4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains the C functions that implement date and time
13 ** functions for SQLite.
15 ** There is only one exported symbol in this file - the function
16 ** sqlite3RegisterDateTimeFunctions() found at the bottom of the file.
17 ** All other code has file scope.
19 ** SQLite processes all times and dates as julian day numbers. The
20 ** dates and times are stored as the number of days since noon
21 ** in Greenwich on November 24, 4714 B.C. according to the Gregorian
24 ** 1970-01-01 00:00:00 is JD 2440587.5
25 ** 2000-01-01 00:00:00 is JD 2451544.5
27 ** This implementation requires years to be expressed as a 4-digit number
28 ** which means that only dates between 0000-01-01 and 9999-12-31 can
29 ** be represented, even though julian day numbers allow a much wider
32 ** The Gregorian calendar system is used for all dates and times,
33 ** even those that predate the Gregorian calendar. Historians usually
34 ** use the julian calendar for dates prior to 1582-10-15 and for some
35 ** dates afterwards, depending on locale. Beware of this difference.
37 ** The conversion algorithms are implemented based on descriptions
38 ** in the following text:
41 ** Astronomical Algorithms, 2nd Edition, 1998
44 ** Richmond, Virginia (USA)
46 #include "sqliteInt.h"
51 #ifndef SQLITE_OMIT_DATETIME_FUNCS
54 ** The MSVC CRT on Windows CE may not have a localtime() function.
55 ** So declare a substitute. The substitute function itself is
56 ** defined in "os_win.c".
58 #if !defined(SQLITE_OMIT_LOCALTIME) && defined(_WIN32_WCE) && \
59 (!defined(SQLITE_MSVC_LOCALTIME_API) || !SQLITE_MSVC_LOCALTIME_API)
60 struct tm
*__cdecl
localtime(const time_t *);
64 ** A structure for holding a single date and time.
66 typedef struct DateTime DateTime
;
68 sqlite3_int64 iJD
; /* The julian day number times 86400000 */
69 int Y
, M
, D
; /* Year, month, and day */
70 int h
, m
; /* Hour and minutes */
71 int tz
; /* Timezone offset in minutes */
72 double s
; /* Seconds */
73 char validJD
; /* True (1) if iJD is valid */
74 char rawS
; /* Raw numeric value stored in s */
75 char validYMD
; /* True (1) if Y,M,D are valid */
76 char validHMS
; /* True (1) if h,m,s are valid */
77 char validTZ
; /* True (1) if tz is valid */
78 char tzSet
; /* Timezone was set explicitly */
79 char isError
; /* An overflow has occurred */
80 char useSubsec
; /* Display subsecond precision */
85 ** Convert zDate into one or more integers according to the conversion
88 ** zFormat[] contains 4 characters for each integer converted, except for
89 ** the last integer which is specified by three characters. The meaning
90 ** of a four-character format specifiers ABCD is:
92 ** A: number of digits to convert. Always "2" or "4".
93 ** B: minimum value. Always "0" or "1".
94 ** C: maximum value, decoded as:
101 ** D: the separator character, or \000 to indicate this is the
102 ** last number to convert.
104 ** Example: To translate an ISO-8601 date YYYY-MM-DD, the format would
105 ** be "40f-21a-20c". The "40f-" indicates the 4-digit year followed by "-".
106 ** The "21a-" indicates the 2-digit month followed by "-". The "20c" indicates
107 ** the 2-digit day which is the last integer in the set.
109 ** The function returns the number of successful conversions.
111 static int getDigits(const char *zDate
, const char *zFormat
, ...){
112 /* The aMx[] array translates the 3rd character of each format
113 ** spec into a max size: a b c d e f */
114 static const u16 aMx
[] = { 12, 14, 24, 31, 59, 14712 };
118 va_start(ap
, zFormat
);
120 char N
= zFormat
[0] - '0';
121 char min
= zFormat
[1] - '0';
125 assert( zFormat
[2]>='a' && zFormat
[2]<='f' );
126 max
= aMx
[zFormat
[2] - 'a'];
130 if( !sqlite3Isdigit(*zDate
) ){
133 val
= val
*10 + *zDate
- '0';
136 if( val
<(int)min
|| val
>(int)max
|| (nextC
!=0 && nextC
!=*zDate
) ){
139 *va_arg(ap
,int*) = val
;
150 ** Parse a timezone extension on the end of a date-time.
151 ** The extension is of the form:
155 ** Or the "zulu" notation:
159 ** If the parse is successful, write the number of minutes
160 ** of change in p->tz and return 0. If a parser error occurs,
163 ** A missing specifier is not considered an error.
165 static int parseTimezone(const char *zDate
, DateTime
*p
){
169 while( sqlite3Isspace(*zDate
) ){ zDate
++; }
176 }else if( c
=='Z' || c
=='z' ){
183 if( getDigits(zDate
, "20b:20e", &nHr
, &nMn
)!=2 ){
187 p
->tz
= sgn
*(nMn
+ nHr
*60);
189 while( sqlite3Isspace(*zDate
) ){ zDate
++; }
195 ** Parse times of the form HH:MM or HH:MM:SS or HH:MM:SS.FFFF.
196 ** The HH, MM, and SS must each be exactly 2 digits. The
197 ** fractional seconds FFFF can be one or more digits.
199 ** Return 1 if there is a parsing error and 0 on success.
201 static int parseHhMmSs(const char *zDate
, DateTime
*p
){
204 if( getDigits(zDate
, "20c:20e", &h
, &m
)!=2 ){
210 if( getDigits(zDate
, "20e", &s
)!=1 ){
214 if( *zDate
=='.' && sqlite3Isdigit(zDate
[1]) ){
217 while( sqlite3Isdigit(*zDate
) ){
218 ms
= ms
*10.0 + *zDate
- '0';
233 if( parseTimezone(zDate
, p
) ) return 1;
234 p
->validTZ
= (p
->tz
!=0)?1:0;
239 ** Put the DateTime object into its error state.
241 static void datetimeError(DateTime
*p
){
242 memset(p
, 0, sizeof(*p
));
247 ** Convert from YYYY-MM-DD HH:MM:SS to julian day. We always assume
248 ** that the YYYY-MM-DD is according to the Gregorian calendar.
250 ** Reference: Meeus page 61
252 static void computeJD(DateTime
*p
){
253 int Y
, M
, D
, A
, B
, X1
, X2
;
255 if( p
->validJD
) return;
261 Y
= 2000; /* If no YMD specified, assume 2000-Jan-01 */
265 if( Y
<-4713 || Y
>9999 || p
->rawS
){
275 X1
= 36525*(Y
+4716)/100;
276 X2
= 306001*(M
+1)/10000;
277 p
->iJD
= (sqlite3_int64
)((X1
+ X2
+ D
+ B
- 1524.5 ) * 86400000);
280 p
->iJD
+= p
->h
*3600000 + p
->m
*60000 + (sqlite3_int64
)(p
->s
*1000 + 0.5);
282 p
->iJD
-= p
->tz
*60000;
291 ** Parse dates of the form
293 ** YYYY-MM-DD HH:MM:SS.FFF
294 ** YYYY-MM-DD HH:MM:SS
298 ** Write the result into the DateTime structure and return 0
299 ** on success and 1 if the input string is not a well-formed
302 static int parseYyyyMmDd(const char *zDate
, DateTime
*p
){
311 if( getDigits(zDate
, "40f-21a-21d", &Y
, &M
, &D
)!=3 ){
315 while( sqlite3Isspace(*zDate
) || 'T'==*(u8
*)zDate
){ zDate
++; }
316 if( parseHhMmSs(zDate
, p
)==0 ){
317 /* We got the time */
318 }else if( *zDate
==0 ){
335 ** Set the time to the current time reported by the VFS.
337 ** Return the number of errors.
339 static int setDateTimeToCurrent(sqlite3_context
*context
, DateTime
*p
){
340 p
->iJD
= sqlite3StmtCurrentTime(context
);
350 ** Input "r" is a numeric quantity which might be a julian day number,
351 ** or the number of seconds since 1970. If the value if r is within
352 ** range of a julian day number, install it as such and set validJD.
353 ** If the value is a valid unix timestamp, put it in p->s and set p->rawS.
355 static void setRawDateNumber(DateTime
*p
, double r
){
358 if( r
>=0.0 && r
<5373484.5 ){
359 p
->iJD
= (sqlite3_int64
)(r
*86400000.0 + 0.5);
365 ** Attempt to parse the given string into a julian day number. Return
366 ** the number of errors.
368 ** The following are acceptable forms for the input string:
370 ** YYYY-MM-DD HH:MM:SS.FFF +/-HH:MM
374 ** In the first form, the +/-HH:MM is always optional. The fractional
375 ** seconds extension (the ".FFF") is optional. The seconds portion
376 ** (":SS.FFF") is option. The year and date can be omitted as long
377 ** as there is a time string. The time string can be omitted as long
378 ** as there is a year and date.
380 static int parseDateOrTime(
381 sqlite3_context
*context
,
386 if( parseYyyyMmDd(zDate
,p
)==0 ){
388 }else if( parseHhMmSs(zDate
, p
)==0 ){
390 }else if( sqlite3StrICmp(zDate
,"now")==0 && sqlite3NotPureFunc(context
) ){
391 return setDateTimeToCurrent(context
, p
);
392 }else if( sqlite3AtoF(zDate
, &r
, sqlite3Strlen30(zDate
), SQLITE_UTF8
)>0 ){
393 setRawDateNumber(p
, r
);
395 }else if( (sqlite3StrICmp(zDate
,"subsec")==0
396 || sqlite3StrICmp(zDate
,"subsecond")==0)
397 && sqlite3NotPureFunc(context
) ){
399 return setDateTimeToCurrent(context
, p
);
404 /* The julian day number for 9999-12-31 23:59:59.999 is 5373484.4999999.
405 ** Multiplying this by 86400000 gives 464269060799999 as the maximum value
408 ** But some older compilers (ex: gcc 4.2.1 on older Macs) cannot deal with
409 ** such a large integer literal, so we have to encode it.
411 #define INT_464269060799999 ((((i64)0x1a640)<<32)|0x1072fdff)
414 ** Return TRUE if the given julian day number is within range.
416 ** The input is the JulianDay times 86400000.
418 static int validJulianDay(sqlite3_int64 iJD
){
419 return iJD
>=0 && iJD
<=INT_464269060799999
;
423 ** Compute the Year, Month, and Day from the julian day number.
425 static void computeYMD(DateTime
*p
){
426 int Z
, A
, B
, C
, D
, E
, X1
;
427 if( p
->validYMD
) return;
432 }else if( !validJulianDay(p
->iJD
) ){
436 Z
= (int)((p
->iJD
+ 43200000)/86400000);
437 A
= (int)((Z
- 1867216.25)/36524.25);
438 A
= Z
+ 1 + A
- (A
/4);
440 C
= (int)((B
- 122.1)/365.25);
441 D
= (36525*(C
&32767))/100;
442 E
= (int)((B
-D
)/30.6001);
443 X1
= (int)(30.6001*E
);
445 p
->M
= E
<14 ? E
-1 : E
-13;
446 p
->Y
= p
->M
>2 ? C
- 4716 : C
- 4715;
452 ** Compute the Hour, Minute, and Seconds from the julian day number.
454 static void computeHMS(DateTime
*p
){
455 int day_ms
, day_min
; /* milliseconds, minutes into the day */
456 if( p
->validHMS
) return;
458 day_ms
= (int)((p
->iJD
+ 43200000) % 86400000);
459 p
->s
= (day_ms
% 60000)/1000.0;
460 day_min
= day_ms
/60000;
468 ** Compute both YMD and HMS
470 static void computeYMD_HMS(DateTime
*p
){
476 ** Clear the YMD and HMS and the TZ
478 static void clearYMD_HMS_TZ(DateTime
*p
){
484 #ifndef SQLITE_OMIT_LOCALTIME
486 ** On recent Windows platforms, the localtime_s() function is available
487 ** as part of the "Secure CRT". It is essentially equivalent to
488 ** localtime_r() available under most POSIX platforms, except that the
489 ** order of the parameters is reversed.
491 ** See http://msdn.microsoft.com/en-us/library/a442x3ye(VS.80).aspx.
493 ** If the user has not indicated to use localtime_r() or localtime_s()
494 ** already, check for an MSVC build environment that provides
497 #if !HAVE_LOCALTIME_R && !HAVE_LOCALTIME_S \
498 && defined(_MSC_VER) && defined(_CRT_INSECURE_DEPRECATE)
499 #undef HAVE_LOCALTIME_S
500 #define HAVE_LOCALTIME_S 1
504 ** The following routine implements the rough equivalent of localtime_r()
505 ** using whatever operating-system specific localtime facility that
506 ** is available. This routine returns 0 on success and
507 ** non-zero on any kind of error.
509 ** If the sqlite3GlobalConfig.bLocaltimeFault variable is non-zero then this
510 ** routine will always fail. If bLocaltimeFault is nonzero and
511 ** sqlite3GlobalConfig.xAltLocaltime is not NULL, then xAltLocaltime() is
512 ** invoked in place of the OS-defined localtime() function.
514 ** EVIDENCE-OF: R-62172-00036 In this implementation, the standard C
515 ** library function localtime_r() is used to assist in the calculation of
518 static int osLocaltime(time_t *t
, struct tm
*pTm
){
520 #if !HAVE_LOCALTIME_R && !HAVE_LOCALTIME_S
522 #if SQLITE_THREADSAFE>0
523 sqlite3_mutex
*mutex
= sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN
);
525 sqlite3_mutex_enter(mutex
);
527 #ifndef SQLITE_UNTESTABLE
528 if( sqlite3GlobalConfig
.bLocaltimeFault
){
529 if( sqlite3GlobalConfig
.xAltLocaltime
!=0
530 && 0==sqlite3GlobalConfig
.xAltLocaltime((const void*)t
,(void*)pTm
)
539 #if SQLITE_THREADSAFE>0
540 sqlite3_mutex_leave(mutex
);
544 #ifndef SQLITE_UNTESTABLE
545 if( sqlite3GlobalConfig
.bLocaltimeFault
){
546 if( sqlite3GlobalConfig
.xAltLocaltime
!=0 ){
547 return sqlite3GlobalConfig
.xAltLocaltime((const void*)t
,(void*)pTm
);
554 rc
= localtime_r(t
, pTm
)==0;
556 rc
= localtime_s(pTm
, t
);
557 #endif /* HAVE_LOCALTIME_R */
558 #endif /* HAVE_LOCALTIME_R || HAVE_LOCALTIME_S */
561 #endif /* SQLITE_OMIT_LOCALTIME */
564 #ifndef SQLITE_OMIT_LOCALTIME
566 ** Assuming the input DateTime is UTC, move it to its localtime equivalent.
568 static int toLocaltime(
569 DateTime
*p
, /* Date at which to calculate offset */
570 sqlite3_context
*pCtx
/* Write error here if one occurs */
576 /* Initialize the contents of sLocal to avoid a compiler warning. */
577 memset(&sLocal
, 0, sizeof(sLocal
));
580 if( p
->iJD
<2108667600*(i64
)100000 /* 1970-01-01 */
581 || p
->iJD
>2130141456*(i64
)100000 /* 2038-01-18 */
583 /* EVIDENCE-OF: R-55269-29598 The localtime_r() C function normally only
584 ** works for years between 1970 and 2037. For dates outside this range,
585 ** SQLite attempts to map the year into an equivalent year within this
586 ** range, do the calculation, then map the year back.
590 iYearDiff
= (2000 + x
.Y
%4) - x
.Y
;
594 t
= (time_t)(x
.iJD
/1000 - 21086676*(i64
)10000);
597 t
= (time_t)(p
->iJD
/1000 - 21086676*(i64
)10000);
599 if( osLocaltime(&t
, &sLocal
) ){
600 sqlite3_result_error(pCtx
, "local time unavailable", -1);
603 p
->Y
= sLocal
.tm_year
+ 1900 - iYearDiff
;
604 p
->M
= sLocal
.tm_mon
+ 1;
605 p
->D
= sLocal
.tm_mday
;
606 p
->h
= sLocal
.tm_hour
;
607 p
->m
= sLocal
.tm_min
;
608 p
->s
= sLocal
.tm_sec
+ (p
->iJD
%1000)*0.001;
617 #endif /* SQLITE_OMIT_LOCALTIME */
620 ** The following table defines various date transformations of the form
624 ** Where NNN is an arbitrary floating-point number and "days" can be one
625 ** of several units of time.
627 static const struct {
628 u8 nName
; /* Length of the name */
629 char zName
[7]; /* Name of the transformation */
630 float rLimit
; /* Maximum NNN value for this transform */
631 float rXform
; /* Constant used for this transform */
633 { 6, "second", 4.6427e+14, 1.0 },
634 { 6, "minute", 7.7379e+12, 60.0 },
635 { 4, "hour", 1.2897e+11, 3600.0 },
636 { 3, "day", 5373485.0, 86400.0 },
637 { 5, "month", 176546.0, 2592000.0 },
638 { 4, "year", 14713.0, 31536000.0 },
642 ** If the DateTime p is raw number, try to figure out if it is
643 ** a julian day number of a unix timestamp. Set the p value
646 static void autoAdjustDate(DateTime
*p
){
647 if( !p
->rawS
|| p
->validJD
){
649 }else if( p
->s
>=-21086676*(i64
)10000 /* -4713-11-24 12:00:00 */
650 && p
->s
<=(25340230*(i64
)10000)+799 /* 9999-12-31 23:59:59 */
652 double r
= p
->s
*1000.0 + 210866760000000.0;
654 p
->iJD
= (sqlite3_int64
)(r
+ 0.5);
661 ** Process a modifier to a date-time stamp. The modifiers are
679 ** Return 0 on success and 1 if there is any kind of error. If the error
680 ** is in a system call (i.e. localtime()), then an error message is written
681 ** to context pCtx. If the error is an unrecognized modifier, no error is
684 static int parseModifier(
685 sqlite3_context
*pCtx
, /* Function context */
686 const char *z
, /* The text of the modifier */
687 int n
, /* Length of zMod in bytes */
688 DateTime
*p
, /* The date/time value to be modified */
689 int idx
/* Parameter index of the modifier */
693 switch(sqlite3UpperToLower
[(u8
)z
[0]] ){
698 ** If rawS is available, then interpret as a julian day number, or
699 ** a unix timestamp, depending on its magnitude.
701 if( sqlite3_stricmp(z
, "auto")==0 ){
702 if( idx
>1 ) return 1; /* IMP: R-33611-57934 */
712 ** Always interpret the prior number as a julian-day value. If this
713 ** is not the first modifier, or if the prior argument is not a numeric
714 ** value in the allowed range of julian day numbers understood by
715 ** SQLite (0..5373484.5) then the result will be NULL.
717 if( sqlite3_stricmp(z
, "julianday")==0 ){
718 if( idx
>1 ) return 1; /* IMP: R-31176-64601 */
719 if( p
->validJD
&& p
->rawS
){
726 #ifndef SQLITE_OMIT_LOCALTIME
730 ** Assuming the current time value is UTC (a.k.a. GMT), shift it to
733 if( sqlite3_stricmp(z
, "localtime")==0 && sqlite3NotPureFunc(pCtx
) ){
734 rc
= toLocaltime(p
, pCtx
);
743 ** Treat the current value of p->s as the number of
744 ** seconds since 1970. Convert to a real julian day number.
746 if( sqlite3_stricmp(z
, "unixepoch")==0 && p
->rawS
){
747 if( idx
>1 ) return 1; /* IMP: R-49255-55373 */
748 r
= p
->s
*1000.0 + 210866760000000.0;
749 if( r
>=0.0 && r
<464269060800000.0 ){
751 p
->iJD
= (sqlite3_int64
)(r
+ 0.5);
757 #ifndef SQLITE_OMIT_LOCALTIME
758 else if( sqlite3_stricmp(z
, "utc")==0 && sqlite3NotPureFunc(pCtx
) ){
760 i64 iOrigJD
; /* Original localtime */
761 i64 iGuess
; /* Guess at the corresponding utc time */
762 int cnt
= 0; /* Safety to prevent infinite loop */
763 i64 iErr
; /* Guess is off by this much */
766 iGuess
= iOrigJD
= p
->iJD
;
770 memset(&new, 0, sizeof(new));
774 rc
= toLocaltime(&new, pCtx
);
777 iErr
= new.iJD
- iOrigJD
;
778 }while( iErr
&& cnt
++<3 );
779 memset(p
, 0, sizeof(*p
));
793 ** Move the date to the same time on the next occurrence of
794 ** weekday N where 0==Sunday, 1==Monday, and so forth. If the
795 ** date is already on the appropriate weekday, this is a no-op.
797 if( sqlite3_strnicmp(z
, "weekday ", 8)==0
798 && sqlite3AtoF(&z
[8], &r
, sqlite3Strlen30(&z
[8]), SQLITE_UTF8
)>0
799 && r
>=0.0 && r
<7.0 && (n
=(int)r
)==r
){
805 Z
= ((p
->iJD
+ 129600000)/86400000) % 7;
807 p
->iJD
+= (n
- Z
)*86400000;
817 ** Move the date backwards to the beginning of the current day,
823 ** Show subsecond precision in the output of datetime() and
824 ** unixepoch() and strftime('%s').
826 if( sqlite3_strnicmp(z
, "start of ", 9)!=0 ){
827 if( sqlite3_stricmp(z
, "subsec")==0
828 || sqlite3_stricmp(z
, "subsecond")==0
835 if( !p
->validJD
&& !p
->validYMD
&& !p
->validHMS
) break;
844 if( sqlite3_stricmp(z
,"month")==0 ){
847 }else if( sqlite3_stricmp(z
,"year")==0 ){
851 }else if( sqlite3_stricmp(z
,"day")==0 ){
874 if( z
[n
]==':' ) break;
875 if( sqlite3Isspace(z
[n
]) ) break;
877 if( n
==5 && getDigits(&z
[1], "40f", &Y
)==1 ) break;
878 if( n
==6 && getDigits(&z
[1], "50f", &Y
)==1 ) break;
881 if( sqlite3AtoF(z
, &r
, n
, SQLITE_UTF8
)<=0 ){
886 /* A modifier of the form (+|-)YYYY-MM-DD adds or subtracts the
887 ** specified number of years, months, and days. MM is limited to
888 ** the range 0-11 and DD is limited to 0-30.
890 if( z0
!='+' && z0
!='-' ) break; /* Must start with +/- */
892 if( getDigits(&z
[1], "40f-20a-20d", &Y
, &M
, &D
)!=3 ) break;
895 if( getDigits(&z
[1], "50f-20a-20d", &Y
, &M
, &D
)!=3 ) break;
898 if( M
>=12 ) break; /* M range 0..11 */
899 if( D
>=31 ) break; /* D range 0..30 */
910 x
= p
->M
>0 ? (p
->M
-1)/12 : (p
->M
-12)/12;
916 p
->iJD
+= (i64
)D
*86400000;
921 if( sqlite3Isspace(z
[11])
922 && getDigits(&z
[12], "20c:20e", &h
, &m
)==2
931 /* A modifier of the form (+|-)HH:MM:SS.FFF adds (or subtracts) the
932 ** specified number of hours, minutes, seconds, and fractional seconds
933 ** to the time. The ".FFF" may be omitted. The ":SS.FFF" may be
939 if( !sqlite3Isdigit(*z2
) ) z2
++;
940 memset(&tx
, 0, sizeof(tx
));
941 if( parseHhMmSs(z2
, &tx
) ) break;
944 day
= tx
.iJD
/86400000;
945 tx
.iJD
-= day
*86400000;
946 if( z0
=='-' ) tx
.iJD
= -tx
.iJD
;
954 /* If control reaches this point, it means the transformation is
955 ** one of the forms like "+NNN days". */
957 while( sqlite3Isspace(*z
) ) z
++;
958 n
= sqlite3Strlen30(z
);
959 if( n
>10 || n
<3 ) break;
960 if( sqlite3UpperToLower
[(u8
)z
[n
-1]]=='s' ) n
--;
963 rRounder
= r
<0 ? -0.5 : +0.5;
964 for(i
=0; i
<ArraySize(aXformType
); i
++){
965 if( aXformType
[i
].nName
==n
966 && sqlite3_strnicmp(aXformType
[i
].zName
, z
, n
)==0
967 && r
>-aXformType
[i
].rLimit
&& r
<aXformType
[i
].rLimit
970 case 4: { /* Special processing to add months */
971 assert( strcmp(aXformType
[i
].zName
,"month")==0 );
974 x
= p
->M
>0 ? (p
->M
-1)/12 : (p
->M
-12)/12;
981 case 5: { /* Special processing to add years */
983 assert( strcmp(aXformType
[i
].zName
,"year")==0 );
992 p
->iJD
+= (sqlite3_int64
)(r
*1000.0*aXformType
[i
].rXform
+ rRounder
);
1008 ** Process time function arguments. argv[0] is a date-time stamp.
1009 ** argv[1] and following are modifiers. Parse them all and write
1010 ** the resulting time into the DateTime structure p. Return 0
1011 ** on success and 1 if there are any errors.
1013 ** If there are zero parameters (if even argv[0] is undefined)
1014 ** then assume a default value of "now" for argv[0].
1017 sqlite3_context
*context
,
1019 sqlite3_value
**argv
,
1023 const unsigned char *z
;
1025 memset(p
, 0, sizeof(*p
));
1027 if( !sqlite3NotPureFunc(context
) ) return 1;
1028 return setDateTimeToCurrent(context
, p
);
1030 if( (eType
= sqlite3_value_type(argv
[0]))==SQLITE_FLOAT
1031 || eType
==SQLITE_INTEGER
){
1032 setRawDateNumber(p
, sqlite3_value_double(argv
[0]));
1034 z
= sqlite3_value_text(argv
[0]);
1035 if( !z
|| parseDateOrTime(context
, (char*)z
, p
) ){
1039 for(i
=1; i
<argc
; i
++){
1040 z
= sqlite3_value_text(argv
[i
]);
1041 n
= sqlite3_value_bytes(argv
[i
]);
1042 if( z
==0 || parseModifier(context
, (char*)z
, n
, p
, i
) ) return 1;
1045 if( p
->isError
|| !validJulianDay(p
->iJD
) ) return 1;
1046 if( argc
==1 && p
->validYMD
&& p
->D
>28 ){
1047 /* Make sure a YYYY-MM-DD is normalized.
1048 ** Example: 2023-02-31 -> 2023-03-03 */
1049 assert( p
->validJD
);
1057 ** The following routines implement the various date and time functions
1062 ** julianday( TIMESTRING, MOD, MOD, ...)
1064 ** Return the julian day number of the date specified in the arguments
1066 static void juliandayFunc(
1067 sqlite3_context
*context
,
1069 sqlite3_value
**argv
1072 if( isDate(context
, argc
, argv
, &x
)==0 ){
1074 sqlite3_result_double(context
, x
.iJD
/86400000.0);
1079 ** unixepoch( TIMESTRING, MOD, MOD, ...)
1081 ** Return the number of seconds (including fractional seconds) since
1082 ** the unix epoch of 1970-01-01 00:00:00 GMT.
1084 static void unixepochFunc(
1085 sqlite3_context
*context
,
1087 sqlite3_value
**argv
1090 if( isDate(context
, argc
, argv
, &x
)==0 ){
1093 sqlite3_result_double(context
, (x
.iJD
- 21086676*(i64
)10000000)/1000.0);
1095 sqlite3_result_int64(context
, x
.iJD
/1000 - 21086676*(i64
)10000);
1101 ** datetime( TIMESTRING, MOD, MOD, ...)
1103 ** Return YYYY-MM-DD HH:MM:SS
1105 static void datetimeFunc(
1106 sqlite3_context
*context
,
1108 sqlite3_value
**argv
1111 if( isDate(context
, argc
, argv
, &x
)==0 ){
1117 zBuf
[1] = '0' + (Y
/1000)%10;
1118 zBuf
[2] = '0' + (Y
/100)%10;
1119 zBuf
[3] = '0' + (Y
/10)%10;
1120 zBuf
[4] = '0' + (Y
)%10;
1122 zBuf
[6] = '0' + (x
.M
/10)%10;
1123 zBuf
[7] = '0' + (x
.M
)%10;
1125 zBuf
[9] = '0' + (x
.D
/10)%10;
1126 zBuf
[10] = '0' + (x
.D
)%10;
1128 zBuf
[12] = '0' + (x
.h
/10)%10;
1129 zBuf
[13] = '0' + (x
.h
)%10;
1131 zBuf
[15] = '0' + (x
.m
/10)%10;
1132 zBuf
[16] = '0' + (x
.m
)%10;
1135 s
= (int)(1000.0*x
.s
+ 0.5);
1136 zBuf
[18] = '0' + (s
/10000)%10;
1137 zBuf
[19] = '0' + (s
/1000)%10;
1139 zBuf
[21] = '0' + (s
/100)%10;
1140 zBuf
[22] = '0' + (s
/10)%10;
1141 zBuf
[23] = '0' + (s
)%10;
1146 zBuf
[18] = '0' + (s
/10)%10;
1147 zBuf
[19] = '0' + (s
)%10;
1153 sqlite3_result_text(context
, zBuf
, n
, SQLITE_TRANSIENT
);
1155 sqlite3_result_text(context
, &zBuf
[1], n
-1, SQLITE_TRANSIENT
);
1161 ** time( TIMESTRING, MOD, MOD, ...)
1165 static void timeFunc(
1166 sqlite3_context
*context
,
1168 sqlite3_value
**argv
1171 if( isDate(context
, argc
, argv
, &x
)==0 ){
1175 zBuf
[0] = '0' + (x
.h
/10)%10;
1176 zBuf
[1] = '0' + (x
.h
)%10;
1178 zBuf
[3] = '0' + (x
.m
/10)%10;
1179 zBuf
[4] = '0' + (x
.m
)%10;
1182 s
= (int)(1000.0*x
.s
+ 0.5);
1183 zBuf
[6] = '0' + (s
/10000)%10;
1184 zBuf
[7] = '0' + (s
/1000)%10;
1186 zBuf
[9] = '0' + (s
/100)%10;
1187 zBuf
[10] = '0' + (s
/10)%10;
1188 zBuf
[11] = '0' + (s
)%10;
1193 zBuf
[6] = '0' + (s
/10)%10;
1194 zBuf
[7] = '0' + (s
)%10;
1198 sqlite3_result_text(context
, zBuf
, n
, SQLITE_TRANSIENT
);
1203 ** date( TIMESTRING, MOD, MOD, ...)
1205 ** Return YYYY-MM-DD
1207 static void dateFunc(
1208 sqlite3_context
*context
,
1210 sqlite3_value
**argv
1213 if( isDate(context
, argc
, argv
, &x
)==0 ){
1219 zBuf
[1] = '0' + (Y
/1000)%10;
1220 zBuf
[2] = '0' + (Y
/100)%10;
1221 zBuf
[3] = '0' + (Y
/10)%10;
1222 zBuf
[4] = '0' + (Y
)%10;
1224 zBuf
[6] = '0' + (x
.M
/10)%10;
1225 zBuf
[7] = '0' + (x
.M
)%10;
1227 zBuf
[9] = '0' + (x
.D
/10)%10;
1228 zBuf
[10] = '0' + (x
.D
)%10;
1232 sqlite3_result_text(context
, zBuf
, 11, SQLITE_TRANSIENT
);
1234 sqlite3_result_text(context
, &zBuf
[1], 10, SQLITE_TRANSIENT
);
1240 ** strftime( FORMAT, TIMESTRING, MOD, MOD, ...)
1242 ** Return a string described by FORMAT. Conversions as follows:
1245 ** %f ** fractional seconds SS.SSS
1247 ** %j day of year 000-366
1248 ** %J ** julian day number
1251 ** %s seconds since 1970-01-01
1253 ** %w day of week 0-6 Sunday==0
1254 ** %W week of year 00-53
1255 ** %Y year 0000-9999
1258 static void strftimeFunc(
1259 sqlite3_context
*context
,
1261 sqlite3_value
**argv
1270 if( argc
==0 ) return;
1271 zFmt
= (const char*)sqlite3_value_text(argv
[0]);
1272 if( zFmt
==0 || isDate(context
, argc
-1, argv
+1, &x
) ) return;
1273 db
= sqlite3_context_db_handle(context
);
1274 sqlite3StrAccumInit(&sRes
, 0, 0, 0, db
->aLimit
[SQLITE_LIMIT_LENGTH
]);
1278 for(i
=j
=0; zFmt
[i
]; i
++){
1280 if( zFmt
[i
]!='%' ) continue;
1281 if( j
<i
) sqlite3_str_append(&sRes
, zFmt
+j
, (int)(i
-j
));
1286 case 'd': /* Fall thru */
1288 sqlite3_str_appendf(&sRes
, cf
=='d' ? "%02d" : "%2d", x
.D
);
1293 if( s
>59.999 ) s
= 59.999;
1294 sqlite3_str_appendf(&sRes
, "%06.3f", s
);
1298 sqlite3_str_appendf(&sRes
, "%04d-%02d-%02d", x
.Y
, x
.M
, x
.D
);
1303 sqlite3_str_appendf(&sRes
, cf
=='H' ? "%02d" : "%2d", x
.h
);
1306 case 'I': /* Fall thru */
1311 sqlite3_str_appendf(&sRes
, cf
=='I' ? "%02d" : "%2d", h
);
1314 case 'W': /* Fall thru */
1316 int nDay
; /* Number of days since 1st day of year */
1322 nDay
= (int)((x
.iJD
-y
.iJD
+43200000)/86400000);
1324 int wd
; /* 0=Monday, 1=Tuesday, ... 6=Sunday */
1325 wd
= (int)(((x
.iJD
+43200000)/86400000)%7);
1326 sqlite3_str_appendf(&sRes
,"%02d",(nDay
+7-wd
)/7);
1328 sqlite3_str_appendf(&sRes
,"%03d",nDay
+1);
1333 sqlite3_str_appendf(&sRes
,"%.16g",x
.iJD
/86400000.0);
1337 sqlite3_str_appendf(&sRes
,"%02d",x
.M
);
1341 sqlite3_str_appendf(&sRes
,"%02d",x
.m
);
1344 case 'p': /* Fall thru */
1347 sqlite3_str_append(&sRes
, cf
=='p' ? "PM" : "pm", 2);
1349 sqlite3_str_append(&sRes
, cf
=='p' ? "AM" : "am", 2);
1354 sqlite3_str_appendf(&sRes
, "%02d:%02d", x
.h
, x
.m
);
1359 sqlite3_str_appendf(&sRes
,"%.3f",
1360 (x
.iJD
- 21086676*(i64
)10000000)/1000.0);
1362 i64 iS
= (i64
)(x
.iJD
/1000 - 21086676*(i64
)10000);
1363 sqlite3_str_appendf(&sRes
,"%lld",iS
);
1368 sqlite3_str_appendf(&sRes
,"%02d",(int)x
.s
);
1372 sqlite3_str_appendf(&sRes
,"%02d:%02d:%02d", x
.h
, x
.m
, (int)x
.s
);
1375 case 'u': /* Fall thru */
1377 char c
= (char)(((x
.iJD
+129600000)/86400000) % 7) + '0';
1378 if( c
=='0' && cf
=='u' ) c
= '7';
1379 sqlite3_str_appendchar(&sRes
, 1, c
);
1383 sqlite3_str_appendf(&sRes
,"%04d",x
.Y
);
1387 sqlite3_str_appendchar(&sRes
, 1, '%');
1391 sqlite3_str_reset(&sRes
);
1396 if( j
<i
) sqlite3_str_append(&sRes
, zFmt
+j
, (int)(i
-j
));
1397 sqlite3ResultStrAccum(context
, &sRes
);
1403 ** This function returns the same value as time('now').
1405 static void ctimeFunc(
1406 sqlite3_context
*context
,
1408 sqlite3_value
**NotUsed2
1410 UNUSED_PARAMETER2(NotUsed
, NotUsed2
);
1411 timeFunc(context
, 0, 0);
1417 ** This function returns the same value as date('now').
1419 static void cdateFunc(
1420 sqlite3_context
*context
,
1422 sqlite3_value
**NotUsed2
1424 UNUSED_PARAMETER2(NotUsed
, NotUsed2
);
1425 dateFunc(context
, 0, 0);
1429 ** timediff(DATE1, DATE2)
1431 ** Return the amount of time that must be added to DATE2 in order to
1432 ** convert it into DATE2. The time difference format is:
1434 ** +YYYY-MM-DD HH:MM:SS.SSS
1436 ** The initial "+" becomes "-" if DATE1 occurs before DATE2. For
1437 ** date/time values A and B, the following invariant should hold:
1439 ** datetime(A) == (datetime(B, timediff(A,B))
1441 ** Both DATE arguments must be either a julian day number, or an
1442 ** ISO-8601 string. The unix timestamps are not supported by this
1445 static void timediffFunc(
1446 sqlite3_context
*context
,
1448 sqlite3_value
**argv
1454 UNUSED_PARAMETER(NotUsed1
);
1455 if( isDate(context
, 1, &argv
[0], &d1
) ) return;
1456 if( isDate(context
, 1, &argv
[1], &d2
) ) return;
1457 computeYMD_HMS(&d1
);
1458 computeYMD_HMS(&d2
);
1459 if( d1
.iJD
>=d2
.iJD
){
1477 while( d1
.iJD
<d2
.iJD
){
1492 d1
.iJD
+= (u64
)1486995408 * (u64
)100000;
1511 while( d1
.iJD
>d2
.iJD
){
1525 d1
.iJD
= d2
.iJD
- d1
.iJD
;
1526 d1
.iJD
+= (u64
)1486995408 * (u64
)100000;
1531 computeYMD_HMS(&d1
);
1532 sqlite3StrAccumInit(&sRes
, 0, 0, 0, 100);
1533 sqlite3_str_appendf(&sRes
, "%c%04d-%02d-%02d %02d:%02d:%06.3f",
1534 sign
, Y
, M
, d1
.D
-1, d1
.h
, d1
.m
, d1
.s
);
1535 sqlite3ResultStrAccum(context
, &sRes
);
1540 ** current_timestamp()
1542 ** This function returns the same value as datetime('now').
1544 static void ctimestampFunc(
1545 sqlite3_context
*context
,
1547 sqlite3_value
**NotUsed2
1549 UNUSED_PARAMETER2(NotUsed
, NotUsed2
);
1550 datetimeFunc(context
, 0, 0);
1552 #endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */
1554 #ifdef SQLITE_OMIT_DATETIME_FUNCS
1556 ** If the library is compiled to omit the full-scale date and time
1557 ** handling (to get a smaller binary), the following minimal version
1558 ** of the functions current_time(), current_date() and current_timestamp()
1559 ** are included instead. This is to support column declarations that
1560 ** include "DEFAULT CURRENT_TIME" etc.
1562 ** This function uses the C-library functions time(), gmtime()
1563 ** and strftime(). The format string to pass to strftime() is supplied
1564 ** as the user-data for the function.
1566 static void currentTimeFunc(
1567 sqlite3_context
*context
,
1569 sqlite3_value
**argv
1572 char *zFormat
= (char *)sqlite3_user_data(context
);
1578 UNUSED_PARAMETER(argc
);
1579 UNUSED_PARAMETER(argv
);
1581 iT
= sqlite3StmtCurrentTime(context
);
1583 t
= iT
/1000 - 10000*(sqlite3_int64
)21086676;
1585 pTm
= gmtime_r(&t
, &sNow
);
1587 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN
));
1589 if( pTm
) memcpy(&sNow
, pTm
, sizeof(sNow
));
1590 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN
));
1593 strftime(zBuf
, 20, zFormat
, &sNow
);
1594 sqlite3_result_text(context
, zBuf
, -1, SQLITE_TRANSIENT
);
1600 ** This function registered all of the above C functions as SQL
1601 ** functions. This should be the only routine in this file with
1602 ** external linkage.
1604 void sqlite3RegisterDateTimeFunctions(void){
1605 static FuncDef aDateTimeFuncs
[] = {
1606 #ifndef SQLITE_OMIT_DATETIME_FUNCS
1607 PURE_DATE(julianday
, -1, 0, 0, juliandayFunc
),
1608 PURE_DATE(unixepoch
, -1, 0, 0, unixepochFunc
),
1609 PURE_DATE(date
, -1, 0, 0, dateFunc
),
1610 PURE_DATE(time
, -1, 0, 0, timeFunc
),
1611 PURE_DATE(datetime
, -1, 0, 0, datetimeFunc
),
1612 PURE_DATE(strftime
, -1, 0, 0, strftimeFunc
),
1613 PURE_DATE(timediff
, 2, 0, 0, timediffFunc
),
1614 DFUNCTION(current_time
, 0, 0, 0, ctimeFunc
),
1615 DFUNCTION(current_timestamp
, 0, 0, 0, ctimestampFunc
),
1616 DFUNCTION(current_date
, 0, 0, 0, cdateFunc
),
1618 STR_FUNCTION(current_time
, 0, "%H:%M:%S", 0, currentTimeFunc
),
1619 STR_FUNCTION(current_date
, 0, "%Y-%m-%d", 0, currentTimeFunc
),
1620 STR_FUNCTION(current_timestamp
, 0, "%Y-%m-%d %H:%M:%S", 0, currentTimeFunc
),
1623 sqlite3InsertBuiltinFuncs(aDateTimeFuncs
, ArraySize(aDateTimeFuncs
));