell. */
9362 MemPage
*pLeaf
= pCur
->pPage
;
9365 unsigned char *pTmp
;
9367 if( pLeaf
->nFree
<0 ){
9368 rc
= btreeComputeFreeSpace(pLeaf
);
9371 if( iCellDepth
<pCur
->iPage
-1 ){
9372 n
= pCur
->apPage
[iCellDepth
+1]->pgno
;
9374 n
= pCur
->pPage
->pgno
;
9376 pCell
= findCell(pLeaf
, pLeaf
->nCell
-1);
9377 if( pCell
<&pLeaf
->aData
[4] ) return SQLITE_CORRUPT_BKPT
;
9378 nCell
= pLeaf
->xCellSize(pLeaf
, pCell
);
9379 assert( MX_CELL_SIZE(pBt
) >= nCell
);
9380 pTmp
= pBt
->pTmpSpace
;
9382 rc
= sqlite3PagerWrite(pLeaf
->pDbPage
);
9383 if( rc
==SQLITE_OK
){
9384 insertCell(pPage
, iCellIdx
, pCell
-4, nCell
+4, pTmp
, n
, &rc
);
9386 dropCell(pLeaf
, pLeaf
->nCell
-1, nCell
, &rc
);
9390 /* Balance the tree. If the entry deleted was located on a leaf page,
9391 ** then the cursor still points to that page. In this case the first
9392 ** call to balance() repairs the tree, and the if(...) condition is
9395 ** Otherwise, if the entry deleted was on an internal node page, then
9396 ** pCur is pointing to the leaf page from which a cell was removed to
9397 ** replace the cell deleted from the internal node. This is slightly
9398 ** tricky as the leaf node may be underfull, and the internal node may
9399 ** be either under or overfull. In this case run the balancing algorithm
9400 ** on the leaf node first. If the balance proceeds far enough up the
9401 ** tree that we can be sure that any problem in the internal node has
9402 ** been corrected, so be it. Otherwise, after balancing the leaf node,
9403 ** walk the cursor up the tree to the internal node and balance it as
9406 if( rc
==SQLITE_OK
&& pCur
->iPage
>iCellDepth
){
9407 releasePageNotNull(pCur
->pPage
);
9409 while( pCur
->iPage
>iCellDepth
){
9410 releasePage(pCur
->apPage
[pCur
->iPage
--]);
9412 pCur
->pPage
= pCur
->apPage
[pCur
->iPage
];
9416 if( rc
==SQLITE_OK
){
9418 assert( (pCur
->iPage
==iCellDepth
|| CORRUPT_DB
) );
9419 assert( pPage
==pCur
->pPage
|| CORRUPT_DB
);
9420 assert( (pPage
->nCell
>0 || CORRUPT_DB
) && iCellIdx
<=pPage
->nCell
);
9421 pCur
->eState
= CURSOR_SKIPNEXT
;
9422 if( iCellIdx
>=pPage
->nCell
){
9423 pCur
->skipNext
= -1;
9424 pCur
->ix
= pPage
->nCell
-1;
9429 rc
= moveToRoot(pCur
);
9431 btreeReleaseAllCursorPages(pCur
);
9432 pCur
->eState
= CURSOR_REQUIRESEEK
;
9434 if( rc
==SQLITE_EMPTY
) rc
= SQLITE_OK
;
9441 ** Create a new BTree table. Write into *piTable the page
9442 ** number for the root page of the new table.
9444 ** The type of type is determined by the flags parameter. Only the
9445 ** following values of flags are currently in use. Other values for
9446 ** flags might not work:
9448 ** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
9449 ** BTREE_ZERODATA Used for SQL indices
9451 static int btreeCreateTable(Btree
*p
, Pgno
*piTable
, int createTabFlags
){
9452 BtShared
*pBt
= p
->pBt
;
9456 int ptfFlags
; /* Page-type flage for the root page of new table */
9458 assert( sqlite3BtreeHoldsMutex(p
) );
9459 assert( pBt
->inTransaction
==TRANS_WRITE
);
9460 assert( (pBt
->btsFlags
& BTS_READ_ONLY
)==0 );
9462 #ifdef SQLITE_OMIT_AUTOVACUUM
9463 rc
= allocateBtreePage(pBt
, &pRoot
, &pgnoRoot
, 1, 0);
9468 if( pBt
->autoVacuum
){
9469 Pgno pgnoMove
; /* Move a page here to make room for the root-page */
9470 MemPage
*pPageMove
; /* The page to move to. */
9472 /* Creating a new table may probably require moving an existing database
9473 ** to make room for the new tables root page. In case this page turns
9474 ** out to be an overflow page, delete all overflow page-map caches
9475 ** held by open cursors.
9477 invalidateAllOverflowCache(pBt
);
9479 /* Read the value of meta[3] from the database to determine where the
9480 ** root page of the new table should go. meta[3] is the largest root-page
9481 ** created so far, so the new root-page is (meta[3]+1).
9483 sqlite3BtreeGetMeta(p
, BTREE_LARGEST_ROOT_PAGE
, &pgnoRoot
);
9484 if( pgnoRoot
>btreePagecount(pBt
) ){
9485 return SQLITE_CORRUPT_BKPT
;
9489 /* The new root-page may not be allocated on a pointer-map page, or the
9490 ** PENDING_BYTE page.
9492 while( pgnoRoot
==PTRMAP_PAGENO(pBt
, pgnoRoot
) ||
9493 pgnoRoot
==PENDING_BYTE_PAGE(pBt
) ){
9496 assert( pgnoRoot
>=3 );
9498 /* Allocate a page. The page that currently resides at pgnoRoot will
9499 ** be moved to the allocated page (unless the allocated page happens
9500 ** to reside at pgnoRoot).
9502 rc
= allocateBtreePage(pBt
, &pPageMove
, &pgnoMove
, pgnoRoot
, BTALLOC_EXACT
);
9503 if( rc
!=SQLITE_OK
){
9507 if( pgnoMove
!=pgnoRoot
){
9508 /* pgnoRoot is the page that will be used for the root-page of
9509 ** the new table (assuming an error did not occur). But we were
9510 ** allocated pgnoMove. If required (i.e. if it was not allocated
9511 ** by extending the file), the current page at position pgnoMove
9512 ** is already journaled.
9517 /* Save the positions of any open cursors. This is required in
9518 ** case they are holding a reference to an xFetch reference
9519 ** corresponding to page pgnoRoot. */
9520 rc
= saveAllCursors(pBt
, 0, 0);
9521 releasePage(pPageMove
);
9522 if( rc
!=SQLITE_OK
){
9526 /* Move the page currently at pgnoRoot to pgnoMove. */
9527 rc
= btreeGetPage(pBt
, pgnoRoot
, &pRoot
, 0);
9528 if( rc
!=SQLITE_OK
){
9531 rc
= ptrmapGet(pBt
, pgnoRoot
, &eType
, &iPtrPage
);
9532 if( eType
==PTRMAP_ROOTPAGE
|| eType
==PTRMAP_FREEPAGE
){
9533 rc
= SQLITE_CORRUPT_BKPT
;
9535 if( rc
!=SQLITE_OK
){
9539 assert( eType
!=PTRMAP_ROOTPAGE
);
9540 assert( eType
!=PTRMAP_FREEPAGE
);
9541 rc
= relocatePage(pBt
, pRoot
, eType
, iPtrPage
, pgnoMove
, 0);
9544 /* Obtain the page at pgnoRoot */
9545 if( rc
!=SQLITE_OK
){
9548 rc
= btreeGetPage(pBt
, pgnoRoot
, &pRoot
, 0);
9549 if( rc
!=SQLITE_OK
){
9552 rc
= sqlite3PagerWrite(pRoot
->pDbPage
);
9553 if( rc
!=SQLITE_OK
){
9561 /* Update the pointer-map and meta-data with the new root-page number. */
9562 ptrmapPut(pBt
, pgnoRoot
, PTRMAP_ROOTPAGE
, 0, &rc
);
9568 /* When the new root page was allocated, page 1 was made writable in
9569 ** order either to increase the database filesize, or to decrement the
9570 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
9572 assert( sqlite3PagerIswriteable(pBt
->pPage1
->pDbPage
) );
9573 rc
= sqlite3BtreeUpdateMeta(p
, 4, pgnoRoot
);
9580 rc
= allocateBtreePage(pBt
, &pRoot
, &pgnoRoot
, 1, 0);
9584 assert( sqlite3PagerIswriteable(pRoot
->pDbPage
) );
9585 if( createTabFlags
& BTREE_INTKEY
){
9586 ptfFlags
= PTF_INTKEY
| PTF_LEAFDATA
| PTF_LEAF
;
9588 ptfFlags
= PTF_ZERODATA
| PTF_LEAF
;
9590 zeroPage(pRoot
, ptfFlags
);
9591 sqlite3PagerUnref(pRoot
->pDbPage
);
9592 assert( (pBt
->openFlags
& BTREE_SINGLE
)==0 || pgnoRoot
==2 );
9593 *piTable
= pgnoRoot
;
9596 int sqlite3BtreeCreateTable(Btree
*p
, Pgno
*piTable
, int flags
){
9598 sqlite3BtreeEnter(p
);
9599 rc
= btreeCreateTable(p
, piTable
, flags
);
9600 sqlite3BtreeLeave(p
);
9605 ** Erase the given database page and all its children. Return
9606 ** the page to the freelist.
9608 static int clearDatabasePage(
9609 BtShared
*pBt
, /* The BTree that contains the table */
9610 Pgno pgno
, /* Page number to clear */
9611 int freePageFlag
, /* Deallocate page if true */
9612 i64
*pnChange
/* Add number of Cells freed to this counter */
9616 unsigned char *pCell
;
9621 assert( sqlite3_mutex_held(pBt
->mutex
) );
9622 if( pgno
>btreePagecount(pBt
) ){
9623 return SQLITE_CORRUPT_BKPT
;
9625 rc
= getAndInitPage(pBt
, pgno
, &pPage
, 0, 0);
9627 if( (pBt
->openFlags
& BTREE_SINGLE
)==0
9628 && sqlite3PagerPageRefcount(pPage
->pDbPage
) != (1 + (pgno
==1))
9630 rc
= SQLITE_CORRUPT_BKPT
;
9631 goto cleardatabasepage_out
;
9633 hdr
= pPage
->hdrOffset
;
9634 for(i
=0; i
<pPage
->nCell
; i
++){
9635 pCell
= findCell(pPage
, i
);
9637 rc
= clearDatabasePage(pBt
, get4byte(pCell
), 1, pnChange
);
9638 if( rc
) goto cleardatabasepage_out
;
9640 BTREE_CLEAR_CELL(rc
, pPage
, pCell
, info
);
9641 if( rc
) goto cleardatabasepage_out
;
9644 rc
= clearDatabasePage(pBt
, get4byte(&pPage
->aData
[hdr
+8]), 1, pnChange
);
9645 if( rc
) goto cleardatabasepage_out
;
9646 if( pPage
->intKey
) pnChange
= 0;
9649 testcase( !pPage
->intKey
);
9650 *pnChange
+= pPage
->nCell
;
9653 freePage(pPage
, &rc
);
9654 }else if( (rc
= sqlite3PagerWrite(pPage
->pDbPage
))==0 ){
9655 zeroPage(pPage
, pPage
->aData
[hdr
] | PTF_LEAF
);
9658 cleardatabasepage_out
:
9664 ** Delete all information from a single table in the database. iTable is
9665 ** the page number of the root of the table. After this routine returns,
9666 ** the root page is empty, but still exists.
9668 ** This routine will fail with SQLITE_LOCKED if there are any open
9669 ** read cursors on the table. Open write cursors are moved to the
9670 ** root of the table.
9672 ** If pnChange is not NULL, then the integer value pointed to by pnChange
9673 ** is incremented by the number of entries in the table.
9675 int sqlite3BtreeClearTable(Btree
*p
, int iTable
, i64
*pnChange
){
9677 BtShared
*pBt
= p
->pBt
;
9678 sqlite3BtreeEnter(p
);
9679 assert( p
->inTrans
==TRANS_WRITE
);
9681 rc
= saveAllCursors(pBt
, (Pgno
)iTable
, 0);
9683 if( SQLITE_OK
==rc
){
9684 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
9685 ** is the root of a table b-tree - if it is not, the following call is
9687 if( p
->hasIncrblobCur
){
9688 invalidateIncrblobCursors(p
, (Pgno
)iTable
, 0, 1);
9690 rc
= clearDatabasePage(pBt
, (Pgno
)iTable
, 0, pnChange
);
9692 sqlite3BtreeLeave(p
);
9697 ** Delete all information from the single table that pCur is open on.
9699 ** This routine only work for pCur on an ephemeral table.
9701 int sqlite3BtreeClearTableOfCursor(BtCursor
*pCur
){
9702 return sqlite3BtreeClearTable(pCur
->pBtree
, pCur
->pgnoRoot
, 0);
9706 ** Erase all information in a table and add the root of the table to
9707 ** the freelist. Except, the root of the principle table (the one on
9708 ** page 1) is never added to the freelist.
9710 ** This routine will fail with SQLITE_LOCKED if there are any open
9711 ** cursors on the table.
9713 ** If AUTOVACUUM is enabled and the page at iTable is not the last
9714 ** root page in the database file, then the last root page
9715 ** in the database file is moved into the slot formerly occupied by
9716 ** iTable and that last slot formerly occupied by the last root page
9717 ** is added to the freelist instead of iTable. In this say, all
9718 ** root pages are kept at the beginning of the database file, which
9719 ** is necessary for AUTOVACUUM to work right. *piMoved is set to the
9720 ** page number that used to be the last root page in the file before
9721 ** the move. If no page gets moved, *piMoved is set to 0.
9722 ** The last root page is recorded in meta[3] and the value of
9723 ** meta[3] is updated by this procedure.
9725 static int btreeDropTable(Btree
*p
, Pgno iTable
, int *piMoved
){
9728 BtShared
*pBt
= p
->pBt
;
9730 assert( sqlite3BtreeHoldsMutex(p
) );
9731 assert( p
->inTrans
==TRANS_WRITE
);
9732 assert( iTable
>=2 );
9733 if( iTable
>btreePagecount(pBt
) ){
9734 return SQLITE_CORRUPT_BKPT
;
9737 rc
= sqlite3BtreeClearTable(p
, iTable
, 0);
9739 rc
= btreeGetPage(pBt
, (Pgno
)iTable
, &pPage
, 0);
9747 #ifdef SQLITE_OMIT_AUTOVACUUM
9748 freePage(pPage
, &rc
);
9751 if( pBt
->autoVacuum
){
9753 sqlite3BtreeGetMeta(p
, BTREE_LARGEST_ROOT_PAGE
, &maxRootPgno
);
9755 if( iTable
==maxRootPgno
){
9756 /* If the table being dropped is the table with the largest root-page
9757 ** number in the database, put the root page on the free list.
9759 freePage(pPage
, &rc
);
9761 if( rc
!=SQLITE_OK
){
9765 /* The table being dropped does not have the largest root-page
9766 ** number in the database. So move the page that does into the
9767 ** gap left by the deleted root-page.
9771 rc
= btreeGetPage(pBt
, maxRootPgno
, &pMove
, 0);
9772 if( rc
!=SQLITE_OK
){
9775 rc
= relocatePage(pBt
, pMove
, PTRMAP_ROOTPAGE
, 0, iTable
, 0);
9777 if( rc
!=SQLITE_OK
){
9781 rc
= btreeGetPage(pBt
, maxRootPgno
, &pMove
, 0);
9782 freePage(pMove
, &rc
);
9784 if( rc
!=SQLITE_OK
){
9787 *piMoved
= maxRootPgno
;
9790 /* Set the new 'max-root-page' value in the database header. This
9791 ** is the old value less one, less one more if that happens to
9792 ** be a root-page number, less one again if that is the
9793 ** PENDING_BYTE_PAGE.
9796 while( maxRootPgno
==PENDING_BYTE_PAGE(pBt
)
9797 || PTRMAP_ISPAGE(pBt
, maxRootPgno
) ){
9800 assert( maxRootPgno
!=PENDING_BYTE_PAGE(pBt
) );
9802 rc
= sqlite3BtreeUpdateMeta(p
, 4, maxRootPgno
);
9804 freePage(pPage
, &rc
);
9810 int sqlite3BtreeDropTable(Btree
*p
, int iTable
, int *piMoved
){
9812 sqlite3BtreeEnter(p
);
9813 rc
= btreeDropTable(p
, iTable
, piMoved
);
9814 sqlite3BtreeLeave(p
);
9820 ** This function may only be called if the b-tree connection already
9821 ** has a read or write transaction open on the database.
9823 ** Read the meta-information out of a database file. Meta[0]
9824 ** is the number of free pages currently in the database. Meta[1]
9825 ** through meta[15] are available for use by higher layers. Meta[0]
9826 ** is read-only, the others are read/write.
9828 ** The schema layer numbers meta values differently. At the schema
9829 ** layer (and the SetCookie and ReadCookie opcodes) the number of
9830 ** free pages is not visible. So Cookie[0] is the same as Meta[1].
9832 ** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead
9833 ** of reading the value out of the header, it instead loads the "DataVersion"
9834 ** from the pager. The BTREE_DATA_VERSION value is not actually stored in the
9835 ** database file. It is a number computed by the pager. But its access
9836 ** pattern is the same as header meta values, and so it is convenient to
9837 ** read it from this routine.
9839 void sqlite3BtreeGetMeta(Btree
*p
, int idx
, u32
*pMeta
){
9840 BtShared
*pBt
= p
->pBt
;
9842 sqlite3BtreeEnter(p
);
9843 assert( p
->inTrans
>TRANS_NONE
);
9844 assert( SQLITE_OK
==querySharedCacheTableLock(p
, SCHEMA_ROOT
, READ_LOCK
) );
9845 assert( pBt
->pPage1
);
9846 assert( idx
>=0 && idx
<=15 );
9848 if( idx
==BTREE_DATA_VERSION
){
9849 *pMeta
= sqlite3PagerDataVersion(pBt
->pPager
) + p
->iBDataVersion
;
9851 *pMeta
= get4byte(&pBt
->pPage1
->aData
[36 + idx
*4]);
9854 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
9855 ** database, mark the database as read-only. */
9856 #ifdef SQLITE_OMIT_AUTOVACUUM
9857 if( idx
==BTREE_LARGEST_ROOT_PAGE
&& *pMeta
>0 ){
9858 pBt
->btsFlags
|= BTS_READ_ONLY
;
9862 sqlite3BtreeLeave(p
);
9866 ** Write meta-information back into the database. Meta[0] is
9867 ** read-only and may not be written.
9869 int sqlite3BtreeUpdateMeta(Btree
*p
, int idx
, u32 iMeta
){
9870 BtShared
*pBt
= p
->pBt
;
9873 assert( idx
>=1 && idx
<=15 );
9874 sqlite3BtreeEnter(p
);
9875 assert( p
->inTrans
==TRANS_WRITE
);
9876 assert( pBt
->pPage1
!=0 );
9877 pP1
= pBt
->pPage1
->aData
;
9878 rc
= sqlite3PagerWrite(pBt
->pPage1
->pDbPage
);
9879 if( rc
==SQLITE_OK
){
9880 put4byte(&pP1
[36 + idx
*4], iMeta
);
9881 #ifndef SQLITE_OMIT_AUTOVACUUM
9882 if( idx
==BTREE_INCR_VACUUM
){
9883 assert( pBt
->autoVacuum
|| iMeta
==0 );
9884 assert( iMeta
==0 || iMeta
==1 );
9885 pBt
->incrVacuum
= (u8
)iMeta
;
9889 sqlite3BtreeLeave(p
);
9894 ** The first argument, pCur, is a cursor opened on some b-tree. Count the
9895 ** number of entries in the b-tree and write the result to *pnEntry.
9897 ** SQLITE_OK is returned if the operation is successfully executed.
9898 ** Otherwise, if an error is encountered (i.e. an IO error or database
9899 ** corruption) an SQLite error code is returned.
9901 int sqlite3BtreeCount(sqlite3
*db
, BtCursor
*pCur
, i64
*pnEntry
){
9902 i64 nEntry
= 0; /* Value to return in *pnEntry */
9903 int rc
; /* Return code */
9905 rc
= moveToRoot(pCur
);
9906 if( rc
==SQLITE_EMPTY
){
9911 /* Unless an error occurs, the following loop runs one iteration for each
9912 ** page in the B-Tree structure (not including overflow pages).
9914 while( rc
==SQLITE_OK
&& !AtomicLoad(&db
->u1
.isInterrupted
) ){
9915 int iIdx
; /* Index of child node in parent */
9916 MemPage
*pPage
; /* Current page of the b-tree */
9918 /* If this is a leaf page or the tree is not an int-key tree, then
9919 ** this page contains countable entries. Increment the entry counter
9922 pPage
= pCur
->pPage
;
9923 if( pPage
->leaf
|| !pPage
->intKey
){
9924 nEntry
+= pPage
->nCell
;
9927 /* pPage is a leaf node. This loop navigates the cursor so that it
9928 ** points to the first interior cell that it points to the parent of
9929 ** the next page in the tree that has not yet been visited. The
9930 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
9931 ** of the page, or to the number of cells in the page if the next page
9932 ** to visit is the right-child of its parent.
9934 ** If all pages in the tree have been visited, return SQLITE_OK to the
9939 if( pCur
->iPage
==0 ){
9940 /* All pages of the b-tree have been visited. Return successfully. */
9942 return moveToRoot(pCur
);
9945 }while ( pCur
->ix
>=pCur
->pPage
->nCell
);
9948 pPage
= pCur
->pPage
;
9951 /* Descend to the child node of the cell that the cursor currently
9952 ** points at. This is the right-child if (iIdx==pPage->nCell).
9955 if( iIdx
==pPage
->nCell
){
9956 rc
= moveToChild(pCur
, get4byte(&pPage
->aData
[pPage
->hdrOffset
+8]));
9958 rc
= moveToChild(pCur
, get4byte(findCell(pPage
, iIdx
)));
9962 /* An error has occurred. Return an error code. */
9967 ** Return the pager associated with a BTree. This routine is used for
9968 ** testing and debugging only.
9970 Pager
*sqlite3BtreePager(Btree
*p
){
9971 return p
->pBt
->pPager
;
9974 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
9976 ** Append a message to the error message string.
9978 static void checkAppendMsg(
9979 IntegrityCk
*pCheck
,
9980 const char *zFormat
,
9984 if( !pCheck
->mxErr
) return;
9987 va_start(ap
, zFormat
);
9988 if( pCheck
->errMsg
.nChar
){
9989 sqlite3_str_append(&pCheck
->errMsg
, "\n", 1);
9992 sqlite3_str_appendf(&pCheck
->errMsg
, pCheck
->zPfx
, pCheck
->v1
, pCheck
->v2
);
9994 sqlite3_str_vappendf(&pCheck
->errMsg
, zFormat
, ap
);
9996 if( pCheck
->errMsg
.accError
==SQLITE_NOMEM
){
9997 pCheck
->bOomFault
= 1;
10000 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
10002 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
10005 ** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
10006 ** corresponds to page iPg is already set.
10008 static int getPageReferenced(IntegrityCk
*pCheck
, Pgno iPg
){
10009 assert( iPg
<=pCheck
->nPage
&& sizeof(pCheck
->aPgRef
[0])==1 );
10010 return (pCheck
->aPgRef
[iPg
/8] & (1 << (iPg
& 0x07)));
10014 ** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
10016 static void setPageReferenced(IntegrityCk
*pCheck
, Pgno iPg
){
10017 assert( iPg
<=pCheck
->nPage
&& sizeof(pCheck
->aPgRef
[0])==1 );
10018 pCheck
->aPgRef
[iPg
/8] |= (1 << (iPg
& 0x07));
10023 ** Add 1 to the reference count for page iPage. If this is the second
10024 ** reference to the page, add an error message to pCheck->zErrMsg.
10025 ** Return 1 if there are 2 or more references to the page and 0 if
10026 ** if this is the first reference to the page.
10028 ** Also check that the page number is in bounds.
10030 static int checkRef(IntegrityCk
*pCheck
, Pgno iPage
){
10031 if( iPage
>pCheck
->nPage
|| iPage
==0 ){
10032 checkAppendMsg(pCheck
, "invalid page number %d", iPage
);
10035 if( getPageReferenced(pCheck
, iPage
) ){
10036 checkAppendMsg(pCheck
, "2nd reference to page %d", iPage
);
10039 if( AtomicLoad(&pCheck
->db
->u1
.isInterrupted
) ) return 1;
10040 setPageReferenced(pCheck
, iPage
);
10044 #ifndef SQLITE_OMIT_AUTOVACUUM
10046 ** Check that the entry in the pointer-map for page iChild maps to
10047 ** page iParent, pointer type ptrType. If not, append an error message
10050 static void checkPtrmap(
10051 IntegrityCk
*pCheck
, /* Integrity check context */
10052 Pgno iChild
, /* Child page number */
10053 u8 eType
, /* Expected pointer map type */
10054 Pgno iParent
/* Expected pointer map parent page number */
10058 Pgno iPtrmapParent
;
10060 rc
= ptrmapGet(pCheck
->pBt
, iChild
, &ePtrmapType
, &iPtrmapParent
);
10061 if( rc
!=SQLITE_OK
){
10062 if( rc
==SQLITE_NOMEM
|| rc
==SQLITE_IOERR_NOMEM
) pCheck
->bOomFault
= 1;
10063 checkAppendMsg(pCheck
, "Failed to read ptrmap key=%d", iChild
);
10067 if( ePtrmapType
!=eType
|| iPtrmapParent
!=iParent
){
10068 checkAppendMsg(pCheck
,
10069 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
10070 iChild
, eType
, iParent
, ePtrmapType
, iPtrmapParent
);
10076 ** Check the integrity of the freelist or of an overflow page list.
10077 ** Verify that the number of pages on the list is N.
10079 static void checkList(
10080 IntegrityCk
*pCheck
, /* Integrity checking context */
10081 int isFreeList
, /* True for a freelist. False for overflow page list */
10082 Pgno iPage
, /* Page number for first page in the list */
10083 u32 N
/* Expected number of pages in the list */
10087 int nErrAtStart
= pCheck
->nErr
;
10088 while( iPage
!=0 && pCheck
->mxErr
){
10090 unsigned char *pOvflData
;
10091 if( checkRef(pCheck
, iPage
) ) break;
10093 if( sqlite3PagerGet(pCheck
->pPager
, (Pgno
)iPage
, &pOvflPage
, 0) ){
10094 checkAppendMsg(pCheck
, "failed to get page %d", iPage
);
10097 pOvflData
= (unsigned char *)sqlite3PagerGetData(pOvflPage
);
10099 u32 n
= (u32
)get4byte(&pOvflData
[4]);
10100 #ifndef SQLITE_OMIT_AUTOVACUUM
10101 if( pCheck
->pBt
->autoVacuum
){
10102 checkPtrmap(pCheck
, iPage
, PTRMAP_FREEPAGE
, 0);
10105 if( n
>pCheck
->pBt
->usableSize
/4-2 ){
10106 checkAppendMsg(pCheck
,
10107 "freelist leaf count too big on page %d", iPage
);
10110 for(i
=0; i
<(int)n
; i
++){
10111 Pgno iFreePage
= get4byte(&pOvflData
[8+i
*4]);
10112 #ifndef SQLITE_OMIT_AUTOVACUUM
10113 if( pCheck
->pBt
->autoVacuum
){
10114 checkPtrmap(pCheck
, iFreePage
, PTRMAP_FREEPAGE
, 0);
10117 checkRef(pCheck
, iFreePage
);
10122 #ifndef SQLITE_OMIT_AUTOVACUUM
10124 /* If this database supports auto-vacuum and iPage is not the last
10125 ** page in this overflow list, check that the pointer-map entry for
10126 ** the following page matches iPage.
10128 if( pCheck
->pBt
->autoVacuum
&& N
>0 ){
10129 i
= get4byte(pOvflData
);
10130 checkPtrmap(pCheck
, i
, PTRMAP_OVERFLOW2
, iPage
);
10134 iPage
= get4byte(pOvflData
);
10135 sqlite3PagerUnref(pOvflPage
);
10137 if( N
&& nErrAtStart
==pCheck
->nErr
){
10138 checkAppendMsg(pCheck
,
10139 "%s is %d but should be %d",
10140 isFreeList
? "size" : "overflow list length",
10141 expected
-N
, expected
);
10144 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
10147 ** An implementation of a min-heap.
10149 ** aHeap[0] is the number of elements on the heap. aHeap[1] is the
10150 ** root element. The daughter nodes of aHeap[N] are aHeap[N*2]
10151 ** and aHeap[N*2+1].
10153 ** The heap property is this: Every node is less than or equal to both
10154 ** of its daughter nodes. A consequence of the heap property is that the
10155 ** root node aHeap[1] is always the minimum value currently in the heap.
10157 ** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto
10158 ** the heap, preserving the heap property. The btreeHeapPull() routine
10159 ** removes the root element from the heap (the minimum value in the heap)
10160 ** and then moves other nodes around as necessary to preserve the heap
10163 ** This heap is used for cell overlap and coverage testing. Each u32
10164 ** entry represents the span of a cell or freeblock on a btree page.
10165 ** The upper 16 bits are the index of the first byte of a range and the
10166 ** lower 16 bits are the index of the last byte of that range.
10168 static void btreeHeapInsert(u32
*aHeap
, u32 x
){
10169 u32 j
, i
= ++aHeap
[0];
10171 while( (j
= i
/2)>0 && aHeap
[j
]>aHeap
[i
] ){
10173 aHeap
[j
] = aHeap
[i
];
10178 static int btreeHeapPull(u32
*aHeap
, u32
*pOut
){
10180 if( (x
= aHeap
[0])==0 ) return 0;
10182 aHeap
[1] = aHeap
[x
];
10183 aHeap
[x
] = 0xffffffff;
10186 while( (j
= i
*2)<=aHeap
[0] ){
10187 if( aHeap
[j
]>aHeap
[j
+1] ) j
++;
10188 if( aHeap
[i
]<aHeap
[j
] ) break;
10190 aHeap
[i
] = aHeap
[j
];
10197 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
10199 ** Do various sanity checks on a single page of a tree. Return
10200 ** the tree depth. Root pages return 0. Parents of root pages
10201 ** return 1, and so forth.
10203 ** These checks are done:
10205 ** 1. Make sure that cells and freeblocks do not overlap
10206 ** but combine to completely cover the page.
10207 ** 2. Make sure integer cell keys are in order.
10208 ** 3. Check the integrity of overflow pages.
10209 ** 4. Recursively call checkTreePage on all children.
10210 ** 5. Verify that the depth of all children is the same.
10212 static int checkTreePage(
10213 IntegrityCk
*pCheck
, /* Context for the sanity check */
10214 Pgno iPage
, /* Page number of the page to check */
10215 i64
*piMinKey
, /* Write minimum integer primary key here */
10216 i64 maxKey
/* Error if integer primary key greater than this */
10218 MemPage
*pPage
= 0; /* The page being analyzed */
10219 int i
; /* Loop counter */
10220 int rc
; /* Result code from subroutine call */
10221 int depth
= -1, d2
; /* Depth of a subtree */
10222 int pgno
; /* Page number */
10223 int nFrag
; /* Number of fragmented bytes on the page */
10224 int hdr
; /* Offset to the page header */
10225 int cellStart
; /* Offset to the start of the cell pointer array */
10226 int nCell
; /* Number of cells */
10227 int doCoverageCheck
= 1; /* True if cell coverage checking should be done */
10228 int keyCanBeEqual
= 1; /* True if IPK can be equal to maxKey
10229 ** False if IPK must be strictly less than maxKey */
10230 u8
*data
; /* Page content */
10231 u8
*pCell
; /* Cell content */
10232 u8
*pCellIdx
; /* Next element of the cell pointer array */
10233 BtShared
*pBt
; /* The BtShared object that owns pPage */
10234 u32 pc
; /* Address of a cell */
10235 u32 usableSize
; /* Usable size of the page */
10236 u32 contentOffset
; /* Offset to the start of the cell content area */
10237 u32
*heap
= 0; /* Min-heap used for checking cell coverage */
10238 u32 x
, prev
= 0; /* Next and previous entry on the min-heap */
10239 const char *saved_zPfx
= pCheck
->zPfx
;
10240 int saved_v1
= pCheck
->v1
;
10241 int saved_v2
= pCheck
->v2
;
10242 u8 savedIsInit
= 0;
10244 /* Check that the page exists
10247 usableSize
= pBt
->usableSize
;
10248 if( iPage
==0 ) return 0;
10249 if( checkRef(pCheck
, iPage
) ) return 0;
10250 pCheck
->zPfx
= "Page %u: ";
10251 pCheck
->v1
= iPage
;
10252 if( (rc
= btreeGetPage(pBt
, iPage
, &pPage
, 0))!=0 ){
10253 checkAppendMsg(pCheck
,
10254 "unable to get the page. error code=%d", rc
);
10258 /* Clear MemPage.isInit to make sure the corruption detection code in
10259 ** btreeInitPage() is executed. */
10260 savedIsInit
= pPage
->isInit
;
10262 if( (rc
= btreeInitPage(pPage
))!=0 ){
10263 assert( rc
==SQLITE_CORRUPT
); /* The only possible error from InitPage */
10264 checkAppendMsg(pCheck
,
10265 "btreeInitPage() returns error code %d", rc
);
10268 if( (rc
= btreeComputeFreeSpace(pPage
))!=0 ){
10269 assert( rc
==SQLITE_CORRUPT
);
10270 checkAppendMsg(pCheck
, "free space corruption", rc
);
10273 data
= pPage
->aData
;
10274 hdr
= pPage
->hdrOffset
;
10276 /* Set up for cell analysis */
10277 pCheck
->zPfx
= "On tree page %u cell %d: ";
10278 contentOffset
= get2byteNotZero(&data
[hdr
+5]);
10279 assert( contentOffset
<=usableSize
); /* Enforced by btreeInitPage() */
10281 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
10282 ** number of cells on the page. */
10283 nCell
= get2byte(&data
[hdr
+3]);
10284 assert( pPage
->nCell
==nCell
);
10286 /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
10287 ** immediately follows the b-tree page header. */
10288 cellStart
= hdr
+ 12 - 4*pPage
->leaf
;
10289 assert( pPage
->aCellIdx
==&data
[cellStart
] );
10290 pCellIdx
= &data
[cellStart
+ 2*(nCell
-1)];
10292 if( !pPage
->leaf
){
10293 /* Analyze the right-child page of internal pages */
10294 pgno
= get4byte(&data
[hdr
+8]);
10295 #ifndef SQLITE_OMIT_AUTOVACUUM
10296 if( pBt
->autoVacuum
){
10297 pCheck
->zPfx
= "On page %u at right child: ";
10298 checkPtrmap(pCheck
, pgno
, PTRMAP_BTREE
, iPage
);
10301 depth
= checkTreePage(pCheck
, pgno
, &maxKey
, maxKey
);
10304 /* For leaf pages, the coverage check will occur in the same loop
10305 ** as the other cell checks, so initialize the heap. */
10306 heap
= pCheck
->heap
;
10310 /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
10311 ** integer offsets to the cell contents. */
10312 for(i
=nCell
-1; i
>=0 && pCheck
->mxErr
; i
--){
10315 /* Check cell size */
10317 assert( pCellIdx
==&data
[cellStart
+ i
*2] );
10318 pc
= get2byteAligned(pCellIdx
);
10320 if( pc
<contentOffset
|| pc
>usableSize
-4 ){
10321 checkAppendMsg(pCheck
, "Offset %d out of range %d..%d",
10322 pc
, contentOffset
, usableSize
-4);
10323 doCoverageCheck
= 0;
10327 pPage
->xParseCell(pPage
, pCell
, &info
);
10328 if( pc
+info
.nSize
>usableSize
){
10329 checkAppendMsg(pCheck
, "Extends off end of page");
10330 doCoverageCheck
= 0;
10334 /* Check for integer primary key out of range */
10335 if( pPage
->intKey
){
10336 if( keyCanBeEqual
? (info
.nKey
> maxKey
) : (info
.nKey
>= maxKey
) ){
10337 checkAppendMsg(pCheck
, "Rowid %lld out of order", info
.nKey
);
10339 maxKey
= info
.nKey
;
10340 keyCanBeEqual
= 0; /* Only the first key on the page may ==maxKey */
10343 /* Check the content overflow list */
10344 if( info
.nPayload
>info
.nLocal
){
10345 u32 nPage
; /* Number of pages on the overflow chain */
10346 Pgno pgnoOvfl
; /* First page of the overflow chain */
10347 assert( pc
+ info
.nSize
- 4 <= usableSize
);
10348 nPage
= (info
.nPayload
- info
.nLocal
+ usableSize
- 5)/(usableSize
- 4);
10349 pgnoOvfl
= get4byte(&pCell
[info
.nSize
- 4]);
10350 #ifndef SQLITE_OMIT_AUTOVACUUM
10351 if( pBt
->autoVacuum
){
10352 checkPtrmap(pCheck
, pgnoOvfl
, PTRMAP_OVERFLOW1
, iPage
);
10355 checkList(pCheck
, 0, pgnoOvfl
, nPage
);
10358 if( !pPage
->leaf
){
10359 /* Check sanity of left child page for internal pages */
10360 pgno
= get4byte(pCell
);
10361 #ifndef SQLITE_OMIT_AUTOVACUUM
10362 if( pBt
->autoVacuum
){
10363 checkPtrmap(pCheck
, pgno
, PTRMAP_BTREE
, iPage
);
10366 d2
= checkTreePage(pCheck
, pgno
, &maxKey
, maxKey
);
10369 checkAppendMsg(pCheck
, "Child page depth differs");
10373 /* Populate the coverage-checking heap for leaf pages */
10374 btreeHeapInsert(heap
, (pc
<<16)|(pc
+info
.nSize
-1));
10377 *piMinKey
= maxKey
;
10379 /* Check for complete coverage of the page
10382 if( doCoverageCheck
&& pCheck
->mxErr
>0 ){
10383 /* For leaf pages, the min-heap has already been initialized and the
10384 ** cells have already been inserted. But for internal pages, that has
10385 ** not yet been done, so do it now */
10386 if( !pPage
->leaf
){
10387 heap
= pCheck
->heap
;
10389 for(i
=nCell
-1; i
>=0; i
--){
10391 pc
= get2byteAligned(&data
[cellStart
+i
*2]);
10392 size
= pPage
->xCellSize(pPage
, &data
[pc
]);
10393 btreeHeapInsert(heap
, (pc
<<16)|(pc
+size
-1));
10396 /* Add the freeblocks to the min-heap
10398 ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
10399 ** is the offset of the first freeblock, or zero if there are no
10400 ** freeblocks on the page.
10402 i
= get2byte(&data
[hdr
+1]);
10405 assert( (u32
)i
<=usableSize
-4 ); /* Enforced by btreeComputeFreeSpace() */
10406 size
= get2byte(&data
[i
+2]);
10407 assert( (u32
)(i
+size
)<=usableSize
); /* due to btreeComputeFreeSpace() */
10408 btreeHeapInsert(heap
, (((u32
)i
)<<16)|(i
+size
-1));
10409 /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
10410 ** big-endian integer which is the offset in the b-tree page of the next
10411 ** freeblock in the chain, or zero if the freeblock is the last on the
10413 j
= get2byte(&data
[i
]);
10414 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
10415 ** increasing offset. */
10416 assert( j
==0 || j
>i
+size
); /* Enforced by btreeComputeFreeSpace() */
10417 assert( (u32
)j
<=usableSize
-4 ); /* Enforced by btreeComputeFreeSpace() */
10420 /* Analyze the min-heap looking for overlap between cells and/or
10421 ** freeblocks, and counting the number of untracked bytes in nFrag.
10423 ** Each min-heap entry is of the form: (start_address<<16)|end_address.
10424 ** There is an implied first entry the covers the page header, the cell
10425 ** pointer index, and the gap between the cell pointer index and the start
10426 ** of cell content.
10428 ** The loop below pulls entries from the min-heap in order and compares
10429 ** the start_address against the previous end_address. If there is an
10430 ** overlap, that means bytes are used multiple times. If there is a gap,
10431 ** that gap is added to the fragmentation count.
10434 prev
= contentOffset
- 1; /* Implied first min-heap entry */
10435 while( btreeHeapPull(heap
,&x
) ){
10436 if( (prev
&0xffff)>=(x
>>16) ){
10437 checkAppendMsg(pCheck
,
10438 "Multiple uses for byte %u of page %u", x
>>16, iPage
);
10441 nFrag
+= (x
>>16) - (prev
&0xffff) - 1;
10445 nFrag
+= usableSize
- (prev
&0xffff) - 1;
10446 /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
10447 ** is stored in the fifth field of the b-tree page header.
10448 ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
10449 ** number of fragmented free bytes within the cell content area.
10451 if( heap
[0]==0 && nFrag
!=data
[hdr
+7] ){
10452 checkAppendMsg(pCheck
,
10453 "Fragmentation of %d bytes reported as %d on page %u",
10454 nFrag
, data
[hdr
+7], iPage
);
10459 if( !doCoverageCheck
) pPage
->isInit
= savedIsInit
;
10460 releasePage(pPage
);
10461 pCheck
->zPfx
= saved_zPfx
;
10462 pCheck
->v1
= saved_v1
;
10463 pCheck
->v2
= saved_v2
;
10466 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
10468 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
10470 ** This routine does a complete check of the given BTree file. aRoot[] is
10471 ** an array of pages numbers were each page number is the root page of
10472 ** a table. nRoot is the number of entries in aRoot.
10474 ** A read-only or read-write transaction must be opened before calling
10477 ** Write the number of error seen in *pnErr. Except for some memory
10478 ** allocation errors, an error message held in memory obtained from
10479 ** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
10480 ** returned. If a memory allocation error occurs, NULL is returned.
10482 ** If the first entry in aRoot[] is 0, that indicates that the list of
10483 ** root pages is incomplete. This is a "partial integrity-check". This
10484 ** happens when performing an integrity check on a single table. The
10485 ** zero is skipped, of course. But in addition, the freelist checks
10486 ** and the checks to make sure every page is referenced are also skipped,
10487 ** since obviously it is not possible to know which pages are covered by
10488 ** the unverified btrees. Except, if aRoot[1] is 1, then the freelist
10489 ** checks are still performed.
10491 char *sqlite3BtreeIntegrityCheck(
10492 sqlite3
*db
, /* Database connection that is running the check */
10493 Btree
*p
, /* The btree to be checked */
10494 Pgno
*aRoot
, /* An array of root pages numbers for individual trees */
10495 int nRoot
, /* Number of entries in aRoot[] */
10496 int mxErr
, /* Stop reporting errors after this many */
10497 int *pnErr
/* Write number of errors seen to this variable */
10500 IntegrityCk sCheck
;
10501 BtShared
*pBt
= p
->pBt
;
10502 u64 savedDbFlags
= pBt
->db
->flags
;
10504 int bPartial
= 0; /* True if not checking all btrees */
10505 int bCkFreelist
= 1; /* True to scan the freelist */
10506 VVA_ONLY( int nRef
);
10509 /* aRoot[0]==0 means this is a partial check */
10513 if( aRoot
[1]!=1 ) bCkFreelist
= 0;
10516 sqlite3BtreeEnter(p
);
10517 assert( p
->inTrans
>TRANS_NONE
&& pBt
->inTransaction
>TRANS_NONE
);
10518 VVA_ONLY( nRef
= sqlite3PagerRefcount(pBt
->pPager
) );
10522 sCheck
.pPager
= pBt
->pPager
;
10523 sCheck
.nPage
= btreePagecount(sCheck
.pBt
);
10524 sCheck
.mxErr
= mxErr
;
10526 sCheck
.bOomFault
= 0;
10532 sqlite3StrAccumInit(&sCheck
.errMsg
, 0, zErr
, sizeof(zErr
), SQLITE_MAX_LENGTH
);
10533 sCheck
.errMsg
.printfFlags
= SQLITE_PRINTF_INTERNAL
;
10534 if( sCheck
.nPage
==0 ){
10535 goto integrity_ck_cleanup
;
10538 sCheck
.aPgRef
= sqlite3MallocZero((sCheck
.nPage
/ 8)+ 1);
10539 if( !sCheck
.aPgRef
){
10540 sCheck
.bOomFault
= 1;
10541 goto integrity_ck_cleanup
;
10543 sCheck
.heap
= (u32
*)sqlite3PageMalloc( pBt
->pageSize
);
10544 if( sCheck
.heap
==0 ){
10545 sCheck
.bOomFault
= 1;
10546 goto integrity_ck_cleanup
;
10549 i
= PENDING_BYTE_PAGE(pBt
);
10550 if( i
<=sCheck
.nPage
) setPageReferenced(&sCheck
, i
);
10552 /* Check the integrity of the freelist
10555 sCheck
.zPfx
= "Main freelist: ";
10556 checkList(&sCheck
, 1, get4byte(&pBt
->pPage1
->aData
[32]),
10557 get4byte(&pBt
->pPage1
->aData
[36]));
10561 /* Check all the tables.
10563 #ifndef SQLITE_OMIT_AUTOVACUUM
10565 if( pBt
->autoVacuum
){
10568 for(i
=0; (int)i
<nRoot
; i
++) if( mx
<aRoot
[i
] ) mx
= aRoot
[i
];
10569 mxInHdr
= get4byte(&pBt
->pPage1
->aData
[52]);
10571 checkAppendMsg(&sCheck
,
10572 "max rootpage (%d) disagrees with header (%d)",
10576 }else if( get4byte(&pBt
->pPage1
->aData
[64])!=0 ){
10577 checkAppendMsg(&sCheck
,
10578 "incremental_vacuum enabled with a max rootpage of zero"
10583 testcase( pBt
->db
->flags
& SQLITE_CellSizeCk
);
10584 pBt
->db
->flags
&= ~(u64
)SQLITE_CellSizeCk
;
10585 for(i
=0; (int)i
<nRoot
&& sCheck
.mxErr
; i
++){
10587 if( aRoot
[i
]==0 ) continue;
10588 #ifndef SQLITE_OMIT_AUTOVACUUM
10589 if( pBt
->autoVacuum
&& aRoot
[i
]>1 && !bPartial
){
10590 checkPtrmap(&sCheck
, aRoot
[i
], PTRMAP_ROOTPAGE
, 0);
10593 checkTreePage(&sCheck
, aRoot
[i
], ¬Used
, LARGEST_INT64
);
10595 pBt
->db
->flags
= savedDbFlags
;
10597 /* Make sure every page in the file is referenced
10600 for(i
=1; i
<=sCheck
.nPage
&& sCheck
.mxErr
; i
++){
10601 #ifdef SQLITE_OMIT_AUTOVACUUM
10602 if( getPageReferenced(&sCheck
, i
)==0 ){
10603 checkAppendMsg(&sCheck
, "Page %d is never used", i
);
10606 /* If the database supports auto-vacuum, make sure no tables contain
10607 ** references to pointer-map pages.
10609 if( getPageReferenced(&sCheck
, i
)==0 &&
10610 (PTRMAP_PAGENO(pBt
, i
)!=i
|| !pBt
->autoVacuum
) ){
10611 checkAppendMsg(&sCheck
, "Page %d is never used", i
);
10613 if( getPageReferenced(&sCheck
, i
)!=0 &&
10614 (PTRMAP_PAGENO(pBt
, i
)==i
&& pBt
->autoVacuum
) ){
10615 checkAppendMsg(&sCheck
, "Pointer map page %d is referenced", i
);
10621 /* Clean up and report errors.
10623 integrity_ck_cleanup
:
10624 sqlite3PageFree(sCheck
.heap
);
10625 sqlite3_free(sCheck
.aPgRef
);
10626 if( sCheck
.bOomFault
){
10627 sqlite3_str_reset(&sCheck
.errMsg
);
10630 *pnErr
= sCheck
.nErr
;
10631 if( sCheck
.nErr
==0 ) sqlite3_str_reset(&sCheck
.errMsg
);
10632 /* Make sure this analysis did not leave any unref() pages. */
10633 assert( nRef
==sqlite3PagerRefcount(pBt
->pPager
) );
10634 sqlite3BtreeLeave(p
);
10635 return sqlite3StrAccumFinish(&sCheck
.errMsg
);
10637 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
10640 ** Return the full pathname of the underlying database file. Return
10641 ** an empty string if the database is in-memory or a TEMP database.
10643 ** The pager filename is invariant as long as the pager is
10644 ** open so it is safe to access without the BtShared mutex.
10646 const char *sqlite3BtreeGetFilename(Btree
*p
){
10647 assert( p
->pBt
->pPager
!=0 );
10648 return sqlite3PagerFilename(p
->pBt
->pPager
, 1);
10652 ** Return the pathname of the journal file for this database. The return
10653 ** value of this routine is the same regardless of whether the journal file
10654 ** has been created or not.
10656 ** The pager journal filename is invariant as long as the pager is
10657 ** open so it is safe to access without the BtShared mutex.
10659 const char *sqlite3BtreeGetJournalname(Btree
*p
){
10660 assert( p
->pBt
->pPager
!=0 );
10661 return sqlite3PagerJournalname(p
->pBt
->pPager
);
10665 ** Return one of SQLITE_TXN_NONE, SQLITE_TXN_READ, or SQLITE_TXN_WRITE
10666 ** to describe the current transaction state of Btree p.
10668 int sqlite3BtreeTxnState(Btree
*p
){
10669 assert( p
==0 || sqlite3_mutex_held(p
->db
->mutex
) );
10670 return p
? p
->inTrans
: 0;
10673 #ifndef SQLITE_OMIT_WAL
10675 ** Run a checkpoint on the Btree passed as the first argument.
10677 ** Return SQLITE_LOCKED if this or any other connection has an open
10678 ** transaction on the shared-cache the argument Btree is connected to.
10680 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
10682 int sqlite3BtreeCheckpoint(Btree
*p
, int eMode
, int *pnLog
, int *pnCkpt
){
10683 int rc
= SQLITE_OK
;
10685 BtShared
*pBt
= p
->pBt
;
10686 sqlite3BtreeEnter(p
);
10687 if( pBt
->inTransaction
!=TRANS_NONE
){
10688 rc
= SQLITE_LOCKED
;
10690 rc
= sqlite3PagerCheckpoint(pBt
->pPager
, p
->db
, eMode
, pnLog
, pnCkpt
);
10692 sqlite3BtreeLeave(p
);
10699 ** Return true if there is currently a backup running on Btree p.
10701 int sqlite3BtreeIsInBackup(Btree
*p
){
10703 assert( sqlite3_mutex_held(p
->db
->mutex
) );
10704 return p
->nBackup
!=0;
10708 ** This function returns a pointer to a blob of memory associated with
10709 ** a single shared-btree. The memory is used by client code for its own
10710 ** purposes (for example, to store a high-level schema associated with
10711 ** the shared-btree). The btree layer manages reference counting issues.
10713 ** The first time this is called on a shared-btree, nBytes bytes of memory
10714 ** are allocated, zeroed, and returned to the caller. For each subsequent
10715 ** call the nBytes parameter is ignored and a pointer to the same blob
10716 ** of memory returned.
10718 ** If the nBytes parameter is 0 and the blob of memory has not yet been
10719 ** allocated, a null pointer is returned. If the blob has already been
10720 ** allocated, it is returned as normal.
10722 ** Just before the shared-btree is closed, the function passed as the
10723 ** xFree argument when the memory allocation was made is invoked on the
10724 ** blob of allocated memory. The xFree function should not call sqlite3_free()
10725 ** on the memory, the btree layer does that.
10727 void *sqlite3BtreeSchema(Btree
*p
, int nBytes
, void(*xFree
)(void *)){
10728 BtShared
*pBt
= p
->pBt
;
10729 sqlite3BtreeEnter(p
);
10730 if( !pBt
->pSchema
&& nBytes
){
10731 pBt
->pSchema
= sqlite3DbMallocZero(0, nBytes
);
10732 pBt
->xFreeSchema
= xFree
;
10734 sqlite3BtreeLeave(p
);
10735 return pBt
->pSchema
;
10739 ** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
10740 ** btree as the argument handle holds an exclusive lock on the
10741 ** sqlite_schema table. Otherwise SQLITE_OK.
10743 int sqlite3BtreeSchemaLocked(Btree
*p
){
10745 assert( sqlite3_mutex_held(p
->db
->mutex
) );
10746 sqlite3BtreeEnter(p
);
10747 rc
= querySharedCacheTableLock(p
, SCHEMA_ROOT
, READ_LOCK
);
10748 assert( rc
==SQLITE_OK
|| rc
==SQLITE_LOCKED_SHAREDCACHE
);
10749 sqlite3BtreeLeave(p
);
10754 #ifndef SQLITE_OMIT_SHARED_CACHE
10756 ** Obtain a lock on the table whose root page is iTab. The
10757 ** lock is a write lock if isWritelock is true or a read lock
10760 int sqlite3BtreeLockTable(Btree
*p
, int iTab
, u8 isWriteLock
){
10761 int rc
= SQLITE_OK
;
10762 assert( p
->inTrans
!=TRANS_NONE
);
10764 u8 lockType
= READ_LOCK
+ isWriteLock
;
10765 assert( READ_LOCK
+1==WRITE_LOCK
);
10766 assert( isWriteLock
==0 || isWriteLock
==1 );
10768 sqlite3BtreeEnter(p
);
10769 rc
= querySharedCacheTableLock(p
, iTab
, lockType
);
10770 if( rc
==SQLITE_OK
){
10771 rc
= setSharedCacheTableLock(p
, iTab
, lockType
);
10773 sqlite3BtreeLeave(p
);
10779 #ifndef SQLITE_OMIT_INCRBLOB
10781 ** Argument pCsr must be a cursor opened for writing on an
10782 ** INTKEY table currently pointing at a valid table entry.
10783 ** This function modifies the data stored as part of that entry.
10785 ** Only the data content may only be modified, it is not possible to
10786 ** change the length of the data stored. If this function is called with
10787 ** parameters that attempt to write past the end of the existing data,
10788 ** no modifications are made and SQLITE_CORRUPT is returned.
10790 int sqlite3BtreePutData(BtCursor
*pCsr
, u32 offset
, u32 amt
, void *z
){
10792 assert( cursorOwnsBtShared(pCsr
) );
10793 assert( sqlite3_mutex_held(pCsr
->pBtree
->db
->mutex
) );
10794 assert( pCsr
->curFlags
& BTCF_Incrblob
);
10796 rc
= restoreCursorPosition(pCsr
);
10797 if( rc
!=SQLITE_OK
){
10800 assert( pCsr
->eState
!=CURSOR_REQUIRESEEK
);
10801 if( pCsr
->eState
!=CURSOR_VALID
){
10802 return SQLITE_ABORT
;
10805 /* Save the positions of all other cursors open on this table. This is
10806 ** required in case any of them are holding references to an xFetch
10807 ** version of the b-tree page modified by the accessPayload call below.
10809 ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
10810 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
10811 ** saveAllCursors can only return SQLITE_OK.
10813 VVA_ONLY(rc
=) saveAllCursors(pCsr
->pBt
, pCsr
->pgnoRoot
, pCsr
);
10814 assert( rc
==SQLITE_OK
);
10816 /* Check some assumptions:
10817 ** (a) the cursor is open for writing,
10818 ** (b) there is a read/write transaction open,
10819 ** (c) the connection holds a write-lock on the table (if required),
10820 ** (d) there are no conflicting read-locks, and
10821 ** (e) the cursor points at a valid row of an intKey table.
10823 if( (pCsr
->curFlags
& BTCF_WriteFlag
)==0 ){
10824 return SQLITE_READONLY
;
10826 assert( (pCsr
->pBt
->btsFlags
& BTS_READ_ONLY
)==0
10827 && pCsr
->pBt
->inTransaction
==TRANS_WRITE
);
10828 assert( hasSharedCacheTableLock(pCsr
->pBtree
, pCsr
->pgnoRoot
, 0, 2) );
10829 assert( !hasReadConflicts(pCsr
->pBtree
, pCsr
->pgnoRoot
) );
10830 assert( pCsr
->pPage
->intKey
);
10832 return accessPayload(pCsr
, offset
, amt
, (unsigned char *)z
, 1);
10836 ** Mark this cursor as an incremental blob cursor.
10838 void sqlite3BtreeIncrblobCursor(BtCursor
*pCur
){
10839 pCur
->curFlags
|= BTCF_Incrblob
;
10840 pCur
->pBtree
->hasIncrblobCur
= 1;
10845 ** Set both the "read version" (single byte at byte offset 18) and
10846 ** "write version" (single byte at byte offset 19) fields in the database
10847 ** header to iVersion.
10849 int sqlite3BtreeSetVersion(Btree
*pBtree
, int iVersion
){
10850 BtShared
*pBt
= pBtree
->pBt
;
10851 int rc
; /* Return code */
10853 assert( iVersion
==1 || iVersion
==2 );
10855 /* If setting the version fields to 1, do not automatically open the
10856 ** WAL connection, even if the version fields are currently set to 2.
10858 pBt
->btsFlags
&= ~BTS_NO_WAL
;
10859 if( iVersion
==1 ) pBt
->btsFlags
|= BTS_NO_WAL
;
10861 rc
= sqlite3BtreeBeginTrans(pBtree
, 0, 0);
10862 if( rc
==SQLITE_OK
){
10863 u8
*aData
= pBt
->pPage1
->aData
;
10864 if( aData
[18]!=(u8
)iVersion
|| aData
[19]!=(u8
)iVersion
){
10865 rc
= sqlite3BtreeBeginTrans(pBtree
, 2, 0);
10866 if( rc
==SQLITE_OK
){
10867 rc
= sqlite3PagerWrite(pBt
->pPage1
->pDbPage
);
10868 if( rc
==SQLITE_OK
){
10869 aData
[18] = (u8
)iVersion
;
10870 aData
[19] = (u8
)iVersion
;
10876 pBt
->btsFlags
&= ~BTS_NO_WAL
;
10881 ** Return true if the cursor has a hint specified. This routine is
10882 ** only used from within assert() statements
10884 int sqlite3BtreeCursorHasHint(BtCursor
*pCsr
, unsigned int mask
){
10885 return (pCsr
->hints
& mask
)!=0;
10889 ** Return true if the given Btree is read-only.
10891 int sqlite3BtreeIsReadonly(Btree
*p
){
10892 return (p
->pBt
->btsFlags
& BTS_READ_ONLY
)!=0;
10896 ** Return the size of the header added to each page by this module.
10898 int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage
)); }
10900 #if !defined(SQLITE_OMIT_SHARED_CACHE)
10902 ** Return true if the Btree passed as the only argument is sharable.
10904 int sqlite3BtreeSharable(Btree
*p
){
10905 return p
->sharable
;
10909 ** Return the number of connections to the BtShared object accessed by
10910 ** the Btree handle passed as the only argument. For private caches
10911 ** this is always 1. For shared caches it may be 1 or greater.
10913 int sqlite3BtreeConnectionCount(Btree
*p
){
10914 testcase( p
->sharable
);
10915 return p
->pBt
->nRef
;