update tags for podspec
[sqlcipher.git] / src / select.c
blob2a66c79e3ea58592cc9d186620790f1d8bcec9ca
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
15 #include "sqliteInt.h"
18 ** An instance of the following object is used to record information about
19 ** how to process the DISTINCT keyword, to simplify passing that information
20 ** into the selectInnerLoop() routine.
22 typedef struct DistinctCtx DistinctCtx;
23 struct DistinctCtx {
24 u8 isTnct; /* 0: Not distinct. 1: DISTICT 2: DISTINCT and ORDER BY */
25 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */
26 int tabTnct; /* Ephemeral table used for DISTINCT processing */
27 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */
31 ** An instance of the following object is used to record information about
32 ** the ORDER BY (or GROUP BY) clause of query is being coded.
34 ** The aDefer[] array is used by the sorter-references optimization. For
35 ** example, assuming there is no index that can be used for the ORDER BY,
36 ** for the query:
38 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10;
40 ** it may be more efficient to add just the "a" values to the sorter, and
41 ** retrieve the associated "bigblob" values directly from table t1 as the
42 ** 10 smallest "a" values are extracted from the sorter.
44 ** When the sorter-reference optimization is used, there is one entry in the
45 ** aDefer[] array for each database table that may be read as values are
46 ** extracted from the sorter.
48 typedef struct SortCtx SortCtx;
49 struct SortCtx {
50 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */
51 int nOBSat; /* Number of ORDER BY terms satisfied by indices */
52 int iECursor; /* Cursor number for the sorter */
53 int regReturn; /* Register holding block-output return address */
54 int labelBkOut; /* Start label for the block-output subroutine */
55 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */
56 int labelDone; /* Jump here when done, ex: LIMIT reached */
57 int labelOBLopt; /* Jump here when sorter is full */
58 u8 sortFlags; /* Zero or more SORTFLAG_* bits */
59 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
60 u8 nDefer; /* Number of valid entries in aDefer[] */
61 struct DeferredCsr {
62 Table *pTab; /* Table definition */
63 int iCsr; /* Cursor number for table */
64 int nKey; /* Number of PK columns for table pTab (>=1) */
65 } aDefer[4];
66 #endif
67 struct RowLoadInfo *pDeferredRowLoad; /* Deferred row loading info or NULL */
68 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
69 int addrPush; /* First instruction to push data into sorter */
70 int addrPushEnd; /* Last instruction that pushes data into sorter */
71 #endif
73 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */
76 ** Delete all the content of a Select structure. Deallocate the structure
77 ** itself depending on the value of bFree
79 ** If bFree==1, call sqlite3DbFree() on the p object.
80 ** If bFree==0, Leave the first Select object unfreed
82 static void clearSelect(sqlite3 *db, Select *p, int bFree){
83 assert( db!=0 );
84 while( p ){
85 Select *pPrior = p->pPrior;
86 sqlite3ExprListDelete(db, p->pEList);
87 sqlite3SrcListDelete(db, p->pSrc);
88 sqlite3ExprDelete(db, p->pWhere);
89 sqlite3ExprListDelete(db, p->pGroupBy);
90 sqlite3ExprDelete(db, p->pHaving);
91 sqlite3ExprListDelete(db, p->pOrderBy);
92 sqlite3ExprDelete(db, p->pLimit);
93 if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith);
94 #ifndef SQLITE_OMIT_WINDOWFUNC
95 if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){
96 sqlite3WindowListDelete(db, p->pWinDefn);
98 while( p->pWin ){
99 assert( p->pWin->ppThis==&p->pWin );
100 sqlite3WindowUnlinkFromSelect(p->pWin);
102 #endif
103 if( bFree ) sqlite3DbNNFreeNN(db, p);
104 p = pPrior;
105 bFree = 1;
110 ** Initialize a SelectDest structure.
112 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
113 pDest->eDest = (u8)eDest;
114 pDest->iSDParm = iParm;
115 pDest->iSDParm2 = 0;
116 pDest->zAffSdst = 0;
117 pDest->iSdst = 0;
118 pDest->nSdst = 0;
123 ** Allocate a new Select structure and return a pointer to that
124 ** structure.
126 Select *sqlite3SelectNew(
127 Parse *pParse, /* Parsing context */
128 ExprList *pEList, /* which columns to include in the result */
129 SrcList *pSrc, /* the FROM clause -- which tables to scan */
130 Expr *pWhere, /* the WHERE clause */
131 ExprList *pGroupBy, /* the GROUP BY clause */
132 Expr *pHaving, /* the HAVING clause */
133 ExprList *pOrderBy, /* the ORDER BY clause */
134 u32 selFlags, /* Flag parameters, such as SF_Distinct */
135 Expr *pLimit /* LIMIT value. NULL means not used */
137 Select *pNew, *pAllocated;
138 Select standin;
139 pAllocated = pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) );
140 if( pNew==0 ){
141 assert( pParse->db->mallocFailed );
142 pNew = &standin;
144 if( pEList==0 ){
145 pEList = sqlite3ExprListAppend(pParse, 0,
146 sqlite3Expr(pParse->db,TK_ASTERISK,0));
148 pNew->pEList = pEList;
149 pNew->op = TK_SELECT;
150 pNew->selFlags = selFlags;
151 pNew->iLimit = 0;
152 pNew->iOffset = 0;
153 pNew->selId = ++pParse->nSelect;
154 pNew->addrOpenEphm[0] = -1;
155 pNew->addrOpenEphm[1] = -1;
156 pNew->nSelectRow = 0;
157 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc));
158 pNew->pSrc = pSrc;
159 pNew->pWhere = pWhere;
160 pNew->pGroupBy = pGroupBy;
161 pNew->pHaving = pHaving;
162 pNew->pOrderBy = pOrderBy;
163 pNew->pPrior = 0;
164 pNew->pNext = 0;
165 pNew->pLimit = pLimit;
166 pNew->pWith = 0;
167 #ifndef SQLITE_OMIT_WINDOWFUNC
168 pNew->pWin = 0;
169 pNew->pWinDefn = 0;
170 #endif
171 if( pParse->db->mallocFailed ) {
172 clearSelect(pParse->db, pNew, pNew!=&standin);
173 pAllocated = 0;
174 }else{
175 assert( pNew->pSrc!=0 || pParse->nErr>0 );
177 return pAllocated;
182 ** Delete the given Select structure and all of its substructures.
184 void sqlite3SelectDelete(sqlite3 *db, Select *p){
185 if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1);
189 ** Return a pointer to the right-most SELECT statement in a compound.
191 static Select *findRightmost(Select *p){
192 while( p->pNext ) p = p->pNext;
193 return p;
197 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
198 ** type of join. Return an integer constant that expresses that type
199 ** in terms of the following bit values:
201 ** JT_INNER
202 ** JT_CROSS
203 ** JT_OUTER
204 ** JT_NATURAL
205 ** JT_LEFT
206 ** JT_RIGHT
208 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
210 ** If an illegal or unsupported join type is seen, then still return
211 ** a join type, but put an error in the pParse structure.
213 ** These are the valid join types:
216 ** pA pB pC Return Value
217 ** ------- ----- ----- ------------
218 ** CROSS - - JT_CROSS
219 ** INNER - - JT_INNER
220 ** LEFT - - JT_LEFT|JT_OUTER
221 ** LEFT OUTER - JT_LEFT|JT_OUTER
222 ** RIGHT - - JT_RIGHT|JT_OUTER
223 ** RIGHT OUTER - JT_RIGHT|JT_OUTER
224 ** FULL - - JT_LEFT|JT_RIGHT|JT_OUTER
225 ** FULL OUTER - JT_LEFT|JT_RIGHT|JT_OUTER
226 ** NATURAL INNER - JT_NATURAL|JT_INNER
227 ** NATURAL LEFT - JT_NATURAL|JT_LEFT|JT_OUTER
228 ** NATURAL LEFT OUTER JT_NATURAL|JT_LEFT|JT_OUTER
229 ** NATURAL RIGHT - JT_NATURAL|JT_RIGHT|JT_OUTER
230 ** NATURAL RIGHT OUTER JT_NATURAL|JT_RIGHT|JT_OUTER
231 ** NATURAL FULL - JT_NATURAL|JT_LEFT|JT_RIGHT
232 ** NATURAL FULL OUTER JT_NATRUAL|JT_LEFT|JT_RIGHT
234 ** To preserve historical compatibly, SQLite also accepts a variety
235 ** of other non-standard and in many cases non-sensical join types.
236 ** This routine makes as much sense at it can from the nonsense join
237 ** type and returns a result. Examples of accepted nonsense join types
238 ** include but are not limited to:
240 ** INNER CROSS JOIN -> same as JOIN
241 ** NATURAL CROSS JOIN -> same as NATURAL JOIN
242 ** OUTER LEFT JOIN -> same as LEFT JOIN
243 ** LEFT NATURAL JOIN -> same as NATURAL LEFT JOIN
244 ** LEFT RIGHT JOIN -> same as FULL JOIN
245 ** RIGHT OUTER FULL JOIN -> same as FULL JOIN
246 ** CROSS CROSS CROSS JOIN -> same as JOIN
248 ** The only restrictions on the join type name are:
250 ** * "INNER" cannot appear together with "OUTER", "LEFT", "RIGHT",
251 ** or "FULL".
253 ** * "CROSS" cannot appear together with "OUTER", "LEFT", "RIGHT,
254 ** or "FULL".
256 ** * If "OUTER" is present then there must also be one of
257 ** "LEFT", "RIGHT", or "FULL"
259 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
260 int jointype = 0;
261 Token *apAll[3];
262 Token *p;
263 /* 0123456789 123456789 123456789 123 */
264 static const char zKeyText[] = "naturaleftouterightfullinnercross";
265 static const struct {
266 u8 i; /* Beginning of keyword text in zKeyText[] */
267 u8 nChar; /* Length of the keyword in characters */
268 u8 code; /* Join type mask */
269 } aKeyword[] = {
270 /* (0) natural */ { 0, 7, JT_NATURAL },
271 /* (1) left */ { 6, 4, JT_LEFT|JT_OUTER },
272 /* (2) outer */ { 10, 5, JT_OUTER },
273 /* (3) right */ { 14, 5, JT_RIGHT|JT_OUTER },
274 /* (4) full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
275 /* (5) inner */ { 23, 5, JT_INNER },
276 /* (6) cross */ { 28, 5, JT_INNER|JT_CROSS },
278 int i, j;
279 apAll[0] = pA;
280 apAll[1] = pB;
281 apAll[2] = pC;
282 for(i=0; i<3 && apAll[i]; i++){
283 p = apAll[i];
284 for(j=0; j<ArraySize(aKeyword); j++){
285 if( p->n==aKeyword[j].nChar
286 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
287 jointype |= aKeyword[j].code;
288 break;
291 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
292 if( j>=ArraySize(aKeyword) ){
293 jointype |= JT_ERROR;
294 break;
298 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
299 (jointype & JT_ERROR)!=0 ||
300 (jointype & (JT_OUTER|JT_LEFT|JT_RIGHT))==JT_OUTER
302 const char *zSp1 = " ";
303 const char *zSp2 = " ";
304 if( pB==0 ){ zSp1++; }
305 if( pC==0 ){ zSp2++; }
306 sqlite3ErrorMsg(pParse, "unknown join type: "
307 "%T%s%T%s%T", pA, zSp1, pB, zSp2, pC);
308 jointype = JT_INNER;
310 return jointype;
314 ** Return the index of a column in a table. Return -1 if the column
315 ** is not contained in the table.
317 int sqlite3ColumnIndex(Table *pTab, const char *zCol){
318 int i;
319 u8 h = sqlite3StrIHash(zCol);
320 Column *pCol;
321 for(pCol=pTab->aCol, i=0; i<pTab->nCol; pCol++, i++){
322 if( pCol->hName==h && sqlite3StrICmp(pCol->zCnName, zCol)==0 ) return i;
324 return -1;
328 ** Mark a subquery result column as having been used.
330 void sqlite3SrcItemColumnUsed(SrcItem *pItem, int iCol){
331 assert( pItem!=0 );
332 assert( (int)pItem->fg.isNestedFrom == IsNestedFrom(pItem->pSelect) );
333 if( pItem->fg.isNestedFrom ){
334 ExprList *pResults;
335 assert( pItem->pSelect!=0 );
336 pResults = pItem->pSelect->pEList;
337 assert( pResults!=0 );
338 assert( iCol>=0 && iCol<pResults->nExpr );
339 pResults->a[iCol].fg.bUsed = 1;
344 ** Search the tables iStart..iEnd (inclusive) in pSrc, looking for a
345 ** table that has a column named zCol. The search is left-to-right.
346 ** The first match found is returned.
348 ** When found, set *piTab and *piCol to the table index and column index
349 ** of the matching column and return TRUE.
351 ** If not found, return FALSE.
353 static int tableAndColumnIndex(
354 SrcList *pSrc, /* Array of tables to search */
355 int iStart, /* First member of pSrc->a[] to check */
356 int iEnd, /* Last member of pSrc->a[] to check */
357 const char *zCol, /* Name of the column we are looking for */
358 int *piTab, /* Write index of pSrc->a[] here */
359 int *piCol, /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
360 int bIgnoreHidden /* Ignore hidden columns */
362 int i; /* For looping over tables in pSrc */
363 int iCol; /* Index of column matching zCol */
365 assert( iEnd<pSrc->nSrc );
366 assert( iStart>=0 );
367 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */
369 for(i=iStart; i<=iEnd; i++){
370 iCol = sqlite3ColumnIndex(pSrc->a[i].pTab, zCol);
371 if( iCol>=0
372 && (bIgnoreHidden==0 || IsHiddenColumn(&pSrc->a[i].pTab->aCol[iCol])==0)
374 if( piTab ){
375 sqlite3SrcItemColumnUsed(&pSrc->a[i], iCol);
376 *piTab = i;
377 *piCol = iCol;
379 return 1;
382 return 0;
386 ** Set the EP_OuterON property on all terms of the given expression.
387 ** And set the Expr.w.iJoin to iTable for every term in the
388 ** expression.
390 ** The EP_OuterON property is used on terms of an expression to tell
391 ** the OUTER JOIN processing logic that this term is part of the
392 ** join restriction specified in the ON or USING clause and not a part
393 ** of the more general WHERE clause. These terms are moved over to the
394 ** WHERE clause during join processing but we need to remember that they
395 ** originated in the ON or USING clause.
397 ** The Expr.w.iJoin tells the WHERE clause processing that the
398 ** expression depends on table w.iJoin even if that table is not
399 ** explicitly mentioned in the expression. That information is needed
400 ** for cases like this:
402 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
404 ** The where clause needs to defer the handling of the t1.x=5
405 ** term until after the t2 loop of the join. In that way, a
406 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not
407 ** defer the handling of t1.x=5, it will be processed immediately
408 ** after the t1 loop and rows with t1.x!=5 will never appear in
409 ** the output, which is incorrect.
411 void sqlite3SetJoinExpr(Expr *p, int iTable, u32 joinFlag){
412 assert( joinFlag==EP_OuterON || joinFlag==EP_InnerON );
413 while( p ){
414 ExprSetProperty(p, joinFlag);
415 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
416 ExprSetVVAProperty(p, EP_NoReduce);
417 p->w.iJoin = iTable;
418 if( p->op==TK_FUNCTION ){
419 assert( ExprUseXList(p) );
420 if( p->x.pList ){
421 int i;
422 for(i=0; i<p->x.pList->nExpr; i++){
423 sqlite3SetJoinExpr(p->x.pList->a[i].pExpr, iTable, joinFlag);
427 sqlite3SetJoinExpr(p->pLeft, iTable, joinFlag);
428 p = p->pRight;
432 /* Undo the work of sqlite3SetJoinExpr(). This is used when a LEFT JOIN
433 ** is simplified into an ordinary JOIN, and when an ON expression is
434 ** "pushed down" into the WHERE clause of a subquery.
436 ** Convert every term that is marked with EP_OuterON and w.iJoin==iTable into
437 ** an ordinary term that omits the EP_OuterON mark. Or if iTable<0, then
438 ** just clear every EP_OuterON and EP_InnerON mark from the expression tree.
440 ** If nullable is true, that means that Expr p might evaluate to NULL even
441 ** if it is a reference to a NOT NULL column. This can happen, for example,
442 ** if the table that p references is on the left side of a RIGHT JOIN.
443 ** If nullable is true, then take care to not remove the EP_CanBeNull bit.
444 ** See forum thread https://sqlite.org/forum/forumpost/b40696f50145d21c
446 static void unsetJoinExpr(Expr *p, int iTable, int nullable){
447 while( p ){
448 if( iTable<0 || (ExprHasProperty(p, EP_OuterON) && p->w.iJoin==iTable) ){
449 ExprClearProperty(p, EP_OuterON|EP_InnerON);
450 if( iTable>=0 ) ExprSetProperty(p, EP_InnerON);
452 if( p->op==TK_COLUMN && p->iTable==iTable && !nullable ){
453 ExprClearProperty(p, EP_CanBeNull);
455 if( p->op==TK_FUNCTION ){
456 assert( ExprUseXList(p) );
457 if( p->x.pList ){
458 int i;
459 for(i=0; i<p->x.pList->nExpr; i++){
460 unsetJoinExpr(p->x.pList->a[i].pExpr, iTable, nullable);
464 unsetJoinExpr(p->pLeft, iTable, nullable);
465 p = p->pRight;
470 ** This routine processes the join information for a SELECT statement.
472 ** * A NATURAL join is converted into a USING join. After that, we
473 ** do not need to be concerned with NATURAL joins and we only have
474 ** think about USING joins.
476 ** * ON and USING clauses result in extra terms being added to the
477 ** WHERE clause to enforce the specified constraints. The extra
478 ** WHERE clause terms will be tagged with EP_OuterON or
479 ** EP_InnerON so that we know that they originated in ON/USING.
481 ** The terms of a FROM clause are contained in the Select.pSrc structure.
482 ** The left most table is the first entry in Select.pSrc. The right-most
483 ** table is the last entry. The join operator is held in the entry to
484 ** the right. Thus entry 1 contains the join operator for the join between
485 ** entries 0 and 1. Any ON or USING clauses associated with the join are
486 ** also attached to the right entry.
488 ** This routine returns the number of errors encountered.
490 static int sqlite3ProcessJoin(Parse *pParse, Select *p){
491 SrcList *pSrc; /* All tables in the FROM clause */
492 int i, j; /* Loop counters */
493 SrcItem *pLeft; /* Left table being joined */
494 SrcItem *pRight; /* Right table being joined */
496 pSrc = p->pSrc;
497 pLeft = &pSrc->a[0];
498 pRight = &pLeft[1];
499 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
500 Table *pRightTab = pRight->pTab;
501 u32 joinType;
503 if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue;
504 joinType = (pRight->fg.jointype & JT_OUTER)!=0 ? EP_OuterON : EP_InnerON;
506 /* If this is a NATURAL join, synthesize an approprate USING clause
507 ** to specify which columns should be joined.
509 if( pRight->fg.jointype & JT_NATURAL ){
510 IdList *pUsing = 0;
511 if( pRight->fg.isUsing || pRight->u3.pOn ){
512 sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
513 "an ON or USING clause", 0);
514 return 1;
516 for(j=0; j<pRightTab->nCol; j++){
517 char *zName; /* Name of column in the right table */
519 if( IsHiddenColumn(&pRightTab->aCol[j]) ) continue;
520 zName = pRightTab->aCol[j].zCnName;
521 if( tableAndColumnIndex(pSrc, 0, i, zName, 0, 0, 1) ){
522 pUsing = sqlite3IdListAppend(pParse, pUsing, 0);
523 if( pUsing ){
524 assert( pUsing->nId>0 );
525 assert( pUsing->a[pUsing->nId-1].zName==0 );
526 pUsing->a[pUsing->nId-1].zName = sqlite3DbStrDup(pParse->db, zName);
530 if( pUsing ){
531 pRight->fg.isUsing = 1;
532 pRight->fg.isSynthUsing = 1;
533 pRight->u3.pUsing = pUsing;
535 if( pParse->nErr ) return 1;
538 /* Create extra terms on the WHERE clause for each column named
539 ** in the USING clause. Example: If the two tables to be joined are
540 ** A and B and the USING clause names X, Y, and Z, then add this
541 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
542 ** Report an error if any column mentioned in the USING clause is
543 ** not contained in both tables to be joined.
545 if( pRight->fg.isUsing ){
546 IdList *pList = pRight->u3.pUsing;
547 sqlite3 *db = pParse->db;
548 assert( pList!=0 );
549 for(j=0; j<pList->nId; j++){
550 char *zName; /* Name of the term in the USING clause */
551 int iLeft; /* Table on the left with matching column name */
552 int iLeftCol; /* Column number of matching column on the left */
553 int iRightCol; /* Column number of matching column on the right */
554 Expr *pE1; /* Reference to the column on the LEFT of the join */
555 Expr *pE2; /* Reference to the column on the RIGHT of the join */
556 Expr *pEq; /* Equality constraint. pE1 == pE2 */
558 zName = pList->a[j].zName;
559 iRightCol = sqlite3ColumnIndex(pRightTab, zName);
560 if( iRightCol<0
561 || tableAndColumnIndex(pSrc, 0, i, zName, &iLeft, &iLeftCol,
562 pRight->fg.isSynthUsing)==0
564 sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
565 "not present in both tables", zName);
566 return 1;
568 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iLeftCol);
569 sqlite3SrcItemColumnUsed(&pSrc->a[iLeft], iLeftCol);
570 if( (pSrc->a[0].fg.jointype & JT_LTORJ)!=0 ){
571 /* This branch runs if the query contains one or more RIGHT or FULL
572 ** JOINs. If only a single table on the left side of this join
573 ** contains the zName column, then this branch is a no-op.
574 ** But if there are two or more tables on the left side
575 ** of the join, construct a coalesce() function that gathers all
576 ** such tables. Raise an error if more than one of those references
577 ** to zName is not also within a prior USING clause.
579 ** We really ought to raise an error if there are two or more
580 ** non-USING references to zName on the left of an INNER or LEFT
581 ** JOIN. But older versions of SQLite do not do that, so we avoid
582 ** adding a new error so as to not break legacy applications.
584 ExprList *pFuncArgs = 0; /* Arguments to the coalesce() */
585 static const Token tkCoalesce = { "coalesce", 8 };
586 while( tableAndColumnIndex(pSrc, iLeft+1, i, zName, &iLeft, &iLeftCol,
587 pRight->fg.isSynthUsing)!=0 ){
588 if( pSrc->a[iLeft].fg.isUsing==0
589 || sqlite3IdListIndex(pSrc->a[iLeft].u3.pUsing, zName)<0
591 sqlite3ErrorMsg(pParse, "ambiguous reference to %s in USING()",
592 zName);
593 break;
595 pFuncArgs = sqlite3ExprListAppend(pParse, pFuncArgs, pE1);
596 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iLeftCol);
597 sqlite3SrcItemColumnUsed(&pSrc->a[iLeft], iLeftCol);
599 if( pFuncArgs ){
600 pFuncArgs = sqlite3ExprListAppend(pParse, pFuncArgs, pE1);
601 pE1 = sqlite3ExprFunction(pParse, pFuncArgs, &tkCoalesce, 0);
604 pE2 = sqlite3CreateColumnExpr(db, pSrc, i+1, iRightCol);
605 sqlite3SrcItemColumnUsed(pRight, iRightCol);
606 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2);
607 assert( pE2!=0 || pEq==0 );
608 if( pEq ){
609 ExprSetProperty(pEq, joinType);
610 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
611 ExprSetVVAProperty(pEq, EP_NoReduce);
612 pEq->w.iJoin = pE2->iTable;
614 p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pEq);
618 /* Add the ON clause to the end of the WHERE clause, connected by
619 ** an AND operator.
621 else if( pRight->u3.pOn ){
622 sqlite3SetJoinExpr(pRight->u3.pOn, pRight->iCursor, joinType);
623 p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pRight->u3.pOn);
624 pRight->u3.pOn = 0;
625 pRight->fg.isOn = 1;
628 return 0;
632 ** An instance of this object holds information (beyond pParse and pSelect)
633 ** needed to load the next result row that is to be added to the sorter.
635 typedef struct RowLoadInfo RowLoadInfo;
636 struct RowLoadInfo {
637 int regResult; /* Store results in array of registers here */
638 u8 ecelFlags; /* Flag argument to ExprCodeExprList() */
639 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
640 ExprList *pExtra; /* Extra columns needed by sorter refs */
641 int regExtraResult; /* Where to load the extra columns */
642 #endif
646 ** This routine does the work of loading query data into an array of
647 ** registers so that it can be added to the sorter.
649 static void innerLoopLoadRow(
650 Parse *pParse, /* Statement under construction */
651 Select *pSelect, /* The query being coded */
652 RowLoadInfo *pInfo /* Info needed to complete the row load */
654 sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult,
655 0, pInfo->ecelFlags);
656 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
657 if( pInfo->pExtra ){
658 sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0);
659 sqlite3ExprListDelete(pParse->db, pInfo->pExtra);
661 #endif
665 ** Code the OP_MakeRecord instruction that generates the entry to be
666 ** added into the sorter.
668 ** Return the register in which the result is stored.
670 static int makeSorterRecord(
671 Parse *pParse,
672 SortCtx *pSort,
673 Select *pSelect,
674 int regBase,
675 int nBase
677 int nOBSat = pSort->nOBSat;
678 Vdbe *v = pParse->pVdbe;
679 int regOut = ++pParse->nMem;
680 if( pSort->pDeferredRowLoad ){
681 innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad);
683 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut);
684 return regOut;
688 ** Generate code that will push the record in registers regData
689 ** through regData+nData-1 onto the sorter.
691 static void pushOntoSorter(
692 Parse *pParse, /* Parser context */
693 SortCtx *pSort, /* Information about the ORDER BY clause */
694 Select *pSelect, /* The whole SELECT statement */
695 int regData, /* First register holding data to be sorted */
696 int regOrigData, /* First register holding data before packing */
697 int nData, /* Number of elements in the regData data array */
698 int nPrefixReg /* No. of reg prior to regData available for use */
700 Vdbe *v = pParse->pVdbe; /* Stmt under construction */
701 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
702 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */
703 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */
704 int regBase; /* Regs for sorter record */
705 int regRecord = 0; /* Assembled sorter record */
706 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */
707 int op; /* Opcode to add sorter record to sorter */
708 int iLimit; /* LIMIT counter */
709 int iSkip = 0; /* End of the sorter insert loop */
711 assert( bSeq==0 || bSeq==1 );
713 /* Three cases:
714 ** (1) The data to be sorted has already been packed into a Record
715 ** by a prior OP_MakeRecord. In this case nData==1 and regData
716 ** will be completely unrelated to regOrigData.
717 ** (2) All output columns are included in the sort record. In that
718 ** case regData==regOrigData.
719 ** (3) Some output columns are omitted from the sort record due to
720 ** the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the
721 ** SQLITE_ECEL_OMITREF optimization, or due to the
722 ** SortCtx.pDeferredRowLoad optimiation. In any of these cases
723 ** regOrigData is 0 to prevent this routine from trying to copy
724 ** values that might not yet exist.
726 assert( nData==1 || regData==regOrigData || regOrigData==0 );
728 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
729 pSort->addrPush = sqlite3VdbeCurrentAddr(v);
730 #endif
732 if( nPrefixReg ){
733 assert( nPrefixReg==nExpr+bSeq );
734 regBase = regData - nPrefixReg;
735 }else{
736 regBase = pParse->nMem + 1;
737 pParse->nMem += nBase;
739 assert( pSelect->iOffset==0 || pSelect->iLimit!=0 );
740 iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit;
741 pSort->labelDone = sqlite3VdbeMakeLabel(pParse);
742 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData,
743 SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0));
744 if( bSeq ){
745 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
747 if( nPrefixReg==0 && nData>0 ){
748 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
750 if( nOBSat>0 ){
751 int regPrevKey; /* The first nOBSat columns of the previous row */
752 int addrFirst; /* Address of the OP_IfNot opcode */
753 int addrJmp; /* Address of the OP_Jump opcode */
754 VdbeOp *pOp; /* Opcode that opens the sorter */
755 int nKey; /* Number of sorting key columns, including OP_Sequence */
756 KeyInfo *pKI; /* Original KeyInfo on the sorter table */
758 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
759 regPrevKey = pParse->nMem+1;
760 pParse->nMem += pSort->nOBSat;
761 nKey = nExpr - pSort->nOBSat + bSeq;
762 if( bSeq ){
763 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
764 }else{
765 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
767 VdbeCoverage(v);
768 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
769 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
770 if( pParse->db->mallocFailed ) return;
771 pOp->p2 = nKey + nData;
772 pKI = pOp->p4.pKeyInfo;
773 memset(pKI->aSortFlags, 0, pKI->nKeyField); /* Makes OP_Jump testable */
774 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
775 testcase( pKI->nAllField > pKI->nKeyField+2 );
776 pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat,
777 pKI->nAllField-pKI->nKeyField-1);
778 pOp = 0; /* Ensure pOp not used after sqltie3VdbeAddOp3() */
779 addrJmp = sqlite3VdbeCurrentAddr(v);
780 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
781 pSort->labelBkOut = sqlite3VdbeMakeLabel(pParse);
782 pSort->regReturn = ++pParse->nMem;
783 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
784 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
785 if( iLimit ){
786 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone);
787 VdbeCoverage(v);
789 sqlite3VdbeJumpHere(v, addrFirst);
790 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
791 sqlite3VdbeJumpHere(v, addrJmp);
793 if( iLimit ){
794 /* At this point the values for the new sorter entry are stored
795 ** in an array of registers. They need to be composed into a record
796 ** and inserted into the sorter if either (a) there are currently
797 ** less than LIMIT+OFFSET items or (b) the new record is smaller than
798 ** the largest record currently in the sorter. If (b) is true and there
799 ** are already LIMIT+OFFSET items in the sorter, delete the largest
800 ** entry before inserting the new one. This way there are never more
801 ** than LIMIT+OFFSET items in the sorter.
803 ** If the new record does not need to be inserted into the sorter,
804 ** jump to the next iteration of the loop. If the pSort->labelOBLopt
805 ** value is not zero, then it is a label of where to jump. Otherwise,
806 ** just bypass the row insert logic. See the header comment on the
807 ** sqlite3WhereOrderByLimitOptLabel() function for additional info.
809 int iCsr = pSort->iECursor;
810 sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4);
811 VdbeCoverage(v);
812 sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0);
813 iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE,
814 iCsr, 0, regBase+nOBSat, nExpr-nOBSat);
815 VdbeCoverage(v);
816 sqlite3VdbeAddOp1(v, OP_Delete, iCsr);
818 if( regRecord==0 ){
819 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
821 if( pSort->sortFlags & SORTFLAG_UseSorter ){
822 op = OP_SorterInsert;
823 }else{
824 op = OP_IdxInsert;
826 sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord,
827 regBase+nOBSat, nBase-nOBSat);
828 if( iSkip ){
829 sqlite3VdbeChangeP2(v, iSkip,
830 pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v));
832 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
833 pSort->addrPushEnd = sqlite3VdbeCurrentAddr(v)-1;
834 #endif
838 ** Add code to implement the OFFSET
840 static void codeOffset(
841 Vdbe *v, /* Generate code into this VM */
842 int iOffset, /* Register holding the offset counter */
843 int iContinue /* Jump here to skip the current record */
845 if( iOffset>0 ){
846 sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v);
847 VdbeComment((v, "OFFSET"));
852 ** Add code that will check to make sure the array of registers starting at
853 ** iMem form a distinct entry. This is used by both "SELECT DISTINCT ..." and
854 ** distinct aggregates ("SELECT count(DISTINCT <expr>) ..."). Three strategies
855 ** are available. Which is used depends on the value of parameter eTnctType,
856 ** as follows:
858 ** WHERE_DISTINCT_UNORDERED/WHERE_DISTINCT_NOOP:
859 ** Build an ephemeral table that contains all entries seen before and
860 ** skip entries which have been seen before.
862 ** Parameter iTab is the cursor number of an ephemeral table that must
863 ** be opened before the VM code generated by this routine is executed.
864 ** The ephemeral cursor table is queried for a record identical to the
865 ** record formed by the current array of registers. If one is found,
866 ** jump to VM address addrRepeat. Otherwise, insert a new record into
867 ** the ephemeral cursor and proceed.
869 ** The returned value in this case is a copy of parameter iTab.
871 ** WHERE_DISTINCT_ORDERED:
872 ** In this case rows are being delivered sorted order. The ephermal
873 ** table is not required. Instead, the current set of values
874 ** is compared against previous row. If they match, the new row
875 ** is not distinct and control jumps to VM address addrRepeat. Otherwise,
876 ** the VM program proceeds with processing the new row.
878 ** The returned value in this case is the register number of the first
879 ** in an array of registers used to store the previous result row so that
880 ** it can be compared to the next. The caller must ensure that this
881 ** register is initialized to NULL. (The fixDistinctOpenEph() routine
882 ** will take care of this initialization.)
884 ** WHERE_DISTINCT_UNIQUE:
885 ** In this case it has already been determined that the rows are distinct.
886 ** No special action is required. The return value is zero.
888 ** Parameter pEList is the list of expressions used to generated the
889 ** contents of each row. It is used by this routine to determine (a)
890 ** how many elements there are in the array of registers and (b) the
891 ** collation sequences that should be used for the comparisons if
892 ** eTnctType is WHERE_DISTINCT_ORDERED.
894 static int codeDistinct(
895 Parse *pParse, /* Parsing and code generating context */
896 int eTnctType, /* WHERE_DISTINCT_* value */
897 int iTab, /* A sorting index used to test for distinctness */
898 int addrRepeat, /* Jump to here if not distinct */
899 ExprList *pEList, /* Expression for each element */
900 int regElem /* First element */
902 int iRet = 0;
903 int nResultCol = pEList->nExpr;
904 Vdbe *v = pParse->pVdbe;
906 switch( eTnctType ){
907 case WHERE_DISTINCT_ORDERED: {
908 int i;
909 int iJump; /* Jump destination */
910 int regPrev; /* Previous row content */
912 /* Allocate space for the previous row */
913 iRet = regPrev = pParse->nMem+1;
914 pParse->nMem += nResultCol;
916 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
917 for(i=0; i<nResultCol; i++){
918 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr);
919 if( i<nResultCol-1 ){
920 sqlite3VdbeAddOp3(v, OP_Ne, regElem+i, iJump, regPrev+i);
921 VdbeCoverage(v);
922 }else{
923 sqlite3VdbeAddOp3(v, OP_Eq, regElem+i, addrRepeat, regPrev+i);
924 VdbeCoverage(v);
926 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
927 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
929 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
930 sqlite3VdbeAddOp3(v, OP_Copy, regElem, regPrev, nResultCol-1);
931 break;
934 case WHERE_DISTINCT_UNIQUE: {
935 /* nothing to do */
936 break;
939 default: {
940 int r1 = sqlite3GetTempReg(pParse);
941 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, regElem, nResultCol);
942 VdbeCoverage(v);
943 sqlite3VdbeAddOp3(v, OP_MakeRecord, regElem, nResultCol, r1);
944 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, regElem, nResultCol);
945 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
946 sqlite3ReleaseTempReg(pParse, r1);
947 iRet = iTab;
948 break;
952 return iRet;
956 ** This routine runs after codeDistinct(). It makes necessary
957 ** adjustments to the OP_OpenEphemeral opcode that the codeDistinct()
958 ** routine made use of. This processing must be done separately since
959 ** sometimes codeDistinct is called before the OP_OpenEphemeral is actually
960 ** laid down.
962 ** WHERE_DISTINCT_NOOP:
963 ** WHERE_DISTINCT_UNORDERED:
965 ** No adjustments necessary. This function is a no-op.
967 ** WHERE_DISTINCT_UNIQUE:
969 ** The ephemeral table is not needed. So change the
970 ** OP_OpenEphemeral opcode into an OP_Noop.
972 ** WHERE_DISTINCT_ORDERED:
974 ** The ephemeral table is not needed. But we do need register
975 ** iVal to be initialized to NULL. So change the OP_OpenEphemeral
976 ** into an OP_Null on the iVal register.
978 static void fixDistinctOpenEph(
979 Parse *pParse, /* Parsing and code generating context */
980 int eTnctType, /* WHERE_DISTINCT_* value */
981 int iVal, /* Value returned by codeDistinct() */
982 int iOpenEphAddr /* Address of OP_OpenEphemeral instruction for iTab */
984 if( pParse->nErr==0
985 && (eTnctType==WHERE_DISTINCT_UNIQUE || eTnctType==WHERE_DISTINCT_ORDERED)
987 Vdbe *v = pParse->pVdbe;
988 sqlite3VdbeChangeToNoop(v, iOpenEphAddr);
989 if( sqlite3VdbeGetOp(v, iOpenEphAddr+1)->opcode==OP_Explain ){
990 sqlite3VdbeChangeToNoop(v, iOpenEphAddr+1);
992 if( eTnctType==WHERE_DISTINCT_ORDERED ){
993 /* Change the OP_OpenEphemeral to an OP_Null that sets the MEM_Cleared
994 ** bit on the first register of the previous value. This will cause the
995 ** OP_Ne added in codeDistinct() to always fail on the first iteration of
996 ** the loop even if the first row is all NULLs. */
997 VdbeOp *pOp = sqlite3VdbeGetOp(v, iOpenEphAddr);
998 pOp->opcode = OP_Null;
999 pOp->p1 = 1;
1000 pOp->p2 = iVal;
1005 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1007 ** This function is called as part of inner-loop generation for a SELECT
1008 ** statement with an ORDER BY that is not optimized by an index. It
1009 ** determines the expressions, if any, that the sorter-reference
1010 ** optimization should be used for. The sorter-reference optimization
1011 ** is used for SELECT queries like:
1013 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10
1015 ** If the optimization is used for expression "bigblob", then instead of
1016 ** storing values read from that column in the sorter records, the PK of
1017 ** the row from table t1 is stored instead. Then, as records are extracted from
1018 ** the sorter to return to the user, the required value of bigblob is
1019 ** retrieved directly from table t1. If the values are very large, this
1020 ** can be more efficient than storing them directly in the sorter records.
1022 ** The ExprList_item.fg.bSorterRef flag is set for each expression in pEList
1023 ** for which the sorter-reference optimization should be enabled.
1024 ** Additionally, the pSort->aDefer[] array is populated with entries
1025 ** for all cursors required to evaluate all selected expressions. Finally.
1026 ** output variable (*ppExtra) is set to an expression list containing
1027 ** expressions for all extra PK values that should be stored in the
1028 ** sorter records.
1030 static void selectExprDefer(
1031 Parse *pParse, /* Leave any error here */
1032 SortCtx *pSort, /* Sorter context */
1033 ExprList *pEList, /* Expressions destined for sorter */
1034 ExprList **ppExtra /* Expressions to append to sorter record */
1036 int i;
1037 int nDefer = 0;
1038 ExprList *pExtra = 0;
1039 for(i=0; i<pEList->nExpr; i++){
1040 struct ExprList_item *pItem = &pEList->a[i];
1041 if( pItem->u.x.iOrderByCol==0 ){
1042 Expr *pExpr = pItem->pExpr;
1043 Table *pTab;
1044 if( pExpr->op==TK_COLUMN
1045 && pExpr->iColumn>=0
1046 && ALWAYS( ExprUseYTab(pExpr) )
1047 && (pTab = pExpr->y.pTab)!=0
1048 && IsOrdinaryTable(pTab)
1049 && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF)!=0
1051 int j;
1052 for(j=0; j<nDefer; j++){
1053 if( pSort->aDefer[j].iCsr==pExpr->iTable ) break;
1055 if( j==nDefer ){
1056 if( nDefer==ArraySize(pSort->aDefer) ){
1057 continue;
1058 }else{
1059 int nKey = 1;
1060 int k;
1061 Index *pPk = 0;
1062 if( !HasRowid(pTab) ){
1063 pPk = sqlite3PrimaryKeyIndex(pTab);
1064 nKey = pPk->nKeyCol;
1066 for(k=0; k<nKey; k++){
1067 Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0);
1068 if( pNew ){
1069 pNew->iTable = pExpr->iTable;
1070 assert( ExprUseYTab(pNew) );
1071 pNew->y.pTab = pExpr->y.pTab;
1072 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1;
1073 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew);
1076 pSort->aDefer[nDefer].pTab = pExpr->y.pTab;
1077 pSort->aDefer[nDefer].iCsr = pExpr->iTable;
1078 pSort->aDefer[nDefer].nKey = nKey;
1079 nDefer++;
1082 pItem->fg.bSorterRef = 1;
1086 pSort->nDefer = (u8)nDefer;
1087 *ppExtra = pExtra;
1089 #endif
1092 ** This routine generates the code for the inside of the inner loop
1093 ** of a SELECT.
1095 ** If srcTab is negative, then the p->pEList expressions
1096 ** are evaluated in order to get the data for this row. If srcTab is
1097 ** zero or more, then data is pulled from srcTab and p->pEList is used only
1098 ** to get the number of columns and the collation sequence for each column.
1100 static void selectInnerLoop(
1101 Parse *pParse, /* The parser context */
1102 Select *p, /* The complete select statement being coded */
1103 int srcTab, /* Pull data from this table if non-negative */
1104 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */
1105 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
1106 SelectDest *pDest, /* How to dispose of the results */
1107 int iContinue, /* Jump here to continue with next row */
1108 int iBreak /* Jump here to break out of the inner loop */
1110 Vdbe *v = pParse->pVdbe;
1111 int i;
1112 int hasDistinct; /* True if the DISTINCT keyword is present */
1113 int eDest = pDest->eDest; /* How to dispose of results */
1114 int iParm = pDest->iSDParm; /* First argument to disposal method */
1115 int nResultCol; /* Number of result columns */
1116 int nPrefixReg = 0; /* Number of extra registers before regResult */
1117 RowLoadInfo sRowLoadInfo; /* Info for deferred row loading */
1119 /* Usually, regResult is the first cell in an array of memory cells
1120 ** containing the current result row. In this case regOrig is set to the
1121 ** same value. However, if the results are being sent to the sorter, the
1122 ** values for any expressions that are also part of the sort-key are omitted
1123 ** from this array. In this case regOrig is set to zero. */
1124 int regResult; /* Start of memory holding current results */
1125 int regOrig; /* Start of memory holding full result (or 0) */
1127 assert( v );
1128 assert( p->pEList!=0 );
1129 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
1130 if( pSort && pSort->pOrderBy==0 ) pSort = 0;
1131 if( pSort==0 && !hasDistinct ){
1132 assert( iContinue!=0 );
1133 codeOffset(v, p->iOffset, iContinue);
1136 /* Pull the requested columns.
1138 nResultCol = p->pEList->nExpr;
1140 if( pDest->iSdst==0 ){
1141 if( pSort ){
1142 nPrefixReg = pSort->pOrderBy->nExpr;
1143 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
1144 pParse->nMem += nPrefixReg;
1146 pDest->iSdst = pParse->nMem+1;
1147 pParse->nMem += nResultCol;
1148 }else if( pDest->iSdst+nResultCol > pParse->nMem ){
1149 /* This is an error condition that can result, for example, when a SELECT
1150 ** on the right-hand side of an INSERT contains more result columns than
1151 ** there are columns in the table on the left. The error will be caught
1152 ** and reported later. But we need to make sure enough memory is allocated
1153 ** to avoid other spurious errors in the meantime. */
1154 pParse->nMem += nResultCol;
1156 pDest->nSdst = nResultCol;
1157 regOrig = regResult = pDest->iSdst;
1158 if( srcTab>=0 ){
1159 for(i=0; i<nResultCol; i++){
1160 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
1161 VdbeComment((v, "%s", p->pEList->a[i].zEName));
1163 }else if( eDest!=SRT_Exists ){
1164 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1165 ExprList *pExtra = 0;
1166 #endif
1167 /* If the destination is an EXISTS(...) expression, the actual
1168 ** values returned by the SELECT are not required.
1170 u8 ecelFlags; /* "ecel" is an abbreviation of "ExprCodeExprList" */
1171 ExprList *pEList;
1172 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
1173 ecelFlags = SQLITE_ECEL_DUP;
1174 }else{
1175 ecelFlags = 0;
1177 if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){
1178 /* For each expression in p->pEList that is a copy of an expression in
1179 ** the ORDER BY clause (pSort->pOrderBy), set the associated
1180 ** iOrderByCol value to one more than the index of the ORDER BY
1181 ** expression within the sort-key that pushOntoSorter() will generate.
1182 ** This allows the p->pEList field to be omitted from the sorted record,
1183 ** saving space and CPU cycles. */
1184 ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF);
1186 for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){
1187 int j;
1188 if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){
1189 p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat;
1192 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1193 selectExprDefer(pParse, pSort, p->pEList, &pExtra);
1194 if( pExtra && pParse->db->mallocFailed==0 ){
1195 /* If there are any extra PK columns to add to the sorter records,
1196 ** allocate extra memory cells and adjust the OpenEphemeral
1197 ** instruction to account for the larger records. This is only
1198 ** required if there are one or more WITHOUT ROWID tables with
1199 ** composite primary keys in the SortCtx.aDefer[] array. */
1200 VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
1201 pOp->p2 += (pExtra->nExpr - pSort->nDefer);
1202 pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer);
1203 pParse->nMem += pExtra->nExpr;
1205 #endif
1207 /* Adjust nResultCol to account for columns that are omitted
1208 ** from the sorter by the optimizations in this branch */
1209 pEList = p->pEList;
1210 for(i=0; i<pEList->nExpr; i++){
1211 if( pEList->a[i].u.x.iOrderByCol>0
1212 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1213 || pEList->a[i].fg.bSorterRef
1214 #endif
1216 nResultCol--;
1217 regOrig = 0;
1221 testcase( regOrig );
1222 testcase( eDest==SRT_Set );
1223 testcase( eDest==SRT_Mem );
1224 testcase( eDest==SRT_Coroutine );
1225 testcase( eDest==SRT_Output );
1226 assert( eDest==SRT_Set || eDest==SRT_Mem
1227 || eDest==SRT_Coroutine || eDest==SRT_Output
1228 || eDest==SRT_Upfrom );
1230 sRowLoadInfo.regResult = regResult;
1231 sRowLoadInfo.ecelFlags = ecelFlags;
1232 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1233 sRowLoadInfo.pExtra = pExtra;
1234 sRowLoadInfo.regExtraResult = regResult + nResultCol;
1235 if( pExtra ) nResultCol += pExtra->nExpr;
1236 #endif
1237 if( p->iLimit
1238 && (ecelFlags & SQLITE_ECEL_OMITREF)!=0
1239 && nPrefixReg>0
1241 assert( pSort!=0 );
1242 assert( hasDistinct==0 );
1243 pSort->pDeferredRowLoad = &sRowLoadInfo;
1244 regOrig = 0;
1245 }else{
1246 innerLoopLoadRow(pParse, p, &sRowLoadInfo);
1250 /* If the DISTINCT keyword was present on the SELECT statement
1251 ** and this row has been seen before, then do not make this row
1252 ** part of the result.
1254 if( hasDistinct ){
1255 int eType = pDistinct->eTnctType;
1256 int iTab = pDistinct->tabTnct;
1257 assert( nResultCol==p->pEList->nExpr );
1258 iTab = codeDistinct(pParse, eType, iTab, iContinue, p->pEList, regResult);
1259 fixDistinctOpenEph(pParse, eType, iTab, pDistinct->addrTnct);
1260 if( pSort==0 ){
1261 codeOffset(v, p->iOffset, iContinue);
1265 switch( eDest ){
1266 /* In this mode, write each query result to the key of the temporary
1267 ** table iParm.
1269 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1270 case SRT_Union: {
1271 int r1;
1272 r1 = sqlite3GetTempReg(pParse);
1273 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
1274 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1275 sqlite3ReleaseTempReg(pParse, r1);
1276 break;
1279 /* Construct a record from the query result, but instead of
1280 ** saving that record, use it as a key to delete elements from
1281 ** the temporary table iParm.
1283 case SRT_Except: {
1284 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
1285 break;
1287 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1289 /* Store the result as data using a unique key.
1291 case SRT_Fifo:
1292 case SRT_DistFifo:
1293 case SRT_Table:
1294 case SRT_EphemTab: {
1295 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
1296 testcase( eDest==SRT_Table );
1297 testcase( eDest==SRT_EphemTab );
1298 testcase( eDest==SRT_Fifo );
1299 testcase( eDest==SRT_DistFifo );
1300 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
1301 #ifndef SQLITE_OMIT_CTE
1302 if( eDest==SRT_DistFifo ){
1303 /* If the destination is DistFifo, then cursor (iParm+1) is open
1304 ** on an ephemeral index. If the current row is already present
1305 ** in the index, do not write it to the output. If not, add the
1306 ** current row to the index and proceed with writing it to the
1307 ** output table as well. */
1308 int addr = sqlite3VdbeCurrentAddr(v) + 4;
1309 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
1310 VdbeCoverage(v);
1311 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol);
1312 assert( pSort==0 );
1314 #endif
1315 if( pSort ){
1316 assert( regResult==regOrig );
1317 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg);
1318 }else{
1319 int r2 = sqlite3GetTempReg(pParse);
1320 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
1321 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
1322 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1323 sqlite3ReleaseTempReg(pParse, r2);
1325 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
1326 break;
1329 case SRT_Upfrom: {
1330 if( pSort ){
1331 pushOntoSorter(
1332 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1333 }else{
1334 int i2 = pDest->iSDParm2;
1335 int r1 = sqlite3GetTempReg(pParse);
1337 /* If the UPDATE FROM join is an aggregate that matches no rows, it
1338 ** might still be trying to return one row, because that is what
1339 ** aggregates do. Don't record that empty row in the output table. */
1340 sqlite3VdbeAddOp2(v, OP_IsNull, regResult, iBreak); VdbeCoverage(v);
1342 sqlite3VdbeAddOp3(v, OP_MakeRecord,
1343 regResult+(i2<0), nResultCol-(i2<0), r1);
1344 if( i2<0 ){
1345 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regResult);
1346 }else{
1347 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, i2);
1350 break;
1353 #ifndef SQLITE_OMIT_SUBQUERY
1354 /* If we are creating a set for an "expr IN (SELECT ...)" construct,
1355 ** then there should be a single item on the stack. Write this
1356 ** item into the set table with bogus data.
1358 case SRT_Set: {
1359 if( pSort ){
1360 /* At first glance you would think we could optimize out the
1361 ** ORDER BY in this case since the order of entries in the set
1362 ** does not matter. But there might be a LIMIT clause, in which
1363 ** case the order does matter */
1364 pushOntoSorter(
1365 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1366 }else{
1367 int r1 = sqlite3GetTempReg(pParse);
1368 assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol );
1369 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol,
1370 r1, pDest->zAffSdst, nResultCol);
1371 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1372 sqlite3ReleaseTempReg(pParse, r1);
1374 break;
1378 /* If any row exist in the result set, record that fact and abort.
1380 case SRT_Exists: {
1381 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
1382 /* The LIMIT clause will terminate the loop for us */
1383 break;
1386 /* If this is a scalar select that is part of an expression, then
1387 ** store the results in the appropriate memory cell or array of
1388 ** memory cells and break out of the scan loop.
1390 case SRT_Mem: {
1391 if( pSort ){
1392 assert( nResultCol<=pDest->nSdst );
1393 pushOntoSorter(
1394 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1395 }else{
1396 assert( nResultCol==pDest->nSdst );
1397 assert( regResult==iParm );
1398 /* The LIMIT clause will jump out of the loop for us */
1400 break;
1402 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
1404 case SRT_Coroutine: /* Send data to a co-routine */
1405 case SRT_Output: { /* Return the results */
1406 testcase( eDest==SRT_Coroutine );
1407 testcase( eDest==SRT_Output );
1408 if( pSort ){
1409 pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol,
1410 nPrefixReg);
1411 }else if( eDest==SRT_Coroutine ){
1412 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1413 }else{
1414 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
1416 break;
1419 #ifndef SQLITE_OMIT_CTE
1420 /* Write the results into a priority queue that is order according to
1421 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an
1422 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first
1423 ** pSO->nExpr columns, then make sure all keys are unique by adding a
1424 ** final OP_Sequence column. The last column is the record as a blob.
1426 case SRT_DistQueue:
1427 case SRT_Queue: {
1428 int nKey;
1429 int r1, r2, r3;
1430 int addrTest = 0;
1431 ExprList *pSO;
1432 pSO = pDest->pOrderBy;
1433 assert( pSO );
1434 nKey = pSO->nExpr;
1435 r1 = sqlite3GetTempReg(pParse);
1436 r2 = sqlite3GetTempRange(pParse, nKey+2);
1437 r3 = r2+nKey+1;
1438 if( eDest==SRT_DistQueue ){
1439 /* If the destination is DistQueue, then cursor (iParm+1) is open
1440 ** on a second ephemeral index that holds all values every previously
1441 ** added to the queue. */
1442 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
1443 regResult, nResultCol);
1444 VdbeCoverage(v);
1446 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
1447 if( eDest==SRT_DistQueue ){
1448 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
1449 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
1451 for(i=0; i<nKey; i++){
1452 sqlite3VdbeAddOp2(v, OP_SCopy,
1453 regResult + pSO->a[i].u.x.iOrderByCol - 1,
1454 r2+i);
1456 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
1457 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
1458 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2);
1459 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
1460 sqlite3ReleaseTempReg(pParse, r1);
1461 sqlite3ReleaseTempRange(pParse, r2, nKey+2);
1462 break;
1464 #endif /* SQLITE_OMIT_CTE */
1468 #if !defined(SQLITE_OMIT_TRIGGER)
1469 /* Discard the results. This is used for SELECT statements inside
1470 ** the body of a TRIGGER. The purpose of such selects is to call
1471 ** user-defined functions that have side effects. We do not care
1472 ** about the actual results of the select.
1474 default: {
1475 assert( eDest==SRT_Discard );
1476 break;
1478 #endif
1481 /* Jump to the end of the loop if the LIMIT is reached. Except, if
1482 ** there is a sorter, in which case the sorter has already limited
1483 ** the output for us.
1485 if( pSort==0 && p->iLimit ){
1486 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
1491 ** Allocate a KeyInfo object sufficient for an index of N key columns and
1492 ** X extra columns.
1494 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
1495 int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*);
1496 KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra);
1497 if( p ){
1498 p->aSortFlags = (u8*)&p->aColl[N+X];
1499 p->nKeyField = (u16)N;
1500 p->nAllField = (u16)(N+X);
1501 p->enc = ENC(db);
1502 p->db = db;
1503 p->nRef = 1;
1504 memset(&p[1], 0, nExtra);
1505 }else{
1506 return (KeyInfo*)sqlite3OomFault(db);
1508 return p;
1512 ** Deallocate a KeyInfo object
1514 void sqlite3KeyInfoUnref(KeyInfo *p){
1515 if( p ){
1516 assert( p->db!=0 );
1517 assert( p->nRef>0 );
1518 p->nRef--;
1519 if( p->nRef==0 ) sqlite3DbNNFreeNN(p->db, p);
1524 ** Make a new pointer to a KeyInfo object
1526 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
1527 if( p ){
1528 assert( p->nRef>0 );
1529 p->nRef++;
1531 return p;
1534 #ifdef SQLITE_DEBUG
1536 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object
1537 ** can only be changed if this is just a single reference to the object.
1539 ** This routine is used only inside of assert() statements.
1541 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
1542 #endif /* SQLITE_DEBUG */
1545 ** Given an expression list, generate a KeyInfo structure that records
1546 ** the collating sequence for each expression in that expression list.
1548 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1549 ** KeyInfo structure is appropriate for initializing a virtual index to
1550 ** implement that clause. If the ExprList is the result set of a SELECT
1551 ** then the KeyInfo structure is appropriate for initializing a virtual
1552 ** index to implement a DISTINCT test.
1554 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
1555 ** function is responsible for seeing that this structure is eventually
1556 ** freed.
1558 KeyInfo *sqlite3KeyInfoFromExprList(
1559 Parse *pParse, /* Parsing context */
1560 ExprList *pList, /* Form the KeyInfo object from this ExprList */
1561 int iStart, /* Begin with this column of pList */
1562 int nExtra /* Add this many extra columns to the end */
1564 int nExpr;
1565 KeyInfo *pInfo;
1566 struct ExprList_item *pItem;
1567 sqlite3 *db = pParse->db;
1568 int i;
1570 nExpr = pList->nExpr;
1571 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
1572 if( pInfo ){
1573 assert( sqlite3KeyInfoIsWriteable(pInfo) );
1574 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1575 pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr);
1576 pInfo->aSortFlags[i-iStart] = pItem->fg.sortFlags;
1579 return pInfo;
1583 ** Name of the connection operator, used for error messages.
1585 const char *sqlite3SelectOpName(int id){
1586 char *z;
1587 switch( id ){
1588 case TK_ALL: z = "UNION ALL"; break;
1589 case TK_INTERSECT: z = "INTERSECT"; break;
1590 case TK_EXCEPT: z = "EXCEPT"; break;
1591 default: z = "UNION"; break;
1593 return z;
1596 #ifndef SQLITE_OMIT_EXPLAIN
1598 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1599 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1600 ** where the caption is of the form:
1602 ** "USE TEMP B-TREE FOR xxx"
1604 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1605 ** is determined by the zUsage argument.
1607 static void explainTempTable(Parse *pParse, const char *zUsage){
1608 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage));
1612 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1613 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1614 ** in sqlite3Select() to assign values to structure member variables that
1615 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1616 ** code with #ifndef directives.
1618 # define explainSetInteger(a, b) a = b
1620 #else
1621 /* No-op versions of the explainXXX() functions and macros. */
1622 # define explainTempTable(y,z)
1623 # define explainSetInteger(y,z)
1624 #endif
1628 ** If the inner loop was generated using a non-null pOrderBy argument,
1629 ** then the results were placed in a sorter. After the loop is terminated
1630 ** we need to run the sorter and output the results. The following
1631 ** routine generates the code needed to do that.
1633 static void generateSortTail(
1634 Parse *pParse, /* Parsing context */
1635 Select *p, /* The SELECT statement */
1636 SortCtx *pSort, /* Information on the ORDER BY clause */
1637 int nColumn, /* Number of columns of data */
1638 SelectDest *pDest /* Write the sorted results here */
1640 Vdbe *v = pParse->pVdbe; /* The prepared statement */
1641 int addrBreak = pSort->labelDone; /* Jump here to exit loop */
1642 int addrContinue = sqlite3VdbeMakeLabel(pParse);/* Jump here for next cycle */
1643 int addr; /* Top of output loop. Jump for Next. */
1644 int addrOnce = 0;
1645 int iTab;
1646 ExprList *pOrderBy = pSort->pOrderBy;
1647 int eDest = pDest->eDest;
1648 int iParm = pDest->iSDParm;
1649 int regRow;
1650 int regRowid;
1651 int iCol;
1652 int nKey; /* Number of key columns in sorter record */
1653 int iSortTab; /* Sorter cursor to read from */
1654 int i;
1655 int bSeq; /* True if sorter record includes seq. no. */
1656 int nRefKey = 0;
1657 struct ExprList_item *aOutEx = p->pEList->a;
1658 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
1659 int addrExplain; /* Address of OP_Explain instruction */
1660 #endif
1662 ExplainQueryPlan2(addrExplain, (pParse, 0,
1663 "USE TEMP B-TREE FOR %sORDER BY", pSort->nOBSat>0?"RIGHT PART OF ":"")
1665 sqlite3VdbeScanStatusRange(v, addrExplain,pSort->addrPush,pSort->addrPushEnd);
1666 sqlite3VdbeScanStatusCounters(v, addrExplain, addrExplain, pSort->addrPush);
1669 assert( addrBreak<0 );
1670 if( pSort->labelBkOut ){
1671 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1672 sqlite3VdbeGoto(v, addrBreak);
1673 sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1676 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1677 /* Open any cursors needed for sorter-reference expressions */
1678 for(i=0; i<pSort->nDefer; i++){
1679 Table *pTab = pSort->aDefer[i].pTab;
1680 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1681 sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead);
1682 nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey);
1684 #endif
1686 iTab = pSort->iECursor;
1687 if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){
1688 if( eDest==SRT_Mem && p->iOffset ){
1689 sqlite3VdbeAddOp2(v, OP_Null, 0, pDest->iSdst);
1691 regRowid = 0;
1692 regRow = pDest->iSdst;
1693 }else{
1694 regRowid = sqlite3GetTempReg(pParse);
1695 if( eDest==SRT_EphemTab || eDest==SRT_Table ){
1696 regRow = sqlite3GetTempReg(pParse);
1697 nColumn = 0;
1698 }else{
1699 regRow = sqlite3GetTempRange(pParse, nColumn);
1702 nKey = pOrderBy->nExpr - pSort->nOBSat;
1703 if( pSort->sortFlags & SORTFLAG_UseSorter ){
1704 int regSortOut = ++pParse->nMem;
1705 iSortTab = pParse->nTab++;
1706 if( pSort->labelBkOut ){
1707 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
1709 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut,
1710 nKey+1+nColumn+nRefKey);
1711 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1712 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1713 VdbeCoverage(v);
1714 assert( p->iLimit==0 && p->iOffset==0 );
1715 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
1716 bSeq = 0;
1717 }else{
1718 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1719 codeOffset(v, p->iOffset, addrContinue);
1720 iSortTab = iTab;
1721 bSeq = 1;
1722 if( p->iOffset>0 ){
1723 sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1);
1726 for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){
1727 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1728 if( aOutEx[i].fg.bSorterRef ) continue;
1729 #endif
1730 if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++;
1732 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1733 if( pSort->nDefer ){
1734 int iKey = iCol+1;
1735 int regKey = sqlite3GetTempRange(pParse, nRefKey);
1737 for(i=0; i<pSort->nDefer; i++){
1738 int iCsr = pSort->aDefer[i].iCsr;
1739 Table *pTab = pSort->aDefer[i].pTab;
1740 int nKey = pSort->aDefer[i].nKey;
1742 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1743 if( HasRowid(pTab) ){
1744 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey);
1745 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr,
1746 sqlite3VdbeCurrentAddr(v)+1, regKey);
1747 }else{
1748 int k;
1749 int iJmp;
1750 assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey );
1751 for(k=0; k<nKey; k++){
1752 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k);
1754 iJmp = sqlite3VdbeCurrentAddr(v);
1755 sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey);
1756 sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey);
1757 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1760 sqlite3ReleaseTempRange(pParse, regKey, nRefKey);
1762 #endif
1763 for(i=nColumn-1; i>=0; i--){
1764 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1765 if( aOutEx[i].fg.bSorterRef ){
1766 sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i);
1767 }else
1768 #endif
1770 int iRead;
1771 if( aOutEx[i].u.x.iOrderByCol ){
1772 iRead = aOutEx[i].u.x.iOrderByCol-1;
1773 }else{
1774 iRead = iCol--;
1776 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i);
1777 VdbeComment((v, "%s", aOutEx[i].zEName));
1780 sqlite3VdbeScanStatusRange(v, addrExplain, addrExplain, -1);
1781 switch( eDest ){
1782 case SRT_Table:
1783 case SRT_EphemTab: {
1784 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq, regRow);
1785 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1786 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1787 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1788 break;
1790 #ifndef SQLITE_OMIT_SUBQUERY
1791 case SRT_Set: {
1792 assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) );
1793 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid,
1794 pDest->zAffSdst, nColumn);
1795 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn);
1796 break;
1798 case SRT_Mem: {
1799 /* The LIMIT clause will terminate the loop for us */
1800 break;
1802 #endif
1803 case SRT_Upfrom: {
1804 int i2 = pDest->iSDParm2;
1805 int r1 = sqlite3GetTempReg(pParse);
1806 sqlite3VdbeAddOp3(v, OP_MakeRecord,regRow+(i2<0),nColumn-(i2<0),r1);
1807 if( i2<0 ){
1808 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regRow);
1809 }else{
1810 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regRow, i2);
1812 break;
1814 default: {
1815 assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1816 testcase( eDest==SRT_Output );
1817 testcase( eDest==SRT_Coroutine );
1818 if( eDest==SRT_Output ){
1819 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1820 }else{
1821 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1823 break;
1826 if( regRowid ){
1827 if( eDest==SRT_Set ){
1828 sqlite3ReleaseTempRange(pParse, regRow, nColumn);
1829 }else{
1830 sqlite3ReleaseTempReg(pParse, regRow);
1832 sqlite3ReleaseTempReg(pParse, regRowid);
1834 /* The bottom of the loop
1836 sqlite3VdbeResolveLabel(v, addrContinue);
1837 if( pSort->sortFlags & SORTFLAG_UseSorter ){
1838 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1839 }else{
1840 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1842 sqlite3VdbeScanStatusRange(v, addrExplain, sqlite3VdbeCurrentAddr(v)-1, -1);
1843 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1844 sqlite3VdbeResolveLabel(v, addrBreak);
1848 ** Return a pointer to a string containing the 'declaration type' of the
1849 ** expression pExpr. The string may be treated as static by the caller.
1851 ** The declaration type is the exact datatype definition extracted from the
1852 ** original CREATE TABLE statement if the expression is a column. The
1853 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1854 ** is considered a column can be complex in the presence of subqueries. The
1855 ** result-set expression in all of the following SELECT statements is
1856 ** considered a column by this function.
1858 ** SELECT col FROM tbl;
1859 ** SELECT (SELECT col FROM tbl;
1860 ** SELECT (SELECT col FROM tbl);
1861 ** SELECT abc FROM (SELECT col AS abc FROM tbl);
1863 ** The declaration type for any expression other than a column is NULL.
1865 ** This routine has either 3 or 6 parameters depending on whether or not
1866 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1868 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1869 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E)
1870 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1871 # define columnType(A,B,C,D,E) columnTypeImpl(A,B)
1872 #endif
1873 static const char *columnTypeImpl(
1874 NameContext *pNC,
1875 #ifndef SQLITE_ENABLE_COLUMN_METADATA
1876 Expr *pExpr
1877 #else
1878 Expr *pExpr,
1879 const char **pzOrigDb,
1880 const char **pzOrigTab,
1881 const char **pzOrigCol
1882 #endif
1884 char const *zType = 0;
1885 int j;
1886 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1887 char const *zOrigDb = 0;
1888 char const *zOrigTab = 0;
1889 char const *zOrigCol = 0;
1890 #endif
1892 assert( pExpr!=0 );
1893 assert( pNC->pSrcList!=0 );
1894 switch( pExpr->op ){
1895 case TK_COLUMN: {
1896 /* The expression is a column. Locate the table the column is being
1897 ** extracted from in NameContext.pSrcList. This table may be real
1898 ** database table or a subquery.
1900 Table *pTab = 0; /* Table structure column is extracted from */
1901 Select *pS = 0; /* Select the column is extracted from */
1902 int iCol = pExpr->iColumn; /* Index of column in pTab */
1903 while( pNC && !pTab ){
1904 SrcList *pTabList = pNC->pSrcList;
1905 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1906 if( j<pTabList->nSrc ){
1907 pTab = pTabList->a[j].pTab;
1908 pS = pTabList->a[j].pSelect;
1909 }else{
1910 pNC = pNC->pNext;
1914 if( pTab==0 ){
1915 /* At one time, code such as "SELECT new.x" within a trigger would
1916 ** cause this condition to run. Since then, we have restructured how
1917 ** trigger code is generated and so this condition is no longer
1918 ** possible. However, it can still be true for statements like
1919 ** the following:
1921 ** CREATE TABLE t1(col INTEGER);
1922 ** SELECT (SELECT t1.col) FROM FROM t1;
1924 ** when columnType() is called on the expression "t1.col" in the
1925 ** sub-select. In this case, set the column type to NULL, even
1926 ** though it should really be "INTEGER".
1928 ** This is not a problem, as the column type of "t1.col" is never
1929 ** used. When columnType() is called on the expression
1930 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1931 ** branch below. */
1932 break;
1935 assert( pTab && ExprUseYTab(pExpr) && pExpr->y.pTab==pTab );
1936 if( pS ){
1937 /* The "table" is actually a sub-select or a view in the FROM clause
1938 ** of the SELECT statement. Return the declaration type and origin
1939 ** data for the result-set column of the sub-select.
1941 if( iCol<pS->pEList->nExpr
1942 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
1943 && iCol>=0
1944 #else
1945 && ALWAYS(iCol>=0)
1946 #endif
1948 /* If iCol is less than zero, then the expression requests the
1949 ** rowid of the sub-select or view. This expression is legal (see
1950 ** test case misc2.2.2) - it always evaluates to NULL.
1952 NameContext sNC;
1953 Expr *p = pS->pEList->a[iCol].pExpr;
1954 sNC.pSrcList = pS->pSrc;
1955 sNC.pNext = pNC;
1956 sNC.pParse = pNC->pParse;
1957 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol);
1959 }else{
1960 /* A real table or a CTE table */
1961 assert( !pS );
1962 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1963 if( iCol<0 ) iCol = pTab->iPKey;
1964 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1965 if( iCol<0 ){
1966 zType = "INTEGER";
1967 zOrigCol = "rowid";
1968 }else{
1969 zOrigCol = pTab->aCol[iCol].zCnName;
1970 zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1972 zOrigTab = pTab->zName;
1973 if( pNC->pParse && pTab->pSchema ){
1974 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1975 zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName;
1977 #else
1978 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1979 if( iCol<0 ){
1980 zType = "INTEGER";
1981 }else{
1982 zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1984 #endif
1986 break;
1988 #ifndef SQLITE_OMIT_SUBQUERY
1989 case TK_SELECT: {
1990 /* The expression is a sub-select. Return the declaration type and
1991 ** origin info for the single column in the result set of the SELECT
1992 ** statement.
1994 NameContext sNC;
1995 Select *pS;
1996 Expr *p;
1997 assert( ExprUseXSelect(pExpr) );
1998 pS = pExpr->x.pSelect;
1999 p = pS->pEList->a[0].pExpr;
2000 sNC.pSrcList = pS->pSrc;
2001 sNC.pNext = pNC;
2002 sNC.pParse = pNC->pParse;
2003 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
2004 break;
2006 #endif
2009 #ifdef SQLITE_ENABLE_COLUMN_METADATA
2010 if( pzOrigDb ){
2011 assert( pzOrigTab && pzOrigCol );
2012 *pzOrigDb = zOrigDb;
2013 *pzOrigTab = zOrigTab;
2014 *pzOrigCol = zOrigCol;
2016 #endif
2017 return zType;
2021 ** Generate code that will tell the VDBE the declaration types of columns
2022 ** in the result set.
2024 static void generateColumnTypes(
2025 Parse *pParse, /* Parser context */
2026 SrcList *pTabList, /* List of tables */
2027 ExprList *pEList /* Expressions defining the result set */
2029 #ifndef SQLITE_OMIT_DECLTYPE
2030 Vdbe *v = pParse->pVdbe;
2031 int i;
2032 NameContext sNC;
2033 sNC.pSrcList = pTabList;
2034 sNC.pParse = pParse;
2035 sNC.pNext = 0;
2036 for(i=0; i<pEList->nExpr; i++){
2037 Expr *p = pEList->a[i].pExpr;
2038 const char *zType;
2039 #ifdef SQLITE_ENABLE_COLUMN_METADATA
2040 const char *zOrigDb = 0;
2041 const char *zOrigTab = 0;
2042 const char *zOrigCol = 0;
2043 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
2045 /* The vdbe must make its own copy of the column-type and other
2046 ** column specific strings, in case the schema is reset before this
2047 ** virtual machine is deleted.
2049 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
2050 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
2051 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
2052 #else
2053 zType = columnType(&sNC, p, 0, 0, 0);
2054 #endif
2055 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
2057 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
2062 ** Compute the column names for a SELECT statement.
2064 ** The only guarantee that SQLite makes about column names is that if the
2065 ** column has an AS clause assigning it a name, that will be the name used.
2066 ** That is the only documented guarantee. However, countless applications
2067 ** developed over the years have made baseless assumptions about column names
2068 ** and will break if those assumptions changes. Hence, use extreme caution
2069 ** when modifying this routine to avoid breaking legacy.
2071 ** See Also: sqlite3ColumnsFromExprList()
2073 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are
2074 ** deprecated. The default setting is short=ON, full=OFF. 99.9% of all
2075 ** applications should operate this way. Nevertheless, we need to support the
2076 ** other modes for legacy:
2078 ** short=OFF, full=OFF: Column name is the text of the expression has it
2079 ** originally appears in the SELECT statement. In
2080 ** other words, the zSpan of the result expression.
2082 ** short=ON, full=OFF: (This is the default setting). If the result
2083 ** refers directly to a table column, then the
2084 ** result column name is just the table column
2085 ** name: COLUMN. Otherwise use zSpan.
2087 ** full=ON, short=ANY: If the result refers directly to a table column,
2088 ** then the result column name with the table name
2089 ** prefix, ex: TABLE.COLUMN. Otherwise use zSpan.
2091 void sqlite3GenerateColumnNames(
2092 Parse *pParse, /* Parser context */
2093 Select *pSelect /* Generate column names for this SELECT statement */
2095 Vdbe *v = pParse->pVdbe;
2096 int i;
2097 Table *pTab;
2098 SrcList *pTabList;
2099 ExprList *pEList;
2100 sqlite3 *db = pParse->db;
2101 int fullName; /* TABLE.COLUMN if no AS clause and is a direct table ref */
2102 int srcName; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */
2104 #ifndef SQLITE_OMIT_EXPLAIN
2105 /* If this is an EXPLAIN, skip this step */
2106 if( pParse->explain ){
2107 return;
2109 #endif
2111 if( pParse->colNamesSet ) return;
2112 /* Column names are determined by the left-most term of a compound select */
2113 while( pSelect->pPrior ) pSelect = pSelect->pPrior;
2114 TREETRACE(0x80,pParse,pSelect,("generating column names\n"));
2115 pTabList = pSelect->pSrc;
2116 pEList = pSelect->pEList;
2117 assert( v!=0 );
2118 assert( pTabList!=0 );
2119 pParse->colNamesSet = 1;
2120 fullName = (db->flags & SQLITE_FullColNames)!=0;
2121 srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName;
2122 sqlite3VdbeSetNumCols(v, pEList->nExpr);
2123 for(i=0; i<pEList->nExpr; i++){
2124 Expr *p = pEList->a[i].pExpr;
2126 assert( p!=0 );
2127 assert( p->op!=TK_AGG_COLUMN ); /* Agg processing has not run yet */
2128 assert( p->op!=TK_COLUMN
2129 || (ExprUseYTab(p) && p->y.pTab!=0) ); /* Covering idx not yet coded */
2130 if( pEList->a[i].zEName && pEList->a[i].fg.eEName==ENAME_NAME ){
2131 /* An AS clause always takes first priority */
2132 char *zName = pEList->a[i].zEName;
2133 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
2134 }else if( srcName && p->op==TK_COLUMN ){
2135 char *zCol;
2136 int iCol = p->iColumn;
2137 pTab = p->y.pTab;
2138 assert( pTab!=0 );
2139 if( iCol<0 ) iCol = pTab->iPKey;
2140 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
2141 if( iCol<0 ){
2142 zCol = "rowid";
2143 }else{
2144 zCol = pTab->aCol[iCol].zCnName;
2146 if( fullName ){
2147 char *zName = 0;
2148 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
2149 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
2150 }else{
2151 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
2153 }else{
2154 const char *z = pEList->a[i].zEName;
2155 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
2156 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
2159 generateColumnTypes(pParse, pTabList, pEList);
2163 ** Given an expression list (which is really the list of expressions
2164 ** that form the result set of a SELECT statement) compute appropriate
2165 ** column names for a table that would hold the expression list.
2167 ** All column names will be unique.
2169 ** Only the column names are computed. Column.zType, Column.zColl,
2170 ** and other fields of Column are zeroed.
2172 ** Return SQLITE_OK on success. If a memory allocation error occurs,
2173 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
2175 ** The only guarantee that SQLite makes about column names is that if the
2176 ** column has an AS clause assigning it a name, that will be the name used.
2177 ** That is the only documented guarantee. However, countless applications
2178 ** developed over the years have made baseless assumptions about column names
2179 ** and will break if those assumptions changes. Hence, use extreme caution
2180 ** when modifying this routine to avoid breaking legacy.
2182 ** See Also: sqlite3GenerateColumnNames()
2184 int sqlite3ColumnsFromExprList(
2185 Parse *pParse, /* Parsing context */
2186 ExprList *pEList, /* Expr list from which to derive column names */
2187 i16 *pnCol, /* Write the number of columns here */
2188 Column **paCol /* Write the new column list here */
2190 sqlite3 *db = pParse->db; /* Database connection */
2191 int i, j; /* Loop counters */
2192 u32 cnt; /* Index added to make the name unique */
2193 Column *aCol, *pCol; /* For looping over result columns */
2194 int nCol; /* Number of columns in the result set */
2195 char *zName; /* Column name */
2196 int nName; /* Size of name in zName[] */
2197 Hash ht; /* Hash table of column names */
2198 Table *pTab;
2200 sqlite3HashInit(&ht);
2201 if( pEList ){
2202 nCol = pEList->nExpr;
2203 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
2204 testcase( aCol==0 );
2205 if( NEVER(nCol>32767) ) nCol = 32767;
2206 }else{
2207 nCol = 0;
2208 aCol = 0;
2210 assert( nCol==(i16)nCol );
2211 *pnCol = nCol;
2212 *paCol = aCol;
2214 for(i=0, pCol=aCol; i<nCol && !pParse->nErr; i++, pCol++){
2215 struct ExprList_item *pX = &pEList->a[i];
2216 struct ExprList_item *pCollide;
2217 /* Get an appropriate name for the column
2219 if( (zName = pX->zEName)!=0 && pX->fg.eEName==ENAME_NAME ){
2220 /* If the column contains an "AS <name>" phrase, use <name> as the name */
2221 }else{
2222 Expr *pColExpr = sqlite3ExprSkipCollateAndLikely(pX->pExpr);
2223 while( ALWAYS(pColExpr!=0) && pColExpr->op==TK_DOT ){
2224 pColExpr = pColExpr->pRight;
2225 assert( pColExpr!=0 );
2227 if( pColExpr->op==TK_COLUMN
2228 && ALWAYS( ExprUseYTab(pColExpr) )
2229 && ALWAYS( pColExpr->y.pTab!=0 )
2231 /* For columns use the column name name */
2232 int iCol = pColExpr->iColumn;
2233 pTab = pColExpr->y.pTab;
2234 if( iCol<0 ) iCol = pTab->iPKey;
2235 zName = iCol>=0 ? pTab->aCol[iCol].zCnName : "rowid";
2236 }else if( pColExpr->op==TK_ID ){
2237 assert( !ExprHasProperty(pColExpr, EP_IntValue) );
2238 zName = pColExpr->u.zToken;
2239 }else{
2240 /* Use the original text of the column expression as its name */
2241 assert( zName==pX->zEName ); /* pointer comparison intended */
2244 if( zName && !sqlite3IsTrueOrFalse(zName) ){
2245 zName = sqlite3DbStrDup(db, zName);
2246 }else{
2247 zName = sqlite3MPrintf(db,"column%d",i+1);
2250 /* Make sure the column name is unique. If the name is not unique,
2251 ** append an integer to the name so that it becomes unique.
2253 cnt = 0;
2254 while( zName && (pCollide = sqlite3HashFind(&ht, zName))!=0 ){
2255 if( pCollide->fg.bUsingTerm ){
2256 pCol->colFlags |= COLFLAG_NOEXPAND;
2258 nName = sqlite3Strlen30(zName);
2259 if( nName>0 ){
2260 for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){}
2261 if( zName[j]==':' ) nName = j;
2263 zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt);
2264 sqlite3ProgressCheck(pParse);
2265 if( cnt>3 ){
2266 sqlite3_randomness(sizeof(cnt), &cnt);
2269 pCol->zCnName = zName;
2270 pCol->hName = sqlite3StrIHash(zName);
2271 if( pX->fg.bNoExpand ){
2272 pCol->colFlags |= COLFLAG_NOEXPAND;
2274 sqlite3ColumnPropertiesFromName(0, pCol);
2275 if( zName && sqlite3HashInsert(&ht, zName, pX)==pX ){
2276 sqlite3OomFault(db);
2279 sqlite3HashClear(&ht);
2280 if( pParse->nErr ){
2281 for(j=0; j<i; j++){
2282 sqlite3DbFree(db, aCol[j].zCnName);
2284 sqlite3DbFree(db, aCol);
2285 *paCol = 0;
2286 *pnCol = 0;
2287 return pParse->rc;
2289 return SQLITE_OK;
2293 ** pTab is a transient Table object that represents a subquery of some
2294 ** kind (maybe a parenthesized subquery in the FROM clause of a larger
2295 ** query, or a VIEW, or a CTE). This routine computes type information
2296 ** for that Table object based on the Select object that implements the
2297 ** subquery. For the purposes of this routine, "type infomation" means:
2299 ** * The datatype name, as it might appear in a CREATE TABLE statement
2300 ** * Which collating sequence to use for the column
2301 ** * The affinity of the column
2303 void sqlite3SubqueryColumnTypes(
2304 Parse *pParse, /* Parsing contexts */
2305 Table *pTab, /* Add column type information to this table */
2306 Select *pSelect, /* SELECT used to determine types and collations */
2307 char aff /* Default affinity. */
2309 sqlite3 *db = pParse->db;
2310 Column *pCol;
2311 CollSeq *pColl;
2312 int i,j;
2313 Expr *p;
2314 struct ExprList_item *a;
2315 NameContext sNC;
2317 assert( pSelect!=0 );
2318 assert( (pSelect->selFlags & SF_Resolved)!=0 );
2319 assert( pTab->nCol==pSelect->pEList->nExpr || pParse->nErr>0 );
2320 assert( aff==SQLITE_AFF_NONE || aff==SQLITE_AFF_BLOB );
2321 if( db->mallocFailed ) return;
2322 while( pSelect->pPrior ) pSelect = pSelect->pPrior;
2323 a = pSelect->pEList->a;
2324 memset(&sNC, 0, sizeof(sNC));
2325 sNC.pSrcList = pSelect->pSrc;
2326 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
2327 const char *zType;
2328 i64 n;
2329 pTab->tabFlags |= (pCol->colFlags & COLFLAG_NOINSERT);
2330 p = a[i].pExpr;
2331 /* pCol->szEst = ... // Column size est for SELECT tables never used */
2332 pCol->affinity = sqlite3ExprAffinity(p);
2333 if( pCol->affinity<=SQLITE_AFF_NONE ){
2334 pCol->affinity = aff;
2336 if( pCol->affinity>=SQLITE_AFF_TEXT && pSelect->pNext ){
2337 int m = 0;
2338 Select *pS2;
2339 for(m=0, pS2=pSelect->pNext; pS2; pS2=pS2->pNext){
2340 m |= sqlite3ExprDataType(pS2->pEList->a[i].pExpr);
2342 if( pCol->affinity==SQLITE_AFF_TEXT && (m&0x01)!=0 ){
2343 pCol->affinity = SQLITE_AFF_BLOB;
2344 }else
2345 if( pCol->affinity>=SQLITE_AFF_NUMERIC && (m&0x02)!=0 ){
2346 pCol->affinity = SQLITE_AFF_BLOB;
2348 if( pCol->affinity>=SQLITE_AFF_NUMERIC && p->op==TK_CAST ){
2349 pCol->affinity = SQLITE_AFF_FLEXNUM;
2352 zType = columnType(&sNC, p, 0, 0, 0);
2353 if( zType==0 || pCol->affinity!=sqlite3AffinityType(zType, 0) ){
2354 if( pCol->affinity==SQLITE_AFF_NUMERIC
2355 || pCol->affinity==SQLITE_AFF_FLEXNUM
2357 zType = "NUM";
2358 }else{
2359 zType = 0;
2360 for(j=1; j<SQLITE_N_STDTYPE; j++){
2361 if( sqlite3StdTypeAffinity[j]==pCol->affinity ){
2362 zType = sqlite3StdType[j];
2363 break;
2368 if( zType ){
2369 i64 m = sqlite3Strlen30(zType);
2370 n = sqlite3Strlen30(pCol->zCnName);
2371 pCol->zCnName = sqlite3DbReallocOrFree(db, pCol->zCnName, n+m+2);
2372 if( pCol->zCnName ){
2373 memcpy(&pCol->zCnName[n+1], zType, m+1);
2374 pCol->colFlags |= COLFLAG_HASTYPE;
2375 }else{
2376 testcase( pCol->colFlags & COLFLAG_HASTYPE );
2377 pCol->colFlags &= ~(COLFLAG_HASTYPE|COLFLAG_HASCOLL);
2380 pColl = sqlite3ExprCollSeq(pParse, p);
2381 if( pColl ){
2382 assert( pTab->pIndex==0 );
2383 sqlite3ColumnSetColl(db, pCol, pColl->zName);
2386 pTab->szTabRow = 1; /* Any non-zero value works */
2390 ** Given a SELECT statement, generate a Table structure that describes
2391 ** the result set of that SELECT.
2393 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect, char aff){
2394 Table *pTab;
2395 sqlite3 *db = pParse->db;
2396 u64 savedFlags;
2398 savedFlags = db->flags;
2399 db->flags &= ~(u64)SQLITE_FullColNames;
2400 db->flags |= SQLITE_ShortColNames;
2401 sqlite3SelectPrep(pParse, pSelect, 0);
2402 db->flags = savedFlags;
2403 if( pParse->nErr ) return 0;
2404 while( pSelect->pPrior ) pSelect = pSelect->pPrior;
2405 pTab = sqlite3DbMallocZero(db, sizeof(Table) );
2406 if( pTab==0 ){
2407 return 0;
2409 pTab->nTabRef = 1;
2410 pTab->zName = 0;
2411 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
2412 sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
2413 sqlite3SubqueryColumnTypes(pParse, pTab, pSelect, aff);
2414 pTab->iPKey = -1;
2415 if( db->mallocFailed ){
2416 sqlite3DeleteTable(db, pTab);
2417 return 0;
2419 return pTab;
2423 ** Get a VDBE for the given parser context. Create a new one if necessary.
2424 ** If an error occurs, return NULL and leave a message in pParse.
2426 Vdbe *sqlite3GetVdbe(Parse *pParse){
2427 if( pParse->pVdbe ){
2428 return pParse->pVdbe;
2430 if( pParse->pToplevel==0
2431 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
2433 pParse->okConstFactor = 1;
2435 return sqlite3VdbeCreate(pParse);
2440 ** Compute the iLimit and iOffset fields of the SELECT based on the
2441 ** pLimit expressions. pLimit->pLeft and pLimit->pRight hold the expressions
2442 ** that appear in the original SQL statement after the LIMIT and OFFSET
2443 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset
2444 ** are the integer memory register numbers for counters used to compute
2445 ** the limit and offset. If there is no limit and/or offset, then
2446 ** iLimit and iOffset are negative.
2448 ** This routine changes the values of iLimit and iOffset only if
2449 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight. iLimit
2450 ** and iOffset should have been preset to appropriate default values (zero)
2451 ** prior to calling this routine.
2453 ** The iOffset register (if it exists) is initialized to the value
2454 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register
2455 ** iOffset+1 is initialized to LIMIT+OFFSET.
2457 ** Only if pLimit->pLeft!=0 do the limit registers get
2458 ** redefined. The UNION ALL operator uses this property to force
2459 ** the reuse of the same limit and offset registers across multiple
2460 ** SELECT statements.
2462 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
2463 Vdbe *v = 0;
2464 int iLimit = 0;
2465 int iOffset;
2466 int n;
2467 Expr *pLimit = p->pLimit;
2469 if( p->iLimit ) return;
2472 ** "LIMIT -1" always shows all rows. There is some
2473 ** controversy about what the correct behavior should be.
2474 ** The current implementation interprets "LIMIT 0" to mean
2475 ** no rows.
2477 if( pLimit ){
2478 assert( pLimit->op==TK_LIMIT );
2479 assert( pLimit->pLeft!=0 );
2480 p->iLimit = iLimit = ++pParse->nMem;
2481 v = sqlite3GetVdbe(pParse);
2482 assert( v!=0 );
2483 if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){
2484 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
2485 VdbeComment((v, "LIMIT counter"));
2486 if( n==0 ){
2487 sqlite3VdbeGoto(v, iBreak);
2488 }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){
2489 p->nSelectRow = sqlite3LogEst((u64)n);
2490 p->selFlags |= SF_FixedLimit;
2492 }else{
2493 sqlite3ExprCode(pParse, pLimit->pLeft, iLimit);
2494 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
2495 VdbeComment((v, "LIMIT counter"));
2496 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v);
2498 if( pLimit->pRight ){
2499 p->iOffset = iOffset = ++pParse->nMem;
2500 pParse->nMem++; /* Allocate an extra register for limit+offset */
2501 sqlite3ExprCode(pParse, pLimit->pRight, iOffset);
2502 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
2503 VdbeComment((v, "OFFSET counter"));
2504 sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset);
2505 VdbeComment((v, "LIMIT+OFFSET"));
2510 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2512 ** Return the appropriate collating sequence for the iCol-th column of
2513 ** the result set for the compound-select statement "p". Return NULL if
2514 ** the column has no default collating sequence.
2516 ** The collating sequence for the compound select is taken from the
2517 ** left-most term of the select that has a collating sequence.
2519 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
2520 CollSeq *pRet;
2521 if( p->pPrior ){
2522 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
2523 }else{
2524 pRet = 0;
2526 assert( iCol>=0 );
2527 /* iCol must be less than p->pEList->nExpr. Otherwise an error would
2528 ** have been thrown during name resolution and we would not have gotten
2529 ** this far */
2530 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){
2531 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
2533 return pRet;
2537 ** The select statement passed as the second parameter is a compound SELECT
2538 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
2539 ** structure suitable for implementing the ORDER BY.
2541 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
2542 ** function is responsible for ensuring that this structure is eventually
2543 ** freed.
2545 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
2546 ExprList *pOrderBy = p->pOrderBy;
2547 int nOrderBy = ALWAYS(pOrderBy!=0) ? pOrderBy->nExpr : 0;
2548 sqlite3 *db = pParse->db;
2549 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
2550 if( pRet ){
2551 int i;
2552 for(i=0; i<nOrderBy; i++){
2553 struct ExprList_item *pItem = &pOrderBy->a[i];
2554 Expr *pTerm = pItem->pExpr;
2555 CollSeq *pColl;
2557 if( pTerm->flags & EP_Collate ){
2558 pColl = sqlite3ExprCollSeq(pParse, pTerm);
2559 }else{
2560 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
2561 if( pColl==0 ) pColl = db->pDfltColl;
2562 pOrderBy->a[i].pExpr =
2563 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
2565 assert( sqlite3KeyInfoIsWriteable(pRet) );
2566 pRet->aColl[i] = pColl;
2567 pRet->aSortFlags[i] = pOrderBy->a[i].fg.sortFlags;
2571 return pRet;
2574 #ifndef SQLITE_OMIT_CTE
2576 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
2577 ** query of the form:
2579 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
2580 ** \___________/ \_______________/
2581 ** p->pPrior p
2584 ** There is exactly one reference to the recursive-table in the FROM clause
2585 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
2587 ** The setup-query runs once to generate an initial set of rows that go
2588 ** into a Queue table. Rows are extracted from the Queue table one by
2589 ** one. Each row extracted from Queue is output to pDest. Then the single
2590 ** extracted row (now in the iCurrent table) becomes the content of the
2591 ** recursive-table for a recursive-query run. The output of the recursive-query
2592 ** is added back into the Queue table. Then another row is extracted from Queue
2593 ** and the iteration continues until the Queue table is empty.
2595 ** If the compound query operator is UNION then no duplicate rows are ever
2596 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows
2597 ** that have ever been inserted into Queue and causes duplicates to be
2598 ** discarded. If the operator is UNION ALL, then duplicates are allowed.
2600 ** If the query has an ORDER BY, then entries in the Queue table are kept in
2601 ** ORDER BY order and the first entry is extracted for each cycle. Without
2602 ** an ORDER BY, the Queue table is just a FIFO.
2604 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
2605 ** have been output to pDest. A LIMIT of zero means to output no rows and a
2606 ** negative LIMIT means to output all rows. If there is also an OFFSET clause
2607 ** with a positive value, then the first OFFSET outputs are discarded rather
2608 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET
2609 ** rows have been skipped.
2611 static void generateWithRecursiveQuery(
2612 Parse *pParse, /* Parsing context */
2613 Select *p, /* The recursive SELECT to be coded */
2614 SelectDest *pDest /* What to do with query results */
2616 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */
2617 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */
2618 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */
2619 Select *pSetup; /* The setup query */
2620 Select *pFirstRec; /* Left-most recursive term */
2621 int addrTop; /* Top of the loop */
2622 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */
2623 int iCurrent = 0; /* The Current table */
2624 int regCurrent; /* Register holding Current table */
2625 int iQueue; /* The Queue table */
2626 int iDistinct = 0; /* To ensure unique results if UNION */
2627 int eDest = SRT_Fifo; /* How to write to Queue */
2628 SelectDest destQueue; /* SelectDest targetting the Queue table */
2629 int i; /* Loop counter */
2630 int rc; /* Result code */
2631 ExprList *pOrderBy; /* The ORDER BY clause */
2632 Expr *pLimit; /* Saved LIMIT and OFFSET */
2633 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */
2635 #ifndef SQLITE_OMIT_WINDOWFUNC
2636 if( p->pWin ){
2637 sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries");
2638 return;
2640 #endif
2642 /* Obtain authorization to do a recursive query */
2643 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
2645 /* Process the LIMIT and OFFSET clauses, if they exist */
2646 addrBreak = sqlite3VdbeMakeLabel(pParse);
2647 p->nSelectRow = 320; /* 4 billion rows */
2648 computeLimitRegisters(pParse, p, addrBreak);
2649 pLimit = p->pLimit;
2650 regLimit = p->iLimit;
2651 regOffset = p->iOffset;
2652 p->pLimit = 0;
2653 p->iLimit = p->iOffset = 0;
2654 pOrderBy = p->pOrderBy;
2656 /* Locate the cursor number of the Current table */
2657 for(i=0; ALWAYS(i<pSrc->nSrc); i++){
2658 if( pSrc->a[i].fg.isRecursive ){
2659 iCurrent = pSrc->a[i].iCursor;
2660 break;
2664 /* Allocate cursors numbers for Queue and Distinct. The cursor number for
2665 ** the Distinct table must be exactly one greater than Queue in order
2666 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2667 iQueue = pParse->nTab++;
2668 if( p->op==TK_UNION ){
2669 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
2670 iDistinct = pParse->nTab++;
2671 }else{
2672 eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
2674 sqlite3SelectDestInit(&destQueue, eDest, iQueue);
2676 /* Allocate cursors for Current, Queue, and Distinct. */
2677 regCurrent = ++pParse->nMem;
2678 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
2679 if( pOrderBy ){
2680 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
2681 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
2682 (char*)pKeyInfo, P4_KEYINFO);
2683 destQueue.pOrderBy = pOrderBy;
2684 }else{
2685 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
2687 VdbeComment((v, "Queue table"));
2688 if( iDistinct ){
2689 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
2690 p->selFlags |= SF_UsesEphemeral;
2693 /* Detach the ORDER BY clause from the compound SELECT */
2694 p->pOrderBy = 0;
2696 /* Figure out how many elements of the compound SELECT are part of the
2697 ** recursive query. Make sure no recursive elements use aggregate
2698 ** functions. Mark the recursive elements as UNION ALL even if they
2699 ** are really UNION because the distinctness will be enforced by the
2700 ** iDistinct table. pFirstRec is left pointing to the left-most
2701 ** recursive term of the CTE.
2703 for(pFirstRec=p; ALWAYS(pFirstRec!=0); pFirstRec=pFirstRec->pPrior){
2704 if( pFirstRec->selFlags & SF_Aggregate ){
2705 sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported");
2706 goto end_of_recursive_query;
2708 pFirstRec->op = TK_ALL;
2709 if( (pFirstRec->pPrior->selFlags & SF_Recursive)==0 ) break;
2712 /* Store the results of the setup-query in Queue. */
2713 pSetup = pFirstRec->pPrior;
2714 pSetup->pNext = 0;
2715 ExplainQueryPlan((pParse, 1, "SETUP"));
2716 rc = sqlite3Select(pParse, pSetup, &destQueue);
2717 pSetup->pNext = p;
2718 if( rc ) goto end_of_recursive_query;
2720 /* Find the next row in the Queue and output that row */
2721 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
2723 /* Transfer the next row in Queue over to Current */
2724 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
2725 if( pOrderBy ){
2726 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
2727 }else{
2728 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
2730 sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
2732 /* Output the single row in Current */
2733 addrCont = sqlite3VdbeMakeLabel(pParse);
2734 codeOffset(v, regOffset, addrCont);
2735 selectInnerLoop(pParse, p, iCurrent,
2736 0, 0, pDest, addrCont, addrBreak);
2737 if( regLimit ){
2738 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak);
2739 VdbeCoverage(v);
2741 sqlite3VdbeResolveLabel(v, addrCont);
2743 /* Execute the recursive SELECT taking the single row in Current as
2744 ** the value for the recursive-table. Store the results in the Queue.
2746 pFirstRec->pPrior = 0;
2747 ExplainQueryPlan((pParse, 1, "RECURSIVE STEP"));
2748 sqlite3Select(pParse, p, &destQueue);
2749 assert( pFirstRec->pPrior==0 );
2750 pFirstRec->pPrior = pSetup;
2752 /* Keep running the loop until the Queue is empty */
2753 sqlite3VdbeGoto(v, addrTop);
2754 sqlite3VdbeResolveLabel(v, addrBreak);
2756 end_of_recursive_query:
2757 sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2758 p->pOrderBy = pOrderBy;
2759 p->pLimit = pLimit;
2760 return;
2762 #endif /* SQLITE_OMIT_CTE */
2764 /* Forward references */
2765 static int multiSelectOrderBy(
2766 Parse *pParse, /* Parsing context */
2767 Select *p, /* The right-most of SELECTs to be coded */
2768 SelectDest *pDest /* What to do with query results */
2772 ** Handle the special case of a compound-select that originates from a
2773 ** VALUES clause. By handling this as a special case, we avoid deep
2774 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2775 ** on a VALUES clause.
2777 ** Because the Select object originates from a VALUES clause:
2778 ** (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1
2779 ** (2) All terms are UNION ALL
2780 ** (3) There is no ORDER BY clause
2782 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES
2783 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))").
2784 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case.
2785 ** Since the limit is exactly 1, we only need to evaluate the left-most VALUES.
2787 static int multiSelectValues(
2788 Parse *pParse, /* Parsing context */
2789 Select *p, /* The right-most of SELECTs to be coded */
2790 SelectDest *pDest /* What to do with query results */
2792 int nRow = 1;
2793 int rc = 0;
2794 int bShowAll = p->pLimit==0;
2795 assert( p->selFlags & SF_MultiValue );
2797 assert( p->selFlags & SF_Values );
2798 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
2799 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr );
2800 #ifndef SQLITE_OMIT_WINDOWFUNC
2801 if( p->pWin ) return -1;
2802 #endif
2803 if( p->pPrior==0 ) break;
2804 assert( p->pPrior->pNext==p );
2805 p = p->pPrior;
2806 nRow += bShowAll;
2807 }while(1);
2808 ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow,
2809 nRow==1 ? "" : "S"));
2810 while( p ){
2811 selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1);
2812 if( !bShowAll ) break;
2813 p->nSelectRow = nRow;
2814 p = p->pNext;
2816 return rc;
2820 ** Return true if the SELECT statement which is known to be the recursive
2821 ** part of a recursive CTE still has its anchor terms attached. If the
2822 ** anchor terms have already been removed, then return false.
2824 static int hasAnchor(Select *p){
2825 while( p && (p->selFlags & SF_Recursive)!=0 ){ p = p->pPrior; }
2826 return p!=0;
2830 ** This routine is called to process a compound query form from
2831 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2832 ** INTERSECT
2834 ** "p" points to the right-most of the two queries. the query on the
2835 ** left is p->pPrior. The left query could also be a compound query
2836 ** in which case this routine will be called recursively.
2838 ** The results of the total query are to be written into a destination
2839 ** of type eDest with parameter iParm.
2841 ** Example 1: Consider a three-way compound SQL statement.
2843 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2845 ** This statement is parsed up as follows:
2847 ** SELECT c FROM t3
2848 ** |
2849 ** `-----> SELECT b FROM t2
2850 ** |
2851 ** `------> SELECT a FROM t1
2853 ** The arrows in the diagram above represent the Select.pPrior pointer.
2854 ** So if this routine is called with p equal to the t3 query, then
2855 ** pPrior will be the t2 query. p->op will be TK_UNION in this case.
2857 ** Notice that because of the way SQLite parses compound SELECTs, the
2858 ** individual selects always group from left to right.
2860 static int multiSelect(
2861 Parse *pParse, /* Parsing context */
2862 Select *p, /* The right-most of SELECTs to be coded */
2863 SelectDest *pDest /* What to do with query results */
2865 int rc = SQLITE_OK; /* Success code from a subroutine */
2866 Select *pPrior; /* Another SELECT immediately to our left */
2867 Vdbe *v; /* Generate code to this VDBE */
2868 SelectDest dest; /* Alternative data destination */
2869 Select *pDelete = 0; /* Chain of simple selects to delete */
2870 sqlite3 *db; /* Database connection */
2872 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only
2873 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2875 assert( p && p->pPrior ); /* Calling function guarantees this much */
2876 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2877 assert( p->selFlags & SF_Compound );
2878 db = pParse->db;
2879 pPrior = p->pPrior;
2880 dest = *pDest;
2881 assert( pPrior->pOrderBy==0 );
2882 assert( pPrior->pLimit==0 );
2884 v = sqlite3GetVdbe(pParse);
2885 assert( v!=0 ); /* The VDBE already created by calling function */
2887 /* Create the destination temporary table if necessary
2889 if( dest.eDest==SRT_EphemTab ){
2890 assert( p->pEList );
2891 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2892 dest.eDest = SRT_Table;
2895 /* Special handling for a compound-select that originates as a VALUES clause.
2897 if( p->selFlags & SF_MultiValue ){
2898 rc = multiSelectValues(pParse, p, &dest);
2899 if( rc>=0 ) goto multi_select_end;
2900 rc = SQLITE_OK;
2903 /* Make sure all SELECTs in the statement have the same number of elements
2904 ** in their result sets.
2906 assert( p->pEList && pPrior->pEList );
2907 assert( p->pEList->nExpr==pPrior->pEList->nExpr );
2909 #ifndef SQLITE_OMIT_CTE
2910 if( (p->selFlags & SF_Recursive)!=0 && hasAnchor(p) ){
2911 generateWithRecursiveQuery(pParse, p, &dest);
2912 }else
2913 #endif
2915 /* Compound SELECTs that have an ORDER BY clause are handled separately.
2917 if( p->pOrderBy ){
2918 return multiSelectOrderBy(pParse, p, pDest);
2919 }else{
2921 #ifndef SQLITE_OMIT_EXPLAIN
2922 if( pPrior->pPrior==0 ){
2923 ExplainQueryPlan((pParse, 1, "COMPOUND QUERY"));
2924 ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY"));
2926 #endif
2928 /* Generate code for the left and right SELECT statements.
2930 switch( p->op ){
2931 case TK_ALL: {
2932 int addr = 0;
2933 int nLimit = 0; /* Initialize to suppress harmless compiler warning */
2934 assert( !pPrior->pLimit );
2935 pPrior->iLimit = p->iLimit;
2936 pPrior->iOffset = p->iOffset;
2937 pPrior->pLimit = p->pLimit;
2938 TREETRACE(0x200, pParse, p, ("multiSelect UNION ALL left...\n"));
2939 rc = sqlite3Select(pParse, pPrior, &dest);
2940 pPrior->pLimit = 0;
2941 if( rc ){
2942 goto multi_select_end;
2944 p->pPrior = 0;
2945 p->iLimit = pPrior->iLimit;
2946 p->iOffset = pPrior->iOffset;
2947 if( p->iLimit ){
2948 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
2949 VdbeComment((v, "Jump ahead if LIMIT reached"));
2950 if( p->iOffset ){
2951 sqlite3VdbeAddOp3(v, OP_OffsetLimit,
2952 p->iLimit, p->iOffset+1, p->iOffset);
2955 ExplainQueryPlan((pParse, 1, "UNION ALL"));
2956 TREETRACE(0x200, pParse, p, ("multiSelect UNION ALL right...\n"));
2957 rc = sqlite3Select(pParse, p, &dest);
2958 testcase( rc!=SQLITE_OK );
2959 pDelete = p->pPrior;
2960 p->pPrior = pPrior;
2961 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2962 if( p->pLimit
2963 && sqlite3ExprIsInteger(p->pLimit->pLeft, &nLimit)
2964 && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit)
2966 p->nSelectRow = sqlite3LogEst((u64)nLimit);
2968 if( addr ){
2969 sqlite3VdbeJumpHere(v, addr);
2971 break;
2973 case TK_EXCEPT:
2974 case TK_UNION: {
2975 int unionTab; /* Cursor number of the temp table holding result */
2976 u8 op = 0; /* One of the SRT_ operations to apply to self */
2977 int priorOp; /* The SRT_ operation to apply to prior selects */
2978 Expr *pLimit; /* Saved values of p->nLimit */
2979 int addr;
2980 SelectDest uniondest;
2982 testcase( p->op==TK_EXCEPT );
2983 testcase( p->op==TK_UNION );
2984 priorOp = SRT_Union;
2985 if( dest.eDest==priorOp ){
2986 /* We can reuse a temporary table generated by a SELECT to our
2987 ** right.
2989 assert( p->pLimit==0 ); /* Not allowed on leftward elements */
2990 unionTab = dest.iSDParm;
2991 }else{
2992 /* We will need to create our own temporary table to hold the
2993 ** intermediate results.
2995 unionTab = pParse->nTab++;
2996 assert( p->pOrderBy==0 );
2997 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
2998 assert( p->addrOpenEphm[0] == -1 );
2999 p->addrOpenEphm[0] = addr;
3000 findRightmost(p)->selFlags |= SF_UsesEphemeral;
3001 assert( p->pEList );
3005 /* Code the SELECT statements to our left
3007 assert( !pPrior->pOrderBy );
3008 sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
3009 TREETRACE(0x200, pParse, p, ("multiSelect EXCEPT/UNION left...\n"));
3010 rc = sqlite3Select(pParse, pPrior, &uniondest);
3011 if( rc ){
3012 goto multi_select_end;
3015 /* Code the current SELECT statement
3017 if( p->op==TK_EXCEPT ){
3018 op = SRT_Except;
3019 }else{
3020 assert( p->op==TK_UNION );
3021 op = SRT_Union;
3023 p->pPrior = 0;
3024 pLimit = p->pLimit;
3025 p->pLimit = 0;
3026 uniondest.eDest = op;
3027 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
3028 sqlite3SelectOpName(p->op)));
3029 TREETRACE(0x200, pParse, p, ("multiSelect EXCEPT/UNION right...\n"));
3030 rc = sqlite3Select(pParse, p, &uniondest);
3031 testcase( rc!=SQLITE_OK );
3032 assert( p->pOrderBy==0 );
3033 pDelete = p->pPrior;
3034 p->pPrior = pPrior;
3035 p->pOrderBy = 0;
3036 if( p->op==TK_UNION ){
3037 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
3039 sqlite3ExprDelete(db, p->pLimit);
3040 p->pLimit = pLimit;
3041 p->iLimit = 0;
3042 p->iOffset = 0;
3044 /* Convert the data in the temporary table into whatever form
3045 ** it is that we currently need.
3047 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
3048 assert( p->pEList || db->mallocFailed );
3049 if( dest.eDest!=priorOp && db->mallocFailed==0 ){
3050 int iCont, iBreak, iStart;
3051 iBreak = sqlite3VdbeMakeLabel(pParse);
3052 iCont = sqlite3VdbeMakeLabel(pParse);
3053 computeLimitRegisters(pParse, p, iBreak);
3054 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
3055 iStart = sqlite3VdbeCurrentAddr(v);
3056 selectInnerLoop(pParse, p, unionTab,
3057 0, 0, &dest, iCont, iBreak);
3058 sqlite3VdbeResolveLabel(v, iCont);
3059 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
3060 sqlite3VdbeResolveLabel(v, iBreak);
3061 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
3063 break;
3065 default: assert( p->op==TK_INTERSECT ); {
3066 int tab1, tab2;
3067 int iCont, iBreak, iStart;
3068 Expr *pLimit;
3069 int addr;
3070 SelectDest intersectdest;
3071 int r1;
3073 /* INTERSECT is different from the others since it requires
3074 ** two temporary tables. Hence it has its own case. Begin
3075 ** by allocating the tables we will need.
3077 tab1 = pParse->nTab++;
3078 tab2 = pParse->nTab++;
3079 assert( p->pOrderBy==0 );
3081 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
3082 assert( p->addrOpenEphm[0] == -1 );
3083 p->addrOpenEphm[0] = addr;
3084 findRightmost(p)->selFlags |= SF_UsesEphemeral;
3085 assert( p->pEList );
3087 /* Code the SELECTs to our left into temporary table "tab1".
3089 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
3090 TREETRACE(0x400, pParse, p, ("multiSelect INTERSECT left...\n"));
3091 rc = sqlite3Select(pParse, pPrior, &intersectdest);
3092 if( rc ){
3093 goto multi_select_end;
3096 /* Code the current SELECT into temporary table "tab2"
3098 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
3099 assert( p->addrOpenEphm[1] == -1 );
3100 p->addrOpenEphm[1] = addr;
3101 p->pPrior = 0;
3102 pLimit = p->pLimit;
3103 p->pLimit = 0;
3104 intersectdest.iSDParm = tab2;
3105 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
3106 sqlite3SelectOpName(p->op)));
3107 TREETRACE(0x400, pParse, p, ("multiSelect INTERSECT right...\n"));
3108 rc = sqlite3Select(pParse, p, &intersectdest);
3109 testcase( rc!=SQLITE_OK );
3110 pDelete = p->pPrior;
3111 p->pPrior = pPrior;
3112 if( p->nSelectRow>pPrior->nSelectRow ){
3113 p->nSelectRow = pPrior->nSelectRow;
3115 sqlite3ExprDelete(db, p->pLimit);
3116 p->pLimit = pLimit;
3118 /* Generate code to take the intersection of the two temporary
3119 ** tables.
3121 if( rc ) break;
3122 assert( p->pEList );
3123 iBreak = sqlite3VdbeMakeLabel(pParse);
3124 iCont = sqlite3VdbeMakeLabel(pParse);
3125 computeLimitRegisters(pParse, p, iBreak);
3126 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
3127 r1 = sqlite3GetTempReg(pParse);
3128 iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1);
3129 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0);
3130 VdbeCoverage(v);
3131 sqlite3ReleaseTempReg(pParse, r1);
3132 selectInnerLoop(pParse, p, tab1,
3133 0, 0, &dest, iCont, iBreak);
3134 sqlite3VdbeResolveLabel(v, iCont);
3135 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
3136 sqlite3VdbeResolveLabel(v, iBreak);
3137 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
3138 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
3139 break;
3143 #ifndef SQLITE_OMIT_EXPLAIN
3144 if( p->pNext==0 ){
3145 ExplainQueryPlanPop(pParse);
3147 #endif
3149 if( pParse->nErr ) goto multi_select_end;
3151 /* Compute collating sequences used by
3152 ** temporary tables needed to implement the compound select.
3153 ** Attach the KeyInfo structure to all temporary tables.
3155 ** This section is run by the right-most SELECT statement only.
3156 ** SELECT statements to the left always skip this part. The right-most
3157 ** SELECT might also skip this part if it has no ORDER BY clause and
3158 ** no temp tables are required.
3160 if( p->selFlags & SF_UsesEphemeral ){
3161 int i; /* Loop counter */
3162 KeyInfo *pKeyInfo; /* Collating sequence for the result set */
3163 Select *pLoop; /* For looping through SELECT statements */
3164 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */
3165 int nCol; /* Number of columns in result set */
3167 assert( p->pNext==0 );
3168 assert( p->pEList!=0 );
3169 nCol = p->pEList->nExpr;
3170 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
3171 if( !pKeyInfo ){
3172 rc = SQLITE_NOMEM_BKPT;
3173 goto multi_select_end;
3175 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
3176 *apColl = multiSelectCollSeq(pParse, p, i);
3177 if( 0==*apColl ){
3178 *apColl = db->pDfltColl;
3182 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
3183 for(i=0; i<2; i++){
3184 int addr = pLoop->addrOpenEphm[i];
3185 if( addr<0 ){
3186 /* If [0] is unused then [1] is also unused. So we can
3187 ** always safely abort as soon as the first unused slot is found */
3188 assert( pLoop->addrOpenEphm[1]<0 );
3189 break;
3191 sqlite3VdbeChangeP2(v, addr, nCol);
3192 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
3193 P4_KEYINFO);
3194 pLoop->addrOpenEphm[i] = -1;
3197 sqlite3KeyInfoUnref(pKeyInfo);
3200 multi_select_end:
3201 pDest->iSdst = dest.iSdst;
3202 pDest->nSdst = dest.nSdst;
3203 if( pDelete ){
3204 sqlite3ParserAddCleanup(pParse,
3205 (void(*)(sqlite3*,void*))sqlite3SelectDelete,
3206 pDelete);
3208 return rc;
3210 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
3213 ** Error message for when two or more terms of a compound select have different
3214 ** size result sets.
3216 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){
3217 if( p->selFlags & SF_Values ){
3218 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
3219 }else{
3220 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
3221 " do not have the same number of result columns",
3222 sqlite3SelectOpName(p->op));
3227 ** Code an output subroutine for a coroutine implementation of a
3228 ** SELECT statment.
3230 ** The data to be output is contained in pIn->iSdst. There are
3231 ** pIn->nSdst columns to be output. pDest is where the output should
3232 ** be sent.
3234 ** regReturn is the number of the register holding the subroutine
3235 ** return address.
3237 ** If regPrev>0 then it is the first register in a vector that
3238 ** records the previous output. mem[regPrev] is a flag that is false
3239 ** if there has been no previous output. If regPrev>0 then code is
3240 ** generated to suppress duplicates. pKeyInfo is used for comparing
3241 ** keys.
3243 ** If the LIMIT found in p->iLimit is reached, jump immediately to
3244 ** iBreak.
3246 static int generateOutputSubroutine(
3247 Parse *pParse, /* Parsing context */
3248 Select *p, /* The SELECT statement */
3249 SelectDest *pIn, /* Coroutine supplying data */
3250 SelectDest *pDest, /* Where to send the data */
3251 int regReturn, /* The return address register */
3252 int regPrev, /* Previous result register. No uniqueness if 0 */
3253 KeyInfo *pKeyInfo, /* For comparing with previous entry */
3254 int iBreak /* Jump here if we hit the LIMIT */
3256 Vdbe *v = pParse->pVdbe;
3257 int iContinue;
3258 int addr;
3260 addr = sqlite3VdbeCurrentAddr(v);
3261 iContinue = sqlite3VdbeMakeLabel(pParse);
3263 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
3265 if( regPrev ){
3266 int addr1, addr2;
3267 addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
3268 addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
3269 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
3270 sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v);
3271 sqlite3VdbeJumpHere(v, addr1);
3272 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
3273 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
3275 if( pParse->db->mallocFailed ) return 0;
3277 /* Suppress the first OFFSET entries if there is an OFFSET clause
3279 codeOffset(v, p->iOffset, iContinue);
3281 assert( pDest->eDest!=SRT_Exists );
3282 assert( pDest->eDest!=SRT_Table );
3283 switch( pDest->eDest ){
3284 /* Store the result as data using a unique key.
3286 case SRT_EphemTab: {
3287 int r1 = sqlite3GetTempReg(pParse);
3288 int r2 = sqlite3GetTempReg(pParse);
3289 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
3290 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
3291 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
3292 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
3293 sqlite3ReleaseTempReg(pParse, r2);
3294 sqlite3ReleaseTempReg(pParse, r1);
3295 break;
3298 #ifndef SQLITE_OMIT_SUBQUERY
3299 /* If we are creating a set for an "expr IN (SELECT ...)".
3301 case SRT_Set: {
3302 int r1;
3303 testcase( pIn->nSdst>1 );
3304 r1 = sqlite3GetTempReg(pParse);
3305 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst,
3306 r1, pDest->zAffSdst, pIn->nSdst);
3307 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1,
3308 pIn->iSdst, pIn->nSdst);
3309 sqlite3ReleaseTempReg(pParse, r1);
3310 break;
3313 /* If this is a scalar select that is part of an expression, then
3314 ** store the results in the appropriate memory cell and break out
3315 ** of the scan loop. Note that the select might return multiple columns
3316 ** if it is the RHS of a row-value IN operator.
3318 case SRT_Mem: {
3319 testcase( pIn->nSdst>1 );
3320 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, pIn->nSdst);
3321 /* The LIMIT clause will jump out of the loop for us */
3322 break;
3324 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
3326 /* The results are stored in a sequence of registers
3327 ** starting at pDest->iSdst. Then the co-routine yields.
3329 case SRT_Coroutine: {
3330 if( pDest->iSdst==0 ){
3331 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
3332 pDest->nSdst = pIn->nSdst;
3334 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst);
3335 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
3336 break;
3339 /* If none of the above, then the result destination must be
3340 ** SRT_Output. This routine is never called with any other
3341 ** destination other than the ones handled above or SRT_Output.
3343 ** For SRT_Output, results are stored in a sequence of registers.
3344 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
3345 ** return the next row of result.
3347 default: {
3348 assert( pDest->eDest==SRT_Output );
3349 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
3350 break;
3354 /* Jump to the end of the loop if the LIMIT is reached.
3356 if( p->iLimit ){
3357 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
3360 /* Generate the subroutine return
3362 sqlite3VdbeResolveLabel(v, iContinue);
3363 sqlite3VdbeAddOp1(v, OP_Return, regReturn);
3365 return addr;
3369 ** Alternative compound select code generator for cases when there
3370 ** is an ORDER BY clause.
3372 ** We assume a query of the following form:
3374 ** <selectA> <operator> <selectB> ORDER BY <orderbylist>
3376 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea
3377 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
3378 ** co-routines. Then run the co-routines in parallel and merge the results
3379 ** into the output. In addition to the two coroutines (called selectA and
3380 ** selectB) there are 7 subroutines:
3382 ** outA: Move the output of the selectA coroutine into the output
3383 ** of the compound query.
3385 ** outB: Move the output of the selectB coroutine into the output
3386 ** of the compound query. (Only generated for UNION and
3387 ** UNION ALL. EXCEPT and INSERTSECT never output a row that
3388 ** appears only in B.)
3390 ** AltB: Called when there is data from both coroutines and A<B.
3392 ** AeqB: Called when there is data from both coroutines and A==B.
3394 ** AgtB: Called when there is data from both coroutines and A>B.
3396 ** EofA: Called when data is exhausted from selectA.
3398 ** EofB: Called when data is exhausted from selectB.
3400 ** The implementation of the latter five subroutines depend on which
3401 ** <operator> is used:
3404 ** UNION ALL UNION EXCEPT INTERSECT
3405 ** ------------- ----------------- -------------- -----------------
3406 ** AltB: outA, nextA outA, nextA outA, nextA nextA
3408 ** AeqB: outA, nextA nextA nextA outA, nextA
3410 ** AgtB: outB, nextB outB, nextB nextB nextB
3412 ** EofA: outB, nextB outB, nextB halt halt
3414 ** EofB: outA, nextA outA, nextA outA, nextA halt
3416 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
3417 ** causes an immediate jump to EofA and an EOF on B following nextB causes
3418 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or
3419 ** following nextX causes a jump to the end of the select processing.
3421 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
3422 ** within the output subroutine. The regPrev register set holds the previously
3423 ** output value. A comparison is made against this value and the output
3424 ** is skipped if the next results would be the same as the previous.
3426 ** The implementation plan is to implement the two coroutines and seven
3427 ** subroutines first, then put the control logic at the bottom. Like this:
3429 ** goto Init
3430 ** coA: coroutine for left query (A)
3431 ** coB: coroutine for right query (B)
3432 ** outA: output one row of A
3433 ** outB: output one row of B (UNION and UNION ALL only)
3434 ** EofA: ...
3435 ** EofB: ...
3436 ** AltB: ...
3437 ** AeqB: ...
3438 ** AgtB: ...
3439 ** Init: initialize coroutine registers
3440 ** yield coA
3441 ** if eof(A) goto EofA
3442 ** yield coB
3443 ** if eof(B) goto EofB
3444 ** Cmpr: Compare A, B
3445 ** Jump AltB, AeqB, AgtB
3446 ** End: ...
3448 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
3449 ** actually called using Gosub and they do not Return. EofA and EofB loop
3450 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB,
3451 ** and AgtB jump to either L2 or to one of EofA or EofB.
3453 #ifndef SQLITE_OMIT_COMPOUND_SELECT
3454 static int multiSelectOrderBy(
3455 Parse *pParse, /* Parsing context */
3456 Select *p, /* The right-most of SELECTs to be coded */
3457 SelectDest *pDest /* What to do with query results */
3459 int i, j; /* Loop counters */
3460 Select *pPrior; /* Another SELECT immediately to our left */
3461 Select *pSplit; /* Left-most SELECT in the right-hand group */
3462 int nSelect; /* Number of SELECT statements in the compound */
3463 Vdbe *v; /* Generate code to this VDBE */
3464 SelectDest destA; /* Destination for coroutine A */
3465 SelectDest destB; /* Destination for coroutine B */
3466 int regAddrA; /* Address register for select-A coroutine */
3467 int regAddrB; /* Address register for select-B coroutine */
3468 int addrSelectA; /* Address of the select-A coroutine */
3469 int addrSelectB; /* Address of the select-B coroutine */
3470 int regOutA; /* Address register for the output-A subroutine */
3471 int regOutB; /* Address register for the output-B subroutine */
3472 int addrOutA; /* Address of the output-A subroutine */
3473 int addrOutB = 0; /* Address of the output-B subroutine */
3474 int addrEofA; /* Address of the select-A-exhausted subroutine */
3475 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */
3476 int addrEofB; /* Address of the select-B-exhausted subroutine */
3477 int addrAltB; /* Address of the A<B subroutine */
3478 int addrAeqB; /* Address of the A==B subroutine */
3479 int addrAgtB; /* Address of the A>B subroutine */
3480 int regLimitA; /* Limit register for select-A */
3481 int regLimitB; /* Limit register for select-A */
3482 int regPrev; /* A range of registers to hold previous output */
3483 int savedLimit; /* Saved value of p->iLimit */
3484 int savedOffset; /* Saved value of p->iOffset */
3485 int labelCmpr; /* Label for the start of the merge algorithm */
3486 int labelEnd; /* Label for the end of the overall SELECT stmt */
3487 int addr1; /* Jump instructions that get retargetted */
3488 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
3489 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
3490 KeyInfo *pKeyMerge; /* Comparison information for merging rows */
3491 sqlite3 *db; /* Database connection */
3492 ExprList *pOrderBy; /* The ORDER BY clause */
3493 int nOrderBy; /* Number of terms in the ORDER BY clause */
3494 u32 *aPermute; /* Mapping from ORDER BY terms to result set columns */
3496 assert( p->pOrderBy!=0 );
3497 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */
3498 db = pParse->db;
3499 v = pParse->pVdbe;
3500 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */
3501 labelEnd = sqlite3VdbeMakeLabel(pParse);
3502 labelCmpr = sqlite3VdbeMakeLabel(pParse);
3505 /* Patch up the ORDER BY clause
3507 op = p->op;
3508 assert( p->pPrior->pOrderBy==0 );
3509 pOrderBy = p->pOrderBy;
3510 assert( pOrderBy );
3511 nOrderBy = pOrderBy->nExpr;
3513 /* For operators other than UNION ALL we have to make sure that
3514 ** the ORDER BY clause covers every term of the result set. Add
3515 ** terms to the ORDER BY clause as necessary.
3517 if( op!=TK_ALL ){
3518 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
3519 struct ExprList_item *pItem;
3520 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
3521 assert( pItem!=0 );
3522 assert( pItem->u.x.iOrderByCol>0 );
3523 if( pItem->u.x.iOrderByCol==i ) break;
3525 if( j==nOrderBy ){
3526 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
3527 if( pNew==0 ) return SQLITE_NOMEM_BKPT;
3528 pNew->flags |= EP_IntValue;
3529 pNew->u.iValue = i;
3530 p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
3531 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
3536 /* Compute the comparison permutation and keyinfo that is used with
3537 ** the permutation used to determine if the next
3538 ** row of results comes from selectA or selectB. Also add explicit
3539 ** collations to the ORDER BY clause terms so that when the subqueries
3540 ** to the right and the left are evaluated, they use the correct
3541 ** collation.
3543 aPermute = sqlite3DbMallocRawNN(db, sizeof(u32)*(nOrderBy + 1));
3544 if( aPermute ){
3545 struct ExprList_item *pItem;
3546 aPermute[0] = nOrderBy;
3547 for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){
3548 assert( pItem!=0 );
3549 assert( pItem->u.x.iOrderByCol>0 );
3550 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr );
3551 aPermute[i] = pItem->u.x.iOrderByCol - 1;
3553 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
3554 }else{
3555 pKeyMerge = 0;
3558 /* Allocate a range of temporary registers and the KeyInfo needed
3559 ** for the logic that removes duplicate result rows when the
3560 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
3562 if( op==TK_ALL ){
3563 regPrev = 0;
3564 }else{
3565 int nExpr = p->pEList->nExpr;
3566 assert( nOrderBy>=nExpr || db->mallocFailed );
3567 regPrev = pParse->nMem+1;
3568 pParse->nMem += nExpr+1;
3569 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
3570 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
3571 if( pKeyDup ){
3572 assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
3573 for(i=0; i<nExpr; i++){
3574 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
3575 pKeyDup->aSortFlags[i] = 0;
3580 /* Separate the left and the right query from one another
3582 nSelect = 1;
3583 if( (op==TK_ALL || op==TK_UNION)
3584 && OptimizationEnabled(db, SQLITE_BalancedMerge)
3586 for(pSplit=p; pSplit->pPrior!=0 && pSplit->op==op; pSplit=pSplit->pPrior){
3587 nSelect++;
3588 assert( pSplit->pPrior->pNext==pSplit );
3591 if( nSelect<=3 ){
3592 pSplit = p;
3593 }else{
3594 pSplit = p;
3595 for(i=2; i<nSelect; i+=2){ pSplit = pSplit->pPrior; }
3597 pPrior = pSplit->pPrior;
3598 assert( pPrior!=0 );
3599 pSplit->pPrior = 0;
3600 pPrior->pNext = 0;
3601 assert( p->pOrderBy == pOrderBy );
3602 assert( pOrderBy!=0 || db->mallocFailed );
3603 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
3604 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
3605 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
3607 /* Compute the limit registers */
3608 computeLimitRegisters(pParse, p, labelEnd);
3609 if( p->iLimit && op==TK_ALL ){
3610 regLimitA = ++pParse->nMem;
3611 regLimitB = ++pParse->nMem;
3612 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
3613 regLimitA);
3614 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
3615 }else{
3616 regLimitA = regLimitB = 0;
3618 sqlite3ExprDelete(db, p->pLimit);
3619 p->pLimit = 0;
3621 regAddrA = ++pParse->nMem;
3622 regAddrB = ++pParse->nMem;
3623 regOutA = ++pParse->nMem;
3624 regOutB = ++pParse->nMem;
3625 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
3626 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
3628 ExplainQueryPlan((pParse, 1, "MERGE (%s)", sqlite3SelectOpName(p->op)));
3630 /* Generate a coroutine to evaluate the SELECT statement to the
3631 ** left of the compound operator - the "A" select.
3633 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
3634 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
3635 VdbeComment((v, "left SELECT"));
3636 pPrior->iLimit = regLimitA;
3637 ExplainQueryPlan((pParse, 1, "LEFT"));
3638 sqlite3Select(pParse, pPrior, &destA);
3639 sqlite3VdbeEndCoroutine(v, regAddrA);
3640 sqlite3VdbeJumpHere(v, addr1);
3642 /* Generate a coroutine to evaluate the SELECT statement on
3643 ** the right - the "B" select
3645 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
3646 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
3647 VdbeComment((v, "right SELECT"));
3648 savedLimit = p->iLimit;
3649 savedOffset = p->iOffset;
3650 p->iLimit = regLimitB;
3651 p->iOffset = 0;
3652 ExplainQueryPlan((pParse, 1, "RIGHT"));
3653 sqlite3Select(pParse, p, &destB);
3654 p->iLimit = savedLimit;
3655 p->iOffset = savedOffset;
3656 sqlite3VdbeEndCoroutine(v, regAddrB);
3658 /* Generate a subroutine that outputs the current row of the A
3659 ** select as the next output row of the compound select.
3661 VdbeNoopComment((v, "Output routine for A"));
3662 addrOutA = generateOutputSubroutine(pParse,
3663 p, &destA, pDest, regOutA,
3664 regPrev, pKeyDup, labelEnd);
3666 /* Generate a subroutine that outputs the current row of the B
3667 ** select as the next output row of the compound select.
3669 if( op==TK_ALL || op==TK_UNION ){
3670 VdbeNoopComment((v, "Output routine for B"));
3671 addrOutB = generateOutputSubroutine(pParse,
3672 p, &destB, pDest, regOutB,
3673 regPrev, pKeyDup, labelEnd);
3675 sqlite3KeyInfoUnref(pKeyDup);
3677 /* Generate a subroutine to run when the results from select A
3678 ** are exhausted and only data in select B remains.
3680 if( op==TK_EXCEPT || op==TK_INTERSECT ){
3681 addrEofA_noB = addrEofA = labelEnd;
3682 }else{
3683 VdbeNoopComment((v, "eof-A subroutine"));
3684 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3685 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
3686 VdbeCoverage(v);
3687 sqlite3VdbeGoto(v, addrEofA);
3688 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
3691 /* Generate a subroutine to run when the results from select B
3692 ** are exhausted and only data in select A remains.
3694 if( op==TK_INTERSECT ){
3695 addrEofB = addrEofA;
3696 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
3697 }else{
3698 VdbeNoopComment((v, "eof-B subroutine"));
3699 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3700 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
3701 sqlite3VdbeGoto(v, addrEofB);
3704 /* Generate code to handle the case of A<B
3706 VdbeNoopComment((v, "A-lt-B subroutine"));
3707 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3708 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3709 sqlite3VdbeGoto(v, labelCmpr);
3711 /* Generate code to handle the case of A==B
3713 if( op==TK_ALL ){
3714 addrAeqB = addrAltB;
3715 }else if( op==TK_INTERSECT ){
3716 addrAeqB = addrAltB;
3717 addrAltB++;
3718 }else{
3719 VdbeNoopComment((v, "A-eq-B subroutine"));
3720 addrAeqB =
3721 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3722 sqlite3VdbeGoto(v, labelCmpr);
3725 /* Generate code to handle the case of A>B
3727 VdbeNoopComment((v, "A-gt-B subroutine"));
3728 addrAgtB = sqlite3VdbeCurrentAddr(v);
3729 if( op==TK_ALL || op==TK_UNION ){
3730 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3732 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3733 sqlite3VdbeGoto(v, labelCmpr);
3735 /* This code runs once to initialize everything.
3737 sqlite3VdbeJumpHere(v, addr1);
3738 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
3739 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3741 /* Implement the main merge loop
3743 sqlite3VdbeResolveLabel(v, labelCmpr);
3744 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
3745 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
3746 (char*)pKeyMerge, P4_KEYINFO);
3747 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
3748 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
3750 /* Jump to the this point in order to terminate the query.
3752 sqlite3VdbeResolveLabel(v, labelEnd);
3754 /* Make arrangements to free the 2nd and subsequent arms of the compound
3755 ** after the parse has finished */
3756 if( pSplit->pPrior ){
3757 sqlite3ParserAddCleanup(pParse,
3758 (void(*)(sqlite3*,void*))sqlite3SelectDelete, pSplit->pPrior);
3760 pSplit->pPrior = pPrior;
3761 pPrior->pNext = pSplit;
3762 sqlite3ExprListDelete(db, pPrior->pOrderBy);
3763 pPrior->pOrderBy = 0;
3765 /*** TBD: Insert subroutine calls to close cursors on incomplete
3766 **** subqueries ****/
3767 ExplainQueryPlanPop(pParse);
3768 return pParse->nErr!=0;
3770 #endif
3772 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3774 /* An instance of the SubstContext object describes an substitution edit
3775 ** to be performed on a parse tree.
3777 ** All references to columns in table iTable are to be replaced by corresponding
3778 ** expressions in pEList.
3780 ** ## About "isOuterJoin":
3782 ** The isOuterJoin column indicates that the replacement will occur into a
3783 ** position in the parent that NULL-able due to an OUTER JOIN. Either the
3784 ** target slot in the parent is the right operand of a LEFT JOIN, or one of
3785 ** the left operands of a RIGHT JOIN. In either case, we need to potentially
3786 ** bypass the substituted expression with OP_IfNullRow.
3788 ** Suppose the original expression is an integer constant. Even though the table
3789 ** has the nullRow flag set, because the expression is an integer constant,
3790 ** it will not be NULLed out. So instead, we insert an OP_IfNullRow opcode
3791 ** that checks to see if the nullRow flag is set on the table. If the nullRow
3792 ** flag is set, then the value in the register is set to NULL and the original
3793 ** expression is bypassed. If the nullRow flag is not set, then the original
3794 ** expression runs to populate the register.
3796 ** Example where this is needed:
3798 ** CREATE TABLE t1(a INTEGER PRIMARY KEY, b INT);
3799 ** CREATE TABLE t2(x INT UNIQUE);
3801 ** SELECT a,b,m,x FROM t1 LEFT JOIN (SELECT 59 AS m,x FROM t2) ON b=x;
3803 ** When the subquery on the right side of the LEFT JOIN is flattened, we
3804 ** have to add OP_IfNullRow in front of the OP_Integer that implements the
3805 ** "m" value of the subquery so that a NULL will be loaded instead of 59
3806 ** when processing a non-matched row of the left.
3808 typedef struct SubstContext {
3809 Parse *pParse; /* The parsing context */
3810 int iTable; /* Replace references to this table */
3811 int iNewTable; /* New table number */
3812 int isOuterJoin; /* Add TK_IF_NULL_ROW opcodes on each replacement */
3813 ExprList *pEList; /* Replacement expressions */
3814 ExprList *pCList; /* Collation sequences for replacement expr */
3815 } SubstContext;
3817 /* Forward Declarations */
3818 static void substExprList(SubstContext*, ExprList*);
3819 static void substSelect(SubstContext*, Select*, int);
3822 ** Scan through the expression pExpr. Replace every reference to
3823 ** a column in table number iTable with a copy of the iColumn-th
3824 ** entry in pEList. (But leave references to the ROWID column
3825 ** unchanged.)
3827 ** This routine is part of the flattening procedure. A subquery
3828 ** whose result set is defined by pEList appears as entry in the
3829 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3830 ** FORM clause entry is iTable. This routine makes the necessary
3831 ** changes to pExpr so that it refers directly to the source table
3832 ** of the subquery rather the result set of the subquery.
3834 static Expr *substExpr(
3835 SubstContext *pSubst, /* Description of the substitution */
3836 Expr *pExpr /* Expr in which substitution occurs */
3838 if( pExpr==0 ) return 0;
3839 if( ExprHasProperty(pExpr, EP_OuterON|EP_InnerON)
3840 && pExpr->w.iJoin==pSubst->iTable
3842 testcase( ExprHasProperty(pExpr, EP_InnerON) );
3843 pExpr->w.iJoin = pSubst->iNewTable;
3845 if( pExpr->op==TK_COLUMN
3846 && pExpr->iTable==pSubst->iTable
3847 && !ExprHasProperty(pExpr, EP_FixedCol)
3849 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
3850 if( pExpr->iColumn<0 ){
3851 pExpr->op = TK_NULL;
3852 }else
3853 #endif
3855 Expr *pNew;
3856 int iColumn = pExpr->iColumn;
3857 Expr *pCopy = pSubst->pEList->a[iColumn].pExpr;
3858 Expr ifNullRow;
3859 assert( pSubst->pEList!=0 && iColumn<pSubst->pEList->nExpr );
3860 assert( pExpr->pRight==0 );
3861 if( sqlite3ExprIsVector(pCopy) ){
3862 sqlite3VectorErrorMsg(pSubst->pParse, pCopy);
3863 }else{
3864 sqlite3 *db = pSubst->pParse->db;
3865 if( pSubst->isOuterJoin
3866 && (pCopy->op!=TK_COLUMN || pCopy->iTable!=pSubst->iNewTable)
3868 memset(&ifNullRow, 0, sizeof(ifNullRow));
3869 ifNullRow.op = TK_IF_NULL_ROW;
3870 ifNullRow.pLeft = pCopy;
3871 ifNullRow.iTable = pSubst->iNewTable;
3872 ifNullRow.iColumn = -99;
3873 ifNullRow.flags = EP_IfNullRow;
3874 pCopy = &ifNullRow;
3876 testcase( ExprHasProperty(pCopy, EP_Subquery) );
3877 pNew = sqlite3ExprDup(db, pCopy, 0);
3878 if( db->mallocFailed ){
3879 sqlite3ExprDelete(db, pNew);
3880 return pExpr;
3882 if( pSubst->isOuterJoin ){
3883 ExprSetProperty(pNew, EP_CanBeNull);
3885 if( ExprHasProperty(pExpr,EP_OuterON|EP_InnerON) ){
3886 sqlite3SetJoinExpr(pNew, pExpr->w.iJoin,
3887 pExpr->flags & (EP_OuterON|EP_InnerON));
3889 sqlite3ExprDelete(db, pExpr);
3890 pExpr = pNew;
3891 if( pExpr->op==TK_TRUEFALSE ){
3892 pExpr->u.iValue = sqlite3ExprTruthValue(pExpr);
3893 pExpr->op = TK_INTEGER;
3894 ExprSetProperty(pExpr, EP_IntValue);
3897 /* Ensure that the expression now has an implicit collation sequence,
3898 ** just as it did when it was a column of a view or sub-query. */
3900 CollSeq *pNat = sqlite3ExprCollSeq(pSubst->pParse, pExpr);
3901 CollSeq *pColl = sqlite3ExprCollSeq(pSubst->pParse,
3902 pSubst->pCList->a[iColumn].pExpr
3904 if( pNat!=pColl || (pExpr->op!=TK_COLUMN && pExpr->op!=TK_COLLATE) ){
3905 pExpr = sqlite3ExprAddCollateString(pSubst->pParse, pExpr,
3906 (pColl ? pColl->zName : "BINARY")
3910 ExprClearProperty(pExpr, EP_Collate);
3913 }else{
3914 if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){
3915 pExpr->iTable = pSubst->iNewTable;
3917 pExpr->pLeft = substExpr(pSubst, pExpr->pLeft);
3918 pExpr->pRight = substExpr(pSubst, pExpr->pRight);
3919 if( ExprUseXSelect(pExpr) ){
3920 substSelect(pSubst, pExpr->x.pSelect, 1);
3921 }else{
3922 substExprList(pSubst, pExpr->x.pList);
3924 #ifndef SQLITE_OMIT_WINDOWFUNC
3925 if( ExprHasProperty(pExpr, EP_WinFunc) ){
3926 Window *pWin = pExpr->y.pWin;
3927 pWin->pFilter = substExpr(pSubst, pWin->pFilter);
3928 substExprList(pSubst, pWin->pPartition);
3929 substExprList(pSubst, pWin->pOrderBy);
3931 #endif
3933 return pExpr;
3935 static void substExprList(
3936 SubstContext *pSubst, /* Description of the substitution */
3937 ExprList *pList /* List to scan and in which to make substitutes */
3939 int i;
3940 if( pList==0 ) return;
3941 for(i=0; i<pList->nExpr; i++){
3942 pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr);
3945 static void substSelect(
3946 SubstContext *pSubst, /* Description of the substitution */
3947 Select *p, /* SELECT statement in which to make substitutions */
3948 int doPrior /* Do substitutes on p->pPrior too */
3950 SrcList *pSrc;
3951 SrcItem *pItem;
3952 int i;
3953 if( !p ) return;
3955 substExprList(pSubst, p->pEList);
3956 substExprList(pSubst, p->pGroupBy);
3957 substExprList(pSubst, p->pOrderBy);
3958 p->pHaving = substExpr(pSubst, p->pHaving);
3959 p->pWhere = substExpr(pSubst, p->pWhere);
3960 pSrc = p->pSrc;
3961 assert( pSrc!=0 );
3962 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3963 substSelect(pSubst, pItem->pSelect, 1);
3964 if( pItem->fg.isTabFunc ){
3965 substExprList(pSubst, pItem->u1.pFuncArg);
3968 }while( doPrior && (p = p->pPrior)!=0 );
3970 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3972 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3974 ** pSelect is a SELECT statement and pSrcItem is one item in the FROM
3975 ** clause of that SELECT.
3977 ** This routine scans the entire SELECT statement and recomputes the
3978 ** pSrcItem->colUsed mask.
3980 static int recomputeColumnsUsedExpr(Walker *pWalker, Expr *pExpr){
3981 SrcItem *pItem;
3982 if( pExpr->op!=TK_COLUMN ) return WRC_Continue;
3983 pItem = pWalker->u.pSrcItem;
3984 if( pItem->iCursor!=pExpr->iTable ) return WRC_Continue;
3985 if( pExpr->iColumn<0 ) return WRC_Continue;
3986 pItem->colUsed |= sqlite3ExprColUsed(pExpr);
3987 return WRC_Continue;
3989 static void recomputeColumnsUsed(
3990 Select *pSelect, /* The complete SELECT statement */
3991 SrcItem *pSrcItem /* Which FROM clause item to recompute */
3993 Walker w;
3994 if( NEVER(pSrcItem->pTab==0) ) return;
3995 memset(&w, 0, sizeof(w));
3996 w.xExprCallback = recomputeColumnsUsedExpr;
3997 w.xSelectCallback = sqlite3SelectWalkNoop;
3998 w.u.pSrcItem = pSrcItem;
3999 pSrcItem->colUsed = 0;
4000 sqlite3WalkSelect(&w, pSelect);
4002 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4004 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4006 ** Assign new cursor numbers to each of the items in pSrc. For each
4007 ** new cursor number assigned, set an entry in the aCsrMap[] array
4008 ** to map the old cursor number to the new:
4010 ** aCsrMap[iOld+1] = iNew;
4012 ** The array is guaranteed by the caller to be large enough for all
4013 ** existing cursor numbers in pSrc. aCsrMap[0] is the array size.
4015 ** If pSrc contains any sub-selects, call this routine recursively
4016 ** on the FROM clause of each such sub-select, with iExcept set to -1.
4018 static void srclistRenumberCursors(
4019 Parse *pParse, /* Parse context */
4020 int *aCsrMap, /* Array to store cursor mappings in */
4021 SrcList *pSrc, /* FROM clause to renumber */
4022 int iExcept /* FROM clause item to skip */
4024 int i;
4025 SrcItem *pItem;
4026 for(i=0, pItem=pSrc->a; i<pSrc->nSrc; i++, pItem++){
4027 if( i!=iExcept ){
4028 Select *p;
4029 assert( pItem->iCursor < aCsrMap[0] );
4030 if( !pItem->fg.isRecursive || aCsrMap[pItem->iCursor+1]==0 ){
4031 aCsrMap[pItem->iCursor+1] = pParse->nTab++;
4033 pItem->iCursor = aCsrMap[pItem->iCursor+1];
4034 for(p=pItem->pSelect; p; p=p->pPrior){
4035 srclistRenumberCursors(pParse, aCsrMap, p->pSrc, -1);
4042 ** *piCursor is a cursor number. Change it if it needs to be mapped.
4044 static void renumberCursorDoMapping(Walker *pWalker, int *piCursor){
4045 int *aCsrMap = pWalker->u.aiCol;
4046 int iCsr = *piCursor;
4047 if( iCsr < aCsrMap[0] && aCsrMap[iCsr+1]>0 ){
4048 *piCursor = aCsrMap[iCsr+1];
4053 ** Expression walker callback used by renumberCursors() to update
4054 ** Expr objects to match newly assigned cursor numbers.
4056 static int renumberCursorsCb(Walker *pWalker, Expr *pExpr){
4057 int op = pExpr->op;
4058 if( op==TK_COLUMN || op==TK_IF_NULL_ROW ){
4059 renumberCursorDoMapping(pWalker, &pExpr->iTable);
4061 if( ExprHasProperty(pExpr, EP_OuterON) ){
4062 renumberCursorDoMapping(pWalker, &pExpr->w.iJoin);
4064 return WRC_Continue;
4068 ** Assign a new cursor number to each cursor in the FROM clause (Select.pSrc)
4069 ** of the SELECT statement passed as the second argument, and to each
4070 ** cursor in the FROM clause of any FROM clause sub-selects, recursively.
4071 ** Except, do not assign a new cursor number to the iExcept'th element in
4072 ** the FROM clause of (*p). Update all expressions and other references
4073 ** to refer to the new cursor numbers.
4075 ** Argument aCsrMap is an array that may be used for temporary working
4076 ** space. Two guarantees are made by the caller:
4078 ** * the array is larger than the largest cursor number used within the
4079 ** select statement passed as an argument, and
4081 ** * the array entries for all cursor numbers that do *not* appear in
4082 ** FROM clauses of the select statement as described above are
4083 ** initialized to zero.
4085 static void renumberCursors(
4086 Parse *pParse, /* Parse context */
4087 Select *p, /* Select to renumber cursors within */
4088 int iExcept, /* FROM clause item to skip */
4089 int *aCsrMap /* Working space */
4091 Walker w;
4092 srclistRenumberCursors(pParse, aCsrMap, p->pSrc, iExcept);
4093 memset(&w, 0, sizeof(w));
4094 w.u.aiCol = aCsrMap;
4095 w.xExprCallback = renumberCursorsCb;
4096 w.xSelectCallback = sqlite3SelectWalkNoop;
4097 sqlite3WalkSelect(&w, p);
4099 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4102 ** If pSel is not part of a compound SELECT, return a pointer to its
4103 ** expression list. Otherwise, return a pointer to the expression list
4104 ** of the leftmost SELECT in the compound.
4106 static ExprList *findLeftmostExprlist(Select *pSel){
4107 while( pSel->pPrior ){
4108 pSel = pSel->pPrior;
4110 return pSel->pEList;
4114 ** Return true if any of the result-set columns in the compound query
4115 ** have incompatible affinities on one or more arms of the compound.
4117 static int compoundHasDifferentAffinities(Select *p){
4118 int ii;
4119 ExprList *pList;
4120 assert( p!=0 );
4121 assert( p->pEList!=0 );
4122 assert( p->pPrior!=0 );
4123 pList = p->pEList;
4124 for(ii=0; ii<pList->nExpr; ii++){
4125 char aff;
4126 Select *pSub1;
4127 assert( pList->a[ii].pExpr!=0 );
4128 aff = sqlite3ExprAffinity(pList->a[ii].pExpr);
4129 for(pSub1=p->pPrior; pSub1; pSub1=pSub1->pPrior){
4130 assert( pSub1->pEList!=0 );
4131 assert( pSub1->pEList->nExpr>ii );
4132 assert( pSub1->pEList->a[ii].pExpr!=0 );
4133 if( sqlite3ExprAffinity(pSub1->pEList->a[ii].pExpr)!=aff ){
4134 return 1;
4138 return 0;
4141 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4143 ** This routine attempts to flatten subqueries as a performance optimization.
4144 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
4146 ** To understand the concept of flattening, consider the following
4147 ** query:
4149 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
4151 ** The default way of implementing this query is to execute the
4152 ** subquery first and store the results in a temporary table, then
4153 ** run the outer query on that temporary table. This requires two
4154 ** passes over the data. Furthermore, because the temporary table
4155 ** has no indices, the WHERE clause on the outer query cannot be
4156 ** optimized.
4158 ** This routine attempts to rewrite queries such as the above into
4159 ** a single flat select, like this:
4161 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
4163 ** The code generated for this simplification gives the same result
4164 ** but only has to scan the data once. And because indices might
4165 ** exist on the table t1, a complete scan of the data might be
4166 ** avoided.
4168 ** Flattening is subject to the following constraints:
4170 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
4171 ** The subquery and the outer query cannot both be aggregates.
4173 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
4174 ** (2) If the subquery is an aggregate then
4175 ** (2a) the outer query must not be a join and
4176 ** (2b) the outer query must not use subqueries
4177 ** other than the one FROM-clause subquery that is a candidate
4178 ** for flattening. (This is due to ticket [2f7170d73bf9abf80]
4179 ** from 2015-02-09.)
4181 ** (3) If the subquery is the right operand of a LEFT JOIN then
4182 ** (3a) the subquery may not be a join and
4183 ** (3b) the FROM clause of the subquery may not contain a virtual
4184 ** table and
4185 ** (**) Was: "The outer query may not have a GROUP BY." This case
4186 ** is now managed correctly
4187 ** (3d) the outer query may not be DISTINCT.
4188 ** See also (26) for restrictions on RIGHT JOIN.
4190 ** (4) The subquery can not be DISTINCT.
4192 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT
4193 ** sub-queries that were excluded from this optimization. Restriction
4194 ** (4) has since been expanded to exclude all DISTINCT subqueries.
4196 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
4197 ** If the subquery is aggregate, the outer query may not be DISTINCT.
4199 ** (7) The subquery must have a FROM clause. TODO: For subqueries without
4200 ** A FROM clause, consider adding a FROM clause with the special
4201 ** table sqlite_once that consists of a single row containing a
4202 ** single NULL.
4204 ** (8) If the subquery uses LIMIT then the outer query may not be a join.
4206 ** (9) If the subquery uses LIMIT then the outer query may not be aggregate.
4208 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we
4209 ** accidently carried the comment forward until 2014-09-15. Original
4210 ** constraint: "If the subquery is aggregate then the outer query
4211 ** may not use LIMIT."
4213 ** (11) The subquery and the outer query may not both have ORDER BY clauses.
4215 ** (**) Not implemented. Subsumed into restriction (3). Was previously
4216 ** a separate restriction deriving from ticket #350.
4218 ** (13) The subquery and outer query may not both use LIMIT.
4220 ** (14) The subquery may not use OFFSET.
4222 ** (15) If the outer query is part of a compound select, then the
4223 ** subquery may not use LIMIT.
4224 ** (See ticket #2339 and ticket [02a8e81d44]).
4226 ** (16) If the outer query is aggregate, then the subquery may not
4227 ** use ORDER BY. (Ticket #2942) This used to not matter
4228 ** until we introduced the group_concat() function.
4230 ** (17) If the subquery is a compound select, then
4231 ** (17a) all compound operators must be a UNION ALL, and
4232 ** (17b) no terms within the subquery compound may be aggregate
4233 ** or DISTINCT, and
4234 ** (17c) every term within the subquery compound must have a FROM clause
4235 ** (17d) the outer query may not be
4236 ** (17d1) aggregate, or
4237 ** (17d2) DISTINCT
4238 ** (17e) the subquery may not contain window functions, and
4239 ** (17f) the subquery must not be the RHS of a LEFT JOIN.
4240 ** (17g) either the subquery is the first element of the outer
4241 ** query or there are no RIGHT or FULL JOINs in any arm
4242 ** of the subquery. (This is a duplicate of condition (27b).)
4243 ** (17h) The corresponding result set expressions in all arms of the
4244 ** compound must have the same affinity. (See restriction (9)
4245 ** on the push-down optimization.)
4247 ** The parent and sub-query may contain WHERE clauses. Subject to
4248 ** rules (11), (13) and (14), they may also contain ORDER BY,
4249 ** LIMIT and OFFSET clauses. The subquery cannot use any compound
4250 ** operator other than UNION ALL because all the other compound
4251 ** operators have an implied DISTINCT which is disallowed by
4252 ** restriction (4).
4254 ** Also, each component of the sub-query must return the same number
4255 ** of result columns. This is actually a requirement for any compound
4256 ** SELECT statement, but all the code here does is make sure that no
4257 ** such (illegal) sub-query is flattened. The caller will detect the
4258 ** syntax error and return a detailed message.
4260 ** (18) If the sub-query is a compound select, then all terms of the
4261 ** ORDER BY clause of the parent must be copies of a term returned
4262 ** by the parent query.
4264 ** (19) If the subquery uses LIMIT then the outer query may not
4265 ** have a WHERE clause.
4267 ** (20) If the sub-query is a compound select, then it must not use
4268 ** an ORDER BY clause. Ticket #3773. We could relax this constraint
4269 ** somewhat by saying that the terms of the ORDER BY clause must
4270 ** appear as unmodified result columns in the outer query. But we
4271 ** have other optimizations in mind to deal with that case.
4273 ** (21) If the subquery uses LIMIT then the outer query may not be
4274 ** DISTINCT. (See ticket [752e1646fc]).
4276 ** (22) The subquery may not be a recursive CTE.
4278 ** (23) If the outer query is a recursive CTE, then the sub-query may not be
4279 ** a compound query. This restriction is because transforming the
4280 ** parent to a compound query confuses the code that handles
4281 ** recursive queries in multiSelect().
4283 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
4284 ** The subquery may not be an aggregate that uses the built-in min() or
4285 ** or max() functions. (Without this restriction, a query like:
4286 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
4287 ** return the value X for which Y was maximal.)
4289 ** (25) If either the subquery or the parent query contains a window
4290 ** function in the select list or ORDER BY clause, flattening
4291 ** is not attempted.
4293 ** (26) The subquery may not be the right operand of a RIGHT JOIN.
4294 ** See also (3) for restrictions on LEFT JOIN.
4296 ** (27) The subquery may not contain a FULL or RIGHT JOIN unless it
4297 ** is the first element of the parent query. Two subcases:
4298 ** (27a) the subquery is not a compound query.
4299 ** (27b) the subquery is a compound query and the RIGHT JOIN occurs
4300 ** in any arm of the compound query. (See also (17g).)
4302 ** (28) The subquery is not a MATERIALIZED CTE.
4305 ** In this routine, the "p" parameter is a pointer to the outer query.
4306 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query
4307 ** uses aggregates.
4309 ** If flattening is not attempted, this routine is a no-op and returns 0.
4310 ** If flattening is attempted this routine returns 1.
4312 ** All of the expression analysis must occur on both the outer query and
4313 ** the subquery before this routine runs.
4315 static int flattenSubquery(
4316 Parse *pParse, /* Parsing context */
4317 Select *p, /* The parent or outer SELECT statement */
4318 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */
4319 int isAgg /* True if outer SELECT uses aggregate functions */
4321 const char *zSavedAuthContext = pParse->zAuthContext;
4322 Select *pParent; /* Current UNION ALL term of the other query */
4323 Select *pSub; /* The inner query or "subquery" */
4324 Select *pSub1; /* Pointer to the rightmost select in sub-query */
4325 SrcList *pSrc; /* The FROM clause of the outer query */
4326 SrcList *pSubSrc; /* The FROM clause of the subquery */
4327 int iParent; /* VDBE cursor number of the pSub result set temp table */
4328 int iNewParent = -1;/* Replacement table for iParent */
4329 int isOuterJoin = 0; /* True if pSub is the right side of a LEFT JOIN */
4330 int i; /* Loop counter */
4331 Expr *pWhere; /* The WHERE clause */
4332 SrcItem *pSubitem; /* The subquery */
4333 sqlite3 *db = pParse->db;
4334 Walker w; /* Walker to persist agginfo data */
4335 int *aCsrMap = 0;
4337 /* Check to see if flattening is permitted. Return 0 if not.
4339 assert( p!=0 );
4340 assert( p->pPrior==0 );
4341 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
4342 pSrc = p->pSrc;
4343 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
4344 pSubitem = &pSrc->a[iFrom];
4345 iParent = pSubitem->iCursor;
4346 pSub = pSubitem->pSelect;
4347 assert( pSub!=0 );
4349 #ifndef SQLITE_OMIT_WINDOWFUNC
4350 if( p->pWin || pSub->pWin ) return 0; /* Restriction (25) */
4351 #endif
4353 pSubSrc = pSub->pSrc;
4354 assert( pSubSrc );
4355 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
4356 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
4357 ** because they could be computed at compile-time. But when LIMIT and OFFSET
4358 ** became arbitrary expressions, we were forced to add restrictions (13)
4359 ** and (14). */
4360 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */
4361 if( pSub->pLimit && pSub->pLimit->pRight ) return 0; /* Restriction (14) */
4362 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
4363 return 0; /* Restriction (15) */
4365 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */
4366 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (4) */
4367 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
4368 return 0; /* Restrictions (8)(9) */
4370 if( p->pOrderBy && pSub->pOrderBy ){
4371 return 0; /* Restriction (11) */
4373 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */
4374 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */
4375 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
4376 return 0; /* Restriction (21) */
4378 if( pSub->selFlags & (SF_Recursive) ){
4379 return 0; /* Restrictions (22) */
4383 ** If the subquery is the right operand of a LEFT JOIN, then the
4384 ** subquery may not be a join itself (3a). Example of why this is not
4385 ** allowed:
4387 ** t1 LEFT OUTER JOIN (t2 JOIN t3)
4389 ** If we flatten the above, we would get
4391 ** (t1 LEFT OUTER JOIN t2) JOIN t3
4393 ** which is not at all the same thing.
4395 ** See also tickets #306, #350, and #3300.
4397 if( (pSubitem->fg.jointype & (JT_OUTER|JT_LTORJ))!=0 ){
4398 if( pSubSrc->nSrc>1 /* (3a) */
4399 || IsVirtual(pSubSrc->a[0].pTab) /* (3b) */
4400 || (p->selFlags & SF_Distinct)!=0 /* (3d) */
4401 || (pSubitem->fg.jointype & JT_RIGHT)!=0 /* (26) */
4403 return 0;
4405 isOuterJoin = 1;
4408 assert( pSubSrc->nSrc>0 ); /* True by restriction (7) */
4409 if( iFrom>0 && (pSubSrc->a[0].fg.jointype & JT_LTORJ)!=0 ){
4410 return 0; /* Restriction (27a) */
4412 if( pSubitem->fg.isCte && pSubitem->u2.pCteUse->eM10d==M10d_Yes ){
4413 return 0; /* (28) */
4416 /* Restriction (17): If the sub-query is a compound SELECT, then it must
4417 ** use only the UNION ALL operator. And none of the simple select queries
4418 ** that make up the compound SELECT are allowed to be aggregate or distinct
4419 ** queries.
4421 if( pSub->pPrior ){
4422 int ii;
4423 if( pSub->pOrderBy ){
4424 return 0; /* Restriction (20) */
4426 if( isAgg || (p->selFlags & SF_Distinct)!=0 || isOuterJoin>0 ){
4427 return 0; /* (17d1), (17d2), or (17f) */
4429 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
4430 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
4431 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
4432 assert( pSub->pSrc!=0 );
4433 assert( (pSub->selFlags & SF_Recursive)==0 );
4434 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr );
4435 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 /* (17b) */
4436 || (pSub1->pPrior && pSub1->op!=TK_ALL) /* (17a) */
4437 || pSub1->pSrc->nSrc<1 /* (17c) */
4438 #ifndef SQLITE_OMIT_WINDOWFUNC
4439 || pSub1->pWin /* (17e) */
4440 #endif
4442 return 0;
4444 if( iFrom>0 && (pSub1->pSrc->a[0].fg.jointype & JT_LTORJ)!=0 ){
4445 /* Without this restriction, the JT_LTORJ flag would end up being
4446 ** omitted on left-hand tables of the right join that is being
4447 ** flattened. */
4448 return 0; /* Restrictions (17g), (27b) */
4450 testcase( pSub1->pSrc->nSrc>1 );
4453 /* Restriction (18). */
4454 if( p->pOrderBy ){
4455 for(ii=0; ii<p->pOrderBy->nExpr; ii++){
4456 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
4460 /* Restriction (23) */
4461 if( (p->selFlags & SF_Recursive) ) return 0;
4463 /* Restriction (17h) */
4464 if( compoundHasDifferentAffinities(pSub) ) return 0;
4466 if( pSrc->nSrc>1 ){
4467 if( pParse->nSelect>500 ) return 0;
4468 if( OptimizationDisabled(db, SQLITE_FlttnUnionAll) ) return 0;
4469 aCsrMap = sqlite3DbMallocZero(db, ((i64)pParse->nTab+1)*sizeof(int));
4470 if( aCsrMap ) aCsrMap[0] = pParse->nTab;
4474 /***** If we reach this point, flattening is permitted. *****/
4475 TREETRACE(0x4,pParse,p,("flatten %u.%p from term %d\n",
4476 pSub->selId, pSub, iFrom));
4478 /* Authorize the subquery */
4479 pParse->zAuthContext = pSubitem->zName;
4480 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
4481 testcase( i==SQLITE_DENY );
4482 pParse->zAuthContext = zSavedAuthContext;
4484 /* Delete the transient structures associated with thesubquery */
4485 pSub1 = pSubitem->pSelect;
4486 sqlite3DbFree(db, pSubitem->zDatabase);
4487 sqlite3DbFree(db, pSubitem->zName);
4488 sqlite3DbFree(db, pSubitem->zAlias);
4489 pSubitem->zDatabase = 0;
4490 pSubitem->zName = 0;
4491 pSubitem->zAlias = 0;
4492 pSubitem->pSelect = 0;
4493 assert( pSubitem->fg.isUsing!=0 || pSubitem->u3.pOn==0 );
4495 /* If the sub-query is a compound SELECT statement, then (by restrictions
4496 ** 17 and 18 above) it must be a UNION ALL and the parent query must
4497 ** be of the form:
4499 ** SELECT <expr-list> FROM (<sub-query>) <where-clause>
4501 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
4502 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
4503 ** OFFSET clauses and joins them to the left-hand-side of the original
4504 ** using UNION ALL operators. In this case N is the number of simple
4505 ** select statements in the compound sub-query.
4507 ** Example:
4509 ** SELECT a+1 FROM (
4510 ** SELECT x FROM tab
4511 ** UNION ALL
4512 ** SELECT y FROM tab
4513 ** UNION ALL
4514 ** SELECT abs(z*2) FROM tab2
4515 ** ) WHERE a!=5 ORDER BY 1
4517 ** Transformed into:
4519 ** SELECT x+1 FROM tab WHERE x+1!=5
4520 ** UNION ALL
4521 ** SELECT y+1 FROM tab WHERE y+1!=5
4522 ** UNION ALL
4523 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
4524 ** ORDER BY 1
4526 ** We call this the "compound-subquery flattening".
4528 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
4529 Select *pNew;
4530 ExprList *pOrderBy = p->pOrderBy;
4531 Expr *pLimit = p->pLimit;
4532 Select *pPrior = p->pPrior;
4533 Table *pItemTab = pSubitem->pTab;
4534 pSubitem->pTab = 0;
4535 p->pOrderBy = 0;
4536 p->pPrior = 0;
4537 p->pLimit = 0;
4538 pNew = sqlite3SelectDup(db, p, 0);
4539 p->pLimit = pLimit;
4540 p->pOrderBy = pOrderBy;
4541 p->op = TK_ALL;
4542 pSubitem->pTab = pItemTab;
4543 if( pNew==0 ){
4544 p->pPrior = pPrior;
4545 }else{
4546 pNew->selId = ++pParse->nSelect;
4547 if( aCsrMap && ALWAYS(db->mallocFailed==0) ){
4548 renumberCursors(pParse, pNew, iFrom, aCsrMap);
4550 pNew->pPrior = pPrior;
4551 if( pPrior ) pPrior->pNext = pNew;
4552 pNew->pNext = p;
4553 p->pPrior = pNew;
4554 TREETRACE(0x4,pParse,p,("compound-subquery flattener"
4555 " creates %u as peer\n",pNew->selId));
4557 assert( pSubitem->pSelect==0 );
4559 sqlite3DbFree(db, aCsrMap);
4560 if( db->mallocFailed ){
4561 pSubitem->pSelect = pSub1;
4562 return 1;
4565 /* Defer deleting the Table object associated with the
4566 ** subquery until code generation is
4567 ** complete, since there may still exist Expr.pTab entries that
4568 ** refer to the subquery even after flattening. Ticket #3346.
4570 ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
4572 if( ALWAYS(pSubitem->pTab!=0) ){
4573 Table *pTabToDel = pSubitem->pTab;
4574 if( pTabToDel->nTabRef==1 ){
4575 Parse *pToplevel = sqlite3ParseToplevel(pParse);
4576 sqlite3ParserAddCleanup(pToplevel,
4577 (void(*)(sqlite3*,void*))sqlite3DeleteTable,
4578 pTabToDel);
4579 testcase( pToplevel->earlyCleanup );
4580 }else{
4581 pTabToDel->nTabRef--;
4583 pSubitem->pTab = 0;
4586 /* The following loop runs once for each term in a compound-subquery
4587 ** flattening (as described above). If we are doing a different kind
4588 ** of flattening - a flattening other than a compound-subquery flattening -
4589 ** then this loop only runs once.
4591 ** This loop moves all of the FROM elements of the subquery into the
4592 ** the FROM clause of the outer query. Before doing this, remember
4593 ** the cursor number for the original outer query FROM element in
4594 ** iParent. The iParent cursor will never be used. Subsequent code
4595 ** will scan expressions looking for iParent references and replace
4596 ** those references with expressions that resolve to the subquery FROM
4597 ** elements we are now copying in.
4599 pSub = pSub1;
4600 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
4601 int nSubSrc;
4602 u8 jointype = 0;
4603 u8 ltorj = pSrc->a[iFrom].fg.jointype & JT_LTORJ;
4604 assert( pSub!=0 );
4605 pSubSrc = pSub->pSrc; /* FROM clause of subquery */
4606 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */
4607 pSrc = pParent->pSrc; /* FROM clause of the outer query */
4609 if( pParent==p ){
4610 jointype = pSubitem->fg.jointype; /* First time through the loop */
4613 /* The subquery uses a single slot of the FROM clause of the outer
4614 ** query. If the subquery has more than one element in its FROM clause,
4615 ** then expand the outer query to make space for it to hold all elements
4616 ** of the subquery.
4618 ** Example:
4620 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
4622 ** The outer query has 3 slots in its FROM clause. One slot of the
4623 ** outer query (the middle slot) is used by the subquery. The next
4624 ** block of code will expand the outer query FROM clause to 4 slots.
4625 ** The middle slot is expanded to two slots in order to make space
4626 ** for the two elements in the FROM clause of the subquery.
4628 if( nSubSrc>1 ){
4629 pSrc = sqlite3SrcListEnlarge(pParse, pSrc, nSubSrc-1,iFrom+1);
4630 if( pSrc==0 ) break;
4631 pParent->pSrc = pSrc;
4634 /* Transfer the FROM clause terms from the subquery into the
4635 ** outer query.
4637 for(i=0; i<nSubSrc; i++){
4638 SrcItem *pItem = &pSrc->a[i+iFrom];
4639 if( pItem->fg.isUsing ) sqlite3IdListDelete(db, pItem->u3.pUsing);
4640 assert( pItem->fg.isTabFunc==0 );
4641 *pItem = pSubSrc->a[i];
4642 pItem->fg.jointype |= ltorj;
4643 iNewParent = pSubSrc->a[i].iCursor;
4644 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
4646 pSrc->a[iFrom].fg.jointype &= JT_LTORJ;
4647 pSrc->a[iFrom].fg.jointype |= jointype | ltorj;
4649 /* Now begin substituting subquery result set expressions for
4650 ** references to the iParent in the outer query.
4652 ** Example:
4654 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
4655 ** \ \_____________ subquery __________/ /
4656 ** \_____________________ outer query ______________________________/
4658 ** We look at every expression in the outer query and every place we see
4659 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
4661 if( pSub->pOrderBy && (pParent->selFlags & SF_NoopOrderBy)==0 ){
4662 /* At this point, any non-zero iOrderByCol values indicate that the
4663 ** ORDER BY column expression is identical to the iOrderByCol'th
4664 ** expression returned by SELECT statement pSub. Since these values
4665 ** do not necessarily correspond to columns in SELECT statement pParent,
4666 ** zero them before transfering the ORDER BY clause.
4668 ** Not doing this may cause an error if a subsequent call to this
4669 ** function attempts to flatten a compound sub-query into pParent
4670 ** (the only way this can happen is if the compound sub-query is
4671 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */
4672 ExprList *pOrderBy = pSub->pOrderBy;
4673 for(i=0; i<pOrderBy->nExpr; i++){
4674 pOrderBy->a[i].u.x.iOrderByCol = 0;
4676 assert( pParent->pOrderBy==0 );
4677 pParent->pOrderBy = pOrderBy;
4678 pSub->pOrderBy = 0;
4680 pWhere = pSub->pWhere;
4681 pSub->pWhere = 0;
4682 if( isOuterJoin>0 ){
4683 sqlite3SetJoinExpr(pWhere, iNewParent, EP_OuterON);
4685 if( pWhere ){
4686 if( pParent->pWhere ){
4687 pParent->pWhere = sqlite3PExpr(pParse, TK_AND, pWhere, pParent->pWhere);
4688 }else{
4689 pParent->pWhere = pWhere;
4692 if( db->mallocFailed==0 ){
4693 SubstContext x;
4694 x.pParse = pParse;
4695 x.iTable = iParent;
4696 x.iNewTable = iNewParent;
4697 x.isOuterJoin = isOuterJoin;
4698 x.pEList = pSub->pEList;
4699 x.pCList = findLeftmostExprlist(pSub);
4700 substSelect(&x, pParent, 0);
4703 /* The flattened query is a compound if either the inner or the
4704 ** outer query is a compound. */
4705 pParent->selFlags |= pSub->selFlags & SF_Compound;
4706 assert( (pSub->selFlags & SF_Distinct)==0 ); /* restriction (17b) */
4709 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
4711 ** One is tempted to try to add a and b to combine the limits. But this
4712 ** does not work if either limit is negative.
4714 if( pSub->pLimit ){
4715 pParent->pLimit = pSub->pLimit;
4716 pSub->pLimit = 0;
4719 /* Recompute the SrcItem.colUsed masks for the flattened
4720 ** tables. */
4721 for(i=0; i<nSubSrc; i++){
4722 recomputeColumnsUsed(pParent, &pSrc->a[i+iFrom]);
4726 /* Finially, delete what is left of the subquery and return
4727 ** success.
4729 sqlite3AggInfoPersistWalkerInit(&w, pParse);
4730 sqlite3WalkSelect(&w,pSub1);
4731 sqlite3SelectDelete(db, pSub1);
4733 #if TREETRACE_ENABLED
4734 if( sqlite3TreeTrace & 0x4 ){
4735 TREETRACE(0x4,pParse,p,("After flattening:\n"));
4736 sqlite3TreeViewSelect(0, p, 0);
4738 #endif
4740 return 1;
4742 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4745 ** A structure to keep track of all of the column values that are fixed to
4746 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE.
4748 typedef struct WhereConst WhereConst;
4749 struct WhereConst {
4750 Parse *pParse; /* Parsing context */
4751 u8 *pOomFault; /* Pointer to pParse->db->mallocFailed */
4752 int nConst; /* Number for COLUMN=CONSTANT terms */
4753 int nChng; /* Number of times a constant is propagated */
4754 int bHasAffBlob; /* At least one column in apExpr[] as affinity BLOB */
4755 u32 mExcludeOn; /* Which ON expressions to exclude from considertion.
4756 ** Either EP_OuterON or EP_InnerON|EP_OuterON */
4757 Expr **apExpr; /* [i*2] is COLUMN and [i*2+1] is VALUE */
4761 ** Add a new entry to the pConst object. Except, do not add duplicate
4762 ** pColumn entires. Also, do not add if doing so would not be appropriate.
4764 ** The caller guarantees the pColumn is a column and pValue is a constant.
4765 ** This routine has to do some additional checks before completing the
4766 ** insert.
4768 static void constInsert(
4769 WhereConst *pConst, /* The WhereConst into which we are inserting */
4770 Expr *pColumn, /* The COLUMN part of the constraint */
4771 Expr *pValue, /* The VALUE part of the constraint */
4772 Expr *pExpr /* Overall expression: COLUMN=VALUE or VALUE=COLUMN */
4774 int i;
4775 assert( pColumn->op==TK_COLUMN );
4776 assert( sqlite3ExprIsConstant(pValue) );
4778 if( ExprHasProperty(pColumn, EP_FixedCol) ) return;
4779 if( sqlite3ExprAffinity(pValue)!=0 ) return;
4780 if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst->pParse,pExpr)) ){
4781 return;
4784 /* 2018-10-25 ticket [cf5ed20f]
4785 ** Make sure the same pColumn is not inserted more than once */
4786 for(i=0; i<pConst->nConst; i++){
4787 const Expr *pE2 = pConst->apExpr[i*2];
4788 assert( pE2->op==TK_COLUMN );
4789 if( pE2->iTable==pColumn->iTable
4790 && pE2->iColumn==pColumn->iColumn
4792 return; /* Already present. Return without doing anything. */
4795 if( sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){
4796 pConst->bHasAffBlob = 1;
4799 pConst->nConst++;
4800 pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr,
4801 pConst->nConst*2*sizeof(Expr*));
4802 if( pConst->apExpr==0 ){
4803 pConst->nConst = 0;
4804 }else{
4805 pConst->apExpr[pConst->nConst*2-2] = pColumn;
4806 pConst->apExpr[pConst->nConst*2-1] = pValue;
4811 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE
4812 ** is a constant expression and where the term must be true because it
4813 ** is part of the AND-connected terms of the expression. For each term
4814 ** found, add it to the pConst structure.
4816 static void findConstInWhere(WhereConst *pConst, Expr *pExpr){
4817 Expr *pRight, *pLeft;
4818 if( NEVER(pExpr==0) ) return;
4819 if( ExprHasProperty(pExpr, pConst->mExcludeOn) ){
4820 testcase( ExprHasProperty(pExpr, EP_OuterON) );
4821 testcase( ExprHasProperty(pExpr, EP_InnerON) );
4822 return;
4824 if( pExpr->op==TK_AND ){
4825 findConstInWhere(pConst, pExpr->pRight);
4826 findConstInWhere(pConst, pExpr->pLeft);
4827 return;
4829 if( pExpr->op!=TK_EQ ) return;
4830 pRight = pExpr->pRight;
4831 pLeft = pExpr->pLeft;
4832 assert( pRight!=0 );
4833 assert( pLeft!=0 );
4834 if( pRight->op==TK_COLUMN && sqlite3ExprIsConstant(pLeft) ){
4835 constInsert(pConst,pRight,pLeft,pExpr);
4837 if( pLeft->op==TK_COLUMN && sqlite3ExprIsConstant(pRight) ){
4838 constInsert(pConst,pLeft,pRight,pExpr);
4843 ** This is a helper function for Walker callback propagateConstantExprRewrite().
4845 ** Argument pExpr is a candidate expression to be replaced by a value. If
4846 ** pExpr is equivalent to one of the columns named in pWalker->u.pConst,
4847 ** then overwrite it with the corresponding value. Except, do not do so
4848 ** if argument bIgnoreAffBlob is non-zero and the affinity of pExpr
4849 ** is SQLITE_AFF_BLOB.
4851 static int propagateConstantExprRewriteOne(
4852 WhereConst *pConst,
4853 Expr *pExpr,
4854 int bIgnoreAffBlob
4856 int i;
4857 if( pConst->pOomFault[0] ) return WRC_Prune;
4858 if( pExpr->op!=TK_COLUMN ) return WRC_Continue;
4859 if( ExprHasProperty(pExpr, EP_FixedCol|pConst->mExcludeOn) ){
4860 testcase( ExprHasProperty(pExpr, EP_FixedCol) );
4861 testcase( ExprHasProperty(pExpr, EP_OuterON) );
4862 testcase( ExprHasProperty(pExpr, EP_InnerON) );
4863 return WRC_Continue;
4865 for(i=0; i<pConst->nConst; i++){
4866 Expr *pColumn = pConst->apExpr[i*2];
4867 if( pColumn==pExpr ) continue;
4868 if( pColumn->iTable!=pExpr->iTable ) continue;
4869 if( pColumn->iColumn!=pExpr->iColumn ) continue;
4870 if( bIgnoreAffBlob && sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){
4871 break;
4873 /* A match is found. Add the EP_FixedCol property */
4874 pConst->nChng++;
4875 ExprClearProperty(pExpr, EP_Leaf);
4876 ExprSetProperty(pExpr, EP_FixedCol);
4877 assert( pExpr->pLeft==0 );
4878 pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0);
4879 if( pConst->pParse->db->mallocFailed ) return WRC_Prune;
4880 break;
4882 return WRC_Prune;
4886 ** This is a Walker expression callback. pExpr is a node from the WHERE
4887 ** clause of a SELECT statement. This function examines pExpr to see if
4888 ** any substitutions based on the contents of pWalker->u.pConst should
4889 ** be made to pExpr or its immediate children.
4891 ** A substitution is made if:
4893 ** + pExpr is a column with an affinity other than BLOB that matches
4894 ** one of the columns in pWalker->u.pConst, or
4896 ** + pExpr is a binary comparison operator (=, <=, >=, <, >) that
4897 ** uses an affinity other than TEXT and one of its immediate
4898 ** children is a column that matches one of the columns in
4899 ** pWalker->u.pConst.
4901 static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){
4902 WhereConst *pConst = pWalker->u.pConst;
4903 assert( TK_GT==TK_EQ+1 );
4904 assert( TK_LE==TK_EQ+2 );
4905 assert( TK_LT==TK_EQ+3 );
4906 assert( TK_GE==TK_EQ+4 );
4907 if( pConst->bHasAffBlob ){
4908 if( (pExpr->op>=TK_EQ && pExpr->op<=TK_GE)
4909 || pExpr->op==TK_IS
4911 propagateConstantExprRewriteOne(pConst, pExpr->pLeft, 0);
4912 if( pConst->pOomFault[0] ) return WRC_Prune;
4913 if( sqlite3ExprAffinity(pExpr->pLeft)!=SQLITE_AFF_TEXT ){
4914 propagateConstantExprRewriteOne(pConst, pExpr->pRight, 0);
4918 return propagateConstantExprRewriteOne(pConst, pExpr, pConst->bHasAffBlob);
4922 ** The WHERE-clause constant propagation optimization.
4924 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or
4925 ** CONSTANT=COLUMN that are top-level AND-connected terms that are not
4926 ** part of a ON clause from a LEFT JOIN, then throughout the query
4927 ** replace all other occurrences of COLUMN with CONSTANT.
4929 ** For example, the query:
4931 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b
4933 ** Is transformed into
4935 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39
4937 ** Return true if any transformations where made and false if not.
4939 ** Implementation note: Constant propagation is tricky due to affinity
4940 ** and collating sequence interactions. Consider this example:
4942 ** CREATE TABLE t1(a INT,b TEXT);
4943 ** INSERT INTO t1 VALUES(123,'0123');
4944 ** SELECT * FROM t1 WHERE a=123 AND b=a;
4945 ** SELECT * FROM t1 WHERE a=123 AND b=123;
4947 ** The two SELECT statements above should return different answers. b=a
4948 ** is alway true because the comparison uses numeric affinity, but b=123
4949 ** is false because it uses text affinity and '0123' is not the same as '123'.
4950 ** To work around this, the expression tree is not actually changed from
4951 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol
4952 ** and the "123" value is hung off of the pLeft pointer. Code generator
4953 ** routines know to generate the constant "123" instead of looking up the
4954 ** column value. Also, to avoid collation problems, this optimization is
4955 ** only attempted if the "a=123" term uses the default BINARY collation.
4957 ** 2021-05-25 forum post 6a06202608: Another troublesome case is...
4959 ** CREATE TABLE t1(x);
4960 ** INSERT INTO t1 VALUES(10.0);
4961 ** SELECT 1 FROM t1 WHERE x=10 AND x LIKE 10;
4963 ** The query should return no rows, because the t1.x value is '10.0' not '10'
4964 ** and '10.0' is not LIKE '10'. But if we are not careful, the first WHERE
4965 ** term "x=10" will cause the second WHERE term to become "10 LIKE 10",
4966 ** resulting in a false positive. To avoid this, constant propagation for
4967 ** columns with BLOB affinity is only allowed if the constant is used with
4968 ** operators ==, <=, <, >=, >, or IS in a way that will cause the correct
4969 ** type conversions to occur. See logic associated with the bHasAffBlob flag
4970 ** for details.
4972 static int propagateConstants(
4973 Parse *pParse, /* The parsing context */
4974 Select *p /* The query in which to propagate constants */
4976 WhereConst x;
4977 Walker w;
4978 int nChng = 0;
4979 x.pParse = pParse;
4980 x.pOomFault = &pParse->db->mallocFailed;
4982 x.nConst = 0;
4983 x.nChng = 0;
4984 x.apExpr = 0;
4985 x.bHasAffBlob = 0;
4986 if( ALWAYS(p->pSrc!=0)
4987 && p->pSrc->nSrc>0
4988 && (p->pSrc->a[0].fg.jointype & JT_LTORJ)!=0
4990 /* Do not propagate constants on any ON clause if there is a
4991 ** RIGHT JOIN anywhere in the query */
4992 x.mExcludeOn = EP_InnerON | EP_OuterON;
4993 }else{
4994 /* Do not propagate constants through the ON clause of a LEFT JOIN */
4995 x.mExcludeOn = EP_OuterON;
4997 findConstInWhere(&x, p->pWhere);
4998 if( x.nConst ){
4999 memset(&w, 0, sizeof(w));
5000 w.pParse = pParse;
5001 w.xExprCallback = propagateConstantExprRewrite;
5002 w.xSelectCallback = sqlite3SelectWalkNoop;
5003 w.xSelectCallback2 = 0;
5004 w.walkerDepth = 0;
5005 w.u.pConst = &x;
5006 sqlite3WalkExpr(&w, p->pWhere);
5007 sqlite3DbFree(x.pParse->db, x.apExpr);
5008 nChng += x.nChng;
5010 }while( x.nChng );
5011 return nChng;
5014 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5015 # if !defined(SQLITE_OMIT_WINDOWFUNC)
5017 ** This function is called to determine whether or not it is safe to
5018 ** push WHERE clause expression pExpr down to FROM clause sub-query
5019 ** pSubq, which contains at least one window function. Return 1
5020 ** if it is safe and the expression should be pushed down, or 0
5021 ** otherwise.
5023 ** It is only safe to push the expression down if it consists only
5024 ** of constants and copies of expressions that appear in the PARTITION
5025 ** BY clause of all window function used by the sub-query. It is safe
5026 ** to filter out entire partitions, but not rows within partitions, as
5027 ** this may change the results of the window functions.
5029 ** At the time this function is called it is guaranteed that
5031 ** * the sub-query uses only one distinct window frame, and
5032 ** * that the window frame has a PARTITION BY clase.
5034 static int pushDownWindowCheck(Parse *pParse, Select *pSubq, Expr *pExpr){
5035 assert( pSubq->pWin->pPartition );
5036 assert( (pSubq->selFlags & SF_MultiPart)==0 );
5037 assert( pSubq->pPrior==0 );
5038 return sqlite3ExprIsConstantOrGroupBy(pParse, pExpr, pSubq->pWin->pPartition);
5040 # endif /* SQLITE_OMIT_WINDOWFUNC */
5041 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
5043 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5045 ** Make copies of relevant WHERE clause terms of the outer query into
5046 ** the WHERE clause of subquery. Example:
5048 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
5050 ** Transformed into:
5052 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
5053 ** WHERE x=5 AND y=10;
5055 ** The hope is that the terms added to the inner query will make it more
5056 ** efficient.
5058 ** Do not attempt this optimization if:
5060 ** (1) (** This restriction was removed on 2017-09-29. We used to
5061 ** disallow this optimization for aggregate subqueries, but now
5062 ** it is allowed by putting the extra terms on the HAVING clause.
5063 ** The added HAVING clause is pointless if the subquery lacks
5064 ** a GROUP BY clause. But such a HAVING clause is also harmless
5065 ** so there does not appear to be any reason to add extra logic
5066 ** to suppress it. **)
5068 ** (2) The inner query is the recursive part of a common table expression.
5070 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE
5071 ** clause would change the meaning of the LIMIT).
5073 ** (4) The inner query is the right operand of a LEFT JOIN and the
5074 ** expression to be pushed down does not come from the ON clause
5075 ** on that LEFT JOIN.
5077 ** (5) The WHERE clause expression originates in the ON or USING clause
5078 ** of a LEFT JOIN where iCursor is not the right-hand table of that
5079 ** left join. An example:
5081 ** SELECT *
5082 ** FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa
5083 ** JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2)
5084 ** LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2);
5086 ** The correct answer is three rows: (1,1,NULL),(2,2,8),(2,2,9).
5087 ** But if the (b2=2) term were to be pushed down into the bb subquery,
5088 ** then the (1,1,NULL) row would be suppressed.
5090 ** (6) Window functions make things tricky as changes to the WHERE clause
5091 ** of the inner query could change the window over which window
5092 ** functions are calculated. Therefore, do not attempt the optimization
5093 ** if:
5095 ** (6a) The inner query uses multiple incompatible window partitions.
5097 ** (6b) The inner query is a compound and uses window-functions.
5099 ** (6c) The WHERE clause does not consist entirely of constants and
5100 ** copies of expressions found in the PARTITION BY clause of
5101 ** all window-functions used by the sub-query. It is safe to
5102 ** filter out entire partitions, as this does not change the
5103 ** window over which any window-function is calculated.
5105 ** (7) The inner query is a Common Table Expression (CTE) that should
5106 ** be materialized. (This restriction is implemented in the calling
5107 ** routine.)
5109 ** (8) If the subquery is a compound that uses UNION, INTERSECT,
5110 ** or EXCEPT, then all of the result set columns for all arms of
5111 ** the compound must use the BINARY collating sequence.
5113 ** (9) If the subquery is a compound, then all arms of the compound must
5114 ** have the same affinity. (This is the same as restriction (17h)
5115 ** for query flattening.)
5118 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
5119 ** terms are duplicated into the subquery.
5121 static int pushDownWhereTerms(
5122 Parse *pParse, /* Parse context (for malloc() and error reporting) */
5123 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */
5124 Expr *pWhere, /* The WHERE clause of the outer query */
5125 SrcItem *pSrc /* The subquery term of the outer FROM clause */
5127 Expr *pNew;
5128 int nChng = 0;
5129 if( pWhere==0 ) return 0;
5130 if( pSubq->selFlags & (SF_Recursive|SF_MultiPart) ) return 0;
5131 if( pSrc->fg.jointype & (JT_LTORJ|JT_RIGHT) ) return 0;
5133 if( pSubq->pPrior ){
5134 Select *pSel;
5135 int notUnionAll = 0;
5136 for(pSel=pSubq; pSel; pSel=pSel->pPrior){
5137 u8 op = pSel->op;
5138 assert( op==TK_ALL || op==TK_SELECT
5139 || op==TK_UNION || op==TK_INTERSECT || op==TK_EXCEPT );
5140 if( op!=TK_ALL && op!=TK_SELECT ){
5141 notUnionAll = 1;
5143 #ifndef SQLITE_OMIT_WINDOWFUNC
5144 if( pSel->pWin ) return 0; /* restriction (6b) */
5145 #endif
5147 if( compoundHasDifferentAffinities(pSubq) ){
5148 return 0; /* restriction (9) */
5150 if( notUnionAll ){
5151 /* If any of the compound arms are connected using UNION, INTERSECT,
5152 ** or EXCEPT, then we must ensure that none of the columns use a
5153 ** non-BINARY collating sequence. */
5154 for(pSel=pSubq; pSel; pSel=pSel->pPrior){
5155 int ii;
5156 const ExprList *pList = pSel->pEList;
5157 assert( pList!=0 );
5158 for(ii=0; ii<pList->nExpr; ii++){
5159 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pList->a[ii].pExpr);
5160 if( !sqlite3IsBinary(pColl) ){
5161 return 0; /* Restriction (8) */
5166 }else{
5167 #ifndef SQLITE_OMIT_WINDOWFUNC
5168 if( pSubq->pWin && pSubq->pWin->pPartition==0 ) return 0;
5169 #endif
5172 #ifdef SQLITE_DEBUG
5173 /* Only the first term of a compound can have a WITH clause. But make
5174 ** sure no other terms are marked SF_Recursive in case something changes
5175 ** in the future.
5178 Select *pX;
5179 for(pX=pSubq; pX; pX=pX->pPrior){
5180 assert( (pX->selFlags & (SF_Recursive))==0 );
5183 #endif
5185 if( pSubq->pLimit!=0 ){
5186 return 0; /* restriction (3) */
5188 while( pWhere->op==TK_AND ){
5189 nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, pSrc);
5190 pWhere = pWhere->pLeft;
5193 #if 0 /* Legacy code. Checks now done by sqlite3ExprIsTableConstraint() */
5194 if( isLeftJoin
5195 && (ExprHasProperty(pWhere,EP_OuterON)==0
5196 || pWhere->w.iJoin!=iCursor)
5198 return 0; /* restriction (4) */
5200 if( ExprHasProperty(pWhere,EP_OuterON)
5201 && pWhere->w.iJoin!=iCursor
5203 return 0; /* restriction (5) */
5205 #endif
5207 if( sqlite3ExprIsTableConstraint(pWhere, pSrc) ){
5208 nChng++;
5209 pSubq->selFlags |= SF_PushDown;
5210 while( pSubq ){
5211 SubstContext x;
5212 pNew = sqlite3ExprDup(pParse->db, pWhere, 0);
5213 unsetJoinExpr(pNew, -1, 1);
5214 x.pParse = pParse;
5215 x.iTable = pSrc->iCursor;
5216 x.iNewTable = pSrc->iCursor;
5217 x.isOuterJoin = 0;
5218 x.pEList = pSubq->pEList;
5219 x.pCList = findLeftmostExprlist(pSubq);
5220 pNew = substExpr(&x, pNew);
5221 #ifndef SQLITE_OMIT_WINDOWFUNC
5222 if( pSubq->pWin && 0==pushDownWindowCheck(pParse, pSubq, pNew) ){
5223 /* Restriction 6c has prevented push-down in this case */
5224 sqlite3ExprDelete(pParse->db, pNew);
5225 nChng--;
5226 break;
5228 #endif
5229 if( pSubq->selFlags & SF_Aggregate ){
5230 pSubq->pHaving = sqlite3ExprAnd(pParse, pSubq->pHaving, pNew);
5231 }else{
5232 pSubq->pWhere = sqlite3ExprAnd(pParse, pSubq->pWhere, pNew);
5234 pSubq = pSubq->pPrior;
5237 return nChng;
5239 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
5242 ** The pFunc is the only aggregate function in the query. Check to see
5243 ** if the query is a candidate for the min/max optimization.
5245 ** If the query is a candidate for the min/max optimization, then set
5246 ** *ppMinMax to be an ORDER BY clause to be used for the optimization
5247 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on
5248 ** whether pFunc is a min() or max() function.
5250 ** If the query is not a candidate for the min/max optimization, return
5251 ** WHERE_ORDERBY_NORMAL (which must be zero).
5253 ** This routine must be called after aggregate functions have been
5254 ** located but before their arguments have been subjected to aggregate
5255 ** analysis.
5257 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){
5258 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */
5259 ExprList *pEList; /* Arguments to agg function */
5260 const char *zFunc; /* Name of aggregate function pFunc */
5261 ExprList *pOrderBy;
5262 u8 sortFlags = 0;
5264 assert( *ppMinMax==0 );
5265 assert( pFunc->op==TK_AGG_FUNCTION );
5266 assert( !IsWindowFunc(pFunc) );
5267 assert( ExprUseXList(pFunc) );
5268 pEList = pFunc->x.pList;
5269 if( pEList==0
5270 || pEList->nExpr!=1
5271 || ExprHasProperty(pFunc, EP_WinFunc)
5272 || OptimizationDisabled(db, SQLITE_MinMaxOpt)
5274 return eRet;
5276 assert( !ExprHasProperty(pFunc, EP_IntValue) );
5277 zFunc = pFunc->u.zToken;
5278 if( sqlite3StrICmp(zFunc, "min")==0 ){
5279 eRet = WHERE_ORDERBY_MIN;
5280 if( sqlite3ExprCanBeNull(pEList->a[0].pExpr) ){
5281 sortFlags = KEYINFO_ORDER_BIGNULL;
5283 }else if( sqlite3StrICmp(zFunc, "max")==0 ){
5284 eRet = WHERE_ORDERBY_MAX;
5285 sortFlags = KEYINFO_ORDER_DESC;
5286 }else{
5287 return eRet;
5289 *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0);
5290 assert( pOrderBy!=0 || db->mallocFailed );
5291 if( pOrderBy ) pOrderBy->a[0].fg.sortFlags = sortFlags;
5292 return eRet;
5296 ** The select statement passed as the first argument is an aggregate query.
5297 ** The second argument is the associated aggregate-info object. This
5298 ** function tests if the SELECT is of the form:
5300 ** SELECT count(*) FROM <tbl>
5302 ** where table is a database table, not a sub-select or view. If the query
5303 ** does match this pattern, then a pointer to the Table object representing
5304 ** <tbl> is returned. Otherwise, NULL is returned.
5306 ** This routine checks to see if it is safe to use the count optimization.
5307 ** A correct answer is still obtained (though perhaps more slowly) if
5308 ** this routine returns NULL when it could have returned a table pointer.
5309 ** But returning the pointer when NULL should have been returned can
5310 ** result in incorrect answers and/or crashes. So, when in doubt, return NULL.
5312 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
5313 Table *pTab;
5314 Expr *pExpr;
5316 assert( !p->pGroupBy );
5318 if( p->pWhere
5319 || p->pEList->nExpr!=1
5320 || p->pSrc->nSrc!=1
5321 || p->pSrc->a[0].pSelect
5322 || pAggInfo->nFunc!=1
5323 || p->pHaving
5325 return 0;
5327 pTab = p->pSrc->a[0].pTab;
5328 assert( pTab!=0 );
5329 assert( !IsView(pTab) );
5330 if( !IsOrdinaryTable(pTab) ) return 0;
5331 pExpr = p->pEList->a[0].pExpr;
5332 assert( pExpr!=0 );
5333 if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
5334 if( pExpr->pAggInfo!=pAggInfo ) return 0;
5335 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
5336 assert( pAggInfo->aFunc[0].pFExpr==pExpr );
5337 testcase( ExprHasProperty(pExpr, EP_Distinct) );
5338 testcase( ExprHasProperty(pExpr, EP_WinFunc) );
5339 if( ExprHasProperty(pExpr, EP_Distinct|EP_WinFunc) ) return 0;
5341 return pTab;
5345 ** If the source-list item passed as an argument was augmented with an
5346 ** INDEXED BY clause, then try to locate the specified index. If there
5347 ** was such a clause and the named index cannot be found, return
5348 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
5349 ** pFrom->pIndex and return SQLITE_OK.
5351 int sqlite3IndexedByLookup(Parse *pParse, SrcItem *pFrom){
5352 Table *pTab = pFrom->pTab;
5353 char *zIndexedBy = pFrom->u1.zIndexedBy;
5354 Index *pIdx;
5355 assert( pTab!=0 );
5356 assert( pFrom->fg.isIndexedBy!=0 );
5358 for(pIdx=pTab->pIndex;
5359 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy);
5360 pIdx=pIdx->pNext
5362 if( !pIdx ){
5363 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0);
5364 pParse->checkSchema = 1;
5365 return SQLITE_ERROR;
5367 assert( pFrom->fg.isCte==0 );
5368 pFrom->u2.pIBIndex = pIdx;
5369 return SQLITE_OK;
5373 ** Detect compound SELECT statements that use an ORDER BY clause with
5374 ** an alternative collating sequence.
5376 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
5378 ** These are rewritten as a subquery:
5380 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
5381 ** ORDER BY ... COLLATE ...
5383 ** This transformation is necessary because the multiSelectOrderBy() routine
5384 ** above that generates the code for a compound SELECT with an ORDER BY clause
5385 ** uses a merge algorithm that requires the same collating sequence on the
5386 ** result columns as on the ORDER BY clause. See ticket
5387 ** http://www.sqlite.org/src/info/6709574d2a
5389 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
5390 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
5391 ** there are COLLATE terms in the ORDER BY.
5393 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
5394 int i;
5395 Select *pNew;
5396 Select *pX;
5397 sqlite3 *db;
5398 struct ExprList_item *a;
5399 SrcList *pNewSrc;
5400 Parse *pParse;
5401 Token dummy;
5403 if( p->pPrior==0 ) return WRC_Continue;
5404 if( p->pOrderBy==0 ) return WRC_Continue;
5405 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
5406 if( pX==0 ) return WRC_Continue;
5407 a = p->pOrderBy->a;
5408 #ifndef SQLITE_OMIT_WINDOWFUNC
5409 /* If iOrderByCol is already non-zero, then it has already been matched
5410 ** to a result column of the SELECT statement. This occurs when the
5411 ** SELECT is rewritten for window-functions processing and then passed
5412 ** to sqlite3SelectPrep() and similar a second time. The rewriting done
5413 ** by this function is not required in this case. */
5414 if( a[0].u.x.iOrderByCol ) return WRC_Continue;
5415 #endif
5416 for(i=p->pOrderBy->nExpr-1; i>=0; i--){
5417 if( a[i].pExpr->flags & EP_Collate ) break;
5419 if( i<0 ) return WRC_Continue;
5421 /* If we reach this point, that means the transformation is required. */
5423 pParse = pWalker->pParse;
5424 db = pParse->db;
5425 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
5426 if( pNew==0 ) return WRC_Abort;
5427 memset(&dummy, 0, sizeof(dummy));
5428 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0);
5429 if( pNewSrc==0 ) return WRC_Abort;
5430 *pNew = *p;
5431 p->pSrc = pNewSrc;
5432 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0));
5433 p->op = TK_SELECT;
5434 p->pWhere = 0;
5435 pNew->pGroupBy = 0;
5436 pNew->pHaving = 0;
5437 pNew->pOrderBy = 0;
5438 p->pPrior = 0;
5439 p->pNext = 0;
5440 p->pWith = 0;
5441 #ifndef SQLITE_OMIT_WINDOWFUNC
5442 p->pWinDefn = 0;
5443 #endif
5444 p->selFlags &= ~SF_Compound;
5445 assert( (p->selFlags & SF_Converted)==0 );
5446 p->selFlags |= SF_Converted;
5447 assert( pNew->pPrior!=0 );
5448 pNew->pPrior->pNext = pNew;
5449 pNew->pLimit = 0;
5450 return WRC_Continue;
5454 ** Check to see if the FROM clause term pFrom has table-valued function
5455 ** arguments. If it does, leave an error message in pParse and return
5456 ** non-zero, since pFrom is not allowed to be a table-valued function.
5458 static int cannotBeFunction(Parse *pParse, SrcItem *pFrom){
5459 if( pFrom->fg.isTabFunc ){
5460 sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName);
5461 return 1;
5463 return 0;
5466 #ifndef SQLITE_OMIT_CTE
5468 ** Argument pWith (which may be NULL) points to a linked list of nested
5469 ** WITH contexts, from inner to outermost. If the table identified by
5470 ** FROM clause element pItem is really a common-table-expression (CTE)
5471 ** then return a pointer to the CTE definition for that table. Otherwise
5472 ** return NULL.
5474 ** If a non-NULL value is returned, set *ppContext to point to the With
5475 ** object that the returned CTE belongs to.
5477 static struct Cte *searchWith(
5478 With *pWith, /* Current innermost WITH clause */
5479 SrcItem *pItem, /* FROM clause element to resolve */
5480 With **ppContext /* OUT: WITH clause return value belongs to */
5482 const char *zName = pItem->zName;
5483 With *p;
5484 assert( pItem->zDatabase==0 );
5485 assert( zName!=0 );
5486 for(p=pWith; p; p=p->pOuter){
5487 int i;
5488 for(i=0; i<p->nCte; i++){
5489 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
5490 *ppContext = p;
5491 return &p->a[i];
5494 if( p->bView ) break;
5496 return 0;
5499 /* The code generator maintains a stack of active WITH clauses
5500 ** with the inner-most WITH clause being at the top of the stack.
5502 ** This routine pushes the WITH clause passed as the second argument
5503 ** onto the top of the stack. If argument bFree is true, then this
5504 ** WITH clause will never be popped from the stack but should instead
5505 ** be freed along with the Parse object. In other cases, when
5506 ** bFree==0, the With object will be freed along with the SELECT
5507 ** statement with which it is associated.
5509 ** This routine returns a copy of pWith. Or, if bFree is true and
5510 ** the pWith object is destroyed immediately due to an OOM condition,
5511 ** then this routine return NULL.
5513 ** If bFree is true, do not continue to use the pWith pointer after
5514 ** calling this routine, Instead, use only the return value.
5516 With *sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
5517 if( pWith ){
5518 if( bFree ){
5519 pWith = (With*)sqlite3ParserAddCleanup(pParse,
5520 (void(*)(sqlite3*,void*))sqlite3WithDelete,
5521 pWith);
5522 if( pWith==0 ) return 0;
5524 if( pParse->nErr==0 ){
5525 assert( pParse->pWith!=pWith );
5526 pWith->pOuter = pParse->pWith;
5527 pParse->pWith = pWith;
5530 return pWith;
5534 ** This function checks if argument pFrom refers to a CTE declared by
5535 ** a WITH clause on the stack currently maintained by the parser (on the
5536 ** pParse->pWith linked list). And if currently processing a CTE
5537 ** CTE expression, through routine checks to see if the reference is
5538 ** a recursive reference to the CTE.
5540 ** If pFrom matches a CTE according to either of these two above, pFrom->pTab
5541 ** and other fields are populated accordingly.
5543 ** Return 0 if no match is found.
5544 ** Return 1 if a match is found.
5545 ** Return 2 if an error condition is detected.
5547 static int resolveFromTermToCte(
5548 Parse *pParse, /* The parsing context */
5549 Walker *pWalker, /* Current tree walker */
5550 SrcItem *pFrom /* The FROM clause term to check */
5552 Cte *pCte; /* Matched CTE (or NULL if no match) */
5553 With *pWith; /* The matching WITH */
5555 assert( pFrom->pTab==0 );
5556 if( pParse->pWith==0 ){
5557 /* There are no WITH clauses in the stack. No match is possible */
5558 return 0;
5560 if( pParse->nErr ){
5561 /* Prior errors might have left pParse->pWith in a goofy state, so
5562 ** go no further. */
5563 return 0;
5565 if( pFrom->zDatabase!=0 ){
5566 /* The FROM term contains a schema qualifier (ex: main.t1) and so
5567 ** it cannot possibly be a CTE reference. */
5568 return 0;
5570 if( pFrom->fg.notCte ){
5571 /* The FROM term is specifically excluded from matching a CTE.
5572 ** (1) It is part of a trigger that used to have zDatabase but had
5573 ** zDatabase removed by sqlite3FixTriggerStep().
5574 ** (2) This is the first term in the FROM clause of an UPDATE.
5576 return 0;
5578 pCte = searchWith(pParse->pWith, pFrom, &pWith);
5579 if( pCte ){
5580 sqlite3 *db = pParse->db;
5581 Table *pTab;
5582 ExprList *pEList;
5583 Select *pSel;
5584 Select *pLeft; /* Left-most SELECT statement */
5585 Select *pRecTerm; /* Left-most recursive term */
5586 int bMayRecursive; /* True if compound joined by UNION [ALL] */
5587 With *pSavedWith; /* Initial value of pParse->pWith */
5588 int iRecTab = -1; /* Cursor for recursive table */
5589 CteUse *pCteUse;
5591 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
5592 ** recursive reference to CTE pCte. Leave an error in pParse and return
5593 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
5594 ** In this case, proceed. */
5595 if( pCte->zCteErr ){
5596 sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName);
5597 return 2;
5599 if( cannotBeFunction(pParse, pFrom) ) return 2;
5601 assert( pFrom->pTab==0 );
5602 pTab = sqlite3DbMallocZero(db, sizeof(Table));
5603 if( pTab==0 ) return 2;
5604 pCteUse = pCte->pUse;
5605 if( pCteUse==0 ){
5606 pCte->pUse = pCteUse = sqlite3DbMallocZero(db, sizeof(pCteUse[0]));
5607 if( pCteUse==0
5608 || sqlite3ParserAddCleanup(pParse,sqlite3DbFree,pCteUse)==0
5610 sqlite3DbFree(db, pTab);
5611 return 2;
5613 pCteUse->eM10d = pCte->eM10d;
5615 pFrom->pTab = pTab;
5616 pTab->nTabRef = 1;
5617 pTab->zName = sqlite3DbStrDup(db, pCte->zName);
5618 pTab->iPKey = -1;
5619 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
5620 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
5621 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
5622 if( db->mallocFailed ) return 2;
5623 pFrom->pSelect->selFlags |= SF_CopyCte;
5624 assert( pFrom->pSelect );
5625 if( pFrom->fg.isIndexedBy ){
5626 sqlite3ErrorMsg(pParse, "no such index: \"%s\"", pFrom->u1.zIndexedBy);
5627 return 2;
5629 pFrom->fg.isCte = 1;
5630 pFrom->u2.pCteUse = pCteUse;
5631 pCteUse->nUse++;
5633 /* Check if this is a recursive CTE. */
5634 pRecTerm = pSel = pFrom->pSelect;
5635 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
5636 while( bMayRecursive && pRecTerm->op==pSel->op ){
5637 int i;
5638 SrcList *pSrc = pRecTerm->pSrc;
5639 assert( pRecTerm->pPrior!=0 );
5640 for(i=0; i<pSrc->nSrc; i++){
5641 SrcItem *pItem = &pSrc->a[i];
5642 if( pItem->zDatabase==0
5643 && pItem->zName!=0
5644 && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
5646 pItem->pTab = pTab;
5647 pTab->nTabRef++;
5648 pItem->fg.isRecursive = 1;
5649 if( pRecTerm->selFlags & SF_Recursive ){
5650 sqlite3ErrorMsg(pParse,
5651 "multiple references to recursive table: %s", pCte->zName
5653 return 2;
5655 pRecTerm->selFlags |= SF_Recursive;
5656 if( iRecTab<0 ) iRecTab = pParse->nTab++;
5657 pItem->iCursor = iRecTab;
5660 if( (pRecTerm->selFlags & SF_Recursive)==0 ) break;
5661 pRecTerm = pRecTerm->pPrior;
5664 pCte->zCteErr = "circular reference: %s";
5665 pSavedWith = pParse->pWith;
5666 pParse->pWith = pWith;
5667 if( pSel->selFlags & SF_Recursive ){
5668 int rc;
5669 assert( pRecTerm!=0 );
5670 assert( (pRecTerm->selFlags & SF_Recursive)==0 );
5671 assert( pRecTerm->pNext!=0 );
5672 assert( (pRecTerm->pNext->selFlags & SF_Recursive)!=0 );
5673 assert( pRecTerm->pWith==0 );
5674 pRecTerm->pWith = pSel->pWith;
5675 rc = sqlite3WalkSelect(pWalker, pRecTerm);
5676 pRecTerm->pWith = 0;
5677 if( rc ){
5678 pParse->pWith = pSavedWith;
5679 return 2;
5681 }else{
5682 if( sqlite3WalkSelect(pWalker, pSel) ){
5683 pParse->pWith = pSavedWith;
5684 return 2;
5687 pParse->pWith = pWith;
5689 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
5690 pEList = pLeft->pEList;
5691 if( pCte->pCols ){
5692 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
5693 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
5694 pCte->zName, pEList->nExpr, pCte->pCols->nExpr
5696 pParse->pWith = pSavedWith;
5697 return 2;
5699 pEList = pCte->pCols;
5702 sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
5703 if( bMayRecursive ){
5704 if( pSel->selFlags & SF_Recursive ){
5705 pCte->zCteErr = "multiple recursive references: %s";
5706 }else{
5707 pCte->zCteErr = "recursive reference in a subquery: %s";
5709 sqlite3WalkSelect(pWalker, pSel);
5711 pCte->zCteErr = 0;
5712 pParse->pWith = pSavedWith;
5713 return 1; /* Success */
5715 return 0; /* No match */
5717 #endif
5719 #ifndef SQLITE_OMIT_CTE
5721 ** If the SELECT passed as the second argument has an associated WITH
5722 ** clause, pop it from the stack stored as part of the Parse object.
5724 ** This function is used as the xSelectCallback2() callback by
5725 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
5726 ** names and other FROM clause elements.
5728 void sqlite3SelectPopWith(Walker *pWalker, Select *p){
5729 Parse *pParse = pWalker->pParse;
5730 if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){
5731 With *pWith = findRightmost(p)->pWith;
5732 if( pWith!=0 ){
5733 assert( pParse->pWith==pWith || pParse->nErr );
5734 pParse->pWith = pWith->pOuter;
5738 #endif
5741 ** The SrcItem structure passed as the second argument represents a
5742 ** sub-query in the FROM clause of a SELECT statement. This function
5743 ** allocates and populates the SrcItem.pTab object. If successful,
5744 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered,
5745 ** SQLITE_NOMEM.
5747 int sqlite3ExpandSubquery(Parse *pParse, SrcItem *pFrom){
5748 Select *pSel = pFrom->pSelect;
5749 Table *pTab;
5751 assert( pSel );
5752 pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table));
5753 if( pTab==0 ) return SQLITE_NOMEM;
5754 pTab->nTabRef = 1;
5755 if( pFrom->zAlias ){
5756 pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias);
5757 }else{
5758 pTab->zName = sqlite3MPrintf(pParse->db, "%!S", pFrom);
5760 while( pSel->pPrior ){ pSel = pSel->pPrior; }
5761 sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol);
5762 pTab->iPKey = -1;
5763 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
5764 #ifndef SQLITE_ALLOW_ROWID_IN_VIEW
5765 /* The usual case - do not allow ROWID on a subquery */
5766 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
5767 #else
5768 pTab->tabFlags |= TF_Ephemeral; /* Legacy compatibility mode */
5769 #endif
5770 return pParse->nErr ? SQLITE_ERROR : SQLITE_OK;
5775 ** Check the N SrcItem objects to the right of pBase. (N might be zero!)
5776 ** If any of those SrcItem objects have a USING clause containing zName
5777 ** then return true.
5779 ** If N is zero, or none of the N SrcItem objects to the right of pBase
5780 ** contains a USING clause, or if none of the USING clauses contain zName,
5781 ** then return false.
5783 static int inAnyUsingClause(
5784 const char *zName, /* Name we are looking for */
5785 SrcItem *pBase, /* The base SrcItem. Looking at pBase[1] and following */
5786 int N /* How many SrcItems to check */
5788 while( N>0 ){
5789 N--;
5790 pBase++;
5791 if( pBase->fg.isUsing==0 ) continue;
5792 if( NEVER(pBase->u3.pUsing==0) ) continue;
5793 if( sqlite3IdListIndex(pBase->u3.pUsing, zName)>=0 ) return 1;
5795 return 0;
5800 ** This routine is a Walker callback for "expanding" a SELECT statement.
5801 ** "Expanding" means to do the following:
5803 ** (1) Make sure VDBE cursor numbers have been assigned to every
5804 ** element of the FROM clause.
5806 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that
5807 ** defines FROM clause. When views appear in the FROM clause,
5808 ** fill pTabList->a[].pSelect with a copy of the SELECT statement
5809 ** that implements the view. A copy is made of the view's SELECT
5810 ** statement so that we can freely modify or delete that statement
5811 ** without worrying about messing up the persistent representation
5812 ** of the view.
5814 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword
5815 ** on joins and the ON and USING clause of joins.
5817 ** (4) Scan the list of columns in the result set (pEList) looking
5818 ** for instances of the "*" operator or the TABLE.* operator.
5819 ** If found, expand each "*" to be every column in every table
5820 ** and TABLE.* to be every column in TABLE.
5823 static int selectExpander(Walker *pWalker, Select *p){
5824 Parse *pParse = pWalker->pParse;
5825 int i, j, k, rc;
5826 SrcList *pTabList;
5827 ExprList *pEList;
5828 SrcItem *pFrom;
5829 sqlite3 *db = pParse->db;
5830 Expr *pE, *pRight, *pExpr;
5831 u16 selFlags = p->selFlags;
5832 u32 elistFlags = 0;
5834 p->selFlags |= SF_Expanded;
5835 if( db->mallocFailed ){
5836 return WRC_Abort;
5838 assert( p->pSrc!=0 );
5839 if( (selFlags & SF_Expanded)!=0 ){
5840 return WRC_Prune;
5842 if( pWalker->eCode ){
5843 /* Renumber selId because it has been copied from a view */
5844 p->selId = ++pParse->nSelect;
5846 pTabList = p->pSrc;
5847 pEList = p->pEList;
5848 if( pParse->pWith && (p->selFlags & SF_View) ){
5849 if( p->pWith==0 ){
5850 p->pWith = (With*)sqlite3DbMallocZero(db, sizeof(With));
5851 if( p->pWith==0 ){
5852 return WRC_Abort;
5855 p->pWith->bView = 1;
5857 sqlite3WithPush(pParse, p->pWith, 0);
5859 /* Make sure cursor numbers have been assigned to all entries in
5860 ** the FROM clause of the SELECT statement.
5862 sqlite3SrcListAssignCursors(pParse, pTabList);
5864 /* Look up every table named in the FROM clause of the select. If
5865 ** an entry of the FROM clause is a subquery instead of a table or view,
5866 ** then create a transient table structure to describe the subquery.
5868 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5869 Table *pTab;
5870 assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 );
5871 if( pFrom->pTab ) continue;
5872 assert( pFrom->fg.isRecursive==0 );
5873 if( pFrom->zName==0 ){
5874 #ifndef SQLITE_OMIT_SUBQUERY
5875 Select *pSel = pFrom->pSelect;
5876 /* A sub-query in the FROM clause of a SELECT */
5877 assert( pSel!=0 );
5878 assert( pFrom->pTab==0 );
5879 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
5880 if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort;
5881 #endif
5882 #ifndef SQLITE_OMIT_CTE
5883 }else if( (rc = resolveFromTermToCte(pParse, pWalker, pFrom))!=0 ){
5884 if( rc>1 ) return WRC_Abort;
5885 pTab = pFrom->pTab;
5886 assert( pTab!=0 );
5887 #endif
5888 }else{
5889 /* An ordinary table or view name in the FROM clause */
5890 assert( pFrom->pTab==0 );
5891 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
5892 if( pTab==0 ) return WRC_Abort;
5893 if( pTab->nTabRef>=0xffff ){
5894 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
5895 pTab->zName);
5896 pFrom->pTab = 0;
5897 return WRC_Abort;
5899 pTab->nTabRef++;
5900 if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){
5901 return WRC_Abort;
5903 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
5904 if( !IsOrdinaryTable(pTab) ){
5905 i16 nCol;
5906 u8 eCodeOrig = pWalker->eCode;
5907 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
5908 assert( pFrom->pSelect==0 );
5909 if( IsView(pTab) ){
5910 if( (db->flags & SQLITE_EnableView)==0
5911 && pTab->pSchema!=db->aDb[1].pSchema
5913 sqlite3ErrorMsg(pParse, "access to view \"%s\" prohibited",
5914 pTab->zName);
5916 pFrom->pSelect = sqlite3SelectDup(db, pTab->u.view.pSelect, 0);
5918 #ifndef SQLITE_OMIT_VIRTUALTABLE
5919 else if( ALWAYS(IsVirtual(pTab))
5920 && pFrom->fg.fromDDL
5921 && ALWAYS(pTab->u.vtab.p!=0)
5922 && pTab->u.vtab.p->eVtabRisk > ((db->flags & SQLITE_TrustedSchema)!=0)
5924 sqlite3ErrorMsg(pParse, "unsafe use of virtual table \"%s\"",
5925 pTab->zName);
5927 assert( SQLITE_VTABRISK_Normal==1 && SQLITE_VTABRISK_High==2 );
5928 #endif
5929 nCol = pTab->nCol;
5930 pTab->nCol = -1;
5931 pWalker->eCode = 1; /* Turn on Select.selId renumbering */
5932 sqlite3WalkSelect(pWalker, pFrom->pSelect);
5933 pWalker->eCode = eCodeOrig;
5934 pTab->nCol = nCol;
5936 #endif
5939 /* Locate the index named by the INDEXED BY clause, if any. */
5940 if( pFrom->fg.isIndexedBy && sqlite3IndexedByLookup(pParse, pFrom) ){
5941 return WRC_Abort;
5945 /* Process NATURAL keywords, and ON and USING clauses of joins.
5947 assert( db->mallocFailed==0 || pParse->nErr!=0 );
5948 if( pParse->nErr || sqlite3ProcessJoin(pParse, p) ){
5949 return WRC_Abort;
5952 /* For every "*" that occurs in the column list, insert the names of
5953 ** all columns in all tables. And for every TABLE.* insert the names
5954 ** of all columns in TABLE. The parser inserted a special expression
5955 ** with the TK_ASTERISK operator for each "*" that it found in the column
5956 ** list. The following code just has to locate the TK_ASTERISK
5957 ** expressions and expand each one to the list of all columns in
5958 ** all tables.
5960 ** The first loop just checks to see if there are any "*" operators
5961 ** that need expanding.
5963 for(k=0; k<pEList->nExpr; k++){
5964 pE = pEList->a[k].pExpr;
5965 if( pE->op==TK_ASTERISK ) break;
5966 assert( pE->op!=TK_DOT || pE->pRight!=0 );
5967 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
5968 if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break;
5969 elistFlags |= pE->flags;
5971 if( k<pEList->nExpr ){
5973 ** If we get here it means the result set contains one or more "*"
5974 ** operators that need to be expanded. Loop through each expression
5975 ** in the result set and expand them one by one.
5977 struct ExprList_item *a = pEList->a;
5978 ExprList *pNew = 0;
5979 int flags = pParse->db->flags;
5980 int longNames = (flags & SQLITE_FullColNames)!=0
5981 && (flags & SQLITE_ShortColNames)==0;
5983 for(k=0; k<pEList->nExpr; k++){
5984 pE = a[k].pExpr;
5985 elistFlags |= pE->flags;
5986 pRight = pE->pRight;
5987 assert( pE->op!=TK_DOT || pRight!=0 );
5988 if( pE->op!=TK_ASTERISK
5989 && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK)
5991 /* This particular expression does not need to be expanded.
5993 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
5994 if( pNew ){
5995 pNew->a[pNew->nExpr-1].zEName = a[k].zEName;
5996 pNew->a[pNew->nExpr-1].fg.eEName = a[k].fg.eEName;
5997 a[k].zEName = 0;
5999 a[k].pExpr = 0;
6000 }else{
6001 /* This expression is a "*" or a "TABLE.*" and needs to be
6002 ** expanded. */
6003 int tableSeen = 0; /* Set to 1 when TABLE matches */
6004 char *zTName = 0; /* text of name of TABLE */
6005 if( pE->op==TK_DOT ){
6006 assert( pE->pLeft!=0 );
6007 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
6008 zTName = pE->pLeft->u.zToken;
6010 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
6011 Table *pTab = pFrom->pTab; /* Table for this data source */
6012 ExprList *pNestedFrom; /* Result-set of a nested FROM clause */
6013 char *zTabName; /* AS name for this data source */
6014 const char *zSchemaName = 0; /* Schema name for this data source */
6015 int iDb; /* Schema index for this data src */
6016 IdList *pUsing; /* USING clause for pFrom[1] */
6018 if( (zTabName = pFrom->zAlias)==0 ){
6019 zTabName = pTab->zName;
6021 if( db->mallocFailed ) break;
6022 assert( (int)pFrom->fg.isNestedFrom == IsNestedFrom(pFrom->pSelect) );
6023 if( pFrom->fg.isNestedFrom ){
6024 assert( pFrom->pSelect!=0 );
6025 pNestedFrom = pFrom->pSelect->pEList;
6026 assert( pNestedFrom!=0 );
6027 assert( pNestedFrom->nExpr==pTab->nCol );
6028 }else{
6029 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
6030 continue;
6032 pNestedFrom = 0;
6033 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
6034 zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*";
6036 if( i+1<pTabList->nSrc
6037 && pFrom[1].fg.isUsing
6038 && (selFlags & SF_NestedFrom)!=0
6040 int ii;
6041 pUsing = pFrom[1].u3.pUsing;
6042 for(ii=0; ii<pUsing->nId; ii++){
6043 const char *zUName = pUsing->a[ii].zName;
6044 pRight = sqlite3Expr(db, TK_ID, zUName);
6045 pNew = sqlite3ExprListAppend(pParse, pNew, pRight);
6046 if( pNew ){
6047 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
6048 assert( pX->zEName==0 );
6049 pX->zEName = sqlite3MPrintf(db,"..%s", zUName);
6050 pX->fg.eEName = ENAME_TAB;
6051 pX->fg.bUsingTerm = 1;
6054 }else{
6055 pUsing = 0;
6057 for(j=0; j<pTab->nCol; j++){
6058 char *zName = pTab->aCol[j].zCnName;
6059 struct ExprList_item *pX; /* Newly added ExprList term */
6061 assert( zName );
6062 if( zTName
6063 && pNestedFrom
6064 && sqlite3MatchEName(&pNestedFrom->a[j], 0, zTName, 0)==0
6066 continue;
6069 /* If a column is marked as 'hidden', omit it from the expanded
6070 ** result-set list unless the SELECT has the SF_IncludeHidden
6071 ** bit set.
6073 if( (p->selFlags & SF_IncludeHidden)==0
6074 && IsHiddenColumn(&pTab->aCol[j])
6076 continue;
6078 if( (pTab->aCol[j].colFlags & COLFLAG_NOEXPAND)!=0
6079 && zTName==0
6080 && (selFlags & (SF_NestedFrom))==0
6082 continue;
6084 tableSeen = 1;
6086 if( i>0 && zTName==0 && (selFlags & SF_NestedFrom)==0 ){
6087 if( pFrom->fg.isUsing
6088 && sqlite3IdListIndex(pFrom->u3.pUsing, zName)>=0
6090 /* In a join with a USING clause, omit columns in the
6091 ** using clause from the table on the right. */
6092 continue;
6095 pRight = sqlite3Expr(db, TK_ID, zName);
6096 if( (pTabList->nSrc>1
6097 && ( (pFrom->fg.jointype & JT_LTORJ)==0
6098 || (selFlags & SF_NestedFrom)!=0
6099 || !inAnyUsingClause(zName,pFrom,pTabList->nSrc-i-1)
6102 || IN_RENAME_OBJECT
6104 Expr *pLeft;
6105 pLeft = sqlite3Expr(db, TK_ID, zTabName);
6106 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight);
6107 if( IN_RENAME_OBJECT && pE->pLeft ){
6108 sqlite3RenameTokenRemap(pParse, pLeft, pE->pLeft);
6110 if( zSchemaName ){
6111 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
6112 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr);
6114 }else{
6115 pExpr = pRight;
6117 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
6118 if( pNew==0 ){
6119 break; /* OOM */
6121 pX = &pNew->a[pNew->nExpr-1];
6122 assert( pX->zEName==0 );
6123 if( (selFlags & SF_NestedFrom)!=0 && !IN_RENAME_OBJECT ){
6124 if( pNestedFrom ){
6125 pX->zEName = sqlite3DbStrDup(db, pNestedFrom->a[j].zEName);
6126 testcase( pX->zEName==0 );
6127 }else{
6128 pX->zEName = sqlite3MPrintf(db, "%s.%s.%s",
6129 zSchemaName, zTabName, zName);
6130 testcase( pX->zEName==0 );
6132 pX->fg.eEName = ENAME_TAB;
6133 if( (pFrom->fg.isUsing
6134 && sqlite3IdListIndex(pFrom->u3.pUsing, zName)>=0)
6135 || (pUsing && sqlite3IdListIndex(pUsing, zName)>=0)
6136 || (pTab->aCol[j].colFlags & COLFLAG_NOEXPAND)!=0
6138 pX->fg.bNoExpand = 1;
6140 }else if( longNames ){
6141 pX->zEName = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
6142 pX->fg.eEName = ENAME_NAME;
6143 }else{
6144 pX->zEName = sqlite3DbStrDup(db, zName);
6145 pX->fg.eEName = ENAME_NAME;
6149 if( !tableSeen ){
6150 if( zTName ){
6151 sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
6152 }else{
6153 sqlite3ErrorMsg(pParse, "no tables specified");
6158 sqlite3ExprListDelete(db, pEList);
6159 p->pEList = pNew;
6161 if( p->pEList ){
6162 if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
6163 sqlite3ErrorMsg(pParse, "too many columns in result set");
6164 return WRC_Abort;
6166 if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){
6167 p->selFlags |= SF_ComplexResult;
6170 #if TREETRACE_ENABLED
6171 if( sqlite3TreeTrace & 0x8 ){
6172 TREETRACE(0x8,pParse,p,("After result-set wildcard expansion:\n"));
6173 sqlite3TreeViewSelect(0, p, 0);
6175 #endif
6176 return WRC_Continue;
6179 #if SQLITE_DEBUG
6181 ** Always assert. This xSelectCallback2 implementation proves that the
6182 ** xSelectCallback2 is never invoked.
6184 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){
6185 UNUSED_PARAMETER2(NotUsed, NotUsed2);
6186 assert( 0 );
6188 #endif
6190 ** This routine "expands" a SELECT statement and all of its subqueries.
6191 ** For additional information on what it means to "expand" a SELECT
6192 ** statement, see the comment on the selectExpand worker callback above.
6194 ** Expanding a SELECT statement is the first step in processing a
6195 ** SELECT statement. The SELECT statement must be expanded before
6196 ** name resolution is performed.
6198 ** If anything goes wrong, an error message is written into pParse.
6199 ** The calling function can detect the problem by looking at pParse->nErr
6200 ** and/or pParse->db->mallocFailed.
6202 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
6203 Walker w;
6204 w.xExprCallback = sqlite3ExprWalkNoop;
6205 w.pParse = pParse;
6206 if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){
6207 w.xSelectCallback = convertCompoundSelectToSubquery;
6208 w.xSelectCallback2 = 0;
6209 sqlite3WalkSelect(&w, pSelect);
6211 w.xSelectCallback = selectExpander;
6212 w.xSelectCallback2 = sqlite3SelectPopWith;
6213 w.eCode = 0;
6214 sqlite3WalkSelect(&w, pSelect);
6218 #ifndef SQLITE_OMIT_SUBQUERY
6220 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
6221 ** interface.
6223 ** For each FROM-clause subquery, add Column.zType, Column.zColl, and
6224 ** Column.affinity information to the Table structure that represents
6225 ** the result set of that subquery.
6227 ** The Table structure that represents the result set was constructed
6228 ** by selectExpander() but the type and collation and affinity information
6229 ** was omitted at that point because identifiers had not yet been resolved.
6230 ** This routine is called after identifier resolution.
6232 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
6233 Parse *pParse;
6234 int i;
6235 SrcList *pTabList;
6236 SrcItem *pFrom;
6238 assert( p->selFlags & SF_Resolved );
6239 if( p->selFlags & SF_HasTypeInfo ) return;
6240 p->selFlags |= SF_HasTypeInfo;
6241 pParse = pWalker->pParse;
6242 pTabList = p->pSrc;
6243 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
6244 Table *pTab = pFrom->pTab;
6245 assert( pTab!=0 );
6246 if( (pTab->tabFlags & TF_Ephemeral)!=0 ){
6247 /* A sub-query in the FROM clause of a SELECT */
6248 Select *pSel = pFrom->pSelect;
6249 if( pSel ){
6250 sqlite3SubqueryColumnTypes(pParse, pTab, pSel, SQLITE_AFF_NONE);
6255 #endif
6259 ** This routine adds datatype and collating sequence information to
6260 ** the Table structures of all FROM-clause subqueries in a
6261 ** SELECT statement.
6263 ** Use this routine after name resolution.
6265 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
6266 #ifndef SQLITE_OMIT_SUBQUERY
6267 Walker w;
6268 w.xSelectCallback = sqlite3SelectWalkNoop;
6269 w.xSelectCallback2 = selectAddSubqueryTypeInfo;
6270 w.xExprCallback = sqlite3ExprWalkNoop;
6271 w.pParse = pParse;
6272 sqlite3WalkSelect(&w, pSelect);
6273 #endif
6278 ** This routine sets up a SELECT statement for processing. The
6279 ** following is accomplished:
6281 ** * VDBE Cursor numbers are assigned to all FROM-clause terms.
6282 ** * Ephemeral Table objects are created for all FROM-clause subqueries.
6283 ** * ON and USING clauses are shifted into WHERE statements
6284 ** * Wildcards "*" and "TABLE.*" in result sets are expanded.
6285 ** * Identifiers in expression are matched to tables.
6287 ** This routine acts recursively on all subqueries within the SELECT.
6289 void sqlite3SelectPrep(
6290 Parse *pParse, /* The parser context */
6291 Select *p, /* The SELECT statement being coded. */
6292 NameContext *pOuterNC /* Name context for container */
6294 assert( p!=0 || pParse->db->mallocFailed );
6295 assert( pParse->db->pParse==pParse );
6296 if( pParse->db->mallocFailed ) return;
6297 if( p->selFlags & SF_HasTypeInfo ) return;
6298 sqlite3SelectExpand(pParse, p);
6299 if( pParse->nErr ) return;
6300 sqlite3ResolveSelectNames(pParse, p, pOuterNC);
6301 if( pParse->nErr ) return;
6302 sqlite3SelectAddTypeInfo(pParse, p);
6305 #if TREETRACE_ENABLED
6307 ** Display all information about an AggInfo object
6309 static void printAggInfo(AggInfo *pAggInfo){
6310 int ii;
6311 for(ii=0; ii<pAggInfo->nColumn; ii++){
6312 struct AggInfo_col *pCol = &pAggInfo->aCol[ii];
6313 sqlite3DebugPrintf(
6314 "agg-column[%d] pTab=%s iTable=%d iColumn=%d iMem=%d"
6315 " iSorterColumn=%d %s\n",
6316 ii, pCol->pTab ? pCol->pTab->zName : "NULL",
6317 pCol->iTable, pCol->iColumn, pAggInfo->iFirstReg+ii,
6318 pCol->iSorterColumn,
6319 ii>=pAggInfo->nAccumulator ? "" : " Accumulator");
6320 sqlite3TreeViewExpr(0, pAggInfo->aCol[ii].pCExpr, 0);
6322 for(ii=0; ii<pAggInfo->nFunc; ii++){
6323 sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n",
6324 ii, pAggInfo->iFirstReg+pAggInfo->nColumn+ii);
6325 sqlite3TreeViewExpr(0, pAggInfo->aFunc[ii].pFExpr, 0);
6328 #endif /* TREETRACE_ENABLED */
6331 ** Analyze the arguments to aggregate functions. Create new pAggInfo->aCol[]
6332 ** entries for columns that are arguments to aggregate functions but which
6333 ** are not otherwise used.
6335 ** The aCol[] entries in AggInfo prior to nAccumulator are columns that
6336 ** are referenced outside of aggregate functions. These might be columns
6337 ** that are part of the GROUP by clause, for example. Other database engines
6338 ** would throw an error if there is a column reference that is not in the
6339 ** GROUP BY clause and that is not part of an aggregate function argument.
6340 ** But SQLite allows this.
6342 ** The aCol[] entries beginning with the aCol[nAccumulator] and following
6343 ** are column references that are used exclusively as arguments to
6344 ** aggregate functions. This routine is responsible for computing
6345 ** (or recomputing) those aCol[] entries.
6347 static void analyzeAggFuncArgs(
6348 AggInfo *pAggInfo,
6349 NameContext *pNC
6351 int i;
6352 assert( pAggInfo!=0 );
6353 assert( pAggInfo->iFirstReg==0 );
6354 pNC->ncFlags |= NC_InAggFunc;
6355 for(i=0; i<pAggInfo->nFunc; i++){
6356 Expr *pExpr = pAggInfo->aFunc[i].pFExpr;
6357 assert( ExprUseXList(pExpr) );
6358 sqlite3ExprAnalyzeAggList(pNC, pExpr->x.pList);
6359 #ifndef SQLITE_OMIT_WINDOWFUNC
6360 assert( !IsWindowFunc(pExpr) );
6361 if( ExprHasProperty(pExpr, EP_WinFunc) ){
6362 sqlite3ExprAnalyzeAggregates(pNC, pExpr->y.pWin->pFilter);
6364 #endif
6366 pNC->ncFlags &= ~NC_InAggFunc;
6370 ** An index on expressions is being used in the inner loop of an
6371 ** aggregate query with a GROUP BY clause. This routine attempts
6372 ** to adjust the AggInfo object to take advantage of index and to
6373 ** perhaps use the index as a covering index.
6376 static void optimizeAggregateUseOfIndexedExpr(
6377 Parse *pParse, /* Parsing context */
6378 Select *pSelect, /* The SELECT statement being processed */
6379 AggInfo *pAggInfo, /* The aggregate info */
6380 NameContext *pNC /* Name context used to resolve agg-func args */
6382 assert( pAggInfo->iFirstReg==0 );
6383 assert( pSelect!=0 );
6384 assert( pSelect->pGroupBy!=0 );
6385 pAggInfo->nColumn = pAggInfo->nAccumulator;
6386 if( ALWAYS(pAggInfo->nSortingColumn>0) ){
6387 if( pAggInfo->nColumn==0 ){
6388 pAggInfo->nSortingColumn = pSelect->pGroupBy->nExpr;
6389 }else{
6390 pAggInfo->nSortingColumn =
6391 pAggInfo->aCol[pAggInfo->nColumn-1].iSorterColumn+1;
6394 analyzeAggFuncArgs(pAggInfo, pNC);
6395 #if TREETRACE_ENABLED
6396 if( sqlite3TreeTrace & 0x20 ){
6397 IndexedExpr *pIEpr;
6398 TREETRACE(0x20, pParse, pSelect,
6399 ("AggInfo (possibly) adjusted for Indexed Exprs\n"));
6400 sqlite3TreeViewSelect(0, pSelect, 0);
6401 for(pIEpr=pParse->pIdxEpr; pIEpr; pIEpr=pIEpr->pIENext){
6402 printf("data-cursor=%d index={%d,%d}\n",
6403 pIEpr->iDataCur, pIEpr->iIdxCur, pIEpr->iIdxCol);
6404 sqlite3TreeViewExpr(0, pIEpr->pExpr, 0);
6406 printAggInfo(pAggInfo);
6408 #else
6409 UNUSED_PARAMETER(pSelect);
6410 UNUSED_PARAMETER(pParse);
6411 #endif
6415 ** Walker callback for aggregateConvertIndexedExprRefToColumn().
6417 static int aggregateIdxEprRefToColCallback(Walker *pWalker, Expr *pExpr){
6418 AggInfo *pAggInfo;
6419 struct AggInfo_col *pCol;
6420 UNUSED_PARAMETER(pWalker);
6421 if( pExpr->pAggInfo==0 ) return WRC_Continue;
6422 if( pExpr->op==TK_AGG_COLUMN ) return WRC_Continue;
6423 if( pExpr->op==TK_AGG_FUNCTION ) return WRC_Continue;
6424 if( pExpr->op==TK_IF_NULL_ROW ) return WRC_Continue;
6425 pAggInfo = pExpr->pAggInfo;
6426 assert( pExpr->iAgg>=0 && pExpr->iAgg<pAggInfo->nColumn );
6427 pCol = &pAggInfo->aCol[pExpr->iAgg];
6428 pExpr->op = TK_AGG_COLUMN;
6429 pExpr->iTable = pCol->iTable;
6430 pExpr->iColumn = pCol->iColumn;
6431 return WRC_Prune;
6435 ** Convert every pAggInfo->aFunc[].pExpr such that any node within
6436 ** those expressions that has pAppInfo set is changed into a TK_AGG_COLUMN
6437 ** opcode.
6439 static void aggregateConvertIndexedExprRefToColumn(AggInfo *pAggInfo){
6440 int i;
6441 Walker w;
6442 memset(&w, 0, sizeof(w));
6443 w.xExprCallback = aggregateIdxEprRefToColCallback;
6444 for(i=0; i<pAggInfo->nFunc; i++){
6445 sqlite3WalkExpr(&w, pAggInfo->aFunc[i].pFExpr);
6451 ** Allocate a block of registers so that there is one register for each
6452 ** pAggInfo->aCol[] and pAggInfo->aFunc[] entry in pAggInfo. The first
6453 ** register in this block is stored in pAggInfo->iFirstReg.
6455 ** This routine may only be called once for each AggInfo object. Prior
6456 ** to calling this routine:
6458 ** * The aCol[] and aFunc[] arrays may be modified
6459 ** * The AggInfoColumnReg() and AggInfoFuncReg() macros may not be used
6461 ** After clling this routine:
6463 ** * The aCol[] and aFunc[] arrays are fixed
6464 ** * The AggInfoColumnReg() and AggInfoFuncReg() macros may be used
6467 static void assignAggregateRegisters(Parse *pParse, AggInfo *pAggInfo){
6468 assert( pAggInfo!=0 );
6469 assert( pAggInfo->iFirstReg==0 );
6470 pAggInfo->iFirstReg = pParse->nMem + 1;
6471 pParse->nMem += pAggInfo->nColumn + pAggInfo->nFunc;
6475 ** Reset the aggregate accumulator.
6477 ** The aggregate accumulator is a set of memory cells that hold
6478 ** intermediate results while calculating an aggregate. This
6479 ** routine generates code that stores NULLs in all of those memory
6480 ** cells.
6482 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
6483 Vdbe *v = pParse->pVdbe;
6484 int i;
6485 struct AggInfo_func *pFunc;
6486 int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
6487 assert( pAggInfo->iFirstReg>0 );
6488 assert( pParse->db->pParse==pParse );
6489 assert( pParse->db->mallocFailed==0 || pParse->nErr!=0 );
6490 if( nReg==0 ) return;
6491 if( pParse->nErr ) return;
6492 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->iFirstReg,
6493 pAggInfo->iFirstReg+nReg-1);
6494 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
6495 if( pFunc->iDistinct>=0 ){
6496 Expr *pE = pFunc->pFExpr;
6497 assert( ExprUseXList(pE) );
6498 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
6499 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
6500 "argument");
6501 pFunc->iDistinct = -1;
6502 }else{
6503 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0);
6504 pFunc->iDistAddr = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
6505 pFunc->iDistinct, 0, 0, (char*)pKeyInfo, P4_KEYINFO);
6506 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s(DISTINCT)",
6507 pFunc->pFunc->zName));
6514 ** Invoke the OP_AggFinalize opcode for every aggregate function
6515 ** in the AggInfo structure.
6517 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
6518 Vdbe *v = pParse->pVdbe;
6519 int i;
6520 struct AggInfo_func *pF;
6521 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
6522 ExprList *pList;
6523 assert( ExprUseXList(pF->pFExpr) );
6524 pList = pF->pFExpr->x.pList;
6525 sqlite3VdbeAddOp2(v, OP_AggFinal, AggInfoFuncReg(pAggInfo,i),
6526 pList ? pList->nExpr : 0);
6527 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
6533 ** Generate code that will update the accumulator memory cells for an
6534 ** aggregate based on the current cursor position.
6536 ** If regAcc is non-zero and there are no min() or max() aggregates
6537 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator
6538 ** registers if register regAcc contains 0. The caller will take care
6539 ** of setting and clearing regAcc.
6541 static void updateAccumulator(
6542 Parse *pParse,
6543 int regAcc,
6544 AggInfo *pAggInfo,
6545 int eDistinctType
6547 Vdbe *v = pParse->pVdbe;
6548 int i;
6549 int regHit = 0;
6550 int addrHitTest = 0;
6551 struct AggInfo_func *pF;
6552 struct AggInfo_col *pC;
6554 assert( pAggInfo->iFirstReg>0 );
6555 if( pParse->nErr ) return;
6556 pAggInfo->directMode = 1;
6557 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
6558 int nArg;
6559 int addrNext = 0;
6560 int regAgg;
6561 ExprList *pList;
6562 assert( ExprUseXList(pF->pFExpr) );
6563 assert( !IsWindowFunc(pF->pFExpr) );
6564 pList = pF->pFExpr->x.pList;
6565 if( ExprHasProperty(pF->pFExpr, EP_WinFunc) ){
6566 Expr *pFilter = pF->pFExpr->y.pWin->pFilter;
6567 if( pAggInfo->nAccumulator
6568 && (pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL)
6569 && regAcc
6571 /* If regAcc==0, there there exists some min() or max() function
6572 ** without a FILTER clause that will ensure the magnet registers
6573 ** are populated. */
6574 if( regHit==0 ) regHit = ++pParse->nMem;
6575 /* If this is the first row of the group (regAcc contains 0), clear the
6576 ** "magnet" register regHit so that the accumulator registers
6577 ** are populated if the FILTER clause jumps over the the
6578 ** invocation of min() or max() altogether. Or, if this is not
6579 ** the first row (regAcc contains 1), set the magnet register so that
6580 ** the accumulators are not populated unless the min()/max() is invoked
6581 ** and indicates that they should be. */
6582 sqlite3VdbeAddOp2(v, OP_Copy, regAcc, regHit);
6584 addrNext = sqlite3VdbeMakeLabel(pParse);
6585 sqlite3ExprIfFalse(pParse, pFilter, addrNext, SQLITE_JUMPIFNULL);
6587 if( pList ){
6588 nArg = pList->nExpr;
6589 regAgg = sqlite3GetTempRange(pParse, nArg);
6590 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP);
6591 }else{
6592 nArg = 0;
6593 regAgg = 0;
6595 if( pF->iDistinct>=0 && pList ){
6596 if( addrNext==0 ){
6597 addrNext = sqlite3VdbeMakeLabel(pParse);
6599 pF->iDistinct = codeDistinct(pParse, eDistinctType,
6600 pF->iDistinct, addrNext, pList, regAgg);
6602 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
6603 CollSeq *pColl = 0;
6604 struct ExprList_item *pItem;
6605 int j;
6606 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */
6607 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
6608 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
6610 if( !pColl ){
6611 pColl = pParse->db->pDfltColl;
6613 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
6614 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
6616 sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, AggInfoFuncReg(pAggInfo,i));
6617 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
6618 sqlite3VdbeChangeP5(v, (u8)nArg);
6619 sqlite3ReleaseTempRange(pParse, regAgg, nArg);
6620 if( addrNext ){
6621 sqlite3VdbeResolveLabel(v, addrNext);
6624 if( regHit==0 && pAggInfo->nAccumulator ){
6625 regHit = regAcc;
6627 if( regHit ){
6628 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
6630 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
6631 sqlite3ExprCode(pParse, pC->pCExpr, AggInfoColumnReg(pAggInfo,i));
6634 pAggInfo->directMode = 0;
6635 if( addrHitTest ){
6636 sqlite3VdbeJumpHereOrPopInst(v, addrHitTest);
6641 ** Add a single OP_Explain instruction to the VDBE to explain a simple
6642 ** count(*) query ("SELECT count(*) FROM pTab").
6644 #ifndef SQLITE_OMIT_EXPLAIN
6645 static void explainSimpleCount(
6646 Parse *pParse, /* Parse context */
6647 Table *pTab, /* Table being queried */
6648 Index *pIdx /* Index used to optimize scan, or NULL */
6650 if( pParse->explain==2 ){
6651 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
6652 sqlite3VdbeExplain(pParse, 0, "SCAN %s%s%s",
6653 pTab->zName,
6654 bCover ? " USING COVERING INDEX " : "",
6655 bCover ? pIdx->zName : ""
6659 #else
6660 # define explainSimpleCount(a,b,c)
6661 #endif
6664 ** sqlite3WalkExpr() callback used by havingToWhere().
6666 ** If the node passed to the callback is a TK_AND node, return
6667 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes.
6669 ** Otherwise, return WRC_Prune. In this case, also check if the
6670 ** sub-expression matches the criteria for being moved to the WHERE
6671 ** clause. If so, add it to the WHERE clause and replace the sub-expression
6672 ** within the HAVING expression with a constant "1".
6674 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){
6675 if( pExpr->op!=TK_AND ){
6676 Select *pS = pWalker->u.pSelect;
6677 /* This routine is called before the HAVING clause of the current
6678 ** SELECT is analyzed for aggregates. So if pExpr->pAggInfo is set
6679 ** here, it indicates that the expression is a correlated reference to a
6680 ** column from an outer aggregate query, or an aggregate function that
6681 ** belongs to an outer query. Do not move the expression to the WHERE
6682 ** clause in this obscure case, as doing so may corrupt the outer Select
6683 ** statements AggInfo structure. */
6684 if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy)
6685 && ExprAlwaysFalse(pExpr)==0
6686 && pExpr->pAggInfo==0
6688 sqlite3 *db = pWalker->pParse->db;
6689 Expr *pNew = sqlite3Expr(db, TK_INTEGER, "1");
6690 if( pNew ){
6691 Expr *pWhere = pS->pWhere;
6692 SWAP(Expr, *pNew, *pExpr);
6693 pNew = sqlite3ExprAnd(pWalker->pParse, pWhere, pNew);
6694 pS->pWhere = pNew;
6695 pWalker->eCode = 1;
6698 return WRC_Prune;
6700 return WRC_Continue;
6704 ** Transfer eligible terms from the HAVING clause of a query, which is
6705 ** processed after grouping, to the WHERE clause, which is processed before
6706 ** grouping. For example, the query:
6708 ** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=?
6710 ** can be rewritten as:
6712 ** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=?
6714 ** A term of the HAVING expression is eligible for transfer if it consists
6715 ** entirely of constants and expressions that are also GROUP BY terms that
6716 ** use the "BINARY" collation sequence.
6718 static void havingToWhere(Parse *pParse, Select *p){
6719 Walker sWalker;
6720 memset(&sWalker, 0, sizeof(sWalker));
6721 sWalker.pParse = pParse;
6722 sWalker.xExprCallback = havingToWhereExprCb;
6723 sWalker.u.pSelect = p;
6724 sqlite3WalkExpr(&sWalker, p->pHaving);
6725 #if TREETRACE_ENABLED
6726 if( sWalker.eCode && (sqlite3TreeTrace & 0x100)!=0 ){
6727 TREETRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n"));
6728 sqlite3TreeViewSelect(0, p, 0);
6730 #endif
6734 ** Check to see if the pThis entry of pTabList is a self-join of another view.
6735 ** Search FROM-clause entries in the range of iFirst..iEnd, including iFirst
6736 ** but stopping before iEnd.
6738 ** If pThis is a self-join, then return the SrcItem for the first other
6739 ** instance of that view found. If pThis is not a self-join then return 0.
6741 static SrcItem *isSelfJoinView(
6742 SrcList *pTabList, /* Search for self-joins in this FROM clause */
6743 SrcItem *pThis, /* Search for prior reference to this subquery */
6744 int iFirst, int iEnd /* Range of FROM-clause entries to search. */
6746 SrcItem *pItem;
6747 assert( pThis->pSelect!=0 );
6748 if( pThis->pSelect->selFlags & SF_PushDown ) return 0;
6749 while( iFirst<iEnd ){
6750 Select *pS1;
6751 pItem = &pTabList->a[iFirst++];
6752 if( pItem->pSelect==0 ) continue;
6753 if( pItem->fg.viaCoroutine ) continue;
6754 if( pItem->zName==0 ) continue;
6755 assert( pItem->pTab!=0 );
6756 assert( pThis->pTab!=0 );
6757 if( pItem->pTab->pSchema!=pThis->pTab->pSchema ) continue;
6758 if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue;
6759 pS1 = pItem->pSelect;
6760 if( pItem->pTab->pSchema==0 && pThis->pSelect->selId!=pS1->selId ){
6761 /* The query flattener left two different CTE tables with identical
6762 ** names in the same FROM clause. */
6763 continue;
6765 if( pItem->pSelect->selFlags & SF_PushDown ){
6766 /* The view was modified by some other optimization such as
6767 ** pushDownWhereTerms() */
6768 continue;
6770 return pItem;
6772 return 0;
6776 ** Deallocate a single AggInfo object
6778 static void agginfoFree(sqlite3 *db, AggInfo *p){
6779 sqlite3DbFree(db, p->aCol);
6780 sqlite3DbFree(db, p->aFunc);
6781 sqlite3DbFreeNN(db, p);
6784 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
6786 ** Attempt to transform a query of the form
6788 ** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2)
6790 ** Into this:
6792 ** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2)
6794 ** The transformation only works if all of the following are true:
6796 ** * The subquery is a UNION ALL of two or more terms
6797 ** * The subquery does not have a LIMIT clause
6798 ** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries
6799 ** * The outer query is a simple count(*) with no WHERE clause or other
6800 ** extraneous syntax.
6802 ** Return TRUE if the optimization is undertaken.
6804 static int countOfViewOptimization(Parse *pParse, Select *p){
6805 Select *pSub, *pPrior;
6806 Expr *pExpr;
6807 Expr *pCount;
6808 sqlite3 *db;
6809 if( (p->selFlags & SF_Aggregate)==0 ) return 0; /* This is an aggregate */
6810 if( p->pEList->nExpr!=1 ) return 0; /* Single result column */
6811 if( p->pWhere ) return 0;
6812 if( p->pGroupBy ) return 0;
6813 if( p->pOrderBy ) return 0;
6814 pExpr = p->pEList->a[0].pExpr;
6815 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; /* Result is an aggregate */
6816 assert( ExprUseUToken(pExpr) );
6817 if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0; /* Is count() */
6818 assert( ExprUseXList(pExpr) );
6819 if( pExpr->x.pList!=0 ) return 0; /* Must be count(*) */
6820 if( p->pSrc->nSrc!=1 ) return 0; /* One table in FROM */
6821 if( ExprHasProperty(pExpr, EP_WinFunc) ) return 0;/* Not a window function */
6822 pSub = p->pSrc->a[0].pSelect;
6823 if( pSub==0 ) return 0; /* The FROM is a subquery */
6824 if( pSub->pPrior==0 ) return 0; /* Must be a compound */
6825 if( pSub->selFlags & SF_CopyCte ) return 0; /* Not a CTE */
6827 if( pSub->op!=TK_ALL && pSub->pPrior ) return 0; /* Must be UNION ALL */
6828 if( pSub->pWhere ) return 0; /* No WHERE clause */
6829 if( pSub->pLimit ) return 0; /* No LIMIT clause */
6830 if( pSub->selFlags & SF_Aggregate ) return 0; /* Not an aggregate */
6831 pSub = pSub->pPrior; /* Repeat over compound */
6832 }while( pSub );
6834 /* If we reach this point then it is OK to perform the transformation */
6836 db = pParse->db;
6837 pCount = pExpr;
6838 pExpr = 0;
6839 pSub = p->pSrc->a[0].pSelect;
6840 p->pSrc->a[0].pSelect = 0;
6841 sqlite3SrcListDelete(db, p->pSrc);
6842 p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc));
6843 while( pSub ){
6844 Expr *pTerm;
6845 pPrior = pSub->pPrior;
6846 pSub->pPrior = 0;
6847 pSub->pNext = 0;
6848 pSub->selFlags |= SF_Aggregate;
6849 pSub->selFlags &= ~SF_Compound;
6850 pSub->nSelectRow = 0;
6851 sqlite3ExprListDelete(db, pSub->pEList);
6852 pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount;
6853 pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm);
6854 pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0);
6855 sqlite3PExprAddSelect(pParse, pTerm, pSub);
6856 if( pExpr==0 ){
6857 pExpr = pTerm;
6858 }else{
6859 pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr);
6861 pSub = pPrior;
6863 p->pEList->a[0].pExpr = pExpr;
6864 p->selFlags &= ~SF_Aggregate;
6866 #if TREETRACE_ENABLED
6867 if( sqlite3TreeTrace & 0x200 ){
6868 TREETRACE(0x200,pParse,p,("After count-of-view optimization:\n"));
6869 sqlite3TreeViewSelect(0, p, 0);
6871 #endif
6872 return 1;
6874 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */
6877 ** If any term of pSrc, or any SF_NestedFrom sub-query, is not the same
6878 ** as pSrcItem but has the same alias as p0, then return true.
6879 ** Otherwise return false.
6881 static int sameSrcAlias(SrcItem *p0, SrcList *pSrc){
6882 int i;
6883 for(i=0; i<pSrc->nSrc; i++){
6884 SrcItem *p1 = &pSrc->a[i];
6885 if( p1==p0 ) continue;
6886 if( p0->pTab==p1->pTab && 0==sqlite3_stricmp(p0->zAlias, p1->zAlias) ){
6887 return 1;
6889 if( p1->pSelect
6890 && (p1->pSelect->selFlags & SF_NestedFrom)!=0
6891 && sameSrcAlias(p0, p1->pSelect->pSrc)
6893 return 1;
6896 return 0;
6900 ** Return TRUE (non-zero) if the i-th entry in the pTabList SrcList can
6901 ** be implemented as a co-routine. The i-th entry is guaranteed to be
6902 ** a subquery.
6904 ** The subquery is implemented as a co-routine if all of the following are
6905 ** true:
6907 ** (1) The subquery will likely be implemented in the outer loop of
6908 ** the query. This will be the case if any one of the following
6909 ** conditions hold:
6910 ** (a) The subquery is the only term in the FROM clause
6911 ** (b) The subquery is the left-most term and a CROSS JOIN or similar
6912 ** requires it to be the outer loop
6913 ** (c) All of the following are true:
6914 ** (i) The subquery is the left-most subquery in the FROM clause
6915 ** (ii) There is nothing that would prevent the subquery from
6916 ** being used as the outer loop if the sqlite3WhereBegin()
6917 ** routine nominates it to that position.
6918 ** (iii) The query is not a UPDATE ... FROM
6919 ** (2) The subquery is not a CTE that should be materialized because
6920 ** (a) the AS MATERIALIZED keyword is used, or
6921 ** (b) the CTE is used multiple times and does not have the
6922 ** NOT MATERIALIZED keyword
6923 ** (3) The subquery is not part of a left operand for a RIGHT JOIN
6924 ** (4) The SQLITE_Coroutine optimization disable flag is not set
6925 ** (5) The subquery is not self-joined
6927 static int fromClauseTermCanBeCoroutine(
6928 Parse *pParse, /* Parsing context */
6929 SrcList *pTabList, /* FROM clause */
6930 int i, /* Which term of the FROM clause holds the subquery */
6931 int selFlags /* Flags on the SELECT statement */
6933 SrcItem *pItem = &pTabList->a[i];
6934 if( pItem->fg.isCte ){
6935 const CteUse *pCteUse = pItem->u2.pCteUse;
6936 if( pCteUse->eM10d==M10d_Yes ) return 0; /* (2a) */
6937 if( pCteUse->nUse>=2 && pCteUse->eM10d!=M10d_No ) return 0; /* (2b) */
6939 if( pTabList->a[0].fg.jointype & JT_LTORJ ) return 0; /* (3) */
6940 if( OptimizationDisabled(pParse->db, SQLITE_Coroutines) ) return 0; /* (4) */
6941 if( isSelfJoinView(pTabList, pItem, i+1, pTabList->nSrc)!=0 ){
6942 return 0; /* (5) */
6944 if( i==0 ){
6945 if( pTabList->nSrc==1 ) return 1; /* (1a) */
6946 if( pTabList->a[1].fg.jointype & JT_CROSS ) return 1; /* (1b) */
6947 if( selFlags & SF_UpdateFrom ) return 0; /* (1c-iii) */
6948 return 1;
6950 if( selFlags & SF_UpdateFrom ) return 0; /* (1c-iii) */
6951 while( 1 /*exit-by-break*/ ){
6952 if( pItem->fg.jointype & (JT_OUTER|JT_CROSS) ) return 0; /* (1c-ii) */
6953 if( i==0 ) break;
6954 i--;
6955 pItem--;
6956 if( pItem->pSelect!=0 ) return 0; /* (1c-i) */
6958 return 1;
6962 ** Generate code for the SELECT statement given in the p argument.
6964 ** The results are returned according to the SelectDest structure.
6965 ** See comments in sqliteInt.h for further information.
6967 ** This routine returns the number of errors. If any errors are
6968 ** encountered, then an appropriate error message is left in
6969 ** pParse->zErrMsg.
6971 ** This routine does NOT free the Select structure passed in. The
6972 ** calling function needs to do that.
6974 int sqlite3Select(
6975 Parse *pParse, /* The parser context */
6976 Select *p, /* The SELECT statement being coded. */
6977 SelectDest *pDest /* What to do with the query results */
6979 int i, j; /* Loop counters */
6980 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */
6981 Vdbe *v; /* The virtual machine under construction */
6982 int isAgg; /* True for select lists like "count(*)" */
6983 ExprList *pEList = 0; /* List of columns to extract. */
6984 SrcList *pTabList; /* List of tables to select from */
6985 Expr *pWhere; /* The WHERE clause. May be NULL */
6986 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */
6987 Expr *pHaving; /* The HAVING clause. May be NULL */
6988 AggInfo *pAggInfo = 0; /* Aggregate information */
6989 int rc = 1; /* Value to return from this function */
6990 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
6991 SortCtx sSort; /* Info on how to code the ORDER BY clause */
6992 int iEnd; /* Address of the end of the query */
6993 sqlite3 *db; /* The database connection */
6994 ExprList *pMinMaxOrderBy = 0; /* Added ORDER BY for min/max queries */
6995 u8 minMaxFlag; /* Flag for min/max queries */
6997 db = pParse->db;
6998 assert( pParse==db->pParse );
6999 v = sqlite3GetVdbe(pParse);
7000 if( p==0 || pParse->nErr ){
7001 return 1;
7003 assert( db->mallocFailed==0 );
7004 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
7005 #if TREETRACE_ENABLED
7006 TREETRACE(0x1,pParse,p, ("begin processing:\n", pParse->addrExplain));
7007 if( sqlite3TreeTrace & 0x10000 ){
7008 if( (sqlite3TreeTrace & 0x10001)==0x10000 ){
7009 sqlite3TreeViewLine(0, "In sqlite3Select() at %s:%d",
7010 __FILE__, __LINE__);
7012 sqlite3ShowSelect(p);
7014 #endif
7016 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
7017 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
7018 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
7019 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
7020 if( IgnorableDistinct(pDest) ){
7021 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
7022 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard ||
7023 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_DistFifo );
7024 /* All of these destinations are also able to ignore the ORDER BY clause */
7025 if( p->pOrderBy ){
7026 #if TREETRACE_ENABLED
7027 TREETRACE(0x800,pParse,p, ("dropping superfluous ORDER BY:\n"));
7028 if( sqlite3TreeTrace & 0x800 ){
7029 sqlite3TreeViewExprList(0, p->pOrderBy, 0, "ORDERBY");
7031 #endif
7032 sqlite3ParserAddCleanup(pParse,
7033 (void(*)(sqlite3*,void*))sqlite3ExprListDelete,
7034 p->pOrderBy);
7035 testcase( pParse->earlyCleanup );
7036 p->pOrderBy = 0;
7038 p->selFlags &= ~SF_Distinct;
7039 p->selFlags |= SF_NoopOrderBy;
7041 sqlite3SelectPrep(pParse, p, 0);
7042 if( pParse->nErr ){
7043 goto select_end;
7045 assert( db->mallocFailed==0 );
7046 assert( p->pEList!=0 );
7047 #if TREETRACE_ENABLED
7048 if( sqlite3TreeTrace & 0x10 ){
7049 TREETRACE(0x10,pParse,p, ("after name resolution:\n"));
7050 sqlite3TreeViewSelect(0, p, 0);
7052 #endif
7054 /* If the SF_UFSrcCheck flag is set, then this function is being called
7055 ** as part of populating the temp table for an UPDATE...FROM statement.
7056 ** In this case, it is an error if the target object (pSrc->a[0]) name
7057 ** or alias is duplicated within FROM clause (pSrc->a[1..n]).
7059 ** Postgres disallows this case too. The reason is that some other
7060 ** systems handle this case differently, and not all the same way,
7061 ** which is just confusing. To avoid this, we follow PG's lead and
7062 ** disallow it altogether. */
7063 if( p->selFlags & SF_UFSrcCheck ){
7064 SrcItem *p0 = &p->pSrc->a[0];
7065 if( sameSrcAlias(p0, p->pSrc) ){
7066 sqlite3ErrorMsg(pParse,
7067 "target object/alias may not appear in FROM clause: %s",
7068 p0->zAlias ? p0->zAlias : p0->pTab->zName
7070 goto select_end;
7073 /* Clear the SF_UFSrcCheck flag. The check has already been performed,
7074 ** and leaving this flag set can cause errors if a compound sub-query
7075 ** in p->pSrc is flattened into this query and this function called
7076 ** again as part of compound SELECT processing. */
7077 p->selFlags &= ~SF_UFSrcCheck;
7080 if( pDest->eDest==SRT_Output ){
7081 sqlite3GenerateColumnNames(pParse, p);
7084 #ifndef SQLITE_OMIT_WINDOWFUNC
7085 if( sqlite3WindowRewrite(pParse, p) ){
7086 assert( pParse->nErr );
7087 goto select_end;
7089 #if TREETRACE_ENABLED
7090 if( p->pWin && (sqlite3TreeTrace & 0x40)!=0 ){
7091 TREETRACE(0x40,pParse,p, ("after window rewrite:\n"));
7092 sqlite3TreeViewSelect(0, p, 0);
7094 #endif
7095 #endif /* SQLITE_OMIT_WINDOWFUNC */
7096 pTabList = p->pSrc;
7097 isAgg = (p->selFlags & SF_Aggregate)!=0;
7098 memset(&sSort, 0, sizeof(sSort));
7099 sSort.pOrderBy = p->pOrderBy;
7101 /* Try to do various optimizations (flattening subqueries, and strength
7102 ** reduction of join operators) in the FROM clause up into the main query
7104 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
7105 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
7106 SrcItem *pItem = &pTabList->a[i];
7107 Select *pSub = pItem->pSelect;
7108 Table *pTab = pItem->pTab;
7110 /* The expander should have already created transient Table objects
7111 ** even for FROM clause elements such as subqueries that do not correspond
7112 ** to a real table */
7113 assert( pTab!=0 );
7115 /* Convert LEFT JOIN into JOIN if there are terms of the right table
7116 ** of the LEFT JOIN used in the WHERE clause.
7118 if( (pItem->fg.jointype & (JT_LEFT|JT_RIGHT))==JT_LEFT
7119 && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor)
7120 && OptimizationEnabled(db, SQLITE_SimplifyJoin)
7122 TREETRACE(0x1000,pParse,p,
7123 ("LEFT-JOIN simplifies to JOIN on term %d\n",i));
7124 pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER);
7125 assert( pItem->iCursor>=0 );
7126 unsetJoinExpr(p->pWhere, pItem->iCursor,
7127 pTabList->a[0].fg.jointype & JT_LTORJ);
7130 /* No futher action if this term of the FROM clause is no a subquery */
7131 if( pSub==0 ) continue;
7133 /* Catch mismatch in the declared columns of a view and the number of
7134 ** columns in the SELECT on the RHS */
7135 if( pTab->nCol!=pSub->pEList->nExpr ){
7136 sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d",
7137 pTab->nCol, pTab->zName, pSub->pEList->nExpr);
7138 goto select_end;
7141 /* Do not try to flatten an aggregate subquery.
7143 ** Flattening an aggregate subquery is only possible if the outer query
7144 ** is not a join. But if the outer query is not a join, then the subquery
7145 ** will be implemented as a co-routine and there is no advantage to
7146 ** flattening in that case.
7148 if( (pSub->selFlags & SF_Aggregate)!=0 ) continue;
7149 assert( pSub->pGroupBy==0 );
7151 /* If a FROM-clause subquery has an ORDER BY clause that is not
7152 ** really doing anything, then delete it now so that it does not
7153 ** interfere with query flattening. See the discussion at
7154 ** https://sqlite.org/forum/forumpost/2d76f2bcf65d256a
7156 ** Beware of these cases where the ORDER BY clause may not be safely
7157 ** omitted:
7159 ** (1) There is also a LIMIT clause
7160 ** (2) The subquery was added to help with window-function
7161 ** processing
7162 ** (3) The subquery is in the FROM clause of an UPDATE
7163 ** (4) The outer query uses an aggregate function other than
7164 ** the built-in count(), min(), or max().
7165 ** (5) The ORDER BY isn't going to accomplish anything because
7166 ** one of:
7167 ** (a) The outer query has a different ORDER BY clause
7168 ** (b) The subquery is part of a join
7169 ** See forum post 062d576715d277c8
7171 if( pSub->pOrderBy!=0
7172 && (p->pOrderBy!=0 || pTabList->nSrc>1) /* Condition (5) */
7173 && pSub->pLimit==0 /* Condition (1) */
7174 && (pSub->selFlags & SF_OrderByReqd)==0 /* Condition (2) */
7175 && (p->selFlags & SF_OrderByReqd)==0 /* Condition (3) and (4) */
7176 && OptimizationEnabled(db, SQLITE_OmitOrderBy)
7178 TREETRACE(0x800,pParse,p,
7179 ("omit superfluous ORDER BY on %r FROM-clause subquery\n",i+1));
7180 sqlite3ParserAddCleanup(pParse,
7181 (void(*)(sqlite3*,void*))sqlite3ExprListDelete,
7182 pSub->pOrderBy);
7183 pSub->pOrderBy = 0;
7186 /* If the outer query contains a "complex" result set (that is,
7187 ** if the result set of the outer query uses functions or subqueries)
7188 ** and if the subquery contains an ORDER BY clause and if
7189 ** it will be implemented as a co-routine, then do not flatten. This
7190 ** restriction allows SQL constructs like this:
7192 ** SELECT expensive_function(x)
7193 ** FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
7195 ** The expensive_function() is only computed on the 10 rows that
7196 ** are output, rather than every row of the table.
7198 ** The requirement that the outer query have a complex result set
7199 ** means that flattening does occur on simpler SQL constraints without
7200 ** the expensive_function() like:
7202 ** SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
7204 if( pSub->pOrderBy!=0
7205 && i==0
7206 && (p->selFlags & SF_ComplexResult)!=0
7207 && (pTabList->nSrc==1
7208 || (pTabList->a[1].fg.jointype&(JT_OUTER|JT_CROSS))!=0)
7210 continue;
7213 if( flattenSubquery(pParse, p, i, isAgg) ){
7214 if( pParse->nErr ) goto select_end;
7215 /* This subquery can be absorbed into its parent. */
7216 i = -1;
7218 pTabList = p->pSrc;
7219 if( db->mallocFailed ) goto select_end;
7220 if( !IgnorableOrderby(pDest) ){
7221 sSort.pOrderBy = p->pOrderBy;
7224 #endif
7226 #ifndef SQLITE_OMIT_COMPOUND_SELECT
7227 /* Handle compound SELECT statements using the separate multiSelect()
7228 ** procedure.
7230 if( p->pPrior ){
7231 rc = multiSelect(pParse, p, pDest);
7232 #if TREETRACE_ENABLED
7233 TREETRACE(0x400,pParse,p,("end compound-select processing\n"));
7234 if( (sqlite3TreeTrace & 0x400)!=0 && ExplainQueryPlanParent(pParse)==0 ){
7235 sqlite3TreeViewSelect(0, p, 0);
7237 #endif
7238 if( p->pNext==0 ) ExplainQueryPlanPop(pParse);
7239 return rc;
7241 #endif
7243 /* Do the WHERE-clause constant propagation optimization if this is
7244 ** a join. No need to speed time on this operation for non-join queries
7245 ** as the equivalent optimization will be handled by query planner in
7246 ** sqlite3WhereBegin().
7248 if( p->pWhere!=0
7249 && p->pWhere->op==TK_AND
7250 && OptimizationEnabled(db, SQLITE_PropagateConst)
7251 && propagateConstants(pParse, p)
7253 #if TREETRACE_ENABLED
7254 if( sqlite3TreeTrace & 0x2000 ){
7255 TREETRACE(0x2000,pParse,p,("After constant propagation:\n"));
7256 sqlite3TreeViewSelect(0, p, 0);
7258 #endif
7259 }else{
7260 TREETRACE(0x2000,pParse,p,("Constant propagation not helpful\n"));
7263 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
7264 if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView)
7265 && countOfViewOptimization(pParse, p)
7267 if( db->mallocFailed ) goto select_end;
7268 pTabList = p->pSrc;
7270 #endif
7272 /* For each term in the FROM clause, do two things:
7273 ** (1) Authorized unreferenced tables
7274 ** (2) Generate code for all sub-queries
7276 for(i=0; i<pTabList->nSrc; i++){
7277 SrcItem *pItem = &pTabList->a[i];
7278 SrcItem *pPrior;
7279 SelectDest dest;
7280 Select *pSub;
7281 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
7282 const char *zSavedAuthContext;
7283 #endif
7285 /* Issue SQLITE_READ authorizations with a fake column name for any
7286 ** tables that are referenced but from which no values are extracted.
7287 ** Examples of where these kinds of null SQLITE_READ authorizations
7288 ** would occur:
7290 ** SELECT count(*) FROM t1; -- SQLITE_READ t1.""
7291 ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2.""
7293 ** The fake column name is an empty string. It is possible for a table to
7294 ** have a column named by the empty string, in which case there is no way to
7295 ** distinguish between an unreferenced table and an actual reference to the
7296 ** "" column. The original design was for the fake column name to be a NULL,
7297 ** which would be unambiguous. But legacy authorization callbacks might
7298 ** assume the column name is non-NULL and segfault. The use of an empty
7299 ** string for the fake column name seems safer.
7301 if( pItem->colUsed==0 && pItem->zName!=0 ){
7302 sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase);
7305 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
7306 /* Generate code for all sub-queries in the FROM clause
7308 pSub = pItem->pSelect;
7309 if( pSub==0 ) continue;
7311 /* The code for a subquery should only be generated once. */
7312 assert( pItem->addrFillSub==0 );
7314 /* Increment Parse.nHeight by the height of the largest expression
7315 ** tree referred to by this, the parent select. The child select
7316 ** may contain expression trees of at most
7317 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
7318 ** more conservative than necessary, but much easier than enforcing
7319 ** an exact limit.
7321 pParse->nHeight += sqlite3SelectExprHeight(p);
7323 /* Make copies of constant WHERE-clause terms in the outer query down
7324 ** inside the subquery. This can help the subquery to run more efficiently.
7326 if( OptimizationEnabled(db, SQLITE_PushDown)
7327 && (pItem->fg.isCte==0
7328 || (pItem->u2.pCteUse->eM10d!=M10d_Yes && pItem->u2.pCteUse->nUse<2))
7329 && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem)
7331 #if TREETRACE_ENABLED
7332 if( sqlite3TreeTrace & 0x4000 ){
7333 TREETRACE(0x4000,pParse,p,
7334 ("After WHERE-clause push-down into subquery %d:\n", pSub->selId));
7335 sqlite3TreeViewSelect(0, p, 0);
7337 #endif
7338 assert( pItem->pSelect && (pItem->pSelect->selFlags & SF_PushDown)!=0 );
7339 }else{
7340 TREETRACE(0x4000,pParse,p,("Push-down not possible\n"));
7343 zSavedAuthContext = pParse->zAuthContext;
7344 pParse->zAuthContext = pItem->zName;
7346 /* Generate code to implement the subquery
7348 if( fromClauseTermCanBeCoroutine(pParse, pTabList, i, p->selFlags) ){
7349 /* Implement a co-routine that will return a single row of the result
7350 ** set on each invocation.
7352 int addrTop = sqlite3VdbeCurrentAddr(v)+1;
7354 pItem->regReturn = ++pParse->nMem;
7355 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
7356 VdbeComment((v, "%!S", pItem));
7357 pItem->addrFillSub = addrTop;
7358 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
7359 ExplainQueryPlan((pParse, 1, "CO-ROUTINE %!S", pItem));
7360 sqlite3Select(pParse, pSub, &dest);
7361 pItem->pTab->nRowLogEst = pSub->nSelectRow;
7362 pItem->fg.viaCoroutine = 1;
7363 pItem->regResult = dest.iSdst;
7364 sqlite3VdbeEndCoroutine(v, pItem->regReturn);
7365 sqlite3VdbeJumpHere(v, addrTop-1);
7366 sqlite3ClearTempRegCache(pParse);
7367 }else if( pItem->fg.isCte && pItem->u2.pCteUse->addrM9e>0 ){
7368 /* This is a CTE for which materialization code has already been
7369 ** generated. Invoke the subroutine to compute the materialization,
7370 ** the make the pItem->iCursor be a copy of the ephemerial table that
7371 ** holds the result of the materialization. */
7372 CteUse *pCteUse = pItem->u2.pCteUse;
7373 sqlite3VdbeAddOp2(v, OP_Gosub, pCteUse->regRtn, pCteUse->addrM9e);
7374 if( pItem->iCursor!=pCteUse->iCur ){
7375 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pCteUse->iCur);
7376 VdbeComment((v, "%!S", pItem));
7378 pSub->nSelectRow = pCteUse->nRowEst;
7379 }else if( (pPrior = isSelfJoinView(pTabList, pItem, 0, i))!=0 ){
7380 /* This view has already been materialized by a prior entry in
7381 ** this same FROM clause. Reuse it. */
7382 if( pPrior->addrFillSub ){
7383 sqlite3VdbeAddOp2(v, OP_Gosub, pPrior->regReturn, pPrior->addrFillSub);
7385 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor);
7386 pSub->nSelectRow = pPrior->pSelect->nSelectRow;
7387 }else{
7388 /* Materialize the view. If the view is not correlated, generate a
7389 ** subroutine to do the materialization so that subsequent uses of
7390 ** the same view can reuse the materialization. */
7391 int topAddr;
7392 int onceAddr = 0;
7393 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
7394 int addrExplain;
7395 #endif
7397 pItem->regReturn = ++pParse->nMem;
7398 topAddr = sqlite3VdbeAddOp0(v, OP_Goto);
7399 pItem->addrFillSub = topAddr+1;
7400 pItem->fg.isMaterialized = 1;
7401 if( pItem->fg.isCorrelated==0 ){
7402 /* If the subquery is not correlated and if we are not inside of
7403 ** a trigger, then we only need to compute the value of the subquery
7404 ** once. */
7405 onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
7406 VdbeComment((v, "materialize %!S", pItem));
7407 }else{
7408 VdbeNoopComment((v, "materialize %!S", pItem));
7410 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
7412 ExplainQueryPlan2(addrExplain, (pParse, 1, "MATERIALIZE %!S", pItem));
7413 sqlite3Select(pParse, pSub, &dest);
7414 pItem->pTab->nRowLogEst = pSub->nSelectRow;
7415 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
7416 sqlite3VdbeAddOp2(v, OP_Return, pItem->regReturn, topAddr+1);
7417 VdbeComment((v, "end %!S", pItem));
7418 sqlite3VdbeScanStatusRange(v, addrExplain, addrExplain, -1);
7419 sqlite3VdbeJumpHere(v, topAddr);
7420 sqlite3ClearTempRegCache(pParse);
7421 if( pItem->fg.isCte && pItem->fg.isCorrelated==0 ){
7422 CteUse *pCteUse = pItem->u2.pCteUse;
7423 pCteUse->addrM9e = pItem->addrFillSub;
7424 pCteUse->regRtn = pItem->regReturn;
7425 pCteUse->iCur = pItem->iCursor;
7426 pCteUse->nRowEst = pSub->nSelectRow;
7429 if( db->mallocFailed ) goto select_end;
7430 pParse->nHeight -= sqlite3SelectExprHeight(p);
7431 pParse->zAuthContext = zSavedAuthContext;
7432 #endif
7435 /* Various elements of the SELECT copied into local variables for
7436 ** convenience */
7437 pEList = p->pEList;
7438 pWhere = p->pWhere;
7439 pGroupBy = p->pGroupBy;
7440 pHaving = p->pHaving;
7441 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
7443 #if TREETRACE_ENABLED
7444 if( sqlite3TreeTrace & 0x8000 ){
7445 TREETRACE(0x8000,pParse,p,("After all FROM-clause analysis:\n"));
7446 sqlite3TreeViewSelect(0, p, 0);
7448 #endif
7450 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
7451 ** if the select-list is the same as the ORDER BY list, then this query
7452 ** can be rewritten as a GROUP BY. In other words, this:
7454 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz
7456 ** is transformed to:
7458 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
7460 ** The second form is preferred as a single index (or temp-table) may be
7461 ** used for both the ORDER BY and DISTINCT processing. As originally
7462 ** written the query must use a temp-table for at least one of the ORDER
7463 ** BY and DISTINCT, and an index or separate temp-table for the other.
7465 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
7466 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0
7467 #ifndef SQLITE_OMIT_WINDOWFUNC
7468 && p->pWin==0
7469 #endif
7471 p->selFlags &= ~SF_Distinct;
7472 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0);
7473 p->selFlags |= SF_Aggregate;
7474 /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
7475 ** the sDistinct.isTnct is still set. Hence, isTnct represents the
7476 ** original setting of the SF_Distinct flag, not the current setting */
7477 assert( sDistinct.isTnct );
7478 sDistinct.isTnct = 2;
7480 #if TREETRACE_ENABLED
7481 if( sqlite3TreeTrace & 0x20000 ){
7482 TREETRACE(0x20000,pParse,p,("Transform DISTINCT into GROUP BY:\n"));
7483 sqlite3TreeViewSelect(0, p, 0);
7485 #endif
7488 /* If there is an ORDER BY clause, then create an ephemeral index to
7489 ** do the sorting. But this sorting ephemeral index might end up
7490 ** being unused if the data can be extracted in pre-sorted order.
7491 ** If that is the case, then the OP_OpenEphemeral instruction will be
7492 ** changed to an OP_Noop once we figure out that the sorting index is
7493 ** not needed. The sSort.addrSortIndex variable is used to facilitate
7494 ** that change.
7496 if( sSort.pOrderBy ){
7497 KeyInfo *pKeyInfo;
7498 pKeyInfo = sqlite3KeyInfoFromExprList(
7499 pParse, sSort.pOrderBy, 0, pEList->nExpr);
7500 sSort.iECursor = pParse->nTab++;
7501 sSort.addrSortIndex =
7502 sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
7503 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
7504 (char*)pKeyInfo, P4_KEYINFO
7506 }else{
7507 sSort.addrSortIndex = -1;
7510 /* If the output is destined for a temporary table, open that table.
7512 if( pDest->eDest==SRT_EphemTab ){
7513 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
7514 if( p->selFlags & SF_NestedFrom ){
7515 /* Delete or NULL-out result columns that will never be used */
7516 int ii;
7517 for(ii=pEList->nExpr-1; ii>0 && pEList->a[ii].fg.bUsed==0; ii--){
7518 sqlite3ExprDelete(db, pEList->a[ii].pExpr);
7519 sqlite3DbFree(db, pEList->a[ii].zEName);
7520 pEList->nExpr--;
7522 for(ii=0; ii<pEList->nExpr; ii++){
7523 if( pEList->a[ii].fg.bUsed==0 ) pEList->a[ii].pExpr->op = TK_NULL;
7528 /* Set the limiter.
7530 iEnd = sqlite3VdbeMakeLabel(pParse);
7531 if( (p->selFlags & SF_FixedLimit)==0 ){
7532 p->nSelectRow = 320; /* 4 billion rows */
7534 if( p->pLimit ) computeLimitRegisters(pParse, p, iEnd);
7535 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
7536 sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen);
7537 sSort.sortFlags |= SORTFLAG_UseSorter;
7540 /* Open an ephemeral index to use for the distinct set.
7542 if( p->selFlags & SF_Distinct ){
7543 sDistinct.tabTnct = pParse->nTab++;
7544 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
7545 sDistinct.tabTnct, 0, 0,
7546 (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0),
7547 P4_KEYINFO);
7548 sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
7549 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
7550 }else{
7551 sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
7554 if( !isAgg && pGroupBy==0 ){
7555 /* No aggregate functions and no GROUP BY clause */
7556 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0)
7557 | (p->selFlags & SF_FixedLimit);
7558 #ifndef SQLITE_OMIT_WINDOWFUNC
7559 Window *pWin = p->pWin; /* Main window object (or NULL) */
7560 if( pWin ){
7561 sqlite3WindowCodeInit(pParse, p);
7563 #endif
7564 assert( WHERE_USE_LIMIT==SF_FixedLimit );
7567 /* Begin the database scan. */
7568 TREETRACE(0x2,pParse,p,("WhereBegin\n"));
7569 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
7570 p->pEList, p, wctrlFlags, p->nSelectRow);
7571 if( pWInfo==0 ) goto select_end;
7572 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
7573 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
7575 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
7576 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
7578 if( sSort.pOrderBy ){
7579 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
7580 sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo);
7581 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
7582 sSort.pOrderBy = 0;
7585 TREETRACE(0x2,pParse,p,("WhereBegin returns\n"));
7587 /* If sorting index that was created by a prior OP_OpenEphemeral
7588 ** instruction ended up not being needed, then change the OP_OpenEphemeral
7589 ** into an OP_Noop.
7591 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
7592 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
7595 assert( p->pEList==pEList );
7596 #ifndef SQLITE_OMIT_WINDOWFUNC
7597 if( pWin ){
7598 int addrGosub = sqlite3VdbeMakeLabel(pParse);
7599 int iCont = sqlite3VdbeMakeLabel(pParse);
7600 int iBreak = sqlite3VdbeMakeLabel(pParse);
7601 int regGosub = ++pParse->nMem;
7603 sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub);
7605 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
7606 sqlite3VdbeResolveLabel(v, addrGosub);
7607 VdbeNoopComment((v, "inner-loop subroutine"));
7608 sSort.labelOBLopt = 0;
7609 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak);
7610 sqlite3VdbeResolveLabel(v, iCont);
7611 sqlite3VdbeAddOp1(v, OP_Return, regGosub);
7612 VdbeComment((v, "end inner-loop subroutine"));
7613 sqlite3VdbeResolveLabel(v, iBreak);
7614 }else
7615 #endif /* SQLITE_OMIT_WINDOWFUNC */
7617 /* Use the standard inner loop. */
7618 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest,
7619 sqlite3WhereContinueLabel(pWInfo),
7620 sqlite3WhereBreakLabel(pWInfo));
7622 /* End the database scan loop.
7624 TREETRACE(0x2,pParse,p,("WhereEnd\n"));
7625 sqlite3WhereEnd(pWInfo);
7627 }else{
7628 /* This case when there exist aggregate functions or a GROUP BY clause
7629 ** or both */
7630 NameContext sNC; /* Name context for processing aggregate information */
7631 int iAMem; /* First Mem address for storing current GROUP BY */
7632 int iBMem; /* First Mem address for previous GROUP BY */
7633 int iUseFlag; /* Mem address holding flag indicating that at least
7634 ** one row of the input to the aggregator has been
7635 ** processed */
7636 int iAbortFlag; /* Mem address which causes query abort if positive */
7637 int groupBySort; /* Rows come from source in GROUP BY order */
7638 int addrEnd; /* End of processing for this SELECT */
7639 int sortPTab = 0; /* Pseudotable used to decode sorting results */
7640 int sortOut = 0; /* Output register from the sorter */
7641 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
7643 /* Remove any and all aliases between the result set and the
7644 ** GROUP BY clause.
7646 if( pGroupBy ){
7647 int k; /* Loop counter */
7648 struct ExprList_item *pItem; /* For looping over expression in a list */
7650 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
7651 pItem->u.x.iAlias = 0;
7653 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
7654 pItem->u.x.iAlias = 0;
7656 assert( 66==sqlite3LogEst(100) );
7657 if( p->nSelectRow>66 ) p->nSelectRow = 66;
7659 /* If there is both a GROUP BY and an ORDER BY clause and they are
7660 ** identical, then it may be possible to disable the ORDER BY clause
7661 ** on the grounds that the GROUP BY will cause elements to come out
7662 ** in the correct order. It also may not - the GROUP BY might use a
7663 ** database index that causes rows to be grouped together as required
7664 ** but not actually sorted. Either way, record the fact that the
7665 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
7666 ** variable. */
7667 if( sSort.pOrderBy && pGroupBy->nExpr==sSort.pOrderBy->nExpr ){
7668 int ii;
7669 /* The GROUP BY processing doesn't care whether rows are delivered in
7670 ** ASC or DESC order - only that each group is returned contiguously.
7671 ** So set the ASC/DESC flags in the GROUP BY to match those in the
7672 ** ORDER BY to maximize the chances of rows being delivered in an
7673 ** order that makes the ORDER BY redundant. */
7674 for(ii=0; ii<pGroupBy->nExpr; ii++){
7675 u8 sortFlags;
7676 sortFlags = sSort.pOrderBy->a[ii].fg.sortFlags & KEYINFO_ORDER_DESC;
7677 pGroupBy->a[ii].fg.sortFlags = sortFlags;
7679 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
7680 orderByGrp = 1;
7683 }else{
7684 assert( 0==sqlite3LogEst(1) );
7685 p->nSelectRow = 0;
7688 /* Create a label to jump to when we want to abort the query */
7689 addrEnd = sqlite3VdbeMakeLabel(pParse);
7691 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
7692 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
7693 ** SELECT statement.
7695 pAggInfo = sqlite3DbMallocZero(db, sizeof(*pAggInfo) );
7696 if( pAggInfo ){
7697 sqlite3ParserAddCleanup(pParse,
7698 (void(*)(sqlite3*,void*))agginfoFree, pAggInfo);
7699 testcase( pParse->earlyCleanup );
7701 if( db->mallocFailed ){
7702 goto select_end;
7704 pAggInfo->selId = p->selId;
7705 #ifdef SQLITE_DEBUG
7706 pAggInfo->pSelect = p;
7707 #endif
7708 memset(&sNC, 0, sizeof(sNC));
7709 sNC.pParse = pParse;
7710 sNC.pSrcList = pTabList;
7711 sNC.uNC.pAggInfo = pAggInfo;
7712 VVA_ONLY( sNC.ncFlags = NC_UAggInfo; )
7713 pAggInfo->nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
7714 pAggInfo->pGroupBy = pGroupBy;
7715 sqlite3ExprAnalyzeAggList(&sNC, pEList);
7716 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
7717 if( pHaving ){
7718 if( pGroupBy ){
7719 assert( pWhere==p->pWhere );
7720 assert( pHaving==p->pHaving );
7721 assert( pGroupBy==p->pGroupBy );
7722 havingToWhere(pParse, p);
7723 pWhere = p->pWhere;
7725 sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
7727 pAggInfo->nAccumulator = pAggInfo->nColumn;
7728 if( p->pGroupBy==0 && p->pHaving==0 && pAggInfo->nFunc==1 ){
7729 minMaxFlag = minMaxQuery(db, pAggInfo->aFunc[0].pFExpr, &pMinMaxOrderBy);
7730 }else{
7731 minMaxFlag = WHERE_ORDERBY_NORMAL;
7733 analyzeAggFuncArgs(pAggInfo, &sNC);
7734 if( db->mallocFailed ) goto select_end;
7735 #if TREETRACE_ENABLED
7736 if( sqlite3TreeTrace & 0x20 ){
7737 TREETRACE(0x20,pParse,p,("After aggregate analysis %p:\n", pAggInfo));
7738 sqlite3TreeViewSelect(0, p, 0);
7739 if( minMaxFlag ){
7740 sqlite3DebugPrintf("MIN/MAX Optimization (0x%02x) adds:\n", minMaxFlag);
7741 sqlite3TreeViewExprList(0, pMinMaxOrderBy, 0, "ORDERBY");
7743 printAggInfo(pAggInfo);
7745 #endif
7748 /* Processing for aggregates with GROUP BY is very different and
7749 ** much more complex than aggregates without a GROUP BY.
7751 if( pGroupBy ){
7752 KeyInfo *pKeyInfo; /* Keying information for the group by clause */
7753 int addr1; /* A-vs-B comparision jump */
7754 int addrOutputRow; /* Start of subroutine that outputs a result row */
7755 int regOutputRow; /* Return address register for output subroutine */
7756 int addrSetAbort; /* Set the abort flag and return */
7757 int addrTopOfLoop; /* Top of the input loop */
7758 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
7759 int addrReset; /* Subroutine for resetting the accumulator */
7760 int regReset; /* Return address register for reset subroutine */
7761 ExprList *pDistinct = 0;
7762 u16 distFlag = 0;
7763 int eDist = WHERE_DISTINCT_NOOP;
7765 if( pAggInfo->nFunc==1
7766 && pAggInfo->aFunc[0].iDistinct>=0
7767 && ALWAYS(pAggInfo->aFunc[0].pFExpr!=0)
7768 && ALWAYS(ExprUseXList(pAggInfo->aFunc[0].pFExpr))
7769 && pAggInfo->aFunc[0].pFExpr->x.pList!=0
7771 Expr *pExpr = pAggInfo->aFunc[0].pFExpr->x.pList->a[0].pExpr;
7772 pExpr = sqlite3ExprDup(db, pExpr, 0);
7773 pDistinct = sqlite3ExprListDup(db, pGroupBy, 0);
7774 pDistinct = sqlite3ExprListAppend(pParse, pDistinct, pExpr);
7775 distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0;
7778 /* If there is a GROUP BY clause we might need a sorting index to
7779 ** implement it. Allocate that sorting index now. If it turns out
7780 ** that we do not need it after all, the OP_SorterOpen instruction
7781 ** will be converted into a Noop.
7783 pAggInfo->sortingIdx = pParse->nTab++;
7784 pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pGroupBy,
7785 0, pAggInfo->nColumn);
7786 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
7787 pAggInfo->sortingIdx, pAggInfo->nSortingColumn,
7788 0, (char*)pKeyInfo, P4_KEYINFO);
7790 /* Initialize memory locations used by GROUP BY aggregate processing
7792 iUseFlag = ++pParse->nMem;
7793 iAbortFlag = ++pParse->nMem;
7794 regOutputRow = ++pParse->nMem;
7795 addrOutputRow = sqlite3VdbeMakeLabel(pParse);
7796 regReset = ++pParse->nMem;
7797 addrReset = sqlite3VdbeMakeLabel(pParse);
7798 iAMem = pParse->nMem + 1;
7799 pParse->nMem += pGroupBy->nExpr;
7800 iBMem = pParse->nMem + 1;
7801 pParse->nMem += pGroupBy->nExpr;
7802 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
7803 VdbeComment((v, "clear abort flag"));
7804 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
7806 /* Begin a loop that will extract all source rows in GROUP BY order.
7807 ** This might involve two separate loops with an OP_Sort in between, or
7808 ** it might be a single loop that uses an index to extract information
7809 ** in the right order to begin with.
7811 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
7812 TREETRACE(0x2,pParse,p,("WhereBegin\n"));
7813 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, pDistinct,
7814 p, (sDistinct.isTnct==2 ? WHERE_DISTINCTBY : WHERE_GROUPBY)
7815 | (orderByGrp ? WHERE_SORTBYGROUP : 0) | distFlag, 0
7817 if( pWInfo==0 ){
7818 sqlite3ExprListDelete(db, pDistinct);
7819 goto select_end;
7821 if( pParse->pIdxEpr ){
7822 optimizeAggregateUseOfIndexedExpr(pParse, p, pAggInfo, &sNC);
7824 assignAggregateRegisters(pParse, pAggInfo);
7825 eDist = sqlite3WhereIsDistinct(pWInfo);
7826 TREETRACE(0x2,pParse,p,("WhereBegin returns\n"));
7827 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
7828 /* The optimizer is able to deliver rows in group by order so
7829 ** we do not have to sort. The OP_OpenEphemeral table will be
7830 ** cancelled later because we still need to use the pKeyInfo
7832 groupBySort = 0;
7833 }else{
7834 /* Rows are coming out in undetermined order. We have to push
7835 ** each row into a sorting index, terminate the first loop,
7836 ** then loop over the sorting index in order to get the output
7837 ** in sorted order
7839 int regBase;
7840 int regRecord;
7841 int nCol;
7842 int nGroupBy;
7844 explainTempTable(pParse,
7845 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
7846 "DISTINCT" : "GROUP BY");
7848 groupBySort = 1;
7849 nGroupBy = pGroupBy->nExpr;
7850 nCol = nGroupBy;
7851 j = nGroupBy;
7852 for(i=0; i<pAggInfo->nColumn; i++){
7853 if( pAggInfo->aCol[i].iSorterColumn>=j ){
7854 nCol++;
7855 j++;
7858 regBase = sqlite3GetTempRange(pParse, nCol);
7859 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0);
7860 j = nGroupBy;
7861 pAggInfo->directMode = 1;
7862 for(i=0; i<pAggInfo->nColumn; i++){
7863 struct AggInfo_col *pCol = &pAggInfo->aCol[i];
7864 if( pCol->iSorterColumn>=j ){
7865 sqlite3ExprCode(pParse, pCol->pCExpr, j + regBase);
7866 j++;
7869 pAggInfo->directMode = 0;
7870 regRecord = sqlite3GetTempReg(pParse);
7871 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
7872 sqlite3VdbeAddOp2(v, OP_SorterInsert, pAggInfo->sortingIdx, regRecord);
7873 sqlite3ReleaseTempReg(pParse, regRecord);
7874 sqlite3ReleaseTempRange(pParse, regBase, nCol);
7875 TREETRACE(0x2,pParse,p,("WhereEnd\n"));
7876 sqlite3WhereEnd(pWInfo);
7877 pAggInfo->sortingIdxPTab = sortPTab = pParse->nTab++;
7878 sortOut = sqlite3GetTempReg(pParse);
7879 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
7880 sqlite3VdbeAddOp2(v, OP_SorterSort, pAggInfo->sortingIdx, addrEnd);
7881 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
7882 pAggInfo->useSortingIdx = 1;
7885 /* If there are entries in pAgggInfo->aFunc[] that contain subexpressions
7886 ** that are indexed (and that were previously identified and tagged
7887 ** in optimizeAggregateUseOfIndexedExpr()) then those subexpressions
7888 ** must now be converted into a TK_AGG_COLUMN node so that the value
7889 ** is correctly pulled from the index rather than being recomputed. */
7890 if( pParse->pIdxEpr ){
7891 aggregateConvertIndexedExprRefToColumn(pAggInfo);
7892 #if TREETRACE_ENABLED
7893 if( sqlite3TreeTrace & 0x20 ){
7894 TREETRACE(0x20, pParse, p,
7895 ("AggInfo function expressions converted to reference index\n"));
7896 sqlite3TreeViewSelect(0, p, 0);
7897 printAggInfo(pAggInfo);
7899 #endif
7902 /* If the index or temporary table used by the GROUP BY sort
7903 ** will naturally deliver rows in the order required by the ORDER BY
7904 ** clause, cancel the ephemeral table open coded earlier.
7906 ** This is an optimization - the correct answer should result regardless.
7907 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
7908 ** disable this optimization for testing purposes. */
7909 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
7910 && (groupBySort || sqlite3WhereIsSorted(pWInfo))
7912 sSort.pOrderBy = 0;
7913 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
7916 /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
7917 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
7918 ** Then compare the current GROUP BY terms against the GROUP BY terms
7919 ** from the previous row currently stored in a0, a1, a2...
7921 addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
7922 if( groupBySort ){
7923 sqlite3VdbeAddOp3(v, OP_SorterData, pAggInfo->sortingIdx,
7924 sortOut, sortPTab);
7926 for(j=0; j<pGroupBy->nExpr; j++){
7927 if( groupBySort ){
7928 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
7929 }else{
7930 pAggInfo->directMode = 1;
7931 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
7934 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
7935 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
7936 addr1 = sqlite3VdbeCurrentAddr(v);
7937 sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v);
7939 /* Generate code that runs whenever the GROUP BY changes.
7940 ** Changes in the GROUP BY are detected by the previous code
7941 ** block. If there were no changes, this block is skipped.
7943 ** This code copies current group by terms in b0,b1,b2,...
7944 ** over to a0,a1,a2. It then calls the output subroutine
7945 ** and resets the aggregate accumulator registers in preparation
7946 ** for the next GROUP BY batch.
7948 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
7949 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
7950 VdbeComment((v, "output one row"));
7951 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
7952 VdbeComment((v, "check abort flag"));
7953 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
7954 VdbeComment((v, "reset accumulator"));
7956 /* Update the aggregate accumulators based on the content of
7957 ** the current row
7959 sqlite3VdbeJumpHere(v, addr1);
7960 updateAccumulator(pParse, iUseFlag, pAggInfo, eDist);
7961 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
7962 VdbeComment((v, "indicate data in accumulator"));
7964 /* End of the loop
7966 if( groupBySort ){
7967 sqlite3VdbeAddOp2(v, OP_SorterNext, pAggInfo->sortingIdx,addrTopOfLoop);
7968 VdbeCoverage(v);
7969 }else{
7970 TREETRACE(0x2,pParse,p,("WhereEnd\n"));
7971 sqlite3WhereEnd(pWInfo);
7972 sqlite3VdbeChangeToNoop(v, addrSortingIdx);
7974 sqlite3ExprListDelete(db, pDistinct);
7976 /* Output the final row of result
7978 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
7979 VdbeComment((v, "output final row"));
7981 /* Jump over the subroutines
7983 sqlite3VdbeGoto(v, addrEnd);
7985 /* Generate a subroutine that outputs a single row of the result
7986 ** set. This subroutine first looks at the iUseFlag. If iUseFlag
7987 ** is less than or equal to zero, the subroutine is a no-op. If
7988 ** the processing calls for the query to abort, this subroutine
7989 ** increments the iAbortFlag memory location before returning in
7990 ** order to signal the caller to abort.
7992 addrSetAbort = sqlite3VdbeCurrentAddr(v);
7993 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
7994 VdbeComment((v, "set abort flag"));
7995 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
7996 sqlite3VdbeResolveLabel(v, addrOutputRow);
7997 addrOutputRow = sqlite3VdbeCurrentAddr(v);
7998 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
7999 VdbeCoverage(v);
8000 VdbeComment((v, "Groupby result generator entry point"));
8001 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
8002 finalizeAggFunctions(pParse, pAggInfo);
8003 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
8004 selectInnerLoop(pParse, p, -1, &sSort,
8005 &sDistinct, pDest,
8006 addrOutputRow+1, addrSetAbort);
8007 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
8008 VdbeComment((v, "end groupby result generator"));
8010 /* Generate a subroutine that will reset the group-by accumulator
8012 sqlite3VdbeResolveLabel(v, addrReset);
8013 resetAccumulator(pParse, pAggInfo);
8014 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
8015 VdbeComment((v, "indicate accumulator empty"));
8016 sqlite3VdbeAddOp1(v, OP_Return, regReset);
8018 if( distFlag!=0 && eDist!=WHERE_DISTINCT_NOOP ){
8019 struct AggInfo_func *pF = &pAggInfo->aFunc[0];
8020 fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr);
8022 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */
8023 else {
8024 Table *pTab;
8025 if( (pTab = isSimpleCount(p, pAggInfo))!=0 ){
8026 /* If isSimpleCount() returns a pointer to a Table structure, then
8027 ** the SQL statement is of the form:
8029 ** SELECT count(*) FROM <tbl>
8031 ** where the Table structure returned represents table <tbl>.
8033 ** This statement is so common that it is optimized specially. The
8034 ** OP_Count instruction is executed either on the intkey table that
8035 ** contains the data for table <tbl> or on one of its indexes. It
8036 ** is better to execute the op on an index, as indexes are almost
8037 ** always spread across less pages than their corresponding tables.
8039 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
8040 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */
8041 Index *pIdx; /* Iterator variable */
8042 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */
8043 Index *pBest = 0; /* Best index found so far */
8044 Pgno iRoot = pTab->tnum; /* Root page of scanned b-tree */
8046 sqlite3CodeVerifySchema(pParse, iDb);
8047 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
8049 /* Search for the index that has the lowest scan cost.
8051 ** (2011-04-15) Do not do a full scan of an unordered index.
8053 ** (2013-10-03) Do not count the entries in a partial index.
8055 ** In practice the KeyInfo structure will not be used. It is only
8056 ** passed to keep OP_OpenRead happy.
8058 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
8059 if( !p->pSrc->a[0].fg.notIndexed ){
8060 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
8061 if( pIdx->bUnordered==0
8062 && pIdx->szIdxRow<pTab->szTabRow
8063 && pIdx->pPartIdxWhere==0
8064 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
8066 pBest = pIdx;
8070 if( pBest ){
8071 iRoot = pBest->tnum;
8072 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
8075 /* Open a read-only cursor, execute the OP_Count, close the cursor. */
8076 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, (int)iRoot, iDb, 1);
8077 if( pKeyInfo ){
8078 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
8080 assignAggregateRegisters(pParse, pAggInfo);
8081 sqlite3VdbeAddOp2(v, OP_Count, iCsr, AggInfoFuncReg(pAggInfo,0));
8082 sqlite3VdbeAddOp1(v, OP_Close, iCsr);
8083 explainSimpleCount(pParse, pTab, pBest);
8084 }else{
8085 int regAcc = 0; /* "populate accumulators" flag */
8086 ExprList *pDistinct = 0;
8087 u16 distFlag = 0;
8088 int eDist;
8090 /* If there are accumulator registers but no min() or max() functions
8091 ** without FILTER clauses, allocate register regAcc. Register regAcc
8092 ** will contain 0 the first time the inner loop runs, and 1 thereafter.
8093 ** The code generated by updateAccumulator() uses this to ensure
8094 ** that the accumulator registers are (a) updated only once if
8095 ** there are no min() or max functions or (b) always updated for the
8096 ** first row visited by the aggregate, so that they are updated at
8097 ** least once even if the FILTER clause means the min() or max()
8098 ** function visits zero rows. */
8099 if( pAggInfo->nAccumulator ){
8100 for(i=0; i<pAggInfo->nFunc; i++){
8101 if( ExprHasProperty(pAggInfo->aFunc[i].pFExpr, EP_WinFunc) ){
8102 continue;
8104 if( pAggInfo->aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ){
8105 break;
8108 if( i==pAggInfo->nFunc ){
8109 regAcc = ++pParse->nMem;
8110 sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc);
8112 }else if( pAggInfo->nFunc==1 && pAggInfo->aFunc[0].iDistinct>=0 ){
8113 assert( ExprUseXList(pAggInfo->aFunc[0].pFExpr) );
8114 pDistinct = pAggInfo->aFunc[0].pFExpr->x.pList;
8115 distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0;
8117 assignAggregateRegisters(pParse, pAggInfo);
8119 /* This case runs if the aggregate has no GROUP BY clause. The
8120 ** processing is much simpler since there is only a single row
8121 ** of output.
8123 assert( p->pGroupBy==0 );
8124 resetAccumulator(pParse, pAggInfo);
8126 /* If this query is a candidate for the min/max optimization, then
8127 ** minMaxFlag will have been previously set to either
8128 ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will
8129 ** be an appropriate ORDER BY expression for the optimization.
8131 assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 );
8132 assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 );
8134 TREETRACE(0x2,pParse,p,("WhereBegin\n"));
8135 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy,
8136 pDistinct, p, minMaxFlag|distFlag, 0);
8137 if( pWInfo==0 ){
8138 goto select_end;
8140 TREETRACE(0x2,pParse,p,("WhereBegin returns\n"));
8141 eDist = sqlite3WhereIsDistinct(pWInfo);
8142 updateAccumulator(pParse, regAcc, pAggInfo, eDist);
8143 if( eDist!=WHERE_DISTINCT_NOOP ){
8144 struct AggInfo_func *pF = pAggInfo->aFunc;
8145 if( pF ){
8146 fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr);
8150 if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc);
8151 if( minMaxFlag ){
8152 sqlite3WhereMinMaxOptEarlyOut(v, pWInfo);
8154 TREETRACE(0x2,pParse,p,("WhereEnd\n"));
8155 sqlite3WhereEnd(pWInfo);
8156 finalizeAggFunctions(pParse, pAggInfo);
8159 sSort.pOrderBy = 0;
8160 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
8161 selectInnerLoop(pParse, p, -1, 0, 0,
8162 pDest, addrEnd, addrEnd);
8164 sqlite3VdbeResolveLabel(v, addrEnd);
8166 } /* endif aggregate query */
8168 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
8169 explainTempTable(pParse, "DISTINCT");
8172 /* If there is an ORDER BY clause, then we need to sort the results
8173 ** and send them to the callback one by one.
8175 if( sSort.pOrderBy ){
8176 assert( p->pEList==pEList );
8177 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
8180 /* Jump here to skip this query
8182 sqlite3VdbeResolveLabel(v, iEnd);
8184 /* The SELECT has been coded. If there is an error in the Parse structure,
8185 ** set the return code to 1. Otherwise 0. */
8186 rc = (pParse->nErr>0);
8188 /* Control jumps to here if an error is encountered above, or upon
8189 ** successful coding of the SELECT.
8191 select_end:
8192 assert( db->mallocFailed==0 || db->mallocFailed==1 );
8193 assert( db->mallocFailed==0 || pParse->nErr!=0 );
8194 sqlite3ExprListDelete(db, pMinMaxOrderBy);
8195 #ifdef SQLITE_DEBUG
8196 if( pAggInfo && !db->mallocFailed ){
8197 for(i=0; i<pAggInfo->nColumn; i++){
8198 Expr *pExpr = pAggInfo->aCol[i].pCExpr;
8199 if( pExpr==0 ) continue;
8200 assert( pExpr->pAggInfo==pAggInfo );
8201 assert( pExpr->iAgg==i );
8203 for(i=0; i<pAggInfo->nFunc; i++){
8204 Expr *pExpr = pAggInfo->aFunc[i].pFExpr;
8205 assert( pExpr!=0 );
8206 assert( pExpr->pAggInfo==pAggInfo );
8207 assert( pExpr->iAgg==i );
8210 #endif
8212 #if TREETRACE_ENABLED
8213 TREETRACE(0x1,pParse,p,("end processing\n"));
8214 if( (sqlite3TreeTrace & 0x40000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
8215 sqlite3TreeViewSelect(0, p, 0);
8217 #endif
8218 ExplainQueryPlanPop(pParse);
8219 return rc;