Snapshot of upstream SQLite 3.46.1
[sqlcipher.git] / src / vdbeaux.c
blob665f6cd17ab3fd3c4352151bc35c0e7ab09b071b
1 /*
2 ** 2003 September 6
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains code used for creating, destroying, and populating
13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)
15 #include "sqliteInt.h"
16 #include "vdbeInt.h"
18 /* Forward references */
19 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef);
20 static void vdbeFreeOpArray(sqlite3 *, Op *, int);
23 ** Create a new virtual database engine.
25 Vdbe *sqlite3VdbeCreate(Parse *pParse){
26 sqlite3 *db = pParse->db;
27 Vdbe *p;
28 p = sqlite3DbMallocRawNN(db, sizeof(Vdbe) );
29 if( p==0 ) return 0;
30 memset(&p->aOp, 0, sizeof(Vdbe)-offsetof(Vdbe,aOp));
31 p->db = db;
32 if( db->pVdbe ){
33 db->pVdbe->ppVPrev = &p->pVNext;
35 p->pVNext = db->pVdbe;
36 p->ppVPrev = &db->pVdbe;
37 db->pVdbe = p;
38 assert( p->eVdbeState==VDBE_INIT_STATE );
39 p->pParse = pParse;
40 pParse->pVdbe = p;
41 assert( pParse->aLabel==0 );
42 assert( pParse->nLabel==0 );
43 assert( p->nOpAlloc==0 );
44 assert( pParse->szOpAlloc==0 );
45 sqlite3VdbeAddOp2(p, OP_Init, 0, 1);
46 return p;
50 ** Return the Parse object that owns a Vdbe object.
52 Parse *sqlite3VdbeParser(Vdbe *p){
53 return p->pParse;
57 ** Change the error string stored in Vdbe.zErrMsg
59 void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){
60 va_list ap;
61 sqlite3DbFree(p->db, p->zErrMsg);
62 va_start(ap, zFormat);
63 p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap);
64 va_end(ap);
68 ** Remember the SQL string for a prepared statement.
70 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, u8 prepFlags){
71 if( p==0 ) return;
72 p->prepFlags = prepFlags;
73 if( (prepFlags & SQLITE_PREPARE_SAVESQL)==0 ){
74 p->expmask = 0;
76 assert( p->zSql==0 );
77 p->zSql = sqlite3DbStrNDup(p->db, z, n);
80 #ifdef SQLITE_ENABLE_NORMALIZE
82 ** Add a new element to the Vdbe->pDblStr list.
84 void sqlite3VdbeAddDblquoteStr(sqlite3 *db, Vdbe *p, const char *z){
85 if( p ){
86 int n = sqlite3Strlen30(z);
87 DblquoteStr *pStr = sqlite3DbMallocRawNN(db,
88 sizeof(*pStr)+n+1-sizeof(pStr->z));
89 if( pStr ){
90 pStr->pNextStr = p->pDblStr;
91 p->pDblStr = pStr;
92 memcpy(pStr->z, z, n+1);
96 #endif
98 #ifdef SQLITE_ENABLE_NORMALIZE
100 ** zId of length nId is a double-quoted identifier. Check to see if
101 ** that identifier is really used as a string literal.
103 int sqlite3VdbeUsesDoubleQuotedString(
104 Vdbe *pVdbe, /* The prepared statement */
105 const char *zId /* The double-quoted identifier, already dequoted */
107 DblquoteStr *pStr;
108 assert( zId!=0 );
109 if( pVdbe->pDblStr==0 ) return 0;
110 for(pStr=pVdbe->pDblStr; pStr; pStr=pStr->pNextStr){
111 if( strcmp(zId, pStr->z)==0 ) return 1;
113 return 0;
115 #endif
118 ** Swap byte-code between two VDBE structures.
120 ** This happens after pB was previously run and returned
121 ** SQLITE_SCHEMA. The statement was then reprepared in pA.
122 ** This routine transfers the new bytecode in pA over to pB
123 ** so that pB can be run again. The old pB byte code is
124 ** moved back to pA so that it will be cleaned up when pA is
125 ** finalized.
127 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
128 Vdbe tmp, *pTmp, **ppTmp;
129 char *zTmp;
130 assert( pA->db==pB->db );
131 tmp = *pA;
132 *pA = *pB;
133 *pB = tmp;
134 pTmp = pA->pVNext;
135 pA->pVNext = pB->pVNext;
136 pB->pVNext = pTmp;
137 ppTmp = pA->ppVPrev;
138 pA->ppVPrev = pB->ppVPrev;
139 pB->ppVPrev = ppTmp;
140 zTmp = pA->zSql;
141 pA->zSql = pB->zSql;
142 pB->zSql = zTmp;
143 #ifdef SQLITE_ENABLE_NORMALIZE
144 zTmp = pA->zNormSql;
145 pA->zNormSql = pB->zNormSql;
146 pB->zNormSql = zTmp;
147 #endif
148 pB->expmask = pA->expmask;
149 pB->prepFlags = pA->prepFlags;
150 memcpy(pB->aCounter, pA->aCounter, sizeof(pB->aCounter));
151 pB->aCounter[SQLITE_STMTSTATUS_REPREPARE]++;
155 ** Resize the Vdbe.aOp array so that it is at least nOp elements larger
156 ** than its current size. nOp is guaranteed to be less than or equal
157 ** to 1024/sizeof(Op).
159 ** If an out-of-memory error occurs while resizing the array, return
160 ** SQLITE_NOMEM. In this case Vdbe.aOp and Vdbe.nOpAlloc remain
161 ** unchanged (this is so that any opcodes already allocated can be
162 ** correctly deallocated along with the rest of the Vdbe).
164 static int growOpArray(Vdbe *v, int nOp){
165 VdbeOp *pNew;
166 Parse *p = v->pParse;
168 /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force
169 ** more frequent reallocs and hence provide more opportunities for
170 ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used
171 ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array
172 ** by the minimum* amount required until the size reaches 512. Normal
173 ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current
174 ** size of the op array or add 1KB of space, whichever is smaller. */
175 #ifdef SQLITE_TEST_REALLOC_STRESS
176 sqlite3_int64 nNew = (v->nOpAlloc>=512 ? 2*(sqlite3_int64)v->nOpAlloc
177 : (sqlite3_int64)v->nOpAlloc+nOp);
178 #else
179 sqlite3_int64 nNew = (v->nOpAlloc ? 2*(sqlite3_int64)v->nOpAlloc
180 : (sqlite3_int64)(1024/sizeof(Op)));
181 UNUSED_PARAMETER(nOp);
182 #endif
184 /* Ensure that the size of a VDBE does not grow too large */
185 if( nNew > p->db->aLimit[SQLITE_LIMIT_VDBE_OP] ){
186 sqlite3OomFault(p->db);
187 return SQLITE_NOMEM;
190 assert( nOp<=(int)(1024/sizeof(Op)) );
191 assert( nNew>=(v->nOpAlloc+nOp) );
192 pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op));
193 if( pNew ){
194 p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew);
195 v->nOpAlloc = p->szOpAlloc/sizeof(Op);
196 v->aOp = pNew;
198 return (pNew ? SQLITE_OK : SQLITE_NOMEM_BKPT);
201 #ifdef SQLITE_DEBUG
202 /* This routine is just a convenient place to set a breakpoint that will
203 ** fire after each opcode is inserted and displayed using
204 ** "PRAGMA vdbe_addoptrace=on". Parameters "pc" (program counter) and
205 ** pOp are available to make the breakpoint conditional.
207 ** Other useful labels for breakpoints include:
208 ** test_trace_breakpoint(pc,pOp)
209 ** sqlite3CorruptError(lineno)
210 ** sqlite3MisuseError(lineno)
211 ** sqlite3CantopenError(lineno)
213 static void test_addop_breakpoint(int pc, Op *pOp){
214 static u64 n = 0;
215 (void)pc;
216 (void)pOp;
217 n++;
218 if( n==LARGEST_UINT64 ) abort(); /* so that n is used, preventing a warning */
220 #endif
223 ** Slow paths for sqlite3VdbeAddOp3() and sqlite3VdbeAddOp4Int() for the
224 ** unusual case when we need to increase the size of the Vdbe.aOp[] array
225 ** before adding the new opcode.
227 static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){
228 assert( p->nOpAlloc<=p->nOp );
229 if( growOpArray(p, 1) ) return 1;
230 assert( p->nOpAlloc>p->nOp );
231 return sqlite3VdbeAddOp3(p, op, p1, p2, p3);
233 static SQLITE_NOINLINE int addOp4IntSlow(
234 Vdbe *p, /* Add the opcode to this VM */
235 int op, /* The new opcode */
236 int p1, /* The P1 operand */
237 int p2, /* The P2 operand */
238 int p3, /* The P3 operand */
239 int p4 /* The P4 operand as an integer */
241 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
242 if( p->db->mallocFailed==0 ){
243 VdbeOp *pOp = &p->aOp[addr];
244 pOp->p4type = P4_INT32;
245 pOp->p4.i = p4;
247 return addr;
252 ** Add a new instruction to the list of instructions current in the
253 ** VDBE. Return the address of the new instruction.
255 ** Parameters:
257 ** p Pointer to the VDBE
259 ** op The opcode for this instruction
261 ** p1, p2, p3, p4 Operands
263 int sqlite3VdbeAddOp0(Vdbe *p, int op){
264 return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
266 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
267 return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
269 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
270 return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
272 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
273 int i;
274 VdbeOp *pOp;
276 i = p->nOp;
277 assert( p->eVdbeState==VDBE_INIT_STATE );
278 assert( op>=0 && op<0xff );
279 if( p->nOpAlloc<=i ){
280 return growOp3(p, op, p1, p2, p3);
282 assert( p->aOp!=0 );
283 p->nOp++;
284 pOp = &p->aOp[i];
285 assert( pOp!=0 );
286 pOp->opcode = (u8)op;
287 pOp->p5 = 0;
288 pOp->p1 = p1;
289 pOp->p2 = p2;
290 pOp->p3 = p3;
291 pOp->p4.p = 0;
292 pOp->p4type = P4_NOTUSED;
294 /* Replicate this logic in sqlite3VdbeAddOp4Int()
295 ** vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv */
296 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
297 pOp->zComment = 0;
298 #endif
299 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || defined(VDBE_PROFILE)
300 pOp->nExec = 0;
301 pOp->nCycle = 0;
302 #endif
303 #ifdef SQLITE_DEBUG
304 if( p->db->flags & SQLITE_VdbeAddopTrace ){
305 sqlite3VdbePrintOp(0, i, &p->aOp[i]);
306 test_addop_breakpoint(i, &p->aOp[i]);
308 #endif
309 #ifdef SQLITE_VDBE_COVERAGE
310 pOp->iSrcLine = 0;
311 #endif
312 /* ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
313 ** Replicate in sqlite3VdbeAddOp4Int() */
315 return i;
317 int sqlite3VdbeAddOp4Int(
318 Vdbe *p, /* Add the opcode to this VM */
319 int op, /* The new opcode */
320 int p1, /* The P1 operand */
321 int p2, /* The P2 operand */
322 int p3, /* The P3 operand */
323 int p4 /* The P4 operand as an integer */
325 int i;
326 VdbeOp *pOp;
328 i = p->nOp;
329 if( p->nOpAlloc<=i ){
330 return addOp4IntSlow(p, op, p1, p2, p3, p4);
332 p->nOp++;
333 pOp = &p->aOp[i];
334 assert( pOp!=0 );
335 pOp->opcode = (u8)op;
336 pOp->p5 = 0;
337 pOp->p1 = p1;
338 pOp->p2 = p2;
339 pOp->p3 = p3;
340 pOp->p4.i = p4;
341 pOp->p4type = P4_INT32;
343 /* Replicate this logic in sqlite3VdbeAddOp3()
344 ** vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv */
345 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
346 pOp->zComment = 0;
347 #endif
348 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || defined(VDBE_PROFILE)
349 pOp->nExec = 0;
350 pOp->nCycle = 0;
351 #endif
352 #ifdef SQLITE_DEBUG
353 if( p->db->flags & SQLITE_VdbeAddopTrace ){
354 sqlite3VdbePrintOp(0, i, &p->aOp[i]);
355 test_addop_breakpoint(i, &p->aOp[i]);
357 #endif
358 #ifdef SQLITE_VDBE_COVERAGE
359 pOp->iSrcLine = 0;
360 #endif
361 /* ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
362 ** Replicate in sqlite3VdbeAddOp3() */
364 return i;
367 /* Generate code for an unconditional jump to instruction iDest
369 int sqlite3VdbeGoto(Vdbe *p, int iDest){
370 return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0);
373 /* Generate code to cause the string zStr to be loaded into
374 ** register iDest
376 int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){
377 return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0);
381 ** Generate code that initializes multiple registers to string or integer
382 ** constants. The registers begin with iDest and increase consecutively.
383 ** One register is initialized for each characgter in zTypes[]. For each
384 ** "s" character in zTypes[], the register is a string if the argument is
385 ** not NULL, or OP_Null if the value is a null pointer. For each "i" character
386 ** in zTypes[], the register is initialized to an integer.
388 ** If the input string does not end with "X" then an OP_ResultRow instruction
389 ** is generated for the values inserted.
391 void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){
392 va_list ap;
393 int i;
394 char c;
395 va_start(ap, zTypes);
396 for(i=0; (c = zTypes[i])!=0; i++){
397 if( c=='s' ){
398 const char *z = va_arg(ap, const char*);
399 sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest+i, 0, z, 0);
400 }else if( c=='i' ){
401 sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest+i);
402 }else{
403 goto skip_op_resultrow;
406 sqlite3VdbeAddOp2(p, OP_ResultRow, iDest, i);
407 skip_op_resultrow:
408 va_end(ap);
412 ** Add an opcode that includes the p4 value as a pointer.
414 int sqlite3VdbeAddOp4(
415 Vdbe *p, /* Add the opcode to this VM */
416 int op, /* The new opcode */
417 int p1, /* The P1 operand */
418 int p2, /* The P2 operand */
419 int p3, /* The P3 operand */
420 const char *zP4, /* The P4 operand */
421 int p4type /* P4 operand type */
423 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
424 sqlite3VdbeChangeP4(p, addr, zP4, p4type);
425 return addr;
429 ** Add an OP_Function or OP_PureFunc opcode.
431 ** The eCallCtx argument is information (typically taken from Expr.op2)
432 ** that describes the calling context of the function. 0 means a general
433 ** function call. NC_IsCheck means called by a check constraint,
434 ** NC_IdxExpr means called as part of an index expression. NC_PartIdx
435 ** means in the WHERE clause of a partial index. NC_GenCol means called
436 ** while computing a generated column value. 0 is the usual case.
438 int sqlite3VdbeAddFunctionCall(
439 Parse *pParse, /* Parsing context */
440 int p1, /* Constant argument mask */
441 int p2, /* First argument register */
442 int p3, /* Register into which results are written */
443 int nArg, /* Number of argument */
444 const FuncDef *pFunc, /* The function to be invoked */
445 int eCallCtx /* Calling context */
447 Vdbe *v = pParse->pVdbe;
448 int nByte;
449 int addr;
450 sqlite3_context *pCtx;
451 assert( v );
452 nByte = sizeof(*pCtx) + (nArg-1)*sizeof(sqlite3_value*);
453 pCtx = sqlite3DbMallocRawNN(pParse->db, nByte);
454 if( pCtx==0 ){
455 assert( pParse->db->mallocFailed );
456 freeEphemeralFunction(pParse->db, (FuncDef*)pFunc);
457 return 0;
459 pCtx->pOut = 0;
460 pCtx->pFunc = (FuncDef*)pFunc;
461 pCtx->pVdbe = 0;
462 pCtx->isError = 0;
463 pCtx->argc = nArg;
464 pCtx->iOp = sqlite3VdbeCurrentAddr(v);
465 addr = sqlite3VdbeAddOp4(v, eCallCtx ? OP_PureFunc : OP_Function,
466 p1, p2, p3, (char*)pCtx, P4_FUNCCTX);
467 sqlite3VdbeChangeP5(v, eCallCtx & NC_SelfRef);
468 sqlite3MayAbort(pParse);
469 return addr;
473 ** Add an opcode that includes the p4 value with a P4_INT64 or
474 ** P4_REAL type.
476 int sqlite3VdbeAddOp4Dup8(
477 Vdbe *p, /* Add the opcode to this VM */
478 int op, /* The new opcode */
479 int p1, /* The P1 operand */
480 int p2, /* The P2 operand */
481 int p3, /* The P3 operand */
482 const u8 *zP4, /* The P4 operand */
483 int p4type /* P4 operand type */
485 char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8);
486 if( p4copy ) memcpy(p4copy, zP4, 8);
487 return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type);
490 #ifndef SQLITE_OMIT_EXPLAIN
492 ** Return the address of the current EXPLAIN QUERY PLAN baseline.
493 ** 0 means "none".
495 int sqlite3VdbeExplainParent(Parse *pParse){
496 VdbeOp *pOp;
497 if( pParse->addrExplain==0 ) return 0;
498 pOp = sqlite3VdbeGetOp(pParse->pVdbe, pParse->addrExplain);
499 return pOp->p2;
503 ** Set a debugger breakpoint on the following routine in order to
504 ** monitor the EXPLAIN QUERY PLAN code generation.
506 #if defined(SQLITE_DEBUG)
507 void sqlite3ExplainBreakpoint(const char *z1, const char *z2){
508 (void)z1;
509 (void)z2;
511 #endif
514 ** Add a new OP_Explain opcode.
516 ** If the bPush flag is true, then make this opcode the parent for
517 ** subsequent Explains until sqlite3VdbeExplainPop() is called.
519 int sqlite3VdbeExplain(Parse *pParse, u8 bPush, const char *zFmt, ...){
520 int addr = 0;
521 #if !defined(SQLITE_DEBUG)
522 /* Always include the OP_Explain opcodes if SQLITE_DEBUG is defined.
523 ** But omit them (for performance) during production builds */
524 if( pParse->explain==2 || IS_STMT_SCANSTATUS(pParse->db) )
525 #endif
527 char *zMsg;
528 Vdbe *v;
529 va_list ap;
530 int iThis;
531 va_start(ap, zFmt);
532 zMsg = sqlite3VMPrintf(pParse->db, zFmt, ap);
533 va_end(ap);
534 v = pParse->pVdbe;
535 iThis = v->nOp;
536 addr = sqlite3VdbeAddOp4(v, OP_Explain, iThis, pParse->addrExplain, 0,
537 zMsg, P4_DYNAMIC);
538 sqlite3ExplainBreakpoint(bPush?"PUSH":"", sqlite3VdbeGetLastOp(v)->p4.z);
539 if( bPush){
540 pParse->addrExplain = iThis;
542 sqlite3VdbeScanStatus(v, iThis, -1, -1, 0, 0);
544 return addr;
548 ** Pop the EXPLAIN QUERY PLAN stack one level.
550 void sqlite3VdbeExplainPop(Parse *pParse){
551 sqlite3ExplainBreakpoint("POP", 0);
552 pParse->addrExplain = sqlite3VdbeExplainParent(pParse);
554 #endif /* SQLITE_OMIT_EXPLAIN */
557 ** Add an OP_ParseSchema opcode. This routine is broken out from
558 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees
559 ** as having been used.
561 ** The zWhere string must have been obtained from sqlite3_malloc().
562 ** This routine will take ownership of the allocated memory.
564 void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere, u16 p5){
565 int j;
566 sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC);
567 sqlite3VdbeChangeP5(p, p5);
568 for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j);
569 sqlite3MayAbort(p->pParse);
572 /* Insert the end of a co-routine
574 void sqlite3VdbeEndCoroutine(Vdbe *v, int regYield){
575 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield);
577 /* Clear the temporary register cache, thereby ensuring that each
578 ** co-routine has its own independent set of registers, because co-routines
579 ** might expect their registers to be preserved across an OP_Yield, and
580 ** that could cause problems if two or more co-routines are using the same
581 ** temporary register.
583 v->pParse->nTempReg = 0;
584 v->pParse->nRangeReg = 0;
588 ** Create a new symbolic label for an instruction that has yet to be
589 ** coded. The symbolic label is really just a negative number. The
590 ** label can be used as the P2 value of an operation. Later, when
591 ** the label is resolved to a specific address, the VDBE will scan
592 ** through its operation list and change all values of P2 which match
593 ** the label into the resolved address.
595 ** The VDBE knows that a P2 value is a label because labels are
596 ** always negative and P2 values are suppose to be non-negative.
597 ** Hence, a negative P2 value is a label that has yet to be resolved.
598 ** (Later:) This is only true for opcodes that have the OPFLG_JUMP
599 ** property.
601 ** Variable usage notes:
603 ** Parse.aLabel[x] Stores the address that the x-th label resolves
604 ** into. For testing (SQLITE_DEBUG), unresolved
605 ** labels stores -1, but that is not required.
606 ** Parse.nLabelAlloc Number of slots allocated to Parse.aLabel[]
607 ** Parse.nLabel The *negative* of the number of labels that have
608 ** been issued. The negative is stored because
609 ** that gives a performance improvement over storing
610 ** the equivalent positive value.
612 int sqlite3VdbeMakeLabel(Parse *pParse){
613 return --pParse->nLabel;
617 ** Resolve label "x" to be the address of the next instruction to
618 ** be inserted. The parameter "x" must have been obtained from
619 ** a prior call to sqlite3VdbeMakeLabel().
621 static SQLITE_NOINLINE void resizeResolveLabel(Parse *p, Vdbe *v, int j){
622 int nNewSize = 10 - p->nLabel;
623 p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
624 nNewSize*sizeof(p->aLabel[0]));
625 if( p->aLabel==0 ){
626 p->nLabelAlloc = 0;
627 }else{
628 #ifdef SQLITE_DEBUG
629 int i;
630 for(i=p->nLabelAlloc; i<nNewSize; i++) p->aLabel[i] = -1;
631 #endif
632 if( nNewSize>=100 && (nNewSize/100)>(p->nLabelAlloc/100) ){
633 sqlite3ProgressCheck(p);
635 p->nLabelAlloc = nNewSize;
636 p->aLabel[j] = v->nOp;
639 void sqlite3VdbeResolveLabel(Vdbe *v, int x){
640 Parse *p = v->pParse;
641 int j = ADDR(x);
642 assert( v->eVdbeState==VDBE_INIT_STATE );
643 assert( j<-p->nLabel );
644 assert( j>=0 );
645 #ifdef SQLITE_DEBUG
646 if( p->db->flags & SQLITE_VdbeAddopTrace ){
647 printf("RESOLVE LABEL %d to %d\n", x, v->nOp);
649 #endif
650 if( p->nLabelAlloc + p->nLabel < 0 ){
651 resizeResolveLabel(p,v,j);
652 }else{
653 assert( p->aLabel[j]==(-1) ); /* Labels may only be resolved once */
654 p->aLabel[j] = v->nOp;
659 ** Mark the VDBE as one that can only be run one time.
661 void sqlite3VdbeRunOnlyOnce(Vdbe *p){
662 sqlite3VdbeAddOp2(p, OP_Expire, 1, 1);
666 ** Mark the VDBE as one that can be run multiple times.
668 void sqlite3VdbeReusable(Vdbe *p){
669 int i;
670 for(i=1; ALWAYS(i<p->nOp); i++){
671 if( ALWAYS(p->aOp[i].opcode==OP_Expire) ){
672 p->aOp[1].opcode = OP_Noop;
673 break;
678 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */
681 ** The following type and function are used to iterate through all opcodes
682 ** in a Vdbe main program and each of the sub-programs (triggers) it may
683 ** invoke directly or indirectly. It should be used as follows:
685 ** Op *pOp;
686 ** VdbeOpIter sIter;
688 ** memset(&sIter, 0, sizeof(sIter));
689 ** sIter.v = v; // v is of type Vdbe*
690 ** while( (pOp = opIterNext(&sIter)) ){
691 ** // Do something with pOp
692 ** }
693 ** sqlite3DbFree(v->db, sIter.apSub);
696 typedef struct VdbeOpIter VdbeOpIter;
697 struct VdbeOpIter {
698 Vdbe *v; /* Vdbe to iterate through the opcodes of */
699 SubProgram **apSub; /* Array of subprograms */
700 int nSub; /* Number of entries in apSub */
701 int iAddr; /* Address of next instruction to return */
702 int iSub; /* 0 = main program, 1 = first sub-program etc. */
704 static Op *opIterNext(VdbeOpIter *p){
705 Vdbe *v = p->v;
706 Op *pRet = 0;
707 Op *aOp;
708 int nOp;
710 if( p->iSub<=p->nSub ){
712 if( p->iSub==0 ){
713 aOp = v->aOp;
714 nOp = v->nOp;
715 }else{
716 aOp = p->apSub[p->iSub-1]->aOp;
717 nOp = p->apSub[p->iSub-1]->nOp;
719 assert( p->iAddr<nOp );
721 pRet = &aOp[p->iAddr];
722 p->iAddr++;
723 if( p->iAddr==nOp ){
724 p->iSub++;
725 p->iAddr = 0;
728 if( pRet->p4type==P4_SUBPROGRAM ){
729 int nByte = (p->nSub+1)*sizeof(SubProgram*);
730 int j;
731 for(j=0; j<p->nSub; j++){
732 if( p->apSub[j]==pRet->p4.pProgram ) break;
734 if( j==p->nSub ){
735 p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte);
736 if( !p->apSub ){
737 pRet = 0;
738 }else{
739 p->apSub[p->nSub++] = pRet->p4.pProgram;
745 return pRet;
749 ** Check if the program stored in the VM associated with pParse may
750 ** throw an ABORT exception (causing the statement, but not entire transaction
751 ** to be rolled back). This condition is true if the main program or any
752 ** sub-programs contains any of the following:
754 ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
755 ** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
756 ** * OP_Destroy
757 ** * OP_VUpdate
758 ** * OP_VCreate
759 ** * OP_VRename
760 ** * OP_FkCounter with P2==0 (immediate foreign key constraint)
761 ** * OP_CreateBtree/BTREE_INTKEY and OP_InitCoroutine
762 ** (for CREATE TABLE AS SELECT ...)
764 ** Then check that the value of Parse.mayAbort is true if an
765 ** ABORT may be thrown, or false otherwise. Return true if it does
766 ** match, or false otherwise. This function is intended to be used as
767 ** part of an assert statement in the compiler. Similar to:
769 ** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) );
771 int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){
772 int hasAbort = 0;
773 int hasFkCounter = 0;
774 int hasCreateTable = 0;
775 int hasCreateIndex = 0;
776 int hasInitCoroutine = 0;
777 Op *pOp;
778 VdbeOpIter sIter;
780 if( v==0 ) return 0;
781 memset(&sIter, 0, sizeof(sIter));
782 sIter.v = v;
784 while( (pOp = opIterNext(&sIter))!=0 ){
785 int opcode = pOp->opcode;
786 if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename
787 || opcode==OP_VDestroy
788 || opcode==OP_VCreate
789 || opcode==OP_ParseSchema
790 || opcode==OP_Function || opcode==OP_PureFunc
791 || ((opcode==OP_Halt || opcode==OP_HaltIfNull)
792 && ((pOp->p1)!=SQLITE_OK && pOp->p2==OE_Abort))
794 hasAbort = 1;
795 break;
797 if( opcode==OP_CreateBtree && pOp->p3==BTREE_INTKEY ) hasCreateTable = 1;
798 if( mayAbort ){
799 /* hasCreateIndex may also be set for some DELETE statements that use
800 ** OP_Clear. So this routine may end up returning true in the case
801 ** where a "DELETE FROM tbl" has a statement-journal but does not
802 ** require one. This is not so bad - it is an inefficiency, not a bug. */
803 if( opcode==OP_CreateBtree && pOp->p3==BTREE_BLOBKEY ) hasCreateIndex = 1;
804 if( opcode==OP_Clear ) hasCreateIndex = 1;
806 if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1;
807 #ifndef SQLITE_OMIT_FOREIGN_KEY
808 if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){
809 hasFkCounter = 1;
811 #endif
813 sqlite3DbFree(v->db, sIter.apSub);
815 /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred.
816 ** If malloc failed, then the while() loop above may not have iterated
817 ** through all opcodes and hasAbort may be set incorrectly. Return
818 ** true for this case to prevent the assert() in the callers frame
819 ** from failing. */
820 return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter
821 || (hasCreateTable && hasInitCoroutine) || hasCreateIndex
824 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */
826 #ifdef SQLITE_DEBUG
828 ** Increment the nWrite counter in the VDBE if the cursor is not an
829 ** ephemeral cursor, or if the cursor argument is NULL.
831 void sqlite3VdbeIncrWriteCounter(Vdbe *p, VdbeCursor *pC){
832 if( pC==0
833 || (pC->eCurType!=CURTYPE_SORTER
834 && pC->eCurType!=CURTYPE_PSEUDO
835 && !pC->isEphemeral)
837 p->nWrite++;
840 #endif
842 #ifdef SQLITE_DEBUG
844 ** Assert if an Abort at this point in time might result in a corrupt
845 ** database.
847 void sqlite3VdbeAssertAbortable(Vdbe *p){
848 assert( p->nWrite==0 || p->usesStmtJournal );
850 #endif
853 ** This routine is called after all opcodes have been inserted. It loops
854 ** through all the opcodes and fixes up some details.
856 ** (1) For each jump instruction with a negative P2 value (a label)
857 ** resolve the P2 value to an actual address.
859 ** (2) Compute the maximum number of arguments used by any SQL function
860 ** and store that value in *pMaxFuncArgs.
862 ** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately
863 ** indicate what the prepared statement actually does.
865 ** (4) (discontinued)
867 ** (5) Reclaim the memory allocated for storing labels.
869 ** This routine will only function correctly if the mkopcodeh.tcl generator
870 ** script numbers the opcodes correctly. Changes to this routine must be
871 ** coordinated with changes to mkopcodeh.tcl.
873 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
874 int nMaxArgs = *pMaxFuncArgs;
875 Op *pOp;
876 Parse *pParse = p->pParse;
877 int *aLabel = pParse->aLabel;
879 assert( pParse->db->mallocFailed==0 ); /* tag-20230419-1 */
880 p->readOnly = 1;
881 p->bIsReader = 0;
882 pOp = &p->aOp[p->nOp-1];
883 assert( p->aOp[0].opcode==OP_Init );
884 while( 1 /* Loop terminates when it reaches the OP_Init opcode */ ){
885 /* Only JUMP opcodes and the short list of special opcodes in the switch
886 ** below need to be considered. The mkopcodeh.tcl generator script groups
887 ** all these opcodes together near the front of the opcode list. Skip
888 ** any opcode that does not need processing by virtual of the fact that
889 ** it is larger than SQLITE_MX_JUMP_OPCODE, as a performance optimization.
891 if( pOp->opcode<=SQLITE_MX_JUMP_OPCODE ){
892 /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing
893 ** cases from this switch! */
894 switch( pOp->opcode ){
895 case OP_Transaction: {
896 if( pOp->p2!=0 ) p->readOnly = 0;
897 /* no break */ deliberate_fall_through
899 case OP_AutoCommit:
900 case OP_Savepoint: {
901 p->bIsReader = 1;
902 break;
904 #ifndef SQLITE_OMIT_WAL
905 case OP_Checkpoint:
906 #endif
907 case OP_Vacuum:
908 case OP_JournalMode: {
909 p->readOnly = 0;
910 p->bIsReader = 1;
911 break;
913 case OP_Init: {
914 assert( pOp->p2>=0 );
915 goto resolve_p2_values_loop_exit;
917 #ifndef SQLITE_OMIT_VIRTUALTABLE
918 case OP_VUpdate: {
919 if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
920 break;
922 case OP_VFilter: {
923 int n;
924 assert( (pOp - p->aOp) >= 3 );
925 assert( pOp[-1].opcode==OP_Integer );
926 n = pOp[-1].p1;
927 if( n>nMaxArgs ) nMaxArgs = n;
928 /* Fall through into the default case */
929 /* no break */ deliberate_fall_through
931 #endif
932 default: {
933 if( pOp->p2<0 ){
934 /* The mkopcodeh.tcl script has so arranged things that the only
935 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to
936 ** have non-negative values for P2. */
937 assert( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 );
938 assert( ADDR(pOp->p2)<-pParse->nLabel );
939 assert( aLabel!=0 ); /* True because of tag-20230419-1 */
940 pOp->p2 = aLabel[ADDR(pOp->p2)];
943 /* OPFLG_JUMP opcodes never have P2==0, though OPFLG_JUMP0 opcodes
944 ** might */
945 assert( pOp->p2>0
946 || (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP0)!=0 );
948 /* Jumps never go off the end of the bytecode array */
949 assert( pOp->p2<p->nOp
950 || (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)==0 );
951 break;
954 /* The mkopcodeh.tcl script has so arranged things that the only
955 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to
956 ** have non-negative values for P2. */
957 assert( (sqlite3OpcodeProperty[pOp->opcode]&OPFLG_JUMP)==0 || pOp->p2>=0);
959 assert( pOp>p->aOp );
960 pOp--;
962 resolve_p2_values_loop_exit:
963 if( aLabel ){
964 sqlite3DbNNFreeNN(p->db, pParse->aLabel);
965 pParse->aLabel = 0;
967 pParse->nLabel = 0;
968 *pMaxFuncArgs = nMaxArgs;
969 assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) );
972 #ifdef SQLITE_DEBUG
974 ** Check to see if a subroutine contains a jump to a location outside of
975 ** the subroutine. If a jump outside the subroutine is detected, add code
976 ** that will cause the program to halt with an error message.
978 ** The subroutine consists of opcodes between iFirst and iLast. Jumps to
979 ** locations within the subroutine are acceptable. iRetReg is a register
980 ** that contains the return address. Jumps to outside the range of iFirst
981 ** through iLast are also acceptable as long as the jump destination is
982 ** an OP_Return to iReturnAddr.
984 ** A jump to an unresolved label means that the jump destination will be
985 ** beyond the current address. That is normally a jump to an early
986 ** termination and is consider acceptable.
988 ** This routine only runs during debug builds. The purpose is (of course)
989 ** to detect invalid escapes out of a subroutine. The OP_Halt opcode
990 ** is generated rather than an assert() or other error, so that ".eqp full"
991 ** will still work to show the original bytecode, to aid in debugging.
993 void sqlite3VdbeNoJumpsOutsideSubrtn(
994 Vdbe *v, /* The byte-code program under construction */
995 int iFirst, /* First opcode of the subroutine */
996 int iLast, /* Last opcode of the subroutine */
997 int iRetReg /* Subroutine return address register */
999 VdbeOp *pOp;
1000 Parse *pParse;
1001 int i;
1002 sqlite3_str *pErr = 0;
1003 assert( v!=0 );
1004 pParse = v->pParse;
1005 assert( pParse!=0 );
1006 if( pParse->nErr ) return;
1007 assert( iLast>=iFirst );
1008 assert( iLast<v->nOp );
1009 pOp = &v->aOp[iFirst];
1010 for(i=iFirst; i<=iLast; i++, pOp++){
1011 if( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 ){
1012 int iDest = pOp->p2; /* Jump destination */
1013 if( iDest==0 ) continue;
1014 if( pOp->opcode==OP_Gosub ) continue;
1015 if( pOp->p3==20230325 && pOp->opcode==OP_NotNull ){
1016 /* This is a deliberately taken illegal branch. tag-20230325-2 */
1017 continue;
1019 if( iDest<0 ){
1020 int j = ADDR(iDest);
1021 assert( j>=0 );
1022 if( j>=-pParse->nLabel || pParse->aLabel[j]<0 ){
1023 continue;
1025 iDest = pParse->aLabel[j];
1027 if( iDest<iFirst || iDest>iLast ){
1028 int j = iDest;
1029 for(; j<v->nOp; j++){
1030 VdbeOp *pX = &v->aOp[j];
1031 if( pX->opcode==OP_Return ){
1032 if( pX->p1==iRetReg ) break;
1033 continue;
1035 if( pX->opcode==OP_Noop ) continue;
1036 if( pX->opcode==OP_Explain ) continue;
1037 if( pErr==0 ){
1038 pErr = sqlite3_str_new(0);
1039 }else{
1040 sqlite3_str_appendchar(pErr, 1, '\n');
1042 sqlite3_str_appendf(pErr,
1043 "Opcode at %d jumps to %d which is outside the "
1044 "subroutine at %d..%d",
1045 i, iDest, iFirst, iLast);
1046 break;
1051 if( pErr ){
1052 char *zErr = sqlite3_str_finish(pErr);
1053 sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_INTERNAL, OE_Abort, 0, zErr, 0);
1054 sqlite3_free(zErr);
1055 sqlite3MayAbort(pParse);
1058 #endif /* SQLITE_DEBUG */
1061 ** Return the address of the next instruction to be inserted.
1063 int sqlite3VdbeCurrentAddr(Vdbe *p){
1064 assert( p->eVdbeState==VDBE_INIT_STATE );
1065 return p->nOp;
1069 ** Verify that at least N opcode slots are available in p without
1070 ** having to malloc for more space (except when compiled using
1071 ** SQLITE_TEST_REALLOC_STRESS). This interface is used during testing
1072 ** to verify that certain calls to sqlite3VdbeAddOpList() can never
1073 ** fail due to a OOM fault and hence that the return value from
1074 ** sqlite3VdbeAddOpList() will always be non-NULL.
1076 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
1077 void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){
1078 assert( p->nOp + N <= p->nOpAlloc );
1080 #endif
1083 ** Verify that the VM passed as the only argument does not contain
1084 ** an OP_ResultRow opcode. Fail an assert() if it does. This is used
1085 ** by code in pragma.c to ensure that the implementation of certain
1086 ** pragmas comports with the flags specified in the mkpragmatab.tcl
1087 ** script.
1089 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
1090 void sqlite3VdbeVerifyNoResultRow(Vdbe *p){
1091 int i;
1092 for(i=0; i<p->nOp; i++){
1093 assert( p->aOp[i].opcode!=OP_ResultRow );
1096 #endif
1099 ** Generate code (a single OP_Abortable opcode) that will
1100 ** verify that the VDBE program can safely call Abort in the current
1101 ** context.
1103 #if defined(SQLITE_DEBUG)
1104 void sqlite3VdbeVerifyAbortable(Vdbe *p, int onError){
1105 if( onError==OE_Abort ) sqlite3VdbeAddOp0(p, OP_Abortable);
1107 #endif
1110 ** This function returns a pointer to the array of opcodes associated with
1111 ** the Vdbe passed as the first argument. It is the callers responsibility
1112 ** to arrange for the returned array to be eventually freed using the
1113 ** vdbeFreeOpArray() function.
1115 ** Before returning, *pnOp is set to the number of entries in the returned
1116 ** array. Also, *pnMaxArg is set to the larger of its current value and
1117 ** the number of entries in the Vdbe.apArg[] array required to execute the
1118 ** returned program.
1120 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){
1121 VdbeOp *aOp = p->aOp;
1122 assert( aOp && !p->db->mallocFailed );
1124 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */
1125 assert( DbMaskAllZero(p->btreeMask) );
1127 resolveP2Values(p, pnMaxArg);
1128 *pnOp = p->nOp;
1129 p->aOp = 0;
1130 return aOp;
1134 ** Add a whole list of operations to the operation stack. Return a
1135 ** pointer to the first operation inserted.
1137 ** Non-zero P2 arguments to jump instructions are automatically adjusted
1138 ** so that the jump target is relative to the first operation inserted.
1140 VdbeOp *sqlite3VdbeAddOpList(
1141 Vdbe *p, /* Add opcodes to the prepared statement */
1142 int nOp, /* Number of opcodes to add */
1143 VdbeOpList const *aOp, /* The opcodes to be added */
1144 int iLineno /* Source-file line number of first opcode */
1146 int i;
1147 VdbeOp *pOut, *pFirst;
1148 assert( nOp>0 );
1149 assert( p->eVdbeState==VDBE_INIT_STATE );
1150 if( p->nOp + nOp > p->nOpAlloc && growOpArray(p, nOp) ){
1151 return 0;
1153 pFirst = pOut = &p->aOp[p->nOp];
1154 for(i=0; i<nOp; i++, aOp++, pOut++){
1155 pOut->opcode = aOp->opcode;
1156 pOut->p1 = aOp->p1;
1157 pOut->p2 = aOp->p2;
1158 assert( aOp->p2>=0 );
1159 if( (sqlite3OpcodeProperty[aOp->opcode] & OPFLG_JUMP)!=0 && aOp->p2>0 ){
1160 pOut->p2 += p->nOp;
1162 pOut->p3 = aOp->p3;
1163 pOut->p4type = P4_NOTUSED;
1164 pOut->p4.p = 0;
1165 pOut->p5 = 0;
1166 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1167 pOut->zComment = 0;
1168 #endif
1169 #ifdef SQLITE_VDBE_COVERAGE
1170 pOut->iSrcLine = iLineno+i;
1171 #else
1172 (void)iLineno;
1173 #endif
1174 #ifdef SQLITE_DEBUG
1175 if( p->db->flags & SQLITE_VdbeAddopTrace ){
1176 sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]);
1178 #endif
1180 p->nOp += nOp;
1181 return pFirst;
1184 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS)
1186 ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus().
1188 void sqlite3VdbeScanStatus(
1189 Vdbe *p, /* VM to add scanstatus() to */
1190 int addrExplain, /* Address of OP_Explain (or 0) */
1191 int addrLoop, /* Address of loop counter */
1192 int addrVisit, /* Address of rows visited counter */
1193 LogEst nEst, /* Estimated number of output rows */
1194 const char *zName /* Name of table or index being scanned */
1196 if( IS_STMT_SCANSTATUS(p->db) ){
1197 sqlite3_int64 nByte = (p->nScan+1) * sizeof(ScanStatus);
1198 ScanStatus *aNew;
1199 aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte);
1200 if( aNew ){
1201 ScanStatus *pNew = &aNew[p->nScan++];
1202 memset(pNew, 0, sizeof(ScanStatus));
1203 pNew->addrExplain = addrExplain;
1204 pNew->addrLoop = addrLoop;
1205 pNew->addrVisit = addrVisit;
1206 pNew->nEst = nEst;
1207 pNew->zName = sqlite3DbStrDup(p->db, zName);
1208 p->aScan = aNew;
1214 ** Add the range of instructions from addrStart to addrEnd (inclusive) to
1215 ** the set of those corresponding to the sqlite3_stmt_scanstatus() counters
1216 ** associated with the OP_Explain instruction at addrExplain. The
1217 ** sum of the sqlite3Hwtime() values for each of these instructions
1218 ** will be returned for SQLITE_SCANSTAT_NCYCLE requests.
1220 void sqlite3VdbeScanStatusRange(
1221 Vdbe *p,
1222 int addrExplain,
1223 int addrStart,
1224 int addrEnd
1226 if( IS_STMT_SCANSTATUS(p->db) ){
1227 ScanStatus *pScan = 0;
1228 int ii;
1229 for(ii=p->nScan-1; ii>=0; ii--){
1230 pScan = &p->aScan[ii];
1231 if( pScan->addrExplain==addrExplain ) break;
1232 pScan = 0;
1234 if( pScan ){
1235 if( addrEnd<0 ) addrEnd = sqlite3VdbeCurrentAddr(p)-1;
1236 for(ii=0; ii<ArraySize(pScan->aAddrRange); ii+=2){
1237 if( pScan->aAddrRange[ii]==0 ){
1238 pScan->aAddrRange[ii] = addrStart;
1239 pScan->aAddrRange[ii+1] = addrEnd;
1240 break;
1248 ** Set the addresses for the SQLITE_SCANSTAT_NLOOP and SQLITE_SCANSTAT_NROW
1249 ** counters for the query element associated with the OP_Explain at
1250 ** addrExplain.
1252 void sqlite3VdbeScanStatusCounters(
1253 Vdbe *p,
1254 int addrExplain,
1255 int addrLoop,
1256 int addrVisit
1258 if( IS_STMT_SCANSTATUS(p->db) ){
1259 ScanStatus *pScan = 0;
1260 int ii;
1261 for(ii=p->nScan-1; ii>=0; ii--){
1262 pScan = &p->aScan[ii];
1263 if( pScan->addrExplain==addrExplain ) break;
1264 pScan = 0;
1266 if( pScan ){
1267 if( addrLoop>0 ) pScan->addrLoop = addrLoop;
1268 if( addrVisit>0 ) pScan->addrVisit = addrVisit;
1272 #endif /* defined(SQLITE_ENABLE_STMT_SCANSTATUS) */
1276 ** Change the value of the opcode, or P1, P2, P3, or P5 operands
1277 ** for a specific instruction.
1279 void sqlite3VdbeChangeOpcode(Vdbe *p, int addr, u8 iNewOpcode){
1280 assert( addr>=0 );
1281 sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode;
1283 void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){
1284 assert( addr>=0 );
1285 sqlite3VdbeGetOp(p,addr)->p1 = val;
1287 void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){
1288 assert( addr>=0 || p->db->mallocFailed );
1289 sqlite3VdbeGetOp(p,addr)->p2 = val;
1291 void sqlite3VdbeChangeP3(Vdbe *p, int addr, int val){
1292 assert( addr>=0 );
1293 sqlite3VdbeGetOp(p,addr)->p3 = val;
1295 void sqlite3VdbeChangeP5(Vdbe *p, u16 p5){
1296 assert( p->nOp>0 || p->db->mallocFailed );
1297 if( p->nOp>0 ) p->aOp[p->nOp-1].p5 = p5;
1301 ** If the previous opcode is an OP_Column that delivers results
1302 ** into register iDest, then add the OPFLAG_TYPEOFARG flag to that
1303 ** opcode.
1305 void sqlite3VdbeTypeofColumn(Vdbe *p, int iDest){
1306 VdbeOp *pOp = sqlite3VdbeGetLastOp(p);
1307 if( pOp->p3==iDest && pOp->opcode==OP_Column ){
1308 pOp->p5 |= OPFLAG_TYPEOFARG;
1313 ** Change the P2 operand of instruction addr so that it points to
1314 ** the address of the next instruction to be coded.
1316 void sqlite3VdbeJumpHere(Vdbe *p, int addr){
1317 sqlite3VdbeChangeP2(p, addr, p->nOp);
1321 ** Change the P2 operand of the jump instruction at addr so that
1322 ** the jump lands on the next opcode. Or if the jump instruction was
1323 ** the previous opcode (and is thus a no-op) then simply back up
1324 ** the next instruction counter by one slot so that the jump is
1325 ** overwritten by the next inserted opcode.
1327 ** This routine is an optimization of sqlite3VdbeJumpHere() that
1328 ** strives to omit useless byte-code like this:
1330 ** 7 Once 0 8 0
1331 ** 8 ...
1333 void sqlite3VdbeJumpHereOrPopInst(Vdbe *p, int addr){
1334 if( addr==p->nOp-1 ){
1335 assert( p->aOp[addr].opcode==OP_Once
1336 || p->aOp[addr].opcode==OP_If
1337 || p->aOp[addr].opcode==OP_FkIfZero );
1338 assert( p->aOp[addr].p4type==0 );
1339 #ifdef SQLITE_VDBE_COVERAGE
1340 sqlite3VdbeGetLastOp(p)->iSrcLine = 0; /* Erase VdbeCoverage() macros */
1341 #endif
1342 p->nOp--;
1343 }else{
1344 sqlite3VdbeChangeP2(p, addr, p->nOp);
1350 ** If the input FuncDef structure is ephemeral, then free it. If
1351 ** the FuncDef is not ephemeral, then do nothing.
1353 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
1354 assert( db!=0 );
1355 if( (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){
1356 sqlite3DbNNFreeNN(db, pDef);
1361 ** Delete a P4 value if necessary.
1363 static SQLITE_NOINLINE void freeP4Mem(sqlite3 *db, Mem *p){
1364 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
1365 sqlite3DbNNFreeNN(db, p);
1367 static SQLITE_NOINLINE void freeP4FuncCtx(sqlite3 *db, sqlite3_context *p){
1368 assert( db!=0 );
1369 freeEphemeralFunction(db, p->pFunc);
1370 sqlite3DbNNFreeNN(db, p);
1372 static void freeP4(sqlite3 *db, int p4type, void *p4){
1373 assert( db );
1374 switch( p4type ){
1375 case P4_FUNCCTX: {
1376 freeP4FuncCtx(db, (sqlite3_context*)p4);
1377 break;
1379 case P4_REAL:
1380 case P4_INT64:
1381 case P4_DYNAMIC:
1382 case P4_INTARRAY: {
1383 if( p4 ) sqlite3DbNNFreeNN(db, p4);
1384 break;
1386 case P4_KEYINFO: {
1387 if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4);
1388 break;
1390 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1391 case P4_EXPR: {
1392 sqlite3ExprDelete(db, (Expr*)p4);
1393 break;
1395 #endif
1396 case P4_FUNCDEF: {
1397 freeEphemeralFunction(db, (FuncDef*)p4);
1398 break;
1400 case P4_MEM: {
1401 if( db->pnBytesFreed==0 ){
1402 sqlite3ValueFree((sqlite3_value*)p4);
1403 }else{
1404 freeP4Mem(db, (Mem*)p4);
1406 break;
1408 case P4_VTAB : {
1409 if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4);
1410 break;
1412 case P4_TABLEREF: {
1413 if( db->pnBytesFreed==0 ) sqlite3DeleteTable(db, (Table*)p4);
1414 break;
1420 ** Free the space allocated for aOp and any p4 values allocated for the
1421 ** opcodes contained within. If aOp is not NULL it is assumed to contain
1422 ** nOp entries.
1424 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){
1425 assert( nOp>=0 );
1426 assert( db!=0 );
1427 if( aOp ){
1428 Op *pOp = &aOp[nOp-1];
1429 while(1){ /* Exit via break */
1430 if( pOp->p4type <= P4_FREE_IF_LE ) freeP4(db, pOp->p4type, pOp->p4.p);
1431 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1432 sqlite3DbFree(db, pOp->zComment);
1433 #endif
1434 if( pOp==aOp ) break;
1435 pOp--;
1437 sqlite3DbNNFreeNN(db, aOp);
1442 ** Link the SubProgram object passed as the second argument into the linked
1443 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program
1444 ** objects when the VM is no longer required.
1446 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){
1447 p->pNext = pVdbe->pProgram;
1448 pVdbe->pProgram = p;
1452 ** Return true if the given Vdbe has any SubPrograms.
1454 int sqlite3VdbeHasSubProgram(Vdbe *pVdbe){
1455 return pVdbe->pProgram!=0;
1459 ** Change the opcode at addr into OP_Noop
1461 int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){
1462 VdbeOp *pOp;
1463 if( p->db->mallocFailed ) return 0;
1464 assert( addr>=0 && addr<p->nOp );
1465 pOp = &p->aOp[addr];
1466 freeP4(p->db, pOp->p4type, pOp->p4.p);
1467 pOp->p4type = P4_NOTUSED;
1468 pOp->p4.z = 0;
1469 pOp->opcode = OP_Noop;
1470 return 1;
1474 ** If the last opcode is "op" and it is not a jump destination,
1475 ** then remove it. Return true if and only if an opcode was removed.
1477 int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){
1478 if( p->nOp>0 && p->aOp[p->nOp-1].opcode==op ){
1479 return sqlite3VdbeChangeToNoop(p, p->nOp-1);
1480 }else{
1481 return 0;
1485 #ifdef SQLITE_DEBUG
1487 ** Generate an OP_ReleaseReg opcode to indicate that a range of
1488 ** registers, except any identified by mask, are no longer in use.
1490 void sqlite3VdbeReleaseRegisters(
1491 Parse *pParse, /* Parsing context */
1492 int iFirst, /* Index of first register to be released */
1493 int N, /* Number of registers to release */
1494 u32 mask, /* Mask of registers to NOT release */
1495 int bUndefine /* If true, mark registers as undefined */
1497 if( N==0 || OptimizationDisabled(pParse->db, SQLITE_ReleaseReg) ) return;
1498 assert( pParse->pVdbe );
1499 assert( iFirst>=1 );
1500 assert( iFirst+N-1<=pParse->nMem );
1501 if( N<=31 && mask!=0 ){
1502 while( N>0 && (mask&1)!=0 ){
1503 mask >>= 1;
1504 iFirst++;
1505 N--;
1507 while( N>0 && N<=32 && (mask & MASKBIT32(N-1))!=0 ){
1508 mask &= ~MASKBIT32(N-1);
1509 N--;
1512 if( N>0 ){
1513 sqlite3VdbeAddOp3(pParse->pVdbe, OP_ReleaseReg, iFirst, N, *(int*)&mask);
1514 if( bUndefine ) sqlite3VdbeChangeP5(pParse->pVdbe, 1);
1517 #endif /* SQLITE_DEBUG */
1520 ** Change the value of the P4 operand for a specific instruction.
1521 ** This routine is useful when a large program is loaded from a
1522 ** static array using sqlite3VdbeAddOpList but we want to make a
1523 ** few minor changes to the program.
1525 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of
1526 ** the string is made into memory obtained from sqlite3_malloc().
1527 ** A value of n==0 means copy bytes of zP4 up to and including the
1528 ** first null byte. If n>0 then copy n+1 bytes of zP4.
1530 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
1531 ** to a string or structure that is guaranteed to exist for the lifetime of
1532 ** the Vdbe. In these cases we can just copy the pointer.
1534 ** If addr<0 then change P4 on the most recently inserted instruction.
1536 static void SQLITE_NOINLINE vdbeChangeP4Full(
1537 Vdbe *p,
1538 Op *pOp,
1539 const char *zP4,
1540 int n
1542 if( pOp->p4type ){
1543 assert( pOp->p4type > P4_FREE_IF_LE );
1544 pOp->p4type = 0;
1545 pOp->p4.p = 0;
1547 if( n<0 ){
1548 sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n);
1549 }else{
1550 if( n==0 ) n = sqlite3Strlen30(zP4);
1551 pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
1552 pOp->p4type = P4_DYNAMIC;
1555 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
1556 Op *pOp;
1557 sqlite3 *db;
1558 assert( p!=0 );
1559 db = p->db;
1560 assert( p->eVdbeState==VDBE_INIT_STATE );
1561 assert( p->aOp!=0 || db->mallocFailed );
1562 if( db->mallocFailed ){
1563 if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4);
1564 return;
1566 assert( p->nOp>0 );
1567 assert( addr<p->nOp );
1568 if( addr<0 ){
1569 addr = p->nOp - 1;
1571 pOp = &p->aOp[addr];
1572 if( n>=0 || pOp->p4type ){
1573 vdbeChangeP4Full(p, pOp, zP4, n);
1574 return;
1576 if( n==P4_INT32 ){
1577 /* Note: this cast is safe, because the origin data point was an int
1578 ** that was cast to a (const char *). */
1579 pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
1580 pOp->p4type = P4_INT32;
1581 }else if( zP4!=0 ){
1582 assert( n<0 );
1583 pOp->p4.p = (void*)zP4;
1584 pOp->p4type = (signed char)n;
1585 if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4);
1590 ** Change the P4 operand of the most recently coded instruction
1591 ** to the value defined by the arguments. This is a high-speed
1592 ** version of sqlite3VdbeChangeP4().
1594 ** The P4 operand must not have been previously defined. And the new
1595 ** P4 must not be P4_INT32. Use sqlite3VdbeChangeP4() in either of
1596 ** those cases.
1598 void sqlite3VdbeAppendP4(Vdbe *p, void *pP4, int n){
1599 VdbeOp *pOp;
1600 assert( n!=P4_INT32 && n!=P4_VTAB );
1601 assert( n<=0 );
1602 if( p->db->mallocFailed ){
1603 freeP4(p->db, n, pP4);
1604 }else{
1605 assert( pP4!=0 || n==P4_DYNAMIC );
1606 assert( p->nOp>0 );
1607 pOp = &p->aOp[p->nOp-1];
1608 assert( pOp->p4type==P4_NOTUSED );
1609 pOp->p4type = n;
1610 pOp->p4.p = pP4;
1615 ** Set the P4 on the most recently added opcode to the KeyInfo for the
1616 ** index given.
1618 void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){
1619 Vdbe *v = pParse->pVdbe;
1620 KeyInfo *pKeyInfo;
1621 assert( v!=0 );
1622 assert( pIdx!=0 );
1623 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pIdx);
1624 if( pKeyInfo ) sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO);
1627 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1629 ** Change the comment on the most recently coded instruction. Or
1630 ** insert a No-op and add the comment to that new instruction. This
1631 ** makes the code easier to read during debugging. None of this happens
1632 ** in a production build.
1634 static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){
1635 assert( p->nOp>0 || p->aOp==0 );
1636 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->pParse->nErr>0 );
1637 if( p->nOp ){
1638 assert( p->aOp );
1639 sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment);
1640 p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap);
1643 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
1644 va_list ap;
1645 if( p ){
1646 va_start(ap, zFormat);
1647 vdbeVComment(p, zFormat, ap);
1648 va_end(ap);
1651 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
1652 va_list ap;
1653 if( p ){
1654 sqlite3VdbeAddOp0(p, OP_Noop);
1655 va_start(ap, zFormat);
1656 vdbeVComment(p, zFormat, ap);
1657 va_end(ap);
1660 #endif /* NDEBUG */
1662 #ifdef SQLITE_VDBE_COVERAGE
1664 ** Set the value if the iSrcLine field for the previously coded instruction.
1666 void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){
1667 sqlite3VdbeGetLastOp(v)->iSrcLine = iLine;
1669 #endif /* SQLITE_VDBE_COVERAGE */
1672 ** Return the opcode for a given address. The address must be non-negative.
1673 ** See sqlite3VdbeGetLastOp() to get the most recently added opcode.
1675 ** If a memory allocation error has occurred prior to the calling of this
1676 ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode
1677 ** is readable but not writable, though it is cast to a writable value.
1678 ** The return of a dummy opcode allows the call to continue functioning
1679 ** after an OOM fault without having to check to see if the return from
1680 ** this routine is a valid pointer. But because the dummy.opcode is 0,
1681 ** dummy will never be written to. This is verified by code inspection and
1682 ** by running with Valgrind.
1684 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
1685 /* C89 specifies that the constant "dummy" will be initialized to all
1686 ** zeros, which is correct. MSVC generates a warning, nevertheless. */
1687 static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */
1688 assert( p->eVdbeState==VDBE_INIT_STATE );
1689 assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
1690 if( p->db->mallocFailed ){
1691 return (VdbeOp*)&dummy;
1692 }else{
1693 return &p->aOp[addr];
1697 /* Return the most recently added opcode
1699 VdbeOp *sqlite3VdbeGetLastOp(Vdbe *p){
1700 return sqlite3VdbeGetOp(p, p->nOp - 1);
1703 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS)
1705 ** Return an integer value for one of the parameters to the opcode pOp
1706 ** determined by character c.
1708 static int translateP(char c, const Op *pOp){
1709 if( c=='1' ) return pOp->p1;
1710 if( c=='2' ) return pOp->p2;
1711 if( c=='3' ) return pOp->p3;
1712 if( c=='4' ) return pOp->p4.i;
1713 return pOp->p5;
1717 ** Compute a string for the "comment" field of a VDBE opcode listing.
1719 ** The Synopsis: field in comments in the vdbe.c source file gets converted
1720 ** to an extra string that is appended to the sqlite3OpcodeName(). In the
1721 ** absence of other comments, this synopsis becomes the comment on the opcode.
1722 ** Some translation occurs:
1724 ** "PX" -> "r[X]"
1725 ** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1
1726 ** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0
1727 ** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x
1729 char *sqlite3VdbeDisplayComment(
1730 sqlite3 *db, /* Optional - Oom error reporting only */
1731 const Op *pOp, /* The opcode to be commented */
1732 const char *zP4 /* Previously obtained value for P4 */
1734 const char *zOpName;
1735 const char *zSynopsis;
1736 int nOpName;
1737 int ii;
1738 char zAlt[50];
1739 StrAccum x;
1741 sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH);
1742 zOpName = sqlite3OpcodeName(pOp->opcode);
1743 nOpName = sqlite3Strlen30(zOpName);
1744 if( zOpName[nOpName+1] ){
1745 int seenCom = 0;
1746 char c;
1747 zSynopsis = zOpName + nOpName + 1;
1748 if( strncmp(zSynopsis,"IF ",3)==0 ){
1749 sqlite3_snprintf(sizeof(zAlt), zAlt, "if %s goto P2", zSynopsis+3);
1750 zSynopsis = zAlt;
1752 for(ii=0; (c = zSynopsis[ii])!=0; ii++){
1753 if( c=='P' ){
1754 c = zSynopsis[++ii];
1755 if( c=='4' ){
1756 sqlite3_str_appendall(&x, zP4);
1757 }else if( c=='X' ){
1758 if( pOp->zComment && pOp->zComment[0] ){
1759 sqlite3_str_appendall(&x, pOp->zComment);
1760 seenCom = 1;
1761 break;
1763 }else{
1764 int v1 = translateP(c, pOp);
1765 int v2;
1766 if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){
1767 ii += 3;
1768 v2 = translateP(zSynopsis[ii], pOp);
1769 if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){
1770 ii += 2;
1771 v2++;
1773 if( v2<2 ){
1774 sqlite3_str_appendf(&x, "%d", v1);
1775 }else{
1776 sqlite3_str_appendf(&x, "%d..%d", v1, v1+v2-1);
1778 }else if( strncmp(zSynopsis+ii+1, "@NP", 3)==0 ){
1779 sqlite3_context *pCtx = pOp->p4.pCtx;
1780 if( pOp->p4type!=P4_FUNCCTX || pCtx->argc==1 ){
1781 sqlite3_str_appendf(&x, "%d", v1);
1782 }else if( pCtx->argc>1 ){
1783 sqlite3_str_appendf(&x, "%d..%d", v1, v1+pCtx->argc-1);
1784 }else if( x.accError==0 ){
1785 assert( x.nChar>2 );
1786 x.nChar -= 2;
1787 ii++;
1789 ii += 3;
1790 }else{
1791 sqlite3_str_appendf(&x, "%d", v1);
1792 if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){
1793 ii += 4;
1797 }else{
1798 sqlite3_str_appendchar(&x, 1, c);
1801 if( !seenCom && pOp->zComment ){
1802 sqlite3_str_appendf(&x, "; %s", pOp->zComment);
1804 }else if( pOp->zComment ){
1805 sqlite3_str_appendall(&x, pOp->zComment);
1807 if( (x.accError & SQLITE_NOMEM)!=0 && db!=0 ){
1808 sqlite3OomFault(db);
1810 return sqlite3StrAccumFinish(&x);
1812 #endif /* SQLITE_ENABLE_EXPLAIN_COMMENTS */
1814 #if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS)
1816 ** Translate the P4.pExpr value for an OP_CursorHint opcode into text
1817 ** that can be displayed in the P4 column of EXPLAIN output.
1819 static void displayP4Expr(StrAccum *p, Expr *pExpr){
1820 const char *zOp = 0;
1821 switch( pExpr->op ){
1822 case TK_STRING:
1823 assert( !ExprHasProperty(pExpr, EP_IntValue) );
1824 sqlite3_str_appendf(p, "%Q", pExpr->u.zToken);
1825 break;
1826 case TK_INTEGER:
1827 sqlite3_str_appendf(p, "%d", pExpr->u.iValue);
1828 break;
1829 case TK_NULL:
1830 sqlite3_str_appendf(p, "NULL");
1831 break;
1832 case TK_REGISTER: {
1833 sqlite3_str_appendf(p, "r[%d]", pExpr->iTable);
1834 break;
1836 case TK_COLUMN: {
1837 if( pExpr->iColumn<0 ){
1838 sqlite3_str_appendf(p, "rowid");
1839 }else{
1840 sqlite3_str_appendf(p, "c%d", (int)pExpr->iColumn);
1842 break;
1844 case TK_LT: zOp = "LT"; break;
1845 case TK_LE: zOp = "LE"; break;
1846 case TK_GT: zOp = "GT"; break;
1847 case TK_GE: zOp = "GE"; break;
1848 case TK_NE: zOp = "NE"; break;
1849 case TK_EQ: zOp = "EQ"; break;
1850 case TK_IS: zOp = "IS"; break;
1851 case TK_ISNOT: zOp = "ISNOT"; break;
1852 case TK_AND: zOp = "AND"; break;
1853 case TK_OR: zOp = "OR"; break;
1854 case TK_PLUS: zOp = "ADD"; break;
1855 case TK_STAR: zOp = "MUL"; break;
1856 case TK_MINUS: zOp = "SUB"; break;
1857 case TK_REM: zOp = "REM"; break;
1858 case TK_BITAND: zOp = "BITAND"; break;
1859 case TK_BITOR: zOp = "BITOR"; break;
1860 case TK_SLASH: zOp = "DIV"; break;
1861 case TK_LSHIFT: zOp = "LSHIFT"; break;
1862 case TK_RSHIFT: zOp = "RSHIFT"; break;
1863 case TK_CONCAT: zOp = "CONCAT"; break;
1864 case TK_UMINUS: zOp = "MINUS"; break;
1865 case TK_UPLUS: zOp = "PLUS"; break;
1866 case TK_BITNOT: zOp = "BITNOT"; break;
1867 case TK_NOT: zOp = "NOT"; break;
1868 case TK_ISNULL: zOp = "ISNULL"; break;
1869 case TK_NOTNULL: zOp = "NOTNULL"; break;
1871 default:
1872 sqlite3_str_appendf(p, "%s", "expr");
1873 break;
1876 if( zOp ){
1877 sqlite3_str_appendf(p, "%s(", zOp);
1878 displayP4Expr(p, pExpr->pLeft);
1879 if( pExpr->pRight ){
1880 sqlite3_str_append(p, ",", 1);
1881 displayP4Expr(p, pExpr->pRight);
1883 sqlite3_str_append(p, ")", 1);
1886 #endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */
1889 #if VDBE_DISPLAY_P4
1891 ** Compute a string that describes the P4 parameter for an opcode.
1892 ** Use zTemp for any required temporary buffer space.
1894 char *sqlite3VdbeDisplayP4(sqlite3 *db, Op *pOp){
1895 char *zP4 = 0;
1896 StrAccum x;
1898 sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH);
1899 switch( pOp->p4type ){
1900 case P4_KEYINFO: {
1901 int j;
1902 KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
1903 assert( pKeyInfo->aSortFlags!=0 );
1904 sqlite3_str_appendf(&x, "k(%d", pKeyInfo->nKeyField);
1905 for(j=0; j<pKeyInfo->nKeyField; j++){
1906 CollSeq *pColl = pKeyInfo->aColl[j];
1907 const char *zColl = pColl ? pColl->zName : "";
1908 if( strcmp(zColl, "BINARY")==0 ) zColl = "B";
1909 sqlite3_str_appendf(&x, ",%s%s%s",
1910 (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_DESC) ? "-" : "",
1911 (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_BIGNULL)? "N." : "",
1912 zColl);
1914 sqlite3_str_append(&x, ")", 1);
1915 break;
1917 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1918 case P4_EXPR: {
1919 displayP4Expr(&x, pOp->p4.pExpr);
1920 break;
1922 #endif
1923 case P4_COLLSEQ: {
1924 static const char *const encnames[] = {"?", "8", "16LE", "16BE"};
1925 CollSeq *pColl = pOp->p4.pColl;
1926 assert( pColl->enc<4 );
1927 sqlite3_str_appendf(&x, "%.18s-%s", pColl->zName,
1928 encnames[pColl->enc]);
1929 break;
1931 case P4_FUNCDEF: {
1932 FuncDef *pDef = pOp->p4.pFunc;
1933 sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg);
1934 break;
1936 case P4_FUNCCTX: {
1937 FuncDef *pDef = pOp->p4.pCtx->pFunc;
1938 sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg);
1939 break;
1941 case P4_INT64: {
1942 sqlite3_str_appendf(&x, "%lld", *pOp->p4.pI64);
1943 break;
1945 case P4_INT32: {
1946 sqlite3_str_appendf(&x, "%d", pOp->p4.i);
1947 break;
1949 case P4_REAL: {
1950 sqlite3_str_appendf(&x, "%.16g", *pOp->p4.pReal);
1951 break;
1953 case P4_MEM: {
1954 Mem *pMem = pOp->p4.pMem;
1955 if( pMem->flags & MEM_Str ){
1956 zP4 = pMem->z;
1957 }else if( pMem->flags & (MEM_Int|MEM_IntReal) ){
1958 sqlite3_str_appendf(&x, "%lld", pMem->u.i);
1959 }else if( pMem->flags & MEM_Real ){
1960 sqlite3_str_appendf(&x, "%.16g", pMem->u.r);
1961 }else if( pMem->flags & MEM_Null ){
1962 zP4 = "NULL";
1963 }else{
1964 assert( pMem->flags & MEM_Blob );
1965 zP4 = "(blob)";
1967 break;
1969 #ifndef SQLITE_OMIT_VIRTUALTABLE
1970 case P4_VTAB: {
1971 sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab;
1972 sqlite3_str_appendf(&x, "vtab:%p", pVtab);
1973 break;
1975 #endif
1976 case P4_INTARRAY: {
1977 u32 i;
1978 u32 *ai = pOp->p4.ai;
1979 u32 n = ai[0]; /* The first element of an INTARRAY is always the
1980 ** count of the number of elements to follow */
1981 for(i=1; i<=n; i++){
1982 sqlite3_str_appendf(&x, "%c%u", (i==1 ? '[' : ','), ai[i]);
1984 sqlite3_str_append(&x, "]", 1);
1985 break;
1987 case P4_SUBPROGRAM: {
1988 zP4 = "program";
1989 break;
1991 case P4_TABLE: {
1992 zP4 = pOp->p4.pTab->zName;
1993 break;
1995 default: {
1996 zP4 = pOp->p4.z;
1999 if( zP4 ) sqlite3_str_appendall(&x, zP4);
2000 if( (x.accError & SQLITE_NOMEM)!=0 ){
2001 sqlite3OomFault(db);
2003 return sqlite3StrAccumFinish(&x);
2005 #endif /* VDBE_DISPLAY_P4 */
2008 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
2010 ** The prepared statements need to know in advance the complete set of
2011 ** attached databases that will be use. A mask of these databases
2012 ** is maintained in p->btreeMask. The p->lockMask value is the subset of
2013 ** p->btreeMask of databases that will require a lock.
2015 void sqlite3VdbeUsesBtree(Vdbe *p, int i){
2016 assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 );
2017 assert( i<(int)sizeof(p->btreeMask)*8 );
2018 DbMaskSet(p->btreeMask, i);
2019 if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){
2020 DbMaskSet(p->lockMask, i);
2024 #if !defined(SQLITE_OMIT_SHARED_CACHE)
2026 ** If SQLite is compiled to support shared-cache mode and to be threadsafe,
2027 ** this routine obtains the mutex associated with each BtShared structure
2028 ** that may be accessed by the VM passed as an argument. In doing so it also
2029 ** sets the BtShared.db member of each of the BtShared structures, ensuring
2030 ** that the correct busy-handler callback is invoked if required.
2032 ** If SQLite is not threadsafe but does support shared-cache mode, then
2033 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables
2034 ** of all of BtShared structures accessible via the database handle
2035 ** associated with the VM.
2037 ** If SQLite is not threadsafe and does not support shared-cache mode, this
2038 ** function is a no-op.
2040 ** The p->btreeMask field is a bitmask of all btrees that the prepared
2041 ** statement p will ever use. Let N be the number of bits in p->btreeMask
2042 ** corresponding to btrees that use shared cache. Then the runtime of
2043 ** this routine is N*N. But as N is rarely more than 1, this should not
2044 ** be a problem.
2046 void sqlite3VdbeEnter(Vdbe *p){
2047 int i;
2048 sqlite3 *db;
2049 Db *aDb;
2050 int nDb;
2051 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */
2052 db = p->db;
2053 aDb = db->aDb;
2054 nDb = db->nDb;
2055 for(i=0; i<nDb; i++){
2056 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
2057 sqlite3BtreeEnter(aDb[i].pBt);
2061 #endif
2063 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
2065 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter().
2067 static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){
2068 int i;
2069 sqlite3 *db;
2070 Db *aDb;
2071 int nDb;
2072 db = p->db;
2073 aDb = db->aDb;
2074 nDb = db->nDb;
2075 for(i=0; i<nDb; i++){
2076 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
2077 sqlite3BtreeLeave(aDb[i].pBt);
2081 void sqlite3VdbeLeave(Vdbe *p){
2082 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */
2083 vdbeLeave(p);
2085 #endif
2087 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
2089 ** Print a single opcode. This routine is used for debugging only.
2091 void sqlite3VdbePrintOp(FILE *pOut, int pc, VdbeOp *pOp){
2092 char *zP4;
2093 char *zCom;
2094 sqlite3 dummyDb;
2095 static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n";
2096 if( pOut==0 ) pOut = stdout;
2097 sqlite3BeginBenignMalloc();
2098 dummyDb.mallocFailed = 1;
2099 zP4 = sqlite3VdbeDisplayP4(&dummyDb, pOp);
2100 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
2101 zCom = sqlite3VdbeDisplayComment(0, pOp, zP4);
2102 #else
2103 zCom = 0;
2104 #endif
2105 /* NB: The sqlite3OpcodeName() function is implemented by code created
2106 ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the
2107 ** information from the vdbe.c source text */
2108 fprintf(pOut, zFormat1, pc,
2109 sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3,
2110 zP4 ? zP4 : "", pOp->p5,
2111 zCom ? zCom : ""
2113 fflush(pOut);
2114 sqlite3_free(zP4);
2115 sqlite3_free(zCom);
2116 sqlite3EndBenignMalloc();
2118 #endif
2121 ** Initialize an array of N Mem element.
2123 ** This is a high-runner, so only those fields that really do need to
2124 ** be initialized are set. The Mem structure is organized so that
2125 ** the fields that get initialized are nearby and hopefully on the same
2126 ** cache line.
2128 ** Mem.flags = flags
2129 ** Mem.db = db
2130 ** Mem.szMalloc = 0
2132 ** All other fields of Mem can safely remain uninitialized for now. They
2133 ** will be initialized before use.
2135 static void initMemArray(Mem *p, int N, sqlite3 *db, u16 flags){
2136 if( N>0 ){
2138 p->flags = flags;
2139 p->db = db;
2140 p->szMalloc = 0;
2141 #ifdef SQLITE_DEBUG
2142 p->pScopyFrom = 0;
2143 #endif
2144 p++;
2145 }while( (--N)>0 );
2150 ** Release auxiliary memory held in an array of N Mem elements.
2152 ** After this routine returns, all Mem elements in the array will still
2153 ** be valid. Those Mem elements that were not holding auxiliary resources
2154 ** will be unchanged. Mem elements which had something freed will be
2155 ** set to MEM_Undefined.
2157 static void releaseMemArray(Mem *p, int N){
2158 if( p && N ){
2159 Mem *pEnd = &p[N];
2160 sqlite3 *db = p->db;
2161 if( db->pnBytesFreed ){
2163 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
2164 }while( (++p)<pEnd );
2165 return;
2168 assert( (&p[1])==pEnd || p[0].db==p[1].db );
2169 assert( sqlite3VdbeCheckMemInvariants(p) );
2171 /* This block is really an inlined version of sqlite3VdbeMemRelease()
2172 ** that takes advantage of the fact that the memory cell value is
2173 ** being set to NULL after releasing any dynamic resources.
2175 ** The justification for duplicating code is that according to
2176 ** callgrind, this causes a certain test case to hit the CPU 4.7
2177 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if
2178 ** sqlite3MemRelease() were called from here. With -O2, this jumps
2179 ** to 6.6 percent. The test case is inserting 1000 rows into a table
2180 ** with no indexes using a single prepared INSERT statement, bind()
2181 ** and reset(). Inserts are grouped into a transaction.
2183 testcase( p->flags & MEM_Agg );
2184 testcase( p->flags & MEM_Dyn );
2185 if( p->flags&(MEM_Agg|MEM_Dyn) ){
2186 testcase( (p->flags & MEM_Dyn)!=0 && p->xDel==sqlite3VdbeFrameMemDel );
2187 sqlite3VdbeMemRelease(p);
2188 p->flags = MEM_Undefined;
2189 }else if( p->szMalloc ){
2190 sqlite3DbNNFreeNN(db, p->zMalloc);
2191 p->szMalloc = 0;
2192 p->flags = MEM_Undefined;
2194 #ifdef SQLITE_DEBUG
2195 else{
2196 p->flags = MEM_Undefined;
2198 #endif
2199 }while( (++p)<pEnd );
2203 #ifdef SQLITE_DEBUG
2205 ** Verify that pFrame is a valid VdbeFrame pointer. Return true if it is
2206 ** and false if something is wrong.
2208 ** This routine is intended for use inside of assert() statements only.
2210 int sqlite3VdbeFrameIsValid(VdbeFrame *pFrame){
2211 if( pFrame->iFrameMagic!=SQLITE_FRAME_MAGIC ) return 0;
2212 return 1;
2214 #endif
2218 ** This is a destructor on a Mem object (which is really an sqlite3_value)
2219 ** that deletes the Frame object that is attached to it as a blob.
2221 ** This routine does not delete the Frame right away. It merely adds the
2222 ** frame to a list of frames to be deleted when the Vdbe halts.
2224 void sqlite3VdbeFrameMemDel(void *pArg){
2225 VdbeFrame *pFrame = (VdbeFrame*)pArg;
2226 assert( sqlite3VdbeFrameIsValid(pFrame) );
2227 pFrame->pParent = pFrame->v->pDelFrame;
2228 pFrame->v->pDelFrame = pFrame;
2231 #if defined(SQLITE_ENABLE_BYTECODE_VTAB) || !defined(SQLITE_OMIT_EXPLAIN)
2233 ** Locate the next opcode to be displayed in EXPLAIN or EXPLAIN
2234 ** QUERY PLAN output.
2236 ** Return SQLITE_ROW on success. Return SQLITE_DONE if there are no
2237 ** more opcodes to be displayed.
2239 int sqlite3VdbeNextOpcode(
2240 Vdbe *p, /* The statement being explained */
2241 Mem *pSub, /* Storage for keeping track of subprogram nesting */
2242 int eMode, /* 0: normal. 1: EQP. 2: TablesUsed */
2243 int *piPc, /* IN/OUT: Current rowid. Overwritten with next rowid */
2244 int *piAddr, /* OUT: Write index into (*paOp)[] here */
2245 Op **paOp /* OUT: Write the opcode array here */
2247 int nRow; /* Stop when row count reaches this */
2248 int nSub = 0; /* Number of sub-vdbes seen so far */
2249 SubProgram **apSub = 0; /* Array of sub-vdbes */
2250 int i; /* Next instruction address */
2251 int rc = SQLITE_OK; /* Result code */
2252 Op *aOp = 0; /* Opcode array */
2253 int iPc; /* Rowid. Copy of value in *piPc */
2255 /* When the number of output rows reaches nRow, that means the
2256 ** listing has finished and sqlite3_step() should return SQLITE_DONE.
2257 ** nRow is the sum of the number of rows in the main program, plus
2258 ** the sum of the number of rows in all trigger subprograms encountered
2259 ** so far. The nRow value will increase as new trigger subprograms are
2260 ** encountered, but p->pc will eventually catch up to nRow.
2262 nRow = p->nOp;
2263 if( pSub!=0 ){
2264 if( pSub->flags&MEM_Blob ){
2265 /* pSub is initiallly NULL. It is initialized to a BLOB by
2266 ** the P4_SUBPROGRAM processing logic below */
2267 nSub = pSub->n/sizeof(Vdbe*);
2268 apSub = (SubProgram **)pSub->z;
2270 for(i=0; i<nSub; i++){
2271 nRow += apSub[i]->nOp;
2274 iPc = *piPc;
2275 while(1){ /* Loop exits via break */
2276 i = iPc++;
2277 if( i>=nRow ){
2278 p->rc = SQLITE_OK;
2279 rc = SQLITE_DONE;
2280 break;
2282 if( i<p->nOp ){
2283 /* The rowid is small enough that we are still in the
2284 ** main program. */
2285 aOp = p->aOp;
2286 }else{
2287 /* We are currently listing subprograms. Figure out which one and
2288 ** pick up the appropriate opcode. */
2289 int j;
2290 i -= p->nOp;
2291 assert( apSub!=0 );
2292 assert( nSub>0 );
2293 for(j=0; i>=apSub[j]->nOp; j++){
2294 i -= apSub[j]->nOp;
2295 assert( i<apSub[j]->nOp || j+1<nSub );
2297 aOp = apSub[j]->aOp;
2300 /* When an OP_Program opcode is encounter (the only opcode that has
2301 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms
2302 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram
2303 ** has not already been seen.
2305 if( pSub!=0 && aOp[i].p4type==P4_SUBPROGRAM ){
2306 int nByte = (nSub+1)*sizeof(SubProgram*);
2307 int j;
2308 for(j=0; j<nSub; j++){
2309 if( apSub[j]==aOp[i].p4.pProgram ) break;
2311 if( j==nSub ){
2312 p->rc = sqlite3VdbeMemGrow(pSub, nByte, nSub!=0);
2313 if( p->rc!=SQLITE_OK ){
2314 rc = SQLITE_ERROR;
2315 break;
2317 apSub = (SubProgram **)pSub->z;
2318 apSub[nSub++] = aOp[i].p4.pProgram;
2319 MemSetTypeFlag(pSub, MEM_Blob);
2320 pSub->n = nSub*sizeof(SubProgram*);
2321 nRow += aOp[i].p4.pProgram->nOp;
2324 if( eMode==0 ) break;
2325 #ifdef SQLITE_ENABLE_BYTECODE_VTAB
2326 if( eMode==2 ){
2327 Op *pOp = aOp + i;
2328 if( pOp->opcode==OP_OpenRead ) break;
2329 if( pOp->opcode==OP_OpenWrite && (pOp->p5 & OPFLAG_P2ISREG)==0 ) break;
2330 if( pOp->opcode==OP_ReopenIdx ) break;
2331 }else
2332 #endif
2334 assert( eMode==1 );
2335 if( aOp[i].opcode==OP_Explain ) break;
2336 if( aOp[i].opcode==OP_Init && iPc>1 ) break;
2339 *piPc = iPc;
2340 *piAddr = i;
2341 *paOp = aOp;
2342 return rc;
2344 #endif /* SQLITE_ENABLE_BYTECODE_VTAB || !SQLITE_OMIT_EXPLAIN */
2348 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are
2349 ** allocated by the OP_Program opcode in sqlite3VdbeExec().
2351 void sqlite3VdbeFrameDelete(VdbeFrame *p){
2352 int i;
2353 Mem *aMem = VdbeFrameMem(p);
2354 VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem];
2355 assert( sqlite3VdbeFrameIsValid(p) );
2356 for(i=0; i<p->nChildCsr; i++){
2357 if( apCsr[i] ) sqlite3VdbeFreeCursorNN(p->v, apCsr[i]);
2359 releaseMemArray(aMem, p->nChildMem);
2360 sqlite3VdbeDeleteAuxData(p->v->db, &p->pAuxData, -1, 0);
2361 sqlite3DbFree(p->v->db, p);
2364 #ifndef SQLITE_OMIT_EXPLAIN
2366 ** Give a listing of the program in the virtual machine.
2368 ** The interface is the same as sqlite3VdbeExec(). But instead of
2369 ** running the code, it invokes the callback once for each instruction.
2370 ** This feature is used to implement "EXPLAIN".
2372 ** When p->explain==1, each instruction is listed. When
2373 ** p->explain==2, only OP_Explain instructions are listed and these
2374 ** are shown in a different format. p->explain==2 is used to implement
2375 ** EXPLAIN QUERY PLAN.
2376 ** 2018-04-24: In p->explain==2 mode, the OP_Init opcodes of triggers
2377 ** are also shown, so that the boundaries between the main program and
2378 ** each trigger are clear.
2380 ** When p->explain==1, first the main program is listed, then each of
2381 ** the trigger subprograms are listed one by one.
2383 int sqlite3VdbeList(
2384 Vdbe *p /* The VDBE */
2386 Mem *pSub = 0; /* Memory cell hold array of subprogs */
2387 sqlite3 *db = p->db; /* The database connection */
2388 int i; /* Loop counter */
2389 int rc = SQLITE_OK; /* Return code */
2390 Mem *pMem = &p->aMem[1]; /* First Mem of result set */
2391 int bListSubprogs = (p->explain==1 || (db->flags & SQLITE_TriggerEQP)!=0);
2392 Op *aOp; /* Array of opcodes */
2393 Op *pOp; /* Current opcode */
2395 assert( p->explain );
2396 assert( p->eVdbeState==VDBE_RUN_STATE );
2397 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM );
2399 /* Even though this opcode does not use dynamic strings for
2400 ** the result, result columns may become dynamic if the user calls
2401 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
2403 releaseMemArray(pMem, 8);
2405 if( p->rc==SQLITE_NOMEM ){
2406 /* This happens if a malloc() inside a call to sqlite3_column_text() or
2407 ** sqlite3_column_text16() failed. */
2408 sqlite3OomFault(db);
2409 return SQLITE_ERROR;
2412 if( bListSubprogs ){
2413 /* The first 8 memory cells are used for the result set. So we will
2414 ** commandeer the 9th cell to use as storage for an array of pointers
2415 ** to trigger subprograms. The VDBE is guaranteed to have at least 9
2416 ** cells. */
2417 assert( p->nMem>9 );
2418 pSub = &p->aMem[9];
2419 }else{
2420 pSub = 0;
2423 /* Figure out which opcode is next to display */
2424 rc = sqlite3VdbeNextOpcode(p, pSub, p->explain==2, &p->pc, &i, &aOp);
2426 if( rc==SQLITE_OK ){
2427 pOp = aOp + i;
2428 if( AtomicLoad(&db->u1.isInterrupted) ){
2429 p->rc = SQLITE_INTERRUPT;
2430 rc = SQLITE_ERROR;
2431 sqlite3VdbeError(p, sqlite3ErrStr(p->rc));
2432 }else{
2433 char *zP4 = sqlite3VdbeDisplayP4(db, pOp);
2434 if( p->explain==2 ){
2435 sqlite3VdbeMemSetInt64(pMem, pOp->p1);
2436 sqlite3VdbeMemSetInt64(pMem+1, pOp->p2);
2437 sqlite3VdbeMemSetInt64(pMem+2, pOp->p3);
2438 sqlite3VdbeMemSetStr(pMem+3, zP4, -1, SQLITE_UTF8, sqlite3_free);
2439 assert( p->nResColumn==4 );
2440 }else{
2441 sqlite3VdbeMemSetInt64(pMem+0, i);
2442 sqlite3VdbeMemSetStr(pMem+1, (char*)sqlite3OpcodeName(pOp->opcode),
2443 -1, SQLITE_UTF8, SQLITE_STATIC);
2444 sqlite3VdbeMemSetInt64(pMem+2, pOp->p1);
2445 sqlite3VdbeMemSetInt64(pMem+3, pOp->p2);
2446 sqlite3VdbeMemSetInt64(pMem+4, pOp->p3);
2447 /* pMem+5 for p4 is done last */
2448 sqlite3VdbeMemSetInt64(pMem+6, pOp->p5);
2449 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
2451 char *zCom = sqlite3VdbeDisplayComment(db, pOp, zP4);
2452 sqlite3VdbeMemSetStr(pMem+7, zCom, -1, SQLITE_UTF8, sqlite3_free);
2454 #else
2455 sqlite3VdbeMemSetNull(pMem+7);
2456 #endif
2457 sqlite3VdbeMemSetStr(pMem+5, zP4, -1, SQLITE_UTF8, sqlite3_free);
2458 assert( p->nResColumn==8 );
2460 p->pResultRow = pMem;
2461 if( db->mallocFailed ){
2462 p->rc = SQLITE_NOMEM;
2463 rc = SQLITE_ERROR;
2464 }else{
2465 p->rc = SQLITE_OK;
2466 rc = SQLITE_ROW;
2470 return rc;
2472 #endif /* SQLITE_OMIT_EXPLAIN */
2474 #ifdef SQLITE_DEBUG
2476 ** Print the SQL that was used to generate a VDBE program.
2478 void sqlite3VdbePrintSql(Vdbe *p){
2479 const char *z = 0;
2480 if( p->zSql ){
2481 z = p->zSql;
2482 }else if( p->nOp>=1 ){
2483 const VdbeOp *pOp = &p->aOp[0];
2484 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
2485 z = pOp->p4.z;
2486 while( sqlite3Isspace(*z) ) z++;
2489 if( z ) printf("SQL: [%s]\n", z);
2491 #endif
2493 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
2495 ** Print an IOTRACE message showing SQL content.
2497 void sqlite3VdbeIOTraceSql(Vdbe *p){
2498 int nOp = p->nOp;
2499 VdbeOp *pOp;
2500 if( sqlite3IoTrace==0 ) return;
2501 if( nOp<1 ) return;
2502 pOp = &p->aOp[0];
2503 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
2504 int i, j;
2505 char z[1000];
2506 sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
2507 for(i=0; sqlite3Isspace(z[i]); i++){}
2508 for(j=0; z[i]; i++){
2509 if( sqlite3Isspace(z[i]) ){
2510 if( z[i-1]!=' ' ){
2511 z[j++] = ' ';
2513 }else{
2514 z[j++] = z[i];
2517 z[j] = 0;
2518 sqlite3IoTrace("SQL %s\n", z);
2521 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
2523 /* An instance of this object describes bulk memory available for use
2524 ** by subcomponents of a prepared statement. Space is allocated out
2525 ** of a ReusableSpace object by the allocSpace() routine below.
2527 struct ReusableSpace {
2528 u8 *pSpace; /* Available memory */
2529 sqlite3_int64 nFree; /* Bytes of available memory */
2530 sqlite3_int64 nNeeded; /* Total bytes that could not be allocated */
2533 /* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf
2534 ** from the ReusableSpace object. Return a pointer to the allocated
2535 ** memory on success. If insufficient memory is available in the
2536 ** ReusableSpace object, increase the ReusableSpace.nNeeded
2537 ** value by the amount needed and return NULL.
2539 ** If pBuf is not initially NULL, that means that the memory has already
2540 ** been allocated by a prior call to this routine, so just return a copy
2541 ** of pBuf and leave ReusableSpace unchanged.
2543 ** This allocator is employed to repurpose unused slots at the end of the
2544 ** opcode array of prepared state for other memory needs of the prepared
2545 ** statement.
2547 static void *allocSpace(
2548 struct ReusableSpace *p, /* Bulk memory available for allocation */
2549 void *pBuf, /* Pointer to a prior allocation */
2550 sqlite3_int64 nByte /* Bytes of memory needed. */
2552 assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) );
2553 if( pBuf==0 ){
2554 nByte = ROUND8P(nByte);
2555 if( nByte <= p->nFree ){
2556 p->nFree -= nByte;
2557 pBuf = &p->pSpace[p->nFree];
2558 }else{
2559 p->nNeeded += nByte;
2562 assert( EIGHT_BYTE_ALIGNMENT(pBuf) );
2563 return pBuf;
2567 ** Rewind the VDBE back to the beginning in preparation for
2568 ** running it.
2570 void sqlite3VdbeRewind(Vdbe *p){
2571 #if defined(SQLITE_DEBUG)
2572 int i;
2573 #endif
2574 assert( p!=0 );
2575 assert( p->eVdbeState==VDBE_INIT_STATE
2576 || p->eVdbeState==VDBE_READY_STATE
2577 || p->eVdbeState==VDBE_HALT_STATE );
2579 /* There should be at least one opcode.
2581 assert( p->nOp>0 );
2583 p->eVdbeState = VDBE_READY_STATE;
2585 #ifdef SQLITE_DEBUG
2586 for(i=0; i<p->nMem; i++){
2587 assert( p->aMem[i].db==p->db );
2589 #endif
2590 p->pc = -1;
2591 p->rc = SQLITE_OK;
2592 p->errorAction = OE_Abort;
2593 p->nChange = 0;
2594 p->cacheCtr = 1;
2595 p->minWriteFileFormat = 255;
2596 p->iStatement = 0;
2597 p->nFkConstraint = 0;
2598 #ifdef VDBE_PROFILE
2599 for(i=0; i<p->nOp; i++){
2600 p->aOp[i].nExec = 0;
2601 p->aOp[i].nCycle = 0;
2603 #endif
2607 ** Prepare a virtual machine for execution for the first time after
2608 ** creating the virtual machine. This involves things such
2609 ** as allocating registers and initializing the program counter.
2610 ** After the VDBE has be prepped, it can be executed by one or more
2611 ** calls to sqlite3VdbeExec().
2613 ** This function may be called exactly once on each virtual machine.
2614 ** After this routine is called the VM has been "packaged" and is ready
2615 ** to run. After this routine is called, further calls to
2616 ** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects
2617 ** the Vdbe from the Parse object that helped generate it so that the
2618 ** the Vdbe becomes an independent entity and the Parse object can be
2619 ** destroyed.
2621 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back
2622 ** to its initial state after it has been run.
2624 void sqlite3VdbeMakeReady(
2625 Vdbe *p, /* The VDBE */
2626 Parse *pParse /* Parsing context */
2628 sqlite3 *db; /* The database connection */
2629 int nVar; /* Number of parameters */
2630 int nMem; /* Number of VM memory registers */
2631 int nCursor; /* Number of cursors required */
2632 int nArg; /* Number of arguments in subprograms */
2633 int n; /* Loop counter */
2634 struct ReusableSpace x; /* Reusable bulk memory */
2636 assert( p!=0 );
2637 assert( p->nOp>0 );
2638 assert( pParse!=0 );
2639 assert( p->eVdbeState==VDBE_INIT_STATE );
2640 assert( pParse==p->pParse );
2641 p->pVList = pParse->pVList;
2642 pParse->pVList = 0;
2643 db = p->db;
2644 assert( db->mallocFailed==0 );
2645 nVar = pParse->nVar;
2646 nMem = pParse->nMem;
2647 nCursor = pParse->nTab;
2648 nArg = pParse->nMaxArg;
2650 /* Each cursor uses a memory cell. The first cursor (cursor 0) can
2651 ** use aMem[0] which is not otherwise used by the VDBE program. Allocate
2652 ** space at the end of aMem[] for cursors 1 and greater.
2653 ** See also: allocateCursor().
2655 nMem += nCursor;
2656 if( nCursor==0 && nMem>0 ) nMem++; /* Space for aMem[0] even if not used */
2658 /* Figure out how much reusable memory is available at the end of the
2659 ** opcode array. This extra memory will be reallocated for other elements
2660 ** of the prepared statement.
2662 n = ROUND8P(sizeof(Op)*p->nOp); /* Bytes of opcode memory used */
2663 x.pSpace = &((u8*)p->aOp)[n]; /* Unused opcode memory */
2664 assert( EIGHT_BYTE_ALIGNMENT(x.pSpace) );
2665 x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n); /* Bytes of unused memory */
2666 assert( x.nFree>=0 );
2667 assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) );
2669 resolveP2Values(p, &nArg);
2670 p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort);
2671 if( pParse->explain ){
2672 if( nMem<10 ) nMem = 10;
2673 p->explain = pParse->explain;
2674 p->nResColumn = 12 - 4*p->explain;
2676 p->expired = 0;
2678 /* Memory for registers, parameters, cursor, etc, is allocated in one or two
2679 ** passes. On the first pass, we try to reuse unused memory at the
2680 ** end of the opcode array. If we are unable to satisfy all memory
2681 ** requirements by reusing the opcode array tail, then the second
2682 ** pass will fill in the remainder using a fresh memory allocation.
2684 ** This two-pass approach that reuses as much memory as possible from
2685 ** the leftover memory at the end of the opcode array. This can significantly
2686 ** reduce the amount of memory held by a prepared statement.
2688 x.nNeeded = 0;
2689 p->aMem = allocSpace(&x, 0, nMem*sizeof(Mem));
2690 p->aVar = allocSpace(&x, 0, nVar*sizeof(Mem));
2691 p->apArg = allocSpace(&x, 0, nArg*sizeof(Mem*));
2692 p->apCsr = allocSpace(&x, 0, nCursor*sizeof(VdbeCursor*));
2693 if( x.nNeeded ){
2694 x.pSpace = p->pFree = sqlite3DbMallocRawNN(db, x.nNeeded);
2695 x.nFree = x.nNeeded;
2696 if( !db->mallocFailed ){
2697 p->aMem = allocSpace(&x, p->aMem, nMem*sizeof(Mem));
2698 p->aVar = allocSpace(&x, p->aVar, nVar*sizeof(Mem));
2699 p->apArg = allocSpace(&x, p->apArg, nArg*sizeof(Mem*));
2700 p->apCsr = allocSpace(&x, p->apCsr, nCursor*sizeof(VdbeCursor*));
2704 if( db->mallocFailed ){
2705 p->nVar = 0;
2706 p->nCursor = 0;
2707 p->nMem = 0;
2708 }else{
2709 p->nCursor = nCursor;
2710 p->nVar = (ynVar)nVar;
2711 initMemArray(p->aVar, nVar, db, MEM_Null);
2712 p->nMem = nMem;
2713 initMemArray(p->aMem, nMem, db, MEM_Undefined);
2714 memset(p->apCsr, 0, nCursor*sizeof(VdbeCursor*));
2716 sqlite3VdbeRewind(p);
2720 ** Close a VDBE cursor and release all the resources that cursor
2721 ** happens to hold.
2723 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
2724 if( pCx ) sqlite3VdbeFreeCursorNN(p,pCx);
2726 static SQLITE_NOINLINE void freeCursorWithCache(Vdbe *p, VdbeCursor *pCx){
2727 VdbeTxtBlbCache *pCache = pCx->pCache;
2728 assert( pCx->colCache );
2729 pCx->colCache = 0;
2730 pCx->pCache = 0;
2731 if( pCache->pCValue ){
2732 sqlite3RCStrUnref(pCache->pCValue);
2733 pCache->pCValue = 0;
2735 sqlite3DbFree(p->db, pCache);
2736 sqlite3VdbeFreeCursorNN(p, pCx);
2738 void sqlite3VdbeFreeCursorNN(Vdbe *p, VdbeCursor *pCx){
2739 if( pCx->colCache ){
2740 freeCursorWithCache(p, pCx);
2741 return;
2743 switch( pCx->eCurType ){
2744 case CURTYPE_SORTER: {
2745 sqlite3VdbeSorterClose(p->db, pCx);
2746 break;
2748 case CURTYPE_BTREE: {
2749 assert( pCx->uc.pCursor!=0 );
2750 sqlite3BtreeCloseCursor(pCx->uc.pCursor);
2751 break;
2753 #ifndef SQLITE_OMIT_VIRTUALTABLE
2754 case CURTYPE_VTAB: {
2755 sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur;
2756 const sqlite3_module *pModule = pVCur->pVtab->pModule;
2757 assert( pVCur->pVtab->nRef>0 );
2758 pVCur->pVtab->nRef--;
2759 pModule->xClose(pVCur);
2760 break;
2762 #endif
2767 ** Close all cursors in the current frame.
2769 static void closeCursorsInFrame(Vdbe *p){
2770 int i;
2771 for(i=0; i<p->nCursor; i++){
2772 VdbeCursor *pC = p->apCsr[i];
2773 if( pC ){
2774 sqlite3VdbeFreeCursorNN(p, pC);
2775 p->apCsr[i] = 0;
2781 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This
2782 ** is used, for example, when a trigger sub-program is halted to restore
2783 ** control to the main program.
2785 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){
2786 Vdbe *v = pFrame->v;
2787 closeCursorsInFrame(v);
2788 v->aOp = pFrame->aOp;
2789 v->nOp = pFrame->nOp;
2790 v->aMem = pFrame->aMem;
2791 v->nMem = pFrame->nMem;
2792 v->apCsr = pFrame->apCsr;
2793 v->nCursor = pFrame->nCursor;
2794 v->db->lastRowid = pFrame->lastRowid;
2795 v->nChange = pFrame->nChange;
2796 v->db->nChange = pFrame->nDbChange;
2797 sqlite3VdbeDeleteAuxData(v->db, &v->pAuxData, -1, 0);
2798 v->pAuxData = pFrame->pAuxData;
2799 pFrame->pAuxData = 0;
2800 return pFrame->pc;
2804 ** Close all cursors.
2806 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory
2807 ** cell array. This is necessary as the memory cell array may contain
2808 ** pointers to VdbeFrame objects, which may in turn contain pointers to
2809 ** open cursors.
2811 static void closeAllCursors(Vdbe *p){
2812 if( p->pFrame ){
2813 VdbeFrame *pFrame;
2814 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
2815 sqlite3VdbeFrameRestore(pFrame);
2816 p->pFrame = 0;
2817 p->nFrame = 0;
2819 assert( p->nFrame==0 );
2820 closeCursorsInFrame(p);
2821 releaseMemArray(p->aMem, p->nMem);
2822 while( p->pDelFrame ){
2823 VdbeFrame *pDel = p->pDelFrame;
2824 p->pDelFrame = pDel->pParent;
2825 sqlite3VdbeFrameDelete(pDel);
2828 /* Delete any auxdata allocations made by the VM */
2829 if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p->db, &p->pAuxData, -1, 0);
2830 assert( p->pAuxData==0 );
2834 ** Set the number of result columns that will be returned by this SQL
2835 ** statement. This is now set at compile time, rather than during
2836 ** execution of the vdbe program so that sqlite3_column_count() can
2837 ** be called on an SQL statement before sqlite3_step().
2839 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
2840 int n;
2841 sqlite3 *db = p->db;
2843 if( p->nResAlloc ){
2844 releaseMemArray(p->aColName, p->nResAlloc*COLNAME_N);
2845 sqlite3DbFree(db, p->aColName);
2847 n = nResColumn*COLNAME_N;
2848 p->nResColumn = p->nResAlloc = (u16)nResColumn;
2849 p->aColName = (Mem*)sqlite3DbMallocRawNN(db, sizeof(Mem)*n );
2850 if( p->aColName==0 ) return;
2851 initMemArray(p->aColName, n, db, MEM_Null);
2855 ** Set the name of the idx'th column to be returned by the SQL statement.
2856 ** zName must be a pointer to a nul terminated string.
2858 ** This call must be made after a call to sqlite3VdbeSetNumCols().
2860 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC
2861 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed
2862 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed.
2864 int sqlite3VdbeSetColName(
2865 Vdbe *p, /* Vdbe being configured */
2866 int idx, /* Index of column zName applies to */
2867 int var, /* One of the COLNAME_* constants */
2868 const char *zName, /* Pointer to buffer containing name */
2869 void (*xDel)(void*) /* Memory management strategy for zName */
2871 int rc;
2872 Mem *pColName;
2873 assert( idx<p->nResAlloc );
2874 assert( var<COLNAME_N );
2875 if( p->db->mallocFailed ){
2876 assert( !zName || xDel!=SQLITE_DYNAMIC );
2877 return SQLITE_NOMEM_BKPT;
2879 assert( p->aColName!=0 );
2880 pColName = &(p->aColName[idx+var*p->nResAlloc]);
2881 rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel);
2882 assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 );
2883 return rc;
2887 ** A read or write transaction may or may not be active on database handle
2888 ** db. If a transaction is active, commit it. If there is a
2889 ** write-transaction spanning more than one database file, this routine
2890 ** takes care of the super-journal trickery.
2892 static int vdbeCommit(sqlite3 *db, Vdbe *p){
2893 int i;
2894 int nTrans = 0; /* Number of databases with an active write-transaction
2895 ** that are candidates for a two-phase commit using a
2896 ** super-journal */
2897 int rc = SQLITE_OK;
2898 int needXcommit = 0;
2900 #ifdef SQLITE_OMIT_VIRTUALTABLE
2901 /* With this option, sqlite3VtabSync() is defined to be simply
2902 ** SQLITE_OK so p is not used.
2904 UNUSED_PARAMETER(p);
2905 #endif
2907 /* Before doing anything else, call the xSync() callback for any
2908 ** virtual module tables written in this transaction. This has to
2909 ** be done before determining whether a super-journal file is
2910 ** required, as an xSync() callback may add an attached database
2911 ** to the transaction.
2913 rc = sqlite3VtabSync(db, p);
2915 /* This loop determines (a) if the commit hook should be invoked and
2916 ** (b) how many database files have open write transactions, not
2917 ** including the temp database. (b) is important because if more than
2918 ** one database file has an open write transaction, a super-journal
2919 ** file is required for an atomic commit.
2921 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2922 Btree *pBt = db->aDb[i].pBt;
2923 if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){
2924 /* Whether or not a database might need a super-journal depends upon
2925 ** its journal mode (among other things). This matrix determines which
2926 ** journal modes use a super-journal and which do not */
2927 static const u8 aMJNeeded[] = {
2928 /* DELETE */ 1,
2929 /* PERSIST */ 1,
2930 /* OFF */ 0,
2931 /* TRUNCATE */ 1,
2932 /* MEMORY */ 0,
2933 /* WAL */ 0
2935 Pager *pPager; /* Pager associated with pBt */
2936 needXcommit = 1;
2937 sqlite3BtreeEnter(pBt);
2938 pPager = sqlite3BtreePager(pBt);
2939 if( db->aDb[i].safety_level!=PAGER_SYNCHRONOUS_OFF
2940 && aMJNeeded[sqlite3PagerGetJournalMode(pPager)]
2941 && sqlite3PagerIsMemdb(pPager)==0
2943 assert( i!=1 );
2944 nTrans++;
2946 rc = sqlite3PagerExclusiveLock(pPager);
2947 sqlite3BtreeLeave(pBt);
2950 if( rc!=SQLITE_OK ){
2951 return rc;
2954 /* If there are any write-transactions at all, invoke the commit hook */
2955 if( needXcommit && db->xCommitCallback ){
2956 rc = db->xCommitCallback(db->pCommitArg);
2957 if( rc ){
2958 return SQLITE_CONSTRAINT_COMMITHOOK;
2962 /* The simple case - no more than one database file (not counting the
2963 ** TEMP database) has a transaction active. There is no need for the
2964 ** super-journal.
2966 ** If the return value of sqlite3BtreeGetFilename() is a zero length
2967 ** string, it means the main database is :memory: or a temp file. In
2968 ** that case we do not support atomic multi-file commits, so use the
2969 ** simple case then too.
2971 if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt))
2972 || nTrans<=1
2974 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2975 Btree *pBt = db->aDb[i].pBt;
2976 if( pBt ){
2977 rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
2981 /* Do the commit only if all databases successfully complete phase 1.
2982 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
2983 ** IO error while deleting or truncating a journal file. It is unlikely,
2984 ** but could happen. In this case abandon processing and return the error.
2986 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2987 Btree *pBt = db->aDb[i].pBt;
2988 if( pBt ){
2989 rc = sqlite3BtreeCommitPhaseTwo(pBt, 0);
2992 if( rc==SQLITE_OK ){
2993 sqlite3VtabCommit(db);
2997 /* The complex case - There is a multi-file write-transaction active.
2998 ** This requires a super-journal file to ensure the transaction is
2999 ** committed atomically.
3001 #ifndef SQLITE_OMIT_DISKIO
3002 else{
3003 sqlite3_vfs *pVfs = db->pVfs;
3004 char *zSuper = 0; /* File-name for the super-journal */
3005 char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
3006 sqlite3_file *pSuperJrnl = 0;
3007 i64 offset = 0;
3008 int res;
3009 int retryCount = 0;
3010 int nMainFile;
3012 /* Select a super-journal file name */
3013 nMainFile = sqlite3Strlen30(zMainFile);
3014 zSuper = sqlite3MPrintf(db, "%.4c%s%.16c", 0,zMainFile,0);
3015 if( zSuper==0 ) return SQLITE_NOMEM_BKPT;
3016 zSuper += 4;
3017 do {
3018 u32 iRandom;
3019 if( retryCount ){
3020 if( retryCount>100 ){
3021 sqlite3_log(SQLITE_FULL, "MJ delete: %s", zSuper);
3022 sqlite3OsDelete(pVfs, zSuper, 0);
3023 break;
3024 }else if( retryCount==1 ){
3025 sqlite3_log(SQLITE_FULL, "MJ collide: %s", zSuper);
3028 retryCount++;
3029 sqlite3_randomness(sizeof(iRandom), &iRandom);
3030 sqlite3_snprintf(13, &zSuper[nMainFile], "-mj%06X9%02X",
3031 (iRandom>>8)&0xffffff, iRandom&0xff);
3032 /* The antipenultimate character of the super-journal name must
3033 ** be "9" to avoid name collisions when using 8+3 filenames. */
3034 assert( zSuper[sqlite3Strlen30(zSuper)-3]=='9' );
3035 sqlite3FileSuffix3(zMainFile, zSuper);
3036 rc = sqlite3OsAccess(pVfs, zSuper, SQLITE_ACCESS_EXISTS, &res);
3037 }while( rc==SQLITE_OK && res );
3038 if( rc==SQLITE_OK ){
3039 /* Open the super-journal. */
3040 rc = sqlite3OsOpenMalloc(pVfs, zSuper, &pSuperJrnl,
3041 SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
3042 SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_SUPER_JOURNAL, 0
3045 if( rc!=SQLITE_OK ){
3046 sqlite3DbFree(db, zSuper-4);
3047 return rc;
3050 /* Write the name of each database file in the transaction into the new
3051 ** super-journal file. If an error occurs at this point close
3052 ** and delete the super-journal file. All the individual journal files
3053 ** still have 'null' as the super-journal pointer, so they will roll
3054 ** back independently if a failure occurs.
3056 for(i=0; i<db->nDb; i++){
3057 Btree *pBt = db->aDb[i].pBt;
3058 if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){
3059 char const *zFile = sqlite3BtreeGetJournalname(pBt);
3060 if( zFile==0 ){
3061 continue; /* Ignore TEMP and :memory: databases */
3063 assert( zFile[0]!=0 );
3064 rc = sqlite3OsWrite(pSuperJrnl, zFile, sqlite3Strlen30(zFile)+1,offset);
3065 offset += sqlite3Strlen30(zFile)+1;
3066 if( rc!=SQLITE_OK ){
3067 sqlite3OsCloseFree(pSuperJrnl);
3068 sqlite3OsDelete(pVfs, zSuper, 0);
3069 sqlite3DbFree(db, zSuper-4);
3070 return rc;
3075 /* Sync the super-journal file. If the IOCAP_SEQUENTIAL device
3076 ** flag is set this is not required.
3078 if( 0==(sqlite3OsDeviceCharacteristics(pSuperJrnl)&SQLITE_IOCAP_SEQUENTIAL)
3079 && SQLITE_OK!=(rc = sqlite3OsSync(pSuperJrnl, SQLITE_SYNC_NORMAL))
3081 sqlite3OsCloseFree(pSuperJrnl);
3082 sqlite3OsDelete(pVfs, zSuper, 0);
3083 sqlite3DbFree(db, zSuper-4);
3084 return rc;
3087 /* Sync all the db files involved in the transaction. The same call
3088 ** sets the super-journal pointer in each individual journal. If
3089 ** an error occurs here, do not delete the super-journal file.
3091 ** If the error occurs during the first call to
3092 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
3093 ** super-journal file will be orphaned. But we cannot delete it,
3094 ** in case the super-journal file name was written into the journal
3095 ** file before the failure occurred.
3097 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
3098 Btree *pBt = db->aDb[i].pBt;
3099 if( pBt ){
3100 rc = sqlite3BtreeCommitPhaseOne(pBt, zSuper);
3103 sqlite3OsCloseFree(pSuperJrnl);
3104 assert( rc!=SQLITE_BUSY );
3105 if( rc!=SQLITE_OK ){
3106 sqlite3DbFree(db, zSuper-4);
3107 return rc;
3110 /* Delete the super-journal file. This commits the transaction. After
3111 ** doing this the directory is synced again before any individual
3112 ** transaction files are deleted.
3114 rc = sqlite3OsDelete(pVfs, zSuper, 1);
3115 sqlite3DbFree(db, zSuper-4);
3116 zSuper = 0;
3117 if( rc ){
3118 return rc;
3121 /* All files and directories have already been synced, so the following
3122 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
3123 ** deleting or truncating journals. If something goes wrong while
3124 ** this is happening we don't really care. The integrity of the
3125 ** transaction is already guaranteed, but some stray 'cold' journals
3126 ** may be lying around. Returning an error code won't help matters.
3128 disable_simulated_io_errors();
3129 sqlite3BeginBenignMalloc();
3130 for(i=0; i<db->nDb; i++){
3131 Btree *pBt = db->aDb[i].pBt;
3132 if( pBt ){
3133 sqlite3BtreeCommitPhaseTwo(pBt, 1);
3136 sqlite3EndBenignMalloc();
3137 enable_simulated_io_errors();
3139 sqlite3VtabCommit(db);
3141 #endif
3143 return rc;
3147 ** This routine checks that the sqlite3.nVdbeActive count variable
3148 ** matches the number of vdbe's in the list sqlite3.pVdbe that are
3149 ** currently active. An assertion fails if the two counts do not match.
3150 ** This is an internal self-check only - it is not an essential processing
3151 ** step.
3153 ** This is a no-op if NDEBUG is defined.
3155 #ifndef NDEBUG
3156 static void checkActiveVdbeCnt(sqlite3 *db){
3157 Vdbe *p;
3158 int cnt = 0;
3159 int nWrite = 0;
3160 int nRead = 0;
3161 p = db->pVdbe;
3162 while( p ){
3163 if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){
3164 cnt++;
3165 if( p->readOnly==0 ) nWrite++;
3166 if( p->bIsReader ) nRead++;
3168 p = p->pVNext;
3170 assert( cnt==db->nVdbeActive );
3171 assert( nWrite==db->nVdbeWrite );
3172 assert( nRead==db->nVdbeRead );
3174 #else
3175 #define checkActiveVdbeCnt(x)
3176 #endif
3179 ** If the Vdbe passed as the first argument opened a statement-transaction,
3180 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or
3181 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement
3182 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the
3183 ** statement transaction is committed.
3185 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned.
3186 ** Otherwise SQLITE_OK.
3188 static SQLITE_NOINLINE int vdbeCloseStatement(Vdbe *p, int eOp){
3189 sqlite3 *const db = p->db;
3190 int rc = SQLITE_OK;
3191 int i;
3192 const int iSavepoint = p->iStatement-1;
3194 assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE);
3195 assert( db->nStatement>0 );
3196 assert( p->iStatement==(db->nStatement+db->nSavepoint) );
3198 for(i=0; i<db->nDb; i++){
3199 int rc2 = SQLITE_OK;
3200 Btree *pBt = db->aDb[i].pBt;
3201 if( pBt ){
3202 if( eOp==SAVEPOINT_ROLLBACK ){
3203 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint);
3205 if( rc2==SQLITE_OK ){
3206 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint);
3208 if( rc==SQLITE_OK ){
3209 rc = rc2;
3213 db->nStatement--;
3214 p->iStatement = 0;
3216 if( rc==SQLITE_OK ){
3217 if( eOp==SAVEPOINT_ROLLBACK ){
3218 rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint);
3220 if( rc==SQLITE_OK ){
3221 rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint);
3225 /* If the statement transaction is being rolled back, also restore the
3226 ** database handles deferred constraint counter to the value it had when
3227 ** the statement transaction was opened. */
3228 if( eOp==SAVEPOINT_ROLLBACK ){
3229 db->nDeferredCons = p->nStmtDefCons;
3230 db->nDeferredImmCons = p->nStmtDefImmCons;
3232 return rc;
3234 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){
3235 if( p->db->nStatement && p->iStatement ){
3236 return vdbeCloseStatement(p, eOp);
3238 return SQLITE_OK;
3243 ** This function is called when a transaction opened by the database
3244 ** handle associated with the VM passed as an argument is about to be
3245 ** committed. If there are outstanding deferred foreign key constraint
3246 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
3248 ** If there are outstanding FK violations and this function returns
3249 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY
3250 ** and write an error message to it. Then return SQLITE_ERROR.
3252 #ifndef SQLITE_OMIT_FOREIGN_KEY
3253 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){
3254 sqlite3 *db = p->db;
3255 if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0)
3256 || (!deferred && p->nFkConstraint>0)
3258 p->rc = SQLITE_CONSTRAINT_FOREIGNKEY;
3259 p->errorAction = OE_Abort;
3260 sqlite3VdbeError(p, "FOREIGN KEY constraint failed");
3261 if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)==0 ) return SQLITE_ERROR;
3262 return SQLITE_CONSTRAINT_FOREIGNKEY;
3264 return SQLITE_OK;
3266 #endif
3269 ** This routine is called the when a VDBE tries to halt. If the VDBE
3270 ** has made changes and is in autocommit mode, then commit those
3271 ** changes. If a rollback is needed, then do the rollback.
3273 ** This routine is the only way to move the sqlite3eOpenState of a VM from
3274 ** SQLITE_STATE_RUN to SQLITE_STATE_HALT. It is harmless to
3275 ** call this on a VM that is in the SQLITE_STATE_HALT state.
3277 ** Return an error code. If the commit could not complete because of
3278 ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it
3279 ** means the close did not happen and needs to be repeated.
3281 int sqlite3VdbeHalt(Vdbe *p){
3282 int rc; /* Used to store transient return codes */
3283 sqlite3 *db = p->db;
3285 /* This function contains the logic that determines if a statement or
3286 ** transaction will be committed or rolled back as a result of the
3287 ** execution of this virtual machine.
3289 ** If any of the following errors occur:
3291 ** SQLITE_NOMEM
3292 ** SQLITE_IOERR
3293 ** SQLITE_FULL
3294 ** SQLITE_INTERRUPT
3296 ** Then the internal cache might have been left in an inconsistent
3297 ** state. We need to rollback the statement transaction, if there is
3298 ** one, or the complete transaction if there is no statement transaction.
3301 assert( p->eVdbeState==VDBE_RUN_STATE );
3302 if( db->mallocFailed ){
3303 p->rc = SQLITE_NOMEM_BKPT;
3305 closeAllCursors(p);
3306 checkActiveVdbeCnt(db);
3308 /* No commit or rollback needed if the program never started or if the
3309 ** SQL statement does not read or write a database file. */
3310 if( p->bIsReader ){
3311 int mrc; /* Primary error code from p->rc */
3312 int eStatementOp = 0;
3313 int isSpecialError; /* Set to true if a 'special' error */
3315 /* Lock all btrees used by the statement */
3316 sqlite3VdbeEnter(p);
3318 /* Check for one of the special errors */
3319 if( p->rc ){
3320 mrc = p->rc & 0xff;
3321 isSpecialError = mrc==SQLITE_NOMEM
3322 || mrc==SQLITE_IOERR
3323 || mrc==SQLITE_INTERRUPT
3324 || mrc==SQLITE_FULL;
3325 }else{
3326 mrc = isSpecialError = 0;
3328 if( isSpecialError ){
3329 /* If the query was read-only and the error code is SQLITE_INTERRUPT,
3330 ** no rollback is necessary. Otherwise, at least a savepoint
3331 ** transaction must be rolled back to restore the database to a
3332 ** consistent state.
3334 ** Even if the statement is read-only, it is important to perform
3335 ** a statement or transaction rollback operation. If the error
3336 ** occurred while writing to the journal, sub-journal or database
3337 ** file as part of an effort to free up cache space (see function
3338 ** pagerStress() in pager.c), the rollback is required to restore
3339 ** the pager to a consistent state.
3341 if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){
3342 if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){
3343 eStatementOp = SAVEPOINT_ROLLBACK;
3344 }else{
3345 /* We are forced to roll back the active transaction. Before doing
3346 ** so, abort any other statements this handle currently has active.
3348 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3349 sqlite3CloseSavepoints(db);
3350 db->autoCommit = 1;
3351 p->nChange = 0;
3356 /* Check for immediate foreign key violations. */
3357 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
3358 (void)sqlite3VdbeCheckFk(p, 0);
3361 /* If the auto-commit flag is set and this is the only active writer
3362 ** VM, then we do either a commit or rollback of the current transaction.
3364 ** Note: This block also runs if one of the special errors handled
3365 ** above has occurred.
3367 if( !sqlite3VtabInSync(db)
3368 && db->autoCommit
3369 && db->nVdbeWrite==(p->readOnly==0)
3371 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
3372 rc = sqlite3VdbeCheckFk(p, 1);
3373 if( rc!=SQLITE_OK ){
3374 if( NEVER(p->readOnly) ){
3375 sqlite3VdbeLeave(p);
3376 return SQLITE_ERROR;
3378 rc = SQLITE_CONSTRAINT_FOREIGNKEY;
3379 }else if( db->flags & SQLITE_CorruptRdOnly ){
3380 rc = SQLITE_CORRUPT;
3381 db->flags &= ~SQLITE_CorruptRdOnly;
3382 }else{
3383 /* The auto-commit flag is true, the vdbe program was successful
3384 ** or hit an 'OR FAIL' constraint and there are no deferred foreign
3385 ** key constraints to hold up the transaction. This means a commit
3386 ** is required. */
3387 rc = vdbeCommit(db, p);
3389 if( rc==SQLITE_BUSY && p->readOnly ){
3390 sqlite3VdbeLeave(p);
3391 return SQLITE_BUSY;
3392 }else if( rc!=SQLITE_OK ){
3393 sqlite3SystemError(db, rc);
3394 p->rc = rc;
3395 sqlite3RollbackAll(db, SQLITE_OK);
3396 p->nChange = 0;
3397 }else{
3398 db->nDeferredCons = 0;
3399 db->nDeferredImmCons = 0;
3400 db->flags &= ~(u64)SQLITE_DeferFKs;
3401 sqlite3CommitInternalChanges(db);
3403 }else if( p->rc==SQLITE_SCHEMA && db->nVdbeActive>1 ){
3404 p->nChange = 0;
3405 }else{
3406 sqlite3RollbackAll(db, SQLITE_OK);
3407 p->nChange = 0;
3409 db->nStatement = 0;
3410 }else if( eStatementOp==0 ){
3411 if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
3412 eStatementOp = SAVEPOINT_RELEASE;
3413 }else if( p->errorAction==OE_Abort ){
3414 eStatementOp = SAVEPOINT_ROLLBACK;
3415 }else{
3416 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3417 sqlite3CloseSavepoints(db);
3418 db->autoCommit = 1;
3419 p->nChange = 0;
3423 /* If eStatementOp is non-zero, then a statement transaction needs to
3424 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to
3425 ** do so. If this operation returns an error, and the current statement
3426 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the
3427 ** current statement error code.
3429 if( eStatementOp ){
3430 rc = sqlite3VdbeCloseStatement(p, eStatementOp);
3431 if( rc ){
3432 if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){
3433 p->rc = rc;
3434 sqlite3DbFree(db, p->zErrMsg);
3435 p->zErrMsg = 0;
3437 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3438 sqlite3CloseSavepoints(db);
3439 db->autoCommit = 1;
3440 p->nChange = 0;
3444 /* If this was an INSERT, UPDATE or DELETE and no statement transaction
3445 ** has been rolled back, update the database connection change-counter.
3447 if( p->changeCntOn ){
3448 if( eStatementOp!=SAVEPOINT_ROLLBACK ){
3449 sqlite3VdbeSetChanges(db, p->nChange);
3450 }else{
3451 sqlite3VdbeSetChanges(db, 0);
3453 p->nChange = 0;
3456 /* Release the locks */
3457 sqlite3VdbeLeave(p);
3460 /* We have successfully halted and closed the VM. Record this fact. */
3461 db->nVdbeActive--;
3462 if( !p->readOnly ) db->nVdbeWrite--;
3463 if( p->bIsReader ) db->nVdbeRead--;
3464 assert( db->nVdbeActive>=db->nVdbeRead );
3465 assert( db->nVdbeRead>=db->nVdbeWrite );
3466 assert( db->nVdbeWrite>=0 );
3467 p->eVdbeState = VDBE_HALT_STATE;
3468 checkActiveVdbeCnt(db);
3469 if( db->mallocFailed ){
3470 p->rc = SQLITE_NOMEM_BKPT;
3473 /* If the auto-commit flag is set to true, then any locks that were held
3474 ** by connection db have now been released. Call sqlite3ConnectionUnlocked()
3475 ** to invoke any required unlock-notify callbacks.
3477 if( db->autoCommit ){
3478 sqlite3ConnectionUnlocked(db);
3481 assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 );
3482 return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK);
3487 ** Each VDBE holds the result of the most recent sqlite3_step() call
3488 ** in p->rc. This routine sets that result back to SQLITE_OK.
3490 void sqlite3VdbeResetStepResult(Vdbe *p){
3491 p->rc = SQLITE_OK;
3495 ** Copy the error code and error message belonging to the VDBE passed
3496 ** as the first argument to its database handle (so that they will be
3497 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()).
3499 ** This function does not clear the VDBE error code or message, just
3500 ** copies them to the database handle.
3502 int sqlite3VdbeTransferError(Vdbe *p){
3503 sqlite3 *db = p->db;
3504 int rc = p->rc;
3505 if( p->zErrMsg ){
3506 db->bBenignMalloc++;
3507 sqlite3BeginBenignMalloc();
3508 if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db);
3509 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
3510 sqlite3EndBenignMalloc();
3511 db->bBenignMalloc--;
3512 }else if( db->pErr ){
3513 sqlite3ValueSetNull(db->pErr);
3515 db->errCode = rc;
3516 db->errByteOffset = -1;
3517 return rc;
3520 #ifdef SQLITE_ENABLE_SQLLOG
3522 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run,
3523 ** invoke it.
3525 static void vdbeInvokeSqllog(Vdbe *v){
3526 if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){
3527 char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql);
3528 assert( v->db->init.busy==0 );
3529 if( zExpanded ){
3530 sqlite3GlobalConfig.xSqllog(
3531 sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1
3533 sqlite3DbFree(v->db, zExpanded);
3537 #else
3538 # define vdbeInvokeSqllog(x)
3539 #endif
3542 ** Clean up a VDBE after execution but do not delete the VDBE just yet.
3543 ** Write any error messages into *pzErrMsg. Return the result code.
3545 ** After this routine is run, the VDBE should be ready to be executed
3546 ** again.
3548 ** To look at it another way, this routine resets the state of the
3549 ** virtual machine from VDBE_RUN_STATE or VDBE_HALT_STATE back to
3550 ** VDBE_READY_STATE.
3552 int sqlite3VdbeReset(Vdbe *p){
3553 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
3554 int i;
3555 #endif
3557 sqlite3 *db;
3558 db = p->db;
3560 /* If the VM did not run to completion or if it encountered an
3561 ** error, then it might not have been halted properly. So halt
3562 ** it now.
3564 if( p->eVdbeState==VDBE_RUN_STATE ) sqlite3VdbeHalt(p);
3566 /* If the VDBE has been run even partially, then transfer the error code
3567 ** and error message from the VDBE into the main database structure. But
3568 ** if the VDBE has just been set to run but has not actually executed any
3569 ** instructions yet, leave the main database error information unchanged.
3571 if( p->pc>=0 ){
3572 vdbeInvokeSqllog(p);
3573 if( db->pErr || p->zErrMsg ){
3574 sqlite3VdbeTransferError(p);
3575 }else{
3576 db->errCode = p->rc;
3580 /* Reset register contents and reclaim error message memory.
3582 #ifdef SQLITE_DEBUG
3583 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and
3584 ** Vdbe.aMem[] arrays have already been cleaned up. */
3585 if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 );
3586 if( p->aMem ){
3587 for(i=0; i<p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined );
3589 #endif
3590 if( p->zErrMsg ){
3591 sqlite3DbFree(db, p->zErrMsg);
3592 p->zErrMsg = 0;
3594 p->pResultRow = 0;
3595 #ifdef SQLITE_DEBUG
3596 p->nWrite = 0;
3597 #endif
3599 /* Save profiling information from this VDBE run.
3601 #ifdef VDBE_PROFILE
3603 FILE *out = fopen("vdbe_profile.out", "a");
3604 if( out ){
3605 fprintf(out, "---- ");
3606 for(i=0; i<p->nOp; i++){
3607 fprintf(out, "%02x", p->aOp[i].opcode);
3609 fprintf(out, "\n");
3610 if( p->zSql ){
3611 char c, pc = 0;
3612 fprintf(out, "-- ");
3613 for(i=0; (c = p->zSql[i])!=0; i++){
3614 if( pc=='\n' ) fprintf(out, "-- ");
3615 putc(c, out);
3616 pc = c;
3618 if( pc!='\n' ) fprintf(out, "\n");
3620 for(i=0; i<p->nOp; i++){
3621 char zHdr[100];
3622 i64 cnt = p->aOp[i].nExec;
3623 i64 cycles = p->aOp[i].nCycle;
3624 sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ",
3625 cnt,
3626 cycles,
3627 cnt>0 ? cycles/cnt : 0
3629 fprintf(out, "%s", zHdr);
3630 sqlite3VdbePrintOp(out, i, &p->aOp[i]);
3632 fclose(out);
3635 #endif
3636 return p->rc & db->errMask;
3640 ** Clean up and delete a VDBE after execution. Return an integer which is
3641 ** the result code. Write any error message text into *pzErrMsg.
3643 int sqlite3VdbeFinalize(Vdbe *p){
3644 int rc = SQLITE_OK;
3645 assert( VDBE_RUN_STATE>VDBE_READY_STATE );
3646 assert( VDBE_HALT_STATE>VDBE_READY_STATE );
3647 assert( VDBE_INIT_STATE<VDBE_READY_STATE );
3648 if( p->eVdbeState>=VDBE_READY_STATE ){
3649 rc = sqlite3VdbeReset(p);
3650 assert( (rc & p->db->errMask)==rc );
3652 sqlite3VdbeDelete(p);
3653 return rc;
3657 ** If parameter iOp is less than zero, then invoke the destructor for
3658 ** all auxiliary data pointers currently cached by the VM passed as
3659 ** the first argument.
3661 ** Or, if iOp is greater than or equal to zero, then the destructor is
3662 ** only invoked for those auxiliary data pointers created by the user
3663 ** function invoked by the OP_Function opcode at instruction iOp of
3664 ** VM pVdbe, and only then if:
3666 ** * the associated function parameter is the 32nd or later (counting
3667 ** from left to right), or
3669 ** * the corresponding bit in argument mask is clear (where the first
3670 ** function parameter corresponds to bit 0 etc.).
3672 void sqlite3VdbeDeleteAuxData(sqlite3 *db, AuxData **pp, int iOp, int mask){
3673 while( *pp ){
3674 AuxData *pAux = *pp;
3675 if( (iOp<0)
3676 || (pAux->iAuxOp==iOp
3677 && pAux->iAuxArg>=0
3678 && (pAux->iAuxArg>31 || !(mask & MASKBIT32(pAux->iAuxArg))))
3680 testcase( pAux->iAuxArg==31 );
3681 if( pAux->xDeleteAux ){
3682 pAux->xDeleteAux(pAux->pAux);
3684 *pp = pAux->pNextAux;
3685 sqlite3DbFree(db, pAux);
3686 }else{
3687 pp= &pAux->pNextAux;
3693 ** Free all memory associated with the Vdbe passed as the second argument,
3694 ** except for object itself, which is preserved.
3696 ** The difference between this function and sqlite3VdbeDelete() is that
3697 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with
3698 ** the database connection and frees the object itself.
3700 static void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){
3701 SubProgram *pSub, *pNext;
3702 assert( db!=0 );
3703 assert( p->db==0 || p->db==db );
3704 if( p->aColName ){
3705 releaseMemArray(p->aColName, p->nResAlloc*COLNAME_N);
3706 sqlite3DbNNFreeNN(db, p->aColName);
3708 for(pSub=p->pProgram; pSub; pSub=pNext){
3709 pNext = pSub->pNext;
3710 vdbeFreeOpArray(db, pSub->aOp, pSub->nOp);
3711 sqlite3DbFree(db, pSub);
3713 if( p->eVdbeState!=VDBE_INIT_STATE ){
3714 releaseMemArray(p->aVar, p->nVar);
3715 if( p->pVList ) sqlite3DbNNFreeNN(db, p->pVList);
3716 if( p->pFree ) sqlite3DbNNFreeNN(db, p->pFree);
3718 vdbeFreeOpArray(db, p->aOp, p->nOp);
3719 if( p->zSql ) sqlite3DbNNFreeNN(db, p->zSql);
3720 #ifdef SQLITE_ENABLE_NORMALIZE
3721 sqlite3DbFree(db, p->zNormSql);
3723 DblquoteStr *pThis, *pNxt;
3724 for(pThis=p->pDblStr; pThis; pThis=pNxt){
3725 pNxt = pThis->pNextStr;
3726 sqlite3DbFree(db, pThis);
3729 #endif
3730 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
3732 int i;
3733 for(i=0; i<p->nScan; i++){
3734 sqlite3DbFree(db, p->aScan[i].zName);
3736 sqlite3DbFree(db, p->aScan);
3738 #endif
3742 ** Delete an entire VDBE.
3744 void sqlite3VdbeDelete(Vdbe *p){
3745 sqlite3 *db;
3747 assert( p!=0 );
3748 db = p->db;
3749 assert( db!=0 );
3750 assert( sqlite3_mutex_held(db->mutex) );
3751 sqlite3VdbeClearObject(db, p);
3752 if( db->pnBytesFreed==0 ){
3753 assert( p->ppVPrev!=0 );
3754 *p->ppVPrev = p->pVNext;
3755 if( p->pVNext ){
3756 p->pVNext->ppVPrev = p->ppVPrev;
3759 sqlite3DbNNFreeNN(db, p);
3763 ** The cursor "p" has a pending seek operation that has not yet been
3764 ** carried out. Seek the cursor now. If an error occurs, return
3765 ** the appropriate error code.
3767 int SQLITE_NOINLINE sqlite3VdbeFinishMoveto(VdbeCursor *p){
3768 int res, rc;
3769 #ifdef SQLITE_TEST
3770 extern int sqlite3_search_count;
3771 #endif
3772 assert( p->deferredMoveto );
3773 assert( p->isTable );
3774 assert( p->eCurType==CURTYPE_BTREE );
3775 rc = sqlite3BtreeTableMoveto(p->uc.pCursor, p->movetoTarget, 0, &res);
3776 if( rc ) return rc;
3777 if( res!=0 ) return SQLITE_CORRUPT_BKPT;
3778 #ifdef SQLITE_TEST
3779 sqlite3_search_count++;
3780 #endif
3781 p->deferredMoveto = 0;
3782 p->cacheStatus = CACHE_STALE;
3783 return SQLITE_OK;
3787 ** Something has moved cursor "p" out of place. Maybe the row it was
3788 ** pointed to was deleted out from under it. Or maybe the btree was
3789 ** rebalanced. Whatever the cause, try to restore "p" to the place it
3790 ** is supposed to be pointing. If the row was deleted out from under the
3791 ** cursor, set the cursor to point to a NULL row.
3793 int SQLITE_NOINLINE sqlite3VdbeHandleMovedCursor(VdbeCursor *p){
3794 int isDifferentRow, rc;
3795 assert( p->eCurType==CURTYPE_BTREE );
3796 assert( p->uc.pCursor!=0 );
3797 assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) );
3798 rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow);
3799 p->cacheStatus = CACHE_STALE;
3800 if( isDifferentRow ) p->nullRow = 1;
3801 return rc;
3805 ** Check to ensure that the cursor is valid. Restore the cursor
3806 ** if need be. Return any I/O error from the restore operation.
3808 int sqlite3VdbeCursorRestore(VdbeCursor *p){
3809 assert( p->eCurType==CURTYPE_BTREE || IsNullCursor(p) );
3810 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){
3811 return sqlite3VdbeHandleMovedCursor(p);
3813 return SQLITE_OK;
3817 ** The following functions:
3819 ** sqlite3VdbeSerialType()
3820 ** sqlite3VdbeSerialTypeLen()
3821 ** sqlite3VdbeSerialLen()
3822 ** sqlite3VdbeSerialPut() <--- in-lined into OP_MakeRecord as of 2022-04-02
3823 ** sqlite3VdbeSerialGet()
3825 ** encapsulate the code that serializes values for storage in SQLite
3826 ** data and index records. Each serialized value consists of a
3827 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
3828 ** integer, stored as a varint.
3830 ** In an SQLite index record, the serial type is stored directly before
3831 ** the blob of data that it corresponds to. In a table record, all serial
3832 ** types are stored at the start of the record, and the blobs of data at
3833 ** the end. Hence these functions allow the caller to handle the
3834 ** serial-type and data blob separately.
3836 ** The following table describes the various storage classes for data:
3838 ** serial type bytes of data type
3839 ** -------------- --------------- ---------------
3840 ** 0 0 NULL
3841 ** 1 1 signed integer
3842 ** 2 2 signed integer
3843 ** 3 3 signed integer
3844 ** 4 4 signed integer
3845 ** 5 6 signed integer
3846 ** 6 8 signed integer
3847 ** 7 8 IEEE float
3848 ** 8 0 Integer constant 0
3849 ** 9 0 Integer constant 1
3850 ** 10,11 reserved for expansion
3851 ** N>=12 and even (N-12)/2 BLOB
3852 ** N>=13 and odd (N-13)/2 text
3854 ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions
3855 ** of SQLite will not understand those serial types.
3858 #if 0 /* Inlined into the OP_MakeRecord opcode */
3860 ** Return the serial-type for the value stored in pMem.
3862 ** This routine might convert a large MEM_IntReal value into MEM_Real.
3864 ** 2019-07-11: The primary user of this subroutine was the OP_MakeRecord
3865 ** opcode in the byte-code engine. But by moving this routine in-line, we
3866 ** can omit some redundant tests and make that opcode a lot faster. So
3867 ** this routine is now only used by the STAT3 logic and STAT3 support has
3868 ** ended. The code is kept here for historical reference only.
3870 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){
3871 int flags = pMem->flags;
3872 u32 n;
3874 assert( pLen!=0 );
3875 if( flags&MEM_Null ){
3876 *pLen = 0;
3877 return 0;
3879 if( flags&(MEM_Int|MEM_IntReal) ){
3880 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
3881 # define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
3882 i64 i = pMem->u.i;
3883 u64 u;
3884 testcase( flags & MEM_Int );
3885 testcase( flags & MEM_IntReal );
3886 if( i<0 ){
3887 u = ~i;
3888 }else{
3889 u = i;
3891 if( u<=127 ){
3892 if( (i&1)==i && file_format>=4 ){
3893 *pLen = 0;
3894 return 8+(u32)u;
3895 }else{
3896 *pLen = 1;
3897 return 1;
3900 if( u<=32767 ){ *pLen = 2; return 2; }
3901 if( u<=8388607 ){ *pLen = 3; return 3; }
3902 if( u<=2147483647 ){ *pLen = 4; return 4; }
3903 if( u<=MAX_6BYTE ){ *pLen = 6; return 5; }
3904 *pLen = 8;
3905 if( flags&MEM_IntReal ){
3906 /* If the value is IntReal and is going to take up 8 bytes to store
3907 ** as an integer, then we might as well make it an 8-byte floating
3908 ** point value */
3909 pMem->u.r = (double)pMem->u.i;
3910 pMem->flags &= ~MEM_IntReal;
3911 pMem->flags |= MEM_Real;
3912 return 7;
3914 return 6;
3916 if( flags&MEM_Real ){
3917 *pLen = 8;
3918 return 7;
3920 assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) );
3921 assert( pMem->n>=0 );
3922 n = (u32)pMem->n;
3923 if( flags & MEM_Zero ){
3924 n += pMem->u.nZero;
3926 *pLen = n;
3927 return ((n*2) + 12 + ((flags&MEM_Str)!=0));
3929 #endif /* inlined into OP_MakeRecord */
3932 ** The sizes for serial types less than 128
3934 const u8 sqlite3SmallTypeSizes[128] = {
3935 /* 0 1 2 3 4 5 6 7 8 9 */
3936 /* 0 */ 0, 1, 2, 3, 4, 6, 8, 8, 0, 0,
3937 /* 10 */ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3,
3938 /* 20 */ 4, 4, 5, 5, 6, 6, 7, 7, 8, 8,
3939 /* 30 */ 9, 9, 10, 10, 11, 11, 12, 12, 13, 13,
3940 /* 40 */ 14, 14, 15, 15, 16, 16, 17, 17, 18, 18,
3941 /* 50 */ 19, 19, 20, 20, 21, 21, 22, 22, 23, 23,
3942 /* 60 */ 24, 24, 25, 25, 26, 26, 27, 27, 28, 28,
3943 /* 70 */ 29, 29, 30, 30, 31, 31, 32, 32, 33, 33,
3944 /* 80 */ 34, 34, 35, 35, 36, 36, 37, 37, 38, 38,
3945 /* 90 */ 39, 39, 40, 40, 41, 41, 42, 42, 43, 43,
3946 /* 100 */ 44, 44, 45, 45, 46, 46, 47, 47, 48, 48,
3947 /* 110 */ 49, 49, 50, 50, 51, 51, 52, 52, 53, 53,
3948 /* 120 */ 54, 54, 55, 55, 56, 56, 57, 57
3952 ** Return the length of the data corresponding to the supplied serial-type.
3954 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){
3955 if( serial_type>=128 ){
3956 return (serial_type-12)/2;
3957 }else{
3958 assert( serial_type<12
3959 || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 );
3960 return sqlite3SmallTypeSizes[serial_type];
3963 u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){
3964 assert( serial_type<128 );
3965 return sqlite3SmallTypeSizes[serial_type];
3969 ** If we are on an architecture with mixed-endian floating
3970 ** points (ex: ARM7) then swap the lower 4 bytes with the
3971 ** upper 4 bytes. Return the result.
3973 ** For most architectures, this is a no-op.
3975 ** (later): It is reported to me that the mixed-endian problem
3976 ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems
3977 ** that early versions of GCC stored the two words of a 64-bit
3978 ** float in the wrong order. And that error has been propagated
3979 ** ever since. The blame is not necessarily with GCC, though.
3980 ** GCC might have just copying the problem from a prior compiler.
3981 ** I am also told that newer versions of GCC that follow a different
3982 ** ABI get the byte order right.
3984 ** Developers using SQLite on an ARM7 should compile and run their
3985 ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG
3986 ** enabled, some asserts below will ensure that the byte order of
3987 ** floating point values is correct.
3989 ** (2007-08-30) Frank van Vugt has studied this problem closely
3990 ** and has send his findings to the SQLite developers. Frank
3991 ** writes that some Linux kernels offer floating point hardware
3992 ** emulation that uses only 32-bit mantissas instead of a full
3993 ** 48-bits as required by the IEEE standard. (This is the
3994 ** CONFIG_FPE_FASTFPE option.) On such systems, floating point
3995 ** byte swapping becomes very complicated. To avoid problems,
3996 ** the necessary byte swapping is carried out using a 64-bit integer
3997 ** rather than a 64-bit float. Frank assures us that the code here
3998 ** works for him. We, the developers, have no way to independently
3999 ** verify this, but Frank seems to know what he is talking about
4000 ** so we trust him.
4002 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
4003 u64 sqlite3FloatSwap(u64 in){
4004 union {
4005 u64 r;
4006 u32 i[2];
4007 } u;
4008 u32 t;
4010 u.r = in;
4011 t = u.i[0];
4012 u.i[0] = u.i[1];
4013 u.i[1] = t;
4014 return u.r;
4016 #endif /* SQLITE_MIXED_ENDIAN_64BIT_FLOAT */
4019 /* Input "x" is a sequence of unsigned characters that represent a
4020 ** big-endian integer. Return the equivalent native integer
4022 #define ONE_BYTE_INT(x) ((i8)(x)[0])
4023 #define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1])
4024 #define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2])
4025 #define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
4026 #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
4029 ** Deserialize the data blob pointed to by buf as serial type serial_type
4030 ** and store the result in pMem.
4032 ** This function is implemented as two separate routines for performance.
4033 ** The few cases that require local variables are broken out into a separate
4034 ** routine so that in most cases the overhead of moving the stack pointer
4035 ** is avoided.
4037 static void serialGet(
4038 const unsigned char *buf, /* Buffer to deserialize from */
4039 u32 serial_type, /* Serial type to deserialize */
4040 Mem *pMem /* Memory cell to write value into */
4042 u64 x = FOUR_BYTE_UINT(buf);
4043 u32 y = FOUR_BYTE_UINT(buf+4);
4044 x = (x<<32) + y;
4045 if( serial_type==6 ){
4046 /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit
4047 ** twos-complement integer. */
4048 pMem->u.i = *(i64*)&x;
4049 pMem->flags = MEM_Int;
4050 testcase( pMem->u.i<0 );
4051 }else{
4052 /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit
4053 ** floating point number. */
4054 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
4055 /* Verify that integers and floating point values use the same
4056 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
4057 ** defined that 64-bit floating point values really are mixed
4058 ** endian.
4060 static const u64 t1 = ((u64)0x3ff00000)<<32;
4061 static const double r1 = 1.0;
4062 u64 t2 = t1;
4063 swapMixedEndianFloat(t2);
4064 assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
4065 #endif
4066 assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 );
4067 swapMixedEndianFloat(x);
4068 memcpy(&pMem->u.r, &x, sizeof(x));
4069 pMem->flags = IsNaN(x) ? MEM_Null : MEM_Real;
4072 static int serialGet7(
4073 const unsigned char *buf, /* Buffer to deserialize from */
4074 Mem *pMem /* Memory cell to write value into */
4076 u64 x = FOUR_BYTE_UINT(buf);
4077 u32 y = FOUR_BYTE_UINT(buf+4);
4078 x = (x<<32) + y;
4079 assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 );
4080 swapMixedEndianFloat(x);
4081 memcpy(&pMem->u.r, &x, sizeof(x));
4082 if( IsNaN(x) ){
4083 pMem->flags = MEM_Null;
4084 return 1;
4086 pMem->flags = MEM_Real;
4087 return 0;
4089 void sqlite3VdbeSerialGet(
4090 const unsigned char *buf, /* Buffer to deserialize from */
4091 u32 serial_type, /* Serial type to deserialize */
4092 Mem *pMem /* Memory cell to write value into */
4094 switch( serial_type ){
4095 case 10: { /* Internal use only: NULL with virtual table
4096 ** UPDATE no-change flag set */
4097 pMem->flags = MEM_Null|MEM_Zero;
4098 pMem->n = 0;
4099 pMem->u.nZero = 0;
4100 return;
4102 case 11: /* Reserved for future use */
4103 case 0: { /* Null */
4104 /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */
4105 pMem->flags = MEM_Null;
4106 return;
4108 case 1: {
4109 /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement
4110 ** integer. */
4111 pMem->u.i = ONE_BYTE_INT(buf);
4112 pMem->flags = MEM_Int;
4113 testcase( pMem->u.i<0 );
4114 return;
4116 case 2: { /* 2-byte signed integer */
4117 /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit
4118 ** twos-complement integer. */
4119 pMem->u.i = TWO_BYTE_INT(buf);
4120 pMem->flags = MEM_Int;
4121 testcase( pMem->u.i<0 );
4122 return;
4124 case 3: { /* 3-byte signed integer */
4125 /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit
4126 ** twos-complement integer. */
4127 pMem->u.i = THREE_BYTE_INT(buf);
4128 pMem->flags = MEM_Int;
4129 testcase( pMem->u.i<0 );
4130 return;
4132 case 4: { /* 4-byte signed integer */
4133 /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit
4134 ** twos-complement integer. */
4135 pMem->u.i = FOUR_BYTE_INT(buf);
4136 #ifdef __HP_cc
4137 /* Work around a sign-extension bug in the HP compiler for HP/UX */
4138 if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL;
4139 #endif
4140 pMem->flags = MEM_Int;
4141 testcase( pMem->u.i<0 );
4142 return;
4144 case 5: { /* 6-byte signed integer */
4145 /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit
4146 ** twos-complement integer. */
4147 pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf);
4148 pMem->flags = MEM_Int;
4149 testcase( pMem->u.i<0 );
4150 return;
4152 case 6: /* 8-byte signed integer */
4153 case 7: { /* IEEE floating point */
4154 /* These use local variables, so do them in a separate routine
4155 ** to avoid having to move the frame pointer in the common case */
4156 serialGet(buf,serial_type,pMem);
4157 return;
4159 case 8: /* Integer 0 */
4160 case 9: { /* Integer 1 */
4161 /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */
4162 /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */
4163 pMem->u.i = serial_type-8;
4164 pMem->flags = MEM_Int;
4165 return;
4167 default: {
4168 /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in
4169 ** length.
4170 ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and
4171 ** (N-13)/2 bytes in length. */
4172 static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem };
4173 pMem->z = (char *)buf;
4174 pMem->n = (serial_type-12)/2;
4175 pMem->flags = aFlag[serial_type&1];
4176 return;
4179 return;
4182 ** This routine is used to allocate sufficient space for an UnpackedRecord
4183 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if
4184 ** the first argument is a pointer to KeyInfo structure pKeyInfo.
4186 ** The space is either allocated using sqlite3DbMallocRaw() or from within
4187 ** the unaligned buffer passed via the second and third arguments (presumably
4188 ** stack space). If the former, then *ppFree is set to a pointer that should
4189 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the
4190 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL
4191 ** before returning.
4193 ** If an OOM error occurs, NULL is returned.
4195 UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(
4196 KeyInfo *pKeyInfo /* Description of the record */
4198 UnpackedRecord *p; /* Unpacked record to return */
4199 int nByte; /* Number of bytes required for *p */
4200 nByte = ROUND8P(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nKeyField+1);
4201 p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte);
4202 if( !p ) return 0;
4203 p->aMem = (Mem*)&((char*)p)[ROUND8P(sizeof(UnpackedRecord))];
4204 assert( pKeyInfo->aSortFlags!=0 );
4205 p->pKeyInfo = pKeyInfo;
4206 p->nField = pKeyInfo->nKeyField + 1;
4207 return p;
4211 ** Given the nKey-byte encoding of a record in pKey[], populate the
4212 ** UnpackedRecord structure indicated by the fourth argument with the
4213 ** contents of the decoded record.
4215 void sqlite3VdbeRecordUnpack(
4216 KeyInfo *pKeyInfo, /* Information about the record format */
4217 int nKey, /* Size of the binary record */
4218 const void *pKey, /* The binary record */
4219 UnpackedRecord *p /* Populate this structure before returning. */
4221 const unsigned char *aKey = (const unsigned char *)pKey;
4222 u32 d;
4223 u32 idx; /* Offset in aKey[] to read from */
4224 u16 u; /* Unsigned loop counter */
4225 u32 szHdr;
4226 Mem *pMem = p->aMem;
4228 p->default_rc = 0;
4229 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
4230 idx = getVarint32(aKey, szHdr);
4231 d = szHdr;
4232 u = 0;
4233 while( idx<szHdr && d<=(u32)nKey ){
4234 u32 serial_type;
4236 idx += getVarint32(&aKey[idx], serial_type);
4237 pMem->enc = pKeyInfo->enc;
4238 pMem->db = pKeyInfo->db;
4239 /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
4240 pMem->szMalloc = 0;
4241 pMem->z = 0;
4242 sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
4243 d += sqlite3VdbeSerialTypeLen(serial_type);
4244 pMem++;
4245 if( (++u)>=p->nField ) break;
4247 if( d>(u32)nKey && u ){
4248 assert( CORRUPT_DB );
4249 /* In a corrupt record entry, the last pMem might have been set up using
4250 ** uninitialized memory. Overwrite its value with NULL, to prevent
4251 ** warnings from MSAN. */
4252 sqlite3VdbeMemSetNull(pMem-1);
4254 assert( u<=pKeyInfo->nKeyField + 1 );
4255 p->nField = u;
4258 #ifdef SQLITE_DEBUG
4260 ** This function compares two index or table record keys in the same way
4261 ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(),
4262 ** this function deserializes and compares values using the
4263 ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used
4264 ** in assert() statements to ensure that the optimized code in
4265 ** sqlite3VdbeRecordCompare() returns results with these two primitives.
4267 ** Return true if the result of comparison is equivalent to desiredResult.
4268 ** Return false if there is a disagreement.
4270 static int vdbeRecordCompareDebug(
4271 int nKey1, const void *pKey1, /* Left key */
4272 const UnpackedRecord *pPKey2, /* Right key */
4273 int desiredResult /* Correct answer */
4275 u32 d1; /* Offset into aKey[] of next data element */
4276 u32 idx1; /* Offset into aKey[] of next header element */
4277 u32 szHdr1; /* Number of bytes in header */
4278 int i = 0;
4279 int rc = 0;
4280 const unsigned char *aKey1 = (const unsigned char *)pKey1;
4281 KeyInfo *pKeyInfo;
4282 Mem mem1;
4284 pKeyInfo = pPKey2->pKeyInfo;
4285 if( pKeyInfo->db==0 ) return 1;
4286 mem1.enc = pKeyInfo->enc;
4287 mem1.db = pKeyInfo->db;
4288 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */
4289 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
4291 /* Compilers may complain that mem1.u.i is potentially uninitialized.
4292 ** We could initialize it, as shown here, to silence those complaints.
4293 ** But in fact, mem1.u.i will never actually be used uninitialized, and doing
4294 ** the unnecessary initialization has a measurable negative performance
4295 ** impact, since this routine is a very high runner. And so, we choose
4296 ** to ignore the compiler warnings and leave this variable uninitialized.
4298 /* mem1.u.i = 0; // not needed, here to silence compiler warning */
4300 idx1 = getVarint32(aKey1, szHdr1);
4301 if( szHdr1>98307 ) return SQLITE_CORRUPT;
4302 d1 = szHdr1;
4303 assert( pKeyInfo->nAllField>=pPKey2->nField || CORRUPT_DB );
4304 assert( pKeyInfo->aSortFlags!=0 );
4305 assert( pKeyInfo->nKeyField>0 );
4306 assert( idx1<=szHdr1 || CORRUPT_DB );
4308 u32 serial_type1;
4310 /* Read the serial types for the next element in each key. */
4311 idx1 += getVarint32( aKey1+idx1, serial_type1 );
4313 /* Verify that there is enough key space remaining to avoid
4314 ** a buffer overread. The "d1+serial_type1+2" subexpression will
4315 ** always be greater than or equal to the amount of required key space.
4316 ** Use that approximation to avoid the more expensive call to
4317 ** sqlite3VdbeSerialTypeLen() in the common case.
4319 if( d1+(u64)serial_type1+2>(u64)nKey1
4320 && d1+(u64)sqlite3VdbeSerialTypeLen(serial_type1)>(u64)nKey1
4322 if( serial_type1>=1
4323 && serial_type1<=7
4324 && d1+(u64)sqlite3VdbeSerialTypeLen(serial_type1)<=(u64)nKey1+8
4325 && CORRUPT_DB
4327 return 1; /* corrupt record not detected by
4328 ** sqlite3VdbeRecordCompareWithSkip(). Return true
4329 ** to avoid firing the assert() */
4331 break;
4334 /* Extract the values to be compared.
4336 sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
4337 d1 += sqlite3VdbeSerialTypeLen(serial_type1);
4339 /* Do the comparison
4341 rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i],
4342 pKeyInfo->nAllField>i ? pKeyInfo->aColl[i] : 0);
4343 if( rc!=0 ){
4344 assert( mem1.szMalloc==0 ); /* See comment below */
4345 if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL)
4346 && ((mem1.flags & MEM_Null) || (pPKey2->aMem[i].flags & MEM_Null))
4348 rc = -rc;
4350 if( pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC ){
4351 rc = -rc; /* Invert the result for DESC sort order. */
4353 goto debugCompareEnd;
4355 i++;
4356 }while( idx1<szHdr1 && i<pPKey2->nField );
4358 /* No memory allocation is ever used on mem1. Prove this using
4359 ** the following assert(). If the assert() fails, it indicates a
4360 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
4362 assert( mem1.szMalloc==0 );
4364 /* rc==0 here means that one of the keys ran out of fields and
4365 ** all the fields up to that point were equal. Return the default_rc
4366 ** value. */
4367 rc = pPKey2->default_rc;
4369 debugCompareEnd:
4370 if( desiredResult==0 && rc==0 ) return 1;
4371 if( desiredResult<0 && rc<0 ) return 1;
4372 if( desiredResult>0 && rc>0 ) return 1;
4373 if( CORRUPT_DB ) return 1;
4374 if( pKeyInfo->db->mallocFailed ) return 1;
4375 return 0;
4377 #endif
4379 #ifdef SQLITE_DEBUG
4381 ** Count the number of fields (a.k.a. columns) in the record given by
4382 ** pKey,nKey. The verify that this count is less than or equal to the
4383 ** limit given by pKeyInfo->nAllField.
4385 ** If this constraint is not satisfied, it means that the high-speed
4386 ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will
4387 ** not work correctly. If this assert() ever fires, it probably means
4388 ** that the KeyInfo.nKeyField or KeyInfo.nAllField values were computed
4389 ** incorrectly.
4391 static void vdbeAssertFieldCountWithinLimits(
4392 int nKey, const void *pKey, /* The record to verify */
4393 const KeyInfo *pKeyInfo /* Compare size with this KeyInfo */
4395 int nField = 0;
4396 u32 szHdr;
4397 u32 idx;
4398 u32 notUsed;
4399 const unsigned char *aKey = (const unsigned char*)pKey;
4401 if( CORRUPT_DB ) return;
4402 idx = getVarint32(aKey, szHdr);
4403 assert( nKey>=0 );
4404 assert( szHdr<=(u32)nKey );
4405 while( idx<szHdr ){
4406 idx += getVarint32(aKey+idx, notUsed);
4407 nField++;
4409 assert( nField <= pKeyInfo->nAllField );
4411 #else
4412 # define vdbeAssertFieldCountWithinLimits(A,B,C)
4413 #endif
4416 ** Both *pMem1 and *pMem2 contain string values. Compare the two values
4417 ** using the collation sequence pColl. As usual, return a negative , zero
4418 ** or positive value if *pMem1 is less than, equal to or greater than
4419 ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);".
4421 static int vdbeCompareMemString(
4422 const Mem *pMem1,
4423 const Mem *pMem2,
4424 const CollSeq *pColl,
4425 u8 *prcErr /* If an OOM occurs, set to SQLITE_NOMEM */
4427 if( pMem1->enc==pColl->enc ){
4428 /* The strings are already in the correct encoding. Call the
4429 ** comparison function directly */
4430 return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
4431 }else{
4432 int rc;
4433 const void *v1, *v2;
4434 Mem c1;
4435 Mem c2;
4436 sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null);
4437 sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null);
4438 sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
4439 sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
4440 v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
4441 v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
4442 if( (v1==0 || v2==0) ){
4443 if( prcErr ) *prcErr = SQLITE_NOMEM_BKPT;
4444 rc = 0;
4445 }else{
4446 rc = pColl->xCmp(pColl->pUser, c1.n, v1, c2.n, v2);
4448 sqlite3VdbeMemReleaseMalloc(&c1);
4449 sqlite3VdbeMemReleaseMalloc(&c2);
4450 return rc;
4455 ** The input pBlob is guaranteed to be a Blob that is not marked
4456 ** with MEM_Zero. Return true if it could be a zero-blob.
4458 static int isAllZero(const char *z, int n){
4459 int i;
4460 for(i=0; i<n; i++){
4461 if( z[i] ) return 0;
4463 return 1;
4467 ** Compare two blobs. Return negative, zero, or positive if the first
4468 ** is less than, equal to, or greater than the second, respectively.
4469 ** If one blob is a prefix of the other, then the shorter is the lessor.
4471 SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){
4472 int c;
4473 int n1 = pB1->n;
4474 int n2 = pB2->n;
4476 /* It is possible to have a Blob value that has some non-zero content
4477 ** followed by zero content. But that only comes up for Blobs formed
4478 ** by the OP_MakeRecord opcode, and such Blobs never get passed into
4479 ** sqlite3MemCompare(). */
4480 assert( (pB1->flags & MEM_Zero)==0 || n1==0 );
4481 assert( (pB2->flags & MEM_Zero)==0 || n2==0 );
4483 if( (pB1->flags|pB2->flags) & MEM_Zero ){
4484 if( pB1->flags & pB2->flags & MEM_Zero ){
4485 return pB1->u.nZero - pB2->u.nZero;
4486 }else if( pB1->flags & MEM_Zero ){
4487 if( !isAllZero(pB2->z, pB2->n) ) return -1;
4488 return pB1->u.nZero - n2;
4489 }else{
4490 if( !isAllZero(pB1->z, pB1->n) ) return +1;
4491 return n1 - pB2->u.nZero;
4494 c = memcmp(pB1->z, pB2->z, n1>n2 ? n2 : n1);
4495 if( c ) return c;
4496 return n1 - n2;
4499 /* The following two functions are used only within testcase() to prove
4500 ** test coverage. These functions do no exist for production builds.
4501 ** We must use separate SQLITE_NOINLINE functions here, since otherwise
4502 ** optimizer code movement causes gcov to become very confused.
4504 #if defined(SQLITE_COVERAGE_TEST) || defined(SQLITE_DEBUG)
4505 static int SQLITE_NOINLINE doubleLt(double a, double b){ return a<b; }
4506 static int SQLITE_NOINLINE doubleEq(double a, double b){ return a==b; }
4507 #endif
4510 ** Do a comparison between a 64-bit signed integer and a 64-bit floating-point
4511 ** number. Return negative, zero, or positive if the first (i64) is less than,
4512 ** equal to, or greater than the second (double).
4514 int sqlite3IntFloatCompare(i64 i, double r){
4515 if( sqlite3IsNaN(r) ){
4516 /* SQLite considers NaN to be a NULL. And all integer values are greater
4517 ** than NULL */
4518 return 1;
4520 if( sqlite3Config.bUseLongDouble ){
4521 LONGDOUBLE_TYPE x = (LONGDOUBLE_TYPE)i;
4522 testcase( x<r );
4523 testcase( x>r );
4524 testcase( x==r );
4525 return (x<r) ? -1 : (x>r);
4526 }else{
4527 i64 y;
4528 if( r<-9223372036854775808.0 ) return +1;
4529 if( r>=9223372036854775808.0 ) return -1;
4530 y = (i64)r;
4531 if( i<y ) return -1;
4532 if( i>y ) return +1;
4533 testcase( doubleLt(((double)i),r) );
4534 testcase( doubleLt(r,((double)i)) );
4535 testcase( doubleEq(r,((double)i)) );
4536 return (((double)i)<r) ? -1 : (((double)i)>r);
4541 ** Compare the values contained by the two memory cells, returning
4542 ** negative, zero or positive if pMem1 is less than, equal to, or greater
4543 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers
4544 ** and reals) sorted numerically, followed by text ordered by the collating
4545 ** sequence pColl and finally blob's ordered by memcmp().
4547 ** Two NULL values are considered equal by this function.
4549 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
4550 int f1, f2;
4551 int combined_flags;
4553 f1 = pMem1->flags;
4554 f2 = pMem2->flags;
4555 combined_flags = f1|f2;
4556 assert( !sqlite3VdbeMemIsRowSet(pMem1) && !sqlite3VdbeMemIsRowSet(pMem2) );
4558 /* If one value is NULL, it is less than the other. If both values
4559 ** are NULL, return 0.
4561 if( combined_flags&MEM_Null ){
4562 return (f2&MEM_Null) - (f1&MEM_Null);
4565 /* At least one of the two values is a number
4567 if( combined_flags&(MEM_Int|MEM_Real|MEM_IntReal) ){
4568 testcase( combined_flags & MEM_Int );
4569 testcase( combined_flags & MEM_Real );
4570 testcase( combined_flags & MEM_IntReal );
4571 if( (f1 & f2 & (MEM_Int|MEM_IntReal))!=0 ){
4572 testcase( f1 & f2 & MEM_Int );
4573 testcase( f1 & f2 & MEM_IntReal );
4574 if( pMem1->u.i < pMem2->u.i ) return -1;
4575 if( pMem1->u.i > pMem2->u.i ) return +1;
4576 return 0;
4578 if( (f1 & f2 & MEM_Real)!=0 ){
4579 if( pMem1->u.r < pMem2->u.r ) return -1;
4580 if( pMem1->u.r > pMem2->u.r ) return +1;
4581 return 0;
4583 if( (f1&(MEM_Int|MEM_IntReal))!=0 ){
4584 testcase( f1 & MEM_Int );
4585 testcase( f1 & MEM_IntReal );
4586 if( (f2&MEM_Real)!=0 ){
4587 return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r);
4588 }else if( (f2&(MEM_Int|MEM_IntReal))!=0 ){
4589 if( pMem1->u.i < pMem2->u.i ) return -1;
4590 if( pMem1->u.i > pMem2->u.i ) return +1;
4591 return 0;
4592 }else{
4593 return -1;
4596 if( (f1&MEM_Real)!=0 ){
4597 if( (f2&(MEM_Int|MEM_IntReal))!=0 ){
4598 testcase( f2 & MEM_Int );
4599 testcase( f2 & MEM_IntReal );
4600 return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r);
4601 }else{
4602 return -1;
4605 return +1;
4608 /* If one value is a string and the other is a blob, the string is less.
4609 ** If both are strings, compare using the collating functions.
4611 if( combined_flags&MEM_Str ){
4612 if( (f1 & MEM_Str)==0 ){
4613 return 1;
4615 if( (f2 & MEM_Str)==0 ){
4616 return -1;
4619 assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed );
4620 assert( pMem1->enc==SQLITE_UTF8 ||
4621 pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );
4623 /* The collation sequence must be defined at this point, even if
4624 ** the user deletes the collation sequence after the vdbe program is
4625 ** compiled (this was not always the case).
4627 assert( !pColl || pColl->xCmp );
4629 if( pColl ){
4630 return vdbeCompareMemString(pMem1, pMem2, pColl, 0);
4632 /* If a NULL pointer was passed as the collate function, fall through
4633 ** to the blob case and use memcmp(). */
4636 /* Both values must be blobs. Compare using memcmp(). */
4637 return sqlite3BlobCompare(pMem1, pMem2);
4642 ** The first argument passed to this function is a serial-type that
4643 ** corresponds to an integer - all values between 1 and 9 inclusive
4644 ** except 7. The second points to a buffer containing an integer value
4645 ** serialized according to serial_type. This function deserializes
4646 ** and returns the value.
4648 static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){
4649 u32 y;
4650 assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) );
4651 switch( serial_type ){
4652 case 0:
4653 case 1:
4654 testcase( aKey[0]&0x80 );
4655 return ONE_BYTE_INT(aKey);
4656 case 2:
4657 testcase( aKey[0]&0x80 );
4658 return TWO_BYTE_INT(aKey);
4659 case 3:
4660 testcase( aKey[0]&0x80 );
4661 return THREE_BYTE_INT(aKey);
4662 case 4: {
4663 testcase( aKey[0]&0x80 );
4664 y = FOUR_BYTE_UINT(aKey);
4665 return (i64)*(int*)&y;
4667 case 5: {
4668 testcase( aKey[0]&0x80 );
4669 return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
4671 case 6: {
4672 u64 x = FOUR_BYTE_UINT(aKey);
4673 testcase( aKey[0]&0x80 );
4674 x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
4675 return (i64)*(i64*)&x;
4679 return (serial_type - 8);
4683 ** This function compares the two table rows or index records
4684 ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero
4685 ** or positive integer if key1 is less than, equal to or
4686 ** greater than key2. The {nKey1, pKey1} key must be a blob
4687 ** created by the OP_MakeRecord opcode of the VDBE. The pPKey2
4688 ** key must be a parsed key such as obtained from
4689 ** sqlite3VdbeParseRecord.
4691 ** If argument bSkip is non-zero, it is assumed that the caller has already
4692 ** determined that the first fields of the keys are equal.
4694 ** Key1 and Key2 do not have to contain the same number of fields. If all
4695 ** fields that appear in both keys are equal, then pPKey2->default_rc is
4696 ** returned.
4698 ** If database corruption is discovered, set pPKey2->errCode to
4699 ** SQLITE_CORRUPT and return 0. If an OOM error is encountered,
4700 ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the
4701 ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db).
4703 int sqlite3VdbeRecordCompareWithSkip(
4704 int nKey1, const void *pKey1, /* Left key */
4705 UnpackedRecord *pPKey2, /* Right key */
4706 int bSkip /* If true, skip the first field */
4708 u32 d1; /* Offset into aKey[] of next data element */
4709 int i; /* Index of next field to compare */
4710 u32 szHdr1; /* Size of record header in bytes */
4711 u32 idx1; /* Offset of first type in header */
4712 int rc = 0; /* Return value */
4713 Mem *pRhs = pPKey2->aMem; /* Next field of pPKey2 to compare */
4714 KeyInfo *pKeyInfo;
4715 const unsigned char *aKey1 = (const unsigned char *)pKey1;
4716 Mem mem1;
4718 /* If bSkip is true, then the caller has already determined that the first
4719 ** two elements in the keys are equal. Fix the various stack variables so
4720 ** that this routine begins comparing at the second field. */
4721 if( bSkip ){
4722 u32 s1 = aKey1[1];
4723 if( s1<0x80 ){
4724 idx1 = 2;
4725 }else{
4726 idx1 = 1 + sqlite3GetVarint32(&aKey1[1], &s1);
4728 szHdr1 = aKey1[0];
4729 d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1);
4730 i = 1;
4731 pRhs++;
4732 }else{
4733 if( (szHdr1 = aKey1[0])<0x80 ){
4734 idx1 = 1;
4735 }else{
4736 idx1 = sqlite3GetVarint32(aKey1, &szHdr1);
4738 d1 = szHdr1;
4739 i = 0;
4741 if( d1>(unsigned)nKey1 ){
4742 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4743 return 0; /* Corruption */
4746 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
4747 assert( pPKey2->pKeyInfo->nAllField>=pPKey2->nField
4748 || CORRUPT_DB );
4749 assert( pPKey2->pKeyInfo->aSortFlags!=0 );
4750 assert( pPKey2->pKeyInfo->nKeyField>0 );
4751 assert( idx1<=szHdr1 || CORRUPT_DB );
4752 while( 1 /*exit-by-break*/ ){
4753 u32 serial_type;
4755 /* RHS is an integer */
4756 if( pRhs->flags & (MEM_Int|MEM_IntReal) ){
4757 testcase( pRhs->flags & MEM_Int );
4758 testcase( pRhs->flags & MEM_IntReal );
4759 serial_type = aKey1[idx1];
4760 testcase( serial_type==12 );
4761 if( serial_type>=10 ){
4762 rc = serial_type==10 ? -1 : +1;
4763 }else if( serial_type==0 ){
4764 rc = -1;
4765 }else if( serial_type==7 ){
4766 serialGet7(&aKey1[d1], &mem1);
4767 rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r);
4768 }else{
4769 i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]);
4770 i64 rhs = pRhs->u.i;
4771 if( lhs<rhs ){
4772 rc = -1;
4773 }else if( lhs>rhs ){
4774 rc = +1;
4779 /* RHS is real */
4780 else if( pRhs->flags & MEM_Real ){
4781 serial_type = aKey1[idx1];
4782 if( serial_type>=10 ){
4783 /* Serial types 12 or greater are strings and blobs (greater than
4784 ** numbers). Types 10 and 11 are currently "reserved for future
4785 ** use", so it doesn't really matter what the results of comparing
4786 ** them to numeric values are. */
4787 rc = serial_type==10 ? -1 : +1;
4788 }else if( serial_type==0 ){
4789 rc = -1;
4790 }else{
4791 if( serial_type==7 ){
4792 if( serialGet7(&aKey1[d1], &mem1) ){
4793 rc = -1; /* mem1 is a NaN */
4794 }else if( mem1.u.r<pRhs->u.r ){
4795 rc = -1;
4796 }else if( mem1.u.r>pRhs->u.r ){
4797 rc = +1;
4798 }else{
4799 assert( rc==0 );
4801 }else{
4802 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
4803 rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r);
4808 /* RHS is a string */
4809 else if( pRhs->flags & MEM_Str ){
4810 getVarint32NR(&aKey1[idx1], serial_type);
4811 testcase( serial_type==12 );
4812 if( serial_type<12 ){
4813 rc = -1;
4814 }else if( !(serial_type & 0x01) ){
4815 rc = +1;
4816 }else{
4817 mem1.n = (serial_type - 12) / 2;
4818 testcase( (d1+mem1.n)==(unsigned)nKey1 );
4819 testcase( (d1+mem1.n+1)==(unsigned)nKey1 );
4820 if( (d1+mem1.n) > (unsigned)nKey1
4821 || (pKeyInfo = pPKey2->pKeyInfo)->nAllField<=i
4823 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4824 return 0; /* Corruption */
4825 }else if( pKeyInfo->aColl[i] ){
4826 mem1.enc = pKeyInfo->enc;
4827 mem1.db = pKeyInfo->db;
4828 mem1.flags = MEM_Str;
4829 mem1.z = (char*)&aKey1[d1];
4830 rc = vdbeCompareMemString(
4831 &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode
4833 }else{
4834 int nCmp = MIN(mem1.n, pRhs->n);
4835 rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
4836 if( rc==0 ) rc = mem1.n - pRhs->n;
4841 /* RHS is a blob */
4842 else if( pRhs->flags & MEM_Blob ){
4843 assert( (pRhs->flags & MEM_Zero)==0 || pRhs->n==0 );
4844 getVarint32NR(&aKey1[idx1], serial_type);
4845 testcase( serial_type==12 );
4846 if( serial_type<12 || (serial_type & 0x01) ){
4847 rc = -1;
4848 }else{
4849 int nStr = (serial_type - 12) / 2;
4850 testcase( (d1+nStr)==(unsigned)nKey1 );
4851 testcase( (d1+nStr+1)==(unsigned)nKey1 );
4852 if( (d1+nStr) > (unsigned)nKey1 ){
4853 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4854 return 0; /* Corruption */
4855 }else if( pRhs->flags & MEM_Zero ){
4856 if( !isAllZero((const char*)&aKey1[d1],nStr) ){
4857 rc = 1;
4858 }else{
4859 rc = nStr - pRhs->u.nZero;
4861 }else{
4862 int nCmp = MIN(nStr, pRhs->n);
4863 rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
4864 if( rc==0 ) rc = nStr - pRhs->n;
4869 /* RHS is null */
4870 else{
4871 serial_type = aKey1[idx1];
4872 if( serial_type==0
4873 || serial_type==10
4874 || (serial_type==7 && serialGet7(&aKey1[d1], &mem1)!=0)
4876 assert( rc==0 );
4877 }else{
4878 rc = 1;
4882 if( rc!=0 ){
4883 int sortFlags = pPKey2->pKeyInfo->aSortFlags[i];
4884 if( sortFlags ){
4885 if( (sortFlags & KEYINFO_ORDER_BIGNULL)==0
4886 || ((sortFlags & KEYINFO_ORDER_DESC)
4887 !=(serial_type==0 || (pRhs->flags&MEM_Null)))
4889 rc = -rc;
4892 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) );
4893 assert( mem1.szMalloc==0 ); /* See comment below */
4894 return rc;
4897 i++;
4898 if( i==pPKey2->nField ) break;
4899 pRhs++;
4900 d1 += sqlite3VdbeSerialTypeLen(serial_type);
4901 if( d1>(unsigned)nKey1 ) break;
4902 idx1 += sqlite3VarintLen(serial_type);
4903 if( idx1>=(unsigned)szHdr1 ){
4904 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4905 return 0; /* Corrupt index */
4909 /* No memory allocation is ever used on mem1. Prove this using
4910 ** the following assert(). If the assert() fails, it indicates a
4911 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */
4912 assert( mem1.szMalloc==0 );
4914 /* rc==0 here means that one or both of the keys ran out of fields and
4915 ** all the fields up to that point were equal. Return the default_rc
4916 ** value. */
4917 assert( CORRUPT_DB
4918 || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc)
4919 || pPKey2->pKeyInfo->db->mallocFailed
4921 pPKey2->eqSeen = 1;
4922 return pPKey2->default_rc;
4924 int sqlite3VdbeRecordCompare(
4925 int nKey1, const void *pKey1, /* Left key */
4926 UnpackedRecord *pPKey2 /* Right key */
4928 return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0);
4933 ** This function is an optimized version of sqlite3VdbeRecordCompare()
4934 ** that (a) the first field of pPKey2 is an integer, and (b) the
4935 ** size-of-header varint at the start of (pKey1/nKey1) fits in a single
4936 ** byte (i.e. is less than 128).
4938 ** To avoid concerns about buffer overreads, this routine is only used
4939 ** on schemas where the maximum valid header size is 63 bytes or less.
4941 static int vdbeRecordCompareInt(
4942 int nKey1, const void *pKey1, /* Left key */
4943 UnpackedRecord *pPKey2 /* Right key */
4945 const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F];
4946 int serial_type = ((const u8*)pKey1)[1];
4947 int res;
4948 u32 y;
4949 u64 x;
4950 i64 v;
4951 i64 lhs;
4953 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
4954 assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB );
4955 switch( serial_type ){
4956 case 1: { /* 1-byte signed integer */
4957 lhs = ONE_BYTE_INT(aKey);
4958 testcase( lhs<0 );
4959 break;
4961 case 2: { /* 2-byte signed integer */
4962 lhs = TWO_BYTE_INT(aKey);
4963 testcase( lhs<0 );
4964 break;
4966 case 3: { /* 3-byte signed integer */
4967 lhs = THREE_BYTE_INT(aKey);
4968 testcase( lhs<0 );
4969 break;
4971 case 4: { /* 4-byte signed integer */
4972 y = FOUR_BYTE_UINT(aKey);
4973 lhs = (i64)*(int*)&y;
4974 testcase( lhs<0 );
4975 break;
4977 case 5: { /* 6-byte signed integer */
4978 lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
4979 testcase( lhs<0 );
4980 break;
4982 case 6: { /* 8-byte signed integer */
4983 x = FOUR_BYTE_UINT(aKey);
4984 x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
4985 lhs = *(i64*)&x;
4986 testcase( lhs<0 );
4987 break;
4989 case 8:
4990 lhs = 0;
4991 break;
4992 case 9:
4993 lhs = 1;
4994 break;
4996 /* This case could be removed without changing the results of running
4997 ** this code. Including it causes gcc to generate a faster switch
4998 ** statement (since the range of switch targets now starts at zero and
4999 ** is contiguous) but does not cause any duplicate code to be generated
5000 ** (as gcc is clever enough to combine the two like cases). Other
5001 ** compilers might be similar. */
5002 case 0: case 7:
5003 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
5005 default:
5006 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
5009 assert( pPKey2->u.i == pPKey2->aMem[0].u.i );
5010 v = pPKey2->u.i;
5011 if( v>lhs ){
5012 res = pPKey2->r1;
5013 }else if( v<lhs ){
5014 res = pPKey2->r2;
5015 }else if( pPKey2->nField>1 ){
5016 /* The first fields of the two keys are equal. Compare the trailing
5017 ** fields. */
5018 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
5019 }else{
5020 /* The first fields of the two keys are equal and there are no trailing
5021 ** fields. Return pPKey2->default_rc in this case. */
5022 res = pPKey2->default_rc;
5023 pPKey2->eqSeen = 1;
5026 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) );
5027 return res;
5031 ** This function is an optimized version of sqlite3VdbeRecordCompare()
5032 ** that (a) the first field of pPKey2 is a string, that (b) the first field
5033 ** uses the collation sequence BINARY and (c) that the size-of-header varint
5034 ** at the start of (pKey1/nKey1) fits in a single byte.
5036 static int vdbeRecordCompareString(
5037 int nKey1, const void *pKey1, /* Left key */
5038 UnpackedRecord *pPKey2 /* Right key */
5040 const u8 *aKey1 = (const u8*)pKey1;
5041 int serial_type;
5042 int res;
5044 assert( pPKey2->aMem[0].flags & MEM_Str );
5045 assert( pPKey2->aMem[0].n == pPKey2->n );
5046 assert( pPKey2->aMem[0].z == pPKey2->u.z );
5047 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
5048 serial_type = (signed char)(aKey1[1]);
5050 vrcs_restart:
5051 if( serial_type<12 ){
5052 if( serial_type<0 ){
5053 sqlite3GetVarint32(&aKey1[1], (u32*)&serial_type);
5054 if( serial_type>=12 ) goto vrcs_restart;
5055 assert( CORRUPT_DB );
5057 res = pPKey2->r1; /* (pKey1/nKey1) is a number or a null */
5058 }else if( !(serial_type & 0x01) ){
5059 res = pPKey2->r2; /* (pKey1/nKey1) is a blob */
5060 }else{
5061 int nCmp;
5062 int nStr;
5063 int szHdr = aKey1[0];
5065 nStr = (serial_type-12) / 2;
5066 if( (szHdr + nStr) > nKey1 ){
5067 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
5068 return 0; /* Corruption */
5070 nCmp = MIN( pPKey2->n, nStr );
5071 res = memcmp(&aKey1[szHdr], pPKey2->u.z, nCmp);
5073 if( res>0 ){
5074 res = pPKey2->r2;
5075 }else if( res<0 ){
5076 res = pPKey2->r1;
5077 }else{
5078 res = nStr - pPKey2->n;
5079 if( res==0 ){
5080 if( pPKey2->nField>1 ){
5081 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
5082 }else{
5083 res = pPKey2->default_rc;
5084 pPKey2->eqSeen = 1;
5086 }else if( res>0 ){
5087 res = pPKey2->r2;
5088 }else{
5089 res = pPKey2->r1;
5094 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res)
5095 || CORRUPT_DB
5096 || pPKey2->pKeyInfo->db->mallocFailed
5098 return res;
5102 ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function
5103 ** suitable for comparing serialized records to the unpacked record passed
5104 ** as the only argument.
5106 RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){
5107 /* varintRecordCompareInt() and varintRecordCompareString() both assume
5108 ** that the size-of-header varint that occurs at the start of each record
5109 ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt()
5110 ** also assumes that it is safe to overread a buffer by at least the
5111 ** maximum possible legal header size plus 8 bytes. Because there is
5112 ** guaranteed to be at least 74 (but not 136) bytes of padding following each
5113 ** buffer passed to varintRecordCompareInt() this makes it convenient to
5114 ** limit the size of the header to 64 bytes in cases where the first field
5115 ** is an integer.
5117 ** The easiest way to enforce this limit is to consider only records with
5118 ** 13 fields or less. If the first field is an integer, the maximum legal
5119 ** header size is (12*5 + 1 + 1) bytes. */
5120 if( p->pKeyInfo->nAllField<=13 ){
5121 int flags = p->aMem[0].flags;
5122 if( p->pKeyInfo->aSortFlags[0] ){
5123 if( p->pKeyInfo->aSortFlags[0] & KEYINFO_ORDER_BIGNULL ){
5124 return sqlite3VdbeRecordCompare;
5126 p->r1 = 1;
5127 p->r2 = -1;
5128 }else{
5129 p->r1 = -1;
5130 p->r2 = 1;
5132 if( (flags & MEM_Int) ){
5133 p->u.i = p->aMem[0].u.i;
5134 return vdbeRecordCompareInt;
5136 testcase( flags & MEM_Real );
5137 testcase( flags & MEM_Null );
5138 testcase( flags & MEM_Blob );
5139 if( (flags & (MEM_Real|MEM_IntReal|MEM_Null|MEM_Blob))==0
5140 && p->pKeyInfo->aColl[0]==0
5142 assert( flags & MEM_Str );
5143 p->u.z = p->aMem[0].z;
5144 p->n = p->aMem[0].n;
5145 return vdbeRecordCompareString;
5149 return sqlite3VdbeRecordCompare;
5153 ** pCur points at an index entry created using the OP_MakeRecord opcode.
5154 ** Read the rowid (the last field in the record) and store it in *rowid.
5155 ** Return SQLITE_OK if everything works, or an error code otherwise.
5157 ** pCur might be pointing to text obtained from a corrupt database file.
5158 ** So the content cannot be trusted. Do appropriate checks on the content.
5160 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){
5161 i64 nCellKey = 0;
5162 int rc;
5163 u32 szHdr; /* Size of the header */
5164 u32 typeRowid; /* Serial type of the rowid */
5165 u32 lenRowid; /* Size of the rowid */
5166 Mem m, v;
5168 /* Get the size of the index entry. Only indices entries of less
5169 ** than 2GiB are support - anything large must be database corruption.
5170 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
5171 ** this code can safely assume that nCellKey is 32-bits
5173 assert( sqlite3BtreeCursorIsValid(pCur) );
5174 nCellKey = sqlite3BtreePayloadSize(pCur);
5175 assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey );
5177 /* Read in the complete content of the index entry */
5178 sqlite3VdbeMemInit(&m, db, 0);
5179 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m);
5180 if( rc ){
5181 return rc;
5184 /* The index entry must begin with a header size */
5185 getVarint32NR((u8*)m.z, szHdr);
5186 testcase( szHdr==3 );
5187 testcase( szHdr==(u32)m.n );
5188 testcase( szHdr>0x7fffffff );
5189 assert( m.n>=0 );
5190 if( unlikely(szHdr<3 || szHdr>(unsigned)m.n) ){
5191 goto idx_rowid_corruption;
5194 /* The last field of the index should be an integer - the ROWID.
5195 ** Verify that the last entry really is an integer. */
5196 getVarint32NR((u8*)&m.z[szHdr-1], typeRowid);
5197 testcase( typeRowid==1 );
5198 testcase( typeRowid==2 );
5199 testcase( typeRowid==3 );
5200 testcase( typeRowid==4 );
5201 testcase( typeRowid==5 );
5202 testcase( typeRowid==6 );
5203 testcase( typeRowid==8 );
5204 testcase( typeRowid==9 );
5205 if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){
5206 goto idx_rowid_corruption;
5208 lenRowid = sqlite3SmallTypeSizes[typeRowid];
5209 testcase( (u32)m.n==szHdr+lenRowid );
5210 if( unlikely((u32)m.n<szHdr+lenRowid) ){
5211 goto idx_rowid_corruption;
5214 /* Fetch the integer off the end of the index record */
5215 sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
5216 *rowid = v.u.i;
5217 sqlite3VdbeMemReleaseMalloc(&m);
5218 return SQLITE_OK;
5220 /* Jump here if database corruption is detected after m has been
5221 ** allocated. Free the m object and return SQLITE_CORRUPT. */
5222 idx_rowid_corruption:
5223 testcase( m.szMalloc!=0 );
5224 sqlite3VdbeMemReleaseMalloc(&m);
5225 return SQLITE_CORRUPT_BKPT;
5229 ** Compare the key of the index entry that cursor pC is pointing to against
5230 ** the key string in pUnpacked. Write into *pRes a number
5231 ** that is negative, zero, or positive if pC is less than, equal to,
5232 ** or greater than pUnpacked. Return SQLITE_OK on success.
5234 ** pUnpacked is either created without a rowid or is truncated so that it
5235 ** omits the rowid at the end. The rowid at the end of the index entry
5236 ** is ignored as well. Hence, this routine only compares the prefixes
5237 ** of the keys prior to the final rowid, not the entire key.
5239 int sqlite3VdbeIdxKeyCompare(
5240 sqlite3 *db, /* Database connection */
5241 VdbeCursor *pC, /* The cursor to compare against */
5242 UnpackedRecord *pUnpacked, /* Unpacked version of key */
5243 int *res /* Write the comparison result here */
5245 i64 nCellKey = 0;
5246 int rc;
5247 BtCursor *pCur;
5248 Mem m;
5250 assert( pC->eCurType==CURTYPE_BTREE );
5251 pCur = pC->uc.pCursor;
5252 assert( sqlite3BtreeCursorIsValid(pCur) );
5253 nCellKey = sqlite3BtreePayloadSize(pCur);
5254 /* nCellKey will always be between 0 and 0xffffffff because of the way
5255 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
5256 if( nCellKey<=0 || nCellKey>0x7fffffff ){
5257 *res = 0;
5258 return SQLITE_CORRUPT_BKPT;
5260 sqlite3VdbeMemInit(&m, db, 0);
5261 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m);
5262 if( rc ){
5263 return rc;
5265 *res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, pUnpacked, 0);
5266 sqlite3VdbeMemReleaseMalloc(&m);
5267 return SQLITE_OK;
5271 ** This routine sets the value to be returned by subsequent calls to
5272 ** sqlite3_changes() on the database handle 'db'.
5274 void sqlite3VdbeSetChanges(sqlite3 *db, i64 nChange){
5275 assert( sqlite3_mutex_held(db->mutex) );
5276 db->nChange = nChange;
5277 db->nTotalChange += nChange;
5281 ** Set a flag in the vdbe to update the change counter when it is finalised
5282 ** or reset.
5284 void sqlite3VdbeCountChanges(Vdbe *v){
5285 v->changeCntOn = 1;
5289 ** Mark every prepared statement associated with a database connection
5290 ** as expired.
5292 ** An expired statement means that recompilation of the statement is
5293 ** recommend. Statements expire when things happen that make their
5294 ** programs obsolete. Removing user-defined functions or collating
5295 ** sequences, or changing an authorization function are the types of
5296 ** things that make prepared statements obsolete.
5298 ** If iCode is 1, then expiration is advisory. The statement should
5299 ** be reprepared before being restarted, but if it is already running
5300 ** it is allowed to run to completion.
5302 ** Internally, this function just sets the Vdbe.expired flag on all
5303 ** prepared statements. The flag is set to 1 for an immediate expiration
5304 ** and set to 2 for an advisory expiration.
5306 void sqlite3ExpirePreparedStatements(sqlite3 *db, int iCode){
5307 Vdbe *p;
5308 for(p = db->pVdbe; p; p=p->pVNext){
5309 p->expired = iCode+1;
5314 ** Return the database associated with the Vdbe.
5316 sqlite3 *sqlite3VdbeDb(Vdbe *v){
5317 return v->db;
5321 ** Return the SQLITE_PREPARE flags for a Vdbe.
5323 u8 sqlite3VdbePrepareFlags(Vdbe *v){
5324 return v->prepFlags;
5328 ** Return a pointer to an sqlite3_value structure containing the value bound
5329 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return
5330 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_*
5331 ** constants) to the value before returning it.
5333 ** The returned value must be freed by the caller using sqlite3ValueFree().
5335 sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){
5336 assert( iVar>0 );
5337 if( v ){
5338 Mem *pMem = &v->aVar[iVar-1];
5339 assert( (v->db->flags & SQLITE_EnableQPSG)==0
5340 || (v->db->mDbFlags & DBFLAG_InternalFunc)!=0 );
5341 if( 0==(pMem->flags & MEM_Null) ){
5342 sqlite3_value *pRet = sqlite3ValueNew(v->db);
5343 if( pRet ){
5344 sqlite3VdbeMemCopy((Mem *)pRet, pMem);
5345 sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8);
5347 return pRet;
5350 return 0;
5354 ** Configure SQL variable iVar so that binding a new value to it signals
5355 ** to sqlite3_reoptimize() that re-preparing the statement may result
5356 ** in a better query plan.
5358 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){
5359 assert( iVar>0 );
5360 assert( (v->db->flags & SQLITE_EnableQPSG)==0
5361 || (v->db->mDbFlags & DBFLAG_InternalFunc)!=0 );
5362 if( iVar>=32 ){
5363 v->expmask |= 0x80000000;
5364 }else{
5365 v->expmask |= ((u32)1 << (iVar-1));
5370 ** Cause a function to throw an error if it was call from OP_PureFunc
5371 ** rather than OP_Function.
5373 ** OP_PureFunc means that the function must be deterministic, and should
5374 ** throw an error if it is given inputs that would make it non-deterministic.
5375 ** This routine is invoked by date/time functions that use non-deterministic
5376 ** features such as 'now'.
5378 int sqlite3NotPureFunc(sqlite3_context *pCtx){
5379 const VdbeOp *pOp;
5380 #ifdef SQLITE_ENABLE_STAT4
5381 if( pCtx->pVdbe==0 ) return 1;
5382 #endif
5383 pOp = pCtx->pVdbe->aOp + pCtx->iOp;
5384 if( pOp->opcode==OP_PureFunc ){
5385 const char *zContext;
5386 char *zMsg;
5387 if( pOp->p5 & NC_IsCheck ){
5388 zContext = "a CHECK constraint";
5389 }else if( pOp->p5 & NC_GenCol ){
5390 zContext = "a generated column";
5391 }else{
5392 zContext = "an index";
5394 zMsg = sqlite3_mprintf("non-deterministic use of %s() in %s",
5395 pCtx->pFunc->zName, zContext);
5396 sqlite3_result_error(pCtx, zMsg, -1);
5397 sqlite3_free(zMsg);
5398 return 0;
5400 return 1;
5403 #if defined(SQLITE_ENABLE_CURSOR_HINTS) && defined(SQLITE_DEBUG)
5405 ** This Walker callback is used to help verify that calls to
5406 ** sqlite3BtreeCursorHint() with opcode BTREE_HINT_RANGE have
5407 ** byte-code register values correctly initialized.
5409 int sqlite3CursorRangeHintExprCheck(Walker *pWalker, Expr *pExpr){
5410 if( pExpr->op==TK_REGISTER ){
5411 assert( (pWalker->u.aMem[pExpr->iTable].flags & MEM_Undefined)==0 );
5413 return WRC_Continue;
5415 #endif /* SQLITE_ENABLE_CURSOR_HINTS && SQLITE_DEBUG */
5417 #ifndef SQLITE_OMIT_VIRTUALTABLE
5419 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
5420 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
5421 ** in memory obtained from sqlite3DbMalloc).
5423 void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){
5424 if( pVtab->zErrMsg ){
5425 sqlite3 *db = p->db;
5426 sqlite3DbFree(db, p->zErrMsg);
5427 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
5428 sqlite3_free(pVtab->zErrMsg);
5429 pVtab->zErrMsg = 0;
5432 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5434 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5437 ** If the second argument is not NULL, release any allocations associated
5438 ** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord
5439 ** structure itself, using sqlite3DbFree().
5441 ** This function is used to free UnpackedRecord structures allocated by
5442 ** the vdbeUnpackRecord() function found in vdbeapi.c.
5444 static void vdbeFreeUnpacked(sqlite3 *db, int nField, UnpackedRecord *p){
5445 assert( db!=0 );
5446 if( p ){
5447 int i;
5448 for(i=0; i<nField; i++){
5449 Mem *pMem = &p->aMem[i];
5450 if( pMem->zMalloc ) sqlite3VdbeMemReleaseMalloc(pMem);
5452 sqlite3DbNNFreeNN(db, p);
5455 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
5457 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5459 ** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call,
5460 ** then cursor passed as the second argument should point to the row about
5461 ** to be update or deleted. If the application calls sqlite3_preupdate_old(),
5462 ** the required value will be read from the row the cursor points to.
5464 void sqlite3VdbePreUpdateHook(
5465 Vdbe *v, /* Vdbe pre-update hook is invoked by */
5466 VdbeCursor *pCsr, /* Cursor to grab old.* values from */
5467 int op, /* SQLITE_INSERT, UPDATE or DELETE */
5468 const char *zDb, /* Database name */
5469 Table *pTab, /* Modified table */
5470 i64 iKey1, /* Initial key value */
5471 int iReg, /* Register for new.* record */
5472 int iBlobWrite
5474 sqlite3 *db = v->db;
5475 i64 iKey2;
5476 PreUpdate preupdate;
5477 const char *zTbl = pTab->zName;
5478 static const u8 fakeSortOrder = 0;
5479 #ifdef SQLITE_DEBUG
5480 int nRealCol;
5481 if( pTab->tabFlags & TF_WithoutRowid ){
5482 nRealCol = sqlite3PrimaryKeyIndex(pTab)->nColumn;
5483 }else if( pTab->tabFlags & TF_HasVirtual ){
5484 nRealCol = pTab->nNVCol;
5485 }else{
5486 nRealCol = pTab->nCol;
5488 #endif
5490 assert( db->pPreUpdate==0 );
5491 memset(&preupdate, 0, sizeof(PreUpdate));
5492 if( HasRowid(pTab)==0 ){
5493 iKey1 = iKey2 = 0;
5494 preupdate.pPk = sqlite3PrimaryKeyIndex(pTab);
5495 }else{
5496 if( op==SQLITE_UPDATE ){
5497 iKey2 = v->aMem[iReg].u.i;
5498 }else{
5499 iKey2 = iKey1;
5503 assert( pCsr!=0 );
5504 assert( pCsr->eCurType==CURTYPE_BTREE );
5505 assert( pCsr->nField==nRealCol
5506 || (pCsr->nField==nRealCol+1 && op==SQLITE_DELETE && iReg==-1)
5509 preupdate.v = v;
5510 preupdate.pCsr = pCsr;
5511 preupdate.op = op;
5512 preupdate.iNewReg = iReg;
5513 preupdate.keyinfo.db = db;
5514 preupdate.keyinfo.enc = ENC(db);
5515 preupdate.keyinfo.nKeyField = pTab->nCol;
5516 preupdate.keyinfo.aSortFlags = (u8*)&fakeSortOrder;
5517 preupdate.iKey1 = iKey1;
5518 preupdate.iKey2 = iKey2;
5519 preupdate.pTab = pTab;
5520 preupdate.iBlobWrite = iBlobWrite;
5522 db->pPreUpdate = &preupdate;
5523 db->xPreUpdateCallback(db->pPreUpdateArg, db, op, zDb, zTbl, iKey1, iKey2);
5524 db->pPreUpdate = 0;
5525 sqlite3DbFree(db, preupdate.aRecord);
5526 vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pUnpacked);
5527 vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pNewUnpacked);
5528 if( preupdate.aNew ){
5529 int i;
5530 for(i=0; i<pCsr->nField; i++){
5531 sqlite3VdbeMemRelease(&preupdate.aNew[i]);
5533 sqlite3DbNNFreeNN(db, preupdate.aNew);
5536 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */