4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains code used for creating, destroying, and populating
13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)
15 #include "sqliteInt.h"
18 /* Forward references */
19 static void freeEphemeralFunction(sqlite3
*db
, FuncDef
*pDef
);
20 static void vdbeFreeOpArray(sqlite3
*, Op
*, int);
23 ** Create a new virtual database engine.
25 Vdbe
*sqlite3VdbeCreate(Parse
*pParse
){
26 sqlite3
*db
= pParse
->db
;
28 p
= sqlite3DbMallocRawNN(db
, sizeof(Vdbe
) );
30 memset(&p
->aOp
, 0, sizeof(Vdbe
)-offsetof(Vdbe
,aOp
));
33 db
->pVdbe
->ppVPrev
= &p
->pVNext
;
35 p
->pVNext
= db
->pVdbe
;
36 p
->ppVPrev
= &db
->pVdbe
;
38 assert( p
->eVdbeState
==VDBE_INIT_STATE
);
41 assert( pParse
->aLabel
==0 );
42 assert( pParse
->nLabel
==0 );
43 assert( p
->nOpAlloc
==0 );
44 assert( pParse
->szOpAlloc
==0 );
45 sqlite3VdbeAddOp2(p
, OP_Init
, 0, 1);
50 ** Return the Parse object that owns a Vdbe object.
52 Parse
*sqlite3VdbeParser(Vdbe
*p
){
57 ** Change the error string stored in Vdbe.zErrMsg
59 void sqlite3VdbeError(Vdbe
*p
, const char *zFormat
, ...){
61 sqlite3DbFree(p
->db
, p
->zErrMsg
);
62 va_start(ap
, zFormat
);
63 p
->zErrMsg
= sqlite3VMPrintf(p
->db
, zFormat
, ap
);
68 ** Remember the SQL string for a prepared statement.
70 void sqlite3VdbeSetSql(Vdbe
*p
, const char *z
, int n
, u8 prepFlags
){
72 p
->prepFlags
= prepFlags
;
73 if( (prepFlags
& SQLITE_PREPARE_SAVESQL
)==0 ){
77 p
->zSql
= sqlite3DbStrNDup(p
->db
, z
, n
);
80 #ifdef SQLITE_ENABLE_NORMALIZE
82 ** Add a new element to the Vdbe->pDblStr list.
84 void sqlite3VdbeAddDblquoteStr(sqlite3
*db
, Vdbe
*p
, const char *z
){
86 int n
= sqlite3Strlen30(z
);
87 DblquoteStr
*pStr
= sqlite3DbMallocRawNN(db
,
88 sizeof(*pStr
)+n
+1-sizeof(pStr
->z
));
90 pStr
->pNextStr
= p
->pDblStr
;
92 memcpy(pStr
->z
, z
, n
+1);
98 #ifdef SQLITE_ENABLE_NORMALIZE
100 ** zId of length nId is a double-quoted identifier. Check to see if
101 ** that identifier is really used as a string literal.
103 int sqlite3VdbeUsesDoubleQuotedString(
104 Vdbe
*pVdbe
, /* The prepared statement */
105 const char *zId
/* The double-quoted identifier, already dequoted */
109 if( pVdbe
->pDblStr
==0 ) return 0;
110 for(pStr
=pVdbe
->pDblStr
; pStr
; pStr
=pStr
->pNextStr
){
111 if( strcmp(zId
, pStr
->z
)==0 ) return 1;
118 ** Swap byte-code between two VDBE structures.
120 ** This happens after pB was previously run and returned
121 ** SQLITE_SCHEMA. The statement was then reprepared in pA.
122 ** This routine transfers the new bytecode in pA over to pB
123 ** so that pB can be run again. The old pB byte code is
124 ** moved back to pA so that it will be cleaned up when pA is
127 void sqlite3VdbeSwap(Vdbe
*pA
, Vdbe
*pB
){
128 Vdbe tmp
, *pTmp
, **ppTmp
;
130 assert( pA
->db
==pB
->db
);
135 pA
->pVNext
= pB
->pVNext
;
138 pA
->ppVPrev
= pB
->ppVPrev
;
143 #ifdef SQLITE_ENABLE_NORMALIZE
145 pA
->zNormSql
= pB
->zNormSql
;
148 pB
->expmask
= pA
->expmask
;
149 pB
->prepFlags
= pA
->prepFlags
;
150 memcpy(pB
->aCounter
, pA
->aCounter
, sizeof(pB
->aCounter
));
151 pB
->aCounter
[SQLITE_STMTSTATUS_REPREPARE
]++;
155 ** Resize the Vdbe.aOp array so that it is at least nOp elements larger
156 ** than its current size. nOp is guaranteed to be less than or equal
157 ** to 1024/sizeof(Op).
159 ** If an out-of-memory error occurs while resizing the array, return
160 ** SQLITE_NOMEM. In this case Vdbe.aOp and Vdbe.nOpAlloc remain
161 ** unchanged (this is so that any opcodes already allocated can be
162 ** correctly deallocated along with the rest of the Vdbe).
164 static int growOpArray(Vdbe
*v
, int nOp
){
166 Parse
*p
= v
->pParse
;
168 /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force
169 ** more frequent reallocs and hence provide more opportunities for
170 ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used
171 ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array
172 ** by the minimum* amount required until the size reaches 512. Normal
173 ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current
174 ** size of the op array or add 1KB of space, whichever is smaller. */
175 #ifdef SQLITE_TEST_REALLOC_STRESS
176 sqlite3_int64 nNew
= (v
->nOpAlloc
>=512 ? 2*(sqlite3_int64
)v
->nOpAlloc
177 : (sqlite3_int64
)v
->nOpAlloc
+nOp
);
179 sqlite3_int64 nNew
= (v
->nOpAlloc
? 2*(sqlite3_int64
)v
->nOpAlloc
180 : (sqlite3_int64
)(1024/sizeof(Op
)));
181 UNUSED_PARAMETER(nOp
);
184 /* Ensure that the size of a VDBE does not grow too large */
185 if( nNew
> p
->db
->aLimit
[SQLITE_LIMIT_VDBE_OP
] ){
186 sqlite3OomFault(p
->db
);
190 assert( nOp
<=(int)(1024/sizeof(Op
)) );
191 assert( nNew
>=(v
->nOpAlloc
+nOp
) );
192 pNew
= sqlite3DbRealloc(p
->db
, v
->aOp
, nNew
*sizeof(Op
));
194 p
->szOpAlloc
= sqlite3DbMallocSize(p
->db
, pNew
);
195 v
->nOpAlloc
= p
->szOpAlloc
/sizeof(Op
);
198 return (pNew
? SQLITE_OK
: SQLITE_NOMEM_BKPT
);
202 /* This routine is just a convenient place to set a breakpoint that will
203 ** fire after each opcode is inserted and displayed using
204 ** "PRAGMA vdbe_addoptrace=on". Parameters "pc" (program counter) and
205 ** pOp are available to make the breakpoint conditional.
207 ** Other useful labels for breakpoints include:
208 ** test_trace_breakpoint(pc,pOp)
209 ** sqlite3CorruptError(lineno)
210 ** sqlite3MisuseError(lineno)
211 ** sqlite3CantopenError(lineno)
213 static void test_addop_breakpoint(int pc
, Op
*pOp
){
218 if( n
==LARGEST_UINT64
) abort(); /* so that n is used, preventing a warning */
223 ** Slow paths for sqlite3VdbeAddOp3() and sqlite3VdbeAddOp4Int() for the
224 ** unusual case when we need to increase the size of the Vdbe.aOp[] array
225 ** before adding the new opcode.
227 static SQLITE_NOINLINE
int growOp3(Vdbe
*p
, int op
, int p1
, int p2
, int p3
){
228 assert( p
->nOpAlloc
<=p
->nOp
);
229 if( growOpArray(p
, 1) ) return 1;
230 assert( p
->nOpAlloc
>p
->nOp
);
231 return sqlite3VdbeAddOp3(p
, op
, p1
, p2
, p3
);
233 static SQLITE_NOINLINE
int addOp4IntSlow(
234 Vdbe
*p
, /* Add the opcode to this VM */
235 int op
, /* The new opcode */
236 int p1
, /* The P1 operand */
237 int p2
, /* The P2 operand */
238 int p3
, /* The P3 operand */
239 int p4
/* The P4 operand as an integer */
241 int addr
= sqlite3VdbeAddOp3(p
, op
, p1
, p2
, p3
);
242 if( p
->db
->mallocFailed
==0 ){
243 VdbeOp
*pOp
= &p
->aOp
[addr
];
244 pOp
->p4type
= P4_INT32
;
252 ** Add a new instruction to the list of instructions current in the
253 ** VDBE. Return the address of the new instruction.
257 ** p Pointer to the VDBE
259 ** op The opcode for this instruction
261 ** p1, p2, p3, p4 Operands
263 int sqlite3VdbeAddOp0(Vdbe
*p
, int op
){
264 return sqlite3VdbeAddOp3(p
, op
, 0, 0, 0);
266 int sqlite3VdbeAddOp1(Vdbe
*p
, int op
, int p1
){
267 return sqlite3VdbeAddOp3(p
, op
, p1
, 0, 0);
269 int sqlite3VdbeAddOp2(Vdbe
*p
, int op
, int p1
, int p2
){
270 return sqlite3VdbeAddOp3(p
, op
, p1
, p2
, 0);
272 int sqlite3VdbeAddOp3(Vdbe
*p
, int op
, int p1
, int p2
, int p3
){
277 assert( p
->eVdbeState
==VDBE_INIT_STATE
);
278 assert( op
>=0 && op
<0xff );
279 if( p
->nOpAlloc
<=i
){
280 return growOp3(p
, op
, p1
, p2
, p3
);
286 pOp
->opcode
= (u8
)op
;
292 pOp
->p4type
= P4_NOTUSED
;
294 /* Replicate this logic in sqlite3VdbeAddOp4Int()
295 ** vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv */
296 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
299 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || defined(VDBE_PROFILE)
304 if( p
->db
->flags
& SQLITE_VdbeAddopTrace
){
305 sqlite3VdbePrintOp(0, i
, &p
->aOp
[i
]);
306 test_addop_breakpoint(i
, &p
->aOp
[i
]);
309 #ifdef SQLITE_VDBE_COVERAGE
312 /* ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
313 ** Replicate in sqlite3VdbeAddOp4Int() */
317 int sqlite3VdbeAddOp4Int(
318 Vdbe
*p
, /* Add the opcode to this VM */
319 int op
, /* The new opcode */
320 int p1
, /* The P1 operand */
321 int p2
, /* The P2 operand */
322 int p3
, /* The P3 operand */
323 int p4
/* The P4 operand as an integer */
329 if( p
->nOpAlloc
<=i
){
330 return addOp4IntSlow(p
, op
, p1
, p2
, p3
, p4
);
335 pOp
->opcode
= (u8
)op
;
341 pOp
->p4type
= P4_INT32
;
343 /* Replicate this logic in sqlite3VdbeAddOp3()
344 ** vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv */
345 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
348 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || defined(VDBE_PROFILE)
353 if( p
->db
->flags
& SQLITE_VdbeAddopTrace
){
354 sqlite3VdbePrintOp(0, i
, &p
->aOp
[i
]);
355 test_addop_breakpoint(i
, &p
->aOp
[i
]);
358 #ifdef SQLITE_VDBE_COVERAGE
361 /* ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
362 ** Replicate in sqlite3VdbeAddOp3() */
367 /* Generate code for an unconditional jump to instruction iDest
369 int sqlite3VdbeGoto(Vdbe
*p
, int iDest
){
370 return sqlite3VdbeAddOp3(p
, OP_Goto
, 0, iDest
, 0);
373 /* Generate code to cause the string zStr to be loaded into
376 int sqlite3VdbeLoadString(Vdbe
*p
, int iDest
, const char *zStr
){
377 return sqlite3VdbeAddOp4(p
, OP_String8
, 0, iDest
, 0, zStr
, 0);
381 ** Generate code that initializes multiple registers to string or integer
382 ** constants. The registers begin with iDest and increase consecutively.
383 ** One register is initialized for each characgter in zTypes[]. For each
384 ** "s" character in zTypes[], the register is a string if the argument is
385 ** not NULL, or OP_Null if the value is a null pointer. For each "i" character
386 ** in zTypes[], the register is initialized to an integer.
388 ** If the input string does not end with "X" then an OP_ResultRow instruction
389 ** is generated for the values inserted.
391 void sqlite3VdbeMultiLoad(Vdbe
*p
, int iDest
, const char *zTypes
, ...){
395 va_start(ap
, zTypes
);
396 for(i
=0; (c
= zTypes
[i
])!=0; i
++){
398 const char *z
= va_arg(ap
, const char*);
399 sqlite3VdbeAddOp4(p
, z
==0 ? OP_Null
: OP_String8
, 0, iDest
+i
, 0, z
, 0);
401 sqlite3VdbeAddOp2(p
, OP_Integer
, va_arg(ap
, int), iDest
+i
);
403 goto skip_op_resultrow
;
406 sqlite3VdbeAddOp2(p
, OP_ResultRow
, iDest
, i
);
412 ** Add an opcode that includes the p4 value as a pointer.
414 int sqlite3VdbeAddOp4(
415 Vdbe
*p
, /* Add the opcode to this VM */
416 int op
, /* The new opcode */
417 int p1
, /* The P1 operand */
418 int p2
, /* The P2 operand */
419 int p3
, /* The P3 operand */
420 const char *zP4
, /* The P4 operand */
421 int p4type
/* P4 operand type */
423 int addr
= sqlite3VdbeAddOp3(p
, op
, p1
, p2
, p3
);
424 sqlite3VdbeChangeP4(p
, addr
, zP4
, p4type
);
429 ** Add an OP_Function or OP_PureFunc opcode.
431 ** The eCallCtx argument is information (typically taken from Expr.op2)
432 ** that describes the calling context of the function. 0 means a general
433 ** function call. NC_IsCheck means called by a check constraint,
434 ** NC_IdxExpr means called as part of an index expression. NC_PartIdx
435 ** means in the WHERE clause of a partial index. NC_GenCol means called
436 ** while computing a generated column value. 0 is the usual case.
438 int sqlite3VdbeAddFunctionCall(
439 Parse
*pParse
, /* Parsing context */
440 int p1
, /* Constant argument mask */
441 int p2
, /* First argument register */
442 int p3
, /* Register into which results are written */
443 int nArg
, /* Number of argument */
444 const FuncDef
*pFunc
, /* The function to be invoked */
445 int eCallCtx
/* Calling context */
447 Vdbe
*v
= pParse
->pVdbe
;
450 sqlite3_context
*pCtx
;
452 nByte
= sizeof(*pCtx
) + (nArg
-1)*sizeof(sqlite3_value
*);
453 pCtx
= sqlite3DbMallocRawNN(pParse
->db
, nByte
);
455 assert( pParse
->db
->mallocFailed
);
456 freeEphemeralFunction(pParse
->db
, (FuncDef
*)pFunc
);
460 pCtx
->pFunc
= (FuncDef
*)pFunc
;
464 pCtx
->iOp
= sqlite3VdbeCurrentAddr(v
);
465 addr
= sqlite3VdbeAddOp4(v
, eCallCtx
? OP_PureFunc
: OP_Function
,
466 p1
, p2
, p3
, (char*)pCtx
, P4_FUNCCTX
);
467 sqlite3VdbeChangeP5(v
, eCallCtx
& NC_SelfRef
);
468 sqlite3MayAbort(pParse
);
473 ** Add an opcode that includes the p4 value with a P4_INT64 or
476 int sqlite3VdbeAddOp4Dup8(
477 Vdbe
*p
, /* Add the opcode to this VM */
478 int op
, /* The new opcode */
479 int p1
, /* The P1 operand */
480 int p2
, /* The P2 operand */
481 int p3
, /* The P3 operand */
482 const u8
*zP4
, /* The P4 operand */
483 int p4type
/* P4 operand type */
485 char *p4copy
= sqlite3DbMallocRawNN(sqlite3VdbeDb(p
), 8);
486 if( p4copy
) memcpy(p4copy
, zP4
, 8);
487 return sqlite3VdbeAddOp4(p
, op
, p1
, p2
, p3
, p4copy
, p4type
);
490 #ifndef SQLITE_OMIT_EXPLAIN
492 ** Return the address of the current EXPLAIN QUERY PLAN baseline.
495 int sqlite3VdbeExplainParent(Parse
*pParse
){
497 if( pParse
->addrExplain
==0 ) return 0;
498 pOp
= sqlite3VdbeGetOp(pParse
->pVdbe
, pParse
->addrExplain
);
503 ** Set a debugger breakpoint on the following routine in order to
504 ** monitor the EXPLAIN QUERY PLAN code generation.
506 #if defined(SQLITE_DEBUG)
507 void sqlite3ExplainBreakpoint(const char *z1
, const char *z2
){
514 ** Add a new OP_Explain opcode.
516 ** If the bPush flag is true, then make this opcode the parent for
517 ** subsequent Explains until sqlite3VdbeExplainPop() is called.
519 int sqlite3VdbeExplain(Parse
*pParse
, u8 bPush
, const char *zFmt
, ...){
521 #if !defined(SQLITE_DEBUG)
522 /* Always include the OP_Explain opcodes if SQLITE_DEBUG is defined.
523 ** But omit them (for performance) during production builds */
524 if( pParse
->explain
==2 || IS_STMT_SCANSTATUS(pParse
->db
) )
532 zMsg
= sqlite3VMPrintf(pParse
->db
, zFmt
, ap
);
536 addr
= sqlite3VdbeAddOp4(v
, OP_Explain
, iThis
, pParse
->addrExplain
, 0,
538 sqlite3ExplainBreakpoint(bPush
?"PUSH":"", sqlite3VdbeGetLastOp(v
)->p4
.z
);
540 pParse
->addrExplain
= iThis
;
542 sqlite3VdbeScanStatus(v
, iThis
, -1, -1, 0, 0);
548 ** Pop the EXPLAIN QUERY PLAN stack one level.
550 void sqlite3VdbeExplainPop(Parse
*pParse
){
551 sqlite3ExplainBreakpoint("POP", 0);
552 pParse
->addrExplain
= sqlite3VdbeExplainParent(pParse
);
554 #endif /* SQLITE_OMIT_EXPLAIN */
557 ** Add an OP_ParseSchema opcode. This routine is broken out from
558 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees
559 ** as having been used.
561 ** The zWhere string must have been obtained from sqlite3_malloc().
562 ** This routine will take ownership of the allocated memory.
564 void sqlite3VdbeAddParseSchemaOp(Vdbe
*p
, int iDb
, char *zWhere
, u16 p5
){
566 sqlite3VdbeAddOp4(p
, OP_ParseSchema
, iDb
, 0, 0, zWhere
, P4_DYNAMIC
);
567 sqlite3VdbeChangeP5(p
, p5
);
568 for(j
=0; j
<p
->db
->nDb
; j
++) sqlite3VdbeUsesBtree(p
, j
);
569 sqlite3MayAbort(p
->pParse
);
572 /* Insert the end of a co-routine
574 void sqlite3VdbeEndCoroutine(Vdbe
*v
, int regYield
){
575 sqlite3VdbeAddOp1(v
, OP_EndCoroutine
, regYield
);
577 /* Clear the temporary register cache, thereby ensuring that each
578 ** co-routine has its own independent set of registers, because co-routines
579 ** might expect their registers to be preserved across an OP_Yield, and
580 ** that could cause problems if two or more co-routines are using the same
581 ** temporary register.
583 v
->pParse
->nTempReg
= 0;
584 v
->pParse
->nRangeReg
= 0;
588 ** Create a new symbolic label for an instruction that has yet to be
589 ** coded. The symbolic label is really just a negative number. The
590 ** label can be used as the P2 value of an operation. Later, when
591 ** the label is resolved to a specific address, the VDBE will scan
592 ** through its operation list and change all values of P2 which match
593 ** the label into the resolved address.
595 ** The VDBE knows that a P2 value is a label because labels are
596 ** always negative and P2 values are suppose to be non-negative.
597 ** Hence, a negative P2 value is a label that has yet to be resolved.
598 ** (Later:) This is only true for opcodes that have the OPFLG_JUMP
601 ** Variable usage notes:
603 ** Parse.aLabel[x] Stores the address that the x-th label resolves
604 ** into. For testing (SQLITE_DEBUG), unresolved
605 ** labels stores -1, but that is not required.
606 ** Parse.nLabelAlloc Number of slots allocated to Parse.aLabel[]
607 ** Parse.nLabel The *negative* of the number of labels that have
608 ** been issued. The negative is stored because
609 ** that gives a performance improvement over storing
610 ** the equivalent positive value.
612 int sqlite3VdbeMakeLabel(Parse
*pParse
){
613 return --pParse
->nLabel
;
617 ** Resolve label "x" to be the address of the next instruction to
618 ** be inserted. The parameter "x" must have been obtained from
619 ** a prior call to sqlite3VdbeMakeLabel().
621 static SQLITE_NOINLINE
void resizeResolveLabel(Parse
*p
, Vdbe
*v
, int j
){
622 int nNewSize
= 10 - p
->nLabel
;
623 p
->aLabel
= sqlite3DbReallocOrFree(p
->db
, p
->aLabel
,
624 nNewSize
*sizeof(p
->aLabel
[0]));
630 for(i
=p
->nLabelAlloc
; i
<nNewSize
; i
++) p
->aLabel
[i
] = -1;
632 if( nNewSize
>=100 && (nNewSize
/100)>(p
->nLabelAlloc
/100) ){
633 sqlite3ProgressCheck(p
);
635 p
->nLabelAlloc
= nNewSize
;
636 p
->aLabel
[j
] = v
->nOp
;
639 void sqlite3VdbeResolveLabel(Vdbe
*v
, int x
){
640 Parse
*p
= v
->pParse
;
642 assert( v
->eVdbeState
==VDBE_INIT_STATE
);
643 assert( j
<-p
->nLabel
);
646 if( p
->db
->flags
& SQLITE_VdbeAddopTrace
){
647 printf("RESOLVE LABEL %d to %d\n", x
, v
->nOp
);
650 if( p
->nLabelAlloc
+ p
->nLabel
< 0 ){
651 resizeResolveLabel(p
,v
,j
);
653 assert( p
->aLabel
[j
]==(-1) ); /* Labels may only be resolved once */
654 p
->aLabel
[j
] = v
->nOp
;
659 ** Mark the VDBE as one that can only be run one time.
661 void sqlite3VdbeRunOnlyOnce(Vdbe
*p
){
662 sqlite3VdbeAddOp2(p
, OP_Expire
, 1, 1);
666 ** Mark the VDBE as one that can be run multiple times.
668 void sqlite3VdbeReusable(Vdbe
*p
){
670 for(i
=1; ALWAYS(i
<p
->nOp
); i
++){
671 if( ALWAYS(p
->aOp
[i
].opcode
==OP_Expire
) ){
672 p
->aOp
[1].opcode
= OP_Noop
;
678 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */
681 ** The following type and function are used to iterate through all opcodes
682 ** in a Vdbe main program and each of the sub-programs (triggers) it may
683 ** invoke directly or indirectly. It should be used as follows:
688 ** memset(&sIter, 0, sizeof(sIter));
689 ** sIter.v = v; // v is of type Vdbe*
690 ** while( (pOp = opIterNext(&sIter)) ){
691 ** // Do something with pOp
693 ** sqlite3DbFree(v->db, sIter.apSub);
696 typedef struct VdbeOpIter VdbeOpIter
;
698 Vdbe
*v
; /* Vdbe to iterate through the opcodes of */
699 SubProgram
**apSub
; /* Array of subprograms */
700 int nSub
; /* Number of entries in apSub */
701 int iAddr
; /* Address of next instruction to return */
702 int iSub
; /* 0 = main program, 1 = first sub-program etc. */
704 static Op
*opIterNext(VdbeOpIter
*p
){
710 if( p
->iSub
<=p
->nSub
){
716 aOp
= p
->apSub
[p
->iSub
-1]->aOp
;
717 nOp
= p
->apSub
[p
->iSub
-1]->nOp
;
719 assert( p
->iAddr
<nOp
);
721 pRet
= &aOp
[p
->iAddr
];
728 if( pRet
->p4type
==P4_SUBPROGRAM
){
729 int nByte
= (p
->nSub
+1)*sizeof(SubProgram
*);
731 for(j
=0; j
<p
->nSub
; j
++){
732 if( p
->apSub
[j
]==pRet
->p4
.pProgram
) break;
735 p
->apSub
= sqlite3DbReallocOrFree(v
->db
, p
->apSub
, nByte
);
739 p
->apSub
[p
->nSub
++] = pRet
->p4
.pProgram
;
749 ** Check if the program stored in the VM associated with pParse may
750 ** throw an ABORT exception (causing the statement, but not entire transaction
751 ** to be rolled back). This condition is true if the main program or any
752 ** sub-programs contains any of the following:
754 ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
755 ** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
760 ** * OP_FkCounter with P2==0 (immediate foreign key constraint)
761 ** * OP_CreateBtree/BTREE_INTKEY and OP_InitCoroutine
762 ** (for CREATE TABLE AS SELECT ...)
764 ** Then check that the value of Parse.mayAbort is true if an
765 ** ABORT may be thrown, or false otherwise. Return true if it does
766 ** match, or false otherwise. This function is intended to be used as
767 ** part of an assert statement in the compiler. Similar to:
769 ** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) );
771 int sqlite3VdbeAssertMayAbort(Vdbe
*v
, int mayAbort
){
773 int hasFkCounter
= 0;
774 int hasCreateTable
= 0;
775 int hasCreateIndex
= 0;
776 int hasInitCoroutine
= 0;
781 memset(&sIter
, 0, sizeof(sIter
));
784 while( (pOp
= opIterNext(&sIter
))!=0 ){
785 int opcode
= pOp
->opcode
;
786 if( opcode
==OP_Destroy
|| opcode
==OP_VUpdate
|| opcode
==OP_VRename
787 || opcode
==OP_VDestroy
788 || opcode
==OP_VCreate
789 || opcode
==OP_ParseSchema
790 || opcode
==OP_Function
|| opcode
==OP_PureFunc
791 || ((opcode
==OP_Halt
|| opcode
==OP_HaltIfNull
)
792 && ((pOp
->p1
)!=SQLITE_OK
&& pOp
->p2
==OE_Abort
))
797 if( opcode
==OP_CreateBtree
&& pOp
->p3
==BTREE_INTKEY
) hasCreateTable
= 1;
799 /* hasCreateIndex may also be set for some DELETE statements that use
800 ** OP_Clear. So this routine may end up returning true in the case
801 ** where a "DELETE FROM tbl" has a statement-journal but does not
802 ** require one. This is not so bad - it is an inefficiency, not a bug. */
803 if( opcode
==OP_CreateBtree
&& pOp
->p3
==BTREE_BLOBKEY
) hasCreateIndex
= 1;
804 if( opcode
==OP_Clear
) hasCreateIndex
= 1;
806 if( opcode
==OP_InitCoroutine
) hasInitCoroutine
= 1;
807 #ifndef SQLITE_OMIT_FOREIGN_KEY
808 if( opcode
==OP_FkCounter
&& pOp
->p1
==0 && pOp
->p2
==1 ){
813 sqlite3DbFree(v
->db
, sIter
.apSub
);
815 /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred.
816 ** If malloc failed, then the while() loop above may not have iterated
817 ** through all opcodes and hasAbort may be set incorrectly. Return
818 ** true for this case to prevent the assert() in the callers frame
820 return ( v
->db
->mallocFailed
|| hasAbort
==mayAbort
|| hasFkCounter
821 || (hasCreateTable
&& hasInitCoroutine
) || hasCreateIndex
824 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */
828 ** Increment the nWrite counter in the VDBE if the cursor is not an
829 ** ephemeral cursor, or if the cursor argument is NULL.
831 void sqlite3VdbeIncrWriteCounter(Vdbe
*p
, VdbeCursor
*pC
){
833 || (pC
->eCurType
!=CURTYPE_SORTER
834 && pC
->eCurType
!=CURTYPE_PSEUDO
844 ** Assert if an Abort at this point in time might result in a corrupt
847 void sqlite3VdbeAssertAbortable(Vdbe
*p
){
848 assert( p
->nWrite
==0 || p
->usesStmtJournal
);
853 ** This routine is called after all opcodes have been inserted. It loops
854 ** through all the opcodes and fixes up some details.
856 ** (1) For each jump instruction with a negative P2 value (a label)
857 ** resolve the P2 value to an actual address.
859 ** (2) Compute the maximum number of arguments used by any SQL function
860 ** and store that value in *pMaxFuncArgs.
862 ** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately
863 ** indicate what the prepared statement actually does.
865 ** (4) (discontinued)
867 ** (5) Reclaim the memory allocated for storing labels.
869 ** This routine will only function correctly if the mkopcodeh.tcl generator
870 ** script numbers the opcodes correctly. Changes to this routine must be
871 ** coordinated with changes to mkopcodeh.tcl.
873 static void resolveP2Values(Vdbe
*p
, int *pMaxFuncArgs
){
874 int nMaxArgs
= *pMaxFuncArgs
;
876 Parse
*pParse
= p
->pParse
;
877 int *aLabel
= pParse
->aLabel
;
879 assert( pParse
->db
->mallocFailed
==0 ); /* tag-20230419-1 */
882 pOp
= &p
->aOp
[p
->nOp
-1];
883 assert( p
->aOp
[0].opcode
==OP_Init
);
884 while( 1 /* Loop terminates when it reaches the OP_Init opcode */ ){
885 /* Only JUMP opcodes and the short list of special opcodes in the switch
886 ** below need to be considered. The mkopcodeh.tcl generator script groups
887 ** all these opcodes together near the front of the opcode list. Skip
888 ** any opcode that does not need processing by virtual of the fact that
889 ** it is larger than SQLITE_MX_JUMP_OPCODE, as a performance optimization.
891 if( pOp
->opcode
<=SQLITE_MX_JUMP_OPCODE
){
892 /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing
893 ** cases from this switch! */
894 switch( pOp
->opcode
){
895 case OP_Transaction
: {
896 if( pOp
->p2
!=0 ) p
->readOnly
= 0;
897 /* no break */ deliberate_fall_through
904 #ifndef SQLITE_OMIT_WAL
908 case OP_JournalMode
: {
914 assert( pOp
->p2
>=0 );
915 goto resolve_p2_values_loop_exit
;
917 #ifndef SQLITE_OMIT_VIRTUALTABLE
919 if( pOp
->p2
>nMaxArgs
) nMaxArgs
= pOp
->p2
;
924 assert( (pOp
- p
->aOp
) >= 3 );
925 assert( pOp
[-1].opcode
==OP_Integer
);
927 if( n
>nMaxArgs
) nMaxArgs
= n
;
928 /* Fall through into the default case */
929 /* no break */ deliberate_fall_through
934 /* The mkopcodeh.tcl script has so arranged things that the only
935 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to
936 ** have non-negative values for P2. */
937 assert( (sqlite3OpcodeProperty
[pOp
->opcode
] & OPFLG_JUMP
)!=0 );
938 assert( ADDR(pOp
->p2
)<-pParse
->nLabel
);
939 assert( aLabel
!=0 ); /* True because of tag-20230419-1 */
940 pOp
->p2
= aLabel
[ADDR(pOp
->p2
)];
943 /* OPFLG_JUMP opcodes never have P2==0, though OPFLG_JUMP0 opcodes
946 || (sqlite3OpcodeProperty
[pOp
->opcode
] & OPFLG_JUMP0
)!=0 );
948 /* Jumps never go off the end of the bytecode array */
949 assert( pOp
->p2
<p
->nOp
950 || (sqlite3OpcodeProperty
[pOp
->opcode
] & OPFLG_JUMP
)==0 );
954 /* The mkopcodeh.tcl script has so arranged things that the only
955 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to
956 ** have non-negative values for P2. */
957 assert( (sqlite3OpcodeProperty
[pOp
->opcode
]&OPFLG_JUMP
)==0 || pOp
->p2
>=0);
959 assert( pOp
>p
->aOp
);
962 resolve_p2_values_loop_exit
:
964 sqlite3DbNNFreeNN(p
->db
, pParse
->aLabel
);
968 *pMaxFuncArgs
= nMaxArgs
;
969 assert( p
->bIsReader
!=0 || DbMaskAllZero(p
->btreeMask
) );
974 ** Check to see if a subroutine contains a jump to a location outside of
975 ** the subroutine. If a jump outside the subroutine is detected, add code
976 ** that will cause the program to halt with an error message.
978 ** The subroutine consists of opcodes between iFirst and iLast. Jumps to
979 ** locations within the subroutine are acceptable. iRetReg is a register
980 ** that contains the return address. Jumps to outside the range of iFirst
981 ** through iLast are also acceptable as long as the jump destination is
982 ** an OP_Return to iReturnAddr.
984 ** A jump to an unresolved label means that the jump destination will be
985 ** beyond the current address. That is normally a jump to an early
986 ** termination and is consider acceptable.
988 ** This routine only runs during debug builds. The purpose is (of course)
989 ** to detect invalid escapes out of a subroutine. The OP_Halt opcode
990 ** is generated rather than an assert() or other error, so that ".eqp full"
991 ** will still work to show the original bytecode, to aid in debugging.
993 void sqlite3VdbeNoJumpsOutsideSubrtn(
994 Vdbe
*v
, /* The byte-code program under construction */
995 int iFirst
, /* First opcode of the subroutine */
996 int iLast
, /* Last opcode of the subroutine */
997 int iRetReg
/* Subroutine return address register */
1002 sqlite3_str
*pErr
= 0;
1005 assert( pParse
!=0 );
1006 if( pParse
->nErr
) return;
1007 assert( iLast
>=iFirst
);
1008 assert( iLast
<v
->nOp
);
1009 pOp
= &v
->aOp
[iFirst
];
1010 for(i
=iFirst
; i
<=iLast
; i
++, pOp
++){
1011 if( (sqlite3OpcodeProperty
[pOp
->opcode
] & OPFLG_JUMP
)!=0 ){
1012 int iDest
= pOp
->p2
; /* Jump destination */
1013 if( iDest
==0 ) continue;
1014 if( pOp
->opcode
==OP_Gosub
) continue;
1015 if( pOp
->p3
==20230325 && pOp
->opcode
==OP_NotNull
){
1016 /* This is a deliberately taken illegal branch. tag-20230325-2 */
1020 int j
= ADDR(iDest
);
1022 if( j
>=-pParse
->nLabel
|| pParse
->aLabel
[j
]<0 ){
1025 iDest
= pParse
->aLabel
[j
];
1027 if( iDest
<iFirst
|| iDest
>iLast
){
1029 for(; j
<v
->nOp
; j
++){
1030 VdbeOp
*pX
= &v
->aOp
[j
];
1031 if( pX
->opcode
==OP_Return
){
1032 if( pX
->p1
==iRetReg
) break;
1035 if( pX
->opcode
==OP_Noop
) continue;
1036 if( pX
->opcode
==OP_Explain
) continue;
1038 pErr
= sqlite3_str_new(0);
1040 sqlite3_str_appendchar(pErr
, 1, '\n');
1042 sqlite3_str_appendf(pErr
,
1043 "Opcode at %d jumps to %d which is outside the "
1044 "subroutine at %d..%d",
1045 i
, iDest
, iFirst
, iLast
);
1052 char *zErr
= sqlite3_str_finish(pErr
);
1053 sqlite3VdbeAddOp4(v
, OP_Halt
, SQLITE_INTERNAL
, OE_Abort
, 0, zErr
, 0);
1055 sqlite3MayAbort(pParse
);
1058 #endif /* SQLITE_DEBUG */
1061 ** Return the address of the next instruction to be inserted.
1063 int sqlite3VdbeCurrentAddr(Vdbe
*p
){
1064 assert( p
->eVdbeState
==VDBE_INIT_STATE
);
1069 ** Verify that at least N opcode slots are available in p without
1070 ** having to malloc for more space (except when compiled using
1071 ** SQLITE_TEST_REALLOC_STRESS). This interface is used during testing
1072 ** to verify that certain calls to sqlite3VdbeAddOpList() can never
1073 ** fail due to a OOM fault and hence that the return value from
1074 ** sqlite3VdbeAddOpList() will always be non-NULL.
1076 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
1077 void sqlite3VdbeVerifyNoMallocRequired(Vdbe
*p
, int N
){
1078 assert( p
->nOp
+ N
<= p
->nOpAlloc
);
1083 ** Verify that the VM passed as the only argument does not contain
1084 ** an OP_ResultRow opcode. Fail an assert() if it does. This is used
1085 ** by code in pragma.c to ensure that the implementation of certain
1086 ** pragmas comports with the flags specified in the mkpragmatab.tcl
1089 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
1090 void sqlite3VdbeVerifyNoResultRow(Vdbe
*p
){
1092 for(i
=0; i
<p
->nOp
; i
++){
1093 assert( p
->aOp
[i
].opcode
!=OP_ResultRow
);
1099 ** Generate code (a single OP_Abortable opcode) that will
1100 ** verify that the VDBE program can safely call Abort in the current
1103 #if defined(SQLITE_DEBUG)
1104 void sqlite3VdbeVerifyAbortable(Vdbe
*p
, int onError
){
1105 if( onError
==OE_Abort
) sqlite3VdbeAddOp0(p
, OP_Abortable
);
1110 ** This function returns a pointer to the array of opcodes associated with
1111 ** the Vdbe passed as the first argument. It is the callers responsibility
1112 ** to arrange for the returned array to be eventually freed using the
1113 ** vdbeFreeOpArray() function.
1115 ** Before returning, *pnOp is set to the number of entries in the returned
1116 ** array. Also, *pnMaxArg is set to the larger of its current value and
1117 ** the number of entries in the Vdbe.apArg[] array required to execute the
1118 ** returned program.
1120 VdbeOp
*sqlite3VdbeTakeOpArray(Vdbe
*p
, int *pnOp
, int *pnMaxArg
){
1121 VdbeOp
*aOp
= p
->aOp
;
1122 assert( aOp
&& !p
->db
->mallocFailed
);
1124 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */
1125 assert( DbMaskAllZero(p
->btreeMask
) );
1127 resolveP2Values(p
, pnMaxArg
);
1134 ** Add a whole list of operations to the operation stack. Return a
1135 ** pointer to the first operation inserted.
1137 ** Non-zero P2 arguments to jump instructions are automatically adjusted
1138 ** so that the jump target is relative to the first operation inserted.
1140 VdbeOp
*sqlite3VdbeAddOpList(
1141 Vdbe
*p
, /* Add opcodes to the prepared statement */
1142 int nOp
, /* Number of opcodes to add */
1143 VdbeOpList
const *aOp
, /* The opcodes to be added */
1144 int iLineno
/* Source-file line number of first opcode */
1147 VdbeOp
*pOut
, *pFirst
;
1149 assert( p
->eVdbeState
==VDBE_INIT_STATE
);
1150 if( p
->nOp
+ nOp
> p
->nOpAlloc
&& growOpArray(p
, nOp
) ){
1153 pFirst
= pOut
= &p
->aOp
[p
->nOp
];
1154 for(i
=0; i
<nOp
; i
++, aOp
++, pOut
++){
1155 pOut
->opcode
= aOp
->opcode
;
1158 assert( aOp
->p2
>=0 );
1159 if( (sqlite3OpcodeProperty
[aOp
->opcode
] & OPFLG_JUMP
)!=0 && aOp
->p2
>0 ){
1163 pOut
->p4type
= P4_NOTUSED
;
1166 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1169 #ifdef SQLITE_VDBE_COVERAGE
1170 pOut
->iSrcLine
= iLineno
+i
;
1175 if( p
->db
->flags
& SQLITE_VdbeAddopTrace
){
1176 sqlite3VdbePrintOp(0, i
+p
->nOp
, &p
->aOp
[i
+p
->nOp
]);
1184 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS)
1186 ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus().
1188 void sqlite3VdbeScanStatus(
1189 Vdbe
*p
, /* VM to add scanstatus() to */
1190 int addrExplain
, /* Address of OP_Explain (or 0) */
1191 int addrLoop
, /* Address of loop counter */
1192 int addrVisit
, /* Address of rows visited counter */
1193 LogEst nEst
, /* Estimated number of output rows */
1194 const char *zName
/* Name of table or index being scanned */
1196 if( IS_STMT_SCANSTATUS(p
->db
) ){
1197 sqlite3_int64 nByte
= (p
->nScan
+1) * sizeof(ScanStatus
);
1199 aNew
= (ScanStatus
*)sqlite3DbRealloc(p
->db
, p
->aScan
, nByte
);
1201 ScanStatus
*pNew
= &aNew
[p
->nScan
++];
1202 memset(pNew
, 0, sizeof(ScanStatus
));
1203 pNew
->addrExplain
= addrExplain
;
1204 pNew
->addrLoop
= addrLoop
;
1205 pNew
->addrVisit
= addrVisit
;
1207 pNew
->zName
= sqlite3DbStrDup(p
->db
, zName
);
1214 ** Add the range of instructions from addrStart to addrEnd (inclusive) to
1215 ** the set of those corresponding to the sqlite3_stmt_scanstatus() counters
1216 ** associated with the OP_Explain instruction at addrExplain. The
1217 ** sum of the sqlite3Hwtime() values for each of these instructions
1218 ** will be returned for SQLITE_SCANSTAT_NCYCLE requests.
1220 void sqlite3VdbeScanStatusRange(
1226 if( IS_STMT_SCANSTATUS(p
->db
) ){
1227 ScanStatus
*pScan
= 0;
1229 for(ii
=p
->nScan
-1; ii
>=0; ii
--){
1230 pScan
= &p
->aScan
[ii
];
1231 if( pScan
->addrExplain
==addrExplain
) break;
1235 if( addrEnd
<0 ) addrEnd
= sqlite3VdbeCurrentAddr(p
)-1;
1236 for(ii
=0; ii
<ArraySize(pScan
->aAddrRange
); ii
+=2){
1237 if( pScan
->aAddrRange
[ii
]==0 ){
1238 pScan
->aAddrRange
[ii
] = addrStart
;
1239 pScan
->aAddrRange
[ii
+1] = addrEnd
;
1248 ** Set the addresses for the SQLITE_SCANSTAT_NLOOP and SQLITE_SCANSTAT_NROW
1249 ** counters for the query element associated with the OP_Explain at
1252 void sqlite3VdbeScanStatusCounters(
1258 if( IS_STMT_SCANSTATUS(p
->db
) ){
1259 ScanStatus
*pScan
= 0;
1261 for(ii
=p
->nScan
-1; ii
>=0; ii
--){
1262 pScan
= &p
->aScan
[ii
];
1263 if( pScan
->addrExplain
==addrExplain
) break;
1267 if( addrLoop
>0 ) pScan
->addrLoop
= addrLoop
;
1268 if( addrVisit
>0 ) pScan
->addrVisit
= addrVisit
;
1272 #endif /* defined(SQLITE_ENABLE_STMT_SCANSTATUS) */
1276 ** Change the value of the opcode, or P1, P2, P3, or P5 operands
1277 ** for a specific instruction.
1279 void sqlite3VdbeChangeOpcode(Vdbe
*p
, int addr
, u8 iNewOpcode
){
1281 sqlite3VdbeGetOp(p
,addr
)->opcode
= iNewOpcode
;
1283 void sqlite3VdbeChangeP1(Vdbe
*p
, int addr
, int val
){
1285 sqlite3VdbeGetOp(p
,addr
)->p1
= val
;
1287 void sqlite3VdbeChangeP2(Vdbe
*p
, int addr
, int val
){
1288 assert( addr
>=0 || p
->db
->mallocFailed
);
1289 sqlite3VdbeGetOp(p
,addr
)->p2
= val
;
1291 void sqlite3VdbeChangeP3(Vdbe
*p
, int addr
, int val
){
1293 sqlite3VdbeGetOp(p
,addr
)->p3
= val
;
1295 void sqlite3VdbeChangeP5(Vdbe
*p
, u16 p5
){
1296 assert( p
->nOp
>0 || p
->db
->mallocFailed
);
1297 if( p
->nOp
>0 ) p
->aOp
[p
->nOp
-1].p5
= p5
;
1301 ** If the previous opcode is an OP_Column that delivers results
1302 ** into register iDest, then add the OPFLAG_TYPEOFARG flag to that
1305 void sqlite3VdbeTypeofColumn(Vdbe
*p
, int iDest
){
1306 VdbeOp
*pOp
= sqlite3VdbeGetLastOp(p
);
1307 if( pOp
->p3
==iDest
&& pOp
->opcode
==OP_Column
){
1308 pOp
->p5
|= OPFLAG_TYPEOFARG
;
1313 ** Change the P2 operand of instruction addr so that it points to
1314 ** the address of the next instruction to be coded.
1316 void sqlite3VdbeJumpHere(Vdbe
*p
, int addr
){
1317 sqlite3VdbeChangeP2(p
, addr
, p
->nOp
);
1321 ** Change the P2 operand of the jump instruction at addr so that
1322 ** the jump lands on the next opcode. Or if the jump instruction was
1323 ** the previous opcode (and is thus a no-op) then simply back up
1324 ** the next instruction counter by one slot so that the jump is
1325 ** overwritten by the next inserted opcode.
1327 ** This routine is an optimization of sqlite3VdbeJumpHere() that
1328 ** strives to omit useless byte-code like this:
1333 void sqlite3VdbeJumpHereOrPopInst(Vdbe
*p
, int addr
){
1334 if( addr
==p
->nOp
-1 ){
1335 assert( p
->aOp
[addr
].opcode
==OP_Once
1336 || p
->aOp
[addr
].opcode
==OP_If
1337 || p
->aOp
[addr
].opcode
==OP_FkIfZero
);
1338 assert( p
->aOp
[addr
].p4type
==0 );
1339 #ifdef SQLITE_VDBE_COVERAGE
1340 sqlite3VdbeGetLastOp(p
)->iSrcLine
= 0; /* Erase VdbeCoverage() macros */
1344 sqlite3VdbeChangeP2(p
, addr
, p
->nOp
);
1350 ** If the input FuncDef structure is ephemeral, then free it. If
1351 ** the FuncDef is not ephemeral, then do nothing.
1353 static void freeEphemeralFunction(sqlite3
*db
, FuncDef
*pDef
){
1355 if( (pDef
->funcFlags
& SQLITE_FUNC_EPHEM
)!=0 ){
1356 sqlite3DbNNFreeNN(db
, pDef
);
1361 ** Delete a P4 value if necessary.
1363 static SQLITE_NOINLINE
void freeP4Mem(sqlite3
*db
, Mem
*p
){
1364 if( p
->szMalloc
) sqlite3DbFree(db
, p
->zMalloc
);
1365 sqlite3DbNNFreeNN(db
, p
);
1367 static SQLITE_NOINLINE
void freeP4FuncCtx(sqlite3
*db
, sqlite3_context
*p
){
1369 freeEphemeralFunction(db
, p
->pFunc
);
1370 sqlite3DbNNFreeNN(db
, p
);
1372 static void freeP4(sqlite3
*db
, int p4type
, void *p4
){
1376 freeP4FuncCtx(db
, (sqlite3_context
*)p4
);
1383 if( p4
) sqlite3DbNNFreeNN(db
, p4
);
1387 if( db
->pnBytesFreed
==0 ) sqlite3KeyInfoUnref((KeyInfo
*)p4
);
1390 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1392 sqlite3ExprDelete(db
, (Expr
*)p4
);
1397 freeEphemeralFunction(db
, (FuncDef
*)p4
);
1401 if( db
->pnBytesFreed
==0 ){
1402 sqlite3ValueFree((sqlite3_value
*)p4
);
1404 freeP4Mem(db
, (Mem
*)p4
);
1409 if( db
->pnBytesFreed
==0 ) sqlite3VtabUnlock((VTable
*)p4
);
1413 if( db
->pnBytesFreed
==0 ) sqlite3DeleteTable(db
, (Table
*)p4
);
1420 ** Free the space allocated for aOp and any p4 values allocated for the
1421 ** opcodes contained within. If aOp is not NULL it is assumed to contain
1424 static void vdbeFreeOpArray(sqlite3
*db
, Op
*aOp
, int nOp
){
1428 Op
*pOp
= &aOp
[nOp
-1];
1429 while(1){ /* Exit via break */
1430 if( pOp
->p4type
<= P4_FREE_IF_LE
) freeP4(db
, pOp
->p4type
, pOp
->p4
.p
);
1431 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1432 sqlite3DbFree(db
, pOp
->zComment
);
1434 if( pOp
==aOp
) break;
1437 sqlite3DbNNFreeNN(db
, aOp
);
1442 ** Link the SubProgram object passed as the second argument into the linked
1443 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program
1444 ** objects when the VM is no longer required.
1446 void sqlite3VdbeLinkSubProgram(Vdbe
*pVdbe
, SubProgram
*p
){
1447 p
->pNext
= pVdbe
->pProgram
;
1448 pVdbe
->pProgram
= p
;
1452 ** Return true if the given Vdbe has any SubPrograms.
1454 int sqlite3VdbeHasSubProgram(Vdbe
*pVdbe
){
1455 return pVdbe
->pProgram
!=0;
1459 ** Change the opcode at addr into OP_Noop
1461 int sqlite3VdbeChangeToNoop(Vdbe
*p
, int addr
){
1463 if( p
->db
->mallocFailed
) return 0;
1464 assert( addr
>=0 && addr
<p
->nOp
);
1465 pOp
= &p
->aOp
[addr
];
1466 freeP4(p
->db
, pOp
->p4type
, pOp
->p4
.p
);
1467 pOp
->p4type
= P4_NOTUSED
;
1469 pOp
->opcode
= OP_Noop
;
1474 ** If the last opcode is "op" and it is not a jump destination,
1475 ** then remove it. Return true if and only if an opcode was removed.
1477 int sqlite3VdbeDeletePriorOpcode(Vdbe
*p
, u8 op
){
1478 if( p
->nOp
>0 && p
->aOp
[p
->nOp
-1].opcode
==op
){
1479 return sqlite3VdbeChangeToNoop(p
, p
->nOp
-1);
1487 ** Generate an OP_ReleaseReg opcode to indicate that a range of
1488 ** registers, except any identified by mask, are no longer in use.
1490 void sqlite3VdbeReleaseRegisters(
1491 Parse
*pParse
, /* Parsing context */
1492 int iFirst
, /* Index of first register to be released */
1493 int N
, /* Number of registers to release */
1494 u32 mask
, /* Mask of registers to NOT release */
1495 int bUndefine
/* If true, mark registers as undefined */
1497 if( N
==0 || OptimizationDisabled(pParse
->db
, SQLITE_ReleaseReg
) ) return;
1498 assert( pParse
->pVdbe
);
1499 assert( iFirst
>=1 );
1500 assert( iFirst
+N
-1<=pParse
->nMem
);
1501 if( N
<=31 && mask
!=0 ){
1502 while( N
>0 && (mask
&1)!=0 ){
1507 while( N
>0 && N
<=32 && (mask
& MASKBIT32(N
-1))!=0 ){
1508 mask
&= ~MASKBIT32(N
-1);
1513 sqlite3VdbeAddOp3(pParse
->pVdbe
, OP_ReleaseReg
, iFirst
, N
, *(int*)&mask
);
1514 if( bUndefine
) sqlite3VdbeChangeP5(pParse
->pVdbe
, 1);
1517 #endif /* SQLITE_DEBUG */
1520 ** Change the value of the P4 operand for a specific instruction.
1521 ** This routine is useful when a large program is loaded from a
1522 ** static array using sqlite3VdbeAddOpList but we want to make a
1523 ** few minor changes to the program.
1525 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of
1526 ** the string is made into memory obtained from sqlite3_malloc().
1527 ** A value of n==0 means copy bytes of zP4 up to and including the
1528 ** first null byte. If n>0 then copy n+1 bytes of zP4.
1530 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
1531 ** to a string or structure that is guaranteed to exist for the lifetime of
1532 ** the Vdbe. In these cases we can just copy the pointer.
1534 ** If addr<0 then change P4 on the most recently inserted instruction.
1536 static void SQLITE_NOINLINE
vdbeChangeP4Full(
1543 assert( pOp
->p4type
> P4_FREE_IF_LE
);
1548 sqlite3VdbeChangeP4(p
, (int)(pOp
- p
->aOp
), zP4
, n
);
1550 if( n
==0 ) n
= sqlite3Strlen30(zP4
);
1551 pOp
->p4
.z
= sqlite3DbStrNDup(p
->db
, zP4
, n
);
1552 pOp
->p4type
= P4_DYNAMIC
;
1555 void sqlite3VdbeChangeP4(Vdbe
*p
, int addr
, const char *zP4
, int n
){
1560 assert( p
->eVdbeState
==VDBE_INIT_STATE
);
1561 assert( p
->aOp
!=0 || db
->mallocFailed
);
1562 if( db
->mallocFailed
){
1563 if( n
!=P4_VTAB
) freeP4(db
, n
, (void*)*(char**)&zP4
);
1567 assert( addr
<p
->nOp
);
1571 pOp
= &p
->aOp
[addr
];
1572 if( n
>=0 || pOp
->p4type
){
1573 vdbeChangeP4Full(p
, pOp
, zP4
, n
);
1577 /* Note: this cast is safe, because the origin data point was an int
1578 ** that was cast to a (const char *). */
1579 pOp
->p4
.i
= SQLITE_PTR_TO_INT(zP4
);
1580 pOp
->p4type
= P4_INT32
;
1583 pOp
->p4
.p
= (void*)zP4
;
1584 pOp
->p4type
= (signed char)n
;
1585 if( n
==P4_VTAB
) sqlite3VtabLock((VTable
*)zP4
);
1590 ** Change the P4 operand of the most recently coded instruction
1591 ** to the value defined by the arguments. This is a high-speed
1592 ** version of sqlite3VdbeChangeP4().
1594 ** The P4 operand must not have been previously defined. And the new
1595 ** P4 must not be P4_INT32. Use sqlite3VdbeChangeP4() in either of
1598 void sqlite3VdbeAppendP4(Vdbe
*p
, void *pP4
, int n
){
1600 assert( n
!=P4_INT32
&& n
!=P4_VTAB
);
1602 if( p
->db
->mallocFailed
){
1603 freeP4(p
->db
, n
, pP4
);
1605 assert( pP4
!=0 || n
==P4_DYNAMIC
);
1607 pOp
= &p
->aOp
[p
->nOp
-1];
1608 assert( pOp
->p4type
==P4_NOTUSED
);
1615 ** Set the P4 on the most recently added opcode to the KeyInfo for the
1618 void sqlite3VdbeSetP4KeyInfo(Parse
*pParse
, Index
*pIdx
){
1619 Vdbe
*v
= pParse
->pVdbe
;
1623 pKeyInfo
= sqlite3KeyInfoOfIndex(pParse
, pIdx
);
1624 if( pKeyInfo
) sqlite3VdbeAppendP4(v
, pKeyInfo
, P4_KEYINFO
);
1627 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1629 ** Change the comment on the most recently coded instruction. Or
1630 ** insert a No-op and add the comment to that new instruction. This
1631 ** makes the code easier to read during debugging. None of this happens
1632 ** in a production build.
1634 static void vdbeVComment(Vdbe
*p
, const char *zFormat
, va_list ap
){
1635 assert( p
->nOp
>0 || p
->aOp
==0 );
1636 assert( p
->aOp
==0 || p
->aOp
[p
->nOp
-1].zComment
==0 || p
->pParse
->nErr
>0 );
1639 sqlite3DbFree(p
->db
, p
->aOp
[p
->nOp
-1].zComment
);
1640 p
->aOp
[p
->nOp
-1].zComment
= sqlite3VMPrintf(p
->db
, zFormat
, ap
);
1643 void sqlite3VdbeComment(Vdbe
*p
, const char *zFormat
, ...){
1646 va_start(ap
, zFormat
);
1647 vdbeVComment(p
, zFormat
, ap
);
1651 void sqlite3VdbeNoopComment(Vdbe
*p
, const char *zFormat
, ...){
1654 sqlite3VdbeAddOp0(p
, OP_Noop
);
1655 va_start(ap
, zFormat
);
1656 vdbeVComment(p
, zFormat
, ap
);
1662 #ifdef SQLITE_VDBE_COVERAGE
1664 ** Set the value if the iSrcLine field for the previously coded instruction.
1666 void sqlite3VdbeSetLineNumber(Vdbe
*v
, int iLine
){
1667 sqlite3VdbeGetLastOp(v
)->iSrcLine
= iLine
;
1669 #endif /* SQLITE_VDBE_COVERAGE */
1672 ** Return the opcode for a given address. The address must be non-negative.
1673 ** See sqlite3VdbeGetLastOp() to get the most recently added opcode.
1675 ** If a memory allocation error has occurred prior to the calling of this
1676 ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode
1677 ** is readable but not writable, though it is cast to a writable value.
1678 ** The return of a dummy opcode allows the call to continue functioning
1679 ** after an OOM fault without having to check to see if the return from
1680 ** this routine is a valid pointer. But because the dummy.opcode is 0,
1681 ** dummy will never be written to. This is verified by code inspection and
1682 ** by running with Valgrind.
1684 VdbeOp
*sqlite3VdbeGetOp(Vdbe
*p
, int addr
){
1685 /* C89 specifies that the constant "dummy" will be initialized to all
1686 ** zeros, which is correct. MSVC generates a warning, nevertheless. */
1687 static VdbeOp dummy
; /* Ignore the MSVC warning about no initializer */
1688 assert( p
->eVdbeState
==VDBE_INIT_STATE
);
1689 assert( (addr
>=0 && addr
<p
->nOp
) || p
->db
->mallocFailed
);
1690 if( p
->db
->mallocFailed
){
1691 return (VdbeOp
*)&dummy
;
1693 return &p
->aOp
[addr
];
1697 /* Return the most recently added opcode
1699 VdbeOp
*sqlite3VdbeGetLastOp(Vdbe
*p
){
1700 return sqlite3VdbeGetOp(p
, p
->nOp
- 1);
1703 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS)
1705 ** Return an integer value for one of the parameters to the opcode pOp
1706 ** determined by character c.
1708 static int translateP(char c
, const Op
*pOp
){
1709 if( c
=='1' ) return pOp
->p1
;
1710 if( c
=='2' ) return pOp
->p2
;
1711 if( c
=='3' ) return pOp
->p3
;
1712 if( c
=='4' ) return pOp
->p4
.i
;
1717 ** Compute a string for the "comment" field of a VDBE opcode listing.
1719 ** The Synopsis: field in comments in the vdbe.c source file gets converted
1720 ** to an extra string that is appended to the sqlite3OpcodeName(). In the
1721 ** absence of other comments, this synopsis becomes the comment on the opcode.
1722 ** Some translation occurs:
1725 ** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1
1726 ** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0
1727 ** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x
1729 char *sqlite3VdbeDisplayComment(
1730 sqlite3
*db
, /* Optional - Oom error reporting only */
1731 const Op
*pOp
, /* The opcode to be commented */
1732 const char *zP4
/* Previously obtained value for P4 */
1734 const char *zOpName
;
1735 const char *zSynopsis
;
1741 sqlite3StrAccumInit(&x
, 0, 0, 0, SQLITE_MAX_LENGTH
);
1742 zOpName
= sqlite3OpcodeName(pOp
->opcode
);
1743 nOpName
= sqlite3Strlen30(zOpName
);
1744 if( zOpName
[nOpName
+1] ){
1747 zSynopsis
= zOpName
+ nOpName
+ 1;
1748 if( strncmp(zSynopsis
,"IF ",3)==0 ){
1749 sqlite3_snprintf(sizeof(zAlt
), zAlt
, "if %s goto P2", zSynopsis
+3);
1752 for(ii
=0; (c
= zSynopsis
[ii
])!=0; ii
++){
1754 c
= zSynopsis
[++ii
];
1756 sqlite3_str_appendall(&x
, zP4
);
1758 if( pOp
->zComment
&& pOp
->zComment
[0] ){
1759 sqlite3_str_appendall(&x
, pOp
->zComment
);
1764 int v1
= translateP(c
, pOp
);
1766 if( strncmp(zSynopsis
+ii
+1, "@P", 2)==0 ){
1768 v2
= translateP(zSynopsis
[ii
], pOp
);
1769 if( strncmp(zSynopsis
+ii
+1,"+1",2)==0 ){
1774 sqlite3_str_appendf(&x
, "%d", v1
);
1776 sqlite3_str_appendf(&x
, "%d..%d", v1
, v1
+v2
-1);
1778 }else if( strncmp(zSynopsis
+ii
+1, "@NP", 3)==0 ){
1779 sqlite3_context
*pCtx
= pOp
->p4
.pCtx
;
1780 if( pOp
->p4type
!=P4_FUNCCTX
|| pCtx
->argc
==1 ){
1781 sqlite3_str_appendf(&x
, "%d", v1
);
1782 }else if( pCtx
->argc
>1 ){
1783 sqlite3_str_appendf(&x
, "%d..%d", v1
, v1
+pCtx
->argc
-1);
1784 }else if( x
.accError
==0 ){
1785 assert( x
.nChar
>2 );
1791 sqlite3_str_appendf(&x
, "%d", v1
);
1792 if( strncmp(zSynopsis
+ii
+1, "..P3", 4)==0 && pOp
->p3
==0 ){
1798 sqlite3_str_appendchar(&x
, 1, c
);
1801 if( !seenCom
&& pOp
->zComment
){
1802 sqlite3_str_appendf(&x
, "; %s", pOp
->zComment
);
1804 }else if( pOp
->zComment
){
1805 sqlite3_str_appendall(&x
, pOp
->zComment
);
1807 if( (x
.accError
& SQLITE_NOMEM
)!=0 && db
!=0 ){
1808 sqlite3OomFault(db
);
1810 return sqlite3StrAccumFinish(&x
);
1812 #endif /* SQLITE_ENABLE_EXPLAIN_COMMENTS */
1814 #if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS)
1816 ** Translate the P4.pExpr value for an OP_CursorHint opcode into text
1817 ** that can be displayed in the P4 column of EXPLAIN output.
1819 static void displayP4Expr(StrAccum
*p
, Expr
*pExpr
){
1820 const char *zOp
= 0;
1821 switch( pExpr
->op
){
1823 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
1824 sqlite3_str_appendf(p
, "%Q", pExpr
->u
.zToken
);
1827 sqlite3_str_appendf(p
, "%d", pExpr
->u
.iValue
);
1830 sqlite3_str_appendf(p
, "NULL");
1833 sqlite3_str_appendf(p
, "r[%d]", pExpr
->iTable
);
1837 if( pExpr
->iColumn
<0 ){
1838 sqlite3_str_appendf(p
, "rowid");
1840 sqlite3_str_appendf(p
, "c%d", (int)pExpr
->iColumn
);
1844 case TK_LT
: zOp
= "LT"; break;
1845 case TK_LE
: zOp
= "LE"; break;
1846 case TK_GT
: zOp
= "GT"; break;
1847 case TK_GE
: zOp
= "GE"; break;
1848 case TK_NE
: zOp
= "NE"; break;
1849 case TK_EQ
: zOp
= "EQ"; break;
1850 case TK_IS
: zOp
= "IS"; break;
1851 case TK_ISNOT
: zOp
= "ISNOT"; break;
1852 case TK_AND
: zOp
= "AND"; break;
1853 case TK_OR
: zOp
= "OR"; break;
1854 case TK_PLUS
: zOp
= "ADD"; break;
1855 case TK_STAR
: zOp
= "MUL"; break;
1856 case TK_MINUS
: zOp
= "SUB"; break;
1857 case TK_REM
: zOp
= "REM"; break;
1858 case TK_BITAND
: zOp
= "BITAND"; break;
1859 case TK_BITOR
: zOp
= "BITOR"; break;
1860 case TK_SLASH
: zOp
= "DIV"; break;
1861 case TK_LSHIFT
: zOp
= "LSHIFT"; break;
1862 case TK_RSHIFT
: zOp
= "RSHIFT"; break;
1863 case TK_CONCAT
: zOp
= "CONCAT"; break;
1864 case TK_UMINUS
: zOp
= "MINUS"; break;
1865 case TK_UPLUS
: zOp
= "PLUS"; break;
1866 case TK_BITNOT
: zOp
= "BITNOT"; break;
1867 case TK_NOT
: zOp
= "NOT"; break;
1868 case TK_ISNULL
: zOp
= "ISNULL"; break;
1869 case TK_NOTNULL
: zOp
= "NOTNULL"; break;
1872 sqlite3_str_appendf(p
, "%s", "expr");
1877 sqlite3_str_appendf(p
, "%s(", zOp
);
1878 displayP4Expr(p
, pExpr
->pLeft
);
1879 if( pExpr
->pRight
){
1880 sqlite3_str_append(p
, ",", 1);
1881 displayP4Expr(p
, pExpr
->pRight
);
1883 sqlite3_str_append(p
, ")", 1);
1886 #endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */
1891 ** Compute a string that describes the P4 parameter for an opcode.
1892 ** Use zTemp for any required temporary buffer space.
1894 char *sqlite3VdbeDisplayP4(sqlite3
*db
, Op
*pOp
){
1898 sqlite3StrAccumInit(&x
, 0, 0, 0, SQLITE_MAX_LENGTH
);
1899 switch( pOp
->p4type
){
1902 KeyInfo
*pKeyInfo
= pOp
->p4
.pKeyInfo
;
1903 assert( pKeyInfo
->aSortFlags
!=0 );
1904 sqlite3_str_appendf(&x
, "k(%d", pKeyInfo
->nKeyField
);
1905 for(j
=0; j
<pKeyInfo
->nKeyField
; j
++){
1906 CollSeq
*pColl
= pKeyInfo
->aColl
[j
];
1907 const char *zColl
= pColl
? pColl
->zName
: "";
1908 if( strcmp(zColl
, "BINARY")==0 ) zColl
= "B";
1909 sqlite3_str_appendf(&x
, ",%s%s%s",
1910 (pKeyInfo
->aSortFlags
[j
] & KEYINFO_ORDER_DESC
) ? "-" : "",
1911 (pKeyInfo
->aSortFlags
[j
] & KEYINFO_ORDER_BIGNULL
)? "N." : "",
1914 sqlite3_str_append(&x
, ")", 1);
1917 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1919 displayP4Expr(&x
, pOp
->p4
.pExpr
);
1924 static const char *const encnames
[] = {"?", "8", "16LE", "16BE"};
1925 CollSeq
*pColl
= pOp
->p4
.pColl
;
1926 assert( pColl
->enc
<4 );
1927 sqlite3_str_appendf(&x
, "%.18s-%s", pColl
->zName
,
1928 encnames
[pColl
->enc
]);
1932 FuncDef
*pDef
= pOp
->p4
.pFunc
;
1933 sqlite3_str_appendf(&x
, "%s(%d)", pDef
->zName
, pDef
->nArg
);
1937 FuncDef
*pDef
= pOp
->p4
.pCtx
->pFunc
;
1938 sqlite3_str_appendf(&x
, "%s(%d)", pDef
->zName
, pDef
->nArg
);
1942 sqlite3_str_appendf(&x
, "%lld", *pOp
->p4
.pI64
);
1946 sqlite3_str_appendf(&x
, "%d", pOp
->p4
.i
);
1950 sqlite3_str_appendf(&x
, "%.16g", *pOp
->p4
.pReal
);
1954 Mem
*pMem
= pOp
->p4
.pMem
;
1955 if( pMem
->flags
& MEM_Str
){
1957 }else if( pMem
->flags
& (MEM_Int
|MEM_IntReal
) ){
1958 sqlite3_str_appendf(&x
, "%lld", pMem
->u
.i
);
1959 }else if( pMem
->flags
& MEM_Real
){
1960 sqlite3_str_appendf(&x
, "%.16g", pMem
->u
.r
);
1961 }else if( pMem
->flags
& MEM_Null
){
1964 assert( pMem
->flags
& MEM_Blob
);
1969 #ifndef SQLITE_OMIT_VIRTUALTABLE
1971 sqlite3_vtab
*pVtab
= pOp
->p4
.pVtab
->pVtab
;
1972 sqlite3_str_appendf(&x
, "vtab:%p", pVtab
);
1978 u32
*ai
= pOp
->p4
.ai
;
1979 u32 n
= ai
[0]; /* The first element of an INTARRAY is always the
1980 ** count of the number of elements to follow */
1981 for(i
=1; i
<=n
; i
++){
1982 sqlite3_str_appendf(&x
, "%c%u", (i
==1 ? '[' : ','), ai
[i
]);
1984 sqlite3_str_append(&x
, "]", 1);
1987 case P4_SUBPROGRAM
: {
1992 zP4
= pOp
->p4
.pTab
->zName
;
1999 if( zP4
) sqlite3_str_appendall(&x
, zP4
);
2000 if( (x
.accError
& SQLITE_NOMEM
)!=0 ){
2001 sqlite3OomFault(db
);
2003 return sqlite3StrAccumFinish(&x
);
2005 #endif /* VDBE_DISPLAY_P4 */
2008 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
2010 ** The prepared statements need to know in advance the complete set of
2011 ** attached databases that will be use. A mask of these databases
2012 ** is maintained in p->btreeMask. The p->lockMask value is the subset of
2013 ** p->btreeMask of databases that will require a lock.
2015 void sqlite3VdbeUsesBtree(Vdbe
*p
, int i
){
2016 assert( i
>=0 && i
<p
->db
->nDb
&& i
<(int)sizeof(yDbMask
)*8 );
2017 assert( i
<(int)sizeof(p
->btreeMask
)*8 );
2018 DbMaskSet(p
->btreeMask
, i
);
2019 if( i
!=1 && sqlite3BtreeSharable(p
->db
->aDb
[i
].pBt
) ){
2020 DbMaskSet(p
->lockMask
, i
);
2024 #if !defined(SQLITE_OMIT_SHARED_CACHE)
2026 ** If SQLite is compiled to support shared-cache mode and to be threadsafe,
2027 ** this routine obtains the mutex associated with each BtShared structure
2028 ** that may be accessed by the VM passed as an argument. In doing so it also
2029 ** sets the BtShared.db member of each of the BtShared structures, ensuring
2030 ** that the correct busy-handler callback is invoked if required.
2032 ** If SQLite is not threadsafe but does support shared-cache mode, then
2033 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables
2034 ** of all of BtShared structures accessible via the database handle
2035 ** associated with the VM.
2037 ** If SQLite is not threadsafe and does not support shared-cache mode, this
2038 ** function is a no-op.
2040 ** The p->btreeMask field is a bitmask of all btrees that the prepared
2041 ** statement p will ever use. Let N be the number of bits in p->btreeMask
2042 ** corresponding to btrees that use shared cache. Then the runtime of
2043 ** this routine is N*N. But as N is rarely more than 1, this should not
2046 void sqlite3VdbeEnter(Vdbe
*p
){
2051 if( DbMaskAllZero(p
->lockMask
) ) return; /* The common case */
2055 for(i
=0; i
<nDb
; i
++){
2056 if( i
!=1 && DbMaskTest(p
->lockMask
,i
) && ALWAYS(aDb
[i
].pBt
!=0) ){
2057 sqlite3BtreeEnter(aDb
[i
].pBt
);
2063 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
2065 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter().
2067 static SQLITE_NOINLINE
void vdbeLeave(Vdbe
*p
){
2075 for(i
=0; i
<nDb
; i
++){
2076 if( i
!=1 && DbMaskTest(p
->lockMask
,i
) && ALWAYS(aDb
[i
].pBt
!=0) ){
2077 sqlite3BtreeLeave(aDb
[i
].pBt
);
2081 void sqlite3VdbeLeave(Vdbe
*p
){
2082 if( DbMaskAllZero(p
->lockMask
) ) return; /* The common case */
2087 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
2089 ** Print a single opcode. This routine is used for debugging only.
2091 void sqlite3VdbePrintOp(FILE *pOut
, int pc
, VdbeOp
*pOp
){
2095 static const char *zFormat1
= "%4d %-13s %4d %4d %4d %-13s %.2X %s\n";
2096 if( pOut
==0 ) pOut
= stdout
;
2097 sqlite3BeginBenignMalloc();
2098 dummyDb
.mallocFailed
= 1;
2099 zP4
= sqlite3VdbeDisplayP4(&dummyDb
, pOp
);
2100 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
2101 zCom
= sqlite3VdbeDisplayComment(0, pOp
, zP4
);
2105 /* NB: The sqlite3OpcodeName() function is implemented by code created
2106 ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the
2107 ** information from the vdbe.c source text */
2108 fprintf(pOut
, zFormat1
, pc
,
2109 sqlite3OpcodeName(pOp
->opcode
), pOp
->p1
, pOp
->p2
, pOp
->p3
,
2110 zP4
? zP4
: "", pOp
->p5
,
2116 sqlite3EndBenignMalloc();
2121 ** Initialize an array of N Mem element.
2123 ** This is a high-runner, so only those fields that really do need to
2124 ** be initialized are set. The Mem structure is organized so that
2125 ** the fields that get initialized are nearby and hopefully on the same
2128 ** Mem.flags = flags
2132 ** All other fields of Mem can safely remain uninitialized for now. They
2133 ** will be initialized before use.
2135 static void initMemArray(Mem
*p
, int N
, sqlite3
*db
, u16 flags
){
2150 ** Release auxiliary memory held in an array of N Mem elements.
2152 ** After this routine returns, all Mem elements in the array will still
2153 ** be valid. Those Mem elements that were not holding auxiliary resources
2154 ** will be unchanged. Mem elements which had something freed will be
2155 ** set to MEM_Undefined.
2157 static void releaseMemArray(Mem
*p
, int N
){
2160 sqlite3
*db
= p
->db
;
2161 if( db
->pnBytesFreed
){
2163 if( p
->szMalloc
) sqlite3DbFree(db
, p
->zMalloc
);
2164 }while( (++p
)<pEnd
);
2168 assert( (&p
[1])==pEnd
|| p
[0].db
==p
[1].db
);
2169 assert( sqlite3VdbeCheckMemInvariants(p
) );
2171 /* This block is really an inlined version of sqlite3VdbeMemRelease()
2172 ** that takes advantage of the fact that the memory cell value is
2173 ** being set to NULL after releasing any dynamic resources.
2175 ** The justification for duplicating code is that according to
2176 ** callgrind, this causes a certain test case to hit the CPU 4.7
2177 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if
2178 ** sqlite3MemRelease() were called from here. With -O2, this jumps
2179 ** to 6.6 percent. The test case is inserting 1000 rows into a table
2180 ** with no indexes using a single prepared INSERT statement, bind()
2181 ** and reset(). Inserts are grouped into a transaction.
2183 testcase( p
->flags
& MEM_Agg
);
2184 testcase( p
->flags
& MEM_Dyn
);
2185 if( p
->flags
&(MEM_Agg
|MEM_Dyn
) ){
2186 testcase( (p
->flags
& MEM_Dyn
)!=0 && p
->xDel
==sqlite3VdbeFrameMemDel
);
2187 sqlite3VdbeMemRelease(p
);
2188 p
->flags
= MEM_Undefined
;
2189 }else if( p
->szMalloc
){
2190 sqlite3DbNNFreeNN(db
, p
->zMalloc
);
2192 p
->flags
= MEM_Undefined
;
2196 p
->flags
= MEM_Undefined
;
2199 }while( (++p
)<pEnd
);
2205 ** Verify that pFrame is a valid VdbeFrame pointer. Return true if it is
2206 ** and false if something is wrong.
2208 ** This routine is intended for use inside of assert() statements only.
2210 int sqlite3VdbeFrameIsValid(VdbeFrame
*pFrame
){
2211 if( pFrame
->iFrameMagic
!=SQLITE_FRAME_MAGIC
) return 0;
2218 ** This is a destructor on a Mem object (which is really an sqlite3_value)
2219 ** that deletes the Frame object that is attached to it as a blob.
2221 ** This routine does not delete the Frame right away. It merely adds the
2222 ** frame to a list of frames to be deleted when the Vdbe halts.
2224 void sqlite3VdbeFrameMemDel(void *pArg
){
2225 VdbeFrame
*pFrame
= (VdbeFrame
*)pArg
;
2226 assert( sqlite3VdbeFrameIsValid(pFrame
) );
2227 pFrame
->pParent
= pFrame
->v
->pDelFrame
;
2228 pFrame
->v
->pDelFrame
= pFrame
;
2231 #if defined(SQLITE_ENABLE_BYTECODE_VTAB) || !defined(SQLITE_OMIT_EXPLAIN)
2233 ** Locate the next opcode to be displayed in EXPLAIN or EXPLAIN
2234 ** QUERY PLAN output.
2236 ** Return SQLITE_ROW on success. Return SQLITE_DONE if there are no
2237 ** more opcodes to be displayed.
2239 int sqlite3VdbeNextOpcode(
2240 Vdbe
*p
, /* The statement being explained */
2241 Mem
*pSub
, /* Storage for keeping track of subprogram nesting */
2242 int eMode
, /* 0: normal. 1: EQP. 2: TablesUsed */
2243 int *piPc
, /* IN/OUT: Current rowid. Overwritten with next rowid */
2244 int *piAddr
, /* OUT: Write index into (*paOp)[] here */
2245 Op
**paOp
/* OUT: Write the opcode array here */
2247 int nRow
; /* Stop when row count reaches this */
2248 int nSub
= 0; /* Number of sub-vdbes seen so far */
2249 SubProgram
**apSub
= 0; /* Array of sub-vdbes */
2250 int i
; /* Next instruction address */
2251 int rc
= SQLITE_OK
; /* Result code */
2252 Op
*aOp
= 0; /* Opcode array */
2253 int iPc
; /* Rowid. Copy of value in *piPc */
2255 /* When the number of output rows reaches nRow, that means the
2256 ** listing has finished and sqlite3_step() should return SQLITE_DONE.
2257 ** nRow is the sum of the number of rows in the main program, plus
2258 ** the sum of the number of rows in all trigger subprograms encountered
2259 ** so far. The nRow value will increase as new trigger subprograms are
2260 ** encountered, but p->pc will eventually catch up to nRow.
2264 if( pSub
->flags
&MEM_Blob
){
2265 /* pSub is initiallly NULL. It is initialized to a BLOB by
2266 ** the P4_SUBPROGRAM processing logic below */
2267 nSub
= pSub
->n
/sizeof(Vdbe
*);
2268 apSub
= (SubProgram
**)pSub
->z
;
2270 for(i
=0; i
<nSub
; i
++){
2271 nRow
+= apSub
[i
]->nOp
;
2275 while(1){ /* Loop exits via break */
2283 /* The rowid is small enough that we are still in the
2287 /* We are currently listing subprograms. Figure out which one and
2288 ** pick up the appropriate opcode. */
2293 for(j
=0; i
>=apSub
[j
]->nOp
; j
++){
2295 assert( i
<apSub
[j
]->nOp
|| j
+1<nSub
);
2297 aOp
= apSub
[j
]->aOp
;
2300 /* When an OP_Program opcode is encounter (the only opcode that has
2301 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms
2302 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram
2303 ** has not already been seen.
2305 if( pSub
!=0 && aOp
[i
].p4type
==P4_SUBPROGRAM
){
2306 int nByte
= (nSub
+1)*sizeof(SubProgram
*);
2308 for(j
=0; j
<nSub
; j
++){
2309 if( apSub
[j
]==aOp
[i
].p4
.pProgram
) break;
2312 p
->rc
= sqlite3VdbeMemGrow(pSub
, nByte
, nSub
!=0);
2313 if( p
->rc
!=SQLITE_OK
){
2317 apSub
= (SubProgram
**)pSub
->z
;
2318 apSub
[nSub
++] = aOp
[i
].p4
.pProgram
;
2319 MemSetTypeFlag(pSub
, MEM_Blob
);
2320 pSub
->n
= nSub
*sizeof(SubProgram
*);
2321 nRow
+= aOp
[i
].p4
.pProgram
->nOp
;
2324 if( eMode
==0 ) break;
2325 #ifdef SQLITE_ENABLE_BYTECODE_VTAB
2328 if( pOp
->opcode
==OP_OpenRead
) break;
2329 if( pOp
->opcode
==OP_OpenWrite
&& (pOp
->p5
& OPFLAG_P2ISREG
)==0 ) break;
2330 if( pOp
->opcode
==OP_ReopenIdx
) break;
2335 if( aOp
[i
].opcode
==OP_Explain
) break;
2336 if( aOp
[i
].opcode
==OP_Init
&& iPc
>1 ) break;
2344 #endif /* SQLITE_ENABLE_BYTECODE_VTAB || !SQLITE_OMIT_EXPLAIN */
2348 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are
2349 ** allocated by the OP_Program opcode in sqlite3VdbeExec().
2351 void sqlite3VdbeFrameDelete(VdbeFrame
*p
){
2353 Mem
*aMem
= VdbeFrameMem(p
);
2354 VdbeCursor
**apCsr
= (VdbeCursor
**)&aMem
[p
->nChildMem
];
2355 assert( sqlite3VdbeFrameIsValid(p
) );
2356 for(i
=0; i
<p
->nChildCsr
; i
++){
2357 if( apCsr
[i
] ) sqlite3VdbeFreeCursorNN(p
->v
, apCsr
[i
]);
2359 releaseMemArray(aMem
, p
->nChildMem
);
2360 sqlite3VdbeDeleteAuxData(p
->v
->db
, &p
->pAuxData
, -1, 0);
2361 sqlite3DbFree(p
->v
->db
, p
);
2364 #ifndef SQLITE_OMIT_EXPLAIN
2366 ** Give a listing of the program in the virtual machine.
2368 ** The interface is the same as sqlite3VdbeExec(). But instead of
2369 ** running the code, it invokes the callback once for each instruction.
2370 ** This feature is used to implement "EXPLAIN".
2372 ** When p->explain==1, each instruction is listed. When
2373 ** p->explain==2, only OP_Explain instructions are listed and these
2374 ** are shown in a different format. p->explain==2 is used to implement
2375 ** EXPLAIN QUERY PLAN.
2376 ** 2018-04-24: In p->explain==2 mode, the OP_Init opcodes of triggers
2377 ** are also shown, so that the boundaries between the main program and
2378 ** each trigger are clear.
2380 ** When p->explain==1, first the main program is listed, then each of
2381 ** the trigger subprograms are listed one by one.
2383 int sqlite3VdbeList(
2384 Vdbe
*p
/* The VDBE */
2386 Mem
*pSub
= 0; /* Memory cell hold array of subprogs */
2387 sqlite3
*db
= p
->db
; /* The database connection */
2388 int i
; /* Loop counter */
2389 int rc
= SQLITE_OK
; /* Return code */
2390 Mem
*pMem
= &p
->aMem
[1]; /* First Mem of result set */
2391 int bListSubprogs
= (p
->explain
==1 || (db
->flags
& SQLITE_TriggerEQP
)!=0);
2392 Op
*aOp
; /* Array of opcodes */
2393 Op
*pOp
; /* Current opcode */
2395 assert( p
->explain
);
2396 assert( p
->eVdbeState
==VDBE_RUN_STATE
);
2397 assert( p
->rc
==SQLITE_OK
|| p
->rc
==SQLITE_BUSY
|| p
->rc
==SQLITE_NOMEM
);
2399 /* Even though this opcode does not use dynamic strings for
2400 ** the result, result columns may become dynamic if the user calls
2401 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
2403 releaseMemArray(pMem
, 8);
2405 if( p
->rc
==SQLITE_NOMEM
){
2406 /* This happens if a malloc() inside a call to sqlite3_column_text() or
2407 ** sqlite3_column_text16() failed. */
2408 sqlite3OomFault(db
);
2409 return SQLITE_ERROR
;
2412 if( bListSubprogs
){
2413 /* The first 8 memory cells are used for the result set. So we will
2414 ** commandeer the 9th cell to use as storage for an array of pointers
2415 ** to trigger subprograms. The VDBE is guaranteed to have at least 9
2417 assert( p
->nMem
>9 );
2423 /* Figure out which opcode is next to display */
2424 rc
= sqlite3VdbeNextOpcode(p
, pSub
, p
->explain
==2, &p
->pc
, &i
, &aOp
);
2426 if( rc
==SQLITE_OK
){
2428 if( AtomicLoad(&db
->u1
.isInterrupted
) ){
2429 p
->rc
= SQLITE_INTERRUPT
;
2431 sqlite3VdbeError(p
, sqlite3ErrStr(p
->rc
));
2433 char *zP4
= sqlite3VdbeDisplayP4(db
, pOp
);
2434 if( p
->explain
==2 ){
2435 sqlite3VdbeMemSetInt64(pMem
, pOp
->p1
);
2436 sqlite3VdbeMemSetInt64(pMem
+1, pOp
->p2
);
2437 sqlite3VdbeMemSetInt64(pMem
+2, pOp
->p3
);
2438 sqlite3VdbeMemSetStr(pMem
+3, zP4
, -1, SQLITE_UTF8
, sqlite3_free
);
2439 assert( p
->nResColumn
==4 );
2441 sqlite3VdbeMemSetInt64(pMem
+0, i
);
2442 sqlite3VdbeMemSetStr(pMem
+1, (char*)sqlite3OpcodeName(pOp
->opcode
),
2443 -1, SQLITE_UTF8
, SQLITE_STATIC
);
2444 sqlite3VdbeMemSetInt64(pMem
+2, pOp
->p1
);
2445 sqlite3VdbeMemSetInt64(pMem
+3, pOp
->p2
);
2446 sqlite3VdbeMemSetInt64(pMem
+4, pOp
->p3
);
2447 /* pMem+5 for p4 is done last */
2448 sqlite3VdbeMemSetInt64(pMem
+6, pOp
->p5
);
2449 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
2451 char *zCom
= sqlite3VdbeDisplayComment(db
, pOp
, zP4
);
2452 sqlite3VdbeMemSetStr(pMem
+7, zCom
, -1, SQLITE_UTF8
, sqlite3_free
);
2455 sqlite3VdbeMemSetNull(pMem
+7);
2457 sqlite3VdbeMemSetStr(pMem
+5, zP4
, -1, SQLITE_UTF8
, sqlite3_free
);
2458 assert( p
->nResColumn
==8 );
2460 p
->pResultRow
= pMem
;
2461 if( db
->mallocFailed
){
2462 p
->rc
= SQLITE_NOMEM
;
2472 #endif /* SQLITE_OMIT_EXPLAIN */
2476 ** Print the SQL that was used to generate a VDBE program.
2478 void sqlite3VdbePrintSql(Vdbe
*p
){
2482 }else if( p
->nOp
>=1 ){
2483 const VdbeOp
*pOp
= &p
->aOp
[0];
2484 if( pOp
->opcode
==OP_Init
&& pOp
->p4
.z
!=0 ){
2486 while( sqlite3Isspace(*z
) ) z
++;
2489 if( z
) printf("SQL: [%s]\n", z
);
2493 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
2495 ** Print an IOTRACE message showing SQL content.
2497 void sqlite3VdbeIOTraceSql(Vdbe
*p
){
2500 if( sqlite3IoTrace
==0 ) return;
2503 if( pOp
->opcode
==OP_Init
&& pOp
->p4
.z
!=0 ){
2506 sqlite3_snprintf(sizeof(z
), z
, "%s", pOp
->p4
.z
);
2507 for(i
=0; sqlite3Isspace(z
[i
]); i
++){}
2508 for(j
=0; z
[i
]; i
++){
2509 if( sqlite3Isspace(z
[i
]) ){
2518 sqlite3IoTrace("SQL %s\n", z
);
2521 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
2523 /* An instance of this object describes bulk memory available for use
2524 ** by subcomponents of a prepared statement. Space is allocated out
2525 ** of a ReusableSpace object by the allocSpace() routine below.
2527 struct ReusableSpace
{
2528 u8
*pSpace
; /* Available memory */
2529 sqlite3_int64 nFree
; /* Bytes of available memory */
2530 sqlite3_int64 nNeeded
; /* Total bytes that could not be allocated */
2533 /* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf
2534 ** from the ReusableSpace object. Return a pointer to the allocated
2535 ** memory on success. If insufficient memory is available in the
2536 ** ReusableSpace object, increase the ReusableSpace.nNeeded
2537 ** value by the amount needed and return NULL.
2539 ** If pBuf is not initially NULL, that means that the memory has already
2540 ** been allocated by a prior call to this routine, so just return a copy
2541 ** of pBuf and leave ReusableSpace unchanged.
2543 ** This allocator is employed to repurpose unused slots at the end of the
2544 ** opcode array of prepared state for other memory needs of the prepared
2547 static void *allocSpace(
2548 struct ReusableSpace
*p
, /* Bulk memory available for allocation */
2549 void *pBuf
, /* Pointer to a prior allocation */
2550 sqlite3_int64 nByte
/* Bytes of memory needed. */
2552 assert( EIGHT_BYTE_ALIGNMENT(p
->pSpace
) );
2554 nByte
= ROUND8P(nByte
);
2555 if( nByte
<= p
->nFree
){
2557 pBuf
= &p
->pSpace
[p
->nFree
];
2559 p
->nNeeded
+= nByte
;
2562 assert( EIGHT_BYTE_ALIGNMENT(pBuf
) );
2567 ** Rewind the VDBE back to the beginning in preparation for
2570 void sqlite3VdbeRewind(Vdbe
*p
){
2571 #if defined(SQLITE_DEBUG)
2575 assert( p
->eVdbeState
==VDBE_INIT_STATE
2576 || p
->eVdbeState
==VDBE_READY_STATE
2577 || p
->eVdbeState
==VDBE_HALT_STATE
);
2579 /* There should be at least one opcode.
2583 p
->eVdbeState
= VDBE_READY_STATE
;
2586 for(i
=0; i
<p
->nMem
; i
++){
2587 assert( p
->aMem
[i
].db
==p
->db
);
2592 p
->errorAction
= OE_Abort
;
2595 p
->minWriteFileFormat
= 255;
2597 p
->nFkConstraint
= 0;
2599 for(i
=0; i
<p
->nOp
; i
++){
2600 p
->aOp
[i
].nExec
= 0;
2601 p
->aOp
[i
].nCycle
= 0;
2607 ** Prepare a virtual machine for execution for the first time after
2608 ** creating the virtual machine. This involves things such
2609 ** as allocating registers and initializing the program counter.
2610 ** After the VDBE has be prepped, it can be executed by one or more
2611 ** calls to sqlite3VdbeExec().
2613 ** This function may be called exactly once on each virtual machine.
2614 ** After this routine is called the VM has been "packaged" and is ready
2615 ** to run. After this routine is called, further calls to
2616 ** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects
2617 ** the Vdbe from the Parse object that helped generate it so that the
2618 ** the Vdbe becomes an independent entity and the Parse object can be
2621 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back
2622 ** to its initial state after it has been run.
2624 void sqlite3VdbeMakeReady(
2625 Vdbe
*p
, /* The VDBE */
2626 Parse
*pParse
/* Parsing context */
2628 sqlite3
*db
; /* The database connection */
2629 int nVar
; /* Number of parameters */
2630 int nMem
; /* Number of VM memory registers */
2631 int nCursor
; /* Number of cursors required */
2632 int nArg
; /* Number of arguments in subprograms */
2633 int n
; /* Loop counter */
2634 struct ReusableSpace x
; /* Reusable bulk memory */
2638 assert( pParse
!=0 );
2639 assert( p
->eVdbeState
==VDBE_INIT_STATE
);
2640 assert( pParse
==p
->pParse
);
2641 p
->pVList
= pParse
->pVList
;
2644 assert( db
->mallocFailed
==0 );
2645 nVar
= pParse
->nVar
;
2646 nMem
= pParse
->nMem
;
2647 nCursor
= pParse
->nTab
;
2648 nArg
= pParse
->nMaxArg
;
2650 /* Each cursor uses a memory cell. The first cursor (cursor 0) can
2651 ** use aMem[0] which is not otherwise used by the VDBE program. Allocate
2652 ** space at the end of aMem[] for cursors 1 and greater.
2653 ** See also: allocateCursor().
2656 if( nCursor
==0 && nMem
>0 ) nMem
++; /* Space for aMem[0] even if not used */
2658 /* Figure out how much reusable memory is available at the end of the
2659 ** opcode array. This extra memory will be reallocated for other elements
2660 ** of the prepared statement.
2662 n
= ROUND8P(sizeof(Op
)*p
->nOp
); /* Bytes of opcode memory used */
2663 x
.pSpace
= &((u8
*)p
->aOp
)[n
]; /* Unused opcode memory */
2664 assert( EIGHT_BYTE_ALIGNMENT(x
.pSpace
) );
2665 x
.nFree
= ROUNDDOWN8(pParse
->szOpAlloc
- n
); /* Bytes of unused memory */
2666 assert( x
.nFree
>=0 );
2667 assert( EIGHT_BYTE_ALIGNMENT(&x
.pSpace
[x
.nFree
]) );
2669 resolveP2Values(p
, &nArg
);
2670 p
->usesStmtJournal
= (u8
)(pParse
->isMultiWrite
&& pParse
->mayAbort
);
2671 if( pParse
->explain
){
2672 if( nMem
<10 ) nMem
= 10;
2673 p
->explain
= pParse
->explain
;
2674 p
->nResColumn
= 12 - 4*p
->explain
;
2678 /* Memory for registers, parameters, cursor, etc, is allocated in one or two
2679 ** passes. On the first pass, we try to reuse unused memory at the
2680 ** end of the opcode array. If we are unable to satisfy all memory
2681 ** requirements by reusing the opcode array tail, then the second
2682 ** pass will fill in the remainder using a fresh memory allocation.
2684 ** This two-pass approach that reuses as much memory as possible from
2685 ** the leftover memory at the end of the opcode array. This can significantly
2686 ** reduce the amount of memory held by a prepared statement.
2689 p
->aMem
= allocSpace(&x
, 0, nMem
*sizeof(Mem
));
2690 p
->aVar
= allocSpace(&x
, 0, nVar
*sizeof(Mem
));
2691 p
->apArg
= allocSpace(&x
, 0, nArg
*sizeof(Mem
*));
2692 p
->apCsr
= allocSpace(&x
, 0, nCursor
*sizeof(VdbeCursor
*));
2694 x
.pSpace
= p
->pFree
= sqlite3DbMallocRawNN(db
, x
.nNeeded
);
2695 x
.nFree
= x
.nNeeded
;
2696 if( !db
->mallocFailed
){
2697 p
->aMem
= allocSpace(&x
, p
->aMem
, nMem
*sizeof(Mem
));
2698 p
->aVar
= allocSpace(&x
, p
->aVar
, nVar
*sizeof(Mem
));
2699 p
->apArg
= allocSpace(&x
, p
->apArg
, nArg
*sizeof(Mem
*));
2700 p
->apCsr
= allocSpace(&x
, p
->apCsr
, nCursor
*sizeof(VdbeCursor
*));
2704 if( db
->mallocFailed
){
2709 p
->nCursor
= nCursor
;
2710 p
->nVar
= (ynVar
)nVar
;
2711 initMemArray(p
->aVar
, nVar
, db
, MEM_Null
);
2713 initMemArray(p
->aMem
, nMem
, db
, MEM_Undefined
);
2714 memset(p
->apCsr
, 0, nCursor
*sizeof(VdbeCursor
*));
2716 sqlite3VdbeRewind(p
);
2720 ** Close a VDBE cursor and release all the resources that cursor
2723 void sqlite3VdbeFreeCursor(Vdbe
*p
, VdbeCursor
*pCx
){
2724 if( pCx
) sqlite3VdbeFreeCursorNN(p
,pCx
);
2726 static SQLITE_NOINLINE
void freeCursorWithCache(Vdbe
*p
, VdbeCursor
*pCx
){
2727 VdbeTxtBlbCache
*pCache
= pCx
->pCache
;
2728 assert( pCx
->colCache
);
2731 if( pCache
->pCValue
){
2732 sqlite3RCStrUnref(pCache
->pCValue
);
2733 pCache
->pCValue
= 0;
2735 sqlite3DbFree(p
->db
, pCache
);
2736 sqlite3VdbeFreeCursorNN(p
, pCx
);
2738 void sqlite3VdbeFreeCursorNN(Vdbe
*p
, VdbeCursor
*pCx
){
2739 if( pCx
->colCache
){
2740 freeCursorWithCache(p
, pCx
);
2743 switch( pCx
->eCurType
){
2744 case CURTYPE_SORTER
: {
2745 sqlite3VdbeSorterClose(p
->db
, pCx
);
2748 case CURTYPE_BTREE
: {
2749 assert( pCx
->uc
.pCursor
!=0 );
2750 sqlite3BtreeCloseCursor(pCx
->uc
.pCursor
);
2753 #ifndef SQLITE_OMIT_VIRTUALTABLE
2754 case CURTYPE_VTAB
: {
2755 sqlite3_vtab_cursor
*pVCur
= pCx
->uc
.pVCur
;
2756 const sqlite3_module
*pModule
= pVCur
->pVtab
->pModule
;
2757 assert( pVCur
->pVtab
->nRef
>0 );
2758 pVCur
->pVtab
->nRef
--;
2759 pModule
->xClose(pVCur
);
2767 ** Close all cursors in the current frame.
2769 static void closeCursorsInFrame(Vdbe
*p
){
2771 for(i
=0; i
<p
->nCursor
; i
++){
2772 VdbeCursor
*pC
= p
->apCsr
[i
];
2774 sqlite3VdbeFreeCursorNN(p
, pC
);
2781 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This
2782 ** is used, for example, when a trigger sub-program is halted to restore
2783 ** control to the main program.
2785 int sqlite3VdbeFrameRestore(VdbeFrame
*pFrame
){
2786 Vdbe
*v
= pFrame
->v
;
2787 closeCursorsInFrame(v
);
2788 v
->aOp
= pFrame
->aOp
;
2789 v
->nOp
= pFrame
->nOp
;
2790 v
->aMem
= pFrame
->aMem
;
2791 v
->nMem
= pFrame
->nMem
;
2792 v
->apCsr
= pFrame
->apCsr
;
2793 v
->nCursor
= pFrame
->nCursor
;
2794 v
->db
->lastRowid
= pFrame
->lastRowid
;
2795 v
->nChange
= pFrame
->nChange
;
2796 v
->db
->nChange
= pFrame
->nDbChange
;
2797 sqlite3VdbeDeleteAuxData(v
->db
, &v
->pAuxData
, -1, 0);
2798 v
->pAuxData
= pFrame
->pAuxData
;
2799 pFrame
->pAuxData
= 0;
2804 ** Close all cursors.
2806 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory
2807 ** cell array. This is necessary as the memory cell array may contain
2808 ** pointers to VdbeFrame objects, which may in turn contain pointers to
2811 static void closeAllCursors(Vdbe
*p
){
2814 for(pFrame
=p
->pFrame
; pFrame
->pParent
; pFrame
=pFrame
->pParent
);
2815 sqlite3VdbeFrameRestore(pFrame
);
2819 assert( p
->nFrame
==0 );
2820 closeCursorsInFrame(p
);
2821 releaseMemArray(p
->aMem
, p
->nMem
);
2822 while( p
->pDelFrame
){
2823 VdbeFrame
*pDel
= p
->pDelFrame
;
2824 p
->pDelFrame
= pDel
->pParent
;
2825 sqlite3VdbeFrameDelete(pDel
);
2828 /* Delete any auxdata allocations made by the VM */
2829 if( p
->pAuxData
) sqlite3VdbeDeleteAuxData(p
->db
, &p
->pAuxData
, -1, 0);
2830 assert( p
->pAuxData
==0 );
2834 ** Set the number of result columns that will be returned by this SQL
2835 ** statement. This is now set at compile time, rather than during
2836 ** execution of the vdbe program so that sqlite3_column_count() can
2837 ** be called on an SQL statement before sqlite3_step().
2839 void sqlite3VdbeSetNumCols(Vdbe
*p
, int nResColumn
){
2841 sqlite3
*db
= p
->db
;
2844 releaseMemArray(p
->aColName
, p
->nResAlloc
*COLNAME_N
);
2845 sqlite3DbFree(db
, p
->aColName
);
2847 n
= nResColumn
*COLNAME_N
;
2848 p
->nResColumn
= p
->nResAlloc
= (u16
)nResColumn
;
2849 p
->aColName
= (Mem
*)sqlite3DbMallocRawNN(db
, sizeof(Mem
)*n
);
2850 if( p
->aColName
==0 ) return;
2851 initMemArray(p
->aColName
, n
, db
, MEM_Null
);
2855 ** Set the name of the idx'th column to be returned by the SQL statement.
2856 ** zName must be a pointer to a nul terminated string.
2858 ** This call must be made after a call to sqlite3VdbeSetNumCols().
2860 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC
2861 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed
2862 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed.
2864 int sqlite3VdbeSetColName(
2865 Vdbe
*p
, /* Vdbe being configured */
2866 int idx
, /* Index of column zName applies to */
2867 int var
, /* One of the COLNAME_* constants */
2868 const char *zName
, /* Pointer to buffer containing name */
2869 void (*xDel
)(void*) /* Memory management strategy for zName */
2873 assert( idx
<p
->nResAlloc
);
2874 assert( var
<COLNAME_N
);
2875 if( p
->db
->mallocFailed
){
2876 assert( !zName
|| xDel
!=SQLITE_DYNAMIC
);
2877 return SQLITE_NOMEM_BKPT
;
2879 assert( p
->aColName
!=0 );
2880 pColName
= &(p
->aColName
[idx
+var
*p
->nResAlloc
]);
2881 rc
= sqlite3VdbeMemSetStr(pColName
, zName
, -1, SQLITE_UTF8
, xDel
);
2882 assert( rc
!=0 || !zName
|| (pColName
->flags
&MEM_Term
)!=0 );
2887 ** A read or write transaction may or may not be active on database handle
2888 ** db. If a transaction is active, commit it. If there is a
2889 ** write-transaction spanning more than one database file, this routine
2890 ** takes care of the super-journal trickery.
2892 static int vdbeCommit(sqlite3
*db
, Vdbe
*p
){
2894 int nTrans
= 0; /* Number of databases with an active write-transaction
2895 ** that are candidates for a two-phase commit using a
2898 int needXcommit
= 0;
2900 #ifdef SQLITE_OMIT_VIRTUALTABLE
2901 /* With this option, sqlite3VtabSync() is defined to be simply
2902 ** SQLITE_OK so p is not used.
2904 UNUSED_PARAMETER(p
);
2907 /* Before doing anything else, call the xSync() callback for any
2908 ** virtual module tables written in this transaction. This has to
2909 ** be done before determining whether a super-journal file is
2910 ** required, as an xSync() callback may add an attached database
2911 ** to the transaction.
2913 rc
= sqlite3VtabSync(db
, p
);
2915 /* This loop determines (a) if the commit hook should be invoked and
2916 ** (b) how many database files have open write transactions, not
2917 ** including the temp database. (b) is important because if more than
2918 ** one database file has an open write transaction, a super-journal
2919 ** file is required for an atomic commit.
2921 for(i
=0; rc
==SQLITE_OK
&& i
<db
->nDb
; i
++){
2922 Btree
*pBt
= db
->aDb
[i
].pBt
;
2923 if( sqlite3BtreeTxnState(pBt
)==SQLITE_TXN_WRITE
){
2924 /* Whether or not a database might need a super-journal depends upon
2925 ** its journal mode (among other things). This matrix determines which
2926 ** journal modes use a super-journal and which do not */
2927 static const u8 aMJNeeded
[] = {
2935 Pager
*pPager
; /* Pager associated with pBt */
2937 sqlite3BtreeEnter(pBt
);
2938 pPager
= sqlite3BtreePager(pBt
);
2939 if( db
->aDb
[i
].safety_level
!=PAGER_SYNCHRONOUS_OFF
2940 && aMJNeeded
[sqlite3PagerGetJournalMode(pPager
)]
2941 && sqlite3PagerIsMemdb(pPager
)==0
2946 rc
= sqlite3PagerExclusiveLock(pPager
);
2947 sqlite3BtreeLeave(pBt
);
2950 if( rc
!=SQLITE_OK
){
2954 /* If there are any write-transactions at all, invoke the commit hook */
2955 if( needXcommit
&& db
->xCommitCallback
){
2956 rc
= db
->xCommitCallback(db
->pCommitArg
);
2958 return SQLITE_CONSTRAINT_COMMITHOOK
;
2962 /* The simple case - no more than one database file (not counting the
2963 ** TEMP database) has a transaction active. There is no need for the
2966 ** If the return value of sqlite3BtreeGetFilename() is a zero length
2967 ** string, it means the main database is :memory: or a temp file. In
2968 ** that case we do not support atomic multi-file commits, so use the
2969 ** simple case then too.
2971 if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db
->aDb
[0].pBt
))
2974 for(i
=0; rc
==SQLITE_OK
&& i
<db
->nDb
; i
++){
2975 Btree
*pBt
= db
->aDb
[i
].pBt
;
2977 rc
= sqlite3BtreeCommitPhaseOne(pBt
, 0);
2981 /* Do the commit only if all databases successfully complete phase 1.
2982 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
2983 ** IO error while deleting or truncating a journal file. It is unlikely,
2984 ** but could happen. In this case abandon processing and return the error.
2986 for(i
=0; rc
==SQLITE_OK
&& i
<db
->nDb
; i
++){
2987 Btree
*pBt
= db
->aDb
[i
].pBt
;
2989 rc
= sqlite3BtreeCommitPhaseTwo(pBt
, 0);
2992 if( rc
==SQLITE_OK
){
2993 sqlite3VtabCommit(db
);
2997 /* The complex case - There is a multi-file write-transaction active.
2998 ** This requires a super-journal file to ensure the transaction is
2999 ** committed atomically.
3001 #ifndef SQLITE_OMIT_DISKIO
3003 sqlite3_vfs
*pVfs
= db
->pVfs
;
3004 char *zSuper
= 0; /* File-name for the super-journal */
3005 char const *zMainFile
= sqlite3BtreeGetFilename(db
->aDb
[0].pBt
);
3006 sqlite3_file
*pSuperJrnl
= 0;
3012 /* Select a super-journal file name */
3013 nMainFile
= sqlite3Strlen30(zMainFile
);
3014 zSuper
= sqlite3MPrintf(db
, "%.4c%s%.16c", 0,zMainFile
,0);
3015 if( zSuper
==0 ) return SQLITE_NOMEM_BKPT
;
3020 if( retryCount
>100 ){
3021 sqlite3_log(SQLITE_FULL
, "MJ delete: %s", zSuper
);
3022 sqlite3OsDelete(pVfs
, zSuper
, 0);
3024 }else if( retryCount
==1 ){
3025 sqlite3_log(SQLITE_FULL
, "MJ collide: %s", zSuper
);
3029 sqlite3_randomness(sizeof(iRandom
), &iRandom
);
3030 sqlite3_snprintf(13, &zSuper
[nMainFile
], "-mj%06X9%02X",
3031 (iRandom
>>8)&0xffffff, iRandom
&0xff);
3032 /* The antipenultimate character of the super-journal name must
3033 ** be "9" to avoid name collisions when using 8+3 filenames. */
3034 assert( zSuper
[sqlite3Strlen30(zSuper
)-3]=='9' );
3035 sqlite3FileSuffix3(zMainFile
, zSuper
);
3036 rc
= sqlite3OsAccess(pVfs
, zSuper
, SQLITE_ACCESS_EXISTS
, &res
);
3037 }while( rc
==SQLITE_OK
&& res
);
3038 if( rc
==SQLITE_OK
){
3039 /* Open the super-journal. */
3040 rc
= sqlite3OsOpenMalloc(pVfs
, zSuper
, &pSuperJrnl
,
3041 SQLITE_OPEN_READWRITE
|SQLITE_OPEN_CREATE
|
3042 SQLITE_OPEN_EXCLUSIVE
|SQLITE_OPEN_SUPER_JOURNAL
, 0
3045 if( rc
!=SQLITE_OK
){
3046 sqlite3DbFree(db
, zSuper
-4);
3050 /* Write the name of each database file in the transaction into the new
3051 ** super-journal file. If an error occurs at this point close
3052 ** and delete the super-journal file. All the individual journal files
3053 ** still have 'null' as the super-journal pointer, so they will roll
3054 ** back independently if a failure occurs.
3056 for(i
=0; i
<db
->nDb
; i
++){
3057 Btree
*pBt
= db
->aDb
[i
].pBt
;
3058 if( sqlite3BtreeTxnState(pBt
)==SQLITE_TXN_WRITE
){
3059 char const *zFile
= sqlite3BtreeGetJournalname(pBt
);
3061 continue; /* Ignore TEMP and :memory: databases */
3063 assert( zFile
[0]!=0 );
3064 rc
= sqlite3OsWrite(pSuperJrnl
, zFile
, sqlite3Strlen30(zFile
)+1,offset
);
3065 offset
+= sqlite3Strlen30(zFile
)+1;
3066 if( rc
!=SQLITE_OK
){
3067 sqlite3OsCloseFree(pSuperJrnl
);
3068 sqlite3OsDelete(pVfs
, zSuper
, 0);
3069 sqlite3DbFree(db
, zSuper
-4);
3075 /* Sync the super-journal file. If the IOCAP_SEQUENTIAL device
3076 ** flag is set this is not required.
3078 if( 0==(sqlite3OsDeviceCharacteristics(pSuperJrnl
)&SQLITE_IOCAP_SEQUENTIAL
)
3079 && SQLITE_OK
!=(rc
= sqlite3OsSync(pSuperJrnl
, SQLITE_SYNC_NORMAL
))
3081 sqlite3OsCloseFree(pSuperJrnl
);
3082 sqlite3OsDelete(pVfs
, zSuper
, 0);
3083 sqlite3DbFree(db
, zSuper
-4);
3087 /* Sync all the db files involved in the transaction. The same call
3088 ** sets the super-journal pointer in each individual journal. If
3089 ** an error occurs here, do not delete the super-journal file.
3091 ** If the error occurs during the first call to
3092 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
3093 ** super-journal file will be orphaned. But we cannot delete it,
3094 ** in case the super-journal file name was written into the journal
3095 ** file before the failure occurred.
3097 for(i
=0; rc
==SQLITE_OK
&& i
<db
->nDb
; i
++){
3098 Btree
*pBt
= db
->aDb
[i
].pBt
;
3100 rc
= sqlite3BtreeCommitPhaseOne(pBt
, zSuper
);
3103 sqlite3OsCloseFree(pSuperJrnl
);
3104 assert( rc
!=SQLITE_BUSY
);
3105 if( rc
!=SQLITE_OK
){
3106 sqlite3DbFree(db
, zSuper
-4);
3110 /* Delete the super-journal file. This commits the transaction. After
3111 ** doing this the directory is synced again before any individual
3112 ** transaction files are deleted.
3114 rc
= sqlite3OsDelete(pVfs
, zSuper
, 1);
3115 sqlite3DbFree(db
, zSuper
-4);
3121 /* All files and directories have already been synced, so the following
3122 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
3123 ** deleting or truncating journals. If something goes wrong while
3124 ** this is happening we don't really care. The integrity of the
3125 ** transaction is already guaranteed, but some stray 'cold' journals
3126 ** may be lying around. Returning an error code won't help matters.
3128 disable_simulated_io_errors();
3129 sqlite3BeginBenignMalloc();
3130 for(i
=0; i
<db
->nDb
; i
++){
3131 Btree
*pBt
= db
->aDb
[i
].pBt
;
3133 sqlite3BtreeCommitPhaseTwo(pBt
, 1);
3136 sqlite3EndBenignMalloc();
3137 enable_simulated_io_errors();
3139 sqlite3VtabCommit(db
);
3147 ** This routine checks that the sqlite3.nVdbeActive count variable
3148 ** matches the number of vdbe's in the list sqlite3.pVdbe that are
3149 ** currently active. An assertion fails if the two counts do not match.
3150 ** This is an internal self-check only - it is not an essential processing
3153 ** This is a no-op if NDEBUG is defined.
3156 static void checkActiveVdbeCnt(sqlite3
*db
){
3163 if( sqlite3_stmt_busy((sqlite3_stmt
*)p
) ){
3165 if( p
->readOnly
==0 ) nWrite
++;
3166 if( p
->bIsReader
) nRead
++;
3170 assert( cnt
==db
->nVdbeActive
);
3171 assert( nWrite
==db
->nVdbeWrite
);
3172 assert( nRead
==db
->nVdbeRead
);
3175 #define checkActiveVdbeCnt(x)
3179 ** If the Vdbe passed as the first argument opened a statement-transaction,
3180 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or
3181 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement
3182 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the
3183 ** statement transaction is committed.
3185 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned.
3186 ** Otherwise SQLITE_OK.
3188 static SQLITE_NOINLINE
int vdbeCloseStatement(Vdbe
*p
, int eOp
){
3189 sqlite3
*const db
= p
->db
;
3192 const int iSavepoint
= p
->iStatement
-1;
3194 assert( eOp
==SAVEPOINT_ROLLBACK
|| eOp
==SAVEPOINT_RELEASE
);
3195 assert( db
->nStatement
>0 );
3196 assert( p
->iStatement
==(db
->nStatement
+db
->nSavepoint
) );
3198 for(i
=0; i
<db
->nDb
; i
++){
3199 int rc2
= SQLITE_OK
;
3200 Btree
*pBt
= db
->aDb
[i
].pBt
;
3202 if( eOp
==SAVEPOINT_ROLLBACK
){
3203 rc2
= sqlite3BtreeSavepoint(pBt
, SAVEPOINT_ROLLBACK
, iSavepoint
);
3205 if( rc2
==SQLITE_OK
){
3206 rc2
= sqlite3BtreeSavepoint(pBt
, SAVEPOINT_RELEASE
, iSavepoint
);
3208 if( rc
==SQLITE_OK
){
3216 if( rc
==SQLITE_OK
){
3217 if( eOp
==SAVEPOINT_ROLLBACK
){
3218 rc
= sqlite3VtabSavepoint(db
, SAVEPOINT_ROLLBACK
, iSavepoint
);
3220 if( rc
==SQLITE_OK
){
3221 rc
= sqlite3VtabSavepoint(db
, SAVEPOINT_RELEASE
, iSavepoint
);
3225 /* If the statement transaction is being rolled back, also restore the
3226 ** database handles deferred constraint counter to the value it had when
3227 ** the statement transaction was opened. */
3228 if( eOp
==SAVEPOINT_ROLLBACK
){
3229 db
->nDeferredCons
= p
->nStmtDefCons
;
3230 db
->nDeferredImmCons
= p
->nStmtDefImmCons
;
3234 int sqlite3VdbeCloseStatement(Vdbe
*p
, int eOp
){
3235 if( p
->db
->nStatement
&& p
->iStatement
){
3236 return vdbeCloseStatement(p
, eOp
);
3243 ** This function is called when a transaction opened by the database
3244 ** handle associated with the VM passed as an argument is about to be
3245 ** committed. If there are outstanding deferred foreign key constraint
3246 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
3248 ** If there are outstanding FK violations and this function returns
3249 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY
3250 ** and write an error message to it. Then return SQLITE_ERROR.
3252 #ifndef SQLITE_OMIT_FOREIGN_KEY
3253 int sqlite3VdbeCheckFk(Vdbe
*p
, int deferred
){
3254 sqlite3
*db
= p
->db
;
3255 if( (deferred
&& (db
->nDeferredCons
+db
->nDeferredImmCons
)>0)
3256 || (!deferred
&& p
->nFkConstraint
>0)
3258 p
->rc
= SQLITE_CONSTRAINT_FOREIGNKEY
;
3259 p
->errorAction
= OE_Abort
;
3260 sqlite3VdbeError(p
, "FOREIGN KEY constraint failed");
3261 if( (p
->prepFlags
& SQLITE_PREPARE_SAVESQL
)==0 ) return SQLITE_ERROR
;
3262 return SQLITE_CONSTRAINT_FOREIGNKEY
;
3269 ** This routine is called the when a VDBE tries to halt. If the VDBE
3270 ** has made changes and is in autocommit mode, then commit those
3271 ** changes. If a rollback is needed, then do the rollback.
3273 ** This routine is the only way to move the sqlite3eOpenState of a VM from
3274 ** SQLITE_STATE_RUN to SQLITE_STATE_HALT. It is harmless to
3275 ** call this on a VM that is in the SQLITE_STATE_HALT state.
3277 ** Return an error code. If the commit could not complete because of
3278 ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it
3279 ** means the close did not happen and needs to be repeated.
3281 int sqlite3VdbeHalt(Vdbe
*p
){
3282 int rc
; /* Used to store transient return codes */
3283 sqlite3
*db
= p
->db
;
3285 /* This function contains the logic that determines if a statement or
3286 ** transaction will be committed or rolled back as a result of the
3287 ** execution of this virtual machine.
3289 ** If any of the following errors occur:
3296 ** Then the internal cache might have been left in an inconsistent
3297 ** state. We need to rollback the statement transaction, if there is
3298 ** one, or the complete transaction if there is no statement transaction.
3301 assert( p
->eVdbeState
==VDBE_RUN_STATE
);
3302 if( db
->mallocFailed
){
3303 p
->rc
= SQLITE_NOMEM_BKPT
;
3306 checkActiveVdbeCnt(db
);
3308 /* No commit or rollback needed if the program never started or if the
3309 ** SQL statement does not read or write a database file. */
3311 int mrc
; /* Primary error code from p->rc */
3312 int eStatementOp
= 0;
3313 int isSpecialError
; /* Set to true if a 'special' error */
3315 /* Lock all btrees used by the statement */
3316 sqlite3VdbeEnter(p
);
3318 /* Check for one of the special errors */
3321 isSpecialError
= mrc
==SQLITE_NOMEM
3322 || mrc
==SQLITE_IOERR
3323 || mrc
==SQLITE_INTERRUPT
3324 || mrc
==SQLITE_FULL
;
3326 mrc
= isSpecialError
= 0;
3328 if( isSpecialError
){
3329 /* If the query was read-only and the error code is SQLITE_INTERRUPT,
3330 ** no rollback is necessary. Otherwise, at least a savepoint
3331 ** transaction must be rolled back to restore the database to a
3332 ** consistent state.
3334 ** Even if the statement is read-only, it is important to perform
3335 ** a statement or transaction rollback operation. If the error
3336 ** occurred while writing to the journal, sub-journal or database
3337 ** file as part of an effort to free up cache space (see function
3338 ** pagerStress() in pager.c), the rollback is required to restore
3339 ** the pager to a consistent state.
3341 if( !p
->readOnly
|| mrc
!=SQLITE_INTERRUPT
){
3342 if( (mrc
==SQLITE_NOMEM
|| mrc
==SQLITE_FULL
) && p
->usesStmtJournal
){
3343 eStatementOp
= SAVEPOINT_ROLLBACK
;
3345 /* We are forced to roll back the active transaction. Before doing
3346 ** so, abort any other statements this handle currently has active.
3348 sqlite3RollbackAll(db
, SQLITE_ABORT_ROLLBACK
);
3349 sqlite3CloseSavepoints(db
);
3356 /* Check for immediate foreign key violations. */
3357 if( p
->rc
==SQLITE_OK
|| (p
->errorAction
==OE_Fail
&& !isSpecialError
) ){
3358 (void)sqlite3VdbeCheckFk(p
, 0);
3361 /* If the auto-commit flag is set and this is the only active writer
3362 ** VM, then we do either a commit or rollback of the current transaction.
3364 ** Note: This block also runs if one of the special errors handled
3365 ** above has occurred.
3367 if( !sqlite3VtabInSync(db
)
3369 && db
->nVdbeWrite
==(p
->readOnly
==0)
3371 if( p
->rc
==SQLITE_OK
|| (p
->errorAction
==OE_Fail
&& !isSpecialError
) ){
3372 rc
= sqlite3VdbeCheckFk(p
, 1);
3373 if( rc
!=SQLITE_OK
){
3374 if( NEVER(p
->readOnly
) ){
3375 sqlite3VdbeLeave(p
);
3376 return SQLITE_ERROR
;
3378 rc
= SQLITE_CONSTRAINT_FOREIGNKEY
;
3379 }else if( db
->flags
& SQLITE_CorruptRdOnly
){
3380 rc
= SQLITE_CORRUPT
;
3381 db
->flags
&= ~SQLITE_CorruptRdOnly
;
3383 /* The auto-commit flag is true, the vdbe program was successful
3384 ** or hit an 'OR FAIL' constraint and there are no deferred foreign
3385 ** key constraints to hold up the transaction. This means a commit
3387 rc
= vdbeCommit(db
, p
);
3389 if( rc
==SQLITE_BUSY
&& p
->readOnly
){
3390 sqlite3VdbeLeave(p
);
3392 }else if( rc
!=SQLITE_OK
){
3393 sqlite3SystemError(db
, rc
);
3395 sqlite3RollbackAll(db
, SQLITE_OK
);
3398 db
->nDeferredCons
= 0;
3399 db
->nDeferredImmCons
= 0;
3400 db
->flags
&= ~(u64
)SQLITE_DeferFKs
;
3401 sqlite3CommitInternalChanges(db
);
3403 }else if( p
->rc
==SQLITE_SCHEMA
&& db
->nVdbeActive
>1 ){
3406 sqlite3RollbackAll(db
, SQLITE_OK
);
3410 }else if( eStatementOp
==0 ){
3411 if( p
->rc
==SQLITE_OK
|| p
->errorAction
==OE_Fail
){
3412 eStatementOp
= SAVEPOINT_RELEASE
;
3413 }else if( p
->errorAction
==OE_Abort
){
3414 eStatementOp
= SAVEPOINT_ROLLBACK
;
3416 sqlite3RollbackAll(db
, SQLITE_ABORT_ROLLBACK
);
3417 sqlite3CloseSavepoints(db
);
3423 /* If eStatementOp is non-zero, then a statement transaction needs to
3424 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to
3425 ** do so. If this operation returns an error, and the current statement
3426 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the
3427 ** current statement error code.
3430 rc
= sqlite3VdbeCloseStatement(p
, eStatementOp
);
3432 if( p
->rc
==SQLITE_OK
|| (p
->rc
&0xff)==SQLITE_CONSTRAINT
){
3434 sqlite3DbFree(db
, p
->zErrMsg
);
3437 sqlite3RollbackAll(db
, SQLITE_ABORT_ROLLBACK
);
3438 sqlite3CloseSavepoints(db
);
3444 /* If this was an INSERT, UPDATE or DELETE and no statement transaction
3445 ** has been rolled back, update the database connection change-counter.
3447 if( p
->changeCntOn
){
3448 if( eStatementOp
!=SAVEPOINT_ROLLBACK
){
3449 sqlite3VdbeSetChanges(db
, p
->nChange
);
3451 sqlite3VdbeSetChanges(db
, 0);
3456 /* Release the locks */
3457 sqlite3VdbeLeave(p
);
3460 /* We have successfully halted and closed the VM. Record this fact. */
3462 if( !p
->readOnly
) db
->nVdbeWrite
--;
3463 if( p
->bIsReader
) db
->nVdbeRead
--;
3464 assert( db
->nVdbeActive
>=db
->nVdbeRead
);
3465 assert( db
->nVdbeRead
>=db
->nVdbeWrite
);
3466 assert( db
->nVdbeWrite
>=0 );
3467 p
->eVdbeState
= VDBE_HALT_STATE
;
3468 checkActiveVdbeCnt(db
);
3469 if( db
->mallocFailed
){
3470 p
->rc
= SQLITE_NOMEM_BKPT
;
3473 /* If the auto-commit flag is set to true, then any locks that were held
3474 ** by connection db have now been released. Call sqlite3ConnectionUnlocked()
3475 ** to invoke any required unlock-notify callbacks.
3477 if( db
->autoCommit
){
3478 sqlite3ConnectionUnlocked(db
);
3481 assert( db
->nVdbeActive
>0 || db
->autoCommit
==0 || db
->nStatement
==0 );
3482 return (p
->rc
==SQLITE_BUSY
? SQLITE_BUSY
: SQLITE_OK
);
3487 ** Each VDBE holds the result of the most recent sqlite3_step() call
3488 ** in p->rc. This routine sets that result back to SQLITE_OK.
3490 void sqlite3VdbeResetStepResult(Vdbe
*p
){
3495 ** Copy the error code and error message belonging to the VDBE passed
3496 ** as the first argument to its database handle (so that they will be
3497 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()).
3499 ** This function does not clear the VDBE error code or message, just
3500 ** copies them to the database handle.
3502 int sqlite3VdbeTransferError(Vdbe
*p
){
3503 sqlite3
*db
= p
->db
;
3506 db
->bBenignMalloc
++;
3507 sqlite3BeginBenignMalloc();
3508 if( db
->pErr
==0 ) db
->pErr
= sqlite3ValueNew(db
);
3509 sqlite3ValueSetStr(db
->pErr
, -1, p
->zErrMsg
, SQLITE_UTF8
, SQLITE_TRANSIENT
);
3510 sqlite3EndBenignMalloc();
3511 db
->bBenignMalloc
--;
3512 }else if( db
->pErr
){
3513 sqlite3ValueSetNull(db
->pErr
);
3516 db
->errByteOffset
= -1;
3520 #ifdef SQLITE_ENABLE_SQLLOG
3522 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run,
3525 static void vdbeInvokeSqllog(Vdbe
*v
){
3526 if( sqlite3GlobalConfig
.xSqllog
&& v
->rc
==SQLITE_OK
&& v
->zSql
&& v
->pc
>=0 ){
3527 char *zExpanded
= sqlite3VdbeExpandSql(v
, v
->zSql
);
3528 assert( v
->db
->init
.busy
==0 );
3530 sqlite3GlobalConfig
.xSqllog(
3531 sqlite3GlobalConfig
.pSqllogArg
, v
->db
, zExpanded
, 1
3533 sqlite3DbFree(v
->db
, zExpanded
);
3538 # define vdbeInvokeSqllog(x)
3542 ** Clean up a VDBE after execution but do not delete the VDBE just yet.
3543 ** Write any error messages into *pzErrMsg. Return the result code.
3545 ** After this routine is run, the VDBE should be ready to be executed
3548 ** To look at it another way, this routine resets the state of the
3549 ** virtual machine from VDBE_RUN_STATE or VDBE_HALT_STATE back to
3550 ** VDBE_READY_STATE.
3552 int sqlite3VdbeReset(Vdbe
*p
){
3553 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
3560 /* If the VM did not run to completion or if it encountered an
3561 ** error, then it might not have been halted properly. So halt
3564 if( p
->eVdbeState
==VDBE_RUN_STATE
) sqlite3VdbeHalt(p
);
3566 /* If the VDBE has been run even partially, then transfer the error code
3567 ** and error message from the VDBE into the main database structure. But
3568 ** if the VDBE has just been set to run but has not actually executed any
3569 ** instructions yet, leave the main database error information unchanged.
3572 vdbeInvokeSqllog(p
);
3573 if( db
->pErr
|| p
->zErrMsg
){
3574 sqlite3VdbeTransferError(p
);
3576 db
->errCode
= p
->rc
;
3580 /* Reset register contents and reclaim error message memory.
3583 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and
3584 ** Vdbe.aMem[] arrays have already been cleaned up. */
3585 if( p
->apCsr
) for(i
=0; i
<p
->nCursor
; i
++) assert( p
->apCsr
[i
]==0 );
3587 for(i
=0; i
<p
->nMem
; i
++) assert( p
->aMem
[i
].flags
==MEM_Undefined
);
3591 sqlite3DbFree(db
, p
->zErrMsg
);
3599 /* Save profiling information from this VDBE run.
3603 FILE *out
= fopen("vdbe_profile.out", "a");
3605 fprintf(out
, "---- ");
3606 for(i
=0; i
<p
->nOp
; i
++){
3607 fprintf(out
, "%02x", p
->aOp
[i
].opcode
);
3612 fprintf(out
, "-- ");
3613 for(i
=0; (c
= p
->zSql
[i
])!=0; i
++){
3614 if( pc
=='\n' ) fprintf(out
, "-- ");
3618 if( pc
!='\n' ) fprintf(out
, "\n");
3620 for(i
=0; i
<p
->nOp
; i
++){
3622 i64 cnt
= p
->aOp
[i
].nExec
;
3623 i64 cycles
= p
->aOp
[i
].nCycle
;
3624 sqlite3_snprintf(sizeof(zHdr
), zHdr
, "%6u %12llu %8llu ",
3627 cnt
>0 ? cycles
/cnt
: 0
3629 fprintf(out
, "%s", zHdr
);
3630 sqlite3VdbePrintOp(out
, i
, &p
->aOp
[i
]);
3636 return p
->rc
& db
->errMask
;
3640 ** Clean up and delete a VDBE after execution. Return an integer which is
3641 ** the result code. Write any error message text into *pzErrMsg.
3643 int sqlite3VdbeFinalize(Vdbe
*p
){
3645 assert( VDBE_RUN_STATE
>VDBE_READY_STATE
);
3646 assert( VDBE_HALT_STATE
>VDBE_READY_STATE
);
3647 assert( VDBE_INIT_STATE
<VDBE_READY_STATE
);
3648 if( p
->eVdbeState
>=VDBE_READY_STATE
){
3649 rc
= sqlite3VdbeReset(p
);
3650 assert( (rc
& p
->db
->errMask
)==rc
);
3652 sqlite3VdbeDelete(p
);
3657 ** If parameter iOp is less than zero, then invoke the destructor for
3658 ** all auxiliary data pointers currently cached by the VM passed as
3659 ** the first argument.
3661 ** Or, if iOp is greater than or equal to zero, then the destructor is
3662 ** only invoked for those auxiliary data pointers created by the user
3663 ** function invoked by the OP_Function opcode at instruction iOp of
3664 ** VM pVdbe, and only then if:
3666 ** * the associated function parameter is the 32nd or later (counting
3667 ** from left to right), or
3669 ** * the corresponding bit in argument mask is clear (where the first
3670 ** function parameter corresponds to bit 0 etc.).
3672 void sqlite3VdbeDeleteAuxData(sqlite3
*db
, AuxData
**pp
, int iOp
, int mask
){
3674 AuxData
*pAux
= *pp
;
3676 || (pAux
->iAuxOp
==iOp
3678 && (pAux
->iAuxArg
>31 || !(mask
& MASKBIT32(pAux
->iAuxArg
))))
3680 testcase( pAux
->iAuxArg
==31 );
3681 if( pAux
->xDeleteAux
){
3682 pAux
->xDeleteAux(pAux
->pAux
);
3684 *pp
= pAux
->pNextAux
;
3685 sqlite3DbFree(db
, pAux
);
3687 pp
= &pAux
->pNextAux
;
3693 ** Free all memory associated with the Vdbe passed as the second argument,
3694 ** except for object itself, which is preserved.
3696 ** The difference between this function and sqlite3VdbeDelete() is that
3697 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with
3698 ** the database connection and frees the object itself.
3700 static void sqlite3VdbeClearObject(sqlite3
*db
, Vdbe
*p
){
3701 SubProgram
*pSub
, *pNext
;
3703 assert( p
->db
==0 || p
->db
==db
);
3705 releaseMemArray(p
->aColName
, p
->nResAlloc
*COLNAME_N
);
3706 sqlite3DbNNFreeNN(db
, p
->aColName
);
3708 for(pSub
=p
->pProgram
; pSub
; pSub
=pNext
){
3709 pNext
= pSub
->pNext
;
3710 vdbeFreeOpArray(db
, pSub
->aOp
, pSub
->nOp
);
3711 sqlite3DbFree(db
, pSub
);
3713 if( p
->eVdbeState
!=VDBE_INIT_STATE
){
3714 releaseMemArray(p
->aVar
, p
->nVar
);
3715 if( p
->pVList
) sqlite3DbNNFreeNN(db
, p
->pVList
);
3716 if( p
->pFree
) sqlite3DbNNFreeNN(db
, p
->pFree
);
3718 vdbeFreeOpArray(db
, p
->aOp
, p
->nOp
);
3719 if( p
->zSql
) sqlite3DbNNFreeNN(db
, p
->zSql
);
3720 #ifdef SQLITE_ENABLE_NORMALIZE
3721 sqlite3DbFree(db
, p
->zNormSql
);
3723 DblquoteStr
*pThis
, *pNxt
;
3724 for(pThis
=p
->pDblStr
; pThis
; pThis
=pNxt
){
3725 pNxt
= pThis
->pNextStr
;
3726 sqlite3DbFree(db
, pThis
);
3730 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
3733 for(i
=0; i
<p
->nScan
; i
++){
3734 sqlite3DbFree(db
, p
->aScan
[i
].zName
);
3736 sqlite3DbFree(db
, p
->aScan
);
3742 ** Delete an entire VDBE.
3744 void sqlite3VdbeDelete(Vdbe
*p
){
3750 assert( sqlite3_mutex_held(db
->mutex
) );
3751 sqlite3VdbeClearObject(db
, p
);
3752 if( db
->pnBytesFreed
==0 ){
3753 assert( p
->ppVPrev
!=0 );
3754 *p
->ppVPrev
= p
->pVNext
;
3756 p
->pVNext
->ppVPrev
= p
->ppVPrev
;
3759 sqlite3DbNNFreeNN(db
, p
);
3763 ** The cursor "p" has a pending seek operation that has not yet been
3764 ** carried out. Seek the cursor now. If an error occurs, return
3765 ** the appropriate error code.
3767 int SQLITE_NOINLINE
sqlite3VdbeFinishMoveto(VdbeCursor
*p
){
3770 extern int sqlite3_search_count
;
3772 assert( p
->deferredMoveto
);
3773 assert( p
->isTable
);
3774 assert( p
->eCurType
==CURTYPE_BTREE
);
3775 rc
= sqlite3BtreeTableMoveto(p
->uc
.pCursor
, p
->movetoTarget
, 0, &res
);
3777 if( res
!=0 ) return SQLITE_CORRUPT_BKPT
;
3779 sqlite3_search_count
++;
3781 p
->deferredMoveto
= 0;
3782 p
->cacheStatus
= CACHE_STALE
;
3787 ** Something has moved cursor "p" out of place. Maybe the row it was
3788 ** pointed to was deleted out from under it. Or maybe the btree was
3789 ** rebalanced. Whatever the cause, try to restore "p" to the place it
3790 ** is supposed to be pointing. If the row was deleted out from under the
3791 ** cursor, set the cursor to point to a NULL row.
3793 int SQLITE_NOINLINE
sqlite3VdbeHandleMovedCursor(VdbeCursor
*p
){
3794 int isDifferentRow
, rc
;
3795 assert( p
->eCurType
==CURTYPE_BTREE
);
3796 assert( p
->uc
.pCursor
!=0 );
3797 assert( sqlite3BtreeCursorHasMoved(p
->uc
.pCursor
) );
3798 rc
= sqlite3BtreeCursorRestore(p
->uc
.pCursor
, &isDifferentRow
);
3799 p
->cacheStatus
= CACHE_STALE
;
3800 if( isDifferentRow
) p
->nullRow
= 1;
3805 ** Check to ensure that the cursor is valid. Restore the cursor
3806 ** if need be. Return any I/O error from the restore operation.
3808 int sqlite3VdbeCursorRestore(VdbeCursor
*p
){
3809 assert( p
->eCurType
==CURTYPE_BTREE
|| IsNullCursor(p
) );
3810 if( sqlite3BtreeCursorHasMoved(p
->uc
.pCursor
) ){
3811 return sqlite3VdbeHandleMovedCursor(p
);
3817 ** The following functions:
3819 ** sqlite3VdbeSerialType()
3820 ** sqlite3VdbeSerialTypeLen()
3821 ** sqlite3VdbeSerialLen()
3822 ** sqlite3VdbeSerialPut() <--- in-lined into OP_MakeRecord as of 2022-04-02
3823 ** sqlite3VdbeSerialGet()
3825 ** encapsulate the code that serializes values for storage in SQLite
3826 ** data and index records. Each serialized value consists of a
3827 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
3828 ** integer, stored as a varint.
3830 ** In an SQLite index record, the serial type is stored directly before
3831 ** the blob of data that it corresponds to. In a table record, all serial
3832 ** types are stored at the start of the record, and the blobs of data at
3833 ** the end. Hence these functions allow the caller to handle the
3834 ** serial-type and data blob separately.
3836 ** The following table describes the various storage classes for data:
3838 ** serial type bytes of data type
3839 ** -------------- --------------- ---------------
3841 ** 1 1 signed integer
3842 ** 2 2 signed integer
3843 ** 3 3 signed integer
3844 ** 4 4 signed integer
3845 ** 5 6 signed integer
3846 ** 6 8 signed integer
3848 ** 8 0 Integer constant 0
3849 ** 9 0 Integer constant 1
3850 ** 10,11 reserved for expansion
3851 ** N>=12 and even (N-12)/2 BLOB
3852 ** N>=13 and odd (N-13)/2 text
3854 ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions
3855 ** of SQLite will not understand those serial types.
3858 #if 0 /* Inlined into the OP_MakeRecord opcode */
3860 ** Return the serial-type for the value stored in pMem.
3862 ** This routine might convert a large MEM_IntReal value into MEM_Real.
3864 ** 2019-07-11: The primary user of this subroutine was the OP_MakeRecord
3865 ** opcode in the byte-code engine. But by moving this routine in-line, we
3866 ** can omit some redundant tests and make that opcode a lot faster. So
3867 ** this routine is now only used by the STAT3 logic and STAT3 support has
3868 ** ended. The code is kept here for historical reference only.
3870 u32
sqlite3VdbeSerialType(Mem
*pMem
, int file_format
, u32
*pLen
){
3871 int flags
= pMem
->flags
;
3875 if( flags
&MEM_Null
){
3879 if( flags
&(MEM_Int
|MEM_IntReal
) ){
3880 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
3881 # define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
3884 testcase( flags
& MEM_Int
);
3885 testcase( flags
& MEM_IntReal
);
3892 if( (i
&1)==i
&& file_format
>=4 ){
3900 if( u
<=32767 ){ *pLen
= 2; return 2; }
3901 if( u
<=8388607 ){ *pLen
= 3; return 3; }
3902 if( u
<=2147483647 ){ *pLen
= 4; return 4; }
3903 if( u
<=MAX_6BYTE
){ *pLen
= 6; return 5; }
3905 if( flags
&MEM_IntReal
){
3906 /* If the value is IntReal and is going to take up 8 bytes to store
3907 ** as an integer, then we might as well make it an 8-byte floating
3909 pMem
->u
.r
= (double)pMem
->u
.i
;
3910 pMem
->flags
&= ~MEM_IntReal
;
3911 pMem
->flags
|= MEM_Real
;
3916 if( flags
&MEM_Real
){
3920 assert( pMem
->db
->mallocFailed
|| flags
&(MEM_Str
|MEM_Blob
) );
3921 assert( pMem
->n
>=0 );
3923 if( flags
& MEM_Zero
){
3927 return ((n
*2) + 12 + ((flags
&MEM_Str
)!=0));
3929 #endif /* inlined into OP_MakeRecord */
3932 ** The sizes for serial types less than 128
3934 const u8 sqlite3SmallTypeSizes
[128] = {
3935 /* 0 1 2 3 4 5 6 7 8 9 */
3936 /* 0 */ 0, 1, 2, 3, 4, 6, 8, 8, 0, 0,
3937 /* 10 */ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3,
3938 /* 20 */ 4, 4, 5, 5, 6, 6, 7, 7, 8, 8,
3939 /* 30 */ 9, 9, 10, 10, 11, 11, 12, 12, 13, 13,
3940 /* 40 */ 14, 14, 15, 15, 16, 16, 17, 17, 18, 18,
3941 /* 50 */ 19, 19, 20, 20, 21, 21, 22, 22, 23, 23,
3942 /* 60 */ 24, 24, 25, 25, 26, 26, 27, 27, 28, 28,
3943 /* 70 */ 29, 29, 30, 30, 31, 31, 32, 32, 33, 33,
3944 /* 80 */ 34, 34, 35, 35, 36, 36, 37, 37, 38, 38,
3945 /* 90 */ 39, 39, 40, 40, 41, 41, 42, 42, 43, 43,
3946 /* 100 */ 44, 44, 45, 45, 46, 46, 47, 47, 48, 48,
3947 /* 110 */ 49, 49, 50, 50, 51, 51, 52, 52, 53, 53,
3948 /* 120 */ 54, 54, 55, 55, 56, 56, 57, 57
3952 ** Return the length of the data corresponding to the supplied serial-type.
3954 u32
sqlite3VdbeSerialTypeLen(u32 serial_type
){
3955 if( serial_type
>=128 ){
3956 return (serial_type
-12)/2;
3958 assert( serial_type
<12
3959 || sqlite3SmallTypeSizes
[serial_type
]==(serial_type
- 12)/2 );
3960 return sqlite3SmallTypeSizes
[serial_type
];
3963 u8
sqlite3VdbeOneByteSerialTypeLen(u8 serial_type
){
3964 assert( serial_type
<128 );
3965 return sqlite3SmallTypeSizes
[serial_type
];
3969 ** If we are on an architecture with mixed-endian floating
3970 ** points (ex: ARM7) then swap the lower 4 bytes with the
3971 ** upper 4 bytes. Return the result.
3973 ** For most architectures, this is a no-op.
3975 ** (later): It is reported to me that the mixed-endian problem
3976 ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems
3977 ** that early versions of GCC stored the two words of a 64-bit
3978 ** float in the wrong order. And that error has been propagated
3979 ** ever since. The blame is not necessarily with GCC, though.
3980 ** GCC might have just copying the problem from a prior compiler.
3981 ** I am also told that newer versions of GCC that follow a different
3982 ** ABI get the byte order right.
3984 ** Developers using SQLite on an ARM7 should compile and run their
3985 ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG
3986 ** enabled, some asserts below will ensure that the byte order of
3987 ** floating point values is correct.
3989 ** (2007-08-30) Frank van Vugt has studied this problem closely
3990 ** and has send his findings to the SQLite developers. Frank
3991 ** writes that some Linux kernels offer floating point hardware
3992 ** emulation that uses only 32-bit mantissas instead of a full
3993 ** 48-bits as required by the IEEE standard. (This is the
3994 ** CONFIG_FPE_FASTFPE option.) On such systems, floating point
3995 ** byte swapping becomes very complicated. To avoid problems,
3996 ** the necessary byte swapping is carried out using a 64-bit integer
3997 ** rather than a 64-bit float. Frank assures us that the code here
3998 ** works for him. We, the developers, have no way to independently
3999 ** verify this, but Frank seems to know what he is talking about
4002 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
4003 u64
sqlite3FloatSwap(u64 in
){
4016 #endif /* SQLITE_MIXED_ENDIAN_64BIT_FLOAT */
4019 /* Input "x" is a sequence of unsigned characters that represent a
4020 ** big-endian integer. Return the equivalent native integer
4022 #define ONE_BYTE_INT(x) ((i8)(x)[0])
4023 #define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1])
4024 #define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2])
4025 #define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
4026 #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
4029 ** Deserialize the data blob pointed to by buf as serial type serial_type
4030 ** and store the result in pMem.
4032 ** This function is implemented as two separate routines for performance.
4033 ** The few cases that require local variables are broken out into a separate
4034 ** routine so that in most cases the overhead of moving the stack pointer
4037 static void serialGet(
4038 const unsigned char *buf
, /* Buffer to deserialize from */
4039 u32 serial_type
, /* Serial type to deserialize */
4040 Mem
*pMem
/* Memory cell to write value into */
4042 u64 x
= FOUR_BYTE_UINT(buf
);
4043 u32 y
= FOUR_BYTE_UINT(buf
+4);
4045 if( serial_type
==6 ){
4046 /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit
4047 ** twos-complement integer. */
4048 pMem
->u
.i
= *(i64
*)&x
;
4049 pMem
->flags
= MEM_Int
;
4050 testcase( pMem
->u
.i
<0 );
4052 /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit
4053 ** floating point number. */
4054 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
4055 /* Verify that integers and floating point values use the same
4056 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
4057 ** defined that 64-bit floating point values really are mixed
4060 static const u64 t1
= ((u64
)0x3ff00000)<<32;
4061 static const double r1
= 1.0;
4063 swapMixedEndianFloat(t2
);
4064 assert( sizeof(r1
)==sizeof(t2
) && memcmp(&r1
, &t2
, sizeof(r1
))==0 );
4066 assert( sizeof(x
)==8 && sizeof(pMem
->u
.r
)==8 );
4067 swapMixedEndianFloat(x
);
4068 memcpy(&pMem
->u
.r
, &x
, sizeof(x
));
4069 pMem
->flags
= IsNaN(x
) ? MEM_Null
: MEM_Real
;
4072 static int serialGet7(
4073 const unsigned char *buf
, /* Buffer to deserialize from */
4074 Mem
*pMem
/* Memory cell to write value into */
4076 u64 x
= FOUR_BYTE_UINT(buf
);
4077 u32 y
= FOUR_BYTE_UINT(buf
+4);
4079 assert( sizeof(x
)==8 && sizeof(pMem
->u
.r
)==8 );
4080 swapMixedEndianFloat(x
);
4081 memcpy(&pMem
->u
.r
, &x
, sizeof(x
));
4083 pMem
->flags
= MEM_Null
;
4086 pMem
->flags
= MEM_Real
;
4089 void sqlite3VdbeSerialGet(
4090 const unsigned char *buf
, /* Buffer to deserialize from */
4091 u32 serial_type
, /* Serial type to deserialize */
4092 Mem
*pMem
/* Memory cell to write value into */
4094 switch( serial_type
){
4095 case 10: { /* Internal use only: NULL with virtual table
4096 ** UPDATE no-change flag set */
4097 pMem
->flags
= MEM_Null
|MEM_Zero
;
4102 case 11: /* Reserved for future use */
4103 case 0: { /* Null */
4104 /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */
4105 pMem
->flags
= MEM_Null
;
4109 /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement
4111 pMem
->u
.i
= ONE_BYTE_INT(buf
);
4112 pMem
->flags
= MEM_Int
;
4113 testcase( pMem
->u
.i
<0 );
4116 case 2: { /* 2-byte signed integer */
4117 /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit
4118 ** twos-complement integer. */
4119 pMem
->u
.i
= TWO_BYTE_INT(buf
);
4120 pMem
->flags
= MEM_Int
;
4121 testcase( pMem
->u
.i
<0 );
4124 case 3: { /* 3-byte signed integer */
4125 /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit
4126 ** twos-complement integer. */
4127 pMem
->u
.i
= THREE_BYTE_INT(buf
);
4128 pMem
->flags
= MEM_Int
;
4129 testcase( pMem
->u
.i
<0 );
4132 case 4: { /* 4-byte signed integer */
4133 /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit
4134 ** twos-complement integer. */
4135 pMem
->u
.i
= FOUR_BYTE_INT(buf
);
4137 /* Work around a sign-extension bug in the HP compiler for HP/UX */
4138 if( buf
[0]&0x80 ) pMem
->u
.i
|= 0xffffffff80000000LL
;
4140 pMem
->flags
= MEM_Int
;
4141 testcase( pMem
->u
.i
<0 );
4144 case 5: { /* 6-byte signed integer */
4145 /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit
4146 ** twos-complement integer. */
4147 pMem
->u
.i
= FOUR_BYTE_UINT(buf
+2) + (((i64
)1)<<32)*TWO_BYTE_INT(buf
);
4148 pMem
->flags
= MEM_Int
;
4149 testcase( pMem
->u
.i
<0 );
4152 case 6: /* 8-byte signed integer */
4153 case 7: { /* IEEE floating point */
4154 /* These use local variables, so do them in a separate routine
4155 ** to avoid having to move the frame pointer in the common case */
4156 serialGet(buf
,serial_type
,pMem
);
4159 case 8: /* Integer 0 */
4160 case 9: { /* Integer 1 */
4161 /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */
4162 /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */
4163 pMem
->u
.i
= serial_type
-8;
4164 pMem
->flags
= MEM_Int
;
4168 /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in
4170 ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and
4171 ** (N-13)/2 bytes in length. */
4172 static const u16 aFlag
[] = { MEM_Blob
|MEM_Ephem
, MEM_Str
|MEM_Ephem
};
4173 pMem
->z
= (char *)buf
;
4174 pMem
->n
= (serial_type
-12)/2;
4175 pMem
->flags
= aFlag
[serial_type
&1];
4182 ** This routine is used to allocate sufficient space for an UnpackedRecord
4183 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if
4184 ** the first argument is a pointer to KeyInfo structure pKeyInfo.
4186 ** The space is either allocated using sqlite3DbMallocRaw() or from within
4187 ** the unaligned buffer passed via the second and third arguments (presumably
4188 ** stack space). If the former, then *ppFree is set to a pointer that should
4189 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the
4190 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL
4191 ** before returning.
4193 ** If an OOM error occurs, NULL is returned.
4195 UnpackedRecord
*sqlite3VdbeAllocUnpackedRecord(
4196 KeyInfo
*pKeyInfo
/* Description of the record */
4198 UnpackedRecord
*p
; /* Unpacked record to return */
4199 int nByte
; /* Number of bytes required for *p */
4200 nByte
= ROUND8P(sizeof(UnpackedRecord
)) + sizeof(Mem
)*(pKeyInfo
->nKeyField
+1);
4201 p
= (UnpackedRecord
*)sqlite3DbMallocRaw(pKeyInfo
->db
, nByte
);
4203 p
->aMem
= (Mem
*)&((char*)p
)[ROUND8P(sizeof(UnpackedRecord
))];
4204 assert( pKeyInfo
->aSortFlags
!=0 );
4205 p
->pKeyInfo
= pKeyInfo
;
4206 p
->nField
= pKeyInfo
->nKeyField
+ 1;
4211 ** Given the nKey-byte encoding of a record in pKey[], populate the
4212 ** UnpackedRecord structure indicated by the fourth argument with the
4213 ** contents of the decoded record.
4215 void sqlite3VdbeRecordUnpack(
4216 KeyInfo
*pKeyInfo
, /* Information about the record format */
4217 int nKey
, /* Size of the binary record */
4218 const void *pKey
, /* The binary record */
4219 UnpackedRecord
*p
/* Populate this structure before returning. */
4221 const unsigned char *aKey
= (const unsigned char *)pKey
;
4223 u32 idx
; /* Offset in aKey[] to read from */
4224 u16 u
; /* Unsigned loop counter */
4226 Mem
*pMem
= p
->aMem
;
4229 assert( EIGHT_BYTE_ALIGNMENT(pMem
) );
4230 idx
= getVarint32(aKey
, szHdr
);
4233 while( idx
<szHdr
&& d
<=(u32
)nKey
){
4236 idx
+= getVarint32(&aKey
[idx
], serial_type
);
4237 pMem
->enc
= pKeyInfo
->enc
;
4238 pMem
->db
= pKeyInfo
->db
;
4239 /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
4242 sqlite3VdbeSerialGet(&aKey
[d
], serial_type
, pMem
);
4243 d
+= sqlite3VdbeSerialTypeLen(serial_type
);
4245 if( (++u
)>=p
->nField
) break;
4247 if( d
>(u32
)nKey
&& u
){
4248 assert( CORRUPT_DB
);
4249 /* In a corrupt record entry, the last pMem might have been set up using
4250 ** uninitialized memory. Overwrite its value with NULL, to prevent
4251 ** warnings from MSAN. */
4252 sqlite3VdbeMemSetNull(pMem
-1);
4254 assert( u
<=pKeyInfo
->nKeyField
+ 1 );
4260 ** This function compares two index or table record keys in the same way
4261 ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(),
4262 ** this function deserializes and compares values using the
4263 ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used
4264 ** in assert() statements to ensure that the optimized code in
4265 ** sqlite3VdbeRecordCompare() returns results with these two primitives.
4267 ** Return true if the result of comparison is equivalent to desiredResult.
4268 ** Return false if there is a disagreement.
4270 static int vdbeRecordCompareDebug(
4271 int nKey1
, const void *pKey1
, /* Left key */
4272 const UnpackedRecord
*pPKey2
, /* Right key */
4273 int desiredResult
/* Correct answer */
4275 u32 d1
; /* Offset into aKey[] of next data element */
4276 u32 idx1
; /* Offset into aKey[] of next header element */
4277 u32 szHdr1
; /* Number of bytes in header */
4280 const unsigned char *aKey1
= (const unsigned char *)pKey1
;
4284 pKeyInfo
= pPKey2
->pKeyInfo
;
4285 if( pKeyInfo
->db
==0 ) return 1;
4286 mem1
.enc
= pKeyInfo
->enc
;
4287 mem1
.db
= pKeyInfo
->db
;
4288 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */
4289 VVA_ONLY( mem1
.szMalloc
= 0; ) /* Only needed by assert() statements */
4291 /* Compilers may complain that mem1.u.i is potentially uninitialized.
4292 ** We could initialize it, as shown here, to silence those complaints.
4293 ** But in fact, mem1.u.i will never actually be used uninitialized, and doing
4294 ** the unnecessary initialization has a measurable negative performance
4295 ** impact, since this routine is a very high runner. And so, we choose
4296 ** to ignore the compiler warnings and leave this variable uninitialized.
4298 /* mem1.u.i = 0; // not needed, here to silence compiler warning */
4300 idx1
= getVarint32(aKey1
, szHdr1
);
4301 if( szHdr1
>98307 ) return SQLITE_CORRUPT
;
4303 assert( pKeyInfo
->nAllField
>=pPKey2
->nField
|| CORRUPT_DB
);
4304 assert( pKeyInfo
->aSortFlags
!=0 );
4305 assert( pKeyInfo
->nKeyField
>0 );
4306 assert( idx1
<=szHdr1
|| CORRUPT_DB
);
4310 /* Read the serial types for the next element in each key. */
4311 idx1
+= getVarint32( aKey1
+idx1
, serial_type1
);
4313 /* Verify that there is enough key space remaining to avoid
4314 ** a buffer overread. The "d1+serial_type1+2" subexpression will
4315 ** always be greater than or equal to the amount of required key space.
4316 ** Use that approximation to avoid the more expensive call to
4317 ** sqlite3VdbeSerialTypeLen() in the common case.
4319 if( d1
+(u64
)serial_type1
+2>(u64
)nKey1
4320 && d1
+(u64
)sqlite3VdbeSerialTypeLen(serial_type1
)>(u64
)nKey1
4324 && d1
+(u64
)sqlite3VdbeSerialTypeLen(serial_type1
)<=(u64
)nKey1
+8
4327 return 1; /* corrupt record not detected by
4328 ** sqlite3VdbeRecordCompareWithSkip(). Return true
4329 ** to avoid firing the assert() */
4334 /* Extract the values to be compared.
4336 sqlite3VdbeSerialGet(&aKey1
[d1
], serial_type1
, &mem1
);
4337 d1
+= sqlite3VdbeSerialTypeLen(serial_type1
);
4339 /* Do the comparison
4341 rc
= sqlite3MemCompare(&mem1
, &pPKey2
->aMem
[i
],
4342 pKeyInfo
->nAllField
>i
? pKeyInfo
->aColl
[i
] : 0);
4344 assert( mem1
.szMalloc
==0 ); /* See comment below */
4345 if( (pKeyInfo
->aSortFlags
[i
] & KEYINFO_ORDER_BIGNULL
)
4346 && ((mem1
.flags
& MEM_Null
) || (pPKey2
->aMem
[i
].flags
& MEM_Null
))
4350 if( pKeyInfo
->aSortFlags
[i
] & KEYINFO_ORDER_DESC
){
4351 rc
= -rc
; /* Invert the result for DESC sort order. */
4353 goto debugCompareEnd
;
4356 }while( idx1
<szHdr1
&& i
<pPKey2
->nField
);
4358 /* No memory allocation is ever used on mem1. Prove this using
4359 ** the following assert(). If the assert() fails, it indicates a
4360 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
4362 assert( mem1
.szMalloc
==0 );
4364 /* rc==0 here means that one of the keys ran out of fields and
4365 ** all the fields up to that point were equal. Return the default_rc
4367 rc
= pPKey2
->default_rc
;
4370 if( desiredResult
==0 && rc
==0 ) return 1;
4371 if( desiredResult
<0 && rc
<0 ) return 1;
4372 if( desiredResult
>0 && rc
>0 ) return 1;
4373 if( CORRUPT_DB
) return 1;
4374 if( pKeyInfo
->db
->mallocFailed
) return 1;
4381 ** Count the number of fields (a.k.a. columns) in the record given by
4382 ** pKey,nKey. The verify that this count is less than or equal to the
4383 ** limit given by pKeyInfo->nAllField.
4385 ** If this constraint is not satisfied, it means that the high-speed
4386 ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will
4387 ** not work correctly. If this assert() ever fires, it probably means
4388 ** that the KeyInfo.nKeyField or KeyInfo.nAllField values were computed
4391 static void vdbeAssertFieldCountWithinLimits(
4392 int nKey
, const void *pKey
, /* The record to verify */
4393 const KeyInfo
*pKeyInfo
/* Compare size with this KeyInfo */
4399 const unsigned char *aKey
= (const unsigned char*)pKey
;
4401 if( CORRUPT_DB
) return;
4402 idx
= getVarint32(aKey
, szHdr
);
4404 assert( szHdr
<=(u32
)nKey
);
4406 idx
+= getVarint32(aKey
+idx
, notUsed
);
4409 assert( nField
<= pKeyInfo
->nAllField
);
4412 # define vdbeAssertFieldCountWithinLimits(A,B,C)
4416 ** Both *pMem1 and *pMem2 contain string values. Compare the two values
4417 ** using the collation sequence pColl. As usual, return a negative , zero
4418 ** or positive value if *pMem1 is less than, equal to or greater than
4419 ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);".
4421 static int vdbeCompareMemString(
4424 const CollSeq
*pColl
,
4425 u8
*prcErr
/* If an OOM occurs, set to SQLITE_NOMEM */
4427 if( pMem1
->enc
==pColl
->enc
){
4428 /* The strings are already in the correct encoding. Call the
4429 ** comparison function directly */
4430 return pColl
->xCmp(pColl
->pUser
,pMem1
->n
,pMem1
->z
,pMem2
->n
,pMem2
->z
);
4433 const void *v1
, *v2
;
4436 sqlite3VdbeMemInit(&c1
, pMem1
->db
, MEM_Null
);
4437 sqlite3VdbeMemInit(&c2
, pMem1
->db
, MEM_Null
);
4438 sqlite3VdbeMemShallowCopy(&c1
, pMem1
, MEM_Ephem
);
4439 sqlite3VdbeMemShallowCopy(&c2
, pMem2
, MEM_Ephem
);
4440 v1
= sqlite3ValueText((sqlite3_value
*)&c1
, pColl
->enc
);
4441 v2
= sqlite3ValueText((sqlite3_value
*)&c2
, pColl
->enc
);
4442 if( (v1
==0 || v2
==0) ){
4443 if( prcErr
) *prcErr
= SQLITE_NOMEM_BKPT
;
4446 rc
= pColl
->xCmp(pColl
->pUser
, c1
.n
, v1
, c2
.n
, v2
);
4448 sqlite3VdbeMemReleaseMalloc(&c1
);
4449 sqlite3VdbeMemReleaseMalloc(&c2
);
4455 ** The input pBlob is guaranteed to be a Blob that is not marked
4456 ** with MEM_Zero. Return true if it could be a zero-blob.
4458 static int isAllZero(const char *z
, int n
){
4461 if( z
[i
] ) return 0;
4467 ** Compare two blobs. Return negative, zero, or positive if the first
4468 ** is less than, equal to, or greater than the second, respectively.
4469 ** If one blob is a prefix of the other, then the shorter is the lessor.
4471 SQLITE_NOINLINE
int sqlite3BlobCompare(const Mem
*pB1
, const Mem
*pB2
){
4476 /* It is possible to have a Blob value that has some non-zero content
4477 ** followed by zero content. But that only comes up for Blobs formed
4478 ** by the OP_MakeRecord opcode, and such Blobs never get passed into
4479 ** sqlite3MemCompare(). */
4480 assert( (pB1
->flags
& MEM_Zero
)==0 || n1
==0 );
4481 assert( (pB2
->flags
& MEM_Zero
)==0 || n2
==0 );
4483 if( (pB1
->flags
|pB2
->flags
) & MEM_Zero
){
4484 if( pB1
->flags
& pB2
->flags
& MEM_Zero
){
4485 return pB1
->u
.nZero
- pB2
->u
.nZero
;
4486 }else if( pB1
->flags
& MEM_Zero
){
4487 if( !isAllZero(pB2
->z
, pB2
->n
) ) return -1;
4488 return pB1
->u
.nZero
- n2
;
4490 if( !isAllZero(pB1
->z
, pB1
->n
) ) return +1;
4491 return n1
- pB2
->u
.nZero
;
4494 c
= memcmp(pB1
->z
, pB2
->z
, n1
>n2
? n2
: n1
);
4499 /* The following two functions are used only within testcase() to prove
4500 ** test coverage. These functions do no exist for production builds.
4501 ** We must use separate SQLITE_NOINLINE functions here, since otherwise
4502 ** optimizer code movement causes gcov to become very confused.
4504 #if defined(SQLITE_COVERAGE_TEST) || defined(SQLITE_DEBUG)
4505 static int SQLITE_NOINLINE
doubleLt(double a
, double b
){ return a
<b
; }
4506 static int SQLITE_NOINLINE
doubleEq(double a
, double b
){ return a
==b
; }
4510 ** Do a comparison between a 64-bit signed integer and a 64-bit floating-point
4511 ** number. Return negative, zero, or positive if the first (i64) is less than,
4512 ** equal to, or greater than the second (double).
4514 int sqlite3IntFloatCompare(i64 i
, double r
){
4515 if( sqlite3IsNaN(r
) ){
4516 /* SQLite considers NaN to be a NULL. And all integer values are greater
4520 if( sqlite3Config
.bUseLongDouble
){
4521 LONGDOUBLE_TYPE x
= (LONGDOUBLE_TYPE
)i
;
4525 return (x
<r
) ? -1 : (x
>r
);
4528 if( r
<-9223372036854775808.0 ) return +1;
4529 if( r
>=9223372036854775808.0 ) return -1;
4531 if( i
<y
) return -1;
4532 if( i
>y
) return +1;
4533 testcase( doubleLt(((double)i
),r
) );
4534 testcase( doubleLt(r
,((double)i
)) );
4535 testcase( doubleEq(r
,((double)i
)) );
4536 return (((double)i
)<r
) ? -1 : (((double)i
)>r
);
4541 ** Compare the values contained by the two memory cells, returning
4542 ** negative, zero or positive if pMem1 is less than, equal to, or greater
4543 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers
4544 ** and reals) sorted numerically, followed by text ordered by the collating
4545 ** sequence pColl and finally blob's ordered by memcmp().
4547 ** Two NULL values are considered equal by this function.
4549 int sqlite3MemCompare(const Mem
*pMem1
, const Mem
*pMem2
, const CollSeq
*pColl
){
4555 combined_flags
= f1
|f2
;
4556 assert( !sqlite3VdbeMemIsRowSet(pMem1
) && !sqlite3VdbeMemIsRowSet(pMem2
) );
4558 /* If one value is NULL, it is less than the other. If both values
4559 ** are NULL, return 0.
4561 if( combined_flags
&MEM_Null
){
4562 return (f2
&MEM_Null
) - (f1
&MEM_Null
);
4565 /* At least one of the two values is a number
4567 if( combined_flags
&(MEM_Int
|MEM_Real
|MEM_IntReal
) ){
4568 testcase( combined_flags
& MEM_Int
);
4569 testcase( combined_flags
& MEM_Real
);
4570 testcase( combined_flags
& MEM_IntReal
);
4571 if( (f1
& f2
& (MEM_Int
|MEM_IntReal
))!=0 ){
4572 testcase( f1
& f2
& MEM_Int
);
4573 testcase( f1
& f2
& MEM_IntReal
);
4574 if( pMem1
->u
.i
< pMem2
->u
.i
) return -1;
4575 if( pMem1
->u
.i
> pMem2
->u
.i
) return +1;
4578 if( (f1
& f2
& MEM_Real
)!=0 ){
4579 if( pMem1
->u
.r
< pMem2
->u
.r
) return -1;
4580 if( pMem1
->u
.r
> pMem2
->u
.r
) return +1;
4583 if( (f1
&(MEM_Int
|MEM_IntReal
))!=0 ){
4584 testcase( f1
& MEM_Int
);
4585 testcase( f1
& MEM_IntReal
);
4586 if( (f2
&MEM_Real
)!=0 ){
4587 return sqlite3IntFloatCompare(pMem1
->u
.i
, pMem2
->u
.r
);
4588 }else if( (f2
&(MEM_Int
|MEM_IntReal
))!=0 ){
4589 if( pMem1
->u
.i
< pMem2
->u
.i
) return -1;
4590 if( pMem1
->u
.i
> pMem2
->u
.i
) return +1;
4596 if( (f1
&MEM_Real
)!=0 ){
4597 if( (f2
&(MEM_Int
|MEM_IntReal
))!=0 ){
4598 testcase( f2
& MEM_Int
);
4599 testcase( f2
& MEM_IntReal
);
4600 return -sqlite3IntFloatCompare(pMem2
->u
.i
, pMem1
->u
.r
);
4608 /* If one value is a string and the other is a blob, the string is less.
4609 ** If both are strings, compare using the collating functions.
4611 if( combined_flags
&MEM_Str
){
4612 if( (f1
& MEM_Str
)==0 ){
4615 if( (f2
& MEM_Str
)==0 ){
4619 assert( pMem1
->enc
==pMem2
->enc
|| pMem1
->db
->mallocFailed
);
4620 assert( pMem1
->enc
==SQLITE_UTF8
||
4621 pMem1
->enc
==SQLITE_UTF16LE
|| pMem1
->enc
==SQLITE_UTF16BE
);
4623 /* The collation sequence must be defined at this point, even if
4624 ** the user deletes the collation sequence after the vdbe program is
4625 ** compiled (this was not always the case).
4627 assert( !pColl
|| pColl
->xCmp
);
4630 return vdbeCompareMemString(pMem1
, pMem2
, pColl
, 0);
4632 /* If a NULL pointer was passed as the collate function, fall through
4633 ** to the blob case and use memcmp(). */
4636 /* Both values must be blobs. Compare using memcmp(). */
4637 return sqlite3BlobCompare(pMem1
, pMem2
);
4642 ** The first argument passed to this function is a serial-type that
4643 ** corresponds to an integer - all values between 1 and 9 inclusive
4644 ** except 7. The second points to a buffer containing an integer value
4645 ** serialized according to serial_type. This function deserializes
4646 ** and returns the value.
4648 static i64
vdbeRecordDecodeInt(u32 serial_type
, const u8
*aKey
){
4650 assert( CORRUPT_DB
|| (serial_type
>=1 && serial_type
<=9 && serial_type
!=7) );
4651 switch( serial_type
){
4654 testcase( aKey
[0]&0x80 );
4655 return ONE_BYTE_INT(aKey
);
4657 testcase( aKey
[0]&0x80 );
4658 return TWO_BYTE_INT(aKey
);
4660 testcase( aKey
[0]&0x80 );
4661 return THREE_BYTE_INT(aKey
);
4663 testcase( aKey
[0]&0x80 );
4664 y
= FOUR_BYTE_UINT(aKey
);
4665 return (i64
)*(int*)&y
;
4668 testcase( aKey
[0]&0x80 );
4669 return FOUR_BYTE_UINT(aKey
+2) + (((i64
)1)<<32)*TWO_BYTE_INT(aKey
);
4672 u64 x
= FOUR_BYTE_UINT(aKey
);
4673 testcase( aKey
[0]&0x80 );
4674 x
= (x
<<32) | FOUR_BYTE_UINT(aKey
+4);
4675 return (i64
)*(i64
*)&x
;
4679 return (serial_type
- 8);
4683 ** This function compares the two table rows or index records
4684 ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero
4685 ** or positive integer if key1 is less than, equal to or
4686 ** greater than key2. The {nKey1, pKey1} key must be a blob
4687 ** created by the OP_MakeRecord opcode of the VDBE. The pPKey2
4688 ** key must be a parsed key such as obtained from
4689 ** sqlite3VdbeParseRecord.
4691 ** If argument bSkip is non-zero, it is assumed that the caller has already
4692 ** determined that the first fields of the keys are equal.
4694 ** Key1 and Key2 do not have to contain the same number of fields. If all
4695 ** fields that appear in both keys are equal, then pPKey2->default_rc is
4698 ** If database corruption is discovered, set pPKey2->errCode to
4699 ** SQLITE_CORRUPT and return 0. If an OOM error is encountered,
4700 ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the
4701 ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db).
4703 int sqlite3VdbeRecordCompareWithSkip(
4704 int nKey1
, const void *pKey1
, /* Left key */
4705 UnpackedRecord
*pPKey2
, /* Right key */
4706 int bSkip
/* If true, skip the first field */
4708 u32 d1
; /* Offset into aKey[] of next data element */
4709 int i
; /* Index of next field to compare */
4710 u32 szHdr1
; /* Size of record header in bytes */
4711 u32 idx1
; /* Offset of first type in header */
4712 int rc
= 0; /* Return value */
4713 Mem
*pRhs
= pPKey2
->aMem
; /* Next field of pPKey2 to compare */
4715 const unsigned char *aKey1
= (const unsigned char *)pKey1
;
4718 /* If bSkip is true, then the caller has already determined that the first
4719 ** two elements in the keys are equal. Fix the various stack variables so
4720 ** that this routine begins comparing at the second field. */
4726 idx1
= 1 + sqlite3GetVarint32(&aKey1
[1], &s1
);
4729 d1
= szHdr1
+ sqlite3VdbeSerialTypeLen(s1
);
4733 if( (szHdr1
= aKey1
[0])<0x80 ){
4736 idx1
= sqlite3GetVarint32(aKey1
, &szHdr1
);
4741 if( d1
>(unsigned)nKey1
){
4742 pPKey2
->errCode
= (u8
)SQLITE_CORRUPT_BKPT
;
4743 return 0; /* Corruption */
4746 VVA_ONLY( mem1
.szMalloc
= 0; ) /* Only needed by assert() statements */
4747 assert( pPKey2
->pKeyInfo
->nAllField
>=pPKey2
->nField
4749 assert( pPKey2
->pKeyInfo
->aSortFlags
!=0 );
4750 assert( pPKey2
->pKeyInfo
->nKeyField
>0 );
4751 assert( idx1
<=szHdr1
|| CORRUPT_DB
);
4752 while( 1 /*exit-by-break*/ ){
4755 /* RHS is an integer */
4756 if( pRhs
->flags
& (MEM_Int
|MEM_IntReal
) ){
4757 testcase( pRhs
->flags
& MEM_Int
);
4758 testcase( pRhs
->flags
& MEM_IntReal
);
4759 serial_type
= aKey1
[idx1
];
4760 testcase( serial_type
==12 );
4761 if( serial_type
>=10 ){
4762 rc
= serial_type
==10 ? -1 : +1;
4763 }else if( serial_type
==0 ){
4765 }else if( serial_type
==7 ){
4766 serialGet7(&aKey1
[d1
], &mem1
);
4767 rc
= -sqlite3IntFloatCompare(pRhs
->u
.i
, mem1
.u
.r
);
4769 i64 lhs
= vdbeRecordDecodeInt(serial_type
, &aKey1
[d1
]);
4770 i64 rhs
= pRhs
->u
.i
;
4773 }else if( lhs
>rhs
){
4780 else if( pRhs
->flags
& MEM_Real
){
4781 serial_type
= aKey1
[idx1
];
4782 if( serial_type
>=10 ){
4783 /* Serial types 12 or greater are strings and blobs (greater than
4784 ** numbers). Types 10 and 11 are currently "reserved for future
4785 ** use", so it doesn't really matter what the results of comparing
4786 ** them to numeric values are. */
4787 rc
= serial_type
==10 ? -1 : +1;
4788 }else if( serial_type
==0 ){
4791 if( serial_type
==7 ){
4792 if( serialGet7(&aKey1
[d1
], &mem1
) ){
4793 rc
= -1; /* mem1 is a NaN */
4794 }else if( mem1
.u
.r
<pRhs
->u
.r
){
4796 }else if( mem1
.u
.r
>pRhs
->u
.r
){
4802 sqlite3VdbeSerialGet(&aKey1
[d1
], serial_type
, &mem1
);
4803 rc
= sqlite3IntFloatCompare(mem1
.u
.i
, pRhs
->u
.r
);
4808 /* RHS is a string */
4809 else if( pRhs
->flags
& MEM_Str
){
4810 getVarint32NR(&aKey1
[idx1
], serial_type
);
4811 testcase( serial_type
==12 );
4812 if( serial_type
<12 ){
4814 }else if( !(serial_type
& 0x01) ){
4817 mem1
.n
= (serial_type
- 12) / 2;
4818 testcase( (d1
+mem1
.n
)==(unsigned)nKey1
);
4819 testcase( (d1
+mem1
.n
+1)==(unsigned)nKey1
);
4820 if( (d1
+mem1
.n
) > (unsigned)nKey1
4821 || (pKeyInfo
= pPKey2
->pKeyInfo
)->nAllField
<=i
4823 pPKey2
->errCode
= (u8
)SQLITE_CORRUPT_BKPT
;
4824 return 0; /* Corruption */
4825 }else if( pKeyInfo
->aColl
[i
] ){
4826 mem1
.enc
= pKeyInfo
->enc
;
4827 mem1
.db
= pKeyInfo
->db
;
4828 mem1
.flags
= MEM_Str
;
4829 mem1
.z
= (char*)&aKey1
[d1
];
4830 rc
= vdbeCompareMemString(
4831 &mem1
, pRhs
, pKeyInfo
->aColl
[i
], &pPKey2
->errCode
4834 int nCmp
= MIN(mem1
.n
, pRhs
->n
);
4835 rc
= memcmp(&aKey1
[d1
], pRhs
->z
, nCmp
);
4836 if( rc
==0 ) rc
= mem1
.n
- pRhs
->n
;
4842 else if( pRhs
->flags
& MEM_Blob
){
4843 assert( (pRhs
->flags
& MEM_Zero
)==0 || pRhs
->n
==0 );
4844 getVarint32NR(&aKey1
[idx1
], serial_type
);
4845 testcase( serial_type
==12 );
4846 if( serial_type
<12 || (serial_type
& 0x01) ){
4849 int nStr
= (serial_type
- 12) / 2;
4850 testcase( (d1
+nStr
)==(unsigned)nKey1
);
4851 testcase( (d1
+nStr
+1)==(unsigned)nKey1
);
4852 if( (d1
+nStr
) > (unsigned)nKey1
){
4853 pPKey2
->errCode
= (u8
)SQLITE_CORRUPT_BKPT
;
4854 return 0; /* Corruption */
4855 }else if( pRhs
->flags
& MEM_Zero
){
4856 if( !isAllZero((const char*)&aKey1
[d1
],nStr
) ){
4859 rc
= nStr
- pRhs
->u
.nZero
;
4862 int nCmp
= MIN(nStr
, pRhs
->n
);
4863 rc
= memcmp(&aKey1
[d1
], pRhs
->z
, nCmp
);
4864 if( rc
==0 ) rc
= nStr
- pRhs
->n
;
4871 serial_type
= aKey1
[idx1
];
4874 || (serial_type
==7 && serialGet7(&aKey1
[d1
], &mem1
)!=0)
4883 int sortFlags
= pPKey2
->pKeyInfo
->aSortFlags
[i
];
4885 if( (sortFlags
& KEYINFO_ORDER_BIGNULL
)==0
4886 || ((sortFlags
& KEYINFO_ORDER_DESC
)
4887 !=(serial_type
==0 || (pRhs
->flags
&MEM_Null
)))
4892 assert( vdbeRecordCompareDebug(nKey1
, pKey1
, pPKey2
, rc
) );
4893 assert( mem1
.szMalloc
==0 ); /* See comment below */
4898 if( i
==pPKey2
->nField
) break;
4900 d1
+= sqlite3VdbeSerialTypeLen(serial_type
);
4901 if( d1
>(unsigned)nKey1
) break;
4902 idx1
+= sqlite3VarintLen(serial_type
);
4903 if( idx1
>=(unsigned)szHdr1
){
4904 pPKey2
->errCode
= (u8
)SQLITE_CORRUPT_BKPT
;
4905 return 0; /* Corrupt index */
4909 /* No memory allocation is ever used on mem1. Prove this using
4910 ** the following assert(). If the assert() fails, it indicates a
4911 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */
4912 assert( mem1
.szMalloc
==0 );
4914 /* rc==0 here means that one or both of the keys ran out of fields and
4915 ** all the fields up to that point were equal. Return the default_rc
4918 || vdbeRecordCompareDebug(nKey1
, pKey1
, pPKey2
, pPKey2
->default_rc
)
4919 || pPKey2
->pKeyInfo
->db
->mallocFailed
4922 return pPKey2
->default_rc
;
4924 int sqlite3VdbeRecordCompare(
4925 int nKey1
, const void *pKey1
, /* Left key */
4926 UnpackedRecord
*pPKey2
/* Right key */
4928 return sqlite3VdbeRecordCompareWithSkip(nKey1
, pKey1
, pPKey2
, 0);
4933 ** This function is an optimized version of sqlite3VdbeRecordCompare()
4934 ** that (a) the first field of pPKey2 is an integer, and (b) the
4935 ** size-of-header varint at the start of (pKey1/nKey1) fits in a single
4936 ** byte (i.e. is less than 128).
4938 ** To avoid concerns about buffer overreads, this routine is only used
4939 ** on schemas where the maximum valid header size is 63 bytes or less.
4941 static int vdbeRecordCompareInt(
4942 int nKey1
, const void *pKey1
, /* Left key */
4943 UnpackedRecord
*pPKey2
/* Right key */
4945 const u8
*aKey
= &((const u8
*)pKey1
)[*(const u8
*)pKey1
& 0x3F];
4946 int serial_type
= ((const u8
*)pKey1
)[1];
4953 vdbeAssertFieldCountWithinLimits(nKey1
, pKey1
, pPKey2
->pKeyInfo
);
4954 assert( (*(u8
*)pKey1
)<=0x3F || CORRUPT_DB
);
4955 switch( serial_type
){
4956 case 1: { /* 1-byte signed integer */
4957 lhs
= ONE_BYTE_INT(aKey
);
4961 case 2: { /* 2-byte signed integer */
4962 lhs
= TWO_BYTE_INT(aKey
);
4966 case 3: { /* 3-byte signed integer */
4967 lhs
= THREE_BYTE_INT(aKey
);
4971 case 4: { /* 4-byte signed integer */
4972 y
= FOUR_BYTE_UINT(aKey
);
4973 lhs
= (i64
)*(int*)&y
;
4977 case 5: { /* 6-byte signed integer */
4978 lhs
= FOUR_BYTE_UINT(aKey
+2) + (((i64
)1)<<32)*TWO_BYTE_INT(aKey
);
4982 case 6: { /* 8-byte signed integer */
4983 x
= FOUR_BYTE_UINT(aKey
);
4984 x
= (x
<<32) | FOUR_BYTE_UINT(aKey
+4);
4996 /* This case could be removed without changing the results of running
4997 ** this code. Including it causes gcc to generate a faster switch
4998 ** statement (since the range of switch targets now starts at zero and
4999 ** is contiguous) but does not cause any duplicate code to be generated
5000 ** (as gcc is clever enough to combine the two like cases). Other
5001 ** compilers might be similar. */
5003 return sqlite3VdbeRecordCompare(nKey1
, pKey1
, pPKey2
);
5006 return sqlite3VdbeRecordCompare(nKey1
, pKey1
, pPKey2
);
5009 assert( pPKey2
->u
.i
== pPKey2
->aMem
[0].u
.i
);
5015 }else if( pPKey2
->nField
>1 ){
5016 /* The first fields of the two keys are equal. Compare the trailing
5018 res
= sqlite3VdbeRecordCompareWithSkip(nKey1
, pKey1
, pPKey2
, 1);
5020 /* The first fields of the two keys are equal and there are no trailing
5021 ** fields. Return pPKey2->default_rc in this case. */
5022 res
= pPKey2
->default_rc
;
5026 assert( vdbeRecordCompareDebug(nKey1
, pKey1
, pPKey2
, res
) );
5031 ** This function is an optimized version of sqlite3VdbeRecordCompare()
5032 ** that (a) the first field of pPKey2 is a string, that (b) the first field
5033 ** uses the collation sequence BINARY and (c) that the size-of-header varint
5034 ** at the start of (pKey1/nKey1) fits in a single byte.
5036 static int vdbeRecordCompareString(
5037 int nKey1
, const void *pKey1
, /* Left key */
5038 UnpackedRecord
*pPKey2
/* Right key */
5040 const u8
*aKey1
= (const u8
*)pKey1
;
5044 assert( pPKey2
->aMem
[0].flags
& MEM_Str
);
5045 assert( pPKey2
->aMem
[0].n
== pPKey2
->n
);
5046 assert( pPKey2
->aMem
[0].z
== pPKey2
->u
.z
);
5047 vdbeAssertFieldCountWithinLimits(nKey1
, pKey1
, pPKey2
->pKeyInfo
);
5048 serial_type
= (signed char)(aKey1
[1]);
5051 if( serial_type
<12 ){
5052 if( serial_type
<0 ){
5053 sqlite3GetVarint32(&aKey1
[1], (u32
*)&serial_type
);
5054 if( serial_type
>=12 ) goto vrcs_restart
;
5055 assert( CORRUPT_DB
);
5057 res
= pPKey2
->r1
; /* (pKey1/nKey1) is a number or a null */
5058 }else if( !(serial_type
& 0x01) ){
5059 res
= pPKey2
->r2
; /* (pKey1/nKey1) is a blob */
5063 int szHdr
= aKey1
[0];
5065 nStr
= (serial_type
-12) / 2;
5066 if( (szHdr
+ nStr
) > nKey1
){
5067 pPKey2
->errCode
= (u8
)SQLITE_CORRUPT_BKPT
;
5068 return 0; /* Corruption */
5070 nCmp
= MIN( pPKey2
->n
, nStr
);
5071 res
= memcmp(&aKey1
[szHdr
], pPKey2
->u
.z
, nCmp
);
5078 res
= nStr
- pPKey2
->n
;
5080 if( pPKey2
->nField
>1 ){
5081 res
= sqlite3VdbeRecordCompareWithSkip(nKey1
, pKey1
, pPKey2
, 1);
5083 res
= pPKey2
->default_rc
;
5094 assert( vdbeRecordCompareDebug(nKey1
, pKey1
, pPKey2
, res
)
5096 || pPKey2
->pKeyInfo
->db
->mallocFailed
5102 ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function
5103 ** suitable for comparing serialized records to the unpacked record passed
5104 ** as the only argument.
5106 RecordCompare
sqlite3VdbeFindCompare(UnpackedRecord
*p
){
5107 /* varintRecordCompareInt() and varintRecordCompareString() both assume
5108 ** that the size-of-header varint that occurs at the start of each record
5109 ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt()
5110 ** also assumes that it is safe to overread a buffer by at least the
5111 ** maximum possible legal header size plus 8 bytes. Because there is
5112 ** guaranteed to be at least 74 (but not 136) bytes of padding following each
5113 ** buffer passed to varintRecordCompareInt() this makes it convenient to
5114 ** limit the size of the header to 64 bytes in cases where the first field
5117 ** The easiest way to enforce this limit is to consider only records with
5118 ** 13 fields or less. If the first field is an integer, the maximum legal
5119 ** header size is (12*5 + 1 + 1) bytes. */
5120 if( p
->pKeyInfo
->nAllField
<=13 ){
5121 int flags
= p
->aMem
[0].flags
;
5122 if( p
->pKeyInfo
->aSortFlags
[0] ){
5123 if( p
->pKeyInfo
->aSortFlags
[0] & KEYINFO_ORDER_BIGNULL
){
5124 return sqlite3VdbeRecordCompare
;
5132 if( (flags
& MEM_Int
) ){
5133 p
->u
.i
= p
->aMem
[0].u
.i
;
5134 return vdbeRecordCompareInt
;
5136 testcase( flags
& MEM_Real
);
5137 testcase( flags
& MEM_Null
);
5138 testcase( flags
& MEM_Blob
);
5139 if( (flags
& (MEM_Real
|MEM_IntReal
|MEM_Null
|MEM_Blob
))==0
5140 && p
->pKeyInfo
->aColl
[0]==0
5142 assert( flags
& MEM_Str
);
5143 p
->u
.z
= p
->aMem
[0].z
;
5144 p
->n
= p
->aMem
[0].n
;
5145 return vdbeRecordCompareString
;
5149 return sqlite3VdbeRecordCompare
;
5153 ** pCur points at an index entry created using the OP_MakeRecord opcode.
5154 ** Read the rowid (the last field in the record) and store it in *rowid.
5155 ** Return SQLITE_OK if everything works, or an error code otherwise.
5157 ** pCur might be pointing to text obtained from a corrupt database file.
5158 ** So the content cannot be trusted. Do appropriate checks on the content.
5160 int sqlite3VdbeIdxRowid(sqlite3
*db
, BtCursor
*pCur
, i64
*rowid
){
5163 u32 szHdr
; /* Size of the header */
5164 u32 typeRowid
; /* Serial type of the rowid */
5165 u32 lenRowid
; /* Size of the rowid */
5168 /* Get the size of the index entry. Only indices entries of less
5169 ** than 2GiB are support - anything large must be database corruption.
5170 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
5171 ** this code can safely assume that nCellKey is 32-bits
5173 assert( sqlite3BtreeCursorIsValid(pCur
) );
5174 nCellKey
= sqlite3BtreePayloadSize(pCur
);
5175 assert( (nCellKey
& SQLITE_MAX_U32
)==(u64
)nCellKey
);
5177 /* Read in the complete content of the index entry */
5178 sqlite3VdbeMemInit(&m
, db
, 0);
5179 rc
= sqlite3VdbeMemFromBtreeZeroOffset(pCur
, (u32
)nCellKey
, &m
);
5184 /* The index entry must begin with a header size */
5185 getVarint32NR((u8
*)m
.z
, szHdr
);
5186 testcase( szHdr
==3 );
5187 testcase( szHdr
==(u32
)m
.n
);
5188 testcase( szHdr
>0x7fffffff );
5190 if( unlikely(szHdr
<3 || szHdr
>(unsigned)m
.n
) ){
5191 goto idx_rowid_corruption
;
5194 /* The last field of the index should be an integer - the ROWID.
5195 ** Verify that the last entry really is an integer. */
5196 getVarint32NR((u8
*)&m
.z
[szHdr
-1], typeRowid
);
5197 testcase( typeRowid
==1 );
5198 testcase( typeRowid
==2 );
5199 testcase( typeRowid
==3 );
5200 testcase( typeRowid
==4 );
5201 testcase( typeRowid
==5 );
5202 testcase( typeRowid
==6 );
5203 testcase( typeRowid
==8 );
5204 testcase( typeRowid
==9 );
5205 if( unlikely(typeRowid
<1 || typeRowid
>9 || typeRowid
==7) ){
5206 goto idx_rowid_corruption
;
5208 lenRowid
= sqlite3SmallTypeSizes
[typeRowid
];
5209 testcase( (u32
)m
.n
==szHdr
+lenRowid
);
5210 if( unlikely((u32
)m
.n
<szHdr
+lenRowid
) ){
5211 goto idx_rowid_corruption
;
5214 /* Fetch the integer off the end of the index record */
5215 sqlite3VdbeSerialGet((u8
*)&m
.z
[m
.n
-lenRowid
], typeRowid
, &v
);
5217 sqlite3VdbeMemReleaseMalloc(&m
);
5220 /* Jump here if database corruption is detected after m has been
5221 ** allocated. Free the m object and return SQLITE_CORRUPT. */
5222 idx_rowid_corruption
:
5223 testcase( m
.szMalloc
!=0 );
5224 sqlite3VdbeMemReleaseMalloc(&m
);
5225 return SQLITE_CORRUPT_BKPT
;
5229 ** Compare the key of the index entry that cursor pC is pointing to against
5230 ** the key string in pUnpacked. Write into *pRes a number
5231 ** that is negative, zero, or positive if pC is less than, equal to,
5232 ** or greater than pUnpacked. Return SQLITE_OK on success.
5234 ** pUnpacked is either created without a rowid or is truncated so that it
5235 ** omits the rowid at the end. The rowid at the end of the index entry
5236 ** is ignored as well. Hence, this routine only compares the prefixes
5237 ** of the keys prior to the final rowid, not the entire key.
5239 int sqlite3VdbeIdxKeyCompare(
5240 sqlite3
*db
, /* Database connection */
5241 VdbeCursor
*pC
, /* The cursor to compare against */
5242 UnpackedRecord
*pUnpacked
, /* Unpacked version of key */
5243 int *res
/* Write the comparison result here */
5250 assert( pC
->eCurType
==CURTYPE_BTREE
);
5251 pCur
= pC
->uc
.pCursor
;
5252 assert( sqlite3BtreeCursorIsValid(pCur
) );
5253 nCellKey
= sqlite3BtreePayloadSize(pCur
);
5254 /* nCellKey will always be between 0 and 0xffffffff because of the way
5255 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
5256 if( nCellKey
<=0 || nCellKey
>0x7fffffff ){
5258 return SQLITE_CORRUPT_BKPT
;
5260 sqlite3VdbeMemInit(&m
, db
, 0);
5261 rc
= sqlite3VdbeMemFromBtreeZeroOffset(pCur
, (u32
)nCellKey
, &m
);
5265 *res
= sqlite3VdbeRecordCompareWithSkip(m
.n
, m
.z
, pUnpacked
, 0);
5266 sqlite3VdbeMemReleaseMalloc(&m
);
5271 ** This routine sets the value to be returned by subsequent calls to
5272 ** sqlite3_changes() on the database handle 'db'.
5274 void sqlite3VdbeSetChanges(sqlite3
*db
, i64 nChange
){
5275 assert( sqlite3_mutex_held(db
->mutex
) );
5276 db
->nChange
= nChange
;
5277 db
->nTotalChange
+= nChange
;
5281 ** Set a flag in the vdbe to update the change counter when it is finalised
5284 void sqlite3VdbeCountChanges(Vdbe
*v
){
5289 ** Mark every prepared statement associated with a database connection
5292 ** An expired statement means that recompilation of the statement is
5293 ** recommend. Statements expire when things happen that make their
5294 ** programs obsolete. Removing user-defined functions or collating
5295 ** sequences, or changing an authorization function are the types of
5296 ** things that make prepared statements obsolete.
5298 ** If iCode is 1, then expiration is advisory. The statement should
5299 ** be reprepared before being restarted, but if it is already running
5300 ** it is allowed to run to completion.
5302 ** Internally, this function just sets the Vdbe.expired flag on all
5303 ** prepared statements. The flag is set to 1 for an immediate expiration
5304 ** and set to 2 for an advisory expiration.
5306 void sqlite3ExpirePreparedStatements(sqlite3
*db
, int iCode
){
5308 for(p
= db
->pVdbe
; p
; p
=p
->pVNext
){
5309 p
->expired
= iCode
+1;
5314 ** Return the database associated with the Vdbe.
5316 sqlite3
*sqlite3VdbeDb(Vdbe
*v
){
5321 ** Return the SQLITE_PREPARE flags for a Vdbe.
5323 u8
sqlite3VdbePrepareFlags(Vdbe
*v
){
5324 return v
->prepFlags
;
5328 ** Return a pointer to an sqlite3_value structure containing the value bound
5329 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return
5330 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_*
5331 ** constants) to the value before returning it.
5333 ** The returned value must be freed by the caller using sqlite3ValueFree().
5335 sqlite3_value
*sqlite3VdbeGetBoundValue(Vdbe
*v
, int iVar
, u8 aff
){
5338 Mem
*pMem
= &v
->aVar
[iVar
-1];
5339 assert( (v
->db
->flags
& SQLITE_EnableQPSG
)==0
5340 || (v
->db
->mDbFlags
& DBFLAG_InternalFunc
)!=0 );
5341 if( 0==(pMem
->flags
& MEM_Null
) ){
5342 sqlite3_value
*pRet
= sqlite3ValueNew(v
->db
);
5344 sqlite3VdbeMemCopy((Mem
*)pRet
, pMem
);
5345 sqlite3ValueApplyAffinity(pRet
, aff
, SQLITE_UTF8
);
5354 ** Configure SQL variable iVar so that binding a new value to it signals
5355 ** to sqlite3_reoptimize() that re-preparing the statement may result
5356 ** in a better query plan.
5358 void sqlite3VdbeSetVarmask(Vdbe
*v
, int iVar
){
5360 assert( (v
->db
->flags
& SQLITE_EnableQPSG
)==0
5361 || (v
->db
->mDbFlags
& DBFLAG_InternalFunc
)!=0 );
5363 v
->expmask
|= 0x80000000;
5365 v
->expmask
|= ((u32
)1 << (iVar
-1));
5370 ** Cause a function to throw an error if it was call from OP_PureFunc
5371 ** rather than OP_Function.
5373 ** OP_PureFunc means that the function must be deterministic, and should
5374 ** throw an error if it is given inputs that would make it non-deterministic.
5375 ** This routine is invoked by date/time functions that use non-deterministic
5376 ** features such as 'now'.
5378 int sqlite3NotPureFunc(sqlite3_context
*pCtx
){
5380 #ifdef SQLITE_ENABLE_STAT4
5381 if( pCtx
->pVdbe
==0 ) return 1;
5383 pOp
= pCtx
->pVdbe
->aOp
+ pCtx
->iOp
;
5384 if( pOp
->opcode
==OP_PureFunc
){
5385 const char *zContext
;
5387 if( pOp
->p5
& NC_IsCheck
){
5388 zContext
= "a CHECK constraint";
5389 }else if( pOp
->p5
& NC_GenCol
){
5390 zContext
= "a generated column";
5392 zContext
= "an index";
5394 zMsg
= sqlite3_mprintf("non-deterministic use of %s() in %s",
5395 pCtx
->pFunc
->zName
, zContext
);
5396 sqlite3_result_error(pCtx
, zMsg
, -1);
5403 #if defined(SQLITE_ENABLE_CURSOR_HINTS) && defined(SQLITE_DEBUG)
5405 ** This Walker callback is used to help verify that calls to
5406 ** sqlite3BtreeCursorHint() with opcode BTREE_HINT_RANGE have
5407 ** byte-code register values correctly initialized.
5409 int sqlite3CursorRangeHintExprCheck(Walker
*pWalker
, Expr
*pExpr
){
5410 if( pExpr
->op
==TK_REGISTER
){
5411 assert( (pWalker
->u
.aMem
[pExpr
->iTable
].flags
& MEM_Undefined
)==0 );
5413 return WRC_Continue
;
5415 #endif /* SQLITE_ENABLE_CURSOR_HINTS && SQLITE_DEBUG */
5417 #ifndef SQLITE_OMIT_VIRTUALTABLE
5419 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
5420 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
5421 ** in memory obtained from sqlite3DbMalloc).
5423 void sqlite3VtabImportErrmsg(Vdbe
*p
, sqlite3_vtab
*pVtab
){
5424 if( pVtab
->zErrMsg
){
5425 sqlite3
*db
= p
->db
;
5426 sqlite3DbFree(db
, p
->zErrMsg
);
5427 p
->zErrMsg
= sqlite3DbStrDup(db
, pVtab
->zErrMsg
);
5428 sqlite3_free(pVtab
->zErrMsg
);
5432 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5434 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5437 ** If the second argument is not NULL, release any allocations associated
5438 ** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord
5439 ** structure itself, using sqlite3DbFree().
5441 ** This function is used to free UnpackedRecord structures allocated by
5442 ** the vdbeUnpackRecord() function found in vdbeapi.c.
5444 static void vdbeFreeUnpacked(sqlite3
*db
, int nField
, UnpackedRecord
*p
){
5448 for(i
=0; i
<nField
; i
++){
5449 Mem
*pMem
= &p
->aMem
[i
];
5450 if( pMem
->zMalloc
) sqlite3VdbeMemReleaseMalloc(pMem
);
5452 sqlite3DbNNFreeNN(db
, p
);
5455 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
5457 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5459 ** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call,
5460 ** then cursor passed as the second argument should point to the row about
5461 ** to be update or deleted. If the application calls sqlite3_preupdate_old(),
5462 ** the required value will be read from the row the cursor points to.
5464 void sqlite3VdbePreUpdateHook(
5465 Vdbe
*v
, /* Vdbe pre-update hook is invoked by */
5466 VdbeCursor
*pCsr
, /* Cursor to grab old.* values from */
5467 int op
, /* SQLITE_INSERT, UPDATE or DELETE */
5468 const char *zDb
, /* Database name */
5469 Table
*pTab
, /* Modified table */
5470 i64 iKey1
, /* Initial key value */
5471 int iReg
, /* Register for new.* record */
5474 sqlite3
*db
= v
->db
;
5476 PreUpdate preupdate
;
5477 const char *zTbl
= pTab
->zName
;
5478 static const u8 fakeSortOrder
= 0;
5481 if( pTab
->tabFlags
& TF_WithoutRowid
){
5482 nRealCol
= sqlite3PrimaryKeyIndex(pTab
)->nColumn
;
5483 }else if( pTab
->tabFlags
& TF_HasVirtual
){
5484 nRealCol
= pTab
->nNVCol
;
5486 nRealCol
= pTab
->nCol
;
5490 assert( db
->pPreUpdate
==0 );
5491 memset(&preupdate
, 0, sizeof(PreUpdate
));
5492 if( HasRowid(pTab
)==0 ){
5494 preupdate
.pPk
= sqlite3PrimaryKeyIndex(pTab
);
5496 if( op
==SQLITE_UPDATE
){
5497 iKey2
= v
->aMem
[iReg
].u
.i
;
5504 assert( pCsr
->eCurType
==CURTYPE_BTREE
);
5505 assert( pCsr
->nField
==nRealCol
5506 || (pCsr
->nField
==nRealCol
+1 && op
==SQLITE_DELETE
&& iReg
==-1)
5510 preupdate
.pCsr
= pCsr
;
5512 preupdate
.iNewReg
= iReg
;
5513 preupdate
.keyinfo
.db
= db
;
5514 preupdate
.keyinfo
.enc
= ENC(db
);
5515 preupdate
.keyinfo
.nKeyField
= pTab
->nCol
;
5516 preupdate
.keyinfo
.aSortFlags
= (u8
*)&fakeSortOrder
;
5517 preupdate
.iKey1
= iKey1
;
5518 preupdate
.iKey2
= iKey2
;
5519 preupdate
.pTab
= pTab
;
5520 preupdate
.iBlobWrite
= iBlobWrite
;
5522 db
->pPreUpdate
= &preupdate
;
5523 db
->xPreUpdateCallback(db
->pPreUpdateArg
, db
, op
, zDb
, zTbl
, iKey1
, iKey2
);
5525 sqlite3DbFree(db
, preupdate
.aRecord
);
5526 vdbeFreeUnpacked(db
, preupdate
.keyinfo
.nKeyField
+1, preupdate
.pUnpacked
);
5527 vdbeFreeUnpacked(db
, preupdate
.keyinfo
.nKeyField
+1, preupdate
.pNewUnpacked
);
5528 if( preupdate
.aNew
){
5530 for(i
=0; i
<pCsr
->nField
; i
++){
5531 sqlite3VdbeMemRelease(&preupdate
.aNew
[i
]);
5533 sqlite3DbNNFreeNN(db
, preupdate
.aNew
);
5536 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */