update tags for podspec
[sqlcipher.git] / src / vdbe.c
bloba9febbb6e2ff722feceb916a061f0002cbe53f51
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** The code in this file implements the function that runs the
13 ** bytecode of a prepared statement.
15 ** Various scripts scan this source file in order to generate HTML
16 ** documentation, headers files, or other derived files. The formatting
17 ** of the code in this file is, therefore, important. See other comments
18 ** in this file for details. If in doubt, do not deviate from existing
19 ** commenting and indentation practices when changing or adding code.
21 #include "sqliteInt.h"
22 #include "vdbeInt.h"
25 ** Invoke this macro on memory cells just prior to changing the
26 ** value of the cell. This macro verifies that shallow copies are
27 ** not misused. A shallow copy of a string or blob just copies a
28 ** pointer to the string or blob, not the content. If the original
29 ** is changed while the copy is still in use, the string or blob might
30 ** be changed out from under the copy. This macro verifies that nothing
31 ** like that ever happens.
33 #ifdef SQLITE_DEBUG
34 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
35 #else
36 # define memAboutToChange(P,M)
37 #endif
40 ** The following global variable is incremented every time a cursor
41 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test
42 ** procedures use this information to make sure that indices are
43 ** working correctly. This variable has no function other than to
44 ** help verify the correct operation of the library.
46 #ifdef SQLITE_TEST
47 int sqlite3_search_count = 0;
48 #endif
51 ** When this global variable is positive, it gets decremented once before
52 ** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted
53 ** field of the sqlite3 structure is set in order to simulate an interrupt.
55 ** This facility is used for testing purposes only. It does not function
56 ** in an ordinary build.
58 #ifdef SQLITE_TEST
59 int sqlite3_interrupt_count = 0;
60 #endif
63 ** The next global variable is incremented each type the OP_Sort opcode
64 ** is executed. The test procedures use this information to make sure that
65 ** sorting is occurring or not occurring at appropriate times. This variable
66 ** has no function other than to help verify the correct operation of the
67 ** library.
69 #ifdef SQLITE_TEST
70 int sqlite3_sort_count = 0;
71 #endif
74 ** The next global variable records the size of the largest MEM_Blob
75 ** or MEM_Str that has been used by a VDBE opcode. The test procedures
76 ** use this information to make sure that the zero-blob functionality
77 ** is working correctly. This variable has no function other than to
78 ** help verify the correct operation of the library.
80 #ifdef SQLITE_TEST
81 int sqlite3_max_blobsize = 0;
82 static void updateMaxBlobsize(Mem *p){
83 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
84 sqlite3_max_blobsize = p->n;
87 #endif
90 ** This macro evaluates to true if either the update hook or the preupdate
91 ** hook are enabled for database connect DB.
93 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
94 # define HAS_UPDATE_HOOK(DB) ((DB)->xPreUpdateCallback||(DB)->xUpdateCallback)
95 #else
96 # define HAS_UPDATE_HOOK(DB) ((DB)->xUpdateCallback)
97 #endif
100 ** The next global variable is incremented each time the OP_Found opcode
101 ** is executed. This is used to test whether or not the foreign key
102 ** operation implemented using OP_FkIsZero is working. This variable
103 ** has no function other than to help verify the correct operation of the
104 ** library.
106 #ifdef SQLITE_TEST
107 int sqlite3_found_count = 0;
108 #endif
111 ** Test a register to see if it exceeds the current maximum blob size.
112 ** If it does, record the new maximum blob size.
114 #if defined(SQLITE_TEST) && !defined(SQLITE_UNTESTABLE)
115 # define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P)
116 #else
117 # define UPDATE_MAX_BLOBSIZE(P)
118 #endif
120 #ifdef SQLITE_DEBUG
121 /* This routine provides a convenient place to set a breakpoint during
122 ** tracing with PRAGMA vdbe_trace=on. The breakpoint fires right after
123 ** each opcode is printed. Variables "pc" (program counter) and pOp are
124 ** available to add conditionals to the breakpoint. GDB example:
126 ** break test_trace_breakpoint if pc=22
128 ** Other useful labels for breakpoints include:
129 ** test_addop_breakpoint(pc,pOp)
130 ** sqlite3CorruptError(lineno)
131 ** sqlite3MisuseError(lineno)
132 ** sqlite3CantopenError(lineno)
134 static void test_trace_breakpoint(int pc, Op *pOp, Vdbe *v){
135 static int n = 0;
136 (void)pc;
137 (void)pOp;
138 (void)v;
139 n++;
141 #endif
144 ** Invoke the VDBE coverage callback, if that callback is defined. This
145 ** feature is used for test suite validation only and does not appear an
146 ** production builds.
148 ** M is the type of branch. I is the direction taken for this instance of
149 ** the branch.
151 ** M: 2 - two-way branch (I=0: fall-thru 1: jump )
152 ** 3 - two-way + NULL (I=0: fall-thru 1: jump 2: NULL )
153 ** 4 - OP_Jump (I=0: jump p1 1: jump p2 2: jump p3)
155 ** In other words, if M is 2, then I is either 0 (for fall-through) or
156 ** 1 (for when the branch is taken). If M is 3, the I is 0 for an
157 ** ordinary fall-through, I is 1 if the branch was taken, and I is 2
158 ** if the result of comparison is NULL. For M=3, I=2 the jump may or
159 ** may not be taken, depending on the SQLITE_JUMPIFNULL flags in p5.
160 ** When M is 4, that means that an OP_Jump is being run. I is 0, 1, or 2
161 ** depending on if the operands are less than, equal, or greater than.
163 ** iSrcLine is the source code line (from the __LINE__ macro) that
164 ** generated the VDBE instruction combined with flag bits. The source
165 ** code line number is in the lower 24 bits of iSrcLine and the upper
166 ** 8 bytes are flags. The lower three bits of the flags indicate
167 ** values for I that should never occur. For example, if the branch is
168 ** always taken, the flags should be 0x05 since the fall-through and
169 ** alternate branch are never taken. If a branch is never taken then
170 ** flags should be 0x06 since only the fall-through approach is allowed.
172 ** Bit 0x08 of the flags indicates an OP_Jump opcode that is only
173 ** interested in equal or not-equal. In other words, I==0 and I==2
174 ** should be treated as equivalent
176 ** Since only a line number is retained, not the filename, this macro
177 ** only works for amalgamation builds. But that is ok, since these macros
178 ** should be no-ops except for special builds used to measure test coverage.
180 #if !defined(SQLITE_VDBE_COVERAGE)
181 # define VdbeBranchTaken(I,M)
182 #else
183 # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M)
184 static void vdbeTakeBranch(u32 iSrcLine, u8 I, u8 M){
185 u8 mNever;
186 assert( I<=2 ); /* 0: fall through, 1: taken, 2: alternate taken */
187 assert( M<=4 ); /* 2: two-way branch, 3: three-way branch, 4: OP_Jump */
188 assert( I<M ); /* I can only be 2 if M is 3 or 4 */
189 /* Transform I from a integer [0,1,2] into a bitmask of [1,2,4] */
190 I = 1<<I;
191 /* The upper 8 bits of iSrcLine are flags. The lower three bits of
192 ** the flags indicate directions that the branch can never go. If
193 ** a branch really does go in one of those directions, assert right
194 ** away. */
195 mNever = iSrcLine >> 24;
196 assert( (I & mNever)==0 );
197 if( sqlite3GlobalConfig.xVdbeBranch==0 ) return; /*NO_TEST*/
198 /* Invoke the branch coverage callback with three arguments:
199 ** iSrcLine - the line number of the VdbeCoverage() macro, with
200 ** flags removed.
201 ** I - Mask of bits 0x07 indicating which cases are are
202 ** fulfilled by this instance of the jump. 0x01 means
203 ** fall-thru, 0x02 means taken, 0x04 means NULL. Any
204 ** impossible cases (ex: if the comparison is never NULL)
205 ** are filled in automatically so that the coverage
206 ** measurement logic does not flag those impossible cases
207 ** as missed coverage.
208 ** M - Type of jump. Same as M argument above
210 I |= mNever;
211 if( M==2 ) I |= 0x04;
212 if( M==4 ){
213 I |= 0x08;
214 if( (mNever&0x08)!=0 && (I&0x05)!=0) I |= 0x05; /*NO_TEST*/
216 sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg,
217 iSrcLine&0xffffff, I, M);
219 #endif
222 ** An ephemeral string value (signified by the MEM_Ephem flag) contains
223 ** a pointer to a dynamically allocated string where some other entity
224 ** is responsible for deallocating that string. Because the register
225 ** does not control the string, it might be deleted without the register
226 ** knowing it.
228 ** This routine converts an ephemeral string into a dynamically allocated
229 ** string that the register itself controls. In other words, it
230 ** converts an MEM_Ephem string into a string with P.z==P.zMalloc.
232 #define Deephemeralize(P) \
233 if( ((P)->flags&MEM_Ephem)!=0 \
234 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
236 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */
237 #define isSorter(x) ((x)->eCurType==CURTYPE_SORTER)
240 ** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL
241 ** if we run out of memory.
243 static VdbeCursor *allocateCursor(
244 Vdbe *p, /* The virtual machine */
245 int iCur, /* Index of the new VdbeCursor */
246 int nField, /* Number of fields in the table or index */
247 u8 eCurType /* Type of the new cursor */
249 /* Find the memory cell that will be used to store the blob of memory
250 ** required for this VdbeCursor structure. It is convenient to use a
251 ** vdbe memory cell to manage the memory allocation required for a
252 ** VdbeCursor structure for the following reasons:
254 ** * Sometimes cursor numbers are used for a couple of different
255 ** purposes in a vdbe program. The different uses might require
256 ** different sized allocations. Memory cells provide growable
257 ** allocations.
259 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
260 ** be freed lazily via the sqlite3_release_memory() API. This
261 ** minimizes the number of malloc calls made by the system.
263 ** The memory cell for cursor 0 is aMem[0]. The rest are allocated from
264 ** the top of the register space. Cursor 1 is at Mem[p->nMem-1].
265 ** Cursor 2 is at Mem[p->nMem-2]. And so forth.
267 Mem *pMem = iCur>0 ? &p->aMem[p->nMem-iCur] : p->aMem;
269 int nByte;
270 VdbeCursor *pCx = 0;
271 nByte =
272 ROUND8P(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField +
273 (eCurType==CURTYPE_BTREE?sqlite3BtreeCursorSize():0);
275 assert( iCur>=0 && iCur<p->nCursor );
276 if( p->apCsr[iCur] ){ /*OPTIMIZATION-IF-FALSE*/
277 sqlite3VdbeFreeCursorNN(p, p->apCsr[iCur]);
278 p->apCsr[iCur] = 0;
281 /* There used to be a call to sqlite3VdbeMemClearAndResize() to make sure
282 ** the pMem used to hold space for the cursor has enough storage available
283 ** in pMem->zMalloc. But for the special case of the aMem[] entries used
284 ** to hold cursors, it is faster to in-line the logic. */
285 assert( pMem->flags==MEM_Undefined );
286 assert( (pMem->flags & MEM_Dyn)==0 );
287 assert( pMem->szMalloc==0 || pMem->z==pMem->zMalloc );
288 if( pMem->szMalloc<nByte ){
289 if( pMem->szMalloc>0 ){
290 sqlite3DbFreeNN(pMem->db, pMem->zMalloc);
292 pMem->z = pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, nByte);
293 if( pMem->zMalloc==0 ){
294 pMem->szMalloc = 0;
295 return 0;
297 pMem->szMalloc = nByte;
300 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->zMalloc;
301 memset(pCx, 0, offsetof(VdbeCursor,pAltCursor));
302 pCx->eCurType = eCurType;
303 pCx->nField = nField;
304 pCx->aOffset = &pCx->aType[nField];
305 if( eCurType==CURTYPE_BTREE ){
306 pCx->uc.pCursor = (BtCursor*)
307 &pMem->z[ROUND8P(sizeof(VdbeCursor))+2*sizeof(u32)*nField];
308 sqlite3BtreeCursorZero(pCx->uc.pCursor);
310 return pCx;
314 ** The string in pRec is known to look like an integer and to have a
315 ** floating point value of rValue. Return true and set *piValue to the
316 ** integer value if the string is in range to be an integer. Otherwise,
317 ** return false.
319 static int alsoAnInt(Mem *pRec, double rValue, i64 *piValue){
320 i64 iValue;
321 iValue = sqlite3RealToI64(rValue);
322 if( sqlite3RealSameAsInt(rValue,iValue) ){
323 *piValue = iValue;
324 return 1;
326 return 0==sqlite3Atoi64(pRec->z, piValue, pRec->n, pRec->enc);
330 ** Try to convert a value into a numeric representation if we can
331 ** do so without loss of information. In other words, if the string
332 ** looks like a number, convert it into a number. If it does not
333 ** look like a number, leave it alone.
335 ** If the bTryForInt flag is true, then extra effort is made to give
336 ** an integer representation. Strings that look like floating point
337 ** values but which have no fractional component (example: '48.00')
338 ** will have a MEM_Int representation when bTryForInt is true.
340 ** If bTryForInt is false, then if the input string contains a decimal
341 ** point or exponential notation, the result is only MEM_Real, even
342 ** if there is an exact integer representation of the quantity.
344 static void applyNumericAffinity(Mem *pRec, int bTryForInt){
345 double rValue;
346 u8 enc = pRec->enc;
347 int rc;
348 assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real|MEM_IntReal))==MEM_Str );
349 rc = sqlite3AtoF(pRec->z, &rValue, pRec->n, enc);
350 if( rc<=0 ) return;
351 if( rc==1 && alsoAnInt(pRec, rValue, &pRec->u.i) ){
352 pRec->flags |= MEM_Int;
353 }else{
354 pRec->u.r = rValue;
355 pRec->flags |= MEM_Real;
356 if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec);
358 /* TEXT->NUMERIC is many->one. Hence, it is important to invalidate the
359 ** string representation after computing a numeric equivalent, because the
360 ** string representation might not be the canonical representation for the
361 ** numeric value. Ticket [343634942dd54ab57b7024] 2018-01-31. */
362 pRec->flags &= ~MEM_Str;
366 ** Processing is determine by the affinity parameter:
368 ** SQLITE_AFF_INTEGER:
369 ** SQLITE_AFF_REAL:
370 ** SQLITE_AFF_NUMERIC:
371 ** Try to convert pRec to an integer representation or a
372 ** floating-point representation if an integer representation
373 ** is not possible. Note that the integer representation is
374 ** always preferred, even if the affinity is REAL, because
375 ** an integer representation is more space efficient on disk.
377 ** SQLITE_AFF_FLEXNUM:
378 ** If the value is text, then try to convert it into a number of
379 ** some kind (integer or real) but do not make any other changes.
381 ** SQLITE_AFF_TEXT:
382 ** Convert pRec to a text representation.
384 ** SQLITE_AFF_BLOB:
385 ** SQLITE_AFF_NONE:
386 ** No-op. pRec is unchanged.
388 static void applyAffinity(
389 Mem *pRec, /* The value to apply affinity to */
390 char affinity, /* The affinity to be applied */
391 u8 enc /* Use this text encoding */
393 if( affinity>=SQLITE_AFF_NUMERIC ){
394 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
395 || affinity==SQLITE_AFF_NUMERIC || affinity==SQLITE_AFF_FLEXNUM );
396 if( (pRec->flags & MEM_Int)==0 ){ /*OPTIMIZATION-IF-FALSE*/
397 if( (pRec->flags & (MEM_Real|MEM_IntReal))==0 ){
398 if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1);
399 }else if( affinity<=SQLITE_AFF_REAL ){
400 sqlite3VdbeIntegerAffinity(pRec);
403 }else if( affinity==SQLITE_AFF_TEXT ){
404 /* Only attempt the conversion to TEXT if there is an integer or real
405 ** representation (blob and NULL do not get converted) but no string
406 ** representation. It would be harmless to repeat the conversion if
407 ** there is already a string rep, but it is pointless to waste those
408 ** CPU cycles. */
409 if( 0==(pRec->flags&MEM_Str) ){ /*OPTIMIZATION-IF-FALSE*/
410 if( (pRec->flags&(MEM_Real|MEM_Int|MEM_IntReal)) ){
411 testcase( pRec->flags & MEM_Int );
412 testcase( pRec->flags & MEM_Real );
413 testcase( pRec->flags & MEM_IntReal );
414 sqlite3VdbeMemStringify(pRec, enc, 1);
417 pRec->flags &= ~(MEM_Real|MEM_Int|MEM_IntReal);
422 ** Try to convert the type of a function argument or a result column
423 ** into a numeric representation. Use either INTEGER or REAL whichever
424 ** is appropriate. But only do the conversion if it is possible without
425 ** loss of information and return the revised type of the argument.
427 int sqlite3_value_numeric_type(sqlite3_value *pVal){
428 int eType = sqlite3_value_type(pVal);
429 if( eType==SQLITE_TEXT ){
430 Mem *pMem = (Mem*)pVal;
431 applyNumericAffinity(pMem, 0);
432 eType = sqlite3_value_type(pVal);
434 return eType;
438 ** Exported version of applyAffinity(). This one works on sqlite3_value*,
439 ** not the internal Mem* type.
441 void sqlite3ValueApplyAffinity(
442 sqlite3_value *pVal,
443 u8 affinity,
444 u8 enc
446 applyAffinity((Mem *)pVal, affinity, enc);
450 ** pMem currently only holds a string type (or maybe a BLOB that we can
451 ** interpret as a string if we want to). Compute its corresponding
452 ** numeric type, if has one. Set the pMem->u.r and pMem->u.i fields
453 ** accordingly.
455 static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){
456 int rc;
457 sqlite3_int64 ix;
458 assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal))==0 );
459 assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 );
460 if( ExpandBlob(pMem) ){
461 pMem->u.i = 0;
462 return MEM_Int;
464 rc = sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc);
465 if( rc<=0 ){
466 if( rc==0 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)<=1 ){
467 pMem->u.i = ix;
468 return MEM_Int;
469 }else{
470 return MEM_Real;
472 }else if( rc==1 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)==0 ){
473 pMem->u.i = ix;
474 return MEM_Int;
476 return MEM_Real;
480 ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or
481 ** none.
483 ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags.
484 ** But it does set pMem->u.r and pMem->u.i appropriately.
486 static u16 numericType(Mem *pMem){
487 assert( (pMem->flags & MEM_Null)==0
488 || pMem->db==0 || pMem->db->mallocFailed );
489 if( pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null) ){
490 testcase( pMem->flags & MEM_Int );
491 testcase( pMem->flags & MEM_Real );
492 testcase( pMem->flags & MEM_IntReal );
493 return pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null);
495 assert( pMem->flags & (MEM_Str|MEM_Blob) );
496 testcase( pMem->flags & MEM_Str );
497 testcase( pMem->flags & MEM_Blob );
498 return computeNumericType(pMem);
499 return 0;
502 #ifdef SQLITE_DEBUG
504 ** Write a nice string representation of the contents of cell pMem
505 ** into buffer zBuf, length nBuf.
507 void sqlite3VdbeMemPrettyPrint(Mem *pMem, StrAccum *pStr){
508 int f = pMem->flags;
509 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
510 if( f&MEM_Blob ){
511 int i;
512 char c;
513 if( f & MEM_Dyn ){
514 c = 'z';
515 assert( (f & (MEM_Static|MEM_Ephem))==0 );
516 }else if( f & MEM_Static ){
517 c = 't';
518 assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
519 }else if( f & MEM_Ephem ){
520 c = 'e';
521 assert( (f & (MEM_Static|MEM_Dyn))==0 );
522 }else{
523 c = 's';
525 sqlite3_str_appendf(pStr, "%cx[", c);
526 for(i=0; i<25 && i<pMem->n; i++){
527 sqlite3_str_appendf(pStr, "%02X", ((int)pMem->z[i] & 0xFF));
529 sqlite3_str_appendf(pStr, "|");
530 for(i=0; i<25 && i<pMem->n; i++){
531 char z = pMem->z[i];
532 sqlite3_str_appendchar(pStr, 1, (z<32||z>126)?'.':z);
534 sqlite3_str_appendf(pStr,"]");
535 if( f & MEM_Zero ){
536 sqlite3_str_appendf(pStr, "+%dz",pMem->u.nZero);
538 }else if( f & MEM_Str ){
539 int j;
540 u8 c;
541 if( f & MEM_Dyn ){
542 c = 'z';
543 assert( (f & (MEM_Static|MEM_Ephem))==0 );
544 }else if( f & MEM_Static ){
545 c = 't';
546 assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
547 }else if( f & MEM_Ephem ){
548 c = 'e';
549 assert( (f & (MEM_Static|MEM_Dyn))==0 );
550 }else{
551 c = 's';
553 sqlite3_str_appendf(pStr, " %c%d[", c, pMem->n);
554 for(j=0; j<25 && j<pMem->n; j++){
555 c = pMem->z[j];
556 sqlite3_str_appendchar(pStr, 1, (c>=0x20&&c<=0x7f) ? c : '.');
558 sqlite3_str_appendf(pStr, "]%s", encnames[pMem->enc]);
561 #endif
563 #ifdef SQLITE_DEBUG
565 ** Print the value of a register for tracing purposes:
567 static void memTracePrint(Mem *p){
568 if( p->flags & MEM_Undefined ){
569 printf(" undefined");
570 }else if( p->flags & MEM_Null ){
571 printf(p->flags & MEM_Zero ? " NULL-nochng" : " NULL");
572 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
573 printf(" si:%lld", p->u.i);
574 }else if( (p->flags & (MEM_IntReal))!=0 ){
575 printf(" ir:%lld", p->u.i);
576 }else if( p->flags & MEM_Int ){
577 printf(" i:%lld", p->u.i);
578 #ifndef SQLITE_OMIT_FLOATING_POINT
579 }else if( p->flags & MEM_Real ){
580 printf(" r:%.17g", p->u.r);
581 #endif
582 }else if( sqlite3VdbeMemIsRowSet(p) ){
583 printf(" (rowset)");
584 }else{
585 StrAccum acc;
586 char zBuf[1000];
587 sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0);
588 sqlite3VdbeMemPrettyPrint(p, &acc);
589 printf(" %s", sqlite3StrAccumFinish(&acc));
591 if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype);
593 static void registerTrace(int iReg, Mem *p){
594 printf("R[%d] = ", iReg);
595 memTracePrint(p);
596 if( p->pScopyFrom ){
597 printf(" <== R[%d]", (int)(p->pScopyFrom - &p[-iReg]));
599 printf("\n");
600 sqlite3VdbeCheckMemInvariants(p);
602 /**/ void sqlite3PrintMem(Mem *pMem){
603 memTracePrint(pMem);
604 printf("\n");
605 fflush(stdout);
607 #endif
609 #ifdef SQLITE_DEBUG
611 ** Show the values of all registers in the virtual machine. Used for
612 ** interactive debugging.
614 void sqlite3VdbeRegisterDump(Vdbe *v){
615 int i;
616 for(i=1; i<v->nMem; i++) registerTrace(i, v->aMem+i);
618 #endif /* SQLITE_DEBUG */
621 #ifdef SQLITE_DEBUG
622 # define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M)
623 #else
624 # define REGISTER_TRACE(R,M)
625 #endif
627 #ifndef NDEBUG
629 ** This function is only called from within an assert() expression. It
630 ** checks that the sqlite3.nTransaction variable is correctly set to
631 ** the number of non-transaction savepoints currently in the
632 ** linked list starting at sqlite3.pSavepoint.
634 ** Usage:
636 ** assert( checkSavepointCount(db) );
638 static int checkSavepointCount(sqlite3 *db){
639 int n = 0;
640 Savepoint *p;
641 for(p=db->pSavepoint; p; p=p->pNext) n++;
642 assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
643 return 1;
645 #endif
648 ** Return the register of pOp->p2 after first preparing it to be
649 ** overwritten with an integer value.
651 static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){
652 sqlite3VdbeMemSetNull(pOut);
653 pOut->flags = MEM_Int;
654 return pOut;
656 static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){
657 Mem *pOut;
658 assert( pOp->p2>0 );
659 assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
660 pOut = &p->aMem[pOp->p2];
661 memAboutToChange(p, pOut);
662 if( VdbeMemDynamic(pOut) ){ /*OPTIMIZATION-IF-FALSE*/
663 return out2PrereleaseWithClear(pOut);
664 }else{
665 pOut->flags = MEM_Int;
666 return pOut;
671 ** Compute a bloom filter hash using pOp->p4.i registers from aMem[] beginning
672 ** with pOp->p3. Return the hash.
674 static u64 filterHash(const Mem *aMem, const Op *pOp){
675 int i, mx;
676 u64 h = 0;
678 assert( pOp->p4type==P4_INT32 );
679 for(i=pOp->p3, mx=i+pOp->p4.i; i<mx; i++){
680 const Mem *p = &aMem[i];
681 if( p->flags & (MEM_Int|MEM_IntReal) ){
682 h += p->u.i;
683 }else if( p->flags & MEM_Real ){
684 h += sqlite3VdbeIntValue(p);
685 }else if( p->flags & (MEM_Str|MEM_Blob) ){
686 /* no-op */
689 return h;
693 ** Return the symbolic name for the data type of a pMem
695 static const char *vdbeMemTypeName(Mem *pMem){
696 static const char *azTypes[] = {
697 /* SQLITE_INTEGER */ "INT",
698 /* SQLITE_FLOAT */ "REAL",
699 /* SQLITE_TEXT */ "TEXT",
700 /* SQLITE_BLOB */ "BLOB",
701 /* SQLITE_NULL */ "NULL"
703 return azTypes[sqlite3_value_type(pMem)-1];
707 ** Execute as much of a VDBE program as we can.
708 ** This is the core of sqlite3_step().
710 int sqlite3VdbeExec(
711 Vdbe *p /* The VDBE */
713 Op *aOp = p->aOp; /* Copy of p->aOp */
714 Op *pOp = aOp; /* Current operation */
715 #ifdef SQLITE_DEBUG
716 Op *pOrigOp; /* Value of pOp at the top of the loop */
717 int nExtraDelete = 0; /* Verifies FORDELETE and AUXDELETE flags */
718 u8 iCompareIsInit = 0; /* iCompare is initialized */
719 #endif
720 int rc = SQLITE_OK; /* Value to return */
721 sqlite3 *db = p->db; /* The database */
722 u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
723 u8 encoding = ENC(db); /* The database encoding */
724 int iCompare = 0; /* Result of last comparison */
725 u64 nVmStep = 0; /* Number of virtual machine steps */
726 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
727 u64 nProgressLimit; /* Invoke xProgress() when nVmStep reaches this */
728 #endif
729 Mem *aMem = p->aMem; /* Copy of p->aMem */
730 Mem *pIn1 = 0; /* 1st input operand */
731 Mem *pIn2 = 0; /* 2nd input operand */
732 Mem *pIn3 = 0; /* 3rd input operand */
733 Mem *pOut = 0; /* Output operand */
734 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || defined(VDBE_PROFILE)
735 u64 *pnCycle = 0;
736 #endif
737 /*** INSERT STACK UNION HERE ***/
739 assert( p->eVdbeState==VDBE_RUN_STATE ); /* sqlite3_step() verifies this */
740 if( DbMaskNonZero(p->lockMask) ){
741 sqlite3VdbeEnter(p);
743 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
744 if( db->xProgress ){
745 u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP];
746 assert( 0 < db->nProgressOps );
747 nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps);
748 }else{
749 nProgressLimit = LARGEST_UINT64;
751 #endif
752 if( p->rc==SQLITE_NOMEM ){
753 /* This happens if a malloc() inside a call to sqlite3_column_text() or
754 ** sqlite3_column_text16() failed. */
755 goto no_mem;
757 assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY );
758 testcase( p->rc!=SQLITE_OK );
759 p->rc = SQLITE_OK;
760 assert( p->bIsReader || p->readOnly!=0 );
761 p->iCurrentTime = 0;
762 assert( p->explain==0 );
763 db->busyHandler.nBusy = 0;
764 if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt;
765 sqlite3VdbeIOTraceSql(p);
766 #ifdef SQLITE_DEBUG
767 sqlite3BeginBenignMalloc();
768 if( p->pc==0
769 && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0
771 int i;
772 int once = 1;
773 sqlite3VdbePrintSql(p);
774 if( p->db->flags & SQLITE_VdbeListing ){
775 printf("VDBE Program Listing:\n");
776 for(i=0; i<p->nOp; i++){
777 sqlite3VdbePrintOp(stdout, i, &aOp[i]);
780 if( p->db->flags & SQLITE_VdbeEQP ){
781 for(i=0; i<p->nOp; i++){
782 if( aOp[i].opcode==OP_Explain ){
783 if( once ) printf("VDBE Query Plan:\n");
784 printf("%s\n", aOp[i].p4.z);
785 once = 0;
789 if( p->db->flags & SQLITE_VdbeTrace ) printf("VDBE Trace:\n");
791 sqlite3EndBenignMalloc();
792 #endif
793 for(pOp=&aOp[p->pc]; 1; pOp++){
794 /* Errors are detected by individual opcodes, with an immediate
795 ** jumps to abort_due_to_error. */
796 assert( rc==SQLITE_OK );
798 assert( pOp>=aOp && pOp<&aOp[p->nOp]);
799 nVmStep++;
800 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || defined(VDBE_PROFILE)
801 pOp->nExec++;
802 pnCycle = &pOp->nCycle;
803 # ifdef VDBE_PROFILE
804 if( sqlite3NProfileCnt==0 )
805 # endif
806 *pnCycle -= sqlite3Hwtime();
807 #endif
809 /* Only allow tracing if SQLITE_DEBUG is defined.
811 #ifdef SQLITE_DEBUG
812 if( db->flags & SQLITE_VdbeTrace ){
813 sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp);
814 test_trace_breakpoint((int)(pOp - aOp),pOp,p);
816 #endif
819 /* Check to see if we need to simulate an interrupt. This only happens
820 ** if we have a special test build.
822 #ifdef SQLITE_TEST
823 if( sqlite3_interrupt_count>0 ){
824 sqlite3_interrupt_count--;
825 if( sqlite3_interrupt_count==0 ){
826 sqlite3_interrupt(db);
829 #endif
831 /* Sanity checking on other operands */
832 #ifdef SQLITE_DEBUG
834 u8 opProperty = sqlite3OpcodeProperty[pOp->opcode];
835 if( (opProperty & OPFLG_IN1)!=0 ){
836 assert( pOp->p1>0 );
837 assert( pOp->p1<=(p->nMem+1 - p->nCursor) );
838 assert( memIsValid(&aMem[pOp->p1]) );
839 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) );
840 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
842 if( (opProperty & OPFLG_IN2)!=0 ){
843 assert( pOp->p2>0 );
844 assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
845 assert( memIsValid(&aMem[pOp->p2]) );
846 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) );
847 REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
849 if( (opProperty & OPFLG_IN3)!=0 ){
850 assert( pOp->p3>0 );
851 assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
852 assert( memIsValid(&aMem[pOp->p3]) );
853 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) );
854 REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
856 if( (opProperty & OPFLG_OUT2)!=0 ){
857 assert( pOp->p2>0 );
858 assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
859 memAboutToChange(p, &aMem[pOp->p2]);
861 if( (opProperty & OPFLG_OUT3)!=0 ){
862 assert( pOp->p3>0 );
863 assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
864 memAboutToChange(p, &aMem[pOp->p3]);
867 #endif
868 #ifdef SQLITE_DEBUG
869 pOrigOp = pOp;
870 #endif
872 switch( pOp->opcode ){
874 /*****************************************************************************
875 ** What follows is a massive switch statement where each case implements a
876 ** separate instruction in the virtual machine. If we follow the usual
877 ** indentation conventions, each case should be indented by 6 spaces. But
878 ** that is a lot of wasted space on the left margin. So the code within
879 ** the switch statement will break with convention and be flush-left. Another
880 ** big comment (similar to this one) will mark the point in the code where
881 ** we transition back to normal indentation.
883 ** The formatting of each case is important. The makefile for SQLite
884 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this
885 ** file looking for lines that begin with "case OP_". The opcodes.h files
886 ** will be filled with #defines that give unique integer values to each
887 ** opcode and the opcodes.c file is filled with an array of strings where
888 ** each string is the symbolic name for the corresponding opcode. If the
889 ** case statement is followed by a comment of the form "/# same as ... #/"
890 ** that comment is used to determine the particular value of the opcode.
892 ** Other keywords in the comment that follows each case are used to
893 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
894 ** Keywords include: in1, in2, in3, out2, out3. See
895 ** the mkopcodeh.awk script for additional information.
897 ** Documentation about VDBE opcodes is generated by scanning this file
898 ** for lines of that contain "Opcode:". That line and all subsequent
899 ** comment lines are used in the generation of the opcode.html documentation
900 ** file.
902 ** SUMMARY:
904 ** Formatting is important to scripts that scan this file.
905 ** Do not deviate from the formatting style currently in use.
907 *****************************************************************************/
909 /* Opcode: Goto * P2 * * *
911 ** An unconditional jump to address P2.
912 ** The next instruction executed will be
913 ** the one at index P2 from the beginning of
914 ** the program.
916 ** The P1 parameter is not actually used by this opcode. However, it
917 ** is sometimes set to 1 instead of 0 as a hint to the command-line shell
918 ** that this Goto is the bottom of a loop and that the lines from P2 down
919 ** to the current line should be indented for EXPLAIN output.
921 case OP_Goto: { /* jump */
923 #ifdef SQLITE_DEBUG
924 /* In debuggging mode, when the p5 flags is set on an OP_Goto, that
925 ** means we should really jump back to the preceeding OP_ReleaseReg
926 ** instruction. */
927 if( pOp->p5 ){
928 assert( pOp->p2 < (int)(pOp - aOp) );
929 assert( pOp->p2 > 1 );
930 pOp = &aOp[pOp->p2 - 2];
931 assert( pOp[1].opcode==OP_ReleaseReg );
932 goto check_for_interrupt;
934 #endif
936 jump_to_p2_and_check_for_interrupt:
937 pOp = &aOp[pOp->p2 - 1];
939 /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev,
940 ** OP_VNext, or OP_SorterNext) all jump here upon
941 ** completion. Check to see if sqlite3_interrupt() has been called
942 ** or if the progress callback needs to be invoked.
944 ** This code uses unstructured "goto" statements and does not look clean.
945 ** But that is not due to sloppy coding habits. The code is written this
946 ** way for performance, to avoid having to run the interrupt and progress
947 ** checks on every opcode. This helps sqlite3_step() to run about 1.5%
948 ** faster according to "valgrind --tool=cachegrind" */
949 check_for_interrupt:
950 if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt;
951 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
952 /* Call the progress callback if it is configured and the required number
953 ** of VDBE ops have been executed (either since this invocation of
954 ** sqlite3VdbeExec() or since last time the progress callback was called).
955 ** If the progress callback returns non-zero, exit the virtual machine with
956 ** a return code SQLITE_ABORT.
958 while( nVmStep>=nProgressLimit && db->xProgress!=0 ){
959 assert( db->nProgressOps!=0 );
960 nProgressLimit += db->nProgressOps;
961 if( db->xProgress(db->pProgressArg) ){
962 nProgressLimit = LARGEST_UINT64;
963 rc = SQLITE_INTERRUPT;
964 goto abort_due_to_error;
967 #endif
969 break;
972 /* Opcode: Gosub P1 P2 * * *
974 ** Write the current address onto register P1
975 ** and then jump to address P2.
977 case OP_Gosub: { /* jump */
978 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
979 pIn1 = &aMem[pOp->p1];
980 assert( VdbeMemDynamic(pIn1)==0 );
981 memAboutToChange(p, pIn1);
982 pIn1->flags = MEM_Int;
983 pIn1->u.i = (int)(pOp-aOp);
984 REGISTER_TRACE(pOp->p1, pIn1);
985 goto jump_to_p2_and_check_for_interrupt;
988 /* Opcode: Return P1 P2 P3 * *
990 ** Jump to the address stored in register P1. If P1 is a return address
991 ** register, then this accomplishes a return from a subroutine.
993 ** If P3 is 1, then the jump is only taken if register P1 holds an integer
994 ** values, otherwise execution falls through to the next opcode, and the
995 ** OP_Return becomes a no-op. If P3 is 0, then register P1 must hold an
996 ** integer or else an assert() is raised. P3 should be set to 1 when
997 ** this opcode is used in combination with OP_BeginSubrtn, and set to 0
998 ** otherwise.
1000 ** The value in register P1 is unchanged by this opcode.
1002 ** P2 is not used by the byte-code engine. However, if P2 is positive
1003 ** and also less than the current address, then the "EXPLAIN" output
1004 ** formatter in the CLI will indent all opcodes from the P2 opcode up
1005 ** to be not including the current Return. P2 should be the first opcode
1006 ** in the subroutine from which this opcode is returning. Thus the P2
1007 ** value is a byte-code indentation hint. See tag-20220407a in
1008 ** wherecode.c and shell.c.
1010 case OP_Return: { /* in1 */
1011 pIn1 = &aMem[pOp->p1];
1012 if( pIn1->flags & MEM_Int ){
1013 if( pOp->p3 ){ VdbeBranchTaken(1, 2); }
1014 pOp = &aOp[pIn1->u.i];
1015 }else if( ALWAYS(pOp->p3) ){
1016 VdbeBranchTaken(0, 2);
1018 break;
1021 /* Opcode: InitCoroutine P1 P2 P3 * *
1023 ** Set up register P1 so that it will Yield to the coroutine
1024 ** located at address P3.
1026 ** If P2!=0 then the coroutine implementation immediately follows
1027 ** this opcode. So jump over the coroutine implementation to
1028 ** address P2.
1030 ** See also: EndCoroutine
1032 case OP_InitCoroutine: { /* jump */
1033 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
1034 assert( pOp->p2>=0 && pOp->p2<p->nOp );
1035 assert( pOp->p3>=0 && pOp->p3<p->nOp );
1036 pOut = &aMem[pOp->p1];
1037 assert( !VdbeMemDynamic(pOut) );
1038 pOut->u.i = pOp->p3 - 1;
1039 pOut->flags = MEM_Int;
1040 if( pOp->p2==0 ) break;
1042 /* Most jump operations do a goto to this spot in order to update
1043 ** the pOp pointer. */
1044 jump_to_p2:
1045 assert( pOp->p2>0 ); /* There are never any jumps to instruction 0 */
1046 assert( pOp->p2<p->nOp ); /* Jumps must be in range */
1047 pOp = &aOp[pOp->p2 - 1];
1048 break;
1051 /* Opcode: EndCoroutine P1 * * * *
1053 ** The instruction at the address in register P1 is a Yield.
1054 ** Jump to the P2 parameter of that Yield.
1055 ** After the jump, register P1 becomes undefined.
1057 ** See also: InitCoroutine
1059 case OP_EndCoroutine: { /* in1 */
1060 VdbeOp *pCaller;
1061 pIn1 = &aMem[pOp->p1];
1062 assert( pIn1->flags==MEM_Int );
1063 assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp );
1064 pCaller = &aOp[pIn1->u.i];
1065 assert( pCaller->opcode==OP_Yield );
1066 assert( pCaller->p2>=0 && pCaller->p2<p->nOp );
1067 pOp = &aOp[pCaller->p2 - 1];
1068 pIn1->flags = MEM_Undefined;
1069 break;
1072 /* Opcode: Yield P1 P2 * * *
1074 ** Swap the program counter with the value in register P1. This
1075 ** has the effect of yielding to a coroutine.
1077 ** If the coroutine that is launched by this instruction ends with
1078 ** Yield or Return then continue to the next instruction. But if
1079 ** the coroutine launched by this instruction ends with
1080 ** EndCoroutine, then jump to P2 rather than continuing with the
1081 ** next instruction.
1083 ** See also: InitCoroutine
1085 case OP_Yield: { /* in1, jump */
1086 int pcDest;
1087 pIn1 = &aMem[pOp->p1];
1088 assert( VdbeMemDynamic(pIn1)==0 );
1089 pIn1->flags = MEM_Int;
1090 pcDest = (int)pIn1->u.i;
1091 pIn1->u.i = (int)(pOp - aOp);
1092 REGISTER_TRACE(pOp->p1, pIn1);
1093 pOp = &aOp[pcDest];
1094 break;
1097 /* Opcode: HaltIfNull P1 P2 P3 P4 P5
1098 ** Synopsis: if r[P3]=null halt
1100 ** Check the value in register P3. If it is NULL then Halt using
1101 ** parameter P1, P2, and P4 as if this were a Halt instruction. If the
1102 ** value in register P3 is not NULL, then this routine is a no-op.
1103 ** The P5 parameter should be 1.
1105 case OP_HaltIfNull: { /* in3 */
1106 pIn3 = &aMem[pOp->p3];
1107 #ifdef SQLITE_DEBUG
1108 if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); }
1109 #endif
1110 if( (pIn3->flags & MEM_Null)==0 ) break;
1111 /* Fall through into OP_Halt */
1112 /* no break */ deliberate_fall_through
1115 /* Opcode: Halt P1 P2 * P4 P5
1117 ** Exit immediately. All open cursors, etc are closed
1118 ** automatically.
1120 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
1121 ** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0).
1122 ** For errors, it can be some other value. If P1!=0 then P2 will determine
1123 ** whether or not to rollback the current transaction. Do not rollback
1124 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort,
1125 ** then back out all changes that have occurred during this execution of the
1126 ** VDBE, but do not rollback the transaction.
1128 ** If P4 is not null then it is an error message string.
1130 ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string.
1132 ** 0: (no change)
1133 ** 1: NOT NULL contraint failed: P4
1134 ** 2: UNIQUE constraint failed: P4
1135 ** 3: CHECK constraint failed: P4
1136 ** 4: FOREIGN KEY constraint failed: P4
1138 ** If P5 is not zero and P4 is NULL, then everything after the ":" is
1139 ** omitted.
1141 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of
1142 ** every program. So a jump past the last instruction of the program
1143 ** is the same as executing Halt.
1145 case OP_Halt: {
1146 VdbeFrame *pFrame;
1147 int pcx;
1149 #ifdef SQLITE_DEBUG
1150 if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); }
1151 #endif
1153 /* A deliberately coded "OP_Halt SQLITE_INTERNAL * * * *" opcode indicates
1154 ** something is wrong with the code generator. Raise an assertion in order
1155 ** to bring this to the attention of fuzzers and other testing tools. */
1156 assert( pOp->p1!=SQLITE_INTERNAL );
1158 if( p->pFrame && pOp->p1==SQLITE_OK ){
1159 /* Halt the sub-program. Return control to the parent frame. */
1160 pFrame = p->pFrame;
1161 p->pFrame = pFrame->pParent;
1162 p->nFrame--;
1163 sqlite3VdbeSetChanges(db, p->nChange);
1164 pcx = sqlite3VdbeFrameRestore(pFrame);
1165 if( pOp->p2==OE_Ignore ){
1166 /* Instruction pcx is the OP_Program that invoked the sub-program
1167 ** currently being halted. If the p2 instruction of this OP_Halt
1168 ** instruction is set to OE_Ignore, then the sub-program is throwing
1169 ** an IGNORE exception. In this case jump to the address specified
1170 ** as the p2 of the calling OP_Program. */
1171 pcx = p->aOp[pcx].p2-1;
1173 aOp = p->aOp;
1174 aMem = p->aMem;
1175 pOp = &aOp[pcx];
1176 break;
1178 p->rc = pOp->p1;
1179 p->errorAction = (u8)pOp->p2;
1180 assert( pOp->p5<=4 );
1181 if( p->rc ){
1182 if( pOp->p5 ){
1183 static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK",
1184 "FOREIGN KEY" };
1185 testcase( pOp->p5==1 );
1186 testcase( pOp->p5==2 );
1187 testcase( pOp->p5==3 );
1188 testcase( pOp->p5==4 );
1189 sqlite3VdbeError(p, "%s constraint failed", azType[pOp->p5-1]);
1190 if( pOp->p4.z ){
1191 p->zErrMsg = sqlite3MPrintf(db, "%z: %s", p->zErrMsg, pOp->p4.z);
1193 }else{
1194 sqlite3VdbeError(p, "%s", pOp->p4.z);
1196 pcx = (int)(pOp - aOp);
1197 sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pcx, p->zSql, p->zErrMsg);
1199 rc = sqlite3VdbeHalt(p);
1200 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
1201 if( rc==SQLITE_BUSY ){
1202 p->rc = SQLITE_BUSY;
1203 }else{
1204 assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT );
1205 assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 );
1206 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
1208 goto vdbe_return;
1211 /* Opcode: Integer P1 P2 * * *
1212 ** Synopsis: r[P2]=P1
1214 ** The 32-bit integer value P1 is written into register P2.
1216 case OP_Integer: { /* out2 */
1217 pOut = out2Prerelease(p, pOp);
1218 pOut->u.i = pOp->p1;
1219 break;
1222 /* Opcode: Int64 * P2 * P4 *
1223 ** Synopsis: r[P2]=P4
1225 ** P4 is a pointer to a 64-bit integer value.
1226 ** Write that value into register P2.
1228 case OP_Int64: { /* out2 */
1229 pOut = out2Prerelease(p, pOp);
1230 assert( pOp->p4.pI64!=0 );
1231 pOut->u.i = *pOp->p4.pI64;
1232 break;
1235 #ifndef SQLITE_OMIT_FLOATING_POINT
1236 /* Opcode: Real * P2 * P4 *
1237 ** Synopsis: r[P2]=P4
1239 ** P4 is a pointer to a 64-bit floating point value.
1240 ** Write that value into register P2.
1242 case OP_Real: { /* same as TK_FLOAT, out2 */
1243 pOut = out2Prerelease(p, pOp);
1244 pOut->flags = MEM_Real;
1245 assert( !sqlite3IsNaN(*pOp->p4.pReal) );
1246 pOut->u.r = *pOp->p4.pReal;
1247 break;
1249 #endif
1251 /* Opcode: String8 * P2 * P4 *
1252 ** Synopsis: r[P2]='P4'
1254 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed
1255 ** into a String opcode before it is executed for the first time. During
1256 ** this transformation, the length of string P4 is computed and stored
1257 ** as the P1 parameter.
1259 case OP_String8: { /* same as TK_STRING, out2 */
1260 assert( pOp->p4.z!=0 );
1261 pOut = out2Prerelease(p, pOp);
1262 pOp->p1 = sqlite3Strlen30(pOp->p4.z);
1264 #ifndef SQLITE_OMIT_UTF16
1265 if( encoding!=SQLITE_UTF8 ){
1266 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
1267 assert( rc==SQLITE_OK || rc==SQLITE_TOOBIG );
1268 if( rc ) goto too_big;
1269 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
1270 assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z );
1271 assert( VdbeMemDynamic(pOut)==0 );
1272 pOut->szMalloc = 0;
1273 pOut->flags |= MEM_Static;
1274 if( pOp->p4type==P4_DYNAMIC ){
1275 sqlite3DbFree(db, pOp->p4.z);
1277 pOp->p4type = P4_DYNAMIC;
1278 pOp->p4.z = pOut->z;
1279 pOp->p1 = pOut->n;
1281 #endif
1282 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1283 goto too_big;
1285 pOp->opcode = OP_String;
1286 assert( rc==SQLITE_OK );
1287 /* Fall through to the next case, OP_String */
1288 /* no break */ deliberate_fall_through
1291 /* Opcode: String P1 P2 P3 P4 P5
1292 ** Synopsis: r[P2]='P4' (len=P1)
1294 ** The string value P4 of length P1 (bytes) is stored in register P2.
1296 ** If P3 is not zero and the content of register P3 is equal to P5, then
1297 ** the datatype of the register P2 is converted to BLOB. The content is
1298 ** the same sequence of bytes, it is merely interpreted as a BLOB instead
1299 ** of a string, as if it had been CAST. In other words:
1301 ** if( P3!=0 and reg[P3]==P5 ) reg[P2] := CAST(reg[P2] as BLOB)
1303 case OP_String: { /* out2 */
1304 assert( pOp->p4.z!=0 );
1305 pOut = out2Prerelease(p, pOp);
1306 pOut->flags = MEM_Str|MEM_Static|MEM_Term;
1307 pOut->z = pOp->p4.z;
1308 pOut->n = pOp->p1;
1309 pOut->enc = encoding;
1310 UPDATE_MAX_BLOBSIZE(pOut);
1311 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
1312 if( pOp->p3>0 ){
1313 assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
1314 pIn3 = &aMem[pOp->p3];
1315 assert( pIn3->flags & MEM_Int );
1316 if( pIn3->u.i==pOp->p5 ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term;
1318 #endif
1319 break;
1322 /* Opcode: BeginSubrtn * P2 * * *
1323 ** Synopsis: r[P2]=NULL
1325 ** Mark the beginning of a subroutine that can be entered in-line
1326 ** or that can be called using OP_Gosub. The subroutine should
1327 ** be terminated by an OP_Return instruction that has a P1 operand that
1328 ** is the same as the P2 operand to this opcode and that has P3 set to 1.
1329 ** If the subroutine is entered in-line, then the OP_Return will simply
1330 ** fall through. But if the subroutine is entered using OP_Gosub, then
1331 ** the OP_Return will jump back to the first instruction after the OP_Gosub.
1333 ** This routine works by loading a NULL into the P2 register. When the
1334 ** return address register contains a NULL, the OP_Return instruction is
1335 ** a no-op that simply falls through to the next instruction (assuming that
1336 ** the OP_Return opcode has a P3 value of 1). Thus if the subroutine is
1337 ** entered in-line, then the OP_Return will cause in-line execution to
1338 ** continue. But if the subroutine is entered via OP_Gosub, then the
1339 ** OP_Return will cause a return to the address following the OP_Gosub.
1341 ** This opcode is identical to OP_Null. It has a different name
1342 ** only to make the byte code easier to read and verify.
1344 /* Opcode: Null P1 P2 P3 * *
1345 ** Synopsis: r[P2..P3]=NULL
1347 ** Write a NULL into registers P2. If P3 greater than P2, then also write
1348 ** NULL into register P3 and every register in between P2 and P3. If P3
1349 ** is less than P2 (typically P3 is zero) then only register P2 is
1350 ** set to NULL.
1352 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that
1353 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on
1354 ** OP_Ne or OP_Eq.
1356 case OP_BeginSubrtn:
1357 case OP_Null: { /* out2 */
1358 int cnt;
1359 u16 nullFlag;
1360 pOut = out2Prerelease(p, pOp);
1361 cnt = pOp->p3-pOp->p2;
1362 assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
1363 pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null;
1364 pOut->n = 0;
1365 #ifdef SQLITE_DEBUG
1366 pOut->uTemp = 0;
1367 #endif
1368 while( cnt>0 ){
1369 pOut++;
1370 memAboutToChange(p, pOut);
1371 sqlite3VdbeMemSetNull(pOut);
1372 pOut->flags = nullFlag;
1373 pOut->n = 0;
1374 cnt--;
1376 break;
1379 /* Opcode: SoftNull P1 * * * *
1380 ** Synopsis: r[P1]=NULL
1382 ** Set register P1 to have the value NULL as seen by the OP_MakeRecord
1383 ** instruction, but do not free any string or blob memory associated with
1384 ** the register, so that if the value was a string or blob that was
1385 ** previously copied using OP_SCopy, the copies will continue to be valid.
1387 case OP_SoftNull: {
1388 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
1389 pOut = &aMem[pOp->p1];
1390 pOut->flags = (pOut->flags&~(MEM_Undefined|MEM_AffMask))|MEM_Null;
1391 break;
1394 /* Opcode: Blob P1 P2 * P4 *
1395 ** Synopsis: r[P2]=P4 (len=P1)
1397 ** P4 points to a blob of data P1 bytes long. Store this
1398 ** blob in register P2. If P4 is a NULL pointer, then construct
1399 ** a zero-filled blob that is P1 bytes long in P2.
1401 case OP_Blob: { /* out2 */
1402 assert( pOp->p1 <= SQLITE_MAX_LENGTH );
1403 pOut = out2Prerelease(p, pOp);
1404 if( pOp->p4.z==0 ){
1405 sqlite3VdbeMemSetZeroBlob(pOut, pOp->p1);
1406 if( sqlite3VdbeMemExpandBlob(pOut) ) goto no_mem;
1407 }else{
1408 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
1410 pOut->enc = encoding;
1411 UPDATE_MAX_BLOBSIZE(pOut);
1412 break;
1415 /* Opcode: Variable P1 P2 * P4 *
1416 ** Synopsis: r[P2]=parameter(P1,P4)
1418 ** Transfer the values of bound parameter P1 into register P2
1420 ** If the parameter is named, then its name appears in P4.
1421 ** The P4 value is used by sqlite3_bind_parameter_name().
1423 case OP_Variable: { /* out2 */
1424 Mem *pVar; /* Value being transferred */
1426 assert( pOp->p1>0 && pOp->p1<=p->nVar );
1427 assert( pOp->p4.z==0 || pOp->p4.z==sqlite3VListNumToName(p->pVList,pOp->p1) );
1428 pVar = &p->aVar[pOp->p1 - 1];
1429 if( sqlite3VdbeMemTooBig(pVar) ){
1430 goto too_big;
1432 pOut = &aMem[pOp->p2];
1433 if( VdbeMemDynamic(pOut) ) sqlite3VdbeMemSetNull(pOut);
1434 memcpy(pOut, pVar, MEMCELLSIZE);
1435 pOut->flags &= ~(MEM_Dyn|MEM_Ephem);
1436 pOut->flags |= MEM_Static|MEM_FromBind;
1437 UPDATE_MAX_BLOBSIZE(pOut);
1438 break;
1441 /* Opcode: Move P1 P2 P3 * *
1442 ** Synopsis: r[P2@P3]=r[P1@P3]
1444 ** Move the P3 values in register P1..P1+P3-1 over into
1445 ** registers P2..P2+P3-1. Registers P1..P1+P3-1 are
1446 ** left holding a NULL. It is an error for register ranges
1447 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap. It is an error
1448 ** for P3 to be less than 1.
1450 case OP_Move: {
1451 int n; /* Number of registers left to copy */
1452 int p1; /* Register to copy from */
1453 int p2; /* Register to copy to */
1455 n = pOp->p3;
1456 p1 = pOp->p1;
1457 p2 = pOp->p2;
1458 assert( n>0 && p1>0 && p2>0 );
1459 assert( p1+n<=p2 || p2+n<=p1 );
1461 pIn1 = &aMem[p1];
1462 pOut = &aMem[p2];
1464 assert( pOut<=&aMem[(p->nMem+1 - p->nCursor)] );
1465 assert( pIn1<=&aMem[(p->nMem+1 - p->nCursor)] );
1466 assert( memIsValid(pIn1) );
1467 memAboutToChange(p, pOut);
1468 sqlite3VdbeMemMove(pOut, pIn1);
1469 #ifdef SQLITE_DEBUG
1470 pIn1->pScopyFrom = 0;
1471 { int i;
1472 for(i=1; i<p->nMem; i++){
1473 if( aMem[i].pScopyFrom==pIn1 ){
1474 aMem[i].pScopyFrom = pOut;
1478 #endif
1479 Deephemeralize(pOut);
1480 REGISTER_TRACE(p2++, pOut);
1481 pIn1++;
1482 pOut++;
1483 }while( --n );
1484 break;
1487 /* Opcode: Copy P1 P2 P3 * P5
1488 ** Synopsis: r[P2@P3+1]=r[P1@P3+1]
1490 ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
1492 ** If the 0x0002 bit of P5 is set then also clear the MEM_Subtype flag in the
1493 ** destination. The 0x0001 bit of P5 indicates that this Copy opcode cannot
1494 ** be merged. The 0x0001 bit is used by the query planner and does not
1495 ** come into play during query execution.
1497 ** This instruction makes a deep copy of the value. A duplicate
1498 ** is made of any string or blob constant. See also OP_SCopy.
1500 case OP_Copy: {
1501 int n;
1503 n = pOp->p3;
1504 pIn1 = &aMem[pOp->p1];
1505 pOut = &aMem[pOp->p2];
1506 assert( pOut!=pIn1 );
1507 while( 1 ){
1508 memAboutToChange(p, pOut);
1509 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1510 Deephemeralize(pOut);
1511 if( (pOut->flags & MEM_Subtype)!=0 && (pOp->p5 & 0x0002)!=0 ){
1512 pOut->flags &= ~MEM_Subtype;
1514 #ifdef SQLITE_DEBUG
1515 pOut->pScopyFrom = 0;
1516 #endif
1517 REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut);
1518 if( (n--)==0 ) break;
1519 pOut++;
1520 pIn1++;
1522 break;
1525 /* Opcode: SCopy P1 P2 * * *
1526 ** Synopsis: r[P2]=r[P1]
1528 ** Make a shallow copy of register P1 into register P2.
1530 ** This instruction makes a shallow copy of the value. If the value
1531 ** is a string or blob, then the copy is only a pointer to the
1532 ** original and hence if the original changes so will the copy.
1533 ** Worse, if the original is deallocated, the copy becomes invalid.
1534 ** Thus the program must guarantee that the original will not change
1535 ** during the lifetime of the copy. Use OP_Copy to make a complete
1536 ** copy.
1538 case OP_SCopy: { /* out2 */
1539 pIn1 = &aMem[pOp->p1];
1540 pOut = &aMem[pOp->p2];
1541 assert( pOut!=pIn1 );
1542 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1543 #ifdef SQLITE_DEBUG
1544 pOut->pScopyFrom = pIn1;
1545 pOut->mScopyFlags = pIn1->flags;
1546 #endif
1547 break;
1550 /* Opcode: IntCopy P1 P2 * * *
1551 ** Synopsis: r[P2]=r[P1]
1553 ** Transfer the integer value held in register P1 into register P2.
1555 ** This is an optimized version of SCopy that works only for integer
1556 ** values.
1558 case OP_IntCopy: { /* out2 */
1559 pIn1 = &aMem[pOp->p1];
1560 assert( (pIn1->flags & MEM_Int)!=0 );
1561 pOut = &aMem[pOp->p2];
1562 sqlite3VdbeMemSetInt64(pOut, pIn1->u.i);
1563 break;
1566 /* Opcode: FkCheck * * * * *
1568 ** Halt with an SQLITE_CONSTRAINT error if there are any unresolved
1569 ** foreign key constraint violations. If there are no foreign key
1570 ** constraint violations, this is a no-op.
1572 ** FK constraint violations are also checked when the prepared statement
1573 ** exits. This opcode is used to raise foreign key constraint errors prior
1574 ** to returning results such as a row change count or the result of a
1575 ** RETURNING clause.
1577 case OP_FkCheck: {
1578 if( (rc = sqlite3VdbeCheckFk(p,0))!=SQLITE_OK ){
1579 goto abort_due_to_error;
1581 break;
1584 /* Opcode: ResultRow P1 P2 * * *
1585 ** Synopsis: output=r[P1@P2]
1587 ** The registers P1 through P1+P2-1 contain a single row of
1588 ** results. This opcode causes the sqlite3_step() call to terminate
1589 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
1590 ** structure to provide access to the r(P1)..r(P1+P2-1) values as
1591 ** the result row.
1593 case OP_ResultRow: {
1594 assert( p->nResColumn==pOp->p2 );
1595 assert( pOp->p1>0 || CORRUPT_DB );
1596 assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 );
1598 p->cacheCtr = (p->cacheCtr + 2)|1;
1599 p->pResultRow = &aMem[pOp->p1];
1600 #ifdef SQLITE_DEBUG
1602 Mem *pMem = p->pResultRow;
1603 int i;
1604 for(i=0; i<pOp->p2; i++){
1605 assert( memIsValid(&pMem[i]) );
1606 REGISTER_TRACE(pOp->p1+i, &pMem[i]);
1607 /* The registers in the result will not be used again when the
1608 ** prepared statement restarts. This is because sqlite3_column()
1609 ** APIs might have caused type conversions of made other changes to
1610 ** the register values. Therefore, we can go ahead and break any
1611 ** OP_SCopy dependencies. */
1612 pMem[i].pScopyFrom = 0;
1615 #endif
1616 if( db->mallocFailed ) goto no_mem;
1617 if( db->mTrace & SQLITE_TRACE_ROW ){
1618 db->trace.xV2(SQLITE_TRACE_ROW, db->pTraceArg, p, 0);
1620 p->pc = (int)(pOp - aOp) + 1;
1621 rc = SQLITE_ROW;
1622 goto vdbe_return;
1625 /* Opcode: Concat P1 P2 P3 * *
1626 ** Synopsis: r[P3]=r[P2]+r[P1]
1628 ** Add the text in register P1 onto the end of the text in
1629 ** register P2 and store the result in register P3.
1630 ** If either the P1 or P2 text are NULL then store NULL in P3.
1632 ** P3 = P2 || P1
1634 ** It is illegal for P1 and P3 to be the same register. Sometimes,
1635 ** if P3 is the same register as P2, the implementation is able
1636 ** to avoid a memcpy().
1638 case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */
1639 i64 nByte; /* Total size of the output string or blob */
1640 u16 flags1; /* Initial flags for P1 */
1641 u16 flags2; /* Initial flags for P2 */
1643 pIn1 = &aMem[pOp->p1];
1644 pIn2 = &aMem[pOp->p2];
1645 pOut = &aMem[pOp->p3];
1646 testcase( pOut==pIn2 );
1647 assert( pIn1!=pOut );
1648 flags1 = pIn1->flags;
1649 testcase( flags1 & MEM_Null );
1650 testcase( pIn2->flags & MEM_Null );
1651 if( (flags1 | pIn2->flags) & MEM_Null ){
1652 sqlite3VdbeMemSetNull(pOut);
1653 break;
1655 if( (flags1 & (MEM_Str|MEM_Blob))==0 ){
1656 if( sqlite3VdbeMemStringify(pIn1,encoding,0) ) goto no_mem;
1657 flags1 = pIn1->flags & ~MEM_Str;
1658 }else if( (flags1 & MEM_Zero)!=0 ){
1659 if( sqlite3VdbeMemExpandBlob(pIn1) ) goto no_mem;
1660 flags1 = pIn1->flags & ~MEM_Str;
1662 flags2 = pIn2->flags;
1663 if( (flags2 & (MEM_Str|MEM_Blob))==0 ){
1664 if( sqlite3VdbeMemStringify(pIn2,encoding,0) ) goto no_mem;
1665 flags2 = pIn2->flags & ~MEM_Str;
1666 }else if( (flags2 & MEM_Zero)!=0 ){
1667 if( sqlite3VdbeMemExpandBlob(pIn2) ) goto no_mem;
1668 flags2 = pIn2->flags & ~MEM_Str;
1670 nByte = pIn1->n + pIn2->n;
1671 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1672 goto too_big;
1674 if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){
1675 goto no_mem;
1677 MemSetTypeFlag(pOut, MEM_Str);
1678 if( pOut!=pIn2 ){
1679 memcpy(pOut->z, pIn2->z, pIn2->n);
1680 assert( (pIn2->flags & MEM_Dyn) == (flags2 & MEM_Dyn) );
1681 pIn2->flags = flags2;
1683 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
1684 assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
1685 pIn1->flags = flags1;
1686 if( encoding>SQLITE_UTF8 ) nByte &= ~1;
1687 pOut->z[nByte]=0;
1688 pOut->z[nByte+1] = 0;
1689 pOut->flags |= MEM_Term;
1690 pOut->n = (int)nByte;
1691 pOut->enc = encoding;
1692 UPDATE_MAX_BLOBSIZE(pOut);
1693 break;
1696 /* Opcode: Add P1 P2 P3 * *
1697 ** Synopsis: r[P3]=r[P1]+r[P2]
1699 ** Add the value in register P1 to the value in register P2
1700 ** and store the result in register P3.
1701 ** If either input is NULL, the result is NULL.
1703 /* Opcode: Multiply P1 P2 P3 * *
1704 ** Synopsis: r[P3]=r[P1]*r[P2]
1707 ** Multiply the value in register P1 by the value in register P2
1708 ** and store the result in register P3.
1709 ** If either input is NULL, the result is NULL.
1711 /* Opcode: Subtract P1 P2 P3 * *
1712 ** Synopsis: r[P3]=r[P2]-r[P1]
1714 ** Subtract the value in register P1 from the value in register P2
1715 ** and store the result in register P3.
1716 ** If either input is NULL, the result is NULL.
1718 /* Opcode: Divide P1 P2 P3 * *
1719 ** Synopsis: r[P3]=r[P2]/r[P1]
1721 ** Divide the value in register P1 by the value in register P2
1722 ** and store the result in register P3 (P3=P2/P1). If the value in
1723 ** register P1 is zero, then the result is NULL. If either input is
1724 ** NULL, the result is NULL.
1726 /* Opcode: Remainder P1 P2 P3 * *
1727 ** Synopsis: r[P3]=r[P2]%r[P1]
1729 ** Compute the remainder after integer register P2 is divided by
1730 ** register P1 and store the result in register P3.
1731 ** If the value in register P1 is zero the result is NULL.
1732 ** If either operand is NULL, the result is NULL.
1734 case OP_Add: /* same as TK_PLUS, in1, in2, out3 */
1735 case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */
1736 case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */
1737 case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */
1738 case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */
1739 u16 type1; /* Numeric type of left operand */
1740 u16 type2; /* Numeric type of right operand */
1741 i64 iA; /* Integer value of left operand */
1742 i64 iB; /* Integer value of right operand */
1743 double rA; /* Real value of left operand */
1744 double rB; /* Real value of right operand */
1746 pIn1 = &aMem[pOp->p1];
1747 type1 = pIn1->flags;
1748 pIn2 = &aMem[pOp->p2];
1749 type2 = pIn2->flags;
1750 pOut = &aMem[pOp->p3];
1751 if( (type1 & type2 & MEM_Int)!=0 ){
1752 int_math:
1753 iA = pIn1->u.i;
1754 iB = pIn2->u.i;
1755 switch( pOp->opcode ){
1756 case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break;
1757 case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break;
1758 case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break;
1759 case OP_Divide: {
1760 if( iA==0 ) goto arithmetic_result_is_null;
1761 if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math;
1762 iB /= iA;
1763 break;
1765 default: {
1766 if( iA==0 ) goto arithmetic_result_is_null;
1767 if( iA==-1 ) iA = 1;
1768 iB %= iA;
1769 break;
1772 pOut->u.i = iB;
1773 MemSetTypeFlag(pOut, MEM_Int);
1774 }else if( ((type1 | type2) & MEM_Null)!=0 ){
1775 goto arithmetic_result_is_null;
1776 }else{
1777 type1 = numericType(pIn1);
1778 type2 = numericType(pIn2);
1779 if( (type1 & type2 & MEM_Int)!=0 ) goto int_math;
1780 fp_math:
1781 rA = sqlite3VdbeRealValue(pIn1);
1782 rB = sqlite3VdbeRealValue(pIn2);
1783 switch( pOp->opcode ){
1784 case OP_Add: rB += rA; break;
1785 case OP_Subtract: rB -= rA; break;
1786 case OP_Multiply: rB *= rA; break;
1787 case OP_Divide: {
1788 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
1789 if( rA==(double)0 ) goto arithmetic_result_is_null;
1790 rB /= rA;
1791 break;
1793 default: {
1794 iA = sqlite3VdbeIntValue(pIn1);
1795 iB = sqlite3VdbeIntValue(pIn2);
1796 if( iA==0 ) goto arithmetic_result_is_null;
1797 if( iA==-1 ) iA = 1;
1798 rB = (double)(iB % iA);
1799 break;
1802 #ifdef SQLITE_OMIT_FLOATING_POINT
1803 pOut->u.i = rB;
1804 MemSetTypeFlag(pOut, MEM_Int);
1805 #else
1806 if( sqlite3IsNaN(rB) ){
1807 goto arithmetic_result_is_null;
1809 pOut->u.r = rB;
1810 MemSetTypeFlag(pOut, MEM_Real);
1811 #endif
1813 break;
1815 arithmetic_result_is_null:
1816 sqlite3VdbeMemSetNull(pOut);
1817 break;
1820 /* Opcode: CollSeq P1 * * P4
1822 ** P4 is a pointer to a CollSeq object. If the next call to a user function
1823 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
1824 ** be returned. This is used by the built-in min(), max() and nullif()
1825 ** functions.
1827 ** If P1 is not zero, then it is a register that a subsequent min() or
1828 ** max() aggregate will set to 1 if the current row is not the minimum or
1829 ** maximum. The P1 register is initialized to 0 by this instruction.
1831 ** The interface used by the implementation of the aforementioned functions
1832 ** to retrieve the collation sequence set by this opcode is not available
1833 ** publicly. Only built-in functions have access to this feature.
1835 case OP_CollSeq: {
1836 assert( pOp->p4type==P4_COLLSEQ );
1837 if( pOp->p1 ){
1838 sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0);
1840 break;
1843 /* Opcode: BitAnd P1 P2 P3 * *
1844 ** Synopsis: r[P3]=r[P1]&r[P2]
1846 ** Take the bit-wise AND of the values in register P1 and P2 and
1847 ** store the result in register P3.
1848 ** If either input is NULL, the result is NULL.
1850 /* Opcode: BitOr P1 P2 P3 * *
1851 ** Synopsis: r[P3]=r[P1]|r[P2]
1853 ** Take the bit-wise OR of the values in register P1 and P2 and
1854 ** store the result in register P3.
1855 ** If either input is NULL, the result is NULL.
1857 /* Opcode: ShiftLeft P1 P2 P3 * *
1858 ** Synopsis: r[P3]=r[P2]<<r[P1]
1860 ** Shift the integer value in register P2 to the left by the
1861 ** number of bits specified by the integer in register P1.
1862 ** Store the result in register P3.
1863 ** If either input is NULL, the result is NULL.
1865 /* Opcode: ShiftRight P1 P2 P3 * *
1866 ** Synopsis: r[P3]=r[P2]>>r[P1]
1868 ** Shift the integer value in register P2 to the right by the
1869 ** number of bits specified by the integer in register P1.
1870 ** Store the result in register P3.
1871 ** If either input is NULL, the result is NULL.
1873 case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */
1874 case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */
1875 case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */
1876 case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */
1877 i64 iA;
1878 u64 uA;
1879 i64 iB;
1880 u8 op;
1882 pIn1 = &aMem[pOp->p1];
1883 pIn2 = &aMem[pOp->p2];
1884 pOut = &aMem[pOp->p3];
1885 if( (pIn1->flags | pIn2->flags) & MEM_Null ){
1886 sqlite3VdbeMemSetNull(pOut);
1887 break;
1889 iA = sqlite3VdbeIntValue(pIn2);
1890 iB = sqlite3VdbeIntValue(pIn1);
1891 op = pOp->opcode;
1892 if( op==OP_BitAnd ){
1893 iA &= iB;
1894 }else if( op==OP_BitOr ){
1895 iA |= iB;
1896 }else if( iB!=0 ){
1897 assert( op==OP_ShiftRight || op==OP_ShiftLeft );
1899 /* If shifting by a negative amount, shift in the other direction */
1900 if( iB<0 ){
1901 assert( OP_ShiftRight==OP_ShiftLeft+1 );
1902 op = 2*OP_ShiftLeft + 1 - op;
1903 iB = iB>(-64) ? -iB : 64;
1906 if( iB>=64 ){
1907 iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1;
1908 }else{
1909 memcpy(&uA, &iA, sizeof(uA));
1910 if( op==OP_ShiftLeft ){
1911 uA <<= iB;
1912 }else{
1913 uA >>= iB;
1914 /* Sign-extend on a right shift of a negative number */
1915 if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB);
1917 memcpy(&iA, &uA, sizeof(iA));
1920 pOut->u.i = iA;
1921 MemSetTypeFlag(pOut, MEM_Int);
1922 break;
1925 /* Opcode: AddImm P1 P2 * * *
1926 ** Synopsis: r[P1]=r[P1]+P2
1928 ** Add the constant P2 to the value in register P1.
1929 ** The result is always an integer.
1931 ** To force any register to be an integer, just add 0.
1933 case OP_AddImm: { /* in1 */
1934 pIn1 = &aMem[pOp->p1];
1935 memAboutToChange(p, pIn1);
1936 sqlite3VdbeMemIntegerify(pIn1);
1937 pIn1->u.i += pOp->p2;
1938 break;
1941 /* Opcode: MustBeInt P1 P2 * * *
1943 ** Force the value in register P1 to be an integer. If the value
1944 ** in P1 is not an integer and cannot be converted into an integer
1945 ** without data loss, then jump immediately to P2, or if P2==0
1946 ** raise an SQLITE_MISMATCH exception.
1948 case OP_MustBeInt: { /* jump, in1 */
1949 pIn1 = &aMem[pOp->p1];
1950 if( (pIn1->flags & MEM_Int)==0 ){
1951 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
1952 if( (pIn1->flags & MEM_Int)==0 ){
1953 VdbeBranchTaken(1, 2);
1954 if( pOp->p2==0 ){
1955 rc = SQLITE_MISMATCH;
1956 goto abort_due_to_error;
1957 }else{
1958 goto jump_to_p2;
1962 VdbeBranchTaken(0, 2);
1963 MemSetTypeFlag(pIn1, MEM_Int);
1964 break;
1967 #ifndef SQLITE_OMIT_FLOATING_POINT
1968 /* Opcode: RealAffinity P1 * * * *
1970 ** If register P1 holds an integer convert it to a real value.
1972 ** This opcode is used when extracting information from a column that
1973 ** has REAL affinity. Such column values may still be stored as
1974 ** integers, for space efficiency, but after extraction we want them
1975 ** to have only a real value.
1977 case OP_RealAffinity: { /* in1 */
1978 pIn1 = &aMem[pOp->p1];
1979 if( pIn1->flags & (MEM_Int|MEM_IntReal) ){
1980 testcase( pIn1->flags & MEM_Int );
1981 testcase( pIn1->flags & MEM_IntReal );
1982 sqlite3VdbeMemRealify(pIn1);
1983 REGISTER_TRACE(pOp->p1, pIn1);
1985 break;
1987 #endif
1989 #ifndef SQLITE_OMIT_CAST
1990 /* Opcode: Cast P1 P2 * * *
1991 ** Synopsis: affinity(r[P1])
1993 ** Force the value in register P1 to be the type defined by P2.
1995 ** <ul>
1996 ** <li> P2=='A' &rarr; BLOB
1997 ** <li> P2=='B' &rarr; TEXT
1998 ** <li> P2=='C' &rarr; NUMERIC
1999 ** <li> P2=='D' &rarr; INTEGER
2000 ** <li> P2=='E' &rarr; REAL
2001 ** </ul>
2003 ** A NULL value is not changed by this routine. It remains NULL.
2005 case OP_Cast: { /* in1 */
2006 assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL );
2007 testcase( pOp->p2==SQLITE_AFF_TEXT );
2008 testcase( pOp->p2==SQLITE_AFF_BLOB );
2009 testcase( pOp->p2==SQLITE_AFF_NUMERIC );
2010 testcase( pOp->p2==SQLITE_AFF_INTEGER );
2011 testcase( pOp->p2==SQLITE_AFF_REAL );
2012 pIn1 = &aMem[pOp->p1];
2013 memAboutToChange(p, pIn1);
2014 rc = ExpandBlob(pIn1);
2015 if( rc ) goto abort_due_to_error;
2016 rc = sqlite3VdbeMemCast(pIn1, pOp->p2, encoding);
2017 if( rc ) goto abort_due_to_error;
2018 UPDATE_MAX_BLOBSIZE(pIn1);
2019 REGISTER_TRACE(pOp->p1, pIn1);
2020 break;
2022 #endif /* SQLITE_OMIT_CAST */
2024 /* Opcode: Eq P1 P2 P3 P4 P5
2025 ** Synopsis: IF r[P3]==r[P1]
2027 ** Compare the values in register P1 and P3. If reg(P3)==reg(P1) then
2028 ** jump to address P2.
2030 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
2031 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
2032 ** to coerce both inputs according to this affinity before the
2033 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
2034 ** affinity is used. Note that the affinity conversions are stored
2035 ** back into the input registers P1 and P3. So this opcode can cause
2036 ** persistent changes to registers P1 and P3.
2038 ** Once any conversions have taken place, and neither value is NULL,
2039 ** the values are compared. If both values are blobs then memcmp() is
2040 ** used to determine the results of the comparison. If both values
2041 ** are text, then the appropriate collating function specified in
2042 ** P4 is used to do the comparison. If P4 is not specified then
2043 ** memcmp() is used to compare text string. If both values are
2044 ** numeric, then a numeric comparison is used. If the two values
2045 ** are of different types, then numbers are considered less than
2046 ** strings and strings are considered less than blobs.
2048 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
2049 ** true or false and is never NULL. If both operands are NULL then the result
2050 ** of comparison is true. If either operand is NULL then the result is false.
2051 ** If neither operand is NULL the result is the same as it would be if
2052 ** the SQLITE_NULLEQ flag were omitted from P5.
2054 ** This opcode saves the result of comparison for use by the new
2055 ** OP_Jump opcode.
2057 /* Opcode: Ne P1 P2 P3 P4 P5
2058 ** Synopsis: IF r[P3]!=r[P1]
2060 ** This works just like the Eq opcode except that the jump is taken if
2061 ** the operands in registers P1 and P3 are not equal. See the Eq opcode for
2062 ** additional information.
2064 /* Opcode: Lt P1 P2 P3 P4 P5
2065 ** Synopsis: IF r[P3]<r[P1]
2067 ** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then
2068 ** jump to address P2.
2070 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
2071 ** reg(P3) is NULL then the take the jump. If the SQLITE_JUMPIFNULL
2072 ** bit is clear then fall through if either operand is NULL.
2074 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
2075 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
2076 ** to coerce both inputs according to this affinity before the
2077 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
2078 ** affinity is used. Note that the affinity conversions are stored
2079 ** back into the input registers P1 and P3. So this opcode can cause
2080 ** persistent changes to registers P1 and P3.
2082 ** Once any conversions have taken place, and neither value is NULL,
2083 ** the values are compared. If both values are blobs then memcmp() is
2084 ** used to determine the results of the comparison. If both values
2085 ** are text, then the appropriate collating function specified in
2086 ** P4 is used to do the comparison. If P4 is not specified then
2087 ** memcmp() is used to compare text string. If both values are
2088 ** numeric, then a numeric comparison is used. If the two values
2089 ** are of different types, then numbers are considered less than
2090 ** strings and strings are considered less than blobs.
2092 ** This opcode saves the result of comparison for use by the new
2093 ** OP_Jump opcode.
2095 /* Opcode: Le P1 P2 P3 P4 P5
2096 ** Synopsis: IF r[P3]<=r[P1]
2098 ** This works just like the Lt opcode except that the jump is taken if
2099 ** the content of register P3 is less than or equal to the content of
2100 ** register P1. See the Lt opcode for additional information.
2102 /* Opcode: Gt P1 P2 P3 P4 P5
2103 ** Synopsis: IF r[P3]>r[P1]
2105 ** This works just like the Lt opcode except that the jump is taken if
2106 ** the content of register P3 is greater than the content of
2107 ** register P1. See the Lt opcode for additional information.
2109 /* Opcode: Ge P1 P2 P3 P4 P5
2110 ** Synopsis: IF r[P3]>=r[P1]
2112 ** This works just like the Lt opcode except that the jump is taken if
2113 ** the content of register P3 is greater than or equal to the content of
2114 ** register P1. See the Lt opcode for additional information.
2116 case OP_Eq: /* same as TK_EQ, jump, in1, in3 */
2117 case OP_Ne: /* same as TK_NE, jump, in1, in3 */
2118 case OP_Lt: /* same as TK_LT, jump, in1, in3 */
2119 case OP_Le: /* same as TK_LE, jump, in1, in3 */
2120 case OP_Gt: /* same as TK_GT, jump, in1, in3 */
2121 case OP_Ge: { /* same as TK_GE, jump, in1, in3 */
2122 int res, res2; /* Result of the comparison of pIn1 against pIn3 */
2123 char affinity; /* Affinity to use for comparison */
2124 u16 flags1; /* Copy of initial value of pIn1->flags */
2125 u16 flags3; /* Copy of initial value of pIn3->flags */
2127 pIn1 = &aMem[pOp->p1];
2128 pIn3 = &aMem[pOp->p3];
2129 flags1 = pIn1->flags;
2130 flags3 = pIn3->flags;
2131 if( (flags1 & flags3 & MEM_Int)!=0 ){
2132 /* Common case of comparison of two integers */
2133 if( pIn3->u.i > pIn1->u.i ){
2134 if( sqlite3aGTb[pOp->opcode] ){
2135 VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3);
2136 goto jump_to_p2;
2138 iCompare = +1;
2139 VVA_ONLY( iCompareIsInit = 1; )
2140 }else if( pIn3->u.i < pIn1->u.i ){
2141 if( sqlite3aLTb[pOp->opcode] ){
2142 VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3);
2143 goto jump_to_p2;
2145 iCompare = -1;
2146 VVA_ONLY( iCompareIsInit = 1; )
2147 }else{
2148 if( sqlite3aEQb[pOp->opcode] ){
2149 VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3);
2150 goto jump_to_p2;
2152 iCompare = 0;
2153 VVA_ONLY( iCompareIsInit = 1; )
2155 VdbeBranchTaken(0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
2156 break;
2158 if( (flags1 | flags3)&MEM_Null ){
2159 /* One or both operands are NULL */
2160 if( pOp->p5 & SQLITE_NULLEQ ){
2161 /* If SQLITE_NULLEQ is set (which will only happen if the operator is
2162 ** OP_Eq or OP_Ne) then take the jump or not depending on whether
2163 ** or not both operands are null.
2165 assert( (flags1 & MEM_Cleared)==0 );
2166 assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 || CORRUPT_DB );
2167 testcase( (pOp->p5 & SQLITE_JUMPIFNULL)!=0 );
2168 if( (flags1&flags3&MEM_Null)!=0
2169 && (flags3&MEM_Cleared)==0
2171 res = 0; /* Operands are equal */
2172 }else{
2173 res = ((flags3 & MEM_Null) ? -1 : +1); /* Operands are not equal */
2175 }else{
2176 /* SQLITE_NULLEQ is clear and at least one operand is NULL,
2177 ** then the result is always NULL.
2178 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
2180 VdbeBranchTaken(2,3);
2181 if( pOp->p5 & SQLITE_JUMPIFNULL ){
2182 goto jump_to_p2;
2184 iCompare = 1; /* Operands are not equal */
2185 VVA_ONLY( iCompareIsInit = 1; )
2186 break;
2188 }else{
2189 /* Neither operand is NULL and we couldn't do the special high-speed
2190 ** integer comparison case. So do a general-case comparison. */
2191 affinity = pOp->p5 & SQLITE_AFF_MASK;
2192 if( affinity>=SQLITE_AFF_NUMERIC ){
2193 if( (flags1 | flags3)&MEM_Str ){
2194 if( (flags1 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){
2195 applyNumericAffinity(pIn1,0);
2196 assert( flags3==pIn3->flags || CORRUPT_DB );
2197 flags3 = pIn3->flags;
2199 if( (flags3 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){
2200 applyNumericAffinity(pIn3,0);
2203 }else if( affinity==SQLITE_AFF_TEXT && ((flags1 | flags3) & MEM_Str)!=0 ){
2204 if( (flags1 & MEM_Str)==0 && (flags1&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){
2205 testcase( pIn1->flags & MEM_Int );
2206 testcase( pIn1->flags & MEM_Real );
2207 testcase( pIn1->flags & MEM_IntReal );
2208 sqlite3VdbeMemStringify(pIn1, encoding, 1);
2209 testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) );
2210 flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask);
2211 if( NEVER(pIn1==pIn3) ) flags3 = flags1 | MEM_Str;
2213 if( (flags3 & MEM_Str)==0 && (flags3&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){
2214 testcase( pIn3->flags & MEM_Int );
2215 testcase( pIn3->flags & MEM_Real );
2216 testcase( pIn3->flags & MEM_IntReal );
2217 sqlite3VdbeMemStringify(pIn3, encoding, 1);
2218 testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) );
2219 flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask);
2222 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
2223 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
2226 /* At this point, res is negative, zero, or positive if reg[P1] is
2227 ** less than, equal to, or greater than reg[P3], respectively. Compute
2228 ** the answer to this operator in res2, depending on what the comparison
2229 ** operator actually is. The next block of code depends on the fact
2230 ** that the 6 comparison operators are consecutive integers in this
2231 ** order: NE, EQ, GT, LE, LT, GE */
2232 assert( OP_Eq==OP_Ne+1 ); assert( OP_Gt==OP_Ne+2 ); assert( OP_Le==OP_Ne+3 );
2233 assert( OP_Lt==OP_Ne+4 ); assert( OP_Ge==OP_Ne+5 );
2234 if( res<0 ){
2235 res2 = sqlite3aLTb[pOp->opcode];
2236 }else if( res==0 ){
2237 res2 = sqlite3aEQb[pOp->opcode];
2238 }else{
2239 res2 = sqlite3aGTb[pOp->opcode];
2241 iCompare = res;
2242 VVA_ONLY( iCompareIsInit = 1; )
2244 /* Undo any changes made by applyAffinity() to the input registers. */
2245 assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) );
2246 pIn3->flags = flags3;
2247 assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
2248 pIn1->flags = flags1;
2250 VdbeBranchTaken(res2!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
2251 if( res2 ){
2252 goto jump_to_p2;
2254 break;
2257 /* Opcode: ElseEq * P2 * * *
2259 ** This opcode must follow an OP_Lt or OP_Gt comparison operator. There
2260 ** can be zero or more OP_ReleaseReg opcodes intervening, but no other
2261 ** opcodes are allowed to occur between this instruction and the previous
2262 ** OP_Lt or OP_Gt.
2264 ** If result of an OP_Eq comparison on the same two operands as the
2265 ** prior OP_Lt or OP_Gt would have been true, then jump to P2.
2266 ** If the result of an OP_Eq comparison on the two previous
2267 ** operands would have been false or NULL, then fall through.
2269 case OP_ElseEq: { /* same as TK_ESCAPE, jump */
2271 #ifdef SQLITE_DEBUG
2272 /* Verify the preconditions of this opcode - that it follows an OP_Lt or
2273 ** OP_Gt with zero or more intervening OP_ReleaseReg opcodes */
2274 int iAddr;
2275 for(iAddr = (int)(pOp - aOp) - 1; ALWAYS(iAddr>=0); iAddr--){
2276 if( aOp[iAddr].opcode==OP_ReleaseReg ) continue;
2277 assert( aOp[iAddr].opcode==OP_Lt || aOp[iAddr].opcode==OP_Gt );
2278 break;
2280 #endif /* SQLITE_DEBUG */
2281 assert( iCompareIsInit );
2282 VdbeBranchTaken(iCompare==0, 2);
2283 if( iCompare==0 ) goto jump_to_p2;
2284 break;
2288 /* Opcode: Permutation * * * P4 *
2290 ** Set the permutation used by the OP_Compare operator in the next
2291 ** instruction. The permutation is stored in the P4 operand.
2293 ** The permutation is only valid for the next opcode which must be
2294 ** an OP_Compare that has the OPFLAG_PERMUTE bit set in P5.
2296 ** The first integer in the P4 integer array is the length of the array
2297 ** and does not become part of the permutation.
2299 case OP_Permutation: {
2300 assert( pOp->p4type==P4_INTARRAY );
2301 assert( pOp->p4.ai );
2302 assert( pOp[1].opcode==OP_Compare );
2303 assert( pOp[1].p5 & OPFLAG_PERMUTE );
2304 break;
2307 /* Opcode: Compare P1 P2 P3 P4 P5
2308 ** Synopsis: r[P1@P3] <-> r[P2@P3]
2310 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
2311 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of
2312 ** the comparison for use by the next OP_Jump instruct.
2314 ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is
2315 ** determined by the most recent OP_Permutation operator. If the
2316 ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential
2317 ** order.
2319 ** P4 is a KeyInfo structure that defines collating sequences and sort
2320 ** orders for the comparison. The permutation applies to registers
2321 ** only. The KeyInfo elements are used sequentially.
2323 ** The comparison is a sort comparison, so NULLs compare equal,
2324 ** NULLs are less than numbers, numbers are less than strings,
2325 ** and strings are less than blobs.
2327 ** This opcode must be immediately followed by an OP_Jump opcode.
2329 case OP_Compare: {
2330 int n;
2331 int i;
2332 int p1;
2333 int p2;
2334 const KeyInfo *pKeyInfo;
2335 u32 idx;
2336 CollSeq *pColl; /* Collating sequence to use on this term */
2337 int bRev; /* True for DESCENDING sort order */
2338 u32 *aPermute; /* The permutation */
2340 if( (pOp->p5 & OPFLAG_PERMUTE)==0 ){
2341 aPermute = 0;
2342 }else{
2343 assert( pOp>aOp );
2344 assert( pOp[-1].opcode==OP_Permutation );
2345 assert( pOp[-1].p4type==P4_INTARRAY );
2346 aPermute = pOp[-1].p4.ai + 1;
2347 assert( aPermute!=0 );
2349 n = pOp->p3;
2350 pKeyInfo = pOp->p4.pKeyInfo;
2351 assert( n>0 );
2352 assert( pKeyInfo!=0 );
2353 p1 = pOp->p1;
2354 p2 = pOp->p2;
2355 #ifdef SQLITE_DEBUG
2356 if( aPermute ){
2357 int k, mx = 0;
2358 for(k=0; k<n; k++) if( aPermute[k]>(u32)mx ) mx = aPermute[k];
2359 assert( p1>0 && p1+mx<=(p->nMem+1 - p->nCursor)+1 );
2360 assert( p2>0 && p2+mx<=(p->nMem+1 - p->nCursor)+1 );
2361 }else{
2362 assert( p1>0 && p1+n<=(p->nMem+1 - p->nCursor)+1 );
2363 assert( p2>0 && p2+n<=(p->nMem+1 - p->nCursor)+1 );
2365 #endif /* SQLITE_DEBUG */
2366 for(i=0; i<n; i++){
2367 idx = aPermute ? aPermute[i] : (u32)i;
2368 assert( memIsValid(&aMem[p1+idx]) );
2369 assert( memIsValid(&aMem[p2+idx]) );
2370 REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
2371 REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
2372 assert( i<pKeyInfo->nKeyField );
2373 pColl = pKeyInfo->aColl[i];
2374 bRev = (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC);
2375 iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
2376 VVA_ONLY( iCompareIsInit = 1; )
2377 if( iCompare ){
2378 if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL)
2379 && ((aMem[p1+idx].flags & MEM_Null) || (aMem[p2+idx].flags & MEM_Null))
2381 iCompare = -iCompare;
2383 if( bRev ) iCompare = -iCompare;
2384 break;
2387 assert( pOp[1].opcode==OP_Jump );
2388 break;
2391 /* Opcode: Jump P1 P2 P3 * *
2393 ** Jump to the instruction at address P1, P2, or P3 depending on whether
2394 ** in the most recent OP_Compare instruction the P1 vector was less than
2395 ** equal to, or greater than the P2 vector, respectively.
2397 ** This opcode must immediately follow an OP_Compare opcode.
2399 case OP_Jump: { /* jump */
2400 assert( pOp>aOp && pOp[-1].opcode==OP_Compare );
2401 assert( iCompareIsInit );
2402 if( iCompare<0 ){
2403 VdbeBranchTaken(0,4); pOp = &aOp[pOp->p1 - 1];
2404 }else if( iCompare==0 ){
2405 VdbeBranchTaken(1,4); pOp = &aOp[pOp->p2 - 1];
2406 }else{
2407 VdbeBranchTaken(2,4); pOp = &aOp[pOp->p3 - 1];
2409 break;
2412 /* Opcode: And P1 P2 P3 * *
2413 ** Synopsis: r[P3]=(r[P1] && r[P2])
2415 ** Take the logical AND of the values in registers P1 and P2 and
2416 ** write the result into register P3.
2418 ** If either P1 or P2 is 0 (false) then the result is 0 even if
2419 ** the other input is NULL. A NULL and true or two NULLs give
2420 ** a NULL output.
2422 /* Opcode: Or P1 P2 P3 * *
2423 ** Synopsis: r[P3]=(r[P1] || r[P2])
2425 ** Take the logical OR of the values in register P1 and P2 and
2426 ** store the answer in register P3.
2428 ** If either P1 or P2 is nonzero (true) then the result is 1 (true)
2429 ** even if the other input is NULL. A NULL and false or two NULLs
2430 ** give a NULL output.
2432 case OP_And: /* same as TK_AND, in1, in2, out3 */
2433 case OP_Or: { /* same as TK_OR, in1, in2, out3 */
2434 int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2435 int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2437 v1 = sqlite3VdbeBooleanValue(&aMem[pOp->p1], 2);
2438 v2 = sqlite3VdbeBooleanValue(&aMem[pOp->p2], 2);
2439 if( pOp->opcode==OP_And ){
2440 static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
2441 v1 = and_logic[v1*3+v2];
2442 }else{
2443 static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
2444 v1 = or_logic[v1*3+v2];
2446 pOut = &aMem[pOp->p3];
2447 if( v1==2 ){
2448 MemSetTypeFlag(pOut, MEM_Null);
2449 }else{
2450 pOut->u.i = v1;
2451 MemSetTypeFlag(pOut, MEM_Int);
2453 break;
2456 /* Opcode: IsTrue P1 P2 P3 P4 *
2457 ** Synopsis: r[P2] = coalesce(r[P1]==TRUE,P3) ^ P4
2459 ** This opcode implements the IS TRUE, IS FALSE, IS NOT TRUE, and
2460 ** IS NOT FALSE operators.
2462 ** Interpret the value in register P1 as a boolean value. Store that
2463 ** boolean (a 0 or 1) in register P2. Or if the value in register P1 is
2464 ** NULL, then the P3 is stored in register P2. Invert the answer if P4
2465 ** is 1.
2467 ** The logic is summarized like this:
2469 ** <ul>
2470 ** <li> If P3==0 and P4==0 then r[P2] := r[P1] IS TRUE
2471 ** <li> If P3==1 and P4==1 then r[P2] := r[P1] IS FALSE
2472 ** <li> If P3==0 and P4==1 then r[P2] := r[P1] IS NOT TRUE
2473 ** <li> If P3==1 and P4==0 then r[P2] := r[P1] IS NOT FALSE
2474 ** </ul>
2476 case OP_IsTrue: { /* in1, out2 */
2477 assert( pOp->p4type==P4_INT32 );
2478 assert( pOp->p4.i==0 || pOp->p4.i==1 );
2479 assert( pOp->p3==0 || pOp->p3==1 );
2480 sqlite3VdbeMemSetInt64(&aMem[pOp->p2],
2481 sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3) ^ pOp->p4.i);
2482 break;
2485 /* Opcode: Not P1 P2 * * *
2486 ** Synopsis: r[P2]= !r[P1]
2488 ** Interpret the value in register P1 as a boolean value. Store the
2489 ** boolean complement in register P2. If the value in register P1 is
2490 ** NULL, then a NULL is stored in P2.
2492 case OP_Not: { /* same as TK_NOT, in1, out2 */
2493 pIn1 = &aMem[pOp->p1];
2494 pOut = &aMem[pOp->p2];
2495 if( (pIn1->flags & MEM_Null)==0 ){
2496 sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeBooleanValue(pIn1,0));
2497 }else{
2498 sqlite3VdbeMemSetNull(pOut);
2500 break;
2503 /* Opcode: BitNot P1 P2 * * *
2504 ** Synopsis: r[P2]= ~r[P1]
2506 ** Interpret the content of register P1 as an integer. Store the
2507 ** ones-complement of the P1 value into register P2. If P1 holds
2508 ** a NULL then store a NULL in P2.
2510 case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */
2511 pIn1 = &aMem[pOp->p1];
2512 pOut = &aMem[pOp->p2];
2513 sqlite3VdbeMemSetNull(pOut);
2514 if( (pIn1->flags & MEM_Null)==0 ){
2515 pOut->flags = MEM_Int;
2516 pOut->u.i = ~sqlite3VdbeIntValue(pIn1);
2518 break;
2521 /* Opcode: Once P1 P2 * * *
2523 ** Fall through to the next instruction the first time this opcode is
2524 ** encountered on each invocation of the byte-code program. Jump to P2
2525 ** on the second and all subsequent encounters during the same invocation.
2527 ** Top-level programs determine first invocation by comparing the P1
2528 ** operand against the P1 operand on the OP_Init opcode at the beginning
2529 ** of the program. If the P1 values differ, then fall through and make
2530 ** the P1 of this opcode equal to the P1 of OP_Init. If P1 values are
2531 ** the same then take the jump.
2533 ** For subprograms, there is a bitmask in the VdbeFrame that determines
2534 ** whether or not the jump should be taken. The bitmask is necessary
2535 ** because the self-altering code trick does not work for recursive
2536 ** triggers.
2538 case OP_Once: { /* jump */
2539 u32 iAddr; /* Address of this instruction */
2540 assert( p->aOp[0].opcode==OP_Init );
2541 if( p->pFrame ){
2542 iAddr = (int)(pOp - p->aOp);
2543 if( (p->pFrame->aOnce[iAddr/8] & (1<<(iAddr & 7)))!=0 ){
2544 VdbeBranchTaken(1, 2);
2545 goto jump_to_p2;
2547 p->pFrame->aOnce[iAddr/8] |= 1<<(iAddr & 7);
2548 }else{
2549 if( p->aOp[0].p1==pOp->p1 ){
2550 VdbeBranchTaken(1, 2);
2551 goto jump_to_p2;
2554 VdbeBranchTaken(0, 2);
2555 pOp->p1 = p->aOp[0].p1;
2556 break;
2559 /* Opcode: If P1 P2 P3 * *
2561 ** Jump to P2 if the value in register P1 is true. The value
2562 ** is considered true if it is numeric and non-zero. If the value
2563 ** in P1 is NULL then take the jump if and only if P3 is non-zero.
2565 case OP_If: { /* jump, in1 */
2566 int c;
2567 c = sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3);
2568 VdbeBranchTaken(c!=0, 2);
2569 if( c ) goto jump_to_p2;
2570 break;
2573 /* Opcode: IfNot P1 P2 P3 * *
2575 ** Jump to P2 if the value in register P1 is False. The value
2576 ** is considered false if it has a numeric value of zero. If the value
2577 ** in P1 is NULL then take the jump if and only if P3 is non-zero.
2579 case OP_IfNot: { /* jump, in1 */
2580 int c;
2581 c = !sqlite3VdbeBooleanValue(&aMem[pOp->p1], !pOp->p3);
2582 VdbeBranchTaken(c!=0, 2);
2583 if( c ) goto jump_to_p2;
2584 break;
2587 /* Opcode: IsNull P1 P2 * * *
2588 ** Synopsis: if r[P1]==NULL goto P2
2590 ** Jump to P2 if the value in register P1 is NULL.
2592 case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */
2593 pIn1 = &aMem[pOp->p1];
2594 VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2);
2595 if( (pIn1->flags & MEM_Null)!=0 ){
2596 goto jump_to_p2;
2598 break;
2601 /* Opcode: IsType P1 P2 P3 P4 P5
2602 ** Synopsis: if typeof(P1.P3) in P5 goto P2
2604 ** Jump to P2 if the type of a column in a btree is one of the types specified
2605 ** by the P5 bitmask.
2607 ** P1 is normally a cursor on a btree for which the row decode cache is
2608 ** valid through at least column P3. In other words, there should have been
2609 ** a prior OP_Column for column P3 or greater. If the cursor is not valid,
2610 ** then this opcode might give spurious results.
2611 ** The the btree row has fewer than P3 columns, then use P4 as the
2612 ** datatype.
2614 ** If P1 is -1, then P3 is a register number and the datatype is taken
2615 ** from the value in that register.
2617 ** P5 is a bitmask of data types. SQLITE_INTEGER is the least significant
2618 ** (0x01) bit. SQLITE_FLOAT is the 0x02 bit. SQLITE_TEXT is 0x04.
2619 ** SQLITE_BLOB is 0x08. SQLITE_NULL is 0x10.
2621 ** Take the jump to address P2 if and only if the datatype of the
2622 ** value determined by P1 and P3 corresponds to one of the bits in the
2623 ** P5 bitmask.
2626 case OP_IsType: { /* jump */
2627 VdbeCursor *pC;
2628 u16 typeMask;
2629 u32 serialType;
2631 assert( pOp->p1>=(-1) && pOp->p1<p->nCursor );
2632 assert( pOp->p1>=0 || (pOp->p3>=0 && pOp->p3<=(p->nMem+1 - p->nCursor)) );
2633 if( pOp->p1>=0 ){
2634 pC = p->apCsr[pOp->p1];
2635 assert( pC!=0 );
2636 assert( pOp->p3>=0 );
2637 if( pOp->p3<pC->nHdrParsed ){
2638 serialType = pC->aType[pOp->p3];
2639 if( serialType>=12 ){
2640 if( serialType&1 ){
2641 typeMask = 0x04; /* SQLITE_TEXT */
2642 }else{
2643 typeMask = 0x08; /* SQLITE_BLOB */
2645 }else{
2646 static const unsigned char aMask[] = {
2647 0x10, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x2,
2648 0x01, 0x01, 0x10, 0x10
2650 testcase( serialType==0 );
2651 testcase( serialType==1 );
2652 testcase( serialType==2 );
2653 testcase( serialType==3 );
2654 testcase( serialType==4 );
2655 testcase( serialType==5 );
2656 testcase( serialType==6 );
2657 testcase( serialType==7 );
2658 testcase( serialType==8 );
2659 testcase( serialType==9 );
2660 testcase( serialType==10 );
2661 testcase( serialType==11 );
2662 typeMask = aMask[serialType];
2664 }else{
2665 typeMask = 1 << (pOp->p4.i - 1);
2666 testcase( typeMask==0x01 );
2667 testcase( typeMask==0x02 );
2668 testcase( typeMask==0x04 );
2669 testcase( typeMask==0x08 );
2670 testcase( typeMask==0x10 );
2672 }else{
2673 assert( memIsValid(&aMem[pOp->p3]) );
2674 typeMask = 1 << (sqlite3_value_type((sqlite3_value*)&aMem[pOp->p3])-1);
2675 testcase( typeMask==0x01 );
2676 testcase( typeMask==0x02 );
2677 testcase( typeMask==0x04 );
2678 testcase( typeMask==0x08 );
2679 testcase( typeMask==0x10 );
2681 VdbeBranchTaken( (typeMask & pOp->p5)!=0, 2);
2682 if( typeMask & pOp->p5 ){
2683 goto jump_to_p2;
2685 break;
2688 /* Opcode: ZeroOrNull P1 P2 P3 * *
2689 ** Synopsis: r[P2] = 0 OR NULL
2691 ** If all both registers P1 and P3 are NOT NULL, then store a zero in
2692 ** register P2. If either registers P1 or P3 are NULL then put
2693 ** a NULL in register P2.
2695 case OP_ZeroOrNull: { /* in1, in2, out2, in3 */
2696 if( (aMem[pOp->p1].flags & MEM_Null)!=0
2697 || (aMem[pOp->p3].flags & MEM_Null)!=0
2699 sqlite3VdbeMemSetNull(aMem + pOp->p2);
2700 }else{
2701 sqlite3VdbeMemSetInt64(aMem + pOp->p2, 0);
2703 break;
2706 /* Opcode: NotNull P1 P2 * * *
2707 ** Synopsis: if r[P1]!=NULL goto P2
2709 ** Jump to P2 if the value in register P1 is not NULL.
2711 case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */
2712 pIn1 = &aMem[pOp->p1];
2713 VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2);
2714 if( (pIn1->flags & MEM_Null)==0 ){
2715 goto jump_to_p2;
2717 break;
2720 /* Opcode: IfNullRow P1 P2 P3 * *
2721 ** Synopsis: if P1.nullRow then r[P3]=NULL, goto P2
2723 ** Check the cursor P1 to see if it is currently pointing at a NULL row.
2724 ** If it is, then set register P3 to NULL and jump immediately to P2.
2725 ** If P1 is not on a NULL row, then fall through without making any
2726 ** changes.
2728 ** If P1 is not an open cursor, then this opcode is a no-op.
2730 case OP_IfNullRow: { /* jump */
2731 VdbeCursor *pC;
2732 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
2733 pC = p->apCsr[pOp->p1];
2734 if( ALWAYS(pC) && pC->nullRow ){
2735 sqlite3VdbeMemSetNull(aMem + pOp->p3);
2736 goto jump_to_p2;
2738 break;
2741 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
2742 /* Opcode: Offset P1 P2 P3 * *
2743 ** Synopsis: r[P3] = sqlite_offset(P1)
2745 ** Store in register r[P3] the byte offset into the database file that is the
2746 ** start of the payload for the record at which that cursor P1 is currently
2747 ** pointing.
2749 ** P2 is the column number for the argument to the sqlite_offset() function.
2750 ** This opcode does not use P2 itself, but the P2 value is used by the
2751 ** code generator. The P1, P2, and P3 operands to this opcode are the
2752 ** same as for OP_Column.
2754 ** This opcode is only available if SQLite is compiled with the
2755 ** -DSQLITE_ENABLE_OFFSET_SQL_FUNC option.
2757 case OP_Offset: { /* out3 */
2758 VdbeCursor *pC; /* The VDBE cursor */
2759 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
2760 pC = p->apCsr[pOp->p1];
2761 pOut = &p->aMem[pOp->p3];
2762 if( pC==0 || pC->eCurType!=CURTYPE_BTREE ){
2763 sqlite3VdbeMemSetNull(pOut);
2764 }else{
2765 if( pC->deferredMoveto ){
2766 rc = sqlite3VdbeFinishMoveto(pC);
2767 if( rc ) goto abort_due_to_error;
2769 if( sqlite3BtreeEof(pC->uc.pCursor) ){
2770 sqlite3VdbeMemSetNull(pOut);
2771 }else{
2772 sqlite3VdbeMemSetInt64(pOut, sqlite3BtreeOffset(pC->uc.pCursor));
2775 break;
2777 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */
2779 /* Opcode: Column P1 P2 P3 P4 P5
2780 ** Synopsis: r[P3]=PX cursor P1 column P2
2782 ** Interpret the data that cursor P1 points to as a structure built using
2783 ** the MakeRecord instruction. (See the MakeRecord opcode for additional
2784 ** information about the format of the data.) Extract the P2-th column
2785 ** from this record. If there are less than (P2+1)
2786 ** values in the record, extract a NULL.
2788 ** The value extracted is stored in register P3.
2790 ** If the record contains fewer than P2 fields, then extract a NULL. Or,
2791 ** if the P4 argument is a P4_MEM use the value of the P4 argument as
2792 ** the result.
2794 ** If the OPFLAG_LENGTHARG bit is set in P5 then the result is guaranteed
2795 ** to only be used by the length() function or the equivalent. The content
2796 ** of large blobs is not loaded, thus saving CPU cycles. If the
2797 ** OPFLAG_TYPEOFARG bit is set then the result will only be used by the
2798 ** typeof() function or the IS NULL or IS NOT NULL operators or the
2799 ** equivalent. In this case, all content loading can be omitted.
2801 case OP_Column: { /* ncycle */
2802 u32 p2; /* column number to retrieve */
2803 VdbeCursor *pC; /* The VDBE cursor */
2804 BtCursor *pCrsr; /* The B-Tree cursor corresponding to pC */
2805 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */
2806 int len; /* The length of the serialized data for the column */
2807 int i; /* Loop counter */
2808 Mem *pDest; /* Where to write the extracted value */
2809 Mem sMem; /* For storing the record being decoded */
2810 const u8 *zData; /* Part of the record being decoded */
2811 const u8 *zHdr; /* Next unparsed byte of the header */
2812 const u8 *zEndHdr; /* Pointer to first byte after the header */
2813 u64 offset64; /* 64-bit offset */
2814 u32 t; /* A type code from the record header */
2815 Mem *pReg; /* PseudoTable input register */
2817 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
2818 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
2819 pC = p->apCsr[pOp->p1];
2820 p2 = (u32)pOp->p2;
2822 op_column_restart:
2823 assert( pC!=0 );
2824 assert( p2<(u32)pC->nField
2825 || (pC->eCurType==CURTYPE_PSEUDO && pC->seekResult==0) );
2826 aOffset = pC->aOffset;
2827 assert( aOffset==pC->aType+pC->nField );
2828 assert( pC->eCurType!=CURTYPE_VTAB );
2829 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
2830 assert( pC->eCurType!=CURTYPE_SORTER );
2832 if( pC->cacheStatus!=p->cacheCtr ){ /*OPTIMIZATION-IF-FALSE*/
2833 if( pC->nullRow ){
2834 if( pC->eCurType==CURTYPE_PSEUDO && pC->seekResult>0 ){
2835 /* For the special case of as pseudo-cursor, the seekResult field
2836 ** identifies the register that holds the record */
2837 pReg = &aMem[pC->seekResult];
2838 assert( pReg->flags & MEM_Blob );
2839 assert( memIsValid(pReg) );
2840 pC->payloadSize = pC->szRow = pReg->n;
2841 pC->aRow = (u8*)pReg->z;
2842 }else{
2843 pDest = &aMem[pOp->p3];
2844 memAboutToChange(p, pDest);
2845 sqlite3VdbeMemSetNull(pDest);
2846 goto op_column_out;
2848 }else{
2849 pCrsr = pC->uc.pCursor;
2850 if( pC->deferredMoveto ){
2851 u32 iMap;
2852 assert( !pC->isEphemeral );
2853 if( pC->ub.aAltMap && (iMap = pC->ub.aAltMap[1+p2])>0 ){
2854 pC = pC->pAltCursor;
2855 p2 = iMap - 1;
2856 goto op_column_restart;
2858 rc = sqlite3VdbeFinishMoveto(pC);
2859 if( rc ) goto abort_due_to_error;
2860 }else if( sqlite3BtreeCursorHasMoved(pCrsr) ){
2861 rc = sqlite3VdbeHandleMovedCursor(pC);
2862 if( rc ) goto abort_due_to_error;
2863 goto op_column_restart;
2865 assert( pC->eCurType==CURTYPE_BTREE );
2866 assert( pCrsr );
2867 assert( sqlite3BtreeCursorIsValid(pCrsr) );
2868 pC->payloadSize = sqlite3BtreePayloadSize(pCrsr);
2869 pC->aRow = sqlite3BtreePayloadFetch(pCrsr, &pC->szRow);
2870 assert( pC->szRow<=pC->payloadSize );
2871 assert( pC->szRow<=65536 ); /* Maximum page size is 64KiB */
2873 pC->cacheStatus = p->cacheCtr;
2874 if( (aOffset[0] = pC->aRow[0])<0x80 ){
2875 pC->iHdrOffset = 1;
2876 }else{
2877 pC->iHdrOffset = sqlite3GetVarint32(pC->aRow, aOffset);
2879 pC->nHdrParsed = 0;
2881 if( pC->szRow<aOffset[0] ){ /*OPTIMIZATION-IF-FALSE*/
2882 /* pC->aRow does not have to hold the entire row, but it does at least
2883 ** need to cover the header of the record. If pC->aRow does not contain
2884 ** the complete header, then set it to zero, forcing the header to be
2885 ** dynamically allocated. */
2886 pC->aRow = 0;
2887 pC->szRow = 0;
2889 /* Make sure a corrupt database has not given us an oversize header.
2890 ** Do this now to avoid an oversize memory allocation.
2892 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte
2893 ** types use so much data space that there can only be 4096 and 32 of
2894 ** them, respectively. So the maximum header length results from a
2895 ** 3-byte type for each of the maximum of 32768 columns plus three
2896 ** extra bytes for the header length itself. 32768*3 + 3 = 98307.
2898 if( aOffset[0] > 98307 || aOffset[0] > pC->payloadSize ){
2899 goto op_column_corrupt;
2901 }else{
2902 /* This is an optimization. By skipping over the first few tests
2903 ** (ex: pC->nHdrParsed<=p2) in the next section, we achieve a
2904 ** measurable performance gain.
2906 ** This branch is taken even if aOffset[0]==0. Such a record is never
2907 ** generated by SQLite, and could be considered corruption, but we
2908 ** accept it for historical reasons. When aOffset[0]==0, the code this
2909 ** branch jumps to reads past the end of the record, but never more
2910 ** than a few bytes. Even if the record occurs at the end of the page
2911 ** content area, the "page header" comes after the page content and so
2912 ** this overread is harmless. Similar overreads can occur for a corrupt
2913 ** database file.
2915 zData = pC->aRow;
2916 assert( pC->nHdrParsed<=p2 ); /* Conditional skipped */
2917 testcase( aOffset[0]==0 );
2918 goto op_column_read_header;
2920 }else if( sqlite3BtreeCursorHasMoved(pC->uc.pCursor) ){
2921 rc = sqlite3VdbeHandleMovedCursor(pC);
2922 if( rc ) goto abort_due_to_error;
2923 goto op_column_restart;
2926 /* Make sure at least the first p2+1 entries of the header have been
2927 ** parsed and valid information is in aOffset[] and pC->aType[].
2929 if( pC->nHdrParsed<=p2 ){
2930 /* If there is more header available for parsing in the record, try
2931 ** to extract additional fields up through the p2+1-th field
2933 if( pC->iHdrOffset<aOffset[0] ){
2934 /* Make sure zData points to enough of the record to cover the header. */
2935 if( pC->aRow==0 ){
2936 memset(&sMem, 0, sizeof(sMem));
2937 rc = sqlite3VdbeMemFromBtreeZeroOffset(pC->uc.pCursor,aOffset[0],&sMem);
2938 if( rc!=SQLITE_OK ) goto abort_due_to_error;
2939 zData = (u8*)sMem.z;
2940 }else{
2941 zData = pC->aRow;
2944 /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */
2945 op_column_read_header:
2946 i = pC->nHdrParsed;
2947 offset64 = aOffset[i];
2948 zHdr = zData + pC->iHdrOffset;
2949 zEndHdr = zData + aOffset[0];
2950 testcase( zHdr>=zEndHdr );
2952 if( (pC->aType[i] = t = zHdr[0])<0x80 ){
2953 zHdr++;
2954 offset64 += sqlite3VdbeOneByteSerialTypeLen(t);
2955 }else{
2956 zHdr += sqlite3GetVarint32(zHdr, &t);
2957 pC->aType[i] = t;
2958 offset64 += sqlite3VdbeSerialTypeLen(t);
2960 aOffset[++i] = (u32)(offset64 & 0xffffffff);
2961 }while( (u32)i<=p2 && zHdr<zEndHdr );
2963 /* The record is corrupt if any of the following are true:
2964 ** (1) the bytes of the header extend past the declared header size
2965 ** (2) the entire header was used but not all data was used
2966 ** (3) the end of the data extends beyond the end of the record.
2968 if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize))
2969 || (offset64 > pC->payloadSize)
2971 if( aOffset[0]==0 ){
2972 i = 0;
2973 zHdr = zEndHdr;
2974 }else{
2975 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
2976 goto op_column_corrupt;
2980 pC->nHdrParsed = i;
2981 pC->iHdrOffset = (u32)(zHdr - zData);
2982 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
2983 }else{
2984 t = 0;
2987 /* If after trying to extract new entries from the header, nHdrParsed is
2988 ** still not up to p2, that means that the record has fewer than p2
2989 ** columns. So the result will be either the default value or a NULL.
2991 if( pC->nHdrParsed<=p2 ){
2992 pDest = &aMem[pOp->p3];
2993 memAboutToChange(p, pDest);
2994 if( pOp->p4type==P4_MEM ){
2995 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
2996 }else{
2997 sqlite3VdbeMemSetNull(pDest);
2999 goto op_column_out;
3001 }else{
3002 t = pC->aType[p2];
3005 /* Extract the content for the p2+1-th column. Control can only
3006 ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are
3007 ** all valid.
3009 assert( p2<pC->nHdrParsed );
3010 assert( rc==SQLITE_OK );
3011 pDest = &aMem[pOp->p3];
3012 memAboutToChange(p, pDest);
3013 assert( sqlite3VdbeCheckMemInvariants(pDest) );
3014 if( VdbeMemDynamic(pDest) ){
3015 sqlite3VdbeMemSetNull(pDest);
3017 assert( t==pC->aType[p2] );
3018 if( pC->szRow>=aOffset[p2+1] ){
3019 /* This is the common case where the desired content fits on the original
3020 ** page - where the content is not on an overflow page */
3021 zData = pC->aRow + aOffset[p2];
3022 if( t<12 ){
3023 sqlite3VdbeSerialGet(zData, t, pDest);
3024 }else{
3025 /* If the column value is a string, we need a persistent value, not
3026 ** a MEM_Ephem value. This branch is a fast short-cut that is equivalent
3027 ** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize().
3029 static const u16 aFlag[] = { MEM_Blob, MEM_Str|MEM_Term };
3030 pDest->n = len = (t-12)/2;
3031 pDest->enc = encoding;
3032 if( pDest->szMalloc < len+2 ){
3033 if( len>db->aLimit[SQLITE_LIMIT_LENGTH] ) goto too_big;
3034 pDest->flags = MEM_Null;
3035 if( sqlite3VdbeMemGrow(pDest, len+2, 0) ) goto no_mem;
3036 }else{
3037 pDest->z = pDest->zMalloc;
3039 memcpy(pDest->z, zData, len);
3040 pDest->z[len] = 0;
3041 pDest->z[len+1] = 0;
3042 pDest->flags = aFlag[t&1];
3044 }else{
3045 pDest->enc = encoding;
3046 /* This branch happens only when content is on overflow pages */
3047 if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0
3048 && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0))
3049 || (len = sqlite3VdbeSerialTypeLen(t))==0
3051 /* Content is irrelevant for
3052 ** 1. the typeof() function,
3053 ** 2. the length(X) function if X is a blob, and
3054 ** 3. if the content length is zero.
3055 ** So we might as well use bogus content rather than reading
3056 ** content from disk.
3058 ** Although sqlite3VdbeSerialGet() may read at most 8 bytes from the
3059 ** buffer passed to it, debugging function VdbeMemPrettyPrint() may
3060 ** read more. Use the global constant sqlite3CtypeMap[] as the array,
3061 ** as that array is 256 bytes long (plenty for VdbeMemPrettyPrint())
3062 ** and it begins with a bunch of zeros.
3064 sqlite3VdbeSerialGet((u8*)sqlite3CtypeMap, t, pDest);
3065 }else{
3066 if( len>db->aLimit[SQLITE_LIMIT_LENGTH] ) goto too_big;
3067 rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, aOffset[p2], len, pDest);
3068 if( rc!=SQLITE_OK ) goto abort_due_to_error;
3069 sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest);
3070 pDest->flags &= ~MEM_Ephem;
3074 op_column_out:
3075 UPDATE_MAX_BLOBSIZE(pDest);
3076 REGISTER_TRACE(pOp->p3, pDest);
3077 break;
3079 op_column_corrupt:
3080 if( aOp[0].p3>0 ){
3081 pOp = &aOp[aOp[0].p3-1];
3082 break;
3083 }else{
3084 rc = SQLITE_CORRUPT_BKPT;
3085 goto abort_due_to_error;
3089 /* Opcode: TypeCheck P1 P2 P3 P4 *
3090 ** Synopsis: typecheck(r[P1@P2])
3092 ** Apply affinities to the range of P2 registers beginning with P1.
3093 ** Take the affinities from the Table object in P4. If any value
3094 ** cannot be coerced into the correct type, then raise an error.
3096 ** This opcode is similar to OP_Affinity except that this opcode
3097 ** forces the register type to the Table column type. This is used
3098 ** to implement "strict affinity".
3100 ** GENERATED ALWAYS AS ... STATIC columns are only checked if P3
3101 ** is zero. When P3 is non-zero, no type checking occurs for
3102 ** static generated columns. Virtual columns are computed at query time
3103 ** and so they are never checked.
3105 ** Preconditions:
3107 ** <ul>
3108 ** <li> P2 should be the number of non-virtual columns in the
3109 ** table of P4.
3110 ** <li> Table P4 should be a STRICT table.
3111 ** </ul>
3113 ** If any precondition is false, an assertion fault occurs.
3115 case OP_TypeCheck: {
3116 Table *pTab;
3117 Column *aCol;
3118 int i;
3120 assert( pOp->p4type==P4_TABLE );
3121 pTab = pOp->p4.pTab;
3122 assert( pTab->tabFlags & TF_Strict );
3123 assert( pTab->nNVCol==pOp->p2 );
3124 aCol = pTab->aCol;
3125 pIn1 = &aMem[pOp->p1];
3126 for(i=0; i<pTab->nCol; i++){
3127 if( aCol[i].colFlags & COLFLAG_GENERATED ){
3128 if( aCol[i].colFlags & COLFLAG_VIRTUAL ) continue;
3129 if( pOp->p3 ){ pIn1++; continue; }
3131 assert( pIn1 < &aMem[pOp->p1+pOp->p2] );
3132 applyAffinity(pIn1, aCol[i].affinity, encoding);
3133 if( (pIn1->flags & MEM_Null)==0 ){
3134 switch( aCol[i].eCType ){
3135 case COLTYPE_BLOB: {
3136 if( (pIn1->flags & MEM_Blob)==0 ) goto vdbe_type_error;
3137 break;
3139 case COLTYPE_INTEGER:
3140 case COLTYPE_INT: {
3141 if( (pIn1->flags & MEM_Int)==0 ) goto vdbe_type_error;
3142 break;
3144 case COLTYPE_TEXT: {
3145 if( (pIn1->flags & MEM_Str)==0 ) goto vdbe_type_error;
3146 break;
3148 case COLTYPE_REAL: {
3149 testcase( (pIn1->flags & (MEM_Real|MEM_IntReal))==MEM_Real );
3150 assert( (pIn1->flags & MEM_IntReal)==0 );
3151 if( pIn1->flags & MEM_Int ){
3152 /* When applying REAL affinity, if the result is still an MEM_Int
3153 ** that will fit in 6 bytes, then change the type to MEM_IntReal
3154 ** so that we keep the high-resolution integer value but know that
3155 ** the type really wants to be REAL. */
3156 testcase( pIn1->u.i==140737488355328LL );
3157 testcase( pIn1->u.i==140737488355327LL );
3158 testcase( pIn1->u.i==-140737488355328LL );
3159 testcase( pIn1->u.i==-140737488355329LL );
3160 if( pIn1->u.i<=140737488355327LL && pIn1->u.i>=-140737488355328LL){
3161 pIn1->flags |= MEM_IntReal;
3162 pIn1->flags &= ~MEM_Int;
3163 }else{
3164 pIn1->u.r = (double)pIn1->u.i;
3165 pIn1->flags |= MEM_Real;
3166 pIn1->flags &= ~MEM_Int;
3168 }else if( (pIn1->flags & (MEM_Real|MEM_IntReal))==0 ){
3169 goto vdbe_type_error;
3171 break;
3173 default: {
3174 /* COLTYPE_ANY. Accept anything. */
3175 break;
3179 REGISTER_TRACE((int)(pIn1-aMem), pIn1);
3180 pIn1++;
3182 assert( pIn1 == &aMem[pOp->p1+pOp->p2] );
3183 break;
3185 vdbe_type_error:
3186 sqlite3VdbeError(p, "cannot store %s value in %s column %s.%s",
3187 vdbeMemTypeName(pIn1), sqlite3StdType[aCol[i].eCType-1],
3188 pTab->zName, aCol[i].zCnName);
3189 rc = SQLITE_CONSTRAINT_DATATYPE;
3190 goto abort_due_to_error;
3193 /* Opcode: Affinity P1 P2 * P4 *
3194 ** Synopsis: affinity(r[P1@P2])
3196 ** Apply affinities to a range of P2 registers starting with P1.
3198 ** P4 is a string that is P2 characters long. The N-th character of the
3199 ** string indicates the column affinity that should be used for the N-th
3200 ** memory cell in the range.
3202 case OP_Affinity: {
3203 const char *zAffinity; /* The affinity to be applied */
3205 zAffinity = pOp->p4.z;
3206 assert( zAffinity!=0 );
3207 assert( pOp->p2>0 );
3208 assert( zAffinity[pOp->p2]==0 );
3209 pIn1 = &aMem[pOp->p1];
3210 while( 1 /*exit-by-break*/ ){
3211 assert( pIn1 <= &p->aMem[(p->nMem+1 - p->nCursor)] );
3212 assert( zAffinity[0]==SQLITE_AFF_NONE || memIsValid(pIn1) );
3213 applyAffinity(pIn1, zAffinity[0], encoding);
3214 if( zAffinity[0]==SQLITE_AFF_REAL && (pIn1->flags & MEM_Int)!=0 ){
3215 /* When applying REAL affinity, if the result is still an MEM_Int
3216 ** that will fit in 6 bytes, then change the type to MEM_IntReal
3217 ** so that we keep the high-resolution integer value but know that
3218 ** the type really wants to be REAL. */
3219 testcase( pIn1->u.i==140737488355328LL );
3220 testcase( pIn1->u.i==140737488355327LL );
3221 testcase( pIn1->u.i==-140737488355328LL );
3222 testcase( pIn1->u.i==-140737488355329LL );
3223 if( pIn1->u.i<=140737488355327LL && pIn1->u.i>=-140737488355328LL ){
3224 pIn1->flags |= MEM_IntReal;
3225 pIn1->flags &= ~MEM_Int;
3226 }else{
3227 pIn1->u.r = (double)pIn1->u.i;
3228 pIn1->flags |= MEM_Real;
3229 pIn1->flags &= ~MEM_Int;
3232 REGISTER_TRACE((int)(pIn1-aMem), pIn1);
3233 zAffinity++;
3234 if( zAffinity[0]==0 ) break;
3235 pIn1++;
3237 break;
3240 /* Opcode: MakeRecord P1 P2 P3 P4 *
3241 ** Synopsis: r[P3]=mkrec(r[P1@P2])
3243 ** Convert P2 registers beginning with P1 into the [record format]
3244 ** use as a data record in a database table or as a key
3245 ** in an index. The OP_Column opcode can decode the record later.
3247 ** P4 may be a string that is P2 characters long. The N-th character of the
3248 ** string indicates the column affinity that should be used for the N-th
3249 ** field of the index key.
3251 ** The mapping from character to affinity is given by the SQLITE_AFF_
3252 ** macros defined in sqliteInt.h.
3254 ** If P4 is NULL then all index fields have the affinity BLOB.
3256 ** The meaning of P5 depends on whether or not the SQLITE_ENABLE_NULL_TRIM
3257 ** compile-time option is enabled:
3259 ** * If SQLITE_ENABLE_NULL_TRIM is enabled, then the P5 is the index
3260 ** of the right-most table that can be null-trimmed.
3262 ** * If SQLITE_ENABLE_NULL_TRIM is omitted, then P5 has the value
3263 ** OPFLAG_NOCHNG_MAGIC if the OP_MakeRecord opcode is allowed to
3264 ** accept no-change records with serial_type 10. This value is
3265 ** only used inside an assert() and does not affect the end result.
3267 case OP_MakeRecord: {
3268 Mem *pRec; /* The new record */
3269 u64 nData; /* Number of bytes of data space */
3270 int nHdr; /* Number of bytes of header space */
3271 i64 nByte; /* Data space required for this record */
3272 i64 nZero; /* Number of zero bytes at the end of the record */
3273 int nVarint; /* Number of bytes in a varint */
3274 u32 serial_type; /* Type field */
3275 Mem *pData0; /* First field to be combined into the record */
3276 Mem *pLast; /* Last field of the record */
3277 int nField; /* Number of fields in the record */
3278 char *zAffinity; /* The affinity string for the record */
3279 u32 len; /* Length of a field */
3280 u8 *zHdr; /* Where to write next byte of the header */
3281 u8 *zPayload; /* Where to write next byte of the payload */
3283 /* Assuming the record contains N fields, the record format looks
3284 ** like this:
3286 ** ------------------------------------------------------------------------
3287 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
3288 ** ------------------------------------------------------------------------
3290 ** Data(0) is taken from register P1. Data(1) comes from register P1+1
3291 ** and so forth.
3293 ** Each type field is a varint representing the serial type of the
3294 ** corresponding data element (see sqlite3VdbeSerialType()). The
3295 ** hdr-size field is also a varint which is the offset from the beginning
3296 ** of the record to data0.
3298 nData = 0; /* Number of bytes of data space */
3299 nHdr = 0; /* Number of bytes of header space */
3300 nZero = 0; /* Number of zero bytes at the end of the record */
3301 nField = pOp->p1;
3302 zAffinity = pOp->p4.z;
3303 assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem+1 - p->nCursor)+1 );
3304 pData0 = &aMem[nField];
3305 nField = pOp->p2;
3306 pLast = &pData0[nField-1];
3308 /* Identify the output register */
3309 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
3310 pOut = &aMem[pOp->p3];
3311 memAboutToChange(p, pOut);
3313 /* Apply the requested affinity to all inputs
3315 assert( pData0<=pLast );
3316 if( zAffinity ){
3317 pRec = pData0;
3319 applyAffinity(pRec, zAffinity[0], encoding);
3320 if( zAffinity[0]==SQLITE_AFF_REAL && (pRec->flags & MEM_Int) ){
3321 pRec->flags |= MEM_IntReal;
3322 pRec->flags &= ~(MEM_Int);
3324 REGISTER_TRACE((int)(pRec-aMem), pRec);
3325 zAffinity++;
3326 pRec++;
3327 assert( zAffinity[0]==0 || pRec<=pLast );
3328 }while( zAffinity[0] );
3331 #ifdef SQLITE_ENABLE_NULL_TRIM
3332 /* NULLs can be safely trimmed from the end of the record, as long as
3333 ** as the schema format is 2 or more and none of the omitted columns
3334 ** have a non-NULL default value. Also, the record must be left with
3335 ** at least one field. If P5>0 then it will be one more than the
3336 ** index of the right-most column with a non-NULL default value */
3337 if( pOp->p5 ){
3338 while( (pLast->flags & MEM_Null)!=0 && nField>pOp->p5 ){
3339 pLast--;
3340 nField--;
3343 #endif
3345 /* Loop through the elements that will make up the record to figure
3346 ** out how much space is required for the new record. After this loop,
3347 ** the Mem.uTemp field of each term should hold the serial-type that will
3348 ** be used for that term in the generated record:
3350 ** Mem.uTemp value type
3351 ** --------------- ---------------
3352 ** 0 NULL
3353 ** 1 1-byte signed integer
3354 ** 2 2-byte signed integer
3355 ** 3 3-byte signed integer
3356 ** 4 4-byte signed integer
3357 ** 5 6-byte signed integer
3358 ** 6 8-byte signed integer
3359 ** 7 IEEE float
3360 ** 8 Integer constant 0
3361 ** 9 Integer constant 1
3362 ** 10,11 reserved for expansion
3363 ** N>=12 and even BLOB
3364 ** N>=13 and odd text
3366 ** The following additional values are computed:
3367 ** nHdr Number of bytes needed for the record header
3368 ** nData Number of bytes of data space needed for the record
3369 ** nZero Zero bytes at the end of the record
3371 pRec = pLast;
3373 assert( memIsValid(pRec) );
3374 if( pRec->flags & MEM_Null ){
3375 if( pRec->flags & MEM_Zero ){
3376 /* Values with MEM_Null and MEM_Zero are created by xColumn virtual
3377 ** table methods that never invoke sqlite3_result_xxxxx() while
3378 ** computing an unchanging column value in an UPDATE statement.
3379 ** Give such values a special internal-use-only serial-type of 10
3380 ** so that they can be passed through to xUpdate and have
3381 ** a true sqlite3_value_nochange(). */
3382 #ifndef SQLITE_ENABLE_NULL_TRIM
3383 assert( pOp->p5==OPFLAG_NOCHNG_MAGIC || CORRUPT_DB );
3384 #endif
3385 pRec->uTemp = 10;
3386 }else{
3387 pRec->uTemp = 0;
3389 nHdr++;
3390 }else if( pRec->flags & (MEM_Int|MEM_IntReal) ){
3391 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
3392 i64 i = pRec->u.i;
3393 u64 uu;
3394 testcase( pRec->flags & MEM_Int );
3395 testcase( pRec->flags & MEM_IntReal );
3396 if( i<0 ){
3397 uu = ~i;
3398 }else{
3399 uu = i;
3401 nHdr++;
3402 testcase( uu==127 ); testcase( uu==128 );
3403 testcase( uu==32767 ); testcase( uu==32768 );
3404 testcase( uu==8388607 ); testcase( uu==8388608 );
3405 testcase( uu==2147483647 ); testcase( uu==2147483648LL );
3406 testcase( uu==140737488355327LL ); testcase( uu==140737488355328LL );
3407 if( uu<=127 ){
3408 if( (i&1)==i && p->minWriteFileFormat>=4 ){
3409 pRec->uTemp = 8+(u32)uu;
3410 }else{
3411 nData++;
3412 pRec->uTemp = 1;
3414 }else if( uu<=32767 ){
3415 nData += 2;
3416 pRec->uTemp = 2;
3417 }else if( uu<=8388607 ){
3418 nData += 3;
3419 pRec->uTemp = 3;
3420 }else if( uu<=2147483647 ){
3421 nData += 4;
3422 pRec->uTemp = 4;
3423 }else if( uu<=140737488355327LL ){
3424 nData += 6;
3425 pRec->uTemp = 5;
3426 }else{
3427 nData += 8;
3428 if( pRec->flags & MEM_IntReal ){
3429 /* If the value is IntReal and is going to take up 8 bytes to store
3430 ** as an integer, then we might as well make it an 8-byte floating
3431 ** point value */
3432 pRec->u.r = (double)pRec->u.i;
3433 pRec->flags &= ~MEM_IntReal;
3434 pRec->flags |= MEM_Real;
3435 pRec->uTemp = 7;
3436 }else{
3437 pRec->uTemp = 6;
3440 }else if( pRec->flags & MEM_Real ){
3441 nHdr++;
3442 nData += 8;
3443 pRec->uTemp = 7;
3444 }else{
3445 assert( db->mallocFailed || pRec->flags&(MEM_Str|MEM_Blob) );
3446 assert( pRec->n>=0 );
3447 len = (u32)pRec->n;
3448 serial_type = (len*2) + 12 + ((pRec->flags & MEM_Str)!=0);
3449 if( pRec->flags & MEM_Zero ){
3450 serial_type += pRec->u.nZero*2;
3451 if( nData ){
3452 if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem;
3453 len += pRec->u.nZero;
3454 }else{
3455 nZero += pRec->u.nZero;
3458 nData += len;
3459 nHdr += sqlite3VarintLen(serial_type);
3460 pRec->uTemp = serial_type;
3462 if( pRec==pData0 ) break;
3463 pRec--;
3464 }while(1);
3466 /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint
3467 ** which determines the total number of bytes in the header. The varint
3468 ** value is the size of the header in bytes including the size varint
3469 ** itself. */
3470 testcase( nHdr==126 );
3471 testcase( nHdr==127 );
3472 if( nHdr<=126 ){
3473 /* The common case */
3474 nHdr += 1;
3475 }else{
3476 /* Rare case of a really large header */
3477 nVarint = sqlite3VarintLen(nHdr);
3478 nHdr += nVarint;
3479 if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++;
3481 nByte = nHdr+nData;
3483 /* Make sure the output register has a buffer large enough to store
3484 ** the new record. The output register (pOp->p3) is not allowed to
3485 ** be one of the input registers (because the following call to
3486 ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used).
3488 if( nByte+nZero<=pOut->szMalloc ){
3489 /* The output register is already large enough to hold the record.
3490 ** No error checks or buffer enlargement is required */
3491 pOut->z = pOut->zMalloc;
3492 }else{
3493 /* Need to make sure that the output is not too big and then enlarge
3494 ** the output register to hold the full result */
3495 if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){
3496 goto too_big;
3498 if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){
3499 goto no_mem;
3502 pOut->n = (int)nByte;
3503 pOut->flags = MEM_Blob;
3504 if( nZero ){
3505 pOut->u.nZero = nZero;
3506 pOut->flags |= MEM_Zero;
3508 UPDATE_MAX_BLOBSIZE(pOut);
3509 zHdr = (u8 *)pOut->z;
3510 zPayload = zHdr + nHdr;
3512 /* Write the record */
3513 if( nHdr<0x80 ){
3514 *(zHdr++) = nHdr;
3515 }else{
3516 zHdr += sqlite3PutVarint(zHdr,nHdr);
3518 assert( pData0<=pLast );
3519 pRec = pData0;
3520 while( 1 /*exit-by-break*/ ){
3521 serial_type = pRec->uTemp;
3522 /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more
3523 ** additional varints, one per column.
3524 ** EVIDENCE-OF: R-64536-51728 The values for each column in the record
3525 ** immediately follow the header. */
3526 if( serial_type<=7 ){
3527 *(zHdr++) = serial_type;
3528 if( serial_type==0 ){
3529 /* NULL value. No change in zPayload */
3530 }else{
3531 u64 v;
3532 u32 i;
3533 if( serial_type==7 ){
3534 assert( sizeof(v)==sizeof(pRec->u.r) );
3535 memcpy(&v, &pRec->u.r, sizeof(v));
3536 swapMixedEndianFloat(v);
3537 }else{
3538 v = pRec->u.i;
3540 len = i = sqlite3SmallTypeSizes[serial_type];
3541 assert( i>0 );
3542 while( 1 /*exit-by-break*/ ){
3543 zPayload[--i] = (u8)(v&0xFF);
3544 if( i==0 ) break;
3545 v >>= 8;
3547 zPayload += len;
3549 }else if( serial_type<0x80 ){
3550 *(zHdr++) = serial_type;
3551 if( serial_type>=14 && pRec->n>0 ){
3552 assert( pRec->z!=0 );
3553 memcpy(zPayload, pRec->z, pRec->n);
3554 zPayload += pRec->n;
3556 }else{
3557 zHdr += sqlite3PutVarint(zHdr, serial_type);
3558 if( pRec->n ){
3559 assert( pRec->z!=0 );
3560 memcpy(zPayload, pRec->z, pRec->n);
3561 zPayload += pRec->n;
3564 if( pRec==pLast ) break;
3565 pRec++;
3567 assert( nHdr==(int)(zHdr - (u8*)pOut->z) );
3568 assert( nByte==(int)(zPayload - (u8*)pOut->z) );
3570 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
3571 REGISTER_TRACE(pOp->p3, pOut);
3572 break;
3575 /* Opcode: Count P1 P2 P3 * *
3576 ** Synopsis: r[P2]=count()
3578 ** Store the number of entries (an integer value) in the table or index
3579 ** opened by cursor P1 in register P2.
3581 ** If P3==0, then an exact count is obtained, which involves visiting
3582 ** every btree page of the table. But if P3 is non-zero, an estimate
3583 ** is returned based on the current cursor position.
3585 case OP_Count: { /* out2 */
3586 i64 nEntry;
3587 BtCursor *pCrsr;
3589 assert( p->apCsr[pOp->p1]->eCurType==CURTYPE_BTREE );
3590 pCrsr = p->apCsr[pOp->p1]->uc.pCursor;
3591 assert( pCrsr );
3592 if( pOp->p3 ){
3593 nEntry = sqlite3BtreeRowCountEst(pCrsr);
3594 }else{
3595 nEntry = 0; /* Not needed. Only used to silence a warning. */
3596 rc = sqlite3BtreeCount(db, pCrsr, &nEntry);
3597 if( rc ) goto abort_due_to_error;
3599 pOut = out2Prerelease(p, pOp);
3600 pOut->u.i = nEntry;
3601 goto check_for_interrupt;
3604 /* Opcode: Savepoint P1 * * P4 *
3606 ** Open, release or rollback the savepoint named by parameter P4, depending
3607 ** on the value of P1. To open a new savepoint set P1==0 (SAVEPOINT_BEGIN).
3608 ** To release (commit) an existing savepoint set P1==1 (SAVEPOINT_RELEASE).
3609 ** To rollback an existing savepoint set P1==2 (SAVEPOINT_ROLLBACK).
3611 case OP_Savepoint: {
3612 int p1; /* Value of P1 operand */
3613 char *zName; /* Name of savepoint */
3614 int nName;
3615 Savepoint *pNew;
3616 Savepoint *pSavepoint;
3617 Savepoint *pTmp;
3618 int iSavepoint;
3619 int ii;
3621 p1 = pOp->p1;
3622 zName = pOp->p4.z;
3624 /* Assert that the p1 parameter is valid. Also that if there is no open
3625 ** transaction, then there cannot be any savepoints.
3627 assert( db->pSavepoint==0 || db->autoCommit==0 );
3628 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
3629 assert( db->pSavepoint || db->isTransactionSavepoint==0 );
3630 assert( checkSavepointCount(db) );
3631 assert( p->bIsReader );
3633 if( p1==SAVEPOINT_BEGIN ){
3634 if( db->nVdbeWrite>0 ){
3635 /* A new savepoint cannot be created if there are active write
3636 ** statements (i.e. open read/write incremental blob handles).
3638 sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress");
3639 rc = SQLITE_BUSY;
3640 }else{
3641 nName = sqlite3Strlen30(zName);
3643 #ifndef SQLITE_OMIT_VIRTUALTABLE
3644 /* This call is Ok even if this savepoint is actually a transaction
3645 ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
3646 ** If this is a transaction savepoint being opened, it is guaranteed
3647 ** that the db->aVTrans[] array is empty. */
3648 assert( db->autoCommit==0 || db->nVTrans==0 );
3649 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
3650 db->nStatement+db->nSavepoint);
3651 if( rc!=SQLITE_OK ) goto abort_due_to_error;
3652 #endif
3654 /* Create a new savepoint structure. */
3655 pNew = sqlite3DbMallocRawNN(db, sizeof(Savepoint)+nName+1);
3656 if( pNew ){
3657 pNew->zName = (char *)&pNew[1];
3658 memcpy(pNew->zName, zName, nName+1);
3660 /* If there is no open transaction, then mark this as a special
3661 ** "transaction savepoint". */
3662 if( db->autoCommit ){
3663 db->autoCommit = 0;
3664 db->isTransactionSavepoint = 1;
3665 }else{
3666 db->nSavepoint++;
3669 /* Link the new savepoint into the database handle's list. */
3670 pNew->pNext = db->pSavepoint;
3671 db->pSavepoint = pNew;
3672 pNew->nDeferredCons = db->nDeferredCons;
3673 pNew->nDeferredImmCons = db->nDeferredImmCons;
3676 }else{
3677 assert( p1==SAVEPOINT_RELEASE || p1==SAVEPOINT_ROLLBACK );
3678 iSavepoint = 0;
3680 /* Find the named savepoint. If there is no such savepoint, then an
3681 ** an error is returned to the user. */
3682 for(
3683 pSavepoint = db->pSavepoint;
3684 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
3685 pSavepoint = pSavepoint->pNext
3687 iSavepoint++;
3689 if( !pSavepoint ){
3690 sqlite3VdbeError(p, "no such savepoint: %s", zName);
3691 rc = SQLITE_ERROR;
3692 }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){
3693 /* It is not possible to release (commit) a savepoint if there are
3694 ** active write statements.
3696 sqlite3VdbeError(p, "cannot release savepoint - "
3697 "SQL statements in progress");
3698 rc = SQLITE_BUSY;
3699 }else{
3701 /* Determine whether or not this is a transaction savepoint. If so,
3702 ** and this is a RELEASE command, then the current transaction
3703 ** is committed.
3705 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
3706 if( isTransaction && p1==SAVEPOINT_RELEASE ){
3707 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
3708 goto vdbe_return;
3710 db->autoCommit = 1;
3711 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
3712 p->pc = (int)(pOp - aOp);
3713 db->autoCommit = 0;
3714 p->rc = rc = SQLITE_BUSY;
3715 goto vdbe_return;
3717 rc = p->rc;
3718 if( rc ){
3719 db->autoCommit = 0;
3720 }else{
3721 db->isTransactionSavepoint = 0;
3723 }else{
3724 int isSchemaChange;
3725 iSavepoint = db->nSavepoint - iSavepoint - 1;
3726 if( p1==SAVEPOINT_ROLLBACK ){
3727 isSchemaChange = (db->mDbFlags & DBFLAG_SchemaChange)!=0;
3728 for(ii=0; ii<db->nDb; ii++){
3729 rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt,
3730 SQLITE_ABORT_ROLLBACK,
3731 isSchemaChange==0);
3732 if( rc!=SQLITE_OK ) goto abort_due_to_error;
3734 }else{
3735 assert( p1==SAVEPOINT_RELEASE );
3736 isSchemaChange = 0;
3738 for(ii=0; ii<db->nDb; ii++){
3739 rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
3740 if( rc!=SQLITE_OK ){
3741 goto abort_due_to_error;
3744 if( isSchemaChange ){
3745 sqlite3ExpirePreparedStatements(db, 0);
3746 sqlite3ResetAllSchemasOfConnection(db);
3747 db->mDbFlags |= DBFLAG_SchemaChange;
3750 if( rc ) goto abort_due_to_error;
3752 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
3753 ** savepoints nested inside of the savepoint being operated on. */
3754 while( db->pSavepoint!=pSavepoint ){
3755 pTmp = db->pSavepoint;
3756 db->pSavepoint = pTmp->pNext;
3757 sqlite3DbFree(db, pTmp);
3758 db->nSavepoint--;
3761 /* If it is a RELEASE, then destroy the savepoint being operated on
3762 ** too. If it is a ROLLBACK TO, then set the number of deferred
3763 ** constraint violations present in the database to the value stored
3764 ** when the savepoint was created. */
3765 if( p1==SAVEPOINT_RELEASE ){
3766 assert( pSavepoint==db->pSavepoint );
3767 db->pSavepoint = pSavepoint->pNext;
3768 sqlite3DbFree(db, pSavepoint);
3769 if( !isTransaction ){
3770 db->nSavepoint--;
3772 }else{
3773 assert( p1==SAVEPOINT_ROLLBACK );
3774 db->nDeferredCons = pSavepoint->nDeferredCons;
3775 db->nDeferredImmCons = pSavepoint->nDeferredImmCons;
3778 if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){
3779 rc = sqlite3VtabSavepoint(db, p1, iSavepoint);
3780 if( rc!=SQLITE_OK ) goto abort_due_to_error;
3784 if( rc ) goto abort_due_to_error;
3785 if( p->eVdbeState==VDBE_HALT_STATE ){
3786 rc = SQLITE_DONE;
3787 goto vdbe_return;
3789 break;
3792 /* Opcode: AutoCommit P1 P2 * * *
3794 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
3795 ** back any currently active btree transactions. If there are any active
3796 ** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if
3797 ** there are active writing VMs or active VMs that use shared cache.
3799 ** This instruction causes the VM to halt.
3801 case OP_AutoCommit: {
3802 int desiredAutoCommit;
3803 int iRollback;
3805 desiredAutoCommit = pOp->p1;
3806 iRollback = pOp->p2;
3807 assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
3808 assert( desiredAutoCommit==1 || iRollback==0 );
3809 assert( db->nVdbeActive>0 ); /* At least this one VM is active */
3810 assert( p->bIsReader );
3812 if( desiredAutoCommit!=db->autoCommit ){
3813 if( iRollback ){
3814 assert( desiredAutoCommit==1 );
3815 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3816 db->autoCommit = 1;
3817 }else if( desiredAutoCommit && db->nVdbeWrite>0 ){
3818 /* If this instruction implements a COMMIT and other VMs are writing
3819 ** return an error indicating that the other VMs must complete first.
3821 sqlite3VdbeError(p, "cannot commit transaction - "
3822 "SQL statements in progress");
3823 rc = SQLITE_BUSY;
3824 goto abort_due_to_error;
3825 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
3826 goto vdbe_return;
3827 }else{
3828 db->autoCommit = (u8)desiredAutoCommit;
3830 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
3831 p->pc = (int)(pOp - aOp);
3832 db->autoCommit = (u8)(1-desiredAutoCommit);
3833 p->rc = rc = SQLITE_BUSY;
3834 goto vdbe_return;
3836 sqlite3CloseSavepoints(db);
3837 if( p->rc==SQLITE_OK ){
3838 rc = SQLITE_DONE;
3839 }else{
3840 rc = SQLITE_ERROR;
3842 goto vdbe_return;
3843 }else{
3844 sqlite3VdbeError(p,
3845 (!desiredAutoCommit)?"cannot start a transaction within a transaction":(
3846 (iRollback)?"cannot rollback - no transaction is active":
3847 "cannot commit - no transaction is active"));
3849 rc = SQLITE_ERROR;
3850 goto abort_due_to_error;
3852 /*NOTREACHED*/ assert(0);
3855 /* Opcode: Transaction P1 P2 P3 P4 P5
3857 ** Begin a transaction on database P1 if a transaction is not already
3858 ** active.
3859 ** If P2 is non-zero, then a write-transaction is started, or if a
3860 ** read-transaction is already active, it is upgraded to a write-transaction.
3861 ** If P2 is zero, then a read-transaction is started. If P2 is 2 or more
3862 ** then an exclusive transaction is started.
3864 ** P1 is the index of the database file on which the transaction is
3865 ** started. Index 0 is the main database file and index 1 is the
3866 ** file used for temporary tables. Indices of 2 or more are used for
3867 ** attached databases.
3869 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
3870 ** true (this flag is set if the Vdbe may modify more than one row and may
3871 ** throw an ABORT exception), a statement transaction may also be opened.
3872 ** More specifically, a statement transaction is opened iff the database
3873 ** connection is currently not in autocommit mode, or if there are other
3874 ** active statements. A statement transaction allows the changes made by this
3875 ** VDBE to be rolled back after an error without having to roll back the
3876 ** entire transaction. If no error is encountered, the statement transaction
3877 ** will automatically commit when the VDBE halts.
3879 ** If P5!=0 then this opcode also checks the schema cookie against P3
3880 ** and the schema generation counter against P4.
3881 ** The cookie changes its value whenever the database schema changes.
3882 ** This operation is used to detect when that the cookie has changed
3883 ** and that the current process needs to reread the schema. If the schema
3884 ** cookie in P3 differs from the schema cookie in the database header or
3885 ** if the schema generation counter in P4 differs from the current
3886 ** generation counter, then an SQLITE_SCHEMA error is raised and execution
3887 ** halts. The sqlite3_step() wrapper function might then reprepare the
3888 ** statement and rerun it from the beginning.
3890 case OP_Transaction: {
3891 Btree *pBt;
3892 Db *pDb;
3893 int iMeta = 0;
3895 assert( p->bIsReader );
3896 assert( p->readOnly==0 || pOp->p2==0 );
3897 assert( pOp->p2>=0 && pOp->p2<=2 );
3898 assert( pOp->p1>=0 && pOp->p1<db->nDb );
3899 assert( DbMaskTest(p->btreeMask, pOp->p1) );
3900 assert( rc==SQLITE_OK );
3901 if( pOp->p2 && (db->flags & (SQLITE_QueryOnly|SQLITE_CorruptRdOnly))!=0 ){
3902 if( db->flags & SQLITE_QueryOnly ){
3903 /* Writes prohibited by the "PRAGMA query_only=TRUE" statement */
3904 rc = SQLITE_READONLY;
3905 }else{
3906 /* Writes prohibited due to a prior SQLITE_CORRUPT in the current
3907 ** transaction */
3908 rc = SQLITE_CORRUPT;
3910 goto abort_due_to_error;
3912 pDb = &db->aDb[pOp->p1];
3913 pBt = pDb->pBt;
3915 if( pBt ){
3916 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2, &iMeta);
3917 testcase( rc==SQLITE_BUSY_SNAPSHOT );
3918 testcase( rc==SQLITE_BUSY_RECOVERY );
3919 if( rc!=SQLITE_OK ){
3920 if( (rc&0xff)==SQLITE_BUSY ){
3921 p->pc = (int)(pOp - aOp);
3922 p->rc = rc;
3923 goto vdbe_return;
3925 goto abort_due_to_error;
3928 if( p->usesStmtJournal
3929 && pOp->p2
3930 && (db->autoCommit==0 || db->nVdbeRead>1)
3932 assert( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE );
3933 if( p->iStatement==0 ){
3934 assert( db->nStatement>=0 && db->nSavepoint>=0 );
3935 db->nStatement++;
3936 p->iStatement = db->nSavepoint + db->nStatement;
3939 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1);
3940 if( rc==SQLITE_OK ){
3941 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
3944 /* Store the current value of the database handles deferred constraint
3945 ** counter. If the statement transaction needs to be rolled back,
3946 ** the value of this counter needs to be restored too. */
3947 p->nStmtDefCons = db->nDeferredCons;
3948 p->nStmtDefImmCons = db->nDeferredImmCons;
3951 assert( pOp->p5==0 || pOp->p4type==P4_INT32 );
3952 if( rc==SQLITE_OK
3953 && pOp->p5
3954 && (iMeta!=pOp->p3 || pDb->pSchema->iGeneration!=pOp->p4.i)
3957 ** IMPLEMENTATION-OF: R-03189-51135 As each SQL statement runs, the schema
3958 ** version is checked to ensure that the schema has not changed since the
3959 ** SQL statement was prepared.
3961 sqlite3DbFree(db, p->zErrMsg);
3962 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
3963 /* If the schema-cookie from the database file matches the cookie
3964 ** stored with the in-memory representation of the schema, do
3965 ** not reload the schema from the database file.
3967 ** If virtual-tables are in use, this is not just an optimization.
3968 ** Often, v-tables store their data in other SQLite tables, which
3969 ** are queried from within xNext() and other v-table methods using
3970 ** prepared queries. If such a query is out-of-date, we do not want to
3971 ** discard the database schema, as the user code implementing the
3972 ** v-table would have to be ready for the sqlite3_vtab structure itself
3973 ** to be invalidated whenever sqlite3_step() is called from within
3974 ** a v-table method.
3976 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
3977 sqlite3ResetOneSchema(db, pOp->p1);
3979 p->expired = 1;
3980 rc = SQLITE_SCHEMA;
3982 /* Set changeCntOn to 0 to prevent the value returned by sqlite3_changes()
3983 ** from being modified in sqlite3VdbeHalt(). If this statement is
3984 ** reprepared, changeCntOn will be set again. */
3985 p->changeCntOn = 0;
3987 if( rc ) goto abort_due_to_error;
3988 break;
3991 /* Opcode: ReadCookie P1 P2 P3 * *
3993 ** Read cookie number P3 from database P1 and write it into register P2.
3994 ** P3==1 is the schema version. P3==2 is the database format.
3995 ** P3==3 is the recommended pager cache size, and so forth. P1==0 is
3996 ** the main database file and P1==1 is the database file used to store
3997 ** temporary tables.
3999 ** There must be a read-lock on the database (either a transaction
4000 ** must be started or there must be an open cursor) before
4001 ** executing this instruction.
4003 case OP_ReadCookie: { /* out2 */
4004 int iMeta;
4005 int iDb;
4006 int iCookie;
4008 assert( p->bIsReader );
4009 iDb = pOp->p1;
4010 iCookie = pOp->p3;
4011 assert( pOp->p3<SQLITE_N_BTREE_META );
4012 assert( iDb>=0 && iDb<db->nDb );
4013 assert( db->aDb[iDb].pBt!=0 );
4014 assert( DbMaskTest(p->btreeMask, iDb) );
4016 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
4017 pOut = out2Prerelease(p, pOp);
4018 pOut->u.i = iMeta;
4019 break;
4022 /* Opcode: SetCookie P1 P2 P3 * P5
4024 ** Write the integer value P3 into cookie number P2 of database P1.
4025 ** P2==1 is the schema version. P2==2 is the database format.
4026 ** P2==3 is the recommended pager cache
4027 ** size, and so forth. P1==0 is the main database file and P1==1 is the
4028 ** database file used to store temporary tables.
4030 ** A transaction must be started before executing this opcode.
4032 ** If P2 is the SCHEMA_VERSION cookie (cookie number 1) then the internal
4033 ** schema version is set to P3-P5. The "PRAGMA schema_version=N" statement
4034 ** has P5 set to 1, so that the internal schema version will be different
4035 ** from the database schema version, resulting in a schema reset.
4037 case OP_SetCookie: {
4038 Db *pDb;
4040 sqlite3VdbeIncrWriteCounter(p, 0);
4041 assert( pOp->p2<SQLITE_N_BTREE_META );
4042 assert( pOp->p1>=0 && pOp->p1<db->nDb );
4043 assert( DbMaskTest(p->btreeMask, pOp->p1) );
4044 assert( p->readOnly==0 );
4045 pDb = &db->aDb[pOp->p1];
4046 assert( pDb->pBt!=0 );
4047 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
4048 /* See note about index shifting on OP_ReadCookie */
4049 rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, pOp->p3);
4050 if( pOp->p2==BTREE_SCHEMA_VERSION ){
4051 /* When the schema cookie changes, record the new cookie internally */
4052 *(u32*)&pDb->pSchema->schema_cookie = *(u32*)&pOp->p3 - pOp->p5;
4053 db->mDbFlags |= DBFLAG_SchemaChange;
4054 sqlite3FkClearTriggerCache(db, pOp->p1);
4055 }else if( pOp->p2==BTREE_FILE_FORMAT ){
4056 /* Record changes in the file format */
4057 pDb->pSchema->file_format = pOp->p3;
4059 if( pOp->p1==1 ){
4060 /* Invalidate all prepared statements whenever the TEMP database
4061 ** schema is changed. Ticket #1644 */
4062 sqlite3ExpirePreparedStatements(db, 0);
4063 p->expired = 0;
4065 if( rc ) goto abort_due_to_error;
4066 break;
4069 /* Opcode: OpenRead P1 P2 P3 P4 P5
4070 ** Synopsis: root=P2 iDb=P3
4072 ** Open a read-only cursor for the database table whose root page is
4073 ** P2 in a database file. The database file is determined by P3.
4074 ** P3==0 means the main database, P3==1 means the database used for
4075 ** temporary tables, and P3>1 means used the corresponding attached
4076 ** database. Give the new cursor an identifier of P1. The P1
4077 ** values need not be contiguous but all P1 values should be small integers.
4078 ** It is an error for P1 to be negative.
4080 ** Allowed P5 bits:
4081 ** <ul>
4082 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
4083 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
4084 ** of OP_SeekLE/OP_IdxLT)
4085 ** </ul>
4087 ** The P4 value may be either an integer (P4_INT32) or a pointer to
4088 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
4089 ** object, then table being opened must be an [index b-tree] where the
4090 ** KeyInfo object defines the content and collating
4091 ** sequence of that index b-tree. Otherwise, if P4 is an integer
4092 ** value, then the table being opened must be a [table b-tree] with a
4093 ** number of columns no less than the value of P4.
4095 ** See also: OpenWrite, ReopenIdx
4097 /* Opcode: ReopenIdx P1 P2 P3 P4 P5
4098 ** Synopsis: root=P2 iDb=P3
4100 ** The ReopenIdx opcode works like OP_OpenRead except that it first
4101 ** checks to see if the cursor on P1 is already open on the same
4102 ** b-tree and if it is this opcode becomes a no-op. In other words,
4103 ** if the cursor is already open, do not reopen it.
4105 ** The ReopenIdx opcode may only be used with P5==0 or P5==OPFLAG_SEEKEQ
4106 ** and with P4 being a P4_KEYINFO object. Furthermore, the P3 value must
4107 ** be the same as every other ReopenIdx or OpenRead for the same cursor
4108 ** number.
4110 ** Allowed P5 bits:
4111 ** <ul>
4112 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
4113 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
4114 ** of OP_SeekLE/OP_IdxLT)
4115 ** </ul>
4117 ** See also: OP_OpenRead, OP_OpenWrite
4119 /* Opcode: OpenWrite P1 P2 P3 P4 P5
4120 ** Synopsis: root=P2 iDb=P3
4122 ** Open a read/write cursor named P1 on the table or index whose root
4123 ** page is P2 (or whose root page is held in register P2 if the
4124 ** OPFLAG_P2ISREG bit is set in P5 - see below).
4126 ** The P4 value may be either an integer (P4_INT32) or a pointer to
4127 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
4128 ** object, then table being opened must be an [index b-tree] where the
4129 ** KeyInfo object defines the content and collating
4130 ** sequence of that index b-tree. Otherwise, if P4 is an integer
4131 ** value, then the table being opened must be a [table b-tree] with a
4132 ** number of columns no less than the value of P4.
4134 ** Allowed P5 bits:
4135 ** <ul>
4136 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
4137 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
4138 ** of OP_SeekLE/OP_IdxLT)
4139 ** <li> <b>0x08 OPFLAG_FORDELETE</b>: This cursor is used only to seek
4140 ** and subsequently delete entries in an index btree. This is a
4141 ** hint to the storage engine that the storage engine is allowed to
4142 ** ignore. The hint is not used by the official SQLite b*tree storage
4143 ** engine, but is used by COMDB2.
4144 ** <li> <b>0x10 OPFLAG_P2ISREG</b>: Use the content of register P2
4145 ** as the root page, not the value of P2 itself.
4146 ** </ul>
4148 ** This instruction works like OpenRead except that it opens the cursor
4149 ** in read/write mode.
4151 ** See also: OP_OpenRead, OP_ReopenIdx
4153 case OP_ReopenIdx: { /* ncycle */
4154 int nField;
4155 KeyInfo *pKeyInfo;
4156 u32 p2;
4157 int iDb;
4158 int wrFlag;
4159 Btree *pX;
4160 VdbeCursor *pCur;
4161 Db *pDb;
4163 assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
4164 assert( pOp->p4type==P4_KEYINFO );
4165 pCur = p->apCsr[pOp->p1];
4166 if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){
4167 assert( pCur->iDb==pOp->p3 ); /* Guaranteed by the code generator */
4168 assert( pCur->eCurType==CURTYPE_BTREE );
4169 sqlite3BtreeClearCursor(pCur->uc.pCursor);
4170 goto open_cursor_set_hints;
4172 /* If the cursor is not currently open or is open on a different
4173 ** index, then fall through into OP_OpenRead to force a reopen */
4174 case OP_OpenRead: /* ncycle */
4175 case OP_OpenWrite:
4177 assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
4178 assert( p->bIsReader );
4179 assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx
4180 || p->readOnly==0 );
4182 if( p->expired==1 ){
4183 rc = SQLITE_ABORT_ROLLBACK;
4184 goto abort_due_to_error;
4187 nField = 0;
4188 pKeyInfo = 0;
4189 p2 = (u32)pOp->p2;
4190 iDb = pOp->p3;
4191 assert( iDb>=0 && iDb<db->nDb );
4192 assert( DbMaskTest(p->btreeMask, iDb) );
4193 pDb = &db->aDb[iDb];
4194 pX = pDb->pBt;
4195 assert( pX!=0 );
4196 if( pOp->opcode==OP_OpenWrite ){
4197 assert( OPFLAG_FORDELETE==BTREE_FORDELETE );
4198 wrFlag = BTREE_WRCSR | (pOp->p5 & OPFLAG_FORDELETE);
4199 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
4200 if( pDb->pSchema->file_format < p->minWriteFileFormat ){
4201 p->minWriteFileFormat = pDb->pSchema->file_format;
4203 }else{
4204 wrFlag = 0;
4206 if( pOp->p5 & OPFLAG_P2ISREG ){
4207 assert( p2>0 );
4208 assert( p2<=(u32)(p->nMem+1 - p->nCursor) );
4209 assert( pOp->opcode==OP_OpenWrite );
4210 pIn2 = &aMem[p2];
4211 assert( memIsValid(pIn2) );
4212 assert( (pIn2->flags & MEM_Int)!=0 );
4213 sqlite3VdbeMemIntegerify(pIn2);
4214 p2 = (int)pIn2->u.i;
4215 /* The p2 value always comes from a prior OP_CreateBtree opcode and
4216 ** that opcode will always set the p2 value to 2 or more or else fail.
4217 ** If there were a failure, the prepared statement would have halted
4218 ** before reaching this instruction. */
4219 assert( p2>=2 );
4221 if( pOp->p4type==P4_KEYINFO ){
4222 pKeyInfo = pOp->p4.pKeyInfo;
4223 assert( pKeyInfo->enc==ENC(db) );
4224 assert( pKeyInfo->db==db );
4225 nField = pKeyInfo->nAllField;
4226 }else if( pOp->p4type==P4_INT32 ){
4227 nField = pOp->p4.i;
4229 assert( pOp->p1>=0 );
4230 assert( nField>=0 );
4231 testcase( nField==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */
4232 pCur = allocateCursor(p, pOp->p1, nField, CURTYPE_BTREE);
4233 if( pCur==0 ) goto no_mem;
4234 pCur->iDb = iDb;
4235 pCur->nullRow = 1;
4236 pCur->isOrdered = 1;
4237 pCur->pgnoRoot = p2;
4238 #ifdef SQLITE_DEBUG
4239 pCur->wrFlag = wrFlag;
4240 #endif
4241 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor);
4242 pCur->pKeyInfo = pKeyInfo;
4243 /* Set the VdbeCursor.isTable variable. Previous versions of
4244 ** SQLite used to check if the root-page flags were sane at this point
4245 ** and report database corruption if they were not, but this check has
4246 ** since moved into the btree layer. */
4247 pCur->isTable = pOp->p4type!=P4_KEYINFO;
4249 open_cursor_set_hints:
4250 assert( OPFLAG_BULKCSR==BTREE_BULKLOAD );
4251 assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ );
4252 testcase( pOp->p5 & OPFLAG_BULKCSR );
4253 testcase( pOp->p2 & OPFLAG_SEEKEQ );
4254 sqlite3BtreeCursorHintFlags(pCur->uc.pCursor,
4255 (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ)));
4256 if( rc ) goto abort_due_to_error;
4257 break;
4260 /* Opcode: OpenDup P1 P2 * * *
4262 ** Open a new cursor P1 that points to the same ephemeral table as
4263 ** cursor P2. The P2 cursor must have been opened by a prior OP_OpenEphemeral
4264 ** opcode. Only ephemeral cursors may be duplicated.
4266 ** Duplicate ephemeral cursors are used for self-joins of materialized views.
4268 case OP_OpenDup: { /* ncycle */
4269 VdbeCursor *pOrig; /* The original cursor to be duplicated */
4270 VdbeCursor *pCx; /* The new cursor */
4272 pOrig = p->apCsr[pOp->p2];
4273 assert( pOrig );
4274 assert( pOrig->isEphemeral ); /* Only ephemeral cursors can be duplicated */
4276 pCx = allocateCursor(p, pOp->p1, pOrig->nField, CURTYPE_BTREE);
4277 if( pCx==0 ) goto no_mem;
4278 pCx->nullRow = 1;
4279 pCx->isEphemeral = 1;
4280 pCx->pKeyInfo = pOrig->pKeyInfo;
4281 pCx->isTable = pOrig->isTable;
4282 pCx->pgnoRoot = pOrig->pgnoRoot;
4283 pCx->isOrdered = pOrig->isOrdered;
4284 pCx->ub.pBtx = pOrig->ub.pBtx;
4285 pCx->noReuse = 1;
4286 pOrig->noReuse = 1;
4287 rc = sqlite3BtreeCursor(pCx->ub.pBtx, pCx->pgnoRoot, BTREE_WRCSR,
4288 pCx->pKeyInfo, pCx->uc.pCursor);
4289 /* The sqlite3BtreeCursor() routine can only fail for the first cursor
4290 ** opened for a database. Since there is already an open cursor when this
4291 ** opcode is run, the sqlite3BtreeCursor() cannot fail */
4292 assert( rc==SQLITE_OK );
4293 break;
4297 /* Opcode: OpenEphemeral P1 P2 P3 P4 P5
4298 ** Synopsis: nColumn=P2
4300 ** Open a new cursor P1 to a transient table.
4301 ** The cursor is always opened read/write even if
4302 ** the main database is read-only. The ephemeral
4303 ** table is deleted automatically when the cursor is closed.
4305 ** If the cursor P1 is already opened on an ephemeral table, the table
4306 ** is cleared (all content is erased).
4308 ** P2 is the number of columns in the ephemeral table.
4309 ** The cursor points to a BTree table if P4==0 and to a BTree index
4310 ** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure
4311 ** that defines the format of keys in the index.
4313 ** The P5 parameter can be a mask of the BTREE_* flags defined
4314 ** in btree.h. These flags control aspects of the operation of
4315 ** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
4316 ** added automatically.
4318 ** If P3 is positive, then reg[P3] is modified slightly so that it
4319 ** can be used as zero-length data for OP_Insert. This is an optimization
4320 ** that avoids an extra OP_Blob opcode to initialize that register.
4322 /* Opcode: OpenAutoindex P1 P2 * P4 *
4323 ** Synopsis: nColumn=P2
4325 ** This opcode works the same as OP_OpenEphemeral. It has a
4326 ** different name to distinguish its use. Tables created using
4327 ** by this opcode will be used for automatically created transient
4328 ** indices in joins.
4330 case OP_OpenAutoindex: /* ncycle */
4331 case OP_OpenEphemeral: { /* ncycle */
4332 VdbeCursor *pCx;
4333 KeyInfo *pKeyInfo;
4335 static const int vfsFlags =
4336 SQLITE_OPEN_READWRITE |
4337 SQLITE_OPEN_CREATE |
4338 SQLITE_OPEN_EXCLUSIVE |
4339 SQLITE_OPEN_DELETEONCLOSE |
4340 SQLITE_OPEN_TRANSIENT_DB;
4341 assert( pOp->p1>=0 );
4342 assert( pOp->p2>=0 );
4343 if( pOp->p3>0 ){
4344 /* Make register reg[P3] into a value that can be used as the data
4345 ** form sqlite3BtreeInsert() where the length of the data is zero. */
4346 assert( pOp->p2==0 ); /* Only used when number of columns is zero */
4347 assert( pOp->opcode==OP_OpenEphemeral );
4348 assert( aMem[pOp->p3].flags & MEM_Null );
4349 aMem[pOp->p3].n = 0;
4350 aMem[pOp->p3].z = "";
4352 pCx = p->apCsr[pOp->p1];
4353 if( pCx && !pCx->noReuse && ALWAYS(pOp->p2<=pCx->nField) ){
4354 /* If the ephermeral table is already open and has no duplicates from
4355 ** OP_OpenDup, then erase all existing content so that the table is
4356 ** empty again, rather than creating a new table. */
4357 assert( pCx->isEphemeral );
4358 pCx->seqCount = 0;
4359 pCx->cacheStatus = CACHE_STALE;
4360 rc = sqlite3BtreeClearTable(pCx->ub.pBtx, pCx->pgnoRoot, 0);
4361 }else{
4362 pCx = allocateCursor(p, pOp->p1, pOp->p2, CURTYPE_BTREE);
4363 if( pCx==0 ) goto no_mem;
4364 pCx->isEphemeral = 1;
4365 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->ub.pBtx,
4366 BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5,
4367 vfsFlags);
4368 if( rc==SQLITE_OK ){
4369 rc = sqlite3BtreeBeginTrans(pCx->ub.pBtx, 1, 0);
4370 if( rc==SQLITE_OK ){
4371 /* If a transient index is required, create it by calling
4372 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
4373 ** opening it. If a transient table is required, just use the
4374 ** automatically created table with root-page 1 (an BLOB_INTKEY table).
4376 if( (pCx->pKeyInfo = pKeyInfo = pOp->p4.pKeyInfo)!=0 ){
4377 assert( pOp->p4type==P4_KEYINFO );
4378 rc = sqlite3BtreeCreateTable(pCx->ub.pBtx, &pCx->pgnoRoot,
4379 BTREE_BLOBKEY | pOp->p5);
4380 if( rc==SQLITE_OK ){
4381 assert( pCx->pgnoRoot==SCHEMA_ROOT+1 );
4382 assert( pKeyInfo->db==db );
4383 assert( pKeyInfo->enc==ENC(db) );
4384 rc = sqlite3BtreeCursor(pCx->ub.pBtx, pCx->pgnoRoot, BTREE_WRCSR,
4385 pKeyInfo, pCx->uc.pCursor);
4387 pCx->isTable = 0;
4388 }else{
4389 pCx->pgnoRoot = SCHEMA_ROOT;
4390 rc = sqlite3BtreeCursor(pCx->ub.pBtx, SCHEMA_ROOT, BTREE_WRCSR,
4391 0, pCx->uc.pCursor);
4392 pCx->isTable = 1;
4395 pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
4396 if( rc ){
4397 sqlite3BtreeClose(pCx->ub.pBtx);
4401 if( rc ) goto abort_due_to_error;
4402 pCx->nullRow = 1;
4403 break;
4406 /* Opcode: SorterOpen P1 P2 P3 P4 *
4408 ** This opcode works like OP_OpenEphemeral except that it opens
4409 ** a transient index that is specifically designed to sort large
4410 ** tables using an external merge-sort algorithm.
4412 ** If argument P3 is non-zero, then it indicates that the sorter may
4413 ** assume that a stable sort considering the first P3 fields of each
4414 ** key is sufficient to produce the required results.
4416 case OP_SorterOpen: {
4417 VdbeCursor *pCx;
4419 assert( pOp->p1>=0 );
4420 assert( pOp->p2>=0 );
4421 pCx = allocateCursor(p, pOp->p1, pOp->p2, CURTYPE_SORTER);
4422 if( pCx==0 ) goto no_mem;
4423 pCx->pKeyInfo = pOp->p4.pKeyInfo;
4424 assert( pCx->pKeyInfo->db==db );
4425 assert( pCx->pKeyInfo->enc==ENC(db) );
4426 rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx);
4427 if( rc ) goto abort_due_to_error;
4428 break;
4431 /* Opcode: SequenceTest P1 P2 * * *
4432 ** Synopsis: if( cursor[P1].ctr++ ) pc = P2
4434 ** P1 is a sorter cursor. If the sequence counter is currently zero, jump
4435 ** to P2. Regardless of whether or not the jump is taken, increment the
4436 ** the sequence value.
4438 case OP_SequenceTest: {
4439 VdbeCursor *pC;
4440 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4441 pC = p->apCsr[pOp->p1];
4442 assert( isSorter(pC) );
4443 if( (pC->seqCount++)==0 ){
4444 goto jump_to_p2;
4446 break;
4449 /* Opcode: OpenPseudo P1 P2 P3 * *
4450 ** Synopsis: P3 columns in r[P2]
4452 ** Open a new cursor that points to a fake table that contains a single
4453 ** row of data. The content of that one row is the content of memory
4454 ** register P2. In other words, cursor P1 becomes an alias for the
4455 ** MEM_Blob content contained in register P2.
4457 ** A pseudo-table created by this opcode is used to hold a single
4458 ** row output from the sorter so that the row can be decomposed into
4459 ** individual columns using the OP_Column opcode. The OP_Column opcode
4460 ** is the only cursor opcode that works with a pseudo-table.
4462 ** P3 is the number of fields in the records that will be stored by
4463 ** the pseudo-table.
4465 case OP_OpenPseudo: {
4466 VdbeCursor *pCx;
4468 assert( pOp->p1>=0 );
4469 assert( pOp->p3>=0 );
4470 pCx = allocateCursor(p, pOp->p1, pOp->p3, CURTYPE_PSEUDO);
4471 if( pCx==0 ) goto no_mem;
4472 pCx->nullRow = 1;
4473 pCx->seekResult = pOp->p2;
4474 pCx->isTable = 1;
4475 /* Give this pseudo-cursor a fake BtCursor pointer so that pCx
4476 ** can be safely passed to sqlite3VdbeCursorMoveto(). This avoids a test
4477 ** for pCx->eCurType==CURTYPE_BTREE inside of sqlite3VdbeCursorMoveto()
4478 ** which is a performance optimization */
4479 pCx->uc.pCursor = sqlite3BtreeFakeValidCursor();
4480 assert( pOp->p5==0 );
4481 break;
4484 /* Opcode: Close P1 * * * *
4486 ** Close a cursor previously opened as P1. If P1 is not
4487 ** currently open, this instruction is a no-op.
4489 case OP_Close: { /* ncycle */
4490 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4491 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
4492 p->apCsr[pOp->p1] = 0;
4493 break;
4496 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
4497 /* Opcode: ColumnsUsed P1 * * P4 *
4499 ** This opcode (which only exists if SQLite was compiled with
4500 ** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the
4501 ** table or index for cursor P1 are used. P4 is a 64-bit integer
4502 ** (P4_INT64) in which the first 63 bits are one for each of the
4503 ** first 63 columns of the table or index that are actually used
4504 ** by the cursor. The high-order bit is set if any column after
4505 ** the 64th is used.
4507 case OP_ColumnsUsed: {
4508 VdbeCursor *pC;
4509 pC = p->apCsr[pOp->p1];
4510 assert( pC->eCurType==CURTYPE_BTREE );
4511 pC->maskUsed = *(u64*)pOp->p4.pI64;
4512 break;
4514 #endif
4516 /* Opcode: SeekGE P1 P2 P3 P4 *
4517 ** Synopsis: key=r[P3@P4]
4519 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4520 ** use the value in register P3 as the key. If cursor P1 refers
4521 ** to an SQL index, then P3 is the first in an array of P4 registers
4522 ** that are used as an unpacked index key.
4524 ** Reposition cursor P1 so that it points to the smallest entry that
4525 ** is greater than or equal to the key value. If there are no records
4526 ** greater than or equal to the key and P2 is not zero, then jump to P2.
4528 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
4529 ** opcode will either land on a record that exactly matches the key, or
4530 ** else it will cause a jump to P2. When the cursor is OPFLAG_SEEKEQ,
4531 ** this opcode must be followed by an IdxLE opcode with the same arguments.
4532 ** The IdxGT opcode will be skipped if this opcode succeeds, but the
4533 ** IdxGT opcode will be used on subsequent loop iterations. The
4534 ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this
4535 ** is an equality search.
4537 ** This opcode leaves the cursor configured to move in forward order,
4538 ** from the beginning toward the end. In other words, the cursor is
4539 ** configured to use Next, not Prev.
4541 ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe
4543 /* Opcode: SeekGT P1 P2 P3 P4 *
4544 ** Synopsis: key=r[P3@P4]
4546 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4547 ** use the value in register P3 as a key. If cursor P1 refers
4548 ** to an SQL index, then P3 is the first in an array of P4 registers
4549 ** that are used as an unpacked index key.
4551 ** Reposition cursor P1 so that it points to the smallest entry that
4552 ** is greater than the key value. If there are no records greater than
4553 ** the key and P2 is not zero, then jump to P2.
4555 ** This opcode leaves the cursor configured to move in forward order,
4556 ** from the beginning toward the end. In other words, the cursor is
4557 ** configured to use Next, not Prev.
4559 ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe
4561 /* Opcode: SeekLT P1 P2 P3 P4 *
4562 ** Synopsis: key=r[P3@P4]
4564 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4565 ** use the value in register P3 as a key. If cursor P1 refers
4566 ** to an SQL index, then P3 is the first in an array of P4 registers
4567 ** that are used as an unpacked index key.
4569 ** Reposition cursor P1 so that it points to the largest entry that
4570 ** is less than the key value. If there are no records less than
4571 ** the key and P2 is not zero, then jump to P2.
4573 ** This opcode leaves the cursor configured to move in reverse order,
4574 ** from the end toward the beginning. In other words, the cursor is
4575 ** configured to use Prev, not Next.
4577 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe
4579 /* Opcode: SeekLE P1 P2 P3 P4 *
4580 ** Synopsis: key=r[P3@P4]
4582 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4583 ** use the value in register P3 as a key. If cursor P1 refers
4584 ** to an SQL index, then P3 is the first in an array of P4 registers
4585 ** that are used as an unpacked index key.
4587 ** Reposition cursor P1 so that it points to the largest entry that
4588 ** is less than or equal to the key value. If there are no records
4589 ** less than or equal to the key and P2 is not zero, then jump to P2.
4591 ** This opcode leaves the cursor configured to move in reverse order,
4592 ** from the end toward the beginning. In other words, the cursor is
4593 ** configured to use Prev, not Next.
4595 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
4596 ** opcode will either land on a record that exactly matches the key, or
4597 ** else it will cause a jump to P2. When the cursor is OPFLAG_SEEKEQ,
4598 ** this opcode must be followed by an IdxLE opcode with the same arguments.
4599 ** The IdxGE opcode will be skipped if this opcode succeeds, but the
4600 ** IdxGE opcode will be used on subsequent loop iterations. The
4601 ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this
4602 ** is an equality search.
4604 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt
4606 case OP_SeekLT: /* jump, in3, group, ncycle */
4607 case OP_SeekLE: /* jump, in3, group, ncycle */
4608 case OP_SeekGE: /* jump, in3, group, ncycle */
4609 case OP_SeekGT: { /* jump, in3, group, ncycle */
4610 int res; /* Comparison result */
4611 int oc; /* Opcode */
4612 VdbeCursor *pC; /* The cursor to seek */
4613 UnpackedRecord r; /* The key to seek for */
4614 int nField; /* Number of columns or fields in the key */
4615 i64 iKey; /* The rowid we are to seek to */
4616 int eqOnly; /* Only interested in == results */
4618 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4619 assert( pOp->p2!=0 );
4620 pC = p->apCsr[pOp->p1];
4621 assert( pC!=0 );
4622 assert( pC->eCurType==CURTYPE_BTREE );
4623 assert( OP_SeekLE == OP_SeekLT+1 );
4624 assert( OP_SeekGE == OP_SeekLT+2 );
4625 assert( OP_SeekGT == OP_SeekLT+3 );
4626 assert( pC->isOrdered );
4627 assert( pC->uc.pCursor!=0 );
4628 oc = pOp->opcode;
4629 eqOnly = 0;
4630 pC->nullRow = 0;
4631 #ifdef SQLITE_DEBUG
4632 pC->seekOp = pOp->opcode;
4633 #endif
4635 pC->deferredMoveto = 0;
4636 pC->cacheStatus = CACHE_STALE;
4637 if( pC->isTable ){
4638 u16 flags3, newType;
4639 /* The OPFLAG_SEEKEQ/BTREE_SEEK_EQ flag is only set on index cursors */
4640 assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0
4641 || CORRUPT_DB );
4643 /* The input value in P3 might be of any type: integer, real, string,
4644 ** blob, or NULL. But it needs to be an integer before we can do
4645 ** the seek, so convert it. */
4646 pIn3 = &aMem[pOp->p3];
4647 flags3 = pIn3->flags;
4648 if( (flags3 & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Str))==MEM_Str ){
4649 applyNumericAffinity(pIn3, 0);
4651 iKey = sqlite3VdbeIntValue(pIn3); /* Get the integer key value */
4652 newType = pIn3->flags; /* Record the type after applying numeric affinity */
4653 pIn3->flags = flags3; /* But convert the type back to its original */
4655 /* If the P3 value could not be converted into an integer without
4656 ** loss of information, then special processing is required... */
4657 if( (newType & (MEM_Int|MEM_IntReal))==0 ){
4658 int c;
4659 if( (newType & MEM_Real)==0 ){
4660 if( (newType & MEM_Null) || oc>=OP_SeekGE ){
4661 VdbeBranchTaken(1,2);
4662 goto jump_to_p2;
4663 }else{
4664 rc = sqlite3BtreeLast(pC->uc.pCursor, &res);
4665 if( rc!=SQLITE_OK ) goto abort_due_to_error;
4666 goto seek_not_found;
4669 c = sqlite3IntFloatCompare(iKey, pIn3->u.r);
4671 /* If the approximation iKey is larger than the actual real search
4672 ** term, substitute >= for > and < for <=. e.g. if the search term
4673 ** is 4.9 and the integer approximation 5:
4675 ** (x > 4.9) -> (x >= 5)
4676 ** (x <= 4.9) -> (x < 5)
4678 if( c>0 ){
4679 assert( OP_SeekGE==(OP_SeekGT-1) );
4680 assert( OP_SeekLT==(OP_SeekLE-1) );
4681 assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) );
4682 if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--;
4685 /* If the approximation iKey is smaller than the actual real search
4686 ** term, substitute <= for < and > for >=. */
4687 else if( c<0 ){
4688 assert( OP_SeekLE==(OP_SeekLT+1) );
4689 assert( OP_SeekGT==(OP_SeekGE+1) );
4690 assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) );
4691 if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++;
4694 rc = sqlite3BtreeTableMoveto(pC->uc.pCursor, (u64)iKey, 0, &res);
4695 pC->movetoTarget = iKey; /* Used by OP_Delete */
4696 if( rc!=SQLITE_OK ){
4697 goto abort_due_to_error;
4699 }else{
4700 /* For a cursor with the OPFLAG_SEEKEQ/BTREE_SEEK_EQ hint, only the
4701 ** OP_SeekGE and OP_SeekLE opcodes are allowed, and these must be
4702 ** immediately followed by an OP_IdxGT or OP_IdxLT opcode, respectively,
4703 ** with the same key.
4705 if( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ) ){
4706 eqOnly = 1;
4707 assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE );
4708 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
4709 assert( pOp->opcode==OP_SeekGE || pOp[1].opcode==OP_IdxLT );
4710 assert( pOp->opcode==OP_SeekLE || pOp[1].opcode==OP_IdxGT );
4711 assert( pOp[1].p1==pOp[0].p1 );
4712 assert( pOp[1].p2==pOp[0].p2 );
4713 assert( pOp[1].p3==pOp[0].p3 );
4714 assert( pOp[1].p4.i==pOp[0].p4.i );
4717 nField = pOp->p4.i;
4718 assert( pOp->p4type==P4_INT32 );
4719 assert( nField>0 );
4720 r.pKeyInfo = pC->pKeyInfo;
4721 r.nField = (u16)nField;
4723 /* The next line of code computes as follows, only faster:
4724 ** if( oc==OP_SeekGT || oc==OP_SeekLE ){
4725 ** r.default_rc = -1;
4726 ** }else{
4727 ** r.default_rc = +1;
4728 ** }
4730 r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1);
4731 assert( oc!=OP_SeekGT || r.default_rc==-1 );
4732 assert( oc!=OP_SeekLE || r.default_rc==-1 );
4733 assert( oc!=OP_SeekGE || r.default_rc==+1 );
4734 assert( oc!=OP_SeekLT || r.default_rc==+1 );
4736 r.aMem = &aMem[pOp->p3];
4737 #ifdef SQLITE_DEBUG
4739 int i;
4740 for(i=0; i<r.nField; i++){
4741 assert( memIsValid(&r.aMem[i]) );
4742 if( i>0 ) REGISTER_TRACE(pOp->p3+i, &r.aMem[i]);
4745 #endif
4746 r.eqSeen = 0;
4747 rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, &r, &res);
4748 if( rc!=SQLITE_OK ){
4749 goto abort_due_to_error;
4751 if( eqOnly && r.eqSeen==0 ){
4752 assert( res!=0 );
4753 goto seek_not_found;
4756 #ifdef SQLITE_TEST
4757 sqlite3_search_count++;
4758 #endif
4759 if( oc>=OP_SeekGE ){ assert( oc==OP_SeekGE || oc==OP_SeekGT );
4760 if( res<0 || (res==0 && oc==OP_SeekGT) ){
4761 res = 0;
4762 rc = sqlite3BtreeNext(pC->uc.pCursor, 0);
4763 if( rc!=SQLITE_OK ){
4764 if( rc==SQLITE_DONE ){
4765 rc = SQLITE_OK;
4766 res = 1;
4767 }else{
4768 goto abort_due_to_error;
4771 }else{
4772 res = 0;
4774 }else{
4775 assert( oc==OP_SeekLT || oc==OP_SeekLE );
4776 if( res>0 || (res==0 && oc==OP_SeekLT) ){
4777 res = 0;
4778 rc = sqlite3BtreePrevious(pC->uc.pCursor, 0);
4779 if( rc!=SQLITE_OK ){
4780 if( rc==SQLITE_DONE ){
4781 rc = SQLITE_OK;
4782 res = 1;
4783 }else{
4784 goto abort_due_to_error;
4787 }else{
4788 /* res might be negative because the table is empty. Check to
4789 ** see if this is the case.
4791 res = sqlite3BtreeEof(pC->uc.pCursor);
4794 seek_not_found:
4795 assert( pOp->p2>0 );
4796 VdbeBranchTaken(res!=0,2);
4797 if( res ){
4798 goto jump_to_p2;
4799 }else if( eqOnly ){
4800 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
4801 pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */
4803 break;
4807 /* Opcode: SeekScan P1 P2 * * P5
4808 ** Synopsis: Scan-ahead up to P1 rows
4810 ** This opcode is a prefix opcode to OP_SeekGE. In other words, this
4811 ** opcode must be immediately followed by OP_SeekGE. This constraint is
4812 ** checked by assert() statements.
4814 ** This opcode uses the P1 through P4 operands of the subsequent
4815 ** OP_SeekGE. In the text that follows, the operands of the subsequent
4816 ** OP_SeekGE opcode are denoted as SeekOP.P1 through SeekOP.P4. Only
4817 ** the P1, P2 and P5 operands of this opcode are also used, and are called
4818 ** This.P1, This.P2 and This.P5.
4820 ** This opcode helps to optimize IN operators on a multi-column index
4821 ** where the IN operator is on the later terms of the index by avoiding
4822 ** unnecessary seeks on the btree, substituting steps to the next row
4823 ** of the b-tree instead. A correct answer is obtained if this opcode
4824 ** is omitted or is a no-op.
4826 ** The SeekGE.P3 and SeekGE.P4 operands identify an unpacked key which
4827 ** is the desired entry that we want the cursor SeekGE.P1 to be pointing
4828 ** to. Call this SeekGE.P3/P4 row the "target".
4830 ** If the SeekGE.P1 cursor is not currently pointing to a valid row,
4831 ** then this opcode is a no-op and control passes through into the OP_SeekGE.
4833 ** If the SeekGE.P1 cursor is pointing to a valid row, then that row
4834 ** might be the target row, or it might be near and slightly before the
4835 ** target row, or it might be after the target row. If the cursor is
4836 ** currently before the target row, then this opcode attempts to position
4837 ** the cursor on or after the target row by invoking sqlite3BtreeStep()
4838 ** on the cursor between 1 and This.P1 times.
4840 ** The This.P5 parameter is a flag that indicates what to do if the
4841 ** cursor ends up pointing at a valid row that is past the target
4842 ** row. If This.P5 is false (0) then a jump is made to SeekGE.P2. If
4843 ** This.P5 is true (non-zero) then a jump is made to This.P2. The P5==0
4844 ** case occurs when there are no inequality constraints to the right of
4845 ** the IN constraing. The jump to SeekGE.P2 ends the loop. The P5!=0 case
4846 ** occurs when there are inequality constraints to the right of the IN
4847 ** operator. In that case, the This.P2 will point either directly to or
4848 ** to setup code prior to the OP_IdxGT or OP_IdxGE opcode that checks for
4849 ** loop terminate.
4851 ** Possible outcomes from this opcode:<ol>
4853 ** <li> If the cursor is initally not pointed to any valid row, then
4854 ** fall through into the subsequent OP_SeekGE opcode.
4856 ** <li> If the cursor is left pointing to a row that is before the target
4857 ** row, even after making as many as This.P1 calls to
4858 ** sqlite3BtreeNext(), then also fall through into OP_SeekGE.
4860 ** <li> If the cursor is left pointing at the target row, either because it
4861 ** was at the target row to begin with or because one or more
4862 ** sqlite3BtreeNext() calls moved the cursor to the target row,
4863 ** then jump to This.P2..,
4865 ** <li> If the cursor started out before the target row and a call to
4866 ** to sqlite3BtreeNext() moved the cursor off the end of the index
4867 ** (indicating that the target row definitely does not exist in the
4868 ** btree) then jump to SeekGE.P2, ending the loop.
4870 ** <li> If the cursor ends up on a valid row that is past the target row
4871 ** (indicating that the target row does not exist in the btree) then
4872 ** jump to SeekOP.P2 if This.P5==0 or to This.P2 if This.P5>0.
4873 ** </ol>
4875 case OP_SeekScan: { /* ncycle */
4876 VdbeCursor *pC;
4877 int res;
4878 int nStep;
4879 UnpackedRecord r;
4881 assert( pOp[1].opcode==OP_SeekGE );
4883 /* If pOp->p5 is clear, then pOp->p2 points to the first instruction past the
4884 ** OP_IdxGT that follows the OP_SeekGE. Otherwise, it points to the first
4885 ** opcode past the OP_SeekGE itself. */
4886 assert( pOp->p2>=(int)(pOp-aOp)+2 );
4887 #ifdef SQLITE_DEBUG
4888 if( pOp->p5==0 ){
4889 /* There are no inequality constraints following the IN constraint. */
4890 assert( pOp[1].p1==aOp[pOp->p2-1].p1 );
4891 assert( pOp[1].p2==aOp[pOp->p2-1].p2 );
4892 assert( pOp[1].p3==aOp[pOp->p2-1].p3 );
4893 assert( aOp[pOp->p2-1].opcode==OP_IdxGT
4894 || aOp[pOp->p2-1].opcode==OP_IdxGE );
4895 testcase( aOp[pOp->p2-1].opcode==OP_IdxGE );
4896 }else{
4897 /* There are inequality constraints. */
4898 assert( pOp->p2==(int)(pOp-aOp)+2 );
4899 assert( aOp[pOp->p2-1].opcode==OP_SeekGE );
4901 #endif
4903 assert( pOp->p1>0 );
4904 pC = p->apCsr[pOp[1].p1];
4905 assert( pC!=0 );
4906 assert( pC->eCurType==CURTYPE_BTREE );
4907 assert( !pC->isTable );
4908 if( !sqlite3BtreeCursorIsValidNN(pC->uc.pCursor) ){
4909 #ifdef SQLITE_DEBUG
4910 if( db->flags&SQLITE_VdbeTrace ){
4911 printf("... cursor not valid - fall through\n");
4913 #endif
4914 break;
4916 nStep = pOp->p1;
4917 assert( nStep>=1 );
4918 r.pKeyInfo = pC->pKeyInfo;
4919 r.nField = (u16)pOp[1].p4.i;
4920 r.default_rc = 0;
4921 r.aMem = &aMem[pOp[1].p3];
4922 #ifdef SQLITE_DEBUG
4924 int i;
4925 for(i=0; i<r.nField; i++){
4926 assert( memIsValid(&r.aMem[i]) );
4927 REGISTER_TRACE(pOp[1].p3+i, &aMem[pOp[1].p3+i]);
4930 #endif
4931 res = 0; /* Not needed. Only used to silence a warning. */
4932 while(1){
4933 rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res);
4934 if( rc ) goto abort_due_to_error;
4935 if( res>0 && pOp->p5==0 ){
4936 seekscan_search_fail:
4937 /* Jump to SeekGE.P2, ending the loop */
4938 #ifdef SQLITE_DEBUG
4939 if( db->flags&SQLITE_VdbeTrace ){
4940 printf("... %d steps and then skip\n", pOp->p1 - nStep);
4942 #endif
4943 VdbeBranchTaken(1,3);
4944 pOp++;
4945 goto jump_to_p2;
4947 if( res>=0 ){
4948 /* Jump to This.P2, bypassing the OP_SeekGE opcode */
4949 #ifdef SQLITE_DEBUG
4950 if( db->flags&SQLITE_VdbeTrace ){
4951 printf("... %d steps and then success\n", pOp->p1 - nStep);
4953 #endif
4954 VdbeBranchTaken(2,3);
4955 goto jump_to_p2;
4956 break;
4958 if( nStep<=0 ){
4959 #ifdef SQLITE_DEBUG
4960 if( db->flags&SQLITE_VdbeTrace ){
4961 printf("... fall through after %d steps\n", pOp->p1);
4963 #endif
4964 VdbeBranchTaken(0,3);
4965 break;
4967 nStep--;
4968 rc = sqlite3BtreeNext(pC->uc.pCursor, 0);
4969 if( rc ){
4970 if( rc==SQLITE_DONE ){
4971 rc = SQLITE_OK;
4972 goto seekscan_search_fail;
4973 }else{
4974 goto abort_due_to_error;
4979 break;
4983 /* Opcode: SeekHit P1 P2 P3 * *
4984 ** Synopsis: set P2<=seekHit<=P3
4986 ** Increase or decrease the seekHit value for cursor P1, if necessary,
4987 ** so that it is no less than P2 and no greater than P3.
4989 ** The seekHit integer represents the maximum of terms in an index for which
4990 ** there is known to be at least one match. If the seekHit value is smaller
4991 ** than the total number of equality terms in an index lookup, then the
4992 ** OP_IfNoHope opcode might run to see if the IN loop can be abandoned
4993 ** early, thus saving work. This is part of the IN-early-out optimization.
4995 ** P1 must be a valid b-tree cursor.
4997 case OP_SeekHit: { /* ncycle */
4998 VdbeCursor *pC;
4999 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5000 pC = p->apCsr[pOp->p1];
5001 assert( pC!=0 );
5002 assert( pOp->p3>=pOp->p2 );
5003 if( pC->seekHit<pOp->p2 ){
5004 #ifdef SQLITE_DEBUG
5005 if( db->flags&SQLITE_VdbeTrace ){
5006 printf("seekHit changes from %d to %d\n", pC->seekHit, pOp->p2);
5008 #endif
5009 pC->seekHit = pOp->p2;
5010 }else if( pC->seekHit>pOp->p3 ){
5011 #ifdef SQLITE_DEBUG
5012 if( db->flags&SQLITE_VdbeTrace ){
5013 printf("seekHit changes from %d to %d\n", pC->seekHit, pOp->p3);
5015 #endif
5016 pC->seekHit = pOp->p3;
5018 break;
5021 /* Opcode: IfNotOpen P1 P2 * * *
5022 ** Synopsis: if( !csr[P1] ) goto P2
5024 ** If cursor P1 is not open or if P1 is set to a NULL row using the
5025 ** OP_NullRow opcode, then jump to instruction P2. Otherwise, fall through.
5027 case OP_IfNotOpen: { /* jump */
5028 VdbeCursor *pCur;
5030 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5031 pCur = p->apCsr[pOp->p1];
5032 VdbeBranchTaken(pCur==0 || pCur->nullRow, 2);
5033 if( pCur==0 || pCur->nullRow ){
5034 goto jump_to_p2_and_check_for_interrupt;
5036 break;
5039 /* Opcode: Found P1 P2 P3 P4 *
5040 ** Synopsis: key=r[P3@P4]
5042 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
5043 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
5044 ** record.
5046 ** Cursor P1 is on an index btree. If the record identified by P3 and P4
5047 ** is a prefix of any entry in P1 then a jump is made to P2 and
5048 ** P1 is left pointing at the matching entry.
5050 ** This operation leaves the cursor in a state where it can be
5051 ** advanced in the forward direction. The Next instruction will work,
5052 ** but not the Prev instruction.
5054 ** See also: NotFound, NoConflict, NotExists. SeekGe
5056 /* Opcode: NotFound P1 P2 P3 P4 *
5057 ** Synopsis: key=r[P3@P4]
5059 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
5060 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
5061 ** record.
5063 ** Cursor P1 is on an index btree. If the record identified by P3 and P4
5064 ** is not the prefix of any entry in P1 then a jump is made to P2. If P1
5065 ** does contain an entry whose prefix matches the P3/P4 record then control
5066 ** falls through to the next instruction and P1 is left pointing at the
5067 ** matching entry.
5069 ** This operation leaves the cursor in a state where it cannot be
5070 ** advanced in either direction. In other words, the Next and Prev
5071 ** opcodes do not work after this operation.
5073 ** See also: Found, NotExists, NoConflict, IfNoHope
5075 /* Opcode: IfNoHope P1 P2 P3 P4 *
5076 ** Synopsis: key=r[P3@P4]
5078 ** Register P3 is the first of P4 registers that form an unpacked
5079 ** record. Cursor P1 is an index btree. P2 is a jump destination.
5080 ** In other words, the operands to this opcode are the same as the
5081 ** operands to OP_NotFound and OP_IdxGT.
5083 ** This opcode is an optimization attempt only. If this opcode always
5084 ** falls through, the correct answer is still obtained, but extra works
5085 ** is performed.
5087 ** A value of N in the seekHit flag of cursor P1 means that there exists
5088 ** a key P3:N that will match some record in the index. We want to know
5089 ** if it is possible for a record P3:P4 to match some record in the
5090 ** index. If it is not possible, we can skips some work. So if seekHit
5091 ** is less than P4, attempt to find out if a match is possible by running
5092 ** OP_NotFound.
5094 ** This opcode is used in IN clause processing for a multi-column key.
5095 ** If an IN clause is attached to an element of the key other than the
5096 ** left-most element, and if there are no matches on the most recent
5097 ** seek over the whole key, then it might be that one of the key element
5098 ** to the left is prohibiting a match, and hence there is "no hope" of
5099 ** any match regardless of how many IN clause elements are checked.
5100 ** In such a case, we abandon the IN clause search early, using this
5101 ** opcode. The opcode name comes from the fact that the
5102 ** jump is taken if there is "no hope" of achieving a match.
5104 ** See also: NotFound, SeekHit
5106 /* Opcode: NoConflict P1 P2 P3 P4 *
5107 ** Synopsis: key=r[P3@P4]
5109 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
5110 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
5111 ** record.
5113 ** Cursor P1 is on an index btree. If the record identified by P3 and P4
5114 ** contains any NULL value, jump immediately to P2. If all terms of the
5115 ** record are not-NULL then a check is done to determine if any row in the
5116 ** P1 index btree has a matching key prefix. If there are no matches, jump
5117 ** immediately to P2. If there is a match, fall through and leave the P1
5118 ** cursor pointing to the matching row.
5120 ** This opcode is similar to OP_NotFound with the exceptions that the
5121 ** branch is always taken if any part of the search key input is NULL.
5123 ** This operation leaves the cursor in a state where it cannot be
5124 ** advanced in either direction. In other words, the Next and Prev
5125 ** opcodes do not work after this operation.
5127 ** See also: NotFound, Found, NotExists
5129 case OP_IfNoHope: { /* jump, in3, ncycle */
5130 VdbeCursor *pC;
5131 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5132 pC = p->apCsr[pOp->p1];
5133 assert( pC!=0 );
5134 #ifdef SQLITE_DEBUG
5135 if( db->flags&SQLITE_VdbeTrace ){
5136 printf("seekHit is %d\n", pC->seekHit);
5138 #endif
5139 if( pC->seekHit>=pOp->p4.i ) break;
5140 /* Fall through into OP_NotFound */
5141 /* no break */ deliberate_fall_through
5143 case OP_NoConflict: /* jump, in3, ncycle */
5144 case OP_NotFound: /* jump, in3, ncycle */
5145 case OP_Found: { /* jump, in3, ncycle */
5146 int alreadyExists;
5147 int ii;
5148 VdbeCursor *pC;
5149 UnpackedRecord *pIdxKey;
5150 UnpackedRecord r;
5152 #ifdef SQLITE_TEST
5153 if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++;
5154 #endif
5156 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5157 assert( pOp->p4type==P4_INT32 );
5158 pC = p->apCsr[pOp->p1];
5159 assert( pC!=0 );
5160 #ifdef SQLITE_DEBUG
5161 pC->seekOp = pOp->opcode;
5162 #endif
5163 r.aMem = &aMem[pOp->p3];
5164 assert( pC->eCurType==CURTYPE_BTREE );
5165 assert( pC->uc.pCursor!=0 );
5166 assert( pC->isTable==0 );
5167 r.nField = (u16)pOp->p4.i;
5168 if( r.nField>0 ){
5169 /* Key values in an array of registers */
5170 r.pKeyInfo = pC->pKeyInfo;
5171 r.default_rc = 0;
5172 #ifdef SQLITE_DEBUG
5173 for(ii=0; ii<r.nField; ii++){
5174 assert( memIsValid(&r.aMem[ii]) );
5175 assert( (r.aMem[ii].flags & MEM_Zero)==0 || r.aMem[ii].n==0 );
5176 if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]);
5178 #endif
5179 rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, &r, &pC->seekResult);
5180 }else{
5181 /* Composite key generated by OP_MakeRecord */
5182 assert( r.aMem->flags & MEM_Blob );
5183 assert( pOp->opcode!=OP_NoConflict );
5184 rc = ExpandBlob(r.aMem);
5185 assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
5186 if( rc ) goto no_mem;
5187 pIdxKey = sqlite3VdbeAllocUnpackedRecord(pC->pKeyInfo);
5188 if( pIdxKey==0 ) goto no_mem;
5189 sqlite3VdbeRecordUnpack(pC->pKeyInfo, r.aMem->n, r.aMem->z, pIdxKey);
5190 pIdxKey->default_rc = 0;
5191 rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, pIdxKey, &pC->seekResult);
5192 sqlite3DbFreeNN(db, pIdxKey);
5194 if( rc!=SQLITE_OK ){
5195 goto abort_due_to_error;
5197 alreadyExists = (pC->seekResult==0);
5198 pC->nullRow = 1-alreadyExists;
5199 pC->deferredMoveto = 0;
5200 pC->cacheStatus = CACHE_STALE;
5201 if( pOp->opcode==OP_Found ){
5202 VdbeBranchTaken(alreadyExists!=0,2);
5203 if( alreadyExists ) goto jump_to_p2;
5204 }else{
5205 if( !alreadyExists ){
5206 VdbeBranchTaken(1,2);
5207 goto jump_to_p2;
5209 if( pOp->opcode==OP_NoConflict ){
5210 /* For the OP_NoConflict opcode, take the jump if any of the
5211 ** input fields are NULL, since any key with a NULL will not
5212 ** conflict */
5213 for(ii=0; ii<r.nField; ii++){
5214 if( r.aMem[ii].flags & MEM_Null ){
5215 VdbeBranchTaken(1,2);
5216 goto jump_to_p2;
5220 VdbeBranchTaken(0,2);
5221 if( pOp->opcode==OP_IfNoHope ){
5222 pC->seekHit = pOp->p4.i;
5225 break;
5228 /* Opcode: SeekRowid P1 P2 P3 * *
5229 ** Synopsis: intkey=r[P3]
5231 ** P1 is the index of a cursor open on an SQL table btree (with integer
5232 ** keys). If register P3 does not contain an integer or if P1 does not
5233 ** contain a record with rowid P3 then jump immediately to P2.
5234 ** Or, if P2 is 0, raise an SQLITE_CORRUPT error. If P1 does contain
5235 ** a record with rowid P3 then
5236 ** leave the cursor pointing at that record and fall through to the next
5237 ** instruction.
5239 ** The OP_NotExists opcode performs the same operation, but with OP_NotExists
5240 ** the P3 register must be guaranteed to contain an integer value. With this
5241 ** opcode, register P3 might not contain an integer.
5243 ** The OP_NotFound opcode performs the same operation on index btrees
5244 ** (with arbitrary multi-value keys).
5246 ** This opcode leaves the cursor in a state where it cannot be advanced
5247 ** in either direction. In other words, the Next and Prev opcodes will
5248 ** not work following this opcode.
5250 ** See also: Found, NotFound, NoConflict, SeekRowid
5252 /* Opcode: NotExists P1 P2 P3 * *
5253 ** Synopsis: intkey=r[P3]
5255 ** P1 is the index of a cursor open on an SQL table btree (with integer
5256 ** keys). P3 is an integer rowid. If P1 does not contain a record with
5257 ** rowid P3 then jump immediately to P2. Or, if P2 is 0, raise an
5258 ** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then
5259 ** leave the cursor pointing at that record and fall through to the next
5260 ** instruction.
5262 ** The OP_SeekRowid opcode performs the same operation but also allows the
5263 ** P3 register to contain a non-integer value, in which case the jump is
5264 ** always taken. This opcode requires that P3 always contain an integer.
5266 ** The OP_NotFound opcode performs the same operation on index btrees
5267 ** (with arbitrary multi-value keys).
5269 ** This opcode leaves the cursor in a state where it cannot be advanced
5270 ** in either direction. In other words, the Next and Prev opcodes will
5271 ** not work following this opcode.
5273 ** See also: Found, NotFound, NoConflict, SeekRowid
5275 case OP_SeekRowid: { /* jump, in3, ncycle */
5276 VdbeCursor *pC;
5277 BtCursor *pCrsr;
5278 int res;
5279 u64 iKey;
5281 pIn3 = &aMem[pOp->p3];
5282 testcase( pIn3->flags & MEM_Int );
5283 testcase( pIn3->flags & MEM_IntReal );
5284 testcase( pIn3->flags & MEM_Real );
5285 testcase( (pIn3->flags & (MEM_Str|MEM_Int))==MEM_Str );
5286 if( (pIn3->flags & (MEM_Int|MEM_IntReal))==0 ){
5287 /* If pIn3->u.i does not contain an integer, compute iKey as the
5288 ** integer value of pIn3. Jump to P2 if pIn3 cannot be converted
5289 ** into an integer without loss of information. Take care to avoid
5290 ** changing the datatype of pIn3, however, as it is used by other
5291 ** parts of the prepared statement. */
5292 Mem x = pIn3[0];
5293 applyAffinity(&x, SQLITE_AFF_NUMERIC, encoding);
5294 if( (x.flags & MEM_Int)==0 ) goto jump_to_p2;
5295 iKey = x.u.i;
5296 goto notExistsWithKey;
5298 /* Fall through into OP_NotExists */
5299 /* no break */ deliberate_fall_through
5300 case OP_NotExists: /* jump, in3, ncycle */
5301 pIn3 = &aMem[pOp->p3];
5302 assert( (pIn3->flags & MEM_Int)!=0 || pOp->opcode==OP_SeekRowid );
5303 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5304 iKey = pIn3->u.i;
5305 notExistsWithKey:
5306 pC = p->apCsr[pOp->p1];
5307 assert( pC!=0 );
5308 #ifdef SQLITE_DEBUG
5309 if( pOp->opcode==OP_SeekRowid ) pC->seekOp = OP_SeekRowid;
5310 #endif
5311 assert( pC->isTable );
5312 assert( pC->eCurType==CURTYPE_BTREE );
5313 pCrsr = pC->uc.pCursor;
5314 assert( pCrsr!=0 );
5315 res = 0;
5316 rc = sqlite3BtreeTableMoveto(pCrsr, iKey, 0, &res);
5317 assert( rc==SQLITE_OK || res==0 );
5318 pC->movetoTarget = iKey; /* Used by OP_Delete */
5319 pC->nullRow = 0;
5320 pC->cacheStatus = CACHE_STALE;
5321 pC->deferredMoveto = 0;
5322 VdbeBranchTaken(res!=0,2);
5323 pC->seekResult = res;
5324 if( res!=0 ){
5325 assert( rc==SQLITE_OK );
5326 if( pOp->p2==0 ){
5327 rc = SQLITE_CORRUPT_BKPT;
5328 }else{
5329 goto jump_to_p2;
5332 if( rc ) goto abort_due_to_error;
5333 break;
5336 /* Opcode: Sequence P1 P2 * * *
5337 ** Synopsis: r[P2]=cursor[P1].ctr++
5339 ** Find the next available sequence number for cursor P1.
5340 ** Write the sequence number into register P2.
5341 ** The sequence number on the cursor is incremented after this
5342 ** instruction.
5344 case OP_Sequence: { /* out2 */
5345 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5346 assert( p->apCsr[pOp->p1]!=0 );
5347 assert( p->apCsr[pOp->p1]->eCurType!=CURTYPE_VTAB );
5348 pOut = out2Prerelease(p, pOp);
5349 pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
5350 break;
5354 /* Opcode: NewRowid P1 P2 P3 * *
5355 ** Synopsis: r[P2]=rowid
5357 ** Get a new integer record number (a.k.a "rowid") used as the key to a table.
5358 ** The record number is not previously used as a key in the database
5359 ** table that cursor P1 points to. The new record number is written
5360 ** written to register P2.
5362 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds
5363 ** the largest previously generated record number. No new record numbers are
5364 ** allowed to be less than this value. When this value reaches its maximum,
5365 ** an SQLITE_FULL error is generated. The P3 register is updated with the '
5366 ** generated record number. This P3 mechanism is used to help implement the
5367 ** AUTOINCREMENT feature.
5369 case OP_NewRowid: { /* out2 */
5370 i64 v; /* The new rowid */
5371 VdbeCursor *pC; /* Cursor of table to get the new rowid */
5372 int res; /* Result of an sqlite3BtreeLast() */
5373 int cnt; /* Counter to limit the number of searches */
5374 #ifndef SQLITE_OMIT_AUTOINCREMENT
5375 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */
5376 VdbeFrame *pFrame; /* Root frame of VDBE */
5377 #endif
5379 v = 0;
5380 res = 0;
5381 pOut = out2Prerelease(p, pOp);
5382 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5383 pC = p->apCsr[pOp->p1];
5384 assert( pC!=0 );
5385 assert( pC->isTable );
5386 assert( pC->eCurType==CURTYPE_BTREE );
5387 assert( pC->uc.pCursor!=0 );
5389 /* The next rowid or record number (different terms for the same
5390 ** thing) is obtained in a two-step algorithm.
5392 ** First we attempt to find the largest existing rowid and add one
5393 ** to that. But if the largest existing rowid is already the maximum
5394 ** positive integer, we have to fall through to the second
5395 ** probabilistic algorithm
5397 ** The second algorithm is to select a rowid at random and see if
5398 ** it already exists in the table. If it does not exist, we have
5399 ** succeeded. If the random rowid does exist, we select a new one
5400 ** and try again, up to 100 times.
5402 assert( pC->isTable );
5404 #ifdef SQLITE_32BIT_ROWID
5405 # define MAX_ROWID 0x7fffffff
5406 #else
5407 /* Some compilers complain about constants of the form 0x7fffffffffffffff.
5408 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems
5409 ** to provide the constant while making all compilers happy.
5411 # define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
5412 #endif
5414 if( !pC->useRandomRowid ){
5415 rc = sqlite3BtreeLast(pC->uc.pCursor, &res);
5416 if( rc!=SQLITE_OK ){
5417 goto abort_due_to_error;
5419 if( res ){
5420 v = 1; /* IMP: R-61914-48074 */
5421 }else{
5422 assert( sqlite3BtreeCursorIsValid(pC->uc.pCursor) );
5423 v = sqlite3BtreeIntegerKey(pC->uc.pCursor);
5424 if( v>=MAX_ROWID ){
5425 pC->useRandomRowid = 1;
5426 }else{
5427 v++; /* IMP: R-29538-34987 */
5432 #ifndef SQLITE_OMIT_AUTOINCREMENT
5433 if( pOp->p3 ){
5434 /* Assert that P3 is a valid memory cell. */
5435 assert( pOp->p3>0 );
5436 if( p->pFrame ){
5437 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
5438 /* Assert that P3 is a valid memory cell. */
5439 assert( pOp->p3<=pFrame->nMem );
5440 pMem = &pFrame->aMem[pOp->p3];
5441 }else{
5442 /* Assert that P3 is a valid memory cell. */
5443 assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
5444 pMem = &aMem[pOp->p3];
5445 memAboutToChange(p, pMem);
5447 assert( memIsValid(pMem) );
5449 REGISTER_TRACE(pOp->p3, pMem);
5450 sqlite3VdbeMemIntegerify(pMem);
5451 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */
5452 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
5453 rc = SQLITE_FULL; /* IMP: R-17817-00630 */
5454 goto abort_due_to_error;
5456 if( v<pMem->u.i+1 ){
5457 v = pMem->u.i + 1;
5459 pMem->u.i = v;
5461 #endif
5462 if( pC->useRandomRowid ){
5463 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
5464 ** largest possible integer (9223372036854775807) then the database
5465 ** engine starts picking positive candidate ROWIDs at random until
5466 ** it finds one that is not previously used. */
5467 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is
5468 ** an AUTOINCREMENT table. */
5469 cnt = 0;
5471 sqlite3_randomness(sizeof(v), &v);
5472 v &= (MAX_ROWID>>1); v++; /* Ensure that v is greater than zero */
5473 }while( ((rc = sqlite3BtreeTableMoveto(pC->uc.pCursor, (u64)v,
5474 0, &res))==SQLITE_OK)
5475 && (res==0)
5476 && (++cnt<100));
5477 if( rc ) goto abort_due_to_error;
5478 if( res==0 ){
5479 rc = SQLITE_FULL; /* IMP: R-38219-53002 */
5480 goto abort_due_to_error;
5482 assert( v>0 ); /* EV: R-40812-03570 */
5484 pC->deferredMoveto = 0;
5485 pC->cacheStatus = CACHE_STALE;
5487 pOut->u.i = v;
5488 break;
5491 /* Opcode: Insert P1 P2 P3 P4 P5
5492 ** Synopsis: intkey=r[P3] data=r[P2]
5494 ** Write an entry into the table of cursor P1. A new entry is
5495 ** created if it doesn't already exist or the data for an existing
5496 ** entry is overwritten. The data is the value MEM_Blob stored in register
5497 ** number P2. The key is stored in register P3. The key must
5498 ** be a MEM_Int.
5500 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
5501 ** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set,
5502 ** then rowid is stored for subsequent return by the
5503 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
5505 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
5506 ** run faster by avoiding an unnecessary seek on cursor P1. However,
5507 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
5508 ** seeks on the cursor or if the most recent seek used a key equal to P3.
5510 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
5511 ** UPDATE operation. Otherwise (if the flag is clear) then this opcode
5512 ** is part of an INSERT operation. The difference is only important to
5513 ** the update hook.
5515 ** Parameter P4 may point to a Table structure, or may be NULL. If it is
5516 ** not NULL, then the update-hook (sqlite3.xUpdateCallback) is invoked
5517 ** following a successful insert.
5519 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
5520 ** allocated, then ownership of P2 is transferred to the pseudo-cursor
5521 ** and register P2 becomes ephemeral. If the cursor is changed, the
5522 ** value of register P2 will then change. Make sure this does not
5523 ** cause any problems.)
5525 ** This instruction only works on tables. The equivalent instruction
5526 ** for indices is OP_IdxInsert.
5528 case OP_Insert: {
5529 Mem *pData; /* MEM cell holding data for the record to be inserted */
5530 Mem *pKey; /* MEM cell holding key for the record */
5531 VdbeCursor *pC; /* Cursor to table into which insert is written */
5532 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */
5533 const char *zDb; /* database name - used by the update hook */
5534 Table *pTab; /* Table structure - used by update and pre-update hooks */
5535 BtreePayload x; /* Payload to be inserted */
5537 pData = &aMem[pOp->p2];
5538 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5539 assert( memIsValid(pData) );
5540 pC = p->apCsr[pOp->p1];
5541 assert( pC!=0 );
5542 assert( pC->eCurType==CURTYPE_BTREE );
5543 assert( pC->deferredMoveto==0 );
5544 assert( pC->uc.pCursor!=0 );
5545 assert( (pOp->p5 & OPFLAG_ISNOOP) || pC->isTable );
5546 assert( pOp->p4type==P4_TABLE || pOp->p4type>=P4_STATIC );
5547 REGISTER_TRACE(pOp->p2, pData);
5548 sqlite3VdbeIncrWriteCounter(p, pC);
5550 pKey = &aMem[pOp->p3];
5551 assert( pKey->flags & MEM_Int );
5552 assert( memIsValid(pKey) );
5553 REGISTER_TRACE(pOp->p3, pKey);
5554 x.nKey = pKey->u.i;
5556 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
5557 assert( pC->iDb>=0 );
5558 zDb = db->aDb[pC->iDb].zDbSName;
5559 pTab = pOp->p4.pTab;
5560 assert( (pOp->p5 & OPFLAG_ISNOOP) || HasRowid(pTab) );
5561 }else{
5562 pTab = 0;
5563 zDb = 0;
5566 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5567 /* Invoke the pre-update hook, if any */
5568 if( pTab ){
5569 if( db->xPreUpdateCallback && !(pOp->p5 & OPFLAG_ISUPDATE) ){
5570 sqlite3VdbePreUpdateHook(p,pC,SQLITE_INSERT,zDb,pTab,x.nKey,pOp->p2,-1);
5572 if( db->xUpdateCallback==0 || pTab->aCol==0 ){
5573 /* Prevent post-update hook from running in cases when it should not */
5574 pTab = 0;
5577 if( pOp->p5 & OPFLAG_ISNOOP ) break;
5578 #endif
5580 assert( (pOp->p5 & OPFLAG_LASTROWID)==0 || (pOp->p5 & OPFLAG_NCHANGE)!=0 );
5581 if( pOp->p5 & OPFLAG_NCHANGE ){
5582 p->nChange++;
5583 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = x.nKey;
5585 assert( (pData->flags & (MEM_Blob|MEM_Str))!=0 || pData->n==0 );
5586 x.pData = pData->z;
5587 x.nData = pData->n;
5588 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
5589 if( pData->flags & MEM_Zero ){
5590 x.nZero = pData->u.nZero;
5591 }else{
5592 x.nZero = 0;
5594 x.pKey = 0;
5595 assert( BTREE_PREFORMAT==OPFLAG_PREFORMAT );
5596 rc = sqlite3BtreeInsert(pC->uc.pCursor, &x,
5597 (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION|OPFLAG_PREFORMAT)),
5598 seekResult
5600 pC->deferredMoveto = 0;
5601 pC->cacheStatus = CACHE_STALE;
5603 /* Invoke the update-hook if required. */
5604 if( rc ) goto abort_due_to_error;
5605 if( pTab ){
5606 assert( db->xUpdateCallback!=0 );
5607 assert( pTab->aCol!=0 );
5608 db->xUpdateCallback(db->pUpdateArg,
5609 (pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT,
5610 zDb, pTab->zName, x.nKey);
5612 break;
5615 /* Opcode: RowCell P1 P2 P3 * *
5617 ** P1 and P2 are both open cursors. Both must be opened on the same type
5618 ** of table - intkey or index. This opcode is used as part of copying
5619 ** the current row from P2 into P1. If the cursors are opened on intkey
5620 ** tables, register P3 contains the rowid to use with the new record in
5621 ** P1. If they are opened on index tables, P3 is not used.
5623 ** This opcode must be followed by either an Insert or InsertIdx opcode
5624 ** with the OPFLAG_PREFORMAT flag set to complete the insert operation.
5626 case OP_RowCell: {
5627 VdbeCursor *pDest; /* Cursor to write to */
5628 VdbeCursor *pSrc; /* Cursor to read from */
5629 i64 iKey; /* Rowid value to insert with */
5630 assert( pOp[1].opcode==OP_Insert || pOp[1].opcode==OP_IdxInsert );
5631 assert( pOp[1].opcode==OP_Insert || pOp->p3==0 );
5632 assert( pOp[1].opcode==OP_IdxInsert || pOp->p3>0 );
5633 assert( pOp[1].p5 & OPFLAG_PREFORMAT );
5634 pDest = p->apCsr[pOp->p1];
5635 pSrc = p->apCsr[pOp->p2];
5636 iKey = pOp->p3 ? aMem[pOp->p3].u.i : 0;
5637 rc = sqlite3BtreeTransferRow(pDest->uc.pCursor, pSrc->uc.pCursor, iKey);
5638 if( rc!=SQLITE_OK ) goto abort_due_to_error;
5639 break;
5642 /* Opcode: Delete P1 P2 P3 P4 P5
5644 ** Delete the record at which the P1 cursor is currently pointing.
5646 ** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then
5647 ** the cursor will be left pointing at either the next or the previous
5648 ** record in the table. If it is left pointing at the next record, then
5649 ** the next Next instruction will be a no-op. As a result, in this case
5650 ** it is ok to delete a record from within a Next loop. If
5651 ** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be
5652 ** left in an undefined state.
5654 ** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this
5655 ** delete one of several associated with deleting a table row and all its
5656 ** associated index entries. Exactly one of those deletes is the "primary"
5657 ** delete. The others are all on OPFLAG_FORDELETE cursors or else are
5658 ** marked with the AUXDELETE flag.
5660 ** If the OPFLAG_NCHANGE flag of P2 (NB: P2 not P5) is set, then the row
5661 ** change count is incremented (otherwise not).
5663 ** P1 must not be pseudo-table. It has to be a real table with
5664 ** multiple rows.
5666 ** If P4 is not NULL then it points to a Table object. In this case either
5667 ** the update or pre-update hook, or both, may be invoked. The P1 cursor must
5668 ** have been positioned using OP_NotFound prior to invoking this opcode in
5669 ** this case. Specifically, if one is configured, the pre-update hook is
5670 ** invoked if P4 is not NULL. The update-hook is invoked if one is configured,
5671 ** P4 is not NULL, and the OPFLAG_NCHANGE flag is set in P2.
5673 ** If the OPFLAG_ISUPDATE flag is set in P2, then P3 contains the address
5674 ** of the memory cell that contains the value that the rowid of the row will
5675 ** be set to by the update.
5677 case OP_Delete: {
5678 VdbeCursor *pC;
5679 const char *zDb;
5680 Table *pTab;
5681 int opflags;
5683 opflags = pOp->p2;
5684 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5685 pC = p->apCsr[pOp->p1];
5686 assert( pC!=0 );
5687 assert( pC->eCurType==CURTYPE_BTREE );
5688 assert( pC->uc.pCursor!=0 );
5689 assert( pC->deferredMoveto==0 );
5690 sqlite3VdbeIncrWriteCounter(p, pC);
5692 #ifdef SQLITE_DEBUG
5693 if( pOp->p4type==P4_TABLE
5694 && HasRowid(pOp->p4.pTab)
5695 && pOp->p5==0
5696 && sqlite3BtreeCursorIsValidNN(pC->uc.pCursor)
5698 /* If p5 is zero, the seek operation that positioned the cursor prior to
5699 ** OP_Delete will have also set the pC->movetoTarget field to the rowid of
5700 ** the row that is being deleted */
5701 i64 iKey = sqlite3BtreeIntegerKey(pC->uc.pCursor);
5702 assert( CORRUPT_DB || pC->movetoTarget==iKey );
5704 #endif
5706 /* If the update-hook or pre-update-hook will be invoked, set zDb to
5707 ** the name of the db to pass as to it. Also set local pTab to a copy
5708 ** of p4.pTab. Finally, if p5 is true, indicating that this cursor was
5709 ** last moved with OP_Next or OP_Prev, not Seek or NotFound, set
5710 ** VdbeCursor.movetoTarget to the current rowid. */
5711 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
5712 assert( pC->iDb>=0 );
5713 assert( pOp->p4.pTab!=0 );
5714 zDb = db->aDb[pC->iDb].zDbSName;
5715 pTab = pOp->p4.pTab;
5716 if( (pOp->p5 & OPFLAG_SAVEPOSITION)!=0 && pC->isTable ){
5717 pC->movetoTarget = sqlite3BtreeIntegerKey(pC->uc.pCursor);
5719 }else{
5720 zDb = 0;
5721 pTab = 0;
5724 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5725 /* Invoke the pre-update-hook if required. */
5726 assert( db->xPreUpdateCallback==0 || pTab==pOp->p4.pTab );
5727 if( db->xPreUpdateCallback && pTab ){
5728 assert( !(opflags & OPFLAG_ISUPDATE)
5729 || HasRowid(pTab)==0
5730 || (aMem[pOp->p3].flags & MEM_Int)
5732 sqlite3VdbePreUpdateHook(p, pC,
5733 (opflags & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_DELETE,
5734 zDb, pTab, pC->movetoTarget,
5735 pOp->p3, -1
5738 if( opflags & OPFLAG_ISNOOP ) break;
5739 #endif
5741 /* Only flags that can be set are SAVEPOISTION and AUXDELETE */
5742 assert( (pOp->p5 & ~(OPFLAG_SAVEPOSITION|OPFLAG_AUXDELETE))==0 );
5743 assert( OPFLAG_SAVEPOSITION==BTREE_SAVEPOSITION );
5744 assert( OPFLAG_AUXDELETE==BTREE_AUXDELETE );
5746 #ifdef SQLITE_DEBUG
5747 if( p->pFrame==0 ){
5748 if( pC->isEphemeral==0
5749 && (pOp->p5 & OPFLAG_AUXDELETE)==0
5750 && (pC->wrFlag & OPFLAG_FORDELETE)==0
5752 nExtraDelete++;
5754 if( pOp->p2 & OPFLAG_NCHANGE ){
5755 nExtraDelete--;
5758 #endif
5760 rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5);
5761 pC->cacheStatus = CACHE_STALE;
5762 pC->seekResult = 0;
5763 if( rc ) goto abort_due_to_error;
5765 /* Invoke the update-hook if required. */
5766 if( opflags & OPFLAG_NCHANGE ){
5767 p->nChange++;
5768 if( db->xUpdateCallback && ALWAYS(pTab!=0) && HasRowid(pTab) ){
5769 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, pTab->zName,
5770 pC->movetoTarget);
5771 assert( pC->iDb>=0 );
5775 break;
5777 /* Opcode: ResetCount * * * * *
5779 ** The value of the change counter is copied to the database handle
5780 ** change counter (returned by subsequent calls to sqlite3_changes()).
5781 ** Then the VMs internal change counter resets to 0.
5782 ** This is used by trigger programs.
5784 case OP_ResetCount: {
5785 sqlite3VdbeSetChanges(db, p->nChange);
5786 p->nChange = 0;
5787 break;
5790 /* Opcode: SorterCompare P1 P2 P3 P4
5791 ** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2
5793 ** P1 is a sorter cursor. This instruction compares a prefix of the
5794 ** record blob in register P3 against a prefix of the entry that
5795 ** the sorter cursor currently points to. Only the first P4 fields
5796 ** of r[P3] and the sorter record are compared.
5798 ** If either P3 or the sorter contains a NULL in one of their significant
5799 ** fields (not counting the P4 fields at the end which are ignored) then
5800 ** the comparison is assumed to be equal.
5802 ** Fall through to next instruction if the two records compare equal to
5803 ** each other. Jump to P2 if they are different.
5805 case OP_SorterCompare: {
5806 VdbeCursor *pC;
5807 int res;
5808 int nKeyCol;
5810 pC = p->apCsr[pOp->p1];
5811 assert( isSorter(pC) );
5812 assert( pOp->p4type==P4_INT32 );
5813 pIn3 = &aMem[pOp->p3];
5814 nKeyCol = pOp->p4.i;
5815 res = 0;
5816 rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res);
5817 VdbeBranchTaken(res!=0,2);
5818 if( rc ) goto abort_due_to_error;
5819 if( res ) goto jump_to_p2;
5820 break;
5823 /* Opcode: SorterData P1 P2 P3 * *
5824 ** Synopsis: r[P2]=data
5826 ** Write into register P2 the current sorter data for sorter cursor P1.
5827 ** Then clear the column header cache on cursor P3.
5829 ** This opcode is normally use to move a record out of the sorter and into
5830 ** a register that is the source for a pseudo-table cursor created using
5831 ** OpenPseudo. That pseudo-table cursor is the one that is identified by
5832 ** parameter P3. Clearing the P3 column cache as part of this opcode saves
5833 ** us from having to issue a separate NullRow instruction to clear that cache.
5835 case OP_SorterData: {
5836 VdbeCursor *pC;
5838 pOut = &aMem[pOp->p2];
5839 pC = p->apCsr[pOp->p1];
5840 assert( isSorter(pC) );
5841 rc = sqlite3VdbeSorterRowkey(pC, pOut);
5842 assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) );
5843 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5844 if( rc ) goto abort_due_to_error;
5845 p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE;
5846 break;
5849 /* Opcode: RowData P1 P2 P3 * *
5850 ** Synopsis: r[P2]=data
5852 ** Write into register P2 the complete row content for the row at
5853 ** which cursor P1 is currently pointing.
5854 ** There is no interpretation of the data.
5855 ** It is just copied onto the P2 register exactly as
5856 ** it is found in the database file.
5858 ** If cursor P1 is an index, then the content is the key of the row.
5859 ** If cursor P2 is a table, then the content extracted is the data.
5861 ** If the P1 cursor must be pointing to a valid row (not a NULL row)
5862 ** of a real table, not a pseudo-table.
5864 ** If P3!=0 then this opcode is allowed to make an ephemeral pointer
5865 ** into the database page. That means that the content of the output
5866 ** register will be invalidated as soon as the cursor moves - including
5867 ** moves caused by other cursors that "save" the current cursors
5868 ** position in order that they can write to the same table. If P3==0
5869 ** then a copy of the data is made into memory. P3!=0 is faster, but
5870 ** P3==0 is safer.
5872 ** If P3!=0 then the content of the P2 register is unsuitable for use
5873 ** in OP_Result and any OP_Result will invalidate the P2 register content.
5874 ** The P2 register content is invalidated by opcodes like OP_Function or
5875 ** by any use of another cursor pointing to the same table.
5877 case OP_RowData: {
5878 VdbeCursor *pC;
5879 BtCursor *pCrsr;
5880 u32 n;
5882 pOut = out2Prerelease(p, pOp);
5884 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5885 pC = p->apCsr[pOp->p1];
5886 assert( pC!=0 );
5887 assert( pC->eCurType==CURTYPE_BTREE );
5888 assert( isSorter(pC)==0 );
5889 assert( pC->nullRow==0 );
5890 assert( pC->uc.pCursor!=0 );
5891 pCrsr = pC->uc.pCursor;
5893 /* The OP_RowData opcodes always follow OP_NotExists or
5894 ** OP_SeekRowid or OP_Rewind/Op_Next with no intervening instructions
5895 ** that might invalidate the cursor.
5896 ** If this where not the case, on of the following assert()s
5897 ** would fail. Should this ever change (because of changes in the code
5898 ** generator) then the fix would be to insert a call to
5899 ** sqlite3VdbeCursorMoveto().
5901 assert( pC->deferredMoveto==0 );
5902 assert( sqlite3BtreeCursorIsValid(pCrsr) );
5904 n = sqlite3BtreePayloadSize(pCrsr);
5905 if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
5906 goto too_big;
5908 testcase( n==0 );
5909 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCrsr, n, pOut);
5910 if( rc ) goto abort_due_to_error;
5911 if( !pOp->p3 ) Deephemeralize(pOut);
5912 UPDATE_MAX_BLOBSIZE(pOut);
5913 REGISTER_TRACE(pOp->p2, pOut);
5914 break;
5917 /* Opcode: Rowid P1 P2 * * *
5918 ** Synopsis: r[P2]=PX rowid of P1
5920 ** Store in register P2 an integer which is the key of the table entry that
5921 ** P1 is currently point to.
5923 ** P1 can be either an ordinary table or a virtual table. There used to
5924 ** be a separate OP_VRowid opcode for use with virtual tables, but this
5925 ** one opcode now works for both table types.
5927 case OP_Rowid: { /* out2, ncycle */
5928 VdbeCursor *pC;
5929 i64 v;
5930 sqlite3_vtab *pVtab;
5931 const sqlite3_module *pModule;
5933 pOut = out2Prerelease(p, pOp);
5934 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5935 pC = p->apCsr[pOp->p1];
5936 assert( pC!=0 );
5937 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
5938 if( pC->nullRow ){
5939 pOut->flags = MEM_Null;
5940 break;
5941 }else if( pC->deferredMoveto ){
5942 v = pC->movetoTarget;
5943 #ifndef SQLITE_OMIT_VIRTUALTABLE
5944 }else if( pC->eCurType==CURTYPE_VTAB ){
5945 assert( pC->uc.pVCur!=0 );
5946 pVtab = pC->uc.pVCur->pVtab;
5947 pModule = pVtab->pModule;
5948 assert( pModule->xRowid );
5949 rc = pModule->xRowid(pC->uc.pVCur, &v);
5950 sqlite3VtabImportErrmsg(p, pVtab);
5951 if( rc ) goto abort_due_to_error;
5952 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5953 }else{
5954 assert( pC->eCurType==CURTYPE_BTREE );
5955 assert( pC->uc.pCursor!=0 );
5956 rc = sqlite3VdbeCursorRestore(pC);
5957 if( rc ) goto abort_due_to_error;
5958 if( pC->nullRow ){
5959 pOut->flags = MEM_Null;
5960 break;
5962 v = sqlite3BtreeIntegerKey(pC->uc.pCursor);
5964 pOut->u.i = v;
5965 break;
5968 /* Opcode: NullRow P1 * * * *
5970 ** Move the cursor P1 to a null row. Any OP_Column operations
5971 ** that occur while the cursor is on the null row will always
5972 ** write a NULL.
5974 ** If cursor P1 is not previously opened, open it now to a special
5975 ** pseudo-cursor that always returns NULL for every column.
5977 case OP_NullRow: {
5978 VdbeCursor *pC;
5980 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5981 pC = p->apCsr[pOp->p1];
5982 if( pC==0 ){
5983 /* If the cursor is not already open, create a special kind of
5984 ** pseudo-cursor that always gives null rows. */
5985 pC = allocateCursor(p, pOp->p1, 1, CURTYPE_PSEUDO);
5986 if( pC==0 ) goto no_mem;
5987 pC->seekResult = 0;
5988 pC->isTable = 1;
5989 pC->noReuse = 1;
5990 pC->uc.pCursor = sqlite3BtreeFakeValidCursor();
5992 pC->nullRow = 1;
5993 pC->cacheStatus = CACHE_STALE;
5994 if( pC->eCurType==CURTYPE_BTREE ){
5995 assert( pC->uc.pCursor!=0 );
5996 sqlite3BtreeClearCursor(pC->uc.pCursor);
5998 #ifdef SQLITE_DEBUG
5999 if( pC->seekOp==0 ) pC->seekOp = OP_NullRow;
6000 #endif
6001 break;
6004 /* Opcode: SeekEnd P1 * * * *
6006 ** Position cursor P1 at the end of the btree for the purpose of
6007 ** appending a new entry onto the btree.
6009 ** It is assumed that the cursor is used only for appending and so
6010 ** if the cursor is valid, then the cursor must already be pointing
6011 ** at the end of the btree and so no changes are made to
6012 ** the cursor.
6014 /* Opcode: Last P1 P2 * * *
6016 ** The next use of the Rowid or Column or Prev instruction for P1
6017 ** will refer to the last entry in the database table or index.
6018 ** If the table or index is empty and P2>0, then jump immediately to P2.
6019 ** If P2 is 0 or if the table or index is not empty, fall through
6020 ** to the following instruction.
6022 ** This opcode leaves the cursor configured to move in reverse order,
6023 ** from the end toward the beginning. In other words, the cursor is
6024 ** configured to use Prev, not Next.
6026 case OP_SeekEnd: /* ncycle */
6027 case OP_Last: { /* jump, ncycle */
6028 VdbeCursor *pC;
6029 BtCursor *pCrsr;
6030 int res;
6032 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6033 pC = p->apCsr[pOp->p1];
6034 assert( pC!=0 );
6035 assert( pC->eCurType==CURTYPE_BTREE );
6036 pCrsr = pC->uc.pCursor;
6037 res = 0;
6038 assert( pCrsr!=0 );
6039 #ifdef SQLITE_DEBUG
6040 pC->seekOp = pOp->opcode;
6041 #endif
6042 if( pOp->opcode==OP_SeekEnd ){
6043 assert( pOp->p2==0 );
6044 pC->seekResult = -1;
6045 if( sqlite3BtreeCursorIsValidNN(pCrsr) ){
6046 break;
6049 rc = sqlite3BtreeLast(pCrsr, &res);
6050 pC->nullRow = (u8)res;
6051 pC->deferredMoveto = 0;
6052 pC->cacheStatus = CACHE_STALE;
6053 if( rc ) goto abort_due_to_error;
6054 if( pOp->p2>0 ){
6055 VdbeBranchTaken(res!=0,2);
6056 if( res ) goto jump_to_p2;
6058 break;
6061 /* Opcode: IfSmaller P1 P2 P3 * *
6063 ** Estimate the number of rows in the table P1. Jump to P2 if that
6064 ** estimate is less than approximately 2**(0.1*P3).
6066 case OP_IfSmaller: { /* jump */
6067 VdbeCursor *pC;
6068 BtCursor *pCrsr;
6069 int res;
6070 i64 sz;
6072 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6073 pC = p->apCsr[pOp->p1];
6074 assert( pC!=0 );
6075 pCrsr = pC->uc.pCursor;
6076 assert( pCrsr );
6077 rc = sqlite3BtreeFirst(pCrsr, &res);
6078 if( rc ) goto abort_due_to_error;
6079 if( res==0 ){
6080 sz = sqlite3BtreeRowCountEst(pCrsr);
6081 if( ALWAYS(sz>=0) && sqlite3LogEst((u64)sz)<pOp->p3 ) res = 1;
6083 VdbeBranchTaken(res!=0,2);
6084 if( res ) goto jump_to_p2;
6085 break;
6089 /* Opcode: SorterSort P1 P2 * * *
6091 ** After all records have been inserted into the Sorter object
6092 ** identified by P1, invoke this opcode to actually do the sorting.
6093 ** Jump to P2 if there are no records to be sorted.
6095 ** This opcode is an alias for OP_Sort and OP_Rewind that is used
6096 ** for Sorter objects.
6098 /* Opcode: Sort P1 P2 * * *
6100 ** This opcode does exactly the same thing as OP_Rewind except that
6101 ** it increments an undocumented global variable used for testing.
6103 ** Sorting is accomplished by writing records into a sorting index,
6104 ** then rewinding that index and playing it back from beginning to
6105 ** end. We use the OP_Sort opcode instead of OP_Rewind to do the
6106 ** rewinding so that the global variable will be incremented and
6107 ** regression tests can determine whether or not the optimizer is
6108 ** correctly optimizing out sorts.
6110 case OP_SorterSort: /* jump */
6111 case OP_Sort: { /* jump */
6112 #ifdef SQLITE_TEST
6113 sqlite3_sort_count++;
6114 sqlite3_search_count--;
6115 #endif
6116 p->aCounter[SQLITE_STMTSTATUS_SORT]++;
6117 /* Fall through into OP_Rewind */
6118 /* no break */ deliberate_fall_through
6120 /* Opcode: Rewind P1 P2 * * *
6122 ** The next use of the Rowid or Column or Next instruction for P1
6123 ** will refer to the first entry in the database table or index.
6124 ** If the table or index is empty, jump immediately to P2.
6125 ** If the table or index is not empty, fall through to the following
6126 ** instruction.
6128 ** If P2 is zero, that is an assertion that the P1 table is never
6129 ** empty and hence the jump will never be taken.
6131 ** This opcode leaves the cursor configured to move in forward order,
6132 ** from the beginning toward the end. In other words, the cursor is
6133 ** configured to use Next, not Prev.
6135 case OP_Rewind: { /* jump, ncycle */
6136 VdbeCursor *pC;
6137 BtCursor *pCrsr;
6138 int res;
6140 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6141 assert( pOp->p5==0 );
6142 assert( pOp->p2>=0 && pOp->p2<p->nOp );
6144 pC = p->apCsr[pOp->p1];
6145 assert( pC!=0 );
6146 assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) );
6147 res = 1;
6148 #ifdef SQLITE_DEBUG
6149 pC->seekOp = OP_Rewind;
6150 #endif
6151 if( isSorter(pC) ){
6152 rc = sqlite3VdbeSorterRewind(pC, &res);
6153 }else{
6154 assert( pC->eCurType==CURTYPE_BTREE );
6155 pCrsr = pC->uc.pCursor;
6156 assert( pCrsr );
6157 rc = sqlite3BtreeFirst(pCrsr, &res);
6158 pC->deferredMoveto = 0;
6159 pC->cacheStatus = CACHE_STALE;
6161 if( rc ) goto abort_due_to_error;
6162 pC->nullRow = (u8)res;
6163 if( pOp->p2>0 ){
6164 VdbeBranchTaken(res!=0,2);
6165 if( res ) goto jump_to_p2;
6167 break;
6170 /* Opcode: Next P1 P2 P3 * P5
6172 ** Advance cursor P1 so that it points to the next key/data pair in its
6173 ** table or index. If there are no more key/value pairs then fall through
6174 ** to the following instruction. But if the cursor advance was successful,
6175 ** jump immediately to P2.
6177 ** The Next opcode is only valid following an SeekGT, SeekGE, or
6178 ** OP_Rewind opcode used to position the cursor. Next is not allowed
6179 ** to follow SeekLT, SeekLE, or OP_Last.
6181 ** The P1 cursor must be for a real table, not a pseudo-table. P1 must have
6182 ** been opened prior to this opcode or the program will segfault.
6184 ** The P3 value is a hint to the btree implementation. If P3==1, that
6185 ** means P1 is an SQL index and that this instruction could have been
6186 ** omitted if that index had been unique. P3 is usually 0. P3 is
6187 ** always either 0 or 1.
6189 ** If P5 is positive and the jump is taken, then event counter
6190 ** number P5-1 in the prepared statement is incremented.
6192 ** See also: Prev
6194 /* Opcode: Prev P1 P2 P3 * P5
6196 ** Back up cursor P1 so that it points to the previous key/data pair in its
6197 ** table or index. If there is no previous key/value pairs then fall through
6198 ** to the following instruction. But if the cursor backup was successful,
6199 ** jump immediately to P2.
6202 ** The Prev opcode is only valid following an SeekLT, SeekLE, or
6203 ** OP_Last opcode used to position the cursor. Prev is not allowed
6204 ** to follow SeekGT, SeekGE, or OP_Rewind.
6206 ** The P1 cursor must be for a real table, not a pseudo-table. If P1 is
6207 ** not open then the behavior is undefined.
6209 ** The P3 value is a hint to the btree implementation. If P3==1, that
6210 ** means P1 is an SQL index and that this instruction could have been
6211 ** omitted if that index had been unique. P3 is usually 0. P3 is
6212 ** always either 0 or 1.
6214 ** If P5 is positive and the jump is taken, then event counter
6215 ** number P5-1 in the prepared statement is incremented.
6217 /* Opcode: SorterNext P1 P2 * * P5
6219 ** This opcode works just like OP_Next except that P1 must be a
6220 ** sorter object for which the OP_SorterSort opcode has been
6221 ** invoked. This opcode advances the cursor to the next sorted
6222 ** record, or jumps to P2 if there are no more sorted records.
6224 case OP_SorterNext: { /* jump */
6225 VdbeCursor *pC;
6227 pC = p->apCsr[pOp->p1];
6228 assert( isSorter(pC) );
6229 rc = sqlite3VdbeSorterNext(db, pC);
6230 goto next_tail;
6232 case OP_Prev: /* jump, ncycle */
6233 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6234 assert( pOp->p5==0
6235 || pOp->p5==SQLITE_STMTSTATUS_FULLSCAN_STEP
6236 || pOp->p5==SQLITE_STMTSTATUS_AUTOINDEX);
6237 pC = p->apCsr[pOp->p1];
6238 assert( pC!=0 );
6239 assert( pC->deferredMoveto==0 );
6240 assert( pC->eCurType==CURTYPE_BTREE );
6241 assert( pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE
6242 || pC->seekOp==OP_Last || pC->seekOp==OP_IfNoHope
6243 || pC->seekOp==OP_NullRow);
6244 rc = sqlite3BtreePrevious(pC->uc.pCursor, pOp->p3);
6245 goto next_tail;
6247 case OP_Next: /* jump, ncycle */
6248 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6249 assert( pOp->p5==0
6250 || pOp->p5==SQLITE_STMTSTATUS_FULLSCAN_STEP
6251 || pOp->p5==SQLITE_STMTSTATUS_AUTOINDEX);
6252 pC = p->apCsr[pOp->p1];
6253 assert( pC!=0 );
6254 assert( pC->deferredMoveto==0 );
6255 assert( pC->eCurType==CURTYPE_BTREE );
6256 assert( pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE
6257 || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found
6258 || pC->seekOp==OP_NullRow|| pC->seekOp==OP_SeekRowid
6259 || pC->seekOp==OP_IfNoHope);
6260 rc = sqlite3BtreeNext(pC->uc.pCursor, pOp->p3);
6262 next_tail:
6263 pC->cacheStatus = CACHE_STALE;
6264 VdbeBranchTaken(rc==SQLITE_OK,2);
6265 if( rc==SQLITE_OK ){
6266 pC->nullRow = 0;
6267 p->aCounter[pOp->p5]++;
6268 #ifdef SQLITE_TEST
6269 sqlite3_search_count++;
6270 #endif
6271 goto jump_to_p2_and_check_for_interrupt;
6273 if( rc!=SQLITE_DONE ) goto abort_due_to_error;
6274 rc = SQLITE_OK;
6275 pC->nullRow = 1;
6276 goto check_for_interrupt;
6279 /* Opcode: IdxInsert P1 P2 P3 P4 P5
6280 ** Synopsis: key=r[P2]
6282 ** Register P2 holds an SQL index key made using the
6283 ** MakeRecord instructions. This opcode writes that key
6284 ** into the index P1. Data for the entry is nil.
6286 ** If P4 is not zero, then it is the number of values in the unpacked
6287 ** key of reg(P2). In that case, P3 is the index of the first register
6288 ** for the unpacked key. The availability of the unpacked key can sometimes
6289 ** be an optimization.
6291 ** If P5 has the OPFLAG_APPEND bit set, that is a hint to the b-tree layer
6292 ** that this insert is likely to be an append.
6294 ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is
6295 ** incremented by this instruction. If the OPFLAG_NCHANGE bit is clear,
6296 ** then the change counter is unchanged.
6298 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
6299 ** run faster by avoiding an unnecessary seek on cursor P1. However,
6300 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
6301 ** seeks on the cursor or if the most recent seek used a key equivalent
6302 ** to P2.
6304 ** This instruction only works for indices. The equivalent instruction
6305 ** for tables is OP_Insert.
6307 case OP_IdxInsert: { /* in2 */
6308 VdbeCursor *pC;
6309 BtreePayload x;
6311 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6312 pC = p->apCsr[pOp->p1];
6313 sqlite3VdbeIncrWriteCounter(p, pC);
6314 assert( pC!=0 );
6315 assert( !isSorter(pC) );
6316 pIn2 = &aMem[pOp->p2];
6317 assert( (pIn2->flags & MEM_Blob) || (pOp->p5 & OPFLAG_PREFORMAT) );
6318 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
6319 assert( pC->eCurType==CURTYPE_BTREE );
6320 assert( pC->isTable==0 );
6321 rc = ExpandBlob(pIn2);
6322 if( rc ) goto abort_due_to_error;
6323 x.nKey = pIn2->n;
6324 x.pKey = pIn2->z;
6325 x.aMem = aMem + pOp->p3;
6326 x.nMem = (u16)pOp->p4.i;
6327 rc = sqlite3BtreeInsert(pC->uc.pCursor, &x,
6328 (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION|OPFLAG_PREFORMAT)),
6329 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
6331 assert( pC->deferredMoveto==0 );
6332 pC->cacheStatus = CACHE_STALE;
6333 if( rc) goto abort_due_to_error;
6334 break;
6337 /* Opcode: SorterInsert P1 P2 * * *
6338 ** Synopsis: key=r[P2]
6340 ** Register P2 holds an SQL index key made using the
6341 ** MakeRecord instructions. This opcode writes that key
6342 ** into the sorter P1. Data for the entry is nil.
6344 case OP_SorterInsert: { /* in2 */
6345 VdbeCursor *pC;
6347 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6348 pC = p->apCsr[pOp->p1];
6349 sqlite3VdbeIncrWriteCounter(p, pC);
6350 assert( pC!=0 );
6351 assert( isSorter(pC) );
6352 pIn2 = &aMem[pOp->p2];
6353 assert( pIn2->flags & MEM_Blob );
6354 assert( pC->isTable==0 );
6355 rc = ExpandBlob(pIn2);
6356 if( rc ) goto abort_due_to_error;
6357 rc = sqlite3VdbeSorterWrite(pC, pIn2);
6358 if( rc) goto abort_due_to_error;
6359 break;
6362 /* Opcode: IdxDelete P1 P2 P3 * P5
6363 ** Synopsis: key=r[P2@P3]
6365 ** The content of P3 registers starting at register P2 form
6366 ** an unpacked index key. This opcode removes that entry from the
6367 ** index opened by cursor P1.
6369 ** If P5 is not zero, then raise an SQLITE_CORRUPT_INDEX error
6370 ** if no matching index entry is found. This happens when running
6371 ** an UPDATE or DELETE statement and the index entry to be updated
6372 ** or deleted is not found. For some uses of IdxDelete
6373 ** (example: the EXCEPT operator) it does not matter that no matching
6374 ** entry is found. For those cases, P5 is zero. Also, do not raise
6375 ** this (self-correcting and non-critical) error if in writable_schema mode.
6377 case OP_IdxDelete: {
6378 VdbeCursor *pC;
6379 BtCursor *pCrsr;
6380 int res;
6381 UnpackedRecord r;
6383 assert( pOp->p3>0 );
6384 assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem+1 - p->nCursor)+1 );
6385 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6386 pC = p->apCsr[pOp->p1];
6387 assert( pC!=0 );
6388 assert( pC->eCurType==CURTYPE_BTREE );
6389 sqlite3VdbeIncrWriteCounter(p, pC);
6390 pCrsr = pC->uc.pCursor;
6391 assert( pCrsr!=0 );
6392 r.pKeyInfo = pC->pKeyInfo;
6393 r.nField = (u16)pOp->p3;
6394 r.default_rc = 0;
6395 r.aMem = &aMem[pOp->p2];
6396 rc = sqlite3BtreeIndexMoveto(pCrsr, &r, &res);
6397 if( rc ) goto abort_due_to_error;
6398 if( res==0 ){
6399 rc = sqlite3BtreeDelete(pCrsr, BTREE_AUXDELETE);
6400 if( rc ) goto abort_due_to_error;
6401 }else if( pOp->p5 && !sqlite3WritableSchema(db) ){
6402 rc = sqlite3ReportError(SQLITE_CORRUPT_INDEX, __LINE__, "index corruption");
6403 goto abort_due_to_error;
6405 assert( pC->deferredMoveto==0 );
6406 pC->cacheStatus = CACHE_STALE;
6407 pC->seekResult = 0;
6408 break;
6411 /* Opcode: DeferredSeek P1 * P3 P4 *
6412 ** Synopsis: Move P3 to P1.rowid if needed
6414 ** P1 is an open index cursor and P3 is a cursor on the corresponding
6415 ** table. This opcode does a deferred seek of the P3 table cursor
6416 ** to the row that corresponds to the current row of P1.
6418 ** This is a deferred seek. Nothing actually happens until
6419 ** the cursor is used to read a record. That way, if no reads
6420 ** occur, no unnecessary I/O happens.
6422 ** P4 may be an array of integers (type P4_INTARRAY) containing
6423 ** one entry for each column in the P3 table. If array entry a(i)
6424 ** is non-zero, then reading column a(i)-1 from cursor P3 is
6425 ** equivalent to performing the deferred seek and then reading column i
6426 ** from P1. This information is stored in P3 and used to redirect
6427 ** reads against P3 over to P1, thus possibly avoiding the need to
6428 ** seek and read cursor P3.
6430 /* Opcode: IdxRowid P1 P2 * * *
6431 ** Synopsis: r[P2]=rowid
6433 ** Write into register P2 an integer which is the last entry in the record at
6434 ** the end of the index key pointed to by cursor P1. This integer should be
6435 ** the rowid of the table entry to which this index entry points.
6437 ** See also: Rowid, MakeRecord.
6439 case OP_DeferredSeek: /* ncycle */
6440 case OP_IdxRowid: { /* out2, ncycle */
6441 VdbeCursor *pC; /* The P1 index cursor */
6442 VdbeCursor *pTabCur; /* The P2 table cursor (OP_DeferredSeek only) */
6443 i64 rowid; /* Rowid that P1 current points to */
6445 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6446 pC = p->apCsr[pOp->p1];
6447 assert( pC!=0 );
6448 assert( pC->eCurType==CURTYPE_BTREE || IsNullCursor(pC) );
6449 assert( pC->uc.pCursor!=0 );
6450 assert( pC->isTable==0 || IsNullCursor(pC) );
6451 assert( pC->deferredMoveto==0 );
6452 assert( !pC->nullRow || pOp->opcode==OP_IdxRowid );
6454 /* The IdxRowid and Seek opcodes are combined because of the commonality
6455 ** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */
6456 rc = sqlite3VdbeCursorRestore(pC);
6458 /* sqlite3VdbeCursorRestore() may fail if the cursor has been disturbed
6459 ** since it was last positioned and an error (e.g. OOM or an IO error)
6460 ** occurs while trying to reposition it. */
6461 if( rc!=SQLITE_OK ) goto abort_due_to_error;
6463 if( !pC->nullRow ){
6464 rowid = 0; /* Not needed. Only used to silence a warning. */
6465 rc = sqlite3VdbeIdxRowid(db, pC->uc.pCursor, &rowid);
6466 if( rc!=SQLITE_OK ){
6467 goto abort_due_to_error;
6469 if( pOp->opcode==OP_DeferredSeek ){
6470 assert( pOp->p3>=0 && pOp->p3<p->nCursor );
6471 pTabCur = p->apCsr[pOp->p3];
6472 assert( pTabCur!=0 );
6473 assert( pTabCur->eCurType==CURTYPE_BTREE );
6474 assert( pTabCur->uc.pCursor!=0 );
6475 assert( pTabCur->isTable );
6476 pTabCur->nullRow = 0;
6477 pTabCur->movetoTarget = rowid;
6478 pTabCur->deferredMoveto = 1;
6479 pTabCur->cacheStatus = CACHE_STALE;
6480 assert( pOp->p4type==P4_INTARRAY || pOp->p4.ai==0 );
6481 assert( !pTabCur->isEphemeral );
6482 pTabCur->ub.aAltMap = pOp->p4.ai;
6483 assert( !pC->isEphemeral );
6484 pTabCur->pAltCursor = pC;
6485 }else{
6486 pOut = out2Prerelease(p, pOp);
6487 pOut->u.i = rowid;
6489 }else{
6490 assert( pOp->opcode==OP_IdxRowid );
6491 sqlite3VdbeMemSetNull(&aMem[pOp->p2]);
6493 break;
6496 /* Opcode: FinishSeek P1 * * * *
6498 ** If cursor P1 was previously moved via OP_DeferredSeek, complete that
6499 ** seek operation now, without further delay. If the cursor seek has
6500 ** already occurred, this instruction is a no-op.
6502 case OP_FinishSeek: { /* ncycle */
6503 VdbeCursor *pC; /* The P1 index cursor */
6505 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6506 pC = p->apCsr[pOp->p1];
6507 if( pC->deferredMoveto ){
6508 rc = sqlite3VdbeFinishMoveto(pC);
6509 if( rc ) goto abort_due_to_error;
6511 break;
6514 /* Opcode: IdxGE P1 P2 P3 P4 *
6515 ** Synopsis: key=r[P3@P4]
6517 ** The P4 register values beginning with P3 form an unpacked index
6518 ** key that omits the PRIMARY KEY. Compare this key value against the index
6519 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
6520 ** fields at the end.
6522 ** If the P1 index entry is greater than or equal to the key value
6523 ** then jump to P2. Otherwise fall through to the next instruction.
6525 /* Opcode: IdxGT P1 P2 P3 P4 *
6526 ** Synopsis: key=r[P3@P4]
6528 ** The P4 register values beginning with P3 form an unpacked index
6529 ** key that omits the PRIMARY KEY. Compare this key value against the index
6530 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
6531 ** fields at the end.
6533 ** If the P1 index entry is greater than the key value
6534 ** then jump to P2. Otherwise fall through to the next instruction.
6536 /* Opcode: IdxLT P1 P2 P3 P4 *
6537 ** Synopsis: key=r[P3@P4]
6539 ** The P4 register values beginning with P3 form an unpacked index
6540 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against
6541 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
6542 ** ROWID on the P1 index.
6544 ** If the P1 index entry is less than the key value then jump to P2.
6545 ** Otherwise fall through to the next instruction.
6547 /* Opcode: IdxLE P1 P2 P3 P4 *
6548 ** Synopsis: key=r[P3@P4]
6550 ** The P4 register values beginning with P3 form an unpacked index
6551 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against
6552 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
6553 ** ROWID on the P1 index.
6555 ** If the P1 index entry is less than or equal to the key value then jump
6556 ** to P2. Otherwise fall through to the next instruction.
6558 case OP_IdxLE: /* jump, ncycle */
6559 case OP_IdxGT: /* jump, ncycle */
6560 case OP_IdxLT: /* jump, ncycle */
6561 case OP_IdxGE: { /* jump, ncycle */
6562 VdbeCursor *pC;
6563 int res;
6564 UnpackedRecord r;
6566 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6567 pC = p->apCsr[pOp->p1];
6568 assert( pC!=0 );
6569 assert( pC->isOrdered );
6570 assert( pC->eCurType==CURTYPE_BTREE );
6571 assert( pC->uc.pCursor!=0);
6572 assert( pC->deferredMoveto==0 );
6573 assert( pOp->p4type==P4_INT32 );
6574 r.pKeyInfo = pC->pKeyInfo;
6575 r.nField = (u16)pOp->p4.i;
6576 if( pOp->opcode<OP_IdxLT ){
6577 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT );
6578 r.default_rc = -1;
6579 }else{
6580 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT );
6581 r.default_rc = 0;
6583 r.aMem = &aMem[pOp->p3];
6584 #ifdef SQLITE_DEBUG
6586 int i;
6587 for(i=0; i<r.nField; i++){
6588 assert( memIsValid(&r.aMem[i]) );
6589 REGISTER_TRACE(pOp->p3+i, &aMem[pOp->p3+i]);
6592 #endif
6594 /* Inlined version of sqlite3VdbeIdxKeyCompare() */
6596 i64 nCellKey = 0;
6597 BtCursor *pCur;
6598 Mem m;
6600 assert( pC->eCurType==CURTYPE_BTREE );
6601 pCur = pC->uc.pCursor;
6602 assert( sqlite3BtreeCursorIsValid(pCur) );
6603 nCellKey = sqlite3BtreePayloadSize(pCur);
6604 /* nCellKey will always be between 0 and 0xffffffff because of the way
6605 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
6606 if( nCellKey<=0 || nCellKey>0x7fffffff ){
6607 rc = SQLITE_CORRUPT_BKPT;
6608 goto abort_due_to_error;
6610 sqlite3VdbeMemInit(&m, db, 0);
6611 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m);
6612 if( rc ) goto abort_due_to_error;
6613 res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, &r, 0);
6614 sqlite3VdbeMemReleaseMalloc(&m);
6616 /* End of inlined sqlite3VdbeIdxKeyCompare() */
6618 assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) );
6619 if( (pOp->opcode&1)==(OP_IdxLT&1) ){
6620 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT );
6621 res = -res;
6622 }else{
6623 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT );
6624 res++;
6626 VdbeBranchTaken(res>0,2);
6627 assert( rc==SQLITE_OK );
6628 if( res>0 ) goto jump_to_p2;
6629 break;
6632 /* Opcode: Destroy P1 P2 P3 * *
6634 ** Delete an entire database table or index whose root page in the database
6635 ** file is given by P1.
6637 ** The table being destroyed is in the main database file if P3==0. If
6638 ** P3==1 then the table to be clear is in the auxiliary database file
6639 ** that is used to store tables create using CREATE TEMPORARY TABLE.
6641 ** If AUTOVACUUM is enabled then it is possible that another root page
6642 ** might be moved into the newly deleted root page in order to keep all
6643 ** root pages contiguous at the beginning of the database. The former
6644 ** value of the root page that moved - its value before the move occurred -
6645 ** is stored in register P2. If no page movement was required (because the
6646 ** table being dropped was already the last one in the database) then a
6647 ** zero is stored in register P2. If AUTOVACUUM is disabled then a zero
6648 ** is stored in register P2.
6650 ** This opcode throws an error if there are any active reader VMs when
6651 ** it is invoked. This is done to avoid the difficulty associated with
6652 ** updating existing cursors when a root page is moved in an AUTOVACUUM
6653 ** database. This error is thrown even if the database is not an AUTOVACUUM
6654 ** db in order to avoid introducing an incompatibility between autovacuum
6655 ** and non-autovacuum modes.
6657 ** See also: Clear
6659 case OP_Destroy: { /* out2 */
6660 int iMoved;
6661 int iDb;
6663 sqlite3VdbeIncrWriteCounter(p, 0);
6664 assert( p->readOnly==0 );
6665 assert( pOp->p1>1 );
6666 pOut = out2Prerelease(p, pOp);
6667 pOut->flags = MEM_Null;
6668 if( db->nVdbeRead > db->nVDestroy+1 ){
6669 rc = SQLITE_LOCKED;
6670 p->errorAction = OE_Abort;
6671 goto abort_due_to_error;
6672 }else{
6673 iDb = pOp->p3;
6674 assert( DbMaskTest(p->btreeMask, iDb) );
6675 iMoved = 0; /* Not needed. Only to silence a warning. */
6676 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
6677 pOut->flags = MEM_Int;
6678 pOut->u.i = iMoved;
6679 if( rc ) goto abort_due_to_error;
6680 #ifndef SQLITE_OMIT_AUTOVACUUM
6681 if( iMoved!=0 ){
6682 sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1);
6683 /* All OP_Destroy operations occur on the same btree */
6684 assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 );
6685 resetSchemaOnFault = iDb+1;
6687 #endif
6689 break;
6692 /* Opcode: Clear P1 P2 P3
6694 ** Delete all contents of the database table or index whose root page
6695 ** in the database file is given by P1. But, unlike Destroy, do not
6696 ** remove the table or index from the database file.
6698 ** The table being clear is in the main database file if P2==0. If
6699 ** P2==1 then the table to be clear is in the auxiliary database file
6700 ** that is used to store tables create using CREATE TEMPORARY TABLE.
6702 ** If the P3 value is non-zero, then the row change count is incremented
6703 ** by the number of rows in the table being cleared. If P3 is greater
6704 ** than zero, then the value stored in register P3 is also incremented
6705 ** by the number of rows in the table being cleared.
6707 ** See also: Destroy
6709 case OP_Clear: {
6710 i64 nChange;
6712 sqlite3VdbeIncrWriteCounter(p, 0);
6713 nChange = 0;
6714 assert( p->readOnly==0 );
6715 assert( DbMaskTest(p->btreeMask, pOp->p2) );
6716 rc = sqlite3BtreeClearTable(db->aDb[pOp->p2].pBt, (u32)pOp->p1, &nChange);
6717 if( pOp->p3 ){
6718 p->nChange += nChange;
6719 if( pOp->p3>0 ){
6720 assert( memIsValid(&aMem[pOp->p3]) );
6721 memAboutToChange(p, &aMem[pOp->p3]);
6722 aMem[pOp->p3].u.i += nChange;
6725 if( rc ) goto abort_due_to_error;
6726 break;
6729 /* Opcode: ResetSorter P1 * * * *
6731 ** Delete all contents from the ephemeral table or sorter
6732 ** that is open on cursor P1.
6734 ** This opcode only works for cursors used for sorting and
6735 ** opened with OP_OpenEphemeral or OP_SorterOpen.
6737 case OP_ResetSorter: {
6738 VdbeCursor *pC;
6740 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6741 pC = p->apCsr[pOp->p1];
6742 assert( pC!=0 );
6743 if( isSorter(pC) ){
6744 sqlite3VdbeSorterReset(db, pC->uc.pSorter);
6745 }else{
6746 assert( pC->eCurType==CURTYPE_BTREE );
6747 assert( pC->isEphemeral );
6748 rc = sqlite3BtreeClearTableOfCursor(pC->uc.pCursor);
6749 if( rc ) goto abort_due_to_error;
6751 break;
6754 /* Opcode: CreateBtree P1 P2 P3 * *
6755 ** Synopsis: r[P2]=root iDb=P1 flags=P3
6757 ** Allocate a new b-tree in the main database file if P1==0 or in the
6758 ** TEMP database file if P1==1 or in an attached database if
6759 ** P1>1. The P3 argument must be 1 (BTREE_INTKEY) for a rowid table
6760 ** it must be 2 (BTREE_BLOBKEY) for an index or WITHOUT ROWID table.
6761 ** The root page number of the new b-tree is stored in register P2.
6763 case OP_CreateBtree: { /* out2 */
6764 Pgno pgno;
6765 Db *pDb;
6767 sqlite3VdbeIncrWriteCounter(p, 0);
6768 pOut = out2Prerelease(p, pOp);
6769 pgno = 0;
6770 assert( pOp->p3==BTREE_INTKEY || pOp->p3==BTREE_BLOBKEY );
6771 assert( pOp->p1>=0 && pOp->p1<db->nDb );
6772 assert( DbMaskTest(p->btreeMask, pOp->p1) );
6773 assert( p->readOnly==0 );
6774 pDb = &db->aDb[pOp->p1];
6775 assert( pDb->pBt!=0 );
6776 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, pOp->p3);
6777 if( rc ) goto abort_due_to_error;
6778 pOut->u.i = pgno;
6779 break;
6782 /* Opcode: SqlExec * * * P4 *
6784 ** Run the SQL statement or statements specified in the P4 string.
6786 case OP_SqlExec: {
6787 sqlite3VdbeIncrWriteCounter(p, 0);
6788 db->nSqlExec++;
6789 rc = sqlite3_exec(db, pOp->p4.z, 0, 0, 0);
6790 db->nSqlExec--;
6791 if( rc ) goto abort_due_to_error;
6792 break;
6795 /* Opcode: ParseSchema P1 * * P4 *
6797 ** Read and parse all entries from the schema table of database P1
6798 ** that match the WHERE clause P4. If P4 is a NULL pointer, then the
6799 ** entire schema for P1 is reparsed.
6801 ** This opcode invokes the parser to create a new virtual machine,
6802 ** then runs the new virtual machine. It is thus a re-entrant opcode.
6804 case OP_ParseSchema: {
6805 int iDb;
6806 const char *zSchema;
6807 char *zSql;
6808 InitData initData;
6810 /* Any prepared statement that invokes this opcode will hold mutexes
6811 ** on every btree. This is a prerequisite for invoking
6812 ** sqlite3InitCallback().
6814 #ifdef SQLITE_DEBUG
6815 for(iDb=0; iDb<db->nDb; iDb++){
6816 assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
6818 #endif
6820 iDb = pOp->p1;
6821 assert( iDb>=0 && iDb<db->nDb );
6822 assert( DbHasProperty(db, iDb, DB_SchemaLoaded)
6823 || db->mallocFailed
6824 || (CORRUPT_DB && (db->flags & SQLITE_NoSchemaError)!=0) );
6826 #ifndef SQLITE_OMIT_ALTERTABLE
6827 if( pOp->p4.z==0 ){
6828 sqlite3SchemaClear(db->aDb[iDb].pSchema);
6829 db->mDbFlags &= ~DBFLAG_SchemaKnownOk;
6830 rc = sqlite3InitOne(db, iDb, &p->zErrMsg, pOp->p5);
6831 db->mDbFlags |= DBFLAG_SchemaChange;
6832 p->expired = 0;
6833 }else
6834 #endif
6836 zSchema = LEGACY_SCHEMA_TABLE;
6837 initData.db = db;
6838 initData.iDb = iDb;
6839 initData.pzErrMsg = &p->zErrMsg;
6840 initData.mInitFlags = 0;
6841 initData.mxPage = sqlite3BtreeLastPage(db->aDb[iDb].pBt);
6842 zSql = sqlite3MPrintf(db,
6843 "SELECT*FROM\"%w\".%s WHERE %s ORDER BY rowid",
6844 db->aDb[iDb].zDbSName, zSchema, pOp->p4.z);
6845 if( zSql==0 ){
6846 rc = SQLITE_NOMEM_BKPT;
6847 }else{
6848 assert( db->init.busy==0 );
6849 db->init.busy = 1;
6850 initData.rc = SQLITE_OK;
6851 initData.nInitRow = 0;
6852 assert( !db->mallocFailed );
6853 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
6854 if( rc==SQLITE_OK ) rc = initData.rc;
6855 if( rc==SQLITE_OK && initData.nInitRow==0 ){
6856 /* The OP_ParseSchema opcode with a non-NULL P4 argument should parse
6857 ** at least one SQL statement. Any less than that indicates that
6858 ** the sqlite_schema table is corrupt. */
6859 rc = SQLITE_CORRUPT_BKPT;
6861 sqlite3DbFreeNN(db, zSql);
6862 db->init.busy = 0;
6865 if( rc ){
6866 sqlite3ResetAllSchemasOfConnection(db);
6867 if( rc==SQLITE_NOMEM ){
6868 goto no_mem;
6870 goto abort_due_to_error;
6872 break;
6875 #if !defined(SQLITE_OMIT_ANALYZE)
6876 /* Opcode: LoadAnalysis P1 * * * *
6878 ** Read the sqlite_stat1 table for database P1 and load the content
6879 ** of that table into the internal index hash table. This will cause
6880 ** the analysis to be used when preparing all subsequent queries.
6882 case OP_LoadAnalysis: {
6883 assert( pOp->p1>=0 && pOp->p1<db->nDb );
6884 rc = sqlite3AnalysisLoad(db, pOp->p1);
6885 if( rc ) goto abort_due_to_error;
6886 break;
6888 #endif /* !defined(SQLITE_OMIT_ANALYZE) */
6890 /* Opcode: DropTable P1 * * P4 *
6892 ** Remove the internal (in-memory) data structures that describe
6893 ** the table named P4 in database P1. This is called after a table
6894 ** is dropped from disk (using the Destroy opcode) in order to keep
6895 ** the internal representation of the
6896 ** schema consistent with what is on disk.
6898 case OP_DropTable: {
6899 sqlite3VdbeIncrWriteCounter(p, 0);
6900 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
6901 break;
6904 /* Opcode: DropIndex P1 * * P4 *
6906 ** Remove the internal (in-memory) data structures that describe
6907 ** the index named P4 in database P1. This is called after an index
6908 ** is dropped from disk (using the Destroy opcode)
6909 ** in order to keep the internal representation of the
6910 ** schema consistent with what is on disk.
6912 case OP_DropIndex: {
6913 sqlite3VdbeIncrWriteCounter(p, 0);
6914 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
6915 break;
6918 /* Opcode: DropTrigger P1 * * P4 *
6920 ** Remove the internal (in-memory) data structures that describe
6921 ** the trigger named P4 in database P1. This is called after a trigger
6922 ** is dropped from disk (using the Destroy opcode) in order to keep
6923 ** the internal representation of the
6924 ** schema consistent with what is on disk.
6926 case OP_DropTrigger: {
6927 sqlite3VdbeIncrWriteCounter(p, 0);
6928 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
6929 break;
6933 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
6934 /* Opcode: IntegrityCk P1 P2 P3 P4 P5
6936 ** Do an analysis of the currently open database. Store in
6937 ** register P1 the text of an error message describing any problems.
6938 ** If no problems are found, store a NULL in register P1.
6940 ** The register P3 contains one less than the maximum number of allowed errors.
6941 ** At most reg(P3) errors will be reported.
6942 ** In other words, the analysis stops as soon as reg(P1) errors are
6943 ** seen. Reg(P1) is updated with the number of errors remaining.
6945 ** The root page numbers of all tables in the database are integers
6946 ** stored in P4_INTARRAY argument.
6948 ** If P5 is not zero, the check is done on the auxiliary database
6949 ** file, not the main database file.
6951 ** This opcode is used to implement the integrity_check pragma.
6953 case OP_IntegrityCk: {
6954 int nRoot; /* Number of tables to check. (Number of root pages.) */
6955 Pgno *aRoot; /* Array of rootpage numbers for tables to be checked */
6956 int nErr; /* Number of errors reported */
6957 char *z; /* Text of the error report */
6958 Mem *pnErr; /* Register keeping track of errors remaining */
6960 assert( p->bIsReader );
6961 nRoot = pOp->p2;
6962 aRoot = pOp->p4.ai;
6963 assert( nRoot>0 );
6964 assert( aRoot[0]==(Pgno)nRoot );
6965 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
6966 pnErr = &aMem[pOp->p3];
6967 assert( (pnErr->flags & MEM_Int)!=0 );
6968 assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
6969 pIn1 = &aMem[pOp->p1];
6970 assert( pOp->p5<db->nDb );
6971 assert( DbMaskTest(p->btreeMask, pOp->p5) );
6972 rc = sqlite3BtreeIntegrityCheck(db, db->aDb[pOp->p5].pBt, &aRoot[1], nRoot,
6973 (int)pnErr->u.i+1, &nErr, &z);
6974 sqlite3VdbeMemSetNull(pIn1);
6975 if( nErr==0 ){
6976 assert( z==0 );
6977 }else if( rc ){
6978 sqlite3_free(z);
6979 goto abort_due_to_error;
6980 }else{
6981 pnErr->u.i -= nErr-1;
6982 sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
6984 UPDATE_MAX_BLOBSIZE(pIn1);
6985 sqlite3VdbeChangeEncoding(pIn1, encoding);
6986 goto check_for_interrupt;
6988 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
6990 /* Opcode: RowSetAdd P1 P2 * * *
6991 ** Synopsis: rowset(P1)=r[P2]
6993 ** Insert the integer value held by register P2 into a RowSet object
6994 ** held in register P1.
6996 ** An assertion fails if P2 is not an integer.
6998 case OP_RowSetAdd: { /* in1, in2 */
6999 pIn1 = &aMem[pOp->p1];
7000 pIn2 = &aMem[pOp->p2];
7001 assert( (pIn2->flags & MEM_Int)!=0 );
7002 if( (pIn1->flags & MEM_Blob)==0 ){
7003 if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem;
7005 assert( sqlite3VdbeMemIsRowSet(pIn1) );
7006 sqlite3RowSetInsert((RowSet*)pIn1->z, pIn2->u.i);
7007 break;
7010 /* Opcode: RowSetRead P1 P2 P3 * *
7011 ** Synopsis: r[P3]=rowset(P1)
7013 ** Extract the smallest value from the RowSet object in P1
7014 ** and put that value into register P3.
7015 ** Or, if RowSet object P1 is initially empty, leave P3
7016 ** unchanged and jump to instruction P2.
7018 case OP_RowSetRead: { /* jump, in1, out3 */
7019 i64 val;
7021 pIn1 = &aMem[pOp->p1];
7022 assert( (pIn1->flags & MEM_Blob)==0 || sqlite3VdbeMemIsRowSet(pIn1) );
7023 if( (pIn1->flags & MEM_Blob)==0
7024 || sqlite3RowSetNext((RowSet*)pIn1->z, &val)==0
7026 /* The boolean index is empty */
7027 sqlite3VdbeMemSetNull(pIn1);
7028 VdbeBranchTaken(1,2);
7029 goto jump_to_p2_and_check_for_interrupt;
7030 }else{
7031 /* A value was pulled from the index */
7032 VdbeBranchTaken(0,2);
7033 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
7035 goto check_for_interrupt;
7038 /* Opcode: RowSetTest P1 P2 P3 P4
7039 ** Synopsis: if r[P3] in rowset(P1) goto P2
7041 ** Register P3 is assumed to hold a 64-bit integer value. If register P1
7042 ** contains a RowSet object and that RowSet object contains
7043 ** the value held in P3, jump to register P2. Otherwise, insert the
7044 ** integer in P3 into the RowSet and continue on to the
7045 ** next opcode.
7047 ** The RowSet object is optimized for the case where sets of integers
7048 ** are inserted in distinct phases, which each set contains no duplicates.
7049 ** Each set is identified by a unique P4 value. The first set
7050 ** must have P4==0, the final set must have P4==-1, and for all other sets
7051 ** must have P4>0.
7053 ** This allows optimizations: (a) when P4==0 there is no need to test
7054 ** the RowSet object for P3, as it is guaranteed not to contain it,
7055 ** (b) when P4==-1 there is no need to insert the value, as it will
7056 ** never be tested for, and (c) when a value that is part of set X is
7057 ** inserted, there is no need to search to see if the same value was
7058 ** previously inserted as part of set X (only if it was previously
7059 ** inserted as part of some other set).
7061 case OP_RowSetTest: { /* jump, in1, in3 */
7062 int iSet;
7063 int exists;
7065 pIn1 = &aMem[pOp->p1];
7066 pIn3 = &aMem[pOp->p3];
7067 iSet = pOp->p4.i;
7068 assert( pIn3->flags&MEM_Int );
7070 /* If there is anything other than a rowset object in memory cell P1,
7071 ** delete it now and initialize P1 with an empty rowset
7073 if( (pIn1->flags & MEM_Blob)==0 ){
7074 if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem;
7076 assert( sqlite3VdbeMemIsRowSet(pIn1) );
7077 assert( pOp->p4type==P4_INT32 );
7078 assert( iSet==-1 || iSet>=0 );
7079 if( iSet ){
7080 exists = sqlite3RowSetTest((RowSet*)pIn1->z, iSet, pIn3->u.i);
7081 VdbeBranchTaken(exists!=0,2);
7082 if( exists ) goto jump_to_p2;
7084 if( iSet>=0 ){
7085 sqlite3RowSetInsert((RowSet*)pIn1->z, pIn3->u.i);
7087 break;
7091 #ifndef SQLITE_OMIT_TRIGGER
7093 /* Opcode: Program P1 P2 P3 P4 P5
7095 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
7097 ** P1 contains the address of the memory cell that contains the first memory
7098 ** cell in an array of values used as arguments to the sub-program. P2
7099 ** contains the address to jump to if the sub-program throws an IGNORE
7100 ** exception using the RAISE() function. Register P3 contains the address
7101 ** of a memory cell in this (the parent) VM that is used to allocate the
7102 ** memory required by the sub-vdbe at runtime.
7104 ** P4 is a pointer to the VM containing the trigger program.
7106 ** If P5 is non-zero, then recursive program invocation is enabled.
7108 case OP_Program: { /* jump */
7109 int nMem; /* Number of memory registers for sub-program */
7110 int nByte; /* Bytes of runtime space required for sub-program */
7111 Mem *pRt; /* Register to allocate runtime space */
7112 Mem *pMem; /* Used to iterate through memory cells */
7113 Mem *pEnd; /* Last memory cell in new array */
7114 VdbeFrame *pFrame; /* New vdbe frame to execute in */
7115 SubProgram *pProgram; /* Sub-program to execute */
7116 void *t; /* Token identifying trigger */
7118 pProgram = pOp->p4.pProgram;
7119 pRt = &aMem[pOp->p3];
7120 assert( pProgram->nOp>0 );
7122 /* If the p5 flag is clear, then recursive invocation of triggers is
7123 ** disabled for backwards compatibility (p5 is set if this sub-program
7124 ** is really a trigger, not a foreign key action, and the flag set
7125 ** and cleared by the "PRAGMA recursive_triggers" command is clear).
7127 ** It is recursive invocation of triggers, at the SQL level, that is
7128 ** disabled. In some cases a single trigger may generate more than one
7129 ** SubProgram (if the trigger may be executed with more than one different
7130 ** ON CONFLICT algorithm). SubProgram structures associated with a
7131 ** single trigger all have the same value for the SubProgram.token
7132 ** variable. */
7133 if( pOp->p5 ){
7134 t = pProgram->token;
7135 for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
7136 if( pFrame ) break;
7139 if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
7140 rc = SQLITE_ERROR;
7141 sqlite3VdbeError(p, "too many levels of trigger recursion");
7142 goto abort_due_to_error;
7145 /* Register pRt is used to store the memory required to save the state
7146 ** of the current program, and the memory required at runtime to execute
7147 ** the trigger program. If this trigger has been fired before, then pRt
7148 ** is already allocated. Otherwise, it must be initialized. */
7149 if( (pRt->flags&MEM_Blob)==0 ){
7150 /* SubProgram.nMem is set to the number of memory cells used by the
7151 ** program stored in SubProgram.aOp. As well as these, one memory
7152 ** cell is required for each cursor used by the program. Set local
7153 ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
7155 nMem = pProgram->nMem + pProgram->nCsr;
7156 assert( nMem>0 );
7157 if( pProgram->nCsr==0 ) nMem++;
7158 nByte = ROUND8(sizeof(VdbeFrame))
7159 + nMem * sizeof(Mem)
7160 + pProgram->nCsr * sizeof(VdbeCursor*)
7161 + (pProgram->nOp + 7)/8;
7162 pFrame = sqlite3DbMallocZero(db, nByte);
7163 if( !pFrame ){
7164 goto no_mem;
7166 sqlite3VdbeMemRelease(pRt);
7167 pRt->flags = MEM_Blob|MEM_Dyn;
7168 pRt->z = (char*)pFrame;
7169 pRt->n = nByte;
7170 pRt->xDel = sqlite3VdbeFrameMemDel;
7172 pFrame->v = p;
7173 pFrame->nChildMem = nMem;
7174 pFrame->nChildCsr = pProgram->nCsr;
7175 pFrame->pc = (int)(pOp - aOp);
7176 pFrame->aMem = p->aMem;
7177 pFrame->nMem = p->nMem;
7178 pFrame->apCsr = p->apCsr;
7179 pFrame->nCursor = p->nCursor;
7180 pFrame->aOp = p->aOp;
7181 pFrame->nOp = p->nOp;
7182 pFrame->token = pProgram->token;
7183 #ifdef SQLITE_DEBUG
7184 pFrame->iFrameMagic = SQLITE_FRAME_MAGIC;
7185 #endif
7187 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
7188 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
7189 pMem->flags = MEM_Undefined;
7190 pMem->db = db;
7192 }else{
7193 pFrame = (VdbeFrame*)pRt->z;
7194 assert( pRt->xDel==sqlite3VdbeFrameMemDel );
7195 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem
7196 || (pProgram->nCsr==0 && pProgram->nMem+1==pFrame->nChildMem) );
7197 assert( pProgram->nCsr==pFrame->nChildCsr );
7198 assert( (int)(pOp - aOp)==pFrame->pc );
7201 p->nFrame++;
7202 pFrame->pParent = p->pFrame;
7203 pFrame->lastRowid = db->lastRowid;
7204 pFrame->nChange = p->nChange;
7205 pFrame->nDbChange = p->db->nChange;
7206 assert( pFrame->pAuxData==0 );
7207 pFrame->pAuxData = p->pAuxData;
7208 p->pAuxData = 0;
7209 p->nChange = 0;
7210 p->pFrame = pFrame;
7211 p->aMem = aMem = VdbeFrameMem(pFrame);
7212 p->nMem = pFrame->nChildMem;
7213 p->nCursor = (u16)pFrame->nChildCsr;
7214 p->apCsr = (VdbeCursor **)&aMem[p->nMem];
7215 pFrame->aOnce = (u8*)&p->apCsr[pProgram->nCsr];
7216 memset(pFrame->aOnce, 0, (pProgram->nOp + 7)/8);
7217 p->aOp = aOp = pProgram->aOp;
7218 p->nOp = pProgram->nOp;
7219 #ifdef SQLITE_DEBUG
7220 /* Verify that second and subsequent executions of the same trigger do not
7221 ** try to reuse register values from the first use. */
7223 int i;
7224 for(i=0; i<p->nMem; i++){
7225 aMem[i].pScopyFrom = 0; /* Prevent false-positive AboutToChange() errs */
7226 MemSetTypeFlag(&aMem[i], MEM_Undefined); /* Fault if this reg is reused */
7229 #endif
7230 pOp = &aOp[-1];
7231 goto check_for_interrupt;
7234 /* Opcode: Param P1 P2 * * *
7236 ** This opcode is only ever present in sub-programs called via the
7237 ** OP_Program instruction. Copy a value currently stored in a memory
7238 ** cell of the calling (parent) frame to cell P2 in the current frames
7239 ** address space. This is used by trigger programs to access the new.*
7240 ** and old.* values.
7242 ** The address of the cell in the parent frame is determined by adding
7243 ** the value of the P1 argument to the value of the P1 argument to the
7244 ** calling OP_Program instruction.
7246 case OP_Param: { /* out2 */
7247 VdbeFrame *pFrame;
7248 Mem *pIn;
7249 pOut = out2Prerelease(p, pOp);
7250 pFrame = p->pFrame;
7251 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];
7252 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
7253 break;
7256 #endif /* #ifndef SQLITE_OMIT_TRIGGER */
7258 #ifndef SQLITE_OMIT_FOREIGN_KEY
7259 /* Opcode: FkCounter P1 P2 * * *
7260 ** Synopsis: fkctr[P1]+=P2
7262 ** Increment a "constraint counter" by P2 (P2 may be negative or positive).
7263 ** If P1 is non-zero, the database constraint counter is incremented
7264 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the
7265 ** statement counter is incremented (immediate foreign key constraints).
7267 case OP_FkCounter: {
7268 if( db->flags & SQLITE_DeferFKs ){
7269 db->nDeferredImmCons += pOp->p2;
7270 }else if( pOp->p1 ){
7271 db->nDeferredCons += pOp->p2;
7272 }else{
7273 p->nFkConstraint += pOp->p2;
7275 break;
7278 /* Opcode: FkIfZero P1 P2 * * *
7279 ** Synopsis: if fkctr[P1]==0 goto P2
7281 ** This opcode tests if a foreign key constraint-counter is currently zero.
7282 ** If so, jump to instruction P2. Otherwise, fall through to the next
7283 ** instruction.
7285 ** If P1 is non-zero, then the jump is taken if the database constraint-counter
7286 ** is zero (the one that counts deferred constraint violations). If P1 is
7287 ** zero, the jump is taken if the statement constraint-counter is zero
7288 ** (immediate foreign key constraint violations).
7290 case OP_FkIfZero: { /* jump */
7291 if( pOp->p1 ){
7292 VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2);
7293 if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
7294 }else{
7295 VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2);
7296 if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
7298 break;
7300 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
7302 #ifndef SQLITE_OMIT_AUTOINCREMENT
7303 /* Opcode: MemMax P1 P2 * * *
7304 ** Synopsis: r[P1]=max(r[P1],r[P2])
7306 ** P1 is a register in the root frame of this VM (the root frame is
7307 ** different from the current frame if this instruction is being executed
7308 ** within a sub-program). Set the value of register P1 to the maximum of
7309 ** its current value and the value in register P2.
7311 ** This instruction throws an error if the memory cell is not initially
7312 ** an integer.
7314 case OP_MemMax: { /* in2 */
7315 VdbeFrame *pFrame;
7316 if( p->pFrame ){
7317 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
7318 pIn1 = &pFrame->aMem[pOp->p1];
7319 }else{
7320 pIn1 = &aMem[pOp->p1];
7322 assert( memIsValid(pIn1) );
7323 sqlite3VdbeMemIntegerify(pIn1);
7324 pIn2 = &aMem[pOp->p2];
7325 sqlite3VdbeMemIntegerify(pIn2);
7326 if( pIn1->u.i<pIn2->u.i){
7327 pIn1->u.i = pIn2->u.i;
7329 break;
7331 #endif /* SQLITE_OMIT_AUTOINCREMENT */
7333 /* Opcode: IfPos P1 P2 P3 * *
7334 ** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2
7336 ** Register P1 must contain an integer.
7337 ** If the value of register P1 is 1 or greater, subtract P3 from the
7338 ** value in P1 and jump to P2.
7340 ** If the initial value of register P1 is less than 1, then the
7341 ** value is unchanged and control passes through to the next instruction.
7343 case OP_IfPos: { /* jump, in1 */
7344 pIn1 = &aMem[pOp->p1];
7345 assert( pIn1->flags&MEM_Int );
7346 VdbeBranchTaken( pIn1->u.i>0, 2);
7347 if( pIn1->u.i>0 ){
7348 pIn1->u.i -= pOp->p3;
7349 goto jump_to_p2;
7351 break;
7354 /* Opcode: OffsetLimit P1 P2 P3 * *
7355 ** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1)
7357 ** This opcode performs a commonly used computation associated with
7358 ** LIMIT and OFFSET processing. r[P1] holds the limit counter. r[P3]
7359 ** holds the offset counter. The opcode computes the combined value
7360 ** of the LIMIT and OFFSET and stores that value in r[P2]. The r[P2]
7361 ** value computed is the total number of rows that will need to be
7362 ** visited in order to complete the query.
7364 ** If r[P3] is zero or negative, that means there is no OFFSET
7365 ** and r[P2] is set to be the value of the LIMIT, r[P1].
7367 ** if r[P1] is zero or negative, that means there is no LIMIT
7368 ** and r[P2] is set to -1.
7370 ** Otherwise, r[P2] is set to the sum of r[P1] and r[P3].
7372 case OP_OffsetLimit: { /* in1, out2, in3 */
7373 i64 x;
7374 pIn1 = &aMem[pOp->p1];
7375 pIn3 = &aMem[pOp->p3];
7376 pOut = out2Prerelease(p, pOp);
7377 assert( pIn1->flags & MEM_Int );
7378 assert( pIn3->flags & MEM_Int );
7379 x = pIn1->u.i;
7380 if( x<=0 || sqlite3AddInt64(&x, pIn3->u.i>0?pIn3->u.i:0) ){
7381 /* If the LIMIT is less than or equal to zero, loop forever. This
7382 ** is documented. But also, if the LIMIT+OFFSET exceeds 2^63 then
7383 ** also loop forever. This is undocumented. In fact, one could argue
7384 ** that the loop should terminate. But assuming 1 billion iterations
7385 ** per second (far exceeding the capabilities of any current hardware)
7386 ** it would take nearly 300 years to actually reach the limit. So
7387 ** looping forever is a reasonable approximation. */
7388 pOut->u.i = -1;
7389 }else{
7390 pOut->u.i = x;
7392 break;
7395 /* Opcode: IfNotZero P1 P2 * * *
7396 ** Synopsis: if r[P1]!=0 then r[P1]--, goto P2
7398 ** Register P1 must contain an integer. If the content of register P1 is
7399 ** initially greater than zero, then decrement the value in register P1.
7400 ** If it is non-zero (negative or positive) and then also jump to P2.
7401 ** If register P1 is initially zero, leave it unchanged and fall through.
7403 case OP_IfNotZero: { /* jump, in1 */
7404 pIn1 = &aMem[pOp->p1];
7405 assert( pIn1->flags&MEM_Int );
7406 VdbeBranchTaken(pIn1->u.i<0, 2);
7407 if( pIn1->u.i ){
7408 if( pIn1->u.i>0 ) pIn1->u.i--;
7409 goto jump_to_p2;
7411 break;
7414 /* Opcode: DecrJumpZero P1 P2 * * *
7415 ** Synopsis: if (--r[P1])==0 goto P2
7417 ** Register P1 must hold an integer. Decrement the value in P1
7418 ** and jump to P2 if the new value is exactly zero.
7420 case OP_DecrJumpZero: { /* jump, in1 */
7421 pIn1 = &aMem[pOp->p1];
7422 assert( pIn1->flags&MEM_Int );
7423 if( pIn1->u.i>SMALLEST_INT64 ) pIn1->u.i--;
7424 VdbeBranchTaken(pIn1->u.i==0, 2);
7425 if( pIn1->u.i==0 ) goto jump_to_p2;
7426 break;
7430 /* Opcode: AggStep * P2 P3 P4 P5
7431 ** Synopsis: accum=r[P3] step(r[P2@P5])
7433 ** Execute the xStep function for an aggregate.
7434 ** The function has P5 arguments. P4 is a pointer to the
7435 ** FuncDef structure that specifies the function. Register P3 is the
7436 ** accumulator.
7438 ** The P5 arguments are taken from register P2 and its
7439 ** successors.
7441 /* Opcode: AggInverse * P2 P3 P4 P5
7442 ** Synopsis: accum=r[P3] inverse(r[P2@P5])
7444 ** Execute the xInverse function for an aggregate.
7445 ** The function has P5 arguments. P4 is a pointer to the
7446 ** FuncDef structure that specifies the function. Register P3 is the
7447 ** accumulator.
7449 ** The P5 arguments are taken from register P2 and its
7450 ** successors.
7452 /* Opcode: AggStep1 P1 P2 P3 P4 P5
7453 ** Synopsis: accum=r[P3] step(r[P2@P5])
7455 ** Execute the xStep (if P1==0) or xInverse (if P1!=0) function for an
7456 ** aggregate. The function has P5 arguments. P4 is a pointer to the
7457 ** FuncDef structure that specifies the function. Register P3 is the
7458 ** accumulator.
7460 ** The P5 arguments are taken from register P2 and its
7461 ** successors.
7463 ** This opcode is initially coded as OP_AggStep0. On first evaluation,
7464 ** the FuncDef stored in P4 is converted into an sqlite3_context and
7465 ** the opcode is changed. In this way, the initialization of the
7466 ** sqlite3_context only happens once, instead of on each call to the
7467 ** step function.
7469 case OP_AggInverse:
7470 case OP_AggStep: {
7471 int n;
7472 sqlite3_context *pCtx;
7474 assert( pOp->p4type==P4_FUNCDEF );
7475 n = pOp->p5;
7476 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
7477 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) );
7478 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
7479 pCtx = sqlite3DbMallocRawNN(db, n*sizeof(sqlite3_value*) +
7480 (sizeof(pCtx[0]) + sizeof(Mem) - sizeof(sqlite3_value*)));
7481 if( pCtx==0 ) goto no_mem;
7482 pCtx->pMem = 0;
7483 pCtx->pOut = (Mem*)&(pCtx->argv[n]);
7484 sqlite3VdbeMemInit(pCtx->pOut, db, MEM_Null);
7485 pCtx->pFunc = pOp->p4.pFunc;
7486 pCtx->iOp = (int)(pOp - aOp);
7487 pCtx->pVdbe = p;
7488 pCtx->skipFlag = 0;
7489 pCtx->isError = 0;
7490 pCtx->enc = encoding;
7491 pCtx->argc = n;
7492 pOp->p4type = P4_FUNCCTX;
7493 pOp->p4.pCtx = pCtx;
7495 /* OP_AggInverse must have P1==1 and OP_AggStep must have P1==0 */
7496 assert( pOp->p1==(pOp->opcode==OP_AggInverse) );
7498 pOp->opcode = OP_AggStep1;
7499 /* Fall through into OP_AggStep */
7500 /* no break */ deliberate_fall_through
7502 case OP_AggStep1: {
7503 int i;
7504 sqlite3_context *pCtx;
7505 Mem *pMem;
7507 assert( pOp->p4type==P4_FUNCCTX );
7508 pCtx = pOp->p4.pCtx;
7509 pMem = &aMem[pOp->p3];
7511 #ifdef SQLITE_DEBUG
7512 if( pOp->p1 ){
7513 /* This is an OP_AggInverse call. Verify that xStep has always
7514 ** been called at least once prior to any xInverse call. */
7515 assert( pMem->uTemp==0x1122e0e3 );
7516 }else{
7517 /* This is an OP_AggStep call. Mark it as such. */
7518 pMem->uTemp = 0x1122e0e3;
7520 #endif
7522 /* If this function is inside of a trigger, the register array in aMem[]
7523 ** might change from one evaluation to the next. The next block of code
7524 ** checks to see if the register array has changed, and if so it
7525 ** reinitializes the relavant parts of the sqlite3_context object */
7526 if( pCtx->pMem != pMem ){
7527 pCtx->pMem = pMem;
7528 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
7531 #ifdef SQLITE_DEBUG
7532 for(i=0; i<pCtx->argc; i++){
7533 assert( memIsValid(pCtx->argv[i]) );
7534 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
7536 #endif
7538 pMem->n++;
7539 assert( pCtx->pOut->flags==MEM_Null );
7540 assert( pCtx->isError==0 );
7541 assert( pCtx->skipFlag==0 );
7542 #ifndef SQLITE_OMIT_WINDOWFUNC
7543 if( pOp->p1 ){
7544 (pCtx->pFunc->xInverse)(pCtx,pCtx->argc,pCtx->argv);
7545 }else
7546 #endif
7547 (pCtx->pFunc->xSFunc)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */
7549 if( pCtx->isError ){
7550 if( pCtx->isError>0 ){
7551 sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut));
7552 rc = pCtx->isError;
7554 if( pCtx->skipFlag ){
7555 assert( pOp[-1].opcode==OP_CollSeq );
7556 i = pOp[-1].p1;
7557 if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1);
7558 pCtx->skipFlag = 0;
7560 sqlite3VdbeMemRelease(pCtx->pOut);
7561 pCtx->pOut->flags = MEM_Null;
7562 pCtx->isError = 0;
7563 if( rc ) goto abort_due_to_error;
7565 assert( pCtx->pOut->flags==MEM_Null );
7566 assert( pCtx->skipFlag==0 );
7567 break;
7570 /* Opcode: AggFinal P1 P2 * P4 *
7571 ** Synopsis: accum=r[P1] N=P2
7573 ** P1 is the memory location that is the accumulator for an aggregate
7574 ** or window function. Execute the finalizer function
7575 ** for an aggregate and store the result in P1.
7577 ** P2 is the number of arguments that the step function takes and
7578 ** P4 is a pointer to the FuncDef for this function. The P2
7579 ** argument is not used by this opcode. It is only there to disambiguate
7580 ** functions that can take varying numbers of arguments. The
7581 ** P4 argument is only needed for the case where
7582 ** the step function was not previously called.
7584 /* Opcode: AggValue * P2 P3 P4 *
7585 ** Synopsis: r[P3]=value N=P2
7587 ** Invoke the xValue() function and store the result in register P3.
7589 ** P2 is the number of arguments that the step function takes and
7590 ** P4 is a pointer to the FuncDef for this function. The P2
7591 ** argument is not used by this opcode. It is only there to disambiguate
7592 ** functions that can take varying numbers of arguments. The
7593 ** P4 argument is only needed for the case where
7594 ** the step function was not previously called.
7596 case OP_AggValue:
7597 case OP_AggFinal: {
7598 Mem *pMem;
7599 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
7600 assert( pOp->p3==0 || pOp->opcode==OP_AggValue );
7601 pMem = &aMem[pOp->p1];
7602 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
7603 #ifndef SQLITE_OMIT_WINDOWFUNC
7604 if( pOp->p3 ){
7605 memAboutToChange(p, &aMem[pOp->p3]);
7606 rc = sqlite3VdbeMemAggValue(pMem, &aMem[pOp->p3], pOp->p4.pFunc);
7607 pMem = &aMem[pOp->p3];
7608 }else
7609 #endif
7611 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
7614 if( rc ){
7615 sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem));
7616 goto abort_due_to_error;
7618 sqlite3VdbeChangeEncoding(pMem, encoding);
7619 UPDATE_MAX_BLOBSIZE(pMem);
7620 break;
7623 #ifndef SQLITE_OMIT_WAL
7624 /* Opcode: Checkpoint P1 P2 P3 * *
7626 ** Checkpoint database P1. This is a no-op if P1 is not currently in
7627 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL,
7628 ** RESTART, or TRUNCATE. Write 1 or 0 into mem[P3] if the checkpoint returns
7629 ** SQLITE_BUSY or not, respectively. Write the number of pages in the
7630 ** WAL after the checkpoint into mem[P3+1] and the number of pages
7631 ** in the WAL that have been checkpointed after the checkpoint
7632 ** completes into mem[P3+2]. However on an error, mem[P3+1] and
7633 ** mem[P3+2] are initialized to -1.
7635 case OP_Checkpoint: {
7636 int i; /* Loop counter */
7637 int aRes[3]; /* Results */
7638 Mem *pMem; /* Write results here */
7640 assert( p->readOnly==0 );
7641 aRes[0] = 0;
7642 aRes[1] = aRes[2] = -1;
7643 assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
7644 || pOp->p2==SQLITE_CHECKPOINT_FULL
7645 || pOp->p2==SQLITE_CHECKPOINT_RESTART
7646 || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE
7648 rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
7649 if( rc ){
7650 if( rc!=SQLITE_BUSY ) goto abort_due_to_error;
7651 rc = SQLITE_OK;
7652 aRes[0] = 1;
7654 for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){
7655 sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]);
7657 break;
7659 #endif
7661 #ifndef SQLITE_OMIT_PRAGMA
7662 /* Opcode: JournalMode P1 P2 P3 * *
7664 ** Change the journal mode of database P1 to P3. P3 must be one of the
7665 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
7666 ** modes (delete, truncate, persist, off and memory), this is a simple
7667 ** operation. No IO is required.
7669 ** If changing into or out of WAL mode the procedure is more complicated.
7671 ** Write a string containing the final journal-mode to register P2.
7673 case OP_JournalMode: { /* out2 */
7674 Btree *pBt; /* Btree to change journal mode of */
7675 Pager *pPager; /* Pager associated with pBt */
7676 int eNew; /* New journal mode */
7677 int eOld; /* The old journal mode */
7678 #ifndef SQLITE_OMIT_WAL
7679 const char *zFilename; /* Name of database file for pPager */
7680 #endif
7682 pOut = out2Prerelease(p, pOp);
7683 eNew = pOp->p3;
7684 assert( eNew==PAGER_JOURNALMODE_DELETE
7685 || eNew==PAGER_JOURNALMODE_TRUNCATE
7686 || eNew==PAGER_JOURNALMODE_PERSIST
7687 || eNew==PAGER_JOURNALMODE_OFF
7688 || eNew==PAGER_JOURNALMODE_MEMORY
7689 || eNew==PAGER_JOURNALMODE_WAL
7690 || eNew==PAGER_JOURNALMODE_QUERY
7692 assert( pOp->p1>=0 && pOp->p1<db->nDb );
7693 assert( p->readOnly==0 );
7695 pBt = db->aDb[pOp->p1].pBt;
7696 pPager = sqlite3BtreePager(pBt);
7697 eOld = sqlite3PagerGetJournalMode(pPager);
7698 if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
7699 assert( sqlite3BtreeHoldsMutex(pBt) );
7700 if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;
7702 #ifndef SQLITE_OMIT_WAL
7703 zFilename = sqlite3PagerFilename(pPager, 1);
7705 /* Do not allow a transition to journal_mode=WAL for a database
7706 ** in temporary storage or if the VFS does not support shared memory
7708 if( eNew==PAGER_JOURNALMODE_WAL
7709 && (sqlite3Strlen30(zFilename)==0 /* Temp file */
7710 || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */
7712 eNew = eOld;
7715 if( (eNew!=eOld)
7716 && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
7718 if( !db->autoCommit || db->nVdbeRead>1 ){
7719 rc = SQLITE_ERROR;
7720 sqlite3VdbeError(p,
7721 "cannot change %s wal mode from within a transaction",
7722 (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
7724 goto abort_due_to_error;
7725 }else{
7727 if( eOld==PAGER_JOURNALMODE_WAL ){
7728 /* If leaving WAL mode, close the log file. If successful, the call
7729 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
7730 ** file. An EXCLUSIVE lock may still be held on the database file
7731 ** after a successful return.
7733 rc = sqlite3PagerCloseWal(pPager, db);
7734 if( rc==SQLITE_OK ){
7735 sqlite3PagerSetJournalMode(pPager, eNew);
7737 }else if( eOld==PAGER_JOURNALMODE_MEMORY ){
7738 /* Cannot transition directly from MEMORY to WAL. Use mode OFF
7739 ** as an intermediate */
7740 sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF);
7743 /* Open a transaction on the database file. Regardless of the journal
7744 ** mode, this transaction always uses a rollback journal.
7746 assert( sqlite3BtreeTxnState(pBt)!=SQLITE_TXN_WRITE );
7747 if( rc==SQLITE_OK ){
7748 rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
7752 #endif /* ifndef SQLITE_OMIT_WAL */
7754 if( rc ) eNew = eOld;
7755 eNew = sqlite3PagerSetJournalMode(pPager, eNew);
7757 pOut->flags = MEM_Str|MEM_Static|MEM_Term;
7758 pOut->z = (char *)sqlite3JournalModename(eNew);
7759 pOut->n = sqlite3Strlen30(pOut->z);
7760 pOut->enc = SQLITE_UTF8;
7761 sqlite3VdbeChangeEncoding(pOut, encoding);
7762 if( rc ) goto abort_due_to_error;
7763 break;
7765 #endif /* SQLITE_OMIT_PRAGMA */
7767 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
7768 /* Opcode: Vacuum P1 P2 * * *
7770 ** Vacuum the entire database P1. P1 is 0 for "main", and 2 or more
7771 ** for an attached database. The "temp" database may not be vacuumed.
7773 ** If P2 is not zero, then it is a register holding a string which is
7774 ** the file into which the result of vacuum should be written. When
7775 ** P2 is zero, the vacuum overwrites the original database.
7777 case OP_Vacuum: {
7778 assert( p->readOnly==0 );
7779 rc = sqlite3RunVacuum(&p->zErrMsg, db, pOp->p1,
7780 pOp->p2 ? &aMem[pOp->p2] : 0);
7781 if( rc ) goto abort_due_to_error;
7782 break;
7784 #endif
7786 #if !defined(SQLITE_OMIT_AUTOVACUUM)
7787 /* Opcode: IncrVacuum P1 P2 * * *
7789 ** Perform a single step of the incremental vacuum procedure on
7790 ** the P1 database. If the vacuum has finished, jump to instruction
7791 ** P2. Otherwise, fall through to the next instruction.
7793 case OP_IncrVacuum: { /* jump */
7794 Btree *pBt;
7796 assert( pOp->p1>=0 && pOp->p1<db->nDb );
7797 assert( DbMaskTest(p->btreeMask, pOp->p1) );
7798 assert( p->readOnly==0 );
7799 pBt = db->aDb[pOp->p1].pBt;
7800 rc = sqlite3BtreeIncrVacuum(pBt);
7801 VdbeBranchTaken(rc==SQLITE_DONE,2);
7802 if( rc ){
7803 if( rc!=SQLITE_DONE ) goto abort_due_to_error;
7804 rc = SQLITE_OK;
7805 goto jump_to_p2;
7807 break;
7809 #endif
7811 /* Opcode: Expire P1 P2 * * *
7813 ** Cause precompiled statements to expire. When an expired statement
7814 ** is executed using sqlite3_step() it will either automatically
7815 ** reprepare itself (if it was originally created using sqlite3_prepare_v2())
7816 ** or it will fail with SQLITE_SCHEMA.
7818 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
7819 ** then only the currently executing statement is expired.
7821 ** If P2 is 0, then SQL statements are expired immediately. If P2 is 1,
7822 ** then running SQL statements are allowed to continue to run to completion.
7823 ** The P2==1 case occurs when a CREATE INDEX or similar schema change happens
7824 ** that might help the statement run faster but which does not affect the
7825 ** correctness of operation.
7827 case OP_Expire: {
7828 assert( pOp->p2==0 || pOp->p2==1 );
7829 if( !pOp->p1 ){
7830 sqlite3ExpirePreparedStatements(db, pOp->p2);
7831 }else{
7832 p->expired = pOp->p2+1;
7834 break;
7837 /* Opcode: CursorLock P1 * * * *
7839 ** Lock the btree to which cursor P1 is pointing so that the btree cannot be
7840 ** written by an other cursor.
7842 case OP_CursorLock: {
7843 VdbeCursor *pC;
7844 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
7845 pC = p->apCsr[pOp->p1];
7846 assert( pC!=0 );
7847 assert( pC->eCurType==CURTYPE_BTREE );
7848 sqlite3BtreeCursorPin(pC->uc.pCursor);
7849 break;
7852 /* Opcode: CursorUnlock P1 * * * *
7854 ** Unlock the btree to which cursor P1 is pointing so that it can be
7855 ** written by other cursors.
7857 case OP_CursorUnlock: {
7858 VdbeCursor *pC;
7859 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
7860 pC = p->apCsr[pOp->p1];
7861 assert( pC!=0 );
7862 assert( pC->eCurType==CURTYPE_BTREE );
7863 sqlite3BtreeCursorUnpin(pC->uc.pCursor);
7864 break;
7867 #ifndef SQLITE_OMIT_SHARED_CACHE
7868 /* Opcode: TableLock P1 P2 P3 P4 *
7869 ** Synopsis: iDb=P1 root=P2 write=P3
7871 ** Obtain a lock on a particular table. This instruction is only used when
7872 ** the shared-cache feature is enabled.
7874 ** P1 is the index of the database in sqlite3.aDb[] of the database
7875 ** on which the lock is acquired. A readlock is obtained if P3==0 or
7876 ** a write lock if P3==1.
7878 ** P2 contains the root-page of the table to lock.
7880 ** P4 contains a pointer to the name of the table being locked. This is only
7881 ** used to generate an error message if the lock cannot be obtained.
7883 case OP_TableLock: {
7884 u8 isWriteLock = (u8)pOp->p3;
7885 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommit) ){
7886 int p1 = pOp->p1;
7887 assert( p1>=0 && p1<db->nDb );
7888 assert( DbMaskTest(p->btreeMask, p1) );
7889 assert( isWriteLock==0 || isWriteLock==1 );
7890 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
7891 if( rc ){
7892 if( (rc&0xFF)==SQLITE_LOCKED ){
7893 const char *z = pOp->p4.z;
7894 sqlite3VdbeError(p, "database table is locked: %s", z);
7896 goto abort_due_to_error;
7899 break;
7901 #endif /* SQLITE_OMIT_SHARED_CACHE */
7903 #ifndef SQLITE_OMIT_VIRTUALTABLE
7904 /* Opcode: VBegin * * * P4 *
7906 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
7907 ** xBegin method for that table.
7909 ** Also, whether or not P4 is set, check that this is not being called from
7910 ** within a callback to a virtual table xSync() method. If it is, the error
7911 ** code will be set to SQLITE_LOCKED.
7913 case OP_VBegin: {
7914 VTable *pVTab;
7915 pVTab = pOp->p4.pVtab;
7916 rc = sqlite3VtabBegin(db, pVTab);
7917 if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab);
7918 if( rc ) goto abort_due_to_error;
7919 break;
7921 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7923 #ifndef SQLITE_OMIT_VIRTUALTABLE
7924 /* Opcode: VCreate P1 P2 * * *
7926 ** P2 is a register that holds the name of a virtual table in database
7927 ** P1. Call the xCreate method for that table.
7929 case OP_VCreate: {
7930 Mem sMem; /* For storing the record being decoded */
7931 const char *zTab; /* Name of the virtual table */
7933 memset(&sMem, 0, sizeof(sMem));
7934 sMem.db = db;
7935 /* Because P2 is always a static string, it is impossible for the
7936 ** sqlite3VdbeMemCopy() to fail */
7937 assert( (aMem[pOp->p2].flags & MEM_Str)!=0 );
7938 assert( (aMem[pOp->p2].flags & MEM_Static)!=0 );
7939 rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]);
7940 assert( rc==SQLITE_OK );
7941 zTab = (const char*)sqlite3_value_text(&sMem);
7942 assert( zTab || db->mallocFailed );
7943 if( zTab ){
7944 rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg);
7946 sqlite3VdbeMemRelease(&sMem);
7947 if( rc ) goto abort_due_to_error;
7948 break;
7950 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7952 #ifndef SQLITE_OMIT_VIRTUALTABLE
7953 /* Opcode: VDestroy P1 * * P4 *
7955 ** P4 is the name of a virtual table in database P1. Call the xDestroy method
7956 ** of that table.
7958 case OP_VDestroy: {
7959 db->nVDestroy++;
7960 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
7961 db->nVDestroy--;
7962 assert( p->errorAction==OE_Abort && p->usesStmtJournal );
7963 if( rc ) goto abort_due_to_error;
7964 break;
7966 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7968 #ifndef SQLITE_OMIT_VIRTUALTABLE
7969 /* Opcode: VOpen P1 * * P4 *
7971 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
7972 ** P1 is a cursor number. This opcode opens a cursor to the virtual
7973 ** table and stores that cursor in P1.
7975 case OP_VOpen: { /* ncycle */
7976 VdbeCursor *pCur;
7977 sqlite3_vtab_cursor *pVCur;
7978 sqlite3_vtab *pVtab;
7979 const sqlite3_module *pModule;
7981 assert( p->bIsReader );
7982 pCur = 0;
7983 pVCur = 0;
7984 pVtab = pOp->p4.pVtab->pVtab;
7985 if( pVtab==0 || NEVER(pVtab->pModule==0) ){
7986 rc = SQLITE_LOCKED;
7987 goto abort_due_to_error;
7989 pModule = pVtab->pModule;
7990 rc = pModule->xOpen(pVtab, &pVCur);
7991 sqlite3VtabImportErrmsg(p, pVtab);
7992 if( rc ) goto abort_due_to_error;
7994 /* Initialize sqlite3_vtab_cursor base class */
7995 pVCur->pVtab = pVtab;
7997 /* Initialize vdbe cursor object */
7998 pCur = allocateCursor(p, pOp->p1, 0, CURTYPE_VTAB);
7999 if( pCur ){
8000 pCur->uc.pVCur = pVCur;
8001 pVtab->nRef++;
8002 }else{
8003 assert( db->mallocFailed );
8004 pModule->xClose(pVCur);
8005 goto no_mem;
8007 break;
8009 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8011 #ifndef SQLITE_OMIT_VIRTUALTABLE
8012 /* Opcode: VInitIn P1 P2 P3 * *
8013 ** Synopsis: r[P2]=ValueList(P1,P3)
8015 ** Set register P2 to be a pointer to a ValueList object for cursor P1
8016 ** with cache register P3 and output register P3+1. This ValueList object
8017 ** can be used as the first argument to sqlite3_vtab_in_first() and
8018 ** sqlite3_vtab_in_next() to extract all of the values stored in the P1
8019 ** cursor. Register P3 is used to hold the values returned by
8020 ** sqlite3_vtab_in_first() and sqlite3_vtab_in_next().
8022 case OP_VInitIn: { /* out2, ncycle */
8023 VdbeCursor *pC; /* The cursor containing the RHS values */
8024 ValueList *pRhs; /* New ValueList object to put in reg[P2] */
8026 pC = p->apCsr[pOp->p1];
8027 pRhs = sqlite3_malloc64( sizeof(*pRhs) );
8028 if( pRhs==0 ) goto no_mem;
8029 pRhs->pCsr = pC->uc.pCursor;
8030 pRhs->pOut = &aMem[pOp->p3];
8031 pOut = out2Prerelease(p, pOp);
8032 pOut->flags = MEM_Null;
8033 sqlite3VdbeMemSetPointer(pOut, pRhs, "ValueList", sqlite3VdbeValueListFree);
8034 break;
8036 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8039 #ifndef SQLITE_OMIT_VIRTUALTABLE
8040 /* Opcode: VFilter P1 P2 P3 P4 *
8041 ** Synopsis: iplan=r[P3] zplan='P4'
8043 ** P1 is a cursor opened using VOpen. P2 is an address to jump to if
8044 ** the filtered result set is empty.
8046 ** P4 is either NULL or a string that was generated by the xBestIndex
8047 ** method of the module. The interpretation of the P4 string is left
8048 ** to the module implementation.
8050 ** This opcode invokes the xFilter method on the virtual table specified
8051 ** by P1. The integer query plan parameter to xFilter is stored in register
8052 ** P3. Register P3+1 stores the argc parameter to be passed to the
8053 ** xFilter method. Registers P3+2..P3+1+argc are the argc
8054 ** additional parameters which are passed to
8055 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
8057 ** A jump is made to P2 if the result set after filtering would be empty.
8059 case OP_VFilter: { /* jump, ncycle */
8060 int nArg;
8061 int iQuery;
8062 const sqlite3_module *pModule;
8063 Mem *pQuery;
8064 Mem *pArgc;
8065 sqlite3_vtab_cursor *pVCur;
8066 sqlite3_vtab *pVtab;
8067 VdbeCursor *pCur;
8068 int res;
8069 int i;
8070 Mem **apArg;
8072 pQuery = &aMem[pOp->p3];
8073 pArgc = &pQuery[1];
8074 pCur = p->apCsr[pOp->p1];
8075 assert( memIsValid(pQuery) );
8076 REGISTER_TRACE(pOp->p3, pQuery);
8077 assert( pCur!=0 );
8078 assert( pCur->eCurType==CURTYPE_VTAB );
8079 pVCur = pCur->uc.pVCur;
8080 pVtab = pVCur->pVtab;
8081 pModule = pVtab->pModule;
8083 /* Grab the index number and argc parameters */
8084 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
8085 nArg = (int)pArgc->u.i;
8086 iQuery = (int)pQuery->u.i;
8088 /* Invoke the xFilter method */
8089 apArg = p->apArg;
8090 for(i = 0; i<nArg; i++){
8091 apArg[i] = &pArgc[i+1];
8093 rc = pModule->xFilter(pVCur, iQuery, pOp->p4.z, nArg, apArg);
8094 sqlite3VtabImportErrmsg(p, pVtab);
8095 if( rc ) goto abort_due_to_error;
8096 res = pModule->xEof(pVCur);
8097 pCur->nullRow = 0;
8098 VdbeBranchTaken(res!=0,2);
8099 if( res ) goto jump_to_p2;
8100 break;
8102 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8104 #ifndef SQLITE_OMIT_VIRTUALTABLE
8105 /* Opcode: VColumn P1 P2 P3 * P5
8106 ** Synopsis: r[P3]=vcolumn(P2)
8108 ** Store in register P3 the value of the P2-th column of
8109 ** the current row of the virtual-table of cursor P1.
8111 ** If the VColumn opcode is being used to fetch the value of
8112 ** an unchanging column during an UPDATE operation, then the P5
8113 ** value is OPFLAG_NOCHNG. This will cause the sqlite3_vtab_nochange()
8114 ** function to return true inside the xColumn method of the virtual
8115 ** table implementation. The P5 column might also contain other
8116 ** bits (OPFLAG_LENGTHARG or OPFLAG_TYPEOFARG) but those bits are
8117 ** unused by OP_VColumn.
8119 case OP_VColumn: { /* ncycle */
8120 sqlite3_vtab *pVtab;
8121 const sqlite3_module *pModule;
8122 Mem *pDest;
8123 sqlite3_context sContext;
8125 VdbeCursor *pCur = p->apCsr[pOp->p1];
8126 assert( pCur!=0 );
8127 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
8128 pDest = &aMem[pOp->p3];
8129 memAboutToChange(p, pDest);
8130 if( pCur->nullRow ){
8131 sqlite3VdbeMemSetNull(pDest);
8132 break;
8134 assert( pCur->eCurType==CURTYPE_VTAB );
8135 pVtab = pCur->uc.pVCur->pVtab;
8136 pModule = pVtab->pModule;
8137 assert( pModule->xColumn );
8138 memset(&sContext, 0, sizeof(sContext));
8139 sContext.pOut = pDest;
8140 sContext.enc = encoding;
8141 assert( pOp->p5==OPFLAG_NOCHNG || pOp->p5==0 );
8142 if( pOp->p5 & OPFLAG_NOCHNG ){
8143 sqlite3VdbeMemSetNull(pDest);
8144 pDest->flags = MEM_Null|MEM_Zero;
8145 pDest->u.nZero = 0;
8146 }else{
8147 MemSetTypeFlag(pDest, MEM_Null);
8149 rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2);
8150 sqlite3VtabImportErrmsg(p, pVtab);
8151 if( sContext.isError>0 ){
8152 sqlite3VdbeError(p, "%s", sqlite3_value_text(pDest));
8153 rc = sContext.isError;
8155 sqlite3VdbeChangeEncoding(pDest, encoding);
8156 REGISTER_TRACE(pOp->p3, pDest);
8157 UPDATE_MAX_BLOBSIZE(pDest);
8159 if( rc ) goto abort_due_to_error;
8160 break;
8162 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8164 #ifndef SQLITE_OMIT_VIRTUALTABLE
8165 /* Opcode: VNext P1 P2 * * *
8167 ** Advance virtual table P1 to the next row in its result set and
8168 ** jump to instruction P2. Or, if the virtual table has reached
8169 ** the end of its result set, then fall through to the next instruction.
8171 case OP_VNext: { /* jump, ncycle */
8172 sqlite3_vtab *pVtab;
8173 const sqlite3_module *pModule;
8174 int res;
8175 VdbeCursor *pCur;
8177 pCur = p->apCsr[pOp->p1];
8178 assert( pCur!=0 );
8179 assert( pCur->eCurType==CURTYPE_VTAB );
8180 if( pCur->nullRow ){
8181 break;
8183 pVtab = pCur->uc.pVCur->pVtab;
8184 pModule = pVtab->pModule;
8185 assert( pModule->xNext );
8187 /* Invoke the xNext() method of the module. There is no way for the
8188 ** underlying implementation to return an error if one occurs during
8189 ** xNext(). Instead, if an error occurs, true is returned (indicating that
8190 ** data is available) and the error code returned when xColumn or
8191 ** some other method is next invoked on the save virtual table cursor.
8193 rc = pModule->xNext(pCur->uc.pVCur);
8194 sqlite3VtabImportErrmsg(p, pVtab);
8195 if( rc ) goto abort_due_to_error;
8196 res = pModule->xEof(pCur->uc.pVCur);
8197 VdbeBranchTaken(!res,2);
8198 if( !res ){
8199 /* If there is data, jump to P2 */
8200 goto jump_to_p2_and_check_for_interrupt;
8202 goto check_for_interrupt;
8204 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8206 #ifndef SQLITE_OMIT_VIRTUALTABLE
8207 /* Opcode: VRename P1 * * P4 *
8209 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
8210 ** This opcode invokes the corresponding xRename method. The value
8211 ** in register P1 is passed as the zName argument to the xRename method.
8213 case OP_VRename: {
8214 sqlite3_vtab *pVtab;
8215 Mem *pName;
8216 int isLegacy;
8218 isLegacy = (db->flags & SQLITE_LegacyAlter);
8219 db->flags |= SQLITE_LegacyAlter;
8220 pVtab = pOp->p4.pVtab->pVtab;
8221 pName = &aMem[pOp->p1];
8222 assert( pVtab->pModule->xRename );
8223 assert( memIsValid(pName) );
8224 assert( p->readOnly==0 );
8225 REGISTER_TRACE(pOp->p1, pName);
8226 assert( pName->flags & MEM_Str );
8227 testcase( pName->enc==SQLITE_UTF8 );
8228 testcase( pName->enc==SQLITE_UTF16BE );
8229 testcase( pName->enc==SQLITE_UTF16LE );
8230 rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8);
8231 if( rc ) goto abort_due_to_error;
8232 rc = pVtab->pModule->xRename(pVtab, pName->z);
8233 if( isLegacy==0 ) db->flags &= ~(u64)SQLITE_LegacyAlter;
8234 sqlite3VtabImportErrmsg(p, pVtab);
8235 p->expired = 0;
8236 if( rc ) goto abort_due_to_error;
8237 break;
8239 #endif
8241 #ifndef SQLITE_OMIT_VIRTUALTABLE
8242 /* Opcode: VUpdate P1 P2 P3 P4 P5
8243 ** Synopsis: data=r[P3@P2]
8245 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
8246 ** This opcode invokes the corresponding xUpdate method. P2 values
8247 ** are contiguous memory cells starting at P3 to pass to the xUpdate
8248 ** invocation. The value in register (P3+P2-1) corresponds to the
8249 ** p2th element of the argv array passed to xUpdate.
8251 ** The xUpdate method will do a DELETE or an INSERT or both.
8252 ** The argv[0] element (which corresponds to memory cell P3)
8253 ** is the rowid of a row to delete. If argv[0] is NULL then no
8254 ** deletion occurs. The argv[1] element is the rowid of the new
8255 ** row. This can be NULL to have the virtual table select the new
8256 ** rowid for itself. The subsequent elements in the array are
8257 ** the values of columns in the new row.
8259 ** If P2==1 then no insert is performed. argv[0] is the rowid of
8260 ** a row to delete.
8262 ** P1 is a boolean flag. If it is set to true and the xUpdate call
8263 ** is successful, then the value returned by sqlite3_last_insert_rowid()
8264 ** is set to the value of the rowid for the row just inserted.
8266 ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to
8267 ** apply in the case of a constraint failure on an insert or update.
8269 case OP_VUpdate: {
8270 sqlite3_vtab *pVtab;
8271 const sqlite3_module *pModule;
8272 int nArg;
8273 int i;
8274 sqlite_int64 rowid = 0;
8275 Mem **apArg;
8276 Mem *pX;
8278 assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback
8279 || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
8281 assert( p->readOnly==0 );
8282 if( db->mallocFailed ) goto no_mem;
8283 sqlite3VdbeIncrWriteCounter(p, 0);
8284 pVtab = pOp->p4.pVtab->pVtab;
8285 if( pVtab==0 || NEVER(pVtab->pModule==0) ){
8286 rc = SQLITE_LOCKED;
8287 goto abort_due_to_error;
8289 pModule = pVtab->pModule;
8290 nArg = pOp->p2;
8291 assert( pOp->p4type==P4_VTAB );
8292 if( ALWAYS(pModule->xUpdate) ){
8293 u8 vtabOnConflict = db->vtabOnConflict;
8294 apArg = p->apArg;
8295 pX = &aMem[pOp->p3];
8296 for(i=0; i<nArg; i++){
8297 assert( memIsValid(pX) );
8298 memAboutToChange(p, pX);
8299 apArg[i] = pX;
8300 pX++;
8302 db->vtabOnConflict = pOp->p5;
8303 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
8304 db->vtabOnConflict = vtabOnConflict;
8305 sqlite3VtabImportErrmsg(p, pVtab);
8306 if( rc==SQLITE_OK && pOp->p1 ){
8307 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
8308 db->lastRowid = rowid;
8310 if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
8311 if( pOp->p5==OE_Ignore ){
8312 rc = SQLITE_OK;
8313 }else{
8314 p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5);
8316 }else{
8317 p->nChange++;
8319 if( rc ) goto abort_due_to_error;
8321 break;
8323 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8325 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
8326 /* Opcode: Pagecount P1 P2 * * *
8328 ** Write the current number of pages in database P1 to memory cell P2.
8330 case OP_Pagecount: { /* out2 */
8331 pOut = out2Prerelease(p, pOp);
8332 pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
8333 break;
8335 #endif
8338 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
8339 /* Opcode: MaxPgcnt P1 P2 P3 * *
8341 ** Try to set the maximum page count for database P1 to the value in P3.
8342 ** Do not let the maximum page count fall below the current page count and
8343 ** do not change the maximum page count value if P3==0.
8345 ** Store the maximum page count after the change in register P2.
8347 case OP_MaxPgcnt: { /* out2 */
8348 unsigned int newMax;
8349 Btree *pBt;
8351 pOut = out2Prerelease(p, pOp);
8352 pBt = db->aDb[pOp->p1].pBt;
8353 newMax = 0;
8354 if( pOp->p3 ){
8355 newMax = sqlite3BtreeLastPage(pBt);
8356 if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
8358 pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
8359 break;
8361 #endif
8363 /* Opcode: Function P1 P2 P3 P4 *
8364 ** Synopsis: r[P3]=func(r[P2@NP])
8366 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that
8367 ** contains a pointer to the function to be run) with arguments taken
8368 ** from register P2 and successors. The number of arguments is in
8369 ** the sqlite3_context object that P4 points to.
8370 ** The result of the function is stored
8371 ** in register P3. Register P3 must not be one of the function inputs.
8373 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
8374 ** function was determined to be constant at compile time. If the first
8375 ** argument was constant then bit 0 of P1 is set. This is used to determine
8376 ** whether meta data associated with a user function argument using the
8377 ** sqlite3_set_auxdata() API may be safely retained until the next
8378 ** invocation of this opcode.
8380 ** See also: AggStep, AggFinal, PureFunc
8382 /* Opcode: PureFunc P1 P2 P3 P4 *
8383 ** Synopsis: r[P3]=func(r[P2@NP])
8385 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that
8386 ** contains a pointer to the function to be run) with arguments taken
8387 ** from register P2 and successors. The number of arguments is in
8388 ** the sqlite3_context object that P4 points to.
8389 ** The result of the function is stored
8390 ** in register P3. Register P3 must not be one of the function inputs.
8392 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
8393 ** function was determined to be constant at compile time. If the first
8394 ** argument was constant then bit 0 of P1 is set. This is used to determine
8395 ** whether meta data associated with a user function argument using the
8396 ** sqlite3_set_auxdata() API may be safely retained until the next
8397 ** invocation of this opcode.
8399 ** This opcode works exactly like OP_Function. The only difference is in
8400 ** its name. This opcode is used in places where the function must be
8401 ** purely non-deterministic. Some built-in date/time functions can be
8402 ** either determinitic of non-deterministic, depending on their arguments.
8403 ** When those function are used in a non-deterministic way, they will check
8404 ** to see if they were called using OP_PureFunc instead of OP_Function, and
8405 ** if they were, they throw an error.
8407 ** See also: AggStep, AggFinal, Function
8409 case OP_PureFunc: /* group */
8410 case OP_Function: { /* group */
8411 int i;
8412 sqlite3_context *pCtx;
8414 assert( pOp->p4type==P4_FUNCCTX );
8415 pCtx = pOp->p4.pCtx;
8417 /* If this function is inside of a trigger, the register array in aMem[]
8418 ** might change from one evaluation to the next. The next block of code
8419 ** checks to see if the register array has changed, and if so it
8420 ** reinitializes the relavant parts of the sqlite3_context object */
8421 pOut = &aMem[pOp->p3];
8422 if( pCtx->pOut != pOut ){
8423 pCtx->pVdbe = p;
8424 pCtx->pOut = pOut;
8425 pCtx->enc = encoding;
8426 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
8428 assert( pCtx->pVdbe==p );
8430 memAboutToChange(p, pOut);
8431 #ifdef SQLITE_DEBUG
8432 for(i=0; i<pCtx->argc; i++){
8433 assert( memIsValid(pCtx->argv[i]) );
8434 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
8436 #endif
8437 MemSetTypeFlag(pOut, MEM_Null);
8438 assert( pCtx->isError==0 );
8439 (*pCtx->pFunc->xSFunc)(pCtx, pCtx->argc, pCtx->argv);/* IMP: R-24505-23230 */
8441 /* If the function returned an error, throw an exception */
8442 if( pCtx->isError ){
8443 if( pCtx->isError>0 ){
8444 sqlite3VdbeError(p, "%s", sqlite3_value_text(pOut));
8445 rc = pCtx->isError;
8447 sqlite3VdbeDeleteAuxData(db, &p->pAuxData, pCtx->iOp, pOp->p1);
8448 pCtx->isError = 0;
8449 if( rc ) goto abort_due_to_error;
8452 assert( (pOut->flags&MEM_Str)==0
8453 || pOut->enc==encoding
8454 || db->mallocFailed );
8455 assert( !sqlite3VdbeMemTooBig(pOut) );
8457 REGISTER_TRACE(pOp->p3, pOut);
8458 UPDATE_MAX_BLOBSIZE(pOut);
8459 break;
8462 /* Opcode: ClrSubtype P1 * * * *
8463 ** Synopsis: r[P1].subtype = 0
8465 ** Clear the subtype from register P1.
8467 case OP_ClrSubtype: { /* in1 */
8468 pIn1 = &aMem[pOp->p1];
8469 pIn1->flags &= ~MEM_Subtype;
8470 break;
8473 /* Opcode: FilterAdd P1 * P3 P4 *
8474 ** Synopsis: filter(P1) += key(P3@P4)
8476 ** Compute a hash on the P4 registers starting with r[P3] and
8477 ** add that hash to the bloom filter contained in r[P1].
8479 case OP_FilterAdd: {
8480 u64 h;
8482 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
8483 pIn1 = &aMem[pOp->p1];
8484 assert( pIn1->flags & MEM_Blob );
8485 assert( pIn1->n>0 );
8486 h = filterHash(aMem, pOp);
8487 #ifdef SQLITE_DEBUG
8488 if( db->flags&SQLITE_VdbeTrace ){
8489 int ii;
8490 for(ii=pOp->p3; ii<pOp->p3+pOp->p4.i; ii++){
8491 registerTrace(ii, &aMem[ii]);
8493 printf("hash: %llu modulo %d -> %u\n", h, pIn1->n, (int)(h%pIn1->n));
8495 #endif
8496 h %= pIn1->n;
8497 pIn1->z[h/8] |= 1<<(h&7);
8498 break;
8501 /* Opcode: Filter P1 P2 P3 P4 *
8502 ** Synopsis: if key(P3@P4) not in filter(P1) goto P2
8504 ** Compute a hash on the key contained in the P4 registers starting
8505 ** with r[P3]. Check to see if that hash is found in the
8506 ** bloom filter hosted by register P1. If it is not present then
8507 ** maybe jump to P2. Otherwise fall through.
8509 ** False negatives are harmless. It is always safe to fall through,
8510 ** even if the value is in the bloom filter. A false negative causes
8511 ** more CPU cycles to be used, but it should still yield the correct
8512 ** answer. However, an incorrect answer may well arise from a
8513 ** false positive - if the jump is taken when it should fall through.
8515 case OP_Filter: { /* jump */
8516 u64 h;
8518 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
8519 pIn1 = &aMem[pOp->p1];
8520 assert( (pIn1->flags & MEM_Blob)!=0 );
8521 assert( pIn1->n >= 1 );
8522 h = filterHash(aMem, pOp);
8523 #ifdef SQLITE_DEBUG
8524 if( db->flags&SQLITE_VdbeTrace ){
8525 int ii;
8526 for(ii=pOp->p3; ii<pOp->p3+pOp->p4.i; ii++){
8527 registerTrace(ii, &aMem[ii]);
8529 printf("hash: %llu modulo %d -> %u\n", h, pIn1->n, (int)(h%pIn1->n));
8531 #endif
8532 h %= pIn1->n;
8533 if( (pIn1->z[h/8] & (1<<(h&7)))==0 ){
8534 VdbeBranchTaken(1, 2);
8535 p->aCounter[SQLITE_STMTSTATUS_FILTER_HIT]++;
8536 goto jump_to_p2;
8537 }else{
8538 p->aCounter[SQLITE_STMTSTATUS_FILTER_MISS]++;
8539 VdbeBranchTaken(0, 2);
8541 break;
8544 /* Opcode: Trace P1 P2 * P4 *
8546 ** Write P4 on the statement trace output if statement tracing is
8547 ** enabled.
8549 ** Operand P1 must be 0x7fffffff and P2 must positive.
8551 /* Opcode: Init P1 P2 P3 P4 *
8552 ** Synopsis: Start at P2
8554 ** Programs contain a single instance of this opcode as the very first
8555 ** opcode.
8557 ** If tracing is enabled (by the sqlite3_trace()) interface, then
8558 ** the UTF-8 string contained in P4 is emitted on the trace callback.
8559 ** Or if P4 is blank, use the string returned by sqlite3_sql().
8561 ** If P2 is not zero, jump to instruction P2.
8563 ** Increment the value of P1 so that OP_Once opcodes will jump the
8564 ** first time they are evaluated for this run.
8566 ** If P3 is not zero, then it is an address to jump to if an SQLITE_CORRUPT
8567 ** error is encountered.
8569 case OP_Trace:
8570 case OP_Init: { /* jump */
8571 int i;
8572 #ifndef SQLITE_OMIT_TRACE
8573 char *zTrace;
8574 #endif
8576 /* If the P4 argument is not NULL, then it must be an SQL comment string.
8577 ** The "--" string is broken up to prevent false-positives with srcck1.c.
8579 ** This assert() provides evidence for:
8580 ** EVIDENCE-OF: R-50676-09860 The callback can compute the same text that
8581 ** would have been returned by the legacy sqlite3_trace() interface by
8582 ** using the X argument when X begins with "--" and invoking
8583 ** sqlite3_expanded_sql(P) otherwise.
8585 assert( pOp->p4.z==0 || strncmp(pOp->p4.z, "-" "- ", 3)==0 );
8587 /* OP_Init is always instruction 0 */
8588 assert( pOp==p->aOp || pOp->opcode==OP_Trace );
8590 #ifndef SQLITE_OMIT_TRACE
8591 if( (db->mTrace & (SQLITE_TRACE_STMT|SQLITE_TRACE_LEGACY))!=0
8592 && p->minWriteFileFormat!=254 /* tag-20220401a */
8593 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
8595 #ifndef SQLITE_OMIT_DEPRECATED
8596 if( db->mTrace & SQLITE_TRACE_LEGACY ){
8597 char *z = sqlite3VdbeExpandSql(p, zTrace);
8598 db->trace.xLegacy(db->pTraceArg, z);
8599 sqlite3_free(z);
8600 }else
8601 #endif
8602 if( db->nVdbeExec>1 ){
8603 char *z = sqlite3MPrintf(db, "-- %s", zTrace);
8604 (void)db->trace.xV2(SQLITE_TRACE_STMT, db->pTraceArg, p, z);
8605 sqlite3DbFree(db, z);
8606 }else{
8607 (void)db->trace.xV2(SQLITE_TRACE_STMT, db->pTraceArg, p, zTrace);
8610 #ifdef SQLITE_USE_FCNTL_TRACE
8611 zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql);
8612 if( zTrace ){
8613 int j;
8614 for(j=0; j<db->nDb; j++){
8615 if( DbMaskTest(p->btreeMask, j)==0 ) continue;
8616 sqlite3_file_control(db, db->aDb[j].zDbSName, SQLITE_FCNTL_TRACE, zTrace);
8619 #endif /* SQLITE_USE_FCNTL_TRACE */
8620 #ifdef SQLITE_DEBUG
8621 if( (db->flags & SQLITE_SqlTrace)!=0
8622 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
8624 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
8626 #endif /* SQLITE_DEBUG */
8627 #endif /* SQLITE_OMIT_TRACE */
8628 assert( pOp->p2>0 );
8629 if( pOp->p1>=sqlite3GlobalConfig.iOnceResetThreshold ){
8630 if( pOp->opcode==OP_Trace ) break;
8631 for(i=1; i<p->nOp; i++){
8632 if( p->aOp[i].opcode==OP_Once ) p->aOp[i].p1 = 0;
8634 pOp->p1 = 0;
8636 pOp->p1++;
8637 p->aCounter[SQLITE_STMTSTATUS_RUN]++;
8638 goto jump_to_p2;
8641 #ifdef SQLITE_ENABLE_CURSOR_HINTS
8642 /* Opcode: CursorHint P1 * * P4 *
8644 ** Provide a hint to cursor P1 that it only needs to return rows that
8645 ** satisfy the Expr in P4. TK_REGISTER terms in the P4 expression refer
8646 ** to values currently held in registers. TK_COLUMN terms in the P4
8647 ** expression refer to columns in the b-tree to which cursor P1 is pointing.
8649 case OP_CursorHint: {
8650 VdbeCursor *pC;
8652 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
8653 assert( pOp->p4type==P4_EXPR );
8654 pC = p->apCsr[pOp->p1];
8655 if( pC ){
8656 assert( pC->eCurType==CURTYPE_BTREE );
8657 sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE,
8658 pOp->p4.pExpr, aMem);
8660 break;
8662 #endif /* SQLITE_ENABLE_CURSOR_HINTS */
8664 #ifdef SQLITE_DEBUG
8665 /* Opcode: Abortable * * * * *
8667 ** Verify that an Abort can happen. Assert if an Abort at this point
8668 ** might cause database corruption. This opcode only appears in debugging
8669 ** builds.
8671 ** An Abort is safe if either there have been no writes, or if there is
8672 ** an active statement journal.
8674 case OP_Abortable: {
8675 sqlite3VdbeAssertAbortable(p);
8676 break;
8678 #endif
8680 #ifdef SQLITE_DEBUG
8681 /* Opcode: ReleaseReg P1 P2 P3 * P5
8682 ** Synopsis: release r[P1@P2] mask P3
8684 ** Release registers from service. Any content that was in the
8685 ** the registers is unreliable after this opcode completes.
8687 ** The registers released will be the P2 registers starting at P1,
8688 ** except if bit ii of P3 set, then do not release register P1+ii.
8689 ** In other words, P3 is a mask of registers to preserve.
8691 ** Releasing a register clears the Mem.pScopyFrom pointer. That means
8692 ** that if the content of the released register was set using OP_SCopy,
8693 ** a change to the value of the source register for the OP_SCopy will no longer
8694 ** generate an assertion fault in sqlite3VdbeMemAboutToChange().
8696 ** If P5 is set, then all released registers have their type set
8697 ** to MEM_Undefined so that any subsequent attempt to read the released
8698 ** register (before it is reinitialized) will generate an assertion fault.
8700 ** P5 ought to be set on every call to this opcode.
8701 ** However, there are places in the code generator will release registers
8702 ** before their are used, under the (valid) assumption that the registers
8703 ** will not be reallocated for some other purpose before they are used and
8704 ** hence are safe to release.
8706 ** This opcode is only available in testing and debugging builds. It is
8707 ** not generated for release builds. The purpose of this opcode is to help
8708 ** validate the generated bytecode. This opcode does not actually contribute
8709 ** to computing an answer.
8711 case OP_ReleaseReg: {
8712 Mem *pMem;
8713 int i;
8714 u32 constMask;
8715 assert( pOp->p1>0 );
8716 assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 );
8717 pMem = &aMem[pOp->p1];
8718 constMask = pOp->p3;
8719 for(i=0; i<pOp->p2; i++, pMem++){
8720 if( i>=32 || (constMask & MASKBIT32(i))==0 ){
8721 pMem->pScopyFrom = 0;
8722 if( i<32 && pOp->p5 ) MemSetTypeFlag(pMem, MEM_Undefined);
8725 break;
8727 #endif
8729 /* Opcode: Noop * * * * *
8731 ** Do nothing. This instruction is often useful as a jump
8732 ** destination.
8735 ** The magic Explain opcode are only inserted when explain==2 (which
8736 ** is to say when the EXPLAIN QUERY PLAN syntax is used.)
8737 ** This opcode records information from the optimizer. It is the
8738 ** the same as a no-op. This opcodesnever appears in a real VM program.
8740 default: { /* This is really OP_Noop, OP_Explain */
8741 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
8743 break;
8746 /*****************************************************************************
8747 ** The cases of the switch statement above this line should all be indented
8748 ** by 6 spaces. But the left-most 6 spaces have been removed to improve the
8749 ** readability. From this point on down, the normal indentation rules are
8750 ** restored.
8751 *****************************************************************************/
8754 #if defined(VDBE_PROFILE)
8755 *pnCycle += sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime();
8756 pnCycle = 0;
8757 #elif defined(SQLITE_ENABLE_STMT_SCANSTATUS)
8758 *pnCycle += sqlite3Hwtime();
8759 pnCycle = 0;
8760 #endif
8762 /* The following code adds nothing to the actual functionality
8763 ** of the program. It is only here for testing and debugging.
8764 ** On the other hand, it does burn CPU cycles every time through
8765 ** the evaluator loop. So we can leave it out when NDEBUG is defined.
8767 #ifndef NDEBUG
8768 assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] );
8770 #ifdef SQLITE_DEBUG
8771 if( db->flags & SQLITE_VdbeTrace ){
8772 u8 opProperty = sqlite3OpcodeProperty[pOrigOp->opcode];
8773 if( rc!=0 ) printf("rc=%d\n",rc);
8774 if( opProperty & (OPFLG_OUT2) ){
8775 registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]);
8777 if( opProperty & OPFLG_OUT3 ){
8778 registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]);
8780 if( opProperty==0xff ){
8781 /* Never happens. This code exists to avoid a harmless linkage
8782 ** warning aboud sqlite3VdbeRegisterDump() being defined but not
8783 ** used. */
8784 sqlite3VdbeRegisterDump(p);
8787 #endif /* SQLITE_DEBUG */
8788 #endif /* NDEBUG */
8789 } /* The end of the for(;;) loop the loops through opcodes */
8791 /* If we reach this point, it means that execution is finished with
8792 ** an error of some kind.
8794 abort_due_to_error:
8795 if( db->mallocFailed ){
8796 rc = SQLITE_NOMEM_BKPT;
8797 }else if( rc==SQLITE_IOERR_CORRUPTFS ){
8798 rc = SQLITE_CORRUPT_BKPT;
8800 assert( rc );
8801 #ifdef SQLITE_DEBUG
8802 if( db->flags & SQLITE_VdbeTrace ){
8803 const char *zTrace = p->zSql;
8804 if( zTrace==0 ){
8805 if( aOp[0].opcode==OP_Trace ){
8806 zTrace = aOp[0].p4.z;
8808 if( zTrace==0 ) zTrace = "???";
8810 printf("ABORT-due-to-error (rc=%d): %s\n", rc, zTrace);
8812 #endif
8813 if( p->zErrMsg==0 && rc!=SQLITE_IOERR_NOMEM ){
8814 sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
8816 p->rc = rc;
8817 sqlite3SystemError(db, rc);
8818 testcase( sqlite3GlobalConfig.xLog!=0 );
8819 sqlite3_log(rc, "statement aborts at %d: [%s] %s",
8820 (int)(pOp - aOp), p->zSql, p->zErrMsg);
8821 if( p->eVdbeState==VDBE_RUN_STATE ) sqlite3VdbeHalt(p);
8822 if( rc==SQLITE_IOERR_NOMEM ) sqlite3OomFault(db);
8823 if( rc==SQLITE_CORRUPT && db->autoCommit==0 ){
8824 db->flags |= SQLITE_CorruptRdOnly;
8826 rc = SQLITE_ERROR;
8827 if( resetSchemaOnFault>0 ){
8828 sqlite3ResetOneSchema(db, resetSchemaOnFault-1);
8831 /* This is the only way out of this procedure. We have to
8832 ** release the mutexes on btrees that were acquired at the
8833 ** top. */
8834 vdbe_return:
8835 #if defined(VDBE_PROFILE)
8836 if( pnCycle ){
8837 *pnCycle += sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime();
8838 pnCycle = 0;
8840 #elif defined(SQLITE_ENABLE_STMT_SCANSTATUS)
8841 if( pnCycle ){
8842 *pnCycle += sqlite3Hwtime();
8843 pnCycle = 0;
8845 #endif
8847 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
8848 while( nVmStep>=nProgressLimit && db->xProgress!=0 ){
8849 nProgressLimit += db->nProgressOps;
8850 if( db->xProgress(db->pProgressArg) ){
8851 nProgressLimit = LARGEST_UINT64;
8852 rc = SQLITE_INTERRUPT;
8853 goto abort_due_to_error;
8856 #endif
8857 p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep;
8858 if( DbMaskNonZero(p->lockMask) ){
8859 sqlite3VdbeLeave(p);
8861 assert( rc!=SQLITE_OK || nExtraDelete==0
8862 || sqlite3_strlike("DELETE%",p->zSql,0)!=0
8864 return rc;
8866 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
8867 ** is encountered.
8869 too_big:
8870 sqlite3VdbeError(p, "string or blob too big");
8871 rc = SQLITE_TOOBIG;
8872 goto abort_due_to_error;
8874 /* Jump to here if a malloc() fails.
8876 no_mem:
8877 sqlite3OomFault(db);
8878 sqlite3VdbeError(p, "out of memory");
8879 rc = SQLITE_NOMEM_BKPT;
8880 goto abort_due_to_error;
8882 /* Jump to here if the sqlite3_interrupt() API sets the interrupt
8883 ** flag.
8885 abort_due_to_interrupt:
8886 assert( AtomicLoad(&db->u1.isInterrupted) );
8887 rc = SQLITE_INTERRUPT;
8888 goto abort_due_to_error;