Snapshot of upstream SQLite 3.38.2
[sqlcipher.git] / src / whereexpr.c
blob19dd886de5f77a6b008120f2fa5af8e5ec0236db
1 /*
2 ** 2015-06-08
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.
15 ** This file was originally part of where.c but was split out to improve
16 ** readability and editabiliity. This file contains utility routines for
17 ** analyzing Expr objects in the WHERE clause.
19 #include "sqliteInt.h"
20 #include "whereInt.h"
22 /* Forward declarations */
23 static void exprAnalyze(SrcList*, WhereClause*, int);
26 ** Deallocate all memory associated with a WhereOrInfo object.
28 static void whereOrInfoDelete(sqlite3 *db, WhereOrInfo *p){
29 sqlite3WhereClauseClear(&p->wc);
30 sqlite3DbFree(db, p);
34 ** Deallocate all memory associated with a WhereAndInfo object.
36 static void whereAndInfoDelete(sqlite3 *db, WhereAndInfo *p){
37 sqlite3WhereClauseClear(&p->wc);
38 sqlite3DbFree(db, p);
42 ** Add a single new WhereTerm entry to the WhereClause object pWC.
43 ** The new WhereTerm object is constructed from Expr p and with wtFlags.
44 ** The index in pWC->a[] of the new WhereTerm is returned on success.
45 ** 0 is returned if the new WhereTerm could not be added due to a memory
46 ** allocation error. The memory allocation failure will be recorded in
47 ** the db->mallocFailed flag so that higher-level functions can detect it.
49 ** This routine will increase the size of the pWC->a[] array as necessary.
51 ** If the wtFlags argument includes TERM_DYNAMIC, then responsibility
52 ** for freeing the expression p is assumed by the WhereClause object pWC.
53 ** This is true even if this routine fails to allocate a new WhereTerm.
55 ** WARNING: This routine might reallocate the space used to store
56 ** WhereTerms. All pointers to WhereTerms should be invalidated after
57 ** calling this routine. Such pointers may be reinitialized by referencing
58 ** the pWC->a[] array.
60 static int whereClauseInsert(WhereClause *pWC, Expr *p, u16 wtFlags){
61 WhereTerm *pTerm;
62 int idx;
63 testcase( wtFlags & TERM_VIRTUAL );
64 if( pWC->nTerm>=pWC->nSlot ){
65 WhereTerm *pOld = pWC->a;
66 sqlite3 *db = pWC->pWInfo->pParse->db;
67 pWC->a = sqlite3DbMallocRawNN(db, sizeof(pWC->a[0])*pWC->nSlot*2 );
68 if( pWC->a==0 ){
69 if( wtFlags & TERM_DYNAMIC ){
70 sqlite3ExprDelete(db, p);
72 pWC->a = pOld;
73 return 0;
75 memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm);
76 if( pOld!=pWC->aStatic ){
77 sqlite3DbFree(db, pOld);
79 pWC->nSlot = sqlite3DbMallocSize(db, pWC->a)/sizeof(pWC->a[0]);
81 pTerm = &pWC->a[idx = pWC->nTerm++];
82 if( (wtFlags & TERM_VIRTUAL)==0 ) pWC->nBase = pWC->nTerm;
83 if( p && ExprHasProperty(p, EP_Unlikely) ){
84 pTerm->truthProb = sqlite3LogEst(p->iTable) - 270;
85 }else{
86 pTerm->truthProb = 1;
88 pTerm->pExpr = sqlite3ExprSkipCollateAndLikely(p);
89 pTerm->wtFlags = wtFlags;
90 pTerm->pWC = pWC;
91 pTerm->iParent = -1;
92 memset(&pTerm->eOperator, 0,
93 sizeof(WhereTerm) - offsetof(WhereTerm,eOperator));
94 return idx;
98 ** Return TRUE if the given operator is one of the operators that is
99 ** allowed for an indexable WHERE clause term. The allowed operators are
100 ** "=", "<", ">", "<=", ">=", "IN", "IS", and "IS NULL"
102 static int allowedOp(int op){
103 assert( TK_GT>TK_EQ && TK_GT<TK_GE );
104 assert( TK_LT>TK_EQ && TK_LT<TK_GE );
105 assert( TK_LE>TK_EQ && TK_LE<TK_GE );
106 assert( TK_GE==TK_EQ+4 );
107 return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL || op==TK_IS;
111 ** Commute a comparison operator. Expressions of the form "X op Y"
112 ** are converted into "Y op X".
114 static u16 exprCommute(Parse *pParse, Expr *pExpr){
115 if( pExpr->pLeft->op==TK_VECTOR
116 || pExpr->pRight->op==TK_VECTOR
117 || sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, pExpr->pRight) !=
118 sqlite3BinaryCompareCollSeq(pParse, pExpr->pRight, pExpr->pLeft)
120 pExpr->flags ^= EP_Commuted;
122 SWAP(Expr*,pExpr->pRight,pExpr->pLeft);
123 if( pExpr->op>=TK_GT ){
124 assert( TK_LT==TK_GT+2 );
125 assert( TK_GE==TK_LE+2 );
126 assert( TK_GT>TK_EQ );
127 assert( TK_GT<TK_LE );
128 assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE );
129 pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT;
131 return 0;
135 ** Translate from TK_xx operator to WO_xx bitmask.
137 static u16 operatorMask(int op){
138 u16 c;
139 assert( allowedOp(op) );
140 if( op==TK_IN ){
141 c = WO_IN;
142 }else if( op==TK_ISNULL ){
143 c = WO_ISNULL;
144 }else if( op==TK_IS ){
145 c = WO_IS;
146 }else{
147 assert( (WO_EQ<<(op-TK_EQ)) < 0x7fff );
148 c = (u16)(WO_EQ<<(op-TK_EQ));
150 assert( op!=TK_ISNULL || c==WO_ISNULL );
151 assert( op!=TK_IN || c==WO_IN );
152 assert( op!=TK_EQ || c==WO_EQ );
153 assert( op!=TK_LT || c==WO_LT );
154 assert( op!=TK_LE || c==WO_LE );
155 assert( op!=TK_GT || c==WO_GT );
156 assert( op!=TK_GE || c==WO_GE );
157 assert( op!=TK_IS || c==WO_IS );
158 return c;
162 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
164 ** Check to see if the given expression is a LIKE or GLOB operator that
165 ** can be optimized using inequality constraints. Return TRUE if it is
166 ** so and false if not.
168 ** In order for the operator to be optimizible, the RHS must be a string
169 ** literal that does not begin with a wildcard. The LHS must be a column
170 ** that may only be NULL, a string, or a BLOB, never a number. (This means
171 ** that virtual tables cannot participate in the LIKE optimization.) The
172 ** collating sequence for the column on the LHS must be appropriate for
173 ** the operator.
175 static int isLikeOrGlob(
176 Parse *pParse, /* Parsing and code generating context */
177 Expr *pExpr, /* Test this expression */
178 Expr **ppPrefix, /* Pointer to TK_STRING expression with pattern prefix */
179 int *pisComplete, /* True if the only wildcard is % in the last character */
180 int *pnoCase /* True if uppercase is equivalent to lowercase */
182 const u8 *z = 0; /* String on RHS of LIKE operator */
183 Expr *pRight, *pLeft; /* Right and left size of LIKE operator */
184 ExprList *pList; /* List of operands to the LIKE operator */
185 u8 c; /* One character in z[] */
186 int cnt; /* Number of non-wildcard prefix characters */
187 u8 wc[4]; /* Wildcard characters */
188 sqlite3 *db = pParse->db; /* Database connection */
189 sqlite3_value *pVal = 0;
190 int op; /* Opcode of pRight */
191 int rc; /* Result code to return */
193 if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, (char*)wc) ){
194 return 0;
196 #ifdef SQLITE_EBCDIC
197 if( *pnoCase ) return 0;
198 #endif
199 assert( ExprUseXList(pExpr) );
200 pList = pExpr->x.pList;
201 pLeft = pList->a[1].pExpr;
203 pRight = sqlite3ExprSkipCollate(pList->a[0].pExpr);
204 op = pRight->op;
205 if( op==TK_VARIABLE && (db->flags & SQLITE_EnableQPSG)==0 ){
206 Vdbe *pReprepare = pParse->pReprepare;
207 int iCol = pRight->iColumn;
208 pVal = sqlite3VdbeGetBoundValue(pReprepare, iCol, SQLITE_AFF_BLOB);
209 if( pVal && sqlite3_value_type(pVal)==SQLITE_TEXT ){
210 z = sqlite3_value_text(pVal);
212 sqlite3VdbeSetVarmask(pParse->pVdbe, iCol);
213 assert( pRight->op==TK_VARIABLE || pRight->op==TK_REGISTER );
214 }else if( op==TK_STRING ){
215 assert( !ExprHasProperty(pRight, EP_IntValue) );
216 z = (u8*)pRight->u.zToken;
218 if( z ){
220 /* Count the number of prefix characters prior to the first wildcard */
221 cnt = 0;
222 while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){
223 cnt++;
224 if( c==wc[3] && z[cnt]!=0 ) cnt++;
227 /* The optimization is possible only if (1) the pattern does not begin
228 ** with a wildcard and if (2) the non-wildcard prefix does not end with
229 ** an (illegal 0xff) character, or (3) the pattern does not consist of
230 ** a single escape character. The second condition is necessary so
231 ** that we can increment the prefix key to find an upper bound for the
232 ** range search. The third is because the caller assumes that the pattern
233 ** consists of at least one character after all escapes have been
234 ** removed. */
235 if( cnt!=0 && 255!=(u8)z[cnt-1] && (cnt>1 || z[0]!=wc[3]) ){
236 Expr *pPrefix;
238 /* A "complete" match if the pattern ends with "*" or "%" */
239 *pisComplete = c==wc[0] && z[cnt+1]==0;
241 /* Get the pattern prefix. Remove all escapes from the prefix. */
242 pPrefix = sqlite3Expr(db, TK_STRING, (char*)z);
243 if( pPrefix ){
244 int iFrom, iTo;
245 char *zNew;
246 assert( !ExprHasProperty(pPrefix, EP_IntValue) );
247 zNew = pPrefix->u.zToken;
248 zNew[cnt] = 0;
249 for(iFrom=iTo=0; iFrom<cnt; iFrom++){
250 if( zNew[iFrom]==wc[3] ) iFrom++;
251 zNew[iTo++] = zNew[iFrom];
253 zNew[iTo] = 0;
254 assert( iTo>0 );
256 /* If the LHS is not an ordinary column with TEXT affinity, then the
257 ** pattern prefix boundaries (both the start and end boundaries) must
258 ** not look like a number. Otherwise the pattern might be treated as
259 ** a number, which will invalidate the LIKE optimization.
261 ** Getting this right has been a persistent source of bugs in the
262 ** LIKE optimization. See, for example:
263 ** 2018-09-10 https://sqlite.org/src/info/c94369cae9b561b1
264 ** 2019-05-02 https://sqlite.org/src/info/b043a54c3de54b28
265 ** 2019-06-10 https://sqlite.org/src/info/fd76310a5e843e07
266 ** 2019-06-14 https://sqlite.org/src/info/ce8717f0885af975
267 ** 2019-09-03 https://sqlite.org/src/info/0f0428096f17252a
269 if( pLeft->op!=TK_COLUMN
270 || sqlite3ExprAffinity(pLeft)!=SQLITE_AFF_TEXT
271 || (ALWAYS( ExprUseYTab(pLeft) )
272 && pLeft->y.pTab
273 && IsVirtual(pLeft->y.pTab)) /* Might be numeric */
275 int isNum;
276 double rDummy;
277 isNum = sqlite3AtoF(zNew, &rDummy, iTo, SQLITE_UTF8);
278 if( isNum<=0 ){
279 if( iTo==1 && zNew[0]=='-' ){
280 isNum = +1;
281 }else{
282 zNew[iTo-1]++;
283 isNum = sqlite3AtoF(zNew, &rDummy, iTo, SQLITE_UTF8);
284 zNew[iTo-1]--;
287 if( isNum>0 ){
288 sqlite3ExprDelete(db, pPrefix);
289 sqlite3ValueFree(pVal);
290 return 0;
294 *ppPrefix = pPrefix;
296 /* If the RHS pattern is a bound parameter, make arrangements to
297 ** reprepare the statement when that parameter is rebound */
298 if( op==TK_VARIABLE ){
299 Vdbe *v = pParse->pVdbe;
300 sqlite3VdbeSetVarmask(v, pRight->iColumn);
301 assert( !ExprHasProperty(pRight, EP_IntValue) );
302 if( *pisComplete && pRight->u.zToken[1] ){
303 /* If the rhs of the LIKE expression is a variable, and the current
304 ** value of the variable means there is no need to invoke the LIKE
305 ** function, then no OP_Variable will be added to the program.
306 ** This causes problems for the sqlite3_bind_parameter_name()
307 ** API. To work around them, add a dummy OP_Variable here.
309 int r1 = sqlite3GetTempReg(pParse);
310 sqlite3ExprCodeTarget(pParse, pRight, r1);
311 sqlite3VdbeChangeP3(v, sqlite3VdbeCurrentAddr(v)-1, 0);
312 sqlite3ReleaseTempReg(pParse, r1);
315 }else{
316 z = 0;
320 rc = (z!=0);
321 sqlite3ValueFree(pVal);
322 return rc;
324 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
327 #ifndef SQLITE_OMIT_VIRTUALTABLE
329 ** Check to see if the pExpr expression is a form that needs to be passed
330 ** to the xBestIndex method of virtual tables. Forms of interest include:
332 ** Expression Virtual Table Operator
333 ** ----------------------- ---------------------------------
334 ** 1. column MATCH expr SQLITE_INDEX_CONSTRAINT_MATCH
335 ** 2. column GLOB expr SQLITE_INDEX_CONSTRAINT_GLOB
336 ** 3. column LIKE expr SQLITE_INDEX_CONSTRAINT_LIKE
337 ** 4. column REGEXP expr SQLITE_INDEX_CONSTRAINT_REGEXP
338 ** 5. column != expr SQLITE_INDEX_CONSTRAINT_NE
339 ** 6. expr != column SQLITE_INDEX_CONSTRAINT_NE
340 ** 7. column IS NOT expr SQLITE_INDEX_CONSTRAINT_ISNOT
341 ** 8. expr IS NOT column SQLITE_INDEX_CONSTRAINT_ISNOT
342 ** 9. column IS NOT NULL SQLITE_INDEX_CONSTRAINT_ISNOTNULL
344 ** In every case, "column" must be a column of a virtual table. If there
345 ** is a match, set *ppLeft to the "column" expression, set *ppRight to the
346 ** "expr" expression (even though in forms (6) and (8) the column is on the
347 ** right and the expression is on the left). Also set *peOp2 to the
348 ** appropriate virtual table operator. The return value is 1 or 2 if there
349 ** is a match. The usual return is 1, but if the RHS is also a column
350 ** of virtual table in forms (5) or (7) then return 2.
352 ** If the expression matches none of the patterns above, return 0.
354 static int isAuxiliaryVtabOperator(
355 sqlite3 *db, /* Parsing context */
356 Expr *pExpr, /* Test this expression */
357 unsigned char *peOp2, /* OUT: 0 for MATCH, or else an op2 value */
358 Expr **ppLeft, /* Column expression to left of MATCH/op2 */
359 Expr **ppRight /* Expression to left of MATCH/op2 */
361 if( pExpr->op==TK_FUNCTION ){
362 static const struct Op2 {
363 const char *zOp;
364 unsigned char eOp2;
365 } aOp[] = {
366 { "match", SQLITE_INDEX_CONSTRAINT_MATCH },
367 { "glob", SQLITE_INDEX_CONSTRAINT_GLOB },
368 { "like", SQLITE_INDEX_CONSTRAINT_LIKE },
369 { "regexp", SQLITE_INDEX_CONSTRAINT_REGEXP }
371 ExprList *pList;
372 Expr *pCol; /* Column reference */
373 int i;
375 assert( ExprUseXList(pExpr) );
376 pList = pExpr->x.pList;
377 if( pList==0 || pList->nExpr!=2 ){
378 return 0;
381 /* Built-in operators MATCH, GLOB, LIKE, and REGEXP attach to a
382 ** virtual table on their second argument, which is the same as
383 ** the left-hand side operand in their in-fix form.
385 ** vtab_column MATCH expression
386 ** MATCH(expression,vtab_column)
388 pCol = pList->a[1].pExpr;
389 assert( pCol->op!=TK_COLUMN || ExprUseYTab(pCol) );
390 testcase( pCol->op==TK_COLUMN && pCol->y.pTab==0 );
391 if( ExprIsVtab(pCol) ){
392 for(i=0; i<ArraySize(aOp); i++){
393 assert( !ExprHasProperty(pExpr, EP_IntValue) );
394 if( sqlite3StrICmp(pExpr->u.zToken, aOp[i].zOp)==0 ){
395 *peOp2 = aOp[i].eOp2;
396 *ppRight = pList->a[0].pExpr;
397 *ppLeft = pCol;
398 return 1;
403 /* We can also match against the first column of overloaded
404 ** functions where xFindFunction returns a value of at least
405 ** SQLITE_INDEX_CONSTRAINT_FUNCTION.
407 ** OVERLOADED(vtab_column,expression)
409 ** Historically, xFindFunction expected to see lower-case function
410 ** names. But for this use case, xFindFunction is expected to deal
411 ** with function names in an arbitrary case.
413 pCol = pList->a[0].pExpr;
414 assert( pCol->op!=TK_COLUMN || ExprUseYTab(pCol) );
415 testcase( pCol->op==TK_COLUMN && pCol->y.pTab==0 );
416 if( ExprIsVtab(pCol) ){
417 sqlite3_vtab *pVtab;
418 sqlite3_module *pMod;
419 void (*xNotUsed)(sqlite3_context*,int,sqlite3_value**);
420 void *pNotUsed;
421 pVtab = sqlite3GetVTable(db, pCol->y.pTab)->pVtab;
422 assert( pVtab!=0 );
423 assert( pVtab->pModule!=0 );
424 assert( !ExprHasProperty(pExpr, EP_IntValue) );
425 pMod = (sqlite3_module *)pVtab->pModule;
426 if( pMod->xFindFunction!=0 ){
427 i = pMod->xFindFunction(pVtab,2, pExpr->u.zToken, &xNotUsed, &pNotUsed);
428 if( i>=SQLITE_INDEX_CONSTRAINT_FUNCTION ){
429 *peOp2 = i;
430 *ppRight = pList->a[1].pExpr;
431 *ppLeft = pCol;
432 return 1;
436 }else if( pExpr->op==TK_NE || pExpr->op==TK_ISNOT || pExpr->op==TK_NOTNULL ){
437 int res = 0;
438 Expr *pLeft = pExpr->pLeft;
439 Expr *pRight = pExpr->pRight;
440 assert( pLeft->op!=TK_COLUMN || ExprUseYTab(pLeft) );
441 testcase( pLeft->op==TK_COLUMN && pLeft->y.pTab==0 );
442 if( ExprIsVtab(pLeft) ){
443 res++;
445 assert( pRight==0 || pRight->op!=TK_COLUMN || ExprUseYTab(pRight) );
446 testcase( pRight && pRight->op==TK_COLUMN && pRight->y.pTab==0 );
447 if( pRight && ExprIsVtab(pRight) ){
448 res++;
449 SWAP(Expr*, pLeft, pRight);
451 *ppLeft = pLeft;
452 *ppRight = pRight;
453 if( pExpr->op==TK_NE ) *peOp2 = SQLITE_INDEX_CONSTRAINT_NE;
454 if( pExpr->op==TK_ISNOT ) *peOp2 = SQLITE_INDEX_CONSTRAINT_ISNOT;
455 if( pExpr->op==TK_NOTNULL ) *peOp2 = SQLITE_INDEX_CONSTRAINT_ISNOTNULL;
456 return res;
458 return 0;
460 #endif /* SQLITE_OMIT_VIRTUALTABLE */
463 ** If the pBase expression originated in the ON or USING clause of
464 ** a join, then transfer the appropriate markings over to derived.
466 static void transferJoinMarkings(Expr *pDerived, Expr *pBase){
467 if( pDerived ){
468 pDerived->flags |= pBase->flags & EP_FromJoin;
469 pDerived->w.iRightJoinTable = pBase->w.iRightJoinTable;
474 ** Mark term iChild as being a child of term iParent
476 static void markTermAsChild(WhereClause *pWC, int iChild, int iParent){
477 pWC->a[iChild].iParent = iParent;
478 pWC->a[iChild].truthProb = pWC->a[iParent].truthProb;
479 pWC->a[iParent].nChild++;
483 ** Return the N-th AND-connected subterm of pTerm. Or if pTerm is not
484 ** a conjunction, then return just pTerm when N==0. If N is exceeds
485 ** the number of available subterms, return NULL.
487 static WhereTerm *whereNthSubterm(WhereTerm *pTerm, int N){
488 if( pTerm->eOperator!=WO_AND ){
489 return N==0 ? pTerm : 0;
491 if( N<pTerm->u.pAndInfo->wc.nTerm ){
492 return &pTerm->u.pAndInfo->wc.a[N];
494 return 0;
498 ** Subterms pOne and pTwo are contained within WHERE clause pWC. The
499 ** two subterms are in disjunction - they are OR-ed together.
501 ** If these two terms are both of the form: "A op B" with the same
502 ** A and B values but different operators and if the operators are
503 ** compatible (if one is = and the other is <, for example) then
504 ** add a new virtual AND term to pWC that is the combination of the
505 ** two.
507 ** Some examples:
509 ** x<y OR x=y --> x<=y
510 ** x=y OR x=y --> x=y
511 ** x<=y OR x<y --> x<=y
513 ** The following is NOT generated:
515 ** x<y OR x>y --> x!=y
517 static void whereCombineDisjuncts(
518 SrcList *pSrc, /* the FROM clause */
519 WhereClause *pWC, /* The complete WHERE clause */
520 WhereTerm *pOne, /* First disjunct */
521 WhereTerm *pTwo /* Second disjunct */
523 u16 eOp = pOne->eOperator | pTwo->eOperator;
524 sqlite3 *db; /* Database connection (for malloc) */
525 Expr *pNew; /* New virtual expression */
526 int op; /* Operator for the combined expression */
527 int idxNew; /* Index in pWC of the next virtual term */
529 if( (pOne->wtFlags | pTwo->wtFlags) & TERM_VNULL ) return;
530 if( (pOne->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE))==0 ) return;
531 if( (pTwo->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE))==0 ) return;
532 if( (eOp & (WO_EQ|WO_LT|WO_LE))!=eOp
533 && (eOp & (WO_EQ|WO_GT|WO_GE))!=eOp ) return;
534 assert( pOne->pExpr->pLeft!=0 && pOne->pExpr->pRight!=0 );
535 assert( pTwo->pExpr->pLeft!=0 && pTwo->pExpr->pRight!=0 );
536 if( sqlite3ExprCompare(0,pOne->pExpr->pLeft, pTwo->pExpr->pLeft, -1) ) return;
537 if( sqlite3ExprCompare(0,pOne->pExpr->pRight, pTwo->pExpr->pRight,-1) )return;
538 /* If we reach this point, it means the two subterms can be combined */
539 if( (eOp & (eOp-1))!=0 ){
540 if( eOp & (WO_LT|WO_LE) ){
541 eOp = WO_LE;
542 }else{
543 assert( eOp & (WO_GT|WO_GE) );
544 eOp = WO_GE;
547 db = pWC->pWInfo->pParse->db;
548 pNew = sqlite3ExprDup(db, pOne->pExpr, 0);
549 if( pNew==0 ) return;
550 for(op=TK_EQ; eOp!=(WO_EQ<<(op-TK_EQ)); op++){ assert( op<TK_GE ); }
551 pNew->op = op;
552 idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC);
553 exprAnalyze(pSrc, pWC, idxNew);
556 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
558 ** Analyze a term that consists of two or more OR-connected
559 ** subterms. So in:
561 ** ... WHERE (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13)
562 ** ^^^^^^^^^^^^^^^^^^^^
564 ** This routine analyzes terms such as the middle term in the above example.
565 ** A WhereOrTerm object is computed and attached to the term under
566 ** analysis, regardless of the outcome of the analysis. Hence:
568 ** WhereTerm.wtFlags |= TERM_ORINFO
569 ** WhereTerm.u.pOrInfo = a dynamically allocated WhereOrTerm object
571 ** The term being analyzed must have two or more of OR-connected subterms.
572 ** A single subterm might be a set of AND-connected sub-subterms.
573 ** Examples of terms under analysis:
575 ** (A) t1.x=t2.y OR t1.x=t2.z OR t1.y=15 OR t1.z=t3.a+5
576 ** (B) x=expr1 OR expr2=x OR x=expr3
577 ** (C) t1.x=t2.y OR (t1.x=t2.z AND t1.y=15)
578 ** (D) x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*')
579 ** (E) (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6)
580 ** (F) x>A OR (x=A AND y>=B)
582 ** CASE 1:
584 ** If all subterms are of the form T.C=expr for some single column of C and
585 ** a single table T (as shown in example B above) then create a new virtual
586 ** term that is an equivalent IN expression. In other words, if the term
587 ** being analyzed is:
589 ** x = expr1 OR expr2 = x OR x = expr3
591 ** then create a new virtual term like this:
593 ** x IN (expr1,expr2,expr3)
595 ** CASE 2:
597 ** If there are exactly two disjuncts and one side has x>A and the other side
598 ** has x=A (for the same x and A) then add a new virtual conjunct term to the
599 ** WHERE clause of the form "x>=A". Example:
601 ** x>A OR (x=A AND y>B) adds: x>=A
603 ** The added conjunct can sometimes be helpful in query planning.
605 ** CASE 3:
607 ** If all subterms are indexable by a single table T, then set
609 ** WhereTerm.eOperator = WO_OR
610 ** WhereTerm.u.pOrInfo->indexable |= the cursor number for table T
612 ** A subterm is "indexable" if it is of the form
613 ** "T.C <op> <expr>" where C is any column of table T and
614 ** <op> is one of "=", "<", "<=", ">", ">=", "IS NULL", or "IN".
615 ** A subterm is also indexable if it is an AND of two or more
616 ** subsubterms at least one of which is indexable. Indexable AND
617 ** subterms have their eOperator set to WO_AND and they have
618 ** u.pAndInfo set to a dynamically allocated WhereAndTerm object.
620 ** From another point of view, "indexable" means that the subterm could
621 ** potentially be used with an index if an appropriate index exists.
622 ** This analysis does not consider whether or not the index exists; that
623 ** is decided elsewhere. This analysis only looks at whether subterms
624 ** appropriate for indexing exist.
626 ** All examples A through E above satisfy case 3. But if a term
627 ** also satisfies case 1 (such as B) we know that the optimizer will
628 ** always prefer case 1, so in that case we pretend that case 3 is not
629 ** satisfied.
631 ** It might be the case that multiple tables are indexable. For example,
632 ** (E) above is indexable on tables P, Q, and R.
634 ** Terms that satisfy case 3 are candidates for lookup by using
635 ** separate indices to find rowids for each subterm and composing
636 ** the union of all rowids using a RowSet object. This is similar
637 ** to "bitmap indices" in other database engines.
639 ** OTHERWISE:
641 ** If none of cases 1, 2, or 3 apply, then leave the eOperator set to
642 ** zero. This term is not useful for search.
644 static void exprAnalyzeOrTerm(
645 SrcList *pSrc, /* the FROM clause */
646 WhereClause *pWC, /* the complete WHERE clause */
647 int idxTerm /* Index of the OR-term to be analyzed */
649 WhereInfo *pWInfo = pWC->pWInfo; /* WHERE clause processing context */
650 Parse *pParse = pWInfo->pParse; /* Parser context */
651 sqlite3 *db = pParse->db; /* Database connection */
652 WhereTerm *pTerm = &pWC->a[idxTerm]; /* The term to be analyzed */
653 Expr *pExpr = pTerm->pExpr; /* The expression of the term */
654 int i; /* Loop counters */
655 WhereClause *pOrWc; /* Breakup of pTerm into subterms */
656 WhereTerm *pOrTerm; /* A Sub-term within the pOrWc */
657 WhereOrInfo *pOrInfo; /* Additional information associated with pTerm */
658 Bitmask chngToIN; /* Tables that might satisfy case 1 */
659 Bitmask indexable; /* Tables that are indexable, satisfying case 2 */
662 ** Break the OR clause into its separate subterms. The subterms are
663 ** stored in a WhereClause structure containing within the WhereOrInfo
664 ** object that is attached to the original OR clause term.
666 assert( (pTerm->wtFlags & (TERM_DYNAMIC|TERM_ORINFO|TERM_ANDINFO))==0 );
667 assert( pExpr->op==TK_OR );
668 pTerm->u.pOrInfo = pOrInfo = sqlite3DbMallocZero(db, sizeof(*pOrInfo));
669 if( pOrInfo==0 ) return;
670 pTerm->wtFlags |= TERM_ORINFO;
671 pOrWc = &pOrInfo->wc;
672 memset(pOrWc->aStatic, 0, sizeof(pOrWc->aStatic));
673 sqlite3WhereClauseInit(pOrWc, pWInfo);
674 sqlite3WhereSplit(pOrWc, pExpr, TK_OR);
675 sqlite3WhereExprAnalyze(pSrc, pOrWc);
676 if( db->mallocFailed ) return;
677 assert( pOrWc->nTerm>=2 );
680 ** Compute the set of tables that might satisfy cases 1 or 3.
682 indexable = ~(Bitmask)0;
683 chngToIN = ~(Bitmask)0;
684 for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0 && indexable; i--, pOrTerm++){
685 if( (pOrTerm->eOperator & WO_SINGLE)==0 ){
686 WhereAndInfo *pAndInfo;
687 assert( (pOrTerm->wtFlags & (TERM_ANDINFO|TERM_ORINFO))==0 );
688 chngToIN = 0;
689 pAndInfo = sqlite3DbMallocRawNN(db, sizeof(*pAndInfo));
690 if( pAndInfo ){
691 WhereClause *pAndWC;
692 WhereTerm *pAndTerm;
693 int j;
694 Bitmask b = 0;
695 pOrTerm->u.pAndInfo = pAndInfo;
696 pOrTerm->wtFlags |= TERM_ANDINFO;
697 pOrTerm->eOperator = WO_AND;
698 pOrTerm->leftCursor = -1;
699 pAndWC = &pAndInfo->wc;
700 memset(pAndWC->aStatic, 0, sizeof(pAndWC->aStatic));
701 sqlite3WhereClauseInit(pAndWC, pWC->pWInfo);
702 sqlite3WhereSplit(pAndWC, pOrTerm->pExpr, TK_AND);
703 sqlite3WhereExprAnalyze(pSrc, pAndWC);
704 pAndWC->pOuter = pWC;
705 if( !db->mallocFailed ){
706 for(j=0, pAndTerm=pAndWC->a; j<pAndWC->nTerm; j++, pAndTerm++){
707 assert( pAndTerm->pExpr );
708 if( allowedOp(pAndTerm->pExpr->op)
709 || pAndTerm->eOperator==WO_AUX
711 b |= sqlite3WhereGetMask(&pWInfo->sMaskSet, pAndTerm->leftCursor);
715 indexable &= b;
717 }else if( pOrTerm->wtFlags & TERM_COPIED ){
718 /* Skip this term for now. We revisit it when we process the
719 ** corresponding TERM_VIRTUAL term */
720 }else{
721 Bitmask b;
722 b = sqlite3WhereGetMask(&pWInfo->sMaskSet, pOrTerm->leftCursor);
723 if( pOrTerm->wtFlags & TERM_VIRTUAL ){
724 WhereTerm *pOther = &pOrWc->a[pOrTerm->iParent];
725 b |= sqlite3WhereGetMask(&pWInfo->sMaskSet, pOther->leftCursor);
727 indexable &= b;
728 if( (pOrTerm->eOperator & WO_EQ)==0 ){
729 chngToIN = 0;
730 }else{
731 chngToIN &= b;
737 ** Record the set of tables that satisfy case 3. The set might be
738 ** empty.
740 pOrInfo->indexable = indexable;
741 pTerm->eOperator = WO_OR;
742 pTerm->leftCursor = -1;
743 if( indexable ){
744 pWC->hasOr = 1;
747 /* For a two-way OR, attempt to implementation case 2.
749 if( indexable && pOrWc->nTerm==2 ){
750 int iOne = 0;
751 WhereTerm *pOne;
752 while( (pOne = whereNthSubterm(&pOrWc->a[0],iOne++))!=0 ){
753 int iTwo = 0;
754 WhereTerm *pTwo;
755 while( (pTwo = whereNthSubterm(&pOrWc->a[1],iTwo++))!=0 ){
756 whereCombineDisjuncts(pSrc, pWC, pOne, pTwo);
762 ** chngToIN holds a set of tables that *might* satisfy case 1. But
763 ** we have to do some additional checking to see if case 1 really
764 ** is satisfied.
766 ** chngToIN will hold either 0, 1, or 2 bits. The 0-bit case means
767 ** that there is no possibility of transforming the OR clause into an
768 ** IN operator because one or more terms in the OR clause contain
769 ** something other than == on a column in the single table. The 1-bit
770 ** case means that every term of the OR clause is of the form
771 ** "table.column=expr" for some single table. The one bit that is set
772 ** will correspond to the common table. We still need to check to make
773 ** sure the same column is used on all terms. The 2-bit case is when
774 ** the all terms are of the form "table1.column=table2.column". It
775 ** might be possible to form an IN operator with either table1.column
776 ** or table2.column as the LHS if either is common to every term of
777 ** the OR clause.
779 ** Note that terms of the form "table.column1=table.column2" (the
780 ** same table on both sizes of the ==) cannot be optimized.
782 if( chngToIN ){
783 int okToChngToIN = 0; /* True if the conversion to IN is valid */
784 int iColumn = -1; /* Column index on lhs of IN operator */
785 int iCursor = -1; /* Table cursor common to all terms */
786 int j = 0; /* Loop counter */
788 /* Search for a table and column that appears on one side or the
789 ** other of the == operator in every subterm. That table and column
790 ** will be recorded in iCursor and iColumn. There might not be any
791 ** such table and column. Set okToChngToIN if an appropriate table
792 ** and column is found but leave okToChngToIN false if not found.
794 for(j=0; j<2 && !okToChngToIN; j++){
795 Expr *pLeft = 0;
796 pOrTerm = pOrWc->a;
797 for(i=pOrWc->nTerm-1; i>=0; i--, pOrTerm++){
798 assert( pOrTerm->eOperator & WO_EQ );
799 pOrTerm->wtFlags &= ~TERM_OK;
800 if( pOrTerm->leftCursor==iCursor ){
801 /* This is the 2-bit case and we are on the second iteration and
802 ** current term is from the first iteration. So skip this term. */
803 assert( j==1 );
804 continue;
806 if( (chngToIN & sqlite3WhereGetMask(&pWInfo->sMaskSet,
807 pOrTerm->leftCursor))==0 ){
808 /* This term must be of the form t1.a==t2.b where t2 is in the
809 ** chngToIN set but t1 is not. This term will be either preceded
810 ** or follwed by an inverted copy (t2.b==t1.a). Skip this term
811 ** and use its inversion. */
812 testcase( pOrTerm->wtFlags & TERM_COPIED );
813 testcase( pOrTerm->wtFlags & TERM_VIRTUAL );
814 assert( pOrTerm->wtFlags & (TERM_COPIED|TERM_VIRTUAL) );
815 continue;
817 assert( (pOrTerm->eOperator & (WO_OR|WO_AND))==0 );
818 iColumn = pOrTerm->u.x.leftColumn;
819 iCursor = pOrTerm->leftCursor;
820 pLeft = pOrTerm->pExpr->pLeft;
821 break;
823 if( i<0 ){
824 /* No candidate table+column was found. This can only occur
825 ** on the second iteration */
826 assert( j==1 );
827 assert( IsPowerOfTwo(chngToIN) );
828 assert( chngToIN==sqlite3WhereGetMask(&pWInfo->sMaskSet, iCursor) );
829 break;
831 testcase( j==1 );
833 /* We have found a candidate table and column. Check to see if that
834 ** table and column is common to every term in the OR clause */
835 okToChngToIN = 1;
836 for(; i>=0 && okToChngToIN; i--, pOrTerm++){
837 assert( pOrTerm->eOperator & WO_EQ );
838 assert( (pOrTerm->eOperator & (WO_OR|WO_AND))==0 );
839 if( pOrTerm->leftCursor!=iCursor ){
840 pOrTerm->wtFlags &= ~TERM_OK;
841 }else if( pOrTerm->u.x.leftColumn!=iColumn || (iColumn==XN_EXPR
842 && sqlite3ExprCompare(pParse, pOrTerm->pExpr->pLeft, pLeft, -1)
844 okToChngToIN = 0;
845 }else{
846 int affLeft, affRight;
847 /* If the right-hand side is also a column, then the affinities
848 ** of both right and left sides must be such that no type
849 ** conversions are required on the right. (Ticket #2249)
851 affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight);
852 affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft);
853 if( affRight!=0 && affRight!=affLeft ){
854 okToChngToIN = 0;
855 }else{
856 pOrTerm->wtFlags |= TERM_OK;
862 /* At this point, okToChngToIN is true if original pTerm satisfies
863 ** case 1. In that case, construct a new virtual term that is
864 ** pTerm converted into an IN operator.
866 if( okToChngToIN ){
867 Expr *pDup; /* A transient duplicate expression */
868 ExprList *pList = 0; /* The RHS of the IN operator */
869 Expr *pLeft = 0; /* The LHS of the IN operator */
870 Expr *pNew; /* The complete IN operator */
872 for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0; i--, pOrTerm++){
873 if( (pOrTerm->wtFlags & TERM_OK)==0 ) continue;
874 assert( pOrTerm->eOperator & WO_EQ );
875 assert( (pOrTerm->eOperator & (WO_OR|WO_AND))==0 );
876 assert( pOrTerm->leftCursor==iCursor );
877 assert( pOrTerm->u.x.leftColumn==iColumn );
878 pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight, 0);
879 pList = sqlite3ExprListAppend(pWInfo->pParse, pList, pDup);
880 pLeft = pOrTerm->pExpr->pLeft;
882 assert( pLeft!=0 );
883 pDup = sqlite3ExprDup(db, pLeft, 0);
884 pNew = sqlite3PExpr(pParse, TK_IN, pDup, 0);
885 if( pNew ){
886 int idxNew;
887 transferJoinMarkings(pNew, pExpr);
888 assert( ExprUseXList(pNew) );
889 pNew->x.pList = pList;
890 idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC);
891 testcase( idxNew==0 );
892 exprAnalyze(pSrc, pWC, idxNew);
893 /* pTerm = &pWC->a[idxTerm]; // would be needed if pTerm where reused */
894 markTermAsChild(pWC, idxNew, idxTerm);
895 }else{
896 sqlite3ExprListDelete(db, pList);
901 #endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */
904 ** We already know that pExpr is a binary operator where both operands are
905 ** column references. This routine checks to see if pExpr is an equivalence
906 ** relation:
907 ** 1. The SQLITE_Transitive optimization must be enabled
908 ** 2. Must be either an == or an IS operator
909 ** 3. Not originating in the ON clause of an OUTER JOIN
910 ** 4. The affinities of A and B must be compatible
911 ** 5a. Both operands use the same collating sequence OR
912 ** 5b. The overall collating sequence is BINARY
913 ** If this routine returns TRUE, that means that the RHS can be substituted
914 ** for the LHS anyplace else in the WHERE clause where the LHS column occurs.
915 ** This is an optimization. No harm comes from returning 0. But if 1 is
916 ** returned when it should not be, then incorrect answers might result.
918 static int termIsEquivalence(Parse *pParse, Expr *pExpr){
919 char aff1, aff2;
920 CollSeq *pColl;
921 if( !OptimizationEnabled(pParse->db, SQLITE_Transitive) ) return 0;
922 if( pExpr->op!=TK_EQ && pExpr->op!=TK_IS ) return 0;
923 if( ExprHasProperty(pExpr, EP_FromJoin) ) return 0;
924 aff1 = sqlite3ExprAffinity(pExpr->pLeft);
925 aff2 = sqlite3ExprAffinity(pExpr->pRight);
926 if( aff1!=aff2
927 && (!sqlite3IsNumericAffinity(aff1) || !sqlite3IsNumericAffinity(aff2))
929 return 0;
931 pColl = sqlite3ExprCompareCollSeq(pParse, pExpr);
932 if( sqlite3IsBinary(pColl) ) return 1;
933 return sqlite3ExprCollSeqMatch(pParse, pExpr->pLeft, pExpr->pRight);
937 ** Recursively walk the expressions of a SELECT statement and generate
938 ** a bitmask indicating which tables are used in that expression
939 ** tree.
941 static Bitmask exprSelectUsage(WhereMaskSet *pMaskSet, Select *pS){
942 Bitmask mask = 0;
943 while( pS ){
944 SrcList *pSrc = pS->pSrc;
945 mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pEList);
946 mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pGroupBy);
947 mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pOrderBy);
948 mask |= sqlite3WhereExprUsage(pMaskSet, pS->pWhere);
949 mask |= sqlite3WhereExprUsage(pMaskSet, pS->pHaving);
950 if( ALWAYS(pSrc!=0) ){
951 int i;
952 for(i=0; i<pSrc->nSrc; i++){
953 mask |= exprSelectUsage(pMaskSet, pSrc->a[i].pSelect);
954 mask |= sqlite3WhereExprUsage(pMaskSet, pSrc->a[i].pOn);
955 if( pSrc->a[i].fg.isTabFunc ){
956 mask |= sqlite3WhereExprListUsage(pMaskSet, pSrc->a[i].u1.pFuncArg);
960 pS = pS->pPrior;
962 return mask;
966 ** Expression pExpr is one operand of a comparison operator that might
967 ** be useful for indexing. This routine checks to see if pExpr appears
968 ** in any index. Return TRUE (1) if pExpr is an indexed term and return
969 ** FALSE (0) if not. If TRUE is returned, also set aiCurCol[0] to the cursor
970 ** number of the table that is indexed and aiCurCol[1] to the column number
971 ** of the column that is indexed, or XN_EXPR (-2) if an expression is being
972 ** indexed.
974 ** If pExpr is a TK_COLUMN column reference, then this routine always returns
975 ** true even if that particular column is not indexed, because the column
976 ** might be added to an automatic index later.
978 static SQLITE_NOINLINE int exprMightBeIndexed2(
979 SrcList *pFrom, /* The FROM clause */
980 Bitmask mPrereq, /* Bitmask of FROM clause terms referenced by pExpr */
981 int *aiCurCol, /* Write the referenced table cursor and column here */
982 Expr *pExpr /* An operand of a comparison operator */
984 Index *pIdx;
985 int i;
986 int iCur;
987 for(i=0; mPrereq>1; i++, mPrereq>>=1){}
988 iCur = pFrom->a[i].iCursor;
989 for(pIdx=pFrom->a[i].pTab->pIndex; pIdx; pIdx=pIdx->pNext){
990 if( pIdx->aColExpr==0 ) continue;
991 for(i=0; i<pIdx->nKeyCol; i++){
992 if( pIdx->aiColumn[i]!=XN_EXPR ) continue;
993 if( sqlite3ExprCompareSkip(pExpr, pIdx->aColExpr->a[i].pExpr, iCur)==0 ){
994 aiCurCol[0] = iCur;
995 aiCurCol[1] = XN_EXPR;
996 return 1;
1000 return 0;
1002 static int exprMightBeIndexed(
1003 SrcList *pFrom, /* The FROM clause */
1004 Bitmask mPrereq, /* Bitmask of FROM clause terms referenced by pExpr */
1005 int *aiCurCol, /* Write the referenced table cursor & column here */
1006 Expr *pExpr, /* An operand of a comparison operator */
1007 int op /* The specific comparison operator */
1009 /* If this expression is a vector to the left or right of a
1010 ** inequality constraint (>, <, >= or <=), perform the processing
1011 ** on the first element of the vector. */
1012 assert( TK_GT+1==TK_LE && TK_GT+2==TK_LT && TK_GT+3==TK_GE );
1013 assert( TK_IS<TK_GE && TK_ISNULL<TK_GE && TK_IN<TK_GE );
1014 assert( op<=TK_GE );
1015 if( pExpr->op==TK_VECTOR && (op>=TK_GT && ALWAYS(op<=TK_GE)) ){
1016 assert( ExprUseXList(pExpr) );
1017 pExpr = pExpr->x.pList->a[0].pExpr;
1021 if( pExpr->op==TK_COLUMN ){
1022 aiCurCol[0] = pExpr->iTable;
1023 aiCurCol[1] = pExpr->iColumn;
1024 return 1;
1026 if( mPrereq==0 ) return 0; /* No table references */
1027 if( (mPrereq&(mPrereq-1))!=0 ) return 0; /* Refs more than one table */
1028 return exprMightBeIndexed2(pFrom,mPrereq,aiCurCol,pExpr);
1033 ** The input to this routine is an WhereTerm structure with only the
1034 ** "pExpr" field filled in. The job of this routine is to analyze the
1035 ** subexpression and populate all the other fields of the WhereTerm
1036 ** structure.
1038 ** If the expression is of the form "<expr> <op> X" it gets commuted
1039 ** to the standard form of "X <op> <expr>".
1041 ** If the expression is of the form "X <op> Y" where both X and Y are
1042 ** columns, then the original expression is unchanged and a new virtual
1043 ** term of the form "Y <op> X" is added to the WHERE clause and
1044 ** analyzed separately. The original term is marked with TERM_COPIED
1045 ** and the new term is marked with TERM_DYNAMIC (because it's pExpr
1046 ** needs to be freed with the WhereClause) and TERM_VIRTUAL (because it
1047 ** is a commuted copy of a prior term.) The original term has nChild=1
1048 ** and the copy has idxParent set to the index of the original term.
1050 static void exprAnalyze(
1051 SrcList *pSrc, /* the FROM clause */
1052 WhereClause *pWC, /* the WHERE clause */
1053 int idxTerm /* Index of the term to be analyzed */
1055 WhereInfo *pWInfo = pWC->pWInfo; /* WHERE clause processing context */
1056 WhereTerm *pTerm; /* The term to be analyzed */
1057 WhereMaskSet *pMaskSet; /* Set of table index masks */
1058 Expr *pExpr; /* The expression to be analyzed */
1059 Bitmask prereqLeft; /* Prerequesites of the pExpr->pLeft */
1060 Bitmask prereqAll; /* Prerequesites of pExpr */
1061 Bitmask extraRight = 0; /* Extra dependencies on LEFT JOIN */
1062 Expr *pStr1 = 0; /* RHS of LIKE/GLOB operator */
1063 int isComplete = 0; /* RHS of LIKE/GLOB ends with wildcard */
1064 int noCase = 0; /* uppercase equivalent to lowercase */
1065 int op; /* Top-level operator. pExpr->op */
1066 Parse *pParse = pWInfo->pParse; /* Parsing context */
1067 sqlite3 *db = pParse->db; /* Database connection */
1068 unsigned char eOp2 = 0; /* op2 value for LIKE/REGEXP/GLOB */
1069 int nLeft; /* Number of elements on left side vector */
1071 if( db->mallocFailed ){
1072 return;
1074 assert( pWC->nTerm > idxTerm );
1075 pTerm = &pWC->a[idxTerm];
1076 pMaskSet = &pWInfo->sMaskSet;
1077 pExpr = pTerm->pExpr;
1078 assert( pExpr!=0 ); /* Because malloc() has not failed */
1079 assert( pExpr->op!=TK_AS && pExpr->op!=TK_COLLATE );
1080 pMaskSet->bVarSelect = 0;
1081 prereqLeft = sqlite3WhereExprUsage(pMaskSet, pExpr->pLeft);
1082 op = pExpr->op;
1083 if( op==TK_IN ){
1084 assert( pExpr->pRight==0 );
1085 if( sqlite3ExprCheckIN(pParse, pExpr) ) return;
1086 if( ExprUseXSelect(pExpr) ){
1087 pTerm->prereqRight = exprSelectUsage(pMaskSet, pExpr->x.pSelect);
1088 }else{
1089 pTerm->prereqRight = sqlite3WhereExprListUsage(pMaskSet, pExpr->x.pList);
1091 prereqAll = prereqLeft | pTerm->prereqRight;
1092 }else{
1093 pTerm->prereqRight = sqlite3WhereExprUsage(pMaskSet, pExpr->pRight);
1094 if( pExpr->pLeft==0
1095 || ExprHasProperty(pExpr, EP_xIsSelect|EP_IfNullRow)
1096 || pExpr->x.pList!=0
1098 prereqAll = sqlite3WhereExprUsageNN(pMaskSet, pExpr);
1099 }else{
1100 prereqAll = prereqLeft | pTerm->prereqRight;
1103 if( pMaskSet->bVarSelect ) pTerm->wtFlags |= TERM_VARSELECT;
1105 #ifdef SQLITE_DEBUG
1106 if( prereqAll!=sqlite3WhereExprUsageNN(pMaskSet, pExpr) ){
1107 printf("\n*** Incorrect prereqAll computed for:\n");
1108 sqlite3TreeViewExpr(0,pExpr,0);
1109 abort();
1111 #endif
1113 if( ExprHasProperty(pExpr, EP_FromJoin) ){
1114 Bitmask x = sqlite3WhereGetMask(pMaskSet, pExpr->w.iRightJoinTable);
1115 prereqAll |= x;
1116 extraRight = x-1; /* ON clause terms may not be used with an index
1117 ** on left table of a LEFT JOIN. Ticket #3015 */
1118 if( (prereqAll>>1)>=x ){
1119 sqlite3ErrorMsg(pParse, "ON clause references tables to its right");
1120 return;
1123 pTerm->prereqAll = prereqAll;
1124 pTerm->leftCursor = -1;
1125 pTerm->iParent = -1;
1126 pTerm->eOperator = 0;
1127 if( allowedOp(op) ){
1128 int aiCurCol[2];
1129 Expr *pLeft = sqlite3ExprSkipCollate(pExpr->pLeft);
1130 Expr *pRight = sqlite3ExprSkipCollate(pExpr->pRight);
1131 u16 opMask = (pTerm->prereqRight & prereqLeft)==0 ? WO_ALL : WO_EQUIV;
1133 if( pTerm->u.x.iField>0 ){
1134 assert( op==TK_IN );
1135 assert( pLeft->op==TK_VECTOR );
1136 assert( ExprUseXList(pLeft) );
1137 pLeft = pLeft->x.pList->a[pTerm->u.x.iField-1].pExpr;
1140 if( exprMightBeIndexed(pSrc, prereqLeft, aiCurCol, pLeft, op) ){
1141 pTerm->leftCursor = aiCurCol[0];
1142 assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
1143 pTerm->u.x.leftColumn = aiCurCol[1];
1144 pTerm->eOperator = operatorMask(op) & opMask;
1146 if( op==TK_IS ) pTerm->wtFlags |= TERM_IS;
1147 if( pRight
1148 && exprMightBeIndexed(pSrc, pTerm->prereqRight, aiCurCol, pRight, op)
1149 && !ExprHasProperty(pRight, EP_FixedCol)
1151 WhereTerm *pNew;
1152 Expr *pDup;
1153 u16 eExtraOp = 0; /* Extra bits for pNew->eOperator */
1154 assert( pTerm->u.x.iField==0 );
1155 if( pTerm->leftCursor>=0 ){
1156 int idxNew;
1157 pDup = sqlite3ExprDup(db, pExpr, 0);
1158 if( db->mallocFailed ){
1159 sqlite3ExprDelete(db, pDup);
1160 return;
1162 idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC);
1163 if( idxNew==0 ) return;
1164 pNew = &pWC->a[idxNew];
1165 markTermAsChild(pWC, idxNew, idxTerm);
1166 if( op==TK_IS ) pNew->wtFlags |= TERM_IS;
1167 pTerm = &pWC->a[idxTerm];
1168 pTerm->wtFlags |= TERM_COPIED;
1170 if( termIsEquivalence(pParse, pDup) ){
1171 pTerm->eOperator |= WO_EQUIV;
1172 eExtraOp = WO_EQUIV;
1174 }else{
1175 pDup = pExpr;
1176 pNew = pTerm;
1178 pNew->wtFlags |= exprCommute(pParse, pDup);
1179 pNew->leftCursor = aiCurCol[0];
1180 assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
1181 pNew->u.x.leftColumn = aiCurCol[1];
1182 testcase( (prereqLeft | extraRight) != prereqLeft );
1183 pNew->prereqRight = prereqLeft | extraRight;
1184 pNew->prereqAll = prereqAll;
1185 pNew->eOperator = (operatorMask(pDup->op) + eExtraOp) & opMask;
1186 }else
1187 if( op==TK_ISNULL
1188 && !ExprHasProperty(pExpr,EP_FromJoin)
1189 && 0==sqlite3ExprCanBeNull(pLeft)
1191 assert( !ExprHasProperty(pExpr, EP_IntValue) );
1192 pExpr->op = TK_TRUEFALSE;
1193 pExpr->u.zToken = "false";
1194 ExprSetProperty(pExpr, EP_IsFalse);
1195 pTerm->prereqAll = 0;
1196 pTerm->eOperator = 0;
1200 #ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION
1201 /* If a term is the BETWEEN operator, create two new virtual terms
1202 ** that define the range that the BETWEEN implements. For example:
1204 ** a BETWEEN b AND c
1206 ** is converted into:
1208 ** (a BETWEEN b AND c) AND (a>=b) AND (a<=c)
1210 ** The two new terms are added onto the end of the WhereClause object.
1211 ** The new terms are "dynamic" and are children of the original BETWEEN
1212 ** term. That means that if the BETWEEN term is coded, the children are
1213 ** skipped. Or, if the children are satisfied by an index, the original
1214 ** BETWEEN term is skipped.
1216 else if( pExpr->op==TK_BETWEEN && pWC->op==TK_AND ){
1217 ExprList *pList;
1218 int i;
1219 static const u8 ops[] = {TK_GE, TK_LE};
1220 assert( ExprUseXList(pExpr) );
1221 pList = pExpr->x.pList;
1222 assert( pList!=0 );
1223 assert( pList->nExpr==2 );
1224 for(i=0; i<2; i++){
1225 Expr *pNewExpr;
1226 int idxNew;
1227 pNewExpr = sqlite3PExpr(pParse, ops[i],
1228 sqlite3ExprDup(db, pExpr->pLeft, 0),
1229 sqlite3ExprDup(db, pList->a[i].pExpr, 0));
1230 transferJoinMarkings(pNewExpr, pExpr);
1231 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
1232 testcase( idxNew==0 );
1233 exprAnalyze(pSrc, pWC, idxNew);
1234 pTerm = &pWC->a[idxTerm];
1235 markTermAsChild(pWC, idxNew, idxTerm);
1238 #endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */
1240 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
1241 /* Analyze a term that is composed of two or more subterms connected by
1242 ** an OR operator.
1244 else if( pExpr->op==TK_OR ){
1245 assert( pWC->op==TK_AND );
1246 exprAnalyzeOrTerm(pSrc, pWC, idxTerm);
1247 pTerm = &pWC->a[idxTerm];
1249 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
1250 /* The form "x IS NOT NULL" can sometimes be evaluated more efficiently
1251 ** as "x>NULL" if x is not an INTEGER PRIMARY KEY. So construct a
1252 ** virtual term of that form.
1254 ** The virtual term must be tagged with TERM_VNULL.
1256 else if( pExpr->op==TK_NOTNULL ){
1257 if( pExpr->pLeft->op==TK_COLUMN
1258 && pExpr->pLeft->iColumn>=0
1259 && !ExprHasProperty(pExpr, EP_FromJoin)
1261 Expr *pNewExpr;
1262 Expr *pLeft = pExpr->pLeft;
1263 int idxNew;
1264 WhereTerm *pNewTerm;
1266 pNewExpr = sqlite3PExpr(pParse, TK_GT,
1267 sqlite3ExprDup(db, pLeft, 0),
1268 sqlite3ExprAlloc(db, TK_NULL, 0, 0));
1270 idxNew = whereClauseInsert(pWC, pNewExpr,
1271 TERM_VIRTUAL|TERM_DYNAMIC|TERM_VNULL);
1272 if( idxNew ){
1273 pNewTerm = &pWC->a[idxNew];
1274 pNewTerm->prereqRight = 0;
1275 pNewTerm->leftCursor = pLeft->iTable;
1276 pNewTerm->u.x.leftColumn = pLeft->iColumn;
1277 pNewTerm->eOperator = WO_GT;
1278 markTermAsChild(pWC, idxNew, idxTerm);
1279 pTerm = &pWC->a[idxTerm];
1280 pTerm->wtFlags |= TERM_COPIED;
1281 pNewTerm->prereqAll = pTerm->prereqAll;
1287 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
1288 /* Add constraints to reduce the search space on a LIKE or GLOB
1289 ** operator.
1291 ** A like pattern of the form "x LIKE 'aBc%'" is changed into constraints
1293 ** x>='ABC' AND x<'abd' AND x LIKE 'aBc%'
1295 ** The last character of the prefix "abc" is incremented to form the
1296 ** termination condition "abd". If case is not significant (the default
1297 ** for LIKE) then the lower-bound is made all uppercase and the upper-
1298 ** bound is made all lowercase so that the bounds also work when comparing
1299 ** BLOBs.
1301 else if( pExpr->op==TK_FUNCTION
1302 && pWC->op==TK_AND
1303 && isLikeOrGlob(pParse, pExpr, &pStr1, &isComplete, &noCase)
1305 Expr *pLeft; /* LHS of LIKE/GLOB operator */
1306 Expr *pStr2; /* Copy of pStr1 - RHS of LIKE/GLOB operator */
1307 Expr *pNewExpr1;
1308 Expr *pNewExpr2;
1309 int idxNew1;
1310 int idxNew2;
1311 const char *zCollSeqName; /* Name of collating sequence */
1312 const u16 wtFlags = TERM_LIKEOPT | TERM_VIRTUAL | TERM_DYNAMIC;
1314 assert( ExprUseXList(pExpr) );
1315 pLeft = pExpr->x.pList->a[1].pExpr;
1316 pStr2 = sqlite3ExprDup(db, pStr1, 0);
1317 assert( pStr1==0 || !ExprHasProperty(pStr1, EP_IntValue) );
1318 assert( pStr2==0 || !ExprHasProperty(pStr2, EP_IntValue) );
1321 /* Convert the lower bound to upper-case and the upper bound to
1322 ** lower-case (upper-case is less than lower-case in ASCII) so that
1323 ** the range constraints also work for BLOBs
1325 if( noCase && !pParse->db->mallocFailed ){
1326 int i;
1327 char c;
1328 pTerm->wtFlags |= TERM_LIKE;
1329 for(i=0; (c = pStr1->u.zToken[i])!=0; i++){
1330 pStr1->u.zToken[i] = sqlite3Toupper(c);
1331 pStr2->u.zToken[i] = sqlite3Tolower(c);
1335 if( !db->mallocFailed ){
1336 u8 c, *pC; /* Last character before the first wildcard */
1337 pC = (u8*)&pStr2->u.zToken[sqlite3Strlen30(pStr2->u.zToken)-1];
1338 c = *pC;
1339 if( noCase ){
1340 /* The point is to increment the last character before the first
1341 ** wildcard. But if we increment '@', that will push it into the
1342 ** alphabetic range where case conversions will mess up the
1343 ** inequality. To avoid this, make sure to also run the full
1344 ** LIKE on all candidate expressions by clearing the isComplete flag
1346 if( c=='A'-1 ) isComplete = 0;
1347 c = sqlite3UpperToLower[c];
1349 *pC = c + 1;
1351 zCollSeqName = noCase ? "NOCASE" : sqlite3StrBINARY;
1352 pNewExpr1 = sqlite3ExprDup(db, pLeft, 0);
1353 pNewExpr1 = sqlite3PExpr(pParse, TK_GE,
1354 sqlite3ExprAddCollateString(pParse,pNewExpr1,zCollSeqName),
1355 pStr1);
1356 transferJoinMarkings(pNewExpr1, pExpr);
1357 idxNew1 = whereClauseInsert(pWC, pNewExpr1, wtFlags);
1358 testcase( idxNew1==0 );
1359 exprAnalyze(pSrc, pWC, idxNew1);
1360 pNewExpr2 = sqlite3ExprDup(db, pLeft, 0);
1361 pNewExpr2 = sqlite3PExpr(pParse, TK_LT,
1362 sqlite3ExprAddCollateString(pParse,pNewExpr2,zCollSeqName),
1363 pStr2);
1364 transferJoinMarkings(pNewExpr2, pExpr);
1365 idxNew2 = whereClauseInsert(pWC, pNewExpr2, wtFlags);
1366 testcase( idxNew2==0 );
1367 exprAnalyze(pSrc, pWC, idxNew2);
1368 pTerm = &pWC->a[idxTerm];
1369 if( isComplete ){
1370 markTermAsChild(pWC, idxNew1, idxTerm);
1371 markTermAsChild(pWC, idxNew2, idxTerm);
1374 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
1376 /* If there is a vector == or IS term - e.g. "(a, b) == (?, ?)" - create
1377 ** new terms for each component comparison - "a = ?" and "b = ?". The
1378 ** new terms completely replace the original vector comparison, which is
1379 ** no longer used.
1381 ** This is only required if at least one side of the comparison operation
1382 ** is not a sub-select.
1384 ** tag-20220128a
1386 if( (pExpr->op==TK_EQ || pExpr->op==TK_IS)
1387 && (nLeft = sqlite3ExprVectorSize(pExpr->pLeft))>1
1388 && sqlite3ExprVectorSize(pExpr->pRight)==nLeft
1389 && ( (pExpr->pLeft->flags & EP_xIsSelect)==0
1390 || (pExpr->pRight->flags & EP_xIsSelect)==0)
1391 && pWC->op==TK_AND
1393 int i;
1394 for(i=0; i<nLeft; i++){
1395 int idxNew;
1396 Expr *pNew;
1397 Expr *pLeft = sqlite3ExprForVectorField(pParse, pExpr->pLeft, i, nLeft);
1398 Expr *pRight = sqlite3ExprForVectorField(pParse, pExpr->pRight, i, nLeft);
1400 pNew = sqlite3PExpr(pParse, pExpr->op, pLeft, pRight);
1401 transferJoinMarkings(pNew, pExpr);
1402 idxNew = whereClauseInsert(pWC, pNew, TERM_DYNAMIC|TERM_SLICE);
1403 exprAnalyze(pSrc, pWC, idxNew);
1405 pTerm = &pWC->a[idxTerm];
1406 pTerm->wtFlags |= TERM_CODED|TERM_VIRTUAL; /* Disable the original */
1407 pTerm->eOperator = 0;
1410 /* If there is a vector IN term - e.g. "(a, b) IN (SELECT ...)" - create
1411 ** a virtual term for each vector component. The expression object
1412 ** used by each such virtual term is pExpr (the full vector IN(...)
1413 ** expression). The WhereTerm.u.x.iField variable identifies the index within
1414 ** the vector on the LHS that the virtual term represents.
1416 ** This only works if the RHS is a simple SELECT (not a compound) that does
1417 ** not use window functions.
1419 else if( pExpr->op==TK_IN
1420 && pTerm->u.x.iField==0
1421 && pExpr->pLeft->op==TK_VECTOR
1422 && ALWAYS( ExprUseXSelect(pExpr) )
1423 && pExpr->x.pSelect->pPrior==0
1424 #ifndef SQLITE_OMIT_WINDOWFUNC
1425 && pExpr->x.pSelect->pWin==0
1426 #endif
1427 && pWC->op==TK_AND
1429 int i;
1430 for(i=0; i<sqlite3ExprVectorSize(pExpr->pLeft); i++){
1431 int idxNew;
1432 idxNew = whereClauseInsert(pWC, pExpr, TERM_VIRTUAL|TERM_SLICE);
1433 pWC->a[idxNew].u.x.iField = i+1;
1434 exprAnalyze(pSrc, pWC, idxNew);
1435 markTermAsChild(pWC, idxNew, idxTerm);
1439 #ifndef SQLITE_OMIT_VIRTUALTABLE
1440 /* Add a WO_AUX auxiliary term to the constraint set if the
1441 ** current expression is of the form "column OP expr" where OP
1442 ** is an operator that gets passed into virtual tables but which is
1443 ** not normally optimized for ordinary tables. In other words, OP
1444 ** is one of MATCH, LIKE, GLOB, REGEXP, !=, IS, IS NOT, or NOT NULL.
1445 ** This information is used by the xBestIndex methods of
1446 ** virtual tables. The native query optimizer does not attempt
1447 ** to do anything with MATCH functions.
1449 else if( pWC->op==TK_AND ){
1450 Expr *pRight = 0, *pLeft = 0;
1451 int res = isAuxiliaryVtabOperator(db, pExpr, &eOp2, &pLeft, &pRight);
1452 while( res-- > 0 ){
1453 int idxNew;
1454 WhereTerm *pNewTerm;
1455 Bitmask prereqColumn, prereqExpr;
1457 prereqExpr = sqlite3WhereExprUsage(pMaskSet, pRight);
1458 prereqColumn = sqlite3WhereExprUsage(pMaskSet, pLeft);
1459 if( (prereqExpr & prereqColumn)==0 ){
1460 Expr *pNewExpr;
1461 pNewExpr = sqlite3PExpr(pParse, TK_MATCH,
1462 0, sqlite3ExprDup(db, pRight, 0));
1463 if( ExprHasProperty(pExpr, EP_FromJoin) && pNewExpr ){
1464 ExprSetProperty(pNewExpr, EP_FromJoin);
1465 pNewExpr->w.iRightJoinTable = pExpr->w.iRightJoinTable;
1467 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
1468 testcase( idxNew==0 );
1469 pNewTerm = &pWC->a[idxNew];
1470 pNewTerm->prereqRight = prereqExpr;
1471 pNewTerm->leftCursor = pLeft->iTable;
1472 pNewTerm->u.x.leftColumn = pLeft->iColumn;
1473 pNewTerm->eOperator = WO_AUX;
1474 pNewTerm->eMatchOp = eOp2;
1475 markTermAsChild(pWC, idxNew, idxTerm);
1476 pTerm = &pWC->a[idxTerm];
1477 pTerm->wtFlags |= TERM_COPIED;
1478 pNewTerm->prereqAll = pTerm->prereqAll;
1480 SWAP(Expr*, pLeft, pRight);
1483 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1485 /* Prevent ON clause terms of a LEFT JOIN from being used to drive
1486 ** an index for tables to the left of the join.
1488 testcase( pTerm!=&pWC->a[idxTerm] );
1489 pTerm = &pWC->a[idxTerm];
1490 pTerm->prereqRight |= extraRight;
1493 /***************************************************************************
1494 ** Routines with file scope above. Interface to the rest of the where.c
1495 ** subsystem follows.
1496 ***************************************************************************/
1499 ** This routine identifies subexpressions in the WHERE clause where
1500 ** each subexpression is separated by the AND operator or some other
1501 ** operator specified in the op parameter. The WhereClause structure
1502 ** is filled with pointers to subexpressions. For example:
1504 ** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22)
1505 ** \________/ \_______________/ \________________/
1506 ** slot[0] slot[1] slot[2]
1508 ** The original WHERE clause in pExpr is unaltered. All this routine
1509 ** does is make slot[] entries point to substructure within pExpr.
1511 ** In the previous sentence and in the diagram, "slot[]" refers to
1512 ** the WhereClause.a[] array. The slot[] array grows as needed to contain
1513 ** all terms of the WHERE clause.
1515 void sqlite3WhereSplit(WhereClause *pWC, Expr *pExpr, u8 op){
1516 Expr *pE2 = sqlite3ExprSkipCollateAndLikely(pExpr);
1517 pWC->op = op;
1518 assert( pE2!=0 || pExpr==0 );
1519 if( pE2==0 ) return;
1520 if( pE2->op!=op ){
1521 whereClauseInsert(pWC, pExpr, 0);
1522 }else{
1523 sqlite3WhereSplit(pWC, pE2->pLeft, op);
1524 sqlite3WhereSplit(pWC, pE2->pRight, op);
1529 ** Add either a LIMIT (if eMatchOp==SQLITE_INDEX_CONSTRAINT_LIMIT) or
1530 ** OFFSET (if eMatchOp==SQLITE_INDEX_CONSTRAINT_OFFSET) term to the
1531 ** where-clause passed as the first argument. The value for the term
1532 ** is found in register iReg.
1534 ** In the common case where the value is a simple integer
1535 ** (example: "LIMIT 5 OFFSET 10") then the expression codes as a
1536 ** TK_INTEGER so that it will be available to sqlite3_vtab_rhs_value().
1537 ** If not, then it codes as a TK_REGISTER expression.
1539 static void whereAddLimitExpr(
1540 WhereClause *pWC, /* Add the constraint to this WHERE clause */
1541 int iReg, /* Register that will hold value of the limit/offset */
1542 Expr *pExpr, /* Expression that defines the limit/offset */
1543 int iCsr, /* Cursor to which the constraint applies */
1544 int eMatchOp /* SQLITE_INDEX_CONSTRAINT_LIMIT or _OFFSET */
1546 Parse *pParse = pWC->pWInfo->pParse;
1547 sqlite3 *db = pParse->db;
1548 Expr *pNew;
1549 int iVal = 0;
1551 if( sqlite3ExprIsInteger(pExpr, &iVal) && iVal>=0 ){
1552 Expr *pVal = sqlite3Expr(db, TK_INTEGER, 0);
1553 if( pVal==0 ) return;
1554 ExprSetProperty(pVal, EP_IntValue);
1555 pVal->u.iValue = iVal;
1556 pNew = sqlite3PExpr(pParse, TK_MATCH, 0, pVal);
1557 }else{
1558 Expr *pVal = sqlite3Expr(db, TK_REGISTER, 0);
1559 if( pVal==0 ) return;
1560 pVal->iTable = iReg;
1561 pNew = sqlite3PExpr(pParse, TK_MATCH, 0, pVal);
1563 if( pNew ){
1564 WhereTerm *pTerm;
1565 int idx;
1566 idx = whereClauseInsert(pWC, pNew, TERM_DYNAMIC|TERM_VIRTUAL);
1567 pTerm = &pWC->a[idx];
1568 pTerm->leftCursor = iCsr;
1569 pTerm->eOperator = WO_AUX;
1570 pTerm->eMatchOp = eMatchOp;
1575 ** Possibly add terms corresponding to the LIMIT and OFFSET clauses of the
1576 ** SELECT statement passed as the second argument. These terms are only
1577 ** added if:
1579 ** 1. The SELECT statement has a LIMIT clause, and
1580 ** 2. The SELECT statement is not an aggregate or DISTINCT query, and
1581 ** 3. The SELECT statement has exactly one object in its from clause, and
1582 ** that object is a virtual table, and
1583 ** 4. There are no terms in the WHERE clause that will not be passed
1584 ** to the virtual table xBestIndex method.
1585 ** 5. The ORDER BY clause, if any, will be made available to the xBestIndex
1586 ** method.
1588 ** LIMIT and OFFSET terms are ignored by most of the planner code. They
1589 ** exist only so that they may be passed to the xBestIndex method of the
1590 ** single virtual table in the FROM clause of the SELECT.
1592 void sqlite3WhereAddLimit(WhereClause *pWC, Select *p){
1593 assert( p==0 || (p->pGroupBy==0 && (p->selFlags & SF_Aggregate)==0) );
1594 if( (p && p->pLimit) /* 1 */
1595 && (p->selFlags & (SF_Distinct|SF_Aggregate))==0 /* 2 */
1596 && (p->pSrc->nSrc==1 && IsVirtual(p->pSrc->a[0].pTab)) /* 3 */
1598 ExprList *pOrderBy = p->pOrderBy;
1599 int iCsr = p->pSrc->a[0].iCursor;
1600 int ii;
1602 /* Check condition (4). Return early if it is not met. */
1603 for(ii=0; ii<pWC->nTerm; ii++){
1604 if( pWC->a[ii].wtFlags & TERM_CODED ){
1605 /* This term is a vector operation that has been decomposed into
1606 ** other, subsequent terms. It can be ignored. See tag-20220128a */
1607 assert( pWC->a[ii].wtFlags & TERM_VIRTUAL );
1608 assert( pWC->a[ii].eOperator==0 );
1609 continue;
1611 if( pWC->a[ii].leftCursor!=iCsr ) return;
1614 /* Check condition (5). Return early if it is not met. */
1615 if( pOrderBy ){
1616 for(ii=0; ii<pOrderBy->nExpr; ii++){
1617 Expr *pExpr = pOrderBy->a[ii].pExpr;
1618 if( pExpr->op!=TK_COLUMN ) return;
1619 if( pExpr->iTable!=iCsr ) return;
1620 if( pOrderBy->a[ii].sortFlags & KEYINFO_ORDER_BIGNULL ) return;
1624 /* All conditions are met. Add the terms to the where-clause object. */
1625 assert( p->pLimit->op==TK_LIMIT );
1626 whereAddLimitExpr(pWC, p->iLimit, p->pLimit->pLeft,
1627 iCsr, SQLITE_INDEX_CONSTRAINT_LIMIT);
1628 if( p->iOffset>0 ){
1629 whereAddLimitExpr(pWC, p->iOffset, p->pLimit->pRight,
1630 iCsr, SQLITE_INDEX_CONSTRAINT_OFFSET);
1636 ** Initialize a preallocated WhereClause structure.
1638 void sqlite3WhereClauseInit(
1639 WhereClause *pWC, /* The WhereClause to be initialized */
1640 WhereInfo *pWInfo /* The WHERE processing context */
1642 pWC->pWInfo = pWInfo;
1643 pWC->hasOr = 0;
1644 pWC->pOuter = 0;
1645 pWC->nTerm = 0;
1646 pWC->nBase = 0;
1647 pWC->nSlot = ArraySize(pWC->aStatic);
1648 pWC->a = pWC->aStatic;
1652 ** Deallocate a WhereClause structure. The WhereClause structure
1653 ** itself is not freed. This routine is the inverse of
1654 ** sqlite3WhereClauseInit().
1656 void sqlite3WhereClauseClear(WhereClause *pWC){
1657 sqlite3 *db = pWC->pWInfo->pParse->db;
1658 assert( pWC->nTerm>=pWC->nBase );
1659 if( pWC->nTerm>0 ){
1660 WhereTerm *a = pWC->a;
1661 WhereTerm *aLast = &pWC->a[pWC->nTerm-1];
1662 #ifdef SQLITE_DEBUG
1663 int i;
1664 /* Verify that every term past pWC->nBase is virtual */
1665 for(i=pWC->nBase; i<pWC->nTerm; i++){
1666 assert( (pWC->a[i].wtFlags & TERM_VIRTUAL)!=0 );
1668 #endif
1669 while(1){
1670 assert( a->eMatchOp==0 || a->eOperator==WO_AUX );
1671 if( a->wtFlags & TERM_DYNAMIC ){
1672 sqlite3ExprDelete(db, a->pExpr);
1674 if( a->wtFlags & (TERM_ORINFO|TERM_ANDINFO) ){
1675 if( a->wtFlags & TERM_ORINFO ){
1676 assert( (a->wtFlags & TERM_ANDINFO)==0 );
1677 whereOrInfoDelete(db, a->u.pOrInfo);
1678 }else{
1679 assert( (a->wtFlags & TERM_ANDINFO)!=0 );
1680 whereAndInfoDelete(db, a->u.pAndInfo);
1683 if( a==aLast ) break;
1684 a++;
1687 if( pWC->a!=pWC->aStatic ){
1688 sqlite3DbFree(db, pWC->a);
1694 ** These routines walk (recursively) an expression tree and generate
1695 ** a bitmask indicating which tables are used in that expression
1696 ** tree.
1698 ** sqlite3WhereExprUsage(MaskSet, Expr) ->
1700 ** Return a Bitmask of all tables referenced by Expr. Expr can be
1701 ** be NULL, in which case 0 is returned.
1703 ** sqlite3WhereExprUsageNN(MaskSet, Expr) ->
1705 ** Same as sqlite3WhereExprUsage() except that Expr must not be
1706 ** NULL. The "NN" suffix on the name stands for "Not Null".
1708 ** sqlite3WhereExprListUsage(MaskSet, ExprList) ->
1710 ** Return a Bitmask of all tables referenced by every expression
1711 ** in the expression list ExprList. ExprList can be NULL, in which
1712 ** case 0 is returned.
1714 ** sqlite3WhereExprUsageFull(MaskSet, ExprList) ->
1716 ** Internal use only. Called only by sqlite3WhereExprUsageNN() for
1717 ** complex expressions that require pushing register values onto
1718 ** the stack. Many calls to sqlite3WhereExprUsageNN() do not need
1719 ** the more complex analysis done by this routine. Hence, the
1720 ** computations done by this routine are broken out into a separate
1721 ** "no-inline" function to avoid the stack push overhead in the
1722 ** common case where it is not needed.
1724 static SQLITE_NOINLINE Bitmask sqlite3WhereExprUsageFull(
1725 WhereMaskSet *pMaskSet,
1726 Expr *p
1728 Bitmask mask;
1729 mask = (p->op==TK_IF_NULL_ROW) ? sqlite3WhereGetMask(pMaskSet, p->iTable) : 0;
1730 if( p->pLeft ) mask |= sqlite3WhereExprUsageNN(pMaskSet, p->pLeft);
1731 if( p->pRight ){
1732 mask |= sqlite3WhereExprUsageNN(pMaskSet, p->pRight);
1733 assert( p->x.pList==0 );
1734 }else if( ExprUseXSelect(p) ){
1735 if( ExprHasProperty(p, EP_VarSelect) ) pMaskSet->bVarSelect = 1;
1736 mask |= exprSelectUsage(pMaskSet, p->x.pSelect);
1737 }else if( p->x.pList ){
1738 mask |= sqlite3WhereExprListUsage(pMaskSet, p->x.pList);
1740 #ifndef SQLITE_OMIT_WINDOWFUNC
1741 if( (p->op==TK_FUNCTION || p->op==TK_AGG_FUNCTION) && ExprUseYWin(p) ){
1742 assert( p->y.pWin!=0 );
1743 mask |= sqlite3WhereExprListUsage(pMaskSet, p->y.pWin->pPartition);
1744 mask |= sqlite3WhereExprListUsage(pMaskSet, p->y.pWin->pOrderBy);
1745 mask |= sqlite3WhereExprUsage(pMaskSet, p->y.pWin->pFilter);
1747 #endif
1748 return mask;
1750 Bitmask sqlite3WhereExprUsageNN(WhereMaskSet *pMaskSet, Expr *p){
1751 if( p->op==TK_COLUMN && !ExprHasProperty(p, EP_FixedCol) ){
1752 return sqlite3WhereGetMask(pMaskSet, p->iTable);
1753 }else if( ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){
1754 assert( p->op!=TK_IF_NULL_ROW );
1755 return 0;
1757 return sqlite3WhereExprUsageFull(pMaskSet, p);
1759 Bitmask sqlite3WhereExprUsage(WhereMaskSet *pMaskSet, Expr *p){
1760 return p ? sqlite3WhereExprUsageNN(pMaskSet,p) : 0;
1762 Bitmask sqlite3WhereExprListUsage(WhereMaskSet *pMaskSet, ExprList *pList){
1763 int i;
1764 Bitmask mask = 0;
1765 if( pList ){
1766 for(i=0; i<pList->nExpr; i++){
1767 mask |= sqlite3WhereExprUsage(pMaskSet, pList->a[i].pExpr);
1770 return mask;
1775 ** Call exprAnalyze on all terms in a WHERE clause.
1777 ** Note that exprAnalyze() might add new virtual terms onto the
1778 ** end of the WHERE clause. We do not want to analyze these new
1779 ** virtual terms, so start analyzing at the end and work forward
1780 ** so that the added virtual terms are never processed.
1782 void sqlite3WhereExprAnalyze(
1783 SrcList *pTabList, /* the FROM clause */
1784 WhereClause *pWC /* the WHERE clause to be analyzed */
1786 int i;
1787 for(i=pWC->nTerm-1; i>=0; i--){
1788 exprAnalyze(pTabList, pWC, i);
1793 ** For table-valued-functions, transform the function arguments into
1794 ** new WHERE clause terms.
1796 ** Each function argument translates into an equality constraint against
1797 ** a HIDDEN column in the table.
1799 void sqlite3WhereTabFuncArgs(
1800 Parse *pParse, /* Parsing context */
1801 SrcItem *pItem, /* The FROM clause term to process */
1802 WhereClause *pWC /* Xfer function arguments to here */
1804 Table *pTab;
1805 int j, k;
1806 ExprList *pArgs;
1807 Expr *pColRef;
1808 Expr *pTerm;
1809 if( pItem->fg.isTabFunc==0 ) return;
1810 pTab = pItem->pTab;
1811 assert( pTab!=0 );
1812 pArgs = pItem->u1.pFuncArg;
1813 if( pArgs==0 ) return;
1814 for(j=k=0; j<pArgs->nExpr; j++){
1815 Expr *pRhs;
1816 while( k<pTab->nCol && (pTab->aCol[k].colFlags & COLFLAG_HIDDEN)==0 ){k++;}
1817 if( k>=pTab->nCol ){
1818 sqlite3ErrorMsg(pParse, "too many arguments on %s() - max %d",
1819 pTab->zName, j);
1820 return;
1822 pColRef = sqlite3ExprAlloc(pParse->db, TK_COLUMN, 0, 0);
1823 if( pColRef==0 ) return;
1824 pColRef->iTable = pItem->iCursor;
1825 pColRef->iColumn = k++;
1826 assert( ExprUseYTab(pColRef) );
1827 pColRef->y.pTab = pTab;
1828 pItem->colUsed |= sqlite3ExprColUsed(pColRef);
1829 pRhs = sqlite3PExpr(pParse, TK_UPLUS,
1830 sqlite3ExprDup(pParse->db, pArgs->a[j].pExpr, 0), 0);
1831 pTerm = sqlite3PExpr(pParse, TK_EQ, pColRef, pRhs);
1832 if( pItem->fg.jointype & JT_LEFT ){
1833 sqlite3SetJoinExpr(pTerm, pItem->iCursor);
1835 whereClauseInsert(pWC, pTerm, TERM_DYNAMIC);