4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle INSERT statements in SQLite.
15 #include "sqliteInt.h"
18 ** Generate code that will
20 ** (1) acquire a lock for table pTab then
21 ** (2) open pTab as cursor iCur.
23 ** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index
24 ** for that table that is actually opened.
26 void sqlite3OpenTable(
27 Parse
*pParse
, /* Generate code into this VDBE */
28 int iCur
, /* The cursor number of the table */
29 int iDb
, /* The database index in sqlite3.aDb[] */
30 Table
*pTab
, /* The table to be opened */
31 int opcode
/* OP_OpenRead or OP_OpenWrite */
34 assert( !IsVirtual(pTab
) );
35 assert( pParse
->pVdbe
!=0 );
37 assert( opcode
==OP_OpenWrite
|| opcode
==OP_OpenRead
);
38 sqlite3TableLock(pParse
, iDb
, pTab
->tnum
,
39 (opcode
==OP_OpenWrite
)?1:0, pTab
->zName
);
41 sqlite3VdbeAddOp4Int(v
, opcode
, iCur
, pTab
->tnum
, iDb
, pTab
->nNVCol
);
42 VdbeComment((v
, "%s", pTab
->zName
));
44 Index
*pPk
= sqlite3PrimaryKeyIndex(pTab
);
46 assert( pPk
->tnum
==pTab
->tnum
|| CORRUPT_DB
);
47 sqlite3VdbeAddOp3(v
, opcode
, iCur
, pPk
->tnum
, iDb
);
48 sqlite3VdbeSetP4KeyInfo(pParse
, pPk
);
49 VdbeComment((v
, "%s", pTab
->zName
));
54 ** Return a pointer to the column affinity string associated with index
55 ** pIdx. A column affinity string has one character for each column in
56 ** the table, according to the affinity of the column:
58 ** Character Column affinity
59 ** ------------------------------
66 ** An extra 'D' is appended to the end of the string to cover the
67 ** rowid that appears as the last column in every index.
69 ** Memory for the buffer containing the column index affinity string
70 ** is managed along with the rest of the Index structure. It will be
71 ** released when sqlite3DeleteIndex() is called.
73 const char *sqlite3IndexAffinityStr(sqlite3
*db
, Index
*pIdx
){
75 /* The first time a column affinity string for a particular index is
76 ** required, it is allocated and populated here. It is then stored as
77 ** a member of the Index structure for subsequent use.
79 ** The column affinity string will eventually be deleted by
80 ** sqliteDeleteIndex() when the Index structure itself is cleaned
84 Table
*pTab
= pIdx
->pTable
;
85 pIdx
->zColAff
= (char *)sqlite3DbMallocRaw(0, pIdx
->nColumn
+1);
90 for(n
=0; n
<pIdx
->nColumn
; n
++){
91 i16 x
= pIdx
->aiColumn
[n
];
94 aff
= pTab
->aCol
[x
].affinity
;
95 }else if( x
==XN_ROWID
){
96 aff
= SQLITE_AFF_INTEGER
;
99 assert( pIdx
->aColExpr
!=0 );
100 aff
= sqlite3ExprAffinity(pIdx
->aColExpr
->a
[n
].pExpr
);
102 if( aff
<SQLITE_AFF_BLOB
) aff
= SQLITE_AFF_BLOB
;
103 if( aff
>SQLITE_AFF_NUMERIC
) aff
= SQLITE_AFF_NUMERIC
;
104 pIdx
->zColAff
[n
] = aff
;
106 pIdx
->zColAff
[n
] = 0;
109 return pIdx
->zColAff
;
113 ** Make changes to the evolving bytecode to do affinity transformations
114 ** of values that are about to be gathered into a row for table pTab.
116 ** For ordinary (legacy, non-strict) tables:
117 ** -----------------------------------------
119 ** Compute the affinity string for table pTab, if it has not already been
120 ** computed. As an optimization, omit trailing SQLITE_AFF_BLOB affinities.
122 ** If the affinity string is empty (because it was all SQLITE_AFF_BLOB entries
123 ** which were then optimized out) then this routine becomes a no-op.
125 ** Otherwise if iReg>0 then code an OP_Affinity opcode that will set the
126 ** affinities for register iReg and following. Or if iReg==0,
127 ** then just set the P4 operand of the previous opcode (which should be
128 ** an OP_MakeRecord) to the affinity string.
130 ** A column affinity string has one character per column:
132 ** Character Column affinity
133 ** --------- ---------------
140 ** For STRICT tables:
141 ** ------------------
143 ** Generate an appropropriate OP_TypeCheck opcode that will verify the
144 ** datatypes against the column definitions in pTab. If iReg==0, that
145 ** means an OP_MakeRecord opcode has already been generated and should be
146 ** the last opcode generated. The new OP_TypeCheck needs to be inserted
147 ** before the OP_MakeRecord. The new OP_TypeCheck should use the same
148 ** register set as the OP_MakeRecord. If iReg>0 then register iReg is
149 ** the first of a series of registers that will form the new record.
150 ** Apply the type checking to that array of registers.
152 void sqlite3TableAffinity(Vdbe
*v
, Table
*pTab
, int iReg
){
155 if( pTab
->tabFlags
& TF_Strict
){
157 /* Move the previous opcode (which should be OP_MakeRecord) forward
158 ** by one slot and insert a new OP_TypeCheck where the current
159 ** OP_MakeRecord is found */
161 sqlite3VdbeAppendP4(v
, pTab
, P4_TABLE
);
162 pPrev
= sqlite3VdbeGetOp(v
, -1);
164 assert( pPrev
->opcode
==OP_MakeRecord
|| sqlite3VdbeDb(v
)->mallocFailed
);
165 pPrev
->opcode
= OP_TypeCheck
;
166 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, pPrev
->p1
, pPrev
->p2
, pPrev
->p3
);
168 /* Insert an isolated OP_Typecheck */
169 sqlite3VdbeAddOp2(v
, OP_TypeCheck
, iReg
, pTab
->nNVCol
);
170 sqlite3VdbeAppendP4(v
, pTab
, P4_TABLE
);
174 zColAff
= pTab
->zColAff
;
176 sqlite3
*db
= sqlite3VdbeDb(v
);
177 zColAff
= (char *)sqlite3DbMallocRaw(0, pTab
->nCol
+1);
183 for(i
=j
=0; i
<pTab
->nCol
; i
++){
184 assert( pTab
->aCol
[i
].affinity
!=0 || sqlite3VdbeParser(v
)->nErr
>0 );
185 if( (pTab
->aCol
[i
].colFlags
& COLFLAG_VIRTUAL
)==0 ){
186 zColAff
[j
++] = pTab
->aCol
[i
].affinity
;
191 }while( j
>=0 && zColAff
[j
]<=SQLITE_AFF_BLOB
);
192 pTab
->zColAff
= zColAff
;
194 assert( zColAff
!=0 );
195 i
= sqlite3Strlen30NN(zColAff
);
198 sqlite3VdbeAddOp4(v
, OP_Affinity
, iReg
, i
, 0, zColAff
, i
);
200 assert( sqlite3VdbeGetOp(v
, -1)->opcode
==OP_MakeRecord
201 || sqlite3VdbeDb(v
)->mallocFailed
);
202 sqlite3VdbeChangeP4(v
, -1, zColAff
, i
);
208 ** Return non-zero if the table pTab in database iDb or any of its indices
209 ** have been opened at any point in the VDBE program. This is used to see if
210 ** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can
211 ** run without using a temporary table for the results of the SELECT.
213 static int readsTable(Parse
*p
, int iDb
, Table
*pTab
){
214 Vdbe
*v
= sqlite3GetVdbe(p
);
216 int iEnd
= sqlite3VdbeCurrentAddr(v
);
217 #ifndef SQLITE_OMIT_VIRTUALTABLE
218 VTable
*pVTab
= IsVirtual(pTab
) ? sqlite3GetVTable(p
->db
, pTab
) : 0;
221 for(i
=1; i
<iEnd
; i
++){
222 VdbeOp
*pOp
= sqlite3VdbeGetOp(v
, i
);
224 if( pOp
->opcode
==OP_OpenRead
&& pOp
->p3
==iDb
){
227 if( tnum
==pTab
->tnum
){
230 for(pIndex
=pTab
->pIndex
; pIndex
; pIndex
=pIndex
->pNext
){
231 if( tnum
==pIndex
->tnum
){
236 #ifndef SQLITE_OMIT_VIRTUALTABLE
237 if( pOp
->opcode
==OP_VOpen
&& pOp
->p4
.pVtab
==pVTab
){
238 assert( pOp
->p4
.pVtab
!=0 );
239 assert( pOp
->p4type
==P4_VTAB
);
247 /* This walker callback will compute the union of colFlags flags for all
248 ** referenced columns in a CHECK constraint or generated column expression.
250 static int exprColumnFlagUnion(Walker
*pWalker
, Expr
*pExpr
){
251 if( pExpr
->op
==TK_COLUMN
&& pExpr
->iColumn
>=0 ){
252 assert( pExpr
->iColumn
< pWalker
->u
.pTab
->nCol
);
253 pWalker
->eCode
|= pWalker
->u
.pTab
->aCol
[pExpr
->iColumn
].colFlags
;
258 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
260 ** All regular columns for table pTab have been puts into registers
261 ** starting with iRegStore. The registers that correspond to STORED
262 ** or VIRTUAL columns have not yet been initialized. This routine goes
263 ** back and computes the values for those columns based on the previously
264 ** computed normal columns.
266 void sqlite3ComputeGeneratedColumns(
267 Parse
*pParse
, /* Parsing context */
268 int iRegStore
, /* Register holding the first column */
269 Table
*pTab
/* The table */
277 assert( pTab
->tabFlags
& TF_HasGenerated
);
278 testcase( pTab
->tabFlags
& TF_HasVirtual
);
279 testcase( pTab
->tabFlags
& TF_HasStored
);
281 /* Before computing generated columns, first go through and make sure
282 ** that appropriate affinity has been applied to the regular columns
284 sqlite3TableAffinity(pParse
->pVdbe
, pTab
, iRegStore
);
285 if( (pTab
->tabFlags
& TF_HasStored
)!=0 ){
286 pOp
= sqlite3VdbeGetOp(pParse
->pVdbe
,-1);
287 if( pOp
->opcode
==OP_Affinity
){
288 /* Change the OP_Affinity argument to '@' (NONE) for all stored
289 ** columns. '@' is the no-op affinity and those columns have not
290 ** yet been computed. */
292 char *zP4
= pOp
->p4
.z
;
294 assert( pOp
->p4type
==P4_DYNAMIC
);
295 for(ii
=jj
=0; zP4
[jj
]; ii
++){
296 if( pTab
->aCol
[ii
].colFlags
& COLFLAG_VIRTUAL
){
299 if( pTab
->aCol
[ii
].colFlags
& COLFLAG_STORED
){
300 zP4
[jj
] = SQLITE_AFF_NONE
;
304 }else if( pOp
->opcode
==OP_TypeCheck
){
305 /* If an OP_TypeCheck was generated because the table is STRICT,
306 ** then set the P3 operand to indicate that generated columns should
312 /* Because there can be multiple generated columns that refer to one another,
313 ** this is a two-pass algorithm. On the first pass, mark all generated
314 ** columns as "not available".
316 for(i
=0; i
<pTab
->nCol
; i
++){
317 if( pTab
->aCol
[i
].colFlags
& COLFLAG_GENERATED
){
318 testcase( pTab
->aCol
[i
].colFlags
& COLFLAG_VIRTUAL
);
319 testcase( pTab
->aCol
[i
].colFlags
& COLFLAG_STORED
);
320 pTab
->aCol
[i
].colFlags
|= COLFLAG_NOTAVAIL
;
325 w
.xExprCallback
= exprColumnFlagUnion
;
326 w
.xSelectCallback
= 0;
327 w
.xSelectCallback2
= 0;
329 /* On the second pass, compute the value of each NOT-AVAILABLE column.
330 ** Companion code in the TK_COLUMN case of sqlite3ExprCodeTarget() will
331 ** compute dependencies and mark remove the COLSPAN_NOTAVAIL mark, as
334 pParse
->iSelfTab
= -iRegStore
;
338 for(i
=0; i
<pTab
->nCol
; i
++){
339 Column
*pCol
= pTab
->aCol
+ i
;
340 if( (pCol
->colFlags
& COLFLAG_NOTAVAIL
)!=0 ){
342 pCol
->colFlags
|= COLFLAG_BUSY
;
344 sqlite3WalkExpr(&w
, sqlite3ColumnExpr(pTab
, pCol
));
345 pCol
->colFlags
&= ~COLFLAG_BUSY
;
346 if( w
.eCode
& COLFLAG_NOTAVAIL
){
351 assert( pCol
->colFlags
& COLFLAG_GENERATED
);
352 x
= sqlite3TableColumnToStorage(pTab
, i
) + iRegStore
;
353 sqlite3ExprCodeGeneratedColumn(pParse
, pTab
, pCol
, x
);
354 pCol
->colFlags
&= ~COLFLAG_NOTAVAIL
;
357 }while( pRedo
&& eProgress
);
359 sqlite3ErrorMsg(pParse
, "generated column loop on \"%s\"", pRedo
->zCnName
);
361 pParse
->iSelfTab
= 0;
363 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
366 #ifndef SQLITE_OMIT_AUTOINCREMENT
368 ** Locate or create an AutoincInfo structure associated with table pTab
369 ** which is in database iDb. Return the register number for the register
370 ** that holds the maximum rowid. Return zero if pTab is not an AUTOINCREMENT
371 ** table. (Also return zero when doing a VACUUM since we do not want to
372 ** update the AUTOINCREMENT counters during a VACUUM.)
374 ** There is at most one AutoincInfo structure per table even if the
375 ** same table is autoincremented multiple times due to inserts within
376 ** triggers. A new AutoincInfo structure is created if this is the
377 ** first use of table pTab. On 2nd and subsequent uses, the original
378 ** AutoincInfo structure is used.
380 ** Four consecutive registers are allocated:
382 ** (1) The name of the pTab table.
383 ** (2) The maximum ROWID of pTab.
384 ** (3) The rowid in sqlite_sequence of pTab
385 ** (4) The original value of the max ROWID in pTab, or NULL if none
387 ** The 2nd register is the one that is returned. That is all the
388 ** insert routine needs to know about.
390 static int autoIncBegin(
391 Parse
*pParse
, /* Parsing context */
392 int iDb
, /* Index of the database holding pTab */
393 Table
*pTab
/* The table we are writing to */
395 int memId
= 0; /* Register holding maximum rowid */
396 assert( pParse
->db
->aDb
[iDb
].pSchema
!=0 );
397 if( (pTab
->tabFlags
& TF_Autoincrement
)!=0
398 && (pParse
->db
->mDbFlags
& DBFLAG_Vacuum
)==0
400 Parse
*pToplevel
= sqlite3ParseToplevel(pParse
);
402 Table
*pSeqTab
= pParse
->db
->aDb
[iDb
].pSchema
->pSeqTab
;
404 /* Verify that the sqlite_sequence table exists and is an ordinary
405 ** rowid table with exactly two columns.
406 ** Ticket d8dc2b3a58cd5dc2918a1d4acb 2018-05-23 */
408 || !HasRowid(pSeqTab
)
409 || NEVER(IsVirtual(pSeqTab
))
413 pParse
->rc
= SQLITE_CORRUPT_SEQUENCE
;
417 pInfo
= pToplevel
->pAinc
;
418 while( pInfo
&& pInfo
->pTab
!=pTab
){ pInfo
= pInfo
->pNext
; }
420 pInfo
= sqlite3DbMallocRawNN(pParse
->db
, sizeof(*pInfo
));
421 sqlite3ParserAddCleanup(pToplevel
, sqlite3DbFree
, pInfo
);
422 testcase( pParse
->earlyCleanup
);
423 if( pParse
->db
->mallocFailed
) return 0;
424 pInfo
->pNext
= pToplevel
->pAinc
;
425 pToplevel
->pAinc
= pInfo
;
428 pToplevel
->nMem
++; /* Register to hold name of table */
429 pInfo
->regCtr
= ++pToplevel
->nMem
; /* Max rowid register */
430 pToplevel
->nMem
+=2; /* Rowid in sqlite_sequence + orig max val */
432 memId
= pInfo
->regCtr
;
438 ** This routine generates code that will initialize all of the
439 ** register used by the autoincrement tracker.
441 void sqlite3AutoincrementBegin(Parse
*pParse
){
442 AutoincInfo
*p
; /* Information about an AUTOINCREMENT */
443 sqlite3
*db
= pParse
->db
; /* The database connection */
444 Db
*pDb
; /* Database only autoinc table */
445 int memId
; /* Register holding max rowid */
446 Vdbe
*v
= pParse
->pVdbe
; /* VDBE under construction */
448 /* This routine is never called during trigger-generation. It is
449 ** only called from the top-level */
450 assert( pParse
->pTriggerTab
==0 );
451 assert( sqlite3IsToplevel(pParse
) );
453 assert( v
); /* We failed long ago if this is not so */
454 for(p
= pParse
->pAinc
; p
; p
= p
->pNext
){
455 static const int iLn
= VDBE_OFFSET_LINENO(2);
456 static const VdbeOpList autoInc
[] = {
457 /* 0 */ {OP_Null
, 0, 0, 0},
458 /* 1 */ {OP_Rewind
, 0, 10, 0},
459 /* 2 */ {OP_Column
, 0, 0, 0},
460 /* 3 */ {OP_Ne
, 0, 9, 0},
461 /* 4 */ {OP_Rowid
, 0, 0, 0},
462 /* 5 */ {OP_Column
, 0, 1, 0},
463 /* 6 */ {OP_AddImm
, 0, 0, 0},
464 /* 7 */ {OP_Copy
, 0, 0, 0},
465 /* 8 */ {OP_Goto
, 0, 11, 0},
466 /* 9 */ {OP_Next
, 0, 2, 0},
467 /* 10 */ {OP_Integer
, 0, 0, 0},
468 /* 11 */ {OP_Close
, 0, 0, 0}
471 pDb
= &db
->aDb
[p
->iDb
];
473 assert( sqlite3SchemaMutexHeld(db
, 0, pDb
->pSchema
) );
474 sqlite3OpenTable(pParse
, 0, p
->iDb
, pDb
->pSchema
->pSeqTab
, OP_OpenRead
);
475 sqlite3VdbeLoadString(v
, memId
-1, p
->pTab
->zName
);
476 aOp
= sqlite3VdbeAddOpList(v
, ArraySize(autoInc
), autoInc
, iLn
);
483 aOp
[3].p5
= SQLITE_JUMPIFNULL
;
490 if( pParse
->nTab
==0 ) pParse
->nTab
= 1;
495 ** Update the maximum rowid for an autoincrement calculation.
497 ** This routine should be called when the regRowid register holds a
498 ** new rowid that is about to be inserted. If that new rowid is
499 ** larger than the maximum rowid in the memId memory cell, then the
500 ** memory cell is updated.
502 static void autoIncStep(Parse
*pParse
, int memId
, int regRowid
){
504 sqlite3VdbeAddOp2(pParse
->pVdbe
, OP_MemMax
, memId
, regRowid
);
509 ** This routine generates the code needed to write autoincrement
510 ** maximum rowid values back into the sqlite_sequence register.
511 ** Every statement that might do an INSERT into an autoincrement
512 ** table (either directly or through triggers) needs to call this
513 ** routine just before the "exit" code.
515 static SQLITE_NOINLINE
void autoIncrementEnd(Parse
*pParse
){
517 Vdbe
*v
= pParse
->pVdbe
;
518 sqlite3
*db
= pParse
->db
;
521 for(p
= pParse
->pAinc
; p
; p
= p
->pNext
){
522 static const int iLn
= VDBE_OFFSET_LINENO(2);
523 static const VdbeOpList autoIncEnd
[] = {
524 /* 0 */ {OP_NotNull
, 0, 2, 0},
525 /* 1 */ {OP_NewRowid
, 0, 0, 0},
526 /* 2 */ {OP_MakeRecord
, 0, 2, 0},
527 /* 3 */ {OP_Insert
, 0, 0, 0},
528 /* 4 */ {OP_Close
, 0, 0, 0}
531 Db
*pDb
= &db
->aDb
[p
->iDb
];
533 int memId
= p
->regCtr
;
535 iRec
= sqlite3GetTempReg(pParse
);
536 assert( sqlite3SchemaMutexHeld(db
, 0, pDb
->pSchema
) );
537 sqlite3VdbeAddOp3(v
, OP_Le
, memId
+2, sqlite3VdbeCurrentAddr(v
)+7, memId
);
539 sqlite3OpenTable(pParse
, 0, p
->iDb
, pDb
->pSchema
->pSeqTab
, OP_OpenWrite
);
540 aOp
= sqlite3VdbeAddOpList(v
, ArraySize(autoIncEnd
), autoIncEnd
, iLn
);
548 aOp
[3].p5
= OPFLAG_APPEND
;
549 sqlite3ReleaseTempReg(pParse
, iRec
);
552 void sqlite3AutoincrementEnd(Parse
*pParse
){
553 if( pParse
->pAinc
) autoIncrementEnd(pParse
);
557 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines
558 ** above are all no-ops
560 # define autoIncBegin(A,B,C) (0)
561 # define autoIncStep(A,B,C)
562 #endif /* SQLITE_OMIT_AUTOINCREMENT */
565 /* Forward declaration */
566 static int xferOptimization(
567 Parse
*pParse
, /* Parser context */
568 Table
*pDest
, /* The table we are inserting into */
569 Select
*pSelect
, /* A SELECT statement to use as the data source */
570 int onError
, /* How to handle constraint errors */
571 int iDbDest
/* The database of pDest */
575 ** This routine is called to handle SQL of the following forms:
577 ** insert into TABLE (IDLIST) values(EXPRLIST),(EXPRLIST),...
578 ** insert into TABLE (IDLIST) select
579 ** insert into TABLE (IDLIST) default values
581 ** The IDLIST following the table name is always optional. If omitted,
582 ** then a list of all (non-hidden) columns for the table is substituted.
583 ** The IDLIST appears in the pColumn parameter. pColumn is NULL if IDLIST
586 ** For the pSelect parameter holds the values to be inserted for the
587 ** first two forms shown above. A VALUES clause is really just short-hand
588 ** for a SELECT statement that omits the FROM clause and everything else
589 ** that follows. If the pSelect parameter is NULL, that means that the
590 ** DEFAULT VALUES form of the INSERT statement is intended.
592 ** The code generated follows one of four templates. For a simple
593 ** insert with data coming from a single-row VALUES clause, the code executes
594 ** once straight down through. Pseudo-code follows (we call this
595 ** the "1st template"):
597 ** open write cursor to <table> and its indices
598 ** put VALUES clause expressions into registers
599 ** write the resulting record into <table>
602 ** The three remaining templates assume the statement is of the form
604 ** INSERT INTO <table> SELECT ...
606 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" -
607 ** in other words if the SELECT pulls all columns from a single table
608 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and
609 ** if <table2> and <table1> are distinct tables but have identical
610 ** schemas, including all the same indices, then a special optimization
611 ** is invoked that copies raw records from <table2> over to <table1>.
612 ** See the xferOptimization() function for the implementation of this
613 ** template. This is the 2nd template.
615 ** open a write cursor to <table>
616 ** open read cursor on <table2>
617 ** transfer all records in <table2> over to <table>
619 ** foreach index on <table>
620 ** open a write cursor on the <table> index
621 ** open a read cursor on the corresponding <table2> index
622 ** transfer all records from the read to the write cursors
626 ** The 3rd template is for when the second template does not apply
627 ** and the SELECT clause does not read from <table> at any time.
628 ** The generated code follows this template:
632 ** A: setup for the SELECT
633 ** loop over the rows in the SELECT
634 ** load values into registers R..R+n
637 ** cleanup after the SELECT
639 ** B: open write cursor to <table> and its indices
640 ** C: yield X, at EOF goto D
641 ** insert the select result into <table> from R..R+n
645 ** The 4th template is used if the insert statement takes its
646 ** values from a SELECT but the data is being inserted into a table
647 ** that is also read as part of the SELECT. In the third form,
648 ** we have to use an intermediate table to store the results of
649 ** the select. The template is like this:
653 ** A: setup for the SELECT
654 ** loop over the tables in the SELECT
655 ** load value into register R..R+n
658 ** cleanup after the SELECT
660 ** B: open temp table
661 ** L: yield X, at EOF goto M
662 ** insert row from R..R+n into temp table
664 ** M: open write cursor to <table> and its indices
666 ** C: loop over rows of intermediate table
667 ** transfer values form intermediate table into <table>
672 Parse
*pParse
, /* Parser context */
673 SrcList
*pTabList
, /* Name of table into which we are inserting */
674 Select
*pSelect
, /* A SELECT statement to use as the data source */
675 IdList
*pColumn
, /* Column names corresponding to IDLIST, or NULL. */
676 int onError
, /* How to handle constraint errors */
677 Upsert
*pUpsert
/* ON CONFLICT clauses for upsert, or NULL */
679 sqlite3
*db
; /* The main database structure */
680 Table
*pTab
; /* The table to insert into. aka TABLE */
681 int i
, j
; /* Loop counters */
682 Vdbe
*v
; /* Generate code into this virtual machine */
683 Index
*pIdx
; /* For looping over indices of the table */
684 int nColumn
; /* Number of columns in the data */
685 int nHidden
= 0; /* Number of hidden columns if TABLE is virtual */
686 int iDataCur
= 0; /* VDBE cursor that is the main data repository */
687 int iIdxCur
= 0; /* First index cursor */
688 int ipkColumn
= -1; /* Column that is the INTEGER PRIMARY KEY */
689 int endOfLoop
; /* Label for the end of the insertion loop */
690 int srcTab
= 0; /* Data comes from this temporary cursor if >=0 */
691 int addrInsTop
= 0; /* Jump to label "D" */
692 int addrCont
= 0; /* Top of insert loop. Label "C" in templates 3 and 4 */
693 SelectDest dest
; /* Destination for SELECT on rhs of INSERT */
694 int iDb
; /* Index of database holding TABLE */
695 u8 useTempTable
= 0; /* Store SELECT results in intermediate table */
696 u8 appendFlag
= 0; /* True if the insert is likely to be an append */
697 u8 withoutRowid
; /* 0 for normal table. 1 for WITHOUT ROWID table */
698 u8 bIdListInOrder
; /* True if IDLIST is in table order */
699 ExprList
*pList
= 0; /* List of VALUES() to be inserted */
700 int iRegStore
; /* Register in which to store next column */
702 /* Register allocations */
703 int regFromSelect
= 0;/* Base register for data coming from SELECT */
704 int regAutoinc
= 0; /* Register holding the AUTOINCREMENT counter */
705 int regRowCount
= 0; /* Memory cell used for the row counter */
706 int regIns
; /* Block of regs holding rowid+data being inserted */
707 int regRowid
; /* registers holding insert rowid */
708 int regData
; /* register holding first column to insert */
709 int *aRegIdx
= 0; /* One register allocated to each index */
711 #ifndef SQLITE_OMIT_TRIGGER
712 int isView
; /* True if attempting to insert into a view */
713 Trigger
*pTrigger
; /* List of triggers on pTab, if required */
714 int tmask
; /* Mask of trigger times */
718 assert( db
->pParse
==pParse
);
722 assert( db
->mallocFailed
==0 );
723 dest
.iSDParm
= 0; /* Suppress a harmless compiler warning */
725 /* If the Select object is really just a simple VALUES() list with a
726 ** single row (the common case) then keep that one row of values
727 ** and discard the other (unused) parts of the pSelect object
729 if( pSelect
&& (pSelect
->selFlags
& SF_Values
)!=0 && pSelect
->pPrior
==0 ){
730 pList
= pSelect
->pEList
;
732 sqlite3SelectDelete(db
, pSelect
);
736 /* Locate the table into which we will be inserting new information.
738 assert( pTabList
->nSrc
==1 );
739 pTab
= sqlite3SrcListLookup(pParse
, pTabList
);
743 iDb
= sqlite3SchemaToIndex(db
, pTab
->pSchema
);
744 assert( iDb
<db
->nDb
);
745 if( sqlite3AuthCheck(pParse
, SQLITE_INSERT
, pTab
->zName
, 0,
746 db
->aDb
[iDb
].zDbSName
) ){
749 withoutRowid
= !HasRowid(pTab
);
751 /* Figure out if we have any triggers and if the table being
752 ** inserted into is a view
754 #ifndef SQLITE_OMIT_TRIGGER
755 pTrigger
= sqlite3TriggersExist(pParse
, pTab
, TK_INSERT
, 0, &tmask
);
756 isView
= IsView(pTab
);
762 #ifdef SQLITE_OMIT_VIEW
766 assert( (pTrigger
&& tmask
) || (pTrigger
==0 && tmask
==0) );
768 /* If pTab is really a view, make sure it has been initialized.
769 ** ViewGetColumnNames() is a no-op if pTab is not a view.
771 if( sqlite3ViewGetColumnNames(pParse
, pTab
) ){
775 /* Cannot insert into a read-only table.
777 if( sqlite3IsReadOnly(pParse
, pTab
, tmask
) ){
783 v
= sqlite3GetVdbe(pParse
);
784 if( v
==0 ) goto insert_cleanup
;
785 if( pParse
->nested
==0 ) sqlite3VdbeCountChanges(v
);
786 sqlite3BeginWriteOperation(pParse
, pSelect
|| pTrigger
, iDb
);
788 #ifndef SQLITE_OMIT_XFER_OPT
789 /* If the statement is of the form
791 ** INSERT INTO <table1> SELECT * FROM <table2>;
793 ** Then special optimizations can be applied that make the transfer
794 ** very fast and which reduce fragmentation of indices.
796 ** This is the 2nd template.
801 && xferOptimization(pParse
, pTab
, pSelect
, onError
, iDb
)
807 #endif /* SQLITE_OMIT_XFER_OPT */
809 /* If this is an AUTOINCREMENT table, look up the sequence number in the
810 ** sqlite_sequence table and store it in memory cell regAutoinc.
812 regAutoinc
= autoIncBegin(pParse
, iDb
, pTab
);
814 /* Allocate a block registers to hold the rowid and the values
815 ** for all columns of the new row.
817 regRowid
= regIns
= pParse
->nMem
+1;
818 pParse
->nMem
+= pTab
->nCol
+ 1;
819 if( IsVirtual(pTab
) ){
823 regData
= regRowid
+1;
825 /* If the INSERT statement included an IDLIST term, then make sure
826 ** all elements of the IDLIST really are columns of the table and
827 ** remember the column indices.
829 ** If the table has an INTEGER PRIMARY KEY column and that column
830 ** is named in the IDLIST, then record in the ipkColumn variable
831 ** the index into IDLIST of the primary key column. ipkColumn is
832 ** the index of the primary key as it appears in IDLIST, not as
833 ** is appears in the original table. (The index of the INTEGER
834 ** PRIMARY KEY in the original table is pTab->iPKey.) After this
835 ** loop, if ipkColumn==(-1), that means that integer primary key
836 ** is unspecified, and hence the table is either WITHOUT ROWID or
837 ** it will automatically generated an integer primary key.
839 ** bIdListInOrder is true if the columns in IDLIST are in storage
840 ** order. This enables an optimization that avoids shuffling the
841 ** columns into storage order. False negatives are harmless,
842 ** but false positives will cause database corruption.
844 bIdListInOrder
= (pTab
->tabFlags
& (TF_OOOHidden
|TF_HasStored
))==0;
846 for(i
=0; i
<pColumn
->nId
; i
++){
847 pColumn
->a
[i
].idx
= -1;
849 for(i
=0; i
<pColumn
->nId
; i
++){
850 for(j
=0; j
<pTab
->nCol
; j
++){
851 if( sqlite3StrICmp(pColumn
->a
[i
].zName
, pTab
->aCol
[j
].zCnName
)==0 ){
852 pColumn
->a
[i
].idx
= j
;
853 if( i
!=j
) bIdListInOrder
= 0;
854 if( j
==pTab
->iPKey
){
855 ipkColumn
= i
; assert( !withoutRowid
);
857 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
858 if( pTab
->aCol
[j
].colFlags
& (COLFLAG_STORED
|COLFLAG_VIRTUAL
) ){
859 sqlite3ErrorMsg(pParse
,
860 "cannot INSERT into generated column \"%s\"",
861 pTab
->aCol
[j
].zCnName
);
869 if( sqlite3IsRowid(pColumn
->a
[i
].zName
) && !withoutRowid
){
873 sqlite3ErrorMsg(pParse
, "table %S has no column named %s",
874 pTabList
->a
, pColumn
->a
[i
].zName
);
875 pParse
->checkSchema
= 1;
882 /* Figure out how many columns of data are supplied. If the data
883 ** is coming from a SELECT statement, then generate a co-routine that
884 ** produces a single row of the SELECT on each invocation. The
885 ** co-routine is the common header to the 3rd and 4th templates.
888 /* Data is coming from a SELECT or from a multi-row VALUES clause.
889 ** Generate a co-routine to run the SELECT. */
890 int regYield
; /* Register holding co-routine entry-point */
891 int addrTop
; /* Top of the co-routine */
892 int rc
; /* Result code */
894 regYield
= ++pParse
->nMem
;
895 addrTop
= sqlite3VdbeCurrentAddr(v
) + 1;
896 sqlite3VdbeAddOp3(v
, OP_InitCoroutine
, regYield
, 0, addrTop
);
897 sqlite3SelectDestInit(&dest
, SRT_Coroutine
, regYield
);
898 dest
.iSdst
= bIdListInOrder
? regData
: 0;
899 dest
.nSdst
= pTab
->nCol
;
900 rc
= sqlite3Select(pParse
, pSelect
, &dest
);
901 regFromSelect
= dest
.iSdst
;
902 assert( db
->pParse
==pParse
);
903 if( rc
|| pParse
->nErr
) goto insert_cleanup
;
904 assert( db
->mallocFailed
==0 );
905 sqlite3VdbeEndCoroutine(v
, regYield
);
906 sqlite3VdbeJumpHere(v
, addrTop
- 1); /* label B: */
907 assert( pSelect
->pEList
);
908 nColumn
= pSelect
->pEList
->nExpr
;
910 /* Set useTempTable to TRUE if the result of the SELECT statement
911 ** should be written into a temporary table (template 4). Set to
912 ** FALSE if each output row of the SELECT can be written directly into
913 ** the destination table (template 3).
915 ** A temp table must be used if the table being updated is also one
916 ** of the tables being read by the SELECT statement. Also use a
917 ** temp table in the case of row triggers.
919 if( pTrigger
|| readsTable(pParse
, iDb
, pTab
) ){
924 /* Invoke the coroutine to extract information from the SELECT
925 ** and add it to a transient table srcTab. The code generated
926 ** here is from the 4th template:
928 ** B: open temp table
929 ** L: yield X, goto M at EOF
930 ** insert row from R..R+n into temp table
934 int regRec
; /* Register to hold packed record */
935 int regTempRowid
; /* Register to hold temp table ROWID */
936 int addrL
; /* Label "L" */
938 srcTab
= pParse
->nTab
++;
939 regRec
= sqlite3GetTempReg(pParse
);
940 regTempRowid
= sqlite3GetTempReg(pParse
);
941 sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, srcTab
, nColumn
);
942 addrL
= sqlite3VdbeAddOp1(v
, OP_Yield
, dest
.iSDParm
); VdbeCoverage(v
);
943 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regFromSelect
, nColumn
, regRec
);
944 sqlite3VdbeAddOp2(v
, OP_NewRowid
, srcTab
, regTempRowid
);
945 sqlite3VdbeAddOp3(v
, OP_Insert
, srcTab
, regRec
, regTempRowid
);
946 sqlite3VdbeGoto(v
, addrL
);
947 sqlite3VdbeJumpHere(v
, addrL
);
948 sqlite3ReleaseTempReg(pParse
, regRec
);
949 sqlite3ReleaseTempReg(pParse
, regTempRowid
);
952 /* This is the case if the data for the INSERT is coming from a
953 ** single-row VALUES clause
956 memset(&sNC
, 0, sizeof(sNC
));
959 assert( useTempTable
==0 );
961 nColumn
= pList
->nExpr
;
962 if( sqlite3ResolveExprListNames(&sNC
, pList
) ){
970 /* If there is no IDLIST term but the table has an integer primary
971 ** key, the set the ipkColumn variable to the integer primary key
972 ** column index in the original table definition.
974 if( pColumn
==0 && nColumn
>0 ){
975 ipkColumn
= pTab
->iPKey
;
976 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
977 if( ipkColumn
>=0 && (pTab
->tabFlags
& TF_HasGenerated
)!=0 ){
978 testcase( pTab
->tabFlags
& TF_HasVirtual
);
979 testcase( pTab
->tabFlags
& TF_HasStored
);
980 for(i
=ipkColumn
-1; i
>=0; i
--){
981 if( pTab
->aCol
[i
].colFlags
& COLFLAG_GENERATED
){
982 testcase( pTab
->aCol
[i
].colFlags
& COLFLAG_VIRTUAL
);
983 testcase( pTab
->aCol
[i
].colFlags
& COLFLAG_STORED
);
990 /* Make sure the number of columns in the source data matches the number
991 ** of columns to be inserted into the table.
993 assert( TF_HasHidden
==COLFLAG_HIDDEN
);
994 assert( TF_HasGenerated
==COLFLAG_GENERATED
);
995 assert( COLFLAG_NOINSERT
==(COLFLAG_GENERATED
|COLFLAG_HIDDEN
) );
996 if( (pTab
->tabFlags
& (TF_HasGenerated
|TF_HasHidden
))!=0 ){
997 for(i
=0; i
<pTab
->nCol
; i
++){
998 if( pTab
->aCol
[i
].colFlags
& COLFLAG_NOINSERT
) nHidden
++;
1001 if( nColumn
!=(pTab
->nCol
-nHidden
) ){
1002 sqlite3ErrorMsg(pParse
,
1003 "table %S has %d columns but %d values were supplied",
1004 pTabList
->a
, pTab
->nCol
-nHidden
, nColumn
);
1005 goto insert_cleanup
;
1008 if( pColumn
!=0 && nColumn
!=pColumn
->nId
){
1009 sqlite3ErrorMsg(pParse
, "%d values for %d columns", nColumn
, pColumn
->nId
);
1010 goto insert_cleanup
;
1013 /* Initialize the count of rows to be inserted
1015 if( (db
->flags
& SQLITE_CountRows
)!=0
1017 && !pParse
->pTriggerTab
1018 && !pParse
->bReturning
1020 regRowCount
= ++pParse
->nMem
;
1021 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, regRowCount
);
1024 /* If this is not a view, open the table and and all indices */
1027 nIdx
= sqlite3OpenTableAndIndices(pParse
, pTab
, OP_OpenWrite
, 0, -1, 0,
1028 &iDataCur
, &iIdxCur
);
1029 aRegIdx
= sqlite3DbMallocRawNN(db
, sizeof(int)*(nIdx
+2));
1031 goto insert_cleanup
;
1033 for(i
=0, pIdx
=pTab
->pIndex
; i
<nIdx
; pIdx
=pIdx
->pNext
, i
++){
1035 aRegIdx
[i
] = ++pParse
->nMem
;
1036 pParse
->nMem
+= pIdx
->nColumn
;
1038 aRegIdx
[i
] = ++pParse
->nMem
; /* Register to store the table record */
1040 #ifndef SQLITE_OMIT_UPSERT
1043 if( IsVirtual(pTab
) ){
1044 sqlite3ErrorMsg(pParse
, "UPSERT not implemented for virtual table \"%s\"",
1046 goto insert_cleanup
;
1049 sqlite3ErrorMsg(pParse
, "cannot UPSERT a view");
1050 goto insert_cleanup
;
1052 if( sqlite3HasExplicitNulls(pParse
, pUpsert
->pUpsertTarget
) ){
1053 goto insert_cleanup
;
1055 pTabList
->a
[0].iCursor
= iDataCur
;
1058 pNx
->pUpsertSrc
= pTabList
;
1059 pNx
->regData
= regData
;
1060 pNx
->iDataCur
= iDataCur
;
1061 pNx
->iIdxCur
= iIdxCur
;
1062 if( pNx
->pUpsertTarget
){
1063 if( sqlite3UpsertAnalyzeTarget(pParse
, pTabList
, pNx
) ){
1064 goto insert_cleanup
;
1067 pNx
= pNx
->pNextUpsert
;
1073 /* This is the top of the main insertion loop */
1075 /* This block codes the top of loop only. The complete loop is the
1076 ** following pseudocode (template 4):
1078 ** rewind temp table, if empty goto D
1079 ** C: loop over rows of intermediate table
1080 ** transfer values form intermediate table into <table>
1084 addrInsTop
= sqlite3VdbeAddOp1(v
, OP_Rewind
, srcTab
); VdbeCoverage(v
);
1085 addrCont
= sqlite3VdbeCurrentAddr(v
);
1086 }else if( pSelect
){
1087 /* This block codes the top of loop only. The complete loop is the
1088 ** following pseudocode (template 3):
1090 ** C: yield X, at EOF goto D
1091 ** insert the select result into <table> from R..R+n
1095 sqlite3VdbeReleaseRegisters(pParse
, regData
, pTab
->nCol
, 0, 0);
1096 addrInsTop
= addrCont
= sqlite3VdbeAddOp1(v
, OP_Yield
, dest
.iSDParm
);
1099 /* tag-20191021-001: If the INTEGER PRIMARY KEY is being generated by the
1100 ** SELECT, go ahead and copy the value into the rowid slot now, so that
1101 ** the value does not get overwritten by a NULL at tag-20191021-002. */
1102 sqlite3VdbeAddOp2(v
, OP_Copy
, regFromSelect
+ipkColumn
, regRowid
);
1106 /* Compute data for ordinary columns of the new entry. Values
1107 ** are written in storage order into registers starting with regData.
1108 ** Only ordinary columns are computed in this loop. The rowid
1109 ** (if there is one) is computed later and generated columns are
1110 ** computed after the rowid since they might depend on the value
1114 iRegStore
= regData
; assert( regData
==regRowid
+1 );
1115 for(i
=0; i
<pTab
->nCol
; i
++, iRegStore
++){
1118 assert( i
>=nHidden
);
1119 if( i
==pTab
->iPKey
){
1120 /* tag-20191021-002: References to the INTEGER PRIMARY KEY are filled
1121 ** using the rowid. So put a NULL in the IPK slot of the record to avoid
1122 ** using excess space. The file format definition requires this extra
1123 ** NULL - we cannot optimize further by skipping the column completely */
1124 sqlite3VdbeAddOp1(v
, OP_SoftNull
, iRegStore
);
1127 if( ((colFlags
= pTab
->aCol
[i
].colFlags
) & COLFLAG_NOINSERT
)!=0 ){
1129 if( (colFlags
& COLFLAG_VIRTUAL
)!=0 ){
1130 /* Virtual columns do not participate in OP_MakeRecord. So back up
1131 ** iRegStore by one slot to compensate for the iRegStore++ in the
1132 ** outer for() loop */
1135 }else if( (colFlags
& COLFLAG_STORED
)!=0 ){
1136 /* Stored columns are computed later. But if there are BEFORE
1137 ** triggers, the slots used for stored columns will be OP_Copy-ed
1138 ** to a second block of registers, so the register needs to be
1139 ** initialized to NULL to avoid an uninitialized register read */
1140 if( tmask
& TRIGGER_BEFORE
){
1141 sqlite3VdbeAddOp1(v
, OP_SoftNull
, iRegStore
);
1144 }else if( pColumn
==0 ){
1145 /* Hidden columns that are not explicitly named in the INSERT
1146 ** get there default value */
1147 sqlite3ExprCodeFactorable(pParse
,
1148 sqlite3ColumnExpr(pTab
, &pTab
->aCol
[i
]),
1154 for(j
=0; j
<pColumn
->nId
&& pColumn
->a
[j
].idx
!=i
; j
++){}
1155 if( j
>=pColumn
->nId
){
1156 /* A column not named in the insert column list gets its
1158 sqlite3ExprCodeFactorable(pParse
,
1159 sqlite3ColumnExpr(pTab
, &pTab
->aCol
[i
]),
1164 }else if( nColumn
==0 ){
1165 /* This is INSERT INTO ... DEFAULT VALUES. Load the default value. */
1166 sqlite3ExprCodeFactorable(pParse
,
1167 sqlite3ColumnExpr(pTab
, &pTab
->aCol
[i
]),
1175 sqlite3VdbeAddOp3(v
, OP_Column
, srcTab
, k
, iRegStore
);
1176 }else if( pSelect
){
1177 if( regFromSelect
!=regData
){
1178 sqlite3VdbeAddOp2(v
, OP_SCopy
, regFromSelect
+k
, iRegStore
);
1181 sqlite3ExprCode(pParse
, pList
->a
[k
].pExpr
, iRegStore
);
1186 /* Run the BEFORE and INSTEAD OF triggers, if there are any
1188 endOfLoop
= sqlite3VdbeMakeLabel(pParse
);
1189 if( tmask
& TRIGGER_BEFORE
){
1190 int regCols
= sqlite3GetTempRange(pParse
, pTab
->nCol
+1);
1192 /* build the NEW.* reference row. Note that if there is an INTEGER
1193 ** PRIMARY KEY into which a NULL is being inserted, that NULL will be
1194 ** translated into a unique ID for the row. But on a BEFORE trigger,
1195 ** we do not know what the unique ID will be (because the insert has
1196 ** not happened yet) so we substitute a rowid of -1
1199 sqlite3VdbeAddOp2(v
, OP_Integer
, -1, regCols
);
1202 assert( !withoutRowid
);
1204 sqlite3VdbeAddOp3(v
, OP_Column
, srcTab
, ipkColumn
, regCols
);
1206 assert( pSelect
==0 ); /* Otherwise useTempTable is true */
1207 sqlite3ExprCode(pParse
, pList
->a
[ipkColumn
].pExpr
, regCols
);
1209 addr1
= sqlite3VdbeAddOp1(v
, OP_NotNull
, regCols
); VdbeCoverage(v
);
1210 sqlite3VdbeAddOp2(v
, OP_Integer
, -1, regCols
);
1211 sqlite3VdbeJumpHere(v
, addr1
);
1212 sqlite3VdbeAddOp1(v
, OP_MustBeInt
, regCols
); VdbeCoverage(v
);
1215 /* Copy the new data already generated. */
1216 assert( pTab
->nNVCol
>0 );
1217 sqlite3VdbeAddOp3(v
, OP_Copy
, regRowid
+1, regCols
+1, pTab
->nNVCol
-1);
1219 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1220 /* Compute the new value for generated columns after all other
1221 ** columns have already been computed. This must be done after
1222 ** computing the ROWID in case one of the generated columns
1223 ** refers to the ROWID. */
1224 if( pTab
->tabFlags
& TF_HasGenerated
){
1225 testcase( pTab
->tabFlags
& TF_HasVirtual
);
1226 testcase( pTab
->tabFlags
& TF_HasStored
);
1227 sqlite3ComputeGeneratedColumns(pParse
, regCols
+1, pTab
);
1231 /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger,
1232 ** do not attempt any conversions before assembling the record.
1233 ** If this is a real table, attempt conversions as required by the
1234 ** table column affinities.
1237 sqlite3TableAffinity(v
, pTab
, regCols
+1);
1240 /* Fire BEFORE or INSTEAD OF triggers */
1241 sqlite3CodeRowTrigger(pParse
, pTrigger
, TK_INSERT
, 0, TRIGGER_BEFORE
,
1242 pTab
, regCols
-pTab
->nCol
-1, onError
, endOfLoop
);
1244 sqlite3ReleaseTempRange(pParse
, regCols
, pTab
->nCol
+1);
1248 if( IsVirtual(pTab
) ){
1249 /* The row that the VUpdate opcode will delete: none */
1250 sqlite3VdbeAddOp2(v
, OP_Null
, 0, regIns
);
1253 /* Compute the new rowid */
1255 sqlite3VdbeAddOp3(v
, OP_Column
, srcTab
, ipkColumn
, regRowid
);
1256 }else if( pSelect
){
1257 /* Rowid already initialized at tag-20191021-001 */
1259 Expr
*pIpk
= pList
->a
[ipkColumn
].pExpr
;
1260 if( pIpk
->op
==TK_NULL
&& !IsVirtual(pTab
) ){
1261 sqlite3VdbeAddOp3(v
, OP_NewRowid
, iDataCur
, regRowid
, regAutoinc
);
1264 sqlite3ExprCode(pParse
, pList
->a
[ipkColumn
].pExpr
, regRowid
);
1267 /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid
1268 ** to generate a unique primary key value.
1272 if( !IsVirtual(pTab
) ){
1273 addr1
= sqlite3VdbeAddOp1(v
, OP_NotNull
, regRowid
); VdbeCoverage(v
);
1274 sqlite3VdbeAddOp3(v
, OP_NewRowid
, iDataCur
, regRowid
, regAutoinc
);
1275 sqlite3VdbeJumpHere(v
, addr1
);
1277 addr1
= sqlite3VdbeCurrentAddr(v
);
1278 sqlite3VdbeAddOp2(v
, OP_IsNull
, regRowid
, addr1
+2); VdbeCoverage(v
);
1280 sqlite3VdbeAddOp1(v
, OP_MustBeInt
, regRowid
); VdbeCoverage(v
);
1282 }else if( IsVirtual(pTab
) || withoutRowid
){
1283 sqlite3VdbeAddOp2(v
, OP_Null
, 0, regRowid
);
1285 sqlite3VdbeAddOp3(v
, OP_NewRowid
, iDataCur
, regRowid
, regAutoinc
);
1288 autoIncStep(pParse
, regAutoinc
, regRowid
);
1290 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1291 /* Compute the new value for generated columns after all other
1292 ** columns have already been computed. This must be done after
1293 ** computing the ROWID in case one of the generated columns
1294 ** is derived from the INTEGER PRIMARY KEY. */
1295 if( pTab
->tabFlags
& TF_HasGenerated
){
1296 sqlite3ComputeGeneratedColumns(pParse
, regRowid
+1, pTab
);
1300 /* Generate code to check constraints and generate index keys and
1301 ** do the insertion.
1303 #ifndef SQLITE_OMIT_VIRTUALTABLE
1304 if( IsVirtual(pTab
) ){
1305 const char *pVTab
= (const char *)sqlite3GetVTable(db
, pTab
);
1306 sqlite3VtabMakeWritable(pParse
, pTab
);
1307 sqlite3VdbeAddOp4(v
, OP_VUpdate
, 1, pTab
->nCol
+2, regIns
, pVTab
, P4_VTAB
);
1308 sqlite3VdbeChangeP5(v
, onError
==OE_Default
? OE_Abort
: onError
);
1309 sqlite3MayAbort(pParse
);
1313 int isReplace
= 0;/* Set to true if constraints may cause a replace */
1314 int bUseSeek
; /* True to use OPFLAG_SEEKRESULT */
1315 sqlite3GenerateConstraintChecks(pParse
, pTab
, aRegIdx
, iDataCur
, iIdxCur
,
1316 regIns
, 0, ipkColumn
>=0, onError
, endOfLoop
, &isReplace
, 0, pUpsert
1318 sqlite3FkCheck(pParse
, pTab
, 0, regIns
, 0, 0);
1320 /* Set the OPFLAG_USESEEKRESULT flag if either (a) there are no REPLACE
1321 ** constraints or (b) there are no triggers and this table is not a
1322 ** parent table in a foreign key constraint. It is safe to set the
1323 ** flag in the second case as if any REPLACE constraint is hit, an
1324 ** OP_Delete or OP_IdxDelete instruction will be executed on each
1325 ** cursor that is disturbed. And these instructions both clear the
1326 ** VdbeCursor.seekResult variable, disabling the OPFLAG_USESEEKRESULT
1327 ** functionality. */
1328 bUseSeek
= (isReplace
==0 || !sqlite3VdbeHasSubProgram(v
));
1329 sqlite3CompleteInsertion(pParse
, pTab
, iDataCur
, iIdxCur
,
1330 regIns
, aRegIdx
, 0, appendFlag
, bUseSeek
1333 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
1334 }else if( pParse
->bReturning
){
1335 /* If there is a RETURNING clause, populate the rowid register with
1336 ** constant value -1, in case one or more of the returned expressions
1337 ** refer to the "rowid" of the view. */
1338 sqlite3VdbeAddOp2(v
, OP_Integer
, -1, regRowid
);
1342 /* Update the count of rows that are inserted
1345 sqlite3VdbeAddOp2(v
, OP_AddImm
, regRowCount
, 1);
1349 /* Code AFTER triggers */
1350 sqlite3CodeRowTrigger(pParse
, pTrigger
, TK_INSERT
, 0, TRIGGER_AFTER
,
1351 pTab
, regData
-2-pTab
->nCol
, onError
, endOfLoop
);
1354 /* The bottom of the main insertion loop, if the data source
1355 ** is a SELECT statement.
1357 sqlite3VdbeResolveLabel(v
, endOfLoop
);
1359 sqlite3VdbeAddOp2(v
, OP_Next
, srcTab
, addrCont
); VdbeCoverage(v
);
1360 sqlite3VdbeJumpHere(v
, addrInsTop
);
1361 sqlite3VdbeAddOp1(v
, OP_Close
, srcTab
);
1362 }else if( pSelect
){
1363 sqlite3VdbeGoto(v
, addrCont
);
1365 /* If we are jumping back to an OP_Yield that is preceded by an
1366 ** OP_ReleaseReg, set the p5 flag on the OP_Goto so that the
1367 ** OP_ReleaseReg will be included in the loop. */
1368 if( sqlite3VdbeGetOp(v
, addrCont
-1)->opcode
==OP_ReleaseReg
){
1369 assert( sqlite3VdbeGetOp(v
, addrCont
)->opcode
==OP_Yield
);
1370 sqlite3VdbeChangeP5(v
, 1);
1373 sqlite3VdbeJumpHere(v
, addrInsTop
);
1376 #ifndef SQLITE_OMIT_XFER_OPT
1378 #endif /* SQLITE_OMIT_XFER_OPT */
1379 /* Update the sqlite_sequence table by storing the content of the
1380 ** maximum rowid counter values recorded while inserting into
1381 ** autoincrement tables.
1383 if( pParse
->nested
==0 && pParse
->pTriggerTab
==0 ){
1384 sqlite3AutoincrementEnd(pParse
);
1388 ** Return the number of rows inserted. If this routine is
1389 ** generating code because of a call to sqlite3NestedParse(), do not
1390 ** invoke the callback function.
1393 sqlite3CodeChangeCount(v
, regRowCount
, "rows inserted");
1397 sqlite3SrcListDelete(db
, pTabList
);
1398 sqlite3ExprListDelete(db
, pList
);
1399 sqlite3UpsertDelete(db
, pUpsert
);
1400 sqlite3SelectDelete(db
, pSelect
);
1401 sqlite3IdListDelete(db
, pColumn
);
1402 sqlite3DbFree(db
, aRegIdx
);
1405 /* Make sure "isView" and other macros defined above are undefined. Otherwise
1406 ** they may interfere with compilation of other functions in this file
1407 ** (or in another file, if this file becomes part of the amalgamation). */
1419 ** Meanings of bits in of pWalker->eCode for
1420 ** sqlite3ExprReferencesUpdatedColumn()
1422 #define CKCNSTRNT_COLUMN 0x01 /* CHECK constraint uses a changing column */
1423 #define CKCNSTRNT_ROWID 0x02 /* CHECK constraint references the ROWID */
1425 /* This is the Walker callback from sqlite3ExprReferencesUpdatedColumn().
1426 * Set bit 0x01 of pWalker->eCode if pWalker->eCode to 0 and if this
1427 ** expression node references any of the
1428 ** columns that are being modifed by an UPDATE statement.
1430 static int checkConstraintExprNode(Walker
*pWalker
, Expr
*pExpr
){
1431 if( pExpr
->op
==TK_COLUMN
){
1432 assert( pExpr
->iColumn
>=0 || pExpr
->iColumn
==-1 );
1433 if( pExpr
->iColumn
>=0 ){
1434 if( pWalker
->u
.aiCol
[pExpr
->iColumn
]>=0 ){
1435 pWalker
->eCode
|= CKCNSTRNT_COLUMN
;
1438 pWalker
->eCode
|= CKCNSTRNT_ROWID
;
1441 return WRC_Continue
;
1445 ** pExpr is a CHECK constraint on a row that is being UPDATE-ed. The
1446 ** only columns that are modified by the UPDATE are those for which
1447 ** aiChng[i]>=0, and also the ROWID is modified if chngRowid is true.
1449 ** Return true if CHECK constraint pExpr uses any of the
1450 ** changing columns (or the rowid if it is changing). In other words,
1451 ** return true if this CHECK constraint must be validated for
1452 ** the new row in the UPDATE statement.
1454 ** 2018-09-15: pExpr might also be an expression for an index-on-expressions.
1455 ** The operation of this routine is the same - return true if an only if
1456 ** the expression uses one or more of columns identified by the second and
1459 int sqlite3ExprReferencesUpdatedColumn(
1460 Expr
*pExpr
, /* The expression to be checked */
1461 int *aiChng
, /* aiChng[x]>=0 if column x changed by the UPDATE */
1462 int chngRowid
/* True if UPDATE changes the rowid */
1465 memset(&w
, 0, sizeof(w
));
1467 w
.xExprCallback
= checkConstraintExprNode
;
1469 sqlite3WalkExpr(&w
, pExpr
);
1471 testcase( (w
.eCode
& CKCNSTRNT_ROWID
)!=0 );
1472 w
.eCode
&= ~CKCNSTRNT_ROWID
;
1474 testcase( w
.eCode
==0 );
1475 testcase( w
.eCode
==CKCNSTRNT_COLUMN
);
1476 testcase( w
.eCode
==CKCNSTRNT_ROWID
);
1477 testcase( w
.eCode
==(CKCNSTRNT_ROWID
|CKCNSTRNT_COLUMN
) );
1482 ** The sqlite3GenerateConstraintChecks() routine usually wants to visit
1483 ** the indexes of a table in the order provided in the Table->pIndex list.
1484 ** However, sometimes (rarely - when there is an upsert) it wants to visit
1485 ** the indexes in a different order. The following data structures accomplish
1488 ** The IndexIterator object is used to walk through all of the indexes
1489 ** of a table in either Index.pNext order, or in some other order established
1490 ** by an array of IndexListTerm objects.
1492 typedef struct IndexListTerm IndexListTerm
;
1493 typedef struct IndexIterator IndexIterator
;
1494 struct IndexIterator
{
1495 int eType
; /* 0 for Index.pNext list. 1 for an array of IndexListTerm */
1496 int i
; /* Index of the current item from the list */
1498 struct { /* Use this object for eType==0: A Index.pNext list */
1499 Index
*pIdx
; /* The current Index */
1501 struct { /* Use this object for eType==1; Array of IndexListTerm */
1502 int nIdx
; /* Size of the array */
1503 IndexListTerm
*aIdx
; /* Array of IndexListTerms */
1508 /* When IndexIterator.eType==1, then each index is an array of instances
1509 ** of the following object
1511 struct IndexListTerm
{
1512 Index
*p
; /* The index */
1513 int ix
; /* Which entry in the original Table.pIndex list is this index*/
1516 /* Return the first index on the list */
1517 static Index
*indexIteratorFirst(IndexIterator
*pIter
, int *pIx
){
1518 assert( pIter
->i
==0 );
1520 *pIx
= pIter
->u
.ax
.aIdx
[0].ix
;
1521 return pIter
->u
.ax
.aIdx
[0].p
;
1524 return pIter
->u
.lx
.pIdx
;
1528 /* Return the next index from the list. Return NULL when out of indexes */
1529 static Index
*indexIteratorNext(IndexIterator
*pIter
, int *pIx
){
1532 if( i
>=pIter
->u
.ax
.nIdx
){
1536 *pIx
= pIter
->u
.ax
.aIdx
[i
].ix
;
1537 return pIter
->u
.ax
.aIdx
[i
].p
;
1540 pIter
->u
.lx
.pIdx
= pIter
->u
.lx
.pIdx
->pNext
;
1541 return pIter
->u
.lx
.pIdx
;
1546 ** Generate code to do constraint checks prior to an INSERT or an UPDATE
1549 ** The regNewData parameter is the first register in a range that contains
1550 ** the data to be inserted or the data after the update. There will be
1551 ** pTab->nCol+1 registers in this range. The first register (the one
1552 ** that regNewData points to) will contain the new rowid, or NULL in the
1553 ** case of a WITHOUT ROWID table. The second register in the range will
1554 ** contain the content of the first table column. The third register will
1555 ** contain the content of the second table column. And so forth.
1557 ** The regOldData parameter is similar to regNewData except that it contains
1558 ** the data prior to an UPDATE rather than afterwards. regOldData is zero
1559 ** for an INSERT. This routine can distinguish between UPDATE and INSERT by
1560 ** checking regOldData for zero.
1562 ** For an UPDATE, the pkChng boolean is true if the true primary key (the
1563 ** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table)
1564 ** might be modified by the UPDATE. If pkChng is false, then the key of
1565 ** the iDataCur content table is guaranteed to be unchanged by the UPDATE.
1567 ** For an INSERT, the pkChng boolean indicates whether or not the rowid
1568 ** was explicitly specified as part of the INSERT statement. If pkChng
1569 ** is zero, it means that the either rowid is computed automatically or
1570 ** that the table is a WITHOUT ROWID table and has no rowid. On an INSERT,
1571 ** pkChng will only be true if the INSERT statement provides an integer
1572 ** value for either the rowid column or its INTEGER PRIMARY KEY alias.
1574 ** The code generated by this routine will store new index entries into
1575 ** registers identified by aRegIdx[]. No index entry is created for
1576 ** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is
1577 ** the same as the order of indices on the linked list of indices
1580 ** (2019-05-07) The generated code also creates a new record for the
1581 ** main table, if pTab is a rowid table, and stores that record in the
1582 ** register identified by aRegIdx[nIdx] - in other words in the first
1583 ** entry of aRegIdx[] past the last index. It is important that the
1584 ** record be generated during constraint checks to avoid affinity changes
1585 ** to the register content that occur after constraint checks but before
1586 ** the new record is inserted.
1588 ** The caller must have already opened writeable cursors on the main
1589 ** table and all applicable indices (that is to say, all indices for which
1590 ** aRegIdx[] is not zero). iDataCur is the cursor for the main table when
1591 ** inserting or updating a rowid table, or the cursor for the PRIMARY KEY
1592 ** index when operating on a WITHOUT ROWID table. iIdxCur is the cursor
1593 ** for the first index in the pTab->pIndex list. Cursors for other indices
1594 ** are at iIdxCur+N for the N-th element of the pTab->pIndex list.
1596 ** This routine also generates code to check constraints. NOT NULL,
1597 ** CHECK, and UNIQUE constraints are all checked. If a constraint fails,
1598 ** then the appropriate action is performed. There are five possible
1599 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE.
1601 ** Constraint type Action What Happens
1602 ** --------------- ---------- ----------------------------------------
1603 ** any ROLLBACK The current transaction is rolled back and
1604 ** sqlite3_step() returns immediately with a
1605 ** return code of SQLITE_CONSTRAINT.
1607 ** any ABORT Back out changes from the current command
1608 ** only (do not do a complete rollback) then
1609 ** cause sqlite3_step() to return immediately
1610 ** with SQLITE_CONSTRAINT.
1612 ** any FAIL Sqlite3_step() returns immediately with a
1613 ** return code of SQLITE_CONSTRAINT. The
1614 ** transaction is not rolled back and any
1615 ** changes to prior rows are retained.
1617 ** any IGNORE The attempt in insert or update the current
1618 ** row is skipped, without throwing an error.
1619 ** Processing continues with the next row.
1620 ** (There is an immediate jump to ignoreDest.)
1622 ** NOT NULL REPLACE The NULL value is replace by the default
1623 ** value for that column. If the default value
1624 ** is NULL, the action is the same as ABORT.
1626 ** UNIQUE REPLACE The other row that conflicts with the row
1627 ** being inserted is removed.
1629 ** CHECK REPLACE Illegal. The results in an exception.
1631 ** Which action to take is determined by the overrideError parameter.
1632 ** Or if overrideError==OE_Default, then the pParse->onError parameter
1633 ** is used. Or if pParse->onError==OE_Default then the onError value
1634 ** for the constraint is used.
1636 void sqlite3GenerateConstraintChecks(
1637 Parse
*pParse
, /* The parser context */
1638 Table
*pTab
, /* The table being inserted or updated */
1639 int *aRegIdx
, /* Use register aRegIdx[i] for index i. 0 for unused */
1640 int iDataCur
, /* Canonical data cursor (main table or PK index) */
1641 int iIdxCur
, /* First index cursor */
1642 int regNewData
, /* First register in a range holding values to insert */
1643 int regOldData
, /* Previous content. 0 for INSERTs */
1644 u8 pkChng
, /* Non-zero if the rowid or PRIMARY KEY changed */
1645 u8 overrideError
, /* Override onError to this if not OE_Default */
1646 int ignoreDest
, /* Jump to this label on an OE_Ignore resolution */
1647 int *pbMayReplace
, /* OUT: Set to true if constraint may cause a replace */
1648 int *aiChng
, /* column i is unchanged if aiChng[i]<0 */
1649 Upsert
*pUpsert
/* ON CONFLICT clauses, if any. NULL otherwise */
1651 Vdbe
*v
; /* VDBE under constrution */
1652 Index
*pIdx
; /* Pointer to one of the indices */
1653 Index
*pPk
= 0; /* The PRIMARY KEY index for WITHOUT ROWID tables */
1654 sqlite3
*db
; /* Database connection */
1655 int i
; /* loop counter */
1656 int ix
; /* Index loop counter */
1657 int nCol
; /* Number of columns */
1658 int onError
; /* Conflict resolution strategy */
1659 int seenReplace
= 0; /* True if REPLACE is used to resolve INT PK conflict */
1660 int nPkField
; /* Number of fields in PRIMARY KEY. 1 for ROWID tables */
1661 Upsert
*pUpsertClause
= 0; /* The specific ON CONFLICT clause for pIdx */
1662 u8 isUpdate
; /* True if this is an UPDATE operation */
1663 u8 bAffinityDone
= 0; /* True if the OP_Affinity operation has been run */
1664 int upsertIpkReturn
= 0; /* Address of Goto at end of IPK uniqueness check */
1665 int upsertIpkDelay
= 0; /* Address of Goto to bypass initial IPK check */
1666 int ipkTop
= 0; /* Top of the IPK uniqueness check */
1667 int ipkBottom
= 0; /* OP_Goto at the end of the IPK uniqueness check */
1668 /* Variables associated with retesting uniqueness constraints after
1669 ** replace triggers fire have run */
1670 int regTrigCnt
; /* Register used to count replace trigger invocations */
1671 int addrRecheck
= 0; /* Jump here to recheck all uniqueness constraints */
1672 int lblRecheckOk
= 0; /* Each recheck jumps to this label if it passes */
1673 Trigger
*pTrigger
; /* List of DELETE triggers on the table pTab */
1674 int nReplaceTrig
= 0; /* Number of replace triggers coded */
1675 IndexIterator sIdxIter
; /* Index iterator */
1677 isUpdate
= regOldData
!=0;
1681 assert( !IsView(pTab
) ); /* This table is not a VIEW */
1684 /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for
1685 ** normal rowid tables. nPkField is the number of key fields in the
1686 ** pPk index or 1 for a rowid table. In other words, nPkField is the
1687 ** number of fields in the true primary key of the table. */
1688 if( HasRowid(pTab
) ){
1692 pPk
= sqlite3PrimaryKeyIndex(pTab
);
1693 nPkField
= pPk
->nKeyCol
;
1696 /* Record that this module has started */
1697 VdbeModuleComment((v
, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)",
1698 iDataCur
, iIdxCur
, regNewData
, regOldData
, pkChng
));
1700 /* Test all NOT NULL constraints.
1702 if( pTab
->tabFlags
& TF_HasNotNull
){
1703 int b2ndPass
= 0; /* True if currently running 2nd pass */
1704 int nSeenReplace
= 0; /* Number of ON CONFLICT REPLACE operations */
1705 int nGenerated
= 0; /* Number of generated columns with NOT NULL */
1706 while(1){ /* Make 2 passes over columns. Exit loop via "break" */
1707 for(i
=0; i
<nCol
; i
++){
1708 int iReg
; /* Register holding column value */
1709 Column
*pCol
= &pTab
->aCol
[i
]; /* The column to check for NOT NULL */
1710 int isGenerated
; /* non-zero if column is generated */
1711 onError
= pCol
->notNull
;
1712 if( onError
==OE_None
) continue; /* No NOT NULL on this column */
1713 if( i
==pTab
->iPKey
){
1714 continue; /* ROWID is never NULL */
1716 isGenerated
= pCol
->colFlags
& COLFLAG_GENERATED
;
1717 if( isGenerated
&& !b2ndPass
){
1719 continue; /* Generated columns processed on 2nd pass */
1721 if( aiChng
&& aiChng
[i
]<0 && !isGenerated
){
1722 /* Do not check NOT NULL on columns that do not change */
1725 if( overrideError
!=OE_Default
){
1726 onError
= overrideError
;
1727 }else if( onError
==OE_Default
){
1730 if( onError
==OE_Replace
){
1731 if( b2ndPass
/* REPLACE becomes ABORT on the 2nd pass */
1732 || pCol
->iDflt
==0 /* REPLACE is ABORT if no DEFAULT value */
1734 testcase( pCol
->colFlags
& COLFLAG_VIRTUAL
);
1735 testcase( pCol
->colFlags
& COLFLAG_STORED
);
1736 testcase( pCol
->colFlags
& COLFLAG_GENERATED
);
1739 assert( !isGenerated
);
1741 }else if( b2ndPass
&& !isGenerated
){
1744 assert( onError
==OE_Rollback
|| onError
==OE_Abort
|| onError
==OE_Fail
1745 || onError
==OE_Ignore
|| onError
==OE_Replace
);
1746 testcase( i
!=sqlite3TableColumnToStorage(pTab
, i
) );
1747 iReg
= sqlite3TableColumnToStorage(pTab
, i
) + regNewData
+ 1;
1750 int addr1
= sqlite3VdbeAddOp1(v
, OP_NotNull
, iReg
);
1752 assert( (pCol
->colFlags
& COLFLAG_GENERATED
)==0 );
1754 sqlite3ExprCodeCopy(pParse
,
1755 sqlite3ColumnExpr(pTab
, pCol
), iReg
);
1756 sqlite3VdbeJumpHere(v
, addr1
);
1760 sqlite3MayAbort(pParse
);
1761 /* no break */ deliberate_fall_through
1764 char *zMsg
= sqlite3MPrintf(db
, "%s.%s", pTab
->zName
,
1766 sqlite3VdbeAddOp3(v
, OP_HaltIfNull
, SQLITE_CONSTRAINT_NOTNULL
,
1768 sqlite3VdbeAppendP4(v
, zMsg
, P4_DYNAMIC
);
1769 sqlite3VdbeChangeP5(v
, P5_ConstraintNotNull
);
1774 assert( onError
==OE_Ignore
);
1775 sqlite3VdbeAddOp2(v
, OP_IsNull
, iReg
, ignoreDest
);
1779 } /* end switch(onError) */
1780 } /* end loop i over columns */
1781 if( nGenerated
==0 && nSeenReplace
==0 ){
1782 /* If there are no generated columns with NOT NULL constraints
1783 ** and no NOT NULL ON CONFLICT REPLACE constraints, then a single
1784 ** pass is sufficient */
1787 if( b2ndPass
) break; /* Never need more than 2 passes */
1789 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1790 if( nSeenReplace
>0 && (pTab
->tabFlags
& TF_HasGenerated
)!=0 ){
1791 /* If any NOT NULL ON CONFLICT REPLACE constraints fired on the
1792 ** first pass, recomputed values for all generated columns, as
1793 ** those values might depend on columns affected by the REPLACE.
1795 sqlite3ComputeGeneratedColumns(pParse
, regNewData
+1, pTab
);
1798 } /* end of 2-pass loop */
1799 } /* end if( has-not-null-constraints ) */
1801 /* Test all CHECK constraints
1803 #ifndef SQLITE_OMIT_CHECK
1804 if( pTab
->pCheck
&& (db
->flags
& SQLITE_IgnoreChecks
)==0 ){
1805 ExprList
*pCheck
= pTab
->pCheck
;
1806 pParse
->iSelfTab
= -(regNewData
+1);
1807 onError
= overrideError
!=OE_Default
? overrideError
: OE_Abort
;
1808 for(i
=0; i
<pCheck
->nExpr
; i
++){
1811 Expr
*pExpr
= pCheck
->a
[i
].pExpr
;
1813 && !sqlite3ExprReferencesUpdatedColumn(pExpr
, aiChng
, pkChng
)
1815 /* The check constraints do not reference any of the columns being
1816 ** updated so there is no point it verifying the check constraint */
1819 if( bAffinityDone
==0 ){
1820 sqlite3TableAffinity(v
, pTab
, regNewData
+1);
1823 allOk
= sqlite3VdbeMakeLabel(pParse
);
1824 sqlite3VdbeVerifyAbortable(v
, onError
);
1825 pCopy
= sqlite3ExprDup(db
, pExpr
, 0);
1826 if( !db
->mallocFailed
){
1827 sqlite3ExprIfTrue(pParse
, pCopy
, allOk
, SQLITE_JUMPIFNULL
);
1829 sqlite3ExprDelete(db
, pCopy
);
1830 if( onError
==OE_Ignore
){
1831 sqlite3VdbeGoto(v
, ignoreDest
);
1833 char *zName
= pCheck
->a
[i
].zEName
;
1834 assert( zName
!=0 || pParse
->db
->mallocFailed
);
1835 if( onError
==OE_Replace
) onError
= OE_Abort
; /* IMP: R-26383-51744 */
1836 sqlite3HaltConstraint(pParse
, SQLITE_CONSTRAINT_CHECK
,
1837 onError
, zName
, P4_TRANSIENT
,
1838 P5_ConstraintCheck
);
1840 sqlite3VdbeResolveLabel(v
, allOk
);
1842 pParse
->iSelfTab
= 0;
1844 #endif /* !defined(SQLITE_OMIT_CHECK) */
1846 /* UNIQUE and PRIMARY KEY constraints should be handled in the following
1850 ** (2) OE_Abort, OE_Fail, OE_Rollback, OE_Ignore
1853 ** OE_Fail and OE_Ignore must happen before any changes are made.
1854 ** OE_Update guarantees that only a single row will change, so it
1855 ** must happen before OE_Replace. Technically, OE_Abort and OE_Rollback
1856 ** could happen in any order, but they are grouped up front for
1859 ** 2018-08-14: Ticket https://www.sqlite.org/src/info/908f001483982c43
1860 ** The order of constraints used to have OE_Update as (2) and OE_Abort
1861 ** and so forth as (1). But apparently PostgreSQL checks the OE_Update
1862 ** constraint before any others, so it had to be moved.
1864 ** Constraint checking code is generated in this order:
1865 ** (A) The rowid constraint
1866 ** (B) Unique index constraints that do not have OE_Replace as their
1867 ** default conflict resolution strategy
1868 ** (C) Unique index that do use OE_Replace by default.
1870 ** The ordering of (2) and (3) is accomplished by making sure the linked
1871 ** list of indexes attached to a table puts all OE_Replace indexes last
1872 ** in the list. See sqlite3CreateIndex() for where that happens.
1876 sIdxIter
.u
.ax
.aIdx
= 0; /* Silence harmless compiler warning */
1877 sIdxIter
.u
.lx
.pIdx
= pTab
->pIndex
;
1879 if( pUpsert
->pUpsertTarget
==0 ){
1880 /* There is just on ON CONFLICT clause and it has no constraint-target */
1881 assert( pUpsert
->pNextUpsert
==0 );
1882 if( pUpsert
->isDoUpdate
==0 ){
1883 /* A single ON CONFLICT DO NOTHING clause, without a constraint-target.
1884 ** Make all unique constraint resolution be OE_Ignore */
1885 overrideError
= OE_Ignore
;
1888 /* A single ON CONFLICT DO UPDATE. Make all resolutions OE_Update */
1889 overrideError
= OE_Update
;
1891 }else if( pTab
->pIndex
!=0 ){
1892 /* Otherwise, we'll need to run the IndexListTerm array version of the
1893 ** iterator to ensure that all of the ON CONFLICT conditions are
1894 ** checked first and in order. */
1899 for(nIdx
=0, pIdx
=pTab
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
, nIdx
++){
1900 assert( aRegIdx
[nIdx
]>0 );
1903 sIdxIter
.u
.ax
.nIdx
= nIdx
;
1904 nByte
= (sizeof(IndexListTerm
)+1)*nIdx
+ nIdx
;
1905 sIdxIter
.u
.ax
.aIdx
= sqlite3DbMallocZero(db
, nByte
);
1906 if( sIdxIter
.u
.ax
.aIdx
==0 ) return; /* OOM */
1907 bUsed
= (u8
*)&sIdxIter
.u
.ax
.aIdx
[nIdx
];
1908 pUpsert
->pToFree
= sIdxIter
.u
.ax
.aIdx
;
1909 for(i
=0, pTerm
=pUpsert
; pTerm
; pTerm
=pTerm
->pNextUpsert
){
1910 if( pTerm
->pUpsertTarget
==0 ) break;
1911 if( pTerm
->pUpsertIdx
==0 ) continue; /* Skip ON CONFLICT for the IPK */
1913 pIdx
= pTab
->pIndex
;
1914 while( ALWAYS(pIdx
!=0) && pIdx
!=pTerm
->pUpsertIdx
){
1918 if( bUsed
[jj
] ) continue; /* Duplicate ON CONFLICT clause ignored */
1920 sIdxIter
.u
.ax
.aIdx
[i
].p
= pIdx
;
1921 sIdxIter
.u
.ax
.aIdx
[i
].ix
= jj
;
1924 for(jj
=0, pIdx
=pTab
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
, jj
++){
1925 if( bUsed
[jj
] ) continue;
1926 sIdxIter
.u
.ax
.aIdx
[i
].p
= pIdx
;
1927 sIdxIter
.u
.ax
.aIdx
[i
].ix
= jj
;
1934 /* Determine if it is possible that triggers (either explicitly coded
1935 ** triggers or FK resolution actions) might run as a result of deletes
1936 ** that happen when OE_Replace conflict resolution occurs. (Call these
1937 ** "replace triggers".) If any replace triggers run, we will need to
1938 ** recheck all of the uniqueness constraints after they have all run.
1939 ** But on the recheck, the resolution is OE_Abort instead of OE_Replace.
1941 ** If replace triggers are a possibility, then
1943 ** (1) Allocate register regTrigCnt and initialize it to zero.
1944 ** That register will count the number of replace triggers that
1945 ** fire. Constraint recheck only occurs if the number is positive.
1946 ** (2) Initialize pTrigger to the list of all DELETE triggers on pTab.
1947 ** (3) Initialize addrRecheck and lblRecheckOk
1949 ** The uniqueness rechecking code will create a series of tests to run
1950 ** in a second pass. The addrRecheck and lblRecheckOk variables are
1951 ** used to link together these tests which are separated from each other
1952 ** in the generate bytecode.
1954 if( (db
->flags
& (SQLITE_RecTriggers
|SQLITE_ForeignKeys
))==0 ){
1955 /* There are not DELETE triggers nor FK constraints. No constraint
1956 ** rechecks are needed. */
1960 if( db
->flags
&SQLITE_RecTriggers
){
1961 pTrigger
= sqlite3TriggersExist(pParse
, pTab
, TK_DELETE
, 0, 0);
1962 regTrigCnt
= pTrigger
!=0 || sqlite3FkRequired(pParse
, pTab
, 0, 0);
1965 regTrigCnt
= sqlite3FkRequired(pParse
, pTab
, 0, 0);
1968 /* Replace triggers might exist. Allocate the counter and
1969 ** initialize it to zero. */
1970 regTrigCnt
= ++pParse
->nMem
;
1971 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, regTrigCnt
);
1972 VdbeComment((v
, "trigger count"));
1973 lblRecheckOk
= sqlite3VdbeMakeLabel(pParse
);
1974 addrRecheck
= lblRecheckOk
;
1978 /* If rowid is changing, make sure the new rowid does not previously
1979 ** exist in the table.
1981 if( pkChng
&& pPk
==0 ){
1982 int addrRowidOk
= sqlite3VdbeMakeLabel(pParse
);
1984 /* Figure out what action to take in case of a rowid collision */
1985 onError
= pTab
->keyConf
;
1986 if( overrideError
!=OE_Default
){
1987 onError
= overrideError
;
1988 }else if( onError
==OE_Default
){
1992 /* figure out whether or not upsert applies in this case */
1994 pUpsertClause
= sqlite3UpsertOfIndex(pUpsert
,0);
1995 if( pUpsertClause
!=0 ){
1996 if( pUpsertClause
->isDoUpdate
==0 ){
1997 onError
= OE_Ignore
; /* DO NOTHING is the same as INSERT OR IGNORE */
1999 onError
= OE_Update
; /* DO UPDATE */
2002 if( pUpsertClause
!=pUpsert
){
2003 /* The first ON CONFLICT clause has a conflict target other than
2004 ** the IPK. We have to jump ahead to that first ON CONFLICT clause
2005 ** and then come back here and deal with the IPK afterwards */
2006 upsertIpkDelay
= sqlite3VdbeAddOp0(v
, OP_Goto
);
2010 /* If the response to a rowid conflict is REPLACE but the response
2011 ** to some other UNIQUE constraint is FAIL or IGNORE, then we need
2012 ** to defer the running of the rowid conflict checking until after
2013 ** the UNIQUE constraints have run.
2015 if( onError
==OE_Replace
/* IPK rule is REPLACE */
2016 && onError
!=overrideError
/* Rules for other constraints are different */
2017 && pTab
->pIndex
/* There exist other constraints */
2018 && !upsertIpkDelay
/* IPK check already deferred by UPSERT */
2020 ipkTop
= sqlite3VdbeAddOp0(v
, OP_Goto
)+1;
2021 VdbeComment((v
, "defer IPK REPLACE until last"));
2025 /* pkChng!=0 does not mean that the rowid has changed, only that
2026 ** it might have changed. Skip the conflict logic below if the rowid
2028 sqlite3VdbeAddOp3(v
, OP_Eq
, regNewData
, addrRowidOk
, regOldData
);
2029 sqlite3VdbeChangeP5(v
, SQLITE_NOTNULL
);
2033 /* Check to see if the new rowid already exists in the table. Skip
2034 ** the following conflict logic if it does not. */
2035 VdbeNoopComment((v
, "uniqueness check for ROWID"));
2036 sqlite3VdbeVerifyAbortable(v
, onError
);
2037 sqlite3VdbeAddOp3(v
, OP_NotExists
, iDataCur
, addrRowidOk
, regNewData
);
2043 /* no break */ deliberate_fall_through
2048 testcase( onError
==OE_Rollback
);
2049 testcase( onError
==OE_Abort
);
2050 testcase( onError
==OE_Fail
);
2051 sqlite3RowidConstraint(pParse
, onError
, pTab
);
2055 /* If there are DELETE triggers on this table and the
2056 ** recursive-triggers flag is set, call GenerateRowDelete() to
2057 ** remove the conflicting row from the table. This will fire
2058 ** the triggers and remove both the table and index b-tree entries.
2060 ** Otherwise, if there are no triggers or the recursive-triggers
2061 ** flag is not set, but the table has one or more indexes, call
2062 ** GenerateRowIndexDelete(). This removes the index b-tree entries
2063 ** only. The table b-tree entry will be replaced by the new entry
2064 ** when it is inserted.
2066 ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called,
2067 ** also invoke MultiWrite() to indicate that this VDBE may require
2068 ** statement rollback (if the statement is aborted after the delete
2069 ** takes place). Earlier versions called sqlite3MultiWrite() regardless,
2070 ** but being more selective here allows statements like:
2072 ** REPLACE INTO t(rowid) VALUES($newrowid)
2074 ** to run without a statement journal if there are no indexes on the
2078 sqlite3MultiWrite(pParse
);
2079 sqlite3GenerateRowDelete(pParse
, pTab
, pTrigger
, iDataCur
, iIdxCur
,
2080 regNewData
, 1, 0, OE_Replace
, 1, -1);
2081 sqlite3VdbeAddOp2(v
, OP_AddImm
, regTrigCnt
, 1); /* incr trigger cnt */
2084 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
2085 assert( HasRowid(pTab
) );
2086 /* This OP_Delete opcode fires the pre-update-hook only. It does
2087 ** not modify the b-tree. It is more efficient to let the coming
2088 ** OP_Insert replace the existing entry than it is to delete the
2089 ** existing entry and then insert a new one. */
2090 sqlite3VdbeAddOp2(v
, OP_Delete
, iDataCur
, OPFLAG_ISNOOP
);
2091 sqlite3VdbeAppendP4(v
, pTab
, P4_TABLE
);
2092 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
2094 sqlite3MultiWrite(pParse
);
2095 sqlite3GenerateRowIndexDelete(pParse
, pTab
, iDataCur
, iIdxCur
,0,-1);
2101 #ifndef SQLITE_OMIT_UPSERT
2103 sqlite3UpsertDoUpdate(pParse
, pUpsert
, pTab
, 0, iDataCur
);
2104 /* no break */ deliberate_fall_through
2108 testcase( onError
==OE_Ignore
);
2109 sqlite3VdbeGoto(v
, ignoreDest
);
2113 sqlite3VdbeResolveLabel(v
, addrRowidOk
);
2114 if( pUpsert
&& pUpsertClause
!=pUpsert
){
2115 upsertIpkReturn
= sqlite3VdbeAddOp0(v
, OP_Goto
);
2117 ipkBottom
= sqlite3VdbeAddOp0(v
, OP_Goto
);
2118 sqlite3VdbeJumpHere(v
, ipkTop
-1);
2122 /* Test all UNIQUE constraints by creating entries for each UNIQUE
2123 ** index and making sure that duplicate entries do not already exist.
2124 ** Compute the revised record entries for indices as we go.
2126 ** This loop also handles the case of the PRIMARY KEY index for a
2127 ** WITHOUT ROWID table.
2129 for(pIdx
= indexIteratorFirst(&sIdxIter
, &ix
);
2131 pIdx
= indexIteratorNext(&sIdxIter
, &ix
)
2133 int regIdx
; /* Range of registers hold conent for pIdx */
2134 int regR
; /* Range of registers holding conflicting PK */
2135 int iThisCur
; /* Cursor for this UNIQUE index */
2136 int addrUniqueOk
; /* Jump here if the UNIQUE constraint is satisfied */
2137 int addrConflictCk
; /* First opcode in the conflict check logic */
2139 if( aRegIdx
[ix
]==0 ) continue; /* Skip indices that do not change */
2141 pUpsertClause
= sqlite3UpsertOfIndex(pUpsert
, pIdx
);
2142 if( upsertIpkDelay
&& pUpsertClause
==pUpsert
){
2143 sqlite3VdbeJumpHere(v
, upsertIpkDelay
);
2146 addrUniqueOk
= sqlite3VdbeMakeLabel(pParse
);
2147 if( bAffinityDone
==0 ){
2148 sqlite3TableAffinity(v
, pTab
, regNewData
+1);
2151 VdbeNoopComment((v
, "prep index %s", pIdx
->zName
));
2152 iThisCur
= iIdxCur
+ix
;
2155 /* Skip partial indices for which the WHERE clause is not true */
2156 if( pIdx
->pPartIdxWhere
){
2157 sqlite3VdbeAddOp2(v
, OP_Null
, 0, aRegIdx
[ix
]);
2158 pParse
->iSelfTab
= -(regNewData
+1);
2159 sqlite3ExprIfFalseDup(pParse
, pIdx
->pPartIdxWhere
, addrUniqueOk
,
2161 pParse
->iSelfTab
= 0;
2164 /* Create a record for this index entry as it should appear after
2165 ** the insert or update. Store that record in the aRegIdx[ix] register
2167 regIdx
= aRegIdx
[ix
]+1;
2168 for(i
=0; i
<pIdx
->nColumn
; i
++){
2169 int iField
= pIdx
->aiColumn
[i
];
2171 if( iField
==XN_EXPR
){
2172 pParse
->iSelfTab
= -(regNewData
+1);
2173 sqlite3ExprCodeCopy(pParse
, pIdx
->aColExpr
->a
[i
].pExpr
, regIdx
+i
);
2174 pParse
->iSelfTab
= 0;
2175 VdbeComment((v
, "%s column %d", pIdx
->zName
, i
));
2176 }else if( iField
==XN_ROWID
|| iField
==pTab
->iPKey
){
2178 sqlite3VdbeAddOp2(v
, OP_IntCopy
, x
, regIdx
+i
);
2179 VdbeComment((v
, "rowid"));
2181 testcase( sqlite3TableColumnToStorage(pTab
, iField
)!=iField
);
2182 x
= sqlite3TableColumnToStorage(pTab
, iField
) + regNewData
+ 1;
2183 sqlite3VdbeAddOp2(v
, OP_SCopy
, x
, regIdx
+i
);
2184 VdbeComment((v
, "%s", pTab
->aCol
[iField
].zCnName
));
2187 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regIdx
, pIdx
->nColumn
, aRegIdx
[ix
]);
2188 VdbeComment((v
, "for %s", pIdx
->zName
));
2189 #ifdef SQLITE_ENABLE_NULL_TRIM
2190 if( pIdx
->idxType
==SQLITE_IDXTYPE_PRIMARYKEY
){
2191 sqlite3SetMakeRecordP5(v
, pIdx
->pTable
);
2194 sqlite3VdbeReleaseRegisters(pParse
, regIdx
, pIdx
->nColumn
, 0, 0);
2196 /* In an UPDATE operation, if this index is the PRIMARY KEY index
2197 ** of a WITHOUT ROWID table and there has been no change the
2198 ** primary key, then no collision is possible. The collision detection
2199 ** logic below can all be skipped. */
2200 if( isUpdate
&& pPk
==pIdx
&& pkChng
==0 ){
2201 sqlite3VdbeResolveLabel(v
, addrUniqueOk
);
2205 /* Find out what action to take in case there is a uniqueness conflict */
2206 onError
= pIdx
->onError
;
2207 if( onError
==OE_None
){
2208 sqlite3VdbeResolveLabel(v
, addrUniqueOk
);
2209 continue; /* pIdx is not a UNIQUE index */
2211 if( overrideError
!=OE_Default
){
2212 onError
= overrideError
;
2213 }else if( onError
==OE_Default
){
2217 /* Figure out if the upsert clause applies to this index */
2218 if( pUpsertClause
){
2219 if( pUpsertClause
->isDoUpdate
==0 ){
2220 onError
= OE_Ignore
; /* DO NOTHING is the same as INSERT OR IGNORE */
2222 onError
= OE_Update
; /* DO UPDATE */
2226 /* Collision detection may be omitted if all of the following are true:
2227 ** (1) The conflict resolution algorithm is REPLACE
2228 ** (2) The table is a WITHOUT ROWID table
2229 ** (3) There are no secondary indexes on the table
2230 ** (4) No delete triggers need to be fired if there is a conflict
2231 ** (5) No FK constraint counters need to be updated if a conflict occurs.
2233 ** This is not possible for ENABLE_PREUPDATE_HOOK builds, as the row
2234 ** must be explicitly deleted in order to ensure any pre-update hook
2236 assert( IsOrdinaryTable(pTab
) );
2237 #ifndef SQLITE_ENABLE_PREUPDATE_HOOK
2238 if( (ix
==0 && pIdx
->pNext
==0) /* Condition 3 */
2239 && pPk
==pIdx
/* Condition 2 */
2240 && onError
==OE_Replace
/* Condition 1 */
2241 && ( 0==(db
->flags
&SQLITE_RecTriggers
) || /* Condition 4 */
2242 0==sqlite3TriggersExist(pParse
, pTab
, TK_DELETE
, 0, 0))
2243 && ( 0==(db
->flags
&SQLITE_ForeignKeys
) || /* Condition 5 */
2244 (0==pTab
->u
.tab
.pFKey
&& 0==sqlite3FkReferences(pTab
)))
2246 sqlite3VdbeResolveLabel(v
, addrUniqueOk
);
2249 #endif /* ifndef SQLITE_ENABLE_PREUPDATE_HOOK */
2251 /* Check to see if the new index entry will be unique */
2252 sqlite3VdbeVerifyAbortable(v
, onError
);
2254 sqlite3VdbeAddOp4Int(v
, OP_NoConflict
, iThisCur
, addrUniqueOk
,
2255 regIdx
, pIdx
->nKeyCol
); VdbeCoverage(v
);
2257 /* Generate code to handle collisions */
2258 regR
= pIdx
==pPk
? regIdx
: sqlite3GetTempRange(pParse
, nPkField
);
2259 if( isUpdate
|| onError
==OE_Replace
){
2260 if( HasRowid(pTab
) ){
2261 sqlite3VdbeAddOp2(v
, OP_IdxRowid
, iThisCur
, regR
);
2262 /* Conflict only if the rowid of the existing index entry
2263 ** is different from old-rowid */
2265 sqlite3VdbeAddOp3(v
, OP_Eq
, regR
, addrUniqueOk
, regOldData
);
2266 sqlite3VdbeChangeP5(v
, SQLITE_NOTNULL
);
2271 /* Extract the PRIMARY KEY from the end of the index entry and
2272 ** store it in registers regR..regR+nPk-1 */
2274 for(i
=0; i
<pPk
->nKeyCol
; i
++){
2275 assert( pPk
->aiColumn
[i
]>=0 );
2276 x
= sqlite3TableColumnToIndex(pIdx
, pPk
->aiColumn
[i
]);
2277 sqlite3VdbeAddOp3(v
, OP_Column
, iThisCur
, x
, regR
+i
);
2278 VdbeComment((v
, "%s.%s", pTab
->zName
,
2279 pTab
->aCol
[pPk
->aiColumn
[i
]].zCnName
));
2283 /* If currently processing the PRIMARY KEY of a WITHOUT ROWID
2284 ** table, only conflict if the new PRIMARY KEY values are actually
2285 ** different from the old.
2287 ** For a UNIQUE index, only conflict if the PRIMARY KEY values
2288 ** of the matched index row are different from the original PRIMARY
2289 ** KEY values of this row before the update. */
2290 int addrJump
= sqlite3VdbeCurrentAddr(v
)+pPk
->nKeyCol
;
2292 int regCmp
= (IsPrimaryKeyIndex(pIdx
) ? regIdx
: regR
);
2294 for(i
=0; i
<pPk
->nKeyCol
; i
++){
2295 char *p4
= (char*)sqlite3LocateCollSeq(pParse
, pPk
->azColl
[i
]);
2296 x
= pPk
->aiColumn
[i
];
2298 if( i
==(pPk
->nKeyCol
-1) ){
2299 addrJump
= addrUniqueOk
;
2302 x
= sqlite3TableColumnToStorage(pTab
, x
);
2303 sqlite3VdbeAddOp4(v
, op
,
2304 regOldData
+1+x
, addrJump
, regCmp
+i
, p4
, P4_COLLSEQ
2306 sqlite3VdbeChangeP5(v
, SQLITE_NOTNULL
);
2307 VdbeCoverageIf(v
, op
==OP_Eq
);
2308 VdbeCoverageIf(v
, op
==OP_Ne
);
2314 /* Generate code that executes if the new index entry is not unique */
2315 assert( onError
==OE_Rollback
|| onError
==OE_Abort
|| onError
==OE_Fail
2316 || onError
==OE_Ignore
|| onError
==OE_Replace
|| onError
==OE_Update
);
2321 testcase( onError
==OE_Rollback
);
2322 testcase( onError
==OE_Abort
);
2323 testcase( onError
==OE_Fail
);
2324 sqlite3UniqueConstraint(pParse
, onError
, pIdx
);
2327 #ifndef SQLITE_OMIT_UPSERT
2329 sqlite3UpsertDoUpdate(pParse
, pUpsert
, pTab
, pIdx
, iIdxCur
+ix
);
2330 /* no break */ deliberate_fall_through
2334 testcase( onError
==OE_Ignore
);
2335 sqlite3VdbeGoto(v
, ignoreDest
);
2339 int nConflictCk
; /* Number of opcodes in conflict check logic */
2341 assert( onError
==OE_Replace
);
2342 nConflictCk
= sqlite3VdbeCurrentAddr(v
) - addrConflictCk
;
2343 assert( nConflictCk
>0 || db
->mallocFailed
);
2344 testcase( nConflictCk
<=0 );
2345 testcase( nConflictCk
>1 );
2347 sqlite3MultiWrite(pParse
);
2350 if( pTrigger
&& isUpdate
){
2351 sqlite3VdbeAddOp1(v
, OP_CursorLock
, iDataCur
);
2353 sqlite3GenerateRowDelete(pParse
, pTab
, pTrigger
, iDataCur
, iIdxCur
,
2354 regR
, nPkField
, 0, OE_Replace
,
2355 (pIdx
==pPk
? ONEPASS_SINGLE
: ONEPASS_OFF
), iThisCur
);
2356 if( pTrigger
&& isUpdate
){
2357 sqlite3VdbeAddOp1(v
, OP_CursorUnlock
, iDataCur
);
2360 int addrBypass
; /* Jump destination to bypass recheck logic */
2362 sqlite3VdbeAddOp2(v
, OP_AddImm
, regTrigCnt
, 1); /* incr trigger cnt */
2363 addrBypass
= sqlite3VdbeAddOp0(v
, OP_Goto
); /* Bypass recheck */
2364 VdbeComment((v
, "bypass recheck"));
2366 /* Here we insert code that will be invoked after all constraint
2367 ** checks have run, if and only if one or more replace triggers
2369 sqlite3VdbeResolveLabel(v
, lblRecheckOk
);
2370 lblRecheckOk
= sqlite3VdbeMakeLabel(pParse
);
2371 if( pIdx
->pPartIdxWhere
){
2372 /* Bypass the recheck if this partial index is not defined
2373 ** for the current row */
2374 sqlite3VdbeAddOp2(v
, OP_IsNull
, regIdx
-1, lblRecheckOk
);
2377 /* Copy the constraint check code from above, except change
2378 ** the constraint-ok jump destination to be the address of
2379 ** the next retest block */
2380 while( nConflictCk
>0 ){
2381 VdbeOp x
; /* Conflict check opcode to copy */
2382 /* The sqlite3VdbeAddOp4() call might reallocate the opcode array.
2383 ** Hence, make a complete copy of the opcode, rather than using
2384 ** a pointer to the opcode. */
2385 x
= *sqlite3VdbeGetOp(v
, addrConflictCk
);
2386 if( x
.opcode
!=OP_IdxRowid
){
2387 int p2
; /* New P2 value for copied conflict check opcode */
2389 if( sqlite3OpcodeProperty
[x
.opcode
]&OPFLG_JUMP
){
2394 zP4
= x
.p4type
==P4_INT32
? SQLITE_INT_TO_PTR(x
.p4
.i
) : x
.p4
.z
;
2395 sqlite3VdbeAddOp4(v
, x
.opcode
, x
.p1
, p2
, x
.p3
, zP4
, x
.p4type
);
2396 sqlite3VdbeChangeP5(v
, x
.p5
);
2397 VdbeCoverageIf(v
, p2
!=x
.p2
);
2402 /* If the retest fails, issue an abort */
2403 sqlite3UniqueConstraint(pParse
, OE_Abort
, pIdx
);
2405 sqlite3VdbeJumpHere(v
, addrBypass
); /* Terminate the recheck bypass */
2411 sqlite3VdbeResolveLabel(v
, addrUniqueOk
);
2412 if( regR
!=regIdx
) sqlite3ReleaseTempRange(pParse
, regR
, nPkField
);
2415 && sqlite3UpsertNextIsIPK(pUpsertClause
)
2417 sqlite3VdbeGoto(v
, upsertIpkDelay
+1);
2418 sqlite3VdbeJumpHere(v
, upsertIpkReturn
);
2419 upsertIpkReturn
= 0;
2423 /* If the IPK constraint is a REPLACE, run it last */
2425 sqlite3VdbeGoto(v
, ipkTop
);
2426 VdbeComment((v
, "Do IPK REPLACE"));
2427 assert( ipkBottom
>0 );
2428 sqlite3VdbeJumpHere(v
, ipkBottom
);
2431 /* Recheck all uniqueness constraints after replace triggers have run */
2432 testcase( regTrigCnt
!=0 && nReplaceTrig
==0 );
2433 assert( regTrigCnt
!=0 || nReplaceTrig
==0 );
2435 sqlite3VdbeAddOp2(v
, OP_IfNot
, regTrigCnt
, lblRecheckOk
);VdbeCoverage(v
);
2438 sqlite3VdbeAddOp3(v
, OP_Eq
, regNewData
, addrRecheck
, regOldData
);
2439 sqlite3VdbeChangeP5(v
, SQLITE_NOTNULL
);
2442 sqlite3VdbeAddOp3(v
, OP_NotExists
, iDataCur
, addrRecheck
, regNewData
);
2444 sqlite3RowidConstraint(pParse
, OE_Abort
, pTab
);
2446 sqlite3VdbeGoto(v
, addrRecheck
);
2448 sqlite3VdbeResolveLabel(v
, lblRecheckOk
);
2451 /* Generate the table record */
2452 if( HasRowid(pTab
) ){
2453 int regRec
= aRegIdx
[ix
];
2454 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regNewData
+1, pTab
->nNVCol
, regRec
);
2455 sqlite3SetMakeRecordP5(v
, pTab
);
2456 if( !bAffinityDone
){
2457 sqlite3TableAffinity(v
, pTab
, 0);
2461 *pbMayReplace
= seenReplace
;
2462 VdbeModuleComment((v
, "END: GenCnstCks(%d)", seenReplace
));
2465 #ifdef SQLITE_ENABLE_NULL_TRIM
2467 ** Change the P5 operand on the last opcode (which should be an OP_MakeRecord)
2468 ** to be the number of columns in table pTab that must not be NULL-trimmed.
2470 ** Or if no columns of pTab may be NULL-trimmed, leave P5 at zero.
2472 void sqlite3SetMakeRecordP5(Vdbe
*v
, Table
*pTab
){
2475 /* Records with omitted columns are only allowed for schema format
2476 ** version 2 and later (SQLite version 3.1.4, 2005-02-20). */
2477 if( pTab
->pSchema
->file_format
<2 ) return;
2479 for(i
=pTab
->nCol
-1; i
>0; i
--){
2480 if( pTab
->aCol
[i
].iDflt
!=0 ) break;
2481 if( pTab
->aCol
[i
].colFlags
& COLFLAG_PRIMKEY
) break;
2483 sqlite3VdbeChangeP5(v
, i
+1);
2488 ** Table pTab is a WITHOUT ROWID table that is being written to. The cursor
2489 ** number is iCur, and register regData contains the new record for the
2490 ** PK index. This function adds code to invoke the pre-update hook,
2491 ** if one is registered.
2493 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
2494 static void codeWithoutRowidPreupdate(
2495 Parse
*pParse
, /* Parse context */
2496 Table
*pTab
, /* Table being updated */
2497 int iCur
, /* Cursor number for table */
2498 int regData
/* Data containing new record */
2500 Vdbe
*v
= pParse
->pVdbe
;
2501 int r
= sqlite3GetTempReg(pParse
);
2502 assert( !HasRowid(pTab
) );
2503 assert( 0==(pParse
->db
->mDbFlags
& DBFLAG_Vacuum
) || CORRUPT_DB
);
2504 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, r
);
2505 sqlite3VdbeAddOp4(v
, OP_Insert
, iCur
, regData
, r
, (char*)pTab
, P4_TABLE
);
2506 sqlite3VdbeChangeP5(v
, OPFLAG_ISNOOP
);
2507 sqlite3ReleaseTempReg(pParse
, r
);
2510 # define codeWithoutRowidPreupdate(a,b,c,d)
2514 ** This routine generates code to finish the INSERT or UPDATE operation
2515 ** that was started by a prior call to sqlite3GenerateConstraintChecks.
2516 ** A consecutive range of registers starting at regNewData contains the
2517 ** rowid and the content to be inserted.
2519 ** The arguments to this routine should be the same as the first six
2520 ** arguments to sqlite3GenerateConstraintChecks.
2522 void sqlite3CompleteInsertion(
2523 Parse
*pParse
, /* The parser context */
2524 Table
*pTab
, /* the table into which we are inserting */
2525 int iDataCur
, /* Cursor of the canonical data source */
2526 int iIdxCur
, /* First index cursor */
2527 int regNewData
, /* Range of content */
2528 int *aRegIdx
, /* Register used by each index. 0 for unused indices */
2529 int update_flags
, /* True for UPDATE, False for INSERT */
2530 int appendBias
, /* True if this is likely to be an append */
2531 int useSeekResult
/* True to set the USESEEKRESULT flag on OP_[Idx]Insert */
2533 Vdbe
*v
; /* Prepared statements under construction */
2534 Index
*pIdx
; /* An index being inserted or updated */
2535 u8 pik_flags
; /* flag values passed to the btree insert */
2536 int i
; /* Loop counter */
2538 assert( update_flags
==0
2539 || update_flags
==OPFLAG_ISUPDATE
2540 || update_flags
==(OPFLAG_ISUPDATE
|OPFLAG_SAVEPOSITION
)
2545 assert( !IsView(pTab
) ); /* This table is not a VIEW */
2546 for(i
=0, pIdx
=pTab
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
, i
++){
2547 /* All REPLACE indexes are at the end of the list */
2548 assert( pIdx
->onError
!=OE_Replace
2550 || pIdx
->pNext
->onError
==OE_Replace
);
2551 if( aRegIdx
[i
]==0 ) continue;
2552 if( pIdx
->pPartIdxWhere
){
2553 sqlite3VdbeAddOp2(v
, OP_IsNull
, aRegIdx
[i
], sqlite3VdbeCurrentAddr(v
)+2);
2556 pik_flags
= (useSeekResult
? OPFLAG_USESEEKRESULT
: 0);
2557 if( IsPrimaryKeyIndex(pIdx
) && !HasRowid(pTab
) ){
2558 pik_flags
|= OPFLAG_NCHANGE
;
2559 pik_flags
|= (update_flags
& OPFLAG_SAVEPOSITION
);
2560 if( update_flags
==0 ){
2561 codeWithoutRowidPreupdate(pParse
, pTab
, iIdxCur
+i
, aRegIdx
[i
]);
2564 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, iIdxCur
+i
, aRegIdx
[i
],
2566 pIdx
->uniqNotNull
? pIdx
->nKeyCol
: pIdx
->nColumn
);
2567 sqlite3VdbeChangeP5(v
, pik_flags
);
2569 if( !HasRowid(pTab
) ) return;
2570 if( pParse
->nested
){
2573 pik_flags
= OPFLAG_NCHANGE
;
2574 pik_flags
|= (update_flags
?update_flags
:OPFLAG_LASTROWID
);
2577 pik_flags
|= OPFLAG_APPEND
;
2579 if( useSeekResult
){
2580 pik_flags
|= OPFLAG_USESEEKRESULT
;
2582 sqlite3VdbeAddOp3(v
, OP_Insert
, iDataCur
, aRegIdx
[i
], regNewData
);
2583 if( !pParse
->nested
){
2584 sqlite3VdbeAppendP4(v
, pTab
, P4_TABLE
);
2586 sqlite3VdbeChangeP5(v
, pik_flags
);
2590 ** Allocate cursors for the pTab table and all its indices and generate
2591 ** code to open and initialized those cursors.
2593 ** The cursor for the object that contains the complete data (normally
2594 ** the table itself, but the PRIMARY KEY index in the case of a WITHOUT
2595 ** ROWID table) is returned in *piDataCur. The first index cursor is
2596 ** returned in *piIdxCur. The number of indices is returned.
2598 ** Use iBase as the first cursor (either the *piDataCur for rowid tables
2599 ** or the first index for WITHOUT ROWID tables) if it is non-negative.
2600 ** If iBase is negative, then allocate the next available cursor.
2602 ** For a rowid table, *piDataCur will be exactly one less than *piIdxCur.
2603 ** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range
2604 ** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the
2605 ** pTab->pIndex list.
2607 ** If pTab is a virtual table, then this routine is a no-op and the
2608 ** *piDataCur and *piIdxCur values are left uninitialized.
2610 int sqlite3OpenTableAndIndices(
2611 Parse
*pParse
, /* Parsing context */
2612 Table
*pTab
, /* Table to be opened */
2613 int op
, /* OP_OpenRead or OP_OpenWrite */
2614 u8 p5
, /* P5 value for OP_Open* opcodes (except on WITHOUT ROWID) */
2615 int iBase
, /* Use this for the table cursor, if there is one */
2616 u8
*aToOpen
, /* If not NULL: boolean for each table and index */
2617 int *piDataCur
, /* Write the database source cursor number here */
2618 int *piIdxCur
/* Write the first index cursor number here */
2626 assert( op
==OP_OpenRead
|| op
==OP_OpenWrite
);
2627 assert( op
==OP_OpenWrite
|| p5
==0 );
2628 if( IsVirtual(pTab
) ){
2629 /* This routine is a no-op for virtual tables. Leave the output
2630 ** variables *piDataCur and *piIdxCur set to illegal cursor numbers
2631 ** for improved error detection. */
2632 *piDataCur
= *piIdxCur
= -999;
2635 iDb
= sqlite3SchemaToIndex(pParse
->db
, pTab
->pSchema
);
2638 if( iBase
<0 ) iBase
= pParse
->nTab
;
2640 if( piDataCur
) *piDataCur
= iDataCur
;
2641 if( HasRowid(pTab
) && (aToOpen
==0 || aToOpen
[0]) ){
2642 sqlite3OpenTable(pParse
, iDataCur
, iDb
, pTab
, op
);
2644 sqlite3TableLock(pParse
, iDb
, pTab
->tnum
, op
==OP_OpenWrite
, pTab
->zName
);
2646 if( piIdxCur
) *piIdxCur
= iBase
;
2647 for(i
=0, pIdx
=pTab
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
, i
++){
2648 int iIdxCur
= iBase
++;
2649 assert( pIdx
->pSchema
==pTab
->pSchema
);
2650 if( IsPrimaryKeyIndex(pIdx
) && !HasRowid(pTab
) ){
2651 if( piDataCur
) *piDataCur
= iIdxCur
;
2654 if( aToOpen
==0 || aToOpen
[i
+1] ){
2655 sqlite3VdbeAddOp3(v
, op
, iIdxCur
, pIdx
->tnum
, iDb
);
2656 sqlite3VdbeSetP4KeyInfo(pParse
, pIdx
);
2657 sqlite3VdbeChangeP5(v
, p5
);
2658 VdbeComment((v
, "%s", pIdx
->zName
));
2661 if( iBase
>pParse
->nTab
) pParse
->nTab
= iBase
;
2668 ** The following global variable is incremented whenever the
2669 ** transfer optimization is used. This is used for testing
2670 ** purposes only - to make sure the transfer optimization really
2671 ** is happening when it is supposed to.
2673 int sqlite3_xferopt_count
;
2674 #endif /* SQLITE_TEST */
2677 #ifndef SQLITE_OMIT_XFER_OPT
2679 ** Check to see if index pSrc is compatible as a source of data
2680 ** for index pDest in an insert transfer optimization. The rules
2681 ** for a compatible index:
2683 ** * The index is over the same set of columns
2684 ** * The same DESC and ASC markings occurs on all columns
2685 ** * The same onError processing (OE_Abort, OE_Ignore, etc)
2686 ** * The same collating sequence on each column
2687 ** * The index has the exact same WHERE clause
2689 static int xferCompatibleIndex(Index
*pDest
, Index
*pSrc
){
2691 assert( pDest
&& pSrc
);
2692 assert( pDest
->pTable
!=pSrc
->pTable
);
2693 if( pDest
->nKeyCol
!=pSrc
->nKeyCol
|| pDest
->nColumn
!=pSrc
->nColumn
){
2694 return 0; /* Different number of columns */
2696 if( pDest
->onError
!=pSrc
->onError
){
2697 return 0; /* Different conflict resolution strategies */
2699 for(i
=0; i
<pSrc
->nKeyCol
; i
++){
2700 if( pSrc
->aiColumn
[i
]!=pDest
->aiColumn
[i
] ){
2701 return 0; /* Different columns indexed */
2703 if( pSrc
->aiColumn
[i
]==XN_EXPR
){
2704 assert( pSrc
->aColExpr
!=0 && pDest
->aColExpr
!=0 );
2705 if( sqlite3ExprCompare(0, pSrc
->aColExpr
->a
[i
].pExpr
,
2706 pDest
->aColExpr
->a
[i
].pExpr
, -1)!=0 ){
2707 return 0; /* Different expressions in the index */
2710 if( pSrc
->aSortOrder
[i
]!=pDest
->aSortOrder
[i
] ){
2711 return 0; /* Different sort orders */
2713 if( sqlite3_stricmp(pSrc
->azColl
[i
],pDest
->azColl
[i
])!=0 ){
2714 return 0; /* Different collating sequences */
2717 if( sqlite3ExprCompare(0, pSrc
->pPartIdxWhere
, pDest
->pPartIdxWhere
, -1) ){
2718 return 0; /* Different WHERE clauses */
2721 /* If no test above fails then the indices must be compatible */
2726 ** Attempt the transfer optimization on INSERTs of the form
2728 ** INSERT INTO tab1 SELECT * FROM tab2;
2730 ** The xfer optimization transfers raw records from tab2 over to tab1.
2731 ** Columns are not decoded and reassembled, which greatly improves
2732 ** performance. Raw index records are transferred in the same way.
2734 ** The xfer optimization is only attempted if tab1 and tab2 are compatible.
2735 ** There are lots of rules for determining compatibility - see comments
2736 ** embedded in the code for details.
2738 ** This routine returns TRUE if the optimization is guaranteed to be used.
2739 ** Sometimes the xfer optimization will only work if the destination table
2740 ** is empty - a factor that can only be determined at run-time. In that
2741 ** case, this routine generates code for the xfer optimization but also
2742 ** does a test to see if the destination table is empty and jumps over the
2743 ** xfer optimization code if the test fails. In that case, this routine
2744 ** returns FALSE so that the caller will know to go ahead and generate
2745 ** an unoptimized transfer. This routine also returns FALSE if there
2746 ** is no chance that the xfer optimization can be applied.
2748 ** This optimization is particularly useful at making VACUUM run faster.
2750 static int xferOptimization(
2751 Parse
*pParse
, /* Parser context */
2752 Table
*pDest
, /* The table we are inserting into */
2753 Select
*pSelect
, /* A SELECT statement to use as the data source */
2754 int onError
, /* How to handle constraint errors */
2755 int iDbDest
/* The database of pDest */
2757 sqlite3
*db
= pParse
->db
;
2758 ExprList
*pEList
; /* The result set of the SELECT */
2759 Table
*pSrc
; /* The table in the FROM clause of SELECT */
2760 Index
*pSrcIdx
, *pDestIdx
; /* Source and destination indices */
2761 SrcItem
*pItem
; /* An element of pSelect->pSrc */
2762 int i
; /* Loop counter */
2763 int iDbSrc
; /* The database of pSrc */
2764 int iSrc
, iDest
; /* Cursors from source and destination */
2765 int addr1
, addr2
; /* Loop addresses */
2766 int emptyDestTest
= 0; /* Address of test for empty pDest */
2767 int emptySrcTest
= 0; /* Address of test for empty pSrc */
2768 Vdbe
*v
; /* The VDBE we are building */
2769 int regAutoinc
; /* Memory register used by AUTOINC */
2770 int destHasUniqueIdx
= 0; /* True if pDest has a UNIQUE index */
2771 int regData
, regRowid
; /* Registers holding data and rowid */
2773 assert( pSelect
!=0 );
2774 if( pParse
->pWith
|| pSelect
->pWith
){
2775 /* Do not attempt to process this query if there are an WITH clauses
2776 ** attached to it. Proceeding may generate a false "no such table: xxx"
2777 ** error if pSelect reads from a CTE named "xxx". */
2780 #ifndef SQLITE_OMIT_VIRTUALTABLE
2781 if( IsVirtual(pDest
) ){
2782 return 0; /* tab1 must not be a virtual table */
2785 if( onError
==OE_Default
){
2786 if( pDest
->iPKey
>=0 ) onError
= pDest
->keyConf
;
2787 if( onError
==OE_Default
) onError
= OE_Abort
;
2789 assert(pSelect
->pSrc
); /* allocated even if there is no FROM clause */
2790 if( pSelect
->pSrc
->nSrc
!=1 ){
2791 return 0; /* FROM clause must have exactly one term */
2793 if( pSelect
->pSrc
->a
[0].pSelect
){
2794 return 0; /* FROM clause cannot contain a subquery */
2796 if( pSelect
->pWhere
){
2797 return 0; /* SELECT may not have a WHERE clause */
2799 if( pSelect
->pOrderBy
){
2800 return 0; /* SELECT may not have an ORDER BY clause */
2802 /* Do not need to test for a HAVING clause. If HAVING is present but
2803 ** there is no ORDER BY, we will get an error. */
2804 if( pSelect
->pGroupBy
){
2805 return 0; /* SELECT may not have a GROUP BY clause */
2807 if( pSelect
->pLimit
){
2808 return 0; /* SELECT may not have a LIMIT clause */
2810 if( pSelect
->pPrior
){
2811 return 0; /* SELECT may not be a compound query */
2813 if( pSelect
->selFlags
& SF_Distinct
){
2814 return 0; /* SELECT may not be DISTINCT */
2816 pEList
= pSelect
->pEList
;
2817 assert( pEList
!=0 );
2818 if( pEList
->nExpr
!=1 ){
2819 return 0; /* The result set must have exactly one column */
2821 assert( pEList
->a
[0].pExpr
);
2822 if( pEList
->a
[0].pExpr
->op
!=TK_ASTERISK
){
2823 return 0; /* The result set must be the special operator "*" */
2826 /* At this point we have established that the statement is of the
2827 ** correct syntactic form to participate in this optimization. Now
2828 ** we have to check the semantics.
2830 pItem
= pSelect
->pSrc
->a
;
2831 pSrc
= sqlite3LocateTableItem(pParse
, 0, pItem
);
2833 return 0; /* FROM clause does not contain a real table */
2835 if( pSrc
->tnum
==pDest
->tnum
&& pSrc
->pSchema
==pDest
->pSchema
){
2836 testcase( pSrc
!=pDest
); /* Possible due to bad sqlite_schema.rootpage */
2837 return 0; /* tab1 and tab2 may not be the same table */
2839 if( HasRowid(pDest
)!=HasRowid(pSrc
) ){
2840 return 0; /* source and destination must both be WITHOUT ROWID or not */
2842 if( !IsOrdinaryTable(pSrc
) ){
2843 return 0; /* tab2 may not be a view or virtual table */
2845 if( pDest
->nCol
!=pSrc
->nCol
){
2846 return 0; /* Number of columns must be the same in tab1 and tab2 */
2848 if( pDest
->iPKey
!=pSrc
->iPKey
){
2849 return 0; /* Both tables must have the same INTEGER PRIMARY KEY */
2851 if( (pDest
->tabFlags
& TF_Strict
)!=0 && (pSrc
->tabFlags
& TF_Strict
)==0 ){
2852 return 0; /* Cannot feed from a non-strict into a strict table */
2854 for(i
=0; i
<pDest
->nCol
; i
++){
2855 Column
*pDestCol
= &pDest
->aCol
[i
];
2856 Column
*pSrcCol
= &pSrc
->aCol
[i
];
2857 #ifdef SQLITE_ENABLE_HIDDEN_COLUMNS
2858 if( (db
->mDbFlags
& DBFLAG_Vacuum
)==0
2859 && (pDestCol
->colFlags
| pSrcCol
->colFlags
) & COLFLAG_HIDDEN
2861 return 0; /* Neither table may have __hidden__ columns */
2864 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
2865 /* Even if tables t1 and t2 have identical schemas, if they contain
2866 ** generated columns, then this statement is semantically incorrect:
2868 ** INSERT INTO t2 SELECT * FROM t1;
2870 ** The reason is that generated column values are returned by the
2871 ** the SELECT statement on the right but the INSERT statement on the
2872 ** left wants them to be omitted.
2874 ** Nevertheless, this is a useful notational shorthand to tell SQLite
2875 ** to do a bulk transfer all of the content from t1 over to t2.
2877 ** We could, in theory, disable this (except for internal use by the
2878 ** VACUUM command where it is actually needed). But why do that? It
2879 ** seems harmless enough, and provides a useful service.
2881 if( (pDestCol
->colFlags
& COLFLAG_GENERATED
) !=
2882 (pSrcCol
->colFlags
& COLFLAG_GENERATED
) ){
2883 return 0; /* Both columns have the same generated-column type */
2885 /* But the transfer is only allowed if both the source and destination
2886 ** tables have the exact same expressions for generated columns.
2887 ** This requirement could be relaxed for VIRTUAL columns, I suppose.
2889 if( (pDestCol
->colFlags
& COLFLAG_GENERATED
)!=0 ){
2890 if( sqlite3ExprCompare(0,
2891 sqlite3ColumnExpr(pSrc
, pSrcCol
),
2892 sqlite3ColumnExpr(pDest
, pDestCol
), -1)!=0 ){
2893 testcase( pDestCol
->colFlags
& COLFLAG_VIRTUAL
);
2894 testcase( pDestCol
->colFlags
& COLFLAG_STORED
);
2895 return 0; /* Different generator expressions */
2899 if( pDestCol
->affinity
!=pSrcCol
->affinity
){
2900 return 0; /* Affinity must be the same on all columns */
2902 if( sqlite3_stricmp(sqlite3ColumnColl(pDestCol
),
2903 sqlite3ColumnColl(pSrcCol
))!=0 ){
2904 return 0; /* Collating sequence must be the same on all columns */
2906 if( pDestCol
->notNull
&& !pSrcCol
->notNull
){
2907 return 0; /* tab2 must be NOT NULL if tab1 is */
2909 /* Default values for second and subsequent columns need to match. */
2910 if( (pDestCol
->colFlags
& COLFLAG_GENERATED
)==0 && i
>0 ){
2911 Expr
*pDestExpr
= sqlite3ColumnExpr(pDest
, pDestCol
);
2912 Expr
*pSrcExpr
= sqlite3ColumnExpr(pSrc
, pSrcCol
);
2913 assert( pDestExpr
==0 || pDestExpr
->op
==TK_SPAN
);
2914 assert( pDestExpr
==0 || !ExprHasProperty(pDestExpr
, EP_IntValue
) );
2915 assert( pSrcExpr
==0 || pSrcExpr
->op
==TK_SPAN
);
2916 assert( pSrcExpr
==0 || !ExprHasProperty(pSrcExpr
, EP_IntValue
) );
2917 if( (pDestExpr
==0)!=(pSrcExpr
==0)
2918 || (pDestExpr
!=0 && strcmp(pDestExpr
->u
.zToken
,
2919 pSrcExpr
->u
.zToken
)!=0)
2921 return 0; /* Default values must be the same for all columns */
2925 for(pDestIdx
=pDest
->pIndex
; pDestIdx
; pDestIdx
=pDestIdx
->pNext
){
2926 if( IsUniqueIndex(pDestIdx
) ){
2927 destHasUniqueIdx
= 1;
2929 for(pSrcIdx
=pSrc
->pIndex
; pSrcIdx
; pSrcIdx
=pSrcIdx
->pNext
){
2930 if( xferCompatibleIndex(pDestIdx
, pSrcIdx
) ) break;
2933 return 0; /* pDestIdx has no corresponding index in pSrc */
2935 if( pSrcIdx
->tnum
==pDestIdx
->tnum
&& pSrc
->pSchema
==pDest
->pSchema
2936 && sqlite3FaultSim(411)==SQLITE_OK
){
2937 /* The sqlite3FaultSim() call allows this corruption test to be
2938 ** bypassed during testing, in order to exercise other corruption tests
2939 ** further downstream. */
2940 return 0; /* Corrupt schema - two indexes on the same btree */
2943 #ifndef SQLITE_OMIT_CHECK
2944 if( pDest
->pCheck
&& sqlite3ExprListCompare(pSrc
->pCheck
,pDest
->pCheck
,-1) ){
2945 return 0; /* Tables have different CHECK constraints. Ticket #2252 */
2948 #ifndef SQLITE_OMIT_FOREIGN_KEY
2949 /* Disallow the transfer optimization if the destination table constains
2950 ** any foreign key constraints. This is more restrictive than necessary.
2951 ** But the main beneficiary of the transfer optimization is the VACUUM
2952 ** command, and the VACUUM command disables foreign key constraints. So
2953 ** the extra complication to make this rule less restrictive is probably
2954 ** not worth the effort. Ticket [6284df89debdfa61db8073e062908af0c9b6118e]
2956 assert( IsOrdinaryTable(pDest
) );
2957 if( (db
->flags
& SQLITE_ForeignKeys
)!=0 && pDest
->u
.tab
.pFKey
!=0 ){
2961 if( (db
->flags
& SQLITE_CountRows
)!=0 ){
2962 return 0; /* xfer opt does not play well with PRAGMA count_changes */
2965 /* If we get this far, it means that the xfer optimization is at
2966 ** least a possibility, though it might only work if the destination
2967 ** table (tab1) is initially empty.
2970 sqlite3_xferopt_count
++;
2972 iDbSrc
= sqlite3SchemaToIndex(db
, pSrc
->pSchema
);
2973 v
= sqlite3GetVdbe(pParse
);
2974 sqlite3CodeVerifySchema(pParse
, iDbSrc
);
2975 iSrc
= pParse
->nTab
++;
2976 iDest
= pParse
->nTab
++;
2977 regAutoinc
= autoIncBegin(pParse
, iDbDest
, pDest
);
2978 regData
= sqlite3GetTempReg(pParse
);
2979 sqlite3VdbeAddOp2(v
, OP_Null
, 0, regData
);
2980 regRowid
= sqlite3GetTempReg(pParse
);
2981 sqlite3OpenTable(pParse
, iDest
, iDbDest
, pDest
, OP_OpenWrite
);
2982 assert( HasRowid(pDest
) || destHasUniqueIdx
);
2983 if( (db
->mDbFlags
& DBFLAG_Vacuum
)==0 && (
2984 (pDest
->iPKey
<0 && pDest
->pIndex
!=0) /* (1) */
2985 || destHasUniqueIdx
/* (2) */
2986 || (onError
!=OE_Abort
&& onError
!=OE_Rollback
) /* (3) */
2988 /* In some circumstances, we are able to run the xfer optimization
2989 ** only if the destination table is initially empty. Unless the
2990 ** DBFLAG_Vacuum flag is set, this block generates code to make
2991 ** that determination. If DBFLAG_Vacuum is set, then the destination
2992 ** table is always empty.
2994 ** Conditions under which the destination must be empty:
2996 ** (1) There is no INTEGER PRIMARY KEY but there are indices.
2997 ** (If the destination is not initially empty, the rowid fields
2998 ** of index entries might need to change.)
3000 ** (2) The destination has a unique index. (The xfer optimization
3001 ** is unable to test uniqueness.)
3003 ** (3) onError is something other than OE_Abort and OE_Rollback.
3005 addr1
= sqlite3VdbeAddOp2(v
, OP_Rewind
, iDest
, 0); VdbeCoverage(v
);
3006 emptyDestTest
= sqlite3VdbeAddOp0(v
, OP_Goto
);
3007 sqlite3VdbeJumpHere(v
, addr1
);
3009 if( HasRowid(pSrc
) ){
3011 sqlite3OpenTable(pParse
, iSrc
, iDbSrc
, pSrc
, OP_OpenRead
);
3012 emptySrcTest
= sqlite3VdbeAddOp2(v
, OP_Rewind
, iSrc
, 0); VdbeCoverage(v
);
3013 if( pDest
->iPKey
>=0 ){
3014 addr1
= sqlite3VdbeAddOp2(v
, OP_Rowid
, iSrc
, regRowid
);
3015 if( (db
->mDbFlags
& DBFLAG_Vacuum
)==0 ){
3016 sqlite3VdbeVerifyAbortable(v
, onError
);
3017 addr2
= sqlite3VdbeAddOp3(v
, OP_NotExists
, iDest
, 0, regRowid
);
3019 sqlite3RowidConstraint(pParse
, onError
, pDest
);
3020 sqlite3VdbeJumpHere(v
, addr2
);
3022 autoIncStep(pParse
, regAutoinc
, regRowid
);
3023 }else if( pDest
->pIndex
==0 && !(db
->mDbFlags
& DBFLAG_VacuumInto
) ){
3024 addr1
= sqlite3VdbeAddOp2(v
, OP_NewRowid
, iDest
, regRowid
);
3026 addr1
= sqlite3VdbeAddOp2(v
, OP_Rowid
, iSrc
, regRowid
);
3027 assert( (pDest
->tabFlags
& TF_Autoincrement
)==0 );
3030 if( db
->mDbFlags
& DBFLAG_Vacuum
){
3031 sqlite3VdbeAddOp1(v
, OP_SeekEnd
, iDest
);
3032 insFlags
= OPFLAG_APPEND
|OPFLAG_USESEEKRESULT
|OPFLAG_PREFORMAT
;
3034 insFlags
= OPFLAG_NCHANGE
|OPFLAG_LASTROWID
|OPFLAG_APPEND
|OPFLAG_PREFORMAT
;
3036 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
3037 if( (db
->mDbFlags
& DBFLAG_Vacuum
)==0 ){
3038 sqlite3VdbeAddOp3(v
, OP_RowData
, iSrc
, regData
, 1);
3039 insFlags
&= ~OPFLAG_PREFORMAT
;
3043 sqlite3VdbeAddOp3(v
, OP_RowCell
, iDest
, iSrc
, regRowid
);
3045 sqlite3VdbeAddOp3(v
, OP_Insert
, iDest
, regData
, regRowid
);
3046 if( (db
->mDbFlags
& DBFLAG_Vacuum
)==0 ){
3047 sqlite3VdbeChangeP4(v
, -1, (char*)pDest
, P4_TABLE
);
3049 sqlite3VdbeChangeP5(v
, insFlags
);
3051 sqlite3VdbeAddOp2(v
, OP_Next
, iSrc
, addr1
); VdbeCoverage(v
);
3052 sqlite3VdbeAddOp2(v
, OP_Close
, iSrc
, 0);
3053 sqlite3VdbeAddOp2(v
, OP_Close
, iDest
, 0);
3055 sqlite3TableLock(pParse
, iDbDest
, pDest
->tnum
, 1, pDest
->zName
);
3056 sqlite3TableLock(pParse
, iDbSrc
, pSrc
->tnum
, 0, pSrc
->zName
);
3058 for(pDestIdx
=pDest
->pIndex
; pDestIdx
; pDestIdx
=pDestIdx
->pNext
){
3060 for(pSrcIdx
=pSrc
->pIndex
; ALWAYS(pSrcIdx
); pSrcIdx
=pSrcIdx
->pNext
){
3061 if( xferCompatibleIndex(pDestIdx
, pSrcIdx
) ) break;
3064 sqlite3VdbeAddOp3(v
, OP_OpenRead
, iSrc
, pSrcIdx
->tnum
, iDbSrc
);
3065 sqlite3VdbeSetP4KeyInfo(pParse
, pSrcIdx
);
3066 VdbeComment((v
, "%s", pSrcIdx
->zName
));
3067 sqlite3VdbeAddOp3(v
, OP_OpenWrite
, iDest
, pDestIdx
->tnum
, iDbDest
);
3068 sqlite3VdbeSetP4KeyInfo(pParse
, pDestIdx
);
3069 sqlite3VdbeChangeP5(v
, OPFLAG_BULKCSR
);
3070 VdbeComment((v
, "%s", pDestIdx
->zName
));
3071 addr1
= sqlite3VdbeAddOp2(v
, OP_Rewind
, iSrc
, 0); VdbeCoverage(v
);
3072 if( db
->mDbFlags
& DBFLAG_Vacuum
){
3073 /* This INSERT command is part of a VACUUM operation, which guarantees
3074 ** that the destination table is empty. If all indexed columns use
3075 ** collation sequence BINARY, then it can also be assumed that the
3076 ** index will be populated by inserting keys in strictly sorted
3077 ** order. In this case, instead of seeking within the b-tree as part
3078 ** of every OP_IdxInsert opcode, an OP_SeekEnd is added before the
3079 ** OP_IdxInsert to seek to the point within the b-tree where each key
3080 ** should be inserted. This is faster.
3082 ** If any of the indexed columns use a collation sequence other than
3083 ** BINARY, this optimization is disabled. This is because the user
3084 ** might change the definition of a collation sequence and then run
3085 ** a VACUUM command. In that case keys may not be written in strictly
3087 for(i
=0; i
<pSrcIdx
->nColumn
; i
++){
3088 const char *zColl
= pSrcIdx
->azColl
[i
];
3089 if( sqlite3_stricmp(sqlite3StrBINARY
, zColl
) ) break;
3091 if( i
==pSrcIdx
->nColumn
){
3092 idxInsFlags
= OPFLAG_USESEEKRESULT
|OPFLAG_PREFORMAT
;
3093 sqlite3VdbeAddOp1(v
, OP_SeekEnd
, iDest
);
3094 sqlite3VdbeAddOp2(v
, OP_RowCell
, iDest
, iSrc
);
3096 }else if( !HasRowid(pSrc
) && pDestIdx
->idxType
==SQLITE_IDXTYPE_PRIMARYKEY
){
3097 idxInsFlags
|= OPFLAG_NCHANGE
;
3099 if( idxInsFlags
!=(OPFLAG_USESEEKRESULT
|OPFLAG_PREFORMAT
) ){
3100 sqlite3VdbeAddOp3(v
, OP_RowData
, iSrc
, regData
, 1);
3101 if( (db
->mDbFlags
& DBFLAG_Vacuum
)==0
3103 && IsPrimaryKeyIndex(pDestIdx
)
3105 codeWithoutRowidPreupdate(pParse
, pDest
, iDest
, regData
);
3108 sqlite3VdbeAddOp2(v
, OP_IdxInsert
, iDest
, regData
);
3109 sqlite3VdbeChangeP5(v
, idxInsFlags
|OPFLAG_APPEND
);
3110 sqlite3VdbeAddOp2(v
, OP_Next
, iSrc
, addr1
+1); VdbeCoverage(v
);
3111 sqlite3VdbeJumpHere(v
, addr1
);
3112 sqlite3VdbeAddOp2(v
, OP_Close
, iSrc
, 0);
3113 sqlite3VdbeAddOp2(v
, OP_Close
, iDest
, 0);
3115 if( emptySrcTest
) sqlite3VdbeJumpHere(v
, emptySrcTest
);
3116 sqlite3ReleaseTempReg(pParse
, regRowid
);
3117 sqlite3ReleaseTempReg(pParse
, regData
);
3118 if( emptyDestTest
){
3119 sqlite3AutoincrementEnd(pParse
);
3120 sqlite3VdbeAddOp2(v
, OP_Halt
, SQLITE_OK
, 0);
3121 sqlite3VdbeJumpHere(v
, emptyDestTest
);
3122 sqlite3VdbeAddOp2(v
, OP_Close
, iDest
, 0);
3128 #endif /* SQLITE_OMIT_XFER_OPT */