4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains code for implementations of the r-tree and r*-tree
13 ** algorithms packaged as an SQLite virtual table module.
17 ** Database Format of R-Tree Tables
18 ** --------------------------------
20 ** The data structure for a single virtual r-tree table is stored in three
21 ** native SQLite tables declared as follows. In each case, the '%' character
22 ** in the table name is replaced with the user-supplied name of the r-tree
25 ** CREATE TABLE %_node(nodeno INTEGER PRIMARY KEY, data BLOB)
26 ** CREATE TABLE %_parent(nodeno INTEGER PRIMARY KEY, parentnode INTEGER)
27 ** CREATE TABLE %_rowid(rowid INTEGER PRIMARY KEY, nodeno INTEGER, ...)
29 ** The data for each node of the r-tree structure is stored in the %_node
30 ** table. For each node that is not the root node of the r-tree, there is
31 ** an entry in the %_parent table associating the node with its parent.
32 ** And for each row of data in the table, there is an entry in the %_rowid
33 ** table that maps from the entries rowid to the id of the node that it
34 ** is stored on. If the r-tree contains auxiliary columns, those are stored
35 ** on the end of the %_rowid table.
37 ** The root node of an r-tree always exists, even if the r-tree table is
38 ** empty. The nodeno of the root node is always 1. All other nodes in the
39 ** table must be the same size as the root node. The content of each node
40 ** is formatted as follows:
42 ** 1. If the node is the root node (node 1), then the first 2 bytes
43 ** of the node contain the tree depth as a big-endian integer.
44 ** For non-root nodes, the first 2 bytes are left unused.
46 ** 2. The next 2 bytes contain the number of entries currently
47 ** stored in the node.
49 ** 3. The remainder of the node contains the node entries. Each entry
50 ** consists of a single 8-byte integer followed by an even number
51 ** of 4-byte coordinates. For leaf nodes the integer is the rowid
52 ** of a record. For internal nodes it is the node number of a
56 #if !defined(SQLITE_CORE) \
57 || (defined(SQLITE_ENABLE_RTREE) && !defined(SQLITE_OMIT_VIRTUALTABLE))
60 #include "sqlite3ext.h"
61 SQLITE_EXTENSION_INIT1
65 int sqlite3GetToken(const unsigned char*,int*); /* In the SQLite core */
68 ** If building separately, we will need some setup that is normally
69 ** found in sqliteInt.h
71 #if !defined(SQLITE_AMALGAMATION)
72 #include "sqlite3rtree.h"
73 typedef sqlite3_int64 i64
;
74 typedef sqlite3_uint64 u64
;
75 typedef unsigned char u8
;
76 typedef unsigned short u16
;
77 typedef unsigned int u32
;
78 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG)
81 #if defined(NDEBUG) && defined(SQLITE_DEBUG)
84 #if defined(SQLITE_COVERAGE_TEST) || defined(SQLITE_MUTATION_TEST)
85 # define SQLITE_OMIT_AUXILIARY_SAFETY_CHECKS 1
87 #if defined(SQLITE_OMIT_AUXILIARY_SAFETY_CHECKS)
88 # define ALWAYS(X) (1)
90 #elif !defined(NDEBUG)
91 # define ALWAYS(X) ((X)?1:(assert(0),0))
92 # define NEVER(X) ((X)?(assert(0),1):0)
94 # define ALWAYS(X) (X)
97 #endif /* !defined(SQLITE_AMALGAMATION) */
99 /* Macro to check for 4-byte alignment. Only used inside of assert() */
101 # define FOUR_BYTE_ALIGNED(X) ((((char*)(X) - (char*)0) & 3)==0)
109 /* The following macro is used to suppress compiler warnings.
111 #ifndef UNUSED_PARAMETER
112 # define UNUSED_PARAMETER(x) (void)(x)
115 typedef struct Rtree Rtree
;
116 typedef struct RtreeCursor RtreeCursor
;
117 typedef struct RtreeNode RtreeNode
;
118 typedef struct RtreeCell RtreeCell
;
119 typedef struct RtreeConstraint RtreeConstraint
;
120 typedef struct RtreeMatchArg RtreeMatchArg
;
121 typedef struct RtreeGeomCallback RtreeGeomCallback
;
122 typedef union RtreeCoord RtreeCoord
;
123 typedef struct RtreeSearchPoint RtreeSearchPoint
;
125 /* The rtree may have between 1 and RTREE_MAX_DIMENSIONS dimensions. */
126 #define RTREE_MAX_DIMENSIONS 5
128 /* Maximum number of auxiliary columns */
129 #define RTREE_MAX_AUX_COLUMN 100
131 /* Size of hash table Rtree.aHash. This hash table is not expected to
132 ** ever contain very many entries, so a fixed number of buckets is
137 /* The xBestIndex method of this virtual table requires an estimate of
138 ** the number of rows in the virtual table to calculate the costs of
139 ** various strategies. If possible, this estimate is loaded from the
140 ** sqlite_stat1 table (with RTREE_MIN_ROWEST as a hard-coded minimum).
141 ** Otherwise, if no sqlite_stat1 entry is available, use
142 ** RTREE_DEFAULT_ROWEST.
144 #define RTREE_DEFAULT_ROWEST 1048576
145 #define RTREE_MIN_ROWEST 100
148 ** An rtree virtual-table object.
151 sqlite3_vtab base
; /* Base class. Must be first */
152 sqlite3
*db
; /* Host database connection */
153 int iNodeSize
; /* Size in bytes of each node in the node table */
154 u8 nDim
; /* Number of dimensions */
155 u8 nDim2
; /* Twice the number of dimensions */
156 u8 eCoordType
; /* RTREE_COORD_REAL32 or RTREE_COORD_INT32 */
157 u8 nBytesPerCell
; /* Bytes consumed per cell */
158 u8 inWrTrans
; /* True if inside write transaction */
159 u8 nAux
; /* # of auxiliary columns in %_rowid */
160 #ifdef SQLITE_ENABLE_GEOPOLY
161 u8 nAuxNotNull
; /* Number of initial not-null aux columns */
164 u8 bCorrupt
; /* Shadow table corruption detected */
166 int iDepth
; /* Current depth of the r-tree structure */
167 char *zDb
; /* Name of database containing r-tree table */
168 char *zName
; /* Name of r-tree table */
169 char *zNodeName
; /* Name of the %_node table */
170 u32 nBusy
; /* Current number of users of this structure */
171 i64 nRowEst
; /* Estimated number of rows in this table */
172 u32 nCursor
; /* Number of open cursors */
173 u32 nNodeRef
; /* Number RtreeNodes with positive nRef */
174 char *zReadAuxSql
; /* SQL for statement to read aux data */
176 /* List of nodes removed during a CondenseTree operation. List is
177 ** linked together via the pointer normally used for hash chains -
178 ** RtreeNode.pNext. RtreeNode.iNode stores the depth of the sub-tree
179 ** headed by the node (leaf nodes have RtreeNode.iNode==0).
183 /* Blob I/O on xxx_node */
184 sqlite3_blob
*pNodeBlob
;
186 /* Statements to read/write/delete a record from xxx_node */
187 sqlite3_stmt
*pWriteNode
;
188 sqlite3_stmt
*pDeleteNode
;
190 /* Statements to read/write/delete a record from xxx_rowid */
191 sqlite3_stmt
*pReadRowid
;
192 sqlite3_stmt
*pWriteRowid
;
193 sqlite3_stmt
*pDeleteRowid
;
195 /* Statements to read/write/delete a record from xxx_parent */
196 sqlite3_stmt
*pReadParent
;
197 sqlite3_stmt
*pWriteParent
;
198 sqlite3_stmt
*pDeleteParent
;
200 /* Statement for writing to the "aux:" fields, if there are any */
201 sqlite3_stmt
*pWriteAux
;
203 RtreeNode
*aHash
[HASHSIZE
]; /* Hash table of in-memory nodes. */
206 /* Possible values for Rtree.eCoordType: */
207 #define RTREE_COORD_REAL32 0
208 #define RTREE_COORD_INT32 1
211 ** If SQLITE_RTREE_INT_ONLY is defined, then this virtual table will
212 ** only deal with integer coordinates. No floating point operations
215 #ifdef SQLITE_RTREE_INT_ONLY
216 typedef sqlite3_int64 RtreeDValue
; /* High accuracy coordinate */
217 typedef int RtreeValue
; /* Low accuracy coordinate */
218 # define RTREE_ZERO 0
220 typedef double RtreeDValue
; /* High accuracy coordinate */
221 typedef float RtreeValue
; /* Low accuracy coordinate */
222 # define RTREE_ZERO 0.0
226 ** Set the Rtree.bCorrupt flag
229 # define RTREE_IS_CORRUPT(X) ((X)->bCorrupt = 1)
231 # define RTREE_IS_CORRUPT(X)
235 ** When doing a search of an r-tree, instances of the following structure
236 ** record intermediate results from the tree walk.
238 ** The id is always a node-id. For iLevel>=1 the id is the node-id of
239 ** the node that the RtreeSearchPoint represents. When iLevel==0, however,
240 ** the id is of the parent node and the cell that RtreeSearchPoint
241 ** represents is the iCell-th entry in the parent node.
243 struct RtreeSearchPoint
{
244 RtreeDValue rScore
; /* The score for this node. Smallest goes first. */
245 sqlite3_int64 id
; /* Node ID */
246 u8 iLevel
; /* 0=entries. 1=leaf node. 2+ for higher */
247 u8 eWithin
; /* PARTLY_WITHIN or FULLY_WITHIN */
248 u8 iCell
; /* Cell index within the node */
252 ** The minimum number of cells allowed for a node is a third of the
253 ** maximum. In Gutman's notation:
257 ** If an R*-tree "Reinsert" operation is required, the same number of
258 ** cells are removed from the overfull node and reinserted into the tree.
260 #define RTREE_MINCELLS(p) ((((p)->iNodeSize-4)/(p)->nBytesPerCell)/3)
261 #define RTREE_REINSERT(p) RTREE_MINCELLS(p)
262 #define RTREE_MAXCELLS 51
265 ** The smallest possible node-size is (512-64)==448 bytes. And the largest
266 ** supported cell size is 48 bytes (8 byte rowid + ten 4 byte coordinates).
267 ** Therefore all non-root nodes must contain at least 3 entries. Since
268 ** 3^40 is greater than 2^64, an r-tree structure always has a depth of
271 #define RTREE_MAX_DEPTH 40
275 ** Number of entries in the cursor RtreeNode cache. The first entry is
276 ** used to cache the RtreeNode for RtreeCursor.sPoint. The remaining
277 ** entries cache the RtreeNode for the first elements of the priority queue.
279 #define RTREE_CACHE_SZ 5
282 ** An rtree cursor object.
285 sqlite3_vtab_cursor base
; /* Base class. Must be first */
286 u8 atEOF
; /* True if at end of search */
287 u8 bPoint
; /* True if sPoint is valid */
288 u8 bAuxValid
; /* True if pReadAux is valid */
289 int iStrategy
; /* Copy of idxNum search parameter */
290 int nConstraint
; /* Number of entries in aConstraint */
291 RtreeConstraint
*aConstraint
; /* Search constraints. */
292 int nPointAlloc
; /* Number of slots allocated for aPoint[] */
293 int nPoint
; /* Number of slots used in aPoint[] */
294 int mxLevel
; /* iLevel value for root of the tree */
295 RtreeSearchPoint
*aPoint
; /* Priority queue for search points */
296 sqlite3_stmt
*pReadAux
; /* Statement to read aux-data */
297 RtreeSearchPoint sPoint
; /* Cached next search point */
298 RtreeNode
*aNode
[RTREE_CACHE_SZ
]; /* Rtree node cache */
299 u32 anQueue
[RTREE_MAX_DEPTH
+1]; /* Number of queued entries by iLevel */
302 /* Return the Rtree of a RtreeCursor */
303 #define RTREE_OF_CURSOR(X) ((Rtree*)((X)->base.pVtab))
306 ** A coordinate can be either a floating point number or a integer. All
307 ** coordinates within a single R-Tree are always of the same time.
310 RtreeValue f
; /* Floating point value */
311 int i
; /* Integer value */
312 u32 u
; /* Unsigned for byte-order conversions */
316 ** The argument is an RtreeCoord. Return the value stored within the RtreeCoord
317 ** formatted as a RtreeDValue (double or int64). This macro assumes that local
318 ** variable pRtree points to the Rtree structure associated with the
321 #ifdef SQLITE_RTREE_INT_ONLY
322 # define DCOORD(coord) ((RtreeDValue)coord.i)
324 # define DCOORD(coord) ( \
325 (pRtree->eCoordType==RTREE_COORD_REAL32) ? \
326 ((double)coord.f) : \
332 ** A search constraint.
334 struct RtreeConstraint
{
335 int iCoord
; /* Index of constrained coordinate */
336 int op
; /* Constraining operation */
338 RtreeDValue rValue
; /* Constraint value. */
339 int (*xGeom
)(sqlite3_rtree_geometry
*,int,RtreeDValue
*,int*);
340 int (*xQueryFunc
)(sqlite3_rtree_query_info
*);
342 sqlite3_rtree_query_info
*pInfo
; /* xGeom and xQueryFunc argument */
345 /* Possible values for RtreeConstraint.op */
346 #define RTREE_EQ 0x41 /* A */
347 #define RTREE_LE 0x42 /* B */
348 #define RTREE_LT 0x43 /* C */
349 #define RTREE_GE 0x44 /* D */
350 #define RTREE_GT 0x45 /* E */
351 #define RTREE_MATCH 0x46 /* F: Old-style sqlite3_rtree_geometry_callback() */
352 #define RTREE_QUERY 0x47 /* G: New-style sqlite3_rtree_query_callback() */
354 /* Special operators available only on cursors. Needs to be consecutive
355 ** with the normal values above, but must be less than RTREE_MATCH. These
356 ** are used in the cursor for contraints such as x=NULL (RTREE_FALSE) or
357 ** x<'xyz' (RTREE_TRUE) */
358 #define RTREE_TRUE 0x3f /* ? */
359 #define RTREE_FALSE 0x40 /* @ */
362 ** An rtree structure node.
365 RtreeNode
*pParent
; /* Parent node */
366 i64 iNode
; /* The node number */
367 int nRef
; /* Number of references to this node */
368 int isDirty
; /* True if the node needs to be written to disk */
369 u8
*zData
; /* Content of the node, as should be on disk */
370 RtreeNode
*pNext
; /* Next node in this hash collision chain */
373 /* Return the number of cells in a node */
374 #define NCELL(pNode) readInt16(&(pNode)->zData[2])
377 ** A single cell from a node, deserialized
380 i64 iRowid
; /* Node or entry ID */
381 RtreeCoord aCoord
[RTREE_MAX_DIMENSIONS
*2]; /* Bounding box coordinates */
386 ** This object becomes the sqlite3_user_data() for the SQL functions
387 ** that are created by sqlite3_rtree_geometry_callback() and
388 ** sqlite3_rtree_query_callback() and which appear on the right of MATCH
389 ** operators in order to constrain a search.
391 ** xGeom and xQueryFunc are the callback functions. Exactly one of
392 ** xGeom and xQueryFunc fields is non-NULL, depending on whether the
393 ** SQL function was created using sqlite3_rtree_geometry_callback() or
394 ** sqlite3_rtree_query_callback().
396 ** This object is deleted automatically by the destructor mechanism in
397 ** sqlite3_create_function_v2().
399 struct RtreeGeomCallback
{
400 int (*xGeom
)(sqlite3_rtree_geometry
*, int, RtreeDValue
*, int*);
401 int (*xQueryFunc
)(sqlite3_rtree_query_info
*);
402 void (*xDestructor
)(void*);
407 ** An instance of this structure (in the form of a BLOB) is returned by
408 ** the SQL functions that sqlite3_rtree_geometry_callback() and
409 ** sqlite3_rtree_query_callback() create, and is read as the right-hand
410 ** operand to the MATCH operator of an R-Tree.
412 struct RtreeMatchArg
{
413 u32 iSize
; /* Size of this object */
414 RtreeGeomCallback cb
; /* Info about the callback functions */
415 int nParam
; /* Number of parameters to the SQL function */
416 sqlite3_value
**apSqlParam
; /* Original SQL parameter values */
417 RtreeDValue aParam
[1]; /* Values for parameters to the SQL function */
421 # define MAX(x,y) ((x) < (y) ? (y) : (x))
424 # define MIN(x,y) ((x) > (y) ? (y) : (x))
427 /* What version of GCC is being used. 0 means GCC is not being used .
428 ** Note that the GCC_VERSION macro will also be set correctly when using
429 ** clang, since clang works hard to be gcc compatible. So the gcc
430 ** optimizations will also work when compiling with clang.
433 #if defined(__GNUC__) && !defined(SQLITE_DISABLE_INTRINSIC)
434 # define GCC_VERSION (__GNUC__*1000000+__GNUC_MINOR__*1000+__GNUC_PATCHLEVEL__)
436 # define GCC_VERSION 0
440 /* The testcase() macro should already be defined in the amalgamation. If
441 ** it is not, make it a no-op.
443 #ifndef SQLITE_AMALGAMATION
444 # if defined(SQLITE_COVERAGE_TEST) || defined(SQLITE_DEBUG)
445 unsigned int sqlite3RtreeTestcase
= 0;
446 # define testcase(X) if( X ){ sqlite3RtreeTestcase += __LINE__; }
453 ** Make sure that the compiler intrinsics we desire are enabled when
454 ** compiling with an appropriate version of MSVC unless prevented by
455 ** the SQLITE_DISABLE_INTRINSIC define.
457 #if !defined(SQLITE_DISABLE_INTRINSIC)
458 # if defined(_MSC_VER) && _MSC_VER>=1400
459 # if !defined(_WIN32_WCE)
461 # pragma intrinsic(_byteswap_ulong)
462 # pragma intrinsic(_byteswap_uint64)
464 # include <cmnintrin.h>
470 ** Macros to determine whether the machine is big or little endian,
471 ** and whether or not that determination is run-time or compile-time.
473 ** For best performance, an attempt is made to guess at the byte-order
474 ** using C-preprocessor macros. If that is unsuccessful, or if
475 ** -DSQLITE_RUNTIME_BYTEORDER=1 is set, then byte-order is determined
478 #ifndef SQLITE_BYTEORDER /* Replicate changes at tag-20230904a */
479 # if defined(__BYTE_ORDER__) && __BYTE_ORDER__==__ORDER_BIG_ENDIAN__
480 # define SQLITE_BYTEORDER 4321
481 # elif defined(__BYTE_ORDER__) && __BYTE_ORDER__==__ORDER_LITTLE_ENDIAN__
482 # define SQLITE_BYTEORDER 1234
483 # elif defined(__BIG_ENDIAN__) && __BIG_ENDIAN__==1
484 # define SQLITE_BYTEORDER 4321
485 # elif defined(i386) || defined(__i386__) || defined(_M_IX86) || \
486 defined(__x86_64) || defined(__x86_64__) || defined(_M_X64) || \
487 defined(_M_AMD64) || defined(_M_ARM) || defined(__x86) || \
488 defined(__ARMEL__) || defined(__AARCH64EL__) || defined(_M_ARM64)
489 # define SQLITE_BYTEORDER 1234
490 # elif defined(sparc) || defined(__ARMEB__) || defined(__AARCH64EB__)
491 # define SQLITE_BYTEORDER 4321
493 # define SQLITE_BYTEORDER 0
498 /* What version of MSVC is being used. 0 means MSVC is not being used */
500 #if defined(_MSC_VER) && !defined(SQLITE_DISABLE_INTRINSIC)
501 # define MSVC_VERSION _MSC_VER
503 # define MSVC_VERSION 0
508 ** Functions to deserialize a 16 bit integer, 32 bit real number and
509 ** 64 bit integer. The deserialized value is returned.
511 static int readInt16(u8
*p
){
512 return (p
[0]<<8) + p
[1];
514 static void readCoord(u8
*p
, RtreeCoord
*pCoord
){
515 assert( FOUR_BYTE_ALIGNED(p
) );
516 #if SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
517 pCoord
->u
= _byteswap_ulong(*(u32
*)p
);
518 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
519 pCoord
->u
= __builtin_bswap32(*(u32
*)p
);
520 #elif SQLITE_BYTEORDER==4321
521 pCoord
->u
= *(u32
*)p
;
524 (((u32
)p
[0]) << 24) +
525 (((u32
)p
[1]) << 16) +
531 static i64
readInt64(u8
*p
){
532 #if SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
535 return (i64
)_byteswap_uint64(x
);
536 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
539 return (i64
)__builtin_bswap64(x
);
540 #elif SQLITE_BYTEORDER==4321
546 (((u64
)p
[0]) << 56) +
547 (((u64
)p
[1]) << 48) +
548 (((u64
)p
[2]) << 40) +
549 (((u64
)p
[3]) << 32) +
550 (((u64
)p
[4]) << 24) +
551 (((u64
)p
[5]) << 16) +
559 ** Functions to serialize a 16 bit integer, 32 bit real number and
560 ** 64 bit integer. The value returned is the number of bytes written
561 ** to the argument buffer (always 2, 4 and 8 respectively).
563 static void writeInt16(u8
*p
, int i
){
567 static int writeCoord(u8
*p
, RtreeCoord
*pCoord
){
569 assert( FOUR_BYTE_ALIGNED(p
) );
570 assert( sizeof(RtreeCoord
)==4 );
571 assert( sizeof(u32
)==4 );
572 #if SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
573 i
= __builtin_bswap32(pCoord
->u
);
575 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
576 i
= _byteswap_ulong(pCoord
->u
);
578 #elif SQLITE_BYTEORDER==4321
590 static int writeInt64(u8
*p
, i64 i
){
591 #if SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
592 i
= (i64
)__builtin_bswap64((u64
)i
);
594 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
595 i
= (i64
)_byteswap_uint64((u64
)i
);
597 #elif SQLITE_BYTEORDER==4321
613 ** Increment the reference count of node p.
615 static void nodeReference(RtreeNode
*p
){
623 ** Clear the content of node p (set all bytes to 0x00).
625 static void nodeZero(Rtree
*pRtree
, RtreeNode
*p
){
626 memset(&p
->zData
[2], 0, pRtree
->iNodeSize
-2);
631 ** Given a node number iNode, return the corresponding key to use
632 ** in the Rtree.aHash table.
634 static unsigned int nodeHash(i64 iNode
){
635 return ((unsigned)iNode
) % HASHSIZE
;
639 ** Search the node hash table for node iNode. If found, return a pointer
640 ** to it. Otherwise, return 0.
642 static RtreeNode
*nodeHashLookup(Rtree
*pRtree
, i64 iNode
){
644 for(p
=pRtree
->aHash
[nodeHash(iNode
)]; p
&& p
->iNode
!=iNode
; p
=p
->pNext
);
649 ** Add node pNode to the node hash table.
651 static void nodeHashInsert(Rtree
*pRtree
, RtreeNode
*pNode
){
653 assert( pNode
->pNext
==0 );
654 iHash
= nodeHash(pNode
->iNode
);
655 pNode
->pNext
= pRtree
->aHash
[iHash
];
656 pRtree
->aHash
[iHash
] = pNode
;
660 ** Remove node pNode from the node hash table.
662 static void nodeHashDelete(Rtree
*pRtree
, RtreeNode
*pNode
){
664 if( pNode
->iNode
!=0 ){
665 pp
= &pRtree
->aHash
[nodeHash(pNode
->iNode
)];
666 for( ; (*pp
)!=pNode
; pp
= &(*pp
)->pNext
){ assert(*pp
); }
673 ** Allocate and return new r-tree node. Initially, (RtreeNode.iNode==0),
674 ** indicating that node has not yet been assigned a node number. It is
675 ** assigned a node number when nodeWrite() is called to write the
676 ** node contents out to the database.
678 static RtreeNode
*nodeNew(Rtree
*pRtree
, RtreeNode
*pParent
){
680 pNode
= (RtreeNode
*)sqlite3_malloc64(sizeof(RtreeNode
) + pRtree
->iNodeSize
);
682 memset(pNode
, 0, sizeof(RtreeNode
) + pRtree
->iNodeSize
);
683 pNode
->zData
= (u8
*)&pNode
[1];
686 pNode
->pParent
= pParent
;
688 nodeReference(pParent
);
694 ** Clear the Rtree.pNodeBlob object
696 static void nodeBlobReset(Rtree
*pRtree
){
697 sqlite3_blob
*pBlob
= pRtree
->pNodeBlob
;
698 pRtree
->pNodeBlob
= 0;
699 sqlite3_blob_close(pBlob
);
703 ** Obtain a reference to an r-tree node.
705 static int nodeAcquire(
706 Rtree
*pRtree
, /* R-tree structure */
707 i64 iNode
, /* Node number to load */
708 RtreeNode
*pParent
, /* Either the parent node or NULL */
709 RtreeNode
**ppNode
/* OUT: Acquired node */
712 RtreeNode
*pNode
= 0;
714 /* Check if the requested node is already in the hash table. If so,
715 ** increase its reference count and return it.
717 if( (pNode
= nodeHashLookup(pRtree
, iNode
))!=0 ){
718 if( pParent
&& ALWAYS(pParent
!=pNode
->pParent
) ){
719 RTREE_IS_CORRUPT(pRtree
);
720 return SQLITE_CORRUPT_VTAB
;
727 if( pRtree
->pNodeBlob
){
728 sqlite3_blob
*pBlob
= pRtree
->pNodeBlob
;
729 pRtree
->pNodeBlob
= 0;
730 rc
= sqlite3_blob_reopen(pBlob
, iNode
);
731 pRtree
->pNodeBlob
= pBlob
;
733 nodeBlobReset(pRtree
);
734 if( rc
==SQLITE_NOMEM
) return SQLITE_NOMEM
;
737 if( pRtree
->pNodeBlob
==0 ){
738 rc
= sqlite3_blob_open(pRtree
->db
, pRtree
->zDb
, pRtree
->zNodeName
,
744 /* If unable to open an sqlite3_blob on the desired row, that can only
745 ** be because the shadow tables hold erroneous data. */
746 if( rc
==SQLITE_ERROR
){
747 rc
= SQLITE_CORRUPT_VTAB
;
748 RTREE_IS_CORRUPT(pRtree
);
750 }else if( pRtree
->iNodeSize
==sqlite3_blob_bytes(pRtree
->pNodeBlob
) ){
751 pNode
= (RtreeNode
*)sqlite3_malloc64(sizeof(RtreeNode
)+pRtree
->iNodeSize
);
755 pNode
->pParent
= pParent
;
756 pNode
->zData
= (u8
*)&pNode
[1];
759 pNode
->iNode
= iNode
;
762 rc
= sqlite3_blob_read(pRtree
->pNodeBlob
, pNode
->zData
,
763 pRtree
->iNodeSize
, 0);
767 /* If the root node was just loaded, set pRtree->iDepth to the height
768 ** of the r-tree structure. A height of zero means all data is stored on
769 ** the root node. A height of one means the children of the root node
770 ** are the leaves, and so on. If the depth as specified on the root node
771 ** is greater than RTREE_MAX_DEPTH, the r-tree structure must be corrupt.
773 if( rc
==SQLITE_OK
&& pNode
&& iNode
==1 ){
774 pRtree
->iDepth
= readInt16(pNode
->zData
);
775 if( pRtree
->iDepth
>RTREE_MAX_DEPTH
){
776 rc
= SQLITE_CORRUPT_VTAB
;
777 RTREE_IS_CORRUPT(pRtree
);
781 /* If no error has occurred so far, check if the "number of entries"
782 ** field on the node is too large. If so, set the return code to
783 ** SQLITE_CORRUPT_VTAB.
785 if( pNode
&& rc
==SQLITE_OK
){
786 if( NCELL(pNode
)>((pRtree
->iNodeSize
-4)/pRtree
->nBytesPerCell
) ){
787 rc
= SQLITE_CORRUPT_VTAB
;
788 RTREE_IS_CORRUPT(pRtree
);
794 nodeReference(pParent
);
795 nodeHashInsert(pRtree
, pNode
);
797 rc
= SQLITE_CORRUPT_VTAB
;
798 RTREE_IS_CORRUPT(pRtree
);
802 nodeBlobReset(pRtree
);
814 ** Overwrite cell iCell of node pNode with the contents of pCell.
816 static void nodeOverwriteCell(
817 Rtree
*pRtree
, /* The overall R-Tree */
818 RtreeNode
*pNode
, /* The node into which the cell is to be written */
819 RtreeCell
*pCell
, /* The cell to write */
820 int iCell
/* Index into pNode into which pCell is written */
823 u8
*p
= &pNode
->zData
[4 + pRtree
->nBytesPerCell
*iCell
];
824 p
+= writeInt64(p
, pCell
->iRowid
);
825 for(ii
=0; ii
<pRtree
->nDim2
; ii
++){
826 p
+= writeCoord(p
, &pCell
->aCoord
[ii
]);
832 ** Remove the cell with index iCell from node pNode.
834 static void nodeDeleteCell(Rtree
*pRtree
, RtreeNode
*pNode
, int iCell
){
835 u8
*pDst
= &pNode
->zData
[4 + pRtree
->nBytesPerCell
*iCell
];
836 u8
*pSrc
= &pDst
[pRtree
->nBytesPerCell
];
837 int nByte
= (NCELL(pNode
) - iCell
- 1) * pRtree
->nBytesPerCell
;
838 memmove(pDst
, pSrc
, nByte
);
839 writeInt16(&pNode
->zData
[2], NCELL(pNode
)-1);
844 ** Insert the contents of cell pCell into node pNode. If the insert
845 ** is successful, return SQLITE_OK.
847 ** If there is not enough free space in pNode, return SQLITE_FULL.
849 static int nodeInsertCell(
850 Rtree
*pRtree
, /* The overall R-Tree */
851 RtreeNode
*pNode
, /* Write new cell into this node */
852 RtreeCell
*pCell
/* The cell to be inserted */
854 int nCell
; /* Current number of cells in pNode */
855 int nMaxCell
; /* Maximum number of cells for pNode */
857 nMaxCell
= (pRtree
->iNodeSize
-4)/pRtree
->nBytesPerCell
;
858 nCell
= NCELL(pNode
);
860 assert( nCell
<=nMaxCell
);
861 if( nCell
<nMaxCell
){
862 nodeOverwriteCell(pRtree
, pNode
, pCell
, nCell
);
863 writeInt16(&pNode
->zData
[2], nCell
+1);
867 return (nCell
==nMaxCell
);
871 ** If the node is dirty, write it out to the database.
873 static int nodeWrite(Rtree
*pRtree
, RtreeNode
*pNode
){
875 if( pNode
->isDirty
){
876 sqlite3_stmt
*p
= pRtree
->pWriteNode
;
878 sqlite3_bind_int64(p
, 1, pNode
->iNode
);
880 sqlite3_bind_null(p
, 1);
882 sqlite3_bind_blob(p
, 2, pNode
->zData
, pRtree
->iNodeSize
, SQLITE_STATIC
);
885 rc
= sqlite3_reset(p
);
886 sqlite3_bind_null(p
, 2);
887 if( pNode
->iNode
==0 && rc
==SQLITE_OK
){
888 pNode
->iNode
= sqlite3_last_insert_rowid(pRtree
->db
);
889 nodeHashInsert(pRtree
, pNode
);
896 ** Release a reference to a node. If the node is dirty and the reference
897 ** count drops to zero, the node data is written to the database.
899 static int nodeRelease(Rtree
*pRtree
, RtreeNode
*pNode
){
902 assert( pNode
->nRef
>0 );
903 assert( pRtree
->nNodeRef
>0 );
905 if( pNode
->nRef
==0 ){
907 if( pNode
->iNode
==1 ){
910 if( pNode
->pParent
){
911 rc
= nodeRelease(pRtree
, pNode
->pParent
);
914 rc
= nodeWrite(pRtree
, pNode
);
916 nodeHashDelete(pRtree
, pNode
);
924 ** Return the 64-bit integer value associated with cell iCell of
925 ** node pNode. If pNode is a leaf node, this is a rowid. If it is
926 ** an internal node, then the 64-bit integer is a child page number.
928 static i64
nodeGetRowid(
929 Rtree
*pRtree
, /* The overall R-Tree */
930 RtreeNode
*pNode
, /* The node from which to extract the ID */
931 int iCell
/* The cell index from which to extract the ID */
933 assert( iCell
<NCELL(pNode
) );
934 return readInt64(&pNode
->zData
[4 + pRtree
->nBytesPerCell
*iCell
]);
938 ** Return coordinate iCoord from cell iCell in node pNode.
940 static void nodeGetCoord(
941 Rtree
*pRtree
, /* The overall R-Tree */
942 RtreeNode
*pNode
, /* The node from which to extract a coordinate */
943 int iCell
, /* The index of the cell within the node */
944 int iCoord
, /* Which coordinate to extract */
945 RtreeCoord
*pCoord
/* OUT: Space to write result to */
947 assert( iCell
<NCELL(pNode
) );
948 readCoord(&pNode
->zData
[12 + pRtree
->nBytesPerCell
*iCell
+ 4*iCoord
], pCoord
);
952 ** Deserialize cell iCell of node pNode. Populate the structure pointed
953 ** to by pCell with the results.
955 static void nodeGetCell(
956 Rtree
*pRtree
, /* The overall R-Tree */
957 RtreeNode
*pNode
, /* The node containing the cell to be read */
958 int iCell
, /* Index of the cell within the node */
959 RtreeCell
*pCell
/* OUT: Write the cell contents here */
964 pCell
->iRowid
= nodeGetRowid(pRtree
, pNode
, iCell
);
965 pData
= pNode
->zData
+ (12 + pRtree
->nBytesPerCell
*iCell
);
966 pCoord
= pCell
->aCoord
;
968 readCoord(pData
, &pCoord
[ii
]);
969 readCoord(pData
+4, &pCoord
[ii
+1]);
972 }while( ii
<pRtree
->nDim2
);
976 /* Forward declaration for the function that does the work of
977 ** the virtual table module xCreate() and xConnect() methods.
979 static int rtreeInit(
980 sqlite3
*, void *, int, const char *const*, sqlite3_vtab
**, char **, int
984 ** Rtree virtual table module xCreate method.
986 static int rtreeCreate(
989 int argc
, const char *const*argv
,
990 sqlite3_vtab
**ppVtab
,
993 return rtreeInit(db
, pAux
, argc
, argv
, ppVtab
, pzErr
, 1);
997 ** Rtree virtual table module xConnect method.
999 static int rtreeConnect(
1002 int argc
, const char *const*argv
,
1003 sqlite3_vtab
**ppVtab
,
1006 return rtreeInit(db
, pAux
, argc
, argv
, ppVtab
, pzErr
, 0);
1010 ** Increment the r-tree reference count.
1012 static void rtreeReference(Rtree
*pRtree
){
1017 ** Decrement the r-tree reference count. When the reference count reaches
1018 ** zero the structure is deleted.
1020 static void rtreeRelease(Rtree
*pRtree
){
1022 if( pRtree
->nBusy
==0 ){
1023 pRtree
->inWrTrans
= 0;
1024 assert( pRtree
->nCursor
==0 );
1025 nodeBlobReset(pRtree
);
1026 assert( pRtree
->nNodeRef
==0 || pRtree
->bCorrupt
);
1027 sqlite3_finalize(pRtree
->pWriteNode
);
1028 sqlite3_finalize(pRtree
->pDeleteNode
);
1029 sqlite3_finalize(pRtree
->pReadRowid
);
1030 sqlite3_finalize(pRtree
->pWriteRowid
);
1031 sqlite3_finalize(pRtree
->pDeleteRowid
);
1032 sqlite3_finalize(pRtree
->pReadParent
);
1033 sqlite3_finalize(pRtree
->pWriteParent
);
1034 sqlite3_finalize(pRtree
->pDeleteParent
);
1035 sqlite3_finalize(pRtree
->pWriteAux
);
1036 sqlite3_free(pRtree
->zReadAuxSql
);
1037 sqlite3_free(pRtree
);
1042 ** Rtree virtual table module xDisconnect method.
1044 static int rtreeDisconnect(sqlite3_vtab
*pVtab
){
1045 rtreeRelease((Rtree
*)pVtab
);
1050 ** Rtree virtual table module xDestroy method.
1052 static int rtreeDestroy(sqlite3_vtab
*pVtab
){
1053 Rtree
*pRtree
= (Rtree
*)pVtab
;
1055 char *zCreate
= sqlite3_mprintf(
1056 "DROP TABLE '%q'.'%q_node';"
1057 "DROP TABLE '%q'.'%q_rowid';"
1058 "DROP TABLE '%q'.'%q_parent';",
1059 pRtree
->zDb
, pRtree
->zName
,
1060 pRtree
->zDb
, pRtree
->zName
,
1061 pRtree
->zDb
, pRtree
->zName
1066 nodeBlobReset(pRtree
);
1067 rc
= sqlite3_exec(pRtree
->db
, zCreate
, 0, 0, 0);
1068 sqlite3_free(zCreate
);
1070 if( rc
==SQLITE_OK
){
1071 rtreeRelease(pRtree
);
1078 ** Rtree virtual table module xOpen method.
1080 static int rtreeOpen(sqlite3_vtab
*pVTab
, sqlite3_vtab_cursor
**ppCursor
){
1081 int rc
= SQLITE_NOMEM
;
1082 Rtree
*pRtree
= (Rtree
*)pVTab
;
1085 pCsr
= (RtreeCursor
*)sqlite3_malloc64(sizeof(RtreeCursor
));
1087 memset(pCsr
, 0, sizeof(RtreeCursor
));
1088 pCsr
->base
.pVtab
= pVTab
;
1092 *ppCursor
= (sqlite3_vtab_cursor
*)pCsr
;
1099 ** Reset a cursor back to its initial state.
1101 static void resetCursor(RtreeCursor
*pCsr
){
1102 Rtree
*pRtree
= (Rtree
*)(pCsr
->base
.pVtab
);
1104 sqlite3_stmt
*pStmt
;
1105 if( pCsr
->aConstraint
){
1106 int i
; /* Used to iterate through constraint array */
1107 for(i
=0; i
<pCsr
->nConstraint
; i
++){
1108 sqlite3_rtree_query_info
*pInfo
= pCsr
->aConstraint
[i
].pInfo
;
1110 if( pInfo
->xDelUser
) pInfo
->xDelUser(pInfo
->pUser
);
1111 sqlite3_free(pInfo
);
1114 sqlite3_free(pCsr
->aConstraint
);
1115 pCsr
->aConstraint
= 0;
1117 for(ii
=0; ii
<RTREE_CACHE_SZ
; ii
++) nodeRelease(pRtree
, pCsr
->aNode
[ii
]);
1118 sqlite3_free(pCsr
->aPoint
);
1119 pStmt
= pCsr
->pReadAux
;
1120 memset(pCsr
, 0, sizeof(RtreeCursor
));
1121 pCsr
->base
.pVtab
= (sqlite3_vtab
*)pRtree
;
1122 pCsr
->pReadAux
= pStmt
;
1127 ** Rtree virtual table module xClose method.
1129 static int rtreeClose(sqlite3_vtab_cursor
*cur
){
1130 Rtree
*pRtree
= (Rtree
*)(cur
->pVtab
);
1131 RtreeCursor
*pCsr
= (RtreeCursor
*)cur
;
1132 assert( pRtree
->nCursor
>0 );
1134 sqlite3_finalize(pCsr
->pReadAux
);
1137 if( pRtree
->nCursor
==0 && pRtree
->inWrTrans
==0 ){
1138 nodeBlobReset(pRtree
);
1144 ** Rtree virtual table module xEof method.
1146 ** Return non-zero if the cursor does not currently point to a valid
1147 ** record (i.e if the scan has finished), or zero otherwise.
1149 static int rtreeEof(sqlite3_vtab_cursor
*cur
){
1150 RtreeCursor
*pCsr
= (RtreeCursor
*)cur
;
1155 ** Convert raw bits from the on-disk RTree record into a coordinate value.
1156 ** The on-disk format is big-endian and needs to be converted for little-
1157 ** endian platforms. The on-disk record stores integer coordinates if
1158 ** eInt is true and it stores 32-bit floating point records if eInt is
1159 ** false. a[] is the four bytes of the on-disk record to be decoded.
1160 ** Store the results in "r".
1162 ** There are five versions of this macro. The last one is generic. The
1163 ** other four are various architectures-specific optimizations.
1165 #if SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
1166 #define RTREE_DECODE_COORD(eInt, a, r) { \
1167 RtreeCoord c; /* Coordinate decoded */ \
1168 c.u = _byteswap_ulong(*(u32*)a); \
1169 r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \
1171 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
1172 #define RTREE_DECODE_COORD(eInt, a, r) { \
1173 RtreeCoord c; /* Coordinate decoded */ \
1174 c.u = __builtin_bswap32(*(u32*)a); \
1175 r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \
1177 #elif SQLITE_BYTEORDER==1234
1178 #define RTREE_DECODE_COORD(eInt, a, r) { \
1179 RtreeCoord c; /* Coordinate decoded */ \
1181 c.u = ((c.u>>24)&0xff)|((c.u>>8)&0xff00)| \
1182 ((c.u&0xff)<<24)|((c.u&0xff00)<<8); \
1183 r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \
1185 #elif SQLITE_BYTEORDER==4321
1186 #define RTREE_DECODE_COORD(eInt, a, r) { \
1187 RtreeCoord c; /* Coordinate decoded */ \
1189 r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \
1192 #define RTREE_DECODE_COORD(eInt, a, r) { \
1193 RtreeCoord c; /* Coordinate decoded */ \
1194 c.u = ((u32)a[0]<<24) + ((u32)a[1]<<16) \
1195 +((u32)a[2]<<8) + a[3]; \
1196 r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \
1201 ** Check the RTree node or entry given by pCellData and p against the MATCH
1202 ** constraint pConstraint.
1204 static int rtreeCallbackConstraint(
1205 RtreeConstraint
*pConstraint
, /* The constraint to test */
1206 int eInt
, /* True if RTree holding integer coordinates */
1207 u8
*pCellData
, /* Raw cell content */
1208 RtreeSearchPoint
*pSearch
, /* Container of this cell */
1209 sqlite3_rtree_dbl
*prScore
, /* OUT: score for the cell */
1210 int *peWithin
/* OUT: visibility of the cell */
1212 sqlite3_rtree_query_info
*pInfo
= pConstraint
->pInfo
; /* Callback info */
1213 int nCoord
= pInfo
->nCoord
; /* No. of coordinates */
1214 int rc
; /* Callback return code */
1215 RtreeCoord c
; /* Translator union */
1216 sqlite3_rtree_dbl aCoord
[RTREE_MAX_DIMENSIONS
*2]; /* Decoded coordinates */
1218 assert( pConstraint
->op
==RTREE_MATCH
|| pConstraint
->op
==RTREE_QUERY
);
1219 assert( nCoord
==2 || nCoord
==4 || nCoord
==6 || nCoord
==8 || nCoord
==10 );
1221 if( pConstraint
->op
==RTREE_QUERY
&& pSearch
->iLevel
==1 ){
1222 pInfo
->iRowid
= readInt64(pCellData
);
1225 #ifndef SQLITE_RTREE_INT_ONLY
1228 case 10: readCoord(pCellData
+36, &c
); aCoord
[9] = c
.f
;
1229 readCoord(pCellData
+32, &c
); aCoord
[8] = c
.f
;
1230 case 8: readCoord(pCellData
+28, &c
); aCoord
[7] = c
.f
;
1231 readCoord(pCellData
+24, &c
); aCoord
[6] = c
.f
;
1232 case 6: readCoord(pCellData
+20, &c
); aCoord
[5] = c
.f
;
1233 readCoord(pCellData
+16, &c
); aCoord
[4] = c
.f
;
1234 case 4: readCoord(pCellData
+12, &c
); aCoord
[3] = c
.f
;
1235 readCoord(pCellData
+8, &c
); aCoord
[2] = c
.f
;
1236 default: readCoord(pCellData
+4, &c
); aCoord
[1] = c
.f
;
1237 readCoord(pCellData
, &c
); aCoord
[0] = c
.f
;
1243 case 10: readCoord(pCellData
+36, &c
); aCoord
[9] = c
.i
;
1244 readCoord(pCellData
+32, &c
); aCoord
[8] = c
.i
;
1245 case 8: readCoord(pCellData
+28, &c
); aCoord
[7] = c
.i
;
1246 readCoord(pCellData
+24, &c
); aCoord
[6] = c
.i
;
1247 case 6: readCoord(pCellData
+20, &c
); aCoord
[5] = c
.i
;
1248 readCoord(pCellData
+16, &c
); aCoord
[4] = c
.i
;
1249 case 4: readCoord(pCellData
+12, &c
); aCoord
[3] = c
.i
;
1250 readCoord(pCellData
+8, &c
); aCoord
[2] = c
.i
;
1251 default: readCoord(pCellData
+4, &c
); aCoord
[1] = c
.i
;
1252 readCoord(pCellData
, &c
); aCoord
[0] = c
.i
;
1255 if( pConstraint
->op
==RTREE_MATCH
){
1257 rc
= pConstraint
->u
.xGeom((sqlite3_rtree_geometry
*)pInfo
,
1258 nCoord
, aCoord
, &eWithin
);
1259 if( eWithin
==0 ) *peWithin
= NOT_WITHIN
;
1260 *prScore
= RTREE_ZERO
;
1262 pInfo
->aCoord
= aCoord
;
1263 pInfo
->iLevel
= pSearch
->iLevel
- 1;
1264 pInfo
->rScore
= pInfo
->rParentScore
= pSearch
->rScore
;
1265 pInfo
->eWithin
= pInfo
->eParentWithin
= pSearch
->eWithin
;
1266 rc
= pConstraint
->u
.xQueryFunc(pInfo
);
1267 if( pInfo
->eWithin
<*peWithin
) *peWithin
= pInfo
->eWithin
;
1268 if( pInfo
->rScore
<*prScore
|| *prScore
<RTREE_ZERO
){
1269 *prScore
= pInfo
->rScore
;
1276 ** Check the internal RTree node given by pCellData against constraint p.
1277 ** If this constraint cannot be satisfied by any child within the node,
1278 ** set *peWithin to NOT_WITHIN.
1280 static void rtreeNonleafConstraint(
1281 RtreeConstraint
*p
, /* The constraint to test */
1282 int eInt
, /* True if RTree holds integer coordinates */
1283 u8
*pCellData
, /* Raw cell content as appears on disk */
1284 int *peWithin
/* Adjust downward, as appropriate */
1286 sqlite3_rtree_dbl val
; /* Coordinate value convert to a double */
1288 /* p->iCoord might point to either a lower or upper bound coordinate
1289 ** in a coordinate pair. But make pCellData point to the lower bound.
1291 pCellData
+= 8 + 4*(p
->iCoord
&0xfe);
1293 assert(p
->op
==RTREE_LE
|| p
->op
==RTREE_LT
|| p
->op
==RTREE_GE
1294 || p
->op
==RTREE_GT
|| p
->op
==RTREE_EQ
|| p
->op
==RTREE_TRUE
1295 || p
->op
==RTREE_FALSE
);
1296 assert( FOUR_BYTE_ALIGNED(pCellData
) );
1298 case RTREE_TRUE
: return; /* Always satisfied */
1299 case RTREE_FALSE
: break; /* Never satisfied */
1301 RTREE_DECODE_COORD(eInt
, pCellData
, val
);
1302 /* val now holds the lower bound of the coordinate pair */
1303 if( p
->u
.rValue
>=val
){
1305 RTREE_DECODE_COORD(eInt
, pCellData
, val
);
1306 /* val now holds the upper bound of the coordinate pair */
1307 if( p
->u
.rValue
<=val
) return;
1312 RTREE_DECODE_COORD(eInt
, pCellData
, val
);
1313 /* val now holds the lower bound of the coordinate pair */
1314 if( p
->u
.rValue
>=val
) return;
1319 RTREE_DECODE_COORD(eInt
, pCellData
, val
);
1320 /* val now holds the upper bound of the coordinate pair */
1321 if( p
->u
.rValue
<=val
) return;
1324 *peWithin
= NOT_WITHIN
;
1328 ** Check the leaf RTree cell given by pCellData against constraint p.
1329 ** If this constraint is not satisfied, set *peWithin to NOT_WITHIN.
1330 ** If the constraint is satisfied, leave *peWithin unchanged.
1332 ** The constraint is of the form: xN op $val
1334 ** The op is given by p->op. The xN is p->iCoord-th coordinate in
1335 ** pCellData. $val is given by p->u.rValue.
1337 static void rtreeLeafConstraint(
1338 RtreeConstraint
*p
, /* The constraint to test */
1339 int eInt
, /* True if RTree holds integer coordinates */
1340 u8
*pCellData
, /* Raw cell content as appears on disk */
1341 int *peWithin
/* Adjust downward, as appropriate */
1343 RtreeDValue xN
; /* Coordinate value converted to a double */
1345 assert(p
->op
==RTREE_LE
|| p
->op
==RTREE_LT
|| p
->op
==RTREE_GE
1346 || p
->op
==RTREE_GT
|| p
->op
==RTREE_EQ
|| p
->op
==RTREE_TRUE
1347 || p
->op
==RTREE_FALSE
);
1348 pCellData
+= 8 + p
->iCoord
*4;
1349 assert( FOUR_BYTE_ALIGNED(pCellData
) );
1350 RTREE_DECODE_COORD(eInt
, pCellData
, xN
);
1352 case RTREE_TRUE
: return; /* Always satisfied */
1353 case RTREE_FALSE
: break; /* Never satisfied */
1354 case RTREE_LE
: if( xN
<= p
->u
.rValue
) return; break;
1355 case RTREE_LT
: if( xN
< p
->u
.rValue
) return; break;
1356 case RTREE_GE
: if( xN
>= p
->u
.rValue
) return; break;
1357 case RTREE_GT
: if( xN
> p
->u
.rValue
) return; break;
1358 default: if( xN
== p
->u
.rValue
) return; break;
1360 *peWithin
= NOT_WITHIN
;
1364 ** One of the cells in node pNode is guaranteed to have a 64-bit
1365 ** integer value equal to iRowid. Return the index of this cell.
1367 static int nodeRowidIndex(
1374 int nCell
= NCELL(pNode
);
1375 assert( nCell
<200 );
1376 for(ii
=0; ii
<nCell
; ii
++){
1377 if( nodeGetRowid(pRtree
, pNode
, ii
)==iRowid
){
1382 RTREE_IS_CORRUPT(pRtree
);
1383 return SQLITE_CORRUPT_VTAB
;
1387 ** Return the index of the cell containing a pointer to node pNode
1388 ** in its parent. If pNode is the root node, return -1.
1390 static int nodeParentIndex(Rtree
*pRtree
, RtreeNode
*pNode
, int *piIndex
){
1391 RtreeNode
*pParent
= pNode
->pParent
;
1392 if( ALWAYS(pParent
) ){
1393 return nodeRowidIndex(pRtree
, pParent
, pNode
->iNode
, piIndex
);
1401 ** Compare two search points. Return negative, zero, or positive if the first
1402 ** is less than, equal to, or greater than the second.
1404 ** The rScore is the primary key. Smaller rScore values come first.
1405 ** If the rScore is a tie, then use iLevel as the tie breaker with smaller
1406 ** iLevel values coming first. In this way, if rScore is the same for all
1407 ** SearchPoints, then iLevel becomes the deciding factor and the result
1408 ** is a depth-first search, which is the desired default behavior.
1410 static int rtreeSearchPointCompare(
1411 const RtreeSearchPoint
*pA
,
1412 const RtreeSearchPoint
*pB
1414 if( pA
->rScore
<pB
->rScore
) return -1;
1415 if( pA
->rScore
>pB
->rScore
) return +1;
1416 if( pA
->iLevel
<pB
->iLevel
) return -1;
1417 if( pA
->iLevel
>pB
->iLevel
) return +1;
1422 ** Interchange two search points in a cursor.
1424 static void rtreeSearchPointSwap(RtreeCursor
*p
, int i
, int j
){
1425 RtreeSearchPoint t
= p
->aPoint
[i
];
1427 p
->aPoint
[i
] = p
->aPoint
[j
];
1430 if( i
<RTREE_CACHE_SZ
){
1431 if( j
>=RTREE_CACHE_SZ
){
1432 nodeRelease(RTREE_OF_CURSOR(p
), p
->aNode
[i
]);
1435 RtreeNode
*pTemp
= p
->aNode
[i
];
1436 p
->aNode
[i
] = p
->aNode
[j
];
1437 p
->aNode
[j
] = pTemp
;
1443 ** Return the search point with the lowest current score.
1445 static RtreeSearchPoint
*rtreeSearchPointFirst(RtreeCursor
*pCur
){
1446 return pCur
->bPoint
? &pCur
->sPoint
: pCur
->nPoint
? pCur
->aPoint
: 0;
1450 ** Get the RtreeNode for the search point with the lowest score.
1452 static RtreeNode
*rtreeNodeOfFirstSearchPoint(RtreeCursor
*pCur
, int *pRC
){
1454 int ii
= 1 - pCur
->bPoint
;
1455 assert( ii
==0 || ii
==1 );
1456 assert( pCur
->bPoint
|| pCur
->nPoint
);
1457 if( pCur
->aNode
[ii
]==0 ){
1459 id
= ii
? pCur
->aPoint
[0].id
: pCur
->sPoint
.id
;
1460 *pRC
= nodeAcquire(RTREE_OF_CURSOR(pCur
), id
, 0, &pCur
->aNode
[ii
]);
1462 return pCur
->aNode
[ii
];
1466 ** Push a new element onto the priority queue
1468 static RtreeSearchPoint
*rtreeEnqueue(
1469 RtreeCursor
*pCur
, /* The cursor */
1470 RtreeDValue rScore
, /* Score for the new search point */
1471 u8 iLevel
/* Level for the new search point */
1474 RtreeSearchPoint
*pNew
;
1475 if( pCur
->nPoint
>=pCur
->nPointAlloc
){
1476 int nNew
= pCur
->nPointAlloc
*2 + 8;
1477 pNew
= sqlite3_realloc64(pCur
->aPoint
, nNew
*sizeof(pCur
->aPoint
[0]));
1478 if( pNew
==0 ) return 0;
1479 pCur
->aPoint
= pNew
;
1480 pCur
->nPointAlloc
= nNew
;
1483 pNew
= pCur
->aPoint
+ i
;
1484 pNew
->rScore
= rScore
;
1485 pNew
->iLevel
= iLevel
;
1486 assert( iLevel
<=RTREE_MAX_DEPTH
);
1488 RtreeSearchPoint
*pParent
;
1490 pParent
= pCur
->aPoint
+ j
;
1491 if( rtreeSearchPointCompare(pNew
, pParent
)>=0 ) break;
1492 rtreeSearchPointSwap(pCur
, j
, i
);
1500 ** Allocate a new RtreeSearchPoint and return a pointer to it. Return
1501 ** NULL if malloc fails.
1503 static RtreeSearchPoint
*rtreeSearchPointNew(
1504 RtreeCursor
*pCur
, /* The cursor */
1505 RtreeDValue rScore
, /* Score for the new search point */
1506 u8 iLevel
/* Level for the new search point */
1508 RtreeSearchPoint
*pNew
, *pFirst
;
1509 pFirst
= rtreeSearchPointFirst(pCur
);
1510 pCur
->anQueue
[iLevel
]++;
1512 || pFirst
->rScore
>rScore
1513 || (pFirst
->rScore
==rScore
&& pFirst
->iLevel
>iLevel
)
1517 pNew
= rtreeEnqueue(pCur
, rScore
, iLevel
);
1518 if( pNew
==0 ) return 0;
1519 ii
= (int)(pNew
- pCur
->aPoint
) + 1;
1521 if( ALWAYS(ii
<RTREE_CACHE_SZ
) ){
1522 assert( pCur
->aNode
[ii
]==0 );
1523 pCur
->aNode
[ii
] = pCur
->aNode
[0];
1525 nodeRelease(RTREE_OF_CURSOR(pCur
), pCur
->aNode
[0]);
1528 *pNew
= pCur
->sPoint
;
1530 pCur
->sPoint
.rScore
= rScore
;
1531 pCur
->sPoint
.iLevel
= iLevel
;
1533 return &pCur
->sPoint
;
1535 return rtreeEnqueue(pCur
, rScore
, iLevel
);
1540 /* Tracing routines for the RtreeSearchPoint queue */
1541 static void tracePoint(RtreeSearchPoint
*p
, int idx
, RtreeCursor
*pCur
){
1542 if( idx
<0 ){ printf(" s"); }else{ printf("%2d", idx
); }
1543 printf(" %d.%05lld.%02d %g %d",
1544 p
->iLevel
, p
->id
, p
->iCell
, p
->rScore
, p
->eWithin
1547 if( idx
<RTREE_CACHE_SZ
){
1548 printf(" %p\n", pCur
->aNode
[idx
]);
1553 static void traceQueue(RtreeCursor
*pCur
, const char *zPrefix
){
1555 printf("=== %9s ", zPrefix
);
1557 tracePoint(&pCur
->sPoint
, -1, pCur
);
1559 for(ii
=0; ii
<pCur
->nPoint
; ii
++){
1560 if( ii
>0 || pCur
->bPoint
) printf(" ");
1561 tracePoint(&pCur
->aPoint
[ii
], ii
, pCur
);
1564 # define RTREE_QUEUE_TRACE(A,B) traceQueue(A,B)
1566 # define RTREE_QUEUE_TRACE(A,B) /* no-op */
1569 /* Remove the search point with the lowest current score.
1571 static void rtreeSearchPointPop(RtreeCursor
*p
){
1574 assert( i
==0 || i
==1 );
1576 nodeRelease(RTREE_OF_CURSOR(p
), p
->aNode
[i
]);
1580 p
->anQueue
[p
->sPoint
.iLevel
]--;
1582 }else if( ALWAYS(p
->nPoint
) ){
1583 p
->anQueue
[p
->aPoint
[0].iLevel
]--;
1585 p
->aPoint
[0] = p
->aPoint
[n
];
1586 if( n
<RTREE_CACHE_SZ
-1 ){
1587 p
->aNode
[1] = p
->aNode
[n
+1];
1591 while( (j
= i
*2+1)<n
){
1593 if( k
<n
&& rtreeSearchPointCompare(&p
->aPoint
[k
], &p
->aPoint
[j
])<0 ){
1594 if( rtreeSearchPointCompare(&p
->aPoint
[k
], &p
->aPoint
[i
])<0 ){
1595 rtreeSearchPointSwap(p
, i
, k
);
1601 if( rtreeSearchPointCompare(&p
->aPoint
[j
], &p
->aPoint
[i
])<0 ){
1602 rtreeSearchPointSwap(p
, i
, j
);
1614 ** Continue the search on cursor pCur until the front of the queue
1615 ** contains an entry suitable for returning as a result-set row,
1616 ** or until the RtreeSearchPoint queue is empty, indicating that the
1617 ** query has completed.
1619 static int rtreeStepToLeaf(RtreeCursor
*pCur
){
1620 RtreeSearchPoint
*p
;
1621 Rtree
*pRtree
= RTREE_OF_CURSOR(pCur
);
1626 int nConstraint
= pCur
->nConstraint
;
1631 eInt
= pRtree
->eCoordType
==RTREE_COORD_INT32
;
1632 while( (p
= rtreeSearchPointFirst(pCur
))!=0 && p
->iLevel
>0 ){
1634 pNode
= rtreeNodeOfFirstSearchPoint(pCur
, &rc
);
1636 nCell
= NCELL(pNode
);
1637 assert( nCell
<200 );
1638 pCellData
= pNode
->zData
+ (4+pRtree
->nBytesPerCell
*p
->iCell
);
1639 while( p
->iCell
<nCell
){
1640 sqlite3_rtree_dbl rScore
= (sqlite3_rtree_dbl
)-1;
1641 eWithin
= FULLY_WITHIN
;
1642 for(ii
=0; ii
<nConstraint
; ii
++){
1643 RtreeConstraint
*pConstraint
= pCur
->aConstraint
+ ii
;
1644 if( pConstraint
->op
>=RTREE_MATCH
){
1645 rc
= rtreeCallbackConstraint(pConstraint
, eInt
, pCellData
, p
,
1648 }else if( p
->iLevel
==1 ){
1649 rtreeLeafConstraint(pConstraint
, eInt
, pCellData
, &eWithin
);
1651 rtreeNonleafConstraint(pConstraint
, eInt
, pCellData
, &eWithin
);
1653 if( eWithin
==NOT_WITHIN
){
1655 pCellData
+= pRtree
->nBytesPerCell
;
1659 if( eWithin
==NOT_WITHIN
) continue;
1661 x
.iLevel
= p
->iLevel
- 1;
1663 x
.id
= readInt64(pCellData
);
1664 for(ii
=0; ii
<pCur
->nPoint
; ii
++){
1665 if( pCur
->aPoint
[ii
].id
==x
.id
){
1666 RTREE_IS_CORRUPT(pRtree
);
1667 return SQLITE_CORRUPT_VTAB
;
1673 x
.iCell
= p
->iCell
- 1;
1675 if( p
->iCell
>=nCell
){
1676 RTREE_QUEUE_TRACE(pCur
, "POP-S:");
1677 rtreeSearchPointPop(pCur
);
1679 if( rScore
<RTREE_ZERO
) rScore
= RTREE_ZERO
;
1680 p
= rtreeSearchPointNew(pCur
, rScore
, x
.iLevel
);
1681 if( p
==0 ) return SQLITE_NOMEM
;
1682 p
->eWithin
= (u8
)eWithin
;
1685 RTREE_QUEUE_TRACE(pCur
, "PUSH-S:");
1688 if( p
->iCell
>=nCell
){
1689 RTREE_QUEUE_TRACE(pCur
, "POP-Se:");
1690 rtreeSearchPointPop(pCur
);
1698 ** Rtree virtual table module xNext method.
1700 static int rtreeNext(sqlite3_vtab_cursor
*pVtabCursor
){
1701 RtreeCursor
*pCsr
= (RtreeCursor
*)pVtabCursor
;
1704 /* Move to the next entry that matches the configured constraints. */
1705 RTREE_QUEUE_TRACE(pCsr
, "POP-Nx:");
1706 if( pCsr
->bAuxValid
){
1707 pCsr
->bAuxValid
= 0;
1708 sqlite3_reset(pCsr
->pReadAux
);
1710 rtreeSearchPointPop(pCsr
);
1711 rc
= rtreeStepToLeaf(pCsr
);
1716 ** Rtree virtual table module xRowid method.
1718 static int rtreeRowid(sqlite3_vtab_cursor
*pVtabCursor
, sqlite_int64
*pRowid
){
1719 RtreeCursor
*pCsr
= (RtreeCursor
*)pVtabCursor
;
1720 RtreeSearchPoint
*p
= rtreeSearchPointFirst(pCsr
);
1722 RtreeNode
*pNode
= rtreeNodeOfFirstSearchPoint(pCsr
, &rc
);
1723 if( rc
==SQLITE_OK
&& ALWAYS(p
) ){
1724 if( p
->iCell
>=NCELL(pNode
) ){
1727 *pRowid
= nodeGetRowid(RTREE_OF_CURSOR(pCsr
), pNode
, p
->iCell
);
1734 ** Rtree virtual table module xColumn method.
1736 static int rtreeColumn(sqlite3_vtab_cursor
*cur
, sqlite3_context
*ctx
, int i
){
1737 Rtree
*pRtree
= (Rtree
*)cur
->pVtab
;
1738 RtreeCursor
*pCsr
= (RtreeCursor
*)cur
;
1739 RtreeSearchPoint
*p
= rtreeSearchPointFirst(pCsr
);
1742 RtreeNode
*pNode
= rtreeNodeOfFirstSearchPoint(pCsr
, &rc
);
1745 if( NEVER(p
==0) ) return SQLITE_OK
;
1746 if( p
->iCell
>=NCELL(pNode
) ) return SQLITE_ABORT
;
1748 sqlite3_result_int64(ctx
, nodeGetRowid(pRtree
, pNode
, p
->iCell
));
1749 }else if( i
<=pRtree
->nDim2
){
1750 nodeGetCoord(pRtree
, pNode
, p
->iCell
, i
-1, &c
);
1751 #ifndef SQLITE_RTREE_INT_ONLY
1752 if( pRtree
->eCoordType
==RTREE_COORD_REAL32
){
1753 sqlite3_result_double(ctx
, c
.f
);
1757 assert( pRtree
->eCoordType
==RTREE_COORD_INT32
);
1758 sqlite3_result_int(ctx
, c
.i
);
1761 if( !pCsr
->bAuxValid
){
1762 if( pCsr
->pReadAux
==0 ){
1763 rc
= sqlite3_prepare_v3(pRtree
->db
, pRtree
->zReadAuxSql
, -1, 0,
1764 &pCsr
->pReadAux
, 0);
1767 sqlite3_bind_int64(pCsr
->pReadAux
, 1,
1768 nodeGetRowid(pRtree
, pNode
, p
->iCell
));
1769 rc
= sqlite3_step(pCsr
->pReadAux
);
1770 if( rc
==SQLITE_ROW
){
1771 pCsr
->bAuxValid
= 1;
1773 sqlite3_reset(pCsr
->pReadAux
);
1774 if( rc
==SQLITE_DONE
) rc
= SQLITE_OK
;
1778 sqlite3_result_value(ctx
,
1779 sqlite3_column_value(pCsr
->pReadAux
, i
- pRtree
->nDim2
+ 1));
1785 ** Use nodeAcquire() to obtain the leaf node containing the record with
1786 ** rowid iRowid. If successful, set *ppLeaf to point to the node and
1787 ** return SQLITE_OK. If there is no such record in the table, set
1788 ** *ppLeaf to 0 and return SQLITE_OK. If an error occurs, set *ppLeaf
1789 ** to zero and return an SQLite error code.
1791 static int findLeafNode(
1792 Rtree
*pRtree
, /* RTree to search */
1793 i64 iRowid
, /* The rowid searching for */
1794 RtreeNode
**ppLeaf
, /* Write the node here */
1795 sqlite3_int64
*piNode
/* Write the node-id here */
1799 sqlite3_bind_int64(pRtree
->pReadRowid
, 1, iRowid
);
1800 if( sqlite3_step(pRtree
->pReadRowid
)==SQLITE_ROW
){
1801 i64 iNode
= sqlite3_column_int64(pRtree
->pReadRowid
, 0);
1802 if( piNode
) *piNode
= iNode
;
1803 rc
= nodeAcquire(pRtree
, iNode
, 0, ppLeaf
);
1804 sqlite3_reset(pRtree
->pReadRowid
);
1806 rc
= sqlite3_reset(pRtree
->pReadRowid
);
1812 ** This function is called to configure the RtreeConstraint object passed
1813 ** as the second argument for a MATCH constraint. The value passed as the
1814 ** first argument to this function is the right-hand operand to the MATCH
1817 static int deserializeGeometry(sqlite3_value
*pValue
, RtreeConstraint
*pCons
){
1818 RtreeMatchArg
*pBlob
, *pSrc
; /* BLOB returned by geometry function */
1819 sqlite3_rtree_query_info
*pInfo
; /* Callback information */
1821 pSrc
= sqlite3_value_pointer(pValue
, "RtreeMatchArg");
1822 if( pSrc
==0 ) return SQLITE_ERROR
;
1823 pInfo
= (sqlite3_rtree_query_info
*)
1824 sqlite3_malloc64( sizeof(*pInfo
)+pSrc
->iSize
);
1825 if( !pInfo
) return SQLITE_NOMEM
;
1826 memset(pInfo
, 0, sizeof(*pInfo
));
1827 pBlob
= (RtreeMatchArg
*)&pInfo
[1];
1828 memcpy(pBlob
, pSrc
, pSrc
->iSize
);
1829 pInfo
->pContext
= pBlob
->cb
.pContext
;
1830 pInfo
->nParam
= pBlob
->nParam
;
1831 pInfo
->aParam
= pBlob
->aParam
;
1832 pInfo
->apSqlParam
= pBlob
->apSqlParam
;
1834 if( pBlob
->cb
.xGeom
){
1835 pCons
->u
.xGeom
= pBlob
->cb
.xGeom
;
1837 pCons
->op
= RTREE_QUERY
;
1838 pCons
->u
.xQueryFunc
= pBlob
->cb
.xQueryFunc
;
1840 pCons
->pInfo
= pInfo
;
1844 int sqlite3IntFloatCompare(i64
,double);
1847 ** Rtree virtual table module xFilter method.
1849 static int rtreeFilter(
1850 sqlite3_vtab_cursor
*pVtabCursor
,
1851 int idxNum
, const char *idxStr
,
1852 int argc
, sqlite3_value
**argv
1854 Rtree
*pRtree
= (Rtree
*)pVtabCursor
->pVtab
;
1855 RtreeCursor
*pCsr
= (RtreeCursor
*)pVtabCursor
;
1856 RtreeNode
*pRoot
= 0;
1861 rtreeReference(pRtree
);
1863 /* Reset the cursor to the same state as rtreeOpen() leaves it in. */
1866 pCsr
->iStrategy
= idxNum
;
1868 /* Special case - lookup by rowid. */
1869 RtreeNode
*pLeaf
; /* Leaf on which the required cell resides */
1870 RtreeSearchPoint
*p
; /* Search point for the leaf */
1871 i64 iRowid
= sqlite3_value_int64(argv
[0]);
1873 int eType
= sqlite3_value_numeric_type(argv
[0]);
1874 if( eType
==SQLITE_INTEGER
1875 || (eType
==SQLITE_FLOAT
1876 && 0==sqlite3IntFloatCompare(iRowid
,sqlite3_value_double(argv
[0])))
1878 rc
= findLeafNode(pRtree
, iRowid
, &pLeaf
, &iNode
);
1883 if( rc
==SQLITE_OK
&& pLeaf
!=0 ){
1884 p
= rtreeSearchPointNew(pCsr
, RTREE_ZERO
, 0);
1885 assert( p
!=0 ); /* Always returns pCsr->sPoint */
1886 pCsr
->aNode
[0] = pLeaf
;
1888 p
->eWithin
= PARTLY_WITHIN
;
1889 rc
= nodeRowidIndex(pRtree
, pLeaf
, iRowid
, &iCell
);
1890 p
->iCell
= (u8
)iCell
;
1891 RTREE_QUEUE_TRACE(pCsr
, "PUSH-F1:");
1896 /* Normal case - r-tree scan. Set up the RtreeCursor.aConstraint array
1897 ** with the configured constraints.
1899 rc
= nodeAcquire(pRtree
, 1, 0, &pRoot
);
1900 if( rc
==SQLITE_OK
&& argc
>0 ){
1901 pCsr
->aConstraint
= sqlite3_malloc64(sizeof(RtreeConstraint
)*argc
);
1902 pCsr
->nConstraint
= argc
;
1903 if( !pCsr
->aConstraint
){
1906 memset(pCsr
->aConstraint
, 0, sizeof(RtreeConstraint
)*argc
);
1907 memset(pCsr
->anQueue
, 0, sizeof(u32
)*(pRtree
->iDepth
+ 1));
1908 assert( (idxStr
==0 && argc
==0)
1909 || (idxStr
&& (int)strlen(idxStr
)==argc
*2) );
1910 for(ii
=0; ii
<argc
; ii
++){
1911 RtreeConstraint
*p
= &pCsr
->aConstraint
[ii
];
1912 int eType
= sqlite3_value_numeric_type(argv
[ii
]);
1913 p
->op
= idxStr
[ii
*2];
1914 p
->iCoord
= idxStr
[ii
*2+1]-'0';
1915 if( p
->op
>=RTREE_MATCH
){
1916 /* A MATCH operator. The right-hand-side must be a blob that
1917 ** can be cast into an RtreeMatchArg object. One created using
1918 ** an sqlite3_rtree_geometry_callback() SQL user function.
1920 rc
= deserializeGeometry(argv
[ii
], p
);
1921 if( rc
!=SQLITE_OK
){
1924 p
->pInfo
->nCoord
= pRtree
->nDim2
;
1925 p
->pInfo
->anQueue
= pCsr
->anQueue
;
1926 p
->pInfo
->mxLevel
= pRtree
->iDepth
+ 1;
1927 }else if( eType
==SQLITE_INTEGER
){
1928 sqlite3_int64 iVal
= sqlite3_value_int64(argv
[ii
]);
1929 #ifdef SQLITE_RTREE_INT_ONLY
1932 p
->u
.rValue
= (double)iVal
;
1933 if( iVal
>=((sqlite3_int64
)1)<<48
1934 || iVal
<=-(((sqlite3_int64
)1)<<48)
1936 if( p
->op
==RTREE_LT
) p
->op
= RTREE_LE
;
1937 if( p
->op
==RTREE_GT
) p
->op
= RTREE_GE
;
1940 }else if( eType
==SQLITE_FLOAT
){
1941 #ifdef SQLITE_RTREE_INT_ONLY
1942 p
->u
.rValue
= sqlite3_value_int64(argv
[ii
]);
1944 p
->u
.rValue
= sqlite3_value_double(argv
[ii
]);
1947 p
->u
.rValue
= RTREE_ZERO
;
1948 if( eType
==SQLITE_NULL
){
1949 p
->op
= RTREE_FALSE
;
1950 }else if( p
->op
==RTREE_LT
|| p
->op
==RTREE_LE
){
1953 p
->op
= RTREE_FALSE
;
1959 if( rc
==SQLITE_OK
){
1960 RtreeSearchPoint
*pNew
;
1961 assert( pCsr
->bPoint
==0 ); /* Due to the resetCursor() call above */
1962 pNew
= rtreeSearchPointNew(pCsr
, RTREE_ZERO
, (u8
)(pRtree
->iDepth
+1));
1963 if( NEVER(pNew
==0) ){ /* Because pCsr->bPoint was FALSE */
1964 return SQLITE_NOMEM
;
1968 pNew
->eWithin
= PARTLY_WITHIN
;
1969 assert( pCsr
->bPoint
==1 );
1970 pCsr
->aNode
[0] = pRoot
;
1972 RTREE_QUEUE_TRACE(pCsr
, "PUSH-Fm:");
1973 rc
= rtreeStepToLeaf(pCsr
);
1977 nodeRelease(pRtree
, pRoot
);
1978 rtreeRelease(pRtree
);
1983 ** Rtree virtual table module xBestIndex method. There are three
1984 ** table scan strategies to choose from (in order from most to
1985 ** least desirable):
1987 ** idxNum idxStr Strategy
1988 ** ------------------------------------------------
1989 ** 1 Unused Direct lookup by rowid.
1990 ** 2 See below R-tree query or full-table scan.
1991 ** ------------------------------------------------
1993 ** If strategy 1 is used, then idxStr is not meaningful. If strategy
1994 ** 2 is used, idxStr is formatted to contain 2 bytes for each
1995 ** constraint used. The first two bytes of idxStr correspond to
1996 ** the constraint in sqlite3_index_info.aConstraintUsage[] with
1997 ** (argvIndex==1) etc.
1999 ** The first of each pair of bytes in idxStr identifies the constraint
2000 ** operator as follows:
2002 ** Operator Byte Value
2003 ** ----------------------
2010 ** ----------------------
2012 ** The second of each pair of bytes identifies the coordinate column
2013 ** to which the constraint applies. The leftmost coordinate column
2014 ** is 'a', the second from the left 'b' etc.
2016 static int rtreeBestIndex(sqlite3_vtab
*tab
, sqlite3_index_info
*pIdxInfo
){
2017 Rtree
*pRtree
= (Rtree
*)tab
;
2020 int bMatch
= 0; /* True if there exists a MATCH constraint */
2021 i64 nRow
; /* Estimated rows returned by this scan */
2024 char zIdxStr
[RTREE_MAX_DIMENSIONS
*8+1];
2025 memset(zIdxStr
, 0, sizeof(zIdxStr
));
2027 /* Check if there exists a MATCH constraint - even an unusable one. If there
2028 ** is, do not consider the lookup-by-rowid plan as using such a plan would
2029 ** require the VDBE to evaluate the MATCH constraint, which is not currently
2031 for(ii
=0; ii
<pIdxInfo
->nConstraint
; ii
++){
2032 if( pIdxInfo
->aConstraint
[ii
].op
==SQLITE_INDEX_CONSTRAINT_MATCH
){
2037 assert( pIdxInfo
->idxStr
==0 );
2038 for(ii
=0; ii
<pIdxInfo
->nConstraint
&& iIdx
<(int)(sizeof(zIdxStr
)-1); ii
++){
2039 struct sqlite3_index_constraint
*p
= &pIdxInfo
->aConstraint
[ii
];
2041 if( bMatch
==0 && p
->usable
2042 && p
->iColumn
<=0 && p
->op
==SQLITE_INDEX_CONSTRAINT_EQ
2044 /* We have an equality constraint on the rowid. Use strategy 1. */
2046 for(jj
=0; jj
<ii
; jj
++){
2047 pIdxInfo
->aConstraintUsage
[jj
].argvIndex
= 0;
2048 pIdxInfo
->aConstraintUsage
[jj
].omit
= 0;
2050 pIdxInfo
->idxNum
= 1;
2051 pIdxInfo
->aConstraintUsage
[ii
].argvIndex
= 1;
2052 pIdxInfo
->aConstraintUsage
[jj
].omit
= 1;
2054 /* This strategy involves a two rowid lookups on an B-Tree structures
2055 ** and then a linear search of an R-Tree node. This should be
2056 ** considered almost as quick as a direct rowid lookup (for which
2057 ** sqlite uses an internal cost of 0.0). It is expected to return
2060 pIdxInfo
->estimatedCost
= 30.0;
2061 pIdxInfo
->estimatedRows
= 1;
2062 pIdxInfo
->idxFlags
= SQLITE_INDEX_SCAN_UNIQUE
;
2067 && ((p
->iColumn
>0 && p
->iColumn
<=pRtree
->nDim2
)
2068 || p
->op
==SQLITE_INDEX_CONSTRAINT_MATCH
)
2073 case SQLITE_INDEX_CONSTRAINT_EQ
: op
= RTREE_EQ
; doOmit
= 0; break;
2074 case SQLITE_INDEX_CONSTRAINT_GT
: op
= RTREE_GT
; doOmit
= 0; break;
2075 case SQLITE_INDEX_CONSTRAINT_LE
: op
= RTREE_LE
; break;
2076 case SQLITE_INDEX_CONSTRAINT_LT
: op
= RTREE_LT
; doOmit
= 0; break;
2077 case SQLITE_INDEX_CONSTRAINT_GE
: op
= RTREE_GE
; break;
2078 case SQLITE_INDEX_CONSTRAINT_MATCH
: op
= RTREE_MATCH
; break;
2079 default: op
= 0; break;
2082 zIdxStr
[iIdx
++] = op
;
2083 zIdxStr
[iIdx
++] = (char)(p
->iColumn
- 1 + '0');
2084 pIdxInfo
->aConstraintUsage
[ii
].argvIndex
= (iIdx
/2);
2085 pIdxInfo
->aConstraintUsage
[ii
].omit
= doOmit
;
2090 pIdxInfo
->idxNum
= 2;
2091 pIdxInfo
->needToFreeIdxStr
= 1;
2093 pIdxInfo
->idxStr
= sqlite3_malloc( iIdx
+1 );
2094 if( pIdxInfo
->idxStr
==0 ){
2095 return SQLITE_NOMEM
;
2097 memcpy(pIdxInfo
->idxStr
, zIdxStr
, iIdx
+1);
2100 nRow
= pRtree
->nRowEst
>> (iIdx
/2);
2101 pIdxInfo
->estimatedCost
= (double)6.0 * (double)nRow
;
2102 pIdxInfo
->estimatedRows
= nRow
;
2108 ** Return the N-dimensional volumn of the cell stored in *p.
2110 static RtreeDValue
cellArea(Rtree
*pRtree
, RtreeCell
*p
){
2111 RtreeDValue area
= (RtreeDValue
)1;
2112 assert( pRtree
->nDim
>=1 && pRtree
->nDim
<=5 );
2113 #ifndef SQLITE_RTREE_INT_ONLY
2114 if( pRtree
->eCoordType
==RTREE_COORD_REAL32
){
2115 switch( pRtree
->nDim
){
2116 case 5: area
= p
->aCoord
[9].f
- p
->aCoord
[8].f
;
2117 case 4: area
*= p
->aCoord
[7].f
- p
->aCoord
[6].f
;
2118 case 3: area
*= p
->aCoord
[5].f
- p
->aCoord
[4].f
;
2119 case 2: area
*= p
->aCoord
[3].f
- p
->aCoord
[2].f
;
2120 default: area
*= p
->aCoord
[1].f
- p
->aCoord
[0].f
;
2125 switch( pRtree
->nDim
){
2126 case 5: area
= (i64
)p
->aCoord
[9].i
- (i64
)p
->aCoord
[8].i
;
2127 case 4: area
*= (i64
)p
->aCoord
[7].i
- (i64
)p
->aCoord
[6].i
;
2128 case 3: area
*= (i64
)p
->aCoord
[5].i
- (i64
)p
->aCoord
[4].i
;
2129 case 2: area
*= (i64
)p
->aCoord
[3].i
- (i64
)p
->aCoord
[2].i
;
2130 default: area
*= (i64
)p
->aCoord
[1].i
- (i64
)p
->aCoord
[0].i
;
2137 ** Return the margin length of cell p. The margin length is the sum
2138 ** of the objects size in each dimension.
2140 static RtreeDValue
cellMargin(Rtree
*pRtree
, RtreeCell
*p
){
2141 RtreeDValue margin
= 0;
2142 int ii
= pRtree
->nDim2
- 2;
2144 margin
+= (DCOORD(p
->aCoord
[ii
+1]) - DCOORD(p
->aCoord
[ii
]));
2151 ** Store the union of cells p1 and p2 in p1.
2153 static void cellUnion(Rtree
*pRtree
, RtreeCell
*p1
, RtreeCell
*p2
){
2155 if( pRtree
->eCoordType
==RTREE_COORD_REAL32
){
2157 p1
->aCoord
[ii
].f
= MIN(p1
->aCoord
[ii
].f
, p2
->aCoord
[ii
].f
);
2158 p1
->aCoord
[ii
+1].f
= MAX(p1
->aCoord
[ii
+1].f
, p2
->aCoord
[ii
+1].f
);
2160 }while( ii
<pRtree
->nDim2
);
2163 p1
->aCoord
[ii
].i
= MIN(p1
->aCoord
[ii
].i
, p2
->aCoord
[ii
].i
);
2164 p1
->aCoord
[ii
+1].i
= MAX(p1
->aCoord
[ii
+1].i
, p2
->aCoord
[ii
+1].i
);
2166 }while( ii
<pRtree
->nDim2
);
2171 ** Return true if the area covered by p2 is a subset of the area covered
2172 ** by p1. False otherwise.
2174 static int cellContains(Rtree
*pRtree
, RtreeCell
*p1
, RtreeCell
*p2
){
2176 if( pRtree
->eCoordType
==RTREE_COORD_INT32
){
2177 for(ii
=0; ii
<pRtree
->nDim2
; ii
+=2){
2178 RtreeCoord
*a1
= &p1
->aCoord
[ii
];
2179 RtreeCoord
*a2
= &p2
->aCoord
[ii
];
2180 if( a2
[0].i
<a1
[0].i
|| a2
[1].i
>a1
[1].i
) return 0;
2183 for(ii
=0; ii
<pRtree
->nDim2
; ii
+=2){
2184 RtreeCoord
*a1
= &p1
->aCoord
[ii
];
2185 RtreeCoord
*a2
= &p2
->aCoord
[ii
];
2186 if( a2
[0].f
<a1
[0].f
|| a2
[1].f
>a1
[1].f
) return 0;
2192 static RtreeDValue
cellOverlap(
2199 RtreeDValue overlap
= RTREE_ZERO
;
2200 for(ii
=0; ii
<nCell
; ii
++){
2202 RtreeDValue o
= (RtreeDValue
)1;
2203 for(jj
=0; jj
<pRtree
->nDim2
; jj
+=2){
2205 x1
= MAX(DCOORD(p
->aCoord
[jj
]), DCOORD(aCell
[ii
].aCoord
[jj
]));
2206 x2
= MIN(DCOORD(p
->aCoord
[jj
+1]), DCOORD(aCell
[ii
].aCoord
[jj
+1]));
2221 ** This function implements the ChooseLeaf algorithm from Gutman[84].
2222 ** ChooseSubTree in r*tree terminology.
2224 static int ChooseLeaf(
2225 Rtree
*pRtree
, /* Rtree table */
2226 RtreeCell
*pCell
, /* Cell to insert into rtree */
2227 int iHeight
, /* Height of sub-tree rooted at pCell */
2228 RtreeNode
**ppLeaf
/* OUT: Selected leaf page */
2232 RtreeNode
*pNode
= 0;
2233 rc
= nodeAcquire(pRtree
, 1, 0, &pNode
);
2235 for(ii
=0; rc
==SQLITE_OK
&& ii
<(pRtree
->iDepth
-iHeight
); ii
++){
2237 sqlite3_int64 iBest
= 0;
2239 RtreeDValue fMinGrowth
= RTREE_ZERO
;
2240 RtreeDValue fMinArea
= RTREE_ZERO
;
2241 int nCell
= NCELL(pNode
);
2242 RtreeNode
*pChild
= 0;
2244 /* First check to see if there is are any cells in pNode that completely
2245 ** contains pCell. If two or more cells in pNode completely contain pCell
2246 ** then pick the smallest.
2248 for(iCell
=0; iCell
<nCell
; iCell
++){
2250 nodeGetCell(pRtree
, pNode
, iCell
, &cell
);
2251 if( cellContains(pRtree
, &cell
, pCell
) ){
2252 RtreeDValue area
= cellArea(pRtree
, &cell
);
2253 if( bFound
==0 || area
<fMinArea
){
2254 iBest
= cell
.iRowid
;
2261 /* No cells of pNode will completely contain pCell. So pick the
2262 ** cell of pNode that grows by the least amount when pCell is added.
2263 ** Break ties by selecting the smaller cell.
2265 for(iCell
=0; iCell
<nCell
; iCell
++){
2269 nodeGetCell(pRtree
, pNode
, iCell
, &cell
);
2270 area
= cellArea(pRtree
, &cell
);
2271 cellUnion(pRtree
, &cell
, pCell
);
2272 growth
= cellArea(pRtree
, &cell
)-area
;
2274 || growth
<fMinGrowth
2275 || (growth
==fMinGrowth
&& area
<fMinArea
)
2277 fMinGrowth
= growth
;
2279 iBest
= cell
.iRowid
;
2284 rc
= nodeAcquire(pRtree
, iBest
, pNode
, &pChild
);
2285 nodeRelease(pRtree
, pNode
);
2294 ** A cell with the same content as pCell has just been inserted into
2295 ** the node pNode. This function updates the bounding box cells in
2296 ** all ancestor elements.
2298 static int AdjustTree(
2299 Rtree
*pRtree
, /* Rtree table */
2300 RtreeNode
*pNode
, /* Adjust ancestry of this node. */
2301 RtreeCell
*pCell
/* This cell was just inserted */
2303 RtreeNode
*p
= pNode
;
2306 while( p
->pParent
){
2307 RtreeNode
*pParent
= p
->pParent
;
2312 if( NEVER(cnt
>100) ){
2313 RTREE_IS_CORRUPT(pRtree
);
2314 return SQLITE_CORRUPT_VTAB
;
2316 rc
= nodeParentIndex(pRtree
, p
, &iCell
);
2317 if( NEVER(rc
!=SQLITE_OK
) ){
2318 RTREE_IS_CORRUPT(pRtree
);
2319 return SQLITE_CORRUPT_VTAB
;
2322 nodeGetCell(pRtree
, pParent
, iCell
, &cell
);
2323 if( !cellContains(pRtree
, &cell
, pCell
) ){
2324 cellUnion(pRtree
, &cell
, pCell
);
2325 nodeOverwriteCell(pRtree
, pParent
, &cell
, iCell
);
2334 ** Write mapping (iRowid->iNode) to the <rtree>_rowid table.
2336 static int rowidWrite(Rtree
*pRtree
, sqlite3_int64 iRowid
, sqlite3_int64 iNode
){
2337 sqlite3_bind_int64(pRtree
->pWriteRowid
, 1, iRowid
);
2338 sqlite3_bind_int64(pRtree
->pWriteRowid
, 2, iNode
);
2339 sqlite3_step(pRtree
->pWriteRowid
);
2340 return sqlite3_reset(pRtree
->pWriteRowid
);
2344 ** Write mapping (iNode->iPar) to the <rtree>_parent table.
2346 static int parentWrite(Rtree
*pRtree
, sqlite3_int64 iNode
, sqlite3_int64 iPar
){
2347 sqlite3_bind_int64(pRtree
->pWriteParent
, 1, iNode
);
2348 sqlite3_bind_int64(pRtree
->pWriteParent
, 2, iPar
);
2349 sqlite3_step(pRtree
->pWriteParent
);
2350 return sqlite3_reset(pRtree
->pWriteParent
);
2353 static int rtreeInsertCell(Rtree
*, RtreeNode
*, RtreeCell
*, int);
2358 ** Arguments aIdx, aCell and aSpare all point to arrays of size
2359 ** nIdx. The aIdx array contains the set of integers from 0 to
2360 ** (nIdx-1) in no particular order. This function sorts the values
2361 ** in aIdx according to dimension iDim of the cells in aCell. The
2362 ** minimum value of dimension iDim is considered first, the
2363 ** maximum used to break ties.
2365 ** The aSpare array is used as temporary working space by the
2366 ** sorting algorithm.
2368 static void SortByDimension(
2382 int nRight
= nIdx
-nLeft
;
2384 int *aRight
= &aIdx
[nLeft
];
2386 SortByDimension(pRtree
, aLeft
, nLeft
, iDim
, aCell
, aSpare
);
2387 SortByDimension(pRtree
, aRight
, nRight
, iDim
, aCell
, aSpare
);
2389 memcpy(aSpare
, aLeft
, sizeof(int)*nLeft
);
2391 while( iLeft
<nLeft
|| iRight
<nRight
){
2392 RtreeDValue xleft1
= DCOORD(aCell
[aLeft
[iLeft
]].aCoord
[iDim
*2]);
2393 RtreeDValue xleft2
= DCOORD(aCell
[aLeft
[iLeft
]].aCoord
[iDim
*2+1]);
2394 RtreeDValue xright1
= DCOORD(aCell
[aRight
[iRight
]].aCoord
[iDim
*2]);
2395 RtreeDValue xright2
= DCOORD(aCell
[aRight
[iRight
]].aCoord
[iDim
*2+1]);
2396 if( (iLeft
!=nLeft
) && ((iRight
==nRight
)
2398 || (xleft1
==xright1
&& xleft2
<xright2
)
2400 aIdx
[iLeft
+iRight
] = aLeft
[iLeft
];
2403 aIdx
[iLeft
+iRight
] = aRight
[iRight
];
2409 /* Check that the sort worked */
2412 for(jj
=1; jj
<nIdx
; jj
++){
2413 RtreeDValue xleft1
= aCell
[aIdx
[jj
-1]].aCoord
[iDim
*2];
2414 RtreeDValue xleft2
= aCell
[aIdx
[jj
-1]].aCoord
[iDim
*2+1];
2415 RtreeDValue xright1
= aCell
[aIdx
[jj
]].aCoord
[iDim
*2];
2416 RtreeDValue xright2
= aCell
[aIdx
[jj
]].aCoord
[iDim
*2+1];
2417 assert( xleft1
<=xright1
&& (xleft1
<xright1
|| xleft2
<=xright2
) );
2425 ** Implementation of the R*-tree variant of SplitNode from Beckman[1990].
2427 static int splitNodeStartree(
2433 RtreeCell
*pBboxLeft
,
2434 RtreeCell
*pBboxRight
2442 RtreeDValue fBestMargin
= RTREE_ZERO
;
2444 sqlite3_int64 nByte
= (pRtree
->nDim
+1)*(sizeof(int*)+nCell
*sizeof(int));
2446 aaSorted
= (int **)sqlite3_malloc64(nByte
);
2448 return SQLITE_NOMEM
;
2451 aSpare
= &((int *)&aaSorted
[pRtree
->nDim
])[pRtree
->nDim
*nCell
];
2452 memset(aaSorted
, 0, nByte
);
2453 for(ii
=0; ii
<pRtree
->nDim
; ii
++){
2455 aaSorted
[ii
] = &((int *)&aaSorted
[pRtree
->nDim
])[ii
*nCell
];
2456 for(jj
=0; jj
<nCell
; jj
++){
2457 aaSorted
[ii
][jj
] = jj
;
2459 SortByDimension(pRtree
, aaSorted
[ii
], nCell
, ii
, aCell
, aSpare
);
2462 for(ii
=0; ii
<pRtree
->nDim
; ii
++){
2463 RtreeDValue margin
= RTREE_ZERO
;
2464 RtreeDValue fBestOverlap
= RTREE_ZERO
;
2465 RtreeDValue fBestArea
= RTREE_ZERO
;
2470 nLeft
=RTREE_MINCELLS(pRtree
);
2471 nLeft
<=(nCell
-RTREE_MINCELLS(pRtree
));
2477 RtreeDValue overlap
;
2480 memcpy(&left
, &aCell
[aaSorted
[ii
][0]], sizeof(RtreeCell
));
2481 memcpy(&right
, &aCell
[aaSorted
[ii
][nCell
-1]], sizeof(RtreeCell
));
2482 for(kk
=1; kk
<(nCell
-1); kk
++){
2484 cellUnion(pRtree
, &left
, &aCell
[aaSorted
[ii
][kk
]]);
2486 cellUnion(pRtree
, &right
, &aCell
[aaSorted
[ii
][kk
]]);
2489 margin
+= cellMargin(pRtree
, &left
);
2490 margin
+= cellMargin(pRtree
, &right
);
2491 overlap
= cellOverlap(pRtree
, &left
, &right
, 1);
2492 area
= cellArea(pRtree
, &left
) + cellArea(pRtree
, &right
);
2493 if( (nLeft
==RTREE_MINCELLS(pRtree
))
2494 || (overlap
<fBestOverlap
)
2495 || (overlap
==fBestOverlap
&& area
<fBestArea
)
2498 fBestOverlap
= overlap
;
2503 if( ii
==0 || margin
<fBestMargin
){
2505 fBestMargin
= margin
;
2506 iBestSplit
= iBestLeft
;
2510 memcpy(pBboxLeft
, &aCell
[aaSorted
[iBestDim
][0]], sizeof(RtreeCell
));
2511 memcpy(pBboxRight
, &aCell
[aaSorted
[iBestDim
][iBestSplit
]], sizeof(RtreeCell
));
2512 for(ii
=0; ii
<nCell
; ii
++){
2513 RtreeNode
*pTarget
= (ii
<iBestSplit
)?pLeft
:pRight
;
2514 RtreeCell
*pBbox
= (ii
<iBestSplit
)?pBboxLeft
:pBboxRight
;
2515 RtreeCell
*pCell
= &aCell
[aaSorted
[iBestDim
][ii
]];
2516 nodeInsertCell(pRtree
, pTarget
, pCell
);
2517 cellUnion(pRtree
, pBbox
, pCell
);
2520 sqlite3_free(aaSorted
);
2525 static int updateMapping(
2531 int (*xSetMapping
)(Rtree
*, sqlite3_int64
, sqlite3_int64
);
2532 xSetMapping
= ((iHeight
==0)?rowidWrite
:parentWrite
);
2534 RtreeNode
*pChild
= nodeHashLookup(pRtree
, iRowid
);
2536 for(p
=pNode
; p
; p
=p
->pParent
){
2537 if( p
==pChild
) return SQLITE_CORRUPT_VTAB
;
2540 nodeRelease(pRtree
, pChild
->pParent
);
2541 nodeReference(pNode
);
2542 pChild
->pParent
= pNode
;
2545 if( NEVER(pNode
==0) ) return SQLITE_ERROR
;
2546 return xSetMapping(pRtree
, iRowid
, pNode
->iNode
);
2549 static int SplitNode(
2556 int newCellIsRight
= 0;
2559 int nCell
= NCELL(pNode
);
2563 RtreeNode
*pLeft
= 0;
2564 RtreeNode
*pRight
= 0;
2567 RtreeCell rightbbox
;
2569 /* Allocate an array and populate it with a copy of pCell and
2570 ** all cells from node pLeft. Then zero the original node.
2572 aCell
= sqlite3_malloc64((sizeof(RtreeCell
)+sizeof(int))*(nCell
+1));
2577 aiUsed
= (int *)&aCell
[nCell
+1];
2578 memset(aiUsed
, 0, sizeof(int)*(nCell
+1));
2579 for(i
=0; i
<nCell
; i
++){
2580 nodeGetCell(pRtree
, pNode
, i
, &aCell
[i
]);
2582 nodeZero(pRtree
, pNode
);
2583 memcpy(&aCell
[nCell
], pCell
, sizeof(RtreeCell
));
2586 if( pNode
->iNode
==1 ){
2587 pRight
= nodeNew(pRtree
, pNode
);
2588 pLeft
= nodeNew(pRtree
, pNode
);
2591 writeInt16(pNode
->zData
, pRtree
->iDepth
);
2594 pRight
= nodeNew(pRtree
, pLeft
->pParent
);
2598 if( !pLeft
|| !pRight
){
2603 memset(pLeft
->zData
, 0, pRtree
->iNodeSize
);
2604 memset(pRight
->zData
, 0, pRtree
->iNodeSize
);
2606 rc
= splitNodeStartree(pRtree
, aCell
, nCell
, pLeft
, pRight
,
2607 &leftbbox
, &rightbbox
);
2608 if( rc
!=SQLITE_OK
){
2612 /* Ensure both child nodes have node numbers assigned to them by calling
2613 ** nodeWrite(). Node pRight always needs a node number, as it was created
2614 ** by nodeNew() above. But node pLeft sometimes already has a node number.
2615 ** In this case avoid the all to nodeWrite().
2617 if( SQLITE_OK
!=(rc
= nodeWrite(pRtree
, pRight
))
2618 || (0==pLeft
->iNode
&& SQLITE_OK
!=(rc
= nodeWrite(pRtree
, pLeft
)))
2623 rightbbox
.iRowid
= pRight
->iNode
;
2624 leftbbox
.iRowid
= pLeft
->iNode
;
2626 if( pNode
->iNode
==1 ){
2627 rc
= rtreeInsertCell(pRtree
, pLeft
->pParent
, &leftbbox
, iHeight
+1);
2628 if( rc
!=SQLITE_OK
){
2632 RtreeNode
*pParent
= pLeft
->pParent
;
2634 rc
= nodeParentIndex(pRtree
, pLeft
, &iCell
);
2635 if( ALWAYS(rc
==SQLITE_OK
) ){
2636 nodeOverwriteCell(pRtree
, pParent
, &leftbbox
, iCell
);
2637 rc
= AdjustTree(pRtree
, pParent
, &leftbbox
);
2638 assert( rc
==SQLITE_OK
);
2640 if( NEVER(rc
!=SQLITE_OK
) ){
2644 if( (rc
= rtreeInsertCell(pRtree
, pRight
->pParent
, &rightbbox
, iHeight
+1)) ){
2648 for(i
=0; i
<NCELL(pRight
); i
++){
2649 i64 iRowid
= nodeGetRowid(pRtree
, pRight
, i
);
2650 rc
= updateMapping(pRtree
, iRowid
, pRight
, iHeight
);
2651 if( iRowid
==pCell
->iRowid
){
2654 if( rc
!=SQLITE_OK
){
2658 if( pNode
->iNode
==1 ){
2659 for(i
=0; i
<NCELL(pLeft
); i
++){
2660 i64 iRowid
= nodeGetRowid(pRtree
, pLeft
, i
);
2661 rc
= updateMapping(pRtree
, iRowid
, pLeft
, iHeight
);
2662 if( rc
!=SQLITE_OK
){
2666 }else if( newCellIsRight
==0 ){
2667 rc
= updateMapping(pRtree
, pCell
->iRowid
, pLeft
, iHeight
);
2670 if( rc
==SQLITE_OK
){
2671 rc
= nodeRelease(pRtree
, pRight
);
2674 if( rc
==SQLITE_OK
){
2675 rc
= nodeRelease(pRtree
, pLeft
);
2680 nodeRelease(pRtree
, pRight
);
2681 nodeRelease(pRtree
, pLeft
);
2682 sqlite3_free(aCell
);
2687 ** If node pLeaf is not the root of the r-tree and its pParent pointer is
2688 ** still NULL, load all ancestor nodes of pLeaf into memory and populate
2689 ** the pLeaf->pParent chain all the way up to the root node.
2691 ** This operation is required when a row is deleted (or updated - an update
2692 ** is implemented as a delete followed by an insert). SQLite provides the
2693 ** rowid of the row to delete, which can be used to find the leaf on which
2694 ** the entry resides (argument pLeaf). Once the leaf is located, this
2695 ** function is called to determine its ancestry.
2697 static int fixLeafParent(Rtree
*pRtree
, RtreeNode
*pLeaf
){
2699 RtreeNode
*pChild
= pLeaf
;
2700 while( rc
==SQLITE_OK
&& pChild
->iNode
!=1 && pChild
->pParent
==0 ){
2701 int rc2
= SQLITE_OK
; /* sqlite3_reset() return code */
2702 sqlite3_bind_int64(pRtree
->pReadParent
, 1, pChild
->iNode
);
2703 rc
= sqlite3_step(pRtree
->pReadParent
);
2704 if( rc
==SQLITE_ROW
){
2705 RtreeNode
*pTest
; /* Used to test for reference loops */
2706 i64 iNode
; /* Node number of parent node */
2708 /* Before setting pChild->pParent, test that we are not creating a
2709 ** loop of references (as we would if, say, pChild==pParent). We don't
2710 ** want to do this as it leads to a memory leak when trying to delete
2711 ** the referenced counted node structures.
2713 iNode
= sqlite3_column_int64(pRtree
->pReadParent
, 0);
2714 for(pTest
=pLeaf
; pTest
&& pTest
->iNode
!=iNode
; pTest
=pTest
->pParent
);
2716 rc2
= nodeAcquire(pRtree
, iNode
, 0, &pChild
->pParent
);
2719 rc
= sqlite3_reset(pRtree
->pReadParent
);
2720 if( rc
==SQLITE_OK
) rc
= rc2
;
2721 if( rc
==SQLITE_OK
&& !pChild
->pParent
){
2722 RTREE_IS_CORRUPT(pRtree
);
2723 rc
= SQLITE_CORRUPT_VTAB
;
2725 pChild
= pChild
->pParent
;
2730 static int deleteCell(Rtree
*, RtreeNode
*, int, int);
2732 static int removeNode(Rtree
*pRtree
, RtreeNode
*pNode
, int iHeight
){
2735 RtreeNode
*pParent
= 0;
2738 assert( pNode
->nRef
==1 );
2740 /* Remove the entry in the parent cell. */
2741 rc
= nodeParentIndex(pRtree
, pNode
, &iCell
);
2742 if( rc
==SQLITE_OK
){
2743 pParent
= pNode
->pParent
;
2745 rc
= deleteCell(pRtree
, pParent
, iCell
, iHeight
+1);
2746 testcase( rc
!=SQLITE_OK
);
2748 rc2
= nodeRelease(pRtree
, pParent
);
2749 if( rc
==SQLITE_OK
){
2752 if( rc
!=SQLITE_OK
){
2756 /* Remove the xxx_node entry. */
2757 sqlite3_bind_int64(pRtree
->pDeleteNode
, 1, pNode
->iNode
);
2758 sqlite3_step(pRtree
->pDeleteNode
);
2759 if( SQLITE_OK
!=(rc
= sqlite3_reset(pRtree
->pDeleteNode
)) ){
2763 /* Remove the xxx_parent entry. */
2764 sqlite3_bind_int64(pRtree
->pDeleteParent
, 1, pNode
->iNode
);
2765 sqlite3_step(pRtree
->pDeleteParent
);
2766 if( SQLITE_OK
!=(rc
= sqlite3_reset(pRtree
->pDeleteParent
)) ){
2770 /* Remove the node from the in-memory hash table and link it into
2771 ** the Rtree.pDeleted list. Its contents will be re-inserted later on.
2773 nodeHashDelete(pRtree
, pNode
);
2774 pNode
->iNode
= iHeight
;
2775 pNode
->pNext
= pRtree
->pDeleted
;
2777 pRtree
->pDeleted
= pNode
;
2782 static int fixBoundingBox(Rtree
*pRtree
, RtreeNode
*pNode
){
2783 RtreeNode
*pParent
= pNode
->pParent
;
2787 int nCell
= NCELL(pNode
);
2788 RtreeCell box
; /* Bounding box for pNode */
2789 nodeGetCell(pRtree
, pNode
, 0, &box
);
2790 for(ii
=1; ii
<nCell
; ii
++){
2792 nodeGetCell(pRtree
, pNode
, ii
, &cell
);
2793 cellUnion(pRtree
, &box
, &cell
);
2795 box
.iRowid
= pNode
->iNode
;
2796 rc
= nodeParentIndex(pRtree
, pNode
, &ii
);
2797 if( rc
==SQLITE_OK
){
2798 nodeOverwriteCell(pRtree
, pParent
, &box
, ii
);
2799 rc
= fixBoundingBox(pRtree
, pParent
);
2806 ** Delete the cell at index iCell of node pNode. After removing the
2807 ** cell, adjust the r-tree data structure if required.
2809 static int deleteCell(Rtree
*pRtree
, RtreeNode
*pNode
, int iCell
, int iHeight
){
2813 if( SQLITE_OK
!=(rc
= fixLeafParent(pRtree
, pNode
)) ){
2817 /* Remove the cell from the node. This call just moves bytes around
2818 ** the in-memory node image, so it cannot fail.
2820 nodeDeleteCell(pRtree
, pNode
, iCell
);
2822 /* If the node is not the tree root and now has less than the minimum
2823 ** number of cells, remove it from the tree. Otherwise, update the
2824 ** cell in the parent node so that it tightly contains the updated
2827 pParent
= pNode
->pParent
;
2828 assert( pParent
|| pNode
->iNode
==1 );
2830 if( NCELL(pNode
)<RTREE_MINCELLS(pRtree
) ){
2831 rc
= removeNode(pRtree
, pNode
, iHeight
);
2833 rc
= fixBoundingBox(pRtree
, pNode
);
2841 ** Insert cell pCell into node pNode. Node pNode is the head of a
2842 ** subtree iHeight high (leaf nodes have iHeight==0).
2844 static int rtreeInsertCell(
2852 RtreeNode
*pChild
= nodeHashLookup(pRtree
, pCell
->iRowid
);
2854 nodeRelease(pRtree
, pChild
->pParent
);
2855 nodeReference(pNode
);
2856 pChild
->pParent
= pNode
;
2859 if( nodeInsertCell(pRtree
, pNode
, pCell
) ){
2860 rc
= SplitNode(pRtree
, pNode
, pCell
, iHeight
);
2862 rc
= AdjustTree(pRtree
, pNode
, pCell
);
2863 if( ALWAYS(rc
==SQLITE_OK
) ){
2865 rc
= rowidWrite(pRtree
, pCell
->iRowid
, pNode
->iNode
);
2867 rc
= parentWrite(pRtree
, pCell
->iRowid
, pNode
->iNode
);
2874 static int reinsertNodeContent(Rtree
*pRtree
, RtreeNode
*pNode
){
2877 int nCell
= NCELL(pNode
);
2879 for(ii
=0; rc
==SQLITE_OK
&& ii
<nCell
; ii
++){
2882 nodeGetCell(pRtree
, pNode
, ii
, &cell
);
2884 /* Find a node to store this cell in. pNode->iNode currently contains
2885 ** the height of the sub-tree headed by the cell.
2887 rc
= ChooseLeaf(pRtree
, &cell
, (int)pNode
->iNode
, &pInsert
);
2888 if( rc
==SQLITE_OK
){
2890 rc
= rtreeInsertCell(pRtree
, pInsert
, &cell
, (int)pNode
->iNode
);
2891 rc2
= nodeRelease(pRtree
, pInsert
);
2892 if( rc
==SQLITE_OK
){
2901 ** Select a currently unused rowid for a new r-tree record.
2903 static int rtreeNewRowid(Rtree
*pRtree
, i64
*piRowid
){
2905 sqlite3_bind_null(pRtree
->pWriteRowid
, 1);
2906 sqlite3_bind_null(pRtree
->pWriteRowid
, 2);
2907 sqlite3_step(pRtree
->pWriteRowid
);
2908 rc
= sqlite3_reset(pRtree
->pWriteRowid
);
2909 *piRowid
= sqlite3_last_insert_rowid(pRtree
->db
);
2914 ** Remove the entry with rowid=iDelete from the r-tree structure.
2916 static int rtreeDeleteRowid(Rtree
*pRtree
, sqlite3_int64 iDelete
){
2917 int rc
; /* Return code */
2918 RtreeNode
*pLeaf
= 0; /* Leaf node containing record iDelete */
2919 int iCell
; /* Index of iDelete cell in pLeaf */
2920 RtreeNode
*pRoot
= 0; /* Root node of rtree structure */
2923 /* Obtain a reference to the root node to initialize Rtree.iDepth */
2924 rc
= nodeAcquire(pRtree
, 1, 0, &pRoot
);
2926 /* Obtain a reference to the leaf node that contains the entry
2927 ** about to be deleted.
2929 if( rc
==SQLITE_OK
){
2930 rc
= findLeafNode(pRtree
, iDelete
, &pLeaf
, 0);
2934 assert( pLeaf
!=0 || rc
!=SQLITE_OK
|| CORRUPT_DB
);
2937 /* Delete the cell in question from the leaf node. */
2938 if( rc
==SQLITE_OK
&& pLeaf
){
2940 rc
= nodeRowidIndex(pRtree
, pLeaf
, iDelete
, &iCell
);
2941 if( rc
==SQLITE_OK
){
2942 rc
= deleteCell(pRtree
, pLeaf
, iCell
, 0);
2944 rc2
= nodeRelease(pRtree
, pLeaf
);
2945 if( rc
==SQLITE_OK
){
2950 /* Delete the corresponding entry in the <rtree>_rowid table. */
2951 if( rc
==SQLITE_OK
){
2952 sqlite3_bind_int64(pRtree
->pDeleteRowid
, 1, iDelete
);
2953 sqlite3_step(pRtree
->pDeleteRowid
);
2954 rc
= sqlite3_reset(pRtree
->pDeleteRowid
);
2957 /* Check if the root node now has exactly one child. If so, remove
2958 ** it, schedule the contents of the child for reinsertion and
2959 ** reduce the tree height by one.
2961 ** This is equivalent to copying the contents of the child into
2962 ** the root node (the operation that Gutman's paper says to perform
2963 ** in this scenario).
2965 if( rc
==SQLITE_OK
&& pRtree
->iDepth
>0 && NCELL(pRoot
)==1 ){
2967 RtreeNode
*pChild
= 0;
2968 i64 iChild
= nodeGetRowid(pRtree
, pRoot
, 0);
2969 rc
= nodeAcquire(pRtree
, iChild
, pRoot
, &pChild
); /* tag-20210916a */
2970 if( rc
==SQLITE_OK
){
2971 rc
= removeNode(pRtree
, pChild
, pRtree
->iDepth
-1);
2973 rc2
= nodeRelease(pRtree
, pChild
);
2974 if( rc
==SQLITE_OK
) rc
= rc2
;
2975 if( rc
==SQLITE_OK
){
2977 writeInt16(pRoot
->zData
, pRtree
->iDepth
);
2982 /* Re-insert the contents of any underfull nodes removed from the tree. */
2983 for(pLeaf
=pRtree
->pDeleted
; pLeaf
; pLeaf
=pRtree
->pDeleted
){
2984 if( rc
==SQLITE_OK
){
2985 rc
= reinsertNodeContent(pRtree
, pLeaf
);
2987 pRtree
->pDeleted
= pLeaf
->pNext
;
2989 sqlite3_free(pLeaf
);
2992 /* Release the reference to the root node. */
2993 if( rc
==SQLITE_OK
){
2994 rc
= nodeRelease(pRtree
, pRoot
);
2996 nodeRelease(pRtree
, pRoot
);
3003 ** Rounding constants for float->double conversion.
3005 #define RNDTOWARDS (1.0 - 1.0/8388608.0) /* Round towards zero */
3006 #define RNDAWAY (1.0 + 1.0/8388608.0) /* Round away from zero */
3008 #if !defined(SQLITE_RTREE_INT_ONLY)
3010 ** Convert an sqlite3_value into an RtreeValue (presumably a float)
3011 ** while taking care to round toward negative or positive, respectively.
3013 static RtreeValue
rtreeValueDown(sqlite3_value
*v
){
3014 double d
= sqlite3_value_double(v
);
3017 f
= (float)(d
*(d
<0 ? RNDAWAY
: RNDTOWARDS
));
3021 static RtreeValue
rtreeValueUp(sqlite3_value
*v
){
3022 double d
= sqlite3_value_double(v
);
3025 f
= (float)(d
*(d
<0 ? RNDTOWARDS
: RNDAWAY
));
3029 #endif /* !defined(SQLITE_RTREE_INT_ONLY) */
3032 ** A constraint has failed while inserting a row into an rtree table.
3033 ** Assuming no OOM error occurs, this function sets the error message
3034 ** (at pRtree->base.zErrMsg) to an appropriate value and returns
3035 ** SQLITE_CONSTRAINT.
3037 ** Parameter iCol is the index of the leftmost column involved in the
3038 ** constraint failure. If it is 0, then the constraint that failed is
3039 ** the unique constraint on the id column. Otherwise, it is the rtree
3040 ** (c1<=c2) constraint on columns iCol and iCol+1 that has failed.
3042 ** If an OOM occurs, SQLITE_NOMEM is returned instead of SQLITE_CONSTRAINT.
3044 static int rtreeConstraintError(Rtree
*pRtree
, int iCol
){
3045 sqlite3_stmt
*pStmt
= 0;
3049 assert( iCol
==0 || iCol
%2 );
3050 zSql
= sqlite3_mprintf("SELECT * FROM %Q.%Q", pRtree
->zDb
, pRtree
->zName
);
3052 rc
= sqlite3_prepare_v2(pRtree
->db
, zSql
, -1, &pStmt
, 0);
3058 if( rc
==SQLITE_OK
){
3060 const char *zCol
= sqlite3_column_name(pStmt
, 0);
3061 pRtree
->base
.zErrMsg
= sqlite3_mprintf(
3062 "UNIQUE constraint failed: %s.%s", pRtree
->zName
, zCol
3065 const char *zCol1
= sqlite3_column_name(pStmt
, iCol
);
3066 const char *zCol2
= sqlite3_column_name(pStmt
, iCol
+1);
3067 pRtree
->base
.zErrMsg
= sqlite3_mprintf(
3068 "rtree constraint failed: %s.(%s<=%s)", pRtree
->zName
, zCol1
, zCol2
3073 sqlite3_finalize(pStmt
);
3074 return (rc
==SQLITE_OK
? SQLITE_CONSTRAINT
: rc
);
3080 ** The xUpdate method for rtree module virtual tables.
3082 static int rtreeUpdate(
3083 sqlite3_vtab
*pVtab
,
3085 sqlite3_value
**aData
,
3086 sqlite_int64
*pRowid
3088 Rtree
*pRtree
= (Rtree
*)pVtab
;
3090 RtreeCell cell
; /* New cell to insert if nData>1 */
3091 int bHaveRowid
= 0; /* Set to 1 after new rowid is determined */
3093 if( pRtree
->nNodeRef
){
3094 /* Unable to write to the btree while another cursor is reading from it,
3095 ** since the write might do a rebalance which would disrupt the read
3097 return SQLITE_LOCKED_VTAB
;
3099 rtreeReference(pRtree
);
3102 memset(&cell
, 0, sizeof(cell
));
3104 /* Constraint handling. A write operation on an r-tree table may return
3105 ** SQLITE_CONSTRAINT for two reasons:
3107 ** 1. A duplicate rowid value, or
3108 ** 2. The supplied data violates the "x2>=x1" constraint.
3110 ** In the first case, if the conflict-handling mode is REPLACE, then
3111 ** the conflicting row can be removed before proceeding. In the second
3112 ** case, SQLITE_CONSTRAINT must be returned regardless of the
3113 ** conflict-handling mode specified by the user.
3119 if( nn
> pRtree
->nDim2
) nn
= pRtree
->nDim2
;
3120 /* Populate the cell.aCoord[] array. The first coordinate is aData[3].
3122 ** NB: nData can only be less than nDim*2+3 if the rtree is mis-declared
3123 ** with "column" that are interpreted as table constraints.
3124 ** Example: CREATE VIRTUAL TABLE bad USING rtree(x,y,CHECK(y>5));
3125 ** This problem was discovered after years of use, so we silently ignore
3126 ** these kinds of misdeclared tables to avoid breaking any legacy.
3129 #ifndef SQLITE_RTREE_INT_ONLY
3130 if( pRtree
->eCoordType
==RTREE_COORD_REAL32
){
3131 for(ii
=0; ii
<nn
; ii
+=2){
3132 cell
.aCoord
[ii
].f
= rtreeValueDown(aData
[ii
+3]);
3133 cell
.aCoord
[ii
+1].f
= rtreeValueUp(aData
[ii
+4]);
3134 if( cell
.aCoord
[ii
].f
>cell
.aCoord
[ii
+1].f
){
3135 rc
= rtreeConstraintError(pRtree
, ii
+1);
3142 for(ii
=0; ii
<nn
; ii
+=2){
3143 cell
.aCoord
[ii
].i
= sqlite3_value_int(aData
[ii
+3]);
3144 cell
.aCoord
[ii
+1].i
= sqlite3_value_int(aData
[ii
+4]);
3145 if( cell
.aCoord
[ii
].i
>cell
.aCoord
[ii
+1].i
){
3146 rc
= rtreeConstraintError(pRtree
, ii
+1);
3152 /* If a rowid value was supplied, check if it is already present in
3153 ** the table. If so, the constraint has failed. */
3154 if( sqlite3_value_type(aData
[2])!=SQLITE_NULL
){
3155 cell
.iRowid
= sqlite3_value_int64(aData
[2]);
3156 if( sqlite3_value_type(aData
[0])==SQLITE_NULL
3157 || sqlite3_value_int64(aData
[0])!=cell
.iRowid
3160 sqlite3_bind_int64(pRtree
->pReadRowid
, 1, cell
.iRowid
);
3161 steprc
= sqlite3_step(pRtree
->pReadRowid
);
3162 rc
= sqlite3_reset(pRtree
->pReadRowid
);
3163 if( SQLITE_ROW
==steprc
){
3164 if( sqlite3_vtab_on_conflict(pRtree
->db
)==SQLITE_REPLACE
){
3165 rc
= rtreeDeleteRowid(pRtree
, cell
.iRowid
);
3167 rc
= rtreeConstraintError(pRtree
, 0);
3176 /* If aData[0] is not an SQL NULL value, it is the rowid of a
3177 ** record to delete from the r-tree table. The following block does
3180 if( sqlite3_value_type(aData
[0])!=SQLITE_NULL
){
3181 rc
= rtreeDeleteRowid(pRtree
, sqlite3_value_int64(aData
[0]));
3184 /* If the aData[] array contains more than one element, elements
3185 ** (aData[2]..aData[argc-1]) contain a new record to insert into
3186 ** the r-tree structure.
3188 if( rc
==SQLITE_OK
&& nData
>1 ){
3189 /* Insert the new record into the r-tree */
3190 RtreeNode
*pLeaf
= 0;
3192 /* Figure out the rowid of the new row. */
3193 if( bHaveRowid
==0 ){
3194 rc
= rtreeNewRowid(pRtree
, &cell
.iRowid
);
3196 *pRowid
= cell
.iRowid
;
3198 if( rc
==SQLITE_OK
){
3199 rc
= ChooseLeaf(pRtree
, &cell
, 0, &pLeaf
);
3201 if( rc
==SQLITE_OK
){
3203 rc
= rtreeInsertCell(pRtree
, pLeaf
, &cell
, 0);
3204 rc2
= nodeRelease(pRtree
, pLeaf
);
3205 if( rc
==SQLITE_OK
){
3209 if( rc
==SQLITE_OK
&& pRtree
->nAux
){
3210 sqlite3_stmt
*pUp
= pRtree
->pWriteAux
;
3212 sqlite3_bind_int64(pUp
, 1, *pRowid
);
3213 for(jj
=0; jj
<pRtree
->nAux
; jj
++){
3214 sqlite3_bind_value(pUp
, jj
+2, aData
[pRtree
->nDim2
+3+jj
]);
3217 rc
= sqlite3_reset(pUp
);
3222 rtreeRelease(pRtree
);
3227 ** Called when a transaction starts.
3229 static int rtreeBeginTransaction(sqlite3_vtab
*pVtab
){
3230 Rtree
*pRtree
= (Rtree
*)pVtab
;
3231 assert( pRtree
->inWrTrans
==0 );
3232 pRtree
->inWrTrans
= 1;
3237 ** Called when a transaction completes (either by COMMIT or ROLLBACK).
3238 ** The sqlite3_blob object should be released at this point.
3240 static int rtreeEndTransaction(sqlite3_vtab
*pVtab
){
3241 Rtree
*pRtree
= (Rtree
*)pVtab
;
3242 pRtree
->inWrTrans
= 0;
3243 nodeBlobReset(pRtree
);
3246 static int rtreeRollback(sqlite3_vtab
*pVtab
){
3247 return rtreeEndTransaction(pVtab
);
3251 ** The xRename method for rtree module virtual tables.
3253 static int rtreeRename(sqlite3_vtab
*pVtab
, const char *zNewName
){
3254 Rtree
*pRtree
= (Rtree
*)pVtab
;
3255 int rc
= SQLITE_NOMEM
;
3256 char *zSql
= sqlite3_mprintf(
3257 "ALTER TABLE %Q.'%q_node' RENAME TO \"%w_node\";"
3258 "ALTER TABLE %Q.'%q_parent' RENAME TO \"%w_parent\";"
3259 "ALTER TABLE %Q.'%q_rowid' RENAME TO \"%w_rowid\";"
3260 , pRtree
->zDb
, pRtree
->zName
, zNewName
3261 , pRtree
->zDb
, pRtree
->zName
, zNewName
3262 , pRtree
->zDb
, pRtree
->zName
, zNewName
3265 nodeBlobReset(pRtree
);
3266 rc
= sqlite3_exec(pRtree
->db
, zSql
, 0, 0, 0);
3273 ** The xSavepoint method.
3275 ** This module does not need to do anything to support savepoints. However,
3276 ** it uses this hook to close any open blob handle. This is done because a
3277 ** DROP TABLE command - which fortunately always opens a savepoint - cannot
3278 ** succeed if there are any open blob handles. i.e. if the blob handle were
3279 ** not closed here, the following would fail:
3282 ** INSERT INTO rtree...
3283 ** DROP TABLE <tablename>; -- Would fail with SQLITE_LOCKED
3286 static int rtreeSavepoint(sqlite3_vtab
*pVtab
, int iSavepoint
){
3287 Rtree
*pRtree
= (Rtree
*)pVtab
;
3288 u8 iwt
= pRtree
->inWrTrans
;
3289 UNUSED_PARAMETER(iSavepoint
);
3290 pRtree
->inWrTrans
= 0;
3291 nodeBlobReset(pRtree
);
3292 pRtree
->inWrTrans
= iwt
;
3297 ** This function populates the pRtree->nRowEst variable with an estimate
3298 ** of the number of rows in the virtual table. If possible, this is based
3299 ** on sqlite_stat1 data. Otherwise, use RTREE_DEFAULT_ROWEST.
3301 static int rtreeQueryStat1(sqlite3
*db
, Rtree
*pRtree
){
3302 const char *zFmt
= "SELECT stat FROM %Q.sqlite_stat1 WHERE tbl = '%q_rowid'";
3306 i64 nRow
= RTREE_MIN_ROWEST
;
3308 rc
= sqlite3_table_column_metadata(
3309 db
, pRtree
->zDb
, "sqlite_stat1",0,0,0,0,0,0
3311 if( rc
!=SQLITE_OK
){
3312 pRtree
->nRowEst
= RTREE_DEFAULT_ROWEST
;
3313 return rc
==SQLITE_ERROR
? SQLITE_OK
: rc
;
3315 zSql
= sqlite3_mprintf(zFmt
, pRtree
->zDb
, pRtree
->zName
);
3319 rc
= sqlite3_prepare_v2(db
, zSql
, -1, &p
, 0);
3320 if( rc
==SQLITE_OK
){
3321 if( sqlite3_step(p
)==SQLITE_ROW
) nRow
= sqlite3_column_int64(p
, 0);
3322 rc
= sqlite3_finalize(p
);
3326 pRtree
->nRowEst
= MAX(nRow
, RTREE_MIN_ROWEST
);
3332 ** Return true if zName is the extension on one of the shadow tables used
3335 static int rtreeShadowName(const char *zName
){
3336 static const char *azName
[] = {
3337 "node", "parent", "rowid"
3340 for(i
=0; i
<sizeof(azName
)/sizeof(azName
[0]); i
++){
3341 if( sqlite3_stricmp(zName
, azName
[i
])==0 ) return 1;
3346 /* Forward declaration */
3347 static int rtreeIntegrity(sqlite3_vtab
*, const char*, const char*, int, char**);
3349 static sqlite3_module rtreeModule
= {
3351 rtreeCreate
, /* xCreate - create a table */
3352 rtreeConnect
, /* xConnect - connect to an existing table */
3353 rtreeBestIndex
, /* xBestIndex - Determine search strategy */
3354 rtreeDisconnect
, /* xDisconnect - Disconnect from a table */
3355 rtreeDestroy
, /* xDestroy - Drop a table */
3356 rtreeOpen
, /* xOpen - open a cursor */
3357 rtreeClose
, /* xClose - close a cursor */
3358 rtreeFilter
, /* xFilter - configure scan constraints */
3359 rtreeNext
, /* xNext - advance a cursor */
3360 rtreeEof
, /* xEof */
3361 rtreeColumn
, /* xColumn - read data */
3362 rtreeRowid
, /* xRowid - read data */
3363 rtreeUpdate
, /* xUpdate - write data */
3364 rtreeBeginTransaction
, /* xBegin - begin transaction */
3365 rtreeEndTransaction
, /* xSync - sync transaction */
3366 rtreeEndTransaction
, /* xCommit - commit transaction */
3367 rtreeRollback
, /* xRollback - rollback transaction */
3368 0, /* xFindFunction - function overloading */
3369 rtreeRename
, /* xRename - rename the table */
3370 rtreeSavepoint
, /* xSavepoint */
3372 0, /* xRollbackTo */
3373 rtreeShadowName
, /* xShadowName */
3374 rtreeIntegrity
/* xIntegrity */
3377 static int rtreeSqlInit(
3381 const char *zPrefix
,
3386 #define N_STATEMENT 8
3387 static const char *azSql
[N_STATEMENT
] = {
3388 /* Write the xxx_node table */
3389 "INSERT OR REPLACE INTO '%q'.'%q_node' VALUES(?1, ?2)",
3390 "DELETE FROM '%q'.'%q_node' WHERE nodeno = ?1",
3392 /* Read and write the xxx_rowid table */
3393 "SELECT nodeno FROM '%q'.'%q_rowid' WHERE rowid = ?1",
3394 "INSERT OR REPLACE INTO '%q'.'%q_rowid' VALUES(?1, ?2)",
3395 "DELETE FROM '%q'.'%q_rowid' WHERE rowid = ?1",
3397 /* Read and write the xxx_parent table */
3398 "SELECT parentnode FROM '%q'.'%q_parent' WHERE nodeno = ?1",
3399 "INSERT OR REPLACE INTO '%q'.'%q_parent' VALUES(?1, ?2)",
3400 "DELETE FROM '%q'.'%q_parent' WHERE nodeno = ?1"
3402 sqlite3_stmt
**appStmt
[N_STATEMENT
];
3404 const int f
= SQLITE_PREPARE_PERSISTENT
|SQLITE_PREPARE_NO_VTAB
;
3410 sqlite3_str
*p
= sqlite3_str_new(db
);
3412 sqlite3_str_appendf(p
,
3413 "CREATE TABLE \"%w\".\"%w_rowid\"(rowid INTEGER PRIMARY KEY,nodeno",
3415 for(ii
=0; ii
<pRtree
->nAux
; ii
++){
3416 sqlite3_str_appendf(p
,",a%d",ii
);
3418 sqlite3_str_appendf(p
,
3419 ");CREATE TABLE \"%w\".\"%w_node\"(nodeno INTEGER PRIMARY KEY,data);",
3421 sqlite3_str_appendf(p
,
3422 "CREATE TABLE \"%w\".\"%w_parent\"(nodeno INTEGER PRIMARY KEY,parentnode);",
3424 sqlite3_str_appendf(p
,
3425 "INSERT INTO \"%w\".\"%w_node\"VALUES(1,zeroblob(%d))",
3426 zDb
, zPrefix
, pRtree
->iNodeSize
);
3427 zCreate
= sqlite3_str_finish(p
);
3429 return SQLITE_NOMEM
;
3431 rc
= sqlite3_exec(db
, zCreate
, 0, 0, 0);
3432 sqlite3_free(zCreate
);
3433 if( rc
!=SQLITE_OK
){
3438 appStmt
[0] = &pRtree
->pWriteNode
;
3439 appStmt
[1] = &pRtree
->pDeleteNode
;
3440 appStmt
[2] = &pRtree
->pReadRowid
;
3441 appStmt
[3] = &pRtree
->pWriteRowid
;
3442 appStmt
[4] = &pRtree
->pDeleteRowid
;
3443 appStmt
[5] = &pRtree
->pReadParent
;
3444 appStmt
[6] = &pRtree
->pWriteParent
;
3445 appStmt
[7] = &pRtree
->pDeleteParent
;
3447 rc
= rtreeQueryStat1(db
, pRtree
);
3448 for(i
=0; i
<N_STATEMENT
&& rc
==SQLITE_OK
; i
++){
3450 const char *zFormat
;
3451 if( i
!=3 || pRtree
->nAux
==0 ){
3454 /* An UPSERT is very slightly slower than REPLACE, but it is needed
3455 ** if there are auxiliary columns */
3456 zFormat
= "INSERT INTO\"%w\".\"%w_rowid\"(rowid,nodeno)VALUES(?1,?2)"
3457 "ON CONFLICT(rowid)DO UPDATE SET nodeno=excluded.nodeno";
3459 zSql
= sqlite3_mprintf(zFormat
, zDb
, zPrefix
);
3461 rc
= sqlite3_prepare_v3(db
, zSql
, -1, f
, appStmt
[i
], 0);
3467 if( pRtree
->nAux
&& rc
!=SQLITE_NOMEM
){
3468 pRtree
->zReadAuxSql
= sqlite3_mprintf(
3469 "SELECT * FROM \"%w\".\"%w_rowid\" WHERE rowid=?1",
3471 if( pRtree
->zReadAuxSql
==0 ){
3474 sqlite3_str
*p
= sqlite3_str_new(db
);
3477 sqlite3_str_appendf(p
, "UPDATE \"%w\".\"%w_rowid\"SET ", zDb
, zPrefix
);
3478 for(ii
=0; ii
<pRtree
->nAux
; ii
++){
3479 if( ii
) sqlite3_str_append(p
, ",", 1);
3480 #ifdef SQLITE_ENABLE_GEOPOLY
3481 if( ii
<pRtree
->nAuxNotNull
){
3482 sqlite3_str_appendf(p
,"a%d=coalesce(?%d,a%d)",ii
,ii
+2,ii
);
3486 sqlite3_str_appendf(p
,"a%d=?%d",ii
,ii
+2);
3489 sqlite3_str_appendf(p
, " WHERE rowid=?1");
3490 zSql
= sqlite3_str_finish(p
);
3494 rc
= sqlite3_prepare_v3(db
, zSql
, -1, f
, &pRtree
->pWriteAux
, 0);
3504 ** The second argument to this function contains the text of an SQL statement
3505 ** that returns a single integer value. The statement is compiled and executed
3506 ** using database connection db. If successful, the integer value returned
3507 ** is written to *piVal and SQLITE_OK returned. Otherwise, an SQLite error
3508 ** code is returned and the value of *piVal after returning is not defined.
3510 static int getIntFromStmt(sqlite3
*db
, const char *zSql
, int *piVal
){
3511 int rc
= SQLITE_NOMEM
;
3513 sqlite3_stmt
*pStmt
= 0;
3514 rc
= sqlite3_prepare_v2(db
, zSql
, -1, &pStmt
, 0);
3515 if( rc
==SQLITE_OK
){
3516 if( SQLITE_ROW
==sqlite3_step(pStmt
) ){
3517 *piVal
= sqlite3_column_int(pStmt
, 0);
3519 rc
= sqlite3_finalize(pStmt
);
3526 ** This function is called from within the xConnect() or xCreate() method to
3527 ** determine the node-size used by the rtree table being created or connected
3528 ** to. If successful, pRtree->iNodeSize is populated and SQLITE_OK returned.
3529 ** Otherwise, an SQLite error code is returned.
3531 ** If this function is being called as part of an xConnect(), then the rtree
3532 ** table already exists. In this case the node-size is determined by inspecting
3533 ** the root node of the tree.
3535 ** Otherwise, for an xCreate(), use 64 bytes less than the database page-size.
3536 ** This ensures that each node is stored on a single database page. If the
3537 ** database page-size is so large that more than RTREE_MAXCELLS entries
3538 ** would fit in a single node, use a smaller node-size.
3540 static int getNodeSize(
3541 sqlite3
*db
, /* Database handle */
3542 Rtree
*pRtree
, /* Rtree handle */
3543 int isCreate
, /* True for xCreate, false for xConnect */
3544 char **pzErr
/* OUT: Error message, if any */
3550 zSql
= sqlite3_mprintf("PRAGMA %Q.page_size", pRtree
->zDb
);
3551 rc
= getIntFromStmt(db
, zSql
, &iPageSize
);
3552 if( rc
==SQLITE_OK
){
3553 pRtree
->iNodeSize
= iPageSize
-64;
3554 if( (4+pRtree
->nBytesPerCell
*RTREE_MAXCELLS
)<pRtree
->iNodeSize
){
3555 pRtree
->iNodeSize
= 4+pRtree
->nBytesPerCell
*RTREE_MAXCELLS
;
3558 *pzErr
= sqlite3_mprintf("%s", sqlite3_errmsg(db
));
3561 zSql
= sqlite3_mprintf(
3562 "SELECT length(data) FROM '%q'.'%q_node' WHERE nodeno = 1",
3563 pRtree
->zDb
, pRtree
->zName
3565 rc
= getIntFromStmt(db
, zSql
, &pRtree
->iNodeSize
);
3566 if( rc
!=SQLITE_OK
){
3567 *pzErr
= sqlite3_mprintf("%s", sqlite3_errmsg(db
));
3568 }else if( pRtree
->iNodeSize
<(512-64) ){
3569 rc
= SQLITE_CORRUPT_VTAB
;
3570 RTREE_IS_CORRUPT(pRtree
);
3571 *pzErr
= sqlite3_mprintf("undersize RTree blobs in \"%q_node\"",
3581 ** Return the length of a token
3583 static int rtreeTokenLength(const char *z
){
3585 return sqlite3GetToken((const unsigned char*)z
,&dummy
);
3589 ** This function is the implementation of both the xConnect and xCreate
3590 ** methods of the r-tree virtual table.
3592 ** argv[0] -> module name
3593 ** argv[1] -> database name
3594 ** argv[2] -> table name
3595 ** argv[...] -> column names...
3597 static int rtreeInit(
3598 sqlite3
*db
, /* Database connection */
3599 void *pAux
, /* One of the RTREE_COORD_* constants */
3600 int argc
, const char *const*argv
, /* Parameters to CREATE TABLE statement */
3601 sqlite3_vtab
**ppVtab
, /* OUT: New virtual table */
3602 char **pzErr
, /* OUT: Error message, if any */
3603 int isCreate
/* True for xCreate, false for xConnect */
3607 int nDb
; /* Length of string argv[1] */
3608 int nName
; /* Length of string argv[2] */
3609 int eCoordType
= (pAux
? RTREE_COORD_INT32
: RTREE_COORD_REAL32
);
3615 const char *aErrMsg
[] = {
3617 "Wrong number of columns for an rtree table", /* 1 */
3618 "Too few columns for an rtree table", /* 2 */
3619 "Too many columns for an rtree table", /* 3 */
3620 "Auxiliary rtree columns must be last" /* 4 */
3623 assert( RTREE_MAX_AUX_COLUMN
<256 ); /* Aux columns counted by a u8 */
3624 if( argc
<6 || argc
>RTREE_MAX_AUX_COLUMN
+3 ){
3625 *pzErr
= sqlite3_mprintf("%s", aErrMsg
[2 + (argc
>=6)]);
3626 return SQLITE_ERROR
;
3629 sqlite3_vtab_config(db
, SQLITE_VTAB_CONSTRAINT_SUPPORT
, 1);
3630 sqlite3_vtab_config(db
, SQLITE_VTAB_INNOCUOUS
);
3633 /* Allocate the sqlite3_vtab structure */
3634 nDb
= (int)strlen(argv
[1]);
3635 nName
= (int)strlen(argv
[2]);
3636 pRtree
= (Rtree
*)sqlite3_malloc64(sizeof(Rtree
)+nDb
+nName
*2+8);
3638 return SQLITE_NOMEM
;
3640 memset(pRtree
, 0, sizeof(Rtree
)+nDb
+nName
*2+8);
3642 pRtree
->base
.pModule
= &rtreeModule
;
3643 pRtree
->zDb
= (char *)&pRtree
[1];
3644 pRtree
->zName
= &pRtree
->zDb
[nDb
+1];
3645 pRtree
->zNodeName
= &pRtree
->zName
[nName
+1];
3646 pRtree
->eCoordType
= (u8
)eCoordType
;
3647 memcpy(pRtree
->zDb
, argv
[1], nDb
);
3648 memcpy(pRtree
->zName
, argv
[2], nName
);
3649 memcpy(pRtree
->zNodeName
, argv
[2], nName
);
3650 memcpy(&pRtree
->zNodeName
[nName
], "_node", 6);
3653 /* Create/Connect to the underlying relational database schema. If
3654 ** that is successful, call sqlite3_declare_vtab() to configure
3655 ** the r-tree table schema.
3657 pSql
= sqlite3_str_new(db
);
3658 sqlite3_str_appendf(pSql
, "CREATE TABLE x(%.*s INT",
3659 rtreeTokenLength(argv
[3]), argv
[3]);
3660 for(ii
=4; ii
<argc
; ii
++){
3661 const char *zArg
= argv
[ii
];
3664 sqlite3_str_appendf(pSql
, ",%.*s", rtreeTokenLength(zArg
+1), zArg
+1);
3665 }else if( pRtree
->nAux
>0 ){
3668 static const char *azFormat
[] = {",%.*s REAL", ",%.*s INT"};
3670 sqlite3_str_appendf(pSql
, azFormat
[eCoordType
],
3671 rtreeTokenLength(zArg
), zArg
);
3674 sqlite3_str_appendf(pSql
, ");");
3675 zSql
= sqlite3_str_finish(pSql
);
3678 }else if( ii
<argc
){
3679 *pzErr
= sqlite3_mprintf("%s", aErrMsg
[4]);
3681 }else if( SQLITE_OK
!=(rc
= sqlite3_declare_vtab(db
, zSql
)) ){
3682 *pzErr
= sqlite3_mprintf("%s", sqlite3_errmsg(db
));
3685 if( rc
) goto rtreeInit_fail
;
3686 pRtree
->nDim
= pRtree
->nDim2
/2;
3687 if( pRtree
->nDim
<1 ){
3689 }else if( pRtree
->nDim2
>RTREE_MAX_DIMENSIONS
*2 ){
3691 }else if( pRtree
->nDim2
% 2 ){
3697 *pzErr
= sqlite3_mprintf("%s", aErrMsg
[iErr
]);
3698 goto rtreeInit_fail
;
3700 pRtree
->nBytesPerCell
= 8 + pRtree
->nDim2
*4;
3702 /* Figure out the node size to use. */
3703 rc
= getNodeSize(db
, pRtree
, isCreate
, pzErr
);
3704 if( rc
) goto rtreeInit_fail
;
3705 rc
= rtreeSqlInit(pRtree
, db
, argv
[1], argv
[2], isCreate
);
3707 *pzErr
= sqlite3_mprintf("%s", sqlite3_errmsg(db
));
3708 goto rtreeInit_fail
;
3711 *ppVtab
= (sqlite3_vtab
*)pRtree
;
3715 if( rc
==SQLITE_OK
) rc
= SQLITE_ERROR
;
3716 assert( *ppVtab
==0 );
3717 assert( pRtree
->nBusy
==1 );
3718 rtreeRelease(pRtree
);
3724 ** Implementation of a scalar function that decodes r-tree nodes to
3725 ** human readable strings. This can be used for debugging and analysis.
3727 ** The scalar function takes two arguments: (1) the number of dimensions
3728 ** to the rtree (between 1 and 5, inclusive) and (2) a blob of data containing
3729 ** an r-tree node. For a two-dimensional r-tree structure called "rt", to
3730 ** deserialize all nodes, a statement like:
3732 ** SELECT rtreenode(2, data) FROM rt_node;
3734 ** The human readable string takes the form of a Tcl list with one
3735 ** entry for each cell in the r-tree node. Each entry is itself a
3736 ** list, containing the 8-byte rowid/pageno followed by the
3737 ** <num-dimension>*2 coordinates.
3739 static void rtreenode(sqlite3_context
*ctx
, int nArg
, sqlite3_value
**apArg
){
3747 UNUSED_PARAMETER(nArg
);
3748 memset(&node
, 0, sizeof(RtreeNode
));
3749 memset(&tree
, 0, sizeof(Rtree
));
3750 tree
.nDim
= (u8
)sqlite3_value_int(apArg
[0]);
3751 if( tree
.nDim
<1 || tree
.nDim
>5 ) return;
3752 tree
.nDim2
= tree
.nDim
*2;
3753 tree
.nBytesPerCell
= 8 + 8 * tree
.nDim
;
3754 node
.zData
= (u8
*)sqlite3_value_blob(apArg
[1]);
3755 if( node
.zData
==0 ) return;
3756 nData
= sqlite3_value_bytes(apArg
[1]);
3757 if( nData
<4 ) return;
3758 if( nData
<NCELL(&node
)*tree
.nBytesPerCell
) return;
3760 pOut
= sqlite3_str_new(0);
3761 for(ii
=0; ii
<NCELL(&node
); ii
++){
3765 nodeGetCell(&tree
, &node
, ii
, &cell
);
3766 if( ii
>0 ) sqlite3_str_append(pOut
, " ", 1);
3767 sqlite3_str_appendf(pOut
, "{%lld", cell
.iRowid
);
3768 for(jj
=0; jj
<tree
.nDim2
; jj
++){
3769 #ifndef SQLITE_RTREE_INT_ONLY
3770 sqlite3_str_appendf(pOut
, " %g", (double)cell
.aCoord
[jj
].f
);
3772 sqlite3_str_appendf(pOut
, " %d", cell
.aCoord
[jj
].i
);
3775 sqlite3_str_append(pOut
, "}", 1);
3777 errCode
= sqlite3_str_errcode(pOut
);
3778 sqlite3_result_text(ctx
, sqlite3_str_finish(pOut
), -1, sqlite3_free
);
3779 sqlite3_result_error_code(ctx
, errCode
);
3782 /* This routine implements an SQL function that returns the "depth" parameter
3783 ** from the front of a blob that is an r-tree node. For example:
3785 ** SELECT rtreedepth(data) FROM rt_node WHERE nodeno=1;
3787 ** The depth value is 0 for all nodes other than the root node, and the root
3788 ** node always has nodeno=1, so the example above is the primary use for this
3789 ** routine. This routine is intended for testing and analysis only.
3791 static void rtreedepth(sqlite3_context
*ctx
, int nArg
, sqlite3_value
**apArg
){
3792 UNUSED_PARAMETER(nArg
);
3793 if( sqlite3_value_type(apArg
[0])!=SQLITE_BLOB
3794 || sqlite3_value_bytes(apArg
[0])<2
3797 sqlite3_result_error(ctx
, "Invalid argument to rtreedepth()", -1);
3799 u8
*zBlob
= (u8
*)sqlite3_value_blob(apArg
[0]);
3801 sqlite3_result_int(ctx
, readInt16(zBlob
));
3803 sqlite3_result_error_nomem(ctx
);
3809 ** Context object passed between the various routines that make up the
3810 ** implementation of integrity-check function rtreecheck().
3812 typedef struct RtreeCheck RtreeCheck
;
3814 sqlite3
*db
; /* Database handle */
3815 const char *zDb
; /* Database containing rtree table */
3816 const char *zTab
; /* Name of rtree table */
3817 int bInt
; /* True for rtree_i32 table */
3818 int nDim
; /* Number of dimensions for this rtree tbl */
3819 sqlite3_stmt
*pGetNode
; /* Statement used to retrieve nodes */
3820 sqlite3_stmt
*aCheckMapping
[2]; /* Statements to query %_parent/%_rowid */
3821 int nLeaf
; /* Number of leaf cells in table */
3822 int nNonLeaf
; /* Number of non-leaf cells in table */
3823 int rc
; /* Return code */
3824 char *zReport
; /* Message to report */
3825 int nErr
; /* Number of lines in zReport */
3828 #define RTREE_CHECK_MAX_ERROR 100
3831 ** Reset SQL statement pStmt. If the sqlite3_reset() call returns an error,
3832 ** and RtreeCheck.rc==SQLITE_OK, set RtreeCheck.rc to the error code.
3834 static void rtreeCheckReset(RtreeCheck
*pCheck
, sqlite3_stmt
*pStmt
){
3835 int rc
= sqlite3_reset(pStmt
);
3836 if( pCheck
->rc
==SQLITE_OK
) pCheck
->rc
= rc
;
3840 ** The second and subsequent arguments to this function are a format string
3841 ** and printf style arguments. This function formats the string and attempts
3842 ** to compile it as an SQL statement.
3844 ** If successful, a pointer to the new SQL statement is returned. Otherwise,
3845 ** NULL is returned and an error code left in RtreeCheck.rc.
3847 static sqlite3_stmt
*rtreeCheckPrepare(
3848 RtreeCheck
*pCheck
, /* RtreeCheck object */
3849 const char *zFmt
, ... /* Format string and trailing args */
3853 sqlite3_stmt
*pRet
= 0;
3856 z
= sqlite3_vmprintf(zFmt
, ap
);
3858 if( pCheck
->rc
==SQLITE_OK
){
3860 pCheck
->rc
= SQLITE_NOMEM
;
3862 pCheck
->rc
= sqlite3_prepare_v2(pCheck
->db
, z
, -1, &pRet
, 0);
3872 ** The second and subsequent arguments to this function are a printf()
3873 ** style format string and arguments. This function formats the string and
3874 ** appends it to the report being accumuated in pCheck.
3876 static void rtreeCheckAppendMsg(RtreeCheck
*pCheck
, const char *zFmt
, ...){
3879 if( pCheck
->rc
==SQLITE_OK
&& pCheck
->nErr
<RTREE_CHECK_MAX_ERROR
){
3880 char *z
= sqlite3_vmprintf(zFmt
, ap
);
3882 pCheck
->rc
= SQLITE_NOMEM
;
3884 pCheck
->zReport
= sqlite3_mprintf("%z%s%z",
3885 pCheck
->zReport
, (pCheck
->zReport
? "\n" : ""), z
3887 if( pCheck
->zReport
==0 ){
3888 pCheck
->rc
= SQLITE_NOMEM
;
3897 ** This function is a no-op if there is already an error code stored
3898 ** in the RtreeCheck object indicated by the first argument. NULL is
3899 ** returned in this case.
3901 ** Otherwise, the contents of rtree table node iNode are loaded from
3902 ** the database and copied into a buffer obtained from sqlite3_malloc().
3903 ** If no error occurs, a pointer to the buffer is returned and (*pnNode)
3904 ** is set to the size of the buffer in bytes.
3906 ** Or, if an error does occur, NULL is returned and an error code left
3907 ** in the RtreeCheck object. The final value of *pnNode is undefined in
3910 static u8
*rtreeCheckGetNode(RtreeCheck
*pCheck
, i64 iNode
, int *pnNode
){
3911 u8
*pRet
= 0; /* Return value */
3913 if( pCheck
->rc
==SQLITE_OK
&& pCheck
->pGetNode
==0 ){
3914 pCheck
->pGetNode
= rtreeCheckPrepare(pCheck
,
3915 "SELECT data FROM %Q.'%q_node' WHERE nodeno=?",
3916 pCheck
->zDb
, pCheck
->zTab
3920 if( pCheck
->rc
==SQLITE_OK
){
3921 sqlite3_bind_int64(pCheck
->pGetNode
, 1, iNode
);
3922 if( sqlite3_step(pCheck
->pGetNode
)==SQLITE_ROW
){
3923 int nNode
= sqlite3_column_bytes(pCheck
->pGetNode
, 0);
3924 const u8
*pNode
= (const u8
*)sqlite3_column_blob(pCheck
->pGetNode
, 0);
3925 pRet
= sqlite3_malloc64(nNode
);
3927 pCheck
->rc
= SQLITE_NOMEM
;
3929 memcpy(pRet
, pNode
, nNode
);
3933 rtreeCheckReset(pCheck
, pCheck
->pGetNode
);
3934 if( pCheck
->rc
==SQLITE_OK
&& pRet
==0 ){
3935 rtreeCheckAppendMsg(pCheck
, "Node %lld missing from database", iNode
);
3943 ** This function is used to check that the %_parent (if bLeaf==0) or %_rowid
3944 ** (if bLeaf==1) table contains a specified entry. The schemas of the
3947 ** CREATE TABLE %_parent(nodeno INTEGER PRIMARY KEY, parentnode INTEGER)
3948 ** CREATE TABLE %_rowid(rowid INTEGER PRIMARY KEY, nodeno INTEGER, ...)
3950 ** In both cases, this function checks that there exists an entry with
3951 ** IPK value iKey and the second column set to iVal.
3954 static void rtreeCheckMapping(
3955 RtreeCheck
*pCheck
, /* RtreeCheck object */
3956 int bLeaf
, /* True for a leaf cell, false for interior */
3957 i64 iKey
, /* Key for mapping */
3958 i64 iVal
/* Expected value for mapping */
3961 sqlite3_stmt
*pStmt
;
3962 const char *azSql
[2] = {
3963 "SELECT parentnode FROM %Q.'%q_parent' WHERE nodeno=?1",
3964 "SELECT nodeno FROM %Q.'%q_rowid' WHERE rowid=?1"
3967 assert( bLeaf
==0 || bLeaf
==1 );
3968 if( pCheck
->aCheckMapping
[bLeaf
]==0 ){
3969 pCheck
->aCheckMapping
[bLeaf
] = rtreeCheckPrepare(pCheck
,
3970 azSql
[bLeaf
], pCheck
->zDb
, pCheck
->zTab
3973 if( pCheck
->rc
!=SQLITE_OK
) return;
3975 pStmt
= pCheck
->aCheckMapping
[bLeaf
];
3976 sqlite3_bind_int64(pStmt
, 1, iKey
);
3977 rc
= sqlite3_step(pStmt
);
3978 if( rc
==SQLITE_DONE
){
3979 rtreeCheckAppendMsg(pCheck
, "Mapping (%lld -> %lld) missing from %s table",
3980 iKey
, iVal
, (bLeaf
? "%_rowid" : "%_parent")
3982 }else if( rc
==SQLITE_ROW
){
3983 i64 ii
= sqlite3_column_int64(pStmt
, 0);
3985 rtreeCheckAppendMsg(pCheck
,
3986 "Found (%lld -> %lld) in %s table, expected (%lld -> %lld)",
3987 iKey
, ii
, (bLeaf
? "%_rowid" : "%_parent"), iKey
, iVal
3991 rtreeCheckReset(pCheck
, pStmt
);
3995 ** Argument pCell points to an array of coordinates stored on an rtree page.
3996 ** This function checks that the coordinates are internally consistent (no
3997 ** x1>x2 conditions) and adds an error message to the RtreeCheck object
4000 ** Additionally, if pParent is not NULL, then it is assumed to point to
4001 ** the array of coordinates on the parent page that bound the page
4002 ** containing pCell. In this case it is also verified that the two
4003 ** sets of coordinates are mutually consistent and an error message added
4004 ** to the RtreeCheck object if they are not.
4006 static void rtreeCheckCellCoord(
4008 i64 iNode
, /* Node id to use in error messages */
4009 int iCell
, /* Cell number to use in error messages */
4010 u8
*pCell
, /* Pointer to cell coordinates */
4011 u8
*pParent
/* Pointer to parent coordinates */
4017 for(i
=0; i
<pCheck
->nDim
; i
++){
4018 readCoord(&pCell
[4*2*i
], &c1
);
4019 readCoord(&pCell
[4*(2*i
+ 1)], &c2
);
4021 /* printf("%e, %e\n", c1.u.f, c2.u.f); */
4022 if( pCheck
->bInt
? c1
.i
>c2
.i
: c1
.f
>c2
.f
){
4023 rtreeCheckAppendMsg(pCheck
,
4024 "Dimension %d of cell %d on node %lld is corrupt", i
, iCell
, iNode
4029 readCoord(&pParent
[4*2*i
], &p1
);
4030 readCoord(&pParent
[4*(2*i
+ 1)], &p2
);
4032 if( (pCheck
->bInt
? c1
.i
<p1
.i
: c1
.f
<p1
.f
)
4033 || (pCheck
->bInt
? c2
.i
>p2
.i
: c2
.f
>p2
.f
)
4035 rtreeCheckAppendMsg(pCheck
,
4036 "Dimension %d of cell %d on node %lld is corrupt relative to parent"
4045 ** Run rtreecheck() checks on node iNode, which is at depth iDepth within
4046 ** the r-tree structure. Argument aParent points to the array of coordinates
4047 ** that bound node iNode on the parent node.
4049 ** If any problems are discovered, an error message is appended to the
4050 ** report accumulated in the RtreeCheck object.
4052 static void rtreeCheckNode(
4054 int iDepth
, /* Depth of iNode (0==leaf) */
4055 u8
*aParent
, /* Buffer containing parent coords */
4056 i64 iNode
/* Node to check */
4061 assert( iNode
==1 || aParent
!=0 );
4062 assert( pCheck
->nDim
>0 );
4064 aNode
= rtreeCheckGetNode(pCheck
, iNode
, &nNode
);
4067 rtreeCheckAppendMsg(pCheck
,
4068 "Node %lld is too small (%d bytes)", iNode
, nNode
4071 int nCell
; /* Number of cells on page */
4072 int i
; /* Used to iterate through cells */
4074 iDepth
= readInt16(aNode
);
4075 if( iDepth
>RTREE_MAX_DEPTH
){
4076 rtreeCheckAppendMsg(pCheck
, "Rtree depth out of range (%d)", iDepth
);
4077 sqlite3_free(aNode
);
4081 nCell
= readInt16(&aNode
[2]);
4082 if( (4 + nCell
*(8 + pCheck
->nDim
*2*4))>nNode
){
4083 rtreeCheckAppendMsg(pCheck
,
4084 "Node %lld is too small for cell count of %d (%d bytes)",
4088 for(i
=0; i
<nCell
; i
++){
4089 u8
*pCell
= &aNode
[4 + i
*(8 + pCheck
->nDim
*2*4)];
4090 i64 iVal
= readInt64(pCell
);
4091 rtreeCheckCellCoord(pCheck
, iNode
, i
, &pCell
[8], aParent
);
4094 rtreeCheckMapping(pCheck
, 0, iVal
, iNode
);
4095 rtreeCheckNode(pCheck
, iDepth
-1, &pCell
[8], iVal
);
4098 rtreeCheckMapping(pCheck
, 1, iVal
, iNode
);
4104 sqlite3_free(aNode
);
4109 ** The second argument to this function must be either "_rowid" or
4110 ** "_parent". This function checks that the number of entries in the
4111 ** %_rowid or %_parent table is exactly nExpect. If not, it adds
4112 ** an error message to the report in the RtreeCheck object indicated
4113 ** by the first argument.
4115 static void rtreeCheckCount(RtreeCheck
*pCheck
, const char *zTbl
, i64 nExpect
){
4116 if( pCheck
->rc
==SQLITE_OK
){
4117 sqlite3_stmt
*pCount
;
4118 pCount
= rtreeCheckPrepare(pCheck
, "SELECT count(*) FROM %Q.'%q%s'",
4119 pCheck
->zDb
, pCheck
->zTab
, zTbl
4122 if( sqlite3_step(pCount
)==SQLITE_ROW
){
4123 i64 nActual
= sqlite3_column_int64(pCount
, 0);
4124 if( nActual
!=nExpect
){
4125 rtreeCheckAppendMsg(pCheck
, "Wrong number of entries in %%%s table"
4126 " - expected %lld, actual %lld" , zTbl
, nExpect
, nActual
4130 pCheck
->rc
= sqlite3_finalize(pCount
);
4136 ** This function does the bulk of the work for the rtree integrity-check.
4137 ** It is called by rtreecheck(), which is the SQL function implementation.
4139 static int rtreeCheckTable(
4140 sqlite3
*db
, /* Database handle to access db through */
4141 const char *zDb
, /* Name of db ("main", "temp" etc.) */
4142 const char *zTab
, /* Name of rtree table to check */
4143 char **pzReport
/* OUT: sqlite3_malloc'd report text */
4145 RtreeCheck check
; /* Common context for various routines */
4146 sqlite3_stmt
*pStmt
= 0; /* Used to find column count of rtree table */
4147 int nAux
= 0; /* Number of extra columns. */
4149 /* Initialize the context object */
4150 memset(&check
, 0, sizeof(check
));
4155 /* Find the number of auxiliary columns */
4156 pStmt
= rtreeCheckPrepare(&check
, "SELECT * FROM %Q.'%q_rowid'", zDb
, zTab
);
4158 nAux
= sqlite3_column_count(pStmt
) - 2;
4159 sqlite3_finalize(pStmt
);
4161 if( check
.rc
!=SQLITE_NOMEM
){
4162 check
.rc
= SQLITE_OK
;
4165 /* Find number of dimensions in the rtree table. */
4166 pStmt
= rtreeCheckPrepare(&check
, "SELECT * FROM %Q.%Q", zDb
, zTab
);
4169 check
.nDim
= (sqlite3_column_count(pStmt
) - 1 - nAux
) / 2;
4171 rtreeCheckAppendMsg(&check
, "Schema corrupt or not an rtree");
4172 }else if( SQLITE_ROW
==sqlite3_step(pStmt
) ){
4173 check
.bInt
= (sqlite3_column_type(pStmt
, 1)==SQLITE_INTEGER
);
4175 rc
= sqlite3_finalize(pStmt
);
4176 if( rc
!=SQLITE_CORRUPT
) check
.rc
= rc
;
4179 /* Do the actual integrity-check */
4180 if( check
.nDim
>=1 ){
4181 if( check
.rc
==SQLITE_OK
){
4182 rtreeCheckNode(&check
, 0, 0, 1);
4184 rtreeCheckCount(&check
, "_rowid", check
.nLeaf
);
4185 rtreeCheckCount(&check
, "_parent", check
.nNonLeaf
);
4188 /* Finalize SQL statements used by the integrity-check */
4189 sqlite3_finalize(check
.pGetNode
);
4190 sqlite3_finalize(check
.aCheckMapping
[0]);
4191 sqlite3_finalize(check
.aCheckMapping
[1]);
4193 *pzReport
= check
.zReport
;
4198 ** Implementation of the xIntegrity method for Rtree.
4200 static int rtreeIntegrity(
4201 sqlite3_vtab
*pVtab
, /* The virtual table to check */
4202 const char *zSchema
, /* Schema in which the virtual table lives */
4203 const char *zName
, /* Name of the virtual table */
4204 int isQuick
, /* True for a quick_check */
4205 char **pzErr
/* Write results here */
4207 Rtree
*pRtree
= (Rtree
*)pVtab
;
4209 assert( pzErr
!=0 && *pzErr
==0 );
4210 UNUSED_PARAMETER(zSchema
);
4211 UNUSED_PARAMETER(zName
);
4212 UNUSED_PARAMETER(isQuick
);
4213 rc
= rtreeCheckTable(pRtree
->db
, pRtree
->zDb
, pRtree
->zName
, pzErr
);
4214 if( rc
==SQLITE_OK
&& *pzErr
){
4215 *pzErr
= sqlite3_mprintf("In RTree %s.%s:\n%z",
4216 pRtree
->zDb
, pRtree
->zName
, *pzErr
);
4217 if( (*pzErr
)==0 ) rc
= SQLITE_NOMEM
;
4225 ** rtreecheck(<rtree-table>);
4226 ** rtreecheck(<database>, <rtree-table>);
4228 ** Invoking this SQL function runs an integrity-check on the named rtree
4229 ** table. The integrity-check verifies the following:
4231 ** 1. For each cell in the r-tree structure (%_node table), that:
4233 ** a) for each dimension, (coord1 <= coord2).
4235 ** b) unless the cell is on the root node, that the cell is bounded
4236 ** by the parent cell on the parent node.
4238 ** c) for leaf nodes, that there is an entry in the %_rowid
4239 ** table corresponding to the cell's rowid value that
4240 ** points to the correct node.
4242 ** d) for cells on non-leaf nodes, that there is an entry in the
4243 ** %_parent table mapping from the cell's child node to the
4244 ** node that it resides on.
4246 ** 2. That there are the same number of entries in the %_rowid table
4247 ** as there are leaf cells in the r-tree structure, and that there
4248 ** is a leaf cell that corresponds to each entry in the %_rowid table.
4250 ** 3. That there are the same number of entries in the %_parent table
4251 ** as there are non-leaf cells in the r-tree structure, and that
4252 ** there is a non-leaf cell that corresponds to each entry in the
4255 static void rtreecheck(
4256 sqlite3_context
*ctx
,
4258 sqlite3_value
**apArg
4260 if( nArg
!=1 && nArg
!=2 ){
4261 sqlite3_result_error(ctx
,
4262 "wrong number of arguments to function rtreecheck()", -1
4267 const char *zDb
= (const char*)sqlite3_value_text(apArg
[0]);
4273 zTab
= (const char*)sqlite3_value_text(apArg
[1]);
4275 rc
= rtreeCheckTable(sqlite3_context_db_handle(ctx
), zDb
, zTab
, &zReport
);
4276 if( rc
==SQLITE_OK
){
4277 sqlite3_result_text(ctx
, zReport
? zReport
: "ok", -1, SQLITE_TRANSIENT
);
4279 sqlite3_result_error_code(ctx
, rc
);
4281 sqlite3_free(zReport
);
4285 /* Conditionally include the geopoly code */
4286 #ifdef SQLITE_ENABLE_GEOPOLY
4287 # include "geopoly.c"
4291 ** Register the r-tree module with database handle db. This creates the
4292 ** virtual table module "rtree" and the debugging/analysis scalar
4293 ** function "rtreenode".
4295 int sqlite3RtreeInit(sqlite3
*db
){
4296 const int utf8
= SQLITE_UTF8
;
4299 rc
= sqlite3_create_function(db
, "rtreenode", 2, utf8
, 0, rtreenode
, 0, 0);
4300 if( rc
==SQLITE_OK
){
4301 rc
= sqlite3_create_function(db
, "rtreedepth", 1, utf8
, 0,rtreedepth
, 0, 0);
4303 if( rc
==SQLITE_OK
){
4304 rc
= sqlite3_create_function(db
, "rtreecheck", -1, utf8
, 0,rtreecheck
, 0,0);
4306 if( rc
==SQLITE_OK
){
4307 #ifdef SQLITE_RTREE_INT_ONLY
4308 void *c
= (void *)RTREE_COORD_INT32
;
4310 void *c
= (void *)RTREE_COORD_REAL32
;
4312 rc
= sqlite3_create_module_v2(db
, "rtree", &rtreeModule
, c
, 0);
4314 if( rc
==SQLITE_OK
){
4315 void *c
= (void *)RTREE_COORD_INT32
;
4316 rc
= sqlite3_create_module_v2(db
, "rtree_i32", &rtreeModule
, c
, 0);
4318 #ifdef SQLITE_ENABLE_GEOPOLY
4319 if( rc
==SQLITE_OK
){
4320 rc
= sqlite3_geopoly_init(db
);
4328 ** This routine deletes the RtreeGeomCallback object that was attached
4329 ** one of the SQL functions create by sqlite3_rtree_geometry_callback()
4330 ** or sqlite3_rtree_query_callback(). In other words, this routine is the
4331 ** destructor for an RtreeGeomCallback objecct. This routine is called when
4332 ** the corresponding SQL function is deleted.
4334 static void rtreeFreeCallback(void *p
){
4335 RtreeGeomCallback
*pInfo
= (RtreeGeomCallback
*)p
;
4336 if( pInfo
->xDestructor
) pInfo
->xDestructor(pInfo
->pContext
);
4341 ** This routine frees the BLOB that is returned by geomCallback().
4343 static void rtreeMatchArgFree(void *pArg
){
4345 RtreeMatchArg
*p
= (RtreeMatchArg
*)pArg
;
4346 for(i
=0; i
<p
->nParam
; i
++){
4347 sqlite3_value_free(p
->apSqlParam
[i
]);
4353 ** Each call to sqlite3_rtree_geometry_callback() or
4354 ** sqlite3_rtree_query_callback() creates an ordinary SQLite
4355 ** scalar function that is implemented by this routine.
4357 ** All this function does is construct an RtreeMatchArg object that
4358 ** contains the geometry-checking callback routines and a list of
4359 ** parameters to this function, then return that RtreeMatchArg object
4362 ** The R-Tree MATCH operator will read the returned BLOB, deserialize
4363 ** the RtreeMatchArg object, and use the RtreeMatchArg object to figure
4364 ** out which elements of the R-Tree should be returned by the query.
4366 static void geomCallback(sqlite3_context
*ctx
, int nArg
, sqlite3_value
**aArg
){
4367 RtreeGeomCallback
*pGeomCtx
= (RtreeGeomCallback
*)sqlite3_user_data(ctx
);
4368 RtreeMatchArg
*pBlob
;
4369 sqlite3_int64 nBlob
;
4372 nBlob
= sizeof(RtreeMatchArg
) + (nArg
-1)*sizeof(RtreeDValue
)
4373 + nArg
*sizeof(sqlite3_value
*);
4374 pBlob
= (RtreeMatchArg
*)sqlite3_malloc64(nBlob
);
4376 sqlite3_result_error_nomem(ctx
);
4379 pBlob
->iSize
= nBlob
;
4380 pBlob
->cb
= pGeomCtx
[0];
4381 pBlob
->apSqlParam
= (sqlite3_value
**)&pBlob
->aParam
[nArg
];
4382 pBlob
->nParam
= nArg
;
4383 for(i
=0; i
<nArg
; i
++){
4384 pBlob
->apSqlParam
[i
] = sqlite3_value_dup(aArg
[i
]);
4385 if( pBlob
->apSqlParam
[i
]==0 ) memErr
= 1;
4386 #ifdef SQLITE_RTREE_INT_ONLY
4387 pBlob
->aParam
[i
] = sqlite3_value_int64(aArg
[i
]);
4389 pBlob
->aParam
[i
] = sqlite3_value_double(aArg
[i
]);
4393 sqlite3_result_error_nomem(ctx
);
4394 rtreeMatchArgFree(pBlob
);
4396 sqlite3_result_pointer(ctx
, pBlob
, "RtreeMatchArg", rtreeMatchArgFree
);
4402 ** Register a new geometry function for use with the r-tree MATCH operator.
4404 int sqlite3_rtree_geometry_callback(
4405 sqlite3
*db
, /* Register SQL function on this connection */
4406 const char *zGeom
, /* Name of the new SQL function */
4407 int (*xGeom
)(sqlite3_rtree_geometry
*,int,RtreeDValue
*,int*), /* Callback */
4408 void *pContext
/* Extra data associated with the callback */
4410 RtreeGeomCallback
*pGeomCtx
; /* Context object for new user-function */
4412 /* Allocate and populate the context object. */
4413 pGeomCtx
= (RtreeGeomCallback
*)sqlite3_malloc(sizeof(RtreeGeomCallback
));
4414 if( !pGeomCtx
) return SQLITE_NOMEM
;
4415 pGeomCtx
->xGeom
= xGeom
;
4416 pGeomCtx
->xQueryFunc
= 0;
4417 pGeomCtx
->xDestructor
= 0;
4418 pGeomCtx
->pContext
= pContext
;
4419 return sqlite3_create_function_v2(db
, zGeom
, -1, SQLITE_ANY
,
4420 (void *)pGeomCtx
, geomCallback
, 0, 0, rtreeFreeCallback
4425 ** Register a new 2nd-generation geometry function for use with the
4426 ** r-tree MATCH operator.
4428 int sqlite3_rtree_query_callback(
4429 sqlite3
*db
, /* Register SQL function on this connection */
4430 const char *zQueryFunc
, /* Name of new SQL function */
4431 int (*xQueryFunc
)(sqlite3_rtree_query_info
*), /* Callback */
4432 void *pContext
, /* Extra data passed into the callback */
4433 void (*xDestructor
)(void*) /* Destructor for the extra data */
4435 RtreeGeomCallback
*pGeomCtx
; /* Context object for new user-function */
4437 /* Allocate and populate the context object. */
4438 pGeomCtx
= (RtreeGeomCallback
*)sqlite3_malloc(sizeof(RtreeGeomCallback
));
4440 if( xDestructor
) xDestructor(pContext
);
4441 return SQLITE_NOMEM
;
4443 pGeomCtx
->xGeom
= 0;
4444 pGeomCtx
->xQueryFunc
= xQueryFunc
;
4445 pGeomCtx
->xDestructor
= xDestructor
;
4446 pGeomCtx
->pContext
= pContext
;
4447 return sqlite3_create_function_v2(db
, zQueryFunc
, -1, SQLITE_ANY
,
4448 (void *)pGeomCtx
, geomCallback
, 0, 0, rtreeFreeCallback
4454 __declspec(dllexport
)
4456 int sqlite3_rtree_init(
4459 const sqlite3_api_routines
*pApi
4461 SQLITE_EXTENSION_INIT2(pApi
)
4462 return sqlite3RtreeInit(db
);