Snapshot of upstream SQLite 3.46.1
[sqlcipher.git] / src / test_func.c
blob80df48828201de1a1af9773fd3f520e5c6d2dac0
1 /*
2 ** 2008 March 19
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** Code for testing all sorts of SQLite interfaces. This code
13 ** implements new SQL functions used by the test scripts.
15 #include "sqlite3.h"
16 #if defined(INCLUDE_SQLITE_TCL_H)
17 # include "sqlite_tcl.h"
18 #else
19 # include "tcl.h"
20 #endif
21 #include <stdlib.h>
22 #include <string.h>
23 #include <assert.h>
25 #include "sqliteInt.h"
26 #include "vdbeInt.h"
29 ** Allocate nByte bytes of space using sqlite3_malloc(). If the
30 ** allocation fails, call sqlite3_result_error_nomem() to notify
31 ** the database handle that malloc() has failed.
33 static void *testContextMalloc(sqlite3_context *context, int nByte){
34 char *z = sqlite3_malloc(nByte);
35 if( !z && nByte>0 ){
36 sqlite3_result_error_nomem(context);
38 return z;
42 ** This function generates a string of random characters. Used for
43 ** generating test data.
45 static void randStr(sqlite3_context *context, int argc, sqlite3_value **argv){
46 static const unsigned char zSrc[] =
47 "abcdefghijklmnopqrstuvwxyz"
48 "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
49 "0123456789"
50 ".-!,:*^+=_|?/<> ";
51 int iMin, iMax, n, r, i;
52 unsigned char zBuf[1000];
54 /* It used to be possible to call randstr() with any number of arguments,
55 ** but now it is registered with SQLite as requiring exactly 2.
57 assert(argc==2);
59 iMin = sqlite3_value_int(argv[0]);
60 if( iMin<0 ) iMin = 0;
61 if( iMin>=sizeof(zBuf) ) iMin = sizeof(zBuf)-1;
62 iMax = sqlite3_value_int(argv[1]);
63 if( iMax<iMin ) iMax = iMin;
64 if( iMax>=sizeof(zBuf) ) iMax = sizeof(zBuf)-1;
65 n = iMin;
66 if( iMax>iMin ){
67 sqlite3_randomness(sizeof(r), &r);
68 r &= 0x7fffffff;
69 n += r%(iMax + 1 - iMin);
71 assert( n<sizeof(zBuf) );
72 sqlite3_randomness(n, zBuf);
73 for(i=0; i<n; i++){
74 zBuf[i] = zSrc[zBuf[i]%(sizeof(zSrc)-1)];
76 zBuf[n] = 0;
77 sqlite3_result_text(context, (char*)zBuf, n, SQLITE_TRANSIENT);
81 ** The following two SQL functions are used to test returning a text
82 ** result with a destructor. Function 'test_destructor' takes one argument
83 ** and returns the same argument interpreted as TEXT. A destructor is
84 ** passed with the sqlite3_result_text() call.
86 ** SQL function 'test_destructor_count' returns the number of outstanding
87 ** allocations made by 'test_destructor';
89 ** WARNING: Not threadsafe.
91 static int test_destructor_count_var = 0;
92 static void destructor(void *p){
93 char *zVal = (char *)p;
94 assert(zVal);
95 zVal--;
96 sqlite3_free(zVal);
97 test_destructor_count_var--;
99 static void test_destructor(
100 sqlite3_context *pCtx,
101 int nArg,
102 sqlite3_value **argv
104 char *zVal;
105 int len;
107 test_destructor_count_var++;
108 assert( nArg==1 );
109 if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
110 len = sqlite3_value_bytes(argv[0]);
111 zVal = testContextMalloc(pCtx, len+3);
112 if( !zVal ){
113 return;
115 zVal[len+1] = 0;
116 zVal[len+2] = 0;
117 zVal++;
118 memcpy(zVal, sqlite3_value_text(argv[0]), len);
119 sqlite3_result_text(pCtx, zVal, -1, destructor);
121 #ifndef SQLITE_OMIT_UTF16
122 static void test_destructor16(
123 sqlite3_context *pCtx,
124 int nArg,
125 sqlite3_value **argv
127 char *zVal;
128 int len;
130 test_destructor_count_var++;
131 assert( nArg==1 );
132 if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
133 len = sqlite3_value_bytes16(argv[0]);
134 zVal = testContextMalloc(pCtx, len+3);
135 if( !zVal ){
136 return;
138 zVal[len+1] = 0;
139 zVal[len+2] = 0;
140 zVal++;
141 memcpy(zVal, sqlite3_value_text16(argv[0]), len);
142 sqlite3_result_text16(pCtx, zVal, -1, destructor);
144 #endif
145 static void test_destructor_count(
146 sqlite3_context *pCtx,
147 int nArg,
148 sqlite3_value **argv
150 sqlite3_result_int(pCtx, test_destructor_count_var);
154 ** The following aggregate function, test_agg_errmsg16(), takes zero
155 ** arguments. It returns the text value returned by the sqlite3_errmsg16()
156 ** API function.
158 #ifndef SQLITE_UNTESTABLE
159 void sqlite3BeginBenignMalloc(void);
160 void sqlite3EndBenignMalloc(void);
161 #else
162 #define sqlite3BeginBenignMalloc()
163 #define sqlite3EndBenignMalloc()
164 #endif
165 static void test_agg_errmsg16_step(sqlite3_context *a, int b,sqlite3_value **c){
167 static void test_agg_errmsg16_final(sqlite3_context *ctx){
168 #ifndef SQLITE_OMIT_UTF16
169 const void *z;
170 sqlite3 * db = sqlite3_context_db_handle(ctx);
171 sqlite3_aggregate_context(ctx, 2048);
172 z = sqlite3_errmsg16(db);
173 sqlite3_result_text16(ctx, z, -1, SQLITE_TRANSIENT);
174 #endif
178 ** Routines for testing the sqlite3_get_auxdata() and sqlite3_set_auxdata()
179 ** interface.
181 ** The test_auxdata() SQL function attempts to register each of its arguments
182 ** as auxiliary data. If there are no prior registrations of aux data for
183 ** that argument (meaning the argument is not a constant or this is its first
184 ** call) then the result for that argument is 0. If there is a prior
185 ** registration, the result for that argument is 1. The overall result
186 ** is the individual argument results separated by spaces.
188 static void free_test_auxdata(void *p) {sqlite3_free(p);}
189 static void test_auxdata(
190 sqlite3_context *pCtx,
191 int nArg,
192 sqlite3_value **argv
194 int i;
195 char *zRet = testContextMalloc(pCtx, nArg*2);
196 if( !zRet ) return;
197 memset(zRet, 0, nArg*2);
198 for(i=0; i<nArg; i++){
199 char const *z = (char*)sqlite3_value_text(argv[i]);
200 if( z ){
201 int n;
202 char *zAux = sqlite3_get_auxdata(pCtx, i);
203 if( zAux ){
204 zRet[i*2] = '1';
205 assert( strcmp(zAux,z)==0 );
206 }else {
207 zRet[i*2] = '0';
209 n = (int)strlen(z) + 1;
210 zAux = testContextMalloc(pCtx, n);
211 if( zAux ){
212 memcpy(zAux, z, n);
213 sqlite3_set_auxdata(pCtx, i, zAux, free_test_auxdata);
215 zRet[i*2+1] = ' ';
218 sqlite3_result_text(pCtx, zRet, 2*nArg-1, free_test_auxdata);
222 ** A function to test error reporting from user functions. This function
223 ** returns a copy of its first argument as the error message. If the
224 ** second argument exists, it becomes the error code.
226 static void test_error(
227 sqlite3_context *pCtx,
228 int nArg,
229 sqlite3_value **argv
231 sqlite3_result_error(pCtx, (char*)sqlite3_value_text(argv[0]), -1);
232 if( nArg==2 ){
233 sqlite3_result_error_code(pCtx, sqlite3_value_int(argv[1]));
238 ** Implementation of the counter(X) function. If X is an integer
239 ** constant, then the first invocation will return X. The second X+1.
240 ** and so forth. Can be used (for example) to provide a sequence number
241 ** in a result set.
243 static void counterFunc(
244 sqlite3_context *pCtx, /* Function context */
245 int nArg, /* Number of function arguments */
246 sqlite3_value **argv /* Values for all function arguments */
248 int *pCounter = (int*)sqlite3_get_auxdata(pCtx, 0);
249 if( pCounter==0 ){
250 pCounter = sqlite3_malloc( sizeof(*pCounter) );
251 if( pCounter==0 ){
252 sqlite3_result_error_nomem(pCtx);
253 return;
255 *pCounter = sqlite3_value_int(argv[0]);
256 sqlite3_set_auxdata(pCtx, 0, pCounter, sqlite3_free);
257 }else{
258 ++*pCounter;
260 sqlite3_result_int(pCtx, *pCounter);
265 ** This function takes two arguments. It performance UTF-8/16 type
266 ** conversions on the first argument then returns a copy of the second
267 ** argument.
269 ** This function is used in cases such as the following:
271 ** SELECT test_isolation(x,x) FROM t1;
273 ** We want to verify that the type conversions that occur on the
274 ** first argument do not invalidate the second argument.
276 static void test_isolation(
277 sqlite3_context *pCtx,
278 int nArg,
279 sqlite3_value **argv
281 #ifndef SQLITE_OMIT_UTF16
282 sqlite3_value_text16(argv[0]);
283 sqlite3_value_text(argv[0]);
284 sqlite3_value_text16(argv[0]);
285 sqlite3_value_text(argv[0]);
286 #endif
287 sqlite3_result_value(pCtx, argv[1]);
291 ** Invoke an SQL statement recursively. The function result is the
292 ** first column of the first row of the result set.
294 static void test_eval(
295 sqlite3_context *pCtx,
296 int nArg,
297 sqlite3_value **argv
299 sqlite3_stmt *pStmt;
300 int rc;
301 sqlite3 *db = sqlite3_context_db_handle(pCtx);
302 const char *zSql;
304 zSql = (char*)sqlite3_value_text(argv[0]);
305 rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
306 if( rc==SQLITE_OK ){
307 rc = sqlite3_step(pStmt);
308 if( rc==SQLITE_ROW ){
309 sqlite3_result_value(pCtx, sqlite3_column_value(pStmt, 0));
311 rc = sqlite3_finalize(pStmt);
313 if( rc ){
314 char *zErr;
315 assert( pStmt==0 );
316 zErr = sqlite3_mprintf("sqlite3_prepare_v2() error: %s",sqlite3_errmsg(db));
317 sqlite3_result_text(pCtx, zErr, -1, sqlite3_free);
318 sqlite3_result_error_code(pCtx, rc);
324 ** convert one character from hex to binary
326 static int testHexChar(char c){
327 if( c>='0' && c<='9' ){
328 return c - '0';
329 }else if( c>='a' && c<='f' ){
330 return c - 'a' + 10;
331 }else if( c>='A' && c<='F' ){
332 return c - 'A' + 10;
334 return 0;
338 ** Convert hex to binary.
340 static void testHexToBin(const char *zIn, char *zOut){
341 while( zIn[0] && zIn[1] ){
342 *(zOut++) = (testHexChar(zIn[0])<<4) + testHexChar(zIn[1]);
343 zIn += 2;
348 ** hex_to_utf16be(HEX)
350 ** Convert the input string from HEX into binary. Then return the
351 ** result using sqlite3_result_text16le().
353 #ifndef SQLITE_OMIT_UTF16
354 static void testHexToUtf16be(
355 sqlite3_context *pCtx,
356 int nArg,
357 sqlite3_value **argv
359 int n;
360 const char *zIn;
361 char *zOut;
362 assert( nArg==1 );
363 n = sqlite3_value_bytes(argv[0]);
364 zIn = (const char*)sqlite3_value_text(argv[0]);
365 zOut = sqlite3_malloc( n/2 );
366 if( zOut==0 ){
367 sqlite3_result_error_nomem(pCtx);
368 }else{
369 testHexToBin(zIn, zOut);
370 sqlite3_result_text16be(pCtx, zOut, n/2, sqlite3_free);
373 #endif
376 ** hex_to_utf8(HEX)
378 ** Convert the input string from HEX into binary. Then return the
379 ** result using sqlite3_result_text16le().
381 static void testHexToUtf8(
382 sqlite3_context *pCtx,
383 int nArg,
384 sqlite3_value **argv
386 int n;
387 const char *zIn;
388 char *zOut;
389 assert( nArg==1 );
390 n = sqlite3_value_bytes(argv[0]);
391 zIn = (const char*)sqlite3_value_text(argv[0]);
392 zOut = sqlite3_malloc( n/2 );
393 if( zOut==0 ){
394 sqlite3_result_error_nomem(pCtx);
395 }else{
396 testHexToBin(zIn, zOut);
397 sqlite3_result_text(pCtx, zOut, n/2, sqlite3_free);
402 ** hex_to_utf16le(HEX)
404 ** Convert the input string from HEX into binary. Then return the
405 ** result using sqlite3_result_text16le().
407 #ifndef SQLITE_OMIT_UTF16
408 static void testHexToUtf16le(
409 sqlite3_context *pCtx,
410 int nArg,
411 sqlite3_value **argv
413 int n;
414 const char *zIn;
415 char *zOut;
416 assert( nArg==1 );
417 n = sqlite3_value_bytes(argv[0]);
418 zIn = (const char*)sqlite3_value_text(argv[0]);
419 zOut = sqlite3_malloc( n/2 );
420 if( zOut==0 ){
421 sqlite3_result_error_nomem(pCtx);
422 }else{
423 testHexToBin(zIn, zOut);
424 sqlite3_result_text16le(pCtx, zOut, n/2, sqlite3_free);
427 #endif
430 ** SQL function: real2hex(X)
432 ** If argument X is a real number, then convert it into a string which is
433 ** the big-endian hexadecimal representation of the ieee754 encoding of
434 ** that number. If X is not a real number, return NULL.
436 static void real2hex(
437 sqlite3_context *context,
438 int argc,
439 sqlite3_value **argv
441 union {
442 sqlite3_uint64 i;
443 double r;
444 unsigned char x[8];
445 } v;
446 char zOut[20];
447 int i;
448 int bigEndian;
449 v.i = 1;
450 bigEndian = v.x[0]==0;
451 v.r = sqlite3_value_double(argv[0]);
452 for(i=0; i<8; i++){
453 if( bigEndian ){
454 zOut[i*2] = "0123456789abcdef"[v.x[i]>>4];
455 zOut[i*2+1] = "0123456789abcdef"[v.x[i]&0xf];
456 }else{
457 zOut[14-i*2] = "0123456789abcdef"[v.x[i]>>4];
458 zOut[14-i*2+1] = "0123456789abcdef"[v.x[i]&0xf];
461 zOut[16] = 0;
462 sqlite3_result_text(context, zOut, -1, SQLITE_TRANSIENT);
466 ** test_extract(record, field)
468 ** This function implements an SQL user-function that accepts a blob
469 ** containing a formatted database record as the first argument. The
470 ** second argument is the index of the field within that record to
471 ** extract and return.
473 static void test_extract(
474 sqlite3_context *context,
475 int argc,
476 sqlite3_value **argv
478 sqlite3 *db = sqlite3_context_db_handle(context);
479 u8 *pRec;
480 u8 *pEndHdr; /* Points to one byte past record header */
481 u8 *pHdr; /* Current point in record header */
482 u8 *pBody; /* Current point in record data */
483 u64 nHdr; /* Bytes in record header */
484 int iIdx; /* Required field */
485 int iCurrent = 0; /* Current field */
487 assert( argc==2 );
488 pRec = (u8*)sqlite3_value_blob(argv[0]);
489 iIdx = sqlite3_value_int(argv[1]);
491 pHdr = pRec + sqlite3GetVarint(pRec, &nHdr);
492 pBody = pEndHdr = &pRec[nHdr];
494 for(iCurrent=0; pHdr<pEndHdr && iCurrent<=iIdx; iCurrent++){
495 u64 iSerialType;
496 Mem mem;
498 memset(&mem, 0, sizeof(mem));
499 mem.db = db;
500 mem.enc = ENC(db);
501 pHdr += sqlite3GetVarint(pHdr, &iSerialType);
502 sqlite3VdbeSerialGet(pBody, (u32)iSerialType, &mem);
503 pBody += sqlite3VdbeSerialTypeLen((u32)iSerialType);
505 if( iCurrent==iIdx ){
506 sqlite3_result_value(context, &mem);
509 if( mem.szMalloc ) sqlite3DbFree(db, mem.zMalloc);
514 ** test_decode(record)
516 ** This function implements an SQL user-function that accepts a blob
517 ** containing a formatted database record as its only argument. It returns
518 ** a tcl list (type SQLITE_TEXT) containing each of the values stored
519 ** in the record.
521 static void test_decode(
522 sqlite3_context *context,
523 int argc,
524 sqlite3_value **argv
526 sqlite3 *db = sqlite3_context_db_handle(context);
527 u8 *pRec;
528 u8 *pEndHdr; /* Points to one byte past record header */
529 u8 *pHdr; /* Current point in record header */
530 u8 *pBody; /* Current point in record data */
531 u64 nHdr; /* Bytes in record header */
532 Tcl_Obj *pRet; /* Return value */
534 pRet = Tcl_NewObj();
535 Tcl_IncrRefCount(pRet);
537 assert( argc==1 );
538 pRec = (u8*)sqlite3_value_blob(argv[0]);
540 pHdr = pRec + sqlite3GetVarint(pRec, &nHdr);
541 pBody = pEndHdr = &pRec[nHdr];
542 while( pHdr<pEndHdr ){
543 Tcl_Obj *pVal = 0;
544 u64 iSerialType;
545 Mem mem;
547 memset(&mem, 0, sizeof(mem));
548 mem.db = db;
549 mem.enc = ENC(db);
550 pHdr += sqlite3GetVarint(pHdr, &iSerialType);
551 sqlite3VdbeSerialGet(pBody, (u32)iSerialType, &mem);
552 pBody += sqlite3VdbeSerialTypeLen((u32)iSerialType);
554 switch( sqlite3_value_type(&mem) ){
555 case SQLITE_TEXT:
556 pVal = Tcl_NewStringObj((const char*)sqlite3_value_text(&mem), -1);
557 break;
559 case SQLITE_BLOB: {
560 char hexdigit[] = {
561 '0', '1', '2', '3', '4', '5', '6', '7',
562 '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
564 int n = sqlite3_value_bytes(&mem);
565 u8 *z = (u8*)sqlite3_value_blob(&mem);
566 int i;
567 pVal = Tcl_NewStringObj("x'", -1);
568 for(i=0; i<n; i++){
569 char hex[3];
570 hex[0] = hexdigit[((z[i] >> 4) & 0x0F)];
571 hex[1] = hexdigit[(z[i] & 0x0F)];
572 hex[2] = '\0';
573 Tcl_AppendStringsToObj(pVal, hex, 0);
575 Tcl_AppendStringsToObj(pVal, "'", 0);
576 break;
579 case SQLITE_FLOAT:
580 pVal = Tcl_NewDoubleObj(sqlite3_value_double(&mem));
581 break;
583 case SQLITE_INTEGER:
584 pVal = Tcl_NewWideIntObj(sqlite3_value_int64(&mem));
585 break;
587 case SQLITE_NULL:
588 pVal = Tcl_NewStringObj("NULL", -1);
589 break;
591 default:
592 assert( 0 );
595 Tcl_ListObjAppendElement(0, pRet, pVal);
597 if( mem.szMalloc ){
598 sqlite3DbFree(db, mem.zMalloc);
602 sqlite3_result_text(context, Tcl_GetString(pRet), -1, SQLITE_TRANSIENT);
603 Tcl_DecrRefCount(pRet);
607 ** test_zeroblob(N)
609 ** The implementation of scalar SQL function "test_zeroblob()". This is
610 ** similar to the built-in zeroblob() function, except that it does not
611 ** check that the integer parameter is within range before passing it
612 ** to sqlite3_result_zeroblob().
614 static void test_zeroblob(
615 sqlite3_context *context,
616 int argc,
617 sqlite3_value **argv
619 int nZero = sqlite3_value_int(argv[0]);
620 sqlite3_result_zeroblob(context, nZero);
623 /* test_getsubtype(V)
625 ** Return the subtype for value V.
627 static void test_getsubtype(
628 sqlite3_context *context,
629 int argc,
630 sqlite3_value **argv
632 sqlite3_result_int(context, (int)sqlite3_value_subtype(argv[0]));
635 /* test_frombind(A,B,C,...)
637 ** Return an integer bitmask that has a bit set for every argument
638 ** (up to the first 63 arguments) that originates from a bind a parameter.
640 static void test_frombind(
641 sqlite3_context *context,
642 int argc,
643 sqlite3_value **argv
645 sqlite3_uint64 m = 0;
646 int i;
647 for(i=0; i<argc && i<63; i++){
648 if( sqlite3_value_frombind(argv[i]) ) m |= ((sqlite3_uint64)1)<<i;
650 sqlite3_result_int64(context, (sqlite3_int64)m);
653 /* test_setsubtype(V, T)
655 ** Return the value V with its subtype changed to T
657 static void test_setsubtype(
658 sqlite3_context *context,
659 int argc,
660 sqlite3_value **argv
662 sqlite3_result_value(context, argv[0]);
663 sqlite3_result_subtype(context, (unsigned int)sqlite3_value_int(argv[1]));
666 static int registerTestFunctions(
667 sqlite3 *db,
668 char **pzErrMsg,
669 const sqlite3_api_routines *pThunk
671 static const struct {
672 char *zName;
673 signed char nArg;
674 unsigned int eTextRep; /* 1: UTF-16. 0: UTF-8 */
675 void (*xFunc)(sqlite3_context*,int,sqlite3_value **);
676 } aFuncs[] = {
677 { "randstr", 2, SQLITE_UTF8, randStr },
678 { "test_destructor", 1, SQLITE_UTF8, test_destructor},
679 #ifndef SQLITE_OMIT_UTF16
680 { "test_destructor16", 1, SQLITE_UTF8, test_destructor16},
681 { "hex_to_utf16be", 1, SQLITE_UTF8, testHexToUtf16be},
682 { "hex_to_utf16le", 1, SQLITE_UTF8, testHexToUtf16le},
683 #endif
684 { "hex_to_utf8", 1, SQLITE_UTF8, testHexToUtf8},
685 { "test_destructor_count", 0, SQLITE_UTF8, test_destructor_count},
686 { "test_auxdata", -1, SQLITE_UTF8, test_auxdata},
687 { "test_error", 1, SQLITE_UTF8, test_error},
688 { "test_error", 2, SQLITE_UTF8, test_error},
689 { "test_eval", 1, SQLITE_UTF8, test_eval},
690 { "test_isolation", 2, SQLITE_UTF8, test_isolation},
691 { "test_counter", 1, SQLITE_UTF8, counterFunc},
692 { "real2hex", 1, SQLITE_UTF8, real2hex},
693 { "test_decode", 1, SQLITE_UTF8, test_decode},
694 { "test_extract", 2, SQLITE_UTF8, test_extract},
695 { "test_zeroblob", 1, SQLITE_UTF8|SQLITE_DETERMINISTIC, test_zeroblob},
696 { "test_getsubtype", 1, SQLITE_UTF8, test_getsubtype},
697 { "test_setsubtype", 2, SQLITE_UTF8|SQLITE_RESULT_SUBTYPE,
698 test_setsubtype},
699 { "test_frombind", -1, SQLITE_UTF8, test_frombind},
701 int i;
703 for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){
704 sqlite3_create_function(db, aFuncs[i].zName, aFuncs[i].nArg,
705 aFuncs[i].eTextRep, 0, aFuncs[i].xFunc, 0, 0);
708 sqlite3_create_function(db, "test_agg_errmsg16", 0, SQLITE_ANY, 0, 0,
709 test_agg_errmsg16_step, test_agg_errmsg16_final);
711 return SQLITE_OK;
715 ** TCLCMD: autoinstall_test_functions
717 ** Invoke this TCL command to use sqlite3_auto_extension() to cause
718 ** the standard set of test functions to be loaded into each new
719 ** database connection.
721 static int SQLITE_TCLAPI autoinstall_test_funcs(
722 void * clientData,
723 Tcl_Interp *interp,
724 int objc,
725 Tcl_Obj *CONST objv[]
727 extern int Md5_Register(sqlite3 *, char **, const sqlite3_api_routines *);
728 int rc = sqlite3_auto_extension((void(*)(void))registerTestFunctions);
729 if( rc==SQLITE_OK ){
730 rc = sqlite3_auto_extension((void(*)(void))Md5_Register);
732 Tcl_SetObjResult(interp, Tcl_NewIntObj(rc));
733 return TCL_OK;
737 ** A bogus step function and finalizer function.
739 static void tStep(sqlite3_context *a, int b, sqlite3_value **c){}
740 static void tFinal(sqlite3_context *a){}
744 ** tclcmd: abuse_create_function
746 ** Make various calls to sqlite3_create_function that do not have valid
747 ** parameters. Verify that the error condition is detected and reported.
749 static int SQLITE_TCLAPI abuse_create_function(
750 void * clientData,
751 Tcl_Interp *interp,
752 int objc,
753 Tcl_Obj *CONST objv[]
755 extern int getDbPointer(Tcl_Interp*, const char*, sqlite3**);
756 sqlite3 *db;
757 int rc;
758 int mxArg;
760 if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR;
762 rc = sqlite3_create_function(db, "tx", 1, SQLITE_UTF8, 0, tStep,tStep,tFinal);
763 if( rc!=SQLITE_MISUSE ) goto abuse_err;
765 rc = sqlite3_create_function(db, "tx", 1, SQLITE_UTF8, 0, tStep, tStep, 0);
766 if( rc!=SQLITE_MISUSE ) goto abuse_err;
768 rc = sqlite3_create_function(db, "tx", 1, SQLITE_UTF8, 0, tStep, 0, tFinal);
769 if( rc!=SQLITE_MISUSE) goto abuse_err;
771 rc = sqlite3_create_function(db, "tx", 1, SQLITE_UTF8, 0, 0, 0, tFinal);
772 if( rc!=SQLITE_MISUSE ) goto abuse_err;
774 rc = sqlite3_create_function(db, "tx", 1, SQLITE_UTF8, 0, 0, tStep, 0);
775 if( rc!=SQLITE_MISUSE ) goto abuse_err;
777 rc = sqlite3_create_function(db, "tx", -2, SQLITE_UTF8, 0, tStep, 0, 0);
778 if( rc!=SQLITE_MISUSE ) goto abuse_err;
780 rc = sqlite3_create_function(db, "tx", 128, SQLITE_UTF8, 0, tStep, 0, 0);
781 if( rc!=SQLITE_MISUSE ) goto abuse_err;
783 rc = sqlite3_create_function(db, "funcxx"
784 "_123456789_123456789_123456789_123456789_123456789"
785 "_123456789_123456789_123456789_123456789_123456789"
786 "_123456789_123456789_123456789_123456789_123456789"
787 "_123456789_123456789_123456789_123456789_123456789"
788 "_123456789_123456789_123456789_123456789_123456789",
789 1, SQLITE_UTF8, 0, tStep, 0, 0);
790 if( rc!=SQLITE_MISUSE ) goto abuse_err;
792 /* This last function registration should actually work. Generate
793 ** a no-op function (that always returns NULL) and which has the
794 ** maximum-length function name and the maximum number of parameters.
796 sqlite3_limit(db, SQLITE_LIMIT_FUNCTION_ARG, 10000);
797 mxArg = sqlite3_limit(db, SQLITE_LIMIT_FUNCTION_ARG, -1);
798 rc = sqlite3_create_function(db, "nullx"
799 "_123456789_123456789_123456789_123456789_123456789"
800 "_123456789_123456789_123456789_123456789_123456789"
801 "_123456789_123456789_123456789_123456789_123456789"
802 "_123456789_123456789_123456789_123456789_123456789"
803 "_123456789_123456789_123456789_123456789_123456789",
804 mxArg, SQLITE_UTF8, 0, tStep, 0, 0);
805 if( rc!=SQLITE_OK ) goto abuse_err;
807 return TCL_OK;
809 abuse_err:
810 Tcl_AppendResult(interp, "sqlite3_create_function abused test failed",
811 (char*)0);
812 return TCL_ERROR;
817 ** SQLite user defined function to use with matchinfo() to calculate the
818 ** relevancy of an FTS match. The value returned is the relevancy score
819 ** (a real value greater than or equal to zero). A larger value indicates
820 ** a more relevant document.
822 ** The overall relevancy returned is the sum of the relevancies of each
823 ** column value in the FTS table. The relevancy of a column value is the
824 ** sum of the following for each reportable phrase in the FTS query:
826 ** (<hit count> / <global hit count>) * <column weight>
828 ** where <hit count> is the number of instances of the phrase in the
829 ** column value of the current row and <global hit count> is the number
830 ** of instances of the phrase in the same column of all rows in the FTS
831 ** table. The <column weight> is a weighting factor assigned to each
832 ** column by the caller (see below).
834 ** The first argument to this function must be the return value of the FTS
835 ** matchinfo() function. Following this must be one argument for each column
836 ** of the FTS table containing a numeric weight factor for the corresponding
837 ** column. Example:
839 ** CREATE VIRTUAL TABLE documents USING fts3(title, content)
841 ** The following query returns the docids of documents that match the full-text
842 ** query <query> sorted from most to least relevant. When calculating
843 ** relevance, query term instances in the 'title' column are given twice the
844 ** weighting of those in the 'content' column.
846 ** SELECT docid FROM documents
847 ** WHERE documents MATCH <query>
848 ** ORDER BY rank(matchinfo(documents), 1.0, 0.5) DESC
850 static void rankfunc(sqlite3_context *pCtx, int nVal, sqlite3_value **apVal){
851 int *aMatchinfo; /* Return value of matchinfo() */
852 int nMatchinfo; /* Number of elements in aMatchinfo[] */
853 int nCol = 0; /* Number of columns in the table */
854 int nPhrase = 0; /* Number of phrases in the query */
855 int iPhrase; /* Current phrase */
856 double score = 0.0; /* Value to return */
858 assert( sizeof(int)==4 );
860 /* Check that the number of arguments passed to this function is correct.
861 ** If not, jump to wrong_number_args. Set aMatchinfo to point to the array
862 ** of unsigned integer values returned by FTS function matchinfo. Set
863 ** nPhrase to contain the number of reportable phrases in the users full-text
864 ** query, and nCol to the number of columns in the table. Then check that the
865 ** size of the matchinfo blob is as expected. Return an error if it is not.
867 if( nVal<1 ) goto wrong_number_args;
868 aMatchinfo = (int*)sqlite3_value_blob(apVal[0]);
869 nMatchinfo = sqlite3_value_bytes(apVal[0]) / sizeof(int);
870 if( nMatchinfo>=2 ){
871 nPhrase = aMatchinfo[0];
872 nCol = aMatchinfo[1];
874 if( nMatchinfo!=(2+3*nCol*nPhrase) ){
875 sqlite3_result_error(pCtx,
876 "invalid matchinfo blob passed to function rank()", -1);
877 return;
879 if( nVal!=(1+nCol) ) goto wrong_number_args;
881 /* Iterate through each phrase in the users query. */
882 for(iPhrase=0; iPhrase<nPhrase; iPhrase++){
883 int iCol; /* Current column */
885 /* Now iterate through each column in the users query. For each column,
886 ** increment the relevancy score by:
888 ** (<hit count> / <global hit count>) * <column weight>
890 ** aPhraseinfo[] points to the start of the data for phrase iPhrase. So
891 ** the hit count and global hit counts for each column are found in
892 ** aPhraseinfo[iCol*3] and aPhraseinfo[iCol*3+1], respectively.
894 int *aPhraseinfo = &aMatchinfo[2 + iPhrase*nCol*3];
895 for(iCol=0; iCol<nCol; iCol++){
896 int nHitCount = aPhraseinfo[3*iCol];
897 int nGlobalHitCount = aPhraseinfo[3*iCol+1];
898 double weight = sqlite3_value_double(apVal[iCol+1]);
899 if( nHitCount>0 ){
900 score += ((double)nHitCount / (double)nGlobalHitCount) * weight;
905 sqlite3_result_double(pCtx, score);
906 return;
908 /* Jump here if the wrong number of arguments are passed to this function */
909 wrong_number_args:
910 sqlite3_result_error(pCtx, "wrong number of arguments to function rank()", -1);
913 static int SQLITE_TCLAPI install_fts3_rank_function(
914 void * clientData,
915 Tcl_Interp *interp,
916 int objc,
917 Tcl_Obj *CONST objv[]
919 extern int getDbPointer(Tcl_Interp*, const char*, sqlite3**);
920 sqlite3 *db;
922 if( objc!=2 ){
923 Tcl_WrongNumArgs(interp, 1, objv, "DB");
924 return TCL_ERROR;
927 if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR;
928 sqlite3_create_function(db, "rank", -1, SQLITE_UTF8, 0, rankfunc, 0, 0);
929 return TCL_OK;
934 ** Register commands with the TCL interpreter.
936 int Sqlitetest_func_Init(Tcl_Interp *interp){
937 static struct {
938 char *zName;
939 Tcl_ObjCmdProc *xProc;
940 } aObjCmd[] = {
941 { "autoinstall_test_functions", autoinstall_test_funcs },
942 { "abuse_create_function", abuse_create_function },
943 { "install_fts3_rank_function", install_fts3_rank_function },
945 int i;
946 extern int Md5_Register(sqlite3 *, char **, const sqlite3_api_routines *);
948 for(i=0; i<sizeof(aObjCmd)/sizeof(aObjCmd[0]); i++){
949 Tcl_CreateObjCommand(interp, aObjCmd[i].zName, aObjCmd[i].xProc, 0, 0);
951 sqlite3_initialize();
952 sqlite3_auto_extension((void(*)(void))registerTestFunctions);
953 sqlite3_auto_extension((void(*)(void))Md5_Register);
954 return TCL_OK;