Snapshot of upstream SQLite 3.46.1
[sqlcipher.git] / src / mem5.c
blob02f4c2744c231c959b8a90fb5d7bbab2f32bad61
1 /*
2 ** 2007 October 14
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains the C functions that implement a memory
13 ** allocation subsystem for use by SQLite.
15 ** This version of the memory allocation subsystem omits all
16 ** use of malloc(). The application gives SQLite a block of memory
17 ** before calling sqlite3_initialize() from which allocations
18 ** are made and returned by the xMalloc() and xRealloc()
19 ** implementations. Once sqlite3_initialize() has been called,
20 ** the amount of memory available to SQLite is fixed and cannot
21 ** be changed.
23 ** This version of the memory allocation subsystem is included
24 ** in the build only if SQLITE_ENABLE_MEMSYS5 is defined.
26 ** This memory allocator uses the following algorithm:
28 ** 1. All memory allocation sizes are rounded up to a power of 2.
30 ** 2. If two adjacent free blocks are the halves of a larger block,
31 ** then the two blocks are coalesced into the single larger block.
33 ** 3. New memory is allocated from the first available free block.
35 ** This algorithm is described in: J. M. Robson. "Bounds for Some Functions
36 ** Concerning Dynamic Storage Allocation". Journal of the Association for
37 ** Computing Machinery, Volume 21, Number 8, July 1974, pages 491-499.
38 **
39 ** Let n be the size of the largest allocation divided by the minimum
40 ** allocation size (after rounding all sizes up to a power of 2.) Let M
41 ** be the maximum amount of memory ever outstanding at one time. Let
42 ** N be the total amount of memory available for allocation. Robson
43 ** proved that this memory allocator will never breakdown due to
44 ** fragmentation as long as the following constraint holds:
46 ** N >= M*(1 + log2(n)/2) - n + 1
48 ** The sqlite3_status() logic tracks the maximum values of n and M so
49 ** that an application can, at any time, verify this constraint.
51 #include "sqliteInt.h"
54 ** This version of the memory allocator is used only when
55 ** SQLITE_ENABLE_MEMSYS5 is defined.
57 #ifdef SQLITE_ENABLE_MEMSYS5
60 ** A minimum allocation is an instance of the following structure.
61 ** Larger allocations are an array of these structures where the
62 ** size of the array is a power of 2.
64 ** The size of this object must be a power of two. That fact is
65 ** verified in memsys5Init().
67 typedef struct Mem5Link Mem5Link;
68 struct Mem5Link {
69 int next; /* Index of next free chunk */
70 int prev; /* Index of previous free chunk */
74 ** Maximum size of any allocation is ((1<<LOGMAX)*mem5.szAtom). Since
75 ** mem5.szAtom is always at least 8 and 32-bit integers are used,
76 ** it is not actually possible to reach this limit.
78 #define LOGMAX 30
81 ** Masks used for mem5.aCtrl[] elements.
83 #define CTRL_LOGSIZE 0x1f /* Log2 Size of this block */
84 #define CTRL_FREE 0x20 /* True if not checked out */
87 ** All of the static variables used by this module are collected
88 ** into a single structure named "mem5". This is to keep the
89 ** static variables organized and to reduce namespace pollution
90 ** when this module is combined with other in the amalgamation.
92 static SQLITE_WSD struct Mem5Global {
94 ** Memory available for allocation
96 int szAtom; /* Smallest possible allocation in bytes */
97 int nBlock; /* Number of szAtom sized blocks in zPool */
98 u8 *zPool; /* Memory available to be allocated */
101 ** Mutex to control access to the memory allocation subsystem.
103 sqlite3_mutex *mutex;
105 #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
107 ** Performance statistics
109 u64 nAlloc; /* Total number of calls to malloc */
110 u64 totalAlloc; /* Total of all malloc calls - includes internal frag */
111 u64 totalExcess; /* Total internal fragmentation */
112 u32 currentOut; /* Current checkout, including internal fragmentation */
113 u32 currentCount; /* Current number of distinct checkouts */
114 u32 maxOut; /* Maximum instantaneous currentOut */
115 u32 maxCount; /* Maximum instantaneous currentCount */
116 u32 maxRequest; /* Largest allocation (exclusive of internal frag) */
117 #endif
120 ** Lists of free blocks. aiFreelist[0] is a list of free blocks of
121 ** size mem5.szAtom. aiFreelist[1] holds blocks of size szAtom*2.
122 ** aiFreelist[2] holds free blocks of size szAtom*4. And so forth.
124 int aiFreelist[LOGMAX+1];
127 ** Space for tracking which blocks are checked out and the size
128 ** of each block. One byte per block.
130 u8 *aCtrl;
132 } mem5;
135 ** Access the static variable through a macro for SQLITE_OMIT_WSD.
137 #define mem5 GLOBAL(struct Mem5Global, mem5)
140 ** Assuming mem5.zPool is divided up into an array of Mem5Link
141 ** structures, return a pointer to the idx-th such link.
143 #define MEM5LINK(idx) ((Mem5Link *)(&mem5.zPool[(idx)*mem5.szAtom]))
146 ** Unlink the chunk at mem5.aPool[i] from list it is currently
147 ** on. It should be found on mem5.aiFreelist[iLogsize].
149 static void memsys5Unlink(int i, int iLogsize){
150 int next, prev;
151 assert( i>=0 && i<mem5.nBlock );
152 assert( iLogsize>=0 && iLogsize<=LOGMAX );
153 assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize );
155 next = MEM5LINK(i)->next;
156 prev = MEM5LINK(i)->prev;
157 if( prev<0 ){
158 mem5.aiFreelist[iLogsize] = next;
159 }else{
160 MEM5LINK(prev)->next = next;
162 if( next>=0 ){
163 MEM5LINK(next)->prev = prev;
168 ** Link the chunk at mem5.aPool[i] so that is on the iLogsize
169 ** free list.
171 static void memsys5Link(int i, int iLogsize){
172 int x;
173 assert( sqlite3_mutex_held(mem5.mutex) );
174 assert( i>=0 && i<mem5.nBlock );
175 assert( iLogsize>=0 && iLogsize<=LOGMAX );
176 assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize );
178 x = MEM5LINK(i)->next = mem5.aiFreelist[iLogsize];
179 MEM5LINK(i)->prev = -1;
180 if( x>=0 ){
181 assert( x<mem5.nBlock );
182 MEM5LINK(x)->prev = i;
184 mem5.aiFreelist[iLogsize] = i;
188 ** Obtain or release the mutex needed to access global data structures.
190 static void memsys5Enter(void){
191 sqlite3_mutex_enter(mem5.mutex);
193 static void memsys5Leave(void){
194 sqlite3_mutex_leave(mem5.mutex);
198 ** Return the size of an outstanding allocation, in bytes.
199 ** This only works for chunks that are currently checked out.
201 static int memsys5Size(void *p){
202 int iSize, i;
203 assert( p!=0 );
204 i = (int)(((u8 *)p-mem5.zPool)/mem5.szAtom);
205 assert( i>=0 && i<mem5.nBlock );
206 iSize = mem5.szAtom * (1 << (mem5.aCtrl[i]&CTRL_LOGSIZE));
207 return iSize;
211 ** Return a block of memory of at least nBytes in size.
212 ** Return NULL if unable. Return NULL if nBytes==0.
214 ** The caller guarantees that nByte is positive.
216 ** The caller has obtained a mutex prior to invoking this
217 ** routine so there is never any chance that two or more
218 ** threads can be in this routine at the same time.
220 static void *memsys5MallocUnsafe(int nByte){
221 int i; /* Index of a mem5.aPool[] slot */
222 int iBin; /* Index into mem5.aiFreelist[] */
223 int iFullSz; /* Size of allocation rounded up to power of 2 */
224 int iLogsize; /* Log2 of iFullSz/POW2_MIN */
226 /* nByte must be a positive */
227 assert( nByte>0 );
229 /* No more than 1GiB per allocation */
230 if( nByte > 0x40000000 ) return 0;
232 #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
233 /* Keep track of the maximum allocation request. Even unfulfilled
234 ** requests are counted */
235 if( (u32)nByte>mem5.maxRequest ){
236 mem5.maxRequest = nByte;
238 #endif
241 /* Round nByte up to the next valid power of two */
242 for(iFullSz=mem5.szAtom,iLogsize=0; iFullSz<nByte; iFullSz*=2,iLogsize++){}
244 /* Make sure mem5.aiFreelist[iLogsize] contains at least one free
245 ** block. If not, then split a block of the next larger power of
246 ** two in order to create a new free block of size iLogsize.
248 for(iBin=iLogsize; iBin<=LOGMAX && mem5.aiFreelist[iBin]<0; iBin++){}
249 if( iBin>LOGMAX ){
250 testcase( sqlite3GlobalConfig.xLog!=0 );
251 sqlite3_log(SQLITE_NOMEM, "failed to allocate %u bytes", nByte);
252 return 0;
254 i = mem5.aiFreelist[iBin];
255 memsys5Unlink(i, iBin);
256 while( iBin>iLogsize ){
257 int newSize;
259 iBin--;
260 newSize = 1 << iBin;
261 mem5.aCtrl[i+newSize] = CTRL_FREE | iBin;
262 memsys5Link(i+newSize, iBin);
264 mem5.aCtrl[i] = iLogsize;
266 #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
267 /* Update allocator performance statistics. */
268 mem5.nAlloc++;
269 mem5.totalAlloc += iFullSz;
270 mem5.totalExcess += iFullSz - nByte;
271 mem5.currentCount++;
272 mem5.currentOut += iFullSz;
273 if( mem5.maxCount<mem5.currentCount ) mem5.maxCount = mem5.currentCount;
274 if( mem5.maxOut<mem5.currentOut ) mem5.maxOut = mem5.currentOut;
275 #endif
277 #ifdef SQLITE_DEBUG
278 /* Make sure the allocated memory does not assume that it is set to zero
279 ** or retains a value from a previous allocation */
280 memset(&mem5.zPool[i*mem5.szAtom], 0xAA, iFullSz);
281 #endif
283 /* Return a pointer to the allocated memory. */
284 return (void*)&mem5.zPool[i*mem5.szAtom];
288 ** Free an outstanding memory allocation.
290 static void memsys5FreeUnsafe(void *pOld){
291 u32 size, iLogsize;
292 int iBlock;
294 /* Set iBlock to the index of the block pointed to by pOld in
295 ** the array of mem5.szAtom byte blocks pointed to by mem5.zPool.
297 iBlock = (int)(((u8 *)pOld-mem5.zPool)/mem5.szAtom);
299 /* Check that the pointer pOld points to a valid, non-free block. */
300 assert( iBlock>=0 && iBlock<mem5.nBlock );
301 assert( ((u8 *)pOld-mem5.zPool)%mem5.szAtom==0 );
302 assert( (mem5.aCtrl[iBlock] & CTRL_FREE)==0 );
304 iLogsize = mem5.aCtrl[iBlock] & CTRL_LOGSIZE;
305 size = 1<<iLogsize;
306 assert( iBlock+size-1<(u32)mem5.nBlock );
308 mem5.aCtrl[iBlock] |= CTRL_FREE;
309 mem5.aCtrl[iBlock+size-1] |= CTRL_FREE;
311 #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
312 assert( mem5.currentCount>0 );
313 assert( mem5.currentOut>=(size*mem5.szAtom) );
314 mem5.currentCount--;
315 mem5.currentOut -= size*mem5.szAtom;
316 assert( mem5.currentOut>0 || mem5.currentCount==0 );
317 assert( mem5.currentCount>0 || mem5.currentOut==0 );
318 #endif
320 mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize;
321 while( ALWAYS(iLogsize<LOGMAX) ){
322 int iBuddy;
323 if( (iBlock>>iLogsize) & 1 ){
324 iBuddy = iBlock - size;
325 assert( iBuddy>=0 );
326 }else{
327 iBuddy = iBlock + size;
328 if( iBuddy>=mem5.nBlock ) break;
330 if( mem5.aCtrl[iBuddy]!=(CTRL_FREE | iLogsize) ) break;
331 memsys5Unlink(iBuddy, iLogsize);
332 iLogsize++;
333 if( iBuddy<iBlock ){
334 mem5.aCtrl[iBuddy] = CTRL_FREE | iLogsize;
335 mem5.aCtrl[iBlock] = 0;
336 iBlock = iBuddy;
337 }else{
338 mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize;
339 mem5.aCtrl[iBuddy] = 0;
341 size *= 2;
344 #ifdef SQLITE_DEBUG
345 /* Overwrite freed memory with the 0x55 bit pattern to verify that it is
346 ** not used after being freed */
347 memset(&mem5.zPool[iBlock*mem5.szAtom], 0x55, size);
348 #endif
350 memsys5Link(iBlock, iLogsize);
354 ** Allocate nBytes of memory.
356 static void *memsys5Malloc(int nBytes){
357 sqlite3_int64 *p = 0;
358 if( nBytes>0 ){
359 memsys5Enter();
360 p = memsys5MallocUnsafe(nBytes);
361 memsys5Leave();
363 return (void*)p;
367 ** Free memory.
369 ** The outer layer memory allocator prevents this routine from
370 ** being called with pPrior==0.
372 static void memsys5Free(void *pPrior){
373 assert( pPrior!=0 );
374 memsys5Enter();
375 memsys5FreeUnsafe(pPrior);
376 memsys5Leave();
380 ** Change the size of an existing memory allocation.
382 ** The outer layer memory allocator prevents this routine from
383 ** being called with pPrior==0.
385 ** nBytes is always a value obtained from a prior call to
386 ** memsys5Round(). Hence nBytes is always a non-negative power
387 ** of two. If nBytes==0 that means that an oversize allocation
388 ** (an allocation larger than 0x40000000) was requested and this
389 ** routine should return 0 without freeing pPrior.
391 static void *memsys5Realloc(void *pPrior, int nBytes){
392 int nOld;
393 void *p;
394 assert( pPrior!=0 );
395 assert( (nBytes&(nBytes-1))==0 ); /* EV: R-46199-30249 */
396 assert( nBytes>=0 );
397 if( nBytes==0 ){
398 return 0;
400 nOld = memsys5Size(pPrior);
401 if( nBytes<=nOld ){
402 return pPrior;
404 p = memsys5Malloc(nBytes);
405 if( p ){
406 memcpy(p, pPrior, nOld);
407 memsys5Free(pPrior);
409 return p;
413 ** Round up a request size to the next valid allocation size. If
414 ** the allocation is too large to be handled by this allocation system,
415 ** return 0.
417 ** All allocations must be a power of two and must be expressed by a
418 ** 32-bit signed integer. Hence the largest allocation is 0x40000000
419 ** or 1073741824 bytes.
421 static int memsys5Roundup(int n){
422 int iFullSz;
423 if( n<=mem5.szAtom*2 ){
424 if( n<=mem5.szAtom ) return mem5.szAtom;
425 return mem5.szAtom*2;
427 if( n>0x10000000 ){
428 if( n>0x40000000 ) return 0;
429 if( n>0x20000000 ) return 0x40000000;
430 return 0x20000000;
432 for(iFullSz=mem5.szAtom*8; iFullSz<n; iFullSz *= 4);
433 if( (iFullSz/2)>=(i64)n ) return iFullSz/2;
434 return iFullSz;
438 ** Return the ceiling of the logarithm base 2 of iValue.
440 ** Examples: memsys5Log(1) -> 0
441 ** memsys5Log(2) -> 1
442 ** memsys5Log(4) -> 2
443 ** memsys5Log(5) -> 3
444 ** memsys5Log(8) -> 3
445 ** memsys5Log(9) -> 4
447 static int memsys5Log(int iValue){
448 int iLog;
449 for(iLog=0; (iLog<(int)((sizeof(int)*8)-1)) && (1<<iLog)<iValue; iLog++);
450 return iLog;
454 ** Initialize the memory allocator.
456 ** This routine is not threadsafe. The caller must be holding a mutex
457 ** to prevent multiple threads from entering at the same time.
459 static int memsys5Init(void *NotUsed){
460 int ii; /* Loop counter */
461 int nByte; /* Number of bytes of memory available to this allocator */
462 u8 *zByte; /* Memory usable by this allocator */
463 int nMinLog; /* Log base 2 of minimum allocation size in bytes */
464 int iOffset; /* An offset into mem5.aCtrl[] */
466 UNUSED_PARAMETER(NotUsed);
468 /* For the purposes of this routine, disable the mutex */
469 mem5.mutex = 0;
471 /* The size of a Mem5Link object must be a power of two. Verify that
472 ** this is case.
474 assert( (sizeof(Mem5Link)&(sizeof(Mem5Link)-1))==0 );
476 nByte = sqlite3GlobalConfig.nHeap;
477 zByte = (u8*)sqlite3GlobalConfig.pHeap;
478 assert( zByte!=0 ); /* sqlite3_config() does not allow otherwise */
480 /* boundaries on sqlite3GlobalConfig.mnReq are enforced in sqlite3_config() */
481 nMinLog = memsys5Log(sqlite3GlobalConfig.mnReq);
482 mem5.szAtom = (1<<nMinLog);
483 while( (int)sizeof(Mem5Link)>mem5.szAtom ){
484 mem5.szAtom = mem5.szAtom << 1;
487 mem5.nBlock = (nByte / (mem5.szAtom+sizeof(u8)));
488 mem5.zPool = zByte;
489 mem5.aCtrl = (u8 *)&mem5.zPool[mem5.nBlock*mem5.szAtom];
491 for(ii=0; ii<=LOGMAX; ii++){
492 mem5.aiFreelist[ii] = -1;
495 iOffset = 0;
496 for(ii=LOGMAX; ii>=0; ii--){
497 int nAlloc = (1<<ii);
498 if( (iOffset+nAlloc)<=mem5.nBlock ){
499 mem5.aCtrl[iOffset] = ii | CTRL_FREE;
500 memsys5Link(iOffset, ii);
501 iOffset += nAlloc;
503 assert((iOffset+nAlloc)>mem5.nBlock);
506 /* If a mutex is required for normal operation, allocate one */
507 if( sqlite3GlobalConfig.bMemstat==0 ){
508 mem5.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
511 return SQLITE_OK;
515 ** Deinitialize this module.
517 static void memsys5Shutdown(void *NotUsed){
518 UNUSED_PARAMETER(NotUsed);
519 mem5.mutex = 0;
520 return;
523 #ifdef SQLITE_TEST
525 ** Open the file indicated and write a log of all unfreed memory
526 ** allocations into that log.
528 void sqlite3Memsys5Dump(const char *zFilename){
529 FILE *out;
530 int i, j, n;
531 int nMinLog;
533 if( zFilename==0 || zFilename[0]==0 ){
534 out = stdout;
535 }else{
536 out = fopen(zFilename, "w");
537 if( out==0 ){
538 fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
539 zFilename);
540 return;
543 memsys5Enter();
544 nMinLog = memsys5Log(mem5.szAtom);
545 for(i=0; i<=LOGMAX && i+nMinLog<32; i++){
546 for(n=0, j=mem5.aiFreelist[i]; j>=0; j = MEM5LINK(j)->next, n++){}
547 fprintf(out, "freelist items of size %d: %d\n", mem5.szAtom << i, n);
549 fprintf(out, "mem5.nAlloc = %llu\n", mem5.nAlloc);
550 fprintf(out, "mem5.totalAlloc = %llu\n", mem5.totalAlloc);
551 fprintf(out, "mem5.totalExcess = %llu\n", mem5.totalExcess);
552 fprintf(out, "mem5.currentOut = %u\n", mem5.currentOut);
553 fprintf(out, "mem5.currentCount = %u\n", mem5.currentCount);
554 fprintf(out, "mem5.maxOut = %u\n", mem5.maxOut);
555 fprintf(out, "mem5.maxCount = %u\n", mem5.maxCount);
556 fprintf(out, "mem5.maxRequest = %u\n", mem5.maxRequest);
557 memsys5Leave();
558 if( out==stdout ){
559 fflush(stdout);
560 }else{
561 fclose(out);
564 #endif
567 ** This routine is the only routine in this file with external
568 ** linkage. It returns a pointer to a static sqlite3_mem_methods
569 ** struct populated with the memsys5 methods.
571 const sqlite3_mem_methods *sqlite3MemGetMemsys5(void){
572 static const sqlite3_mem_methods memsys5Methods = {
573 memsys5Malloc,
574 memsys5Free,
575 memsys5Realloc,
576 memsys5Size,
577 memsys5Roundup,
578 memsys5Init,
579 memsys5Shutdown,
582 return &memsys5Methods;
585 #endif /* SQLITE_ENABLE_MEMSYS5 */