Snapshot of upstream SQLite 3.46.1
[sqlcipher.git] / src / pragma.c
bloba8045aab1eaf821b6da3caba9fe8fdcf4653e89a
1 /*
2 ** 2003 April 6
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains code used to implement the PRAGMA command.
14 #include "sqliteInt.h"
16 #if !defined(SQLITE_ENABLE_LOCKING_STYLE)
17 # if defined(__APPLE__)
18 # define SQLITE_ENABLE_LOCKING_STYLE 1
19 # else
20 # define SQLITE_ENABLE_LOCKING_STYLE 0
21 # endif
22 #endif
24 /***************************************************************************
25 ** The "pragma.h" include file is an automatically generated file that
26 ** that includes the PragType_XXXX macro definitions and the aPragmaName[]
27 ** object. This ensures that the aPragmaName[] table is arranged in
28 ** lexicographical order to facility a binary search of the pragma name.
29 ** Do not edit pragma.h directly. Edit and rerun the script in at
30 ** ../tool/mkpragmatab.tcl. */
31 #include "pragma.h"
34 ** When the 0x10 bit of PRAGMA optimize is set, any ANALYZE commands
35 ** will be run with an analysis_limit set to the lessor of the value of
36 ** the following macro or to the actual analysis_limit if it is non-zero,
37 ** in order to prevent PRAGMA optimize from running for too long.
39 ** The value of 2000 is chosen emperically so that the worst-case run-time
40 ** for PRAGMA optimize does not exceed 100 milliseconds against a variety
41 ** of test databases on a RaspberryPI-4 compiled using -Os and without
42 ** -DSQLITE_DEBUG. Of course, your mileage may vary. For the purpose of
43 ** this paragraph, "worst-case" means that ANALYZE ends up being
44 ** run on every table in the database. The worst case typically only
45 ** happens if PRAGMA optimize is run on a database file for which ANALYZE
46 ** has not been previously run and the 0x10000 flag is included so that
47 ** all tables are analyzed. The usual case for PRAGMA optimize is that
48 ** no ANALYZE commands will be run at all, or if any ANALYZE happens it
49 ** will be against a single table, so that expected timing for PRAGMA
50 ** optimize on a PI-4 is more like 1 millisecond or less with the 0x10000
51 ** flag or less than 100 microseconds without the 0x10000 flag.
53 ** An analysis limit of 2000 is almost always sufficient for the query
54 ** planner to fully characterize an index. The additional accuracy from
55 ** a larger analysis is not usually helpful.
57 #ifndef SQLITE_DEFAULT_OPTIMIZE_LIMIT
58 # define SQLITE_DEFAULT_OPTIMIZE_LIMIT 2000
59 #endif
62 ** Interpret the given string as a safety level. Return 0 for OFF,
63 ** 1 for ON or NORMAL, 2 for FULL, and 3 for EXTRA. Return 1 for an empty or
64 ** unrecognized string argument. The FULL and EXTRA option is disallowed
65 ** if the omitFull parameter it 1.
67 ** Note that the values returned are one less that the values that
68 ** should be passed into sqlite3BtreeSetSafetyLevel(). The is done
69 ** to support legacy SQL code. The safety level used to be boolean
70 ** and older scripts may have used numbers 0 for OFF and 1 for ON.
72 static u8 getSafetyLevel(const char *z, int omitFull, u8 dflt){
73 /* 123456789 123456789 123 */
74 static const char zText[] = "onoffalseyestruextrafull";
75 static const u8 iOffset[] = {0, 1, 2, 4, 9, 12, 15, 20};
76 static const u8 iLength[] = {2, 2, 3, 5, 3, 4, 5, 4};
77 static const u8 iValue[] = {1, 0, 0, 0, 1, 1, 3, 2};
78 /* on no off false yes true extra full */
79 int i, n;
80 if( sqlite3Isdigit(*z) ){
81 return (u8)sqlite3Atoi(z);
83 n = sqlite3Strlen30(z);
84 for(i=0; i<ArraySize(iLength); i++){
85 if( iLength[i]==n && sqlite3StrNICmp(&zText[iOffset[i]],z,n)==0
86 && (!omitFull || iValue[i]<=1)
88 return iValue[i];
91 return dflt;
95 ** Interpret the given string as a boolean value.
97 u8 sqlite3GetBoolean(const char *z, u8 dflt){
98 return getSafetyLevel(z,1,dflt)!=0;
101 /* The sqlite3GetBoolean() function is used by other modules but the
102 ** remainder of this file is specific to PRAGMA processing. So omit
103 ** the rest of the file if PRAGMAs are omitted from the build.
105 #if !defined(SQLITE_OMIT_PRAGMA)
108 ** Interpret the given string as a locking mode value.
110 static int getLockingMode(const char *z){
111 if( z ){
112 if( 0==sqlite3StrICmp(z, "exclusive") ) return PAGER_LOCKINGMODE_EXCLUSIVE;
113 if( 0==sqlite3StrICmp(z, "normal") ) return PAGER_LOCKINGMODE_NORMAL;
115 return PAGER_LOCKINGMODE_QUERY;
118 #ifndef SQLITE_OMIT_AUTOVACUUM
120 ** Interpret the given string as an auto-vacuum mode value.
122 ** The following strings, "none", "full" and "incremental" are
123 ** acceptable, as are their numeric equivalents: 0, 1 and 2 respectively.
125 static int getAutoVacuum(const char *z){
126 int i;
127 if( 0==sqlite3StrICmp(z, "none") ) return BTREE_AUTOVACUUM_NONE;
128 if( 0==sqlite3StrICmp(z, "full") ) return BTREE_AUTOVACUUM_FULL;
129 if( 0==sqlite3StrICmp(z, "incremental") ) return BTREE_AUTOVACUUM_INCR;
130 i = sqlite3Atoi(z);
131 return (u8)((i>=0&&i<=2)?i:0);
133 #endif /* ifndef SQLITE_OMIT_AUTOVACUUM */
135 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
137 ** Interpret the given string as a temp db location. Return 1 for file
138 ** backed temporary databases, 2 for the Red-Black tree in memory database
139 ** and 0 to use the compile-time default.
141 static int getTempStore(const char *z){
142 if( z[0]>='0' && z[0]<='2' ){
143 return z[0] - '0';
144 }else if( sqlite3StrICmp(z, "file")==0 ){
145 return 1;
146 }else if( sqlite3StrICmp(z, "memory")==0 ){
147 return 2;
148 }else{
149 return 0;
152 #endif /* SQLITE_PAGER_PRAGMAS */
154 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
156 ** Invalidate temp storage, either when the temp storage is changed
157 ** from default, or when 'file' and the temp_store_directory has changed
159 static int invalidateTempStorage(Parse *pParse){
160 sqlite3 *db = pParse->db;
161 if( db->aDb[1].pBt!=0 ){
162 if( !db->autoCommit
163 || sqlite3BtreeTxnState(db->aDb[1].pBt)!=SQLITE_TXN_NONE
165 sqlite3ErrorMsg(pParse, "temporary storage cannot be changed "
166 "from within a transaction");
167 return SQLITE_ERROR;
169 sqlite3BtreeClose(db->aDb[1].pBt);
170 db->aDb[1].pBt = 0;
171 sqlite3ResetAllSchemasOfConnection(db);
173 return SQLITE_OK;
175 #endif /* SQLITE_PAGER_PRAGMAS */
177 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
179 ** If the TEMP database is open, close it and mark the database schema
180 ** as needing reloading. This must be done when using the SQLITE_TEMP_STORE
181 ** or DEFAULT_TEMP_STORE pragmas.
183 static int changeTempStorage(Parse *pParse, const char *zStorageType){
184 int ts = getTempStore(zStorageType);
185 sqlite3 *db = pParse->db;
186 if( db->temp_store==ts ) return SQLITE_OK;
187 if( invalidateTempStorage( pParse ) != SQLITE_OK ){
188 return SQLITE_ERROR;
190 db->temp_store = (u8)ts;
191 return SQLITE_OK;
193 #endif /* SQLITE_PAGER_PRAGMAS */
196 ** Set result column names for a pragma.
198 static void setPragmaResultColumnNames(
199 Vdbe *v, /* The query under construction */
200 const PragmaName *pPragma /* The pragma */
202 u8 n = pPragma->nPragCName;
203 sqlite3VdbeSetNumCols(v, n==0 ? 1 : n);
204 if( n==0 ){
205 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, pPragma->zName, SQLITE_STATIC);
206 }else{
207 int i, j;
208 for(i=0, j=pPragma->iPragCName; i<n; i++, j++){
209 sqlite3VdbeSetColName(v, i, COLNAME_NAME, pragCName[j], SQLITE_STATIC);
215 ** Generate code to return a single integer value.
217 static void returnSingleInt(Vdbe *v, i64 value){
218 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, 1, 0, (const u8*)&value, P4_INT64);
219 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
223 ** Generate code to return a single text value.
225 static void returnSingleText(
226 Vdbe *v, /* Prepared statement under construction */
227 const char *zValue /* Value to be returned */
229 if( zValue ){
230 sqlite3VdbeLoadString(v, 1, (const char*)zValue);
231 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
237 ** Set the safety_level and pager flags for pager iDb. Or if iDb<0
238 ** set these values for all pagers.
240 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
241 static void setAllPagerFlags(sqlite3 *db){
242 if( db->autoCommit ){
243 Db *pDb = db->aDb;
244 int n = db->nDb;
245 assert( SQLITE_FullFSync==PAGER_FULLFSYNC );
246 assert( SQLITE_CkptFullFSync==PAGER_CKPT_FULLFSYNC );
247 assert( SQLITE_CacheSpill==PAGER_CACHESPILL );
248 assert( (PAGER_FULLFSYNC | PAGER_CKPT_FULLFSYNC | PAGER_CACHESPILL)
249 == PAGER_FLAGS_MASK );
250 assert( (pDb->safety_level & PAGER_SYNCHRONOUS_MASK)==pDb->safety_level );
251 while( (n--) > 0 ){
252 if( pDb->pBt ){
253 sqlite3BtreeSetPagerFlags(pDb->pBt,
254 pDb->safety_level | (db->flags & PAGER_FLAGS_MASK) );
256 pDb++;
260 #else
261 # define setAllPagerFlags(X) /* no-op */
262 #endif
266 ** Return a human-readable name for a constraint resolution action.
268 #ifndef SQLITE_OMIT_FOREIGN_KEY
269 static const char *actionName(u8 action){
270 const char *zName;
271 switch( action ){
272 case OE_SetNull: zName = "SET NULL"; break;
273 case OE_SetDflt: zName = "SET DEFAULT"; break;
274 case OE_Cascade: zName = "CASCADE"; break;
275 case OE_Restrict: zName = "RESTRICT"; break;
276 default: zName = "NO ACTION";
277 assert( action==OE_None ); break;
279 return zName;
281 #endif
285 ** Parameter eMode must be one of the PAGER_JOURNALMODE_XXX constants
286 ** defined in pager.h. This function returns the associated lowercase
287 ** journal-mode name.
289 const char *sqlite3JournalModename(int eMode){
290 static char * const azModeName[] = {
291 "delete", "persist", "off", "truncate", "memory"
292 #ifndef SQLITE_OMIT_WAL
293 , "wal"
294 #endif
296 assert( PAGER_JOURNALMODE_DELETE==0 );
297 assert( PAGER_JOURNALMODE_PERSIST==1 );
298 assert( PAGER_JOURNALMODE_OFF==2 );
299 assert( PAGER_JOURNALMODE_TRUNCATE==3 );
300 assert( PAGER_JOURNALMODE_MEMORY==4 );
301 assert( PAGER_JOURNALMODE_WAL==5 );
302 assert( eMode>=0 && eMode<=ArraySize(azModeName) );
304 if( eMode==ArraySize(azModeName) ) return 0;
305 return azModeName[eMode];
309 ** Locate a pragma in the aPragmaName[] array.
311 static const PragmaName *pragmaLocate(const char *zName){
312 int upr, lwr, mid = 0, rc;
313 lwr = 0;
314 upr = ArraySize(aPragmaName)-1;
315 while( lwr<=upr ){
316 mid = (lwr+upr)/2;
317 rc = sqlite3_stricmp(zName, aPragmaName[mid].zName);
318 if( rc==0 ) break;
319 if( rc<0 ){
320 upr = mid - 1;
321 }else{
322 lwr = mid + 1;
325 return lwr>upr ? 0 : &aPragmaName[mid];
329 ** Create zero or more entries in the output for the SQL functions
330 ** defined by FuncDef p.
332 static void pragmaFunclistLine(
333 Vdbe *v, /* The prepared statement being created */
334 FuncDef *p, /* A particular function definition */
335 int isBuiltin, /* True if this is a built-in function */
336 int showInternFuncs /* True if showing internal functions */
338 u32 mask =
339 SQLITE_DETERMINISTIC |
340 SQLITE_DIRECTONLY |
341 SQLITE_SUBTYPE |
342 SQLITE_INNOCUOUS |
343 SQLITE_FUNC_INTERNAL
345 if( showInternFuncs ) mask = 0xffffffff;
346 for(; p; p=p->pNext){
347 const char *zType;
348 static const char *azEnc[] = { 0, "utf8", "utf16le", "utf16be" };
350 assert( SQLITE_FUNC_ENCMASK==0x3 );
351 assert( strcmp(azEnc[SQLITE_UTF8],"utf8")==0 );
352 assert( strcmp(azEnc[SQLITE_UTF16LE],"utf16le")==0 );
353 assert( strcmp(azEnc[SQLITE_UTF16BE],"utf16be")==0 );
355 if( p->xSFunc==0 ) continue;
356 if( (p->funcFlags & SQLITE_FUNC_INTERNAL)!=0
357 && showInternFuncs==0
359 continue;
361 if( p->xValue!=0 ){
362 zType = "w";
363 }else if( p->xFinalize!=0 ){
364 zType = "a";
365 }else{
366 zType = "s";
368 sqlite3VdbeMultiLoad(v, 1, "sissii",
369 p->zName, isBuiltin,
370 zType, azEnc[p->funcFlags&SQLITE_FUNC_ENCMASK],
371 p->nArg,
372 (p->funcFlags & mask) ^ SQLITE_INNOCUOUS
379 ** Helper subroutine for PRAGMA integrity_check:
381 ** Generate code to output a single-column result row with a value of the
382 ** string held in register 3. Decrement the result count in register 1
383 ** and halt if the maximum number of result rows have been issued.
385 static int integrityCheckResultRow(Vdbe *v){
386 int addr;
387 sqlite3VdbeAddOp2(v, OP_ResultRow, 3, 1);
388 addr = sqlite3VdbeAddOp3(v, OP_IfPos, 1, sqlite3VdbeCurrentAddr(v)+2, 1);
389 VdbeCoverage(v);
390 sqlite3VdbeAddOp0(v, OP_Halt);
391 return addr;
395 ** Process a pragma statement.
397 ** Pragmas are of this form:
399 ** PRAGMA [schema.]id [= value]
401 ** The identifier might also be a string. The value is a string, and
402 ** identifier, or a number. If minusFlag is true, then the value is
403 ** a number that was preceded by a minus sign.
405 ** If the left side is "database.id" then pId1 is the database name
406 ** and pId2 is the id. If the left side is just "id" then pId1 is the
407 ** id and pId2 is any empty string.
409 void sqlite3Pragma(
410 Parse *pParse,
411 Token *pId1, /* First part of [schema.]id field */
412 Token *pId2, /* Second part of [schema.]id field, or NULL */
413 Token *pValue, /* Token for <value>, or NULL */
414 int minusFlag /* True if a '-' sign preceded <value> */
416 char *zLeft = 0; /* Nul-terminated UTF-8 string <id> */
417 char *zRight = 0; /* Nul-terminated UTF-8 string <value>, or NULL */
418 const char *zDb = 0; /* The database name */
419 Token *pId; /* Pointer to <id> token */
420 char *aFcntl[4]; /* Argument to SQLITE_FCNTL_PRAGMA */
421 int iDb; /* Database index for <database> */
422 int rc; /* return value form SQLITE_FCNTL_PRAGMA */
423 sqlite3 *db = pParse->db; /* The database connection */
424 Db *pDb; /* The specific database being pragmaed */
425 Vdbe *v = sqlite3GetVdbe(pParse); /* Prepared statement */
426 const PragmaName *pPragma; /* The pragma */
428 if( v==0 ) return;
429 sqlite3VdbeRunOnlyOnce(v);
430 pParse->nMem = 2;
432 /* Interpret the [schema.] part of the pragma statement. iDb is the
433 ** index of the database this pragma is being applied to in db.aDb[]. */
434 iDb = sqlite3TwoPartName(pParse, pId1, pId2, &pId);
435 if( iDb<0 ) return;
436 pDb = &db->aDb[iDb];
438 /* If the temp database has been explicitly named as part of the
439 ** pragma, make sure it is open.
441 if( iDb==1 && sqlite3OpenTempDatabase(pParse) ){
442 return;
445 zLeft = sqlite3NameFromToken(db, pId);
446 if( !zLeft ) return;
447 if( minusFlag ){
448 zRight = sqlite3MPrintf(db, "-%T", pValue);
449 }else{
450 zRight = sqlite3NameFromToken(db, pValue);
453 assert( pId2 );
454 zDb = pId2->n>0 ? pDb->zDbSName : 0;
455 if( sqlite3AuthCheck(pParse, SQLITE_PRAGMA, zLeft, zRight, zDb) ){
456 goto pragma_out;
459 /* Send an SQLITE_FCNTL_PRAGMA file-control to the underlying VFS
460 ** connection. If it returns SQLITE_OK, then assume that the VFS
461 ** handled the pragma and generate a no-op prepared statement.
463 ** IMPLEMENTATION-OF: R-12238-55120 Whenever a PRAGMA statement is parsed,
464 ** an SQLITE_FCNTL_PRAGMA file control is sent to the open sqlite3_file
465 ** object corresponding to the database file to which the pragma
466 ** statement refers.
468 ** IMPLEMENTATION-OF: R-29875-31678 The argument to the SQLITE_FCNTL_PRAGMA
469 ** file control is an array of pointers to strings (char**) in which the
470 ** second element of the array is the name of the pragma and the third
471 ** element is the argument to the pragma or NULL if the pragma has no
472 ** argument.
474 aFcntl[0] = 0;
475 aFcntl[1] = zLeft;
476 aFcntl[2] = zRight;
477 aFcntl[3] = 0;
478 db->busyHandler.nBusy = 0;
479 rc = sqlite3_file_control(db, zDb, SQLITE_FCNTL_PRAGMA, (void*)aFcntl);
480 if( rc==SQLITE_OK ){
481 sqlite3VdbeSetNumCols(v, 1);
482 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, aFcntl[0], SQLITE_TRANSIENT);
483 returnSingleText(v, aFcntl[0]);
484 sqlite3_free(aFcntl[0]);
485 goto pragma_out;
487 if( rc!=SQLITE_NOTFOUND ){
488 if( aFcntl[0] ){
489 sqlite3ErrorMsg(pParse, "%s", aFcntl[0]);
490 sqlite3_free(aFcntl[0]);
492 pParse->nErr++;
493 pParse->rc = rc;
494 goto pragma_out;
497 /* Locate the pragma in the lookup table */
498 pPragma = pragmaLocate(zLeft);
499 if( pPragma==0 ){
500 /* IMP: R-43042-22504 No error messages are generated if an
501 ** unknown pragma is issued. */
502 goto pragma_out;
505 /* Make sure the database schema is loaded if the pragma requires that */
506 if( (pPragma->mPragFlg & PragFlg_NeedSchema)!=0 ){
507 if( sqlite3ReadSchema(pParse) ) goto pragma_out;
510 /* Register the result column names for pragmas that return results */
511 if( (pPragma->mPragFlg & PragFlg_NoColumns)==0
512 && ((pPragma->mPragFlg & PragFlg_NoColumns1)==0 || zRight==0)
514 setPragmaResultColumnNames(v, pPragma);
517 /* Jump to the appropriate pragma handler */
518 switch( pPragma->ePragTyp ){
520 #if !defined(SQLITE_OMIT_PAGER_PRAGMAS) && !defined(SQLITE_OMIT_DEPRECATED)
522 ** PRAGMA [schema.]default_cache_size
523 ** PRAGMA [schema.]default_cache_size=N
525 ** The first form reports the current persistent setting for the
526 ** page cache size. The value returned is the maximum number of
527 ** pages in the page cache. The second form sets both the current
528 ** page cache size value and the persistent page cache size value
529 ** stored in the database file.
531 ** Older versions of SQLite would set the default cache size to a
532 ** negative number to indicate synchronous=OFF. These days, synchronous
533 ** is always on by default regardless of the sign of the default cache
534 ** size. But continue to take the absolute value of the default cache
535 ** size of historical compatibility.
537 case PragTyp_DEFAULT_CACHE_SIZE: {
538 static const int iLn = VDBE_OFFSET_LINENO(2);
539 static const VdbeOpList getCacheSize[] = {
540 { OP_Transaction, 0, 0, 0}, /* 0 */
541 { OP_ReadCookie, 0, 1, BTREE_DEFAULT_CACHE_SIZE}, /* 1 */
542 { OP_IfPos, 1, 8, 0},
543 { OP_Integer, 0, 2, 0},
544 { OP_Subtract, 1, 2, 1},
545 { OP_IfPos, 1, 8, 0},
546 { OP_Integer, 0, 1, 0}, /* 6 */
547 { OP_Noop, 0, 0, 0},
548 { OP_ResultRow, 1, 1, 0},
550 VdbeOp *aOp;
551 sqlite3VdbeUsesBtree(v, iDb);
552 if( !zRight ){
553 pParse->nMem += 2;
554 sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(getCacheSize));
555 aOp = sqlite3VdbeAddOpList(v, ArraySize(getCacheSize), getCacheSize, iLn);
556 if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break;
557 aOp[0].p1 = iDb;
558 aOp[1].p1 = iDb;
559 aOp[6].p1 = SQLITE_DEFAULT_CACHE_SIZE;
560 }else{
561 int size = sqlite3AbsInt32(sqlite3Atoi(zRight));
562 sqlite3BeginWriteOperation(pParse, 0, iDb);
563 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_DEFAULT_CACHE_SIZE, size);
564 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
565 pDb->pSchema->cache_size = size;
566 sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
568 break;
570 #endif /* !SQLITE_OMIT_PAGER_PRAGMAS && !SQLITE_OMIT_DEPRECATED */
572 #if !defined(SQLITE_OMIT_PAGER_PRAGMAS)
574 ** PRAGMA [schema.]page_size
575 ** PRAGMA [schema.]page_size=N
577 ** The first form reports the current setting for the
578 ** database page size in bytes. The second form sets the
579 ** database page size value. The value can only be set if
580 ** the database has not yet been created.
582 case PragTyp_PAGE_SIZE: {
583 Btree *pBt = pDb->pBt;
584 assert( pBt!=0 );
585 if( !zRight ){
586 int size = ALWAYS(pBt) ? sqlite3BtreeGetPageSize(pBt) : 0;
587 returnSingleInt(v, size);
588 }else{
589 /* Malloc may fail when setting the page-size, as there is an internal
590 ** buffer that the pager module resizes using sqlite3_realloc().
592 db->nextPagesize = sqlite3Atoi(zRight);
593 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize,0,0) ){
594 sqlite3OomFault(db);
597 break;
601 ** PRAGMA [schema.]secure_delete
602 ** PRAGMA [schema.]secure_delete=ON/OFF/FAST
604 ** The first form reports the current setting for the
605 ** secure_delete flag. The second form changes the secure_delete
606 ** flag setting and reports the new value.
608 case PragTyp_SECURE_DELETE: {
609 Btree *pBt = pDb->pBt;
610 int b = -1;
611 assert( pBt!=0 );
612 if( zRight ){
613 if( sqlite3_stricmp(zRight, "fast")==0 ){
614 b = 2;
615 }else{
616 b = sqlite3GetBoolean(zRight, 0);
619 if( pId2->n==0 && b>=0 ){
620 int ii;
621 for(ii=0; ii<db->nDb; ii++){
622 sqlite3BtreeSecureDelete(db->aDb[ii].pBt, b);
625 b = sqlite3BtreeSecureDelete(pBt, b);
626 returnSingleInt(v, b);
627 break;
631 ** PRAGMA [schema.]max_page_count
632 ** PRAGMA [schema.]max_page_count=N
634 ** The first form reports the current setting for the
635 ** maximum number of pages in the database file. The
636 ** second form attempts to change this setting. Both
637 ** forms return the current setting.
639 ** The absolute value of N is used. This is undocumented and might
640 ** change. The only purpose is to provide an easy way to test
641 ** the sqlite3AbsInt32() function.
643 ** PRAGMA [schema.]page_count
645 ** Return the number of pages in the specified database.
647 case PragTyp_PAGE_COUNT: {
648 int iReg;
649 i64 x = 0;
650 sqlite3CodeVerifySchema(pParse, iDb);
651 iReg = ++pParse->nMem;
652 if( sqlite3Tolower(zLeft[0])=='p' ){
653 sqlite3VdbeAddOp2(v, OP_Pagecount, iDb, iReg);
654 }else{
655 if( zRight && sqlite3DecOrHexToI64(zRight,&x)==0 ){
656 if( x<0 ) x = 0;
657 else if( x>0xfffffffe ) x = 0xfffffffe;
658 }else{
659 x = 0;
661 sqlite3VdbeAddOp3(v, OP_MaxPgcnt, iDb, iReg, (int)x);
663 sqlite3VdbeAddOp2(v, OP_ResultRow, iReg, 1);
664 break;
668 ** PRAGMA [schema.]locking_mode
669 ** PRAGMA [schema.]locking_mode = (normal|exclusive)
671 case PragTyp_LOCKING_MODE: {
672 const char *zRet = "normal";
673 int eMode = getLockingMode(zRight);
675 if( pId2->n==0 && eMode==PAGER_LOCKINGMODE_QUERY ){
676 /* Simple "PRAGMA locking_mode;" statement. This is a query for
677 ** the current default locking mode (which may be different to
678 ** the locking-mode of the main database).
680 eMode = db->dfltLockMode;
681 }else{
682 Pager *pPager;
683 if( pId2->n==0 ){
684 /* This indicates that no database name was specified as part
685 ** of the PRAGMA command. In this case the locking-mode must be
686 ** set on all attached databases, as well as the main db file.
688 ** Also, the sqlite3.dfltLockMode variable is set so that
689 ** any subsequently attached databases also use the specified
690 ** locking mode.
692 int ii;
693 assert(pDb==&db->aDb[0]);
694 for(ii=2; ii<db->nDb; ii++){
695 pPager = sqlite3BtreePager(db->aDb[ii].pBt);
696 sqlite3PagerLockingMode(pPager, eMode);
698 db->dfltLockMode = (u8)eMode;
700 pPager = sqlite3BtreePager(pDb->pBt);
701 eMode = sqlite3PagerLockingMode(pPager, eMode);
704 assert( eMode==PAGER_LOCKINGMODE_NORMAL
705 || eMode==PAGER_LOCKINGMODE_EXCLUSIVE );
706 if( eMode==PAGER_LOCKINGMODE_EXCLUSIVE ){
707 zRet = "exclusive";
709 returnSingleText(v, zRet);
710 break;
714 ** PRAGMA [schema.]journal_mode
715 ** PRAGMA [schema.]journal_mode =
716 ** (delete|persist|off|truncate|memory|wal|off)
718 case PragTyp_JOURNAL_MODE: {
719 int eMode; /* One of the PAGER_JOURNALMODE_XXX symbols */
720 int ii; /* Loop counter */
722 if( zRight==0 ){
723 /* If there is no "=MODE" part of the pragma, do a query for the
724 ** current mode */
725 eMode = PAGER_JOURNALMODE_QUERY;
726 }else{
727 const char *zMode;
728 int n = sqlite3Strlen30(zRight);
729 for(eMode=0; (zMode = sqlite3JournalModename(eMode))!=0; eMode++){
730 if( sqlite3StrNICmp(zRight, zMode, n)==0 ) break;
732 if( !zMode ){
733 /* If the "=MODE" part does not match any known journal mode,
734 ** then do a query */
735 eMode = PAGER_JOURNALMODE_QUERY;
737 if( eMode==PAGER_JOURNALMODE_OFF && (db->flags & SQLITE_Defensive)!=0 ){
738 /* Do not allow journal-mode "OFF" in defensive since the database
739 ** can become corrupted using ordinary SQL when the journal is off */
740 eMode = PAGER_JOURNALMODE_QUERY;
743 if( eMode==PAGER_JOURNALMODE_QUERY && pId2->n==0 ){
744 /* Convert "PRAGMA journal_mode" into "PRAGMA main.journal_mode" */
745 iDb = 0;
746 pId2->n = 1;
748 for(ii=db->nDb-1; ii>=0; ii--){
749 if( db->aDb[ii].pBt && (ii==iDb || pId2->n==0) ){
750 sqlite3VdbeUsesBtree(v, ii);
751 sqlite3VdbeAddOp3(v, OP_JournalMode, ii, 1, eMode);
754 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
755 break;
759 ** PRAGMA [schema.]journal_size_limit
760 ** PRAGMA [schema.]journal_size_limit=N
762 ** Get or set the size limit on rollback journal files.
764 case PragTyp_JOURNAL_SIZE_LIMIT: {
765 Pager *pPager = sqlite3BtreePager(pDb->pBt);
766 i64 iLimit = -2;
767 if( zRight ){
768 sqlite3DecOrHexToI64(zRight, &iLimit);
769 if( iLimit<-1 ) iLimit = -1;
771 iLimit = sqlite3PagerJournalSizeLimit(pPager, iLimit);
772 returnSingleInt(v, iLimit);
773 break;
776 #endif /* SQLITE_OMIT_PAGER_PRAGMAS */
779 ** PRAGMA [schema.]auto_vacuum
780 ** PRAGMA [schema.]auto_vacuum=N
782 ** Get or set the value of the database 'auto-vacuum' parameter.
783 ** The value is one of: 0 NONE 1 FULL 2 INCREMENTAL
785 #ifndef SQLITE_OMIT_AUTOVACUUM
786 case PragTyp_AUTO_VACUUM: {
787 Btree *pBt = pDb->pBt;
788 assert( pBt!=0 );
789 if( !zRight ){
790 returnSingleInt(v, sqlite3BtreeGetAutoVacuum(pBt));
791 }else{
792 int eAuto = getAutoVacuum(zRight);
793 assert( eAuto>=0 && eAuto<=2 );
794 db->nextAutovac = (u8)eAuto;
795 /* Call SetAutoVacuum() to set initialize the internal auto and
796 ** incr-vacuum flags. This is required in case this connection
797 ** creates the database file. It is important that it is created
798 ** as an auto-vacuum capable db.
800 rc = sqlite3BtreeSetAutoVacuum(pBt, eAuto);
801 if( rc==SQLITE_OK && (eAuto==1 || eAuto==2) ){
802 /* When setting the auto_vacuum mode to either "full" or
803 ** "incremental", write the value of meta[6] in the database
804 ** file. Before writing to meta[6], check that meta[3] indicates
805 ** that this really is an auto-vacuum capable database.
807 static const int iLn = VDBE_OFFSET_LINENO(2);
808 static const VdbeOpList setMeta6[] = {
809 { OP_Transaction, 0, 1, 0}, /* 0 */
810 { OP_ReadCookie, 0, 1, BTREE_LARGEST_ROOT_PAGE},
811 { OP_If, 1, 0, 0}, /* 2 */
812 { OP_Halt, SQLITE_OK, OE_Abort, 0}, /* 3 */
813 { OP_SetCookie, 0, BTREE_INCR_VACUUM, 0}, /* 4 */
815 VdbeOp *aOp;
816 int iAddr = sqlite3VdbeCurrentAddr(v);
817 sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(setMeta6));
818 aOp = sqlite3VdbeAddOpList(v, ArraySize(setMeta6), setMeta6, iLn);
819 if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break;
820 aOp[0].p1 = iDb;
821 aOp[1].p1 = iDb;
822 aOp[2].p2 = iAddr+4;
823 aOp[4].p1 = iDb;
824 aOp[4].p3 = eAuto - 1;
825 sqlite3VdbeUsesBtree(v, iDb);
828 break;
830 #endif
833 ** PRAGMA [schema.]incremental_vacuum(N)
835 ** Do N steps of incremental vacuuming on a database.
837 #ifndef SQLITE_OMIT_AUTOVACUUM
838 case PragTyp_INCREMENTAL_VACUUM: {
839 int iLimit = 0, addr;
840 if( zRight==0 || !sqlite3GetInt32(zRight, &iLimit) || iLimit<=0 ){
841 iLimit = 0x7fffffff;
843 sqlite3BeginWriteOperation(pParse, 0, iDb);
844 sqlite3VdbeAddOp2(v, OP_Integer, iLimit, 1);
845 addr = sqlite3VdbeAddOp1(v, OP_IncrVacuum, iDb); VdbeCoverage(v);
846 sqlite3VdbeAddOp1(v, OP_ResultRow, 1);
847 sqlite3VdbeAddOp2(v, OP_AddImm, 1, -1);
848 sqlite3VdbeAddOp2(v, OP_IfPos, 1, addr); VdbeCoverage(v);
849 sqlite3VdbeJumpHere(v, addr);
850 break;
852 #endif
854 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
856 ** PRAGMA [schema.]cache_size
857 ** PRAGMA [schema.]cache_size=N
859 ** The first form reports the current local setting for the
860 ** page cache size. The second form sets the local
861 ** page cache size value. If N is positive then that is the
862 ** number of pages in the cache. If N is negative, then the
863 ** number of pages is adjusted so that the cache uses -N kibibytes
864 ** of memory.
866 case PragTyp_CACHE_SIZE: {
867 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
868 if( !zRight ){
869 returnSingleInt(v, pDb->pSchema->cache_size);
870 }else{
871 int size = sqlite3Atoi(zRight);
872 pDb->pSchema->cache_size = size;
873 sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
875 break;
879 ** PRAGMA [schema.]cache_spill
880 ** PRAGMA cache_spill=BOOLEAN
881 ** PRAGMA [schema.]cache_spill=N
883 ** The first form reports the current local setting for the
884 ** page cache spill size. The second form turns cache spill on
885 ** or off. When turning cache spill on, the size is set to the
886 ** current cache_size. The third form sets a spill size that
887 ** may be different form the cache size.
888 ** If N is positive then that is the
889 ** number of pages in the cache. If N is negative, then the
890 ** number of pages is adjusted so that the cache uses -N kibibytes
891 ** of memory.
893 ** If the number of cache_spill pages is less then the number of
894 ** cache_size pages, no spilling occurs until the page count exceeds
895 ** the number of cache_size pages.
897 ** The cache_spill=BOOLEAN setting applies to all attached schemas,
898 ** not just the schema specified.
900 case PragTyp_CACHE_SPILL: {
901 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
902 if( !zRight ){
903 returnSingleInt(v,
904 (db->flags & SQLITE_CacheSpill)==0 ? 0 :
905 sqlite3BtreeSetSpillSize(pDb->pBt,0));
906 }else{
907 int size = 1;
908 if( sqlite3GetInt32(zRight, &size) ){
909 sqlite3BtreeSetSpillSize(pDb->pBt, size);
911 if( sqlite3GetBoolean(zRight, size!=0) ){
912 db->flags |= SQLITE_CacheSpill;
913 }else{
914 db->flags &= ~(u64)SQLITE_CacheSpill;
916 setAllPagerFlags(db);
918 break;
922 ** PRAGMA [schema.]mmap_size(N)
924 ** Used to set mapping size limit. The mapping size limit is
925 ** used to limit the aggregate size of all memory mapped regions of the
926 ** database file. If this parameter is set to zero, then memory mapping
927 ** is not used at all. If N is negative, then the default memory map
928 ** limit determined by sqlite3_config(SQLITE_CONFIG_MMAP_SIZE) is set.
929 ** The parameter N is measured in bytes.
931 ** This value is advisory. The underlying VFS is free to memory map
932 ** as little or as much as it wants. Except, if N is set to 0 then the
933 ** upper layers will never invoke the xFetch interfaces to the VFS.
935 case PragTyp_MMAP_SIZE: {
936 sqlite3_int64 sz;
937 #if SQLITE_MAX_MMAP_SIZE>0
938 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
939 if( zRight ){
940 int ii;
941 sqlite3DecOrHexToI64(zRight, &sz);
942 if( sz<0 ) sz = sqlite3GlobalConfig.szMmap;
943 if( pId2->n==0 ) db->szMmap = sz;
944 for(ii=db->nDb-1; ii>=0; ii--){
945 if( db->aDb[ii].pBt && (ii==iDb || pId2->n==0) ){
946 sqlite3BtreeSetMmapLimit(db->aDb[ii].pBt, sz);
950 sz = -1;
951 rc = sqlite3_file_control(db, zDb, SQLITE_FCNTL_MMAP_SIZE, &sz);
952 #else
953 sz = 0;
954 rc = SQLITE_OK;
955 #endif
956 if( rc==SQLITE_OK ){
957 returnSingleInt(v, sz);
958 }else if( rc!=SQLITE_NOTFOUND ){
959 pParse->nErr++;
960 pParse->rc = rc;
962 break;
966 ** PRAGMA temp_store
967 ** PRAGMA temp_store = "default"|"memory"|"file"
969 ** Return or set the local value of the temp_store flag. Changing
970 ** the local value does not make changes to the disk file and the default
971 ** value will be restored the next time the database is opened.
973 ** Note that it is possible for the library compile-time options to
974 ** override this setting
976 case PragTyp_TEMP_STORE: {
977 if( !zRight ){
978 returnSingleInt(v, db->temp_store);
979 }else{
980 changeTempStorage(pParse, zRight);
982 break;
986 ** PRAGMA temp_store_directory
987 ** PRAGMA temp_store_directory = ""|"directory_name"
989 ** Return or set the local value of the temp_store_directory flag. Changing
990 ** the value sets a specific directory to be used for temporary files.
991 ** Setting to a null string reverts to the default temporary directory search.
992 ** If temporary directory is changed, then invalidateTempStorage.
995 case PragTyp_TEMP_STORE_DIRECTORY: {
996 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR));
997 if( !zRight ){
998 returnSingleText(v, sqlite3_temp_directory);
999 }else{
1000 #ifndef SQLITE_OMIT_WSD
1001 if( zRight[0] ){
1002 int res;
1003 rc = sqlite3OsAccess(db->pVfs, zRight, SQLITE_ACCESS_READWRITE, &res);
1004 if( rc!=SQLITE_OK || res==0 ){
1005 sqlite3ErrorMsg(pParse, "not a writable directory");
1006 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR));
1007 goto pragma_out;
1010 if( SQLITE_TEMP_STORE==0
1011 || (SQLITE_TEMP_STORE==1 && db->temp_store<=1)
1012 || (SQLITE_TEMP_STORE==2 && db->temp_store==1)
1014 invalidateTempStorage(pParse);
1016 sqlite3_free(sqlite3_temp_directory);
1017 if( zRight[0] ){
1018 sqlite3_temp_directory = sqlite3_mprintf("%s", zRight);
1019 }else{
1020 sqlite3_temp_directory = 0;
1022 #endif /* SQLITE_OMIT_WSD */
1024 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR));
1025 break;
1028 #if SQLITE_OS_WIN
1030 ** PRAGMA data_store_directory
1031 ** PRAGMA data_store_directory = ""|"directory_name"
1033 ** Return or set the local value of the data_store_directory flag. Changing
1034 ** the value sets a specific directory to be used for database files that
1035 ** were specified with a relative pathname. Setting to a null string reverts
1036 ** to the default database directory, which for database files specified with
1037 ** a relative path will probably be based on the current directory for the
1038 ** process. Database file specified with an absolute path are not impacted
1039 ** by this setting, regardless of its value.
1042 case PragTyp_DATA_STORE_DIRECTORY: {
1043 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR));
1044 if( !zRight ){
1045 returnSingleText(v, sqlite3_data_directory);
1046 }else{
1047 #ifndef SQLITE_OMIT_WSD
1048 if( zRight[0] ){
1049 int res;
1050 rc = sqlite3OsAccess(db->pVfs, zRight, SQLITE_ACCESS_READWRITE, &res);
1051 if( rc!=SQLITE_OK || res==0 ){
1052 sqlite3ErrorMsg(pParse, "not a writable directory");
1053 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR));
1054 goto pragma_out;
1057 sqlite3_free(sqlite3_data_directory);
1058 if( zRight[0] ){
1059 sqlite3_data_directory = sqlite3_mprintf("%s", zRight);
1060 }else{
1061 sqlite3_data_directory = 0;
1063 #endif /* SQLITE_OMIT_WSD */
1065 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR));
1066 break;
1068 #endif
1070 #if SQLITE_ENABLE_LOCKING_STYLE
1072 ** PRAGMA [schema.]lock_proxy_file
1073 ** PRAGMA [schema.]lock_proxy_file = ":auto:"|"lock_file_path"
1075 ** Return or set the value of the lock_proxy_file flag. Changing
1076 ** the value sets a specific file to be used for database access locks.
1079 case PragTyp_LOCK_PROXY_FILE: {
1080 if( !zRight ){
1081 Pager *pPager = sqlite3BtreePager(pDb->pBt);
1082 char *proxy_file_path = NULL;
1083 sqlite3_file *pFile = sqlite3PagerFile(pPager);
1084 sqlite3OsFileControlHint(pFile, SQLITE_GET_LOCKPROXYFILE,
1085 &proxy_file_path);
1086 returnSingleText(v, proxy_file_path);
1087 }else{
1088 Pager *pPager = sqlite3BtreePager(pDb->pBt);
1089 sqlite3_file *pFile = sqlite3PagerFile(pPager);
1090 int res;
1091 if( zRight[0] ){
1092 res=sqlite3OsFileControl(pFile, SQLITE_SET_LOCKPROXYFILE,
1093 zRight);
1094 } else {
1095 res=sqlite3OsFileControl(pFile, SQLITE_SET_LOCKPROXYFILE,
1096 NULL);
1098 if( res!=SQLITE_OK ){
1099 sqlite3ErrorMsg(pParse, "failed to set lock proxy file");
1100 goto pragma_out;
1103 break;
1105 #endif /* SQLITE_ENABLE_LOCKING_STYLE */
1108 ** PRAGMA [schema.]synchronous
1109 ** PRAGMA [schema.]synchronous=OFF|ON|NORMAL|FULL|EXTRA
1111 ** Return or set the local value of the synchronous flag. Changing
1112 ** the local value does not make changes to the disk file and the
1113 ** default value will be restored the next time the database is
1114 ** opened.
1116 case PragTyp_SYNCHRONOUS: {
1117 if( !zRight ){
1118 returnSingleInt(v, pDb->safety_level-1);
1119 }else{
1120 if( !db->autoCommit ){
1121 sqlite3ErrorMsg(pParse,
1122 "Safety level may not be changed inside a transaction");
1123 }else if( iDb!=1 ){
1124 int iLevel = (getSafetyLevel(zRight,0,1)+1) & PAGER_SYNCHRONOUS_MASK;
1125 if( iLevel==0 ) iLevel = 1;
1126 pDb->safety_level = iLevel;
1127 pDb->bSyncSet = 1;
1128 setAllPagerFlags(db);
1131 break;
1133 #endif /* SQLITE_OMIT_PAGER_PRAGMAS */
1135 #ifndef SQLITE_OMIT_FLAG_PRAGMAS
1136 case PragTyp_FLAG: {
1137 if( zRight==0 ){
1138 setPragmaResultColumnNames(v, pPragma);
1139 returnSingleInt(v, (db->flags & pPragma->iArg)!=0 );
1140 }else{
1141 u64 mask = pPragma->iArg; /* Mask of bits to set or clear. */
1142 if( db->autoCommit==0 ){
1143 /* Foreign key support may not be enabled or disabled while not
1144 ** in auto-commit mode. */
1145 mask &= ~(SQLITE_ForeignKeys);
1147 #if SQLITE_USER_AUTHENTICATION
1148 if( db->auth.authLevel==UAUTH_User ){
1149 /* Do not allow non-admin users to modify the schema arbitrarily */
1150 mask &= ~(SQLITE_WriteSchema);
1152 #endif
1154 if( sqlite3GetBoolean(zRight, 0) ){
1155 if( (mask & SQLITE_WriteSchema)==0
1156 || (db->flags & SQLITE_Defensive)==0
1158 db->flags |= mask;
1160 }else{
1161 db->flags &= ~mask;
1162 if( mask==SQLITE_DeferFKs ) db->nDeferredImmCons = 0;
1163 if( (mask & SQLITE_WriteSchema)!=0
1164 && sqlite3_stricmp(zRight, "reset")==0
1166 /* IMP: R-60817-01178 If the argument is "RESET" then schema
1167 ** writing is disabled (as with "PRAGMA writable_schema=OFF") and,
1168 ** in addition, the schema is reloaded. */
1169 sqlite3ResetAllSchemasOfConnection(db);
1173 /* Many of the flag-pragmas modify the code generated by the SQL
1174 ** compiler (eg. count_changes). So add an opcode to expire all
1175 ** compiled SQL statements after modifying a pragma value.
1177 sqlite3VdbeAddOp0(v, OP_Expire);
1178 setAllPagerFlags(db);
1180 break;
1182 #endif /* SQLITE_OMIT_FLAG_PRAGMAS */
1184 #ifndef SQLITE_OMIT_SCHEMA_PRAGMAS
1186 ** PRAGMA table_info(<table>)
1188 ** Return a single row for each column of the named table. The columns of
1189 ** the returned data set are:
1191 ** cid: Column id (numbered from left to right, starting at 0)
1192 ** name: Column name
1193 ** type: Column declaration type.
1194 ** notnull: True if 'NOT NULL' is part of column declaration
1195 ** dflt_value: The default value for the column, if any.
1196 ** pk: Non-zero for PK fields.
1198 case PragTyp_TABLE_INFO: if( zRight ){
1199 Table *pTab;
1200 sqlite3CodeVerifyNamedSchema(pParse, zDb);
1201 pTab = sqlite3LocateTable(pParse, LOCATE_NOERR, zRight, zDb);
1202 if( pTab ){
1203 int i, k;
1204 int nHidden = 0;
1205 Column *pCol;
1206 Index *pPk = sqlite3PrimaryKeyIndex(pTab);
1207 pParse->nMem = 7;
1208 sqlite3ViewGetColumnNames(pParse, pTab);
1209 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
1210 int isHidden = 0;
1211 const Expr *pColExpr;
1212 if( pCol->colFlags & COLFLAG_NOINSERT ){
1213 if( pPragma->iArg==0 ){
1214 nHidden++;
1215 continue;
1217 if( pCol->colFlags & COLFLAG_VIRTUAL ){
1218 isHidden = 2; /* GENERATED ALWAYS AS ... VIRTUAL */
1219 }else if( pCol->colFlags & COLFLAG_STORED ){
1220 isHidden = 3; /* GENERATED ALWAYS AS ... STORED */
1221 }else{ assert( pCol->colFlags & COLFLAG_HIDDEN );
1222 isHidden = 1; /* HIDDEN */
1225 if( (pCol->colFlags & COLFLAG_PRIMKEY)==0 ){
1226 k = 0;
1227 }else if( pPk==0 ){
1228 k = 1;
1229 }else{
1230 for(k=1; k<=pTab->nCol && pPk->aiColumn[k-1]!=i; k++){}
1232 pColExpr = sqlite3ColumnExpr(pTab,pCol);
1233 assert( pColExpr==0 || pColExpr->op==TK_SPAN || isHidden>=2 );
1234 assert( pColExpr==0 || !ExprHasProperty(pColExpr, EP_IntValue)
1235 || isHidden>=2 );
1236 sqlite3VdbeMultiLoad(v, 1, pPragma->iArg ? "issisii" : "issisi",
1237 i-nHidden,
1238 pCol->zCnName,
1239 sqlite3ColumnType(pCol,""),
1240 pCol->notNull ? 1 : 0,
1241 (isHidden>=2 || pColExpr==0) ? 0 : pColExpr->u.zToken,
1243 isHidden);
1247 break;
1250 ** PRAGMA table_list
1252 ** Return a single row for each table, virtual table, or view in the
1253 ** entire schema.
1255 ** schema: Name of attached database hold this table
1256 ** name: Name of the table itself
1257 ** type: "table", "view", "virtual", "shadow"
1258 ** ncol: Number of columns
1259 ** wr: True for a WITHOUT ROWID table
1260 ** strict: True for a STRICT table
1262 case PragTyp_TABLE_LIST: {
1263 int ii;
1264 pParse->nMem = 6;
1265 sqlite3CodeVerifyNamedSchema(pParse, zDb);
1266 for(ii=0; ii<db->nDb; ii++){
1267 HashElem *k;
1268 Hash *pHash;
1269 int initNCol;
1270 if( zDb && sqlite3_stricmp(zDb, db->aDb[ii].zDbSName)!=0 ) continue;
1272 /* Ensure that the Table.nCol field is initialized for all views
1273 ** and virtual tables. Each time we initialize a Table.nCol value
1274 ** for a table, that can potentially disrupt the hash table, so restart
1275 ** the initialization scan.
1277 pHash = &db->aDb[ii].pSchema->tblHash;
1278 initNCol = sqliteHashCount(pHash);
1279 while( initNCol-- ){
1280 for(k=sqliteHashFirst(pHash); 1; k=sqliteHashNext(k) ){
1281 Table *pTab;
1282 if( k==0 ){ initNCol = 0; break; }
1283 pTab = sqliteHashData(k);
1284 if( pTab->nCol==0 ){
1285 char *zSql = sqlite3MPrintf(db, "SELECT*FROM\"%w\"", pTab->zName);
1286 if( zSql ){
1287 sqlite3_stmt *pDummy = 0;
1288 (void)sqlite3_prepare(db, zSql, -1, &pDummy, 0);
1289 (void)sqlite3_finalize(pDummy);
1290 sqlite3DbFree(db, zSql);
1292 if( db->mallocFailed ){
1293 sqlite3ErrorMsg(db->pParse, "out of memory");
1294 db->pParse->rc = SQLITE_NOMEM_BKPT;
1296 pHash = &db->aDb[ii].pSchema->tblHash;
1297 break;
1302 for(k=sqliteHashFirst(pHash); k; k=sqliteHashNext(k) ){
1303 Table *pTab = sqliteHashData(k);
1304 const char *zType;
1305 if( zRight && sqlite3_stricmp(zRight, pTab->zName)!=0 ) continue;
1306 if( IsView(pTab) ){
1307 zType = "view";
1308 }else if( IsVirtual(pTab) ){
1309 zType = "virtual";
1310 }else if( pTab->tabFlags & TF_Shadow ){
1311 zType = "shadow";
1312 }else{
1313 zType = "table";
1315 sqlite3VdbeMultiLoad(v, 1, "sssiii",
1316 db->aDb[ii].zDbSName,
1317 sqlite3PreferredTableName(pTab->zName),
1318 zType,
1319 pTab->nCol,
1320 (pTab->tabFlags & TF_WithoutRowid)!=0,
1321 (pTab->tabFlags & TF_Strict)!=0
1326 break;
1328 #ifdef SQLITE_DEBUG
1329 case PragTyp_STATS: {
1330 Index *pIdx;
1331 HashElem *i;
1332 pParse->nMem = 5;
1333 sqlite3CodeVerifySchema(pParse, iDb);
1334 for(i=sqliteHashFirst(&pDb->pSchema->tblHash); i; i=sqliteHashNext(i)){
1335 Table *pTab = sqliteHashData(i);
1336 sqlite3VdbeMultiLoad(v, 1, "ssiii",
1337 sqlite3PreferredTableName(pTab->zName),
1339 pTab->szTabRow,
1340 pTab->nRowLogEst,
1341 pTab->tabFlags);
1342 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1343 sqlite3VdbeMultiLoad(v, 2, "siiiX",
1344 pIdx->zName,
1345 pIdx->szIdxRow,
1346 pIdx->aiRowLogEst[0],
1347 pIdx->hasStat1);
1348 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 5);
1352 break;
1353 #endif
1355 case PragTyp_INDEX_INFO: if( zRight ){
1356 Index *pIdx;
1357 Table *pTab;
1358 pIdx = sqlite3FindIndex(db, zRight, zDb);
1359 if( pIdx==0 ){
1360 /* If there is no index named zRight, check to see if there is a
1361 ** WITHOUT ROWID table named zRight, and if there is, show the
1362 ** structure of the PRIMARY KEY index for that table. */
1363 pTab = sqlite3LocateTable(pParse, LOCATE_NOERR, zRight, zDb);
1364 if( pTab && !HasRowid(pTab) ){
1365 pIdx = sqlite3PrimaryKeyIndex(pTab);
1368 if( pIdx ){
1369 int iIdxDb = sqlite3SchemaToIndex(db, pIdx->pSchema);
1370 int i;
1371 int mx;
1372 if( pPragma->iArg ){
1373 /* PRAGMA index_xinfo (newer version with more rows and columns) */
1374 mx = pIdx->nColumn;
1375 pParse->nMem = 6;
1376 }else{
1377 /* PRAGMA index_info (legacy version) */
1378 mx = pIdx->nKeyCol;
1379 pParse->nMem = 3;
1381 pTab = pIdx->pTable;
1382 sqlite3CodeVerifySchema(pParse, iIdxDb);
1383 assert( pParse->nMem<=pPragma->nPragCName );
1384 for(i=0; i<mx; i++){
1385 i16 cnum = pIdx->aiColumn[i];
1386 sqlite3VdbeMultiLoad(v, 1, "iisX", i, cnum,
1387 cnum<0 ? 0 : pTab->aCol[cnum].zCnName);
1388 if( pPragma->iArg ){
1389 sqlite3VdbeMultiLoad(v, 4, "isiX",
1390 pIdx->aSortOrder[i],
1391 pIdx->azColl[i],
1392 i<pIdx->nKeyCol);
1394 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, pParse->nMem);
1398 break;
1400 case PragTyp_INDEX_LIST: if( zRight ){
1401 Index *pIdx;
1402 Table *pTab;
1403 int i;
1404 pTab = sqlite3FindTable(db, zRight, zDb);
1405 if( pTab ){
1406 int iTabDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1407 pParse->nMem = 5;
1408 sqlite3CodeVerifySchema(pParse, iTabDb);
1409 for(pIdx=pTab->pIndex, i=0; pIdx; pIdx=pIdx->pNext, i++){
1410 const char *azOrigin[] = { "c", "u", "pk" };
1411 sqlite3VdbeMultiLoad(v, 1, "isisi",
1413 pIdx->zName,
1414 IsUniqueIndex(pIdx),
1415 azOrigin[pIdx->idxType],
1416 pIdx->pPartIdxWhere!=0);
1420 break;
1422 case PragTyp_DATABASE_LIST: {
1423 int i;
1424 pParse->nMem = 3;
1425 for(i=0; i<db->nDb; i++){
1426 if( db->aDb[i].pBt==0 ) continue;
1427 assert( db->aDb[i].zDbSName!=0 );
1428 sqlite3VdbeMultiLoad(v, 1, "iss",
1430 db->aDb[i].zDbSName,
1431 sqlite3BtreeGetFilename(db->aDb[i].pBt));
1434 break;
1436 case PragTyp_COLLATION_LIST: {
1437 int i = 0;
1438 HashElem *p;
1439 pParse->nMem = 2;
1440 for(p=sqliteHashFirst(&db->aCollSeq); p; p=sqliteHashNext(p)){
1441 CollSeq *pColl = (CollSeq *)sqliteHashData(p);
1442 sqlite3VdbeMultiLoad(v, 1, "is", i++, pColl->zName);
1445 break;
1447 #ifndef SQLITE_OMIT_INTROSPECTION_PRAGMAS
1448 case PragTyp_FUNCTION_LIST: {
1449 int i;
1450 HashElem *j;
1451 FuncDef *p;
1452 int showInternFunc = (db->mDbFlags & DBFLAG_InternalFunc)!=0;
1453 pParse->nMem = 6;
1454 for(i=0; i<SQLITE_FUNC_HASH_SZ; i++){
1455 for(p=sqlite3BuiltinFunctions.a[i]; p; p=p->u.pHash ){
1456 assert( p->funcFlags & SQLITE_FUNC_BUILTIN );
1457 pragmaFunclistLine(v, p, 1, showInternFunc);
1460 for(j=sqliteHashFirst(&db->aFunc); j; j=sqliteHashNext(j)){
1461 p = (FuncDef*)sqliteHashData(j);
1462 assert( (p->funcFlags & SQLITE_FUNC_BUILTIN)==0 );
1463 pragmaFunclistLine(v, p, 0, showInternFunc);
1466 break;
1468 #ifndef SQLITE_OMIT_VIRTUALTABLE
1469 case PragTyp_MODULE_LIST: {
1470 HashElem *j;
1471 pParse->nMem = 1;
1472 for(j=sqliteHashFirst(&db->aModule); j; j=sqliteHashNext(j)){
1473 Module *pMod = (Module*)sqliteHashData(j);
1474 sqlite3VdbeMultiLoad(v, 1, "s", pMod->zName);
1477 break;
1478 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1480 case PragTyp_PRAGMA_LIST: {
1481 int i;
1482 for(i=0; i<ArraySize(aPragmaName); i++){
1483 sqlite3VdbeMultiLoad(v, 1, "s", aPragmaName[i].zName);
1486 break;
1487 #endif /* SQLITE_INTROSPECTION_PRAGMAS */
1489 #endif /* SQLITE_OMIT_SCHEMA_PRAGMAS */
1491 #ifndef SQLITE_OMIT_FOREIGN_KEY
1492 case PragTyp_FOREIGN_KEY_LIST: if( zRight ){
1493 FKey *pFK;
1494 Table *pTab;
1495 pTab = sqlite3FindTable(db, zRight, zDb);
1496 if( pTab && IsOrdinaryTable(pTab) ){
1497 pFK = pTab->u.tab.pFKey;
1498 if( pFK ){
1499 int iTabDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1500 int i = 0;
1501 pParse->nMem = 8;
1502 sqlite3CodeVerifySchema(pParse, iTabDb);
1503 while(pFK){
1504 int j;
1505 for(j=0; j<pFK->nCol; j++){
1506 sqlite3VdbeMultiLoad(v, 1, "iissssss",
1509 pFK->zTo,
1510 pTab->aCol[pFK->aCol[j].iFrom].zCnName,
1511 pFK->aCol[j].zCol,
1512 actionName(pFK->aAction[1]), /* ON UPDATE */
1513 actionName(pFK->aAction[0]), /* ON DELETE */
1514 "NONE");
1516 ++i;
1517 pFK = pFK->pNextFrom;
1522 break;
1523 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
1525 #ifndef SQLITE_OMIT_FOREIGN_KEY
1526 #ifndef SQLITE_OMIT_TRIGGER
1527 case PragTyp_FOREIGN_KEY_CHECK: {
1528 FKey *pFK; /* A foreign key constraint */
1529 Table *pTab; /* Child table contain "REFERENCES" keyword */
1530 Table *pParent; /* Parent table that child points to */
1531 Index *pIdx; /* Index in the parent table */
1532 int i; /* Loop counter: Foreign key number for pTab */
1533 int j; /* Loop counter: Field of the foreign key */
1534 HashElem *k; /* Loop counter: Next table in schema */
1535 int x; /* result variable */
1536 int regResult; /* 3 registers to hold a result row */
1537 int regRow; /* Registers to hold a row from pTab */
1538 int addrTop; /* Top of a loop checking foreign keys */
1539 int addrOk; /* Jump here if the key is OK */
1540 int *aiCols; /* child to parent column mapping */
1542 regResult = pParse->nMem+1;
1543 pParse->nMem += 4;
1544 regRow = ++pParse->nMem;
1545 k = sqliteHashFirst(&db->aDb[iDb].pSchema->tblHash);
1546 while( k ){
1547 if( zRight ){
1548 pTab = sqlite3LocateTable(pParse, 0, zRight, zDb);
1549 k = 0;
1550 }else{
1551 pTab = (Table*)sqliteHashData(k);
1552 k = sqliteHashNext(k);
1554 if( pTab==0 || !IsOrdinaryTable(pTab) || pTab->u.tab.pFKey==0 ) continue;
1555 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1556 zDb = db->aDb[iDb].zDbSName;
1557 sqlite3CodeVerifySchema(pParse, iDb);
1558 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
1559 sqlite3TouchRegister(pParse, pTab->nCol+regRow);
1560 sqlite3OpenTable(pParse, 0, iDb, pTab, OP_OpenRead);
1561 sqlite3VdbeLoadString(v, regResult, pTab->zName);
1562 assert( IsOrdinaryTable(pTab) );
1563 for(i=1, pFK=pTab->u.tab.pFKey; pFK; i++, pFK=pFK->pNextFrom){
1564 pParent = sqlite3FindTable(db, pFK->zTo, zDb);
1565 if( pParent==0 ) continue;
1566 pIdx = 0;
1567 sqlite3TableLock(pParse, iDb, pParent->tnum, 0, pParent->zName);
1568 x = sqlite3FkLocateIndex(pParse, pParent, pFK, &pIdx, 0);
1569 if( x==0 ){
1570 if( pIdx==0 ){
1571 sqlite3OpenTable(pParse, i, iDb, pParent, OP_OpenRead);
1572 }else{
1573 sqlite3VdbeAddOp3(v, OP_OpenRead, i, pIdx->tnum, iDb);
1574 sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
1576 }else{
1577 k = 0;
1578 break;
1581 assert( pParse->nErr>0 || pFK==0 );
1582 if( pFK ) break;
1583 if( pParse->nTab<i ) pParse->nTab = i;
1584 addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, 0); VdbeCoverage(v);
1585 assert( IsOrdinaryTable(pTab) );
1586 for(i=1, pFK=pTab->u.tab.pFKey; pFK; i++, pFK=pFK->pNextFrom){
1587 pParent = sqlite3FindTable(db, pFK->zTo, zDb);
1588 pIdx = 0;
1589 aiCols = 0;
1590 if( pParent ){
1591 x = sqlite3FkLocateIndex(pParse, pParent, pFK, &pIdx, &aiCols);
1592 assert( x==0 || db->mallocFailed );
1594 addrOk = sqlite3VdbeMakeLabel(pParse);
1596 /* Generate code to read the child key values into registers
1597 ** regRow..regRow+n. If any of the child key values are NULL, this
1598 ** row cannot cause an FK violation. Jump directly to addrOk in
1599 ** this case. */
1600 sqlite3TouchRegister(pParse, regRow + pFK->nCol);
1601 for(j=0; j<pFK->nCol; j++){
1602 int iCol = aiCols ? aiCols[j] : pFK->aCol[j].iFrom;
1603 sqlite3ExprCodeGetColumnOfTable(v, pTab, 0, iCol, regRow+j);
1604 sqlite3VdbeAddOp2(v, OP_IsNull, regRow+j, addrOk); VdbeCoverage(v);
1607 /* Generate code to query the parent index for a matching parent
1608 ** key. If a match is found, jump to addrOk. */
1609 if( pIdx ){
1610 sqlite3VdbeAddOp4(v, OP_Affinity, regRow, pFK->nCol, 0,
1611 sqlite3IndexAffinityStr(db,pIdx), pFK->nCol);
1612 sqlite3VdbeAddOp4Int(v, OP_Found, i, addrOk, regRow, pFK->nCol);
1613 VdbeCoverage(v);
1614 }else if( pParent ){
1615 int jmp = sqlite3VdbeCurrentAddr(v)+2;
1616 sqlite3VdbeAddOp3(v, OP_SeekRowid, i, jmp, regRow); VdbeCoverage(v);
1617 sqlite3VdbeGoto(v, addrOk);
1618 assert( pFK->nCol==1 || db->mallocFailed );
1621 /* Generate code to report an FK violation to the caller. */
1622 if( HasRowid(pTab) ){
1623 sqlite3VdbeAddOp2(v, OP_Rowid, 0, regResult+1);
1624 }else{
1625 sqlite3VdbeAddOp2(v, OP_Null, 0, regResult+1);
1627 sqlite3VdbeMultiLoad(v, regResult+2, "siX", pFK->zTo, i-1);
1628 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, 4);
1629 sqlite3VdbeResolveLabel(v, addrOk);
1630 sqlite3DbFree(db, aiCols);
1632 sqlite3VdbeAddOp2(v, OP_Next, 0, addrTop+1); VdbeCoverage(v);
1633 sqlite3VdbeJumpHere(v, addrTop);
1636 break;
1637 #endif /* !defined(SQLITE_OMIT_TRIGGER) */
1638 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
1640 #ifndef SQLITE_OMIT_CASE_SENSITIVE_LIKE_PRAGMA
1641 /* Reinstall the LIKE and GLOB functions. The variant of LIKE
1642 ** used will be case sensitive or not depending on the RHS.
1644 case PragTyp_CASE_SENSITIVE_LIKE: {
1645 if( zRight ){
1646 sqlite3RegisterLikeFunctions(db, sqlite3GetBoolean(zRight, 0));
1649 break;
1650 #endif /* SQLITE_OMIT_CASE_SENSITIVE_LIKE_PRAGMA */
1652 #ifndef SQLITE_INTEGRITY_CHECK_ERROR_MAX
1653 # define SQLITE_INTEGRITY_CHECK_ERROR_MAX 100
1654 #endif
1656 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
1657 /* PRAGMA integrity_check
1658 ** PRAGMA integrity_check(N)
1659 ** PRAGMA quick_check
1660 ** PRAGMA quick_check(N)
1662 ** Verify the integrity of the database.
1664 ** The "quick_check" is reduced version of
1665 ** integrity_check designed to detect most database corruption
1666 ** without the overhead of cross-checking indexes. Quick_check
1667 ** is linear time whereas integrity_check is O(NlogN).
1669 ** The maximum number of errors is 100 by default. A different default
1670 ** can be specified using a numeric parameter N.
1672 ** Or, the parameter N can be the name of a table. In that case, only
1673 ** the one table named is verified. The freelist is only verified if
1674 ** the named table is "sqlite_schema" (or one of its aliases).
1676 ** All schemas are checked by default. To check just a single
1677 ** schema, use the form:
1679 ** PRAGMA schema.integrity_check;
1681 case PragTyp_INTEGRITY_CHECK: {
1682 int i, j, addr, mxErr;
1683 Table *pObjTab = 0; /* Check only this one table, if not NULL */
1685 int isQuick = (sqlite3Tolower(zLeft[0])=='q');
1687 /* If the PRAGMA command was of the form "PRAGMA <db>.integrity_check",
1688 ** then iDb is set to the index of the database identified by <db>.
1689 ** In this case, the integrity of database iDb only is verified by
1690 ** the VDBE created below.
1692 ** Otherwise, if the command was simply "PRAGMA integrity_check" (or
1693 ** "PRAGMA quick_check"), then iDb is set to 0. In this case, set iDb
1694 ** to -1 here, to indicate that the VDBE should verify the integrity
1695 ** of all attached databases. */
1696 assert( iDb>=0 );
1697 assert( iDb==0 || pId2->z );
1698 if( pId2->z==0 ) iDb = -1;
1700 /* Initialize the VDBE program */
1701 pParse->nMem = 6;
1703 /* Set the maximum error count */
1704 mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX;
1705 if( zRight ){
1706 if( sqlite3GetInt32(pValue->z, &mxErr) ){
1707 if( mxErr<=0 ){
1708 mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX;
1710 }else{
1711 pObjTab = sqlite3LocateTable(pParse, 0, zRight,
1712 iDb>=0 ? db->aDb[iDb].zDbSName : 0);
1715 sqlite3VdbeAddOp2(v, OP_Integer, mxErr-1, 1); /* reg[1] holds errors left */
1717 /* Do an integrity check on each database file */
1718 for(i=0; i<db->nDb; i++){
1719 HashElem *x; /* For looping over tables in the schema */
1720 Hash *pTbls; /* Set of all tables in the schema */
1721 int *aRoot; /* Array of root page numbers of all btrees */
1722 int cnt = 0; /* Number of entries in aRoot[] */
1724 if( OMIT_TEMPDB && i==1 ) continue;
1725 if( iDb>=0 && i!=iDb ) continue;
1727 sqlite3CodeVerifySchema(pParse, i);
1728 pParse->okConstFactor = 0; /* tag-20230327-1 */
1730 /* Do an integrity check of the B-Tree
1732 ** Begin by finding the root pages numbers
1733 ** for all tables and indices in the database.
1735 assert( sqlite3SchemaMutexHeld(db, i, 0) );
1736 pTbls = &db->aDb[i].pSchema->tblHash;
1737 for(cnt=0, x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){
1738 Table *pTab = sqliteHashData(x); /* Current table */
1739 Index *pIdx; /* An index on pTab */
1740 int nIdx; /* Number of indexes on pTab */
1741 if( pObjTab && pObjTab!=pTab ) continue;
1742 if( HasRowid(pTab) ) cnt++;
1743 for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){ cnt++; }
1745 if( cnt==0 ) continue;
1746 if( pObjTab ) cnt++;
1747 aRoot = sqlite3DbMallocRawNN(db, sizeof(int)*(cnt+1));
1748 if( aRoot==0 ) break;
1749 cnt = 0;
1750 if( pObjTab ) aRoot[++cnt] = 0;
1751 for(x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){
1752 Table *pTab = sqliteHashData(x);
1753 Index *pIdx;
1754 if( pObjTab && pObjTab!=pTab ) continue;
1755 if( HasRowid(pTab) ) aRoot[++cnt] = pTab->tnum;
1756 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1757 aRoot[++cnt] = pIdx->tnum;
1760 aRoot[0] = cnt;
1762 /* Make sure sufficient number of registers have been allocated */
1763 sqlite3TouchRegister(pParse, 8+cnt);
1764 sqlite3ClearTempRegCache(pParse);
1766 /* Do the b-tree integrity checks */
1767 sqlite3VdbeAddOp4(v, OP_IntegrityCk, 1, cnt, 8, (char*)aRoot,P4_INTARRAY);
1768 sqlite3VdbeChangeP5(v, (u8)i);
1769 addr = sqlite3VdbeAddOp1(v, OP_IsNull, 2); VdbeCoverage(v);
1770 sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0,
1771 sqlite3MPrintf(db, "*** in database %s ***\n", db->aDb[i].zDbSName),
1772 P4_DYNAMIC);
1773 sqlite3VdbeAddOp3(v, OP_Concat, 2, 3, 3);
1774 integrityCheckResultRow(v);
1775 sqlite3VdbeJumpHere(v, addr);
1777 /* Check that the indexes all have the right number of rows */
1778 cnt = pObjTab ? 1 : 0;
1779 sqlite3VdbeLoadString(v, 2, "wrong # of entries in index ");
1780 for(x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){
1781 int iTab = 0;
1782 Table *pTab = sqliteHashData(x);
1783 Index *pIdx;
1784 if( pObjTab && pObjTab!=pTab ) continue;
1785 if( HasRowid(pTab) ){
1786 iTab = cnt++;
1787 }else{
1788 iTab = cnt;
1789 for(pIdx=pTab->pIndex; ALWAYS(pIdx); pIdx=pIdx->pNext){
1790 if( IsPrimaryKeyIndex(pIdx) ) break;
1791 iTab++;
1794 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1795 if( pIdx->pPartIdxWhere==0 ){
1796 addr = sqlite3VdbeAddOp3(v, OP_Eq, 8+cnt, 0, 8+iTab);
1797 VdbeCoverageNeverNull(v);
1798 sqlite3VdbeLoadString(v, 4, pIdx->zName);
1799 sqlite3VdbeAddOp3(v, OP_Concat, 4, 2, 3);
1800 integrityCheckResultRow(v);
1801 sqlite3VdbeJumpHere(v, addr);
1803 cnt++;
1807 /* Make sure all the indices are constructed correctly.
1809 for(x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){
1810 Table *pTab = sqliteHashData(x);
1811 Index *pIdx, *pPk;
1812 Index *pPrior = 0; /* Previous index */
1813 int loopTop;
1814 int iDataCur, iIdxCur;
1815 int r1 = -1;
1816 int bStrict; /* True for a STRICT table */
1817 int r2; /* Previous key for WITHOUT ROWID tables */
1818 int mxCol; /* Maximum non-virtual column number */
1820 if( pObjTab && pObjTab!=pTab ) continue;
1821 if( !IsOrdinaryTable(pTab) ) continue;
1822 if( isQuick || HasRowid(pTab) ){
1823 pPk = 0;
1824 r2 = 0;
1825 }else{
1826 pPk = sqlite3PrimaryKeyIndex(pTab);
1827 r2 = sqlite3GetTempRange(pParse, pPk->nKeyCol);
1828 sqlite3VdbeAddOp3(v, OP_Null, 1, r2, r2+pPk->nKeyCol-1);
1830 sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenRead, 0,
1831 1, 0, &iDataCur, &iIdxCur);
1832 /* reg[7] counts the number of entries in the table.
1833 ** reg[8+i] counts the number of entries in the i-th index
1835 sqlite3VdbeAddOp2(v, OP_Integer, 0, 7);
1836 for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
1837 sqlite3VdbeAddOp2(v, OP_Integer, 0, 8+j); /* index entries counter */
1839 assert( pParse->nMem>=8+j );
1840 assert( sqlite3NoTempsInRange(pParse,1,7+j) );
1841 sqlite3VdbeAddOp2(v, OP_Rewind, iDataCur, 0); VdbeCoverage(v);
1842 loopTop = sqlite3VdbeAddOp2(v, OP_AddImm, 7, 1);
1844 /* Fetch the right-most column from the table. This will cause
1845 ** the entire record header to be parsed and sanity checked. It
1846 ** will also prepopulate the cursor column cache that is used
1847 ** by the OP_IsType code, so it is a required step.
1849 assert( !IsVirtual(pTab) );
1850 if( HasRowid(pTab) ){
1851 mxCol = -1;
1852 for(j=0; j<pTab->nCol; j++){
1853 if( (pTab->aCol[j].colFlags & COLFLAG_VIRTUAL)==0 ) mxCol++;
1855 if( mxCol==pTab->iPKey ) mxCol--;
1856 }else{
1857 /* COLFLAG_VIRTUAL columns are not included in the WITHOUT ROWID
1858 ** PK index column-count, so there is no need to account for them
1859 ** in this case. */
1860 mxCol = sqlite3PrimaryKeyIndex(pTab)->nColumn-1;
1862 if( mxCol>=0 ){
1863 sqlite3VdbeAddOp3(v, OP_Column, iDataCur, mxCol, 3);
1864 sqlite3VdbeTypeofColumn(v, 3);
1867 if( !isQuick ){
1868 if( pPk ){
1869 /* Verify WITHOUT ROWID keys are in ascending order */
1870 int a1;
1871 char *zErr;
1872 a1 = sqlite3VdbeAddOp4Int(v, OP_IdxGT, iDataCur, 0,r2,pPk->nKeyCol);
1873 VdbeCoverage(v);
1874 sqlite3VdbeAddOp1(v, OP_IsNull, r2); VdbeCoverage(v);
1875 zErr = sqlite3MPrintf(db,
1876 "row not in PRIMARY KEY order for %s",
1877 pTab->zName);
1878 sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC);
1879 integrityCheckResultRow(v);
1880 sqlite3VdbeJumpHere(v, a1);
1881 sqlite3VdbeJumpHere(v, a1+1);
1882 for(j=0; j<pPk->nKeyCol; j++){
1883 sqlite3ExprCodeLoadIndexColumn(pParse, pPk, iDataCur, j, r2+j);
1887 /* Verify datatypes for all columns:
1889 ** (1) NOT NULL columns may not contain a NULL
1890 ** (2) Datatype must be exact for non-ANY columns in STRICT tables
1891 ** (3) Datatype for TEXT columns in non-STRICT tables must be
1892 ** NULL, TEXT, or BLOB.
1893 ** (4) Datatype for numeric columns in non-STRICT tables must not
1894 ** be a TEXT value that can be losslessly converted to numeric.
1896 bStrict = (pTab->tabFlags & TF_Strict)!=0;
1897 for(j=0; j<pTab->nCol; j++){
1898 char *zErr;
1899 Column *pCol = pTab->aCol + j; /* The column to be checked */
1900 int labelError; /* Jump here to report an error */
1901 int labelOk; /* Jump here if all looks ok */
1902 int p1, p3, p4; /* Operands to the OP_IsType opcode */
1903 int doTypeCheck; /* Check datatypes (besides NOT NULL) */
1905 if( j==pTab->iPKey ) continue;
1906 if( bStrict ){
1907 doTypeCheck = pCol->eCType>COLTYPE_ANY;
1908 }else{
1909 doTypeCheck = pCol->affinity>SQLITE_AFF_BLOB;
1911 if( pCol->notNull==0 && !doTypeCheck ) continue;
1913 /* Compute the operands that will be needed for OP_IsType */
1914 p4 = SQLITE_NULL;
1915 if( pCol->colFlags & COLFLAG_VIRTUAL ){
1916 sqlite3ExprCodeGetColumnOfTable(v, pTab, iDataCur, j, 3);
1917 p1 = -1;
1918 p3 = 3;
1919 }else{
1920 if( pCol->iDflt ){
1921 sqlite3_value *pDfltValue = 0;
1922 sqlite3ValueFromExpr(db, sqlite3ColumnExpr(pTab,pCol), ENC(db),
1923 pCol->affinity, &pDfltValue);
1924 if( pDfltValue ){
1925 p4 = sqlite3_value_type(pDfltValue);
1926 sqlite3ValueFree(pDfltValue);
1929 p1 = iDataCur;
1930 if( !HasRowid(pTab) ){
1931 testcase( j!=sqlite3TableColumnToStorage(pTab, j) );
1932 p3 = sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab), j);
1933 }else{
1934 p3 = sqlite3TableColumnToStorage(pTab,j);
1935 testcase( p3!=j);
1939 labelError = sqlite3VdbeMakeLabel(pParse);
1940 labelOk = sqlite3VdbeMakeLabel(pParse);
1941 if( pCol->notNull ){
1942 /* (1) NOT NULL columns may not contain a NULL */
1943 int jmp3;
1944 int jmp2 = sqlite3VdbeAddOp4Int(v, OP_IsType, p1, labelOk, p3, p4);
1945 VdbeCoverage(v);
1946 if( p1<0 ){
1947 sqlite3VdbeChangeP5(v, 0x0f); /* INT, REAL, TEXT, or BLOB */
1948 jmp3 = jmp2;
1949 }else{
1950 sqlite3VdbeChangeP5(v, 0x0d); /* INT, TEXT, or BLOB */
1951 /* OP_IsType does not detect NaN values in the database file
1952 ** which should be treated as a NULL. So if the header type
1953 ** is REAL, we have to load the actual data using OP_Column
1954 ** to reliably determine if the value is a NULL. */
1955 sqlite3VdbeAddOp3(v, OP_Column, p1, p3, 3);
1956 sqlite3ColumnDefault(v, pTab, j, 3);
1957 jmp3 = sqlite3VdbeAddOp2(v, OP_NotNull, 3, labelOk);
1958 VdbeCoverage(v);
1960 zErr = sqlite3MPrintf(db, "NULL value in %s.%s", pTab->zName,
1961 pCol->zCnName);
1962 sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC);
1963 if( doTypeCheck ){
1964 sqlite3VdbeGoto(v, labelError);
1965 sqlite3VdbeJumpHere(v, jmp2);
1966 sqlite3VdbeJumpHere(v, jmp3);
1967 }else{
1968 /* VDBE byte code will fall thru */
1971 if( bStrict && doTypeCheck ){
1972 /* (2) Datatype must be exact for non-ANY columns in STRICT tables*/
1973 static unsigned char aStdTypeMask[] = {
1974 0x1f, /* ANY */
1975 0x18, /* BLOB */
1976 0x11, /* INT */
1977 0x11, /* INTEGER */
1978 0x13, /* REAL */
1979 0x14 /* TEXT */
1981 sqlite3VdbeAddOp4Int(v, OP_IsType, p1, labelOk, p3, p4);
1982 assert( pCol->eCType>=1 && pCol->eCType<=sizeof(aStdTypeMask) );
1983 sqlite3VdbeChangeP5(v, aStdTypeMask[pCol->eCType-1]);
1984 VdbeCoverage(v);
1985 zErr = sqlite3MPrintf(db, "non-%s value in %s.%s",
1986 sqlite3StdType[pCol->eCType-1],
1987 pTab->zName, pTab->aCol[j].zCnName);
1988 sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC);
1989 }else if( !bStrict && pCol->affinity==SQLITE_AFF_TEXT ){
1990 /* (3) Datatype for TEXT columns in non-STRICT tables must be
1991 ** NULL, TEXT, or BLOB. */
1992 sqlite3VdbeAddOp4Int(v, OP_IsType, p1, labelOk, p3, p4);
1993 sqlite3VdbeChangeP5(v, 0x1c); /* NULL, TEXT, or BLOB */
1994 VdbeCoverage(v);
1995 zErr = sqlite3MPrintf(db, "NUMERIC value in %s.%s",
1996 pTab->zName, pTab->aCol[j].zCnName);
1997 sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC);
1998 }else if( !bStrict && pCol->affinity>=SQLITE_AFF_NUMERIC ){
1999 /* (4) Datatype for numeric columns in non-STRICT tables must not
2000 ** be a TEXT value that can be converted to numeric. */
2001 sqlite3VdbeAddOp4Int(v, OP_IsType, p1, labelOk, p3, p4);
2002 sqlite3VdbeChangeP5(v, 0x1b); /* NULL, INT, FLOAT, or BLOB */
2003 VdbeCoverage(v);
2004 if( p1>=0 ){
2005 sqlite3ExprCodeGetColumnOfTable(v, pTab, iDataCur, j, 3);
2007 sqlite3VdbeAddOp4(v, OP_Affinity, 3, 1, 0, "C", P4_STATIC);
2008 sqlite3VdbeAddOp4Int(v, OP_IsType, -1, labelOk, 3, p4);
2009 sqlite3VdbeChangeP5(v, 0x1c); /* NULL, TEXT, or BLOB */
2010 VdbeCoverage(v);
2011 zErr = sqlite3MPrintf(db, "TEXT value in %s.%s",
2012 pTab->zName, pTab->aCol[j].zCnName);
2013 sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC);
2015 sqlite3VdbeResolveLabel(v, labelError);
2016 integrityCheckResultRow(v);
2017 sqlite3VdbeResolveLabel(v, labelOk);
2019 /* Verify CHECK constraints */
2020 if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){
2021 ExprList *pCheck = sqlite3ExprListDup(db, pTab->pCheck, 0);
2022 if( db->mallocFailed==0 ){
2023 int addrCkFault = sqlite3VdbeMakeLabel(pParse);
2024 int addrCkOk = sqlite3VdbeMakeLabel(pParse);
2025 char *zErr;
2026 int k;
2027 pParse->iSelfTab = iDataCur + 1;
2028 for(k=pCheck->nExpr-1; k>0; k--){
2029 sqlite3ExprIfFalse(pParse, pCheck->a[k].pExpr, addrCkFault, 0);
2031 sqlite3ExprIfTrue(pParse, pCheck->a[0].pExpr, addrCkOk,
2032 SQLITE_JUMPIFNULL);
2033 sqlite3VdbeResolveLabel(v, addrCkFault);
2034 pParse->iSelfTab = 0;
2035 zErr = sqlite3MPrintf(db, "CHECK constraint failed in %s",
2036 pTab->zName);
2037 sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC);
2038 integrityCheckResultRow(v);
2039 sqlite3VdbeResolveLabel(v, addrCkOk);
2041 sqlite3ExprListDelete(db, pCheck);
2043 if( !isQuick ){ /* Omit the remaining tests for quick_check */
2044 /* Validate index entries for the current row */
2045 for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
2046 int jmp2, jmp3, jmp4, jmp5, label6;
2047 int kk;
2048 int ckUniq = sqlite3VdbeMakeLabel(pParse);
2049 if( pPk==pIdx ) continue;
2050 r1 = sqlite3GenerateIndexKey(pParse, pIdx, iDataCur, 0, 0, &jmp3,
2051 pPrior, r1);
2052 pPrior = pIdx;
2053 sqlite3VdbeAddOp2(v, OP_AddImm, 8+j, 1);/* increment entry count */
2054 /* Verify that an index entry exists for the current table row */
2055 jmp2 = sqlite3VdbeAddOp4Int(v, OP_Found, iIdxCur+j, ckUniq, r1,
2056 pIdx->nColumn); VdbeCoverage(v);
2057 sqlite3VdbeLoadString(v, 3, "row ");
2058 sqlite3VdbeAddOp3(v, OP_Concat, 7, 3, 3);
2059 sqlite3VdbeLoadString(v, 4, " missing from index ");
2060 sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 3);
2061 jmp5 = sqlite3VdbeLoadString(v, 4, pIdx->zName);
2062 sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 3);
2063 jmp4 = integrityCheckResultRow(v);
2064 sqlite3VdbeJumpHere(v, jmp2);
2066 /* The OP_IdxRowid opcode is an optimized version of OP_Column
2067 ** that extracts the rowid off the end of the index record.
2068 ** But it only works correctly if index record does not have
2069 ** any extra bytes at the end. Verify that this is the case. */
2070 if( HasRowid(pTab) ){
2071 int jmp7;
2072 sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur+j, 3);
2073 jmp7 = sqlite3VdbeAddOp3(v, OP_Eq, 3, 0, r1+pIdx->nColumn-1);
2074 VdbeCoverageNeverNull(v);
2075 sqlite3VdbeLoadString(v, 3,
2076 "rowid not at end-of-record for row ");
2077 sqlite3VdbeAddOp3(v, OP_Concat, 7, 3, 3);
2078 sqlite3VdbeLoadString(v, 4, " of index ");
2079 sqlite3VdbeGoto(v, jmp5-1);
2080 sqlite3VdbeJumpHere(v, jmp7);
2083 /* Any indexed columns with non-BINARY collations must still hold
2084 ** the exact same text value as the table. */
2085 label6 = 0;
2086 for(kk=0; kk<pIdx->nKeyCol; kk++){
2087 if( pIdx->azColl[kk]==sqlite3StrBINARY ) continue;
2088 if( label6==0 ) label6 = sqlite3VdbeMakeLabel(pParse);
2089 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur+j, kk, 3);
2090 sqlite3VdbeAddOp3(v, OP_Ne, 3, label6, r1+kk); VdbeCoverage(v);
2092 if( label6 ){
2093 int jmp6 = sqlite3VdbeAddOp0(v, OP_Goto);
2094 sqlite3VdbeResolveLabel(v, label6);
2095 sqlite3VdbeLoadString(v, 3, "row ");
2096 sqlite3VdbeAddOp3(v, OP_Concat, 7, 3, 3);
2097 sqlite3VdbeLoadString(v, 4, " values differ from index ");
2098 sqlite3VdbeGoto(v, jmp5-1);
2099 sqlite3VdbeJumpHere(v, jmp6);
2102 /* For UNIQUE indexes, verify that only one entry exists with the
2103 ** current key. The entry is unique if (1) any column is NULL
2104 ** or (2) the next entry has a different key */
2105 if( IsUniqueIndex(pIdx) ){
2106 int uniqOk = sqlite3VdbeMakeLabel(pParse);
2107 int jmp6;
2108 for(kk=0; kk<pIdx->nKeyCol; kk++){
2109 int iCol = pIdx->aiColumn[kk];
2110 assert( iCol!=XN_ROWID && iCol<pTab->nCol );
2111 if( iCol>=0 && pTab->aCol[iCol].notNull ) continue;
2112 sqlite3VdbeAddOp2(v, OP_IsNull, r1+kk, uniqOk);
2113 VdbeCoverage(v);
2115 jmp6 = sqlite3VdbeAddOp1(v, OP_Next, iIdxCur+j); VdbeCoverage(v);
2116 sqlite3VdbeGoto(v, uniqOk);
2117 sqlite3VdbeJumpHere(v, jmp6);
2118 sqlite3VdbeAddOp4Int(v, OP_IdxGT, iIdxCur+j, uniqOk, r1,
2119 pIdx->nKeyCol); VdbeCoverage(v);
2120 sqlite3VdbeLoadString(v, 3, "non-unique entry in index ");
2121 sqlite3VdbeGoto(v, jmp5);
2122 sqlite3VdbeResolveLabel(v, uniqOk);
2124 sqlite3VdbeJumpHere(v, jmp4);
2125 sqlite3ResolvePartIdxLabel(pParse, jmp3);
2128 sqlite3VdbeAddOp2(v, OP_Next, iDataCur, loopTop); VdbeCoverage(v);
2129 sqlite3VdbeJumpHere(v, loopTop-1);
2130 if( pPk ){
2131 assert( !isQuick );
2132 sqlite3ReleaseTempRange(pParse, r2, pPk->nKeyCol);
2136 #ifndef SQLITE_OMIT_VIRTUALTABLE
2137 /* Second pass to invoke the xIntegrity method on all virtual
2138 ** tables.
2140 for(x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){
2141 Table *pTab = sqliteHashData(x);
2142 sqlite3_vtab *pVTab;
2143 int a1;
2144 if( pObjTab && pObjTab!=pTab ) continue;
2145 if( IsOrdinaryTable(pTab) ) continue;
2146 if( !IsVirtual(pTab) ) continue;
2147 if( pTab->nCol<=0 ){
2148 const char *zMod = pTab->u.vtab.azArg[0];
2149 if( sqlite3HashFind(&db->aModule, zMod)==0 ) continue;
2151 sqlite3ViewGetColumnNames(pParse, pTab);
2152 if( pTab->u.vtab.p==0 ) continue;
2153 pVTab = pTab->u.vtab.p->pVtab;
2154 if( NEVER(pVTab==0) ) continue;
2155 if( NEVER(pVTab->pModule==0) ) continue;
2156 if( pVTab->pModule->iVersion<4 ) continue;
2157 if( pVTab->pModule->xIntegrity==0 ) continue;
2158 sqlite3VdbeAddOp3(v, OP_VCheck, i, 3, isQuick);
2159 pTab->nTabRef++;
2160 sqlite3VdbeAppendP4(v, pTab, P4_TABLEREF);
2161 a1 = sqlite3VdbeAddOp1(v, OP_IsNull, 3); VdbeCoverage(v);
2162 integrityCheckResultRow(v);
2163 sqlite3VdbeJumpHere(v, a1);
2164 continue;
2166 #endif
2169 static const int iLn = VDBE_OFFSET_LINENO(2);
2170 static const VdbeOpList endCode[] = {
2171 { OP_AddImm, 1, 0, 0}, /* 0 */
2172 { OP_IfNotZero, 1, 4, 0}, /* 1 */
2173 { OP_String8, 0, 3, 0}, /* 2 */
2174 { OP_ResultRow, 3, 1, 0}, /* 3 */
2175 { OP_Halt, 0, 0, 0}, /* 4 */
2176 { OP_String8, 0, 3, 0}, /* 5 */
2177 { OP_Goto, 0, 3, 0}, /* 6 */
2179 VdbeOp *aOp;
2181 aOp = sqlite3VdbeAddOpList(v, ArraySize(endCode), endCode, iLn);
2182 if( aOp ){
2183 aOp[0].p2 = 1-mxErr;
2184 aOp[2].p4type = P4_STATIC;
2185 aOp[2].p4.z = "ok";
2186 aOp[5].p4type = P4_STATIC;
2187 aOp[5].p4.z = (char*)sqlite3ErrStr(SQLITE_CORRUPT);
2189 sqlite3VdbeChangeP3(v, 0, sqlite3VdbeCurrentAddr(v)-2);
2192 break;
2193 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
2195 #ifndef SQLITE_OMIT_UTF16
2197 ** PRAGMA encoding
2198 ** PRAGMA encoding = "utf-8"|"utf-16"|"utf-16le"|"utf-16be"
2200 ** In its first form, this pragma returns the encoding of the main
2201 ** database. If the database is not initialized, it is initialized now.
2203 ** The second form of this pragma is a no-op if the main database file
2204 ** has not already been initialized. In this case it sets the default
2205 ** encoding that will be used for the main database file if a new file
2206 ** is created. If an existing main database file is opened, then the
2207 ** default text encoding for the existing database is used.
2209 ** In all cases new databases created using the ATTACH command are
2210 ** created to use the same default text encoding as the main database. If
2211 ** the main database has not been initialized and/or created when ATTACH
2212 ** is executed, this is done before the ATTACH operation.
2214 ** In the second form this pragma sets the text encoding to be used in
2215 ** new database files created using this database handle. It is only
2216 ** useful if invoked immediately after the main database i
2218 case PragTyp_ENCODING: {
2219 static const struct EncName {
2220 char *zName;
2221 u8 enc;
2222 } encnames[] = {
2223 { "UTF8", SQLITE_UTF8 },
2224 { "UTF-8", SQLITE_UTF8 }, /* Must be element [1] */
2225 { "UTF-16le", SQLITE_UTF16LE }, /* Must be element [2] */
2226 { "UTF-16be", SQLITE_UTF16BE }, /* Must be element [3] */
2227 { "UTF16le", SQLITE_UTF16LE },
2228 { "UTF16be", SQLITE_UTF16BE },
2229 { "UTF-16", 0 }, /* SQLITE_UTF16NATIVE */
2230 { "UTF16", 0 }, /* SQLITE_UTF16NATIVE */
2231 { 0, 0 }
2233 const struct EncName *pEnc;
2234 if( !zRight ){ /* "PRAGMA encoding" */
2235 if( sqlite3ReadSchema(pParse) ) goto pragma_out;
2236 assert( encnames[SQLITE_UTF8].enc==SQLITE_UTF8 );
2237 assert( encnames[SQLITE_UTF16LE].enc==SQLITE_UTF16LE );
2238 assert( encnames[SQLITE_UTF16BE].enc==SQLITE_UTF16BE );
2239 returnSingleText(v, encnames[ENC(pParse->db)].zName);
2240 }else{ /* "PRAGMA encoding = XXX" */
2241 /* Only change the value of sqlite.enc if the database handle is not
2242 ** initialized. If the main database exists, the new sqlite.enc value
2243 ** will be overwritten when the schema is next loaded. If it does not
2244 ** already exists, it will be created to use the new encoding value.
2246 if( (db->mDbFlags & DBFLAG_EncodingFixed)==0 ){
2247 for(pEnc=&encnames[0]; pEnc->zName; pEnc++){
2248 if( 0==sqlite3StrICmp(zRight, pEnc->zName) ){
2249 u8 enc = pEnc->enc ? pEnc->enc : SQLITE_UTF16NATIVE;
2250 SCHEMA_ENC(db) = enc;
2251 sqlite3SetTextEncoding(db, enc);
2252 break;
2255 if( !pEnc->zName ){
2256 sqlite3ErrorMsg(pParse, "unsupported encoding: %s", zRight);
2261 break;
2262 #endif /* SQLITE_OMIT_UTF16 */
2264 #ifndef SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS
2266 ** PRAGMA [schema.]schema_version
2267 ** PRAGMA [schema.]schema_version = <integer>
2269 ** PRAGMA [schema.]user_version
2270 ** PRAGMA [schema.]user_version = <integer>
2272 ** PRAGMA [schema.]freelist_count
2274 ** PRAGMA [schema.]data_version
2276 ** PRAGMA [schema.]application_id
2277 ** PRAGMA [schema.]application_id = <integer>
2279 ** The pragma's schema_version and user_version are used to set or get
2280 ** the value of the schema-version and user-version, respectively. Both
2281 ** the schema-version and the user-version are 32-bit signed integers
2282 ** stored in the database header.
2284 ** The schema-cookie is usually only manipulated internally by SQLite. It
2285 ** is incremented by SQLite whenever the database schema is modified (by
2286 ** creating or dropping a table or index). The schema version is used by
2287 ** SQLite each time a query is executed to ensure that the internal cache
2288 ** of the schema used when compiling the SQL query matches the schema of
2289 ** the database against which the compiled query is actually executed.
2290 ** Subverting this mechanism by using "PRAGMA schema_version" to modify
2291 ** the schema-version is potentially dangerous and may lead to program
2292 ** crashes or database corruption. Use with caution!
2294 ** The user-version is not used internally by SQLite. It may be used by
2295 ** applications for any purpose.
2297 case PragTyp_HEADER_VALUE: {
2298 int iCookie = pPragma->iArg; /* Which cookie to read or write */
2299 sqlite3VdbeUsesBtree(v, iDb);
2300 if( zRight && (pPragma->mPragFlg & PragFlg_ReadOnly)==0 ){
2301 /* Write the specified cookie value */
2302 static const VdbeOpList setCookie[] = {
2303 { OP_Transaction, 0, 1, 0}, /* 0 */
2304 { OP_SetCookie, 0, 0, 0}, /* 1 */
2306 VdbeOp *aOp;
2307 sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(setCookie));
2308 aOp = sqlite3VdbeAddOpList(v, ArraySize(setCookie), setCookie, 0);
2309 if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break;
2310 aOp[0].p1 = iDb;
2311 aOp[1].p1 = iDb;
2312 aOp[1].p2 = iCookie;
2313 aOp[1].p3 = sqlite3Atoi(zRight);
2314 aOp[1].p5 = 1;
2315 if( iCookie==BTREE_SCHEMA_VERSION && (db->flags & SQLITE_Defensive)!=0 ){
2316 /* Do not allow the use of PRAGMA schema_version=VALUE in defensive
2317 ** mode. Change the OP_SetCookie opcode into a no-op. */
2318 aOp[1].opcode = OP_Noop;
2320 }else{
2321 /* Read the specified cookie value */
2322 static const VdbeOpList readCookie[] = {
2323 { OP_Transaction, 0, 0, 0}, /* 0 */
2324 { OP_ReadCookie, 0, 1, 0}, /* 1 */
2325 { OP_ResultRow, 1, 1, 0}
2327 VdbeOp *aOp;
2328 sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(readCookie));
2329 aOp = sqlite3VdbeAddOpList(v, ArraySize(readCookie),readCookie,0);
2330 if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break;
2331 aOp[0].p1 = iDb;
2332 aOp[1].p1 = iDb;
2333 aOp[1].p3 = iCookie;
2334 sqlite3VdbeReusable(v);
2337 break;
2338 #endif /* SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS */
2340 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
2342 ** PRAGMA compile_options
2344 ** Return the names of all compile-time options used in this build,
2345 ** one option per row.
2347 case PragTyp_COMPILE_OPTIONS: {
2348 int i = 0;
2349 const char *zOpt;
2350 pParse->nMem = 1;
2351 while( (zOpt = sqlite3_compileoption_get(i++))!=0 ){
2352 sqlite3VdbeLoadString(v, 1, zOpt);
2353 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
2355 sqlite3VdbeReusable(v);
2357 break;
2358 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
2360 #ifndef SQLITE_OMIT_WAL
2362 ** PRAGMA [schema.]wal_checkpoint = passive|full|restart|truncate
2364 ** Checkpoint the database.
2366 case PragTyp_WAL_CHECKPOINT: {
2367 int iBt = (pId2->z?iDb:SQLITE_MAX_DB);
2368 int eMode = SQLITE_CHECKPOINT_PASSIVE;
2369 if( zRight ){
2370 if( sqlite3StrICmp(zRight, "full")==0 ){
2371 eMode = SQLITE_CHECKPOINT_FULL;
2372 }else if( sqlite3StrICmp(zRight, "restart")==0 ){
2373 eMode = SQLITE_CHECKPOINT_RESTART;
2374 }else if( sqlite3StrICmp(zRight, "truncate")==0 ){
2375 eMode = SQLITE_CHECKPOINT_TRUNCATE;
2378 pParse->nMem = 3;
2379 sqlite3VdbeAddOp3(v, OP_Checkpoint, iBt, eMode, 1);
2380 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 3);
2382 break;
2385 ** PRAGMA wal_autocheckpoint
2386 ** PRAGMA wal_autocheckpoint = N
2388 ** Configure a database connection to automatically checkpoint a database
2389 ** after accumulating N frames in the log. Or query for the current value
2390 ** of N.
2392 case PragTyp_WAL_AUTOCHECKPOINT: {
2393 if( zRight ){
2394 sqlite3_wal_autocheckpoint(db, sqlite3Atoi(zRight));
2396 returnSingleInt(v,
2397 db->xWalCallback==sqlite3WalDefaultHook ?
2398 SQLITE_PTR_TO_INT(db->pWalArg) : 0);
2400 break;
2401 #endif
2404 ** PRAGMA shrink_memory
2406 ** IMPLEMENTATION-OF: R-23445-46109 This pragma causes the database
2407 ** connection on which it is invoked to free up as much memory as it
2408 ** can, by calling sqlite3_db_release_memory().
2410 case PragTyp_SHRINK_MEMORY: {
2411 sqlite3_db_release_memory(db);
2412 break;
2416 ** PRAGMA optimize
2417 ** PRAGMA optimize(MASK)
2418 ** PRAGMA schema.optimize
2419 ** PRAGMA schema.optimize(MASK)
2421 ** Attempt to optimize the database. All schemas are optimized in the first
2422 ** two forms, and only the specified schema is optimized in the latter two.
2424 ** The details of optimizations performed by this pragma are expected
2425 ** to change and improve over time. Applications should anticipate that
2426 ** this pragma will perform new optimizations in future releases.
2428 ** The optional argument is a bitmask of optimizations to perform:
2430 ** 0x00001 Debugging mode. Do not actually perform any optimizations
2431 ** but instead return one line of text for each optimization
2432 ** that would have been done. Off by default.
2434 ** 0x00002 Run ANALYZE on tables that might benefit. On by default.
2435 ** See below for additional information.
2437 ** 0x00010 Run all ANALYZE operations using an analysis_limit that
2438 ** is the lessor of the current analysis_limit and the
2439 ** SQLITE_DEFAULT_OPTIMIZE_LIMIT compile-time option.
2440 ** The default value of SQLITE_DEFAULT_OPTIMIZE_LIMIT is
2441 ** currently (2024-02-19) set to 2000, which is such that
2442 ** the worst case run-time for PRAGMA optimize on a 100MB
2443 ** database will usually be less than 100 milliseconds on
2444 ** a RaspberryPI-4 class machine. On by default.
2446 ** 0x10000 Look at tables to see if they need to be reanalyzed
2447 ** due to growth or shrinkage even if they have not been
2448 ** queried during the current connection. Off by default.
2450 ** The default MASK is and always shall be 0x0fffe. In the current
2451 ** implementation, the default mask only covers the 0x00002 optimization,
2452 ** though additional optimizations that are covered by 0x0fffe might be
2453 ** added in the future. Optimizations that are off by default and must
2454 ** be explicitly requested have masks of 0x10000 or greater.
2456 ** DETERMINATION OF WHEN TO RUN ANALYZE
2458 ** In the current implementation, a table is analyzed if only if all of
2459 ** the following are true:
2461 ** (1) MASK bit 0x00002 is set.
2463 ** (2) The table is an ordinary table, not a virtual table or view.
2465 ** (3) The table name does not begin with "sqlite_".
2467 ** (4) One or more of the following is true:
2468 ** (4a) The 0x10000 MASK bit is set.
2469 ** (4b) One or more indexes on the table lacks an entry
2470 ** in the sqlite_stat1 table.
2471 ** (4c) The query planner used sqlite_stat1-style statistics for one
2472 ** or more indexes of the table at some point during the lifetime
2473 ** of the current connection.
2475 ** (5) One or more of the following is true:
2476 ** (5a) One or more indexes on the table lacks an entry
2477 ** in the sqlite_stat1 table. (Same as 4a)
2478 ** (5b) The number of rows in the table has increased or decreased by
2479 ** 10-fold. In other words, the current size of the table is
2480 ** 10 times larger than the size in sqlite_stat1 or else the
2481 ** current size is less than 1/10th the size in sqlite_stat1.
2483 ** The rules for when tables are analyzed are likely to change in
2484 ** future releases. Future versions of SQLite might accept a string
2485 ** literal argument to this pragma that contains a mnemonic description
2486 ** of the options rather than a bitmap.
2488 case PragTyp_OPTIMIZE: {
2489 int iDbLast; /* Loop termination point for the schema loop */
2490 int iTabCur; /* Cursor for a table whose size needs checking */
2491 HashElem *k; /* Loop over tables of a schema */
2492 Schema *pSchema; /* The current schema */
2493 Table *pTab; /* A table in the schema */
2494 Index *pIdx; /* An index of the table */
2495 LogEst szThreshold; /* Size threshold above which reanalysis needed */
2496 char *zSubSql; /* SQL statement for the OP_SqlExec opcode */
2497 u32 opMask; /* Mask of operations to perform */
2498 int nLimit; /* Analysis limit to use */
2499 int nCheck = 0; /* Number of tables to be optimized */
2500 int nBtree = 0; /* Number of btrees to scan */
2501 int nIndex; /* Number of indexes on the current table */
2503 if( zRight ){
2504 opMask = (u32)sqlite3Atoi(zRight);
2505 if( (opMask & 0x02)==0 ) break;
2506 }else{
2507 opMask = 0xfffe;
2509 if( (opMask & 0x10)==0 ){
2510 nLimit = 0;
2511 }else if( db->nAnalysisLimit>0
2512 && db->nAnalysisLimit<SQLITE_DEFAULT_OPTIMIZE_LIMIT ){
2513 nLimit = 0;
2514 }else{
2515 nLimit = SQLITE_DEFAULT_OPTIMIZE_LIMIT;
2517 iTabCur = pParse->nTab++;
2518 for(iDbLast = zDb?iDb:db->nDb-1; iDb<=iDbLast; iDb++){
2519 if( iDb==1 ) continue;
2520 sqlite3CodeVerifySchema(pParse, iDb);
2521 pSchema = db->aDb[iDb].pSchema;
2522 for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){
2523 pTab = (Table*)sqliteHashData(k);
2525 /* This only works for ordinary tables */
2526 if( !IsOrdinaryTable(pTab) ) continue;
2528 /* Do not scan system tables */
2529 if( 0==sqlite3StrNICmp(pTab->zName, "sqlite_", 7) ) continue;
2531 /* Find the size of the table as last recorded in sqlite_stat1.
2532 ** If any index is unanalyzed, then the threshold is -1 to
2533 ** indicate a new, unanalyzed index
2535 szThreshold = pTab->nRowLogEst;
2536 nIndex = 0;
2537 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2538 nIndex++;
2539 if( !pIdx->hasStat1 ){
2540 szThreshold = -1; /* Always analyze if any index lacks statistics */
2544 /* If table pTab has not been used in a way that would benefit from
2545 ** having analysis statistics during the current session, then skip it,
2546 ** unless the 0x10000 MASK bit is set. */
2547 if( (pTab->tabFlags & TF_MaybeReanalyze)!=0 ){
2548 /* Check for size change if stat1 has been used for a query */
2549 }else if( opMask & 0x10000 ){
2550 /* Check for size change if 0x10000 is set */
2551 }else if( pTab->pIndex!=0 && szThreshold<0 ){
2552 /* Do analysis if unanalyzed indexes exists */
2553 }else{
2554 /* Otherwise, we can skip this table */
2555 continue;
2558 nCheck++;
2559 if( nCheck==2 ){
2560 /* If ANALYZE might be invoked two or more times, hold a write
2561 ** transaction for efficiency */
2562 sqlite3BeginWriteOperation(pParse, 0, iDb);
2564 nBtree += nIndex+1;
2566 /* Reanalyze if the table is 10 times larger or smaller than
2567 ** the last analysis. Unconditional reanalysis if there are
2568 ** unanalyzed indexes. */
2569 sqlite3OpenTable(pParse, iTabCur, iDb, pTab, OP_OpenRead);
2570 if( szThreshold>=0 ){
2571 const LogEst iRange = 33; /* 10x size change */
2572 sqlite3VdbeAddOp4Int(v, OP_IfSizeBetween, iTabCur,
2573 sqlite3VdbeCurrentAddr(v)+2+(opMask&1),
2574 szThreshold>=iRange ? szThreshold-iRange : -1,
2575 szThreshold+iRange);
2576 VdbeCoverage(v);
2577 }else{
2578 sqlite3VdbeAddOp2(v, OP_Rewind, iTabCur,
2579 sqlite3VdbeCurrentAddr(v)+2+(opMask&1));
2580 VdbeCoverage(v);
2582 zSubSql = sqlite3MPrintf(db, "ANALYZE \"%w\".\"%w\"",
2583 db->aDb[iDb].zDbSName, pTab->zName);
2584 if( opMask & 0x01 ){
2585 int r1 = sqlite3GetTempReg(pParse);
2586 sqlite3VdbeAddOp4(v, OP_String8, 0, r1, 0, zSubSql, P4_DYNAMIC);
2587 sqlite3VdbeAddOp2(v, OP_ResultRow, r1, 1);
2588 }else{
2589 sqlite3VdbeAddOp4(v, OP_SqlExec, nLimit ? 0x02 : 00, nLimit, 0,
2590 zSubSql, P4_DYNAMIC);
2594 sqlite3VdbeAddOp0(v, OP_Expire);
2596 /* In a schema with a large number of tables and indexes, scale back
2597 ** the analysis_limit to avoid excess run-time in the worst case.
2599 if( !db->mallocFailed && nLimit>0 && nBtree>100 ){
2600 int iAddr, iEnd;
2601 VdbeOp *aOp;
2602 nLimit = 100*nLimit/nBtree;
2603 if( nLimit<100 ) nLimit = 100;
2604 aOp = sqlite3VdbeGetOp(v, 0);
2605 iEnd = sqlite3VdbeCurrentAddr(v);
2606 for(iAddr=0; iAddr<iEnd; iAddr++){
2607 if( aOp[iAddr].opcode==OP_SqlExec ) aOp[iAddr].p2 = nLimit;
2610 break;
2614 ** PRAGMA busy_timeout
2615 ** PRAGMA busy_timeout = N
2617 ** Call sqlite3_busy_timeout(db, N). Return the current timeout value
2618 ** if one is set. If no busy handler or a different busy handler is set
2619 ** then 0 is returned. Setting the busy_timeout to 0 or negative
2620 ** disables the timeout.
2622 /*case PragTyp_BUSY_TIMEOUT*/ default: {
2623 assert( pPragma->ePragTyp==PragTyp_BUSY_TIMEOUT );
2624 if( zRight ){
2625 sqlite3_busy_timeout(db, sqlite3Atoi(zRight));
2627 returnSingleInt(v, db->busyTimeout);
2628 break;
2632 ** PRAGMA soft_heap_limit
2633 ** PRAGMA soft_heap_limit = N
2635 ** IMPLEMENTATION-OF: R-26343-45930 This pragma invokes the
2636 ** sqlite3_soft_heap_limit64() interface with the argument N, if N is
2637 ** specified and is a non-negative integer.
2638 ** IMPLEMENTATION-OF: R-64451-07163 The soft_heap_limit pragma always
2639 ** returns the same integer that would be returned by the
2640 ** sqlite3_soft_heap_limit64(-1) C-language function.
2642 case PragTyp_SOFT_HEAP_LIMIT: {
2643 sqlite3_int64 N;
2644 if( zRight && sqlite3DecOrHexToI64(zRight, &N)==SQLITE_OK ){
2645 sqlite3_soft_heap_limit64(N);
2647 returnSingleInt(v, sqlite3_soft_heap_limit64(-1));
2648 break;
2652 ** PRAGMA hard_heap_limit
2653 ** PRAGMA hard_heap_limit = N
2655 ** Invoke sqlite3_hard_heap_limit64() to query or set the hard heap
2656 ** limit. The hard heap limit can be activated or lowered by this
2657 ** pragma, but not raised or deactivated. Only the
2658 ** sqlite3_hard_heap_limit64() C-language API can raise or deactivate
2659 ** the hard heap limit. This allows an application to set a heap limit
2660 ** constraint that cannot be relaxed by an untrusted SQL script.
2662 case PragTyp_HARD_HEAP_LIMIT: {
2663 sqlite3_int64 N;
2664 if( zRight && sqlite3DecOrHexToI64(zRight, &N)==SQLITE_OK ){
2665 sqlite3_int64 iPrior = sqlite3_hard_heap_limit64(-1);
2666 if( N>0 && (iPrior==0 || iPrior>N) ) sqlite3_hard_heap_limit64(N);
2668 returnSingleInt(v, sqlite3_hard_heap_limit64(-1));
2669 break;
2673 ** PRAGMA threads
2674 ** PRAGMA threads = N
2676 ** Configure the maximum number of worker threads. Return the new
2677 ** maximum, which might be less than requested.
2679 case PragTyp_THREADS: {
2680 sqlite3_int64 N;
2681 if( zRight
2682 && sqlite3DecOrHexToI64(zRight, &N)==SQLITE_OK
2683 && N>=0
2685 sqlite3_limit(db, SQLITE_LIMIT_WORKER_THREADS, (int)(N&0x7fffffff));
2687 returnSingleInt(v, sqlite3_limit(db, SQLITE_LIMIT_WORKER_THREADS, -1));
2688 break;
2692 ** PRAGMA analysis_limit
2693 ** PRAGMA analysis_limit = N
2695 ** Configure the maximum number of rows that ANALYZE will examine
2696 ** in each index that it looks at. Return the new limit.
2698 case PragTyp_ANALYSIS_LIMIT: {
2699 sqlite3_int64 N;
2700 if( zRight
2701 && sqlite3DecOrHexToI64(zRight, &N)==SQLITE_OK /* IMP: R-40975-20399 */
2702 && N>=0
2704 db->nAnalysisLimit = (int)(N&0x7fffffff);
2706 returnSingleInt(v, db->nAnalysisLimit); /* IMP: R-57594-65522 */
2707 break;
2710 #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
2712 ** Report the current state of file logs for all databases
2714 case PragTyp_LOCK_STATUS: {
2715 static const char *const azLockName[] = {
2716 "unlocked", "shared", "reserved", "pending", "exclusive"
2718 int i;
2719 pParse->nMem = 2;
2720 for(i=0; i<db->nDb; i++){
2721 Btree *pBt;
2722 const char *zState = "unknown";
2723 int j;
2724 if( db->aDb[i].zDbSName==0 ) continue;
2725 pBt = db->aDb[i].pBt;
2726 if( pBt==0 || sqlite3BtreePager(pBt)==0 ){
2727 zState = "closed";
2728 }else if( sqlite3_file_control(db, i ? db->aDb[i].zDbSName : 0,
2729 SQLITE_FCNTL_LOCKSTATE, &j)==SQLITE_OK ){
2730 zState = azLockName[j];
2732 sqlite3VdbeMultiLoad(v, 1, "ss", db->aDb[i].zDbSName, zState);
2734 break;
2736 #endif
2738 #if defined(SQLITE_ENABLE_CEROD)
2739 case PragTyp_ACTIVATE_EXTENSIONS: if( zRight ){
2740 if( sqlite3StrNICmp(zRight, "cerod-", 6)==0 ){
2741 sqlite3_activate_cerod(&zRight[6]);
2744 break;
2745 #endif
2747 } /* End of the PRAGMA switch */
2749 /* The following block is a no-op unless SQLITE_DEBUG is defined. Its only
2750 ** purpose is to execute assert() statements to verify that if the
2751 ** PragFlg_NoColumns1 flag is set and the caller specified an argument
2752 ** to the PRAGMA, the implementation has not added any OP_ResultRow
2753 ** instructions to the VM. */
2754 if( (pPragma->mPragFlg & PragFlg_NoColumns1) && zRight ){
2755 sqlite3VdbeVerifyNoResultRow(v);
2758 pragma_out:
2759 sqlite3DbFree(db, zLeft);
2760 sqlite3DbFree(db, zRight);
2762 #ifndef SQLITE_OMIT_VIRTUALTABLE
2763 /*****************************************************************************
2764 ** Implementation of an eponymous virtual table that runs a pragma.
2767 typedef struct PragmaVtab PragmaVtab;
2768 typedef struct PragmaVtabCursor PragmaVtabCursor;
2769 struct PragmaVtab {
2770 sqlite3_vtab base; /* Base class. Must be first */
2771 sqlite3 *db; /* The database connection to which it belongs */
2772 const PragmaName *pName; /* Name of the pragma */
2773 u8 nHidden; /* Number of hidden columns */
2774 u8 iHidden; /* Index of the first hidden column */
2776 struct PragmaVtabCursor {
2777 sqlite3_vtab_cursor base; /* Base class. Must be first */
2778 sqlite3_stmt *pPragma; /* The pragma statement to run */
2779 sqlite_int64 iRowid; /* Current rowid */
2780 char *azArg[2]; /* Value of the argument and schema */
2784 ** Pragma virtual table module xConnect method.
2786 static int pragmaVtabConnect(
2787 sqlite3 *db,
2788 void *pAux,
2789 int argc, const char *const*argv,
2790 sqlite3_vtab **ppVtab,
2791 char **pzErr
2793 const PragmaName *pPragma = (const PragmaName*)pAux;
2794 PragmaVtab *pTab = 0;
2795 int rc;
2796 int i, j;
2797 char cSep = '(';
2798 StrAccum acc;
2799 char zBuf[200];
2801 UNUSED_PARAMETER(argc);
2802 UNUSED_PARAMETER(argv);
2803 sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0);
2804 sqlite3_str_appendall(&acc, "CREATE TABLE x");
2805 for(i=0, j=pPragma->iPragCName; i<pPragma->nPragCName; i++, j++){
2806 sqlite3_str_appendf(&acc, "%c\"%s\"", cSep, pragCName[j]);
2807 cSep = ',';
2809 if( i==0 ){
2810 sqlite3_str_appendf(&acc, "(\"%s\"", pPragma->zName);
2811 i++;
2813 j = 0;
2814 if( pPragma->mPragFlg & PragFlg_Result1 ){
2815 sqlite3_str_appendall(&acc, ",arg HIDDEN");
2816 j++;
2818 if( pPragma->mPragFlg & (PragFlg_SchemaOpt|PragFlg_SchemaReq) ){
2819 sqlite3_str_appendall(&acc, ",schema HIDDEN");
2820 j++;
2822 sqlite3_str_append(&acc, ")", 1);
2823 sqlite3StrAccumFinish(&acc);
2824 assert( strlen(zBuf) < sizeof(zBuf)-1 );
2825 rc = sqlite3_declare_vtab(db, zBuf);
2826 if( rc==SQLITE_OK ){
2827 pTab = (PragmaVtab*)sqlite3_malloc(sizeof(PragmaVtab));
2828 if( pTab==0 ){
2829 rc = SQLITE_NOMEM;
2830 }else{
2831 memset(pTab, 0, sizeof(PragmaVtab));
2832 pTab->pName = pPragma;
2833 pTab->db = db;
2834 pTab->iHidden = i;
2835 pTab->nHidden = j;
2837 }else{
2838 *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
2841 *ppVtab = (sqlite3_vtab*)pTab;
2842 return rc;
2846 ** Pragma virtual table module xDisconnect method.
2848 static int pragmaVtabDisconnect(sqlite3_vtab *pVtab){
2849 PragmaVtab *pTab = (PragmaVtab*)pVtab;
2850 sqlite3_free(pTab);
2851 return SQLITE_OK;
2854 /* Figure out the best index to use to search a pragma virtual table.
2856 ** There are not really any index choices. But we want to encourage the
2857 ** query planner to give == constraints on as many hidden parameters as
2858 ** possible, and especially on the first hidden parameter. So return a
2859 ** high cost if hidden parameters are unconstrained.
2861 static int pragmaVtabBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){
2862 PragmaVtab *pTab = (PragmaVtab*)tab;
2863 const struct sqlite3_index_constraint *pConstraint;
2864 int i, j;
2865 int seen[2];
2867 pIdxInfo->estimatedCost = (double)1;
2868 if( pTab->nHidden==0 ){ return SQLITE_OK; }
2869 pConstraint = pIdxInfo->aConstraint;
2870 seen[0] = 0;
2871 seen[1] = 0;
2872 for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){
2873 if( pConstraint->iColumn < pTab->iHidden ) continue;
2874 if( pConstraint->op!=SQLITE_INDEX_CONSTRAINT_EQ ) continue;
2875 if( pConstraint->usable==0 ) return SQLITE_CONSTRAINT;
2876 j = pConstraint->iColumn - pTab->iHidden;
2877 assert( j < 2 );
2878 seen[j] = i+1;
2880 if( seen[0]==0 ){
2881 pIdxInfo->estimatedCost = (double)2147483647;
2882 pIdxInfo->estimatedRows = 2147483647;
2883 return SQLITE_OK;
2885 j = seen[0]-1;
2886 pIdxInfo->aConstraintUsage[j].argvIndex = 1;
2887 pIdxInfo->aConstraintUsage[j].omit = 1;
2888 pIdxInfo->estimatedCost = (double)20;
2889 pIdxInfo->estimatedRows = 20;
2890 if( seen[1] ){
2891 j = seen[1]-1;
2892 pIdxInfo->aConstraintUsage[j].argvIndex = 2;
2893 pIdxInfo->aConstraintUsage[j].omit = 1;
2895 return SQLITE_OK;
2898 /* Create a new cursor for the pragma virtual table */
2899 static int pragmaVtabOpen(sqlite3_vtab *pVtab, sqlite3_vtab_cursor **ppCursor){
2900 PragmaVtabCursor *pCsr;
2901 pCsr = (PragmaVtabCursor*)sqlite3_malloc(sizeof(*pCsr));
2902 if( pCsr==0 ) return SQLITE_NOMEM;
2903 memset(pCsr, 0, sizeof(PragmaVtabCursor));
2904 pCsr->base.pVtab = pVtab;
2905 *ppCursor = &pCsr->base;
2906 return SQLITE_OK;
2909 /* Clear all content from pragma virtual table cursor. */
2910 static void pragmaVtabCursorClear(PragmaVtabCursor *pCsr){
2911 int i;
2912 sqlite3_finalize(pCsr->pPragma);
2913 pCsr->pPragma = 0;
2914 pCsr->iRowid = 0;
2915 for(i=0; i<ArraySize(pCsr->azArg); i++){
2916 sqlite3_free(pCsr->azArg[i]);
2917 pCsr->azArg[i] = 0;
2921 /* Close a pragma virtual table cursor */
2922 static int pragmaVtabClose(sqlite3_vtab_cursor *cur){
2923 PragmaVtabCursor *pCsr = (PragmaVtabCursor*)cur;
2924 pragmaVtabCursorClear(pCsr);
2925 sqlite3_free(pCsr);
2926 return SQLITE_OK;
2929 /* Advance the pragma virtual table cursor to the next row */
2930 static int pragmaVtabNext(sqlite3_vtab_cursor *pVtabCursor){
2931 PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor;
2932 int rc = SQLITE_OK;
2934 /* Increment the xRowid value */
2935 pCsr->iRowid++;
2936 assert( pCsr->pPragma );
2937 if( SQLITE_ROW!=sqlite3_step(pCsr->pPragma) ){
2938 rc = sqlite3_finalize(pCsr->pPragma);
2939 pCsr->pPragma = 0;
2940 pragmaVtabCursorClear(pCsr);
2942 return rc;
2946 ** Pragma virtual table module xFilter method.
2948 static int pragmaVtabFilter(
2949 sqlite3_vtab_cursor *pVtabCursor,
2950 int idxNum, const char *idxStr,
2951 int argc, sqlite3_value **argv
2953 PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor;
2954 PragmaVtab *pTab = (PragmaVtab*)(pVtabCursor->pVtab);
2955 int rc;
2956 int i, j;
2957 StrAccum acc;
2958 char *zSql;
2960 UNUSED_PARAMETER(idxNum);
2961 UNUSED_PARAMETER(idxStr);
2962 pragmaVtabCursorClear(pCsr);
2963 j = (pTab->pName->mPragFlg & PragFlg_Result1)!=0 ? 0 : 1;
2964 for(i=0; i<argc; i++, j++){
2965 const char *zText = (const char*)sqlite3_value_text(argv[i]);
2966 assert( j<ArraySize(pCsr->azArg) );
2967 assert( pCsr->azArg[j]==0 );
2968 if( zText ){
2969 pCsr->azArg[j] = sqlite3_mprintf("%s", zText);
2970 if( pCsr->azArg[j]==0 ){
2971 return SQLITE_NOMEM;
2975 sqlite3StrAccumInit(&acc, 0, 0, 0, pTab->db->aLimit[SQLITE_LIMIT_SQL_LENGTH]);
2976 sqlite3_str_appendall(&acc, "PRAGMA ");
2977 if( pCsr->azArg[1] ){
2978 sqlite3_str_appendf(&acc, "%Q.", pCsr->azArg[1]);
2980 sqlite3_str_appendall(&acc, pTab->pName->zName);
2981 if( pCsr->azArg[0] ){
2982 sqlite3_str_appendf(&acc, "=%Q", pCsr->azArg[0]);
2984 zSql = sqlite3StrAccumFinish(&acc);
2985 if( zSql==0 ) return SQLITE_NOMEM;
2986 rc = sqlite3_prepare_v2(pTab->db, zSql, -1, &pCsr->pPragma, 0);
2987 sqlite3_free(zSql);
2988 if( rc!=SQLITE_OK ){
2989 pTab->base.zErrMsg = sqlite3_mprintf("%s", sqlite3_errmsg(pTab->db));
2990 return rc;
2992 return pragmaVtabNext(pVtabCursor);
2996 ** Pragma virtual table module xEof method.
2998 static int pragmaVtabEof(sqlite3_vtab_cursor *pVtabCursor){
2999 PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor;
3000 return (pCsr->pPragma==0);
3003 /* The xColumn method simply returns the corresponding column from
3004 ** the PRAGMA.
3006 static int pragmaVtabColumn(
3007 sqlite3_vtab_cursor *pVtabCursor,
3008 sqlite3_context *ctx,
3009 int i
3011 PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor;
3012 PragmaVtab *pTab = (PragmaVtab*)(pVtabCursor->pVtab);
3013 if( i<pTab->iHidden ){
3014 sqlite3_result_value(ctx, sqlite3_column_value(pCsr->pPragma, i));
3015 }else{
3016 sqlite3_result_text(ctx, pCsr->azArg[i-pTab->iHidden],-1,SQLITE_TRANSIENT);
3018 return SQLITE_OK;
3022 ** Pragma virtual table module xRowid method.
3024 static int pragmaVtabRowid(sqlite3_vtab_cursor *pVtabCursor, sqlite_int64 *p){
3025 PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor;
3026 *p = pCsr->iRowid;
3027 return SQLITE_OK;
3030 /* The pragma virtual table object */
3031 static const sqlite3_module pragmaVtabModule = {
3032 0, /* iVersion */
3033 0, /* xCreate - create a table */
3034 pragmaVtabConnect, /* xConnect - connect to an existing table */
3035 pragmaVtabBestIndex, /* xBestIndex - Determine search strategy */
3036 pragmaVtabDisconnect, /* xDisconnect - Disconnect from a table */
3037 0, /* xDestroy - Drop a table */
3038 pragmaVtabOpen, /* xOpen - open a cursor */
3039 pragmaVtabClose, /* xClose - close a cursor */
3040 pragmaVtabFilter, /* xFilter - configure scan constraints */
3041 pragmaVtabNext, /* xNext - advance a cursor */
3042 pragmaVtabEof, /* xEof */
3043 pragmaVtabColumn, /* xColumn - read data */
3044 pragmaVtabRowid, /* xRowid - read data */
3045 0, /* xUpdate - write data */
3046 0, /* xBegin - begin transaction */
3047 0, /* xSync - sync transaction */
3048 0, /* xCommit - commit transaction */
3049 0, /* xRollback - rollback transaction */
3050 0, /* xFindFunction - function overloading */
3051 0, /* xRename - rename the table */
3052 0, /* xSavepoint */
3053 0, /* xRelease */
3054 0, /* xRollbackTo */
3055 0, /* xShadowName */
3056 0 /* xIntegrity */
3060 ** Check to see if zTabName is really the name of a pragma. If it is,
3061 ** then register an eponymous virtual table for that pragma and return
3062 ** a pointer to the Module object for the new virtual table.
3064 Module *sqlite3PragmaVtabRegister(sqlite3 *db, const char *zName){
3065 const PragmaName *pName;
3066 assert( sqlite3_strnicmp(zName, "pragma_", 7)==0 );
3067 pName = pragmaLocate(zName+7);
3068 if( pName==0 ) return 0;
3069 if( (pName->mPragFlg & (PragFlg_Result0|PragFlg_Result1))==0 ) return 0;
3070 assert( sqlite3HashFind(&db->aModule, zName)==0 );
3071 return sqlite3VtabCreateModule(db, zName, &pragmaVtabModule, (void*)pName, 0);
3074 #endif /* SQLITE_OMIT_VIRTUALTABLE */
3076 #endif /* SQLITE_OMIT_PRAGMA */