set error state if cipher_migrate fails
[sqlcipher.git] / src / analyze.c
blobdc77220a53c515784bcdd2e01e69ca274f95ae4c
1 /*
2 ** 2005-07-08
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains code associated with the ANALYZE command.
14 ** The ANALYZE command gather statistics about the content of tables
15 ** and indices. These statistics are made available to the query planner
16 ** to help it make better decisions about how to perform queries.
18 ** The following system tables are or have been supported:
20 ** CREATE TABLE sqlite_stat1(tbl, idx, stat);
21 ** CREATE TABLE sqlite_stat2(tbl, idx, sampleno, sample);
22 ** CREATE TABLE sqlite_stat3(tbl, idx, nEq, nLt, nDLt, sample);
23 ** CREATE TABLE sqlite_stat4(tbl, idx, nEq, nLt, nDLt, sample);
25 ** Additional tables might be added in future releases of SQLite.
26 ** The sqlite_stat2 table is not created or used unless the SQLite version
27 ** is between 3.6.18 and 3.7.8, inclusive, and unless SQLite is compiled
28 ** with SQLITE_ENABLE_STAT2. The sqlite_stat2 table is deprecated.
29 ** The sqlite_stat2 table is superseded by sqlite_stat3, which is only
30 ** created and used by SQLite versions 3.7.9 through 3.29.0 when
31 ** SQLITE_ENABLE_STAT3 defined. The functionality of sqlite_stat3
32 ** is a superset of sqlite_stat2 and is also now deprecated. The
33 ** sqlite_stat4 is an enhanced version of sqlite_stat3 and is only
34 ** available when compiled with SQLITE_ENABLE_STAT4 and in SQLite
35 ** versions 3.8.1 and later. STAT4 is the only variant that is still
36 ** supported.
38 ** For most applications, sqlite_stat1 provides all the statistics required
39 ** for the query planner to make good choices.
41 ** Format of sqlite_stat1:
43 ** There is normally one row per index, with the index identified by the
44 ** name in the idx column. The tbl column is the name of the table to
45 ** which the index belongs. In each such row, the stat column will be
46 ** a string consisting of a list of integers. The first integer in this
47 ** list is the number of rows in the index. (This is the same as the
48 ** number of rows in the table, except for partial indices.) The second
49 ** integer is the average number of rows in the index that have the same
50 ** value in the first column of the index. The third integer is the average
51 ** number of rows in the index that have the same value for the first two
52 ** columns. The N-th integer (for N>1) is the average number of rows in
53 ** the index which have the same value for the first N-1 columns. For
54 ** a K-column index, there will be K+1 integers in the stat column. If
55 ** the index is unique, then the last integer will be 1.
57 ** The list of integers in the stat column can optionally be followed
58 ** by the keyword "unordered". The "unordered" keyword, if it is present,
59 ** must be separated from the last integer by a single space. If the
60 ** "unordered" keyword is present, then the query planner assumes that
61 ** the index is unordered and will not use the index for a range query.
62 **
63 ** If the sqlite_stat1.idx column is NULL, then the sqlite_stat1.stat
64 ** column contains a single integer which is the (estimated) number of
65 ** rows in the table identified by sqlite_stat1.tbl.
67 ** Format of sqlite_stat2:
69 ** The sqlite_stat2 is only created and is only used if SQLite is compiled
70 ** with SQLITE_ENABLE_STAT2 and if the SQLite version number is between
71 ** 3.6.18 and 3.7.8. The "stat2" table contains additional information
72 ** about the distribution of keys within an index. The index is identified by
73 ** the "idx" column and the "tbl" column is the name of the table to which
74 ** the index belongs. There are usually 10 rows in the sqlite_stat2
75 ** table for each index.
77 ** The sqlite_stat2 entries for an index that have sampleno between 0 and 9
78 ** inclusive are samples of the left-most key value in the index taken at
79 ** evenly spaced points along the index. Let the number of samples be S
80 ** (10 in the standard build) and let C be the number of rows in the index.
81 ** Then the sampled rows are given by:
83 ** rownumber = (i*C*2 + C)/(S*2)
85 ** For i between 0 and S-1. Conceptually, the index space is divided into
86 ** S uniform buckets and the samples are the middle row from each bucket.
88 ** The format for sqlite_stat2 is recorded here for legacy reference. This
89 ** version of SQLite does not support sqlite_stat2. It neither reads nor
90 ** writes the sqlite_stat2 table. This version of SQLite only supports
91 ** sqlite_stat3.
93 ** Format for sqlite_stat3:
95 ** The sqlite_stat3 format is a subset of sqlite_stat4. Hence, the
96 ** sqlite_stat4 format will be described first. Further information
97 ** about sqlite_stat3 follows the sqlite_stat4 description.
99 ** Format for sqlite_stat4:
101 ** As with sqlite_stat2, the sqlite_stat4 table contains histogram data
102 ** to aid the query planner in choosing good indices based on the values
103 ** that indexed columns are compared against in the WHERE clauses of
104 ** queries.
106 ** The sqlite_stat4 table contains multiple entries for each index.
107 ** The idx column names the index and the tbl column is the table of the
108 ** index. If the idx and tbl columns are the same, then the sample is
109 ** of the INTEGER PRIMARY KEY. The sample column is a blob which is the
110 ** binary encoding of a key from the index. The nEq column is a
111 ** list of integers. The first integer is the approximate number
112 ** of entries in the index whose left-most column exactly matches
113 ** the left-most column of the sample. The second integer in nEq
114 ** is the approximate number of entries in the index where the
115 ** first two columns match the first two columns of the sample.
116 ** And so forth. nLt is another list of integers that show the approximate
117 ** number of entries that are strictly less than the sample. The first
118 ** integer in nLt contains the number of entries in the index where the
119 ** left-most column is less than the left-most column of the sample.
120 ** The K-th integer in the nLt entry is the number of index entries
121 ** where the first K columns are less than the first K columns of the
122 ** sample. The nDLt column is like nLt except that it contains the
123 ** number of distinct entries in the index that are less than the
124 ** sample.
126 ** There can be an arbitrary number of sqlite_stat4 entries per index.
127 ** The ANALYZE command will typically generate sqlite_stat4 tables
128 ** that contain between 10 and 40 samples which are distributed across
129 ** the key space, though not uniformly, and which include samples with
130 ** large nEq values.
132 ** Format for sqlite_stat3 redux:
134 ** The sqlite_stat3 table is like sqlite_stat4 except that it only
135 ** looks at the left-most column of the index. The sqlite_stat3.sample
136 ** column contains the actual value of the left-most column instead
137 ** of a blob encoding of the complete index key as is found in
138 ** sqlite_stat4.sample. The nEq, nLt, and nDLt entries of sqlite_stat3
139 ** all contain just a single integer which is the same as the first
140 ** integer in the equivalent columns in sqlite_stat4.
142 #ifndef SQLITE_OMIT_ANALYZE
143 #include "sqliteInt.h"
145 #if defined(SQLITE_ENABLE_STAT4)
146 # define IsStat4 1
147 #else
148 # define IsStat4 0
149 # undef SQLITE_STAT4_SAMPLES
150 # define SQLITE_STAT4_SAMPLES 1
151 #endif
154 ** This routine generates code that opens the sqlite_statN tables.
155 ** The sqlite_stat1 table is always relevant. sqlite_stat2 is now
156 ** obsolete. sqlite_stat3 and sqlite_stat4 are only opened when
157 ** appropriate compile-time options are provided.
159 ** If the sqlite_statN tables do not previously exist, it is created.
161 ** Argument zWhere may be a pointer to a buffer containing a table name,
162 ** or it may be a NULL pointer. If it is not NULL, then all entries in
163 ** the sqlite_statN tables associated with the named table are deleted.
164 ** If zWhere==0, then code is generated to delete all stat table entries.
166 static void openStatTable(
167 Parse *pParse, /* Parsing context */
168 int iDb, /* The database we are looking in */
169 int iStatCur, /* Open the sqlite_stat1 table on this cursor */
170 const char *zWhere, /* Delete entries for this table or index */
171 const char *zWhereType /* Either "tbl" or "idx" */
173 static const struct {
174 const char *zName;
175 const char *zCols;
176 } aTable[] = {
177 { "sqlite_stat1", "tbl,idx,stat" },
178 #if defined(SQLITE_ENABLE_STAT4)
179 { "sqlite_stat4", "tbl,idx,neq,nlt,ndlt,sample" },
180 #else
181 { "sqlite_stat4", 0 },
182 #endif
183 { "sqlite_stat3", 0 },
185 int i;
186 sqlite3 *db = pParse->db;
187 Db *pDb;
188 Vdbe *v = sqlite3GetVdbe(pParse);
189 u32 aRoot[ArraySize(aTable)];
190 u8 aCreateTbl[ArraySize(aTable)];
191 #ifdef SQLITE_ENABLE_STAT4
192 const int nToOpen = OptimizationEnabled(db,SQLITE_Stat4) ? 2 : 1;
193 #else
194 const int nToOpen = 1;
195 #endif
197 if( v==0 ) return;
198 assert( sqlite3BtreeHoldsAllMutexes(db) );
199 assert( sqlite3VdbeDb(v)==db );
200 pDb = &db->aDb[iDb];
202 /* Create new statistic tables if they do not exist, or clear them
203 ** if they do already exist.
205 for(i=0; i<ArraySize(aTable); i++){
206 const char *zTab = aTable[i].zName;
207 Table *pStat;
208 aCreateTbl[i] = 0;
209 if( (pStat = sqlite3FindTable(db, zTab, pDb->zDbSName))==0 ){
210 if( i<nToOpen ){
211 /* The sqlite_statN table does not exist. Create it. Note that a
212 ** side-effect of the CREATE TABLE statement is to leave the rootpage
213 ** of the new table in register pParse->regRoot. This is important
214 ** because the OpenWrite opcode below will be needing it. */
215 sqlite3NestedParse(pParse,
216 "CREATE TABLE %Q.%s(%s)", pDb->zDbSName, zTab, aTable[i].zCols
218 aRoot[i] = (u32)pParse->regRoot;
219 aCreateTbl[i] = OPFLAG_P2ISREG;
221 }else{
222 /* The table already exists. If zWhere is not NULL, delete all entries
223 ** associated with the table zWhere. If zWhere is NULL, delete the
224 ** entire contents of the table. */
225 aRoot[i] = pStat->tnum;
226 sqlite3TableLock(pParse, iDb, aRoot[i], 1, zTab);
227 if( zWhere ){
228 sqlite3NestedParse(pParse,
229 "DELETE FROM %Q.%s WHERE %s=%Q",
230 pDb->zDbSName, zTab, zWhereType, zWhere
232 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
233 }else if( db->xPreUpdateCallback ){
234 sqlite3NestedParse(pParse, "DELETE FROM %Q.%s", pDb->zDbSName, zTab);
235 #endif
236 }else{
237 /* The sqlite_stat[134] table already exists. Delete all rows. */
238 sqlite3VdbeAddOp2(v, OP_Clear, (int)aRoot[i], iDb);
243 /* Open the sqlite_stat[134] tables for writing. */
244 for(i=0; i<nToOpen; i++){
245 assert( i<ArraySize(aTable) );
246 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, iStatCur+i, (int)aRoot[i], iDb, 3);
247 sqlite3VdbeChangeP5(v, aCreateTbl[i]);
248 VdbeComment((v, aTable[i].zName));
253 ** Recommended number of samples for sqlite_stat4
255 #ifndef SQLITE_STAT4_SAMPLES
256 # define SQLITE_STAT4_SAMPLES 24
257 #endif
260 ** Three SQL functions - stat_init(), stat_push(), and stat_get() -
261 ** share an instance of the following structure to hold their state
262 ** information.
264 typedef struct StatAccum StatAccum;
265 typedef struct StatSample StatSample;
266 struct StatSample {
267 tRowcnt *anEq; /* sqlite_stat4.nEq */
268 tRowcnt *anDLt; /* sqlite_stat4.nDLt */
269 #ifdef SQLITE_ENABLE_STAT4
270 tRowcnt *anLt; /* sqlite_stat4.nLt */
271 union {
272 i64 iRowid; /* Rowid in main table of the key */
273 u8 *aRowid; /* Key for WITHOUT ROWID tables */
274 } u;
275 u32 nRowid; /* Sizeof aRowid[] */
276 u8 isPSample; /* True if a periodic sample */
277 int iCol; /* If !isPSample, the reason for inclusion */
278 u32 iHash; /* Tiebreaker hash */
279 #endif
281 struct StatAccum {
282 sqlite3 *db; /* Database connection, for malloc() */
283 tRowcnt nEst; /* Estimated number of rows */
284 tRowcnt nRow; /* Number of rows visited so far */
285 int nLimit; /* Analysis row-scan limit */
286 int nCol; /* Number of columns in index + pk/rowid */
287 int nKeyCol; /* Number of index columns w/o the pk/rowid */
288 u8 nSkipAhead; /* Number of times of skip-ahead */
289 StatSample current; /* Current row as a StatSample */
290 #ifdef SQLITE_ENABLE_STAT4
291 tRowcnt nPSample; /* How often to do a periodic sample */
292 int mxSample; /* Maximum number of samples to accumulate */
293 u32 iPrn; /* Pseudo-random number used for sampling */
294 StatSample *aBest; /* Array of nCol best samples */
295 int iMin; /* Index in a[] of entry with minimum score */
296 int nSample; /* Current number of samples */
297 int nMaxEqZero; /* Max leading 0 in anEq[] for any a[] entry */
298 int iGet; /* Index of current sample accessed by stat_get() */
299 StatSample *a; /* Array of mxSample StatSample objects */
300 #endif
303 /* Reclaim memory used by a StatSample
305 #ifdef SQLITE_ENABLE_STAT4
306 static void sampleClear(sqlite3 *db, StatSample *p){
307 assert( db!=0 );
308 if( p->nRowid ){
309 sqlite3DbFree(db, p->u.aRowid);
310 p->nRowid = 0;
313 #endif
315 /* Initialize the BLOB value of a ROWID
317 #ifdef SQLITE_ENABLE_STAT4
318 static void sampleSetRowid(sqlite3 *db, StatSample *p, int n, const u8 *pData){
319 assert( db!=0 );
320 if( p->nRowid ) sqlite3DbFree(db, p->u.aRowid);
321 p->u.aRowid = sqlite3DbMallocRawNN(db, n);
322 if( p->u.aRowid ){
323 p->nRowid = n;
324 memcpy(p->u.aRowid, pData, n);
325 }else{
326 p->nRowid = 0;
329 #endif
331 /* Initialize the INTEGER value of a ROWID.
333 #ifdef SQLITE_ENABLE_STAT4
334 static void sampleSetRowidInt64(sqlite3 *db, StatSample *p, i64 iRowid){
335 assert( db!=0 );
336 if( p->nRowid ) sqlite3DbFree(db, p->u.aRowid);
337 p->nRowid = 0;
338 p->u.iRowid = iRowid;
340 #endif
344 ** Copy the contents of object (*pFrom) into (*pTo).
346 #ifdef SQLITE_ENABLE_STAT4
347 static void sampleCopy(StatAccum *p, StatSample *pTo, StatSample *pFrom){
348 pTo->isPSample = pFrom->isPSample;
349 pTo->iCol = pFrom->iCol;
350 pTo->iHash = pFrom->iHash;
351 memcpy(pTo->anEq, pFrom->anEq, sizeof(tRowcnt)*p->nCol);
352 memcpy(pTo->anLt, pFrom->anLt, sizeof(tRowcnt)*p->nCol);
353 memcpy(pTo->anDLt, pFrom->anDLt, sizeof(tRowcnt)*p->nCol);
354 if( pFrom->nRowid ){
355 sampleSetRowid(p->db, pTo, pFrom->nRowid, pFrom->u.aRowid);
356 }else{
357 sampleSetRowidInt64(p->db, pTo, pFrom->u.iRowid);
360 #endif
363 ** Reclaim all memory of a StatAccum structure.
365 static void statAccumDestructor(void *pOld){
366 StatAccum *p = (StatAccum*)pOld;
367 #ifdef SQLITE_ENABLE_STAT4
368 if( p->mxSample ){
369 int i;
370 for(i=0; i<p->nCol; i++) sampleClear(p->db, p->aBest+i);
371 for(i=0; i<p->mxSample; i++) sampleClear(p->db, p->a+i);
372 sampleClear(p->db, &p->current);
374 #endif
375 sqlite3DbFree(p->db, p);
379 ** Implementation of the stat_init(N,K,C,L) SQL function. The four parameters
380 ** are:
381 ** N: The number of columns in the index including the rowid/pk (note 1)
382 ** K: The number of columns in the index excluding the rowid/pk.
383 ** C: Estimated number of rows in the index
384 ** L: A limit on the number of rows to scan, or 0 for no-limit
386 ** Note 1: In the special case of the covering index that implements a
387 ** WITHOUT ROWID table, N is the number of PRIMARY KEY columns, not the
388 ** total number of columns in the table.
390 ** For indexes on ordinary rowid tables, N==K+1. But for indexes on
391 ** WITHOUT ROWID tables, N=K+P where P is the number of columns in the
392 ** PRIMARY KEY of the table. The covering index that implements the
393 ** original WITHOUT ROWID table as N==K as a special case.
395 ** This routine allocates the StatAccum object in heap memory. The return
396 ** value is a pointer to the StatAccum object. The datatype of the
397 ** return value is BLOB, but it is really just a pointer to the StatAccum
398 ** object.
400 static void statInit(
401 sqlite3_context *context,
402 int argc,
403 sqlite3_value **argv
405 StatAccum *p;
406 int nCol; /* Number of columns in index being sampled */
407 int nKeyCol; /* Number of key columns */
408 int nColUp; /* nCol rounded up for alignment */
409 int n; /* Bytes of space to allocate */
410 sqlite3 *db = sqlite3_context_db_handle(context); /* Database connection */
411 #ifdef SQLITE_ENABLE_STAT4
412 /* Maximum number of samples. 0 if STAT4 data is not collected */
413 int mxSample = OptimizationEnabled(db,SQLITE_Stat4) ?SQLITE_STAT4_SAMPLES :0;
414 #endif
416 /* Decode the three function arguments */
417 UNUSED_PARAMETER(argc);
418 nCol = sqlite3_value_int(argv[0]);
419 assert( nCol>0 );
420 nColUp = sizeof(tRowcnt)<8 ? (nCol+1)&~1 : nCol;
421 nKeyCol = sqlite3_value_int(argv[1]);
422 assert( nKeyCol<=nCol );
423 assert( nKeyCol>0 );
425 /* Allocate the space required for the StatAccum object */
426 n = sizeof(*p)
427 + sizeof(tRowcnt)*nColUp /* StatAccum.anEq */
428 + sizeof(tRowcnt)*nColUp; /* StatAccum.anDLt */
429 #ifdef SQLITE_ENABLE_STAT4
430 if( mxSample ){
431 n += sizeof(tRowcnt)*nColUp /* StatAccum.anLt */
432 + sizeof(StatSample)*(nCol+mxSample) /* StatAccum.aBest[], a[] */
433 + sizeof(tRowcnt)*3*nColUp*(nCol+mxSample);
435 #endif
436 db = sqlite3_context_db_handle(context);
437 p = sqlite3DbMallocZero(db, n);
438 if( p==0 ){
439 sqlite3_result_error_nomem(context);
440 return;
443 p->db = db;
444 p->nEst = sqlite3_value_int64(argv[2]);
445 p->nRow = 0;
446 p->nLimit = sqlite3_value_int64(argv[3]);
447 p->nCol = nCol;
448 p->nKeyCol = nKeyCol;
449 p->nSkipAhead = 0;
450 p->current.anDLt = (tRowcnt*)&p[1];
451 p->current.anEq = &p->current.anDLt[nColUp];
453 #ifdef SQLITE_ENABLE_STAT4
454 p->mxSample = p->nLimit==0 ? mxSample : 0;
455 if( mxSample ){
456 u8 *pSpace; /* Allocated space not yet assigned */
457 int i; /* Used to iterate through p->aSample[] */
459 p->iGet = -1;
460 p->nPSample = (tRowcnt)(p->nEst/(mxSample/3+1) + 1);
461 p->current.anLt = &p->current.anEq[nColUp];
462 p->iPrn = 0x689e962d*(u32)nCol ^ 0xd0944565*(u32)sqlite3_value_int(argv[2]);
464 /* Set up the StatAccum.a[] and aBest[] arrays */
465 p->a = (struct StatSample*)&p->current.anLt[nColUp];
466 p->aBest = &p->a[mxSample];
467 pSpace = (u8*)(&p->a[mxSample+nCol]);
468 for(i=0; i<(mxSample+nCol); i++){
469 p->a[i].anEq = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp);
470 p->a[i].anLt = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp);
471 p->a[i].anDLt = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp);
473 assert( (pSpace - (u8*)p)==n );
475 for(i=0; i<nCol; i++){
476 p->aBest[i].iCol = i;
479 #endif
481 /* Return a pointer to the allocated object to the caller. Note that
482 ** only the pointer (the 2nd parameter) matters. The size of the object
483 ** (given by the 3rd parameter) is never used and can be any positive
484 ** value. */
485 sqlite3_result_blob(context, p, sizeof(*p), statAccumDestructor);
487 static const FuncDef statInitFuncdef = {
488 4, /* nArg */
489 SQLITE_UTF8, /* funcFlags */
490 0, /* pUserData */
491 0, /* pNext */
492 statInit, /* xSFunc */
493 0, /* xFinalize */
494 0, 0, /* xValue, xInverse */
495 "stat_init", /* zName */
499 #ifdef SQLITE_ENABLE_STAT4
501 ** pNew and pOld are both candidate non-periodic samples selected for
502 ** the same column (pNew->iCol==pOld->iCol). Ignoring this column and
503 ** considering only any trailing columns and the sample hash value, this
504 ** function returns true if sample pNew is to be preferred over pOld.
505 ** In other words, if we assume that the cardinalities of the selected
506 ** column for pNew and pOld are equal, is pNew to be preferred over pOld.
508 ** This function assumes that for each argument sample, the contents of
509 ** the anEq[] array from pSample->anEq[pSample->iCol+1] onwards are valid.
511 static int sampleIsBetterPost(
512 StatAccum *pAccum,
513 StatSample *pNew,
514 StatSample *pOld
516 int nCol = pAccum->nCol;
517 int i;
518 assert( pNew->iCol==pOld->iCol );
519 for(i=pNew->iCol+1; i<nCol; i++){
520 if( pNew->anEq[i]>pOld->anEq[i] ) return 1;
521 if( pNew->anEq[i]<pOld->anEq[i] ) return 0;
523 if( pNew->iHash>pOld->iHash ) return 1;
524 return 0;
526 #endif
528 #ifdef SQLITE_ENABLE_STAT4
530 ** Return true if pNew is to be preferred over pOld.
532 ** This function assumes that for each argument sample, the contents of
533 ** the anEq[] array from pSample->anEq[pSample->iCol] onwards are valid.
535 static int sampleIsBetter(
536 StatAccum *pAccum,
537 StatSample *pNew,
538 StatSample *pOld
540 tRowcnt nEqNew = pNew->anEq[pNew->iCol];
541 tRowcnt nEqOld = pOld->anEq[pOld->iCol];
543 assert( pOld->isPSample==0 && pNew->isPSample==0 );
544 assert( IsStat4 || (pNew->iCol==0 && pOld->iCol==0) );
546 if( (nEqNew>nEqOld) ) return 1;
547 if( nEqNew==nEqOld ){
548 if( pNew->iCol<pOld->iCol ) return 1;
549 return (pNew->iCol==pOld->iCol && sampleIsBetterPost(pAccum, pNew, pOld));
551 return 0;
555 ** Copy the contents of sample *pNew into the p->a[] array. If necessary,
556 ** remove the least desirable sample from p->a[] to make room.
558 static void sampleInsert(StatAccum *p, StatSample *pNew, int nEqZero){
559 StatSample *pSample = 0;
560 int i;
562 assert( IsStat4 || nEqZero==0 );
564 /* StatAccum.nMaxEqZero is set to the maximum number of leading 0
565 ** values in the anEq[] array of any sample in StatAccum.a[]. In
566 ** other words, if nMaxEqZero is n, then it is guaranteed that there
567 ** are no samples with StatSample.anEq[m]==0 for (m>=n). */
568 if( nEqZero>p->nMaxEqZero ){
569 p->nMaxEqZero = nEqZero;
571 if( pNew->isPSample==0 ){
572 StatSample *pUpgrade = 0;
573 assert( pNew->anEq[pNew->iCol]>0 );
575 /* This sample is being added because the prefix that ends in column
576 ** iCol occurs many times in the table. However, if we have already
577 ** added a sample that shares this prefix, there is no need to add
578 ** this one. Instead, upgrade the priority of the highest priority
579 ** existing sample that shares this prefix. */
580 for(i=p->nSample-1; i>=0; i--){
581 StatSample *pOld = &p->a[i];
582 if( pOld->anEq[pNew->iCol]==0 ){
583 if( pOld->isPSample ) return;
584 assert( pOld->iCol>pNew->iCol );
585 assert( sampleIsBetter(p, pNew, pOld) );
586 if( pUpgrade==0 || sampleIsBetter(p, pOld, pUpgrade) ){
587 pUpgrade = pOld;
591 if( pUpgrade ){
592 pUpgrade->iCol = pNew->iCol;
593 pUpgrade->anEq[pUpgrade->iCol] = pNew->anEq[pUpgrade->iCol];
594 goto find_new_min;
598 /* If necessary, remove sample iMin to make room for the new sample. */
599 if( p->nSample>=p->mxSample ){
600 StatSample *pMin = &p->a[p->iMin];
601 tRowcnt *anEq = pMin->anEq;
602 tRowcnt *anLt = pMin->anLt;
603 tRowcnt *anDLt = pMin->anDLt;
604 sampleClear(p->db, pMin);
605 memmove(pMin, &pMin[1], sizeof(p->a[0])*(p->nSample-p->iMin-1));
606 pSample = &p->a[p->nSample-1];
607 pSample->nRowid = 0;
608 pSample->anEq = anEq;
609 pSample->anDLt = anDLt;
610 pSample->anLt = anLt;
611 p->nSample = p->mxSample-1;
614 /* The "rows less-than" for the rowid column must be greater than that
615 ** for the last sample in the p->a[] array. Otherwise, the samples would
616 ** be out of order. */
617 assert( p->nSample==0
618 || pNew->anLt[p->nCol-1] > p->a[p->nSample-1].anLt[p->nCol-1] );
620 /* Insert the new sample */
621 pSample = &p->a[p->nSample];
622 sampleCopy(p, pSample, pNew);
623 p->nSample++;
625 /* Zero the first nEqZero entries in the anEq[] array. */
626 memset(pSample->anEq, 0, sizeof(tRowcnt)*nEqZero);
628 find_new_min:
629 if( p->nSample>=p->mxSample ){
630 int iMin = -1;
631 for(i=0; i<p->mxSample; i++){
632 if( p->a[i].isPSample ) continue;
633 if( iMin<0 || sampleIsBetter(p, &p->a[iMin], &p->a[i]) ){
634 iMin = i;
637 assert( iMin>=0 );
638 p->iMin = iMin;
641 #endif /* SQLITE_ENABLE_STAT4 */
643 #ifdef SQLITE_ENABLE_STAT4
645 ** Field iChng of the index being scanned has changed. So at this point
646 ** p->current contains a sample that reflects the previous row of the
647 ** index. The value of anEq[iChng] and subsequent anEq[] elements are
648 ** correct at this point.
650 static void samplePushPrevious(StatAccum *p, int iChng){
651 int i;
653 /* Check if any samples from the aBest[] array should be pushed
654 ** into IndexSample.a[] at this point. */
655 for(i=(p->nCol-2); i>=iChng; i--){
656 StatSample *pBest = &p->aBest[i];
657 pBest->anEq[i] = p->current.anEq[i];
658 if( p->nSample<p->mxSample || sampleIsBetter(p, pBest, &p->a[p->iMin]) ){
659 sampleInsert(p, pBest, i);
663 /* Check that no sample contains an anEq[] entry with an index of
664 ** p->nMaxEqZero or greater set to zero. */
665 for(i=p->nSample-1; i>=0; i--){
666 int j;
667 for(j=p->nMaxEqZero; j<p->nCol; j++) assert( p->a[i].anEq[j]>0 );
670 /* Update the anEq[] fields of any samples already collected. */
671 if( iChng<p->nMaxEqZero ){
672 for(i=p->nSample-1; i>=0; i--){
673 int j;
674 for(j=iChng; j<p->nCol; j++){
675 if( p->a[i].anEq[j]==0 ) p->a[i].anEq[j] = p->current.anEq[j];
678 p->nMaxEqZero = iChng;
681 #endif /* SQLITE_ENABLE_STAT4 */
684 ** Implementation of the stat_push SQL function: stat_push(P,C,R)
685 ** Arguments:
687 ** P Pointer to the StatAccum object created by stat_init()
688 ** C Index of left-most column to differ from previous row
689 ** R Rowid for the current row. Might be a key record for
690 ** WITHOUT ROWID tables.
692 ** The purpose of this routine is to collect statistical data and/or
693 ** samples from the index being analyzed into the StatAccum object.
694 ** The stat_get() SQL function will be used afterwards to
695 ** retrieve the information gathered.
697 ** This SQL function usually returns NULL, but might return an integer
698 ** if it wants the byte-code to do special processing.
700 ** The R parameter is only used for STAT4
702 static void statPush(
703 sqlite3_context *context,
704 int argc,
705 sqlite3_value **argv
707 int i;
709 /* The three function arguments */
710 StatAccum *p = (StatAccum*)sqlite3_value_blob(argv[0]);
711 int iChng = sqlite3_value_int(argv[1]);
713 UNUSED_PARAMETER( argc );
714 UNUSED_PARAMETER( context );
715 assert( p->nCol>0 );
716 assert( iChng<p->nCol );
718 if( p->nRow==0 ){
719 /* This is the first call to this function. Do initialization. */
720 for(i=0; i<p->nCol; i++) p->current.anEq[i] = 1;
721 }else{
722 /* Second and subsequent calls get processed here */
723 #ifdef SQLITE_ENABLE_STAT4
724 if( p->mxSample ) samplePushPrevious(p, iChng);
725 #endif
727 /* Update anDLt[], anLt[] and anEq[] to reflect the values that apply
728 ** to the current row of the index. */
729 for(i=0; i<iChng; i++){
730 p->current.anEq[i]++;
732 for(i=iChng; i<p->nCol; i++){
733 p->current.anDLt[i]++;
734 #ifdef SQLITE_ENABLE_STAT4
735 if( p->mxSample ) p->current.anLt[i] += p->current.anEq[i];
736 #endif
737 p->current.anEq[i] = 1;
741 p->nRow++;
742 #ifdef SQLITE_ENABLE_STAT4
743 if( p->mxSample ){
744 tRowcnt nLt;
745 if( sqlite3_value_type(argv[2])==SQLITE_INTEGER ){
746 sampleSetRowidInt64(p->db, &p->current, sqlite3_value_int64(argv[2]));
747 }else{
748 sampleSetRowid(p->db, &p->current, sqlite3_value_bytes(argv[2]),
749 sqlite3_value_blob(argv[2]));
751 p->current.iHash = p->iPrn = p->iPrn*1103515245 + 12345;
753 nLt = p->current.anLt[p->nCol-1];
754 /* Check if this is to be a periodic sample. If so, add it. */
755 if( (nLt/p->nPSample)!=(nLt+1)/p->nPSample ){
756 p->current.isPSample = 1;
757 p->current.iCol = 0;
758 sampleInsert(p, &p->current, p->nCol-1);
759 p->current.isPSample = 0;
762 /* Update the aBest[] array. */
763 for(i=0; i<(p->nCol-1); i++){
764 p->current.iCol = i;
765 if( i>=iChng || sampleIsBetterPost(p, &p->current, &p->aBest[i]) ){
766 sampleCopy(p, &p->aBest[i], &p->current);
769 }else
770 #endif
771 if( p->nLimit && p->nRow>(tRowcnt)p->nLimit*(p->nSkipAhead+1) ){
772 p->nSkipAhead++;
773 sqlite3_result_int(context, p->current.anDLt[0]>0);
777 static const FuncDef statPushFuncdef = {
778 2+IsStat4, /* nArg */
779 SQLITE_UTF8, /* funcFlags */
780 0, /* pUserData */
781 0, /* pNext */
782 statPush, /* xSFunc */
783 0, /* xFinalize */
784 0, 0, /* xValue, xInverse */
785 "stat_push", /* zName */
789 #define STAT_GET_STAT1 0 /* "stat" column of stat1 table */
790 #define STAT_GET_ROWID 1 /* "rowid" column of stat[34] entry */
791 #define STAT_GET_NEQ 2 /* "neq" column of stat[34] entry */
792 #define STAT_GET_NLT 3 /* "nlt" column of stat[34] entry */
793 #define STAT_GET_NDLT 4 /* "ndlt" column of stat[34] entry */
796 ** Implementation of the stat_get(P,J) SQL function. This routine is
797 ** used to query statistical information that has been gathered into
798 ** the StatAccum object by prior calls to stat_push(). The P parameter
799 ** has type BLOB but it is really just a pointer to the StatAccum object.
800 ** The content to returned is determined by the parameter J
801 ** which is one of the STAT_GET_xxxx values defined above.
803 ** The stat_get(P,J) function is not available to generic SQL. It is
804 ** inserted as part of a manually constructed bytecode program. (See
805 ** the callStatGet() routine below.) It is guaranteed that the P
806 ** parameter will always be a pointer to a StatAccum object, never a
807 ** NULL.
809 ** If STAT4 is not enabled, then J is always
810 ** STAT_GET_STAT1 and is hence omitted and this routine becomes
811 ** a one-parameter function, stat_get(P), that always returns the
812 ** stat1 table entry information.
814 static void statGet(
815 sqlite3_context *context,
816 int argc,
817 sqlite3_value **argv
819 StatAccum *p = (StatAccum*)sqlite3_value_blob(argv[0]);
820 #ifdef SQLITE_ENABLE_STAT4
821 /* STAT4 has a parameter on this routine. */
822 int eCall = sqlite3_value_int(argv[1]);
823 assert( argc==2 );
824 assert( eCall==STAT_GET_STAT1 || eCall==STAT_GET_NEQ
825 || eCall==STAT_GET_ROWID || eCall==STAT_GET_NLT
826 || eCall==STAT_GET_NDLT
828 assert( eCall==STAT_GET_STAT1 || p->mxSample );
829 if( eCall==STAT_GET_STAT1 )
830 #else
831 assert( argc==1 );
832 #endif
834 /* Return the value to store in the "stat" column of the sqlite_stat1
835 ** table for this index.
837 ** The value is a string composed of a list of integers describing
838 ** the index. The first integer in the list is the total number of
839 ** entries in the index. There is one additional integer in the list
840 ** for each indexed column. This additional integer is an estimate of
841 ** the number of rows matched by a equality query on the index using
842 ** a key with the corresponding number of fields. In other words,
843 ** if the index is on columns (a,b) and the sqlite_stat1 value is
844 ** "100 10 2", then SQLite estimates that:
846 ** * the index contains 100 rows,
847 ** * "WHERE a=?" matches 10 rows, and
848 ** * "WHERE a=? AND b=?" matches 2 rows.
850 ** If D is the count of distinct values and K is the total number of
851 ** rows, then each estimate is computed as:
853 ** I = (K+D-1)/D
855 char *z;
856 int i;
858 char *zRet = sqlite3MallocZero( (p->nKeyCol+1)*25 );
859 if( zRet==0 ){
860 sqlite3_result_error_nomem(context);
861 return;
864 sqlite3_snprintf(24, zRet, "%llu",
865 p->nSkipAhead ? (u64)p->nEst : (u64)p->nRow);
866 z = zRet + sqlite3Strlen30(zRet);
867 for(i=0; i<p->nKeyCol; i++){
868 u64 nDistinct = p->current.anDLt[i] + 1;
869 u64 iVal = (p->nRow + nDistinct - 1) / nDistinct;
870 sqlite3_snprintf(24, z, " %llu", iVal);
871 z += sqlite3Strlen30(z);
872 assert( p->current.anEq[i] );
874 assert( z[0]=='\0' && z>zRet );
876 sqlite3_result_text(context, zRet, -1, sqlite3_free);
878 #ifdef SQLITE_ENABLE_STAT4
879 else if( eCall==STAT_GET_ROWID ){
880 if( p->iGet<0 ){
881 samplePushPrevious(p, 0);
882 p->iGet = 0;
884 if( p->iGet<p->nSample ){
885 StatSample *pS = p->a + p->iGet;
886 if( pS->nRowid==0 ){
887 sqlite3_result_int64(context, pS->u.iRowid);
888 }else{
889 sqlite3_result_blob(context, pS->u.aRowid, pS->nRowid,
890 SQLITE_TRANSIENT);
893 }else{
894 tRowcnt *aCnt = 0;
896 assert( p->iGet<p->nSample );
897 switch( eCall ){
898 case STAT_GET_NEQ: aCnt = p->a[p->iGet].anEq; break;
899 case STAT_GET_NLT: aCnt = p->a[p->iGet].anLt; break;
900 default: {
901 aCnt = p->a[p->iGet].anDLt;
902 p->iGet++;
903 break;
908 char *zRet = sqlite3MallocZero(p->nCol * 25);
909 if( zRet==0 ){
910 sqlite3_result_error_nomem(context);
911 }else{
912 int i;
913 char *z = zRet;
914 for(i=0; i<p->nCol; i++){
915 sqlite3_snprintf(24, z, "%llu ", (u64)aCnt[i]);
916 z += sqlite3Strlen30(z);
918 assert( z[0]=='\0' && z>zRet );
919 z[-1] = '\0';
920 sqlite3_result_text(context, zRet, -1, sqlite3_free);
924 #endif /* SQLITE_ENABLE_STAT4 */
925 #ifndef SQLITE_DEBUG
926 UNUSED_PARAMETER( argc );
927 #endif
929 static const FuncDef statGetFuncdef = {
930 1+IsStat4, /* nArg */
931 SQLITE_UTF8, /* funcFlags */
932 0, /* pUserData */
933 0, /* pNext */
934 statGet, /* xSFunc */
935 0, /* xFinalize */
936 0, 0, /* xValue, xInverse */
937 "stat_get", /* zName */
941 static void callStatGet(Parse *pParse, int regStat, int iParam, int regOut){
942 #ifdef SQLITE_ENABLE_STAT4
943 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Integer, iParam, regStat+1);
944 #elif SQLITE_DEBUG
945 assert( iParam==STAT_GET_STAT1 );
946 #else
947 UNUSED_PARAMETER( iParam );
948 #endif
949 assert( regOut!=regStat && regOut!=regStat+1 );
950 sqlite3VdbeAddFunctionCall(pParse, 0, regStat, regOut, 1+IsStat4,
951 &statGetFuncdef, 0);
954 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
955 /* Add a comment to the most recent VDBE opcode that is the name
956 ** of the k-th column of the pIdx index.
958 static void analyzeVdbeCommentIndexWithColumnName(
959 Vdbe *v, /* Prepared statement under construction */
960 Index *pIdx, /* Index whose column is being loaded */
961 int k /* Which column index */
963 int i; /* Index of column in the table */
964 assert( k>=0 && k<pIdx->nColumn );
965 i = pIdx->aiColumn[k];
966 if( NEVER(i==XN_ROWID) ){
967 VdbeComment((v,"%s.rowid",pIdx->zName));
968 }else if( i==XN_EXPR ){
969 VdbeComment((v,"%s.expr(%d)",pIdx->zName, k));
970 }else{
971 VdbeComment((v,"%s.%s", pIdx->zName, pIdx->pTable->aCol[i].zName));
974 #else
975 # define analyzeVdbeCommentIndexWithColumnName(a,b,c)
976 #endif /* SQLITE_DEBUG */
979 ** Generate code to do an analysis of all indices associated with
980 ** a single table.
982 static void analyzeOneTable(
983 Parse *pParse, /* Parser context */
984 Table *pTab, /* Table whose indices are to be analyzed */
985 Index *pOnlyIdx, /* If not NULL, only analyze this one index */
986 int iStatCur, /* Index of VdbeCursor that writes the sqlite_stat1 table */
987 int iMem, /* Available memory locations begin here */
988 int iTab /* Next available cursor */
990 sqlite3 *db = pParse->db; /* Database handle */
991 Index *pIdx; /* An index to being analyzed */
992 int iIdxCur; /* Cursor open on index being analyzed */
993 int iTabCur; /* Table cursor */
994 Vdbe *v; /* The virtual machine being built up */
995 int i; /* Loop counter */
996 int jZeroRows = -1; /* Jump from here if number of rows is zero */
997 int iDb; /* Index of database containing pTab */
998 u8 needTableCnt = 1; /* True to count the table */
999 int regNewRowid = iMem++; /* Rowid for the inserted record */
1000 int regStat = iMem++; /* Register to hold StatAccum object */
1001 int regChng = iMem++; /* Index of changed index field */
1002 int regRowid = iMem++; /* Rowid argument passed to stat_push() */
1003 int regTemp = iMem++; /* Temporary use register */
1004 int regTemp2 = iMem++; /* Second temporary use register */
1005 int regTabname = iMem++; /* Register containing table name */
1006 int regIdxname = iMem++; /* Register containing index name */
1007 int regStat1 = iMem++; /* Value for the stat column of sqlite_stat1 */
1008 int regPrev = iMem; /* MUST BE LAST (see below) */
1009 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1010 Table *pStat1 = 0;
1011 #endif
1013 pParse->nMem = MAX(pParse->nMem, iMem);
1014 v = sqlite3GetVdbe(pParse);
1015 if( v==0 || NEVER(pTab==0) ){
1016 return;
1018 if( pTab->tnum==0 ){
1019 /* Do not gather statistics on views or virtual tables */
1020 return;
1022 if( sqlite3_strlike("sqlite\\_%", pTab->zName, '\\')==0 ){
1023 /* Do not gather statistics on system tables */
1024 return;
1026 assert( sqlite3BtreeHoldsAllMutexes(db) );
1027 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1028 assert( iDb>=0 );
1029 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1030 #ifndef SQLITE_OMIT_AUTHORIZATION
1031 if( sqlite3AuthCheck(pParse, SQLITE_ANALYZE, pTab->zName, 0,
1032 db->aDb[iDb].zDbSName ) ){
1033 return;
1035 #endif
1037 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1038 if( db->xPreUpdateCallback ){
1039 pStat1 = (Table*)sqlite3DbMallocZero(db, sizeof(Table) + 13);
1040 if( pStat1==0 ) return;
1041 pStat1->zName = (char*)&pStat1[1];
1042 memcpy(pStat1->zName, "sqlite_stat1", 13);
1043 pStat1->nCol = 3;
1044 pStat1->iPKey = -1;
1045 sqlite3VdbeAddOp4(pParse->pVdbe, OP_Noop, 0, 0, 0,(char*)pStat1,P4_DYNBLOB);
1047 #endif
1049 /* Establish a read-lock on the table at the shared-cache level.
1050 ** Open a read-only cursor on the table. Also allocate a cursor number
1051 ** to use for scanning indexes (iIdxCur). No index cursor is opened at
1052 ** this time though. */
1053 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
1054 iTabCur = iTab++;
1055 iIdxCur = iTab++;
1056 pParse->nTab = MAX(pParse->nTab, iTab);
1057 sqlite3OpenTable(pParse, iTabCur, iDb, pTab, OP_OpenRead);
1058 sqlite3VdbeLoadString(v, regTabname, pTab->zName);
1060 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1061 int nCol; /* Number of columns in pIdx. "N" */
1062 int addrRewind; /* Address of "OP_Rewind iIdxCur" */
1063 int addrNextRow; /* Address of "next_row:" */
1064 const char *zIdxName; /* Name of the index */
1065 int nColTest; /* Number of columns to test for changes */
1067 if( pOnlyIdx && pOnlyIdx!=pIdx ) continue;
1068 if( pIdx->pPartIdxWhere==0 ) needTableCnt = 0;
1069 if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIdx) ){
1070 nCol = pIdx->nKeyCol;
1071 zIdxName = pTab->zName;
1072 nColTest = nCol - 1;
1073 }else{
1074 nCol = pIdx->nColumn;
1075 zIdxName = pIdx->zName;
1076 nColTest = pIdx->uniqNotNull ? pIdx->nKeyCol-1 : nCol-1;
1079 /* Populate the register containing the index name. */
1080 sqlite3VdbeLoadString(v, regIdxname, zIdxName);
1081 VdbeComment((v, "Analysis for %s.%s", pTab->zName, zIdxName));
1084 ** Pseudo-code for loop that calls stat_push():
1086 ** Rewind csr
1087 ** if eof(csr) goto end_of_scan;
1088 ** regChng = 0
1089 ** goto chng_addr_0;
1091 ** next_row:
1092 ** regChng = 0
1093 ** if( idx(0) != regPrev(0) ) goto chng_addr_0
1094 ** regChng = 1
1095 ** if( idx(1) != regPrev(1) ) goto chng_addr_1
1096 ** ...
1097 ** regChng = N
1098 ** goto chng_addr_N
1100 ** chng_addr_0:
1101 ** regPrev(0) = idx(0)
1102 ** chng_addr_1:
1103 ** regPrev(1) = idx(1)
1104 ** ...
1106 ** endDistinctTest:
1107 ** regRowid = idx(rowid)
1108 ** stat_push(P, regChng, regRowid)
1109 ** Next csr
1110 ** if !eof(csr) goto next_row;
1112 ** end_of_scan:
1115 /* Make sure there are enough memory cells allocated to accommodate
1116 ** the regPrev array and a trailing rowid (the rowid slot is required
1117 ** when building a record to insert into the sample column of
1118 ** the sqlite_stat4 table. */
1119 pParse->nMem = MAX(pParse->nMem, regPrev+nColTest);
1121 /* Open a read-only cursor on the index being analyzed. */
1122 assert( iDb==sqlite3SchemaToIndex(db, pIdx->pSchema) );
1123 sqlite3VdbeAddOp3(v, OP_OpenRead, iIdxCur, pIdx->tnum, iDb);
1124 sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
1125 VdbeComment((v, "%s", pIdx->zName));
1127 /* Invoke the stat_init() function. The arguments are:
1129 ** (1) the number of columns in the index including the rowid
1130 ** (or for a WITHOUT ROWID table, the number of PK columns),
1131 ** (2) the number of columns in the key without the rowid/pk
1132 ** (3) estimated number of rows in the index,
1134 sqlite3VdbeAddOp2(v, OP_Integer, nCol, regStat+1);
1135 assert( regRowid==regStat+2 );
1136 sqlite3VdbeAddOp2(v, OP_Integer, pIdx->nKeyCol, regRowid);
1137 #ifdef SQLITE_ENABLE_STAT4
1138 if( OptimizationEnabled(db, SQLITE_Stat4) ){
1139 sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regTemp);
1140 addrRewind = sqlite3VdbeAddOp1(v, OP_Rewind, iIdxCur);
1141 VdbeCoverage(v);
1142 }else
1143 #endif
1145 addrRewind = sqlite3VdbeAddOp1(v, OP_Rewind, iIdxCur);
1146 VdbeCoverage(v);
1147 sqlite3VdbeAddOp3(v, OP_Count, iIdxCur, regTemp, 1);
1149 assert( regTemp2==regStat+4 );
1150 sqlite3VdbeAddOp2(v, OP_Integer, db->nAnalysisLimit, regTemp2);
1151 sqlite3VdbeAddFunctionCall(pParse, 0, regStat+1, regStat, 4,
1152 &statInitFuncdef, 0);
1154 /* Implementation of the following:
1156 ** Rewind csr
1157 ** if eof(csr) goto end_of_scan;
1158 ** regChng = 0
1159 ** goto next_push_0;
1162 sqlite3VdbeAddOp2(v, OP_Integer, 0, regChng);
1163 addrNextRow = sqlite3VdbeCurrentAddr(v);
1165 if( nColTest>0 ){
1166 int endDistinctTest = sqlite3VdbeMakeLabel(pParse);
1167 int *aGotoChng; /* Array of jump instruction addresses */
1168 aGotoChng = sqlite3DbMallocRawNN(db, sizeof(int)*nColTest);
1169 if( aGotoChng==0 ) continue;
1172 ** next_row:
1173 ** regChng = 0
1174 ** if( idx(0) != regPrev(0) ) goto chng_addr_0
1175 ** regChng = 1
1176 ** if( idx(1) != regPrev(1) ) goto chng_addr_1
1177 ** ...
1178 ** regChng = N
1179 ** goto endDistinctTest
1181 sqlite3VdbeAddOp0(v, OP_Goto);
1182 addrNextRow = sqlite3VdbeCurrentAddr(v);
1183 if( nColTest==1 && pIdx->nKeyCol==1 && IsUniqueIndex(pIdx) ){
1184 /* For a single-column UNIQUE index, once we have found a non-NULL
1185 ** row, we know that all the rest will be distinct, so skip
1186 ** subsequent distinctness tests. */
1187 sqlite3VdbeAddOp2(v, OP_NotNull, regPrev, endDistinctTest);
1188 VdbeCoverage(v);
1190 for(i=0; i<nColTest; i++){
1191 char *pColl = (char*)sqlite3LocateCollSeq(pParse, pIdx->azColl[i]);
1192 sqlite3VdbeAddOp2(v, OP_Integer, i, regChng);
1193 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regTemp);
1194 analyzeVdbeCommentIndexWithColumnName(v,pIdx,i);
1195 aGotoChng[i] =
1196 sqlite3VdbeAddOp4(v, OP_Ne, regTemp, 0, regPrev+i, pColl, P4_COLLSEQ);
1197 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
1198 VdbeCoverage(v);
1200 sqlite3VdbeAddOp2(v, OP_Integer, nColTest, regChng);
1201 sqlite3VdbeGoto(v, endDistinctTest);
1205 ** chng_addr_0:
1206 ** regPrev(0) = idx(0)
1207 ** chng_addr_1:
1208 ** regPrev(1) = idx(1)
1209 ** ...
1211 sqlite3VdbeJumpHere(v, addrNextRow-1);
1212 for(i=0; i<nColTest; i++){
1213 sqlite3VdbeJumpHere(v, aGotoChng[i]);
1214 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regPrev+i);
1215 analyzeVdbeCommentIndexWithColumnName(v,pIdx,i);
1217 sqlite3VdbeResolveLabel(v, endDistinctTest);
1218 sqlite3DbFree(db, aGotoChng);
1222 ** chng_addr_N:
1223 ** regRowid = idx(rowid) // STAT4 only
1224 ** stat_push(P, regChng, regRowid) // 3rd parameter STAT4 only
1225 ** Next csr
1226 ** if !eof(csr) goto next_row;
1228 #ifdef SQLITE_ENABLE_STAT4
1229 if( OptimizationEnabled(db, SQLITE_Stat4) ){
1230 assert( regRowid==(regStat+2) );
1231 if( HasRowid(pTab) ){
1232 sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, regRowid);
1233 }else{
1234 Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable);
1235 int j, k, regKey;
1236 regKey = sqlite3GetTempRange(pParse, pPk->nKeyCol);
1237 for(j=0; j<pPk->nKeyCol; j++){
1238 k = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[j]);
1239 assert( k>=0 && k<pIdx->nColumn );
1240 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, regKey+j);
1241 analyzeVdbeCommentIndexWithColumnName(v,pIdx,k);
1243 sqlite3VdbeAddOp3(v, OP_MakeRecord, regKey, pPk->nKeyCol, regRowid);
1244 sqlite3ReleaseTempRange(pParse, regKey, pPk->nKeyCol);
1247 #endif
1248 assert( regChng==(regStat+1) );
1250 sqlite3VdbeAddFunctionCall(pParse, 1, regStat, regTemp, 2+IsStat4,
1251 &statPushFuncdef, 0);
1252 if( db->nAnalysisLimit ){
1253 int j1, j2, j3;
1254 j1 = sqlite3VdbeAddOp1(v, OP_IsNull, regTemp); VdbeCoverage(v);
1255 j2 = sqlite3VdbeAddOp1(v, OP_If, regTemp); VdbeCoverage(v);
1256 j3 = sqlite3VdbeAddOp4Int(v, OP_SeekGT, iIdxCur, 0, regPrev, 1);
1257 VdbeCoverage(v);
1258 sqlite3VdbeJumpHere(v, j1);
1259 sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, addrNextRow); VdbeCoverage(v);
1260 sqlite3VdbeJumpHere(v, j2);
1261 sqlite3VdbeJumpHere(v, j3);
1262 }else{
1263 sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, addrNextRow); VdbeCoverage(v);
1267 /* Add the entry to the stat1 table. */
1268 callStatGet(pParse, regStat, STAT_GET_STAT1, regStat1);
1269 assert( "BBB"[0]==SQLITE_AFF_TEXT );
1270 sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "BBB", 0);
1271 sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid);
1272 sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid);
1273 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1274 sqlite3VdbeChangeP4(v, -1, (char*)pStat1, P4_TABLE);
1275 #endif
1276 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1278 /* Add the entries to the stat4 table. */
1279 #ifdef SQLITE_ENABLE_STAT4
1280 if( OptimizationEnabled(db, SQLITE_Stat4) && db->nAnalysisLimit==0 ){
1281 int regEq = regStat1;
1282 int regLt = regStat1+1;
1283 int regDLt = regStat1+2;
1284 int regSample = regStat1+3;
1285 int regCol = regStat1+4;
1286 int regSampleRowid = regCol + nCol;
1287 int addrNext;
1288 int addrIsNull;
1289 u8 seekOp = HasRowid(pTab) ? OP_NotExists : OP_NotFound;
1291 pParse->nMem = MAX(pParse->nMem, regCol+nCol);
1293 addrNext = sqlite3VdbeCurrentAddr(v);
1294 callStatGet(pParse, regStat, STAT_GET_ROWID, regSampleRowid);
1295 addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regSampleRowid);
1296 VdbeCoverage(v);
1297 callStatGet(pParse, regStat, STAT_GET_NEQ, regEq);
1298 callStatGet(pParse, regStat, STAT_GET_NLT, regLt);
1299 callStatGet(pParse, regStat, STAT_GET_NDLT, regDLt);
1300 sqlite3VdbeAddOp4Int(v, seekOp, iTabCur, addrNext, regSampleRowid, 0);
1301 VdbeCoverage(v);
1302 for(i=0; i<nCol; i++){
1303 sqlite3ExprCodeLoadIndexColumn(pParse, pIdx, iTabCur, i, regCol+i);
1305 sqlite3VdbeAddOp3(v, OP_MakeRecord, regCol, nCol, regSample);
1306 sqlite3VdbeAddOp3(v, OP_MakeRecord, regTabname, 6, regTemp);
1307 sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur+1, regNewRowid);
1308 sqlite3VdbeAddOp3(v, OP_Insert, iStatCur+1, regTemp, regNewRowid);
1309 sqlite3VdbeAddOp2(v, OP_Goto, 1, addrNext); /* P1==1 for end-of-loop */
1310 sqlite3VdbeJumpHere(v, addrIsNull);
1312 #endif /* SQLITE_ENABLE_STAT4 */
1314 /* End of analysis */
1315 sqlite3VdbeJumpHere(v, addrRewind);
1319 /* Create a single sqlite_stat1 entry containing NULL as the index
1320 ** name and the row count as the content.
1322 if( pOnlyIdx==0 && needTableCnt ){
1323 VdbeComment((v, "%s", pTab->zName));
1324 sqlite3VdbeAddOp2(v, OP_Count, iTabCur, regStat1);
1325 jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, regStat1); VdbeCoverage(v);
1326 sqlite3VdbeAddOp2(v, OP_Null, 0, regIdxname);
1327 assert( "BBB"[0]==SQLITE_AFF_TEXT );
1328 sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "BBB", 0);
1329 sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid);
1330 sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid);
1331 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1332 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1333 sqlite3VdbeChangeP4(v, -1, (char*)pStat1, P4_TABLE);
1334 #endif
1335 sqlite3VdbeJumpHere(v, jZeroRows);
1341 ** Generate code that will cause the most recent index analysis to
1342 ** be loaded into internal hash tables where is can be used.
1344 static void loadAnalysis(Parse *pParse, int iDb){
1345 Vdbe *v = sqlite3GetVdbe(pParse);
1346 if( v ){
1347 sqlite3VdbeAddOp1(v, OP_LoadAnalysis, iDb);
1352 ** Generate code that will do an analysis of an entire database
1354 static void analyzeDatabase(Parse *pParse, int iDb){
1355 sqlite3 *db = pParse->db;
1356 Schema *pSchema = db->aDb[iDb].pSchema; /* Schema of database iDb */
1357 HashElem *k;
1358 int iStatCur;
1359 int iMem;
1360 int iTab;
1362 sqlite3BeginWriteOperation(pParse, 0, iDb);
1363 iStatCur = pParse->nTab;
1364 pParse->nTab += 3;
1365 openStatTable(pParse, iDb, iStatCur, 0, 0);
1366 iMem = pParse->nMem+1;
1367 iTab = pParse->nTab;
1368 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1369 for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){
1370 Table *pTab = (Table*)sqliteHashData(k);
1371 analyzeOneTable(pParse, pTab, 0, iStatCur, iMem, iTab);
1373 loadAnalysis(pParse, iDb);
1377 ** Generate code that will do an analysis of a single table in
1378 ** a database. If pOnlyIdx is not NULL then it is a single index
1379 ** in pTab that should be analyzed.
1381 static void analyzeTable(Parse *pParse, Table *pTab, Index *pOnlyIdx){
1382 int iDb;
1383 int iStatCur;
1385 assert( pTab!=0 );
1386 assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
1387 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1388 sqlite3BeginWriteOperation(pParse, 0, iDb);
1389 iStatCur = pParse->nTab;
1390 pParse->nTab += 3;
1391 if( pOnlyIdx ){
1392 openStatTable(pParse, iDb, iStatCur, pOnlyIdx->zName, "idx");
1393 }else{
1394 openStatTable(pParse, iDb, iStatCur, pTab->zName, "tbl");
1396 analyzeOneTable(pParse, pTab, pOnlyIdx, iStatCur,pParse->nMem+1,pParse->nTab);
1397 loadAnalysis(pParse, iDb);
1401 ** Generate code for the ANALYZE command. The parser calls this routine
1402 ** when it recognizes an ANALYZE command.
1404 ** ANALYZE -- 1
1405 ** ANALYZE <database> -- 2
1406 ** ANALYZE ?<database>.?<tablename> -- 3
1408 ** Form 1 causes all indices in all attached databases to be analyzed.
1409 ** Form 2 analyzes all indices the single database named.
1410 ** Form 3 analyzes all indices associated with the named table.
1412 void sqlite3Analyze(Parse *pParse, Token *pName1, Token *pName2){
1413 sqlite3 *db = pParse->db;
1414 int iDb;
1415 int i;
1416 char *z, *zDb;
1417 Table *pTab;
1418 Index *pIdx;
1419 Token *pTableName;
1420 Vdbe *v;
1422 /* Read the database schema. If an error occurs, leave an error message
1423 ** and code in pParse and return NULL. */
1424 assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
1425 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
1426 return;
1429 assert( pName2!=0 || pName1==0 );
1430 if( pName1==0 ){
1431 /* Form 1: Analyze everything */
1432 for(i=0; i<db->nDb; i++){
1433 if( i==1 ) continue; /* Do not analyze the TEMP database */
1434 analyzeDatabase(pParse, i);
1436 }else if( pName2->n==0 && (iDb = sqlite3FindDb(db, pName1))>=0 ){
1437 /* Analyze the schema named as the argument */
1438 analyzeDatabase(pParse, iDb);
1439 }else{
1440 /* Form 3: Analyze the table or index named as an argument */
1441 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pTableName);
1442 if( iDb>=0 ){
1443 zDb = pName2->n ? db->aDb[iDb].zDbSName : 0;
1444 z = sqlite3NameFromToken(db, pTableName);
1445 if( z ){
1446 if( (pIdx = sqlite3FindIndex(db, z, zDb))!=0 ){
1447 analyzeTable(pParse, pIdx->pTable, pIdx);
1448 }else if( (pTab = sqlite3LocateTable(pParse, 0, z, zDb))!=0 ){
1449 analyzeTable(pParse, pTab, 0);
1451 sqlite3DbFree(db, z);
1455 if( db->nSqlExec==0 && (v = sqlite3GetVdbe(pParse))!=0 ){
1456 sqlite3VdbeAddOp0(v, OP_Expire);
1461 ** Used to pass information from the analyzer reader through to the
1462 ** callback routine.
1464 typedef struct analysisInfo analysisInfo;
1465 struct analysisInfo {
1466 sqlite3 *db;
1467 const char *zDatabase;
1471 ** The first argument points to a nul-terminated string containing a
1472 ** list of space separated integers. Read the first nOut of these into
1473 ** the array aOut[].
1475 static void decodeIntArray(
1476 char *zIntArray, /* String containing int array to decode */
1477 int nOut, /* Number of slots in aOut[] */
1478 tRowcnt *aOut, /* Store integers here */
1479 LogEst *aLog, /* Or, if aOut==0, here */
1480 Index *pIndex /* Handle extra flags for this index, if not NULL */
1482 char *z = zIntArray;
1483 int c;
1484 int i;
1485 tRowcnt v;
1487 #ifdef SQLITE_ENABLE_STAT4
1488 if( z==0 ) z = "";
1489 #else
1490 assert( z!=0 );
1491 #endif
1492 for(i=0; *z && i<nOut; i++){
1493 v = 0;
1494 while( (c=z[0])>='0' && c<='9' ){
1495 v = v*10 + c - '0';
1496 z++;
1498 #ifdef SQLITE_ENABLE_STAT4
1499 if( aOut ) aOut[i] = v;
1500 if( aLog ) aLog[i] = sqlite3LogEst(v);
1501 #else
1502 assert( aOut==0 );
1503 UNUSED_PARAMETER(aOut);
1504 assert( aLog!=0 );
1505 aLog[i] = sqlite3LogEst(v);
1506 #endif
1507 if( *z==' ' ) z++;
1509 #ifndef SQLITE_ENABLE_STAT4
1510 assert( pIndex!=0 ); {
1511 #else
1512 if( pIndex ){
1513 #endif
1514 pIndex->bUnordered = 0;
1515 pIndex->noSkipScan = 0;
1516 while( z[0] ){
1517 if( sqlite3_strglob("unordered*", z)==0 ){
1518 pIndex->bUnordered = 1;
1519 }else if( sqlite3_strglob("sz=[0-9]*", z)==0 ){
1520 int sz = sqlite3Atoi(z+3);
1521 if( sz<2 ) sz = 2;
1522 pIndex->szIdxRow = sqlite3LogEst(sz);
1523 }else if( sqlite3_strglob("noskipscan*", z)==0 ){
1524 pIndex->noSkipScan = 1;
1526 #ifdef SQLITE_ENABLE_COSTMULT
1527 else if( sqlite3_strglob("costmult=[0-9]*",z)==0 ){
1528 pIndex->pTable->costMult = sqlite3LogEst(sqlite3Atoi(z+9));
1530 #endif
1531 while( z[0]!=0 && z[0]!=' ' ) z++;
1532 while( z[0]==' ' ) z++;
1538 ** This callback is invoked once for each index when reading the
1539 ** sqlite_stat1 table.
1541 ** argv[0] = name of the table
1542 ** argv[1] = name of the index (might be NULL)
1543 ** argv[2] = results of analysis - on integer for each column
1545 ** Entries for which argv[1]==NULL simply record the number of rows in
1546 ** the table.
1548 static int analysisLoader(void *pData, int argc, char **argv, char **NotUsed){
1549 analysisInfo *pInfo = (analysisInfo*)pData;
1550 Index *pIndex;
1551 Table *pTable;
1552 const char *z;
1554 assert( argc==3 );
1555 UNUSED_PARAMETER2(NotUsed, argc);
1557 if( argv==0 || argv[0]==0 || argv[2]==0 ){
1558 return 0;
1560 pTable = sqlite3FindTable(pInfo->db, argv[0], pInfo->zDatabase);
1561 if( pTable==0 ){
1562 return 0;
1564 if( argv[1]==0 ){
1565 pIndex = 0;
1566 }else if( sqlite3_stricmp(argv[0],argv[1])==0 ){
1567 pIndex = sqlite3PrimaryKeyIndex(pTable);
1568 }else{
1569 pIndex = sqlite3FindIndex(pInfo->db, argv[1], pInfo->zDatabase);
1571 z = argv[2];
1573 if( pIndex ){
1574 tRowcnt *aiRowEst = 0;
1575 int nCol = pIndex->nKeyCol+1;
1576 #ifdef SQLITE_ENABLE_STAT4
1577 /* Index.aiRowEst may already be set here if there are duplicate
1578 ** sqlite_stat1 entries for this index. In that case just clobber
1579 ** the old data with the new instead of allocating a new array. */
1580 if( pIndex->aiRowEst==0 ){
1581 pIndex->aiRowEst = (tRowcnt*)sqlite3MallocZero(sizeof(tRowcnt) * nCol);
1582 if( pIndex->aiRowEst==0 ) sqlite3OomFault(pInfo->db);
1584 aiRowEst = pIndex->aiRowEst;
1585 #endif
1586 pIndex->bUnordered = 0;
1587 decodeIntArray((char*)z, nCol, aiRowEst, pIndex->aiRowLogEst, pIndex);
1588 pIndex->hasStat1 = 1;
1589 if( pIndex->pPartIdxWhere==0 ){
1590 pTable->nRowLogEst = pIndex->aiRowLogEst[0];
1591 pTable->tabFlags |= TF_HasStat1;
1593 }else{
1594 Index fakeIdx;
1595 fakeIdx.szIdxRow = pTable->szTabRow;
1596 #ifdef SQLITE_ENABLE_COSTMULT
1597 fakeIdx.pTable = pTable;
1598 #endif
1599 decodeIntArray((char*)z, 1, 0, &pTable->nRowLogEst, &fakeIdx);
1600 pTable->szTabRow = fakeIdx.szIdxRow;
1601 pTable->tabFlags |= TF_HasStat1;
1604 return 0;
1608 ** If the Index.aSample variable is not NULL, delete the aSample[] array
1609 ** and its contents.
1611 void sqlite3DeleteIndexSamples(sqlite3 *db, Index *pIdx){
1612 #ifdef SQLITE_ENABLE_STAT4
1613 if( pIdx->aSample ){
1614 int j;
1615 for(j=0; j<pIdx->nSample; j++){
1616 IndexSample *p = &pIdx->aSample[j];
1617 sqlite3DbFree(db, p->p);
1619 sqlite3DbFree(db, pIdx->aSample);
1621 if( db && db->pnBytesFreed==0 ){
1622 pIdx->nSample = 0;
1623 pIdx->aSample = 0;
1625 #else
1626 UNUSED_PARAMETER(db);
1627 UNUSED_PARAMETER(pIdx);
1628 #endif /* SQLITE_ENABLE_STAT4 */
1631 #ifdef SQLITE_ENABLE_STAT4
1633 ** Populate the pIdx->aAvgEq[] array based on the samples currently
1634 ** stored in pIdx->aSample[].
1636 static void initAvgEq(Index *pIdx){
1637 if( pIdx ){
1638 IndexSample *aSample = pIdx->aSample;
1639 IndexSample *pFinal = &aSample[pIdx->nSample-1];
1640 int iCol;
1641 int nCol = 1;
1642 if( pIdx->nSampleCol>1 ){
1643 /* If this is stat4 data, then calculate aAvgEq[] values for all
1644 ** sample columns except the last. The last is always set to 1, as
1645 ** once the trailing PK fields are considered all index keys are
1646 ** unique. */
1647 nCol = pIdx->nSampleCol-1;
1648 pIdx->aAvgEq[nCol] = 1;
1650 for(iCol=0; iCol<nCol; iCol++){
1651 int nSample = pIdx->nSample;
1652 int i; /* Used to iterate through samples */
1653 tRowcnt sumEq = 0; /* Sum of the nEq values */
1654 tRowcnt avgEq = 0;
1655 tRowcnt nRow; /* Number of rows in index */
1656 i64 nSum100 = 0; /* Number of terms contributing to sumEq */
1657 i64 nDist100; /* Number of distinct values in index */
1659 if( !pIdx->aiRowEst || iCol>=pIdx->nKeyCol || pIdx->aiRowEst[iCol+1]==0 ){
1660 nRow = pFinal->anLt[iCol];
1661 nDist100 = (i64)100 * pFinal->anDLt[iCol];
1662 nSample--;
1663 }else{
1664 nRow = pIdx->aiRowEst[0];
1665 nDist100 = ((i64)100 * pIdx->aiRowEst[0]) / pIdx->aiRowEst[iCol+1];
1667 pIdx->nRowEst0 = nRow;
1669 /* Set nSum to the number of distinct (iCol+1) field prefixes that
1670 ** occur in the stat4 table for this index. Set sumEq to the sum of
1671 ** the nEq values for column iCol for the same set (adding the value
1672 ** only once where there exist duplicate prefixes). */
1673 for(i=0; i<nSample; i++){
1674 if( i==(pIdx->nSample-1)
1675 || aSample[i].anDLt[iCol]!=aSample[i+1].anDLt[iCol]
1677 sumEq += aSample[i].anEq[iCol];
1678 nSum100 += 100;
1682 if( nDist100>nSum100 && sumEq<nRow ){
1683 avgEq = ((i64)100 * (nRow - sumEq))/(nDist100 - nSum100);
1685 if( avgEq==0 ) avgEq = 1;
1686 pIdx->aAvgEq[iCol] = avgEq;
1692 ** Look up an index by name. Or, if the name of a WITHOUT ROWID table
1693 ** is supplied instead, find the PRIMARY KEY index for that table.
1695 static Index *findIndexOrPrimaryKey(
1696 sqlite3 *db,
1697 const char *zName,
1698 const char *zDb
1700 Index *pIdx = sqlite3FindIndex(db, zName, zDb);
1701 if( pIdx==0 ){
1702 Table *pTab = sqlite3FindTable(db, zName, zDb);
1703 if( pTab && !HasRowid(pTab) ) pIdx = sqlite3PrimaryKeyIndex(pTab);
1705 return pIdx;
1709 ** Load the content from either the sqlite_stat4
1710 ** into the relevant Index.aSample[] arrays.
1712 ** Arguments zSql1 and zSql2 must point to SQL statements that return
1713 ** data equivalent to the following:
1715 ** zSql1: SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx
1716 ** zSql2: SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4
1718 ** where %Q is replaced with the database name before the SQL is executed.
1720 static int loadStatTbl(
1721 sqlite3 *db, /* Database handle */
1722 const char *zSql1, /* SQL statement 1 (see above) */
1723 const char *zSql2, /* SQL statement 2 (see above) */
1724 const char *zDb /* Database name (e.g. "main") */
1726 int rc; /* Result codes from subroutines */
1727 sqlite3_stmt *pStmt = 0; /* An SQL statement being run */
1728 char *zSql; /* Text of the SQL statement */
1729 Index *pPrevIdx = 0; /* Previous index in the loop */
1730 IndexSample *pSample; /* A slot in pIdx->aSample[] */
1732 assert( db->lookaside.bDisable );
1733 zSql = sqlite3MPrintf(db, zSql1, zDb);
1734 if( !zSql ){
1735 return SQLITE_NOMEM_BKPT;
1737 rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
1738 sqlite3DbFree(db, zSql);
1739 if( rc ) return rc;
1741 while( sqlite3_step(pStmt)==SQLITE_ROW ){
1742 int nIdxCol = 1; /* Number of columns in stat4 records */
1744 char *zIndex; /* Index name */
1745 Index *pIdx; /* Pointer to the index object */
1746 int nSample; /* Number of samples */
1747 int nByte; /* Bytes of space required */
1748 int i; /* Bytes of space required */
1749 tRowcnt *pSpace;
1751 zIndex = (char *)sqlite3_column_text(pStmt, 0);
1752 if( zIndex==0 ) continue;
1753 nSample = sqlite3_column_int(pStmt, 1);
1754 pIdx = findIndexOrPrimaryKey(db, zIndex, zDb);
1755 assert( pIdx==0 || pIdx->nSample==0 );
1756 if( pIdx==0 ) continue;
1757 assert( !HasRowid(pIdx->pTable) || pIdx->nColumn==pIdx->nKeyCol+1 );
1758 if( !HasRowid(pIdx->pTable) && IsPrimaryKeyIndex(pIdx) ){
1759 nIdxCol = pIdx->nKeyCol;
1760 }else{
1761 nIdxCol = pIdx->nColumn;
1763 pIdx->nSampleCol = nIdxCol;
1764 nByte = sizeof(IndexSample) * nSample;
1765 nByte += sizeof(tRowcnt) * nIdxCol * 3 * nSample;
1766 nByte += nIdxCol * sizeof(tRowcnt); /* Space for Index.aAvgEq[] */
1768 pIdx->aSample = sqlite3DbMallocZero(db, nByte);
1769 if( pIdx->aSample==0 ){
1770 sqlite3_finalize(pStmt);
1771 return SQLITE_NOMEM_BKPT;
1773 pSpace = (tRowcnt*)&pIdx->aSample[nSample];
1774 pIdx->aAvgEq = pSpace; pSpace += nIdxCol;
1775 pIdx->pTable->tabFlags |= TF_HasStat4;
1776 for(i=0; i<nSample; i++){
1777 pIdx->aSample[i].anEq = pSpace; pSpace += nIdxCol;
1778 pIdx->aSample[i].anLt = pSpace; pSpace += nIdxCol;
1779 pIdx->aSample[i].anDLt = pSpace; pSpace += nIdxCol;
1781 assert( ((u8*)pSpace)-nByte==(u8*)(pIdx->aSample) );
1783 rc = sqlite3_finalize(pStmt);
1784 if( rc ) return rc;
1786 zSql = sqlite3MPrintf(db, zSql2, zDb);
1787 if( !zSql ){
1788 return SQLITE_NOMEM_BKPT;
1790 rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
1791 sqlite3DbFree(db, zSql);
1792 if( rc ) return rc;
1794 while( sqlite3_step(pStmt)==SQLITE_ROW ){
1795 char *zIndex; /* Index name */
1796 Index *pIdx; /* Pointer to the index object */
1797 int nCol = 1; /* Number of columns in index */
1799 zIndex = (char *)sqlite3_column_text(pStmt, 0);
1800 if( zIndex==0 ) continue;
1801 pIdx = findIndexOrPrimaryKey(db, zIndex, zDb);
1802 if( pIdx==0 ) continue;
1803 /* This next condition is true if data has already been loaded from
1804 ** the sqlite_stat4 table. */
1805 nCol = pIdx->nSampleCol;
1806 if( pIdx!=pPrevIdx ){
1807 initAvgEq(pPrevIdx);
1808 pPrevIdx = pIdx;
1810 pSample = &pIdx->aSample[pIdx->nSample];
1811 decodeIntArray((char*)sqlite3_column_text(pStmt,1),nCol,pSample->anEq,0,0);
1812 decodeIntArray((char*)sqlite3_column_text(pStmt,2),nCol,pSample->anLt,0,0);
1813 decodeIntArray((char*)sqlite3_column_text(pStmt,3),nCol,pSample->anDLt,0,0);
1815 /* Take a copy of the sample. Add two 0x00 bytes the end of the buffer.
1816 ** This is in case the sample record is corrupted. In that case, the
1817 ** sqlite3VdbeRecordCompare() may read up to two varints past the
1818 ** end of the allocated buffer before it realizes it is dealing with
1819 ** a corrupt record. Adding the two 0x00 bytes prevents this from causing
1820 ** a buffer overread. */
1821 pSample->n = sqlite3_column_bytes(pStmt, 4);
1822 pSample->p = sqlite3DbMallocZero(db, pSample->n + 2);
1823 if( pSample->p==0 ){
1824 sqlite3_finalize(pStmt);
1825 return SQLITE_NOMEM_BKPT;
1827 if( pSample->n ){
1828 memcpy(pSample->p, sqlite3_column_blob(pStmt, 4), pSample->n);
1830 pIdx->nSample++;
1832 rc = sqlite3_finalize(pStmt);
1833 if( rc==SQLITE_OK ) initAvgEq(pPrevIdx);
1834 return rc;
1838 ** Load content from the sqlite_stat4 table into
1839 ** the Index.aSample[] arrays of all indices.
1841 static int loadStat4(sqlite3 *db, const char *zDb){
1842 int rc = SQLITE_OK; /* Result codes from subroutines */
1844 assert( db->lookaside.bDisable );
1845 if( sqlite3FindTable(db, "sqlite_stat4", zDb) ){
1846 rc = loadStatTbl(db,
1847 "SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx",
1848 "SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4",
1852 return rc;
1854 #endif /* SQLITE_ENABLE_STAT4 */
1857 ** Load the content of the sqlite_stat1 and sqlite_stat4 tables. The
1858 ** contents of sqlite_stat1 are used to populate the Index.aiRowEst[]
1859 ** arrays. The contents of sqlite_stat4 are used to populate the
1860 ** Index.aSample[] arrays.
1862 ** If the sqlite_stat1 table is not present in the database, SQLITE_ERROR
1863 ** is returned. In this case, even if SQLITE_ENABLE_STAT4 was defined
1864 ** during compilation and the sqlite_stat4 table is present, no data is
1865 ** read from it.
1867 ** If SQLITE_ENABLE_STAT4 was defined during compilation and the
1868 ** sqlite_stat4 table is not present in the database, SQLITE_ERROR is
1869 ** returned. However, in this case, data is read from the sqlite_stat1
1870 ** table (if it is present) before returning.
1872 ** If an OOM error occurs, this function always sets db->mallocFailed.
1873 ** This means if the caller does not care about other errors, the return
1874 ** code may be ignored.
1876 int sqlite3AnalysisLoad(sqlite3 *db, int iDb){
1877 analysisInfo sInfo;
1878 HashElem *i;
1879 char *zSql;
1880 int rc = SQLITE_OK;
1881 Schema *pSchema = db->aDb[iDb].pSchema;
1883 assert( iDb>=0 && iDb<db->nDb );
1884 assert( db->aDb[iDb].pBt!=0 );
1886 /* Clear any prior statistics */
1887 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1888 for(i=sqliteHashFirst(&pSchema->tblHash); i; i=sqliteHashNext(i)){
1889 Table *pTab = sqliteHashData(i);
1890 pTab->tabFlags &= ~TF_HasStat1;
1892 for(i=sqliteHashFirst(&pSchema->idxHash); i; i=sqliteHashNext(i)){
1893 Index *pIdx = sqliteHashData(i);
1894 pIdx->hasStat1 = 0;
1895 #ifdef SQLITE_ENABLE_STAT4
1896 sqlite3DeleteIndexSamples(db, pIdx);
1897 pIdx->aSample = 0;
1898 #endif
1901 /* Load new statistics out of the sqlite_stat1 table */
1902 sInfo.db = db;
1903 sInfo.zDatabase = db->aDb[iDb].zDbSName;
1904 if( sqlite3FindTable(db, "sqlite_stat1", sInfo.zDatabase)!=0 ){
1905 zSql = sqlite3MPrintf(db,
1906 "SELECT tbl,idx,stat FROM %Q.sqlite_stat1", sInfo.zDatabase);
1907 if( zSql==0 ){
1908 rc = SQLITE_NOMEM_BKPT;
1909 }else{
1910 rc = sqlite3_exec(db, zSql, analysisLoader, &sInfo, 0);
1911 sqlite3DbFree(db, zSql);
1915 /* Set appropriate defaults on all indexes not in the sqlite_stat1 table */
1916 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1917 for(i=sqliteHashFirst(&pSchema->idxHash); i; i=sqliteHashNext(i)){
1918 Index *pIdx = sqliteHashData(i);
1919 if( !pIdx->hasStat1 ) sqlite3DefaultRowEst(pIdx);
1922 /* Load the statistics from the sqlite_stat4 table. */
1923 #ifdef SQLITE_ENABLE_STAT4
1924 if( rc==SQLITE_OK ){
1925 DisableLookaside;
1926 rc = loadStat4(db, sInfo.zDatabase);
1927 EnableLookaside;
1929 for(i=sqliteHashFirst(&pSchema->idxHash); i; i=sqliteHashNext(i)){
1930 Index *pIdx = sqliteHashData(i);
1931 sqlite3_free(pIdx->aiRowEst);
1932 pIdx->aiRowEst = 0;
1934 #endif
1936 if( rc==SQLITE_NOMEM ){
1937 sqlite3OomFault(db);
1939 return rc;
1943 #endif /* SQLITE_OMIT_ANALYZE */