Snapshot of upstream SQLite 3.38.2
[sqlcipher.git] / src / select.c
blob6719d474718f08fbed67aab1caa65365d870db0b
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
15 #include "sqliteInt.h"
18 ** An instance of the following object is used to record information about
19 ** how to process the DISTINCT keyword, to simplify passing that information
20 ** into the selectInnerLoop() routine.
22 typedef struct DistinctCtx DistinctCtx;
23 struct DistinctCtx {
24 u8 isTnct; /* True if the DISTINCT keyword is present */
25 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */
26 int tabTnct; /* Ephemeral table used for DISTINCT processing */
27 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */
31 ** An instance of the following object is used to record information about
32 ** the ORDER BY (or GROUP BY) clause of query is being coded.
34 ** The aDefer[] array is used by the sorter-references optimization. For
35 ** example, assuming there is no index that can be used for the ORDER BY,
36 ** for the query:
38 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10;
40 ** it may be more efficient to add just the "a" values to the sorter, and
41 ** retrieve the associated "bigblob" values directly from table t1 as the
42 ** 10 smallest "a" values are extracted from the sorter.
44 ** When the sorter-reference optimization is used, there is one entry in the
45 ** aDefer[] array for each database table that may be read as values are
46 ** extracted from the sorter.
48 typedef struct SortCtx SortCtx;
49 struct SortCtx {
50 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */
51 int nOBSat; /* Number of ORDER BY terms satisfied by indices */
52 int iECursor; /* Cursor number for the sorter */
53 int regReturn; /* Register holding block-output return address */
54 int labelBkOut; /* Start label for the block-output subroutine */
55 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */
56 int labelDone; /* Jump here when done, ex: LIMIT reached */
57 int labelOBLopt; /* Jump here when sorter is full */
58 u8 sortFlags; /* Zero or more SORTFLAG_* bits */
59 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
60 u8 nDefer; /* Number of valid entries in aDefer[] */
61 struct DeferredCsr {
62 Table *pTab; /* Table definition */
63 int iCsr; /* Cursor number for table */
64 int nKey; /* Number of PK columns for table pTab (>=1) */
65 } aDefer[4];
66 #endif
67 struct RowLoadInfo *pDeferredRowLoad; /* Deferred row loading info or NULL */
69 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */
72 ** Delete all the content of a Select structure. Deallocate the structure
73 ** itself depending on the value of bFree
75 ** If bFree==1, call sqlite3DbFree() on the p object.
76 ** If bFree==0, Leave the first Select object unfreed
78 static void clearSelect(sqlite3 *db, Select *p, int bFree){
79 while( p ){
80 Select *pPrior = p->pPrior;
81 sqlite3ExprListDelete(db, p->pEList);
82 sqlite3SrcListDelete(db, p->pSrc);
83 sqlite3ExprDelete(db, p->pWhere);
84 sqlite3ExprListDelete(db, p->pGroupBy);
85 sqlite3ExprDelete(db, p->pHaving);
86 sqlite3ExprListDelete(db, p->pOrderBy);
87 sqlite3ExprDelete(db, p->pLimit);
88 if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith);
89 #ifndef SQLITE_OMIT_WINDOWFUNC
90 if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){
91 sqlite3WindowListDelete(db, p->pWinDefn);
93 while( p->pWin ){
94 assert( p->pWin->ppThis==&p->pWin );
95 sqlite3WindowUnlinkFromSelect(p->pWin);
97 #endif
98 if( bFree ) sqlite3DbFreeNN(db, p);
99 p = pPrior;
100 bFree = 1;
105 ** Initialize a SelectDest structure.
107 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
108 pDest->eDest = (u8)eDest;
109 pDest->iSDParm = iParm;
110 pDest->iSDParm2 = 0;
111 pDest->zAffSdst = 0;
112 pDest->iSdst = 0;
113 pDest->nSdst = 0;
118 ** Allocate a new Select structure and return a pointer to that
119 ** structure.
121 Select *sqlite3SelectNew(
122 Parse *pParse, /* Parsing context */
123 ExprList *pEList, /* which columns to include in the result */
124 SrcList *pSrc, /* the FROM clause -- which tables to scan */
125 Expr *pWhere, /* the WHERE clause */
126 ExprList *pGroupBy, /* the GROUP BY clause */
127 Expr *pHaving, /* the HAVING clause */
128 ExprList *pOrderBy, /* the ORDER BY clause */
129 u32 selFlags, /* Flag parameters, such as SF_Distinct */
130 Expr *pLimit /* LIMIT value. NULL means not used */
132 Select *pNew, *pAllocated;
133 Select standin;
134 pAllocated = pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) );
135 if( pNew==0 ){
136 assert( pParse->db->mallocFailed );
137 pNew = &standin;
139 if( pEList==0 ){
140 pEList = sqlite3ExprListAppend(pParse, 0,
141 sqlite3Expr(pParse->db,TK_ASTERISK,0));
143 pNew->pEList = pEList;
144 pNew->op = TK_SELECT;
145 pNew->selFlags = selFlags;
146 pNew->iLimit = 0;
147 pNew->iOffset = 0;
148 pNew->selId = ++pParse->nSelect;
149 pNew->addrOpenEphm[0] = -1;
150 pNew->addrOpenEphm[1] = -1;
151 pNew->nSelectRow = 0;
152 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc));
153 pNew->pSrc = pSrc;
154 pNew->pWhere = pWhere;
155 pNew->pGroupBy = pGroupBy;
156 pNew->pHaving = pHaving;
157 pNew->pOrderBy = pOrderBy;
158 pNew->pPrior = 0;
159 pNew->pNext = 0;
160 pNew->pLimit = pLimit;
161 pNew->pWith = 0;
162 #ifndef SQLITE_OMIT_WINDOWFUNC
163 pNew->pWin = 0;
164 pNew->pWinDefn = 0;
165 #endif
166 if( pParse->db->mallocFailed ) {
167 clearSelect(pParse->db, pNew, pNew!=&standin);
168 pAllocated = 0;
169 }else{
170 assert( pNew->pSrc!=0 || pParse->nErr>0 );
172 return pAllocated;
177 ** Delete the given Select structure and all of its substructures.
179 void sqlite3SelectDelete(sqlite3 *db, Select *p){
180 if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1);
184 ** Return a pointer to the right-most SELECT statement in a compound.
186 static Select *findRightmost(Select *p){
187 while( p->pNext ) p = p->pNext;
188 return p;
192 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
193 ** type of join. Return an integer constant that expresses that type
194 ** in terms of the following bit values:
196 ** JT_INNER
197 ** JT_CROSS
198 ** JT_OUTER
199 ** JT_NATURAL
200 ** JT_LEFT
201 ** JT_RIGHT
203 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
205 ** If an illegal or unsupported join type is seen, then still return
206 ** a join type, but put an error in the pParse structure.
208 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
209 int jointype = 0;
210 Token *apAll[3];
211 Token *p;
212 /* 0123456789 123456789 123456789 123 */
213 static const char zKeyText[] = "naturaleftouterightfullinnercross";
214 static const struct {
215 u8 i; /* Beginning of keyword text in zKeyText[] */
216 u8 nChar; /* Length of the keyword in characters */
217 u8 code; /* Join type mask */
218 } aKeyword[] = {
219 /* natural */ { 0, 7, JT_NATURAL },
220 /* left */ { 6, 4, JT_LEFT|JT_OUTER },
221 /* outer */ { 10, 5, JT_OUTER },
222 /* right */ { 14, 5, JT_RIGHT|JT_OUTER },
223 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
224 /* inner */ { 23, 5, JT_INNER },
225 /* cross */ { 28, 5, JT_INNER|JT_CROSS },
227 int i, j;
228 apAll[0] = pA;
229 apAll[1] = pB;
230 apAll[2] = pC;
231 for(i=0; i<3 && apAll[i]; i++){
232 p = apAll[i];
233 for(j=0; j<ArraySize(aKeyword); j++){
234 if( p->n==aKeyword[j].nChar
235 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
236 jointype |= aKeyword[j].code;
237 break;
240 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
241 if( j>=ArraySize(aKeyword) ){
242 jointype |= JT_ERROR;
243 break;
247 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
248 (jointype & JT_ERROR)!=0
250 const char *zSp = " ";
251 assert( pB!=0 );
252 if( pC==0 ){ zSp++; }
253 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
254 "%T %T%s%T", pA, pB, zSp, pC);
255 jointype = JT_INNER;
256 }else if( (jointype & JT_OUTER)!=0
257 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
258 sqlite3ErrorMsg(pParse,
259 "RIGHT and FULL OUTER JOINs are not currently supported");
260 jointype = JT_INNER;
262 return jointype;
266 ** Return the index of a column in a table. Return -1 if the column
267 ** is not contained in the table.
269 int sqlite3ColumnIndex(Table *pTab, const char *zCol){
270 int i;
271 u8 h = sqlite3StrIHash(zCol);
272 Column *pCol;
273 for(pCol=pTab->aCol, i=0; i<pTab->nCol; pCol++, i++){
274 if( pCol->hName==h && sqlite3StrICmp(pCol->zCnName, zCol)==0 ) return i;
276 return -1;
280 ** Search the first N tables in pSrc, from left to right, looking for a
281 ** table that has a column named zCol.
283 ** When found, set *piTab and *piCol to the table index and column index
284 ** of the matching column and return TRUE.
286 ** If not found, return FALSE.
288 static int tableAndColumnIndex(
289 SrcList *pSrc, /* Array of tables to search */
290 int N, /* Number of tables in pSrc->a[] to search */
291 const char *zCol, /* Name of the column we are looking for */
292 int *piTab, /* Write index of pSrc->a[] here */
293 int *piCol, /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
294 int bIgnoreHidden /* True to ignore hidden columns */
296 int i; /* For looping over tables in pSrc */
297 int iCol; /* Index of column matching zCol */
299 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */
300 for(i=0; i<N; i++){
301 iCol = sqlite3ColumnIndex(pSrc->a[i].pTab, zCol);
302 if( iCol>=0
303 && (bIgnoreHidden==0 || IsHiddenColumn(&pSrc->a[i].pTab->aCol[iCol])==0)
305 if( piTab ){
306 *piTab = i;
307 *piCol = iCol;
309 return 1;
312 return 0;
316 ** This function is used to add terms implied by JOIN syntax to the
317 ** WHERE clause expression of a SELECT statement. The new term, which
318 ** is ANDed with the existing WHERE clause, is of the form:
320 ** (tab1.col1 = tab2.col2)
322 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
323 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
324 ** column iColRight of tab2.
326 static void addWhereTerm(
327 Parse *pParse, /* Parsing context */
328 SrcList *pSrc, /* List of tables in FROM clause */
329 int iLeft, /* Index of first table to join in pSrc */
330 int iColLeft, /* Index of column in first table */
331 int iRight, /* Index of second table in pSrc */
332 int iColRight, /* Index of column in second table */
333 int isOuterJoin, /* True if this is an OUTER join */
334 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */
336 sqlite3 *db = pParse->db;
337 Expr *pE1;
338 Expr *pE2;
339 Expr *pEq;
341 assert( iLeft<iRight );
342 assert( pSrc->nSrc>iRight );
343 assert( pSrc->a[iLeft].pTab );
344 assert( pSrc->a[iRight].pTab );
346 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
347 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
349 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2);
350 assert( pE2!=0 || pEq==0 ); /* Due to db->mallocFailed test
351 ** in sqlite3DbMallocRawNN() called from
352 ** sqlite3PExpr(). */
353 if( pEq && isOuterJoin ){
354 ExprSetProperty(pEq, EP_FromJoin);
355 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
356 ExprSetVVAProperty(pEq, EP_NoReduce);
357 pEq->w.iRightJoinTable = pE2->iTable;
359 *ppWhere = sqlite3ExprAnd(pParse, *ppWhere, pEq);
363 ** Set the EP_FromJoin property on all terms of the given expression.
364 ** And set the Expr.w.iRightJoinTable to iTable for every term in the
365 ** expression.
367 ** The EP_FromJoin property is used on terms of an expression to tell
368 ** the LEFT OUTER JOIN processing logic that this term is part of the
369 ** join restriction specified in the ON or USING clause and not a part
370 ** of the more general WHERE clause. These terms are moved over to the
371 ** WHERE clause during join processing but we need to remember that they
372 ** originated in the ON or USING clause.
374 ** The Expr.w.iRightJoinTable tells the WHERE clause processing that the
375 ** expression depends on table w.iRightJoinTable even if that table is not
376 ** explicitly mentioned in the expression. That information is needed
377 ** for cases like this:
379 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
381 ** The where clause needs to defer the handling of the t1.x=5
382 ** term until after the t2 loop of the join. In that way, a
383 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not
384 ** defer the handling of t1.x=5, it will be processed immediately
385 ** after the t1 loop and rows with t1.x!=5 will never appear in
386 ** the output, which is incorrect.
388 void sqlite3SetJoinExpr(Expr *p, int iTable){
389 while( p ){
390 ExprSetProperty(p, EP_FromJoin);
391 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
392 ExprSetVVAProperty(p, EP_NoReduce);
393 p->w.iRightJoinTable = iTable;
394 if( p->op==TK_FUNCTION ){
395 assert( ExprUseXList(p) );
396 if( p->x.pList ){
397 int i;
398 for(i=0; i<p->x.pList->nExpr; i++){
399 sqlite3SetJoinExpr(p->x.pList->a[i].pExpr, iTable);
403 sqlite3SetJoinExpr(p->pLeft, iTable);
404 p = p->pRight;
408 /* Undo the work of sqlite3SetJoinExpr(). In the expression p, convert every
409 ** term that is marked with EP_FromJoin and w.iRightJoinTable==iTable into
410 ** an ordinary term that omits the EP_FromJoin mark.
412 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN.
414 static void unsetJoinExpr(Expr *p, int iTable){
415 while( p ){
416 if( ExprHasProperty(p, EP_FromJoin)
417 && (iTable<0 || p->w.iRightJoinTable==iTable) ){
418 ExprClearProperty(p, EP_FromJoin);
420 if( p->op==TK_COLUMN && p->iTable==iTable ){
421 ExprClearProperty(p, EP_CanBeNull);
423 if( p->op==TK_FUNCTION ){
424 assert( ExprUseXList(p) );
425 if( p->x.pList ){
426 int i;
427 for(i=0; i<p->x.pList->nExpr; i++){
428 unsetJoinExpr(p->x.pList->a[i].pExpr, iTable);
432 unsetJoinExpr(p->pLeft, iTable);
433 p = p->pRight;
438 ** This routine processes the join information for a SELECT statement.
439 ** ON and USING clauses are converted into extra terms of the WHERE clause.
440 ** NATURAL joins also create extra WHERE clause terms.
442 ** The terms of a FROM clause are contained in the Select.pSrc structure.
443 ** The left most table is the first entry in Select.pSrc. The right-most
444 ** table is the last entry. The join operator is held in the entry to
445 ** the left. Thus entry 0 contains the join operator for the join between
446 ** entries 0 and 1. Any ON or USING clauses associated with the join are
447 ** also attached to the left entry.
449 ** This routine returns the number of errors encountered.
451 static int sqliteProcessJoin(Parse *pParse, Select *p){
452 SrcList *pSrc; /* All tables in the FROM clause */
453 int i, j; /* Loop counters */
454 SrcItem *pLeft; /* Left table being joined */
455 SrcItem *pRight; /* Right table being joined */
457 pSrc = p->pSrc;
458 pLeft = &pSrc->a[0];
459 pRight = &pLeft[1];
460 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
461 Table *pRightTab = pRight->pTab;
462 int isOuter;
464 if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue;
465 isOuter = (pRight->fg.jointype & JT_OUTER)!=0;
467 /* When the NATURAL keyword is present, add WHERE clause terms for
468 ** every column that the two tables have in common.
470 if( pRight->fg.jointype & JT_NATURAL ){
471 if( pRight->pOn || pRight->pUsing ){
472 sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
473 "an ON or USING clause", 0);
474 return 1;
476 for(j=0; j<pRightTab->nCol; j++){
477 char *zName; /* Name of column in the right table */
478 int iLeft; /* Matching left table */
479 int iLeftCol; /* Matching column in the left table */
481 if( IsHiddenColumn(&pRightTab->aCol[j]) ) continue;
482 zName = pRightTab->aCol[j].zCnName;
483 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 1) ){
484 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
485 isOuter, &p->pWhere);
490 /* Disallow both ON and USING clauses in the same join
492 if( pRight->pOn && pRight->pUsing ){
493 sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
494 "clauses in the same join");
495 return 1;
498 /* Add the ON clause to the end of the WHERE clause, connected by
499 ** an AND operator.
501 if( pRight->pOn ){
502 if( isOuter ) sqlite3SetJoinExpr(pRight->pOn, pRight->iCursor);
503 p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pRight->pOn);
504 pRight->pOn = 0;
507 /* Create extra terms on the WHERE clause for each column named
508 ** in the USING clause. Example: If the two tables to be joined are
509 ** A and B and the USING clause names X, Y, and Z, then add this
510 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
511 ** Report an error if any column mentioned in the USING clause is
512 ** not contained in both tables to be joined.
514 if( pRight->pUsing ){
515 IdList *pList = pRight->pUsing;
516 for(j=0; j<pList->nId; j++){
517 char *zName; /* Name of the term in the USING clause */
518 int iLeft; /* Table on the left with matching column name */
519 int iLeftCol; /* Column number of matching column on the left */
520 int iRightCol; /* Column number of matching column on the right */
522 zName = pList->a[j].zName;
523 iRightCol = sqlite3ColumnIndex(pRightTab, zName);
524 if( iRightCol<0
525 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 0)
527 sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
528 "not present in both tables", zName);
529 return 1;
531 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
532 isOuter, &p->pWhere);
536 return 0;
540 ** An instance of this object holds information (beyond pParse and pSelect)
541 ** needed to load the next result row that is to be added to the sorter.
543 typedef struct RowLoadInfo RowLoadInfo;
544 struct RowLoadInfo {
545 int regResult; /* Store results in array of registers here */
546 u8 ecelFlags; /* Flag argument to ExprCodeExprList() */
547 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
548 ExprList *pExtra; /* Extra columns needed by sorter refs */
549 int regExtraResult; /* Where to load the extra columns */
550 #endif
554 ** This routine does the work of loading query data into an array of
555 ** registers so that it can be added to the sorter.
557 static void innerLoopLoadRow(
558 Parse *pParse, /* Statement under construction */
559 Select *pSelect, /* The query being coded */
560 RowLoadInfo *pInfo /* Info needed to complete the row load */
562 sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult,
563 0, pInfo->ecelFlags);
564 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
565 if( pInfo->pExtra ){
566 sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0);
567 sqlite3ExprListDelete(pParse->db, pInfo->pExtra);
569 #endif
573 ** Code the OP_MakeRecord instruction that generates the entry to be
574 ** added into the sorter.
576 ** Return the register in which the result is stored.
578 static int makeSorterRecord(
579 Parse *pParse,
580 SortCtx *pSort,
581 Select *pSelect,
582 int regBase,
583 int nBase
585 int nOBSat = pSort->nOBSat;
586 Vdbe *v = pParse->pVdbe;
587 int regOut = ++pParse->nMem;
588 if( pSort->pDeferredRowLoad ){
589 innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad);
591 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut);
592 return regOut;
596 ** Generate code that will push the record in registers regData
597 ** through regData+nData-1 onto the sorter.
599 static void pushOntoSorter(
600 Parse *pParse, /* Parser context */
601 SortCtx *pSort, /* Information about the ORDER BY clause */
602 Select *pSelect, /* The whole SELECT statement */
603 int regData, /* First register holding data to be sorted */
604 int regOrigData, /* First register holding data before packing */
605 int nData, /* Number of elements in the regData data array */
606 int nPrefixReg /* No. of reg prior to regData available for use */
608 Vdbe *v = pParse->pVdbe; /* Stmt under construction */
609 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
610 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */
611 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */
612 int regBase; /* Regs for sorter record */
613 int regRecord = 0; /* Assembled sorter record */
614 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */
615 int op; /* Opcode to add sorter record to sorter */
616 int iLimit; /* LIMIT counter */
617 int iSkip = 0; /* End of the sorter insert loop */
619 assert( bSeq==0 || bSeq==1 );
621 /* Three cases:
622 ** (1) The data to be sorted has already been packed into a Record
623 ** by a prior OP_MakeRecord. In this case nData==1 and regData
624 ** will be completely unrelated to regOrigData.
625 ** (2) All output columns are included in the sort record. In that
626 ** case regData==regOrigData.
627 ** (3) Some output columns are omitted from the sort record due to
628 ** the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the
629 ** SQLITE_ECEL_OMITREF optimization, or due to the
630 ** SortCtx.pDeferredRowLoad optimiation. In any of these cases
631 ** regOrigData is 0 to prevent this routine from trying to copy
632 ** values that might not yet exist.
634 assert( nData==1 || regData==regOrigData || regOrigData==0 );
636 if( nPrefixReg ){
637 assert( nPrefixReg==nExpr+bSeq );
638 regBase = regData - nPrefixReg;
639 }else{
640 regBase = pParse->nMem + 1;
641 pParse->nMem += nBase;
643 assert( pSelect->iOffset==0 || pSelect->iLimit!=0 );
644 iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit;
645 pSort->labelDone = sqlite3VdbeMakeLabel(pParse);
646 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData,
647 SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0));
648 if( bSeq ){
649 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
651 if( nPrefixReg==0 && nData>0 ){
652 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
654 if( nOBSat>0 ){
655 int regPrevKey; /* The first nOBSat columns of the previous row */
656 int addrFirst; /* Address of the OP_IfNot opcode */
657 int addrJmp; /* Address of the OP_Jump opcode */
658 VdbeOp *pOp; /* Opcode that opens the sorter */
659 int nKey; /* Number of sorting key columns, including OP_Sequence */
660 KeyInfo *pKI; /* Original KeyInfo on the sorter table */
662 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
663 regPrevKey = pParse->nMem+1;
664 pParse->nMem += pSort->nOBSat;
665 nKey = nExpr - pSort->nOBSat + bSeq;
666 if( bSeq ){
667 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
668 }else{
669 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
671 VdbeCoverage(v);
672 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
673 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
674 if( pParse->db->mallocFailed ) return;
675 pOp->p2 = nKey + nData;
676 pKI = pOp->p4.pKeyInfo;
677 memset(pKI->aSortFlags, 0, pKI->nKeyField); /* Makes OP_Jump testable */
678 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
679 testcase( pKI->nAllField > pKI->nKeyField+2 );
680 pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat,
681 pKI->nAllField-pKI->nKeyField-1);
682 pOp = 0; /* Ensure pOp not used after sqltie3VdbeAddOp3() */
683 addrJmp = sqlite3VdbeCurrentAddr(v);
684 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
685 pSort->labelBkOut = sqlite3VdbeMakeLabel(pParse);
686 pSort->regReturn = ++pParse->nMem;
687 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
688 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
689 if( iLimit ){
690 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone);
691 VdbeCoverage(v);
693 sqlite3VdbeJumpHere(v, addrFirst);
694 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
695 sqlite3VdbeJumpHere(v, addrJmp);
697 if( iLimit ){
698 /* At this point the values for the new sorter entry are stored
699 ** in an array of registers. They need to be composed into a record
700 ** and inserted into the sorter if either (a) there are currently
701 ** less than LIMIT+OFFSET items or (b) the new record is smaller than
702 ** the largest record currently in the sorter. If (b) is true and there
703 ** are already LIMIT+OFFSET items in the sorter, delete the largest
704 ** entry before inserting the new one. This way there are never more
705 ** than LIMIT+OFFSET items in the sorter.
707 ** If the new record does not need to be inserted into the sorter,
708 ** jump to the next iteration of the loop. If the pSort->labelOBLopt
709 ** value is not zero, then it is a label of where to jump. Otherwise,
710 ** just bypass the row insert logic. See the header comment on the
711 ** sqlite3WhereOrderByLimitOptLabel() function for additional info.
713 int iCsr = pSort->iECursor;
714 sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4);
715 VdbeCoverage(v);
716 sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0);
717 iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE,
718 iCsr, 0, regBase+nOBSat, nExpr-nOBSat);
719 VdbeCoverage(v);
720 sqlite3VdbeAddOp1(v, OP_Delete, iCsr);
722 if( regRecord==0 ){
723 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
725 if( pSort->sortFlags & SORTFLAG_UseSorter ){
726 op = OP_SorterInsert;
727 }else{
728 op = OP_IdxInsert;
730 sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord,
731 regBase+nOBSat, nBase-nOBSat);
732 if( iSkip ){
733 sqlite3VdbeChangeP2(v, iSkip,
734 pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v));
739 ** Add code to implement the OFFSET
741 static void codeOffset(
742 Vdbe *v, /* Generate code into this VM */
743 int iOffset, /* Register holding the offset counter */
744 int iContinue /* Jump here to skip the current record */
746 if( iOffset>0 ){
747 sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v);
748 VdbeComment((v, "OFFSET"));
753 ** Add code that will check to make sure the array of registers starting at
754 ** iMem form a distinct entry. This is used by both "SELECT DISTINCT ..." and
755 ** distinct aggregates ("SELECT count(DISTINCT <expr>) ..."). Three strategies
756 ** are available. Which is used depends on the value of parameter eTnctType,
757 ** as follows:
759 ** WHERE_DISTINCT_UNORDERED/WHERE_DISTINCT_NOOP:
760 ** Build an ephemeral table that contains all entries seen before and
761 ** skip entries which have been seen before.
763 ** Parameter iTab is the cursor number of an ephemeral table that must
764 ** be opened before the VM code generated by this routine is executed.
765 ** The ephemeral cursor table is queried for a record identical to the
766 ** record formed by the current array of registers. If one is found,
767 ** jump to VM address addrRepeat. Otherwise, insert a new record into
768 ** the ephemeral cursor and proceed.
770 ** The returned value in this case is a copy of parameter iTab.
772 ** WHERE_DISTINCT_ORDERED:
773 ** In this case rows are being delivered sorted order. The ephermal
774 ** table is not required. Instead, the current set of values
775 ** is compared against previous row. If they match, the new row
776 ** is not distinct and control jumps to VM address addrRepeat. Otherwise,
777 ** the VM program proceeds with processing the new row.
779 ** The returned value in this case is the register number of the first
780 ** in an array of registers used to store the previous result row so that
781 ** it can be compared to the next. The caller must ensure that this
782 ** register is initialized to NULL. (The fixDistinctOpenEph() routine
783 ** will take care of this initialization.)
785 ** WHERE_DISTINCT_UNIQUE:
786 ** In this case it has already been determined that the rows are distinct.
787 ** No special action is required. The return value is zero.
789 ** Parameter pEList is the list of expressions used to generated the
790 ** contents of each row. It is used by this routine to determine (a)
791 ** how many elements there are in the array of registers and (b) the
792 ** collation sequences that should be used for the comparisons if
793 ** eTnctType is WHERE_DISTINCT_ORDERED.
795 static int codeDistinct(
796 Parse *pParse, /* Parsing and code generating context */
797 int eTnctType, /* WHERE_DISTINCT_* value */
798 int iTab, /* A sorting index used to test for distinctness */
799 int addrRepeat, /* Jump to here if not distinct */
800 ExprList *pEList, /* Expression for each element */
801 int regElem /* First element */
803 int iRet = 0;
804 int nResultCol = pEList->nExpr;
805 Vdbe *v = pParse->pVdbe;
807 switch( eTnctType ){
808 case WHERE_DISTINCT_ORDERED: {
809 int i;
810 int iJump; /* Jump destination */
811 int regPrev; /* Previous row content */
813 /* Allocate space for the previous row */
814 iRet = regPrev = pParse->nMem+1;
815 pParse->nMem += nResultCol;
817 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
818 for(i=0; i<nResultCol; i++){
819 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr);
820 if( i<nResultCol-1 ){
821 sqlite3VdbeAddOp3(v, OP_Ne, regElem+i, iJump, regPrev+i);
822 VdbeCoverage(v);
823 }else{
824 sqlite3VdbeAddOp3(v, OP_Eq, regElem+i, addrRepeat, regPrev+i);
825 VdbeCoverage(v);
827 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
828 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
830 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
831 sqlite3VdbeAddOp3(v, OP_Copy, regElem, regPrev, nResultCol-1);
832 break;
835 case WHERE_DISTINCT_UNIQUE: {
836 /* nothing to do */
837 break;
840 default: {
841 int r1 = sqlite3GetTempReg(pParse);
842 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, regElem, nResultCol);
843 VdbeCoverage(v);
844 sqlite3VdbeAddOp3(v, OP_MakeRecord, regElem, nResultCol, r1);
845 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, regElem, nResultCol);
846 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
847 sqlite3ReleaseTempReg(pParse, r1);
848 iRet = iTab;
849 break;
853 return iRet;
857 ** This routine runs after codeDistinct(). It makes necessary
858 ** adjustments to the OP_OpenEphemeral opcode that the codeDistinct()
859 ** routine made use of. This processing must be done separately since
860 ** sometimes codeDistinct is called before the OP_OpenEphemeral is actually
861 ** laid down.
863 ** WHERE_DISTINCT_NOOP:
864 ** WHERE_DISTINCT_UNORDERED:
866 ** No adjustments necessary. This function is a no-op.
868 ** WHERE_DISTINCT_UNIQUE:
870 ** The ephemeral table is not needed. So change the
871 ** OP_OpenEphemeral opcode into an OP_Noop.
873 ** WHERE_DISTINCT_ORDERED:
875 ** The ephemeral table is not needed. But we do need register
876 ** iVal to be initialized to NULL. So change the OP_OpenEphemeral
877 ** into an OP_Null on the iVal register.
879 static void fixDistinctOpenEph(
880 Parse *pParse, /* Parsing and code generating context */
881 int eTnctType, /* WHERE_DISTINCT_* value */
882 int iVal, /* Value returned by codeDistinct() */
883 int iOpenEphAddr /* Address of OP_OpenEphemeral instruction for iTab */
885 if( pParse->nErr==0
886 && (eTnctType==WHERE_DISTINCT_UNIQUE || eTnctType==WHERE_DISTINCT_ORDERED)
888 Vdbe *v = pParse->pVdbe;
889 sqlite3VdbeChangeToNoop(v, iOpenEphAddr);
890 if( sqlite3VdbeGetOp(v, iOpenEphAddr+1)->opcode==OP_Explain ){
891 sqlite3VdbeChangeToNoop(v, iOpenEphAddr+1);
893 if( eTnctType==WHERE_DISTINCT_ORDERED ){
894 /* Change the OP_OpenEphemeral to an OP_Null that sets the MEM_Cleared
895 ** bit on the first register of the previous value. This will cause the
896 ** OP_Ne added in codeDistinct() to always fail on the first iteration of
897 ** the loop even if the first row is all NULLs. */
898 VdbeOp *pOp = sqlite3VdbeGetOp(v, iOpenEphAddr);
899 pOp->opcode = OP_Null;
900 pOp->p1 = 1;
901 pOp->p2 = iVal;
906 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
908 ** This function is called as part of inner-loop generation for a SELECT
909 ** statement with an ORDER BY that is not optimized by an index. It
910 ** determines the expressions, if any, that the sorter-reference
911 ** optimization should be used for. The sorter-reference optimization
912 ** is used for SELECT queries like:
914 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10
916 ** If the optimization is used for expression "bigblob", then instead of
917 ** storing values read from that column in the sorter records, the PK of
918 ** the row from table t1 is stored instead. Then, as records are extracted from
919 ** the sorter to return to the user, the required value of bigblob is
920 ** retrieved directly from table t1. If the values are very large, this
921 ** can be more efficient than storing them directly in the sorter records.
923 ** The ExprList_item.bSorterRef flag is set for each expression in pEList
924 ** for which the sorter-reference optimization should be enabled.
925 ** Additionally, the pSort->aDefer[] array is populated with entries
926 ** for all cursors required to evaluate all selected expressions. Finally.
927 ** output variable (*ppExtra) is set to an expression list containing
928 ** expressions for all extra PK values that should be stored in the
929 ** sorter records.
931 static void selectExprDefer(
932 Parse *pParse, /* Leave any error here */
933 SortCtx *pSort, /* Sorter context */
934 ExprList *pEList, /* Expressions destined for sorter */
935 ExprList **ppExtra /* Expressions to append to sorter record */
937 int i;
938 int nDefer = 0;
939 ExprList *pExtra = 0;
940 for(i=0; i<pEList->nExpr; i++){
941 struct ExprList_item *pItem = &pEList->a[i];
942 if( pItem->u.x.iOrderByCol==0 ){
943 Expr *pExpr = pItem->pExpr;
944 Table *pTab;
945 if( pExpr->op==TK_COLUMN
946 && pExpr->iColumn>=0
947 && ALWAYS( ExprUseYTab(pExpr) )
948 && (pTab = pExpr->y.pTab)!=0
949 && IsOrdinaryTable(pTab)
950 && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF)!=0
952 int j;
953 for(j=0; j<nDefer; j++){
954 if( pSort->aDefer[j].iCsr==pExpr->iTable ) break;
956 if( j==nDefer ){
957 if( nDefer==ArraySize(pSort->aDefer) ){
958 continue;
959 }else{
960 int nKey = 1;
961 int k;
962 Index *pPk = 0;
963 if( !HasRowid(pTab) ){
964 pPk = sqlite3PrimaryKeyIndex(pTab);
965 nKey = pPk->nKeyCol;
967 for(k=0; k<nKey; k++){
968 Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0);
969 if( pNew ){
970 pNew->iTable = pExpr->iTable;
971 assert( ExprUseYTab(pNew) );
972 pNew->y.pTab = pExpr->y.pTab;
973 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1;
974 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew);
977 pSort->aDefer[nDefer].pTab = pExpr->y.pTab;
978 pSort->aDefer[nDefer].iCsr = pExpr->iTable;
979 pSort->aDefer[nDefer].nKey = nKey;
980 nDefer++;
983 pItem->bSorterRef = 1;
987 pSort->nDefer = (u8)nDefer;
988 *ppExtra = pExtra;
990 #endif
993 ** This routine generates the code for the inside of the inner loop
994 ** of a SELECT.
996 ** If srcTab is negative, then the p->pEList expressions
997 ** are evaluated in order to get the data for this row. If srcTab is
998 ** zero or more, then data is pulled from srcTab and p->pEList is used only
999 ** to get the number of columns and the collation sequence for each column.
1001 static void selectInnerLoop(
1002 Parse *pParse, /* The parser context */
1003 Select *p, /* The complete select statement being coded */
1004 int srcTab, /* Pull data from this table if non-negative */
1005 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */
1006 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
1007 SelectDest *pDest, /* How to dispose of the results */
1008 int iContinue, /* Jump here to continue with next row */
1009 int iBreak /* Jump here to break out of the inner loop */
1011 Vdbe *v = pParse->pVdbe;
1012 int i;
1013 int hasDistinct; /* True if the DISTINCT keyword is present */
1014 int eDest = pDest->eDest; /* How to dispose of results */
1015 int iParm = pDest->iSDParm; /* First argument to disposal method */
1016 int nResultCol; /* Number of result columns */
1017 int nPrefixReg = 0; /* Number of extra registers before regResult */
1018 RowLoadInfo sRowLoadInfo; /* Info for deferred row loading */
1020 /* Usually, regResult is the first cell in an array of memory cells
1021 ** containing the current result row. In this case regOrig is set to the
1022 ** same value. However, if the results are being sent to the sorter, the
1023 ** values for any expressions that are also part of the sort-key are omitted
1024 ** from this array. In this case regOrig is set to zero. */
1025 int regResult; /* Start of memory holding current results */
1026 int regOrig; /* Start of memory holding full result (or 0) */
1028 assert( v );
1029 assert( p->pEList!=0 );
1030 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
1031 if( pSort && pSort->pOrderBy==0 ) pSort = 0;
1032 if( pSort==0 && !hasDistinct ){
1033 assert( iContinue!=0 );
1034 codeOffset(v, p->iOffset, iContinue);
1037 /* Pull the requested columns.
1039 nResultCol = p->pEList->nExpr;
1041 if( pDest->iSdst==0 ){
1042 if( pSort ){
1043 nPrefixReg = pSort->pOrderBy->nExpr;
1044 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
1045 pParse->nMem += nPrefixReg;
1047 pDest->iSdst = pParse->nMem+1;
1048 pParse->nMem += nResultCol;
1049 }else if( pDest->iSdst+nResultCol > pParse->nMem ){
1050 /* This is an error condition that can result, for example, when a SELECT
1051 ** on the right-hand side of an INSERT contains more result columns than
1052 ** there are columns in the table on the left. The error will be caught
1053 ** and reported later. But we need to make sure enough memory is allocated
1054 ** to avoid other spurious errors in the meantime. */
1055 pParse->nMem += nResultCol;
1057 pDest->nSdst = nResultCol;
1058 regOrig = regResult = pDest->iSdst;
1059 if( srcTab>=0 ){
1060 for(i=0; i<nResultCol; i++){
1061 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
1062 VdbeComment((v, "%s", p->pEList->a[i].zEName));
1064 }else if( eDest!=SRT_Exists ){
1065 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1066 ExprList *pExtra = 0;
1067 #endif
1068 /* If the destination is an EXISTS(...) expression, the actual
1069 ** values returned by the SELECT are not required.
1071 u8 ecelFlags; /* "ecel" is an abbreviation of "ExprCodeExprList" */
1072 ExprList *pEList;
1073 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
1074 ecelFlags = SQLITE_ECEL_DUP;
1075 }else{
1076 ecelFlags = 0;
1078 if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){
1079 /* For each expression in p->pEList that is a copy of an expression in
1080 ** the ORDER BY clause (pSort->pOrderBy), set the associated
1081 ** iOrderByCol value to one more than the index of the ORDER BY
1082 ** expression within the sort-key that pushOntoSorter() will generate.
1083 ** This allows the p->pEList field to be omitted from the sorted record,
1084 ** saving space and CPU cycles. */
1085 ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF);
1087 for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){
1088 int j;
1089 if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){
1090 p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat;
1093 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1094 selectExprDefer(pParse, pSort, p->pEList, &pExtra);
1095 if( pExtra && pParse->db->mallocFailed==0 ){
1096 /* If there are any extra PK columns to add to the sorter records,
1097 ** allocate extra memory cells and adjust the OpenEphemeral
1098 ** instruction to account for the larger records. This is only
1099 ** required if there are one or more WITHOUT ROWID tables with
1100 ** composite primary keys in the SortCtx.aDefer[] array. */
1101 VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
1102 pOp->p2 += (pExtra->nExpr - pSort->nDefer);
1103 pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer);
1104 pParse->nMem += pExtra->nExpr;
1106 #endif
1108 /* Adjust nResultCol to account for columns that are omitted
1109 ** from the sorter by the optimizations in this branch */
1110 pEList = p->pEList;
1111 for(i=0; i<pEList->nExpr; i++){
1112 if( pEList->a[i].u.x.iOrderByCol>0
1113 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1114 || pEList->a[i].bSorterRef
1115 #endif
1117 nResultCol--;
1118 regOrig = 0;
1122 testcase( regOrig );
1123 testcase( eDest==SRT_Set );
1124 testcase( eDest==SRT_Mem );
1125 testcase( eDest==SRT_Coroutine );
1126 testcase( eDest==SRT_Output );
1127 assert( eDest==SRT_Set || eDest==SRT_Mem
1128 || eDest==SRT_Coroutine || eDest==SRT_Output
1129 || eDest==SRT_Upfrom );
1131 sRowLoadInfo.regResult = regResult;
1132 sRowLoadInfo.ecelFlags = ecelFlags;
1133 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1134 sRowLoadInfo.pExtra = pExtra;
1135 sRowLoadInfo.regExtraResult = regResult + nResultCol;
1136 if( pExtra ) nResultCol += pExtra->nExpr;
1137 #endif
1138 if( p->iLimit
1139 && (ecelFlags & SQLITE_ECEL_OMITREF)!=0
1140 && nPrefixReg>0
1142 assert( pSort!=0 );
1143 assert( hasDistinct==0 );
1144 pSort->pDeferredRowLoad = &sRowLoadInfo;
1145 regOrig = 0;
1146 }else{
1147 innerLoopLoadRow(pParse, p, &sRowLoadInfo);
1151 /* If the DISTINCT keyword was present on the SELECT statement
1152 ** and this row has been seen before, then do not make this row
1153 ** part of the result.
1155 if( hasDistinct ){
1156 int eType = pDistinct->eTnctType;
1157 int iTab = pDistinct->tabTnct;
1158 assert( nResultCol==p->pEList->nExpr );
1159 iTab = codeDistinct(pParse, eType, iTab, iContinue, p->pEList, regResult);
1160 fixDistinctOpenEph(pParse, eType, iTab, pDistinct->addrTnct);
1161 if( pSort==0 ){
1162 codeOffset(v, p->iOffset, iContinue);
1166 switch( eDest ){
1167 /* In this mode, write each query result to the key of the temporary
1168 ** table iParm.
1170 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1171 case SRT_Union: {
1172 int r1;
1173 r1 = sqlite3GetTempReg(pParse);
1174 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
1175 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1176 sqlite3ReleaseTempReg(pParse, r1);
1177 break;
1180 /* Construct a record from the query result, but instead of
1181 ** saving that record, use it as a key to delete elements from
1182 ** the temporary table iParm.
1184 case SRT_Except: {
1185 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
1186 break;
1188 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1190 /* Store the result as data using a unique key.
1192 case SRT_Fifo:
1193 case SRT_DistFifo:
1194 case SRT_Table:
1195 case SRT_EphemTab: {
1196 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
1197 testcase( eDest==SRT_Table );
1198 testcase( eDest==SRT_EphemTab );
1199 testcase( eDest==SRT_Fifo );
1200 testcase( eDest==SRT_DistFifo );
1201 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
1202 #ifndef SQLITE_OMIT_CTE
1203 if( eDest==SRT_DistFifo ){
1204 /* If the destination is DistFifo, then cursor (iParm+1) is open
1205 ** on an ephemeral index. If the current row is already present
1206 ** in the index, do not write it to the output. If not, add the
1207 ** current row to the index and proceed with writing it to the
1208 ** output table as well. */
1209 int addr = sqlite3VdbeCurrentAddr(v) + 4;
1210 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
1211 VdbeCoverage(v);
1212 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol);
1213 assert( pSort==0 );
1215 #endif
1216 if( pSort ){
1217 assert( regResult==regOrig );
1218 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg);
1219 }else{
1220 int r2 = sqlite3GetTempReg(pParse);
1221 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
1222 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
1223 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1224 sqlite3ReleaseTempReg(pParse, r2);
1226 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
1227 break;
1230 case SRT_Upfrom: {
1231 if( pSort ){
1232 pushOntoSorter(
1233 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1234 }else{
1235 int i2 = pDest->iSDParm2;
1236 int r1 = sqlite3GetTempReg(pParse);
1238 /* If the UPDATE FROM join is an aggregate that matches no rows, it
1239 ** might still be trying to return one row, because that is what
1240 ** aggregates do. Don't record that empty row in the output table. */
1241 sqlite3VdbeAddOp2(v, OP_IsNull, regResult, iBreak); VdbeCoverage(v);
1243 sqlite3VdbeAddOp3(v, OP_MakeRecord,
1244 regResult+(i2<0), nResultCol-(i2<0), r1);
1245 if( i2<0 ){
1246 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regResult);
1247 }else{
1248 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, i2);
1251 break;
1254 #ifndef SQLITE_OMIT_SUBQUERY
1255 /* If we are creating a set for an "expr IN (SELECT ...)" construct,
1256 ** then there should be a single item on the stack. Write this
1257 ** item into the set table with bogus data.
1259 case SRT_Set: {
1260 if( pSort ){
1261 /* At first glance you would think we could optimize out the
1262 ** ORDER BY in this case since the order of entries in the set
1263 ** does not matter. But there might be a LIMIT clause, in which
1264 ** case the order does matter */
1265 pushOntoSorter(
1266 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1267 }else{
1268 int r1 = sqlite3GetTempReg(pParse);
1269 assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol );
1270 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol,
1271 r1, pDest->zAffSdst, nResultCol);
1272 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1273 sqlite3ReleaseTempReg(pParse, r1);
1275 break;
1279 /* If any row exist in the result set, record that fact and abort.
1281 case SRT_Exists: {
1282 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
1283 /* The LIMIT clause will terminate the loop for us */
1284 break;
1287 /* If this is a scalar select that is part of an expression, then
1288 ** store the results in the appropriate memory cell or array of
1289 ** memory cells and break out of the scan loop.
1291 case SRT_Mem: {
1292 if( pSort ){
1293 assert( nResultCol<=pDest->nSdst );
1294 pushOntoSorter(
1295 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1296 }else{
1297 assert( nResultCol==pDest->nSdst );
1298 assert( regResult==iParm );
1299 /* The LIMIT clause will jump out of the loop for us */
1301 break;
1303 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
1305 case SRT_Coroutine: /* Send data to a co-routine */
1306 case SRT_Output: { /* Return the results */
1307 testcase( eDest==SRT_Coroutine );
1308 testcase( eDest==SRT_Output );
1309 if( pSort ){
1310 pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol,
1311 nPrefixReg);
1312 }else if( eDest==SRT_Coroutine ){
1313 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1314 }else{
1315 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
1317 break;
1320 #ifndef SQLITE_OMIT_CTE
1321 /* Write the results into a priority queue that is order according to
1322 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an
1323 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first
1324 ** pSO->nExpr columns, then make sure all keys are unique by adding a
1325 ** final OP_Sequence column. The last column is the record as a blob.
1327 case SRT_DistQueue:
1328 case SRT_Queue: {
1329 int nKey;
1330 int r1, r2, r3;
1331 int addrTest = 0;
1332 ExprList *pSO;
1333 pSO = pDest->pOrderBy;
1334 assert( pSO );
1335 nKey = pSO->nExpr;
1336 r1 = sqlite3GetTempReg(pParse);
1337 r2 = sqlite3GetTempRange(pParse, nKey+2);
1338 r3 = r2+nKey+1;
1339 if( eDest==SRT_DistQueue ){
1340 /* If the destination is DistQueue, then cursor (iParm+1) is open
1341 ** on a second ephemeral index that holds all values every previously
1342 ** added to the queue. */
1343 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
1344 regResult, nResultCol);
1345 VdbeCoverage(v);
1347 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
1348 if( eDest==SRT_DistQueue ){
1349 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
1350 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
1352 for(i=0; i<nKey; i++){
1353 sqlite3VdbeAddOp2(v, OP_SCopy,
1354 regResult + pSO->a[i].u.x.iOrderByCol - 1,
1355 r2+i);
1357 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
1358 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
1359 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2);
1360 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
1361 sqlite3ReleaseTempReg(pParse, r1);
1362 sqlite3ReleaseTempRange(pParse, r2, nKey+2);
1363 break;
1365 #endif /* SQLITE_OMIT_CTE */
1369 #if !defined(SQLITE_OMIT_TRIGGER)
1370 /* Discard the results. This is used for SELECT statements inside
1371 ** the body of a TRIGGER. The purpose of such selects is to call
1372 ** user-defined functions that have side effects. We do not care
1373 ** about the actual results of the select.
1375 default: {
1376 assert( eDest==SRT_Discard );
1377 break;
1379 #endif
1382 /* Jump to the end of the loop if the LIMIT is reached. Except, if
1383 ** there is a sorter, in which case the sorter has already limited
1384 ** the output for us.
1386 if( pSort==0 && p->iLimit ){
1387 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
1392 ** Allocate a KeyInfo object sufficient for an index of N key columns and
1393 ** X extra columns.
1395 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
1396 int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*);
1397 KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra);
1398 if( p ){
1399 p->aSortFlags = (u8*)&p->aColl[N+X];
1400 p->nKeyField = (u16)N;
1401 p->nAllField = (u16)(N+X);
1402 p->enc = ENC(db);
1403 p->db = db;
1404 p->nRef = 1;
1405 memset(&p[1], 0, nExtra);
1406 }else{
1407 return (KeyInfo*)sqlite3OomFault(db);
1409 return p;
1413 ** Deallocate a KeyInfo object
1415 void sqlite3KeyInfoUnref(KeyInfo *p){
1416 if( p ){
1417 assert( p->nRef>0 );
1418 p->nRef--;
1419 if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p);
1424 ** Make a new pointer to a KeyInfo object
1426 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
1427 if( p ){
1428 assert( p->nRef>0 );
1429 p->nRef++;
1431 return p;
1434 #ifdef SQLITE_DEBUG
1436 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object
1437 ** can only be changed if this is just a single reference to the object.
1439 ** This routine is used only inside of assert() statements.
1441 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
1442 #endif /* SQLITE_DEBUG */
1445 ** Given an expression list, generate a KeyInfo structure that records
1446 ** the collating sequence for each expression in that expression list.
1448 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1449 ** KeyInfo structure is appropriate for initializing a virtual index to
1450 ** implement that clause. If the ExprList is the result set of a SELECT
1451 ** then the KeyInfo structure is appropriate for initializing a virtual
1452 ** index to implement a DISTINCT test.
1454 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
1455 ** function is responsible for seeing that this structure is eventually
1456 ** freed.
1458 KeyInfo *sqlite3KeyInfoFromExprList(
1459 Parse *pParse, /* Parsing context */
1460 ExprList *pList, /* Form the KeyInfo object from this ExprList */
1461 int iStart, /* Begin with this column of pList */
1462 int nExtra /* Add this many extra columns to the end */
1464 int nExpr;
1465 KeyInfo *pInfo;
1466 struct ExprList_item *pItem;
1467 sqlite3 *db = pParse->db;
1468 int i;
1470 nExpr = pList->nExpr;
1471 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
1472 if( pInfo ){
1473 assert( sqlite3KeyInfoIsWriteable(pInfo) );
1474 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1475 pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr);
1476 pInfo->aSortFlags[i-iStart] = pItem->sortFlags;
1479 return pInfo;
1483 ** Name of the connection operator, used for error messages.
1485 const char *sqlite3SelectOpName(int id){
1486 char *z;
1487 switch( id ){
1488 case TK_ALL: z = "UNION ALL"; break;
1489 case TK_INTERSECT: z = "INTERSECT"; break;
1490 case TK_EXCEPT: z = "EXCEPT"; break;
1491 default: z = "UNION"; break;
1493 return z;
1496 #ifndef SQLITE_OMIT_EXPLAIN
1498 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1499 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1500 ** where the caption is of the form:
1502 ** "USE TEMP B-TREE FOR xxx"
1504 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1505 ** is determined by the zUsage argument.
1507 static void explainTempTable(Parse *pParse, const char *zUsage){
1508 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage));
1512 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1513 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1514 ** in sqlite3Select() to assign values to structure member variables that
1515 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1516 ** code with #ifndef directives.
1518 # define explainSetInteger(a, b) a = b
1520 #else
1521 /* No-op versions of the explainXXX() functions and macros. */
1522 # define explainTempTable(y,z)
1523 # define explainSetInteger(y,z)
1524 #endif
1528 ** If the inner loop was generated using a non-null pOrderBy argument,
1529 ** then the results were placed in a sorter. After the loop is terminated
1530 ** we need to run the sorter and output the results. The following
1531 ** routine generates the code needed to do that.
1533 static void generateSortTail(
1534 Parse *pParse, /* Parsing context */
1535 Select *p, /* The SELECT statement */
1536 SortCtx *pSort, /* Information on the ORDER BY clause */
1537 int nColumn, /* Number of columns of data */
1538 SelectDest *pDest /* Write the sorted results here */
1540 Vdbe *v = pParse->pVdbe; /* The prepared statement */
1541 int addrBreak = pSort->labelDone; /* Jump here to exit loop */
1542 int addrContinue = sqlite3VdbeMakeLabel(pParse);/* Jump here for next cycle */
1543 int addr; /* Top of output loop. Jump for Next. */
1544 int addrOnce = 0;
1545 int iTab;
1546 ExprList *pOrderBy = pSort->pOrderBy;
1547 int eDest = pDest->eDest;
1548 int iParm = pDest->iSDParm;
1549 int regRow;
1550 int regRowid;
1551 int iCol;
1552 int nKey; /* Number of key columns in sorter record */
1553 int iSortTab; /* Sorter cursor to read from */
1554 int i;
1555 int bSeq; /* True if sorter record includes seq. no. */
1556 int nRefKey = 0;
1557 struct ExprList_item *aOutEx = p->pEList->a;
1559 assert( addrBreak<0 );
1560 if( pSort->labelBkOut ){
1561 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1562 sqlite3VdbeGoto(v, addrBreak);
1563 sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1566 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1567 /* Open any cursors needed for sorter-reference expressions */
1568 for(i=0; i<pSort->nDefer; i++){
1569 Table *pTab = pSort->aDefer[i].pTab;
1570 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1571 sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead);
1572 nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey);
1574 #endif
1576 iTab = pSort->iECursor;
1577 if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){
1578 if( eDest==SRT_Mem && p->iOffset ){
1579 sqlite3VdbeAddOp2(v, OP_Null, 0, pDest->iSdst);
1581 regRowid = 0;
1582 regRow = pDest->iSdst;
1583 }else{
1584 regRowid = sqlite3GetTempReg(pParse);
1585 if( eDest==SRT_EphemTab || eDest==SRT_Table ){
1586 regRow = sqlite3GetTempReg(pParse);
1587 nColumn = 0;
1588 }else{
1589 regRow = sqlite3GetTempRange(pParse, nColumn);
1592 nKey = pOrderBy->nExpr - pSort->nOBSat;
1593 if( pSort->sortFlags & SORTFLAG_UseSorter ){
1594 int regSortOut = ++pParse->nMem;
1595 iSortTab = pParse->nTab++;
1596 if( pSort->labelBkOut ){
1597 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
1599 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut,
1600 nKey+1+nColumn+nRefKey);
1601 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1602 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1603 VdbeCoverage(v);
1604 codeOffset(v, p->iOffset, addrContinue);
1605 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
1606 bSeq = 0;
1607 }else{
1608 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1609 codeOffset(v, p->iOffset, addrContinue);
1610 iSortTab = iTab;
1611 bSeq = 1;
1613 for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){
1614 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1615 if( aOutEx[i].bSorterRef ) continue;
1616 #endif
1617 if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++;
1619 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1620 if( pSort->nDefer ){
1621 int iKey = iCol+1;
1622 int regKey = sqlite3GetTempRange(pParse, nRefKey);
1624 for(i=0; i<pSort->nDefer; i++){
1625 int iCsr = pSort->aDefer[i].iCsr;
1626 Table *pTab = pSort->aDefer[i].pTab;
1627 int nKey = pSort->aDefer[i].nKey;
1629 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1630 if( HasRowid(pTab) ){
1631 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey);
1632 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr,
1633 sqlite3VdbeCurrentAddr(v)+1, regKey);
1634 }else{
1635 int k;
1636 int iJmp;
1637 assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey );
1638 for(k=0; k<nKey; k++){
1639 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k);
1641 iJmp = sqlite3VdbeCurrentAddr(v);
1642 sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey);
1643 sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey);
1644 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1647 sqlite3ReleaseTempRange(pParse, regKey, nRefKey);
1649 #endif
1650 for(i=nColumn-1; i>=0; i--){
1651 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1652 if( aOutEx[i].bSorterRef ){
1653 sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i);
1654 }else
1655 #endif
1657 int iRead;
1658 if( aOutEx[i].u.x.iOrderByCol ){
1659 iRead = aOutEx[i].u.x.iOrderByCol-1;
1660 }else{
1661 iRead = iCol--;
1663 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i);
1664 VdbeComment((v, "%s", aOutEx[i].zEName));
1667 switch( eDest ){
1668 case SRT_Table:
1669 case SRT_EphemTab: {
1670 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq, regRow);
1671 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1672 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1673 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1674 break;
1676 #ifndef SQLITE_OMIT_SUBQUERY
1677 case SRT_Set: {
1678 assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) );
1679 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid,
1680 pDest->zAffSdst, nColumn);
1681 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn);
1682 break;
1684 case SRT_Mem: {
1685 /* The LIMIT clause will terminate the loop for us */
1686 break;
1688 #endif
1689 case SRT_Upfrom: {
1690 int i2 = pDest->iSDParm2;
1691 int r1 = sqlite3GetTempReg(pParse);
1692 sqlite3VdbeAddOp3(v, OP_MakeRecord,regRow+(i2<0),nColumn-(i2<0),r1);
1693 if( i2<0 ){
1694 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regRow);
1695 }else{
1696 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regRow, i2);
1698 break;
1700 default: {
1701 assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1702 testcase( eDest==SRT_Output );
1703 testcase( eDest==SRT_Coroutine );
1704 if( eDest==SRT_Output ){
1705 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1706 }else{
1707 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1709 break;
1712 if( regRowid ){
1713 if( eDest==SRT_Set ){
1714 sqlite3ReleaseTempRange(pParse, regRow, nColumn);
1715 }else{
1716 sqlite3ReleaseTempReg(pParse, regRow);
1718 sqlite3ReleaseTempReg(pParse, regRowid);
1720 /* The bottom of the loop
1722 sqlite3VdbeResolveLabel(v, addrContinue);
1723 if( pSort->sortFlags & SORTFLAG_UseSorter ){
1724 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1725 }else{
1726 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1728 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1729 sqlite3VdbeResolveLabel(v, addrBreak);
1733 ** Return a pointer to a string containing the 'declaration type' of the
1734 ** expression pExpr. The string may be treated as static by the caller.
1736 ** Also try to estimate the size of the returned value and return that
1737 ** result in *pEstWidth.
1739 ** The declaration type is the exact datatype definition extracted from the
1740 ** original CREATE TABLE statement if the expression is a column. The
1741 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1742 ** is considered a column can be complex in the presence of subqueries. The
1743 ** result-set expression in all of the following SELECT statements is
1744 ** considered a column by this function.
1746 ** SELECT col FROM tbl;
1747 ** SELECT (SELECT col FROM tbl;
1748 ** SELECT (SELECT col FROM tbl);
1749 ** SELECT abc FROM (SELECT col AS abc FROM tbl);
1751 ** The declaration type for any expression other than a column is NULL.
1753 ** This routine has either 3 or 6 parameters depending on whether or not
1754 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1756 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1757 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E)
1758 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1759 # define columnType(A,B,C,D,E) columnTypeImpl(A,B)
1760 #endif
1761 static const char *columnTypeImpl(
1762 NameContext *pNC,
1763 #ifndef SQLITE_ENABLE_COLUMN_METADATA
1764 Expr *pExpr
1765 #else
1766 Expr *pExpr,
1767 const char **pzOrigDb,
1768 const char **pzOrigTab,
1769 const char **pzOrigCol
1770 #endif
1772 char const *zType = 0;
1773 int j;
1774 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1775 char const *zOrigDb = 0;
1776 char const *zOrigTab = 0;
1777 char const *zOrigCol = 0;
1778 #endif
1780 assert( pExpr!=0 );
1781 assert( pNC->pSrcList!=0 );
1782 switch( pExpr->op ){
1783 case TK_COLUMN: {
1784 /* The expression is a column. Locate the table the column is being
1785 ** extracted from in NameContext.pSrcList. This table may be real
1786 ** database table or a subquery.
1788 Table *pTab = 0; /* Table structure column is extracted from */
1789 Select *pS = 0; /* Select the column is extracted from */
1790 int iCol = pExpr->iColumn; /* Index of column in pTab */
1791 while( pNC && !pTab ){
1792 SrcList *pTabList = pNC->pSrcList;
1793 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1794 if( j<pTabList->nSrc ){
1795 pTab = pTabList->a[j].pTab;
1796 pS = pTabList->a[j].pSelect;
1797 }else{
1798 pNC = pNC->pNext;
1802 if( pTab==0 ){
1803 /* At one time, code such as "SELECT new.x" within a trigger would
1804 ** cause this condition to run. Since then, we have restructured how
1805 ** trigger code is generated and so this condition is no longer
1806 ** possible. However, it can still be true for statements like
1807 ** the following:
1809 ** CREATE TABLE t1(col INTEGER);
1810 ** SELECT (SELECT t1.col) FROM FROM t1;
1812 ** when columnType() is called on the expression "t1.col" in the
1813 ** sub-select. In this case, set the column type to NULL, even
1814 ** though it should really be "INTEGER".
1816 ** This is not a problem, as the column type of "t1.col" is never
1817 ** used. When columnType() is called on the expression
1818 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1819 ** branch below. */
1820 break;
1823 assert( pTab && ExprUseYTab(pExpr) && pExpr->y.pTab==pTab );
1824 if( pS ){
1825 /* The "table" is actually a sub-select or a view in the FROM clause
1826 ** of the SELECT statement. Return the declaration type and origin
1827 ** data for the result-set column of the sub-select.
1829 if( iCol<pS->pEList->nExpr
1830 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
1831 && iCol>=0
1832 #else
1833 && ALWAYS(iCol>=0)
1834 #endif
1836 /* If iCol is less than zero, then the expression requests the
1837 ** rowid of the sub-select or view. This expression is legal (see
1838 ** test case misc2.2.2) - it always evaluates to NULL.
1840 NameContext sNC;
1841 Expr *p = pS->pEList->a[iCol].pExpr;
1842 sNC.pSrcList = pS->pSrc;
1843 sNC.pNext = pNC;
1844 sNC.pParse = pNC->pParse;
1845 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol);
1847 }else{
1848 /* A real table or a CTE table */
1849 assert( !pS );
1850 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1851 if( iCol<0 ) iCol = pTab->iPKey;
1852 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1853 if( iCol<0 ){
1854 zType = "INTEGER";
1855 zOrigCol = "rowid";
1856 }else{
1857 zOrigCol = pTab->aCol[iCol].zCnName;
1858 zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1860 zOrigTab = pTab->zName;
1861 if( pNC->pParse && pTab->pSchema ){
1862 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1863 zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName;
1865 #else
1866 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1867 if( iCol<0 ){
1868 zType = "INTEGER";
1869 }else{
1870 zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1872 #endif
1874 break;
1876 #ifndef SQLITE_OMIT_SUBQUERY
1877 case TK_SELECT: {
1878 /* The expression is a sub-select. Return the declaration type and
1879 ** origin info for the single column in the result set of the SELECT
1880 ** statement.
1882 NameContext sNC;
1883 Select *pS;
1884 Expr *p;
1885 assert( ExprUseXSelect(pExpr) );
1886 pS = pExpr->x.pSelect;
1887 p = pS->pEList->a[0].pExpr;
1888 sNC.pSrcList = pS->pSrc;
1889 sNC.pNext = pNC;
1890 sNC.pParse = pNC->pParse;
1891 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1892 break;
1894 #endif
1897 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1898 if( pzOrigDb ){
1899 assert( pzOrigTab && pzOrigCol );
1900 *pzOrigDb = zOrigDb;
1901 *pzOrigTab = zOrigTab;
1902 *pzOrigCol = zOrigCol;
1904 #endif
1905 return zType;
1909 ** Generate code that will tell the VDBE the declaration types of columns
1910 ** in the result set.
1912 static void generateColumnTypes(
1913 Parse *pParse, /* Parser context */
1914 SrcList *pTabList, /* List of tables */
1915 ExprList *pEList /* Expressions defining the result set */
1917 #ifndef SQLITE_OMIT_DECLTYPE
1918 Vdbe *v = pParse->pVdbe;
1919 int i;
1920 NameContext sNC;
1921 sNC.pSrcList = pTabList;
1922 sNC.pParse = pParse;
1923 sNC.pNext = 0;
1924 for(i=0; i<pEList->nExpr; i++){
1925 Expr *p = pEList->a[i].pExpr;
1926 const char *zType;
1927 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1928 const char *zOrigDb = 0;
1929 const char *zOrigTab = 0;
1930 const char *zOrigCol = 0;
1931 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1933 /* The vdbe must make its own copy of the column-type and other
1934 ** column specific strings, in case the schema is reset before this
1935 ** virtual machine is deleted.
1937 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1938 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1939 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1940 #else
1941 zType = columnType(&sNC, p, 0, 0, 0);
1942 #endif
1943 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1945 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1950 ** Compute the column names for a SELECT statement.
1952 ** The only guarantee that SQLite makes about column names is that if the
1953 ** column has an AS clause assigning it a name, that will be the name used.
1954 ** That is the only documented guarantee. However, countless applications
1955 ** developed over the years have made baseless assumptions about column names
1956 ** and will break if those assumptions changes. Hence, use extreme caution
1957 ** when modifying this routine to avoid breaking legacy.
1959 ** See Also: sqlite3ColumnsFromExprList()
1961 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are
1962 ** deprecated. The default setting is short=ON, full=OFF. 99.9% of all
1963 ** applications should operate this way. Nevertheless, we need to support the
1964 ** other modes for legacy:
1966 ** short=OFF, full=OFF: Column name is the text of the expression has it
1967 ** originally appears in the SELECT statement. In
1968 ** other words, the zSpan of the result expression.
1970 ** short=ON, full=OFF: (This is the default setting). If the result
1971 ** refers directly to a table column, then the
1972 ** result column name is just the table column
1973 ** name: COLUMN. Otherwise use zSpan.
1975 ** full=ON, short=ANY: If the result refers directly to a table column,
1976 ** then the result column name with the table name
1977 ** prefix, ex: TABLE.COLUMN. Otherwise use zSpan.
1979 void sqlite3GenerateColumnNames(
1980 Parse *pParse, /* Parser context */
1981 Select *pSelect /* Generate column names for this SELECT statement */
1983 Vdbe *v = pParse->pVdbe;
1984 int i;
1985 Table *pTab;
1986 SrcList *pTabList;
1987 ExprList *pEList;
1988 sqlite3 *db = pParse->db;
1989 int fullName; /* TABLE.COLUMN if no AS clause and is a direct table ref */
1990 int srcName; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */
1992 #ifndef SQLITE_OMIT_EXPLAIN
1993 /* If this is an EXPLAIN, skip this step */
1994 if( pParse->explain ){
1995 return;
1997 #endif
1999 if( pParse->colNamesSet ) return;
2000 /* Column names are determined by the left-most term of a compound select */
2001 while( pSelect->pPrior ) pSelect = pSelect->pPrior;
2002 SELECTTRACE(1,pParse,pSelect,("generating column names\n"));
2003 pTabList = pSelect->pSrc;
2004 pEList = pSelect->pEList;
2005 assert( v!=0 );
2006 assert( pTabList!=0 );
2007 pParse->colNamesSet = 1;
2008 fullName = (db->flags & SQLITE_FullColNames)!=0;
2009 srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName;
2010 sqlite3VdbeSetNumCols(v, pEList->nExpr);
2011 for(i=0; i<pEList->nExpr; i++){
2012 Expr *p = pEList->a[i].pExpr;
2014 assert( p!=0 );
2015 assert( p->op!=TK_AGG_COLUMN ); /* Agg processing has not run yet */
2016 assert( p->op!=TK_COLUMN
2017 || (ExprUseYTab(p) && p->y.pTab!=0) ); /* Covering idx not yet coded */
2018 if( pEList->a[i].zEName && pEList->a[i].eEName==ENAME_NAME ){
2019 /* An AS clause always takes first priority */
2020 char *zName = pEList->a[i].zEName;
2021 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
2022 }else if( srcName && p->op==TK_COLUMN ){
2023 char *zCol;
2024 int iCol = p->iColumn;
2025 pTab = p->y.pTab;
2026 assert( pTab!=0 );
2027 if( iCol<0 ) iCol = pTab->iPKey;
2028 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
2029 if( iCol<0 ){
2030 zCol = "rowid";
2031 }else{
2032 zCol = pTab->aCol[iCol].zCnName;
2034 if( fullName ){
2035 char *zName = 0;
2036 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
2037 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
2038 }else{
2039 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
2041 }else{
2042 const char *z = pEList->a[i].zEName;
2043 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
2044 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
2047 generateColumnTypes(pParse, pTabList, pEList);
2051 ** Given an expression list (which is really the list of expressions
2052 ** that form the result set of a SELECT statement) compute appropriate
2053 ** column names for a table that would hold the expression list.
2055 ** All column names will be unique.
2057 ** Only the column names are computed. Column.zType, Column.zColl,
2058 ** and other fields of Column are zeroed.
2060 ** Return SQLITE_OK on success. If a memory allocation error occurs,
2061 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
2063 ** The only guarantee that SQLite makes about column names is that if the
2064 ** column has an AS clause assigning it a name, that will be the name used.
2065 ** That is the only documented guarantee. However, countless applications
2066 ** developed over the years have made baseless assumptions about column names
2067 ** and will break if those assumptions changes. Hence, use extreme caution
2068 ** when modifying this routine to avoid breaking legacy.
2070 ** See Also: sqlite3GenerateColumnNames()
2072 int sqlite3ColumnsFromExprList(
2073 Parse *pParse, /* Parsing context */
2074 ExprList *pEList, /* Expr list from which to derive column names */
2075 i16 *pnCol, /* Write the number of columns here */
2076 Column **paCol /* Write the new column list here */
2078 sqlite3 *db = pParse->db; /* Database connection */
2079 int i, j; /* Loop counters */
2080 u32 cnt; /* Index added to make the name unique */
2081 Column *aCol, *pCol; /* For looping over result columns */
2082 int nCol; /* Number of columns in the result set */
2083 char *zName; /* Column name */
2084 int nName; /* Size of name in zName[] */
2085 Hash ht; /* Hash table of column names */
2086 Table *pTab;
2088 sqlite3HashInit(&ht);
2089 if( pEList ){
2090 nCol = pEList->nExpr;
2091 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
2092 testcase( aCol==0 );
2093 if( NEVER(nCol>32767) ) nCol = 32767;
2094 }else{
2095 nCol = 0;
2096 aCol = 0;
2098 assert( nCol==(i16)nCol );
2099 *pnCol = nCol;
2100 *paCol = aCol;
2102 for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){
2103 /* Get an appropriate name for the column
2105 if( (zName = pEList->a[i].zEName)!=0 && pEList->a[i].eEName==ENAME_NAME ){
2106 /* If the column contains an "AS <name>" phrase, use <name> as the name */
2107 }else{
2108 Expr *pColExpr = sqlite3ExprSkipCollateAndLikely(pEList->a[i].pExpr);
2109 while( ALWAYS(pColExpr!=0) && pColExpr->op==TK_DOT ){
2110 pColExpr = pColExpr->pRight;
2111 assert( pColExpr!=0 );
2113 if( pColExpr->op==TK_COLUMN
2114 && ALWAYS( ExprUseYTab(pColExpr) )
2115 && (pTab = pColExpr->y.pTab)!=0
2117 /* For columns use the column name name */
2118 int iCol = pColExpr->iColumn;
2119 if( iCol<0 ) iCol = pTab->iPKey;
2120 zName = iCol>=0 ? pTab->aCol[iCol].zCnName : "rowid";
2121 }else if( pColExpr->op==TK_ID ){
2122 assert( !ExprHasProperty(pColExpr, EP_IntValue) );
2123 zName = pColExpr->u.zToken;
2124 }else{
2125 /* Use the original text of the column expression as its name */
2126 zName = pEList->a[i].zEName;
2129 if( zName && !sqlite3IsTrueOrFalse(zName) ){
2130 zName = sqlite3DbStrDup(db, zName);
2131 }else{
2132 zName = sqlite3MPrintf(db,"column%d",i+1);
2135 /* Make sure the column name is unique. If the name is not unique,
2136 ** append an integer to the name so that it becomes unique.
2138 cnt = 0;
2139 while( zName && sqlite3HashFind(&ht, zName)!=0 ){
2140 nName = sqlite3Strlen30(zName);
2141 if( nName>0 ){
2142 for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){}
2143 if( zName[j]==':' ) nName = j;
2145 zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt);
2146 if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt);
2148 pCol->zCnName = zName;
2149 pCol->hName = sqlite3StrIHash(zName);
2150 sqlite3ColumnPropertiesFromName(0, pCol);
2151 if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){
2152 sqlite3OomFault(db);
2155 sqlite3HashClear(&ht);
2156 if( db->mallocFailed ){
2157 for(j=0; j<i; j++){
2158 sqlite3DbFree(db, aCol[j].zCnName);
2160 sqlite3DbFree(db, aCol);
2161 *paCol = 0;
2162 *pnCol = 0;
2163 return SQLITE_NOMEM_BKPT;
2165 return SQLITE_OK;
2169 ** Add type and collation information to a column list based on
2170 ** a SELECT statement.
2172 ** The column list presumably came from selectColumnNamesFromExprList().
2173 ** The column list has only names, not types or collations. This
2174 ** routine goes through and adds the types and collations.
2176 ** This routine requires that all identifiers in the SELECT
2177 ** statement be resolved.
2179 void sqlite3SelectAddColumnTypeAndCollation(
2180 Parse *pParse, /* Parsing contexts */
2181 Table *pTab, /* Add column type information to this table */
2182 Select *pSelect, /* SELECT used to determine types and collations */
2183 char aff /* Default affinity for columns */
2185 sqlite3 *db = pParse->db;
2186 NameContext sNC;
2187 Column *pCol;
2188 CollSeq *pColl;
2189 int i;
2190 Expr *p;
2191 struct ExprList_item *a;
2193 assert( pSelect!=0 );
2194 assert( (pSelect->selFlags & SF_Resolved)!=0 );
2195 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
2196 if( db->mallocFailed ) return;
2197 memset(&sNC, 0, sizeof(sNC));
2198 sNC.pSrcList = pSelect->pSrc;
2199 a = pSelect->pEList->a;
2200 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
2201 const char *zType;
2202 i64 n, m;
2203 pTab->tabFlags |= (pCol->colFlags & COLFLAG_NOINSERT);
2204 p = a[i].pExpr;
2205 zType = columnType(&sNC, p, 0, 0, 0);
2206 /* pCol->szEst = ... // Column size est for SELECT tables never used */
2207 pCol->affinity = sqlite3ExprAffinity(p);
2208 if( zType ){
2209 m = sqlite3Strlen30(zType);
2210 n = sqlite3Strlen30(pCol->zCnName);
2211 pCol->zCnName = sqlite3DbReallocOrFree(db, pCol->zCnName, n+m+2);
2212 if( pCol->zCnName ){
2213 memcpy(&pCol->zCnName[n+1], zType, m+1);
2214 pCol->colFlags |= COLFLAG_HASTYPE;
2215 }else{
2216 testcase( pCol->colFlags & COLFLAG_HASTYPE );
2217 pCol->colFlags &= ~(COLFLAG_HASTYPE|COLFLAG_HASCOLL);
2220 if( pCol->affinity<=SQLITE_AFF_NONE ) pCol->affinity = aff;
2221 pColl = sqlite3ExprCollSeq(pParse, p);
2222 if( pColl ){
2223 assert( pTab->pIndex==0 );
2224 sqlite3ColumnSetColl(db, pCol, pColl->zName);
2227 pTab->szTabRow = 1; /* Any non-zero value works */
2231 ** Given a SELECT statement, generate a Table structure that describes
2232 ** the result set of that SELECT.
2234 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect, char aff){
2235 Table *pTab;
2236 sqlite3 *db = pParse->db;
2237 u64 savedFlags;
2239 savedFlags = db->flags;
2240 db->flags &= ~(u64)SQLITE_FullColNames;
2241 db->flags |= SQLITE_ShortColNames;
2242 sqlite3SelectPrep(pParse, pSelect, 0);
2243 db->flags = savedFlags;
2244 if( pParse->nErr ) return 0;
2245 while( pSelect->pPrior ) pSelect = pSelect->pPrior;
2246 pTab = sqlite3DbMallocZero(db, sizeof(Table) );
2247 if( pTab==0 ){
2248 return 0;
2250 pTab->nTabRef = 1;
2251 pTab->zName = 0;
2252 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
2253 sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
2254 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect, aff);
2255 pTab->iPKey = -1;
2256 if( db->mallocFailed ){
2257 sqlite3DeleteTable(db, pTab);
2258 return 0;
2260 return pTab;
2264 ** Get a VDBE for the given parser context. Create a new one if necessary.
2265 ** If an error occurs, return NULL and leave a message in pParse.
2267 Vdbe *sqlite3GetVdbe(Parse *pParse){
2268 if( pParse->pVdbe ){
2269 return pParse->pVdbe;
2271 if( pParse->pToplevel==0
2272 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
2274 pParse->okConstFactor = 1;
2276 return sqlite3VdbeCreate(pParse);
2281 ** Compute the iLimit and iOffset fields of the SELECT based on the
2282 ** pLimit expressions. pLimit->pLeft and pLimit->pRight hold the expressions
2283 ** that appear in the original SQL statement after the LIMIT and OFFSET
2284 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset
2285 ** are the integer memory register numbers for counters used to compute
2286 ** the limit and offset. If there is no limit and/or offset, then
2287 ** iLimit and iOffset are negative.
2289 ** This routine changes the values of iLimit and iOffset only if
2290 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight. iLimit
2291 ** and iOffset should have been preset to appropriate default values (zero)
2292 ** prior to calling this routine.
2294 ** The iOffset register (if it exists) is initialized to the value
2295 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register
2296 ** iOffset+1 is initialized to LIMIT+OFFSET.
2298 ** Only if pLimit->pLeft!=0 do the limit registers get
2299 ** redefined. The UNION ALL operator uses this property to force
2300 ** the reuse of the same limit and offset registers across multiple
2301 ** SELECT statements.
2303 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
2304 Vdbe *v = 0;
2305 int iLimit = 0;
2306 int iOffset;
2307 int n;
2308 Expr *pLimit = p->pLimit;
2310 if( p->iLimit ) return;
2313 ** "LIMIT -1" always shows all rows. There is some
2314 ** controversy about what the correct behavior should be.
2315 ** The current implementation interprets "LIMIT 0" to mean
2316 ** no rows.
2318 if( pLimit ){
2319 assert( pLimit->op==TK_LIMIT );
2320 assert( pLimit->pLeft!=0 );
2321 p->iLimit = iLimit = ++pParse->nMem;
2322 v = sqlite3GetVdbe(pParse);
2323 assert( v!=0 );
2324 if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){
2325 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
2326 VdbeComment((v, "LIMIT counter"));
2327 if( n==0 ){
2328 sqlite3VdbeGoto(v, iBreak);
2329 }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){
2330 p->nSelectRow = sqlite3LogEst((u64)n);
2331 p->selFlags |= SF_FixedLimit;
2333 }else{
2334 sqlite3ExprCode(pParse, pLimit->pLeft, iLimit);
2335 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
2336 VdbeComment((v, "LIMIT counter"));
2337 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v);
2339 if( pLimit->pRight ){
2340 p->iOffset = iOffset = ++pParse->nMem;
2341 pParse->nMem++; /* Allocate an extra register for limit+offset */
2342 sqlite3ExprCode(pParse, pLimit->pRight, iOffset);
2343 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
2344 VdbeComment((v, "OFFSET counter"));
2345 sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset);
2346 VdbeComment((v, "LIMIT+OFFSET"));
2351 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2353 ** Return the appropriate collating sequence for the iCol-th column of
2354 ** the result set for the compound-select statement "p". Return NULL if
2355 ** the column has no default collating sequence.
2357 ** The collating sequence for the compound select is taken from the
2358 ** left-most term of the select that has a collating sequence.
2360 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
2361 CollSeq *pRet;
2362 if( p->pPrior ){
2363 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
2364 }else{
2365 pRet = 0;
2367 assert( iCol>=0 );
2368 /* iCol must be less than p->pEList->nExpr. Otherwise an error would
2369 ** have been thrown during name resolution and we would not have gotten
2370 ** this far */
2371 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){
2372 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
2374 return pRet;
2378 ** The select statement passed as the second parameter is a compound SELECT
2379 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
2380 ** structure suitable for implementing the ORDER BY.
2382 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
2383 ** function is responsible for ensuring that this structure is eventually
2384 ** freed.
2386 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
2387 ExprList *pOrderBy = p->pOrderBy;
2388 int nOrderBy = ALWAYS(pOrderBy!=0) ? pOrderBy->nExpr : 0;
2389 sqlite3 *db = pParse->db;
2390 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
2391 if( pRet ){
2392 int i;
2393 for(i=0; i<nOrderBy; i++){
2394 struct ExprList_item *pItem = &pOrderBy->a[i];
2395 Expr *pTerm = pItem->pExpr;
2396 CollSeq *pColl;
2398 if( pTerm->flags & EP_Collate ){
2399 pColl = sqlite3ExprCollSeq(pParse, pTerm);
2400 }else{
2401 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
2402 if( pColl==0 ) pColl = db->pDfltColl;
2403 pOrderBy->a[i].pExpr =
2404 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
2406 assert( sqlite3KeyInfoIsWriteable(pRet) );
2407 pRet->aColl[i] = pColl;
2408 pRet->aSortFlags[i] = pOrderBy->a[i].sortFlags;
2412 return pRet;
2415 #ifndef SQLITE_OMIT_CTE
2417 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
2418 ** query of the form:
2420 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
2421 ** \___________/ \_______________/
2422 ** p->pPrior p
2425 ** There is exactly one reference to the recursive-table in the FROM clause
2426 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
2428 ** The setup-query runs once to generate an initial set of rows that go
2429 ** into a Queue table. Rows are extracted from the Queue table one by
2430 ** one. Each row extracted from Queue is output to pDest. Then the single
2431 ** extracted row (now in the iCurrent table) becomes the content of the
2432 ** recursive-table for a recursive-query run. The output of the recursive-query
2433 ** is added back into the Queue table. Then another row is extracted from Queue
2434 ** and the iteration continues until the Queue table is empty.
2436 ** If the compound query operator is UNION then no duplicate rows are ever
2437 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows
2438 ** that have ever been inserted into Queue and causes duplicates to be
2439 ** discarded. If the operator is UNION ALL, then duplicates are allowed.
2441 ** If the query has an ORDER BY, then entries in the Queue table are kept in
2442 ** ORDER BY order and the first entry is extracted for each cycle. Without
2443 ** an ORDER BY, the Queue table is just a FIFO.
2445 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
2446 ** have been output to pDest. A LIMIT of zero means to output no rows and a
2447 ** negative LIMIT means to output all rows. If there is also an OFFSET clause
2448 ** with a positive value, then the first OFFSET outputs are discarded rather
2449 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET
2450 ** rows have been skipped.
2452 static void generateWithRecursiveQuery(
2453 Parse *pParse, /* Parsing context */
2454 Select *p, /* The recursive SELECT to be coded */
2455 SelectDest *pDest /* What to do with query results */
2457 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */
2458 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */
2459 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */
2460 Select *pSetup; /* The setup query */
2461 Select *pFirstRec; /* Left-most recursive term */
2462 int addrTop; /* Top of the loop */
2463 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */
2464 int iCurrent = 0; /* The Current table */
2465 int regCurrent; /* Register holding Current table */
2466 int iQueue; /* The Queue table */
2467 int iDistinct = 0; /* To ensure unique results if UNION */
2468 int eDest = SRT_Fifo; /* How to write to Queue */
2469 SelectDest destQueue; /* SelectDest targetting the Queue table */
2470 int i; /* Loop counter */
2471 int rc; /* Result code */
2472 ExprList *pOrderBy; /* The ORDER BY clause */
2473 Expr *pLimit; /* Saved LIMIT and OFFSET */
2474 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */
2476 #ifndef SQLITE_OMIT_WINDOWFUNC
2477 if( p->pWin ){
2478 sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries");
2479 return;
2481 #endif
2483 /* Obtain authorization to do a recursive query */
2484 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
2486 /* Process the LIMIT and OFFSET clauses, if they exist */
2487 addrBreak = sqlite3VdbeMakeLabel(pParse);
2488 p->nSelectRow = 320; /* 4 billion rows */
2489 computeLimitRegisters(pParse, p, addrBreak);
2490 pLimit = p->pLimit;
2491 regLimit = p->iLimit;
2492 regOffset = p->iOffset;
2493 p->pLimit = 0;
2494 p->iLimit = p->iOffset = 0;
2495 pOrderBy = p->pOrderBy;
2497 /* Locate the cursor number of the Current table */
2498 for(i=0; ALWAYS(i<pSrc->nSrc); i++){
2499 if( pSrc->a[i].fg.isRecursive ){
2500 iCurrent = pSrc->a[i].iCursor;
2501 break;
2505 /* Allocate cursors numbers for Queue and Distinct. The cursor number for
2506 ** the Distinct table must be exactly one greater than Queue in order
2507 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2508 iQueue = pParse->nTab++;
2509 if( p->op==TK_UNION ){
2510 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
2511 iDistinct = pParse->nTab++;
2512 }else{
2513 eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
2515 sqlite3SelectDestInit(&destQueue, eDest, iQueue);
2517 /* Allocate cursors for Current, Queue, and Distinct. */
2518 regCurrent = ++pParse->nMem;
2519 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
2520 if( pOrderBy ){
2521 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
2522 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
2523 (char*)pKeyInfo, P4_KEYINFO);
2524 destQueue.pOrderBy = pOrderBy;
2525 }else{
2526 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
2528 VdbeComment((v, "Queue table"));
2529 if( iDistinct ){
2530 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
2531 p->selFlags |= SF_UsesEphemeral;
2534 /* Detach the ORDER BY clause from the compound SELECT */
2535 p->pOrderBy = 0;
2537 /* Figure out how many elements of the compound SELECT are part of the
2538 ** recursive query. Make sure no recursive elements use aggregate
2539 ** functions. Mark the recursive elements as UNION ALL even if they
2540 ** are really UNION because the distinctness will be enforced by the
2541 ** iDistinct table. pFirstRec is left pointing to the left-most
2542 ** recursive term of the CTE.
2544 for(pFirstRec=p; ALWAYS(pFirstRec!=0); pFirstRec=pFirstRec->pPrior){
2545 if( pFirstRec->selFlags & SF_Aggregate ){
2546 sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported");
2547 goto end_of_recursive_query;
2549 pFirstRec->op = TK_ALL;
2550 if( (pFirstRec->pPrior->selFlags & SF_Recursive)==0 ) break;
2553 /* Store the results of the setup-query in Queue. */
2554 pSetup = pFirstRec->pPrior;
2555 pSetup->pNext = 0;
2556 ExplainQueryPlan((pParse, 1, "SETUP"));
2557 rc = sqlite3Select(pParse, pSetup, &destQueue);
2558 pSetup->pNext = p;
2559 if( rc ) goto end_of_recursive_query;
2561 /* Find the next row in the Queue and output that row */
2562 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
2564 /* Transfer the next row in Queue over to Current */
2565 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
2566 if( pOrderBy ){
2567 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
2568 }else{
2569 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
2571 sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
2573 /* Output the single row in Current */
2574 addrCont = sqlite3VdbeMakeLabel(pParse);
2575 codeOffset(v, regOffset, addrCont);
2576 selectInnerLoop(pParse, p, iCurrent,
2577 0, 0, pDest, addrCont, addrBreak);
2578 if( regLimit ){
2579 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak);
2580 VdbeCoverage(v);
2582 sqlite3VdbeResolveLabel(v, addrCont);
2584 /* Execute the recursive SELECT taking the single row in Current as
2585 ** the value for the recursive-table. Store the results in the Queue.
2587 pFirstRec->pPrior = 0;
2588 ExplainQueryPlan((pParse, 1, "RECURSIVE STEP"));
2589 sqlite3Select(pParse, p, &destQueue);
2590 assert( pFirstRec->pPrior==0 );
2591 pFirstRec->pPrior = pSetup;
2593 /* Keep running the loop until the Queue is empty */
2594 sqlite3VdbeGoto(v, addrTop);
2595 sqlite3VdbeResolveLabel(v, addrBreak);
2597 end_of_recursive_query:
2598 sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2599 p->pOrderBy = pOrderBy;
2600 p->pLimit = pLimit;
2601 return;
2603 #endif /* SQLITE_OMIT_CTE */
2605 /* Forward references */
2606 static int multiSelectOrderBy(
2607 Parse *pParse, /* Parsing context */
2608 Select *p, /* The right-most of SELECTs to be coded */
2609 SelectDest *pDest /* What to do with query results */
2613 ** Handle the special case of a compound-select that originates from a
2614 ** VALUES clause. By handling this as a special case, we avoid deep
2615 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2616 ** on a VALUES clause.
2618 ** Because the Select object originates from a VALUES clause:
2619 ** (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1
2620 ** (2) All terms are UNION ALL
2621 ** (3) There is no ORDER BY clause
2623 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES
2624 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))").
2625 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case.
2626 ** Since the limit is exactly 1, we only need to evalutes the left-most VALUES.
2628 static int multiSelectValues(
2629 Parse *pParse, /* Parsing context */
2630 Select *p, /* The right-most of SELECTs to be coded */
2631 SelectDest *pDest /* What to do with query results */
2633 int nRow = 1;
2634 int rc = 0;
2635 int bShowAll = p->pLimit==0;
2636 assert( p->selFlags & SF_MultiValue );
2638 assert( p->selFlags & SF_Values );
2639 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
2640 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr );
2641 #ifndef SQLITE_OMIT_WINDOWFUNC
2642 if( p->pWin ) return -1;
2643 #endif
2644 if( p->pPrior==0 ) break;
2645 assert( p->pPrior->pNext==p );
2646 p = p->pPrior;
2647 nRow += bShowAll;
2648 }while(1);
2649 ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow,
2650 nRow==1 ? "" : "S"));
2651 while( p ){
2652 selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1);
2653 if( !bShowAll ) break;
2654 p->nSelectRow = nRow;
2655 p = p->pNext;
2657 return rc;
2661 ** Return true if the SELECT statement which is known to be the recursive
2662 ** part of a recursive CTE still has its anchor terms attached. If the
2663 ** anchor terms have already been removed, then return false.
2665 static int hasAnchor(Select *p){
2666 while( p && (p->selFlags & SF_Recursive)!=0 ){ p = p->pPrior; }
2667 return p!=0;
2671 ** This routine is called to process a compound query form from
2672 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2673 ** INTERSECT
2675 ** "p" points to the right-most of the two queries. the query on the
2676 ** left is p->pPrior. The left query could also be a compound query
2677 ** in which case this routine will be called recursively.
2679 ** The results of the total query are to be written into a destination
2680 ** of type eDest with parameter iParm.
2682 ** Example 1: Consider a three-way compound SQL statement.
2684 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2686 ** This statement is parsed up as follows:
2688 ** SELECT c FROM t3
2689 ** |
2690 ** `-----> SELECT b FROM t2
2691 ** |
2692 ** `------> SELECT a FROM t1
2694 ** The arrows in the diagram above represent the Select.pPrior pointer.
2695 ** So if this routine is called with p equal to the t3 query, then
2696 ** pPrior will be the t2 query. p->op will be TK_UNION in this case.
2698 ** Notice that because of the way SQLite parses compound SELECTs, the
2699 ** individual selects always group from left to right.
2701 static int multiSelect(
2702 Parse *pParse, /* Parsing context */
2703 Select *p, /* The right-most of SELECTs to be coded */
2704 SelectDest *pDest /* What to do with query results */
2706 int rc = SQLITE_OK; /* Success code from a subroutine */
2707 Select *pPrior; /* Another SELECT immediately to our left */
2708 Vdbe *v; /* Generate code to this VDBE */
2709 SelectDest dest; /* Alternative data destination */
2710 Select *pDelete = 0; /* Chain of simple selects to delete */
2711 sqlite3 *db; /* Database connection */
2713 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only
2714 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2716 assert( p && p->pPrior ); /* Calling function guarantees this much */
2717 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2718 assert( p->selFlags & SF_Compound );
2719 db = pParse->db;
2720 pPrior = p->pPrior;
2721 dest = *pDest;
2722 assert( pPrior->pOrderBy==0 );
2723 assert( pPrior->pLimit==0 );
2725 v = sqlite3GetVdbe(pParse);
2726 assert( v!=0 ); /* The VDBE already created by calling function */
2728 /* Create the destination temporary table if necessary
2730 if( dest.eDest==SRT_EphemTab ){
2731 assert( p->pEList );
2732 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2733 dest.eDest = SRT_Table;
2736 /* Special handling for a compound-select that originates as a VALUES clause.
2738 if( p->selFlags & SF_MultiValue ){
2739 rc = multiSelectValues(pParse, p, &dest);
2740 if( rc>=0 ) goto multi_select_end;
2741 rc = SQLITE_OK;
2744 /* Make sure all SELECTs in the statement have the same number of elements
2745 ** in their result sets.
2747 assert( p->pEList && pPrior->pEList );
2748 assert( p->pEList->nExpr==pPrior->pEList->nExpr );
2750 #ifndef SQLITE_OMIT_CTE
2751 if( (p->selFlags & SF_Recursive)!=0 && hasAnchor(p) ){
2752 generateWithRecursiveQuery(pParse, p, &dest);
2753 }else
2754 #endif
2756 /* Compound SELECTs that have an ORDER BY clause are handled separately.
2758 if( p->pOrderBy ){
2759 return multiSelectOrderBy(pParse, p, pDest);
2760 }else{
2762 #ifndef SQLITE_OMIT_EXPLAIN
2763 if( pPrior->pPrior==0 ){
2764 ExplainQueryPlan((pParse, 1, "COMPOUND QUERY"));
2765 ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY"));
2767 #endif
2769 /* Generate code for the left and right SELECT statements.
2771 switch( p->op ){
2772 case TK_ALL: {
2773 int addr = 0;
2774 int nLimit = 0; /* Initialize to suppress harmless compiler warning */
2775 assert( !pPrior->pLimit );
2776 pPrior->iLimit = p->iLimit;
2777 pPrior->iOffset = p->iOffset;
2778 pPrior->pLimit = p->pLimit;
2779 SELECTTRACE(1, pParse, p, ("multiSelect UNION ALL left...\n"));
2780 rc = sqlite3Select(pParse, pPrior, &dest);
2781 pPrior->pLimit = 0;
2782 if( rc ){
2783 goto multi_select_end;
2785 p->pPrior = 0;
2786 p->iLimit = pPrior->iLimit;
2787 p->iOffset = pPrior->iOffset;
2788 if( p->iLimit ){
2789 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
2790 VdbeComment((v, "Jump ahead if LIMIT reached"));
2791 if( p->iOffset ){
2792 sqlite3VdbeAddOp3(v, OP_OffsetLimit,
2793 p->iLimit, p->iOffset+1, p->iOffset);
2796 ExplainQueryPlan((pParse, 1, "UNION ALL"));
2797 SELECTTRACE(1, pParse, p, ("multiSelect UNION ALL right...\n"));
2798 rc = sqlite3Select(pParse, p, &dest);
2799 testcase( rc!=SQLITE_OK );
2800 pDelete = p->pPrior;
2801 p->pPrior = pPrior;
2802 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2803 if( p->pLimit
2804 && sqlite3ExprIsInteger(p->pLimit->pLeft, &nLimit)
2805 && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit)
2807 p->nSelectRow = sqlite3LogEst((u64)nLimit);
2809 if( addr ){
2810 sqlite3VdbeJumpHere(v, addr);
2812 break;
2814 case TK_EXCEPT:
2815 case TK_UNION: {
2816 int unionTab; /* Cursor number of the temp table holding result */
2817 u8 op = 0; /* One of the SRT_ operations to apply to self */
2818 int priorOp; /* The SRT_ operation to apply to prior selects */
2819 Expr *pLimit; /* Saved values of p->nLimit */
2820 int addr;
2821 SelectDest uniondest;
2823 testcase( p->op==TK_EXCEPT );
2824 testcase( p->op==TK_UNION );
2825 priorOp = SRT_Union;
2826 if( dest.eDest==priorOp ){
2827 /* We can reuse a temporary table generated by a SELECT to our
2828 ** right.
2830 assert( p->pLimit==0 ); /* Not allowed on leftward elements */
2831 unionTab = dest.iSDParm;
2832 }else{
2833 /* We will need to create our own temporary table to hold the
2834 ** intermediate results.
2836 unionTab = pParse->nTab++;
2837 assert( p->pOrderBy==0 );
2838 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
2839 assert( p->addrOpenEphm[0] == -1 );
2840 p->addrOpenEphm[0] = addr;
2841 findRightmost(p)->selFlags |= SF_UsesEphemeral;
2842 assert( p->pEList );
2846 /* Code the SELECT statements to our left
2848 assert( !pPrior->pOrderBy );
2849 sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
2850 SELECTTRACE(1, pParse, p, ("multiSelect EXCEPT/UNION left...\n"));
2851 rc = sqlite3Select(pParse, pPrior, &uniondest);
2852 if( rc ){
2853 goto multi_select_end;
2856 /* Code the current SELECT statement
2858 if( p->op==TK_EXCEPT ){
2859 op = SRT_Except;
2860 }else{
2861 assert( p->op==TK_UNION );
2862 op = SRT_Union;
2864 p->pPrior = 0;
2865 pLimit = p->pLimit;
2866 p->pLimit = 0;
2867 uniondest.eDest = op;
2868 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
2869 sqlite3SelectOpName(p->op)));
2870 SELECTTRACE(1, pParse, p, ("multiSelect EXCEPT/UNION right...\n"));
2871 rc = sqlite3Select(pParse, p, &uniondest);
2872 testcase( rc!=SQLITE_OK );
2873 assert( p->pOrderBy==0 );
2874 pDelete = p->pPrior;
2875 p->pPrior = pPrior;
2876 p->pOrderBy = 0;
2877 if( p->op==TK_UNION ){
2878 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2880 sqlite3ExprDelete(db, p->pLimit);
2881 p->pLimit = pLimit;
2882 p->iLimit = 0;
2883 p->iOffset = 0;
2885 /* Convert the data in the temporary table into whatever form
2886 ** it is that we currently need.
2888 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
2889 assert( p->pEList || db->mallocFailed );
2890 if( dest.eDest!=priorOp && db->mallocFailed==0 ){
2891 int iCont, iBreak, iStart;
2892 iBreak = sqlite3VdbeMakeLabel(pParse);
2893 iCont = sqlite3VdbeMakeLabel(pParse);
2894 computeLimitRegisters(pParse, p, iBreak);
2895 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
2896 iStart = sqlite3VdbeCurrentAddr(v);
2897 selectInnerLoop(pParse, p, unionTab,
2898 0, 0, &dest, iCont, iBreak);
2899 sqlite3VdbeResolveLabel(v, iCont);
2900 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
2901 sqlite3VdbeResolveLabel(v, iBreak);
2902 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
2904 break;
2906 default: assert( p->op==TK_INTERSECT ); {
2907 int tab1, tab2;
2908 int iCont, iBreak, iStart;
2909 Expr *pLimit;
2910 int addr;
2911 SelectDest intersectdest;
2912 int r1;
2914 /* INTERSECT is different from the others since it requires
2915 ** two temporary tables. Hence it has its own case. Begin
2916 ** by allocating the tables we will need.
2918 tab1 = pParse->nTab++;
2919 tab2 = pParse->nTab++;
2920 assert( p->pOrderBy==0 );
2922 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
2923 assert( p->addrOpenEphm[0] == -1 );
2924 p->addrOpenEphm[0] = addr;
2925 findRightmost(p)->selFlags |= SF_UsesEphemeral;
2926 assert( p->pEList );
2928 /* Code the SELECTs to our left into temporary table "tab1".
2930 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
2931 SELECTTRACE(1, pParse, p, ("multiSelect INTERSECT left...\n"));
2932 rc = sqlite3Select(pParse, pPrior, &intersectdest);
2933 if( rc ){
2934 goto multi_select_end;
2937 /* Code the current SELECT into temporary table "tab2"
2939 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
2940 assert( p->addrOpenEphm[1] == -1 );
2941 p->addrOpenEphm[1] = addr;
2942 p->pPrior = 0;
2943 pLimit = p->pLimit;
2944 p->pLimit = 0;
2945 intersectdest.iSDParm = tab2;
2946 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
2947 sqlite3SelectOpName(p->op)));
2948 SELECTTRACE(1, pParse, p, ("multiSelect INTERSECT right...\n"));
2949 rc = sqlite3Select(pParse, p, &intersectdest);
2950 testcase( rc!=SQLITE_OK );
2951 pDelete = p->pPrior;
2952 p->pPrior = pPrior;
2953 if( p->nSelectRow>pPrior->nSelectRow ){
2954 p->nSelectRow = pPrior->nSelectRow;
2956 sqlite3ExprDelete(db, p->pLimit);
2957 p->pLimit = pLimit;
2959 /* Generate code to take the intersection of the two temporary
2960 ** tables.
2962 if( rc ) break;
2963 assert( p->pEList );
2964 iBreak = sqlite3VdbeMakeLabel(pParse);
2965 iCont = sqlite3VdbeMakeLabel(pParse);
2966 computeLimitRegisters(pParse, p, iBreak);
2967 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
2968 r1 = sqlite3GetTempReg(pParse);
2969 iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1);
2970 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0);
2971 VdbeCoverage(v);
2972 sqlite3ReleaseTempReg(pParse, r1);
2973 selectInnerLoop(pParse, p, tab1,
2974 0, 0, &dest, iCont, iBreak);
2975 sqlite3VdbeResolveLabel(v, iCont);
2976 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
2977 sqlite3VdbeResolveLabel(v, iBreak);
2978 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
2979 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
2980 break;
2984 #ifndef SQLITE_OMIT_EXPLAIN
2985 if( p->pNext==0 ){
2986 ExplainQueryPlanPop(pParse);
2988 #endif
2990 if( pParse->nErr ) goto multi_select_end;
2992 /* Compute collating sequences used by
2993 ** temporary tables needed to implement the compound select.
2994 ** Attach the KeyInfo structure to all temporary tables.
2996 ** This section is run by the right-most SELECT statement only.
2997 ** SELECT statements to the left always skip this part. The right-most
2998 ** SELECT might also skip this part if it has no ORDER BY clause and
2999 ** no temp tables are required.
3001 if( p->selFlags & SF_UsesEphemeral ){
3002 int i; /* Loop counter */
3003 KeyInfo *pKeyInfo; /* Collating sequence for the result set */
3004 Select *pLoop; /* For looping through SELECT statements */
3005 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */
3006 int nCol; /* Number of columns in result set */
3008 assert( p->pNext==0 );
3009 assert( p->pEList!=0 );
3010 nCol = p->pEList->nExpr;
3011 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
3012 if( !pKeyInfo ){
3013 rc = SQLITE_NOMEM_BKPT;
3014 goto multi_select_end;
3016 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
3017 *apColl = multiSelectCollSeq(pParse, p, i);
3018 if( 0==*apColl ){
3019 *apColl = db->pDfltColl;
3023 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
3024 for(i=0; i<2; i++){
3025 int addr = pLoop->addrOpenEphm[i];
3026 if( addr<0 ){
3027 /* If [0] is unused then [1] is also unused. So we can
3028 ** always safely abort as soon as the first unused slot is found */
3029 assert( pLoop->addrOpenEphm[1]<0 );
3030 break;
3032 sqlite3VdbeChangeP2(v, addr, nCol);
3033 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
3034 P4_KEYINFO);
3035 pLoop->addrOpenEphm[i] = -1;
3038 sqlite3KeyInfoUnref(pKeyInfo);
3041 multi_select_end:
3042 pDest->iSdst = dest.iSdst;
3043 pDest->nSdst = dest.nSdst;
3044 if( pDelete ){
3045 sqlite3ParserAddCleanup(pParse,
3046 (void(*)(sqlite3*,void*))sqlite3SelectDelete,
3047 pDelete);
3049 return rc;
3051 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
3054 ** Error message for when two or more terms of a compound select have different
3055 ** size result sets.
3057 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){
3058 if( p->selFlags & SF_Values ){
3059 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
3060 }else{
3061 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
3062 " do not have the same number of result columns",
3063 sqlite3SelectOpName(p->op));
3068 ** Code an output subroutine for a coroutine implementation of a
3069 ** SELECT statment.
3071 ** The data to be output is contained in pIn->iSdst. There are
3072 ** pIn->nSdst columns to be output. pDest is where the output should
3073 ** be sent.
3075 ** regReturn is the number of the register holding the subroutine
3076 ** return address.
3078 ** If regPrev>0 then it is the first register in a vector that
3079 ** records the previous output. mem[regPrev] is a flag that is false
3080 ** if there has been no previous output. If regPrev>0 then code is
3081 ** generated to suppress duplicates. pKeyInfo is used for comparing
3082 ** keys.
3084 ** If the LIMIT found in p->iLimit is reached, jump immediately to
3085 ** iBreak.
3087 static int generateOutputSubroutine(
3088 Parse *pParse, /* Parsing context */
3089 Select *p, /* The SELECT statement */
3090 SelectDest *pIn, /* Coroutine supplying data */
3091 SelectDest *pDest, /* Where to send the data */
3092 int regReturn, /* The return address register */
3093 int regPrev, /* Previous result register. No uniqueness if 0 */
3094 KeyInfo *pKeyInfo, /* For comparing with previous entry */
3095 int iBreak /* Jump here if we hit the LIMIT */
3097 Vdbe *v = pParse->pVdbe;
3098 int iContinue;
3099 int addr;
3101 addr = sqlite3VdbeCurrentAddr(v);
3102 iContinue = sqlite3VdbeMakeLabel(pParse);
3104 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
3106 if( regPrev ){
3107 int addr1, addr2;
3108 addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
3109 addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
3110 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
3111 sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v);
3112 sqlite3VdbeJumpHere(v, addr1);
3113 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
3114 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
3116 if( pParse->db->mallocFailed ) return 0;
3118 /* Suppress the first OFFSET entries if there is an OFFSET clause
3120 codeOffset(v, p->iOffset, iContinue);
3122 assert( pDest->eDest!=SRT_Exists );
3123 assert( pDest->eDest!=SRT_Table );
3124 switch( pDest->eDest ){
3125 /* Store the result as data using a unique key.
3127 case SRT_EphemTab: {
3128 int r1 = sqlite3GetTempReg(pParse);
3129 int r2 = sqlite3GetTempReg(pParse);
3130 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
3131 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
3132 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
3133 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
3134 sqlite3ReleaseTempReg(pParse, r2);
3135 sqlite3ReleaseTempReg(pParse, r1);
3136 break;
3139 #ifndef SQLITE_OMIT_SUBQUERY
3140 /* If we are creating a set for an "expr IN (SELECT ...)".
3142 case SRT_Set: {
3143 int r1;
3144 testcase( pIn->nSdst>1 );
3145 r1 = sqlite3GetTempReg(pParse);
3146 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst,
3147 r1, pDest->zAffSdst, pIn->nSdst);
3148 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1,
3149 pIn->iSdst, pIn->nSdst);
3150 sqlite3ReleaseTempReg(pParse, r1);
3151 break;
3154 /* If this is a scalar select that is part of an expression, then
3155 ** store the results in the appropriate memory cell and break out
3156 ** of the scan loop. Note that the select might return multiple columns
3157 ** if it is the RHS of a row-value IN operator.
3159 case SRT_Mem: {
3160 testcase( pIn->nSdst>1 );
3161 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, pIn->nSdst);
3162 /* The LIMIT clause will jump out of the loop for us */
3163 break;
3165 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
3167 /* The results are stored in a sequence of registers
3168 ** starting at pDest->iSdst. Then the co-routine yields.
3170 case SRT_Coroutine: {
3171 if( pDest->iSdst==0 ){
3172 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
3173 pDest->nSdst = pIn->nSdst;
3175 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst);
3176 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
3177 break;
3180 /* If none of the above, then the result destination must be
3181 ** SRT_Output. This routine is never called with any other
3182 ** destination other than the ones handled above or SRT_Output.
3184 ** For SRT_Output, results are stored in a sequence of registers.
3185 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
3186 ** return the next row of result.
3188 default: {
3189 assert( pDest->eDest==SRT_Output );
3190 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
3191 break;
3195 /* Jump to the end of the loop if the LIMIT is reached.
3197 if( p->iLimit ){
3198 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
3201 /* Generate the subroutine return
3203 sqlite3VdbeResolveLabel(v, iContinue);
3204 sqlite3VdbeAddOp1(v, OP_Return, regReturn);
3206 return addr;
3210 ** Alternative compound select code generator for cases when there
3211 ** is an ORDER BY clause.
3213 ** We assume a query of the following form:
3215 ** <selectA> <operator> <selectB> ORDER BY <orderbylist>
3217 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea
3218 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
3219 ** co-routines. Then run the co-routines in parallel and merge the results
3220 ** into the output. In addition to the two coroutines (called selectA and
3221 ** selectB) there are 7 subroutines:
3223 ** outA: Move the output of the selectA coroutine into the output
3224 ** of the compound query.
3226 ** outB: Move the output of the selectB coroutine into the output
3227 ** of the compound query. (Only generated for UNION and
3228 ** UNION ALL. EXCEPT and INSERTSECT never output a row that
3229 ** appears only in B.)
3231 ** AltB: Called when there is data from both coroutines and A<B.
3233 ** AeqB: Called when there is data from both coroutines and A==B.
3235 ** AgtB: Called when there is data from both coroutines and A>B.
3237 ** EofA: Called when data is exhausted from selectA.
3239 ** EofB: Called when data is exhausted from selectB.
3241 ** The implementation of the latter five subroutines depend on which
3242 ** <operator> is used:
3245 ** UNION ALL UNION EXCEPT INTERSECT
3246 ** ------------- ----------------- -------------- -----------------
3247 ** AltB: outA, nextA outA, nextA outA, nextA nextA
3249 ** AeqB: outA, nextA nextA nextA outA, nextA
3251 ** AgtB: outB, nextB outB, nextB nextB nextB
3253 ** EofA: outB, nextB outB, nextB halt halt
3255 ** EofB: outA, nextA outA, nextA outA, nextA halt
3257 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
3258 ** causes an immediate jump to EofA and an EOF on B following nextB causes
3259 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or
3260 ** following nextX causes a jump to the end of the select processing.
3262 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
3263 ** within the output subroutine. The regPrev register set holds the previously
3264 ** output value. A comparison is made against this value and the output
3265 ** is skipped if the next results would be the same as the previous.
3267 ** The implementation plan is to implement the two coroutines and seven
3268 ** subroutines first, then put the control logic at the bottom. Like this:
3270 ** goto Init
3271 ** coA: coroutine for left query (A)
3272 ** coB: coroutine for right query (B)
3273 ** outA: output one row of A
3274 ** outB: output one row of B (UNION and UNION ALL only)
3275 ** EofA: ...
3276 ** EofB: ...
3277 ** AltB: ...
3278 ** AeqB: ...
3279 ** AgtB: ...
3280 ** Init: initialize coroutine registers
3281 ** yield coA
3282 ** if eof(A) goto EofA
3283 ** yield coB
3284 ** if eof(B) goto EofB
3285 ** Cmpr: Compare A, B
3286 ** Jump AltB, AeqB, AgtB
3287 ** End: ...
3289 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
3290 ** actually called using Gosub and they do not Return. EofA and EofB loop
3291 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB,
3292 ** and AgtB jump to either L2 or to one of EofA or EofB.
3294 #ifndef SQLITE_OMIT_COMPOUND_SELECT
3295 static int multiSelectOrderBy(
3296 Parse *pParse, /* Parsing context */
3297 Select *p, /* The right-most of SELECTs to be coded */
3298 SelectDest *pDest /* What to do with query results */
3300 int i, j; /* Loop counters */
3301 Select *pPrior; /* Another SELECT immediately to our left */
3302 Select *pSplit; /* Left-most SELECT in the right-hand group */
3303 int nSelect; /* Number of SELECT statements in the compound */
3304 Vdbe *v; /* Generate code to this VDBE */
3305 SelectDest destA; /* Destination for coroutine A */
3306 SelectDest destB; /* Destination for coroutine B */
3307 int regAddrA; /* Address register for select-A coroutine */
3308 int regAddrB; /* Address register for select-B coroutine */
3309 int addrSelectA; /* Address of the select-A coroutine */
3310 int addrSelectB; /* Address of the select-B coroutine */
3311 int regOutA; /* Address register for the output-A subroutine */
3312 int regOutB; /* Address register for the output-B subroutine */
3313 int addrOutA; /* Address of the output-A subroutine */
3314 int addrOutB = 0; /* Address of the output-B subroutine */
3315 int addrEofA; /* Address of the select-A-exhausted subroutine */
3316 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */
3317 int addrEofB; /* Address of the select-B-exhausted subroutine */
3318 int addrAltB; /* Address of the A<B subroutine */
3319 int addrAeqB; /* Address of the A==B subroutine */
3320 int addrAgtB; /* Address of the A>B subroutine */
3321 int regLimitA; /* Limit register for select-A */
3322 int regLimitB; /* Limit register for select-A */
3323 int regPrev; /* A range of registers to hold previous output */
3324 int savedLimit; /* Saved value of p->iLimit */
3325 int savedOffset; /* Saved value of p->iOffset */
3326 int labelCmpr; /* Label for the start of the merge algorithm */
3327 int labelEnd; /* Label for the end of the overall SELECT stmt */
3328 int addr1; /* Jump instructions that get retargetted */
3329 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
3330 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
3331 KeyInfo *pKeyMerge; /* Comparison information for merging rows */
3332 sqlite3 *db; /* Database connection */
3333 ExprList *pOrderBy; /* The ORDER BY clause */
3334 int nOrderBy; /* Number of terms in the ORDER BY clause */
3335 u32 *aPermute; /* Mapping from ORDER BY terms to result set columns */
3337 assert( p->pOrderBy!=0 );
3338 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */
3339 db = pParse->db;
3340 v = pParse->pVdbe;
3341 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */
3342 labelEnd = sqlite3VdbeMakeLabel(pParse);
3343 labelCmpr = sqlite3VdbeMakeLabel(pParse);
3346 /* Patch up the ORDER BY clause
3348 op = p->op;
3349 assert( p->pPrior->pOrderBy==0 );
3350 pOrderBy = p->pOrderBy;
3351 assert( pOrderBy );
3352 nOrderBy = pOrderBy->nExpr;
3354 /* For operators other than UNION ALL we have to make sure that
3355 ** the ORDER BY clause covers every term of the result set. Add
3356 ** terms to the ORDER BY clause as necessary.
3358 if( op!=TK_ALL ){
3359 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
3360 struct ExprList_item *pItem;
3361 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
3362 assert( pItem!=0 );
3363 assert( pItem->u.x.iOrderByCol>0 );
3364 if( pItem->u.x.iOrderByCol==i ) break;
3366 if( j==nOrderBy ){
3367 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
3368 if( pNew==0 ) return SQLITE_NOMEM_BKPT;
3369 pNew->flags |= EP_IntValue;
3370 pNew->u.iValue = i;
3371 p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
3372 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
3377 /* Compute the comparison permutation and keyinfo that is used with
3378 ** the permutation used to determine if the next
3379 ** row of results comes from selectA or selectB. Also add explicit
3380 ** collations to the ORDER BY clause terms so that when the subqueries
3381 ** to the right and the left are evaluated, they use the correct
3382 ** collation.
3384 aPermute = sqlite3DbMallocRawNN(db, sizeof(u32)*(nOrderBy + 1));
3385 if( aPermute ){
3386 struct ExprList_item *pItem;
3387 aPermute[0] = nOrderBy;
3388 for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){
3389 assert( pItem!=0 );
3390 assert( pItem->u.x.iOrderByCol>0 );
3391 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr );
3392 aPermute[i] = pItem->u.x.iOrderByCol - 1;
3394 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
3395 }else{
3396 pKeyMerge = 0;
3399 /* Allocate a range of temporary registers and the KeyInfo needed
3400 ** for the logic that removes duplicate result rows when the
3401 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
3403 if( op==TK_ALL ){
3404 regPrev = 0;
3405 }else{
3406 int nExpr = p->pEList->nExpr;
3407 assert( nOrderBy>=nExpr || db->mallocFailed );
3408 regPrev = pParse->nMem+1;
3409 pParse->nMem += nExpr+1;
3410 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
3411 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
3412 if( pKeyDup ){
3413 assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
3414 for(i=0; i<nExpr; i++){
3415 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
3416 pKeyDup->aSortFlags[i] = 0;
3421 /* Separate the left and the right query from one another
3423 nSelect = 1;
3424 if( (op==TK_ALL || op==TK_UNION)
3425 && OptimizationEnabled(db, SQLITE_BalancedMerge)
3427 for(pSplit=p; pSplit->pPrior!=0 && pSplit->op==op; pSplit=pSplit->pPrior){
3428 nSelect++;
3429 assert( pSplit->pPrior->pNext==pSplit );
3432 if( nSelect<=3 ){
3433 pSplit = p;
3434 }else{
3435 pSplit = p;
3436 for(i=2; i<nSelect; i+=2){ pSplit = pSplit->pPrior; }
3438 pPrior = pSplit->pPrior;
3439 assert( pPrior!=0 );
3440 pSplit->pPrior = 0;
3441 pPrior->pNext = 0;
3442 assert( p->pOrderBy == pOrderBy );
3443 assert( pOrderBy!=0 || db->mallocFailed );
3444 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
3445 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
3446 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
3448 /* Compute the limit registers */
3449 computeLimitRegisters(pParse, p, labelEnd);
3450 if( p->iLimit && op==TK_ALL ){
3451 regLimitA = ++pParse->nMem;
3452 regLimitB = ++pParse->nMem;
3453 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
3454 regLimitA);
3455 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
3456 }else{
3457 regLimitA = regLimitB = 0;
3459 sqlite3ExprDelete(db, p->pLimit);
3460 p->pLimit = 0;
3462 regAddrA = ++pParse->nMem;
3463 regAddrB = ++pParse->nMem;
3464 regOutA = ++pParse->nMem;
3465 regOutB = ++pParse->nMem;
3466 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
3467 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
3469 ExplainQueryPlan((pParse, 1, "MERGE (%s)", sqlite3SelectOpName(p->op)));
3471 /* Generate a coroutine to evaluate the SELECT statement to the
3472 ** left of the compound operator - the "A" select.
3474 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
3475 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
3476 VdbeComment((v, "left SELECT"));
3477 pPrior->iLimit = regLimitA;
3478 ExplainQueryPlan((pParse, 1, "LEFT"));
3479 sqlite3Select(pParse, pPrior, &destA);
3480 sqlite3VdbeEndCoroutine(v, regAddrA);
3481 sqlite3VdbeJumpHere(v, addr1);
3483 /* Generate a coroutine to evaluate the SELECT statement on
3484 ** the right - the "B" select
3486 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
3487 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
3488 VdbeComment((v, "right SELECT"));
3489 savedLimit = p->iLimit;
3490 savedOffset = p->iOffset;
3491 p->iLimit = regLimitB;
3492 p->iOffset = 0;
3493 ExplainQueryPlan((pParse, 1, "RIGHT"));
3494 sqlite3Select(pParse, p, &destB);
3495 p->iLimit = savedLimit;
3496 p->iOffset = savedOffset;
3497 sqlite3VdbeEndCoroutine(v, regAddrB);
3499 /* Generate a subroutine that outputs the current row of the A
3500 ** select as the next output row of the compound select.
3502 VdbeNoopComment((v, "Output routine for A"));
3503 addrOutA = generateOutputSubroutine(pParse,
3504 p, &destA, pDest, regOutA,
3505 regPrev, pKeyDup, labelEnd);
3507 /* Generate a subroutine that outputs the current row of the B
3508 ** select as the next output row of the compound select.
3510 if( op==TK_ALL || op==TK_UNION ){
3511 VdbeNoopComment((v, "Output routine for B"));
3512 addrOutB = generateOutputSubroutine(pParse,
3513 p, &destB, pDest, regOutB,
3514 regPrev, pKeyDup, labelEnd);
3516 sqlite3KeyInfoUnref(pKeyDup);
3518 /* Generate a subroutine to run when the results from select A
3519 ** are exhausted and only data in select B remains.
3521 if( op==TK_EXCEPT || op==TK_INTERSECT ){
3522 addrEofA_noB = addrEofA = labelEnd;
3523 }else{
3524 VdbeNoopComment((v, "eof-A subroutine"));
3525 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3526 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
3527 VdbeCoverage(v);
3528 sqlite3VdbeGoto(v, addrEofA);
3529 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
3532 /* Generate a subroutine to run when the results from select B
3533 ** are exhausted and only data in select A remains.
3535 if( op==TK_INTERSECT ){
3536 addrEofB = addrEofA;
3537 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
3538 }else{
3539 VdbeNoopComment((v, "eof-B subroutine"));
3540 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3541 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
3542 sqlite3VdbeGoto(v, addrEofB);
3545 /* Generate code to handle the case of A<B
3547 VdbeNoopComment((v, "A-lt-B subroutine"));
3548 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3549 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3550 sqlite3VdbeGoto(v, labelCmpr);
3552 /* Generate code to handle the case of A==B
3554 if( op==TK_ALL ){
3555 addrAeqB = addrAltB;
3556 }else if( op==TK_INTERSECT ){
3557 addrAeqB = addrAltB;
3558 addrAltB++;
3559 }else{
3560 VdbeNoopComment((v, "A-eq-B subroutine"));
3561 addrAeqB =
3562 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3563 sqlite3VdbeGoto(v, labelCmpr);
3566 /* Generate code to handle the case of A>B
3568 VdbeNoopComment((v, "A-gt-B subroutine"));
3569 addrAgtB = sqlite3VdbeCurrentAddr(v);
3570 if( op==TK_ALL || op==TK_UNION ){
3571 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3573 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3574 sqlite3VdbeGoto(v, labelCmpr);
3576 /* This code runs once to initialize everything.
3578 sqlite3VdbeJumpHere(v, addr1);
3579 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
3580 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3582 /* Implement the main merge loop
3584 sqlite3VdbeResolveLabel(v, labelCmpr);
3585 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
3586 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
3587 (char*)pKeyMerge, P4_KEYINFO);
3588 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
3589 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
3591 /* Jump to the this point in order to terminate the query.
3593 sqlite3VdbeResolveLabel(v, labelEnd);
3595 /* Reassembly the compound query so that it will be freed correctly
3596 ** by the calling function */
3597 if( pSplit->pPrior ){
3598 sqlite3SelectDelete(db, pSplit->pPrior);
3600 pSplit->pPrior = pPrior;
3601 pPrior->pNext = pSplit;
3602 sqlite3ExprListDelete(db, pPrior->pOrderBy);
3603 pPrior->pOrderBy = 0;
3605 /*** TBD: Insert subroutine calls to close cursors on incomplete
3606 **** subqueries ****/
3607 ExplainQueryPlanPop(pParse);
3608 return pParse->nErr!=0;
3610 #endif
3612 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3614 /* An instance of the SubstContext object describes an substitution edit
3615 ** to be performed on a parse tree.
3617 ** All references to columns in table iTable are to be replaced by corresponding
3618 ** expressions in pEList.
3620 typedef struct SubstContext {
3621 Parse *pParse; /* The parsing context */
3622 int iTable; /* Replace references to this table */
3623 int iNewTable; /* New table number */
3624 int isLeftJoin; /* Add TK_IF_NULL_ROW opcodes on each replacement */
3625 ExprList *pEList; /* Replacement expressions */
3626 } SubstContext;
3628 /* Forward Declarations */
3629 static void substExprList(SubstContext*, ExprList*);
3630 static void substSelect(SubstContext*, Select*, int);
3633 ** Scan through the expression pExpr. Replace every reference to
3634 ** a column in table number iTable with a copy of the iColumn-th
3635 ** entry in pEList. (But leave references to the ROWID column
3636 ** unchanged.)
3638 ** This routine is part of the flattening procedure. A subquery
3639 ** whose result set is defined by pEList appears as entry in the
3640 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3641 ** FORM clause entry is iTable. This routine makes the necessary
3642 ** changes to pExpr so that it refers directly to the source table
3643 ** of the subquery rather the result set of the subquery.
3645 static Expr *substExpr(
3646 SubstContext *pSubst, /* Description of the substitution */
3647 Expr *pExpr /* Expr in which substitution occurs */
3649 if( pExpr==0 ) return 0;
3650 if( ExprHasProperty(pExpr, EP_FromJoin)
3651 && pExpr->w.iRightJoinTable==pSubst->iTable
3653 pExpr->w.iRightJoinTable = pSubst->iNewTable;
3655 if( pExpr->op==TK_COLUMN
3656 && pExpr->iTable==pSubst->iTable
3657 && !ExprHasProperty(pExpr, EP_FixedCol)
3659 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
3660 if( pExpr->iColumn<0 ){
3661 pExpr->op = TK_NULL;
3662 }else
3663 #endif
3665 Expr *pNew;
3666 Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr;
3667 Expr ifNullRow;
3668 assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr );
3669 assert( pExpr->pRight==0 );
3670 if( sqlite3ExprIsVector(pCopy) ){
3671 sqlite3VectorErrorMsg(pSubst->pParse, pCopy);
3672 }else{
3673 sqlite3 *db = pSubst->pParse->db;
3674 if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){
3675 memset(&ifNullRow, 0, sizeof(ifNullRow));
3676 ifNullRow.op = TK_IF_NULL_ROW;
3677 ifNullRow.pLeft = pCopy;
3678 ifNullRow.iTable = pSubst->iNewTable;
3679 ifNullRow.flags = EP_IfNullRow;
3680 pCopy = &ifNullRow;
3682 testcase( ExprHasProperty(pCopy, EP_Subquery) );
3683 pNew = sqlite3ExprDup(db, pCopy, 0);
3684 if( db->mallocFailed ){
3685 sqlite3ExprDelete(db, pNew);
3686 return pExpr;
3688 if( pSubst->isLeftJoin ){
3689 ExprSetProperty(pNew, EP_CanBeNull);
3691 if( ExprHasProperty(pExpr,EP_FromJoin) ){
3692 sqlite3SetJoinExpr(pNew, pExpr->w.iRightJoinTable);
3694 sqlite3ExprDelete(db, pExpr);
3695 pExpr = pNew;
3697 /* Ensure that the expression now has an implicit collation sequence,
3698 ** just as it did when it was a column of a view or sub-query. */
3699 if( pExpr->op!=TK_COLUMN && pExpr->op!=TK_COLLATE ){
3700 CollSeq *pColl = sqlite3ExprCollSeq(pSubst->pParse, pExpr);
3701 pExpr = sqlite3ExprAddCollateString(pSubst->pParse, pExpr,
3702 (pColl ? pColl->zName : "BINARY")
3705 ExprClearProperty(pExpr, EP_Collate);
3708 }else{
3709 if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){
3710 pExpr->iTable = pSubst->iNewTable;
3712 pExpr->pLeft = substExpr(pSubst, pExpr->pLeft);
3713 pExpr->pRight = substExpr(pSubst, pExpr->pRight);
3714 if( ExprUseXSelect(pExpr) ){
3715 substSelect(pSubst, pExpr->x.pSelect, 1);
3716 }else{
3717 substExprList(pSubst, pExpr->x.pList);
3719 #ifndef SQLITE_OMIT_WINDOWFUNC
3720 if( ExprHasProperty(pExpr, EP_WinFunc) ){
3721 Window *pWin = pExpr->y.pWin;
3722 pWin->pFilter = substExpr(pSubst, pWin->pFilter);
3723 substExprList(pSubst, pWin->pPartition);
3724 substExprList(pSubst, pWin->pOrderBy);
3726 #endif
3728 return pExpr;
3730 static void substExprList(
3731 SubstContext *pSubst, /* Description of the substitution */
3732 ExprList *pList /* List to scan and in which to make substitutes */
3734 int i;
3735 if( pList==0 ) return;
3736 for(i=0; i<pList->nExpr; i++){
3737 pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr);
3740 static void substSelect(
3741 SubstContext *pSubst, /* Description of the substitution */
3742 Select *p, /* SELECT statement in which to make substitutions */
3743 int doPrior /* Do substitutes on p->pPrior too */
3745 SrcList *pSrc;
3746 SrcItem *pItem;
3747 int i;
3748 if( !p ) return;
3750 substExprList(pSubst, p->pEList);
3751 substExprList(pSubst, p->pGroupBy);
3752 substExprList(pSubst, p->pOrderBy);
3753 p->pHaving = substExpr(pSubst, p->pHaving);
3754 p->pWhere = substExpr(pSubst, p->pWhere);
3755 pSrc = p->pSrc;
3756 assert( pSrc!=0 );
3757 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3758 substSelect(pSubst, pItem->pSelect, 1);
3759 if( pItem->fg.isTabFunc ){
3760 substExprList(pSubst, pItem->u1.pFuncArg);
3763 }while( doPrior && (p = p->pPrior)!=0 );
3765 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3767 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3769 ** pSelect is a SELECT statement and pSrcItem is one item in the FROM
3770 ** clause of that SELECT.
3772 ** This routine scans the entire SELECT statement and recomputes the
3773 ** pSrcItem->colUsed mask.
3775 static int recomputeColumnsUsedExpr(Walker *pWalker, Expr *pExpr){
3776 SrcItem *pItem;
3777 if( pExpr->op!=TK_COLUMN ) return WRC_Continue;
3778 pItem = pWalker->u.pSrcItem;
3779 if( pItem->iCursor!=pExpr->iTable ) return WRC_Continue;
3780 if( pExpr->iColumn<0 ) return WRC_Continue;
3781 pItem->colUsed |= sqlite3ExprColUsed(pExpr);
3782 return WRC_Continue;
3784 static void recomputeColumnsUsed(
3785 Select *pSelect, /* The complete SELECT statement */
3786 SrcItem *pSrcItem /* Which FROM clause item to recompute */
3788 Walker w;
3789 if( NEVER(pSrcItem->pTab==0) ) return;
3790 memset(&w, 0, sizeof(w));
3791 w.xExprCallback = recomputeColumnsUsedExpr;
3792 w.xSelectCallback = sqlite3SelectWalkNoop;
3793 w.u.pSrcItem = pSrcItem;
3794 pSrcItem->colUsed = 0;
3795 sqlite3WalkSelect(&w, pSelect);
3797 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3799 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3801 ** Assign new cursor numbers to each of the items in pSrc. For each
3802 ** new cursor number assigned, set an entry in the aCsrMap[] array
3803 ** to map the old cursor number to the new:
3805 ** aCsrMap[iOld+1] = iNew;
3807 ** The array is guaranteed by the caller to be large enough for all
3808 ** existing cursor numbers in pSrc. aCsrMap[0] is the array size.
3810 ** If pSrc contains any sub-selects, call this routine recursively
3811 ** on the FROM clause of each such sub-select, with iExcept set to -1.
3813 static void srclistRenumberCursors(
3814 Parse *pParse, /* Parse context */
3815 int *aCsrMap, /* Array to store cursor mappings in */
3816 SrcList *pSrc, /* FROM clause to renumber */
3817 int iExcept /* FROM clause item to skip */
3819 int i;
3820 SrcItem *pItem;
3821 for(i=0, pItem=pSrc->a; i<pSrc->nSrc; i++, pItem++){
3822 if( i!=iExcept ){
3823 Select *p;
3824 assert( pItem->iCursor < aCsrMap[0] );
3825 if( !pItem->fg.isRecursive || aCsrMap[pItem->iCursor+1]==0 ){
3826 aCsrMap[pItem->iCursor+1] = pParse->nTab++;
3828 pItem->iCursor = aCsrMap[pItem->iCursor+1];
3829 for(p=pItem->pSelect; p; p=p->pPrior){
3830 srclistRenumberCursors(pParse, aCsrMap, p->pSrc, -1);
3837 ** *piCursor is a cursor number. Change it if it needs to be mapped.
3839 static void renumberCursorDoMapping(Walker *pWalker, int *piCursor){
3840 int *aCsrMap = pWalker->u.aiCol;
3841 int iCsr = *piCursor;
3842 if( iCsr < aCsrMap[0] && aCsrMap[iCsr+1]>0 ){
3843 *piCursor = aCsrMap[iCsr+1];
3848 ** Expression walker callback used by renumberCursors() to update
3849 ** Expr objects to match newly assigned cursor numbers.
3851 static int renumberCursorsCb(Walker *pWalker, Expr *pExpr){
3852 int op = pExpr->op;
3853 if( op==TK_COLUMN || op==TK_IF_NULL_ROW ){
3854 renumberCursorDoMapping(pWalker, &pExpr->iTable);
3856 if( ExprHasProperty(pExpr, EP_FromJoin) ){
3857 renumberCursorDoMapping(pWalker, &pExpr->w.iRightJoinTable);
3859 return WRC_Continue;
3863 ** Assign a new cursor number to each cursor in the FROM clause (Select.pSrc)
3864 ** of the SELECT statement passed as the second argument, and to each
3865 ** cursor in the FROM clause of any FROM clause sub-selects, recursively.
3866 ** Except, do not assign a new cursor number to the iExcept'th element in
3867 ** the FROM clause of (*p). Update all expressions and other references
3868 ** to refer to the new cursor numbers.
3870 ** Argument aCsrMap is an array that may be used for temporary working
3871 ** space. Two guarantees are made by the caller:
3873 ** * the array is larger than the largest cursor number used within the
3874 ** select statement passed as an argument, and
3876 ** * the array entries for all cursor numbers that do *not* appear in
3877 ** FROM clauses of the select statement as described above are
3878 ** initialized to zero.
3880 static void renumberCursors(
3881 Parse *pParse, /* Parse context */
3882 Select *p, /* Select to renumber cursors within */
3883 int iExcept, /* FROM clause item to skip */
3884 int *aCsrMap /* Working space */
3886 Walker w;
3887 srclistRenumberCursors(pParse, aCsrMap, p->pSrc, iExcept);
3888 memset(&w, 0, sizeof(w));
3889 w.u.aiCol = aCsrMap;
3890 w.xExprCallback = renumberCursorsCb;
3891 w.xSelectCallback = sqlite3SelectWalkNoop;
3892 sqlite3WalkSelect(&w, p);
3894 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3896 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3898 ** This routine attempts to flatten subqueries as a performance optimization.
3899 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
3901 ** To understand the concept of flattening, consider the following
3902 ** query:
3904 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
3906 ** The default way of implementing this query is to execute the
3907 ** subquery first and store the results in a temporary table, then
3908 ** run the outer query on that temporary table. This requires two
3909 ** passes over the data. Furthermore, because the temporary table
3910 ** has no indices, the WHERE clause on the outer query cannot be
3911 ** optimized.
3913 ** This routine attempts to rewrite queries such as the above into
3914 ** a single flat select, like this:
3916 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
3918 ** The code generated for this simplification gives the same result
3919 ** but only has to scan the data once. And because indices might
3920 ** exist on the table t1, a complete scan of the data might be
3921 ** avoided.
3923 ** Flattening is subject to the following constraints:
3925 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
3926 ** The subquery and the outer query cannot both be aggregates.
3928 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
3929 ** (2) If the subquery is an aggregate then
3930 ** (2a) the outer query must not be a join and
3931 ** (2b) the outer query must not use subqueries
3932 ** other than the one FROM-clause subquery that is a candidate
3933 ** for flattening. (This is due to ticket [2f7170d73bf9abf80]
3934 ** from 2015-02-09.)
3936 ** (3) If the subquery is the right operand of a LEFT JOIN then
3937 ** (3a) the subquery may not be a join and
3938 ** (3b) the FROM clause of the subquery may not contain a virtual
3939 ** table and
3940 ** (3c) the outer query may not be an aggregate.
3941 ** (3d) the outer query may not be DISTINCT.
3943 ** (4) The subquery can not be DISTINCT.
3945 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT
3946 ** sub-queries that were excluded from this optimization. Restriction
3947 ** (4) has since been expanded to exclude all DISTINCT subqueries.
3949 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
3950 ** If the subquery is aggregate, the outer query may not be DISTINCT.
3952 ** (7) The subquery must have a FROM clause. TODO: For subqueries without
3953 ** A FROM clause, consider adding a FROM clause with the special
3954 ** table sqlite_once that consists of a single row containing a
3955 ** single NULL.
3957 ** (8) If the subquery uses LIMIT then the outer query may not be a join.
3959 ** (9) If the subquery uses LIMIT then the outer query may not be aggregate.
3961 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we
3962 ** accidently carried the comment forward until 2014-09-15. Original
3963 ** constraint: "If the subquery is aggregate then the outer query
3964 ** may not use LIMIT."
3966 ** (11) The subquery and the outer query may not both have ORDER BY clauses.
3968 ** (**) Not implemented. Subsumed into restriction (3). Was previously
3969 ** a separate restriction deriving from ticket #350.
3971 ** (13) The subquery and outer query may not both use LIMIT.
3973 ** (14) The subquery may not use OFFSET.
3975 ** (15) If the outer query is part of a compound select, then the
3976 ** subquery may not use LIMIT.
3977 ** (See ticket #2339 and ticket [02a8e81d44]).
3979 ** (16) If the outer query is aggregate, then the subquery may not
3980 ** use ORDER BY. (Ticket #2942) This used to not matter
3981 ** until we introduced the group_concat() function.
3983 ** (17) If the subquery is a compound select, then
3984 ** (17a) all compound operators must be a UNION ALL, and
3985 ** (17b) no terms within the subquery compound may be aggregate
3986 ** or DISTINCT, and
3987 ** (17c) every term within the subquery compound must have a FROM clause
3988 ** (17d) the outer query may not be
3989 ** (17d1) aggregate, or
3990 ** (17d2) DISTINCT
3991 ** (17e) the subquery may not contain window functions, and
3992 ** (17f) the subquery must not be the RHS of a LEFT JOIN.
3994 ** The parent and sub-query may contain WHERE clauses. Subject to
3995 ** rules (11), (13) and (14), they may also contain ORDER BY,
3996 ** LIMIT and OFFSET clauses. The subquery cannot use any compound
3997 ** operator other than UNION ALL because all the other compound
3998 ** operators have an implied DISTINCT which is disallowed by
3999 ** restriction (4).
4001 ** Also, each component of the sub-query must return the same number
4002 ** of result columns. This is actually a requirement for any compound
4003 ** SELECT statement, but all the code here does is make sure that no
4004 ** such (illegal) sub-query is flattened. The caller will detect the
4005 ** syntax error and return a detailed message.
4007 ** (18) If the sub-query is a compound select, then all terms of the
4008 ** ORDER BY clause of the parent must be copies of a term returned
4009 ** by the parent query.
4011 ** (19) If the subquery uses LIMIT then the outer query may not
4012 ** have a WHERE clause.
4014 ** (20) If the sub-query is a compound select, then it must not use
4015 ** an ORDER BY clause. Ticket #3773. We could relax this constraint
4016 ** somewhat by saying that the terms of the ORDER BY clause must
4017 ** appear as unmodified result columns in the outer query. But we
4018 ** have other optimizations in mind to deal with that case.
4020 ** (21) If the subquery uses LIMIT then the outer query may not be
4021 ** DISTINCT. (See ticket [752e1646fc]).
4023 ** (22) The subquery may not be a recursive CTE.
4025 ** (23) If the outer query is a recursive CTE, then the sub-query may not be
4026 ** a compound query. This restriction is because transforming the
4027 ** parent to a compound query confuses the code that handles
4028 ** recursive queries in multiSelect().
4030 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
4031 ** The subquery may not be an aggregate that uses the built-in min() or
4032 ** or max() functions. (Without this restriction, a query like:
4033 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
4034 ** return the value X for which Y was maximal.)
4036 ** (25) If either the subquery or the parent query contains a window
4037 ** function in the select list or ORDER BY clause, flattening
4038 ** is not attempted.
4041 ** In this routine, the "p" parameter is a pointer to the outer query.
4042 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query
4043 ** uses aggregates.
4045 ** If flattening is not attempted, this routine is a no-op and returns 0.
4046 ** If flattening is attempted this routine returns 1.
4048 ** All of the expression analysis must occur on both the outer query and
4049 ** the subquery before this routine runs.
4051 static int flattenSubquery(
4052 Parse *pParse, /* Parsing context */
4053 Select *p, /* The parent or outer SELECT statement */
4054 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */
4055 int isAgg /* True if outer SELECT uses aggregate functions */
4057 const char *zSavedAuthContext = pParse->zAuthContext;
4058 Select *pParent; /* Current UNION ALL term of the other query */
4059 Select *pSub; /* The inner query or "subquery" */
4060 Select *pSub1; /* Pointer to the rightmost select in sub-query */
4061 SrcList *pSrc; /* The FROM clause of the outer query */
4062 SrcList *pSubSrc; /* The FROM clause of the subquery */
4063 int iParent; /* VDBE cursor number of the pSub result set temp table */
4064 int iNewParent = -1;/* Replacement table for iParent */
4065 int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */
4066 int i; /* Loop counter */
4067 Expr *pWhere; /* The WHERE clause */
4068 SrcItem *pSubitem; /* The subquery */
4069 sqlite3 *db = pParse->db;
4070 Walker w; /* Walker to persist agginfo data */
4071 int *aCsrMap = 0;
4073 /* Check to see if flattening is permitted. Return 0 if not.
4075 assert( p!=0 );
4076 assert( p->pPrior==0 );
4077 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
4078 pSrc = p->pSrc;
4079 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
4080 pSubitem = &pSrc->a[iFrom];
4081 iParent = pSubitem->iCursor;
4082 pSub = pSubitem->pSelect;
4083 assert( pSub!=0 );
4085 #ifndef SQLITE_OMIT_WINDOWFUNC
4086 if( p->pWin || pSub->pWin ) return 0; /* Restriction (25) */
4087 #endif
4089 pSubSrc = pSub->pSrc;
4090 assert( pSubSrc );
4091 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
4092 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
4093 ** because they could be computed at compile-time. But when LIMIT and OFFSET
4094 ** became arbitrary expressions, we were forced to add restrictions (13)
4095 ** and (14). */
4096 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */
4097 if( pSub->pLimit && pSub->pLimit->pRight ) return 0; /* Restriction (14) */
4098 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
4099 return 0; /* Restriction (15) */
4101 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */
4102 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (4) */
4103 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
4104 return 0; /* Restrictions (8)(9) */
4106 if( p->pOrderBy && pSub->pOrderBy ){
4107 return 0; /* Restriction (11) */
4109 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */
4110 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */
4111 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
4112 return 0; /* Restriction (21) */
4114 if( pSub->selFlags & (SF_Recursive) ){
4115 return 0; /* Restrictions (22) */
4119 ** If the subquery is the right operand of a LEFT JOIN, then the
4120 ** subquery may not be a join itself (3a). Example of why this is not
4121 ** allowed:
4123 ** t1 LEFT OUTER JOIN (t2 JOIN t3)
4125 ** If we flatten the above, we would get
4127 ** (t1 LEFT OUTER JOIN t2) JOIN t3
4129 ** which is not at all the same thing.
4131 ** If the subquery is the right operand of a LEFT JOIN, then the outer
4132 ** query cannot be an aggregate. (3c) This is an artifact of the way
4133 ** aggregates are processed - there is no mechanism to determine if
4134 ** the LEFT JOIN table should be all-NULL.
4136 ** See also tickets #306, #350, and #3300.
4138 if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){
4139 isLeftJoin = 1;
4140 if( pSubSrc->nSrc>1 /* (3a) */
4141 || isAgg /* (3b) */
4142 || IsVirtual(pSubSrc->a[0].pTab) /* (3c) */
4143 || (p->selFlags & SF_Distinct)!=0 /* (3d) */
4145 return 0;
4148 #ifdef SQLITE_EXTRA_IFNULLROW
4149 else if( iFrom>0 && !isAgg ){
4150 /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for
4151 ** every reference to any result column from subquery in a join, even
4152 ** though they are not necessary. This will stress-test the OP_IfNullRow
4153 ** opcode. */
4154 isLeftJoin = -1;
4156 #endif
4158 /* Restriction (17): If the sub-query is a compound SELECT, then it must
4159 ** use only the UNION ALL operator. And none of the simple select queries
4160 ** that make up the compound SELECT are allowed to be aggregate or distinct
4161 ** queries.
4163 if( pSub->pPrior ){
4164 if( pSub->pOrderBy ){
4165 return 0; /* Restriction (20) */
4167 if( isAgg || (p->selFlags & SF_Distinct)!=0 || isLeftJoin>0 ){
4168 return 0; /* (17d1), (17d2), or (17f) */
4170 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
4171 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
4172 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
4173 assert( pSub->pSrc!=0 );
4174 assert( (pSub->selFlags & SF_Recursive)==0 );
4175 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr );
4176 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 /* (17b) */
4177 || (pSub1->pPrior && pSub1->op!=TK_ALL) /* (17a) */
4178 || pSub1->pSrc->nSrc<1 /* (17c) */
4179 #ifndef SQLITE_OMIT_WINDOWFUNC
4180 || pSub1->pWin /* (17e) */
4181 #endif
4183 return 0;
4185 testcase( pSub1->pSrc->nSrc>1 );
4188 /* Restriction (18). */
4189 if( p->pOrderBy ){
4190 int ii;
4191 for(ii=0; ii<p->pOrderBy->nExpr; ii++){
4192 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
4196 /* Restriction (23) */
4197 if( (p->selFlags & SF_Recursive) ) return 0;
4199 if( pSrc->nSrc>1 ){
4200 if( pParse->nSelect>500 ) return 0;
4201 aCsrMap = sqlite3DbMallocZero(db, ((i64)pParse->nTab+1)*sizeof(int));
4202 if( aCsrMap ) aCsrMap[0] = pParse->nTab;
4206 /***** If we reach this point, flattening is permitted. *****/
4207 SELECTTRACE(1,pParse,p,("flatten %u.%p from term %d\n",
4208 pSub->selId, pSub, iFrom));
4210 /* Authorize the subquery */
4211 pParse->zAuthContext = pSubitem->zName;
4212 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
4213 testcase( i==SQLITE_DENY );
4214 pParse->zAuthContext = zSavedAuthContext;
4216 /* Delete the transient structures associated with thesubquery */
4217 pSub1 = pSubitem->pSelect;
4218 sqlite3DbFree(db, pSubitem->zDatabase);
4219 sqlite3DbFree(db, pSubitem->zName);
4220 sqlite3DbFree(db, pSubitem->zAlias);
4221 pSubitem->zDatabase = 0;
4222 pSubitem->zName = 0;
4223 pSubitem->zAlias = 0;
4224 pSubitem->pSelect = 0;
4225 assert( pSubitem->pOn==0 );
4227 /* If the sub-query is a compound SELECT statement, then (by restrictions
4228 ** 17 and 18 above) it must be a UNION ALL and the parent query must
4229 ** be of the form:
4231 ** SELECT <expr-list> FROM (<sub-query>) <where-clause>
4233 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
4234 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
4235 ** OFFSET clauses and joins them to the left-hand-side of the original
4236 ** using UNION ALL operators. In this case N is the number of simple
4237 ** select statements in the compound sub-query.
4239 ** Example:
4241 ** SELECT a+1 FROM (
4242 ** SELECT x FROM tab
4243 ** UNION ALL
4244 ** SELECT y FROM tab
4245 ** UNION ALL
4246 ** SELECT abs(z*2) FROM tab2
4247 ** ) WHERE a!=5 ORDER BY 1
4249 ** Transformed into:
4251 ** SELECT x+1 FROM tab WHERE x+1!=5
4252 ** UNION ALL
4253 ** SELECT y+1 FROM tab WHERE y+1!=5
4254 ** UNION ALL
4255 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
4256 ** ORDER BY 1
4258 ** We call this the "compound-subquery flattening".
4260 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
4261 Select *pNew;
4262 ExprList *pOrderBy = p->pOrderBy;
4263 Expr *pLimit = p->pLimit;
4264 Select *pPrior = p->pPrior;
4265 Table *pItemTab = pSubitem->pTab;
4266 pSubitem->pTab = 0;
4267 p->pOrderBy = 0;
4268 p->pPrior = 0;
4269 p->pLimit = 0;
4270 pNew = sqlite3SelectDup(db, p, 0);
4271 p->pLimit = pLimit;
4272 p->pOrderBy = pOrderBy;
4273 p->op = TK_ALL;
4274 pSubitem->pTab = pItemTab;
4275 if( pNew==0 ){
4276 p->pPrior = pPrior;
4277 }else{
4278 pNew->selId = ++pParse->nSelect;
4279 if( aCsrMap && ALWAYS(db->mallocFailed==0) ){
4280 renumberCursors(pParse, pNew, iFrom, aCsrMap);
4282 pNew->pPrior = pPrior;
4283 if( pPrior ) pPrior->pNext = pNew;
4284 pNew->pNext = p;
4285 p->pPrior = pNew;
4286 SELECTTRACE(2,pParse,p,("compound-subquery flattener"
4287 " creates %u as peer\n",pNew->selId));
4289 assert( pSubitem->pSelect==0 );
4291 sqlite3DbFree(db, aCsrMap);
4292 if( db->mallocFailed ){
4293 pSubitem->pSelect = pSub1;
4294 return 1;
4297 /* Defer deleting the Table object associated with the
4298 ** subquery until code generation is
4299 ** complete, since there may still exist Expr.pTab entries that
4300 ** refer to the subquery even after flattening. Ticket #3346.
4302 ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
4304 if( ALWAYS(pSubitem->pTab!=0) ){
4305 Table *pTabToDel = pSubitem->pTab;
4306 if( pTabToDel->nTabRef==1 ){
4307 Parse *pToplevel = sqlite3ParseToplevel(pParse);
4308 sqlite3ParserAddCleanup(pToplevel,
4309 (void(*)(sqlite3*,void*))sqlite3DeleteTable,
4310 pTabToDel);
4311 testcase( pToplevel->earlyCleanup );
4312 }else{
4313 pTabToDel->nTabRef--;
4315 pSubitem->pTab = 0;
4318 /* The following loop runs once for each term in a compound-subquery
4319 ** flattening (as described above). If we are doing a different kind
4320 ** of flattening - a flattening other than a compound-subquery flattening -
4321 ** then this loop only runs once.
4323 ** This loop moves all of the FROM elements of the subquery into the
4324 ** the FROM clause of the outer query. Before doing this, remember
4325 ** the cursor number for the original outer query FROM element in
4326 ** iParent. The iParent cursor will never be used. Subsequent code
4327 ** will scan expressions looking for iParent references and replace
4328 ** those references with expressions that resolve to the subquery FROM
4329 ** elements we are now copying in.
4331 pSub = pSub1;
4332 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
4333 int nSubSrc;
4334 u8 jointype = 0;
4335 assert( pSub!=0 );
4336 pSubSrc = pSub->pSrc; /* FROM clause of subquery */
4337 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */
4338 pSrc = pParent->pSrc; /* FROM clause of the outer query */
4340 if( pParent==p ){
4341 jointype = pSubitem->fg.jointype; /* First time through the loop */
4344 /* The subquery uses a single slot of the FROM clause of the outer
4345 ** query. If the subquery has more than one element in its FROM clause,
4346 ** then expand the outer query to make space for it to hold all elements
4347 ** of the subquery.
4349 ** Example:
4351 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
4353 ** The outer query has 3 slots in its FROM clause. One slot of the
4354 ** outer query (the middle slot) is used by the subquery. The next
4355 ** block of code will expand the outer query FROM clause to 4 slots.
4356 ** The middle slot is expanded to two slots in order to make space
4357 ** for the two elements in the FROM clause of the subquery.
4359 if( nSubSrc>1 ){
4360 pSrc = sqlite3SrcListEnlarge(pParse, pSrc, nSubSrc-1,iFrom+1);
4361 if( pSrc==0 ) break;
4362 pParent->pSrc = pSrc;
4365 /* Transfer the FROM clause terms from the subquery into the
4366 ** outer query.
4368 for(i=0; i<nSubSrc; i++){
4369 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
4370 assert( pSrc->a[i+iFrom].fg.isTabFunc==0 );
4371 pSrc->a[i+iFrom] = pSubSrc->a[i];
4372 iNewParent = pSubSrc->a[i].iCursor;
4373 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
4375 pSrc->a[iFrom].fg.jointype = jointype;
4377 /* Now begin substituting subquery result set expressions for
4378 ** references to the iParent in the outer query.
4380 ** Example:
4382 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
4383 ** \ \_____________ subquery __________/ /
4384 ** \_____________________ outer query ______________________________/
4386 ** We look at every expression in the outer query and every place we see
4387 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
4389 if( pSub->pOrderBy && (pParent->selFlags & SF_NoopOrderBy)==0 ){
4390 /* At this point, any non-zero iOrderByCol values indicate that the
4391 ** ORDER BY column expression is identical to the iOrderByCol'th
4392 ** expression returned by SELECT statement pSub. Since these values
4393 ** do not necessarily correspond to columns in SELECT statement pParent,
4394 ** zero them before transfering the ORDER BY clause.
4396 ** Not doing this may cause an error if a subsequent call to this
4397 ** function attempts to flatten a compound sub-query into pParent
4398 ** (the only way this can happen is if the compound sub-query is
4399 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */
4400 ExprList *pOrderBy = pSub->pOrderBy;
4401 for(i=0; i<pOrderBy->nExpr; i++){
4402 pOrderBy->a[i].u.x.iOrderByCol = 0;
4404 assert( pParent->pOrderBy==0 );
4405 pParent->pOrderBy = pOrderBy;
4406 pSub->pOrderBy = 0;
4408 pWhere = pSub->pWhere;
4409 pSub->pWhere = 0;
4410 if( isLeftJoin>0 ){
4411 sqlite3SetJoinExpr(pWhere, iNewParent);
4413 if( pWhere ){
4414 if( pParent->pWhere ){
4415 pParent->pWhere = sqlite3PExpr(pParse, TK_AND, pWhere, pParent->pWhere);
4416 }else{
4417 pParent->pWhere = pWhere;
4420 if( db->mallocFailed==0 ){
4421 SubstContext x;
4422 x.pParse = pParse;
4423 x.iTable = iParent;
4424 x.iNewTable = iNewParent;
4425 x.isLeftJoin = isLeftJoin;
4426 x.pEList = pSub->pEList;
4427 substSelect(&x, pParent, 0);
4430 /* The flattened query is a compound if either the inner or the
4431 ** outer query is a compound. */
4432 pParent->selFlags |= pSub->selFlags & SF_Compound;
4433 assert( (pSub->selFlags & SF_Distinct)==0 ); /* restriction (17b) */
4436 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
4438 ** One is tempted to try to add a and b to combine the limits. But this
4439 ** does not work if either limit is negative.
4441 if( pSub->pLimit ){
4442 pParent->pLimit = pSub->pLimit;
4443 pSub->pLimit = 0;
4446 /* Recompute the SrcList_item.colUsed masks for the flattened
4447 ** tables. */
4448 for(i=0; i<nSubSrc; i++){
4449 recomputeColumnsUsed(pParent, &pSrc->a[i+iFrom]);
4453 /* Finially, delete what is left of the subquery and return
4454 ** success.
4456 sqlite3AggInfoPersistWalkerInit(&w, pParse);
4457 sqlite3WalkSelect(&w,pSub1);
4458 sqlite3SelectDelete(db, pSub1);
4460 #if SELECTTRACE_ENABLED
4461 if( sqlite3SelectTrace & 0x100 ){
4462 SELECTTRACE(0x100,pParse,p,("After flattening:\n"));
4463 sqlite3TreeViewSelect(0, p, 0);
4465 #endif
4467 return 1;
4469 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4472 ** A structure to keep track of all of the column values that are fixed to
4473 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE.
4475 typedef struct WhereConst WhereConst;
4476 struct WhereConst {
4477 Parse *pParse; /* Parsing context */
4478 u8 *pOomFault; /* Pointer to pParse->db->mallocFailed */
4479 int nConst; /* Number for COLUMN=CONSTANT terms */
4480 int nChng; /* Number of times a constant is propagated */
4481 int bHasAffBlob; /* At least one column in apExpr[] as affinity BLOB */
4482 Expr **apExpr; /* [i*2] is COLUMN and [i*2+1] is VALUE */
4486 ** Add a new entry to the pConst object. Except, do not add duplicate
4487 ** pColumn entires. Also, do not add if doing so would not be appropriate.
4489 ** The caller guarantees the pColumn is a column and pValue is a constant.
4490 ** This routine has to do some additional checks before completing the
4491 ** insert.
4493 static void constInsert(
4494 WhereConst *pConst, /* The WhereConst into which we are inserting */
4495 Expr *pColumn, /* The COLUMN part of the constraint */
4496 Expr *pValue, /* The VALUE part of the constraint */
4497 Expr *pExpr /* Overall expression: COLUMN=VALUE or VALUE=COLUMN */
4499 int i;
4500 assert( pColumn->op==TK_COLUMN );
4501 assert( sqlite3ExprIsConstant(pValue) );
4503 if( ExprHasProperty(pColumn, EP_FixedCol) ) return;
4504 if( sqlite3ExprAffinity(pValue)!=0 ) return;
4505 if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst->pParse,pExpr)) ){
4506 return;
4509 /* 2018-10-25 ticket [cf5ed20f]
4510 ** Make sure the same pColumn is not inserted more than once */
4511 for(i=0; i<pConst->nConst; i++){
4512 const Expr *pE2 = pConst->apExpr[i*2];
4513 assert( pE2->op==TK_COLUMN );
4514 if( pE2->iTable==pColumn->iTable
4515 && pE2->iColumn==pColumn->iColumn
4517 return; /* Already present. Return without doing anything. */
4520 if( sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){
4521 pConst->bHasAffBlob = 1;
4524 pConst->nConst++;
4525 pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr,
4526 pConst->nConst*2*sizeof(Expr*));
4527 if( pConst->apExpr==0 ){
4528 pConst->nConst = 0;
4529 }else{
4530 pConst->apExpr[pConst->nConst*2-2] = pColumn;
4531 pConst->apExpr[pConst->nConst*2-1] = pValue;
4536 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE
4537 ** is a constant expression and where the term must be true because it
4538 ** is part of the AND-connected terms of the expression. For each term
4539 ** found, add it to the pConst structure.
4541 static void findConstInWhere(WhereConst *pConst, Expr *pExpr){
4542 Expr *pRight, *pLeft;
4543 if( NEVER(pExpr==0) ) return;
4544 if( ExprHasProperty(pExpr, EP_FromJoin) ) return;
4545 if( pExpr->op==TK_AND ){
4546 findConstInWhere(pConst, pExpr->pRight);
4547 findConstInWhere(pConst, pExpr->pLeft);
4548 return;
4550 if( pExpr->op!=TK_EQ ) return;
4551 pRight = pExpr->pRight;
4552 pLeft = pExpr->pLeft;
4553 assert( pRight!=0 );
4554 assert( pLeft!=0 );
4555 if( pRight->op==TK_COLUMN && sqlite3ExprIsConstant(pLeft) ){
4556 constInsert(pConst,pRight,pLeft,pExpr);
4558 if( pLeft->op==TK_COLUMN && sqlite3ExprIsConstant(pRight) ){
4559 constInsert(pConst,pLeft,pRight,pExpr);
4564 ** This is a helper function for Walker callback propagateConstantExprRewrite().
4566 ** Argument pExpr is a candidate expression to be replaced by a value. If
4567 ** pExpr is equivalent to one of the columns named in pWalker->u.pConst,
4568 ** then overwrite it with the corresponding value. Except, do not do so
4569 ** if argument bIgnoreAffBlob is non-zero and the affinity of pExpr
4570 ** is SQLITE_AFF_BLOB.
4572 static int propagateConstantExprRewriteOne(
4573 WhereConst *pConst,
4574 Expr *pExpr,
4575 int bIgnoreAffBlob
4577 int i;
4578 if( pConst->pOomFault[0] ) return WRC_Prune;
4579 if( pExpr->op!=TK_COLUMN ) return WRC_Continue;
4580 if( ExprHasProperty(pExpr, EP_FixedCol|EP_FromJoin) ){
4581 testcase( ExprHasProperty(pExpr, EP_FixedCol) );
4582 testcase( ExprHasProperty(pExpr, EP_FromJoin) );
4583 return WRC_Continue;
4585 for(i=0; i<pConst->nConst; i++){
4586 Expr *pColumn = pConst->apExpr[i*2];
4587 if( pColumn==pExpr ) continue;
4588 if( pColumn->iTable!=pExpr->iTable ) continue;
4589 if( pColumn->iColumn!=pExpr->iColumn ) continue;
4590 if( bIgnoreAffBlob && sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){
4591 break;
4593 /* A match is found. Add the EP_FixedCol property */
4594 pConst->nChng++;
4595 ExprClearProperty(pExpr, EP_Leaf);
4596 ExprSetProperty(pExpr, EP_FixedCol);
4597 assert( pExpr->pLeft==0 );
4598 pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0);
4599 if( pConst->pParse->db->mallocFailed ) return WRC_Prune;
4600 break;
4602 return WRC_Prune;
4606 ** This is a Walker expression callback. pExpr is a node from the WHERE
4607 ** clause of a SELECT statement. This function examines pExpr to see if
4608 ** any substitutions based on the contents of pWalker->u.pConst should
4609 ** be made to pExpr or its immediate children.
4611 ** A substitution is made if:
4613 ** + pExpr is a column with an affinity other than BLOB that matches
4614 ** one of the columns in pWalker->u.pConst, or
4616 ** + pExpr is a binary comparison operator (=, <=, >=, <, >) that
4617 ** uses an affinity other than TEXT and one of its immediate
4618 ** children is a column that matches one of the columns in
4619 ** pWalker->u.pConst.
4621 static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){
4622 WhereConst *pConst = pWalker->u.pConst;
4623 assert( TK_GT==TK_EQ+1 );
4624 assert( TK_LE==TK_EQ+2 );
4625 assert( TK_LT==TK_EQ+3 );
4626 assert( TK_GE==TK_EQ+4 );
4627 if( pConst->bHasAffBlob ){
4628 if( (pExpr->op>=TK_EQ && pExpr->op<=TK_GE)
4629 || pExpr->op==TK_IS
4631 propagateConstantExprRewriteOne(pConst, pExpr->pLeft, 0);
4632 if( pConst->pOomFault[0] ) return WRC_Prune;
4633 if( sqlite3ExprAffinity(pExpr->pLeft)!=SQLITE_AFF_TEXT ){
4634 propagateConstantExprRewriteOne(pConst, pExpr->pRight, 0);
4638 return propagateConstantExprRewriteOne(pConst, pExpr, pConst->bHasAffBlob);
4642 ** The WHERE-clause constant propagation optimization.
4644 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or
4645 ** CONSTANT=COLUMN that are top-level AND-connected terms that are not
4646 ** part of a ON clause from a LEFT JOIN, then throughout the query
4647 ** replace all other occurrences of COLUMN with CONSTANT.
4649 ** For example, the query:
4651 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b
4653 ** Is transformed into
4655 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39
4657 ** Return true if any transformations where made and false if not.
4659 ** Implementation note: Constant propagation is tricky due to affinity
4660 ** and collating sequence interactions. Consider this example:
4662 ** CREATE TABLE t1(a INT,b TEXT);
4663 ** INSERT INTO t1 VALUES(123,'0123');
4664 ** SELECT * FROM t1 WHERE a=123 AND b=a;
4665 ** SELECT * FROM t1 WHERE a=123 AND b=123;
4667 ** The two SELECT statements above should return different answers. b=a
4668 ** is alway true because the comparison uses numeric affinity, but b=123
4669 ** is false because it uses text affinity and '0123' is not the same as '123'.
4670 ** To work around this, the expression tree is not actually changed from
4671 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol
4672 ** and the "123" value is hung off of the pLeft pointer. Code generator
4673 ** routines know to generate the constant "123" instead of looking up the
4674 ** column value. Also, to avoid collation problems, this optimization is
4675 ** only attempted if the "a=123" term uses the default BINARY collation.
4677 ** 2021-05-25 forum post 6a06202608: Another troublesome case is...
4679 ** CREATE TABLE t1(x);
4680 ** INSERT INTO t1 VALUES(10.0);
4681 ** SELECT 1 FROM t1 WHERE x=10 AND x LIKE 10;
4683 ** The query should return no rows, because the t1.x value is '10.0' not '10'
4684 ** and '10.0' is not LIKE '10'. But if we are not careful, the first WHERE
4685 ** term "x=10" will cause the second WHERE term to become "10 LIKE 10",
4686 ** resulting in a false positive. To avoid this, constant propagation for
4687 ** columns with BLOB affinity is only allowed if the constant is used with
4688 ** operators ==, <=, <, >=, >, or IS in a way that will cause the correct
4689 ** type conversions to occur. See logic associated with the bHasAffBlob flag
4690 ** for details.
4692 static int propagateConstants(
4693 Parse *pParse, /* The parsing context */
4694 Select *p /* The query in which to propagate constants */
4696 WhereConst x;
4697 Walker w;
4698 int nChng = 0;
4699 x.pParse = pParse;
4700 x.pOomFault = &pParse->db->mallocFailed;
4702 x.nConst = 0;
4703 x.nChng = 0;
4704 x.apExpr = 0;
4705 x.bHasAffBlob = 0;
4706 findConstInWhere(&x, p->pWhere);
4707 if( x.nConst ){
4708 memset(&w, 0, sizeof(w));
4709 w.pParse = pParse;
4710 w.xExprCallback = propagateConstantExprRewrite;
4711 w.xSelectCallback = sqlite3SelectWalkNoop;
4712 w.xSelectCallback2 = 0;
4713 w.walkerDepth = 0;
4714 w.u.pConst = &x;
4715 sqlite3WalkExpr(&w, p->pWhere);
4716 sqlite3DbFree(x.pParse->db, x.apExpr);
4717 nChng += x.nChng;
4719 }while( x.nChng );
4720 return nChng;
4723 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4724 # if !defined(SQLITE_OMIT_WINDOWFUNC)
4726 ** This function is called to determine whether or not it is safe to
4727 ** push WHERE clause expression pExpr down to FROM clause sub-query
4728 ** pSubq, which contains at least one window function. Return 1
4729 ** if it is safe and the expression should be pushed down, or 0
4730 ** otherwise.
4732 ** It is only safe to push the expression down if it consists only
4733 ** of constants and copies of expressions that appear in the PARTITION
4734 ** BY clause of all window function used by the sub-query. It is safe
4735 ** to filter out entire partitions, but not rows within partitions, as
4736 ** this may change the results of the window functions.
4738 ** At the time this function is called it is guaranteed that
4740 ** * the sub-query uses only one distinct window frame, and
4741 ** * that the window frame has a PARTITION BY clase.
4743 static int pushDownWindowCheck(Parse *pParse, Select *pSubq, Expr *pExpr){
4744 assert( pSubq->pWin->pPartition );
4745 assert( (pSubq->selFlags & SF_MultiPart)==0 );
4746 assert( pSubq->pPrior==0 );
4747 return sqlite3ExprIsConstantOrGroupBy(pParse, pExpr, pSubq->pWin->pPartition);
4749 # endif /* SQLITE_OMIT_WINDOWFUNC */
4750 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4752 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4754 ** Make copies of relevant WHERE clause terms of the outer query into
4755 ** the WHERE clause of subquery. Example:
4757 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
4759 ** Transformed into:
4761 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
4762 ** WHERE x=5 AND y=10;
4764 ** The hope is that the terms added to the inner query will make it more
4765 ** efficient.
4767 ** Do not attempt this optimization if:
4769 ** (1) (** This restriction was removed on 2017-09-29. We used to
4770 ** disallow this optimization for aggregate subqueries, but now
4771 ** it is allowed by putting the extra terms on the HAVING clause.
4772 ** The added HAVING clause is pointless if the subquery lacks
4773 ** a GROUP BY clause. But such a HAVING clause is also harmless
4774 ** so there does not appear to be any reason to add extra logic
4775 ** to suppress it. **)
4777 ** (2) The inner query is the recursive part of a common table expression.
4779 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE
4780 ** clause would change the meaning of the LIMIT).
4782 ** (4) The inner query is the right operand of a LEFT JOIN and the
4783 ** expression to be pushed down does not come from the ON clause
4784 ** on that LEFT JOIN.
4786 ** (5) The WHERE clause expression originates in the ON or USING clause
4787 ** of a LEFT JOIN where iCursor is not the right-hand table of that
4788 ** left join. An example:
4790 ** SELECT *
4791 ** FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa
4792 ** JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2)
4793 ** LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2);
4795 ** The correct answer is three rows: (1,1,NULL),(2,2,8),(2,2,9).
4796 ** But if the (b2=2) term were to be pushed down into the bb subquery,
4797 ** then the (1,1,NULL) row would be suppressed.
4799 ** (6) Window functions make things tricky as changes to the WHERE clause
4800 ** of the inner query could change the window over which window
4801 ** functions are calculated. Therefore, do not attempt the optimization
4802 ** if:
4804 ** (6a) The inner query uses multiple incompatible window partitions.
4806 ** (6b) The inner query is a compound and uses window-functions.
4808 ** (6c) The WHERE clause does not consist entirely of constants and
4809 ** copies of expressions found in the PARTITION BY clause of
4810 ** all window-functions used by the sub-query. It is safe to
4811 ** filter out entire partitions, as this does not change the
4812 ** window over which any window-function is calculated.
4814 ** (7) The inner query is a Common Table Expression (CTE) that should
4815 ** be materialized. (This restriction is implemented in the calling
4816 ** routine.)
4818 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
4819 ** terms are duplicated into the subquery.
4821 static int pushDownWhereTerms(
4822 Parse *pParse, /* Parse context (for malloc() and error reporting) */
4823 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */
4824 Expr *pWhere, /* The WHERE clause of the outer query */
4825 int iCursor, /* Cursor number of the subquery */
4826 int isLeftJoin /* True if pSubq is the right term of a LEFT JOIN */
4828 Expr *pNew;
4829 int nChng = 0;
4830 if( pWhere==0 ) return 0;
4831 if( pSubq->selFlags & (SF_Recursive|SF_MultiPart) ) return 0;
4833 #ifndef SQLITE_OMIT_WINDOWFUNC
4834 if( pSubq->pPrior ){
4835 Select *pSel;
4836 for(pSel=pSubq; pSel; pSel=pSel->pPrior){
4837 if( pSel->pWin ) return 0; /* restriction (6b) */
4839 }else{
4840 if( pSubq->pWin && pSubq->pWin->pPartition==0 ) return 0;
4842 #endif
4844 #ifdef SQLITE_DEBUG
4845 /* Only the first term of a compound can have a WITH clause. But make
4846 ** sure no other terms are marked SF_Recursive in case something changes
4847 ** in the future.
4850 Select *pX;
4851 for(pX=pSubq; pX; pX=pX->pPrior){
4852 assert( (pX->selFlags & (SF_Recursive))==0 );
4855 #endif
4857 if( pSubq->pLimit!=0 ){
4858 return 0; /* restriction (3) */
4860 while( pWhere->op==TK_AND ){
4861 nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight,
4862 iCursor, isLeftJoin);
4863 pWhere = pWhere->pLeft;
4865 if( isLeftJoin
4866 && (ExprHasProperty(pWhere,EP_FromJoin)==0
4867 || pWhere->w.iRightJoinTable!=iCursor)
4869 return 0; /* restriction (4) */
4871 if( ExprHasProperty(pWhere,EP_FromJoin)
4872 && pWhere->w.iRightJoinTable!=iCursor
4874 return 0; /* restriction (5) */
4876 if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){
4877 nChng++;
4878 pSubq->selFlags |= SF_PushDown;
4879 while( pSubq ){
4880 SubstContext x;
4881 pNew = sqlite3ExprDup(pParse->db, pWhere, 0);
4882 unsetJoinExpr(pNew, -1);
4883 x.pParse = pParse;
4884 x.iTable = iCursor;
4885 x.iNewTable = iCursor;
4886 x.isLeftJoin = 0;
4887 x.pEList = pSubq->pEList;
4888 pNew = substExpr(&x, pNew);
4889 #ifndef SQLITE_OMIT_WINDOWFUNC
4890 if( pSubq->pWin && 0==pushDownWindowCheck(pParse, pSubq, pNew) ){
4891 /* Restriction 6c has prevented push-down in this case */
4892 sqlite3ExprDelete(pParse->db, pNew);
4893 nChng--;
4894 break;
4896 #endif
4897 if( pSubq->selFlags & SF_Aggregate ){
4898 pSubq->pHaving = sqlite3ExprAnd(pParse, pSubq->pHaving, pNew);
4899 }else{
4900 pSubq->pWhere = sqlite3ExprAnd(pParse, pSubq->pWhere, pNew);
4902 pSubq = pSubq->pPrior;
4905 return nChng;
4907 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4910 ** The pFunc is the only aggregate function in the query. Check to see
4911 ** if the query is a candidate for the min/max optimization.
4913 ** If the query is a candidate for the min/max optimization, then set
4914 ** *ppMinMax to be an ORDER BY clause to be used for the optimization
4915 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on
4916 ** whether pFunc is a min() or max() function.
4918 ** If the query is not a candidate for the min/max optimization, return
4919 ** WHERE_ORDERBY_NORMAL (which must be zero).
4921 ** This routine must be called after aggregate functions have been
4922 ** located but before their arguments have been subjected to aggregate
4923 ** analysis.
4925 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){
4926 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */
4927 ExprList *pEList; /* Arguments to agg function */
4928 const char *zFunc; /* Name of aggregate function pFunc */
4929 ExprList *pOrderBy;
4930 u8 sortFlags = 0;
4932 assert( *ppMinMax==0 );
4933 assert( pFunc->op==TK_AGG_FUNCTION );
4934 assert( !IsWindowFunc(pFunc) );
4935 assert( ExprUseXList(pFunc) );
4936 pEList = pFunc->x.pList;
4937 if( pEList==0
4938 || pEList->nExpr!=1
4939 || ExprHasProperty(pFunc, EP_WinFunc)
4940 || OptimizationDisabled(db, SQLITE_MinMaxOpt)
4942 return eRet;
4944 assert( !ExprHasProperty(pFunc, EP_IntValue) );
4945 zFunc = pFunc->u.zToken;
4946 if( sqlite3StrICmp(zFunc, "min")==0 ){
4947 eRet = WHERE_ORDERBY_MIN;
4948 if( sqlite3ExprCanBeNull(pEList->a[0].pExpr) ){
4949 sortFlags = KEYINFO_ORDER_BIGNULL;
4951 }else if( sqlite3StrICmp(zFunc, "max")==0 ){
4952 eRet = WHERE_ORDERBY_MAX;
4953 sortFlags = KEYINFO_ORDER_DESC;
4954 }else{
4955 return eRet;
4957 *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0);
4958 assert( pOrderBy!=0 || db->mallocFailed );
4959 if( pOrderBy ) pOrderBy->a[0].sortFlags = sortFlags;
4960 return eRet;
4964 ** The select statement passed as the first argument is an aggregate query.
4965 ** The second argument is the associated aggregate-info object. This
4966 ** function tests if the SELECT is of the form:
4968 ** SELECT count(*) FROM <tbl>
4970 ** where table is a database table, not a sub-select or view. If the query
4971 ** does match this pattern, then a pointer to the Table object representing
4972 ** <tbl> is returned. Otherwise, NULL is returned.
4974 ** This routine checks to see if it is safe to use the count optimization.
4975 ** A correct answer is still obtained (though perhaps more slowly) if
4976 ** this routine returns NULL when it could have returned a table pointer.
4977 ** But returning the pointer when NULL should have been returned can
4978 ** result in incorrect answers and/or crashes. So, when in doubt, return NULL.
4980 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
4981 Table *pTab;
4982 Expr *pExpr;
4984 assert( !p->pGroupBy );
4986 if( p->pWhere
4987 || p->pEList->nExpr!=1
4988 || p->pSrc->nSrc!=1
4989 || p->pSrc->a[0].pSelect
4990 || pAggInfo->nFunc!=1
4992 return 0;
4994 pTab = p->pSrc->a[0].pTab;
4995 assert( pTab!=0 );
4996 assert( !IsView(pTab) );
4997 if( !IsOrdinaryTable(pTab) ) return 0;
4998 pExpr = p->pEList->a[0].pExpr;
4999 assert( pExpr!=0 );
5000 if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
5001 if( pExpr->pAggInfo!=pAggInfo ) return 0;
5002 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
5003 assert( pAggInfo->aFunc[0].pFExpr==pExpr );
5004 testcase( ExprHasProperty(pExpr, EP_Distinct) );
5005 testcase( ExprHasProperty(pExpr, EP_WinFunc) );
5006 if( ExprHasProperty(pExpr, EP_Distinct|EP_WinFunc) ) return 0;
5008 return pTab;
5012 ** If the source-list item passed as an argument was augmented with an
5013 ** INDEXED BY clause, then try to locate the specified index. If there
5014 ** was such a clause and the named index cannot be found, return
5015 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
5016 ** pFrom->pIndex and return SQLITE_OK.
5018 int sqlite3IndexedByLookup(Parse *pParse, SrcItem *pFrom){
5019 Table *pTab = pFrom->pTab;
5020 char *zIndexedBy = pFrom->u1.zIndexedBy;
5021 Index *pIdx;
5022 assert( pTab!=0 );
5023 assert( pFrom->fg.isIndexedBy!=0 );
5025 for(pIdx=pTab->pIndex;
5026 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy);
5027 pIdx=pIdx->pNext
5029 if( !pIdx ){
5030 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0);
5031 pParse->checkSchema = 1;
5032 return SQLITE_ERROR;
5034 assert( pFrom->fg.isCte==0 );
5035 pFrom->u2.pIBIndex = pIdx;
5036 return SQLITE_OK;
5040 ** Detect compound SELECT statements that use an ORDER BY clause with
5041 ** an alternative collating sequence.
5043 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
5045 ** These are rewritten as a subquery:
5047 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
5048 ** ORDER BY ... COLLATE ...
5050 ** This transformation is necessary because the multiSelectOrderBy() routine
5051 ** above that generates the code for a compound SELECT with an ORDER BY clause
5052 ** uses a merge algorithm that requires the same collating sequence on the
5053 ** result columns as on the ORDER BY clause. See ticket
5054 ** http://www.sqlite.org/src/info/6709574d2a
5056 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
5057 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
5058 ** there are COLLATE terms in the ORDER BY.
5060 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
5061 int i;
5062 Select *pNew;
5063 Select *pX;
5064 sqlite3 *db;
5065 struct ExprList_item *a;
5066 SrcList *pNewSrc;
5067 Parse *pParse;
5068 Token dummy;
5070 if( p->pPrior==0 ) return WRC_Continue;
5071 if( p->pOrderBy==0 ) return WRC_Continue;
5072 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
5073 if( pX==0 ) return WRC_Continue;
5074 a = p->pOrderBy->a;
5075 #ifndef SQLITE_OMIT_WINDOWFUNC
5076 /* If iOrderByCol is already non-zero, then it has already been matched
5077 ** to a result column of the SELECT statement. This occurs when the
5078 ** SELECT is rewritten for window-functions processing and then passed
5079 ** to sqlite3SelectPrep() and similar a second time. The rewriting done
5080 ** by this function is not required in this case. */
5081 if( a[0].u.x.iOrderByCol ) return WRC_Continue;
5082 #endif
5083 for(i=p->pOrderBy->nExpr-1; i>=0; i--){
5084 if( a[i].pExpr->flags & EP_Collate ) break;
5086 if( i<0 ) return WRC_Continue;
5088 /* If we reach this point, that means the transformation is required. */
5090 pParse = pWalker->pParse;
5091 db = pParse->db;
5092 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
5093 if( pNew==0 ) return WRC_Abort;
5094 memset(&dummy, 0, sizeof(dummy));
5095 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0);
5096 if( pNewSrc==0 ) return WRC_Abort;
5097 *pNew = *p;
5098 p->pSrc = pNewSrc;
5099 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0));
5100 p->op = TK_SELECT;
5101 p->pWhere = 0;
5102 pNew->pGroupBy = 0;
5103 pNew->pHaving = 0;
5104 pNew->pOrderBy = 0;
5105 p->pPrior = 0;
5106 p->pNext = 0;
5107 p->pWith = 0;
5108 #ifndef SQLITE_OMIT_WINDOWFUNC
5109 p->pWinDefn = 0;
5110 #endif
5111 p->selFlags &= ~SF_Compound;
5112 assert( (p->selFlags & SF_Converted)==0 );
5113 p->selFlags |= SF_Converted;
5114 assert( pNew->pPrior!=0 );
5115 pNew->pPrior->pNext = pNew;
5116 pNew->pLimit = 0;
5117 return WRC_Continue;
5121 ** Check to see if the FROM clause term pFrom has table-valued function
5122 ** arguments. If it does, leave an error message in pParse and return
5123 ** non-zero, since pFrom is not allowed to be a table-valued function.
5125 static int cannotBeFunction(Parse *pParse, SrcItem *pFrom){
5126 if( pFrom->fg.isTabFunc ){
5127 sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName);
5128 return 1;
5130 return 0;
5133 #ifndef SQLITE_OMIT_CTE
5135 ** Argument pWith (which may be NULL) points to a linked list of nested
5136 ** WITH contexts, from inner to outermost. If the table identified by
5137 ** FROM clause element pItem is really a common-table-expression (CTE)
5138 ** then return a pointer to the CTE definition for that table. Otherwise
5139 ** return NULL.
5141 ** If a non-NULL value is returned, set *ppContext to point to the With
5142 ** object that the returned CTE belongs to.
5144 static struct Cte *searchWith(
5145 With *pWith, /* Current innermost WITH clause */
5146 SrcItem *pItem, /* FROM clause element to resolve */
5147 With **ppContext /* OUT: WITH clause return value belongs to */
5149 const char *zName = pItem->zName;
5150 With *p;
5151 assert( pItem->zDatabase==0 );
5152 assert( zName!=0 );
5153 for(p=pWith; p; p=p->pOuter){
5154 int i;
5155 for(i=0; i<p->nCte; i++){
5156 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
5157 *ppContext = p;
5158 return &p->a[i];
5161 if( p->bView ) break;
5163 return 0;
5166 /* The code generator maintains a stack of active WITH clauses
5167 ** with the inner-most WITH clause being at the top of the stack.
5169 ** This routine pushes the WITH clause passed as the second argument
5170 ** onto the top of the stack. If argument bFree is true, then this
5171 ** WITH clause will never be popped from the stack but should instead
5172 ** be freed along with the Parse object. In other cases, when
5173 ** bFree==0, the With object will be freed along with the SELECT
5174 ** statement with which it is associated.
5176 ** This routine returns a copy of pWith. Or, if bFree is true and
5177 ** the pWith object is destroyed immediately due to an OOM condition,
5178 ** then this routine return NULL.
5180 ** If bFree is true, do not continue to use the pWith pointer after
5181 ** calling this routine, Instead, use only the return value.
5183 With *sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
5184 if( pWith ){
5185 if( bFree ){
5186 pWith = (With*)sqlite3ParserAddCleanup(pParse,
5187 (void(*)(sqlite3*,void*))sqlite3WithDelete,
5188 pWith);
5189 if( pWith==0 ) return 0;
5191 if( pParse->nErr==0 ){
5192 assert( pParse->pWith!=pWith );
5193 pWith->pOuter = pParse->pWith;
5194 pParse->pWith = pWith;
5197 return pWith;
5201 ** This function checks if argument pFrom refers to a CTE declared by
5202 ** a WITH clause on the stack currently maintained by the parser (on the
5203 ** pParse->pWith linked list). And if currently processing a CTE
5204 ** CTE expression, through routine checks to see if the reference is
5205 ** a recursive reference to the CTE.
5207 ** If pFrom matches a CTE according to either of these two above, pFrom->pTab
5208 ** and other fields are populated accordingly.
5210 ** Return 0 if no match is found.
5211 ** Return 1 if a match is found.
5212 ** Return 2 if an error condition is detected.
5214 static int resolveFromTermToCte(
5215 Parse *pParse, /* The parsing context */
5216 Walker *pWalker, /* Current tree walker */
5217 SrcItem *pFrom /* The FROM clause term to check */
5219 Cte *pCte; /* Matched CTE (or NULL if no match) */
5220 With *pWith; /* The matching WITH */
5222 assert( pFrom->pTab==0 );
5223 if( pParse->pWith==0 ){
5224 /* There are no WITH clauses in the stack. No match is possible */
5225 return 0;
5227 if( pParse->nErr ){
5228 /* Prior errors might have left pParse->pWith in a goofy state, so
5229 ** go no further. */
5230 return 0;
5232 if( pFrom->zDatabase!=0 ){
5233 /* The FROM term contains a schema qualifier (ex: main.t1) and so
5234 ** it cannot possibly be a CTE reference. */
5235 return 0;
5237 if( pFrom->fg.notCte ){
5238 /* The FROM term is specifically excluded from matching a CTE.
5239 ** (1) It is part of a trigger that used to have zDatabase but had
5240 ** zDatabase removed by sqlite3FixTriggerStep().
5241 ** (2) This is the first term in the FROM clause of an UPDATE.
5243 return 0;
5245 pCte = searchWith(pParse->pWith, pFrom, &pWith);
5246 if( pCte ){
5247 sqlite3 *db = pParse->db;
5248 Table *pTab;
5249 ExprList *pEList;
5250 Select *pSel;
5251 Select *pLeft; /* Left-most SELECT statement */
5252 Select *pRecTerm; /* Left-most recursive term */
5253 int bMayRecursive; /* True if compound joined by UNION [ALL] */
5254 With *pSavedWith; /* Initial value of pParse->pWith */
5255 int iRecTab = -1; /* Cursor for recursive table */
5256 CteUse *pCteUse;
5258 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
5259 ** recursive reference to CTE pCte. Leave an error in pParse and return
5260 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
5261 ** In this case, proceed. */
5262 if( pCte->zCteErr ){
5263 sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName);
5264 return 2;
5266 if( cannotBeFunction(pParse, pFrom) ) return 2;
5268 assert( pFrom->pTab==0 );
5269 pTab = sqlite3DbMallocZero(db, sizeof(Table));
5270 if( pTab==0 ) return 2;
5271 pCteUse = pCte->pUse;
5272 if( pCteUse==0 ){
5273 pCte->pUse = pCteUse = sqlite3DbMallocZero(db, sizeof(pCteUse[0]));
5274 if( pCteUse==0
5275 || sqlite3ParserAddCleanup(pParse,sqlite3DbFree,pCteUse)==0
5277 sqlite3DbFree(db, pTab);
5278 return 2;
5280 pCteUse->eM10d = pCte->eM10d;
5282 pFrom->pTab = pTab;
5283 pTab->nTabRef = 1;
5284 pTab->zName = sqlite3DbStrDup(db, pCte->zName);
5285 pTab->iPKey = -1;
5286 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
5287 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
5288 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
5289 if( db->mallocFailed ) return 2;
5290 pFrom->pSelect->selFlags |= SF_CopyCte;
5291 assert( pFrom->pSelect );
5292 if( pFrom->fg.isIndexedBy ){
5293 sqlite3ErrorMsg(pParse, "no such index: \"%s\"", pFrom->u1.zIndexedBy);
5294 return 2;
5296 pFrom->fg.isCte = 1;
5297 pFrom->u2.pCteUse = pCteUse;
5298 pCteUse->nUse++;
5299 if( pCteUse->nUse>=2 && pCteUse->eM10d==M10d_Any ){
5300 pCteUse->eM10d = M10d_Yes;
5303 /* Check if this is a recursive CTE. */
5304 pRecTerm = pSel = pFrom->pSelect;
5305 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
5306 while( bMayRecursive && pRecTerm->op==pSel->op ){
5307 int i;
5308 SrcList *pSrc = pRecTerm->pSrc;
5309 assert( pRecTerm->pPrior!=0 );
5310 for(i=0; i<pSrc->nSrc; i++){
5311 SrcItem *pItem = &pSrc->a[i];
5312 if( pItem->zDatabase==0
5313 && pItem->zName!=0
5314 && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
5316 pItem->pTab = pTab;
5317 pTab->nTabRef++;
5318 pItem->fg.isRecursive = 1;
5319 if( pRecTerm->selFlags & SF_Recursive ){
5320 sqlite3ErrorMsg(pParse,
5321 "multiple references to recursive table: %s", pCte->zName
5323 return 2;
5325 pRecTerm->selFlags |= SF_Recursive;
5326 if( iRecTab<0 ) iRecTab = pParse->nTab++;
5327 pItem->iCursor = iRecTab;
5330 if( (pRecTerm->selFlags & SF_Recursive)==0 ) break;
5331 pRecTerm = pRecTerm->pPrior;
5334 pCte->zCteErr = "circular reference: %s";
5335 pSavedWith = pParse->pWith;
5336 pParse->pWith = pWith;
5337 if( pSel->selFlags & SF_Recursive ){
5338 int rc;
5339 assert( pRecTerm!=0 );
5340 assert( (pRecTerm->selFlags & SF_Recursive)==0 );
5341 assert( pRecTerm->pNext!=0 );
5342 assert( (pRecTerm->pNext->selFlags & SF_Recursive)!=0 );
5343 assert( pRecTerm->pWith==0 );
5344 pRecTerm->pWith = pSel->pWith;
5345 rc = sqlite3WalkSelect(pWalker, pRecTerm);
5346 pRecTerm->pWith = 0;
5347 if( rc ){
5348 pParse->pWith = pSavedWith;
5349 return 2;
5351 }else{
5352 if( sqlite3WalkSelect(pWalker, pSel) ){
5353 pParse->pWith = pSavedWith;
5354 return 2;
5357 pParse->pWith = pWith;
5359 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
5360 pEList = pLeft->pEList;
5361 if( pCte->pCols ){
5362 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
5363 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
5364 pCte->zName, pEList->nExpr, pCte->pCols->nExpr
5366 pParse->pWith = pSavedWith;
5367 return 2;
5369 pEList = pCte->pCols;
5372 sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
5373 if( bMayRecursive ){
5374 if( pSel->selFlags & SF_Recursive ){
5375 pCte->zCteErr = "multiple recursive references: %s";
5376 }else{
5377 pCte->zCteErr = "recursive reference in a subquery: %s";
5379 sqlite3WalkSelect(pWalker, pSel);
5381 pCte->zCteErr = 0;
5382 pParse->pWith = pSavedWith;
5383 return 1; /* Success */
5385 return 0; /* No match */
5387 #endif
5389 #ifndef SQLITE_OMIT_CTE
5391 ** If the SELECT passed as the second argument has an associated WITH
5392 ** clause, pop it from the stack stored as part of the Parse object.
5394 ** This function is used as the xSelectCallback2() callback by
5395 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
5396 ** names and other FROM clause elements.
5398 void sqlite3SelectPopWith(Walker *pWalker, Select *p){
5399 Parse *pParse = pWalker->pParse;
5400 if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){
5401 With *pWith = findRightmost(p)->pWith;
5402 if( pWith!=0 ){
5403 assert( pParse->pWith==pWith || pParse->nErr );
5404 pParse->pWith = pWith->pOuter;
5408 #endif
5411 ** The SrcList_item structure passed as the second argument represents a
5412 ** sub-query in the FROM clause of a SELECT statement. This function
5413 ** allocates and populates the SrcList_item.pTab object. If successful,
5414 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered,
5415 ** SQLITE_NOMEM.
5417 int sqlite3ExpandSubquery(Parse *pParse, SrcItem *pFrom){
5418 Select *pSel = pFrom->pSelect;
5419 Table *pTab;
5421 assert( pSel );
5422 pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table));
5423 if( pTab==0 ) return SQLITE_NOMEM;
5424 pTab->nTabRef = 1;
5425 if( pFrom->zAlias ){
5426 pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias);
5427 }else{
5428 pTab->zName = sqlite3MPrintf(pParse->db, "subquery_%u", pSel->selId);
5430 while( pSel->pPrior ){ pSel = pSel->pPrior; }
5431 sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol);
5432 pTab->iPKey = -1;
5433 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
5434 #ifndef SQLITE_ALLOW_ROWID_IN_VIEW
5435 /* The usual case - do not allow ROWID on a subquery */
5436 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
5437 #else
5438 pTab->tabFlags |= TF_Ephemeral; /* Legacy compatibility mode */
5439 #endif
5442 return pParse->nErr ? SQLITE_ERROR : SQLITE_OK;
5446 ** This routine is a Walker callback for "expanding" a SELECT statement.
5447 ** "Expanding" means to do the following:
5449 ** (1) Make sure VDBE cursor numbers have been assigned to every
5450 ** element of the FROM clause.
5452 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that
5453 ** defines FROM clause. When views appear in the FROM clause,
5454 ** fill pTabList->a[].pSelect with a copy of the SELECT statement
5455 ** that implements the view. A copy is made of the view's SELECT
5456 ** statement so that we can freely modify or delete that statement
5457 ** without worrying about messing up the persistent representation
5458 ** of the view.
5460 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword
5461 ** on joins and the ON and USING clause of joins.
5463 ** (4) Scan the list of columns in the result set (pEList) looking
5464 ** for instances of the "*" operator or the TABLE.* operator.
5465 ** If found, expand each "*" to be every column in every table
5466 ** and TABLE.* to be every column in TABLE.
5469 static int selectExpander(Walker *pWalker, Select *p){
5470 Parse *pParse = pWalker->pParse;
5471 int i, j, k, rc;
5472 SrcList *pTabList;
5473 ExprList *pEList;
5474 SrcItem *pFrom;
5475 sqlite3 *db = pParse->db;
5476 Expr *pE, *pRight, *pExpr;
5477 u16 selFlags = p->selFlags;
5478 u32 elistFlags = 0;
5480 p->selFlags |= SF_Expanded;
5481 if( db->mallocFailed ){
5482 return WRC_Abort;
5484 assert( p->pSrc!=0 );
5485 if( (selFlags & SF_Expanded)!=0 ){
5486 return WRC_Prune;
5488 if( pWalker->eCode ){
5489 /* Renumber selId because it has been copied from a view */
5490 p->selId = ++pParse->nSelect;
5492 pTabList = p->pSrc;
5493 pEList = p->pEList;
5494 if( pParse->pWith && (p->selFlags & SF_View) ){
5495 if( p->pWith==0 ){
5496 p->pWith = (With*)sqlite3DbMallocZero(db, sizeof(With));
5497 if( p->pWith==0 ){
5498 return WRC_Abort;
5501 p->pWith->bView = 1;
5503 sqlite3WithPush(pParse, p->pWith, 0);
5505 /* Make sure cursor numbers have been assigned to all entries in
5506 ** the FROM clause of the SELECT statement.
5508 sqlite3SrcListAssignCursors(pParse, pTabList);
5510 /* Look up every table named in the FROM clause of the select. If
5511 ** an entry of the FROM clause is a subquery instead of a table or view,
5512 ** then create a transient table structure to describe the subquery.
5514 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5515 Table *pTab;
5516 assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 );
5517 if( pFrom->pTab ) continue;
5518 assert( pFrom->fg.isRecursive==0 );
5519 if( pFrom->zName==0 ){
5520 #ifndef SQLITE_OMIT_SUBQUERY
5521 Select *pSel = pFrom->pSelect;
5522 /* A sub-query in the FROM clause of a SELECT */
5523 assert( pSel!=0 );
5524 assert( pFrom->pTab==0 );
5525 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
5526 if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort;
5527 #endif
5528 #ifndef SQLITE_OMIT_CTE
5529 }else if( (rc = resolveFromTermToCte(pParse, pWalker, pFrom))!=0 ){
5530 if( rc>1 ) return WRC_Abort;
5531 pTab = pFrom->pTab;
5532 assert( pTab!=0 );
5533 #endif
5534 }else{
5535 /* An ordinary table or view name in the FROM clause */
5536 assert( pFrom->pTab==0 );
5537 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
5538 if( pTab==0 ) return WRC_Abort;
5539 if( pTab->nTabRef>=0xffff ){
5540 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
5541 pTab->zName);
5542 pFrom->pTab = 0;
5543 return WRC_Abort;
5545 pTab->nTabRef++;
5546 if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){
5547 return WRC_Abort;
5549 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
5550 if( !IsOrdinaryTable(pTab) ){
5551 i16 nCol;
5552 u8 eCodeOrig = pWalker->eCode;
5553 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
5554 assert( pFrom->pSelect==0 );
5555 if( IsView(pTab) ){
5556 if( (db->flags & SQLITE_EnableView)==0
5557 && pTab->pSchema!=db->aDb[1].pSchema
5559 sqlite3ErrorMsg(pParse, "access to view \"%s\" prohibited",
5560 pTab->zName);
5562 pFrom->pSelect = sqlite3SelectDup(db, pTab->u.view.pSelect, 0);
5564 #ifndef SQLITE_OMIT_VIRTUALTABLE
5565 else if( ALWAYS(IsVirtual(pTab))
5566 && pFrom->fg.fromDDL
5567 && ALWAYS(pTab->u.vtab.p!=0)
5568 && pTab->u.vtab.p->eVtabRisk > ((db->flags & SQLITE_TrustedSchema)!=0)
5570 sqlite3ErrorMsg(pParse, "unsafe use of virtual table \"%s\"",
5571 pTab->zName);
5573 assert( SQLITE_VTABRISK_Normal==1 && SQLITE_VTABRISK_High==2 );
5574 #endif
5575 nCol = pTab->nCol;
5576 pTab->nCol = -1;
5577 pWalker->eCode = 1; /* Turn on Select.selId renumbering */
5578 sqlite3WalkSelect(pWalker, pFrom->pSelect);
5579 pWalker->eCode = eCodeOrig;
5580 pTab->nCol = nCol;
5582 #endif
5585 /* Locate the index named by the INDEXED BY clause, if any. */
5586 if( pFrom->fg.isIndexedBy && sqlite3IndexedByLookup(pParse, pFrom) ){
5587 return WRC_Abort;
5591 /* Process NATURAL keywords, and ON and USING clauses of joins.
5593 assert( db->mallocFailed==0 || pParse->nErr!=0 );
5594 if( pParse->nErr || sqliteProcessJoin(pParse, p) ){
5595 return WRC_Abort;
5598 /* For every "*" that occurs in the column list, insert the names of
5599 ** all columns in all tables. And for every TABLE.* insert the names
5600 ** of all columns in TABLE. The parser inserted a special expression
5601 ** with the TK_ASTERISK operator for each "*" that it found in the column
5602 ** list. The following code just has to locate the TK_ASTERISK
5603 ** expressions and expand each one to the list of all columns in
5604 ** all tables.
5606 ** The first loop just checks to see if there are any "*" operators
5607 ** that need expanding.
5609 for(k=0; k<pEList->nExpr; k++){
5610 pE = pEList->a[k].pExpr;
5611 if( pE->op==TK_ASTERISK ) break;
5612 assert( pE->op!=TK_DOT || pE->pRight!=0 );
5613 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
5614 if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break;
5615 elistFlags |= pE->flags;
5617 if( k<pEList->nExpr ){
5619 ** If we get here it means the result set contains one or more "*"
5620 ** operators that need to be expanded. Loop through each expression
5621 ** in the result set and expand them one by one.
5623 struct ExprList_item *a = pEList->a;
5624 ExprList *pNew = 0;
5625 int flags = pParse->db->flags;
5626 int longNames = (flags & SQLITE_FullColNames)!=0
5627 && (flags & SQLITE_ShortColNames)==0;
5629 for(k=0; k<pEList->nExpr; k++){
5630 pE = a[k].pExpr;
5631 elistFlags |= pE->flags;
5632 pRight = pE->pRight;
5633 assert( pE->op!=TK_DOT || pRight!=0 );
5634 if( pE->op!=TK_ASTERISK
5635 && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK)
5637 /* This particular expression does not need to be expanded.
5639 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
5640 if( pNew ){
5641 pNew->a[pNew->nExpr-1].zEName = a[k].zEName;
5642 pNew->a[pNew->nExpr-1].eEName = a[k].eEName;
5643 a[k].zEName = 0;
5645 a[k].pExpr = 0;
5646 }else{
5647 /* This expression is a "*" or a "TABLE.*" and needs to be
5648 ** expanded. */
5649 int tableSeen = 0; /* Set to 1 when TABLE matches */
5650 char *zTName = 0; /* text of name of TABLE */
5651 if( pE->op==TK_DOT ){
5652 assert( pE->pLeft!=0 );
5653 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
5654 zTName = pE->pLeft->u.zToken;
5656 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5657 Table *pTab = pFrom->pTab;
5658 Select *pSub = pFrom->pSelect;
5659 char *zTabName = pFrom->zAlias;
5660 const char *zSchemaName = 0;
5661 int iDb;
5662 if( zTabName==0 ){
5663 zTabName = pTab->zName;
5665 if( db->mallocFailed ) break;
5666 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
5667 pSub = 0;
5668 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
5669 continue;
5671 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
5672 zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*";
5674 for(j=0; j<pTab->nCol; j++){
5675 char *zName = pTab->aCol[j].zCnName;
5676 char *zColname; /* The computed column name */
5677 char *zToFree; /* Malloced string that needs to be freed */
5678 Token sColname; /* Computed column name as a token */
5680 assert( zName );
5681 if( zTName && pSub
5682 && sqlite3MatchEName(&pSub->pEList->a[j], 0, zTName, 0)==0
5684 continue;
5687 /* If a column is marked as 'hidden', omit it from the expanded
5688 ** result-set list unless the SELECT has the SF_IncludeHidden
5689 ** bit set.
5691 if( (p->selFlags & SF_IncludeHidden)==0
5692 && IsHiddenColumn(&pTab->aCol[j])
5694 continue;
5696 tableSeen = 1;
5698 if( i>0 && zTName==0 ){
5699 if( (pFrom->fg.jointype & JT_NATURAL)!=0
5700 && tableAndColumnIndex(pTabList, i, zName, 0, 0, 1)
5702 /* In a NATURAL join, omit the join columns from the
5703 ** table to the right of the join */
5704 continue;
5706 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
5707 /* In a join with a USING clause, omit columns in the
5708 ** using clause from the table on the right. */
5709 continue;
5712 pRight = sqlite3Expr(db, TK_ID, zName);
5713 zColname = zName;
5714 zToFree = 0;
5715 if( longNames || pTabList->nSrc>1 ){
5716 Expr *pLeft;
5717 pLeft = sqlite3Expr(db, TK_ID, zTabName);
5718 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight);
5719 if( zSchemaName ){
5720 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
5721 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr);
5723 if( longNames ){
5724 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
5725 zToFree = zColname;
5727 }else{
5728 pExpr = pRight;
5730 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
5731 sqlite3TokenInit(&sColname, zColname);
5732 sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
5733 if( pNew && (p->selFlags & SF_NestedFrom)!=0 && !IN_RENAME_OBJECT ){
5734 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
5735 sqlite3DbFree(db, pX->zEName);
5736 if( pSub ){
5737 pX->zEName = sqlite3DbStrDup(db, pSub->pEList->a[j].zEName);
5738 testcase( pX->zEName==0 );
5739 }else{
5740 pX->zEName = sqlite3MPrintf(db, "%s.%s.%s",
5741 zSchemaName, zTabName, zColname);
5742 testcase( pX->zEName==0 );
5744 pX->eEName = ENAME_TAB;
5746 sqlite3DbFree(db, zToFree);
5749 if( !tableSeen ){
5750 if( zTName ){
5751 sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
5752 }else{
5753 sqlite3ErrorMsg(pParse, "no tables specified");
5758 sqlite3ExprListDelete(db, pEList);
5759 p->pEList = pNew;
5761 if( p->pEList ){
5762 if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
5763 sqlite3ErrorMsg(pParse, "too many columns in result set");
5764 return WRC_Abort;
5766 if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){
5767 p->selFlags |= SF_ComplexResult;
5770 return WRC_Continue;
5773 #if SQLITE_DEBUG
5775 ** Always assert. This xSelectCallback2 implementation proves that the
5776 ** xSelectCallback2 is never invoked.
5778 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){
5779 UNUSED_PARAMETER2(NotUsed, NotUsed2);
5780 assert( 0 );
5782 #endif
5784 ** This routine "expands" a SELECT statement and all of its subqueries.
5785 ** For additional information on what it means to "expand" a SELECT
5786 ** statement, see the comment on the selectExpand worker callback above.
5788 ** Expanding a SELECT statement is the first step in processing a
5789 ** SELECT statement. The SELECT statement must be expanded before
5790 ** name resolution is performed.
5792 ** If anything goes wrong, an error message is written into pParse.
5793 ** The calling function can detect the problem by looking at pParse->nErr
5794 ** and/or pParse->db->mallocFailed.
5796 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
5797 Walker w;
5798 w.xExprCallback = sqlite3ExprWalkNoop;
5799 w.pParse = pParse;
5800 if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){
5801 w.xSelectCallback = convertCompoundSelectToSubquery;
5802 w.xSelectCallback2 = 0;
5803 sqlite3WalkSelect(&w, pSelect);
5805 w.xSelectCallback = selectExpander;
5806 w.xSelectCallback2 = sqlite3SelectPopWith;
5807 w.eCode = 0;
5808 sqlite3WalkSelect(&w, pSelect);
5812 #ifndef SQLITE_OMIT_SUBQUERY
5814 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
5815 ** interface.
5817 ** For each FROM-clause subquery, add Column.zType and Column.zColl
5818 ** information to the Table structure that represents the result set
5819 ** of that subquery.
5821 ** The Table structure that represents the result set was constructed
5822 ** by selectExpander() but the type and collation information was omitted
5823 ** at that point because identifiers had not yet been resolved. This
5824 ** routine is called after identifier resolution.
5826 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
5827 Parse *pParse;
5828 int i;
5829 SrcList *pTabList;
5830 SrcItem *pFrom;
5832 assert( p->selFlags & SF_Resolved );
5833 if( p->selFlags & SF_HasTypeInfo ) return;
5834 p->selFlags |= SF_HasTypeInfo;
5835 pParse = pWalker->pParse;
5836 pTabList = p->pSrc;
5837 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5838 Table *pTab = pFrom->pTab;
5839 assert( pTab!=0 );
5840 if( (pTab->tabFlags & TF_Ephemeral)!=0 ){
5841 /* A sub-query in the FROM clause of a SELECT */
5842 Select *pSel = pFrom->pSelect;
5843 if( pSel ){
5844 while( pSel->pPrior ) pSel = pSel->pPrior;
5845 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel,
5846 SQLITE_AFF_NONE);
5851 #endif
5855 ** This routine adds datatype and collating sequence information to
5856 ** the Table structures of all FROM-clause subqueries in a
5857 ** SELECT statement.
5859 ** Use this routine after name resolution.
5861 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
5862 #ifndef SQLITE_OMIT_SUBQUERY
5863 Walker w;
5864 w.xSelectCallback = sqlite3SelectWalkNoop;
5865 w.xSelectCallback2 = selectAddSubqueryTypeInfo;
5866 w.xExprCallback = sqlite3ExprWalkNoop;
5867 w.pParse = pParse;
5868 sqlite3WalkSelect(&w, pSelect);
5869 #endif
5874 ** This routine sets up a SELECT statement for processing. The
5875 ** following is accomplished:
5877 ** * VDBE Cursor numbers are assigned to all FROM-clause terms.
5878 ** * Ephemeral Table objects are created for all FROM-clause subqueries.
5879 ** * ON and USING clauses are shifted into WHERE statements
5880 ** * Wildcards "*" and "TABLE.*" in result sets are expanded.
5881 ** * Identifiers in expression are matched to tables.
5883 ** This routine acts recursively on all subqueries within the SELECT.
5885 void sqlite3SelectPrep(
5886 Parse *pParse, /* The parser context */
5887 Select *p, /* The SELECT statement being coded. */
5888 NameContext *pOuterNC /* Name context for container */
5890 assert( p!=0 || pParse->db->mallocFailed );
5891 assert( pParse->db->pParse==pParse );
5892 if( pParse->db->mallocFailed ) return;
5893 if( p->selFlags & SF_HasTypeInfo ) return;
5894 sqlite3SelectExpand(pParse, p);
5895 if( pParse->nErr ) return;
5896 sqlite3ResolveSelectNames(pParse, p, pOuterNC);
5897 if( pParse->nErr ) return;
5898 sqlite3SelectAddTypeInfo(pParse, p);
5902 ** Reset the aggregate accumulator.
5904 ** The aggregate accumulator is a set of memory cells that hold
5905 ** intermediate results while calculating an aggregate. This
5906 ** routine generates code that stores NULLs in all of those memory
5907 ** cells.
5909 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
5910 Vdbe *v = pParse->pVdbe;
5911 int i;
5912 struct AggInfo_func *pFunc;
5913 int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
5914 assert( pParse->db->pParse==pParse );
5915 assert( pParse->db->mallocFailed==0 || pParse->nErr!=0 );
5916 if( nReg==0 ) return;
5917 if( pParse->nErr ) return;
5918 #ifdef SQLITE_DEBUG
5919 /* Verify that all AggInfo registers are within the range specified by
5920 ** AggInfo.mnReg..AggInfo.mxReg */
5921 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
5922 for(i=0; i<pAggInfo->nColumn; i++){
5923 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
5924 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
5926 for(i=0; i<pAggInfo->nFunc; i++){
5927 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
5928 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
5930 #endif
5931 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
5932 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
5933 if( pFunc->iDistinct>=0 ){
5934 Expr *pE = pFunc->pFExpr;
5935 assert( ExprUseXList(pE) );
5936 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
5937 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
5938 "argument");
5939 pFunc->iDistinct = -1;
5940 }else{
5941 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0);
5942 pFunc->iDistAddr = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
5943 pFunc->iDistinct, 0, 0, (char*)pKeyInfo, P4_KEYINFO);
5944 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s(DISTINCT)",
5945 pFunc->pFunc->zName));
5952 ** Invoke the OP_AggFinalize opcode for every aggregate function
5953 ** in the AggInfo structure.
5955 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
5956 Vdbe *v = pParse->pVdbe;
5957 int i;
5958 struct AggInfo_func *pF;
5959 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
5960 ExprList *pList;
5961 assert( ExprUseXList(pF->pFExpr) );
5962 pList = pF->pFExpr->x.pList;
5963 sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0);
5964 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
5970 ** Update the accumulator memory cells for an aggregate based on
5971 ** the current cursor position.
5973 ** If regAcc is non-zero and there are no min() or max() aggregates
5974 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator
5975 ** registers if register regAcc contains 0. The caller will take care
5976 ** of setting and clearing regAcc.
5978 static void updateAccumulator(
5979 Parse *pParse,
5980 int regAcc,
5981 AggInfo *pAggInfo,
5982 int eDistinctType
5984 Vdbe *v = pParse->pVdbe;
5985 int i;
5986 int regHit = 0;
5987 int addrHitTest = 0;
5988 struct AggInfo_func *pF;
5989 struct AggInfo_col *pC;
5991 pAggInfo->directMode = 1;
5992 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
5993 int nArg;
5994 int addrNext = 0;
5995 int regAgg;
5996 ExprList *pList;
5997 assert( ExprUseXList(pF->pFExpr) );
5998 assert( !IsWindowFunc(pF->pFExpr) );
5999 pList = pF->pFExpr->x.pList;
6000 if( ExprHasProperty(pF->pFExpr, EP_WinFunc) ){
6001 Expr *pFilter = pF->pFExpr->y.pWin->pFilter;
6002 if( pAggInfo->nAccumulator
6003 && (pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL)
6004 && regAcc
6006 /* If regAcc==0, there there exists some min() or max() function
6007 ** without a FILTER clause that will ensure the magnet registers
6008 ** are populated. */
6009 if( regHit==0 ) regHit = ++pParse->nMem;
6010 /* If this is the first row of the group (regAcc contains 0), clear the
6011 ** "magnet" register regHit so that the accumulator registers
6012 ** are populated if the FILTER clause jumps over the the
6013 ** invocation of min() or max() altogether. Or, if this is not
6014 ** the first row (regAcc contains 1), set the magnet register so that
6015 ** the accumulators are not populated unless the min()/max() is invoked
6016 ** and indicates that they should be. */
6017 sqlite3VdbeAddOp2(v, OP_Copy, regAcc, regHit);
6019 addrNext = sqlite3VdbeMakeLabel(pParse);
6020 sqlite3ExprIfFalse(pParse, pFilter, addrNext, SQLITE_JUMPIFNULL);
6022 if( pList ){
6023 nArg = pList->nExpr;
6024 regAgg = sqlite3GetTempRange(pParse, nArg);
6025 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP);
6026 }else{
6027 nArg = 0;
6028 regAgg = 0;
6030 if( pF->iDistinct>=0 && pList ){
6031 if( addrNext==0 ){
6032 addrNext = sqlite3VdbeMakeLabel(pParse);
6034 pF->iDistinct = codeDistinct(pParse, eDistinctType,
6035 pF->iDistinct, addrNext, pList, regAgg);
6037 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
6038 CollSeq *pColl = 0;
6039 struct ExprList_item *pItem;
6040 int j;
6041 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */
6042 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
6043 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
6045 if( !pColl ){
6046 pColl = pParse->db->pDfltColl;
6048 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
6049 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
6051 sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, pF->iMem);
6052 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
6053 sqlite3VdbeChangeP5(v, (u8)nArg);
6054 sqlite3ReleaseTempRange(pParse, regAgg, nArg);
6055 if( addrNext ){
6056 sqlite3VdbeResolveLabel(v, addrNext);
6059 if( regHit==0 && pAggInfo->nAccumulator ){
6060 regHit = regAcc;
6062 if( regHit ){
6063 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
6065 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
6066 sqlite3ExprCode(pParse, pC->pCExpr, pC->iMem);
6069 pAggInfo->directMode = 0;
6070 if( addrHitTest ){
6071 sqlite3VdbeJumpHereOrPopInst(v, addrHitTest);
6076 ** Add a single OP_Explain instruction to the VDBE to explain a simple
6077 ** count(*) query ("SELECT count(*) FROM pTab").
6079 #ifndef SQLITE_OMIT_EXPLAIN
6080 static void explainSimpleCount(
6081 Parse *pParse, /* Parse context */
6082 Table *pTab, /* Table being queried */
6083 Index *pIdx /* Index used to optimize scan, or NULL */
6085 if( pParse->explain==2 ){
6086 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
6087 sqlite3VdbeExplain(pParse, 0, "SCAN %s%s%s",
6088 pTab->zName,
6089 bCover ? " USING COVERING INDEX " : "",
6090 bCover ? pIdx->zName : ""
6094 #else
6095 # define explainSimpleCount(a,b,c)
6096 #endif
6099 ** sqlite3WalkExpr() callback used by havingToWhere().
6101 ** If the node passed to the callback is a TK_AND node, return
6102 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes.
6104 ** Otherwise, return WRC_Prune. In this case, also check if the
6105 ** sub-expression matches the criteria for being moved to the WHERE
6106 ** clause. If so, add it to the WHERE clause and replace the sub-expression
6107 ** within the HAVING expression with a constant "1".
6109 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){
6110 if( pExpr->op!=TK_AND ){
6111 Select *pS = pWalker->u.pSelect;
6112 /* This routine is called before the HAVING clause of the current
6113 ** SELECT is analyzed for aggregates. So if pExpr->pAggInfo is set
6114 ** here, it indicates that the expression is a correlated reference to a
6115 ** column from an outer aggregate query, or an aggregate function that
6116 ** belongs to an outer query. Do not move the expression to the WHERE
6117 ** clause in this obscure case, as doing so may corrupt the outer Select
6118 ** statements AggInfo structure. */
6119 if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy)
6120 && ExprAlwaysFalse(pExpr)==0
6121 && pExpr->pAggInfo==0
6123 sqlite3 *db = pWalker->pParse->db;
6124 Expr *pNew = sqlite3Expr(db, TK_INTEGER, "1");
6125 if( pNew ){
6126 Expr *pWhere = pS->pWhere;
6127 SWAP(Expr, *pNew, *pExpr);
6128 pNew = sqlite3ExprAnd(pWalker->pParse, pWhere, pNew);
6129 pS->pWhere = pNew;
6130 pWalker->eCode = 1;
6133 return WRC_Prune;
6135 return WRC_Continue;
6139 ** Transfer eligible terms from the HAVING clause of a query, which is
6140 ** processed after grouping, to the WHERE clause, which is processed before
6141 ** grouping. For example, the query:
6143 ** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=?
6145 ** can be rewritten as:
6147 ** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=?
6149 ** A term of the HAVING expression is eligible for transfer if it consists
6150 ** entirely of constants and expressions that are also GROUP BY terms that
6151 ** use the "BINARY" collation sequence.
6153 static void havingToWhere(Parse *pParse, Select *p){
6154 Walker sWalker;
6155 memset(&sWalker, 0, sizeof(sWalker));
6156 sWalker.pParse = pParse;
6157 sWalker.xExprCallback = havingToWhereExprCb;
6158 sWalker.u.pSelect = p;
6159 sqlite3WalkExpr(&sWalker, p->pHaving);
6160 #if SELECTTRACE_ENABLED
6161 if( sWalker.eCode && (sqlite3SelectTrace & 0x100)!=0 ){
6162 SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n"));
6163 sqlite3TreeViewSelect(0, p, 0);
6165 #endif
6169 ** Check to see if the pThis entry of pTabList is a self-join of a prior view.
6170 ** If it is, then return the SrcList_item for the prior view. If it is not,
6171 ** then return 0.
6173 static SrcItem *isSelfJoinView(
6174 SrcList *pTabList, /* Search for self-joins in this FROM clause */
6175 SrcItem *pThis /* Search for prior reference to this subquery */
6177 SrcItem *pItem;
6178 assert( pThis->pSelect!=0 );
6179 if( pThis->pSelect->selFlags & SF_PushDown ) return 0;
6180 for(pItem = pTabList->a; pItem<pThis; pItem++){
6181 Select *pS1;
6182 if( pItem->pSelect==0 ) continue;
6183 if( pItem->fg.viaCoroutine ) continue;
6184 if( pItem->zName==0 ) continue;
6185 assert( pItem->pTab!=0 );
6186 assert( pThis->pTab!=0 );
6187 if( pItem->pTab->pSchema!=pThis->pTab->pSchema ) continue;
6188 if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue;
6189 pS1 = pItem->pSelect;
6190 if( pItem->pTab->pSchema==0 && pThis->pSelect->selId!=pS1->selId ){
6191 /* The query flattener left two different CTE tables with identical
6192 ** names in the same FROM clause. */
6193 continue;
6195 if( pItem->pSelect->selFlags & SF_PushDown ){
6196 /* The view was modified by some other optimization such as
6197 ** pushDownWhereTerms() */
6198 continue;
6200 return pItem;
6202 return 0;
6206 ** Deallocate a single AggInfo object
6208 static void agginfoFree(sqlite3 *db, AggInfo *p){
6209 sqlite3DbFree(db, p->aCol);
6210 sqlite3DbFree(db, p->aFunc);
6211 sqlite3DbFreeNN(db, p);
6214 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
6216 ** Attempt to transform a query of the form
6218 ** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2)
6220 ** Into this:
6222 ** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2)
6224 ** The transformation only works if all of the following are true:
6226 ** * The subquery is a UNION ALL of two or more terms
6227 ** * The subquery does not have a LIMIT clause
6228 ** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries
6229 ** * The outer query is a simple count(*) with no WHERE clause or other
6230 ** extraneous syntax.
6232 ** Return TRUE if the optimization is undertaken.
6234 static int countOfViewOptimization(Parse *pParse, Select *p){
6235 Select *pSub, *pPrior;
6236 Expr *pExpr;
6237 Expr *pCount;
6238 sqlite3 *db;
6239 if( (p->selFlags & SF_Aggregate)==0 ) return 0; /* This is an aggregate */
6240 if( p->pEList->nExpr!=1 ) return 0; /* Single result column */
6241 if( p->pWhere ) return 0;
6242 if( p->pGroupBy ) return 0;
6243 pExpr = p->pEList->a[0].pExpr;
6244 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; /* Result is an aggregate */
6245 assert( ExprUseUToken(pExpr) );
6246 if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0; /* Is count() */
6247 assert( ExprUseXList(pExpr) );
6248 if( pExpr->x.pList!=0 ) return 0; /* Must be count(*) */
6249 if( p->pSrc->nSrc!=1 ) return 0; /* One table in FROM */
6250 pSub = p->pSrc->a[0].pSelect;
6251 if( pSub==0 ) return 0; /* The FROM is a subquery */
6252 if( pSub->pPrior==0 ) return 0; /* Must be a compound ry */
6254 if( pSub->op!=TK_ALL && pSub->pPrior ) return 0; /* Must be UNION ALL */
6255 if( pSub->pWhere ) return 0; /* No WHERE clause */
6256 if( pSub->pLimit ) return 0; /* No LIMIT clause */
6257 if( pSub->selFlags & SF_Aggregate ) return 0; /* Not an aggregate */
6258 pSub = pSub->pPrior; /* Repeat over compound */
6259 }while( pSub );
6261 /* If we reach this point then it is OK to perform the transformation */
6263 db = pParse->db;
6264 pCount = pExpr;
6265 pExpr = 0;
6266 pSub = p->pSrc->a[0].pSelect;
6267 p->pSrc->a[0].pSelect = 0;
6268 sqlite3SrcListDelete(db, p->pSrc);
6269 p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc));
6270 while( pSub ){
6271 Expr *pTerm;
6272 pPrior = pSub->pPrior;
6273 pSub->pPrior = 0;
6274 pSub->pNext = 0;
6275 pSub->selFlags |= SF_Aggregate;
6276 pSub->selFlags &= ~SF_Compound;
6277 pSub->nSelectRow = 0;
6278 sqlite3ExprListDelete(db, pSub->pEList);
6279 pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount;
6280 pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm);
6281 pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0);
6282 sqlite3PExprAddSelect(pParse, pTerm, pSub);
6283 if( pExpr==0 ){
6284 pExpr = pTerm;
6285 }else{
6286 pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr);
6288 pSub = pPrior;
6290 p->pEList->a[0].pExpr = pExpr;
6291 p->selFlags &= ~SF_Aggregate;
6293 #if SELECTTRACE_ENABLED
6294 if( sqlite3SelectTrace & 0x400 ){
6295 SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n"));
6296 sqlite3TreeViewSelect(0, p, 0);
6298 #endif
6299 return 1;
6301 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */
6304 ** Generate code for the SELECT statement given in the p argument.
6306 ** The results are returned according to the SelectDest structure.
6307 ** See comments in sqliteInt.h for further information.
6309 ** This routine returns the number of errors. If any errors are
6310 ** encountered, then an appropriate error message is left in
6311 ** pParse->zErrMsg.
6313 ** This routine does NOT free the Select structure passed in. The
6314 ** calling function needs to do that.
6316 int sqlite3Select(
6317 Parse *pParse, /* The parser context */
6318 Select *p, /* The SELECT statement being coded. */
6319 SelectDest *pDest /* What to do with the query results */
6321 int i, j; /* Loop counters */
6322 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */
6323 Vdbe *v; /* The virtual machine under construction */
6324 int isAgg; /* True for select lists like "count(*)" */
6325 ExprList *pEList = 0; /* List of columns to extract. */
6326 SrcList *pTabList; /* List of tables to select from */
6327 Expr *pWhere; /* The WHERE clause. May be NULL */
6328 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */
6329 Expr *pHaving; /* The HAVING clause. May be NULL */
6330 AggInfo *pAggInfo = 0; /* Aggregate information */
6331 int rc = 1; /* Value to return from this function */
6332 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
6333 SortCtx sSort; /* Info on how to code the ORDER BY clause */
6334 int iEnd; /* Address of the end of the query */
6335 sqlite3 *db; /* The database connection */
6336 ExprList *pMinMaxOrderBy = 0; /* Added ORDER BY for min/max queries */
6337 u8 minMaxFlag; /* Flag for min/max queries */
6339 db = pParse->db;
6340 assert( pParse==db->pParse );
6341 v = sqlite3GetVdbe(pParse);
6342 if( p==0 || pParse->nErr ){
6343 return 1;
6345 assert( db->mallocFailed==0 );
6346 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
6347 #if SELECTTRACE_ENABLED
6348 SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain));
6349 if( sqlite3SelectTrace & 0x100 ){
6350 sqlite3TreeViewSelect(0, p, 0);
6352 #endif
6354 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
6355 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
6356 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
6357 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
6358 if( IgnorableDistinct(pDest) ){
6359 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
6360 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard ||
6361 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_DistFifo );
6362 /* All of these destinations are also able to ignore the ORDER BY clause */
6363 if( p->pOrderBy ){
6364 #if SELECTTRACE_ENABLED
6365 SELECTTRACE(1,pParse,p, ("dropping superfluous ORDER BY:\n"));
6366 if( sqlite3SelectTrace & 0x100 ){
6367 sqlite3TreeViewExprList(0, p->pOrderBy, 0, "ORDERBY");
6369 #endif
6370 sqlite3ParserAddCleanup(pParse,
6371 (void(*)(sqlite3*,void*))sqlite3ExprListDelete,
6372 p->pOrderBy);
6373 testcase( pParse->earlyCleanup );
6374 p->pOrderBy = 0;
6376 p->selFlags &= ~SF_Distinct;
6377 p->selFlags |= SF_NoopOrderBy;
6379 sqlite3SelectPrep(pParse, p, 0);
6380 if( pParse->nErr ){
6381 goto select_end;
6383 assert( db->mallocFailed==0 );
6384 assert( p->pEList!=0 );
6385 #if SELECTTRACE_ENABLED
6386 if( sqlite3SelectTrace & 0x104 ){
6387 SELECTTRACE(0x104,pParse,p, ("after name resolution:\n"));
6388 sqlite3TreeViewSelect(0, p, 0);
6390 #endif
6392 /* If the SF_UFSrcCheck flag is set, then this function is being called
6393 ** as part of populating the temp table for an UPDATE...FROM statement.
6394 ** In this case, it is an error if the target object (pSrc->a[0]) name
6395 ** or alias is duplicated within FROM clause (pSrc->a[1..n]).
6397 ** Postgres disallows this case too. The reason is that some other
6398 ** systems handle this case differently, and not all the same way,
6399 ** which is just confusing. To avoid this, we follow PG's lead and
6400 ** disallow it altogether. */
6401 if( p->selFlags & SF_UFSrcCheck ){
6402 SrcItem *p0 = &p->pSrc->a[0];
6403 for(i=1; i<p->pSrc->nSrc; i++){
6404 SrcItem *p1 = &p->pSrc->a[i];
6405 if( p0->pTab==p1->pTab && 0==sqlite3_stricmp(p0->zAlias, p1->zAlias) ){
6406 sqlite3ErrorMsg(pParse,
6407 "target object/alias may not appear in FROM clause: %s",
6408 p0->zAlias ? p0->zAlias : p0->pTab->zName
6410 goto select_end;
6414 /* Clear the SF_UFSrcCheck flag. The check has already been performed,
6415 ** and leaving this flag set can cause errors if a compound sub-query
6416 ** in p->pSrc is flattened into this query and this function called
6417 ** again as part of compound SELECT processing. */
6418 p->selFlags &= ~SF_UFSrcCheck;
6421 if( pDest->eDest==SRT_Output ){
6422 sqlite3GenerateColumnNames(pParse, p);
6425 #ifndef SQLITE_OMIT_WINDOWFUNC
6426 if( sqlite3WindowRewrite(pParse, p) ){
6427 assert( pParse->nErr );
6428 goto select_end;
6430 #if SELECTTRACE_ENABLED
6431 if( p->pWin && (sqlite3SelectTrace & 0x108)!=0 ){
6432 SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n"));
6433 sqlite3TreeViewSelect(0, p, 0);
6435 #endif
6436 #endif /* SQLITE_OMIT_WINDOWFUNC */
6437 pTabList = p->pSrc;
6438 isAgg = (p->selFlags & SF_Aggregate)!=0;
6439 memset(&sSort, 0, sizeof(sSort));
6440 sSort.pOrderBy = p->pOrderBy;
6442 /* Try to do various optimizations (flattening subqueries, and strength
6443 ** reduction of join operators) in the FROM clause up into the main query
6445 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
6446 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
6447 SrcItem *pItem = &pTabList->a[i];
6448 Select *pSub = pItem->pSelect;
6449 Table *pTab = pItem->pTab;
6451 /* The expander should have already created transient Table objects
6452 ** even for FROM clause elements such as subqueries that do not correspond
6453 ** to a real table */
6454 assert( pTab!=0 );
6456 /* Convert LEFT JOIN into JOIN if there are terms of the right table
6457 ** of the LEFT JOIN used in the WHERE clause.
6459 if( (pItem->fg.jointype & JT_LEFT)!=0
6460 && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor)
6461 && OptimizationEnabled(db, SQLITE_SimplifyJoin)
6463 SELECTTRACE(0x100,pParse,p,
6464 ("LEFT-JOIN simplifies to JOIN on term %d\n",i));
6465 pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER);
6466 unsetJoinExpr(p->pWhere, pItem->iCursor);
6469 /* No futher action if this term of the FROM clause is no a subquery */
6470 if( pSub==0 ) continue;
6472 /* Catch mismatch in the declared columns of a view and the number of
6473 ** columns in the SELECT on the RHS */
6474 if( pTab->nCol!=pSub->pEList->nExpr ){
6475 sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d",
6476 pTab->nCol, pTab->zName, pSub->pEList->nExpr);
6477 goto select_end;
6480 /* Do not try to flatten an aggregate subquery.
6482 ** Flattening an aggregate subquery is only possible if the outer query
6483 ** is not a join. But if the outer query is not a join, then the subquery
6484 ** will be implemented as a co-routine and there is no advantage to
6485 ** flattening in that case.
6487 if( (pSub->selFlags & SF_Aggregate)!=0 ) continue;
6488 assert( pSub->pGroupBy==0 );
6490 /* If a FROM-clause subquery has an ORDER BY clause that is not
6491 ** really doing anything, then delete it now so that it does not
6492 ** interfere with query flattening. See the discussion at
6493 ** https://sqlite.org/forum/forumpost/2d76f2bcf65d256a
6495 ** Beware of these cases where the ORDER BY clause may not be safely
6496 ** omitted:
6498 ** (1) There is also a LIMIT clause
6499 ** (2) The subquery was added to help with window-function
6500 ** processing
6501 ** (3) The subquery is in the FROM clause of an UPDATE
6502 ** (4) The outer query uses an aggregate function other than
6503 ** the built-in count(), min(), or max().
6504 ** (5) The ORDER BY isn't going to accomplish anything because
6505 ** one of:
6506 ** (a) The outer query has a different ORDER BY clause
6507 ** (b) The subquery is part of a join
6508 ** See forum post 062d576715d277c8
6510 if( pSub->pOrderBy!=0
6511 && (p->pOrderBy!=0 || pTabList->nSrc>1) /* Condition (5) */
6512 && pSub->pLimit==0 /* Condition (1) */
6513 && (pSub->selFlags & SF_OrderByReqd)==0 /* Condition (2) */
6514 && (p->selFlags & SF_OrderByReqd)==0 /* Condition (3) and (4) */
6515 && OptimizationEnabled(db, SQLITE_OmitOrderBy)
6517 SELECTTRACE(0x100,pParse,p,
6518 ("omit superfluous ORDER BY on %r FROM-clause subquery\n",i+1));
6519 sqlite3ExprListDelete(db, pSub->pOrderBy);
6520 pSub->pOrderBy = 0;
6523 /* If the outer query contains a "complex" result set (that is,
6524 ** if the result set of the outer query uses functions or subqueries)
6525 ** and if the subquery contains an ORDER BY clause and if
6526 ** it will be implemented as a co-routine, then do not flatten. This
6527 ** restriction allows SQL constructs like this:
6529 ** SELECT expensive_function(x)
6530 ** FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
6532 ** The expensive_function() is only computed on the 10 rows that
6533 ** are output, rather than every row of the table.
6535 ** The requirement that the outer query have a complex result set
6536 ** means that flattening does occur on simpler SQL constraints without
6537 ** the expensive_function() like:
6539 ** SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
6541 if( pSub->pOrderBy!=0
6542 && i==0
6543 && (p->selFlags & SF_ComplexResult)!=0
6544 && (pTabList->nSrc==1
6545 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)
6547 continue;
6550 if( flattenSubquery(pParse, p, i, isAgg) ){
6551 if( pParse->nErr ) goto select_end;
6552 /* This subquery can be absorbed into its parent. */
6553 i = -1;
6555 pTabList = p->pSrc;
6556 if( db->mallocFailed ) goto select_end;
6557 if( !IgnorableOrderby(pDest) ){
6558 sSort.pOrderBy = p->pOrderBy;
6561 #endif
6563 #ifndef SQLITE_OMIT_COMPOUND_SELECT
6564 /* Handle compound SELECT statements using the separate multiSelect()
6565 ** procedure.
6567 if( p->pPrior ){
6568 rc = multiSelect(pParse, p, pDest);
6569 #if SELECTTRACE_ENABLED
6570 SELECTTRACE(0x1,pParse,p,("end compound-select processing\n"));
6571 if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
6572 sqlite3TreeViewSelect(0, p, 0);
6574 #endif
6575 if( p->pNext==0 ) ExplainQueryPlanPop(pParse);
6576 return rc;
6578 #endif
6580 /* Do the WHERE-clause constant propagation optimization if this is
6581 ** a join. No need to speed time on this operation for non-join queries
6582 ** as the equivalent optimization will be handled by query planner in
6583 ** sqlite3WhereBegin().
6585 if( p->pWhere!=0
6586 && p->pWhere->op==TK_AND
6587 && OptimizationEnabled(db, SQLITE_PropagateConst)
6588 && propagateConstants(pParse, p)
6590 #if SELECTTRACE_ENABLED
6591 if( sqlite3SelectTrace & 0x100 ){
6592 SELECTTRACE(0x100,pParse,p,("After constant propagation:\n"));
6593 sqlite3TreeViewSelect(0, p, 0);
6595 #endif
6596 }else{
6597 SELECTTRACE(0x100,pParse,p,("Constant propagation not helpful\n"));
6600 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
6601 if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView)
6602 && countOfViewOptimization(pParse, p)
6604 if( db->mallocFailed ) goto select_end;
6605 pEList = p->pEList;
6606 pTabList = p->pSrc;
6608 #endif
6610 /* For each term in the FROM clause, do two things:
6611 ** (1) Authorized unreferenced tables
6612 ** (2) Generate code for all sub-queries
6614 for(i=0; i<pTabList->nSrc; i++){
6615 SrcItem *pItem = &pTabList->a[i];
6616 SrcItem *pPrior;
6617 SelectDest dest;
6618 Select *pSub;
6619 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
6620 const char *zSavedAuthContext;
6621 #endif
6623 /* Issue SQLITE_READ authorizations with a fake column name for any
6624 ** tables that are referenced but from which no values are extracted.
6625 ** Examples of where these kinds of null SQLITE_READ authorizations
6626 ** would occur:
6628 ** SELECT count(*) FROM t1; -- SQLITE_READ t1.""
6629 ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2.""
6631 ** The fake column name is an empty string. It is possible for a table to
6632 ** have a column named by the empty string, in which case there is no way to
6633 ** distinguish between an unreferenced table and an actual reference to the
6634 ** "" column. The original design was for the fake column name to be a NULL,
6635 ** which would be unambiguous. But legacy authorization callbacks might
6636 ** assume the column name is non-NULL and segfault. The use of an empty
6637 ** string for the fake column name seems safer.
6639 if( pItem->colUsed==0 && pItem->zName!=0 ){
6640 sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase);
6643 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
6644 /* Generate code for all sub-queries in the FROM clause
6646 pSub = pItem->pSelect;
6647 if( pSub==0 ) continue;
6649 /* The code for a subquery should only be generated once. */
6650 assert( pItem->addrFillSub==0 );
6652 /* Increment Parse.nHeight by the height of the largest expression
6653 ** tree referred to by this, the parent select. The child select
6654 ** may contain expression trees of at most
6655 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
6656 ** more conservative than necessary, but much easier than enforcing
6657 ** an exact limit.
6659 pParse->nHeight += sqlite3SelectExprHeight(p);
6661 /* Make copies of constant WHERE-clause terms in the outer query down
6662 ** inside the subquery. This can help the subquery to run more efficiently.
6664 if( OptimizationEnabled(db, SQLITE_PushDown)
6665 && (pItem->fg.isCte==0
6666 || (pItem->u2.pCteUse->eM10d!=M10d_Yes && pItem->u2.pCteUse->nUse<2))
6667 && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor,
6668 (pItem->fg.jointype & JT_OUTER)!=0)
6670 #if SELECTTRACE_ENABLED
6671 if( sqlite3SelectTrace & 0x100 ){
6672 SELECTTRACE(0x100,pParse,p,
6673 ("After WHERE-clause push-down into subquery %d:\n", pSub->selId));
6674 sqlite3TreeViewSelect(0, p, 0);
6676 #endif
6677 assert( pItem->pSelect && (pItem->pSelect->selFlags & SF_PushDown)!=0 );
6678 }else{
6679 SELECTTRACE(0x100,pParse,p,("Push-down not possible\n"));
6682 zSavedAuthContext = pParse->zAuthContext;
6683 pParse->zAuthContext = pItem->zName;
6685 /* Generate code to implement the subquery
6687 ** The subquery is implemented as a co-routine if:
6688 ** (1) the subquery is guaranteed to be the outer loop (so that
6689 ** it does not need to be computed more than once), and
6690 ** (2) the subquery is not a CTE that should be materialized
6692 ** TODO: Are there other reasons beside (1) and (2) to use a co-routine
6693 ** implementation?
6695 if( i==0
6696 && (pTabList->nSrc==1
6697 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) /* (1) */
6698 && (pItem->fg.isCte==0 || pItem->u2.pCteUse->eM10d!=M10d_Yes) /* (2) */
6700 /* Implement a co-routine that will return a single row of the result
6701 ** set on each invocation.
6703 int addrTop = sqlite3VdbeCurrentAddr(v)+1;
6705 pItem->regReturn = ++pParse->nMem;
6706 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
6707 VdbeComment((v, "%!S", pItem));
6708 pItem->addrFillSub = addrTop;
6709 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
6710 ExplainQueryPlan((pParse, 1, "CO-ROUTINE %!S", pItem));
6711 sqlite3Select(pParse, pSub, &dest);
6712 pItem->pTab->nRowLogEst = pSub->nSelectRow;
6713 pItem->fg.viaCoroutine = 1;
6714 pItem->regResult = dest.iSdst;
6715 sqlite3VdbeEndCoroutine(v, pItem->regReturn);
6716 sqlite3VdbeJumpHere(v, addrTop-1);
6717 sqlite3ClearTempRegCache(pParse);
6718 }else if( pItem->fg.isCte && pItem->u2.pCteUse->addrM9e>0 ){
6719 /* This is a CTE for which materialization code has already been
6720 ** generated. Invoke the subroutine to compute the materialization,
6721 ** the make the pItem->iCursor be a copy of the ephemerial table that
6722 ** holds the result of the materialization. */
6723 CteUse *pCteUse = pItem->u2.pCteUse;
6724 sqlite3VdbeAddOp2(v, OP_Gosub, pCteUse->regRtn, pCteUse->addrM9e);
6725 if( pItem->iCursor!=pCteUse->iCur ){
6726 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pCteUse->iCur);
6727 VdbeComment((v, "%!S", pItem));
6729 pSub->nSelectRow = pCteUse->nRowEst;
6730 }else if( (pPrior = isSelfJoinView(pTabList, pItem))!=0 ){
6731 /* This view has already been materialized by a prior entry in
6732 ** this same FROM clause. Reuse it. */
6733 if( pPrior->addrFillSub ){
6734 sqlite3VdbeAddOp2(v, OP_Gosub, pPrior->regReturn, pPrior->addrFillSub);
6736 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor);
6737 pSub->nSelectRow = pPrior->pSelect->nSelectRow;
6738 }else{
6739 /* Materialize the view. If the view is not correlated, generate a
6740 ** subroutine to do the materialization so that subsequent uses of
6741 ** the same view can reuse the materialization. */
6742 int topAddr;
6743 int onceAddr = 0;
6744 int retAddr;
6746 pItem->regReturn = ++pParse->nMem;
6747 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
6748 pItem->addrFillSub = topAddr+1;
6749 if( pItem->fg.isCorrelated==0 ){
6750 /* If the subquery is not correlated and if we are not inside of
6751 ** a trigger, then we only need to compute the value of the subquery
6752 ** once. */
6753 onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
6754 VdbeComment((v, "materialize %!S", pItem));
6755 }else{
6756 VdbeNoopComment((v, "materialize %!S", pItem));
6758 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
6759 ExplainQueryPlan((pParse, 1, "MATERIALIZE %!S", pItem));
6760 sqlite3Select(pParse, pSub, &dest);
6761 pItem->pTab->nRowLogEst = pSub->nSelectRow;
6762 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
6763 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
6764 VdbeComment((v, "end %!S", pItem));
6765 sqlite3VdbeChangeP1(v, topAddr, retAddr);
6766 sqlite3ClearTempRegCache(pParse);
6767 if( pItem->fg.isCte && pItem->fg.isCorrelated==0 ){
6768 CteUse *pCteUse = pItem->u2.pCteUse;
6769 pCteUse->addrM9e = pItem->addrFillSub;
6770 pCteUse->regRtn = pItem->regReturn;
6771 pCteUse->iCur = pItem->iCursor;
6772 pCteUse->nRowEst = pSub->nSelectRow;
6775 if( db->mallocFailed ) goto select_end;
6776 pParse->nHeight -= sqlite3SelectExprHeight(p);
6777 pParse->zAuthContext = zSavedAuthContext;
6778 #endif
6781 /* Various elements of the SELECT copied into local variables for
6782 ** convenience */
6783 pEList = p->pEList;
6784 pWhere = p->pWhere;
6785 pGroupBy = p->pGroupBy;
6786 pHaving = p->pHaving;
6787 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
6789 #if SELECTTRACE_ENABLED
6790 if( sqlite3SelectTrace & 0x400 ){
6791 SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n"));
6792 sqlite3TreeViewSelect(0, p, 0);
6794 #endif
6796 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
6797 ** if the select-list is the same as the ORDER BY list, then this query
6798 ** can be rewritten as a GROUP BY. In other words, this:
6800 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz
6802 ** is transformed to:
6804 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
6806 ** The second form is preferred as a single index (or temp-table) may be
6807 ** used for both the ORDER BY and DISTINCT processing. As originally
6808 ** written the query must use a temp-table for at least one of the ORDER
6809 ** BY and DISTINCT, and an index or separate temp-table for the other.
6811 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
6812 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0
6813 #ifndef SQLITE_OMIT_WINDOWFUNC
6814 && p->pWin==0
6815 #endif
6817 p->selFlags &= ~SF_Distinct;
6818 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0);
6819 p->selFlags |= SF_Aggregate;
6820 /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
6821 ** the sDistinct.isTnct is still set. Hence, isTnct represents the
6822 ** original setting of the SF_Distinct flag, not the current setting */
6823 assert( sDistinct.isTnct );
6825 #if SELECTTRACE_ENABLED
6826 if( sqlite3SelectTrace & 0x400 ){
6827 SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n"));
6828 sqlite3TreeViewSelect(0, p, 0);
6830 #endif
6833 /* If there is an ORDER BY clause, then create an ephemeral index to
6834 ** do the sorting. But this sorting ephemeral index might end up
6835 ** being unused if the data can be extracted in pre-sorted order.
6836 ** If that is the case, then the OP_OpenEphemeral instruction will be
6837 ** changed to an OP_Noop once we figure out that the sorting index is
6838 ** not needed. The sSort.addrSortIndex variable is used to facilitate
6839 ** that change.
6841 if( sSort.pOrderBy ){
6842 KeyInfo *pKeyInfo;
6843 pKeyInfo = sqlite3KeyInfoFromExprList(
6844 pParse, sSort.pOrderBy, 0, pEList->nExpr);
6845 sSort.iECursor = pParse->nTab++;
6846 sSort.addrSortIndex =
6847 sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
6848 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
6849 (char*)pKeyInfo, P4_KEYINFO
6851 }else{
6852 sSort.addrSortIndex = -1;
6855 /* If the output is destined for a temporary table, open that table.
6857 if( pDest->eDest==SRT_EphemTab ){
6858 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
6861 /* Set the limiter.
6863 iEnd = sqlite3VdbeMakeLabel(pParse);
6864 if( (p->selFlags & SF_FixedLimit)==0 ){
6865 p->nSelectRow = 320; /* 4 billion rows */
6867 computeLimitRegisters(pParse, p, iEnd);
6868 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
6869 sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen);
6870 sSort.sortFlags |= SORTFLAG_UseSorter;
6873 /* Open an ephemeral index to use for the distinct set.
6875 if( p->selFlags & SF_Distinct ){
6876 sDistinct.tabTnct = pParse->nTab++;
6877 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
6878 sDistinct.tabTnct, 0, 0,
6879 (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0),
6880 P4_KEYINFO);
6881 sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
6882 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
6883 }else{
6884 sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
6887 if( !isAgg && pGroupBy==0 ){
6888 /* No aggregate functions and no GROUP BY clause */
6889 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0)
6890 | (p->selFlags & SF_FixedLimit);
6891 #ifndef SQLITE_OMIT_WINDOWFUNC
6892 Window *pWin = p->pWin; /* Main window object (or NULL) */
6893 if( pWin ){
6894 sqlite3WindowCodeInit(pParse, p);
6896 #endif
6897 assert( WHERE_USE_LIMIT==SF_FixedLimit );
6900 /* Begin the database scan. */
6901 SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6902 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
6903 p->pEList, p, wctrlFlags, p->nSelectRow);
6904 if( pWInfo==0 ) goto select_end;
6905 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
6906 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
6908 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
6909 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
6911 if( sSort.pOrderBy ){
6912 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
6913 sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo);
6914 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
6915 sSort.pOrderBy = 0;
6918 SELECTTRACE(1,pParse,p,("WhereBegin returns\n"));
6920 /* If sorting index that was created by a prior OP_OpenEphemeral
6921 ** instruction ended up not being needed, then change the OP_OpenEphemeral
6922 ** into an OP_Noop.
6924 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
6925 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
6928 assert( p->pEList==pEList );
6929 #ifndef SQLITE_OMIT_WINDOWFUNC
6930 if( pWin ){
6931 int addrGosub = sqlite3VdbeMakeLabel(pParse);
6932 int iCont = sqlite3VdbeMakeLabel(pParse);
6933 int iBreak = sqlite3VdbeMakeLabel(pParse);
6934 int regGosub = ++pParse->nMem;
6936 sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub);
6938 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
6939 sqlite3VdbeResolveLabel(v, addrGosub);
6940 VdbeNoopComment((v, "inner-loop subroutine"));
6941 sSort.labelOBLopt = 0;
6942 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak);
6943 sqlite3VdbeResolveLabel(v, iCont);
6944 sqlite3VdbeAddOp1(v, OP_Return, regGosub);
6945 VdbeComment((v, "end inner-loop subroutine"));
6946 sqlite3VdbeResolveLabel(v, iBreak);
6947 }else
6948 #endif /* SQLITE_OMIT_WINDOWFUNC */
6950 /* Use the standard inner loop. */
6951 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest,
6952 sqlite3WhereContinueLabel(pWInfo),
6953 sqlite3WhereBreakLabel(pWInfo));
6955 /* End the database scan loop.
6957 SELECTTRACE(1,pParse,p,("WhereEnd\n"));
6958 sqlite3WhereEnd(pWInfo);
6960 }else{
6961 /* This case when there exist aggregate functions or a GROUP BY clause
6962 ** or both */
6963 NameContext sNC; /* Name context for processing aggregate information */
6964 int iAMem; /* First Mem address for storing current GROUP BY */
6965 int iBMem; /* First Mem address for previous GROUP BY */
6966 int iUseFlag; /* Mem address holding flag indicating that at least
6967 ** one row of the input to the aggregator has been
6968 ** processed */
6969 int iAbortFlag; /* Mem address which causes query abort if positive */
6970 int groupBySort; /* Rows come from source in GROUP BY order */
6971 int addrEnd; /* End of processing for this SELECT */
6972 int sortPTab = 0; /* Pseudotable used to decode sorting results */
6973 int sortOut = 0; /* Output register from the sorter */
6974 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
6976 /* Remove any and all aliases between the result set and the
6977 ** GROUP BY clause.
6979 if( pGroupBy ){
6980 int k; /* Loop counter */
6981 struct ExprList_item *pItem; /* For looping over expression in a list */
6983 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
6984 pItem->u.x.iAlias = 0;
6986 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
6987 pItem->u.x.iAlias = 0;
6989 assert( 66==sqlite3LogEst(100) );
6990 if( p->nSelectRow>66 ) p->nSelectRow = 66;
6992 /* If there is both a GROUP BY and an ORDER BY clause and they are
6993 ** identical, then it may be possible to disable the ORDER BY clause
6994 ** on the grounds that the GROUP BY will cause elements to come out
6995 ** in the correct order. It also may not - the GROUP BY might use a
6996 ** database index that causes rows to be grouped together as required
6997 ** but not actually sorted. Either way, record the fact that the
6998 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
6999 ** variable. */
7000 if( sSort.pOrderBy && pGroupBy->nExpr==sSort.pOrderBy->nExpr ){
7001 int ii;
7002 /* The GROUP BY processing doesn't care whether rows are delivered in
7003 ** ASC or DESC order - only that each group is returned contiguously.
7004 ** So set the ASC/DESC flags in the GROUP BY to match those in the
7005 ** ORDER BY to maximize the chances of rows being delivered in an
7006 ** order that makes the ORDER BY redundant. */
7007 for(ii=0; ii<pGroupBy->nExpr; ii++){
7008 u8 sortFlags = sSort.pOrderBy->a[ii].sortFlags & KEYINFO_ORDER_DESC;
7009 pGroupBy->a[ii].sortFlags = sortFlags;
7011 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
7012 orderByGrp = 1;
7015 }else{
7016 assert( 0==sqlite3LogEst(1) );
7017 p->nSelectRow = 0;
7020 /* Create a label to jump to when we want to abort the query */
7021 addrEnd = sqlite3VdbeMakeLabel(pParse);
7023 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
7024 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
7025 ** SELECT statement.
7027 pAggInfo = sqlite3DbMallocZero(db, sizeof(*pAggInfo) );
7028 if( pAggInfo ){
7029 sqlite3ParserAddCleanup(pParse,
7030 (void(*)(sqlite3*,void*))agginfoFree, pAggInfo);
7031 testcase( pParse->earlyCleanup );
7033 if( db->mallocFailed ){
7034 goto select_end;
7036 pAggInfo->selId = p->selId;
7037 memset(&sNC, 0, sizeof(sNC));
7038 sNC.pParse = pParse;
7039 sNC.pSrcList = pTabList;
7040 sNC.uNC.pAggInfo = pAggInfo;
7041 VVA_ONLY( sNC.ncFlags = NC_UAggInfo; )
7042 pAggInfo->mnReg = pParse->nMem+1;
7043 pAggInfo->nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
7044 pAggInfo->pGroupBy = pGroupBy;
7045 sqlite3ExprAnalyzeAggList(&sNC, pEList);
7046 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
7047 if( pHaving ){
7048 if( pGroupBy ){
7049 assert( pWhere==p->pWhere );
7050 assert( pHaving==p->pHaving );
7051 assert( pGroupBy==p->pGroupBy );
7052 havingToWhere(pParse, p);
7053 pWhere = p->pWhere;
7055 sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
7057 pAggInfo->nAccumulator = pAggInfo->nColumn;
7058 if( p->pGroupBy==0 && p->pHaving==0 && pAggInfo->nFunc==1 ){
7059 minMaxFlag = minMaxQuery(db, pAggInfo->aFunc[0].pFExpr, &pMinMaxOrderBy);
7060 }else{
7061 minMaxFlag = WHERE_ORDERBY_NORMAL;
7063 for(i=0; i<pAggInfo->nFunc; i++){
7064 Expr *pExpr = pAggInfo->aFunc[i].pFExpr;
7065 assert( ExprUseXList(pExpr) );
7066 sNC.ncFlags |= NC_InAggFunc;
7067 sqlite3ExprAnalyzeAggList(&sNC, pExpr->x.pList);
7068 #ifndef SQLITE_OMIT_WINDOWFUNC
7069 assert( !IsWindowFunc(pExpr) );
7070 if( ExprHasProperty(pExpr, EP_WinFunc) ){
7071 sqlite3ExprAnalyzeAggregates(&sNC, pExpr->y.pWin->pFilter);
7073 #endif
7074 sNC.ncFlags &= ~NC_InAggFunc;
7076 pAggInfo->mxReg = pParse->nMem;
7077 if( db->mallocFailed ) goto select_end;
7078 #if SELECTTRACE_ENABLED
7079 if( sqlite3SelectTrace & 0x400 ){
7080 int ii;
7081 SELECTTRACE(0x400,pParse,p,("After aggregate analysis %p:\n", pAggInfo));
7082 sqlite3TreeViewSelect(0, p, 0);
7083 if( minMaxFlag ){
7084 sqlite3DebugPrintf("MIN/MAX Optimization (0x%02x) adds:\n", minMaxFlag);
7085 sqlite3TreeViewExprList(0, pMinMaxOrderBy, 0, "ORDERBY");
7087 for(ii=0; ii<pAggInfo->nColumn; ii++){
7088 sqlite3DebugPrintf("agg-column[%d] iMem=%d\n",
7089 ii, pAggInfo->aCol[ii].iMem);
7090 sqlite3TreeViewExpr(0, pAggInfo->aCol[ii].pCExpr, 0);
7092 for(ii=0; ii<pAggInfo->nFunc; ii++){
7093 sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n",
7094 ii, pAggInfo->aFunc[ii].iMem);
7095 sqlite3TreeViewExpr(0, pAggInfo->aFunc[ii].pFExpr, 0);
7098 #endif
7101 /* Processing for aggregates with GROUP BY is very different and
7102 ** much more complex than aggregates without a GROUP BY.
7104 if( pGroupBy ){
7105 KeyInfo *pKeyInfo; /* Keying information for the group by clause */
7106 int addr1; /* A-vs-B comparision jump */
7107 int addrOutputRow; /* Start of subroutine that outputs a result row */
7108 int regOutputRow; /* Return address register for output subroutine */
7109 int addrSetAbort; /* Set the abort flag and return */
7110 int addrTopOfLoop; /* Top of the input loop */
7111 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
7112 int addrReset; /* Subroutine for resetting the accumulator */
7113 int regReset; /* Return address register for reset subroutine */
7114 ExprList *pDistinct = 0;
7115 u16 distFlag = 0;
7116 int eDist = WHERE_DISTINCT_NOOP;
7118 if( pAggInfo->nFunc==1
7119 && pAggInfo->aFunc[0].iDistinct>=0
7120 && ALWAYS(pAggInfo->aFunc[0].pFExpr!=0)
7121 && ALWAYS(ExprUseXList(pAggInfo->aFunc[0].pFExpr))
7122 && pAggInfo->aFunc[0].pFExpr->x.pList!=0
7124 Expr *pExpr = pAggInfo->aFunc[0].pFExpr->x.pList->a[0].pExpr;
7125 pExpr = sqlite3ExprDup(db, pExpr, 0);
7126 pDistinct = sqlite3ExprListDup(db, pGroupBy, 0);
7127 pDistinct = sqlite3ExprListAppend(pParse, pDistinct, pExpr);
7128 distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0;
7131 /* If there is a GROUP BY clause we might need a sorting index to
7132 ** implement it. Allocate that sorting index now. If it turns out
7133 ** that we do not need it after all, the OP_SorterOpen instruction
7134 ** will be converted into a Noop.
7136 pAggInfo->sortingIdx = pParse->nTab++;
7137 pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pGroupBy,
7138 0, pAggInfo->nColumn);
7139 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
7140 pAggInfo->sortingIdx, pAggInfo->nSortingColumn,
7141 0, (char*)pKeyInfo, P4_KEYINFO);
7143 /* Initialize memory locations used by GROUP BY aggregate processing
7145 iUseFlag = ++pParse->nMem;
7146 iAbortFlag = ++pParse->nMem;
7147 regOutputRow = ++pParse->nMem;
7148 addrOutputRow = sqlite3VdbeMakeLabel(pParse);
7149 regReset = ++pParse->nMem;
7150 addrReset = sqlite3VdbeMakeLabel(pParse);
7151 iAMem = pParse->nMem + 1;
7152 pParse->nMem += pGroupBy->nExpr;
7153 iBMem = pParse->nMem + 1;
7154 pParse->nMem += pGroupBy->nExpr;
7155 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
7156 VdbeComment((v, "clear abort flag"));
7157 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
7159 /* Begin a loop that will extract all source rows in GROUP BY order.
7160 ** This might involve two separate loops with an OP_Sort in between, or
7161 ** it might be a single loop that uses an index to extract information
7162 ** in the right order to begin with.
7164 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
7165 SELECTTRACE(1,pParse,p,("WhereBegin\n"));
7166 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, pDistinct,
7167 0, (WHERE_GROUPBY|(orderByGrp ? WHERE_SORTBYGROUP : 0)|distFlag), 0
7169 if( pWInfo==0 ){
7170 sqlite3ExprListDelete(db, pDistinct);
7171 goto select_end;
7173 eDist = sqlite3WhereIsDistinct(pWInfo);
7174 SELECTTRACE(1,pParse,p,("WhereBegin returns\n"));
7175 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
7176 /* The optimizer is able to deliver rows in group by order so
7177 ** we do not have to sort. The OP_OpenEphemeral table will be
7178 ** cancelled later because we still need to use the pKeyInfo
7180 groupBySort = 0;
7181 }else{
7182 /* Rows are coming out in undetermined order. We have to push
7183 ** each row into a sorting index, terminate the first loop,
7184 ** then loop over the sorting index in order to get the output
7185 ** in sorted order
7187 int regBase;
7188 int regRecord;
7189 int nCol;
7190 int nGroupBy;
7192 explainTempTable(pParse,
7193 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
7194 "DISTINCT" : "GROUP BY");
7196 groupBySort = 1;
7197 nGroupBy = pGroupBy->nExpr;
7198 nCol = nGroupBy;
7199 j = nGroupBy;
7200 for(i=0; i<pAggInfo->nColumn; i++){
7201 if( pAggInfo->aCol[i].iSorterColumn>=j ){
7202 nCol++;
7203 j++;
7206 regBase = sqlite3GetTempRange(pParse, nCol);
7207 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0);
7208 j = nGroupBy;
7209 for(i=0; i<pAggInfo->nColumn; i++){
7210 struct AggInfo_col *pCol = &pAggInfo->aCol[i];
7211 if( pCol->iSorterColumn>=j ){
7212 int r1 = j + regBase;
7213 sqlite3ExprCodeGetColumnOfTable(v,
7214 pCol->pTab, pCol->iTable, pCol->iColumn, r1);
7215 j++;
7218 regRecord = sqlite3GetTempReg(pParse);
7219 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
7220 sqlite3VdbeAddOp2(v, OP_SorterInsert, pAggInfo->sortingIdx, regRecord);
7221 sqlite3ReleaseTempReg(pParse, regRecord);
7222 sqlite3ReleaseTempRange(pParse, regBase, nCol);
7223 SELECTTRACE(1,pParse,p,("WhereEnd\n"));
7224 sqlite3WhereEnd(pWInfo);
7225 pAggInfo->sortingIdxPTab = sortPTab = pParse->nTab++;
7226 sortOut = sqlite3GetTempReg(pParse);
7227 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
7228 sqlite3VdbeAddOp2(v, OP_SorterSort, pAggInfo->sortingIdx, addrEnd);
7229 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
7230 pAggInfo->useSortingIdx = 1;
7233 /* If the index or temporary table used by the GROUP BY sort
7234 ** will naturally deliver rows in the order required by the ORDER BY
7235 ** clause, cancel the ephemeral table open coded earlier.
7237 ** This is an optimization - the correct answer should result regardless.
7238 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
7239 ** disable this optimization for testing purposes. */
7240 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
7241 && (groupBySort || sqlite3WhereIsSorted(pWInfo))
7243 sSort.pOrderBy = 0;
7244 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
7247 /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
7248 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
7249 ** Then compare the current GROUP BY terms against the GROUP BY terms
7250 ** from the previous row currently stored in a0, a1, a2...
7252 addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
7253 if( groupBySort ){
7254 sqlite3VdbeAddOp3(v, OP_SorterData, pAggInfo->sortingIdx,
7255 sortOut, sortPTab);
7257 for(j=0; j<pGroupBy->nExpr; j++){
7258 if( groupBySort ){
7259 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
7260 }else{
7261 pAggInfo->directMode = 1;
7262 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
7265 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
7266 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
7267 addr1 = sqlite3VdbeCurrentAddr(v);
7268 sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v);
7270 /* Generate code that runs whenever the GROUP BY changes.
7271 ** Changes in the GROUP BY are detected by the previous code
7272 ** block. If there were no changes, this block is skipped.
7274 ** This code copies current group by terms in b0,b1,b2,...
7275 ** over to a0,a1,a2. It then calls the output subroutine
7276 ** and resets the aggregate accumulator registers in preparation
7277 ** for the next GROUP BY batch.
7279 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
7280 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
7281 VdbeComment((v, "output one row"));
7282 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
7283 VdbeComment((v, "check abort flag"));
7284 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
7285 VdbeComment((v, "reset accumulator"));
7287 /* Update the aggregate accumulators based on the content of
7288 ** the current row
7290 sqlite3VdbeJumpHere(v, addr1);
7291 updateAccumulator(pParse, iUseFlag, pAggInfo, eDist);
7292 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
7293 VdbeComment((v, "indicate data in accumulator"));
7295 /* End of the loop
7297 if( groupBySort ){
7298 sqlite3VdbeAddOp2(v, OP_SorterNext, pAggInfo->sortingIdx,addrTopOfLoop);
7299 VdbeCoverage(v);
7300 }else{
7301 SELECTTRACE(1,pParse,p,("WhereEnd\n"));
7302 sqlite3WhereEnd(pWInfo);
7303 sqlite3VdbeChangeToNoop(v, addrSortingIdx);
7305 sqlite3ExprListDelete(db, pDistinct);
7307 /* Output the final row of result
7309 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
7310 VdbeComment((v, "output final row"));
7312 /* Jump over the subroutines
7314 sqlite3VdbeGoto(v, addrEnd);
7316 /* Generate a subroutine that outputs a single row of the result
7317 ** set. This subroutine first looks at the iUseFlag. If iUseFlag
7318 ** is less than or equal to zero, the subroutine is a no-op. If
7319 ** the processing calls for the query to abort, this subroutine
7320 ** increments the iAbortFlag memory location before returning in
7321 ** order to signal the caller to abort.
7323 addrSetAbort = sqlite3VdbeCurrentAddr(v);
7324 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
7325 VdbeComment((v, "set abort flag"));
7326 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
7327 sqlite3VdbeResolveLabel(v, addrOutputRow);
7328 addrOutputRow = sqlite3VdbeCurrentAddr(v);
7329 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
7330 VdbeCoverage(v);
7331 VdbeComment((v, "Groupby result generator entry point"));
7332 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
7333 finalizeAggFunctions(pParse, pAggInfo);
7334 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
7335 selectInnerLoop(pParse, p, -1, &sSort,
7336 &sDistinct, pDest,
7337 addrOutputRow+1, addrSetAbort);
7338 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
7339 VdbeComment((v, "end groupby result generator"));
7341 /* Generate a subroutine that will reset the group-by accumulator
7343 sqlite3VdbeResolveLabel(v, addrReset);
7344 resetAccumulator(pParse, pAggInfo);
7345 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
7346 VdbeComment((v, "indicate accumulator empty"));
7347 sqlite3VdbeAddOp1(v, OP_Return, regReset);
7349 if( eDist!=WHERE_DISTINCT_NOOP ){
7350 struct AggInfo_func *pF = &pAggInfo->aFunc[0];
7351 fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr);
7353 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */
7354 else {
7355 Table *pTab;
7356 if( (pTab = isSimpleCount(p, pAggInfo))!=0 ){
7357 /* If isSimpleCount() returns a pointer to a Table structure, then
7358 ** the SQL statement is of the form:
7360 ** SELECT count(*) FROM <tbl>
7362 ** where the Table structure returned represents table <tbl>.
7364 ** This statement is so common that it is optimized specially. The
7365 ** OP_Count instruction is executed either on the intkey table that
7366 ** contains the data for table <tbl> or on one of its indexes. It
7367 ** is better to execute the op on an index, as indexes are almost
7368 ** always spread across less pages than their corresponding tables.
7370 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
7371 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */
7372 Index *pIdx; /* Iterator variable */
7373 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */
7374 Index *pBest = 0; /* Best index found so far */
7375 Pgno iRoot = pTab->tnum; /* Root page of scanned b-tree */
7377 sqlite3CodeVerifySchema(pParse, iDb);
7378 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
7380 /* Search for the index that has the lowest scan cost.
7382 ** (2011-04-15) Do not do a full scan of an unordered index.
7384 ** (2013-10-03) Do not count the entries in a partial index.
7386 ** In practice the KeyInfo structure will not be used. It is only
7387 ** passed to keep OP_OpenRead happy.
7389 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
7390 if( !p->pSrc->a[0].fg.notIndexed ){
7391 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
7392 if( pIdx->bUnordered==0
7393 && pIdx->szIdxRow<pTab->szTabRow
7394 && pIdx->pPartIdxWhere==0
7395 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
7397 pBest = pIdx;
7401 if( pBest ){
7402 iRoot = pBest->tnum;
7403 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
7406 /* Open a read-only cursor, execute the OP_Count, close the cursor. */
7407 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, (int)iRoot, iDb, 1);
7408 if( pKeyInfo ){
7409 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
7411 sqlite3VdbeAddOp2(v, OP_Count, iCsr, pAggInfo->aFunc[0].iMem);
7412 sqlite3VdbeAddOp1(v, OP_Close, iCsr);
7413 explainSimpleCount(pParse, pTab, pBest);
7414 }else{
7415 int regAcc = 0; /* "populate accumulators" flag */
7416 ExprList *pDistinct = 0;
7417 u16 distFlag = 0;
7418 int eDist;
7420 /* If there are accumulator registers but no min() or max() functions
7421 ** without FILTER clauses, allocate register regAcc. Register regAcc
7422 ** will contain 0 the first time the inner loop runs, and 1 thereafter.
7423 ** The code generated by updateAccumulator() uses this to ensure
7424 ** that the accumulator registers are (a) updated only once if
7425 ** there are no min() or max functions or (b) always updated for the
7426 ** first row visited by the aggregate, so that they are updated at
7427 ** least once even if the FILTER clause means the min() or max()
7428 ** function visits zero rows. */
7429 if( pAggInfo->nAccumulator ){
7430 for(i=0; i<pAggInfo->nFunc; i++){
7431 if( ExprHasProperty(pAggInfo->aFunc[i].pFExpr, EP_WinFunc) ){
7432 continue;
7434 if( pAggInfo->aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ){
7435 break;
7438 if( i==pAggInfo->nFunc ){
7439 regAcc = ++pParse->nMem;
7440 sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc);
7442 }else if( pAggInfo->nFunc==1 && pAggInfo->aFunc[0].iDistinct>=0 ){
7443 assert( ExprUseXList(pAggInfo->aFunc[0].pFExpr) );
7444 pDistinct = pAggInfo->aFunc[0].pFExpr->x.pList;
7445 distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0;
7448 /* This case runs if the aggregate has no GROUP BY clause. The
7449 ** processing is much simpler since there is only a single row
7450 ** of output.
7452 assert( p->pGroupBy==0 );
7453 resetAccumulator(pParse, pAggInfo);
7455 /* If this query is a candidate for the min/max optimization, then
7456 ** minMaxFlag will have been previously set to either
7457 ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will
7458 ** be an appropriate ORDER BY expression for the optimization.
7460 assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 );
7461 assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 );
7463 SELECTTRACE(1,pParse,p,("WhereBegin\n"));
7464 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy,
7465 pDistinct, 0, minMaxFlag|distFlag, 0);
7466 if( pWInfo==0 ){
7467 goto select_end;
7469 SELECTTRACE(1,pParse,p,("WhereBegin returns\n"));
7470 eDist = sqlite3WhereIsDistinct(pWInfo);
7471 updateAccumulator(pParse, regAcc, pAggInfo, eDist);
7472 if( eDist!=WHERE_DISTINCT_NOOP ){
7473 struct AggInfo_func *pF = &pAggInfo->aFunc[0];
7474 fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr);
7477 if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc);
7478 if( minMaxFlag ){
7479 sqlite3WhereMinMaxOptEarlyOut(v, pWInfo);
7481 SELECTTRACE(1,pParse,p,("WhereEnd\n"));
7482 sqlite3WhereEnd(pWInfo);
7483 finalizeAggFunctions(pParse, pAggInfo);
7486 sSort.pOrderBy = 0;
7487 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
7488 selectInnerLoop(pParse, p, -1, 0, 0,
7489 pDest, addrEnd, addrEnd);
7491 sqlite3VdbeResolveLabel(v, addrEnd);
7493 } /* endif aggregate query */
7495 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
7496 explainTempTable(pParse, "DISTINCT");
7499 /* If there is an ORDER BY clause, then we need to sort the results
7500 ** and send them to the callback one by one.
7502 if( sSort.pOrderBy ){
7503 explainTempTable(pParse,
7504 sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
7505 assert( p->pEList==pEList );
7506 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
7509 /* Jump here to skip this query
7511 sqlite3VdbeResolveLabel(v, iEnd);
7513 /* The SELECT has been coded. If there is an error in the Parse structure,
7514 ** set the return code to 1. Otherwise 0. */
7515 rc = (pParse->nErr>0);
7517 /* Control jumps to here if an error is encountered above, or upon
7518 ** successful coding of the SELECT.
7520 select_end:
7521 assert( db->mallocFailed==0 || db->mallocFailed==1 );
7522 assert( db->mallocFailed==0 || pParse->nErr!=0 );
7523 sqlite3ExprListDelete(db, pMinMaxOrderBy);
7524 #ifdef SQLITE_DEBUG
7525 if( pAggInfo && !db->mallocFailed ){
7526 for(i=0; i<pAggInfo->nColumn; i++){
7527 Expr *pExpr = pAggInfo->aCol[i].pCExpr;
7528 assert( pExpr!=0 );
7529 assert( pExpr->pAggInfo==pAggInfo );
7530 assert( pExpr->iAgg==i );
7532 for(i=0; i<pAggInfo->nFunc; i++){
7533 Expr *pExpr = pAggInfo->aFunc[i].pFExpr;
7534 assert( pExpr!=0 );
7535 assert( pExpr->pAggInfo==pAggInfo );
7536 assert( pExpr->iAgg==i );
7539 #endif
7541 #if SELECTTRACE_ENABLED
7542 SELECTTRACE(0x1,pParse,p,("end processing\n"));
7543 if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
7544 sqlite3TreeViewSelect(0, p, 0);
7546 #endif
7547 ExplainQueryPlanPop(pParse);
7548 return rc;