Snapshot of upstream SQLite 3.46.1
[sqlcipher.git] / ext / fts3 / fts3_write.c
blob5a449dec1efe76d54644a4e7a07cfc68b06ab14a
1 /*
2 ** 2009 Oct 23
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 ******************************************************************************
13 ** This file is part of the SQLite FTS3 extension module. Specifically,
14 ** this file contains code to insert, update and delete rows from FTS3
15 ** tables. It also contains code to merge FTS3 b-tree segments. Some
16 ** of the sub-routines used to merge segments are also used by the query
17 ** code in fts3.c.
20 #include "fts3Int.h"
21 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
23 #include <string.h>
24 #include <assert.h>
25 #include <stdlib.h>
26 #include <stdio.h>
28 #define FTS_MAX_APPENDABLE_HEIGHT 16
31 ** When full-text index nodes are loaded from disk, the buffer that they
32 ** are loaded into has the following number of bytes of padding at the end
33 ** of it. i.e. if a full-text index node is 900 bytes in size, then a buffer
34 ** of 920 bytes is allocated for it.
36 ** This means that if we have a pointer into a buffer containing node data,
37 ** it is always safe to read up to two varints from it without risking an
38 ** overread, even if the node data is corrupted.
40 #define FTS3_NODE_PADDING (FTS3_VARINT_MAX*2)
43 ** Under certain circumstances, b-tree nodes (doclists) can be loaded into
44 ** memory incrementally instead of all at once. This can be a big performance
45 ** win (reduced IO and CPU) if SQLite stops calling the virtual table xNext()
46 ** method before retrieving all query results (as may happen, for example,
47 ** if a query has a LIMIT clause).
49 ** Incremental loading is used for b-tree nodes FTS3_NODE_CHUNK_THRESHOLD
50 ** bytes and larger. Nodes are loaded in chunks of FTS3_NODE_CHUNKSIZE bytes.
51 ** The code is written so that the hard lower-limit for each of these values
52 ** is 1. Clearly such small values would be inefficient, but can be useful
53 ** for testing purposes.
55 ** If this module is built with SQLITE_TEST defined, these constants may
56 ** be overridden at runtime for testing purposes. File fts3_test.c contains
57 ** a Tcl interface to read and write the values.
59 #ifdef SQLITE_TEST
60 int test_fts3_node_chunksize = (4*1024);
61 int test_fts3_node_chunk_threshold = (4*1024)*4;
62 # define FTS3_NODE_CHUNKSIZE test_fts3_node_chunksize
63 # define FTS3_NODE_CHUNK_THRESHOLD test_fts3_node_chunk_threshold
64 #else
65 # define FTS3_NODE_CHUNKSIZE (4*1024)
66 # define FTS3_NODE_CHUNK_THRESHOLD (FTS3_NODE_CHUNKSIZE*4)
67 #endif
70 ** The values that may be meaningfully bound to the :1 parameter in
71 ** statements SQL_REPLACE_STAT and SQL_SELECT_STAT.
73 #define FTS_STAT_DOCTOTAL 0
74 #define FTS_STAT_INCRMERGEHINT 1
75 #define FTS_STAT_AUTOINCRMERGE 2
78 ** If FTS_LOG_MERGES is defined, call sqlite3_log() to report each automatic
79 ** and incremental merge operation that takes place. This is used for
80 ** debugging FTS only, it should not usually be turned on in production
81 ** systems.
83 #ifdef FTS3_LOG_MERGES
84 static void fts3LogMerge(int nMerge, sqlite3_int64 iAbsLevel){
85 sqlite3_log(SQLITE_OK, "%d-way merge from level %d", nMerge, (int)iAbsLevel);
87 #else
88 #define fts3LogMerge(x, y)
89 #endif
92 typedef struct PendingList PendingList;
93 typedef struct SegmentNode SegmentNode;
94 typedef struct SegmentWriter SegmentWriter;
97 ** An instance of the following data structure is used to build doclists
98 ** incrementally. See function fts3PendingListAppend() for details.
100 struct PendingList {
101 int nData;
102 char *aData;
103 int nSpace;
104 sqlite3_int64 iLastDocid;
105 sqlite3_int64 iLastCol;
106 sqlite3_int64 iLastPos;
111 ** Each cursor has a (possibly empty) linked list of the following objects.
113 struct Fts3DeferredToken {
114 Fts3PhraseToken *pToken; /* Pointer to corresponding expr token */
115 int iCol; /* Column token must occur in */
116 Fts3DeferredToken *pNext; /* Next in list of deferred tokens */
117 PendingList *pList; /* Doclist is assembled here */
121 ** An instance of this structure is used to iterate through the terms on
122 ** a contiguous set of segment b-tree leaf nodes. Although the details of
123 ** this structure are only manipulated by code in this file, opaque handles
124 ** of type Fts3SegReader* are also used by code in fts3.c to iterate through
125 ** terms when querying the full-text index. See functions:
127 ** sqlite3Fts3SegReaderNew()
128 ** sqlite3Fts3SegReaderFree()
129 ** sqlite3Fts3SegReaderIterate()
131 ** Methods used to manipulate Fts3SegReader structures:
133 ** fts3SegReaderNext()
134 ** fts3SegReaderFirstDocid()
135 ** fts3SegReaderNextDocid()
137 struct Fts3SegReader {
138 int iIdx; /* Index within level, or 0x7FFFFFFF for PT */
139 u8 bLookup; /* True for a lookup only */
140 u8 rootOnly; /* True for a root-only reader */
142 sqlite3_int64 iStartBlock; /* Rowid of first leaf block to traverse */
143 sqlite3_int64 iLeafEndBlock; /* Rowid of final leaf block to traverse */
144 sqlite3_int64 iEndBlock; /* Rowid of final block in segment (or 0) */
145 sqlite3_int64 iCurrentBlock; /* Current leaf block (or 0) */
147 char *aNode; /* Pointer to node data (or NULL) */
148 int nNode; /* Size of buffer at aNode (or 0) */
149 int nPopulate; /* If >0, bytes of buffer aNode[] loaded */
150 sqlite3_blob *pBlob; /* If not NULL, blob handle to read node */
152 Fts3HashElem **ppNextElem;
154 /* Variables set by fts3SegReaderNext(). These may be read directly
155 ** by the caller. They are valid from the time SegmentReaderNew() returns
156 ** until SegmentReaderNext() returns something other than SQLITE_OK
157 ** (i.e. SQLITE_DONE).
159 int nTerm; /* Number of bytes in current term */
160 char *zTerm; /* Pointer to current term */
161 int nTermAlloc; /* Allocated size of zTerm buffer */
162 char *aDoclist; /* Pointer to doclist of current entry */
163 int nDoclist; /* Size of doclist in current entry */
165 /* The following variables are used by fts3SegReaderNextDocid() to iterate
166 ** through the current doclist (aDoclist/nDoclist).
168 char *pOffsetList;
169 int nOffsetList; /* For descending pending seg-readers only */
170 sqlite3_int64 iDocid;
173 #define fts3SegReaderIsPending(p) ((p)->ppNextElem!=0)
174 #define fts3SegReaderIsRootOnly(p) ((p)->rootOnly!=0)
177 ** An instance of this structure is used to create a segment b-tree in the
178 ** database. The internal details of this type are only accessed by the
179 ** following functions:
181 ** fts3SegWriterAdd()
182 ** fts3SegWriterFlush()
183 ** fts3SegWriterFree()
185 struct SegmentWriter {
186 SegmentNode *pTree; /* Pointer to interior tree structure */
187 sqlite3_int64 iFirst; /* First slot in %_segments written */
188 sqlite3_int64 iFree; /* Next free slot in %_segments */
189 char *zTerm; /* Pointer to previous term buffer */
190 int nTerm; /* Number of bytes in zTerm */
191 int nMalloc; /* Size of malloc'd buffer at zMalloc */
192 char *zMalloc; /* Malloc'd space (possibly) used for zTerm */
193 int nSize; /* Size of allocation at aData */
194 int nData; /* Bytes of data in aData */
195 char *aData; /* Pointer to block from malloc() */
196 i64 nLeafData; /* Number of bytes of leaf data written */
200 ** Type SegmentNode is used by the following three functions to create
201 ** the interior part of the segment b+-tree structures (everything except
202 ** the leaf nodes). These functions and type are only ever used by code
203 ** within the fts3SegWriterXXX() family of functions described above.
205 ** fts3NodeAddTerm()
206 ** fts3NodeWrite()
207 ** fts3NodeFree()
209 ** When a b+tree is written to the database (either as a result of a merge
210 ** or the pending-terms table being flushed), leaves are written into the
211 ** database file as soon as they are completely populated. The interior of
212 ** the tree is assembled in memory and written out only once all leaves have
213 ** been populated and stored. This is Ok, as the b+-tree fanout is usually
214 ** very large, meaning that the interior of the tree consumes relatively
215 ** little memory.
217 struct SegmentNode {
218 SegmentNode *pParent; /* Parent node (or NULL for root node) */
219 SegmentNode *pRight; /* Pointer to right-sibling */
220 SegmentNode *pLeftmost; /* Pointer to left-most node of this depth */
221 int nEntry; /* Number of terms written to node so far */
222 char *zTerm; /* Pointer to previous term buffer */
223 int nTerm; /* Number of bytes in zTerm */
224 int nMalloc; /* Size of malloc'd buffer at zMalloc */
225 char *zMalloc; /* Malloc'd space (possibly) used for zTerm */
226 int nData; /* Bytes of valid data so far */
227 char *aData; /* Node data */
231 ** Valid values for the second argument to fts3SqlStmt().
233 #define SQL_DELETE_CONTENT 0
234 #define SQL_IS_EMPTY 1
235 #define SQL_DELETE_ALL_CONTENT 2
236 #define SQL_DELETE_ALL_SEGMENTS 3
237 #define SQL_DELETE_ALL_SEGDIR 4
238 #define SQL_DELETE_ALL_DOCSIZE 5
239 #define SQL_DELETE_ALL_STAT 6
240 #define SQL_SELECT_CONTENT_BY_ROWID 7
241 #define SQL_NEXT_SEGMENT_INDEX 8
242 #define SQL_INSERT_SEGMENTS 9
243 #define SQL_NEXT_SEGMENTS_ID 10
244 #define SQL_INSERT_SEGDIR 11
245 #define SQL_SELECT_LEVEL 12
246 #define SQL_SELECT_LEVEL_RANGE 13
247 #define SQL_SELECT_LEVEL_COUNT 14
248 #define SQL_SELECT_SEGDIR_MAX_LEVEL 15
249 #define SQL_DELETE_SEGDIR_LEVEL 16
250 #define SQL_DELETE_SEGMENTS_RANGE 17
251 #define SQL_CONTENT_INSERT 18
252 #define SQL_DELETE_DOCSIZE 19
253 #define SQL_REPLACE_DOCSIZE 20
254 #define SQL_SELECT_DOCSIZE 21
255 #define SQL_SELECT_STAT 22
256 #define SQL_REPLACE_STAT 23
258 #define SQL_SELECT_ALL_PREFIX_LEVEL 24
259 #define SQL_DELETE_ALL_TERMS_SEGDIR 25
260 #define SQL_DELETE_SEGDIR_RANGE 26
261 #define SQL_SELECT_ALL_LANGID 27
262 #define SQL_FIND_MERGE_LEVEL 28
263 #define SQL_MAX_LEAF_NODE_ESTIMATE 29
264 #define SQL_DELETE_SEGDIR_ENTRY 30
265 #define SQL_SHIFT_SEGDIR_ENTRY 31
266 #define SQL_SELECT_SEGDIR 32
267 #define SQL_CHOMP_SEGDIR 33
268 #define SQL_SEGMENT_IS_APPENDABLE 34
269 #define SQL_SELECT_INDEXES 35
270 #define SQL_SELECT_MXLEVEL 36
272 #define SQL_SELECT_LEVEL_RANGE2 37
273 #define SQL_UPDATE_LEVEL_IDX 38
274 #define SQL_UPDATE_LEVEL 39
277 ** This function is used to obtain an SQLite prepared statement handle
278 ** for the statement identified by the second argument. If successful,
279 ** *pp is set to the requested statement handle and SQLITE_OK returned.
280 ** Otherwise, an SQLite error code is returned and *pp is set to 0.
282 ** If argument apVal is not NULL, then it must point to an array with
283 ** at least as many entries as the requested statement has bound
284 ** parameters. The values are bound to the statements parameters before
285 ** returning.
287 static int fts3SqlStmt(
288 Fts3Table *p, /* Virtual table handle */
289 int eStmt, /* One of the SQL_XXX constants above */
290 sqlite3_stmt **pp, /* OUT: Statement handle */
291 sqlite3_value **apVal /* Values to bind to statement */
293 const char *azSql[] = {
294 /* 0 */ "DELETE FROM %Q.'%q_content' WHERE rowid = ?",
295 /* 1 */ "SELECT NOT EXISTS(SELECT docid FROM %Q.'%q_content' WHERE rowid!=?)",
296 /* 2 */ "DELETE FROM %Q.'%q_content'",
297 /* 3 */ "DELETE FROM %Q.'%q_segments'",
298 /* 4 */ "DELETE FROM %Q.'%q_segdir'",
299 /* 5 */ "DELETE FROM %Q.'%q_docsize'",
300 /* 6 */ "DELETE FROM %Q.'%q_stat'",
301 /* 7 */ "SELECT %s WHERE rowid=?",
302 /* 8 */ "SELECT (SELECT max(idx) FROM %Q.'%q_segdir' WHERE level = ?) + 1",
303 /* 9 */ "REPLACE INTO %Q.'%q_segments'(blockid, block) VALUES(?, ?)",
304 /* 10 */ "SELECT coalesce((SELECT max(blockid) FROM %Q.'%q_segments') + 1, 1)",
305 /* 11 */ "REPLACE INTO %Q.'%q_segdir' VALUES(?,?,?,?,?,?)",
307 /* Return segments in order from oldest to newest.*/
308 /* 12 */ "SELECT idx, start_block, leaves_end_block, end_block, root "
309 "FROM %Q.'%q_segdir' WHERE level = ? ORDER BY idx ASC",
310 /* 13 */ "SELECT idx, start_block, leaves_end_block, end_block, root "
311 "FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?"
312 "ORDER BY level DESC, idx ASC",
314 /* 14 */ "SELECT count(*) FROM %Q.'%q_segdir' WHERE level = ?",
315 /* 15 */ "SELECT max(level) FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?",
317 /* 16 */ "DELETE FROM %Q.'%q_segdir' WHERE level = ?",
318 /* 17 */ "DELETE FROM %Q.'%q_segments' WHERE blockid BETWEEN ? AND ?",
319 /* 18 */ "INSERT INTO %Q.'%q_content' VALUES(%s)",
320 /* 19 */ "DELETE FROM %Q.'%q_docsize' WHERE docid = ?",
321 /* 20 */ "REPLACE INTO %Q.'%q_docsize' VALUES(?,?)",
322 /* 21 */ "SELECT size FROM %Q.'%q_docsize' WHERE docid=?",
323 /* 22 */ "SELECT value FROM %Q.'%q_stat' WHERE id=?",
324 /* 23 */ "REPLACE INTO %Q.'%q_stat' VALUES(?,?)",
325 /* 24 */ "",
326 /* 25 */ "",
328 /* 26 */ "DELETE FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?",
329 /* 27 */ "SELECT ? UNION SELECT level / (1024 * ?) FROM %Q.'%q_segdir'",
331 /* This statement is used to determine which level to read the input from
332 ** when performing an incremental merge. It returns the absolute level number
333 ** of the oldest level in the db that contains at least ? segments. Or,
334 ** if no level in the FTS index contains more than ? segments, the statement
335 ** returns zero rows. */
336 /* 28 */ "SELECT level, count(*) AS cnt FROM %Q.'%q_segdir' "
337 " GROUP BY level HAVING cnt>=?"
338 " ORDER BY (level %% 1024) ASC, 2 DESC LIMIT 1",
340 /* Estimate the upper limit on the number of leaf nodes in a new segment
341 ** created by merging the oldest :2 segments from absolute level :1. See
342 ** function sqlite3Fts3Incrmerge() for details. */
343 /* 29 */ "SELECT 2 * total(1 + leaves_end_block - start_block) "
344 " FROM (SELECT * FROM %Q.'%q_segdir' "
345 " WHERE level = ? ORDER BY idx ASC LIMIT ?"
346 " )",
348 /* SQL_DELETE_SEGDIR_ENTRY
349 ** Delete the %_segdir entry on absolute level :1 with index :2. */
350 /* 30 */ "DELETE FROM %Q.'%q_segdir' WHERE level = ? AND idx = ?",
352 /* SQL_SHIFT_SEGDIR_ENTRY
353 ** Modify the idx value for the segment with idx=:3 on absolute level :2
354 ** to :1. */
355 /* 31 */ "UPDATE %Q.'%q_segdir' SET idx = ? WHERE level=? AND idx=?",
357 /* SQL_SELECT_SEGDIR
358 ** Read a single entry from the %_segdir table. The entry from absolute
359 ** level :1 with index value :2. */
360 /* 32 */ "SELECT idx, start_block, leaves_end_block, end_block, root "
361 "FROM %Q.'%q_segdir' WHERE level = ? AND idx = ?",
363 /* SQL_CHOMP_SEGDIR
364 ** Update the start_block (:1) and root (:2) fields of the %_segdir
365 ** entry located on absolute level :3 with index :4. */
366 /* 33 */ "UPDATE %Q.'%q_segdir' SET start_block = ?, root = ?"
367 "WHERE level = ? AND idx = ?",
369 /* SQL_SEGMENT_IS_APPENDABLE
370 ** Return a single row if the segment with end_block=? is appendable. Or
371 ** no rows otherwise. */
372 /* 34 */ "SELECT 1 FROM %Q.'%q_segments' WHERE blockid=? AND block IS NULL",
374 /* SQL_SELECT_INDEXES
375 ** Return the list of valid segment indexes for absolute level ? */
376 /* 35 */ "SELECT idx FROM %Q.'%q_segdir' WHERE level=? ORDER BY 1 ASC",
378 /* SQL_SELECT_MXLEVEL
379 ** Return the largest relative level in the FTS index or indexes. */
380 /* 36 */ "SELECT max( level %% 1024 ) FROM %Q.'%q_segdir'",
382 /* Return segments in order from oldest to newest.*/
383 /* 37 */ "SELECT level, idx, end_block "
384 "FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ? "
385 "ORDER BY level DESC, idx ASC",
387 /* Update statements used while promoting segments */
388 /* 38 */ "UPDATE OR FAIL %Q.'%q_segdir' SET level=-1,idx=? "
389 "WHERE level=? AND idx=?",
390 /* 39 */ "UPDATE OR FAIL %Q.'%q_segdir' SET level=? WHERE level=-1"
393 int rc = SQLITE_OK;
394 sqlite3_stmt *pStmt;
396 assert( SizeofArray(azSql)==SizeofArray(p->aStmt) );
397 assert( eStmt<SizeofArray(azSql) && eStmt>=0 );
399 pStmt = p->aStmt[eStmt];
400 if( !pStmt ){
401 int f = SQLITE_PREPARE_PERSISTENT|SQLITE_PREPARE_NO_VTAB;
402 char *zSql;
403 if( eStmt==SQL_CONTENT_INSERT ){
404 zSql = sqlite3_mprintf(azSql[eStmt], p->zDb, p->zName, p->zWriteExprlist);
405 }else if( eStmt==SQL_SELECT_CONTENT_BY_ROWID ){
406 f &= ~SQLITE_PREPARE_NO_VTAB;
407 zSql = sqlite3_mprintf(azSql[eStmt], p->zReadExprlist);
408 }else{
409 zSql = sqlite3_mprintf(azSql[eStmt], p->zDb, p->zName);
411 if( !zSql ){
412 rc = SQLITE_NOMEM;
413 }else{
414 rc = sqlite3_prepare_v3(p->db, zSql, -1, f, &pStmt, NULL);
415 sqlite3_free(zSql);
416 assert( rc==SQLITE_OK || pStmt==0 );
417 p->aStmt[eStmt] = pStmt;
420 if( apVal ){
421 int i;
422 int nParam = sqlite3_bind_parameter_count(pStmt);
423 for(i=0; rc==SQLITE_OK && i<nParam; i++){
424 rc = sqlite3_bind_value(pStmt, i+1, apVal[i]);
427 *pp = pStmt;
428 return rc;
432 static int fts3SelectDocsize(
433 Fts3Table *pTab, /* FTS3 table handle */
434 sqlite3_int64 iDocid, /* Docid to bind for SQL_SELECT_DOCSIZE */
435 sqlite3_stmt **ppStmt /* OUT: Statement handle */
437 sqlite3_stmt *pStmt = 0; /* Statement requested from fts3SqlStmt() */
438 int rc; /* Return code */
440 rc = fts3SqlStmt(pTab, SQL_SELECT_DOCSIZE, &pStmt, 0);
441 if( rc==SQLITE_OK ){
442 sqlite3_bind_int64(pStmt, 1, iDocid);
443 rc = sqlite3_step(pStmt);
444 if( rc!=SQLITE_ROW || sqlite3_column_type(pStmt, 0)!=SQLITE_BLOB ){
445 rc = sqlite3_reset(pStmt);
446 if( rc==SQLITE_OK ) rc = FTS_CORRUPT_VTAB;
447 pStmt = 0;
448 }else{
449 rc = SQLITE_OK;
453 *ppStmt = pStmt;
454 return rc;
457 int sqlite3Fts3SelectDoctotal(
458 Fts3Table *pTab, /* Fts3 table handle */
459 sqlite3_stmt **ppStmt /* OUT: Statement handle */
461 sqlite3_stmt *pStmt = 0;
462 int rc;
463 rc = fts3SqlStmt(pTab, SQL_SELECT_STAT, &pStmt, 0);
464 if( rc==SQLITE_OK ){
465 sqlite3_bind_int(pStmt, 1, FTS_STAT_DOCTOTAL);
466 if( sqlite3_step(pStmt)!=SQLITE_ROW
467 || sqlite3_column_type(pStmt, 0)!=SQLITE_BLOB
469 rc = sqlite3_reset(pStmt);
470 if( rc==SQLITE_OK ) rc = FTS_CORRUPT_VTAB;
471 pStmt = 0;
474 *ppStmt = pStmt;
475 return rc;
478 int sqlite3Fts3SelectDocsize(
479 Fts3Table *pTab, /* Fts3 table handle */
480 sqlite3_int64 iDocid, /* Docid to read size data for */
481 sqlite3_stmt **ppStmt /* OUT: Statement handle */
483 return fts3SelectDocsize(pTab, iDocid, ppStmt);
487 ** Similar to fts3SqlStmt(). Except, after binding the parameters in
488 ** array apVal[] to the SQL statement identified by eStmt, the statement
489 ** is executed.
491 ** Returns SQLITE_OK if the statement is successfully executed, or an
492 ** SQLite error code otherwise.
494 static void fts3SqlExec(
495 int *pRC, /* Result code */
496 Fts3Table *p, /* The FTS3 table */
497 int eStmt, /* Index of statement to evaluate */
498 sqlite3_value **apVal /* Parameters to bind */
500 sqlite3_stmt *pStmt;
501 int rc;
502 if( *pRC ) return;
503 rc = fts3SqlStmt(p, eStmt, &pStmt, apVal);
504 if( rc==SQLITE_OK ){
505 sqlite3_step(pStmt);
506 rc = sqlite3_reset(pStmt);
508 *pRC = rc;
513 ** This function ensures that the caller has obtained an exclusive
514 ** shared-cache table-lock on the %_segdir table. This is required before
515 ** writing data to the fts3 table. If this lock is not acquired first, then
516 ** the caller may end up attempting to take this lock as part of committing
517 ** a transaction, causing SQLite to return SQLITE_LOCKED or
518 ** LOCKED_SHAREDCACHEto a COMMIT command.
520 ** It is best to avoid this because if FTS3 returns any error when
521 ** committing a transaction, the whole transaction will be rolled back.
522 ** And this is not what users expect when they get SQLITE_LOCKED_SHAREDCACHE.
523 ** It can still happen if the user locks the underlying tables directly
524 ** instead of accessing them via FTS.
526 static int fts3Writelock(Fts3Table *p){
527 int rc = SQLITE_OK;
529 if( p->nPendingData==0 ){
530 sqlite3_stmt *pStmt;
531 rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_LEVEL, &pStmt, 0);
532 if( rc==SQLITE_OK ){
533 sqlite3_bind_null(pStmt, 1);
534 sqlite3_step(pStmt);
535 rc = sqlite3_reset(pStmt);
539 return rc;
543 ** FTS maintains a separate indexes for each language-id (a 32-bit integer).
544 ** Within each language id, a separate index is maintained to store the
545 ** document terms, and each configured prefix size (configured the FTS
546 ** "prefix=" option). And each index consists of multiple levels ("relative
547 ** levels").
549 ** All three of these values (the language id, the specific index and the
550 ** level within the index) are encoded in 64-bit integer values stored
551 ** in the %_segdir table on disk. This function is used to convert three
552 ** separate component values into the single 64-bit integer value that
553 ** can be used to query the %_segdir table.
555 ** Specifically, each language-id/index combination is allocated 1024
556 ** 64-bit integer level values ("absolute levels"). The main terms index
557 ** for language-id 0 is allocate values 0-1023. The first prefix index
558 ** (if any) for language-id 0 is allocated values 1024-2047. And so on.
559 ** Language 1 indexes are allocated immediately following language 0.
561 ** So, for a system with nPrefix prefix indexes configured, the block of
562 ** absolute levels that corresponds to language-id iLangid and index
563 ** iIndex starts at absolute level ((iLangid * (nPrefix+1) + iIndex) * 1024).
565 static sqlite3_int64 getAbsoluteLevel(
566 Fts3Table *p, /* FTS3 table handle */
567 int iLangid, /* Language id */
568 int iIndex, /* Index in p->aIndex[] */
569 int iLevel /* Level of segments */
571 sqlite3_int64 iBase; /* First absolute level for iLangid/iIndex */
572 assert_fts3_nc( iLangid>=0 );
573 assert( p->nIndex>0 );
574 assert( iIndex>=0 && iIndex<p->nIndex );
576 iBase = ((sqlite3_int64)iLangid * p->nIndex + iIndex) * FTS3_SEGDIR_MAXLEVEL;
577 return iBase + iLevel;
581 ** Set *ppStmt to a statement handle that may be used to iterate through
582 ** all rows in the %_segdir table, from oldest to newest. If successful,
583 ** return SQLITE_OK. If an error occurs while preparing the statement,
584 ** return an SQLite error code.
586 ** There is only ever one instance of this SQL statement compiled for
587 ** each FTS3 table.
589 ** The statement returns the following columns from the %_segdir table:
591 ** 0: idx
592 ** 1: start_block
593 ** 2: leaves_end_block
594 ** 3: end_block
595 ** 4: root
597 int sqlite3Fts3AllSegdirs(
598 Fts3Table *p, /* FTS3 table */
599 int iLangid, /* Language being queried */
600 int iIndex, /* Index for p->aIndex[] */
601 int iLevel, /* Level to select (relative level) */
602 sqlite3_stmt **ppStmt /* OUT: Compiled statement */
604 int rc;
605 sqlite3_stmt *pStmt = 0;
607 assert( iLevel==FTS3_SEGCURSOR_ALL || iLevel>=0 );
608 assert( iLevel<FTS3_SEGDIR_MAXLEVEL );
609 assert( iIndex>=0 && iIndex<p->nIndex );
611 if( iLevel<0 ){
612 /* "SELECT * FROM %_segdir WHERE level BETWEEN ? AND ? ORDER BY ..." */
613 rc = fts3SqlStmt(p, SQL_SELECT_LEVEL_RANGE, &pStmt, 0);
614 if( rc==SQLITE_OK ){
615 sqlite3_bind_int64(pStmt, 1, getAbsoluteLevel(p, iLangid, iIndex, 0));
616 sqlite3_bind_int64(pStmt, 2,
617 getAbsoluteLevel(p, iLangid, iIndex, FTS3_SEGDIR_MAXLEVEL-1)
620 }else{
621 /* "SELECT * FROM %_segdir WHERE level = ? ORDER BY ..." */
622 rc = fts3SqlStmt(p, SQL_SELECT_LEVEL, &pStmt, 0);
623 if( rc==SQLITE_OK ){
624 sqlite3_bind_int64(pStmt, 1, getAbsoluteLevel(p, iLangid, iIndex,iLevel));
627 *ppStmt = pStmt;
628 return rc;
633 ** Append a single varint to a PendingList buffer. SQLITE_OK is returned
634 ** if successful, or an SQLite error code otherwise.
636 ** This function also serves to allocate the PendingList structure itself.
637 ** For example, to create a new PendingList structure containing two
638 ** varints:
640 ** PendingList *p = 0;
641 ** fts3PendingListAppendVarint(&p, 1);
642 ** fts3PendingListAppendVarint(&p, 2);
644 static int fts3PendingListAppendVarint(
645 PendingList **pp, /* IN/OUT: Pointer to PendingList struct */
646 sqlite3_int64 i /* Value to append to data */
648 PendingList *p = *pp;
650 /* Allocate or grow the PendingList as required. */
651 if( !p ){
652 p = sqlite3_malloc64(sizeof(*p) + 100);
653 if( !p ){
654 return SQLITE_NOMEM;
656 p->nSpace = 100;
657 p->aData = (char *)&p[1];
658 p->nData = 0;
660 else if( p->nData+FTS3_VARINT_MAX+1>p->nSpace ){
661 i64 nNew = p->nSpace * 2;
662 p = sqlite3_realloc64(p, sizeof(*p) + nNew);
663 if( !p ){
664 sqlite3_free(*pp);
665 *pp = 0;
666 return SQLITE_NOMEM;
668 p->nSpace = (int)nNew;
669 p->aData = (char *)&p[1];
672 /* Append the new serialized varint to the end of the list. */
673 p->nData += sqlite3Fts3PutVarint(&p->aData[p->nData], i);
674 p->aData[p->nData] = '\0';
675 *pp = p;
676 return SQLITE_OK;
680 ** Add a docid/column/position entry to a PendingList structure. Non-zero
681 ** is returned if the structure is sqlite3_realloced as part of adding
682 ** the entry. Otherwise, zero.
684 ** If an OOM error occurs, *pRc is set to SQLITE_NOMEM before returning.
685 ** Zero is always returned in this case. Otherwise, if no OOM error occurs,
686 ** it is set to SQLITE_OK.
688 static int fts3PendingListAppend(
689 PendingList **pp, /* IN/OUT: PendingList structure */
690 sqlite3_int64 iDocid, /* Docid for entry to add */
691 sqlite3_int64 iCol, /* Column for entry to add */
692 sqlite3_int64 iPos, /* Position of term for entry to add */
693 int *pRc /* OUT: Return code */
695 PendingList *p = *pp;
696 int rc = SQLITE_OK;
698 assert( !p || p->iLastDocid<=iDocid );
700 if( !p || p->iLastDocid!=iDocid ){
701 u64 iDelta = (u64)iDocid - (u64)(p ? p->iLastDocid : 0);
702 if( p ){
703 assert( p->nData<p->nSpace );
704 assert( p->aData[p->nData]==0 );
705 p->nData++;
707 if( SQLITE_OK!=(rc = fts3PendingListAppendVarint(&p, iDelta)) ){
708 goto pendinglistappend_out;
710 p->iLastCol = -1;
711 p->iLastPos = 0;
712 p->iLastDocid = iDocid;
714 if( iCol>0 && p->iLastCol!=iCol ){
715 if( SQLITE_OK!=(rc = fts3PendingListAppendVarint(&p, 1))
716 || SQLITE_OK!=(rc = fts3PendingListAppendVarint(&p, iCol))
718 goto pendinglistappend_out;
720 p->iLastCol = iCol;
721 p->iLastPos = 0;
723 if( iCol>=0 ){
724 assert( iPos>p->iLastPos || (iPos==0 && p->iLastPos==0) );
725 rc = fts3PendingListAppendVarint(&p, 2+iPos-p->iLastPos);
726 if( rc==SQLITE_OK ){
727 p->iLastPos = iPos;
731 pendinglistappend_out:
732 *pRc = rc;
733 if( p!=*pp ){
734 *pp = p;
735 return 1;
737 return 0;
741 ** Free a PendingList object allocated by fts3PendingListAppend().
743 static void fts3PendingListDelete(PendingList *pList){
744 sqlite3_free(pList);
748 ** Add an entry to one of the pending-terms hash tables.
750 static int fts3PendingTermsAddOne(
751 Fts3Table *p,
752 int iCol,
753 int iPos,
754 Fts3Hash *pHash, /* Pending terms hash table to add entry to */
755 const char *zToken,
756 int nToken
758 PendingList *pList;
759 int rc = SQLITE_OK;
761 pList = (PendingList *)fts3HashFind(pHash, zToken, nToken);
762 if( pList ){
763 p->nPendingData -= (pList->nData + nToken + sizeof(Fts3HashElem));
765 if( fts3PendingListAppend(&pList, p->iPrevDocid, iCol, iPos, &rc) ){
766 if( pList==fts3HashInsert(pHash, zToken, nToken, pList) ){
767 /* Malloc failed while inserting the new entry. This can only
768 ** happen if there was no previous entry for this token.
770 assert( 0==fts3HashFind(pHash, zToken, nToken) );
771 sqlite3_free(pList);
772 rc = SQLITE_NOMEM;
775 if( rc==SQLITE_OK ){
776 p->nPendingData += (pList->nData + nToken + sizeof(Fts3HashElem));
778 return rc;
782 ** Tokenize the nul-terminated string zText and add all tokens to the
783 ** pending-terms hash-table. The docid used is that currently stored in
784 ** p->iPrevDocid, and the column is specified by argument iCol.
786 ** If successful, SQLITE_OK is returned. Otherwise, an SQLite error code.
788 static int fts3PendingTermsAdd(
789 Fts3Table *p, /* Table into which text will be inserted */
790 int iLangid, /* Language id to use */
791 const char *zText, /* Text of document to be inserted */
792 int iCol, /* Column into which text is being inserted */
793 u32 *pnWord /* IN/OUT: Incr. by number tokens inserted */
795 int rc;
796 int iStart = 0;
797 int iEnd = 0;
798 int iPos = 0;
799 int nWord = 0;
801 char const *zToken;
802 int nToken = 0;
804 sqlite3_tokenizer *pTokenizer = p->pTokenizer;
805 sqlite3_tokenizer_module const *pModule = pTokenizer->pModule;
806 sqlite3_tokenizer_cursor *pCsr;
807 int (*xNext)(sqlite3_tokenizer_cursor *pCursor,
808 const char**,int*,int*,int*,int*);
810 assert( pTokenizer && pModule );
812 /* If the user has inserted a NULL value, this function may be called with
813 ** zText==0. In this case, add zero token entries to the hash table and
814 ** return early. */
815 if( zText==0 ){
816 *pnWord = 0;
817 return SQLITE_OK;
820 rc = sqlite3Fts3OpenTokenizer(pTokenizer, iLangid, zText, -1, &pCsr);
821 if( rc!=SQLITE_OK ){
822 return rc;
825 xNext = pModule->xNext;
826 while( SQLITE_OK==rc
827 && SQLITE_OK==(rc = xNext(pCsr, &zToken, &nToken, &iStart, &iEnd, &iPos))
829 int i;
830 if( iPos>=nWord ) nWord = iPos+1;
832 /* Positions cannot be negative; we use -1 as a terminator internally.
833 ** Tokens must have a non-zero length.
835 if( iPos<0 || !zToken || nToken<=0 ){
836 rc = SQLITE_ERROR;
837 break;
840 /* Add the term to the terms index */
841 rc = fts3PendingTermsAddOne(
842 p, iCol, iPos, &p->aIndex[0].hPending, zToken, nToken
845 /* Add the term to each of the prefix indexes that it is not too
846 ** short for. */
847 for(i=1; rc==SQLITE_OK && i<p->nIndex; i++){
848 struct Fts3Index *pIndex = &p->aIndex[i];
849 if( nToken<pIndex->nPrefix ) continue;
850 rc = fts3PendingTermsAddOne(
851 p, iCol, iPos, &pIndex->hPending, zToken, pIndex->nPrefix
856 pModule->xClose(pCsr);
857 *pnWord += nWord;
858 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
862 ** Calling this function indicates that subsequent calls to
863 ** fts3PendingTermsAdd() are to add term/position-list pairs for the
864 ** contents of the document with docid iDocid.
866 static int fts3PendingTermsDocid(
867 Fts3Table *p, /* Full-text table handle */
868 int bDelete, /* True if this op is a delete */
869 int iLangid, /* Language id of row being written */
870 sqlite_int64 iDocid /* Docid of row being written */
872 assert( iLangid>=0 );
873 assert( bDelete==1 || bDelete==0 );
875 /* TODO(shess) Explore whether partially flushing the buffer on
876 ** forced-flush would provide better performance. I suspect that if
877 ** we ordered the doclists by size and flushed the largest until the
878 ** buffer was half empty, that would let the less frequent terms
879 ** generate longer doclists.
881 if( iDocid<p->iPrevDocid
882 || (iDocid==p->iPrevDocid && p->bPrevDelete==0)
883 || p->iPrevLangid!=iLangid
884 || p->nPendingData>p->nMaxPendingData
886 int rc = sqlite3Fts3PendingTermsFlush(p);
887 if( rc!=SQLITE_OK ) return rc;
889 p->iPrevDocid = iDocid;
890 p->iPrevLangid = iLangid;
891 p->bPrevDelete = bDelete;
892 return SQLITE_OK;
896 ** Discard the contents of the pending-terms hash tables.
898 void sqlite3Fts3PendingTermsClear(Fts3Table *p){
899 int i;
900 for(i=0; i<p->nIndex; i++){
901 Fts3HashElem *pElem;
902 Fts3Hash *pHash = &p->aIndex[i].hPending;
903 for(pElem=fts3HashFirst(pHash); pElem; pElem=fts3HashNext(pElem)){
904 PendingList *pList = (PendingList *)fts3HashData(pElem);
905 fts3PendingListDelete(pList);
907 fts3HashClear(pHash);
909 p->nPendingData = 0;
913 ** This function is called by the xUpdate() method as part of an INSERT
914 ** operation. It adds entries for each term in the new record to the
915 ** pendingTerms hash table.
917 ** Argument apVal is the same as the similarly named argument passed to
918 ** fts3InsertData(). Parameter iDocid is the docid of the new row.
920 static int fts3InsertTerms(
921 Fts3Table *p,
922 int iLangid,
923 sqlite3_value **apVal,
924 u32 *aSz
926 int i; /* Iterator variable */
927 for(i=2; i<p->nColumn+2; i++){
928 int iCol = i-2;
929 if( p->abNotindexed[iCol]==0 ){
930 const char *zText = (const char *)sqlite3_value_text(apVal[i]);
931 int rc = fts3PendingTermsAdd(p, iLangid, zText, iCol, &aSz[iCol]);
932 if( rc!=SQLITE_OK ){
933 return rc;
935 aSz[p->nColumn] += sqlite3_value_bytes(apVal[i]);
938 return SQLITE_OK;
942 ** This function is called by the xUpdate() method for an INSERT operation.
943 ** The apVal parameter is passed a copy of the apVal argument passed by
944 ** SQLite to the xUpdate() method. i.e:
946 ** apVal[0] Not used for INSERT.
947 ** apVal[1] rowid
948 ** apVal[2] Left-most user-defined column
949 ** ...
950 ** apVal[p->nColumn+1] Right-most user-defined column
951 ** apVal[p->nColumn+2] Hidden column with same name as table
952 ** apVal[p->nColumn+3] Hidden "docid" column (alias for rowid)
953 ** apVal[p->nColumn+4] Hidden languageid column
955 static int fts3InsertData(
956 Fts3Table *p, /* Full-text table */
957 sqlite3_value **apVal, /* Array of values to insert */
958 sqlite3_int64 *piDocid /* OUT: Docid for row just inserted */
960 int rc; /* Return code */
961 sqlite3_stmt *pContentInsert; /* INSERT INTO %_content VALUES(...) */
963 if( p->zContentTbl ){
964 sqlite3_value *pRowid = apVal[p->nColumn+3];
965 if( sqlite3_value_type(pRowid)==SQLITE_NULL ){
966 pRowid = apVal[1];
968 if( sqlite3_value_type(pRowid)!=SQLITE_INTEGER ){
969 return SQLITE_CONSTRAINT;
971 *piDocid = sqlite3_value_int64(pRowid);
972 return SQLITE_OK;
975 /* Locate the statement handle used to insert data into the %_content
976 ** table. The SQL for this statement is:
978 ** INSERT INTO %_content VALUES(?, ?, ?, ...)
980 ** The statement features N '?' variables, where N is the number of user
981 ** defined columns in the FTS3 table, plus one for the docid field.
983 rc = fts3SqlStmt(p, SQL_CONTENT_INSERT, &pContentInsert, &apVal[1]);
984 if( rc==SQLITE_OK && p->zLanguageid ){
985 rc = sqlite3_bind_int(
986 pContentInsert, p->nColumn+2,
987 sqlite3_value_int(apVal[p->nColumn+4])
990 if( rc!=SQLITE_OK ) return rc;
992 /* There is a quirk here. The users INSERT statement may have specified
993 ** a value for the "rowid" field, for the "docid" field, or for both.
994 ** Which is a problem, since "rowid" and "docid" are aliases for the
995 ** same value. For example:
997 ** INSERT INTO fts3tbl(rowid, docid) VALUES(1, 2);
999 ** In FTS3, this is an error. It is an error to specify non-NULL values
1000 ** for both docid and some other rowid alias.
1002 if( SQLITE_NULL!=sqlite3_value_type(apVal[3+p->nColumn]) ){
1003 if( SQLITE_NULL==sqlite3_value_type(apVal[0])
1004 && SQLITE_NULL!=sqlite3_value_type(apVal[1])
1006 /* A rowid/docid conflict. */
1007 return SQLITE_ERROR;
1009 rc = sqlite3_bind_value(pContentInsert, 1, apVal[3+p->nColumn]);
1010 if( rc!=SQLITE_OK ) return rc;
1013 /* Execute the statement to insert the record. Set *piDocid to the
1014 ** new docid value.
1016 sqlite3_step(pContentInsert);
1017 rc = sqlite3_reset(pContentInsert);
1019 *piDocid = sqlite3_last_insert_rowid(p->db);
1020 return rc;
1026 ** Remove all data from the FTS3 table. Clear the hash table containing
1027 ** pending terms.
1029 static int fts3DeleteAll(Fts3Table *p, int bContent){
1030 int rc = SQLITE_OK; /* Return code */
1032 /* Discard the contents of the pending-terms hash table. */
1033 sqlite3Fts3PendingTermsClear(p);
1035 /* Delete everything from the shadow tables. Except, leave %_content as
1036 ** is if bContent is false. */
1037 assert( p->zContentTbl==0 || bContent==0 );
1038 if( bContent ) fts3SqlExec(&rc, p, SQL_DELETE_ALL_CONTENT, 0);
1039 fts3SqlExec(&rc, p, SQL_DELETE_ALL_SEGMENTS, 0);
1040 fts3SqlExec(&rc, p, SQL_DELETE_ALL_SEGDIR, 0);
1041 if( p->bHasDocsize ){
1042 fts3SqlExec(&rc, p, SQL_DELETE_ALL_DOCSIZE, 0);
1044 if( p->bHasStat ){
1045 fts3SqlExec(&rc, p, SQL_DELETE_ALL_STAT, 0);
1047 return rc;
1053 static int langidFromSelect(Fts3Table *p, sqlite3_stmt *pSelect){
1054 int iLangid = 0;
1055 if( p->zLanguageid ) iLangid = sqlite3_column_int(pSelect, p->nColumn+1);
1056 return iLangid;
1060 ** The first element in the apVal[] array is assumed to contain the docid
1061 ** (an integer) of a row about to be deleted. Remove all terms from the
1062 ** full-text index.
1064 static void fts3DeleteTerms(
1065 int *pRC, /* Result code */
1066 Fts3Table *p, /* The FTS table to delete from */
1067 sqlite3_value *pRowid, /* The docid to be deleted */
1068 u32 *aSz, /* Sizes of deleted document written here */
1069 int *pbFound /* OUT: Set to true if row really does exist */
1071 int rc;
1072 sqlite3_stmt *pSelect;
1074 assert( *pbFound==0 );
1075 if( *pRC ) return;
1076 rc = fts3SqlStmt(p, SQL_SELECT_CONTENT_BY_ROWID, &pSelect, &pRowid);
1077 if( rc==SQLITE_OK ){
1078 if( SQLITE_ROW==sqlite3_step(pSelect) ){
1079 int i;
1080 int iLangid = langidFromSelect(p, pSelect);
1081 i64 iDocid = sqlite3_column_int64(pSelect, 0);
1082 rc = fts3PendingTermsDocid(p, 1, iLangid, iDocid);
1083 for(i=1; rc==SQLITE_OK && i<=p->nColumn; i++){
1084 int iCol = i-1;
1085 if( p->abNotindexed[iCol]==0 ){
1086 const char *zText = (const char *)sqlite3_column_text(pSelect, i);
1087 rc = fts3PendingTermsAdd(p, iLangid, zText, -1, &aSz[iCol]);
1088 aSz[p->nColumn] += sqlite3_column_bytes(pSelect, i);
1091 if( rc!=SQLITE_OK ){
1092 sqlite3_reset(pSelect);
1093 *pRC = rc;
1094 return;
1096 *pbFound = 1;
1098 rc = sqlite3_reset(pSelect);
1099 }else{
1100 sqlite3_reset(pSelect);
1102 *pRC = rc;
1106 ** Forward declaration to account for the circular dependency between
1107 ** functions fts3SegmentMerge() and fts3AllocateSegdirIdx().
1109 static int fts3SegmentMerge(Fts3Table *, int, int, int);
1112 ** This function allocates a new level iLevel index in the segdir table.
1113 ** Usually, indexes are allocated within a level sequentially starting
1114 ** with 0, so the allocated index is one greater than the value returned
1115 ** by:
1117 ** SELECT max(idx) FROM %_segdir WHERE level = :iLevel
1119 ** However, if there are already FTS3_MERGE_COUNT indexes at the requested
1120 ** level, they are merged into a single level (iLevel+1) segment and the
1121 ** allocated index is 0.
1123 ** If successful, *piIdx is set to the allocated index slot and SQLITE_OK
1124 ** returned. Otherwise, an SQLite error code is returned.
1126 static int fts3AllocateSegdirIdx(
1127 Fts3Table *p,
1128 int iLangid, /* Language id */
1129 int iIndex, /* Index for p->aIndex */
1130 int iLevel,
1131 int *piIdx
1133 int rc; /* Return Code */
1134 sqlite3_stmt *pNextIdx; /* Query for next idx at level iLevel */
1135 int iNext = 0; /* Result of query pNextIdx */
1137 assert( iLangid>=0 );
1138 assert( p->nIndex>=1 );
1140 /* Set variable iNext to the next available segdir index at level iLevel. */
1141 rc = fts3SqlStmt(p, SQL_NEXT_SEGMENT_INDEX, &pNextIdx, 0);
1142 if( rc==SQLITE_OK ){
1143 sqlite3_bind_int64(
1144 pNextIdx, 1, getAbsoluteLevel(p, iLangid, iIndex, iLevel)
1146 if( SQLITE_ROW==sqlite3_step(pNextIdx) ){
1147 iNext = sqlite3_column_int(pNextIdx, 0);
1149 rc = sqlite3_reset(pNextIdx);
1152 if( rc==SQLITE_OK ){
1153 /* If iNext is FTS3_MERGE_COUNT, indicating that level iLevel is already
1154 ** full, merge all segments in level iLevel into a single iLevel+1
1155 ** segment and allocate (newly freed) index 0 at level iLevel. Otherwise,
1156 ** if iNext is less than FTS3_MERGE_COUNT, allocate index iNext.
1158 if( iNext>=MergeCount(p) ){
1159 fts3LogMerge(16, getAbsoluteLevel(p, iLangid, iIndex, iLevel));
1160 rc = fts3SegmentMerge(p, iLangid, iIndex, iLevel);
1161 *piIdx = 0;
1162 }else{
1163 *piIdx = iNext;
1167 return rc;
1171 ** The %_segments table is declared as follows:
1173 ** CREATE TABLE %_segments(blockid INTEGER PRIMARY KEY, block BLOB)
1175 ** This function reads data from a single row of the %_segments table. The
1176 ** specific row is identified by the iBlockid parameter. If paBlob is not
1177 ** NULL, then a buffer is allocated using sqlite3_malloc() and populated
1178 ** with the contents of the blob stored in the "block" column of the
1179 ** identified table row is. Whether or not paBlob is NULL, *pnBlob is set
1180 ** to the size of the blob in bytes before returning.
1182 ** If an error occurs, or the table does not contain the specified row,
1183 ** an SQLite error code is returned. Otherwise, SQLITE_OK is returned. If
1184 ** paBlob is non-NULL, then it is the responsibility of the caller to
1185 ** eventually free the returned buffer.
1187 ** This function may leave an open sqlite3_blob* handle in the
1188 ** Fts3Table.pSegments variable. This handle is reused by subsequent calls
1189 ** to this function. The handle may be closed by calling the
1190 ** sqlite3Fts3SegmentsClose() function. Reusing a blob handle is a handy
1191 ** performance improvement, but the blob handle should always be closed
1192 ** before control is returned to the user (to prevent a lock being held
1193 ** on the database file for longer than necessary). Thus, any virtual table
1194 ** method (xFilter etc.) that may directly or indirectly call this function
1195 ** must call sqlite3Fts3SegmentsClose() before returning.
1197 int sqlite3Fts3ReadBlock(
1198 Fts3Table *p, /* FTS3 table handle */
1199 sqlite3_int64 iBlockid, /* Access the row with blockid=$iBlockid */
1200 char **paBlob, /* OUT: Blob data in malloc'd buffer */
1201 int *pnBlob, /* OUT: Size of blob data */
1202 int *pnLoad /* OUT: Bytes actually loaded */
1204 int rc; /* Return code */
1206 /* pnBlob must be non-NULL. paBlob may be NULL or non-NULL. */
1207 assert( pnBlob );
1209 if( p->pSegments ){
1210 rc = sqlite3_blob_reopen(p->pSegments, iBlockid);
1211 }else{
1212 if( 0==p->zSegmentsTbl ){
1213 p->zSegmentsTbl = sqlite3_mprintf("%s_segments", p->zName);
1214 if( 0==p->zSegmentsTbl ) return SQLITE_NOMEM;
1216 rc = sqlite3_blob_open(
1217 p->db, p->zDb, p->zSegmentsTbl, "block", iBlockid, 0, &p->pSegments
1221 if( rc==SQLITE_OK ){
1222 int nByte = sqlite3_blob_bytes(p->pSegments);
1223 *pnBlob = nByte;
1224 if( paBlob ){
1225 char *aByte = sqlite3_malloc64((i64)nByte + FTS3_NODE_PADDING);
1226 if( !aByte ){
1227 rc = SQLITE_NOMEM;
1228 }else{
1229 if( pnLoad && nByte>(FTS3_NODE_CHUNK_THRESHOLD) ){
1230 nByte = FTS3_NODE_CHUNKSIZE;
1231 *pnLoad = nByte;
1233 rc = sqlite3_blob_read(p->pSegments, aByte, nByte, 0);
1234 memset(&aByte[nByte], 0, FTS3_NODE_PADDING);
1235 if( rc!=SQLITE_OK ){
1236 sqlite3_free(aByte);
1237 aByte = 0;
1240 *paBlob = aByte;
1242 }else if( rc==SQLITE_ERROR ){
1243 rc = FTS_CORRUPT_VTAB;
1246 return rc;
1250 ** Close the blob handle at p->pSegments, if it is open. See comments above
1251 ** the sqlite3Fts3ReadBlock() function for details.
1253 void sqlite3Fts3SegmentsClose(Fts3Table *p){
1254 sqlite3_blob_close(p->pSegments);
1255 p->pSegments = 0;
1258 static int fts3SegReaderIncrRead(Fts3SegReader *pReader){
1259 int nRead; /* Number of bytes to read */
1260 int rc; /* Return code */
1262 nRead = MIN(pReader->nNode - pReader->nPopulate, FTS3_NODE_CHUNKSIZE);
1263 rc = sqlite3_blob_read(
1264 pReader->pBlob,
1265 &pReader->aNode[pReader->nPopulate],
1266 nRead,
1267 pReader->nPopulate
1270 if( rc==SQLITE_OK ){
1271 pReader->nPopulate += nRead;
1272 memset(&pReader->aNode[pReader->nPopulate], 0, FTS3_NODE_PADDING);
1273 if( pReader->nPopulate==pReader->nNode ){
1274 sqlite3_blob_close(pReader->pBlob);
1275 pReader->pBlob = 0;
1276 pReader->nPopulate = 0;
1279 return rc;
1282 static int fts3SegReaderRequire(Fts3SegReader *pReader, char *pFrom, int nByte){
1283 int rc = SQLITE_OK;
1284 assert( !pReader->pBlob
1285 || (pFrom>=pReader->aNode && pFrom<&pReader->aNode[pReader->nNode])
1287 while( pReader->pBlob && rc==SQLITE_OK
1288 && (pFrom - pReader->aNode + nByte)>pReader->nPopulate
1290 rc = fts3SegReaderIncrRead(pReader);
1292 return rc;
1296 ** Set an Fts3SegReader cursor to point at EOF.
1298 static void fts3SegReaderSetEof(Fts3SegReader *pSeg){
1299 if( !fts3SegReaderIsRootOnly(pSeg) ){
1300 sqlite3_free(pSeg->aNode);
1301 sqlite3_blob_close(pSeg->pBlob);
1302 pSeg->pBlob = 0;
1304 pSeg->aNode = 0;
1308 ** Move the iterator passed as the first argument to the next term in the
1309 ** segment. If successful, SQLITE_OK is returned. If there is no next term,
1310 ** SQLITE_DONE. Otherwise, an SQLite error code.
1312 static int fts3SegReaderNext(
1313 Fts3Table *p,
1314 Fts3SegReader *pReader,
1315 int bIncr
1317 int rc; /* Return code of various sub-routines */
1318 char *pNext; /* Cursor variable */
1319 int nPrefix; /* Number of bytes in term prefix */
1320 int nSuffix; /* Number of bytes in term suffix */
1322 if( !pReader->aDoclist ){
1323 pNext = pReader->aNode;
1324 }else{
1325 pNext = &pReader->aDoclist[pReader->nDoclist];
1328 if( !pNext || pNext>=&pReader->aNode[pReader->nNode] ){
1330 if( fts3SegReaderIsPending(pReader) ){
1331 Fts3HashElem *pElem = *(pReader->ppNextElem);
1332 sqlite3_free(pReader->aNode);
1333 pReader->aNode = 0;
1334 if( pElem ){
1335 char *aCopy;
1336 PendingList *pList = (PendingList *)fts3HashData(pElem);
1337 int nCopy = pList->nData+1;
1339 int nTerm = fts3HashKeysize(pElem);
1340 if( (nTerm+1)>pReader->nTermAlloc ){
1341 sqlite3_free(pReader->zTerm);
1342 pReader->zTerm = (char*)sqlite3_malloc64(((i64)nTerm+1)*2);
1343 if( !pReader->zTerm ) return SQLITE_NOMEM;
1344 pReader->nTermAlloc = (nTerm+1)*2;
1346 memcpy(pReader->zTerm, fts3HashKey(pElem), nTerm);
1347 pReader->zTerm[nTerm] = '\0';
1348 pReader->nTerm = nTerm;
1350 aCopy = (char*)sqlite3_malloc64(nCopy);
1351 if( !aCopy ) return SQLITE_NOMEM;
1352 memcpy(aCopy, pList->aData, nCopy);
1353 pReader->nNode = pReader->nDoclist = nCopy;
1354 pReader->aNode = pReader->aDoclist = aCopy;
1355 pReader->ppNextElem++;
1356 assert( pReader->aNode );
1358 return SQLITE_OK;
1361 fts3SegReaderSetEof(pReader);
1363 /* If iCurrentBlock>=iLeafEndBlock, this is an EOF condition. All leaf
1364 ** blocks have already been traversed. */
1365 #ifdef CORRUPT_DB
1366 assert( pReader->iCurrentBlock<=pReader->iLeafEndBlock || CORRUPT_DB );
1367 #endif
1368 if( pReader->iCurrentBlock>=pReader->iLeafEndBlock ){
1369 return SQLITE_OK;
1372 rc = sqlite3Fts3ReadBlock(
1373 p, ++pReader->iCurrentBlock, &pReader->aNode, &pReader->nNode,
1374 (bIncr ? &pReader->nPopulate : 0)
1376 if( rc!=SQLITE_OK ) return rc;
1377 assert( pReader->pBlob==0 );
1378 if( bIncr && pReader->nPopulate<pReader->nNode ){
1379 pReader->pBlob = p->pSegments;
1380 p->pSegments = 0;
1382 pNext = pReader->aNode;
1385 assert( !fts3SegReaderIsPending(pReader) );
1387 rc = fts3SegReaderRequire(pReader, pNext, FTS3_VARINT_MAX*2);
1388 if( rc!=SQLITE_OK ) return rc;
1390 /* Because of the FTS3_NODE_PADDING bytes of padding, the following is
1391 ** safe (no risk of overread) even if the node data is corrupted. */
1392 pNext += fts3GetVarint32(pNext, &nPrefix);
1393 pNext += fts3GetVarint32(pNext, &nSuffix);
1394 if( nSuffix<=0
1395 || (&pReader->aNode[pReader->nNode] - pNext)<nSuffix
1396 || nPrefix>pReader->nTerm
1398 return FTS_CORRUPT_VTAB;
1401 /* Both nPrefix and nSuffix were read by fts3GetVarint32() and so are
1402 ** between 0 and 0x7FFFFFFF. But the sum of the two may cause integer
1403 ** overflow - hence the (i64) casts. */
1404 if( (i64)nPrefix+nSuffix>(i64)pReader->nTermAlloc ){
1405 i64 nNew = ((i64)nPrefix+nSuffix)*2;
1406 char *zNew = sqlite3_realloc64(pReader->zTerm, nNew);
1407 if( !zNew ){
1408 return SQLITE_NOMEM;
1410 pReader->zTerm = zNew;
1411 pReader->nTermAlloc = nNew;
1414 rc = fts3SegReaderRequire(pReader, pNext, nSuffix+FTS3_VARINT_MAX);
1415 if( rc!=SQLITE_OK ) return rc;
1417 memcpy(&pReader->zTerm[nPrefix], pNext, nSuffix);
1418 pReader->nTerm = nPrefix+nSuffix;
1419 pNext += nSuffix;
1420 pNext += fts3GetVarint32(pNext, &pReader->nDoclist);
1421 pReader->aDoclist = pNext;
1422 pReader->pOffsetList = 0;
1424 /* Check that the doclist does not appear to extend past the end of the
1425 ** b-tree node. And that the final byte of the doclist is 0x00. If either
1426 ** of these statements is untrue, then the data structure is corrupt.
1428 if( pReader->nDoclist > pReader->nNode-(pReader->aDoclist-pReader->aNode)
1429 || (pReader->nPopulate==0 && pReader->aDoclist[pReader->nDoclist-1])
1430 || pReader->nDoclist==0
1432 return FTS_CORRUPT_VTAB;
1434 return SQLITE_OK;
1438 ** Set the SegReader to point to the first docid in the doclist associated
1439 ** with the current term.
1441 static int fts3SegReaderFirstDocid(Fts3Table *pTab, Fts3SegReader *pReader){
1442 int rc = SQLITE_OK;
1443 assert( pReader->aDoclist );
1444 assert( !pReader->pOffsetList );
1445 if( pTab->bDescIdx && fts3SegReaderIsPending(pReader) ){
1446 u8 bEof = 0;
1447 pReader->iDocid = 0;
1448 pReader->nOffsetList = 0;
1449 sqlite3Fts3DoclistPrev(0,
1450 pReader->aDoclist, pReader->nDoclist, &pReader->pOffsetList,
1451 &pReader->iDocid, &pReader->nOffsetList, &bEof
1453 }else{
1454 rc = fts3SegReaderRequire(pReader, pReader->aDoclist, FTS3_VARINT_MAX);
1455 if( rc==SQLITE_OK ){
1456 int n = sqlite3Fts3GetVarint(pReader->aDoclist, &pReader->iDocid);
1457 pReader->pOffsetList = &pReader->aDoclist[n];
1460 return rc;
1464 ** Advance the SegReader to point to the next docid in the doclist
1465 ** associated with the current term.
1467 ** If arguments ppOffsetList and pnOffsetList are not NULL, then
1468 ** *ppOffsetList is set to point to the first column-offset list
1469 ** in the doclist entry (i.e. immediately past the docid varint).
1470 ** *pnOffsetList is set to the length of the set of column-offset
1471 ** lists, not including the nul-terminator byte. For example:
1473 static int fts3SegReaderNextDocid(
1474 Fts3Table *pTab,
1475 Fts3SegReader *pReader, /* Reader to advance to next docid */
1476 char **ppOffsetList, /* OUT: Pointer to current position-list */
1477 int *pnOffsetList /* OUT: Length of *ppOffsetList in bytes */
1479 int rc = SQLITE_OK;
1480 char *p = pReader->pOffsetList;
1481 char c = 0;
1483 assert( p );
1485 if( pTab->bDescIdx && fts3SegReaderIsPending(pReader) ){
1486 /* A pending-terms seg-reader for an FTS4 table that uses order=desc.
1487 ** Pending-terms doclists are always built up in ascending order, so
1488 ** we have to iterate through them backwards here. */
1489 u8 bEof = 0;
1490 if( ppOffsetList ){
1491 *ppOffsetList = pReader->pOffsetList;
1492 *pnOffsetList = pReader->nOffsetList - 1;
1494 sqlite3Fts3DoclistPrev(0,
1495 pReader->aDoclist, pReader->nDoclist, &p, &pReader->iDocid,
1496 &pReader->nOffsetList, &bEof
1498 if( bEof ){
1499 pReader->pOffsetList = 0;
1500 }else{
1501 pReader->pOffsetList = p;
1503 }else{
1504 char *pEnd = &pReader->aDoclist[pReader->nDoclist];
1506 /* Pointer p currently points at the first byte of an offset list. The
1507 ** following block advances it to point one byte past the end of
1508 ** the same offset list. */
1509 while( 1 ){
1511 /* The following line of code (and the "p++" below the while() loop) is
1512 ** normally all that is required to move pointer p to the desired
1513 ** position. The exception is if this node is being loaded from disk
1514 ** incrementally and pointer "p" now points to the first byte past
1515 ** the populated part of pReader->aNode[].
1517 while( *p | c ) c = *p++ & 0x80;
1518 assert( *p==0 );
1520 if( pReader->pBlob==0 || p<&pReader->aNode[pReader->nPopulate] ) break;
1521 rc = fts3SegReaderIncrRead(pReader);
1522 if( rc!=SQLITE_OK ) return rc;
1524 p++;
1526 /* If required, populate the output variables with a pointer to and the
1527 ** size of the previous offset-list.
1529 if( ppOffsetList ){
1530 *ppOffsetList = pReader->pOffsetList;
1531 *pnOffsetList = (int)(p - pReader->pOffsetList - 1);
1534 /* List may have been edited in place by fts3EvalNearTrim() */
1535 while( p<pEnd && *p==0 ) p++;
1537 /* If there are no more entries in the doclist, set pOffsetList to
1538 ** NULL. Otherwise, set Fts3SegReader.iDocid to the next docid and
1539 ** Fts3SegReader.pOffsetList to point to the next offset list before
1540 ** returning.
1542 if( p>=pEnd ){
1543 pReader->pOffsetList = 0;
1544 }else{
1545 rc = fts3SegReaderRequire(pReader, p, FTS3_VARINT_MAX);
1546 if( rc==SQLITE_OK ){
1547 u64 iDelta;
1548 pReader->pOffsetList = p + sqlite3Fts3GetVarintU(p, &iDelta);
1549 if( pTab->bDescIdx ){
1550 pReader->iDocid = (i64)((u64)pReader->iDocid - iDelta);
1551 }else{
1552 pReader->iDocid = (i64)((u64)pReader->iDocid + iDelta);
1558 return rc;
1562 int sqlite3Fts3MsrOvfl(
1563 Fts3Cursor *pCsr,
1564 Fts3MultiSegReader *pMsr,
1565 int *pnOvfl
1567 Fts3Table *p = (Fts3Table*)pCsr->base.pVtab;
1568 int nOvfl = 0;
1569 int ii;
1570 int rc = SQLITE_OK;
1571 int pgsz = p->nPgsz;
1573 assert( p->bFts4 );
1574 assert( pgsz>0 );
1576 for(ii=0; rc==SQLITE_OK && ii<pMsr->nSegment; ii++){
1577 Fts3SegReader *pReader = pMsr->apSegment[ii];
1578 if( !fts3SegReaderIsPending(pReader)
1579 && !fts3SegReaderIsRootOnly(pReader)
1581 sqlite3_int64 jj;
1582 for(jj=pReader->iStartBlock; jj<=pReader->iLeafEndBlock; jj++){
1583 int nBlob;
1584 rc = sqlite3Fts3ReadBlock(p, jj, 0, &nBlob, 0);
1585 if( rc!=SQLITE_OK ) break;
1586 if( (nBlob+35)>pgsz ){
1587 nOvfl += (nBlob + 34)/pgsz;
1592 *pnOvfl = nOvfl;
1593 return rc;
1597 ** Free all allocations associated with the iterator passed as the
1598 ** second argument.
1600 void sqlite3Fts3SegReaderFree(Fts3SegReader *pReader){
1601 if( pReader ){
1602 sqlite3_free(pReader->zTerm);
1603 if( !fts3SegReaderIsRootOnly(pReader) ){
1604 sqlite3_free(pReader->aNode);
1606 sqlite3_blob_close(pReader->pBlob);
1608 sqlite3_free(pReader);
1612 ** Allocate a new SegReader object.
1614 int sqlite3Fts3SegReaderNew(
1615 int iAge, /* Segment "age". */
1616 int bLookup, /* True for a lookup only */
1617 sqlite3_int64 iStartLeaf, /* First leaf to traverse */
1618 sqlite3_int64 iEndLeaf, /* Final leaf to traverse */
1619 sqlite3_int64 iEndBlock, /* Final block of segment */
1620 const char *zRoot, /* Buffer containing root node */
1621 int nRoot, /* Size of buffer containing root node */
1622 Fts3SegReader **ppReader /* OUT: Allocated Fts3SegReader */
1624 Fts3SegReader *pReader; /* Newly allocated SegReader object */
1625 int nExtra = 0; /* Bytes to allocate segment root node */
1627 assert( zRoot!=0 || nRoot==0 );
1628 #ifdef CORRUPT_DB
1629 assert( zRoot!=0 || CORRUPT_DB );
1630 #endif
1632 if( iStartLeaf==0 ){
1633 if( iEndLeaf!=0 ) return FTS_CORRUPT_VTAB;
1634 nExtra = nRoot + FTS3_NODE_PADDING;
1637 pReader = (Fts3SegReader *)sqlite3_malloc64(sizeof(Fts3SegReader) + nExtra);
1638 if( !pReader ){
1639 return SQLITE_NOMEM;
1641 memset(pReader, 0, sizeof(Fts3SegReader));
1642 pReader->iIdx = iAge;
1643 pReader->bLookup = bLookup!=0;
1644 pReader->iStartBlock = iStartLeaf;
1645 pReader->iLeafEndBlock = iEndLeaf;
1646 pReader->iEndBlock = iEndBlock;
1648 if( nExtra ){
1649 /* The entire segment is stored in the root node. */
1650 pReader->aNode = (char *)&pReader[1];
1651 pReader->rootOnly = 1;
1652 pReader->nNode = nRoot;
1653 if( nRoot ) memcpy(pReader->aNode, zRoot, nRoot);
1654 memset(&pReader->aNode[nRoot], 0, FTS3_NODE_PADDING);
1655 }else{
1656 pReader->iCurrentBlock = iStartLeaf-1;
1658 *ppReader = pReader;
1659 return SQLITE_OK;
1663 ** This is a comparison function used as a qsort() callback when sorting
1664 ** an array of pending terms by term. This occurs as part of flushing
1665 ** the contents of the pending-terms hash table to the database.
1667 static int SQLITE_CDECL fts3CompareElemByTerm(
1668 const void *lhs,
1669 const void *rhs
1671 char *z1 = fts3HashKey(*(Fts3HashElem **)lhs);
1672 char *z2 = fts3HashKey(*(Fts3HashElem **)rhs);
1673 int n1 = fts3HashKeysize(*(Fts3HashElem **)lhs);
1674 int n2 = fts3HashKeysize(*(Fts3HashElem **)rhs);
1676 int n = (n1<n2 ? n1 : n2);
1677 int c = memcmp(z1, z2, n);
1678 if( c==0 ){
1679 c = n1 - n2;
1681 return c;
1685 ** This function is used to allocate an Fts3SegReader that iterates through
1686 ** a subset of the terms stored in the Fts3Table.pendingTerms array.
1688 ** If the isPrefixIter parameter is zero, then the returned SegReader iterates
1689 ** through each term in the pending-terms table. Or, if isPrefixIter is
1690 ** non-zero, it iterates through each term and its prefixes. For example, if
1691 ** the pending terms hash table contains the terms "sqlite", "mysql" and
1692 ** "firebird", then the iterator visits the following 'terms' (in the order
1693 ** shown):
1695 ** f fi fir fire fireb firebi firebir firebird
1696 ** m my mys mysq mysql
1697 ** s sq sql sqli sqlit sqlite
1699 ** Whereas if isPrefixIter is zero, the terms visited are:
1701 ** firebird mysql sqlite
1703 int sqlite3Fts3SegReaderPending(
1704 Fts3Table *p, /* Virtual table handle */
1705 int iIndex, /* Index for p->aIndex */
1706 const char *zTerm, /* Term to search for */
1707 int nTerm, /* Size of buffer zTerm */
1708 int bPrefix, /* True for a prefix iterator */
1709 Fts3SegReader **ppReader /* OUT: SegReader for pending-terms */
1711 Fts3SegReader *pReader = 0; /* Fts3SegReader object to return */
1712 Fts3HashElem *pE; /* Iterator variable */
1713 Fts3HashElem **aElem = 0; /* Array of term hash entries to scan */
1714 int nElem = 0; /* Size of array at aElem */
1715 int rc = SQLITE_OK; /* Return Code */
1716 Fts3Hash *pHash;
1718 pHash = &p->aIndex[iIndex].hPending;
1719 if( bPrefix ){
1720 int nAlloc = 0; /* Size of allocated array at aElem */
1722 for(pE=fts3HashFirst(pHash); pE; pE=fts3HashNext(pE)){
1723 char *zKey = (char *)fts3HashKey(pE);
1724 int nKey = fts3HashKeysize(pE);
1725 if( nTerm==0 || (nKey>=nTerm && 0==memcmp(zKey, zTerm, nTerm)) ){
1726 if( nElem==nAlloc ){
1727 Fts3HashElem **aElem2;
1728 nAlloc += 16;
1729 aElem2 = (Fts3HashElem **)sqlite3_realloc64(
1730 aElem, nAlloc*sizeof(Fts3HashElem *)
1732 if( !aElem2 ){
1733 rc = SQLITE_NOMEM;
1734 nElem = 0;
1735 break;
1737 aElem = aElem2;
1740 aElem[nElem++] = pE;
1744 /* If more than one term matches the prefix, sort the Fts3HashElem
1745 ** objects in term order using qsort(). This uses the same comparison
1746 ** callback as is used when flushing terms to disk.
1748 if( nElem>1 ){
1749 qsort(aElem, nElem, sizeof(Fts3HashElem *), fts3CompareElemByTerm);
1752 }else{
1753 /* The query is a simple term lookup that matches at most one term in
1754 ** the index. All that is required is a straight hash-lookup.
1756 ** Because the stack address of pE may be accessed via the aElem pointer
1757 ** below, the "Fts3HashElem *pE" must be declared so that it is valid
1758 ** within this entire function, not just this "else{...}" block.
1760 pE = fts3HashFindElem(pHash, zTerm, nTerm);
1761 if( pE ){
1762 aElem = &pE;
1763 nElem = 1;
1767 if( nElem>0 ){
1768 sqlite3_int64 nByte;
1769 nByte = sizeof(Fts3SegReader) + (nElem+1)*sizeof(Fts3HashElem *);
1770 pReader = (Fts3SegReader *)sqlite3_malloc64(nByte);
1771 if( !pReader ){
1772 rc = SQLITE_NOMEM;
1773 }else{
1774 memset(pReader, 0, nByte);
1775 pReader->iIdx = 0x7FFFFFFF;
1776 pReader->ppNextElem = (Fts3HashElem **)&pReader[1];
1777 memcpy(pReader->ppNextElem, aElem, nElem*sizeof(Fts3HashElem *));
1781 if( bPrefix ){
1782 sqlite3_free(aElem);
1784 *ppReader = pReader;
1785 return rc;
1789 ** Compare the entries pointed to by two Fts3SegReader structures.
1790 ** Comparison is as follows:
1792 ** 1) EOF is greater than not EOF.
1794 ** 2) The current terms (if any) are compared using memcmp(). If one
1795 ** term is a prefix of another, the longer term is considered the
1796 ** larger.
1798 ** 3) By segment age. An older segment is considered larger.
1800 static int fts3SegReaderCmp(Fts3SegReader *pLhs, Fts3SegReader *pRhs){
1801 int rc;
1802 if( pLhs->aNode && pRhs->aNode ){
1803 int rc2 = pLhs->nTerm - pRhs->nTerm;
1804 if( rc2<0 ){
1805 rc = memcmp(pLhs->zTerm, pRhs->zTerm, pLhs->nTerm);
1806 }else{
1807 rc = memcmp(pLhs->zTerm, pRhs->zTerm, pRhs->nTerm);
1809 if( rc==0 ){
1810 rc = rc2;
1812 }else{
1813 rc = (pLhs->aNode==0) - (pRhs->aNode==0);
1815 if( rc==0 ){
1816 rc = pRhs->iIdx - pLhs->iIdx;
1818 assert_fts3_nc( rc!=0 );
1819 return rc;
1823 ** A different comparison function for SegReader structures. In this
1824 ** version, it is assumed that each SegReader points to an entry in
1825 ** a doclist for identical terms. Comparison is made as follows:
1827 ** 1) EOF (end of doclist in this case) is greater than not EOF.
1829 ** 2) By current docid.
1831 ** 3) By segment age. An older segment is considered larger.
1833 static int fts3SegReaderDoclistCmp(Fts3SegReader *pLhs, Fts3SegReader *pRhs){
1834 int rc = (pLhs->pOffsetList==0)-(pRhs->pOffsetList==0);
1835 if( rc==0 ){
1836 if( pLhs->iDocid==pRhs->iDocid ){
1837 rc = pRhs->iIdx - pLhs->iIdx;
1838 }else{
1839 rc = (pLhs->iDocid > pRhs->iDocid) ? 1 : -1;
1842 assert( pLhs->aNode && pRhs->aNode );
1843 return rc;
1845 static int fts3SegReaderDoclistCmpRev(Fts3SegReader *pLhs, Fts3SegReader *pRhs){
1846 int rc = (pLhs->pOffsetList==0)-(pRhs->pOffsetList==0);
1847 if( rc==0 ){
1848 if( pLhs->iDocid==pRhs->iDocid ){
1849 rc = pRhs->iIdx - pLhs->iIdx;
1850 }else{
1851 rc = (pLhs->iDocid < pRhs->iDocid) ? 1 : -1;
1854 assert( pLhs->aNode && pRhs->aNode );
1855 return rc;
1859 ** Compare the term that the Fts3SegReader object passed as the first argument
1860 ** points to with the term specified by arguments zTerm and nTerm.
1862 ** If the pSeg iterator is already at EOF, return 0. Otherwise, return
1863 ** -ve if the pSeg term is less than zTerm/nTerm, 0 if the two terms are
1864 ** equal, or +ve if the pSeg term is greater than zTerm/nTerm.
1866 static int fts3SegReaderTermCmp(
1867 Fts3SegReader *pSeg, /* Segment reader object */
1868 const char *zTerm, /* Term to compare to */
1869 int nTerm /* Size of term zTerm in bytes */
1871 int res = 0;
1872 if( pSeg->aNode ){
1873 if( pSeg->nTerm>nTerm ){
1874 res = memcmp(pSeg->zTerm, zTerm, nTerm);
1875 }else{
1876 res = memcmp(pSeg->zTerm, zTerm, pSeg->nTerm);
1878 if( res==0 ){
1879 res = pSeg->nTerm-nTerm;
1882 return res;
1886 ** Argument apSegment is an array of nSegment elements. It is known that
1887 ** the final (nSegment-nSuspect) members are already in sorted order
1888 ** (according to the comparison function provided). This function shuffles
1889 ** the array around until all entries are in sorted order.
1891 static void fts3SegReaderSort(
1892 Fts3SegReader **apSegment, /* Array to sort entries of */
1893 int nSegment, /* Size of apSegment array */
1894 int nSuspect, /* Unsorted entry count */
1895 int (*xCmp)(Fts3SegReader *, Fts3SegReader *) /* Comparison function */
1897 int i; /* Iterator variable */
1899 assert( nSuspect<=nSegment );
1901 if( nSuspect==nSegment ) nSuspect--;
1902 for(i=nSuspect-1; i>=0; i--){
1903 int j;
1904 for(j=i; j<(nSegment-1); j++){
1905 Fts3SegReader *pTmp;
1906 if( xCmp(apSegment[j], apSegment[j+1])<0 ) break;
1907 pTmp = apSegment[j+1];
1908 apSegment[j+1] = apSegment[j];
1909 apSegment[j] = pTmp;
1913 #ifndef NDEBUG
1914 /* Check that the list really is sorted now. */
1915 for(i=0; i<(nSuspect-1); i++){
1916 assert( xCmp(apSegment[i], apSegment[i+1])<0 );
1918 #endif
1922 ** Insert a record into the %_segments table.
1924 static int fts3WriteSegment(
1925 Fts3Table *p, /* Virtual table handle */
1926 sqlite3_int64 iBlock, /* Block id for new block */
1927 char *z, /* Pointer to buffer containing block data */
1928 int n /* Size of buffer z in bytes */
1930 sqlite3_stmt *pStmt;
1931 int rc = fts3SqlStmt(p, SQL_INSERT_SEGMENTS, &pStmt, 0);
1932 if( rc==SQLITE_OK ){
1933 sqlite3_bind_int64(pStmt, 1, iBlock);
1934 sqlite3_bind_blob(pStmt, 2, z, n, SQLITE_STATIC);
1935 sqlite3_step(pStmt);
1936 rc = sqlite3_reset(pStmt);
1937 sqlite3_bind_null(pStmt, 2);
1939 return rc;
1943 ** Find the largest relative level number in the table. If successful, set
1944 ** *pnMax to this value and return SQLITE_OK. Otherwise, if an error occurs,
1945 ** set *pnMax to zero and return an SQLite error code.
1947 int sqlite3Fts3MaxLevel(Fts3Table *p, int *pnMax){
1948 int rc;
1949 int mxLevel = 0;
1950 sqlite3_stmt *pStmt = 0;
1952 rc = fts3SqlStmt(p, SQL_SELECT_MXLEVEL, &pStmt, 0);
1953 if( rc==SQLITE_OK ){
1954 if( SQLITE_ROW==sqlite3_step(pStmt) ){
1955 mxLevel = sqlite3_column_int(pStmt, 0);
1957 rc = sqlite3_reset(pStmt);
1959 *pnMax = mxLevel;
1960 return rc;
1964 ** Insert a record into the %_segdir table.
1966 static int fts3WriteSegdir(
1967 Fts3Table *p, /* Virtual table handle */
1968 sqlite3_int64 iLevel, /* Value for "level" field (absolute level) */
1969 int iIdx, /* Value for "idx" field */
1970 sqlite3_int64 iStartBlock, /* Value for "start_block" field */
1971 sqlite3_int64 iLeafEndBlock, /* Value for "leaves_end_block" field */
1972 sqlite3_int64 iEndBlock, /* Value for "end_block" field */
1973 sqlite3_int64 nLeafData, /* Bytes of leaf data in segment */
1974 char *zRoot, /* Blob value for "root" field */
1975 int nRoot /* Number of bytes in buffer zRoot */
1977 sqlite3_stmt *pStmt;
1978 int rc = fts3SqlStmt(p, SQL_INSERT_SEGDIR, &pStmt, 0);
1979 if( rc==SQLITE_OK ){
1980 sqlite3_bind_int64(pStmt, 1, iLevel);
1981 sqlite3_bind_int(pStmt, 2, iIdx);
1982 sqlite3_bind_int64(pStmt, 3, iStartBlock);
1983 sqlite3_bind_int64(pStmt, 4, iLeafEndBlock);
1984 if( nLeafData==0 ){
1985 sqlite3_bind_int64(pStmt, 5, iEndBlock);
1986 }else{
1987 char *zEnd = sqlite3_mprintf("%lld %lld", iEndBlock, nLeafData);
1988 if( !zEnd ) return SQLITE_NOMEM;
1989 sqlite3_bind_text(pStmt, 5, zEnd, -1, sqlite3_free);
1991 sqlite3_bind_blob(pStmt, 6, zRoot, nRoot, SQLITE_STATIC);
1992 sqlite3_step(pStmt);
1993 rc = sqlite3_reset(pStmt);
1994 sqlite3_bind_null(pStmt, 6);
1996 return rc;
2000 ** Return the size of the common prefix (if any) shared by zPrev and
2001 ** zNext, in bytes. For example,
2003 ** fts3PrefixCompress("abc", 3, "abcdef", 6) // returns 3
2004 ** fts3PrefixCompress("abX", 3, "abcdef", 6) // returns 2
2005 ** fts3PrefixCompress("abX", 3, "Xbcdef", 6) // returns 0
2007 static int fts3PrefixCompress(
2008 const char *zPrev, /* Buffer containing previous term */
2009 int nPrev, /* Size of buffer zPrev in bytes */
2010 const char *zNext, /* Buffer containing next term */
2011 int nNext /* Size of buffer zNext in bytes */
2013 int n;
2014 for(n=0; n<nPrev && n<nNext && zPrev[n]==zNext[n]; n++);
2015 assert_fts3_nc( n<nNext );
2016 return n;
2020 ** Add term zTerm to the SegmentNode. It is guaranteed that zTerm is larger
2021 ** (according to memcmp) than the previous term.
2023 static int fts3NodeAddTerm(
2024 Fts3Table *p, /* Virtual table handle */
2025 SegmentNode **ppTree, /* IN/OUT: SegmentNode handle */
2026 int isCopyTerm, /* True if zTerm/nTerm is transient */
2027 const char *zTerm, /* Pointer to buffer containing term */
2028 int nTerm /* Size of term in bytes */
2030 SegmentNode *pTree = *ppTree;
2031 int rc;
2032 SegmentNode *pNew;
2034 /* First try to append the term to the current node. Return early if
2035 ** this is possible.
2037 if( pTree ){
2038 int nData = pTree->nData; /* Current size of node in bytes */
2039 int nReq = nData; /* Required space after adding zTerm */
2040 int nPrefix; /* Number of bytes of prefix compression */
2041 int nSuffix; /* Suffix length */
2043 nPrefix = fts3PrefixCompress(pTree->zTerm, pTree->nTerm, zTerm, nTerm);
2044 nSuffix = nTerm-nPrefix;
2046 /* If nSuffix is zero or less, then zTerm/nTerm must be a prefix of
2047 ** pWriter->zTerm/pWriter->nTerm. i.e. must be equal to or less than when
2048 ** compared with BINARY collation. This indicates corruption. */
2049 if( nSuffix<=0 ) return FTS_CORRUPT_VTAB;
2051 nReq += sqlite3Fts3VarintLen(nPrefix)+sqlite3Fts3VarintLen(nSuffix)+nSuffix;
2052 if( nReq<=p->nNodeSize || !pTree->zTerm ){
2054 if( nReq>p->nNodeSize ){
2055 /* An unusual case: this is the first term to be added to the node
2056 ** and the static node buffer (p->nNodeSize bytes) is not large
2057 ** enough. Use a separately malloced buffer instead This wastes
2058 ** p->nNodeSize bytes, but since this scenario only comes about when
2059 ** the database contain two terms that share a prefix of almost 2KB,
2060 ** this is not expected to be a serious problem.
2062 assert( pTree->aData==(char *)&pTree[1] );
2063 pTree->aData = (char *)sqlite3_malloc64(nReq);
2064 if( !pTree->aData ){
2065 return SQLITE_NOMEM;
2069 if( pTree->zTerm ){
2070 /* There is no prefix-length field for first term in a node */
2071 nData += sqlite3Fts3PutVarint(&pTree->aData[nData], nPrefix);
2074 nData += sqlite3Fts3PutVarint(&pTree->aData[nData], nSuffix);
2075 memcpy(&pTree->aData[nData], &zTerm[nPrefix], nSuffix);
2076 pTree->nData = nData + nSuffix;
2077 pTree->nEntry++;
2079 if( isCopyTerm ){
2080 if( pTree->nMalloc<nTerm ){
2081 char *zNew = sqlite3_realloc64(pTree->zMalloc, (i64)nTerm*2);
2082 if( !zNew ){
2083 return SQLITE_NOMEM;
2085 pTree->nMalloc = nTerm*2;
2086 pTree->zMalloc = zNew;
2088 pTree->zTerm = pTree->zMalloc;
2089 memcpy(pTree->zTerm, zTerm, nTerm);
2090 pTree->nTerm = nTerm;
2091 }else{
2092 pTree->zTerm = (char *)zTerm;
2093 pTree->nTerm = nTerm;
2095 return SQLITE_OK;
2099 /* If control flows to here, it was not possible to append zTerm to the
2100 ** current node. Create a new node (a right-sibling of the current node).
2101 ** If this is the first node in the tree, the term is added to it.
2103 ** Otherwise, the term is not added to the new node, it is left empty for
2104 ** now. Instead, the term is inserted into the parent of pTree. If pTree
2105 ** has no parent, one is created here.
2107 pNew = (SegmentNode *)sqlite3_malloc64(sizeof(SegmentNode) + p->nNodeSize);
2108 if( !pNew ){
2109 return SQLITE_NOMEM;
2111 memset(pNew, 0, sizeof(SegmentNode));
2112 pNew->nData = 1 + FTS3_VARINT_MAX;
2113 pNew->aData = (char *)&pNew[1];
2115 if( pTree ){
2116 SegmentNode *pParent = pTree->pParent;
2117 rc = fts3NodeAddTerm(p, &pParent, isCopyTerm, zTerm, nTerm);
2118 if( pTree->pParent==0 ){
2119 pTree->pParent = pParent;
2121 pTree->pRight = pNew;
2122 pNew->pLeftmost = pTree->pLeftmost;
2123 pNew->pParent = pParent;
2124 pNew->zMalloc = pTree->zMalloc;
2125 pNew->nMalloc = pTree->nMalloc;
2126 pTree->zMalloc = 0;
2127 }else{
2128 pNew->pLeftmost = pNew;
2129 rc = fts3NodeAddTerm(p, &pNew, isCopyTerm, zTerm, nTerm);
2132 *ppTree = pNew;
2133 return rc;
2137 ** Helper function for fts3NodeWrite().
2139 static int fts3TreeFinishNode(
2140 SegmentNode *pTree,
2141 int iHeight,
2142 sqlite3_int64 iLeftChild
2144 int nStart;
2145 assert( iHeight>=1 && iHeight<128 );
2146 nStart = FTS3_VARINT_MAX - sqlite3Fts3VarintLen(iLeftChild);
2147 pTree->aData[nStart] = (char)iHeight;
2148 sqlite3Fts3PutVarint(&pTree->aData[nStart+1], iLeftChild);
2149 return nStart;
2153 ** Write the buffer for the segment node pTree and all of its peers to the
2154 ** database. Then call this function recursively to write the parent of
2155 ** pTree and its peers to the database.
2157 ** Except, if pTree is a root node, do not write it to the database. Instead,
2158 ** set output variables *paRoot and *pnRoot to contain the root node.
2160 ** If successful, SQLITE_OK is returned and output variable *piLast is
2161 ** set to the largest blockid written to the database (or zero if no
2162 ** blocks were written to the db). Otherwise, an SQLite error code is
2163 ** returned.
2165 static int fts3NodeWrite(
2166 Fts3Table *p, /* Virtual table handle */
2167 SegmentNode *pTree, /* SegmentNode handle */
2168 int iHeight, /* Height of this node in tree */
2169 sqlite3_int64 iLeaf, /* Block id of first leaf node */
2170 sqlite3_int64 iFree, /* Block id of next free slot in %_segments */
2171 sqlite3_int64 *piLast, /* OUT: Block id of last entry written */
2172 char **paRoot, /* OUT: Data for root node */
2173 int *pnRoot /* OUT: Size of root node in bytes */
2175 int rc = SQLITE_OK;
2177 if( !pTree->pParent ){
2178 /* Root node of the tree. */
2179 int nStart = fts3TreeFinishNode(pTree, iHeight, iLeaf);
2180 *piLast = iFree-1;
2181 *pnRoot = pTree->nData - nStart;
2182 *paRoot = &pTree->aData[nStart];
2183 }else{
2184 SegmentNode *pIter;
2185 sqlite3_int64 iNextFree = iFree;
2186 sqlite3_int64 iNextLeaf = iLeaf;
2187 for(pIter=pTree->pLeftmost; pIter && rc==SQLITE_OK; pIter=pIter->pRight){
2188 int nStart = fts3TreeFinishNode(pIter, iHeight, iNextLeaf);
2189 int nWrite = pIter->nData - nStart;
2191 rc = fts3WriteSegment(p, iNextFree, &pIter->aData[nStart], nWrite);
2192 iNextFree++;
2193 iNextLeaf += (pIter->nEntry+1);
2195 if( rc==SQLITE_OK ){
2196 assert( iNextLeaf==iFree );
2197 rc = fts3NodeWrite(
2198 p, pTree->pParent, iHeight+1, iFree, iNextFree, piLast, paRoot, pnRoot
2203 return rc;
2207 ** Free all memory allocations associated with the tree pTree.
2209 static void fts3NodeFree(SegmentNode *pTree){
2210 if( pTree ){
2211 SegmentNode *p = pTree->pLeftmost;
2212 fts3NodeFree(p->pParent);
2213 while( p ){
2214 SegmentNode *pRight = p->pRight;
2215 if( p->aData!=(char *)&p[1] ){
2216 sqlite3_free(p->aData);
2218 assert( pRight==0 || p->zMalloc==0 );
2219 sqlite3_free(p->zMalloc);
2220 sqlite3_free(p);
2221 p = pRight;
2227 ** Add a term to the segment being constructed by the SegmentWriter object
2228 ** *ppWriter. When adding the first term to a segment, *ppWriter should
2229 ** be passed NULL. This function will allocate a new SegmentWriter object
2230 ** and return it via the input/output variable *ppWriter in this case.
2232 ** If successful, SQLITE_OK is returned. Otherwise, an SQLite error code.
2234 static int fts3SegWriterAdd(
2235 Fts3Table *p, /* Virtual table handle */
2236 SegmentWriter **ppWriter, /* IN/OUT: SegmentWriter handle */
2237 int isCopyTerm, /* True if buffer zTerm must be copied */
2238 const char *zTerm, /* Pointer to buffer containing term */
2239 int nTerm, /* Size of term in bytes */
2240 const char *aDoclist, /* Pointer to buffer containing doclist */
2241 int nDoclist /* Size of doclist in bytes */
2243 int nPrefix; /* Size of term prefix in bytes */
2244 int nSuffix; /* Size of term suffix in bytes */
2245 i64 nReq; /* Number of bytes required on leaf page */
2246 int nData;
2247 SegmentWriter *pWriter = *ppWriter;
2249 if( !pWriter ){
2250 int rc;
2251 sqlite3_stmt *pStmt;
2253 /* Allocate the SegmentWriter structure */
2254 pWriter = (SegmentWriter *)sqlite3_malloc64(sizeof(SegmentWriter));
2255 if( !pWriter ) return SQLITE_NOMEM;
2256 memset(pWriter, 0, sizeof(SegmentWriter));
2257 *ppWriter = pWriter;
2259 /* Allocate a buffer in which to accumulate data */
2260 pWriter->aData = (char *)sqlite3_malloc64(p->nNodeSize);
2261 if( !pWriter->aData ) return SQLITE_NOMEM;
2262 pWriter->nSize = p->nNodeSize;
2264 /* Find the next free blockid in the %_segments table */
2265 rc = fts3SqlStmt(p, SQL_NEXT_SEGMENTS_ID, &pStmt, 0);
2266 if( rc!=SQLITE_OK ) return rc;
2267 if( SQLITE_ROW==sqlite3_step(pStmt) ){
2268 pWriter->iFree = sqlite3_column_int64(pStmt, 0);
2269 pWriter->iFirst = pWriter->iFree;
2271 rc = sqlite3_reset(pStmt);
2272 if( rc!=SQLITE_OK ) return rc;
2274 nData = pWriter->nData;
2276 nPrefix = fts3PrefixCompress(pWriter->zTerm, pWriter->nTerm, zTerm, nTerm);
2277 nSuffix = nTerm-nPrefix;
2279 /* If nSuffix is zero or less, then zTerm/nTerm must be a prefix of
2280 ** pWriter->zTerm/pWriter->nTerm. i.e. must be equal to or less than when
2281 ** compared with BINARY collation. This indicates corruption. */
2282 if( nSuffix<=0 ) return FTS_CORRUPT_VTAB;
2284 /* Figure out how many bytes are required by this new entry */
2285 nReq = sqlite3Fts3VarintLen(nPrefix) + /* varint containing prefix size */
2286 sqlite3Fts3VarintLen(nSuffix) + /* varint containing suffix size */
2287 nSuffix + /* Term suffix */
2288 sqlite3Fts3VarintLen(nDoclist) + /* Size of doclist */
2289 nDoclist; /* Doclist data */
2291 if( nData>0 && nData+nReq>p->nNodeSize ){
2292 int rc;
2294 /* The current leaf node is full. Write it out to the database. */
2295 if( pWriter->iFree==LARGEST_INT64 ) return FTS_CORRUPT_VTAB;
2296 rc = fts3WriteSegment(p, pWriter->iFree++, pWriter->aData, nData);
2297 if( rc!=SQLITE_OK ) return rc;
2298 p->nLeafAdd++;
2300 /* Add the current term to the interior node tree. The term added to
2301 ** the interior tree must:
2303 ** a) be greater than the largest term on the leaf node just written
2304 ** to the database (still available in pWriter->zTerm), and
2306 ** b) be less than or equal to the term about to be added to the new
2307 ** leaf node (zTerm/nTerm).
2309 ** In other words, it must be the prefix of zTerm 1 byte longer than
2310 ** the common prefix (if any) of zTerm and pWriter->zTerm.
2312 assert( nPrefix<nTerm );
2313 rc = fts3NodeAddTerm(p, &pWriter->pTree, isCopyTerm, zTerm, nPrefix+1);
2314 if( rc!=SQLITE_OK ) return rc;
2316 nData = 0;
2317 pWriter->nTerm = 0;
2319 nPrefix = 0;
2320 nSuffix = nTerm;
2321 nReq = 1 + /* varint containing prefix size */
2322 sqlite3Fts3VarintLen(nTerm) + /* varint containing suffix size */
2323 nTerm + /* Term suffix */
2324 sqlite3Fts3VarintLen(nDoclist) + /* Size of doclist */
2325 nDoclist; /* Doclist data */
2328 /* Increase the total number of bytes written to account for the new entry. */
2329 pWriter->nLeafData += nReq;
2331 /* If the buffer currently allocated is too small for this entry, realloc
2332 ** the buffer to make it large enough.
2334 if( nReq>pWriter->nSize ){
2335 char *aNew = sqlite3_realloc64(pWriter->aData, nReq);
2336 if( !aNew ) return SQLITE_NOMEM;
2337 pWriter->aData = aNew;
2338 pWriter->nSize = nReq;
2340 assert( nData+nReq<=pWriter->nSize );
2342 /* Append the prefix-compressed term and doclist to the buffer. */
2343 nData += sqlite3Fts3PutVarint(&pWriter->aData[nData], nPrefix);
2344 nData += sqlite3Fts3PutVarint(&pWriter->aData[nData], nSuffix);
2345 assert( nSuffix>0 );
2346 memcpy(&pWriter->aData[nData], &zTerm[nPrefix], nSuffix);
2347 nData += nSuffix;
2348 nData += sqlite3Fts3PutVarint(&pWriter->aData[nData], nDoclist);
2349 assert( nDoclist>0 );
2350 memcpy(&pWriter->aData[nData], aDoclist, nDoclist);
2351 pWriter->nData = nData + nDoclist;
2353 /* Save the current term so that it can be used to prefix-compress the next.
2354 ** If the isCopyTerm parameter is true, then the buffer pointed to by
2355 ** zTerm is transient, so take a copy of the term data. Otherwise, just
2356 ** store a copy of the pointer.
2358 if( isCopyTerm ){
2359 if( nTerm>pWriter->nMalloc ){
2360 char *zNew = sqlite3_realloc64(pWriter->zMalloc, (i64)nTerm*2);
2361 if( !zNew ){
2362 return SQLITE_NOMEM;
2364 pWriter->nMalloc = nTerm*2;
2365 pWriter->zMalloc = zNew;
2366 pWriter->zTerm = zNew;
2368 assert( pWriter->zTerm==pWriter->zMalloc );
2369 assert( nTerm>0 );
2370 memcpy(pWriter->zTerm, zTerm, nTerm);
2371 }else{
2372 pWriter->zTerm = (char *)zTerm;
2374 pWriter->nTerm = nTerm;
2376 return SQLITE_OK;
2380 ** Flush all data associated with the SegmentWriter object pWriter to the
2381 ** database. This function must be called after all terms have been added
2382 ** to the segment using fts3SegWriterAdd(). If successful, SQLITE_OK is
2383 ** returned. Otherwise, an SQLite error code.
2385 static int fts3SegWriterFlush(
2386 Fts3Table *p, /* Virtual table handle */
2387 SegmentWriter *pWriter, /* SegmentWriter to flush to the db */
2388 sqlite3_int64 iLevel, /* Value for 'level' column of %_segdir */
2389 int iIdx /* Value for 'idx' column of %_segdir */
2391 int rc; /* Return code */
2392 if( pWriter->pTree ){
2393 sqlite3_int64 iLast = 0; /* Largest block id written to database */
2394 sqlite3_int64 iLastLeaf; /* Largest leaf block id written to db */
2395 char *zRoot = NULL; /* Pointer to buffer containing root node */
2396 int nRoot = 0; /* Size of buffer zRoot */
2398 iLastLeaf = pWriter->iFree;
2399 rc = fts3WriteSegment(p, pWriter->iFree++, pWriter->aData, pWriter->nData);
2400 if( rc==SQLITE_OK ){
2401 rc = fts3NodeWrite(p, pWriter->pTree, 1,
2402 pWriter->iFirst, pWriter->iFree, &iLast, &zRoot, &nRoot);
2404 if( rc==SQLITE_OK ){
2405 rc = fts3WriteSegdir(p, iLevel, iIdx,
2406 pWriter->iFirst, iLastLeaf, iLast, pWriter->nLeafData, zRoot, nRoot);
2408 }else{
2409 /* The entire tree fits on the root node. Write it to the segdir table. */
2410 rc = fts3WriteSegdir(p, iLevel, iIdx,
2411 0, 0, 0, pWriter->nLeafData, pWriter->aData, pWriter->nData);
2413 p->nLeafAdd++;
2414 return rc;
2418 ** Release all memory held by the SegmentWriter object passed as the
2419 ** first argument.
2421 static void fts3SegWriterFree(SegmentWriter *pWriter){
2422 if( pWriter ){
2423 sqlite3_free(pWriter->aData);
2424 sqlite3_free(pWriter->zMalloc);
2425 fts3NodeFree(pWriter->pTree);
2426 sqlite3_free(pWriter);
2431 ** The first value in the apVal[] array is assumed to contain an integer.
2432 ** This function tests if there exist any documents with docid values that
2433 ** are different from that integer. i.e. if deleting the document with docid
2434 ** pRowid would mean the FTS3 table were empty.
2436 ** If successful, *pisEmpty is set to true if the table is empty except for
2437 ** document pRowid, or false otherwise, and SQLITE_OK is returned. If an
2438 ** error occurs, an SQLite error code is returned.
2440 static int fts3IsEmpty(Fts3Table *p, sqlite3_value *pRowid, int *pisEmpty){
2441 sqlite3_stmt *pStmt;
2442 int rc;
2443 if( p->zContentTbl ){
2444 /* If using the content=xxx option, assume the table is never empty */
2445 *pisEmpty = 0;
2446 rc = SQLITE_OK;
2447 }else{
2448 rc = fts3SqlStmt(p, SQL_IS_EMPTY, &pStmt, &pRowid);
2449 if( rc==SQLITE_OK ){
2450 if( SQLITE_ROW==sqlite3_step(pStmt) ){
2451 *pisEmpty = sqlite3_column_int(pStmt, 0);
2453 rc = sqlite3_reset(pStmt);
2456 return rc;
2460 ** Set *pnMax to the largest segment level in the database for the index
2461 ** iIndex.
2463 ** Segment levels are stored in the 'level' column of the %_segdir table.
2465 ** Return SQLITE_OK if successful, or an SQLite error code if not.
2467 static int fts3SegmentMaxLevel(
2468 Fts3Table *p,
2469 int iLangid,
2470 int iIndex,
2471 sqlite3_int64 *pnMax
2473 sqlite3_stmt *pStmt;
2474 int rc;
2475 assert( iIndex>=0 && iIndex<p->nIndex );
2477 /* Set pStmt to the compiled version of:
2479 ** SELECT max(level) FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?
2481 ** (1024 is actually the value of macro FTS3_SEGDIR_PREFIXLEVEL_STR).
2483 rc = fts3SqlStmt(p, SQL_SELECT_SEGDIR_MAX_LEVEL, &pStmt, 0);
2484 if( rc!=SQLITE_OK ) return rc;
2485 sqlite3_bind_int64(pStmt, 1, getAbsoluteLevel(p, iLangid, iIndex, 0));
2486 sqlite3_bind_int64(pStmt, 2,
2487 getAbsoluteLevel(p, iLangid, iIndex, FTS3_SEGDIR_MAXLEVEL-1)
2489 if( SQLITE_ROW==sqlite3_step(pStmt) ){
2490 *pnMax = sqlite3_column_int64(pStmt, 0);
2492 return sqlite3_reset(pStmt);
2496 ** iAbsLevel is an absolute level that may be assumed to exist within
2497 ** the database. This function checks if it is the largest level number
2498 ** within its index. Assuming no error occurs, *pbMax is set to 1 if
2499 ** iAbsLevel is indeed the largest level, or 0 otherwise, and SQLITE_OK
2500 ** is returned. If an error occurs, an error code is returned and the
2501 ** final value of *pbMax is undefined.
2503 static int fts3SegmentIsMaxLevel(Fts3Table *p, i64 iAbsLevel, int *pbMax){
2505 /* Set pStmt to the compiled version of:
2507 ** SELECT max(level) FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?
2509 ** (1024 is actually the value of macro FTS3_SEGDIR_PREFIXLEVEL_STR).
2511 sqlite3_stmt *pStmt;
2512 int rc = fts3SqlStmt(p, SQL_SELECT_SEGDIR_MAX_LEVEL, &pStmt, 0);
2513 if( rc!=SQLITE_OK ) return rc;
2514 sqlite3_bind_int64(pStmt, 1, iAbsLevel+1);
2515 sqlite3_bind_int64(pStmt, 2,
2516 (((u64)iAbsLevel/FTS3_SEGDIR_MAXLEVEL)+1) * FTS3_SEGDIR_MAXLEVEL
2519 *pbMax = 0;
2520 if( SQLITE_ROW==sqlite3_step(pStmt) ){
2521 *pbMax = sqlite3_column_type(pStmt, 0)==SQLITE_NULL;
2523 return sqlite3_reset(pStmt);
2527 ** Delete all entries in the %_segments table associated with the segment
2528 ** opened with seg-reader pSeg. This function does not affect the contents
2529 ** of the %_segdir table.
2531 static int fts3DeleteSegment(
2532 Fts3Table *p, /* FTS table handle */
2533 Fts3SegReader *pSeg /* Segment to delete */
2535 int rc = SQLITE_OK; /* Return code */
2536 if( pSeg->iStartBlock ){
2537 sqlite3_stmt *pDelete; /* SQL statement to delete rows */
2538 rc = fts3SqlStmt(p, SQL_DELETE_SEGMENTS_RANGE, &pDelete, 0);
2539 if( rc==SQLITE_OK ){
2540 sqlite3_bind_int64(pDelete, 1, pSeg->iStartBlock);
2541 sqlite3_bind_int64(pDelete, 2, pSeg->iEndBlock);
2542 sqlite3_step(pDelete);
2543 rc = sqlite3_reset(pDelete);
2546 return rc;
2550 ** This function is used after merging multiple segments into a single large
2551 ** segment to delete the old, now redundant, segment b-trees. Specifically,
2552 ** it:
2554 ** 1) Deletes all %_segments entries for the segments associated with
2555 ** each of the SegReader objects in the array passed as the third
2556 ** argument, and
2558 ** 2) deletes all %_segdir entries with level iLevel, or all %_segdir
2559 ** entries regardless of level if (iLevel<0).
2561 ** SQLITE_OK is returned if successful, otherwise an SQLite error code.
2563 static int fts3DeleteSegdir(
2564 Fts3Table *p, /* Virtual table handle */
2565 int iLangid, /* Language id */
2566 int iIndex, /* Index for p->aIndex */
2567 int iLevel, /* Level of %_segdir entries to delete */
2568 Fts3SegReader **apSegment, /* Array of SegReader objects */
2569 int nReader /* Size of array apSegment */
2571 int rc = SQLITE_OK; /* Return Code */
2572 int i; /* Iterator variable */
2573 sqlite3_stmt *pDelete = 0; /* SQL statement to delete rows */
2575 for(i=0; rc==SQLITE_OK && i<nReader; i++){
2576 rc = fts3DeleteSegment(p, apSegment[i]);
2578 if( rc!=SQLITE_OK ){
2579 return rc;
2582 assert( iLevel>=0 || iLevel==FTS3_SEGCURSOR_ALL );
2583 if( iLevel==FTS3_SEGCURSOR_ALL ){
2584 rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_RANGE, &pDelete, 0);
2585 if( rc==SQLITE_OK ){
2586 sqlite3_bind_int64(pDelete, 1, getAbsoluteLevel(p, iLangid, iIndex, 0));
2587 sqlite3_bind_int64(pDelete, 2,
2588 getAbsoluteLevel(p, iLangid, iIndex, FTS3_SEGDIR_MAXLEVEL-1)
2591 }else{
2592 rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_LEVEL, &pDelete, 0);
2593 if( rc==SQLITE_OK ){
2594 sqlite3_bind_int64(
2595 pDelete, 1, getAbsoluteLevel(p, iLangid, iIndex, iLevel)
2600 if( rc==SQLITE_OK ){
2601 sqlite3_step(pDelete);
2602 rc = sqlite3_reset(pDelete);
2605 return rc;
2609 ** When this function is called, buffer *ppList (size *pnList bytes) contains
2610 ** a position list that may (or may not) feature multiple columns. This
2611 ** function adjusts the pointer *ppList and the length *pnList so that they
2612 ** identify the subset of the position list that corresponds to column iCol.
2614 ** If there are no entries in the input position list for column iCol, then
2615 ** *pnList is set to zero before returning.
2617 ** If parameter bZero is non-zero, then any part of the input list following
2618 ** the end of the output list is zeroed before returning.
2620 static void fts3ColumnFilter(
2621 int iCol, /* Column to filter on */
2622 int bZero, /* Zero out anything following *ppList */
2623 char **ppList, /* IN/OUT: Pointer to position list */
2624 int *pnList /* IN/OUT: Size of buffer *ppList in bytes */
2626 char *pList = *ppList;
2627 int nList = *pnList;
2628 char *pEnd = &pList[nList];
2629 int iCurrent = 0;
2630 char *p = pList;
2632 assert( iCol>=0 );
2633 while( 1 ){
2634 char c = 0;
2635 while( p<pEnd && (c | *p)&0xFE ) c = *p++ & 0x80;
2637 if( iCol==iCurrent ){
2638 nList = (int)(p - pList);
2639 break;
2642 nList -= (int)(p - pList);
2643 pList = p;
2644 if( nList<=0 ){
2645 break;
2647 p = &pList[1];
2648 p += fts3GetVarint32(p, &iCurrent);
2651 if( bZero && (pEnd - &pList[nList])>0){
2652 memset(&pList[nList], 0, pEnd - &pList[nList]);
2654 *ppList = pList;
2655 *pnList = nList;
2659 ** Cache data in the Fts3MultiSegReader.aBuffer[] buffer (overwriting any
2660 ** existing data). Grow the buffer if required.
2662 ** If successful, return SQLITE_OK. Otherwise, if an OOM error is encountered
2663 ** trying to resize the buffer, return SQLITE_NOMEM.
2665 static int fts3MsrBufferData(
2666 Fts3MultiSegReader *pMsr, /* Multi-segment-reader handle */
2667 char *pList,
2668 i64 nList
2670 if( (nList+FTS3_NODE_PADDING)>pMsr->nBuffer ){
2671 char *pNew;
2672 int nNew = nList*2 + FTS3_NODE_PADDING;
2673 pNew = (char *)sqlite3_realloc64(pMsr->aBuffer, nNew);
2674 if( !pNew ) return SQLITE_NOMEM;
2675 pMsr->aBuffer = pNew;
2676 pMsr->nBuffer = nNew;
2679 assert( nList>0 );
2680 memcpy(pMsr->aBuffer, pList, nList);
2681 memset(&pMsr->aBuffer[nList], 0, FTS3_NODE_PADDING);
2682 return SQLITE_OK;
2685 int sqlite3Fts3MsrIncrNext(
2686 Fts3Table *p, /* Virtual table handle */
2687 Fts3MultiSegReader *pMsr, /* Multi-segment-reader handle */
2688 sqlite3_int64 *piDocid, /* OUT: Docid value */
2689 char **paPoslist, /* OUT: Pointer to position list */
2690 int *pnPoslist /* OUT: Size of position list in bytes */
2692 int nMerge = pMsr->nAdvance;
2693 Fts3SegReader **apSegment = pMsr->apSegment;
2694 int (*xCmp)(Fts3SegReader *, Fts3SegReader *) = (
2695 p->bDescIdx ? fts3SegReaderDoclistCmpRev : fts3SegReaderDoclistCmp
2698 if( nMerge==0 ){
2699 *paPoslist = 0;
2700 return SQLITE_OK;
2703 while( 1 ){
2704 Fts3SegReader *pSeg;
2705 pSeg = pMsr->apSegment[0];
2707 if( pSeg->pOffsetList==0 ){
2708 *paPoslist = 0;
2709 break;
2710 }else{
2711 int rc;
2712 char *pList;
2713 int nList;
2714 int j;
2715 sqlite3_int64 iDocid = apSegment[0]->iDocid;
2717 rc = fts3SegReaderNextDocid(p, apSegment[0], &pList, &nList);
2718 j = 1;
2719 while( rc==SQLITE_OK
2720 && j<nMerge
2721 && apSegment[j]->pOffsetList
2722 && apSegment[j]->iDocid==iDocid
2724 rc = fts3SegReaderNextDocid(p, apSegment[j], 0, 0);
2725 j++;
2727 if( rc!=SQLITE_OK ) return rc;
2728 fts3SegReaderSort(pMsr->apSegment, nMerge, j, xCmp);
2730 if( nList>0 && fts3SegReaderIsPending(apSegment[0]) ){
2731 rc = fts3MsrBufferData(pMsr, pList, (i64)nList+1);
2732 if( rc!=SQLITE_OK ) return rc;
2733 assert( (pMsr->aBuffer[nList] & 0xFE)==0x00 );
2734 pList = pMsr->aBuffer;
2737 if( pMsr->iColFilter>=0 ){
2738 fts3ColumnFilter(pMsr->iColFilter, 1, &pList, &nList);
2741 if( nList>0 ){
2742 *paPoslist = pList;
2743 *piDocid = iDocid;
2744 *pnPoslist = nList;
2745 break;
2750 return SQLITE_OK;
2753 static int fts3SegReaderStart(
2754 Fts3Table *p, /* Virtual table handle */
2755 Fts3MultiSegReader *pCsr, /* Cursor object */
2756 const char *zTerm, /* Term searched for (or NULL) */
2757 int nTerm /* Length of zTerm in bytes */
2759 int i;
2760 int nSeg = pCsr->nSegment;
2762 /* If the Fts3SegFilter defines a specific term (or term prefix) to search
2763 ** for, then advance each segment iterator until it points to a term of
2764 ** equal or greater value than the specified term. This prevents many
2765 ** unnecessary merge/sort operations for the case where single segment
2766 ** b-tree leaf nodes contain more than one term.
2768 for(i=0; pCsr->bRestart==0 && i<pCsr->nSegment; i++){
2769 int res = 0;
2770 Fts3SegReader *pSeg = pCsr->apSegment[i];
2771 do {
2772 int rc = fts3SegReaderNext(p, pSeg, 0);
2773 if( rc!=SQLITE_OK ) return rc;
2774 }while( zTerm && (res = fts3SegReaderTermCmp(pSeg, zTerm, nTerm))<0 );
2776 if( pSeg->bLookup && res!=0 ){
2777 fts3SegReaderSetEof(pSeg);
2780 fts3SegReaderSort(pCsr->apSegment, nSeg, nSeg, fts3SegReaderCmp);
2782 return SQLITE_OK;
2785 int sqlite3Fts3SegReaderStart(
2786 Fts3Table *p, /* Virtual table handle */
2787 Fts3MultiSegReader *pCsr, /* Cursor object */
2788 Fts3SegFilter *pFilter /* Restrictions on range of iteration */
2790 pCsr->pFilter = pFilter;
2791 return fts3SegReaderStart(p, pCsr, pFilter->zTerm, pFilter->nTerm);
2794 int sqlite3Fts3MsrIncrStart(
2795 Fts3Table *p, /* Virtual table handle */
2796 Fts3MultiSegReader *pCsr, /* Cursor object */
2797 int iCol, /* Column to match on. */
2798 const char *zTerm, /* Term to iterate through a doclist for */
2799 int nTerm /* Number of bytes in zTerm */
2801 int i;
2802 int rc;
2803 int nSegment = pCsr->nSegment;
2804 int (*xCmp)(Fts3SegReader *, Fts3SegReader *) = (
2805 p->bDescIdx ? fts3SegReaderDoclistCmpRev : fts3SegReaderDoclistCmp
2808 assert( pCsr->pFilter==0 );
2809 assert( zTerm && nTerm>0 );
2811 /* Advance each segment iterator until it points to the term zTerm/nTerm. */
2812 rc = fts3SegReaderStart(p, pCsr, zTerm, nTerm);
2813 if( rc!=SQLITE_OK ) return rc;
2815 /* Determine how many of the segments actually point to zTerm/nTerm. */
2816 for(i=0; i<nSegment; i++){
2817 Fts3SegReader *pSeg = pCsr->apSegment[i];
2818 if( !pSeg->aNode || fts3SegReaderTermCmp(pSeg, zTerm, nTerm) ){
2819 break;
2822 pCsr->nAdvance = i;
2824 /* Advance each of the segments to point to the first docid. */
2825 for(i=0; i<pCsr->nAdvance; i++){
2826 rc = fts3SegReaderFirstDocid(p, pCsr->apSegment[i]);
2827 if( rc!=SQLITE_OK ) return rc;
2829 fts3SegReaderSort(pCsr->apSegment, i, i, xCmp);
2831 assert( iCol<0 || iCol<p->nColumn );
2832 pCsr->iColFilter = iCol;
2834 return SQLITE_OK;
2838 ** This function is called on a MultiSegReader that has been started using
2839 ** sqlite3Fts3MsrIncrStart(). One or more calls to MsrIncrNext() may also
2840 ** have been made. Calling this function puts the MultiSegReader in such
2841 ** a state that if the next two calls are:
2843 ** sqlite3Fts3SegReaderStart()
2844 ** sqlite3Fts3SegReaderStep()
2846 ** then the entire doclist for the term is available in
2847 ** MultiSegReader.aDoclist/nDoclist.
2849 int sqlite3Fts3MsrIncrRestart(Fts3MultiSegReader *pCsr){
2850 int i; /* Used to iterate through segment-readers */
2852 assert( pCsr->zTerm==0 );
2853 assert( pCsr->nTerm==0 );
2854 assert( pCsr->aDoclist==0 );
2855 assert( pCsr->nDoclist==0 );
2857 pCsr->nAdvance = 0;
2858 pCsr->bRestart = 1;
2859 for(i=0; i<pCsr->nSegment; i++){
2860 pCsr->apSegment[i]->pOffsetList = 0;
2861 pCsr->apSegment[i]->nOffsetList = 0;
2862 pCsr->apSegment[i]->iDocid = 0;
2865 return SQLITE_OK;
2868 static int fts3GrowSegReaderBuffer(Fts3MultiSegReader *pCsr, i64 nReq){
2869 if( nReq>pCsr->nBuffer ){
2870 char *aNew;
2871 pCsr->nBuffer = nReq*2;
2872 aNew = sqlite3_realloc64(pCsr->aBuffer, pCsr->nBuffer);
2873 if( !aNew ){
2874 return SQLITE_NOMEM;
2876 pCsr->aBuffer = aNew;
2878 return SQLITE_OK;
2882 int sqlite3Fts3SegReaderStep(
2883 Fts3Table *p, /* Virtual table handle */
2884 Fts3MultiSegReader *pCsr /* Cursor object */
2886 int rc = SQLITE_OK;
2888 int isIgnoreEmpty = (pCsr->pFilter->flags & FTS3_SEGMENT_IGNORE_EMPTY);
2889 int isRequirePos = (pCsr->pFilter->flags & FTS3_SEGMENT_REQUIRE_POS);
2890 int isColFilter = (pCsr->pFilter->flags & FTS3_SEGMENT_COLUMN_FILTER);
2891 int isPrefix = (pCsr->pFilter->flags & FTS3_SEGMENT_PREFIX);
2892 int isScan = (pCsr->pFilter->flags & FTS3_SEGMENT_SCAN);
2893 int isFirst = (pCsr->pFilter->flags & FTS3_SEGMENT_FIRST);
2895 Fts3SegReader **apSegment = pCsr->apSegment;
2896 int nSegment = pCsr->nSegment;
2897 Fts3SegFilter *pFilter = pCsr->pFilter;
2898 int (*xCmp)(Fts3SegReader *, Fts3SegReader *) = (
2899 p->bDescIdx ? fts3SegReaderDoclistCmpRev : fts3SegReaderDoclistCmp
2902 if( pCsr->nSegment==0 ) return SQLITE_OK;
2904 do {
2905 int nMerge;
2906 int i;
2908 /* Advance the first pCsr->nAdvance entries in the apSegment[] array
2909 ** forward. Then sort the list in order of current term again.
2911 for(i=0; i<pCsr->nAdvance; i++){
2912 Fts3SegReader *pSeg = apSegment[i];
2913 if( pSeg->bLookup ){
2914 fts3SegReaderSetEof(pSeg);
2915 }else{
2916 rc = fts3SegReaderNext(p, pSeg, 0);
2918 if( rc!=SQLITE_OK ) return rc;
2920 fts3SegReaderSort(apSegment, nSegment, pCsr->nAdvance, fts3SegReaderCmp);
2921 pCsr->nAdvance = 0;
2923 /* If all the seg-readers are at EOF, we're finished. return SQLITE_OK. */
2924 assert( rc==SQLITE_OK );
2925 if( apSegment[0]->aNode==0 ) break;
2927 pCsr->nTerm = apSegment[0]->nTerm;
2928 pCsr->zTerm = apSegment[0]->zTerm;
2930 /* If this is a prefix-search, and if the term that apSegment[0] points
2931 ** to does not share a suffix with pFilter->zTerm/nTerm, then all
2932 ** required callbacks have been made. In this case exit early.
2934 ** Similarly, if this is a search for an exact match, and the first term
2935 ** of segment apSegment[0] is not a match, exit early.
2937 if( pFilter->zTerm && !isScan ){
2938 if( pCsr->nTerm<pFilter->nTerm
2939 || (!isPrefix && pCsr->nTerm>pFilter->nTerm)
2940 || memcmp(pCsr->zTerm, pFilter->zTerm, pFilter->nTerm)
2942 break;
2946 nMerge = 1;
2947 while( nMerge<nSegment
2948 && apSegment[nMerge]->aNode
2949 && apSegment[nMerge]->nTerm==pCsr->nTerm
2950 && 0==memcmp(pCsr->zTerm, apSegment[nMerge]->zTerm, pCsr->nTerm)
2952 nMerge++;
2955 assert( isIgnoreEmpty || (isRequirePos && !isColFilter) );
2956 if( nMerge==1
2957 && !isIgnoreEmpty
2958 && !isFirst
2959 && (p->bDescIdx==0 || fts3SegReaderIsPending(apSegment[0])==0)
2961 pCsr->nDoclist = apSegment[0]->nDoclist;
2962 if( fts3SegReaderIsPending(apSegment[0]) ){
2963 rc = fts3MsrBufferData(pCsr, apSegment[0]->aDoclist,
2964 (i64)pCsr->nDoclist);
2965 pCsr->aDoclist = pCsr->aBuffer;
2966 }else{
2967 pCsr->aDoclist = apSegment[0]->aDoclist;
2969 if( rc==SQLITE_OK ) rc = SQLITE_ROW;
2970 }else{
2971 int nDoclist = 0; /* Size of doclist */
2972 sqlite3_int64 iPrev = 0; /* Previous docid stored in doclist */
2974 /* The current term of the first nMerge entries in the array
2975 ** of Fts3SegReader objects is the same. The doclists must be merged
2976 ** and a single term returned with the merged doclist.
2978 for(i=0; i<nMerge; i++){
2979 fts3SegReaderFirstDocid(p, apSegment[i]);
2981 fts3SegReaderSort(apSegment, nMerge, nMerge, xCmp);
2982 while( apSegment[0]->pOffsetList ){
2983 int j; /* Number of segments that share a docid */
2984 char *pList = 0;
2985 int nList = 0;
2986 int nByte;
2987 sqlite3_int64 iDocid = apSegment[0]->iDocid;
2988 fts3SegReaderNextDocid(p, apSegment[0], &pList, &nList);
2989 j = 1;
2990 while( j<nMerge
2991 && apSegment[j]->pOffsetList
2992 && apSegment[j]->iDocid==iDocid
2994 fts3SegReaderNextDocid(p, apSegment[j], 0, 0);
2995 j++;
2998 if( isColFilter ){
2999 fts3ColumnFilter(pFilter->iCol, 0, &pList, &nList);
3002 if( !isIgnoreEmpty || nList>0 ){
3004 /* Calculate the 'docid' delta value to write into the merged
3005 ** doclist. */
3006 sqlite3_int64 iDelta;
3007 if( p->bDescIdx && nDoclist>0 ){
3008 if( iPrev<=iDocid ) return FTS_CORRUPT_VTAB;
3009 iDelta = (i64)((u64)iPrev - (u64)iDocid);
3010 }else{
3011 if( nDoclist>0 && iPrev>=iDocid ) return FTS_CORRUPT_VTAB;
3012 iDelta = (i64)((u64)iDocid - (u64)iPrev);
3015 nByte = sqlite3Fts3VarintLen(iDelta) + (isRequirePos?nList+1:0);
3017 rc = fts3GrowSegReaderBuffer(pCsr,
3018 (i64)nByte+nDoclist+FTS3_NODE_PADDING);
3019 if( rc ) return rc;
3021 if( isFirst ){
3022 char *a = &pCsr->aBuffer[nDoclist];
3023 int nWrite;
3025 nWrite = sqlite3Fts3FirstFilter(iDelta, pList, nList, a);
3026 if( nWrite ){
3027 iPrev = iDocid;
3028 nDoclist += nWrite;
3030 }else{
3031 nDoclist += sqlite3Fts3PutVarint(&pCsr->aBuffer[nDoclist], iDelta);
3032 iPrev = iDocid;
3033 if( isRequirePos ){
3034 memcpy(&pCsr->aBuffer[nDoclist], pList, nList);
3035 nDoclist += nList;
3036 pCsr->aBuffer[nDoclist++] = '\0';
3041 fts3SegReaderSort(apSegment, nMerge, j, xCmp);
3043 if( nDoclist>0 ){
3044 rc = fts3GrowSegReaderBuffer(pCsr, (i64)nDoclist+FTS3_NODE_PADDING);
3045 if( rc ) return rc;
3046 memset(&pCsr->aBuffer[nDoclist], 0, FTS3_NODE_PADDING);
3047 pCsr->aDoclist = pCsr->aBuffer;
3048 pCsr->nDoclist = nDoclist;
3049 rc = SQLITE_ROW;
3052 pCsr->nAdvance = nMerge;
3053 }while( rc==SQLITE_OK );
3055 return rc;
3059 void sqlite3Fts3SegReaderFinish(
3060 Fts3MultiSegReader *pCsr /* Cursor object */
3062 if( pCsr ){
3063 int i;
3064 for(i=0; i<pCsr->nSegment; i++){
3065 sqlite3Fts3SegReaderFree(pCsr->apSegment[i]);
3067 sqlite3_free(pCsr->apSegment);
3068 sqlite3_free(pCsr->aBuffer);
3070 pCsr->nSegment = 0;
3071 pCsr->apSegment = 0;
3072 pCsr->aBuffer = 0;
3077 ** Decode the "end_block" field, selected by column iCol of the SELECT
3078 ** statement passed as the first argument.
3080 ** The "end_block" field may contain either an integer, or a text field
3081 ** containing the text representation of two non-negative integers separated
3082 ** by one or more space (0x20) characters. In the first case, set *piEndBlock
3083 ** to the integer value and *pnByte to zero before returning. In the second,
3084 ** set *piEndBlock to the first value and *pnByte to the second.
3086 static void fts3ReadEndBlockField(
3087 sqlite3_stmt *pStmt,
3088 int iCol,
3089 i64 *piEndBlock,
3090 i64 *pnByte
3092 const unsigned char *zText = sqlite3_column_text(pStmt, iCol);
3093 if( zText ){
3094 int i;
3095 int iMul = 1;
3096 u64 iVal = 0;
3097 for(i=0; zText[i]>='0' && zText[i]<='9'; i++){
3098 iVal = iVal*10 + (zText[i] - '0');
3100 *piEndBlock = (i64)iVal;
3101 while( zText[i]==' ' ) i++;
3102 iVal = 0;
3103 if( zText[i]=='-' ){
3104 i++;
3105 iMul = -1;
3107 for(/* no-op */; zText[i]>='0' && zText[i]<='9'; i++){
3108 iVal = iVal*10 + (zText[i] - '0');
3110 *pnByte = ((i64)iVal * (i64)iMul);
3116 ** A segment of size nByte bytes has just been written to absolute level
3117 ** iAbsLevel. Promote any segments that should be promoted as a result.
3119 static int fts3PromoteSegments(
3120 Fts3Table *p, /* FTS table handle */
3121 sqlite3_int64 iAbsLevel, /* Absolute level just updated */
3122 sqlite3_int64 nByte /* Size of new segment at iAbsLevel */
3124 int rc = SQLITE_OK;
3125 sqlite3_stmt *pRange;
3127 rc = fts3SqlStmt(p, SQL_SELECT_LEVEL_RANGE2, &pRange, 0);
3129 if( rc==SQLITE_OK ){
3130 int bOk = 0;
3131 i64 iLast = (iAbsLevel/FTS3_SEGDIR_MAXLEVEL + 1) * FTS3_SEGDIR_MAXLEVEL - 1;
3132 i64 nLimit = (nByte*3)/2;
3134 /* Loop through all entries in the %_segdir table corresponding to
3135 ** segments in this index on levels greater than iAbsLevel. If there is
3136 ** at least one such segment, and it is possible to determine that all
3137 ** such segments are smaller than nLimit bytes in size, they will be
3138 ** promoted to level iAbsLevel. */
3139 sqlite3_bind_int64(pRange, 1, iAbsLevel+1);
3140 sqlite3_bind_int64(pRange, 2, iLast);
3141 while( SQLITE_ROW==sqlite3_step(pRange) ){
3142 i64 nSize = 0, dummy;
3143 fts3ReadEndBlockField(pRange, 2, &dummy, &nSize);
3144 if( nSize<=0 || nSize>nLimit ){
3145 /* If nSize==0, then the %_segdir.end_block field does not not
3146 ** contain a size value. This happens if it was written by an
3147 ** old version of FTS. In this case it is not possible to determine
3148 ** the size of the segment, and so segment promotion does not
3149 ** take place. */
3150 bOk = 0;
3151 break;
3153 bOk = 1;
3155 rc = sqlite3_reset(pRange);
3157 if( bOk ){
3158 int iIdx = 0;
3159 sqlite3_stmt *pUpdate1 = 0;
3160 sqlite3_stmt *pUpdate2 = 0;
3162 if( rc==SQLITE_OK ){
3163 rc = fts3SqlStmt(p, SQL_UPDATE_LEVEL_IDX, &pUpdate1, 0);
3165 if( rc==SQLITE_OK ){
3166 rc = fts3SqlStmt(p, SQL_UPDATE_LEVEL, &pUpdate2, 0);
3169 if( rc==SQLITE_OK ){
3171 /* Loop through all %_segdir entries for segments in this index with
3172 ** levels equal to or greater than iAbsLevel. As each entry is visited,
3173 ** updated it to set (level = -1) and (idx = N), where N is 0 for the
3174 ** oldest segment in the range, 1 for the next oldest, and so on.
3176 ** In other words, move all segments being promoted to level -1,
3177 ** setting the "idx" fields as appropriate to keep them in the same
3178 ** order. The contents of level -1 (which is never used, except
3179 ** transiently here), will be moved back to level iAbsLevel below. */
3180 sqlite3_bind_int64(pRange, 1, iAbsLevel);
3181 while( SQLITE_ROW==sqlite3_step(pRange) ){
3182 sqlite3_bind_int(pUpdate1, 1, iIdx++);
3183 sqlite3_bind_int(pUpdate1, 2, sqlite3_column_int(pRange, 0));
3184 sqlite3_bind_int(pUpdate1, 3, sqlite3_column_int(pRange, 1));
3185 sqlite3_step(pUpdate1);
3186 rc = sqlite3_reset(pUpdate1);
3187 if( rc!=SQLITE_OK ){
3188 sqlite3_reset(pRange);
3189 break;
3193 if( rc==SQLITE_OK ){
3194 rc = sqlite3_reset(pRange);
3197 /* Move level -1 to level iAbsLevel */
3198 if( rc==SQLITE_OK ){
3199 sqlite3_bind_int64(pUpdate2, 1, iAbsLevel);
3200 sqlite3_step(pUpdate2);
3201 rc = sqlite3_reset(pUpdate2);
3207 return rc;
3211 ** Merge all level iLevel segments in the database into a single
3212 ** iLevel+1 segment. Or, if iLevel<0, merge all segments into a
3213 ** single segment with a level equal to the numerically largest level
3214 ** currently present in the database.
3216 ** If this function is called with iLevel<0, but there is only one
3217 ** segment in the database, SQLITE_DONE is returned immediately.
3218 ** Otherwise, if successful, SQLITE_OK is returned. If an error occurs,
3219 ** an SQLite error code is returned.
3221 static int fts3SegmentMerge(
3222 Fts3Table *p,
3223 int iLangid, /* Language id to merge */
3224 int iIndex, /* Index in p->aIndex[] to merge */
3225 int iLevel /* Level to merge */
3227 int rc; /* Return code */
3228 int iIdx = 0; /* Index of new segment */
3229 sqlite3_int64 iNewLevel = 0; /* Level/index to create new segment at */
3230 SegmentWriter *pWriter = 0; /* Used to write the new, merged, segment */
3231 Fts3SegFilter filter; /* Segment term filter condition */
3232 Fts3MultiSegReader csr; /* Cursor to iterate through level(s) */
3233 int bIgnoreEmpty = 0; /* True to ignore empty segments */
3234 i64 iMaxLevel = 0; /* Max level number for this index/langid */
3236 assert( iLevel==FTS3_SEGCURSOR_ALL
3237 || iLevel==FTS3_SEGCURSOR_PENDING
3238 || iLevel>=0
3240 assert( iLevel<FTS3_SEGDIR_MAXLEVEL );
3241 assert( iIndex>=0 && iIndex<p->nIndex );
3243 rc = sqlite3Fts3SegReaderCursor(p, iLangid, iIndex, iLevel, 0, 0, 1, 0, &csr);
3244 if( rc!=SQLITE_OK || csr.nSegment==0 ) goto finished;
3246 if( iLevel!=FTS3_SEGCURSOR_PENDING ){
3247 rc = fts3SegmentMaxLevel(p, iLangid, iIndex, &iMaxLevel);
3248 if( rc!=SQLITE_OK ) goto finished;
3251 if( iLevel==FTS3_SEGCURSOR_ALL ){
3252 /* This call is to merge all segments in the database to a single
3253 ** segment. The level of the new segment is equal to the numerically
3254 ** greatest segment level currently present in the database for this
3255 ** index. The idx of the new segment is always 0. */
3256 if( csr.nSegment==1 && 0==fts3SegReaderIsPending(csr.apSegment[0]) ){
3257 rc = SQLITE_DONE;
3258 goto finished;
3260 iNewLevel = iMaxLevel;
3261 bIgnoreEmpty = 1;
3263 }else{
3264 /* This call is to merge all segments at level iLevel. find the next
3265 ** available segment index at level iLevel+1. The call to
3266 ** fts3AllocateSegdirIdx() will merge the segments at level iLevel+1 to
3267 ** a single iLevel+2 segment if necessary. */
3268 assert( FTS3_SEGCURSOR_PENDING==-1 );
3269 iNewLevel = getAbsoluteLevel(p, iLangid, iIndex, iLevel+1);
3270 rc = fts3AllocateSegdirIdx(p, iLangid, iIndex, iLevel+1, &iIdx);
3271 bIgnoreEmpty = (iLevel!=FTS3_SEGCURSOR_PENDING) && (iNewLevel>iMaxLevel);
3273 if( rc!=SQLITE_OK ) goto finished;
3275 assert( csr.nSegment>0 );
3276 assert_fts3_nc( iNewLevel>=getAbsoluteLevel(p, iLangid, iIndex, 0) );
3277 assert_fts3_nc(
3278 iNewLevel<getAbsoluteLevel(p, iLangid, iIndex,FTS3_SEGDIR_MAXLEVEL)
3281 memset(&filter, 0, sizeof(Fts3SegFilter));
3282 filter.flags = FTS3_SEGMENT_REQUIRE_POS;
3283 filter.flags |= (bIgnoreEmpty ? FTS3_SEGMENT_IGNORE_EMPTY : 0);
3285 rc = sqlite3Fts3SegReaderStart(p, &csr, &filter);
3286 while( SQLITE_OK==rc ){
3287 rc = sqlite3Fts3SegReaderStep(p, &csr);
3288 if( rc!=SQLITE_ROW ) break;
3289 rc = fts3SegWriterAdd(p, &pWriter, 1,
3290 csr.zTerm, csr.nTerm, csr.aDoclist, csr.nDoclist);
3292 if( rc!=SQLITE_OK ) goto finished;
3293 assert_fts3_nc( pWriter || bIgnoreEmpty );
3295 if( iLevel!=FTS3_SEGCURSOR_PENDING ){
3296 rc = fts3DeleteSegdir(
3297 p, iLangid, iIndex, iLevel, csr.apSegment, csr.nSegment
3299 if( rc!=SQLITE_OK ) goto finished;
3301 if( pWriter ){
3302 rc = fts3SegWriterFlush(p, pWriter, iNewLevel, iIdx);
3303 if( rc==SQLITE_OK ){
3304 if( iLevel==FTS3_SEGCURSOR_PENDING || iNewLevel<iMaxLevel ){
3305 rc = fts3PromoteSegments(p, iNewLevel, pWriter->nLeafData);
3310 finished:
3311 fts3SegWriterFree(pWriter);
3312 sqlite3Fts3SegReaderFinish(&csr);
3313 return rc;
3318 ** Flush the contents of pendingTerms to level 0 segments.
3320 int sqlite3Fts3PendingTermsFlush(Fts3Table *p){
3321 int rc = SQLITE_OK;
3322 int i;
3324 for(i=0; rc==SQLITE_OK && i<p->nIndex; i++){
3325 rc = fts3SegmentMerge(p, p->iPrevLangid, i, FTS3_SEGCURSOR_PENDING);
3326 if( rc==SQLITE_DONE ) rc = SQLITE_OK;
3329 /* Determine the auto-incr-merge setting if unknown. If enabled,
3330 ** estimate the number of leaf blocks of content to be written
3332 if( rc==SQLITE_OK && p->bHasStat
3333 && p->nAutoincrmerge==0xff && p->nLeafAdd>0
3335 sqlite3_stmt *pStmt = 0;
3336 rc = fts3SqlStmt(p, SQL_SELECT_STAT, &pStmt, 0);
3337 if( rc==SQLITE_OK ){
3338 sqlite3_bind_int(pStmt, 1, FTS_STAT_AUTOINCRMERGE);
3339 rc = sqlite3_step(pStmt);
3340 if( rc==SQLITE_ROW ){
3341 p->nAutoincrmerge = sqlite3_column_int(pStmt, 0);
3342 if( p->nAutoincrmerge==1 ) p->nAutoincrmerge = 8;
3343 }else if( rc==SQLITE_DONE ){
3344 p->nAutoincrmerge = 0;
3346 rc = sqlite3_reset(pStmt);
3350 if( rc==SQLITE_OK ){
3351 sqlite3Fts3PendingTermsClear(p);
3353 return rc;
3357 ** Encode N integers as varints into a blob.
3359 static void fts3EncodeIntArray(
3360 int N, /* The number of integers to encode */
3361 u32 *a, /* The integer values */
3362 char *zBuf, /* Write the BLOB here */
3363 int *pNBuf /* Write number of bytes if zBuf[] used here */
3365 int i, j;
3366 for(i=j=0; i<N; i++){
3367 j += sqlite3Fts3PutVarint(&zBuf[j], (sqlite3_int64)a[i]);
3369 *pNBuf = j;
3373 ** Decode a blob of varints into N integers
3375 static void fts3DecodeIntArray(
3376 int N, /* The number of integers to decode */
3377 u32 *a, /* Write the integer values */
3378 const char *zBuf, /* The BLOB containing the varints */
3379 int nBuf /* size of the BLOB */
3381 int i = 0;
3382 if( nBuf && (zBuf[nBuf-1]&0x80)==0 ){
3383 int j;
3384 for(i=j=0; i<N && j<nBuf; i++){
3385 sqlite3_int64 x;
3386 j += sqlite3Fts3GetVarint(&zBuf[j], &x);
3387 a[i] = (u32)(x & 0xffffffff);
3390 while( i<N ) a[i++] = 0;
3394 ** Insert the sizes (in tokens) for each column of the document
3395 ** with docid equal to p->iPrevDocid. The sizes are encoded as
3396 ** a blob of varints.
3398 static void fts3InsertDocsize(
3399 int *pRC, /* Result code */
3400 Fts3Table *p, /* Table into which to insert */
3401 u32 *aSz /* Sizes of each column, in tokens */
3403 char *pBlob; /* The BLOB encoding of the document size */
3404 int nBlob; /* Number of bytes in the BLOB */
3405 sqlite3_stmt *pStmt; /* Statement used to insert the encoding */
3406 int rc; /* Result code from subfunctions */
3408 if( *pRC ) return;
3409 pBlob = sqlite3_malloc64( 10*(sqlite3_int64)p->nColumn );
3410 if( pBlob==0 ){
3411 *pRC = SQLITE_NOMEM;
3412 return;
3414 fts3EncodeIntArray(p->nColumn, aSz, pBlob, &nBlob);
3415 rc = fts3SqlStmt(p, SQL_REPLACE_DOCSIZE, &pStmt, 0);
3416 if( rc ){
3417 sqlite3_free(pBlob);
3418 *pRC = rc;
3419 return;
3421 sqlite3_bind_int64(pStmt, 1, p->iPrevDocid);
3422 sqlite3_bind_blob(pStmt, 2, pBlob, nBlob, sqlite3_free);
3423 sqlite3_step(pStmt);
3424 *pRC = sqlite3_reset(pStmt);
3428 ** Record 0 of the %_stat table contains a blob consisting of N varints,
3429 ** where N is the number of user defined columns in the fts3 table plus
3430 ** two. If nCol is the number of user defined columns, then values of the
3431 ** varints are set as follows:
3433 ** Varint 0: Total number of rows in the table.
3435 ** Varint 1..nCol: For each column, the total number of tokens stored in
3436 ** the column for all rows of the table.
3438 ** Varint 1+nCol: The total size, in bytes, of all text values in all
3439 ** columns of all rows of the table.
3442 static void fts3UpdateDocTotals(
3443 int *pRC, /* The result code */
3444 Fts3Table *p, /* Table being updated */
3445 u32 *aSzIns, /* Size increases */
3446 u32 *aSzDel, /* Size decreases */
3447 int nChng /* Change in the number of documents */
3449 char *pBlob; /* Storage for BLOB written into %_stat */
3450 int nBlob; /* Size of BLOB written into %_stat */
3451 u32 *a; /* Array of integers that becomes the BLOB */
3452 sqlite3_stmt *pStmt; /* Statement for reading and writing */
3453 int i; /* Loop counter */
3454 int rc; /* Result code from subfunctions */
3456 const int nStat = p->nColumn+2;
3458 if( *pRC ) return;
3459 a = sqlite3_malloc64( (sizeof(u32)+10)*(sqlite3_int64)nStat );
3460 if( a==0 ){
3461 *pRC = SQLITE_NOMEM;
3462 return;
3464 pBlob = (char*)&a[nStat];
3465 rc = fts3SqlStmt(p, SQL_SELECT_STAT, &pStmt, 0);
3466 if( rc ){
3467 sqlite3_free(a);
3468 *pRC = rc;
3469 return;
3471 sqlite3_bind_int(pStmt, 1, FTS_STAT_DOCTOTAL);
3472 if( sqlite3_step(pStmt)==SQLITE_ROW ){
3473 fts3DecodeIntArray(nStat, a,
3474 sqlite3_column_blob(pStmt, 0),
3475 sqlite3_column_bytes(pStmt, 0));
3476 }else{
3477 memset(a, 0, sizeof(u32)*(nStat) );
3479 rc = sqlite3_reset(pStmt);
3480 if( rc!=SQLITE_OK ){
3481 sqlite3_free(a);
3482 *pRC = rc;
3483 return;
3485 if( nChng<0 && a[0]<(u32)(-nChng) ){
3486 a[0] = 0;
3487 }else{
3488 a[0] += nChng;
3490 for(i=0; i<p->nColumn+1; i++){
3491 u32 x = a[i+1];
3492 if( x+aSzIns[i] < aSzDel[i] ){
3493 x = 0;
3494 }else{
3495 x = x + aSzIns[i] - aSzDel[i];
3497 a[i+1] = x;
3499 fts3EncodeIntArray(nStat, a, pBlob, &nBlob);
3500 rc = fts3SqlStmt(p, SQL_REPLACE_STAT, &pStmt, 0);
3501 if( rc ){
3502 sqlite3_free(a);
3503 *pRC = rc;
3504 return;
3506 sqlite3_bind_int(pStmt, 1, FTS_STAT_DOCTOTAL);
3507 sqlite3_bind_blob(pStmt, 2, pBlob, nBlob, SQLITE_STATIC);
3508 sqlite3_step(pStmt);
3509 *pRC = sqlite3_reset(pStmt);
3510 sqlite3_bind_null(pStmt, 2);
3511 sqlite3_free(a);
3515 ** Merge the entire database so that there is one segment for each
3516 ** iIndex/iLangid combination.
3518 static int fts3DoOptimize(Fts3Table *p, int bReturnDone){
3519 int bSeenDone = 0;
3520 int rc;
3521 sqlite3_stmt *pAllLangid = 0;
3523 rc = sqlite3Fts3PendingTermsFlush(p);
3524 if( rc==SQLITE_OK ){
3525 rc = fts3SqlStmt(p, SQL_SELECT_ALL_LANGID, &pAllLangid, 0);
3527 if( rc==SQLITE_OK ){
3528 int rc2;
3529 sqlite3_bind_int(pAllLangid, 1, p->iPrevLangid);
3530 sqlite3_bind_int(pAllLangid, 2, p->nIndex);
3531 while( sqlite3_step(pAllLangid)==SQLITE_ROW ){
3532 int i;
3533 int iLangid = sqlite3_column_int(pAllLangid, 0);
3534 for(i=0; rc==SQLITE_OK && i<p->nIndex; i++){
3535 rc = fts3SegmentMerge(p, iLangid, i, FTS3_SEGCURSOR_ALL);
3536 if( rc==SQLITE_DONE ){
3537 bSeenDone = 1;
3538 rc = SQLITE_OK;
3542 rc2 = sqlite3_reset(pAllLangid);
3543 if( rc==SQLITE_OK ) rc = rc2;
3546 sqlite3Fts3SegmentsClose(p);
3548 return (rc==SQLITE_OK && bReturnDone && bSeenDone) ? SQLITE_DONE : rc;
3552 ** This function is called when the user executes the following statement:
3554 ** INSERT INTO <tbl>(<tbl>) VALUES('rebuild');
3556 ** The entire FTS index is discarded and rebuilt. If the table is one
3557 ** created using the content=xxx option, then the new index is based on
3558 ** the current contents of the xxx table. Otherwise, it is rebuilt based
3559 ** on the contents of the %_content table.
3561 static int fts3DoRebuild(Fts3Table *p){
3562 int rc; /* Return Code */
3564 rc = fts3DeleteAll(p, 0);
3565 if( rc==SQLITE_OK ){
3566 u32 *aSz = 0;
3567 u32 *aSzIns = 0;
3568 u32 *aSzDel = 0;
3569 sqlite3_stmt *pStmt = 0;
3570 int nEntry = 0;
3572 /* Compose and prepare an SQL statement to loop through the content table */
3573 char *zSql = sqlite3_mprintf("SELECT %s" , p->zReadExprlist);
3574 if( !zSql ){
3575 rc = SQLITE_NOMEM;
3576 }else{
3577 rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0);
3578 sqlite3_free(zSql);
3581 if( rc==SQLITE_OK ){
3582 sqlite3_int64 nByte = sizeof(u32) * ((sqlite3_int64)p->nColumn+1)*3;
3583 aSz = (u32 *)sqlite3_malloc64(nByte);
3584 if( aSz==0 ){
3585 rc = SQLITE_NOMEM;
3586 }else{
3587 memset(aSz, 0, nByte);
3588 aSzIns = &aSz[p->nColumn+1];
3589 aSzDel = &aSzIns[p->nColumn+1];
3593 while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){
3594 int iCol;
3595 int iLangid = langidFromSelect(p, pStmt);
3596 rc = fts3PendingTermsDocid(p, 0, iLangid, sqlite3_column_int64(pStmt, 0));
3597 memset(aSz, 0, sizeof(aSz[0]) * (p->nColumn+1));
3598 for(iCol=0; rc==SQLITE_OK && iCol<p->nColumn; iCol++){
3599 if( p->abNotindexed[iCol]==0 ){
3600 const char *z = (const char *) sqlite3_column_text(pStmt, iCol+1);
3601 rc = fts3PendingTermsAdd(p, iLangid, z, iCol, &aSz[iCol]);
3602 aSz[p->nColumn] += sqlite3_column_bytes(pStmt, iCol+1);
3605 if( p->bHasDocsize ){
3606 fts3InsertDocsize(&rc, p, aSz);
3608 if( rc!=SQLITE_OK ){
3609 sqlite3_finalize(pStmt);
3610 pStmt = 0;
3611 }else{
3612 nEntry++;
3613 for(iCol=0; iCol<=p->nColumn; iCol++){
3614 aSzIns[iCol] += aSz[iCol];
3618 if( p->bFts4 ){
3619 fts3UpdateDocTotals(&rc, p, aSzIns, aSzDel, nEntry);
3621 sqlite3_free(aSz);
3623 if( pStmt ){
3624 int rc2 = sqlite3_finalize(pStmt);
3625 if( rc==SQLITE_OK ){
3626 rc = rc2;
3631 return rc;
3636 ** This function opens a cursor used to read the input data for an
3637 ** incremental merge operation. Specifically, it opens a cursor to scan
3638 ** the oldest nSeg segments (idx=0 through idx=(nSeg-1)) in absolute
3639 ** level iAbsLevel.
3641 static int fts3IncrmergeCsr(
3642 Fts3Table *p, /* FTS3 table handle */
3643 sqlite3_int64 iAbsLevel, /* Absolute level to open */
3644 int nSeg, /* Number of segments to merge */
3645 Fts3MultiSegReader *pCsr /* Cursor object to populate */
3647 int rc; /* Return Code */
3648 sqlite3_stmt *pStmt = 0; /* Statement used to read %_segdir entry */
3649 sqlite3_int64 nByte; /* Bytes allocated at pCsr->apSegment[] */
3651 /* Allocate space for the Fts3MultiSegReader.aCsr[] array */
3652 memset(pCsr, 0, sizeof(*pCsr));
3653 nByte = sizeof(Fts3SegReader *) * nSeg;
3654 pCsr->apSegment = (Fts3SegReader **)sqlite3_malloc64(nByte);
3656 if( pCsr->apSegment==0 ){
3657 rc = SQLITE_NOMEM;
3658 }else{
3659 memset(pCsr->apSegment, 0, nByte);
3660 rc = fts3SqlStmt(p, SQL_SELECT_LEVEL, &pStmt, 0);
3662 if( rc==SQLITE_OK ){
3663 int i;
3664 int rc2;
3665 sqlite3_bind_int64(pStmt, 1, iAbsLevel);
3666 assert( pCsr->nSegment==0 );
3667 for(i=0; rc==SQLITE_OK && sqlite3_step(pStmt)==SQLITE_ROW && i<nSeg; i++){
3668 rc = sqlite3Fts3SegReaderNew(i, 0,
3669 sqlite3_column_int64(pStmt, 1), /* segdir.start_block */
3670 sqlite3_column_int64(pStmt, 2), /* segdir.leaves_end_block */
3671 sqlite3_column_int64(pStmt, 3), /* segdir.end_block */
3672 sqlite3_column_blob(pStmt, 4), /* segdir.root */
3673 sqlite3_column_bytes(pStmt, 4), /* segdir.root */
3674 &pCsr->apSegment[i]
3676 pCsr->nSegment++;
3678 rc2 = sqlite3_reset(pStmt);
3679 if( rc==SQLITE_OK ) rc = rc2;
3682 return rc;
3685 typedef struct IncrmergeWriter IncrmergeWriter;
3686 typedef struct NodeWriter NodeWriter;
3687 typedef struct Blob Blob;
3688 typedef struct NodeReader NodeReader;
3691 ** An instance of the following structure is used as a dynamic buffer
3692 ** to build up nodes or other blobs of data in.
3694 ** The function blobGrowBuffer() is used to extend the allocation.
3696 struct Blob {
3697 char *a; /* Pointer to allocation */
3698 int n; /* Number of valid bytes of data in a[] */
3699 int nAlloc; /* Allocated size of a[] (nAlloc>=n) */
3703 ** This structure is used to build up buffers containing segment b-tree
3704 ** nodes (blocks).
3706 struct NodeWriter {
3707 sqlite3_int64 iBlock; /* Current block id */
3708 Blob key; /* Last key written to the current block */
3709 Blob block; /* Current block image */
3713 ** An object of this type contains the state required to create or append
3714 ** to an appendable b-tree segment.
3716 struct IncrmergeWriter {
3717 int nLeafEst; /* Space allocated for leaf blocks */
3718 int nWork; /* Number of leaf pages flushed */
3719 sqlite3_int64 iAbsLevel; /* Absolute level of input segments */
3720 int iIdx; /* Index of *output* segment in iAbsLevel+1 */
3721 sqlite3_int64 iStart; /* Block number of first allocated block */
3722 sqlite3_int64 iEnd; /* Block number of last allocated block */
3723 sqlite3_int64 nLeafData; /* Bytes of leaf page data so far */
3724 u8 bNoLeafData; /* If true, store 0 for segment size */
3725 NodeWriter aNodeWriter[FTS_MAX_APPENDABLE_HEIGHT];
3729 ** An object of the following type is used to read data from a single
3730 ** FTS segment node. See the following functions:
3732 ** nodeReaderInit()
3733 ** nodeReaderNext()
3734 ** nodeReaderRelease()
3736 struct NodeReader {
3737 const char *aNode;
3738 int nNode;
3739 int iOff; /* Current offset within aNode[] */
3741 /* Output variables. Containing the current node entry. */
3742 sqlite3_int64 iChild; /* Pointer to child node */
3743 Blob term; /* Current term */
3744 const char *aDoclist; /* Pointer to doclist */
3745 int nDoclist; /* Size of doclist in bytes */
3749 ** If *pRc is not SQLITE_OK when this function is called, it is a no-op.
3750 ** Otherwise, if the allocation at pBlob->a is not already at least nMin
3751 ** bytes in size, extend (realloc) it to be so.
3753 ** If an OOM error occurs, set *pRc to SQLITE_NOMEM and leave pBlob->a
3754 ** unmodified. Otherwise, if the allocation succeeds, update pBlob->nAlloc
3755 ** to reflect the new size of the pBlob->a[] buffer.
3757 static void blobGrowBuffer(Blob *pBlob, int nMin, int *pRc){
3758 if( *pRc==SQLITE_OK && nMin>pBlob->nAlloc ){
3759 int nAlloc = nMin;
3760 char *a = (char *)sqlite3_realloc64(pBlob->a, nAlloc);
3761 if( a ){
3762 pBlob->nAlloc = nAlloc;
3763 pBlob->a = a;
3764 }else{
3765 *pRc = SQLITE_NOMEM;
3771 ** Attempt to advance the node-reader object passed as the first argument to
3772 ** the next entry on the node.
3774 ** Return an error code if an error occurs (SQLITE_NOMEM is possible).
3775 ** Otherwise return SQLITE_OK. If there is no next entry on the node
3776 ** (e.g. because the current entry is the last) set NodeReader->aNode to
3777 ** NULL to indicate EOF. Otherwise, populate the NodeReader structure output
3778 ** variables for the new entry.
3780 static int nodeReaderNext(NodeReader *p){
3781 int bFirst = (p->term.n==0); /* True for first term on the node */
3782 int nPrefix = 0; /* Bytes to copy from previous term */
3783 int nSuffix = 0; /* Bytes to append to the prefix */
3784 int rc = SQLITE_OK; /* Return code */
3786 assert( p->aNode );
3787 if( p->iChild && bFirst==0 ) p->iChild++;
3788 if( p->iOff>=p->nNode ){
3789 /* EOF */
3790 p->aNode = 0;
3791 }else{
3792 if( bFirst==0 ){
3793 p->iOff += fts3GetVarint32(&p->aNode[p->iOff], &nPrefix);
3795 p->iOff += fts3GetVarint32(&p->aNode[p->iOff], &nSuffix);
3797 if( nPrefix>p->term.n || nSuffix>p->nNode-p->iOff || nSuffix==0 ){
3798 return FTS_CORRUPT_VTAB;
3800 blobGrowBuffer(&p->term, nPrefix+nSuffix, &rc);
3801 if( rc==SQLITE_OK && ALWAYS(p->term.a!=0) ){
3802 memcpy(&p->term.a[nPrefix], &p->aNode[p->iOff], nSuffix);
3803 p->term.n = nPrefix+nSuffix;
3804 p->iOff += nSuffix;
3805 if( p->iChild==0 ){
3806 p->iOff += fts3GetVarint32(&p->aNode[p->iOff], &p->nDoclist);
3807 if( (p->nNode-p->iOff)<p->nDoclist ){
3808 return FTS_CORRUPT_VTAB;
3810 p->aDoclist = &p->aNode[p->iOff];
3811 p->iOff += p->nDoclist;
3816 assert_fts3_nc( p->iOff<=p->nNode );
3817 return rc;
3821 ** Release all dynamic resources held by node-reader object *p.
3823 static void nodeReaderRelease(NodeReader *p){
3824 sqlite3_free(p->term.a);
3828 ** Initialize a node-reader object to read the node in buffer aNode/nNode.
3830 ** If successful, SQLITE_OK is returned and the NodeReader object set to
3831 ** point to the first entry on the node (if any). Otherwise, an SQLite
3832 ** error code is returned.
3834 static int nodeReaderInit(NodeReader *p, const char *aNode, int nNode){
3835 memset(p, 0, sizeof(NodeReader));
3836 p->aNode = aNode;
3837 p->nNode = nNode;
3839 /* Figure out if this is a leaf or an internal node. */
3840 if( aNode && aNode[0] ){
3841 /* An internal node. */
3842 p->iOff = 1 + sqlite3Fts3GetVarint(&p->aNode[1], &p->iChild);
3843 }else{
3844 p->iOff = 1;
3847 return aNode ? nodeReaderNext(p) : SQLITE_OK;
3851 ** This function is called while writing an FTS segment each time a leaf o
3852 ** node is finished and written to disk. The key (zTerm/nTerm) is guaranteed
3853 ** to be greater than the largest key on the node just written, but smaller
3854 ** than or equal to the first key that will be written to the next leaf
3855 ** node.
3857 ** The block id of the leaf node just written to disk may be found in
3858 ** (pWriter->aNodeWriter[0].iBlock) when this function is called.
3860 static int fts3IncrmergePush(
3861 Fts3Table *p, /* Fts3 table handle */
3862 IncrmergeWriter *pWriter, /* Writer object */
3863 const char *zTerm, /* Term to write to internal node */
3864 int nTerm /* Bytes at zTerm */
3866 sqlite3_int64 iPtr = pWriter->aNodeWriter[0].iBlock;
3867 int iLayer;
3869 assert( nTerm>0 );
3870 for(iLayer=1; ALWAYS(iLayer<FTS_MAX_APPENDABLE_HEIGHT); iLayer++){
3871 sqlite3_int64 iNextPtr = 0;
3872 NodeWriter *pNode = &pWriter->aNodeWriter[iLayer];
3873 int rc = SQLITE_OK;
3874 int nPrefix;
3875 int nSuffix;
3876 int nSpace;
3878 /* Figure out how much space the key will consume if it is written to
3879 ** the current node of layer iLayer. Due to the prefix compression,
3880 ** the space required changes depending on which node the key is to
3881 ** be added to. */
3882 nPrefix = fts3PrefixCompress(pNode->key.a, pNode->key.n, zTerm, nTerm);
3883 nSuffix = nTerm - nPrefix;
3884 if(nSuffix<=0 ) return FTS_CORRUPT_VTAB;
3885 nSpace = sqlite3Fts3VarintLen(nPrefix);
3886 nSpace += sqlite3Fts3VarintLen(nSuffix) + nSuffix;
3888 if( pNode->key.n==0 || (pNode->block.n + nSpace)<=p->nNodeSize ){
3889 /* If the current node of layer iLayer contains zero keys, or if adding
3890 ** the key to it will not cause it to grow to larger than nNodeSize
3891 ** bytes in size, write the key here. */
3893 Blob *pBlk = &pNode->block;
3894 if( pBlk->n==0 ){
3895 blobGrowBuffer(pBlk, p->nNodeSize, &rc);
3896 if( rc==SQLITE_OK ){
3897 pBlk->a[0] = (char)iLayer;
3898 pBlk->n = 1 + sqlite3Fts3PutVarint(&pBlk->a[1], iPtr);
3901 blobGrowBuffer(pBlk, pBlk->n + nSpace, &rc);
3902 blobGrowBuffer(&pNode->key, nTerm, &rc);
3904 if( rc==SQLITE_OK ){
3905 if( pNode->key.n ){
3906 pBlk->n += sqlite3Fts3PutVarint(&pBlk->a[pBlk->n], nPrefix);
3908 pBlk->n += sqlite3Fts3PutVarint(&pBlk->a[pBlk->n], nSuffix);
3909 assert( nPrefix+nSuffix<=nTerm );
3910 assert( nPrefix>=0 );
3911 memcpy(&pBlk->a[pBlk->n], &zTerm[nPrefix], nSuffix);
3912 pBlk->n += nSuffix;
3914 memcpy(pNode->key.a, zTerm, nTerm);
3915 pNode->key.n = nTerm;
3917 }else{
3918 /* Otherwise, flush the current node of layer iLayer to disk.
3919 ** Then allocate a new, empty sibling node. The key will be written
3920 ** into the parent of this node. */
3921 rc = fts3WriteSegment(p, pNode->iBlock, pNode->block.a, pNode->block.n);
3923 assert( pNode->block.nAlloc>=p->nNodeSize );
3924 pNode->block.a[0] = (char)iLayer;
3925 pNode->block.n = 1 + sqlite3Fts3PutVarint(&pNode->block.a[1], iPtr+1);
3927 iNextPtr = pNode->iBlock;
3928 pNode->iBlock++;
3929 pNode->key.n = 0;
3932 if( rc!=SQLITE_OK || iNextPtr==0 ) return rc;
3933 iPtr = iNextPtr;
3936 assert( 0 );
3937 return 0;
3941 ** Append a term and (optionally) doclist to the FTS segment node currently
3942 ** stored in blob *pNode. The node need not contain any terms, but the
3943 ** header must be written before this function is called.
3945 ** A node header is a single 0x00 byte for a leaf node, or a height varint
3946 ** followed by the left-hand-child varint for an internal node.
3948 ** The term to be appended is passed via arguments zTerm/nTerm. For a
3949 ** leaf node, the doclist is passed as aDoclist/nDoclist. For an internal
3950 ** node, both aDoclist and nDoclist must be passed 0.
3952 ** If the size of the value in blob pPrev is zero, then this is the first
3953 ** term written to the node. Otherwise, pPrev contains a copy of the
3954 ** previous term. Before this function returns, it is updated to contain a
3955 ** copy of zTerm/nTerm.
3957 ** It is assumed that the buffer associated with pNode is already large
3958 ** enough to accommodate the new entry. The buffer associated with pPrev
3959 ** is extended by this function if requrired.
3961 ** If an error (i.e. OOM condition) occurs, an SQLite error code is
3962 ** returned. Otherwise, SQLITE_OK.
3964 static int fts3AppendToNode(
3965 Blob *pNode, /* Current node image to append to */
3966 Blob *pPrev, /* Buffer containing previous term written */
3967 const char *zTerm, /* New term to write */
3968 int nTerm, /* Size of zTerm in bytes */
3969 const char *aDoclist, /* Doclist (or NULL) to write */
3970 int nDoclist /* Size of aDoclist in bytes */
3972 int rc = SQLITE_OK; /* Return code */
3973 int bFirst = (pPrev->n==0); /* True if this is the first term written */
3974 int nPrefix; /* Size of term prefix in bytes */
3975 int nSuffix; /* Size of term suffix in bytes */
3977 /* Node must have already been started. There must be a doclist for a
3978 ** leaf node, and there must not be a doclist for an internal node. */
3979 assert( pNode->n>0 );
3980 assert_fts3_nc( (pNode->a[0]=='\0')==(aDoclist!=0) );
3982 blobGrowBuffer(pPrev, nTerm, &rc);
3983 if( rc!=SQLITE_OK ) return rc;
3984 assert( pPrev!=0 );
3985 assert( pPrev->a!=0 );
3987 nPrefix = fts3PrefixCompress(pPrev->a, pPrev->n, zTerm, nTerm);
3988 nSuffix = nTerm - nPrefix;
3989 if( nSuffix<=0 ) return FTS_CORRUPT_VTAB;
3990 memcpy(pPrev->a, zTerm, nTerm);
3991 pPrev->n = nTerm;
3993 if( bFirst==0 ){
3994 pNode->n += sqlite3Fts3PutVarint(&pNode->a[pNode->n], nPrefix);
3996 pNode->n += sqlite3Fts3PutVarint(&pNode->a[pNode->n], nSuffix);
3997 memcpy(&pNode->a[pNode->n], &zTerm[nPrefix], nSuffix);
3998 pNode->n += nSuffix;
4000 if( aDoclist ){
4001 pNode->n += sqlite3Fts3PutVarint(&pNode->a[pNode->n], nDoclist);
4002 memcpy(&pNode->a[pNode->n], aDoclist, nDoclist);
4003 pNode->n += nDoclist;
4006 assert( pNode->n<=pNode->nAlloc );
4008 return SQLITE_OK;
4012 ** Append the current term and doclist pointed to by cursor pCsr to the
4013 ** appendable b-tree segment opened for writing by pWriter.
4015 ** Return SQLITE_OK if successful, or an SQLite error code otherwise.
4017 static int fts3IncrmergeAppend(
4018 Fts3Table *p, /* Fts3 table handle */
4019 IncrmergeWriter *pWriter, /* Writer object */
4020 Fts3MultiSegReader *pCsr /* Cursor containing term and doclist */
4022 const char *zTerm = pCsr->zTerm;
4023 int nTerm = pCsr->nTerm;
4024 const char *aDoclist = pCsr->aDoclist;
4025 int nDoclist = pCsr->nDoclist;
4026 int rc = SQLITE_OK; /* Return code */
4027 int nSpace; /* Total space in bytes required on leaf */
4028 int nPrefix; /* Size of prefix shared with previous term */
4029 int nSuffix; /* Size of suffix (nTerm - nPrefix) */
4030 NodeWriter *pLeaf; /* Object used to write leaf nodes */
4032 pLeaf = &pWriter->aNodeWriter[0];
4033 nPrefix = fts3PrefixCompress(pLeaf->key.a, pLeaf->key.n, zTerm, nTerm);
4034 nSuffix = nTerm - nPrefix;
4035 if(nSuffix<=0 ) return FTS_CORRUPT_VTAB;
4037 nSpace = sqlite3Fts3VarintLen(nPrefix);
4038 nSpace += sqlite3Fts3VarintLen(nSuffix) + nSuffix;
4039 nSpace += sqlite3Fts3VarintLen(nDoclist) + nDoclist;
4041 /* If the current block is not empty, and if adding this term/doclist
4042 ** to the current block would make it larger than Fts3Table.nNodeSize bytes,
4043 ** and if there is still room for another leaf page, write this block out to
4044 ** the database. */
4045 if( pLeaf->block.n>0
4046 && (pLeaf->block.n + nSpace)>p->nNodeSize
4047 && pLeaf->iBlock < (pWriter->iStart + pWriter->nLeafEst)
4049 rc = fts3WriteSegment(p, pLeaf->iBlock, pLeaf->block.a, pLeaf->block.n);
4050 pWriter->nWork++;
4052 /* Add the current term to the parent node. The term added to the
4053 ** parent must:
4055 ** a) be greater than the largest term on the leaf node just written
4056 ** to the database (still available in pLeaf->key), and
4058 ** b) be less than or equal to the term about to be added to the new
4059 ** leaf node (zTerm/nTerm).
4061 ** In other words, it must be the prefix of zTerm 1 byte longer than
4062 ** the common prefix (if any) of zTerm and pWriter->zTerm.
4064 if( rc==SQLITE_OK ){
4065 rc = fts3IncrmergePush(p, pWriter, zTerm, nPrefix+1);
4068 /* Advance to the next output block */
4069 pLeaf->iBlock++;
4070 pLeaf->key.n = 0;
4071 pLeaf->block.n = 0;
4073 nSuffix = nTerm;
4074 nSpace = 1;
4075 nSpace += sqlite3Fts3VarintLen(nSuffix) + nSuffix;
4076 nSpace += sqlite3Fts3VarintLen(nDoclist) + nDoclist;
4079 pWriter->nLeafData += nSpace;
4080 blobGrowBuffer(&pLeaf->block, pLeaf->block.n + nSpace, &rc);
4081 if( rc==SQLITE_OK ){
4082 if( pLeaf->block.n==0 ){
4083 pLeaf->block.n = 1;
4084 pLeaf->block.a[0] = '\0';
4086 rc = fts3AppendToNode(
4087 &pLeaf->block, &pLeaf->key, zTerm, nTerm, aDoclist, nDoclist
4091 return rc;
4095 ** This function is called to release all dynamic resources held by the
4096 ** merge-writer object pWriter, and if no error has occurred, to flush
4097 ** all outstanding node buffers held by pWriter to disk.
4099 ** If *pRc is not SQLITE_OK when this function is called, then no attempt
4100 ** is made to write any data to disk. Instead, this function serves only
4101 ** to release outstanding resources.
4103 ** Otherwise, if *pRc is initially SQLITE_OK and an error occurs while
4104 ** flushing buffers to disk, *pRc is set to an SQLite error code before
4105 ** returning.
4107 static void fts3IncrmergeRelease(
4108 Fts3Table *p, /* FTS3 table handle */
4109 IncrmergeWriter *pWriter, /* Merge-writer object */
4110 int *pRc /* IN/OUT: Error code */
4112 int i; /* Used to iterate through non-root layers */
4113 int iRoot; /* Index of root in pWriter->aNodeWriter */
4114 NodeWriter *pRoot; /* NodeWriter for root node */
4115 int rc = *pRc; /* Error code */
4117 /* Set iRoot to the index in pWriter->aNodeWriter[] of the output segment
4118 ** root node. If the segment fits entirely on a single leaf node, iRoot
4119 ** will be set to 0. If the root node is the parent of the leaves, iRoot
4120 ** will be 1. And so on. */
4121 for(iRoot=FTS_MAX_APPENDABLE_HEIGHT-1; iRoot>=0; iRoot--){
4122 NodeWriter *pNode = &pWriter->aNodeWriter[iRoot];
4123 if( pNode->block.n>0 ) break;
4124 assert( *pRc || pNode->block.nAlloc==0 );
4125 assert( *pRc || pNode->key.nAlloc==0 );
4126 sqlite3_free(pNode->block.a);
4127 sqlite3_free(pNode->key.a);
4130 /* Empty output segment. This is a no-op. */
4131 if( iRoot<0 ) return;
4133 /* The entire output segment fits on a single node. Normally, this means
4134 ** the node would be stored as a blob in the "root" column of the %_segdir
4135 ** table. However, this is not permitted in this case. The problem is that
4136 ** space has already been reserved in the %_segments table, and so the
4137 ** start_block and end_block fields of the %_segdir table must be populated.
4138 ** And, by design or by accident, released versions of FTS cannot handle
4139 ** segments that fit entirely on the root node with start_block!=0.
4141 ** Instead, create a synthetic root node that contains nothing but a
4142 ** pointer to the single content node. So that the segment consists of a
4143 ** single leaf and a single interior (root) node.
4145 ** Todo: Better might be to defer allocating space in the %_segments
4146 ** table until we are sure it is needed.
4148 if( iRoot==0 ){
4149 Blob *pBlock = &pWriter->aNodeWriter[1].block;
4150 blobGrowBuffer(pBlock, 1 + FTS3_VARINT_MAX, &rc);
4151 if( rc==SQLITE_OK ){
4152 pBlock->a[0] = 0x01;
4153 pBlock->n = 1 + sqlite3Fts3PutVarint(
4154 &pBlock->a[1], pWriter->aNodeWriter[0].iBlock
4157 iRoot = 1;
4159 pRoot = &pWriter->aNodeWriter[iRoot];
4161 /* Flush all currently outstanding nodes to disk. */
4162 for(i=0; i<iRoot; i++){
4163 NodeWriter *pNode = &pWriter->aNodeWriter[i];
4164 if( pNode->block.n>0 && rc==SQLITE_OK ){
4165 rc = fts3WriteSegment(p, pNode->iBlock, pNode->block.a, pNode->block.n);
4167 sqlite3_free(pNode->block.a);
4168 sqlite3_free(pNode->key.a);
4171 /* Write the %_segdir record. */
4172 if( rc==SQLITE_OK ){
4173 rc = fts3WriteSegdir(p,
4174 pWriter->iAbsLevel+1, /* level */
4175 pWriter->iIdx, /* idx */
4176 pWriter->iStart, /* start_block */
4177 pWriter->aNodeWriter[0].iBlock, /* leaves_end_block */
4178 pWriter->iEnd, /* end_block */
4179 (pWriter->bNoLeafData==0 ? pWriter->nLeafData : 0), /* end_block */
4180 pRoot->block.a, pRoot->block.n /* root */
4183 sqlite3_free(pRoot->block.a);
4184 sqlite3_free(pRoot->key.a);
4186 *pRc = rc;
4190 ** Compare the term in buffer zLhs (size in bytes nLhs) with that in
4191 ** zRhs (size in bytes nRhs) using memcmp. If one term is a prefix of
4192 ** the other, it is considered to be smaller than the other.
4194 ** Return -ve if zLhs is smaller than zRhs, 0 if it is equal, or +ve
4195 ** if it is greater.
4197 static int fts3TermCmp(
4198 const char *zLhs, int nLhs, /* LHS of comparison */
4199 const char *zRhs, int nRhs /* RHS of comparison */
4201 int nCmp = MIN(nLhs, nRhs);
4202 int res;
4204 if( nCmp && ALWAYS(zLhs) && ALWAYS(zRhs) ){
4205 res = memcmp(zLhs, zRhs, nCmp);
4206 }else{
4207 res = 0;
4209 if( res==0 ) res = nLhs - nRhs;
4211 return res;
4216 ** Query to see if the entry in the %_segments table with blockid iEnd is
4217 ** NULL. If no error occurs and the entry is NULL, set *pbRes 1 before
4218 ** returning. Otherwise, set *pbRes to 0.
4220 ** Or, if an error occurs while querying the database, return an SQLite
4221 ** error code. The final value of *pbRes is undefined in this case.
4223 ** This is used to test if a segment is an "appendable" segment. If it
4224 ** is, then a NULL entry has been inserted into the %_segments table
4225 ** with blockid %_segdir.end_block.
4227 static int fts3IsAppendable(Fts3Table *p, sqlite3_int64 iEnd, int *pbRes){
4228 int bRes = 0; /* Result to set *pbRes to */
4229 sqlite3_stmt *pCheck = 0; /* Statement to query database with */
4230 int rc; /* Return code */
4232 rc = fts3SqlStmt(p, SQL_SEGMENT_IS_APPENDABLE, &pCheck, 0);
4233 if( rc==SQLITE_OK ){
4234 sqlite3_bind_int64(pCheck, 1, iEnd);
4235 if( SQLITE_ROW==sqlite3_step(pCheck) ) bRes = 1;
4236 rc = sqlite3_reset(pCheck);
4239 *pbRes = bRes;
4240 return rc;
4244 ** This function is called when initializing an incremental-merge operation.
4245 ** It checks if the existing segment with index value iIdx at absolute level
4246 ** (iAbsLevel+1) can be appended to by the incremental merge. If it can, the
4247 ** merge-writer object *pWriter is initialized to write to it.
4249 ** An existing segment can be appended to by an incremental merge if:
4251 ** * It was initially created as an appendable segment (with all required
4252 ** space pre-allocated), and
4254 ** * The first key read from the input (arguments zKey and nKey) is
4255 ** greater than the largest key currently stored in the potential
4256 ** output segment.
4258 static int fts3IncrmergeLoad(
4259 Fts3Table *p, /* Fts3 table handle */
4260 sqlite3_int64 iAbsLevel, /* Absolute level of input segments */
4261 int iIdx, /* Index of candidate output segment */
4262 const char *zKey, /* First key to write */
4263 int nKey, /* Number of bytes in nKey */
4264 IncrmergeWriter *pWriter /* Populate this object */
4266 int rc; /* Return code */
4267 sqlite3_stmt *pSelect = 0; /* SELECT to read %_segdir entry */
4269 rc = fts3SqlStmt(p, SQL_SELECT_SEGDIR, &pSelect, 0);
4270 if( rc==SQLITE_OK ){
4271 sqlite3_int64 iStart = 0; /* Value of %_segdir.start_block */
4272 sqlite3_int64 iLeafEnd = 0; /* Value of %_segdir.leaves_end_block */
4273 sqlite3_int64 iEnd = 0; /* Value of %_segdir.end_block */
4274 const char *aRoot = 0; /* Pointer to %_segdir.root buffer */
4275 int nRoot = 0; /* Size of aRoot[] in bytes */
4276 int rc2; /* Return code from sqlite3_reset() */
4277 int bAppendable = 0; /* Set to true if segment is appendable */
4279 /* Read the %_segdir entry for index iIdx absolute level (iAbsLevel+1) */
4280 sqlite3_bind_int64(pSelect, 1, iAbsLevel+1);
4281 sqlite3_bind_int(pSelect, 2, iIdx);
4282 if( sqlite3_step(pSelect)==SQLITE_ROW ){
4283 iStart = sqlite3_column_int64(pSelect, 1);
4284 iLeafEnd = sqlite3_column_int64(pSelect, 2);
4285 fts3ReadEndBlockField(pSelect, 3, &iEnd, &pWriter->nLeafData);
4286 if( pWriter->nLeafData<0 ){
4287 pWriter->nLeafData = pWriter->nLeafData * -1;
4289 pWriter->bNoLeafData = (pWriter->nLeafData==0);
4290 nRoot = sqlite3_column_bytes(pSelect, 4);
4291 aRoot = sqlite3_column_blob(pSelect, 4);
4292 if( aRoot==0 ){
4293 sqlite3_reset(pSelect);
4294 return nRoot ? SQLITE_NOMEM : FTS_CORRUPT_VTAB;
4296 }else{
4297 return sqlite3_reset(pSelect);
4300 /* Check for the zero-length marker in the %_segments table */
4301 rc = fts3IsAppendable(p, iEnd, &bAppendable);
4303 /* Check that zKey/nKey is larger than the largest key the candidate */
4304 if( rc==SQLITE_OK && bAppendable ){
4305 char *aLeaf = 0;
4306 int nLeaf = 0;
4308 rc = sqlite3Fts3ReadBlock(p, iLeafEnd, &aLeaf, &nLeaf, 0);
4309 if( rc==SQLITE_OK ){
4310 NodeReader reader;
4311 for(rc = nodeReaderInit(&reader, aLeaf, nLeaf);
4312 rc==SQLITE_OK && reader.aNode;
4313 rc = nodeReaderNext(&reader)
4315 assert( reader.aNode );
4317 if( fts3TermCmp(zKey, nKey, reader.term.a, reader.term.n)<=0 ){
4318 bAppendable = 0;
4320 nodeReaderRelease(&reader);
4322 sqlite3_free(aLeaf);
4325 if( rc==SQLITE_OK && bAppendable ){
4326 /* It is possible to append to this segment. Set up the IncrmergeWriter
4327 ** object to do so. */
4328 int i;
4329 int nHeight = (int)aRoot[0];
4330 NodeWriter *pNode;
4331 if( nHeight<1 || nHeight>=FTS_MAX_APPENDABLE_HEIGHT ){
4332 sqlite3_reset(pSelect);
4333 return FTS_CORRUPT_VTAB;
4336 pWriter->nLeafEst = (int)((iEnd - iStart) + 1)/FTS_MAX_APPENDABLE_HEIGHT;
4337 pWriter->iStart = iStart;
4338 pWriter->iEnd = iEnd;
4339 pWriter->iAbsLevel = iAbsLevel;
4340 pWriter->iIdx = iIdx;
4342 for(i=nHeight+1; i<FTS_MAX_APPENDABLE_HEIGHT; i++){
4343 pWriter->aNodeWriter[i].iBlock = pWriter->iStart + i*pWriter->nLeafEst;
4346 pNode = &pWriter->aNodeWriter[nHeight];
4347 pNode->iBlock = pWriter->iStart + pWriter->nLeafEst*nHeight;
4348 blobGrowBuffer(&pNode->block,
4349 MAX(nRoot, p->nNodeSize)+FTS3_NODE_PADDING, &rc
4351 if( rc==SQLITE_OK ){
4352 memcpy(pNode->block.a, aRoot, nRoot);
4353 pNode->block.n = nRoot;
4354 memset(&pNode->block.a[nRoot], 0, FTS3_NODE_PADDING);
4357 for(i=nHeight; i>=0 && rc==SQLITE_OK; i--){
4358 NodeReader reader;
4359 memset(&reader, 0, sizeof(reader));
4360 pNode = &pWriter->aNodeWriter[i];
4362 if( pNode->block.a){
4363 rc = nodeReaderInit(&reader, pNode->block.a, pNode->block.n);
4364 while( reader.aNode && rc==SQLITE_OK ) rc = nodeReaderNext(&reader);
4365 blobGrowBuffer(&pNode->key, reader.term.n, &rc);
4366 if( rc==SQLITE_OK ){
4367 assert_fts3_nc( reader.term.n>0 || reader.aNode==0 );
4368 if( reader.term.n>0 ){
4369 memcpy(pNode->key.a, reader.term.a, reader.term.n);
4371 pNode->key.n = reader.term.n;
4372 if( i>0 ){
4373 char *aBlock = 0;
4374 int nBlock = 0;
4375 pNode = &pWriter->aNodeWriter[i-1];
4376 pNode->iBlock = reader.iChild;
4377 rc = sqlite3Fts3ReadBlock(p, reader.iChild, &aBlock, &nBlock,0);
4378 blobGrowBuffer(&pNode->block,
4379 MAX(nBlock, p->nNodeSize)+FTS3_NODE_PADDING, &rc
4381 if( rc==SQLITE_OK ){
4382 memcpy(pNode->block.a, aBlock, nBlock);
4383 pNode->block.n = nBlock;
4384 memset(&pNode->block.a[nBlock], 0, FTS3_NODE_PADDING);
4386 sqlite3_free(aBlock);
4390 nodeReaderRelease(&reader);
4394 rc2 = sqlite3_reset(pSelect);
4395 if( rc==SQLITE_OK ) rc = rc2;
4398 return rc;
4402 ** Determine the largest segment index value that exists within absolute
4403 ** level iAbsLevel+1. If no error occurs, set *piIdx to this value plus
4404 ** one before returning SQLITE_OK. Or, if there are no segments at all
4405 ** within level iAbsLevel, set *piIdx to zero.
4407 ** If an error occurs, return an SQLite error code. The final value of
4408 ** *piIdx is undefined in this case.
4410 static int fts3IncrmergeOutputIdx(
4411 Fts3Table *p, /* FTS Table handle */
4412 sqlite3_int64 iAbsLevel, /* Absolute index of input segments */
4413 int *piIdx /* OUT: Next free index at iAbsLevel+1 */
4415 int rc;
4416 sqlite3_stmt *pOutputIdx = 0; /* SQL used to find output index */
4418 rc = fts3SqlStmt(p, SQL_NEXT_SEGMENT_INDEX, &pOutputIdx, 0);
4419 if( rc==SQLITE_OK ){
4420 sqlite3_bind_int64(pOutputIdx, 1, iAbsLevel+1);
4421 sqlite3_step(pOutputIdx);
4422 *piIdx = sqlite3_column_int(pOutputIdx, 0);
4423 rc = sqlite3_reset(pOutputIdx);
4426 return rc;
4430 ** Allocate an appendable output segment on absolute level iAbsLevel+1
4431 ** with idx value iIdx.
4433 ** In the %_segdir table, a segment is defined by the values in three
4434 ** columns:
4436 ** start_block
4437 ** leaves_end_block
4438 ** end_block
4440 ** When an appendable segment is allocated, it is estimated that the
4441 ** maximum number of leaf blocks that may be required is the sum of the
4442 ** number of leaf blocks consumed by the input segments, plus the number
4443 ** of input segments, multiplied by two. This value is stored in stack
4444 ** variable nLeafEst.
4446 ** A total of 16*nLeafEst blocks are allocated when an appendable segment
4447 ** is created ((1 + end_block - start_block)==16*nLeafEst). The contiguous
4448 ** array of leaf nodes starts at the first block allocated. The array
4449 ** of interior nodes that are parents of the leaf nodes start at block
4450 ** (start_block + (1 + end_block - start_block) / 16). And so on.
4452 ** In the actual code below, the value "16" is replaced with the
4453 ** pre-processor macro FTS_MAX_APPENDABLE_HEIGHT.
4455 static int fts3IncrmergeWriter(
4456 Fts3Table *p, /* Fts3 table handle */
4457 sqlite3_int64 iAbsLevel, /* Absolute level of input segments */
4458 int iIdx, /* Index of new output segment */
4459 Fts3MultiSegReader *pCsr, /* Cursor that data will be read from */
4460 IncrmergeWriter *pWriter /* Populate this object */
4462 int rc; /* Return Code */
4463 int i; /* Iterator variable */
4464 int nLeafEst = 0; /* Blocks allocated for leaf nodes */
4465 sqlite3_stmt *pLeafEst = 0; /* SQL used to determine nLeafEst */
4466 sqlite3_stmt *pFirstBlock = 0; /* SQL used to determine first block */
4468 /* Calculate nLeafEst. */
4469 rc = fts3SqlStmt(p, SQL_MAX_LEAF_NODE_ESTIMATE, &pLeafEst, 0);
4470 if( rc==SQLITE_OK ){
4471 sqlite3_bind_int64(pLeafEst, 1, iAbsLevel);
4472 sqlite3_bind_int64(pLeafEst, 2, pCsr->nSegment);
4473 if( SQLITE_ROW==sqlite3_step(pLeafEst) ){
4474 nLeafEst = sqlite3_column_int(pLeafEst, 0);
4476 rc = sqlite3_reset(pLeafEst);
4478 if( rc!=SQLITE_OK ) return rc;
4480 /* Calculate the first block to use in the output segment */
4481 rc = fts3SqlStmt(p, SQL_NEXT_SEGMENTS_ID, &pFirstBlock, 0);
4482 if( rc==SQLITE_OK ){
4483 if( SQLITE_ROW==sqlite3_step(pFirstBlock) ){
4484 pWriter->iStart = sqlite3_column_int64(pFirstBlock, 0);
4485 pWriter->iEnd = pWriter->iStart - 1;
4486 pWriter->iEnd += nLeafEst * FTS_MAX_APPENDABLE_HEIGHT;
4488 rc = sqlite3_reset(pFirstBlock);
4490 if( rc!=SQLITE_OK ) return rc;
4492 /* Insert the marker in the %_segments table to make sure nobody tries
4493 ** to steal the space just allocated. This is also used to identify
4494 ** appendable segments. */
4495 rc = fts3WriteSegment(p, pWriter->iEnd, 0, 0);
4496 if( rc!=SQLITE_OK ) return rc;
4498 pWriter->iAbsLevel = iAbsLevel;
4499 pWriter->nLeafEst = nLeafEst;
4500 pWriter->iIdx = iIdx;
4502 /* Set up the array of NodeWriter objects */
4503 for(i=0; i<FTS_MAX_APPENDABLE_HEIGHT; i++){
4504 pWriter->aNodeWriter[i].iBlock = pWriter->iStart + i*pWriter->nLeafEst;
4506 return SQLITE_OK;
4510 ** Remove an entry from the %_segdir table. This involves running the
4511 ** following two statements:
4513 ** DELETE FROM %_segdir WHERE level = :iAbsLevel AND idx = :iIdx
4514 ** UPDATE %_segdir SET idx = idx - 1 WHERE level = :iAbsLevel AND idx > :iIdx
4516 ** The DELETE statement removes the specific %_segdir level. The UPDATE
4517 ** statement ensures that the remaining segments have contiguously allocated
4518 ** idx values.
4520 static int fts3RemoveSegdirEntry(
4521 Fts3Table *p, /* FTS3 table handle */
4522 sqlite3_int64 iAbsLevel, /* Absolute level to delete from */
4523 int iIdx /* Index of %_segdir entry to delete */
4525 int rc; /* Return code */
4526 sqlite3_stmt *pDelete = 0; /* DELETE statement */
4528 rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_ENTRY, &pDelete, 0);
4529 if( rc==SQLITE_OK ){
4530 sqlite3_bind_int64(pDelete, 1, iAbsLevel);
4531 sqlite3_bind_int(pDelete, 2, iIdx);
4532 sqlite3_step(pDelete);
4533 rc = sqlite3_reset(pDelete);
4536 return rc;
4540 ** One or more segments have just been removed from absolute level iAbsLevel.
4541 ** Update the 'idx' values of the remaining segments in the level so that
4542 ** the idx values are a contiguous sequence starting from 0.
4544 static int fts3RepackSegdirLevel(
4545 Fts3Table *p, /* FTS3 table handle */
4546 sqlite3_int64 iAbsLevel /* Absolute level to repack */
4548 int rc; /* Return code */
4549 int *aIdx = 0; /* Array of remaining idx values */
4550 int nIdx = 0; /* Valid entries in aIdx[] */
4551 int nAlloc = 0; /* Allocated size of aIdx[] */
4552 int i; /* Iterator variable */
4553 sqlite3_stmt *pSelect = 0; /* Select statement to read idx values */
4554 sqlite3_stmt *pUpdate = 0; /* Update statement to modify idx values */
4556 rc = fts3SqlStmt(p, SQL_SELECT_INDEXES, &pSelect, 0);
4557 if( rc==SQLITE_OK ){
4558 int rc2;
4559 sqlite3_bind_int64(pSelect, 1, iAbsLevel);
4560 while( SQLITE_ROW==sqlite3_step(pSelect) ){
4561 if( nIdx>=nAlloc ){
4562 int *aNew;
4563 nAlloc += 16;
4564 aNew = sqlite3_realloc64(aIdx, nAlloc*sizeof(int));
4565 if( !aNew ){
4566 rc = SQLITE_NOMEM;
4567 break;
4569 aIdx = aNew;
4571 aIdx[nIdx++] = sqlite3_column_int(pSelect, 0);
4573 rc2 = sqlite3_reset(pSelect);
4574 if( rc==SQLITE_OK ) rc = rc2;
4577 if( rc==SQLITE_OK ){
4578 rc = fts3SqlStmt(p, SQL_SHIFT_SEGDIR_ENTRY, &pUpdate, 0);
4580 if( rc==SQLITE_OK ){
4581 sqlite3_bind_int64(pUpdate, 2, iAbsLevel);
4584 assert( p->bIgnoreSavepoint==0 );
4585 p->bIgnoreSavepoint = 1;
4586 for(i=0; rc==SQLITE_OK && i<nIdx; i++){
4587 if( aIdx[i]!=i ){
4588 sqlite3_bind_int(pUpdate, 3, aIdx[i]);
4589 sqlite3_bind_int(pUpdate, 1, i);
4590 sqlite3_step(pUpdate);
4591 rc = sqlite3_reset(pUpdate);
4594 p->bIgnoreSavepoint = 0;
4596 sqlite3_free(aIdx);
4597 return rc;
4600 static void fts3StartNode(Blob *pNode, int iHeight, sqlite3_int64 iChild){
4601 pNode->a[0] = (char)iHeight;
4602 if( iChild ){
4603 assert( pNode->nAlloc>=1+sqlite3Fts3VarintLen(iChild) );
4604 pNode->n = 1 + sqlite3Fts3PutVarint(&pNode->a[1], iChild);
4605 }else{
4606 assert( pNode->nAlloc>=1 );
4607 pNode->n = 1;
4612 ** The first two arguments are a pointer to and the size of a segment b-tree
4613 ** node. The node may be a leaf or an internal node.
4615 ** This function creates a new node image in blob object *pNew by copying
4616 ** all terms that are greater than or equal to zTerm/nTerm (for leaf nodes)
4617 ** or greater than zTerm/nTerm (for internal nodes) from aNode/nNode.
4619 static int fts3TruncateNode(
4620 const char *aNode, /* Current node image */
4621 int nNode, /* Size of aNode in bytes */
4622 Blob *pNew, /* OUT: Write new node image here */
4623 const char *zTerm, /* Omit all terms smaller than this */
4624 int nTerm, /* Size of zTerm in bytes */
4625 sqlite3_int64 *piBlock /* OUT: Block number in next layer down */
4627 NodeReader reader; /* Reader object */
4628 Blob prev = {0, 0, 0}; /* Previous term written to new node */
4629 int rc = SQLITE_OK; /* Return code */
4630 int bLeaf; /* True for a leaf node */
4632 if( nNode<1 ) return FTS_CORRUPT_VTAB;
4633 bLeaf = aNode[0]=='\0';
4635 /* Allocate required output space */
4636 blobGrowBuffer(pNew, nNode, &rc);
4637 if( rc!=SQLITE_OK ) return rc;
4638 pNew->n = 0;
4640 /* Populate new node buffer */
4641 for(rc = nodeReaderInit(&reader, aNode, nNode);
4642 rc==SQLITE_OK && reader.aNode;
4643 rc = nodeReaderNext(&reader)
4645 if( pNew->n==0 ){
4646 int res = fts3TermCmp(reader.term.a, reader.term.n, zTerm, nTerm);
4647 if( res<0 || (bLeaf==0 && res==0) ) continue;
4648 fts3StartNode(pNew, (int)aNode[0], reader.iChild);
4649 *piBlock = reader.iChild;
4651 rc = fts3AppendToNode(
4652 pNew, &prev, reader.term.a, reader.term.n,
4653 reader.aDoclist, reader.nDoclist
4655 if( rc!=SQLITE_OK ) break;
4657 if( pNew->n==0 ){
4658 fts3StartNode(pNew, (int)aNode[0], reader.iChild);
4659 *piBlock = reader.iChild;
4661 assert( pNew->n<=pNew->nAlloc );
4663 nodeReaderRelease(&reader);
4664 sqlite3_free(prev.a);
4665 return rc;
4669 ** Remove all terms smaller than zTerm/nTerm from segment iIdx in absolute
4670 ** level iAbsLevel. This may involve deleting entries from the %_segments
4671 ** table, and modifying existing entries in both the %_segments and %_segdir
4672 ** tables.
4674 ** SQLITE_OK is returned if the segment is updated successfully. Or an
4675 ** SQLite error code otherwise.
4677 static int fts3TruncateSegment(
4678 Fts3Table *p, /* FTS3 table handle */
4679 sqlite3_int64 iAbsLevel, /* Absolute level of segment to modify */
4680 int iIdx, /* Index within level of segment to modify */
4681 const char *zTerm, /* Remove terms smaller than this */
4682 int nTerm /* Number of bytes in buffer zTerm */
4684 int rc = SQLITE_OK; /* Return code */
4685 Blob root = {0,0,0}; /* New root page image */
4686 Blob block = {0,0,0}; /* Buffer used for any other block */
4687 sqlite3_int64 iBlock = 0; /* Block id */
4688 sqlite3_int64 iNewStart = 0; /* New value for iStartBlock */
4689 sqlite3_int64 iOldStart = 0; /* Old value for iStartBlock */
4690 sqlite3_stmt *pFetch = 0; /* Statement used to fetch segdir */
4692 rc = fts3SqlStmt(p, SQL_SELECT_SEGDIR, &pFetch, 0);
4693 if( rc==SQLITE_OK ){
4694 int rc2; /* sqlite3_reset() return code */
4695 sqlite3_bind_int64(pFetch, 1, iAbsLevel);
4696 sqlite3_bind_int(pFetch, 2, iIdx);
4697 if( SQLITE_ROW==sqlite3_step(pFetch) ){
4698 const char *aRoot = sqlite3_column_blob(pFetch, 4);
4699 int nRoot = sqlite3_column_bytes(pFetch, 4);
4700 iOldStart = sqlite3_column_int64(pFetch, 1);
4701 rc = fts3TruncateNode(aRoot, nRoot, &root, zTerm, nTerm, &iBlock);
4703 rc2 = sqlite3_reset(pFetch);
4704 if( rc==SQLITE_OK ) rc = rc2;
4707 while( rc==SQLITE_OK && iBlock ){
4708 char *aBlock = 0;
4709 int nBlock = 0;
4710 iNewStart = iBlock;
4712 rc = sqlite3Fts3ReadBlock(p, iBlock, &aBlock, &nBlock, 0);
4713 if( rc==SQLITE_OK ){
4714 rc = fts3TruncateNode(aBlock, nBlock, &block, zTerm, nTerm, &iBlock);
4716 if( rc==SQLITE_OK ){
4717 rc = fts3WriteSegment(p, iNewStart, block.a, block.n);
4719 sqlite3_free(aBlock);
4722 /* Variable iNewStart now contains the first valid leaf node. */
4723 if( rc==SQLITE_OK && iNewStart ){
4724 sqlite3_stmt *pDel = 0;
4725 rc = fts3SqlStmt(p, SQL_DELETE_SEGMENTS_RANGE, &pDel, 0);
4726 if( rc==SQLITE_OK ){
4727 sqlite3_bind_int64(pDel, 1, iOldStart);
4728 sqlite3_bind_int64(pDel, 2, iNewStart-1);
4729 sqlite3_step(pDel);
4730 rc = sqlite3_reset(pDel);
4734 if( rc==SQLITE_OK ){
4735 sqlite3_stmt *pChomp = 0;
4736 rc = fts3SqlStmt(p, SQL_CHOMP_SEGDIR, &pChomp, 0);
4737 if( rc==SQLITE_OK ){
4738 sqlite3_bind_int64(pChomp, 1, iNewStart);
4739 sqlite3_bind_blob(pChomp, 2, root.a, root.n, SQLITE_STATIC);
4740 sqlite3_bind_int64(pChomp, 3, iAbsLevel);
4741 sqlite3_bind_int(pChomp, 4, iIdx);
4742 sqlite3_step(pChomp);
4743 rc = sqlite3_reset(pChomp);
4744 sqlite3_bind_null(pChomp, 2);
4748 sqlite3_free(root.a);
4749 sqlite3_free(block.a);
4750 return rc;
4754 ** This function is called after an incrmental-merge operation has run to
4755 ** merge (or partially merge) two or more segments from absolute level
4756 ** iAbsLevel.
4758 ** Each input segment is either removed from the db completely (if all of
4759 ** its data was copied to the output segment by the incrmerge operation)
4760 ** or modified in place so that it no longer contains those entries that
4761 ** have been duplicated in the output segment.
4763 static int fts3IncrmergeChomp(
4764 Fts3Table *p, /* FTS table handle */
4765 sqlite3_int64 iAbsLevel, /* Absolute level containing segments */
4766 Fts3MultiSegReader *pCsr, /* Chomp all segments opened by this cursor */
4767 int *pnRem /* Number of segments not deleted */
4769 int i;
4770 int nRem = 0;
4771 int rc = SQLITE_OK;
4773 for(i=pCsr->nSegment-1; i>=0 && rc==SQLITE_OK; i--){
4774 Fts3SegReader *pSeg = 0;
4775 int j;
4777 /* Find the Fts3SegReader object with Fts3SegReader.iIdx==i. It is hiding
4778 ** somewhere in the pCsr->apSegment[] array. */
4779 for(j=0; ALWAYS(j<pCsr->nSegment); j++){
4780 pSeg = pCsr->apSegment[j];
4781 if( pSeg->iIdx==i ) break;
4783 assert( j<pCsr->nSegment && pSeg->iIdx==i );
4785 if( pSeg->aNode==0 ){
4786 /* Seg-reader is at EOF. Remove the entire input segment. */
4787 rc = fts3DeleteSegment(p, pSeg);
4788 if( rc==SQLITE_OK ){
4789 rc = fts3RemoveSegdirEntry(p, iAbsLevel, pSeg->iIdx);
4791 *pnRem = 0;
4792 }else{
4793 /* The incremental merge did not copy all the data from this
4794 ** segment to the upper level. The segment is modified in place
4795 ** so that it contains no keys smaller than zTerm/nTerm. */
4796 const char *zTerm = pSeg->zTerm;
4797 int nTerm = pSeg->nTerm;
4798 rc = fts3TruncateSegment(p, iAbsLevel, pSeg->iIdx, zTerm, nTerm);
4799 nRem++;
4803 if( rc==SQLITE_OK && nRem!=pCsr->nSegment ){
4804 rc = fts3RepackSegdirLevel(p, iAbsLevel);
4807 *pnRem = nRem;
4808 return rc;
4812 ** Store an incr-merge hint in the database.
4814 static int fts3IncrmergeHintStore(Fts3Table *p, Blob *pHint){
4815 sqlite3_stmt *pReplace = 0;
4816 int rc; /* Return code */
4818 rc = fts3SqlStmt(p, SQL_REPLACE_STAT, &pReplace, 0);
4819 if( rc==SQLITE_OK ){
4820 sqlite3_bind_int(pReplace, 1, FTS_STAT_INCRMERGEHINT);
4821 sqlite3_bind_blob(pReplace, 2, pHint->a, pHint->n, SQLITE_STATIC);
4822 sqlite3_step(pReplace);
4823 rc = sqlite3_reset(pReplace);
4824 sqlite3_bind_null(pReplace, 2);
4827 return rc;
4831 ** Load an incr-merge hint from the database. The incr-merge hint, if one
4832 ** exists, is stored in the rowid==1 row of the %_stat table.
4834 ** If successful, populate blob *pHint with the value read from the %_stat
4835 ** table and return SQLITE_OK. Otherwise, if an error occurs, return an
4836 ** SQLite error code.
4838 static int fts3IncrmergeHintLoad(Fts3Table *p, Blob *pHint){
4839 sqlite3_stmt *pSelect = 0;
4840 int rc;
4842 pHint->n = 0;
4843 rc = fts3SqlStmt(p, SQL_SELECT_STAT, &pSelect, 0);
4844 if( rc==SQLITE_OK ){
4845 int rc2;
4846 sqlite3_bind_int(pSelect, 1, FTS_STAT_INCRMERGEHINT);
4847 if( SQLITE_ROW==sqlite3_step(pSelect) ){
4848 const char *aHint = sqlite3_column_blob(pSelect, 0);
4849 int nHint = sqlite3_column_bytes(pSelect, 0);
4850 if( aHint ){
4851 blobGrowBuffer(pHint, nHint, &rc);
4852 if( rc==SQLITE_OK ){
4853 if( ALWAYS(pHint->a!=0) ) memcpy(pHint->a, aHint, nHint);
4854 pHint->n = nHint;
4858 rc2 = sqlite3_reset(pSelect);
4859 if( rc==SQLITE_OK ) rc = rc2;
4862 return rc;
4866 ** If *pRc is not SQLITE_OK when this function is called, it is a no-op.
4867 ** Otherwise, append an entry to the hint stored in blob *pHint. Each entry
4868 ** consists of two varints, the absolute level number of the input segments
4869 ** and the number of input segments.
4871 ** If successful, leave *pRc set to SQLITE_OK and return. If an error occurs,
4872 ** set *pRc to an SQLite error code before returning.
4874 static void fts3IncrmergeHintPush(
4875 Blob *pHint, /* Hint blob to append to */
4876 i64 iAbsLevel, /* First varint to store in hint */
4877 int nInput, /* Second varint to store in hint */
4878 int *pRc /* IN/OUT: Error code */
4880 blobGrowBuffer(pHint, pHint->n + 2*FTS3_VARINT_MAX, pRc);
4881 if( *pRc==SQLITE_OK ){
4882 pHint->n += sqlite3Fts3PutVarint(&pHint->a[pHint->n], iAbsLevel);
4883 pHint->n += sqlite3Fts3PutVarint(&pHint->a[pHint->n], (i64)nInput);
4888 ** Read the last entry (most recently pushed) from the hint blob *pHint
4889 ** and then remove the entry. Write the two values read to *piAbsLevel and
4890 ** *pnInput before returning.
4892 ** If no error occurs, return SQLITE_OK. If the hint blob in *pHint does
4893 ** not contain at least two valid varints, return SQLITE_CORRUPT_VTAB.
4895 static int fts3IncrmergeHintPop(Blob *pHint, i64 *piAbsLevel, int *pnInput){
4896 const int nHint = pHint->n;
4897 int i;
4899 i = pHint->n-1;
4900 if( (pHint->a[i] & 0x80) ) return FTS_CORRUPT_VTAB;
4901 while( i>0 && (pHint->a[i-1] & 0x80) ) i--;
4902 if( i==0 ) return FTS_CORRUPT_VTAB;
4903 i--;
4904 while( i>0 && (pHint->a[i-1] & 0x80) ) i--;
4906 pHint->n = i;
4907 i += sqlite3Fts3GetVarint(&pHint->a[i], piAbsLevel);
4908 i += fts3GetVarint32(&pHint->a[i], pnInput);
4909 assert( i<=nHint );
4910 if( i!=nHint ) return FTS_CORRUPT_VTAB;
4912 return SQLITE_OK;
4917 ** Attempt an incremental merge that writes nMerge leaf blocks.
4919 ** Incremental merges happen nMin segments at a time. The segments
4920 ** to be merged are the nMin oldest segments (the ones with the smallest
4921 ** values for the _segdir.idx field) in the highest level that contains
4922 ** at least nMin segments. Multiple merges might occur in an attempt to
4923 ** write the quota of nMerge leaf blocks.
4925 int sqlite3Fts3Incrmerge(Fts3Table *p, int nMerge, int nMin){
4926 int rc; /* Return code */
4927 int nRem = nMerge; /* Number of leaf pages yet to be written */
4928 Fts3MultiSegReader *pCsr; /* Cursor used to read input data */
4929 Fts3SegFilter *pFilter; /* Filter used with cursor pCsr */
4930 IncrmergeWriter *pWriter; /* Writer object */
4931 int nSeg = 0; /* Number of input segments */
4932 sqlite3_int64 iAbsLevel = 0; /* Absolute level number to work on */
4933 Blob hint = {0, 0, 0}; /* Hint read from %_stat table */
4934 int bDirtyHint = 0; /* True if blob 'hint' has been modified */
4936 /* Allocate space for the cursor, filter and writer objects */
4937 const int nAlloc = sizeof(*pCsr) + sizeof(*pFilter) + sizeof(*pWriter);
4938 pWriter = (IncrmergeWriter *)sqlite3_malloc64(nAlloc);
4939 if( !pWriter ) return SQLITE_NOMEM;
4940 pFilter = (Fts3SegFilter *)&pWriter[1];
4941 pCsr = (Fts3MultiSegReader *)&pFilter[1];
4943 rc = fts3IncrmergeHintLoad(p, &hint);
4944 while( rc==SQLITE_OK && nRem>0 ){
4945 const i64 nMod = FTS3_SEGDIR_MAXLEVEL * p->nIndex;
4946 sqlite3_stmt *pFindLevel = 0; /* SQL used to determine iAbsLevel */
4947 int bUseHint = 0; /* True if attempting to append */
4948 int iIdx = 0; /* Largest idx in level (iAbsLevel+1) */
4950 /* Search the %_segdir table for the absolute level with the smallest
4951 ** relative level number that contains at least nMin segments, if any.
4952 ** If one is found, set iAbsLevel to the absolute level number and
4953 ** nSeg to nMin. If no level with at least nMin segments can be found,
4954 ** set nSeg to -1.
4956 rc = fts3SqlStmt(p, SQL_FIND_MERGE_LEVEL, &pFindLevel, 0);
4957 sqlite3_bind_int(pFindLevel, 1, MAX(2, nMin));
4958 if( sqlite3_step(pFindLevel)==SQLITE_ROW ){
4959 iAbsLevel = sqlite3_column_int64(pFindLevel, 0);
4960 nSeg = sqlite3_column_int(pFindLevel, 1);
4961 assert( nSeg>=2 );
4962 }else{
4963 nSeg = -1;
4965 rc = sqlite3_reset(pFindLevel);
4967 /* If the hint read from the %_stat table is not empty, check if the
4968 ** last entry in it specifies a relative level smaller than or equal
4969 ** to the level identified by the block above (if any). If so, this
4970 ** iteration of the loop will work on merging at the hinted level.
4972 if( rc==SQLITE_OK && hint.n ){
4973 int nHint = hint.n;
4974 sqlite3_int64 iHintAbsLevel = 0; /* Hint level */
4975 int nHintSeg = 0; /* Hint number of segments */
4977 rc = fts3IncrmergeHintPop(&hint, &iHintAbsLevel, &nHintSeg);
4978 if( nSeg<0 || (iAbsLevel % nMod) >= (iHintAbsLevel % nMod) ){
4979 /* Based on the scan in the block above, it is known that there
4980 ** are no levels with a relative level smaller than that of
4981 ** iAbsLevel with more than nSeg segments, or if nSeg is -1,
4982 ** no levels with more than nMin segments. Use this to limit the
4983 ** value of nHintSeg to avoid a large memory allocation in case the
4984 ** merge-hint is corrupt*/
4985 iAbsLevel = iHintAbsLevel;
4986 nSeg = MIN(MAX(nMin,nSeg), nHintSeg);
4987 bUseHint = 1;
4988 bDirtyHint = 1;
4989 }else{
4990 /* This undoes the effect of the HintPop() above - so that no entry
4991 ** is removed from the hint blob. */
4992 hint.n = nHint;
4996 /* If nSeg is less that zero, then there is no level with at least
4997 ** nMin segments and no hint in the %_stat table. No work to do.
4998 ** Exit early in this case. */
4999 if( nSeg<=0 ) break;
5001 assert( nMod<=0x7FFFFFFF );
5002 if( iAbsLevel<0 || iAbsLevel>(nMod<<32) ){
5003 rc = FTS_CORRUPT_VTAB;
5004 break;
5007 /* Open a cursor to iterate through the contents of the oldest nSeg
5008 ** indexes of absolute level iAbsLevel. If this cursor is opened using
5009 ** the 'hint' parameters, it is possible that there are less than nSeg
5010 ** segments available in level iAbsLevel. In this case, no work is
5011 ** done on iAbsLevel - fall through to the next iteration of the loop
5012 ** to start work on some other level. */
5013 memset(pWriter, 0, nAlloc);
5014 pFilter->flags = FTS3_SEGMENT_REQUIRE_POS;
5016 if( rc==SQLITE_OK ){
5017 rc = fts3IncrmergeOutputIdx(p, iAbsLevel, &iIdx);
5018 assert( bUseHint==1 || bUseHint==0 );
5019 if( iIdx==0 || (bUseHint && iIdx==1) ){
5020 int bIgnore = 0;
5021 rc = fts3SegmentIsMaxLevel(p, iAbsLevel+1, &bIgnore);
5022 if( bIgnore ){
5023 pFilter->flags |= FTS3_SEGMENT_IGNORE_EMPTY;
5028 if( rc==SQLITE_OK ){
5029 rc = fts3IncrmergeCsr(p, iAbsLevel, nSeg, pCsr);
5031 if( SQLITE_OK==rc && pCsr->nSegment==nSeg
5032 && SQLITE_OK==(rc = sqlite3Fts3SegReaderStart(p, pCsr, pFilter))
5034 int bEmpty = 0;
5035 rc = sqlite3Fts3SegReaderStep(p, pCsr);
5036 if( rc==SQLITE_OK ){
5037 bEmpty = 1;
5038 }else if( rc!=SQLITE_ROW ){
5039 sqlite3Fts3SegReaderFinish(pCsr);
5040 break;
5042 if( bUseHint && iIdx>0 ){
5043 const char *zKey = pCsr->zTerm;
5044 int nKey = pCsr->nTerm;
5045 rc = fts3IncrmergeLoad(p, iAbsLevel, iIdx-1, zKey, nKey, pWriter);
5046 }else{
5047 rc = fts3IncrmergeWriter(p, iAbsLevel, iIdx, pCsr, pWriter);
5050 if( rc==SQLITE_OK && pWriter->nLeafEst ){
5051 fts3LogMerge(nSeg, iAbsLevel);
5052 if( bEmpty==0 ){
5053 do {
5054 rc = fts3IncrmergeAppend(p, pWriter, pCsr);
5055 if( rc==SQLITE_OK ) rc = sqlite3Fts3SegReaderStep(p, pCsr);
5056 if( pWriter->nWork>=nRem && rc==SQLITE_ROW ) rc = SQLITE_OK;
5057 }while( rc==SQLITE_ROW );
5060 /* Update or delete the input segments */
5061 if( rc==SQLITE_OK ){
5062 nRem -= (1 + pWriter->nWork);
5063 rc = fts3IncrmergeChomp(p, iAbsLevel, pCsr, &nSeg);
5064 if( nSeg!=0 ){
5065 bDirtyHint = 1;
5066 fts3IncrmergeHintPush(&hint, iAbsLevel, nSeg, &rc);
5071 if( nSeg!=0 ){
5072 pWriter->nLeafData = pWriter->nLeafData * -1;
5074 fts3IncrmergeRelease(p, pWriter, &rc);
5075 if( nSeg==0 && pWriter->bNoLeafData==0 ){
5076 fts3PromoteSegments(p, iAbsLevel+1, pWriter->nLeafData);
5080 sqlite3Fts3SegReaderFinish(pCsr);
5083 /* Write the hint values into the %_stat table for the next incr-merger */
5084 if( bDirtyHint && rc==SQLITE_OK ){
5085 rc = fts3IncrmergeHintStore(p, &hint);
5088 sqlite3_free(pWriter);
5089 sqlite3_free(hint.a);
5090 return rc;
5094 ** Convert the text beginning at *pz into an integer and return
5095 ** its value. Advance *pz to point to the first character past
5096 ** the integer.
5098 ** This function used for parameters to merge= and incrmerge=
5099 ** commands.
5101 static int fts3Getint(const char **pz){
5102 const char *z = *pz;
5103 int i = 0;
5104 while( (*z)>='0' && (*z)<='9' && i<214748363 ) i = 10*i + *(z++) - '0';
5105 *pz = z;
5106 return i;
5110 ** Process statements of the form:
5112 ** INSERT INTO table(table) VALUES('merge=A,B');
5114 ** A and B are integers that decode to be the number of leaf pages
5115 ** written for the merge, and the minimum number of segments on a level
5116 ** before it will be selected for a merge, respectively.
5118 static int fts3DoIncrmerge(
5119 Fts3Table *p, /* FTS3 table handle */
5120 const char *zParam /* Nul-terminated string containing "A,B" */
5122 int rc;
5123 int nMin = (MergeCount(p) / 2);
5124 int nMerge = 0;
5125 const char *z = zParam;
5127 /* Read the first integer value */
5128 nMerge = fts3Getint(&z);
5130 /* If the first integer value is followed by a ',', read the second
5131 ** integer value. */
5132 if( z[0]==',' && z[1]!='\0' ){
5133 z++;
5134 nMin = fts3Getint(&z);
5137 if( z[0]!='\0' || nMin<2 ){
5138 rc = SQLITE_ERROR;
5139 }else{
5140 rc = SQLITE_OK;
5141 if( !p->bHasStat ){
5142 assert( p->bFts4==0 );
5143 sqlite3Fts3CreateStatTable(&rc, p);
5145 if( rc==SQLITE_OK ){
5146 rc = sqlite3Fts3Incrmerge(p, nMerge, nMin);
5148 sqlite3Fts3SegmentsClose(p);
5150 return rc;
5154 ** Process statements of the form:
5156 ** INSERT INTO table(table) VALUES('automerge=X');
5158 ** where X is an integer. X==0 means to turn automerge off. X!=0 means
5159 ** turn it on. The setting is persistent.
5161 static int fts3DoAutoincrmerge(
5162 Fts3Table *p, /* FTS3 table handle */
5163 const char *zParam /* Nul-terminated string containing boolean */
5165 int rc = SQLITE_OK;
5166 sqlite3_stmt *pStmt = 0;
5167 p->nAutoincrmerge = fts3Getint(&zParam);
5168 if( p->nAutoincrmerge==1 || p->nAutoincrmerge>MergeCount(p) ){
5169 p->nAutoincrmerge = 8;
5171 if( !p->bHasStat ){
5172 assert( p->bFts4==0 );
5173 sqlite3Fts3CreateStatTable(&rc, p);
5174 if( rc ) return rc;
5176 rc = fts3SqlStmt(p, SQL_REPLACE_STAT, &pStmt, 0);
5177 if( rc ) return rc;
5178 sqlite3_bind_int(pStmt, 1, FTS_STAT_AUTOINCRMERGE);
5179 sqlite3_bind_int(pStmt, 2, p->nAutoincrmerge);
5180 sqlite3_step(pStmt);
5181 rc = sqlite3_reset(pStmt);
5182 return rc;
5186 ** Return a 64-bit checksum for the FTS index entry specified by the
5187 ** arguments to this function.
5189 static u64 fts3ChecksumEntry(
5190 const char *zTerm, /* Pointer to buffer containing term */
5191 int nTerm, /* Size of zTerm in bytes */
5192 int iLangid, /* Language id for current row */
5193 int iIndex, /* Index (0..Fts3Table.nIndex-1) */
5194 i64 iDocid, /* Docid for current row. */
5195 int iCol, /* Column number */
5196 int iPos /* Position */
5198 int i;
5199 u64 ret = (u64)iDocid;
5201 ret += (ret<<3) + iLangid;
5202 ret += (ret<<3) + iIndex;
5203 ret += (ret<<3) + iCol;
5204 ret += (ret<<3) + iPos;
5205 for(i=0; i<nTerm; i++) ret += (ret<<3) + zTerm[i];
5207 return ret;
5211 ** Return a checksum of all entries in the FTS index that correspond to
5212 ** language id iLangid. The checksum is calculated by XORing the checksums
5213 ** of each individual entry (see fts3ChecksumEntry()) together.
5215 ** If successful, the checksum value is returned and *pRc set to SQLITE_OK.
5216 ** Otherwise, if an error occurs, *pRc is set to an SQLite error code. The
5217 ** return value is undefined in this case.
5219 static u64 fts3ChecksumIndex(
5220 Fts3Table *p, /* FTS3 table handle */
5221 int iLangid, /* Language id to return cksum for */
5222 int iIndex, /* Index to cksum (0..p->nIndex-1) */
5223 int *pRc /* OUT: Return code */
5225 Fts3SegFilter filter;
5226 Fts3MultiSegReader csr;
5227 int rc;
5228 u64 cksum = 0;
5230 if( *pRc ) return 0;
5232 memset(&filter, 0, sizeof(filter));
5233 memset(&csr, 0, sizeof(csr));
5234 filter.flags = FTS3_SEGMENT_REQUIRE_POS|FTS3_SEGMENT_IGNORE_EMPTY;
5235 filter.flags |= FTS3_SEGMENT_SCAN;
5237 rc = sqlite3Fts3SegReaderCursor(
5238 p, iLangid, iIndex, FTS3_SEGCURSOR_ALL, 0, 0, 0, 1,&csr
5240 if( rc==SQLITE_OK ){
5241 rc = sqlite3Fts3SegReaderStart(p, &csr, &filter);
5244 if( rc==SQLITE_OK ){
5245 while( SQLITE_ROW==(rc = sqlite3Fts3SegReaderStep(p, &csr)) ){
5246 char *pCsr = csr.aDoclist;
5247 char *pEnd = &pCsr[csr.nDoclist];
5249 i64 iDocid = 0;
5250 i64 iCol = 0;
5251 u64 iPos = 0;
5253 pCsr += sqlite3Fts3GetVarint(pCsr, &iDocid);
5254 while( pCsr<pEnd ){
5255 u64 iVal = 0;
5256 pCsr += sqlite3Fts3GetVarintU(pCsr, &iVal);
5257 if( pCsr<pEnd ){
5258 if( iVal==0 || iVal==1 ){
5259 iCol = 0;
5260 iPos = 0;
5261 if( iVal ){
5262 pCsr += sqlite3Fts3GetVarint(pCsr, &iCol);
5263 }else{
5264 pCsr += sqlite3Fts3GetVarintU(pCsr, &iVal);
5265 if( p->bDescIdx ){
5266 iDocid = (i64)((u64)iDocid - iVal);
5267 }else{
5268 iDocid = (i64)((u64)iDocid + iVal);
5271 }else{
5272 iPos += (iVal - 2);
5273 cksum = cksum ^ fts3ChecksumEntry(
5274 csr.zTerm, csr.nTerm, iLangid, iIndex, iDocid,
5275 (int)iCol, (int)iPos
5282 sqlite3Fts3SegReaderFinish(&csr);
5284 *pRc = rc;
5285 return cksum;
5289 ** Check if the contents of the FTS index match the current contents of the
5290 ** content table. If no error occurs and the contents do match, set *pbOk
5291 ** to true and return SQLITE_OK. Or if the contents do not match, set *pbOk
5292 ** to false before returning.
5294 ** If an error occurs (e.g. an OOM or IO error), return an SQLite error
5295 ** code. The final value of *pbOk is undefined in this case.
5297 int sqlite3Fts3IntegrityCheck(Fts3Table *p, int *pbOk){
5298 int rc = SQLITE_OK; /* Return code */
5299 u64 cksum1 = 0; /* Checksum based on FTS index contents */
5300 u64 cksum2 = 0; /* Checksum based on %_content contents */
5301 sqlite3_stmt *pAllLangid = 0; /* Statement to return all language-ids */
5303 /* This block calculates the checksum according to the FTS index. */
5304 rc = fts3SqlStmt(p, SQL_SELECT_ALL_LANGID, &pAllLangid, 0);
5305 if( rc==SQLITE_OK ){
5306 int rc2;
5307 sqlite3_bind_int(pAllLangid, 1, p->iPrevLangid);
5308 sqlite3_bind_int(pAllLangid, 2, p->nIndex);
5309 while( rc==SQLITE_OK && sqlite3_step(pAllLangid)==SQLITE_ROW ){
5310 int iLangid = sqlite3_column_int(pAllLangid, 0);
5311 int i;
5312 for(i=0; i<p->nIndex; i++){
5313 cksum1 = cksum1 ^ fts3ChecksumIndex(p, iLangid, i, &rc);
5316 rc2 = sqlite3_reset(pAllLangid);
5317 if( rc==SQLITE_OK ) rc = rc2;
5320 /* This block calculates the checksum according to the %_content table */
5321 if( rc==SQLITE_OK ){
5322 sqlite3_tokenizer_module const *pModule = p->pTokenizer->pModule;
5323 sqlite3_stmt *pStmt = 0;
5324 char *zSql;
5326 zSql = sqlite3_mprintf("SELECT %s" , p->zReadExprlist);
5327 if( !zSql ){
5328 rc = SQLITE_NOMEM;
5329 }else{
5330 rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0);
5331 sqlite3_free(zSql);
5334 while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){
5335 i64 iDocid = sqlite3_column_int64(pStmt, 0);
5336 int iLang = langidFromSelect(p, pStmt);
5337 int iCol;
5339 for(iCol=0; rc==SQLITE_OK && iCol<p->nColumn; iCol++){
5340 if( p->abNotindexed[iCol]==0 ){
5341 const char *zText = (const char *)sqlite3_column_text(pStmt, iCol+1);
5342 sqlite3_tokenizer_cursor *pT = 0;
5344 rc = sqlite3Fts3OpenTokenizer(p->pTokenizer, iLang, zText, -1, &pT);
5345 while( rc==SQLITE_OK ){
5346 char const *zToken; /* Buffer containing token */
5347 int nToken = 0; /* Number of bytes in token */
5348 int iDum1 = 0, iDum2 = 0; /* Dummy variables */
5349 int iPos = 0; /* Position of token in zText */
5351 rc = pModule->xNext(pT, &zToken, &nToken, &iDum1, &iDum2, &iPos);
5352 if( rc==SQLITE_OK ){
5353 int i;
5354 cksum2 = cksum2 ^ fts3ChecksumEntry(
5355 zToken, nToken, iLang, 0, iDocid, iCol, iPos
5357 for(i=1; i<p->nIndex; i++){
5358 if( p->aIndex[i].nPrefix<=nToken ){
5359 cksum2 = cksum2 ^ fts3ChecksumEntry(
5360 zToken, p->aIndex[i].nPrefix, iLang, i, iDocid, iCol, iPos
5366 if( pT ) pModule->xClose(pT);
5367 if( rc==SQLITE_DONE ) rc = SQLITE_OK;
5372 sqlite3_finalize(pStmt);
5375 if( rc==SQLITE_CORRUPT_VTAB ){
5376 rc = SQLITE_OK;
5377 *pbOk = 0;
5378 }else{
5379 *pbOk = (rc==SQLITE_OK && cksum1==cksum2);
5381 return rc;
5385 ** Run the integrity-check. If no error occurs and the current contents of
5386 ** the FTS index are correct, return SQLITE_OK. Or, if the contents of the
5387 ** FTS index are incorrect, return SQLITE_CORRUPT_VTAB.
5389 ** Or, if an error (e.g. an OOM or IO error) occurs, return an SQLite
5390 ** error code.
5392 ** The integrity-check works as follows. For each token and indexed token
5393 ** prefix in the document set, a 64-bit checksum is calculated (by code
5394 ** in fts3ChecksumEntry()) based on the following:
5396 ** + The index number (0 for the main index, 1 for the first prefix
5397 ** index etc.),
5398 ** + The token (or token prefix) text itself,
5399 ** + The language-id of the row it appears in,
5400 ** + The docid of the row it appears in,
5401 ** + The column it appears in, and
5402 ** + The tokens position within that column.
5404 ** The checksums for all entries in the index are XORed together to create
5405 ** a single checksum for the entire index.
5407 ** The integrity-check code calculates the same checksum in two ways:
5409 ** 1. By scanning the contents of the FTS index, and
5410 ** 2. By scanning and tokenizing the content table.
5412 ** If the two checksums are identical, the integrity-check is deemed to have
5413 ** passed.
5415 static int fts3DoIntegrityCheck(
5416 Fts3Table *p /* FTS3 table handle */
5418 int rc;
5419 int bOk = 0;
5420 rc = sqlite3Fts3IntegrityCheck(p, &bOk);
5421 if( rc==SQLITE_OK && bOk==0 ) rc = FTS_CORRUPT_VTAB;
5422 return rc;
5426 ** Handle a 'special' INSERT of the form:
5428 ** "INSERT INTO tbl(tbl) VALUES(<expr>)"
5430 ** Argument pVal contains the result of <expr>. Currently the only
5431 ** meaningful value to insert is the text 'optimize'.
5433 static int fts3SpecialInsert(Fts3Table *p, sqlite3_value *pVal){
5434 int rc = SQLITE_ERROR; /* Return Code */
5435 const char *zVal = (const char *)sqlite3_value_text(pVal);
5436 int nVal = sqlite3_value_bytes(pVal);
5438 if( !zVal ){
5439 return SQLITE_NOMEM;
5440 }else if( nVal==8 && 0==sqlite3_strnicmp(zVal, "optimize", 8) ){
5441 rc = fts3DoOptimize(p, 0);
5442 }else if( nVal==7 && 0==sqlite3_strnicmp(zVal, "rebuild", 7) ){
5443 rc = fts3DoRebuild(p);
5444 }else if( nVal==15 && 0==sqlite3_strnicmp(zVal, "integrity-check", 15) ){
5445 rc = fts3DoIntegrityCheck(p);
5446 }else if( nVal>6 && 0==sqlite3_strnicmp(zVal, "merge=", 6) ){
5447 rc = fts3DoIncrmerge(p, &zVal[6]);
5448 }else if( nVal>10 && 0==sqlite3_strnicmp(zVal, "automerge=", 10) ){
5449 rc = fts3DoAutoincrmerge(p, &zVal[10]);
5450 }else if( nVal==5 && 0==sqlite3_strnicmp(zVal, "flush", 5) ){
5451 rc = sqlite3Fts3PendingTermsFlush(p);
5453 #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
5454 else{
5455 int v;
5456 if( nVal>9 && 0==sqlite3_strnicmp(zVal, "nodesize=", 9) ){
5457 v = atoi(&zVal[9]);
5458 if( v>=24 && v<=p->nPgsz-35 ) p->nNodeSize = v;
5459 rc = SQLITE_OK;
5460 }else if( nVal>11 && 0==sqlite3_strnicmp(zVal, "maxpending=", 9) ){
5461 v = atoi(&zVal[11]);
5462 if( v>=64 && v<=FTS3_MAX_PENDING_DATA ) p->nMaxPendingData = v;
5463 rc = SQLITE_OK;
5464 }else if( nVal>21 && 0==sqlite3_strnicmp(zVal,"test-no-incr-doclist=",21) ){
5465 p->bNoIncrDoclist = atoi(&zVal[21]);
5466 rc = SQLITE_OK;
5467 }else if( nVal>11 && 0==sqlite3_strnicmp(zVal,"mergecount=",11) ){
5468 v = atoi(&zVal[11]);
5469 if( v>=4 && v<=FTS3_MERGE_COUNT && (v&1)==0 ) p->nMergeCount = v;
5470 rc = SQLITE_OK;
5473 #endif
5474 return rc;
5477 #ifndef SQLITE_DISABLE_FTS4_DEFERRED
5479 ** Delete all cached deferred doclists. Deferred doclists are cached
5480 ** (allocated) by the sqlite3Fts3CacheDeferredDoclists() function.
5482 void sqlite3Fts3FreeDeferredDoclists(Fts3Cursor *pCsr){
5483 Fts3DeferredToken *pDef;
5484 for(pDef=pCsr->pDeferred; pDef; pDef=pDef->pNext){
5485 fts3PendingListDelete(pDef->pList);
5486 pDef->pList = 0;
5491 ** Free all entries in the pCsr->pDeffered list. Entries are added to
5492 ** this list using sqlite3Fts3DeferToken().
5494 void sqlite3Fts3FreeDeferredTokens(Fts3Cursor *pCsr){
5495 Fts3DeferredToken *pDef;
5496 Fts3DeferredToken *pNext;
5497 for(pDef=pCsr->pDeferred; pDef; pDef=pNext){
5498 pNext = pDef->pNext;
5499 fts3PendingListDelete(pDef->pList);
5500 sqlite3_free(pDef);
5502 pCsr->pDeferred = 0;
5506 ** Generate deferred-doclists for all tokens in the pCsr->pDeferred list
5507 ** based on the row that pCsr currently points to.
5509 ** A deferred-doclist is like any other doclist with position information
5510 ** included, except that it only contains entries for a single row of the
5511 ** table, not for all rows.
5513 int sqlite3Fts3CacheDeferredDoclists(Fts3Cursor *pCsr){
5514 int rc = SQLITE_OK; /* Return code */
5515 if( pCsr->pDeferred ){
5516 int i; /* Used to iterate through table columns */
5517 sqlite3_int64 iDocid; /* Docid of the row pCsr points to */
5518 Fts3DeferredToken *pDef; /* Used to iterate through deferred tokens */
5520 Fts3Table *p = (Fts3Table *)pCsr->base.pVtab;
5521 sqlite3_tokenizer *pT = p->pTokenizer;
5522 sqlite3_tokenizer_module const *pModule = pT->pModule;
5524 assert( pCsr->isRequireSeek==0 );
5525 iDocid = sqlite3_column_int64(pCsr->pStmt, 0);
5527 for(i=0; i<p->nColumn && rc==SQLITE_OK; i++){
5528 if( p->abNotindexed[i]==0 ){
5529 const char *zText = (const char *)sqlite3_column_text(pCsr->pStmt, i+1);
5530 sqlite3_tokenizer_cursor *pTC = 0;
5532 rc = sqlite3Fts3OpenTokenizer(pT, pCsr->iLangid, zText, -1, &pTC);
5533 while( rc==SQLITE_OK ){
5534 char const *zToken; /* Buffer containing token */
5535 int nToken = 0; /* Number of bytes in token */
5536 int iDum1 = 0, iDum2 = 0; /* Dummy variables */
5537 int iPos = 0; /* Position of token in zText */
5539 rc = pModule->xNext(pTC, &zToken, &nToken, &iDum1, &iDum2, &iPos);
5540 for(pDef=pCsr->pDeferred; pDef && rc==SQLITE_OK; pDef=pDef->pNext){
5541 Fts3PhraseToken *pPT = pDef->pToken;
5542 if( (pDef->iCol>=p->nColumn || pDef->iCol==i)
5543 && (pPT->bFirst==0 || iPos==0)
5544 && (pPT->n==nToken || (pPT->isPrefix && pPT->n<nToken))
5545 && (0==memcmp(zToken, pPT->z, pPT->n))
5547 fts3PendingListAppend(&pDef->pList, iDocid, i, iPos, &rc);
5551 if( pTC ) pModule->xClose(pTC);
5552 if( rc==SQLITE_DONE ) rc = SQLITE_OK;
5556 for(pDef=pCsr->pDeferred; pDef && rc==SQLITE_OK; pDef=pDef->pNext){
5557 if( pDef->pList ){
5558 rc = fts3PendingListAppendVarint(&pDef->pList, 0);
5563 return rc;
5566 int sqlite3Fts3DeferredTokenList(
5567 Fts3DeferredToken *p,
5568 char **ppData,
5569 int *pnData
5571 char *pRet;
5572 int nSkip;
5573 sqlite3_int64 dummy;
5575 *ppData = 0;
5576 *pnData = 0;
5578 if( p->pList==0 ){
5579 return SQLITE_OK;
5582 pRet = (char *)sqlite3_malloc64(p->pList->nData);
5583 if( !pRet ) return SQLITE_NOMEM;
5585 nSkip = sqlite3Fts3GetVarint(p->pList->aData, &dummy);
5586 *pnData = p->pList->nData - nSkip;
5587 *ppData = pRet;
5589 memcpy(pRet, &p->pList->aData[nSkip], *pnData);
5590 return SQLITE_OK;
5594 ** Add an entry for token pToken to the pCsr->pDeferred list.
5596 int sqlite3Fts3DeferToken(
5597 Fts3Cursor *pCsr, /* Fts3 table cursor */
5598 Fts3PhraseToken *pToken, /* Token to defer */
5599 int iCol /* Column that token must appear in (or -1) */
5601 Fts3DeferredToken *pDeferred;
5602 pDeferred = sqlite3_malloc64(sizeof(*pDeferred));
5603 if( !pDeferred ){
5604 return SQLITE_NOMEM;
5606 memset(pDeferred, 0, sizeof(*pDeferred));
5607 pDeferred->pToken = pToken;
5608 pDeferred->pNext = pCsr->pDeferred;
5609 pDeferred->iCol = iCol;
5610 pCsr->pDeferred = pDeferred;
5612 assert( pToken->pDeferred==0 );
5613 pToken->pDeferred = pDeferred;
5615 return SQLITE_OK;
5617 #endif
5620 ** SQLite value pRowid contains the rowid of a row that may or may not be
5621 ** present in the FTS3 table. If it is, delete it and adjust the contents
5622 ** of subsiduary data structures accordingly.
5624 static int fts3DeleteByRowid(
5625 Fts3Table *p,
5626 sqlite3_value *pRowid,
5627 int *pnChng, /* IN/OUT: Decrement if row is deleted */
5628 u32 *aSzDel
5630 int rc = SQLITE_OK; /* Return code */
5631 int bFound = 0; /* True if *pRowid really is in the table */
5633 fts3DeleteTerms(&rc, p, pRowid, aSzDel, &bFound);
5634 if( bFound && rc==SQLITE_OK ){
5635 int isEmpty = 0; /* Deleting *pRowid leaves the table empty */
5636 rc = fts3IsEmpty(p, pRowid, &isEmpty);
5637 if( rc==SQLITE_OK ){
5638 if( isEmpty ){
5639 /* Deleting this row means the whole table is empty. In this case
5640 ** delete the contents of all three tables and throw away any
5641 ** data in the pendingTerms hash table. */
5642 rc = fts3DeleteAll(p, 1);
5643 *pnChng = 0;
5644 memset(aSzDel, 0, sizeof(u32) * (p->nColumn+1) * 2);
5645 }else{
5646 *pnChng = *pnChng - 1;
5647 if( p->zContentTbl==0 ){
5648 fts3SqlExec(&rc, p, SQL_DELETE_CONTENT, &pRowid);
5650 if( p->bHasDocsize ){
5651 fts3SqlExec(&rc, p, SQL_DELETE_DOCSIZE, &pRowid);
5657 return rc;
5661 ** This function does the work for the xUpdate method of FTS3 virtual
5662 ** tables. The schema of the virtual table being:
5664 ** CREATE TABLE <table name>(
5665 ** <user columns>,
5666 ** <table name> HIDDEN,
5667 ** docid HIDDEN,
5668 ** <langid> HIDDEN
5669 ** );
5673 int sqlite3Fts3UpdateMethod(
5674 sqlite3_vtab *pVtab, /* FTS3 vtab object */
5675 int nArg, /* Size of argument array */
5676 sqlite3_value **apVal, /* Array of arguments */
5677 sqlite_int64 *pRowid /* OUT: The affected (or effected) rowid */
5679 Fts3Table *p = (Fts3Table *)pVtab;
5680 int rc = SQLITE_OK; /* Return Code */
5681 u32 *aSzIns = 0; /* Sizes of inserted documents */
5682 u32 *aSzDel = 0; /* Sizes of deleted documents */
5683 int nChng = 0; /* Net change in number of documents */
5684 int bInsertDone = 0;
5686 /* At this point it must be known if the %_stat table exists or not.
5687 ** So bHasStat may not be 2. */
5688 assert( p->bHasStat==0 || p->bHasStat==1 );
5690 assert( p->pSegments==0 );
5691 assert(
5692 nArg==1 /* DELETE operations */
5693 || nArg==(2 + p->nColumn + 3) /* INSERT or UPDATE operations */
5696 /* Check for a "special" INSERT operation. One of the form:
5698 ** INSERT INTO xyz(xyz) VALUES('command');
5700 if( nArg>1
5701 && sqlite3_value_type(apVal[0])==SQLITE_NULL
5702 && sqlite3_value_type(apVal[p->nColumn+2])!=SQLITE_NULL
5704 rc = fts3SpecialInsert(p, apVal[p->nColumn+2]);
5705 goto update_out;
5708 if( nArg>1 && sqlite3_value_int(apVal[2 + p->nColumn + 2])<0 ){
5709 rc = SQLITE_CONSTRAINT;
5710 goto update_out;
5713 /* Allocate space to hold the change in document sizes */
5714 aSzDel = sqlite3_malloc64(sizeof(aSzDel[0])*((sqlite3_int64)p->nColumn+1)*2);
5715 if( aSzDel==0 ){
5716 rc = SQLITE_NOMEM;
5717 goto update_out;
5719 aSzIns = &aSzDel[p->nColumn+1];
5720 memset(aSzDel, 0, sizeof(aSzDel[0])*(p->nColumn+1)*2);
5722 rc = fts3Writelock(p);
5723 if( rc!=SQLITE_OK ) goto update_out;
5725 /* If this is an INSERT operation, or an UPDATE that modifies the rowid
5726 ** value, then this operation requires constraint handling.
5728 ** If the on-conflict mode is REPLACE, this means that the existing row
5729 ** should be deleted from the database before inserting the new row. Or,
5730 ** if the on-conflict mode is other than REPLACE, then this method must
5731 ** detect the conflict and return SQLITE_CONSTRAINT before beginning to
5732 ** modify the database file.
5734 if( nArg>1 && p->zContentTbl==0 ){
5735 /* Find the value object that holds the new rowid value. */
5736 sqlite3_value *pNewRowid = apVal[3+p->nColumn];
5737 if( sqlite3_value_type(pNewRowid)==SQLITE_NULL ){
5738 pNewRowid = apVal[1];
5741 if( sqlite3_value_type(pNewRowid)!=SQLITE_NULL && (
5742 sqlite3_value_type(apVal[0])==SQLITE_NULL
5743 || sqlite3_value_int64(apVal[0])!=sqlite3_value_int64(pNewRowid)
5745 /* The new rowid is not NULL (in this case the rowid will be
5746 ** automatically assigned and there is no chance of a conflict), and
5747 ** the statement is either an INSERT or an UPDATE that modifies the
5748 ** rowid column. So if the conflict mode is REPLACE, then delete any
5749 ** existing row with rowid=pNewRowid.
5751 ** Or, if the conflict mode is not REPLACE, insert the new record into
5752 ** the %_content table. If we hit the duplicate rowid constraint (or any
5753 ** other error) while doing so, return immediately.
5755 ** This branch may also run if pNewRowid contains a value that cannot
5756 ** be losslessly converted to an integer. In this case, the eventual
5757 ** call to fts3InsertData() (either just below or further on in this
5758 ** function) will return SQLITE_MISMATCH. If fts3DeleteByRowid is
5759 ** invoked, it will delete zero rows (since no row will have
5760 ** docid=$pNewRowid if $pNewRowid is not an integer value).
5762 if( sqlite3_vtab_on_conflict(p->db)==SQLITE_REPLACE ){
5763 rc = fts3DeleteByRowid(p, pNewRowid, &nChng, aSzDel);
5764 }else{
5765 rc = fts3InsertData(p, apVal, pRowid);
5766 bInsertDone = 1;
5770 if( rc!=SQLITE_OK ){
5771 goto update_out;
5774 /* If this is a DELETE or UPDATE operation, remove the old record. */
5775 if( sqlite3_value_type(apVal[0])!=SQLITE_NULL ){
5776 assert( sqlite3_value_type(apVal[0])==SQLITE_INTEGER );
5777 rc = fts3DeleteByRowid(p, apVal[0], &nChng, aSzDel);
5780 /* If this is an INSERT or UPDATE operation, insert the new record. */
5781 if( nArg>1 && rc==SQLITE_OK ){
5782 int iLangid = sqlite3_value_int(apVal[2 + p->nColumn + 2]);
5783 if( bInsertDone==0 ){
5784 rc = fts3InsertData(p, apVal, pRowid);
5785 if( rc==SQLITE_CONSTRAINT && p->zContentTbl==0 ){
5786 rc = FTS_CORRUPT_VTAB;
5789 if( rc==SQLITE_OK ){
5790 rc = fts3PendingTermsDocid(p, 0, iLangid, *pRowid);
5792 if( rc==SQLITE_OK ){
5793 assert( p->iPrevDocid==*pRowid );
5794 rc = fts3InsertTerms(p, iLangid, apVal, aSzIns);
5796 if( p->bHasDocsize ){
5797 fts3InsertDocsize(&rc, p, aSzIns);
5799 nChng++;
5802 if( p->bFts4 ){
5803 fts3UpdateDocTotals(&rc, p, aSzIns, aSzDel, nChng);
5806 update_out:
5807 sqlite3_free(aSzDel);
5808 sqlite3Fts3SegmentsClose(p);
5809 return rc;
5813 ** Flush any data in the pending-terms hash table to disk. If successful,
5814 ** merge all segments in the database (including the new segment, if
5815 ** there was any data to flush) into a single segment.
5817 int sqlite3Fts3Optimize(Fts3Table *p){
5818 int rc;
5819 rc = sqlite3_exec(p->db, "SAVEPOINT fts3", 0, 0, 0);
5820 if( rc==SQLITE_OK ){
5821 rc = fts3DoOptimize(p, 1);
5822 if( rc==SQLITE_OK || rc==SQLITE_DONE ){
5823 int rc2 = sqlite3_exec(p->db, "RELEASE fts3", 0, 0, 0);
5824 if( rc2!=SQLITE_OK ) rc = rc2;
5825 }else{
5826 sqlite3_exec(p->db, "ROLLBACK TO fts3", 0, 0, 0);
5827 sqlite3_exec(p->db, "RELEASE fts3", 0, 0, 0);
5830 sqlite3Fts3SegmentsClose(p);
5831 return rc;
5834 #endif