4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
13 ** This file contains code use to manipulate "Mem" structure. A "Mem"
14 ** stores a single value in the VDBE. Mem is an opaque structure visible
15 ** only within the VDBE. Interface routines refer to a Mem using the
18 #include "sqliteInt.h"
21 /* True if X is a power of two. 0 is considered a power of two here.
22 ** In other words, return true if X has at most one bit set.
24 #define ISPOWEROF2(X) (((X)&((X)-1))==0)
28 ** Check invariants on a Mem object.
30 ** This routine is intended for use inside of assert() statements, like
31 ** this: assert( sqlite3VdbeCheckMemInvariants(pMem) );
33 int sqlite3VdbeCheckMemInvariants(Mem
*p
){
34 /* If MEM_Dyn is set then Mem.xDel!=0.
35 ** Mem.xDel might not be initialized if MEM_Dyn is clear.
37 assert( (p
->flags
& MEM_Dyn
)==0 || p
->xDel
!=0 );
39 /* MEM_Dyn may only be set if Mem.szMalloc==0. In this way we
40 ** ensure that if Mem.szMalloc>0 then it is safe to do
41 ** Mem.z = Mem.zMalloc without having to check Mem.flags&MEM_Dyn.
42 ** That saves a few cycles in inner loops. */
43 assert( (p
->flags
& MEM_Dyn
)==0 || p
->szMalloc
==0 );
45 /* Cannot have more than one of MEM_Int, MEM_Real, or MEM_IntReal */
46 assert( ISPOWEROF2(p
->flags
& (MEM_Int
|MEM_Real
|MEM_IntReal
)) );
48 if( p
->flags
& MEM_Null
){
49 /* Cannot be both MEM_Null and some other type */
50 assert( (p
->flags
& (MEM_Int
|MEM_Real
|MEM_Str
|MEM_Blob
|MEM_Agg
))==0 );
52 /* If MEM_Null is set, then either the value is a pure NULL (the usual
53 ** case) or it is a pointer set using sqlite3_bind_pointer() or
54 ** sqlite3_result_pointer(). If a pointer, then MEM_Term must also be
57 if( (p
->flags
& (MEM_Term
|MEM_Subtype
))==(MEM_Term
|MEM_Subtype
) ){
58 /* This is a pointer type. There may be a flag to indicate what to
59 ** do with the pointer. */
60 assert( ((p
->flags
&MEM_Dyn
)!=0 ? 1 : 0) +
61 ((p
->flags
&MEM_Ephem
)!=0 ? 1 : 0) +
62 ((p
->flags
&MEM_Static
)!=0 ? 1 : 0) <= 1 );
64 /* No other bits set */
65 assert( (p
->flags
& ~(MEM_Null
|MEM_Term
|MEM_Subtype
|MEM_FromBind
66 |MEM_Dyn
|MEM_Ephem
|MEM_Static
))==0 );
68 /* A pure NULL might have other flags, such as MEM_Static, MEM_Dyn,
69 ** MEM_Ephem, MEM_Cleared, or MEM_Subtype */
72 /* The MEM_Cleared bit is only allowed on NULLs */
73 assert( (p
->flags
& MEM_Cleared
)==0 );
76 /* The szMalloc field holds the correct memory allocation size */
77 assert( p
->szMalloc
==0
78 || (p
->flags
==MEM_Undefined
79 && p
->szMalloc
<=sqlite3DbMallocSize(p
->db
,p
->zMalloc
))
80 || p
->szMalloc
==sqlite3DbMallocSize(p
->db
,p
->zMalloc
));
82 /* If p holds a string or blob, the Mem.z must point to exactly
83 ** one of the following:
85 ** (1) Memory in Mem.zMalloc and managed by the Mem object
86 ** (2) Memory to be freed using Mem.xDel
87 ** (3) An ephemeral string or blob
88 ** (4) A static string or blob
90 if( (p
->flags
& (MEM_Str
|MEM_Blob
)) && p
->n
>0 ){
92 ((p
->szMalloc
>0 && p
->z
==p
->zMalloc
)? 1 : 0) +
93 ((p
->flags
&MEM_Dyn
)!=0 ? 1 : 0) +
94 ((p
->flags
&MEM_Ephem
)!=0 ? 1 : 0) +
95 ((p
->flags
&MEM_Static
)!=0 ? 1 : 0) == 1
103 ** Render a Mem object which is one of MEM_Int, MEM_Real, or MEM_IntReal
106 static void vdbeMemRenderNum(int sz
, char *zBuf
, Mem
*p
){
108 assert( p
->flags
& (MEM_Int
|MEM_Real
|MEM_IntReal
) );
110 if( p
->flags
& MEM_Int
){
111 #if GCC_VERSION>=7000000
112 /* Work-around for GCC bug
113 ** https://gcc.gnu.org/bugzilla/show_bug.cgi?id=96270 */
115 assert( (p
->flags
&MEM_Int
)*2==sizeof(x
) );
116 memcpy(&x
, (char*)&p
->u
, (p
->flags
&MEM_Int
)*2);
117 p
->n
= sqlite3Int64ToText(x
, zBuf
);
119 p
->n
= sqlite3Int64ToText(p
->u
.i
, zBuf
);
122 sqlite3StrAccumInit(&acc
, 0, zBuf
, sz
, 0);
123 sqlite3_str_appendf(&acc
, "%!.15g",
124 (p
->flags
& MEM_IntReal
)!=0 ? (double)p
->u
.i
: p
->u
.r
);
125 assert( acc
.zText
==zBuf
&& acc
.mxAlloc
<=0 );
126 zBuf
[acc
.nChar
] = 0; /* Fast version of sqlite3StrAccumFinish(&acc) */
133 ** Validity checks on pMem. pMem holds a string.
135 ** (1) Check that string value of pMem agrees with its integer or real value.
136 ** (2) Check that the string is correctly zero terminated
138 ** A single int or real value always converts to the same strings. But
139 ** many different strings can be converted into the same int or real.
140 ** If a table contains a numeric value and an index is based on the
141 ** corresponding string value, then it is important that the string be
142 ** derived from the numeric value, not the other way around, to ensure
143 ** that the index and table are consistent. See ticket
144 ** https://www.sqlite.org/src/info/343634942dd54ab (2018-01-31) for
147 ** This routine looks at pMem to verify that if it has both a numeric
148 ** representation and a string representation then the string rep has
149 ** been derived from the numeric and not the other way around. It returns
150 ** true if everything is ok and false if there is a problem.
152 ** This routine is for use inside of assert() statements only.
154 int sqlite3VdbeMemValidStrRep(Mem
*p
){
159 if( (p
->flags
& MEM_Str
)==0 ) return 1;
160 if( p
->db
&& p
->db
->mallocFailed
) return 1;
161 if( p
->flags
& MEM_Term
){
162 /* Insure that the string is properly zero-terminated. Pay particular
163 ** attention to the case where p->n is odd */
164 if( p
->szMalloc
>0 && p
->z
==p
->zMalloc
){
165 assert( p
->enc
==SQLITE_UTF8
|| p
->szMalloc
>= ((p
->n
+1)&~1)+2 );
166 assert( p
->enc
!=SQLITE_UTF8
|| p
->szMalloc
>= p
->n
+1 );
168 assert( p
->z
[p
->n
]==0 );
169 assert( p
->enc
==SQLITE_UTF8
|| p
->z
[(p
->n
+1)&~1]==0 );
170 assert( p
->enc
==SQLITE_UTF8
|| p
->z
[((p
->n
+1)&~1)+1]==0 );
172 if( (p
->flags
& (MEM_Int
|MEM_Real
|MEM_IntReal
))==0 ) return 1;
173 memcpy(&tmp
, p
, sizeof(tmp
));
174 vdbeMemRenderNum(sizeof(zBuf
), zBuf
, &tmp
);
178 if( p
->enc
!=SQLITE_UTF8
){
180 if( p
->enc
==SQLITE_UTF16BE
) z
++;
183 if( zBuf
[j
++]!=z
[i
] ) return 0;
188 #endif /* SQLITE_DEBUG */
191 ** If pMem is an object with a valid string representation, this routine
192 ** ensures the internal encoding for the string representation is
193 ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE.
195 ** If pMem is not a string object, or the encoding of the string
196 ** representation is already stored using the requested encoding, then this
197 ** routine is a no-op.
199 ** SQLITE_OK is returned if the conversion is successful (or not required).
200 ** SQLITE_NOMEM may be returned if a malloc() fails during conversion
203 int sqlite3VdbeChangeEncoding(Mem
*pMem
, int desiredEnc
){
204 #ifndef SQLITE_OMIT_UTF16
208 assert( !sqlite3VdbeMemIsRowSet(pMem
) );
209 assert( desiredEnc
==SQLITE_UTF8
|| desiredEnc
==SQLITE_UTF16LE
210 || desiredEnc
==SQLITE_UTF16BE
);
211 if( !(pMem
->flags
&MEM_Str
) ){
212 pMem
->enc
= desiredEnc
;
215 if( pMem
->enc
==desiredEnc
){
218 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
219 #ifdef SQLITE_OMIT_UTF16
223 /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned,
224 ** then the encoding of the value may not have changed.
226 rc
= sqlite3VdbeMemTranslate(pMem
, (u8
)desiredEnc
);
227 assert(rc
==SQLITE_OK
|| rc
==SQLITE_NOMEM
);
228 assert(rc
==SQLITE_OK
|| pMem
->enc
!=desiredEnc
);
229 assert(rc
==SQLITE_NOMEM
|| pMem
->enc
==desiredEnc
);
235 ** Make sure pMem->z points to a writable allocation of at least n bytes.
237 ** If the bPreserve argument is true, then copy of the content of
238 ** pMem->z into the new allocation. pMem must be either a string or
239 ** blob if bPreserve is true. If bPreserve is false, any prior content
240 ** in pMem->z is discarded.
242 SQLITE_NOINLINE
int sqlite3VdbeMemGrow(Mem
*pMem
, int n
, int bPreserve
){
243 assert( sqlite3VdbeCheckMemInvariants(pMem
) );
244 assert( !sqlite3VdbeMemIsRowSet(pMem
) );
245 testcase( pMem
->db
==0 );
247 /* If the bPreserve flag is set to true, then the memory cell must already
248 ** contain a valid string or blob value. */
249 assert( bPreserve
==0 || pMem
->flags
&(MEM_Blob
|MEM_Str
) );
250 testcase( bPreserve
&& pMem
->z
==0 );
252 assert( pMem
->szMalloc
==0
253 || (pMem
->flags
==MEM_Undefined
254 && pMem
->szMalloc
<=sqlite3DbMallocSize(pMem
->db
,pMem
->zMalloc
))
255 || pMem
->szMalloc
==sqlite3DbMallocSize(pMem
->db
,pMem
->zMalloc
));
256 if( pMem
->szMalloc
>0 && bPreserve
&& pMem
->z
==pMem
->zMalloc
){
258 pMem
->z
= pMem
->zMalloc
= sqlite3DbReallocOrFree(pMem
->db
, pMem
->z
, n
);
260 pMem
->zMalloc
= sqlite3Realloc(pMem
->z
, n
);
261 if( pMem
->zMalloc
==0 ) sqlite3_free(pMem
->z
);
262 pMem
->z
= pMem
->zMalloc
;
266 if( pMem
->szMalloc
>0 ) sqlite3DbFreeNN(pMem
->db
, pMem
->zMalloc
);
267 pMem
->zMalloc
= sqlite3DbMallocRaw(pMem
->db
, n
);
269 if( pMem
->zMalloc
==0 ){
270 sqlite3VdbeMemSetNull(pMem
);
273 return SQLITE_NOMEM_BKPT
;
275 pMem
->szMalloc
= sqlite3DbMallocSize(pMem
->db
, pMem
->zMalloc
);
278 if( bPreserve
&& pMem
->z
){
279 assert( pMem
->z
!=pMem
->zMalloc
);
280 memcpy(pMem
->zMalloc
, pMem
->z
, pMem
->n
);
282 if( (pMem
->flags
&MEM_Dyn
)!=0 ){
283 assert( pMem
->xDel
!=0 && pMem
->xDel
!=SQLITE_DYNAMIC
);
284 pMem
->xDel((void *)(pMem
->z
));
287 pMem
->z
= pMem
->zMalloc
;
288 pMem
->flags
&= ~(MEM_Dyn
|MEM_Ephem
|MEM_Static
);
293 ** Change the pMem->zMalloc allocation to be at least szNew bytes.
294 ** If pMem->zMalloc already meets or exceeds the requested size, this
295 ** routine is a no-op.
297 ** Any prior string or blob content in the pMem object may be discarded.
298 ** The pMem->xDel destructor is called, if it exists. Though MEM_Str
299 ** and MEM_Blob values may be discarded, MEM_Int, MEM_Real, MEM_IntReal,
300 ** and MEM_Null values are preserved.
302 ** Return SQLITE_OK on success or an error code (probably SQLITE_NOMEM)
303 ** if unable to complete the resizing.
305 int sqlite3VdbeMemClearAndResize(Mem
*pMem
, int szNew
){
306 assert( CORRUPT_DB
|| szNew
>0 );
307 assert( (pMem
->flags
& MEM_Dyn
)==0 || pMem
->szMalloc
==0 );
308 if( pMem
->szMalloc
<szNew
){
309 return sqlite3VdbeMemGrow(pMem
, szNew
, 0);
311 assert( (pMem
->flags
& MEM_Dyn
)==0 );
312 pMem
->z
= pMem
->zMalloc
;
313 pMem
->flags
&= (MEM_Null
|MEM_Int
|MEM_Real
|MEM_IntReal
);
318 ** If pMem is already a string, detect if it is a zero-terminated
319 ** string, or make it into one if possible, and mark it as such.
321 ** This is an optimization. Correct operation continues even if
322 ** this routine is a no-op.
324 void sqlite3VdbeMemZeroTerminateIfAble(Mem
*pMem
){
325 if( (pMem
->flags
& (MEM_Str
|MEM_Term
|MEM_Ephem
|MEM_Static
))!=MEM_Str
){
326 /* pMem must be a string, and it cannot be an ephemeral or static string */
329 if( pMem
->enc
!=SQLITE_UTF8
) return;
330 if( NEVER(pMem
->z
==0) ) return;
331 if( pMem
->flags
& MEM_Dyn
){
332 if( pMem
->xDel
==sqlite3_free
333 && sqlite3_msize(pMem
->z
) >= (u64
)(pMem
->n
+1)
335 pMem
->z
[pMem
->n
] = 0;
336 pMem
->flags
|= MEM_Term
;
339 if( pMem
->xDel
==sqlite3RCStrUnref
){
340 /* Blindly assume that all RCStr objects are zero-terminated */
341 pMem
->flags
|= MEM_Term
;
344 }else if( pMem
->szMalloc
>= pMem
->n
+1 ){
345 pMem
->z
[pMem
->n
] = 0;
346 pMem
->flags
|= MEM_Term
;
352 ** It is already known that pMem contains an unterminated string.
353 ** Add the zero terminator.
355 ** Three bytes of zero are added. In this way, there is guaranteed
356 ** to be a double-zero byte at an even byte boundary in order to
357 ** terminate a UTF16 string, even if the initial size of the buffer
358 ** is an odd number of bytes.
360 static SQLITE_NOINLINE
int vdbeMemAddTerminator(Mem
*pMem
){
361 if( sqlite3VdbeMemGrow(pMem
, pMem
->n
+3, 1) ){
362 return SQLITE_NOMEM_BKPT
;
364 pMem
->z
[pMem
->n
] = 0;
365 pMem
->z
[pMem
->n
+1] = 0;
366 pMem
->z
[pMem
->n
+2] = 0;
367 pMem
->flags
|= MEM_Term
;
372 ** Change pMem so that its MEM_Str or MEM_Blob value is stored in
373 ** MEM.zMalloc, where it can be safely written.
375 ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
377 int sqlite3VdbeMemMakeWriteable(Mem
*pMem
){
379 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
380 assert( !sqlite3VdbeMemIsRowSet(pMem
) );
381 if( (pMem
->flags
& (MEM_Str
|MEM_Blob
))!=0 ){
382 if( ExpandBlob(pMem
) ) return SQLITE_NOMEM
;
383 if( pMem
->szMalloc
==0 || pMem
->z
!=pMem
->zMalloc
){
384 int rc
= vdbeMemAddTerminator(pMem
);
388 pMem
->flags
&= ~MEM_Ephem
;
390 pMem
->pScopyFrom
= 0;
397 ** If the given Mem* has a zero-filled tail, turn it into an ordinary
398 ** blob stored in dynamically allocated space.
400 #ifndef SQLITE_OMIT_INCRBLOB
401 int sqlite3VdbeMemExpandBlob(Mem
*pMem
){
404 assert( pMem
->flags
& MEM_Zero
);
405 assert( (pMem
->flags
&MEM_Blob
)!=0 || MemNullNochng(pMem
) );
406 testcase( sqlite3_value_nochange(pMem
) );
407 assert( !sqlite3VdbeMemIsRowSet(pMem
) );
408 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
410 /* Set nByte to the number of bytes required to store the expanded blob. */
411 nByte
= pMem
->n
+ pMem
->u
.nZero
;
413 if( (pMem
->flags
& MEM_Blob
)==0 ) return SQLITE_OK
;
416 if( sqlite3VdbeMemGrow(pMem
, nByte
, 1) ){
417 return SQLITE_NOMEM_BKPT
;
419 assert( pMem
->z
!=0 );
420 assert( sqlite3DbMallocSize(pMem
->db
,pMem
->z
) >= nByte
);
422 memset(&pMem
->z
[pMem
->n
], 0, pMem
->u
.nZero
);
423 pMem
->n
+= pMem
->u
.nZero
;
424 pMem
->flags
&= ~(MEM_Zero
|MEM_Term
);
430 ** Make sure the given Mem is \u0000 terminated.
432 int sqlite3VdbeMemNulTerminate(Mem
*pMem
){
434 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
435 testcase( (pMem
->flags
& (MEM_Term
|MEM_Str
))==(MEM_Term
|MEM_Str
) );
436 testcase( (pMem
->flags
& (MEM_Term
|MEM_Str
))==0 );
437 if( (pMem
->flags
& (MEM_Term
|MEM_Str
))!=MEM_Str
){
438 return SQLITE_OK
; /* Nothing to do */
440 return vdbeMemAddTerminator(pMem
);
445 ** Add MEM_Str to the set of representations for the given Mem. This
446 ** routine is only called if pMem is a number of some kind, not a NULL
449 ** Existing representations MEM_Int, MEM_Real, or MEM_IntReal are invalidated
450 ** if bForce is true but are retained if bForce is false.
452 ** A MEM_Null value will never be passed to this function. This function is
453 ** used for converting values to text for returning to the user (i.e. via
454 ** sqlite3_value_text()), or for ensuring that values to be used as btree
455 ** keys are strings. In the former case a NULL pointer is returned the
456 ** user and the latter is an internal programming error.
458 int sqlite3VdbeMemStringify(Mem
*pMem
, u8 enc
, u8 bForce
){
459 const int nByte
= 32;
462 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
463 assert( !(pMem
->flags
&MEM_Zero
) );
464 assert( !(pMem
->flags
&(MEM_Str
|MEM_Blob
)) );
465 assert( pMem
->flags
&(MEM_Int
|MEM_Real
|MEM_IntReal
) );
466 assert( !sqlite3VdbeMemIsRowSet(pMem
) );
467 assert( EIGHT_BYTE_ALIGNMENT(pMem
) );
470 if( sqlite3VdbeMemClearAndResize(pMem
, nByte
) ){
472 return SQLITE_NOMEM_BKPT
;
475 vdbeMemRenderNum(nByte
, pMem
->z
, pMem
);
476 assert( pMem
->z
!=0 );
477 assert( pMem
->n
==(int)sqlite3Strlen30NN(pMem
->z
) );
478 pMem
->enc
= SQLITE_UTF8
;
479 pMem
->flags
|= MEM_Str
|MEM_Term
;
480 if( bForce
) pMem
->flags
&= ~(MEM_Int
|MEM_Real
|MEM_IntReal
);
481 sqlite3VdbeChangeEncoding(pMem
, enc
);
486 ** Memory cell pMem contains the context of an aggregate function.
487 ** This routine calls the finalize method for that function. The
488 ** result of the aggregate is stored back into pMem.
490 ** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK
493 int sqlite3VdbeMemFinalize(Mem
*pMem
, FuncDef
*pFunc
){
498 assert( pMem
->db
!=0 );
499 assert( pFunc
->xFinalize
!=0 );
500 assert( (pMem
->flags
& MEM_Null
)!=0 || pFunc
==pMem
->u
.pDef
);
501 assert( sqlite3_mutex_held(pMem
->db
->mutex
) );
502 memset(&ctx
, 0, sizeof(ctx
));
503 memset(&t
, 0, sizeof(t
));
510 pFunc
->xFinalize(&ctx
); /* IMP: R-24505-23230 */
511 assert( (pMem
->flags
& MEM_Dyn
)==0 );
512 if( pMem
->szMalloc
>0 ) sqlite3DbFreeNN(pMem
->db
, pMem
->zMalloc
);
513 memcpy(pMem
, &t
, sizeof(t
));
518 ** Memory cell pAccum contains the context of an aggregate function.
519 ** This routine calls the xValue method for that function and stores
520 ** the results in memory cell pMem.
522 ** SQLITE_ERROR is returned if xValue() reports an error. SQLITE_OK
525 #ifndef SQLITE_OMIT_WINDOWFUNC
526 int sqlite3VdbeMemAggValue(Mem
*pAccum
, Mem
*pOut
, FuncDef
*pFunc
){
529 assert( pFunc
->xValue
!=0 );
530 assert( (pAccum
->flags
& MEM_Null
)!=0 || pFunc
==pAccum
->u
.pDef
);
531 assert( pAccum
->db
!=0 );
532 assert( sqlite3_mutex_held(pAccum
->db
->mutex
) );
533 memset(&ctx
, 0, sizeof(ctx
));
534 sqlite3VdbeMemSetNull(pOut
);
538 ctx
.enc
= ENC(pAccum
->db
);
542 #endif /* SQLITE_OMIT_WINDOWFUNC */
545 ** If the memory cell contains a value that must be freed by
546 ** invoking the external callback in Mem.xDel, then this routine
547 ** will free that value. It also sets Mem.flags to MEM_Null.
549 ** This is a helper routine for sqlite3VdbeMemSetNull() and
550 ** for sqlite3VdbeMemRelease(). Use those other routines as the
551 ** entry point for releasing Mem resources.
553 static SQLITE_NOINLINE
void vdbeMemClearExternAndSetNull(Mem
*p
){
554 assert( p
->db
==0 || sqlite3_mutex_held(p
->db
->mutex
) );
555 assert( VdbeMemDynamic(p
) );
556 if( p
->flags
&MEM_Agg
){
557 sqlite3VdbeMemFinalize(p
, p
->u
.pDef
);
558 assert( (p
->flags
& MEM_Agg
)==0 );
559 testcase( p
->flags
& MEM_Dyn
);
561 if( p
->flags
&MEM_Dyn
){
562 assert( p
->xDel
!=SQLITE_DYNAMIC
&& p
->xDel
!=0 );
563 p
->xDel((void *)p
->z
);
569 ** Release memory held by the Mem p, both external memory cleared
570 ** by p->xDel and memory in p->zMalloc.
572 ** This is a helper routine invoked by sqlite3VdbeMemRelease() in
573 ** the unusual case where there really is memory in p that needs
576 static SQLITE_NOINLINE
void vdbeMemClear(Mem
*p
){
577 if( VdbeMemDynamic(p
) ){
578 vdbeMemClearExternAndSetNull(p
);
581 sqlite3DbFreeNN(p
->db
, p
->zMalloc
);
588 ** Release any memory resources held by the Mem. Both the memory that is
589 ** free by Mem.xDel and the Mem.zMalloc allocation are freed.
591 ** Use this routine prior to clean up prior to abandoning a Mem, or to
592 ** reset a Mem back to its minimum memory utilization.
594 ** Use sqlite3VdbeMemSetNull() to release just the Mem.xDel space
595 ** prior to inserting new content into the Mem.
597 void sqlite3VdbeMemRelease(Mem
*p
){
598 assert( sqlite3VdbeCheckMemInvariants(p
) );
599 if( VdbeMemDynamic(p
) || p
->szMalloc
){
604 /* Like sqlite3VdbeMemRelease() but faster for cases where we
605 ** know in advance that the Mem is not MEM_Dyn or MEM_Agg.
607 void sqlite3VdbeMemReleaseMalloc(Mem
*p
){
608 assert( !VdbeMemDynamic(p
) );
609 if( p
->szMalloc
) vdbeMemClear(p
);
613 ** Return some kind of integer value which is the best we can do
614 ** at representing the value that *pMem describes as an integer.
615 ** If pMem is an integer, then the value is exact. If pMem is
616 ** a floating-point then the value returned is the integer part.
617 ** If pMem is a string or blob, then we make an attempt to convert
618 ** it into an integer and return that. If pMem represents an
619 ** an SQL-NULL value, return 0.
621 ** If pMem represents a string value, its encoding might be changed.
623 static SQLITE_NOINLINE i64
memIntValue(const Mem
*pMem
){
625 sqlite3Atoi64(pMem
->z
, &value
, pMem
->n
, pMem
->enc
);
628 i64
sqlite3VdbeIntValue(const Mem
*pMem
){
631 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
632 assert( EIGHT_BYTE_ALIGNMENT(pMem
) );
634 if( flags
& (MEM_Int
|MEM_IntReal
) ){
635 testcase( flags
& MEM_IntReal
);
637 }else if( flags
& MEM_Real
){
638 return sqlite3RealToI64(pMem
->u
.r
);
639 }else if( (flags
& (MEM_Str
|MEM_Blob
))!=0 && pMem
->z
!=0 ){
640 return memIntValue(pMem
);
647 ** Return the best representation of pMem that we can get into a
648 ** double. If pMem is already a double or an integer, return its
649 ** value. If it is a string or blob, try to convert it to a double.
650 ** If it is a NULL, return 0.0.
652 static SQLITE_NOINLINE
double memRealValue(Mem
*pMem
){
653 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
654 double val
= (double)0;
655 sqlite3AtoF(pMem
->z
, &val
, pMem
->n
, pMem
->enc
);
658 double sqlite3VdbeRealValue(Mem
*pMem
){
660 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
661 assert( EIGHT_BYTE_ALIGNMENT(pMem
) );
662 if( pMem
->flags
& MEM_Real
){
664 }else if( pMem
->flags
& (MEM_Int
|MEM_IntReal
) ){
665 testcase( pMem
->flags
& MEM_IntReal
);
666 return (double)pMem
->u
.i
;
667 }else if( pMem
->flags
& (MEM_Str
|MEM_Blob
) ){
668 return memRealValue(pMem
);
670 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
676 ** Return 1 if pMem represents true, and return 0 if pMem represents false.
677 ** Return the value ifNull if pMem is NULL.
679 int sqlite3VdbeBooleanValue(Mem
*pMem
, int ifNull
){
680 testcase( pMem
->flags
& MEM_IntReal
);
681 if( pMem
->flags
& (MEM_Int
|MEM_IntReal
) ) return pMem
->u
.i
!=0;
682 if( pMem
->flags
& MEM_Null
) return ifNull
;
683 return sqlite3VdbeRealValue(pMem
)!=0.0;
687 ** The MEM structure is already a MEM_Real or MEM_IntReal. Try to
688 ** make it a MEM_Int if we can.
690 void sqlite3VdbeIntegerAffinity(Mem
*pMem
){
692 assert( pMem
->flags
& (MEM_Real
|MEM_IntReal
) );
693 assert( !sqlite3VdbeMemIsRowSet(pMem
) );
694 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
695 assert( EIGHT_BYTE_ALIGNMENT(pMem
) );
697 if( pMem
->flags
& MEM_IntReal
){
698 MemSetTypeFlag(pMem
, MEM_Int
);
700 i64 ix
= sqlite3RealToI64(pMem
->u
.r
);
702 /* Only mark the value as an integer if
704 ** (1) the round-trip conversion real->int->real is a no-op, and
705 ** (2) The integer is neither the largest nor the smallest
706 ** possible integer (ticket #3922)
708 ** The second and third terms in the following conditional enforces
709 ** the second condition under the assumption that addition overflow causes
710 ** values to wrap around.
712 if( pMem
->u
.r
==ix
&& ix
>SMALLEST_INT64
&& ix
<LARGEST_INT64
){
714 MemSetTypeFlag(pMem
, MEM_Int
);
720 ** Convert pMem to type integer. Invalidate any prior representations.
722 int sqlite3VdbeMemIntegerify(Mem
*pMem
){
724 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
725 assert( !sqlite3VdbeMemIsRowSet(pMem
) );
726 assert( EIGHT_BYTE_ALIGNMENT(pMem
) );
728 pMem
->u
.i
= sqlite3VdbeIntValue(pMem
);
729 MemSetTypeFlag(pMem
, MEM_Int
);
734 ** Convert pMem so that it is of type MEM_Real.
735 ** Invalidate any prior representations.
737 int sqlite3VdbeMemRealify(Mem
*pMem
){
739 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
740 assert( EIGHT_BYTE_ALIGNMENT(pMem
) );
742 pMem
->u
.r
= sqlite3VdbeRealValue(pMem
);
743 MemSetTypeFlag(pMem
, MEM_Real
);
747 /* Compare a floating point value to an integer. Return true if the two
748 ** values are the same within the precision of the floating point value.
750 ** This function assumes that i was obtained by assignment from r1.
752 ** For some versions of GCC on 32-bit machines, if you do the more obvious
753 ** comparison of "r1==(double)i" you sometimes get an answer of false even
754 ** though the r1 and (double)i values are bit-for-bit the same.
756 int sqlite3RealSameAsInt(double r1
, sqlite3_int64 i
){
757 double r2
= (double)i
;
759 || (memcmp(&r1
, &r2
, sizeof(r1
))==0
760 && i
>= -2251799813685248LL && i
< 2251799813685248LL);
763 /* Convert a floating point value to its closest integer. Do so in
764 ** a way that avoids 'outside the range of representable values' warnings
767 i64
sqlite3RealToI64(double r
){
768 if( r
<-9223372036854774784.0 ) return SMALLEST_INT64
;
769 if( r
>+9223372036854774784.0 ) return LARGEST_INT64
;
774 ** Convert pMem so that it has type MEM_Real or MEM_Int.
775 ** Invalidate any prior representations.
777 ** Every effort is made to force the conversion, even if the input
778 ** is a string that does not look completely like a number. Convert
779 ** as much of the string as we can and ignore the rest.
781 int sqlite3VdbeMemNumerify(Mem
*pMem
){
783 testcase( pMem
->flags
& MEM_Int
);
784 testcase( pMem
->flags
& MEM_Real
);
785 testcase( pMem
->flags
& MEM_IntReal
);
786 testcase( pMem
->flags
& MEM_Null
);
787 if( (pMem
->flags
& (MEM_Int
|MEM_Real
|MEM_IntReal
|MEM_Null
))==0 ){
790 assert( (pMem
->flags
& (MEM_Blob
|MEM_Str
))!=0 );
791 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
792 rc
= sqlite3AtoF(pMem
->z
, &pMem
->u
.r
, pMem
->n
, pMem
->enc
);
793 if( ((rc
==0 || rc
==1) && sqlite3Atoi64(pMem
->z
, &ix
, pMem
->n
, pMem
->enc
)<=1)
794 || sqlite3RealSameAsInt(pMem
->u
.r
, (ix
= sqlite3RealToI64(pMem
->u
.r
)))
797 MemSetTypeFlag(pMem
, MEM_Int
);
799 MemSetTypeFlag(pMem
, MEM_Real
);
802 assert( (pMem
->flags
& (MEM_Int
|MEM_Real
|MEM_IntReal
|MEM_Null
))!=0 );
803 pMem
->flags
&= ~(MEM_Str
|MEM_Blob
|MEM_Zero
);
808 ** Cast the datatype of the value in pMem according to the affinity
809 ** "aff". Casting is different from applying affinity in that a cast
810 ** is forced. In other words, the value is converted into the desired
811 ** affinity even if that results in loss of data. This routine is
812 ** used (for example) to implement the SQL "cast()" operator.
814 int sqlite3VdbeMemCast(Mem
*pMem
, u8 aff
, u8 encoding
){
815 if( pMem
->flags
& MEM_Null
) return SQLITE_OK
;
817 case SQLITE_AFF_BLOB
: { /* Really a cast to BLOB */
818 if( (pMem
->flags
& MEM_Blob
)==0 ){
819 sqlite3ValueApplyAffinity(pMem
, SQLITE_AFF_TEXT
, encoding
);
820 assert( pMem
->flags
& MEM_Str
|| pMem
->db
->mallocFailed
);
821 if( pMem
->flags
& MEM_Str
) MemSetTypeFlag(pMem
, MEM_Blob
);
823 pMem
->flags
&= ~(MEM_TypeMask
&~MEM_Blob
);
827 case SQLITE_AFF_NUMERIC
: {
828 sqlite3VdbeMemNumerify(pMem
);
831 case SQLITE_AFF_INTEGER
: {
832 sqlite3VdbeMemIntegerify(pMem
);
835 case SQLITE_AFF_REAL
: {
836 sqlite3VdbeMemRealify(pMem
);
841 assert( aff
==SQLITE_AFF_TEXT
);
842 assert( MEM_Str
==(MEM_Blob
>>3) );
843 pMem
->flags
|= (pMem
->flags
&MEM_Blob
)>>3;
844 sqlite3ValueApplyAffinity(pMem
, SQLITE_AFF_TEXT
, encoding
);
845 assert( pMem
->flags
& MEM_Str
|| pMem
->db
->mallocFailed
);
846 pMem
->flags
&= ~(MEM_Int
|MEM_Real
|MEM_IntReal
|MEM_Blob
|MEM_Zero
);
847 if( encoding
!=SQLITE_UTF8
) pMem
->n
&= ~1;
848 rc
= sqlite3VdbeChangeEncoding(pMem
, encoding
);
850 sqlite3VdbeMemZeroTerminateIfAble(pMem
);
857 ** Initialize bulk memory to be a consistent Mem object.
859 ** The minimum amount of initialization feasible is performed.
861 void sqlite3VdbeMemInit(Mem
*pMem
, sqlite3
*db
, u16 flags
){
862 assert( (flags
& ~MEM_TypeMask
)==0 );
870 ** Delete any previous value and set the value stored in *pMem to NULL.
872 ** This routine calls the Mem.xDel destructor to dispose of values that
873 ** require the destructor. But it preserves the Mem.zMalloc memory allocation.
874 ** To free all resources, use sqlite3VdbeMemRelease(), which both calls this
875 ** routine to invoke the destructor and deallocates Mem.zMalloc.
877 ** Use this routine to reset the Mem prior to insert a new value.
879 ** Use sqlite3VdbeMemRelease() to complete erase the Mem prior to abandoning it.
881 void sqlite3VdbeMemSetNull(Mem
*pMem
){
882 if( VdbeMemDynamic(pMem
) ){
883 vdbeMemClearExternAndSetNull(pMem
);
885 pMem
->flags
= MEM_Null
;
888 void sqlite3ValueSetNull(sqlite3_value
*p
){
889 sqlite3VdbeMemSetNull((Mem
*)p
);
893 ** Delete any previous value and set the value to be a BLOB of length
894 ** n containing all zeros.
896 #ifndef SQLITE_OMIT_INCRBLOB
897 void sqlite3VdbeMemSetZeroBlob(Mem
*pMem
, int n
){
898 sqlite3VdbeMemRelease(pMem
);
899 pMem
->flags
= MEM_Blob
|MEM_Zero
;
903 pMem
->enc
= SQLITE_UTF8
;
907 int sqlite3VdbeMemSetZeroBlob(Mem
*pMem
, int n
){
909 if( sqlite3VdbeMemGrow(pMem
, nByte
, 0) ){
910 return SQLITE_NOMEM_BKPT
;
912 assert( pMem
->z
!=0 );
913 assert( sqlite3DbMallocSize(pMem
->db
, pMem
->z
)>=nByte
);
914 memset(pMem
->z
, 0, nByte
);
916 pMem
->flags
= MEM_Blob
;
917 pMem
->enc
= SQLITE_UTF8
;
923 ** The pMem is known to contain content that needs to be destroyed prior
924 ** to a value change. So invoke the destructor, then set the value to
927 static SQLITE_NOINLINE
void vdbeReleaseAndSetInt64(Mem
*pMem
, i64 val
){
928 sqlite3VdbeMemSetNull(pMem
);
930 pMem
->flags
= MEM_Int
;
934 ** Delete any previous value and set the value stored in *pMem to val,
935 ** manifest type INTEGER.
937 void sqlite3VdbeMemSetInt64(Mem
*pMem
, i64 val
){
938 if( VdbeMemDynamic(pMem
) ){
939 vdbeReleaseAndSetInt64(pMem
, val
);
942 pMem
->flags
= MEM_Int
;
947 ** Set the iIdx'th entry of array aMem[] to contain integer value val.
949 void sqlite3MemSetArrayInt64(sqlite3_value
*aMem
, int iIdx
, i64 val
){
950 sqlite3VdbeMemSetInt64(&aMem
[iIdx
], val
);
953 /* A no-op destructor */
954 void sqlite3NoopDestructor(void *p
){ UNUSED_PARAMETER(p
); }
957 ** Set the value stored in *pMem should already be a NULL.
958 ** Also store a pointer to go with it.
960 void sqlite3VdbeMemSetPointer(
964 void (*xDestructor
)(void*)
966 assert( pMem
->flags
==MEM_Null
);
968 pMem
->u
.zPType
= zPType
? zPType
: "";
970 pMem
->flags
= MEM_Null
|MEM_Dyn
|MEM_Subtype
|MEM_Term
;
971 pMem
->eSubtype
= 'p';
972 pMem
->xDel
= xDestructor
? xDestructor
: sqlite3NoopDestructor
;
975 #ifndef SQLITE_OMIT_FLOATING_POINT
977 ** Delete any previous value and set the value stored in *pMem to val,
978 ** manifest type REAL.
980 void sqlite3VdbeMemSetDouble(Mem
*pMem
, double val
){
981 sqlite3VdbeMemSetNull(pMem
);
982 if( !sqlite3IsNaN(val
) ){
984 pMem
->flags
= MEM_Real
;
991 ** Return true if the Mem holds a RowSet object. This routine is intended
992 ** for use inside of assert() statements.
994 int sqlite3VdbeMemIsRowSet(const Mem
*pMem
){
995 return (pMem
->flags
&(MEM_Blob
|MEM_Dyn
))==(MEM_Blob
|MEM_Dyn
)
996 && pMem
->xDel
==sqlite3RowSetDelete
;
1001 ** Delete any previous value and set the value of pMem to be an
1002 ** empty boolean index.
1004 ** Return SQLITE_OK on success and SQLITE_NOMEM if a memory allocation
1007 int sqlite3VdbeMemSetRowSet(Mem
*pMem
){
1008 sqlite3
*db
= pMem
->db
;
1011 assert( !sqlite3VdbeMemIsRowSet(pMem
) );
1012 sqlite3VdbeMemRelease(pMem
);
1013 p
= sqlite3RowSetInit(db
);
1014 if( p
==0 ) return SQLITE_NOMEM
;
1016 pMem
->flags
= MEM_Blob
|MEM_Dyn
;
1017 pMem
->xDel
= sqlite3RowSetDelete
;
1022 ** Return true if the Mem object contains a TEXT or BLOB that is
1023 ** too large - whose size exceeds SQLITE_MAX_LENGTH.
1025 int sqlite3VdbeMemTooBig(Mem
*p
){
1027 if( p
->flags
& (MEM_Str
|MEM_Blob
) ){
1029 if( p
->flags
& MEM_Zero
){
1032 return n
>p
->db
->aLimit
[SQLITE_LIMIT_LENGTH
];
1039 ** This routine prepares a memory cell for modification by breaking
1040 ** its link to a shallow copy and by marking any current shallow
1041 ** copies of this cell as invalid.
1043 ** This is used for testing and debugging only - to help ensure that shallow
1044 ** copies (created by OP_SCopy) are not misused.
1046 void sqlite3VdbeMemAboutToChange(Vdbe
*pVdbe
, Mem
*pMem
){
1049 for(i
=1, pX
=pVdbe
->aMem
+1; i
<pVdbe
->nMem
; i
++, pX
++){
1050 if( pX
->pScopyFrom
==pMem
){
1052 if( pVdbe
->db
->flags
& SQLITE_VdbeTrace
){
1053 sqlite3DebugPrintf("Invalidate R[%d] due to change in R[%d]\n",
1054 (int)(pX
- pVdbe
->aMem
), (int)(pMem
- pVdbe
->aMem
));
1056 /* If pX is marked as a shallow copy of pMem, then try to verify that
1057 ** no significant changes have been made to pX since the OP_SCopy.
1058 ** A significant change would indicated a missed call to this
1059 ** function for pX. Minor changes, such as adding or removing a
1060 ** dual type, are allowed, as long as the underlying value is the
1062 mFlags
= pMem
->flags
& pX
->flags
& pX
->mScopyFlags
;
1063 assert( (mFlags
&(MEM_Int
|MEM_IntReal
))==0 || pMem
->u
.i
==pX
->u
.i
);
1065 /* pMem is the register that is changing. But also mark pX as
1066 ** undefined so that we can quickly detect the shallow-copy error */
1067 pX
->flags
= MEM_Undefined
;
1071 pMem
->pScopyFrom
= 0;
1073 #endif /* SQLITE_DEBUG */
1076 ** Make an shallow copy of pFrom into pTo. Prior contents of
1077 ** pTo are freed. The pFrom->z field is not duplicated. If
1078 ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z
1079 ** and flags gets srcType (either MEM_Ephem or MEM_Static).
1081 static SQLITE_NOINLINE
void vdbeClrCopy(Mem
*pTo
, const Mem
*pFrom
, int eType
){
1082 vdbeMemClearExternAndSetNull(pTo
);
1083 assert( !VdbeMemDynamic(pTo
) );
1084 sqlite3VdbeMemShallowCopy(pTo
, pFrom
, eType
);
1086 void sqlite3VdbeMemShallowCopy(Mem
*pTo
, const Mem
*pFrom
, int srcType
){
1087 assert( !sqlite3VdbeMemIsRowSet(pFrom
) );
1088 assert( pTo
->db
==pFrom
->db
);
1089 if( VdbeMemDynamic(pTo
) ){ vdbeClrCopy(pTo
,pFrom
,srcType
); return; }
1090 memcpy(pTo
, pFrom
, MEMCELLSIZE
);
1091 if( (pFrom
->flags
&MEM_Static
)==0 ){
1092 pTo
->flags
&= ~(MEM_Dyn
|MEM_Static
|MEM_Ephem
);
1093 assert( srcType
==MEM_Ephem
|| srcType
==MEM_Static
);
1094 pTo
->flags
|= srcType
;
1099 ** Make a full copy of pFrom into pTo. Prior contents of pTo are
1100 ** freed before the copy is made.
1102 int sqlite3VdbeMemCopy(Mem
*pTo
, const Mem
*pFrom
){
1105 assert( !sqlite3VdbeMemIsRowSet(pFrom
) );
1106 if( VdbeMemDynamic(pTo
) ) vdbeMemClearExternAndSetNull(pTo
);
1107 memcpy(pTo
, pFrom
, MEMCELLSIZE
);
1108 pTo
->flags
&= ~MEM_Dyn
;
1109 if( pTo
->flags
&(MEM_Str
|MEM_Blob
) ){
1110 if( 0==(pFrom
->flags
&MEM_Static
) ){
1111 pTo
->flags
|= MEM_Ephem
;
1112 rc
= sqlite3VdbeMemMakeWriteable(pTo
);
1120 ** Transfer the contents of pFrom to pTo. Any existing value in pTo is
1121 ** freed. If pFrom contains ephemeral data, a copy is made.
1123 ** pFrom contains an SQL NULL when this routine returns.
1125 void sqlite3VdbeMemMove(Mem
*pTo
, Mem
*pFrom
){
1126 assert( pFrom
->db
==0 || sqlite3_mutex_held(pFrom
->db
->mutex
) );
1127 assert( pTo
->db
==0 || sqlite3_mutex_held(pTo
->db
->mutex
) );
1128 assert( pFrom
->db
==0 || pTo
->db
==0 || pFrom
->db
==pTo
->db
);
1130 sqlite3VdbeMemRelease(pTo
);
1131 memcpy(pTo
, pFrom
, sizeof(Mem
));
1132 pFrom
->flags
= MEM_Null
;
1133 pFrom
->szMalloc
= 0;
1137 ** Change the value of a Mem to be a string or a BLOB.
1139 ** The memory management strategy depends on the value of the xDel
1140 ** parameter. If the value passed is SQLITE_TRANSIENT, then the
1141 ** string is copied into a (possibly existing) buffer managed by the
1142 ** Mem structure. Otherwise, any existing buffer is freed and the
1145 ** If the string is too large (if it exceeds the SQLITE_LIMIT_LENGTH
1146 ** size limit) then no memory allocation occurs. If the string can be
1147 ** stored without allocating memory, then it is. If a memory allocation
1148 ** is required to store the string, then value of pMem is unchanged. In
1149 ** either case, SQLITE_TOOBIG is returned.
1151 ** The "enc" parameter is the text encoding for the string, or zero
1154 ** If n is negative, then the string consists of all bytes up to but
1155 ** excluding the first zero character. The n parameter must be
1156 ** non-negative for blobs.
1158 int sqlite3VdbeMemSetStr(
1159 Mem
*pMem
, /* Memory cell to set to string value */
1160 const char *z
, /* String pointer */
1161 i64 n
, /* Bytes in string, or negative */
1162 u8 enc
, /* Encoding of z. 0 for BLOBs */
1163 void (*xDel
)(void*) /* Destructor function */
1165 i64 nByte
= n
; /* New value for pMem->n */
1166 int iLimit
; /* Maximum allowed string or blob size */
1167 u16 flags
; /* New value for pMem->flags */
1170 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
1171 assert( !sqlite3VdbeMemIsRowSet(pMem
) );
1172 assert( enc
!=0 || n
>=0 );
1174 /* If z is a NULL pointer, set pMem to contain an SQL NULL. */
1176 sqlite3VdbeMemSetNull(pMem
);
1181 iLimit
= pMem
->db
->aLimit
[SQLITE_LIMIT_LENGTH
];
1183 iLimit
= SQLITE_MAX_LENGTH
;
1187 if( enc
==SQLITE_UTF8
){
1190 for(nByte
=0; nByte
<=iLimit
&& (z
[nByte
] | z
[nByte
+1]); nByte
+=2){}
1192 flags
= MEM_Str
|MEM_Term
;
1200 if( xDel
&& xDel
!=SQLITE_TRANSIENT
){
1201 if( xDel
==SQLITE_DYNAMIC
){
1202 sqlite3DbFree(pMem
->db
, (void*)z
);
1207 sqlite3VdbeMemSetNull(pMem
);
1208 return sqlite3ErrorToParser(pMem
->db
, SQLITE_TOOBIG
);
1211 /* The following block sets the new values of Mem.z and Mem.xDel. It
1212 ** also sets a flag in local variable "flags" to indicate the memory
1213 ** management (one of MEM_Dyn or MEM_Static).
1215 if( xDel
==SQLITE_TRANSIENT
){
1217 if( flags
&MEM_Term
){
1218 nAlloc
+= (enc
==SQLITE_UTF8
?1:2);
1220 testcase( nAlloc
==0 );
1221 testcase( nAlloc
==31 );
1222 testcase( nAlloc
==32 );
1223 if( sqlite3VdbeMemClearAndResize(pMem
, (int)MAX(nAlloc
,32)) ){
1224 return SQLITE_NOMEM_BKPT
;
1226 memcpy(pMem
->z
, z
, nAlloc
);
1228 sqlite3VdbeMemRelease(pMem
);
1229 pMem
->z
= (char *)z
;
1230 if( xDel
==SQLITE_DYNAMIC
){
1231 pMem
->zMalloc
= pMem
->z
;
1232 pMem
->szMalloc
= sqlite3DbMallocSize(pMem
->db
, pMem
->zMalloc
);
1235 flags
|= ((xDel
==SQLITE_STATIC
)?MEM_Static
:MEM_Dyn
);
1239 pMem
->n
= (int)(nByte
& 0x7fffffff);
1240 pMem
->flags
= flags
;
1243 #ifndef SQLITE_OMIT_UTF16
1244 if( enc
>SQLITE_UTF8
&& sqlite3VdbeMemHandleBom(pMem
) ){
1245 return SQLITE_NOMEM_BKPT
;
1254 ** Move data out of a btree key or data field and into a Mem structure.
1255 ** The data is payload from the entry that pCur is currently pointing
1256 ** to. offset and amt determine what portion of the data or key to retrieve.
1257 ** The result is written into the pMem element.
1259 ** The pMem object must have been initialized. This routine will use
1260 ** pMem->zMalloc to hold the content from the btree, if possible. New
1261 ** pMem->zMalloc space will be allocated if necessary. The calling routine
1262 ** is responsible for making sure that the pMem object is eventually
1265 ** If this routine fails for any reason (malloc returns NULL or unable
1266 ** to read from the disk) then the pMem is left in an inconsistent state.
1268 int sqlite3VdbeMemFromBtree(
1269 BtCursor
*pCur
, /* Cursor pointing at record to retrieve. */
1270 u32 offset
, /* Offset from the start of data to return bytes from. */
1271 u32 amt
, /* Number of bytes to return. */
1272 Mem
*pMem
/* OUT: Return data in this Mem structure. */
1275 pMem
->flags
= MEM_Null
;
1276 if( sqlite3BtreeMaxRecordSize(pCur
)<offset
+amt
){
1277 return SQLITE_CORRUPT_BKPT
;
1279 if( SQLITE_OK
==(rc
= sqlite3VdbeMemClearAndResize(pMem
, amt
+1)) ){
1280 rc
= sqlite3BtreePayload(pCur
, offset
, amt
, pMem
->z
);
1281 if( rc
==SQLITE_OK
){
1282 pMem
->z
[amt
] = 0; /* Overrun area used when reading malformed records */
1283 pMem
->flags
= MEM_Blob
;
1286 sqlite3VdbeMemRelease(pMem
);
1291 int sqlite3VdbeMemFromBtreeZeroOffset(
1292 BtCursor
*pCur
, /* Cursor pointing at record to retrieve. */
1293 u32 amt
, /* Number of bytes to return. */
1294 Mem
*pMem
/* OUT: Return data in this Mem structure. */
1296 u32 available
= 0; /* Number of bytes available on the local btree page */
1297 int rc
= SQLITE_OK
; /* Return code */
1299 assert( sqlite3BtreeCursorIsValid(pCur
) );
1300 assert( !VdbeMemDynamic(pMem
) );
1302 /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert()
1303 ** that both the BtShared and database handle mutexes are held. */
1304 assert( !sqlite3VdbeMemIsRowSet(pMem
) );
1305 pMem
->z
= (char *)sqlite3BtreePayloadFetch(pCur
, &available
);
1306 assert( pMem
->z
!=0 );
1308 if( amt
<=available
){
1309 pMem
->flags
= MEM_Blob
|MEM_Ephem
;
1312 rc
= sqlite3VdbeMemFromBtree(pCur
, 0, amt
, pMem
);
1319 ** The pVal argument is known to be a value other than NULL.
1320 ** Convert it into a string with encoding enc and return a pointer
1321 ** to a zero-terminated version of that string.
1323 static SQLITE_NOINLINE
const void *valueToText(sqlite3_value
* pVal
, u8 enc
){
1325 assert( pVal
->db
==0 || sqlite3_mutex_held(pVal
->db
->mutex
) );
1326 assert( (enc
&3)==(enc
&~SQLITE_UTF16_ALIGNED
) );
1327 assert( !sqlite3VdbeMemIsRowSet(pVal
) );
1328 assert( (pVal
->flags
& (MEM_Null
))==0 );
1329 if( pVal
->flags
& (MEM_Blob
|MEM_Str
) ){
1330 if( ExpandBlob(pVal
) ) return 0;
1331 pVal
->flags
|= MEM_Str
;
1332 if( pVal
->enc
!= (enc
& ~SQLITE_UTF16_ALIGNED
) ){
1333 sqlite3VdbeChangeEncoding(pVal
, enc
& ~SQLITE_UTF16_ALIGNED
);
1335 if( (enc
& SQLITE_UTF16_ALIGNED
)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal
->z
)) ){
1336 assert( (pVal
->flags
& (MEM_Ephem
|MEM_Static
))!=0 );
1337 if( sqlite3VdbeMemMakeWriteable(pVal
)!=SQLITE_OK
){
1341 sqlite3VdbeMemNulTerminate(pVal
); /* IMP: R-31275-44060 */
1343 sqlite3VdbeMemStringify(pVal
, enc
, 0);
1344 assert( 0==(1&SQLITE_PTR_TO_INT(pVal
->z
)) );
1346 assert(pVal
->enc
==(enc
& ~SQLITE_UTF16_ALIGNED
) || pVal
->db
==0
1347 || pVal
->db
->mallocFailed
);
1348 if( pVal
->enc
==(enc
& ~SQLITE_UTF16_ALIGNED
) ){
1349 assert( sqlite3VdbeMemValidStrRep(pVal
) );
1356 /* This function is only available internally, it is not part of the
1357 ** external API. It works in a similar way to sqlite3_value_text(),
1358 ** except the data returned is in the encoding specified by the second
1359 ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or
1362 ** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED.
1363 ** If that is the case, then the result must be aligned on an even byte
1366 const void *sqlite3ValueText(sqlite3_value
* pVal
, u8 enc
){
1367 if( !pVal
) return 0;
1368 assert( pVal
->db
==0 || sqlite3_mutex_held(pVal
->db
->mutex
) );
1369 assert( (enc
&3)==(enc
&~SQLITE_UTF16_ALIGNED
) );
1370 assert( !sqlite3VdbeMemIsRowSet(pVal
) );
1371 if( (pVal
->flags
&(MEM_Str
|MEM_Term
))==(MEM_Str
|MEM_Term
) && pVal
->enc
==enc
){
1372 assert( sqlite3VdbeMemValidStrRep(pVal
) );
1375 if( pVal
->flags
&MEM_Null
){
1378 return valueToText(pVal
, enc
);
1381 /* Return true if sqlit3_value object pVal is a string or blob value
1382 ** that uses the destructor specified in the second argument.
1384 ** TODO: Maybe someday promote this interface into a published API so
1385 ** that third-party extensions can get access to it?
1387 int sqlite3ValueIsOfClass(const sqlite3_value
*pVal
, void(*xFree
)(void*)){
1389 && ALWAYS((pVal
->flags
& (MEM_Str
|MEM_Blob
))!=0)
1390 && (pVal
->flags
& MEM_Dyn
)!=0
1391 && pVal
->xDel
==xFree
1400 ** Create a new sqlite3_value object.
1402 sqlite3_value
*sqlite3ValueNew(sqlite3
*db
){
1403 Mem
*p
= sqlite3DbMallocZero(db
, sizeof(*p
));
1405 p
->flags
= MEM_Null
;
1412 ** Context object passed by sqlite3Stat4ProbeSetValue() through to
1413 ** valueNew(). See comments above valueNew() for details.
1415 struct ValueNewStat4Ctx
{
1418 UnpackedRecord
**ppRec
;
1423 ** Allocate and return a pointer to a new sqlite3_value object. If
1424 ** the second argument to this function is NULL, the object is allocated
1425 ** by calling sqlite3ValueNew().
1427 ** Otherwise, if the second argument is non-zero, then this function is
1428 ** being called indirectly by sqlite3Stat4ProbeSetValue(). If it has not
1429 ** already been allocated, allocate the UnpackedRecord structure that
1430 ** that function will return to its caller here. Then return a pointer to
1431 ** an sqlite3_value within the UnpackedRecord.a[] array.
1433 static sqlite3_value
*valueNew(sqlite3
*db
, struct ValueNewStat4Ctx
*p
){
1434 #ifdef SQLITE_ENABLE_STAT4
1436 UnpackedRecord
*pRec
= p
->ppRec
[0];
1439 Index
*pIdx
= p
->pIdx
; /* Index being probed */
1440 int nByte
; /* Bytes of space to allocate */
1441 int i
; /* Counter variable */
1442 int nCol
= pIdx
->nColumn
; /* Number of index columns including rowid */
1444 nByte
= sizeof(Mem
) * nCol
+ ROUND8(sizeof(UnpackedRecord
));
1445 pRec
= (UnpackedRecord
*)sqlite3DbMallocZero(db
, nByte
);
1447 pRec
->pKeyInfo
= sqlite3KeyInfoOfIndex(p
->pParse
, pIdx
);
1448 if( pRec
->pKeyInfo
){
1449 assert( pRec
->pKeyInfo
->nAllField
==nCol
);
1450 assert( pRec
->pKeyInfo
->enc
==ENC(db
) );
1451 pRec
->aMem
= (Mem
*)((u8
*)pRec
+ ROUND8(sizeof(UnpackedRecord
)));
1452 for(i
=0; i
<nCol
; i
++){
1453 pRec
->aMem
[i
].flags
= MEM_Null
;
1454 pRec
->aMem
[i
].db
= db
;
1457 sqlite3DbFreeNN(db
, pRec
);
1461 if( pRec
==0 ) return 0;
1465 pRec
->nField
= p
->iVal
+1;
1466 sqlite3VdbeMemSetNull(&pRec
->aMem
[p
->iVal
]);
1467 return &pRec
->aMem
[p
->iVal
];
1470 UNUSED_PARAMETER(p
);
1471 #endif /* defined(SQLITE_ENABLE_STAT4) */
1472 return sqlite3ValueNew(db
);
1476 ** The expression object indicated by the second argument is guaranteed
1477 ** to be a scalar SQL function. If
1479 ** * all function arguments are SQL literals,
1480 ** * one of the SQLITE_FUNC_CONSTANT or _SLOCHNG function flags is set, and
1481 ** * the SQLITE_FUNC_NEEDCOLL function flag is not set,
1483 ** then this routine attempts to invoke the SQL function. Assuming no
1484 ** error occurs, output parameter (*ppVal) is set to point to a value
1485 ** object containing the result before returning SQLITE_OK.
1487 ** Affinity aff is applied to the result of the function before returning.
1488 ** If the result is a text value, the sqlite3_value object uses encoding
1491 ** If the conditions above are not met, this function returns SQLITE_OK
1492 ** and sets (*ppVal) to NULL. Or, if an error occurs, (*ppVal) is set to
1493 ** NULL and an SQLite error code returned.
1495 #ifdef SQLITE_ENABLE_STAT4
1496 static int valueFromFunction(
1497 sqlite3
*db
, /* The database connection */
1498 const Expr
*p
, /* The expression to evaluate */
1499 u8 enc
, /* Encoding to use */
1500 u8 aff
, /* Affinity to use */
1501 sqlite3_value
**ppVal
, /* Write the new value here */
1502 struct ValueNewStat4Ctx
*pCtx
/* Second argument for valueNew() */
1504 sqlite3_context ctx
; /* Context object for function invocation */
1505 sqlite3_value
**apVal
= 0; /* Function arguments */
1506 int nVal
= 0; /* Size of apVal[] array */
1507 FuncDef
*pFunc
= 0; /* Function definition */
1508 sqlite3_value
*pVal
= 0; /* New value */
1509 int rc
= SQLITE_OK
; /* Return code */
1510 ExprList
*pList
= 0; /* Function arguments */
1511 int i
; /* Iterator variable */
1514 assert( (p
->flags
& EP_TokenOnly
)==0 );
1515 assert( ExprUseXList(p
) );
1517 if( pList
) nVal
= pList
->nExpr
;
1518 assert( !ExprHasProperty(p
, EP_IntValue
) );
1519 pFunc
= sqlite3FindFunction(db
, p
->u
.zToken
, nVal
, enc
, 0);
1520 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
1521 if( pFunc
==0 ) return SQLITE_OK
;
1524 if( (pFunc
->funcFlags
& (SQLITE_FUNC_CONSTANT
|SQLITE_FUNC_SLOCHNG
))==0
1525 || (pFunc
->funcFlags
& (SQLITE_FUNC_NEEDCOLL
|SQLITE_FUNC_RUNONLY
))!=0
1531 apVal
= (sqlite3_value
**)sqlite3DbMallocZero(db
, sizeof(apVal
[0]) * nVal
);
1533 rc
= SQLITE_NOMEM_BKPT
;
1534 goto value_from_function_out
;
1536 for(i
=0; i
<nVal
; i
++){
1537 rc
= sqlite3ValueFromExpr(db
, pList
->a
[i
].pExpr
, enc
, aff
, &apVal
[i
]);
1538 if( apVal
[i
]==0 || rc
!=SQLITE_OK
) goto value_from_function_out
;
1542 pVal
= valueNew(db
, pCtx
);
1544 rc
= SQLITE_NOMEM_BKPT
;
1545 goto value_from_function_out
;
1548 memset(&ctx
, 0, sizeof(ctx
));
1552 pFunc
->xSFunc(&ctx
, nVal
, apVal
);
1555 sqlite3ErrorMsg(pCtx
->pParse
, "%s", sqlite3_value_text(pVal
));
1557 sqlite3ValueApplyAffinity(pVal
, aff
, SQLITE_UTF8
);
1558 assert( rc
==SQLITE_OK
);
1559 rc
= sqlite3VdbeChangeEncoding(pVal
, enc
);
1560 if( NEVER(rc
==SQLITE_OK
&& sqlite3VdbeMemTooBig(pVal
)) ){
1562 pCtx
->pParse
->nErr
++;
1566 value_from_function_out
:
1567 if( rc
!=SQLITE_OK
){
1569 pCtx
->pParse
->rc
= rc
;
1572 for(i
=0; i
<nVal
; i
++){
1573 sqlite3ValueFree(apVal
[i
]);
1575 sqlite3DbFreeNN(db
, apVal
);
1582 # define valueFromFunction(a,b,c,d,e,f) SQLITE_OK
1583 #endif /* defined(SQLITE_ENABLE_STAT4) */
1586 ** Extract a value from the supplied expression in the manner described
1587 ** above sqlite3ValueFromExpr(). Allocate the sqlite3_value object
1588 ** using valueNew().
1590 ** If pCtx is NULL and an error occurs after the sqlite3_value object
1591 ** has been allocated, it is freed before returning. Or, if pCtx is not
1592 ** NULL, it is assumed that the caller will free any allocated object
1595 static int valueFromExpr(
1596 sqlite3
*db
, /* The database connection */
1597 const Expr
*pExpr
, /* The expression to evaluate */
1598 u8 enc
, /* Encoding to use */
1599 u8 affinity
, /* Affinity to use */
1600 sqlite3_value
**ppVal
, /* Write the new value here */
1601 struct ValueNewStat4Ctx
*pCtx
/* Second argument for valueNew() */
1605 sqlite3_value
*pVal
= 0;
1607 const char *zNeg
= "";
1611 while( (op
= pExpr
->op
)==TK_UPLUS
|| op
==TK_SPAN
) pExpr
= pExpr
->pLeft
;
1612 if( op
==TK_REGISTER
) op
= pExpr
->op2
;
1614 /* Compressed expressions only appear when parsing the DEFAULT clause
1615 ** on a table column definition, and hence only when pCtx==0. This
1616 ** check ensures that an EP_TokenOnly expression is never passed down
1617 ** into valueFromFunction(). */
1618 assert( (pExpr
->flags
& EP_TokenOnly
)==0 || pCtx
==0 );
1622 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
1623 aff
= sqlite3AffinityType(pExpr
->u
.zToken
,0);
1624 rc
= valueFromExpr(db
, pExpr
->pLeft
, enc
, aff
, ppVal
, pCtx
);
1625 testcase( rc
!=SQLITE_OK
);
1627 #ifdef SQLITE_ENABLE_STAT4
1628 rc
= ExpandBlob(*ppVal
);
1630 /* zero-blobs only come from functions, not literal values. And
1631 ** functions are only processed under STAT4 */
1632 assert( (ppVal
[0][0].flags
& MEM_Zero
)==0 );
1634 sqlite3VdbeMemCast(*ppVal
, aff
, enc
);
1635 sqlite3ValueApplyAffinity(*ppVal
, affinity
, enc
);
1640 /* Handle negative integers in a single step. This is needed in the
1641 ** case when the value is -9223372036854775808. Except - do not do this
1642 ** for hexadecimal literals. */
1643 if( op
==TK_UMINUS
){
1644 Expr
*pLeft
= pExpr
->pLeft
;
1645 if( (pLeft
->op
==TK_INTEGER
|| pLeft
->op
==TK_FLOAT
) ){
1646 if( ExprHasProperty(pLeft
, EP_IntValue
)
1647 || pLeft
->u
.zToken
[0]!='0' || (pLeft
->u
.zToken
[1] & ~0x20)!='X'
1657 if( op
==TK_STRING
|| op
==TK_FLOAT
|| op
==TK_INTEGER
){
1658 pVal
= valueNew(db
, pCtx
);
1659 if( pVal
==0 ) goto no_mem
;
1660 if( ExprHasProperty(pExpr
, EP_IntValue
) ){
1661 sqlite3VdbeMemSetInt64(pVal
, (i64
)pExpr
->u
.iValue
*negInt
);
1664 if( op
==TK_INTEGER
&& 0==sqlite3DecOrHexToI64(pExpr
->u
.zToken
, &iVal
) ){
1665 sqlite3VdbeMemSetInt64(pVal
, iVal
*negInt
);
1667 zVal
= sqlite3MPrintf(db
, "%s%s", zNeg
, pExpr
->u
.zToken
);
1668 if( zVal
==0 ) goto no_mem
;
1669 sqlite3ValueSetStr(pVal
, -1, zVal
, SQLITE_UTF8
, SQLITE_DYNAMIC
);
1672 if( affinity
==SQLITE_AFF_BLOB
){
1674 assert( pVal
&& pVal
->z
&& pVal
->flags
==(MEM_Str
|MEM_Term
) );
1675 sqlite3AtoF(pVal
->z
, &pVal
->u
.r
, pVal
->n
, SQLITE_UTF8
);
1676 pVal
->flags
= MEM_Real
;
1677 }else if( op
==TK_INTEGER
){
1678 /* This case is required by -9223372036854775808 and other strings
1679 ** that look like integers but cannot be handled by the
1680 ** sqlite3DecOrHexToI64() call above. */
1681 sqlite3ValueApplyAffinity(pVal
, SQLITE_AFF_NUMERIC
, SQLITE_UTF8
);
1684 sqlite3ValueApplyAffinity(pVal
, affinity
, SQLITE_UTF8
);
1686 assert( (pVal
->flags
& MEM_IntReal
)==0 );
1687 if( pVal
->flags
& (MEM_Int
|MEM_IntReal
|MEM_Real
) ){
1688 testcase( pVal
->flags
& MEM_Int
);
1689 testcase( pVal
->flags
& MEM_Real
);
1690 pVal
->flags
&= ~MEM_Str
;
1692 if( enc
!=SQLITE_UTF8
){
1693 rc
= sqlite3VdbeChangeEncoding(pVal
, enc
);
1695 }else if( op
==TK_UMINUS
) {
1696 /* This branch happens for multiple negative signs. Ex: -(-5) */
1697 if( SQLITE_OK
==valueFromExpr(db
,pExpr
->pLeft
,enc
,affinity
,&pVal
,pCtx
)
1700 sqlite3VdbeMemNumerify(pVal
);
1701 if( pVal
->flags
& MEM_Real
){
1702 pVal
->u
.r
= -pVal
->u
.r
;
1703 }else if( pVal
->u
.i
==SMALLEST_INT64
){
1704 #ifndef SQLITE_OMIT_FLOATING_POINT
1705 pVal
->u
.r
= -(double)SMALLEST_INT64
;
1707 pVal
->u
.r
= LARGEST_INT64
;
1709 MemSetTypeFlag(pVal
, MEM_Real
);
1711 pVal
->u
.i
= -pVal
->u
.i
;
1713 sqlite3ValueApplyAffinity(pVal
, affinity
, enc
);
1715 }else if( op
==TK_NULL
){
1716 pVal
= valueNew(db
, pCtx
);
1717 if( pVal
==0 ) goto no_mem
;
1718 sqlite3VdbeMemSetNull(pVal
);
1720 #ifndef SQLITE_OMIT_BLOB_LITERAL
1721 else if( op
==TK_BLOB
){
1723 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
1724 assert( pExpr
->u
.zToken
[0]=='x' || pExpr
->u
.zToken
[0]=='X' );
1725 assert( pExpr
->u
.zToken
[1]=='\'' );
1726 pVal
= valueNew(db
, pCtx
);
1727 if( !pVal
) goto no_mem
;
1728 zVal
= &pExpr
->u
.zToken
[2];
1729 nVal
= sqlite3Strlen30(zVal
)-1;
1730 assert( zVal
[nVal
]=='\'' );
1731 sqlite3VdbeMemSetStr(pVal
, sqlite3HexToBlob(db
, zVal
, nVal
), nVal
/2,
1735 #ifdef SQLITE_ENABLE_STAT4
1736 else if( op
==TK_FUNCTION
&& pCtx
!=0 ){
1737 rc
= valueFromFunction(db
, pExpr
, enc
, affinity
, &pVal
, pCtx
);
1740 else if( op
==TK_TRUEFALSE
){
1741 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
1742 pVal
= valueNew(db
, pCtx
);
1744 pVal
->flags
= MEM_Int
;
1745 pVal
->u
.i
= pExpr
->u
.zToken
[4]==0;
1746 sqlite3ValueApplyAffinity(pVal
, affinity
, enc
);
1754 #ifdef SQLITE_ENABLE_STAT4
1755 if( pCtx
==0 || NEVER(pCtx
->pParse
->nErr
==0) )
1757 sqlite3OomFault(db
);
1758 sqlite3DbFree(db
, zVal
);
1759 assert( *ppVal
==0 );
1760 #ifdef SQLITE_ENABLE_STAT4
1761 if( pCtx
==0 ) sqlite3ValueFree(pVal
);
1763 assert( pCtx
==0 ); sqlite3ValueFree(pVal
);
1765 return SQLITE_NOMEM_BKPT
;
1769 ** Create a new sqlite3_value object, containing the value of pExpr.
1771 ** This only works for very simple expressions that consist of one constant
1772 ** token (i.e. "5", "5.1", "'a string'"). If the expression can
1773 ** be converted directly into a value, then the value is allocated and
1774 ** a pointer written to *ppVal. The caller is responsible for deallocating
1775 ** the value by passing it to sqlite3ValueFree() later on. If the expression
1776 ** cannot be converted to a value, then *ppVal is set to NULL.
1778 int sqlite3ValueFromExpr(
1779 sqlite3
*db
, /* The database connection */
1780 const Expr
*pExpr
, /* The expression to evaluate */
1781 u8 enc
, /* Encoding to use */
1782 u8 affinity
, /* Affinity to use */
1783 sqlite3_value
**ppVal
/* Write the new value here */
1785 return pExpr
? valueFromExpr(db
, pExpr
, enc
, affinity
, ppVal
, 0) : 0;
1788 #ifdef SQLITE_ENABLE_STAT4
1790 ** Attempt to extract a value from pExpr and use it to construct *ppVal.
1792 ** If pAlloc is not NULL, then an UnpackedRecord object is created for
1793 ** pAlloc if one does not exist and the new value is added to the
1794 ** UnpackedRecord object.
1796 ** A value is extracted in the following cases:
1798 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL,
1800 ** * The expression is a bound variable, and this is a reprepare, or
1802 ** * The expression is a literal value.
1804 ** On success, *ppVal is made to point to the extracted value. The caller
1805 ** is responsible for ensuring that the value is eventually freed.
1807 static int stat4ValueFromExpr(
1808 Parse
*pParse
, /* Parse context */
1809 Expr
*pExpr
, /* The expression to extract a value from */
1810 u8 affinity
, /* Affinity to use */
1811 struct ValueNewStat4Ctx
*pAlloc
,/* How to allocate space. Or NULL */
1812 sqlite3_value
**ppVal
/* OUT: New value object (or NULL) */
1815 sqlite3_value
*pVal
= 0;
1816 sqlite3
*db
= pParse
->db
;
1818 /* Skip over any TK_COLLATE nodes */
1819 pExpr
= sqlite3ExprSkipCollate(pExpr
);
1821 assert( pExpr
==0 || pExpr
->op
!=TK_REGISTER
|| pExpr
->op2
!=TK_VARIABLE
);
1823 pVal
= valueNew(db
, pAlloc
);
1825 sqlite3VdbeMemSetNull((Mem
*)pVal
);
1827 }else if( pExpr
->op
==TK_VARIABLE
&& (db
->flags
& SQLITE_EnableQPSG
)==0 ){
1829 int iBindVar
= pExpr
->iColumn
;
1830 sqlite3VdbeSetVarmask(pParse
->pVdbe
, iBindVar
);
1831 if( (v
= pParse
->pReprepare
)!=0 ){
1832 pVal
= valueNew(db
, pAlloc
);
1834 rc
= sqlite3VdbeMemCopy((Mem
*)pVal
, &v
->aVar
[iBindVar
-1]);
1835 sqlite3ValueApplyAffinity(pVal
, affinity
, ENC(db
));
1836 pVal
->db
= pParse
->db
;
1840 rc
= valueFromExpr(db
, pExpr
, ENC(db
), affinity
, &pVal
, pAlloc
);
1843 assert( pVal
==0 || pVal
->db
==db
);
1849 ** This function is used to allocate and populate UnpackedRecord
1850 ** structures intended to be compared against sample index keys stored
1851 ** in the sqlite_stat4 table.
1853 ** A single call to this function populates zero or more fields of the
1854 ** record starting with field iVal (fields are numbered from left to
1855 ** right starting with 0). A single field is populated if:
1857 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL,
1859 ** * The expression is a bound variable, and this is a reprepare, or
1861 ** * The sqlite3ValueFromExpr() function is able to extract a value
1862 ** from the expression (i.e. the expression is a literal value).
1864 ** Or, if pExpr is a TK_VECTOR, one field is populated for each of the
1865 ** vector components that match either of the two latter criteria listed
1868 ** Before any value is appended to the record, the affinity of the
1869 ** corresponding column within index pIdx is applied to it. Before
1870 ** this function returns, output parameter *pnExtract is set to the
1871 ** number of values appended to the record.
1873 ** When this function is called, *ppRec must either point to an object
1874 ** allocated by an earlier call to this function, or must be NULL. If it
1875 ** is NULL and a value can be successfully extracted, a new UnpackedRecord
1876 ** is allocated (and *ppRec set to point to it) before returning.
1878 ** Unless an error is encountered, SQLITE_OK is returned. It is not an
1879 ** error if a value cannot be extracted from pExpr. If an error does
1880 ** occur, an SQLite error code is returned.
1882 int sqlite3Stat4ProbeSetValue(
1883 Parse
*pParse
, /* Parse context */
1884 Index
*pIdx
, /* Index being probed */
1885 UnpackedRecord
**ppRec
, /* IN/OUT: Probe record */
1886 Expr
*pExpr
, /* The expression to extract a value from */
1887 int nElem
, /* Maximum number of values to append */
1888 int iVal
, /* Array element to populate */
1889 int *pnExtract
/* OUT: Values appended to the record */
1894 if( pExpr
==0 || pExpr
->op
!=TK_SELECT
){
1896 struct ValueNewStat4Ctx alloc
;
1898 alloc
.pParse
= pParse
;
1900 alloc
.ppRec
= ppRec
;
1902 for(i
=0; i
<nElem
; i
++){
1903 sqlite3_value
*pVal
= 0;
1904 Expr
*pElem
= (pExpr
? sqlite3VectorFieldSubexpr(pExpr
, i
) : 0);
1905 u8 aff
= sqlite3IndexColumnAffinity(pParse
->db
, pIdx
, iVal
+i
);
1906 alloc
.iVal
= iVal
+i
;
1907 rc
= stat4ValueFromExpr(pParse
, pElem
, aff
, &alloc
, &pVal
);
1913 *pnExtract
= nExtract
;
1918 ** Attempt to extract a value from expression pExpr using the methods
1919 ** as described for sqlite3Stat4ProbeSetValue() above.
1921 ** If successful, set *ppVal to point to a new value object and return
1922 ** SQLITE_OK. If no value can be extracted, but no other error occurs
1923 ** (e.g. OOM), return SQLITE_OK and set *ppVal to NULL. Or, if an error
1924 ** does occur, return an SQLite error code. The final value of *ppVal
1925 ** is undefined in this case.
1927 int sqlite3Stat4ValueFromExpr(
1928 Parse
*pParse
, /* Parse context */
1929 Expr
*pExpr
, /* The expression to extract a value from */
1930 u8 affinity
, /* Affinity to use */
1931 sqlite3_value
**ppVal
/* OUT: New value object (or NULL) */
1933 return stat4ValueFromExpr(pParse
, pExpr
, affinity
, 0, ppVal
);
1937 ** Extract the iCol-th column from the nRec-byte record in pRec. Write
1938 ** the column value into *ppVal. If *ppVal is initially NULL then a new
1939 ** sqlite3_value object is allocated.
1941 ** If *ppVal is initially NULL then the caller is responsible for
1942 ** ensuring that the value written into *ppVal is eventually freed.
1944 int sqlite3Stat4Column(
1945 sqlite3
*db
, /* Database handle */
1946 const void *pRec
, /* Pointer to buffer containing record */
1947 int nRec
, /* Size of buffer pRec in bytes */
1948 int iCol
, /* Column to extract */
1949 sqlite3_value
**ppVal
/* OUT: Extracted value */
1951 u32 t
= 0; /* a column type code */
1952 u32 nHdr
; /* Size of the header in the record */
1953 u32 iHdr
; /* Next unread header byte */
1954 i64 iField
; /* Next unread data byte */
1955 u32 szField
= 0; /* Size of the current data field */
1956 int i
; /* Column index */
1957 u8
*a
= (u8
*)pRec
; /* Typecast byte array */
1958 Mem
*pMem
= *ppVal
; /* Write result into this Mem object */
1961 iHdr
= getVarint32(a
, nHdr
);
1962 if( nHdr
>(u32
)nRec
|| iHdr
>=nHdr
) return SQLITE_CORRUPT_BKPT
;
1964 for(i
=0; i
<=iCol
; i
++){
1965 iHdr
+= getVarint32(&a
[iHdr
], t
);
1966 testcase( iHdr
==nHdr
);
1967 testcase( iHdr
==nHdr
+1 );
1968 if( iHdr
>nHdr
) return SQLITE_CORRUPT_BKPT
;
1969 szField
= sqlite3VdbeSerialTypeLen(t
);
1972 testcase( iField
==nRec
);
1973 testcase( iField
==nRec
+1 );
1974 if( iField
>nRec
) return SQLITE_CORRUPT_BKPT
;
1976 pMem
= *ppVal
= sqlite3ValueNew(db
);
1977 if( pMem
==0 ) return SQLITE_NOMEM_BKPT
;
1979 sqlite3VdbeSerialGet(&a
[iField
-szField
], t
, pMem
);
1980 pMem
->enc
= ENC(db
);
1985 ** Unless it is NULL, the argument must be an UnpackedRecord object returned
1986 ** by an earlier call to sqlite3Stat4ProbeSetValue(). This call deletes
1989 void sqlite3Stat4ProbeFree(UnpackedRecord
*pRec
){
1992 int nCol
= pRec
->pKeyInfo
->nAllField
;
1993 Mem
*aMem
= pRec
->aMem
;
1994 sqlite3
*db
= aMem
[0].db
;
1995 for(i
=0; i
<nCol
; i
++){
1996 sqlite3VdbeMemRelease(&aMem
[i
]);
1998 sqlite3KeyInfoUnref(pRec
->pKeyInfo
);
1999 sqlite3DbFreeNN(db
, pRec
);
2002 #endif /* ifdef SQLITE_ENABLE_STAT4 */
2005 ** Change the string value of an sqlite3_value object
2007 void sqlite3ValueSetStr(
2008 sqlite3_value
*v
, /* Value to be set */
2009 int n
, /* Length of string z */
2010 const void *z
, /* Text of the new string */
2011 u8 enc
, /* Encoding to use */
2012 void (*xDel
)(void*) /* Destructor for the string */
2014 if( v
) sqlite3VdbeMemSetStr((Mem
*)v
, z
, n
, enc
, xDel
);
2018 ** Free an sqlite3_value object
2020 void sqlite3ValueFree(sqlite3_value
*v
){
2022 sqlite3VdbeMemRelease((Mem
*)v
);
2023 sqlite3DbFreeNN(((Mem
*)v
)->db
, v
);
2027 ** The sqlite3ValueBytes() routine returns the number of bytes in the
2028 ** sqlite3_value object assuming that it uses the encoding "enc".
2029 ** The valueBytes() routine is a helper function.
2031 static SQLITE_NOINLINE
int valueBytes(sqlite3_value
*pVal
, u8 enc
){
2032 return valueToText(pVal
, enc
)!=0 ? pVal
->n
: 0;
2034 int sqlite3ValueBytes(sqlite3_value
*pVal
, u8 enc
){
2035 Mem
*p
= (Mem
*)pVal
;
2036 assert( (p
->flags
& MEM_Null
)==0 || (p
->flags
& (MEM_Str
|MEM_Blob
))==0 );
2037 if( (p
->flags
& MEM_Str
)!=0 && pVal
->enc
==enc
){
2040 if( (p
->flags
& MEM_Str
)!=0 && enc
!=SQLITE_UTF8
&& pVal
->enc
!=SQLITE_UTF8
){
2043 if( (p
->flags
& MEM_Blob
)!=0 ){
2044 if( p
->flags
& MEM_Zero
){
2045 return p
->n
+ p
->u
.nZero
;
2050 if( p
->flags
& MEM_Null
) return 0;
2051 return valueBytes(pVal
, enc
);