Snapshot of upstream SQLite 3.46.1
[sqlcipher.git] / ext / fts3 / fts3_expr.c
blobea8167c595b6931f21e9d823afa887d94cf82dc7
1 /*
2 ** 2008 Nov 28
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 ******************************************************************************
13 ** This module contains code that implements a parser for fts3 query strings
14 ** (the right-hand argument to the MATCH operator). Because the supported
15 ** syntax is relatively simple, the whole tokenizer/parser system is
16 ** hand-coded.
18 #include "fts3Int.h"
19 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
22 ** By default, this module parses the legacy syntax that has been
23 ** traditionally used by fts3. Or, if SQLITE_ENABLE_FTS3_PARENTHESIS
24 ** is defined, then it uses the new syntax. The differences between
25 ** the new and the old syntaxes are:
27 ** a) The new syntax supports parenthesis. The old does not.
29 ** b) The new syntax supports the AND and NOT operators. The old does not.
31 ** c) The old syntax supports the "-" token qualifier. This is not
32 ** supported by the new syntax (it is replaced by the NOT operator).
34 ** d) When using the old syntax, the OR operator has a greater precedence
35 ** than an implicit AND. When using the new, both implicity and explicit
36 ** AND operators have a higher precedence than OR.
38 ** If compiled with SQLITE_TEST defined, then this module exports the
39 ** symbol "int sqlite3_fts3_enable_parentheses". Setting this variable
40 ** to zero causes the module to use the old syntax. If it is set to
41 ** non-zero the new syntax is activated. This is so both syntaxes can
42 ** be tested using a single build of testfixture.
44 ** The following describes the syntax supported by the fts3 MATCH
45 ** operator in a similar format to that used by the lemon parser
46 ** generator. This module does not use actually lemon, it uses a
47 ** custom parser.
49 ** query ::= andexpr (OR andexpr)*.
51 ** andexpr ::= notexpr (AND? notexpr)*.
53 ** notexpr ::= nearexpr (NOT nearexpr|-TOKEN)*.
54 ** notexpr ::= LP query RP.
56 ** nearexpr ::= phrase (NEAR distance_opt nearexpr)*.
58 ** distance_opt ::= .
59 ** distance_opt ::= / INTEGER.
61 ** phrase ::= TOKEN.
62 ** phrase ::= COLUMN:TOKEN.
63 ** phrase ::= "TOKEN TOKEN TOKEN...".
66 #ifdef SQLITE_TEST
67 int sqlite3_fts3_enable_parentheses = 0;
68 #else
69 # ifdef SQLITE_ENABLE_FTS3_PARENTHESIS
70 # define sqlite3_fts3_enable_parentheses 1
71 # else
72 # define sqlite3_fts3_enable_parentheses 0
73 # endif
74 #endif
77 ** Default span for NEAR operators.
79 #define SQLITE_FTS3_DEFAULT_NEAR_PARAM 10
81 #include <string.h>
82 #include <assert.h>
85 ** isNot:
86 ** This variable is used by function getNextNode(). When getNextNode() is
87 ** called, it sets ParseContext.isNot to true if the 'next node' is a
88 ** FTSQUERY_PHRASE with a unary "-" attached to it. i.e. "mysql" in the
89 ** FTS3 query "sqlite -mysql". Otherwise, ParseContext.isNot is set to
90 ** zero.
92 typedef struct ParseContext ParseContext;
93 struct ParseContext {
94 sqlite3_tokenizer *pTokenizer; /* Tokenizer module */
95 int iLangid; /* Language id used with tokenizer */
96 const char **azCol; /* Array of column names for fts3 table */
97 int bFts4; /* True to allow FTS4-only syntax */
98 int nCol; /* Number of entries in azCol[] */
99 int iDefaultCol; /* Default column to query */
100 int isNot; /* True if getNextNode() sees a unary - */
101 sqlite3_context *pCtx; /* Write error message here */
102 int nNest; /* Number of nested brackets */
106 ** This function is equivalent to the standard isspace() function.
108 ** The standard isspace() can be awkward to use safely, because although it
109 ** is defined to accept an argument of type int, its behavior when passed
110 ** an integer that falls outside of the range of the unsigned char type
111 ** is undefined (and sometimes, "undefined" means segfault). This wrapper
112 ** is defined to accept an argument of type char, and always returns 0 for
113 ** any values that fall outside of the range of the unsigned char type (i.e.
114 ** negative values).
116 static int fts3isspace(char c){
117 return c==' ' || c=='\t' || c=='\n' || c=='\r' || c=='\v' || c=='\f';
121 ** Allocate nByte bytes of memory using sqlite3_malloc(). If successful,
122 ** zero the memory before returning a pointer to it. If unsuccessful,
123 ** return NULL.
125 void *sqlite3Fts3MallocZero(sqlite3_int64 nByte){
126 void *pRet = sqlite3_malloc64(nByte);
127 if( pRet ) memset(pRet, 0, nByte);
128 return pRet;
131 int sqlite3Fts3OpenTokenizer(
132 sqlite3_tokenizer *pTokenizer,
133 int iLangid,
134 const char *z,
135 int n,
136 sqlite3_tokenizer_cursor **ppCsr
138 sqlite3_tokenizer_module const *pModule = pTokenizer->pModule;
139 sqlite3_tokenizer_cursor *pCsr = 0;
140 int rc;
142 rc = pModule->xOpen(pTokenizer, z, n, &pCsr);
143 assert( rc==SQLITE_OK || pCsr==0 );
144 if( rc==SQLITE_OK ){
145 pCsr->pTokenizer = pTokenizer;
146 if( pModule->iVersion>=1 ){
147 rc = pModule->xLanguageid(pCsr, iLangid);
148 if( rc!=SQLITE_OK ){
149 pModule->xClose(pCsr);
150 pCsr = 0;
154 *ppCsr = pCsr;
155 return rc;
159 ** Function getNextNode(), which is called by fts3ExprParse(), may itself
160 ** call fts3ExprParse(). So this forward declaration is required.
162 static int fts3ExprParse(ParseContext *, const char *, int, Fts3Expr **, int *);
165 ** Extract the next token from buffer z (length n) using the tokenizer
166 ** and other information (column names etc.) in pParse. Create an Fts3Expr
167 ** structure of type FTSQUERY_PHRASE containing a phrase consisting of this
168 ** single token and set *ppExpr to point to it. If the end of the buffer is
169 ** reached before a token is found, set *ppExpr to zero. It is the
170 ** responsibility of the caller to eventually deallocate the allocated
171 ** Fts3Expr structure (if any) by passing it to sqlite3_free().
173 ** Return SQLITE_OK if successful, or SQLITE_NOMEM if a memory allocation
174 ** fails.
176 static int getNextToken(
177 ParseContext *pParse, /* fts3 query parse context */
178 int iCol, /* Value for Fts3Phrase.iColumn */
179 const char *z, int n, /* Input string */
180 Fts3Expr **ppExpr, /* OUT: expression */
181 int *pnConsumed /* OUT: Number of bytes consumed */
183 sqlite3_tokenizer *pTokenizer = pParse->pTokenizer;
184 sqlite3_tokenizer_module const *pModule = pTokenizer->pModule;
185 int rc;
186 sqlite3_tokenizer_cursor *pCursor;
187 Fts3Expr *pRet = 0;
188 int i = 0;
190 /* Set variable i to the maximum number of bytes of input to tokenize. */
191 for(i=0; i<n; i++){
192 if( sqlite3_fts3_enable_parentheses && (z[i]=='(' || z[i]==')') ) break;
193 if( z[i]=='"' ) break;
196 *pnConsumed = i;
197 rc = sqlite3Fts3OpenTokenizer(pTokenizer, pParse->iLangid, z, i, &pCursor);
198 if( rc==SQLITE_OK ){
199 const char *zToken;
200 int nToken = 0, iStart = 0, iEnd = 0, iPosition = 0;
201 sqlite3_int64 nByte; /* total space to allocate */
203 rc = pModule->xNext(pCursor, &zToken, &nToken, &iStart, &iEnd, &iPosition);
204 if( rc==SQLITE_OK ){
205 nByte = sizeof(Fts3Expr) + sizeof(Fts3Phrase) + nToken;
206 pRet = (Fts3Expr *)sqlite3Fts3MallocZero(nByte);
207 if( !pRet ){
208 rc = SQLITE_NOMEM;
209 }else{
210 pRet->eType = FTSQUERY_PHRASE;
211 pRet->pPhrase = (Fts3Phrase *)&pRet[1];
212 pRet->pPhrase->nToken = 1;
213 pRet->pPhrase->iColumn = iCol;
214 pRet->pPhrase->aToken[0].n = nToken;
215 pRet->pPhrase->aToken[0].z = (char *)&pRet->pPhrase[1];
216 memcpy(pRet->pPhrase->aToken[0].z, zToken, nToken);
218 if( iEnd<n && z[iEnd]=='*' ){
219 pRet->pPhrase->aToken[0].isPrefix = 1;
220 iEnd++;
223 while( 1 ){
224 if( !sqlite3_fts3_enable_parentheses
225 && iStart>0 && z[iStart-1]=='-'
227 pParse->isNot = 1;
228 iStart--;
229 }else if( pParse->bFts4 && iStart>0 && z[iStart-1]=='^' ){
230 pRet->pPhrase->aToken[0].bFirst = 1;
231 iStart--;
232 }else{
233 break;
238 *pnConsumed = iEnd;
239 }else if( i && rc==SQLITE_DONE ){
240 rc = SQLITE_OK;
243 pModule->xClose(pCursor);
246 *ppExpr = pRet;
247 return rc;
252 ** Enlarge a memory allocation. If an out-of-memory allocation occurs,
253 ** then free the old allocation.
255 static void *fts3ReallocOrFree(void *pOrig, sqlite3_int64 nNew){
256 void *pRet = sqlite3_realloc64(pOrig, nNew);
257 if( !pRet ){
258 sqlite3_free(pOrig);
260 return pRet;
264 ** Buffer zInput, length nInput, contains the contents of a quoted string
265 ** that appeared as part of an fts3 query expression. Neither quote character
266 ** is included in the buffer. This function attempts to tokenize the entire
267 ** input buffer and create an Fts3Expr structure of type FTSQUERY_PHRASE
268 ** containing the results.
270 ** If successful, SQLITE_OK is returned and *ppExpr set to point at the
271 ** allocated Fts3Expr structure. Otherwise, either SQLITE_NOMEM (out of memory
272 ** error) or SQLITE_ERROR (tokenization error) is returned and *ppExpr set
273 ** to 0.
275 static int getNextString(
276 ParseContext *pParse, /* fts3 query parse context */
277 const char *zInput, int nInput, /* Input string */
278 Fts3Expr **ppExpr /* OUT: expression */
280 sqlite3_tokenizer *pTokenizer = pParse->pTokenizer;
281 sqlite3_tokenizer_module const *pModule = pTokenizer->pModule;
282 int rc;
283 Fts3Expr *p = 0;
284 sqlite3_tokenizer_cursor *pCursor = 0;
285 char *zTemp = 0;
286 int nTemp = 0;
288 const int nSpace = sizeof(Fts3Expr) + sizeof(Fts3Phrase);
289 int nToken = 0;
291 /* The final Fts3Expr data structure, including the Fts3Phrase,
292 ** Fts3PhraseToken structures token buffers are all stored as a single
293 ** allocation so that the expression can be freed with a single call to
294 ** sqlite3_free(). Setting this up requires a two pass approach.
296 ** The first pass, in the block below, uses a tokenizer cursor to iterate
297 ** through the tokens in the expression. This pass uses fts3ReallocOrFree()
298 ** to assemble data in two dynamic buffers:
300 ** Buffer p: Points to the Fts3Expr structure, followed by the Fts3Phrase
301 ** structure, followed by the array of Fts3PhraseToken
302 ** structures. This pass only populates the Fts3PhraseToken array.
304 ** Buffer zTemp: Contains copies of all tokens.
306 ** The second pass, in the block that begins "if( rc==SQLITE_DONE )" below,
307 ** appends buffer zTemp to buffer p, and fills in the Fts3Expr and Fts3Phrase
308 ** structures.
310 rc = sqlite3Fts3OpenTokenizer(
311 pTokenizer, pParse->iLangid, zInput, nInput, &pCursor);
312 if( rc==SQLITE_OK ){
313 int ii;
314 for(ii=0; rc==SQLITE_OK; ii++){
315 const char *zByte;
316 int nByte = 0, iBegin = 0, iEnd = 0, iPos = 0;
317 rc = pModule->xNext(pCursor, &zByte, &nByte, &iBegin, &iEnd, &iPos);
318 if( rc==SQLITE_OK ){
319 Fts3PhraseToken *pToken;
321 p = fts3ReallocOrFree(p, nSpace + ii*sizeof(Fts3PhraseToken));
322 if( !p ) goto no_mem;
324 zTemp = fts3ReallocOrFree(zTemp, nTemp + nByte);
325 if( !zTemp ) goto no_mem;
327 assert( nToken==ii );
328 pToken = &((Fts3Phrase *)(&p[1]))->aToken[ii];
329 memset(pToken, 0, sizeof(Fts3PhraseToken));
331 memcpy(&zTemp[nTemp], zByte, nByte);
332 nTemp += nByte;
334 pToken->n = nByte;
335 pToken->isPrefix = (iEnd<nInput && zInput[iEnd]=='*');
336 pToken->bFirst = (iBegin>0 && zInput[iBegin-1]=='^');
337 nToken = ii+1;
341 pModule->xClose(pCursor);
342 pCursor = 0;
345 if( rc==SQLITE_DONE ){
346 int jj;
347 char *zBuf = 0;
349 p = fts3ReallocOrFree(p, nSpace + nToken*sizeof(Fts3PhraseToken) + nTemp);
350 if( !p ) goto no_mem;
351 memset(p, 0, (char *)&(((Fts3Phrase *)&p[1])->aToken[0])-(char *)p);
352 p->eType = FTSQUERY_PHRASE;
353 p->pPhrase = (Fts3Phrase *)&p[1];
354 p->pPhrase->iColumn = pParse->iDefaultCol;
355 p->pPhrase->nToken = nToken;
357 zBuf = (char *)&p->pPhrase->aToken[nToken];
358 if( zTemp ){
359 memcpy(zBuf, zTemp, nTemp);
360 sqlite3_free(zTemp);
361 }else{
362 assert( nTemp==0 );
365 for(jj=0; jj<p->pPhrase->nToken; jj++){
366 p->pPhrase->aToken[jj].z = zBuf;
367 zBuf += p->pPhrase->aToken[jj].n;
369 rc = SQLITE_OK;
372 *ppExpr = p;
373 return rc;
374 no_mem:
376 if( pCursor ){
377 pModule->xClose(pCursor);
379 sqlite3_free(zTemp);
380 sqlite3_free(p);
381 *ppExpr = 0;
382 return SQLITE_NOMEM;
386 ** The output variable *ppExpr is populated with an allocated Fts3Expr
387 ** structure, or set to 0 if the end of the input buffer is reached.
389 ** Returns an SQLite error code. SQLITE_OK if everything works, SQLITE_NOMEM
390 ** if a malloc failure occurs, or SQLITE_ERROR if a parse error is encountered.
391 ** If SQLITE_ERROR is returned, pContext is populated with an error message.
393 static int getNextNode(
394 ParseContext *pParse, /* fts3 query parse context */
395 const char *z, int n, /* Input string */
396 Fts3Expr **ppExpr, /* OUT: expression */
397 int *pnConsumed /* OUT: Number of bytes consumed */
399 static const struct Fts3Keyword {
400 char *z; /* Keyword text */
401 unsigned char n; /* Length of the keyword */
402 unsigned char parenOnly; /* Only valid in paren mode */
403 unsigned char eType; /* Keyword code */
404 } aKeyword[] = {
405 { "OR" , 2, 0, FTSQUERY_OR },
406 { "AND", 3, 1, FTSQUERY_AND },
407 { "NOT", 3, 1, FTSQUERY_NOT },
408 { "NEAR", 4, 0, FTSQUERY_NEAR }
410 int ii;
411 int iCol;
412 int iColLen;
413 int rc;
414 Fts3Expr *pRet = 0;
416 const char *zInput = z;
417 int nInput = n;
419 pParse->isNot = 0;
421 /* Skip over any whitespace before checking for a keyword, an open or
422 ** close bracket, or a quoted string.
424 while( nInput>0 && fts3isspace(*zInput) ){
425 nInput--;
426 zInput++;
428 if( nInput==0 ){
429 return SQLITE_DONE;
432 /* See if we are dealing with a keyword. */
433 for(ii=0; ii<(int)(sizeof(aKeyword)/sizeof(struct Fts3Keyword)); ii++){
434 const struct Fts3Keyword *pKey = &aKeyword[ii];
436 if( (pKey->parenOnly & ~sqlite3_fts3_enable_parentheses)!=0 ){
437 continue;
440 if( nInput>=pKey->n && 0==memcmp(zInput, pKey->z, pKey->n) ){
441 int nNear = SQLITE_FTS3_DEFAULT_NEAR_PARAM;
442 int nKey = pKey->n;
443 char cNext;
445 /* If this is a "NEAR" keyword, check for an explicit nearness. */
446 if( pKey->eType==FTSQUERY_NEAR ){
447 assert( nKey==4 );
448 if( zInput[4]=='/' && zInput[5]>='0' && zInput[5]<='9' ){
449 nKey += 1+sqlite3Fts3ReadInt(&zInput[nKey+1], &nNear);
453 /* At this point this is probably a keyword. But for that to be true,
454 ** the next byte must contain either whitespace, an open or close
455 ** parenthesis, a quote character, or EOF.
457 cNext = zInput[nKey];
458 if( fts3isspace(cNext)
459 || cNext=='"' || cNext=='(' || cNext==')' || cNext==0
461 pRet = (Fts3Expr *)sqlite3Fts3MallocZero(sizeof(Fts3Expr));
462 if( !pRet ){
463 return SQLITE_NOMEM;
465 pRet->eType = pKey->eType;
466 pRet->nNear = nNear;
467 *ppExpr = pRet;
468 *pnConsumed = (int)((zInput - z) + nKey);
469 return SQLITE_OK;
472 /* Turns out that wasn't a keyword after all. This happens if the
473 ** user has supplied a token such as "ORacle". Continue.
478 /* See if we are dealing with a quoted phrase. If this is the case, then
479 ** search for the closing quote and pass the whole string to getNextString()
480 ** for processing. This is easy to do, as fts3 has no syntax for escaping
481 ** a quote character embedded in a string.
483 if( *zInput=='"' ){
484 for(ii=1; ii<nInput && zInput[ii]!='"'; ii++);
485 *pnConsumed = (int)((zInput - z) + ii + 1);
486 if( ii==nInput ){
487 return SQLITE_ERROR;
489 return getNextString(pParse, &zInput[1], ii-1, ppExpr);
492 if( sqlite3_fts3_enable_parentheses ){
493 if( *zInput=='(' ){
494 int nConsumed = 0;
495 pParse->nNest++;
496 #if !defined(SQLITE_MAX_EXPR_DEPTH)
497 if( pParse->nNest>1000 ) return SQLITE_ERROR;
498 #elif SQLITE_MAX_EXPR_DEPTH>0
499 if( pParse->nNest>SQLITE_MAX_EXPR_DEPTH ) return SQLITE_ERROR;
500 #endif
501 rc = fts3ExprParse(pParse, zInput+1, nInput-1, ppExpr, &nConsumed);
502 *pnConsumed = (int)(zInput - z) + 1 + nConsumed;
503 return rc;
504 }else if( *zInput==')' ){
505 pParse->nNest--;
506 *pnConsumed = (int)((zInput - z) + 1);
507 *ppExpr = 0;
508 return SQLITE_DONE;
512 /* If control flows to this point, this must be a regular token, or
513 ** the end of the input. Read a regular token using the sqlite3_tokenizer
514 ** interface. Before doing so, figure out if there is an explicit
515 ** column specifier for the token.
517 ** TODO: Strangely, it is not possible to associate a column specifier
518 ** with a quoted phrase, only with a single token. Not sure if this was
519 ** an implementation artifact or an intentional decision when fts3 was
520 ** first implemented. Whichever it was, this module duplicates the
521 ** limitation.
523 iCol = pParse->iDefaultCol;
524 iColLen = 0;
525 for(ii=0; ii<pParse->nCol; ii++){
526 const char *zStr = pParse->azCol[ii];
527 int nStr = (int)strlen(zStr);
528 if( nInput>nStr && zInput[nStr]==':'
529 && sqlite3_strnicmp(zStr, zInput, nStr)==0
531 iCol = ii;
532 iColLen = (int)((zInput - z) + nStr + 1);
533 break;
536 rc = getNextToken(pParse, iCol, &z[iColLen], n-iColLen, ppExpr, pnConsumed);
537 *pnConsumed += iColLen;
538 return rc;
542 ** The argument is an Fts3Expr structure for a binary operator (any type
543 ** except an FTSQUERY_PHRASE). Return an integer value representing the
544 ** precedence of the operator. Lower values have a higher precedence (i.e.
545 ** group more tightly). For example, in the C language, the == operator
546 ** groups more tightly than ||, and would therefore have a higher precedence.
548 ** When using the new fts3 query syntax (when SQLITE_ENABLE_FTS3_PARENTHESIS
549 ** is defined), the order of the operators in precedence from highest to
550 ** lowest is:
552 ** NEAR
553 ** NOT
554 ** AND (including implicit ANDs)
555 ** OR
557 ** Note that when using the old query syntax, the OR operator has a higher
558 ** precedence than the AND operator.
560 static int opPrecedence(Fts3Expr *p){
561 assert( p->eType!=FTSQUERY_PHRASE );
562 if( sqlite3_fts3_enable_parentheses ){
563 return p->eType;
564 }else if( p->eType==FTSQUERY_NEAR ){
565 return 1;
566 }else if( p->eType==FTSQUERY_OR ){
567 return 2;
569 assert( p->eType==FTSQUERY_AND );
570 return 3;
574 ** Argument ppHead contains a pointer to the current head of a query
575 ** expression tree being parsed. pPrev is the expression node most recently
576 ** inserted into the tree. This function adds pNew, which is always a binary
577 ** operator node, into the expression tree based on the relative precedence
578 ** of pNew and the existing nodes of the tree. This may result in the head
579 ** of the tree changing, in which case *ppHead is set to the new root node.
581 static void insertBinaryOperator(
582 Fts3Expr **ppHead, /* Pointer to the root node of a tree */
583 Fts3Expr *pPrev, /* Node most recently inserted into the tree */
584 Fts3Expr *pNew /* New binary node to insert into expression tree */
586 Fts3Expr *pSplit = pPrev;
587 while( pSplit->pParent && opPrecedence(pSplit->pParent)<=opPrecedence(pNew) ){
588 pSplit = pSplit->pParent;
591 if( pSplit->pParent ){
592 assert( pSplit->pParent->pRight==pSplit );
593 pSplit->pParent->pRight = pNew;
594 pNew->pParent = pSplit->pParent;
595 }else{
596 *ppHead = pNew;
598 pNew->pLeft = pSplit;
599 pSplit->pParent = pNew;
603 ** Parse the fts3 query expression found in buffer z, length n. This function
604 ** returns either when the end of the buffer is reached or an unmatched
605 ** closing bracket - ')' - is encountered.
607 ** If successful, SQLITE_OK is returned, *ppExpr is set to point to the
608 ** parsed form of the expression and *pnConsumed is set to the number of
609 ** bytes read from buffer z. Otherwise, *ppExpr is set to 0 and SQLITE_NOMEM
610 ** (out of memory error) or SQLITE_ERROR (parse error) is returned.
612 static int fts3ExprParse(
613 ParseContext *pParse, /* fts3 query parse context */
614 const char *z, int n, /* Text of MATCH query */
615 Fts3Expr **ppExpr, /* OUT: Parsed query structure */
616 int *pnConsumed /* OUT: Number of bytes consumed */
618 Fts3Expr *pRet = 0;
619 Fts3Expr *pPrev = 0;
620 Fts3Expr *pNotBranch = 0; /* Only used in legacy parse mode */
621 int nIn = n;
622 const char *zIn = z;
623 int rc = SQLITE_OK;
624 int isRequirePhrase = 1;
626 while( rc==SQLITE_OK ){
627 Fts3Expr *p = 0;
628 int nByte = 0;
630 rc = getNextNode(pParse, zIn, nIn, &p, &nByte);
631 assert( nByte>0 || (rc!=SQLITE_OK && p==0) );
632 if( rc==SQLITE_OK ){
633 if( p ){
634 int isPhrase;
636 if( !sqlite3_fts3_enable_parentheses
637 && p->eType==FTSQUERY_PHRASE && pParse->isNot
639 /* Create an implicit NOT operator. */
640 Fts3Expr *pNot = sqlite3Fts3MallocZero(sizeof(Fts3Expr));
641 if( !pNot ){
642 sqlite3Fts3ExprFree(p);
643 rc = SQLITE_NOMEM;
644 goto exprparse_out;
646 pNot->eType = FTSQUERY_NOT;
647 pNot->pRight = p;
648 p->pParent = pNot;
649 if( pNotBranch ){
650 pNot->pLeft = pNotBranch;
651 pNotBranch->pParent = pNot;
653 pNotBranch = pNot;
654 p = pPrev;
655 }else{
656 int eType = p->eType;
657 isPhrase = (eType==FTSQUERY_PHRASE || p->pLeft);
659 /* The isRequirePhrase variable is set to true if a phrase or
660 ** an expression contained in parenthesis is required. If a
661 ** binary operator (AND, OR, NOT or NEAR) is encounted when
662 ** isRequirePhrase is set, this is a syntax error.
664 if( !isPhrase && isRequirePhrase ){
665 sqlite3Fts3ExprFree(p);
666 rc = SQLITE_ERROR;
667 goto exprparse_out;
670 if( isPhrase && !isRequirePhrase ){
671 /* Insert an implicit AND operator. */
672 Fts3Expr *pAnd;
673 assert( pRet && pPrev );
674 pAnd = sqlite3Fts3MallocZero(sizeof(Fts3Expr));
675 if( !pAnd ){
676 sqlite3Fts3ExprFree(p);
677 rc = SQLITE_NOMEM;
678 goto exprparse_out;
680 pAnd->eType = FTSQUERY_AND;
681 insertBinaryOperator(&pRet, pPrev, pAnd);
682 pPrev = pAnd;
685 /* This test catches attempts to make either operand of a NEAR
686 ** operator something other than a phrase. For example, either of
687 ** the following:
689 ** (bracketed expression) NEAR phrase
690 ** phrase NEAR (bracketed expression)
692 ** Return an error in either case.
694 if( pPrev && (
695 (eType==FTSQUERY_NEAR && !isPhrase && pPrev->eType!=FTSQUERY_PHRASE)
696 || (eType!=FTSQUERY_PHRASE && isPhrase && pPrev->eType==FTSQUERY_NEAR)
698 sqlite3Fts3ExprFree(p);
699 rc = SQLITE_ERROR;
700 goto exprparse_out;
703 if( isPhrase ){
704 if( pRet ){
705 assert( pPrev && pPrev->pLeft && pPrev->pRight==0 );
706 pPrev->pRight = p;
707 p->pParent = pPrev;
708 }else{
709 pRet = p;
711 }else{
712 insertBinaryOperator(&pRet, pPrev, p);
714 isRequirePhrase = !isPhrase;
716 pPrev = p;
718 assert( nByte>0 );
720 assert( rc!=SQLITE_OK || (nByte>0 && nByte<=nIn) );
721 nIn -= nByte;
722 zIn += nByte;
725 if( rc==SQLITE_DONE && pRet && isRequirePhrase ){
726 rc = SQLITE_ERROR;
729 if( rc==SQLITE_DONE ){
730 rc = SQLITE_OK;
731 if( !sqlite3_fts3_enable_parentheses && pNotBranch ){
732 if( !pRet ){
733 rc = SQLITE_ERROR;
734 }else{
735 Fts3Expr *pIter = pNotBranch;
736 while( pIter->pLeft ){
737 pIter = pIter->pLeft;
739 pIter->pLeft = pRet;
740 pRet->pParent = pIter;
741 pRet = pNotBranch;
745 *pnConsumed = n - nIn;
747 exprparse_out:
748 if( rc!=SQLITE_OK ){
749 sqlite3Fts3ExprFree(pRet);
750 sqlite3Fts3ExprFree(pNotBranch);
751 pRet = 0;
753 *ppExpr = pRet;
754 return rc;
758 ** Return SQLITE_ERROR if the maximum depth of the expression tree passed
759 ** as the only argument is more than nMaxDepth.
761 static int fts3ExprCheckDepth(Fts3Expr *p, int nMaxDepth){
762 int rc = SQLITE_OK;
763 if( p ){
764 if( nMaxDepth<0 ){
765 rc = SQLITE_TOOBIG;
766 }else{
767 rc = fts3ExprCheckDepth(p->pLeft, nMaxDepth-1);
768 if( rc==SQLITE_OK ){
769 rc = fts3ExprCheckDepth(p->pRight, nMaxDepth-1);
773 return rc;
777 ** This function attempts to transform the expression tree at (*pp) to
778 ** an equivalent but more balanced form. The tree is modified in place.
779 ** If successful, SQLITE_OK is returned and (*pp) set to point to the
780 ** new root expression node.
782 ** nMaxDepth is the maximum allowable depth of the balanced sub-tree.
784 ** Otherwise, if an error occurs, an SQLite error code is returned and
785 ** expression (*pp) freed.
787 static int fts3ExprBalance(Fts3Expr **pp, int nMaxDepth){
788 int rc = SQLITE_OK; /* Return code */
789 Fts3Expr *pRoot = *pp; /* Initial root node */
790 Fts3Expr *pFree = 0; /* List of free nodes. Linked by pParent. */
791 int eType = pRoot->eType; /* Type of node in this tree */
793 if( nMaxDepth==0 ){
794 rc = SQLITE_ERROR;
797 if( rc==SQLITE_OK ){
798 if( (eType==FTSQUERY_AND || eType==FTSQUERY_OR) ){
799 Fts3Expr **apLeaf;
800 apLeaf = (Fts3Expr **)sqlite3_malloc64(sizeof(Fts3Expr *) * nMaxDepth);
801 if( 0==apLeaf ){
802 rc = SQLITE_NOMEM;
803 }else{
804 memset(apLeaf, 0, sizeof(Fts3Expr *) * nMaxDepth);
807 if( rc==SQLITE_OK ){
808 int i;
809 Fts3Expr *p;
811 /* Set $p to point to the left-most leaf in the tree of eType nodes. */
812 for(p=pRoot; p->eType==eType; p=p->pLeft){
813 assert( p->pParent==0 || p->pParent->pLeft==p );
814 assert( p->pLeft && p->pRight );
817 /* This loop runs once for each leaf in the tree of eType nodes. */
818 while( 1 ){
819 int iLvl;
820 Fts3Expr *pParent = p->pParent; /* Current parent of p */
822 assert( pParent==0 || pParent->pLeft==p );
823 p->pParent = 0;
824 if( pParent ){
825 pParent->pLeft = 0;
826 }else{
827 pRoot = 0;
829 rc = fts3ExprBalance(&p, nMaxDepth-1);
830 if( rc!=SQLITE_OK ) break;
832 for(iLvl=0; p && iLvl<nMaxDepth; iLvl++){
833 if( apLeaf[iLvl]==0 ){
834 apLeaf[iLvl] = p;
835 p = 0;
836 }else{
837 assert( pFree );
838 pFree->pLeft = apLeaf[iLvl];
839 pFree->pRight = p;
840 pFree->pLeft->pParent = pFree;
841 pFree->pRight->pParent = pFree;
843 p = pFree;
844 pFree = pFree->pParent;
845 p->pParent = 0;
846 apLeaf[iLvl] = 0;
849 if( p ){
850 sqlite3Fts3ExprFree(p);
851 rc = SQLITE_TOOBIG;
852 break;
855 /* If that was the last leaf node, break out of the loop */
856 if( pParent==0 ) break;
858 /* Set $p to point to the next leaf in the tree of eType nodes */
859 for(p=pParent->pRight; p->eType==eType; p=p->pLeft);
861 /* Remove pParent from the original tree. */
862 assert( pParent->pParent==0 || pParent->pParent->pLeft==pParent );
863 pParent->pRight->pParent = pParent->pParent;
864 if( pParent->pParent ){
865 pParent->pParent->pLeft = pParent->pRight;
866 }else{
867 assert( pParent==pRoot );
868 pRoot = pParent->pRight;
871 /* Link pParent into the free node list. It will be used as an
872 ** internal node of the new tree. */
873 pParent->pParent = pFree;
874 pFree = pParent;
877 if( rc==SQLITE_OK ){
878 p = 0;
879 for(i=0; i<nMaxDepth; i++){
880 if( apLeaf[i] ){
881 if( p==0 ){
882 p = apLeaf[i];
883 p->pParent = 0;
884 }else{
885 assert( pFree!=0 );
886 pFree->pRight = p;
887 pFree->pLeft = apLeaf[i];
888 pFree->pLeft->pParent = pFree;
889 pFree->pRight->pParent = pFree;
891 p = pFree;
892 pFree = pFree->pParent;
893 p->pParent = 0;
897 pRoot = p;
898 }else{
899 /* An error occurred. Delete the contents of the apLeaf[] array
900 ** and pFree list. Everything else is cleaned up by the call to
901 ** sqlite3Fts3ExprFree(pRoot) below. */
902 Fts3Expr *pDel;
903 for(i=0; i<nMaxDepth; i++){
904 sqlite3Fts3ExprFree(apLeaf[i]);
906 while( (pDel=pFree)!=0 ){
907 pFree = pDel->pParent;
908 sqlite3_free(pDel);
912 assert( pFree==0 );
913 sqlite3_free( apLeaf );
915 }else if( eType==FTSQUERY_NOT ){
916 Fts3Expr *pLeft = pRoot->pLeft;
917 Fts3Expr *pRight = pRoot->pRight;
919 pRoot->pLeft = 0;
920 pRoot->pRight = 0;
921 pLeft->pParent = 0;
922 pRight->pParent = 0;
924 rc = fts3ExprBalance(&pLeft, nMaxDepth-1);
925 if( rc==SQLITE_OK ){
926 rc = fts3ExprBalance(&pRight, nMaxDepth-1);
929 if( rc!=SQLITE_OK ){
930 sqlite3Fts3ExprFree(pRight);
931 sqlite3Fts3ExprFree(pLeft);
932 }else{
933 assert( pLeft && pRight );
934 pRoot->pLeft = pLeft;
935 pLeft->pParent = pRoot;
936 pRoot->pRight = pRight;
937 pRight->pParent = pRoot;
942 if( rc!=SQLITE_OK ){
943 sqlite3Fts3ExprFree(pRoot);
944 pRoot = 0;
946 *pp = pRoot;
947 return rc;
951 ** This function is similar to sqlite3Fts3ExprParse(), with the following
952 ** differences:
954 ** 1. It does not do expression rebalancing.
955 ** 2. It does not check that the expression does not exceed the
956 ** maximum allowable depth.
957 ** 3. Even if it fails, *ppExpr may still be set to point to an
958 ** expression tree. It should be deleted using sqlite3Fts3ExprFree()
959 ** in this case.
961 static int fts3ExprParseUnbalanced(
962 sqlite3_tokenizer *pTokenizer, /* Tokenizer module */
963 int iLangid, /* Language id for tokenizer */
964 char **azCol, /* Array of column names for fts3 table */
965 int bFts4, /* True to allow FTS4-only syntax */
966 int nCol, /* Number of entries in azCol[] */
967 int iDefaultCol, /* Default column to query */
968 const char *z, int n, /* Text of MATCH query */
969 Fts3Expr **ppExpr /* OUT: Parsed query structure */
971 int nParsed;
972 int rc;
973 ParseContext sParse;
975 memset(&sParse, 0, sizeof(ParseContext));
976 sParse.pTokenizer = pTokenizer;
977 sParse.iLangid = iLangid;
978 sParse.azCol = (const char **)azCol;
979 sParse.nCol = nCol;
980 sParse.iDefaultCol = iDefaultCol;
981 sParse.bFts4 = bFts4;
982 if( z==0 ){
983 *ppExpr = 0;
984 return SQLITE_OK;
986 if( n<0 ){
987 n = (int)strlen(z);
989 rc = fts3ExprParse(&sParse, z, n, ppExpr, &nParsed);
990 assert( rc==SQLITE_OK || *ppExpr==0 );
992 /* Check for mismatched parenthesis */
993 if( rc==SQLITE_OK && sParse.nNest ){
994 rc = SQLITE_ERROR;
997 return rc;
1001 ** Parameters z and n contain a pointer to and length of a buffer containing
1002 ** an fts3 query expression, respectively. This function attempts to parse the
1003 ** query expression and create a tree of Fts3Expr structures representing the
1004 ** parsed expression. If successful, *ppExpr is set to point to the head
1005 ** of the parsed expression tree and SQLITE_OK is returned. If an error
1006 ** occurs, either SQLITE_NOMEM (out-of-memory error) or SQLITE_ERROR (parse
1007 ** error) is returned and *ppExpr is set to 0.
1009 ** If parameter n is a negative number, then z is assumed to point to a
1010 ** nul-terminated string and the length is determined using strlen().
1012 ** The first parameter, pTokenizer, is passed the fts3 tokenizer module to
1013 ** use to normalize query tokens while parsing the expression. The azCol[]
1014 ** array, which is assumed to contain nCol entries, should contain the names
1015 ** of each column in the target fts3 table, in order from left to right.
1016 ** Column names must be nul-terminated strings.
1018 ** The iDefaultCol parameter should be passed the index of the table column
1019 ** that appears on the left-hand-side of the MATCH operator (the default
1020 ** column to match against for tokens for which a column name is not explicitly
1021 ** specified as part of the query string), or -1 if tokens may by default
1022 ** match any table column.
1024 int sqlite3Fts3ExprParse(
1025 sqlite3_tokenizer *pTokenizer, /* Tokenizer module */
1026 int iLangid, /* Language id for tokenizer */
1027 char **azCol, /* Array of column names for fts3 table */
1028 int bFts4, /* True to allow FTS4-only syntax */
1029 int nCol, /* Number of entries in azCol[] */
1030 int iDefaultCol, /* Default column to query */
1031 const char *z, int n, /* Text of MATCH query */
1032 Fts3Expr **ppExpr, /* OUT: Parsed query structure */
1033 char **pzErr /* OUT: Error message (sqlite3_malloc) */
1035 int rc = fts3ExprParseUnbalanced(
1036 pTokenizer, iLangid, azCol, bFts4, nCol, iDefaultCol, z, n, ppExpr
1039 /* Rebalance the expression. And check that its depth does not exceed
1040 ** SQLITE_FTS3_MAX_EXPR_DEPTH. */
1041 if( rc==SQLITE_OK && *ppExpr ){
1042 rc = fts3ExprBalance(ppExpr, SQLITE_FTS3_MAX_EXPR_DEPTH);
1043 if( rc==SQLITE_OK ){
1044 rc = fts3ExprCheckDepth(*ppExpr, SQLITE_FTS3_MAX_EXPR_DEPTH);
1048 if( rc!=SQLITE_OK ){
1049 sqlite3Fts3ExprFree(*ppExpr);
1050 *ppExpr = 0;
1051 if( rc==SQLITE_TOOBIG ){
1052 sqlite3Fts3ErrMsg(pzErr,
1053 "FTS expression tree is too large (maximum depth %d)",
1054 SQLITE_FTS3_MAX_EXPR_DEPTH
1056 rc = SQLITE_ERROR;
1057 }else if( rc==SQLITE_ERROR ){
1058 sqlite3Fts3ErrMsg(pzErr, "malformed MATCH expression: [%s]", z);
1062 return rc;
1066 ** Free a single node of an expression tree.
1068 static void fts3FreeExprNode(Fts3Expr *p){
1069 assert( p->eType==FTSQUERY_PHRASE || p->pPhrase==0 );
1070 sqlite3Fts3EvalPhraseCleanup(p->pPhrase);
1071 sqlite3_free(p->aMI);
1072 sqlite3_free(p);
1076 ** Free a parsed fts3 query expression allocated by sqlite3Fts3ExprParse().
1078 ** This function would be simpler if it recursively called itself. But
1079 ** that would mean passing a sufficiently large expression to ExprParse()
1080 ** could cause a stack overflow.
1082 void sqlite3Fts3ExprFree(Fts3Expr *pDel){
1083 Fts3Expr *p;
1084 assert( pDel==0 || pDel->pParent==0 );
1085 for(p=pDel; p && (p->pLeft||p->pRight); p=(p->pLeft ? p->pLeft : p->pRight)){
1086 assert( p->pParent==0 || p==p->pParent->pRight || p==p->pParent->pLeft );
1088 while( p ){
1089 Fts3Expr *pParent = p->pParent;
1090 fts3FreeExprNode(p);
1091 if( pParent && p==pParent->pLeft && pParent->pRight ){
1092 p = pParent->pRight;
1093 while( p && (p->pLeft || p->pRight) ){
1094 assert( p==p->pParent->pRight || p==p->pParent->pLeft );
1095 p = (p->pLeft ? p->pLeft : p->pRight);
1097 }else{
1098 p = pParent;
1103 /****************************************************************************
1104 *****************************************************************************
1105 ** Everything after this point is just test code.
1108 #ifdef SQLITE_TEST
1110 #include <stdio.h>
1113 ** Return a pointer to a buffer containing a text representation of the
1114 ** expression passed as the first argument. The buffer is obtained from
1115 ** sqlite3_malloc(). It is the responsibility of the caller to use
1116 ** sqlite3_free() to release the memory. If an OOM condition is encountered,
1117 ** NULL is returned.
1119 ** If the second argument is not NULL, then its contents are prepended to
1120 ** the returned expression text and then freed using sqlite3_free().
1122 static char *exprToString(Fts3Expr *pExpr, char *zBuf){
1123 if( pExpr==0 ){
1124 return sqlite3_mprintf("");
1126 switch( pExpr->eType ){
1127 case FTSQUERY_PHRASE: {
1128 Fts3Phrase *pPhrase = pExpr->pPhrase;
1129 int i;
1130 zBuf = sqlite3_mprintf(
1131 "%zPHRASE %d 0", zBuf, pPhrase->iColumn);
1132 for(i=0; zBuf && i<pPhrase->nToken; i++){
1133 zBuf = sqlite3_mprintf("%z %.*s%s", zBuf,
1134 pPhrase->aToken[i].n, pPhrase->aToken[i].z,
1135 (pPhrase->aToken[i].isPrefix?"+":"")
1138 return zBuf;
1141 case FTSQUERY_NEAR:
1142 zBuf = sqlite3_mprintf("%zNEAR/%d ", zBuf, pExpr->nNear);
1143 break;
1144 case FTSQUERY_NOT:
1145 zBuf = sqlite3_mprintf("%zNOT ", zBuf);
1146 break;
1147 case FTSQUERY_AND:
1148 zBuf = sqlite3_mprintf("%zAND ", zBuf);
1149 break;
1150 case FTSQUERY_OR:
1151 zBuf = sqlite3_mprintf("%zOR ", zBuf);
1152 break;
1155 if( zBuf ) zBuf = sqlite3_mprintf("%z{", zBuf);
1156 if( zBuf ) zBuf = exprToString(pExpr->pLeft, zBuf);
1157 if( zBuf ) zBuf = sqlite3_mprintf("%z} {", zBuf);
1159 if( zBuf ) zBuf = exprToString(pExpr->pRight, zBuf);
1160 if( zBuf ) zBuf = sqlite3_mprintf("%z}", zBuf);
1162 return zBuf;
1166 ** This is the implementation of a scalar SQL function used to test the
1167 ** expression parser. It should be called as follows:
1169 ** fts3_exprtest(<tokenizer>, <expr>, <column 1>, ...);
1171 ** The first argument, <tokenizer>, is the name of the fts3 tokenizer used
1172 ** to parse the query expression (see README.tokenizers). The second argument
1173 ** is the query expression to parse. Each subsequent argument is the name
1174 ** of a column of the fts3 table that the query expression may refer to.
1175 ** For example:
1177 ** SELECT fts3_exprtest('simple', 'Bill col2:Bloggs', 'col1', 'col2');
1179 static void fts3ExprTestCommon(
1180 int bRebalance,
1181 sqlite3_context *context,
1182 int argc,
1183 sqlite3_value **argv
1185 sqlite3_tokenizer *pTokenizer = 0;
1186 int rc;
1187 char **azCol = 0;
1188 const char *zExpr;
1189 int nExpr;
1190 int nCol;
1191 int ii;
1192 Fts3Expr *pExpr;
1193 char *zBuf = 0;
1194 Fts3Hash *pHash = (Fts3Hash*)sqlite3_user_data(context);
1195 const char *zTokenizer = 0;
1196 char *zErr = 0;
1198 if( argc<3 ){
1199 sqlite3_result_error(context,
1200 "Usage: fts3_exprtest(tokenizer, expr, col1, ...", -1
1202 return;
1205 zTokenizer = (const char*)sqlite3_value_text(argv[0]);
1206 rc = sqlite3Fts3InitTokenizer(pHash, zTokenizer, &pTokenizer, &zErr);
1207 if( rc!=SQLITE_OK ){
1208 if( rc==SQLITE_NOMEM ){
1209 sqlite3_result_error_nomem(context);
1210 }else{
1211 sqlite3_result_error(context, zErr, -1);
1213 sqlite3_free(zErr);
1214 return;
1217 zExpr = (const char *)sqlite3_value_text(argv[1]);
1218 nExpr = sqlite3_value_bytes(argv[1]);
1219 nCol = argc-2;
1220 azCol = (char **)sqlite3_malloc64(nCol*sizeof(char *));
1221 if( !azCol ){
1222 sqlite3_result_error_nomem(context);
1223 goto exprtest_out;
1225 for(ii=0; ii<nCol; ii++){
1226 azCol[ii] = (char *)sqlite3_value_text(argv[ii+2]);
1229 if( bRebalance ){
1230 char *zDummy = 0;
1231 rc = sqlite3Fts3ExprParse(
1232 pTokenizer, 0, azCol, 0, nCol, nCol, zExpr, nExpr, &pExpr, &zDummy
1234 assert( rc==SQLITE_OK || pExpr==0 );
1235 sqlite3_free(zDummy);
1236 }else{
1237 rc = fts3ExprParseUnbalanced(
1238 pTokenizer, 0, azCol, 0, nCol, nCol, zExpr, nExpr, &pExpr
1242 if( rc!=SQLITE_OK && rc!=SQLITE_NOMEM ){
1243 sqlite3Fts3ExprFree(pExpr);
1244 sqlite3_result_error(context, "Error parsing expression", -1);
1245 }else if( rc==SQLITE_NOMEM || !(zBuf = exprToString(pExpr, 0)) ){
1246 sqlite3_result_error_nomem(context);
1247 }else{
1248 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
1249 sqlite3_free(zBuf);
1252 sqlite3Fts3ExprFree(pExpr);
1254 exprtest_out:
1255 if( pTokenizer ){
1256 rc = pTokenizer->pModule->xDestroy(pTokenizer);
1258 sqlite3_free(azCol);
1261 static void fts3ExprTest(
1262 sqlite3_context *context,
1263 int argc,
1264 sqlite3_value **argv
1266 fts3ExprTestCommon(0, context, argc, argv);
1268 static void fts3ExprTestRebalance(
1269 sqlite3_context *context,
1270 int argc,
1271 sqlite3_value **argv
1273 fts3ExprTestCommon(1, context, argc, argv);
1277 ** Register the query expression parser test function fts3_exprtest()
1278 ** with database connection db.
1280 int sqlite3Fts3ExprInitTestInterface(sqlite3 *db, Fts3Hash *pHash){
1281 int rc = sqlite3_create_function(
1282 db, "fts3_exprtest", -1, SQLITE_UTF8, (void*)pHash, fts3ExprTest, 0, 0
1284 if( rc==SQLITE_OK ){
1285 rc = sqlite3_create_function(db, "fts3_exprtest_rebalance",
1286 -1, SQLITE_UTF8, (void*)pHash, fts3ExprTestRebalance, 0, 0
1289 return rc;
1292 #endif
1293 #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */