4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
15 #include "sqliteInt.h"
17 /* Forward declarations */
18 static void exprCodeBetween(Parse
*,Expr
*,int,void(*)(Parse
*,Expr
*,int,int),int);
19 static int exprCodeVector(Parse
*pParse
, Expr
*p
, int *piToFree
);
22 ** Return the affinity character for a single column of a table.
24 char sqlite3TableColumnAffinity(Table
*pTab
, int iCol
){
25 assert( iCol
<pTab
->nCol
);
26 return iCol
>=0 ? pTab
->aCol
[iCol
].affinity
: SQLITE_AFF_INTEGER
;
30 ** Return the 'affinity' of the expression pExpr if any.
32 ** If pExpr is a column, a reference to a column via an 'AS' alias,
33 ** or a sub-select with a column as the return value, then the
34 ** affinity of that column is returned. Otherwise, 0x00 is returned,
35 ** indicating no affinity for the expression.
37 ** i.e. the WHERE clause expressions in the following statements all
40 ** CREATE TABLE t1(a);
41 ** SELECT * FROM t1 WHERE a;
42 ** SELECT a AS b FROM t1 WHERE b;
43 ** SELECT * FROM t1 WHERE (select a from t1);
45 char sqlite3ExprAffinity(const Expr
*pExpr
){
47 while( ExprHasProperty(pExpr
, EP_Skip
) ){
48 assert( pExpr
->op
==TK_COLLATE
|| pExpr
->op
==TK_IF_NULL_ROW
);
54 assert( pExpr
->flags
&EP_xIsSelect
);
55 assert( pExpr
->x
.pSelect
!=0 );
56 assert( pExpr
->x
.pSelect
->pEList
!=0 );
57 assert( pExpr
->x
.pSelect
->pEList
->a
[0].pExpr
!=0 );
58 return sqlite3ExprAffinity(pExpr
->x
.pSelect
->pEList
->a
[0].pExpr
);
60 if( op
==TK_REGISTER
) op
= pExpr
->op2
;
61 #ifndef SQLITE_OMIT_CAST
63 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
64 return sqlite3AffinityType(pExpr
->u
.zToken
, 0);
67 if( (op
==TK_AGG_COLUMN
|| op
==TK_COLUMN
) && pExpr
->y
.pTab
){
68 return sqlite3TableColumnAffinity(pExpr
->y
.pTab
, pExpr
->iColumn
);
70 if( op
==TK_SELECT_COLUMN
){
71 assert( pExpr
->pLeft
->flags
&EP_xIsSelect
);
72 return sqlite3ExprAffinity(
73 pExpr
->pLeft
->x
.pSelect
->pEList
->a
[pExpr
->iColumn
].pExpr
77 return sqlite3ExprAffinity(pExpr
->x
.pList
->a
[0].pExpr
);
79 return pExpr
->affExpr
;
83 ** Set the collating sequence for expression pExpr to be the collating
84 ** sequence named by pToken. Return a pointer to a new Expr node that
85 ** implements the COLLATE operator.
87 ** If a memory allocation error occurs, that fact is recorded in pParse->db
88 ** and the pExpr parameter is returned unchanged.
90 Expr
*sqlite3ExprAddCollateToken(
91 Parse
*pParse
, /* Parsing context */
92 Expr
*pExpr
, /* Add the "COLLATE" clause to this expression */
93 const Token
*pCollName
, /* Name of collating sequence */
94 int dequote
/* True to dequote pCollName */
97 Expr
*pNew
= sqlite3ExprAlloc(pParse
->db
, TK_COLLATE
, pCollName
, dequote
);
100 pNew
->flags
|= EP_Collate
|EP_Skip
;
106 Expr
*sqlite3ExprAddCollateString(Parse
*pParse
, Expr
*pExpr
, const char *zC
){
109 sqlite3TokenInit(&s
, (char*)zC
);
110 return sqlite3ExprAddCollateToken(pParse
, pExpr
, &s
, 0);
114 ** Skip over any TK_COLLATE operators.
116 Expr
*sqlite3ExprSkipCollate(Expr
*pExpr
){
117 while( pExpr
&& ExprHasProperty(pExpr
, EP_Skip
) ){
118 assert( pExpr
->op
==TK_COLLATE
|| pExpr
->op
==TK_IF_NULL_ROW
);
119 pExpr
= pExpr
->pLeft
;
125 ** Skip over any TK_COLLATE operators and/or any unlikely()
126 ** or likelihood() or likely() functions at the root of an
129 Expr
*sqlite3ExprSkipCollateAndLikely(Expr
*pExpr
){
130 while( pExpr
&& ExprHasProperty(pExpr
, EP_Skip
|EP_Unlikely
) ){
131 if( ExprHasProperty(pExpr
, EP_Unlikely
) ){
132 assert( !ExprHasProperty(pExpr
, EP_xIsSelect
) );
133 assert( pExpr
->x
.pList
->nExpr
>0 );
134 assert( pExpr
->op
==TK_FUNCTION
);
135 pExpr
= pExpr
->x
.pList
->a
[0].pExpr
;
137 assert( pExpr
->op
==TK_COLLATE
|| pExpr
->op
==TK_IF_NULL_ROW
);
138 pExpr
= pExpr
->pLeft
;
145 ** Return the collation sequence for the expression pExpr. If
146 ** there is no defined collating sequence, return NULL.
148 ** See also: sqlite3ExprNNCollSeq()
150 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the
151 ** default collation if pExpr has no defined collation.
153 ** The collating sequence might be determined by a COLLATE operator
154 ** or by the presence of a column with a defined collating sequence.
155 ** COLLATE operators take first precedence. Left operands take
156 ** precedence over right operands.
158 CollSeq
*sqlite3ExprCollSeq(Parse
*pParse
, const Expr
*pExpr
){
159 sqlite3
*db
= pParse
->db
;
161 const Expr
*p
= pExpr
;
164 if( op
==TK_REGISTER
) op
= p
->op2
;
165 if( (op
==TK_AGG_COLUMN
|| op
==TK_COLUMN
|| op
==TK_TRIGGER
)
168 /* op==TK_REGISTER && p->y.pTab!=0 happens when pExpr was originally
169 ** a TK_COLUMN but was previously evaluated and cached in a register */
172 const char *zColl
= p
->y
.pTab
->aCol
[j
].zColl
;
173 pColl
= sqlite3FindCollSeq(db
, ENC(db
), zColl
, 0);
177 if( op
==TK_CAST
|| op
==TK_UPLUS
){
182 p
= p
->x
.pList
->a
[0].pExpr
;
185 if( op
==TK_COLLATE
){
186 pColl
= sqlite3GetCollSeq(pParse
, ENC(db
), 0, p
->u
.zToken
);
189 if( p
->flags
& EP_Collate
){
190 if( p
->pLeft
&& (p
->pLeft
->flags
& EP_Collate
)!=0 ){
193 Expr
*pNext
= p
->pRight
;
194 /* The Expr.x union is never used at the same time as Expr.pRight */
195 assert( p
->x
.pList
==0 || p
->pRight
==0 );
198 && ALWAYS(!ExprHasProperty(p
, EP_xIsSelect
))
201 for(i
=0; ALWAYS(i
<p
->x
.pList
->nExpr
); i
++){
202 if( ExprHasProperty(p
->x
.pList
->a
[i
].pExpr
, EP_Collate
) ){
203 pNext
= p
->x
.pList
->a
[i
].pExpr
;
214 if( sqlite3CheckCollSeq(pParse
, pColl
) ){
221 ** Return the collation sequence for the expression pExpr. If
222 ** there is no defined collating sequence, return a pointer to the
223 ** defautl collation sequence.
225 ** See also: sqlite3ExprCollSeq()
227 ** The sqlite3ExprCollSeq() routine works the same except that it
228 ** returns NULL if there is no defined collation.
230 CollSeq
*sqlite3ExprNNCollSeq(Parse
*pParse
, const Expr
*pExpr
){
231 CollSeq
*p
= sqlite3ExprCollSeq(pParse
, pExpr
);
232 if( p
==0 ) p
= pParse
->db
->pDfltColl
;
238 ** Return TRUE if the two expressions have equivalent collating sequences.
240 int sqlite3ExprCollSeqMatch(Parse
*pParse
, const Expr
*pE1
, const Expr
*pE2
){
241 CollSeq
*pColl1
= sqlite3ExprNNCollSeq(pParse
, pE1
);
242 CollSeq
*pColl2
= sqlite3ExprNNCollSeq(pParse
, pE2
);
243 return sqlite3StrICmp(pColl1
->zName
, pColl2
->zName
)==0;
247 ** pExpr is an operand of a comparison operator. aff2 is the
248 ** type affinity of the other operand. This routine returns the
249 ** type affinity that should be used for the comparison operator.
251 char sqlite3CompareAffinity(const Expr
*pExpr
, char aff2
){
252 char aff1
= sqlite3ExprAffinity(pExpr
);
253 if( aff1
>SQLITE_AFF_NONE
&& aff2
>SQLITE_AFF_NONE
){
254 /* Both sides of the comparison are columns. If one has numeric
255 ** affinity, use that. Otherwise use no affinity.
257 if( sqlite3IsNumericAffinity(aff1
) || sqlite3IsNumericAffinity(aff2
) ){
258 return SQLITE_AFF_NUMERIC
;
260 return SQLITE_AFF_BLOB
;
263 /* One side is a column, the other is not. Use the columns affinity. */
264 assert( aff1
<=SQLITE_AFF_NONE
|| aff2
<=SQLITE_AFF_NONE
);
265 return (aff1
<=SQLITE_AFF_NONE
? aff2
: aff1
) | SQLITE_AFF_NONE
;
270 ** pExpr is a comparison operator. Return the type affinity that should
271 ** be applied to both operands prior to doing the comparison.
273 static char comparisonAffinity(const Expr
*pExpr
){
275 assert( pExpr
->op
==TK_EQ
|| pExpr
->op
==TK_IN
|| pExpr
->op
==TK_LT
||
276 pExpr
->op
==TK_GT
|| pExpr
->op
==TK_GE
|| pExpr
->op
==TK_LE
||
277 pExpr
->op
==TK_NE
|| pExpr
->op
==TK_IS
|| pExpr
->op
==TK_ISNOT
);
278 assert( pExpr
->pLeft
);
279 aff
= sqlite3ExprAffinity(pExpr
->pLeft
);
281 aff
= sqlite3CompareAffinity(pExpr
->pRight
, aff
);
282 }else if( ExprHasProperty(pExpr
, EP_xIsSelect
) ){
283 aff
= sqlite3CompareAffinity(pExpr
->x
.pSelect
->pEList
->a
[0].pExpr
, aff
);
285 aff
= SQLITE_AFF_BLOB
;
291 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
292 ** idx_affinity is the affinity of an indexed column. Return true
293 ** if the index with affinity idx_affinity may be used to implement
294 ** the comparison in pExpr.
296 int sqlite3IndexAffinityOk(const Expr
*pExpr
, char idx_affinity
){
297 char aff
= comparisonAffinity(pExpr
);
298 if( aff
<SQLITE_AFF_TEXT
){
301 if( aff
==SQLITE_AFF_TEXT
){
302 return idx_affinity
==SQLITE_AFF_TEXT
;
304 return sqlite3IsNumericAffinity(idx_affinity
);
308 ** Return the P5 value that should be used for a binary comparison
309 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
311 static u8
binaryCompareP5(
312 const Expr
*pExpr1
, /* Left operand */
313 const Expr
*pExpr2
, /* Right operand */
314 int jumpIfNull
/* Extra flags added to P5 */
316 u8 aff
= (char)sqlite3ExprAffinity(pExpr2
);
317 aff
= (u8
)sqlite3CompareAffinity(pExpr1
, aff
) | (u8
)jumpIfNull
;
322 ** Return a pointer to the collation sequence that should be used by
323 ** a binary comparison operator comparing pLeft and pRight.
325 ** If the left hand expression has a collating sequence type, then it is
326 ** used. Otherwise the collation sequence for the right hand expression
327 ** is used, or the default (BINARY) if neither expression has a collating
330 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
331 ** it is not considered.
333 CollSeq
*sqlite3BinaryCompareCollSeq(
340 if( pLeft
->flags
& EP_Collate
){
341 pColl
= sqlite3ExprCollSeq(pParse
, pLeft
);
342 }else if( pRight
&& (pRight
->flags
& EP_Collate
)!=0 ){
343 pColl
= sqlite3ExprCollSeq(pParse
, pRight
);
345 pColl
= sqlite3ExprCollSeq(pParse
, pLeft
);
347 pColl
= sqlite3ExprCollSeq(pParse
, pRight
);
353 /* Expresssion p is a comparison operator. Return a collation sequence
354 ** appropriate for the comparison operator.
356 ** This is normally just a wrapper around sqlite3BinaryCompareCollSeq().
357 ** However, if the OP_Commuted flag is set, then the order of the operands
358 ** is reversed in the sqlite3BinaryCompareCollSeq() call so that the
359 ** correct collating sequence is found.
361 CollSeq
*sqlite3ExprCompareCollSeq(Parse
*pParse
, const Expr
*p
){
362 if( ExprHasProperty(p
, EP_Commuted
) ){
363 return sqlite3BinaryCompareCollSeq(pParse
, p
->pRight
, p
->pLeft
);
365 return sqlite3BinaryCompareCollSeq(pParse
, p
->pLeft
, p
->pRight
);
370 ** Generate code for a comparison operator.
372 static int codeCompare(
373 Parse
*pParse
, /* The parsing (and code generating) context */
374 Expr
*pLeft
, /* The left operand */
375 Expr
*pRight
, /* The right operand */
376 int opcode
, /* The comparison opcode */
377 int in1
, int in2
, /* Register holding operands */
378 int dest
, /* Jump here if true. */
379 int jumpIfNull
, /* If true, jump if either operand is NULL */
380 int isCommuted
/* The comparison has been commuted */
386 if( pParse
->nErr
) return 0;
388 p4
= sqlite3BinaryCompareCollSeq(pParse
, pRight
, pLeft
);
390 p4
= sqlite3BinaryCompareCollSeq(pParse
, pLeft
, pRight
);
392 p5
= binaryCompareP5(pLeft
, pRight
, jumpIfNull
);
393 addr
= sqlite3VdbeAddOp4(pParse
->pVdbe
, opcode
, in2
, dest
, in1
,
394 (void*)p4
, P4_COLLSEQ
);
395 sqlite3VdbeChangeP5(pParse
->pVdbe
, (u8
)p5
);
400 ** Return true if expression pExpr is a vector, or false otherwise.
402 ** A vector is defined as any expression that results in two or more
403 ** columns of result. Every TK_VECTOR node is an vector because the
404 ** parser will not generate a TK_VECTOR with fewer than two entries.
405 ** But a TK_SELECT might be either a vector or a scalar. It is only
406 ** considered a vector if it has two or more result columns.
408 int sqlite3ExprIsVector(Expr
*pExpr
){
409 return sqlite3ExprVectorSize(pExpr
)>1;
413 ** If the expression passed as the only argument is of type TK_VECTOR
414 ** return the number of expressions in the vector. Or, if the expression
415 ** is a sub-select, return the number of columns in the sub-select. For
416 ** any other type of expression, return 1.
418 int sqlite3ExprVectorSize(Expr
*pExpr
){
420 if( op
==TK_REGISTER
) op
= pExpr
->op2
;
422 return pExpr
->x
.pList
->nExpr
;
423 }else if( op
==TK_SELECT
){
424 return pExpr
->x
.pSelect
->pEList
->nExpr
;
431 ** Return a pointer to a subexpression of pVector that is the i-th
432 ** column of the vector (numbered starting with 0). The caller must
433 ** ensure that i is within range.
435 ** If pVector is really a scalar (and "scalar" here includes subqueries
436 ** that return a single column!) then return pVector unmodified.
438 ** pVector retains ownership of the returned subexpression.
440 ** If the vector is a (SELECT ...) then the expression returned is
441 ** just the expression for the i-th term of the result set, and may
442 ** not be ready for evaluation because the table cursor has not yet
445 Expr
*sqlite3VectorFieldSubexpr(Expr
*pVector
, int i
){
446 assert( i
<sqlite3ExprVectorSize(pVector
) );
447 if( sqlite3ExprIsVector(pVector
) ){
448 assert( pVector
->op2
==0 || pVector
->op
==TK_REGISTER
);
449 if( pVector
->op
==TK_SELECT
|| pVector
->op2
==TK_SELECT
){
450 return pVector
->x
.pSelect
->pEList
->a
[i
].pExpr
;
452 return pVector
->x
.pList
->a
[i
].pExpr
;
459 ** Compute and return a new Expr object which when passed to
460 ** sqlite3ExprCode() will generate all necessary code to compute
461 ** the iField-th column of the vector expression pVector.
463 ** It is ok for pVector to be a scalar (as long as iField==0).
464 ** In that case, this routine works like sqlite3ExprDup().
466 ** The caller owns the returned Expr object and is responsible for
467 ** ensuring that the returned value eventually gets freed.
469 ** The caller retains ownership of pVector. If pVector is a TK_SELECT,
470 ** then the returned object will reference pVector and so pVector must remain
471 ** valid for the life of the returned object. If pVector is a TK_VECTOR
472 ** or a scalar expression, then it can be deleted as soon as this routine
475 ** A trick to cause a TK_SELECT pVector to be deleted together with
476 ** the returned Expr object is to attach the pVector to the pRight field
477 ** of the returned TK_SELECT_COLUMN Expr object.
479 Expr
*sqlite3ExprForVectorField(
480 Parse
*pParse
, /* Parsing context */
481 Expr
*pVector
, /* The vector. List of expressions or a sub-SELECT */
482 int iField
/* Which column of the vector to return */
485 if( pVector
->op
==TK_SELECT
){
486 assert( pVector
->flags
& EP_xIsSelect
);
487 /* The TK_SELECT_COLUMN Expr node:
489 ** pLeft: pVector containing TK_SELECT. Not deleted.
490 ** pRight: not used. But recursively deleted.
491 ** iColumn: Index of a column in pVector
492 ** iTable: 0 or the number of columns on the LHS of an assignment
493 ** pLeft->iTable: First in an array of register holding result, or 0
494 ** if the result is not yet computed.
496 ** sqlite3ExprDelete() specifically skips the recursive delete of
497 ** pLeft on TK_SELECT_COLUMN nodes. But pRight is followed, so pVector
498 ** can be attached to pRight to cause this node to take ownership of
499 ** pVector. Typically there will be multiple TK_SELECT_COLUMN nodes
500 ** with the same pLeft pointer to the pVector, but only one of them
501 ** will own the pVector.
503 pRet
= sqlite3PExpr(pParse
, TK_SELECT_COLUMN
, 0, 0);
505 pRet
->iColumn
= iField
;
506 pRet
->pLeft
= pVector
;
508 assert( pRet
==0 || pRet
->iTable
==0 );
510 if( pVector
->op
==TK_VECTOR
) pVector
= pVector
->x
.pList
->a
[iField
].pExpr
;
511 pRet
= sqlite3ExprDup(pParse
->db
, pVector
, 0);
512 sqlite3RenameTokenRemap(pParse
, pRet
, pVector
);
518 ** If expression pExpr is of type TK_SELECT, generate code to evaluate
519 ** it. Return the register in which the result is stored (or, if the
520 ** sub-select returns more than one column, the first in an array
521 ** of registers in which the result is stored).
523 ** If pExpr is not a TK_SELECT expression, return 0.
525 static int exprCodeSubselect(Parse
*pParse
, Expr
*pExpr
){
527 #ifndef SQLITE_OMIT_SUBQUERY
528 if( pExpr
->op
==TK_SELECT
){
529 reg
= sqlite3CodeSubselect(pParse
, pExpr
);
536 ** Argument pVector points to a vector expression - either a TK_VECTOR
537 ** or TK_SELECT that returns more than one column. This function returns
538 ** the register number of a register that contains the value of
539 ** element iField of the vector.
541 ** If pVector is a TK_SELECT expression, then code for it must have
542 ** already been generated using the exprCodeSubselect() routine. In this
543 ** case parameter regSelect should be the first in an array of registers
544 ** containing the results of the sub-select.
546 ** If pVector is of type TK_VECTOR, then code for the requested field
547 ** is generated. In this case (*pRegFree) may be set to the number of
548 ** a temporary register to be freed by the caller before returning.
550 ** Before returning, output parameter (*ppExpr) is set to point to the
551 ** Expr object corresponding to element iElem of the vector.
553 static int exprVectorRegister(
554 Parse
*pParse
, /* Parse context */
555 Expr
*pVector
, /* Vector to extract element from */
556 int iField
, /* Field to extract from pVector */
557 int regSelect
, /* First in array of registers */
558 Expr
**ppExpr
, /* OUT: Expression element */
559 int *pRegFree
/* OUT: Temp register to free */
562 assert( op
==TK_VECTOR
|| op
==TK_REGISTER
|| op
==TK_SELECT
);
563 if( op
==TK_REGISTER
){
564 *ppExpr
= sqlite3VectorFieldSubexpr(pVector
, iField
);
565 return pVector
->iTable
+iField
;
568 *ppExpr
= pVector
->x
.pSelect
->pEList
->a
[iField
].pExpr
;
569 return regSelect
+iField
;
571 *ppExpr
= pVector
->x
.pList
->a
[iField
].pExpr
;
572 return sqlite3ExprCodeTemp(pParse
, *ppExpr
, pRegFree
);
576 ** Expression pExpr is a comparison between two vector values. Compute
577 ** the result of the comparison (1, 0, or NULL) and write that
578 ** result into register dest.
580 ** The caller must satisfy the following preconditions:
582 ** if pExpr->op==TK_IS: op==TK_EQ and p5==SQLITE_NULLEQ
583 ** if pExpr->op==TK_ISNOT: op==TK_NE and p5==SQLITE_NULLEQ
584 ** otherwise: op==pExpr->op and p5==0
586 static void codeVectorCompare(
587 Parse
*pParse
, /* Code generator context */
588 Expr
*pExpr
, /* The comparison operation */
589 int dest
, /* Write results into this register */
590 u8 op
, /* Comparison operator */
591 u8 p5
/* SQLITE_NULLEQ or zero */
593 Vdbe
*v
= pParse
->pVdbe
;
594 Expr
*pLeft
= pExpr
->pLeft
;
595 Expr
*pRight
= pExpr
->pRight
;
596 int nLeft
= sqlite3ExprVectorSize(pLeft
);
601 int addrDone
= sqlite3VdbeMakeLabel(pParse
);
602 int isCommuted
= ExprHasProperty(pExpr
,EP_Commuted
);
604 assert( !ExprHasVVAProperty(pExpr
,EP_Immutable
) );
605 if( pParse
->nErr
) return;
606 if( nLeft
!=sqlite3ExprVectorSize(pRight
) ){
607 sqlite3ErrorMsg(pParse
, "row value misused");
610 assert( pExpr
->op
==TK_EQ
|| pExpr
->op
==TK_NE
611 || pExpr
->op
==TK_IS
|| pExpr
->op
==TK_ISNOT
612 || pExpr
->op
==TK_LT
|| pExpr
->op
==TK_GT
613 || pExpr
->op
==TK_LE
|| pExpr
->op
==TK_GE
615 assert( pExpr
->op
==op
|| (pExpr
->op
==TK_IS
&& op
==TK_EQ
)
616 || (pExpr
->op
==TK_ISNOT
&& op
==TK_NE
) );
617 assert( p5
==0 || pExpr
->op
!=op
);
618 assert( p5
==SQLITE_NULLEQ
|| pExpr
->op
==op
);
620 p5
|= SQLITE_STOREP2
;
621 if( opx
==TK_LE
) opx
= TK_LT
;
622 if( opx
==TK_GE
) opx
= TK_GT
;
624 regLeft
= exprCodeSubselect(pParse
, pLeft
);
625 regRight
= exprCodeSubselect(pParse
, pRight
);
627 for(i
=0; 1 /*Loop exits by "break"*/; i
++){
628 int regFree1
= 0, regFree2
= 0;
631 assert( i
>=0 && i
<nLeft
);
632 r1
= exprVectorRegister(pParse
, pLeft
, i
, regLeft
, &pL
, ®Free1
);
633 r2
= exprVectorRegister(pParse
, pRight
, i
, regRight
, &pR
, ®Free2
);
634 codeCompare(pParse
, pL
, pR
, opx
, r1
, r2
, dest
, p5
, isCommuted
);
635 testcase(op
==OP_Lt
); VdbeCoverageIf(v
,op
==OP_Lt
);
636 testcase(op
==OP_Le
); VdbeCoverageIf(v
,op
==OP_Le
);
637 testcase(op
==OP_Gt
); VdbeCoverageIf(v
,op
==OP_Gt
);
638 testcase(op
==OP_Ge
); VdbeCoverageIf(v
,op
==OP_Ge
);
639 testcase(op
==OP_Eq
); VdbeCoverageIf(v
,op
==OP_Eq
);
640 testcase(op
==OP_Ne
); VdbeCoverageIf(v
,op
==OP_Ne
);
641 sqlite3ReleaseTempReg(pParse
, regFree1
);
642 sqlite3ReleaseTempReg(pParse
, regFree2
);
647 sqlite3VdbeAddOp2(v
, OP_IfNot
, dest
, addrDone
); VdbeCoverage(v
);
648 p5
|= SQLITE_KEEPNULL
;
649 }else if( opx
==TK_NE
){
650 sqlite3VdbeAddOp2(v
, OP_If
, dest
, addrDone
); VdbeCoverage(v
);
651 p5
|= SQLITE_KEEPNULL
;
653 assert( op
==TK_LT
|| op
==TK_GT
|| op
==TK_LE
|| op
==TK_GE
);
654 sqlite3VdbeAddOp2(v
, OP_ElseNotEq
, 0, addrDone
);
655 VdbeCoverageIf(v
, op
==TK_LT
);
656 VdbeCoverageIf(v
, op
==TK_GT
);
657 VdbeCoverageIf(v
, op
==TK_LE
);
658 VdbeCoverageIf(v
, op
==TK_GE
);
659 if( i
==nLeft
-2 ) opx
= op
;
662 sqlite3VdbeResolveLabel(v
, addrDone
);
665 #if SQLITE_MAX_EXPR_DEPTH>0
667 ** Check that argument nHeight is less than or equal to the maximum
668 ** expression depth allowed. If it is not, leave an error message in
671 int sqlite3ExprCheckHeight(Parse
*pParse
, int nHeight
){
673 int mxHeight
= pParse
->db
->aLimit
[SQLITE_LIMIT_EXPR_DEPTH
];
674 if( nHeight
>mxHeight
){
675 sqlite3ErrorMsg(pParse
,
676 "Expression tree is too large (maximum depth %d)", mxHeight
683 /* The following three functions, heightOfExpr(), heightOfExprList()
684 ** and heightOfSelect(), are used to determine the maximum height
685 ** of any expression tree referenced by the structure passed as the
688 ** If this maximum height is greater than the current value pointed
689 ** to by pnHeight, the second parameter, then set *pnHeight to that
692 static void heightOfExpr(Expr
*p
, int *pnHeight
){
694 if( p
->nHeight
>*pnHeight
){
695 *pnHeight
= p
->nHeight
;
699 static void heightOfExprList(ExprList
*p
, int *pnHeight
){
702 for(i
=0; i
<p
->nExpr
; i
++){
703 heightOfExpr(p
->a
[i
].pExpr
, pnHeight
);
707 static void heightOfSelect(Select
*pSelect
, int *pnHeight
){
709 for(p
=pSelect
; p
; p
=p
->pPrior
){
710 heightOfExpr(p
->pWhere
, pnHeight
);
711 heightOfExpr(p
->pHaving
, pnHeight
);
712 heightOfExpr(p
->pLimit
, pnHeight
);
713 heightOfExprList(p
->pEList
, pnHeight
);
714 heightOfExprList(p
->pGroupBy
, pnHeight
);
715 heightOfExprList(p
->pOrderBy
, pnHeight
);
720 ** Set the Expr.nHeight variable in the structure passed as an
721 ** argument. An expression with no children, Expr.pList or
722 ** Expr.pSelect member has a height of 1. Any other expression
723 ** has a height equal to the maximum height of any other
724 ** referenced Expr plus one.
726 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags,
729 static void exprSetHeight(Expr
*p
){
731 heightOfExpr(p
->pLeft
, &nHeight
);
732 heightOfExpr(p
->pRight
, &nHeight
);
733 if( ExprHasProperty(p
, EP_xIsSelect
) ){
734 heightOfSelect(p
->x
.pSelect
, &nHeight
);
735 }else if( p
->x
.pList
){
736 heightOfExprList(p
->x
.pList
, &nHeight
);
737 p
->flags
|= EP_Propagate
& sqlite3ExprListFlags(p
->x
.pList
);
739 p
->nHeight
= nHeight
+ 1;
743 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
744 ** the height is greater than the maximum allowed expression depth,
745 ** leave an error in pParse.
747 ** Also propagate all EP_Propagate flags from the Expr.x.pList into
750 void sqlite3ExprSetHeightAndFlags(Parse
*pParse
, Expr
*p
){
751 if( pParse
->nErr
) return;
753 sqlite3ExprCheckHeight(pParse
, p
->nHeight
);
757 ** Return the maximum height of any expression tree referenced
758 ** by the select statement passed as an argument.
760 int sqlite3SelectExprHeight(Select
*p
){
762 heightOfSelect(p
, &nHeight
);
765 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */
767 ** Propagate all EP_Propagate flags from the Expr.x.pList into
770 void sqlite3ExprSetHeightAndFlags(Parse
*pParse
, Expr
*p
){
771 if( p
&& p
->x
.pList
&& !ExprHasProperty(p
, EP_xIsSelect
) ){
772 p
->flags
|= EP_Propagate
& sqlite3ExprListFlags(p
->x
.pList
);
775 #define exprSetHeight(y)
776 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
779 ** This routine is the core allocator for Expr nodes.
781 ** Construct a new expression node and return a pointer to it. Memory
782 ** for this node and for the pToken argument is a single allocation
783 ** obtained from sqlite3DbMalloc(). The calling function
784 ** is responsible for making sure the node eventually gets freed.
786 ** If dequote is true, then the token (if it exists) is dequoted.
787 ** If dequote is false, no dequoting is performed. The deQuote
788 ** parameter is ignored if pToken is NULL or if the token does not
789 ** appear to be quoted. If the quotes were of the form "..." (double-quotes)
790 ** then the EP_DblQuoted flag is set on the expression node.
792 ** Special case: If op==TK_INTEGER and pToken points to a string that
793 ** can be translated into a 32-bit integer, then the token is not
794 ** stored in u.zToken. Instead, the integer values is written
795 ** into u.iValue and the EP_IntValue flag is set. No extra storage
796 ** is allocated to hold the integer text and the dequote flag is ignored.
798 Expr
*sqlite3ExprAlloc(
799 sqlite3
*db
, /* Handle for sqlite3DbMallocRawNN() */
800 int op
, /* Expression opcode */
801 const Token
*pToken
, /* Token argument. Might be NULL */
802 int dequote
/* True to dequote */
810 if( op
!=TK_INTEGER
|| pToken
->z
==0
811 || sqlite3GetInt32(pToken
->z
, &iValue
)==0 ){
812 nExtra
= pToken
->n
+1;
816 pNew
= sqlite3DbMallocRawNN(db
, sizeof(Expr
)+nExtra
);
818 memset(pNew
, 0, sizeof(Expr
));
823 pNew
->flags
|= EP_IntValue
|EP_Leaf
|(iValue
?EP_IsTrue
:EP_IsFalse
);
824 pNew
->u
.iValue
= iValue
;
826 pNew
->u
.zToken
= (char*)&pNew
[1];
827 assert( pToken
->z
!=0 || pToken
->n
==0 );
828 if( pToken
->n
) memcpy(pNew
->u
.zToken
, pToken
->z
, pToken
->n
);
829 pNew
->u
.zToken
[pToken
->n
] = 0;
830 if( dequote
&& sqlite3Isquote(pNew
->u
.zToken
[0]) ){
831 sqlite3DequoteExpr(pNew
);
835 #if SQLITE_MAX_EXPR_DEPTH>0
843 ** Allocate a new expression node from a zero-terminated token that has
844 ** already been dequoted.
847 sqlite3
*db
, /* Handle for sqlite3DbMallocZero() (may be null) */
848 int op
, /* Expression opcode */
849 const char *zToken
/* Token argument. Might be NULL */
853 x
.n
= sqlite3Strlen30(zToken
);
854 return sqlite3ExprAlloc(db
, op
, &x
, 0);
858 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
860 ** If pRoot==NULL that means that a memory allocation error has occurred.
861 ** In that case, delete the subtrees pLeft and pRight.
863 void sqlite3ExprAttachSubtrees(
870 assert( db
->mallocFailed
);
871 sqlite3ExprDelete(db
, pLeft
);
872 sqlite3ExprDelete(db
, pRight
);
875 pRoot
->pRight
= pRight
;
876 pRoot
->flags
|= EP_Propagate
& pRight
->flags
;
879 pRoot
->pLeft
= pLeft
;
880 pRoot
->flags
|= EP_Propagate
& pLeft
->flags
;
882 exprSetHeight(pRoot
);
887 ** Allocate an Expr node which joins as many as two subtrees.
889 ** One or both of the subtrees can be NULL. Return a pointer to the new
890 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed,
891 ** free the subtrees and return NULL.
894 Parse
*pParse
, /* Parsing context */
895 int op
, /* Expression opcode */
896 Expr
*pLeft
, /* Left operand */
897 Expr
*pRight
/* Right operand */
900 p
= sqlite3DbMallocRawNN(pParse
->db
, sizeof(Expr
));
902 memset(p
, 0, sizeof(Expr
));
905 sqlite3ExprAttachSubtrees(pParse
->db
, p
, pLeft
, pRight
);
906 sqlite3ExprCheckHeight(pParse
, p
->nHeight
);
908 sqlite3ExprDelete(pParse
->db
, pLeft
);
909 sqlite3ExprDelete(pParse
->db
, pRight
);
915 ** Add pSelect to the Expr.x.pSelect field. Or, if pExpr is NULL (due
916 ** do a memory allocation failure) then delete the pSelect object.
918 void sqlite3PExprAddSelect(Parse
*pParse
, Expr
*pExpr
, Select
*pSelect
){
920 pExpr
->x
.pSelect
= pSelect
;
921 ExprSetProperty(pExpr
, EP_xIsSelect
|EP_Subquery
);
922 sqlite3ExprSetHeightAndFlags(pParse
, pExpr
);
924 assert( pParse
->db
->mallocFailed
);
925 sqlite3SelectDelete(pParse
->db
, pSelect
);
931 ** Join two expressions using an AND operator. If either expression is
932 ** NULL, then just return the other expression.
934 ** If one side or the other of the AND is known to be false, then instead
935 ** of returning an AND expression, just return a constant expression with
938 Expr
*sqlite3ExprAnd(Parse
*pParse
, Expr
*pLeft
, Expr
*pRight
){
939 sqlite3
*db
= pParse
->db
;
942 }else if( pRight
==0 ){
944 }else if( (ExprAlwaysFalse(pLeft
) || ExprAlwaysFalse(pRight
))
947 sqlite3ExprDelete(db
, pLeft
);
948 sqlite3ExprDelete(db
, pRight
);
949 return sqlite3Expr(db
, TK_INTEGER
, "0");
951 return sqlite3PExpr(pParse
, TK_AND
, pLeft
, pRight
);
956 ** Construct a new expression node for a function with multiple
959 Expr
*sqlite3ExprFunction(
960 Parse
*pParse
, /* Parsing context */
961 ExprList
*pList
, /* Argument list */
962 Token
*pToken
, /* Name of the function */
963 int eDistinct
/* SF_Distinct or SF_ALL or 0 */
966 sqlite3
*db
= pParse
->db
;
968 pNew
= sqlite3ExprAlloc(db
, TK_FUNCTION
, pToken
, 1);
970 sqlite3ExprListDelete(db
, pList
); /* Avoid memory leak when malloc fails */
973 if( pList
&& pList
->nExpr
> pParse
->db
->aLimit
[SQLITE_LIMIT_FUNCTION_ARG
] ){
974 sqlite3ErrorMsg(pParse
, "too many arguments on function %T", pToken
);
976 pNew
->x
.pList
= pList
;
977 ExprSetProperty(pNew
, EP_HasFunc
);
978 assert( !ExprHasProperty(pNew
, EP_xIsSelect
) );
979 sqlite3ExprSetHeightAndFlags(pParse
, pNew
);
980 if( eDistinct
==SF_Distinct
) ExprSetProperty(pNew
, EP_Distinct
);
985 ** Check to see if a function is usable according to current access
988 ** SQLITE_FUNC_DIRECT - Only usable from top-level SQL
990 ** SQLITE_FUNC_UNSAFE - Usable if TRUSTED_SCHEMA or from
993 ** If the function is not usable, create an error.
995 void sqlite3ExprFunctionUsable(
996 Parse
*pParse
, /* Parsing and code generating context */
997 Expr
*pExpr
, /* The function invocation */
998 FuncDef
*pDef
/* The function being invoked */
1000 assert( !IN_RENAME_OBJECT
);
1001 assert( (pDef
->funcFlags
& (SQLITE_FUNC_DIRECT
|SQLITE_FUNC_UNSAFE
))!=0 );
1002 if( ExprHasProperty(pExpr
, EP_FromDDL
) ){
1003 if( (pDef
->funcFlags
& SQLITE_FUNC_DIRECT
)!=0
1004 || (pParse
->db
->flags
& SQLITE_TrustedSchema
)==0
1006 /* Functions prohibited in triggers and views if:
1007 ** (1) tagged with SQLITE_DIRECTONLY
1008 ** (2) not tagged with SQLITE_INNOCUOUS (which means it
1009 ** is tagged with SQLITE_FUNC_UNSAFE) and
1010 ** SQLITE_DBCONFIG_TRUSTED_SCHEMA is off (meaning
1011 ** that the schema is possibly tainted).
1013 sqlite3ErrorMsg(pParse
, "unsafe use of %s()", pDef
->zName
);
1019 ** Assign a variable number to an expression that encodes a wildcard
1020 ** in the original SQL statement.
1022 ** Wildcards consisting of a single "?" are assigned the next sequential
1025 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make
1026 ** sure "nnn" is not too big to avoid a denial of service attack when
1027 ** the SQL statement comes from an external source.
1029 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
1030 ** as the previous instance of the same wildcard. Or if this is the first
1031 ** instance of the wildcard, the next sequential variable number is
1034 void sqlite3ExprAssignVarNumber(Parse
*pParse
, Expr
*pExpr
, u32 n
){
1035 sqlite3
*db
= pParse
->db
;
1039 if( pExpr
==0 ) return;
1040 assert( !ExprHasProperty(pExpr
, EP_IntValue
|EP_Reduced
|EP_TokenOnly
) );
1041 z
= pExpr
->u
.zToken
;
1044 assert( n
==(u32
)sqlite3Strlen30(z
) );
1046 /* Wildcard of the form "?". Assign the next variable number */
1047 assert( z
[0]=='?' );
1048 x
= (ynVar
)(++pParse
->nVar
);
1052 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and
1053 ** use it as the variable number */
1056 if( n
==2 ){ /*OPTIMIZATION-IF-TRUE*/
1057 i
= z
[1]-'0'; /* The common case of ?N for a single digit N */
1060 bOk
= 0==sqlite3Atoi64(&z
[1], &i
, n
-1, SQLITE_UTF8
);
1064 testcase( i
==db
->aLimit
[SQLITE_LIMIT_VARIABLE_NUMBER
]-1 );
1065 testcase( i
==db
->aLimit
[SQLITE_LIMIT_VARIABLE_NUMBER
] );
1066 if( bOk
==0 || i
<1 || i
>db
->aLimit
[SQLITE_LIMIT_VARIABLE_NUMBER
] ){
1067 sqlite3ErrorMsg(pParse
, "variable number must be between ?1 and ?%d",
1068 db
->aLimit
[SQLITE_LIMIT_VARIABLE_NUMBER
]);
1072 if( x
>pParse
->nVar
){
1073 pParse
->nVar
= (int)x
;
1075 }else if( sqlite3VListNumToName(pParse
->pVList
, x
)==0 ){
1079 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable
1080 ** number as the prior appearance of the same name, or if the name
1081 ** has never appeared before, reuse the same variable number
1083 x
= (ynVar
)sqlite3VListNameToNum(pParse
->pVList
, z
, n
);
1085 x
= (ynVar
)(++pParse
->nVar
);
1090 pParse
->pVList
= sqlite3VListAdd(db
, pParse
->pVList
, z
, n
, x
);
1094 if( x
>db
->aLimit
[SQLITE_LIMIT_VARIABLE_NUMBER
] ){
1095 sqlite3ErrorMsg(pParse
, "too many SQL variables");
1100 ** Recursively delete an expression tree.
1102 static SQLITE_NOINLINE
void sqlite3ExprDeleteNN(sqlite3
*db
, Expr
*p
){
1104 /* Sanity check: Assert that the IntValue is non-negative if it exists */
1105 assert( !ExprHasProperty(p
, EP_IntValue
) || p
->u
.iValue
>=0 );
1107 assert( !ExprHasProperty(p
, EP_WinFunc
) || p
->y
.pWin
!=0 || db
->mallocFailed
);
1108 assert( p
->op
!=TK_FUNCTION
|| ExprHasProperty(p
, EP_TokenOnly
|EP_Reduced
)
1109 || p
->y
.pWin
==0 || ExprHasProperty(p
, EP_WinFunc
) );
1111 if( ExprHasProperty(p
, EP_Leaf
) && !ExprHasProperty(p
, EP_TokenOnly
) ){
1112 assert( p
->pLeft
==0 );
1113 assert( p
->pRight
==0 );
1114 assert( p
->x
.pSelect
==0 );
1117 if( !ExprHasProperty(p
, (EP_TokenOnly
|EP_Leaf
)) ){
1118 /* The Expr.x union is never used at the same time as Expr.pRight */
1119 assert( p
->x
.pList
==0 || p
->pRight
==0 );
1120 if( p
->pLeft
&& p
->op
!=TK_SELECT_COLUMN
) sqlite3ExprDeleteNN(db
, p
->pLeft
);
1122 assert( !ExprHasProperty(p
, EP_WinFunc
) );
1123 sqlite3ExprDeleteNN(db
, p
->pRight
);
1124 }else if( ExprHasProperty(p
, EP_xIsSelect
) ){
1125 assert( !ExprHasProperty(p
, EP_WinFunc
) );
1126 sqlite3SelectDelete(db
, p
->x
.pSelect
);
1128 sqlite3ExprListDelete(db
, p
->x
.pList
);
1129 #ifndef SQLITE_OMIT_WINDOWFUNC
1130 if( ExprHasProperty(p
, EP_WinFunc
) ){
1131 sqlite3WindowDelete(db
, p
->y
.pWin
);
1136 if( ExprHasProperty(p
, EP_MemToken
) ) sqlite3DbFree(db
, p
->u
.zToken
);
1137 if( !ExprHasProperty(p
, EP_Static
) ){
1138 sqlite3DbFreeNN(db
, p
);
1141 void sqlite3ExprDelete(sqlite3
*db
, Expr
*p
){
1142 if( p
) sqlite3ExprDeleteNN(db
, p
);
1145 /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the
1148 void sqlite3ExprUnmapAndDelete(Parse
*pParse
, Expr
*p
){
1150 if( IN_RENAME_OBJECT
){
1151 sqlite3RenameExprUnmap(pParse
, p
);
1153 sqlite3ExprDeleteNN(pParse
->db
, p
);
1158 ** Return the number of bytes allocated for the expression structure
1159 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
1160 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
1162 static int exprStructSize(Expr
*p
){
1163 if( ExprHasProperty(p
, EP_TokenOnly
) ) return EXPR_TOKENONLYSIZE
;
1164 if( ExprHasProperty(p
, EP_Reduced
) ) return EXPR_REDUCEDSIZE
;
1165 return EXPR_FULLSIZE
;
1169 ** The dupedExpr*Size() routines each return the number of bytes required
1170 ** to store a copy of an expression or expression tree. They differ in
1171 ** how much of the tree is measured.
1173 ** dupedExprStructSize() Size of only the Expr structure
1174 ** dupedExprNodeSize() Size of Expr + space for token
1175 ** dupedExprSize() Expr + token + subtree components
1177 ***************************************************************************
1179 ** The dupedExprStructSize() function returns two values OR-ed together:
1180 ** (1) the space required for a copy of the Expr structure only and
1181 ** (2) the EP_xxx flags that indicate what the structure size should be.
1182 ** The return values is always one of:
1185 ** EXPR_REDUCEDSIZE | EP_Reduced
1186 ** EXPR_TOKENONLYSIZE | EP_TokenOnly
1188 ** The size of the structure can be found by masking the return value
1189 ** of this routine with 0xfff. The flags can be found by masking the
1190 ** return value with EP_Reduced|EP_TokenOnly.
1192 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
1193 ** (unreduced) Expr objects as they or originally constructed by the parser.
1194 ** During expression analysis, extra information is computed and moved into
1195 ** later parts of the Expr object and that extra information might get chopped
1196 ** off if the expression is reduced. Note also that it does not work to
1197 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal
1198 ** to reduce a pristine expression tree from the parser. The implementation
1199 ** of dupedExprStructSize() contain multiple assert() statements that attempt
1200 ** to enforce this constraint.
1202 static int dupedExprStructSize(Expr
*p
, int flags
){
1204 assert( flags
==EXPRDUP_REDUCE
|| flags
==0 ); /* Only one flag value allowed */
1205 assert( EXPR_FULLSIZE
<=0xfff );
1206 assert( (0xfff & (EP_Reduced
|EP_TokenOnly
))==0 );
1207 if( 0==flags
|| p
->op
==TK_SELECT_COLUMN
1208 #ifndef SQLITE_OMIT_WINDOWFUNC
1209 || ExprHasProperty(p
, EP_WinFunc
)
1212 nSize
= EXPR_FULLSIZE
;
1214 assert( !ExprHasProperty(p
, EP_TokenOnly
|EP_Reduced
) );
1215 assert( !ExprHasProperty(p
, EP_FromJoin
) );
1216 assert( !ExprHasProperty(p
, EP_MemToken
) );
1217 assert( !ExprHasVVAProperty(p
, EP_NoReduce
) );
1218 if( p
->pLeft
|| p
->x
.pList
){
1219 nSize
= EXPR_REDUCEDSIZE
| EP_Reduced
;
1221 assert( p
->pRight
==0 );
1222 nSize
= EXPR_TOKENONLYSIZE
| EP_TokenOnly
;
1229 ** This function returns the space in bytes required to store the copy
1230 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
1231 ** string is defined.)
1233 static int dupedExprNodeSize(Expr
*p
, int flags
){
1234 int nByte
= dupedExprStructSize(p
, flags
) & 0xfff;
1235 if( !ExprHasProperty(p
, EP_IntValue
) && p
->u
.zToken
){
1236 nByte
+= sqlite3Strlen30NN(p
->u
.zToken
)+1;
1238 return ROUND8(nByte
);
1242 ** Return the number of bytes required to create a duplicate of the
1243 ** expression passed as the first argument. The second argument is a
1244 ** mask containing EXPRDUP_XXX flags.
1246 ** The value returned includes space to create a copy of the Expr struct
1247 ** itself and the buffer referred to by Expr.u.zToken, if any.
1249 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
1250 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
1251 ** and Expr.pRight variables (but not for any structures pointed to or
1252 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
1254 static int dupedExprSize(Expr
*p
, int flags
){
1257 nByte
= dupedExprNodeSize(p
, flags
);
1258 if( flags
&EXPRDUP_REDUCE
){
1259 nByte
+= dupedExprSize(p
->pLeft
, flags
) + dupedExprSize(p
->pRight
, flags
);
1266 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
1267 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
1268 ** to store the copy of expression p, the copies of p->u.zToken
1269 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
1270 ** if any. Before returning, *pzBuffer is set to the first byte past the
1271 ** portion of the buffer copied into by this function.
1273 static Expr
*exprDup(sqlite3
*db
, Expr
*p
, int dupFlags
, u8
**pzBuffer
){
1274 Expr
*pNew
; /* Value to return */
1275 u8
*zAlloc
; /* Memory space from which to build Expr object */
1276 u32 staticFlag
; /* EP_Static if space not obtained from malloc */
1280 assert( dupFlags
==0 || dupFlags
==EXPRDUP_REDUCE
);
1281 assert( pzBuffer
==0 || dupFlags
==EXPRDUP_REDUCE
);
1283 /* Figure out where to write the new Expr structure. */
1286 staticFlag
= EP_Static
;
1288 zAlloc
= sqlite3DbMallocRawNN(db
, dupedExprSize(p
, dupFlags
));
1291 pNew
= (Expr
*)zAlloc
;
1294 /* Set nNewSize to the size allocated for the structure pointed to
1295 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
1296 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
1297 ** by the copy of the p->u.zToken string (if any).
1299 const unsigned nStructSize
= dupedExprStructSize(p
, dupFlags
);
1300 const int nNewSize
= nStructSize
& 0xfff;
1302 if( !ExprHasProperty(p
, EP_IntValue
) && p
->u
.zToken
){
1303 nToken
= sqlite3Strlen30(p
->u
.zToken
) + 1;
1308 assert( ExprHasProperty(p
, EP_Reduced
)==0 );
1309 memcpy(zAlloc
, p
, nNewSize
);
1311 u32 nSize
= (u32
)exprStructSize(p
);
1312 memcpy(zAlloc
, p
, nSize
);
1313 if( nSize
<EXPR_FULLSIZE
){
1314 memset(&zAlloc
[nSize
], 0, EXPR_FULLSIZE
-nSize
);
1318 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
1319 pNew
->flags
&= ~(EP_Reduced
|EP_TokenOnly
|EP_Static
|EP_MemToken
);
1320 pNew
->flags
|= nStructSize
& (EP_Reduced
|EP_TokenOnly
);
1321 pNew
->flags
|= staticFlag
;
1322 ExprClearVVAProperties(pNew
);
1324 ExprSetVVAProperty(pNew
, EP_Immutable
);
1327 /* Copy the p->u.zToken string, if any. */
1329 char *zToken
= pNew
->u
.zToken
= (char*)&zAlloc
[nNewSize
];
1330 memcpy(zToken
, p
->u
.zToken
, nToken
);
1333 if( 0==((p
->flags
|pNew
->flags
) & (EP_TokenOnly
|EP_Leaf
)) ){
1334 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
1335 if( ExprHasProperty(p
, EP_xIsSelect
) ){
1336 pNew
->x
.pSelect
= sqlite3SelectDup(db
, p
->x
.pSelect
, dupFlags
);
1338 pNew
->x
.pList
= sqlite3ExprListDup(db
, p
->x
.pList
, dupFlags
);
1342 /* Fill in pNew->pLeft and pNew->pRight. */
1343 if( ExprHasProperty(pNew
, EP_Reduced
|EP_TokenOnly
|EP_WinFunc
) ){
1344 zAlloc
+= dupedExprNodeSize(p
, dupFlags
);
1345 if( !ExprHasProperty(pNew
, EP_TokenOnly
|EP_Leaf
) ){
1346 pNew
->pLeft
= p
->pLeft
?
1347 exprDup(db
, p
->pLeft
, EXPRDUP_REDUCE
, &zAlloc
) : 0;
1348 pNew
->pRight
= p
->pRight
?
1349 exprDup(db
, p
->pRight
, EXPRDUP_REDUCE
, &zAlloc
) : 0;
1351 #ifndef SQLITE_OMIT_WINDOWFUNC
1352 if( ExprHasProperty(p
, EP_WinFunc
) ){
1353 pNew
->y
.pWin
= sqlite3WindowDup(db
, pNew
, p
->y
.pWin
);
1354 assert( ExprHasProperty(pNew
, EP_WinFunc
) );
1356 #endif /* SQLITE_OMIT_WINDOWFUNC */
1361 if( !ExprHasProperty(p
, EP_TokenOnly
|EP_Leaf
) ){
1362 if( pNew
->op
==TK_SELECT_COLUMN
){
1363 pNew
->pLeft
= p
->pLeft
;
1364 assert( p
->iColumn
==0 || p
->pRight
==0 );
1365 assert( p
->pRight
==0 || p
->pRight
==p
->pLeft
);
1367 pNew
->pLeft
= sqlite3ExprDup(db
, p
->pLeft
, 0);
1369 pNew
->pRight
= sqlite3ExprDup(db
, p
->pRight
, 0);
1377 ** Create and return a deep copy of the object passed as the second
1378 ** argument. If an OOM condition is encountered, NULL is returned
1379 ** and the db->mallocFailed flag set.
1381 #ifndef SQLITE_OMIT_CTE
1382 static With
*withDup(sqlite3
*db
, With
*p
){
1385 sqlite3_int64 nByte
= sizeof(*p
) + sizeof(p
->a
[0]) * (p
->nCte
-1);
1386 pRet
= sqlite3DbMallocZero(db
, nByte
);
1389 pRet
->nCte
= p
->nCte
;
1390 for(i
=0; i
<p
->nCte
; i
++){
1391 pRet
->a
[i
].pSelect
= sqlite3SelectDup(db
, p
->a
[i
].pSelect
, 0);
1392 pRet
->a
[i
].pCols
= sqlite3ExprListDup(db
, p
->a
[i
].pCols
, 0);
1393 pRet
->a
[i
].zName
= sqlite3DbStrDup(db
, p
->a
[i
].zName
);
1400 # define withDup(x,y) 0
1403 #ifndef SQLITE_OMIT_WINDOWFUNC
1405 ** The gatherSelectWindows() procedure and its helper routine
1406 ** gatherSelectWindowsCallback() are used to scan all the expressions
1407 ** an a newly duplicated SELECT statement and gather all of the Window
1408 ** objects found there, assembling them onto the linked list at Select->pWin.
1410 static int gatherSelectWindowsCallback(Walker
*pWalker
, Expr
*pExpr
){
1411 if( pExpr
->op
==TK_FUNCTION
&& ExprHasProperty(pExpr
, EP_WinFunc
) ){
1412 Select
*pSelect
= pWalker
->u
.pSelect
;
1413 Window
*pWin
= pExpr
->y
.pWin
;
1415 assert( IsWindowFunc(pExpr
) );
1416 assert( pWin
->ppThis
==0 );
1417 sqlite3WindowLink(pSelect
, pWin
);
1419 return WRC_Continue
;
1421 static int gatherSelectWindowsSelectCallback(Walker
*pWalker
, Select
*p
){
1422 return p
==pWalker
->u
.pSelect
? WRC_Continue
: WRC_Prune
;
1424 static void gatherSelectWindows(Select
*p
){
1426 w
.xExprCallback
= gatherSelectWindowsCallback
;
1427 w
.xSelectCallback
= gatherSelectWindowsSelectCallback
;
1428 w
.xSelectCallback2
= 0;
1431 sqlite3WalkSelect(&w
, p
);
1437 ** The following group of routines make deep copies of expressions,
1438 ** expression lists, ID lists, and select statements. The copies can
1439 ** be deleted (by being passed to their respective ...Delete() routines)
1440 ** without effecting the originals.
1442 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
1443 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
1444 ** by subsequent calls to sqlite*ListAppend() routines.
1446 ** Any tables that the SrcList might point to are not duplicated.
1448 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
1449 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
1450 ** truncated version of the usual Expr structure that will be stored as
1451 ** part of the in-memory representation of the database schema.
1453 Expr
*sqlite3ExprDup(sqlite3
*db
, Expr
*p
, int flags
){
1454 assert( flags
==0 || flags
==EXPRDUP_REDUCE
);
1455 return p
? exprDup(db
, p
, flags
, 0) : 0;
1457 ExprList
*sqlite3ExprListDup(sqlite3
*db
, ExprList
*p
, int flags
){
1459 struct ExprList_item
*pItem
, *pOldItem
;
1461 Expr
*pPriorSelectCol
= 0;
1463 if( p
==0 ) return 0;
1464 pNew
= sqlite3DbMallocRawNN(db
, sqlite3DbMallocSize(db
, p
));
1465 if( pNew
==0 ) return 0;
1466 pNew
->nExpr
= p
->nExpr
;
1469 for(i
=0; i
<p
->nExpr
; i
++, pItem
++, pOldItem
++){
1470 Expr
*pOldExpr
= pOldItem
->pExpr
;
1472 pItem
->pExpr
= sqlite3ExprDup(db
, pOldExpr
, flags
);
1474 && pOldExpr
->op
==TK_SELECT_COLUMN
1475 && (pNewExpr
= pItem
->pExpr
)!=0
1477 assert( pNewExpr
->iColumn
==0 || i
>0 );
1478 if( pNewExpr
->iColumn
==0 ){
1479 assert( pOldExpr
->pLeft
==pOldExpr
->pRight
);
1480 pPriorSelectCol
= pNewExpr
->pLeft
= pNewExpr
->pRight
;
1483 assert( pItem
[-1].pExpr
!=0 );
1484 assert( pNewExpr
->iColumn
==pItem
[-1].pExpr
->iColumn
+1 );
1485 assert( pPriorSelectCol
==pItem
[-1].pExpr
->pLeft
);
1486 pNewExpr
->pLeft
= pPriorSelectCol
;
1489 pItem
->zEName
= sqlite3DbStrDup(db
, pOldItem
->zEName
);
1490 pItem
->sortFlags
= pOldItem
->sortFlags
;
1491 pItem
->eEName
= pOldItem
->eEName
;
1493 pItem
->bNulls
= pOldItem
->bNulls
;
1494 pItem
->bSorterRef
= pOldItem
->bSorterRef
;
1495 pItem
->u
= pOldItem
->u
;
1501 ** If cursors, triggers, views and subqueries are all omitted from
1502 ** the build, then none of the following routines, except for
1503 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
1504 ** called with a NULL argument.
1506 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
1507 || !defined(SQLITE_OMIT_SUBQUERY)
1508 SrcList
*sqlite3SrcListDup(sqlite3
*db
, SrcList
*p
, int flags
){
1513 if( p
==0 ) return 0;
1514 nByte
= sizeof(*p
) + (p
->nSrc
>0 ? sizeof(p
->a
[0]) * (p
->nSrc
-1) : 0);
1515 pNew
= sqlite3DbMallocRawNN(db
, nByte
);
1516 if( pNew
==0 ) return 0;
1517 pNew
->nSrc
= pNew
->nAlloc
= p
->nSrc
;
1518 for(i
=0; i
<p
->nSrc
; i
++){
1519 struct SrcList_item
*pNewItem
= &pNew
->a
[i
];
1520 struct SrcList_item
*pOldItem
= &p
->a
[i
];
1522 pNewItem
->pSchema
= pOldItem
->pSchema
;
1523 pNewItem
->zDatabase
= sqlite3DbStrDup(db
, pOldItem
->zDatabase
);
1524 pNewItem
->zName
= sqlite3DbStrDup(db
, pOldItem
->zName
);
1525 pNewItem
->zAlias
= sqlite3DbStrDup(db
, pOldItem
->zAlias
);
1526 pNewItem
->fg
= pOldItem
->fg
;
1527 pNewItem
->iCursor
= pOldItem
->iCursor
;
1528 pNewItem
->addrFillSub
= pOldItem
->addrFillSub
;
1529 pNewItem
->regReturn
= pOldItem
->regReturn
;
1530 if( pNewItem
->fg
.isIndexedBy
){
1531 pNewItem
->u1
.zIndexedBy
= sqlite3DbStrDup(db
, pOldItem
->u1
.zIndexedBy
);
1533 pNewItem
->pIBIndex
= pOldItem
->pIBIndex
;
1534 if( pNewItem
->fg
.isTabFunc
){
1535 pNewItem
->u1
.pFuncArg
=
1536 sqlite3ExprListDup(db
, pOldItem
->u1
.pFuncArg
, flags
);
1538 pTab
= pNewItem
->pTab
= pOldItem
->pTab
;
1542 pNewItem
->pSelect
= sqlite3SelectDup(db
, pOldItem
->pSelect
, flags
);
1543 pNewItem
->pOn
= sqlite3ExprDup(db
, pOldItem
->pOn
, flags
);
1544 pNewItem
->pUsing
= sqlite3IdListDup(db
, pOldItem
->pUsing
);
1545 pNewItem
->colUsed
= pOldItem
->colUsed
;
1549 IdList
*sqlite3IdListDup(sqlite3
*db
, IdList
*p
){
1553 if( p
==0 ) return 0;
1554 pNew
= sqlite3DbMallocRawNN(db
, sizeof(*pNew
) );
1555 if( pNew
==0 ) return 0;
1557 pNew
->a
= sqlite3DbMallocRawNN(db
, p
->nId
*sizeof(p
->a
[0]) );
1559 sqlite3DbFreeNN(db
, pNew
);
1562 /* Note that because the size of the allocation for p->a[] is not
1563 ** necessarily a power of two, sqlite3IdListAppend() may not be called
1564 ** on the duplicate created by this function. */
1565 for(i
=0; i
<p
->nId
; i
++){
1566 struct IdList_item
*pNewItem
= &pNew
->a
[i
];
1567 struct IdList_item
*pOldItem
= &p
->a
[i
];
1568 pNewItem
->zName
= sqlite3DbStrDup(db
, pOldItem
->zName
);
1569 pNewItem
->idx
= pOldItem
->idx
;
1573 Select
*sqlite3SelectDup(sqlite3
*db
, Select
*pDup
, int flags
){
1576 Select
**pp
= &pRet
;
1580 for(p
=pDup
; p
; p
=p
->pPrior
){
1581 Select
*pNew
= sqlite3DbMallocRawNN(db
, sizeof(*p
) );
1582 if( pNew
==0 ) break;
1583 pNew
->pEList
= sqlite3ExprListDup(db
, p
->pEList
, flags
);
1584 pNew
->pSrc
= sqlite3SrcListDup(db
, p
->pSrc
, flags
);
1585 pNew
->pWhere
= sqlite3ExprDup(db
, p
->pWhere
, flags
);
1586 pNew
->pGroupBy
= sqlite3ExprListDup(db
, p
->pGroupBy
, flags
);
1587 pNew
->pHaving
= sqlite3ExprDup(db
, p
->pHaving
, flags
);
1588 pNew
->pOrderBy
= sqlite3ExprListDup(db
, p
->pOrderBy
, flags
);
1590 pNew
->pNext
= pNext
;
1592 pNew
->pLimit
= sqlite3ExprDup(db
, p
->pLimit
, flags
);
1595 pNew
->selFlags
= p
->selFlags
& ~SF_UsesEphemeral
;
1596 pNew
->addrOpenEphm
[0] = -1;
1597 pNew
->addrOpenEphm
[1] = -1;
1598 pNew
->nSelectRow
= p
->nSelectRow
;
1599 pNew
->pWith
= withDup(db
, p
->pWith
);
1600 #ifndef SQLITE_OMIT_WINDOWFUNC
1602 pNew
->pWinDefn
= sqlite3WindowListDup(db
, p
->pWinDefn
);
1603 if( p
->pWin
&& db
->mallocFailed
==0 ) gatherSelectWindows(pNew
);
1605 pNew
->selId
= p
->selId
;
1614 Select
*sqlite3SelectDup(sqlite3
*db
, Select
*p
, int flags
){
1622 ** Add a new element to the end of an expression list. If pList is
1623 ** initially NULL, then create a new expression list.
1625 ** The pList argument must be either NULL or a pointer to an ExprList
1626 ** obtained from a prior call to sqlite3ExprListAppend(). This routine
1627 ** may not be used with an ExprList obtained from sqlite3ExprListDup().
1628 ** Reason: This routine assumes that the number of slots in pList->a[]
1629 ** is a power of two. That is true for sqlite3ExprListAppend() returns
1630 ** but is not necessarily true from the return value of sqlite3ExprListDup().
1632 ** If a memory allocation error occurs, the entire list is freed and
1633 ** NULL is returned. If non-NULL is returned, then it is guaranteed
1634 ** that the new entry was successfully appended.
1636 ExprList
*sqlite3ExprListAppend(
1637 Parse
*pParse
, /* Parsing context */
1638 ExprList
*pList
, /* List to which to append. Might be NULL */
1639 Expr
*pExpr
/* Expression to be appended. Might be NULL */
1641 struct ExprList_item
*pItem
;
1642 sqlite3
*db
= pParse
->db
;
1645 pList
= sqlite3DbMallocRawNN(db
, sizeof(ExprList
) );
1650 }else if( (pList
->nExpr
& (pList
->nExpr
-1))==0 ){
1652 pNew
= sqlite3DbRealloc(db
, pList
,
1653 sizeof(*pList
)+(2*(sqlite3_int64
)pList
->nExpr
-1)*sizeof(pList
->a
[0]));
1659 pItem
= &pList
->a
[pList
->nExpr
++];
1660 assert( offsetof(struct ExprList_item
,zEName
)==sizeof(pItem
->pExpr
) );
1661 assert( offsetof(struct ExprList_item
,pExpr
)==0 );
1662 memset(&pItem
->zEName
,0,sizeof(*pItem
)-offsetof(struct ExprList_item
,zEName
));
1663 pItem
->pExpr
= pExpr
;
1667 /* Avoid leaking memory if malloc has failed. */
1668 sqlite3ExprDelete(db
, pExpr
);
1669 sqlite3ExprListDelete(db
, pList
);
1674 ** pColumns and pExpr form a vector assignment which is part of the SET
1675 ** clause of an UPDATE statement. Like this:
1677 ** (a,b,c) = (expr1,expr2,expr3)
1678 ** Or: (a,b,c) = (SELECT x,y,z FROM ....)
1680 ** For each term of the vector assignment, append new entries to the
1681 ** expression list pList. In the case of a subquery on the RHS, append
1682 ** TK_SELECT_COLUMN expressions.
1684 ExprList
*sqlite3ExprListAppendVector(
1685 Parse
*pParse
, /* Parsing context */
1686 ExprList
*pList
, /* List to which to append. Might be NULL */
1687 IdList
*pColumns
, /* List of names of LHS of the assignment */
1688 Expr
*pExpr
/* Vector expression to be appended. Might be NULL */
1690 sqlite3
*db
= pParse
->db
;
1693 int iFirst
= pList
? pList
->nExpr
: 0;
1694 /* pColumns can only be NULL due to an OOM but an OOM will cause an
1695 ** exit prior to this routine being invoked */
1696 if( NEVER(pColumns
==0) ) goto vector_append_error
;
1697 if( pExpr
==0 ) goto vector_append_error
;
1699 /* If the RHS is a vector, then we can immediately check to see that
1700 ** the size of the RHS and LHS match. But if the RHS is a SELECT,
1701 ** wildcards ("*") in the result set of the SELECT must be expanded before
1702 ** we can do the size check, so defer the size check until code generation.
1704 if( pExpr
->op
!=TK_SELECT
&& pColumns
->nId
!=(n
=sqlite3ExprVectorSize(pExpr
)) ){
1705 sqlite3ErrorMsg(pParse
, "%d columns assigned %d values",
1707 goto vector_append_error
;
1710 for(i
=0; i
<pColumns
->nId
; i
++){
1711 Expr
*pSubExpr
= sqlite3ExprForVectorField(pParse
, pExpr
, i
);
1712 assert( pSubExpr
!=0 || db
->mallocFailed
);
1713 assert( pSubExpr
==0 || pSubExpr
->iTable
==0 );
1714 if( pSubExpr
==0 ) continue;
1715 pSubExpr
->iTable
= pColumns
->nId
;
1716 pList
= sqlite3ExprListAppend(pParse
, pList
, pSubExpr
);
1718 assert( pList
->nExpr
==iFirst
+i
+1 );
1719 pList
->a
[pList
->nExpr
-1].zEName
= pColumns
->a
[i
].zName
;
1720 pColumns
->a
[i
].zName
= 0;
1724 if( !db
->mallocFailed
&& pExpr
->op
==TK_SELECT
&& ALWAYS(pList
!=0) ){
1725 Expr
*pFirst
= pList
->a
[iFirst
].pExpr
;
1726 assert( pFirst
!=0 );
1727 assert( pFirst
->op
==TK_SELECT_COLUMN
);
1729 /* Store the SELECT statement in pRight so it will be deleted when
1730 ** sqlite3ExprListDelete() is called */
1731 pFirst
->pRight
= pExpr
;
1734 /* Remember the size of the LHS in iTable so that we can check that
1735 ** the RHS and LHS sizes match during code generation. */
1736 pFirst
->iTable
= pColumns
->nId
;
1739 vector_append_error
:
1740 sqlite3ExprUnmapAndDelete(pParse
, pExpr
);
1741 sqlite3IdListDelete(db
, pColumns
);
1746 ** Set the sort order for the last element on the given ExprList.
1748 void sqlite3ExprListSetSortOrder(ExprList
*p
, int iSortOrder
, int eNulls
){
1749 struct ExprList_item
*pItem
;
1751 assert( p
->nExpr
>0 );
1753 assert( SQLITE_SO_UNDEFINED
<0 && SQLITE_SO_ASC
==0 && SQLITE_SO_DESC
>0 );
1754 assert( iSortOrder
==SQLITE_SO_UNDEFINED
1755 || iSortOrder
==SQLITE_SO_ASC
1756 || iSortOrder
==SQLITE_SO_DESC
1758 assert( eNulls
==SQLITE_SO_UNDEFINED
1759 || eNulls
==SQLITE_SO_ASC
1760 || eNulls
==SQLITE_SO_DESC
1763 pItem
= &p
->a
[p
->nExpr
-1];
1764 assert( pItem
->bNulls
==0 );
1765 if( iSortOrder
==SQLITE_SO_UNDEFINED
){
1766 iSortOrder
= SQLITE_SO_ASC
;
1768 pItem
->sortFlags
= (u8
)iSortOrder
;
1770 if( eNulls
!=SQLITE_SO_UNDEFINED
){
1772 if( iSortOrder
!=eNulls
){
1773 pItem
->sortFlags
|= KEYINFO_ORDER_BIGNULL
;
1779 ** Set the ExprList.a[].zEName element of the most recently added item
1780 ** on the expression list.
1782 ** pList might be NULL following an OOM error. But pName should never be
1783 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag
1786 void sqlite3ExprListSetName(
1787 Parse
*pParse
, /* Parsing context */
1788 ExprList
*pList
, /* List to which to add the span. */
1789 Token
*pName
, /* Name to be added */
1790 int dequote
/* True to cause the name to be dequoted */
1792 assert( pList
!=0 || pParse
->db
->mallocFailed
!=0 );
1793 assert( pParse
->eParseMode
!=PARSE_MODE_UNMAP
|| dequote
==0 );
1795 struct ExprList_item
*pItem
;
1796 assert( pList
->nExpr
>0 );
1797 pItem
= &pList
->a
[pList
->nExpr
-1];
1798 assert( pItem
->zEName
==0 );
1799 assert( pItem
->eEName
==ENAME_NAME
);
1800 pItem
->zEName
= sqlite3DbStrNDup(pParse
->db
, pName
->z
, pName
->n
);
1802 /* If dequote==0, then pName->z does not point to part of a DDL
1803 ** statement handled by the parser. And so no token need be added
1804 ** to the token-map. */
1805 sqlite3Dequote(pItem
->zEName
);
1806 if( IN_RENAME_OBJECT
){
1807 sqlite3RenameTokenMap(pParse
, (void*)pItem
->zEName
, pName
);
1814 ** Set the ExprList.a[].zSpan element of the most recently added item
1815 ** on the expression list.
1817 ** pList might be NULL following an OOM error. But pSpan should never be
1818 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag
1821 void sqlite3ExprListSetSpan(
1822 Parse
*pParse
, /* Parsing context */
1823 ExprList
*pList
, /* List to which to add the span. */
1824 const char *zStart
, /* Start of the span */
1825 const char *zEnd
/* End of the span */
1827 sqlite3
*db
= pParse
->db
;
1828 assert( pList
!=0 || db
->mallocFailed
!=0 );
1830 struct ExprList_item
*pItem
= &pList
->a
[pList
->nExpr
-1];
1831 assert( pList
->nExpr
>0 );
1832 if( pItem
->zEName
==0 ){
1833 pItem
->zEName
= sqlite3DbSpanDup(db
, zStart
, zEnd
);
1834 pItem
->eEName
= ENAME_SPAN
;
1840 ** If the expression list pEList contains more than iLimit elements,
1841 ** leave an error message in pParse.
1843 void sqlite3ExprListCheckLength(
1848 int mx
= pParse
->db
->aLimit
[SQLITE_LIMIT_COLUMN
];
1849 testcase( pEList
&& pEList
->nExpr
==mx
);
1850 testcase( pEList
&& pEList
->nExpr
==mx
+1 );
1851 if( pEList
&& pEList
->nExpr
>mx
){
1852 sqlite3ErrorMsg(pParse
, "too many columns in %s", zObject
);
1857 ** Delete an entire expression list.
1859 static SQLITE_NOINLINE
void exprListDeleteNN(sqlite3
*db
, ExprList
*pList
){
1860 int i
= pList
->nExpr
;
1861 struct ExprList_item
*pItem
= pList
->a
;
1862 assert( pList
->nExpr
>0 );
1864 sqlite3ExprDelete(db
, pItem
->pExpr
);
1865 sqlite3DbFree(db
, pItem
->zEName
);
1868 sqlite3DbFreeNN(db
, pList
);
1870 void sqlite3ExprListDelete(sqlite3
*db
, ExprList
*pList
){
1871 if( pList
) exprListDeleteNN(db
, pList
);
1875 ** Return the bitwise-OR of all Expr.flags fields in the given
1878 u32
sqlite3ExprListFlags(const ExprList
*pList
){
1882 for(i
=0; i
<pList
->nExpr
; i
++){
1883 Expr
*pExpr
= pList
->a
[i
].pExpr
;
1891 ** This is a SELECT-node callback for the expression walker that
1892 ** always "fails". By "fail" in this case, we mean set
1893 ** pWalker->eCode to zero and abort.
1895 ** This callback is used by multiple expression walkers.
1897 int sqlite3SelectWalkFail(Walker
*pWalker
, Select
*NotUsed
){
1898 UNUSED_PARAMETER(NotUsed
);
1904 ** Check the input string to see if it is "true" or "false" (in any case).
1906 ** If the string is.... Return
1908 ** "false" EP_IsFalse
1911 u32
sqlite3IsTrueOrFalse(const char *zIn
){
1912 if( sqlite3StrICmp(zIn
, "true")==0 ) return EP_IsTrue
;
1913 if( sqlite3StrICmp(zIn
, "false")==0 ) return EP_IsFalse
;
1919 ** If the input expression is an ID with the name "true" or "false"
1920 ** then convert it into an TK_TRUEFALSE term. Return non-zero if
1921 ** the conversion happened, and zero if the expression is unaltered.
1923 int sqlite3ExprIdToTrueFalse(Expr
*pExpr
){
1925 assert( pExpr
->op
==TK_ID
|| pExpr
->op
==TK_STRING
);
1926 if( !ExprHasProperty(pExpr
, EP_Quoted
)
1927 && (v
= sqlite3IsTrueOrFalse(pExpr
->u
.zToken
))!=0
1929 pExpr
->op
= TK_TRUEFALSE
;
1930 ExprSetProperty(pExpr
, v
);
1937 ** The argument must be a TK_TRUEFALSE Expr node. Return 1 if it is TRUE
1938 ** and 0 if it is FALSE.
1940 int sqlite3ExprTruthValue(const Expr
*pExpr
){
1941 pExpr
= sqlite3ExprSkipCollate((Expr
*)pExpr
);
1942 assert( pExpr
->op
==TK_TRUEFALSE
);
1943 assert( sqlite3StrICmp(pExpr
->u
.zToken
,"true")==0
1944 || sqlite3StrICmp(pExpr
->u
.zToken
,"false")==0 );
1945 return pExpr
->u
.zToken
[4]==0;
1949 ** If pExpr is an AND or OR expression, try to simplify it by eliminating
1950 ** terms that are always true or false. Return the simplified expression.
1951 ** Or return the original expression if no simplification is possible.
1955 ** (x<10) AND true => (x<10)
1956 ** (x<10) AND false => false
1957 ** (x<10) AND (y=22 OR false) => (x<10) AND (y=22)
1958 ** (x<10) AND (y=22 OR true) => (x<10)
1959 ** (y=22) OR true => true
1961 Expr
*sqlite3ExprSimplifiedAndOr(Expr
*pExpr
){
1963 if( pExpr
->op
==TK_AND
|| pExpr
->op
==TK_OR
){
1964 Expr
*pRight
= sqlite3ExprSimplifiedAndOr(pExpr
->pRight
);
1965 Expr
*pLeft
= sqlite3ExprSimplifiedAndOr(pExpr
->pLeft
);
1966 if( ExprAlwaysTrue(pLeft
) || ExprAlwaysFalse(pRight
) ){
1967 pExpr
= pExpr
->op
==TK_AND
? pRight
: pLeft
;
1968 }else if( ExprAlwaysTrue(pRight
) || ExprAlwaysFalse(pLeft
) ){
1969 pExpr
= pExpr
->op
==TK_AND
? pLeft
: pRight
;
1977 ** These routines are Walker callbacks used to check expressions to
1978 ** see if they are "constant" for some definition of constant. The
1979 ** Walker.eCode value determines the type of "constant" we are looking
1982 ** These callback routines are used to implement the following:
1984 ** sqlite3ExprIsConstant() pWalker->eCode==1
1985 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2
1986 ** sqlite3ExprIsTableConstant() pWalker->eCode==3
1987 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5
1989 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression
1990 ** is found to not be a constant.
1992 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating DEFAULT
1993 ** expressions in a CREATE TABLE statement. The Walker.eCode value is 5
1994 ** when parsing an existing schema out of the sqlite_schema table and 4
1995 ** when processing a new CREATE TABLE statement. A bound parameter raises
1996 ** an error for new statements, but is silently converted
1997 ** to NULL for existing schemas. This allows sqlite_schema tables that
1998 ** contain a bound parameter because they were generated by older versions
1999 ** of SQLite to be parsed by newer versions of SQLite without raising a
2000 ** malformed schema error.
2002 static int exprNodeIsConstant(Walker
*pWalker
, Expr
*pExpr
){
2004 /* If pWalker->eCode is 2 then any term of the expression that comes from
2005 ** the ON or USING clauses of a left join disqualifies the expression
2006 ** from being considered constant. */
2007 if( pWalker
->eCode
==2 && ExprHasProperty(pExpr
, EP_FromJoin
) ){
2012 switch( pExpr
->op
){
2013 /* Consider functions to be constant if all their arguments are constant
2014 ** and either pWalker->eCode==4 or 5 or the function has the
2015 ** SQLITE_FUNC_CONST flag. */
2017 if( (pWalker
->eCode
>=4 || ExprHasProperty(pExpr
,EP_ConstFunc
))
2018 && !ExprHasProperty(pExpr
, EP_WinFunc
)
2020 if( pWalker
->eCode
==5 ) ExprSetProperty(pExpr
, EP_FromDDL
);
2021 return WRC_Continue
;
2027 /* Convert "true" or "false" in a DEFAULT clause into the
2028 ** appropriate TK_TRUEFALSE operator */
2029 if( sqlite3ExprIdToTrueFalse(pExpr
) ){
2032 /* no break */ deliberate_fall_through
2034 case TK_AGG_FUNCTION
:
2036 testcase( pExpr
->op
==TK_ID
);
2037 testcase( pExpr
->op
==TK_COLUMN
);
2038 testcase( pExpr
->op
==TK_AGG_FUNCTION
);
2039 testcase( pExpr
->op
==TK_AGG_COLUMN
);
2040 if( ExprHasProperty(pExpr
, EP_FixedCol
) && pWalker
->eCode
!=2 ){
2041 return WRC_Continue
;
2043 if( pWalker
->eCode
==3 && pExpr
->iTable
==pWalker
->u
.iCur
){
2044 return WRC_Continue
;
2046 /* no break */ deliberate_fall_through
2047 case TK_IF_NULL_ROW
:
2050 testcase( pExpr
->op
==TK_REGISTER
);
2051 testcase( pExpr
->op
==TK_IF_NULL_ROW
);
2052 testcase( pExpr
->op
==TK_DOT
);
2056 if( pWalker
->eCode
==5 ){
2057 /* Silently convert bound parameters that appear inside of CREATE
2058 ** statements into a NULL when parsing the CREATE statement text out
2059 ** of the sqlite_schema table */
2060 pExpr
->op
= TK_NULL
;
2061 }else if( pWalker
->eCode
==4 ){
2062 /* A bound parameter in a CREATE statement that originates from
2063 ** sqlite3_prepare() causes an error */
2067 /* no break */ deliberate_fall_through
2069 testcase( pExpr
->op
==TK_SELECT
); /* sqlite3SelectWalkFail() disallows */
2070 testcase( pExpr
->op
==TK_EXISTS
); /* sqlite3SelectWalkFail() disallows */
2071 return WRC_Continue
;
2074 static int exprIsConst(Expr
*p
, int initFlag
, int iCur
){
2077 w
.xExprCallback
= exprNodeIsConstant
;
2078 w
.xSelectCallback
= sqlite3SelectWalkFail
;
2080 w
.xSelectCallback2
= sqlite3SelectWalkAssert2
;
2083 sqlite3WalkExpr(&w
, p
);
2088 ** Walk an expression tree. Return non-zero if the expression is constant
2089 ** and 0 if it involves variables or function calls.
2091 ** For the purposes of this function, a double-quoted string (ex: "abc")
2092 ** is considered a variable but a single-quoted string (ex: 'abc') is
2095 int sqlite3ExprIsConstant(Expr
*p
){
2096 return exprIsConst(p
, 1, 0);
2100 ** Walk an expression tree. Return non-zero if
2102 ** (1) the expression is constant, and
2103 ** (2) the expression does originate in the ON or USING clause
2104 ** of a LEFT JOIN, and
2105 ** (3) the expression does not contain any EP_FixedCol TK_COLUMN
2106 ** operands created by the constant propagation optimization.
2108 ** When this routine returns true, it indicates that the expression
2109 ** can be added to the pParse->pConstExpr list and evaluated once when
2110 ** the prepared statement starts up. See sqlite3ExprCodeRunJustOnce().
2112 int sqlite3ExprIsConstantNotJoin(Expr
*p
){
2113 return exprIsConst(p
, 2, 0);
2117 ** Walk an expression tree. Return non-zero if the expression is constant
2118 ** for any single row of the table with cursor iCur. In other words, the
2119 ** expression must not refer to any non-deterministic function nor any
2120 ** table other than iCur.
2122 int sqlite3ExprIsTableConstant(Expr
*p
, int iCur
){
2123 return exprIsConst(p
, 3, iCur
);
2128 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy().
2130 static int exprNodeIsConstantOrGroupBy(Walker
*pWalker
, Expr
*pExpr
){
2131 ExprList
*pGroupBy
= pWalker
->u
.pGroupBy
;
2134 /* Check if pExpr is identical to any GROUP BY term. If so, consider
2136 for(i
=0; i
<pGroupBy
->nExpr
; i
++){
2137 Expr
*p
= pGroupBy
->a
[i
].pExpr
;
2138 if( sqlite3ExprCompare(0, pExpr
, p
, -1)<2 ){
2139 CollSeq
*pColl
= sqlite3ExprNNCollSeq(pWalker
->pParse
, p
);
2140 if( sqlite3IsBinary(pColl
) ){
2146 /* Check if pExpr is a sub-select. If so, consider it variable. */
2147 if( ExprHasProperty(pExpr
, EP_xIsSelect
) ){
2152 return exprNodeIsConstant(pWalker
, pExpr
);
2156 ** Walk the expression tree passed as the first argument. Return non-zero
2157 ** if the expression consists entirely of constants or copies of terms
2158 ** in pGroupBy that sort with the BINARY collation sequence.
2160 ** This routine is used to determine if a term of the HAVING clause can
2161 ** be promoted into the WHERE clause. In order for such a promotion to work,
2162 ** the value of the HAVING clause term must be the same for all members of
2163 ** a "group". The requirement that the GROUP BY term must be BINARY
2164 ** assumes that no other collating sequence will have a finer-grained
2165 ** grouping than binary. In other words (A=B COLLATE binary) implies
2166 ** A=B in every other collating sequence. The requirement that the
2167 ** GROUP BY be BINARY is stricter than necessary. It would also work
2168 ** to promote HAVING clauses that use the same alternative collating
2169 ** sequence as the GROUP BY term, but that is much harder to check,
2170 ** alternative collating sequences are uncommon, and this is only an
2171 ** optimization, so we take the easy way out and simply require the
2172 ** GROUP BY to use the BINARY collating sequence.
2174 int sqlite3ExprIsConstantOrGroupBy(Parse
*pParse
, Expr
*p
, ExprList
*pGroupBy
){
2177 w
.xExprCallback
= exprNodeIsConstantOrGroupBy
;
2178 w
.xSelectCallback
= 0;
2179 w
.u
.pGroupBy
= pGroupBy
;
2181 sqlite3WalkExpr(&w
, p
);
2186 ** Walk an expression tree for the DEFAULT field of a column definition
2187 ** in a CREATE TABLE statement. Return non-zero if the expression is
2188 ** acceptable for use as a DEFAULT. That is to say, return non-zero if
2189 ** the expression is constant or a function call with constant arguments.
2190 ** Return and 0 if there are any variables.
2192 ** isInit is true when parsing from sqlite_schema. isInit is false when
2193 ** processing a new CREATE TABLE statement. When isInit is true, parameters
2194 ** (such as ? or $abc) in the expression are converted into NULL. When
2195 ** isInit is false, parameters raise an error. Parameters should not be
2196 ** allowed in a CREATE TABLE statement, but some legacy versions of SQLite
2197 ** allowed it, so we need to support it when reading sqlite_schema for
2198 ** backwards compatibility.
2200 ** If isInit is true, set EP_FromDDL on every TK_FUNCTION node.
2202 ** For the purposes of this function, a double-quoted string (ex: "abc")
2203 ** is considered a variable but a single-quoted string (ex: 'abc') is
2206 int sqlite3ExprIsConstantOrFunction(Expr
*p
, u8 isInit
){
2207 assert( isInit
==0 || isInit
==1 );
2208 return exprIsConst(p
, 4+isInit
, 0);
2211 #ifdef SQLITE_ENABLE_CURSOR_HINTS
2213 ** Walk an expression tree. Return 1 if the expression contains a
2214 ** subquery of some kind. Return 0 if there are no subqueries.
2216 int sqlite3ExprContainsSubquery(Expr
*p
){
2219 w
.xExprCallback
= sqlite3ExprWalkNoop
;
2220 w
.xSelectCallback
= sqlite3SelectWalkFail
;
2222 w
.xSelectCallback2
= sqlite3SelectWalkAssert2
;
2224 sqlite3WalkExpr(&w
, p
);
2230 ** If the expression p codes a constant integer that is small enough
2231 ** to fit in a 32-bit integer, return 1 and put the value of the integer
2232 ** in *pValue. If the expression is not an integer or if it is too big
2233 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
2235 int sqlite3ExprIsInteger(Expr
*p
, int *pValue
){
2237 if( NEVER(p
==0) ) return 0; /* Used to only happen following on OOM */
2239 /* If an expression is an integer literal that fits in a signed 32-bit
2240 ** integer, then the EP_IntValue flag will have already been set */
2241 assert( p
->op
!=TK_INTEGER
|| (p
->flags
& EP_IntValue
)!=0
2242 || sqlite3GetInt32(p
->u
.zToken
, &rc
)==0 );
2244 if( p
->flags
& EP_IntValue
){
2245 *pValue
= p
->u
.iValue
;
2250 rc
= sqlite3ExprIsInteger(p
->pLeft
, pValue
);
2255 if( sqlite3ExprIsInteger(p
->pLeft
, &v
) ){
2256 assert( v
!=(-2147483647-1) );
2268 ** Return FALSE if there is no chance that the expression can be NULL.
2270 ** If the expression might be NULL or if the expression is too complex
2271 ** to tell return TRUE.
2273 ** This routine is used as an optimization, to skip OP_IsNull opcodes
2274 ** when we know that a value cannot be NULL. Hence, a false positive
2275 ** (returning TRUE when in fact the expression can never be NULL) might
2276 ** be a small performance hit but is otherwise harmless. On the other
2277 ** hand, a false negative (returning FALSE when the result could be NULL)
2278 ** will likely result in an incorrect answer. So when in doubt, return
2281 int sqlite3ExprCanBeNull(const Expr
*p
){
2283 while( p
->op
==TK_UPLUS
|| p
->op
==TK_UMINUS
){
2287 if( op
==TK_REGISTER
) op
= p
->op2
;
2295 return ExprHasProperty(p
, EP_CanBeNull
) ||
2296 p
->y
.pTab
==0 || /* Reference to column of index on expression */
2298 && ALWAYS(p
->y
.pTab
->aCol
!=0) /* Defense against OOM problems */
2299 && p
->y
.pTab
->aCol
[p
->iColumn
].notNull
==0);
2306 ** Return TRUE if the given expression is a constant which would be
2307 ** unchanged by OP_Affinity with the affinity given in the second
2310 ** This routine is used to determine if the OP_Affinity operation
2311 ** can be omitted. When in doubt return FALSE. A false negative
2312 ** is harmless. A false positive, however, can result in the wrong
2315 int sqlite3ExprNeedsNoAffinityChange(const Expr
*p
, char aff
){
2318 if( aff
==SQLITE_AFF_BLOB
) return 1;
2319 while( p
->op
==TK_UPLUS
|| p
->op
==TK_UMINUS
){
2320 if( p
->op
==TK_UMINUS
) unaryMinus
= 1;
2324 if( op
==TK_REGISTER
) op
= p
->op2
;
2327 return aff
>=SQLITE_AFF_NUMERIC
;
2330 return aff
>=SQLITE_AFF_NUMERIC
;
2333 return !unaryMinus
&& aff
==SQLITE_AFF_TEXT
;
2339 assert( p
->iTable
>=0 ); /* p cannot be part of a CHECK constraint */
2340 return aff
>=SQLITE_AFF_NUMERIC
&& p
->iColumn
<0;
2349 ** Return TRUE if the given string is a row-id column name.
2351 int sqlite3IsRowid(const char *z
){
2352 if( sqlite3StrICmp(z
, "_ROWID_")==0 ) return 1;
2353 if( sqlite3StrICmp(z
, "ROWID")==0 ) return 1;
2354 if( sqlite3StrICmp(z
, "OID")==0 ) return 1;
2359 ** pX is the RHS of an IN operator. If pX is a SELECT statement
2360 ** that can be simplified to a direct table access, then return
2361 ** a pointer to the SELECT statement. If pX is not a SELECT statement,
2362 ** or if the SELECT statement needs to be manifested into a transient
2363 ** table, then return NULL.
2365 #ifndef SQLITE_OMIT_SUBQUERY
2366 static Select
*isCandidateForInOpt(Expr
*pX
){
2372 if( !ExprHasProperty(pX
, EP_xIsSelect
) ) return 0; /* Not a subquery */
2373 if( ExprHasProperty(pX
, EP_VarSelect
) ) return 0; /* Correlated subq */
2375 if( p
->pPrior
) return 0; /* Not a compound SELECT */
2376 if( p
->selFlags
& (SF_Distinct
|SF_Aggregate
) ){
2377 testcase( (p
->selFlags
& (SF_Distinct
|SF_Aggregate
))==SF_Distinct
);
2378 testcase( (p
->selFlags
& (SF_Distinct
|SF_Aggregate
))==SF_Aggregate
);
2379 return 0; /* No DISTINCT keyword and no aggregate functions */
2381 assert( p
->pGroupBy
==0 ); /* Has no GROUP BY clause */
2382 if( p
->pLimit
) return 0; /* Has no LIMIT clause */
2383 if( p
->pWhere
) return 0; /* Has no WHERE clause */
2386 if( pSrc
->nSrc
!=1 ) return 0; /* Single term in FROM clause */
2387 if( pSrc
->a
[0].pSelect
) return 0; /* FROM is not a subquery or view */
2388 pTab
= pSrc
->a
[0].pTab
;
2390 assert( pTab
->pSelect
==0 ); /* FROM clause is not a view */
2391 if( IsVirtual(pTab
) ) return 0; /* FROM clause not a virtual table */
2393 assert( pEList
!=0 );
2394 /* All SELECT results must be columns. */
2395 for(i
=0; i
<pEList
->nExpr
; i
++){
2396 Expr
*pRes
= pEList
->a
[i
].pExpr
;
2397 if( pRes
->op
!=TK_COLUMN
) return 0;
2398 assert( pRes
->iTable
==pSrc
->a
[0].iCursor
); /* Not a correlated subquery */
2402 #endif /* SQLITE_OMIT_SUBQUERY */
2404 #ifndef SQLITE_OMIT_SUBQUERY
2406 ** Generate code that checks the left-most column of index table iCur to see if
2407 ** it contains any NULL entries. Cause the register at regHasNull to be set
2408 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull
2409 ** to be set to NULL if iCur contains one or more NULL values.
2411 static void sqlite3SetHasNullFlag(Vdbe
*v
, int iCur
, int regHasNull
){
2413 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, regHasNull
);
2414 addr1
= sqlite3VdbeAddOp1(v
, OP_Rewind
, iCur
); VdbeCoverage(v
);
2415 sqlite3VdbeAddOp3(v
, OP_Column
, iCur
, 0, regHasNull
);
2416 sqlite3VdbeChangeP5(v
, OPFLAG_TYPEOFARG
);
2417 VdbeComment((v
, "first_entry_in(%d)", iCur
));
2418 sqlite3VdbeJumpHere(v
, addr1
);
2423 #ifndef SQLITE_OMIT_SUBQUERY
2425 ** The argument is an IN operator with a list (not a subquery) on the
2426 ** right-hand side. Return TRUE if that list is constant.
2428 static int sqlite3InRhsIsConstant(Expr
*pIn
){
2431 assert( !ExprHasProperty(pIn
, EP_xIsSelect
) );
2434 res
= sqlite3ExprIsConstant(pIn
);
2441 ** This function is used by the implementation of the IN (...) operator.
2442 ** The pX parameter is the expression on the RHS of the IN operator, which
2443 ** might be either a list of expressions or a subquery.
2445 ** The job of this routine is to find or create a b-tree object that can
2446 ** be used either to test for membership in the RHS set or to iterate through
2447 ** all members of the RHS set, skipping duplicates.
2449 ** A cursor is opened on the b-tree object that is the RHS of the IN operator
2450 ** and pX->iTable is set to the index of that cursor.
2452 ** The returned value of this function indicates the b-tree type, as follows:
2454 ** IN_INDEX_ROWID - The cursor was opened on a database table.
2455 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index.
2456 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
2457 ** IN_INDEX_EPH - The cursor was opened on a specially created and
2458 ** populated epheremal table.
2459 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be
2460 ** implemented as a sequence of comparisons.
2462 ** An existing b-tree might be used if the RHS expression pX is a simple
2463 ** subquery such as:
2465 ** SELECT <column1>, <column2>... FROM <table>
2467 ** If the RHS of the IN operator is a list or a more complex subquery, then
2468 ** an ephemeral table might need to be generated from the RHS and then
2469 ** pX->iTable made to point to the ephemeral table instead of an
2472 ** The inFlags parameter must contain, at a minimum, one of the bits
2473 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both. If inFlags contains
2474 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast
2475 ** membership test. When the IN_INDEX_LOOP bit is set, the IN index will
2476 ** be used to loop over all values of the RHS of the IN operator.
2478 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
2479 ** through the set members) then the b-tree must not contain duplicates.
2480 ** An epheremal table will be created unless the selected columns are guaranteed
2481 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to
2482 ** a UNIQUE constraint or index.
2484 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used
2485 ** for fast set membership tests) then an epheremal table must
2486 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an
2487 ** index can be found with the specified <columns> as its left-most.
2489 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
2490 ** if the RHS of the IN operator is a list (not a subquery) then this
2491 ** routine might decide that creating an ephemeral b-tree for membership
2492 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the
2493 ** calling routine should implement the IN operator using a sequence
2494 ** of Eq or Ne comparison operations.
2496 ** When the b-tree is being used for membership tests, the calling function
2497 ** might need to know whether or not the RHS side of the IN operator
2498 ** contains a NULL. If prRhsHasNull is not a NULL pointer and
2499 ** if there is any chance that the (...) might contain a NULL value at
2500 ** runtime, then a register is allocated and the register number written
2501 ** to *prRhsHasNull. If there is no chance that the (...) contains a
2502 ** NULL value, then *prRhsHasNull is left unchanged.
2504 ** If a register is allocated and its location stored in *prRhsHasNull, then
2505 ** the value in that register will be NULL if the b-tree contains one or more
2506 ** NULL values, and it will be some non-NULL value if the b-tree contains no
2509 ** If the aiMap parameter is not NULL, it must point to an array containing
2510 ** one element for each column returned by the SELECT statement on the RHS
2511 ** of the IN(...) operator. The i'th entry of the array is populated with the
2512 ** offset of the index column that matches the i'th column returned by the
2513 ** SELECT. For example, if the expression and selected index are:
2515 ** (?,?,?) IN (SELECT a, b, c FROM t1)
2516 ** CREATE INDEX i1 ON t1(b, c, a);
2518 ** then aiMap[] is populated with {2, 0, 1}.
2520 #ifndef SQLITE_OMIT_SUBQUERY
2521 int sqlite3FindInIndex(
2522 Parse
*pParse
, /* Parsing context */
2523 Expr
*pX
, /* The IN expression */
2524 u32 inFlags
, /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */
2525 int *prRhsHasNull
, /* Register holding NULL status. See notes */
2526 int *aiMap
, /* Mapping from Index fields to RHS fields */
2527 int *piTab
/* OUT: index to use */
2529 Select
*p
; /* SELECT to the right of IN operator */
2530 int eType
= 0; /* Type of RHS table. IN_INDEX_* */
2531 int iTab
= pParse
->nTab
++; /* Cursor of the RHS table */
2532 int mustBeUnique
; /* True if RHS must be unique */
2533 Vdbe
*v
= sqlite3GetVdbe(pParse
); /* Virtual machine being coded */
2535 assert( pX
->op
==TK_IN
);
2536 mustBeUnique
= (inFlags
& IN_INDEX_LOOP
)!=0;
2538 /* If the RHS of this IN(...) operator is a SELECT, and if it matters
2539 ** whether or not the SELECT result contains NULL values, check whether
2540 ** or not NULL is actually possible (it may not be, for example, due
2541 ** to NOT NULL constraints in the schema). If no NULL values are possible,
2542 ** set prRhsHasNull to 0 before continuing. */
2543 if( prRhsHasNull
&& (pX
->flags
& EP_xIsSelect
) ){
2545 ExprList
*pEList
= pX
->x
.pSelect
->pEList
;
2546 for(i
=0; i
<pEList
->nExpr
; i
++){
2547 if( sqlite3ExprCanBeNull(pEList
->a
[i
].pExpr
) ) break;
2549 if( i
==pEList
->nExpr
){
2554 /* Check to see if an existing table or index can be used to
2555 ** satisfy the query. This is preferable to generating a new
2556 ** ephemeral table. */
2557 if( pParse
->nErr
==0 && (p
= isCandidateForInOpt(pX
))!=0 ){
2558 sqlite3
*db
= pParse
->db
; /* Database connection */
2559 Table
*pTab
; /* Table <table>. */
2560 int iDb
; /* Database idx for pTab */
2561 ExprList
*pEList
= p
->pEList
;
2562 int nExpr
= pEList
->nExpr
;
2564 assert( p
->pEList
!=0 ); /* Because of isCandidateForInOpt(p) */
2565 assert( p
->pEList
->a
[0].pExpr
!=0 ); /* Because of isCandidateForInOpt(p) */
2566 assert( p
->pSrc
!=0 ); /* Because of isCandidateForInOpt(p) */
2567 pTab
= p
->pSrc
->a
[0].pTab
;
2569 /* Code an OP_Transaction and OP_TableLock for <table>. */
2570 iDb
= sqlite3SchemaToIndex(db
, pTab
->pSchema
);
2571 assert( iDb
>=0 && iDb
<SQLITE_MAX_ATTACHED
);
2572 sqlite3CodeVerifySchema(pParse
, iDb
);
2573 sqlite3TableLock(pParse
, iDb
, pTab
->tnum
, 0, pTab
->zName
);
2575 assert(v
); /* sqlite3GetVdbe() has always been previously called */
2576 if( nExpr
==1 && pEList
->a
[0].pExpr
->iColumn
<0 ){
2577 /* The "x IN (SELECT rowid FROM table)" case */
2578 int iAddr
= sqlite3VdbeAddOp0(v
, OP_Once
);
2581 sqlite3OpenTable(pParse
, iTab
, iDb
, pTab
, OP_OpenRead
);
2582 eType
= IN_INDEX_ROWID
;
2583 ExplainQueryPlan((pParse
, 0,
2584 "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab
->zName
));
2585 sqlite3VdbeJumpHere(v
, iAddr
);
2587 Index
*pIdx
; /* Iterator variable */
2588 int affinity_ok
= 1;
2591 /* Check that the affinity that will be used to perform each
2592 ** comparison is the same as the affinity of each column in table
2593 ** on the RHS of the IN operator. If it not, it is not possible to
2594 ** use any index of the RHS table. */
2595 for(i
=0; i
<nExpr
&& affinity_ok
; i
++){
2596 Expr
*pLhs
= sqlite3VectorFieldSubexpr(pX
->pLeft
, i
);
2597 int iCol
= pEList
->a
[i
].pExpr
->iColumn
;
2598 char idxaff
= sqlite3TableColumnAffinity(pTab
,iCol
); /* RHS table */
2599 char cmpaff
= sqlite3CompareAffinity(pLhs
, idxaff
);
2600 testcase( cmpaff
==SQLITE_AFF_BLOB
);
2601 testcase( cmpaff
==SQLITE_AFF_TEXT
);
2603 case SQLITE_AFF_BLOB
:
2605 case SQLITE_AFF_TEXT
:
2606 /* sqlite3CompareAffinity() only returns TEXT if one side or the
2607 ** other has no affinity and the other side is TEXT. Hence,
2608 ** the only way for cmpaff to be TEXT is for idxaff to be TEXT
2609 ** and for the term on the LHS of the IN to have no affinity. */
2610 assert( idxaff
==SQLITE_AFF_TEXT
);
2613 affinity_ok
= sqlite3IsNumericAffinity(idxaff
);
2618 /* Search for an existing index that will work for this IN operator */
2619 for(pIdx
=pTab
->pIndex
; pIdx
&& eType
==0; pIdx
=pIdx
->pNext
){
2620 Bitmask colUsed
; /* Columns of the index used */
2621 Bitmask mCol
; /* Mask for the current column */
2622 if( pIdx
->nColumn
<nExpr
) continue;
2623 if( pIdx
->pPartIdxWhere
!=0 ) continue;
2624 /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute
2625 ** BITMASK(nExpr) without overflowing */
2626 testcase( pIdx
->nColumn
==BMS
-2 );
2627 testcase( pIdx
->nColumn
==BMS
-1 );
2628 if( pIdx
->nColumn
>=BMS
-1 ) continue;
2630 if( pIdx
->nKeyCol
>nExpr
2631 ||(pIdx
->nColumn
>nExpr
&& !IsUniqueIndex(pIdx
))
2633 continue; /* This index is not unique over the IN RHS columns */
2637 colUsed
= 0; /* Columns of index used so far */
2638 for(i
=0; i
<nExpr
; i
++){
2639 Expr
*pLhs
= sqlite3VectorFieldSubexpr(pX
->pLeft
, i
);
2640 Expr
*pRhs
= pEList
->a
[i
].pExpr
;
2641 CollSeq
*pReq
= sqlite3BinaryCompareCollSeq(pParse
, pLhs
, pRhs
);
2644 assert( pReq
!=0 || pRhs
->iColumn
==XN_ROWID
|| pParse
->nErr
);
2645 for(j
=0; j
<nExpr
; j
++){
2646 if( pIdx
->aiColumn
[j
]!=pRhs
->iColumn
) continue;
2647 assert( pIdx
->azColl
[j
] );
2648 if( pReq
!=0 && sqlite3StrICmp(pReq
->zName
, pIdx
->azColl
[j
])!=0 ){
2653 if( j
==nExpr
) break;
2655 if( mCol
& colUsed
) break; /* Each column used only once */
2657 if( aiMap
) aiMap
[i
] = j
;
2660 assert( i
==nExpr
|| colUsed
!=(MASKBIT(nExpr
)-1) );
2661 if( colUsed
==(MASKBIT(nExpr
)-1) ){
2662 /* If we reach this point, that means the index pIdx is usable */
2663 int iAddr
= sqlite3VdbeAddOp0(v
, OP_Once
); VdbeCoverage(v
);
2664 ExplainQueryPlan((pParse
, 0,
2665 "USING INDEX %s FOR IN-OPERATOR",pIdx
->zName
));
2666 sqlite3VdbeAddOp3(v
, OP_OpenRead
, iTab
, pIdx
->tnum
, iDb
);
2667 sqlite3VdbeSetP4KeyInfo(pParse
, pIdx
);
2668 VdbeComment((v
, "%s", pIdx
->zName
));
2669 assert( IN_INDEX_INDEX_DESC
== IN_INDEX_INDEX_ASC
+1 );
2670 eType
= IN_INDEX_INDEX_ASC
+ pIdx
->aSortOrder
[0];
2673 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
2674 i64 mask
= (1<<nExpr
)-1;
2675 sqlite3VdbeAddOp4Dup8(v
, OP_ColumnsUsed
,
2676 iTab
, 0, 0, (u8
*)&mask
, P4_INT64
);
2678 *prRhsHasNull
= ++pParse
->nMem
;
2680 sqlite3SetHasNullFlag(v
, iTab
, *prRhsHasNull
);
2683 sqlite3VdbeJumpHere(v
, iAddr
);
2685 } /* End loop over indexes */
2686 } /* End if( affinity_ok ) */
2687 } /* End if not an rowid index */
2688 } /* End attempt to optimize using an index */
2690 /* If no preexisting index is available for the IN clause
2691 ** and IN_INDEX_NOOP is an allowed reply
2692 ** and the RHS of the IN operator is a list, not a subquery
2693 ** and the RHS is not constant or has two or fewer terms,
2694 ** then it is not worth creating an ephemeral table to evaluate
2695 ** the IN operator so return IN_INDEX_NOOP.
2698 && (inFlags
& IN_INDEX_NOOP_OK
)
2699 && !ExprHasProperty(pX
, EP_xIsSelect
)
2700 && (!sqlite3InRhsIsConstant(pX
) || pX
->x
.pList
->nExpr
<=2)
2702 eType
= IN_INDEX_NOOP
;
2706 /* Could not find an existing table or index to use as the RHS b-tree.
2707 ** We will have to generate an ephemeral table to do the job.
2709 u32 savedNQueryLoop
= pParse
->nQueryLoop
;
2710 int rMayHaveNull
= 0;
2711 eType
= IN_INDEX_EPH
;
2712 if( inFlags
& IN_INDEX_LOOP
){
2713 pParse
->nQueryLoop
= 0;
2714 }else if( prRhsHasNull
){
2715 *prRhsHasNull
= rMayHaveNull
= ++pParse
->nMem
;
2717 assert( pX
->op
==TK_IN
);
2718 sqlite3CodeRhsOfIN(pParse
, pX
, iTab
);
2720 sqlite3SetHasNullFlag(v
, iTab
, rMayHaveNull
);
2722 pParse
->nQueryLoop
= savedNQueryLoop
;
2725 if( aiMap
&& eType
!=IN_INDEX_INDEX_ASC
&& eType
!=IN_INDEX_INDEX_DESC
){
2727 n
= sqlite3ExprVectorSize(pX
->pLeft
);
2728 for(i
=0; i
<n
; i
++) aiMap
[i
] = i
;
2735 #ifndef SQLITE_OMIT_SUBQUERY
2737 ** Argument pExpr is an (?, ?...) IN(...) expression. This
2738 ** function allocates and returns a nul-terminated string containing
2739 ** the affinities to be used for each column of the comparison.
2741 ** It is the responsibility of the caller to ensure that the returned
2742 ** string is eventually freed using sqlite3DbFree().
2744 static char *exprINAffinity(Parse
*pParse
, Expr
*pExpr
){
2745 Expr
*pLeft
= pExpr
->pLeft
;
2746 int nVal
= sqlite3ExprVectorSize(pLeft
);
2747 Select
*pSelect
= (pExpr
->flags
& EP_xIsSelect
) ? pExpr
->x
.pSelect
: 0;
2750 assert( pExpr
->op
==TK_IN
);
2751 zRet
= sqlite3DbMallocRaw(pParse
->db
, nVal
+1);
2754 for(i
=0; i
<nVal
; i
++){
2755 Expr
*pA
= sqlite3VectorFieldSubexpr(pLeft
, i
);
2756 char a
= sqlite3ExprAffinity(pA
);
2758 zRet
[i
] = sqlite3CompareAffinity(pSelect
->pEList
->a
[i
].pExpr
, a
);
2769 #ifndef SQLITE_OMIT_SUBQUERY
2771 ** Load the Parse object passed as the first argument with an error
2772 ** message of the form:
2774 ** "sub-select returns N columns - expected M"
2776 void sqlite3SubselectError(Parse
*pParse
, int nActual
, int nExpect
){
2777 if( pParse
->nErr
==0 ){
2778 const char *zFmt
= "sub-select returns %d columns - expected %d";
2779 sqlite3ErrorMsg(pParse
, zFmt
, nActual
, nExpect
);
2785 ** Expression pExpr is a vector that has been used in a context where
2786 ** it is not permitted. If pExpr is a sub-select vector, this routine
2787 ** loads the Parse object with a message of the form:
2789 ** "sub-select returns N columns - expected 1"
2791 ** Or, if it is a regular scalar vector:
2793 ** "row value misused"
2795 void sqlite3VectorErrorMsg(Parse
*pParse
, Expr
*pExpr
){
2796 #ifndef SQLITE_OMIT_SUBQUERY
2797 if( pExpr
->flags
& EP_xIsSelect
){
2798 sqlite3SubselectError(pParse
, pExpr
->x
.pSelect
->pEList
->nExpr
, 1);
2802 sqlite3ErrorMsg(pParse
, "row value misused");
2806 #ifndef SQLITE_OMIT_SUBQUERY
2808 ** Generate code that will construct an ephemeral table containing all terms
2809 ** in the RHS of an IN operator. The IN operator can be in either of two
2812 ** x IN (4,5,11) -- IN operator with list on right-hand side
2813 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right
2815 ** The pExpr parameter is the IN operator. The cursor number for the
2816 ** constructed ephermeral table is returned. The first time the ephemeral
2817 ** table is computed, the cursor number is also stored in pExpr->iTable,
2818 ** however the cursor number returned might not be the same, as it might
2819 ** have been duplicated using OP_OpenDup.
2821 ** If the LHS expression ("x" in the examples) is a column value, or
2822 ** the SELECT statement returns a column value, then the affinity of that
2823 ** column is used to build the index keys. If both 'x' and the
2824 ** SELECT... statement are columns, then numeric affinity is used
2825 ** if either column has NUMERIC or INTEGER affinity. If neither
2826 ** 'x' nor the SELECT... statement are columns, then numeric affinity
2829 void sqlite3CodeRhsOfIN(
2830 Parse
*pParse
, /* Parsing context */
2831 Expr
*pExpr
, /* The IN operator */
2832 int iTab
/* Use this cursor number */
2834 int addrOnce
= 0; /* Address of the OP_Once instruction at top */
2835 int addr
; /* Address of OP_OpenEphemeral instruction */
2836 Expr
*pLeft
; /* the LHS of the IN operator */
2837 KeyInfo
*pKeyInfo
= 0; /* Key information */
2838 int nVal
; /* Size of vector pLeft */
2839 Vdbe
*v
; /* The prepared statement under construction */
2844 /* The evaluation of the IN must be repeated every time it
2845 ** is encountered if any of the following is true:
2847 ** * The right-hand side is a correlated subquery
2848 ** * The right-hand side is an expression list containing variables
2849 ** * We are inside a trigger
2851 ** If all of the above are false, then we can compute the RHS just once
2852 ** and reuse it many names.
2854 if( !ExprHasProperty(pExpr
, EP_VarSelect
) && pParse
->iSelfTab
==0 ){
2855 /* Reuse of the RHS is allowed */
2856 /* If this routine has already been coded, but the previous code
2857 ** might not have been invoked yet, so invoke it now as a subroutine.
2859 if( ExprHasProperty(pExpr
, EP_Subrtn
) ){
2860 addrOnce
= sqlite3VdbeAddOp0(v
, OP_Once
); VdbeCoverage(v
);
2861 if( ExprHasProperty(pExpr
, EP_xIsSelect
) ){
2862 ExplainQueryPlan((pParse
, 0, "REUSE LIST SUBQUERY %d",
2863 pExpr
->x
.pSelect
->selId
));
2865 sqlite3VdbeAddOp2(v
, OP_Gosub
, pExpr
->y
.sub
.regReturn
,
2866 pExpr
->y
.sub
.iAddr
);
2867 sqlite3VdbeAddOp2(v
, OP_OpenDup
, iTab
, pExpr
->iTable
);
2868 sqlite3VdbeJumpHere(v
, addrOnce
);
2872 /* Begin coding the subroutine */
2873 ExprSetProperty(pExpr
, EP_Subrtn
);
2874 assert( !ExprHasProperty(pExpr
, EP_TokenOnly
|EP_Reduced
) );
2875 pExpr
->y
.sub
.regReturn
= ++pParse
->nMem
;
2876 pExpr
->y
.sub
.iAddr
=
2877 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, pExpr
->y
.sub
.regReturn
) + 1;
2878 VdbeComment((v
, "return address"));
2880 addrOnce
= sqlite3VdbeAddOp0(v
, OP_Once
); VdbeCoverage(v
);
2883 /* Check to see if this is a vector IN operator */
2884 pLeft
= pExpr
->pLeft
;
2885 nVal
= sqlite3ExprVectorSize(pLeft
);
2887 /* Construct the ephemeral table that will contain the content of
2888 ** RHS of the IN operator.
2890 pExpr
->iTable
= iTab
;
2891 addr
= sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, pExpr
->iTable
, nVal
);
2892 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
2893 if( ExprHasProperty(pExpr
, EP_xIsSelect
) ){
2894 VdbeComment((v
, "Result of SELECT %u", pExpr
->x
.pSelect
->selId
));
2896 VdbeComment((v
, "RHS of IN operator"));
2899 pKeyInfo
= sqlite3KeyInfoAlloc(pParse
->db
, nVal
, 1);
2901 if( ExprHasProperty(pExpr
, EP_xIsSelect
) ){
2902 /* Case 1: expr IN (SELECT ...)
2904 ** Generate code to write the results of the select into the temporary
2905 ** table allocated and opened above.
2907 Select
*pSelect
= pExpr
->x
.pSelect
;
2908 ExprList
*pEList
= pSelect
->pEList
;
2910 ExplainQueryPlan((pParse
, 1, "%sLIST SUBQUERY %d",
2911 addrOnce
?"":"CORRELATED ", pSelect
->selId
2913 /* If the LHS and RHS of the IN operator do not match, that
2914 ** error will have been caught long before we reach this point. */
2915 if( ALWAYS(pEList
->nExpr
==nVal
) ){
2918 sqlite3SelectDestInit(&dest
, SRT_Set
, iTab
);
2919 dest
.zAffSdst
= exprINAffinity(pParse
, pExpr
);
2920 pSelect
->iLimit
= 0;
2921 testcase( pSelect
->selFlags
& SF_Distinct
);
2922 testcase( pKeyInfo
==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
2923 if( sqlite3Select(pParse
, pSelect
, &dest
) ){
2924 sqlite3DbFree(pParse
->db
, dest
.zAffSdst
);
2925 sqlite3KeyInfoUnref(pKeyInfo
);
2928 sqlite3DbFree(pParse
->db
, dest
.zAffSdst
);
2929 assert( pKeyInfo
!=0 ); /* OOM will cause exit after sqlite3Select() */
2930 assert( pEList
!=0 );
2931 assert( pEList
->nExpr
>0 );
2932 assert( sqlite3KeyInfoIsWriteable(pKeyInfo
) );
2933 for(i
=0; i
<nVal
; i
++){
2934 Expr
*p
= sqlite3VectorFieldSubexpr(pLeft
, i
);
2935 pKeyInfo
->aColl
[i
] = sqlite3BinaryCompareCollSeq(
2936 pParse
, p
, pEList
->a
[i
].pExpr
2940 }else if( ALWAYS(pExpr
->x
.pList
!=0) ){
2941 /* Case 2: expr IN (exprlist)
2943 ** For each expression, build an index key from the evaluation and
2944 ** store it in the temporary table. If <expr> is a column, then use
2945 ** that columns affinity when building index keys. If <expr> is not
2946 ** a column, use numeric affinity.
2948 char affinity
; /* Affinity of the LHS of the IN */
2950 ExprList
*pList
= pExpr
->x
.pList
;
2951 struct ExprList_item
*pItem
;
2953 affinity
= sqlite3ExprAffinity(pLeft
);
2954 if( affinity
<=SQLITE_AFF_NONE
){
2955 affinity
= SQLITE_AFF_BLOB
;
2956 }else if( affinity
==SQLITE_AFF_REAL
){
2957 affinity
= SQLITE_AFF_NUMERIC
;
2960 assert( sqlite3KeyInfoIsWriteable(pKeyInfo
) );
2961 pKeyInfo
->aColl
[0] = sqlite3ExprCollSeq(pParse
, pExpr
->pLeft
);
2964 /* Loop through each expression in <exprlist>. */
2965 r1
= sqlite3GetTempReg(pParse
);
2966 r2
= sqlite3GetTempReg(pParse
);
2967 for(i
=pList
->nExpr
, pItem
=pList
->a
; i
>0; i
--, pItem
++){
2968 Expr
*pE2
= pItem
->pExpr
;
2970 /* If the expression is not constant then we will need to
2971 ** disable the test that was generated above that makes sure
2972 ** this code only executes once. Because for a non-constant
2973 ** expression we need to rerun this code each time.
2975 if( addrOnce
&& !sqlite3ExprIsConstant(pE2
) ){
2976 sqlite3VdbeChangeToNoop(v
, addrOnce
);
2977 ExprClearProperty(pExpr
, EP_Subrtn
);
2981 /* Evaluate the expression and insert it into the temp table */
2982 sqlite3ExprCode(pParse
, pE2
, r1
);
2983 sqlite3VdbeAddOp4(v
, OP_MakeRecord
, r1
, 1, r2
, &affinity
, 1);
2984 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, iTab
, r2
, r1
, 1);
2986 sqlite3ReleaseTempReg(pParse
, r1
);
2987 sqlite3ReleaseTempReg(pParse
, r2
);
2990 sqlite3VdbeChangeP4(v
, addr
, (void *)pKeyInfo
, P4_KEYINFO
);
2993 sqlite3VdbeJumpHere(v
, addrOnce
);
2994 /* Subroutine return */
2995 sqlite3VdbeAddOp1(v
, OP_Return
, pExpr
->y
.sub
.regReturn
);
2996 sqlite3VdbeChangeP1(v
, pExpr
->y
.sub
.iAddr
-1, sqlite3VdbeCurrentAddr(v
)-1);
2997 sqlite3ClearTempRegCache(pParse
);
3000 #endif /* SQLITE_OMIT_SUBQUERY */
3003 ** Generate code for scalar subqueries used as a subquery expression
3004 ** or EXISTS operator:
3006 ** (SELECT a FROM b) -- subquery
3007 ** EXISTS (SELECT a FROM b) -- EXISTS subquery
3009 ** The pExpr parameter is the SELECT or EXISTS operator to be coded.
3011 ** Return the register that holds the result. For a multi-column SELECT,
3012 ** the result is stored in a contiguous array of registers and the
3013 ** return value is the register of the left-most result column.
3014 ** Return 0 if an error occurs.
3016 #ifndef SQLITE_OMIT_SUBQUERY
3017 int sqlite3CodeSubselect(Parse
*pParse
, Expr
*pExpr
){
3018 int addrOnce
= 0; /* Address of OP_Once at top of subroutine */
3019 int rReg
= 0; /* Register storing resulting */
3020 Select
*pSel
; /* SELECT statement to encode */
3021 SelectDest dest
; /* How to deal with SELECT result */
3022 int nReg
; /* Registers to allocate */
3023 Expr
*pLimit
; /* New limit expression */
3025 Vdbe
*v
= pParse
->pVdbe
;
3027 testcase( pExpr
->op
==TK_EXISTS
);
3028 testcase( pExpr
->op
==TK_SELECT
);
3029 assert( pExpr
->op
==TK_EXISTS
|| pExpr
->op
==TK_SELECT
);
3030 assert( ExprHasProperty(pExpr
, EP_xIsSelect
) );
3031 pSel
= pExpr
->x
.pSelect
;
3033 /* The evaluation of the EXISTS/SELECT must be repeated every time it
3034 ** is encountered if any of the following is true:
3036 ** * The right-hand side is a correlated subquery
3037 ** * The right-hand side is an expression list containing variables
3038 ** * We are inside a trigger
3040 ** If all of the above are false, then we can run this code just once
3041 ** save the results, and reuse the same result on subsequent invocations.
3043 if( !ExprHasProperty(pExpr
, EP_VarSelect
) ){
3044 /* If this routine has already been coded, then invoke it as a
3046 if( ExprHasProperty(pExpr
, EP_Subrtn
) ){
3047 ExplainQueryPlan((pParse
, 0, "REUSE SUBQUERY %d", pSel
->selId
));
3048 sqlite3VdbeAddOp2(v
, OP_Gosub
, pExpr
->y
.sub
.regReturn
,
3049 pExpr
->y
.sub
.iAddr
);
3050 return pExpr
->iTable
;
3053 /* Begin coding the subroutine */
3054 ExprSetProperty(pExpr
, EP_Subrtn
);
3055 pExpr
->y
.sub
.regReturn
= ++pParse
->nMem
;
3056 pExpr
->y
.sub
.iAddr
=
3057 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, pExpr
->y
.sub
.regReturn
) + 1;
3058 VdbeComment((v
, "return address"));
3060 addrOnce
= sqlite3VdbeAddOp0(v
, OP_Once
); VdbeCoverage(v
);
3063 /* For a SELECT, generate code to put the values for all columns of
3064 ** the first row into an array of registers and return the index of
3065 ** the first register.
3067 ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists)
3068 ** into a register and return that register number.
3070 ** In both cases, the query is augmented with "LIMIT 1". Any
3071 ** preexisting limit is discarded in place of the new LIMIT 1.
3073 ExplainQueryPlan((pParse
, 1, "%sSCALAR SUBQUERY %d",
3074 addrOnce
?"":"CORRELATED ", pSel
->selId
));
3075 nReg
= pExpr
->op
==TK_SELECT
? pSel
->pEList
->nExpr
: 1;
3076 sqlite3SelectDestInit(&dest
, 0, pParse
->nMem
+1);
3077 pParse
->nMem
+= nReg
;
3078 if( pExpr
->op
==TK_SELECT
){
3079 dest
.eDest
= SRT_Mem
;
3080 dest
.iSdst
= dest
.iSDParm
;
3082 sqlite3VdbeAddOp3(v
, OP_Null
, 0, dest
.iSDParm
, dest
.iSDParm
+nReg
-1);
3083 VdbeComment((v
, "Init subquery result"));
3085 dest
.eDest
= SRT_Exists
;
3086 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, dest
.iSDParm
);
3087 VdbeComment((v
, "Init EXISTS result"));
3090 /* The subquery already has a limit. If the pre-existing limit is X
3091 ** then make the new limit X<>0 so that the new limit is either 1 or 0 */
3092 sqlite3
*db
= pParse
->db
;
3093 pLimit
= sqlite3Expr(db
, TK_INTEGER
, "0");
3095 pLimit
->affExpr
= SQLITE_AFF_NUMERIC
;
3096 pLimit
= sqlite3PExpr(pParse
, TK_NE
,
3097 sqlite3ExprDup(db
, pSel
->pLimit
->pLeft
, 0), pLimit
);
3099 sqlite3ExprDelete(db
, pSel
->pLimit
->pLeft
);
3100 pSel
->pLimit
->pLeft
= pLimit
;
3102 /* If there is no pre-existing limit add a limit of 1 */
3103 pLimit
= sqlite3Expr(pParse
->db
, TK_INTEGER
, "1");
3104 pSel
->pLimit
= sqlite3PExpr(pParse
, TK_LIMIT
, pLimit
, 0);
3107 if( sqlite3Select(pParse
, pSel
, &dest
) ){
3110 pExpr
->iTable
= rReg
= dest
.iSDParm
;
3111 ExprSetVVAProperty(pExpr
, EP_NoReduce
);
3113 sqlite3VdbeJumpHere(v
, addrOnce
);
3115 /* Subroutine return */
3116 sqlite3VdbeAddOp1(v
, OP_Return
, pExpr
->y
.sub
.regReturn
);
3117 sqlite3VdbeChangeP1(v
, pExpr
->y
.sub
.iAddr
-1, sqlite3VdbeCurrentAddr(v
)-1);
3118 sqlite3ClearTempRegCache(pParse
);
3123 #endif /* SQLITE_OMIT_SUBQUERY */
3125 #ifndef SQLITE_OMIT_SUBQUERY
3127 ** Expr pIn is an IN(...) expression. This function checks that the
3128 ** sub-select on the RHS of the IN() operator has the same number of
3129 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not
3130 ** a sub-query, that the LHS is a vector of size 1.
3132 int sqlite3ExprCheckIN(Parse
*pParse
, Expr
*pIn
){
3133 int nVector
= sqlite3ExprVectorSize(pIn
->pLeft
);
3134 if( (pIn
->flags
& EP_xIsSelect
) ){
3135 if( nVector
!=pIn
->x
.pSelect
->pEList
->nExpr
){
3136 sqlite3SubselectError(pParse
, pIn
->x
.pSelect
->pEList
->nExpr
, nVector
);
3139 }else if( nVector
!=1 ){
3140 sqlite3VectorErrorMsg(pParse
, pIn
->pLeft
);
3147 #ifndef SQLITE_OMIT_SUBQUERY
3149 ** Generate code for an IN expression.
3151 ** x IN (SELECT ...)
3152 ** x IN (value, value, ...)
3154 ** The left-hand side (LHS) is a scalar or vector expression. The
3155 ** right-hand side (RHS) is an array of zero or more scalar values, or a
3156 ** subquery. If the RHS is a subquery, the number of result columns must
3157 ** match the number of columns in the vector on the LHS. If the RHS is
3158 ** a list of values, the LHS must be a scalar.
3160 ** The IN operator is true if the LHS value is contained within the RHS.
3161 ** The result is false if the LHS is definitely not in the RHS. The
3162 ** result is NULL if the presence of the LHS in the RHS cannot be
3163 ** determined due to NULLs.
3165 ** This routine generates code that jumps to destIfFalse if the LHS is not
3166 ** contained within the RHS. If due to NULLs we cannot determine if the LHS
3167 ** is contained in the RHS then jump to destIfNull. If the LHS is contained
3168 ** within the RHS then fall through.
3170 ** See the separate in-operator.md documentation file in the canonical
3171 ** SQLite source tree for additional information.
3173 static void sqlite3ExprCodeIN(
3174 Parse
*pParse
, /* Parsing and code generating context */
3175 Expr
*pExpr
, /* The IN expression */
3176 int destIfFalse
, /* Jump here if LHS is not contained in the RHS */
3177 int destIfNull
/* Jump here if the results are unknown due to NULLs */
3179 int rRhsHasNull
= 0; /* Register that is true if RHS contains NULL values */
3180 int eType
; /* Type of the RHS */
3181 int rLhs
; /* Register(s) holding the LHS values */
3182 int rLhsOrig
; /* LHS values prior to reordering by aiMap[] */
3183 Vdbe
*v
; /* Statement under construction */
3184 int *aiMap
= 0; /* Map from vector field to index column */
3185 char *zAff
= 0; /* Affinity string for comparisons */
3186 int nVector
; /* Size of vectors for this IN operator */
3187 int iDummy
; /* Dummy parameter to exprCodeVector() */
3188 Expr
*pLeft
; /* The LHS of the IN operator */
3189 int i
; /* loop counter */
3190 int destStep2
; /* Where to jump when NULLs seen in step 2 */
3191 int destStep6
= 0; /* Start of code for Step 6 */
3192 int addrTruthOp
; /* Address of opcode that determines the IN is true */
3193 int destNotNull
; /* Jump here if a comparison is not true in step 6 */
3194 int addrTop
; /* Top of the step-6 loop */
3195 int iTab
= 0; /* Index to use */
3196 u8 okConstFactor
= pParse
->okConstFactor
;
3198 assert( !ExprHasVVAProperty(pExpr
,EP_Immutable
) );
3199 pLeft
= pExpr
->pLeft
;
3200 if( sqlite3ExprCheckIN(pParse
, pExpr
) ) return;
3201 zAff
= exprINAffinity(pParse
, pExpr
);
3202 nVector
= sqlite3ExprVectorSize(pExpr
->pLeft
);
3203 aiMap
= (int*)sqlite3DbMallocZero(
3204 pParse
->db
, nVector
*(sizeof(int) + sizeof(char)) + 1
3206 if( pParse
->db
->mallocFailed
) goto sqlite3ExprCodeIN_oom_error
;
3208 /* Attempt to compute the RHS. After this step, if anything other than
3209 ** IN_INDEX_NOOP is returned, the table opened with cursor iTab
3210 ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned,
3211 ** the RHS has not yet been coded. */
3213 assert( v
!=0 ); /* OOM detected prior to this routine */
3214 VdbeNoopComment((v
, "begin IN expr"));
3215 eType
= sqlite3FindInIndex(pParse
, pExpr
,
3216 IN_INDEX_MEMBERSHIP
| IN_INDEX_NOOP_OK
,
3217 destIfFalse
==destIfNull
? 0 : &rRhsHasNull
,
3220 assert( pParse
->nErr
|| nVector
==1 || eType
==IN_INDEX_EPH
3221 || eType
==IN_INDEX_INDEX_ASC
|| eType
==IN_INDEX_INDEX_DESC
3224 /* Confirm that aiMap[] contains nVector integer values between 0 and
3226 for(i
=0; i
<nVector
; i
++){
3228 for(cnt
=j
=0; j
<nVector
; j
++) if( aiMap
[j
]==i
) cnt
++;
3233 /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a
3234 ** vector, then it is stored in an array of nVector registers starting
3237 ** sqlite3FindInIndex() might have reordered the fields of the LHS vector
3238 ** so that the fields are in the same order as an existing index. The
3239 ** aiMap[] array contains a mapping from the original LHS field order to
3240 ** the field order that matches the RHS index.
3242 ** Avoid factoring the LHS of the IN(...) expression out of the loop,
3243 ** even if it is constant, as OP_Affinity may be used on the register
3244 ** by code generated below. */
3245 assert( pParse
->okConstFactor
==okConstFactor
);
3246 pParse
->okConstFactor
= 0;
3247 rLhsOrig
= exprCodeVector(pParse
, pLeft
, &iDummy
);
3248 pParse
->okConstFactor
= okConstFactor
;
3249 for(i
=0; i
<nVector
&& aiMap
[i
]==i
; i
++){} /* Are LHS fields reordered? */
3251 /* LHS fields are not reordered */
3254 /* Need to reorder the LHS fields according to aiMap */
3255 rLhs
= sqlite3GetTempRange(pParse
, nVector
);
3256 for(i
=0; i
<nVector
; i
++){
3257 sqlite3VdbeAddOp3(v
, OP_Copy
, rLhsOrig
+i
, rLhs
+aiMap
[i
], 0);
3261 /* If sqlite3FindInIndex() did not find or create an index that is
3262 ** suitable for evaluating the IN operator, then evaluate using a
3263 ** sequence of comparisons.
3265 ** This is step (1) in the in-operator.md optimized algorithm.
3267 if( eType
==IN_INDEX_NOOP
){
3268 ExprList
*pList
= pExpr
->x
.pList
;
3269 CollSeq
*pColl
= sqlite3ExprCollSeq(pParse
, pExpr
->pLeft
);
3270 int labelOk
= sqlite3VdbeMakeLabel(pParse
);
3274 assert( !ExprHasProperty(pExpr
, EP_xIsSelect
) );
3275 if( destIfNull
!=destIfFalse
){
3276 regCkNull
= sqlite3GetTempReg(pParse
);
3277 sqlite3VdbeAddOp3(v
, OP_BitAnd
, rLhs
, rLhs
, regCkNull
);
3279 for(ii
=0; ii
<pList
->nExpr
; ii
++){
3280 r2
= sqlite3ExprCodeTemp(pParse
, pList
->a
[ii
].pExpr
, ®ToFree
);
3281 if( regCkNull
&& sqlite3ExprCanBeNull(pList
->a
[ii
].pExpr
) ){
3282 sqlite3VdbeAddOp3(v
, OP_BitAnd
, regCkNull
, r2
, regCkNull
);
3284 sqlite3ReleaseTempReg(pParse
, regToFree
);
3285 if( ii
<pList
->nExpr
-1 || destIfNull
!=destIfFalse
){
3286 int op
= rLhs
!=r2
? OP_Eq
: OP_NotNull
;
3287 sqlite3VdbeAddOp4(v
, op
, rLhs
, labelOk
, r2
,
3288 (void*)pColl
, P4_COLLSEQ
);
3289 VdbeCoverageIf(v
, ii
<pList
->nExpr
-1 && op
==OP_Eq
);
3290 VdbeCoverageIf(v
, ii
==pList
->nExpr
-1 && op
==OP_Eq
);
3291 VdbeCoverageIf(v
, ii
<pList
->nExpr
-1 && op
==OP_NotNull
);
3292 VdbeCoverageIf(v
, ii
==pList
->nExpr
-1 && op
==OP_NotNull
);
3293 sqlite3VdbeChangeP5(v
, zAff
[0]);
3295 int op
= rLhs
!=r2
? OP_Ne
: OP_IsNull
;
3296 assert( destIfNull
==destIfFalse
);
3297 sqlite3VdbeAddOp4(v
, op
, rLhs
, destIfFalse
, r2
,
3298 (void*)pColl
, P4_COLLSEQ
);
3299 VdbeCoverageIf(v
, op
==OP_Ne
);
3300 VdbeCoverageIf(v
, op
==OP_IsNull
);
3301 sqlite3VdbeChangeP5(v
, zAff
[0] | SQLITE_JUMPIFNULL
);
3305 sqlite3VdbeAddOp2(v
, OP_IsNull
, regCkNull
, destIfNull
); VdbeCoverage(v
);
3306 sqlite3VdbeGoto(v
, destIfFalse
);
3308 sqlite3VdbeResolveLabel(v
, labelOk
);
3309 sqlite3ReleaseTempReg(pParse
, regCkNull
);
3310 goto sqlite3ExprCodeIN_finished
;
3313 /* Step 2: Check to see if the LHS contains any NULL columns. If the
3314 ** LHS does contain NULLs then the result must be either FALSE or NULL.
3315 ** We will then skip the binary search of the RHS.
3317 if( destIfNull
==destIfFalse
){
3318 destStep2
= destIfFalse
;
3320 destStep2
= destStep6
= sqlite3VdbeMakeLabel(pParse
);
3322 if( pParse
->nErr
) goto sqlite3ExprCodeIN_finished
;
3323 for(i
=0; i
<nVector
; i
++){
3324 Expr
*p
= sqlite3VectorFieldSubexpr(pExpr
->pLeft
, i
);
3325 if( sqlite3ExprCanBeNull(p
) ){
3326 sqlite3VdbeAddOp2(v
, OP_IsNull
, rLhs
+i
, destStep2
);
3331 /* Step 3. The LHS is now known to be non-NULL. Do the binary search
3332 ** of the RHS using the LHS as a probe. If found, the result is
3335 if( eType
==IN_INDEX_ROWID
){
3336 /* In this case, the RHS is the ROWID of table b-tree and so we also
3337 ** know that the RHS is non-NULL. Hence, we combine steps 3 and 4
3338 ** into a single opcode. */
3339 sqlite3VdbeAddOp3(v
, OP_SeekRowid
, iTab
, destIfFalse
, rLhs
);
3341 addrTruthOp
= sqlite3VdbeAddOp0(v
, OP_Goto
); /* Return True */
3343 sqlite3VdbeAddOp4(v
, OP_Affinity
, rLhs
, nVector
, 0, zAff
, nVector
);
3344 if( destIfFalse
==destIfNull
){
3345 /* Combine Step 3 and Step 5 into a single opcode */
3346 sqlite3VdbeAddOp4Int(v
, OP_NotFound
, iTab
, destIfFalse
,
3347 rLhs
, nVector
); VdbeCoverage(v
);
3348 goto sqlite3ExprCodeIN_finished
;
3350 /* Ordinary Step 3, for the case where FALSE and NULL are distinct */
3351 addrTruthOp
= sqlite3VdbeAddOp4Int(v
, OP_Found
, iTab
, 0,
3352 rLhs
, nVector
); VdbeCoverage(v
);
3355 /* Step 4. If the RHS is known to be non-NULL and we did not find
3356 ** an match on the search above, then the result must be FALSE.
3358 if( rRhsHasNull
&& nVector
==1 ){
3359 sqlite3VdbeAddOp2(v
, OP_NotNull
, rRhsHasNull
, destIfFalse
);
3363 /* Step 5. If we do not care about the difference between NULL and
3364 ** FALSE, then just return false.
3366 if( destIfFalse
==destIfNull
) sqlite3VdbeGoto(v
, destIfFalse
);
3368 /* Step 6: Loop through rows of the RHS. Compare each row to the LHS.
3369 ** If any comparison is NULL, then the result is NULL. If all
3370 ** comparisons are FALSE then the final result is FALSE.
3372 ** For a scalar LHS, it is sufficient to check just the first row
3375 if( destStep6
) sqlite3VdbeResolveLabel(v
, destStep6
);
3376 addrTop
= sqlite3VdbeAddOp2(v
, OP_Rewind
, iTab
, destIfFalse
);
3379 destNotNull
= sqlite3VdbeMakeLabel(pParse
);
3381 /* For nVector==1, combine steps 6 and 7 by immediately returning
3382 ** FALSE if the first comparison is not NULL */
3383 destNotNull
= destIfFalse
;
3385 for(i
=0; i
<nVector
; i
++){
3388 int r3
= sqlite3GetTempReg(pParse
);
3389 p
= sqlite3VectorFieldSubexpr(pLeft
, i
);
3390 pColl
= sqlite3ExprCollSeq(pParse
, p
);
3391 sqlite3VdbeAddOp3(v
, OP_Column
, iTab
, i
, r3
);
3392 sqlite3VdbeAddOp4(v
, OP_Ne
, rLhs
+i
, destNotNull
, r3
,
3393 (void*)pColl
, P4_COLLSEQ
);
3395 sqlite3ReleaseTempReg(pParse
, r3
);
3397 sqlite3VdbeAddOp2(v
, OP_Goto
, 0, destIfNull
);
3399 sqlite3VdbeResolveLabel(v
, destNotNull
);
3400 sqlite3VdbeAddOp2(v
, OP_Next
, iTab
, addrTop
+1);
3403 /* Step 7: If we reach this point, we know that the result must
3405 sqlite3VdbeAddOp2(v
, OP_Goto
, 0, destIfFalse
);
3408 /* Jumps here in order to return true. */
3409 sqlite3VdbeJumpHere(v
, addrTruthOp
);
3411 sqlite3ExprCodeIN_finished
:
3412 if( rLhs
!=rLhsOrig
) sqlite3ReleaseTempReg(pParse
, rLhs
);
3413 VdbeComment((v
, "end IN expr"));
3414 sqlite3ExprCodeIN_oom_error
:
3415 sqlite3DbFree(pParse
->db
, aiMap
);
3416 sqlite3DbFree(pParse
->db
, zAff
);
3418 #endif /* SQLITE_OMIT_SUBQUERY */
3420 #ifndef SQLITE_OMIT_FLOATING_POINT
3422 ** Generate an instruction that will put the floating point
3423 ** value described by z[0..n-1] into register iMem.
3425 ** The z[] string will probably not be zero-terminated. But the
3426 ** z[n] character is guaranteed to be something that does not look
3427 ** like the continuation of the number.
3429 static void codeReal(Vdbe
*v
, const char *z
, int negateFlag
, int iMem
){
3432 sqlite3AtoF(z
, &value
, sqlite3Strlen30(z
), SQLITE_UTF8
);
3433 assert( !sqlite3IsNaN(value
) ); /* The new AtoF never returns NaN */
3434 if( negateFlag
) value
= -value
;
3435 sqlite3VdbeAddOp4Dup8(v
, OP_Real
, 0, iMem
, 0, (u8
*)&value
, P4_REAL
);
3442 ** Generate an instruction that will put the integer describe by
3443 ** text z[0..n-1] into register iMem.
3445 ** Expr.u.zToken is always UTF8 and zero-terminated.
3447 static void codeInteger(Parse
*pParse
, Expr
*pExpr
, int negFlag
, int iMem
){
3448 Vdbe
*v
= pParse
->pVdbe
;
3449 if( pExpr
->flags
& EP_IntValue
){
3450 int i
= pExpr
->u
.iValue
;
3452 if( negFlag
) i
= -i
;
3453 sqlite3VdbeAddOp2(v
, OP_Integer
, i
, iMem
);
3457 const char *z
= pExpr
->u
.zToken
;
3459 c
= sqlite3DecOrHexToI64(z
, &value
);
3460 if( (c
==3 && !negFlag
) || (c
==2) || (negFlag
&& value
==SMALLEST_INT64
)){
3461 #ifdef SQLITE_OMIT_FLOATING_POINT
3462 sqlite3ErrorMsg(pParse
, "oversized integer: %s%s", negFlag
? "-" : "", z
);
3464 #ifndef SQLITE_OMIT_HEX_INTEGER
3465 if( sqlite3_strnicmp(z
,"0x",2)==0 ){
3466 sqlite3ErrorMsg(pParse
, "hex literal too big: %s%s", negFlag
?"-":"",z
);
3470 codeReal(v
, z
, negFlag
, iMem
);
3474 if( negFlag
){ value
= c
==3 ? SMALLEST_INT64
: -value
; }
3475 sqlite3VdbeAddOp4Dup8(v
, OP_Int64
, 0, iMem
, 0, (u8
*)&value
, P4_INT64
);
3481 /* Generate code that will load into register regOut a value that is
3482 ** appropriate for the iIdxCol-th column of index pIdx.
3484 void sqlite3ExprCodeLoadIndexColumn(
3485 Parse
*pParse
, /* The parsing context */
3486 Index
*pIdx
, /* The index whose column is to be loaded */
3487 int iTabCur
, /* Cursor pointing to a table row */
3488 int iIdxCol
, /* The column of the index to be loaded */
3489 int regOut
/* Store the index column value in this register */
3491 i16 iTabCol
= pIdx
->aiColumn
[iIdxCol
];
3492 if( iTabCol
==XN_EXPR
){
3493 assert( pIdx
->aColExpr
);
3494 assert( pIdx
->aColExpr
->nExpr
>iIdxCol
);
3495 pParse
->iSelfTab
= iTabCur
+ 1;
3496 sqlite3ExprCodeCopy(pParse
, pIdx
->aColExpr
->a
[iIdxCol
].pExpr
, regOut
);
3497 pParse
->iSelfTab
= 0;
3499 sqlite3ExprCodeGetColumnOfTable(pParse
->pVdbe
, pIdx
->pTable
, iTabCur
,
3504 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
3506 ** Generate code that will compute the value of generated column pCol
3507 ** and store the result in register regOut
3509 void sqlite3ExprCodeGeneratedColumn(
3515 Vdbe
*v
= pParse
->pVdbe
;
3517 assert( pParse
->iSelfTab
!=0 );
3518 if( pParse
->iSelfTab
>0 ){
3519 iAddr
= sqlite3VdbeAddOp3(v
, OP_IfNullRow
, pParse
->iSelfTab
-1, 0, regOut
);
3523 sqlite3ExprCodeCopy(pParse
, pCol
->pDflt
, regOut
);
3524 if( pCol
->affinity
>=SQLITE_AFF_TEXT
){
3525 sqlite3VdbeAddOp4(v
, OP_Affinity
, regOut
, 1, 0, &pCol
->affinity
, 1);
3527 if( iAddr
) sqlite3VdbeJumpHere(v
, iAddr
);
3529 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
3532 ** Generate code to extract the value of the iCol-th column of a table.
3534 void sqlite3ExprCodeGetColumnOfTable(
3535 Vdbe
*v
, /* Parsing context */
3536 Table
*pTab
, /* The table containing the value */
3537 int iTabCur
, /* The table cursor. Or the PK cursor for WITHOUT ROWID */
3538 int iCol
, /* Index of the column to extract */
3539 int regOut
/* Extract the value into this register */
3544 sqlite3VdbeAddOp3(v
, OP_Column
, iTabCur
, iCol
, regOut
);
3547 if( iCol
<0 || iCol
==pTab
->iPKey
){
3548 sqlite3VdbeAddOp2(v
, OP_Rowid
, iTabCur
, regOut
);
3552 if( IsVirtual(pTab
) ){
3555 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
3556 }else if( (pCol
= &pTab
->aCol
[iCol
])->colFlags
& COLFLAG_VIRTUAL
){
3557 Parse
*pParse
= sqlite3VdbeParser(v
);
3558 if( pCol
->colFlags
& COLFLAG_BUSY
){
3559 sqlite3ErrorMsg(pParse
, "generated column loop on \"%s\"", pCol
->zName
);
3561 int savedSelfTab
= pParse
->iSelfTab
;
3562 pCol
->colFlags
|= COLFLAG_BUSY
;
3563 pParse
->iSelfTab
= iTabCur
+1;
3564 sqlite3ExprCodeGeneratedColumn(pParse
, pCol
, regOut
);
3565 pParse
->iSelfTab
= savedSelfTab
;
3566 pCol
->colFlags
&= ~COLFLAG_BUSY
;
3570 }else if( !HasRowid(pTab
) ){
3571 testcase( iCol
!=sqlite3TableColumnToStorage(pTab
, iCol
) );
3572 x
= sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab
), iCol
);
3575 x
= sqlite3TableColumnToStorage(pTab
,iCol
);
3576 testcase( x
!=iCol
);
3579 sqlite3VdbeAddOp3(v
, op
, iTabCur
, x
, regOut
);
3580 sqlite3ColumnDefault(v
, pTab
, iCol
, regOut
);
3585 ** Generate code that will extract the iColumn-th column from
3586 ** table pTab and store the column value in register iReg.
3588 ** There must be an open cursor to pTab in iTable when this routine
3589 ** is called. If iColumn<0 then code is generated that extracts the rowid.
3591 int sqlite3ExprCodeGetColumn(
3592 Parse
*pParse
, /* Parsing and code generating context */
3593 Table
*pTab
, /* Description of the table we are reading from */
3594 int iColumn
, /* Index of the table column */
3595 int iTable
, /* The cursor pointing to the table */
3596 int iReg
, /* Store results here */
3597 u8 p5
/* P5 value for OP_Column + FLAGS */
3599 assert( pParse
->pVdbe
!=0 );
3600 sqlite3ExprCodeGetColumnOfTable(pParse
->pVdbe
, pTab
, iTable
, iColumn
, iReg
);
3602 VdbeOp
*pOp
= sqlite3VdbeGetOp(pParse
->pVdbe
,-1);
3603 if( pOp
->opcode
==OP_Column
) pOp
->p5
= p5
;
3609 ** Generate code to move content from registers iFrom...iFrom+nReg-1
3610 ** over to iTo..iTo+nReg-1.
3612 void sqlite3ExprCodeMove(Parse
*pParse
, int iFrom
, int iTo
, int nReg
){
3613 sqlite3VdbeAddOp3(pParse
->pVdbe
, OP_Move
, iFrom
, iTo
, nReg
);
3617 ** Convert a scalar expression node to a TK_REGISTER referencing
3618 ** register iReg. The caller must ensure that iReg already contains
3619 ** the correct value for the expression.
3621 static void exprToRegister(Expr
*pExpr
, int iReg
){
3622 Expr
*p
= sqlite3ExprSkipCollateAndLikely(pExpr
);
3624 p
->op
= TK_REGISTER
;
3626 ExprClearProperty(p
, EP_Skip
);
3630 ** Evaluate an expression (either a vector or a scalar expression) and store
3631 ** the result in continguous temporary registers. Return the index of
3632 ** the first register used to store the result.
3634 ** If the returned result register is a temporary scalar, then also write
3635 ** that register number into *piFreeable. If the returned result register
3636 ** is not a temporary or if the expression is a vector set *piFreeable
3639 static int exprCodeVector(Parse
*pParse
, Expr
*p
, int *piFreeable
){
3641 int nResult
= sqlite3ExprVectorSize(p
);
3643 iResult
= sqlite3ExprCodeTemp(pParse
, p
, piFreeable
);
3646 if( p
->op
==TK_SELECT
){
3647 #if SQLITE_OMIT_SUBQUERY
3650 iResult
= sqlite3CodeSubselect(pParse
, p
);
3654 iResult
= pParse
->nMem
+1;
3655 pParse
->nMem
+= nResult
;
3656 for(i
=0; i
<nResult
; i
++){
3657 sqlite3ExprCodeFactorable(pParse
, p
->x
.pList
->a
[i
].pExpr
, i
+iResult
);
3665 ** If the last opcode is a OP_Copy, then set the do-not-merge flag (p5)
3666 ** so that a subsequent copy will not be merged into this one.
3668 static void setDoNotMergeFlagOnCopy(Vdbe
*v
){
3669 if( sqlite3VdbeGetOp(v
, -1)->opcode
==OP_Copy
){
3670 sqlite3VdbeChangeP5(v
, 1); /* Tag trailing OP_Copy as not mergable */
3675 ** Generate code to implement special SQL functions that are implemented
3676 ** in-line rather than by using the usual callbacks.
3678 static int exprCodeInlineFunction(
3679 Parse
*pParse
, /* Parsing context */
3680 ExprList
*pFarg
, /* List of function arguments */
3681 int iFuncId
, /* Function ID. One of the INTFUNC_... values */
3682 int target
/* Store function result in this register */
3685 Vdbe
*v
= pParse
->pVdbe
;
3688 nFarg
= pFarg
->nExpr
;
3689 assert( nFarg
>0 ); /* All in-line functions have at least one argument */
3691 case INLINEFUNC_coalesce
: {
3692 /* Attempt a direct implementation of the built-in COALESCE() and
3693 ** IFNULL() functions. This avoids unnecessary evaluation of
3694 ** arguments past the first non-NULL argument.
3696 int endCoalesce
= sqlite3VdbeMakeLabel(pParse
);
3699 sqlite3ExprCode(pParse
, pFarg
->a
[0].pExpr
, target
);
3700 for(i
=1; i
<nFarg
; i
++){
3701 sqlite3VdbeAddOp2(v
, OP_NotNull
, target
, endCoalesce
);
3703 sqlite3ExprCode(pParse
, pFarg
->a
[i
].pExpr
, target
);
3705 setDoNotMergeFlagOnCopy(v
);
3706 sqlite3VdbeResolveLabel(v
, endCoalesce
);
3709 case INLINEFUNC_iif
: {
3711 memset(&caseExpr
, 0, sizeof(caseExpr
));
3712 caseExpr
.op
= TK_CASE
;
3713 caseExpr
.x
.pList
= pFarg
;
3714 return sqlite3ExprCodeTarget(pParse
, &caseExpr
, target
);
3718 /* The UNLIKELY() function is a no-op. The result is the value
3719 ** of the first argument.
3721 assert( nFarg
==1 || nFarg
==2 );
3722 target
= sqlite3ExprCodeTarget(pParse
, pFarg
->a
[0].pExpr
, target
);
3726 /***********************************************************************
3727 ** Test-only SQL functions that are only usable if enabled
3728 ** via SQLITE_TESTCTRL_INTERNAL_FUNCTIONS
3730 case INLINEFUNC_expr_compare
: {
3731 /* Compare two expressions using sqlite3ExprCompare() */
3733 sqlite3VdbeAddOp2(v
, OP_Integer
,
3734 sqlite3ExprCompare(0,pFarg
->a
[0].pExpr
, pFarg
->a
[1].pExpr
,-1),
3739 case INLINEFUNC_expr_implies_expr
: {
3740 /* Compare two expressions using sqlite3ExprImpliesExpr() */
3742 sqlite3VdbeAddOp2(v
, OP_Integer
,
3743 sqlite3ExprImpliesExpr(pParse
,pFarg
->a
[0].pExpr
, pFarg
->a
[1].pExpr
,-1),
3748 case INLINEFUNC_implies_nonnull_row
: {
3749 /* REsult of sqlite3ExprImpliesNonNullRow() */
3752 pA1
= pFarg
->a
[1].pExpr
;
3753 if( pA1
->op
==TK_COLUMN
){
3754 sqlite3VdbeAddOp2(v
, OP_Integer
,
3755 sqlite3ExprImpliesNonNullRow(pFarg
->a
[0].pExpr
,pA1
->iTable
),
3758 sqlite3VdbeAddOp2(v
, OP_Null
, 0, target
);
3764 case INLINEFUNC_affinity
: {
3765 /* The AFFINITY() function evaluates to a string that describes
3766 ** the type affinity of the argument. This is used for testing of
3767 ** the SQLite type logic.
3769 const char *azAff
[] = { "blob", "text", "numeric", "integer", "real" };
3772 aff
= sqlite3ExprAffinity(pFarg
->a
[0].pExpr
);
3773 sqlite3VdbeLoadString(v
, target
,
3774 (aff
<=SQLITE_AFF_NONE
) ? "none" : azAff
[aff
-SQLITE_AFF_BLOB
]);
3784 ** Generate code into the current Vdbe to evaluate the given
3785 ** expression. Attempt to store the results in register "target".
3786 ** Return the register where results are stored.
3788 ** With this routine, there is no guarantee that results will
3789 ** be stored in target. The result might be stored in some other
3790 ** register if it is convenient to do so. The calling function
3791 ** must check the return code and move the results to the desired
3794 int sqlite3ExprCodeTarget(Parse
*pParse
, Expr
*pExpr
, int target
){
3795 Vdbe
*v
= pParse
->pVdbe
; /* The VM under construction */
3796 int op
; /* The opcode being coded */
3797 int inReg
= target
; /* Results stored in register inReg */
3798 int regFree1
= 0; /* If non-zero free this temporary register */
3799 int regFree2
= 0; /* If non-zero free this temporary register */
3800 int r1
, r2
; /* Various register numbers */
3801 Expr tempX
; /* Temporary expression node */
3804 assert( target
>0 && target
<=pParse
->nMem
);
3811 assert( !ExprHasVVAProperty(pExpr
,EP_Immutable
) );
3815 case TK_AGG_COLUMN
: {
3816 AggInfo
*pAggInfo
= pExpr
->pAggInfo
;
3817 struct AggInfo_col
*pCol
;
3818 assert( pAggInfo
!=0 );
3819 assert( pExpr
->iAgg
>=0 && pExpr
->iAgg
<pAggInfo
->nColumn
);
3820 pCol
= &pAggInfo
->aCol
[pExpr
->iAgg
];
3821 if( !pAggInfo
->directMode
){
3822 assert( pCol
->iMem
>0 );
3824 }else if( pAggInfo
->useSortingIdx
){
3825 Table
*pTab
= pCol
->pTab
;
3826 sqlite3VdbeAddOp3(v
, OP_Column
, pAggInfo
->sortingIdxPTab
,
3827 pCol
->iSorterColumn
, target
);
3828 if( pCol
->iColumn
<0 ){
3829 VdbeComment((v
,"%s.rowid",pTab
->zName
));
3831 VdbeComment((v
,"%s.%s",pTab
->zName
,pTab
->aCol
[pCol
->iColumn
].zName
));
3832 if( pTab
->aCol
[pCol
->iColumn
].affinity
==SQLITE_AFF_REAL
){
3833 sqlite3VdbeAddOp1(v
, OP_RealAffinity
, target
);
3838 /* Otherwise, fall thru into the TK_COLUMN case */
3839 /* no break */ deliberate_fall_through
3842 int iTab
= pExpr
->iTable
;
3844 if( ExprHasProperty(pExpr
, EP_FixedCol
) ){
3845 /* This COLUMN expression is really a constant due to WHERE clause
3846 ** constraints, and that constant is coded by the pExpr->pLeft
3847 ** expresssion. However, make sure the constant has the correct
3848 ** datatype by applying the Affinity of the table column to the
3852 iReg
= sqlite3ExprCodeTarget(pParse
, pExpr
->pLeft
,target
);
3853 if( pExpr
->y
.pTab
){
3854 aff
= sqlite3TableColumnAffinity(pExpr
->y
.pTab
, pExpr
->iColumn
);
3856 aff
= pExpr
->affExpr
;
3858 if( aff
>SQLITE_AFF_BLOB
){
3859 static const char zAff
[] = "B\000C\000D\000E";
3860 assert( SQLITE_AFF_BLOB
=='A' );
3861 assert( SQLITE_AFF_TEXT
=='B' );
3862 sqlite3VdbeAddOp4(v
, OP_Affinity
, iReg
, 1, 0,
3863 &zAff
[(aff
-'B')*2], P4_STATIC
);
3868 if( pParse
->iSelfTab
<0 ){
3869 /* Other columns in the same row for CHECK constraints or
3870 ** generated columns or for inserting into partial index.
3871 ** The row is unpacked into registers beginning at
3872 ** 0-(pParse->iSelfTab). The rowid (if any) is in a register
3873 ** immediately prior to the first column.
3876 Table
*pTab
= pExpr
->y
.pTab
;
3878 int iCol
= pExpr
->iColumn
;
3880 assert( iCol
>=XN_ROWID
);
3881 assert( iCol
<pTab
->nCol
);
3883 return -1-pParse
->iSelfTab
;
3885 pCol
= pTab
->aCol
+ iCol
;
3886 testcase( iCol
!=sqlite3TableColumnToStorage(pTab
,iCol
) );
3887 iSrc
= sqlite3TableColumnToStorage(pTab
, iCol
) - pParse
->iSelfTab
;
3888 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
3889 if( pCol
->colFlags
& COLFLAG_GENERATED
){
3890 if( pCol
->colFlags
& COLFLAG_BUSY
){
3891 sqlite3ErrorMsg(pParse
, "generated column loop on \"%s\"",
3895 pCol
->colFlags
|= COLFLAG_BUSY
;
3896 if( pCol
->colFlags
& COLFLAG_NOTAVAIL
){
3897 sqlite3ExprCodeGeneratedColumn(pParse
, pCol
, iSrc
);
3899 pCol
->colFlags
&= ~(COLFLAG_BUSY
|COLFLAG_NOTAVAIL
);
3902 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
3903 if( pCol
->affinity
==SQLITE_AFF_REAL
){
3904 sqlite3VdbeAddOp2(v
, OP_SCopy
, iSrc
, target
);
3905 sqlite3VdbeAddOp1(v
, OP_RealAffinity
, target
);
3911 /* Coding an expression that is part of an index where column names
3912 ** in the index refer to the table to which the index belongs */
3913 iTab
= pParse
->iSelfTab
- 1;
3916 iReg
= sqlite3ExprCodeGetColumn(pParse
, pExpr
->y
.pTab
,
3917 pExpr
->iColumn
, iTab
, target
,
3919 if( pExpr
->y
.pTab
==0 && pExpr
->affExpr
==SQLITE_AFF_REAL
){
3920 sqlite3VdbeAddOp1(v
, OP_RealAffinity
, iReg
);
3925 codeInteger(pParse
, pExpr
, 0, target
);
3928 case TK_TRUEFALSE
: {
3929 sqlite3VdbeAddOp2(v
, OP_Integer
, sqlite3ExprTruthValue(pExpr
), target
);
3932 #ifndef SQLITE_OMIT_FLOATING_POINT
3934 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
3935 codeReal(v
, pExpr
->u
.zToken
, 0, target
);
3940 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
3941 sqlite3VdbeLoadString(v
, target
, pExpr
->u
.zToken
);
3945 /* Make NULL the default case so that if a bug causes an illegal
3946 ** Expr node to be passed into this function, it will be handled
3947 ** sanely and not crash. But keep the assert() to bring the problem
3948 ** to the attention of the developers. */
3949 assert( op
==TK_NULL
);
3950 sqlite3VdbeAddOp2(v
, OP_Null
, 0, target
);
3953 #ifndef SQLITE_OMIT_BLOB_LITERAL
3958 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
3959 assert( pExpr
->u
.zToken
[0]=='x' || pExpr
->u
.zToken
[0]=='X' );
3960 assert( pExpr
->u
.zToken
[1]=='\'' );
3961 z
= &pExpr
->u
.zToken
[2];
3962 n
= sqlite3Strlen30(z
) - 1;
3963 assert( z
[n
]=='\'' );
3964 zBlob
= sqlite3HexToBlob(sqlite3VdbeDb(v
), z
, n
);
3965 sqlite3VdbeAddOp4(v
, OP_Blob
, n
/2, target
, 0, zBlob
, P4_DYNAMIC
);
3970 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
3971 assert( pExpr
->u
.zToken
!=0 );
3972 assert( pExpr
->u
.zToken
[0]!=0 );
3973 sqlite3VdbeAddOp2(v
, OP_Variable
, pExpr
->iColumn
, target
);
3974 if( pExpr
->u
.zToken
[1]!=0 ){
3975 const char *z
= sqlite3VListNumToName(pParse
->pVList
, pExpr
->iColumn
);
3976 assert( pExpr
->u
.zToken
[0]=='?' || (z
&& !strcmp(pExpr
->u
.zToken
, z
)) );
3977 pParse
->pVList
[0] = 0; /* Indicate VList may no longer be enlarged */
3978 sqlite3VdbeAppendP4(v
, (char*)z
, P4_STATIC
);
3983 return pExpr
->iTable
;
3985 #ifndef SQLITE_OMIT_CAST
3987 /* Expressions of the form: CAST(pLeft AS token) */
3988 inReg
= sqlite3ExprCodeTarget(pParse
, pExpr
->pLeft
, target
);
3989 if( inReg
!=target
){
3990 sqlite3VdbeAddOp2(v
, OP_SCopy
, inReg
, target
);
3993 sqlite3VdbeAddOp2(v
, OP_Cast
, target
,
3994 sqlite3AffinityType(pExpr
->u
.zToken
, 0));
3997 #endif /* SQLITE_OMIT_CAST */
4000 op
= (op
==TK_IS
) ? TK_EQ
: TK_NE
;
4009 Expr
*pLeft
= pExpr
->pLeft
;
4010 if( sqlite3ExprIsVector(pLeft
) ){
4011 codeVectorCompare(pParse
, pExpr
, target
, op
, p5
);
4013 r1
= sqlite3ExprCodeTemp(pParse
, pLeft
, ®Free1
);
4014 r2
= sqlite3ExprCodeTemp(pParse
, pExpr
->pRight
, ®Free2
);
4015 codeCompare(pParse
, pLeft
, pExpr
->pRight
, op
,
4016 r1
, r2
, inReg
, SQLITE_STOREP2
| p5
,
4017 ExprHasProperty(pExpr
,EP_Commuted
));
4018 assert(TK_LT
==OP_Lt
); testcase(op
==OP_Lt
); VdbeCoverageIf(v
,op
==OP_Lt
);
4019 assert(TK_LE
==OP_Le
); testcase(op
==OP_Le
); VdbeCoverageIf(v
,op
==OP_Le
);
4020 assert(TK_GT
==OP_Gt
); testcase(op
==OP_Gt
); VdbeCoverageIf(v
,op
==OP_Gt
);
4021 assert(TK_GE
==OP_Ge
); testcase(op
==OP_Ge
); VdbeCoverageIf(v
,op
==OP_Ge
);
4022 assert(TK_EQ
==OP_Eq
); testcase(op
==OP_Eq
); VdbeCoverageIf(v
,op
==OP_Eq
);
4023 assert(TK_NE
==OP_Ne
); testcase(op
==OP_Ne
); VdbeCoverageIf(v
,op
==OP_Ne
);
4024 testcase( regFree1
==0 );
4025 testcase( regFree2
==0 );
4041 assert( TK_AND
==OP_And
); testcase( op
==TK_AND
);
4042 assert( TK_OR
==OP_Or
); testcase( op
==TK_OR
);
4043 assert( TK_PLUS
==OP_Add
); testcase( op
==TK_PLUS
);
4044 assert( TK_MINUS
==OP_Subtract
); testcase( op
==TK_MINUS
);
4045 assert( TK_REM
==OP_Remainder
); testcase( op
==TK_REM
);
4046 assert( TK_BITAND
==OP_BitAnd
); testcase( op
==TK_BITAND
);
4047 assert( TK_BITOR
==OP_BitOr
); testcase( op
==TK_BITOR
);
4048 assert( TK_SLASH
==OP_Divide
); testcase( op
==TK_SLASH
);
4049 assert( TK_LSHIFT
==OP_ShiftLeft
); testcase( op
==TK_LSHIFT
);
4050 assert( TK_RSHIFT
==OP_ShiftRight
); testcase( op
==TK_RSHIFT
);
4051 assert( TK_CONCAT
==OP_Concat
); testcase( op
==TK_CONCAT
);
4052 r1
= sqlite3ExprCodeTemp(pParse
, pExpr
->pLeft
, ®Free1
);
4053 r2
= sqlite3ExprCodeTemp(pParse
, pExpr
->pRight
, ®Free2
);
4054 sqlite3VdbeAddOp3(v
, op
, r2
, r1
, target
);
4055 testcase( regFree1
==0 );
4056 testcase( regFree2
==0 );
4060 Expr
*pLeft
= pExpr
->pLeft
;
4062 if( pLeft
->op
==TK_INTEGER
){
4063 codeInteger(pParse
, pLeft
, 1, target
);
4065 #ifndef SQLITE_OMIT_FLOATING_POINT
4066 }else if( pLeft
->op
==TK_FLOAT
){
4067 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
4068 codeReal(v
, pLeft
->u
.zToken
, 1, target
);
4072 tempX
.op
= TK_INTEGER
;
4073 tempX
.flags
= EP_IntValue
|EP_TokenOnly
;
4075 ExprClearVVAProperties(&tempX
);
4076 r1
= sqlite3ExprCodeTemp(pParse
, &tempX
, ®Free1
);
4077 r2
= sqlite3ExprCodeTemp(pParse
, pExpr
->pLeft
, ®Free2
);
4078 sqlite3VdbeAddOp3(v
, OP_Subtract
, r2
, r1
, target
);
4079 testcase( regFree2
==0 );
4085 assert( TK_BITNOT
==OP_BitNot
); testcase( op
==TK_BITNOT
);
4086 assert( TK_NOT
==OP_Not
); testcase( op
==TK_NOT
);
4087 r1
= sqlite3ExprCodeTemp(pParse
, pExpr
->pLeft
, ®Free1
);
4088 testcase( regFree1
==0 );
4089 sqlite3VdbeAddOp2(v
, op
, r1
, inReg
);
4093 int isTrue
; /* IS TRUE or IS NOT TRUE */
4094 int bNormal
; /* IS TRUE or IS FALSE */
4095 r1
= sqlite3ExprCodeTemp(pParse
, pExpr
->pLeft
, ®Free1
);
4096 testcase( regFree1
==0 );
4097 isTrue
= sqlite3ExprTruthValue(pExpr
->pRight
);
4098 bNormal
= pExpr
->op2
==TK_IS
;
4099 testcase( isTrue
&& bNormal
);
4100 testcase( !isTrue
&& bNormal
);
4101 sqlite3VdbeAddOp4Int(v
, OP_IsTrue
, r1
, inReg
, !isTrue
, isTrue
^ bNormal
);
4107 assert( TK_ISNULL
==OP_IsNull
); testcase( op
==TK_ISNULL
);
4108 assert( TK_NOTNULL
==OP_NotNull
); testcase( op
==TK_NOTNULL
);
4109 sqlite3VdbeAddOp2(v
, OP_Integer
, 1, target
);
4110 r1
= sqlite3ExprCodeTemp(pParse
, pExpr
->pLeft
, ®Free1
);
4111 testcase( regFree1
==0 );
4112 addr
= sqlite3VdbeAddOp1(v
, op
, r1
);
4113 VdbeCoverageIf(v
, op
==TK_ISNULL
);
4114 VdbeCoverageIf(v
, op
==TK_NOTNULL
);
4115 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, target
);
4116 sqlite3VdbeJumpHere(v
, addr
);
4119 case TK_AGG_FUNCTION
: {
4120 AggInfo
*pInfo
= pExpr
->pAggInfo
;
4122 || NEVER(pExpr
->iAgg
<0)
4123 || NEVER(pExpr
->iAgg
>=pInfo
->nFunc
)
4125 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
4126 sqlite3ErrorMsg(pParse
, "misuse of aggregate: %s()", pExpr
->u
.zToken
);
4128 return pInfo
->aFunc
[pExpr
->iAgg
].iMem
;
4133 ExprList
*pFarg
; /* List of function arguments */
4134 int nFarg
; /* Number of function arguments */
4135 FuncDef
*pDef
; /* The function definition object */
4136 const char *zId
; /* The function name */
4137 u32 constMask
= 0; /* Mask of function arguments that are constant */
4138 int i
; /* Loop counter */
4139 sqlite3
*db
= pParse
->db
; /* The database connection */
4140 u8 enc
= ENC(db
); /* The text encoding used by this database */
4141 CollSeq
*pColl
= 0; /* A collating sequence */
4143 #ifndef SQLITE_OMIT_WINDOWFUNC
4144 if( ExprHasProperty(pExpr
, EP_WinFunc
) ){
4145 return pExpr
->y
.pWin
->regResult
;
4149 if( ConstFactorOk(pParse
) && sqlite3ExprIsConstantNotJoin(pExpr
) ){
4150 /* SQL functions can be expensive. So try to avoid running them
4151 ** multiple times if we know they always give the same result */
4152 return sqlite3ExprCodeRunJustOnce(pParse
, pExpr
, -1);
4154 assert( !ExprHasProperty(pExpr
, EP_xIsSelect
) );
4155 assert( !ExprHasProperty(pExpr
, EP_TokenOnly
) );
4156 pFarg
= pExpr
->x
.pList
;
4157 nFarg
= pFarg
? pFarg
->nExpr
: 0;
4158 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
4159 zId
= pExpr
->u
.zToken
;
4160 pDef
= sqlite3FindFunction(db
, zId
, nFarg
, enc
, 0);
4161 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
4162 if( pDef
==0 && pParse
->explain
){
4163 pDef
= sqlite3FindFunction(db
, "unknown", nFarg
, enc
, 0);
4166 if( pDef
==0 || pDef
->xFinalize
!=0 ){
4167 sqlite3ErrorMsg(pParse
, "unknown function: %s()", zId
);
4170 if( pDef
->funcFlags
& SQLITE_FUNC_INLINE
){
4171 assert( (pDef
->funcFlags
& SQLITE_FUNC_UNSAFE
)==0 );
4172 assert( (pDef
->funcFlags
& SQLITE_FUNC_DIRECT
)==0 );
4173 return exprCodeInlineFunction(pParse
, pFarg
,
4174 SQLITE_PTR_TO_INT(pDef
->pUserData
), target
);
4175 }else if( pDef
->funcFlags
& (SQLITE_FUNC_DIRECT
|SQLITE_FUNC_UNSAFE
) ){
4176 sqlite3ExprFunctionUsable(pParse
, pExpr
, pDef
);
4179 for(i
=0; i
<nFarg
; i
++){
4180 if( i
<32 && sqlite3ExprIsConstant(pFarg
->a
[i
].pExpr
) ){
4182 constMask
|= MASKBIT32(i
);
4184 if( (pDef
->funcFlags
& SQLITE_FUNC_NEEDCOLL
)!=0 && !pColl
){
4185 pColl
= sqlite3ExprCollSeq(pParse
, pFarg
->a
[i
].pExpr
);
4190 r1
= pParse
->nMem
+1;
4191 pParse
->nMem
+= nFarg
;
4193 r1
= sqlite3GetTempRange(pParse
, nFarg
);
4196 /* For length() and typeof() functions with a column argument,
4197 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
4198 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
4201 if( (pDef
->funcFlags
& (SQLITE_FUNC_LENGTH
|SQLITE_FUNC_TYPEOF
))!=0 ){
4204 assert( pFarg
->a
[0].pExpr
!=0 );
4205 exprOp
= pFarg
->a
[0].pExpr
->op
;
4206 if( exprOp
==TK_COLUMN
|| exprOp
==TK_AGG_COLUMN
){
4207 assert( SQLITE_FUNC_LENGTH
==OPFLAG_LENGTHARG
);
4208 assert( SQLITE_FUNC_TYPEOF
==OPFLAG_TYPEOFARG
);
4209 testcase( pDef
->funcFlags
& OPFLAG_LENGTHARG
);
4210 pFarg
->a
[0].pExpr
->op2
=
4211 pDef
->funcFlags
& (OPFLAG_LENGTHARG
|OPFLAG_TYPEOFARG
);
4215 sqlite3ExprCodeExprList(pParse
, pFarg
, r1
, 0,
4216 SQLITE_ECEL_DUP
|SQLITE_ECEL_FACTOR
);
4220 #ifndef SQLITE_OMIT_VIRTUALTABLE
4221 /* Possibly overload the function if the first argument is
4222 ** a virtual table column.
4224 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
4225 ** second argument, not the first, as the argument to test to
4226 ** see if it is a column in a virtual table. This is done because
4227 ** the left operand of infix functions (the operand we want to
4228 ** control overloading) ends up as the second argument to the
4229 ** function. The expression "A glob B" is equivalent to
4230 ** "glob(B,A). We want to use the A in "A glob B" to test
4231 ** for function overloading. But we use the B term in "glob(B,A)".
4233 if( nFarg
>=2 && ExprHasProperty(pExpr
, EP_InfixFunc
) ){
4234 pDef
= sqlite3VtabOverloadFunction(db
, pDef
, nFarg
, pFarg
->a
[1].pExpr
);
4235 }else if( nFarg
>0 ){
4236 pDef
= sqlite3VtabOverloadFunction(db
, pDef
, nFarg
, pFarg
->a
[0].pExpr
);
4239 if( pDef
->funcFlags
& SQLITE_FUNC_NEEDCOLL
){
4240 if( !pColl
) pColl
= db
->pDfltColl
;
4241 sqlite3VdbeAddOp4(v
, OP_CollSeq
, 0, 0, 0, (char *)pColl
, P4_COLLSEQ
);
4243 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
4244 if( pDef
->funcFlags
& SQLITE_FUNC_OFFSET
){
4245 Expr
*pArg
= pFarg
->a
[0].pExpr
;
4246 if( pArg
->op
==TK_COLUMN
){
4247 sqlite3VdbeAddOp3(v
, OP_Offset
, pArg
->iTable
, pArg
->iColumn
, target
);
4249 sqlite3VdbeAddOp2(v
, OP_Null
, 0, target
);
4254 sqlite3VdbeAddFunctionCall(pParse
, constMask
, r1
, target
, nFarg
,
4259 sqlite3ReleaseTempRange(pParse
, r1
, nFarg
);
4261 sqlite3VdbeReleaseRegisters(pParse
, r1
, nFarg
, constMask
, 1);
4266 #ifndef SQLITE_OMIT_SUBQUERY
4270 testcase( op
==TK_EXISTS
);
4271 testcase( op
==TK_SELECT
);
4272 if( pParse
->db
->mallocFailed
){
4274 }else if( op
==TK_SELECT
&& (nCol
= pExpr
->x
.pSelect
->pEList
->nExpr
)!=1 ){
4275 sqlite3SubselectError(pParse
, nCol
, 1);
4277 return sqlite3CodeSubselect(pParse
, pExpr
);
4281 case TK_SELECT_COLUMN
: {
4283 if( pExpr
->pLeft
->iTable
==0 ){
4284 pExpr
->pLeft
->iTable
= sqlite3CodeSubselect(pParse
, pExpr
->pLeft
);
4286 assert( pExpr
->iTable
==0 || pExpr
->pLeft
->op
==TK_SELECT
);
4287 if( pExpr
->iTable
!=0
4288 && pExpr
->iTable
!=(n
= sqlite3ExprVectorSize(pExpr
->pLeft
))
4290 sqlite3ErrorMsg(pParse
, "%d columns assigned %d values",
4293 return pExpr
->pLeft
->iTable
+ pExpr
->iColumn
;
4296 int destIfFalse
= sqlite3VdbeMakeLabel(pParse
);
4297 int destIfNull
= sqlite3VdbeMakeLabel(pParse
);
4298 sqlite3VdbeAddOp2(v
, OP_Null
, 0, target
);
4299 sqlite3ExprCodeIN(pParse
, pExpr
, destIfFalse
, destIfNull
);
4300 sqlite3VdbeAddOp2(v
, OP_Integer
, 1, target
);
4301 sqlite3VdbeResolveLabel(v
, destIfFalse
);
4302 sqlite3VdbeAddOp2(v
, OP_AddImm
, target
, 0);
4303 sqlite3VdbeResolveLabel(v
, destIfNull
);
4306 #endif /* SQLITE_OMIT_SUBQUERY */
4310 ** x BETWEEN y AND z
4312 ** This is equivalent to
4316 ** X is stored in pExpr->pLeft.
4317 ** Y is stored in pExpr->pList->a[0].pExpr.
4318 ** Z is stored in pExpr->pList->a[1].pExpr.
4321 exprCodeBetween(pParse
, pExpr
, target
, 0, 0);
4327 pExpr
= pExpr
->pLeft
;
4328 goto expr_code_doover
; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */
4332 /* If the opcode is TK_TRIGGER, then the expression is a reference
4333 ** to a column in the new.* or old.* pseudo-tables available to
4334 ** trigger programs. In this case Expr.iTable is set to 1 for the
4335 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
4336 ** is set to the column of the pseudo-table to read, or to -1 to
4337 ** read the rowid field.
4339 ** The expression is implemented using an OP_Param opcode. The p1
4340 ** parameter is set to 0 for an old.rowid reference, or to (i+1)
4341 ** to reference another column of the old.* pseudo-table, where
4342 ** i is the index of the column. For a new.rowid reference, p1 is
4343 ** set to (n+1), where n is the number of columns in each pseudo-table.
4344 ** For a reference to any other column in the new.* pseudo-table, p1
4345 ** is set to (n+2+i), where n and i are as defined previously. For
4346 ** example, if the table on which triggers are being fired is
4349 ** CREATE TABLE t1(a, b);
4351 ** Then p1 is interpreted as follows:
4353 ** p1==0 -> old.rowid p1==3 -> new.rowid
4354 ** p1==1 -> old.a p1==4 -> new.a
4355 ** p1==2 -> old.b p1==5 -> new.b
4357 Table
*pTab
= pExpr
->y
.pTab
;
4358 int iCol
= pExpr
->iColumn
;
4359 int p1
= pExpr
->iTable
* (pTab
->nCol
+1) + 1
4360 + sqlite3TableColumnToStorage(pTab
, iCol
);
4362 assert( pExpr
->iTable
==0 || pExpr
->iTable
==1 );
4363 assert( iCol
>=-1 && iCol
<pTab
->nCol
);
4364 assert( pTab
->iPKey
<0 || iCol
!=pTab
->iPKey
);
4365 assert( p1
>=0 && p1
<(pTab
->nCol
*2+2) );
4367 sqlite3VdbeAddOp2(v
, OP_Param
, p1
, target
);
4368 VdbeComment((v
, "r[%d]=%s.%s", target
,
4369 (pExpr
->iTable
? "new" : "old"),
4370 (pExpr
->iColumn
<0 ? "rowid" : pExpr
->y
.pTab
->aCol
[iCol
].zName
)
4373 #ifndef SQLITE_OMIT_FLOATING_POINT
4374 /* If the column has REAL affinity, it may currently be stored as an
4375 ** integer. Use OP_RealAffinity to make sure it is really real.
4377 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to
4378 ** floating point when extracting it from the record. */
4379 if( iCol
>=0 && pTab
->aCol
[iCol
].affinity
==SQLITE_AFF_REAL
){
4380 sqlite3VdbeAddOp1(v
, OP_RealAffinity
, target
);
4387 sqlite3ErrorMsg(pParse
, "row value misused");
4391 /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions
4392 ** that derive from the right-hand table of a LEFT JOIN. The
4393 ** Expr.iTable value is the table number for the right-hand table.
4394 ** The expression is only evaluated if that table is not currently
4395 ** on a LEFT JOIN NULL row.
4397 case TK_IF_NULL_ROW
: {
4399 u8 okConstFactor
= pParse
->okConstFactor
;
4400 addrINR
= sqlite3VdbeAddOp1(v
, OP_IfNullRow
, pExpr
->iTable
);
4401 /* Temporarily disable factoring of constant expressions, since
4402 ** even though expressions may appear to be constant, they are not
4403 ** really constant because they originate from the right-hand side
4404 ** of a LEFT JOIN. */
4405 pParse
->okConstFactor
= 0;
4406 inReg
= sqlite3ExprCodeTarget(pParse
, pExpr
->pLeft
, target
);
4407 pParse
->okConstFactor
= okConstFactor
;
4408 sqlite3VdbeJumpHere(v
, addrINR
);
4409 sqlite3VdbeChangeP3(v
, addrINR
, inReg
);
4415 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4418 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4420 ** Form A is can be transformed into the equivalent form B as follows:
4421 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
4422 ** WHEN x=eN THEN rN ELSE y END
4424 ** X (if it exists) is in pExpr->pLeft.
4425 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
4426 ** odd. The Y is also optional. If the number of elements in x.pList
4427 ** is even, then Y is omitted and the "otherwise" result is NULL.
4428 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
4430 ** The result of the expression is the Ri for the first matching Ei,
4431 ** or if there is no matching Ei, the ELSE term Y, or if there is
4432 ** no ELSE term, NULL.
4435 int endLabel
; /* GOTO label for end of CASE stmt */
4436 int nextCase
; /* GOTO label for next WHEN clause */
4437 int nExpr
; /* 2x number of WHEN terms */
4438 int i
; /* Loop counter */
4439 ExprList
*pEList
; /* List of WHEN terms */
4440 struct ExprList_item
*aListelem
; /* Array of WHEN terms */
4441 Expr opCompare
; /* The X==Ei expression */
4442 Expr
*pX
; /* The X expression */
4443 Expr
*pTest
= 0; /* X==Ei (form A) or just Ei (form B) */
4445 sqlite3
*db
= pParse
->db
;
4447 assert( !ExprHasProperty(pExpr
, EP_xIsSelect
) && pExpr
->x
.pList
);
4448 assert(pExpr
->x
.pList
->nExpr
> 0);
4449 pEList
= pExpr
->x
.pList
;
4450 aListelem
= pEList
->a
;
4451 nExpr
= pEList
->nExpr
;
4452 endLabel
= sqlite3VdbeMakeLabel(pParse
);
4453 if( (pX
= pExpr
->pLeft
)!=0 ){
4454 pDel
= sqlite3ExprDup(db
, pX
, 0);
4455 if( db
->mallocFailed
){
4456 sqlite3ExprDelete(db
, pDel
);
4459 testcase( pX
->op
==TK_COLUMN
);
4460 exprToRegister(pDel
, exprCodeVector(pParse
, pDel
, ®Free1
));
4461 testcase( regFree1
==0 );
4462 memset(&opCompare
, 0, sizeof(opCompare
));
4463 opCompare
.op
= TK_EQ
;
4464 opCompare
.pLeft
= pDel
;
4466 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
4467 ** The value in regFree1 might get SCopy-ed into the file result.
4468 ** So make sure that the regFree1 register is not reused for other
4469 ** purposes and possibly overwritten. */
4472 for(i
=0; i
<nExpr
-1; i
=i
+2){
4475 opCompare
.pRight
= aListelem
[i
].pExpr
;
4477 pTest
= aListelem
[i
].pExpr
;
4479 nextCase
= sqlite3VdbeMakeLabel(pParse
);
4480 testcase( pTest
->op
==TK_COLUMN
);
4481 sqlite3ExprIfFalse(pParse
, pTest
, nextCase
, SQLITE_JUMPIFNULL
);
4482 testcase( aListelem
[i
+1].pExpr
->op
==TK_COLUMN
);
4483 sqlite3ExprCode(pParse
, aListelem
[i
+1].pExpr
, target
);
4484 sqlite3VdbeGoto(v
, endLabel
);
4485 sqlite3VdbeResolveLabel(v
, nextCase
);
4488 sqlite3ExprCode(pParse
, pEList
->a
[nExpr
-1].pExpr
, target
);
4490 sqlite3VdbeAddOp2(v
, OP_Null
, 0, target
);
4492 sqlite3ExprDelete(db
, pDel
);
4493 setDoNotMergeFlagOnCopy(v
);
4494 sqlite3VdbeResolveLabel(v
, endLabel
);
4497 #ifndef SQLITE_OMIT_TRIGGER
4499 assert( pExpr
->affExpr
==OE_Rollback
4500 || pExpr
->affExpr
==OE_Abort
4501 || pExpr
->affExpr
==OE_Fail
4502 || pExpr
->affExpr
==OE_Ignore
4504 if( !pParse
->pTriggerTab
&& !pParse
->nested
){
4505 sqlite3ErrorMsg(pParse
,
4506 "RAISE() may only be used within a trigger-program");
4509 if( pExpr
->affExpr
==OE_Abort
){
4510 sqlite3MayAbort(pParse
);
4512 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
4513 if( pExpr
->affExpr
==OE_Ignore
){
4515 v
, OP_Halt
, SQLITE_OK
, OE_Ignore
, 0, pExpr
->u
.zToken
,0);
4518 sqlite3HaltConstraint(pParse
,
4519 pParse
->pTriggerTab
? SQLITE_CONSTRAINT_TRIGGER
: SQLITE_ERROR
,
4520 pExpr
->affExpr
, pExpr
->u
.zToken
, 0, 0);
4527 sqlite3ReleaseTempReg(pParse
, regFree1
);
4528 sqlite3ReleaseTempReg(pParse
, regFree2
);
4533 ** Generate code that will evaluate expression pExpr just one time
4534 ** per prepared statement execution.
4536 ** If the expression uses functions (that might throw an exception) then
4537 ** guard them with an OP_Once opcode to ensure that the code is only executed
4538 ** once. If no functions are involved, then factor the code out and put it at
4539 ** the end of the prepared statement in the initialization section.
4541 ** If regDest>=0 then the result is always stored in that register and the
4542 ** result is not reusable. If regDest<0 then this routine is free to
4543 ** store the value whereever it wants. The register where the expression
4544 ** is stored is returned. When regDest<0, two identical expressions might
4545 ** code to the same register, if they do not contain function calls and hence
4546 ** are factored out into the initialization section at the end of the
4547 ** prepared statement.
4549 int sqlite3ExprCodeRunJustOnce(
4550 Parse
*pParse
, /* Parsing context */
4551 Expr
*pExpr
, /* The expression to code when the VDBE initializes */
4552 int regDest
/* Store the value in this register */
4555 assert( ConstFactorOk(pParse
) );
4556 p
= pParse
->pConstExpr
;
4557 if( regDest
<0 && p
){
4558 struct ExprList_item
*pItem
;
4560 for(pItem
=p
->a
, i
=p
->nExpr
; i
>0; pItem
++, i
--){
4561 if( pItem
->reusable
&& sqlite3ExprCompare(0,pItem
->pExpr
,pExpr
,-1)==0 ){
4562 return pItem
->u
.iConstExprReg
;
4566 pExpr
= sqlite3ExprDup(pParse
->db
, pExpr
, 0);
4567 if( pExpr
!=0 && ExprHasProperty(pExpr
, EP_HasFunc
) ){
4568 Vdbe
*v
= pParse
->pVdbe
;
4571 addr
= sqlite3VdbeAddOp0(v
, OP_Once
); VdbeCoverage(v
);
4572 pParse
->okConstFactor
= 0;
4573 if( !pParse
->db
->mallocFailed
){
4574 if( regDest
<0 ) regDest
= ++pParse
->nMem
;
4575 sqlite3ExprCode(pParse
, pExpr
, regDest
);
4577 pParse
->okConstFactor
= 1;
4578 sqlite3ExprDelete(pParse
->db
, pExpr
);
4579 sqlite3VdbeJumpHere(v
, addr
);
4581 p
= sqlite3ExprListAppend(pParse
, p
, pExpr
);
4583 struct ExprList_item
*pItem
= &p
->a
[p
->nExpr
-1];
4584 pItem
->reusable
= regDest
<0;
4585 if( regDest
<0 ) regDest
= ++pParse
->nMem
;
4586 pItem
->u
.iConstExprReg
= regDest
;
4588 pParse
->pConstExpr
= p
;
4594 ** Generate code to evaluate an expression and store the results
4595 ** into a register. Return the register number where the results
4598 ** If the register is a temporary register that can be deallocated,
4599 ** then write its number into *pReg. If the result register is not
4600 ** a temporary, then set *pReg to zero.
4602 ** If pExpr is a constant, then this routine might generate this
4603 ** code to fill the register in the initialization section of the
4604 ** VDBE program, in order to factor it out of the evaluation loop.
4606 int sqlite3ExprCodeTemp(Parse
*pParse
, Expr
*pExpr
, int *pReg
){
4608 pExpr
= sqlite3ExprSkipCollateAndLikely(pExpr
);
4609 if( ConstFactorOk(pParse
)
4610 && pExpr
->op
!=TK_REGISTER
4611 && sqlite3ExprIsConstantNotJoin(pExpr
)
4614 r2
= sqlite3ExprCodeRunJustOnce(pParse
, pExpr
, -1);
4616 int r1
= sqlite3GetTempReg(pParse
);
4617 r2
= sqlite3ExprCodeTarget(pParse
, pExpr
, r1
);
4621 sqlite3ReleaseTempReg(pParse
, r1
);
4629 ** Generate code that will evaluate expression pExpr and store the
4630 ** results in register target. The results are guaranteed to appear
4631 ** in register target.
4633 void sqlite3ExprCode(Parse
*pParse
, Expr
*pExpr
, int target
){
4636 assert( pExpr
==0 || !ExprHasVVAProperty(pExpr
,EP_Immutable
) );
4637 assert( target
>0 && target
<=pParse
->nMem
);
4638 assert( pParse
->pVdbe
!=0 || pParse
->db
->mallocFailed
);
4639 if( pParse
->pVdbe
==0 ) return;
4640 inReg
= sqlite3ExprCodeTarget(pParse
, pExpr
, target
);
4641 if( inReg
!=target
){
4643 if( ExprHasProperty(pExpr
,EP_Subquery
) ){
4648 sqlite3VdbeAddOp2(pParse
->pVdbe
, op
, inReg
, target
);
4653 ** Make a transient copy of expression pExpr and then code it using
4654 ** sqlite3ExprCode(). This routine works just like sqlite3ExprCode()
4655 ** except that the input expression is guaranteed to be unchanged.
4657 void sqlite3ExprCodeCopy(Parse
*pParse
, Expr
*pExpr
, int target
){
4658 sqlite3
*db
= pParse
->db
;
4659 pExpr
= sqlite3ExprDup(db
, pExpr
, 0);
4660 if( !db
->mallocFailed
) sqlite3ExprCode(pParse
, pExpr
, target
);
4661 sqlite3ExprDelete(db
, pExpr
);
4665 ** Generate code that will evaluate expression pExpr and store the
4666 ** results in register target. The results are guaranteed to appear
4667 ** in register target. If the expression is constant, then this routine
4668 ** might choose to code the expression at initialization time.
4670 void sqlite3ExprCodeFactorable(Parse
*pParse
, Expr
*pExpr
, int target
){
4671 if( pParse
->okConstFactor
&& sqlite3ExprIsConstantNotJoin(pExpr
) ){
4672 sqlite3ExprCodeRunJustOnce(pParse
, pExpr
, target
);
4674 sqlite3ExprCodeCopy(pParse
, pExpr
, target
);
4679 ** Generate code that pushes the value of every element of the given
4680 ** expression list into a sequence of registers beginning at target.
4682 ** Return the number of elements evaluated. The number returned will
4683 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF
4686 ** The SQLITE_ECEL_DUP flag prevents the arguments from being
4687 ** filled using OP_SCopy. OP_Copy must be used instead.
4689 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
4690 ** factored out into initialization code.
4692 ** The SQLITE_ECEL_REF flag means that expressions in the list with
4693 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored
4694 ** in registers at srcReg, and so the value can be copied from there.
4695 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0
4696 ** are simply omitted rather than being copied from srcReg.
4698 int sqlite3ExprCodeExprList(
4699 Parse
*pParse
, /* Parsing context */
4700 ExprList
*pList
, /* The expression list to be coded */
4701 int target
, /* Where to write results */
4702 int srcReg
, /* Source registers if SQLITE_ECEL_REF */
4703 u8 flags
/* SQLITE_ECEL_* flags */
4705 struct ExprList_item
*pItem
;
4707 u8 copyOp
= (flags
& SQLITE_ECEL_DUP
) ? OP_Copy
: OP_SCopy
;
4708 Vdbe
*v
= pParse
->pVdbe
;
4711 assert( pParse
->pVdbe
!=0 ); /* Never gets this far otherwise */
4713 if( !ConstFactorOk(pParse
) ) flags
&= ~SQLITE_ECEL_FACTOR
;
4714 for(pItem
=pList
->a
, i
=0; i
<n
; i
++, pItem
++){
4715 Expr
*pExpr
= pItem
->pExpr
;
4716 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
4717 if( pItem
->bSorterRef
){
4722 if( (flags
& SQLITE_ECEL_REF
)!=0 && (j
= pItem
->u
.x
.iOrderByCol
)>0 ){
4723 if( flags
& SQLITE_ECEL_OMITREF
){
4727 sqlite3VdbeAddOp2(v
, copyOp
, j
+srcReg
-1, target
+i
);
4729 }else if( (flags
& SQLITE_ECEL_FACTOR
)!=0
4730 && sqlite3ExprIsConstantNotJoin(pExpr
)
4732 sqlite3ExprCodeRunJustOnce(pParse
, pExpr
, target
+i
);
4734 int inReg
= sqlite3ExprCodeTarget(pParse
, pExpr
, target
+i
);
4735 if( inReg
!=target
+i
){
4738 && (pOp
=sqlite3VdbeGetOp(v
, -1))->opcode
==OP_Copy
4739 && pOp
->p1
+pOp
->p3
+1==inReg
4740 && pOp
->p2
+pOp
->p3
+1==target
+i
4741 && pOp
->p5
==0 /* The do-not-merge flag must be clear */
4745 sqlite3VdbeAddOp2(v
, copyOp
, inReg
, target
+i
);
4754 ** Generate code for a BETWEEN operator.
4756 ** x BETWEEN y AND z
4758 ** The above is equivalent to
4762 ** Code it as such, taking care to do the common subexpression
4763 ** elimination of x.
4765 ** The xJumpIf parameter determines details:
4767 ** NULL: Store the boolean result in reg[dest]
4768 ** sqlite3ExprIfTrue: Jump to dest if true
4769 ** sqlite3ExprIfFalse: Jump to dest if false
4771 ** The jumpIfNull parameter is ignored if xJumpIf is NULL.
4773 static void exprCodeBetween(
4774 Parse
*pParse
, /* Parsing and code generating context */
4775 Expr
*pExpr
, /* The BETWEEN expression */
4776 int dest
, /* Jump destination or storage location */
4777 void (*xJump
)(Parse
*,Expr
*,int,int), /* Action to take */
4778 int jumpIfNull
/* Take the jump if the BETWEEN is NULL */
4780 Expr exprAnd
; /* The AND operator in x>=y AND x<=z */
4781 Expr compLeft
; /* The x>=y term */
4782 Expr compRight
; /* The x<=z term */
4783 int regFree1
= 0; /* Temporary use register */
4785 sqlite3
*db
= pParse
->db
;
4787 memset(&compLeft
, 0, sizeof(Expr
));
4788 memset(&compRight
, 0, sizeof(Expr
));
4789 memset(&exprAnd
, 0, sizeof(Expr
));
4791 assert( !ExprHasProperty(pExpr
, EP_xIsSelect
) );
4792 pDel
= sqlite3ExprDup(db
, pExpr
->pLeft
, 0);
4793 if( db
->mallocFailed
==0 ){
4794 exprAnd
.op
= TK_AND
;
4795 exprAnd
.pLeft
= &compLeft
;
4796 exprAnd
.pRight
= &compRight
;
4797 compLeft
.op
= TK_GE
;
4798 compLeft
.pLeft
= pDel
;
4799 compLeft
.pRight
= pExpr
->x
.pList
->a
[0].pExpr
;
4800 compRight
.op
= TK_LE
;
4801 compRight
.pLeft
= pDel
;
4802 compRight
.pRight
= pExpr
->x
.pList
->a
[1].pExpr
;
4803 exprToRegister(pDel
, exprCodeVector(pParse
, pDel
, ®Free1
));
4805 xJump(pParse
, &exprAnd
, dest
, jumpIfNull
);
4807 /* Mark the expression is being from the ON or USING clause of a join
4808 ** so that the sqlite3ExprCodeTarget() routine will not attempt to move
4809 ** it into the Parse.pConstExpr list. We should use a new bit for this,
4810 ** for clarity, but we are out of bits in the Expr.flags field so we
4811 ** have to reuse the EP_FromJoin bit. Bummer. */
4812 pDel
->flags
|= EP_FromJoin
;
4813 sqlite3ExprCodeTarget(pParse
, &exprAnd
, dest
);
4815 sqlite3ReleaseTempReg(pParse
, regFree1
);
4817 sqlite3ExprDelete(db
, pDel
);
4819 /* Ensure adequate test coverage */
4820 testcase( xJump
==sqlite3ExprIfTrue
&& jumpIfNull
==0 && regFree1
==0 );
4821 testcase( xJump
==sqlite3ExprIfTrue
&& jumpIfNull
==0 && regFree1
!=0 );
4822 testcase( xJump
==sqlite3ExprIfTrue
&& jumpIfNull
!=0 && regFree1
==0 );
4823 testcase( xJump
==sqlite3ExprIfTrue
&& jumpIfNull
!=0 && regFree1
!=0 );
4824 testcase( xJump
==sqlite3ExprIfFalse
&& jumpIfNull
==0 && regFree1
==0 );
4825 testcase( xJump
==sqlite3ExprIfFalse
&& jumpIfNull
==0 && regFree1
!=0 );
4826 testcase( xJump
==sqlite3ExprIfFalse
&& jumpIfNull
!=0 && regFree1
==0 );
4827 testcase( xJump
==sqlite3ExprIfFalse
&& jumpIfNull
!=0 && regFree1
!=0 );
4828 testcase( xJump
==0 );
4832 ** Generate code for a boolean expression such that a jump is made
4833 ** to the label "dest" if the expression is true but execution
4834 ** continues straight thru if the expression is false.
4836 ** If the expression evaluates to NULL (neither true nor false), then
4837 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
4839 ** This code depends on the fact that certain token values (ex: TK_EQ)
4840 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
4841 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in
4842 ** the make process cause these values to align. Assert()s in the code
4843 ** below verify that the numbers are aligned correctly.
4845 void sqlite3ExprIfTrue(Parse
*pParse
, Expr
*pExpr
, int dest
, int jumpIfNull
){
4846 Vdbe
*v
= pParse
->pVdbe
;
4852 assert( jumpIfNull
==SQLITE_JUMPIFNULL
|| jumpIfNull
==0 );
4853 if( NEVER(v
==0) ) return; /* Existence of VDBE checked by caller */
4854 if( NEVER(pExpr
==0) ) return; /* No way this can happen */
4855 assert( !ExprHasVVAProperty(pExpr
, EP_Immutable
) );
4860 Expr
*pAlt
= sqlite3ExprSimplifiedAndOr(pExpr
);
4862 sqlite3ExprIfTrue(pParse
, pAlt
, dest
, jumpIfNull
);
4863 }else if( op
==TK_AND
){
4864 int d2
= sqlite3VdbeMakeLabel(pParse
);
4865 testcase( jumpIfNull
==0 );
4866 sqlite3ExprIfFalse(pParse
, pExpr
->pLeft
, d2
,
4867 jumpIfNull
^SQLITE_JUMPIFNULL
);
4868 sqlite3ExprIfTrue(pParse
, pExpr
->pRight
, dest
, jumpIfNull
);
4869 sqlite3VdbeResolveLabel(v
, d2
);
4871 testcase( jumpIfNull
==0 );
4872 sqlite3ExprIfTrue(pParse
, pExpr
->pLeft
, dest
, jumpIfNull
);
4873 sqlite3ExprIfTrue(pParse
, pExpr
->pRight
, dest
, jumpIfNull
);
4878 testcase( jumpIfNull
==0 );
4879 sqlite3ExprIfFalse(pParse
, pExpr
->pLeft
, dest
, jumpIfNull
);
4883 int isNot
; /* IS NOT TRUE or IS NOT FALSE */
4884 int isTrue
; /* IS TRUE or IS NOT TRUE */
4885 testcase( jumpIfNull
==0 );
4886 isNot
= pExpr
->op2
==TK_ISNOT
;
4887 isTrue
= sqlite3ExprTruthValue(pExpr
->pRight
);
4888 testcase( isTrue
&& isNot
);
4889 testcase( !isTrue
&& isNot
);
4890 if( isTrue
^ isNot
){
4891 sqlite3ExprIfTrue(pParse
, pExpr
->pLeft
, dest
,
4892 isNot
? SQLITE_JUMPIFNULL
: 0);
4894 sqlite3ExprIfFalse(pParse
, pExpr
->pLeft
, dest
,
4895 isNot
? SQLITE_JUMPIFNULL
: 0);
4901 testcase( op
==TK_IS
);
4902 testcase( op
==TK_ISNOT
);
4903 op
= (op
==TK_IS
) ? TK_EQ
: TK_NE
;
4904 jumpIfNull
= SQLITE_NULLEQ
;
4905 /* no break */ deliberate_fall_through
4912 if( sqlite3ExprIsVector(pExpr
->pLeft
) ) goto default_expr
;
4913 testcase( jumpIfNull
==0 );
4914 r1
= sqlite3ExprCodeTemp(pParse
, pExpr
->pLeft
, ®Free1
);
4915 r2
= sqlite3ExprCodeTemp(pParse
, pExpr
->pRight
, ®Free2
);
4916 codeCompare(pParse
, pExpr
->pLeft
, pExpr
->pRight
, op
,
4917 r1
, r2
, dest
, jumpIfNull
, ExprHasProperty(pExpr
,EP_Commuted
));
4918 assert(TK_LT
==OP_Lt
); testcase(op
==OP_Lt
); VdbeCoverageIf(v
,op
==OP_Lt
);
4919 assert(TK_LE
==OP_Le
); testcase(op
==OP_Le
); VdbeCoverageIf(v
,op
==OP_Le
);
4920 assert(TK_GT
==OP_Gt
); testcase(op
==OP_Gt
); VdbeCoverageIf(v
,op
==OP_Gt
);
4921 assert(TK_GE
==OP_Ge
); testcase(op
==OP_Ge
); VdbeCoverageIf(v
,op
==OP_Ge
);
4922 assert(TK_EQ
==OP_Eq
); testcase(op
==OP_Eq
);
4923 VdbeCoverageIf(v
, op
==OP_Eq
&& jumpIfNull
==SQLITE_NULLEQ
);
4924 VdbeCoverageIf(v
, op
==OP_Eq
&& jumpIfNull
!=SQLITE_NULLEQ
);
4925 assert(TK_NE
==OP_Ne
); testcase(op
==OP_Ne
);
4926 VdbeCoverageIf(v
, op
==OP_Ne
&& jumpIfNull
==SQLITE_NULLEQ
);
4927 VdbeCoverageIf(v
, op
==OP_Ne
&& jumpIfNull
!=SQLITE_NULLEQ
);
4928 testcase( regFree1
==0 );
4929 testcase( regFree2
==0 );
4934 assert( TK_ISNULL
==OP_IsNull
); testcase( op
==TK_ISNULL
);
4935 assert( TK_NOTNULL
==OP_NotNull
); testcase( op
==TK_NOTNULL
);
4936 r1
= sqlite3ExprCodeTemp(pParse
, pExpr
->pLeft
, ®Free1
);
4937 sqlite3VdbeAddOp2(v
, op
, r1
, dest
);
4938 VdbeCoverageIf(v
, op
==TK_ISNULL
);
4939 VdbeCoverageIf(v
, op
==TK_NOTNULL
);
4940 testcase( regFree1
==0 );
4944 testcase( jumpIfNull
==0 );
4945 exprCodeBetween(pParse
, pExpr
, dest
, sqlite3ExprIfTrue
, jumpIfNull
);
4948 #ifndef SQLITE_OMIT_SUBQUERY
4950 int destIfFalse
= sqlite3VdbeMakeLabel(pParse
);
4951 int destIfNull
= jumpIfNull
? dest
: destIfFalse
;
4952 sqlite3ExprCodeIN(pParse
, pExpr
, destIfFalse
, destIfNull
);
4953 sqlite3VdbeGoto(v
, dest
);
4954 sqlite3VdbeResolveLabel(v
, destIfFalse
);
4960 if( ExprAlwaysTrue(pExpr
) ){
4961 sqlite3VdbeGoto(v
, dest
);
4962 }else if( ExprAlwaysFalse(pExpr
) ){
4965 r1
= sqlite3ExprCodeTemp(pParse
, pExpr
, ®Free1
);
4966 sqlite3VdbeAddOp3(v
, OP_If
, r1
, dest
, jumpIfNull
!=0);
4968 testcase( regFree1
==0 );
4969 testcase( jumpIfNull
==0 );
4974 sqlite3ReleaseTempReg(pParse
, regFree1
);
4975 sqlite3ReleaseTempReg(pParse
, regFree2
);
4979 ** Generate code for a boolean expression such that a jump is made
4980 ** to the label "dest" if the expression is false but execution
4981 ** continues straight thru if the expression is true.
4983 ** If the expression evaluates to NULL (neither true nor false) then
4984 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
4987 void sqlite3ExprIfFalse(Parse
*pParse
, Expr
*pExpr
, int dest
, int jumpIfNull
){
4988 Vdbe
*v
= pParse
->pVdbe
;
4994 assert( jumpIfNull
==SQLITE_JUMPIFNULL
|| jumpIfNull
==0 );
4995 if( NEVER(v
==0) ) return; /* Existence of VDBE checked by caller */
4996 if( pExpr
==0 ) return;
4997 assert( !ExprHasVVAProperty(pExpr
,EP_Immutable
) );
4999 /* The value of pExpr->op and op are related as follows:
5002 ** --------- ----------
5003 ** TK_ISNULL OP_NotNull
5004 ** TK_NOTNULL OP_IsNull
5012 ** For other values of pExpr->op, op is undefined and unused.
5013 ** The value of TK_ and OP_ constants are arranged such that we
5014 ** can compute the mapping above using the following expression.
5015 ** Assert()s verify that the computation is correct.
5017 op
= ((pExpr
->op
+(TK_ISNULL
&1))^1)-(TK_ISNULL
&1);
5019 /* Verify correct alignment of TK_ and OP_ constants
5021 assert( pExpr
->op
!=TK_ISNULL
|| op
==OP_NotNull
);
5022 assert( pExpr
->op
!=TK_NOTNULL
|| op
==OP_IsNull
);
5023 assert( pExpr
->op
!=TK_NE
|| op
==OP_Eq
);
5024 assert( pExpr
->op
!=TK_EQ
|| op
==OP_Ne
);
5025 assert( pExpr
->op
!=TK_LT
|| op
==OP_Ge
);
5026 assert( pExpr
->op
!=TK_LE
|| op
==OP_Gt
);
5027 assert( pExpr
->op
!=TK_GT
|| op
==OP_Le
);
5028 assert( pExpr
->op
!=TK_GE
|| op
==OP_Lt
);
5030 switch( pExpr
->op
){
5033 Expr
*pAlt
= sqlite3ExprSimplifiedAndOr(pExpr
);
5035 sqlite3ExprIfFalse(pParse
, pAlt
, dest
, jumpIfNull
);
5036 }else if( pExpr
->op
==TK_AND
){
5037 testcase( jumpIfNull
==0 );
5038 sqlite3ExprIfFalse(pParse
, pExpr
->pLeft
, dest
, jumpIfNull
);
5039 sqlite3ExprIfFalse(pParse
, pExpr
->pRight
, dest
, jumpIfNull
);
5041 int d2
= sqlite3VdbeMakeLabel(pParse
);
5042 testcase( jumpIfNull
==0 );
5043 sqlite3ExprIfTrue(pParse
, pExpr
->pLeft
, d2
,
5044 jumpIfNull
^SQLITE_JUMPIFNULL
);
5045 sqlite3ExprIfFalse(pParse
, pExpr
->pRight
, dest
, jumpIfNull
);
5046 sqlite3VdbeResolveLabel(v
, d2
);
5051 testcase( jumpIfNull
==0 );
5052 sqlite3ExprIfTrue(pParse
, pExpr
->pLeft
, dest
, jumpIfNull
);
5056 int isNot
; /* IS NOT TRUE or IS NOT FALSE */
5057 int isTrue
; /* IS TRUE or IS NOT TRUE */
5058 testcase( jumpIfNull
==0 );
5059 isNot
= pExpr
->op2
==TK_ISNOT
;
5060 isTrue
= sqlite3ExprTruthValue(pExpr
->pRight
);
5061 testcase( isTrue
&& isNot
);
5062 testcase( !isTrue
&& isNot
);
5063 if( isTrue
^ isNot
){
5064 /* IS TRUE and IS NOT FALSE */
5065 sqlite3ExprIfFalse(pParse
, pExpr
->pLeft
, dest
,
5066 isNot
? 0 : SQLITE_JUMPIFNULL
);
5069 /* IS FALSE and IS NOT TRUE */
5070 sqlite3ExprIfTrue(pParse
, pExpr
->pLeft
, dest
,
5071 isNot
? 0 : SQLITE_JUMPIFNULL
);
5077 testcase( pExpr
->op
==TK_IS
);
5078 testcase( pExpr
->op
==TK_ISNOT
);
5079 op
= (pExpr
->op
==TK_IS
) ? TK_NE
: TK_EQ
;
5080 jumpIfNull
= SQLITE_NULLEQ
;
5081 /* no break */ deliberate_fall_through
5088 if( sqlite3ExprIsVector(pExpr
->pLeft
) ) goto default_expr
;
5089 testcase( jumpIfNull
==0 );
5090 r1
= sqlite3ExprCodeTemp(pParse
, pExpr
->pLeft
, ®Free1
);
5091 r2
= sqlite3ExprCodeTemp(pParse
, pExpr
->pRight
, ®Free2
);
5092 codeCompare(pParse
, pExpr
->pLeft
, pExpr
->pRight
, op
,
5093 r1
, r2
, dest
, jumpIfNull
,ExprHasProperty(pExpr
,EP_Commuted
));
5094 assert(TK_LT
==OP_Lt
); testcase(op
==OP_Lt
); VdbeCoverageIf(v
,op
==OP_Lt
);
5095 assert(TK_LE
==OP_Le
); testcase(op
==OP_Le
); VdbeCoverageIf(v
,op
==OP_Le
);
5096 assert(TK_GT
==OP_Gt
); testcase(op
==OP_Gt
); VdbeCoverageIf(v
,op
==OP_Gt
);
5097 assert(TK_GE
==OP_Ge
); testcase(op
==OP_Ge
); VdbeCoverageIf(v
,op
==OP_Ge
);
5098 assert(TK_EQ
==OP_Eq
); testcase(op
==OP_Eq
);
5099 VdbeCoverageIf(v
, op
==OP_Eq
&& jumpIfNull
!=SQLITE_NULLEQ
);
5100 VdbeCoverageIf(v
, op
==OP_Eq
&& jumpIfNull
==SQLITE_NULLEQ
);
5101 assert(TK_NE
==OP_Ne
); testcase(op
==OP_Ne
);
5102 VdbeCoverageIf(v
, op
==OP_Ne
&& jumpIfNull
!=SQLITE_NULLEQ
);
5103 VdbeCoverageIf(v
, op
==OP_Ne
&& jumpIfNull
==SQLITE_NULLEQ
);
5104 testcase( regFree1
==0 );
5105 testcase( regFree2
==0 );
5110 r1
= sqlite3ExprCodeTemp(pParse
, pExpr
->pLeft
, ®Free1
);
5111 sqlite3VdbeAddOp2(v
, op
, r1
, dest
);
5112 testcase( op
==TK_ISNULL
); VdbeCoverageIf(v
, op
==TK_ISNULL
);
5113 testcase( op
==TK_NOTNULL
); VdbeCoverageIf(v
, op
==TK_NOTNULL
);
5114 testcase( regFree1
==0 );
5118 testcase( jumpIfNull
==0 );
5119 exprCodeBetween(pParse
, pExpr
, dest
, sqlite3ExprIfFalse
, jumpIfNull
);
5122 #ifndef SQLITE_OMIT_SUBQUERY
5125 sqlite3ExprCodeIN(pParse
, pExpr
, dest
, dest
);
5127 int destIfNull
= sqlite3VdbeMakeLabel(pParse
);
5128 sqlite3ExprCodeIN(pParse
, pExpr
, dest
, destIfNull
);
5129 sqlite3VdbeResolveLabel(v
, destIfNull
);
5136 if( ExprAlwaysFalse(pExpr
) ){
5137 sqlite3VdbeGoto(v
, dest
);
5138 }else if( ExprAlwaysTrue(pExpr
) ){
5141 r1
= sqlite3ExprCodeTemp(pParse
, pExpr
, ®Free1
);
5142 sqlite3VdbeAddOp3(v
, OP_IfNot
, r1
, dest
, jumpIfNull
!=0);
5144 testcase( regFree1
==0 );
5145 testcase( jumpIfNull
==0 );
5150 sqlite3ReleaseTempReg(pParse
, regFree1
);
5151 sqlite3ReleaseTempReg(pParse
, regFree2
);
5155 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before
5156 ** code generation, and that copy is deleted after code generation. This
5157 ** ensures that the original pExpr is unchanged.
5159 void sqlite3ExprIfFalseDup(Parse
*pParse
, Expr
*pExpr
, int dest
,int jumpIfNull
){
5160 sqlite3
*db
= pParse
->db
;
5161 Expr
*pCopy
= sqlite3ExprDup(db
, pExpr
, 0);
5162 if( db
->mallocFailed
==0 ){
5163 sqlite3ExprIfFalse(pParse
, pCopy
, dest
, jumpIfNull
);
5165 sqlite3ExprDelete(db
, pCopy
);
5169 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any
5170 ** type of expression.
5172 ** If pExpr is a simple SQL value - an integer, real, string, blob
5173 ** or NULL value - then the VDBE currently being prepared is configured
5174 ** to re-prepare each time a new value is bound to variable pVar.
5176 ** Additionally, if pExpr is a simple SQL value and the value is the
5177 ** same as that currently bound to variable pVar, non-zero is returned.
5178 ** Otherwise, if the values are not the same or if pExpr is not a simple
5179 ** SQL value, zero is returned.
5181 static int exprCompareVariable(Parse
*pParse
, Expr
*pVar
, Expr
*pExpr
){
5184 sqlite3_value
*pL
, *pR
= 0;
5186 sqlite3ValueFromExpr(pParse
->db
, pExpr
, SQLITE_UTF8
, SQLITE_AFF_BLOB
, &pR
);
5188 iVar
= pVar
->iColumn
;
5189 sqlite3VdbeSetVarmask(pParse
->pVdbe
, iVar
);
5190 pL
= sqlite3VdbeGetBoundValue(pParse
->pReprepare
, iVar
, SQLITE_AFF_BLOB
);
5192 if( sqlite3_value_type(pL
)==SQLITE_TEXT
){
5193 sqlite3_value_text(pL
); /* Make sure the encoding is UTF-8 */
5195 res
= 0==sqlite3MemCompare(pL
, pR
, 0);
5197 sqlite3ValueFree(pR
);
5198 sqlite3ValueFree(pL
);
5205 ** Do a deep comparison of two expression trees. Return 0 if the two
5206 ** expressions are completely identical. Return 1 if they differ only
5207 ** by a COLLATE operator at the top level. Return 2 if there are differences
5208 ** other than the top-level COLLATE operator.
5210 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
5211 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
5213 ** The pA side might be using TK_REGISTER. If that is the case and pB is
5214 ** not using TK_REGISTER but is otherwise equivalent, then still return 0.
5216 ** Sometimes this routine will return 2 even if the two expressions
5217 ** really are equivalent. If we cannot prove that the expressions are
5218 ** identical, we return 2 just to be safe. So if this routine
5219 ** returns 2, then you do not really know for certain if the two
5220 ** expressions are the same. But if you get a 0 or 1 return, then you
5221 ** can be sure the expressions are the same. In the places where
5222 ** this routine is used, it does not hurt to get an extra 2 - that
5223 ** just might result in some slightly slower code. But returning
5224 ** an incorrect 0 or 1 could lead to a malfunction.
5226 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in
5227 ** pParse->pReprepare can be matched against literals in pB. The
5228 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced.
5229 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in
5230 ** Argument pParse should normally be NULL. If it is not NULL and pA or
5231 ** pB causes a return value of 2.
5233 int sqlite3ExprCompare(Parse
*pParse
, Expr
*pA
, Expr
*pB
, int iTab
){
5235 if( pA
==0 || pB
==0 ){
5236 return pB
==pA
? 0 : 2;
5238 if( pParse
&& pA
->op
==TK_VARIABLE
&& exprCompareVariable(pParse
, pA
, pB
) ){
5241 combinedFlags
= pA
->flags
| pB
->flags
;
5242 if( combinedFlags
& EP_IntValue
){
5243 if( (pA
->flags
&pB
->flags
&EP_IntValue
)!=0 && pA
->u
.iValue
==pB
->u
.iValue
){
5248 if( pA
->op
!=pB
->op
|| pA
->op
==TK_RAISE
){
5249 if( pA
->op
==TK_COLLATE
&& sqlite3ExprCompare(pParse
, pA
->pLeft
,pB
,iTab
)<2 ){
5252 if( pB
->op
==TK_COLLATE
&& sqlite3ExprCompare(pParse
, pA
,pB
->pLeft
,iTab
)<2 ){
5257 if( pA
->op
!=TK_COLUMN
&& pA
->op
!=TK_AGG_COLUMN
&& pA
->u
.zToken
){
5258 if( pA
->op
==TK_FUNCTION
|| pA
->op
==TK_AGG_FUNCTION
){
5259 if( sqlite3StrICmp(pA
->u
.zToken
,pB
->u
.zToken
)!=0 ) return 2;
5260 #ifndef SQLITE_OMIT_WINDOWFUNC
5261 assert( pA
->op
==pB
->op
);
5262 if( ExprHasProperty(pA
,EP_WinFunc
)!=ExprHasProperty(pB
,EP_WinFunc
) ){
5265 if( ExprHasProperty(pA
,EP_WinFunc
) ){
5266 if( sqlite3WindowCompare(pParse
, pA
->y
.pWin
, pB
->y
.pWin
, 1)!=0 ){
5271 }else if( pA
->op
==TK_NULL
){
5273 }else if( pA
->op
==TK_COLLATE
){
5274 if( sqlite3_stricmp(pA
->u
.zToken
,pB
->u
.zToken
)!=0 ) return 2;
5275 }else if( ALWAYS(pB
->u
.zToken
!=0) && strcmp(pA
->u
.zToken
,pB
->u
.zToken
)!=0 ){
5279 if( (pA
->flags
& (EP_Distinct
|EP_Commuted
))
5280 != (pB
->flags
& (EP_Distinct
|EP_Commuted
)) ) return 2;
5281 if( ALWAYS((combinedFlags
& EP_TokenOnly
)==0) ){
5282 if( combinedFlags
& EP_xIsSelect
) return 2;
5283 if( (combinedFlags
& EP_FixedCol
)==0
5284 && sqlite3ExprCompare(pParse
, pA
->pLeft
, pB
->pLeft
, iTab
) ) return 2;
5285 if( sqlite3ExprCompare(pParse
, pA
->pRight
, pB
->pRight
, iTab
) ) return 2;
5286 if( sqlite3ExprListCompare(pA
->x
.pList
, pB
->x
.pList
, iTab
) ) return 2;
5287 if( pA
->op
!=TK_STRING
5288 && pA
->op
!=TK_TRUEFALSE
5289 && ALWAYS((combinedFlags
& EP_Reduced
)==0)
5291 if( pA
->iColumn
!=pB
->iColumn
) return 2;
5292 if( pA
->op2
!=pB
->op2
&& pA
->op
==TK_TRUTH
) return 2;
5293 if( pA
->op
!=TK_IN
&& pA
->iTable
!=pB
->iTable
&& pA
->iTable
!=iTab
){
5302 ** Compare two ExprList objects. Return 0 if they are identical, 1
5303 ** if they are certainly different, or 2 if it is not possible to
5304 ** determine if they are identical or not.
5306 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
5307 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
5309 ** This routine might return non-zero for equivalent ExprLists. The
5310 ** only consequence will be disabled optimizations. But this routine
5311 ** must never return 0 if the two ExprList objects are different, or
5312 ** a malfunction will result.
5314 ** Two NULL pointers are considered to be the same. But a NULL pointer
5315 ** always differs from a non-NULL pointer.
5317 int sqlite3ExprListCompare(ExprList
*pA
, ExprList
*pB
, int iTab
){
5319 if( pA
==0 && pB
==0 ) return 0;
5320 if( pA
==0 || pB
==0 ) return 1;
5321 if( pA
->nExpr
!=pB
->nExpr
) return 1;
5322 for(i
=0; i
<pA
->nExpr
; i
++){
5324 Expr
*pExprA
= pA
->a
[i
].pExpr
;
5325 Expr
*pExprB
= pB
->a
[i
].pExpr
;
5326 if( pA
->a
[i
].sortFlags
!=pB
->a
[i
].sortFlags
) return 1;
5327 if( (res
= sqlite3ExprCompare(0, pExprA
, pExprB
, iTab
)) ) return res
;
5333 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level
5336 int sqlite3ExprCompareSkip(Expr
*pA
, Expr
*pB
, int iTab
){
5337 return sqlite3ExprCompare(0,
5338 sqlite3ExprSkipCollateAndLikely(pA
),
5339 sqlite3ExprSkipCollateAndLikely(pB
),
5344 ** Return non-zero if Expr p can only be true if pNN is not NULL.
5346 ** Or if seenNot is true, return non-zero if Expr p can only be
5347 ** non-NULL if pNN is not NULL
5349 static int exprImpliesNotNull(
5350 Parse
*pParse
, /* Parsing context */
5351 Expr
*p
, /* The expression to be checked */
5352 Expr
*pNN
, /* The expression that is NOT NULL */
5353 int iTab
, /* Table being evaluated */
5354 int seenNot
/* Return true only if p can be any non-NULL value */
5358 if( sqlite3ExprCompare(pParse
, p
, pNN
, iTab
)==0 ){
5359 return pNN
->op
!=TK_NULL
;
5363 if( seenNot
&& ExprHasProperty(p
, EP_xIsSelect
) ) return 0;
5364 assert( ExprHasProperty(p
,EP_xIsSelect
)
5365 || (p
->x
.pList
!=0 && p
->x
.pList
->nExpr
>0) );
5366 return exprImpliesNotNull(pParse
, p
->pLeft
, pNN
, iTab
, 1);
5369 ExprList
*pList
= p
->x
.pList
;
5371 assert( pList
->nExpr
==2 );
5372 if( seenNot
) return 0;
5373 if( exprImpliesNotNull(pParse
, pList
->a
[0].pExpr
, pNN
, iTab
, 1)
5374 || exprImpliesNotNull(pParse
, pList
->a
[1].pExpr
, pNN
, iTab
, 1)
5378 return exprImpliesNotNull(pParse
, p
->pLeft
, pNN
, iTab
, 1);
5393 /* no break */ deliberate_fall_through
5398 if( exprImpliesNotNull(pParse
, p
->pRight
, pNN
, iTab
, seenNot
) ) return 1;
5399 /* no break */ deliberate_fall_through
5405 return exprImpliesNotNull(pParse
, p
->pLeft
, pNN
, iTab
, seenNot
);
5408 if( seenNot
) return 0;
5409 if( p
->op2
!=TK_IS
) return 0;
5410 return exprImpliesNotNull(pParse
, p
->pLeft
, pNN
, iTab
, 1);
5414 return exprImpliesNotNull(pParse
, p
->pLeft
, pNN
, iTab
, 1);
5421 ** Return true if we can prove the pE2 will always be true if pE1 is
5422 ** true. Return false if we cannot complete the proof or if pE2 might
5423 ** be false. Examples:
5425 ** pE1: x==5 pE2: x==5 Result: true
5426 ** pE1: x>0 pE2: x==5 Result: false
5427 ** pE1: x=21 pE2: x=21 OR y=43 Result: true
5428 ** pE1: x!=123 pE2: x IS NOT NULL Result: true
5429 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true
5430 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false
5431 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false
5433 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
5434 ** Expr.iTable<0 then assume a table number given by iTab.
5436 ** If pParse is not NULL, then the values of bound variables in pE1 are
5437 ** compared against literal values in pE2 and pParse->pVdbe->expmask is
5438 ** modified to record which bound variables are referenced. If pParse
5439 ** is NULL, then false will be returned if pE1 contains any bound variables.
5441 ** When in doubt, return false. Returning true might give a performance
5442 ** improvement. Returning false might cause a performance reduction, but
5443 ** it will always give the correct answer and is hence always safe.
5445 int sqlite3ExprImpliesExpr(Parse
*pParse
, Expr
*pE1
, Expr
*pE2
, int iTab
){
5446 if( sqlite3ExprCompare(pParse
, pE1
, pE2
, iTab
)==0 ){
5450 && (sqlite3ExprImpliesExpr(pParse
, pE1
, pE2
->pLeft
, iTab
)
5451 || sqlite3ExprImpliesExpr(pParse
, pE1
, pE2
->pRight
, iTab
) )
5455 if( pE2
->op
==TK_NOTNULL
5456 && exprImpliesNotNull(pParse
, pE1
, pE2
->pLeft
, iTab
, 0)
5464 ** This is the Expr node callback for sqlite3ExprImpliesNonNullRow().
5465 ** If the expression node requires that the table at pWalker->iCur
5466 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort.
5468 ** This routine controls an optimization. False positives (setting
5469 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives
5470 ** (never setting pWalker->eCode) is a harmless missed optimization.
5472 static int impliesNotNullRow(Walker
*pWalker
, Expr
*pExpr
){
5473 testcase( pExpr
->op
==TK_AGG_COLUMN
);
5474 testcase( pExpr
->op
==TK_AGG_FUNCTION
);
5475 if( ExprHasProperty(pExpr
, EP_FromJoin
) ) return WRC_Prune
;
5476 switch( pExpr
->op
){
5487 testcase( pExpr
->op
==TK_ISNOT
);
5488 testcase( pExpr
->op
==TK_ISNULL
);
5489 testcase( pExpr
->op
==TK_NOTNULL
);
5490 testcase( pExpr
->op
==TK_IS
);
5491 testcase( pExpr
->op
==TK_OR
);
5492 testcase( pExpr
->op
==TK_VECTOR
);
5493 testcase( pExpr
->op
==TK_CASE
);
5494 testcase( pExpr
->op
==TK_IN
);
5495 testcase( pExpr
->op
==TK_FUNCTION
);
5496 testcase( pExpr
->op
==TK_TRUTH
);
5499 if( pWalker
->u
.iCur
==pExpr
->iTable
){
5506 if( pWalker
->eCode
==0 ){
5507 sqlite3WalkExpr(pWalker
, pExpr
->pLeft
);
5508 if( pWalker
->eCode
){
5510 sqlite3WalkExpr(pWalker
, pExpr
->pRight
);
5516 if( sqlite3WalkExpr(pWalker
, pExpr
->pLeft
)==WRC_Abort
){
5517 assert( pWalker
->eCode
);
5522 /* Virtual tables are allowed to use constraints like x=NULL. So
5523 ** a term of the form x=y does not prove that y is not null if x
5524 ** is the column of a virtual table */
5531 Expr
*pLeft
= pExpr
->pLeft
;
5532 Expr
*pRight
= pExpr
->pRight
;
5533 testcase( pExpr
->op
==TK_EQ
);
5534 testcase( pExpr
->op
==TK_NE
);
5535 testcase( pExpr
->op
==TK_LT
);
5536 testcase( pExpr
->op
==TK_LE
);
5537 testcase( pExpr
->op
==TK_GT
);
5538 testcase( pExpr
->op
==TK_GE
);
5539 /* The y.pTab=0 assignment in wherecode.c always happens after the
5540 ** impliesNotNullRow() test */
5541 if( (pLeft
->op
==TK_COLUMN
&& ALWAYS(pLeft
->y
.pTab
!=0)
5542 && IsVirtual(pLeft
->y
.pTab
))
5543 || (pRight
->op
==TK_COLUMN
&& ALWAYS(pRight
->y
.pTab
!=0)
5544 && IsVirtual(pRight
->y
.pTab
))
5548 /* no break */ deliberate_fall_through
5551 return WRC_Continue
;
5556 ** Return true (non-zero) if expression p can only be true if at least
5557 ** one column of table iTab is non-null. In other words, return true
5558 ** if expression p will always be NULL or false if every column of iTab
5561 ** False negatives are acceptable. In other words, it is ok to return
5562 ** zero even if expression p will never be true of every column of iTab
5563 ** is NULL. A false negative is merely a missed optimization opportunity.
5565 ** False positives are not allowed, however. A false positive may result
5566 ** in an incorrect answer.
5568 ** Terms of p that are marked with EP_FromJoin (and hence that come from
5569 ** the ON or USING clauses of LEFT JOINS) are excluded from the analysis.
5571 ** This routine is used to check if a LEFT JOIN can be converted into
5572 ** an ordinary JOIN. The p argument is the WHERE clause. If the WHERE
5573 ** clause requires that some column of the right table of the LEFT JOIN
5574 ** be non-NULL, then the LEFT JOIN can be safely converted into an
5577 int sqlite3ExprImpliesNonNullRow(Expr
*p
, int iTab
){
5579 p
= sqlite3ExprSkipCollateAndLikely(p
);
5580 if( p
==0 ) return 0;
5581 if( p
->op
==TK_NOTNULL
){
5584 while( p
->op
==TK_AND
){
5585 if( sqlite3ExprImpliesNonNullRow(p
->pLeft
, iTab
) ) return 1;
5589 w
.xExprCallback
= impliesNotNullRow
;
5590 w
.xSelectCallback
= 0;
5591 w
.xSelectCallback2
= 0;
5594 sqlite3WalkExpr(&w
, p
);
5599 ** An instance of the following structure is used by the tree walker
5600 ** to determine if an expression can be evaluated by reference to the
5601 ** index only, without having to do a search for the corresponding
5602 ** table entry. The IdxCover.pIdx field is the index. IdxCover.iCur
5603 ** is the cursor for the table.
5606 Index
*pIdx
; /* The index to be tested for coverage */
5607 int iCur
; /* Cursor number for the table corresponding to the index */
5611 ** Check to see if there are references to columns in table
5612 ** pWalker->u.pIdxCover->iCur can be satisfied using the index
5613 ** pWalker->u.pIdxCover->pIdx.
5615 static int exprIdxCover(Walker
*pWalker
, Expr
*pExpr
){
5616 if( pExpr
->op
==TK_COLUMN
5617 && pExpr
->iTable
==pWalker
->u
.pIdxCover
->iCur
5618 && sqlite3TableColumnToIndex(pWalker
->u
.pIdxCover
->pIdx
, pExpr
->iColumn
)<0
5623 return WRC_Continue
;
5627 ** Determine if an index pIdx on table with cursor iCur contains will
5628 ** the expression pExpr. Return true if the index does cover the
5629 ** expression and false if the pExpr expression references table columns
5630 ** that are not found in the index pIdx.
5632 ** An index covering an expression means that the expression can be
5633 ** evaluated using only the index and without having to lookup the
5634 ** corresponding table entry.
5636 int sqlite3ExprCoveredByIndex(
5637 Expr
*pExpr
, /* The index to be tested */
5638 int iCur
, /* The cursor number for the corresponding table */
5639 Index
*pIdx
/* The index that might be used for coverage */
5642 struct IdxCover xcov
;
5643 memset(&w
, 0, sizeof(w
));
5646 w
.xExprCallback
= exprIdxCover
;
5647 w
.u
.pIdxCover
= &xcov
;
5648 sqlite3WalkExpr(&w
, pExpr
);
5654 ** An instance of the following structure is used by the tree walker
5655 ** to count references to table columns in the arguments of an
5656 ** aggregate function, in order to implement the
5657 ** sqlite3FunctionThisSrc() routine.
5660 SrcList
*pSrc
; /* One particular FROM clause in a nested query */
5661 int iSrcInner
; /* Smallest cursor number in this context */
5662 int nThis
; /* Number of references to columns in pSrcList */
5663 int nOther
; /* Number of references to columns in other FROM clauses */
5667 ** xSelect callback for sqlite3FunctionUsesThisSrc(). If this is the first
5668 ** SELECT with a FROM clause encountered during this iteration, set
5669 ** SrcCount.iSrcInner to the cursor number of the leftmost object in
5672 static int selectSrcCount(Walker
*pWalker
, Select
*pSel
){
5673 struct SrcCount
*p
= pWalker
->u
.pSrcCount
;
5674 if( p
->iSrcInner
==0x7FFFFFFF && ALWAYS(pSel
->pSrc
) && pSel
->pSrc
->nSrc
){
5675 pWalker
->u
.pSrcCount
->iSrcInner
= pSel
->pSrc
->a
[0].iCursor
;
5677 return WRC_Continue
;
5681 ** Count the number of references to columns.
5683 static int exprSrcCount(Walker
*pWalker
, Expr
*pExpr
){
5684 /* There was once a NEVER() on the second term on the grounds that
5685 ** sqlite3FunctionUsesThisSrc() was always called before
5686 ** sqlite3ExprAnalyzeAggregates() and so the TK_COLUMNs have not yet
5687 ** been converted into TK_AGG_COLUMN. But this is no longer true due
5688 ** to window functions - sqlite3WindowRewrite() may now indirectly call
5689 ** FunctionUsesThisSrc() when creating a new sub-select. */
5690 if( pExpr
->op
==TK_COLUMN
|| pExpr
->op
==TK_AGG_COLUMN
){
5692 struct SrcCount
*p
= pWalker
->u
.pSrcCount
;
5693 SrcList
*pSrc
= p
->pSrc
;
5694 int nSrc
= pSrc
? pSrc
->nSrc
: 0;
5695 for(i
=0; i
<nSrc
; i
++){
5696 if( pExpr
->iTable
==pSrc
->a
[i
].iCursor
) break;
5700 }else if( pExpr
->iTable
<p
->iSrcInner
){
5701 /* In a well-formed parse tree (no name resolution errors),
5702 ** TK_COLUMN nodes with smaller Expr.iTable values are in an
5703 ** outer context. Those are the only ones to count as "other" */
5707 return WRC_Continue
;
5711 ** Determine if any of the arguments to the pExpr Function reference
5712 ** pSrcList. Return true if they do. Also return true if the function
5713 ** has no arguments or has only constant arguments. Return false if pExpr
5714 ** references columns but not columns of tables found in pSrcList.
5716 int sqlite3FunctionUsesThisSrc(Expr
*pExpr
, SrcList
*pSrcList
){
5718 struct SrcCount cnt
;
5719 assert( pExpr
->op
==TK_AGG_FUNCTION
);
5720 memset(&w
, 0, sizeof(w
));
5721 w
.xExprCallback
= exprSrcCount
;
5722 w
.xSelectCallback
= selectSrcCount
;
5723 w
.u
.pSrcCount
= &cnt
;
5724 cnt
.pSrc
= pSrcList
;
5725 cnt
.iSrcInner
= (pSrcList
&&pSrcList
->nSrc
)?pSrcList
->a
[0].iCursor
:0x7FFFFFFF;
5728 sqlite3WalkExprList(&w
, pExpr
->x
.pList
);
5729 #ifndef SQLITE_OMIT_WINDOWFUNC
5730 if( ExprHasProperty(pExpr
, EP_WinFunc
) ){
5731 sqlite3WalkExpr(&w
, pExpr
->y
.pWin
->pFilter
);
5734 return cnt
.nThis
>0 || cnt
.nOther
==0;
5738 ** This is a Walker expression node callback.
5740 ** For Expr nodes that contain pAggInfo pointers, make sure the AggInfo
5741 ** object that is referenced does not refer directly to the Expr. If
5742 ** it does, make a copy. This is done because the pExpr argument is
5743 ** subject to change.
5745 ** The copy is stored on pParse->pConstExpr with a register number of 0.
5746 ** This will cause the expression to be deleted automatically when the
5747 ** Parse object is destroyed, but the zero register number means that it
5748 ** will not generate any code in the preamble.
5750 static int agginfoPersistExprCb(Walker
*pWalker
, Expr
*pExpr
){
5751 if( ALWAYS(!ExprHasProperty(pExpr
, EP_TokenOnly
|EP_Reduced
))
5752 && pExpr
->pAggInfo
!=0
5754 AggInfo
*pAggInfo
= pExpr
->pAggInfo
;
5755 int iAgg
= pExpr
->iAgg
;
5756 Parse
*pParse
= pWalker
->pParse
;
5757 sqlite3
*db
= pParse
->db
;
5758 assert( pExpr
->op
==TK_AGG_COLUMN
|| pExpr
->op
==TK_AGG_FUNCTION
);
5759 if( pExpr
->op
==TK_AGG_COLUMN
){
5760 assert( iAgg
>=0 && iAgg
<pAggInfo
->nColumn
);
5761 if( pAggInfo
->aCol
[iAgg
].pCExpr
==pExpr
){
5762 pExpr
= sqlite3ExprDup(db
, pExpr
, 0);
5764 pAggInfo
->aCol
[iAgg
].pCExpr
= pExpr
;
5765 pParse
->pConstExpr
=
5766 sqlite3ExprListAppend(pParse
, pParse
->pConstExpr
, pExpr
);
5770 assert( iAgg
>=0 && iAgg
<pAggInfo
->nFunc
);
5771 if( pAggInfo
->aFunc
[iAgg
].pFExpr
==pExpr
){
5772 pExpr
= sqlite3ExprDup(db
, pExpr
, 0);
5774 pAggInfo
->aFunc
[iAgg
].pFExpr
= pExpr
;
5775 pParse
->pConstExpr
=
5776 sqlite3ExprListAppend(pParse
, pParse
->pConstExpr
, pExpr
);
5781 return WRC_Continue
;
5785 ** Initialize a Walker object so that will persist AggInfo entries referenced
5786 ** by the tree that is walked.
5788 void sqlite3AggInfoPersistWalkerInit(Walker
*pWalker
, Parse
*pParse
){
5789 memset(pWalker
, 0, sizeof(*pWalker
));
5790 pWalker
->pParse
= pParse
;
5791 pWalker
->xExprCallback
= agginfoPersistExprCb
;
5792 pWalker
->xSelectCallback
= sqlite3SelectWalkNoop
;
5796 ** Add a new element to the pAggInfo->aCol[] array. Return the index of
5797 ** the new element. Return a negative number if malloc fails.
5799 static int addAggInfoColumn(sqlite3
*db
, AggInfo
*pInfo
){
5801 pInfo
->aCol
= sqlite3ArrayAllocate(
5804 sizeof(pInfo
->aCol
[0]),
5812 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of
5813 ** the new element. Return a negative number if malloc fails.
5815 static int addAggInfoFunc(sqlite3
*db
, AggInfo
*pInfo
){
5817 pInfo
->aFunc
= sqlite3ArrayAllocate(
5820 sizeof(pInfo
->aFunc
[0]),
5828 ** This is the xExprCallback for a tree walker. It is used to
5829 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates
5830 ** for additional information.
5832 static int analyzeAggregate(Walker
*pWalker
, Expr
*pExpr
){
5834 NameContext
*pNC
= pWalker
->u
.pNC
;
5835 Parse
*pParse
= pNC
->pParse
;
5836 SrcList
*pSrcList
= pNC
->pSrcList
;
5837 AggInfo
*pAggInfo
= pNC
->uNC
.pAggInfo
;
5839 assert( pNC
->ncFlags
& NC_UAggInfo
);
5840 switch( pExpr
->op
){
5843 testcase( pExpr
->op
==TK_AGG_COLUMN
);
5844 testcase( pExpr
->op
==TK_COLUMN
);
5845 /* Check to see if the column is in one of the tables in the FROM
5846 ** clause of the aggregate query */
5847 if( ALWAYS(pSrcList
!=0) ){
5848 struct SrcList_item
*pItem
= pSrcList
->a
;
5849 for(i
=0; i
<pSrcList
->nSrc
; i
++, pItem
++){
5850 struct AggInfo_col
*pCol
;
5851 assert( !ExprHasProperty(pExpr
, EP_TokenOnly
|EP_Reduced
) );
5852 if( pExpr
->iTable
==pItem
->iCursor
){
5853 /* If we reach this point, it means that pExpr refers to a table
5854 ** that is in the FROM clause of the aggregate query.
5856 ** Make an entry for the column in pAggInfo->aCol[] if there
5857 ** is not an entry there already.
5860 pCol
= pAggInfo
->aCol
;
5861 for(k
=0; k
<pAggInfo
->nColumn
; k
++, pCol
++){
5862 if( pCol
->iTable
==pExpr
->iTable
&&
5863 pCol
->iColumn
==pExpr
->iColumn
){
5867 if( (k
>=pAggInfo
->nColumn
)
5868 && (k
= addAggInfoColumn(pParse
->db
, pAggInfo
))>=0
5870 pCol
= &pAggInfo
->aCol
[k
];
5871 pCol
->pTab
= pExpr
->y
.pTab
;
5872 pCol
->iTable
= pExpr
->iTable
;
5873 pCol
->iColumn
= pExpr
->iColumn
;
5874 pCol
->iMem
= ++pParse
->nMem
;
5875 pCol
->iSorterColumn
= -1;
5876 pCol
->pCExpr
= pExpr
;
5877 if( pAggInfo
->pGroupBy
){
5879 ExprList
*pGB
= pAggInfo
->pGroupBy
;
5880 struct ExprList_item
*pTerm
= pGB
->a
;
5882 for(j
=0; j
<n
; j
++, pTerm
++){
5883 Expr
*pE
= pTerm
->pExpr
;
5884 if( pE
->op
==TK_COLUMN
&& pE
->iTable
==pExpr
->iTable
&&
5885 pE
->iColumn
==pExpr
->iColumn
){
5886 pCol
->iSorterColumn
= j
;
5891 if( pCol
->iSorterColumn
<0 ){
5892 pCol
->iSorterColumn
= pAggInfo
->nSortingColumn
++;
5895 /* There is now an entry for pExpr in pAggInfo->aCol[] (either
5896 ** because it was there before or because we just created it).
5897 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
5898 ** pAggInfo->aCol[] entry.
5900 ExprSetVVAProperty(pExpr
, EP_NoReduce
);
5901 pExpr
->pAggInfo
= pAggInfo
;
5902 pExpr
->op
= TK_AGG_COLUMN
;
5903 pExpr
->iAgg
= (i16
)k
;
5905 } /* endif pExpr->iTable==pItem->iCursor */
5906 } /* end loop over pSrcList */
5910 case TK_AGG_FUNCTION
: {
5911 if( (pNC
->ncFlags
& NC_InAggFunc
)==0
5912 && pWalker
->walkerDepth
==pExpr
->op2
5914 /* Check to see if pExpr is a duplicate of another aggregate
5915 ** function that is already in the pAggInfo structure
5917 struct AggInfo_func
*pItem
= pAggInfo
->aFunc
;
5918 for(i
=0; i
<pAggInfo
->nFunc
; i
++, pItem
++){
5919 if( sqlite3ExprCompare(0, pItem
->pFExpr
, pExpr
, -1)==0 ){
5923 if( i
>=pAggInfo
->nFunc
){
5924 /* pExpr is original. Make a new entry in pAggInfo->aFunc[]
5926 u8 enc
= ENC(pParse
->db
);
5927 i
= addAggInfoFunc(pParse
->db
, pAggInfo
);
5929 assert( !ExprHasProperty(pExpr
, EP_xIsSelect
) );
5930 pItem
= &pAggInfo
->aFunc
[i
];
5931 pItem
->pFExpr
= pExpr
;
5932 pItem
->iMem
= ++pParse
->nMem
;
5933 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
5934 pItem
->pFunc
= sqlite3FindFunction(pParse
->db
,
5936 pExpr
->x
.pList
? pExpr
->x
.pList
->nExpr
: 0, enc
, 0);
5937 if( pExpr
->flags
& EP_Distinct
){
5938 pItem
->iDistinct
= pParse
->nTab
++;
5940 pItem
->iDistinct
= -1;
5944 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
5946 assert( !ExprHasProperty(pExpr
, EP_TokenOnly
|EP_Reduced
) );
5947 ExprSetVVAProperty(pExpr
, EP_NoReduce
);
5948 pExpr
->iAgg
= (i16
)i
;
5949 pExpr
->pAggInfo
= pAggInfo
;
5952 return WRC_Continue
;
5956 return WRC_Continue
;
5960 ** Analyze the pExpr expression looking for aggregate functions and
5961 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
5962 ** points to. Additional entries are made on the AggInfo object as
5965 ** This routine should only be called after the expression has been
5966 ** analyzed by sqlite3ResolveExprNames().
5968 void sqlite3ExprAnalyzeAggregates(NameContext
*pNC
, Expr
*pExpr
){
5970 w
.xExprCallback
= analyzeAggregate
;
5971 w
.xSelectCallback
= sqlite3WalkerDepthIncrease
;
5972 w
.xSelectCallback2
= sqlite3WalkerDepthDecrease
;
5976 assert( pNC
->pSrcList
!=0 );
5977 sqlite3WalkExpr(&w
, pExpr
);
5981 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
5982 ** expression list. Return the number of errors.
5984 ** If an error is found, the analysis is cut short.
5986 void sqlite3ExprAnalyzeAggList(NameContext
*pNC
, ExprList
*pList
){
5987 struct ExprList_item
*pItem
;
5990 for(pItem
=pList
->a
, i
=0; i
<pList
->nExpr
; i
++, pItem
++){
5991 sqlite3ExprAnalyzeAggregates(pNC
, pItem
->pExpr
);
5997 ** Allocate a single new register for use to hold some intermediate result.
5999 int sqlite3GetTempReg(Parse
*pParse
){
6000 if( pParse
->nTempReg
==0 ){
6001 return ++pParse
->nMem
;
6003 return pParse
->aTempReg
[--pParse
->nTempReg
];
6007 ** Deallocate a register, making available for reuse for some other
6010 void sqlite3ReleaseTempReg(Parse
*pParse
, int iReg
){
6012 sqlite3VdbeReleaseRegisters(pParse
, iReg
, 1, 0, 0);
6013 if( pParse
->nTempReg
<ArraySize(pParse
->aTempReg
) ){
6014 pParse
->aTempReg
[pParse
->nTempReg
++] = iReg
;
6020 ** Allocate or deallocate a block of nReg consecutive registers.
6022 int sqlite3GetTempRange(Parse
*pParse
, int nReg
){
6024 if( nReg
==1 ) return sqlite3GetTempReg(pParse
);
6025 i
= pParse
->iRangeReg
;
6026 n
= pParse
->nRangeReg
;
6028 pParse
->iRangeReg
+= nReg
;
6029 pParse
->nRangeReg
-= nReg
;
6032 pParse
->nMem
+= nReg
;
6036 void sqlite3ReleaseTempRange(Parse
*pParse
, int iReg
, int nReg
){
6038 sqlite3ReleaseTempReg(pParse
, iReg
);
6041 sqlite3VdbeReleaseRegisters(pParse
, iReg
, nReg
, 0, 0);
6042 if( nReg
>pParse
->nRangeReg
){
6043 pParse
->nRangeReg
= nReg
;
6044 pParse
->iRangeReg
= iReg
;
6049 ** Mark all temporary registers as being unavailable for reuse.
6051 ** Always invoke this procedure after coding a subroutine or co-routine
6052 ** that might be invoked from other parts of the code, to ensure that
6053 ** the sub/co-routine does not use registers in common with the code that
6054 ** invokes the sub/co-routine.
6056 void sqlite3ClearTempRegCache(Parse
*pParse
){
6057 pParse
->nTempReg
= 0;
6058 pParse
->nRangeReg
= 0;
6062 ** Validate that no temporary register falls within the range of
6063 ** iFirst..iLast, inclusive. This routine is only call from within assert()
6067 int sqlite3NoTempsInRange(Parse
*pParse
, int iFirst
, int iLast
){
6069 if( pParse
->nRangeReg
>0
6070 && pParse
->iRangeReg
+pParse
->nRangeReg
> iFirst
6071 && pParse
->iRangeReg
<= iLast
6075 for(i
=0; i
<pParse
->nTempReg
; i
++){
6076 if( pParse
->aTempReg
[i
]>=iFirst
&& pParse
->aTempReg
[i
]<=iLast
){
6082 #endif /* SQLITE_DEBUG */