Snapshot of upstream SQLite 3.46.1
[sqlcipher.git] / src / pcache.c
blob2974b0810a75021b1e5b1f426bbf43f4109d0249
1 /*
2 ** 2008 August 05
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file implements that page cache.
14 #include "sqliteInt.h"
17 ** A complete page cache is an instance of this structure. Every
18 ** entry in the cache holds a single page of the database file. The
19 ** btree layer only operates on the cached copy of the database pages.
21 ** A page cache entry is "clean" if it exactly matches what is currently
22 ** on disk. A page is "dirty" if it has been modified and needs to be
23 ** persisted to disk.
25 ** pDirty, pDirtyTail, pSynced:
26 ** All dirty pages are linked into the doubly linked list using
27 ** PgHdr.pDirtyNext and pDirtyPrev. The list is maintained in LRU order
28 ** such that p was added to the list more recently than p->pDirtyNext.
29 ** PCache.pDirty points to the first (newest) element in the list and
30 ** pDirtyTail to the last (oldest).
32 ** The PCache.pSynced variable is used to optimize searching for a dirty
33 ** page to eject from the cache mid-transaction. It is better to eject
34 ** a page that does not require a journal sync than one that does.
35 ** Therefore, pSynced is maintained so that it *almost* always points
36 ** to either the oldest page in the pDirty/pDirtyTail list that has a
37 ** clear PGHDR_NEED_SYNC flag or to a page that is older than this one
38 ** (so that the right page to eject can be found by following pDirtyPrev
39 ** pointers).
41 struct PCache {
42 PgHdr *pDirty, *pDirtyTail; /* List of dirty pages in LRU order */
43 PgHdr *pSynced; /* Last synced page in dirty page list */
44 i64 nRefSum; /* Sum of ref counts over all pages */
45 int szCache; /* Configured cache size */
46 int szSpill; /* Size before spilling occurs */
47 int szPage; /* Size of every page in this cache */
48 int szExtra; /* Size of extra space for each page */
49 u8 bPurgeable; /* True if pages are on backing store */
50 u8 eCreate; /* eCreate value for for xFetch() */
51 int (*xStress)(void*,PgHdr*); /* Call to try make a page clean */
52 void *pStress; /* Argument to xStress */
53 sqlite3_pcache *pCache; /* Pluggable cache module */
56 /********************************** Test and Debug Logic **********************/
58 ** Debug tracing macros. Enable by by changing the "0" to "1" and
59 ** recompiling.
61 ** When sqlite3PcacheTrace is 1, single line trace messages are issued.
62 ** When sqlite3PcacheTrace is 2, a dump of the pcache showing all cache entries
63 ** is displayed for many operations, resulting in a lot of output.
65 #if defined(SQLITE_DEBUG) && 0
66 int sqlite3PcacheTrace = 2; /* 0: off 1: simple 2: cache dumps */
67 int sqlite3PcacheMxDump = 9999; /* Max cache entries for pcacheDump() */
68 # define pcacheTrace(X) if(sqlite3PcacheTrace){sqlite3DebugPrintf X;}
69 static void pcachePageTrace(int i, sqlite3_pcache_page *pLower){
70 PgHdr *pPg;
71 unsigned char *a;
72 int j;
73 if( pLower==0 ){
74 printf("%3d: NULL\n", i);
75 }else{
76 pPg = (PgHdr*)pLower->pExtra;
77 printf("%3d: nRef %2lld flgs %02x data ", i, pPg->nRef, pPg->flags);
78 a = (unsigned char *)pLower->pBuf;
79 for(j=0; j<12; j++) printf("%02x", a[j]);
80 printf(" ptr %p\n", pPg);
83 static void pcacheDump(PCache *pCache){
84 int N;
85 int i;
86 sqlite3_pcache_page *pLower;
88 if( sqlite3PcacheTrace<2 ) return;
89 if( pCache->pCache==0 ) return;
90 N = sqlite3PcachePagecount(pCache);
91 if( N>sqlite3PcacheMxDump ) N = sqlite3PcacheMxDump;
92 for(i=1; i<=N; i++){
93 pLower = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, i, 0);
94 pcachePageTrace(i, pLower);
95 if( pLower && ((PgHdr*)pLower)->pPage==0 ){
96 sqlite3GlobalConfig.pcache2.xUnpin(pCache->pCache, pLower, 0);
100 #else
101 # define pcacheTrace(X)
102 # define pcachePageTrace(PGNO, X)
103 # define pcacheDump(X)
104 #endif
107 ** Return 1 if pPg is on the dirty list for pCache. Return 0 if not.
108 ** This routine runs inside of assert() statements only.
110 #if defined(SQLITE_ENABLE_EXPENSIVE_ASSERT)
111 static int pageOnDirtyList(PCache *pCache, PgHdr *pPg){
112 PgHdr *p;
113 for(p=pCache->pDirty; p; p=p->pDirtyNext){
114 if( p==pPg ) return 1;
116 return 0;
118 static int pageNotOnDirtyList(PCache *pCache, PgHdr *pPg){
119 PgHdr *p;
120 for(p=pCache->pDirty; p; p=p->pDirtyNext){
121 if( p==pPg ) return 0;
123 return 1;
125 #else
126 # define pageOnDirtyList(A,B) 1
127 # define pageNotOnDirtyList(A,B) 1
128 #endif
131 ** Check invariants on a PgHdr entry. Return true if everything is OK.
132 ** Return false if any invariant is violated.
134 ** This routine is for use inside of assert() statements only. For
135 ** example:
137 ** assert( sqlite3PcachePageSanity(pPg) );
139 #ifdef SQLITE_DEBUG
140 int sqlite3PcachePageSanity(PgHdr *pPg){
141 PCache *pCache;
142 assert( pPg!=0 );
143 assert( pPg->pgno>0 || pPg->pPager==0 ); /* Page number is 1 or more */
144 pCache = pPg->pCache;
145 assert( pCache!=0 ); /* Every page has an associated PCache */
146 if( pPg->flags & PGHDR_CLEAN ){
147 assert( (pPg->flags & PGHDR_DIRTY)==0 );/* Cannot be both CLEAN and DIRTY */
148 assert( pageNotOnDirtyList(pCache, pPg) );/* CLEAN pages not on dirtylist */
149 }else{
150 assert( (pPg->flags & PGHDR_DIRTY)!=0 );/* If not CLEAN must be DIRTY */
151 assert( pPg->pDirtyNext==0 || pPg->pDirtyNext->pDirtyPrev==pPg );
152 assert( pPg->pDirtyPrev==0 || pPg->pDirtyPrev->pDirtyNext==pPg );
153 assert( pPg->pDirtyPrev!=0 || pCache->pDirty==pPg );
154 assert( pageOnDirtyList(pCache, pPg) );
156 /* WRITEABLE pages must also be DIRTY */
157 if( pPg->flags & PGHDR_WRITEABLE ){
158 assert( pPg->flags & PGHDR_DIRTY ); /* WRITEABLE implies DIRTY */
160 /* NEED_SYNC can be set independently of WRITEABLE. This can happen,
161 ** for example, when using the sqlite3PagerDontWrite() optimization:
162 ** (1) Page X is journalled, and gets WRITEABLE and NEED_SEEK.
163 ** (2) Page X moved to freelist, WRITEABLE is cleared
164 ** (3) Page X reused, WRITEABLE is set again
165 ** If NEED_SYNC had been cleared in step 2, then it would not be reset
166 ** in step 3, and page might be written into the database without first
167 ** syncing the rollback journal, which might cause corruption on a power
168 ** loss.
170 ** Another example is when the database page size is smaller than the
171 ** disk sector size. When any page of a sector is journalled, all pages
172 ** in that sector are marked NEED_SYNC even if they are still CLEAN, just
173 ** in case they are later modified, since all pages in the same sector
174 ** must be journalled and synced before any of those pages can be safely
175 ** written.
177 return 1;
179 #endif /* SQLITE_DEBUG */
182 /********************************** Linked List Management ********************/
184 /* Allowed values for second argument to pcacheManageDirtyList() */
185 #define PCACHE_DIRTYLIST_REMOVE 1 /* Remove pPage from dirty list */
186 #define PCACHE_DIRTYLIST_ADD 2 /* Add pPage to the dirty list */
187 #define PCACHE_DIRTYLIST_FRONT 3 /* Move pPage to the front of the list */
190 ** Manage pPage's participation on the dirty list. Bits of the addRemove
191 ** argument determines what operation to do. The 0x01 bit means first
192 ** remove pPage from the dirty list. The 0x02 means add pPage back to
193 ** the dirty list. Doing both moves pPage to the front of the dirty list.
195 static void pcacheManageDirtyList(PgHdr *pPage, u8 addRemove){
196 PCache *p = pPage->pCache;
198 pcacheTrace(("%p.DIRTYLIST.%s %d\n", p,
199 addRemove==1 ? "REMOVE" : addRemove==2 ? "ADD" : "FRONT",
200 pPage->pgno));
201 if( addRemove & PCACHE_DIRTYLIST_REMOVE ){
202 assert( pPage->pDirtyNext || pPage==p->pDirtyTail );
203 assert( pPage->pDirtyPrev || pPage==p->pDirty );
205 /* Update the PCache1.pSynced variable if necessary. */
206 if( p->pSynced==pPage ){
207 p->pSynced = pPage->pDirtyPrev;
210 if( pPage->pDirtyNext ){
211 pPage->pDirtyNext->pDirtyPrev = pPage->pDirtyPrev;
212 }else{
213 assert( pPage==p->pDirtyTail );
214 p->pDirtyTail = pPage->pDirtyPrev;
216 if( pPage->pDirtyPrev ){
217 pPage->pDirtyPrev->pDirtyNext = pPage->pDirtyNext;
218 }else{
219 /* If there are now no dirty pages in the cache, set eCreate to 2.
220 ** This is an optimization that allows sqlite3PcacheFetch() to skip
221 ** searching for a dirty page to eject from the cache when it might
222 ** otherwise have to. */
223 assert( pPage==p->pDirty );
224 p->pDirty = pPage->pDirtyNext;
225 assert( p->bPurgeable || p->eCreate==2 );
226 if( p->pDirty==0 ){ /*OPTIMIZATION-IF-TRUE*/
227 assert( p->bPurgeable==0 || p->eCreate==1 );
228 p->eCreate = 2;
232 if( addRemove & PCACHE_DIRTYLIST_ADD ){
233 pPage->pDirtyPrev = 0;
234 pPage->pDirtyNext = p->pDirty;
235 if( pPage->pDirtyNext ){
236 assert( pPage->pDirtyNext->pDirtyPrev==0 );
237 pPage->pDirtyNext->pDirtyPrev = pPage;
238 }else{
239 p->pDirtyTail = pPage;
240 if( p->bPurgeable ){
241 assert( p->eCreate==2 );
242 p->eCreate = 1;
245 p->pDirty = pPage;
247 /* If pSynced is NULL and this page has a clear NEED_SYNC flag, set
248 ** pSynced to point to it. Checking the NEED_SYNC flag is an
249 ** optimization, as if pSynced points to a page with the NEED_SYNC
250 ** flag set sqlite3PcacheFetchStress() searches through all newer
251 ** entries of the dirty-list for a page with NEED_SYNC clear anyway. */
252 if( !p->pSynced
253 && 0==(pPage->flags&PGHDR_NEED_SYNC) /*OPTIMIZATION-IF-FALSE*/
255 p->pSynced = pPage;
258 pcacheDump(p);
262 ** Wrapper around the pluggable caches xUnpin method. If the cache is
263 ** being used for an in-memory database, this function is a no-op.
265 static void pcacheUnpin(PgHdr *p){
266 if( p->pCache->bPurgeable ){
267 pcacheTrace(("%p.UNPIN %d\n", p->pCache, p->pgno));
268 sqlite3GlobalConfig.pcache2.xUnpin(p->pCache->pCache, p->pPage, 0);
269 pcacheDump(p->pCache);
274 ** Compute the number of pages of cache requested. p->szCache is the
275 ** cache size requested by the "PRAGMA cache_size" statement.
277 static int numberOfCachePages(PCache *p){
278 if( p->szCache>=0 ){
279 /* IMPLEMENTATION-OF: R-42059-47211 If the argument N is positive then the
280 ** suggested cache size is set to N. */
281 return p->szCache;
282 }else{
283 i64 n;
284 /* IMPLEMENTATION-OF: R-59858-46238 If the argument N is negative, then the
285 ** number of cache pages is adjusted to be a number of pages that would
286 ** use approximately abs(N*1024) bytes of memory based on the current
287 ** page size. */
288 n = ((-1024*(i64)p->szCache)/(p->szPage+p->szExtra));
289 if( n>1000000000 ) n = 1000000000;
290 return (int)n;
294 /*************************************************** General Interfaces ******
296 ** Initialize and shutdown the page cache subsystem. Neither of these
297 ** functions are threadsafe.
299 int sqlite3PcacheInitialize(void){
300 if( sqlite3GlobalConfig.pcache2.xInit==0 ){
301 /* IMPLEMENTATION-OF: R-26801-64137 If the xInit() method is NULL, then the
302 ** built-in default page cache is used instead of the application defined
303 ** page cache. */
304 sqlite3PCacheSetDefault();
305 assert( sqlite3GlobalConfig.pcache2.xInit!=0 );
307 return sqlite3GlobalConfig.pcache2.xInit(sqlite3GlobalConfig.pcache2.pArg);
309 void sqlite3PcacheShutdown(void){
310 if( sqlite3GlobalConfig.pcache2.xShutdown ){
311 /* IMPLEMENTATION-OF: R-26000-56589 The xShutdown() method may be NULL. */
312 sqlite3GlobalConfig.pcache2.xShutdown(sqlite3GlobalConfig.pcache2.pArg);
317 ** Return the size in bytes of a PCache object.
319 int sqlite3PcacheSize(void){ return sizeof(PCache); }
322 ** Create a new PCache object. Storage space to hold the object
323 ** has already been allocated and is passed in as the p pointer.
324 ** The caller discovers how much space needs to be allocated by
325 ** calling sqlite3PcacheSize().
327 ** szExtra is some extra space allocated for each page. The first
328 ** 8 bytes of the extra space will be zeroed as the page is allocated,
329 ** but remaining content will be uninitialized. Though it is opaque
330 ** to this module, the extra space really ends up being the MemPage
331 ** structure in the pager.
333 int sqlite3PcacheOpen(
334 int szPage, /* Size of every page */
335 int szExtra, /* Extra space associated with each page */
336 int bPurgeable, /* True if pages are on backing store */
337 int (*xStress)(void*,PgHdr*),/* Call to try to make pages clean */
338 void *pStress, /* Argument to xStress */
339 PCache *p /* Preallocated space for the PCache */
341 memset(p, 0, sizeof(PCache));
342 p->szPage = 1;
343 p->szExtra = szExtra;
344 assert( szExtra>=8 ); /* First 8 bytes will be zeroed */
345 p->bPurgeable = bPurgeable;
346 p->eCreate = 2;
347 p->xStress = xStress;
348 p->pStress = pStress;
349 p->szCache = 100;
350 p->szSpill = 1;
351 pcacheTrace(("%p.OPEN szPage %d bPurgeable %d\n",p,szPage,bPurgeable));
352 return sqlite3PcacheSetPageSize(p, szPage);
356 ** Change the page size for PCache object. The caller must ensure that there
357 ** are no outstanding page references when this function is called.
359 int sqlite3PcacheSetPageSize(PCache *pCache, int szPage){
360 assert( pCache->nRefSum==0 && pCache->pDirty==0 );
361 if( pCache->szPage ){
362 sqlite3_pcache *pNew;
363 pNew = sqlite3GlobalConfig.pcache2.xCreate(
364 szPage, pCache->szExtra + ROUND8(sizeof(PgHdr)),
365 pCache->bPurgeable
367 if( pNew==0 ) return SQLITE_NOMEM_BKPT;
368 sqlite3GlobalConfig.pcache2.xCachesize(pNew, numberOfCachePages(pCache));
369 if( pCache->pCache ){
370 sqlite3GlobalConfig.pcache2.xDestroy(pCache->pCache);
372 pCache->pCache = pNew;
373 pCache->szPage = szPage;
374 pcacheTrace(("%p.PAGESIZE %d\n",pCache,szPage));
376 return SQLITE_OK;
380 ** Try to obtain a page from the cache.
382 ** This routine returns a pointer to an sqlite3_pcache_page object if
383 ** such an object is already in cache, or if a new one is created.
384 ** This routine returns a NULL pointer if the object was not in cache
385 ** and could not be created.
387 ** The createFlags should be 0 to check for existing pages and should
388 ** be 3 (not 1, but 3) to try to create a new page.
390 ** If the createFlag is 0, then NULL is always returned if the page
391 ** is not already in the cache. If createFlag is 1, then a new page
392 ** is created only if that can be done without spilling dirty pages
393 ** and without exceeding the cache size limit.
395 ** The caller needs to invoke sqlite3PcacheFetchFinish() to properly
396 ** initialize the sqlite3_pcache_page object and convert it into a
397 ** PgHdr object. The sqlite3PcacheFetch() and sqlite3PcacheFetchFinish()
398 ** routines are split this way for performance reasons. When separated
399 ** they can both (usually) operate without having to push values to
400 ** the stack on entry and pop them back off on exit, which saves a
401 ** lot of pushing and popping.
403 sqlite3_pcache_page *sqlite3PcacheFetch(
404 PCache *pCache, /* Obtain the page from this cache */
405 Pgno pgno, /* Page number to obtain */
406 int createFlag /* If true, create page if it does not exist already */
408 int eCreate;
409 sqlite3_pcache_page *pRes;
411 assert( pCache!=0 );
412 assert( pCache->pCache!=0 );
413 assert( createFlag==3 || createFlag==0 );
414 assert( pCache->eCreate==((pCache->bPurgeable && pCache->pDirty) ? 1 : 2) );
416 /* eCreate defines what to do if the page does not exist.
417 ** 0 Do not allocate a new page. (createFlag==0)
418 ** 1 Allocate a new page if doing so is inexpensive.
419 ** (createFlag==1 AND bPurgeable AND pDirty)
420 ** 2 Allocate a new page even it doing so is difficult.
421 ** (createFlag==1 AND !(bPurgeable AND pDirty)
423 eCreate = createFlag & pCache->eCreate;
424 assert( eCreate==0 || eCreate==1 || eCreate==2 );
425 assert( createFlag==0 || pCache->eCreate==eCreate );
426 assert( createFlag==0 || eCreate==1+(!pCache->bPurgeable||!pCache->pDirty) );
427 pRes = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, pgno, eCreate);
428 pcacheTrace(("%p.FETCH %d%s (result: %p) ",pCache,pgno,
429 createFlag?" create":"",pRes));
430 pcachePageTrace(pgno, pRes);
431 return pRes;
435 ** If the sqlite3PcacheFetch() routine is unable to allocate a new
436 ** page because no clean pages are available for reuse and the cache
437 ** size limit has been reached, then this routine can be invoked to
438 ** try harder to allocate a page. This routine might invoke the stress
439 ** callback to spill dirty pages to the journal. It will then try to
440 ** allocate the new page and will only fail to allocate a new page on
441 ** an OOM error.
443 ** This routine should be invoked only after sqlite3PcacheFetch() fails.
445 int sqlite3PcacheFetchStress(
446 PCache *pCache, /* Obtain the page from this cache */
447 Pgno pgno, /* Page number to obtain */
448 sqlite3_pcache_page **ppPage /* Write result here */
450 PgHdr *pPg;
451 if( pCache->eCreate==2 ) return 0;
453 if( sqlite3PcachePagecount(pCache)>pCache->szSpill ){
454 /* Find a dirty page to write-out and recycle. First try to find a
455 ** page that does not require a journal-sync (one with PGHDR_NEED_SYNC
456 ** cleared), but if that is not possible settle for any other
457 ** unreferenced dirty page.
459 ** If the LRU page in the dirty list that has a clear PGHDR_NEED_SYNC
460 ** flag is currently referenced, then the following may leave pSynced
461 ** set incorrectly (pointing to other than the LRU page with NEED_SYNC
462 ** cleared). This is Ok, as pSynced is just an optimization. */
463 for(pPg=pCache->pSynced;
464 pPg && (pPg->nRef || (pPg->flags&PGHDR_NEED_SYNC));
465 pPg=pPg->pDirtyPrev
467 pCache->pSynced = pPg;
468 if( !pPg ){
469 for(pPg=pCache->pDirtyTail; pPg && pPg->nRef; pPg=pPg->pDirtyPrev);
471 if( pPg ){
472 int rc;
473 #ifdef SQLITE_LOG_CACHE_SPILL
474 sqlite3_log(SQLITE_FULL,
475 "spill page %d making room for %d - cache used: %d/%d",
476 pPg->pgno, pgno,
477 sqlite3GlobalConfig.pcache2.xPagecount(pCache->pCache),
478 numberOfCachePages(pCache));
479 #endif
480 pcacheTrace(("%p.SPILL %d\n",pCache,pPg->pgno));
481 rc = pCache->xStress(pCache->pStress, pPg);
482 pcacheDump(pCache);
483 if( rc!=SQLITE_OK && rc!=SQLITE_BUSY ){
484 return rc;
488 *ppPage = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, pgno, 2);
489 return *ppPage==0 ? SQLITE_NOMEM_BKPT : SQLITE_OK;
493 ** This is a helper routine for sqlite3PcacheFetchFinish()
495 ** In the uncommon case where the page being fetched has not been
496 ** initialized, this routine is invoked to do the initialization.
497 ** This routine is broken out into a separate function since it
498 ** requires extra stack manipulation that can be avoided in the common
499 ** case.
501 static SQLITE_NOINLINE PgHdr *pcacheFetchFinishWithInit(
502 PCache *pCache, /* Obtain the page from this cache */
503 Pgno pgno, /* Page number obtained */
504 sqlite3_pcache_page *pPage /* Page obtained by prior PcacheFetch() call */
506 PgHdr *pPgHdr;
507 assert( pPage!=0 );
508 pPgHdr = (PgHdr*)pPage->pExtra;
509 assert( pPgHdr->pPage==0 );
510 memset(&pPgHdr->pDirty, 0, sizeof(PgHdr) - offsetof(PgHdr,pDirty));
511 pPgHdr->pPage = pPage;
512 pPgHdr->pData = pPage->pBuf;
513 pPgHdr->pExtra = (void *)&pPgHdr[1];
514 memset(pPgHdr->pExtra, 0, 8);
515 pPgHdr->pCache = pCache;
516 pPgHdr->pgno = pgno;
517 pPgHdr->flags = PGHDR_CLEAN;
518 return sqlite3PcacheFetchFinish(pCache,pgno,pPage);
522 ** This routine converts the sqlite3_pcache_page object returned by
523 ** sqlite3PcacheFetch() into an initialized PgHdr object. This routine
524 ** must be called after sqlite3PcacheFetch() in order to get a usable
525 ** result.
527 PgHdr *sqlite3PcacheFetchFinish(
528 PCache *pCache, /* Obtain the page from this cache */
529 Pgno pgno, /* Page number obtained */
530 sqlite3_pcache_page *pPage /* Page obtained by prior PcacheFetch() call */
532 PgHdr *pPgHdr;
534 assert( pPage!=0 );
535 pPgHdr = (PgHdr *)pPage->pExtra;
537 if( !pPgHdr->pPage ){
538 return pcacheFetchFinishWithInit(pCache, pgno, pPage);
540 pCache->nRefSum++;
541 pPgHdr->nRef++;
542 assert( sqlite3PcachePageSanity(pPgHdr) );
543 return pPgHdr;
547 ** Decrement the reference count on a page. If the page is clean and the
548 ** reference count drops to 0, then it is made eligible for recycling.
550 void SQLITE_NOINLINE sqlite3PcacheRelease(PgHdr *p){
551 assert( p->nRef>0 );
552 p->pCache->nRefSum--;
553 if( (--p->nRef)==0 ){
554 if( p->flags&PGHDR_CLEAN ){
555 pcacheUnpin(p);
556 }else{
557 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_FRONT);
558 assert( sqlite3PcachePageSanity(p) );
564 ** Increase the reference count of a supplied page by 1.
566 void sqlite3PcacheRef(PgHdr *p){
567 assert(p->nRef>0);
568 assert( sqlite3PcachePageSanity(p) );
569 p->nRef++;
570 p->pCache->nRefSum++;
574 ** Drop a page from the cache. There must be exactly one reference to the
575 ** page. This function deletes that reference, so after it returns the
576 ** page pointed to by p is invalid.
578 void sqlite3PcacheDrop(PgHdr *p){
579 assert( p->nRef==1 );
580 assert( sqlite3PcachePageSanity(p) );
581 if( p->flags&PGHDR_DIRTY ){
582 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_REMOVE);
584 p->pCache->nRefSum--;
585 sqlite3GlobalConfig.pcache2.xUnpin(p->pCache->pCache, p->pPage, 1);
589 ** Make sure the page is marked as dirty. If it isn't dirty already,
590 ** make it so.
592 void sqlite3PcacheMakeDirty(PgHdr *p){
593 assert( p->nRef>0 );
594 assert( sqlite3PcachePageSanity(p) );
595 if( p->flags & (PGHDR_CLEAN|PGHDR_DONT_WRITE) ){ /*OPTIMIZATION-IF-FALSE*/
596 p->flags &= ~PGHDR_DONT_WRITE;
597 if( p->flags & PGHDR_CLEAN ){
598 p->flags ^= (PGHDR_DIRTY|PGHDR_CLEAN);
599 pcacheTrace(("%p.DIRTY %d\n",p->pCache,p->pgno));
600 assert( (p->flags & (PGHDR_DIRTY|PGHDR_CLEAN))==PGHDR_DIRTY );
601 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_ADD);
602 assert( sqlite3PcachePageSanity(p) );
604 assert( sqlite3PcachePageSanity(p) );
609 ** Make sure the page is marked as clean. If it isn't clean already,
610 ** make it so.
612 void sqlite3PcacheMakeClean(PgHdr *p){
613 assert( sqlite3PcachePageSanity(p) );
614 assert( (p->flags & PGHDR_DIRTY)!=0 );
615 assert( (p->flags & PGHDR_CLEAN)==0 );
616 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_REMOVE);
617 p->flags &= ~(PGHDR_DIRTY|PGHDR_NEED_SYNC|PGHDR_WRITEABLE);
618 p->flags |= PGHDR_CLEAN;
619 pcacheTrace(("%p.CLEAN %d\n",p->pCache,p->pgno));
620 assert( sqlite3PcachePageSanity(p) );
621 if( p->nRef==0 ){
622 pcacheUnpin(p);
627 ** Make every page in the cache clean.
629 void sqlite3PcacheCleanAll(PCache *pCache){
630 PgHdr *p;
631 pcacheTrace(("%p.CLEAN-ALL\n",pCache));
632 while( (p = pCache->pDirty)!=0 ){
633 sqlite3PcacheMakeClean(p);
638 ** Clear the PGHDR_NEED_SYNC and PGHDR_WRITEABLE flag from all dirty pages.
640 void sqlite3PcacheClearWritable(PCache *pCache){
641 PgHdr *p;
642 pcacheTrace(("%p.CLEAR-WRITEABLE\n",pCache));
643 for(p=pCache->pDirty; p; p=p->pDirtyNext){
644 p->flags &= ~(PGHDR_NEED_SYNC|PGHDR_WRITEABLE);
646 pCache->pSynced = pCache->pDirtyTail;
650 ** Clear the PGHDR_NEED_SYNC flag from all dirty pages.
652 void sqlite3PcacheClearSyncFlags(PCache *pCache){
653 PgHdr *p;
654 for(p=pCache->pDirty; p; p=p->pDirtyNext){
655 p->flags &= ~PGHDR_NEED_SYNC;
657 pCache->pSynced = pCache->pDirtyTail;
661 ** Change the page number of page p to newPgno.
663 void sqlite3PcacheMove(PgHdr *p, Pgno newPgno){
664 PCache *pCache = p->pCache;
665 sqlite3_pcache_page *pOther;
666 assert( p->nRef>0 );
667 assert( newPgno>0 );
668 assert( sqlite3PcachePageSanity(p) );
669 pcacheTrace(("%p.MOVE %d -> %d\n",pCache,p->pgno,newPgno));
670 pOther = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, newPgno, 0);
671 if( pOther ){
672 PgHdr *pXPage = (PgHdr*)pOther->pExtra;
673 assert( pXPage->nRef==0 );
674 pXPage->nRef++;
675 pCache->nRefSum++;
676 sqlite3PcacheDrop(pXPage);
678 sqlite3GlobalConfig.pcache2.xRekey(pCache->pCache, p->pPage, p->pgno,newPgno);
679 p->pgno = newPgno;
680 if( (p->flags&PGHDR_DIRTY) && (p->flags&PGHDR_NEED_SYNC) ){
681 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_FRONT);
682 assert( sqlite3PcachePageSanity(p) );
687 ** Drop every cache entry whose page number is greater than "pgno". The
688 ** caller must ensure that there are no outstanding references to any pages
689 ** other than page 1 with a page number greater than pgno.
691 ** If there is a reference to page 1 and the pgno parameter passed to this
692 ** function is 0, then the data area associated with page 1 is zeroed, but
693 ** the page object is not dropped.
695 void sqlite3PcacheTruncate(PCache *pCache, Pgno pgno){
696 if( pCache->pCache ){
697 PgHdr *p;
698 PgHdr *pNext;
699 pcacheTrace(("%p.TRUNCATE %d\n",pCache,pgno));
700 for(p=pCache->pDirty; p; p=pNext){
701 pNext = p->pDirtyNext;
702 /* This routine never gets call with a positive pgno except right
703 ** after sqlite3PcacheCleanAll(). So if there are dirty pages,
704 ** it must be that pgno==0.
706 assert( p->pgno>0 );
707 if( p->pgno>pgno ){
708 assert( p->flags&PGHDR_DIRTY );
709 sqlite3PcacheMakeClean(p);
712 if( pgno==0 && pCache->nRefSum ){
713 sqlite3_pcache_page *pPage1;
714 pPage1 = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache,1,0);
715 if( ALWAYS(pPage1) ){ /* Page 1 is always available in cache, because
716 ** pCache->nRefSum>0 */
717 memset(pPage1->pBuf, 0, pCache->szPage);
718 pgno = 1;
721 sqlite3GlobalConfig.pcache2.xTruncate(pCache->pCache, pgno+1);
726 ** Close a cache.
728 void sqlite3PcacheClose(PCache *pCache){
729 assert( pCache->pCache!=0 );
730 pcacheTrace(("%p.CLOSE\n",pCache));
731 sqlite3GlobalConfig.pcache2.xDestroy(pCache->pCache);
735 ** Discard the contents of the cache.
737 void sqlite3PcacheClear(PCache *pCache){
738 sqlite3PcacheTruncate(pCache, 0);
742 ** Merge two lists of pages connected by pDirty and in pgno order.
743 ** Do not bother fixing the pDirtyPrev pointers.
745 static PgHdr *pcacheMergeDirtyList(PgHdr *pA, PgHdr *pB){
746 PgHdr result, *pTail;
747 pTail = &result;
748 assert( pA!=0 && pB!=0 );
749 for(;;){
750 if( pA->pgno<pB->pgno ){
751 pTail->pDirty = pA;
752 pTail = pA;
753 pA = pA->pDirty;
754 if( pA==0 ){
755 pTail->pDirty = pB;
756 break;
758 }else{
759 pTail->pDirty = pB;
760 pTail = pB;
761 pB = pB->pDirty;
762 if( pB==0 ){
763 pTail->pDirty = pA;
764 break;
768 return result.pDirty;
772 ** Sort the list of pages in ascending order by pgno. Pages are
773 ** connected by pDirty pointers. The pDirtyPrev pointers are
774 ** corrupted by this sort.
776 ** Since there cannot be more than 2^31 distinct pages in a database,
777 ** there cannot be more than 31 buckets required by the merge sorter.
778 ** One extra bucket is added to catch overflow in case something
779 ** ever changes to make the previous sentence incorrect.
781 #define N_SORT_BUCKET 32
782 static PgHdr *pcacheSortDirtyList(PgHdr *pIn){
783 PgHdr *a[N_SORT_BUCKET], *p;
784 int i;
785 memset(a, 0, sizeof(a));
786 while( pIn ){
787 p = pIn;
788 pIn = p->pDirty;
789 p->pDirty = 0;
790 for(i=0; ALWAYS(i<N_SORT_BUCKET-1); i++){
791 if( a[i]==0 ){
792 a[i] = p;
793 break;
794 }else{
795 p = pcacheMergeDirtyList(a[i], p);
796 a[i] = 0;
799 if( NEVER(i==N_SORT_BUCKET-1) ){
800 /* To get here, there need to be 2^(N_SORT_BUCKET) elements in
801 ** the input list. But that is impossible.
803 a[i] = pcacheMergeDirtyList(a[i], p);
806 p = a[0];
807 for(i=1; i<N_SORT_BUCKET; i++){
808 if( a[i]==0 ) continue;
809 p = p ? pcacheMergeDirtyList(p, a[i]) : a[i];
811 return p;
815 ** Return a list of all dirty pages in the cache, sorted by page number.
817 PgHdr *sqlite3PcacheDirtyList(PCache *pCache){
818 PgHdr *p;
819 for(p=pCache->pDirty; p; p=p->pDirtyNext){
820 p->pDirty = p->pDirtyNext;
822 return pcacheSortDirtyList(pCache->pDirty);
826 ** Return the total number of references to all pages held by the cache.
828 ** This is not the total number of pages referenced, but the sum of the
829 ** reference count for all pages.
831 i64 sqlite3PcacheRefCount(PCache *pCache){
832 return pCache->nRefSum;
836 ** Return the number of references to the page supplied as an argument.
838 i64 sqlite3PcachePageRefcount(PgHdr *p){
839 return p->nRef;
843 ** Return the total number of pages in the cache.
845 int sqlite3PcachePagecount(PCache *pCache){
846 assert( pCache->pCache!=0 );
847 return sqlite3GlobalConfig.pcache2.xPagecount(pCache->pCache);
850 #ifdef SQLITE_TEST
852 ** Get the suggested cache-size value.
854 int sqlite3PcacheGetCachesize(PCache *pCache){
855 return numberOfCachePages(pCache);
857 #endif
860 ** Set the suggested cache-size value.
862 void sqlite3PcacheSetCachesize(PCache *pCache, int mxPage){
863 assert( pCache->pCache!=0 );
864 pCache->szCache = mxPage;
865 sqlite3GlobalConfig.pcache2.xCachesize(pCache->pCache,
866 numberOfCachePages(pCache));
870 ** Set the suggested cache-spill value. Make no changes if if the
871 ** argument is zero. Return the effective cache-spill size, which will
872 ** be the larger of the szSpill and szCache.
874 int sqlite3PcacheSetSpillsize(PCache *p, int mxPage){
875 int res;
876 assert( p->pCache!=0 );
877 if( mxPage ){
878 if( mxPage<0 ){
879 mxPage = (int)((-1024*(i64)mxPage)/(p->szPage+p->szExtra));
881 p->szSpill = mxPage;
883 res = numberOfCachePages(p);
884 if( res<p->szSpill ) res = p->szSpill;
885 return res;
889 ** Free up as much memory as possible from the page cache.
891 void sqlite3PcacheShrink(PCache *pCache){
892 assert( pCache->pCache!=0 );
893 sqlite3GlobalConfig.pcache2.xShrink(pCache->pCache);
897 ** Return the size of the header added by this middleware layer
898 ** in the page-cache hierarchy.
900 int sqlite3HeaderSizePcache(void){ return ROUND8(sizeof(PgHdr)); }
903 ** Return the number of dirty pages currently in the cache, as a percentage
904 ** of the configured cache size.
906 int sqlite3PCachePercentDirty(PCache *pCache){
907 PgHdr *pDirty;
908 int nDirty = 0;
909 int nCache = numberOfCachePages(pCache);
910 for(pDirty=pCache->pDirty; pDirty; pDirty=pDirty->pDirtyNext) nDirty++;
911 return nCache ? (int)(((i64)nDirty * 100) / nCache) : 0;
914 #ifdef SQLITE_DIRECT_OVERFLOW_READ
916 ** Return true if there are one or more dirty pages in the cache. Else false.
918 int sqlite3PCacheIsDirty(PCache *pCache){
919 return (pCache->pDirty!=0);
921 #endif
923 #if defined(SQLITE_CHECK_PAGES) || defined(SQLITE_DEBUG)
925 ** For all dirty pages currently in the cache, invoke the specified
926 ** callback. This is only used if the SQLITE_CHECK_PAGES macro is
927 ** defined.
929 void sqlite3PcacheIterateDirty(PCache *pCache, void (*xIter)(PgHdr *)){
930 PgHdr *pDirty;
931 for(pDirty=pCache->pDirty; pDirty; pDirty=pDirty->pDirtyNext){
932 xIter(pDirty);
935 #endif