Snapshot of upstream SQLite 3.38.2
[sqlcipher.git] / src / insert.c
blobc0b2472637b5db594a8356df7f8087f6068a9e88
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle INSERT statements in SQLite.
15 #include "sqliteInt.h"
18 ** Generate code that will
20 ** (1) acquire a lock for table pTab then
21 ** (2) open pTab as cursor iCur.
23 ** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index
24 ** for that table that is actually opened.
26 void sqlite3OpenTable(
27 Parse *pParse, /* Generate code into this VDBE */
28 int iCur, /* The cursor number of the table */
29 int iDb, /* The database index in sqlite3.aDb[] */
30 Table *pTab, /* The table to be opened */
31 int opcode /* OP_OpenRead or OP_OpenWrite */
33 Vdbe *v;
34 assert( !IsVirtual(pTab) );
35 assert( pParse->pVdbe!=0 );
36 v = pParse->pVdbe;
37 assert( opcode==OP_OpenWrite || opcode==OP_OpenRead );
38 sqlite3TableLock(pParse, iDb, pTab->tnum,
39 (opcode==OP_OpenWrite)?1:0, pTab->zName);
40 if( HasRowid(pTab) ){
41 sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nNVCol);
42 VdbeComment((v, "%s", pTab->zName));
43 }else{
44 Index *pPk = sqlite3PrimaryKeyIndex(pTab);
45 assert( pPk!=0 );
46 assert( pPk->tnum==pTab->tnum || CORRUPT_DB );
47 sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb);
48 sqlite3VdbeSetP4KeyInfo(pParse, pPk);
49 VdbeComment((v, "%s", pTab->zName));
54 ** Return a pointer to the column affinity string associated with index
55 ** pIdx. A column affinity string has one character for each column in
56 ** the table, according to the affinity of the column:
58 ** Character Column affinity
59 ** ------------------------------
60 ** 'A' BLOB
61 ** 'B' TEXT
62 ** 'C' NUMERIC
63 ** 'D' INTEGER
64 ** 'F' REAL
66 ** An extra 'D' is appended to the end of the string to cover the
67 ** rowid that appears as the last column in every index.
69 ** Memory for the buffer containing the column index affinity string
70 ** is managed along with the rest of the Index structure. It will be
71 ** released when sqlite3DeleteIndex() is called.
73 const char *sqlite3IndexAffinityStr(sqlite3 *db, Index *pIdx){
74 if( !pIdx->zColAff ){
75 /* The first time a column affinity string for a particular index is
76 ** required, it is allocated and populated here. It is then stored as
77 ** a member of the Index structure for subsequent use.
79 ** The column affinity string will eventually be deleted by
80 ** sqliteDeleteIndex() when the Index structure itself is cleaned
81 ** up.
83 int n;
84 Table *pTab = pIdx->pTable;
85 pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1);
86 if( !pIdx->zColAff ){
87 sqlite3OomFault(db);
88 return 0;
90 for(n=0; n<pIdx->nColumn; n++){
91 i16 x = pIdx->aiColumn[n];
92 char aff;
93 if( x>=0 ){
94 aff = pTab->aCol[x].affinity;
95 }else if( x==XN_ROWID ){
96 aff = SQLITE_AFF_INTEGER;
97 }else{
98 assert( x==XN_EXPR );
99 assert( pIdx->aColExpr!=0 );
100 aff = sqlite3ExprAffinity(pIdx->aColExpr->a[n].pExpr);
102 if( aff<SQLITE_AFF_BLOB ) aff = SQLITE_AFF_BLOB;
103 if( aff>SQLITE_AFF_NUMERIC) aff = SQLITE_AFF_NUMERIC;
104 pIdx->zColAff[n] = aff;
106 pIdx->zColAff[n] = 0;
109 return pIdx->zColAff;
113 ** Make changes to the evolving bytecode to do affinity transformations
114 ** of values that are about to be gathered into a row for table pTab.
116 ** For ordinary (legacy, non-strict) tables:
117 ** -----------------------------------------
119 ** Compute the affinity string for table pTab, if it has not already been
120 ** computed. As an optimization, omit trailing SQLITE_AFF_BLOB affinities.
122 ** If the affinity string is empty (because it was all SQLITE_AFF_BLOB entries
123 ** which were then optimized out) then this routine becomes a no-op.
125 ** Otherwise if iReg>0 then code an OP_Affinity opcode that will set the
126 ** affinities for register iReg and following. Or if iReg==0,
127 ** then just set the P4 operand of the previous opcode (which should be
128 ** an OP_MakeRecord) to the affinity string.
130 ** A column affinity string has one character per column:
132 ** Character Column affinity
133 ** --------- ---------------
134 ** 'A' BLOB
135 ** 'B' TEXT
136 ** 'C' NUMERIC
137 ** 'D' INTEGER
138 ** 'E' REAL
140 ** For STRICT tables:
141 ** ------------------
143 ** Generate an appropropriate OP_TypeCheck opcode that will verify the
144 ** datatypes against the column definitions in pTab. If iReg==0, that
145 ** means an OP_MakeRecord opcode has already been generated and should be
146 ** the last opcode generated. The new OP_TypeCheck needs to be inserted
147 ** before the OP_MakeRecord. The new OP_TypeCheck should use the same
148 ** register set as the OP_MakeRecord. If iReg>0 then register iReg is
149 ** the first of a series of registers that will form the new record.
150 ** Apply the type checking to that array of registers.
152 void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){
153 int i, j;
154 char *zColAff;
155 if( pTab->tabFlags & TF_Strict ){
156 if( iReg==0 ){
157 /* Move the previous opcode (which should be OP_MakeRecord) forward
158 ** by one slot and insert a new OP_TypeCheck where the current
159 ** OP_MakeRecord is found */
160 VdbeOp *pPrev;
161 sqlite3VdbeAppendP4(v, pTab, P4_TABLE);
162 pPrev = sqlite3VdbeGetOp(v, -1);
163 assert( pPrev!=0 );
164 assert( pPrev->opcode==OP_MakeRecord || sqlite3VdbeDb(v)->mallocFailed );
165 pPrev->opcode = OP_TypeCheck;
166 sqlite3VdbeAddOp3(v, OP_MakeRecord, pPrev->p1, pPrev->p2, pPrev->p3);
167 }else{
168 /* Insert an isolated OP_Typecheck */
169 sqlite3VdbeAddOp2(v, OP_TypeCheck, iReg, pTab->nNVCol);
170 sqlite3VdbeAppendP4(v, pTab, P4_TABLE);
172 return;
174 zColAff = pTab->zColAff;
175 if( zColAff==0 ){
176 sqlite3 *db = sqlite3VdbeDb(v);
177 zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1);
178 if( !zColAff ){
179 sqlite3OomFault(db);
180 return;
183 for(i=j=0; i<pTab->nCol; i++){
184 assert( pTab->aCol[i].affinity!=0 || sqlite3VdbeParser(v)->nErr>0 );
185 if( (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ){
186 zColAff[j++] = pTab->aCol[i].affinity;
190 zColAff[j--] = 0;
191 }while( j>=0 && zColAff[j]<=SQLITE_AFF_BLOB );
192 pTab->zColAff = zColAff;
194 assert( zColAff!=0 );
195 i = sqlite3Strlen30NN(zColAff);
196 if( i ){
197 if( iReg ){
198 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i);
199 }else{
200 assert( sqlite3VdbeGetOp(v, -1)->opcode==OP_MakeRecord
201 || sqlite3VdbeDb(v)->mallocFailed );
202 sqlite3VdbeChangeP4(v, -1, zColAff, i);
208 ** Return non-zero if the table pTab in database iDb or any of its indices
209 ** have been opened at any point in the VDBE program. This is used to see if
210 ** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can
211 ** run without using a temporary table for the results of the SELECT.
213 static int readsTable(Parse *p, int iDb, Table *pTab){
214 Vdbe *v = sqlite3GetVdbe(p);
215 int i;
216 int iEnd = sqlite3VdbeCurrentAddr(v);
217 #ifndef SQLITE_OMIT_VIRTUALTABLE
218 VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0;
219 #endif
221 for(i=1; i<iEnd; i++){
222 VdbeOp *pOp = sqlite3VdbeGetOp(v, i);
223 assert( pOp!=0 );
224 if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){
225 Index *pIndex;
226 Pgno tnum = pOp->p2;
227 if( tnum==pTab->tnum ){
228 return 1;
230 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
231 if( tnum==pIndex->tnum ){
232 return 1;
236 #ifndef SQLITE_OMIT_VIRTUALTABLE
237 if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){
238 assert( pOp->p4.pVtab!=0 );
239 assert( pOp->p4type==P4_VTAB );
240 return 1;
242 #endif
244 return 0;
247 /* This walker callback will compute the union of colFlags flags for all
248 ** referenced columns in a CHECK constraint or generated column expression.
250 static int exprColumnFlagUnion(Walker *pWalker, Expr *pExpr){
251 if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 ){
252 assert( pExpr->iColumn < pWalker->u.pTab->nCol );
253 pWalker->eCode |= pWalker->u.pTab->aCol[pExpr->iColumn].colFlags;
255 return WRC_Continue;
258 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
260 ** All regular columns for table pTab have been puts into registers
261 ** starting with iRegStore. The registers that correspond to STORED
262 ** or VIRTUAL columns have not yet been initialized. This routine goes
263 ** back and computes the values for those columns based on the previously
264 ** computed normal columns.
266 void sqlite3ComputeGeneratedColumns(
267 Parse *pParse, /* Parsing context */
268 int iRegStore, /* Register holding the first column */
269 Table *pTab /* The table */
271 int i;
272 Walker w;
273 Column *pRedo;
274 int eProgress;
275 VdbeOp *pOp;
277 assert( pTab->tabFlags & TF_HasGenerated );
278 testcase( pTab->tabFlags & TF_HasVirtual );
279 testcase( pTab->tabFlags & TF_HasStored );
281 /* Before computing generated columns, first go through and make sure
282 ** that appropriate affinity has been applied to the regular columns
284 sqlite3TableAffinity(pParse->pVdbe, pTab, iRegStore);
285 if( (pTab->tabFlags & TF_HasStored)!=0 ){
286 pOp = sqlite3VdbeGetOp(pParse->pVdbe,-1);
287 if( pOp->opcode==OP_Affinity ){
288 /* Change the OP_Affinity argument to '@' (NONE) for all stored
289 ** columns. '@' is the no-op affinity and those columns have not
290 ** yet been computed. */
291 int ii, jj;
292 char *zP4 = pOp->p4.z;
293 assert( zP4!=0 );
294 assert( pOp->p4type==P4_DYNAMIC );
295 for(ii=jj=0; zP4[jj]; ii++){
296 if( pTab->aCol[ii].colFlags & COLFLAG_VIRTUAL ){
297 continue;
299 if( pTab->aCol[ii].colFlags & COLFLAG_STORED ){
300 zP4[jj] = SQLITE_AFF_NONE;
302 jj++;
304 }else if( pOp->opcode==OP_TypeCheck ){
305 /* If an OP_TypeCheck was generated because the table is STRICT,
306 ** then set the P3 operand to indicate that generated columns should
307 ** not be checked */
308 pOp->p3 = 1;
312 /* Because there can be multiple generated columns that refer to one another,
313 ** this is a two-pass algorithm. On the first pass, mark all generated
314 ** columns as "not available".
316 for(i=0; i<pTab->nCol; i++){
317 if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){
318 testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL );
319 testcase( pTab->aCol[i].colFlags & COLFLAG_STORED );
320 pTab->aCol[i].colFlags |= COLFLAG_NOTAVAIL;
324 w.u.pTab = pTab;
325 w.xExprCallback = exprColumnFlagUnion;
326 w.xSelectCallback = 0;
327 w.xSelectCallback2 = 0;
329 /* On the second pass, compute the value of each NOT-AVAILABLE column.
330 ** Companion code in the TK_COLUMN case of sqlite3ExprCodeTarget() will
331 ** compute dependencies and mark remove the COLSPAN_NOTAVAIL mark, as
332 ** they are needed.
334 pParse->iSelfTab = -iRegStore;
336 eProgress = 0;
337 pRedo = 0;
338 for(i=0; i<pTab->nCol; i++){
339 Column *pCol = pTab->aCol + i;
340 if( (pCol->colFlags & COLFLAG_NOTAVAIL)!=0 ){
341 int x;
342 pCol->colFlags |= COLFLAG_BUSY;
343 w.eCode = 0;
344 sqlite3WalkExpr(&w, sqlite3ColumnExpr(pTab, pCol));
345 pCol->colFlags &= ~COLFLAG_BUSY;
346 if( w.eCode & COLFLAG_NOTAVAIL ){
347 pRedo = pCol;
348 continue;
350 eProgress = 1;
351 assert( pCol->colFlags & COLFLAG_GENERATED );
352 x = sqlite3TableColumnToStorage(pTab, i) + iRegStore;
353 sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, x);
354 pCol->colFlags &= ~COLFLAG_NOTAVAIL;
357 }while( pRedo && eProgress );
358 if( pRedo ){
359 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", pRedo->zCnName);
361 pParse->iSelfTab = 0;
363 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
366 #ifndef SQLITE_OMIT_AUTOINCREMENT
368 ** Locate or create an AutoincInfo structure associated with table pTab
369 ** which is in database iDb. Return the register number for the register
370 ** that holds the maximum rowid. Return zero if pTab is not an AUTOINCREMENT
371 ** table. (Also return zero when doing a VACUUM since we do not want to
372 ** update the AUTOINCREMENT counters during a VACUUM.)
374 ** There is at most one AutoincInfo structure per table even if the
375 ** same table is autoincremented multiple times due to inserts within
376 ** triggers. A new AutoincInfo structure is created if this is the
377 ** first use of table pTab. On 2nd and subsequent uses, the original
378 ** AutoincInfo structure is used.
380 ** Four consecutive registers are allocated:
382 ** (1) The name of the pTab table.
383 ** (2) The maximum ROWID of pTab.
384 ** (3) The rowid in sqlite_sequence of pTab
385 ** (4) The original value of the max ROWID in pTab, or NULL if none
387 ** The 2nd register is the one that is returned. That is all the
388 ** insert routine needs to know about.
390 static int autoIncBegin(
391 Parse *pParse, /* Parsing context */
392 int iDb, /* Index of the database holding pTab */
393 Table *pTab /* The table we are writing to */
395 int memId = 0; /* Register holding maximum rowid */
396 assert( pParse->db->aDb[iDb].pSchema!=0 );
397 if( (pTab->tabFlags & TF_Autoincrement)!=0
398 && (pParse->db->mDbFlags & DBFLAG_Vacuum)==0
400 Parse *pToplevel = sqlite3ParseToplevel(pParse);
401 AutoincInfo *pInfo;
402 Table *pSeqTab = pParse->db->aDb[iDb].pSchema->pSeqTab;
404 /* Verify that the sqlite_sequence table exists and is an ordinary
405 ** rowid table with exactly two columns.
406 ** Ticket d8dc2b3a58cd5dc2918a1d4acb 2018-05-23 */
407 if( pSeqTab==0
408 || !HasRowid(pSeqTab)
409 || NEVER(IsVirtual(pSeqTab))
410 || pSeqTab->nCol!=2
412 pParse->nErr++;
413 pParse->rc = SQLITE_CORRUPT_SEQUENCE;
414 return 0;
417 pInfo = pToplevel->pAinc;
418 while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; }
419 if( pInfo==0 ){
420 pInfo = sqlite3DbMallocRawNN(pParse->db, sizeof(*pInfo));
421 sqlite3ParserAddCleanup(pToplevel, sqlite3DbFree, pInfo);
422 testcase( pParse->earlyCleanup );
423 if( pParse->db->mallocFailed ) return 0;
424 pInfo->pNext = pToplevel->pAinc;
425 pToplevel->pAinc = pInfo;
426 pInfo->pTab = pTab;
427 pInfo->iDb = iDb;
428 pToplevel->nMem++; /* Register to hold name of table */
429 pInfo->regCtr = ++pToplevel->nMem; /* Max rowid register */
430 pToplevel->nMem +=2; /* Rowid in sqlite_sequence + orig max val */
432 memId = pInfo->regCtr;
434 return memId;
438 ** This routine generates code that will initialize all of the
439 ** register used by the autoincrement tracker.
441 void sqlite3AutoincrementBegin(Parse *pParse){
442 AutoincInfo *p; /* Information about an AUTOINCREMENT */
443 sqlite3 *db = pParse->db; /* The database connection */
444 Db *pDb; /* Database only autoinc table */
445 int memId; /* Register holding max rowid */
446 Vdbe *v = pParse->pVdbe; /* VDBE under construction */
448 /* This routine is never called during trigger-generation. It is
449 ** only called from the top-level */
450 assert( pParse->pTriggerTab==0 );
451 assert( sqlite3IsToplevel(pParse) );
453 assert( v ); /* We failed long ago if this is not so */
454 for(p = pParse->pAinc; p; p = p->pNext){
455 static const int iLn = VDBE_OFFSET_LINENO(2);
456 static const VdbeOpList autoInc[] = {
457 /* 0 */ {OP_Null, 0, 0, 0},
458 /* 1 */ {OP_Rewind, 0, 10, 0},
459 /* 2 */ {OP_Column, 0, 0, 0},
460 /* 3 */ {OP_Ne, 0, 9, 0},
461 /* 4 */ {OP_Rowid, 0, 0, 0},
462 /* 5 */ {OP_Column, 0, 1, 0},
463 /* 6 */ {OP_AddImm, 0, 0, 0},
464 /* 7 */ {OP_Copy, 0, 0, 0},
465 /* 8 */ {OP_Goto, 0, 11, 0},
466 /* 9 */ {OP_Next, 0, 2, 0},
467 /* 10 */ {OP_Integer, 0, 0, 0},
468 /* 11 */ {OP_Close, 0, 0, 0}
470 VdbeOp *aOp;
471 pDb = &db->aDb[p->iDb];
472 memId = p->regCtr;
473 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) );
474 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead);
475 sqlite3VdbeLoadString(v, memId-1, p->pTab->zName);
476 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoInc), autoInc, iLn);
477 if( aOp==0 ) break;
478 aOp[0].p2 = memId;
479 aOp[0].p3 = memId+2;
480 aOp[2].p3 = memId;
481 aOp[3].p1 = memId-1;
482 aOp[3].p3 = memId;
483 aOp[3].p5 = SQLITE_JUMPIFNULL;
484 aOp[4].p2 = memId+1;
485 aOp[5].p3 = memId;
486 aOp[6].p1 = memId;
487 aOp[7].p2 = memId+2;
488 aOp[7].p1 = memId;
489 aOp[10].p2 = memId;
490 if( pParse->nTab==0 ) pParse->nTab = 1;
495 ** Update the maximum rowid for an autoincrement calculation.
497 ** This routine should be called when the regRowid register holds a
498 ** new rowid that is about to be inserted. If that new rowid is
499 ** larger than the maximum rowid in the memId memory cell, then the
500 ** memory cell is updated.
502 static void autoIncStep(Parse *pParse, int memId, int regRowid){
503 if( memId>0 ){
504 sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid);
509 ** This routine generates the code needed to write autoincrement
510 ** maximum rowid values back into the sqlite_sequence register.
511 ** Every statement that might do an INSERT into an autoincrement
512 ** table (either directly or through triggers) needs to call this
513 ** routine just before the "exit" code.
515 static SQLITE_NOINLINE void autoIncrementEnd(Parse *pParse){
516 AutoincInfo *p;
517 Vdbe *v = pParse->pVdbe;
518 sqlite3 *db = pParse->db;
520 assert( v );
521 for(p = pParse->pAinc; p; p = p->pNext){
522 static const int iLn = VDBE_OFFSET_LINENO(2);
523 static const VdbeOpList autoIncEnd[] = {
524 /* 0 */ {OP_NotNull, 0, 2, 0},
525 /* 1 */ {OP_NewRowid, 0, 0, 0},
526 /* 2 */ {OP_MakeRecord, 0, 2, 0},
527 /* 3 */ {OP_Insert, 0, 0, 0},
528 /* 4 */ {OP_Close, 0, 0, 0}
530 VdbeOp *aOp;
531 Db *pDb = &db->aDb[p->iDb];
532 int iRec;
533 int memId = p->regCtr;
535 iRec = sqlite3GetTempReg(pParse);
536 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) );
537 sqlite3VdbeAddOp3(v, OP_Le, memId+2, sqlite3VdbeCurrentAddr(v)+7, memId);
538 VdbeCoverage(v);
539 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite);
540 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoIncEnd), autoIncEnd, iLn);
541 if( aOp==0 ) break;
542 aOp[0].p1 = memId+1;
543 aOp[1].p2 = memId+1;
544 aOp[2].p1 = memId-1;
545 aOp[2].p3 = iRec;
546 aOp[3].p2 = iRec;
547 aOp[3].p3 = memId+1;
548 aOp[3].p5 = OPFLAG_APPEND;
549 sqlite3ReleaseTempReg(pParse, iRec);
552 void sqlite3AutoincrementEnd(Parse *pParse){
553 if( pParse->pAinc ) autoIncrementEnd(pParse);
555 #else
557 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines
558 ** above are all no-ops
560 # define autoIncBegin(A,B,C) (0)
561 # define autoIncStep(A,B,C)
562 #endif /* SQLITE_OMIT_AUTOINCREMENT */
565 /* Forward declaration */
566 static int xferOptimization(
567 Parse *pParse, /* Parser context */
568 Table *pDest, /* The table we are inserting into */
569 Select *pSelect, /* A SELECT statement to use as the data source */
570 int onError, /* How to handle constraint errors */
571 int iDbDest /* The database of pDest */
575 ** This routine is called to handle SQL of the following forms:
577 ** insert into TABLE (IDLIST) values(EXPRLIST),(EXPRLIST),...
578 ** insert into TABLE (IDLIST) select
579 ** insert into TABLE (IDLIST) default values
581 ** The IDLIST following the table name is always optional. If omitted,
582 ** then a list of all (non-hidden) columns for the table is substituted.
583 ** The IDLIST appears in the pColumn parameter. pColumn is NULL if IDLIST
584 ** is omitted.
586 ** For the pSelect parameter holds the values to be inserted for the
587 ** first two forms shown above. A VALUES clause is really just short-hand
588 ** for a SELECT statement that omits the FROM clause and everything else
589 ** that follows. If the pSelect parameter is NULL, that means that the
590 ** DEFAULT VALUES form of the INSERT statement is intended.
592 ** The code generated follows one of four templates. For a simple
593 ** insert with data coming from a single-row VALUES clause, the code executes
594 ** once straight down through. Pseudo-code follows (we call this
595 ** the "1st template"):
597 ** open write cursor to <table> and its indices
598 ** put VALUES clause expressions into registers
599 ** write the resulting record into <table>
600 ** cleanup
602 ** The three remaining templates assume the statement is of the form
604 ** INSERT INTO <table> SELECT ...
606 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" -
607 ** in other words if the SELECT pulls all columns from a single table
608 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and
609 ** if <table2> and <table1> are distinct tables but have identical
610 ** schemas, including all the same indices, then a special optimization
611 ** is invoked that copies raw records from <table2> over to <table1>.
612 ** See the xferOptimization() function for the implementation of this
613 ** template. This is the 2nd template.
615 ** open a write cursor to <table>
616 ** open read cursor on <table2>
617 ** transfer all records in <table2> over to <table>
618 ** close cursors
619 ** foreach index on <table>
620 ** open a write cursor on the <table> index
621 ** open a read cursor on the corresponding <table2> index
622 ** transfer all records from the read to the write cursors
623 ** close cursors
624 ** end foreach
626 ** The 3rd template is for when the second template does not apply
627 ** and the SELECT clause does not read from <table> at any time.
628 ** The generated code follows this template:
630 ** X <- A
631 ** goto B
632 ** A: setup for the SELECT
633 ** loop over the rows in the SELECT
634 ** load values into registers R..R+n
635 ** yield X
636 ** end loop
637 ** cleanup after the SELECT
638 ** end-coroutine X
639 ** B: open write cursor to <table> and its indices
640 ** C: yield X, at EOF goto D
641 ** insert the select result into <table> from R..R+n
642 ** goto C
643 ** D: cleanup
645 ** The 4th template is used if the insert statement takes its
646 ** values from a SELECT but the data is being inserted into a table
647 ** that is also read as part of the SELECT. In the third form,
648 ** we have to use an intermediate table to store the results of
649 ** the select. The template is like this:
651 ** X <- A
652 ** goto B
653 ** A: setup for the SELECT
654 ** loop over the tables in the SELECT
655 ** load value into register R..R+n
656 ** yield X
657 ** end loop
658 ** cleanup after the SELECT
659 ** end co-routine R
660 ** B: open temp table
661 ** L: yield X, at EOF goto M
662 ** insert row from R..R+n into temp table
663 ** goto L
664 ** M: open write cursor to <table> and its indices
665 ** rewind temp table
666 ** C: loop over rows of intermediate table
667 ** transfer values form intermediate table into <table>
668 ** end loop
669 ** D: cleanup
671 void sqlite3Insert(
672 Parse *pParse, /* Parser context */
673 SrcList *pTabList, /* Name of table into which we are inserting */
674 Select *pSelect, /* A SELECT statement to use as the data source */
675 IdList *pColumn, /* Column names corresponding to IDLIST, or NULL. */
676 int onError, /* How to handle constraint errors */
677 Upsert *pUpsert /* ON CONFLICT clauses for upsert, or NULL */
679 sqlite3 *db; /* The main database structure */
680 Table *pTab; /* The table to insert into. aka TABLE */
681 int i, j; /* Loop counters */
682 Vdbe *v; /* Generate code into this virtual machine */
683 Index *pIdx; /* For looping over indices of the table */
684 int nColumn; /* Number of columns in the data */
685 int nHidden = 0; /* Number of hidden columns if TABLE is virtual */
686 int iDataCur = 0; /* VDBE cursor that is the main data repository */
687 int iIdxCur = 0; /* First index cursor */
688 int ipkColumn = -1; /* Column that is the INTEGER PRIMARY KEY */
689 int endOfLoop; /* Label for the end of the insertion loop */
690 int srcTab = 0; /* Data comes from this temporary cursor if >=0 */
691 int addrInsTop = 0; /* Jump to label "D" */
692 int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */
693 SelectDest dest; /* Destination for SELECT on rhs of INSERT */
694 int iDb; /* Index of database holding TABLE */
695 u8 useTempTable = 0; /* Store SELECT results in intermediate table */
696 u8 appendFlag = 0; /* True if the insert is likely to be an append */
697 u8 withoutRowid; /* 0 for normal table. 1 for WITHOUT ROWID table */
698 u8 bIdListInOrder; /* True if IDLIST is in table order */
699 ExprList *pList = 0; /* List of VALUES() to be inserted */
700 int iRegStore; /* Register in which to store next column */
702 /* Register allocations */
703 int regFromSelect = 0;/* Base register for data coming from SELECT */
704 int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */
705 int regRowCount = 0; /* Memory cell used for the row counter */
706 int regIns; /* Block of regs holding rowid+data being inserted */
707 int regRowid; /* registers holding insert rowid */
708 int regData; /* register holding first column to insert */
709 int *aRegIdx = 0; /* One register allocated to each index */
711 #ifndef SQLITE_OMIT_TRIGGER
712 int isView; /* True if attempting to insert into a view */
713 Trigger *pTrigger; /* List of triggers on pTab, if required */
714 int tmask; /* Mask of trigger times */
715 #endif
717 db = pParse->db;
718 assert( db->pParse==pParse );
719 if( pParse->nErr ){
720 goto insert_cleanup;
722 assert( db->mallocFailed==0 );
723 dest.iSDParm = 0; /* Suppress a harmless compiler warning */
725 /* If the Select object is really just a simple VALUES() list with a
726 ** single row (the common case) then keep that one row of values
727 ** and discard the other (unused) parts of the pSelect object
729 if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){
730 pList = pSelect->pEList;
731 pSelect->pEList = 0;
732 sqlite3SelectDelete(db, pSelect);
733 pSelect = 0;
736 /* Locate the table into which we will be inserting new information.
738 assert( pTabList->nSrc==1 );
739 pTab = sqlite3SrcListLookup(pParse, pTabList);
740 if( pTab==0 ){
741 goto insert_cleanup;
743 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
744 assert( iDb<db->nDb );
745 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0,
746 db->aDb[iDb].zDbSName) ){
747 goto insert_cleanup;
749 withoutRowid = !HasRowid(pTab);
751 /* Figure out if we have any triggers and if the table being
752 ** inserted into is a view
754 #ifndef SQLITE_OMIT_TRIGGER
755 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask);
756 isView = IsView(pTab);
757 #else
758 # define pTrigger 0
759 # define tmask 0
760 # define isView 0
761 #endif
762 #ifdef SQLITE_OMIT_VIEW
763 # undef isView
764 # define isView 0
765 #endif
766 assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) );
768 /* If pTab is really a view, make sure it has been initialized.
769 ** ViewGetColumnNames() is a no-op if pTab is not a view.
771 if( sqlite3ViewGetColumnNames(pParse, pTab) ){
772 goto insert_cleanup;
775 /* Cannot insert into a read-only table.
777 if( sqlite3IsReadOnly(pParse, pTab, tmask) ){
778 goto insert_cleanup;
781 /* Allocate a VDBE
783 v = sqlite3GetVdbe(pParse);
784 if( v==0 ) goto insert_cleanup;
785 if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
786 sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb);
788 #ifndef SQLITE_OMIT_XFER_OPT
789 /* If the statement is of the form
791 ** INSERT INTO <table1> SELECT * FROM <table2>;
793 ** Then special optimizations can be applied that make the transfer
794 ** very fast and which reduce fragmentation of indices.
796 ** This is the 2nd template.
798 if( pColumn==0
799 && pSelect!=0
800 && pTrigger==0
801 && xferOptimization(pParse, pTab, pSelect, onError, iDb)
803 assert( !pTrigger );
804 assert( pList==0 );
805 goto insert_end;
807 #endif /* SQLITE_OMIT_XFER_OPT */
809 /* If this is an AUTOINCREMENT table, look up the sequence number in the
810 ** sqlite_sequence table and store it in memory cell regAutoinc.
812 regAutoinc = autoIncBegin(pParse, iDb, pTab);
814 /* Allocate a block registers to hold the rowid and the values
815 ** for all columns of the new row.
817 regRowid = regIns = pParse->nMem+1;
818 pParse->nMem += pTab->nCol + 1;
819 if( IsVirtual(pTab) ){
820 regRowid++;
821 pParse->nMem++;
823 regData = regRowid+1;
825 /* If the INSERT statement included an IDLIST term, then make sure
826 ** all elements of the IDLIST really are columns of the table and
827 ** remember the column indices.
829 ** If the table has an INTEGER PRIMARY KEY column and that column
830 ** is named in the IDLIST, then record in the ipkColumn variable
831 ** the index into IDLIST of the primary key column. ipkColumn is
832 ** the index of the primary key as it appears in IDLIST, not as
833 ** is appears in the original table. (The index of the INTEGER
834 ** PRIMARY KEY in the original table is pTab->iPKey.) After this
835 ** loop, if ipkColumn==(-1), that means that integer primary key
836 ** is unspecified, and hence the table is either WITHOUT ROWID or
837 ** it will automatically generated an integer primary key.
839 ** bIdListInOrder is true if the columns in IDLIST are in storage
840 ** order. This enables an optimization that avoids shuffling the
841 ** columns into storage order. False negatives are harmless,
842 ** but false positives will cause database corruption.
844 bIdListInOrder = (pTab->tabFlags & (TF_OOOHidden|TF_HasStored))==0;
845 if( pColumn ){
846 for(i=0; i<pColumn->nId; i++){
847 pColumn->a[i].idx = -1;
849 for(i=0; i<pColumn->nId; i++){
850 for(j=0; j<pTab->nCol; j++){
851 if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zCnName)==0 ){
852 pColumn->a[i].idx = j;
853 if( i!=j ) bIdListInOrder = 0;
854 if( j==pTab->iPKey ){
855 ipkColumn = i; assert( !withoutRowid );
857 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
858 if( pTab->aCol[j].colFlags & (COLFLAG_STORED|COLFLAG_VIRTUAL) ){
859 sqlite3ErrorMsg(pParse,
860 "cannot INSERT into generated column \"%s\"",
861 pTab->aCol[j].zCnName);
862 goto insert_cleanup;
864 #endif
865 break;
868 if( j>=pTab->nCol ){
869 if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){
870 ipkColumn = i;
871 bIdListInOrder = 0;
872 }else{
873 sqlite3ErrorMsg(pParse, "table %S has no column named %s",
874 pTabList->a, pColumn->a[i].zName);
875 pParse->checkSchema = 1;
876 goto insert_cleanup;
882 /* Figure out how many columns of data are supplied. If the data
883 ** is coming from a SELECT statement, then generate a co-routine that
884 ** produces a single row of the SELECT on each invocation. The
885 ** co-routine is the common header to the 3rd and 4th templates.
887 if( pSelect ){
888 /* Data is coming from a SELECT or from a multi-row VALUES clause.
889 ** Generate a co-routine to run the SELECT. */
890 int regYield; /* Register holding co-routine entry-point */
891 int addrTop; /* Top of the co-routine */
892 int rc; /* Result code */
894 regYield = ++pParse->nMem;
895 addrTop = sqlite3VdbeCurrentAddr(v) + 1;
896 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop);
897 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield);
898 dest.iSdst = bIdListInOrder ? regData : 0;
899 dest.nSdst = pTab->nCol;
900 rc = sqlite3Select(pParse, pSelect, &dest);
901 regFromSelect = dest.iSdst;
902 assert( db->pParse==pParse );
903 if( rc || pParse->nErr ) goto insert_cleanup;
904 assert( db->mallocFailed==0 );
905 sqlite3VdbeEndCoroutine(v, regYield);
906 sqlite3VdbeJumpHere(v, addrTop - 1); /* label B: */
907 assert( pSelect->pEList );
908 nColumn = pSelect->pEList->nExpr;
910 /* Set useTempTable to TRUE if the result of the SELECT statement
911 ** should be written into a temporary table (template 4). Set to
912 ** FALSE if each output row of the SELECT can be written directly into
913 ** the destination table (template 3).
915 ** A temp table must be used if the table being updated is also one
916 ** of the tables being read by the SELECT statement. Also use a
917 ** temp table in the case of row triggers.
919 if( pTrigger || readsTable(pParse, iDb, pTab) ){
920 useTempTable = 1;
923 if( useTempTable ){
924 /* Invoke the coroutine to extract information from the SELECT
925 ** and add it to a transient table srcTab. The code generated
926 ** here is from the 4th template:
928 ** B: open temp table
929 ** L: yield X, goto M at EOF
930 ** insert row from R..R+n into temp table
931 ** goto L
932 ** M: ...
934 int regRec; /* Register to hold packed record */
935 int regTempRowid; /* Register to hold temp table ROWID */
936 int addrL; /* Label "L" */
938 srcTab = pParse->nTab++;
939 regRec = sqlite3GetTempReg(pParse);
940 regTempRowid = sqlite3GetTempReg(pParse);
941 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn);
942 addrL = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v);
943 sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec);
944 sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid);
945 sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid);
946 sqlite3VdbeGoto(v, addrL);
947 sqlite3VdbeJumpHere(v, addrL);
948 sqlite3ReleaseTempReg(pParse, regRec);
949 sqlite3ReleaseTempReg(pParse, regTempRowid);
951 }else{
952 /* This is the case if the data for the INSERT is coming from a
953 ** single-row VALUES clause
955 NameContext sNC;
956 memset(&sNC, 0, sizeof(sNC));
957 sNC.pParse = pParse;
958 srcTab = -1;
959 assert( useTempTable==0 );
960 if( pList ){
961 nColumn = pList->nExpr;
962 if( sqlite3ResolveExprListNames(&sNC, pList) ){
963 goto insert_cleanup;
965 }else{
966 nColumn = 0;
970 /* If there is no IDLIST term but the table has an integer primary
971 ** key, the set the ipkColumn variable to the integer primary key
972 ** column index in the original table definition.
974 if( pColumn==0 && nColumn>0 ){
975 ipkColumn = pTab->iPKey;
976 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
977 if( ipkColumn>=0 && (pTab->tabFlags & TF_HasGenerated)!=0 ){
978 testcase( pTab->tabFlags & TF_HasVirtual );
979 testcase( pTab->tabFlags & TF_HasStored );
980 for(i=ipkColumn-1; i>=0; i--){
981 if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){
982 testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL );
983 testcase( pTab->aCol[i].colFlags & COLFLAG_STORED );
984 ipkColumn--;
988 #endif
990 /* Make sure the number of columns in the source data matches the number
991 ** of columns to be inserted into the table.
993 assert( TF_HasHidden==COLFLAG_HIDDEN );
994 assert( TF_HasGenerated==COLFLAG_GENERATED );
995 assert( COLFLAG_NOINSERT==(COLFLAG_GENERATED|COLFLAG_HIDDEN) );
996 if( (pTab->tabFlags & (TF_HasGenerated|TF_HasHidden))!=0 ){
997 for(i=0; i<pTab->nCol; i++){
998 if( pTab->aCol[i].colFlags & COLFLAG_NOINSERT ) nHidden++;
1001 if( nColumn!=(pTab->nCol-nHidden) ){
1002 sqlite3ErrorMsg(pParse,
1003 "table %S has %d columns but %d values were supplied",
1004 pTabList->a, pTab->nCol-nHidden, nColumn);
1005 goto insert_cleanup;
1008 if( pColumn!=0 && nColumn!=pColumn->nId ){
1009 sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId);
1010 goto insert_cleanup;
1013 /* Initialize the count of rows to be inserted
1015 if( (db->flags & SQLITE_CountRows)!=0
1016 && !pParse->nested
1017 && !pParse->pTriggerTab
1018 && !pParse->bReturning
1020 regRowCount = ++pParse->nMem;
1021 sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount);
1024 /* If this is not a view, open the table and and all indices */
1025 if( !isView ){
1026 int nIdx;
1027 nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, -1, 0,
1028 &iDataCur, &iIdxCur);
1029 aRegIdx = sqlite3DbMallocRawNN(db, sizeof(int)*(nIdx+2));
1030 if( aRegIdx==0 ){
1031 goto insert_cleanup;
1033 for(i=0, pIdx=pTab->pIndex; i<nIdx; pIdx=pIdx->pNext, i++){
1034 assert( pIdx );
1035 aRegIdx[i] = ++pParse->nMem;
1036 pParse->nMem += pIdx->nColumn;
1038 aRegIdx[i] = ++pParse->nMem; /* Register to store the table record */
1040 #ifndef SQLITE_OMIT_UPSERT
1041 if( pUpsert ){
1042 Upsert *pNx;
1043 if( IsVirtual(pTab) ){
1044 sqlite3ErrorMsg(pParse, "UPSERT not implemented for virtual table \"%s\"",
1045 pTab->zName);
1046 goto insert_cleanup;
1048 if( IsView(pTab) ){
1049 sqlite3ErrorMsg(pParse, "cannot UPSERT a view");
1050 goto insert_cleanup;
1052 if( sqlite3HasExplicitNulls(pParse, pUpsert->pUpsertTarget) ){
1053 goto insert_cleanup;
1055 pTabList->a[0].iCursor = iDataCur;
1056 pNx = pUpsert;
1058 pNx->pUpsertSrc = pTabList;
1059 pNx->regData = regData;
1060 pNx->iDataCur = iDataCur;
1061 pNx->iIdxCur = iIdxCur;
1062 if( pNx->pUpsertTarget ){
1063 if( sqlite3UpsertAnalyzeTarget(pParse, pTabList, pNx) ){
1064 goto insert_cleanup;
1067 pNx = pNx->pNextUpsert;
1068 }while( pNx!=0 );
1070 #endif
1073 /* This is the top of the main insertion loop */
1074 if( useTempTable ){
1075 /* This block codes the top of loop only. The complete loop is the
1076 ** following pseudocode (template 4):
1078 ** rewind temp table, if empty goto D
1079 ** C: loop over rows of intermediate table
1080 ** transfer values form intermediate table into <table>
1081 ** end loop
1082 ** D: ...
1084 addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); VdbeCoverage(v);
1085 addrCont = sqlite3VdbeCurrentAddr(v);
1086 }else if( pSelect ){
1087 /* This block codes the top of loop only. The complete loop is the
1088 ** following pseudocode (template 3):
1090 ** C: yield X, at EOF goto D
1091 ** insert the select result into <table> from R..R+n
1092 ** goto C
1093 ** D: ...
1095 sqlite3VdbeReleaseRegisters(pParse, regData, pTab->nCol, 0, 0);
1096 addrInsTop = addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
1097 VdbeCoverage(v);
1098 if( ipkColumn>=0 ){
1099 /* tag-20191021-001: If the INTEGER PRIMARY KEY is being generated by the
1100 ** SELECT, go ahead and copy the value into the rowid slot now, so that
1101 ** the value does not get overwritten by a NULL at tag-20191021-002. */
1102 sqlite3VdbeAddOp2(v, OP_Copy, regFromSelect+ipkColumn, regRowid);
1106 /* Compute data for ordinary columns of the new entry. Values
1107 ** are written in storage order into registers starting with regData.
1108 ** Only ordinary columns are computed in this loop. The rowid
1109 ** (if there is one) is computed later and generated columns are
1110 ** computed after the rowid since they might depend on the value
1111 ** of the rowid.
1113 nHidden = 0;
1114 iRegStore = regData; assert( regData==regRowid+1 );
1115 for(i=0; i<pTab->nCol; i++, iRegStore++){
1116 int k;
1117 u32 colFlags;
1118 assert( i>=nHidden );
1119 if( i==pTab->iPKey ){
1120 /* tag-20191021-002: References to the INTEGER PRIMARY KEY are filled
1121 ** using the rowid. So put a NULL in the IPK slot of the record to avoid
1122 ** using excess space. The file format definition requires this extra
1123 ** NULL - we cannot optimize further by skipping the column completely */
1124 sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore);
1125 continue;
1127 if( ((colFlags = pTab->aCol[i].colFlags) & COLFLAG_NOINSERT)!=0 ){
1128 nHidden++;
1129 if( (colFlags & COLFLAG_VIRTUAL)!=0 ){
1130 /* Virtual columns do not participate in OP_MakeRecord. So back up
1131 ** iRegStore by one slot to compensate for the iRegStore++ in the
1132 ** outer for() loop */
1133 iRegStore--;
1134 continue;
1135 }else if( (colFlags & COLFLAG_STORED)!=0 ){
1136 /* Stored columns are computed later. But if there are BEFORE
1137 ** triggers, the slots used for stored columns will be OP_Copy-ed
1138 ** to a second block of registers, so the register needs to be
1139 ** initialized to NULL to avoid an uninitialized register read */
1140 if( tmask & TRIGGER_BEFORE ){
1141 sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore);
1143 continue;
1144 }else if( pColumn==0 ){
1145 /* Hidden columns that are not explicitly named in the INSERT
1146 ** get there default value */
1147 sqlite3ExprCodeFactorable(pParse,
1148 sqlite3ColumnExpr(pTab, &pTab->aCol[i]),
1149 iRegStore);
1150 continue;
1153 if( pColumn ){
1154 for(j=0; j<pColumn->nId && pColumn->a[j].idx!=i; j++){}
1155 if( j>=pColumn->nId ){
1156 /* A column not named in the insert column list gets its
1157 ** default value */
1158 sqlite3ExprCodeFactorable(pParse,
1159 sqlite3ColumnExpr(pTab, &pTab->aCol[i]),
1160 iRegStore);
1161 continue;
1163 k = j;
1164 }else if( nColumn==0 ){
1165 /* This is INSERT INTO ... DEFAULT VALUES. Load the default value. */
1166 sqlite3ExprCodeFactorable(pParse,
1167 sqlite3ColumnExpr(pTab, &pTab->aCol[i]),
1168 iRegStore);
1169 continue;
1170 }else{
1171 k = i - nHidden;
1174 if( useTempTable ){
1175 sqlite3VdbeAddOp3(v, OP_Column, srcTab, k, iRegStore);
1176 }else if( pSelect ){
1177 if( regFromSelect!=regData ){
1178 sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+k, iRegStore);
1180 }else{
1181 sqlite3ExprCode(pParse, pList->a[k].pExpr, iRegStore);
1186 /* Run the BEFORE and INSTEAD OF triggers, if there are any
1188 endOfLoop = sqlite3VdbeMakeLabel(pParse);
1189 if( tmask & TRIGGER_BEFORE ){
1190 int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1);
1192 /* build the NEW.* reference row. Note that if there is an INTEGER
1193 ** PRIMARY KEY into which a NULL is being inserted, that NULL will be
1194 ** translated into a unique ID for the row. But on a BEFORE trigger,
1195 ** we do not know what the unique ID will be (because the insert has
1196 ** not happened yet) so we substitute a rowid of -1
1198 if( ipkColumn<0 ){
1199 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols);
1200 }else{
1201 int addr1;
1202 assert( !withoutRowid );
1203 if( useTempTable ){
1204 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols);
1205 }else{
1206 assert( pSelect==0 ); /* Otherwise useTempTable is true */
1207 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols);
1209 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); VdbeCoverage(v);
1210 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols);
1211 sqlite3VdbeJumpHere(v, addr1);
1212 sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); VdbeCoverage(v);
1215 /* Copy the new data already generated. */
1216 assert( pTab->nNVCol>0 );
1217 sqlite3VdbeAddOp3(v, OP_Copy, regRowid+1, regCols+1, pTab->nNVCol-1);
1219 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1220 /* Compute the new value for generated columns after all other
1221 ** columns have already been computed. This must be done after
1222 ** computing the ROWID in case one of the generated columns
1223 ** refers to the ROWID. */
1224 if( pTab->tabFlags & TF_HasGenerated ){
1225 testcase( pTab->tabFlags & TF_HasVirtual );
1226 testcase( pTab->tabFlags & TF_HasStored );
1227 sqlite3ComputeGeneratedColumns(pParse, regCols+1, pTab);
1229 #endif
1231 /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger,
1232 ** do not attempt any conversions before assembling the record.
1233 ** If this is a real table, attempt conversions as required by the
1234 ** table column affinities.
1236 if( !isView ){
1237 sqlite3TableAffinity(v, pTab, regCols+1);
1240 /* Fire BEFORE or INSTEAD OF triggers */
1241 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE,
1242 pTab, regCols-pTab->nCol-1, onError, endOfLoop);
1244 sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1);
1247 if( !isView ){
1248 if( IsVirtual(pTab) ){
1249 /* The row that the VUpdate opcode will delete: none */
1250 sqlite3VdbeAddOp2(v, OP_Null, 0, regIns);
1252 if( ipkColumn>=0 ){
1253 /* Compute the new rowid */
1254 if( useTempTable ){
1255 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid);
1256 }else if( pSelect ){
1257 /* Rowid already initialized at tag-20191021-001 */
1258 }else{
1259 Expr *pIpk = pList->a[ipkColumn].pExpr;
1260 if( pIpk->op==TK_NULL && !IsVirtual(pTab) ){
1261 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
1262 appendFlag = 1;
1263 }else{
1264 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid);
1267 /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid
1268 ** to generate a unique primary key value.
1270 if( !appendFlag ){
1271 int addr1;
1272 if( !IsVirtual(pTab) ){
1273 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); VdbeCoverage(v);
1274 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
1275 sqlite3VdbeJumpHere(v, addr1);
1276 }else{
1277 addr1 = sqlite3VdbeCurrentAddr(v);
1278 sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, addr1+2); VdbeCoverage(v);
1280 sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); VdbeCoverage(v);
1282 }else if( IsVirtual(pTab) || withoutRowid ){
1283 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid);
1284 }else{
1285 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
1286 appendFlag = 1;
1288 autoIncStep(pParse, regAutoinc, regRowid);
1290 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1291 /* Compute the new value for generated columns after all other
1292 ** columns have already been computed. This must be done after
1293 ** computing the ROWID in case one of the generated columns
1294 ** is derived from the INTEGER PRIMARY KEY. */
1295 if( pTab->tabFlags & TF_HasGenerated ){
1296 sqlite3ComputeGeneratedColumns(pParse, regRowid+1, pTab);
1298 #endif
1300 /* Generate code to check constraints and generate index keys and
1301 ** do the insertion.
1303 #ifndef SQLITE_OMIT_VIRTUALTABLE
1304 if( IsVirtual(pTab) ){
1305 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
1306 sqlite3VtabMakeWritable(pParse, pTab);
1307 sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB);
1308 sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError);
1309 sqlite3MayAbort(pParse);
1310 }else
1311 #endif
1313 int isReplace = 0;/* Set to true if constraints may cause a replace */
1314 int bUseSeek; /* True to use OPFLAG_SEEKRESULT */
1315 sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur,
1316 regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace, 0, pUpsert
1318 sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0);
1320 /* Set the OPFLAG_USESEEKRESULT flag if either (a) there are no REPLACE
1321 ** constraints or (b) there are no triggers and this table is not a
1322 ** parent table in a foreign key constraint. It is safe to set the
1323 ** flag in the second case as if any REPLACE constraint is hit, an
1324 ** OP_Delete or OP_IdxDelete instruction will be executed on each
1325 ** cursor that is disturbed. And these instructions both clear the
1326 ** VdbeCursor.seekResult variable, disabling the OPFLAG_USESEEKRESULT
1327 ** functionality. */
1328 bUseSeek = (isReplace==0 || !sqlite3VdbeHasSubProgram(v));
1329 sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur,
1330 regIns, aRegIdx, 0, appendFlag, bUseSeek
1333 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
1334 }else if( pParse->bReturning ){
1335 /* If there is a RETURNING clause, populate the rowid register with
1336 ** constant value -1, in case one or more of the returned expressions
1337 ** refer to the "rowid" of the view. */
1338 sqlite3VdbeAddOp2(v, OP_Integer, -1, regRowid);
1339 #endif
1342 /* Update the count of rows that are inserted
1344 if( regRowCount ){
1345 sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1);
1348 if( pTrigger ){
1349 /* Code AFTER triggers */
1350 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER,
1351 pTab, regData-2-pTab->nCol, onError, endOfLoop);
1354 /* The bottom of the main insertion loop, if the data source
1355 ** is a SELECT statement.
1357 sqlite3VdbeResolveLabel(v, endOfLoop);
1358 if( useTempTable ){
1359 sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); VdbeCoverage(v);
1360 sqlite3VdbeJumpHere(v, addrInsTop);
1361 sqlite3VdbeAddOp1(v, OP_Close, srcTab);
1362 }else if( pSelect ){
1363 sqlite3VdbeGoto(v, addrCont);
1364 #ifdef SQLITE_DEBUG
1365 /* If we are jumping back to an OP_Yield that is preceded by an
1366 ** OP_ReleaseReg, set the p5 flag on the OP_Goto so that the
1367 ** OP_ReleaseReg will be included in the loop. */
1368 if( sqlite3VdbeGetOp(v, addrCont-1)->opcode==OP_ReleaseReg ){
1369 assert( sqlite3VdbeGetOp(v, addrCont)->opcode==OP_Yield );
1370 sqlite3VdbeChangeP5(v, 1);
1372 #endif
1373 sqlite3VdbeJumpHere(v, addrInsTop);
1376 #ifndef SQLITE_OMIT_XFER_OPT
1377 insert_end:
1378 #endif /* SQLITE_OMIT_XFER_OPT */
1379 /* Update the sqlite_sequence table by storing the content of the
1380 ** maximum rowid counter values recorded while inserting into
1381 ** autoincrement tables.
1383 if( pParse->nested==0 && pParse->pTriggerTab==0 ){
1384 sqlite3AutoincrementEnd(pParse);
1388 ** Return the number of rows inserted. If this routine is
1389 ** generating code because of a call to sqlite3NestedParse(), do not
1390 ** invoke the callback function.
1392 if( regRowCount ){
1393 sqlite3CodeChangeCount(v, regRowCount, "rows inserted");
1396 insert_cleanup:
1397 sqlite3SrcListDelete(db, pTabList);
1398 sqlite3ExprListDelete(db, pList);
1399 sqlite3UpsertDelete(db, pUpsert);
1400 sqlite3SelectDelete(db, pSelect);
1401 sqlite3IdListDelete(db, pColumn);
1402 sqlite3DbFree(db, aRegIdx);
1405 /* Make sure "isView" and other macros defined above are undefined. Otherwise
1406 ** they may interfere with compilation of other functions in this file
1407 ** (or in another file, if this file becomes part of the amalgamation). */
1408 #ifdef isView
1409 #undef isView
1410 #endif
1411 #ifdef pTrigger
1412 #undef pTrigger
1413 #endif
1414 #ifdef tmask
1415 #undef tmask
1416 #endif
1419 ** Meanings of bits in of pWalker->eCode for
1420 ** sqlite3ExprReferencesUpdatedColumn()
1422 #define CKCNSTRNT_COLUMN 0x01 /* CHECK constraint uses a changing column */
1423 #define CKCNSTRNT_ROWID 0x02 /* CHECK constraint references the ROWID */
1425 /* This is the Walker callback from sqlite3ExprReferencesUpdatedColumn().
1426 * Set bit 0x01 of pWalker->eCode if pWalker->eCode to 0 and if this
1427 ** expression node references any of the
1428 ** columns that are being modifed by an UPDATE statement.
1430 static int checkConstraintExprNode(Walker *pWalker, Expr *pExpr){
1431 if( pExpr->op==TK_COLUMN ){
1432 assert( pExpr->iColumn>=0 || pExpr->iColumn==-1 );
1433 if( pExpr->iColumn>=0 ){
1434 if( pWalker->u.aiCol[pExpr->iColumn]>=0 ){
1435 pWalker->eCode |= CKCNSTRNT_COLUMN;
1437 }else{
1438 pWalker->eCode |= CKCNSTRNT_ROWID;
1441 return WRC_Continue;
1445 ** pExpr is a CHECK constraint on a row that is being UPDATE-ed. The
1446 ** only columns that are modified by the UPDATE are those for which
1447 ** aiChng[i]>=0, and also the ROWID is modified if chngRowid is true.
1449 ** Return true if CHECK constraint pExpr uses any of the
1450 ** changing columns (or the rowid if it is changing). In other words,
1451 ** return true if this CHECK constraint must be validated for
1452 ** the new row in the UPDATE statement.
1454 ** 2018-09-15: pExpr might also be an expression for an index-on-expressions.
1455 ** The operation of this routine is the same - return true if an only if
1456 ** the expression uses one or more of columns identified by the second and
1457 ** third arguments.
1459 int sqlite3ExprReferencesUpdatedColumn(
1460 Expr *pExpr, /* The expression to be checked */
1461 int *aiChng, /* aiChng[x]>=0 if column x changed by the UPDATE */
1462 int chngRowid /* True if UPDATE changes the rowid */
1464 Walker w;
1465 memset(&w, 0, sizeof(w));
1466 w.eCode = 0;
1467 w.xExprCallback = checkConstraintExprNode;
1468 w.u.aiCol = aiChng;
1469 sqlite3WalkExpr(&w, pExpr);
1470 if( !chngRowid ){
1471 testcase( (w.eCode & CKCNSTRNT_ROWID)!=0 );
1472 w.eCode &= ~CKCNSTRNT_ROWID;
1474 testcase( w.eCode==0 );
1475 testcase( w.eCode==CKCNSTRNT_COLUMN );
1476 testcase( w.eCode==CKCNSTRNT_ROWID );
1477 testcase( w.eCode==(CKCNSTRNT_ROWID|CKCNSTRNT_COLUMN) );
1478 return w.eCode!=0;
1482 ** The sqlite3GenerateConstraintChecks() routine usually wants to visit
1483 ** the indexes of a table in the order provided in the Table->pIndex list.
1484 ** However, sometimes (rarely - when there is an upsert) it wants to visit
1485 ** the indexes in a different order. The following data structures accomplish
1486 ** this.
1488 ** The IndexIterator object is used to walk through all of the indexes
1489 ** of a table in either Index.pNext order, or in some other order established
1490 ** by an array of IndexListTerm objects.
1492 typedef struct IndexListTerm IndexListTerm;
1493 typedef struct IndexIterator IndexIterator;
1494 struct IndexIterator {
1495 int eType; /* 0 for Index.pNext list. 1 for an array of IndexListTerm */
1496 int i; /* Index of the current item from the list */
1497 union {
1498 struct { /* Use this object for eType==0: A Index.pNext list */
1499 Index *pIdx; /* The current Index */
1500 } lx;
1501 struct { /* Use this object for eType==1; Array of IndexListTerm */
1502 int nIdx; /* Size of the array */
1503 IndexListTerm *aIdx; /* Array of IndexListTerms */
1504 } ax;
1505 } u;
1508 /* When IndexIterator.eType==1, then each index is an array of instances
1509 ** of the following object
1511 struct IndexListTerm {
1512 Index *p; /* The index */
1513 int ix; /* Which entry in the original Table.pIndex list is this index*/
1516 /* Return the first index on the list */
1517 static Index *indexIteratorFirst(IndexIterator *pIter, int *pIx){
1518 assert( pIter->i==0 );
1519 if( pIter->eType ){
1520 *pIx = pIter->u.ax.aIdx[0].ix;
1521 return pIter->u.ax.aIdx[0].p;
1522 }else{
1523 *pIx = 0;
1524 return pIter->u.lx.pIdx;
1528 /* Return the next index from the list. Return NULL when out of indexes */
1529 static Index *indexIteratorNext(IndexIterator *pIter, int *pIx){
1530 if( pIter->eType ){
1531 int i = ++pIter->i;
1532 if( i>=pIter->u.ax.nIdx ){
1533 *pIx = i;
1534 return 0;
1536 *pIx = pIter->u.ax.aIdx[i].ix;
1537 return pIter->u.ax.aIdx[i].p;
1538 }else{
1539 ++(*pIx);
1540 pIter->u.lx.pIdx = pIter->u.lx.pIdx->pNext;
1541 return pIter->u.lx.pIdx;
1546 ** Generate code to do constraint checks prior to an INSERT or an UPDATE
1547 ** on table pTab.
1549 ** The regNewData parameter is the first register in a range that contains
1550 ** the data to be inserted or the data after the update. There will be
1551 ** pTab->nCol+1 registers in this range. The first register (the one
1552 ** that regNewData points to) will contain the new rowid, or NULL in the
1553 ** case of a WITHOUT ROWID table. The second register in the range will
1554 ** contain the content of the first table column. The third register will
1555 ** contain the content of the second table column. And so forth.
1557 ** The regOldData parameter is similar to regNewData except that it contains
1558 ** the data prior to an UPDATE rather than afterwards. regOldData is zero
1559 ** for an INSERT. This routine can distinguish between UPDATE and INSERT by
1560 ** checking regOldData for zero.
1562 ** For an UPDATE, the pkChng boolean is true if the true primary key (the
1563 ** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table)
1564 ** might be modified by the UPDATE. If pkChng is false, then the key of
1565 ** the iDataCur content table is guaranteed to be unchanged by the UPDATE.
1567 ** For an INSERT, the pkChng boolean indicates whether or not the rowid
1568 ** was explicitly specified as part of the INSERT statement. If pkChng
1569 ** is zero, it means that the either rowid is computed automatically or
1570 ** that the table is a WITHOUT ROWID table and has no rowid. On an INSERT,
1571 ** pkChng will only be true if the INSERT statement provides an integer
1572 ** value for either the rowid column or its INTEGER PRIMARY KEY alias.
1574 ** The code generated by this routine will store new index entries into
1575 ** registers identified by aRegIdx[]. No index entry is created for
1576 ** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is
1577 ** the same as the order of indices on the linked list of indices
1578 ** at pTab->pIndex.
1580 ** (2019-05-07) The generated code also creates a new record for the
1581 ** main table, if pTab is a rowid table, and stores that record in the
1582 ** register identified by aRegIdx[nIdx] - in other words in the first
1583 ** entry of aRegIdx[] past the last index. It is important that the
1584 ** record be generated during constraint checks to avoid affinity changes
1585 ** to the register content that occur after constraint checks but before
1586 ** the new record is inserted.
1588 ** The caller must have already opened writeable cursors on the main
1589 ** table and all applicable indices (that is to say, all indices for which
1590 ** aRegIdx[] is not zero). iDataCur is the cursor for the main table when
1591 ** inserting or updating a rowid table, or the cursor for the PRIMARY KEY
1592 ** index when operating on a WITHOUT ROWID table. iIdxCur is the cursor
1593 ** for the first index in the pTab->pIndex list. Cursors for other indices
1594 ** are at iIdxCur+N for the N-th element of the pTab->pIndex list.
1596 ** This routine also generates code to check constraints. NOT NULL,
1597 ** CHECK, and UNIQUE constraints are all checked. If a constraint fails,
1598 ** then the appropriate action is performed. There are five possible
1599 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE.
1601 ** Constraint type Action What Happens
1602 ** --------------- ---------- ----------------------------------------
1603 ** any ROLLBACK The current transaction is rolled back and
1604 ** sqlite3_step() returns immediately with a
1605 ** return code of SQLITE_CONSTRAINT.
1607 ** any ABORT Back out changes from the current command
1608 ** only (do not do a complete rollback) then
1609 ** cause sqlite3_step() to return immediately
1610 ** with SQLITE_CONSTRAINT.
1612 ** any FAIL Sqlite3_step() returns immediately with a
1613 ** return code of SQLITE_CONSTRAINT. The
1614 ** transaction is not rolled back and any
1615 ** changes to prior rows are retained.
1617 ** any IGNORE The attempt in insert or update the current
1618 ** row is skipped, without throwing an error.
1619 ** Processing continues with the next row.
1620 ** (There is an immediate jump to ignoreDest.)
1622 ** NOT NULL REPLACE The NULL value is replace by the default
1623 ** value for that column. If the default value
1624 ** is NULL, the action is the same as ABORT.
1626 ** UNIQUE REPLACE The other row that conflicts with the row
1627 ** being inserted is removed.
1629 ** CHECK REPLACE Illegal. The results in an exception.
1631 ** Which action to take is determined by the overrideError parameter.
1632 ** Or if overrideError==OE_Default, then the pParse->onError parameter
1633 ** is used. Or if pParse->onError==OE_Default then the onError value
1634 ** for the constraint is used.
1636 void sqlite3GenerateConstraintChecks(
1637 Parse *pParse, /* The parser context */
1638 Table *pTab, /* The table being inserted or updated */
1639 int *aRegIdx, /* Use register aRegIdx[i] for index i. 0 for unused */
1640 int iDataCur, /* Canonical data cursor (main table or PK index) */
1641 int iIdxCur, /* First index cursor */
1642 int regNewData, /* First register in a range holding values to insert */
1643 int regOldData, /* Previous content. 0 for INSERTs */
1644 u8 pkChng, /* Non-zero if the rowid or PRIMARY KEY changed */
1645 u8 overrideError, /* Override onError to this if not OE_Default */
1646 int ignoreDest, /* Jump to this label on an OE_Ignore resolution */
1647 int *pbMayReplace, /* OUT: Set to true if constraint may cause a replace */
1648 int *aiChng, /* column i is unchanged if aiChng[i]<0 */
1649 Upsert *pUpsert /* ON CONFLICT clauses, if any. NULL otherwise */
1651 Vdbe *v; /* VDBE under constrution */
1652 Index *pIdx; /* Pointer to one of the indices */
1653 Index *pPk = 0; /* The PRIMARY KEY index for WITHOUT ROWID tables */
1654 sqlite3 *db; /* Database connection */
1655 int i; /* loop counter */
1656 int ix; /* Index loop counter */
1657 int nCol; /* Number of columns */
1658 int onError; /* Conflict resolution strategy */
1659 int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */
1660 int nPkField; /* Number of fields in PRIMARY KEY. 1 for ROWID tables */
1661 Upsert *pUpsertClause = 0; /* The specific ON CONFLICT clause for pIdx */
1662 u8 isUpdate; /* True if this is an UPDATE operation */
1663 u8 bAffinityDone = 0; /* True if the OP_Affinity operation has been run */
1664 int upsertIpkReturn = 0; /* Address of Goto at end of IPK uniqueness check */
1665 int upsertIpkDelay = 0; /* Address of Goto to bypass initial IPK check */
1666 int ipkTop = 0; /* Top of the IPK uniqueness check */
1667 int ipkBottom = 0; /* OP_Goto at the end of the IPK uniqueness check */
1668 /* Variables associated with retesting uniqueness constraints after
1669 ** replace triggers fire have run */
1670 int regTrigCnt; /* Register used to count replace trigger invocations */
1671 int addrRecheck = 0; /* Jump here to recheck all uniqueness constraints */
1672 int lblRecheckOk = 0; /* Each recheck jumps to this label if it passes */
1673 Trigger *pTrigger; /* List of DELETE triggers on the table pTab */
1674 int nReplaceTrig = 0; /* Number of replace triggers coded */
1675 IndexIterator sIdxIter; /* Index iterator */
1677 isUpdate = regOldData!=0;
1678 db = pParse->db;
1679 v = pParse->pVdbe;
1680 assert( v!=0 );
1681 assert( !IsView(pTab) ); /* This table is not a VIEW */
1682 nCol = pTab->nCol;
1684 /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for
1685 ** normal rowid tables. nPkField is the number of key fields in the
1686 ** pPk index or 1 for a rowid table. In other words, nPkField is the
1687 ** number of fields in the true primary key of the table. */
1688 if( HasRowid(pTab) ){
1689 pPk = 0;
1690 nPkField = 1;
1691 }else{
1692 pPk = sqlite3PrimaryKeyIndex(pTab);
1693 nPkField = pPk->nKeyCol;
1696 /* Record that this module has started */
1697 VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)",
1698 iDataCur, iIdxCur, regNewData, regOldData, pkChng));
1700 /* Test all NOT NULL constraints.
1702 if( pTab->tabFlags & TF_HasNotNull ){
1703 int b2ndPass = 0; /* True if currently running 2nd pass */
1704 int nSeenReplace = 0; /* Number of ON CONFLICT REPLACE operations */
1705 int nGenerated = 0; /* Number of generated columns with NOT NULL */
1706 while(1){ /* Make 2 passes over columns. Exit loop via "break" */
1707 for(i=0; i<nCol; i++){
1708 int iReg; /* Register holding column value */
1709 Column *pCol = &pTab->aCol[i]; /* The column to check for NOT NULL */
1710 int isGenerated; /* non-zero if column is generated */
1711 onError = pCol->notNull;
1712 if( onError==OE_None ) continue; /* No NOT NULL on this column */
1713 if( i==pTab->iPKey ){
1714 continue; /* ROWID is never NULL */
1716 isGenerated = pCol->colFlags & COLFLAG_GENERATED;
1717 if( isGenerated && !b2ndPass ){
1718 nGenerated++;
1719 continue; /* Generated columns processed on 2nd pass */
1721 if( aiChng && aiChng[i]<0 && !isGenerated ){
1722 /* Do not check NOT NULL on columns that do not change */
1723 continue;
1725 if( overrideError!=OE_Default ){
1726 onError = overrideError;
1727 }else if( onError==OE_Default ){
1728 onError = OE_Abort;
1730 if( onError==OE_Replace ){
1731 if( b2ndPass /* REPLACE becomes ABORT on the 2nd pass */
1732 || pCol->iDflt==0 /* REPLACE is ABORT if no DEFAULT value */
1734 testcase( pCol->colFlags & COLFLAG_VIRTUAL );
1735 testcase( pCol->colFlags & COLFLAG_STORED );
1736 testcase( pCol->colFlags & COLFLAG_GENERATED );
1737 onError = OE_Abort;
1738 }else{
1739 assert( !isGenerated );
1741 }else if( b2ndPass && !isGenerated ){
1742 continue;
1744 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
1745 || onError==OE_Ignore || onError==OE_Replace );
1746 testcase( i!=sqlite3TableColumnToStorage(pTab, i) );
1747 iReg = sqlite3TableColumnToStorage(pTab, i) + regNewData + 1;
1748 switch( onError ){
1749 case OE_Replace: {
1750 int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, iReg);
1751 VdbeCoverage(v);
1752 assert( (pCol->colFlags & COLFLAG_GENERATED)==0 );
1753 nSeenReplace++;
1754 sqlite3ExprCodeCopy(pParse,
1755 sqlite3ColumnExpr(pTab, pCol), iReg);
1756 sqlite3VdbeJumpHere(v, addr1);
1757 break;
1759 case OE_Abort:
1760 sqlite3MayAbort(pParse);
1761 /* no break */ deliberate_fall_through
1762 case OE_Rollback:
1763 case OE_Fail: {
1764 char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName,
1765 pCol->zCnName);
1766 sqlite3VdbeAddOp3(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL,
1767 onError, iReg);
1768 sqlite3VdbeAppendP4(v, zMsg, P4_DYNAMIC);
1769 sqlite3VdbeChangeP5(v, P5_ConstraintNotNull);
1770 VdbeCoverage(v);
1771 break;
1773 default: {
1774 assert( onError==OE_Ignore );
1775 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, ignoreDest);
1776 VdbeCoverage(v);
1777 break;
1779 } /* end switch(onError) */
1780 } /* end loop i over columns */
1781 if( nGenerated==0 && nSeenReplace==0 ){
1782 /* If there are no generated columns with NOT NULL constraints
1783 ** and no NOT NULL ON CONFLICT REPLACE constraints, then a single
1784 ** pass is sufficient */
1785 break;
1787 if( b2ndPass ) break; /* Never need more than 2 passes */
1788 b2ndPass = 1;
1789 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1790 if( nSeenReplace>0 && (pTab->tabFlags & TF_HasGenerated)!=0 ){
1791 /* If any NOT NULL ON CONFLICT REPLACE constraints fired on the
1792 ** first pass, recomputed values for all generated columns, as
1793 ** those values might depend on columns affected by the REPLACE.
1795 sqlite3ComputeGeneratedColumns(pParse, regNewData+1, pTab);
1797 #endif
1798 } /* end of 2-pass loop */
1799 } /* end if( has-not-null-constraints ) */
1801 /* Test all CHECK constraints
1803 #ifndef SQLITE_OMIT_CHECK
1804 if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){
1805 ExprList *pCheck = pTab->pCheck;
1806 pParse->iSelfTab = -(regNewData+1);
1807 onError = overrideError!=OE_Default ? overrideError : OE_Abort;
1808 for(i=0; i<pCheck->nExpr; i++){
1809 int allOk;
1810 Expr *pCopy;
1811 Expr *pExpr = pCheck->a[i].pExpr;
1812 if( aiChng
1813 && !sqlite3ExprReferencesUpdatedColumn(pExpr, aiChng, pkChng)
1815 /* The check constraints do not reference any of the columns being
1816 ** updated so there is no point it verifying the check constraint */
1817 continue;
1819 if( bAffinityDone==0 ){
1820 sqlite3TableAffinity(v, pTab, regNewData+1);
1821 bAffinityDone = 1;
1823 allOk = sqlite3VdbeMakeLabel(pParse);
1824 sqlite3VdbeVerifyAbortable(v, onError);
1825 pCopy = sqlite3ExprDup(db, pExpr, 0);
1826 if( !db->mallocFailed ){
1827 sqlite3ExprIfTrue(pParse, pCopy, allOk, SQLITE_JUMPIFNULL);
1829 sqlite3ExprDelete(db, pCopy);
1830 if( onError==OE_Ignore ){
1831 sqlite3VdbeGoto(v, ignoreDest);
1832 }else{
1833 char *zName = pCheck->a[i].zEName;
1834 assert( zName!=0 || pParse->db->mallocFailed );
1835 if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-26383-51744 */
1836 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK,
1837 onError, zName, P4_TRANSIENT,
1838 P5_ConstraintCheck);
1840 sqlite3VdbeResolveLabel(v, allOk);
1842 pParse->iSelfTab = 0;
1844 #endif /* !defined(SQLITE_OMIT_CHECK) */
1846 /* UNIQUE and PRIMARY KEY constraints should be handled in the following
1847 ** order:
1849 ** (1) OE_Update
1850 ** (2) OE_Abort, OE_Fail, OE_Rollback, OE_Ignore
1851 ** (3) OE_Replace
1853 ** OE_Fail and OE_Ignore must happen before any changes are made.
1854 ** OE_Update guarantees that only a single row will change, so it
1855 ** must happen before OE_Replace. Technically, OE_Abort and OE_Rollback
1856 ** could happen in any order, but they are grouped up front for
1857 ** convenience.
1859 ** 2018-08-14: Ticket https://www.sqlite.org/src/info/908f001483982c43
1860 ** The order of constraints used to have OE_Update as (2) and OE_Abort
1861 ** and so forth as (1). But apparently PostgreSQL checks the OE_Update
1862 ** constraint before any others, so it had to be moved.
1864 ** Constraint checking code is generated in this order:
1865 ** (A) The rowid constraint
1866 ** (B) Unique index constraints that do not have OE_Replace as their
1867 ** default conflict resolution strategy
1868 ** (C) Unique index that do use OE_Replace by default.
1870 ** The ordering of (2) and (3) is accomplished by making sure the linked
1871 ** list of indexes attached to a table puts all OE_Replace indexes last
1872 ** in the list. See sqlite3CreateIndex() for where that happens.
1874 sIdxIter.eType = 0;
1875 sIdxIter.i = 0;
1876 sIdxIter.u.ax.aIdx = 0; /* Silence harmless compiler warning */
1877 sIdxIter.u.lx.pIdx = pTab->pIndex;
1878 if( pUpsert ){
1879 if( pUpsert->pUpsertTarget==0 ){
1880 /* There is just on ON CONFLICT clause and it has no constraint-target */
1881 assert( pUpsert->pNextUpsert==0 );
1882 if( pUpsert->isDoUpdate==0 ){
1883 /* A single ON CONFLICT DO NOTHING clause, without a constraint-target.
1884 ** Make all unique constraint resolution be OE_Ignore */
1885 overrideError = OE_Ignore;
1886 pUpsert = 0;
1887 }else{
1888 /* A single ON CONFLICT DO UPDATE. Make all resolutions OE_Update */
1889 overrideError = OE_Update;
1891 }else if( pTab->pIndex!=0 ){
1892 /* Otherwise, we'll need to run the IndexListTerm array version of the
1893 ** iterator to ensure that all of the ON CONFLICT conditions are
1894 ** checked first and in order. */
1895 int nIdx, jj;
1896 u64 nByte;
1897 Upsert *pTerm;
1898 u8 *bUsed;
1899 for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){
1900 assert( aRegIdx[nIdx]>0 );
1902 sIdxIter.eType = 1;
1903 sIdxIter.u.ax.nIdx = nIdx;
1904 nByte = (sizeof(IndexListTerm)+1)*nIdx + nIdx;
1905 sIdxIter.u.ax.aIdx = sqlite3DbMallocZero(db, nByte);
1906 if( sIdxIter.u.ax.aIdx==0 ) return; /* OOM */
1907 bUsed = (u8*)&sIdxIter.u.ax.aIdx[nIdx];
1908 pUpsert->pToFree = sIdxIter.u.ax.aIdx;
1909 for(i=0, pTerm=pUpsert; pTerm; pTerm=pTerm->pNextUpsert){
1910 if( pTerm->pUpsertTarget==0 ) break;
1911 if( pTerm->pUpsertIdx==0 ) continue; /* Skip ON CONFLICT for the IPK */
1912 jj = 0;
1913 pIdx = pTab->pIndex;
1914 while( ALWAYS(pIdx!=0) && pIdx!=pTerm->pUpsertIdx ){
1915 pIdx = pIdx->pNext;
1916 jj++;
1918 if( bUsed[jj] ) continue; /* Duplicate ON CONFLICT clause ignored */
1919 bUsed[jj] = 1;
1920 sIdxIter.u.ax.aIdx[i].p = pIdx;
1921 sIdxIter.u.ax.aIdx[i].ix = jj;
1922 i++;
1924 for(jj=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, jj++){
1925 if( bUsed[jj] ) continue;
1926 sIdxIter.u.ax.aIdx[i].p = pIdx;
1927 sIdxIter.u.ax.aIdx[i].ix = jj;
1928 i++;
1930 assert( i==nIdx );
1934 /* Determine if it is possible that triggers (either explicitly coded
1935 ** triggers or FK resolution actions) might run as a result of deletes
1936 ** that happen when OE_Replace conflict resolution occurs. (Call these
1937 ** "replace triggers".) If any replace triggers run, we will need to
1938 ** recheck all of the uniqueness constraints after they have all run.
1939 ** But on the recheck, the resolution is OE_Abort instead of OE_Replace.
1941 ** If replace triggers are a possibility, then
1943 ** (1) Allocate register regTrigCnt and initialize it to zero.
1944 ** That register will count the number of replace triggers that
1945 ** fire. Constraint recheck only occurs if the number is positive.
1946 ** (2) Initialize pTrigger to the list of all DELETE triggers on pTab.
1947 ** (3) Initialize addrRecheck and lblRecheckOk
1949 ** The uniqueness rechecking code will create a series of tests to run
1950 ** in a second pass. The addrRecheck and lblRecheckOk variables are
1951 ** used to link together these tests which are separated from each other
1952 ** in the generate bytecode.
1954 if( (db->flags & (SQLITE_RecTriggers|SQLITE_ForeignKeys))==0 ){
1955 /* There are not DELETE triggers nor FK constraints. No constraint
1956 ** rechecks are needed. */
1957 pTrigger = 0;
1958 regTrigCnt = 0;
1959 }else{
1960 if( db->flags&SQLITE_RecTriggers ){
1961 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
1962 regTrigCnt = pTrigger!=0 || sqlite3FkRequired(pParse, pTab, 0, 0);
1963 }else{
1964 pTrigger = 0;
1965 regTrigCnt = sqlite3FkRequired(pParse, pTab, 0, 0);
1967 if( regTrigCnt ){
1968 /* Replace triggers might exist. Allocate the counter and
1969 ** initialize it to zero. */
1970 regTrigCnt = ++pParse->nMem;
1971 sqlite3VdbeAddOp2(v, OP_Integer, 0, regTrigCnt);
1972 VdbeComment((v, "trigger count"));
1973 lblRecheckOk = sqlite3VdbeMakeLabel(pParse);
1974 addrRecheck = lblRecheckOk;
1978 /* If rowid is changing, make sure the new rowid does not previously
1979 ** exist in the table.
1981 if( pkChng && pPk==0 ){
1982 int addrRowidOk = sqlite3VdbeMakeLabel(pParse);
1984 /* Figure out what action to take in case of a rowid collision */
1985 onError = pTab->keyConf;
1986 if( overrideError!=OE_Default ){
1987 onError = overrideError;
1988 }else if( onError==OE_Default ){
1989 onError = OE_Abort;
1992 /* figure out whether or not upsert applies in this case */
1993 if( pUpsert ){
1994 pUpsertClause = sqlite3UpsertOfIndex(pUpsert,0);
1995 if( pUpsertClause!=0 ){
1996 if( pUpsertClause->isDoUpdate==0 ){
1997 onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */
1998 }else{
1999 onError = OE_Update; /* DO UPDATE */
2002 if( pUpsertClause!=pUpsert ){
2003 /* The first ON CONFLICT clause has a conflict target other than
2004 ** the IPK. We have to jump ahead to that first ON CONFLICT clause
2005 ** and then come back here and deal with the IPK afterwards */
2006 upsertIpkDelay = sqlite3VdbeAddOp0(v, OP_Goto);
2010 /* If the response to a rowid conflict is REPLACE but the response
2011 ** to some other UNIQUE constraint is FAIL or IGNORE, then we need
2012 ** to defer the running of the rowid conflict checking until after
2013 ** the UNIQUE constraints have run.
2015 if( onError==OE_Replace /* IPK rule is REPLACE */
2016 && onError!=overrideError /* Rules for other constraints are different */
2017 && pTab->pIndex /* There exist other constraints */
2018 && !upsertIpkDelay /* IPK check already deferred by UPSERT */
2020 ipkTop = sqlite3VdbeAddOp0(v, OP_Goto)+1;
2021 VdbeComment((v, "defer IPK REPLACE until last"));
2024 if( isUpdate ){
2025 /* pkChng!=0 does not mean that the rowid has changed, only that
2026 ** it might have changed. Skip the conflict logic below if the rowid
2027 ** is unchanged. */
2028 sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData);
2029 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
2030 VdbeCoverage(v);
2033 /* Check to see if the new rowid already exists in the table. Skip
2034 ** the following conflict logic if it does not. */
2035 VdbeNoopComment((v, "uniqueness check for ROWID"));
2036 sqlite3VdbeVerifyAbortable(v, onError);
2037 sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData);
2038 VdbeCoverage(v);
2040 switch( onError ){
2041 default: {
2042 onError = OE_Abort;
2043 /* no break */ deliberate_fall_through
2045 case OE_Rollback:
2046 case OE_Abort:
2047 case OE_Fail: {
2048 testcase( onError==OE_Rollback );
2049 testcase( onError==OE_Abort );
2050 testcase( onError==OE_Fail );
2051 sqlite3RowidConstraint(pParse, onError, pTab);
2052 break;
2054 case OE_Replace: {
2055 /* If there are DELETE triggers on this table and the
2056 ** recursive-triggers flag is set, call GenerateRowDelete() to
2057 ** remove the conflicting row from the table. This will fire
2058 ** the triggers and remove both the table and index b-tree entries.
2060 ** Otherwise, if there are no triggers or the recursive-triggers
2061 ** flag is not set, but the table has one or more indexes, call
2062 ** GenerateRowIndexDelete(). This removes the index b-tree entries
2063 ** only. The table b-tree entry will be replaced by the new entry
2064 ** when it is inserted.
2066 ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called,
2067 ** also invoke MultiWrite() to indicate that this VDBE may require
2068 ** statement rollback (if the statement is aborted after the delete
2069 ** takes place). Earlier versions called sqlite3MultiWrite() regardless,
2070 ** but being more selective here allows statements like:
2072 ** REPLACE INTO t(rowid) VALUES($newrowid)
2074 ** to run without a statement journal if there are no indexes on the
2075 ** table.
2077 if( regTrigCnt ){
2078 sqlite3MultiWrite(pParse);
2079 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
2080 regNewData, 1, 0, OE_Replace, 1, -1);
2081 sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */
2082 nReplaceTrig++;
2083 }else{
2084 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
2085 assert( HasRowid(pTab) );
2086 /* This OP_Delete opcode fires the pre-update-hook only. It does
2087 ** not modify the b-tree. It is more efficient to let the coming
2088 ** OP_Insert replace the existing entry than it is to delete the
2089 ** existing entry and then insert a new one. */
2090 sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, OPFLAG_ISNOOP);
2091 sqlite3VdbeAppendP4(v, pTab, P4_TABLE);
2092 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
2093 if( pTab->pIndex ){
2094 sqlite3MultiWrite(pParse);
2095 sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,-1);
2098 seenReplace = 1;
2099 break;
2101 #ifndef SQLITE_OMIT_UPSERT
2102 case OE_Update: {
2103 sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, 0, iDataCur);
2104 /* no break */ deliberate_fall_through
2106 #endif
2107 case OE_Ignore: {
2108 testcase( onError==OE_Ignore );
2109 sqlite3VdbeGoto(v, ignoreDest);
2110 break;
2113 sqlite3VdbeResolveLabel(v, addrRowidOk);
2114 if( pUpsert && pUpsertClause!=pUpsert ){
2115 upsertIpkReturn = sqlite3VdbeAddOp0(v, OP_Goto);
2116 }else if( ipkTop ){
2117 ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto);
2118 sqlite3VdbeJumpHere(v, ipkTop-1);
2122 /* Test all UNIQUE constraints by creating entries for each UNIQUE
2123 ** index and making sure that duplicate entries do not already exist.
2124 ** Compute the revised record entries for indices as we go.
2126 ** This loop also handles the case of the PRIMARY KEY index for a
2127 ** WITHOUT ROWID table.
2129 for(pIdx = indexIteratorFirst(&sIdxIter, &ix);
2130 pIdx;
2131 pIdx = indexIteratorNext(&sIdxIter, &ix)
2133 int regIdx; /* Range of registers hold conent for pIdx */
2134 int regR; /* Range of registers holding conflicting PK */
2135 int iThisCur; /* Cursor for this UNIQUE index */
2136 int addrUniqueOk; /* Jump here if the UNIQUE constraint is satisfied */
2137 int addrConflictCk; /* First opcode in the conflict check logic */
2139 if( aRegIdx[ix]==0 ) continue; /* Skip indices that do not change */
2140 if( pUpsert ){
2141 pUpsertClause = sqlite3UpsertOfIndex(pUpsert, pIdx);
2142 if( upsertIpkDelay && pUpsertClause==pUpsert ){
2143 sqlite3VdbeJumpHere(v, upsertIpkDelay);
2146 addrUniqueOk = sqlite3VdbeMakeLabel(pParse);
2147 if( bAffinityDone==0 ){
2148 sqlite3TableAffinity(v, pTab, regNewData+1);
2149 bAffinityDone = 1;
2151 VdbeNoopComment((v, "prep index %s", pIdx->zName));
2152 iThisCur = iIdxCur+ix;
2155 /* Skip partial indices for which the WHERE clause is not true */
2156 if( pIdx->pPartIdxWhere ){
2157 sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]);
2158 pParse->iSelfTab = -(regNewData+1);
2159 sqlite3ExprIfFalseDup(pParse, pIdx->pPartIdxWhere, addrUniqueOk,
2160 SQLITE_JUMPIFNULL);
2161 pParse->iSelfTab = 0;
2164 /* Create a record for this index entry as it should appear after
2165 ** the insert or update. Store that record in the aRegIdx[ix] register
2167 regIdx = aRegIdx[ix]+1;
2168 for(i=0; i<pIdx->nColumn; i++){
2169 int iField = pIdx->aiColumn[i];
2170 int x;
2171 if( iField==XN_EXPR ){
2172 pParse->iSelfTab = -(regNewData+1);
2173 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[i].pExpr, regIdx+i);
2174 pParse->iSelfTab = 0;
2175 VdbeComment((v, "%s column %d", pIdx->zName, i));
2176 }else if( iField==XN_ROWID || iField==pTab->iPKey ){
2177 x = regNewData;
2178 sqlite3VdbeAddOp2(v, OP_IntCopy, x, regIdx+i);
2179 VdbeComment((v, "rowid"));
2180 }else{
2181 testcase( sqlite3TableColumnToStorage(pTab, iField)!=iField );
2182 x = sqlite3TableColumnToStorage(pTab, iField) + regNewData + 1;
2183 sqlite3VdbeAddOp2(v, OP_SCopy, x, regIdx+i);
2184 VdbeComment((v, "%s", pTab->aCol[iField].zCnName));
2187 sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]);
2188 VdbeComment((v, "for %s", pIdx->zName));
2189 #ifdef SQLITE_ENABLE_NULL_TRIM
2190 if( pIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){
2191 sqlite3SetMakeRecordP5(v, pIdx->pTable);
2193 #endif
2194 sqlite3VdbeReleaseRegisters(pParse, regIdx, pIdx->nColumn, 0, 0);
2196 /* In an UPDATE operation, if this index is the PRIMARY KEY index
2197 ** of a WITHOUT ROWID table and there has been no change the
2198 ** primary key, then no collision is possible. The collision detection
2199 ** logic below can all be skipped. */
2200 if( isUpdate && pPk==pIdx && pkChng==0 ){
2201 sqlite3VdbeResolveLabel(v, addrUniqueOk);
2202 continue;
2205 /* Find out what action to take in case there is a uniqueness conflict */
2206 onError = pIdx->onError;
2207 if( onError==OE_None ){
2208 sqlite3VdbeResolveLabel(v, addrUniqueOk);
2209 continue; /* pIdx is not a UNIQUE index */
2211 if( overrideError!=OE_Default ){
2212 onError = overrideError;
2213 }else if( onError==OE_Default ){
2214 onError = OE_Abort;
2217 /* Figure out if the upsert clause applies to this index */
2218 if( pUpsertClause ){
2219 if( pUpsertClause->isDoUpdate==0 ){
2220 onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */
2221 }else{
2222 onError = OE_Update; /* DO UPDATE */
2226 /* Collision detection may be omitted if all of the following are true:
2227 ** (1) The conflict resolution algorithm is REPLACE
2228 ** (2) The table is a WITHOUT ROWID table
2229 ** (3) There are no secondary indexes on the table
2230 ** (4) No delete triggers need to be fired if there is a conflict
2231 ** (5) No FK constraint counters need to be updated if a conflict occurs.
2233 ** This is not possible for ENABLE_PREUPDATE_HOOK builds, as the row
2234 ** must be explicitly deleted in order to ensure any pre-update hook
2235 ** is invoked. */
2236 assert( IsOrdinaryTable(pTab) );
2237 #ifndef SQLITE_ENABLE_PREUPDATE_HOOK
2238 if( (ix==0 && pIdx->pNext==0) /* Condition 3 */
2239 && pPk==pIdx /* Condition 2 */
2240 && onError==OE_Replace /* Condition 1 */
2241 && ( 0==(db->flags&SQLITE_RecTriggers) || /* Condition 4 */
2242 0==sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0))
2243 && ( 0==(db->flags&SQLITE_ForeignKeys) || /* Condition 5 */
2244 (0==pTab->u.tab.pFKey && 0==sqlite3FkReferences(pTab)))
2246 sqlite3VdbeResolveLabel(v, addrUniqueOk);
2247 continue;
2249 #endif /* ifndef SQLITE_ENABLE_PREUPDATE_HOOK */
2251 /* Check to see if the new index entry will be unique */
2252 sqlite3VdbeVerifyAbortable(v, onError);
2253 addrConflictCk =
2254 sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk,
2255 regIdx, pIdx->nKeyCol); VdbeCoverage(v);
2257 /* Generate code to handle collisions */
2258 regR = pIdx==pPk ? regIdx : sqlite3GetTempRange(pParse, nPkField);
2259 if( isUpdate || onError==OE_Replace ){
2260 if( HasRowid(pTab) ){
2261 sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR);
2262 /* Conflict only if the rowid of the existing index entry
2263 ** is different from old-rowid */
2264 if( isUpdate ){
2265 sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData);
2266 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
2267 VdbeCoverage(v);
2269 }else{
2270 int x;
2271 /* Extract the PRIMARY KEY from the end of the index entry and
2272 ** store it in registers regR..regR+nPk-1 */
2273 if( pIdx!=pPk ){
2274 for(i=0; i<pPk->nKeyCol; i++){
2275 assert( pPk->aiColumn[i]>=0 );
2276 x = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[i]);
2277 sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i);
2278 VdbeComment((v, "%s.%s", pTab->zName,
2279 pTab->aCol[pPk->aiColumn[i]].zCnName));
2282 if( isUpdate ){
2283 /* If currently processing the PRIMARY KEY of a WITHOUT ROWID
2284 ** table, only conflict if the new PRIMARY KEY values are actually
2285 ** different from the old.
2287 ** For a UNIQUE index, only conflict if the PRIMARY KEY values
2288 ** of the matched index row are different from the original PRIMARY
2289 ** KEY values of this row before the update. */
2290 int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol;
2291 int op = OP_Ne;
2292 int regCmp = (IsPrimaryKeyIndex(pIdx) ? regIdx : regR);
2294 for(i=0; i<pPk->nKeyCol; i++){
2295 char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]);
2296 x = pPk->aiColumn[i];
2297 assert( x>=0 );
2298 if( i==(pPk->nKeyCol-1) ){
2299 addrJump = addrUniqueOk;
2300 op = OP_Eq;
2302 x = sqlite3TableColumnToStorage(pTab, x);
2303 sqlite3VdbeAddOp4(v, op,
2304 regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ
2306 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
2307 VdbeCoverageIf(v, op==OP_Eq);
2308 VdbeCoverageIf(v, op==OP_Ne);
2314 /* Generate code that executes if the new index entry is not unique */
2315 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
2316 || onError==OE_Ignore || onError==OE_Replace || onError==OE_Update );
2317 switch( onError ){
2318 case OE_Rollback:
2319 case OE_Abort:
2320 case OE_Fail: {
2321 testcase( onError==OE_Rollback );
2322 testcase( onError==OE_Abort );
2323 testcase( onError==OE_Fail );
2324 sqlite3UniqueConstraint(pParse, onError, pIdx);
2325 break;
2327 #ifndef SQLITE_OMIT_UPSERT
2328 case OE_Update: {
2329 sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, pIdx, iIdxCur+ix);
2330 /* no break */ deliberate_fall_through
2332 #endif
2333 case OE_Ignore: {
2334 testcase( onError==OE_Ignore );
2335 sqlite3VdbeGoto(v, ignoreDest);
2336 break;
2338 default: {
2339 int nConflictCk; /* Number of opcodes in conflict check logic */
2341 assert( onError==OE_Replace );
2342 nConflictCk = sqlite3VdbeCurrentAddr(v) - addrConflictCk;
2343 assert( nConflictCk>0 || db->mallocFailed );
2344 testcase( nConflictCk<=0 );
2345 testcase( nConflictCk>1 );
2346 if( regTrigCnt ){
2347 sqlite3MultiWrite(pParse);
2348 nReplaceTrig++;
2350 if( pTrigger && isUpdate ){
2351 sqlite3VdbeAddOp1(v, OP_CursorLock, iDataCur);
2353 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
2354 regR, nPkField, 0, OE_Replace,
2355 (pIdx==pPk ? ONEPASS_SINGLE : ONEPASS_OFF), iThisCur);
2356 if( pTrigger && isUpdate ){
2357 sqlite3VdbeAddOp1(v, OP_CursorUnlock, iDataCur);
2359 if( regTrigCnt ){
2360 int addrBypass; /* Jump destination to bypass recheck logic */
2362 sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */
2363 addrBypass = sqlite3VdbeAddOp0(v, OP_Goto); /* Bypass recheck */
2364 VdbeComment((v, "bypass recheck"));
2366 /* Here we insert code that will be invoked after all constraint
2367 ** checks have run, if and only if one or more replace triggers
2368 ** fired. */
2369 sqlite3VdbeResolveLabel(v, lblRecheckOk);
2370 lblRecheckOk = sqlite3VdbeMakeLabel(pParse);
2371 if( pIdx->pPartIdxWhere ){
2372 /* Bypass the recheck if this partial index is not defined
2373 ** for the current row */
2374 sqlite3VdbeAddOp2(v, OP_IsNull, regIdx-1, lblRecheckOk);
2375 VdbeCoverage(v);
2377 /* Copy the constraint check code from above, except change
2378 ** the constraint-ok jump destination to be the address of
2379 ** the next retest block */
2380 while( nConflictCk>0 ){
2381 VdbeOp x; /* Conflict check opcode to copy */
2382 /* The sqlite3VdbeAddOp4() call might reallocate the opcode array.
2383 ** Hence, make a complete copy of the opcode, rather than using
2384 ** a pointer to the opcode. */
2385 x = *sqlite3VdbeGetOp(v, addrConflictCk);
2386 if( x.opcode!=OP_IdxRowid ){
2387 int p2; /* New P2 value for copied conflict check opcode */
2388 const char *zP4;
2389 if( sqlite3OpcodeProperty[x.opcode]&OPFLG_JUMP ){
2390 p2 = lblRecheckOk;
2391 }else{
2392 p2 = x.p2;
2394 zP4 = x.p4type==P4_INT32 ? SQLITE_INT_TO_PTR(x.p4.i) : x.p4.z;
2395 sqlite3VdbeAddOp4(v, x.opcode, x.p1, p2, x.p3, zP4, x.p4type);
2396 sqlite3VdbeChangeP5(v, x.p5);
2397 VdbeCoverageIf(v, p2!=x.p2);
2399 nConflictCk--;
2400 addrConflictCk++;
2402 /* If the retest fails, issue an abort */
2403 sqlite3UniqueConstraint(pParse, OE_Abort, pIdx);
2405 sqlite3VdbeJumpHere(v, addrBypass); /* Terminate the recheck bypass */
2407 seenReplace = 1;
2408 break;
2411 sqlite3VdbeResolveLabel(v, addrUniqueOk);
2412 if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField);
2413 if( pUpsertClause
2414 && upsertIpkReturn
2415 && sqlite3UpsertNextIsIPK(pUpsertClause)
2417 sqlite3VdbeGoto(v, upsertIpkDelay+1);
2418 sqlite3VdbeJumpHere(v, upsertIpkReturn);
2419 upsertIpkReturn = 0;
2423 /* If the IPK constraint is a REPLACE, run it last */
2424 if( ipkTop ){
2425 sqlite3VdbeGoto(v, ipkTop);
2426 VdbeComment((v, "Do IPK REPLACE"));
2427 assert( ipkBottom>0 );
2428 sqlite3VdbeJumpHere(v, ipkBottom);
2431 /* Recheck all uniqueness constraints after replace triggers have run */
2432 testcase( regTrigCnt!=0 && nReplaceTrig==0 );
2433 assert( regTrigCnt!=0 || nReplaceTrig==0 );
2434 if( nReplaceTrig ){
2435 sqlite3VdbeAddOp2(v, OP_IfNot, regTrigCnt, lblRecheckOk);VdbeCoverage(v);
2436 if( !pPk ){
2437 if( isUpdate ){
2438 sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRecheck, regOldData);
2439 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
2440 VdbeCoverage(v);
2442 sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRecheck, regNewData);
2443 VdbeCoverage(v);
2444 sqlite3RowidConstraint(pParse, OE_Abort, pTab);
2445 }else{
2446 sqlite3VdbeGoto(v, addrRecheck);
2448 sqlite3VdbeResolveLabel(v, lblRecheckOk);
2451 /* Generate the table record */
2452 if( HasRowid(pTab) ){
2453 int regRec = aRegIdx[ix];
2454 sqlite3VdbeAddOp3(v, OP_MakeRecord, regNewData+1, pTab->nNVCol, regRec);
2455 sqlite3SetMakeRecordP5(v, pTab);
2456 if( !bAffinityDone ){
2457 sqlite3TableAffinity(v, pTab, 0);
2461 *pbMayReplace = seenReplace;
2462 VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace));
2465 #ifdef SQLITE_ENABLE_NULL_TRIM
2467 ** Change the P5 operand on the last opcode (which should be an OP_MakeRecord)
2468 ** to be the number of columns in table pTab that must not be NULL-trimmed.
2470 ** Or if no columns of pTab may be NULL-trimmed, leave P5 at zero.
2472 void sqlite3SetMakeRecordP5(Vdbe *v, Table *pTab){
2473 u16 i;
2475 /* Records with omitted columns are only allowed for schema format
2476 ** version 2 and later (SQLite version 3.1.4, 2005-02-20). */
2477 if( pTab->pSchema->file_format<2 ) return;
2479 for(i=pTab->nCol-1; i>0; i--){
2480 if( pTab->aCol[i].iDflt!=0 ) break;
2481 if( pTab->aCol[i].colFlags & COLFLAG_PRIMKEY ) break;
2483 sqlite3VdbeChangeP5(v, i+1);
2485 #endif
2488 ** Table pTab is a WITHOUT ROWID table that is being written to. The cursor
2489 ** number is iCur, and register regData contains the new record for the
2490 ** PK index. This function adds code to invoke the pre-update hook,
2491 ** if one is registered.
2493 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
2494 static void codeWithoutRowidPreupdate(
2495 Parse *pParse, /* Parse context */
2496 Table *pTab, /* Table being updated */
2497 int iCur, /* Cursor number for table */
2498 int regData /* Data containing new record */
2500 Vdbe *v = pParse->pVdbe;
2501 int r = sqlite3GetTempReg(pParse);
2502 assert( !HasRowid(pTab) );
2503 assert( 0==(pParse->db->mDbFlags & DBFLAG_Vacuum) || CORRUPT_DB );
2504 sqlite3VdbeAddOp2(v, OP_Integer, 0, r);
2505 sqlite3VdbeAddOp4(v, OP_Insert, iCur, regData, r, (char*)pTab, P4_TABLE);
2506 sqlite3VdbeChangeP5(v, OPFLAG_ISNOOP);
2507 sqlite3ReleaseTempReg(pParse, r);
2509 #else
2510 # define codeWithoutRowidPreupdate(a,b,c,d)
2511 #endif
2514 ** This routine generates code to finish the INSERT or UPDATE operation
2515 ** that was started by a prior call to sqlite3GenerateConstraintChecks.
2516 ** A consecutive range of registers starting at regNewData contains the
2517 ** rowid and the content to be inserted.
2519 ** The arguments to this routine should be the same as the first six
2520 ** arguments to sqlite3GenerateConstraintChecks.
2522 void sqlite3CompleteInsertion(
2523 Parse *pParse, /* The parser context */
2524 Table *pTab, /* the table into which we are inserting */
2525 int iDataCur, /* Cursor of the canonical data source */
2526 int iIdxCur, /* First index cursor */
2527 int regNewData, /* Range of content */
2528 int *aRegIdx, /* Register used by each index. 0 for unused indices */
2529 int update_flags, /* True for UPDATE, False for INSERT */
2530 int appendBias, /* True if this is likely to be an append */
2531 int useSeekResult /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */
2533 Vdbe *v; /* Prepared statements under construction */
2534 Index *pIdx; /* An index being inserted or updated */
2535 u8 pik_flags; /* flag values passed to the btree insert */
2536 int i; /* Loop counter */
2538 assert( update_flags==0
2539 || update_flags==OPFLAG_ISUPDATE
2540 || update_flags==(OPFLAG_ISUPDATE|OPFLAG_SAVEPOSITION)
2543 v = pParse->pVdbe;
2544 assert( v!=0 );
2545 assert( !IsView(pTab) ); /* This table is not a VIEW */
2546 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
2547 /* All REPLACE indexes are at the end of the list */
2548 assert( pIdx->onError!=OE_Replace
2549 || pIdx->pNext==0
2550 || pIdx->pNext->onError==OE_Replace );
2551 if( aRegIdx[i]==0 ) continue;
2552 if( pIdx->pPartIdxWhere ){
2553 sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2);
2554 VdbeCoverage(v);
2556 pik_flags = (useSeekResult ? OPFLAG_USESEEKRESULT : 0);
2557 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){
2558 pik_flags |= OPFLAG_NCHANGE;
2559 pik_flags |= (update_flags & OPFLAG_SAVEPOSITION);
2560 if( update_flags==0 ){
2561 codeWithoutRowidPreupdate(pParse, pTab, iIdxCur+i, aRegIdx[i]);
2564 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i],
2565 aRegIdx[i]+1,
2566 pIdx->uniqNotNull ? pIdx->nKeyCol: pIdx->nColumn);
2567 sqlite3VdbeChangeP5(v, pik_flags);
2569 if( !HasRowid(pTab) ) return;
2570 if( pParse->nested ){
2571 pik_flags = 0;
2572 }else{
2573 pik_flags = OPFLAG_NCHANGE;
2574 pik_flags |= (update_flags?update_flags:OPFLAG_LASTROWID);
2576 if( appendBias ){
2577 pik_flags |= OPFLAG_APPEND;
2579 if( useSeekResult ){
2580 pik_flags |= OPFLAG_USESEEKRESULT;
2582 sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, aRegIdx[i], regNewData);
2583 if( !pParse->nested ){
2584 sqlite3VdbeAppendP4(v, pTab, P4_TABLE);
2586 sqlite3VdbeChangeP5(v, pik_flags);
2590 ** Allocate cursors for the pTab table and all its indices and generate
2591 ** code to open and initialized those cursors.
2593 ** The cursor for the object that contains the complete data (normally
2594 ** the table itself, but the PRIMARY KEY index in the case of a WITHOUT
2595 ** ROWID table) is returned in *piDataCur. The first index cursor is
2596 ** returned in *piIdxCur. The number of indices is returned.
2598 ** Use iBase as the first cursor (either the *piDataCur for rowid tables
2599 ** or the first index for WITHOUT ROWID tables) if it is non-negative.
2600 ** If iBase is negative, then allocate the next available cursor.
2602 ** For a rowid table, *piDataCur will be exactly one less than *piIdxCur.
2603 ** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range
2604 ** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the
2605 ** pTab->pIndex list.
2607 ** If pTab is a virtual table, then this routine is a no-op and the
2608 ** *piDataCur and *piIdxCur values are left uninitialized.
2610 int sqlite3OpenTableAndIndices(
2611 Parse *pParse, /* Parsing context */
2612 Table *pTab, /* Table to be opened */
2613 int op, /* OP_OpenRead or OP_OpenWrite */
2614 u8 p5, /* P5 value for OP_Open* opcodes (except on WITHOUT ROWID) */
2615 int iBase, /* Use this for the table cursor, if there is one */
2616 u8 *aToOpen, /* If not NULL: boolean for each table and index */
2617 int *piDataCur, /* Write the database source cursor number here */
2618 int *piIdxCur /* Write the first index cursor number here */
2620 int i;
2621 int iDb;
2622 int iDataCur;
2623 Index *pIdx;
2624 Vdbe *v;
2626 assert( op==OP_OpenRead || op==OP_OpenWrite );
2627 assert( op==OP_OpenWrite || p5==0 );
2628 if( IsVirtual(pTab) ){
2629 /* This routine is a no-op for virtual tables. Leave the output
2630 ** variables *piDataCur and *piIdxCur set to illegal cursor numbers
2631 ** for improved error detection. */
2632 *piDataCur = *piIdxCur = -999;
2633 return 0;
2635 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
2636 v = pParse->pVdbe;
2637 assert( v!=0 );
2638 if( iBase<0 ) iBase = pParse->nTab;
2639 iDataCur = iBase++;
2640 if( piDataCur ) *piDataCur = iDataCur;
2641 if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){
2642 sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op);
2643 }else{
2644 sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName);
2646 if( piIdxCur ) *piIdxCur = iBase;
2647 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
2648 int iIdxCur = iBase++;
2649 assert( pIdx->pSchema==pTab->pSchema );
2650 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){
2651 if( piDataCur ) *piDataCur = iIdxCur;
2652 p5 = 0;
2654 if( aToOpen==0 || aToOpen[i+1] ){
2655 sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb);
2656 sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
2657 sqlite3VdbeChangeP5(v, p5);
2658 VdbeComment((v, "%s", pIdx->zName));
2661 if( iBase>pParse->nTab ) pParse->nTab = iBase;
2662 return i;
2666 #ifdef SQLITE_TEST
2668 ** The following global variable is incremented whenever the
2669 ** transfer optimization is used. This is used for testing
2670 ** purposes only - to make sure the transfer optimization really
2671 ** is happening when it is supposed to.
2673 int sqlite3_xferopt_count;
2674 #endif /* SQLITE_TEST */
2677 #ifndef SQLITE_OMIT_XFER_OPT
2679 ** Check to see if index pSrc is compatible as a source of data
2680 ** for index pDest in an insert transfer optimization. The rules
2681 ** for a compatible index:
2683 ** * The index is over the same set of columns
2684 ** * The same DESC and ASC markings occurs on all columns
2685 ** * The same onError processing (OE_Abort, OE_Ignore, etc)
2686 ** * The same collating sequence on each column
2687 ** * The index has the exact same WHERE clause
2689 static int xferCompatibleIndex(Index *pDest, Index *pSrc){
2690 int i;
2691 assert( pDest && pSrc );
2692 assert( pDest->pTable!=pSrc->pTable );
2693 if( pDest->nKeyCol!=pSrc->nKeyCol || pDest->nColumn!=pSrc->nColumn ){
2694 return 0; /* Different number of columns */
2696 if( pDest->onError!=pSrc->onError ){
2697 return 0; /* Different conflict resolution strategies */
2699 for(i=0; i<pSrc->nKeyCol; i++){
2700 if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){
2701 return 0; /* Different columns indexed */
2703 if( pSrc->aiColumn[i]==XN_EXPR ){
2704 assert( pSrc->aColExpr!=0 && pDest->aColExpr!=0 );
2705 if( sqlite3ExprCompare(0, pSrc->aColExpr->a[i].pExpr,
2706 pDest->aColExpr->a[i].pExpr, -1)!=0 ){
2707 return 0; /* Different expressions in the index */
2710 if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){
2711 return 0; /* Different sort orders */
2713 if( sqlite3_stricmp(pSrc->azColl[i],pDest->azColl[i])!=0 ){
2714 return 0; /* Different collating sequences */
2717 if( sqlite3ExprCompare(0, pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){
2718 return 0; /* Different WHERE clauses */
2721 /* If no test above fails then the indices must be compatible */
2722 return 1;
2726 ** Attempt the transfer optimization on INSERTs of the form
2728 ** INSERT INTO tab1 SELECT * FROM tab2;
2730 ** The xfer optimization transfers raw records from tab2 over to tab1.
2731 ** Columns are not decoded and reassembled, which greatly improves
2732 ** performance. Raw index records are transferred in the same way.
2734 ** The xfer optimization is only attempted if tab1 and tab2 are compatible.
2735 ** There are lots of rules for determining compatibility - see comments
2736 ** embedded in the code for details.
2738 ** This routine returns TRUE if the optimization is guaranteed to be used.
2739 ** Sometimes the xfer optimization will only work if the destination table
2740 ** is empty - a factor that can only be determined at run-time. In that
2741 ** case, this routine generates code for the xfer optimization but also
2742 ** does a test to see if the destination table is empty and jumps over the
2743 ** xfer optimization code if the test fails. In that case, this routine
2744 ** returns FALSE so that the caller will know to go ahead and generate
2745 ** an unoptimized transfer. This routine also returns FALSE if there
2746 ** is no chance that the xfer optimization can be applied.
2748 ** This optimization is particularly useful at making VACUUM run faster.
2750 static int xferOptimization(
2751 Parse *pParse, /* Parser context */
2752 Table *pDest, /* The table we are inserting into */
2753 Select *pSelect, /* A SELECT statement to use as the data source */
2754 int onError, /* How to handle constraint errors */
2755 int iDbDest /* The database of pDest */
2757 sqlite3 *db = pParse->db;
2758 ExprList *pEList; /* The result set of the SELECT */
2759 Table *pSrc; /* The table in the FROM clause of SELECT */
2760 Index *pSrcIdx, *pDestIdx; /* Source and destination indices */
2761 SrcItem *pItem; /* An element of pSelect->pSrc */
2762 int i; /* Loop counter */
2763 int iDbSrc; /* The database of pSrc */
2764 int iSrc, iDest; /* Cursors from source and destination */
2765 int addr1, addr2; /* Loop addresses */
2766 int emptyDestTest = 0; /* Address of test for empty pDest */
2767 int emptySrcTest = 0; /* Address of test for empty pSrc */
2768 Vdbe *v; /* The VDBE we are building */
2769 int regAutoinc; /* Memory register used by AUTOINC */
2770 int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */
2771 int regData, regRowid; /* Registers holding data and rowid */
2773 assert( pSelect!=0 );
2774 if( pParse->pWith || pSelect->pWith ){
2775 /* Do not attempt to process this query if there are an WITH clauses
2776 ** attached to it. Proceeding may generate a false "no such table: xxx"
2777 ** error if pSelect reads from a CTE named "xxx". */
2778 return 0;
2780 #ifndef SQLITE_OMIT_VIRTUALTABLE
2781 if( IsVirtual(pDest) ){
2782 return 0; /* tab1 must not be a virtual table */
2784 #endif
2785 if( onError==OE_Default ){
2786 if( pDest->iPKey>=0 ) onError = pDest->keyConf;
2787 if( onError==OE_Default ) onError = OE_Abort;
2789 assert(pSelect->pSrc); /* allocated even if there is no FROM clause */
2790 if( pSelect->pSrc->nSrc!=1 ){
2791 return 0; /* FROM clause must have exactly one term */
2793 if( pSelect->pSrc->a[0].pSelect ){
2794 return 0; /* FROM clause cannot contain a subquery */
2796 if( pSelect->pWhere ){
2797 return 0; /* SELECT may not have a WHERE clause */
2799 if( pSelect->pOrderBy ){
2800 return 0; /* SELECT may not have an ORDER BY clause */
2802 /* Do not need to test for a HAVING clause. If HAVING is present but
2803 ** there is no ORDER BY, we will get an error. */
2804 if( pSelect->pGroupBy ){
2805 return 0; /* SELECT may not have a GROUP BY clause */
2807 if( pSelect->pLimit ){
2808 return 0; /* SELECT may not have a LIMIT clause */
2810 if( pSelect->pPrior ){
2811 return 0; /* SELECT may not be a compound query */
2813 if( pSelect->selFlags & SF_Distinct ){
2814 return 0; /* SELECT may not be DISTINCT */
2816 pEList = pSelect->pEList;
2817 assert( pEList!=0 );
2818 if( pEList->nExpr!=1 ){
2819 return 0; /* The result set must have exactly one column */
2821 assert( pEList->a[0].pExpr );
2822 if( pEList->a[0].pExpr->op!=TK_ASTERISK ){
2823 return 0; /* The result set must be the special operator "*" */
2826 /* At this point we have established that the statement is of the
2827 ** correct syntactic form to participate in this optimization. Now
2828 ** we have to check the semantics.
2830 pItem = pSelect->pSrc->a;
2831 pSrc = sqlite3LocateTableItem(pParse, 0, pItem);
2832 if( pSrc==0 ){
2833 return 0; /* FROM clause does not contain a real table */
2835 if( pSrc->tnum==pDest->tnum && pSrc->pSchema==pDest->pSchema ){
2836 testcase( pSrc!=pDest ); /* Possible due to bad sqlite_schema.rootpage */
2837 return 0; /* tab1 and tab2 may not be the same table */
2839 if( HasRowid(pDest)!=HasRowid(pSrc) ){
2840 return 0; /* source and destination must both be WITHOUT ROWID or not */
2842 if( !IsOrdinaryTable(pSrc) ){
2843 return 0; /* tab2 may not be a view or virtual table */
2845 if( pDest->nCol!=pSrc->nCol ){
2846 return 0; /* Number of columns must be the same in tab1 and tab2 */
2848 if( pDest->iPKey!=pSrc->iPKey ){
2849 return 0; /* Both tables must have the same INTEGER PRIMARY KEY */
2851 if( (pDest->tabFlags & TF_Strict)!=0 && (pSrc->tabFlags & TF_Strict)==0 ){
2852 return 0; /* Cannot feed from a non-strict into a strict table */
2854 for(i=0; i<pDest->nCol; i++){
2855 Column *pDestCol = &pDest->aCol[i];
2856 Column *pSrcCol = &pSrc->aCol[i];
2857 #ifdef SQLITE_ENABLE_HIDDEN_COLUMNS
2858 if( (db->mDbFlags & DBFLAG_Vacuum)==0
2859 && (pDestCol->colFlags | pSrcCol->colFlags) & COLFLAG_HIDDEN
2861 return 0; /* Neither table may have __hidden__ columns */
2863 #endif
2864 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
2865 /* Even if tables t1 and t2 have identical schemas, if they contain
2866 ** generated columns, then this statement is semantically incorrect:
2868 ** INSERT INTO t2 SELECT * FROM t1;
2870 ** The reason is that generated column values are returned by the
2871 ** the SELECT statement on the right but the INSERT statement on the
2872 ** left wants them to be omitted.
2874 ** Nevertheless, this is a useful notational shorthand to tell SQLite
2875 ** to do a bulk transfer all of the content from t1 over to t2.
2877 ** We could, in theory, disable this (except for internal use by the
2878 ** VACUUM command where it is actually needed). But why do that? It
2879 ** seems harmless enough, and provides a useful service.
2881 if( (pDestCol->colFlags & COLFLAG_GENERATED) !=
2882 (pSrcCol->colFlags & COLFLAG_GENERATED) ){
2883 return 0; /* Both columns have the same generated-column type */
2885 /* But the transfer is only allowed if both the source and destination
2886 ** tables have the exact same expressions for generated columns.
2887 ** This requirement could be relaxed for VIRTUAL columns, I suppose.
2889 if( (pDestCol->colFlags & COLFLAG_GENERATED)!=0 ){
2890 if( sqlite3ExprCompare(0,
2891 sqlite3ColumnExpr(pSrc, pSrcCol),
2892 sqlite3ColumnExpr(pDest, pDestCol), -1)!=0 ){
2893 testcase( pDestCol->colFlags & COLFLAG_VIRTUAL );
2894 testcase( pDestCol->colFlags & COLFLAG_STORED );
2895 return 0; /* Different generator expressions */
2898 #endif
2899 if( pDestCol->affinity!=pSrcCol->affinity ){
2900 return 0; /* Affinity must be the same on all columns */
2902 if( sqlite3_stricmp(sqlite3ColumnColl(pDestCol),
2903 sqlite3ColumnColl(pSrcCol))!=0 ){
2904 return 0; /* Collating sequence must be the same on all columns */
2906 if( pDestCol->notNull && !pSrcCol->notNull ){
2907 return 0; /* tab2 must be NOT NULL if tab1 is */
2909 /* Default values for second and subsequent columns need to match. */
2910 if( (pDestCol->colFlags & COLFLAG_GENERATED)==0 && i>0 ){
2911 Expr *pDestExpr = sqlite3ColumnExpr(pDest, pDestCol);
2912 Expr *pSrcExpr = sqlite3ColumnExpr(pSrc, pSrcCol);
2913 assert( pDestExpr==0 || pDestExpr->op==TK_SPAN );
2914 assert( pDestExpr==0 || !ExprHasProperty(pDestExpr, EP_IntValue) );
2915 assert( pSrcExpr==0 || pSrcExpr->op==TK_SPAN );
2916 assert( pSrcExpr==0 || !ExprHasProperty(pSrcExpr, EP_IntValue) );
2917 if( (pDestExpr==0)!=(pSrcExpr==0)
2918 || (pDestExpr!=0 && strcmp(pDestExpr->u.zToken,
2919 pSrcExpr->u.zToken)!=0)
2921 return 0; /* Default values must be the same for all columns */
2925 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
2926 if( IsUniqueIndex(pDestIdx) ){
2927 destHasUniqueIdx = 1;
2929 for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
2930 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
2932 if( pSrcIdx==0 ){
2933 return 0; /* pDestIdx has no corresponding index in pSrc */
2935 if( pSrcIdx->tnum==pDestIdx->tnum && pSrc->pSchema==pDest->pSchema
2936 && sqlite3FaultSim(411)==SQLITE_OK ){
2937 /* The sqlite3FaultSim() call allows this corruption test to be
2938 ** bypassed during testing, in order to exercise other corruption tests
2939 ** further downstream. */
2940 return 0; /* Corrupt schema - two indexes on the same btree */
2943 #ifndef SQLITE_OMIT_CHECK
2944 if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) ){
2945 return 0; /* Tables have different CHECK constraints. Ticket #2252 */
2947 #endif
2948 #ifndef SQLITE_OMIT_FOREIGN_KEY
2949 /* Disallow the transfer optimization if the destination table constains
2950 ** any foreign key constraints. This is more restrictive than necessary.
2951 ** But the main beneficiary of the transfer optimization is the VACUUM
2952 ** command, and the VACUUM command disables foreign key constraints. So
2953 ** the extra complication to make this rule less restrictive is probably
2954 ** not worth the effort. Ticket [6284df89debdfa61db8073e062908af0c9b6118e]
2956 assert( IsOrdinaryTable(pDest) );
2957 if( (db->flags & SQLITE_ForeignKeys)!=0 && pDest->u.tab.pFKey!=0 ){
2958 return 0;
2960 #endif
2961 if( (db->flags & SQLITE_CountRows)!=0 ){
2962 return 0; /* xfer opt does not play well with PRAGMA count_changes */
2965 /* If we get this far, it means that the xfer optimization is at
2966 ** least a possibility, though it might only work if the destination
2967 ** table (tab1) is initially empty.
2969 #ifdef SQLITE_TEST
2970 sqlite3_xferopt_count++;
2971 #endif
2972 iDbSrc = sqlite3SchemaToIndex(db, pSrc->pSchema);
2973 v = sqlite3GetVdbe(pParse);
2974 sqlite3CodeVerifySchema(pParse, iDbSrc);
2975 iSrc = pParse->nTab++;
2976 iDest = pParse->nTab++;
2977 regAutoinc = autoIncBegin(pParse, iDbDest, pDest);
2978 regData = sqlite3GetTempReg(pParse);
2979 sqlite3VdbeAddOp2(v, OP_Null, 0, regData);
2980 regRowid = sqlite3GetTempReg(pParse);
2981 sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite);
2982 assert( HasRowid(pDest) || destHasUniqueIdx );
2983 if( (db->mDbFlags & DBFLAG_Vacuum)==0 && (
2984 (pDest->iPKey<0 && pDest->pIndex!=0) /* (1) */
2985 || destHasUniqueIdx /* (2) */
2986 || (onError!=OE_Abort && onError!=OE_Rollback) /* (3) */
2988 /* In some circumstances, we are able to run the xfer optimization
2989 ** only if the destination table is initially empty. Unless the
2990 ** DBFLAG_Vacuum flag is set, this block generates code to make
2991 ** that determination. If DBFLAG_Vacuum is set, then the destination
2992 ** table is always empty.
2994 ** Conditions under which the destination must be empty:
2996 ** (1) There is no INTEGER PRIMARY KEY but there are indices.
2997 ** (If the destination is not initially empty, the rowid fields
2998 ** of index entries might need to change.)
3000 ** (2) The destination has a unique index. (The xfer optimization
3001 ** is unable to test uniqueness.)
3003 ** (3) onError is something other than OE_Abort and OE_Rollback.
3005 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); VdbeCoverage(v);
3006 emptyDestTest = sqlite3VdbeAddOp0(v, OP_Goto);
3007 sqlite3VdbeJumpHere(v, addr1);
3009 if( HasRowid(pSrc) ){
3010 u8 insFlags;
3011 sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead);
3012 emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v);
3013 if( pDest->iPKey>=0 ){
3014 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
3015 if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){
3016 sqlite3VdbeVerifyAbortable(v, onError);
3017 addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid);
3018 VdbeCoverage(v);
3019 sqlite3RowidConstraint(pParse, onError, pDest);
3020 sqlite3VdbeJumpHere(v, addr2);
3022 autoIncStep(pParse, regAutoinc, regRowid);
3023 }else if( pDest->pIndex==0 && !(db->mDbFlags & DBFLAG_VacuumInto) ){
3024 addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid);
3025 }else{
3026 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
3027 assert( (pDest->tabFlags & TF_Autoincrement)==0 );
3030 if( db->mDbFlags & DBFLAG_Vacuum ){
3031 sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest);
3032 insFlags = OPFLAG_APPEND|OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT;
3033 }else{
3034 insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND|OPFLAG_PREFORMAT;
3036 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
3037 if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){
3038 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1);
3039 insFlags &= ~OPFLAG_PREFORMAT;
3040 }else
3041 #endif
3043 sqlite3VdbeAddOp3(v, OP_RowCell, iDest, iSrc, regRowid);
3045 sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid);
3046 if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){
3047 sqlite3VdbeChangeP4(v, -1, (char*)pDest, P4_TABLE);
3049 sqlite3VdbeChangeP5(v, insFlags);
3051 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v);
3052 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
3053 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
3054 }else{
3055 sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName);
3056 sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName);
3058 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
3059 u8 idxInsFlags = 0;
3060 for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){
3061 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
3063 assert( pSrcIdx );
3064 sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc);
3065 sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx);
3066 VdbeComment((v, "%s", pSrcIdx->zName));
3067 sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest);
3068 sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx);
3069 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR);
3070 VdbeComment((v, "%s", pDestIdx->zName));
3071 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v);
3072 if( db->mDbFlags & DBFLAG_Vacuum ){
3073 /* This INSERT command is part of a VACUUM operation, which guarantees
3074 ** that the destination table is empty. If all indexed columns use
3075 ** collation sequence BINARY, then it can also be assumed that the
3076 ** index will be populated by inserting keys in strictly sorted
3077 ** order. In this case, instead of seeking within the b-tree as part
3078 ** of every OP_IdxInsert opcode, an OP_SeekEnd is added before the
3079 ** OP_IdxInsert to seek to the point within the b-tree where each key
3080 ** should be inserted. This is faster.
3082 ** If any of the indexed columns use a collation sequence other than
3083 ** BINARY, this optimization is disabled. This is because the user
3084 ** might change the definition of a collation sequence and then run
3085 ** a VACUUM command. In that case keys may not be written in strictly
3086 ** sorted order. */
3087 for(i=0; i<pSrcIdx->nColumn; i++){
3088 const char *zColl = pSrcIdx->azColl[i];
3089 if( sqlite3_stricmp(sqlite3StrBINARY, zColl) ) break;
3091 if( i==pSrcIdx->nColumn ){
3092 idxInsFlags = OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT;
3093 sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest);
3094 sqlite3VdbeAddOp2(v, OP_RowCell, iDest, iSrc);
3096 }else if( !HasRowid(pSrc) && pDestIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){
3097 idxInsFlags |= OPFLAG_NCHANGE;
3099 if( idxInsFlags!=(OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT) ){
3100 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1);
3101 if( (db->mDbFlags & DBFLAG_Vacuum)==0
3102 && !HasRowid(pDest)
3103 && IsPrimaryKeyIndex(pDestIdx)
3105 codeWithoutRowidPreupdate(pParse, pDest, iDest, regData);
3108 sqlite3VdbeAddOp2(v, OP_IdxInsert, iDest, regData);
3109 sqlite3VdbeChangeP5(v, idxInsFlags|OPFLAG_APPEND);
3110 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v);
3111 sqlite3VdbeJumpHere(v, addr1);
3112 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
3113 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
3115 if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest);
3116 sqlite3ReleaseTempReg(pParse, regRowid);
3117 sqlite3ReleaseTempReg(pParse, regData);
3118 if( emptyDestTest ){
3119 sqlite3AutoincrementEnd(pParse);
3120 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0);
3121 sqlite3VdbeJumpHere(v, emptyDestTest);
3122 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
3123 return 0;
3124 }else{
3125 return 1;
3128 #endif /* SQLITE_OMIT_XFER_OPT */