4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains C code routines that are called by the SQLite parser
13 ** when syntax rules are reduced. The routines in this file handle the
14 ** following kinds of SQL syntax:
25 #include "sqliteInt.h"
27 #ifndef SQLITE_OMIT_SHARED_CACHE
29 ** The TableLock structure is only used by the sqlite3TableLock() and
30 ** codeTableLocks() functions.
33 int iDb
; /* The database containing the table to be locked */
34 Pgno iTab
; /* The root page of the table to be locked */
35 u8 isWriteLock
; /* True for write lock. False for a read lock */
36 const char *zLockName
; /* Name of the table */
40 ** Record the fact that we want to lock a table at run-time.
42 ** The table to be locked has root page iTab and is found in database iDb.
43 ** A read or a write lock can be taken depending on isWritelock.
45 ** This routine just records the fact that the lock is desired. The
46 ** code to make the lock occur is generated by a later call to
47 ** codeTableLocks() which occurs during sqlite3FinishCoding().
49 static SQLITE_NOINLINE
void lockTable(
50 Parse
*pParse
, /* Parsing context */
51 int iDb
, /* Index of the database containing the table to lock */
52 Pgno iTab
, /* Root page number of the table to be locked */
53 u8 isWriteLock
, /* True for a write lock */
54 const char *zName
/* Name of the table to be locked */
62 pToplevel
= sqlite3ParseToplevel(pParse
);
63 for(i
=0; i
<pToplevel
->nTableLock
; i
++){
64 p
= &pToplevel
->aTableLock
[i
];
65 if( p
->iDb
==iDb
&& p
->iTab
==iTab
){
66 p
->isWriteLock
= (p
->isWriteLock
|| isWriteLock
);
71 nBytes
= sizeof(TableLock
) * (pToplevel
->nTableLock
+1);
72 pToplevel
->aTableLock
=
73 sqlite3DbReallocOrFree(pToplevel
->db
, pToplevel
->aTableLock
, nBytes
);
74 if( pToplevel
->aTableLock
){
75 p
= &pToplevel
->aTableLock
[pToplevel
->nTableLock
++];
78 p
->isWriteLock
= isWriteLock
;
81 pToplevel
->nTableLock
= 0;
82 sqlite3OomFault(pToplevel
->db
);
85 void sqlite3TableLock(
86 Parse
*pParse
, /* Parsing context */
87 int iDb
, /* Index of the database containing the table to lock */
88 Pgno iTab
, /* Root page number of the table to be locked */
89 u8 isWriteLock
, /* True for a write lock */
90 const char *zName
/* Name of the table to be locked */
93 if( !sqlite3BtreeSharable(pParse
->db
->aDb
[iDb
].pBt
) ) return;
94 lockTable(pParse
, iDb
, iTab
, isWriteLock
, zName
);
98 ** Code an OP_TableLock instruction for each table locked by the
99 ** statement (configured by calls to sqlite3TableLock()).
101 static void codeTableLocks(Parse
*pParse
){
103 Vdbe
*pVdbe
= pParse
->pVdbe
;
106 for(i
=0; i
<pParse
->nTableLock
; i
++){
107 TableLock
*p
= &pParse
->aTableLock
[i
];
109 sqlite3VdbeAddOp4(pVdbe
, OP_TableLock
, p1
, p
->iTab
, p
->isWriteLock
,
110 p
->zLockName
, P4_STATIC
);
114 #define codeTableLocks(x)
118 ** Return TRUE if the given yDbMask object is empty - if it contains no
119 ** 1 bits. This routine is used by the DbMaskAllZero() and DbMaskNotZero()
120 ** macros when SQLITE_MAX_ATTACHED is greater than 30.
122 #if SQLITE_MAX_ATTACHED>30
123 int sqlite3DbMaskAllZero(yDbMask m
){
125 for(i
=0; i
<sizeof(yDbMask
); i
++) if( m
[i
] ) return 0;
131 ** This routine is called after a single SQL statement has been
132 ** parsed and a VDBE program to execute that statement has been
133 ** prepared. This routine puts the finishing touches on the
134 ** VDBE program and resets the pParse structure for the next
137 ** Note that if an error occurred, it might be the case that
138 ** no VDBE code was generated.
140 void sqlite3FinishCoding(Parse
*pParse
){
144 assert( pParse
->pToplevel
==0 );
146 if( pParse
->nested
) return;
147 if( db
->mallocFailed
|| pParse
->nErr
){
148 if( pParse
->rc
==SQLITE_OK
) pParse
->rc
= SQLITE_ERROR
;
152 /* Begin by generating some termination code at the end of the
158 pParse
->rc
= SQLITE_DONE
;
161 v
= sqlite3GetVdbe(pParse
);
162 if( v
==0 ) pParse
->rc
= SQLITE_ERROR
;
164 assert( !pParse
->isMultiWrite
165 || sqlite3VdbeAssertMayAbort(v
, pParse
->mayAbort
));
167 if( pParse
->bReturning
){
168 Returning
*pReturning
= pParse
->u1
.pReturning
;
174 sqlite3VdbeAddOp1(v
, OP_Rewind
, pReturning
->iRetCur
);
176 reg
= pReturning
->iRetReg
;
177 for(i
=0; i
<pReturning
->nRetCol
; i
++){
178 sqlite3VdbeAddOp3(v
, OP_Column
, pReturning
->iRetCur
, i
, reg
+i
);
180 sqlite3VdbeAddOp2(v
, OP_ResultRow
, reg
, i
);
181 sqlite3VdbeAddOp2(v
, OP_Next
, pReturning
->iRetCur
, addrRewind
+1);
183 sqlite3VdbeJumpHere(v
, addrRewind
);
185 sqlite3VdbeAddOp0(v
, OP_Halt
);
187 #if SQLITE_USER_AUTHENTICATION
188 if( pParse
->nTableLock
>0 && db
->init
.busy
==0 ){
189 sqlite3UserAuthInit(db
);
190 if( db
->auth
.authLevel
<UAUTH_User
){
191 sqlite3ErrorMsg(pParse
, "user not authenticated");
192 pParse
->rc
= SQLITE_AUTH_USER
;
198 /* The cookie mask contains one bit for each database file open.
199 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are
200 ** set for each database that is used. Generate code to start a
201 ** transaction on each used database and to verify the schema cookie
202 ** on each used database.
204 if( db
->mallocFailed
==0
205 && (DbMaskNonZero(pParse
->cookieMask
) || pParse
->pConstExpr
)
208 assert( sqlite3VdbeGetOp(v
, 0)->opcode
==OP_Init
);
209 sqlite3VdbeJumpHere(v
, 0);
210 for(iDb
=0; iDb
<db
->nDb
; iDb
++){
212 if( DbMaskTest(pParse
->cookieMask
, iDb
)==0 ) continue;
213 sqlite3VdbeUsesBtree(v
, iDb
);
214 pSchema
= db
->aDb
[iDb
].pSchema
;
215 sqlite3VdbeAddOp4Int(v
,
216 OP_Transaction
, /* Opcode */
218 DbMaskTest(pParse
->writeMask
,iDb
), /* P2 */
219 pSchema
->schema_cookie
, /* P3 */
220 pSchema
->iGeneration
/* P4 */
222 if( db
->init
.busy
==0 ) sqlite3VdbeChangeP5(v
, 1);
224 "usesStmtJournal=%d", pParse
->mayAbort
&& pParse
->isMultiWrite
));
226 #ifndef SQLITE_OMIT_VIRTUALTABLE
227 for(i
=0; i
<pParse
->nVtabLock
; i
++){
228 char *vtab
= (char *)sqlite3GetVTable(db
, pParse
->apVtabLock
[i
]);
229 sqlite3VdbeAddOp4(v
, OP_VBegin
, 0, 0, 0, vtab
, P4_VTAB
);
231 pParse
->nVtabLock
= 0;
234 /* Once all the cookies have been verified and transactions opened,
235 ** obtain the required table-locks. This is a no-op unless the
236 ** shared-cache feature is enabled.
238 codeTableLocks(pParse
);
240 /* Initialize any AUTOINCREMENT data structures required.
242 sqlite3AutoincrementBegin(pParse
);
244 /* Code constant expressions that where factored out of inner loops.
246 ** The pConstExpr list might also contain expressions that we simply
247 ** want to keep around until the Parse object is deleted. Such
248 ** expressions have iConstExprReg==0. Do not generate code for
249 ** those expressions, of course.
251 if( pParse
->pConstExpr
){
252 ExprList
*pEL
= pParse
->pConstExpr
;
253 pParse
->okConstFactor
= 0;
254 for(i
=0; i
<pEL
->nExpr
; i
++){
255 int iReg
= pEL
->a
[i
].u
.iConstExprReg
;
257 sqlite3ExprCode(pParse
, pEL
->a
[i
].pExpr
, iReg
);
262 if( pParse
->bReturning
){
263 Returning
*pRet
= pParse
->u1
.pReturning
;
264 sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, pRet
->iRetCur
, pRet
->nRetCol
);
267 /* Finally, jump back to the beginning of the executable code. */
268 sqlite3VdbeGoto(v
, 1);
272 /* Get the VDBE program ready for execution
274 if( v
&& pParse
->nErr
==0 && !db
->mallocFailed
){
275 /* A minimum of one cursor is required if autoincrement is used
276 * See ticket [a696379c1f08866] */
277 assert( pParse
->pAinc
==0 || pParse
->nTab
>0 );
278 sqlite3VdbeMakeReady(v
, pParse
);
279 pParse
->rc
= SQLITE_DONE
;
281 pParse
->rc
= SQLITE_ERROR
;
286 ** Run the parser and code generator recursively in order to generate
287 ** code for the SQL statement given onto the end of the pParse context
288 ** currently under construction. When the parser is run recursively
289 ** this way, the final OP_Halt is not appended and other initialization
290 ** and finalization steps are omitted because those are handling by the
293 ** Not everything is nestable. This facility is designed to permit
294 ** INSERT, UPDATE, and DELETE operations against the schema table. Use
295 ** care if you decide to try to use this routine for some other purposes.
297 void sqlite3NestedParse(Parse
*pParse
, const char *zFormat
, ...){
301 sqlite3
*db
= pParse
->db
;
302 char saveBuf
[PARSE_TAIL_SZ
];
304 if( pParse
->nErr
) return;
305 assert( pParse
->nested
<10 ); /* Nesting should only be of limited depth */
306 va_start(ap
, zFormat
);
307 zSql
= sqlite3VMPrintf(db
, zFormat
, ap
);
310 /* This can result either from an OOM or because the formatted string
311 ** exceeds SQLITE_LIMIT_LENGTH. In the latter case, we need to set
313 if( !db
->mallocFailed
) pParse
->rc
= SQLITE_TOOBIG
;
318 memcpy(saveBuf
, PARSE_TAIL(pParse
), PARSE_TAIL_SZ
);
319 memset(PARSE_TAIL(pParse
), 0, PARSE_TAIL_SZ
);
320 sqlite3RunParser(pParse
, zSql
, &zErrMsg
);
321 sqlite3DbFree(db
, zErrMsg
);
322 sqlite3DbFree(db
, zSql
);
323 memcpy(PARSE_TAIL(pParse
), saveBuf
, PARSE_TAIL_SZ
);
327 #if SQLITE_USER_AUTHENTICATION
329 ** Return TRUE if zTable is the name of the system table that stores the
330 ** list of users and their access credentials.
332 int sqlite3UserAuthTable(const char *zTable
){
333 return sqlite3_stricmp(zTable
, "sqlite_user")==0;
338 ** Locate the in-memory structure that describes a particular database
339 ** table given the name of that table and (optionally) the name of the
340 ** database containing the table. Return NULL if not found.
342 ** If zDatabase is 0, all databases are searched for the table and the
343 ** first matching table is returned. (No checking for duplicate table
344 ** names is done.) The search order is TEMP first, then MAIN, then any
345 ** auxiliary databases added using the ATTACH command.
347 ** See also sqlite3LocateTable().
349 Table
*sqlite3FindTable(sqlite3
*db
, const char *zName
, const char *zDatabase
){
353 /* All mutexes are required for schema access. Make sure we hold them. */
354 assert( zDatabase
!=0 || sqlite3BtreeHoldsAllMutexes(db
) );
355 #if SQLITE_USER_AUTHENTICATION
356 /* Only the admin user is allowed to know that the sqlite_user table
358 if( db
->auth
.authLevel
<UAUTH_Admin
&& sqlite3UserAuthTable(zName
)!=0 ){
363 for(i
=0; i
<db
->nDb
; i
++){
364 if( sqlite3StrICmp(zDatabase
, db
->aDb
[i
].zDbSName
)==0 ) break;
367 /* No match against the official names. But always match "main"
368 ** to schema 0 as a legacy fallback. */
369 if( sqlite3StrICmp(zDatabase
,"main")==0 ){
375 p
= sqlite3HashFind(&db
->aDb
[i
].pSchema
->tblHash
, zName
);
376 if( p
==0 && sqlite3StrNICmp(zName
, "sqlite_", 7)==0 ){
378 if( sqlite3StrICmp(zName
+7, &ALT_TEMP_SCHEMA_TABLE
[7])==0
379 || sqlite3StrICmp(zName
+7, &ALT_SCHEMA_TABLE
[7])==0
380 || sqlite3StrICmp(zName
+7, &DFLT_SCHEMA_TABLE
[7])==0
382 p
= sqlite3HashFind(&db
->aDb
[1].pSchema
->tblHash
,
383 DFLT_TEMP_SCHEMA_TABLE
);
386 if( sqlite3StrICmp(zName
+7, &ALT_SCHEMA_TABLE
[7])==0 ){
387 p
= sqlite3HashFind(&db
->aDb
[i
].pSchema
->tblHash
,
393 /* Match against TEMP first */
394 p
= sqlite3HashFind(&db
->aDb
[1].pSchema
->tblHash
, zName
);
396 /* The main database is second */
397 p
= sqlite3HashFind(&db
->aDb
[0].pSchema
->tblHash
, zName
);
399 /* Attached databases are in order of attachment */
400 for(i
=2; i
<db
->nDb
; i
++){
401 assert( sqlite3SchemaMutexHeld(db
, i
, 0) );
402 p
= sqlite3HashFind(&db
->aDb
[i
].pSchema
->tblHash
, zName
);
405 if( p
==0 && sqlite3StrNICmp(zName
, "sqlite_", 7)==0 ){
406 if( sqlite3StrICmp(zName
+7, &ALT_SCHEMA_TABLE
[7])==0 ){
407 p
= sqlite3HashFind(&db
->aDb
[0].pSchema
->tblHash
, DFLT_SCHEMA_TABLE
);
408 }else if( sqlite3StrICmp(zName
+7, &ALT_TEMP_SCHEMA_TABLE
[7])==0 ){
409 p
= sqlite3HashFind(&db
->aDb
[1].pSchema
->tblHash
,
410 DFLT_TEMP_SCHEMA_TABLE
);
418 ** Locate the in-memory structure that describes a particular database
419 ** table given the name of that table and (optionally) the name of the
420 ** database containing the table. Return NULL if not found. Also leave an
421 ** error message in pParse->zErrMsg.
423 ** The difference between this routine and sqlite3FindTable() is that this
424 ** routine leaves an error message in pParse->zErrMsg where
425 ** sqlite3FindTable() does not.
427 Table
*sqlite3LocateTable(
428 Parse
*pParse
, /* context in which to report errors */
429 u32 flags
, /* LOCATE_VIEW or LOCATE_NOERR */
430 const char *zName
, /* Name of the table we are looking for */
431 const char *zDbase
/* Name of the database. Might be NULL */
434 sqlite3
*db
= pParse
->db
;
436 /* Read the database schema. If an error occurs, leave an error message
437 ** and code in pParse and return NULL. */
438 if( (db
->mDbFlags
& DBFLAG_SchemaKnownOk
)==0
439 && SQLITE_OK
!=sqlite3ReadSchema(pParse
)
444 p
= sqlite3FindTable(db
, zName
, zDbase
);
446 #ifndef SQLITE_OMIT_VIRTUALTABLE
447 /* If zName is the not the name of a table in the schema created using
448 ** CREATE, then check to see if it is the name of an virtual table that
449 ** can be an eponymous virtual table. */
450 if( pParse
->disableVtab
==0 && db
->init
.busy
==0 ){
451 Module
*pMod
= (Module
*)sqlite3HashFind(&db
->aModule
, zName
);
452 if( pMod
==0 && sqlite3_strnicmp(zName
, "pragma_", 7)==0 ){
453 pMod
= sqlite3PragmaVtabRegister(db
, zName
);
455 if( pMod
&& sqlite3VtabEponymousTableInit(pParse
, pMod
) ){
456 return pMod
->pEpoTab
;
460 if( flags
& LOCATE_NOERR
) return 0;
461 pParse
->checkSchema
= 1;
462 }else if( IsVirtual(p
) && pParse
->disableVtab
){
467 const char *zMsg
= flags
& LOCATE_VIEW
? "no such view" : "no such table";
469 sqlite3ErrorMsg(pParse
, "%s: %s.%s", zMsg
, zDbase
, zName
);
471 sqlite3ErrorMsg(pParse
, "%s: %s", zMsg
, zName
);
474 assert( HasRowid(p
) || p
->iPKey
<0 );
481 ** Locate the table identified by *p.
483 ** This is a wrapper around sqlite3LocateTable(). The difference between
484 ** sqlite3LocateTable() and this function is that this function restricts
485 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be
486 ** non-NULL if it is part of a view or trigger program definition. See
487 ** sqlite3FixSrcList() for details.
489 Table
*sqlite3LocateTableItem(
495 assert( p
->pSchema
==0 || p
->zDatabase
==0 );
497 int iDb
= sqlite3SchemaToIndex(pParse
->db
, p
->pSchema
);
498 zDb
= pParse
->db
->aDb
[iDb
].zDbSName
;
502 return sqlite3LocateTable(pParse
, flags
, p
->zName
, zDb
);
506 ** Locate the in-memory structure that describes
507 ** a particular index given the name of that index
508 ** and the name of the database that contains the index.
509 ** Return NULL if not found.
511 ** If zDatabase is 0, all databases are searched for the
512 ** table and the first matching index is returned. (No checking
513 ** for duplicate index names is done.) The search order is
514 ** TEMP first, then MAIN, then any auxiliary databases added
515 ** using the ATTACH command.
517 Index
*sqlite3FindIndex(sqlite3
*db
, const char *zName
, const char *zDb
){
520 /* All mutexes are required for schema access. Make sure we hold them. */
521 assert( zDb
!=0 || sqlite3BtreeHoldsAllMutexes(db
) );
522 for(i
=OMIT_TEMPDB
; i
<db
->nDb
; i
++){
523 int j
= (i
<2) ? i
^1 : i
; /* Search TEMP before MAIN */
524 Schema
*pSchema
= db
->aDb
[j
].pSchema
;
526 if( zDb
&& sqlite3DbIsNamed(db
, j
, zDb
)==0 ) continue;
527 assert( sqlite3SchemaMutexHeld(db
, j
, 0) );
528 p
= sqlite3HashFind(&pSchema
->idxHash
, zName
);
535 ** Reclaim the memory used by an index
537 void sqlite3FreeIndex(sqlite3
*db
, Index
*p
){
538 #ifndef SQLITE_OMIT_ANALYZE
539 sqlite3DeleteIndexSamples(db
, p
);
541 sqlite3ExprDelete(db
, p
->pPartIdxWhere
);
542 sqlite3ExprListDelete(db
, p
->aColExpr
);
543 sqlite3DbFree(db
, p
->zColAff
);
544 if( p
->isResized
) sqlite3DbFree(db
, (void *)p
->azColl
);
545 #ifdef SQLITE_ENABLE_STAT4
546 sqlite3_free(p
->aiRowEst
);
548 sqlite3DbFree(db
, p
);
552 ** For the index called zIdxName which is found in the database iDb,
553 ** unlike that index from its Table then remove the index from
554 ** the index hash table and free all memory structures associated
557 void sqlite3UnlinkAndDeleteIndex(sqlite3
*db
, int iDb
, const char *zIdxName
){
561 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
562 pHash
= &db
->aDb
[iDb
].pSchema
->idxHash
;
563 pIndex
= sqlite3HashInsert(pHash
, zIdxName
, 0);
564 if( ALWAYS(pIndex
) ){
565 if( pIndex
->pTable
->pIndex
==pIndex
){
566 pIndex
->pTable
->pIndex
= pIndex
->pNext
;
569 /* Justification of ALWAYS(); The index must be on the list of
571 p
= pIndex
->pTable
->pIndex
;
572 while( ALWAYS(p
) && p
->pNext
!=pIndex
){ p
= p
->pNext
; }
573 if( ALWAYS(p
&& p
->pNext
==pIndex
) ){
574 p
->pNext
= pIndex
->pNext
;
577 sqlite3FreeIndex(db
, pIndex
);
579 db
->mDbFlags
|= DBFLAG_SchemaChange
;
583 ** Look through the list of open database files in db->aDb[] and if
584 ** any have been closed, remove them from the list. Reallocate the
585 ** db->aDb[] structure to a smaller size, if possible.
587 ** Entry 0 (the "main" database) and entry 1 (the "temp" database)
588 ** are never candidates for being collapsed.
590 void sqlite3CollapseDatabaseArray(sqlite3
*db
){
592 for(i
=j
=2; i
<db
->nDb
; i
++){
593 struct Db
*pDb
= &db
->aDb
[i
];
595 sqlite3DbFree(db
, pDb
->zDbSName
);
600 db
->aDb
[j
] = db
->aDb
[i
];
605 if( db
->nDb
<=2 && db
->aDb
!=db
->aDbStatic
){
606 memcpy(db
->aDbStatic
, db
->aDb
, 2*sizeof(db
->aDb
[0]));
607 sqlite3DbFree(db
, db
->aDb
);
608 db
->aDb
= db
->aDbStatic
;
613 ** Reset the schema for the database at index iDb. Also reset the
614 ** TEMP schema. The reset is deferred if db->nSchemaLock is not zero.
615 ** Deferred resets may be run by calling with iDb<0.
617 void sqlite3ResetOneSchema(sqlite3
*db
, int iDb
){
619 assert( iDb
<db
->nDb
);
622 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
623 DbSetProperty(db
, iDb
, DB_ResetWanted
);
624 DbSetProperty(db
, 1, DB_ResetWanted
);
625 db
->mDbFlags
&= ~DBFLAG_SchemaKnownOk
;
628 if( db
->nSchemaLock
==0 ){
629 for(i
=0; i
<db
->nDb
; i
++){
630 if( DbHasProperty(db
, i
, DB_ResetWanted
) ){
631 sqlite3SchemaClear(db
->aDb
[i
].pSchema
);
638 ** Erase all schema information from all attached databases (including
639 ** "main" and "temp") for a single database connection.
641 void sqlite3ResetAllSchemasOfConnection(sqlite3
*db
){
643 sqlite3BtreeEnterAll(db
);
644 for(i
=0; i
<db
->nDb
; i
++){
645 Db
*pDb
= &db
->aDb
[i
];
647 if( db
->nSchemaLock
==0 ){
648 sqlite3SchemaClear(pDb
->pSchema
);
650 DbSetProperty(db
, i
, DB_ResetWanted
);
654 db
->mDbFlags
&= ~(DBFLAG_SchemaChange
|DBFLAG_SchemaKnownOk
);
655 sqlite3VtabUnlockList(db
);
656 sqlite3BtreeLeaveAll(db
);
657 if( db
->nSchemaLock
==0 ){
658 sqlite3CollapseDatabaseArray(db
);
663 ** This routine is called when a commit occurs.
665 void sqlite3CommitInternalChanges(sqlite3
*db
){
666 db
->mDbFlags
&= ~DBFLAG_SchemaChange
;
670 ** Delete memory allocated for the column names of a table or view (the
671 ** Table.aCol[] array).
673 void sqlite3DeleteColumnNames(sqlite3
*db
, Table
*pTable
){
677 if( (pCol
= pTable
->aCol
)!=0 ){
678 for(i
=0; i
<pTable
->nCol
; i
++, pCol
++){
679 assert( pCol
->zName
==0 || pCol
->hName
==sqlite3StrIHash(pCol
->zName
) );
680 sqlite3DbFree(db
, pCol
->zName
);
681 sqlite3ExprDelete(db
, pCol
->pDflt
);
682 sqlite3DbFree(db
, pCol
->zColl
);
684 sqlite3DbFree(db
, pTable
->aCol
);
689 ** Remove the memory data structures associated with the given
690 ** Table. No changes are made to disk by this routine.
692 ** This routine just deletes the data structure. It does not unlink
693 ** the table data structure from the hash table. But it does destroy
694 ** memory structures of the indices and foreign keys associated with
697 ** The db parameter is optional. It is needed if the Table object
698 ** contains lookaside memory. (Table objects in the schema do not use
699 ** lookaside memory, but some ephemeral Table objects do.) Or the
700 ** db parameter can be used with db->pnBytesFreed to measure the memory
701 ** used by the Table object.
703 static void SQLITE_NOINLINE
deleteTable(sqlite3
*db
, Table
*pTable
){
704 Index
*pIndex
, *pNext
;
707 /* Record the number of outstanding lookaside allocations in schema Tables
708 ** prior to doing any free() operations. Since schema Tables do not use
709 ** lookaside, this number should not change.
711 ** If malloc has already failed, it may be that it failed while allocating
712 ** a Table object that was going to be marked ephemeral. So do not check
713 ** that no lookaside memory is used in this case either. */
715 if( db
&& !db
->mallocFailed
&& (pTable
->tabFlags
& TF_Ephemeral
)==0 ){
716 nLookaside
= sqlite3LookasideUsed(db
, 0);
720 /* Delete all indices associated with this table. */
721 for(pIndex
= pTable
->pIndex
; pIndex
; pIndex
=pNext
){
722 pNext
= pIndex
->pNext
;
723 assert( pIndex
->pSchema
==pTable
->pSchema
724 || (IsVirtual(pTable
) && pIndex
->idxType
!=SQLITE_IDXTYPE_APPDEF
) );
725 if( (db
==0 || db
->pnBytesFreed
==0) && !IsVirtual(pTable
) ){
726 char *zName
= pIndex
->zName
;
727 TESTONLY ( Index
*pOld
= ) sqlite3HashInsert(
728 &pIndex
->pSchema
->idxHash
, zName
, 0
730 assert( db
==0 || sqlite3SchemaMutexHeld(db
, 0, pIndex
->pSchema
) );
731 assert( pOld
==pIndex
|| pOld
==0 );
733 sqlite3FreeIndex(db
, pIndex
);
736 /* Delete any foreign keys attached to this table. */
737 sqlite3FkDelete(db
, pTable
);
739 /* Delete the Table structure itself.
741 sqlite3DeleteColumnNames(db
, pTable
);
742 sqlite3DbFree(db
, pTable
->zName
);
743 sqlite3DbFree(db
, pTable
->zColAff
);
744 sqlite3SelectDelete(db
, pTable
->pSelect
);
745 sqlite3ExprListDelete(db
, pTable
->pCheck
);
746 #ifndef SQLITE_OMIT_VIRTUALTABLE
747 sqlite3VtabClear(db
, pTable
);
749 sqlite3DbFree(db
, pTable
);
751 /* Verify that no lookaside memory was used by schema tables */
752 assert( nLookaside
==0 || nLookaside
==sqlite3LookasideUsed(db
,0) );
754 void sqlite3DeleteTable(sqlite3
*db
, Table
*pTable
){
755 /* Do not delete the table until the reference count reaches zero. */
756 if( !pTable
) return;
757 if( ((!db
|| db
->pnBytesFreed
==0) && (--pTable
->nTabRef
)>0) ) return;
758 deleteTable(db
, pTable
);
763 ** Unlink the given table from the hash tables and the delete the
764 ** table structure with all its indices and foreign keys.
766 void sqlite3UnlinkAndDeleteTable(sqlite3
*db
, int iDb
, const char *zTabName
){
771 assert( iDb
>=0 && iDb
<db
->nDb
);
773 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
774 testcase( zTabName
[0]==0 ); /* Zero-length table names are allowed */
776 p
= sqlite3HashInsert(&pDb
->pSchema
->tblHash
, zTabName
, 0);
777 sqlite3DeleteTable(db
, p
);
778 db
->mDbFlags
|= DBFLAG_SchemaChange
;
782 ** Given a token, return a string that consists of the text of that
783 ** token. Space to hold the returned string
784 ** is obtained from sqliteMalloc() and must be freed by the calling
787 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that
788 ** surround the body of the token are removed.
790 ** Tokens are often just pointers into the original SQL text and so
791 ** are not \000 terminated and are not persistent. The returned string
792 ** is \000 terminated and is persistent.
794 char *sqlite3NameFromToken(sqlite3
*db
, Token
*pName
){
797 zName
= sqlite3DbStrNDup(db
, (char*)pName
->z
, pName
->n
);
798 sqlite3Dequote(zName
);
806 ** Open the sqlite_schema table stored in database number iDb for
807 ** writing. The table is opened using cursor 0.
809 void sqlite3OpenSchemaTable(Parse
*p
, int iDb
){
810 Vdbe
*v
= sqlite3GetVdbe(p
);
811 sqlite3TableLock(p
, iDb
, SCHEMA_ROOT
, 1, DFLT_SCHEMA_TABLE
);
812 sqlite3VdbeAddOp4Int(v
, OP_OpenWrite
, 0, SCHEMA_ROOT
, iDb
, 5);
819 ** Parameter zName points to a nul-terminated buffer containing the name
820 ** of a database ("main", "temp" or the name of an attached db). This
821 ** function returns the index of the named database in db->aDb[], or
822 ** -1 if the named db cannot be found.
824 int sqlite3FindDbName(sqlite3
*db
, const char *zName
){
825 int i
= -1; /* Database number */
828 for(i
=(db
->nDb
-1), pDb
=&db
->aDb
[i
]; i
>=0; i
--, pDb
--){
829 if( 0==sqlite3_stricmp(pDb
->zDbSName
, zName
) ) break;
830 /* "main" is always an acceptable alias for the primary database
831 ** even if it has been renamed using SQLITE_DBCONFIG_MAINDBNAME. */
832 if( i
==0 && 0==sqlite3_stricmp("main", zName
) ) break;
839 ** The token *pName contains the name of a database (either "main" or
840 ** "temp" or the name of an attached db). This routine returns the
841 ** index of the named database in db->aDb[], or -1 if the named db
844 int sqlite3FindDb(sqlite3
*db
, Token
*pName
){
845 int i
; /* Database number */
846 char *zName
; /* Name we are searching for */
847 zName
= sqlite3NameFromToken(db
, pName
);
848 i
= sqlite3FindDbName(db
, zName
);
849 sqlite3DbFree(db
, zName
);
853 /* The table or view or trigger name is passed to this routine via tokens
854 ** pName1 and pName2. If the table name was fully qualified, for example:
856 ** CREATE TABLE xxx.yyy (...);
858 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
859 ** the table name is not fully qualified, i.e.:
861 ** CREATE TABLE yyy(...);
863 ** Then pName1 is set to "yyy" and pName2 is "".
865 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or
866 ** pName2) that stores the unqualified table name. The index of the
867 ** database "xxx" is returned.
869 int sqlite3TwoPartName(
870 Parse
*pParse
, /* Parsing and code generating context */
871 Token
*pName1
, /* The "xxx" in the name "xxx.yyy" or "xxx" */
872 Token
*pName2
, /* The "yyy" in the name "xxx.yyy" */
873 Token
**pUnqual
/* Write the unqualified object name here */
875 int iDb
; /* Database holding the object */
876 sqlite3
*db
= pParse
->db
;
880 if( db
->init
.busy
) {
881 sqlite3ErrorMsg(pParse
, "corrupt database");
885 iDb
= sqlite3FindDb(db
, pName1
);
887 sqlite3ErrorMsg(pParse
, "unknown database %T", pName1
);
891 assert( db
->init
.iDb
==0 || db
->init
.busy
|| IN_SPECIAL_PARSE
892 || (db
->mDbFlags
& DBFLAG_Vacuum
)!=0);
900 ** True if PRAGMA writable_schema is ON
902 int sqlite3WritableSchema(sqlite3
*db
){
903 testcase( (db
->flags
&(SQLITE_WriteSchema
|SQLITE_Defensive
))==0 );
904 testcase( (db
->flags
&(SQLITE_WriteSchema
|SQLITE_Defensive
))==
905 SQLITE_WriteSchema
);
906 testcase( (db
->flags
&(SQLITE_WriteSchema
|SQLITE_Defensive
))==
908 testcase( (db
->flags
&(SQLITE_WriteSchema
|SQLITE_Defensive
))==
909 (SQLITE_WriteSchema
|SQLITE_Defensive
) );
910 return (db
->flags
&(SQLITE_WriteSchema
|SQLITE_Defensive
))==SQLITE_WriteSchema
;
914 ** This routine is used to check if the UTF-8 string zName is a legal
915 ** unqualified name for a new schema object (table, index, view or
916 ** trigger). All names are legal except those that begin with the string
917 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
918 ** is reserved for internal use.
920 ** When parsing the sqlite_schema table, this routine also checks to
921 ** make sure the "type", "name", and "tbl_name" columns are consistent
924 int sqlite3CheckObjectName(
925 Parse
*pParse
, /* Parsing context */
926 const char *zName
, /* Name of the object to check */
927 const char *zType
, /* Type of this object */
928 const char *zTblName
/* Parent table name for triggers and indexes */
930 sqlite3
*db
= pParse
->db
;
931 if( sqlite3WritableSchema(db
)
932 || db
->init
.imposterTable
933 || !sqlite3Config
.bExtraSchemaChecks
935 /* Skip these error checks for writable_schema=ON */
939 if( sqlite3_stricmp(zType
, db
->init
.azInit
[0])
940 || sqlite3_stricmp(zName
, db
->init
.azInit
[1])
941 || sqlite3_stricmp(zTblName
, db
->init
.azInit
[2])
943 sqlite3ErrorMsg(pParse
, ""); /* corruptSchema() will supply the error */
947 if( (pParse
->nested
==0 && 0==sqlite3StrNICmp(zName
, "sqlite_", 7))
948 || (sqlite3ReadOnlyShadowTables(db
) && sqlite3ShadowTableName(db
, zName
))
950 sqlite3ErrorMsg(pParse
, "object name reserved for internal use: %s",
960 ** Return the PRIMARY KEY index of a table
962 Index
*sqlite3PrimaryKeyIndex(Table
*pTab
){
964 for(p
=pTab
->pIndex
; p
&& !IsPrimaryKeyIndex(p
); p
=p
->pNext
){}
969 ** Convert an table column number into a index column number. That is,
970 ** for the column iCol in the table (as defined by the CREATE TABLE statement)
971 ** find the (first) offset of that column in index pIdx. Or return -1
972 ** if column iCol is not used in index pIdx.
974 i16
sqlite3TableColumnToIndex(Index
*pIdx
, i16 iCol
){
976 for(i
=0; i
<pIdx
->nColumn
; i
++){
977 if( iCol
==pIdx
->aiColumn
[i
] ) return i
;
982 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
983 /* Convert a storage column number into a table column number.
985 ** The storage column number (0,1,2,....) is the index of the value
986 ** as it appears in the record on disk. The true column number
987 ** is the index (0,1,2,...) of the column in the CREATE TABLE statement.
989 ** The storage column number is less than the table column number if
990 ** and only there are VIRTUAL columns to the left.
992 ** If SQLITE_OMIT_GENERATED_COLUMNS, this routine is a no-op macro.
994 i16
sqlite3StorageColumnToTable(Table
*pTab
, i16 iCol
){
995 if( pTab
->tabFlags
& TF_HasVirtual
){
997 for(i
=0; i
<=iCol
; i
++){
998 if( pTab
->aCol
[i
].colFlags
& COLFLAG_VIRTUAL
) iCol
++;
1005 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1006 /* Convert a table column number into a storage column number.
1008 ** The storage column number (0,1,2,....) is the index of the value
1009 ** as it appears in the record on disk. Or, if the input column is
1010 ** the N-th virtual column (zero-based) then the storage number is
1011 ** the number of non-virtual columns in the table plus N.
1013 ** The true column number is the index (0,1,2,...) of the column in
1014 ** the CREATE TABLE statement.
1016 ** If the input column is a VIRTUAL column, then it should not appear
1017 ** in storage. But the value sometimes is cached in registers that
1018 ** follow the range of registers used to construct storage. This
1019 ** avoids computing the same VIRTUAL column multiple times, and provides
1020 ** values for use by OP_Param opcodes in triggers. Hence, if the
1021 ** input column is a VIRTUAL table, put it after all the other columns.
1023 ** In the following, N means "normal column", S means STORED, and
1024 ** V means VIRTUAL. Suppose the CREATE TABLE has columns like this:
1026 ** CREATE TABLE ex(N,S,V,N,S,V,N,S,V);
1027 ** -- 0 1 2 3 4 5 6 7 8
1029 ** Then the mapping from this function is as follows:
1031 ** INPUTS: 0 1 2 3 4 5 6 7 8
1032 ** OUTPUTS: 0 1 6 2 3 7 4 5 8
1034 ** So, in other words, this routine shifts all the virtual columns to
1037 ** If SQLITE_OMIT_GENERATED_COLUMNS then there are no virtual columns and
1038 ** this routine is a no-op macro. If the pTab does not have any virtual
1039 ** columns, then this routine is no-op that always return iCol. If iCol
1040 ** is negative (indicating the ROWID column) then this routine return iCol.
1042 i16
sqlite3TableColumnToStorage(Table
*pTab
, i16 iCol
){
1045 assert( iCol
<pTab
->nCol
);
1046 if( (pTab
->tabFlags
& TF_HasVirtual
)==0 || iCol
<0 ) return iCol
;
1047 for(i
=0, n
=0; i
<iCol
; i
++){
1048 if( (pTab
->aCol
[i
].colFlags
& COLFLAG_VIRTUAL
)==0 ) n
++;
1050 if( pTab
->aCol
[i
].colFlags
& COLFLAG_VIRTUAL
){
1051 /* iCol is a virtual column itself */
1052 return pTab
->nNVCol
+ i
- n
;
1054 /* iCol is a normal or stored column */
1061 ** Insert a single OP_JournalMode query opcode in order to force the
1062 ** prepared statement to return false for sqlite3_stmt_readonly(). This
1063 ** is used by CREATE TABLE IF NOT EXISTS and similar if the table already
1064 ** exists, so that the prepared statement for CREATE TABLE IF NOT EXISTS
1065 ** will return false for sqlite3_stmt_readonly() even if that statement
1066 ** is a read-only no-op.
1068 static void sqlite3ForceNotReadOnly(Parse
*pParse
){
1069 int iReg
= ++pParse
->nMem
;
1070 Vdbe
*v
= sqlite3GetVdbe(pParse
);
1072 sqlite3VdbeAddOp3(v
, OP_JournalMode
, 0, iReg
, PAGER_JOURNALMODE_QUERY
);
1073 sqlite3VdbeUsesBtree(v
, 0);
1078 ** Begin constructing a new table representation in memory. This is
1079 ** the first of several action routines that get called in response
1080 ** to a CREATE TABLE statement. In particular, this routine is called
1081 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
1082 ** flag is true if the table should be stored in the auxiliary database
1083 ** file instead of in the main database file. This is normally the case
1084 ** when the "TEMP" or "TEMPORARY" keyword occurs in between
1085 ** CREATE and TABLE.
1087 ** The new table record is initialized and put in pParse->pNewTable.
1088 ** As more of the CREATE TABLE statement is parsed, additional action
1089 ** routines will be called to add more information to this record.
1090 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
1091 ** is called to complete the construction of the new table record.
1093 void sqlite3StartTable(
1094 Parse
*pParse
, /* Parser context */
1095 Token
*pName1
, /* First part of the name of the table or view */
1096 Token
*pName2
, /* Second part of the name of the table or view */
1097 int isTemp
, /* True if this is a TEMP table */
1098 int isView
, /* True if this is a VIEW */
1099 int isVirtual
, /* True if this is a VIRTUAL table */
1100 int noErr
/* Do nothing if table already exists */
1103 char *zName
= 0; /* The name of the new table */
1104 sqlite3
*db
= pParse
->db
;
1106 int iDb
; /* Database number to create the table in */
1107 Token
*pName
; /* Unqualified name of the table to create */
1109 if( db
->init
.busy
&& db
->init
.newTnum
==1 ){
1110 /* Special case: Parsing the sqlite_schema or sqlite_temp_schema schema */
1112 zName
= sqlite3DbStrDup(db
, SCHEMA_TABLE(iDb
));
1115 /* The common case */
1116 iDb
= sqlite3TwoPartName(pParse
, pName1
, pName2
, &pName
);
1118 if( !OMIT_TEMPDB
&& isTemp
&& pName2
->n
>0 && iDb
!=1 ){
1119 /* If creating a temp table, the name may not be qualified. Unless
1120 ** the database name is "temp" anyway. */
1121 sqlite3ErrorMsg(pParse
, "temporary table name must be unqualified");
1124 if( !OMIT_TEMPDB
&& isTemp
) iDb
= 1;
1125 zName
= sqlite3NameFromToken(db
, pName
);
1126 if( IN_RENAME_OBJECT
){
1127 sqlite3RenameTokenMap(pParse
, (void*)zName
, pName
);
1130 pParse
->sNameToken
= *pName
;
1131 if( zName
==0 ) return;
1132 if( sqlite3CheckObjectName(pParse
, zName
, isView
?"view":"table", zName
) ){
1133 goto begin_table_error
;
1135 if( db
->init
.iDb
==1 ) isTemp
= 1;
1136 #ifndef SQLITE_OMIT_AUTHORIZATION
1137 assert( isTemp
==0 || isTemp
==1 );
1138 assert( isView
==0 || isView
==1 );
1140 static const u8 aCode
[] = {
1141 SQLITE_CREATE_TABLE
,
1142 SQLITE_CREATE_TEMP_TABLE
,
1144 SQLITE_CREATE_TEMP_VIEW
1146 char *zDb
= db
->aDb
[iDb
].zDbSName
;
1147 if( sqlite3AuthCheck(pParse
, SQLITE_INSERT
, SCHEMA_TABLE(isTemp
), 0, zDb
) ){
1148 goto begin_table_error
;
1150 if( !isVirtual
&& sqlite3AuthCheck(pParse
, (int)aCode
[isTemp
+2*isView
],
1152 goto begin_table_error
;
1157 /* Make sure the new table name does not collide with an existing
1158 ** index or table name in the same database. Issue an error message if
1159 ** it does. The exception is if the statement being parsed was passed
1160 ** to an sqlite3_declare_vtab() call. In that case only the column names
1161 ** and types will be used, so there is no need to test for namespace
1164 if( !IN_SPECIAL_PARSE
){
1165 char *zDb
= db
->aDb
[iDb
].zDbSName
;
1166 if( SQLITE_OK
!=sqlite3ReadSchema(pParse
) ){
1167 goto begin_table_error
;
1169 pTable
= sqlite3FindTable(db
, zName
, zDb
);
1172 sqlite3ErrorMsg(pParse
, "table %T already exists", pName
);
1174 assert( !db
->init
.busy
|| CORRUPT_DB
);
1175 sqlite3CodeVerifySchema(pParse
, iDb
);
1176 sqlite3ForceNotReadOnly(pParse
);
1178 goto begin_table_error
;
1180 if( sqlite3FindIndex(db
, zName
, zDb
)!=0 ){
1181 sqlite3ErrorMsg(pParse
, "there is already an index named %s", zName
);
1182 goto begin_table_error
;
1186 pTable
= sqlite3DbMallocZero(db
, sizeof(Table
));
1188 assert( db
->mallocFailed
);
1189 pParse
->rc
= SQLITE_NOMEM_BKPT
;
1191 goto begin_table_error
;
1193 pTable
->zName
= zName
;
1195 pTable
->pSchema
= db
->aDb
[iDb
].pSchema
;
1196 pTable
->nTabRef
= 1;
1197 #ifdef SQLITE_DEFAULT_ROWEST
1198 pTable
->nRowLogEst
= sqlite3LogEst(SQLITE_DEFAULT_ROWEST
);
1200 pTable
->nRowLogEst
= 200; assert( 200==sqlite3LogEst(1048576) );
1202 assert( pParse
->pNewTable
==0 );
1203 pParse
->pNewTable
= pTable
;
1205 /* Begin generating the code that will insert the table record into
1206 ** the schema table. Note in particular that we must go ahead
1207 ** and allocate the record number for the table entry now. Before any
1208 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause
1209 ** indices to be created and the table record must come before the
1210 ** indices. Hence, the record number for the table must be allocated
1213 if( !db
->init
.busy
&& (v
= sqlite3GetVdbe(pParse
))!=0 ){
1216 int reg1
, reg2
, reg3
;
1217 /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */
1218 static const char nullRow
[] = { 6, 0, 0, 0, 0, 0 };
1219 sqlite3BeginWriteOperation(pParse
, 1, iDb
);
1221 #ifndef SQLITE_OMIT_VIRTUALTABLE
1223 sqlite3VdbeAddOp0(v
, OP_VBegin
);
1227 /* If the file format and encoding in the database have not been set,
1230 reg1
= pParse
->regRowid
= ++pParse
->nMem
;
1231 reg2
= pParse
->regRoot
= ++pParse
->nMem
;
1232 reg3
= ++pParse
->nMem
;
1233 sqlite3VdbeAddOp3(v
, OP_ReadCookie
, iDb
, reg3
, BTREE_FILE_FORMAT
);
1234 sqlite3VdbeUsesBtree(v
, iDb
);
1235 addr1
= sqlite3VdbeAddOp1(v
, OP_If
, reg3
); VdbeCoverage(v
);
1236 fileFormat
= (db
->flags
& SQLITE_LegacyFileFmt
)!=0 ?
1237 1 : SQLITE_MAX_FILE_FORMAT
;
1238 sqlite3VdbeAddOp3(v
, OP_SetCookie
, iDb
, BTREE_FILE_FORMAT
, fileFormat
);
1239 sqlite3VdbeAddOp3(v
, OP_SetCookie
, iDb
, BTREE_TEXT_ENCODING
, ENC(db
));
1240 sqlite3VdbeJumpHere(v
, addr1
);
1242 /* This just creates a place-holder record in the sqlite_schema table.
1243 ** The record created does not contain anything yet. It will be replaced
1244 ** by the real entry in code generated at sqlite3EndTable().
1246 ** The rowid for the new entry is left in register pParse->regRowid.
1247 ** The root page number of the new table is left in reg pParse->regRoot.
1248 ** The rowid and root page number values are needed by the code that
1249 ** sqlite3EndTable will generate.
1251 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
1252 if( isView
|| isVirtual
){
1253 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, reg2
);
1257 assert( !pParse
->bReturning
);
1258 pParse
->u1
.addrCrTab
=
1259 sqlite3VdbeAddOp3(v
, OP_CreateBtree
, iDb
, reg2
, BTREE_INTKEY
);
1261 sqlite3OpenSchemaTable(pParse
, iDb
);
1262 sqlite3VdbeAddOp2(v
, OP_NewRowid
, 0, reg1
);
1263 sqlite3VdbeAddOp4(v
, OP_Blob
, 6, reg3
, 0, nullRow
, P4_STATIC
);
1264 sqlite3VdbeAddOp3(v
, OP_Insert
, 0, reg3
, reg1
);
1265 sqlite3VdbeChangeP5(v
, OPFLAG_APPEND
);
1266 sqlite3VdbeAddOp0(v
, OP_Close
);
1269 /* Normal (non-error) return. */
1272 /* If an error occurs, we jump here */
1274 sqlite3DbFree(db
, zName
);
1278 /* Set properties of a table column based on the (magical)
1279 ** name of the column.
1281 #if SQLITE_ENABLE_HIDDEN_COLUMNS
1282 void sqlite3ColumnPropertiesFromName(Table
*pTab
, Column
*pCol
){
1283 if( sqlite3_strnicmp(pCol
->zName
, "__hidden__", 10)==0 ){
1284 pCol
->colFlags
|= COLFLAG_HIDDEN
;
1285 if( pTab
) pTab
->tabFlags
|= TF_HasHidden
;
1286 }else if( pTab
&& pCol
!=pTab
->aCol
&& (pCol
[-1].colFlags
& COLFLAG_HIDDEN
) ){
1287 pTab
->tabFlags
|= TF_OOOHidden
;
1293 ** Name of the special TEMP trigger used to implement RETURNING. The
1294 ** name begins with "sqlite_" so that it is guaranteed not to collide
1295 ** with any application-generated triggers.
1297 #define RETURNING_TRIGGER_NAME "sqlite_returning"
1300 ** Clean up the data structures associated with the RETURNING clause.
1302 static void sqlite3DeleteReturning(sqlite3
*db
, Returning
*pRet
){
1304 pHash
= &(db
->aDb
[1].pSchema
->trigHash
);
1305 sqlite3HashInsert(pHash
, RETURNING_TRIGGER_NAME
, 0);
1306 sqlite3ExprListDelete(db
, pRet
->pReturnEL
);
1307 sqlite3DbFree(db
, pRet
);
1311 ** Add the RETURNING clause to the parse currently underway.
1313 ** This routine creates a special TEMP trigger that will fire for each row
1314 ** of the DML statement. That TEMP trigger contains a single SELECT
1315 ** statement with a result set that is the argument of the RETURNING clause.
1316 ** The trigger has the Trigger.bReturning flag and an opcode of
1317 ** TK_RETURNING instead of TK_SELECT, so that the trigger code generator
1318 ** knows to handle it specially. The TEMP trigger is automatically
1319 ** removed at the end of the parse.
1321 ** When this routine is called, we do not yet know if the RETURNING clause
1322 ** is attached to a DELETE, INSERT, or UPDATE, so construct it as a
1323 ** RETURNING trigger instead. It will then be converted into the appropriate
1324 ** type on the first call to sqlite3TriggersExist().
1326 void sqlite3AddReturning(Parse
*pParse
, ExprList
*pList
){
1329 sqlite3
*db
= pParse
->db
;
1330 if( pParse
->pNewTrigger
){
1331 sqlite3ErrorMsg(pParse
, "cannot use RETURNING in a trigger");
1333 assert( pParse
->bReturning
==0 );
1335 pParse
->bReturning
= 1;
1336 pRet
= sqlite3DbMallocZero(db
, sizeof(*pRet
));
1338 sqlite3ExprListDelete(db
, pList
);
1341 pParse
->u1
.pReturning
= pRet
;
1342 pRet
->pParse
= pParse
;
1343 pRet
->pReturnEL
= pList
;
1344 sqlite3ParserAddCleanup(pParse
,
1345 (void(*)(sqlite3
*,void*))sqlite3DeleteReturning
, pRet
);
1346 testcase( pParse
->earlyCleanup
);
1347 if( db
->mallocFailed
) return;
1348 pRet
->retTrig
.zName
= RETURNING_TRIGGER_NAME
;
1349 pRet
->retTrig
.op
= TK_RETURNING
;
1350 pRet
->retTrig
.tr_tm
= TRIGGER_AFTER
;
1351 pRet
->retTrig
.bReturning
= 1;
1352 pRet
->retTrig
.pSchema
= db
->aDb
[1].pSchema
;
1353 pRet
->retTrig
.pTabSchema
= db
->aDb
[1].pSchema
;
1354 pRet
->retTrig
.step_list
= &pRet
->retTStep
;
1355 pRet
->retTStep
.op
= TK_RETURNING
;
1356 pRet
->retTStep
.pTrig
= &pRet
->retTrig
;
1357 pRet
->retTStep
.pExprList
= pList
;
1358 pHash
= &(db
->aDb
[1].pSchema
->trigHash
);
1359 assert( sqlite3HashFind(pHash
, RETURNING_TRIGGER_NAME
)==0 || pParse
->nErr
);
1360 if( sqlite3HashInsert(pHash
, RETURNING_TRIGGER_NAME
, &pRet
->retTrig
)
1362 sqlite3OomFault(db
);
1367 ** Add a new column to the table currently being constructed.
1369 ** The parser calls this routine once for each column declaration
1370 ** in a CREATE TABLE statement. sqlite3StartTable() gets called
1371 ** first to get things going. Then this routine is called for each
1374 void sqlite3AddColumn(Parse
*pParse
, Token
*pName
, Token
*pType
){
1380 sqlite3
*db
= pParse
->db
;
1383 if( (p
= pParse
->pNewTable
)==0 ) return;
1384 if( p
->nCol
+1>db
->aLimit
[SQLITE_LIMIT_COLUMN
] ){
1385 sqlite3ErrorMsg(pParse
, "too many columns on %s", p
->zName
);
1388 z
= sqlite3DbMallocRaw(db
, pName
->n
+ pType
->n
+ 2);
1390 if( IN_RENAME_OBJECT
) sqlite3RenameTokenMap(pParse
, (void*)z
, pName
);
1391 memcpy(z
, pName
->z
, pName
->n
);
1394 hName
= sqlite3StrIHash(z
);
1395 for(i
=0; i
<p
->nCol
; i
++){
1396 if( p
->aCol
[i
].hName
==hName
&& sqlite3StrICmp(z
, p
->aCol
[i
].zName
)==0 ){
1397 sqlite3ErrorMsg(pParse
, "duplicate column name: %s", z
);
1398 sqlite3DbFree(db
, z
);
1402 if( (p
->nCol
& 0x7)==0 ){
1404 aNew
= sqlite3DbRealloc(db
,p
->aCol
,(p
->nCol
+8)*sizeof(p
->aCol
[0]));
1406 sqlite3DbFree(db
, z
);
1411 pCol
= &p
->aCol
[p
->nCol
];
1412 memset(pCol
, 0, sizeof(p
->aCol
[0]));
1414 pCol
->hName
= hName
;
1415 sqlite3ColumnPropertiesFromName(p
, pCol
);
1418 /* If there is no type specified, columns have the default affinity
1419 ** 'BLOB' with a default size of 4 bytes. */
1420 pCol
->affinity
= SQLITE_AFF_BLOB
;
1422 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1423 if( 4>=sqlite3GlobalConfig
.szSorterRef
){
1424 pCol
->colFlags
|= COLFLAG_SORTERREF
;
1428 zType
= z
+ sqlite3Strlen30(z
) + 1;
1429 memcpy(zType
, pType
->z
, pType
->n
);
1430 zType
[pType
->n
] = 0;
1431 sqlite3Dequote(zType
);
1432 pCol
->affinity
= sqlite3AffinityType(zType
, pCol
);
1433 pCol
->colFlags
|= COLFLAG_HASTYPE
;
1437 pParse
->constraintName
.n
= 0;
1441 ** This routine is called by the parser while in the middle of
1442 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has
1443 ** been seen on a column. This routine sets the notNull flag on
1444 ** the column currently under construction.
1446 void sqlite3AddNotNull(Parse
*pParse
, int onError
){
1449 p
= pParse
->pNewTable
;
1450 if( p
==0 || NEVER(p
->nCol
<1) ) return;
1451 pCol
= &p
->aCol
[p
->nCol
-1];
1452 pCol
->notNull
= (u8
)onError
;
1453 p
->tabFlags
|= TF_HasNotNull
;
1455 /* Set the uniqNotNull flag on any UNIQUE or PK indexes already created
1456 ** on this column. */
1457 if( pCol
->colFlags
& COLFLAG_UNIQUE
){
1459 for(pIdx
=p
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
){
1460 assert( pIdx
->nKeyCol
==1 && pIdx
->onError
!=OE_None
);
1461 if( pIdx
->aiColumn
[0]==p
->nCol
-1 ){
1462 pIdx
->uniqNotNull
= 1;
1469 ** Scan the column type name zType (length nType) and return the
1470 ** associated affinity type.
1472 ** This routine does a case-independent search of zType for the
1473 ** substrings in the following table. If one of the substrings is
1474 ** found, the corresponding affinity is returned. If zType contains
1475 ** more than one of the substrings, entries toward the top of
1476 ** the table take priority. For example, if zType is 'BLOBINT',
1477 ** SQLITE_AFF_INTEGER is returned.
1479 ** Substring | Affinity
1480 ** --------------------------------
1481 ** 'INT' | SQLITE_AFF_INTEGER
1482 ** 'CHAR' | SQLITE_AFF_TEXT
1483 ** 'CLOB' | SQLITE_AFF_TEXT
1484 ** 'TEXT' | SQLITE_AFF_TEXT
1485 ** 'BLOB' | SQLITE_AFF_BLOB
1486 ** 'REAL' | SQLITE_AFF_REAL
1487 ** 'FLOA' | SQLITE_AFF_REAL
1488 ** 'DOUB' | SQLITE_AFF_REAL
1490 ** If none of the substrings in the above table are found,
1491 ** SQLITE_AFF_NUMERIC is returned.
1493 char sqlite3AffinityType(const char *zIn
, Column
*pCol
){
1495 char aff
= SQLITE_AFF_NUMERIC
;
1496 const char *zChar
= 0;
1500 h
= (h
<<8) + sqlite3UpperToLower
[(*zIn
)&0xff];
1502 if( h
==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */
1503 aff
= SQLITE_AFF_TEXT
;
1505 }else if( h
==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */
1506 aff
= SQLITE_AFF_TEXT
;
1507 }else if( h
==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */
1508 aff
= SQLITE_AFF_TEXT
;
1509 }else if( h
==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */
1510 && (aff
==SQLITE_AFF_NUMERIC
|| aff
==SQLITE_AFF_REAL
) ){
1511 aff
= SQLITE_AFF_BLOB
;
1512 if( zIn
[0]=='(' ) zChar
= zIn
;
1513 #ifndef SQLITE_OMIT_FLOATING_POINT
1514 }else if( h
==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */
1515 && aff
==SQLITE_AFF_NUMERIC
){
1516 aff
= SQLITE_AFF_REAL
;
1517 }else if( h
==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */
1518 && aff
==SQLITE_AFF_NUMERIC
){
1519 aff
= SQLITE_AFF_REAL
;
1520 }else if( h
==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */
1521 && aff
==SQLITE_AFF_NUMERIC
){
1522 aff
= SQLITE_AFF_REAL
;
1524 }else if( (h
&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */
1525 aff
= SQLITE_AFF_INTEGER
;
1530 /* If pCol is not NULL, store an estimate of the field size. The
1531 ** estimate is scaled so that the size of an integer is 1. */
1533 int v
= 0; /* default size is approx 4 bytes */
1534 if( aff
<SQLITE_AFF_NUMERIC
){
1537 if( sqlite3Isdigit(zChar
[0]) ){
1538 /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */
1539 sqlite3GetInt32(zChar
, &v
);
1545 v
= 16; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/
1548 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1549 if( v
>=sqlite3GlobalConfig
.szSorterRef
){
1550 pCol
->colFlags
|= COLFLAG_SORTERREF
;
1554 if( v
>255 ) v
= 255;
1561 ** The expression is the default value for the most recently added column
1562 ** of the table currently under construction.
1564 ** Default value expressions must be constant. Raise an exception if this
1567 ** This routine is called by the parser while in the middle of
1568 ** parsing a CREATE TABLE statement.
1570 void sqlite3AddDefaultValue(
1571 Parse
*pParse
, /* Parsing context */
1572 Expr
*pExpr
, /* The parsed expression of the default value */
1573 const char *zStart
, /* Start of the default value text */
1574 const char *zEnd
/* First character past end of defaut value text */
1578 sqlite3
*db
= pParse
->db
;
1579 p
= pParse
->pNewTable
;
1581 int isInit
= db
->init
.busy
&& db
->init
.iDb
!=1;
1582 pCol
= &(p
->aCol
[p
->nCol
-1]);
1583 if( !sqlite3ExprIsConstantOrFunction(pExpr
, isInit
) ){
1584 sqlite3ErrorMsg(pParse
, "default value of column [%s] is not constant",
1586 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1587 }else if( pCol
->colFlags
& COLFLAG_GENERATED
){
1588 testcase( pCol
->colFlags
& COLFLAG_VIRTUAL
);
1589 testcase( pCol
->colFlags
& COLFLAG_STORED
);
1590 sqlite3ErrorMsg(pParse
, "cannot use DEFAULT on a generated column");
1593 /* A copy of pExpr is used instead of the original, as pExpr contains
1594 ** tokens that point to volatile memory.
1597 sqlite3ExprDelete(db
, pCol
->pDflt
);
1598 memset(&x
, 0, sizeof(x
));
1600 x
.u
.zToken
= sqlite3DbSpanDup(db
, zStart
, zEnd
);
1603 pCol
->pDflt
= sqlite3ExprDup(db
, &x
, EXPRDUP_REDUCE
);
1604 sqlite3DbFree(db
, x
.u
.zToken
);
1607 if( IN_RENAME_OBJECT
){
1608 sqlite3RenameExprUnmap(pParse
, pExpr
);
1610 sqlite3ExprDelete(db
, pExpr
);
1614 ** Backwards Compatibility Hack:
1616 ** Historical versions of SQLite accepted strings as column names in
1617 ** indexes and PRIMARY KEY constraints and in UNIQUE constraints. Example:
1619 ** CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim)
1620 ** CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC);
1622 ** This is goofy. But to preserve backwards compatibility we continue to
1623 ** accept it. This routine does the necessary conversion. It converts
1624 ** the expression given in its argument from a TK_STRING into a TK_ID
1625 ** if the expression is just a TK_STRING with an optional COLLATE clause.
1626 ** If the expression is anything other than TK_STRING, the expression is
1629 static void sqlite3StringToId(Expr
*p
){
1630 if( p
->op
==TK_STRING
){
1632 }else if( p
->op
==TK_COLLATE
&& p
->pLeft
->op
==TK_STRING
){
1633 p
->pLeft
->op
= TK_ID
;
1638 ** Tag the given column as being part of the PRIMARY KEY
1640 static void makeColumnPartOfPrimaryKey(Parse
*pParse
, Column
*pCol
){
1641 pCol
->colFlags
|= COLFLAG_PRIMKEY
;
1642 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1643 if( pCol
->colFlags
& COLFLAG_GENERATED
){
1644 testcase( pCol
->colFlags
& COLFLAG_VIRTUAL
);
1645 testcase( pCol
->colFlags
& COLFLAG_STORED
);
1646 sqlite3ErrorMsg(pParse
,
1647 "generated columns cannot be part of the PRIMARY KEY");
1653 ** Designate the PRIMARY KEY for the table. pList is a list of names
1654 ** of columns that form the primary key. If pList is NULL, then the
1655 ** most recently added column of the table is the primary key.
1657 ** A table can have at most one primary key. If the table already has
1658 ** a primary key (and this is the second primary key) then create an
1661 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
1662 ** then we will try to use that column as the rowid. Set the Table.iPKey
1663 ** field of the table under construction to be the index of the
1664 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is
1665 ** no INTEGER PRIMARY KEY.
1667 ** If the key is not an INTEGER PRIMARY KEY, then create a unique
1668 ** index for the key. No index is created for INTEGER PRIMARY KEYs.
1670 void sqlite3AddPrimaryKey(
1671 Parse
*pParse
, /* Parsing context */
1672 ExprList
*pList
, /* List of field names to be indexed */
1673 int onError
, /* What to do with a uniqueness conflict */
1674 int autoInc
, /* True if the AUTOINCREMENT keyword is present */
1675 int sortOrder
/* SQLITE_SO_ASC or SQLITE_SO_DESC */
1677 Table
*pTab
= pParse
->pNewTable
;
1681 if( pTab
==0 ) goto primary_key_exit
;
1682 if( pTab
->tabFlags
& TF_HasPrimaryKey
){
1683 sqlite3ErrorMsg(pParse
,
1684 "table \"%s\" has more than one primary key", pTab
->zName
);
1685 goto primary_key_exit
;
1687 pTab
->tabFlags
|= TF_HasPrimaryKey
;
1689 iCol
= pTab
->nCol
- 1;
1690 pCol
= &pTab
->aCol
[iCol
];
1691 makeColumnPartOfPrimaryKey(pParse
, pCol
);
1694 nTerm
= pList
->nExpr
;
1695 for(i
=0; i
<nTerm
; i
++){
1696 Expr
*pCExpr
= sqlite3ExprSkipCollate(pList
->a
[i
].pExpr
);
1697 assert( pCExpr
!=0 );
1698 sqlite3StringToId(pCExpr
);
1699 if( pCExpr
->op
==TK_ID
){
1700 const char *zCName
= pCExpr
->u
.zToken
;
1701 for(iCol
=0; iCol
<pTab
->nCol
; iCol
++){
1702 if( sqlite3StrICmp(zCName
, pTab
->aCol
[iCol
].zName
)==0 ){
1703 pCol
= &pTab
->aCol
[iCol
];
1704 makeColumnPartOfPrimaryKey(pParse
, pCol
);
1713 && sqlite3StrICmp(sqlite3ColumnType(pCol
,""), "INTEGER")==0
1714 && sortOrder
!=SQLITE_SO_DESC
1716 if( IN_RENAME_OBJECT
&& pList
){
1717 Expr
*pCExpr
= sqlite3ExprSkipCollate(pList
->a
[0].pExpr
);
1718 sqlite3RenameTokenRemap(pParse
, &pTab
->iPKey
, pCExpr
);
1721 pTab
->keyConf
= (u8
)onError
;
1722 assert( autoInc
==0 || autoInc
==1 );
1723 pTab
->tabFlags
|= autoInc
*TF_Autoincrement
;
1724 if( pList
) pParse
->iPkSortOrder
= pList
->a
[0].sortFlags
;
1725 (void)sqlite3HasExplicitNulls(pParse
, pList
);
1726 }else if( autoInc
){
1727 #ifndef SQLITE_OMIT_AUTOINCREMENT
1728 sqlite3ErrorMsg(pParse
, "AUTOINCREMENT is only allowed on an "
1729 "INTEGER PRIMARY KEY");
1732 sqlite3CreateIndex(pParse
, 0, 0, 0, pList
, onError
, 0,
1733 0, sortOrder
, 0, SQLITE_IDXTYPE_PRIMARYKEY
);
1738 sqlite3ExprListDelete(pParse
->db
, pList
);
1743 ** Add a new CHECK constraint to the table currently under construction.
1745 void sqlite3AddCheckConstraint(
1746 Parse
*pParse
, /* Parsing context */
1747 Expr
*pCheckExpr
, /* The check expression */
1748 const char *zStart
, /* Opening "(" */
1749 const char *zEnd
/* Closing ")" */
1751 #ifndef SQLITE_OMIT_CHECK
1752 Table
*pTab
= pParse
->pNewTable
;
1753 sqlite3
*db
= pParse
->db
;
1754 if( pTab
&& !IN_DECLARE_VTAB
1755 && !sqlite3BtreeIsReadonly(db
->aDb
[db
->init
.iDb
].pBt
)
1757 pTab
->pCheck
= sqlite3ExprListAppend(pParse
, pTab
->pCheck
, pCheckExpr
);
1758 if( pParse
->constraintName
.n
){
1759 sqlite3ExprListSetName(pParse
, pTab
->pCheck
, &pParse
->constraintName
, 1);
1762 for(zStart
++; sqlite3Isspace(zStart
[0]); zStart
++){}
1763 while( sqlite3Isspace(zEnd
[-1]) ){ zEnd
--; }
1765 t
.n
= (int)(zEnd
- t
.z
);
1766 sqlite3ExprListSetName(pParse
, pTab
->pCheck
, &t
, 1);
1771 sqlite3ExprDelete(pParse
->db
, pCheckExpr
);
1776 ** Set the collation function of the most recently parsed table column
1777 ** to the CollSeq given.
1779 void sqlite3AddCollateType(Parse
*pParse
, Token
*pToken
){
1782 char *zColl
; /* Dequoted name of collation sequence */
1785 if( (p
= pParse
->pNewTable
)==0 || IN_RENAME_OBJECT
) return;
1788 zColl
= sqlite3NameFromToken(db
, pToken
);
1789 if( !zColl
) return;
1791 if( sqlite3LocateCollSeq(pParse
, zColl
) ){
1793 sqlite3DbFree(db
, p
->aCol
[i
].zColl
);
1794 p
->aCol
[i
].zColl
= zColl
;
1796 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
1797 ** then an index may have been created on this column before the
1798 ** collation type was added. Correct this if it is the case.
1800 for(pIdx
=p
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
){
1801 assert( pIdx
->nKeyCol
==1 );
1802 if( pIdx
->aiColumn
[0]==i
){
1803 pIdx
->azColl
[0] = p
->aCol
[i
].zColl
;
1807 sqlite3DbFree(db
, zColl
);
1811 /* Change the most recently parsed column to be a GENERATED ALWAYS AS
1814 void sqlite3AddGenerated(Parse
*pParse
, Expr
*pExpr
, Token
*pType
){
1815 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1816 u8 eType
= COLFLAG_VIRTUAL
;
1817 Table
*pTab
= pParse
->pNewTable
;
1820 /* generated column in an CREATE TABLE IF NOT EXISTS that already exists */
1821 goto generated_done
;
1823 pCol
= &(pTab
->aCol
[pTab
->nCol
-1]);
1824 if( IN_DECLARE_VTAB
){
1825 sqlite3ErrorMsg(pParse
, "virtual tables cannot use computed columns");
1826 goto generated_done
;
1828 if( pCol
->pDflt
) goto generated_error
;
1830 if( pType
->n
==7 && sqlite3StrNICmp("virtual",pType
->z
,7)==0 ){
1832 }else if( pType
->n
==6 && sqlite3StrNICmp("stored",pType
->z
,6)==0 ){
1833 eType
= COLFLAG_STORED
;
1835 goto generated_error
;
1838 if( eType
==COLFLAG_VIRTUAL
) pTab
->nNVCol
--;
1839 pCol
->colFlags
|= eType
;
1840 assert( TF_HasVirtual
==COLFLAG_VIRTUAL
);
1841 assert( TF_HasStored
==COLFLAG_STORED
);
1842 pTab
->tabFlags
|= eType
;
1843 if( pCol
->colFlags
& COLFLAG_PRIMKEY
){
1844 makeColumnPartOfPrimaryKey(pParse
, pCol
); /* For the error message */
1846 pCol
->pDflt
= pExpr
;
1848 goto generated_done
;
1851 sqlite3ErrorMsg(pParse
, "error in generated column \"%s\"",
1854 sqlite3ExprDelete(pParse
->db
, pExpr
);
1856 /* Throw and error for the GENERATED ALWAYS AS clause if the
1857 ** SQLITE_OMIT_GENERATED_COLUMNS compile-time option is used. */
1858 sqlite3ErrorMsg(pParse
, "generated columns not supported");
1859 sqlite3ExprDelete(pParse
->db
, pExpr
);
1864 ** Generate code that will increment the schema cookie.
1866 ** The schema cookie is used to determine when the schema for the
1867 ** database changes. After each schema change, the cookie value
1868 ** changes. When a process first reads the schema it records the
1869 ** cookie. Thereafter, whenever it goes to access the database,
1870 ** it checks the cookie to make sure the schema has not changed
1871 ** since it was last read.
1873 ** This plan is not completely bullet-proof. It is possible for
1874 ** the schema to change multiple times and for the cookie to be
1875 ** set back to prior value. But schema changes are infrequent
1876 ** and the probability of hitting the same cookie value is only
1877 ** 1 chance in 2^32. So we're safe enough.
1879 ** IMPLEMENTATION-OF: R-34230-56049 SQLite automatically increments
1880 ** the schema-version whenever the schema changes.
1882 void sqlite3ChangeCookie(Parse
*pParse
, int iDb
){
1883 sqlite3
*db
= pParse
->db
;
1884 Vdbe
*v
= pParse
->pVdbe
;
1885 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
1886 sqlite3VdbeAddOp3(v
, OP_SetCookie
, iDb
, BTREE_SCHEMA_VERSION
,
1887 (int)(1+(unsigned)db
->aDb
[iDb
].pSchema
->schema_cookie
));
1891 ** Measure the number of characters needed to output the given
1892 ** identifier. The number returned includes any quotes used
1893 ** but does not include the null terminator.
1895 ** The estimate is conservative. It might be larger that what is
1898 static int identLength(const char *z
){
1900 for(n
=0; *z
; n
++, z
++){
1901 if( *z
=='"' ){ n
++; }
1907 ** The first parameter is a pointer to an output buffer. The second
1908 ** parameter is a pointer to an integer that contains the offset at
1909 ** which to write into the output buffer. This function copies the
1910 ** nul-terminated string pointed to by the third parameter, zSignedIdent,
1911 ** to the specified offset in the buffer and updates *pIdx to refer
1912 ** to the first byte after the last byte written before returning.
1914 ** If the string zSignedIdent consists entirely of alpha-numeric
1915 ** characters, does not begin with a digit and is not an SQL keyword,
1916 ** then it is copied to the output buffer exactly as it is. Otherwise,
1917 ** it is quoted using double-quotes.
1919 static void identPut(char *z
, int *pIdx
, char *zSignedIdent
){
1920 unsigned char *zIdent
= (unsigned char*)zSignedIdent
;
1921 int i
, j
, needQuote
;
1924 for(j
=0; zIdent
[j
]; j
++){
1925 if( !sqlite3Isalnum(zIdent
[j
]) && zIdent
[j
]!='_' ) break;
1927 needQuote
= sqlite3Isdigit(zIdent
[0])
1928 || sqlite3KeywordCode(zIdent
, j
)!=TK_ID
1932 if( needQuote
) z
[i
++] = '"';
1933 for(j
=0; zIdent
[j
]; j
++){
1935 if( zIdent
[j
]=='"' ) z
[i
++] = '"';
1937 if( needQuote
) z
[i
++] = '"';
1943 ** Generate a CREATE TABLE statement appropriate for the given
1944 ** table. Memory to hold the text of the statement is obtained
1945 ** from sqliteMalloc() and must be freed by the calling function.
1947 static char *createTableStmt(sqlite3
*db
, Table
*p
){
1950 char *zSep
, *zSep2
, *zEnd
;
1953 for(pCol
= p
->aCol
, i
=0; i
<p
->nCol
; i
++, pCol
++){
1954 n
+= identLength(pCol
->zName
) + 5;
1956 n
+= identLength(p
->zName
);
1966 n
+= 35 + 6*p
->nCol
;
1967 zStmt
= sqlite3DbMallocRaw(0, n
);
1969 sqlite3OomFault(db
);
1972 sqlite3_snprintf(n
, zStmt
, "CREATE TABLE ");
1973 k
= sqlite3Strlen30(zStmt
);
1974 identPut(zStmt
, &k
, p
->zName
);
1976 for(pCol
=p
->aCol
, i
=0; i
<p
->nCol
; i
++, pCol
++){
1977 static const char * const azType
[] = {
1978 /* SQLITE_AFF_BLOB */ "",
1979 /* SQLITE_AFF_TEXT */ " TEXT",
1980 /* SQLITE_AFF_NUMERIC */ " NUM",
1981 /* SQLITE_AFF_INTEGER */ " INT",
1982 /* SQLITE_AFF_REAL */ " REAL"
1987 sqlite3_snprintf(n
-k
, &zStmt
[k
], zSep
);
1988 k
+= sqlite3Strlen30(&zStmt
[k
]);
1990 identPut(zStmt
, &k
, pCol
->zName
);
1991 assert( pCol
->affinity
-SQLITE_AFF_BLOB
>= 0 );
1992 assert( pCol
->affinity
-SQLITE_AFF_BLOB
< ArraySize(azType
) );
1993 testcase( pCol
->affinity
==SQLITE_AFF_BLOB
);
1994 testcase( pCol
->affinity
==SQLITE_AFF_TEXT
);
1995 testcase( pCol
->affinity
==SQLITE_AFF_NUMERIC
);
1996 testcase( pCol
->affinity
==SQLITE_AFF_INTEGER
);
1997 testcase( pCol
->affinity
==SQLITE_AFF_REAL
);
1999 zType
= azType
[pCol
->affinity
- SQLITE_AFF_BLOB
];
2000 len
= sqlite3Strlen30(zType
);
2001 assert( pCol
->affinity
==SQLITE_AFF_BLOB
2002 || pCol
->affinity
==sqlite3AffinityType(zType
, 0) );
2003 memcpy(&zStmt
[k
], zType
, len
);
2007 sqlite3_snprintf(n
-k
, &zStmt
[k
], "%s", zEnd
);
2012 ** Resize an Index object to hold N columns total. Return SQLITE_OK
2013 ** on success and SQLITE_NOMEM on an OOM error.
2015 static int resizeIndexObject(sqlite3
*db
, Index
*pIdx
, int N
){
2018 if( pIdx
->nColumn
>=N
) return SQLITE_OK
;
2019 assert( pIdx
->isResized
==0 );
2020 nByte
= (sizeof(char*) + sizeof(LogEst
) + sizeof(i16
) + 1)*N
;
2021 zExtra
= sqlite3DbMallocZero(db
, nByte
);
2022 if( zExtra
==0 ) return SQLITE_NOMEM_BKPT
;
2023 memcpy(zExtra
, pIdx
->azColl
, sizeof(char*)*pIdx
->nColumn
);
2024 pIdx
->azColl
= (const char**)zExtra
;
2025 zExtra
+= sizeof(char*)*N
;
2026 memcpy(zExtra
, pIdx
->aiRowLogEst
, sizeof(LogEst
)*(pIdx
->nKeyCol
+1));
2027 pIdx
->aiRowLogEst
= (LogEst
*)zExtra
;
2028 zExtra
+= sizeof(LogEst
)*N
;
2029 memcpy(zExtra
, pIdx
->aiColumn
, sizeof(i16
)*pIdx
->nColumn
);
2030 pIdx
->aiColumn
= (i16
*)zExtra
;
2031 zExtra
+= sizeof(i16
)*N
;
2032 memcpy(zExtra
, pIdx
->aSortOrder
, pIdx
->nColumn
);
2033 pIdx
->aSortOrder
= (u8
*)zExtra
;
2035 pIdx
->isResized
= 1;
2040 ** Estimate the total row width for a table.
2042 static void estimateTableWidth(Table
*pTab
){
2043 unsigned wTable
= 0;
2044 const Column
*pTabCol
;
2046 for(i
=pTab
->nCol
, pTabCol
=pTab
->aCol
; i
>0; i
--, pTabCol
++){
2047 wTable
+= pTabCol
->szEst
;
2049 if( pTab
->iPKey
<0 ) wTable
++;
2050 pTab
->szTabRow
= sqlite3LogEst(wTable
*4);
2054 ** Estimate the average size of a row for an index.
2056 static void estimateIndexWidth(Index
*pIdx
){
2057 unsigned wIndex
= 0;
2059 const Column
*aCol
= pIdx
->pTable
->aCol
;
2060 for(i
=0; i
<pIdx
->nColumn
; i
++){
2061 i16 x
= pIdx
->aiColumn
[i
];
2062 assert( x
<pIdx
->pTable
->nCol
);
2063 wIndex
+= x
<0 ? 1 : aCol
[pIdx
->aiColumn
[i
]].szEst
;
2065 pIdx
->szIdxRow
= sqlite3LogEst(wIndex
*4);
2068 /* Return true if column number x is any of the first nCol entries of aiCol[].
2069 ** This is used to determine if the column number x appears in any of the
2070 ** first nCol entries of an index.
2072 static int hasColumn(const i16
*aiCol
, int nCol
, int x
){
2073 while( nCol
-- > 0 ){
2074 assert( aiCol
[0]>=0 );
2075 if( x
==*(aiCol
++) ){
2083 ** Return true if any of the first nKey entries of index pIdx exactly
2084 ** match the iCol-th entry of pPk. pPk is always a WITHOUT ROWID
2085 ** PRIMARY KEY index. pIdx is an index on the same table. pIdx may
2086 ** or may not be the same index as pPk.
2088 ** The first nKey entries of pIdx are guaranteed to be ordinary columns,
2089 ** not a rowid or expression.
2091 ** This routine differs from hasColumn() in that both the column and the
2092 ** collating sequence must match for this routine, but for hasColumn() only
2093 ** the column name must match.
2095 static int isDupColumn(Index
*pIdx
, int nKey
, Index
*pPk
, int iCol
){
2097 assert( nKey
<=pIdx
->nColumn
);
2098 assert( iCol
<MAX(pPk
->nColumn
,pPk
->nKeyCol
) );
2099 assert( pPk
->idxType
==SQLITE_IDXTYPE_PRIMARYKEY
);
2100 assert( pPk
->pTable
->tabFlags
& TF_WithoutRowid
);
2101 assert( pPk
->pTable
==pIdx
->pTable
);
2102 testcase( pPk
==pIdx
);
2103 j
= pPk
->aiColumn
[iCol
];
2104 assert( j
!=XN_ROWID
&& j
!=XN_EXPR
);
2105 for(i
=0; i
<nKey
; i
++){
2106 assert( pIdx
->aiColumn
[i
]>=0 || j
>=0 );
2107 if( pIdx
->aiColumn
[i
]==j
2108 && sqlite3StrICmp(pIdx
->azColl
[i
], pPk
->azColl
[iCol
])==0
2116 /* Recompute the colNotIdxed field of the Index.
2118 ** colNotIdxed is a bitmask that has a 0 bit representing each indexed
2119 ** columns that are within the first 63 columns of the table. The
2120 ** high-order bit of colNotIdxed is always 1. All unindexed columns
2121 ** of the table have a 1.
2123 ** 2019-10-24: For the purpose of this computation, virtual columns are
2124 ** not considered to be covered by the index, even if they are in the
2125 ** index, because we do not trust the logic in whereIndexExprTrans() to be
2126 ** able to find all instances of a reference to the indexed table column
2127 ** and convert them into references to the index. Hence we always want
2128 ** the actual table at hand in order to recompute the virtual column, if
2131 ** The colNotIdxed mask is AND-ed with the SrcList.a[].colUsed mask
2132 ** to determine if the index is covering index.
2134 static void recomputeColumnsNotIndexed(Index
*pIdx
){
2137 Table
*pTab
= pIdx
->pTable
;
2138 for(j
=pIdx
->nColumn
-1; j
>=0; j
--){
2139 int x
= pIdx
->aiColumn
[j
];
2140 if( x
>=0 && (pTab
->aCol
[x
].colFlags
& COLFLAG_VIRTUAL
)==0 ){
2141 testcase( x
==BMS
-1 );
2142 testcase( x
==BMS
-2 );
2143 if( x
<BMS
-1 ) m
|= MASKBIT(x
);
2146 pIdx
->colNotIdxed
= ~m
;
2147 assert( (pIdx
->colNotIdxed
>>63)==1 );
2151 ** This routine runs at the end of parsing a CREATE TABLE statement that
2152 ** has a WITHOUT ROWID clause. The job of this routine is to convert both
2153 ** internal schema data structures and the generated VDBE code so that they
2154 ** are appropriate for a WITHOUT ROWID table instead of a rowid table.
2157 ** (1) Set all columns of the PRIMARY KEY schema object to be NOT NULL.
2158 ** (2) Convert P3 parameter of the OP_CreateBtree from BTREE_INTKEY
2159 ** into BTREE_BLOBKEY.
2160 ** (3) Bypass the creation of the sqlite_schema table entry
2161 ** for the PRIMARY KEY as the primary key index is now
2162 ** identified by the sqlite_schema table entry of the table itself.
2163 ** (4) Set the Index.tnum of the PRIMARY KEY Index object in the
2164 ** schema to the rootpage from the main table.
2165 ** (5) Add all table columns to the PRIMARY KEY Index object
2166 ** so that the PRIMARY KEY is a covering index. The surplus
2167 ** columns are part of KeyInfo.nAllField and are not used for
2168 ** sorting or lookup or uniqueness checks.
2169 ** (6) Replace the rowid tail on all automatically generated UNIQUE
2170 ** indices with the PRIMARY KEY columns.
2172 ** For virtual tables, only (1) is performed.
2174 static void convertToWithoutRowidTable(Parse
*pParse
, Table
*pTab
){
2180 sqlite3
*db
= pParse
->db
;
2181 Vdbe
*v
= pParse
->pVdbe
;
2183 /* Mark every PRIMARY KEY column as NOT NULL (except for imposter tables)
2185 if( !db
->init
.imposterTable
){
2186 for(i
=0; i
<pTab
->nCol
; i
++){
2187 if( (pTab
->aCol
[i
].colFlags
& COLFLAG_PRIMKEY
)!=0 ){
2188 pTab
->aCol
[i
].notNull
= OE_Abort
;
2191 pTab
->tabFlags
|= TF_HasNotNull
;
2194 /* Convert the P3 operand of the OP_CreateBtree opcode from BTREE_INTKEY
2195 ** into BTREE_BLOBKEY.
2197 assert( !pParse
->bReturning
);
2198 if( pParse
->u1
.addrCrTab
){
2200 sqlite3VdbeChangeP3(v
, pParse
->u1
.addrCrTab
, BTREE_BLOBKEY
);
2203 /* Locate the PRIMARY KEY index. Or, if this table was originally
2204 ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index.
2206 if( pTab
->iPKey
>=0 ){
2209 sqlite3TokenInit(&ipkToken
, pTab
->aCol
[pTab
->iPKey
].zName
);
2210 pList
= sqlite3ExprListAppend(pParse
, 0,
2211 sqlite3ExprAlloc(db
, TK_ID
, &ipkToken
, 0));
2213 pTab
->tabFlags
&= ~TF_WithoutRowid
;
2216 if( IN_RENAME_OBJECT
){
2217 sqlite3RenameTokenRemap(pParse
, pList
->a
[0].pExpr
, &pTab
->iPKey
);
2219 pList
->a
[0].sortFlags
= pParse
->iPkSortOrder
;
2220 assert( pParse
->pNewTable
==pTab
);
2222 sqlite3CreateIndex(pParse
, 0, 0, 0, pList
, pTab
->keyConf
, 0, 0, 0, 0,
2223 SQLITE_IDXTYPE_PRIMARYKEY
);
2224 if( db
->mallocFailed
|| pParse
->nErr
){
2225 pTab
->tabFlags
&= ~TF_WithoutRowid
;
2228 pPk
= sqlite3PrimaryKeyIndex(pTab
);
2229 assert( pPk
->nKeyCol
==1 );
2231 pPk
= sqlite3PrimaryKeyIndex(pTab
);
2235 ** Remove all redundant columns from the PRIMARY KEY. For example, change
2236 ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)". Later
2237 ** code assumes the PRIMARY KEY contains no repeated columns.
2239 for(i
=j
=1; i
<pPk
->nKeyCol
; i
++){
2240 if( isDupColumn(pPk
, j
, pPk
, i
) ){
2243 testcase( hasColumn(pPk
->aiColumn
, j
, pPk
->aiColumn
[i
]) );
2244 pPk
->azColl
[j
] = pPk
->azColl
[i
];
2245 pPk
->aSortOrder
[j
] = pPk
->aSortOrder
[i
];
2246 pPk
->aiColumn
[j
++] = pPk
->aiColumn
[i
];
2252 pPk
->isCovering
= 1;
2253 if( !db
->init
.imposterTable
) pPk
->uniqNotNull
= 1;
2254 nPk
= pPk
->nColumn
= pPk
->nKeyCol
;
2256 /* Bypass the creation of the PRIMARY KEY btree and the sqlite_schema
2257 ** table entry. This is only required if currently generating VDBE
2258 ** code for a CREATE TABLE (not when parsing one as part of reading
2259 ** a database schema). */
2260 if( v
&& pPk
->tnum
>0 ){
2261 assert( db
->init
.busy
==0 );
2262 sqlite3VdbeChangeOpcode(v
, (int)pPk
->tnum
, OP_Goto
);
2265 /* The root page of the PRIMARY KEY is the table root page */
2266 pPk
->tnum
= pTab
->tnum
;
2268 /* Update the in-memory representation of all UNIQUE indices by converting
2269 ** the final rowid column into one or more columns of the PRIMARY KEY.
2271 for(pIdx
=pTab
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
){
2273 if( IsPrimaryKeyIndex(pIdx
) ) continue;
2274 for(i
=n
=0; i
<nPk
; i
++){
2275 if( !isDupColumn(pIdx
, pIdx
->nKeyCol
, pPk
, i
) ){
2276 testcase( hasColumn(pIdx
->aiColumn
, pIdx
->nKeyCol
, pPk
->aiColumn
[i
]) );
2281 /* This index is a superset of the primary key */
2282 pIdx
->nColumn
= pIdx
->nKeyCol
;
2285 if( resizeIndexObject(db
, pIdx
, pIdx
->nKeyCol
+n
) ) return;
2286 for(i
=0, j
=pIdx
->nKeyCol
; i
<nPk
; i
++){
2287 if( !isDupColumn(pIdx
, pIdx
->nKeyCol
, pPk
, i
) ){
2288 testcase( hasColumn(pIdx
->aiColumn
, pIdx
->nKeyCol
, pPk
->aiColumn
[i
]) );
2289 pIdx
->aiColumn
[j
] = pPk
->aiColumn
[i
];
2290 pIdx
->azColl
[j
] = pPk
->azColl
[i
];
2291 if( pPk
->aSortOrder
[i
] ){
2292 /* See ticket https://www.sqlite.org/src/info/bba7b69f9849b5bf */
2293 pIdx
->bAscKeyBug
= 1;
2298 assert( pIdx
->nColumn
>=pIdx
->nKeyCol
+n
);
2299 assert( pIdx
->nColumn
>=j
);
2302 /* Add all table columns to the PRIMARY KEY index
2305 for(i
=0; i
<pTab
->nCol
; i
++){
2306 if( !hasColumn(pPk
->aiColumn
, nPk
, i
)
2307 && (pTab
->aCol
[i
].colFlags
& COLFLAG_VIRTUAL
)==0 ) nExtra
++;
2309 if( resizeIndexObject(db
, pPk
, nPk
+nExtra
) ) return;
2310 for(i
=0, j
=nPk
; i
<pTab
->nCol
; i
++){
2311 if( !hasColumn(pPk
->aiColumn
, j
, i
)
2312 && (pTab
->aCol
[i
].colFlags
& COLFLAG_VIRTUAL
)==0
2314 assert( j
<pPk
->nColumn
);
2315 pPk
->aiColumn
[j
] = i
;
2316 pPk
->azColl
[j
] = sqlite3StrBINARY
;
2320 assert( pPk
->nColumn
==j
);
2321 assert( pTab
->nNVCol
<=j
);
2322 recomputeColumnsNotIndexed(pPk
);
2326 #ifndef SQLITE_OMIT_VIRTUALTABLE
2328 ** Return true if pTab is a virtual table and zName is a shadow table name
2329 ** for that virtual table.
2331 int sqlite3IsShadowTableOf(sqlite3
*db
, Table
*pTab
, const char *zName
){
2332 int nName
; /* Length of zName */
2333 Module
*pMod
; /* Module for the virtual table */
2335 if( !IsVirtual(pTab
) ) return 0;
2336 nName
= sqlite3Strlen30(pTab
->zName
);
2337 if( sqlite3_strnicmp(zName
, pTab
->zName
, nName
)!=0 ) return 0;
2338 if( zName
[nName
]!='_' ) return 0;
2339 pMod
= (Module
*)sqlite3HashFind(&db
->aModule
, pTab
->azModuleArg
[0]);
2340 if( pMod
==0 ) return 0;
2341 if( pMod
->pModule
->iVersion
<3 ) return 0;
2342 if( pMod
->pModule
->xShadowName
==0 ) return 0;
2343 return pMod
->pModule
->xShadowName(zName
+nName
+1);
2345 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */
2347 #ifndef SQLITE_OMIT_VIRTUALTABLE
2349 ** Return true if zName is a shadow table name in the current database
2352 ** zName is temporarily modified while this routine is running, but is
2353 ** restored to its original value prior to this routine returning.
2355 int sqlite3ShadowTableName(sqlite3
*db
, const char *zName
){
2356 char *zTail
; /* Pointer to the last "_" in zName */
2357 Table
*pTab
; /* Table that zName is a shadow of */
2358 zTail
= strrchr(zName
, '_');
2359 if( zTail
==0 ) return 0;
2361 pTab
= sqlite3FindTable(db
, zName
, 0);
2363 if( pTab
==0 ) return 0;
2364 if( !IsVirtual(pTab
) ) return 0;
2365 return sqlite3IsShadowTableOf(db
, pTab
, zName
);
2367 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */
2372 ** Mark all nodes of an expression as EP_Immutable, indicating that
2373 ** they should not be changed. Expressions attached to a table or
2374 ** index definition are tagged this way to help ensure that we do
2375 ** not pass them into code generator routines by mistake.
2377 static int markImmutableExprStep(Walker
*pWalker
, Expr
*pExpr
){
2378 ExprSetVVAProperty(pExpr
, EP_Immutable
);
2379 return WRC_Continue
;
2381 static void markExprListImmutable(ExprList
*pList
){
2384 memset(&w
, 0, sizeof(w
));
2385 w
.xExprCallback
= markImmutableExprStep
;
2386 w
.xSelectCallback
= sqlite3SelectWalkNoop
;
2387 w
.xSelectCallback2
= 0;
2388 sqlite3WalkExprList(&w
, pList
);
2392 #define markExprListImmutable(X) /* no-op */
2393 #endif /* SQLITE_DEBUG */
2397 ** This routine is called to report the final ")" that terminates
2398 ** a CREATE TABLE statement.
2400 ** The table structure that other action routines have been building
2401 ** is added to the internal hash tables, assuming no errors have
2404 ** An entry for the table is made in the schema table on disk, unless
2405 ** this is a temporary table or db->init.busy==1. When db->init.busy==1
2406 ** it means we are reading the sqlite_schema table because we just
2407 ** connected to the database or because the sqlite_schema table has
2408 ** recently changed, so the entry for this table already exists in
2409 ** the sqlite_schema table. We do not want to create it again.
2411 ** If the pSelect argument is not NULL, it means that this routine
2412 ** was called to create a table generated from a
2413 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of
2414 ** the new table will match the result set of the SELECT.
2416 void sqlite3EndTable(
2417 Parse
*pParse
, /* Parse context */
2418 Token
*pCons
, /* The ',' token after the last column defn. */
2419 Token
*pEnd
, /* The ')' before options in the CREATE TABLE */
2420 u8 tabOpts
, /* Extra table options. Usually 0. */
2421 Select
*pSelect
/* Select from a "CREATE ... AS SELECT" */
2423 Table
*p
; /* The new table */
2424 sqlite3
*db
= pParse
->db
; /* The database connection */
2425 int iDb
; /* Database in which the table lives */
2426 Index
*pIdx
; /* An implied index of the table */
2428 if( pEnd
==0 && pSelect
==0 ){
2431 p
= pParse
->pNewTable
;
2434 if( pSelect
==0 && sqlite3ShadowTableName(db
, p
->zName
) ){
2435 p
->tabFlags
|= TF_Shadow
;
2438 /* If the db->init.busy is 1 it means we are reading the SQL off the
2439 ** "sqlite_schema" or "sqlite_temp_schema" table on the disk.
2440 ** So do not write to the disk again. Extract the root page number
2441 ** for the table from the db->init.newTnum field. (The page number
2442 ** should have been put there by the sqliteOpenCb routine.)
2444 ** If the root page number is 1, that means this is the sqlite_schema
2445 ** table itself. So mark it read-only.
2447 if( db
->init
.busy
){
2449 sqlite3ErrorMsg(pParse
, "");
2452 p
->tnum
= db
->init
.newTnum
;
2453 if( p
->tnum
==1 ) p
->tabFlags
|= TF_Readonly
;
2456 assert( (p
->tabFlags
& TF_HasPrimaryKey
)==0
2457 || p
->iPKey
>=0 || sqlite3PrimaryKeyIndex(p
)!=0 );
2458 assert( (p
->tabFlags
& TF_HasPrimaryKey
)!=0
2459 || (p
->iPKey
<0 && sqlite3PrimaryKeyIndex(p
)==0) );
2461 /* Special processing for WITHOUT ROWID Tables */
2462 if( tabOpts
& TF_WithoutRowid
){
2463 if( (p
->tabFlags
& TF_Autoincrement
) ){
2464 sqlite3ErrorMsg(pParse
,
2465 "AUTOINCREMENT not allowed on WITHOUT ROWID tables");
2468 if( (p
->tabFlags
& TF_HasPrimaryKey
)==0 ){
2469 sqlite3ErrorMsg(pParse
, "PRIMARY KEY missing on table %s", p
->zName
);
2472 p
->tabFlags
|= TF_WithoutRowid
| TF_NoVisibleRowid
;
2473 convertToWithoutRowidTable(pParse
, p
);
2475 iDb
= sqlite3SchemaToIndex(db
, p
->pSchema
);
2477 #ifndef SQLITE_OMIT_CHECK
2478 /* Resolve names in all CHECK constraint expressions.
2481 sqlite3ResolveSelfReference(pParse
, p
, NC_IsCheck
, 0, p
->pCheck
);
2483 /* If errors are seen, delete the CHECK constraints now, else they might
2484 ** actually be used if PRAGMA writable_schema=ON is set. */
2485 sqlite3ExprListDelete(db
, p
->pCheck
);
2488 markExprListImmutable(p
->pCheck
);
2491 #endif /* !defined(SQLITE_OMIT_CHECK) */
2492 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
2493 if( p
->tabFlags
& TF_HasGenerated
){
2495 testcase( p
->tabFlags
& TF_HasVirtual
);
2496 testcase( p
->tabFlags
& TF_HasStored
);
2497 for(ii
=0; ii
<p
->nCol
; ii
++){
2498 u32 colFlags
= p
->aCol
[ii
].colFlags
;
2499 if( (colFlags
& COLFLAG_GENERATED
)!=0 ){
2500 Expr
*pX
= p
->aCol
[ii
].pDflt
;
2501 testcase( colFlags
& COLFLAG_VIRTUAL
);
2502 testcase( colFlags
& COLFLAG_STORED
);
2503 if( sqlite3ResolveSelfReference(pParse
, p
, NC_GenCol
, pX
, 0) ){
2504 /* If there are errors in resolving the expression, change the
2505 ** expression to a NULL. This prevents code generators that operate
2506 ** on the expression from inserting extra parts into the expression
2507 ** tree that have been allocated from lookaside memory, which is
2508 ** illegal in a schema and will lead to errors or heap corruption
2509 ** when the database connection closes. */
2510 sqlite3ExprDelete(db
, pX
);
2511 p
->aCol
[ii
].pDflt
= sqlite3ExprAlloc(db
, TK_NULL
, 0, 0);
2518 sqlite3ErrorMsg(pParse
, "must have at least one non-generated column");
2524 /* Estimate the average row size for the table and for all implied indices */
2525 estimateTableWidth(p
);
2526 for(pIdx
=p
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
){
2527 estimateIndexWidth(pIdx
);
2530 /* If not initializing, then create a record for the new table
2531 ** in the schema table of the database.
2533 ** If this is a TEMPORARY table, write the entry into the auxiliary
2534 ** file instead of into the main database file.
2536 if( !db
->init
.busy
){
2539 char *zType
; /* "view" or "table" */
2540 char *zType2
; /* "VIEW" or "TABLE" */
2541 char *zStmt
; /* Text of the CREATE TABLE or CREATE VIEW statement */
2543 v
= sqlite3GetVdbe(pParse
);
2544 if( NEVER(v
==0) ) return;
2546 sqlite3VdbeAddOp1(v
, OP_Close
, 0);
2549 ** Initialize zType for the new view or table.
2551 if( p
->pSelect
==0 ){
2552 /* A regular table */
2555 #ifndef SQLITE_OMIT_VIEW
2563 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
2564 ** statement to populate the new table. The root-page number for the
2565 ** new table is in register pParse->regRoot.
2567 ** Once the SELECT has been coded by sqlite3Select(), it is in a
2568 ** suitable state to query for the column names and types to be used
2569 ** by the new table.
2571 ** A shared-cache write-lock is not required to write to the new table,
2572 ** as a schema-lock must have already been obtained to create it. Since
2573 ** a schema-lock excludes all other database users, the write-lock would
2577 SelectDest dest
; /* Where the SELECT should store results */
2578 int regYield
; /* Register holding co-routine entry-point */
2579 int addrTop
; /* Top of the co-routine */
2580 int regRec
; /* A record to be insert into the new table */
2581 int regRowid
; /* Rowid of the next row to insert */
2582 int addrInsLoop
; /* Top of the loop for inserting rows */
2583 Table
*pSelTab
; /* A table that describes the SELECT results */
2585 regYield
= ++pParse
->nMem
;
2586 regRec
= ++pParse
->nMem
;
2587 regRowid
= ++pParse
->nMem
;
2588 assert(pParse
->nTab
==1);
2589 sqlite3MayAbort(pParse
);
2590 sqlite3VdbeAddOp3(v
, OP_OpenWrite
, 1, pParse
->regRoot
, iDb
);
2591 sqlite3VdbeChangeP5(v
, OPFLAG_P2ISREG
);
2593 addrTop
= sqlite3VdbeCurrentAddr(v
) + 1;
2594 sqlite3VdbeAddOp3(v
, OP_InitCoroutine
, regYield
, 0, addrTop
);
2595 if( pParse
->nErr
) return;
2596 pSelTab
= sqlite3ResultSetOfSelect(pParse
, pSelect
, SQLITE_AFF_BLOB
);
2597 if( pSelTab
==0 ) return;
2598 assert( p
->aCol
==0 );
2599 p
->nCol
= p
->nNVCol
= pSelTab
->nCol
;
2600 p
->aCol
= pSelTab
->aCol
;
2603 sqlite3DeleteTable(db
, pSelTab
);
2604 sqlite3SelectDestInit(&dest
, SRT_Coroutine
, regYield
);
2605 sqlite3Select(pParse
, pSelect
, &dest
);
2606 if( pParse
->nErr
) return;
2607 sqlite3VdbeEndCoroutine(v
, regYield
);
2608 sqlite3VdbeJumpHere(v
, addrTop
- 1);
2609 addrInsLoop
= sqlite3VdbeAddOp1(v
, OP_Yield
, dest
.iSDParm
);
2611 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, dest
.iSdst
, dest
.nSdst
, regRec
);
2612 sqlite3TableAffinity(v
, p
, 0);
2613 sqlite3VdbeAddOp2(v
, OP_NewRowid
, 1, regRowid
);
2614 sqlite3VdbeAddOp3(v
, OP_Insert
, 1, regRec
, regRowid
);
2615 sqlite3VdbeGoto(v
, addrInsLoop
);
2616 sqlite3VdbeJumpHere(v
, addrInsLoop
);
2617 sqlite3VdbeAddOp1(v
, OP_Close
, 1);
2620 /* Compute the complete text of the CREATE statement */
2622 zStmt
= createTableStmt(db
, p
);
2624 Token
*pEnd2
= tabOpts
? &pParse
->sLastToken
: pEnd
;
2625 n
= (int)(pEnd2
->z
- pParse
->sNameToken
.z
);
2626 if( pEnd2
->z
[0]!=';' ) n
+= pEnd2
->n
;
2627 zStmt
= sqlite3MPrintf(db
,
2628 "CREATE %s %.*s", zType2
, n
, pParse
->sNameToken
.z
2632 /* A slot for the record has already been allocated in the
2633 ** schema table. We just need to update that slot with all
2634 ** the information we've collected.
2636 sqlite3NestedParse(pParse
,
2637 "UPDATE %Q." DFLT_SCHEMA_TABLE
2638 " SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q"
2640 db
->aDb
[iDb
].zDbSName
,
2648 sqlite3DbFree(db
, zStmt
);
2649 sqlite3ChangeCookie(pParse
, iDb
);
2651 #ifndef SQLITE_OMIT_AUTOINCREMENT
2652 /* Check to see if we need to create an sqlite_sequence table for
2653 ** keeping track of autoincrement keys.
2655 if( (p
->tabFlags
& TF_Autoincrement
)!=0 && !IN_SPECIAL_PARSE
){
2656 Db
*pDb
= &db
->aDb
[iDb
];
2657 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
2658 if( pDb
->pSchema
->pSeqTab
==0 ){
2659 sqlite3NestedParse(pParse
,
2660 "CREATE TABLE %Q.sqlite_sequence(name,seq)",
2667 /* Reparse everything to update our internal data structures */
2668 sqlite3VdbeAddParseSchemaOp(v
, iDb
,
2669 sqlite3MPrintf(db
, "tbl_name='%q' AND type!='trigger'", p
->zName
),0);
2672 /* Add the table to the in-memory representation of the database.
2674 if( db
->init
.busy
){
2676 Schema
*pSchema
= p
->pSchema
;
2677 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
2678 assert( HasRowid(p
) || p
->iPKey
<0 );
2679 pOld
= sqlite3HashInsert(&pSchema
->tblHash
, p
->zName
, p
);
2681 assert( p
==pOld
); /* Malloc must have failed inside HashInsert() */
2682 sqlite3OomFault(db
);
2685 pParse
->pNewTable
= 0;
2686 db
->mDbFlags
|= DBFLAG_SchemaChange
;
2688 /* If this is the magic sqlite_sequence table used by autoincrement,
2689 ** then record a pointer to this table in the main database structure
2690 ** so that INSERT can find the table easily. */
2691 assert( !pParse
->nested
);
2692 #ifndef SQLITE_OMIT_AUTOINCREMENT
2693 if( strcmp(p
->zName
, "sqlite_sequence")==0 ){
2694 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
2695 p
->pSchema
->pSeqTab
= p
;
2700 #ifndef SQLITE_OMIT_ALTERTABLE
2701 if( !pSelect
&& !p
->pSelect
){
2702 assert( pCons
&& pEnd
);
2706 p
->addColOffset
= 13 + (int)(pCons
->z
- pParse
->sNameToken
.z
);
2711 #ifndef SQLITE_OMIT_VIEW
2713 ** The parser calls this routine in order to create a new VIEW
2715 void sqlite3CreateView(
2716 Parse
*pParse
, /* The parsing context */
2717 Token
*pBegin
, /* The CREATE token that begins the statement */
2718 Token
*pName1
, /* The token that holds the name of the view */
2719 Token
*pName2
, /* The token that holds the name of the view */
2720 ExprList
*pCNames
, /* Optional list of view column names */
2721 Select
*pSelect
, /* A SELECT statement that will become the new view */
2722 int isTemp
, /* TRUE for a TEMPORARY view */
2723 int noErr
/* Suppress error messages if VIEW already exists */
2732 sqlite3
*db
= pParse
->db
;
2734 if( pParse
->nVar
>0 ){
2735 sqlite3ErrorMsg(pParse
, "parameters are not allowed in views");
2736 goto create_view_fail
;
2738 sqlite3StartTable(pParse
, pName1
, pName2
, isTemp
, 1, 0, noErr
);
2739 p
= pParse
->pNewTable
;
2740 if( p
==0 || pParse
->nErr
) goto create_view_fail
;
2742 /* Legacy versions of SQLite allowed the use of the magic "rowid" column
2743 ** on a view, even though views do not have rowids. The following flag
2744 ** setting fixes this problem. But the fix can be disabled by compiling
2745 ** with -DSQLITE_ALLOW_ROWID_IN_VIEW in case there are legacy apps that
2746 ** depend upon the old buggy behavior. */
2747 #ifndef SQLITE_ALLOW_ROWID_IN_VIEW
2748 p
->tabFlags
|= TF_NoVisibleRowid
;
2751 sqlite3TwoPartName(pParse
, pName1
, pName2
, &pName
);
2752 iDb
= sqlite3SchemaToIndex(db
, p
->pSchema
);
2753 sqlite3FixInit(&sFix
, pParse
, iDb
, "view", pName
);
2754 if( sqlite3FixSelect(&sFix
, pSelect
) ) goto create_view_fail
;
2756 /* Make a copy of the entire SELECT statement that defines the view.
2757 ** This will force all the Expr.token.z values to be dynamically
2758 ** allocated rather than point to the input string - which means that
2759 ** they will persist after the current sqlite3_exec() call returns.
2761 pSelect
->selFlags
|= SF_View
;
2762 if( IN_RENAME_OBJECT
){
2763 p
->pSelect
= pSelect
;
2766 p
->pSelect
= sqlite3SelectDup(db
, pSelect
, EXPRDUP_REDUCE
);
2768 p
->pCheck
= sqlite3ExprListDup(db
, pCNames
, EXPRDUP_REDUCE
);
2769 if( db
->mallocFailed
) goto create_view_fail
;
2771 /* Locate the end of the CREATE VIEW statement. Make sEnd point to
2774 sEnd
= pParse
->sLastToken
;
2775 assert( sEnd
.z
[0]!=0 || sEnd
.n
==0 );
2776 if( sEnd
.z
[0]!=';' ){
2780 n
= (int)(sEnd
.z
- pBegin
->z
);
2783 while( sqlite3Isspace(z
[n
-1]) ){ n
--; }
2787 /* Use sqlite3EndTable() to add the view to the schema table */
2788 sqlite3EndTable(pParse
, 0, &sEnd
, 0, 0);
2791 sqlite3SelectDelete(db
, pSelect
);
2792 if( IN_RENAME_OBJECT
){
2793 sqlite3RenameExprlistUnmap(pParse
, pCNames
);
2795 sqlite3ExprListDelete(db
, pCNames
);
2798 #endif /* SQLITE_OMIT_VIEW */
2800 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
2802 ** The Table structure pTable is really a VIEW. Fill in the names of
2803 ** the columns of the view in the pTable structure. Return the number
2804 ** of errors. If an error is seen leave an error message in pParse->zErrMsg.
2806 int sqlite3ViewGetColumnNames(Parse
*pParse
, Table
*pTable
){
2807 Table
*pSelTab
; /* A fake table from which we get the result set */
2808 Select
*pSel
; /* Copy of the SELECT that implements the view */
2809 int nErr
= 0; /* Number of errors encountered */
2810 int n
; /* Temporarily holds the number of cursors assigned */
2811 sqlite3
*db
= pParse
->db
; /* Database connection for malloc errors */
2812 #ifndef SQLITE_OMIT_VIRTUALTABLE
2815 #ifndef SQLITE_OMIT_AUTHORIZATION
2816 sqlite3_xauth xAuth
; /* Saved xAuth pointer */
2821 #ifndef SQLITE_OMIT_VIRTUALTABLE
2823 rc
= sqlite3VtabCallConnect(pParse
, pTable
);
2828 if( IsVirtual(pTable
) ) return 0;
2831 #ifndef SQLITE_OMIT_VIEW
2832 /* A positive nCol means the columns names for this view are
2835 if( pTable
->nCol
>0 ) return 0;
2837 /* A negative nCol is a special marker meaning that we are currently
2838 ** trying to compute the column names. If we enter this routine with
2839 ** a negative nCol, it means two or more views form a loop, like this:
2841 ** CREATE VIEW one AS SELECT * FROM two;
2842 ** CREATE VIEW two AS SELECT * FROM one;
2844 ** Actually, the error above is now caught prior to reaching this point.
2845 ** But the following test is still important as it does come up
2846 ** in the following:
2848 ** CREATE TABLE main.ex1(a);
2849 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1;
2850 ** SELECT * FROM temp.ex1;
2852 if( pTable
->nCol
<0 ){
2853 sqlite3ErrorMsg(pParse
, "view %s is circularly defined", pTable
->zName
);
2856 assert( pTable
->nCol
>=0 );
2858 /* If we get this far, it means we need to compute the table names.
2859 ** Note that the call to sqlite3ResultSetOfSelect() will expand any
2860 ** "*" elements in the results set of the view and will assign cursors
2861 ** to the elements of the FROM clause. But we do not want these changes
2862 ** to be permanent. So the computation is done on a copy of the SELECT
2863 ** statement that defines the view.
2865 assert( pTable
->pSelect
);
2866 pSel
= sqlite3SelectDup(db
, pTable
->pSelect
, 0);
2868 u8 eParseMode
= pParse
->eParseMode
;
2869 pParse
->eParseMode
= PARSE_MODE_NORMAL
;
2871 sqlite3SrcListAssignCursors(pParse
, pSel
->pSrc
);
2874 #ifndef SQLITE_OMIT_AUTHORIZATION
2877 pSelTab
= sqlite3ResultSetOfSelect(pParse
, pSel
, SQLITE_AFF_NONE
);
2880 pSelTab
= sqlite3ResultSetOfSelect(pParse
, pSel
, SQLITE_AFF_NONE
);
2886 }else if( pTable
->pCheck
){
2887 /* CREATE VIEW name(arglist) AS ...
2888 ** The names of the columns in the table are taken from
2889 ** arglist which is stored in pTable->pCheck. The pCheck field
2890 ** normally holds CHECK constraints on an ordinary table, but for
2891 ** a VIEW it holds the list of column names.
2893 sqlite3ColumnsFromExprList(pParse
, pTable
->pCheck
,
2894 &pTable
->nCol
, &pTable
->aCol
);
2895 if( db
->mallocFailed
==0
2897 && pTable
->nCol
==pSel
->pEList
->nExpr
2899 sqlite3SelectAddColumnTypeAndCollation(pParse
, pTable
, pSel
,
2903 /* CREATE VIEW name AS... without an argument list. Construct
2904 ** the column names from the SELECT statement that defines the view.
2906 assert( pTable
->aCol
==0 );
2907 pTable
->nCol
= pSelTab
->nCol
;
2908 pTable
->aCol
= pSelTab
->aCol
;
2909 pTable
->tabFlags
|= (pSelTab
->tabFlags
& COLFLAG_NOINSERT
);
2912 assert( sqlite3SchemaMutexHeld(db
, 0, pTable
->pSchema
) );
2914 pTable
->nNVCol
= pTable
->nCol
;
2915 sqlite3DeleteTable(db
, pSelTab
);
2916 sqlite3SelectDelete(db
, pSel
);
2918 pParse
->eParseMode
= eParseMode
;
2922 pTable
->pSchema
->schemaFlags
|= DB_UnresetViews
;
2923 if( db
->mallocFailed
){
2924 sqlite3DeleteColumnNames(db
, pTable
);
2928 #endif /* SQLITE_OMIT_VIEW */
2931 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
2933 #ifndef SQLITE_OMIT_VIEW
2935 ** Clear the column names from every VIEW in database idx.
2937 static void sqliteViewResetAll(sqlite3
*db
, int idx
){
2939 assert( sqlite3SchemaMutexHeld(db
, idx
, 0) );
2940 if( !DbHasProperty(db
, idx
, DB_UnresetViews
) ) return;
2941 for(i
=sqliteHashFirst(&db
->aDb
[idx
].pSchema
->tblHash
); i
;i
=sqliteHashNext(i
)){
2942 Table
*pTab
= sqliteHashData(i
);
2943 if( pTab
->pSelect
){
2944 sqlite3DeleteColumnNames(db
, pTab
);
2949 DbClearProperty(db
, idx
, DB_UnresetViews
);
2952 # define sqliteViewResetAll(A,B)
2953 #endif /* SQLITE_OMIT_VIEW */
2956 ** This function is called by the VDBE to adjust the internal schema
2957 ** used by SQLite when the btree layer moves a table root page. The
2958 ** root-page of a table or index in database iDb has changed from iFrom
2961 ** Ticket #1728: The symbol table might still contain information
2962 ** on tables and/or indices that are the process of being deleted.
2963 ** If you are unlucky, one of those deleted indices or tables might
2964 ** have the same rootpage number as the real table or index that is
2965 ** being moved. So we cannot stop searching after the first match
2966 ** because the first match might be for one of the deleted indices
2967 ** or tables and not the table/index that is actually being moved.
2968 ** We must continue looping until all tables and indices with
2969 ** rootpage==iFrom have been converted to have a rootpage of iTo
2970 ** in order to be certain that we got the right one.
2972 #ifndef SQLITE_OMIT_AUTOVACUUM
2973 void sqlite3RootPageMoved(sqlite3
*db
, int iDb
, Pgno iFrom
, Pgno iTo
){
2978 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
2979 pDb
= &db
->aDb
[iDb
];
2980 pHash
= &pDb
->pSchema
->tblHash
;
2981 for(pElem
=sqliteHashFirst(pHash
); pElem
; pElem
=sqliteHashNext(pElem
)){
2982 Table
*pTab
= sqliteHashData(pElem
);
2983 if( pTab
->tnum
==iFrom
){
2987 pHash
= &pDb
->pSchema
->idxHash
;
2988 for(pElem
=sqliteHashFirst(pHash
); pElem
; pElem
=sqliteHashNext(pElem
)){
2989 Index
*pIdx
= sqliteHashData(pElem
);
2990 if( pIdx
->tnum
==iFrom
){
2998 ** Write code to erase the table with root-page iTable from database iDb.
2999 ** Also write code to modify the sqlite_schema table and internal schema
3000 ** if a root-page of another table is moved by the btree-layer whilst
3001 ** erasing iTable (this can happen with an auto-vacuum database).
3003 static void destroyRootPage(Parse
*pParse
, int iTable
, int iDb
){
3004 Vdbe
*v
= sqlite3GetVdbe(pParse
);
3005 int r1
= sqlite3GetTempReg(pParse
);
3006 if( iTable
<2 ) sqlite3ErrorMsg(pParse
, "corrupt schema");
3007 sqlite3VdbeAddOp3(v
, OP_Destroy
, iTable
, r1
, iDb
);
3008 sqlite3MayAbort(pParse
);
3009 #ifndef SQLITE_OMIT_AUTOVACUUM
3010 /* OP_Destroy stores an in integer r1. If this integer
3011 ** is non-zero, then it is the root page number of a table moved to
3012 ** location iTable. The following code modifies the sqlite_schema table to
3015 ** The "#NNN" in the SQL is a special constant that means whatever value
3016 ** is in register NNN. See grammar rules associated with the TK_REGISTER
3017 ** token for additional information.
3019 sqlite3NestedParse(pParse
,
3020 "UPDATE %Q." DFLT_SCHEMA_TABLE
3021 " SET rootpage=%d WHERE #%d AND rootpage=#%d",
3022 pParse
->db
->aDb
[iDb
].zDbSName
, iTable
, r1
, r1
);
3024 sqlite3ReleaseTempReg(pParse
, r1
);
3028 ** Write VDBE code to erase table pTab and all associated indices on disk.
3029 ** Code to update the sqlite_schema tables and internal schema definitions
3030 ** in case a root-page belonging to another table is moved by the btree layer
3031 ** is also added (this can happen with an auto-vacuum database).
3033 static void destroyTable(Parse
*pParse
, Table
*pTab
){
3034 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
3035 ** is not defined), then it is important to call OP_Destroy on the
3036 ** table and index root-pages in order, starting with the numerically
3037 ** largest root-page number. This guarantees that none of the root-pages
3038 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
3039 ** following were coded:
3045 ** and root page 5 happened to be the largest root-page number in the
3046 ** database, then root page 5 would be moved to page 4 by the
3047 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
3048 ** a free-list page.
3050 Pgno iTab
= pTab
->tnum
;
3051 Pgno iDestroyed
= 0;
3057 if( iDestroyed
==0 || iTab
<iDestroyed
){
3060 for(pIdx
=pTab
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
){
3061 Pgno iIdx
= pIdx
->tnum
;
3062 assert( pIdx
->pSchema
==pTab
->pSchema
);
3063 if( (iDestroyed
==0 || (iIdx
<iDestroyed
)) && iIdx
>iLargest
){
3070 int iDb
= sqlite3SchemaToIndex(pParse
->db
, pTab
->pSchema
);
3071 assert( iDb
>=0 && iDb
<pParse
->db
->nDb
);
3072 destroyRootPage(pParse
, iLargest
, iDb
);
3073 iDestroyed
= iLargest
;
3079 ** Remove entries from the sqlite_statN tables (for N in (1,2,3))
3080 ** after a DROP INDEX or DROP TABLE command.
3082 static void sqlite3ClearStatTables(
3083 Parse
*pParse
, /* The parsing context */
3084 int iDb
, /* The database number */
3085 const char *zType
, /* "idx" or "tbl" */
3086 const char *zName
/* Name of index or table */
3089 const char *zDbName
= pParse
->db
->aDb
[iDb
].zDbSName
;
3090 for(i
=1; i
<=4; i
++){
3092 sqlite3_snprintf(sizeof(zTab
),zTab
,"sqlite_stat%d",i
);
3093 if( sqlite3FindTable(pParse
->db
, zTab
, zDbName
) ){
3094 sqlite3NestedParse(pParse
,
3095 "DELETE FROM %Q.%s WHERE %s=%Q",
3096 zDbName
, zTab
, zType
, zName
3103 ** Generate code to drop a table.
3105 void sqlite3CodeDropTable(Parse
*pParse
, Table
*pTab
, int iDb
, int isView
){
3107 sqlite3
*db
= pParse
->db
;
3109 Db
*pDb
= &db
->aDb
[iDb
];
3111 v
= sqlite3GetVdbe(pParse
);
3113 sqlite3BeginWriteOperation(pParse
, 1, iDb
);
3115 #ifndef SQLITE_OMIT_VIRTUALTABLE
3116 if( IsVirtual(pTab
) ){
3117 sqlite3VdbeAddOp0(v
, OP_VBegin
);
3121 /* Drop all triggers associated with the table being dropped. Code
3122 ** is generated to remove entries from sqlite_schema and/or
3123 ** sqlite_temp_schema if required.
3125 pTrigger
= sqlite3TriggerList(pParse
, pTab
);
3127 assert( pTrigger
->pSchema
==pTab
->pSchema
||
3128 pTrigger
->pSchema
==db
->aDb
[1].pSchema
);
3129 sqlite3DropTriggerPtr(pParse
, pTrigger
);
3130 pTrigger
= pTrigger
->pNext
;
3133 #ifndef SQLITE_OMIT_AUTOINCREMENT
3134 /* Remove any entries of the sqlite_sequence table associated with
3135 ** the table being dropped. This is done before the table is dropped
3136 ** at the btree level, in case the sqlite_sequence table needs to
3137 ** move as a result of the drop (can happen in auto-vacuum mode).
3139 if( pTab
->tabFlags
& TF_Autoincrement
){
3140 sqlite3NestedParse(pParse
,
3141 "DELETE FROM %Q.sqlite_sequence WHERE name=%Q",
3142 pDb
->zDbSName
, pTab
->zName
3147 /* Drop all entries in the schema table that refer to the
3148 ** table. The program name loops through the schema table and deletes
3149 ** every row that refers to a table of the same name as the one being
3150 ** dropped. Triggers are handled separately because a trigger can be
3151 ** created in the temp database that refers to a table in another
3154 sqlite3NestedParse(pParse
,
3155 "DELETE FROM %Q." DFLT_SCHEMA_TABLE
3156 " WHERE tbl_name=%Q and type!='trigger'",
3157 pDb
->zDbSName
, pTab
->zName
);
3158 if( !isView
&& !IsVirtual(pTab
) ){
3159 destroyTable(pParse
, pTab
);
3162 /* Remove the table entry from SQLite's internal schema and modify
3163 ** the schema cookie.
3165 if( IsVirtual(pTab
) ){
3166 sqlite3VdbeAddOp4(v
, OP_VDestroy
, iDb
, 0, 0, pTab
->zName
, 0);
3167 sqlite3MayAbort(pParse
);
3169 sqlite3VdbeAddOp4(v
, OP_DropTable
, iDb
, 0, 0, pTab
->zName
, 0);
3170 sqlite3ChangeCookie(pParse
, iDb
);
3171 sqliteViewResetAll(db
, iDb
);
3175 ** Return TRUE if shadow tables should be read-only in the current
3178 int sqlite3ReadOnlyShadowTables(sqlite3
*db
){
3179 #ifndef SQLITE_OMIT_VIRTUALTABLE
3180 if( (db
->flags
& SQLITE_Defensive
)!=0
3191 ** Return true if it is not allowed to drop the given table
3193 static int tableMayNotBeDropped(sqlite3
*db
, Table
*pTab
){
3194 if( sqlite3StrNICmp(pTab
->zName
, "sqlite_", 7)==0 ){
3195 if( sqlite3StrNICmp(pTab
->zName
+7, "stat", 4)==0 ) return 0;
3196 if( sqlite3StrNICmp(pTab
->zName
+7, "parameters", 10)==0 ) return 0;
3199 if( (pTab
->tabFlags
& TF_Shadow
)!=0 && sqlite3ReadOnlyShadowTables(db
) ){
3206 ** This routine is called to do the work of a DROP TABLE statement.
3207 ** pName is the name of the table to be dropped.
3209 void sqlite3DropTable(Parse
*pParse
, SrcList
*pName
, int isView
, int noErr
){
3212 sqlite3
*db
= pParse
->db
;
3215 if( db
->mallocFailed
){
3216 goto exit_drop_table
;
3218 assert( pParse
->nErr
==0 );
3219 assert( pName
->nSrc
==1 );
3220 if( sqlite3ReadSchema(pParse
) ) goto exit_drop_table
;
3221 if( noErr
) db
->suppressErr
++;
3222 assert( isView
==0 || isView
==LOCATE_VIEW
);
3223 pTab
= sqlite3LocateTableItem(pParse
, isView
, &pName
->a
[0]);
3224 if( noErr
) db
->suppressErr
--;
3228 sqlite3CodeVerifyNamedSchema(pParse
, pName
->a
[0].zDatabase
);
3229 sqlite3ForceNotReadOnly(pParse
);
3231 goto exit_drop_table
;
3233 iDb
= sqlite3SchemaToIndex(db
, pTab
->pSchema
);
3234 assert( iDb
>=0 && iDb
<db
->nDb
);
3236 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure
3237 ** it is initialized.
3239 if( IsVirtual(pTab
) && sqlite3ViewGetColumnNames(pParse
, pTab
) ){
3240 goto exit_drop_table
;
3242 #ifndef SQLITE_OMIT_AUTHORIZATION
3245 const char *zTab
= SCHEMA_TABLE(iDb
);
3246 const char *zDb
= db
->aDb
[iDb
].zDbSName
;
3247 const char *zArg2
= 0;
3248 if( sqlite3AuthCheck(pParse
, SQLITE_DELETE
, zTab
, 0, zDb
)){
3249 goto exit_drop_table
;
3252 if( !OMIT_TEMPDB
&& iDb
==1 ){
3253 code
= SQLITE_DROP_TEMP_VIEW
;
3255 code
= SQLITE_DROP_VIEW
;
3257 #ifndef SQLITE_OMIT_VIRTUALTABLE
3258 }else if( IsVirtual(pTab
) ){
3259 code
= SQLITE_DROP_VTABLE
;
3260 zArg2
= sqlite3GetVTable(db
, pTab
)->pMod
->zName
;
3263 if( !OMIT_TEMPDB
&& iDb
==1 ){
3264 code
= SQLITE_DROP_TEMP_TABLE
;
3266 code
= SQLITE_DROP_TABLE
;
3269 if( sqlite3AuthCheck(pParse
, code
, pTab
->zName
, zArg2
, zDb
) ){
3270 goto exit_drop_table
;
3272 if( sqlite3AuthCheck(pParse
, SQLITE_DELETE
, pTab
->zName
, 0, zDb
) ){
3273 goto exit_drop_table
;
3277 if( tableMayNotBeDropped(db
, pTab
) ){
3278 sqlite3ErrorMsg(pParse
, "table %s may not be dropped", pTab
->zName
);
3279 goto exit_drop_table
;
3282 #ifndef SQLITE_OMIT_VIEW
3283 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
3286 if( isView
&& pTab
->pSelect
==0 ){
3287 sqlite3ErrorMsg(pParse
, "use DROP TABLE to delete table %s", pTab
->zName
);
3288 goto exit_drop_table
;
3290 if( !isView
&& pTab
->pSelect
){
3291 sqlite3ErrorMsg(pParse
, "use DROP VIEW to delete view %s", pTab
->zName
);
3292 goto exit_drop_table
;
3296 /* Generate code to remove the table from the schema table
3299 v
= sqlite3GetVdbe(pParse
);
3301 sqlite3BeginWriteOperation(pParse
, 1, iDb
);
3303 sqlite3ClearStatTables(pParse
, iDb
, "tbl", pTab
->zName
);
3304 sqlite3FkDropTable(pParse
, pName
, pTab
);
3306 sqlite3CodeDropTable(pParse
, pTab
, iDb
, isView
);
3310 sqlite3SrcListDelete(db
, pName
);
3314 ** This routine is called to create a new foreign key on the table
3315 ** currently under construction. pFromCol determines which columns
3316 ** in the current table point to the foreign key. If pFromCol==0 then
3317 ** connect the key to the last column inserted. pTo is the name of
3318 ** the table referred to (a.k.a the "parent" table). pToCol is a list
3319 ** of tables in the parent pTo table. flags contains all
3320 ** information about the conflict resolution algorithms specified
3321 ** in the ON DELETE, ON UPDATE and ON INSERT clauses.
3323 ** An FKey structure is created and added to the table currently
3324 ** under construction in the pParse->pNewTable field.
3326 ** The foreign key is set for IMMEDIATE processing. A subsequent call
3327 ** to sqlite3DeferForeignKey() might change this to DEFERRED.
3329 void sqlite3CreateForeignKey(
3330 Parse
*pParse
, /* Parsing context */
3331 ExprList
*pFromCol
, /* Columns in this table that point to other table */
3332 Token
*pTo
, /* Name of the other table */
3333 ExprList
*pToCol
, /* Columns in the other table */
3334 int flags
/* Conflict resolution algorithms. */
3336 sqlite3
*db
= pParse
->db
;
3337 #ifndef SQLITE_OMIT_FOREIGN_KEY
3340 Table
*p
= pParse
->pNewTable
;
3347 if( p
==0 || IN_DECLARE_VTAB
) goto fk_end
;
3349 int iCol
= p
->nCol
-1;
3350 if( NEVER(iCol
<0) ) goto fk_end
;
3351 if( pToCol
&& pToCol
->nExpr
!=1 ){
3352 sqlite3ErrorMsg(pParse
, "foreign key on %s"
3353 " should reference only one column of table %T",
3354 p
->aCol
[iCol
].zName
, pTo
);
3358 }else if( pToCol
&& pToCol
->nExpr
!=pFromCol
->nExpr
){
3359 sqlite3ErrorMsg(pParse
,
3360 "number of columns in foreign key does not match the number of "
3361 "columns in the referenced table");
3364 nCol
= pFromCol
->nExpr
;
3366 nByte
= sizeof(*pFKey
) + (nCol
-1)*sizeof(pFKey
->aCol
[0]) + pTo
->n
+ 1;
3368 for(i
=0; i
<pToCol
->nExpr
; i
++){
3369 nByte
+= sqlite3Strlen30(pToCol
->a
[i
].zEName
) + 1;
3372 pFKey
= sqlite3DbMallocZero(db
, nByte
);
3377 pFKey
->pNextFrom
= p
->pFKey
;
3378 z
= (char*)&pFKey
->aCol
[nCol
];
3380 if( IN_RENAME_OBJECT
){
3381 sqlite3RenameTokenMap(pParse
, (void*)z
, pTo
);
3383 memcpy(z
, pTo
->z
, pTo
->n
);
3389 pFKey
->aCol
[0].iFrom
= p
->nCol
-1;
3391 for(i
=0; i
<nCol
; i
++){
3393 for(j
=0; j
<p
->nCol
; j
++){
3394 if( sqlite3StrICmp(p
->aCol
[j
].zName
, pFromCol
->a
[i
].zEName
)==0 ){
3395 pFKey
->aCol
[i
].iFrom
= j
;
3400 sqlite3ErrorMsg(pParse
,
3401 "unknown column \"%s\" in foreign key definition",
3402 pFromCol
->a
[i
].zEName
);
3405 if( IN_RENAME_OBJECT
){
3406 sqlite3RenameTokenRemap(pParse
, &pFKey
->aCol
[i
], pFromCol
->a
[i
].zEName
);
3411 for(i
=0; i
<nCol
; i
++){
3412 int n
= sqlite3Strlen30(pToCol
->a
[i
].zEName
);
3413 pFKey
->aCol
[i
].zCol
= z
;
3414 if( IN_RENAME_OBJECT
){
3415 sqlite3RenameTokenRemap(pParse
, z
, pToCol
->a
[i
].zEName
);
3417 memcpy(z
, pToCol
->a
[i
].zEName
, n
);
3422 pFKey
->isDeferred
= 0;
3423 pFKey
->aAction
[0] = (u8
)(flags
& 0xff); /* ON DELETE action */
3424 pFKey
->aAction
[1] = (u8
)((flags
>> 8 ) & 0xff); /* ON UPDATE action */
3426 assert( sqlite3SchemaMutexHeld(db
, 0, p
->pSchema
) );
3427 pNextTo
= (FKey
*)sqlite3HashInsert(&p
->pSchema
->fkeyHash
,
3428 pFKey
->zTo
, (void *)pFKey
3430 if( pNextTo
==pFKey
){
3431 sqlite3OomFault(db
);
3435 assert( pNextTo
->pPrevTo
==0 );
3436 pFKey
->pNextTo
= pNextTo
;
3437 pNextTo
->pPrevTo
= pFKey
;
3440 /* Link the foreign key to the table as the last step.
3446 sqlite3DbFree(db
, pFKey
);
3447 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
3448 sqlite3ExprListDelete(db
, pFromCol
);
3449 sqlite3ExprListDelete(db
, pToCol
);
3453 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
3454 ** clause is seen as part of a foreign key definition. The isDeferred
3455 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
3456 ** The behavior of the most recently created foreign key is adjusted
3459 void sqlite3DeferForeignKey(Parse
*pParse
, int isDeferred
){
3460 #ifndef SQLITE_OMIT_FOREIGN_KEY
3463 if( (pTab
= pParse
->pNewTable
)==0 || (pFKey
= pTab
->pFKey
)==0 ) return;
3464 assert( isDeferred
==0 || isDeferred
==1 ); /* EV: R-30323-21917 */
3465 pFKey
->isDeferred
= (u8
)isDeferred
;
3470 ** Generate code that will erase and refill index *pIdx. This is
3471 ** used to initialize a newly created index or to recompute the
3472 ** content of an index in response to a REINDEX command.
3474 ** if memRootPage is not negative, it means that the index is newly
3475 ** created. The register specified by memRootPage contains the
3476 ** root page number of the index. If memRootPage is negative, then
3477 ** the index already exists and must be cleared before being refilled and
3478 ** the root page number of the index is taken from pIndex->tnum.
3480 static void sqlite3RefillIndex(Parse
*pParse
, Index
*pIndex
, int memRootPage
){
3481 Table
*pTab
= pIndex
->pTable
; /* The table that is indexed */
3482 int iTab
= pParse
->nTab
++; /* Btree cursor used for pTab */
3483 int iIdx
= pParse
->nTab
++; /* Btree cursor used for pIndex */
3484 int iSorter
; /* Cursor opened by OpenSorter (if in use) */
3485 int addr1
; /* Address of top of loop */
3486 int addr2
; /* Address to jump to for next iteration */
3487 Pgno tnum
; /* Root page of index */
3488 int iPartIdxLabel
; /* Jump to this label to skip a row */
3489 Vdbe
*v
; /* Generate code into this virtual machine */
3490 KeyInfo
*pKey
; /* KeyInfo for index */
3491 int regRecord
; /* Register holding assembled index record */
3492 sqlite3
*db
= pParse
->db
; /* The database connection */
3493 int iDb
= sqlite3SchemaToIndex(db
, pIndex
->pSchema
);
3495 #ifndef SQLITE_OMIT_AUTHORIZATION
3496 if( sqlite3AuthCheck(pParse
, SQLITE_REINDEX
, pIndex
->zName
, 0,
3497 db
->aDb
[iDb
].zDbSName
) ){
3502 /* Require a write-lock on the table to perform this operation */
3503 sqlite3TableLock(pParse
, iDb
, pTab
->tnum
, 1, pTab
->zName
);
3505 v
= sqlite3GetVdbe(pParse
);
3507 if( memRootPage
>=0 ){
3508 tnum
= (Pgno
)memRootPage
;
3510 tnum
= pIndex
->tnum
;
3512 pKey
= sqlite3KeyInfoOfIndex(pParse
, pIndex
);
3513 assert( pKey
!=0 || db
->mallocFailed
|| pParse
->nErr
);
3515 /* Open the sorter cursor if we are to use one. */
3516 iSorter
= pParse
->nTab
++;
3517 sqlite3VdbeAddOp4(v
, OP_SorterOpen
, iSorter
, 0, pIndex
->nKeyCol
, (char*)
3518 sqlite3KeyInfoRef(pKey
), P4_KEYINFO
);
3520 /* Open the table. Loop through all rows of the table, inserting index
3521 ** records into the sorter. */
3522 sqlite3OpenTable(pParse
, iTab
, iDb
, pTab
, OP_OpenRead
);
3523 addr1
= sqlite3VdbeAddOp2(v
, OP_Rewind
, iTab
, 0); VdbeCoverage(v
);
3524 regRecord
= sqlite3GetTempReg(pParse
);
3525 sqlite3MultiWrite(pParse
);
3527 sqlite3GenerateIndexKey(pParse
,pIndex
,iTab
,regRecord
,0,&iPartIdxLabel
,0,0);
3528 sqlite3VdbeAddOp2(v
, OP_SorterInsert
, iSorter
, regRecord
);
3529 sqlite3ResolvePartIdxLabel(pParse
, iPartIdxLabel
);
3530 sqlite3VdbeAddOp2(v
, OP_Next
, iTab
, addr1
+1); VdbeCoverage(v
);
3531 sqlite3VdbeJumpHere(v
, addr1
);
3532 if( memRootPage
<0 ) sqlite3VdbeAddOp2(v
, OP_Clear
, tnum
, iDb
);
3533 sqlite3VdbeAddOp4(v
, OP_OpenWrite
, iIdx
, (int)tnum
, iDb
,
3534 (char *)pKey
, P4_KEYINFO
);
3535 sqlite3VdbeChangeP5(v
, OPFLAG_BULKCSR
|((memRootPage
>=0)?OPFLAG_P2ISREG
:0));
3537 addr1
= sqlite3VdbeAddOp2(v
, OP_SorterSort
, iSorter
, 0); VdbeCoverage(v
);
3538 if( IsUniqueIndex(pIndex
) ){
3539 int j2
= sqlite3VdbeGoto(v
, 1);
3540 addr2
= sqlite3VdbeCurrentAddr(v
);
3541 sqlite3VdbeVerifyAbortable(v
, OE_Abort
);
3542 sqlite3VdbeAddOp4Int(v
, OP_SorterCompare
, iSorter
, j2
, regRecord
,
3543 pIndex
->nKeyCol
); VdbeCoverage(v
);
3544 sqlite3UniqueConstraint(pParse
, OE_Abort
, pIndex
);
3545 sqlite3VdbeJumpHere(v
, j2
);
3547 /* Most CREATE INDEX and REINDEX statements that are not UNIQUE can not
3548 ** abort. The exception is if one of the indexed expressions contains a
3549 ** user function that throws an exception when it is evaluated. But the
3550 ** overhead of adding a statement journal to a CREATE INDEX statement is
3551 ** very small (since most of the pages written do not contain content that
3552 ** needs to be restored if the statement aborts), so we call
3553 ** sqlite3MayAbort() for all CREATE INDEX statements. */
3554 sqlite3MayAbort(pParse
);
3555 addr2
= sqlite3VdbeCurrentAddr(v
);
3557 sqlite3VdbeAddOp3(v
, OP_SorterData
, iSorter
, regRecord
, iIdx
);
3558 if( !pIndex
->bAscKeyBug
){
3559 /* This OP_SeekEnd opcode makes index insert for a REINDEX go much
3560 ** faster by avoiding unnecessary seeks. But the optimization does
3561 ** not work for UNIQUE constraint indexes on WITHOUT ROWID tables
3562 ** with DESC primary keys, since those indexes have there keys in
3563 ** a different order from the main table.
3564 ** See ticket: https://www.sqlite.org/src/info/bba7b69f9849b5bf
3566 sqlite3VdbeAddOp1(v
, OP_SeekEnd
, iIdx
);
3568 sqlite3VdbeAddOp2(v
, OP_IdxInsert
, iIdx
, regRecord
);
3569 sqlite3VdbeChangeP5(v
, OPFLAG_USESEEKRESULT
);
3570 sqlite3ReleaseTempReg(pParse
, regRecord
);
3571 sqlite3VdbeAddOp2(v
, OP_SorterNext
, iSorter
, addr2
); VdbeCoverage(v
);
3572 sqlite3VdbeJumpHere(v
, addr1
);
3574 sqlite3VdbeAddOp1(v
, OP_Close
, iTab
);
3575 sqlite3VdbeAddOp1(v
, OP_Close
, iIdx
);
3576 sqlite3VdbeAddOp1(v
, OP_Close
, iSorter
);
3580 ** Allocate heap space to hold an Index object with nCol columns.
3582 ** Increase the allocation size to provide an extra nExtra bytes
3583 ** of 8-byte aligned space after the Index object and return a
3584 ** pointer to this extra space in *ppExtra.
3586 Index
*sqlite3AllocateIndexObject(
3587 sqlite3
*db
, /* Database connection */
3588 i16 nCol
, /* Total number of columns in the index */
3589 int nExtra
, /* Number of bytes of extra space to alloc */
3590 char **ppExtra
/* Pointer to the "extra" space */
3592 Index
*p
; /* Allocated index object */
3593 int nByte
; /* Bytes of space for Index object + arrays */
3595 nByte
= ROUND8(sizeof(Index
)) + /* Index structure */
3596 ROUND8(sizeof(char*)*nCol
) + /* Index.azColl */
3597 ROUND8(sizeof(LogEst
)*(nCol
+1) + /* Index.aiRowLogEst */
3598 sizeof(i16
)*nCol
+ /* Index.aiColumn */
3599 sizeof(u8
)*nCol
); /* Index.aSortOrder */
3600 p
= sqlite3DbMallocZero(db
, nByte
+ nExtra
);
3602 char *pExtra
= ((char*)p
)+ROUND8(sizeof(Index
));
3603 p
->azColl
= (const char**)pExtra
; pExtra
+= ROUND8(sizeof(char*)*nCol
);
3604 p
->aiRowLogEst
= (LogEst
*)pExtra
; pExtra
+= sizeof(LogEst
)*(nCol
+1);
3605 p
->aiColumn
= (i16
*)pExtra
; pExtra
+= sizeof(i16
)*nCol
;
3606 p
->aSortOrder
= (u8
*)pExtra
;
3608 p
->nKeyCol
= nCol
- 1;
3609 *ppExtra
= ((char*)p
) + nByte
;
3615 ** If expression list pList contains an expression that was parsed with
3616 ** an explicit "NULLS FIRST" or "NULLS LAST" clause, leave an error in
3617 ** pParse and return non-zero. Otherwise, return zero.
3619 int sqlite3HasExplicitNulls(Parse
*pParse
, ExprList
*pList
){
3622 for(i
=0; i
<pList
->nExpr
; i
++){
3623 if( pList
->a
[i
].bNulls
){
3624 u8 sf
= pList
->a
[i
].sortFlags
;
3625 sqlite3ErrorMsg(pParse
, "unsupported use of NULLS %s",
3626 (sf
==0 || sf
==3) ? "FIRST" : "LAST"
3636 ** Create a new index for an SQL table. pName1.pName2 is the name of the index
3637 ** and pTblList is the name of the table that is to be indexed. Both will
3638 ** be NULL for a primary key or an index that is created to satisfy a
3639 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable
3640 ** as the table to be indexed. pParse->pNewTable is a table that is
3641 ** currently being constructed by a CREATE TABLE statement.
3643 ** pList is a list of columns to be indexed. pList will be NULL if this
3644 ** is a primary key or unique-constraint on the most recent column added
3645 ** to the table currently under construction.
3647 void sqlite3CreateIndex(
3648 Parse
*pParse
, /* All information about this parse */
3649 Token
*pName1
, /* First part of index name. May be NULL */
3650 Token
*pName2
, /* Second part of index name. May be NULL */
3651 SrcList
*pTblName
, /* Table to index. Use pParse->pNewTable if 0 */
3652 ExprList
*pList
, /* A list of columns to be indexed */
3653 int onError
, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
3654 Token
*pStart
, /* The CREATE token that begins this statement */
3655 Expr
*pPIWhere
, /* WHERE clause for partial indices */
3656 int sortOrder
, /* Sort order of primary key when pList==NULL */
3657 int ifNotExist
, /* Omit error if index already exists */
3658 u8 idxType
/* The index type */
3660 Table
*pTab
= 0; /* Table to be indexed */
3661 Index
*pIndex
= 0; /* The index to be created */
3662 char *zName
= 0; /* Name of the index */
3663 int nName
; /* Number of characters in zName */
3665 DbFixer sFix
; /* For assigning database names to pTable */
3666 int sortOrderMask
; /* 1 to honor DESC in index. 0 to ignore. */
3667 sqlite3
*db
= pParse
->db
;
3668 Db
*pDb
; /* The specific table containing the indexed database */
3669 int iDb
; /* Index of the database that is being written */
3670 Token
*pName
= 0; /* Unqualified name of the index to create */
3671 struct ExprList_item
*pListItem
; /* For looping over pList */
3672 int nExtra
= 0; /* Space allocated for zExtra[] */
3673 int nExtraCol
; /* Number of extra columns needed */
3674 char *zExtra
= 0; /* Extra space after the Index object */
3675 Index
*pPk
= 0; /* PRIMARY KEY index for WITHOUT ROWID tables */
3677 if( db
->mallocFailed
|| pParse
->nErr
>0 ){
3678 goto exit_create_index
;
3680 if( IN_DECLARE_VTAB
&& idxType
!=SQLITE_IDXTYPE_PRIMARYKEY
){
3681 goto exit_create_index
;
3683 if( SQLITE_OK
!=sqlite3ReadSchema(pParse
) ){
3684 goto exit_create_index
;
3686 if( sqlite3HasExplicitNulls(pParse
, pList
) ){
3687 goto exit_create_index
;
3691 ** Find the table that is to be indexed. Return early if not found.
3695 /* Use the two-part index name to determine the database
3696 ** to search for the table. 'Fix' the table name to this db
3697 ** before looking up the table.
3699 assert( pName1
&& pName2
);
3700 iDb
= sqlite3TwoPartName(pParse
, pName1
, pName2
, &pName
);
3701 if( iDb
<0 ) goto exit_create_index
;
3702 assert( pName
&& pName
->z
);
3704 #ifndef SQLITE_OMIT_TEMPDB
3705 /* If the index name was unqualified, check if the table
3706 ** is a temp table. If so, set the database to 1. Do not do this
3707 ** if initialising a database schema.
3709 if( !db
->init
.busy
){
3710 pTab
= sqlite3SrcListLookup(pParse
, pTblName
);
3711 if( pName2
->n
==0 && pTab
&& pTab
->pSchema
==db
->aDb
[1].pSchema
){
3717 sqlite3FixInit(&sFix
, pParse
, iDb
, "index", pName
);
3718 if( sqlite3FixSrcList(&sFix
, pTblName
) ){
3719 /* Because the parser constructs pTblName from a single identifier,
3720 ** sqlite3FixSrcList can never fail. */
3723 pTab
= sqlite3LocateTableItem(pParse
, 0, &pTblName
->a
[0]);
3724 assert( db
->mallocFailed
==0 || pTab
==0 );
3725 if( pTab
==0 ) goto exit_create_index
;
3726 if( iDb
==1 && db
->aDb
[iDb
].pSchema
!=pTab
->pSchema
){
3727 sqlite3ErrorMsg(pParse
,
3728 "cannot create a TEMP index on non-TEMP table \"%s\"",
3730 goto exit_create_index
;
3732 if( !HasRowid(pTab
) ) pPk
= sqlite3PrimaryKeyIndex(pTab
);
3735 assert( pStart
==0 );
3736 pTab
= pParse
->pNewTable
;
3737 if( !pTab
) goto exit_create_index
;
3738 iDb
= sqlite3SchemaToIndex(db
, pTab
->pSchema
);
3740 pDb
= &db
->aDb
[iDb
];
3743 assert( pParse
->nErr
==0 );
3744 if( sqlite3StrNICmp(pTab
->zName
, "sqlite_", 7)==0
3747 #if SQLITE_USER_AUTHENTICATION
3748 && sqlite3UserAuthTable(pTab
->zName
)==0
3751 sqlite3ErrorMsg(pParse
, "table %s may not be indexed", pTab
->zName
);
3752 goto exit_create_index
;
3754 #ifndef SQLITE_OMIT_VIEW
3755 if( pTab
->pSelect
){
3756 sqlite3ErrorMsg(pParse
, "views may not be indexed");
3757 goto exit_create_index
;
3760 #ifndef SQLITE_OMIT_VIRTUALTABLE
3761 if( IsVirtual(pTab
) ){
3762 sqlite3ErrorMsg(pParse
, "virtual tables may not be indexed");
3763 goto exit_create_index
;
3768 ** Find the name of the index. Make sure there is not already another
3769 ** index or table with the same name.
3771 ** Exception: If we are reading the names of permanent indices from the
3772 ** sqlite_schema table (because some other process changed the schema) and
3773 ** one of the index names collides with the name of a temporary table or
3774 ** index, then we will continue to process this index.
3776 ** If pName==0 it means that we are
3777 ** dealing with a primary key or UNIQUE constraint. We have to invent our
3781 zName
= sqlite3NameFromToken(db
, pName
);
3782 if( zName
==0 ) goto exit_create_index
;
3783 assert( pName
->z
!=0 );
3784 if( SQLITE_OK
!=sqlite3CheckObjectName(pParse
, zName
,"index",pTab
->zName
) ){
3785 goto exit_create_index
;
3787 if( !IN_RENAME_OBJECT
){
3788 if( !db
->init
.busy
){
3789 if( sqlite3FindTable(db
, zName
, 0)!=0 ){
3790 sqlite3ErrorMsg(pParse
, "there is already a table named %s", zName
);
3791 goto exit_create_index
;
3794 if( sqlite3FindIndex(db
, zName
, pDb
->zDbSName
)!=0 ){
3796 sqlite3ErrorMsg(pParse
, "index %s already exists", zName
);
3798 assert( !db
->init
.busy
);
3799 sqlite3CodeVerifySchema(pParse
, iDb
);
3800 sqlite3ForceNotReadOnly(pParse
);
3802 goto exit_create_index
;
3808 for(pLoop
=pTab
->pIndex
, n
=1; pLoop
; pLoop
=pLoop
->pNext
, n
++){}
3809 zName
= sqlite3MPrintf(db
, "sqlite_autoindex_%s_%d", pTab
->zName
, n
);
3811 goto exit_create_index
;
3814 /* Automatic index names generated from within sqlite3_declare_vtab()
3815 ** must have names that are distinct from normal automatic index names.
3816 ** The following statement converts "sqlite3_autoindex..." into
3817 ** "sqlite3_butoindex..." in order to make the names distinct.
3818 ** The "vtab_err.test" test demonstrates the need of this statement. */
3819 if( IN_SPECIAL_PARSE
) zName
[7]++;
3822 /* Check for authorization to create an index.
3824 #ifndef SQLITE_OMIT_AUTHORIZATION
3825 if( !IN_RENAME_OBJECT
){
3826 const char *zDb
= pDb
->zDbSName
;
3827 if( sqlite3AuthCheck(pParse
, SQLITE_INSERT
, SCHEMA_TABLE(iDb
), 0, zDb
) ){
3828 goto exit_create_index
;
3830 i
= SQLITE_CREATE_INDEX
;
3831 if( !OMIT_TEMPDB
&& iDb
==1 ) i
= SQLITE_CREATE_TEMP_INDEX
;
3832 if( sqlite3AuthCheck(pParse
, i
, zName
, pTab
->zName
, zDb
) ){
3833 goto exit_create_index
;
3838 /* If pList==0, it means this routine was called to make a primary
3839 ** key out of the last column added to the table under construction.
3840 ** So create a fake list to simulate this.
3844 Column
*pCol
= &pTab
->aCol
[pTab
->nCol
-1];
3845 pCol
->colFlags
|= COLFLAG_UNIQUE
;
3846 sqlite3TokenInit(&prevCol
, pCol
->zName
);
3847 pList
= sqlite3ExprListAppend(pParse
, 0,
3848 sqlite3ExprAlloc(db
, TK_ID
, &prevCol
, 0));
3849 if( pList
==0 ) goto exit_create_index
;
3850 assert( pList
->nExpr
==1 );
3851 sqlite3ExprListSetSortOrder(pList
, sortOrder
, SQLITE_SO_UNDEFINED
);
3853 sqlite3ExprListCheckLength(pParse
, pList
, "index");
3854 if( pParse
->nErr
) goto exit_create_index
;
3857 /* Figure out how many bytes of space are required to store explicitly
3858 ** specified collation sequence names.
3860 for(i
=0; i
<pList
->nExpr
; i
++){
3861 Expr
*pExpr
= pList
->a
[i
].pExpr
;
3863 if( pExpr
->op
==TK_COLLATE
){
3864 nExtra
+= (1 + sqlite3Strlen30(pExpr
->u
.zToken
));
3869 ** Allocate the index structure.
3871 nName
= sqlite3Strlen30(zName
);
3872 nExtraCol
= pPk
? pPk
->nKeyCol
: 1;
3873 assert( pList
->nExpr
+ nExtraCol
<= 32767 /* Fits in i16 */ );
3874 pIndex
= sqlite3AllocateIndexObject(db
, pList
->nExpr
+ nExtraCol
,
3875 nName
+ nExtra
+ 1, &zExtra
);
3876 if( db
->mallocFailed
){
3877 goto exit_create_index
;
3879 assert( EIGHT_BYTE_ALIGNMENT(pIndex
->aiRowLogEst
) );
3880 assert( EIGHT_BYTE_ALIGNMENT(pIndex
->azColl
) );
3881 pIndex
->zName
= zExtra
;
3882 zExtra
+= nName
+ 1;
3883 memcpy(pIndex
->zName
, zName
, nName
+1);
3884 pIndex
->pTable
= pTab
;
3885 pIndex
->onError
= (u8
)onError
;
3886 pIndex
->uniqNotNull
= onError
!=OE_None
;
3887 pIndex
->idxType
= idxType
;
3888 pIndex
->pSchema
= db
->aDb
[iDb
].pSchema
;
3889 pIndex
->nKeyCol
= pList
->nExpr
;
3891 sqlite3ResolveSelfReference(pParse
, pTab
, NC_PartIdx
, pPIWhere
, 0);
3892 pIndex
->pPartIdxWhere
= pPIWhere
;
3895 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
3897 /* Check to see if we should honor DESC requests on index columns
3899 if( pDb
->pSchema
->file_format
>=4 ){
3900 sortOrderMask
= -1; /* Honor DESC */
3902 sortOrderMask
= 0; /* Ignore DESC */
3905 /* Analyze the list of expressions that form the terms of the index and
3906 ** report any errors. In the common case where the expression is exactly
3907 ** a table column, store that column in aiColumn[]. For general expressions,
3908 ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[].
3910 ** TODO: Issue a warning if two or more columns of the index are identical.
3911 ** TODO: Issue a warning if the table primary key is used as part of the
3914 pListItem
= pList
->a
;
3915 if( IN_RENAME_OBJECT
){
3916 pIndex
->aColExpr
= pList
;
3919 for(i
=0; i
<pIndex
->nKeyCol
; i
++, pListItem
++){
3920 Expr
*pCExpr
; /* The i-th index expression */
3921 int requestedSortOrder
; /* ASC or DESC on the i-th expression */
3922 const char *zColl
; /* Collation sequence name */
3924 sqlite3StringToId(pListItem
->pExpr
);
3925 sqlite3ResolveSelfReference(pParse
, pTab
, NC_IdxExpr
, pListItem
->pExpr
, 0);
3926 if( pParse
->nErr
) goto exit_create_index
;
3927 pCExpr
= sqlite3ExprSkipCollate(pListItem
->pExpr
);
3928 if( pCExpr
->op
!=TK_COLUMN
){
3929 if( pTab
==pParse
->pNewTable
){
3930 sqlite3ErrorMsg(pParse
, "expressions prohibited in PRIMARY KEY and "
3931 "UNIQUE constraints");
3932 goto exit_create_index
;
3934 if( pIndex
->aColExpr
==0 ){
3935 pIndex
->aColExpr
= pList
;
3939 pIndex
->aiColumn
[i
] = XN_EXPR
;
3940 pIndex
->uniqNotNull
= 0;
3942 j
= pCExpr
->iColumn
;
3943 assert( j
<=0x7fff );
3947 if( pTab
->aCol
[j
].notNull
==0 ){
3948 pIndex
->uniqNotNull
= 0;
3950 if( pTab
->aCol
[j
].colFlags
& COLFLAG_VIRTUAL
){
3951 pIndex
->bHasVCol
= 1;
3954 pIndex
->aiColumn
[i
] = (i16
)j
;
3957 if( pListItem
->pExpr
->op
==TK_COLLATE
){
3959 zColl
= pListItem
->pExpr
->u
.zToken
;
3960 nColl
= sqlite3Strlen30(zColl
) + 1;
3961 assert( nExtra
>=nColl
);
3962 memcpy(zExtra
, zColl
, nColl
);
3967 zColl
= pTab
->aCol
[j
].zColl
;
3969 if( !zColl
) zColl
= sqlite3StrBINARY
;
3970 if( !db
->init
.busy
&& !sqlite3LocateCollSeq(pParse
, zColl
) ){
3971 goto exit_create_index
;
3973 pIndex
->azColl
[i
] = zColl
;
3974 requestedSortOrder
= pListItem
->sortFlags
& sortOrderMask
;
3975 pIndex
->aSortOrder
[i
] = (u8
)requestedSortOrder
;
3978 /* Append the table key to the end of the index. For WITHOUT ROWID
3979 ** tables (when pPk!=0) this will be the declared PRIMARY KEY. For
3980 ** normal tables (when pPk==0) this will be the rowid.
3983 for(j
=0; j
<pPk
->nKeyCol
; j
++){
3984 int x
= pPk
->aiColumn
[j
];
3986 if( isDupColumn(pIndex
, pIndex
->nKeyCol
, pPk
, j
) ){
3989 testcase( hasColumn(pIndex
->aiColumn
,pIndex
->nKeyCol
,x
) );
3990 pIndex
->aiColumn
[i
] = x
;
3991 pIndex
->azColl
[i
] = pPk
->azColl
[j
];
3992 pIndex
->aSortOrder
[i
] = pPk
->aSortOrder
[j
];
3996 assert( i
==pIndex
->nColumn
);
3998 pIndex
->aiColumn
[i
] = XN_ROWID
;
3999 pIndex
->azColl
[i
] = sqlite3StrBINARY
;
4001 sqlite3DefaultRowEst(pIndex
);
4002 if( pParse
->pNewTable
==0 ) estimateIndexWidth(pIndex
);
4004 /* If this index contains every column of its table, then mark
4005 ** it as a covering index */
4006 assert( HasRowid(pTab
)
4007 || pTab
->iPKey
<0 || sqlite3TableColumnToIndex(pIndex
, pTab
->iPKey
)>=0 );
4008 recomputeColumnsNotIndexed(pIndex
);
4009 if( pTblName
!=0 && pIndex
->nColumn
>=pTab
->nCol
){
4010 pIndex
->isCovering
= 1;
4011 for(j
=0; j
<pTab
->nCol
; j
++){
4012 if( j
==pTab
->iPKey
) continue;
4013 if( sqlite3TableColumnToIndex(pIndex
,j
)>=0 ) continue;
4014 pIndex
->isCovering
= 0;
4019 if( pTab
==pParse
->pNewTable
){
4020 /* This routine has been called to create an automatic index as a
4021 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
4022 ** a PRIMARY KEY or UNIQUE clause following the column definitions.
4025 ** CREATE TABLE t(x PRIMARY KEY, y);
4026 ** CREATE TABLE t(x, y, UNIQUE(x, y));
4028 ** Either way, check to see if the table already has such an index. If
4029 ** so, don't bother creating this one. This only applies to
4030 ** automatically created indices. Users can do as they wish with
4031 ** explicit indices.
4033 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent
4034 ** (and thus suppressing the second one) even if they have different
4037 ** If there are different collating sequences or if the columns of
4038 ** the constraint occur in different orders, then the constraints are
4039 ** considered distinct and both result in separate indices.
4042 for(pIdx
=pTab
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
){
4044 assert( IsUniqueIndex(pIdx
) );
4045 assert( pIdx
->idxType
!=SQLITE_IDXTYPE_APPDEF
);
4046 assert( IsUniqueIndex(pIndex
) );
4048 if( pIdx
->nKeyCol
!=pIndex
->nKeyCol
) continue;
4049 for(k
=0; k
<pIdx
->nKeyCol
; k
++){
4052 assert( pIdx
->aiColumn
[k
]>=0 );
4053 if( pIdx
->aiColumn
[k
]!=pIndex
->aiColumn
[k
] ) break;
4054 z1
= pIdx
->azColl
[k
];
4055 z2
= pIndex
->azColl
[k
];
4056 if( sqlite3StrICmp(z1
, z2
) ) break;
4058 if( k
==pIdx
->nKeyCol
){
4059 if( pIdx
->onError
!=pIndex
->onError
){
4060 /* This constraint creates the same index as a previous
4061 ** constraint specified somewhere in the CREATE TABLE statement.
4062 ** However the ON CONFLICT clauses are different. If both this
4063 ** constraint and the previous equivalent constraint have explicit
4064 ** ON CONFLICT clauses this is an error. Otherwise, use the
4065 ** explicitly specified behavior for the index.
4067 if( !(pIdx
->onError
==OE_Default
|| pIndex
->onError
==OE_Default
) ){
4068 sqlite3ErrorMsg(pParse
,
4069 "conflicting ON CONFLICT clauses specified", 0);
4071 if( pIdx
->onError
==OE_Default
){
4072 pIdx
->onError
= pIndex
->onError
;
4075 if( idxType
==SQLITE_IDXTYPE_PRIMARYKEY
) pIdx
->idxType
= idxType
;
4076 if( IN_RENAME_OBJECT
){
4077 pIndex
->pNext
= pParse
->pNewIndex
;
4078 pParse
->pNewIndex
= pIndex
;
4081 goto exit_create_index
;
4086 if( !IN_RENAME_OBJECT
){
4088 /* Link the new Index structure to its table and to the other
4089 ** in-memory database structures.
4091 assert( pParse
->nErr
==0 );
4092 if( db
->init
.busy
){
4094 assert( !IN_SPECIAL_PARSE
);
4095 assert( sqlite3SchemaMutexHeld(db
, 0, pIndex
->pSchema
) );
4097 pIndex
->tnum
= db
->init
.newTnum
;
4098 if( sqlite3IndexHasDuplicateRootPage(pIndex
) ){
4099 sqlite3ErrorMsg(pParse
, "invalid rootpage");
4100 pParse
->rc
= SQLITE_CORRUPT_BKPT
;
4101 goto exit_create_index
;
4104 p
= sqlite3HashInsert(&pIndex
->pSchema
->idxHash
,
4105 pIndex
->zName
, pIndex
);
4107 assert( p
==pIndex
); /* Malloc must have failed */
4108 sqlite3OomFault(db
);
4109 goto exit_create_index
;
4111 db
->mDbFlags
|= DBFLAG_SchemaChange
;
4114 /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the
4115 ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then
4116 ** emit code to allocate the index rootpage on disk and make an entry for
4117 ** the index in the sqlite_schema table and populate the index with
4118 ** content. But, do not do this if we are simply reading the sqlite_schema
4119 ** table to parse the schema, or if this index is the PRIMARY KEY index
4120 ** of a WITHOUT ROWID table.
4122 ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY
4123 ** or UNIQUE index in a CREATE TABLE statement. Since the table
4124 ** has just been created, it contains no data and the index initialization
4125 ** step can be skipped.
4127 else if( HasRowid(pTab
) || pTblName
!=0 ){
4130 int iMem
= ++pParse
->nMem
;
4132 v
= sqlite3GetVdbe(pParse
);
4133 if( v
==0 ) goto exit_create_index
;
4135 sqlite3BeginWriteOperation(pParse
, 1, iDb
);
4137 /* Create the rootpage for the index using CreateIndex. But before
4138 ** doing so, code a Noop instruction and store its address in
4139 ** Index.tnum. This is required in case this index is actually a
4140 ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In
4141 ** that case the convertToWithoutRowidTable() routine will replace
4142 ** the Noop with a Goto to jump over the VDBE code generated below. */
4143 pIndex
->tnum
= (Pgno
)sqlite3VdbeAddOp0(v
, OP_Noop
);
4144 sqlite3VdbeAddOp3(v
, OP_CreateBtree
, iDb
, iMem
, BTREE_BLOBKEY
);
4146 /* Gather the complete text of the CREATE INDEX statement into
4147 ** the zStmt variable
4149 assert( pName
!=0 || pStart
==0 );
4151 int n
= (int)(pParse
->sLastToken
.z
- pName
->z
) + pParse
->sLastToken
.n
;
4152 if( pName
->z
[n
-1]==';' ) n
--;
4153 /* A named index with an explicit CREATE INDEX statement */
4154 zStmt
= sqlite3MPrintf(db
, "CREATE%s INDEX %.*s",
4155 onError
==OE_None
? "" : " UNIQUE", n
, pName
->z
);
4157 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
4158 /* zStmt = sqlite3MPrintf(""); */
4162 /* Add an entry in sqlite_schema for this index
4164 sqlite3NestedParse(pParse
,
4165 "INSERT INTO %Q." DFLT_SCHEMA_TABLE
" VALUES('index',%Q,%Q,#%d,%Q);",
4166 db
->aDb
[iDb
].zDbSName
,
4172 sqlite3DbFree(db
, zStmt
);
4174 /* Fill the index with data and reparse the schema. Code an OP_Expire
4175 ** to invalidate all pre-compiled statements.
4178 sqlite3RefillIndex(pParse
, pIndex
, iMem
);
4179 sqlite3ChangeCookie(pParse
, iDb
);
4180 sqlite3VdbeAddParseSchemaOp(v
, iDb
,
4181 sqlite3MPrintf(db
, "name='%q' AND type='index'", pIndex
->zName
), 0);
4182 sqlite3VdbeAddOp2(v
, OP_Expire
, 0, 1);
4185 sqlite3VdbeJumpHere(v
, (int)pIndex
->tnum
);
4188 if( db
->init
.busy
|| pTblName
==0 ){
4189 pIndex
->pNext
= pTab
->pIndex
;
4190 pTab
->pIndex
= pIndex
;
4193 else if( IN_RENAME_OBJECT
){
4194 assert( pParse
->pNewIndex
==0 );
4195 pParse
->pNewIndex
= pIndex
;
4199 /* Clean up before exiting */
4201 if( pIndex
) sqlite3FreeIndex(db
, pIndex
);
4203 /* Ensure all REPLACE indexes on pTab are at the end of the pIndex list.
4204 ** The list was already ordered when this routine was entered, so at this
4205 ** point at most a single index (the newly added index) will be out of
4206 ** order. So we have to reorder at most one index. */
4207 Index
**ppFrom
= &pTab
->pIndex
;
4209 for(ppFrom
=&pTab
->pIndex
; (pThis
= *ppFrom
)!=0; ppFrom
=&pThis
->pNext
){
4211 if( pThis
->onError
!=OE_Replace
) continue;
4212 while( (pNext
= pThis
->pNext
)!=0 && pNext
->onError
!=OE_Replace
){
4214 pThis
->pNext
= pNext
->pNext
;
4215 pNext
->pNext
= pThis
;
4216 ppFrom
= &pNext
->pNext
;
4221 /* Verify that all REPLACE indexes really are now at the end
4222 ** of the index list. In other words, no other index type ever
4223 ** comes after a REPLACE index on the list. */
4224 for(pThis
= pTab
->pIndex
; pThis
; pThis
=pThis
->pNext
){
4225 assert( pThis
->onError
!=OE_Replace
4227 || pThis
->pNext
->onError
==OE_Replace
);
4231 sqlite3ExprDelete(db
, pPIWhere
);
4232 sqlite3ExprListDelete(db
, pList
);
4233 sqlite3SrcListDelete(db
, pTblName
);
4234 sqlite3DbFree(db
, zName
);
4238 ** Fill the Index.aiRowEst[] array with default information - information
4239 ** to be used when we have not run the ANALYZE command.
4241 ** aiRowEst[0] is supposed to contain the number of elements in the index.
4242 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the
4243 ** number of rows in the table that match any particular value of the
4244 ** first column of the index. aiRowEst[2] is an estimate of the number
4245 ** of rows that match any particular combination of the first 2 columns
4246 ** of the index. And so forth. It must always be the case that
4248 ** aiRowEst[N]<=aiRowEst[N-1]
4251 ** Apart from that, we have little to go on besides intuition as to
4252 ** how aiRowEst[] should be initialized. The numbers generated here
4253 ** are based on typical values found in actual indices.
4255 void sqlite3DefaultRowEst(Index
*pIdx
){
4256 /* 10, 9, 8, 7, 6 */
4257 static const LogEst aVal
[] = { 33, 32, 30, 28, 26 };
4258 LogEst
*a
= pIdx
->aiRowLogEst
;
4260 int nCopy
= MIN(ArraySize(aVal
), pIdx
->nKeyCol
);
4263 /* Indexes with default row estimates should not have stat1 data */
4264 assert( !pIdx
->hasStat1
);
4266 /* Set the first entry (number of rows in the index) to the estimated
4267 ** number of rows in the table, or half the number of rows in the table
4268 ** for a partial index.
4270 ** 2020-05-27: If some of the stat data is coming from the sqlite_stat1
4271 ** table but other parts we are having to guess at, then do not let the
4272 ** estimated number of rows in the table be less than 1000 (LogEst 99).
4273 ** Failure to do this can cause the indexes for which we do not have
4274 ** stat1 data to be ignored by the query planner.
4276 x
= pIdx
->pTable
->nRowLogEst
;
4277 assert( 99==sqlite3LogEst(1000) );
4279 pIdx
->pTable
->nRowLogEst
= x
= 99;
4281 if( pIdx
->pPartIdxWhere
!=0 ){ x
-= 10; assert( 10==sqlite3LogEst(2) ); }
4284 /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is
4285 ** 6 and each subsequent value (if any) is 5. */
4286 memcpy(&a
[1], aVal
, nCopy
*sizeof(LogEst
));
4287 for(i
=nCopy
+1; i
<=pIdx
->nKeyCol
; i
++){
4288 a
[i
] = 23; assert( 23==sqlite3LogEst(5) );
4291 assert( 0==sqlite3LogEst(1) );
4292 if( IsUniqueIndex(pIdx
) ) a
[pIdx
->nKeyCol
] = 0;
4296 ** This routine will drop an existing named index. This routine
4297 ** implements the DROP INDEX statement.
4299 void sqlite3DropIndex(Parse
*pParse
, SrcList
*pName
, int ifExists
){
4302 sqlite3
*db
= pParse
->db
;
4305 assert( pParse
->nErr
==0 ); /* Never called with prior errors */
4306 if( db
->mallocFailed
){
4307 goto exit_drop_index
;
4309 assert( pName
->nSrc
==1 );
4310 if( SQLITE_OK
!=sqlite3ReadSchema(pParse
) ){
4311 goto exit_drop_index
;
4313 pIndex
= sqlite3FindIndex(db
, pName
->a
[0].zName
, pName
->a
[0].zDatabase
);
4316 sqlite3ErrorMsg(pParse
, "no such index: %S", pName
->a
);
4318 sqlite3CodeVerifyNamedSchema(pParse
, pName
->a
[0].zDatabase
);
4319 sqlite3ForceNotReadOnly(pParse
);
4321 pParse
->checkSchema
= 1;
4322 goto exit_drop_index
;
4324 if( pIndex
->idxType
!=SQLITE_IDXTYPE_APPDEF
){
4325 sqlite3ErrorMsg(pParse
, "index associated with UNIQUE "
4326 "or PRIMARY KEY constraint cannot be dropped", 0);
4327 goto exit_drop_index
;
4329 iDb
= sqlite3SchemaToIndex(db
, pIndex
->pSchema
);
4330 #ifndef SQLITE_OMIT_AUTHORIZATION
4332 int code
= SQLITE_DROP_INDEX
;
4333 Table
*pTab
= pIndex
->pTable
;
4334 const char *zDb
= db
->aDb
[iDb
].zDbSName
;
4335 const char *zTab
= SCHEMA_TABLE(iDb
);
4336 if( sqlite3AuthCheck(pParse
, SQLITE_DELETE
, zTab
, 0, zDb
) ){
4337 goto exit_drop_index
;
4339 if( !OMIT_TEMPDB
&& iDb
==1 ) code
= SQLITE_DROP_TEMP_INDEX
;
4340 if( sqlite3AuthCheck(pParse
, code
, pIndex
->zName
, pTab
->zName
, zDb
) ){
4341 goto exit_drop_index
;
4346 /* Generate code to remove the index and from the schema table */
4347 v
= sqlite3GetVdbe(pParse
);
4349 sqlite3BeginWriteOperation(pParse
, 1, iDb
);
4350 sqlite3NestedParse(pParse
,
4351 "DELETE FROM %Q." DFLT_SCHEMA_TABLE
" WHERE name=%Q AND type='index'",
4352 db
->aDb
[iDb
].zDbSName
, pIndex
->zName
4354 sqlite3ClearStatTables(pParse
, iDb
, "idx", pIndex
->zName
);
4355 sqlite3ChangeCookie(pParse
, iDb
);
4356 destroyRootPage(pParse
, pIndex
->tnum
, iDb
);
4357 sqlite3VdbeAddOp4(v
, OP_DropIndex
, iDb
, 0, 0, pIndex
->zName
, 0);
4361 sqlite3SrcListDelete(db
, pName
);
4365 ** pArray is a pointer to an array of objects. Each object in the
4366 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc()
4367 ** to extend the array so that there is space for a new object at the end.
4369 ** When this function is called, *pnEntry contains the current size of
4370 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes
4373 ** If the realloc() is successful (i.e. if no OOM condition occurs), the
4374 ** space allocated for the new object is zeroed, *pnEntry updated to
4375 ** reflect the new size of the array and a pointer to the new allocation
4376 ** returned. *pIdx is set to the index of the new array entry in this case.
4378 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains
4379 ** unchanged and a copy of pArray returned.
4381 void *sqlite3ArrayAllocate(
4382 sqlite3
*db
, /* Connection to notify of malloc failures */
4383 void *pArray
, /* Array of objects. Might be reallocated */
4384 int szEntry
, /* Size of each object in the array */
4385 int *pnEntry
, /* Number of objects currently in use */
4386 int *pIdx
/* Write the index of a new slot here */
4389 sqlite3_int64 n
= *pIdx
= *pnEntry
;
4390 if( (n
& (n
-1))==0 ){
4391 sqlite3_int64 sz
= (n
==0) ? 1 : 2*n
;
4392 void *pNew
= sqlite3DbRealloc(db
, pArray
, sz
*szEntry
);
4400 memset(&z
[n
* szEntry
], 0, szEntry
);
4406 ** Append a new element to the given IdList. Create a new IdList if
4409 ** A new IdList is returned, or NULL if malloc() fails.
4411 IdList
*sqlite3IdListAppend(Parse
*pParse
, IdList
*pList
, Token
*pToken
){
4412 sqlite3
*db
= pParse
->db
;
4415 pList
= sqlite3DbMallocZero(db
, sizeof(IdList
) );
4416 if( pList
==0 ) return 0;
4418 pList
->a
= sqlite3ArrayAllocate(
4421 sizeof(pList
->a
[0]),
4426 sqlite3IdListDelete(db
, pList
);
4429 pList
->a
[i
].zName
= sqlite3NameFromToken(db
, pToken
);
4430 if( IN_RENAME_OBJECT
&& pList
->a
[i
].zName
){
4431 sqlite3RenameTokenMap(pParse
, (void*)pList
->a
[i
].zName
, pToken
);
4437 ** Delete an IdList.
4439 void sqlite3IdListDelete(sqlite3
*db
, IdList
*pList
){
4441 if( pList
==0 ) return;
4442 for(i
=0; i
<pList
->nId
; i
++){
4443 sqlite3DbFree(db
, pList
->a
[i
].zName
);
4445 sqlite3DbFree(db
, pList
->a
);
4446 sqlite3DbFreeNN(db
, pList
);
4450 ** Return the index in pList of the identifier named zId. Return -1
4453 int sqlite3IdListIndex(IdList
*pList
, const char *zName
){
4455 if( pList
==0 ) return -1;
4456 for(i
=0; i
<pList
->nId
; i
++){
4457 if( sqlite3StrICmp(pList
->a
[i
].zName
, zName
)==0 ) return i
;
4463 ** Maximum size of a SrcList object.
4464 ** The SrcList object is used to represent the FROM clause of a
4465 ** SELECT statement, and the query planner cannot deal with more
4466 ** than 64 tables in a join. So any value larger than 64 here
4467 ** is sufficient for most uses. Smaller values, like say 10, are
4468 ** appropriate for small and memory-limited applications.
4470 #ifndef SQLITE_MAX_SRCLIST
4471 # define SQLITE_MAX_SRCLIST 200
4475 ** Expand the space allocated for the given SrcList object by
4476 ** creating nExtra new slots beginning at iStart. iStart is zero based.
4477 ** New slots are zeroed.
4479 ** For example, suppose a SrcList initially contains two entries: A,B.
4480 ** To append 3 new entries onto the end, do this:
4482 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2);
4484 ** After the call above it would contain: A, B, nil, nil, nil.
4485 ** If the iStart argument had been 1 instead of 2, then the result
4486 ** would have been: A, nil, nil, nil, B. To prepend the new slots,
4487 ** the iStart value would be 0. The result then would
4488 ** be: nil, nil, nil, A, B.
4490 ** If a memory allocation fails or the SrcList becomes too large, leave
4491 ** the original SrcList unchanged, return NULL, and leave an error message
4494 SrcList
*sqlite3SrcListEnlarge(
4495 Parse
*pParse
, /* Parsing context into which errors are reported */
4496 SrcList
*pSrc
, /* The SrcList to be enlarged */
4497 int nExtra
, /* Number of new slots to add to pSrc->a[] */
4498 int iStart
/* Index in pSrc->a[] of first new slot */
4502 /* Sanity checking on calling parameters */
4503 assert( iStart
>=0 );
4504 assert( nExtra
>=1 );
4506 assert( iStart
<=pSrc
->nSrc
);
4508 /* Allocate additional space if needed */
4509 if( (u32
)pSrc
->nSrc
+nExtra
>pSrc
->nAlloc
){
4511 sqlite3_int64 nAlloc
= 2*(sqlite3_int64
)pSrc
->nSrc
+nExtra
;
4512 sqlite3
*db
= pParse
->db
;
4514 if( pSrc
->nSrc
+nExtra
>=SQLITE_MAX_SRCLIST
){
4515 sqlite3ErrorMsg(pParse
, "too many FROM clause terms, max: %d",
4516 SQLITE_MAX_SRCLIST
);
4519 if( nAlloc
>SQLITE_MAX_SRCLIST
) nAlloc
= SQLITE_MAX_SRCLIST
;
4520 pNew
= sqlite3DbRealloc(db
, pSrc
,
4521 sizeof(*pSrc
) + (nAlloc
-1)*sizeof(pSrc
->a
[0]) );
4523 assert( db
->mallocFailed
);
4527 pSrc
->nAlloc
= nAlloc
;
4530 /* Move existing slots that come after the newly inserted slots
4531 ** out of the way */
4532 for(i
=pSrc
->nSrc
-1; i
>=iStart
; i
--){
4533 pSrc
->a
[i
+nExtra
] = pSrc
->a
[i
];
4535 pSrc
->nSrc
+= nExtra
;
4537 /* Zero the newly allocated slots */
4538 memset(&pSrc
->a
[iStart
], 0, sizeof(pSrc
->a
[0])*nExtra
);
4539 for(i
=iStart
; i
<iStart
+nExtra
; i
++){
4540 pSrc
->a
[i
].iCursor
= -1;
4543 /* Return a pointer to the enlarged SrcList */
4549 ** Append a new table name to the given SrcList. Create a new SrcList if
4550 ** need be. A new entry is created in the SrcList even if pTable is NULL.
4552 ** A SrcList is returned, or NULL if there is an OOM error or if the
4553 ** SrcList grows to large. The returned
4554 ** SrcList might be the same as the SrcList that was input or it might be
4555 ** a new one. If an OOM error does occurs, then the prior value of pList
4556 ** that is input to this routine is automatically freed.
4558 ** If pDatabase is not null, it means that the table has an optional
4559 ** database name prefix. Like this: "database.table". The pDatabase
4560 ** points to the table name and the pTable points to the database name.
4561 ** The SrcList.a[].zName field is filled with the table name which might
4562 ** come from pTable (if pDatabase is NULL) or from pDatabase.
4563 ** SrcList.a[].zDatabase is filled with the database name from pTable,
4564 ** or with NULL if no database is specified.
4566 ** In other words, if call like this:
4568 ** sqlite3SrcListAppend(D,A,B,0);
4570 ** Then B is a table name and the database name is unspecified. If called
4573 ** sqlite3SrcListAppend(D,A,B,C);
4575 ** Then C is the table name and B is the database name. If C is defined
4576 ** then so is B. In other words, we never have a case where:
4578 ** sqlite3SrcListAppend(D,A,0,C);
4580 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted
4581 ** before being added to the SrcList.
4583 SrcList
*sqlite3SrcListAppend(
4584 Parse
*pParse
, /* Parsing context, in which errors are reported */
4585 SrcList
*pList
, /* Append to this SrcList. NULL creates a new SrcList */
4586 Token
*pTable
, /* Table to append */
4587 Token
*pDatabase
/* Database of the table */
4591 assert( pDatabase
==0 || pTable
!=0 ); /* Cannot have C without B */
4592 assert( pParse
!=0 );
4593 assert( pParse
->db
!=0 );
4596 pList
= sqlite3DbMallocRawNN(pParse
->db
, sizeof(SrcList
) );
4597 if( pList
==0 ) return 0;
4600 memset(&pList
->a
[0], 0, sizeof(pList
->a
[0]));
4601 pList
->a
[0].iCursor
= -1;
4603 SrcList
*pNew
= sqlite3SrcListEnlarge(pParse
, pList
, 1, pList
->nSrc
);
4605 sqlite3SrcListDelete(db
, pList
);
4611 pItem
= &pList
->a
[pList
->nSrc
-1];
4612 if( pDatabase
&& pDatabase
->z
==0 ){
4616 pItem
->zName
= sqlite3NameFromToken(db
, pDatabase
);
4617 pItem
->zDatabase
= sqlite3NameFromToken(db
, pTable
);
4619 pItem
->zName
= sqlite3NameFromToken(db
, pTable
);
4620 pItem
->zDatabase
= 0;
4626 ** Assign VdbeCursor index numbers to all tables in a SrcList
4628 void sqlite3SrcListAssignCursors(Parse
*pParse
, SrcList
*pList
){
4631 assert( pList
|| pParse
->db
->mallocFailed
);
4632 if( ALWAYS(pList
) ){
4633 for(i
=0, pItem
=pList
->a
; i
<pList
->nSrc
; i
++, pItem
++){
4634 if( pItem
->iCursor
>=0 ) continue;
4635 pItem
->iCursor
= pParse
->nTab
++;
4636 if( pItem
->pSelect
){
4637 sqlite3SrcListAssignCursors(pParse
, pItem
->pSelect
->pSrc
);
4644 ** Delete an entire SrcList including all its substructure.
4646 void sqlite3SrcListDelete(sqlite3
*db
, SrcList
*pList
){
4649 if( pList
==0 ) return;
4650 for(pItem
=pList
->a
, i
=0; i
<pList
->nSrc
; i
++, pItem
++){
4651 if( pItem
->zDatabase
) sqlite3DbFreeNN(db
, pItem
->zDatabase
);
4652 sqlite3DbFree(db
, pItem
->zName
);
4653 if( pItem
->zAlias
) sqlite3DbFreeNN(db
, pItem
->zAlias
);
4654 if( pItem
->fg
.isIndexedBy
) sqlite3DbFree(db
, pItem
->u1
.zIndexedBy
);
4655 if( pItem
->fg
.isTabFunc
) sqlite3ExprListDelete(db
, pItem
->u1
.pFuncArg
);
4656 sqlite3DeleteTable(db
, pItem
->pTab
);
4657 if( pItem
->pSelect
) sqlite3SelectDelete(db
, pItem
->pSelect
);
4658 if( pItem
->pOn
) sqlite3ExprDelete(db
, pItem
->pOn
);
4659 if( pItem
->pUsing
) sqlite3IdListDelete(db
, pItem
->pUsing
);
4661 sqlite3DbFreeNN(db
, pList
);
4665 ** This routine is called by the parser to add a new term to the
4666 ** end of a growing FROM clause. The "p" parameter is the part of
4667 ** the FROM clause that has already been constructed. "p" is NULL
4668 ** if this is the first term of the FROM clause. pTable and pDatabase
4669 ** are the name of the table and database named in the FROM clause term.
4670 ** pDatabase is NULL if the database name qualifier is missing - the
4671 ** usual case. If the term has an alias, then pAlias points to the
4672 ** alias token. If the term is a subquery, then pSubquery is the
4673 ** SELECT statement that the subquery encodes. The pTable and
4674 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing
4675 ** parameters are the content of the ON and USING clauses.
4677 ** Return a new SrcList which encodes is the FROM with the new
4680 SrcList
*sqlite3SrcListAppendFromTerm(
4681 Parse
*pParse
, /* Parsing context */
4682 SrcList
*p
, /* The left part of the FROM clause already seen */
4683 Token
*pTable
, /* Name of the table to add to the FROM clause */
4684 Token
*pDatabase
, /* Name of the database containing pTable */
4685 Token
*pAlias
, /* The right-hand side of the AS subexpression */
4686 Select
*pSubquery
, /* A subquery used in place of a table name */
4687 Expr
*pOn
, /* The ON clause of a join */
4688 IdList
*pUsing
/* The USING clause of a join */
4691 sqlite3
*db
= pParse
->db
;
4692 if( !p
&& (pOn
|| pUsing
) ){
4693 sqlite3ErrorMsg(pParse
, "a JOIN clause is required before %s",
4694 (pOn
? "ON" : "USING")
4696 goto append_from_error
;
4698 p
= sqlite3SrcListAppend(pParse
, p
, pTable
, pDatabase
);
4700 goto append_from_error
;
4702 assert( p
->nSrc
>0 );
4703 pItem
= &p
->a
[p
->nSrc
-1];
4704 assert( (pTable
==0)==(pDatabase
==0) );
4705 assert( pItem
->zName
==0 || pDatabase
!=0 );
4706 if( IN_RENAME_OBJECT
&& pItem
->zName
){
4707 Token
*pToken
= (ALWAYS(pDatabase
) && pDatabase
->z
) ? pDatabase
: pTable
;
4708 sqlite3RenameTokenMap(pParse
, pItem
->zName
, pToken
);
4710 assert( pAlias
!=0 );
4712 pItem
->zAlias
= sqlite3NameFromToken(db
, pAlias
);
4714 pItem
->pSelect
= pSubquery
;
4716 pItem
->pUsing
= pUsing
;
4721 sqlite3ExprDelete(db
, pOn
);
4722 sqlite3IdListDelete(db
, pUsing
);
4723 sqlite3SelectDelete(db
, pSubquery
);
4728 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added
4729 ** element of the source-list passed as the second argument.
4731 void sqlite3SrcListIndexedBy(Parse
*pParse
, SrcList
*p
, Token
*pIndexedBy
){
4732 assert( pIndexedBy
!=0 );
4733 if( p
&& pIndexedBy
->n
>0 ){
4735 assert( p
->nSrc
>0 );
4736 pItem
= &p
->a
[p
->nSrc
-1];
4737 assert( pItem
->fg
.notIndexed
==0 );
4738 assert( pItem
->fg
.isIndexedBy
==0 );
4739 assert( pItem
->fg
.isTabFunc
==0 );
4740 if( pIndexedBy
->n
==1 && !pIndexedBy
->z
){
4741 /* A "NOT INDEXED" clause was supplied. See parse.y
4742 ** construct "indexed_opt" for details. */
4743 pItem
->fg
.notIndexed
= 1;
4745 pItem
->u1
.zIndexedBy
= sqlite3NameFromToken(pParse
->db
, pIndexedBy
);
4746 pItem
->fg
.isIndexedBy
= 1;
4752 ** Append the contents of SrcList p2 to SrcList p1 and return the resulting
4753 ** SrcList. Or, if an error occurs, return NULL. In all cases, p1 and p2
4754 ** are deleted by this function.
4756 SrcList
*sqlite3SrcListAppendList(Parse
*pParse
, SrcList
*p1
, SrcList
*p2
){
4757 assert( p1
&& p1
->nSrc
==1 );
4759 SrcList
*pNew
= sqlite3SrcListEnlarge(pParse
, p1
, p2
->nSrc
, 1);
4761 sqlite3SrcListDelete(pParse
->db
, p2
);
4764 memcpy(&p1
->a
[1], p2
->a
, p2
->nSrc
*sizeof(SrcItem
));
4765 sqlite3DbFree(pParse
->db
, p2
);
4772 ** Add the list of function arguments to the SrcList entry for a
4773 ** table-valued-function.
4775 void sqlite3SrcListFuncArgs(Parse
*pParse
, SrcList
*p
, ExprList
*pList
){
4777 SrcItem
*pItem
= &p
->a
[p
->nSrc
-1];
4778 assert( pItem
->fg
.notIndexed
==0 );
4779 assert( pItem
->fg
.isIndexedBy
==0 );
4780 assert( pItem
->fg
.isTabFunc
==0 );
4781 pItem
->u1
.pFuncArg
= pList
;
4782 pItem
->fg
.isTabFunc
= 1;
4784 sqlite3ExprListDelete(pParse
->db
, pList
);
4789 ** When building up a FROM clause in the parser, the join operator
4790 ** is initially attached to the left operand. But the code generator
4791 ** expects the join operator to be on the right operand. This routine
4792 ** Shifts all join operators from left to right for an entire FROM
4795 ** Example: Suppose the join is like this:
4797 ** A natural cross join B
4799 ** The operator is "natural cross join". The A and B operands are stored
4800 ** in p->a[0] and p->a[1], respectively. The parser initially stores the
4801 ** operator with A. This routine shifts that operator over to B.
4803 void sqlite3SrcListShiftJoinType(SrcList
*p
){
4806 for(i
=p
->nSrc
-1; i
>0; i
--){
4807 p
->a
[i
].fg
.jointype
= p
->a
[i
-1].fg
.jointype
;
4809 p
->a
[0].fg
.jointype
= 0;
4814 ** Generate VDBE code for a BEGIN statement.
4816 void sqlite3BeginTransaction(Parse
*pParse
, int type
){
4821 assert( pParse
!=0 );
4824 if( sqlite3AuthCheck(pParse
, SQLITE_TRANSACTION
, "BEGIN", 0, 0) ){
4827 v
= sqlite3GetVdbe(pParse
);
4829 if( type
!=TK_DEFERRED
){
4830 for(i
=0; i
<db
->nDb
; i
++){
4832 Btree
*pBt
= db
->aDb
[i
].pBt
;
4833 if( pBt
&& sqlite3BtreeIsReadonly(pBt
) ){
4834 eTxnType
= 0; /* Read txn */
4835 }else if( type
==TK_EXCLUSIVE
){
4836 eTxnType
= 2; /* Exclusive txn */
4838 eTxnType
= 1; /* Write txn */
4840 sqlite3VdbeAddOp2(v
, OP_Transaction
, i
, eTxnType
);
4841 sqlite3VdbeUsesBtree(v
, i
);
4844 sqlite3VdbeAddOp0(v
, OP_AutoCommit
);
4848 ** Generate VDBE code for a COMMIT or ROLLBACK statement.
4849 ** Code for ROLLBACK is generated if eType==TK_ROLLBACK. Otherwise
4850 ** code is generated for a COMMIT.
4852 void sqlite3EndTransaction(Parse
*pParse
, int eType
){
4856 assert( pParse
!=0 );
4857 assert( pParse
->db
!=0 );
4858 assert( eType
==TK_COMMIT
|| eType
==TK_END
|| eType
==TK_ROLLBACK
);
4859 isRollback
= eType
==TK_ROLLBACK
;
4860 if( sqlite3AuthCheck(pParse
, SQLITE_TRANSACTION
,
4861 isRollback
? "ROLLBACK" : "COMMIT", 0, 0) ){
4864 v
= sqlite3GetVdbe(pParse
);
4866 sqlite3VdbeAddOp2(v
, OP_AutoCommit
, 1, isRollback
);
4871 ** This function is called by the parser when it parses a command to create,
4872 ** release or rollback an SQL savepoint.
4874 void sqlite3Savepoint(Parse
*pParse
, int op
, Token
*pName
){
4875 char *zName
= sqlite3NameFromToken(pParse
->db
, pName
);
4877 Vdbe
*v
= sqlite3GetVdbe(pParse
);
4878 #ifndef SQLITE_OMIT_AUTHORIZATION
4879 static const char * const az
[] = { "BEGIN", "RELEASE", "ROLLBACK" };
4880 assert( !SAVEPOINT_BEGIN
&& SAVEPOINT_RELEASE
==1 && SAVEPOINT_ROLLBACK
==2 );
4882 if( !v
|| sqlite3AuthCheck(pParse
, SQLITE_SAVEPOINT
, az
[op
], zName
, 0) ){
4883 sqlite3DbFree(pParse
->db
, zName
);
4886 sqlite3VdbeAddOp4(v
, OP_Savepoint
, op
, 0, 0, zName
, P4_DYNAMIC
);
4891 ** Make sure the TEMP database is open and available for use. Return
4892 ** the number of errors. Leave any error messages in the pParse structure.
4894 int sqlite3OpenTempDatabase(Parse
*pParse
){
4895 sqlite3
*db
= pParse
->db
;
4896 if( db
->aDb
[1].pBt
==0 && !pParse
->explain
){
4899 static const int flags
=
4900 SQLITE_OPEN_READWRITE
|
4901 SQLITE_OPEN_CREATE
|
4902 SQLITE_OPEN_EXCLUSIVE
|
4903 SQLITE_OPEN_DELETEONCLOSE
|
4904 SQLITE_OPEN_TEMP_DB
;
4906 rc
= sqlite3BtreeOpen(db
->pVfs
, 0, db
, &pBt
, 0, flags
);
4907 if( rc
!=SQLITE_OK
){
4908 sqlite3ErrorMsg(pParse
, "unable to open a temporary database "
4909 "file for storing temporary tables");
4913 db
->aDb
[1].pBt
= pBt
;
4914 assert( db
->aDb
[1].pSchema
);
4915 if( SQLITE_NOMEM
==sqlite3BtreeSetPageSize(pBt
, db
->nextPagesize
, 0, 0) ){
4916 sqlite3OomFault(db
);
4924 ** Record the fact that the schema cookie will need to be verified
4925 ** for database iDb. The code to actually verify the schema cookie
4926 ** will occur at the end of the top-level VDBE and will be generated
4927 ** later, by sqlite3FinishCoding().
4929 static void sqlite3CodeVerifySchemaAtToplevel(Parse
*pToplevel
, int iDb
){
4930 assert( iDb
>=0 && iDb
<pToplevel
->db
->nDb
);
4931 assert( pToplevel
->db
->aDb
[iDb
].pBt
!=0 || iDb
==1 );
4932 assert( iDb
<SQLITE_MAX_DB
);
4933 assert( sqlite3SchemaMutexHeld(pToplevel
->db
, iDb
, 0) );
4934 if( DbMaskTest(pToplevel
->cookieMask
, iDb
)==0 ){
4935 DbMaskSet(pToplevel
->cookieMask
, iDb
);
4936 if( !OMIT_TEMPDB
&& iDb
==1 ){
4937 sqlite3OpenTempDatabase(pToplevel
);
4941 void sqlite3CodeVerifySchema(Parse
*pParse
, int iDb
){
4942 sqlite3CodeVerifySchemaAtToplevel(sqlite3ParseToplevel(pParse
), iDb
);
4947 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each
4948 ** attached database. Otherwise, invoke it for the database named zDb only.
4950 void sqlite3CodeVerifyNamedSchema(Parse
*pParse
, const char *zDb
){
4951 sqlite3
*db
= pParse
->db
;
4953 for(i
=0; i
<db
->nDb
; i
++){
4954 Db
*pDb
= &db
->aDb
[i
];
4955 if( pDb
->pBt
&& (!zDb
|| 0==sqlite3StrICmp(zDb
, pDb
->zDbSName
)) ){
4956 sqlite3CodeVerifySchema(pParse
, i
);
4962 ** Generate VDBE code that prepares for doing an operation that
4963 ** might change the database.
4965 ** This routine starts a new transaction if we are not already within
4966 ** a transaction. If we are already within a transaction, then a checkpoint
4967 ** is set if the setStatement parameter is true. A checkpoint should
4968 ** be set for operations that might fail (due to a constraint) part of
4969 ** the way through and which will need to undo some writes without having to
4970 ** rollback the whole transaction. For operations where all constraints
4971 ** can be checked before any changes are made to the database, it is never
4972 ** necessary to undo a write and the checkpoint should not be set.
4974 void sqlite3BeginWriteOperation(Parse
*pParse
, int setStatement
, int iDb
){
4975 Parse
*pToplevel
= sqlite3ParseToplevel(pParse
);
4976 sqlite3CodeVerifySchemaAtToplevel(pToplevel
, iDb
);
4977 DbMaskSet(pToplevel
->writeMask
, iDb
);
4978 pToplevel
->isMultiWrite
|= setStatement
;
4982 ** Indicate that the statement currently under construction might write
4983 ** more than one entry (example: deleting one row then inserting another,
4984 ** inserting multiple rows in a table, or inserting a row and index entries.)
4985 ** If an abort occurs after some of these writes have completed, then it will
4986 ** be necessary to undo the completed writes.
4988 void sqlite3MultiWrite(Parse
*pParse
){
4989 Parse
*pToplevel
= sqlite3ParseToplevel(pParse
);
4990 pToplevel
->isMultiWrite
= 1;
4994 ** The code generator calls this routine if is discovers that it is
4995 ** possible to abort a statement prior to completion. In order to
4996 ** perform this abort without corrupting the database, we need to make
4997 ** sure that the statement is protected by a statement transaction.
4999 ** Technically, we only need to set the mayAbort flag if the
5000 ** isMultiWrite flag was previously set. There is a time dependency
5001 ** such that the abort must occur after the multiwrite. This makes
5002 ** some statements involving the REPLACE conflict resolution algorithm
5003 ** go a little faster. But taking advantage of this time dependency
5004 ** makes it more difficult to prove that the code is correct (in
5005 ** particular, it prevents us from writing an effective
5006 ** implementation of sqlite3AssertMayAbort()) and so we have chosen
5007 ** to take the safe route and skip the optimization.
5009 void sqlite3MayAbort(Parse
*pParse
){
5010 Parse
*pToplevel
= sqlite3ParseToplevel(pParse
);
5011 pToplevel
->mayAbort
= 1;
5015 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT
5016 ** error. The onError parameter determines which (if any) of the statement
5017 ** and/or current transaction is rolled back.
5019 void sqlite3HaltConstraint(
5020 Parse
*pParse
, /* Parsing context */
5021 int errCode
, /* extended error code */
5022 int onError
, /* Constraint type */
5023 char *p4
, /* Error message */
5024 i8 p4type
, /* P4_STATIC or P4_TRANSIENT */
5025 u8 p5Errmsg
/* P5_ErrMsg type */
5028 assert( pParse
->pVdbe
!=0 );
5029 v
= sqlite3GetVdbe(pParse
);
5030 assert( (errCode
&0xff)==SQLITE_CONSTRAINT
|| pParse
->nested
);
5031 if( onError
==OE_Abort
){
5032 sqlite3MayAbort(pParse
);
5034 sqlite3VdbeAddOp4(v
, OP_Halt
, errCode
, onError
, 0, p4
, p4type
);
5035 sqlite3VdbeChangeP5(v
, p5Errmsg
);
5039 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation.
5041 void sqlite3UniqueConstraint(
5042 Parse
*pParse
, /* Parsing context */
5043 int onError
, /* Constraint type */
5044 Index
*pIdx
/* The index that triggers the constraint */
5049 Table
*pTab
= pIdx
->pTable
;
5051 sqlite3StrAccumInit(&errMsg
, pParse
->db
, 0, 0,
5052 pParse
->db
->aLimit
[SQLITE_LIMIT_LENGTH
]);
5053 if( pIdx
->aColExpr
){
5054 sqlite3_str_appendf(&errMsg
, "index '%q'", pIdx
->zName
);
5056 for(j
=0; j
<pIdx
->nKeyCol
; j
++){
5058 assert( pIdx
->aiColumn
[j
]>=0 );
5059 zCol
= pTab
->aCol
[pIdx
->aiColumn
[j
]].zName
;
5060 if( j
) sqlite3_str_append(&errMsg
, ", ", 2);
5061 sqlite3_str_appendall(&errMsg
, pTab
->zName
);
5062 sqlite3_str_append(&errMsg
, ".", 1);
5063 sqlite3_str_appendall(&errMsg
, zCol
);
5066 zErr
= sqlite3StrAccumFinish(&errMsg
);
5067 sqlite3HaltConstraint(pParse
,
5068 IsPrimaryKeyIndex(pIdx
) ? SQLITE_CONSTRAINT_PRIMARYKEY
5069 : SQLITE_CONSTRAINT_UNIQUE
,
5070 onError
, zErr
, P4_DYNAMIC
, P5_ConstraintUnique
);
5075 ** Code an OP_Halt due to non-unique rowid.
5077 void sqlite3RowidConstraint(
5078 Parse
*pParse
, /* Parsing context */
5079 int onError
, /* Conflict resolution algorithm */
5080 Table
*pTab
/* The table with the non-unique rowid */
5084 if( pTab
->iPKey
>=0 ){
5085 zMsg
= sqlite3MPrintf(pParse
->db
, "%s.%s", pTab
->zName
,
5086 pTab
->aCol
[pTab
->iPKey
].zName
);
5087 rc
= SQLITE_CONSTRAINT_PRIMARYKEY
;
5089 zMsg
= sqlite3MPrintf(pParse
->db
, "%s.rowid", pTab
->zName
);
5090 rc
= SQLITE_CONSTRAINT_ROWID
;
5092 sqlite3HaltConstraint(pParse
, rc
, onError
, zMsg
, P4_DYNAMIC
,
5093 P5_ConstraintUnique
);
5097 ** Check to see if pIndex uses the collating sequence pColl. Return
5098 ** true if it does and false if it does not.
5100 #ifndef SQLITE_OMIT_REINDEX
5101 static int collationMatch(const char *zColl
, Index
*pIndex
){
5104 for(i
=0; i
<pIndex
->nColumn
; i
++){
5105 const char *z
= pIndex
->azColl
[i
];
5106 assert( z
!=0 || pIndex
->aiColumn
[i
]<0 );
5107 if( pIndex
->aiColumn
[i
]>=0 && 0==sqlite3StrICmp(z
, zColl
) ){
5116 ** Recompute all indices of pTab that use the collating sequence pColl.
5117 ** If pColl==0 then recompute all indices of pTab.
5119 #ifndef SQLITE_OMIT_REINDEX
5120 static void reindexTable(Parse
*pParse
, Table
*pTab
, char const *zColl
){
5121 if( !IsVirtual(pTab
) ){
5122 Index
*pIndex
; /* An index associated with pTab */
5124 for(pIndex
=pTab
->pIndex
; pIndex
; pIndex
=pIndex
->pNext
){
5125 if( zColl
==0 || collationMatch(zColl
, pIndex
) ){
5126 int iDb
= sqlite3SchemaToIndex(pParse
->db
, pTab
->pSchema
);
5127 sqlite3BeginWriteOperation(pParse
, 0, iDb
);
5128 sqlite3RefillIndex(pParse
, pIndex
, -1);
5136 ** Recompute all indices of all tables in all databases where the
5137 ** indices use the collating sequence pColl. If pColl==0 then recompute
5138 ** all indices everywhere.
5140 #ifndef SQLITE_OMIT_REINDEX
5141 static void reindexDatabases(Parse
*pParse
, char const *zColl
){
5142 Db
*pDb
; /* A single database */
5143 int iDb
; /* The database index number */
5144 sqlite3
*db
= pParse
->db
; /* The database connection */
5145 HashElem
*k
; /* For looping over tables in pDb */
5146 Table
*pTab
; /* A table in the database */
5148 assert( sqlite3BtreeHoldsAllMutexes(db
) ); /* Needed for schema access */
5149 for(iDb
=0, pDb
=db
->aDb
; iDb
<db
->nDb
; iDb
++, pDb
++){
5151 for(k
=sqliteHashFirst(&pDb
->pSchema
->tblHash
); k
; k
=sqliteHashNext(k
)){
5152 pTab
= (Table
*)sqliteHashData(k
);
5153 reindexTable(pParse
, pTab
, zColl
);
5160 ** Generate code for the REINDEX command.
5163 ** REINDEX <collation> -- 2
5164 ** REINDEX ?<database>.?<tablename> -- 3
5165 ** REINDEX ?<database>.?<indexname> -- 4
5167 ** Form 1 causes all indices in all attached databases to be rebuilt.
5168 ** Form 2 rebuilds all indices in all databases that use the named
5169 ** collating function. Forms 3 and 4 rebuild the named index or all
5170 ** indices associated with the named table.
5172 #ifndef SQLITE_OMIT_REINDEX
5173 void sqlite3Reindex(Parse
*pParse
, Token
*pName1
, Token
*pName2
){
5174 CollSeq
*pColl
; /* Collating sequence to be reindexed, or NULL */
5175 char *z
; /* Name of a table or index */
5176 const char *zDb
; /* Name of the database */
5177 Table
*pTab
; /* A table in the database */
5178 Index
*pIndex
; /* An index associated with pTab */
5179 int iDb
; /* The database index number */
5180 sqlite3
*db
= pParse
->db
; /* The database connection */
5181 Token
*pObjName
; /* Name of the table or index to be reindexed */
5183 /* Read the database schema. If an error occurs, leave an error message
5184 ** and code in pParse and return NULL. */
5185 if( SQLITE_OK
!=sqlite3ReadSchema(pParse
) ){
5190 reindexDatabases(pParse
, 0);
5192 }else if( NEVER(pName2
==0) || pName2
->z
==0 ){
5194 assert( pName1
->z
);
5195 zColl
= sqlite3NameFromToken(pParse
->db
, pName1
);
5196 if( !zColl
) return;
5197 pColl
= sqlite3FindCollSeq(db
, ENC(db
), zColl
, 0);
5199 reindexDatabases(pParse
, zColl
);
5200 sqlite3DbFree(db
, zColl
);
5203 sqlite3DbFree(db
, zColl
);
5205 iDb
= sqlite3TwoPartName(pParse
, pName1
, pName2
, &pObjName
);
5207 z
= sqlite3NameFromToken(db
, pObjName
);
5209 zDb
= db
->aDb
[iDb
].zDbSName
;
5210 pTab
= sqlite3FindTable(db
, z
, zDb
);
5212 reindexTable(pParse
, pTab
, 0);
5213 sqlite3DbFree(db
, z
);
5216 pIndex
= sqlite3FindIndex(db
, z
, zDb
);
5217 sqlite3DbFree(db
, z
);
5219 sqlite3BeginWriteOperation(pParse
, 0, iDb
);
5220 sqlite3RefillIndex(pParse
, pIndex
, -1);
5223 sqlite3ErrorMsg(pParse
, "unable to identify the object to be reindexed");
5228 ** Return a KeyInfo structure that is appropriate for the given Index.
5230 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object
5231 ** when it has finished using it.
5233 KeyInfo
*sqlite3KeyInfoOfIndex(Parse
*pParse
, Index
*pIdx
){
5235 int nCol
= pIdx
->nColumn
;
5236 int nKey
= pIdx
->nKeyCol
;
5238 if( pParse
->nErr
) return 0;
5239 if( pIdx
->uniqNotNull
){
5240 pKey
= sqlite3KeyInfoAlloc(pParse
->db
, nKey
, nCol
-nKey
);
5242 pKey
= sqlite3KeyInfoAlloc(pParse
->db
, nCol
, 0);
5245 assert( sqlite3KeyInfoIsWriteable(pKey
) );
5246 for(i
=0; i
<nCol
; i
++){
5247 const char *zColl
= pIdx
->azColl
[i
];
5248 pKey
->aColl
[i
] = zColl
==sqlite3StrBINARY
? 0 :
5249 sqlite3LocateCollSeq(pParse
, zColl
);
5250 pKey
->aSortFlags
[i
] = pIdx
->aSortOrder
[i
];
5251 assert( 0==(pKey
->aSortFlags
[i
] & KEYINFO_ORDER_BIGNULL
) );
5254 assert( pParse
->rc
==SQLITE_ERROR_MISSING_COLLSEQ
);
5255 if( pIdx
->bNoQuery
==0 ){
5256 /* Deactivate the index because it contains an unknown collating
5257 ** sequence. The only way to reactive the index is to reload the
5258 ** schema. Adding the missing collating sequence later does not
5259 ** reactive the index. The application had the chance to register
5260 ** the missing index using the collation-needed callback. For
5261 ** simplicity, SQLite will not give the application a second chance.
5264 pParse
->rc
= SQLITE_ERROR_RETRY
;
5266 sqlite3KeyInfoUnref(pKey
);
5273 #ifndef SQLITE_OMIT_CTE
5275 ** Create a new CTE object
5278 Parse
*pParse
, /* Parsing context */
5279 Token
*pName
, /* Name of the common-table */
5280 ExprList
*pArglist
, /* Optional column name list for the table */
5281 Select
*pQuery
, /* Query used to initialize the table */
5282 u8 eM10d
/* The MATERIALIZED flag */
5285 sqlite3
*db
= pParse
->db
;
5287 pNew
= sqlite3DbMallocZero(db
, sizeof(*pNew
));
5288 assert( pNew
!=0 || db
->mallocFailed
);
5290 if( db
->mallocFailed
){
5291 sqlite3ExprListDelete(db
, pArglist
);
5292 sqlite3SelectDelete(db
, pQuery
);
5294 pNew
->pSelect
= pQuery
;
5295 pNew
->pCols
= pArglist
;
5296 pNew
->zName
= sqlite3NameFromToken(pParse
->db
, pName
);
5297 pNew
->eM10d
= eM10d
;
5303 ** Clear information from a Cte object, but do not deallocate storage
5304 ** for the object itself.
5306 static void cteClear(sqlite3
*db
, Cte
*pCte
){
5308 sqlite3ExprListDelete(db
, pCte
->pCols
);
5309 sqlite3SelectDelete(db
, pCte
->pSelect
);
5310 sqlite3DbFree(db
, pCte
->zName
);
5314 ** Free the contents of the CTE object passed as the second argument.
5316 void sqlite3CteDelete(sqlite3
*db
, Cte
*pCte
){
5319 sqlite3DbFree(db
, pCte
);
5323 ** This routine is invoked once per CTE by the parser while parsing a
5324 ** WITH clause. The CTE described by teh third argument is added to
5325 ** the WITH clause of the second argument. If the second argument is
5326 ** NULL, then a new WITH argument is created.
5328 With
*sqlite3WithAdd(
5329 Parse
*pParse
, /* Parsing context */
5330 With
*pWith
, /* Existing WITH clause, or NULL */
5331 Cte
*pCte
/* CTE to add to the WITH clause */
5333 sqlite3
*db
= pParse
->db
;
5341 /* Check that the CTE name is unique within this WITH clause. If
5342 ** not, store an error in the Parse structure. */
5343 zName
= pCte
->zName
;
5344 if( zName
&& pWith
){
5346 for(i
=0; i
<pWith
->nCte
; i
++){
5347 if( sqlite3StrICmp(zName
, pWith
->a
[i
].zName
)==0 ){
5348 sqlite3ErrorMsg(pParse
, "duplicate WITH table name: %s", zName
);
5354 sqlite3_int64 nByte
= sizeof(*pWith
) + (sizeof(pWith
->a
[1]) * pWith
->nCte
);
5355 pNew
= sqlite3DbRealloc(db
, pWith
, nByte
);
5357 pNew
= sqlite3DbMallocZero(db
, sizeof(*pWith
));
5359 assert( (pNew
!=0 && zName
!=0) || db
->mallocFailed
);
5361 if( db
->mallocFailed
){
5362 sqlite3CteDelete(db
, pCte
);
5365 pNew
->a
[pNew
->nCte
++] = *pCte
;
5366 sqlite3DbFree(db
, pCte
);
5373 ** Free the contents of the With object passed as the second argument.
5375 void sqlite3WithDelete(sqlite3
*db
, With
*pWith
){
5378 for(i
=0; i
<pWith
->nCte
; i
++){
5379 cteClear(db
, &pWith
->a
[i
]);
5381 sqlite3DbFree(db
, pWith
);
5384 #endif /* !defined(SQLITE_OMIT_CTE) */