fix typo in configure instructions
[sqlcipher.git] / src / wal.c
blobc77686aac904a096739e8a68be4298451968c46d
1 /*
2 ** 2010 February 1
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
13 ** This file contains the implementation of a write-ahead log (WAL) used in
14 ** "journal_mode=WAL" mode.
16 ** WRITE-AHEAD LOG (WAL) FILE FORMAT
18 ** A WAL file consists of a header followed by zero or more "frames".
19 ** Each frame records the revised content of a single page from the
20 ** database file. All changes to the database are recorded by writing
21 ** frames into the WAL. Transactions commit when a frame is written that
22 ** contains a commit marker. A single WAL can and usually does record
23 ** multiple transactions. Periodically, the content of the WAL is
24 ** transferred back into the database file in an operation called a
25 ** "checkpoint".
27 ** A single WAL file can be used multiple times. In other words, the
28 ** WAL can fill up with frames and then be checkpointed and then new
29 ** frames can overwrite the old ones. A WAL always grows from beginning
30 ** toward the end. Checksums and counters attached to each frame are
31 ** used to determine which frames within the WAL are valid and which
32 ** are leftovers from prior checkpoints.
34 ** The WAL header is 32 bytes in size and consists of the following eight
35 ** big-endian 32-bit unsigned integer values:
37 ** 0: Magic number. 0x377f0682 or 0x377f0683
38 ** 4: File format version. Currently 3007000
39 ** 8: Database page size. Example: 1024
40 ** 12: Checkpoint sequence number
41 ** 16: Salt-1, random integer incremented with each checkpoint
42 ** 20: Salt-2, a different random integer changing with each ckpt
43 ** 24: Checksum-1 (first part of checksum for first 24 bytes of header).
44 ** 28: Checksum-2 (second part of checksum for first 24 bytes of header).
46 ** Immediately following the wal-header are zero or more frames. Each
47 ** frame consists of a 24-byte frame-header followed by a <page-size> bytes
48 ** of page data. The frame-header is six big-endian 32-bit unsigned
49 ** integer values, as follows:
51 ** 0: Page number.
52 ** 4: For commit records, the size of the database image in pages
53 ** after the commit. For all other records, zero.
54 ** 8: Salt-1 (copied from the header)
55 ** 12: Salt-2 (copied from the header)
56 ** 16: Checksum-1.
57 ** 20: Checksum-2.
59 ** A frame is considered valid if and only if the following conditions are
60 ** true:
62 ** (1) The salt-1 and salt-2 values in the frame-header match
63 ** salt values in the wal-header
65 ** (2) The checksum values in the final 8 bytes of the frame-header
66 ** exactly match the checksum computed consecutively on the
67 ** WAL header and the first 8 bytes and the content of all frames
68 ** up to and including the current frame.
70 ** The checksum is computed using 32-bit big-endian integers if the
71 ** magic number in the first 4 bytes of the WAL is 0x377f0683 and it
72 ** is computed using little-endian if the magic number is 0x377f0682.
73 ** The checksum values are always stored in the frame header in a
74 ** big-endian format regardless of which byte order is used to compute
75 ** the checksum. The checksum is computed by interpreting the input as
76 ** an even number of unsigned 32-bit integers: x[0] through x[N]. The
77 ** algorithm used for the checksum is as follows:
78 **
79 ** for i from 0 to n-1 step 2:
80 ** s0 += x[i] + s1;
81 ** s1 += x[i+1] + s0;
82 ** endfor
84 ** Note that s0 and s1 are both weighted checksums using fibonacci weights
85 ** in reverse order (the largest fibonacci weight occurs on the first element
86 ** of the sequence being summed.) The s1 value spans all 32-bit
87 ** terms of the sequence whereas s0 omits the final term.
89 ** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the
90 ** WAL is transferred into the database, then the database is VFS.xSync-ed.
91 ** The VFS.xSync operations serve as write barriers - all writes launched
92 ** before the xSync must complete before any write that launches after the
93 ** xSync begins.
95 ** After each checkpoint, the salt-1 value is incremented and the salt-2
96 ** value is randomized. This prevents old and new frames in the WAL from
97 ** being considered valid at the same time and being checkpointing together
98 ** following a crash.
100 ** READER ALGORITHM
102 ** To read a page from the database (call it page number P), a reader
103 ** first checks the WAL to see if it contains page P. If so, then the
104 ** last valid instance of page P that is a followed by a commit frame
105 ** or is a commit frame itself becomes the value read. If the WAL
106 ** contains no copies of page P that are valid and which are a commit
107 ** frame or are followed by a commit frame, then page P is read from
108 ** the database file.
110 ** To start a read transaction, the reader records the index of the last
111 ** valid frame in the WAL. The reader uses this recorded "mxFrame" value
112 ** for all subsequent read operations. New transactions can be appended
113 ** to the WAL, but as long as the reader uses its original mxFrame value
114 ** and ignores the newly appended content, it will see a consistent snapshot
115 ** of the database from a single point in time. This technique allows
116 ** multiple concurrent readers to view different versions of the database
117 ** content simultaneously.
119 ** The reader algorithm in the previous paragraphs works correctly, but
120 ** because frames for page P can appear anywhere within the WAL, the
121 ** reader has to scan the entire WAL looking for page P frames. If the
122 ** WAL is large (multiple megabytes is typical) that scan can be slow,
123 ** and read performance suffers. To overcome this problem, a separate
124 ** data structure called the wal-index is maintained to expedite the
125 ** search for frames of a particular page.
127 ** WAL-INDEX FORMAT
129 ** Conceptually, the wal-index is shared memory, though VFS implementations
130 ** might choose to implement the wal-index using a mmapped file. Because
131 ** the wal-index is shared memory, SQLite does not support journal_mode=WAL
132 ** on a network filesystem. All users of the database must be able to
133 ** share memory.
135 ** In the default unix and windows implementation, the wal-index is a mmapped
136 ** file whose name is the database name with a "-shm" suffix added. For that
137 ** reason, the wal-index is sometimes called the "shm" file.
139 ** The wal-index is transient. After a crash, the wal-index can (and should
140 ** be) reconstructed from the original WAL file. In fact, the VFS is required
141 ** to either truncate or zero the header of the wal-index when the last
142 ** connection to it closes. Because the wal-index is transient, it can
143 ** use an architecture-specific format; it does not have to be cross-platform.
144 ** Hence, unlike the database and WAL file formats which store all values
145 ** as big endian, the wal-index can store multi-byte values in the native
146 ** byte order of the host computer.
148 ** The purpose of the wal-index is to answer this question quickly: Given
149 ** a page number P and a maximum frame index M, return the index of the
150 ** last frame in the wal before frame M for page P in the WAL, or return
151 ** NULL if there are no frames for page P in the WAL prior to M.
153 ** The wal-index consists of a header region, followed by an one or
154 ** more index blocks.
156 ** The wal-index header contains the total number of frames within the WAL
157 ** in the mxFrame field.
159 ** Each index block except for the first contains information on
160 ** HASHTABLE_NPAGE frames. The first index block contains information on
161 ** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and
162 ** HASHTABLE_NPAGE are selected so that together the wal-index header and
163 ** first index block are the same size as all other index blocks in the
164 ** wal-index.
166 ** Each index block contains two sections, a page-mapping that contains the
167 ** database page number associated with each wal frame, and a hash-table
168 ** that allows readers to query an index block for a specific page number.
169 ** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE
170 ** for the first index block) 32-bit page numbers. The first entry in the
171 ** first index-block contains the database page number corresponding to the
172 ** first frame in the WAL file. The first entry in the second index block
173 ** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in
174 ** the log, and so on.
176 ** The last index block in a wal-index usually contains less than the full
177 ** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers,
178 ** depending on the contents of the WAL file. This does not change the
179 ** allocated size of the page-mapping array - the page-mapping array merely
180 ** contains unused entries.
182 ** Even without using the hash table, the last frame for page P
183 ** can be found by scanning the page-mapping sections of each index block
184 ** starting with the last index block and moving toward the first, and
185 ** within each index block, starting at the end and moving toward the
186 ** beginning. The first entry that equals P corresponds to the frame
187 ** holding the content for that page.
189 ** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers.
190 ** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the
191 ** hash table for each page number in the mapping section, so the hash
192 ** table is never more than half full. The expected number of collisions
193 ** prior to finding a match is 1. Each entry of the hash table is an
194 ** 1-based index of an entry in the mapping section of the same
195 ** index block. Let K be the 1-based index of the largest entry in
196 ** the mapping section. (For index blocks other than the last, K will
197 ** always be exactly HASHTABLE_NPAGE (4096) and for the last index block
198 ** K will be (mxFrame%HASHTABLE_NPAGE).) Unused slots of the hash table
199 ** contain a value of 0.
201 ** To look for page P in the hash table, first compute a hash iKey on
202 ** P as follows:
204 ** iKey = (P * 383) % HASHTABLE_NSLOT
206 ** Then start scanning entries of the hash table, starting with iKey
207 ** (wrapping around to the beginning when the end of the hash table is
208 ** reached) until an unused hash slot is found. Let the first unused slot
209 ** be at index iUnused. (iUnused might be less than iKey if there was
210 ** wrap-around.) Because the hash table is never more than half full,
211 ** the search is guaranteed to eventually hit an unused entry. Let
212 ** iMax be the value between iKey and iUnused, closest to iUnused,
213 ** where aHash[iMax]==P. If there is no iMax entry (if there exists
214 ** no hash slot such that aHash[i]==p) then page P is not in the
215 ** current index block. Otherwise the iMax-th mapping entry of the
216 ** current index block corresponds to the last entry that references
217 ** page P.
219 ** A hash search begins with the last index block and moves toward the
220 ** first index block, looking for entries corresponding to page P. On
221 ** average, only two or three slots in each index block need to be
222 ** examined in order to either find the last entry for page P, or to
223 ** establish that no such entry exists in the block. Each index block
224 ** holds over 4000 entries. So two or three index blocks are sufficient
225 ** to cover a typical 10 megabyte WAL file, assuming 1K pages. 8 or 10
226 ** comparisons (on average) suffice to either locate a frame in the
227 ** WAL or to establish that the frame does not exist in the WAL. This
228 ** is much faster than scanning the entire 10MB WAL.
230 ** Note that entries are added in order of increasing K. Hence, one
231 ** reader might be using some value K0 and a second reader that started
232 ** at a later time (after additional transactions were added to the WAL
233 ** and to the wal-index) might be using a different value K1, where K1>K0.
234 ** Both readers can use the same hash table and mapping section to get
235 ** the correct result. There may be entries in the hash table with
236 ** K>K0 but to the first reader, those entries will appear to be unused
237 ** slots in the hash table and so the first reader will get an answer as
238 ** if no values greater than K0 had ever been inserted into the hash table
239 ** in the first place - which is what reader one wants. Meanwhile, the
240 ** second reader using K1 will see additional values that were inserted
241 ** later, which is exactly what reader two wants.
243 ** When a rollback occurs, the value of K is decreased. Hash table entries
244 ** that correspond to frames greater than the new K value are removed
245 ** from the hash table at this point.
247 #ifndef SQLITE_OMIT_WAL
249 #include "wal.h"
252 ** Trace output macros
254 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
255 int sqlite3WalTrace = 0;
256 # define WALTRACE(X) if(sqlite3WalTrace) sqlite3DebugPrintf X
257 #else
258 # define WALTRACE(X)
259 #endif
262 ** The maximum (and only) versions of the wal and wal-index formats
263 ** that may be interpreted by this version of SQLite.
265 ** If a client begins recovering a WAL file and finds that (a) the checksum
266 ** values in the wal-header are correct and (b) the version field is not
267 ** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN.
269 ** Similarly, if a client successfully reads a wal-index header (i.e. the
270 ** checksum test is successful) and finds that the version field is not
271 ** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite
272 ** returns SQLITE_CANTOPEN.
274 #define WAL_MAX_VERSION 3007000
275 #define WALINDEX_MAX_VERSION 3007000
278 ** Index numbers for various locking bytes. WAL_NREADER is the number
279 ** of available reader locks and should be at least 3. The default
280 ** is SQLITE_SHM_NLOCK==8 and WAL_NREADER==5.
282 ** Technically, the various VFSes are free to implement these locks however
283 ** they see fit. However, compatibility is encouraged so that VFSes can
284 ** interoperate. The standard implemention used on both unix and windows
285 ** is for the index number to indicate a byte offset into the
286 ** WalCkptInfo.aLock[] array in the wal-index header. In other words, all
287 ** locks are on the shm file. The WALINDEX_LOCK_OFFSET constant (which
288 ** should be 120) is the location in the shm file for the first locking
289 ** byte.
291 #define WAL_WRITE_LOCK 0
292 #define WAL_ALL_BUT_WRITE 1
293 #define WAL_CKPT_LOCK 1
294 #define WAL_RECOVER_LOCK 2
295 #define WAL_READ_LOCK(I) (3+(I))
296 #define WAL_NREADER (SQLITE_SHM_NLOCK-3)
299 /* Object declarations */
300 typedef struct WalIndexHdr WalIndexHdr;
301 typedef struct WalIterator WalIterator;
302 typedef struct WalCkptInfo WalCkptInfo;
306 ** The following object holds a copy of the wal-index header content.
308 ** The actual header in the wal-index consists of two copies of this
309 ** object followed by one instance of the WalCkptInfo object.
310 ** For all versions of SQLite through 3.10.0 and probably beyond,
311 ** the locking bytes (WalCkptInfo.aLock) start at offset 120 and
312 ** the total header size is 136 bytes.
314 ** The szPage value can be any power of 2 between 512 and 32768, inclusive.
315 ** Or it can be 1 to represent a 65536-byte page. The latter case was
316 ** added in 3.7.1 when support for 64K pages was added.
318 struct WalIndexHdr {
319 u32 iVersion; /* Wal-index version */
320 u32 unused; /* Unused (padding) field */
321 u32 iChange; /* Counter incremented each transaction */
322 u8 isInit; /* 1 when initialized */
323 u8 bigEndCksum; /* True if checksums in WAL are big-endian */
324 u16 szPage; /* Database page size in bytes. 1==64K */
325 u32 mxFrame; /* Index of last valid frame in the WAL */
326 u32 nPage; /* Size of database in pages */
327 u32 aFrameCksum[2]; /* Checksum of last frame in log */
328 u32 aSalt[2]; /* Two salt values copied from WAL header */
329 u32 aCksum[2]; /* Checksum over all prior fields */
333 ** A copy of the following object occurs in the wal-index immediately
334 ** following the second copy of the WalIndexHdr. This object stores
335 ** information used by checkpoint.
337 ** nBackfill is the number of frames in the WAL that have been written
338 ** back into the database. (We call the act of moving content from WAL to
339 ** database "backfilling".) The nBackfill number is never greater than
340 ** WalIndexHdr.mxFrame. nBackfill can only be increased by threads
341 ** holding the WAL_CKPT_LOCK lock (which includes a recovery thread).
342 ** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from
343 ** mxFrame back to zero when the WAL is reset.
345 ** nBackfillAttempted is the largest value of nBackfill that a checkpoint
346 ** has attempted to achieve. Normally nBackfill==nBackfillAtempted, however
347 ** the nBackfillAttempted is set before any backfilling is done and the
348 ** nBackfill is only set after all backfilling completes. So if a checkpoint
349 ** crashes, nBackfillAttempted might be larger than nBackfill. The
350 ** WalIndexHdr.mxFrame must never be less than nBackfillAttempted.
352 ** The aLock[] field is a set of bytes used for locking. These bytes should
353 ** never be read or written.
355 ** There is one entry in aReadMark[] for each reader lock. If a reader
356 ** holds read-lock K, then the value in aReadMark[K] is no greater than
357 ** the mxFrame for that reader. The value READMARK_NOT_USED (0xffffffff)
358 ** for any aReadMark[] means that entry is unused. aReadMark[0] is
359 ** a special case; its value is never used and it exists as a place-holder
360 ** to avoid having to offset aReadMark[] indexs by one. Readers holding
361 ** WAL_READ_LOCK(0) always ignore the entire WAL and read all content
362 ** directly from the database.
364 ** The value of aReadMark[K] may only be changed by a thread that
365 ** is holding an exclusive lock on WAL_READ_LOCK(K). Thus, the value of
366 ** aReadMark[K] cannot changed while there is a reader is using that mark
367 ** since the reader will be holding a shared lock on WAL_READ_LOCK(K).
369 ** The checkpointer may only transfer frames from WAL to database where
370 ** the frame numbers are less than or equal to every aReadMark[] that is
371 ** in use (that is, every aReadMark[j] for which there is a corresponding
372 ** WAL_READ_LOCK(j)). New readers (usually) pick the aReadMark[] with the
373 ** largest value and will increase an unused aReadMark[] to mxFrame if there
374 ** is not already an aReadMark[] equal to mxFrame. The exception to the
375 ** previous sentence is when nBackfill equals mxFrame (meaning that everything
376 ** in the WAL has been backfilled into the database) then new readers
377 ** will choose aReadMark[0] which has value 0 and hence such reader will
378 ** get all their all content directly from the database file and ignore
379 ** the WAL.
381 ** Writers normally append new frames to the end of the WAL. However,
382 ** if nBackfill equals mxFrame (meaning that all WAL content has been
383 ** written back into the database) and if no readers are using the WAL
384 ** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then
385 ** the writer will first "reset" the WAL back to the beginning and start
386 ** writing new content beginning at frame 1.
388 ** We assume that 32-bit loads are atomic and so no locks are needed in
389 ** order to read from any aReadMark[] entries.
391 struct WalCkptInfo {
392 u32 nBackfill; /* Number of WAL frames backfilled into DB */
393 u32 aReadMark[WAL_NREADER]; /* Reader marks */
394 u8 aLock[SQLITE_SHM_NLOCK]; /* Reserved space for locks */
395 u32 nBackfillAttempted; /* WAL frames perhaps written, or maybe not */
396 u32 notUsed0; /* Available for future enhancements */
398 #define READMARK_NOT_USED 0xffffffff
401 /* A block of WALINDEX_LOCK_RESERVED bytes beginning at
402 ** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems
403 ** only support mandatory file-locks, we do not read or write data
404 ** from the region of the file on which locks are applied.
406 #define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2+offsetof(WalCkptInfo,aLock))
407 #define WALINDEX_HDR_SIZE (sizeof(WalIndexHdr)*2+sizeof(WalCkptInfo))
409 /* Size of header before each frame in wal */
410 #define WAL_FRAME_HDRSIZE 24
412 /* Size of write ahead log header, including checksum. */
413 #define WAL_HDRSIZE 32
415 /* WAL magic value. Either this value, or the same value with the least
416 ** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit
417 ** big-endian format in the first 4 bytes of a WAL file.
419 ** If the LSB is set, then the checksums for each frame within the WAL
420 ** file are calculated by treating all data as an array of 32-bit
421 ** big-endian words. Otherwise, they are calculated by interpreting
422 ** all data as 32-bit little-endian words.
424 #define WAL_MAGIC 0x377f0682
427 ** Return the offset of frame iFrame in the write-ahead log file,
428 ** assuming a database page size of szPage bytes. The offset returned
429 ** is to the start of the write-ahead log frame-header.
431 #define walFrameOffset(iFrame, szPage) ( \
432 WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE) \
436 ** An open write-ahead log file is represented by an instance of the
437 ** following object.
439 struct Wal {
440 sqlite3_vfs *pVfs; /* The VFS used to create pDbFd */
441 sqlite3_file *pDbFd; /* File handle for the database file */
442 sqlite3_file *pWalFd; /* File handle for WAL file */
443 u32 iCallback; /* Value to pass to log callback (or 0) */
444 i64 mxWalSize; /* Truncate WAL to this size upon reset */
445 int nWiData; /* Size of array apWiData */
446 int szFirstBlock; /* Size of first block written to WAL file */
447 volatile u32 **apWiData; /* Pointer to wal-index content in memory */
448 u32 szPage; /* Database page size */
449 i16 readLock; /* Which read lock is being held. -1 for none */
450 u8 syncFlags; /* Flags to use to sync header writes */
451 u8 exclusiveMode; /* Non-zero if connection is in exclusive mode */
452 u8 writeLock; /* True if in a write transaction */
453 u8 ckptLock; /* True if holding a checkpoint lock */
454 u8 readOnly; /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */
455 u8 truncateOnCommit; /* True to truncate WAL file on commit */
456 u8 syncHeader; /* Fsync the WAL header if true */
457 u8 padToSectorBoundary; /* Pad transactions out to the next sector */
458 u8 bShmUnreliable; /* SHM content is read-only and unreliable */
459 WalIndexHdr hdr; /* Wal-index header for current transaction */
460 u32 minFrame; /* Ignore wal frames before this one */
461 u32 iReCksum; /* On commit, recalculate checksums from here */
462 const char *zWalName; /* Name of WAL file */
463 u32 nCkpt; /* Checkpoint sequence counter in the wal-header */
464 #ifdef SQLITE_DEBUG
465 u8 lockError; /* True if a locking error has occurred */
466 #endif
467 #ifdef SQLITE_ENABLE_SNAPSHOT
468 WalIndexHdr *pSnapshot; /* Start transaction here if not NULL */
469 #endif
470 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
471 sqlite3 *db;
472 #endif
476 ** Candidate values for Wal.exclusiveMode.
478 #define WAL_NORMAL_MODE 0
479 #define WAL_EXCLUSIVE_MODE 1
480 #define WAL_HEAPMEMORY_MODE 2
483 ** Possible values for WAL.readOnly
485 #define WAL_RDWR 0 /* Normal read/write connection */
486 #define WAL_RDONLY 1 /* The WAL file is readonly */
487 #define WAL_SHM_RDONLY 2 /* The SHM file is readonly */
490 ** Each page of the wal-index mapping contains a hash-table made up of
491 ** an array of HASHTABLE_NSLOT elements of the following type.
493 typedef u16 ht_slot;
496 ** This structure is used to implement an iterator that loops through
497 ** all frames in the WAL in database page order. Where two or more frames
498 ** correspond to the same database page, the iterator visits only the
499 ** frame most recently written to the WAL (in other words, the frame with
500 ** the largest index).
502 ** The internals of this structure are only accessed by:
504 ** walIteratorInit() - Create a new iterator,
505 ** walIteratorNext() - Step an iterator,
506 ** walIteratorFree() - Free an iterator.
508 ** This functionality is used by the checkpoint code (see walCheckpoint()).
510 struct WalIterator {
511 u32 iPrior; /* Last result returned from the iterator */
512 int nSegment; /* Number of entries in aSegment[] */
513 struct WalSegment {
514 int iNext; /* Next slot in aIndex[] not yet returned */
515 ht_slot *aIndex; /* i0, i1, i2... such that aPgno[iN] ascend */
516 u32 *aPgno; /* Array of page numbers. */
517 int nEntry; /* Nr. of entries in aPgno[] and aIndex[] */
518 int iZero; /* Frame number associated with aPgno[0] */
519 } aSegment[1]; /* One for every 32KB page in the wal-index */
523 ** Define the parameters of the hash tables in the wal-index file. There
524 ** is a hash-table following every HASHTABLE_NPAGE page numbers in the
525 ** wal-index.
527 ** Changing any of these constants will alter the wal-index format and
528 ** create incompatibilities.
530 #define HASHTABLE_NPAGE 4096 /* Must be power of 2 */
531 #define HASHTABLE_HASH_1 383 /* Should be prime */
532 #define HASHTABLE_NSLOT (HASHTABLE_NPAGE*2) /* Must be a power of 2 */
535 ** The block of page numbers associated with the first hash-table in a
536 ** wal-index is smaller than usual. This is so that there is a complete
537 ** hash-table on each aligned 32KB page of the wal-index.
539 #define HASHTABLE_NPAGE_ONE (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32)))
541 /* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */
542 #define WALINDEX_PGSZ ( \
543 sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \
547 ** Obtain a pointer to the iPage'th page of the wal-index. The wal-index
548 ** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are
549 ** numbered from zero.
551 ** If the wal-index is currently smaller the iPage pages then the size
552 ** of the wal-index might be increased, but only if it is safe to do
553 ** so. It is safe to enlarge the wal-index if pWal->writeLock is true
554 ** or pWal->exclusiveMode==WAL_HEAPMEMORY_MODE.
556 ** If this call is successful, *ppPage is set to point to the wal-index
557 ** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs,
558 ** then an SQLite error code is returned and *ppPage is set to 0.
560 static SQLITE_NOINLINE int walIndexPageRealloc(
561 Wal *pWal, /* The WAL context */
562 int iPage, /* The page we seek */
563 volatile u32 **ppPage /* Write the page pointer here */
565 int rc = SQLITE_OK;
567 /* Enlarge the pWal->apWiData[] array if required */
568 if( pWal->nWiData<=iPage ){
569 sqlite3_int64 nByte = sizeof(u32*)*(iPage+1);
570 volatile u32 **apNew;
571 apNew = (volatile u32 **)sqlite3Realloc((void *)pWal->apWiData, nByte);
572 if( !apNew ){
573 *ppPage = 0;
574 return SQLITE_NOMEM_BKPT;
576 memset((void*)&apNew[pWal->nWiData], 0,
577 sizeof(u32*)*(iPage+1-pWal->nWiData));
578 pWal->apWiData = apNew;
579 pWal->nWiData = iPage+1;
582 /* Request a pointer to the required page from the VFS */
583 assert( pWal->apWiData[iPage]==0 );
584 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
585 pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ);
586 if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM_BKPT;
587 }else{
588 rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ,
589 pWal->writeLock, (void volatile **)&pWal->apWiData[iPage]
591 assert( pWal->apWiData[iPage]!=0 || rc!=SQLITE_OK || pWal->writeLock==0 );
592 testcase( pWal->apWiData[iPage]==0 && rc==SQLITE_OK );
593 if( rc==SQLITE_OK ){
594 if( iPage>0 && sqlite3FaultSim(600) ) rc = SQLITE_NOMEM;
595 }else if( (rc&0xff)==SQLITE_READONLY ){
596 pWal->readOnly |= WAL_SHM_RDONLY;
597 if( rc==SQLITE_READONLY ){
598 rc = SQLITE_OK;
603 *ppPage = pWal->apWiData[iPage];
604 assert( iPage==0 || *ppPage || rc!=SQLITE_OK );
605 return rc;
607 static int walIndexPage(
608 Wal *pWal, /* The WAL context */
609 int iPage, /* The page we seek */
610 volatile u32 **ppPage /* Write the page pointer here */
612 if( pWal->nWiData<=iPage || (*ppPage = pWal->apWiData[iPage])==0 ){
613 return walIndexPageRealloc(pWal, iPage, ppPage);
615 return SQLITE_OK;
619 ** Return a pointer to the WalCkptInfo structure in the wal-index.
621 static volatile WalCkptInfo *walCkptInfo(Wal *pWal){
622 assert( pWal->nWiData>0 && pWal->apWiData[0] );
623 return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]);
627 ** Return a pointer to the WalIndexHdr structure in the wal-index.
629 static volatile WalIndexHdr *walIndexHdr(Wal *pWal){
630 assert( pWal->nWiData>0 && pWal->apWiData[0] );
631 return (volatile WalIndexHdr*)pWal->apWiData[0];
635 ** The argument to this macro must be of type u32. On a little-endian
636 ** architecture, it returns the u32 value that results from interpreting
637 ** the 4 bytes as a big-endian value. On a big-endian architecture, it
638 ** returns the value that would be produced by interpreting the 4 bytes
639 ** of the input value as a little-endian integer.
641 #define BYTESWAP32(x) ( \
642 (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8) \
643 + (((x)&0x00FF0000)>>8) + (((x)&0xFF000000)>>24) \
647 ** Generate or extend an 8 byte checksum based on the data in
648 ** array aByte[] and the initial values of aIn[0] and aIn[1] (or
649 ** initial values of 0 and 0 if aIn==NULL).
651 ** The checksum is written back into aOut[] before returning.
653 ** nByte must be a positive multiple of 8.
655 static void walChecksumBytes(
656 int nativeCksum, /* True for native byte-order, false for non-native */
657 u8 *a, /* Content to be checksummed */
658 int nByte, /* Bytes of content in a[]. Must be a multiple of 8. */
659 const u32 *aIn, /* Initial checksum value input */
660 u32 *aOut /* OUT: Final checksum value output */
662 u32 s1, s2;
663 u32 *aData = (u32 *)a;
664 u32 *aEnd = (u32 *)&a[nByte];
666 if( aIn ){
667 s1 = aIn[0];
668 s2 = aIn[1];
669 }else{
670 s1 = s2 = 0;
673 assert( nByte>=8 );
674 assert( (nByte&0x00000007)==0 );
675 assert( nByte<=65536 );
677 if( nativeCksum ){
678 do {
679 s1 += *aData++ + s2;
680 s2 += *aData++ + s1;
681 }while( aData<aEnd );
682 }else{
683 do {
684 s1 += BYTESWAP32(aData[0]) + s2;
685 s2 += BYTESWAP32(aData[1]) + s1;
686 aData += 2;
687 }while( aData<aEnd );
690 aOut[0] = s1;
691 aOut[1] = s2;
695 ** If there is the possibility of concurrent access to the SHM file
696 ** from multiple threads and/or processes, then do a memory barrier.
698 static void walShmBarrier(Wal *pWal){
699 if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
700 sqlite3OsShmBarrier(pWal->pDbFd);
705 ** Add the SQLITE_NO_TSAN as part of the return-type of a function
706 ** definition as a hint that the function contains constructs that
707 ** might give false-positive TSAN warnings.
709 ** See tag-20200519-1.
711 #if defined(__clang__) && !defined(SQLITE_NO_TSAN)
712 # define SQLITE_NO_TSAN __attribute__((no_sanitize_thread))
713 #else
714 # define SQLITE_NO_TSAN
715 #endif
718 ** Write the header information in pWal->hdr into the wal-index.
720 ** The checksum on pWal->hdr is updated before it is written.
722 static SQLITE_NO_TSAN void walIndexWriteHdr(Wal *pWal){
723 volatile WalIndexHdr *aHdr = walIndexHdr(pWal);
724 const int nCksum = offsetof(WalIndexHdr, aCksum);
726 assert( pWal->writeLock );
727 pWal->hdr.isInit = 1;
728 pWal->hdr.iVersion = WALINDEX_MAX_VERSION;
729 walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum);
730 /* Possible TSAN false-positive. See tag-20200519-1 */
731 memcpy((void*)&aHdr[1], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
732 walShmBarrier(pWal);
733 memcpy((void*)&aHdr[0], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
737 ** This function encodes a single frame header and writes it to a buffer
738 ** supplied by the caller. A frame-header is made up of a series of
739 ** 4-byte big-endian integers, as follows:
741 ** 0: Page number.
742 ** 4: For commit records, the size of the database image in pages
743 ** after the commit. For all other records, zero.
744 ** 8: Salt-1 (copied from the wal-header)
745 ** 12: Salt-2 (copied from the wal-header)
746 ** 16: Checksum-1.
747 ** 20: Checksum-2.
749 static void walEncodeFrame(
750 Wal *pWal, /* The write-ahead log */
751 u32 iPage, /* Database page number for frame */
752 u32 nTruncate, /* New db size (or 0 for non-commit frames) */
753 u8 *aData, /* Pointer to page data */
754 u8 *aFrame /* OUT: Write encoded frame here */
756 int nativeCksum; /* True for native byte-order checksums */
757 u32 *aCksum = pWal->hdr.aFrameCksum;
758 assert( WAL_FRAME_HDRSIZE==24 );
759 sqlite3Put4byte(&aFrame[0], iPage);
760 sqlite3Put4byte(&aFrame[4], nTruncate);
761 if( pWal->iReCksum==0 ){
762 memcpy(&aFrame[8], pWal->hdr.aSalt, 8);
764 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
765 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
766 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
768 sqlite3Put4byte(&aFrame[16], aCksum[0]);
769 sqlite3Put4byte(&aFrame[20], aCksum[1]);
770 }else{
771 memset(&aFrame[8], 0, 16);
776 ** Check to see if the frame with header in aFrame[] and content
777 ** in aData[] is valid. If it is a valid frame, fill *piPage and
778 ** *pnTruncate and return true. Return if the frame is not valid.
780 static int walDecodeFrame(
781 Wal *pWal, /* The write-ahead log */
782 u32 *piPage, /* OUT: Database page number for frame */
783 u32 *pnTruncate, /* OUT: New db size (or 0 if not commit) */
784 u8 *aData, /* Pointer to page data (for checksum) */
785 u8 *aFrame /* Frame data */
787 int nativeCksum; /* True for native byte-order checksums */
788 u32 *aCksum = pWal->hdr.aFrameCksum;
789 u32 pgno; /* Page number of the frame */
790 assert( WAL_FRAME_HDRSIZE==24 );
792 /* A frame is only valid if the salt values in the frame-header
793 ** match the salt values in the wal-header.
795 if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){
796 return 0;
799 /* A frame is only valid if the page number is creater than zero.
801 pgno = sqlite3Get4byte(&aFrame[0]);
802 if( pgno==0 ){
803 return 0;
806 /* A frame is only valid if a checksum of the WAL header,
807 ** all prior frams, the first 16 bytes of this frame-header,
808 ** and the frame-data matches the checksum in the last 8
809 ** bytes of this frame-header.
811 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
812 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
813 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
814 if( aCksum[0]!=sqlite3Get4byte(&aFrame[16])
815 || aCksum[1]!=sqlite3Get4byte(&aFrame[20])
817 /* Checksum failed. */
818 return 0;
821 /* If we reach this point, the frame is valid. Return the page number
822 ** and the new database size.
824 *piPage = pgno;
825 *pnTruncate = sqlite3Get4byte(&aFrame[4]);
826 return 1;
830 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
832 ** Names of locks. This routine is used to provide debugging output and is not
833 ** a part of an ordinary build.
835 static const char *walLockName(int lockIdx){
836 if( lockIdx==WAL_WRITE_LOCK ){
837 return "WRITE-LOCK";
838 }else if( lockIdx==WAL_CKPT_LOCK ){
839 return "CKPT-LOCK";
840 }else if( lockIdx==WAL_RECOVER_LOCK ){
841 return "RECOVER-LOCK";
842 }else{
843 static char zName[15];
844 sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]",
845 lockIdx-WAL_READ_LOCK(0));
846 return zName;
849 #endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
853 ** Set or release locks on the WAL. Locks are either shared or exclusive.
854 ** A lock cannot be moved directly between shared and exclusive - it must go
855 ** through the unlocked state first.
857 ** In locking_mode=EXCLUSIVE, all of these routines become no-ops.
859 static int walLockShared(Wal *pWal, int lockIdx){
860 int rc;
861 if( pWal->exclusiveMode ) return SQLITE_OK;
862 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
863 SQLITE_SHM_LOCK | SQLITE_SHM_SHARED);
864 WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal,
865 walLockName(lockIdx), rc ? "failed" : "ok"));
866 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && (rc&0xFF)!=SQLITE_BUSY); )
867 return rc;
869 static void walUnlockShared(Wal *pWal, int lockIdx){
870 if( pWal->exclusiveMode ) return;
871 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
872 SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED);
873 WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx)));
875 static int walLockExclusive(Wal *pWal, int lockIdx, int n){
876 int rc;
877 if( pWal->exclusiveMode ) return SQLITE_OK;
878 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
879 SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE);
880 WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal,
881 walLockName(lockIdx), n, rc ? "failed" : "ok"));
882 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && (rc&0xFF)!=SQLITE_BUSY); )
883 return rc;
885 static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){
886 if( pWal->exclusiveMode ) return;
887 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
888 SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE);
889 WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal,
890 walLockName(lockIdx), n));
894 ** Compute a hash on a page number. The resulting hash value must land
895 ** between 0 and (HASHTABLE_NSLOT-1). The walHashNext() function advances
896 ** the hash to the next value in the event of a collision.
898 static int walHash(u32 iPage){
899 assert( iPage>0 );
900 assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 );
901 return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1);
903 static int walNextHash(int iPriorHash){
904 return (iPriorHash+1)&(HASHTABLE_NSLOT-1);
908 ** An instance of the WalHashLoc object is used to describe the location
909 ** of a page hash table in the wal-index. This becomes the return value
910 ** from walHashGet().
912 typedef struct WalHashLoc WalHashLoc;
913 struct WalHashLoc {
914 volatile ht_slot *aHash; /* Start of the wal-index hash table */
915 volatile u32 *aPgno; /* aPgno[1] is the page of first frame indexed */
916 u32 iZero; /* One less than the frame number of first indexed*/
920 ** Return pointers to the hash table and page number array stored on
921 ** page iHash of the wal-index. The wal-index is broken into 32KB pages
922 ** numbered starting from 0.
924 ** Set output variable pLoc->aHash to point to the start of the hash table
925 ** in the wal-index file. Set pLoc->iZero to one less than the frame
926 ** number of the first frame indexed by this hash table. If a
927 ** slot in the hash table is set to N, it refers to frame number
928 ** (pLoc->iZero+N) in the log.
930 ** Finally, set pLoc->aPgno so that pLoc->aPgno[1] is the page number of the
931 ** first frame indexed by the hash table, frame (pLoc->iZero+1).
933 static int walHashGet(
934 Wal *pWal, /* WAL handle */
935 int iHash, /* Find the iHash'th table */
936 WalHashLoc *pLoc /* OUT: Hash table location */
938 int rc; /* Return code */
940 rc = walIndexPage(pWal, iHash, &pLoc->aPgno);
941 assert( rc==SQLITE_OK || iHash>0 );
943 if( rc==SQLITE_OK ){
944 pLoc->aHash = (volatile ht_slot *)&pLoc->aPgno[HASHTABLE_NPAGE];
945 if( iHash==0 ){
946 pLoc->aPgno = &pLoc->aPgno[WALINDEX_HDR_SIZE/sizeof(u32)];
947 pLoc->iZero = 0;
948 }else{
949 pLoc->iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE;
951 pLoc->aPgno = &pLoc->aPgno[-1];
953 return rc;
957 ** Return the number of the wal-index page that contains the hash-table
958 ** and page-number array that contain entries corresponding to WAL frame
959 ** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages
960 ** are numbered starting from 0.
962 static int walFramePage(u32 iFrame){
963 int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE;
964 assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE)
965 && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE)
966 && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE))
967 && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)
968 && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE))
970 assert( iHash>=0 );
971 return iHash;
975 ** Return the page number associated with frame iFrame in this WAL.
977 static u32 walFramePgno(Wal *pWal, u32 iFrame){
978 int iHash = walFramePage(iFrame);
979 if( iHash==0 ){
980 return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1];
982 return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE];
986 ** Remove entries from the hash table that point to WAL slots greater
987 ** than pWal->hdr.mxFrame.
989 ** This function is called whenever pWal->hdr.mxFrame is decreased due
990 ** to a rollback or savepoint.
992 ** At most only the hash table containing pWal->hdr.mxFrame needs to be
993 ** updated. Any later hash tables will be automatically cleared when
994 ** pWal->hdr.mxFrame advances to the point where those hash tables are
995 ** actually needed.
997 static void walCleanupHash(Wal *pWal){
998 WalHashLoc sLoc; /* Hash table location */
999 int iLimit = 0; /* Zero values greater than this */
1000 int nByte; /* Number of bytes to zero in aPgno[] */
1001 int i; /* Used to iterate through aHash[] */
1002 int rc; /* Return code form walHashGet() */
1004 assert( pWal->writeLock );
1005 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 );
1006 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE );
1007 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 );
1009 if( pWal->hdr.mxFrame==0 ) return;
1011 /* Obtain pointers to the hash-table and page-number array containing
1012 ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed
1013 ** that the page said hash-table and array reside on is already mapped.(1)
1015 assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) );
1016 assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] );
1017 rc = walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &sLoc);
1018 if( NEVER(rc) ) return; /* Defense-in-depth, in case (1) above is wrong */
1020 /* Zero all hash-table entries that correspond to frame numbers greater
1021 ** than pWal->hdr.mxFrame.
1023 iLimit = pWal->hdr.mxFrame - sLoc.iZero;
1024 assert( iLimit>0 );
1025 for(i=0; i<HASHTABLE_NSLOT; i++){
1026 if( sLoc.aHash[i]>iLimit ){
1027 sLoc.aHash[i] = 0;
1031 /* Zero the entries in the aPgno array that correspond to frames with
1032 ** frame numbers greater than pWal->hdr.mxFrame.
1034 nByte = (int)((char *)sLoc.aHash - (char *)&sLoc.aPgno[iLimit+1]);
1035 memset((void *)&sLoc.aPgno[iLimit+1], 0, nByte);
1037 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
1038 /* Verify that the every entry in the mapping region is still reachable
1039 ** via the hash table even after the cleanup.
1041 if( iLimit ){
1042 int j; /* Loop counter */
1043 int iKey; /* Hash key */
1044 for(j=1; j<=iLimit; j++){
1045 for(iKey=walHash(sLoc.aPgno[j]);sLoc.aHash[iKey];iKey=walNextHash(iKey)){
1046 if( sLoc.aHash[iKey]==j ) break;
1048 assert( sLoc.aHash[iKey]==j );
1051 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
1056 ** Set an entry in the wal-index that will map database page number
1057 ** pPage into WAL frame iFrame.
1059 static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){
1060 int rc; /* Return code */
1061 WalHashLoc sLoc; /* Wal-index hash table location */
1063 rc = walHashGet(pWal, walFramePage(iFrame), &sLoc);
1065 /* Assuming the wal-index file was successfully mapped, populate the
1066 ** page number array and hash table entry.
1068 if( rc==SQLITE_OK ){
1069 int iKey; /* Hash table key */
1070 int idx; /* Value to write to hash-table slot */
1071 int nCollide; /* Number of hash collisions */
1073 idx = iFrame - sLoc.iZero;
1074 assert( idx <= HASHTABLE_NSLOT/2 + 1 );
1076 /* If this is the first entry to be added to this hash-table, zero the
1077 ** entire hash table and aPgno[] array before proceeding.
1079 if( idx==1 ){
1080 int nByte = (int)((u8 *)&sLoc.aHash[HASHTABLE_NSLOT]
1081 - (u8 *)&sLoc.aPgno[1]);
1082 memset((void*)&sLoc.aPgno[1], 0, nByte);
1085 /* If the entry in aPgno[] is already set, then the previous writer
1086 ** must have exited unexpectedly in the middle of a transaction (after
1087 ** writing one or more dirty pages to the WAL to free up memory).
1088 ** Remove the remnants of that writers uncommitted transaction from
1089 ** the hash-table before writing any new entries.
1091 if( sLoc.aPgno[idx] ){
1092 walCleanupHash(pWal);
1093 assert( !sLoc.aPgno[idx] );
1096 /* Write the aPgno[] array entry and the hash-table slot. */
1097 nCollide = idx;
1098 for(iKey=walHash(iPage); sLoc.aHash[iKey]; iKey=walNextHash(iKey)){
1099 if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT;
1101 sLoc.aPgno[idx] = iPage;
1102 AtomicStore(&sLoc.aHash[iKey], (ht_slot)idx);
1104 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
1105 /* Verify that the number of entries in the hash table exactly equals
1106 ** the number of entries in the mapping region.
1109 int i; /* Loop counter */
1110 int nEntry = 0; /* Number of entries in the hash table */
1111 for(i=0; i<HASHTABLE_NSLOT; i++){ if( sLoc.aHash[i] ) nEntry++; }
1112 assert( nEntry==idx );
1115 /* Verify that the every entry in the mapping region is reachable
1116 ** via the hash table. This turns out to be a really, really expensive
1117 ** thing to check, so only do this occasionally - not on every
1118 ** iteration.
1120 if( (idx&0x3ff)==0 ){
1121 int i; /* Loop counter */
1122 for(i=1; i<=idx; i++){
1123 for(iKey=walHash(sLoc.aPgno[i]);
1124 sLoc.aHash[iKey];
1125 iKey=walNextHash(iKey)){
1126 if( sLoc.aHash[iKey]==i ) break;
1128 assert( sLoc.aHash[iKey]==i );
1131 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
1135 return rc;
1140 ** Recover the wal-index by reading the write-ahead log file.
1142 ** This routine first tries to establish an exclusive lock on the
1143 ** wal-index to prevent other threads/processes from doing anything
1144 ** with the WAL or wal-index while recovery is running. The
1145 ** WAL_RECOVER_LOCK is also held so that other threads will know
1146 ** that this thread is running recovery. If unable to establish
1147 ** the necessary locks, this routine returns SQLITE_BUSY.
1149 static int walIndexRecover(Wal *pWal){
1150 int rc; /* Return Code */
1151 i64 nSize; /* Size of log file */
1152 u32 aFrameCksum[2] = {0, 0};
1153 int iLock; /* Lock offset to lock for checkpoint */
1155 /* Obtain an exclusive lock on all byte in the locking range not already
1156 ** locked by the caller. The caller is guaranteed to have locked the
1157 ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte.
1158 ** If successful, the same bytes that are locked here are unlocked before
1159 ** this function returns.
1161 assert( pWal->ckptLock==1 || pWal->ckptLock==0 );
1162 assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 );
1163 assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE );
1164 assert( pWal->writeLock );
1165 iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock;
1166 rc = walLockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock);
1167 if( rc ){
1168 return rc;
1171 WALTRACE(("WAL%p: recovery begin...\n", pWal));
1173 memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
1175 rc = sqlite3OsFileSize(pWal->pWalFd, &nSize);
1176 if( rc!=SQLITE_OK ){
1177 goto recovery_error;
1180 if( nSize>WAL_HDRSIZE ){
1181 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */
1182 u32 *aPrivate = 0; /* Heap copy of *-shm hash being populated */
1183 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */
1184 int szFrame; /* Number of bytes in buffer aFrame[] */
1185 u8 *aData; /* Pointer to data part of aFrame buffer */
1186 int szPage; /* Page size according to the log */
1187 u32 magic; /* Magic value read from WAL header */
1188 u32 version; /* Magic value read from WAL header */
1189 int isValid; /* True if this frame is valid */
1190 u32 iPg; /* Current 32KB wal-index page */
1191 u32 iLastFrame; /* Last frame in wal, based on nSize alone */
1193 /* Read in the WAL header. */
1194 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
1195 if( rc!=SQLITE_OK ){
1196 goto recovery_error;
1199 /* If the database page size is not a power of two, or is greater than
1200 ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid
1201 ** data. Similarly, if the 'magic' value is invalid, ignore the whole
1202 ** WAL file.
1204 magic = sqlite3Get4byte(&aBuf[0]);
1205 szPage = sqlite3Get4byte(&aBuf[8]);
1206 if( (magic&0xFFFFFFFE)!=WAL_MAGIC
1207 || szPage&(szPage-1)
1208 || szPage>SQLITE_MAX_PAGE_SIZE
1209 || szPage<512
1211 goto finished;
1213 pWal->hdr.bigEndCksum = (u8)(magic&0x00000001);
1214 pWal->szPage = szPage;
1215 pWal->nCkpt = sqlite3Get4byte(&aBuf[12]);
1216 memcpy(&pWal->hdr.aSalt, &aBuf[16], 8);
1218 /* Verify that the WAL header checksum is correct */
1219 walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN,
1220 aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum
1222 if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24])
1223 || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28])
1225 goto finished;
1228 /* Verify that the version number on the WAL format is one that
1229 ** are able to understand */
1230 version = sqlite3Get4byte(&aBuf[4]);
1231 if( version!=WAL_MAX_VERSION ){
1232 rc = SQLITE_CANTOPEN_BKPT;
1233 goto finished;
1236 /* Malloc a buffer to read frames into. */
1237 szFrame = szPage + WAL_FRAME_HDRSIZE;
1238 aFrame = (u8 *)sqlite3_malloc64(szFrame + WALINDEX_PGSZ);
1239 if( !aFrame ){
1240 rc = SQLITE_NOMEM_BKPT;
1241 goto recovery_error;
1243 aData = &aFrame[WAL_FRAME_HDRSIZE];
1244 aPrivate = (u32*)&aData[szPage];
1246 /* Read all frames from the log file. */
1247 iLastFrame = (nSize - WAL_HDRSIZE) / szFrame;
1248 for(iPg=0; iPg<=(u32)walFramePage(iLastFrame); iPg++){
1249 u32 *aShare;
1250 u32 iFrame; /* Index of last frame read */
1251 u32 iLast = MIN(iLastFrame, HASHTABLE_NPAGE_ONE+iPg*HASHTABLE_NPAGE);
1252 u32 iFirst = 1 + (iPg==0?0:HASHTABLE_NPAGE_ONE+(iPg-1)*HASHTABLE_NPAGE);
1253 u32 nHdr, nHdr32;
1254 rc = walIndexPage(pWal, iPg, (volatile u32**)&aShare);
1255 if( rc ) break;
1256 pWal->apWiData[iPg] = aPrivate;
1258 for(iFrame=iFirst; iFrame<=iLast; iFrame++){
1259 i64 iOffset = walFrameOffset(iFrame, szPage);
1260 u32 pgno; /* Database page number for frame */
1261 u32 nTruncate; /* dbsize field from frame header */
1263 /* Read and decode the next log frame. */
1264 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
1265 if( rc!=SQLITE_OK ) break;
1266 isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame);
1267 if( !isValid ) break;
1268 rc = walIndexAppend(pWal, iFrame, pgno);
1269 if( NEVER(rc!=SQLITE_OK) ) break;
1271 /* If nTruncate is non-zero, this is a commit record. */
1272 if( nTruncate ){
1273 pWal->hdr.mxFrame = iFrame;
1274 pWal->hdr.nPage = nTruncate;
1275 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
1276 testcase( szPage<=32768 );
1277 testcase( szPage>=65536 );
1278 aFrameCksum[0] = pWal->hdr.aFrameCksum[0];
1279 aFrameCksum[1] = pWal->hdr.aFrameCksum[1];
1282 pWal->apWiData[iPg] = aShare;
1283 nHdr = (iPg==0 ? WALINDEX_HDR_SIZE : 0);
1284 nHdr32 = nHdr / sizeof(u32);
1285 #ifndef SQLITE_SAFER_WALINDEX_RECOVERY
1286 /* Memcpy() should work fine here, on all reasonable implementations.
1287 ** Technically, memcpy() might change the destination to some
1288 ** intermediate value before setting to the final value, and that might
1289 ** cause a concurrent reader to malfunction. Memcpy() is allowed to
1290 ** do that, according to the spec, but no memcpy() implementation that
1291 ** we know of actually does that, which is why we say that memcpy()
1292 ** is safe for this. Memcpy() is certainly a lot faster.
1294 memcpy(&aShare[nHdr32], &aPrivate[nHdr32], WALINDEX_PGSZ-nHdr);
1295 #else
1296 /* In the event that some platform is found for which memcpy()
1297 ** changes the destination to some intermediate value before
1298 ** setting the final value, this alternative copy routine is
1299 ** provided.
1302 int i;
1303 for(i=nHdr32; i<WALINDEX_PGSZ/sizeof(u32); i++){
1304 if( aShare[i]!=aPrivate[i] ){
1305 /* Atomic memory operations are not required here because if
1306 ** the value needs to be changed, that means it is not being
1307 ** accessed concurrently. */
1308 aShare[i] = aPrivate[i];
1312 #endif
1313 if( iFrame<=iLast ) break;
1316 sqlite3_free(aFrame);
1319 finished:
1320 if( rc==SQLITE_OK ){
1321 volatile WalCkptInfo *pInfo;
1322 int i;
1323 pWal->hdr.aFrameCksum[0] = aFrameCksum[0];
1324 pWal->hdr.aFrameCksum[1] = aFrameCksum[1];
1325 walIndexWriteHdr(pWal);
1327 /* Reset the checkpoint-header. This is safe because this thread is
1328 ** currently holding locks that exclude all other writers and
1329 ** checkpointers. Then set the values of read-mark slots 1 through N.
1331 pInfo = walCkptInfo(pWal);
1332 pInfo->nBackfill = 0;
1333 pInfo->nBackfillAttempted = pWal->hdr.mxFrame;
1334 pInfo->aReadMark[0] = 0;
1335 for(i=1; i<WAL_NREADER; i++){
1336 rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
1337 if( rc==SQLITE_OK ){
1338 if( i==1 && pWal->hdr.mxFrame ){
1339 pInfo->aReadMark[i] = pWal->hdr.mxFrame;
1340 }else{
1341 pInfo->aReadMark[i] = READMARK_NOT_USED;
1343 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
1344 }else if( rc!=SQLITE_BUSY ){
1345 goto recovery_error;
1349 /* If more than one frame was recovered from the log file, report an
1350 ** event via sqlite3_log(). This is to help with identifying performance
1351 ** problems caused by applications routinely shutting down without
1352 ** checkpointing the log file.
1354 if( pWal->hdr.nPage ){
1355 sqlite3_log(SQLITE_NOTICE_RECOVER_WAL,
1356 "recovered %d frames from WAL file %s",
1357 pWal->hdr.mxFrame, pWal->zWalName
1362 recovery_error:
1363 WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok"));
1364 walUnlockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock);
1365 return rc;
1369 ** Close an open wal-index.
1371 static void walIndexClose(Wal *pWal, int isDelete){
1372 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE || pWal->bShmUnreliable ){
1373 int i;
1374 for(i=0; i<pWal->nWiData; i++){
1375 sqlite3_free((void *)pWal->apWiData[i]);
1376 pWal->apWiData[i] = 0;
1379 if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
1380 sqlite3OsShmUnmap(pWal->pDbFd, isDelete);
1385 ** Open a connection to the WAL file zWalName. The database file must
1386 ** already be opened on connection pDbFd. The buffer that zWalName points
1387 ** to must remain valid for the lifetime of the returned Wal* handle.
1389 ** A SHARED lock should be held on the database file when this function
1390 ** is called. The purpose of this SHARED lock is to prevent any other
1391 ** client from unlinking the WAL or wal-index file. If another process
1392 ** were to do this just after this client opened one of these files, the
1393 ** system would be badly broken.
1395 ** If the log file is successfully opened, SQLITE_OK is returned and
1396 ** *ppWal is set to point to a new WAL handle. If an error occurs,
1397 ** an SQLite error code is returned and *ppWal is left unmodified.
1399 int sqlite3WalOpen(
1400 sqlite3_vfs *pVfs, /* vfs module to open wal and wal-index */
1401 sqlite3_file *pDbFd, /* The open database file */
1402 const char *zWalName, /* Name of the WAL file */
1403 int bNoShm, /* True to run in heap-memory mode */
1404 i64 mxWalSize, /* Truncate WAL to this size on reset */
1405 Wal **ppWal /* OUT: Allocated Wal handle */
1407 int rc; /* Return Code */
1408 Wal *pRet; /* Object to allocate and return */
1409 int flags; /* Flags passed to OsOpen() */
1411 assert( zWalName && zWalName[0] );
1412 assert( pDbFd );
1414 /* In the amalgamation, the os_unix.c and os_win.c source files come before
1415 ** this source file. Verify that the #defines of the locking byte offsets
1416 ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value.
1417 ** For that matter, if the lock offset ever changes from its initial design
1418 ** value of 120, we need to know that so there is an assert() to check it.
1420 assert( 120==WALINDEX_LOCK_OFFSET );
1421 assert( 136==WALINDEX_HDR_SIZE );
1422 #ifdef WIN_SHM_BASE
1423 assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET );
1424 #endif
1425 #ifdef UNIX_SHM_BASE
1426 assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET );
1427 #endif
1430 /* Allocate an instance of struct Wal to return. */
1431 *ppWal = 0;
1432 pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile);
1433 if( !pRet ){
1434 return SQLITE_NOMEM_BKPT;
1437 pRet->pVfs = pVfs;
1438 pRet->pWalFd = (sqlite3_file *)&pRet[1];
1439 pRet->pDbFd = pDbFd;
1440 pRet->readLock = -1;
1441 pRet->mxWalSize = mxWalSize;
1442 pRet->zWalName = zWalName;
1443 pRet->syncHeader = 1;
1444 pRet->padToSectorBoundary = 1;
1445 pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE);
1447 /* Open file handle on the write-ahead log file. */
1448 flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL);
1449 rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags);
1450 if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){
1451 pRet->readOnly = WAL_RDONLY;
1454 if( rc!=SQLITE_OK ){
1455 walIndexClose(pRet, 0);
1456 sqlite3OsClose(pRet->pWalFd);
1457 sqlite3_free(pRet);
1458 }else{
1459 int iDC = sqlite3OsDeviceCharacteristics(pDbFd);
1460 if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; }
1461 if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){
1462 pRet->padToSectorBoundary = 0;
1464 *ppWal = pRet;
1465 WALTRACE(("WAL%d: opened\n", pRet));
1467 return rc;
1471 ** Change the size to which the WAL file is trucated on each reset.
1473 void sqlite3WalLimit(Wal *pWal, i64 iLimit){
1474 if( pWal ) pWal->mxWalSize = iLimit;
1478 ** Find the smallest page number out of all pages held in the WAL that
1479 ** has not been returned by any prior invocation of this method on the
1480 ** same WalIterator object. Write into *piFrame the frame index where
1481 ** that page was last written into the WAL. Write into *piPage the page
1482 ** number.
1484 ** Return 0 on success. If there are no pages in the WAL with a page
1485 ** number larger than *piPage, then return 1.
1487 static int walIteratorNext(
1488 WalIterator *p, /* Iterator */
1489 u32 *piPage, /* OUT: The page number of the next page */
1490 u32 *piFrame /* OUT: Wal frame index of next page */
1492 u32 iMin; /* Result pgno must be greater than iMin */
1493 u32 iRet = 0xFFFFFFFF; /* 0xffffffff is never a valid page number */
1494 int i; /* For looping through segments */
1496 iMin = p->iPrior;
1497 assert( iMin<0xffffffff );
1498 for(i=p->nSegment-1; i>=0; i--){
1499 struct WalSegment *pSegment = &p->aSegment[i];
1500 while( pSegment->iNext<pSegment->nEntry ){
1501 u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]];
1502 if( iPg>iMin ){
1503 if( iPg<iRet ){
1504 iRet = iPg;
1505 *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext];
1507 break;
1509 pSegment->iNext++;
1513 *piPage = p->iPrior = iRet;
1514 return (iRet==0xFFFFFFFF);
1518 ** This function merges two sorted lists into a single sorted list.
1520 ** aLeft[] and aRight[] are arrays of indices. The sort key is
1521 ** aContent[aLeft[]] and aContent[aRight[]]. Upon entry, the following
1522 ** is guaranteed for all J<K:
1524 ** aContent[aLeft[J]] < aContent[aLeft[K]]
1525 ** aContent[aRight[J]] < aContent[aRight[K]]
1527 ** This routine overwrites aRight[] with a new (probably longer) sequence
1528 ** of indices such that the aRight[] contains every index that appears in
1529 ** either aLeft[] or the old aRight[] and such that the second condition
1530 ** above is still met.
1532 ** The aContent[aLeft[X]] values will be unique for all X. And the
1533 ** aContent[aRight[X]] values will be unique too. But there might be
1534 ** one or more combinations of X and Y such that
1536 ** aLeft[X]!=aRight[Y] && aContent[aLeft[X]] == aContent[aRight[Y]]
1538 ** When that happens, omit the aLeft[X] and use the aRight[Y] index.
1540 static void walMerge(
1541 const u32 *aContent, /* Pages in wal - keys for the sort */
1542 ht_slot *aLeft, /* IN: Left hand input list */
1543 int nLeft, /* IN: Elements in array *paLeft */
1544 ht_slot **paRight, /* IN/OUT: Right hand input list */
1545 int *pnRight, /* IN/OUT: Elements in *paRight */
1546 ht_slot *aTmp /* Temporary buffer */
1548 int iLeft = 0; /* Current index in aLeft */
1549 int iRight = 0; /* Current index in aRight */
1550 int iOut = 0; /* Current index in output buffer */
1551 int nRight = *pnRight;
1552 ht_slot *aRight = *paRight;
1554 assert( nLeft>0 && nRight>0 );
1555 while( iRight<nRight || iLeft<nLeft ){
1556 ht_slot logpage;
1557 Pgno dbpage;
1559 if( (iLeft<nLeft)
1560 && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]])
1562 logpage = aLeft[iLeft++];
1563 }else{
1564 logpage = aRight[iRight++];
1566 dbpage = aContent[logpage];
1568 aTmp[iOut++] = logpage;
1569 if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++;
1571 assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage );
1572 assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage );
1575 *paRight = aLeft;
1576 *pnRight = iOut;
1577 memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut);
1581 ** Sort the elements in list aList using aContent[] as the sort key.
1582 ** Remove elements with duplicate keys, preferring to keep the
1583 ** larger aList[] values.
1585 ** The aList[] entries are indices into aContent[]. The values in
1586 ** aList[] are to be sorted so that for all J<K:
1588 ** aContent[aList[J]] < aContent[aList[K]]
1590 ** For any X and Y such that
1592 ** aContent[aList[X]] == aContent[aList[Y]]
1594 ** Keep the larger of the two values aList[X] and aList[Y] and discard
1595 ** the smaller.
1597 static void walMergesort(
1598 const u32 *aContent, /* Pages in wal */
1599 ht_slot *aBuffer, /* Buffer of at least *pnList items to use */
1600 ht_slot *aList, /* IN/OUT: List to sort */
1601 int *pnList /* IN/OUT: Number of elements in aList[] */
1603 struct Sublist {
1604 int nList; /* Number of elements in aList */
1605 ht_slot *aList; /* Pointer to sub-list content */
1608 const int nList = *pnList; /* Size of input list */
1609 int nMerge = 0; /* Number of elements in list aMerge */
1610 ht_slot *aMerge = 0; /* List to be merged */
1611 int iList; /* Index into input list */
1612 u32 iSub = 0; /* Index into aSub array */
1613 struct Sublist aSub[13]; /* Array of sub-lists */
1615 memset(aSub, 0, sizeof(aSub));
1616 assert( nList<=HASHTABLE_NPAGE && nList>0 );
1617 assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) );
1619 for(iList=0; iList<nList; iList++){
1620 nMerge = 1;
1621 aMerge = &aList[iList];
1622 for(iSub=0; iList & (1<<iSub); iSub++){
1623 struct Sublist *p;
1624 assert( iSub<ArraySize(aSub) );
1625 p = &aSub[iSub];
1626 assert( p->aList && p->nList<=(1<<iSub) );
1627 assert( p->aList==&aList[iList&~((2<<iSub)-1)] );
1628 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
1630 aSub[iSub].aList = aMerge;
1631 aSub[iSub].nList = nMerge;
1634 for(iSub++; iSub<ArraySize(aSub); iSub++){
1635 if( nList & (1<<iSub) ){
1636 struct Sublist *p;
1637 assert( iSub<ArraySize(aSub) );
1638 p = &aSub[iSub];
1639 assert( p->nList<=(1<<iSub) );
1640 assert( p->aList==&aList[nList&~((2<<iSub)-1)] );
1641 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
1644 assert( aMerge==aList );
1645 *pnList = nMerge;
1647 #ifdef SQLITE_DEBUG
1649 int i;
1650 for(i=1; i<*pnList; i++){
1651 assert( aContent[aList[i]] > aContent[aList[i-1]] );
1654 #endif
1658 ** Free an iterator allocated by walIteratorInit().
1660 static void walIteratorFree(WalIterator *p){
1661 sqlite3_free(p);
1665 ** Construct a WalInterator object that can be used to loop over all
1666 ** pages in the WAL following frame nBackfill in ascending order. Frames
1667 ** nBackfill or earlier may be included - excluding them is an optimization
1668 ** only. The caller must hold the checkpoint lock.
1670 ** On success, make *pp point to the newly allocated WalInterator object
1671 ** return SQLITE_OK. Otherwise, return an error code. If this routine
1672 ** returns an error, the value of *pp is undefined.
1674 ** The calling routine should invoke walIteratorFree() to destroy the
1675 ** WalIterator object when it has finished with it.
1677 static int walIteratorInit(Wal *pWal, u32 nBackfill, WalIterator **pp){
1678 WalIterator *p; /* Return value */
1679 int nSegment; /* Number of segments to merge */
1680 u32 iLast; /* Last frame in log */
1681 sqlite3_int64 nByte; /* Number of bytes to allocate */
1682 int i; /* Iterator variable */
1683 ht_slot *aTmp; /* Temp space used by merge-sort */
1684 int rc = SQLITE_OK; /* Return Code */
1686 /* This routine only runs while holding the checkpoint lock. And
1687 ** it only runs if there is actually content in the log (mxFrame>0).
1689 assert( pWal->ckptLock && pWal->hdr.mxFrame>0 );
1690 iLast = pWal->hdr.mxFrame;
1692 /* Allocate space for the WalIterator object. */
1693 nSegment = walFramePage(iLast) + 1;
1694 nByte = sizeof(WalIterator)
1695 + (nSegment-1)*sizeof(struct WalSegment)
1696 + iLast*sizeof(ht_slot);
1697 p = (WalIterator *)sqlite3_malloc64(nByte);
1698 if( !p ){
1699 return SQLITE_NOMEM_BKPT;
1701 memset(p, 0, nByte);
1702 p->nSegment = nSegment;
1704 /* Allocate temporary space used by the merge-sort routine. This block
1705 ** of memory will be freed before this function returns.
1707 aTmp = (ht_slot *)sqlite3_malloc64(
1708 sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast)
1710 if( !aTmp ){
1711 rc = SQLITE_NOMEM_BKPT;
1714 for(i=walFramePage(nBackfill+1); rc==SQLITE_OK && i<nSegment; i++){
1715 WalHashLoc sLoc;
1717 rc = walHashGet(pWal, i, &sLoc);
1718 if( rc==SQLITE_OK ){
1719 int j; /* Counter variable */
1720 int nEntry; /* Number of entries in this segment */
1721 ht_slot *aIndex; /* Sorted index for this segment */
1723 sLoc.aPgno++;
1724 if( (i+1)==nSegment ){
1725 nEntry = (int)(iLast - sLoc.iZero);
1726 }else{
1727 nEntry = (int)((u32*)sLoc.aHash - (u32*)sLoc.aPgno);
1729 aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[sLoc.iZero];
1730 sLoc.iZero++;
1732 for(j=0; j<nEntry; j++){
1733 aIndex[j] = (ht_slot)j;
1735 walMergesort((u32 *)sLoc.aPgno, aTmp, aIndex, &nEntry);
1736 p->aSegment[i].iZero = sLoc.iZero;
1737 p->aSegment[i].nEntry = nEntry;
1738 p->aSegment[i].aIndex = aIndex;
1739 p->aSegment[i].aPgno = (u32 *)sLoc.aPgno;
1742 sqlite3_free(aTmp);
1744 if( rc!=SQLITE_OK ){
1745 walIteratorFree(p);
1746 p = 0;
1748 *pp = p;
1749 return rc;
1752 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
1754 ** Attempt to enable blocking locks. Blocking locks are enabled only if (a)
1755 ** they are supported by the VFS, and (b) the database handle is configured
1756 ** with a busy-timeout. Return 1 if blocking locks are successfully enabled,
1757 ** or 0 otherwise.
1759 static int walEnableBlocking(Wal *pWal){
1760 int res = 0;
1761 if( pWal->db ){
1762 int tmout = pWal->db->busyTimeout;
1763 if( tmout ){
1764 int rc;
1765 rc = sqlite3OsFileControl(
1766 pWal->pDbFd, SQLITE_FCNTL_LOCK_TIMEOUT, (void*)&tmout
1768 res = (rc==SQLITE_OK);
1771 return res;
1775 ** Disable blocking locks.
1777 static void walDisableBlocking(Wal *pWal){
1778 int tmout = 0;
1779 sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_LOCK_TIMEOUT, (void*)&tmout);
1783 ** If parameter bLock is true, attempt to enable blocking locks, take
1784 ** the WRITER lock, and then disable blocking locks. If blocking locks
1785 ** cannot be enabled, no attempt to obtain the WRITER lock is made. Return
1786 ** an SQLite error code if an error occurs, or SQLITE_OK otherwise. It is not
1787 ** an error if blocking locks can not be enabled.
1789 ** If the bLock parameter is false and the WRITER lock is held, release it.
1791 int sqlite3WalWriteLock(Wal *pWal, int bLock){
1792 int rc = SQLITE_OK;
1793 assert( pWal->readLock<0 || bLock==0 );
1794 if( bLock ){
1795 assert( pWal->db );
1796 if( walEnableBlocking(pWal) ){
1797 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
1798 if( rc==SQLITE_OK ){
1799 pWal->writeLock = 1;
1801 walDisableBlocking(pWal);
1803 }else if( pWal->writeLock ){
1804 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
1805 pWal->writeLock = 0;
1807 return rc;
1811 ** Set the database handle used to determine if blocking locks are required.
1813 void sqlite3WalDb(Wal *pWal, sqlite3 *db){
1814 pWal->db = db;
1818 ** Take an exclusive WRITE lock. Blocking if so configured.
1820 static int walLockWriter(Wal *pWal){
1821 int rc;
1822 walEnableBlocking(pWal);
1823 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
1824 walDisableBlocking(pWal);
1825 return rc;
1827 #else
1828 # define walEnableBlocking(x) 0
1829 # define walDisableBlocking(x)
1830 # define walLockWriter(pWal) walLockExclusive((pWal), WAL_WRITE_LOCK, 1)
1831 # define sqlite3WalDb(pWal, db)
1832 #endif /* ifdef SQLITE_ENABLE_SETLK_TIMEOUT */
1836 ** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and
1837 ** n. If the attempt fails and parameter xBusy is not NULL, then it is a
1838 ** busy-handler function. Invoke it and retry the lock until either the
1839 ** lock is successfully obtained or the busy-handler returns 0.
1841 static int walBusyLock(
1842 Wal *pWal, /* WAL connection */
1843 int (*xBusy)(void*), /* Function to call when busy */
1844 void *pBusyArg, /* Context argument for xBusyHandler */
1845 int lockIdx, /* Offset of first byte to lock */
1846 int n /* Number of bytes to lock */
1848 int rc;
1849 do {
1850 rc = walLockExclusive(pWal, lockIdx, n);
1851 }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) );
1852 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
1853 if( rc==SQLITE_BUSY_TIMEOUT ){
1854 walDisableBlocking(pWal);
1855 rc = SQLITE_BUSY;
1857 #endif
1858 return rc;
1862 ** The cache of the wal-index header must be valid to call this function.
1863 ** Return the page-size in bytes used by the database.
1865 static int walPagesize(Wal *pWal){
1866 return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
1870 ** The following is guaranteed when this function is called:
1872 ** a) the WRITER lock is held,
1873 ** b) the entire log file has been checkpointed, and
1874 ** c) any existing readers are reading exclusively from the database
1875 ** file - there are no readers that may attempt to read a frame from
1876 ** the log file.
1878 ** This function updates the shared-memory structures so that the next
1879 ** client to write to the database (which may be this one) does so by
1880 ** writing frames into the start of the log file.
1882 ** The value of parameter salt1 is used as the aSalt[1] value in the
1883 ** new wal-index header. It should be passed a pseudo-random value (i.e.
1884 ** one obtained from sqlite3_randomness()).
1886 static void walRestartHdr(Wal *pWal, u32 salt1){
1887 volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
1888 int i; /* Loop counter */
1889 u32 *aSalt = pWal->hdr.aSalt; /* Big-endian salt values */
1890 pWal->nCkpt++;
1891 pWal->hdr.mxFrame = 0;
1892 sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0]));
1893 memcpy(&pWal->hdr.aSalt[1], &salt1, 4);
1894 walIndexWriteHdr(pWal);
1895 AtomicStore(&pInfo->nBackfill, 0);
1896 pInfo->nBackfillAttempted = 0;
1897 pInfo->aReadMark[1] = 0;
1898 for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
1899 assert( pInfo->aReadMark[0]==0 );
1903 ** Copy as much content as we can from the WAL back into the database file
1904 ** in response to an sqlite3_wal_checkpoint() request or the equivalent.
1906 ** The amount of information copies from WAL to database might be limited
1907 ** by active readers. This routine will never overwrite a database page
1908 ** that a concurrent reader might be using.
1910 ** All I/O barrier operations (a.k.a fsyncs) occur in this routine when
1911 ** SQLite is in WAL-mode in synchronous=NORMAL. That means that if
1912 ** checkpoints are always run by a background thread or background
1913 ** process, foreground threads will never block on a lengthy fsync call.
1915 ** Fsync is called on the WAL before writing content out of the WAL and
1916 ** into the database. This ensures that if the new content is persistent
1917 ** in the WAL and can be recovered following a power-loss or hard reset.
1919 ** Fsync is also called on the database file if (and only if) the entire
1920 ** WAL content is copied into the database file. This second fsync makes
1921 ** it safe to delete the WAL since the new content will persist in the
1922 ** database file.
1924 ** This routine uses and updates the nBackfill field of the wal-index header.
1925 ** This is the only routine that will increase the value of nBackfill.
1926 ** (A WAL reset or recovery will revert nBackfill to zero, but not increase
1927 ** its value.)
1929 ** The caller must be holding sufficient locks to ensure that no other
1930 ** checkpoint is running (in any other thread or process) at the same
1931 ** time.
1933 static int walCheckpoint(
1934 Wal *pWal, /* Wal connection */
1935 sqlite3 *db, /* Check for interrupts on this handle */
1936 int eMode, /* One of PASSIVE, FULL or RESTART */
1937 int (*xBusy)(void*), /* Function to call when busy */
1938 void *pBusyArg, /* Context argument for xBusyHandler */
1939 int sync_flags, /* Flags for OsSync() (or 0) */
1940 u8 *zBuf /* Temporary buffer to use */
1942 int rc = SQLITE_OK; /* Return code */
1943 int szPage; /* Database page-size */
1944 WalIterator *pIter = 0; /* Wal iterator context */
1945 u32 iDbpage = 0; /* Next database page to write */
1946 u32 iFrame = 0; /* Wal frame containing data for iDbpage */
1947 u32 mxSafeFrame; /* Max frame that can be backfilled */
1948 u32 mxPage; /* Max database page to write */
1949 int i; /* Loop counter */
1950 volatile WalCkptInfo *pInfo; /* The checkpoint status information */
1952 szPage = walPagesize(pWal);
1953 testcase( szPage<=32768 );
1954 testcase( szPage>=65536 );
1955 pInfo = walCkptInfo(pWal);
1956 if( pInfo->nBackfill<pWal->hdr.mxFrame ){
1958 /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
1959 ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
1960 assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
1962 /* Compute in mxSafeFrame the index of the last frame of the WAL that is
1963 ** safe to write into the database. Frames beyond mxSafeFrame might
1964 ** overwrite database pages that are in use by active readers and thus
1965 ** cannot be backfilled from the WAL.
1967 mxSafeFrame = pWal->hdr.mxFrame;
1968 mxPage = pWal->hdr.nPage;
1969 for(i=1; i<WAL_NREADER; i++){
1970 u32 y = AtomicLoad(pInfo->aReadMark+i);
1971 if( mxSafeFrame>y ){
1972 assert( y<=pWal->hdr.mxFrame );
1973 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1);
1974 if( rc==SQLITE_OK ){
1975 u32 iMark = (i==1 ? mxSafeFrame : READMARK_NOT_USED);
1976 AtomicStore(pInfo->aReadMark+i, iMark);
1977 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
1978 }else if( rc==SQLITE_BUSY ){
1979 mxSafeFrame = y;
1980 xBusy = 0;
1981 }else{
1982 goto walcheckpoint_out;
1987 /* Allocate the iterator */
1988 if( pInfo->nBackfill<mxSafeFrame ){
1989 rc = walIteratorInit(pWal, pInfo->nBackfill, &pIter);
1990 assert( rc==SQLITE_OK || pIter==0 );
1993 if( pIter
1994 && (rc = walBusyLock(pWal,xBusy,pBusyArg,WAL_READ_LOCK(0),1))==SQLITE_OK
1996 u32 nBackfill = pInfo->nBackfill;
1998 pInfo->nBackfillAttempted = mxSafeFrame;
2000 /* Sync the WAL to disk */
2001 rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags));
2003 /* If the database may grow as a result of this checkpoint, hint
2004 ** about the eventual size of the db file to the VFS layer.
2006 if( rc==SQLITE_OK ){
2007 i64 nReq = ((i64)mxPage * szPage);
2008 i64 nSize; /* Current size of database file */
2009 sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_CKPT_START, 0);
2010 rc = sqlite3OsFileSize(pWal->pDbFd, &nSize);
2011 if( rc==SQLITE_OK && nSize<nReq ){
2012 if( (nSize+65536+(i64)pWal->hdr.mxFrame*szPage)<nReq ){
2013 /* If the size of the final database is larger than the current
2014 ** database plus the amount of data in the wal file, plus the
2015 ** maximum size of the pending-byte page (65536 bytes), then
2016 ** must be corruption somewhere. */
2017 rc = SQLITE_CORRUPT_BKPT;
2018 }else{
2019 sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT,&nReq);
2025 /* Iterate through the contents of the WAL, copying data to the db file */
2026 while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){
2027 i64 iOffset;
2028 assert( walFramePgno(pWal, iFrame)==iDbpage );
2029 if( AtomicLoad(&db->u1.isInterrupted) ){
2030 rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT;
2031 break;
2033 if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ){
2034 continue;
2036 iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE;
2037 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */
2038 rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset);
2039 if( rc!=SQLITE_OK ) break;
2040 iOffset = (iDbpage-1)*(i64)szPage;
2041 testcase( IS_BIG_INT(iOffset) );
2042 rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset);
2043 if( rc!=SQLITE_OK ) break;
2045 sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_CKPT_DONE, 0);
2047 /* If work was actually accomplished... */
2048 if( rc==SQLITE_OK ){
2049 if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){
2050 i64 szDb = pWal->hdr.nPage*(i64)szPage;
2051 testcase( IS_BIG_INT(szDb) );
2052 rc = sqlite3OsTruncate(pWal->pDbFd, szDb);
2053 if( rc==SQLITE_OK ){
2054 rc = sqlite3OsSync(pWal->pDbFd, CKPT_SYNC_FLAGS(sync_flags));
2057 if( rc==SQLITE_OK ){
2058 AtomicStore(&pInfo->nBackfill, mxSafeFrame);
2062 /* Release the reader lock held while backfilling */
2063 walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1);
2066 if( rc==SQLITE_BUSY ){
2067 /* Reset the return code so as not to report a checkpoint failure
2068 ** just because there are active readers. */
2069 rc = SQLITE_OK;
2073 /* If this is an SQLITE_CHECKPOINT_RESTART or TRUNCATE operation, and the
2074 ** entire wal file has been copied into the database file, then block
2075 ** until all readers have finished using the wal file. This ensures that
2076 ** the next process to write to the database restarts the wal file.
2078 if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){
2079 assert( pWal->writeLock );
2080 if( pInfo->nBackfill<pWal->hdr.mxFrame ){
2081 rc = SQLITE_BUSY;
2082 }else if( eMode>=SQLITE_CHECKPOINT_RESTART ){
2083 u32 salt1;
2084 sqlite3_randomness(4, &salt1);
2085 assert( pInfo->nBackfill==pWal->hdr.mxFrame );
2086 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1);
2087 if( rc==SQLITE_OK ){
2088 if( eMode==SQLITE_CHECKPOINT_TRUNCATE ){
2089 /* IMPLEMENTATION-OF: R-44699-57140 This mode works the same way as
2090 ** SQLITE_CHECKPOINT_RESTART with the addition that it also
2091 ** truncates the log file to zero bytes just prior to a
2092 ** successful return.
2094 ** In theory, it might be safe to do this without updating the
2095 ** wal-index header in shared memory, as all subsequent reader or
2096 ** writer clients should see that the entire log file has been
2097 ** checkpointed and behave accordingly. This seems unsafe though,
2098 ** as it would leave the system in a state where the contents of
2099 ** the wal-index header do not match the contents of the
2100 ** file-system. To avoid this, update the wal-index header to
2101 ** indicate that the log file contains zero valid frames. */
2102 walRestartHdr(pWal, salt1);
2103 rc = sqlite3OsTruncate(pWal->pWalFd, 0);
2105 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
2110 walcheckpoint_out:
2111 walIteratorFree(pIter);
2112 return rc;
2116 ** If the WAL file is currently larger than nMax bytes in size, truncate
2117 ** it to exactly nMax bytes. If an error occurs while doing so, ignore it.
2119 static void walLimitSize(Wal *pWal, i64 nMax){
2120 i64 sz;
2121 int rx;
2122 sqlite3BeginBenignMalloc();
2123 rx = sqlite3OsFileSize(pWal->pWalFd, &sz);
2124 if( rx==SQLITE_OK && (sz > nMax ) ){
2125 rx = sqlite3OsTruncate(pWal->pWalFd, nMax);
2127 sqlite3EndBenignMalloc();
2128 if( rx ){
2129 sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName);
2134 ** Close a connection to a log file.
2136 int sqlite3WalClose(
2137 Wal *pWal, /* Wal to close */
2138 sqlite3 *db, /* For interrupt flag */
2139 int sync_flags, /* Flags to pass to OsSync() (or 0) */
2140 int nBuf,
2141 u8 *zBuf /* Buffer of at least nBuf bytes */
2143 int rc = SQLITE_OK;
2144 if( pWal ){
2145 int isDelete = 0; /* True to unlink wal and wal-index files */
2147 /* If an EXCLUSIVE lock can be obtained on the database file (using the
2148 ** ordinary, rollback-mode locking methods, this guarantees that the
2149 ** connection associated with this log file is the only connection to
2150 ** the database. In this case checkpoint the database and unlink both
2151 ** the wal and wal-index files.
2153 ** The EXCLUSIVE lock is not released before returning.
2155 if( zBuf!=0
2156 && SQLITE_OK==(rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE))
2158 if( pWal->exclusiveMode==WAL_NORMAL_MODE ){
2159 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
2161 rc = sqlite3WalCheckpoint(pWal, db,
2162 SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0
2164 if( rc==SQLITE_OK ){
2165 int bPersist = -1;
2166 sqlite3OsFileControlHint(
2167 pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist
2169 if( bPersist!=1 ){
2170 /* Try to delete the WAL file if the checkpoint completed and
2171 ** fsyned (rc==SQLITE_OK) and if we are not in persistent-wal
2172 ** mode (!bPersist) */
2173 isDelete = 1;
2174 }else if( pWal->mxWalSize>=0 ){
2175 /* Try to truncate the WAL file to zero bytes if the checkpoint
2176 ** completed and fsynced (rc==SQLITE_OK) and we are in persistent
2177 ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a
2178 ** non-negative value (pWal->mxWalSize>=0). Note that we truncate
2179 ** to zero bytes as truncating to the journal_size_limit might
2180 ** leave a corrupt WAL file on disk. */
2181 walLimitSize(pWal, 0);
2186 walIndexClose(pWal, isDelete);
2187 sqlite3OsClose(pWal->pWalFd);
2188 if( isDelete ){
2189 sqlite3BeginBenignMalloc();
2190 sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0);
2191 sqlite3EndBenignMalloc();
2193 WALTRACE(("WAL%p: closed\n", pWal));
2194 sqlite3_free((void *)pWal->apWiData);
2195 sqlite3_free(pWal);
2197 return rc;
2201 ** Try to read the wal-index header. Return 0 on success and 1 if
2202 ** there is a problem.
2204 ** The wal-index is in shared memory. Another thread or process might
2205 ** be writing the header at the same time this procedure is trying to
2206 ** read it, which might result in inconsistency. A dirty read is detected
2207 ** by verifying that both copies of the header are the same and also by
2208 ** a checksum on the header.
2210 ** If and only if the read is consistent and the header is different from
2211 ** pWal->hdr, then pWal->hdr is updated to the content of the new header
2212 ** and *pChanged is set to 1.
2214 ** If the checksum cannot be verified return non-zero. If the header
2215 ** is read successfully and the checksum verified, return zero.
2217 static SQLITE_NO_TSAN int walIndexTryHdr(Wal *pWal, int *pChanged){
2218 u32 aCksum[2]; /* Checksum on the header content */
2219 WalIndexHdr h1, h2; /* Two copies of the header content */
2220 WalIndexHdr volatile *aHdr; /* Header in shared memory */
2222 /* The first page of the wal-index must be mapped at this point. */
2223 assert( pWal->nWiData>0 && pWal->apWiData[0] );
2225 /* Read the header. This might happen concurrently with a write to the
2226 ** same area of shared memory on a different CPU in a SMP,
2227 ** meaning it is possible that an inconsistent snapshot is read
2228 ** from the file. If this happens, return non-zero.
2230 ** tag-20200519-1:
2231 ** There are two copies of the header at the beginning of the wal-index.
2232 ** When reading, read [0] first then [1]. Writes are in the reverse order.
2233 ** Memory barriers are used to prevent the compiler or the hardware from
2234 ** reordering the reads and writes. TSAN and similar tools can sometimes
2235 ** give false-positive warnings about these accesses because the tools do not
2236 ** account for the double-read and the memory barrier. The use of mutexes
2237 ** here would be problematic as the memory being accessed is potentially
2238 ** shared among multiple processes and not all mutex implementions work
2239 ** reliably in that environment.
2241 aHdr = walIndexHdr(pWal);
2242 memcpy(&h1, (void *)&aHdr[0], sizeof(h1)); /* Possible TSAN false-positive */
2243 walShmBarrier(pWal);
2244 memcpy(&h2, (void *)&aHdr[1], sizeof(h2));
2246 if( memcmp(&h1, &h2, sizeof(h1))!=0 ){
2247 return 1; /* Dirty read */
2249 if( h1.isInit==0 ){
2250 return 1; /* Malformed header - probably all zeros */
2252 walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum);
2253 if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){
2254 return 1; /* Checksum does not match */
2257 if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){
2258 *pChanged = 1;
2259 memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr));
2260 pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
2261 testcase( pWal->szPage<=32768 );
2262 testcase( pWal->szPage>=65536 );
2265 /* The header was successfully read. Return zero. */
2266 return 0;
2270 ** This is the value that walTryBeginRead returns when it needs to
2271 ** be retried.
2273 #define WAL_RETRY (-1)
2276 ** Read the wal-index header from the wal-index and into pWal->hdr.
2277 ** If the wal-header appears to be corrupt, try to reconstruct the
2278 ** wal-index from the WAL before returning.
2280 ** Set *pChanged to 1 if the wal-index header value in pWal->hdr is
2281 ** changed by this operation. If pWal->hdr is unchanged, set *pChanged
2282 ** to 0.
2284 ** If the wal-index header is successfully read, return SQLITE_OK.
2285 ** Otherwise an SQLite error code.
2287 static int walIndexReadHdr(Wal *pWal, int *pChanged){
2288 int rc; /* Return code */
2289 int badHdr; /* True if a header read failed */
2290 volatile u32 *page0; /* Chunk of wal-index containing header */
2292 /* Ensure that page 0 of the wal-index (the page that contains the
2293 ** wal-index header) is mapped. Return early if an error occurs here.
2295 assert( pChanged );
2296 rc = walIndexPage(pWal, 0, &page0);
2297 if( rc!=SQLITE_OK ){
2298 assert( rc!=SQLITE_READONLY ); /* READONLY changed to OK in walIndexPage */
2299 if( rc==SQLITE_READONLY_CANTINIT ){
2300 /* The SQLITE_READONLY_CANTINIT return means that the shared-memory
2301 ** was openable but is not writable, and this thread is unable to
2302 ** confirm that another write-capable connection has the shared-memory
2303 ** open, and hence the content of the shared-memory is unreliable,
2304 ** since the shared-memory might be inconsistent with the WAL file
2305 ** and there is no writer on hand to fix it. */
2306 assert( page0==0 );
2307 assert( pWal->writeLock==0 );
2308 assert( pWal->readOnly & WAL_SHM_RDONLY );
2309 pWal->bShmUnreliable = 1;
2310 pWal->exclusiveMode = WAL_HEAPMEMORY_MODE;
2311 *pChanged = 1;
2312 }else{
2313 return rc; /* Any other non-OK return is just an error */
2315 }else{
2316 /* page0 can be NULL if the SHM is zero bytes in size and pWal->writeLock
2317 ** is zero, which prevents the SHM from growing */
2318 testcase( page0!=0 );
2320 assert( page0!=0 || pWal->writeLock==0 );
2322 /* If the first page of the wal-index has been mapped, try to read the
2323 ** wal-index header immediately, without holding any lock. This usually
2324 ** works, but may fail if the wal-index header is corrupt or currently
2325 ** being modified by another thread or process.
2327 badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1);
2329 /* If the first attempt failed, it might have been due to a race
2330 ** with a writer. So get a WRITE lock and try again.
2332 if( badHdr ){
2333 if( pWal->bShmUnreliable==0 && (pWal->readOnly & WAL_SHM_RDONLY) ){
2334 if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){
2335 walUnlockShared(pWal, WAL_WRITE_LOCK);
2336 rc = SQLITE_READONLY_RECOVERY;
2338 }else{
2339 int bWriteLock = pWal->writeLock;
2340 if( bWriteLock || SQLITE_OK==(rc = walLockWriter(pWal)) ){
2341 pWal->writeLock = 1;
2342 if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){
2343 badHdr = walIndexTryHdr(pWal, pChanged);
2344 if( badHdr ){
2345 /* If the wal-index header is still malformed even while holding
2346 ** a WRITE lock, it can only mean that the header is corrupted and
2347 ** needs to be reconstructed. So run recovery to do exactly that.
2349 rc = walIndexRecover(pWal);
2350 *pChanged = 1;
2353 if( bWriteLock==0 ){
2354 pWal->writeLock = 0;
2355 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
2361 /* If the header is read successfully, check the version number to make
2362 ** sure the wal-index was not constructed with some future format that
2363 ** this version of SQLite cannot understand.
2365 if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){
2366 rc = SQLITE_CANTOPEN_BKPT;
2368 if( pWal->bShmUnreliable ){
2369 if( rc!=SQLITE_OK ){
2370 walIndexClose(pWal, 0);
2371 pWal->bShmUnreliable = 0;
2372 assert( pWal->nWiData>0 && pWal->apWiData[0]==0 );
2373 /* walIndexRecover() might have returned SHORT_READ if a concurrent
2374 ** writer truncated the WAL out from under it. If that happens, it
2375 ** indicates that a writer has fixed the SHM file for us, so retry */
2376 if( rc==SQLITE_IOERR_SHORT_READ ) rc = WAL_RETRY;
2378 pWal->exclusiveMode = WAL_NORMAL_MODE;
2381 return rc;
2385 ** Open a transaction in a connection where the shared-memory is read-only
2386 ** and where we cannot verify that there is a separate write-capable connection
2387 ** on hand to keep the shared-memory up-to-date with the WAL file.
2389 ** This can happen, for example, when the shared-memory is implemented by
2390 ** memory-mapping a *-shm file, where a prior writer has shut down and
2391 ** left the *-shm file on disk, and now the present connection is trying
2392 ** to use that database but lacks write permission on the *-shm file.
2393 ** Other scenarios are also possible, depending on the VFS implementation.
2395 ** Precondition:
2397 ** The *-wal file has been read and an appropriate wal-index has been
2398 ** constructed in pWal->apWiData[] using heap memory instead of shared
2399 ** memory.
2401 ** If this function returns SQLITE_OK, then the read transaction has
2402 ** been successfully opened. In this case output variable (*pChanged)
2403 ** is set to true before returning if the caller should discard the
2404 ** contents of the page cache before proceeding. Or, if it returns
2405 ** WAL_RETRY, then the heap memory wal-index has been discarded and
2406 ** the caller should retry opening the read transaction from the
2407 ** beginning (including attempting to map the *-shm file).
2409 ** If an error occurs, an SQLite error code is returned.
2411 static int walBeginShmUnreliable(Wal *pWal, int *pChanged){
2412 i64 szWal; /* Size of wal file on disk in bytes */
2413 i64 iOffset; /* Current offset when reading wal file */
2414 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */
2415 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */
2416 int szFrame; /* Number of bytes in buffer aFrame[] */
2417 u8 *aData; /* Pointer to data part of aFrame buffer */
2418 volatile void *pDummy; /* Dummy argument for xShmMap */
2419 int rc; /* Return code */
2420 u32 aSaveCksum[2]; /* Saved copy of pWal->hdr.aFrameCksum */
2422 assert( pWal->bShmUnreliable );
2423 assert( pWal->readOnly & WAL_SHM_RDONLY );
2424 assert( pWal->nWiData>0 && pWal->apWiData[0] );
2426 /* Take WAL_READ_LOCK(0). This has the effect of preventing any
2427 ** writers from running a checkpoint, but does not stop them
2428 ** from running recovery. */
2429 rc = walLockShared(pWal, WAL_READ_LOCK(0));
2430 if( rc!=SQLITE_OK ){
2431 if( rc==SQLITE_BUSY ) rc = WAL_RETRY;
2432 goto begin_unreliable_shm_out;
2434 pWal->readLock = 0;
2436 /* Check to see if a separate writer has attached to the shared-memory area,
2437 ** thus making the shared-memory "reliable" again. Do this by invoking
2438 ** the xShmMap() routine of the VFS and looking to see if the return
2439 ** is SQLITE_READONLY instead of SQLITE_READONLY_CANTINIT.
2441 ** If the shared-memory is now "reliable" return WAL_RETRY, which will
2442 ** cause the heap-memory WAL-index to be discarded and the actual
2443 ** shared memory to be used in its place.
2445 ** This step is important because, even though this connection is holding
2446 ** the WAL_READ_LOCK(0) which prevents a checkpoint, a writer might
2447 ** have already checkpointed the WAL file and, while the current
2448 ** is active, wrap the WAL and start overwriting frames that this
2449 ** process wants to use.
2451 ** Once sqlite3OsShmMap() has been called for an sqlite3_file and has
2452 ** returned any SQLITE_READONLY value, it must return only SQLITE_READONLY
2453 ** or SQLITE_READONLY_CANTINIT or some error for all subsequent invocations,
2454 ** even if some external agent does a "chmod" to make the shared-memory
2455 ** writable by us, until sqlite3OsShmUnmap() has been called.
2456 ** This is a requirement on the VFS implementation.
2458 rc = sqlite3OsShmMap(pWal->pDbFd, 0, WALINDEX_PGSZ, 0, &pDummy);
2459 assert( rc!=SQLITE_OK ); /* SQLITE_OK not possible for read-only connection */
2460 if( rc!=SQLITE_READONLY_CANTINIT ){
2461 rc = (rc==SQLITE_READONLY ? WAL_RETRY : rc);
2462 goto begin_unreliable_shm_out;
2465 /* We reach this point only if the real shared-memory is still unreliable.
2466 ** Assume the in-memory WAL-index substitute is correct and load it
2467 ** into pWal->hdr.
2469 memcpy(&pWal->hdr, (void*)walIndexHdr(pWal), sizeof(WalIndexHdr));
2471 /* Make sure some writer hasn't come in and changed the WAL file out
2472 ** from under us, then disconnected, while we were not looking.
2474 rc = sqlite3OsFileSize(pWal->pWalFd, &szWal);
2475 if( rc!=SQLITE_OK ){
2476 goto begin_unreliable_shm_out;
2478 if( szWal<WAL_HDRSIZE ){
2479 /* If the wal file is too small to contain a wal-header and the
2480 ** wal-index header has mxFrame==0, then it must be safe to proceed
2481 ** reading the database file only. However, the page cache cannot
2482 ** be trusted, as a read/write connection may have connected, written
2483 ** the db, run a checkpoint, truncated the wal file and disconnected
2484 ** since this client's last read transaction. */
2485 *pChanged = 1;
2486 rc = (pWal->hdr.mxFrame==0 ? SQLITE_OK : WAL_RETRY);
2487 goto begin_unreliable_shm_out;
2490 /* Check the salt keys at the start of the wal file still match. */
2491 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
2492 if( rc!=SQLITE_OK ){
2493 goto begin_unreliable_shm_out;
2495 if( memcmp(&pWal->hdr.aSalt, &aBuf[16], 8) ){
2496 /* Some writer has wrapped the WAL file while we were not looking.
2497 ** Return WAL_RETRY which will cause the in-memory WAL-index to be
2498 ** rebuilt. */
2499 rc = WAL_RETRY;
2500 goto begin_unreliable_shm_out;
2503 /* Allocate a buffer to read frames into */
2504 szFrame = pWal->hdr.szPage + WAL_FRAME_HDRSIZE;
2505 aFrame = (u8 *)sqlite3_malloc64(szFrame);
2506 if( aFrame==0 ){
2507 rc = SQLITE_NOMEM_BKPT;
2508 goto begin_unreliable_shm_out;
2510 aData = &aFrame[WAL_FRAME_HDRSIZE];
2512 /* Check to see if a complete transaction has been appended to the
2513 ** wal file since the heap-memory wal-index was created. If so, the
2514 ** heap-memory wal-index is discarded and WAL_RETRY returned to
2515 ** the caller. */
2516 aSaveCksum[0] = pWal->hdr.aFrameCksum[0];
2517 aSaveCksum[1] = pWal->hdr.aFrameCksum[1];
2518 for(iOffset=walFrameOffset(pWal->hdr.mxFrame+1, pWal->hdr.szPage);
2519 iOffset+szFrame<=szWal;
2520 iOffset+=szFrame
2522 u32 pgno; /* Database page number for frame */
2523 u32 nTruncate; /* dbsize field from frame header */
2525 /* Read and decode the next log frame. */
2526 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
2527 if( rc!=SQLITE_OK ) break;
2528 if( !walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame) ) break;
2530 /* If nTruncate is non-zero, then a complete transaction has been
2531 ** appended to this wal file. Set rc to WAL_RETRY and break out of
2532 ** the loop. */
2533 if( nTruncate ){
2534 rc = WAL_RETRY;
2535 break;
2538 pWal->hdr.aFrameCksum[0] = aSaveCksum[0];
2539 pWal->hdr.aFrameCksum[1] = aSaveCksum[1];
2541 begin_unreliable_shm_out:
2542 sqlite3_free(aFrame);
2543 if( rc!=SQLITE_OK ){
2544 int i;
2545 for(i=0; i<pWal->nWiData; i++){
2546 sqlite3_free((void*)pWal->apWiData[i]);
2547 pWal->apWiData[i] = 0;
2549 pWal->bShmUnreliable = 0;
2550 sqlite3WalEndReadTransaction(pWal);
2551 *pChanged = 1;
2553 return rc;
2557 ** Attempt to start a read transaction. This might fail due to a race or
2558 ** other transient condition. When that happens, it returns WAL_RETRY to
2559 ** indicate to the caller that it is safe to retry immediately.
2561 ** On success return SQLITE_OK. On a permanent failure (such an
2562 ** I/O error or an SQLITE_BUSY because another process is running
2563 ** recovery) return a positive error code.
2565 ** The useWal parameter is true to force the use of the WAL and disable
2566 ** the case where the WAL is bypassed because it has been completely
2567 ** checkpointed. If useWal==0 then this routine calls walIndexReadHdr()
2568 ** to make a copy of the wal-index header into pWal->hdr. If the
2569 ** wal-index header has changed, *pChanged is set to 1 (as an indication
2570 ** to the caller that the local page cache is obsolete and needs to be
2571 ** flushed.) When useWal==1, the wal-index header is assumed to already
2572 ** be loaded and the pChanged parameter is unused.
2574 ** The caller must set the cnt parameter to the number of prior calls to
2575 ** this routine during the current read attempt that returned WAL_RETRY.
2576 ** This routine will start taking more aggressive measures to clear the
2577 ** race conditions after multiple WAL_RETRY returns, and after an excessive
2578 ** number of errors will ultimately return SQLITE_PROTOCOL. The
2579 ** SQLITE_PROTOCOL return indicates that some other process has gone rogue
2580 ** and is not honoring the locking protocol. There is a vanishingly small
2581 ** chance that SQLITE_PROTOCOL could be returned because of a run of really
2582 ** bad luck when there is lots of contention for the wal-index, but that
2583 ** possibility is so small that it can be safely neglected, we believe.
2585 ** On success, this routine obtains a read lock on
2586 ** WAL_READ_LOCK(pWal->readLock). The pWal->readLock integer is
2587 ** in the range 0 <= pWal->readLock < WAL_NREADER. If pWal->readLock==(-1)
2588 ** that means the Wal does not hold any read lock. The reader must not
2589 ** access any database page that is modified by a WAL frame up to and
2590 ** including frame number aReadMark[pWal->readLock]. The reader will
2591 ** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0
2592 ** Or if pWal->readLock==0, then the reader will ignore the WAL
2593 ** completely and get all content directly from the database file.
2594 ** If the useWal parameter is 1 then the WAL will never be ignored and
2595 ** this routine will always set pWal->readLock>0 on success.
2596 ** When the read transaction is completed, the caller must release the
2597 ** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1.
2599 ** This routine uses the nBackfill and aReadMark[] fields of the header
2600 ** to select a particular WAL_READ_LOCK() that strives to let the
2601 ** checkpoint process do as much work as possible. This routine might
2602 ** update values of the aReadMark[] array in the header, but if it does
2603 ** so it takes care to hold an exclusive lock on the corresponding
2604 ** WAL_READ_LOCK() while changing values.
2606 static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){
2607 volatile WalCkptInfo *pInfo; /* Checkpoint information in wal-index */
2608 u32 mxReadMark; /* Largest aReadMark[] value */
2609 int mxI; /* Index of largest aReadMark[] value */
2610 int i; /* Loop counter */
2611 int rc = SQLITE_OK; /* Return code */
2612 u32 mxFrame; /* Wal frame to lock to */
2614 assert( pWal->readLock<0 ); /* Not currently locked */
2616 /* useWal may only be set for read/write connections */
2617 assert( (pWal->readOnly & WAL_SHM_RDONLY)==0 || useWal==0 );
2619 /* Take steps to avoid spinning forever if there is a protocol error.
2621 ** Circumstances that cause a RETRY should only last for the briefest
2622 ** instances of time. No I/O or other system calls are done while the
2623 ** locks are held, so the locks should not be held for very long. But
2624 ** if we are unlucky, another process that is holding a lock might get
2625 ** paged out or take a page-fault that is time-consuming to resolve,
2626 ** during the few nanoseconds that it is holding the lock. In that case,
2627 ** it might take longer than normal for the lock to free.
2629 ** After 5 RETRYs, we begin calling sqlite3OsSleep(). The first few
2630 ** calls to sqlite3OsSleep() have a delay of 1 microsecond. Really this
2631 ** is more of a scheduler yield than an actual delay. But on the 10th
2632 ** an subsequent retries, the delays start becoming longer and longer,
2633 ** so that on the 100th (and last) RETRY we delay for 323 milliseconds.
2634 ** The total delay time before giving up is less than 10 seconds.
2636 if( cnt>5 ){
2637 int nDelay = 1; /* Pause time in microseconds */
2638 if( cnt>100 ){
2639 VVA_ONLY( pWal->lockError = 1; )
2640 return SQLITE_PROTOCOL;
2642 if( cnt>=10 ) nDelay = (cnt-9)*(cnt-9)*39;
2643 sqlite3OsSleep(pWal->pVfs, nDelay);
2646 if( !useWal ){
2647 assert( rc==SQLITE_OK );
2648 if( pWal->bShmUnreliable==0 ){
2649 rc = walIndexReadHdr(pWal, pChanged);
2651 if( rc==SQLITE_BUSY ){
2652 /* If there is not a recovery running in another thread or process
2653 ** then convert BUSY errors to WAL_RETRY. If recovery is known to
2654 ** be running, convert BUSY to BUSY_RECOVERY. There is a race here
2655 ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY
2656 ** would be technically correct. But the race is benign since with
2657 ** WAL_RETRY this routine will be called again and will probably be
2658 ** right on the second iteration.
2660 if( pWal->apWiData[0]==0 ){
2661 /* This branch is taken when the xShmMap() method returns SQLITE_BUSY.
2662 ** We assume this is a transient condition, so return WAL_RETRY. The
2663 ** xShmMap() implementation used by the default unix and win32 VFS
2664 ** modules may return SQLITE_BUSY due to a race condition in the
2665 ** code that determines whether or not the shared-memory region
2666 ** must be zeroed before the requested page is returned.
2668 rc = WAL_RETRY;
2669 }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){
2670 walUnlockShared(pWal, WAL_RECOVER_LOCK);
2671 rc = WAL_RETRY;
2672 }else if( rc==SQLITE_BUSY ){
2673 rc = SQLITE_BUSY_RECOVERY;
2676 if( rc!=SQLITE_OK ){
2677 return rc;
2679 else if( pWal->bShmUnreliable ){
2680 return walBeginShmUnreliable(pWal, pChanged);
2684 assert( pWal->nWiData>0 );
2685 assert( pWal->apWiData[0]!=0 );
2686 pInfo = walCkptInfo(pWal);
2687 if( !useWal && AtomicLoad(&pInfo->nBackfill)==pWal->hdr.mxFrame
2688 #ifdef SQLITE_ENABLE_SNAPSHOT
2689 && (pWal->pSnapshot==0 || pWal->hdr.mxFrame==0)
2690 #endif
2692 /* The WAL has been completely backfilled (or it is empty).
2693 ** and can be safely ignored.
2695 rc = walLockShared(pWal, WAL_READ_LOCK(0));
2696 walShmBarrier(pWal);
2697 if( rc==SQLITE_OK ){
2698 if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){
2699 /* It is not safe to allow the reader to continue here if frames
2700 ** may have been appended to the log before READ_LOCK(0) was obtained.
2701 ** When holding READ_LOCK(0), the reader ignores the entire log file,
2702 ** which implies that the database file contains a trustworthy
2703 ** snapshot. Since holding READ_LOCK(0) prevents a checkpoint from
2704 ** happening, this is usually correct.
2706 ** However, if frames have been appended to the log (or if the log
2707 ** is wrapped and written for that matter) before the READ_LOCK(0)
2708 ** is obtained, that is not necessarily true. A checkpointer may
2709 ** have started to backfill the appended frames but crashed before
2710 ** it finished. Leaving a corrupt image in the database file.
2712 walUnlockShared(pWal, WAL_READ_LOCK(0));
2713 return WAL_RETRY;
2715 pWal->readLock = 0;
2716 return SQLITE_OK;
2717 }else if( rc!=SQLITE_BUSY ){
2718 return rc;
2722 /* If we get this far, it means that the reader will want to use
2723 ** the WAL to get at content from recent commits. The job now is
2724 ** to select one of the aReadMark[] entries that is closest to
2725 ** but not exceeding pWal->hdr.mxFrame and lock that entry.
2727 mxReadMark = 0;
2728 mxI = 0;
2729 mxFrame = pWal->hdr.mxFrame;
2730 #ifdef SQLITE_ENABLE_SNAPSHOT
2731 if( pWal->pSnapshot && pWal->pSnapshot->mxFrame<mxFrame ){
2732 mxFrame = pWal->pSnapshot->mxFrame;
2734 #endif
2735 for(i=1; i<WAL_NREADER; i++){
2736 u32 thisMark = AtomicLoad(pInfo->aReadMark+i);
2737 if( mxReadMark<=thisMark && thisMark<=mxFrame ){
2738 assert( thisMark!=READMARK_NOT_USED );
2739 mxReadMark = thisMark;
2740 mxI = i;
2743 if( (pWal->readOnly & WAL_SHM_RDONLY)==0
2744 && (mxReadMark<mxFrame || mxI==0)
2746 for(i=1; i<WAL_NREADER; i++){
2747 rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
2748 if( rc==SQLITE_OK ){
2749 AtomicStore(pInfo->aReadMark+i,mxFrame);
2750 mxReadMark = mxFrame;
2751 mxI = i;
2752 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
2753 break;
2754 }else if( rc!=SQLITE_BUSY ){
2755 return rc;
2759 if( mxI==0 ){
2760 assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 );
2761 return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTINIT;
2764 rc = walLockShared(pWal, WAL_READ_LOCK(mxI));
2765 if( rc ){
2766 return rc==SQLITE_BUSY ? WAL_RETRY : rc;
2768 /* Now that the read-lock has been obtained, check that neither the
2769 ** value in the aReadMark[] array or the contents of the wal-index
2770 ** header have changed.
2772 ** It is necessary to check that the wal-index header did not change
2773 ** between the time it was read and when the shared-lock was obtained
2774 ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility
2775 ** that the log file may have been wrapped by a writer, or that frames
2776 ** that occur later in the log than pWal->hdr.mxFrame may have been
2777 ** copied into the database by a checkpointer. If either of these things
2778 ** happened, then reading the database with the current value of
2779 ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry
2780 ** instead.
2782 ** Before checking that the live wal-index header has not changed
2783 ** since it was read, set Wal.minFrame to the first frame in the wal
2784 ** file that has not yet been checkpointed. This client will not need
2785 ** to read any frames earlier than minFrame from the wal file - they
2786 ** can be safely read directly from the database file.
2788 ** Because a ShmBarrier() call is made between taking the copy of
2789 ** nBackfill and checking that the wal-header in shared-memory still
2790 ** matches the one cached in pWal->hdr, it is guaranteed that the
2791 ** checkpointer that set nBackfill was not working with a wal-index
2792 ** header newer than that cached in pWal->hdr. If it were, that could
2793 ** cause a problem. The checkpointer could omit to checkpoint
2794 ** a version of page X that lies before pWal->minFrame (call that version
2795 ** A) on the basis that there is a newer version (version B) of the same
2796 ** page later in the wal file. But if version B happens to like past
2797 ** frame pWal->hdr.mxFrame - then the client would incorrectly assume
2798 ** that it can read version A from the database file. However, since
2799 ** we can guarantee that the checkpointer that set nBackfill could not
2800 ** see any pages past pWal->hdr.mxFrame, this problem does not come up.
2802 pWal->minFrame = AtomicLoad(&pInfo->nBackfill)+1;
2803 walShmBarrier(pWal);
2804 if( AtomicLoad(pInfo->aReadMark+mxI)!=mxReadMark
2805 || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr))
2807 walUnlockShared(pWal, WAL_READ_LOCK(mxI));
2808 return WAL_RETRY;
2809 }else{
2810 assert( mxReadMark<=pWal->hdr.mxFrame );
2811 pWal->readLock = (i16)mxI;
2813 return rc;
2816 #ifdef SQLITE_ENABLE_SNAPSHOT
2818 ** Attempt to reduce the value of the WalCkptInfo.nBackfillAttempted
2819 ** variable so that older snapshots can be accessed. To do this, loop
2820 ** through all wal frames from nBackfillAttempted to (nBackfill+1),
2821 ** comparing their content to the corresponding page with the database
2822 ** file, if any. Set nBackfillAttempted to the frame number of the
2823 ** first frame for which the wal file content matches the db file.
2825 ** This is only really safe if the file-system is such that any page
2826 ** writes made by earlier checkpointers were atomic operations, which
2827 ** is not always true. It is also possible that nBackfillAttempted
2828 ** may be left set to a value larger than expected, if a wal frame
2829 ** contains content that duplicate of an earlier version of the same
2830 ** page.
2832 ** SQLITE_OK is returned if successful, or an SQLite error code if an
2833 ** error occurs. It is not an error if nBackfillAttempted cannot be
2834 ** decreased at all.
2836 int sqlite3WalSnapshotRecover(Wal *pWal){
2837 int rc;
2839 assert( pWal->readLock>=0 );
2840 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
2841 if( rc==SQLITE_OK ){
2842 volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
2843 int szPage = (int)pWal->szPage;
2844 i64 szDb; /* Size of db file in bytes */
2846 rc = sqlite3OsFileSize(pWal->pDbFd, &szDb);
2847 if( rc==SQLITE_OK ){
2848 void *pBuf1 = sqlite3_malloc(szPage);
2849 void *pBuf2 = sqlite3_malloc(szPage);
2850 if( pBuf1==0 || pBuf2==0 ){
2851 rc = SQLITE_NOMEM;
2852 }else{
2853 u32 i = pInfo->nBackfillAttempted;
2854 for(i=pInfo->nBackfillAttempted; i>AtomicLoad(&pInfo->nBackfill); i--){
2855 WalHashLoc sLoc; /* Hash table location */
2856 u32 pgno; /* Page number in db file */
2857 i64 iDbOff; /* Offset of db file entry */
2858 i64 iWalOff; /* Offset of wal file entry */
2860 rc = walHashGet(pWal, walFramePage(i), &sLoc);
2861 if( rc!=SQLITE_OK ) break;
2862 pgno = sLoc.aPgno[i-sLoc.iZero];
2863 iDbOff = (i64)(pgno-1) * szPage;
2865 if( iDbOff+szPage<=szDb ){
2866 iWalOff = walFrameOffset(i, szPage) + WAL_FRAME_HDRSIZE;
2867 rc = sqlite3OsRead(pWal->pWalFd, pBuf1, szPage, iWalOff);
2869 if( rc==SQLITE_OK ){
2870 rc = sqlite3OsRead(pWal->pDbFd, pBuf2, szPage, iDbOff);
2873 if( rc!=SQLITE_OK || 0==memcmp(pBuf1, pBuf2, szPage) ){
2874 break;
2878 pInfo->nBackfillAttempted = i-1;
2882 sqlite3_free(pBuf1);
2883 sqlite3_free(pBuf2);
2885 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
2888 return rc;
2890 #endif /* SQLITE_ENABLE_SNAPSHOT */
2893 ** Begin a read transaction on the database.
2895 ** This routine used to be called sqlite3OpenSnapshot() and with good reason:
2896 ** it takes a snapshot of the state of the WAL and wal-index for the current
2897 ** instant in time. The current thread will continue to use this snapshot.
2898 ** Other threads might append new content to the WAL and wal-index but
2899 ** that extra content is ignored by the current thread.
2901 ** If the database contents have changes since the previous read
2902 ** transaction, then *pChanged is set to 1 before returning. The
2903 ** Pager layer will use this to know that its cache is stale and
2904 ** needs to be flushed.
2906 int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){
2907 int rc; /* Return code */
2908 int cnt = 0; /* Number of TryBeginRead attempts */
2909 #ifdef SQLITE_ENABLE_SNAPSHOT
2910 int bChanged = 0;
2911 WalIndexHdr *pSnapshot = pWal->pSnapshot;
2912 #endif
2914 assert( pWal->ckptLock==0 );
2916 #ifdef SQLITE_ENABLE_SNAPSHOT
2917 if( pSnapshot ){
2918 if( memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){
2919 bChanged = 1;
2922 /* It is possible that there is a checkpointer thread running
2923 ** concurrent with this code. If this is the case, it may be that the
2924 ** checkpointer has already determined that it will checkpoint
2925 ** snapshot X, where X is later in the wal file than pSnapshot, but
2926 ** has not yet set the pInfo->nBackfillAttempted variable to indicate
2927 ** its intent. To avoid the race condition this leads to, ensure that
2928 ** there is no checkpointer process by taking a shared CKPT lock
2929 ** before checking pInfo->nBackfillAttempted. */
2930 (void)walEnableBlocking(pWal);
2931 rc = walLockShared(pWal, WAL_CKPT_LOCK);
2932 walDisableBlocking(pWal);
2934 if( rc!=SQLITE_OK ){
2935 return rc;
2937 pWal->ckptLock = 1;
2939 #endif
2942 rc = walTryBeginRead(pWal, pChanged, 0, ++cnt);
2943 }while( rc==WAL_RETRY );
2944 testcase( (rc&0xff)==SQLITE_BUSY );
2945 testcase( (rc&0xff)==SQLITE_IOERR );
2946 testcase( rc==SQLITE_PROTOCOL );
2947 testcase( rc==SQLITE_OK );
2949 #ifdef SQLITE_ENABLE_SNAPSHOT
2950 if( rc==SQLITE_OK ){
2951 if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){
2952 /* At this point the client has a lock on an aReadMark[] slot holding
2953 ** a value equal to or smaller than pSnapshot->mxFrame, but pWal->hdr
2954 ** is populated with the wal-index header corresponding to the head
2955 ** of the wal file. Verify that pSnapshot is still valid before
2956 ** continuing. Reasons why pSnapshot might no longer be valid:
2958 ** (1) The WAL file has been reset since the snapshot was taken.
2959 ** In this case, the salt will have changed.
2961 ** (2) A checkpoint as been attempted that wrote frames past
2962 ** pSnapshot->mxFrame into the database file. Note that the
2963 ** checkpoint need not have completed for this to cause problems.
2965 volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
2967 assert( pWal->readLock>0 || pWal->hdr.mxFrame==0 );
2968 assert( pInfo->aReadMark[pWal->readLock]<=pSnapshot->mxFrame );
2970 /* Check that the wal file has not been wrapped. Assuming that it has
2971 ** not, also check that no checkpointer has attempted to checkpoint any
2972 ** frames beyond pSnapshot->mxFrame. If either of these conditions are
2973 ** true, return SQLITE_ERROR_SNAPSHOT. Otherwise, overwrite pWal->hdr
2974 ** with *pSnapshot and set *pChanged as appropriate for opening the
2975 ** snapshot. */
2976 if( !memcmp(pSnapshot->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt))
2977 && pSnapshot->mxFrame>=pInfo->nBackfillAttempted
2979 assert( pWal->readLock>0 );
2980 memcpy(&pWal->hdr, pSnapshot, sizeof(WalIndexHdr));
2981 *pChanged = bChanged;
2982 }else{
2983 rc = SQLITE_ERROR_SNAPSHOT;
2986 /* A client using a non-current snapshot may not ignore any frames
2987 ** from the start of the wal file. This is because, for a system
2988 ** where (minFrame < iSnapshot < maxFrame), a checkpointer may
2989 ** have omitted to checkpoint a frame earlier than minFrame in
2990 ** the file because there exists a frame after iSnapshot that
2991 ** is the same database page. */
2992 pWal->minFrame = 1;
2994 if( rc!=SQLITE_OK ){
2995 sqlite3WalEndReadTransaction(pWal);
3000 /* Release the shared CKPT lock obtained above. */
3001 if( pWal->ckptLock ){
3002 assert( pSnapshot );
3003 walUnlockShared(pWal, WAL_CKPT_LOCK);
3004 pWal->ckptLock = 0;
3006 #endif
3007 return rc;
3011 ** Finish with a read transaction. All this does is release the
3012 ** read-lock.
3014 void sqlite3WalEndReadTransaction(Wal *pWal){
3015 sqlite3WalEndWriteTransaction(pWal);
3016 if( pWal->readLock>=0 ){
3017 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
3018 pWal->readLock = -1;
3023 ** Search the wal file for page pgno. If found, set *piRead to the frame that
3024 ** contains the page. Otherwise, if pgno is not in the wal file, set *piRead
3025 ** to zero.
3027 ** Return SQLITE_OK if successful, or an error code if an error occurs. If an
3028 ** error does occur, the final value of *piRead is undefined.
3030 int sqlite3WalFindFrame(
3031 Wal *pWal, /* WAL handle */
3032 Pgno pgno, /* Database page number to read data for */
3033 u32 *piRead /* OUT: Frame number (or zero) */
3035 u32 iRead = 0; /* If !=0, WAL frame to return data from */
3036 u32 iLast = pWal->hdr.mxFrame; /* Last page in WAL for this reader */
3037 int iHash; /* Used to loop through N hash tables */
3038 int iMinHash;
3040 /* This routine is only be called from within a read transaction. */
3041 assert( pWal->readLock>=0 || pWal->lockError );
3043 /* If the "last page" field of the wal-index header snapshot is 0, then
3044 ** no data will be read from the wal under any circumstances. Return early
3045 ** in this case as an optimization. Likewise, if pWal->readLock==0,
3046 ** then the WAL is ignored by the reader so return early, as if the
3047 ** WAL were empty.
3049 if( iLast==0 || (pWal->readLock==0 && pWal->bShmUnreliable==0) ){
3050 *piRead = 0;
3051 return SQLITE_OK;
3054 /* Search the hash table or tables for an entry matching page number
3055 ** pgno. Each iteration of the following for() loop searches one
3056 ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames).
3058 ** This code might run concurrently to the code in walIndexAppend()
3059 ** that adds entries to the wal-index (and possibly to this hash
3060 ** table). This means the value just read from the hash
3061 ** slot (aHash[iKey]) may have been added before or after the
3062 ** current read transaction was opened. Values added after the
3063 ** read transaction was opened may have been written incorrectly -
3064 ** i.e. these slots may contain garbage data. However, we assume
3065 ** that any slots written before the current read transaction was
3066 ** opened remain unmodified.
3068 ** For the reasons above, the if(...) condition featured in the inner
3069 ** loop of the following block is more stringent that would be required
3070 ** if we had exclusive access to the hash-table:
3072 ** (aPgno[iFrame]==pgno):
3073 ** This condition filters out normal hash-table collisions.
3075 ** (iFrame<=iLast):
3076 ** This condition filters out entries that were added to the hash
3077 ** table after the current read-transaction had started.
3079 iMinHash = walFramePage(pWal->minFrame);
3080 for(iHash=walFramePage(iLast); iHash>=iMinHash; iHash--){
3081 WalHashLoc sLoc; /* Hash table location */
3082 int iKey; /* Hash slot index */
3083 int nCollide; /* Number of hash collisions remaining */
3084 int rc; /* Error code */
3085 u32 iH;
3087 rc = walHashGet(pWal, iHash, &sLoc);
3088 if( rc!=SQLITE_OK ){
3089 return rc;
3091 nCollide = HASHTABLE_NSLOT;
3092 iKey = walHash(pgno);
3093 while( (iH = AtomicLoad(&sLoc.aHash[iKey]))!=0 ){
3094 u32 iFrame = iH + sLoc.iZero;
3095 if( iFrame<=iLast && iFrame>=pWal->minFrame && sLoc.aPgno[iH]==pgno ){
3096 assert( iFrame>iRead || CORRUPT_DB );
3097 iRead = iFrame;
3099 if( (nCollide--)==0 ){
3100 return SQLITE_CORRUPT_BKPT;
3102 iKey = walNextHash(iKey);
3104 if( iRead ) break;
3107 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
3108 /* If expensive assert() statements are available, do a linear search
3109 ** of the wal-index file content. Make sure the results agree with the
3110 ** result obtained using the hash indexes above. */
3112 u32 iRead2 = 0;
3113 u32 iTest;
3114 assert( pWal->bShmUnreliable || pWal->minFrame>0 );
3115 for(iTest=iLast; iTest>=pWal->minFrame && iTest>0; iTest--){
3116 if( walFramePgno(pWal, iTest)==pgno ){
3117 iRead2 = iTest;
3118 break;
3121 assert( iRead==iRead2 );
3123 #endif
3125 *piRead = iRead;
3126 return SQLITE_OK;
3130 ** Read the contents of frame iRead from the wal file into buffer pOut
3131 ** (which is nOut bytes in size). Return SQLITE_OK if successful, or an
3132 ** error code otherwise.
3134 int sqlite3WalReadFrame(
3135 Wal *pWal, /* WAL handle */
3136 u32 iRead, /* Frame to read */
3137 int nOut, /* Size of buffer pOut in bytes */
3138 u8 *pOut /* Buffer to write page data to */
3140 int sz;
3141 i64 iOffset;
3142 sz = pWal->hdr.szPage;
3143 sz = (sz&0xfe00) + ((sz&0x0001)<<16);
3144 testcase( sz<=32768 );
3145 testcase( sz>=65536 );
3146 iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE;
3147 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
3148 return sqlite3OsRead(pWal->pWalFd, pOut, (nOut>sz ? sz : nOut), iOffset);
3152 ** Return the size of the database in pages (or zero, if unknown).
3154 Pgno sqlite3WalDbsize(Wal *pWal){
3155 if( pWal && ALWAYS(pWal->readLock>=0) ){
3156 return pWal->hdr.nPage;
3158 return 0;
3163 ** This function starts a write transaction on the WAL.
3165 ** A read transaction must have already been started by a prior call
3166 ** to sqlite3WalBeginReadTransaction().
3168 ** If another thread or process has written into the database since
3169 ** the read transaction was started, then it is not possible for this
3170 ** thread to write as doing so would cause a fork. So this routine
3171 ** returns SQLITE_BUSY in that case and no write transaction is started.
3173 ** There can only be a single writer active at a time.
3175 int sqlite3WalBeginWriteTransaction(Wal *pWal){
3176 int rc;
3178 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
3179 /* If the write-lock is already held, then it was obtained before the
3180 ** read-transaction was even opened, making this call a no-op.
3181 ** Return early. */
3182 if( pWal->writeLock ){
3183 assert( !memcmp(&pWal->hdr,(void *)walIndexHdr(pWal),sizeof(WalIndexHdr)) );
3184 return SQLITE_OK;
3186 #endif
3188 /* Cannot start a write transaction without first holding a read
3189 ** transaction. */
3190 assert( pWal->readLock>=0 );
3191 assert( pWal->writeLock==0 && pWal->iReCksum==0 );
3193 if( pWal->readOnly ){
3194 return SQLITE_READONLY;
3197 /* Only one writer allowed at a time. Get the write lock. Return
3198 ** SQLITE_BUSY if unable.
3200 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
3201 if( rc ){
3202 return rc;
3204 pWal->writeLock = 1;
3206 /* If another connection has written to the database file since the
3207 ** time the read transaction on this connection was started, then
3208 ** the write is disallowed.
3210 if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){
3211 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
3212 pWal->writeLock = 0;
3213 rc = SQLITE_BUSY_SNAPSHOT;
3216 return rc;
3220 ** End a write transaction. The commit has already been done. This
3221 ** routine merely releases the lock.
3223 int sqlite3WalEndWriteTransaction(Wal *pWal){
3224 if( pWal->writeLock ){
3225 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
3226 pWal->writeLock = 0;
3227 pWal->iReCksum = 0;
3228 pWal->truncateOnCommit = 0;
3230 return SQLITE_OK;
3234 ** If any data has been written (but not committed) to the log file, this
3235 ** function moves the write-pointer back to the start of the transaction.
3237 ** Additionally, the callback function is invoked for each frame written
3238 ** to the WAL since the start of the transaction. If the callback returns
3239 ** other than SQLITE_OK, it is not invoked again and the error code is
3240 ** returned to the caller.
3242 ** Otherwise, if the callback function does not return an error, this
3243 ** function returns SQLITE_OK.
3245 int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){
3246 int rc = SQLITE_OK;
3247 if( ALWAYS(pWal->writeLock) ){
3248 Pgno iMax = pWal->hdr.mxFrame;
3249 Pgno iFrame;
3251 /* Restore the clients cache of the wal-index header to the state it
3252 ** was in before the client began writing to the database.
3254 memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr));
3256 for(iFrame=pWal->hdr.mxFrame+1;
3257 ALWAYS(rc==SQLITE_OK) && iFrame<=iMax;
3258 iFrame++
3260 /* This call cannot fail. Unless the page for which the page number
3261 ** is passed as the second argument is (a) in the cache and
3262 ** (b) has an outstanding reference, then xUndo is either a no-op
3263 ** (if (a) is false) or simply expels the page from the cache (if (b)
3264 ** is false).
3266 ** If the upper layer is doing a rollback, it is guaranteed that there
3267 ** are no outstanding references to any page other than page 1. And
3268 ** page 1 is never written to the log until the transaction is
3269 ** committed. As a result, the call to xUndo may not fail.
3271 assert( walFramePgno(pWal, iFrame)!=1 );
3272 rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame));
3274 if( iMax!=pWal->hdr.mxFrame ) walCleanupHash(pWal);
3276 return rc;
3280 ** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32
3281 ** values. This function populates the array with values required to
3282 ** "rollback" the write position of the WAL handle back to the current
3283 ** point in the event of a savepoint rollback (via WalSavepointUndo()).
3285 void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){
3286 assert( pWal->writeLock );
3287 aWalData[0] = pWal->hdr.mxFrame;
3288 aWalData[1] = pWal->hdr.aFrameCksum[0];
3289 aWalData[2] = pWal->hdr.aFrameCksum[1];
3290 aWalData[3] = pWal->nCkpt;
3294 ** Move the write position of the WAL back to the point identified by
3295 ** the values in the aWalData[] array. aWalData must point to an array
3296 ** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated
3297 ** by a call to WalSavepoint().
3299 int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){
3300 int rc = SQLITE_OK;
3302 assert( pWal->writeLock );
3303 assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame );
3305 if( aWalData[3]!=pWal->nCkpt ){
3306 /* This savepoint was opened immediately after the write-transaction
3307 ** was started. Right after that, the writer decided to wrap around
3308 ** to the start of the log. Update the savepoint values to match.
3310 aWalData[0] = 0;
3311 aWalData[3] = pWal->nCkpt;
3314 if( aWalData[0]<pWal->hdr.mxFrame ){
3315 pWal->hdr.mxFrame = aWalData[0];
3316 pWal->hdr.aFrameCksum[0] = aWalData[1];
3317 pWal->hdr.aFrameCksum[1] = aWalData[2];
3318 walCleanupHash(pWal);
3321 return rc;
3325 ** This function is called just before writing a set of frames to the log
3326 ** file (see sqlite3WalFrames()). It checks to see if, instead of appending
3327 ** to the current log file, it is possible to overwrite the start of the
3328 ** existing log file with the new frames (i.e. "reset" the log). If so,
3329 ** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left
3330 ** unchanged.
3332 ** SQLITE_OK is returned if no error is encountered (regardless of whether
3333 ** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned
3334 ** if an error occurs.
3336 static int walRestartLog(Wal *pWal){
3337 int rc = SQLITE_OK;
3338 int cnt;
3340 if( pWal->readLock==0 ){
3341 volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
3342 assert( pInfo->nBackfill==pWal->hdr.mxFrame );
3343 if( pInfo->nBackfill>0 ){
3344 u32 salt1;
3345 sqlite3_randomness(4, &salt1);
3346 rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
3347 if( rc==SQLITE_OK ){
3348 /* If all readers are using WAL_READ_LOCK(0) (in other words if no
3349 ** readers are currently using the WAL), then the transactions
3350 ** frames will overwrite the start of the existing log. Update the
3351 ** wal-index header to reflect this.
3353 ** In theory it would be Ok to update the cache of the header only
3354 ** at this point. But updating the actual wal-index header is also
3355 ** safe and means there is no special case for sqlite3WalUndo()
3356 ** to handle if this transaction is rolled back. */
3357 walRestartHdr(pWal, salt1);
3358 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
3359 }else if( rc!=SQLITE_BUSY ){
3360 return rc;
3363 walUnlockShared(pWal, WAL_READ_LOCK(0));
3364 pWal->readLock = -1;
3365 cnt = 0;
3367 int notUsed;
3368 rc = walTryBeginRead(pWal, &notUsed, 1, ++cnt);
3369 }while( rc==WAL_RETRY );
3370 assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */
3371 testcase( (rc&0xff)==SQLITE_IOERR );
3372 testcase( rc==SQLITE_PROTOCOL );
3373 testcase( rc==SQLITE_OK );
3375 return rc;
3379 ** Information about the current state of the WAL file and where
3380 ** the next fsync should occur - passed from sqlite3WalFrames() into
3381 ** walWriteToLog().
3383 typedef struct WalWriter {
3384 Wal *pWal; /* The complete WAL information */
3385 sqlite3_file *pFd; /* The WAL file to which we write */
3386 sqlite3_int64 iSyncPoint; /* Fsync at this offset */
3387 int syncFlags; /* Flags for the fsync */
3388 int szPage; /* Size of one page */
3389 } WalWriter;
3392 ** Write iAmt bytes of content into the WAL file beginning at iOffset.
3393 ** Do a sync when crossing the p->iSyncPoint boundary.
3395 ** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt,
3396 ** first write the part before iSyncPoint, then sync, then write the
3397 ** rest.
3399 static int walWriteToLog(
3400 WalWriter *p, /* WAL to write to */
3401 void *pContent, /* Content to be written */
3402 int iAmt, /* Number of bytes to write */
3403 sqlite3_int64 iOffset /* Start writing at this offset */
3405 int rc;
3406 if( iOffset<p->iSyncPoint && iOffset+iAmt>=p->iSyncPoint ){
3407 int iFirstAmt = (int)(p->iSyncPoint - iOffset);
3408 rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset);
3409 if( rc ) return rc;
3410 iOffset += iFirstAmt;
3411 iAmt -= iFirstAmt;
3412 pContent = (void*)(iFirstAmt + (char*)pContent);
3413 assert( WAL_SYNC_FLAGS(p->syncFlags)!=0 );
3414 rc = sqlite3OsSync(p->pFd, WAL_SYNC_FLAGS(p->syncFlags));
3415 if( iAmt==0 || rc ) return rc;
3417 rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset);
3418 return rc;
3422 ** Write out a single frame of the WAL
3424 static int walWriteOneFrame(
3425 WalWriter *p, /* Where to write the frame */
3426 PgHdr *pPage, /* The page of the frame to be written */
3427 int nTruncate, /* The commit flag. Usually 0. >0 for commit */
3428 sqlite3_int64 iOffset /* Byte offset at which to write */
3430 int rc; /* Result code from subfunctions */
3431 void *pData; /* Data actually written */
3432 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-header in */
3433 #if defined(SQLITE_HAS_CODEC)
3434 if( (pData = sqlite3PagerCodec(pPage))==0 ) return SQLITE_NOMEM_BKPT;
3435 #else
3436 pData = pPage->pData;
3437 #endif
3438 walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame);
3439 rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset);
3440 if( rc ) return rc;
3441 /* Write the page data */
3442 rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame));
3443 return rc;
3447 ** This function is called as part of committing a transaction within which
3448 ** one or more frames have been overwritten. It updates the checksums for
3449 ** all frames written to the wal file by the current transaction starting
3450 ** with the earliest to have been overwritten.
3452 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
3454 static int walRewriteChecksums(Wal *pWal, u32 iLast){
3455 const int szPage = pWal->szPage;/* Database page size */
3456 int rc = SQLITE_OK; /* Return code */
3457 u8 *aBuf; /* Buffer to load data from wal file into */
3458 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-headers in */
3459 u32 iRead; /* Next frame to read from wal file */
3460 i64 iCksumOff;
3462 aBuf = sqlite3_malloc(szPage + WAL_FRAME_HDRSIZE);
3463 if( aBuf==0 ) return SQLITE_NOMEM_BKPT;
3465 /* Find the checksum values to use as input for the recalculating the
3466 ** first checksum. If the first frame is frame 1 (implying that the current
3467 ** transaction restarted the wal file), these values must be read from the
3468 ** wal-file header. Otherwise, read them from the frame header of the
3469 ** previous frame. */
3470 assert( pWal->iReCksum>0 );
3471 if( pWal->iReCksum==1 ){
3472 iCksumOff = 24;
3473 }else{
3474 iCksumOff = walFrameOffset(pWal->iReCksum-1, szPage) + 16;
3476 rc = sqlite3OsRead(pWal->pWalFd, aBuf, sizeof(u32)*2, iCksumOff);
3477 pWal->hdr.aFrameCksum[0] = sqlite3Get4byte(aBuf);
3478 pWal->hdr.aFrameCksum[1] = sqlite3Get4byte(&aBuf[sizeof(u32)]);
3480 iRead = pWal->iReCksum;
3481 pWal->iReCksum = 0;
3482 for(; rc==SQLITE_OK && iRead<=iLast; iRead++){
3483 i64 iOff = walFrameOffset(iRead, szPage);
3484 rc = sqlite3OsRead(pWal->pWalFd, aBuf, szPage+WAL_FRAME_HDRSIZE, iOff);
3485 if( rc==SQLITE_OK ){
3486 u32 iPgno, nDbSize;
3487 iPgno = sqlite3Get4byte(aBuf);
3488 nDbSize = sqlite3Get4byte(&aBuf[4]);
3490 walEncodeFrame(pWal, iPgno, nDbSize, &aBuf[WAL_FRAME_HDRSIZE], aFrame);
3491 rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOff);
3495 sqlite3_free(aBuf);
3496 return rc;
3500 ** Write a set of frames to the log. The caller must hold the write-lock
3501 ** on the log file (obtained using sqlite3WalBeginWriteTransaction()).
3503 int sqlite3WalFrames(
3504 Wal *pWal, /* Wal handle to write to */
3505 int szPage, /* Database page-size in bytes */
3506 PgHdr *pList, /* List of dirty pages to write */
3507 Pgno nTruncate, /* Database size after this commit */
3508 int isCommit, /* True if this is a commit */
3509 int sync_flags /* Flags to pass to OsSync() (or 0) */
3511 int rc; /* Used to catch return codes */
3512 u32 iFrame; /* Next frame address */
3513 PgHdr *p; /* Iterator to run through pList with. */
3514 PgHdr *pLast = 0; /* Last frame in list */
3515 int nExtra = 0; /* Number of extra copies of last page */
3516 int szFrame; /* The size of a single frame */
3517 i64 iOffset; /* Next byte to write in WAL file */
3518 WalWriter w; /* The writer */
3519 u32 iFirst = 0; /* First frame that may be overwritten */
3520 WalIndexHdr *pLive; /* Pointer to shared header */
3522 assert( pList );
3523 assert( pWal->writeLock );
3525 /* If this frame set completes a transaction, then nTruncate>0. If
3526 ** nTruncate==0 then this frame set does not complete the transaction. */
3527 assert( (isCommit!=0)==(nTruncate!=0) );
3529 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
3530 { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){}
3531 WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n",
3532 pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill"));
3534 #endif
3536 pLive = (WalIndexHdr*)walIndexHdr(pWal);
3537 if( memcmp(&pWal->hdr, (void *)pLive, sizeof(WalIndexHdr))!=0 ){
3538 iFirst = pLive->mxFrame+1;
3541 /* See if it is possible to write these frames into the start of the
3542 ** log file, instead of appending to it at pWal->hdr.mxFrame.
3544 if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){
3545 return rc;
3548 /* If this is the first frame written into the log, write the WAL
3549 ** header to the start of the WAL file. See comments at the top of
3550 ** this source file for a description of the WAL header format.
3552 iFrame = pWal->hdr.mxFrame;
3553 if( iFrame==0 ){
3554 u8 aWalHdr[WAL_HDRSIZE]; /* Buffer to assemble wal-header in */
3555 u32 aCksum[2]; /* Checksum for wal-header */
3557 sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN));
3558 sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION);
3559 sqlite3Put4byte(&aWalHdr[8], szPage);
3560 sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt);
3561 if( pWal->nCkpt==0 ) sqlite3_randomness(8, pWal->hdr.aSalt);
3562 memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8);
3563 walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum);
3564 sqlite3Put4byte(&aWalHdr[24], aCksum[0]);
3565 sqlite3Put4byte(&aWalHdr[28], aCksum[1]);
3567 pWal->szPage = szPage;
3568 pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN;
3569 pWal->hdr.aFrameCksum[0] = aCksum[0];
3570 pWal->hdr.aFrameCksum[1] = aCksum[1];
3571 pWal->truncateOnCommit = 1;
3573 rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0);
3574 WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok"));
3575 if( rc!=SQLITE_OK ){
3576 return rc;
3579 /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless
3580 ** all syncing is turned off by PRAGMA synchronous=OFF). Otherwise
3581 ** an out-of-order write following a WAL restart could result in
3582 ** database corruption. See the ticket:
3584 ** https://sqlite.org/src/info/ff5be73dee
3586 if( pWal->syncHeader ){
3587 rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags));
3588 if( rc ) return rc;
3591 assert( (int)pWal->szPage==szPage );
3593 /* Setup information needed to write frames into the WAL */
3594 w.pWal = pWal;
3595 w.pFd = pWal->pWalFd;
3596 w.iSyncPoint = 0;
3597 w.syncFlags = sync_flags;
3598 w.szPage = szPage;
3599 iOffset = walFrameOffset(iFrame+1, szPage);
3600 szFrame = szPage + WAL_FRAME_HDRSIZE;
3602 /* Write all frames into the log file exactly once */
3603 for(p=pList; p; p=p->pDirty){
3604 int nDbSize; /* 0 normally. Positive == commit flag */
3606 /* Check if this page has already been written into the wal file by
3607 ** the current transaction. If so, overwrite the existing frame and
3608 ** set Wal.writeLock to WAL_WRITELOCK_RECKSUM - indicating that
3609 ** checksums must be recomputed when the transaction is committed. */
3610 if( iFirst && (p->pDirty || isCommit==0) ){
3611 u32 iWrite = 0;
3612 VVA_ONLY(rc =) sqlite3WalFindFrame(pWal, p->pgno, &iWrite);
3613 assert( rc==SQLITE_OK || iWrite==0 );
3614 if( iWrite>=iFirst ){
3615 i64 iOff = walFrameOffset(iWrite, szPage) + WAL_FRAME_HDRSIZE;
3616 void *pData;
3617 if( pWal->iReCksum==0 || iWrite<pWal->iReCksum ){
3618 pWal->iReCksum = iWrite;
3620 #if defined(SQLITE_HAS_CODEC)
3621 if( (pData = sqlite3PagerCodec(p))==0 ) return SQLITE_NOMEM;
3622 #else
3623 pData = p->pData;
3624 #endif
3625 rc = sqlite3OsWrite(pWal->pWalFd, pData, szPage, iOff);
3626 if( rc ) return rc;
3627 p->flags &= ~PGHDR_WAL_APPEND;
3628 continue;
3632 iFrame++;
3633 assert( iOffset==walFrameOffset(iFrame, szPage) );
3634 nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0;
3635 rc = walWriteOneFrame(&w, p, nDbSize, iOffset);
3636 if( rc ) return rc;
3637 pLast = p;
3638 iOffset += szFrame;
3639 p->flags |= PGHDR_WAL_APPEND;
3642 /* Recalculate checksums within the wal file if required. */
3643 if( isCommit && pWal->iReCksum ){
3644 rc = walRewriteChecksums(pWal, iFrame);
3645 if( rc ) return rc;
3648 /* If this is the end of a transaction, then we might need to pad
3649 ** the transaction and/or sync the WAL file.
3651 ** Padding and syncing only occur if this set of frames complete a
3652 ** transaction and if PRAGMA synchronous=FULL. If synchronous==NORMAL
3653 ** or synchronous==OFF, then no padding or syncing are needed.
3655 ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not
3656 ** needed and only the sync is done. If padding is needed, then the
3657 ** final frame is repeated (with its commit mark) until the next sector
3658 ** boundary is crossed. Only the part of the WAL prior to the last
3659 ** sector boundary is synced; the part of the last frame that extends
3660 ** past the sector boundary is written after the sync.
3662 if( isCommit && WAL_SYNC_FLAGS(sync_flags)!=0 ){
3663 int bSync = 1;
3664 if( pWal->padToSectorBoundary ){
3665 int sectorSize = sqlite3SectorSize(pWal->pWalFd);
3666 w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize;
3667 bSync = (w.iSyncPoint==iOffset);
3668 testcase( bSync );
3669 while( iOffset<w.iSyncPoint ){
3670 rc = walWriteOneFrame(&w, pLast, nTruncate, iOffset);
3671 if( rc ) return rc;
3672 iOffset += szFrame;
3673 nExtra++;
3674 assert( pLast!=0 );
3677 if( bSync ){
3678 assert( rc==SQLITE_OK );
3679 rc = sqlite3OsSync(w.pFd, WAL_SYNC_FLAGS(sync_flags));
3683 /* If this frame set completes the first transaction in the WAL and
3684 ** if PRAGMA journal_size_limit is set, then truncate the WAL to the
3685 ** journal size limit, if possible.
3687 if( isCommit && pWal->truncateOnCommit && pWal->mxWalSize>=0 ){
3688 i64 sz = pWal->mxWalSize;
3689 if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){
3690 sz = walFrameOffset(iFrame+nExtra+1, szPage);
3692 walLimitSize(pWal, sz);
3693 pWal->truncateOnCommit = 0;
3696 /* Append data to the wal-index. It is not necessary to lock the
3697 ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index
3698 ** guarantees that there are no other writers, and no data that may
3699 ** be in use by existing readers is being overwritten.
3701 iFrame = pWal->hdr.mxFrame;
3702 for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){
3703 if( (p->flags & PGHDR_WAL_APPEND)==0 ) continue;
3704 iFrame++;
3705 rc = walIndexAppend(pWal, iFrame, p->pgno);
3707 assert( pLast!=0 || nExtra==0 );
3708 while( rc==SQLITE_OK && nExtra>0 ){
3709 iFrame++;
3710 nExtra--;
3711 rc = walIndexAppend(pWal, iFrame, pLast->pgno);
3714 if( rc==SQLITE_OK ){
3715 /* Update the private copy of the header. */
3716 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
3717 testcase( szPage<=32768 );
3718 testcase( szPage>=65536 );
3719 pWal->hdr.mxFrame = iFrame;
3720 if( isCommit ){
3721 pWal->hdr.iChange++;
3722 pWal->hdr.nPage = nTruncate;
3724 /* If this is a commit, update the wal-index header too. */
3725 if( isCommit ){
3726 walIndexWriteHdr(pWal);
3727 pWal->iCallback = iFrame;
3731 WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok"));
3732 return rc;
3736 ** This routine is called to implement sqlite3_wal_checkpoint() and
3737 ** related interfaces.
3739 ** Obtain a CHECKPOINT lock and then backfill as much information as
3740 ** we can from WAL into the database.
3742 ** If parameter xBusy is not NULL, it is a pointer to a busy-handler
3743 ** callback. In this case this function runs a blocking checkpoint.
3745 int sqlite3WalCheckpoint(
3746 Wal *pWal, /* Wal connection */
3747 sqlite3 *db, /* Check this handle's interrupt flag */
3748 int eMode, /* PASSIVE, FULL, RESTART, or TRUNCATE */
3749 int (*xBusy)(void*), /* Function to call when busy */
3750 void *pBusyArg, /* Context argument for xBusyHandler */
3751 int sync_flags, /* Flags to sync db file with (or 0) */
3752 int nBuf, /* Size of temporary buffer */
3753 u8 *zBuf, /* Temporary buffer to use */
3754 int *pnLog, /* OUT: Number of frames in WAL */
3755 int *pnCkpt /* OUT: Number of backfilled frames in WAL */
3757 int rc; /* Return code */
3758 int isChanged = 0; /* True if a new wal-index header is loaded */
3759 int eMode2 = eMode; /* Mode to pass to walCheckpoint() */
3760 int (*xBusy2)(void*) = xBusy; /* Busy handler for eMode2 */
3762 assert( pWal->ckptLock==0 );
3763 assert( pWal->writeLock==0 );
3765 /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
3766 ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
3767 assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
3769 if( pWal->readOnly ) return SQLITE_READONLY;
3770 WALTRACE(("WAL%p: checkpoint begins\n", pWal));
3772 /* Enable blocking locks, if possible. If blocking locks are successfully
3773 ** enabled, set xBusy2=0 so that the busy-handler is never invoked. */
3774 sqlite3WalDb(pWal, db);
3775 (void)walEnableBlocking(pWal);
3777 /* IMPLEMENTATION-OF: R-62028-47212 All calls obtain an exclusive
3778 ** "checkpoint" lock on the database file.
3779 ** EVIDENCE-OF: R-10421-19736 If any other process is running a
3780 ** checkpoint operation at the same time, the lock cannot be obtained and
3781 ** SQLITE_BUSY is returned.
3782 ** EVIDENCE-OF: R-53820-33897 Even if there is a busy-handler configured,
3783 ** it will not be invoked in this case.
3785 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
3786 testcase( rc==SQLITE_BUSY );
3787 testcase( rc!=SQLITE_OK && xBusy2!=0 );
3788 if( rc==SQLITE_OK ){
3789 pWal->ckptLock = 1;
3791 /* IMPLEMENTATION-OF: R-59782-36818 The SQLITE_CHECKPOINT_FULL, RESTART and
3792 ** TRUNCATE modes also obtain the exclusive "writer" lock on the database
3793 ** file.
3795 ** EVIDENCE-OF: R-60642-04082 If the writer lock cannot be obtained
3796 ** immediately, and a busy-handler is configured, it is invoked and the
3797 ** writer lock retried until either the busy-handler returns 0 or the
3798 ** lock is successfully obtained.
3800 if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){
3801 rc = walBusyLock(pWal, xBusy2, pBusyArg, WAL_WRITE_LOCK, 1);
3802 if( rc==SQLITE_OK ){
3803 pWal->writeLock = 1;
3804 }else if( rc==SQLITE_BUSY ){
3805 eMode2 = SQLITE_CHECKPOINT_PASSIVE;
3806 xBusy2 = 0;
3807 rc = SQLITE_OK;
3813 /* Read the wal-index header. */
3814 if( rc==SQLITE_OK ){
3815 walDisableBlocking(pWal);
3816 rc = walIndexReadHdr(pWal, &isChanged);
3817 (void)walEnableBlocking(pWal);
3818 if( isChanged && pWal->pDbFd->pMethods->iVersion>=3 ){
3819 sqlite3OsUnfetch(pWal->pDbFd, 0, 0);
3823 /* Copy data from the log to the database file. */
3824 if( rc==SQLITE_OK ){
3826 if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){
3827 rc = SQLITE_CORRUPT_BKPT;
3828 }else{
3829 rc = walCheckpoint(pWal, db, eMode2, xBusy2, pBusyArg, sync_flags, zBuf);
3832 /* If no error occurred, set the output variables. */
3833 if( rc==SQLITE_OK || rc==SQLITE_BUSY ){
3834 if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame;
3835 if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill);
3839 if( isChanged ){
3840 /* If a new wal-index header was loaded before the checkpoint was
3841 ** performed, then the pager-cache associated with pWal is now
3842 ** out of date. So zero the cached wal-index header to ensure that
3843 ** next time the pager opens a snapshot on this database it knows that
3844 ** the cache needs to be reset.
3846 memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
3849 walDisableBlocking(pWal);
3850 sqlite3WalDb(pWal, 0);
3852 /* Release the locks. */
3853 sqlite3WalEndWriteTransaction(pWal);
3854 if( pWal->ckptLock ){
3855 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
3856 pWal->ckptLock = 0;
3858 WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok"));
3859 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
3860 if( rc==SQLITE_BUSY_TIMEOUT ) rc = SQLITE_BUSY;
3861 #endif
3862 return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc);
3865 /* Return the value to pass to a sqlite3_wal_hook callback, the
3866 ** number of frames in the WAL at the point of the last commit since
3867 ** sqlite3WalCallback() was called. If no commits have occurred since
3868 ** the last call, then return 0.
3870 int sqlite3WalCallback(Wal *pWal){
3871 u32 ret = 0;
3872 if( pWal ){
3873 ret = pWal->iCallback;
3874 pWal->iCallback = 0;
3876 return (int)ret;
3880 ** This function is called to change the WAL subsystem into or out
3881 ** of locking_mode=EXCLUSIVE.
3883 ** If op is zero, then attempt to change from locking_mode=EXCLUSIVE
3884 ** into locking_mode=NORMAL. This means that we must acquire a lock
3885 ** on the pWal->readLock byte. If the WAL is already in locking_mode=NORMAL
3886 ** or if the acquisition of the lock fails, then return 0. If the
3887 ** transition out of exclusive-mode is successful, return 1. This
3888 ** operation must occur while the pager is still holding the exclusive
3889 ** lock on the main database file.
3891 ** If op is one, then change from locking_mode=NORMAL into
3892 ** locking_mode=EXCLUSIVE. This means that the pWal->readLock must
3893 ** be released. Return 1 if the transition is made and 0 if the
3894 ** WAL is already in exclusive-locking mode - meaning that this
3895 ** routine is a no-op. The pager must already hold the exclusive lock
3896 ** on the main database file before invoking this operation.
3898 ** If op is negative, then do a dry-run of the op==1 case but do
3899 ** not actually change anything. The pager uses this to see if it
3900 ** should acquire the database exclusive lock prior to invoking
3901 ** the op==1 case.
3903 int sqlite3WalExclusiveMode(Wal *pWal, int op){
3904 int rc;
3905 assert( pWal->writeLock==0 );
3906 assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 );
3908 /* pWal->readLock is usually set, but might be -1 if there was a
3909 ** prior error while attempting to acquire are read-lock. This cannot
3910 ** happen if the connection is actually in exclusive mode (as no xShmLock
3911 ** locks are taken in this case). Nor should the pager attempt to
3912 ** upgrade to exclusive-mode following such an error.
3914 assert( pWal->readLock>=0 || pWal->lockError );
3915 assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) );
3917 if( op==0 ){
3918 if( pWal->exclusiveMode!=WAL_NORMAL_MODE ){
3919 pWal->exclusiveMode = WAL_NORMAL_MODE;
3920 if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){
3921 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
3923 rc = pWal->exclusiveMode==WAL_NORMAL_MODE;
3924 }else{
3925 /* Already in locking_mode=NORMAL */
3926 rc = 0;
3928 }else if( op>0 ){
3929 assert( pWal->exclusiveMode==WAL_NORMAL_MODE );
3930 assert( pWal->readLock>=0 );
3931 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
3932 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
3933 rc = 1;
3934 }else{
3935 rc = pWal->exclusiveMode==WAL_NORMAL_MODE;
3937 return rc;
3941 ** Return true if the argument is non-NULL and the WAL module is using
3942 ** heap-memory for the wal-index. Otherwise, if the argument is NULL or the
3943 ** WAL module is using shared-memory, return false.
3945 int sqlite3WalHeapMemory(Wal *pWal){
3946 return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE );
3949 #ifdef SQLITE_ENABLE_SNAPSHOT
3950 /* Create a snapshot object. The content of a snapshot is opaque to
3951 ** every other subsystem, so the WAL module can put whatever it needs
3952 ** in the object.
3954 int sqlite3WalSnapshotGet(Wal *pWal, sqlite3_snapshot **ppSnapshot){
3955 int rc = SQLITE_OK;
3956 WalIndexHdr *pRet;
3957 static const u32 aZero[4] = { 0, 0, 0, 0 };
3959 assert( pWal->readLock>=0 && pWal->writeLock==0 );
3961 if( memcmp(&pWal->hdr.aFrameCksum[0],aZero,16)==0 ){
3962 *ppSnapshot = 0;
3963 return SQLITE_ERROR;
3965 pRet = (WalIndexHdr*)sqlite3_malloc(sizeof(WalIndexHdr));
3966 if( pRet==0 ){
3967 rc = SQLITE_NOMEM_BKPT;
3968 }else{
3969 memcpy(pRet, &pWal->hdr, sizeof(WalIndexHdr));
3970 *ppSnapshot = (sqlite3_snapshot*)pRet;
3973 return rc;
3976 /* Try to open on pSnapshot when the next read-transaction starts
3978 void sqlite3WalSnapshotOpen(
3979 Wal *pWal,
3980 sqlite3_snapshot *pSnapshot
3982 pWal->pSnapshot = (WalIndexHdr*)pSnapshot;
3986 ** Return a +ve value if snapshot p1 is newer than p2. A -ve value if
3987 ** p1 is older than p2 and zero if p1 and p2 are the same snapshot.
3989 int sqlite3_snapshot_cmp(sqlite3_snapshot *p1, sqlite3_snapshot *p2){
3990 WalIndexHdr *pHdr1 = (WalIndexHdr*)p1;
3991 WalIndexHdr *pHdr2 = (WalIndexHdr*)p2;
3993 /* aSalt[0] is a copy of the value stored in the wal file header. It
3994 ** is incremented each time the wal file is restarted. */
3995 if( pHdr1->aSalt[0]<pHdr2->aSalt[0] ) return -1;
3996 if( pHdr1->aSalt[0]>pHdr2->aSalt[0] ) return +1;
3997 if( pHdr1->mxFrame<pHdr2->mxFrame ) return -1;
3998 if( pHdr1->mxFrame>pHdr2->mxFrame ) return +1;
3999 return 0;
4003 ** The caller currently has a read transaction open on the database.
4004 ** This function takes a SHARED lock on the CHECKPOINTER slot and then
4005 ** checks if the snapshot passed as the second argument is still
4006 ** available. If so, SQLITE_OK is returned.
4008 ** If the snapshot is not available, SQLITE_ERROR is returned. Or, if
4009 ** the CHECKPOINTER lock cannot be obtained, SQLITE_BUSY. If any error
4010 ** occurs (any value other than SQLITE_OK is returned), the CHECKPOINTER
4011 ** lock is released before returning.
4013 int sqlite3WalSnapshotCheck(Wal *pWal, sqlite3_snapshot *pSnapshot){
4014 int rc;
4015 rc = walLockShared(pWal, WAL_CKPT_LOCK);
4016 if( rc==SQLITE_OK ){
4017 WalIndexHdr *pNew = (WalIndexHdr*)pSnapshot;
4018 if( memcmp(pNew->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt))
4019 || pNew->mxFrame<walCkptInfo(pWal)->nBackfillAttempted
4021 rc = SQLITE_ERROR_SNAPSHOT;
4022 walUnlockShared(pWal, WAL_CKPT_LOCK);
4025 return rc;
4029 ** Release a lock obtained by an earlier successful call to
4030 ** sqlite3WalSnapshotCheck().
4032 void sqlite3WalSnapshotUnlock(Wal *pWal){
4033 assert( pWal );
4034 walUnlockShared(pWal, WAL_CKPT_LOCK);
4038 #endif /* SQLITE_ENABLE_SNAPSHOT */
4040 #ifdef SQLITE_ENABLE_ZIPVFS
4042 ** If the argument is not NULL, it points to a Wal object that holds a
4043 ** read-lock. This function returns the database page-size if it is known,
4044 ** or zero if it is not (or if pWal is NULL).
4046 int sqlite3WalFramesize(Wal *pWal){
4047 assert( pWal==0 || pWal->readLock>=0 );
4048 return (pWal ? pWal->szPage : 0);
4050 #endif
4052 /* Return the sqlite3_file object for the WAL file
4054 sqlite3_file *sqlite3WalFile(Wal *pWal){
4055 return pWal->pWalFd;
4058 #endif /* #ifndef SQLITE_OMIT_WAL */