4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
15 #include "sqliteInt.h"
18 ** An instance of the following object is used to record information about
19 ** how to process the DISTINCT keyword, to simplify passing that information
20 ** into the selectInnerLoop() routine.
22 typedef struct DistinctCtx DistinctCtx
;
24 u8 isTnct
; /* 0: Not distinct. 1: DISTICT 2: DISTINCT and ORDER BY */
25 u8 eTnctType
; /* One of the WHERE_DISTINCT_* operators */
26 int tabTnct
; /* Ephemeral table used for DISTINCT processing */
27 int addrTnct
; /* Address of OP_OpenEphemeral opcode for tabTnct */
31 ** An instance of the following object is used to record information about
32 ** the ORDER BY (or GROUP BY) clause of query is being coded.
34 ** The aDefer[] array is used by the sorter-references optimization. For
35 ** example, assuming there is no index that can be used for the ORDER BY,
38 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10;
40 ** it may be more efficient to add just the "a" values to the sorter, and
41 ** retrieve the associated "bigblob" values directly from table t1 as the
42 ** 10 smallest "a" values are extracted from the sorter.
44 ** When the sorter-reference optimization is used, there is one entry in the
45 ** aDefer[] array for each database table that may be read as values are
46 ** extracted from the sorter.
48 typedef struct SortCtx SortCtx
;
50 ExprList
*pOrderBy
; /* The ORDER BY (or GROUP BY clause) */
51 int nOBSat
; /* Number of ORDER BY terms satisfied by indices */
52 int iECursor
; /* Cursor number for the sorter */
53 int regReturn
; /* Register holding block-output return address */
54 int labelBkOut
; /* Start label for the block-output subroutine */
55 int addrSortIndex
; /* Address of the OP_SorterOpen or OP_OpenEphemeral */
56 int labelDone
; /* Jump here when done, ex: LIMIT reached */
57 int labelOBLopt
; /* Jump here when sorter is full */
58 u8 sortFlags
; /* Zero or more SORTFLAG_* bits */
59 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
60 u8 nDefer
; /* Number of valid entries in aDefer[] */
62 Table
*pTab
; /* Table definition */
63 int iCsr
; /* Cursor number for table */
64 int nKey
; /* Number of PK columns for table pTab (>=1) */
67 struct RowLoadInfo
*pDeferredRowLoad
; /* Deferred row loading info or NULL */
68 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
69 int addrPush
; /* First instruction to push data into sorter */
70 int addrPushEnd
; /* Last instruction that pushes data into sorter */
73 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */
76 ** Delete all the content of a Select structure. Deallocate the structure
77 ** itself depending on the value of bFree
79 ** If bFree==1, call sqlite3DbFree() on the p object.
80 ** If bFree==0, Leave the first Select object unfreed
82 static void clearSelect(sqlite3
*db
, Select
*p
, int bFree
){
85 Select
*pPrior
= p
->pPrior
;
86 sqlite3ExprListDelete(db
, p
->pEList
);
87 sqlite3SrcListDelete(db
, p
->pSrc
);
88 sqlite3ExprDelete(db
, p
->pWhere
);
89 sqlite3ExprListDelete(db
, p
->pGroupBy
);
90 sqlite3ExprDelete(db
, p
->pHaving
);
91 sqlite3ExprListDelete(db
, p
->pOrderBy
);
92 sqlite3ExprDelete(db
, p
->pLimit
);
93 if( OK_IF_ALWAYS_TRUE(p
->pWith
) ) sqlite3WithDelete(db
, p
->pWith
);
94 #ifndef SQLITE_OMIT_WINDOWFUNC
95 if( OK_IF_ALWAYS_TRUE(p
->pWinDefn
) ){
96 sqlite3WindowListDelete(db
, p
->pWinDefn
);
99 assert( p
->pWin
->ppThis
==&p
->pWin
);
100 sqlite3WindowUnlinkFromSelect(p
->pWin
);
103 if( bFree
) sqlite3DbNNFreeNN(db
, p
);
110 ** Initialize a SelectDest structure.
112 void sqlite3SelectDestInit(SelectDest
*pDest
, int eDest
, int iParm
){
113 pDest
->eDest
= (u8
)eDest
;
114 pDest
->iSDParm
= iParm
;
123 ** Allocate a new Select structure and return a pointer to that
126 Select
*sqlite3SelectNew(
127 Parse
*pParse
, /* Parsing context */
128 ExprList
*pEList
, /* which columns to include in the result */
129 SrcList
*pSrc
, /* the FROM clause -- which tables to scan */
130 Expr
*pWhere
, /* the WHERE clause */
131 ExprList
*pGroupBy
, /* the GROUP BY clause */
132 Expr
*pHaving
, /* the HAVING clause */
133 ExprList
*pOrderBy
, /* the ORDER BY clause */
134 u32 selFlags
, /* Flag parameters, such as SF_Distinct */
135 Expr
*pLimit
/* LIMIT value. NULL means not used */
137 Select
*pNew
, *pAllocated
;
139 pAllocated
= pNew
= sqlite3DbMallocRawNN(pParse
->db
, sizeof(*pNew
) );
141 assert( pParse
->db
->mallocFailed
);
145 pEList
= sqlite3ExprListAppend(pParse
, 0,
146 sqlite3Expr(pParse
->db
,TK_ASTERISK
,0));
148 pNew
->pEList
= pEList
;
149 pNew
->op
= TK_SELECT
;
150 pNew
->selFlags
= selFlags
;
153 pNew
->selId
= ++pParse
->nSelect
;
154 pNew
->addrOpenEphm
[0] = -1;
155 pNew
->addrOpenEphm
[1] = -1;
156 pNew
->nSelectRow
= 0;
157 if( pSrc
==0 ) pSrc
= sqlite3DbMallocZero(pParse
->db
, sizeof(*pSrc
));
159 pNew
->pWhere
= pWhere
;
160 pNew
->pGroupBy
= pGroupBy
;
161 pNew
->pHaving
= pHaving
;
162 pNew
->pOrderBy
= pOrderBy
;
165 pNew
->pLimit
= pLimit
;
167 #ifndef SQLITE_OMIT_WINDOWFUNC
171 if( pParse
->db
->mallocFailed
) {
172 clearSelect(pParse
->db
, pNew
, pNew
!=&standin
);
175 assert( pNew
->pSrc
!=0 || pParse
->nErr
>0 );
182 ** Delete the given Select structure and all of its substructures.
184 void sqlite3SelectDelete(sqlite3
*db
, Select
*p
){
185 if( OK_IF_ALWAYS_TRUE(p
) ) clearSelect(db
, p
, 1);
189 ** Return a pointer to the right-most SELECT statement in a compound.
191 static Select
*findRightmost(Select
*p
){
192 while( p
->pNext
) p
= p
->pNext
;
197 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
198 ** type of join. Return an integer constant that expresses that type
199 ** in terms of the following bit values:
208 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
210 ** If an illegal or unsupported join type is seen, then still return
211 ** a join type, but put an error in the pParse structure.
213 ** These are the valid join types:
216 ** pA pB pC Return Value
217 ** ------- ----- ----- ------------
218 ** CROSS - - JT_CROSS
219 ** INNER - - JT_INNER
220 ** LEFT - - JT_LEFT|JT_OUTER
221 ** LEFT OUTER - JT_LEFT|JT_OUTER
222 ** RIGHT - - JT_RIGHT|JT_OUTER
223 ** RIGHT OUTER - JT_RIGHT|JT_OUTER
224 ** FULL - - JT_LEFT|JT_RIGHT|JT_OUTER
225 ** FULL OUTER - JT_LEFT|JT_RIGHT|JT_OUTER
226 ** NATURAL INNER - JT_NATURAL|JT_INNER
227 ** NATURAL LEFT - JT_NATURAL|JT_LEFT|JT_OUTER
228 ** NATURAL LEFT OUTER JT_NATURAL|JT_LEFT|JT_OUTER
229 ** NATURAL RIGHT - JT_NATURAL|JT_RIGHT|JT_OUTER
230 ** NATURAL RIGHT OUTER JT_NATURAL|JT_RIGHT|JT_OUTER
231 ** NATURAL FULL - JT_NATURAL|JT_LEFT|JT_RIGHT
232 ** NATURAL FULL OUTER JT_NATRUAL|JT_LEFT|JT_RIGHT
234 ** To preserve historical compatibly, SQLite also accepts a variety
235 ** of other non-standard and in many cases non-sensical join types.
236 ** This routine makes as much sense at it can from the nonsense join
237 ** type and returns a result. Examples of accepted nonsense join types
238 ** include but are not limited to:
240 ** INNER CROSS JOIN -> same as JOIN
241 ** NATURAL CROSS JOIN -> same as NATURAL JOIN
242 ** OUTER LEFT JOIN -> same as LEFT JOIN
243 ** LEFT NATURAL JOIN -> same as NATURAL LEFT JOIN
244 ** LEFT RIGHT JOIN -> same as FULL JOIN
245 ** RIGHT OUTER FULL JOIN -> same as FULL JOIN
246 ** CROSS CROSS CROSS JOIN -> same as JOIN
248 ** The only restrictions on the join type name are:
250 ** * "INNER" cannot appear together with "OUTER", "LEFT", "RIGHT",
253 ** * "CROSS" cannot appear together with "OUTER", "LEFT", "RIGHT,
256 ** * If "OUTER" is present then there must also be one of
257 ** "LEFT", "RIGHT", or "FULL"
259 int sqlite3JoinType(Parse
*pParse
, Token
*pA
, Token
*pB
, Token
*pC
){
263 /* 0123456789 123456789 123456789 123 */
264 static const char zKeyText
[] = "naturaleftouterightfullinnercross";
265 static const struct {
266 u8 i
; /* Beginning of keyword text in zKeyText[] */
267 u8 nChar
; /* Length of the keyword in characters */
268 u8 code
; /* Join type mask */
270 /* (0) natural */ { 0, 7, JT_NATURAL
},
271 /* (1) left */ { 6, 4, JT_LEFT
|JT_OUTER
},
272 /* (2) outer */ { 10, 5, JT_OUTER
},
273 /* (3) right */ { 14, 5, JT_RIGHT
|JT_OUTER
},
274 /* (4) full */ { 19, 4, JT_LEFT
|JT_RIGHT
|JT_OUTER
},
275 /* (5) inner */ { 23, 5, JT_INNER
},
276 /* (6) cross */ { 28, 5, JT_INNER
|JT_CROSS
},
282 for(i
=0; i
<3 && apAll
[i
]; i
++){
284 for(j
=0; j
<ArraySize(aKeyword
); j
++){
285 if( p
->n
==aKeyword
[j
].nChar
286 && sqlite3StrNICmp((char*)p
->z
, &zKeyText
[aKeyword
[j
].i
], p
->n
)==0 ){
287 jointype
|= aKeyword
[j
].code
;
291 testcase( j
==0 || j
==1 || j
==2 || j
==3 || j
==4 || j
==5 || j
==6 );
292 if( j
>=ArraySize(aKeyword
) ){
293 jointype
|= JT_ERROR
;
298 (jointype
& (JT_INNER
|JT_OUTER
))==(JT_INNER
|JT_OUTER
) ||
299 (jointype
& JT_ERROR
)!=0 ||
300 (jointype
& (JT_OUTER
|JT_LEFT
|JT_RIGHT
))==JT_OUTER
302 const char *zSp1
= " ";
303 const char *zSp2
= " ";
304 if( pB
==0 ){ zSp1
++; }
305 if( pC
==0 ){ zSp2
++; }
306 sqlite3ErrorMsg(pParse
, "unknown join type: "
307 "%T%s%T%s%T", pA
, zSp1
, pB
, zSp2
, pC
);
314 ** Return the index of a column in a table. Return -1 if the column
315 ** is not contained in the table.
317 int sqlite3ColumnIndex(Table
*pTab
, const char *zCol
){
319 u8 h
= sqlite3StrIHash(zCol
);
321 for(pCol
=pTab
->aCol
, i
=0; i
<pTab
->nCol
; pCol
++, i
++){
322 if( pCol
->hName
==h
&& sqlite3StrICmp(pCol
->zCnName
, zCol
)==0 ) return i
;
328 ** Mark a subquery result column as having been used.
330 void sqlite3SrcItemColumnUsed(SrcItem
*pItem
, int iCol
){
332 assert( (int)pItem
->fg
.isNestedFrom
== IsNestedFrom(pItem
->pSelect
) );
333 if( pItem
->fg
.isNestedFrom
){
335 assert( pItem
->pSelect
!=0 );
336 pResults
= pItem
->pSelect
->pEList
;
337 assert( pResults
!=0 );
338 assert( iCol
>=0 && iCol
<pResults
->nExpr
);
339 pResults
->a
[iCol
].fg
.bUsed
= 1;
344 ** Search the tables iStart..iEnd (inclusive) in pSrc, looking for a
345 ** table that has a column named zCol. The search is left-to-right.
346 ** The first match found is returned.
348 ** When found, set *piTab and *piCol to the table index and column index
349 ** of the matching column and return TRUE.
351 ** If not found, return FALSE.
353 static int tableAndColumnIndex(
354 SrcList
*pSrc
, /* Array of tables to search */
355 int iStart
, /* First member of pSrc->a[] to check */
356 int iEnd
, /* Last member of pSrc->a[] to check */
357 const char *zCol
, /* Name of the column we are looking for */
358 int *piTab
, /* Write index of pSrc->a[] here */
359 int *piCol
, /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
360 int bIgnoreHidden
/* Ignore hidden columns */
362 int i
; /* For looping over tables in pSrc */
363 int iCol
; /* Index of column matching zCol */
365 assert( iEnd
<pSrc
->nSrc
);
367 assert( (piTab
==0)==(piCol
==0) ); /* Both or neither are NULL */
369 for(i
=iStart
; i
<=iEnd
; i
++){
370 iCol
= sqlite3ColumnIndex(pSrc
->a
[i
].pTab
, zCol
);
372 && (bIgnoreHidden
==0 || IsHiddenColumn(&pSrc
->a
[i
].pTab
->aCol
[iCol
])==0)
375 sqlite3SrcItemColumnUsed(&pSrc
->a
[i
], iCol
);
386 ** Set the EP_OuterON property on all terms of the given expression.
387 ** And set the Expr.w.iJoin to iTable for every term in the
390 ** The EP_OuterON property is used on terms of an expression to tell
391 ** the OUTER JOIN processing logic that this term is part of the
392 ** join restriction specified in the ON or USING clause and not a part
393 ** of the more general WHERE clause. These terms are moved over to the
394 ** WHERE clause during join processing but we need to remember that they
395 ** originated in the ON or USING clause.
397 ** The Expr.w.iJoin tells the WHERE clause processing that the
398 ** expression depends on table w.iJoin even if that table is not
399 ** explicitly mentioned in the expression. That information is needed
400 ** for cases like this:
402 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
404 ** The where clause needs to defer the handling of the t1.x=5
405 ** term until after the t2 loop of the join. In that way, a
406 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not
407 ** defer the handling of t1.x=5, it will be processed immediately
408 ** after the t1 loop and rows with t1.x!=5 will never appear in
409 ** the output, which is incorrect.
411 void sqlite3SetJoinExpr(Expr
*p
, int iTable
, u32 joinFlag
){
412 assert( joinFlag
==EP_OuterON
|| joinFlag
==EP_InnerON
);
414 ExprSetProperty(p
, joinFlag
);
415 assert( !ExprHasProperty(p
, EP_TokenOnly
|EP_Reduced
) );
416 ExprSetVVAProperty(p
, EP_NoReduce
);
418 if( p
->op
==TK_FUNCTION
){
419 assert( ExprUseXList(p
) );
422 for(i
=0; i
<p
->x
.pList
->nExpr
; i
++){
423 sqlite3SetJoinExpr(p
->x
.pList
->a
[i
].pExpr
, iTable
, joinFlag
);
427 sqlite3SetJoinExpr(p
->pLeft
, iTable
, joinFlag
);
432 /* Undo the work of sqlite3SetJoinExpr(). This is used when a LEFT JOIN
433 ** is simplified into an ordinary JOIN, and when an ON expression is
434 ** "pushed down" into the WHERE clause of a subquery.
436 ** Convert every term that is marked with EP_OuterON and w.iJoin==iTable into
437 ** an ordinary term that omits the EP_OuterON mark. Or if iTable<0, then
438 ** just clear every EP_OuterON and EP_InnerON mark from the expression tree.
440 ** If nullable is true, that means that Expr p might evaluate to NULL even
441 ** if it is a reference to a NOT NULL column. This can happen, for example,
442 ** if the table that p references is on the left side of a RIGHT JOIN.
443 ** If nullable is true, then take care to not remove the EP_CanBeNull bit.
444 ** See forum thread https://sqlite.org/forum/forumpost/b40696f50145d21c
446 static void unsetJoinExpr(Expr
*p
, int iTable
, int nullable
){
448 if( iTable
<0 || (ExprHasProperty(p
, EP_OuterON
) && p
->w
.iJoin
==iTable
) ){
449 ExprClearProperty(p
, EP_OuterON
|EP_InnerON
);
450 if( iTable
>=0 ) ExprSetProperty(p
, EP_InnerON
);
452 if( p
->op
==TK_COLUMN
&& p
->iTable
==iTable
&& !nullable
){
453 ExprClearProperty(p
, EP_CanBeNull
);
455 if( p
->op
==TK_FUNCTION
){
456 assert( ExprUseXList(p
) );
459 for(i
=0; i
<p
->x
.pList
->nExpr
; i
++){
460 unsetJoinExpr(p
->x
.pList
->a
[i
].pExpr
, iTable
, nullable
);
464 unsetJoinExpr(p
->pLeft
, iTable
, nullable
);
470 ** This routine processes the join information for a SELECT statement.
472 ** * A NATURAL join is converted into a USING join. After that, we
473 ** do not need to be concerned with NATURAL joins and we only have
474 ** think about USING joins.
476 ** * ON and USING clauses result in extra terms being added to the
477 ** WHERE clause to enforce the specified constraints. The extra
478 ** WHERE clause terms will be tagged with EP_OuterON or
479 ** EP_InnerON so that we know that they originated in ON/USING.
481 ** The terms of a FROM clause are contained in the Select.pSrc structure.
482 ** The left most table is the first entry in Select.pSrc. The right-most
483 ** table is the last entry. The join operator is held in the entry to
484 ** the right. Thus entry 1 contains the join operator for the join between
485 ** entries 0 and 1. Any ON or USING clauses associated with the join are
486 ** also attached to the right entry.
488 ** This routine returns the number of errors encountered.
490 static int sqlite3ProcessJoin(Parse
*pParse
, Select
*p
){
491 SrcList
*pSrc
; /* All tables in the FROM clause */
492 int i
, j
; /* Loop counters */
493 SrcItem
*pLeft
; /* Left table being joined */
494 SrcItem
*pRight
; /* Right table being joined */
499 for(i
=0; i
<pSrc
->nSrc
-1; i
++, pRight
++, pLeft
++){
500 Table
*pRightTab
= pRight
->pTab
;
503 if( NEVER(pLeft
->pTab
==0 || pRightTab
==0) ) continue;
504 joinType
= (pRight
->fg
.jointype
& JT_OUTER
)!=0 ? EP_OuterON
: EP_InnerON
;
506 /* If this is a NATURAL join, synthesize an approprate USING clause
507 ** to specify which columns should be joined.
509 if( pRight
->fg
.jointype
& JT_NATURAL
){
511 if( pRight
->fg
.isUsing
|| pRight
->u3
.pOn
){
512 sqlite3ErrorMsg(pParse
, "a NATURAL join may not have "
513 "an ON or USING clause", 0);
516 for(j
=0; j
<pRightTab
->nCol
; j
++){
517 char *zName
; /* Name of column in the right table */
519 if( IsHiddenColumn(&pRightTab
->aCol
[j
]) ) continue;
520 zName
= pRightTab
->aCol
[j
].zCnName
;
521 if( tableAndColumnIndex(pSrc
, 0, i
, zName
, 0, 0, 1) ){
522 pUsing
= sqlite3IdListAppend(pParse
, pUsing
, 0);
524 assert( pUsing
->nId
>0 );
525 assert( pUsing
->a
[pUsing
->nId
-1].zName
==0 );
526 pUsing
->a
[pUsing
->nId
-1].zName
= sqlite3DbStrDup(pParse
->db
, zName
);
531 pRight
->fg
.isUsing
= 1;
532 pRight
->fg
.isSynthUsing
= 1;
533 pRight
->u3
.pUsing
= pUsing
;
535 if( pParse
->nErr
) return 1;
538 /* Create extra terms on the WHERE clause for each column named
539 ** in the USING clause. Example: If the two tables to be joined are
540 ** A and B and the USING clause names X, Y, and Z, then add this
541 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
542 ** Report an error if any column mentioned in the USING clause is
543 ** not contained in both tables to be joined.
545 if( pRight
->fg
.isUsing
){
546 IdList
*pList
= pRight
->u3
.pUsing
;
547 sqlite3
*db
= pParse
->db
;
549 for(j
=0; j
<pList
->nId
; j
++){
550 char *zName
; /* Name of the term in the USING clause */
551 int iLeft
; /* Table on the left with matching column name */
552 int iLeftCol
; /* Column number of matching column on the left */
553 int iRightCol
; /* Column number of matching column on the right */
554 Expr
*pE1
; /* Reference to the column on the LEFT of the join */
555 Expr
*pE2
; /* Reference to the column on the RIGHT of the join */
556 Expr
*pEq
; /* Equality constraint. pE1 == pE2 */
558 zName
= pList
->a
[j
].zName
;
559 iRightCol
= sqlite3ColumnIndex(pRightTab
, zName
);
561 || tableAndColumnIndex(pSrc
, 0, i
, zName
, &iLeft
, &iLeftCol
,
562 pRight
->fg
.isSynthUsing
)==0
564 sqlite3ErrorMsg(pParse
, "cannot join using column %s - column "
565 "not present in both tables", zName
);
568 pE1
= sqlite3CreateColumnExpr(db
, pSrc
, iLeft
, iLeftCol
);
569 sqlite3SrcItemColumnUsed(&pSrc
->a
[iLeft
], iLeftCol
);
570 if( (pSrc
->a
[0].fg
.jointype
& JT_LTORJ
)!=0 ){
571 /* This branch runs if the query contains one or more RIGHT or FULL
572 ** JOINs. If only a single table on the left side of this join
573 ** contains the zName column, then this branch is a no-op.
574 ** But if there are two or more tables on the left side
575 ** of the join, construct a coalesce() function that gathers all
576 ** such tables. Raise an error if more than one of those references
577 ** to zName is not also within a prior USING clause.
579 ** We really ought to raise an error if there are two or more
580 ** non-USING references to zName on the left of an INNER or LEFT
581 ** JOIN. But older versions of SQLite do not do that, so we avoid
582 ** adding a new error so as to not break legacy applications.
584 ExprList
*pFuncArgs
= 0; /* Arguments to the coalesce() */
585 static const Token tkCoalesce
= { "coalesce", 8 };
586 while( tableAndColumnIndex(pSrc
, iLeft
+1, i
, zName
, &iLeft
, &iLeftCol
,
587 pRight
->fg
.isSynthUsing
)!=0 ){
588 if( pSrc
->a
[iLeft
].fg
.isUsing
==0
589 || sqlite3IdListIndex(pSrc
->a
[iLeft
].u3
.pUsing
, zName
)<0
591 sqlite3ErrorMsg(pParse
, "ambiguous reference to %s in USING()",
595 pFuncArgs
= sqlite3ExprListAppend(pParse
, pFuncArgs
, pE1
);
596 pE1
= sqlite3CreateColumnExpr(db
, pSrc
, iLeft
, iLeftCol
);
597 sqlite3SrcItemColumnUsed(&pSrc
->a
[iLeft
], iLeftCol
);
600 pFuncArgs
= sqlite3ExprListAppend(pParse
, pFuncArgs
, pE1
);
601 pE1
= sqlite3ExprFunction(pParse
, pFuncArgs
, &tkCoalesce
, 0);
604 pE2
= sqlite3CreateColumnExpr(db
, pSrc
, i
+1, iRightCol
);
605 sqlite3SrcItemColumnUsed(pRight
, iRightCol
);
606 pEq
= sqlite3PExpr(pParse
, TK_EQ
, pE1
, pE2
);
607 assert( pE2
!=0 || pEq
==0 );
609 ExprSetProperty(pEq
, joinType
);
610 assert( !ExprHasProperty(pEq
, EP_TokenOnly
|EP_Reduced
) );
611 ExprSetVVAProperty(pEq
, EP_NoReduce
);
612 pEq
->w
.iJoin
= pE2
->iTable
;
614 p
->pWhere
= sqlite3ExprAnd(pParse
, p
->pWhere
, pEq
);
618 /* Add the ON clause to the end of the WHERE clause, connected by
621 else if( pRight
->u3
.pOn
){
622 sqlite3SetJoinExpr(pRight
->u3
.pOn
, pRight
->iCursor
, joinType
);
623 p
->pWhere
= sqlite3ExprAnd(pParse
, p
->pWhere
, pRight
->u3
.pOn
);
632 ** An instance of this object holds information (beyond pParse and pSelect)
633 ** needed to load the next result row that is to be added to the sorter.
635 typedef struct RowLoadInfo RowLoadInfo
;
637 int regResult
; /* Store results in array of registers here */
638 u8 ecelFlags
; /* Flag argument to ExprCodeExprList() */
639 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
640 ExprList
*pExtra
; /* Extra columns needed by sorter refs */
641 int regExtraResult
; /* Where to load the extra columns */
646 ** This routine does the work of loading query data into an array of
647 ** registers so that it can be added to the sorter.
649 static void innerLoopLoadRow(
650 Parse
*pParse
, /* Statement under construction */
651 Select
*pSelect
, /* The query being coded */
652 RowLoadInfo
*pInfo
/* Info needed to complete the row load */
654 sqlite3ExprCodeExprList(pParse
, pSelect
->pEList
, pInfo
->regResult
,
655 0, pInfo
->ecelFlags
);
656 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
658 sqlite3ExprCodeExprList(pParse
, pInfo
->pExtra
, pInfo
->regExtraResult
, 0, 0);
659 sqlite3ExprListDelete(pParse
->db
, pInfo
->pExtra
);
665 ** Code the OP_MakeRecord instruction that generates the entry to be
666 ** added into the sorter.
668 ** Return the register in which the result is stored.
670 static int makeSorterRecord(
677 int nOBSat
= pSort
->nOBSat
;
678 Vdbe
*v
= pParse
->pVdbe
;
679 int regOut
= ++pParse
->nMem
;
680 if( pSort
->pDeferredRowLoad
){
681 innerLoopLoadRow(pParse
, pSelect
, pSort
->pDeferredRowLoad
);
683 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regBase
+nOBSat
, nBase
-nOBSat
, regOut
);
688 ** Generate code that will push the record in registers regData
689 ** through regData+nData-1 onto the sorter.
691 static void pushOntoSorter(
692 Parse
*pParse
, /* Parser context */
693 SortCtx
*pSort
, /* Information about the ORDER BY clause */
694 Select
*pSelect
, /* The whole SELECT statement */
695 int regData
, /* First register holding data to be sorted */
696 int regOrigData
, /* First register holding data before packing */
697 int nData
, /* Number of elements in the regData data array */
698 int nPrefixReg
/* No. of reg prior to regData available for use */
700 Vdbe
*v
= pParse
->pVdbe
; /* Stmt under construction */
701 int bSeq
= ((pSort
->sortFlags
& SORTFLAG_UseSorter
)==0);
702 int nExpr
= pSort
->pOrderBy
->nExpr
; /* No. of ORDER BY terms */
703 int nBase
= nExpr
+ bSeq
+ nData
; /* Fields in sorter record */
704 int regBase
; /* Regs for sorter record */
705 int regRecord
= 0; /* Assembled sorter record */
706 int nOBSat
= pSort
->nOBSat
; /* ORDER BY terms to skip */
707 int op
; /* Opcode to add sorter record to sorter */
708 int iLimit
; /* LIMIT counter */
709 int iSkip
= 0; /* End of the sorter insert loop */
711 assert( bSeq
==0 || bSeq
==1 );
714 ** (1) The data to be sorted has already been packed into a Record
715 ** by a prior OP_MakeRecord. In this case nData==1 and regData
716 ** will be completely unrelated to regOrigData.
717 ** (2) All output columns are included in the sort record. In that
718 ** case regData==regOrigData.
719 ** (3) Some output columns are omitted from the sort record due to
720 ** the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the
721 ** SQLITE_ECEL_OMITREF optimization, or due to the
722 ** SortCtx.pDeferredRowLoad optimiation. In any of these cases
723 ** regOrigData is 0 to prevent this routine from trying to copy
724 ** values that might not yet exist.
726 assert( nData
==1 || regData
==regOrigData
|| regOrigData
==0 );
728 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
729 pSort
->addrPush
= sqlite3VdbeCurrentAddr(v
);
733 assert( nPrefixReg
==nExpr
+bSeq
);
734 regBase
= regData
- nPrefixReg
;
736 regBase
= pParse
->nMem
+ 1;
737 pParse
->nMem
+= nBase
;
739 assert( pSelect
->iOffset
==0 || pSelect
->iLimit
!=0 );
740 iLimit
= pSelect
->iOffset
? pSelect
->iOffset
+1 : pSelect
->iLimit
;
741 pSort
->labelDone
= sqlite3VdbeMakeLabel(pParse
);
742 sqlite3ExprCodeExprList(pParse
, pSort
->pOrderBy
, regBase
, regOrigData
,
743 SQLITE_ECEL_DUP
| (regOrigData
? SQLITE_ECEL_REF
: 0));
745 sqlite3VdbeAddOp2(v
, OP_Sequence
, pSort
->iECursor
, regBase
+nExpr
);
747 if( nPrefixReg
==0 && nData
>0 ){
748 sqlite3ExprCodeMove(pParse
, regData
, regBase
+nExpr
+bSeq
, nData
);
751 int regPrevKey
; /* The first nOBSat columns of the previous row */
752 int addrFirst
; /* Address of the OP_IfNot opcode */
753 int addrJmp
; /* Address of the OP_Jump opcode */
754 VdbeOp
*pOp
; /* Opcode that opens the sorter */
755 int nKey
; /* Number of sorting key columns, including OP_Sequence */
756 KeyInfo
*pKI
; /* Original KeyInfo on the sorter table */
758 regRecord
= makeSorterRecord(pParse
, pSort
, pSelect
, regBase
, nBase
);
759 regPrevKey
= pParse
->nMem
+1;
760 pParse
->nMem
+= pSort
->nOBSat
;
761 nKey
= nExpr
- pSort
->nOBSat
+ bSeq
;
763 addrFirst
= sqlite3VdbeAddOp1(v
, OP_IfNot
, regBase
+nExpr
);
765 addrFirst
= sqlite3VdbeAddOp1(v
, OP_SequenceTest
, pSort
->iECursor
);
768 sqlite3VdbeAddOp3(v
, OP_Compare
, regPrevKey
, regBase
, pSort
->nOBSat
);
769 pOp
= sqlite3VdbeGetOp(v
, pSort
->addrSortIndex
);
770 if( pParse
->db
->mallocFailed
) return;
771 pOp
->p2
= nKey
+ nData
;
772 pKI
= pOp
->p4
.pKeyInfo
;
773 memset(pKI
->aSortFlags
, 0, pKI
->nKeyField
); /* Makes OP_Jump testable */
774 sqlite3VdbeChangeP4(v
, -1, (char*)pKI
, P4_KEYINFO
);
775 testcase( pKI
->nAllField
> pKI
->nKeyField
+2 );
776 pOp
->p4
.pKeyInfo
= sqlite3KeyInfoFromExprList(pParse
,pSort
->pOrderBy
,nOBSat
,
777 pKI
->nAllField
-pKI
->nKeyField
-1);
778 pOp
= 0; /* Ensure pOp not used after sqltie3VdbeAddOp3() */
779 addrJmp
= sqlite3VdbeCurrentAddr(v
);
780 sqlite3VdbeAddOp3(v
, OP_Jump
, addrJmp
+1, 0, addrJmp
+1); VdbeCoverage(v
);
781 pSort
->labelBkOut
= sqlite3VdbeMakeLabel(pParse
);
782 pSort
->regReturn
= ++pParse
->nMem
;
783 sqlite3VdbeAddOp2(v
, OP_Gosub
, pSort
->regReturn
, pSort
->labelBkOut
);
784 sqlite3VdbeAddOp1(v
, OP_ResetSorter
, pSort
->iECursor
);
786 sqlite3VdbeAddOp2(v
, OP_IfNot
, iLimit
, pSort
->labelDone
);
789 sqlite3VdbeJumpHere(v
, addrFirst
);
790 sqlite3ExprCodeMove(pParse
, regBase
, regPrevKey
, pSort
->nOBSat
);
791 sqlite3VdbeJumpHere(v
, addrJmp
);
794 /* At this point the values for the new sorter entry are stored
795 ** in an array of registers. They need to be composed into a record
796 ** and inserted into the sorter if either (a) there are currently
797 ** less than LIMIT+OFFSET items or (b) the new record is smaller than
798 ** the largest record currently in the sorter. If (b) is true and there
799 ** are already LIMIT+OFFSET items in the sorter, delete the largest
800 ** entry before inserting the new one. This way there are never more
801 ** than LIMIT+OFFSET items in the sorter.
803 ** If the new record does not need to be inserted into the sorter,
804 ** jump to the next iteration of the loop. If the pSort->labelOBLopt
805 ** value is not zero, then it is a label of where to jump. Otherwise,
806 ** just bypass the row insert logic. See the header comment on the
807 ** sqlite3WhereOrderByLimitOptLabel() function for additional info.
809 int iCsr
= pSort
->iECursor
;
810 sqlite3VdbeAddOp2(v
, OP_IfNotZero
, iLimit
, sqlite3VdbeCurrentAddr(v
)+4);
812 sqlite3VdbeAddOp2(v
, OP_Last
, iCsr
, 0);
813 iSkip
= sqlite3VdbeAddOp4Int(v
, OP_IdxLE
,
814 iCsr
, 0, regBase
+nOBSat
, nExpr
-nOBSat
);
816 sqlite3VdbeAddOp1(v
, OP_Delete
, iCsr
);
819 regRecord
= makeSorterRecord(pParse
, pSort
, pSelect
, regBase
, nBase
);
821 if( pSort
->sortFlags
& SORTFLAG_UseSorter
){
822 op
= OP_SorterInsert
;
826 sqlite3VdbeAddOp4Int(v
, op
, pSort
->iECursor
, regRecord
,
827 regBase
+nOBSat
, nBase
-nOBSat
);
829 sqlite3VdbeChangeP2(v
, iSkip
,
830 pSort
->labelOBLopt
? pSort
->labelOBLopt
: sqlite3VdbeCurrentAddr(v
));
832 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
833 pSort
->addrPushEnd
= sqlite3VdbeCurrentAddr(v
)-1;
838 ** Add code to implement the OFFSET
840 static void codeOffset(
841 Vdbe
*v
, /* Generate code into this VM */
842 int iOffset
, /* Register holding the offset counter */
843 int iContinue
/* Jump here to skip the current record */
846 sqlite3VdbeAddOp3(v
, OP_IfPos
, iOffset
, iContinue
, 1); VdbeCoverage(v
);
847 VdbeComment((v
, "OFFSET"));
852 ** Add code that will check to make sure the array of registers starting at
853 ** iMem form a distinct entry. This is used by both "SELECT DISTINCT ..." and
854 ** distinct aggregates ("SELECT count(DISTINCT <expr>) ..."). Three strategies
855 ** are available. Which is used depends on the value of parameter eTnctType,
858 ** WHERE_DISTINCT_UNORDERED/WHERE_DISTINCT_NOOP:
859 ** Build an ephemeral table that contains all entries seen before and
860 ** skip entries which have been seen before.
862 ** Parameter iTab is the cursor number of an ephemeral table that must
863 ** be opened before the VM code generated by this routine is executed.
864 ** The ephemeral cursor table is queried for a record identical to the
865 ** record formed by the current array of registers. If one is found,
866 ** jump to VM address addrRepeat. Otherwise, insert a new record into
867 ** the ephemeral cursor and proceed.
869 ** The returned value in this case is a copy of parameter iTab.
871 ** WHERE_DISTINCT_ORDERED:
872 ** In this case rows are being delivered sorted order. The ephermal
873 ** table is not required. Instead, the current set of values
874 ** is compared against previous row. If they match, the new row
875 ** is not distinct and control jumps to VM address addrRepeat. Otherwise,
876 ** the VM program proceeds with processing the new row.
878 ** The returned value in this case is the register number of the first
879 ** in an array of registers used to store the previous result row so that
880 ** it can be compared to the next. The caller must ensure that this
881 ** register is initialized to NULL. (The fixDistinctOpenEph() routine
882 ** will take care of this initialization.)
884 ** WHERE_DISTINCT_UNIQUE:
885 ** In this case it has already been determined that the rows are distinct.
886 ** No special action is required. The return value is zero.
888 ** Parameter pEList is the list of expressions used to generated the
889 ** contents of each row. It is used by this routine to determine (a)
890 ** how many elements there are in the array of registers and (b) the
891 ** collation sequences that should be used for the comparisons if
892 ** eTnctType is WHERE_DISTINCT_ORDERED.
894 static int codeDistinct(
895 Parse
*pParse
, /* Parsing and code generating context */
896 int eTnctType
, /* WHERE_DISTINCT_* value */
897 int iTab
, /* A sorting index used to test for distinctness */
898 int addrRepeat
, /* Jump to here if not distinct */
899 ExprList
*pEList
, /* Expression for each element */
900 int regElem
/* First element */
903 int nResultCol
= pEList
->nExpr
;
904 Vdbe
*v
= pParse
->pVdbe
;
907 case WHERE_DISTINCT_ORDERED
: {
909 int iJump
; /* Jump destination */
910 int regPrev
; /* Previous row content */
912 /* Allocate space for the previous row */
913 iRet
= regPrev
= pParse
->nMem
+1;
914 pParse
->nMem
+= nResultCol
;
916 iJump
= sqlite3VdbeCurrentAddr(v
) + nResultCol
;
917 for(i
=0; i
<nResultCol
; i
++){
918 CollSeq
*pColl
= sqlite3ExprCollSeq(pParse
, pEList
->a
[i
].pExpr
);
919 if( i
<nResultCol
-1 ){
920 sqlite3VdbeAddOp3(v
, OP_Ne
, regElem
+i
, iJump
, regPrev
+i
);
923 sqlite3VdbeAddOp3(v
, OP_Eq
, regElem
+i
, addrRepeat
, regPrev
+i
);
926 sqlite3VdbeChangeP4(v
, -1, (const char *)pColl
, P4_COLLSEQ
);
927 sqlite3VdbeChangeP5(v
, SQLITE_NULLEQ
);
929 assert( sqlite3VdbeCurrentAddr(v
)==iJump
|| pParse
->db
->mallocFailed
);
930 sqlite3VdbeAddOp3(v
, OP_Copy
, regElem
, regPrev
, nResultCol
-1);
934 case WHERE_DISTINCT_UNIQUE
: {
940 int r1
= sqlite3GetTempReg(pParse
);
941 sqlite3VdbeAddOp4Int(v
, OP_Found
, iTab
, addrRepeat
, regElem
, nResultCol
);
943 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regElem
, nResultCol
, r1
);
944 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, iTab
, r1
, regElem
, nResultCol
);
945 sqlite3VdbeChangeP5(v
, OPFLAG_USESEEKRESULT
);
946 sqlite3ReleaseTempReg(pParse
, r1
);
956 ** This routine runs after codeDistinct(). It makes necessary
957 ** adjustments to the OP_OpenEphemeral opcode that the codeDistinct()
958 ** routine made use of. This processing must be done separately since
959 ** sometimes codeDistinct is called before the OP_OpenEphemeral is actually
962 ** WHERE_DISTINCT_NOOP:
963 ** WHERE_DISTINCT_UNORDERED:
965 ** No adjustments necessary. This function is a no-op.
967 ** WHERE_DISTINCT_UNIQUE:
969 ** The ephemeral table is not needed. So change the
970 ** OP_OpenEphemeral opcode into an OP_Noop.
972 ** WHERE_DISTINCT_ORDERED:
974 ** The ephemeral table is not needed. But we do need register
975 ** iVal to be initialized to NULL. So change the OP_OpenEphemeral
976 ** into an OP_Null on the iVal register.
978 static void fixDistinctOpenEph(
979 Parse
*pParse
, /* Parsing and code generating context */
980 int eTnctType
, /* WHERE_DISTINCT_* value */
981 int iVal
, /* Value returned by codeDistinct() */
982 int iOpenEphAddr
/* Address of OP_OpenEphemeral instruction for iTab */
985 && (eTnctType
==WHERE_DISTINCT_UNIQUE
|| eTnctType
==WHERE_DISTINCT_ORDERED
)
987 Vdbe
*v
= pParse
->pVdbe
;
988 sqlite3VdbeChangeToNoop(v
, iOpenEphAddr
);
989 if( sqlite3VdbeGetOp(v
, iOpenEphAddr
+1)->opcode
==OP_Explain
){
990 sqlite3VdbeChangeToNoop(v
, iOpenEphAddr
+1);
992 if( eTnctType
==WHERE_DISTINCT_ORDERED
){
993 /* Change the OP_OpenEphemeral to an OP_Null that sets the MEM_Cleared
994 ** bit on the first register of the previous value. This will cause the
995 ** OP_Ne added in codeDistinct() to always fail on the first iteration of
996 ** the loop even if the first row is all NULLs. */
997 VdbeOp
*pOp
= sqlite3VdbeGetOp(v
, iOpenEphAddr
);
998 pOp
->opcode
= OP_Null
;
1005 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1007 ** This function is called as part of inner-loop generation for a SELECT
1008 ** statement with an ORDER BY that is not optimized by an index. It
1009 ** determines the expressions, if any, that the sorter-reference
1010 ** optimization should be used for. The sorter-reference optimization
1011 ** is used for SELECT queries like:
1013 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10
1015 ** If the optimization is used for expression "bigblob", then instead of
1016 ** storing values read from that column in the sorter records, the PK of
1017 ** the row from table t1 is stored instead. Then, as records are extracted from
1018 ** the sorter to return to the user, the required value of bigblob is
1019 ** retrieved directly from table t1. If the values are very large, this
1020 ** can be more efficient than storing them directly in the sorter records.
1022 ** The ExprList_item.fg.bSorterRef flag is set for each expression in pEList
1023 ** for which the sorter-reference optimization should be enabled.
1024 ** Additionally, the pSort->aDefer[] array is populated with entries
1025 ** for all cursors required to evaluate all selected expressions. Finally.
1026 ** output variable (*ppExtra) is set to an expression list containing
1027 ** expressions for all extra PK values that should be stored in the
1030 static void selectExprDefer(
1031 Parse
*pParse
, /* Leave any error here */
1032 SortCtx
*pSort
, /* Sorter context */
1033 ExprList
*pEList
, /* Expressions destined for sorter */
1034 ExprList
**ppExtra
/* Expressions to append to sorter record */
1038 ExprList
*pExtra
= 0;
1039 for(i
=0; i
<pEList
->nExpr
; i
++){
1040 struct ExprList_item
*pItem
= &pEList
->a
[i
];
1041 if( pItem
->u
.x
.iOrderByCol
==0 ){
1042 Expr
*pExpr
= pItem
->pExpr
;
1044 if( pExpr
->op
==TK_COLUMN
1045 && pExpr
->iColumn
>=0
1046 && ALWAYS( ExprUseYTab(pExpr
) )
1047 && (pTab
= pExpr
->y
.pTab
)!=0
1048 && IsOrdinaryTable(pTab
)
1049 && (pTab
->aCol
[pExpr
->iColumn
].colFlags
& COLFLAG_SORTERREF
)!=0
1052 for(j
=0; j
<nDefer
; j
++){
1053 if( pSort
->aDefer
[j
].iCsr
==pExpr
->iTable
) break;
1056 if( nDefer
==ArraySize(pSort
->aDefer
) ){
1062 if( !HasRowid(pTab
) ){
1063 pPk
= sqlite3PrimaryKeyIndex(pTab
);
1064 nKey
= pPk
->nKeyCol
;
1066 for(k
=0; k
<nKey
; k
++){
1067 Expr
*pNew
= sqlite3PExpr(pParse
, TK_COLUMN
, 0, 0);
1069 pNew
->iTable
= pExpr
->iTable
;
1070 assert( ExprUseYTab(pNew
) );
1071 pNew
->y
.pTab
= pExpr
->y
.pTab
;
1072 pNew
->iColumn
= pPk
? pPk
->aiColumn
[k
] : -1;
1073 pExtra
= sqlite3ExprListAppend(pParse
, pExtra
, pNew
);
1076 pSort
->aDefer
[nDefer
].pTab
= pExpr
->y
.pTab
;
1077 pSort
->aDefer
[nDefer
].iCsr
= pExpr
->iTable
;
1078 pSort
->aDefer
[nDefer
].nKey
= nKey
;
1082 pItem
->fg
.bSorterRef
= 1;
1086 pSort
->nDefer
= (u8
)nDefer
;
1092 ** This routine generates the code for the inside of the inner loop
1095 ** If srcTab is negative, then the p->pEList expressions
1096 ** are evaluated in order to get the data for this row. If srcTab is
1097 ** zero or more, then data is pulled from srcTab and p->pEList is used only
1098 ** to get the number of columns and the collation sequence for each column.
1100 static void selectInnerLoop(
1101 Parse
*pParse
, /* The parser context */
1102 Select
*p
, /* The complete select statement being coded */
1103 int srcTab
, /* Pull data from this table if non-negative */
1104 SortCtx
*pSort
, /* If not NULL, info on how to process ORDER BY */
1105 DistinctCtx
*pDistinct
, /* If not NULL, info on how to process DISTINCT */
1106 SelectDest
*pDest
, /* How to dispose of the results */
1107 int iContinue
, /* Jump here to continue with next row */
1108 int iBreak
/* Jump here to break out of the inner loop */
1110 Vdbe
*v
= pParse
->pVdbe
;
1112 int hasDistinct
; /* True if the DISTINCT keyword is present */
1113 int eDest
= pDest
->eDest
; /* How to dispose of results */
1114 int iParm
= pDest
->iSDParm
; /* First argument to disposal method */
1115 int nResultCol
; /* Number of result columns */
1116 int nPrefixReg
= 0; /* Number of extra registers before regResult */
1117 RowLoadInfo sRowLoadInfo
; /* Info for deferred row loading */
1119 /* Usually, regResult is the first cell in an array of memory cells
1120 ** containing the current result row. In this case regOrig is set to the
1121 ** same value. However, if the results are being sent to the sorter, the
1122 ** values for any expressions that are also part of the sort-key are omitted
1123 ** from this array. In this case regOrig is set to zero. */
1124 int regResult
; /* Start of memory holding current results */
1125 int regOrig
; /* Start of memory holding full result (or 0) */
1128 assert( p
->pEList
!=0 );
1129 hasDistinct
= pDistinct
? pDistinct
->eTnctType
: WHERE_DISTINCT_NOOP
;
1130 if( pSort
&& pSort
->pOrderBy
==0 ) pSort
= 0;
1131 if( pSort
==0 && !hasDistinct
){
1132 assert( iContinue
!=0 );
1133 codeOffset(v
, p
->iOffset
, iContinue
);
1136 /* Pull the requested columns.
1138 nResultCol
= p
->pEList
->nExpr
;
1140 if( pDest
->iSdst
==0 ){
1142 nPrefixReg
= pSort
->pOrderBy
->nExpr
;
1143 if( !(pSort
->sortFlags
& SORTFLAG_UseSorter
) ) nPrefixReg
++;
1144 pParse
->nMem
+= nPrefixReg
;
1146 pDest
->iSdst
= pParse
->nMem
+1;
1147 pParse
->nMem
+= nResultCol
;
1148 }else if( pDest
->iSdst
+nResultCol
> pParse
->nMem
){
1149 /* This is an error condition that can result, for example, when a SELECT
1150 ** on the right-hand side of an INSERT contains more result columns than
1151 ** there are columns in the table on the left. The error will be caught
1152 ** and reported later. But we need to make sure enough memory is allocated
1153 ** to avoid other spurious errors in the meantime. */
1154 pParse
->nMem
+= nResultCol
;
1156 pDest
->nSdst
= nResultCol
;
1157 regOrig
= regResult
= pDest
->iSdst
;
1159 for(i
=0; i
<nResultCol
; i
++){
1160 sqlite3VdbeAddOp3(v
, OP_Column
, srcTab
, i
, regResult
+i
);
1161 VdbeComment((v
, "%s", p
->pEList
->a
[i
].zEName
));
1163 }else if( eDest
!=SRT_Exists
){
1164 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1165 ExprList
*pExtra
= 0;
1167 /* If the destination is an EXISTS(...) expression, the actual
1168 ** values returned by the SELECT are not required.
1170 u8 ecelFlags
; /* "ecel" is an abbreviation of "ExprCodeExprList" */
1172 if( eDest
==SRT_Mem
|| eDest
==SRT_Output
|| eDest
==SRT_Coroutine
){
1173 ecelFlags
= SQLITE_ECEL_DUP
;
1177 if( pSort
&& hasDistinct
==0 && eDest
!=SRT_EphemTab
&& eDest
!=SRT_Table
){
1178 /* For each expression in p->pEList that is a copy of an expression in
1179 ** the ORDER BY clause (pSort->pOrderBy), set the associated
1180 ** iOrderByCol value to one more than the index of the ORDER BY
1181 ** expression within the sort-key that pushOntoSorter() will generate.
1182 ** This allows the p->pEList field to be omitted from the sorted record,
1183 ** saving space and CPU cycles. */
1184 ecelFlags
|= (SQLITE_ECEL_OMITREF
|SQLITE_ECEL_REF
);
1186 for(i
=pSort
->nOBSat
; i
<pSort
->pOrderBy
->nExpr
; i
++){
1188 if( (j
= pSort
->pOrderBy
->a
[i
].u
.x
.iOrderByCol
)>0 ){
1189 p
->pEList
->a
[j
-1].u
.x
.iOrderByCol
= i
+1-pSort
->nOBSat
;
1192 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1193 selectExprDefer(pParse
, pSort
, p
->pEList
, &pExtra
);
1194 if( pExtra
&& pParse
->db
->mallocFailed
==0 ){
1195 /* If there are any extra PK columns to add to the sorter records,
1196 ** allocate extra memory cells and adjust the OpenEphemeral
1197 ** instruction to account for the larger records. This is only
1198 ** required if there are one or more WITHOUT ROWID tables with
1199 ** composite primary keys in the SortCtx.aDefer[] array. */
1200 VdbeOp
*pOp
= sqlite3VdbeGetOp(v
, pSort
->addrSortIndex
);
1201 pOp
->p2
+= (pExtra
->nExpr
- pSort
->nDefer
);
1202 pOp
->p4
.pKeyInfo
->nAllField
+= (pExtra
->nExpr
- pSort
->nDefer
);
1203 pParse
->nMem
+= pExtra
->nExpr
;
1207 /* Adjust nResultCol to account for columns that are omitted
1208 ** from the sorter by the optimizations in this branch */
1210 for(i
=0; i
<pEList
->nExpr
; i
++){
1211 if( pEList
->a
[i
].u
.x
.iOrderByCol
>0
1212 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1213 || pEList
->a
[i
].fg
.bSorterRef
1221 testcase( regOrig
);
1222 testcase( eDest
==SRT_Set
);
1223 testcase( eDest
==SRT_Mem
);
1224 testcase( eDest
==SRT_Coroutine
);
1225 testcase( eDest
==SRT_Output
);
1226 assert( eDest
==SRT_Set
|| eDest
==SRT_Mem
1227 || eDest
==SRT_Coroutine
|| eDest
==SRT_Output
1228 || eDest
==SRT_Upfrom
);
1230 sRowLoadInfo
.regResult
= regResult
;
1231 sRowLoadInfo
.ecelFlags
= ecelFlags
;
1232 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1233 sRowLoadInfo
.pExtra
= pExtra
;
1234 sRowLoadInfo
.regExtraResult
= regResult
+ nResultCol
;
1235 if( pExtra
) nResultCol
+= pExtra
->nExpr
;
1238 && (ecelFlags
& SQLITE_ECEL_OMITREF
)!=0
1242 assert( hasDistinct
==0 );
1243 pSort
->pDeferredRowLoad
= &sRowLoadInfo
;
1246 innerLoopLoadRow(pParse
, p
, &sRowLoadInfo
);
1250 /* If the DISTINCT keyword was present on the SELECT statement
1251 ** and this row has been seen before, then do not make this row
1252 ** part of the result.
1255 int eType
= pDistinct
->eTnctType
;
1256 int iTab
= pDistinct
->tabTnct
;
1257 assert( nResultCol
==p
->pEList
->nExpr
);
1258 iTab
= codeDistinct(pParse
, eType
, iTab
, iContinue
, p
->pEList
, regResult
);
1259 fixDistinctOpenEph(pParse
, eType
, iTab
, pDistinct
->addrTnct
);
1261 codeOffset(v
, p
->iOffset
, iContinue
);
1266 /* In this mode, write each query result to the key of the temporary
1269 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1272 r1
= sqlite3GetTempReg(pParse
);
1273 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regResult
, nResultCol
, r1
);
1274 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, iParm
, r1
, regResult
, nResultCol
);
1275 sqlite3ReleaseTempReg(pParse
, r1
);
1279 /* Construct a record from the query result, but instead of
1280 ** saving that record, use it as a key to delete elements from
1281 ** the temporary table iParm.
1284 sqlite3VdbeAddOp3(v
, OP_IdxDelete
, iParm
, regResult
, nResultCol
);
1287 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1289 /* Store the result as data using a unique key.
1294 case SRT_EphemTab
: {
1295 int r1
= sqlite3GetTempRange(pParse
, nPrefixReg
+1);
1296 testcase( eDest
==SRT_Table
);
1297 testcase( eDest
==SRT_EphemTab
);
1298 testcase( eDest
==SRT_Fifo
);
1299 testcase( eDest
==SRT_DistFifo
);
1300 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regResult
, nResultCol
, r1
+nPrefixReg
);
1301 #ifndef SQLITE_OMIT_CTE
1302 if( eDest
==SRT_DistFifo
){
1303 /* If the destination is DistFifo, then cursor (iParm+1) is open
1304 ** on an ephemeral index. If the current row is already present
1305 ** in the index, do not write it to the output. If not, add the
1306 ** current row to the index and proceed with writing it to the
1307 ** output table as well. */
1308 int addr
= sqlite3VdbeCurrentAddr(v
) + 4;
1309 sqlite3VdbeAddOp4Int(v
, OP_Found
, iParm
+1, addr
, r1
, 0);
1311 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, iParm
+1, r1
,regResult
,nResultCol
);
1316 assert( regResult
==regOrig
);
1317 pushOntoSorter(pParse
, pSort
, p
, r1
+nPrefixReg
, regOrig
, 1, nPrefixReg
);
1319 int r2
= sqlite3GetTempReg(pParse
);
1320 sqlite3VdbeAddOp2(v
, OP_NewRowid
, iParm
, r2
);
1321 sqlite3VdbeAddOp3(v
, OP_Insert
, iParm
, r1
, r2
);
1322 sqlite3VdbeChangeP5(v
, OPFLAG_APPEND
);
1323 sqlite3ReleaseTempReg(pParse
, r2
);
1325 sqlite3ReleaseTempRange(pParse
, r1
, nPrefixReg
+1);
1332 pParse
, pSort
, p
, regResult
, regOrig
, nResultCol
, nPrefixReg
);
1334 int i2
= pDest
->iSDParm2
;
1335 int r1
= sqlite3GetTempReg(pParse
);
1337 /* If the UPDATE FROM join is an aggregate that matches no rows, it
1338 ** might still be trying to return one row, because that is what
1339 ** aggregates do. Don't record that empty row in the output table. */
1340 sqlite3VdbeAddOp2(v
, OP_IsNull
, regResult
, iBreak
); VdbeCoverage(v
);
1342 sqlite3VdbeAddOp3(v
, OP_MakeRecord
,
1343 regResult
+(i2
<0), nResultCol
-(i2
<0), r1
);
1345 sqlite3VdbeAddOp3(v
, OP_Insert
, iParm
, r1
, regResult
);
1347 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, iParm
, r1
, regResult
, i2
);
1353 #ifndef SQLITE_OMIT_SUBQUERY
1354 /* If we are creating a set for an "expr IN (SELECT ...)" construct,
1355 ** then there should be a single item on the stack. Write this
1356 ** item into the set table with bogus data.
1360 /* At first glance you would think we could optimize out the
1361 ** ORDER BY in this case since the order of entries in the set
1362 ** does not matter. But there might be a LIMIT clause, in which
1363 ** case the order does matter */
1365 pParse
, pSort
, p
, regResult
, regOrig
, nResultCol
, nPrefixReg
);
1367 int r1
= sqlite3GetTempReg(pParse
);
1368 assert( sqlite3Strlen30(pDest
->zAffSdst
)==nResultCol
);
1369 sqlite3VdbeAddOp4(v
, OP_MakeRecord
, regResult
, nResultCol
,
1370 r1
, pDest
->zAffSdst
, nResultCol
);
1371 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, iParm
, r1
, regResult
, nResultCol
);
1372 sqlite3ReleaseTempReg(pParse
, r1
);
1378 /* If any row exist in the result set, record that fact and abort.
1381 sqlite3VdbeAddOp2(v
, OP_Integer
, 1, iParm
);
1382 /* The LIMIT clause will terminate the loop for us */
1386 /* If this is a scalar select that is part of an expression, then
1387 ** store the results in the appropriate memory cell or array of
1388 ** memory cells and break out of the scan loop.
1392 assert( nResultCol
<=pDest
->nSdst
);
1394 pParse
, pSort
, p
, regResult
, regOrig
, nResultCol
, nPrefixReg
);
1396 assert( nResultCol
==pDest
->nSdst
);
1397 assert( regResult
==iParm
);
1398 /* The LIMIT clause will jump out of the loop for us */
1402 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
1404 case SRT_Coroutine
: /* Send data to a co-routine */
1405 case SRT_Output
: { /* Return the results */
1406 testcase( eDest
==SRT_Coroutine
);
1407 testcase( eDest
==SRT_Output
);
1409 pushOntoSorter(pParse
, pSort
, p
, regResult
, regOrig
, nResultCol
,
1411 }else if( eDest
==SRT_Coroutine
){
1412 sqlite3VdbeAddOp1(v
, OP_Yield
, pDest
->iSDParm
);
1414 sqlite3VdbeAddOp2(v
, OP_ResultRow
, regResult
, nResultCol
);
1419 #ifndef SQLITE_OMIT_CTE
1420 /* Write the results into a priority queue that is order according to
1421 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an
1422 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first
1423 ** pSO->nExpr columns, then make sure all keys are unique by adding a
1424 ** final OP_Sequence column. The last column is the record as a blob.
1432 pSO
= pDest
->pOrderBy
;
1435 r1
= sqlite3GetTempReg(pParse
);
1436 r2
= sqlite3GetTempRange(pParse
, nKey
+2);
1438 if( eDest
==SRT_DistQueue
){
1439 /* If the destination is DistQueue, then cursor (iParm+1) is open
1440 ** on a second ephemeral index that holds all values every previously
1441 ** added to the queue. */
1442 addrTest
= sqlite3VdbeAddOp4Int(v
, OP_Found
, iParm
+1, 0,
1443 regResult
, nResultCol
);
1446 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regResult
, nResultCol
, r3
);
1447 if( eDest
==SRT_DistQueue
){
1448 sqlite3VdbeAddOp2(v
, OP_IdxInsert
, iParm
+1, r3
);
1449 sqlite3VdbeChangeP5(v
, OPFLAG_USESEEKRESULT
);
1451 for(i
=0; i
<nKey
; i
++){
1452 sqlite3VdbeAddOp2(v
, OP_SCopy
,
1453 regResult
+ pSO
->a
[i
].u
.x
.iOrderByCol
- 1,
1456 sqlite3VdbeAddOp2(v
, OP_Sequence
, iParm
, r2
+nKey
);
1457 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, r2
, nKey
+2, r1
);
1458 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, iParm
, r1
, r2
, nKey
+2);
1459 if( addrTest
) sqlite3VdbeJumpHere(v
, addrTest
);
1460 sqlite3ReleaseTempReg(pParse
, r1
);
1461 sqlite3ReleaseTempRange(pParse
, r2
, nKey
+2);
1464 #endif /* SQLITE_OMIT_CTE */
1468 #if !defined(SQLITE_OMIT_TRIGGER)
1469 /* Discard the results. This is used for SELECT statements inside
1470 ** the body of a TRIGGER. The purpose of such selects is to call
1471 ** user-defined functions that have side effects. We do not care
1472 ** about the actual results of the select.
1475 assert( eDest
==SRT_Discard
);
1481 /* Jump to the end of the loop if the LIMIT is reached. Except, if
1482 ** there is a sorter, in which case the sorter has already limited
1483 ** the output for us.
1485 if( pSort
==0 && p
->iLimit
){
1486 sqlite3VdbeAddOp2(v
, OP_DecrJumpZero
, p
->iLimit
, iBreak
); VdbeCoverage(v
);
1491 ** Allocate a KeyInfo object sufficient for an index of N key columns and
1494 KeyInfo
*sqlite3KeyInfoAlloc(sqlite3
*db
, int N
, int X
){
1495 int nExtra
= (N
+X
)*(sizeof(CollSeq
*)+1) - sizeof(CollSeq
*);
1496 KeyInfo
*p
= sqlite3DbMallocRawNN(db
, sizeof(KeyInfo
) + nExtra
);
1498 p
->aSortFlags
= (u8
*)&p
->aColl
[N
+X
];
1499 p
->nKeyField
= (u16
)N
;
1500 p
->nAllField
= (u16
)(N
+X
);
1504 memset(&p
[1], 0, nExtra
);
1506 return (KeyInfo
*)sqlite3OomFault(db
);
1512 ** Deallocate a KeyInfo object
1514 void sqlite3KeyInfoUnref(KeyInfo
*p
){
1517 assert( p
->nRef
>0 );
1519 if( p
->nRef
==0 ) sqlite3DbNNFreeNN(p
->db
, p
);
1524 ** Make a new pointer to a KeyInfo object
1526 KeyInfo
*sqlite3KeyInfoRef(KeyInfo
*p
){
1528 assert( p
->nRef
>0 );
1536 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object
1537 ** can only be changed if this is just a single reference to the object.
1539 ** This routine is used only inside of assert() statements.
1541 int sqlite3KeyInfoIsWriteable(KeyInfo
*p
){ return p
->nRef
==1; }
1542 #endif /* SQLITE_DEBUG */
1545 ** Given an expression list, generate a KeyInfo structure that records
1546 ** the collating sequence for each expression in that expression list.
1548 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1549 ** KeyInfo structure is appropriate for initializing a virtual index to
1550 ** implement that clause. If the ExprList is the result set of a SELECT
1551 ** then the KeyInfo structure is appropriate for initializing a virtual
1552 ** index to implement a DISTINCT test.
1554 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
1555 ** function is responsible for seeing that this structure is eventually
1558 KeyInfo
*sqlite3KeyInfoFromExprList(
1559 Parse
*pParse
, /* Parsing context */
1560 ExprList
*pList
, /* Form the KeyInfo object from this ExprList */
1561 int iStart
, /* Begin with this column of pList */
1562 int nExtra
/* Add this many extra columns to the end */
1566 struct ExprList_item
*pItem
;
1567 sqlite3
*db
= pParse
->db
;
1570 nExpr
= pList
->nExpr
;
1571 pInfo
= sqlite3KeyInfoAlloc(db
, nExpr
-iStart
, nExtra
+1);
1573 assert( sqlite3KeyInfoIsWriteable(pInfo
) );
1574 for(i
=iStart
, pItem
=pList
->a
+iStart
; i
<nExpr
; i
++, pItem
++){
1575 pInfo
->aColl
[i
-iStart
] = sqlite3ExprNNCollSeq(pParse
, pItem
->pExpr
);
1576 pInfo
->aSortFlags
[i
-iStart
] = pItem
->fg
.sortFlags
;
1583 ** Name of the connection operator, used for error messages.
1585 const char *sqlite3SelectOpName(int id
){
1588 case TK_ALL
: z
= "UNION ALL"; break;
1589 case TK_INTERSECT
: z
= "INTERSECT"; break;
1590 case TK_EXCEPT
: z
= "EXCEPT"; break;
1591 default: z
= "UNION"; break;
1596 #ifndef SQLITE_OMIT_EXPLAIN
1598 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1599 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1600 ** where the caption is of the form:
1602 ** "USE TEMP B-TREE FOR xxx"
1604 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1605 ** is determined by the zUsage argument.
1607 static void explainTempTable(Parse
*pParse
, const char *zUsage
){
1608 ExplainQueryPlan((pParse
, 0, "USE TEMP B-TREE FOR %s", zUsage
));
1612 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1613 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1614 ** in sqlite3Select() to assign values to structure member variables that
1615 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1616 ** code with #ifndef directives.
1618 # define explainSetInteger(a, b) a = b
1621 /* No-op versions of the explainXXX() functions and macros. */
1622 # define explainTempTable(y,z)
1623 # define explainSetInteger(y,z)
1628 ** If the inner loop was generated using a non-null pOrderBy argument,
1629 ** then the results were placed in a sorter. After the loop is terminated
1630 ** we need to run the sorter and output the results. The following
1631 ** routine generates the code needed to do that.
1633 static void generateSortTail(
1634 Parse
*pParse
, /* Parsing context */
1635 Select
*p
, /* The SELECT statement */
1636 SortCtx
*pSort
, /* Information on the ORDER BY clause */
1637 int nColumn
, /* Number of columns of data */
1638 SelectDest
*pDest
/* Write the sorted results here */
1640 Vdbe
*v
= pParse
->pVdbe
; /* The prepared statement */
1641 int addrBreak
= pSort
->labelDone
; /* Jump here to exit loop */
1642 int addrContinue
= sqlite3VdbeMakeLabel(pParse
);/* Jump here for next cycle */
1643 int addr
; /* Top of output loop. Jump for Next. */
1646 ExprList
*pOrderBy
= pSort
->pOrderBy
;
1647 int eDest
= pDest
->eDest
;
1648 int iParm
= pDest
->iSDParm
;
1652 int nKey
; /* Number of key columns in sorter record */
1653 int iSortTab
; /* Sorter cursor to read from */
1655 int bSeq
; /* True if sorter record includes seq. no. */
1657 struct ExprList_item
*aOutEx
= p
->pEList
->a
;
1658 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
1659 int addrExplain
; /* Address of OP_Explain instruction */
1662 ExplainQueryPlan2(addrExplain
, (pParse
, 0,
1663 "USE TEMP B-TREE FOR %sORDER BY", pSort
->nOBSat
>0?"RIGHT PART OF ":"")
1665 sqlite3VdbeScanStatusRange(v
, addrExplain
,pSort
->addrPush
,pSort
->addrPushEnd
);
1666 sqlite3VdbeScanStatusCounters(v
, addrExplain
, addrExplain
, pSort
->addrPush
);
1669 assert( addrBreak
<0 );
1670 if( pSort
->labelBkOut
){
1671 sqlite3VdbeAddOp2(v
, OP_Gosub
, pSort
->regReturn
, pSort
->labelBkOut
);
1672 sqlite3VdbeGoto(v
, addrBreak
);
1673 sqlite3VdbeResolveLabel(v
, pSort
->labelBkOut
);
1676 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1677 /* Open any cursors needed for sorter-reference expressions */
1678 for(i
=0; i
<pSort
->nDefer
; i
++){
1679 Table
*pTab
= pSort
->aDefer
[i
].pTab
;
1680 int iDb
= sqlite3SchemaToIndex(pParse
->db
, pTab
->pSchema
);
1681 sqlite3OpenTable(pParse
, pSort
->aDefer
[i
].iCsr
, iDb
, pTab
, OP_OpenRead
);
1682 nRefKey
= MAX(nRefKey
, pSort
->aDefer
[i
].nKey
);
1686 iTab
= pSort
->iECursor
;
1687 if( eDest
==SRT_Output
|| eDest
==SRT_Coroutine
|| eDest
==SRT_Mem
){
1688 if( eDest
==SRT_Mem
&& p
->iOffset
){
1689 sqlite3VdbeAddOp2(v
, OP_Null
, 0, pDest
->iSdst
);
1692 regRow
= pDest
->iSdst
;
1694 regRowid
= sqlite3GetTempReg(pParse
);
1695 if( eDest
==SRT_EphemTab
|| eDest
==SRT_Table
){
1696 regRow
= sqlite3GetTempReg(pParse
);
1699 regRow
= sqlite3GetTempRange(pParse
, nColumn
);
1702 nKey
= pOrderBy
->nExpr
- pSort
->nOBSat
;
1703 if( pSort
->sortFlags
& SORTFLAG_UseSorter
){
1704 int regSortOut
= ++pParse
->nMem
;
1705 iSortTab
= pParse
->nTab
++;
1706 if( pSort
->labelBkOut
){
1707 addrOnce
= sqlite3VdbeAddOp0(v
, OP_Once
); VdbeCoverage(v
);
1709 sqlite3VdbeAddOp3(v
, OP_OpenPseudo
, iSortTab
, regSortOut
,
1710 nKey
+1+nColumn
+nRefKey
);
1711 if( addrOnce
) sqlite3VdbeJumpHere(v
, addrOnce
);
1712 addr
= 1 + sqlite3VdbeAddOp2(v
, OP_SorterSort
, iTab
, addrBreak
);
1714 assert( p
->iLimit
==0 && p
->iOffset
==0 );
1715 sqlite3VdbeAddOp3(v
, OP_SorterData
, iTab
, regSortOut
, iSortTab
);
1718 addr
= 1 + sqlite3VdbeAddOp2(v
, OP_Sort
, iTab
, addrBreak
); VdbeCoverage(v
);
1719 codeOffset(v
, p
->iOffset
, addrContinue
);
1723 sqlite3VdbeAddOp2(v
, OP_AddImm
, p
->iLimit
, -1);
1726 for(i
=0, iCol
=nKey
+bSeq
-1; i
<nColumn
; i
++){
1727 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1728 if( aOutEx
[i
].fg
.bSorterRef
) continue;
1730 if( aOutEx
[i
].u
.x
.iOrderByCol
==0 ) iCol
++;
1732 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1733 if( pSort
->nDefer
){
1735 int regKey
= sqlite3GetTempRange(pParse
, nRefKey
);
1737 for(i
=0; i
<pSort
->nDefer
; i
++){
1738 int iCsr
= pSort
->aDefer
[i
].iCsr
;
1739 Table
*pTab
= pSort
->aDefer
[i
].pTab
;
1740 int nKey
= pSort
->aDefer
[i
].nKey
;
1742 sqlite3VdbeAddOp1(v
, OP_NullRow
, iCsr
);
1743 if( HasRowid(pTab
) ){
1744 sqlite3VdbeAddOp3(v
, OP_Column
, iSortTab
, iKey
++, regKey
);
1745 sqlite3VdbeAddOp3(v
, OP_SeekRowid
, iCsr
,
1746 sqlite3VdbeCurrentAddr(v
)+1, regKey
);
1750 assert( sqlite3PrimaryKeyIndex(pTab
)->nKeyCol
==nKey
);
1751 for(k
=0; k
<nKey
; k
++){
1752 sqlite3VdbeAddOp3(v
, OP_Column
, iSortTab
, iKey
++, regKey
+k
);
1754 iJmp
= sqlite3VdbeCurrentAddr(v
);
1755 sqlite3VdbeAddOp4Int(v
, OP_SeekGE
, iCsr
, iJmp
+2, regKey
, nKey
);
1756 sqlite3VdbeAddOp4Int(v
, OP_IdxLE
, iCsr
, iJmp
+3, regKey
, nKey
);
1757 sqlite3VdbeAddOp1(v
, OP_NullRow
, iCsr
);
1760 sqlite3ReleaseTempRange(pParse
, regKey
, nRefKey
);
1763 for(i
=nColumn
-1; i
>=0; i
--){
1764 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1765 if( aOutEx
[i
].fg
.bSorterRef
){
1766 sqlite3ExprCode(pParse
, aOutEx
[i
].pExpr
, regRow
+i
);
1771 if( aOutEx
[i
].u
.x
.iOrderByCol
){
1772 iRead
= aOutEx
[i
].u
.x
.iOrderByCol
-1;
1776 sqlite3VdbeAddOp3(v
, OP_Column
, iSortTab
, iRead
, regRow
+i
);
1777 VdbeComment((v
, "%s", aOutEx
[i
].zEName
));
1780 sqlite3VdbeScanStatusRange(v
, addrExplain
, addrExplain
, -1);
1783 case SRT_EphemTab
: {
1784 sqlite3VdbeAddOp3(v
, OP_Column
, iSortTab
, nKey
+bSeq
, regRow
);
1785 sqlite3VdbeAddOp2(v
, OP_NewRowid
, iParm
, regRowid
);
1786 sqlite3VdbeAddOp3(v
, OP_Insert
, iParm
, regRow
, regRowid
);
1787 sqlite3VdbeChangeP5(v
, OPFLAG_APPEND
);
1790 #ifndef SQLITE_OMIT_SUBQUERY
1792 assert( nColumn
==sqlite3Strlen30(pDest
->zAffSdst
) );
1793 sqlite3VdbeAddOp4(v
, OP_MakeRecord
, regRow
, nColumn
, regRowid
,
1794 pDest
->zAffSdst
, nColumn
);
1795 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, iParm
, regRowid
, regRow
, nColumn
);
1799 /* The LIMIT clause will terminate the loop for us */
1804 int i2
= pDest
->iSDParm2
;
1805 int r1
= sqlite3GetTempReg(pParse
);
1806 sqlite3VdbeAddOp3(v
, OP_MakeRecord
,regRow
+(i2
<0),nColumn
-(i2
<0),r1
);
1808 sqlite3VdbeAddOp3(v
, OP_Insert
, iParm
, r1
, regRow
);
1810 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, iParm
, r1
, regRow
, i2
);
1815 assert( eDest
==SRT_Output
|| eDest
==SRT_Coroutine
);
1816 testcase( eDest
==SRT_Output
);
1817 testcase( eDest
==SRT_Coroutine
);
1818 if( eDest
==SRT_Output
){
1819 sqlite3VdbeAddOp2(v
, OP_ResultRow
, pDest
->iSdst
, nColumn
);
1821 sqlite3VdbeAddOp1(v
, OP_Yield
, pDest
->iSDParm
);
1827 if( eDest
==SRT_Set
){
1828 sqlite3ReleaseTempRange(pParse
, regRow
, nColumn
);
1830 sqlite3ReleaseTempReg(pParse
, regRow
);
1832 sqlite3ReleaseTempReg(pParse
, regRowid
);
1834 /* The bottom of the loop
1836 sqlite3VdbeResolveLabel(v
, addrContinue
);
1837 if( pSort
->sortFlags
& SORTFLAG_UseSorter
){
1838 sqlite3VdbeAddOp2(v
, OP_SorterNext
, iTab
, addr
); VdbeCoverage(v
);
1840 sqlite3VdbeAddOp2(v
, OP_Next
, iTab
, addr
); VdbeCoverage(v
);
1842 sqlite3VdbeScanStatusRange(v
, addrExplain
, sqlite3VdbeCurrentAddr(v
)-1, -1);
1843 if( pSort
->regReturn
) sqlite3VdbeAddOp1(v
, OP_Return
, pSort
->regReturn
);
1844 sqlite3VdbeResolveLabel(v
, addrBreak
);
1848 ** Return a pointer to a string containing the 'declaration type' of the
1849 ** expression pExpr. The string may be treated as static by the caller.
1851 ** The declaration type is the exact datatype definition extracted from the
1852 ** original CREATE TABLE statement if the expression is a column. The
1853 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1854 ** is considered a column can be complex in the presence of subqueries. The
1855 ** result-set expression in all of the following SELECT statements is
1856 ** considered a column by this function.
1858 ** SELECT col FROM tbl;
1859 ** SELECT (SELECT col FROM tbl;
1860 ** SELECT (SELECT col FROM tbl);
1861 ** SELECT abc FROM (SELECT col AS abc FROM tbl);
1863 ** The declaration type for any expression other than a column is NULL.
1865 ** This routine has either 3 or 6 parameters depending on whether or not
1866 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1868 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1869 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E)
1870 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1871 # define columnType(A,B,C,D,E) columnTypeImpl(A,B)
1873 static const char *columnTypeImpl(
1875 #ifndef SQLITE_ENABLE_COLUMN_METADATA
1879 const char **pzOrigDb
,
1880 const char **pzOrigTab
,
1881 const char **pzOrigCol
1884 char const *zType
= 0;
1886 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1887 char const *zOrigDb
= 0;
1888 char const *zOrigTab
= 0;
1889 char const *zOrigCol
= 0;
1893 assert( pNC
->pSrcList
!=0 );
1894 switch( pExpr
->op
){
1896 /* The expression is a column. Locate the table the column is being
1897 ** extracted from in NameContext.pSrcList. This table may be real
1898 ** database table or a subquery.
1900 Table
*pTab
= 0; /* Table structure column is extracted from */
1901 Select
*pS
= 0; /* Select the column is extracted from */
1902 int iCol
= pExpr
->iColumn
; /* Index of column in pTab */
1903 while( pNC
&& !pTab
){
1904 SrcList
*pTabList
= pNC
->pSrcList
;
1905 for(j
=0;j
<pTabList
->nSrc
&& pTabList
->a
[j
].iCursor
!=pExpr
->iTable
;j
++);
1906 if( j
<pTabList
->nSrc
){
1907 pTab
= pTabList
->a
[j
].pTab
;
1908 pS
= pTabList
->a
[j
].pSelect
;
1915 /* At one time, code such as "SELECT new.x" within a trigger would
1916 ** cause this condition to run. Since then, we have restructured how
1917 ** trigger code is generated and so this condition is no longer
1918 ** possible. However, it can still be true for statements like
1921 ** CREATE TABLE t1(col INTEGER);
1922 ** SELECT (SELECT t1.col) FROM FROM t1;
1924 ** when columnType() is called on the expression "t1.col" in the
1925 ** sub-select. In this case, set the column type to NULL, even
1926 ** though it should really be "INTEGER".
1928 ** This is not a problem, as the column type of "t1.col" is never
1929 ** used. When columnType() is called on the expression
1930 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1935 assert( pTab
&& ExprUseYTab(pExpr
) && pExpr
->y
.pTab
==pTab
);
1937 /* The "table" is actually a sub-select or a view in the FROM clause
1938 ** of the SELECT statement. Return the declaration type and origin
1939 ** data for the result-set column of the sub-select.
1941 if( iCol
<pS
->pEList
->nExpr
1942 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
1948 /* If iCol is less than zero, then the expression requests the
1949 ** rowid of the sub-select or view. This expression is legal (see
1950 ** test case misc2.2.2) - it always evaluates to NULL.
1953 Expr
*p
= pS
->pEList
->a
[iCol
].pExpr
;
1954 sNC
.pSrcList
= pS
->pSrc
;
1956 sNC
.pParse
= pNC
->pParse
;
1957 zType
= columnType(&sNC
, p
,&zOrigDb
,&zOrigTab
,&zOrigCol
);
1960 /* A real table or a CTE table */
1962 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1963 if( iCol
<0 ) iCol
= pTab
->iPKey
;
1964 assert( iCol
==XN_ROWID
|| (iCol
>=0 && iCol
<pTab
->nCol
) );
1969 zOrigCol
= pTab
->aCol
[iCol
].zCnName
;
1970 zType
= sqlite3ColumnType(&pTab
->aCol
[iCol
],0);
1972 zOrigTab
= pTab
->zName
;
1973 if( pNC
->pParse
&& pTab
->pSchema
){
1974 int iDb
= sqlite3SchemaToIndex(pNC
->pParse
->db
, pTab
->pSchema
);
1975 zOrigDb
= pNC
->pParse
->db
->aDb
[iDb
].zDbSName
;
1978 assert( iCol
==XN_ROWID
|| (iCol
>=0 && iCol
<pTab
->nCol
) );
1982 zType
= sqlite3ColumnType(&pTab
->aCol
[iCol
],0);
1988 #ifndef SQLITE_OMIT_SUBQUERY
1990 /* The expression is a sub-select. Return the declaration type and
1991 ** origin info for the single column in the result set of the SELECT
1997 assert( ExprUseXSelect(pExpr
) );
1998 pS
= pExpr
->x
.pSelect
;
1999 p
= pS
->pEList
->a
[0].pExpr
;
2000 sNC
.pSrcList
= pS
->pSrc
;
2002 sNC
.pParse
= pNC
->pParse
;
2003 zType
= columnType(&sNC
, p
, &zOrigDb
, &zOrigTab
, &zOrigCol
);
2009 #ifdef SQLITE_ENABLE_COLUMN_METADATA
2011 assert( pzOrigTab
&& pzOrigCol
);
2012 *pzOrigDb
= zOrigDb
;
2013 *pzOrigTab
= zOrigTab
;
2014 *pzOrigCol
= zOrigCol
;
2021 ** Generate code that will tell the VDBE the declaration types of columns
2022 ** in the result set.
2024 static void generateColumnTypes(
2025 Parse
*pParse
, /* Parser context */
2026 SrcList
*pTabList
, /* List of tables */
2027 ExprList
*pEList
/* Expressions defining the result set */
2029 #ifndef SQLITE_OMIT_DECLTYPE
2030 Vdbe
*v
= pParse
->pVdbe
;
2033 sNC
.pSrcList
= pTabList
;
2034 sNC
.pParse
= pParse
;
2036 for(i
=0; i
<pEList
->nExpr
; i
++){
2037 Expr
*p
= pEList
->a
[i
].pExpr
;
2039 #ifdef SQLITE_ENABLE_COLUMN_METADATA
2040 const char *zOrigDb
= 0;
2041 const char *zOrigTab
= 0;
2042 const char *zOrigCol
= 0;
2043 zType
= columnType(&sNC
, p
, &zOrigDb
, &zOrigTab
, &zOrigCol
);
2045 /* The vdbe must make its own copy of the column-type and other
2046 ** column specific strings, in case the schema is reset before this
2047 ** virtual machine is deleted.
2049 sqlite3VdbeSetColName(v
, i
, COLNAME_DATABASE
, zOrigDb
, SQLITE_TRANSIENT
);
2050 sqlite3VdbeSetColName(v
, i
, COLNAME_TABLE
, zOrigTab
, SQLITE_TRANSIENT
);
2051 sqlite3VdbeSetColName(v
, i
, COLNAME_COLUMN
, zOrigCol
, SQLITE_TRANSIENT
);
2053 zType
= columnType(&sNC
, p
, 0, 0, 0);
2055 sqlite3VdbeSetColName(v
, i
, COLNAME_DECLTYPE
, zType
, SQLITE_TRANSIENT
);
2057 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
2062 ** Compute the column names for a SELECT statement.
2064 ** The only guarantee that SQLite makes about column names is that if the
2065 ** column has an AS clause assigning it a name, that will be the name used.
2066 ** That is the only documented guarantee. However, countless applications
2067 ** developed over the years have made baseless assumptions about column names
2068 ** and will break if those assumptions changes. Hence, use extreme caution
2069 ** when modifying this routine to avoid breaking legacy.
2071 ** See Also: sqlite3ColumnsFromExprList()
2073 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are
2074 ** deprecated. The default setting is short=ON, full=OFF. 99.9% of all
2075 ** applications should operate this way. Nevertheless, we need to support the
2076 ** other modes for legacy:
2078 ** short=OFF, full=OFF: Column name is the text of the expression has it
2079 ** originally appears in the SELECT statement. In
2080 ** other words, the zSpan of the result expression.
2082 ** short=ON, full=OFF: (This is the default setting). If the result
2083 ** refers directly to a table column, then the
2084 ** result column name is just the table column
2085 ** name: COLUMN. Otherwise use zSpan.
2087 ** full=ON, short=ANY: If the result refers directly to a table column,
2088 ** then the result column name with the table name
2089 ** prefix, ex: TABLE.COLUMN. Otherwise use zSpan.
2091 void sqlite3GenerateColumnNames(
2092 Parse
*pParse
, /* Parser context */
2093 Select
*pSelect
/* Generate column names for this SELECT statement */
2095 Vdbe
*v
= pParse
->pVdbe
;
2100 sqlite3
*db
= pParse
->db
;
2101 int fullName
; /* TABLE.COLUMN if no AS clause and is a direct table ref */
2102 int srcName
; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */
2104 #ifndef SQLITE_OMIT_EXPLAIN
2105 /* If this is an EXPLAIN, skip this step */
2106 if( pParse
->explain
){
2111 if( pParse
->colNamesSet
) return;
2112 /* Column names are determined by the left-most term of a compound select */
2113 while( pSelect
->pPrior
) pSelect
= pSelect
->pPrior
;
2114 TREETRACE(0x80,pParse
,pSelect
,("generating column names\n"));
2115 pTabList
= pSelect
->pSrc
;
2116 pEList
= pSelect
->pEList
;
2118 assert( pTabList
!=0 );
2119 pParse
->colNamesSet
= 1;
2120 fullName
= (db
->flags
& SQLITE_FullColNames
)!=0;
2121 srcName
= (db
->flags
& SQLITE_ShortColNames
)!=0 || fullName
;
2122 sqlite3VdbeSetNumCols(v
, pEList
->nExpr
);
2123 for(i
=0; i
<pEList
->nExpr
; i
++){
2124 Expr
*p
= pEList
->a
[i
].pExpr
;
2127 assert( p
->op
!=TK_AGG_COLUMN
); /* Agg processing has not run yet */
2128 assert( p
->op
!=TK_COLUMN
2129 || (ExprUseYTab(p
) && p
->y
.pTab
!=0) ); /* Covering idx not yet coded */
2130 if( pEList
->a
[i
].zEName
&& pEList
->a
[i
].fg
.eEName
==ENAME_NAME
){
2131 /* An AS clause always takes first priority */
2132 char *zName
= pEList
->a
[i
].zEName
;
2133 sqlite3VdbeSetColName(v
, i
, COLNAME_NAME
, zName
, SQLITE_TRANSIENT
);
2134 }else if( srcName
&& p
->op
==TK_COLUMN
){
2136 int iCol
= p
->iColumn
;
2139 if( iCol
<0 ) iCol
= pTab
->iPKey
;
2140 assert( iCol
==-1 || (iCol
>=0 && iCol
<pTab
->nCol
) );
2144 zCol
= pTab
->aCol
[iCol
].zCnName
;
2148 zName
= sqlite3MPrintf(db
, "%s.%s", pTab
->zName
, zCol
);
2149 sqlite3VdbeSetColName(v
, i
, COLNAME_NAME
, zName
, SQLITE_DYNAMIC
);
2151 sqlite3VdbeSetColName(v
, i
, COLNAME_NAME
, zCol
, SQLITE_TRANSIENT
);
2154 const char *z
= pEList
->a
[i
].zEName
;
2155 z
= z
==0 ? sqlite3MPrintf(db
, "column%d", i
+1) : sqlite3DbStrDup(db
, z
);
2156 sqlite3VdbeSetColName(v
, i
, COLNAME_NAME
, z
, SQLITE_DYNAMIC
);
2159 generateColumnTypes(pParse
, pTabList
, pEList
);
2163 ** Given an expression list (which is really the list of expressions
2164 ** that form the result set of a SELECT statement) compute appropriate
2165 ** column names for a table that would hold the expression list.
2167 ** All column names will be unique.
2169 ** Only the column names are computed. Column.zType, Column.zColl,
2170 ** and other fields of Column are zeroed.
2172 ** Return SQLITE_OK on success. If a memory allocation error occurs,
2173 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
2175 ** The only guarantee that SQLite makes about column names is that if the
2176 ** column has an AS clause assigning it a name, that will be the name used.
2177 ** That is the only documented guarantee. However, countless applications
2178 ** developed over the years have made baseless assumptions about column names
2179 ** and will break if those assumptions changes. Hence, use extreme caution
2180 ** when modifying this routine to avoid breaking legacy.
2182 ** See Also: sqlite3GenerateColumnNames()
2184 int sqlite3ColumnsFromExprList(
2185 Parse
*pParse
, /* Parsing context */
2186 ExprList
*pEList
, /* Expr list from which to derive column names */
2187 i16
*pnCol
, /* Write the number of columns here */
2188 Column
**paCol
/* Write the new column list here */
2190 sqlite3
*db
= pParse
->db
; /* Database connection */
2191 int i
, j
; /* Loop counters */
2192 u32 cnt
; /* Index added to make the name unique */
2193 Column
*aCol
, *pCol
; /* For looping over result columns */
2194 int nCol
; /* Number of columns in the result set */
2195 char *zName
; /* Column name */
2196 int nName
; /* Size of name in zName[] */
2197 Hash ht
; /* Hash table of column names */
2200 sqlite3HashInit(&ht
);
2202 nCol
= pEList
->nExpr
;
2203 aCol
= sqlite3DbMallocZero(db
, sizeof(aCol
[0])*nCol
);
2204 testcase( aCol
==0 );
2205 if( NEVER(nCol
>32767) ) nCol
= 32767;
2210 assert( nCol
==(i16
)nCol
);
2214 for(i
=0, pCol
=aCol
; i
<nCol
&& !pParse
->nErr
; i
++, pCol
++){
2215 struct ExprList_item
*pX
= &pEList
->a
[i
];
2216 struct ExprList_item
*pCollide
;
2217 /* Get an appropriate name for the column
2219 if( (zName
= pX
->zEName
)!=0 && pX
->fg
.eEName
==ENAME_NAME
){
2220 /* If the column contains an "AS <name>" phrase, use <name> as the name */
2222 Expr
*pColExpr
= sqlite3ExprSkipCollateAndLikely(pX
->pExpr
);
2223 while( ALWAYS(pColExpr
!=0) && pColExpr
->op
==TK_DOT
){
2224 pColExpr
= pColExpr
->pRight
;
2225 assert( pColExpr
!=0 );
2227 if( pColExpr
->op
==TK_COLUMN
2228 && ALWAYS( ExprUseYTab(pColExpr
) )
2229 && ALWAYS( pColExpr
->y
.pTab
!=0 )
2231 /* For columns use the column name name */
2232 int iCol
= pColExpr
->iColumn
;
2233 pTab
= pColExpr
->y
.pTab
;
2234 if( iCol
<0 ) iCol
= pTab
->iPKey
;
2235 zName
= iCol
>=0 ? pTab
->aCol
[iCol
].zCnName
: "rowid";
2236 }else if( pColExpr
->op
==TK_ID
){
2237 assert( !ExprHasProperty(pColExpr
, EP_IntValue
) );
2238 zName
= pColExpr
->u
.zToken
;
2240 /* Use the original text of the column expression as its name */
2241 assert( zName
==pX
->zEName
); /* pointer comparison intended */
2244 if( zName
&& !sqlite3IsTrueOrFalse(zName
) ){
2245 zName
= sqlite3DbStrDup(db
, zName
);
2247 zName
= sqlite3MPrintf(db
,"column%d",i
+1);
2250 /* Make sure the column name is unique. If the name is not unique,
2251 ** append an integer to the name so that it becomes unique.
2254 while( zName
&& (pCollide
= sqlite3HashFind(&ht
, zName
))!=0 ){
2255 if( pCollide
->fg
.bUsingTerm
){
2256 pCol
->colFlags
|= COLFLAG_NOEXPAND
;
2258 nName
= sqlite3Strlen30(zName
);
2260 for(j
=nName
-1; j
>0 && sqlite3Isdigit(zName
[j
]); j
--){}
2261 if( zName
[j
]==':' ) nName
= j
;
2263 zName
= sqlite3MPrintf(db
, "%.*z:%u", nName
, zName
, ++cnt
);
2264 sqlite3ProgressCheck(pParse
);
2266 sqlite3_randomness(sizeof(cnt
), &cnt
);
2269 pCol
->zCnName
= zName
;
2270 pCol
->hName
= sqlite3StrIHash(zName
);
2271 if( pX
->fg
.bNoExpand
){
2272 pCol
->colFlags
|= COLFLAG_NOEXPAND
;
2274 sqlite3ColumnPropertiesFromName(0, pCol
);
2275 if( zName
&& sqlite3HashInsert(&ht
, zName
, pX
)==pX
){
2276 sqlite3OomFault(db
);
2279 sqlite3HashClear(&ht
);
2282 sqlite3DbFree(db
, aCol
[j
].zCnName
);
2284 sqlite3DbFree(db
, aCol
);
2293 ** pTab is a transient Table object that represents a subquery of some
2294 ** kind (maybe a parenthesized subquery in the FROM clause of a larger
2295 ** query, or a VIEW, or a CTE). This routine computes type information
2296 ** for that Table object based on the Select object that implements the
2297 ** subquery. For the purposes of this routine, "type infomation" means:
2299 ** * The datatype name, as it might appear in a CREATE TABLE statement
2300 ** * Which collating sequence to use for the column
2301 ** * The affinity of the column
2303 void sqlite3SubqueryColumnTypes(
2304 Parse
*pParse
, /* Parsing contexts */
2305 Table
*pTab
, /* Add column type information to this table */
2306 Select
*pSelect
, /* SELECT used to determine types and collations */
2307 char aff
/* Default affinity. */
2309 sqlite3
*db
= pParse
->db
;
2314 struct ExprList_item
*a
;
2317 assert( pSelect
!=0 );
2318 assert( (pSelect
->selFlags
& SF_Resolved
)!=0 );
2319 assert( pTab
->nCol
==pSelect
->pEList
->nExpr
|| pParse
->nErr
>0 );
2320 assert( aff
==SQLITE_AFF_NONE
|| aff
==SQLITE_AFF_BLOB
);
2321 if( db
->mallocFailed
) return;
2322 while( pSelect
->pPrior
) pSelect
= pSelect
->pPrior
;
2323 a
= pSelect
->pEList
->a
;
2324 memset(&sNC
, 0, sizeof(sNC
));
2325 sNC
.pSrcList
= pSelect
->pSrc
;
2326 for(i
=0, pCol
=pTab
->aCol
; i
<pTab
->nCol
; i
++, pCol
++){
2329 pTab
->tabFlags
|= (pCol
->colFlags
& COLFLAG_NOINSERT
);
2331 /* pCol->szEst = ... // Column size est for SELECT tables never used */
2332 pCol
->affinity
= sqlite3ExprAffinity(p
);
2333 if( pCol
->affinity
<=SQLITE_AFF_NONE
){
2334 pCol
->affinity
= aff
;
2336 if( pCol
->affinity
>=SQLITE_AFF_TEXT
&& pSelect
->pNext
){
2339 for(m
=0, pS2
=pSelect
->pNext
; pS2
; pS2
=pS2
->pNext
){
2340 m
|= sqlite3ExprDataType(pS2
->pEList
->a
[i
].pExpr
);
2342 if( pCol
->affinity
==SQLITE_AFF_TEXT
&& (m
&0x01)!=0 ){
2343 pCol
->affinity
= SQLITE_AFF_BLOB
;
2345 if( pCol
->affinity
>=SQLITE_AFF_NUMERIC
&& (m
&0x02)!=0 ){
2346 pCol
->affinity
= SQLITE_AFF_BLOB
;
2348 if( pCol
->affinity
>=SQLITE_AFF_NUMERIC
&& p
->op
==TK_CAST
){
2349 pCol
->affinity
= SQLITE_AFF_FLEXNUM
;
2352 zType
= columnType(&sNC
, p
, 0, 0, 0);
2353 if( zType
==0 || pCol
->affinity
!=sqlite3AffinityType(zType
, 0) ){
2354 if( pCol
->affinity
==SQLITE_AFF_NUMERIC
2355 || pCol
->affinity
==SQLITE_AFF_FLEXNUM
2360 for(j
=1; j
<SQLITE_N_STDTYPE
; j
++){
2361 if( sqlite3StdTypeAffinity
[j
]==pCol
->affinity
){
2362 zType
= sqlite3StdType
[j
];
2369 i64 m
= sqlite3Strlen30(zType
);
2370 n
= sqlite3Strlen30(pCol
->zCnName
);
2371 pCol
->zCnName
= sqlite3DbReallocOrFree(db
, pCol
->zCnName
, n
+m
+2);
2372 if( pCol
->zCnName
){
2373 memcpy(&pCol
->zCnName
[n
+1], zType
, m
+1);
2374 pCol
->colFlags
|= COLFLAG_HASTYPE
;
2376 testcase( pCol
->colFlags
& COLFLAG_HASTYPE
);
2377 pCol
->colFlags
&= ~(COLFLAG_HASTYPE
|COLFLAG_HASCOLL
);
2380 pColl
= sqlite3ExprCollSeq(pParse
, p
);
2382 assert( pTab
->pIndex
==0 );
2383 sqlite3ColumnSetColl(db
, pCol
, pColl
->zName
);
2386 pTab
->szTabRow
= 1; /* Any non-zero value works */
2390 ** Given a SELECT statement, generate a Table structure that describes
2391 ** the result set of that SELECT.
2393 Table
*sqlite3ResultSetOfSelect(Parse
*pParse
, Select
*pSelect
, char aff
){
2395 sqlite3
*db
= pParse
->db
;
2398 savedFlags
= db
->flags
;
2399 db
->flags
&= ~(u64
)SQLITE_FullColNames
;
2400 db
->flags
|= SQLITE_ShortColNames
;
2401 sqlite3SelectPrep(pParse
, pSelect
, 0);
2402 db
->flags
= savedFlags
;
2403 if( pParse
->nErr
) return 0;
2404 while( pSelect
->pPrior
) pSelect
= pSelect
->pPrior
;
2405 pTab
= sqlite3DbMallocZero(db
, sizeof(Table
) );
2411 pTab
->nRowLogEst
= 200; assert( 200==sqlite3LogEst(1048576) );
2412 sqlite3ColumnsFromExprList(pParse
, pSelect
->pEList
, &pTab
->nCol
, &pTab
->aCol
);
2413 sqlite3SubqueryColumnTypes(pParse
, pTab
, pSelect
, aff
);
2415 if( db
->mallocFailed
){
2416 sqlite3DeleteTable(db
, pTab
);
2423 ** Get a VDBE for the given parser context. Create a new one if necessary.
2424 ** If an error occurs, return NULL and leave a message in pParse.
2426 Vdbe
*sqlite3GetVdbe(Parse
*pParse
){
2427 if( pParse
->pVdbe
){
2428 return pParse
->pVdbe
;
2430 if( pParse
->pToplevel
==0
2431 && OptimizationEnabled(pParse
->db
,SQLITE_FactorOutConst
)
2433 pParse
->okConstFactor
= 1;
2435 return sqlite3VdbeCreate(pParse
);
2440 ** Compute the iLimit and iOffset fields of the SELECT based on the
2441 ** pLimit expressions. pLimit->pLeft and pLimit->pRight hold the expressions
2442 ** that appear in the original SQL statement after the LIMIT and OFFSET
2443 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset
2444 ** are the integer memory register numbers for counters used to compute
2445 ** the limit and offset. If there is no limit and/or offset, then
2446 ** iLimit and iOffset are negative.
2448 ** This routine changes the values of iLimit and iOffset only if
2449 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight. iLimit
2450 ** and iOffset should have been preset to appropriate default values (zero)
2451 ** prior to calling this routine.
2453 ** The iOffset register (if it exists) is initialized to the value
2454 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register
2455 ** iOffset+1 is initialized to LIMIT+OFFSET.
2457 ** Only if pLimit->pLeft!=0 do the limit registers get
2458 ** redefined. The UNION ALL operator uses this property to force
2459 ** the reuse of the same limit and offset registers across multiple
2460 ** SELECT statements.
2462 static void computeLimitRegisters(Parse
*pParse
, Select
*p
, int iBreak
){
2467 Expr
*pLimit
= p
->pLimit
;
2469 if( p
->iLimit
) return;
2472 ** "LIMIT -1" always shows all rows. There is some
2473 ** controversy about what the correct behavior should be.
2474 ** The current implementation interprets "LIMIT 0" to mean
2478 assert( pLimit
->op
==TK_LIMIT
);
2479 assert( pLimit
->pLeft
!=0 );
2480 p
->iLimit
= iLimit
= ++pParse
->nMem
;
2481 v
= sqlite3GetVdbe(pParse
);
2483 if( sqlite3ExprIsInteger(pLimit
->pLeft
, &n
) ){
2484 sqlite3VdbeAddOp2(v
, OP_Integer
, n
, iLimit
);
2485 VdbeComment((v
, "LIMIT counter"));
2487 sqlite3VdbeGoto(v
, iBreak
);
2488 }else if( n
>=0 && p
->nSelectRow
>sqlite3LogEst((u64
)n
) ){
2489 p
->nSelectRow
= sqlite3LogEst((u64
)n
);
2490 p
->selFlags
|= SF_FixedLimit
;
2493 sqlite3ExprCode(pParse
, pLimit
->pLeft
, iLimit
);
2494 sqlite3VdbeAddOp1(v
, OP_MustBeInt
, iLimit
); VdbeCoverage(v
);
2495 VdbeComment((v
, "LIMIT counter"));
2496 sqlite3VdbeAddOp2(v
, OP_IfNot
, iLimit
, iBreak
); VdbeCoverage(v
);
2498 if( pLimit
->pRight
){
2499 p
->iOffset
= iOffset
= ++pParse
->nMem
;
2500 pParse
->nMem
++; /* Allocate an extra register for limit+offset */
2501 sqlite3ExprCode(pParse
, pLimit
->pRight
, iOffset
);
2502 sqlite3VdbeAddOp1(v
, OP_MustBeInt
, iOffset
); VdbeCoverage(v
);
2503 VdbeComment((v
, "OFFSET counter"));
2504 sqlite3VdbeAddOp3(v
, OP_OffsetLimit
, iLimit
, iOffset
+1, iOffset
);
2505 VdbeComment((v
, "LIMIT+OFFSET"));
2510 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2512 ** Return the appropriate collating sequence for the iCol-th column of
2513 ** the result set for the compound-select statement "p". Return NULL if
2514 ** the column has no default collating sequence.
2516 ** The collating sequence for the compound select is taken from the
2517 ** left-most term of the select that has a collating sequence.
2519 static CollSeq
*multiSelectCollSeq(Parse
*pParse
, Select
*p
, int iCol
){
2522 pRet
= multiSelectCollSeq(pParse
, p
->pPrior
, iCol
);
2527 /* iCol must be less than p->pEList->nExpr. Otherwise an error would
2528 ** have been thrown during name resolution and we would not have gotten
2530 if( pRet
==0 && ALWAYS(iCol
<p
->pEList
->nExpr
) ){
2531 pRet
= sqlite3ExprCollSeq(pParse
, p
->pEList
->a
[iCol
].pExpr
);
2537 ** The select statement passed as the second parameter is a compound SELECT
2538 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
2539 ** structure suitable for implementing the ORDER BY.
2541 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
2542 ** function is responsible for ensuring that this structure is eventually
2545 static KeyInfo
*multiSelectOrderByKeyInfo(Parse
*pParse
, Select
*p
, int nExtra
){
2546 ExprList
*pOrderBy
= p
->pOrderBy
;
2547 int nOrderBy
= ALWAYS(pOrderBy
!=0) ? pOrderBy
->nExpr
: 0;
2548 sqlite3
*db
= pParse
->db
;
2549 KeyInfo
*pRet
= sqlite3KeyInfoAlloc(db
, nOrderBy
+nExtra
, 1);
2552 for(i
=0; i
<nOrderBy
; i
++){
2553 struct ExprList_item
*pItem
= &pOrderBy
->a
[i
];
2554 Expr
*pTerm
= pItem
->pExpr
;
2557 if( pTerm
->flags
& EP_Collate
){
2558 pColl
= sqlite3ExprCollSeq(pParse
, pTerm
);
2560 pColl
= multiSelectCollSeq(pParse
, p
, pItem
->u
.x
.iOrderByCol
-1);
2561 if( pColl
==0 ) pColl
= db
->pDfltColl
;
2562 pOrderBy
->a
[i
].pExpr
=
2563 sqlite3ExprAddCollateString(pParse
, pTerm
, pColl
->zName
);
2565 assert( sqlite3KeyInfoIsWriteable(pRet
) );
2566 pRet
->aColl
[i
] = pColl
;
2567 pRet
->aSortFlags
[i
] = pOrderBy
->a
[i
].fg
.sortFlags
;
2574 #ifndef SQLITE_OMIT_CTE
2576 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
2577 ** query of the form:
2579 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
2580 ** \___________/ \_______________/
2584 ** There is exactly one reference to the recursive-table in the FROM clause
2585 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
2587 ** The setup-query runs once to generate an initial set of rows that go
2588 ** into a Queue table. Rows are extracted from the Queue table one by
2589 ** one. Each row extracted from Queue is output to pDest. Then the single
2590 ** extracted row (now in the iCurrent table) becomes the content of the
2591 ** recursive-table for a recursive-query run. The output of the recursive-query
2592 ** is added back into the Queue table. Then another row is extracted from Queue
2593 ** and the iteration continues until the Queue table is empty.
2595 ** If the compound query operator is UNION then no duplicate rows are ever
2596 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows
2597 ** that have ever been inserted into Queue and causes duplicates to be
2598 ** discarded. If the operator is UNION ALL, then duplicates are allowed.
2600 ** If the query has an ORDER BY, then entries in the Queue table are kept in
2601 ** ORDER BY order and the first entry is extracted for each cycle. Without
2602 ** an ORDER BY, the Queue table is just a FIFO.
2604 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
2605 ** have been output to pDest. A LIMIT of zero means to output no rows and a
2606 ** negative LIMIT means to output all rows. If there is also an OFFSET clause
2607 ** with a positive value, then the first OFFSET outputs are discarded rather
2608 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET
2609 ** rows have been skipped.
2611 static void generateWithRecursiveQuery(
2612 Parse
*pParse
, /* Parsing context */
2613 Select
*p
, /* The recursive SELECT to be coded */
2614 SelectDest
*pDest
/* What to do with query results */
2616 SrcList
*pSrc
= p
->pSrc
; /* The FROM clause of the recursive query */
2617 int nCol
= p
->pEList
->nExpr
; /* Number of columns in the recursive table */
2618 Vdbe
*v
= pParse
->pVdbe
; /* The prepared statement under construction */
2619 Select
*pSetup
; /* The setup query */
2620 Select
*pFirstRec
; /* Left-most recursive term */
2621 int addrTop
; /* Top of the loop */
2622 int addrCont
, addrBreak
; /* CONTINUE and BREAK addresses */
2623 int iCurrent
= 0; /* The Current table */
2624 int regCurrent
; /* Register holding Current table */
2625 int iQueue
; /* The Queue table */
2626 int iDistinct
= 0; /* To ensure unique results if UNION */
2627 int eDest
= SRT_Fifo
; /* How to write to Queue */
2628 SelectDest destQueue
; /* SelectDest targetting the Queue table */
2629 int i
; /* Loop counter */
2630 int rc
; /* Result code */
2631 ExprList
*pOrderBy
; /* The ORDER BY clause */
2632 Expr
*pLimit
; /* Saved LIMIT and OFFSET */
2633 int regLimit
, regOffset
; /* Registers used by LIMIT and OFFSET */
2635 #ifndef SQLITE_OMIT_WINDOWFUNC
2637 sqlite3ErrorMsg(pParse
, "cannot use window functions in recursive queries");
2642 /* Obtain authorization to do a recursive query */
2643 if( sqlite3AuthCheck(pParse
, SQLITE_RECURSIVE
, 0, 0, 0) ) return;
2645 /* Process the LIMIT and OFFSET clauses, if they exist */
2646 addrBreak
= sqlite3VdbeMakeLabel(pParse
);
2647 p
->nSelectRow
= 320; /* 4 billion rows */
2648 computeLimitRegisters(pParse
, p
, addrBreak
);
2650 regLimit
= p
->iLimit
;
2651 regOffset
= p
->iOffset
;
2653 p
->iLimit
= p
->iOffset
= 0;
2654 pOrderBy
= p
->pOrderBy
;
2656 /* Locate the cursor number of the Current table */
2657 for(i
=0; ALWAYS(i
<pSrc
->nSrc
); i
++){
2658 if( pSrc
->a
[i
].fg
.isRecursive
){
2659 iCurrent
= pSrc
->a
[i
].iCursor
;
2664 /* Allocate cursors numbers for Queue and Distinct. The cursor number for
2665 ** the Distinct table must be exactly one greater than Queue in order
2666 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2667 iQueue
= pParse
->nTab
++;
2668 if( p
->op
==TK_UNION
){
2669 eDest
= pOrderBy
? SRT_DistQueue
: SRT_DistFifo
;
2670 iDistinct
= pParse
->nTab
++;
2672 eDest
= pOrderBy
? SRT_Queue
: SRT_Fifo
;
2674 sqlite3SelectDestInit(&destQueue
, eDest
, iQueue
);
2676 /* Allocate cursors for Current, Queue, and Distinct. */
2677 regCurrent
= ++pParse
->nMem
;
2678 sqlite3VdbeAddOp3(v
, OP_OpenPseudo
, iCurrent
, regCurrent
, nCol
);
2680 KeyInfo
*pKeyInfo
= multiSelectOrderByKeyInfo(pParse
, p
, 1);
2681 sqlite3VdbeAddOp4(v
, OP_OpenEphemeral
, iQueue
, pOrderBy
->nExpr
+2, 0,
2682 (char*)pKeyInfo
, P4_KEYINFO
);
2683 destQueue
.pOrderBy
= pOrderBy
;
2685 sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, iQueue
, nCol
);
2687 VdbeComment((v
, "Queue table"));
2689 p
->addrOpenEphm
[0] = sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, iDistinct
, 0);
2690 p
->selFlags
|= SF_UsesEphemeral
;
2693 /* Detach the ORDER BY clause from the compound SELECT */
2696 /* Figure out how many elements of the compound SELECT are part of the
2697 ** recursive query. Make sure no recursive elements use aggregate
2698 ** functions. Mark the recursive elements as UNION ALL even if they
2699 ** are really UNION because the distinctness will be enforced by the
2700 ** iDistinct table. pFirstRec is left pointing to the left-most
2701 ** recursive term of the CTE.
2703 for(pFirstRec
=p
; ALWAYS(pFirstRec
!=0); pFirstRec
=pFirstRec
->pPrior
){
2704 if( pFirstRec
->selFlags
& SF_Aggregate
){
2705 sqlite3ErrorMsg(pParse
, "recursive aggregate queries not supported");
2706 goto end_of_recursive_query
;
2708 pFirstRec
->op
= TK_ALL
;
2709 if( (pFirstRec
->pPrior
->selFlags
& SF_Recursive
)==0 ) break;
2712 /* Store the results of the setup-query in Queue. */
2713 pSetup
= pFirstRec
->pPrior
;
2715 ExplainQueryPlan((pParse
, 1, "SETUP"));
2716 rc
= sqlite3Select(pParse
, pSetup
, &destQueue
);
2718 if( rc
) goto end_of_recursive_query
;
2720 /* Find the next row in the Queue and output that row */
2721 addrTop
= sqlite3VdbeAddOp2(v
, OP_Rewind
, iQueue
, addrBreak
); VdbeCoverage(v
);
2723 /* Transfer the next row in Queue over to Current */
2724 sqlite3VdbeAddOp1(v
, OP_NullRow
, iCurrent
); /* To reset column cache */
2726 sqlite3VdbeAddOp3(v
, OP_Column
, iQueue
, pOrderBy
->nExpr
+1, regCurrent
);
2728 sqlite3VdbeAddOp2(v
, OP_RowData
, iQueue
, regCurrent
);
2730 sqlite3VdbeAddOp1(v
, OP_Delete
, iQueue
);
2732 /* Output the single row in Current */
2733 addrCont
= sqlite3VdbeMakeLabel(pParse
);
2734 codeOffset(v
, regOffset
, addrCont
);
2735 selectInnerLoop(pParse
, p
, iCurrent
,
2736 0, 0, pDest
, addrCont
, addrBreak
);
2738 sqlite3VdbeAddOp2(v
, OP_DecrJumpZero
, regLimit
, addrBreak
);
2741 sqlite3VdbeResolveLabel(v
, addrCont
);
2743 /* Execute the recursive SELECT taking the single row in Current as
2744 ** the value for the recursive-table. Store the results in the Queue.
2746 pFirstRec
->pPrior
= 0;
2747 ExplainQueryPlan((pParse
, 1, "RECURSIVE STEP"));
2748 sqlite3Select(pParse
, p
, &destQueue
);
2749 assert( pFirstRec
->pPrior
==0 );
2750 pFirstRec
->pPrior
= pSetup
;
2752 /* Keep running the loop until the Queue is empty */
2753 sqlite3VdbeGoto(v
, addrTop
);
2754 sqlite3VdbeResolveLabel(v
, addrBreak
);
2756 end_of_recursive_query
:
2757 sqlite3ExprListDelete(pParse
->db
, p
->pOrderBy
);
2758 p
->pOrderBy
= pOrderBy
;
2762 #endif /* SQLITE_OMIT_CTE */
2764 /* Forward references */
2765 static int multiSelectOrderBy(
2766 Parse
*pParse
, /* Parsing context */
2767 Select
*p
, /* The right-most of SELECTs to be coded */
2768 SelectDest
*pDest
/* What to do with query results */
2772 ** Handle the special case of a compound-select that originates from a
2773 ** VALUES clause. By handling this as a special case, we avoid deep
2774 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2775 ** on a VALUES clause.
2777 ** Because the Select object originates from a VALUES clause:
2778 ** (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1
2779 ** (2) All terms are UNION ALL
2780 ** (3) There is no ORDER BY clause
2782 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES
2783 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))").
2784 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case.
2785 ** Since the limit is exactly 1, we only need to evaluate the left-most VALUES.
2787 static int multiSelectValues(
2788 Parse
*pParse
, /* Parsing context */
2789 Select
*p
, /* The right-most of SELECTs to be coded */
2790 SelectDest
*pDest
/* What to do with query results */
2794 int bShowAll
= p
->pLimit
==0;
2795 assert( p
->selFlags
& SF_MultiValue
);
2797 assert( p
->selFlags
& SF_Values
);
2798 assert( p
->op
==TK_ALL
|| (p
->op
==TK_SELECT
&& p
->pPrior
==0) );
2799 assert( p
->pNext
==0 || p
->pEList
->nExpr
==p
->pNext
->pEList
->nExpr
);
2800 #ifndef SQLITE_OMIT_WINDOWFUNC
2801 if( p
->pWin
) return -1;
2803 if( p
->pPrior
==0 ) break;
2804 assert( p
->pPrior
->pNext
==p
);
2808 ExplainQueryPlan((pParse
, 0, "SCAN %d CONSTANT ROW%s", nRow
,
2809 nRow
==1 ? "" : "S"));
2811 selectInnerLoop(pParse
, p
, -1, 0, 0, pDest
, 1, 1);
2812 if( !bShowAll
) break;
2813 p
->nSelectRow
= nRow
;
2820 ** Return true if the SELECT statement which is known to be the recursive
2821 ** part of a recursive CTE still has its anchor terms attached. If the
2822 ** anchor terms have already been removed, then return false.
2824 static int hasAnchor(Select
*p
){
2825 while( p
&& (p
->selFlags
& SF_Recursive
)!=0 ){ p
= p
->pPrior
; }
2830 ** This routine is called to process a compound query form from
2831 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2834 ** "p" points to the right-most of the two queries. the query on the
2835 ** left is p->pPrior. The left query could also be a compound query
2836 ** in which case this routine will be called recursively.
2838 ** The results of the total query are to be written into a destination
2839 ** of type eDest with parameter iParm.
2841 ** Example 1: Consider a three-way compound SQL statement.
2843 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2845 ** This statement is parsed up as follows:
2849 ** `-----> SELECT b FROM t2
2851 ** `------> SELECT a FROM t1
2853 ** The arrows in the diagram above represent the Select.pPrior pointer.
2854 ** So if this routine is called with p equal to the t3 query, then
2855 ** pPrior will be the t2 query. p->op will be TK_UNION in this case.
2857 ** Notice that because of the way SQLite parses compound SELECTs, the
2858 ** individual selects always group from left to right.
2860 static int multiSelect(
2861 Parse
*pParse
, /* Parsing context */
2862 Select
*p
, /* The right-most of SELECTs to be coded */
2863 SelectDest
*pDest
/* What to do with query results */
2865 int rc
= SQLITE_OK
; /* Success code from a subroutine */
2866 Select
*pPrior
; /* Another SELECT immediately to our left */
2867 Vdbe
*v
; /* Generate code to this VDBE */
2868 SelectDest dest
; /* Alternative data destination */
2869 Select
*pDelete
= 0; /* Chain of simple selects to delete */
2870 sqlite3
*db
; /* Database connection */
2872 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only
2873 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2875 assert( p
&& p
->pPrior
); /* Calling function guarantees this much */
2876 assert( (p
->selFlags
& SF_Recursive
)==0 || p
->op
==TK_ALL
|| p
->op
==TK_UNION
);
2877 assert( p
->selFlags
& SF_Compound
);
2881 assert( pPrior
->pOrderBy
==0 );
2882 assert( pPrior
->pLimit
==0 );
2884 v
= sqlite3GetVdbe(pParse
);
2885 assert( v
!=0 ); /* The VDBE already created by calling function */
2887 /* Create the destination temporary table if necessary
2889 if( dest
.eDest
==SRT_EphemTab
){
2890 assert( p
->pEList
);
2891 sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, dest
.iSDParm
, p
->pEList
->nExpr
);
2892 dest
.eDest
= SRT_Table
;
2895 /* Special handling for a compound-select that originates as a VALUES clause.
2897 if( p
->selFlags
& SF_MultiValue
){
2898 rc
= multiSelectValues(pParse
, p
, &dest
);
2899 if( rc
>=0 ) goto multi_select_end
;
2903 /* Make sure all SELECTs in the statement have the same number of elements
2904 ** in their result sets.
2906 assert( p
->pEList
&& pPrior
->pEList
);
2907 assert( p
->pEList
->nExpr
==pPrior
->pEList
->nExpr
);
2909 #ifndef SQLITE_OMIT_CTE
2910 if( (p
->selFlags
& SF_Recursive
)!=0 && hasAnchor(p
) ){
2911 generateWithRecursiveQuery(pParse
, p
, &dest
);
2915 /* Compound SELECTs that have an ORDER BY clause are handled separately.
2918 return multiSelectOrderBy(pParse
, p
, pDest
);
2921 #ifndef SQLITE_OMIT_EXPLAIN
2922 if( pPrior
->pPrior
==0 ){
2923 ExplainQueryPlan((pParse
, 1, "COMPOUND QUERY"));
2924 ExplainQueryPlan((pParse
, 1, "LEFT-MOST SUBQUERY"));
2928 /* Generate code for the left and right SELECT statements.
2933 int nLimit
= 0; /* Initialize to suppress harmless compiler warning */
2934 assert( !pPrior
->pLimit
);
2935 pPrior
->iLimit
= p
->iLimit
;
2936 pPrior
->iOffset
= p
->iOffset
;
2937 pPrior
->pLimit
= p
->pLimit
;
2938 TREETRACE(0x200, pParse
, p
, ("multiSelect UNION ALL left...\n"));
2939 rc
= sqlite3Select(pParse
, pPrior
, &dest
);
2942 goto multi_select_end
;
2945 p
->iLimit
= pPrior
->iLimit
;
2946 p
->iOffset
= pPrior
->iOffset
;
2948 addr
= sqlite3VdbeAddOp1(v
, OP_IfNot
, p
->iLimit
); VdbeCoverage(v
);
2949 VdbeComment((v
, "Jump ahead if LIMIT reached"));
2951 sqlite3VdbeAddOp3(v
, OP_OffsetLimit
,
2952 p
->iLimit
, p
->iOffset
+1, p
->iOffset
);
2955 ExplainQueryPlan((pParse
, 1, "UNION ALL"));
2956 TREETRACE(0x200, pParse
, p
, ("multiSelect UNION ALL right...\n"));
2957 rc
= sqlite3Select(pParse
, p
, &dest
);
2958 testcase( rc
!=SQLITE_OK
);
2959 pDelete
= p
->pPrior
;
2961 p
->nSelectRow
= sqlite3LogEstAdd(p
->nSelectRow
, pPrior
->nSelectRow
);
2963 && sqlite3ExprIsInteger(p
->pLimit
->pLeft
, &nLimit
)
2964 && nLimit
>0 && p
->nSelectRow
> sqlite3LogEst((u64
)nLimit
)
2966 p
->nSelectRow
= sqlite3LogEst((u64
)nLimit
);
2969 sqlite3VdbeJumpHere(v
, addr
);
2975 int unionTab
; /* Cursor number of the temp table holding result */
2976 u8 op
= 0; /* One of the SRT_ operations to apply to self */
2977 int priorOp
; /* The SRT_ operation to apply to prior selects */
2978 Expr
*pLimit
; /* Saved values of p->nLimit */
2980 SelectDest uniondest
;
2982 testcase( p
->op
==TK_EXCEPT
);
2983 testcase( p
->op
==TK_UNION
);
2984 priorOp
= SRT_Union
;
2985 if( dest
.eDest
==priorOp
){
2986 /* We can reuse a temporary table generated by a SELECT to our
2989 assert( p
->pLimit
==0 ); /* Not allowed on leftward elements */
2990 unionTab
= dest
.iSDParm
;
2992 /* We will need to create our own temporary table to hold the
2993 ** intermediate results.
2995 unionTab
= pParse
->nTab
++;
2996 assert( p
->pOrderBy
==0 );
2997 addr
= sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, unionTab
, 0);
2998 assert( p
->addrOpenEphm
[0] == -1 );
2999 p
->addrOpenEphm
[0] = addr
;
3000 findRightmost(p
)->selFlags
|= SF_UsesEphemeral
;
3001 assert( p
->pEList
);
3005 /* Code the SELECT statements to our left
3007 assert( !pPrior
->pOrderBy
);
3008 sqlite3SelectDestInit(&uniondest
, priorOp
, unionTab
);
3009 TREETRACE(0x200, pParse
, p
, ("multiSelect EXCEPT/UNION left...\n"));
3010 rc
= sqlite3Select(pParse
, pPrior
, &uniondest
);
3012 goto multi_select_end
;
3015 /* Code the current SELECT statement
3017 if( p
->op
==TK_EXCEPT
){
3020 assert( p
->op
==TK_UNION
);
3026 uniondest
.eDest
= op
;
3027 ExplainQueryPlan((pParse
, 1, "%s USING TEMP B-TREE",
3028 sqlite3SelectOpName(p
->op
)));
3029 TREETRACE(0x200, pParse
, p
, ("multiSelect EXCEPT/UNION right...\n"));
3030 rc
= sqlite3Select(pParse
, p
, &uniondest
);
3031 testcase( rc
!=SQLITE_OK
);
3032 assert( p
->pOrderBy
==0 );
3033 pDelete
= p
->pPrior
;
3036 if( p
->op
==TK_UNION
){
3037 p
->nSelectRow
= sqlite3LogEstAdd(p
->nSelectRow
, pPrior
->nSelectRow
);
3039 sqlite3ExprDelete(db
, p
->pLimit
);
3044 /* Convert the data in the temporary table into whatever form
3045 ** it is that we currently need.
3047 assert( unionTab
==dest
.iSDParm
|| dest
.eDest
!=priorOp
);
3048 assert( p
->pEList
|| db
->mallocFailed
);
3049 if( dest
.eDest
!=priorOp
&& db
->mallocFailed
==0 ){
3050 int iCont
, iBreak
, iStart
;
3051 iBreak
= sqlite3VdbeMakeLabel(pParse
);
3052 iCont
= sqlite3VdbeMakeLabel(pParse
);
3053 computeLimitRegisters(pParse
, p
, iBreak
);
3054 sqlite3VdbeAddOp2(v
, OP_Rewind
, unionTab
, iBreak
); VdbeCoverage(v
);
3055 iStart
= sqlite3VdbeCurrentAddr(v
);
3056 selectInnerLoop(pParse
, p
, unionTab
,
3057 0, 0, &dest
, iCont
, iBreak
);
3058 sqlite3VdbeResolveLabel(v
, iCont
);
3059 sqlite3VdbeAddOp2(v
, OP_Next
, unionTab
, iStart
); VdbeCoverage(v
);
3060 sqlite3VdbeResolveLabel(v
, iBreak
);
3061 sqlite3VdbeAddOp2(v
, OP_Close
, unionTab
, 0);
3065 default: assert( p
->op
==TK_INTERSECT
); {
3067 int iCont
, iBreak
, iStart
;
3070 SelectDest intersectdest
;
3073 /* INTERSECT is different from the others since it requires
3074 ** two temporary tables. Hence it has its own case. Begin
3075 ** by allocating the tables we will need.
3077 tab1
= pParse
->nTab
++;
3078 tab2
= pParse
->nTab
++;
3079 assert( p
->pOrderBy
==0 );
3081 addr
= sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, tab1
, 0);
3082 assert( p
->addrOpenEphm
[0] == -1 );
3083 p
->addrOpenEphm
[0] = addr
;
3084 findRightmost(p
)->selFlags
|= SF_UsesEphemeral
;
3085 assert( p
->pEList
);
3087 /* Code the SELECTs to our left into temporary table "tab1".
3089 sqlite3SelectDestInit(&intersectdest
, SRT_Union
, tab1
);
3090 TREETRACE(0x400, pParse
, p
, ("multiSelect INTERSECT left...\n"));
3091 rc
= sqlite3Select(pParse
, pPrior
, &intersectdest
);
3093 goto multi_select_end
;
3096 /* Code the current SELECT into temporary table "tab2"
3098 addr
= sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, tab2
, 0);
3099 assert( p
->addrOpenEphm
[1] == -1 );
3100 p
->addrOpenEphm
[1] = addr
;
3104 intersectdest
.iSDParm
= tab2
;
3105 ExplainQueryPlan((pParse
, 1, "%s USING TEMP B-TREE",
3106 sqlite3SelectOpName(p
->op
)));
3107 TREETRACE(0x400, pParse
, p
, ("multiSelect INTERSECT right...\n"));
3108 rc
= sqlite3Select(pParse
, p
, &intersectdest
);
3109 testcase( rc
!=SQLITE_OK
);
3110 pDelete
= p
->pPrior
;
3112 if( p
->nSelectRow
>pPrior
->nSelectRow
){
3113 p
->nSelectRow
= pPrior
->nSelectRow
;
3115 sqlite3ExprDelete(db
, p
->pLimit
);
3118 /* Generate code to take the intersection of the two temporary
3122 assert( p
->pEList
);
3123 iBreak
= sqlite3VdbeMakeLabel(pParse
);
3124 iCont
= sqlite3VdbeMakeLabel(pParse
);
3125 computeLimitRegisters(pParse
, p
, iBreak
);
3126 sqlite3VdbeAddOp2(v
, OP_Rewind
, tab1
, iBreak
); VdbeCoverage(v
);
3127 r1
= sqlite3GetTempReg(pParse
);
3128 iStart
= sqlite3VdbeAddOp2(v
, OP_RowData
, tab1
, r1
);
3129 sqlite3VdbeAddOp4Int(v
, OP_NotFound
, tab2
, iCont
, r1
, 0);
3131 sqlite3ReleaseTempReg(pParse
, r1
);
3132 selectInnerLoop(pParse
, p
, tab1
,
3133 0, 0, &dest
, iCont
, iBreak
);
3134 sqlite3VdbeResolveLabel(v
, iCont
);
3135 sqlite3VdbeAddOp2(v
, OP_Next
, tab1
, iStart
); VdbeCoverage(v
);
3136 sqlite3VdbeResolveLabel(v
, iBreak
);
3137 sqlite3VdbeAddOp2(v
, OP_Close
, tab2
, 0);
3138 sqlite3VdbeAddOp2(v
, OP_Close
, tab1
, 0);
3143 #ifndef SQLITE_OMIT_EXPLAIN
3145 ExplainQueryPlanPop(pParse
);
3149 if( pParse
->nErr
) goto multi_select_end
;
3151 /* Compute collating sequences used by
3152 ** temporary tables needed to implement the compound select.
3153 ** Attach the KeyInfo structure to all temporary tables.
3155 ** This section is run by the right-most SELECT statement only.
3156 ** SELECT statements to the left always skip this part. The right-most
3157 ** SELECT might also skip this part if it has no ORDER BY clause and
3158 ** no temp tables are required.
3160 if( p
->selFlags
& SF_UsesEphemeral
){
3161 int i
; /* Loop counter */
3162 KeyInfo
*pKeyInfo
; /* Collating sequence for the result set */
3163 Select
*pLoop
; /* For looping through SELECT statements */
3164 CollSeq
**apColl
; /* For looping through pKeyInfo->aColl[] */
3165 int nCol
; /* Number of columns in result set */
3167 assert( p
->pNext
==0 );
3168 assert( p
->pEList
!=0 );
3169 nCol
= p
->pEList
->nExpr
;
3170 pKeyInfo
= sqlite3KeyInfoAlloc(db
, nCol
, 1);
3172 rc
= SQLITE_NOMEM_BKPT
;
3173 goto multi_select_end
;
3175 for(i
=0, apColl
=pKeyInfo
->aColl
; i
<nCol
; i
++, apColl
++){
3176 *apColl
= multiSelectCollSeq(pParse
, p
, i
);
3178 *apColl
= db
->pDfltColl
;
3182 for(pLoop
=p
; pLoop
; pLoop
=pLoop
->pPrior
){
3184 int addr
= pLoop
->addrOpenEphm
[i
];
3186 /* If [0] is unused then [1] is also unused. So we can
3187 ** always safely abort as soon as the first unused slot is found */
3188 assert( pLoop
->addrOpenEphm
[1]<0 );
3191 sqlite3VdbeChangeP2(v
, addr
, nCol
);
3192 sqlite3VdbeChangeP4(v
, addr
, (char*)sqlite3KeyInfoRef(pKeyInfo
),
3194 pLoop
->addrOpenEphm
[i
] = -1;
3197 sqlite3KeyInfoUnref(pKeyInfo
);
3201 pDest
->iSdst
= dest
.iSdst
;
3202 pDest
->nSdst
= dest
.nSdst
;
3204 sqlite3ParserAddCleanup(pParse
,
3205 (void(*)(sqlite3
*,void*))sqlite3SelectDelete
,
3210 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
3213 ** Error message for when two or more terms of a compound select have different
3214 ** size result sets.
3216 void sqlite3SelectWrongNumTermsError(Parse
*pParse
, Select
*p
){
3217 if( p
->selFlags
& SF_Values
){
3218 sqlite3ErrorMsg(pParse
, "all VALUES must have the same number of terms");
3220 sqlite3ErrorMsg(pParse
, "SELECTs to the left and right of %s"
3221 " do not have the same number of result columns",
3222 sqlite3SelectOpName(p
->op
));
3227 ** Code an output subroutine for a coroutine implementation of a
3230 ** The data to be output is contained in pIn->iSdst. There are
3231 ** pIn->nSdst columns to be output. pDest is where the output should
3234 ** regReturn is the number of the register holding the subroutine
3237 ** If regPrev>0 then it is the first register in a vector that
3238 ** records the previous output. mem[regPrev] is a flag that is false
3239 ** if there has been no previous output. If regPrev>0 then code is
3240 ** generated to suppress duplicates. pKeyInfo is used for comparing
3243 ** If the LIMIT found in p->iLimit is reached, jump immediately to
3246 static int generateOutputSubroutine(
3247 Parse
*pParse
, /* Parsing context */
3248 Select
*p
, /* The SELECT statement */
3249 SelectDest
*pIn
, /* Coroutine supplying data */
3250 SelectDest
*pDest
, /* Where to send the data */
3251 int regReturn
, /* The return address register */
3252 int regPrev
, /* Previous result register. No uniqueness if 0 */
3253 KeyInfo
*pKeyInfo
, /* For comparing with previous entry */
3254 int iBreak
/* Jump here if we hit the LIMIT */
3256 Vdbe
*v
= pParse
->pVdbe
;
3260 addr
= sqlite3VdbeCurrentAddr(v
);
3261 iContinue
= sqlite3VdbeMakeLabel(pParse
);
3263 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
3267 addr1
= sqlite3VdbeAddOp1(v
, OP_IfNot
, regPrev
); VdbeCoverage(v
);
3268 addr2
= sqlite3VdbeAddOp4(v
, OP_Compare
, pIn
->iSdst
, regPrev
+1, pIn
->nSdst
,
3269 (char*)sqlite3KeyInfoRef(pKeyInfo
), P4_KEYINFO
);
3270 sqlite3VdbeAddOp3(v
, OP_Jump
, addr2
+2, iContinue
, addr2
+2); VdbeCoverage(v
);
3271 sqlite3VdbeJumpHere(v
, addr1
);
3272 sqlite3VdbeAddOp3(v
, OP_Copy
, pIn
->iSdst
, regPrev
+1, pIn
->nSdst
-1);
3273 sqlite3VdbeAddOp2(v
, OP_Integer
, 1, regPrev
);
3275 if( pParse
->db
->mallocFailed
) return 0;
3277 /* Suppress the first OFFSET entries if there is an OFFSET clause
3279 codeOffset(v
, p
->iOffset
, iContinue
);
3281 assert( pDest
->eDest
!=SRT_Exists
);
3282 assert( pDest
->eDest
!=SRT_Table
);
3283 switch( pDest
->eDest
){
3284 /* Store the result as data using a unique key.
3286 case SRT_EphemTab
: {
3287 int r1
= sqlite3GetTempReg(pParse
);
3288 int r2
= sqlite3GetTempReg(pParse
);
3289 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, pIn
->iSdst
, pIn
->nSdst
, r1
);
3290 sqlite3VdbeAddOp2(v
, OP_NewRowid
, pDest
->iSDParm
, r2
);
3291 sqlite3VdbeAddOp3(v
, OP_Insert
, pDest
->iSDParm
, r1
, r2
);
3292 sqlite3VdbeChangeP5(v
, OPFLAG_APPEND
);
3293 sqlite3ReleaseTempReg(pParse
, r2
);
3294 sqlite3ReleaseTempReg(pParse
, r1
);
3298 #ifndef SQLITE_OMIT_SUBQUERY
3299 /* If we are creating a set for an "expr IN (SELECT ...)".
3303 testcase( pIn
->nSdst
>1 );
3304 r1
= sqlite3GetTempReg(pParse
);
3305 sqlite3VdbeAddOp4(v
, OP_MakeRecord
, pIn
->iSdst
, pIn
->nSdst
,
3306 r1
, pDest
->zAffSdst
, pIn
->nSdst
);
3307 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, pDest
->iSDParm
, r1
,
3308 pIn
->iSdst
, pIn
->nSdst
);
3309 sqlite3ReleaseTempReg(pParse
, r1
);
3313 /* If this is a scalar select that is part of an expression, then
3314 ** store the results in the appropriate memory cell and break out
3315 ** of the scan loop. Note that the select might return multiple columns
3316 ** if it is the RHS of a row-value IN operator.
3319 testcase( pIn
->nSdst
>1 );
3320 sqlite3ExprCodeMove(pParse
, pIn
->iSdst
, pDest
->iSDParm
, pIn
->nSdst
);
3321 /* The LIMIT clause will jump out of the loop for us */
3324 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
3326 /* The results are stored in a sequence of registers
3327 ** starting at pDest->iSdst. Then the co-routine yields.
3329 case SRT_Coroutine
: {
3330 if( pDest
->iSdst
==0 ){
3331 pDest
->iSdst
= sqlite3GetTempRange(pParse
, pIn
->nSdst
);
3332 pDest
->nSdst
= pIn
->nSdst
;
3334 sqlite3ExprCodeMove(pParse
, pIn
->iSdst
, pDest
->iSdst
, pIn
->nSdst
);
3335 sqlite3VdbeAddOp1(v
, OP_Yield
, pDest
->iSDParm
);
3339 /* If none of the above, then the result destination must be
3340 ** SRT_Output. This routine is never called with any other
3341 ** destination other than the ones handled above or SRT_Output.
3343 ** For SRT_Output, results are stored in a sequence of registers.
3344 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
3345 ** return the next row of result.
3348 assert( pDest
->eDest
==SRT_Output
);
3349 sqlite3VdbeAddOp2(v
, OP_ResultRow
, pIn
->iSdst
, pIn
->nSdst
);
3354 /* Jump to the end of the loop if the LIMIT is reached.
3357 sqlite3VdbeAddOp2(v
, OP_DecrJumpZero
, p
->iLimit
, iBreak
); VdbeCoverage(v
);
3360 /* Generate the subroutine return
3362 sqlite3VdbeResolveLabel(v
, iContinue
);
3363 sqlite3VdbeAddOp1(v
, OP_Return
, regReturn
);
3369 ** Alternative compound select code generator for cases when there
3370 ** is an ORDER BY clause.
3372 ** We assume a query of the following form:
3374 ** <selectA> <operator> <selectB> ORDER BY <orderbylist>
3376 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea
3377 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
3378 ** co-routines. Then run the co-routines in parallel and merge the results
3379 ** into the output. In addition to the two coroutines (called selectA and
3380 ** selectB) there are 7 subroutines:
3382 ** outA: Move the output of the selectA coroutine into the output
3383 ** of the compound query.
3385 ** outB: Move the output of the selectB coroutine into the output
3386 ** of the compound query. (Only generated for UNION and
3387 ** UNION ALL. EXCEPT and INSERTSECT never output a row that
3388 ** appears only in B.)
3390 ** AltB: Called when there is data from both coroutines and A<B.
3392 ** AeqB: Called when there is data from both coroutines and A==B.
3394 ** AgtB: Called when there is data from both coroutines and A>B.
3396 ** EofA: Called when data is exhausted from selectA.
3398 ** EofB: Called when data is exhausted from selectB.
3400 ** The implementation of the latter five subroutines depend on which
3401 ** <operator> is used:
3404 ** UNION ALL UNION EXCEPT INTERSECT
3405 ** ------------- ----------------- -------------- -----------------
3406 ** AltB: outA, nextA outA, nextA outA, nextA nextA
3408 ** AeqB: outA, nextA nextA nextA outA, nextA
3410 ** AgtB: outB, nextB outB, nextB nextB nextB
3412 ** EofA: outB, nextB outB, nextB halt halt
3414 ** EofB: outA, nextA outA, nextA outA, nextA halt
3416 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
3417 ** causes an immediate jump to EofA and an EOF on B following nextB causes
3418 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or
3419 ** following nextX causes a jump to the end of the select processing.
3421 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
3422 ** within the output subroutine. The regPrev register set holds the previously
3423 ** output value. A comparison is made against this value and the output
3424 ** is skipped if the next results would be the same as the previous.
3426 ** The implementation plan is to implement the two coroutines and seven
3427 ** subroutines first, then put the control logic at the bottom. Like this:
3430 ** coA: coroutine for left query (A)
3431 ** coB: coroutine for right query (B)
3432 ** outA: output one row of A
3433 ** outB: output one row of B (UNION and UNION ALL only)
3439 ** Init: initialize coroutine registers
3441 ** if eof(A) goto EofA
3443 ** if eof(B) goto EofB
3444 ** Cmpr: Compare A, B
3445 ** Jump AltB, AeqB, AgtB
3448 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
3449 ** actually called using Gosub and they do not Return. EofA and EofB loop
3450 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB,
3451 ** and AgtB jump to either L2 or to one of EofA or EofB.
3453 #ifndef SQLITE_OMIT_COMPOUND_SELECT
3454 static int multiSelectOrderBy(
3455 Parse
*pParse
, /* Parsing context */
3456 Select
*p
, /* The right-most of SELECTs to be coded */
3457 SelectDest
*pDest
/* What to do with query results */
3459 int i
, j
; /* Loop counters */
3460 Select
*pPrior
; /* Another SELECT immediately to our left */
3461 Select
*pSplit
; /* Left-most SELECT in the right-hand group */
3462 int nSelect
; /* Number of SELECT statements in the compound */
3463 Vdbe
*v
; /* Generate code to this VDBE */
3464 SelectDest destA
; /* Destination for coroutine A */
3465 SelectDest destB
; /* Destination for coroutine B */
3466 int regAddrA
; /* Address register for select-A coroutine */
3467 int regAddrB
; /* Address register for select-B coroutine */
3468 int addrSelectA
; /* Address of the select-A coroutine */
3469 int addrSelectB
; /* Address of the select-B coroutine */
3470 int regOutA
; /* Address register for the output-A subroutine */
3471 int regOutB
; /* Address register for the output-B subroutine */
3472 int addrOutA
; /* Address of the output-A subroutine */
3473 int addrOutB
= 0; /* Address of the output-B subroutine */
3474 int addrEofA
; /* Address of the select-A-exhausted subroutine */
3475 int addrEofA_noB
; /* Alternate addrEofA if B is uninitialized */
3476 int addrEofB
; /* Address of the select-B-exhausted subroutine */
3477 int addrAltB
; /* Address of the A<B subroutine */
3478 int addrAeqB
; /* Address of the A==B subroutine */
3479 int addrAgtB
; /* Address of the A>B subroutine */
3480 int regLimitA
; /* Limit register for select-A */
3481 int regLimitB
; /* Limit register for select-A */
3482 int regPrev
; /* A range of registers to hold previous output */
3483 int savedLimit
; /* Saved value of p->iLimit */
3484 int savedOffset
; /* Saved value of p->iOffset */
3485 int labelCmpr
; /* Label for the start of the merge algorithm */
3486 int labelEnd
; /* Label for the end of the overall SELECT stmt */
3487 int addr1
; /* Jump instructions that get retargetted */
3488 int op
; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
3489 KeyInfo
*pKeyDup
= 0; /* Comparison information for duplicate removal */
3490 KeyInfo
*pKeyMerge
; /* Comparison information for merging rows */
3491 sqlite3
*db
; /* Database connection */
3492 ExprList
*pOrderBy
; /* The ORDER BY clause */
3493 int nOrderBy
; /* Number of terms in the ORDER BY clause */
3494 u32
*aPermute
; /* Mapping from ORDER BY terms to result set columns */
3496 assert( p
->pOrderBy
!=0 );
3497 assert( pKeyDup
==0 ); /* "Managed" code needs this. Ticket #3382. */
3500 assert( v
!=0 ); /* Already thrown the error if VDBE alloc failed */
3501 labelEnd
= sqlite3VdbeMakeLabel(pParse
);
3502 labelCmpr
= sqlite3VdbeMakeLabel(pParse
);
3505 /* Patch up the ORDER BY clause
3508 assert( p
->pPrior
->pOrderBy
==0 );
3509 pOrderBy
= p
->pOrderBy
;
3511 nOrderBy
= pOrderBy
->nExpr
;
3513 /* For operators other than UNION ALL we have to make sure that
3514 ** the ORDER BY clause covers every term of the result set. Add
3515 ** terms to the ORDER BY clause as necessary.
3518 for(i
=1; db
->mallocFailed
==0 && i
<=p
->pEList
->nExpr
; i
++){
3519 struct ExprList_item
*pItem
;
3520 for(j
=0, pItem
=pOrderBy
->a
; j
<nOrderBy
; j
++, pItem
++){
3522 assert( pItem
->u
.x
.iOrderByCol
>0 );
3523 if( pItem
->u
.x
.iOrderByCol
==i
) break;
3526 Expr
*pNew
= sqlite3Expr(db
, TK_INTEGER
, 0);
3527 if( pNew
==0 ) return SQLITE_NOMEM_BKPT
;
3528 pNew
->flags
|= EP_IntValue
;
3530 p
->pOrderBy
= pOrderBy
= sqlite3ExprListAppend(pParse
, pOrderBy
, pNew
);
3531 if( pOrderBy
) pOrderBy
->a
[nOrderBy
++].u
.x
.iOrderByCol
= (u16
)i
;
3536 /* Compute the comparison permutation and keyinfo that is used with
3537 ** the permutation used to determine if the next
3538 ** row of results comes from selectA or selectB. Also add explicit
3539 ** collations to the ORDER BY clause terms so that when the subqueries
3540 ** to the right and the left are evaluated, they use the correct
3543 aPermute
= sqlite3DbMallocRawNN(db
, sizeof(u32
)*(nOrderBy
+ 1));
3545 struct ExprList_item
*pItem
;
3546 aPermute
[0] = nOrderBy
;
3547 for(i
=1, pItem
=pOrderBy
->a
; i
<=nOrderBy
; i
++, pItem
++){
3549 assert( pItem
->u
.x
.iOrderByCol
>0 );
3550 assert( pItem
->u
.x
.iOrderByCol
<=p
->pEList
->nExpr
);
3551 aPermute
[i
] = pItem
->u
.x
.iOrderByCol
- 1;
3553 pKeyMerge
= multiSelectOrderByKeyInfo(pParse
, p
, 1);
3558 /* Allocate a range of temporary registers and the KeyInfo needed
3559 ** for the logic that removes duplicate result rows when the
3560 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
3565 int nExpr
= p
->pEList
->nExpr
;
3566 assert( nOrderBy
>=nExpr
|| db
->mallocFailed
);
3567 regPrev
= pParse
->nMem
+1;
3568 pParse
->nMem
+= nExpr
+1;
3569 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, regPrev
);
3570 pKeyDup
= sqlite3KeyInfoAlloc(db
, nExpr
, 1);
3572 assert( sqlite3KeyInfoIsWriteable(pKeyDup
) );
3573 for(i
=0; i
<nExpr
; i
++){
3574 pKeyDup
->aColl
[i
] = multiSelectCollSeq(pParse
, p
, i
);
3575 pKeyDup
->aSortFlags
[i
] = 0;
3580 /* Separate the left and the right query from one another
3583 if( (op
==TK_ALL
|| op
==TK_UNION
)
3584 && OptimizationEnabled(db
, SQLITE_BalancedMerge
)
3586 for(pSplit
=p
; pSplit
->pPrior
!=0 && pSplit
->op
==op
; pSplit
=pSplit
->pPrior
){
3588 assert( pSplit
->pPrior
->pNext
==pSplit
);
3595 for(i
=2; i
<nSelect
; i
+=2){ pSplit
= pSplit
->pPrior
; }
3597 pPrior
= pSplit
->pPrior
;
3598 assert( pPrior
!=0 );
3601 assert( p
->pOrderBy
== pOrderBy
);
3602 assert( pOrderBy
!=0 || db
->mallocFailed
);
3603 pPrior
->pOrderBy
= sqlite3ExprListDup(pParse
->db
, pOrderBy
, 0);
3604 sqlite3ResolveOrderGroupBy(pParse
, p
, p
->pOrderBy
, "ORDER");
3605 sqlite3ResolveOrderGroupBy(pParse
, pPrior
, pPrior
->pOrderBy
, "ORDER");
3607 /* Compute the limit registers */
3608 computeLimitRegisters(pParse
, p
, labelEnd
);
3609 if( p
->iLimit
&& op
==TK_ALL
){
3610 regLimitA
= ++pParse
->nMem
;
3611 regLimitB
= ++pParse
->nMem
;
3612 sqlite3VdbeAddOp2(v
, OP_Copy
, p
->iOffset
? p
->iOffset
+1 : p
->iLimit
,
3614 sqlite3VdbeAddOp2(v
, OP_Copy
, regLimitA
, regLimitB
);
3616 regLimitA
= regLimitB
= 0;
3618 sqlite3ExprDelete(db
, p
->pLimit
);
3621 regAddrA
= ++pParse
->nMem
;
3622 regAddrB
= ++pParse
->nMem
;
3623 regOutA
= ++pParse
->nMem
;
3624 regOutB
= ++pParse
->nMem
;
3625 sqlite3SelectDestInit(&destA
, SRT_Coroutine
, regAddrA
);
3626 sqlite3SelectDestInit(&destB
, SRT_Coroutine
, regAddrB
);
3628 ExplainQueryPlan((pParse
, 1, "MERGE (%s)", sqlite3SelectOpName(p
->op
)));
3630 /* Generate a coroutine to evaluate the SELECT statement to the
3631 ** left of the compound operator - the "A" select.
3633 addrSelectA
= sqlite3VdbeCurrentAddr(v
) + 1;
3634 addr1
= sqlite3VdbeAddOp3(v
, OP_InitCoroutine
, regAddrA
, 0, addrSelectA
);
3635 VdbeComment((v
, "left SELECT"));
3636 pPrior
->iLimit
= regLimitA
;
3637 ExplainQueryPlan((pParse
, 1, "LEFT"));
3638 sqlite3Select(pParse
, pPrior
, &destA
);
3639 sqlite3VdbeEndCoroutine(v
, regAddrA
);
3640 sqlite3VdbeJumpHere(v
, addr1
);
3642 /* Generate a coroutine to evaluate the SELECT statement on
3643 ** the right - the "B" select
3645 addrSelectB
= sqlite3VdbeCurrentAddr(v
) + 1;
3646 addr1
= sqlite3VdbeAddOp3(v
, OP_InitCoroutine
, regAddrB
, 0, addrSelectB
);
3647 VdbeComment((v
, "right SELECT"));
3648 savedLimit
= p
->iLimit
;
3649 savedOffset
= p
->iOffset
;
3650 p
->iLimit
= regLimitB
;
3652 ExplainQueryPlan((pParse
, 1, "RIGHT"));
3653 sqlite3Select(pParse
, p
, &destB
);
3654 p
->iLimit
= savedLimit
;
3655 p
->iOffset
= savedOffset
;
3656 sqlite3VdbeEndCoroutine(v
, regAddrB
);
3658 /* Generate a subroutine that outputs the current row of the A
3659 ** select as the next output row of the compound select.
3661 VdbeNoopComment((v
, "Output routine for A"));
3662 addrOutA
= generateOutputSubroutine(pParse
,
3663 p
, &destA
, pDest
, regOutA
,
3664 regPrev
, pKeyDup
, labelEnd
);
3666 /* Generate a subroutine that outputs the current row of the B
3667 ** select as the next output row of the compound select.
3669 if( op
==TK_ALL
|| op
==TK_UNION
){
3670 VdbeNoopComment((v
, "Output routine for B"));
3671 addrOutB
= generateOutputSubroutine(pParse
,
3672 p
, &destB
, pDest
, regOutB
,
3673 regPrev
, pKeyDup
, labelEnd
);
3675 sqlite3KeyInfoUnref(pKeyDup
);
3677 /* Generate a subroutine to run when the results from select A
3678 ** are exhausted and only data in select B remains.
3680 if( op
==TK_EXCEPT
|| op
==TK_INTERSECT
){
3681 addrEofA_noB
= addrEofA
= labelEnd
;
3683 VdbeNoopComment((v
, "eof-A subroutine"));
3684 addrEofA
= sqlite3VdbeAddOp2(v
, OP_Gosub
, regOutB
, addrOutB
);
3685 addrEofA_noB
= sqlite3VdbeAddOp2(v
, OP_Yield
, regAddrB
, labelEnd
);
3687 sqlite3VdbeGoto(v
, addrEofA
);
3688 p
->nSelectRow
= sqlite3LogEstAdd(p
->nSelectRow
, pPrior
->nSelectRow
);
3691 /* Generate a subroutine to run when the results from select B
3692 ** are exhausted and only data in select A remains.
3694 if( op
==TK_INTERSECT
){
3695 addrEofB
= addrEofA
;
3696 if( p
->nSelectRow
> pPrior
->nSelectRow
) p
->nSelectRow
= pPrior
->nSelectRow
;
3698 VdbeNoopComment((v
, "eof-B subroutine"));
3699 addrEofB
= sqlite3VdbeAddOp2(v
, OP_Gosub
, regOutA
, addrOutA
);
3700 sqlite3VdbeAddOp2(v
, OP_Yield
, regAddrA
, labelEnd
); VdbeCoverage(v
);
3701 sqlite3VdbeGoto(v
, addrEofB
);
3704 /* Generate code to handle the case of A<B
3706 VdbeNoopComment((v
, "A-lt-B subroutine"));
3707 addrAltB
= sqlite3VdbeAddOp2(v
, OP_Gosub
, regOutA
, addrOutA
);
3708 sqlite3VdbeAddOp2(v
, OP_Yield
, regAddrA
, addrEofA
); VdbeCoverage(v
);
3709 sqlite3VdbeGoto(v
, labelCmpr
);
3711 /* Generate code to handle the case of A==B
3714 addrAeqB
= addrAltB
;
3715 }else if( op
==TK_INTERSECT
){
3716 addrAeqB
= addrAltB
;
3719 VdbeNoopComment((v
, "A-eq-B subroutine"));
3721 sqlite3VdbeAddOp2(v
, OP_Yield
, regAddrA
, addrEofA
); VdbeCoverage(v
);
3722 sqlite3VdbeGoto(v
, labelCmpr
);
3725 /* Generate code to handle the case of A>B
3727 VdbeNoopComment((v
, "A-gt-B subroutine"));
3728 addrAgtB
= sqlite3VdbeCurrentAddr(v
);
3729 if( op
==TK_ALL
|| op
==TK_UNION
){
3730 sqlite3VdbeAddOp2(v
, OP_Gosub
, regOutB
, addrOutB
);
3732 sqlite3VdbeAddOp2(v
, OP_Yield
, regAddrB
, addrEofB
); VdbeCoverage(v
);
3733 sqlite3VdbeGoto(v
, labelCmpr
);
3735 /* This code runs once to initialize everything.
3737 sqlite3VdbeJumpHere(v
, addr1
);
3738 sqlite3VdbeAddOp2(v
, OP_Yield
, regAddrA
, addrEofA_noB
); VdbeCoverage(v
);
3739 sqlite3VdbeAddOp2(v
, OP_Yield
, regAddrB
, addrEofB
); VdbeCoverage(v
);
3741 /* Implement the main merge loop
3743 sqlite3VdbeResolveLabel(v
, labelCmpr
);
3744 sqlite3VdbeAddOp4(v
, OP_Permutation
, 0, 0, 0, (char*)aPermute
, P4_INTARRAY
);
3745 sqlite3VdbeAddOp4(v
, OP_Compare
, destA
.iSdst
, destB
.iSdst
, nOrderBy
,
3746 (char*)pKeyMerge
, P4_KEYINFO
);
3747 sqlite3VdbeChangeP5(v
, OPFLAG_PERMUTE
);
3748 sqlite3VdbeAddOp3(v
, OP_Jump
, addrAltB
, addrAeqB
, addrAgtB
); VdbeCoverage(v
);
3750 /* Jump to the this point in order to terminate the query.
3752 sqlite3VdbeResolveLabel(v
, labelEnd
);
3754 /* Make arrangements to free the 2nd and subsequent arms of the compound
3755 ** after the parse has finished */
3756 if( pSplit
->pPrior
){
3757 sqlite3ParserAddCleanup(pParse
,
3758 (void(*)(sqlite3
*,void*))sqlite3SelectDelete
, pSplit
->pPrior
);
3760 pSplit
->pPrior
= pPrior
;
3761 pPrior
->pNext
= pSplit
;
3762 sqlite3ExprListDelete(db
, pPrior
->pOrderBy
);
3763 pPrior
->pOrderBy
= 0;
3765 /*** TBD: Insert subroutine calls to close cursors on incomplete
3766 **** subqueries ****/
3767 ExplainQueryPlanPop(pParse
);
3768 return pParse
->nErr
!=0;
3772 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3774 /* An instance of the SubstContext object describes an substitution edit
3775 ** to be performed on a parse tree.
3777 ** All references to columns in table iTable are to be replaced by corresponding
3778 ** expressions in pEList.
3780 ** ## About "isOuterJoin":
3782 ** The isOuterJoin column indicates that the replacement will occur into a
3783 ** position in the parent that NULL-able due to an OUTER JOIN. Either the
3784 ** target slot in the parent is the right operand of a LEFT JOIN, or one of
3785 ** the left operands of a RIGHT JOIN. In either case, we need to potentially
3786 ** bypass the substituted expression with OP_IfNullRow.
3788 ** Suppose the original expression is an integer constant. Even though the table
3789 ** has the nullRow flag set, because the expression is an integer constant,
3790 ** it will not be NULLed out. So instead, we insert an OP_IfNullRow opcode
3791 ** that checks to see if the nullRow flag is set on the table. If the nullRow
3792 ** flag is set, then the value in the register is set to NULL and the original
3793 ** expression is bypassed. If the nullRow flag is not set, then the original
3794 ** expression runs to populate the register.
3796 ** Example where this is needed:
3798 ** CREATE TABLE t1(a INTEGER PRIMARY KEY, b INT);
3799 ** CREATE TABLE t2(x INT UNIQUE);
3801 ** SELECT a,b,m,x FROM t1 LEFT JOIN (SELECT 59 AS m,x FROM t2) ON b=x;
3803 ** When the subquery on the right side of the LEFT JOIN is flattened, we
3804 ** have to add OP_IfNullRow in front of the OP_Integer that implements the
3805 ** "m" value of the subquery so that a NULL will be loaded instead of 59
3806 ** when processing a non-matched row of the left.
3808 typedef struct SubstContext
{
3809 Parse
*pParse
; /* The parsing context */
3810 int iTable
; /* Replace references to this table */
3811 int iNewTable
; /* New table number */
3812 int isOuterJoin
; /* Add TK_IF_NULL_ROW opcodes on each replacement */
3813 ExprList
*pEList
; /* Replacement expressions */
3814 ExprList
*pCList
; /* Collation sequences for replacement expr */
3817 /* Forward Declarations */
3818 static void substExprList(SubstContext
*, ExprList
*);
3819 static void substSelect(SubstContext
*, Select
*, int);
3822 ** Scan through the expression pExpr. Replace every reference to
3823 ** a column in table number iTable with a copy of the iColumn-th
3824 ** entry in pEList. (But leave references to the ROWID column
3827 ** This routine is part of the flattening procedure. A subquery
3828 ** whose result set is defined by pEList appears as entry in the
3829 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3830 ** FORM clause entry is iTable. This routine makes the necessary
3831 ** changes to pExpr so that it refers directly to the source table
3832 ** of the subquery rather the result set of the subquery.
3834 static Expr
*substExpr(
3835 SubstContext
*pSubst
, /* Description of the substitution */
3836 Expr
*pExpr
/* Expr in which substitution occurs */
3838 if( pExpr
==0 ) return 0;
3839 if( ExprHasProperty(pExpr
, EP_OuterON
|EP_InnerON
)
3840 && pExpr
->w
.iJoin
==pSubst
->iTable
3842 testcase( ExprHasProperty(pExpr
, EP_InnerON
) );
3843 pExpr
->w
.iJoin
= pSubst
->iNewTable
;
3845 if( pExpr
->op
==TK_COLUMN
3846 && pExpr
->iTable
==pSubst
->iTable
3847 && !ExprHasProperty(pExpr
, EP_FixedCol
)
3849 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
3850 if( pExpr
->iColumn
<0 ){
3851 pExpr
->op
= TK_NULL
;
3856 int iColumn
= pExpr
->iColumn
;
3857 Expr
*pCopy
= pSubst
->pEList
->a
[iColumn
].pExpr
;
3859 assert( pSubst
->pEList
!=0 && iColumn
<pSubst
->pEList
->nExpr
);
3860 assert( pExpr
->pRight
==0 );
3861 if( sqlite3ExprIsVector(pCopy
) ){
3862 sqlite3VectorErrorMsg(pSubst
->pParse
, pCopy
);
3864 sqlite3
*db
= pSubst
->pParse
->db
;
3865 if( pSubst
->isOuterJoin
3866 && (pCopy
->op
!=TK_COLUMN
|| pCopy
->iTable
!=pSubst
->iNewTable
)
3868 memset(&ifNullRow
, 0, sizeof(ifNullRow
));
3869 ifNullRow
.op
= TK_IF_NULL_ROW
;
3870 ifNullRow
.pLeft
= pCopy
;
3871 ifNullRow
.iTable
= pSubst
->iNewTable
;
3872 ifNullRow
.iColumn
= -99;
3873 ifNullRow
.flags
= EP_IfNullRow
;
3876 testcase( ExprHasProperty(pCopy
, EP_Subquery
) );
3877 pNew
= sqlite3ExprDup(db
, pCopy
, 0);
3878 if( db
->mallocFailed
){
3879 sqlite3ExprDelete(db
, pNew
);
3882 if( pSubst
->isOuterJoin
){
3883 ExprSetProperty(pNew
, EP_CanBeNull
);
3885 if( ExprHasProperty(pExpr
,EP_OuterON
|EP_InnerON
) ){
3886 sqlite3SetJoinExpr(pNew
, pExpr
->w
.iJoin
,
3887 pExpr
->flags
& (EP_OuterON
|EP_InnerON
));
3889 sqlite3ExprDelete(db
, pExpr
);
3891 if( pExpr
->op
==TK_TRUEFALSE
){
3892 pExpr
->u
.iValue
= sqlite3ExprTruthValue(pExpr
);
3893 pExpr
->op
= TK_INTEGER
;
3894 ExprSetProperty(pExpr
, EP_IntValue
);
3897 /* Ensure that the expression now has an implicit collation sequence,
3898 ** just as it did when it was a column of a view or sub-query. */
3900 CollSeq
*pNat
= sqlite3ExprCollSeq(pSubst
->pParse
, pExpr
);
3901 CollSeq
*pColl
= sqlite3ExprCollSeq(pSubst
->pParse
,
3902 pSubst
->pCList
->a
[iColumn
].pExpr
3904 if( pNat
!=pColl
|| (pExpr
->op
!=TK_COLUMN
&& pExpr
->op
!=TK_COLLATE
) ){
3905 pExpr
= sqlite3ExprAddCollateString(pSubst
->pParse
, pExpr
,
3906 (pColl
? pColl
->zName
: "BINARY")
3910 ExprClearProperty(pExpr
, EP_Collate
);
3914 if( pExpr
->op
==TK_IF_NULL_ROW
&& pExpr
->iTable
==pSubst
->iTable
){
3915 pExpr
->iTable
= pSubst
->iNewTable
;
3917 pExpr
->pLeft
= substExpr(pSubst
, pExpr
->pLeft
);
3918 pExpr
->pRight
= substExpr(pSubst
, pExpr
->pRight
);
3919 if( ExprUseXSelect(pExpr
) ){
3920 substSelect(pSubst
, pExpr
->x
.pSelect
, 1);
3922 substExprList(pSubst
, pExpr
->x
.pList
);
3924 #ifndef SQLITE_OMIT_WINDOWFUNC
3925 if( ExprHasProperty(pExpr
, EP_WinFunc
) ){
3926 Window
*pWin
= pExpr
->y
.pWin
;
3927 pWin
->pFilter
= substExpr(pSubst
, pWin
->pFilter
);
3928 substExprList(pSubst
, pWin
->pPartition
);
3929 substExprList(pSubst
, pWin
->pOrderBy
);
3935 static void substExprList(
3936 SubstContext
*pSubst
, /* Description of the substitution */
3937 ExprList
*pList
/* List to scan and in which to make substitutes */
3940 if( pList
==0 ) return;
3941 for(i
=0; i
<pList
->nExpr
; i
++){
3942 pList
->a
[i
].pExpr
= substExpr(pSubst
, pList
->a
[i
].pExpr
);
3945 static void substSelect(
3946 SubstContext
*pSubst
, /* Description of the substitution */
3947 Select
*p
, /* SELECT statement in which to make substitutions */
3948 int doPrior
/* Do substitutes on p->pPrior too */
3955 substExprList(pSubst
, p
->pEList
);
3956 substExprList(pSubst
, p
->pGroupBy
);
3957 substExprList(pSubst
, p
->pOrderBy
);
3958 p
->pHaving
= substExpr(pSubst
, p
->pHaving
);
3959 p
->pWhere
= substExpr(pSubst
, p
->pWhere
);
3962 for(i
=pSrc
->nSrc
, pItem
=pSrc
->a
; i
>0; i
--, pItem
++){
3963 substSelect(pSubst
, pItem
->pSelect
, 1);
3964 if( pItem
->fg
.isTabFunc
){
3965 substExprList(pSubst
, pItem
->u1
.pFuncArg
);
3968 }while( doPrior
&& (p
= p
->pPrior
)!=0 );
3970 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3972 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3974 ** pSelect is a SELECT statement and pSrcItem is one item in the FROM
3975 ** clause of that SELECT.
3977 ** This routine scans the entire SELECT statement and recomputes the
3978 ** pSrcItem->colUsed mask.
3980 static int recomputeColumnsUsedExpr(Walker
*pWalker
, Expr
*pExpr
){
3982 if( pExpr
->op
!=TK_COLUMN
) return WRC_Continue
;
3983 pItem
= pWalker
->u
.pSrcItem
;
3984 if( pItem
->iCursor
!=pExpr
->iTable
) return WRC_Continue
;
3985 if( pExpr
->iColumn
<0 ) return WRC_Continue
;
3986 pItem
->colUsed
|= sqlite3ExprColUsed(pExpr
);
3987 return WRC_Continue
;
3989 static void recomputeColumnsUsed(
3990 Select
*pSelect
, /* The complete SELECT statement */
3991 SrcItem
*pSrcItem
/* Which FROM clause item to recompute */
3994 if( NEVER(pSrcItem
->pTab
==0) ) return;
3995 memset(&w
, 0, sizeof(w
));
3996 w
.xExprCallback
= recomputeColumnsUsedExpr
;
3997 w
.xSelectCallback
= sqlite3SelectWalkNoop
;
3998 w
.u
.pSrcItem
= pSrcItem
;
3999 pSrcItem
->colUsed
= 0;
4000 sqlite3WalkSelect(&w
, pSelect
);
4002 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4004 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4006 ** Assign new cursor numbers to each of the items in pSrc. For each
4007 ** new cursor number assigned, set an entry in the aCsrMap[] array
4008 ** to map the old cursor number to the new:
4010 ** aCsrMap[iOld+1] = iNew;
4012 ** The array is guaranteed by the caller to be large enough for all
4013 ** existing cursor numbers in pSrc. aCsrMap[0] is the array size.
4015 ** If pSrc contains any sub-selects, call this routine recursively
4016 ** on the FROM clause of each such sub-select, with iExcept set to -1.
4018 static void srclistRenumberCursors(
4019 Parse
*pParse
, /* Parse context */
4020 int *aCsrMap
, /* Array to store cursor mappings in */
4021 SrcList
*pSrc
, /* FROM clause to renumber */
4022 int iExcept
/* FROM clause item to skip */
4026 for(i
=0, pItem
=pSrc
->a
; i
<pSrc
->nSrc
; i
++, pItem
++){
4029 assert( pItem
->iCursor
< aCsrMap
[0] );
4030 if( !pItem
->fg
.isRecursive
|| aCsrMap
[pItem
->iCursor
+1]==0 ){
4031 aCsrMap
[pItem
->iCursor
+1] = pParse
->nTab
++;
4033 pItem
->iCursor
= aCsrMap
[pItem
->iCursor
+1];
4034 for(p
=pItem
->pSelect
; p
; p
=p
->pPrior
){
4035 srclistRenumberCursors(pParse
, aCsrMap
, p
->pSrc
, -1);
4042 ** *piCursor is a cursor number. Change it if it needs to be mapped.
4044 static void renumberCursorDoMapping(Walker
*pWalker
, int *piCursor
){
4045 int *aCsrMap
= pWalker
->u
.aiCol
;
4046 int iCsr
= *piCursor
;
4047 if( iCsr
< aCsrMap
[0] && aCsrMap
[iCsr
+1]>0 ){
4048 *piCursor
= aCsrMap
[iCsr
+1];
4053 ** Expression walker callback used by renumberCursors() to update
4054 ** Expr objects to match newly assigned cursor numbers.
4056 static int renumberCursorsCb(Walker
*pWalker
, Expr
*pExpr
){
4058 if( op
==TK_COLUMN
|| op
==TK_IF_NULL_ROW
){
4059 renumberCursorDoMapping(pWalker
, &pExpr
->iTable
);
4061 if( ExprHasProperty(pExpr
, EP_OuterON
) ){
4062 renumberCursorDoMapping(pWalker
, &pExpr
->w
.iJoin
);
4064 return WRC_Continue
;
4068 ** Assign a new cursor number to each cursor in the FROM clause (Select.pSrc)
4069 ** of the SELECT statement passed as the second argument, and to each
4070 ** cursor in the FROM clause of any FROM clause sub-selects, recursively.
4071 ** Except, do not assign a new cursor number to the iExcept'th element in
4072 ** the FROM clause of (*p). Update all expressions and other references
4073 ** to refer to the new cursor numbers.
4075 ** Argument aCsrMap is an array that may be used for temporary working
4076 ** space. Two guarantees are made by the caller:
4078 ** * the array is larger than the largest cursor number used within the
4079 ** select statement passed as an argument, and
4081 ** * the array entries for all cursor numbers that do *not* appear in
4082 ** FROM clauses of the select statement as described above are
4083 ** initialized to zero.
4085 static void renumberCursors(
4086 Parse
*pParse
, /* Parse context */
4087 Select
*p
, /* Select to renumber cursors within */
4088 int iExcept
, /* FROM clause item to skip */
4089 int *aCsrMap
/* Working space */
4092 srclistRenumberCursors(pParse
, aCsrMap
, p
->pSrc
, iExcept
);
4093 memset(&w
, 0, sizeof(w
));
4094 w
.u
.aiCol
= aCsrMap
;
4095 w
.xExprCallback
= renumberCursorsCb
;
4096 w
.xSelectCallback
= sqlite3SelectWalkNoop
;
4097 sqlite3WalkSelect(&w
, p
);
4099 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4102 ** If pSel is not part of a compound SELECT, return a pointer to its
4103 ** expression list. Otherwise, return a pointer to the expression list
4104 ** of the leftmost SELECT in the compound.
4106 static ExprList
*findLeftmostExprlist(Select
*pSel
){
4107 while( pSel
->pPrior
){
4108 pSel
= pSel
->pPrior
;
4110 return pSel
->pEList
;
4114 ** Return true if any of the result-set columns in the compound query
4115 ** have incompatible affinities on one or more arms of the compound.
4117 static int compoundHasDifferentAffinities(Select
*p
){
4121 assert( p
->pEList
!=0 );
4122 assert( p
->pPrior
!=0 );
4124 for(ii
=0; ii
<pList
->nExpr
; ii
++){
4127 assert( pList
->a
[ii
].pExpr
!=0 );
4128 aff
= sqlite3ExprAffinity(pList
->a
[ii
].pExpr
);
4129 for(pSub1
=p
->pPrior
; pSub1
; pSub1
=pSub1
->pPrior
){
4130 assert( pSub1
->pEList
!=0 );
4131 assert( pSub1
->pEList
->nExpr
>ii
);
4132 assert( pSub1
->pEList
->a
[ii
].pExpr
!=0 );
4133 if( sqlite3ExprAffinity(pSub1
->pEList
->a
[ii
].pExpr
)!=aff
){
4141 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4143 ** This routine attempts to flatten subqueries as a performance optimization.
4144 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
4146 ** To understand the concept of flattening, consider the following
4149 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
4151 ** The default way of implementing this query is to execute the
4152 ** subquery first and store the results in a temporary table, then
4153 ** run the outer query on that temporary table. This requires two
4154 ** passes over the data. Furthermore, because the temporary table
4155 ** has no indices, the WHERE clause on the outer query cannot be
4158 ** This routine attempts to rewrite queries such as the above into
4159 ** a single flat select, like this:
4161 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
4163 ** The code generated for this simplification gives the same result
4164 ** but only has to scan the data once. And because indices might
4165 ** exist on the table t1, a complete scan of the data might be
4168 ** Flattening is subject to the following constraints:
4170 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
4171 ** The subquery and the outer query cannot both be aggregates.
4173 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
4174 ** (2) If the subquery is an aggregate then
4175 ** (2a) the outer query must not be a join and
4176 ** (2b) the outer query must not use subqueries
4177 ** other than the one FROM-clause subquery that is a candidate
4178 ** for flattening. (This is due to ticket [2f7170d73bf9abf80]
4179 ** from 2015-02-09.)
4181 ** (3) If the subquery is the right operand of a LEFT JOIN then
4182 ** (3a) the subquery may not be a join and
4183 ** (3b) the FROM clause of the subquery may not contain a virtual
4185 ** (**) Was: "The outer query may not have a GROUP BY." This case
4186 ** is now managed correctly
4187 ** (3d) the outer query may not be DISTINCT.
4188 ** See also (26) for restrictions on RIGHT JOIN.
4190 ** (4) The subquery can not be DISTINCT.
4192 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT
4193 ** sub-queries that were excluded from this optimization. Restriction
4194 ** (4) has since been expanded to exclude all DISTINCT subqueries.
4196 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
4197 ** If the subquery is aggregate, the outer query may not be DISTINCT.
4199 ** (7) The subquery must have a FROM clause. TODO: For subqueries without
4200 ** A FROM clause, consider adding a FROM clause with the special
4201 ** table sqlite_once that consists of a single row containing a
4204 ** (8) If the subquery uses LIMIT then the outer query may not be a join.
4206 ** (9) If the subquery uses LIMIT then the outer query may not be aggregate.
4208 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we
4209 ** accidently carried the comment forward until 2014-09-15. Original
4210 ** constraint: "If the subquery is aggregate then the outer query
4211 ** may not use LIMIT."
4213 ** (11) The subquery and the outer query may not both have ORDER BY clauses.
4215 ** (**) Not implemented. Subsumed into restriction (3). Was previously
4216 ** a separate restriction deriving from ticket #350.
4218 ** (13) The subquery and outer query may not both use LIMIT.
4220 ** (14) The subquery may not use OFFSET.
4222 ** (15) If the outer query is part of a compound select, then the
4223 ** subquery may not use LIMIT.
4224 ** (See ticket #2339 and ticket [02a8e81d44]).
4226 ** (16) If the outer query is aggregate, then the subquery may not
4227 ** use ORDER BY. (Ticket #2942) This used to not matter
4228 ** until we introduced the group_concat() function.
4230 ** (17) If the subquery is a compound select, then
4231 ** (17a) all compound operators must be a UNION ALL, and
4232 ** (17b) no terms within the subquery compound may be aggregate
4234 ** (17c) every term within the subquery compound must have a FROM clause
4235 ** (17d) the outer query may not be
4236 ** (17d1) aggregate, or
4238 ** (17e) the subquery may not contain window functions, and
4239 ** (17f) the subquery must not be the RHS of a LEFT JOIN.
4240 ** (17g) either the subquery is the first element of the outer
4241 ** query or there are no RIGHT or FULL JOINs in any arm
4242 ** of the subquery. (This is a duplicate of condition (27b).)
4243 ** (17h) The corresponding result set expressions in all arms of the
4244 ** compound must have the same affinity. (See restriction (9)
4245 ** on the push-down optimization.)
4247 ** The parent and sub-query may contain WHERE clauses. Subject to
4248 ** rules (11), (13) and (14), they may also contain ORDER BY,
4249 ** LIMIT and OFFSET clauses. The subquery cannot use any compound
4250 ** operator other than UNION ALL because all the other compound
4251 ** operators have an implied DISTINCT which is disallowed by
4254 ** Also, each component of the sub-query must return the same number
4255 ** of result columns. This is actually a requirement for any compound
4256 ** SELECT statement, but all the code here does is make sure that no
4257 ** such (illegal) sub-query is flattened. The caller will detect the
4258 ** syntax error and return a detailed message.
4260 ** (18) If the sub-query is a compound select, then all terms of the
4261 ** ORDER BY clause of the parent must be copies of a term returned
4262 ** by the parent query.
4264 ** (19) If the subquery uses LIMIT then the outer query may not
4265 ** have a WHERE clause.
4267 ** (20) If the sub-query is a compound select, then it must not use
4268 ** an ORDER BY clause. Ticket #3773. We could relax this constraint
4269 ** somewhat by saying that the terms of the ORDER BY clause must
4270 ** appear as unmodified result columns in the outer query. But we
4271 ** have other optimizations in mind to deal with that case.
4273 ** (21) If the subquery uses LIMIT then the outer query may not be
4274 ** DISTINCT. (See ticket [752e1646fc]).
4276 ** (22) The subquery may not be a recursive CTE.
4278 ** (23) If the outer query is a recursive CTE, then the sub-query may not be
4279 ** a compound query. This restriction is because transforming the
4280 ** parent to a compound query confuses the code that handles
4281 ** recursive queries in multiSelect().
4283 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
4284 ** The subquery may not be an aggregate that uses the built-in min() or
4285 ** or max() functions. (Without this restriction, a query like:
4286 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
4287 ** return the value X for which Y was maximal.)
4289 ** (25) If either the subquery or the parent query contains a window
4290 ** function in the select list or ORDER BY clause, flattening
4291 ** is not attempted.
4293 ** (26) The subquery may not be the right operand of a RIGHT JOIN.
4294 ** See also (3) for restrictions on LEFT JOIN.
4296 ** (27) The subquery may not contain a FULL or RIGHT JOIN unless it
4297 ** is the first element of the parent query. Two subcases:
4298 ** (27a) the subquery is not a compound query.
4299 ** (27b) the subquery is a compound query and the RIGHT JOIN occurs
4300 ** in any arm of the compound query. (See also (17g).)
4302 ** (28) The subquery is not a MATERIALIZED CTE.
4305 ** In this routine, the "p" parameter is a pointer to the outer query.
4306 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query
4309 ** If flattening is not attempted, this routine is a no-op and returns 0.
4310 ** If flattening is attempted this routine returns 1.
4312 ** All of the expression analysis must occur on both the outer query and
4313 ** the subquery before this routine runs.
4315 static int flattenSubquery(
4316 Parse
*pParse
, /* Parsing context */
4317 Select
*p
, /* The parent or outer SELECT statement */
4318 int iFrom
, /* Index in p->pSrc->a[] of the inner subquery */
4319 int isAgg
/* True if outer SELECT uses aggregate functions */
4321 const char *zSavedAuthContext
= pParse
->zAuthContext
;
4322 Select
*pParent
; /* Current UNION ALL term of the other query */
4323 Select
*pSub
; /* The inner query or "subquery" */
4324 Select
*pSub1
; /* Pointer to the rightmost select in sub-query */
4325 SrcList
*pSrc
; /* The FROM clause of the outer query */
4326 SrcList
*pSubSrc
; /* The FROM clause of the subquery */
4327 int iParent
; /* VDBE cursor number of the pSub result set temp table */
4328 int iNewParent
= -1;/* Replacement table for iParent */
4329 int isOuterJoin
= 0; /* True if pSub is the right side of a LEFT JOIN */
4330 int i
; /* Loop counter */
4331 Expr
*pWhere
; /* The WHERE clause */
4332 SrcItem
*pSubitem
; /* The subquery */
4333 sqlite3
*db
= pParse
->db
;
4334 Walker w
; /* Walker to persist agginfo data */
4337 /* Check to see if flattening is permitted. Return 0 if not.
4340 assert( p
->pPrior
==0 );
4341 if( OptimizationDisabled(db
, SQLITE_QueryFlattener
) ) return 0;
4343 assert( pSrc
&& iFrom
>=0 && iFrom
<pSrc
->nSrc
);
4344 pSubitem
= &pSrc
->a
[iFrom
];
4345 iParent
= pSubitem
->iCursor
;
4346 pSub
= pSubitem
->pSelect
;
4349 #ifndef SQLITE_OMIT_WINDOWFUNC
4350 if( p
->pWin
|| pSub
->pWin
) return 0; /* Restriction (25) */
4353 pSubSrc
= pSub
->pSrc
;
4355 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
4356 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
4357 ** because they could be computed at compile-time. But when LIMIT and OFFSET
4358 ** became arbitrary expressions, we were forced to add restrictions (13)
4360 if( pSub
->pLimit
&& p
->pLimit
) return 0; /* Restriction (13) */
4361 if( pSub
->pLimit
&& pSub
->pLimit
->pRight
) return 0; /* Restriction (14) */
4362 if( (p
->selFlags
& SF_Compound
)!=0 && pSub
->pLimit
){
4363 return 0; /* Restriction (15) */
4365 if( pSubSrc
->nSrc
==0 ) return 0; /* Restriction (7) */
4366 if( pSub
->selFlags
& SF_Distinct
) return 0; /* Restriction (4) */
4367 if( pSub
->pLimit
&& (pSrc
->nSrc
>1 || isAgg
) ){
4368 return 0; /* Restrictions (8)(9) */
4370 if( p
->pOrderBy
&& pSub
->pOrderBy
){
4371 return 0; /* Restriction (11) */
4373 if( isAgg
&& pSub
->pOrderBy
) return 0; /* Restriction (16) */
4374 if( pSub
->pLimit
&& p
->pWhere
) return 0; /* Restriction (19) */
4375 if( pSub
->pLimit
&& (p
->selFlags
& SF_Distinct
)!=0 ){
4376 return 0; /* Restriction (21) */
4378 if( pSub
->selFlags
& (SF_Recursive
) ){
4379 return 0; /* Restrictions (22) */
4383 ** If the subquery is the right operand of a LEFT JOIN, then the
4384 ** subquery may not be a join itself (3a). Example of why this is not
4387 ** t1 LEFT OUTER JOIN (t2 JOIN t3)
4389 ** If we flatten the above, we would get
4391 ** (t1 LEFT OUTER JOIN t2) JOIN t3
4393 ** which is not at all the same thing.
4395 ** See also tickets #306, #350, and #3300.
4397 if( (pSubitem
->fg
.jointype
& (JT_OUTER
|JT_LTORJ
))!=0 ){
4398 if( pSubSrc
->nSrc
>1 /* (3a) */
4399 || IsVirtual(pSubSrc
->a
[0].pTab
) /* (3b) */
4400 || (p
->selFlags
& SF_Distinct
)!=0 /* (3d) */
4401 || (pSubitem
->fg
.jointype
& JT_RIGHT
)!=0 /* (26) */
4408 assert( pSubSrc
->nSrc
>0 ); /* True by restriction (7) */
4409 if( iFrom
>0 && (pSubSrc
->a
[0].fg
.jointype
& JT_LTORJ
)!=0 ){
4410 return 0; /* Restriction (27a) */
4412 if( pSubitem
->fg
.isCte
&& pSubitem
->u2
.pCteUse
->eM10d
==M10d_Yes
){
4413 return 0; /* (28) */
4416 /* Restriction (17): If the sub-query is a compound SELECT, then it must
4417 ** use only the UNION ALL operator. And none of the simple select queries
4418 ** that make up the compound SELECT are allowed to be aggregate or distinct
4423 if( pSub
->pOrderBy
){
4424 return 0; /* Restriction (20) */
4426 if( isAgg
|| (p
->selFlags
& SF_Distinct
)!=0 || isOuterJoin
>0 ){
4427 return 0; /* (17d1), (17d2), or (17f) */
4429 for(pSub1
=pSub
; pSub1
; pSub1
=pSub1
->pPrior
){
4430 testcase( (pSub1
->selFlags
& (SF_Distinct
|SF_Aggregate
))==SF_Distinct
);
4431 testcase( (pSub1
->selFlags
& (SF_Distinct
|SF_Aggregate
))==SF_Aggregate
);
4432 assert( pSub
->pSrc
!=0 );
4433 assert( (pSub
->selFlags
& SF_Recursive
)==0 );
4434 assert( pSub
->pEList
->nExpr
==pSub1
->pEList
->nExpr
);
4435 if( (pSub1
->selFlags
& (SF_Distinct
|SF_Aggregate
))!=0 /* (17b) */
4436 || (pSub1
->pPrior
&& pSub1
->op
!=TK_ALL
) /* (17a) */
4437 || pSub1
->pSrc
->nSrc
<1 /* (17c) */
4438 #ifndef SQLITE_OMIT_WINDOWFUNC
4439 || pSub1
->pWin
/* (17e) */
4444 if( iFrom
>0 && (pSub1
->pSrc
->a
[0].fg
.jointype
& JT_LTORJ
)!=0 ){
4445 /* Without this restriction, the JT_LTORJ flag would end up being
4446 ** omitted on left-hand tables of the right join that is being
4448 return 0; /* Restrictions (17g), (27b) */
4450 testcase( pSub1
->pSrc
->nSrc
>1 );
4453 /* Restriction (18). */
4455 for(ii
=0; ii
<p
->pOrderBy
->nExpr
; ii
++){
4456 if( p
->pOrderBy
->a
[ii
].u
.x
.iOrderByCol
==0 ) return 0;
4460 /* Restriction (23) */
4461 if( (p
->selFlags
& SF_Recursive
) ) return 0;
4463 /* Restriction (17h) */
4464 if( compoundHasDifferentAffinities(pSub
) ) return 0;
4467 if( pParse
->nSelect
>500 ) return 0;
4468 if( OptimizationDisabled(db
, SQLITE_FlttnUnionAll
) ) return 0;
4469 aCsrMap
= sqlite3DbMallocZero(db
, ((i64
)pParse
->nTab
+1)*sizeof(int));
4470 if( aCsrMap
) aCsrMap
[0] = pParse
->nTab
;
4474 /***** If we reach this point, flattening is permitted. *****/
4475 TREETRACE(0x4,pParse
,p
,("flatten %u.%p from term %d\n",
4476 pSub
->selId
, pSub
, iFrom
));
4478 /* Authorize the subquery */
4479 pParse
->zAuthContext
= pSubitem
->zName
;
4480 TESTONLY(i
=) sqlite3AuthCheck(pParse
, SQLITE_SELECT
, 0, 0, 0);
4481 testcase( i
==SQLITE_DENY
);
4482 pParse
->zAuthContext
= zSavedAuthContext
;
4484 /* Delete the transient structures associated with thesubquery */
4485 pSub1
= pSubitem
->pSelect
;
4486 sqlite3DbFree(db
, pSubitem
->zDatabase
);
4487 sqlite3DbFree(db
, pSubitem
->zName
);
4488 sqlite3DbFree(db
, pSubitem
->zAlias
);
4489 pSubitem
->zDatabase
= 0;
4490 pSubitem
->zName
= 0;
4491 pSubitem
->zAlias
= 0;
4492 pSubitem
->pSelect
= 0;
4493 assert( pSubitem
->fg
.isUsing
!=0 || pSubitem
->u3
.pOn
==0 );
4495 /* If the sub-query is a compound SELECT statement, then (by restrictions
4496 ** 17 and 18 above) it must be a UNION ALL and the parent query must
4499 ** SELECT <expr-list> FROM (<sub-query>) <where-clause>
4501 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
4502 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
4503 ** OFFSET clauses and joins them to the left-hand-side of the original
4504 ** using UNION ALL operators. In this case N is the number of simple
4505 ** select statements in the compound sub-query.
4509 ** SELECT a+1 FROM (
4510 ** SELECT x FROM tab
4512 ** SELECT y FROM tab
4514 ** SELECT abs(z*2) FROM tab2
4515 ** ) WHERE a!=5 ORDER BY 1
4517 ** Transformed into:
4519 ** SELECT x+1 FROM tab WHERE x+1!=5
4521 ** SELECT y+1 FROM tab WHERE y+1!=5
4523 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
4526 ** We call this the "compound-subquery flattening".
4528 for(pSub
=pSub
->pPrior
; pSub
; pSub
=pSub
->pPrior
){
4530 ExprList
*pOrderBy
= p
->pOrderBy
;
4531 Expr
*pLimit
= p
->pLimit
;
4532 Select
*pPrior
= p
->pPrior
;
4533 Table
*pItemTab
= pSubitem
->pTab
;
4538 pNew
= sqlite3SelectDup(db
, p
, 0);
4540 p
->pOrderBy
= pOrderBy
;
4542 pSubitem
->pTab
= pItemTab
;
4546 pNew
->selId
= ++pParse
->nSelect
;
4547 if( aCsrMap
&& ALWAYS(db
->mallocFailed
==0) ){
4548 renumberCursors(pParse
, pNew
, iFrom
, aCsrMap
);
4550 pNew
->pPrior
= pPrior
;
4551 if( pPrior
) pPrior
->pNext
= pNew
;
4554 TREETRACE(0x4,pParse
,p
,("compound-subquery flattener"
4555 " creates %u as peer\n",pNew
->selId
));
4557 assert( pSubitem
->pSelect
==0 );
4559 sqlite3DbFree(db
, aCsrMap
);
4560 if( db
->mallocFailed
){
4561 pSubitem
->pSelect
= pSub1
;
4565 /* Defer deleting the Table object associated with the
4566 ** subquery until code generation is
4567 ** complete, since there may still exist Expr.pTab entries that
4568 ** refer to the subquery even after flattening. Ticket #3346.
4570 ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
4572 if( ALWAYS(pSubitem
->pTab
!=0) ){
4573 Table
*pTabToDel
= pSubitem
->pTab
;
4574 if( pTabToDel
->nTabRef
==1 ){
4575 Parse
*pToplevel
= sqlite3ParseToplevel(pParse
);
4576 sqlite3ParserAddCleanup(pToplevel
,
4577 (void(*)(sqlite3
*,void*))sqlite3DeleteTable
,
4579 testcase( pToplevel
->earlyCleanup
);
4581 pTabToDel
->nTabRef
--;
4586 /* The following loop runs once for each term in a compound-subquery
4587 ** flattening (as described above). If we are doing a different kind
4588 ** of flattening - a flattening other than a compound-subquery flattening -
4589 ** then this loop only runs once.
4591 ** This loop moves all of the FROM elements of the subquery into the
4592 ** the FROM clause of the outer query. Before doing this, remember
4593 ** the cursor number for the original outer query FROM element in
4594 ** iParent. The iParent cursor will never be used. Subsequent code
4595 ** will scan expressions looking for iParent references and replace
4596 ** those references with expressions that resolve to the subquery FROM
4597 ** elements we are now copying in.
4600 for(pParent
=p
; pParent
; pParent
=pParent
->pPrior
, pSub
=pSub
->pPrior
){
4603 u8 ltorj
= pSrc
->a
[iFrom
].fg
.jointype
& JT_LTORJ
;
4605 pSubSrc
= pSub
->pSrc
; /* FROM clause of subquery */
4606 nSubSrc
= pSubSrc
->nSrc
; /* Number of terms in subquery FROM clause */
4607 pSrc
= pParent
->pSrc
; /* FROM clause of the outer query */
4610 jointype
= pSubitem
->fg
.jointype
; /* First time through the loop */
4613 /* The subquery uses a single slot of the FROM clause of the outer
4614 ** query. If the subquery has more than one element in its FROM clause,
4615 ** then expand the outer query to make space for it to hold all elements
4620 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
4622 ** The outer query has 3 slots in its FROM clause. One slot of the
4623 ** outer query (the middle slot) is used by the subquery. The next
4624 ** block of code will expand the outer query FROM clause to 4 slots.
4625 ** The middle slot is expanded to two slots in order to make space
4626 ** for the two elements in the FROM clause of the subquery.
4629 pSrc
= sqlite3SrcListEnlarge(pParse
, pSrc
, nSubSrc
-1,iFrom
+1);
4630 if( pSrc
==0 ) break;
4631 pParent
->pSrc
= pSrc
;
4634 /* Transfer the FROM clause terms from the subquery into the
4637 for(i
=0; i
<nSubSrc
; i
++){
4638 SrcItem
*pItem
= &pSrc
->a
[i
+iFrom
];
4639 if( pItem
->fg
.isUsing
) sqlite3IdListDelete(db
, pItem
->u3
.pUsing
);
4640 assert( pItem
->fg
.isTabFunc
==0 );
4641 *pItem
= pSubSrc
->a
[i
];
4642 pItem
->fg
.jointype
|= ltorj
;
4643 iNewParent
= pSubSrc
->a
[i
].iCursor
;
4644 memset(&pSubSrc
->a
[i
], 0, sizeof(pSubSrc
->a
[i
]));
4646 pSrc
->a
[iFrom
].fg
.jointype
&= JT_LTORJ
;
4647 pSrc
->a
[iFrom
].fg
.jointype
|= jointype
| ltorj
;
4649 /* Now begin substituting subquery result set expressions for
4650 ** references to the iParent in the outer query.
4654 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
4655 ** \ \_____________ subquery __________/ /
4656 ** \_____________________ outer query ______________________________/
4658 ** We look at every expression in the outer query and every place we see
4659 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
4661 if( pSub
->pOrderBy
&& (pParent
->selFlags
& SF_NoopOrderBy
)==0 ){
4662 /* At this point, any non-zero iOrderByCol values indicate that the
4663 ** ORDER BY column expression is identical to the iOrderByCol'th
4664 ** expression returned by SELECT statement pSub. Since these values
4665 ** do not necessarily correspond to columns in SELECT statement pParent,
4666 ** zero them before transfering the ORDER BY clause.
4668 ** Not doing this may cause an error if a subsequent call to this
4669 ** function attempts to flatten a compound sub-query into pParent
4670 ** (the only way this can happen is if the compound sub-query is
4671 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */
4672 ExprList
*pOrderBy
= pSub
->pOrderBy
;
4673 for(i
=0; i
<pOrderBy
->nExpr
; i
++){
4674 pOrderBy
->a
[i
].u
.x
.iOrderByCol
= 0;
4676 assert( pParent
->pOrderBy
==0 );
4677 pParent
->pOrderBy
= pOrderBy
;
4680 pWhere
= pSub
->pWhere
;
4682 if( isOuterJoin
>0 ){
4683 sqlite3SetJoinExpr(pWhere
, iNewParent
, EP_OuterON
);
4686 if( pParent
->pWhere
){
4687 pParent
->pWhere
= sqlite3PExpr(pParse
, TK_AND
, pWhere
, pParent
->pWhere
);
4689 pParent
->pWhere
= pWhere
;
4692 if( db
->mallocFailed
==0 ){
4696 x
.iNewTable
= iNewParent
;
4697 x
.isOuterJoin
= isOuterJoin
;
4698 x
.pEList
= pSub
->pEList
;
4699 x
.pCList
= findLeftmostExprlist(pSub
);
4700 substSelect(&x
, pParent
, 0);
4703 /* The flattened query is a compound if either the inner or the
4704 ** outer query is a compound. */
4705 pParent
->selFlags
|= pSub
->selFlags
& SF_Compound
;
4706 assert( (pSub
->selFlags
& SF_Distinct
)==0 ); /* restriction (17b) */
4709 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
4711 ** One is tempted to try to add a and b to combine the limits. But this
4712 ** does not work if either limit is negative.
4715 pParent
->pLimit
= pSub
->pLimit
;
4719 /* Recompute the SrcItem.colUsed masks for the flattened
4721 for(i
=0; i
<nSubSrc
; i
++){
4722 recomputeColumnsUsed(pParent
, &pSrc
->a
[i
+iFrom
]);
4726 /* Finially, delete what is left of the subquery and return
4729 sqlite3AggInfoPersistWalkerInit(&w
, pParse
);
4730 sqlite3WalkSelect(&w
,pSub1
);
4731 sqlite3SelectDelete(db
, pSub1
);
4733 #if TREETRACE_ENABLED
4734 if( sqlite3TreeTrace
& 0x4 ){
4735 TREETRACE(0x4,pParse
,p
,("After flattening:\n"));
4736 sqlite3TreeViewSelect(0, p
, 0);
4742 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4745 ** A structure to keep track of all of the column values that are fixed to
4746 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE.
4748 typedef struct WhereConst WhereConst
;
4750 Parse
*pParse
; /* Parsing context */
4751 u8
*pOomFault
; /* Pointer to pParse->db->mallocFailed */
4752 int nConst
; /* Number for COLUMN=CONSTANT terms */
4753 int nChng
; /* Number of times a constant is propagated */
4754 int bHasAffBlob
; /* At least one column in apExpr[] as affinity BLOB */
4755 u32 mExcludeOn
; /* Which ON expressions to exclude from considertion.
4756 ** Either EP_OuterON or EP_InnerON|EP_OuterON */
4757 Expr
**apExpr
; /* [i*2] is COLUMN and [i*2+1] is VALUE */
4761 ** Add a new entry to the pConst object. Except, do not add duplicate
4762 ** pColumn entires. Also, do not add if doing so would not be appropriate.
4764 ** The caller guarantees the pColumn is a column and pValue is a constant.
4765 ** This routine has to do some additional checks before completing the
4768 static void constInsert(
4769 WhereConst
*pConst
, /* The WhereConst into which we are inserting */
4770 Expr
*pColumn
, /* The COLUMN part of the constraint */
4771 Expr
*pValue
, /* The VALUE part of the constraint */
4772 Expr
*pExpr
/* Overall expression: COLUMN=VALUE or VALUE=COLUMN */
4775 assert( pColumn
->op
==TK_COLUMN
);
4776 assert( sqlite3ExprIsConstant(pValue
) );
4778 if( ExprHasProperty(pColumn
, EP_FixedCol
) ) return;
4779 if( sqlite3ExprAffinity(pValue
)!=0 ) return;
4780 if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst
->pParse
,pExpr
)) ){
4784 /* 2018-10-25 ticket [cf5ed20f]
4785 ** Make sure the same pColumn is not inserted more than once */
4786 for(i
=0; i
<pConst
->nConst
; i
++){
4787 const Expr
*pE2
= pConst
->apExpr
[i
*2];
4788 assert( pE2
->op
==TK_COLUMN
);
4789 if( pE2
->iTable
==pColumn
->iTable
4790 && pE2
->iColumn
==pColumn
->iColumn
4792 return; /* Already present. Return without doing anything. */
4795 if( sqlite3ExprAffinity(pColumn
)==SQLITE_AFF_BLOB
){
4796 pConst
->bHasAffBlob
= 1;
4800 pConst
->apExpr
= sqlite3DbReallocOrFree(pConst
->pParse
->db
, pConst
->apExpr
,
4801 pConst
->nConst
*2*sizeof(Expr
*));
4802 if( pConst
->apExpr
==0 ){
4805 pConst
->apExpr
[pConst
->nConst
*2-2] = pColumn
;
4806 pConst
->apExpr
[pConst
->nConst
*2-1] = pValue
;
4811 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE
4812 ** is a constant expression and where the term must be true because it
4813 ** is part of the AND-connected terms of the expression. For each term
4814 ** found, add it to the pConst structure.
4816 static void findConstInWhere(WhereConst
*pConst
, Expr
*pExpr
){
4817 Expr
*pRight
, *pLeft
;
4818 if( NEVER(pExpr
==0) ) return;
4819 if( ExprHasProperty(pExpr
, pConst
->mExcludeOn
) ){
4820 testcase( ExprHasProperty(pExpr
, EP_OuterON
) );
4821 testcase( ExprHasProperty(pExpr
, EP_InnerON
) );
4824 if( pExpr
->op
==TK_AND
){
4825 findConstInWhere(pConst
, pExpr
->pRight
);
4826 findConstInWhere(pConst
, pExpr
->pLeft
);
4829 if( pExpr
->op
!=TK_EQ
) return;
4830 pRight
= pExpr
->pRight
;
4831 pLeft
= pExpr
->pLeft
;
4832 assert( pRight
!=0 );
4834 if( pRight
->op
==TK_COLUMN
&& sqlite3ExprIsConstant(pLeft
) ){
4835 constInsert(pConst
,pRight
,pLeft
,pExpr
);
4837 if( pLeft
->op
==TK_COLUMN
&& sqlite3ExprIsConstant(pRight
) ){
4838 constInsert(pConst
,pLeft
,pRight
,pExpr
);
4843 ** This is a helper function for Walker callback propagateConstantExprRewrite().
4845 ** Argument pExpr is a candidate expression to be replaced by a value. If
4846 ** pExpr is equivalent to one of the columns named in pWalker->u.pConst,
4847 ** then overwrite it with the corresponding value. Except, do not do so
4848 ** if argument bIgnoreAffBlob is non-zero and the affinity of pExpr
4849 ** is SQLITE_AFF_BLOB.
4851 static int propagateConstantExprRewriteOne(
4857 if( pConst
->pOomFault
[0] ) return WRC_Prune
;
4858 if( pExpr
->op
!=TK_COLUMN
) return WRC_Continue
;
4859 if( ExprHasProperty(pExpr
, EP_FixedCol
|pConst
->mExcludeOn
) ){
4860 testcase( ExprHasProperty(pExpr
, EP_FixedCol
) );
4861 testcase( ExprHasProperty(pExpr
, EP_OuterON
) );
4862 testcase( ExprHasProperty(pExpr
, EP_InnerON
) );
4863 return WRC_Continue
;
4865 for(i
=0; i
<pConst
->nConst
; i
++){
4866 Expr
*pColumn
= pConst
->apExpr
[i
*2];
4867 if( pColumn
==pExpr
) continue;
4868 if( pColumn
->iTable
!=pExpr
->iTable
) continue;
4869 if( pColumn
->iColumn
!=pExpr
->iColumn
) continue;
4870 if( bIgnoreAffBlob
&& sqlite3ExprAffinity(pColumn
)==SQLITE_AFF_BLOB
){
4873 /* A match is found. Add the EP_FixedCol property */
4875 ExprClearProperty(pExpr
, EP_Leaf
);
4876 ExprSetProperty(pExpr
, EP_FixedCol
);
4877 assert( pExpr
->pLeft
==0 );
4878 pExpr
->pLeft
= sqlite3ExprDup(pConst
->pParse
->db
, pConst
->apExpr
[i
*2+1], 0);
4879 if( pConst
->pParse
->db
->mallocFailed
) return WRC_Prune
;
4886 ** This is a Walker expression callback. pExpr is a node from the WHERE
4887 ** clause of a SELECT statement. This function examines pExpr to see if
4888 ** any substitutions based on the contents of pWalker->u.pConst should
4889 ** be made to pExpr or its immediate children.
4891 ** A substitution is made if:
4893 ** + pExpr is a column with an affinity other than BLOB that matches
4894 ** one of the columns in pWalker->u.pConst, or
4896 ** + pExpr is a binary comparison operator (=, <=, >=, <, >) that
4897 ** uses an affinity other than TEXT and one of its immediate
4898 ** children is a column that matches one of the columns in
4899 ** pWalker->u.pConst.
4901 static int propagateConstantExprRewrite(Walker
*pWalker
, Expr
*pExpr
){
4902 WhereConst
*pConst
= pWalker
->u
.pConst
;
4903 assert( TK_GT
==TK_EQ
+1 );
4904 assert( TK_LE
==TK_EQ
+2 );
4905 assert( TK_LT
==TK_EQ
+3 );
4906 assert( TK_GE
==TK_EQ
+4 );
4907 if( pConst
->bHasAffBlob
){
4908 if( (pExpr
->op
>=TK_EQ
&& pExpr
->op
<=TK_GE
)
4911 propagateConstantExprRewriteOne(pConst
, pExpr
->pLeft
, 0);
4912 if( pConst
->pOomFault
[0] ) return WRC_Prune
;
4913 if( sqlite3ExprAffinity(pExpr
->pLeft
)!=SQLITE_AFF_TEXT
){
4914 propagateConstantExprRewriteOne(pConst
, pExpr
->pRight
, 0);
4918 return propagateConstantExprRewriteOne(pConst
, pExpr
, pConst
->bHasAffBlob
);
4922 ** The WHERE-clause constant propagation optimization.
4924 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or
4925 ** CONSTANT=COLUMN that are top-level AND-connected terms that are not
4926 ** part of a ON clause from a LEFT JOIN, then throughout the query
4927 ** replace all other occurrences of COLUMN with CONSTANT.
4929 ** For example, the query:
4931 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b
4933 ** Is transformed into
4935 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39
4937 ** Return true if any transformations where made and false if not.
4939 ** Implementation note: Constant propagation is tricky due to affinity
4940 ** and collating sequence interactions. Consider this example:
4942 ** CREATE TABLE t1(a INT,b TEXT);
4943 ** INSERT INTO t1 VALUES(123,'0123');
4944 ** SELECT * FROM t1 WHERE a=123 AND b=a;
4945 ** SELECT * FROM t1 WHERE a=123 AND b=123;
4947 ** The two SELECT statements above should return different answers. b=a
4948 ** is alway true because the comparison uses numeric affinity, but b=123
4949 ** is false because it uses text affinity and '0123' is not the same as '123'.
4950 ** To work around this, the expression tree is not actually changed from
4951 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol
4952 ** and the "123" value is hung off of the pLeft pointer. Code generator
4953 ** routines know to generate the constant "123" instead of looking up the
4954 ** column value. Also, to avoid collation problems, this optimization is
4955 ** only attempted if the "a=123" term uses the default BINARY collation.
4957 ** 2021-05-25 forum post 6a06202608: Another troublesome case is...
4959 ** CREATE TABLE t1(x);
4960 ** INSERT INTO t1 VALUES(10.0);
4961 ** SELECT 1 FROM t1 WHERE x=10 AND x LIKE 10;
4963 ** The query should return no rows, because the t1.x value is '10.0' not '10'
4964 ** and '10.0' is not LIKE '10'. But if we are not careful, the first WHERE
4965 ** term "x=10" will cause the second WHERE term to become "10 LIKE 10",
4966 ** resulting in a false positive. To avoid this, constant propagation for
4967 ** columns with BLOB affinity is only allowed if the constant is used with
4968 ** operators ==, <=, <, >=, >, or IS in a way that will cause the correct
4969 ** type conversions to occur. See logic associated with the bHasAffBlob flag
4972 static int propagateConstants(
4973 Parse
*pParse
, /* The parsing context */
4974 Select
*p
/* The query in which to propagate constants */
4980 x
.pOomFault
= &pParse
->db
->mallocFailed
;
4986 if( ALWAYS(p
->pSrc
!=0)
4988 && (p
->pSrc
->a
[0].fg
.jointype
& JT_LTORJ
)!=0
4990 /* Do not propagate constants on any ON clause if there is a
4991 ** RIGHT JOIN anywhere in the query */
4992 x
.mExcludeOn
= EP_InnerON
| EP_OuterON
;
4994 /* Do not propagate constants through the ON clause of a LEFT JOIN */
4995 x
.mExcludeOn
= EP_OuterON
;
4997 findConstInWhere(&x
, p
->pWhere
);
4999 memset(&w
, 0, sizeof(w
));
5001 w
.xExprCallback
= propagateConstantExprRewrite
;
5002 w
.xSelectCallback
= sqlite3SelectWalkNoop
;
5003 w
.xSelectCallback2
= 0;
5006 sqlite3WalkExpr(&w
, p
->pWhere
);
5007 sqlite3DbFree(x
.pParse
->db
, x
.apExpr
);
5014 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5015 # if !defined(SQLITE_OMIT_WINDOWFUNC)
5017 ** This function is called to determine whether or not it is safe to
5018 ** push WHERE clause expression pExpr down to FROM clause sub-query
5019 ** pSubq, which contains at least one window function. Return 1
5020 ** if it is safe and the expression should be pushed down, or 0
5023 ** It is only safe to push the expression down if it consists only
5024 ** of constants and copies of expressions that appear in the PARTITION
5025 ** BY clause of all window function used by the sub-query. It is safe
5026 ** to filter out entire partitions, but not rows within partitions, as
5027 ** this may change the results of the window functions.
5029 ** At the time this function is called it is guaranteed that
5031 ** * the sub-query uses only one distinct window frame, and
5032 ** * that the window frame has a PARTITION BY clase.
5034 static int pushDownWindowCheck(Parse
*pParse
, Select
*pSubq
, Expr
*pExpr
){
5035 assert( pSubq
->pWin
->pPartition
);
5036 assert( (pSubq
->selFlags
& SF_MultiPart
)==0 );
5037 assert( pSubq
->pPrior
==0 );
5038 return sqlite3ExprIsConstantOrGroupBy(pParse
, pExpr
, pSubq
->pWin
->pPartition
);
5040 # endif /* SQLITE_OMIT_WINDOWFUNC */
5041 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
5043 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5045 ** Make copies of relevant WHERE clause terms of the outer query into
5046 ** the WHERE clause of subquery. Example:
5048 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
5050 ** Transformed into:
5052 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
5053 ** WHERE x=5 AND y=10;
5055 ** The hope is that the terms added to the inner query will make it more
5058 ** Do not attempt this optimization if:
5060 ** (1) (** This restriction was removed on 2017-09-29. We used to
5061 ** disallow this optimization for aggregate subqueries, but now
5062 ** it is allowed by putting the extra terms on the HAVING clause.
5063 ** The added HAVING clause is pointless if the subquery lacks
5064 ** a GROUP BY clause. But such a HAVING clause is also harmless
5065 ** so there does not appear to be any reason to add extra logic
5066 ** to suppress it. **)
5068 ** (2) The inner query is the recursive part of a common table expression.
5070 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE
5071 ** clause would change the meaning of the LIMIT).
5073 ** (4) The inner query is the right operand of a LEFT JOIN and the
5074 ** expression to be pushed down does not come from the ON clause
5075 ** on that LEFT JOIN.
5077 ** (5) The WHERE clause expression originates in the ON or USING clause
5078 ** of a LEFT JOIN where iCursor is not the right-hand table of that
5079 ** left join. An example:
5082 ** FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa
5083 ** JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2)
5084 ** LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2);
5086 ** The correct answer is three rows: (1,1,NULL),(2,2,8),(2,2,9).
5087 ** But if the (b2=2) term were to be pushed down into the bb subquery,
5088 ** then the (1,1,NULL) row would be suppressed.
5090 ** (6) Window functions make things tricky as changes to the WHERE clause
5091 ** of the inner query could change the window over which window
5092 ** functions are calculated. Therefore, do not attempt the optimization
5095 ** (6a) The inner query uses multiple incompatible window partitions.
5097 ** (6b) The inner query is a compound and uses window-functions.
5099 ** (6c) The WHERE clause does not consist entirely of constants and
5100 ** copies of expressions found in the PARTITION BY clause of
5101 ** all window-functions used by the sub-query. It is safe to
5102 ** filter out entire partitions, as this does not change the
5103 ** window over which any window-function is calculated.
5105 ** (7) The inner query is a Common Table Expression (CTE) that should
5106 ** be materialized. (This restriction is implemented in the calling
5109 ** (8) If the subquery is a compound that uses UNION, INTERSECT,
5110 ** or EXCEPT, then all of the result set columns for all arms of
5111 ** the compound must use the BINARY collating sequence.
5113 ** (9) If the subquery is a compound, then all arms of the compound must
5114 ** have the same affinity. (This is the same as restriction (17h)
5115 ** for query flattening.)
5118 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
5119 ** terms are duplicated into the subquery.
5121 static int pushDownWhereTerms(
5122 Parse
*pParse
, /* Parse context (for malloc() and error reporting) */
5123 Select
*pSubq
, /* The subquery whose WHERE clause is to be augmented */
5124 Expr
*pWhere
, /* The WHERE clause of the outer query */
5125 SrcItem
*pSrc
/* The subquery term of the outer FROM clause */
5129 if( pWhere
==0 ) return 0;
5130 if( pSubq
->selFlags
& (SF_Recursive
|SF_MultiPart
) ) return 0;
5131 if( pSrc
->fg
.jointype
& (JT_LTORJ
|JT_RIGHT
) ) return 0;
5133 if( pSubq
->pPrior
){
5135 int notUnionAll
= 0;
5136 for(pSel
=pSubq
; pSel
; pSel
=pSel
->pPrior
){
5138 assert( op
==TK_ALL
|| op
==TK_SELECT
5139 || op
==TK_UNION
|| op
==TK_INTERSECT
|| op
==TK_EXCEPT
);
5140 if( op
!=TK_ALL
&& op
!=TK_SELECT
){
5143 #ifndef SQLITE_OMIT_WINDOWFUNC
5144 if( pSel
->pWin
) return 0; /* restriction (6b) */
5147 if( compoundHasDifferentAffinities(pSubq
) ){
5148 return 0; /* restriction (9) */
5151 /* If any of the compound arms are connected using UNION, INTERSECT,
5152 ** or EXCEPT, then we must ensure that none of the columns use a
5153 ** non-BINARY collating sequence. */
5154 for(pSel
=pSubq
; pSel
; pSel
=pSel
->pPrior
){
5156 const ExprList
*pList
= pSel
->pEList
;
5158 for(ii
=0; ii
<pList
->nExpr
; ii
++){
5159 CollSeq
*pColl
= sqlite3ExprCollSeq(pParse
, pList
->a
[ii
].pExpr
);
5160 if( !sqlite3IsBinary(pColl
) ){
5161 return 0; /* Restriction (8) */
5167 #ifndef SQLITE_OMIT_WINDOWFUNC
5168 if( pSubq
->pWin
&& pSubq
->pWin
->pPartition
==0 ) return 0;
5173 /* Only the first term of a compound can have a WITH clause. But make
5174 ** sure no other terms are marked SF_Recursive in case something changes
5179 for(pX
=pSubq
; pX
; pX
=pX
->pPrior
){
5180 assert( (pX
->selFlags
& (SF_Recursive
))==0 );
5185 if( pSubq
->pLimit
!=0 ){
5186 return 0; /* restriction (3) */
5188 while( pWhere
->op
==TK_AND
){
5189 nChng
+= pushDownWhereTerms(pParse
, pSubq
, pWhere
->pRight
, pSrc
);
5190 pWhere
= pWhere
->pLeft
;
5193 #if 0 /* Legacy code. Checks now done by sqlite3ExprIsTableConstraint() */
5195 && (ExprHasProperty(pWhere
,EP_OuterON
)==0
5196 || pWhere
->w
.iJoin
!=iCursor
)
5198 return 0; /* restriction (4) */
5200 if( ExprHasProperty(pWhere
,EP_OuterON
)
5201 && pWhere
->w
.iJoin
!=iCursor
5203 return 0; /* restriction (5) */
5207 if( sqlite3ExprIsTableConstraint(pWhere
, pSrc
) ){
5209 pSubq
->selFlags
|= SF_PushDown
;
5212 pNew
= sqlite3ExprDup(pParse
->db
, pWhere
, 0);
5213 unsetJoinExpr(pNew
, -1, 1);
5215 x
.iTable
= pSrc
->iCursor
;
5216 x
.iNewTable
= pSrc
->iCursor
;
5218 x
.pEList
= pSubq
->pEList
;
5219 x
.pCList
= findLeftmostExprlist(pSubq
);
5220 pNew
= substExpr(&x
, pNew
);
5221 #ifndef SQLITE_OMIT_WINDOWFUNC
5222 if( pSubq
->pWin
&& 0==pushDownWindowCheck(pParse
, pSubq
, pNew
) ){
5223 /* Restriction 6c has prevented push-down in this case */
5224 sqlite3ExprDelete(pParse
->db
, pNew
);
5229 if( pSubq
->selFlags
& SF_Aggregate
){
5230 pSubq
->pHaving
= sqlite3ExprAnd(pParse
, pSubq
->pHaving
, pNew
);
5232 pSubq
->pWhere
= sqlite3ExprAnd(pParse
, pSubq
->pWhere
, pNew
);
5234 pSubq
= pSubq
->pPrior
;
5239 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
5242 ** The pFunc is the only aggregate function in the query. Check to see
5243 ** if the query is a candidate for the min/max optimization.
5245 ** If the query is a candidate for the min/max optimization, then set
5246 ** *ppMinMax to be an ORDER BY clause to be used for the optimization
5247 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on
5248 ** whether pFunc is a min() or max() function.
5250 ** If the query is not a candidate for the min/max optimization, return
5251 ** WHERE_ORDERBY_NORMAL (which must be zero).
5253 ** This routine must be called after aggregate functions have been
5254 ** located but before their arguments have been subjected to aggregate
5257 static u8
minMaxQuery(sqlite3
*db
, Expr
*pFunc
, ExprList
**ppMinMax
){
5258 int eRet
= WHERE_ORDERBY_NORMAL
; /* Return value */
5259 ExprList
*pEList
; /* Arguments to agg function */
5260 const char *zFunc
; /* Name of aggregate function pFunc */
5264 assert( *ppMinMax
==0 );
5265 assert( pFunc
->op
==TK_AGG_FUNCTION
);
5266 assert( !IsWindowFunc(pFunc
) );
5267 assert( ExprUseXList(pFunc
) );
5268 pEList
= pFunc
->x
.pList
;
5271 || ExprHasProperty(pFunc
, EP_WinFunc
)
5272 || OptimizationDisabled(db
, SQLITE_MinMaxOpt
)
5276 assert( !ExprHasProperty(pFunc
, EP_IntValue
) );
5277 zFunc
= pFunc
->u
.zToken
;
5278 if( sqlite3StrICmp(zFunc
, "min")==0 ){
5279 eRet
= WHERE_ORDERBY_MIN
;
5280 if( sqlite3ExprCanBeNull(pEList
->a
[0].pExpr
) ){
5281 sortFlags
= KEYINFO_ORDER_BIGNULL
;
5283 }else if( sqlite3StrICmp(zFunc
, "max")==0 ){
5284 eRet
= WHERE_ORDERBY_MAX
;
5285 sortFlags
= KEYINFO_ORDER_DESC
;
5289 *ppMinMax
= pOrderBy
= sqlite3ExprListDup(db
, pEList
, 0);
5290 assert( pOrderBy
!=0 || db
->mallocFailed
);
5291 if( pOrderBy
) pOrderBy
->a
[0].fg
.sortFlags
= sortFlags
;
5296 ** The select statement passed as the first argument is an aggregate query.
5297 ** The second argument is the associated aggregate-info object. This
5298 ** function tests if the SELECT is of the form:
5300 ** SELECT count(*) FROM <tbl>
5302 ** where table is a database table, not a sub-select or view. If the query
5303 ** does match this pattern, then a pointer to the Table object representing
5304 ** <tbl> is returned. Otherwise, NULL is returned.
5306 ** This routine checks to see if it is safe to use the count optimization.
5307 ** A correct answer is still obtained (though perhaps more slowly) if
5308 ** this routine returns NULL when it could have returned a table pointer.
5309 ** But returning the pointer when NULL should have been returned can
5310 ** result in incorrect answers and/or crashes. So, when in doubt, return NULL.
5312 static Table
*isSimpleCount(Select
*p
, AggInfo
*pAggInfo
){
5316 assert( !p
->pGroupBy
);
5319 || p
->pEList
->nExpr
!=1
5321 || p
->pSrc
->a
[0].pSelect
5322 || pAggInfo
->nFunc
!=1
5327 pTab
= p
->pSrc
->a
[0].pTab
;
5329 assert( !IsView(pTab
) );
5330 if( !IsOrdinaryTable(pTab
) ) return 0;
5331 pExpr
= p
->pEList
->a
[0].pExpr
;
5333 if( pExpr
->op
!=TK_AGG_FUNCTION
) return 0;
5334 if( pExpr
->pAggInfo
!=pAggInfo
) return 0;
5335 if( (pAggInfo
->aFunc
[0].pFunc
->funcFlags
&SQLITE_FUNC_COUNT
)==0 ) return 0;
5336 assert( pAggInfo
->aFunc
[0].pFExpr
==pExpr
);
5337 testcase( ExprHasProperty(pExpr
, EP_Distinct
) );
5338 testcase( ExprHasProperty(pExpr
, EP_WinFunc
) );
5339 if( ExprHasProperty(pExpr
, EP_Distinct
|EP_WinFunc
) ) return 0;
5345 ** If the source-list item passed as an argument was augmented with an
5346 ** INDEXED BY clause, then try to locate the specified index. If there
5347 ** was such a clause and the named index cannot be found, return
5348 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
5349 ** pFrom->pIndex and return SQLITE_OK.
5351 int sqlite3IndexedByLookup(Parse
*pParse
, SrcItem
*pFrom
){
5352 Table
*pTab
= pFrom
->pTab
;
5353 char *zIndexedBy
= pFrom
->u1
.zIndexedBy
;
5356 assert( pFrom
->fg
.isIndexedBy
!=0 );
5358 for(pIdx
=pTab
->pIndex
;
5359 pIdx
&& sqlite3StrICmp(pIdx
->zName
, zIndexedBy
);
5363 sqlite3ErrorMsg(pParse
, "no such index: %s", zIndexedBy
, 0);
5364 pParse
->checkSchema
= 1;
5365 return SQLITE_ERROR
;
5367 assert( pFrom
->fg
.isCte
==0 );
5368 pFrom
->u2
.pIBIndex
= pIdx
;
5373 ** Detect compound SELECT statements that use an ORDER BY clause with
5374 ** an alternative collating sequence.
5376 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
5378 ** These are rewritten as a subquery:
5380 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
5381 ** ORDER BY ... COLLATE ...
5383 ** This transformation is necessary because the multiSelectOrderBy() routine
5384 ** above that generates the code for a compound SELECT with an ORDER BY clause
5385 ** uses a merge algorithm that requires the same collating sequence on the
5386 ** result columns as on the ORDER BY clause. See ticket
5387 ** http://www.sqlite.org/src/info/6709574d2a
5389 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
5390 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
5391 ** there are COLLATE terms in the ORDER BY.
5393 static int convertCompoundSelectToSubquery(Walker
*pWalker
, Select
*p
){
5398 struct ExprList_item
*a
;
5403 if( p
->pPrior
==0 ) return WRC_Continue
;
5404 if( p
->pOrderBy
==0 ) return WRC_Continue
;
5405 for(pX
=p
; pX
&& (pX
->op
==TK_ALL
|| pX
->op
==TK_SELECT
); pX
=pX
->pPrior
){}
5406 if( pX
==0 ) return WRC_Continue
;
5408 #ifndef SQLITE_OMIT_WINDOWFUNC
5409 /* If iOrderByCol is already non-zero, then it has already been matched
5410 ** to a result column of the SELECT statement. This occurs when the
5411 ** SELECT is rewritten for window-functions processing and then passed
5412 ** to sqlite3SelectPrep() and similar a second time. The rewriting done
5413 ** by this function is not required in this case. */
5414 if( a
[0].u
.x
.iOrderByCol
) return WRC_Continue
;
5416 for(i
=p
->pOrderBy
->nExpr
-1; i
>=0; i
--){
5417 if( a
[i
].pExpr
->flags
& EP_Collate
) break;
5419 if( i
<0 ) return WRC_Continue
;
5421 /* If we reach this point, that means the transformation is required. */
5423 pParse
= pWalker
->pParse
;
5425 pNew
= sqlite3DbMallocZero(db
, sizeof(*pNew
) );
5426 if( pNew
==0 ) return WRC_Abort
;
5427 memset(&dummy
, 0, sizeof(dummy
));
5428 pNewSrc
= sqlite3SrcListAppendFromTerm(pParse
,0,0,0,&dummy
,pNew
,0);
5429 if( pNewSrc
==0 ) return WRC_Abort
;
5432 p
->pEList
= sqlite3ExprListAppend(pParse
, 0, sqlite3Expr(db
, TK_ASTERISK
, 0));
5441 #ifndef SQLITE_OMIT_WINDOWFUNC
5444 p
->selFlags
&= ~SF_Compound
;
5445 assert( (p
->selFlags
& SF_Converted
)==0 );
5446 p
->selFlags
|= SF_Converted
;
5447 assert( pNew
->pPrior
!=0 );
5448 pNew
->pPrior
->pNext
= pNew
;
5450 return WRC_Continue
;
5454 ** Check to see if the FROM clause term pFrom has table-valued function
5455 ** arguments. If it does, leave an error message in pParse and return
5456 ** non-zero, since pFrom is not allowed to be a table-valued function.
5458 static int cannotBeFunction(Parse
*pParse
, SrcItem
*pFrom
){
5459 if( pFrom
->fg
.isTabFunc
){
5460 sqlite3ErrorMsg(pParse
, "'%s' is not a function", pFrom
->zName
);
5466 #ifndef SQLITE_OMIT_CTE
5468 ** Argument pWith (which may be NULL) points to a linked list of nested
5469 ** WITH contexts, from inner to outermost. If the table identified by
5470 ** FROM clause element pItem is really a common-table-expression (CTE)
5471 ** then return a pointer to the CTE definition for that table. Otherwise
5474 ** If a non-NULL value is returned, set *ppContext to point to the With
5475 ** object that the returned CTE belongs to.
5477 static struct Cte
*searchWith(
5478 With
*pWith
, /* Current innermost WITH clause */
5479 SrcItem
*pItem
, /* FROM clause element to resolve */
5480 With
**ppContext
/* OUT: WITH clause return value belongs to */
5482 const char *zName
= pItem
->zName
;
5484 assert( pItem
->zDatabase
==0 );
5486 for(p
=pWith
; p
; p
=p
->pOuter
){
5488 for(i
=0; i
<p
->nCte
; i
++){
5489 if( sqlite3StrICmp(zName
, p
->a
[i
].zName
)==0 ){
5494 if( p
->bView
) break;
5499 /* The code generator maintains a stack of active WITH clauses
5500 ** with the inner-most WITH clause being at the top of the stack.
5502 ** This routine pushes the WITH clause passed as the second argument
5503 ** onto the top of the stack. If argument bFree is true, then this
5504 ** WITH clause will never be popped from the stack but should instead
5505 ** be freed along with the Parse object. In other cases, when
5506 ** bFree==0, the With object will be freed along with the SELECT
5507 ** statement with which it is associated.
5509 ** This routine returns a copy of pWith. Or, if bFree is true and
5510 ** the pWith object is destroyed immediately due to an OOM condition,
5511 ** then this routine return NULL.
5513 ** If bFree is true, do not continue to use the pWith pointer after
5514 ** calling this routine, Instead, use only the return value.
5516 With
*sqlite3WithPush(Parse
*pParse
, With
*pWith
, u8 bFree
){
5519 pWith
= (With
*)sqlite3ParserAddCleanup(pParse
,
5520 (void(*)(sqlite3
*,void*))sqlite3WithDelete
,
5522 if( pWith
==0 ) return 0;
5524 if( pParse
->nErr
==0 ){
5525 assert( pParse
->pWith
!=pWith
);
5526 pWith
->pOuter
= pParse
->pWith
;
5527 pParse
->pWith
= pWith
;
5534 ** This function checks if argument pFrom refers to a CTE declared by
5535 ** a WITH clause on the stack currently maintained by the parser (on the
5536 ** pParse->pWith linked list). And if currently processing a CTE
5537 ** CTE expression, through routine checks to see if the reference is
5538 ** a recursive reference to the CTE.
5540 ** If pFrom matches a CTE according to either of these two above, pFrom->pTab
5541 ** and other fields are populated accordingly.
5543 ** Return 0 if no match is found.
5544 ** Return 1 if a match is found.
5545 ** Return 2 if an error condition is detected.
5547 static int resolveFromTermToCte(
5548 Parse
*pParse
, /* The parsing context */
5549 Walker
*pWalker
, /* Current tree walker */
5550 SrcItem
*pFrom
/* The FROM clause term to check */
5552 Cte
*pCte
; /* Matched CTE (or NULL if no match) */
5553 With
*pWith
; /* The matching WITH */
5555 assert( pFrom
->pTab
==0 );
5556 if( pParse
->pWith
==0 ){
5557 /* There are no WITH clauses in the stack. No match is possible */
5561 /* Prior errors might have left pParse->pWith in a goofy state, so
5562 ** go no further. */
5565 if( pFrom
->zDatabase
!=0 ){
5566 /* The FROM term contains a schema qualifier (ex: main.t1) and so
5567 ** it cannot possibly be a CTE reference. */
5570 if( pFrom
->fg
.notCte
){
5571 /* The FROM term is specifically excluded from matching a CTE.
5572 ** (1) It is part of a trigger that used to have zDatabase but had
5573 ** zDatabase removed by sqlite3FixTriggerStep().
5574 ** (2) This is the first term in the FROM clause of an UPDATE.
5578 pCte
= searchWith(pParse
->pWith
, pFrom
, &pWith
);
5580 sqlite3
*db
= pParse
->db
;
5584 Select
*pLeft
; /* Left-most SELECT statement */
5585 Select
*pRecTerm
; /* Left-most recursive term */
5586 int bMayRecursive
; /* True if compound joined by UNION [ALL] */
5587 With
*pSavedWith
; /* Initial value of pParse->pWith */
5588 int iRecTab
= -1; /* Cursor for recursive table */
5591 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
5592 ** recursive reference to CTE pCte. Leave an error in pParse and return
5593 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
5594 ** In this case, proceed. */
5595 if( pCte
->zCteErr
){
5596 sqlite3ErrorMsg(pParse
, pCte
->zCteErr
, pCte
->zName
);
5599 if( cannotBeFunction(pParse
, pFrom
) ) return 2;
5601 assert( pFrom
->pTab
==0 );
5602 pTab
= sqlite3DbMallocZero(db
, sizeof(Table
));
5603 if( pTab
==0 ) return 2;
5604 pCteUse
= pCte
->pUse
;
5606 pCte
->pUse
= pCteUse
= sqlite3DbMallocZero(db
, sizeof(pCteUse
[0]));
5608 || sqlite3ParserAddCleanup(pParse
,sqlite3DbFree
,pCteUse
)==0
5610 sqlite3DbFree(db
, pTab
);
5613 pCteUse
->eM10d
= pCte
->eM10d
;
5617 pTab
->zName
= sqlite3DbStrDup(db
, pCte
->zName
);
5619 pTab
->nRowLogEst
= 200; assert( 200==sqlite3LogEst(1048576) );
5620 pTab
->tabFlags
|= TF_Ephemeral
| TF_NoVisibleRowid
;
5621 pFrom
->pSelect
= sqlite3SelectDup(db
, pCte
->pSelect
, 0);
5622 if( db
->mallocFailed
) return 2;
5623 pFrom
->pSelect
->selFlags
|= SF_CopyCte
;
5624 assert( pFrom
->pSelect
);
5625 if( pFrom
->fg
.isIndexedBy
){
5626 sqlite3ErrorMsg(pParse
, "no such index: \"%s\"", pFrom
->u1
.zIndexedBy
);
5629 pFrom
->fg
.isCte
= 1;
5630 pFrom
->u2
.pCteUse
= pCteUse
;
5633 /* Check if this is a recursive CTE. */
5634 pRecTerm
= pSel
= pFrom
->pSelect
;
5635 bMayRecursive
= ( pSel
->op
==TK_ALL
|| pSel
->op
==TK_UNION
);
5636 while( bMayRecursive
&& pRecTerm
->op
==pSel
->op
){
5638 SrcList
*pSrc
= pRecTerm
->pSrc
;
5639 assert( pRecTerm
->pPrior
!=0 );
5640 for(i
=0; i
<pSrc
->nSrc
; i
++){
5641 SrcItem
*pItem
= &pSrc
->a
[i
];
5642 if( pItem
->zDatabase
==0
5644 && 0==sqlite3StrICmp(pItem
->zName
, pCte
->zName
)
5648 pItem
->fg
.isRecursive
= 1;
5649 if( pRecTerm
->selFlags
& SF_Recursive
){
5650 sqlite3ErrorMsg(pParse
,
5651 "multiple references to recursive table: %s", pCte
->zName
5655 pRecTerm
->selFlags
|= SF_Recursive
;
5656 if( iRecTab
<0 ) iRecTab
= pParse
->nTab
++;
5657 pItem
->iCursor
= iRecTab
;
5660 if( (pRecTerm
->selFlags
& SF_Recursive
)==0 ) break;
5661 pRecTerm
= pRecTerm
->pPrior
;
5664 pCte
->zCteErr
= "circular reference: %s";
5665 pSavedWith
= pParse
->pWith
;
5666 pParse
->pWith
= pWith
;
5667 if( pSel
->selFlags
& SF_Recursive
){
5669 assert( pRecTerm
!=0 );
5670 assert( (pRecTerm
->selFlags
& SF_Recursive
)==0 );
5671 assert( pRecTerm
->pNext
!=0 );
5672 assert( (pRecTerm
->pNext
->selFlags
& SF_Recursive
)!=0 );
5673 assert( pRecTerm
->pWith
==0 );
5674 pRecTerm
->pWith
= pSel
->pWith
;
5675 rc
= sqlite3WalkSelect(pWalker
, pRecTerm
);
5676 pRecTerm
->pWith
= 0;
5678 pParse
->pWith
= pSavedWith
;
5682 if( sqlite3WalkSelect(pWalker
, pSel
) ){
5683 pParse
->pWith
= pSavedWith
;
5687 pParse
->pWith
= pWith
;
5689 for(pLeft
=pSel
; pLeft
->pPrior
; pLeft
=pLeft
->pPrior
);
5690 pEList
= pLeft
->pEList
;
5692 if( pEList
&& pEList
->nExpr
!=pCte
->pCols
->nExpr
){
5693 sqlite3ErrorMsg(pParse
, "table %s has %d values for %d columns",
5694 pCte
->zName
, pEList
->nExpr
, pCte
->pCols
->nExpr
5696 pParse
->pWith
= pSavedWith
;
5699 pEList
= pCte
->pCols
;
5702 sqlite3ColumnsFromExprList(pParse
, pEList
, &pTab
->nCol
, &pTab
->aCol
);
5703 if( bMayRecursive
){
5704 if( pSel
->selFlags
& SF_Recursive
){
5705 pCte
->zCteErr
= "multiple recursive references: %s";
5707 pCte
->zCteErr
= "recursive reference in a subquery: %s";
5709 sqlite3WalkSelect(pWalker
, pSel
);
5712 pParse
->pWith
= pSavedWith
;
5713 return 1; /* Success */
5715 return 0; /* No match */
5719 #ifndef SQLITE_OMIT_CTE
5721 ** If the SELECT passed as the second argument has an associated WITH
5722 ** clause, pop it from the stack stored as part of the Parse object.
5724 ** This function is used as the xSelectCallback2() callback by
5725 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
5726 ** names and other FROM clause elements.
5728 void sqlite3SelectPopWith(Walker
*pWalker
, Select
*p
){
5729 Parse
*pParse
= pWalker
->pParse
;
5730 if( OK_IF_ALWAYS_TRUE(pParse
->pWith
) && p
->pPrior
==0 ){
5731 With
*pWith
= findRightmost(p
)->pWith
;
5733 assert( pParse
->pWith
==pWith
|| pParse
->nErr
);
5734 pParse
->pWith
= pWith
->pOuter
;
5741 ** The SrcItem structure passed as the second argument represents a
5742 ** sub-query in the FROM clause of a SELECT statement. This function
5743 ** allocates and populates the SrcItem.pTab object. If successful,
5744 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered,
5747 int sqlite3ExpandSubquery(Parse
*pParse
, SrcItem
*pFrom
){
5748 Select
*pSel
= pFrom
->pSelect
;
5752 pFrom
->pTab
= pTab
= sqlite3DbMallocZero(pParse
->db
, sizeof(Table
));
5753 if( pTab
==0 ) return SQLITE_NOMEM
;
5755 if( pFrom
->zAlias
){
5756 pTab
->zName
= sqlite3DbStrDup(pParse
->db
, pFrom
->zAlias
);
5758 pTab
->zName
= sqlite3MPrintf(pParse
->db
, "%!S", pFrom
);
5760 while( pSel
->pPrior
){ pSel
= pSel
->pPrior
; }
5761 sqlite3ColumnsFromExprList(pParse
, pSel
->pEList
,&pTab
->nCol
,&pTab
->aCol
);
5763 pTab
->nRowLogEst
= 200; assert( 200==sqlite3LogEst(1048576) );
5764 #ifndef SQLITE_ALLOW_ROWID_IN_VIEW
5765 /* The usual case - do not allow ROWID on a subquery */
5766 pTab
->tabFlags
|= TF_Ephemeral
| TF_NoVisibleRowid
;
5768 pTab
->tabFlags
|= TF_Ephemeral
; /* Legacy compatibility mode */
5770 return pParse
->nErr
? SQLITE_ERROR
: SQLITE_OK
;
5775 ** Check the N SrcItem objects to the right of pBase. (N might be zero!)
5776 ** If any of those SrcItem objects have a USING clause containing zName
5777 ** then return true.
5779 ** If N is zero, or none of the N SrcItem objects to the right of pBase
5780 ** contains a USING clause, or if none of the USING clauses contain zName,
5781 ** then return false.
5783 static int inAnyUsingClause(
5784 const char *zName
, /* Name we are looking for */
5785 SrcItem
*pBase
, /* The base SrcItem. Looking at pBase[1] and following */
5786 int N
/* How many SrcItems to check */
5791 if( pBase
->fg
.isUsing
==0 ) continue;
5792 if( NEVER(pBase
->u3
.pUsing
==0) ) continue;
5793 if( sqlite3IdListIndex(pBase
->u3
.pUsing
, zName
)>=0 ) return 1;
5800 ** This routine is a Walker callback for "expanding" a SELECT statement.
5801 ** "Expanding" means to do the following:
5803 ** (1) Make sure VDBE cursor numbers have been assigned to every
5804 ** element of the FROM clause.
5806 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that
5807 ** defines FROM clause. When views appear in the FROM clause,
5808 ** fill pTabList->a[].pSelect with a copy of the SELECT statement
5809 ** that implements the view. A copy is made of the view's SELECT
5810 ** statement so that we can freely modify or delete that statement
5811 ** without worrying about messing up the persistent representation
5814 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword
5815 ** on joins and the ON and USING clause of joins.
5817 ** (4) Scan the list of columns in the result set (pEList) looking
5818 ** for instances of the "*" operator or the TABLE.* operator.
5819 ** If found, expand each "*" to be every column in every table
5820 ** and TABLE.* to be every column in TABLE.
5823 static int selectExpander(Walker
*pWalker
, Select
*p
){
5824 Parse
*pParse
= pWalker
->pParse
;
5829 sqlite3
*db
= pParse
->db
;
5830 Expr
*pE
, *pRight
, *pExpr
;
5831 u16 selFlags
= p
->selFlags
;
5834 p
->selFlags
|= SF_Expanded
;
5835 if( db
->mallocFailed
){
5838 assert( p
->pSrc
!=0 );
5839 if( (selFlags
& SF_Expanded
)!=0 ){
5842 if( pWalker
->eCode
){
5843 /* Renumber selId because it has been copied from a view */
5844 p
->selId
= ++pParse
->nSelect
;
5848 if( pParse
->pWith
&& (p
->selFlags
& SF_View
) ){
5850 p
->pWith
= (With
*)sqlite3DbMallocZero(db
, sizeof(With
));
5855 p
->pWith
->bView
= 1;
5857 sqlite3WithPush(pParse
, p
->pWith
, 0);
5859 /* Make sure cursor numbers have been assigned to all entries in
5860 ** the FROM clause of the SELECT statement.
5862 sqlite3SrcListAssignCursors(pParse
, pTabList
);
5864 /* Look up every table named in the FROM clause of the select. If
5865 ** an entry of the FROM clause is a subquery instead of a table or view,
5866 ** then create a transient table structure to describe the subquery.
5868 for(i
=0, pFrom
=pTabList
->a
; i
<pTabList
->nSrc
; i
++, pFrom
++){
5870 assert( pFrom
->fg
.isRecursive
==0 || pFrom
->pTab
!=0 );
5871 if( pFrom
->pTab
) continue;
5872 assert( pFrom
->fg
.isRecursive
==0 );
5873 if( pFrom
->zName
==0 ){
5874 #ifndef SQLITE_OMIT_SUBQUERY
5875 Select
*pSel
= pFrom
->pSelect
;
5876 /* A sub-query in the FROM clause of a SELECT */
5878 assert( pFrom
->pTab
==0 );
5879 if( sqlite3WalkSelect(pWalker
, pSel
) ) return WRC_Abort
;
5880 if( sqlite3ExpandSubquery(pParse
, pFrom
) ) return WRC_Abort
;
5882 #ifndef SQLITE_OMIT_CTE
5883 }else if( (rc
= resolveFromTermToCte(pParse
, pWalker
, pFrom
))!=0 ){
5884 if( rc
>1 ) return WRC_Abort
;
5889 /* An ordinary table or view name in the FROM clause */
5890 assert( pFrom
->pTab
==0 );
5891 pFrom
->pTab
= pTab
= sqlite3LocateTableItem(pParse
, 0, pFrom
);
5892 if( pTab
==0 ) return WRC_Abort
;
5893 if( pTab
->nTabRef
>=0xffff ){
5894 sqlite3ErrorMsg(pParse
, "too many references to \"%s\": max 65535",
5900 if( !IsVirtual(pTab
) && cannotBeFunction(pParse
, pFrom
) ){
5903 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
5904 if( !IsOrdinaryTable(pTab
) ){
5906 u8 eCodeOrig
= pWalker
->eCode
;
5907 if( sqlite3ViewGetColumnNames(pParse
, pTab
) ) return WRC_Abort
;
5908 assert( pFrom
->pSelect
==0 );
5910 if( (db
->flags
& SQLITE_EnableView
)==0
5911 && pTab
->pSchema
!=db
->aDb
[1].pSchema
5913 sqlite3ErrorMsg(pParse
, "access to view \"%s\" prohibited",
5916 pFrom
->pSelect
= sqlite3SelectDup(db
, pTab
->u
.view
.pSelect
, 0);
5918 #ifndef SQLITE_OMIT_VIRTUALTABLE
5919 else if( ALWAYS(IsVirtual(pTab
))
5920 && pFrom
->fg
.fromDDL
5921 && ALWAYS(pTab
->u
.vtab
.p
!=0)
5922 && pTab
->u
.vtab
.p
->eVtabRisk
> ((db
->flags
& SQLITE_TrustedSchema
)!=0)
5924 sqlite3ErrorMsg(pParse
, "unsafe use of virtual table \"%s\"",
5927 assert( SQLITE_VTABRISK_Normal
==1 && SQLITE_VTABRISK_High
==2 );
5931 pWalker
->eCode
= 1; /* Turn on Select.selId renumbering */
5932 sqlite3WalkSelect(pWalker
, pFrom
->pSelect
);
5933 pWalker
->eCode
= eCodeOrig
;
5939 /* Locate the index named by the INDEXED BY clause, if any. */
5940 if( pFrom
->fg
.isIndexedBy
&& sqlite3IndexedByLookup(pParse
, pFrom
) ){
5945 /* Process NATURAL keywords, and ON and USING clauses of joins.
5947 assert( db
->mallocFailed
==0 || pParse
->nErr
!=0 );
5948 if( pParse
->nErr
|| sqlite3ProcessJoin(pParse
, p
) ){
5952 /* For every "*" that occurs in the column list, insert the names of
5953 ** all columns in all tables. And for every TABLE.* insert the names
5954 ** of all columns in TABLE. The parser inserted a special expression
5955 ** with the TK_ASTERISK operator for each "*" that it found in the column
5956 ** list. The following code just has to locate the TK_ASTERISK
5957 ** expressions and expand each one to the list of all columns in
5960 ** The first loop just checks to see if there are any "*" operators
5961 ** that need expanding.
5963 for(k
=0; k
<pEList
->nExpr
; k
++){
5964 pE
= pEList
->a
[k
].pExpr
;
5965 if( pE
->op
==TK_ASTERISK
) break;
5966 assert( pE
->op
!=TK_DOT
|| pE
->pRight
!=0 );
5967 assert( pE
->op
!=TK_DOT
|| (pE
->pLeft
!=0 && pE
->pLeft
->op
==TK_ID
) );
5968 if( pE
->op
==TK_DOT
&& pE
->pRight
->op
==TK_ASTERISK
) break;
5969 elistFlags
|= pE
->flags
;
5971 if( k
<pEList
->nExpr
){
5973 ** If we get here it means the result set contains one or more "*"
5974 ** operators that need to be expanded. Loop through each expression
5975 ** in the result set and expand them one by one.
5977 struct ExprList_item
*a
= pEList
->a
;
5979 int flags
= pParse
->db
->flags
;
5980 int longNames
= (flags
& SQLITE_FullColNames
)!=0
5981 && (flags
& SQLITE_ShortColNames
)==0;
5983 for(k
=0; k
<pEList
->nExpr
; k
++){
5985 elistFlags
|= pE
->flags
;
5986 pRight
= pE
->pRight
;
5987 assert( pE
->op
!=TK_DOT
|| pRight
!=0 );
5988 if( pE
->op
!=TK_ASTERISK
5989 && (pE
->op
!=TK_DOT
|| pRight
->op
!=TK_ASTERISK
)
5991 /* This particular expression does not need to be expanded.
5993 pNew
= sqlite3ExprListAppend(pParse
, pNew
, a
[k
].pExpr
);
5995 pNew
->a
[pNew
->nExpr
-1].zEName
= a
[k
].zEName
;
5996 pNew
->a
[pNew
->nExpr
-1].fg
.eEName
= a
[k
].fg
.eEName
;
6001 /* This expression is a "*" or a "TABLE.*" and needs to be
6003 int tableSeen
= 0; /* Set to 1 when TABLE matches */
6004 char *zTName
= 0; /* text of name of TABLE */
6005 if( pE
->op
==TK_DOT
){
6006 assert( pE
->pLeft
!=0 );
6007 assert( !ExprHasProperty(pE
->pLeft
, EP_IntValue
) );
6008 zTName
= pE
->pLeft
->u
.zToken
;
6010 for(i
=0, pFrom
=pTabList
->a
; i
<pTabList
->nSrc
; i
++, pFrom
++){
6011 Table
*pTab
= pFrom
->pTab
; /* Table for this data source */
6012 ExprList
*pNestedFrom
; /* Result-set of a nested FROM clause */
6013 char *zTabName
; /* AS name for this data source */
6014 const char *zSchemaName
= 0; /* Schema name for this data source */
6015 int iDb
; /* Schema index for this data src */
6016 IdList
*pUsing
; /* USING clause for pFrom[1] */
6018 if( (zTabName
= pFrom
->zAlias
)==0 ){
6019 zTabName
= pTab
->zName
;
6021 if( db
->mallocFailed
) break;
6022 assert( (int)pFrom
->fg
.isNestedFrom
== IsNestedFrom(pFrom
->pSelect
) );
6023 if( pFrom
->fg
.isNestedFrom
){
6024 assert( pFrom
->pSelect
!=0 );
6025 pNestedFrom
= pFrom
->pSelect
->pEList
;
6026 assert( pNestedFrom
!=0 );
6027 assert( pNestedFrom
->nExpr
==pTab
->nCol
);
6029 if( zTName
&& sqlite3StrICmp(zTName
, zTabName
)!=0 ){
6033 iDb
= sqlite3SchemaToIndex(db
, pTab
->pSchema
);
6034 zSchemaName
= iDb
>=0 ? db
->aDb
[iDb
].zDbSName
: "*";
6036 if( i
+1<pTabList
->nSrc
6037 && pFrom
[1].fg
.isUsing
6038 && (selFlags
& SF_NestedFrom
)!=0
6041 pUsing
= pFrom
[1].u3
.pUsing
;
6042 for(ii
=0; ii
<pUsing
->nId
; ii
++){
6043 const char *zUName
= pUsing
->a
[ii
].zName
;
6044 pRight
= sqlite3Expr(db
, TK_ID
, zUName
);
6045 pNew
= sqlite3ExprListAppend(pParse
, pNew
, pRight
);
6047 struct ExprList_item
*pX
= &pNew
->a
[pNew
->nExpr
-1];
6048 assert( pX
->zEName
==0 );
6049 pX
->zEName
= sqlite3MPrintf(db
,"..%s", zUName
);
6050 pX
->fg
.eEName
= ENAME_TAB
;
6051 pX
->fg
.bUsingTerm
= 1;
6057 for(j
=0; j
<pTab
->nCol
; j
++){
6058 char *zName
= pTab
->aCol
[j
].zCnName
;
6059 struct ExprList_item
*pX
; /* Newly added ExprList term */
6064 && sqlite3MatchEName(&pNestedFrom
->a
[j
], 0, zTName
, 0)==0
6069 /* If a column is marked as 'hidden', omit it from the expanded
6070 ** result-set list unless the SELECT has the SF_IncludeHidden
6073 if( (p
->selFlags
& SF_IncludeHidden
)==0
6074 && IsHiddenColumn(&pTab
->aCol
[j
])
6078 if( (pTab
->aCol
[j
].colFlags
& COLFLAG_NOEXPAND
)!=0
6080 && (selFlags
& (SF_NestedFrom
))==0
6086 if( i
>0 && zTName
==0 && (selFlags
& SF_NestedFrom
)==0 ){
6087 if( pFrom
->fg
.isUsing
6088 && sqlite3IdListIndex(pFrom
->u3
.pUsing
, zName
)>=0
6090 /* In a join with a USING clause, omit columns in the
6091 ** using clause from the table on the right. */
6095 pRight
= sqlite3Expr(db
, TK_ID
, zName
);
6096 if( (pTabList
->nSrc
>1
6097 && ( (pFrom
->fg
.jointype
& JT_LTORJ
)==0
6098 || (selFlags
& SF_NestedFrom
)!=0
6099 || !inAnyUsingClause(zName
,pFrom
,pTabList
->nSrc
-i
-1)
6105 pLeft
= sqlite3Expr(db
, TK_ID
, zTabName
);
6106 pExpr
= sqlite3PExpr(pParse
, TK_DOT
, pLeft
, pRight
);
6107 if( IN_RENAME_OBJECT
&& pE
->pLeft
){
6108 sqlite3RenameTokenRemap(pParse
, pLeft
, pE
->pLeft
);
6111 pLeft
= sqlite3Expr(db
, TK_ID
, zSchemaName
);
6112 pExpr
= sqlite3PExpr(pParse
, TK_DOT
, pLeft
, pExpr
);
6117 pNew
= sqlite3ExprListAppend(pParse
, pNew
, pExpr
);
6121 pX
= &pNew
->a
[pNew
->nExpr
-1];
6122 assert( pX
->zEName
==0 );
6123 if( (selFlags
& SF_NestedFrom
)!=0 && !IN_RENAME_OBJECT
){
6125 pX
->zEName
= sqlite3DbStrDup(db
, pNestedFrom
->a
[j
].zEName
);
6126 testcase( pX
->zEName
==0 );
6128 pX
->zEName
= sqlite3MPrintf(db
, "%s.%s.%s",
6129 zSchemaName
, zTabName
, zName
);
6130 testcase( pX
->zEName
==0 );
6132 pX
->fg
.eEName
= ENAME_TAB
;
6133 if( (pFrom
->fg
.isUsing
6134 && sqlite3IdListIndex(pFrom
->u3
.pUsing
, zName
)>=0)
6135 || (pUsing
&& sqlite3IdListIndex(pUsing
, zName
)>=0)
6136 || (pTab
->aCol
[j
].colFlags
& COLFLAG_NOEXPAND
)!=0
6138 pX
->fg
.bNoExpand
= 1;
6140 }else if( longNames
){
6141 pX
->zEName
= sqlite3MPrintf(db
, "%s.%s", zTabName
, zName
);
6142 pX
->fg
.eEName
= ENAME_NAME
;
6144 pX
->zEName
= sqlite3DbStrDup(db
, zName
);
6145 pX
->fg
.eEName
= ENAME_NAME
;
6151 sqlite3ErrorMsg(pParse
, "no such table: %s", zTName
);
6153 sqlite3ErrorMsg(pParse
, "no tables specified");
6158 sqlite3ExprListDelete(db
, pEList
);
6162 if( p
->pEList
->nExpr
>db
->aLimit
[SQLITE_LIMIT_COLUMN
] ){
6163 sqlite3ErrorMsg(pParse
, "too many columns in result set");
6166 if( (elistFlags
& (EP_HasFunc
|EP_Subquery
))!=0 ){
6167 p
->selFlags
|= SF_ComplexResult
;
6170 #if TREETRACE_ENABLED
6171 if( sqlite3TreeTrace
& 0x8 ){
6172 TREETRACE(0x8,pParse
,p
,("After result-set wildcard expansion:\n"));
6173 sqlite3TreeViewSelect(0, p
, 0);
6176 return WRC_Continue
;
6181 ** Always assert. This xSelectCallback2 implementation proves that the
6182 ** xSelectCallback2 is never invoked.
6184 void sqlite3SelectWalkAssert2(Walker
*NotUsed
, Select
*NotUsed2
){
6185 UNUSED_PARAMETER2(NotUsed
, NotUsed2
);
6190 ** This routine "expands" a SELECT statement and all of its subqueries.
6191 ** For additional information on what it means to "expand" a SELECT
6192 ** statement, see the comment on the selectExpand worker callback above.
6194 ** Expanding a SELECT statement is the first step in processing a
6195 ** SELECT statement. The SELECT statement must be expanded before
6196 ** name resolution is performed.
6198 ** If anything goes wrong, an error message is written into pParse.
6199 ** The calling function can detect the problem by looking at pParse->nErr
6200 ** and/or pParse->db->mallocFailed.
6202 static void sqlite3SelectExpand(Parse
*pParse
, Select
*pSelect
){
6204 w
.xExprCallback
= sqlite3ExprWalkNoop
;
6206 if( OK_IF_ALWAYS_TRUE(pParse
->hasCompound
) ){
6207 w
.xSelectCallback
= convertCompoundSelectToSubquery
;
6208 w
.xSelectCallback2
= 0;
6209 sqlite3WalkSelect(&w
, pSelect
);
6211 w
.xSelectCallback
= selectExpander
;
6212 w
.xSelectCallback2
= sqlite3SelectPopWith
;
6214 sqlite3WalkSelect(&w
, pSelect
);
6218 #ifndef SQLITE_OMIT_SUBQUERY
6220 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
6223 ** For each FROM-clause subquery, add Column.zType, Column.zColl, and
6224 ** Column.affinity information to the Table structure that represents
6225 ** the result set of that subquery.
6227 ** The Table structure that represents the result set was constructed
6228 ** by selectExpander() but the type and collation and affinity information
6229 ** was omitted at that point because identifiers had not yet been resolved.
6230 ** This routine is called after identifier resolution.
6232 static void selectAddSubqueryTypeInfo(Walker
*pWalker
, Select
*p
){
6238 assert( p
->selFlags
& SF_Resolved
);
6239 if( p
->selFlags
& SF_HasTypeInfo
) return;
6240 p
->selFlags
|= SF_HasTypeInfo
;
6241 pParse
= pWalker
->pParse
;
6243 for(i
=0, pFrom
=pTabList
->a
; i
<pTabList
->nSrc
; i
++, pFrom
++){
6244 Table
*pTab
= pFrom
->pTab
;
6246 if( (pTab
->tabFlags
& TF_Ephemeral
)!=0 ){
6247 /* A sub-query in the FROM clause of a SELECT */
6248 Select
*pSel
= pFrom
->pSelect
;
6250 sqlite3SubqueryColumnTypes(pParse
, pTab
, pSel
, SQLITE_AFF_NONE
);
6259 ** This routine adds datatype and collating sequence information to
6260 ** the Table structures of all FROM-clause subqueries in a
6261 ** SELECT statement.
6263 ** Use this routine after name resolution.
6265 static void sqlite3SelectAddTypeInfo(Parse
*pParse
, Select
*pSelect
){
6266 #ifndef SQLITE_OMIT_SUBQUERY
6268 w
.xSelectCallback
= sqlite3SelectWalkNoop
;
6269 w
.xSelectCallback2
= selectAddSubqueryTypeInfo
;
6270 w
.xExprCallback
= sqlite3ExprWalkNoop
;
6272 sqlite3WalkSelect(&w
, pSelect
);
6278 ** This routine sets up a SELECT statement for processing. The
6279 ** following is accomplished:
6281 ** * VDBE Cursor numbers are assigned to all FROM-clause terms.
6282 ** * Ephemeral Table objects are created for all FROM-clause subqueries.
6283 ** * ON and USING clauses are shifted into WHERE statements
6284 ** * Wildcards "*" and "TABLE.*" in result sets are expanded.
6285 ** * Identifiers in expression are matched to tables.
6287 ** This routine acts recursively on all subqueries within the SELECT.
6289 void sqlite3SelectPrep(
6290 Parse
*pParse
, /* The parser context */
6291 Select
*p
, /* The SELECT statement being coded. */
6292 NameContext
*pOuterNC
/* Name context for container */
6294 assert( p
!=0 || pParse
->db
->mallocFailed
);
6295 assert( pParse
->db
->pParse
==pParse
);
6296 if( pParse
->db
->mallocFailed
) return;
6297 if( p
->selFlags
& SF_HasTypeInfo
) return;
6298 sqlite3SelectExpand(pParse
, p
);
6299 if( pParse
->nErr
) return;
6300 sqlite3ResolveSelectNames(pParse
, p
, pOuterNC
);
6301 if( pParse
->nErr
) return;
6302 sqlite3SelectAddTypeInfo(pParse
, p
);
6305 #if TREETRACE_ENABLED
6307 ** Display all information about an AggInfo object
6309 static void printAggInfo(AggInfo
*pAggInfo
){
6311 for(ii
=0; ii
<pAggInfo
->nColumn
; ii
++){
6312 struct AggInfo_col
*pCol
= &pAggInfo
->aCol
[ii
];
6314 "agg-column[%d] pTab=%s iTable=%d iColumn=%d iMem=%d"
6315 " iSorterColumn=%d %s\n",
6316 ii
, pCol
->pTab
? pCol
->pTab
->zName
: "NULL",
6317 pCol
->iTable
, pCol
->iColumn
, pAggInfo
->iFirstReg
+ii
,
6318 pCol
->iSorterColumn
,
6319 ii
>=pAggInfo
->nAccumulator
? "" : " Accumulator");
6320 sqlite3TreeViewExpr(0, pAggInfo
->aCol
[ii
].pCExpr
, 0);
6322 for(ii
=0; ii
<pAggInfo
->nFunc
; ii
++){
6323 sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n",
6324 ii
, pAggInfo
->iFirstReg
+pAggInfo
->nColumn
+ii
);
6325 sqlite3TreeViewExpr(0, pAggInfo
->aFunc
[ii
].pFExpr
, 0);
6328 #endif /* TREETRACE_ENABLED */
6331 ** Analyze the arguments to aggregate functions. Create new pAggInfo->aCol[]
6332 ** entries for columns that are arguments to aggregate functions but which
6333 ** are not otherwise used.
6335 ** The aCol[] entries in AggInfo prior to nAccumulator are columns that
6336 ** are referenced outside of aggregate functions. These might be columns
6337 ** that are part of the GROUP by clause, for example. Other database engines
6338 ** would throw an error if there is a column reference that is not in the
6339 ** GROUP BY clause and that is not part of an aggregate function argument.
6340 ** But SQLite allows this.
6342 ** The aCol[] entries beginning with the aCol[nAccumulator] and following
6343 ** are column references that are used exclusively as arguments to
6344 ** aggregate functions. This routine is responsible for computing
6345 ** (or recomputing) those aCol[] entries.
6347 static void analyzeAggFuncArgs(
6352 assert( pAggInfo
!=0 );
6353 assert( pAggInfo
->iFirstReg
==0 );
6354 pNC
->ncFlags
|= NC_InAggFunc
;
6355 for(i
=0; i
<pAggInfo
->nFunc
; i
++){
6356 Expr
*pExpr
= pAggInfo
->aFunc
[i
].pFExpr
;
6357 assert( ExprUseXList(pExpr
) );
6358 sqlite3ExprAnalyzeAggList(pNC
, pExpr
->x
.pList
);
6359 #ifndef SQLITE_OMIT_WINDOWFUNC
6360 assert( !IsWindowFunc(pExpr
) );
6361 if( ExprHasProperty(pExpr
, EP_WinFunc
) ){
6362 sqlite3ExprAnalyzeAggregates(pNC
, pExpr
->y
.pWin
->pFilter
);
6366 pNC
->ncFlags
&= ~NC_InAggFunc
;
6370 ** An index on expressions is being used in the inner loop of an
6371 ** aggregate query with a GROUP BY clause. This routine attempts
6372 ** to adjust the AggInfo object to take advantage of index and to
6373 ** perhaps use the index as a covering index.
6376 static void optimizeAggregateUseOfIndexedExpr(
6377 Parse
*pParse
, /* Parsing context */
6378 Select
*pSelect
, /* The SELECT statement being processed */
6379 AggInfo
*pAggInfo
, /* The aggregate info */
6380 NameContext
*pNC
/* Name context used to resolve agg-func args */
6382 assert( pAggInfo
->iFirstReg
==0 );
6383 assert( pSelect
!=0 );
6384 assert( pSelect
->pGroupBy
!=0 );
6385 pAggInfo
->nColumn
= pAggInfo
->nAccumulator
;
6386 if( ALWAYS(pAggInfo
->nSortingColumn
>0) ){
6387 if( pAggInfo
->nColumn
==0 ){
6388 pAggInfo
->nSortingColumn
= pSelect
->pGroupBy
->nExpr
;
6390 pAggInfo
->nSortingColumn
=
6391 pAggInfo
->aCol
[pAggInfo
->nColumn
-1].iSorterColumn
+1;
6394 analyzeAggFuncArgs(pAggInfo
, pNC
);
6395 #if TREETRACE_ENABLED
6396 if( sqlite3TreeTrace
& 0x20 ){
6398 TREETRACE(0x20, pParse
, pSelect
,
6399 ("AggInfo (possibly) adjusted for Indexed Exprs\n"));
6400 sqlite3TreeViewSelect(0, pSelect
, 0);
6401 for(pIEpr
=pParse
->pIdxEpr
; pIEpr
; pIEpr
=pIEpr
->pIENext
){
6402 printf("data-cursor=%d index={%d,%d}\n",
6403 pIEpr
->iDataCur
, pIEpr
->iIdxCur
, pIEpr
->iIdxCol
);
6404 sqlite3TreeViewExpr(0, pIEpr
->pExpr
, 0);
6406 printAggInfo(pAggInfo
);
6409 UNUSED_PARAMETER(pSelect
);
6410 UNUSED_PARAMETER(pParse
);
6415 ** Walker callback for aggregateConvertIndexedExprRefToColumn().
6417 static int aggregateIdxEprRefToColCallback(Walker
*pWalker
, Expr
*pExpr
){
6419 struct AggInfo_col
*pCol
;
6420 UNUSED_PARAMETER(pWalker
);
6421 if( pExpr
->pAggInfo
==0 ) return WRC_Continue
;
6422 if( pExpr
->op
==TK_AGG_COLUMN
) return WRC_Continue
;
6423 if( pExpr
->op
==TK_AGG_FUNCTION
) return WRC_Continue
;
6424 if( pExpr
->op
==TK_IF_NULL_ROW
) return WRC_Continue
;
6425 pAggInfo
= pExpr
->pAggInfo
;
6426 assert( pExpr
->iAgg
>=0 && pExpr
->iAgg
<pAggInfo
->nColumn
);
6427 pCol
= &pAggInfo
->aCol
[pExpr
->iAgg
];
6428 pExpr
->op
= TK_AGG_COLUMN
;
6429 pExpr
->iTable
= pCol
->iTable
;
6430 pExpr
->iColumn
= pCol
->iColumn
;
6435 ** Convert every pAggInfo->aFunc[].pExpr such that any node within
6436 ** those expressions that has pAppInfo set is changed into a TK_AGG_COLUMN
6439 static void aggregateConvertIndexedExprRefToColumn(AggInfo
*pAggInfo
){
6442 memset(&w
, 0, sizeof(w
));
6443 w
.xExprCallback
= aggregateIdxEprRefToColCallback
;
6444 for(i
=0; i
<pAggInfo
->nFunc
; i
++){
6445 sqlite3WalkExpr(&w
, pAggInfo
->aFunc
[i
].pFExpr
);
6451 ** Allocate a block of registers so that there is one register for each
6452 ** pAggInfo->aCol[] and pAggInfo->aFunc[] entry in pAggInfo. The first
6453 ** register in this block is stored in pAggInfo->iFirstReg.
6455 ** This routine may only be called once for each AggInfo object. Prior
6456 ** to calling this routine:
6458 ** * The aCol[] and aFunc[] arrays may be modified
6459 ** * The AggInfoColumnReg() and AggInfoFuncReg() macros may not be used
6461 ** After clling this routine:
6463 ** * The aCol[] and aFunc[] arrays are fixed
6464 ** * The AggInfoColumnReg() and AggInfoFuncReg() macros may be used
6467 static void assignAggregateRegisters(Parse
*pParse
, AggInfo
*pAggInfo
){
6468 assert( pAggInfo
!=0 );
6469 assert( pAggInfo
->iFirstReg
==0 );
6470 pAggInfo
->iFirstReg
= pParse
->nMem
+ 1;
6471 pParse
->nMem
+= pAggInfo
->nColumn
+ pAggInfo
->nFunc
;
6475 ** Reset the aggregate accumulator.
6477 ** The aggregate accumulator is a set of memory cells that hold
6478 ** intermediate results while calculating an aggregate. This
6479 ** routine generates code that stores NULLs in all of those memory
6482 static void resetAccumulator(Parse
*pParse
, AggInfo
*pAggInfo
){
6483 Vdbe
*v
= pParse
->pVdbe
;
6485 struct AggInfo_func
*pFunc
;
6486 int nReg
= pAggInfo
->nFunc
+ pAggInfo
->nColumn
;
6487 assert( pAggInfo
->iFirstReg
>0 );
6488 assert( pParse
->db
->pParse
==pParse
);
6489 assert( pParse
->db
->mallocFailed
==0 || pParse
->nErr
!=0 );
6490 if( nReg
==0 ) return;
6491 if( pParse
->nErr
) return;
6492 sqlite3VdbeAddOp3(v
, OP_Null
, 0, pAggInfo
->iFirstReg
,
6493 pAggInfo
->iFirstReg
+nReg
-1);
6494 for(pFunc
=pAggInfo
->aFunc
, i
=0; i
<pAggInfo
->nFunc
; i
++, pFunc
++){
6495 if( pFunc
->iDistinct
>=0 ){
6496 Expr
*pE
= pFunc
->pFExpr
;
6497 assert( ExprUseXList(pE
) );
6498 if( pE
->x
.pList
==0 || pE
->x
.pList
->nExpr
!=1 ){
6499 sqlite3ErrorMsg(pParse
, "DISTINCT aggregates must have exactly one "
6501 pFunc
->iDistinct
= -1;
6503 KeyInfo
*pKeyInfo
= sqlite3KeyInfoFromExprList(pParse
, pE
->x
.pList
,0,0);
6504 pFunc
->iDistAddr
= sqlite3VdbeAddOp4(v
, OP_OpenEphemeral
,
6505 pFunc
->iDistinct
, 0, 0, (char*)pKeyInfo
, P4_KEYINFO
);
6506 ExplainQueryPlan((pParse
, 0, "USE TEMP B-TREE FOR %s(DISTINCT)",
6507 pFunc
->pFunc
->zName
));
6514 ** Invoke the OP_AggFinalize opcode for every aggregate function
6515 ** in the AggInfo structure.
6517 static void finalizeAggFunctions(Parse
*pParse
, AggInfo
*pAggInfo
){
6518 Vdbe
*v
= pParse
->pVdbe
;
6520 struct AggInfo_func
*pF
;
6521 for(i
=0, pF
=pAggInfo
->aFunc
; i
<pAggInfo
->nFunc
; i
++, pF
++){
6523 assert( ExprUseXList(pF
->pFExpr
) );
6524 pList
= pF
->pFExpr
->x
.pList
;
6525 sqlite3VdbeAddOp2(v
, OP_AggFinal
, AggInfoFuncReg(pAggInfo
,i
),
6526 pList
? pList
->nExpr
: 0);
6527 sqlite3VdbeAppendP4(v
, pF
->pFunc
, P4_FUNCDEF
);
6533 ** Generate code that will update the accumulator memory cells for an
6534 ** aggregate based on the current cursor position.
6536 ** If regAcc is non-zero and there are no min() or max() aggregates
6537 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator
6538 ** registers if register regAcc contains 0. The caller will take care
6539 ** of setting and clearing regAcc.
6541 static void updateAccumulator(
6547 Vdbe
*v
= pParse
->pVdbe
;
6550 int addrHitTest
= 0;
6551 struct AggInfo_func
*pF
;
6552 struct AggInfo_col
*pC
;
6554 assert( pAggInfo
->iFirstReg
>0 );
6555 if( pParse
->nErr
) return;
6556 pAggInfo
->directMode
= 1;
6557 for(i
=0, pF
=pAggInfo
->aFunc
; i
<pAggInfo
->nFunc
; i
++, pF
++){
6562 assert( ExprUseXList(pF
->pFExpr
) );
6563 assert( !IsWindowFunc(pF
->pFExpr
) );
6564 pList
= pF
->pFExpr
->x
.pList
;
6565 if( ExprHasProperty(pF
->pFExpr
, EP_WinFunc
) ){
6566 Expr
*pFilter
= pF
->pFExpr
->y
.pWin
->pFilter
;
6567 if( pAggInfo
->nAccumulator
6568 && (pF
->pFunc
->funcFlags
& SQLITE_FUNC_NEEDCOLL
)
6571 /* If regAcc==0, there there exists some min() or max() function
6572 ** without a FILTER clause that will ensure the magnet registers
6573 ** are populated. */
6574 if( regHit
==0 ) regHit
= ++pParse
->nMem
;
6575 /* If this is the first row of the group (regAcc contains 0), clear the
6576 ** "magnet" register regHit so that the accumulator registers
6577 ** are populated if the FILTER clause jumps over the the
6578 ** invocation of min() or max() altogether. Or, if this is not
6579 ** the first row (regAcc contains 1), set the magnet register so that
6580 ** the accumulators are not populated unless the min()/max() is invoked
6581 ** and indicates that they should be. */
6582 sqlite3VdbeAddOp2(v
, OP_Copy
, regAcc
, regHit
);
6584 addrNext
= sqlite3VdbeMakeLabel(pParse
);
6585 sqlite3ExprIfFalse(pParse
, pFilter
, addrNext
, SQLITE_JUMPIFNULL
);
6588 nArg
= pList
->nExpr
;
6589 regAgg
= sqlite3GetTempRange(pParse
, nArg
);
6590 sqlite3ExprCodeExprList(pParse
, pList
, regAgg
, 0, SQLITE_ECEL_DUP
);
6595 if( pF
->iDistinct
>=0 && pList
){
6597 addrNext
= sqlite3VdbeMakeLabel(pParse
);
6599 pF
->iDistinct
= codeDistinct(pParse
, eDistinctType
,
6600 pF
->iDistinct
, addrNext
, pList
, regAgg
);
6602 if( pF
->pFunc
->funcFlags
& SQLITE_FUNC_NEEDCOLL
){
6604 struct ExprList_item
*pItem
;
6606 assert( pList
!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */
6607 for(j
=0, pItem
=pList
->a
; !pColl
&& j
<nArg
; j
++, pItem
++){
6608 pColl
= sqlite3ExprCollSeq(pParse
, pItem
->pExpr
);
6611 pColl
= pParse
->db
->pDfltColl
;
6613 if( regHit
==0 && pAggInfo
->nAccumulator
) regHit
= ++pParse
->nMem
;
6614 sqlite3VdbeAddOp4(v
, OP_CollSeq
, regHit
, 0, 0, (char *)pColl
, P4_COLLSEQ
);
6616 sqlite3VdbeAddOp3(v
, OP_AggStep
, 0, regAgg
, AggInfoFuncReg(pAggInfo
,i
));
6617 sqlite3VdbeAppendP4(v
, pF
->pFunc
, P4_FUNCDEF
);
6618 sqlite3VdbeChangeP5(v
, (u8
)nArg
);
6619 sqlite3ReleaseTempRange(pParse
, regAgg
, nArg
);
6621 sqlite3VdbeResolveLabel(v
, addrNext
);
6624 if( regHit
==0 && pAggInfo
->nAccumulator
){
6628 addrHitTest
= sqlite3VdbeAddOp1(v
, OP_If
, regHit
); VdbeCoverage(v
);
6630 for(i
=0, pC
=pAggInfo
->aCol
; i
<pAggInfo
->nAccumulator
; i
++, pC
++){
6631 sqlite3ExprCode(pParse
, pC
->pCExpr
, AggInfoColumnReg(pAggInfo
,i
));
6634 pAggInfo
->directMode
= 0;
6636 sqlite3VdbeJumpHereOrPopInst(v
, addrHitTest
);
6641 ** Add a single OP_Explain instruction to the VDBE to explain a simple
6642 ** count(*) query ("SELECT count(*) FROM pTab").
6644 #ifndef SQLITE_OMIT_EXPLAIN
6645 static void explainSimpleCount(
6646 Parse
*pParse
, /* Parse context */
6647 Table
*pTab
, /* Table being queried */
6648 Index
*pIdx
/* Index used to optimize scan, or NULL */
6650 if( pParse
->explain
==2 ){
6651 int bCover
= (pIdx
!=0 && (HasRowid(pTab
) || !IsPrimaryKeyIndex(pIdx
)));
6652 sqlite3VdbeExplain(pParse
, 0, "SCAN %s%s%s",
6654 bCover
? " USING COVERING INDEX " : "",
6655 bCover
? pIdx
->zName
: ""
6660 # define explainSimpleCount(a,b,c)
6664 ** sqlite3WalkExpr() callback used by havingToWhere().
6666 ** If the node passed to the callback is a TK_AND node, return
6667 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes.
6669 ** Otherwise, return WRC_Prune. In this case, also check if the
6670 ** sub-expression matches the criteria for being moved to the WHERE
6671 ** clause. If so, add it to the WHERE clause and replace the sub-expression
6672 ** within the HAVING expression with a constant "1".
6674 static int havingToWhereExprCb(Walker
*pWalker
, Expr
*pExpr
){
6675 if( pExpr
->op
!=TK_AND
){
6676 Select
*pS
= pWalker
->u
.pSelect
;
6677 /* This routine is called before the HAVING clause of the current
6678 ** SELECT is analyzed for aggregates. So if pExpr->pAggInfo is set
6679 ** here, it indicates that the expression is a correlated reference to a
6680 ** column from an outer aggregate query, or an aggregate function that
6681 ** belongs to an outer query. Do not move the expression to the WHERE
6682 ** clause in this obscure case, as doing so may corrupt the outer Select
6683 ** statements AggInfo structure. */
6684 if( sqlite3ExprIsConstantOrGroupBy(pWalker
->pParse
, pExpr
, pS
->pGroupBy
)
6685 && ExprAlwaysFalse(pExpr
)==0
6686 && pExpr
->pAggInfo
==0
6688 sqlite3
*db
= pWalker
->pParse
->db
;
6689 Expr
*pNew
= sqlite3Expr(db
, TK_INTEGER
, "1");
6691 Expr
*pWhere
= pS
->pWhere
;
6692 SWAP(Expr
, *pNew
, *pExpr
);
6693 pNew
= sqlite3ExprAnd(pWalker
->pParse
, pWhere
, pNew
);
6700 return WRC_Continue
;
6704 ** Transfer eligible terms from the HAVING clause of a query, which is
6705 ** processed after grouping, to the WHERE clause, which is processed before
6706 ** grouping. For example, the query:
6708 ** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=?
6710 ** can be rewritten as:
6712 ** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=?
6714 ** A term of the HAVING expression is eligible for transfer if it consists
6715 ** entirely of constants and expressions that are also GROUP BY terms that
6716 ** use the "BINARY" collation sequence.
6718 static void havingToWhere(Parse
*pParse
, Select
*p
){
6720 memset(&sWalker
, 0, sizeof(sWalker
));
6721 sWalker
.pParse
= pParse
;
6722 sWalker
.xExprCallback
= havingToWhereExprCb
;
6723 sWalker
.u
.pSelect
= p
;
6724 sqlite3WalkExpr(&sWalker
, p
->pHaving
);
6725 #if TREETRACE_ENABLED
6726 if( sWalker
.eCode
&& (sqlite3TreeTrace
& 0x100)!=0 ){
6727 TREETRACE(0x100,pParse
,p
,("Move HAVING terms into WHERE:\n"));
6728 sqlite3TreeViewSelect(0, p
, 0);
6734 ** Check to see if the pThis entry of pTabList is a self-join of another view.
6735 ** Search FROM-clause entries in the range of iFirst..iEnd, including iFirst
6736 ** but stopping before iEnd.
6738 ** If pThis is a self-join, then return the SrcItem for the first other
6739 ** instance of that view found. If pThis is not a self-join then return 0.
6741 static SrcItem
*isSelfJoinView(
6742 SrcList
*pTabList
, /* Search for self-joins in this FROM clause */
6743 SrcItem
*pThis
, /* Search for prior reference to this subquery */
6744 int iFirst
, int iEnd
/* Range of FROM-clause entries to search. */
6747 assert( pThis
->pSelect
!=0 );
6748 if( pThis
->pSelect
->selFlags
& SF_PushDown
) return 0;
6749 while( iFirst
<iEnd
){
6751 pItem
= &pTabList
->a
[iFirst
++];
6752 if( pItem
->pSelect
==0 ) continue;
6753 if( pItem
->fg
.viaCoroutine
) continue;
6754 if( pItem
->zName
==0 ) continue;
6755 assert( pItem
->pTab
!=0 );
6756 assert( pThis
->pTab
!=0 );
6757 if( pItem
->pTab
->pSchema
!=pThis
->pTab
->pSchema
) continue;
6758 if( sqlite3_stricmp(pItem
->zName
, pThis
->zName
)!=0 ) continue;
6759 pS1
= pItem
->pSelect
;
6760 if( pItem
->pTab
->pSchema
==0 && pThis
->pSelect
->selId
!=pS1
->selId
){
6761 /* The query flattener left two different CTE tables with identical
6762 ** names in the same FROM clause. */
6765 if( pItem
->pSelect
->selFlags
& SF_PushDown
){
6766 /* The view was modified by some other optimization such as
6767 ** pushDownWhereTerms() */
6776 ** Deallocate a single AggInfo object
6778 static void agginfoFree(sqlite3
*db
, AggInfo
*p
){
6779 sqlite3DbFree(db
, p
->aCol
);
6780 sqlite3DbFree(db
, p
->aFunc
);
6781 sqlite3DbFreeNN(db
, p
);
6784 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
6786 ** Attempt to transform a query of the form
6788 ** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2)
6792 ** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2)
6794 ** The transformation only works if all of the following are true:
6796 ** * The subquery is a UNION ALL of two or more terms
6797 ** * The subquery does not have a LIMIT clause
6798 ** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries
6799 ** * The outer query is a simple count(*) with no WHERE clause or other
6800 ** extraneous syntax.
6802 ** Return TRUE if the optimization is undertaken.
6804 static int countOfViewOptimization(Parse
*pParse
, Select
*p
){
6805 Select
*pSub
, *pPrior
;
6809 if( (p
->selFlags
& SF_Aggregate
)==0 ) return 0; /* This is an aggregate */
6810 if( p
->pEList
->nExpr
!=1 ) return 0; /* Single result column */
6811 if( p
->pWhere
) return 0;
6812 if( p
->pGroupBy
) return 0;
6813 if( p
->pOrderBy
) return 0;
6814 pExpr
= p
->pEList
->a
[0].pExpr
;
6815 if( pExpr
->op
!=TK_AGG_FUNCTION
) return 0; /* Result is an aggregate */
6816 assert( ExprUseUToken(pExpr
) );
6817 if( sqlite3_stricmp(pExpr
->u
.zToken
,"count") ) return 0; /* Is count() */
6818 assert( ExprUseXList(pExpr
) );
6819 if( pExpr
->x
.pList
!=0 ) return 0; /* Must be count(*) */
6820 if( p
->pSrc
->nSrc
!=1 ) return 0; /* One table in FROM */
6821 if( ExprHasProperty(pExpr
, EP_WinFunc
) ) return 0;/* Not a window function */
6822 pSub
= p
->pSrc
->a
[0].pSelect
;
6823 if( pSub
==0 ) return 0; /* The FROM is a subquery */
6824 if( pSub
->pPrior
==0 ) return 0; /* Must be a compound */
6825 if( pSub
->selFlags
& SF_CopyCte
) return 0; /* Not a CTE */
6827 if( pSub
->op
!=TK_ALL
&& pSub
->pPrior
) return 0; /* Must be UNION ALL */
6828 if( pSub
->pWhere
) return 0; /* No WHERE clause */
6829 if( pSub
->pLimit
) return 0; /* No LIMIT clause */
6830 if( pSub
->selFlags
& SF_Aggregate
) return 0; /* Not an aggregate */
6831 pSub
= pSub
->pPrior
; /* Repeat over compound */
6834 /* If we reach this point then it is OK to perform the transformation */
6839 pSub
= p
->pSrc
->a
[0].pSelect
;
6840 p
->pSrc
->a
[0].pSelect
= 0;
6841 sqlite3SrcListDelete(db
, p
->pSrc
);
6842 p
->pSrc
= sqlite3DbMallocZero(pParse
->db
, sizeof(*p
->pSrc
));
6845 pPrior
= pSub
->pPrior
;
6848 pSub
->selFlags
|= SF_Aggregate
;
6849 pSub
->selFlags
&= ~SF_Compound
;
6850 pSub
->nSelectRow
= 0;
6851 sqlite3ExprListDelete(db
, pSub
->pEList
);
6852 pTerm
= pPrior
? sqlite3ExprDup(db
, pCount
, 0) : pCount
;
6853 pSub
->pEList
= sqlite3ExprListAppend(pParse
, 0, pTerm
);
6854 pTerm
= sqlite3PExpr(pParse
, TK_SELECT
, 0, 0);
6855 sqlite3PExprAddSelect(pParse
, pTerm
, pSub
);
6859 pExpr
= sqlite3PExpr(pParse
, TK_PLUS
, pTerm
, pExpr
);
6863 p
->pEList
->a
[0].pExpr
= pExpr
;
6864 p
->selFlags
&= ~SF_Aggregate
;
6866 #if TREETRACE_ENABLED
6867 if( sqlite3TreeTrace
& 0x200 ){
6868 TREETRACE(0x200,pParse
,p
,("After count-of-view optimization:\n"));
6869 sqlite3TreeViewSelect(0, p
, 0);
6874 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */
6877 ** If any term of pSrc, or any SF_NestedFrom sub-query, is not the same
6878 ** as pSrcItem but has the same alias as p0, then return true.
6879 ** Otherwise return false.
6881 static int sameSrcAlias(SrcItem
*p0
, SrcList
*pSrc
){
6883 for(i
=0; i
<pSrc
->nSrc
; i
++){
6884 SrcItem
*p1
= &pSrc
->a
[i
];
6885 if( p1
==p0
) continue;
6886 if( p0
->pTab
==p1
->pTab
&& 0==sqlite3_stricmp(p0
->zAlias
, p1
->zAlias
) ){
6890 && (p1
->pSelect
->selFlags
& SF_NestedFrom
)!=0
6891 && sameSrcAlias(p0
, p1
->pSelect
->pSrc
)
6900 ** Return TRUE (non-zero) if the i-th entry in the pTabList SrcList can
6901 ** be implemented as a co-routine. The i-th entry is guaranteed to be
6904 ** The subquery is implemented as a co-routine if all of the following are
6907 ** (1) The subquery will likely be implemented in the outer loop of
6908 ** the query. This will be the case if any one of the following
6910 ** (a) The subquery is the only term in the FROM clause
6911 ** (b) The subquery is the left-most term and a CROSS JOIN or similar
6912 ** requires it to be the outer loop
6913 ** (c) All of the following are true:
6914 ** (i) The subquery is the left-most subquery in the FROM clause
6915 ** (ii) There is nothing that would prevent the subquery from
6916 ** being used as the outer loop if the sqlite3WhereBegin()
6917 ** routine nominates it to that position.
6918 ** (iii) The query is not a UPDATE ... FROM
6919 ** (2) The subquery is not a CTE that should be materialized because
6920 ** (a) the AS MATERIALIZED keyword is used, or
6921 ** (b) the CTE is used multiple times and does not have the
6922 ** NOT MATERIALIZED keyword
6923 ** (3) The subquery is not part of a left operand for a RIGHT JOIN
6924 ** (4) The SQLITE_Coroutine optimization disable flag is not set
6925 ** (5) The subquery is not self-joined
6927 static int fromClauseTermCanBeCoroutine(
6928 Parse
*pParse
, /* Parsing context */
6929 SrcList
*pTabList
, /* FROM clause */
6930 int i
, /* Which term of the FROM clause holds the subquery */
6931 int selFlags
/* Flags on the SELECT statement */
6933 SrcItem
*pItem
= &pTabList
->a
[i
];
6934 if( pItem
->fg
.isCte
){
6935 const CteUse
*pCteUse
= pItem
->u2
.pCteUse
;
6936 if( pCteUse
->eM10d
==M10d_Yes
) return 0; /* (2a) */
6937 if( pCteUse
->nUse
>=2 && pCteUse
->eM10d
!=M10d_No
) return 0; /* (2b) */
6939 if( pTabList
->a
[0].fg
.jointype
& JT_LTORJ
) return 0; /* (3) */
6940 if( OptimizationDisabled(pParse
->db
, SQLITE_Coroutines
) ) return 0; /* (4) */
6941 if( isSelfJoinView(pTabList
, pItem
, i
+1, pTabList
->nSrc
)!=0 ){
6945 if( pTabList
->nSrc
==1 ) return 1; /* (1a) */
6946 if( pTabList
->a
[1].fg
.jointype
& JT_CROSS
) return 1; /* (1b) */
6947 if( selFlags
& SF_UpdateFrom
) return 0; /* (1c-iii) */
6950 if( selFlags
& SF_UpdateFrom
) return 0; /* (1c-iii) */
6951 while( 1 /*exit-by-break*/ ){
6952 if( pItem
->fg
.jointype
& (JT_OUTER
|JT_CROSS
) ) return 0; /* (1c-ii) */
6956 if( pItem
->pSelect
!=0 ) return 0; /* (1c-i) */
6962 ** Generate code for the SELECT statement given in the p argument.
6964 ** The results are returned according to the SelectDest structure.
6965 ** See comments in sqliteInt.h for further information.
6967 ** This routine returns the number of errors. If any errors are
6968 ** encountered, then an appropriate error message is left in
6971 ** This routine does NOT free the Select structure passed in. The
6972 ** calling function needs to do that.
6975 Parse
*pParse
, /* The parser context */
6976 Select
*p
, /* The SELECT statement being coded. */
6977 SelectDest
*pDest
/* What to do with the query results */
6979 int i
, j
; /* Loop counters */
6980 WhereInfo
*pWInfo
; /* Return from sqlite3WhereBegin() */
6981 Vdbe
*v
; /* The virtual machine under construction */
6982 int isAgg
; /* True for select lists like "count(*)" */
6983 ExprList
*pEList
= 0; /* List of columns to extract. */
6984 SrcList
*pTabList
; /* List of tables to select from */
6985 Expr
*pWhere
; /* The WHERE clause. May be NULL */
6986 ExprList
*pGroupBy
; /* The GROUP BY clause. May be NULL */
6987 Expr
*pHaving
; /* The HAVING clause. May be NULL */
6988 AggInfo
*pAggInfo
= 0; /* Aggregate information */
6989 int rc
= 1; /* Value to return from this function */
6990 DistinctCtx sDistinct
; /* Info on how to code the DISTINCT keyword */
6991 SortCtx sSort
; /* Info on how to code the ORDER BY clause */
6992 int iEnd
; /* Address of the end of the query */
6993 sqlite3
*db
; /* The database connection */
6994 ExprList
*pMinMaxOrderBy
= 0; /* Added ORDER BY for min/max queries */
6995 u8 minMaxFlag
; /* Flag for min/max queries */
6998 assert( pParse
==db
->pParse
);
6999 v
= sqlite3GetVdbe(pParse
);
7000 if( p
==0 || pParse
->nErr
){
7003 assert( db
->mallocFailed
==0 );
7004 if( sqlite3AuthCheck(pParse
, SQLITE_SELECT
, 0, 0, 0) ) return 1;
7005 #if TREETRACE_ENABLED
7006 TREETRACE(0x1,pParse
,p
, ("begin processing:\n", pParse
->addrExplain
));
7007 if( sqlite3TreeTrace
& 0x10000 ){
7008 if( (sqlite3TreeTrace
& 0x10001)==0x10000 ){
7009 sqlite3TreeViewLine(0, "In sqlite3Select() at %s:%d",
7010 __FILE__
, __LINE__
);
7012 sqlite3ShowSelect(p
);
7016 assert( p
->pOrderBy
==0 || pDest
->eDest
!=SRT_DistFifo
);
7017 assert( p
->pOrderBy
==0 || pDest
->eDest
!=SRT_Fifo
);
7018 assert( p
->pOrderBy
==0 || pDest
->eDest
!=SRT_DistQueue
);
7019 assert( p
->pOrderBy
==0 || pDest
->eDest
!=SRT_Queue
);
7020 if( IgnorableDistinct(pDest
) ){
7021 assert(pDest
->eDest
==SRT_Exists
|| pDest
->eDest
==SRT_Union
||
7022 pDest
->eDest
==SRT_Except
|| pDest
->eDest
==SRT_Discard
||
7023 pDest
->eDest
==SRT_DistQueue
|| pDest
->eDest
==SRT_DistFifo
);
7024 /* All of these destinations are also able to ignore the ORDER BY clause */
7026 #if TREETRACE_ENABLED
7027 TREETRACE(0x800,pParse
,p
, ("dropping superfluous ORDER BY:\n"));
7028 if( sqlite3TreeTrace
& 0x800 ){
7029 sqlite3TreeViewExprList(0, p
->pOrderBy
, 0, "ORDERBY");
7032 sqlite3ParserAddCleanup(pParse
,
7033 (void(*)(sqlite3
*,void*))sqlite3ExprListDelete
,
7035 testcase( pParse
->earlyCleanup
);
7038 p
->selFlags
&= ~SF_Distinct
;
7039 p
->selFlags
|= SF_NoopOrderBy
;
7041 sqlite3SelectPrep(pParse
, p
, 0);
7045 assert( db
->mallocFailed
==0 );
7046 assert( p
->pEList
!=0 );
7047 #if TREETRACE_ENABLED
7048 if( sqlite3TreeTrace
& 0x10 ){
7049 TREETRACE(0x10,pParse
,p
, ("after name resolution:\n"));
7050 sqlite3TreeViewSelect(0, p
, 0);
7054 /* If the SF_UFSrcCheck flag is set, then this function is being called
7055 ** as part of populating the temp table for an UPDATE...FROM statement.
7056 ** In this case, it is an error if the target object (pSrc->a[0]) name
7057 ** or alias is duplicated within FROM clause (pSrc->a[1..n]).
7059 ** Postgres disallows this case too. The reason is that some other
7060 ** systems handle this case differently, and not all the same way,
7061 ** which is just confusing. To avoid this, we follow PG's lead and
7062 ** disallow it altogether. */
7063 if( p
->selFlags
& SF_UFSrcCheck
){
7064 SrcItem
*p0
= &p
->pSrc
->a
[0];
7065 if( sameSrcAlias(p0
, p
->pSrc
) ){
7066 sqlite3ErrorMsg(pParse
,
7067 "target object/alias may not appear in FROM clause: %s",
7068 p0
->zAlias
? p0
->zAlias
: p0
->pTab
->zName
7073 /* Clear the SF_UFSrcCheck flag. The check has already been performed,
7074 ** and leaving this flag set can cause errors if a compound sub-query
7075 ** in p->pSrc is flattened into this query and this function called
7076 ** again as part of compound SELECT processing. */
7077 p
->selFlags
&= ~SF_UFSrcCheck
;
7080 if( pDest
->eDest
==SRT_Output
){
7081 sqlite3GenerateColumnNames(pParse
, p
);
7084 #ifndef SQLITE_OMIT_WINDOWFUNC
7085 if( sqlite3WindowRewrite(pParse
, p
) ){
7086 assert( pParse
->nErr
);
7089 #if TREETRACE_ENABLED
7090 if( p
->pWin
&& (sqlite3TreeTrace
& 0x40)!=0 ){
7091 TREETRACE(0x40,pParse
,p
, ("after window rewrite:\n"));
7092 sqlite3TreeViewSelect(0, p
, 0);
7095 #endif /* SQLITE_OMIT_WINDOWFUNC */
7097 isAgg
= (p
->selFlags
& SF_Aggregate
)!=0;
7098 memset(&sSort
, 0, sizeof(sSort
));
7099 sSort
.pOrderBy
= p
->pOrderBy
;
7101 /* Try to do various optimizations (flattening subqueries, and strength
7102 ** reduction of join operators) in the FROM clause up into the main query
7104 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
7105 for(i
=0; !p
->pPrior
&& i
<pTabList
->nSrc
; i
++){
7106 SrcItem
*pItem
= &pTabList
->a
[i
];
7107 Select
*pSub
= pItem
->pSelect
;
7108 Table
*pTab
= pItem
->pTab
;
7110 /* The expander should have already created transient Table objects
7111 ** even for FROM clause elements such as subqueries that do not correspond
7112 ** to a real table */
7115 /* Convert LEFT JOIN into JOIN if there are terms of the right table
7116 ** of the LEFT JOIN used in the WHERE clause.
7118 if( (pItem
->fg
.jointype
& (JT_LEFT
|JT_RIGHT
))==JT_LEFT
7119 && sqlite3ExprImpliesNonNullRow(p
->pWhere
, pItem
->iCursor
)
7120 && OptimizationEnabled(db
, SQLITE_SimplifyJoin
)
7122 TREETRACE(0x1000,pParse
,p
,
7123 ("LEFT-JOIN simplifies to JOIN on term %d\n",i
));
7124 pItem
->fg
.jointype
&= ~(JT_LEFT
|JT_OUTER
);
7125 assert( pItem
->iCursor
>=0 );
7126 unsetJoinExpr(p
->pWhere
, pItem
->iCursor
,
7127 pTabList
->a
[0].fg
.jointype
& JT_LTORJ
);
7130 /* No futher action if this term of the FROM clause is no a subquery */
7131 if( pSub
==0 ) continue;
7133 /* Catch mismatch in the declared columns of a view and the number of
7134 ** columns in the SELECT on the RHS */
7135 if( pTab
->nCol
!=pSub
->pEList
->nExpr
){
7136 sqlite3ErrorMsg(pParse
, "expected %d columns for '%s' but got %d",
7137 pTab
->nCol
, pTab
->zName
, pSub
->pEList
->nExpr
);
7141 /* Do not try to flatten an aggregate subquery.
7143 ** Flattening an aggregate subquery is only possible if the outer query
7144 ** is not a join. But if the outer query is not a join, then the subquery
7145 ** will be implemented as a co-routine and there is no advantage to
7146 ** flattening in that case.
7148 if( (pSub
->selFlags
& SF_Aggregate
)!=0 ) continue;
7149 assert( pSub
->pGroupBy
==0 );
7151 /* If a FROM-clause subquery has an ORDER BY clause that is not
7152 ** really doing anything, then delete it now so that it does not
7153 ** interfere with query flattening. See the discussion at
7154 ** https://sqlite.org/forum/forumpost/2d76f2bcf65d256a
7156 ** Beware of these cases where the ORDER BY clause may not be safely
7159 ** (1) There is also a LIMIT clause
7160 ** (2) The subquery was added to help with window-function
7162 ** (3) The subquery is in the FROM clause of an UPDATE
7163 ** (4) The outer query uses an aggregate function other than
7164 ** the built-in count(), min(), or max().
7165 ** (5) The ORDER BY isn't going to accomplish anything because
7167 ** (a) The outer query has a different ORDER BY clause
7168 ** (b) The subquery is part of a join
7169 ** See forum post 062d576715d277c8
7171 if( pSub
->pOrderBy
!=0
7172 && (p
->pOrderBy
!=0 || pTabList
->nSrc
>1) /* Condition (5) */
7173 && pSub
->pLimit
==0 /* Condition (1) */
7174 && (pSub
->selFlags
& SF_OrderByReqd
)==0 /* Condition (2) */
7175 && (p
->selFlags
& SF_OrderByReqd
)==0 /* Condition (3) and (4) */
7176 && OptimizationEnabled(db
, SQLITE_OmitOrderBy
)
7178 TREETRACE(0x800,pParse
,p
,
7179 ("omit superfluous ORDER BY on %r FROM-clause subquery\n",i
+1));
7180 sqlite3ParserAddCleanup(pParse
,
7181 (void(*)(sqlite3
*,void*))sqlite3ExprListDelete
,
7186 /* If the outer query contains a "complex" result set (that is,
7187 ** if the result set of the outer query uses functions or subqueries)
7188 ** and if the subquery contains an ORDER BY clause and if
7189 ** it will be implemented as a co-routine, then do not flatten. This
7190 ** restriction allows SQL constructs like this:
7192 ** SELECT expensive_function(x)
7193 ** FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
7195 ** The expensive_function() is only computed on the 10 rows that
7196 ** are output, rather than every row of the table.
7198 ** The requirement that the outer query have a complex result set
7199 ** means that flattening does occur on simpler SQL constraints without
7200 ** the expensive_function() like:
7202 ** SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
7204 if( pSub
->pOrderBy
!=0
7206 && (p
->selFlags
& SF_ComplexResult
)!=0
7207 && (pTabList
->nSrc
==1
7208 || (pTabList
->a
[1].fg
.jointype
&(JT_OUTER
|JT_CROSS
))!=0)
7213 if( flattenSubquery(pParse
, p
, i
, isAgg
) ){
7214 if( pParse
->nErr
) goto select_end
;
7215 /* This subquery can be absorbed into its parent. */
7219 if( db
->mallocFailed
) goto select_end
;
7220 if( !IgnorableOrderby(pDest
) ){
7221 sSort
.pOrderBy
= p
->pOrderBy
;
7226 #ifndef SQLITE_OMIT_COMPOUND_SELECT
7227 /* Handle compound SELECT statements using the separate multiSelect()
7231 rc
= multiSelect(pParse
, p
, pDest
);
7232 #if TREETRACE_ENABLED
7233 TREETRACE(0x400,pParse
,p
,("end compound-select processing\n"));
7234 if( (sqlite3TreeTrace
& 0x400)!=0 && ExplainQueryPlanParent(pParse
)==0 ){
7235 sqlite3TreeViewSelect(0, p
, 0);
7238 if( p
->pNext
==0 ) ExplainQueryPlanPop(pParse
);
7243 /* Do the WHERE-clause constant propagation optimization if this is
7244 ** a join. No need to speed time on this operation for non-join queries
7245 ** as the equivalent optimization will be handled by query planner in
7246 ** sqlite3WhereBegin().
7249 && p
->pWhere
->op
==TK_AND
7250 && OptimizationEnabled(db
, SQLITE_PropagateConst
)
7251 && propagateConstants(pParse
, p
)
7253 #if TREETRACE_ENABLED
7254 if( sqlite3TreeTrace
& 0x2000 ){
7255 TREETRACE(0x2000,pParse
,p
,("After constant propagation:\n"));
7256 sqlite3TreeViewSelect(0, p
, 0);
7260 TREETRACE(0x2000,pParse
,p
,("Constant propagation not helpful\n"));
7263 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
7264 if( OptimizationEnabled(db
, SQLITE_QueryFlattener
|SQLITE_CountOfView
)
7265 && countOfViewOptimization(pParse
, p
)
7267 if( db
->mallocFailed
) goto select_end
;
7272 /* For each term in the FROM clause, do two things:
7273 ** (1) Authorized unreferenced tables
7274 ** (2) Generate code for all sub-queries
7276 for(i
=0; i
<pTabList
->nSrc
; i
++){
7277 SrcItem
*pItem
= &pTabList
->a
[i
];
7281 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
7282 const char *zSavedAuthContext
;
7285 /* Issue SQLITE_READ authorizations with a fake column name for any
7286 ** tables that are referenced but from which no values are extracted.
7287 ** Examples of where these kinds of null SQLITE_READ authorizations
7290 ** SELECT count(*) FROM t1; -- SQLITE_READ t1.""
7291 ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2.""
7293 ** The fake column name is an empty string. It is possible for a table to
7294 ** have a column named by the empty string, in which case there is no way to
7295 ** distinguish between an unreferenced table and an actual reference to the
7296 ** "" column. The original design was for the fake column name to be a NULL,
7297 ** which would be unambiguous. But legacy authorization callbacks might
7298 ** assume the column name is non-NULL and segfault. The use of an empty
7299 ** string for the fake column name seems safer.
7301 if( pItem
->colUsed
==0 && pItem
->zName
!=0 ){
7302 sqlite3AuthCheck(pParse
, SQLITE_READ
, pItem
->zName
, "", pItem
->zDatabase
);
7305 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
7306 /* Generate code for all sub-queries in the FROM clause
7308 pSub
= pItem
->pSelect
;
7309 if( pSub
==0 ) continue;
7311 /* The code for a subquery should only be generated once. */
7312 assert( pItem
->addrFillSub
==0 );
7314 /* Increment Parse.nHeight by the height of the largest expression
7315 ** tree referred to by this, the parent select. The child select
7316 ** may contain expression trees of at most
7317 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
7318 ** more conservative than necessary, but much easier than enforcing
7321 pParse
->nHeight
+= sqlite3SelectExprHeight(p
);
7323 /* Make copies of constant WHERE-clause terms in the outer query down
7324 ** inside the subquery. This can help the subquery to run more efficiently.
7326 if( OptimizationEnabled(db
, SQLITE_PushDown
)
7327 && (pItem
->fg
.isCte
==0
7328 || (pItem
->u2
.pCteUse
->eM10d
!=M10d_Yes
&& pItem
->u2
.pCteUse
->nUse
<2))
7329 && pushDownWhereTerms(pParse
, pSub
, p
->pWhere
, pItem
)
7331 #if TREETRACE_ENABLED
7332 if( sqlite3TreeTrace
& 0x4000 ){
7333 TREETRACE(0x4000,pParse
,p
,
7334 ("After WHERE-clause push-down into subquery %d:\n", pSub
->selId
));
7335 sqlite3TreeViewSelect(0, p
, 0);
7338 assert( pItem
->pSelect
&& (pItem
->pSelect
->selFlags
& SF_PushDown
)!=0 );
7340 TREETRACE(0x4000,pParse
,p
,("Push-down not possible\n"));
7343 zSavedAuthContext
= pParse
->zAuthContext
;
7344 pParse
->zAuthContext
= pItem
->zName
;
7346 /* Generate code to implement the subquery
7348 if( fromClauseTermCanBeCoroutine(pParse
, pTabList
, i
, p
->selFlags
) ){
7349 /* Implement a co-routine that will return a single row of the result
7350 ** set on each invocation.
7352 int addrTop
= sqlite3VdbeCurrentAddr(v
)+1;
7354 pItem
->regReturn
= ++pParse
->nMem
;
7355 sqlite3VdbeAddOp3(v
, OP_InitCoroutine
, pItem
->regReturn
, 0, addrTop
);
7356 VdbeComment((v
, "%!S", pItem
));
7357 pItem
->addrFillSub
= addrTop
;
7358 sqlite3SelectDestInit(&dest
, SRT_Coroutine
, pItem
->regReturn
);
7359 ExplainQueryPlan((pParse
, 1, "CO-ROUTINE %!S", pItem
));
7360 sqlite3Select(pParse
, pSub
, &dest
);
7361 pItem
->pTab
->nRowLogEst
= pSub
->nSelectRow
;
7362 pItem
->fg
.viaCoroutine
= 1;
7363 pItem
->regResult
= dest
.iSdst
;
7364 sqlite3VdbeEndCoroutine(v
, pItem
->regReturn
);
7365 sqlite3VdbeJumpHere(v
, addrTop
-1);
7366 sqlite3ClearTempRegCache(pParse
);
7367 }else if( pItem
->fg
.isCte
&& pItem
->u2
.pCteUse
->addrM9e
>0 ){
7368 /* This is a CTE for which materialization code has already been
7369 ** generated. Invoke the subroutine to compute the materialization,
7370 ** the make the pItem->iCursor be a copy of the ephemerial table that
7371 ** holds the result of the materialization. */
7372 CteUse
*pCteUse
= pItem
->u2
.pCteUse
;
7373 sqlite3VdbeAddOp2(v
, OP_Gosub
, pCteUse
->regRtn
, pCteUse
->addrM9e
);
7374 if( pItem
->iCursor
!=pCteUse
->iCur
){
7375 sqlite3VdbeAddOp2(v
, OP_OpenDup
, pItem
->iCursor
, pCteUse
->iCur
);
7376 VdbeComment((v
, "%!S", pItem
));
7378 pSub
->nSelectRow
= pCteUse
->nRowEst
;
7379 }else if( (pPrior
= isSelfJoinView(pTabList
, pItem
, 0, i
))!=0 ){
7380 /* This view has already been materialized by a prior entry in
7381 ** this same FROM clause. Reuse it. */
7382 if( pPrior
->addrFillSub
){
7383 sqlite3VdbeAddOp2(v
, OP_Gosub
, pPrior
->regReturn
, pPrior
->addrFillSub
);
7385 sqlite3VdbeAddOp2(v
, OP_OpenDup
, pItem
->iCursor
, pPrior
->iCursor
);
7386 pSub
->nSelectRow
= pPrior
->pSelect
->nSelectRow
;
7388 /* Materialize the view. If the view is not correlated, generate a
7389 ** subroutine to do the materialization so that subsequent uses of
7390 ** the same view can reuse the materialization. */
7393 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
7397 pItem
->regReturn
= ++pParse
->nMem
;
7398 topAddr
= sqlite3VdbeAddOp0(v
, OP_Goto
);
7399 pItem
->addrFillSub
= topAddr
+1;
7400 pItem
->fg
.isMaterialized
= 1;
7401 if( pItem
->fg
.isCorrelated
==0 ){
7402 /* If the subquery is not correlated and if we are not inside of
7403 ** a trigger, then we only need to compute the value of the subquery
7405 onceAddr
= sqlite3VdbeAddOp0(v
, OP_Once
); VdbeCoverage(v
);
7406 VdbeComment((v
, "materialize %!S", pItem
));
7408 VdbeNoopComment((v
, "materialize %!S", pItem
));
7410 sqlite3SelectDestInit(&dest
, SRT_EphemTab
, pItem
->iCursor
);
7412 ExplainQueryPlan2(addrExplain
, (pParse
, 1, "MATERIALIZE %!S", pItem
));
7413 sqlite3Select(pParse
, pSub
, &dest
);
7414 pItem
->pTab
->nRowLogEst
= pSub
->nSelectRow
;
7415 if( onceAddr
) sqlite3VdbeJumpHere(v
, onceAddr
);
7416 sqlite3VdbeAddOp2(v
, OP_Return
, pItem
->regReturn
, topAddr
+1);
7417 VdbeComment((v
, "end %!S", pItem
));
7418 sqlite3VdbeScanStatusRange(v
, addrExplain
, addrExplain
, -1);
7419 sqlite3VdbeJumpHere(v
, topAddr
);
7420 sqlite3ClearTempRegCache(pParse
);
7421 if( pItem
->fg
.isCte
&& pItem
->fg
.isCorrelated
==0 ){
7422 CteUse
*pCteUse
= pItem
->u2
.pCteUse
;
7423 pCteUse
->addrM9e
= pItem
->addrFillSub
;
7424 pCteUse
->regRtn
= pItem
->regReturn
;
7425 pCteUse
->iCur
= pItem
->iCursor
;
7426 pCteUse
->nRowEst
= pSub
->nSelectRow
;
7429 if( db
->mallocFailed
) goto select_end
;
7430 pParse
->nHeight
-= sqlite3SelectExprHeight(p
);
7431 pParse
->zAuthContext
= zSavedAuthContext
;
7435 /* Various elements of the SELECT copied into local variables for
7439 pGroupBy
= p
->pGroupBy
;
7440 pHaving
= p
->pHaving
;
7441 sDistinct
.isTnct
= (p
->selFlags
& SF_Distinct
)!=0;
7443 #if TREETRACE_ENABLED
7444 if( sqlite3TreeTrace
& 0x8000 ){
7445 TREETRACE(0x8000,pParse
,p
,("After all FROM-clause analysis:\n"));
7446 sqlite3TreeViewSelect(0, p
, 0);
7450 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
7451 ** if the select-list is the same as the ORDER BY list, then this query
7452 ** can be rewritten as a GROUP BY. In other words, this:
7454 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz
7456 ** is transformed to:
7458 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
7460 ** The second form is preferred as a single index (or temp-table) may be
7461 ** used for both the ORDER BY and DISTINCT processing. As originally
7462 ** written the query must use a temp-table for at least one of the ORDER
7463 ** BY and DISTINCT, and an index or separate temp-table for the other.
7465 if( (p
->selFlags
& (SF_Distinct
|SF_Aggregate
))==SF_Distinct
7466 && sqlite3ExprListCompare(sSort
.pOrderBy
, pEList
, -1)==0
7467 #ifndef SQLITE_OMIT_WINDOWFUNC
7471 p
->selFlags
&= ~SF_Distinct
;
7472 pGroupBy
= p
->pGroupBy
= sqlite3ExprListDup(db
, pEList
, 0);
7473 p
->selFlags
|= SF_Aggregate
;
7474 /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
7475 ** the sDistinct.isTnct is still set. Hence, isTnct represents the
7476 ** original setting of the SF_Distinct flag, not the current setting */
7477 assert( sDistinct
.isTnct
);
7478 sDistinct
.isTnct
= 2;
7480 #if TREETRACE_ENABLED
7481 if( sqlite3TreeTrace
& 0x20000 ){
7482 TREETRACE(0x20000,pParse
,p
,("Transform DISTINCT into GROUP BY:\n"));
7483 sqlite3TreeViewSelect(0, p
, 0);
7488 /* If there is an ORDER BY clause, then create an ephemeral index to
7489 ** do the sorting. But this sorting ephemeral index might end up
7490 ** being unused if the data can be extracted in pre-sorted order.
7491 ** If that is the case, then the OP_OpenEphemeral instruction will be
7492 ** changed to an OP_Noop once we figure out that the sorting index is
7493 ** not needed. The sSort.addrSortIndex variable is used to facilitate
7496 if( sSort
.pOrderBy
){
7498 pKeyInfo
= sqlite3KeyInfoFromExprList(
7499 pParse
, sSort
.pOrderBy
, 0, pEList
->nExpr
);
7500 sSort
.iECursor
= pParse
->nTab
++;
7501 sSort
.addrSortIndex
=
7502 sqlite3VdbeAddOp4(v
, OP_OpenEphemeral
,
7503 sSort
.iECursor
, sSort
.pOrderBy
->nExpr
+1+pEList
->nExpr
, 0,
7504 (char*)pKeyInfo
, P4_KEYINFO
7507 sSort
.addrSortIndex
= -1;
7510 /* If the output is destined for a temporary table, open that table.
7512 if( pDest
->eDest
==SRT_EphemTab
){
7513 sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, pDest
->iSDParm
, pEList
->nExpr
);
7514 if( p
->selFlags
& SF_NestedFrom
){
7515 /* Delete or NULL-out result columns that will never be used */
7517 for(ii
=pEList
->nExpr
-1; ii
>0 && pEList
->a
[ii
].fg
.bUsed
==0; ii
--){
7518 sqlite3ExprDelete(db
, pEList
->a
[ii
].pExpr
);
7519 sqlite3DbFree(db
, pEList
->a
[ii
].zEName
);
7522 for(ii
=0; ii
<pEList
->nExpr
; ii
++){
7523 if( pEList
->a
[ii
].fg
.bUsed
==0 ) pEList
->a
[ii
].pExpr
->op
= TK_NULL
;
7530 iEnd
= sqlite3VdbeMakeLabel(pParse
);
7531 if( (p
->selFlags
& SF_FixedLimit
)==0 ){
7532 p
->nSelectRow
= 320; /* 4 billion rows */
7534 if( p
->pLimit
) computeLimitRegisters(pParse
, p
, iEnd
);
7535 if( p
->iLimit
==0 && sSort
.addrSortIndex
>=0 ){
7536 sqlite3VdbeChangeOpcode(v
, sSort
.addrSortIndex
, OP_SorterOpen
);
7537 sSort
.sortFlags
|= SORTFLAG_UseSorter
;
7540 /* Open an ephemeral index to use for the distinct set.
7542 if( p
->selFlags
& SF_Distinct
){
7543 sDistinct
.tabTnct
= pParse
->nTab
++;
7544 sDistinct
.addrTnct
= sqlite3VdbeAddOp4(v
, OP_OpenEphemeral
,
7545 sDistinct
.tabTnct
, 0, 0,
7546 (char*)sqlite3KeyInfoFromExprList(pParse
, p
->pEList
,0,0),
7548 sqlite3VdbeChangeP5(v
, BTREE_UNORDERED
);
7549 sDistinct
.eTnctType
= WHERE_DISTINCT_UNORDERED
;
7551 sDistinct
.eTnctType
= WHERE_DISTINCT_NOOP
;
7554 if( !isAgg
&& pGroupBy
==0 ){
7555 /* No aggregate functions and no GROUP BY clause */
7556 u16 wctrlFlags
= (sDistinct
.isTnct
? WHERE_WANT_DISTINCT
: 0)
7557 | (p
->selFlags
& SF_FixedLimit
);
7558 #ifndef SQLITE_OMIT_WINDOWFUNC
7559 Window
*pWin
= p
->pWin
; /* Main window object (or NULL) */
7561 sqlite3WindowCodeInit(pParse
, p
);
7564 assert( WHERE_USE_LIMIT
==SF_FixedLimit
);
7567 /* Begin the database scan. */
7568 TREETRACE(0x2,pParse
,p
,("WhereBegin\n"));
7569 pWInfo
= sqlite3WhereBegin(pParse
, pTabList
, pWhere
, sSort
.pOrderBy
,
7570 p
->pEList
, p
, wctrlFlags
, p
->nSelectRow
);
7571 if( pWInfo
==0 ) goto select_end
;
7572 if( sqlite3WhereOutputRowCount(pWInfo
) < p
->nSelectRow
){
7573 p
->nSelectRow
= sqlite3WhereOutputRowCount(pWInfo
);
7575 if( sDistinct
.isTnct
&& sqlite3WhereIsDistinct(pWInfo
) ){
7576 sDistinct
.eTnctType
= sqlite3WhereIsDistinct(pWInfo
);
7578 if( sSort
.pOrderBy
){
7579 sSort
.nOBSat
= sqlite3WhereIsOrdered(pWInfo
);
7580 sSort
.labelOBLopt
= sqlite3WhereOrderByLimitOptLabel(pWInfo
);
7581 if( sSort
.nOBSat
==sSort
.pOrderBy
->nExpr
){
7585 TREETRACE(0x2,pParse
,p
,("WhereBegin returns\n"));
7587 /* If sorting index that was created by a prior OP_OpenEphemeral
7588 ** instruction ended up not being needed, then change the OP_OpenEphemeral
7591 if( sSort
.addrSortIndex
>=0 && sSort
.pOrderBy
==0 ){
7592 sqlite3VdbeChangeToNoop(v
, sSort
.addrSortIndex
);
7595 assert( p
->pEList
==pEList
);
7596 #ifndef SQLITE_OMIT_WINDOWFUNC
7598 int addrGosub
= sqlite3VdbeMakeLabel(pParse
);
7599 int iCont
= sqlite3VdbeMakeLabel(pParse
);
7600 int iBreak
= sqlite3VdbeMakeLabel(pParse
);
7601 int regGosub
= ++pParse
->nMem
;
7603 sqlite3WindowCodeStep(pParse
, p
, pWInfo
, regGosub
, addrGosub
);
7605 sqlite3VdbeAddOp2(v
, OP_Goto
, 0, iBreak
);
7606 sqlite3VdbeResolveLabel(v
, addrGosub
);
7607 VdbeNoopComment((v
, "inner-loop subroutine"));
7608 sSort
.labelOBLopt
= 0;
7609 selectInnerLoop(pParse
, p
, -1, &sSort
, &sDistinct
, pDest
, iCont
, iBreak
);
7610 sqlite3VdbeResolveLabel(v
, iCont
);
7611 sqlite3VdbeAddOp1(v
, OP_Return
, regGosub
);
7612 VdbeComment((v
, "end inner-loop subroutine"));
7613 sqlite3VdbeResolveLabel(v
, iBreak
);
7615 #endif /* SQLITE_OMIT_WINDOWFUNC */
7617 /* Use the standard inner loop. */
7618 selectInnerLoop(pParse
, p
, -1, &sSort
, &sDistinct
, pDest
,
7619 sqlite3WhereContinueLabel(pWInfo
),
7620 sqlite3WhereBreakLabel(pWInfo
));
7622 /* End the database scan loop.
7624 TREETRACE(0x2,pParse
,p
,("WhereEnd\n"));
7625 sqlite3WhereEnd(pWInfo
);
7628 /* This case when there exist aggregate functions or a GROUP BY clause
7630 NameContext sNC
; /* Name context for processing aggregate information */
7631 int iAMem
; /* First Mem address for storing current GROUP BY */
7632 int iBMem
; /* First Mem address for previous GROUP BY */
7633 int iUseFlag
; /* Mem address holding flag indicating that at least
7634 ** one row of the input to the aggregator has been
7636 int iAbortFlag
; /* Mem address which causes query abort if positive */
7637 int groupBySort
; /* Rows come from source in GROUP BY order */
7638 int addrEnd
; /* End of processing for this SELECT */
7639 int sortPTab
= 0; /* Pseudotable used to decode sorting results */
7640 int sortOut
= 0; /* Output register from the sorter */
7641 int orderByGrp
= 0; /* True if the GROUP BY and ORDER BY are the same */
7643 /* Remove any and all aliases between the result set and the
7647 int k
; /* Loop counter */
7648 struct ExprList_item
*pItem
; /* For looping over expression in a list */
7650 for(k
=p
->pEList
->nExpr
, pItem
=p
->pEList
->a
; k
>0; k
--, pItem
++){
7651 pItem
->u
.x
.iAlias
= 0;
7653 for(k
=pGroupBy
->nExpr
, pItem
=pGroupBy
->a
; k
>0; k
--, pItem
++){
7654 pItem
->u
.x
.iAlias
= 0;
7656 assert( 66==sqlite3LogEst(100) );
7657 if( p
->nSelectRow
>66 ) p
->nSelectRow
= 66;
7659 /* If there is both a GROUP BY and an ORDER BY clause and they are
7660 ** identical, then it may be possible to disable the ORDER BY clause
7661 ** on the grounds that the GROUP BY will cause elements to come out
7662 ** in the correct order. It also may not - the GROUP BY might use a
7663 ** database index that causes rows to be grouped together as required
7664 ** but not actually sorted. Either way, record the fact that the
7665 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
7667 if( sSort
.pOrderBy
&& pGroupBy
->nExpr
==sSort
.pOrderBy
->nExpr
){
7669 /* The GROUP BY processing doesn't care whether rows are delivered in
7670 ** ASC or DESC order - only that each group is returned contiguously.
7671 ** So set the ASC/DESC flags in the GROUP BY to match those in the
7672 ** ORDER BY to maximize the chances of rows being delivered in an
7673 ** order that makes the ORDER BY redundant. */
7674 for(ii
=0; ii
<pGroupBy
->nExpr
; ii
++){
7676 sortFlags
= sSort
.pOrderBy
->a
[ii
].fg
.sortFlags
& KEYINFO_ORDER_DESC
;
7677 pGroupBy
->a
[ii
].fg
.sortFlags
= sortFlags
;
7679 if( sqlite3ExprListCompare(pGroupBy
, sSort
.pOrderBy
, -1)==0 ){
7684 assert( 0==sqlite3LogEst(1) );
7688 /* Create a label to jump to when we want to abort the query */
7689 addrEnd
= sqlite3VdbeMakeLabel(pParse
);
7691 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
7692 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
7693 ** SELECT statement.
7695 pAggInfo
= sqlite3DbMallocZero(db
, sizeof(*pAggInfo
) );
7697 sqlite3ParserAddCleanup(pParse
,
7698 (void(*)(sqlite3
*,void*))agginfoFree
, pAggInfo
);
7699 testcase( pParse
->earlyCleanup
);
7701 if( db
->mallocFailed
){
7704 pAggInfo
->selId
= p
->selId
;
7706 pAggInfo
->pSelect
= p
;
7708 memset(&sNC
, 0, sizeof(sNC
));
7709 sNC
.pParse
= pParse
;
7710 sNC
.pSrcList
= pTabList
;
7711 sNC
.uNC
.pAggInfo
= pAggInfo
;
7712 VVA_ONLY( sNC
.ncFlags
= NC_UAggInfo
; )
7713 pAggInfo
->nSortingColumn
= pGroupBy
? pGroupBy
->nExpr
: 0;
7714 pAggInfo
->pGroupBy
= pGroupBy
;
7715 sqlite3ExprAnalyzeAggList(&sNC
, pEList
);
7716 sqlite3ExprAnalyzeAggList(&sNC
, sSort
.pOrderBy
);
7719 assert( pWhere
==p
->pWhere
);
7720 assert( pHaving
==p
->pHaving
);
7721 assert( pGroupBy
==p
->pGroupBy
);
7722 havingToWhere(pParse
, p
);
7725 sqlite3ExprAnalyzeAggregates(&sNC
, pHaving
);
7727 pAggInfo
->nAccumulator
= pAggInfo
->nColumn
;
7728 if( p
->pGroupBy
==0 && p
->pHaving
==0 && pAggInfo
->nFunc
==1 ){
7729 minMaxFlag
= minMaxQuery(db
, pAggInfo
->aFunc
[0].pFExpr
, &pMinMaxOrderBy
);
7731 minMaxFlag
= WHERE_ORDERBY_NORMAL
;
7733 analyzeAggFuncArgs(pAggInfo
, &sNC
);
7734 if( db
->mallocFailed
) goto select_end
;
7735 #if TREETRACE_ENABLED
7736 if( sqlite3TreeTrace
& 0x20 ){
7737 TREETRACE(0x20,pParse
,p
,("After aggregate analysis %p:\n", pAggInfo
));
7738 sqlite3TreeViewSelect(0, p
, 0);
7740 sqlite3DebugPrintf("MIN/MAX Optimization (0x%02x) adds:\n", minMaxFlag
);
7741 sqlite3TreeViewExprList(0, pMinMaxOrderBy
, 0, "ORDERBY");
7743 printAggInfo(pAggInfo
);
7748 /* Processing for aggregates with GROUP BY is very different and
7749 ** much more complex than aggregates without a GROUP BY.
7752 KeyInfo
*pKeyInfo
; /* Keying information for the group by clause */
7753 int addr1
; /* A-vs-B comparision jump */
7754 int addrOutputRow
; /* Start of subroutine that outputs a result row */
7755 int regOutputRow
; /* Return address register for output subroutine */
7756 int addrSetAbort
; /* Set the abort flag and return */
7757 int addrTopOfLoop
; /* Top of the input loop */
7758 int addrSortingIdx
; /* The OP_OpenEphemeral for the sorting index */
7759 int addrReset
; /* Subroutine for resetting the accumulator */
7760 int regReset
; /* Return address register for reset subroutine */
7761 ExprList
*pDistinct
= 0;
7763 int eDist
= WHERE_DISTINCT_NOOP
;
7765 if( pAggInfo
->nFunc
==1
7766 && pAggInfo
->aFunc
[0].iDistinct
>=0
7767 && ALWAYS(pAggInfo
->aFunc
[0].pFExpr
!=0)
7768 && ALWAYS(ExprUseXList(pAggInfo
->aFunc
[0].pFExpr
))
7769 && pAggInfo
->aFunc
[0].pFExpr
->x
.pList
!=0
7771 Expr
*pExpr
= pAggInfo
->aFunc
[0].pFExpr
->x
.pList
->a
[0].pExpr
;
7772 pExpr
= sqlite3ExprDup(db
, pExpr
, 0);
7773 pDistinct
= sqlite3ExprListDup(db
, pGroupBy
, 0);
7774 pDistinct
= sqlite3ExprListAppend(pParse
, pDistinct
, pExpr
);
7775 distFlag
= pDistinct
? (WHERE_WANT_DISTINCT
|WHERE_AGG_DISTINCT
) : 0;
7778 /* If there is a GROUP BY clause we might need a sorting index to
7779 ** implement it. Allocate that sorting index now. If it turns out
7780 ** that we do not need it after all, the OP_SorterOpen instruction
7781 ** will be converted into a Noop.
7783 pAggInfo
->sortingIdx
= pParse
->nTab
++;
7784 pKeyInfo
= sqlite3KeyInfoFromExprList(pParse
, pGroupBy
,
7785 0, pAggInfo
->nColumn
);
7786 addrSortingIdx
= sqlite3VdbeAddOp4(v
, OP_SorterOpen
,
7787 pAggInfo
->sortingIdx
, pAggInfo
->nSortingColumn
,
7788 0, (char*)pKeyInfo
, P4_KEYINFO
);
7790 /* Initialize memory locations used by GROUP BY aggregate processing
7792 iUseFlag
= ++pParse
->nMem
;
7793 iAbortFlag
= ++pParse
->nMem
;
7794 regOutputRow
= ++pParse
->nMem
;
7795 addrOutputRow
= sqlite3VdbeMakeLabel(pParse
);
7796 regReset
= ++pParse
->nMem
;
7797 addrReset
= sqlite3VdbeMakeLabel(pParse
);
7798 iAMem
= pParse
->nMem
+ 1;
7799 pParse
->nMem
+= pGroupBy
->nExpr
;
7800 iBMem
= pParse
->nMem
+ 1;
7801 pParse
->nMem
+= pGroupBy
->nExpr
;
7802 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, iAbortFlag
);
7803 VdbeComment((v
, "clear abort flag"));
7804 sqlite3VdbeAddOp3(v
, OP_Null
, 0, iAMem
, iAMem
+pGroupBy
->nExpr
-1);
7806 /* Begin a loop that will extract all source rows in GROUP BY order.
7807 ** This might involve two separate loops with an OP_Sort in between, or
7808 ** it might be a single loop that uses an index to extract information
7809 ** in the right order to begin with.
7811 sqlite3VdbeAddOp2(v
, OP_Gosub
, regReset
, addrReset
);
7812 TREETRACE(0x2,pParse
,p
,("WhereBegin\n"));
7813 pWInfo
= sqlite3WhereBegin(pParse
, pTabList
, pWhere
, pGroupBy
, pDistinct
,
7814 p
, (sDistinct
.isTnct
==2 ? WHERE_DISTINCTBY
: WHERE_GROUPBY
)
7815 | (orderByGrp
? WHERE_SORTBYGROUP
: 0) | distFlag
, 0
7818 sqlite3ExprListDelete(db
, pDistinct
);
7821 if( pParse
->pIdxEpr
){
7822 optimizeAggregateUseOfIndexedExpr(pParse
, p
, pAggInfo
, &sNC
);
7824 assignAggregateRegisters(pParse
, pAggInfo
);
7825 eDist
= sqlite3WhereIsDistinct(pWInfo
);
7826 TREETRACE(0x2,pParse
,p
,("WhereBegin returns\n"));
7827 if( sqlite3WhereIsOrdered(pWInfo
)==pGroupBy
->nExpr
){
7828 /* The optimizer is able to deliver rows in group by order so
7829 ** we do not have to sort. The OP_OpenEphemeral table will be
7830 ** cancelled later because we still need to use the pKeyInfo
7834 /* Rows are coming out in undetermined order. We have to push
7835 ** each row into a sorting index, terminate the first loop,
7836 ** then loop over the sorting index in order to get the output
7844 explainTempTable(pParse
,
7845 (sDistinct
.isTnct
&& (p
->selFlags
&SF_Distinct
)==0) ?
7846 "DISTINCT" : "GROUP BY");
7849 nGroupBy
= pGroupBy
->nExpr
;
7852 for(i
=0; i
<pAggInfo
->nColumn
; i
++){
7853 if( pAggInfo
->aCol
[i
].iSorterColumn
>=j
){
7858 regBase
= sqlite3GetTempRange(pParse
, nCol
);
7859 sqlite3ExprCodeExprList(pParse
, pGroupBy
, regBase
, 0, 0);
7861 pAggInfo
->directMode
= 1;
7862 for(i
=0; i
<pAggInfo
->nColumn
; i
++){
7863 struct AggInfo_col
*pCol
= &pAggInfo
->aCol
[i
];
7864 if( pCol
->iSorterColumn
>=j
){
7865 sqlite3ExprCode(pParse
, pCol
->pCExpr
, j
+ regBase
);
7869 pAggInfo
->directMode
= 0;
7870 regRecord
= sqlite3GetTempReg(pParse
);
7871 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regBase
, nCol
, regRecord
);
7872 sqlite3VdbeAddOp2(v
, OP_SorterInsert
, pAggInfo
->sortingIdx
, regRecord
);
7873 sqlite3ReleaseTempReg(pParse
, regRecord
);
7874 sqlite3ReleaseTempRange(pParse
, regBase
, nCol
);
7875 TREETRACE(0x2,pParse
,p
,("WhereEnd\n"));
7876 sqlite3WhereEnd(pWInfo
);
7877 pAggInfo
->sortingIdxPTab
= sortPTab
= pParse
->nTab
++;
7878 sortOut
= sqlite3GetTempReg(pParse
);
7879 sqlite3VdbeAddOp3(v
, OP_OpenPseudo
, sortPTab
, sortOut
, nCol
);
7880 sqlite3VdbeAddOp2(v
, OP_SorterSort
, pAggInfo
->sortingIdx
, addrEnd
);
7881 VdbeComment((v
, "GROUP BY sort")); VdbeCoverage(v
);
7882 pAggInfo
->useSortingIdx
= 1;
7885 /* If there are entries in pAgggInfo->aFunc[] that contain subexpressions
7886 ** that are indexed (and that were previously identified and tagged
7887 ** in optimizeAggregateUseOfIndexedExpr()) then those subexpressions
7888 ** must now be converted into a TK_AGG_COLUMN node so that the value
7889 ** is correctly pulled from the index rather than being recomputed. */
7890 if( pParse
->pIdxEpr
){
7891 aggregateConvertIndexedExprRefToColumn(pAggInfo
);
7892 #if TREETRACE_ENABLED
7893 if( sqlite3TreeTrace
& 0x20 ){
7894 TREETRACE(0x20, pParse
, p
,
7895 ("AggInfo function expressions converted to reference index\n"));
7896 sqlite3TreeViewSelect(0, p
, 0);
7897 printAggInfo(pAggInfo
);
7902 /* If the index or temporary table used by the GROUP BY sort
7903 ** will naturally deliver rows in the order required by the ORDER BY
7904 ** clause, cancel the ephemeral table open coded earlier.
7906 ** This is an optimization - the correct answer should result regardless.
7907 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
7908 ** disable this optimization for testing purposes. */
7909 if( orderByGrp
&& OptimizationEnabled(db
, SQLITE_GroupByOrder
)
7910 && (groupBySort
|| sqlite3WhereIsSorted(pWInfo
))
7913 sqlite3VdbeChangeToNoop(v
, sSort
.addrSortIndex
);
7916 /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
7917 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
7918 ** Then compare the current GROUP BY terms against the GROUP BY terms
7919 ** from the previous row currently stored in a0, a1, a2...
7921 addrTopOfLoop
= sqlite3VdbeCurrentAddr(v
);
7923 sqlite3VdbeAddOp3(v
, OP_SorterData
, pAggInfo
->sortingIdx
,
7926 for(j
=0; j
<pGroupBy
->nExpr
; j
++){
7928 sqlite3VdbeAddOp3(v
, OP_Column
, sortPTab
, j
, iBMem
+j
);
7930 pAggInfo
->directMode
= 1;
7931 sqlite3ExprCode(pParse
, pGroupBy
->a
[j
].pExpr
, iBMem
+j
);
7934 sqlite3VdbeAddOp4(v
, OP_Compare
, iAMem
, iBMem
, pGroupBy
->nExpr
,
7935 (char*)sqlite3KeyInfoRef(pKeyInfo
), P4_KEYINFO
);
7936 addr1
= sqlite3VdbeCurrentAddr(v
);
7937 sqlite3VdbeAddOp3(v
, OP_Jump
, addr1
+1, 0, addr1
+1); VdbeCoverage(v
);
7939 /* Generate code that runs whenever the GROUP BY changes.
7940 ** Changes in the GROUP BY are detected by the previous code
7941 ** block. If there were no changes, this block is skipped.
7943 ** This code copies current group by terms in b0,b1,b2,...
7944 ** over to a0,a1,a2. It then calls the output subroutine
7945 ** and resets the aggregate accumulator registers in preparation
7946 ** for the next GROUP BY batch.
7948 sqlite3ExprCodeMove(pParse
, iBMem
, iAMem
, pGroupBy
->nExpr
);
7949 sqlite3VdbeAddOp2(v
, OP_Gosub
, regOutputRow
, addrOutputRow
);
7950 VdbeComment((v
, "output one row"));
7951 sqlite3VdbeAddOp2(v
, OP_IfPos
, iAbortFlag
, addrEnd
); VdbeCoverage(v
);
7952 VdbeComment((v
, "check abort flag"));
7953 sqlite3VdbeAddOp2(v
, OP_Gosub
, regReset
, addrReset
);
7954 VdbeComment((v
, "reset accumulator"));
7956 /* Update the aggregate accumulators based on the content of
7959 sqlite3VdbeJumpHere(v
, addr1
);
7960 updateAccumulator(pParse
, iUseFlag
, pAggInfo
, eDist
);
7961 sqlite3VdbeAddOp2(v
, OP_Integer
, 1, iUseFlag
);
7962 VdbeComment((v
, "indicate data in accumulator"));
7967 sqlite3VdbeAddOp2(v
, OP_SorterNext
, pAggInfo
->sortingIdx
,addrTopOfLoop
);
7970 TREETRACE(0x2,pParse
,p
,("WhereEnd\n"));
7971 sqlite3WhereEnd(pWInfo
);
7972 sqlite3VdbeChangeToNoop(v
, addrSortingIdx
);
7974 sqlite3ExprListDelete(db
, pDistinct
);
7976 /* Output the final row of result
7978 sqlite3VdbeAddOp2(v
, OP_Gosub
, regOutputRow
, addrOutputRow
);
7979 VdbeComment((v
, "output final row"));
7981 /* Jump over the subroutines
7983 sqlite3VdbeGoto(v
, addrEnd
);
7985 /* Generate a subroutine that outputs a single row of the result
7986 ** set. This subroutine first looks at the iUseFlag. If iUseFlag
7987 ** is less than or equal to zero, the subroutine is a no-op. If
7988 ** the processing calls for the query to abort, this subroutine
7989 ** increments the iAbortFlag memory location before returning in
7990 ** order to signal the caller to abort.
7992 addrSetAbort
= sqlite3VdbeCurrentAddr(v
);
7993 sqlite3VdbeAddOp2(v
, OP_Integer
, 1, iAbortFlag
);
7994 VdbeComment((v
, "set abort flag"));
7995 sqlite3VdbeAddOp1(v
, OP_Return
, regOutputRow
);
7996 sqlite3VdbeResolveLabel(v
, addrOutputRow
);
7997 addrOutputRow
= sqlite3VdbeCurrentAddr(v
);
7998 sqlite3VdbeAddOp2(v
, OP_IfPos
, iUseFlag
, addrOutputRow
+2);
8000 VdbeComment((v
, "Groupby result generator entry point"));
8001 sqlite3VdbeAddOp1(v
, OP_Return
, regOutputRow
);
8002 finalizeAggFunctions(pParse
, pAggInfo
);
8003 sqlite3ExprIfFalse(pParse
, pHaving
, addrOutputRow
+1, SQLITE_JUMPIFNULL
);
8004 selectInnerLoop(pParse
, p
, -1, &sSort
,
8006 addrOutputRow
+1, addrSetAbort
);
8007 sqlite3VdbeAddOp1(v
, OP_Return
, regOutputRow
);
8008 VdbeComment((v
, "end groupby result generator"));
8010 /* Generate a subroutine that will reset the group-by accumulator
8012 sqlite3VdbeResolveLabel(v
, addrReset
);
8013 resetAccumulator(pParse
, pAggInfo
);
8014 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, iUseFlag
);
8015 VdbeComment((v
, "indicate accumulator empty"));
8016 sqlite3VdbeAddOp1(v
, OP_Return
, regReset
);
8018 if( distFlag
!=0 && eDist
!=WHERE_DISTINCT_NOOP
){
8019 struct AggInfo_func
*pF
= &pAggInfo
->aFunc
[0];
8020 fixDistinctOpenEph(pParse
, eDist
, pF
->iDistinct
, pF
->iDistAddr
);
8022 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */
8025 if( (pTab
= isSimpleCount(p
, pAggInfo
))!=0 ){
8026 /* If isSimpleCount() returns a pointer to a Table structure, then
8027 ** the SQL statement is of the form:
8029 ** SELECT count(*) FROM <tbl>
8031 ** where the Table structure returned represents table <tbl>.
8033 ** This statement is so common that it is optimized specially. The
8034 ** OP_Count instruction is executed either on the intkey table that
8035 ** contains the data for table <tbl> or on one of its indexes. It
8036 ** is better to execute the op on an index, as indexes are almost
8037 ** always spread across less pages than their corresponding tables.
8039 const int iDb
= sqlite3SchemaToIndex(pParse
->db
, pTab
->pSchema
);
8040 const int iCsr
= pParse
->nTab
++; /* Cursor to scan b-tree */
8041 Index
*pIdx
; /* Iterator variable */
8042 KeyInfo
*pKeyInfo
= 0; /* Keyinfo for scanned index */
8043 Index
*pBest
= 0; /* Best index found so far */
8044 Pgno iRoot
= pTab
->tnum
; /* Root page of scanned b-tree */
8046 sqlite3CodeVerifySchema(pParse
, iDb
);
8047 sqlite3TableLock(pParse
, iDb
, pTab
->tnum
, 0, pTab
->zName
);
8049 /* Search for the index that has the lowest scan cost.
8051 ** (2011-04-15) Do not do a full scan of an unordered index.
8053 ** (2013-10-03) Do not count the entries in a partial index.
8055 ** In practice the KeyInfo structure will not be used. It is only
8056 ** passed to keep OP_OpenRead happy.
8058 if( !HasRowid(pTab
) ) pBest
= sqlite3PrimaryKeyIndex(pTab
);
8059 if( !p
->pSrc
->a
[0].fg
.notIndexed
){
8060 for(pIdx
=pTab
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
){
8061 if( pIdx
->bUnordered
==0
8062 && pIdx
->szIdxRow
<pTab
->szTabRow
8063 && pIdx
->pPartIdxWhere
==0
8064 && (!pBest
|| pIdx
->szIdxRow
<pBest
->szIdxRow
)
8071 iRoot
= pBest
->tnum
;
8072 pKeyInfo
= sqlite3KeyInfoOfIndex(pParse
, pBest
);
8075 /* Open a read-only cursor, execute the OP_Count, close the cursor. */
8076 sqlite3VdbeAddOp4Int(v
, OP_OpenRead
, iCsr
, (int)iRoot
, iDb
, 1);
8078 sqlite3VdbeChangeP4(v
, -1, (char *)pKeyInfo
, P4_KEYINFO
);
8080 assignAggregateRegisters(pParse
, pAggInfo
);
8081 sqlite3VdbeAddOp2(v
, OP_Count
, iCsr
, AggInfoFuncReg(pAggInfo
,0));
8082 sqlite3VdbeAddOp1(v
, OP_Close
, iCsr
);
8083 explainSimpleCount(pParse
, pTab
, pBest
);
8085 int regAcc
= 0; /* "populate accumulators" flag */
8086 ExprList
*pDistinct
= 0;
8090 /* If there are accumulator registers but no min() or max() functions
8091 ** without FILTER clauses, allocate register regAcc. Register regAcc
8092 ** will contain 0 the first time the inner loop runs, and 1 thereafter.
8093 ** The code generated by updateAccumulator() uses this to ensure
8094 ** that the accumulator registers are (a) updated only once if
8095 ** there are no min() or max functions or (b) always updated for the
8096 ** first row visited by the aggregate, so that they are updated at
8097 ** least once even if the FILTER clause means the min() or max()
8098 ** function visits zero rows. */
8099 if( pAggInfo
->nAccumulator
){
8100 for(i
=0; i
<pAggInfo
->nFunc
; i
++){
8101 if( ExprHasProperty(pAggInfo
->aFunc
[i
].pFExpr
, EP_WinFunc
) ){
8104 if( pAggInfo
->aFunc
[i
].pFunc
->funcFlags
&SQLITE_FUNC_NEEDCOLL
){
8108 if( i
==pAggInfo
->nFunc
){
8109 regAcc
= ++pParse
->nMem
;
8110 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, regAcc
);
8112 }else if( pAggInfo
->nFunc
==1 && pAggInfo
->aFunc
[0].iDistinct
>=0 ){
8113 assert( ExprUseXList(pAggInfo
->aFunc
[0].pFExpr
) );
8114 pDistinct
= pAggInfo
->aFunc
[0].pFExpr
->x
.pList
;
8115 distFlag
= pDistinct
? (WHERE_WANT_DISTINCT
|WHERE_AGG_DISTINCT
) : 0;
8117 assignAggregateRegisters(pParse
, pAggInfo
);
8119 /* This case runs if the aggregate has no GROUP BY clause. The
8120 ** processing is much simpler since there is only a single row
8123 assert( p
->pGroupBy
==0 );
8124 resetAccumulator(pParse
, pAggInfo
);
8126 /* If this query is a candidate for the min/max optimization, then
8127 ** minMaxFlag will have been previously set to either
8128 ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will
8129 ** be an appropriate ORDER BY expression for the optimization.
8131 assert( minMaxFlag
==WHERE_ORDERBY_NORMAL
|| pMinMaxOrderBy
!=0 );
8132 assert( pMinMaxOrderBy
==0 || pMinMaxOrderBy
->nExpr
==1 );
8134 TREETRACE(0x2,pParse
,p
,("WhereBegin\n"));
8135 pWInfo
= sqlite3WhereBegin(pParse
, pTabList
, pWhere
, pMinMaxOrderBy
,
8136 pDistinct
, p
, minMaxFlag
|distFlag
, 0);
8140 TREETRACE(0x2,pParse
,p
,("WhereBegin returns\n"));
8141 eDist
= sqlite3WhereIsDistinct(pWInfo
);
8142 updateAccumulator(pParse
, regAcc
, pAggInfo
, eDist
);
8143 if( eDist
!=WHERE_DISTINCT_NOOP
){
8144 struct AggInfo_func
*pF
= pAggInfo
->aFunc
;
8146 fixDistinctOpenEph(pParse
, eDist
, pF
->iDistinct
, pF
->iDistAddr
);
8150 if( regAcc
) sqlite3VdbeAddOp2(v
, OP_Integer
, 1, regAcc
);
8152 sqlite3WhereMinMaxOptEarlyOut(v
, pWInfo
);
8154 TREETRACE(0x2,pParse
,p
,("WhereEnd\n"));
8155 sqlite3WhereEnd(pWInfo
);
8156 finalizeAggFunctions(pParse
, pAggInfo
);
8160 sqlite3ExprIfFalse(pParse
, pHaving
, addrEnd
, SQLITE_JUMPIFNULL
);
8161 selectInnerLoop(pParse
, p
, -1, 0, 0,
8162 pDest
, addrEnd
, addrEnd
);
8164 sqlite3VdbeResolveLabel(v
, addrEnd
);
8166 } /* endif aggregate query */
8168 if( sDistinct
.eTnctType
==WHERE_DISTINCT_UNORDERED
){
8169 explainTempTable(pParse
, "DISTINCT");
8172 /* If there is an ORDER BY clause, then we need to sort the results
8173 ** and send them to the callback one by one.
8175 if( sSort
.pOrderBy
){
8176 assert( p
->pEList
==pEList
);
8177 generateSortTail(pParse
, p
, &sSort
, pEList
->nExpr
, pDest
);
8180 /* Jump here to skip this query
8182 sqlite3VdbeResolveLabel(v
, iEnd
);
8184 /* The SELECT has been coded. If there is an error in the Parse structure,
8185 ** set the return code to 1. Otherwise 0. */
8186 rc
= (pParse
->nErr
>0);
8188 /* Control jumps to here if an error is encountered above, or upon
8189 ** successful coding of the SELECT.
8192 assert( db
->mallocFailed
==0 || db
->mallocFailed
==1 );
8193 assert( db
->mallocFailed
==0 || pParse
->nErr
!=0 );
8194 sqlite3ExprListDelete(db
, pMinMaxOrderBy
);
8196 if( pAggInfo
&& !db
->mallocFailed
){
8197 for(i
=0; i
<pAggInfo
->nColumn
; i
++){
8198 Expr
*pExpr
= pAggInfo
->aCol
[i
].pCExpr
;
8199 if( pExpr
==0 ) continue;
8200 assert( pExpr
->pAggInfo
==pAggInfo
);
8201 assert( pExpr
->iAgg
==i
);
8203 for(i
=0; i
<pAggInfo
->nFunc
; i
++){
8204 Expr
*pExpr
= pAggInfo
->aFunc
[i
].pFExpr
;
8206 assert( pExpr
->pAggInfo
==pAggInfo
);
8207 assert( pExpr
->iAgg
==i
);
8212 #if TREETRACE_ENABLED
8213 TREETRACE(0x1,pParse
,p
,("end processing\n"));
8214 if( (sqlite3TreeTrace
& 0x40000)!=0 && ExplainQueryPlanParent(pParse
)==0 ){
8215 sqlite3TreeViewSelect(0, p
, 0);
8218 ExplainQueryPlanPop(pParse
);