4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
15 #include "sqliteInt.h"
18 ** An instance of the following object is used to record information about
19 ** how to process the DISTINCT keyword, to simplify passing that information
20 ** into the selectInnerLoop() routine.
22 typedef struct DistinctCtx DistinctCtx
;
24 u8 isTnct
; /* 0: Not distinct. 1: DISTICT 2: DISTINCT and ORDER BY */
25 u8 eTnctType
; /* One of the WHERE_DISTINCT_* operators */
26 int tabTnct
; /* Ephemeral table used for DISTINCT processing */
27 int addrTnct
; /* Address of OP_OpenEphemeral opcode for tabTnct */
31 ** An instance of the following object is used to record information about
32 ** the ORDER BY (or GROUP BY) clause of query is being coded.
34 ** The aDefer[] array is used by the sorter-references optimization. For
35 ** example, assuming there is no index that can be used for the ORDER BY,
38 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10;
40 ** it may be more efficient to add just the "a" values to the sorter, and
41 ** retrieve the associated "bigblob" values directly from table t1 as the
42 ** 10 smallest "a" values are extracted from the sorter.
44 ** When the sorter-reference optimization is used, there is one entry in the
45 ** aDefer[] array for each database table that may be read as values are
46 ** extracted from the sorter.
48 typedef struct SortCtx SortCtx
;
50 ExprList
*pOrderBy
; /* The ORDER BY (or GROUP BY clause) */
51 int nOBSat
; /* Number of ORDER BY terms satisfied by indices */
52 int iECursor
; /* Cursor number for the sorter */
53 int regReturn
; /* Register holding block-output return address */
54 int labelBkOut
; /* Start label for the block-output subroutine */
55 int addrSortIndex
; /* Address of the OP_SorterOpen or OP_OpenEphemeral */
56 int labelDone
; /* Jump here when done, ex: LIMIT reached */
57 int labelOBLopt
; /* Jump here when sorter is full */
58 u8 sortFlags
; /* Zero or more SORTFLAG_* bits */
59 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
60 u8 nDefer
; /* Number of valid entries in aDefer[] */
62 Table
*pTab
; /* Table definition */
63 int iCsr
; /* Cursor number for table */
64 int nKey
; /* Number of PK columns for table pTab (>=1) */
67 struct RowLoadInfo
*pDeferredRowLoad
; /* Deferred row loading info or NULL */
68 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
69 int addrPush
; /* First instruction to push data into sorter */
70 int addrPushEnd
; /* Last instruction that pushes data into sorter */
73 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */
76 ** Delete all the content of a Select structure. Deallocate the structure
77 ** itself depending on the value of bFree
79 ** If bFree==1, call sqlite3DbFree() on the p object.
80 ** If bFree==0, Leave the first Select object unfreed
82 static void clearSelect(sqlite3
*db
, Select
*p
, int bFree
){
85 Select
*pPrior
= p
->pPrior
;
86 sqlite3ExprListDelete(db
, p
->pEList
);
87 sqlite3SrcListDelete(db
, p
->pSrc
);
88 sqlite3ExprDelete(db
, p
->pWhere
);
89 sqlite3ExprListDelete(db
, p
->pGroupBy
);
90 sqlite3ExprDelete(db
, p
->pHaving
);
91 sqlite3ExprListDelete(db
, p
->pOrderBy
);
92 sqlite3ExprDelete(db
, p
->pLimit
);
93 if( OK_IF_ALWAYS_TRUE(p
->pWith
) ) sqlite3WithDelete(db
, p
->pWith
);
94 #ifndef SQLITE_OMIT_WINDOWFUNC
95 if( OK_IF_ALWAYS_TRUE(p
->pWinDefn
) ){
96 sqlite3WindowListDelete(db
, p
->pWinDefn
);
99 assert( p
->pWin
->ppThis
==&p
->pWin
);
100 sqlite3WindowUnlinkFromSelect(p
->pWin
);
103 if( bFree
) sqlite3DbNNFreeNN(db
, p
);
110 ** Initialize a SelectDest structure.
112 void sqlite3SelectDestInit(SelectDest
*pDest
, int eDest
, int iParm
){
113 pDest
->eDest
= (u8
)eDest
;
114 pDest
->iSDParm
= iParm
;
123 ** Allocate a new Select structure and return a pointer to that
126 Select
*sqlite3SelectNew(
127 Parse
*pParse
, /* Parsing context */
128 ExprList
*pEList
, /* which columns to include in the result */
129 SrcList
*pSrc
, /* the FROM clause -- which tables to scan */
130 Expr
*pWhere
, /* the WHERE clause */
131 ExprList
*pGroupBy
, /* the GROUP BY clause */
132 Expr
*pHaving
, /* the HAVING clause */
133 ExprList
*pOrderBy
, /* the ORDER BY clause */
134 u32 selFlags
, /* Flag parameters, such as SF_Distinct */
135 Expr
*pLimit
/* LIMIT value. NULL means not used */
137 Select
*pNew
, *pAllocated
;
139 pAllocated
= pNew
= sqlite3DbMallocRawNN(pParse
->db
, sizeof(*pNew
) );
141 assert( pParse
->db
->mallocFailed
);
145 pEList
= sqlite3ExprListAppend(pParse
, 0,
146 sqlite3Expr(pParse
->db
,TK_ASTERISK
,0));
148 pNew
->pEList
= pEList
;
149 pNew
->op
= TK_SELECT
;
150 pNew
->selFlags
= selFlags
;
153 pNew
->selId
= ++pParse
->nSelect
;
154 pNew
->addrOpenEphm
[0] = -1;
155 pNew
->addrOpenEphm
[1] = -1;
156 pNew
->nSelectRow
= 0;
157 if( pSrc
==0 ) pSrc
= sqlite3DbMallocZero(pParse
->db
, sizeof(*pSrc
));
159 pNew
->pWhere
= pWhere
;
160 pNew
->pGroupBy
= pGroupBy
;
161 pNew
->pHaving
= pHaving
;
162 pNew
->pOrderBy
= pOrderBy
;
165 pNew
->pLimit
= pLimit
;
167 #ifndef SQLITE_OMIT_WINDOWFUNC
171 if( pParse
->db
->mallocFailed
) {
172 clearSelect(pParse
->db
, pNew
, pNew
!=&standin
);
175 assert( pNew
->pSrc
!=0 || pParse
->nErr
>0 );
182 ** Delete the given Select structure and all of its substructures.
184 void sqlite3SelectDelete(sqlite3
*db
, Select
*p
){
185 if( OK_IF_ALWAYS_TRUE(p
) ) clearSelect(db
, p
, 1);
187 void sqlite3SelectDeleteGeneric(sqlite3
*db
, void *p
){
188 if( ALWAYS(p
) ) clearSelect(db
, (Select
*)p
, 1);
192 ** Return a pointer to the right-most SELECT statement in a compound.
194 static Select
*findRightmost(Select
*p
){
195 while( p
->pNext
) p
= p
->pNext
;
200 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
201 ** type of join. Return an integer constant that expresses that type
202 ** in terms of the following bit values:
211 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
213 ** If an illegal or unsupported join type is seen, then still return
214 ** a join type, but put an error in the pParse structure.
216 ** These are the valid join types:
219 ** pA pB pC Return Value
220 ** ------- ----- ----- ------------
221 ** CROSS - - JT_CROSS
222 ** INNER - - JT_INNER
223 ** LEFT - - JT_LEFT|JT_OUTER
224 ** LEFT OUTER - JT_LEFT|JT_OUTER
225 ** RIGHT - - JT_RIGHT|JT_OUTER
226 ** RIGHT OUTER - JT_RIGHT|JT_OUTER
227 ** FULL - - JT_LEFT|JT_RIGHT|JT_OUTER
228 ** FULL OUTER - JT_LEFT|JT_RIGHT|JT_OUTER
229 ** NATURAL INNER - JT_NATURAL|JT_INNER
230 ** NATURAL LEFT - JT_NATURAL|JT_LEFT|JT_OUTER
231 ** NATURAL LEFT OUTER JT_NATURAL|JT_LEFT|JT_OUTER
232 ** NATURAL RIGHT - JT_NATURAL|JT_RIGHT|JT_OUTER
233 ** NATURAL RIGHT OUTER JT_NATURAL|JT_RIGHT|JT_OUTER
234 ** NATURAL FULL - JT_NATURAL|JT_LEFT|JT_RIGHT
235 ** NATURAL FULL OUTER JT_NATRUAL|JT_LEFT|JT_RIGHT
237 ** To preserve historical compatibly, SQLite also accepts a variety
238 ** of other non-standard and in many cases nonsensical join types.
239 ** This routine makes as much sense at it can from the nonsense join
240 ** type and returns a result. Examples of accepted nonsense join types
241 ** include but are not limited to:
243 ** INNER CROSS JOIN -> same as JOIN
244 ** NATURAL CROSS JOIN -> same as NATURAL JOIN
245 ** OUTER LEFT JOIN -> same as LEFT JOIN
246 ** LEFT NATURAL JOIN -> same as NATURAL LEFT JOIN
247 ** LEFT RIGHT JOIN -> same as FULL JOIN
248 ** RIGHT OUTER FULL JOIN -> same as FULL JOIN
249 ** CROSS CROSS CROSS JOIN -> same as JOIN
251 ** The only restrictions on the join type name are:
253 ** * "INNER" cannot appear together with "OUTER", "LEFT", "RIGHT",
256 ** * "CROSS" cannot appear together with "OUTER", "LEFT", "RIGHT,
259 ** * If "OUTER" is present then there must also be one of
260 ** "LEFT", "RIGHT", or "FULL"
262 int sqlite3JoinType(Parse
*pParse
, Token
*pA
, Token
*pB
, Token
*pC
){
266 /* 0123456789 123456789 123456789 123 */
267 static const char zKeyText
[] = "naturaleftouterightfullinnercross";
268 static const struct {
269 u8 i
; /* Beginning of keyword text in zKeyText[] */
270 u8 nChar
; /* Length of the keyword in characters */
271 u8 code
; /* Join type mask */
273 /* (0) natural */ { 0, 7, JT_NATURAL
},
274 /* (1) left */ { 6, 4, JT_LEFT
|JT_OUTER
},
275 /* (2) outer */ { 10, 5, JT_OUTER
},
276 /* (3) right */ { 14, 5, JT_RIGHT
|JT_OUTER
},
277 /* (4) full */ { 19, 4, JT_LEFT
|JT_RIGHT
|JT_OUTER
},
278 /* (5) inner */ { 23, 5, JT_INNER
},
279 /* (6) cross */ { 28, 5, JT_INNER
|JT_CROSS
},
285 for(i
=0; i
<3 && apAll
[i
]; i
++){
287 for(j
=0; j
<ArraySize(aKeyword
); j
++){
288 if( p
->n
==aKeyword
[j
].nChar
289 && sqlite3StrNICmp((char*)p
->z
, &zKeyText
[aKeyword
[j
].i
], p
->n
)==0 ){
290 jointype
|= aKeyword
[j
].code
;
294 testcase( j
==0 || j
==1 || j
==2 || j
==3 || j
==4 || j
==5 || j
==6 );
295 if( j
>=ArraySize(aKeyword
) ){
296 jointype
|= JT_ERROR
;
301 (jointype
& (JT_INNER
|JT_OUTER
))==(JT_INNER
|JT_OUTER
) ||
302 (jointype
& JT_ERROR
)!=0 ||
303 (jointype
& (JT_OUTER
|JT_LEFT
|JT_RIGHT
))==JT_OUTER
305 const char *zSp1
= " ";
306 const char *zSp2
= " ";
307 if( pB
==0 ){ zSp1
++; }
308 if( pC
==0 ){ zSp2
++; }
309 sqlite3ErrorMsg(pParse
, "unknown join type: "
310 "%T%s%T%s%T", pA
, zSp1
, pB
, zSp2
, pC
);
317 ** Return the index of a column in a table. Return -1 if the column
318 ** is not contained in the table.
320 int sqlite3ColumnIndex(Table
*pTab
, const char *zCol
){
322 u8 h
= sqlite3StrIHash(zCol
);
324 for(pCol
=pTab
->aCol
, i
=0; i
<pTab
->nCol
; pCol
++, i
++){
325 if( pCol
->hName
==h
&& sqlite3StrICmp(pCol
->zCnName
, zCol
)==0 ) return i
;
331 ** Mark a subquery result column as having been used.
333 void sqlite3SrcItemColumnUsed(SrcItem
*pItem
, int iCol
){
335 assert( (int)pItem
->fg
.isNestedFrom
== IsNestedFrom(pItem
->pSelect
) );
336 if( pItem
->fg
.isNestedFrom
){
338 assert( pItem
->pSelect
!=0 );
339 pResults
= pItem
->pSelect
->pEList
;
340 assert( pResults
!=0 );
341 assert( iCol
>=0 && iCol
<pResults
->nExpr
);
342 pResults
->a
[iCol
].fg
.bUsed
= 1;
347 ** Search the tables iStart..iEnd (inclusive) in pSrc, looking for a
348 ** table that has a column named zCol. The search is left-to-right.
349 ** The first match found is returned.
351 ** When found, set *piTab and *piCol to the table index and column index
352 ** of the matching column and return TRUE.
354 ** If not found, return FALSE.
356 static int tableAndColumnIndex(
357 SrcList
*pSrc
, /* Array of tables to search */
358 int iStart
, /* First member of pSrc->a[] to check */
359 int iEnd
, /* Last member of pSrc->a[] to check */
360 const char *zCol
, /* Name of the column we are looking for */
361 int *piTab
, /* Write index of pSrc->a[] here */
362 int *piCol
, /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
363 int bIgnoreHidden
/* Ignore hidden columns */
365 int i
; /* For looping over tables in pSrc */
366 int iCol
; /* Index of column matching zCol */
368 assert( iEnd
<pSrc
->nSrc
);
370 assert( (piTab
==0)==(piCol
==0) ); /* Both or neither are NULL */
372 for(i
=iStart
; i
<=iEnd
; i
++){
373 iCol
= sqlite3ColumnIndex(pSrc
->a
[i
].pTab
, zCol
);
375 && (bIgnoreHidden
==0 || IsHiddenColumn(&pSrc
->a
[i
].pTab
->aCol
[iCol
])==0)
378 sqlite3SrcItemColumnUsed(&pSrc
->a
[i
], iCol
);
389 ** Set the EP_OuterON property on all terms of the given expression.
390 ** And set the Expr.w.iJoin to iTable for every term in the
393 ** The EP_OuterON property is used on terms of an expression to tell
394 ** the OUTER JOIN processing logic that this term is part of the
395 ** join restriction specified in the ON or USING clause and not a part
396 ** of the more general WHERE clause. These terms are moved over to the
397 ** WHERE clause during join processing but we need to remember that they
398 ** originated in the ON or USING clause.
400 ** The Expr.w.iJoin tells the WHERE clause processing that the
401 ** expression depends on table w.iJoin even if that table is not
402 ** explicitly mentioned in the expression. That information is needed
403 ** for cases like this:
405 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
407 ** The where clause needs to defer the handling of the t1.x=5
408 ** term until after the t2 loop of the join. In that way, a
409 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not
410 ** defer the handling of t1.x=5, it will be processed immediately
411 ** after the t1 loop and rows with t1.x!=5 will never appear in
412 ** the output, which is incorrect.
414 void sqlite3SetJoinExpr(Expr
*p
, int iTable
, u32 joinFlag
){
415 assert( joinFlag
==EP_OuterON
|| joinFlag
==EP_InnerON
);
417 ExprSetProperty(p
, joinFlag
);
418 assert( !ExprHasProperty(p
, EP_TokenOnly
|EP_Reduced
) );
419 ExprSetVVAProperty(p
, EP_NoReduce
);
421 if( p
->op
==TK_FUNCTION
){
422 assert( ExprUseXList(p
) );
425 for(i
=0; i
<p
->x
.pList
->nExpr
; i
++){
426 sqlite3SetJoinExpr(p
->x
.pList
->a
[i
].pExpr
, iTable
, joinFlag
);
430 sqlite3SetJoinExpr(p
->pLeft
, iTable
, joinFlag
);
435 /* Undo the work of sqlite3SetJoinExpr(). This is used when a LEFT JOIN
436 ** is simplified into an ordinary JOIN, and when an ON expression is
437 ** "pushed down" into the WHERE clause of a subquery.
439 ** Convert every term that is marked with EP_OuterON and w.iJoin==iTable into
440 ** an ordinary term that omits the EP_OuterON mark. Or if iTable<0, then
441 ** just clear every EP_OuterON and EP_InnerON mark from the expression tree.
443 ** If nullable is true, that means that Expr p might evaluate to NULL even
444 ** if it is a reference to a NOT NULL column. This can happen, for example,
445 ** if the table that p references is on the left side of a RIGHT JOIN.
446 ** If nullable is true, then take care to not remove the EP_CanBeNull bit.
447 ** See forum thread https://sqlite.org/forum/forumpost/b40696f50145d21c
449 static void unsetJoinExpr(Expr
*p
, int iTable
, int nullable
){
451 if( iTable
<0 || (ExprHasProperty(p
, EP_OuterON
) && p
->w
.iJoin
==iTable
) ){
452 ExprClearProperty(p
, EP_OuterON
|EP_InnerON
);
453 if( iTable
>=0 ) ExprSetProperty(p
, EP_InnerON
);
455 if( p
->op
==TK_COLUMN
&& p
->iTable
==iTable
&& !nullable
){
456 ExprClearProperty(p
, EP_CanBeNull
);
458 if( p
->op
==TK_FUNCTION
){
459 assert( ExprUseXList(p
) );
460 assert( p
->pLeft
==0 );
463 for(i
=0; i
<p
->x
.pList
->nExpr
; i
++){
464 unsetJoinExpr(p
->x
.pList
->a
[i
].pExpr
, iTable
, nullable
);
468 unsetJoinExpr(p
->pLeft
, iTable
, nullable
);
474 ** This routine processes the join information for a SELECT statement.
476 ** * A NATURAL join is converted into a USING join. After that, we
477 ** do not need to be concerned with NATURAL joins and we only have
478 ** think about USING joins.
480 ** * ON and USING clauses result in extra terms being added to the
481 ** WHERE clause to enforce the specified constraints. The extra
482 ** WHERE clause terms will be tagged with EP_OuterON or
483 ** EP_InnerON so that we know that they originated in ON/USING.
485 ** The terms of a FROM clause are contained in the Select.pSrc structure.
486 ** The left most table is the first entry in Select.pSrc. The right-most
487 ** table is the last entry. The join operator is held in the entry to
488 ** the right. Thus entry 1 contains the join operator for the join between
489 ** entries 0 and 1. Any ON or USING clauses associated with the join are
490 ** also attached to the right entry.
492 ** This routine returns the number of errors encountered.
494 static int sqlite3ProcessJoin(Parse
*pParse
, Select
*p
){
495 SrcList
*pSrc
; /* All tables in the FROM clause */
496 int i
, j
; /* Loop counters */
497 SrcItem
*pLeft
; /* Left table being joined */
498 SrcItem
*pRight
; /* Right table being joined */
503 for(i
=0; i
<pSrc
->nSrc
-1; i
++, pRight
++, pLeft
++){
504 Table
*pRightTab
= pRight
->pTab
;
507 if( NEVER(pLeft
->pTab
==0 || pRightTab
==0) ) continue;
508 joinType
= (pRight
->fg
.jointype
& JT_OUTER
)!=0 ? EP_OuterON
: EP_InnerON
;
510 /* If this is a NATURAL join, synthesize an appropriate USING clause
511 ** to specify which columns should be joined.
513 if( pRight
->fg
.jointype
& JT_NATURAL
){
515 if( pRight
->fg
.isUsing
|| pRight
->u3
.pOn
){
516 sqlite3ErrorMsg(pParse
, "a NATURAL join may not have "
517 "an ON or USING clause", 0);
520 for(j
=0; j
<pRightTab
->nCol
; j
++){
521 char *zName
; /* Name of column in the right table */
523 if( IsHiddenColumn(&pRightTab
->aCol
[j
]) ) continue;
524 zName
= pRightTab
->aCol
[j
].zCnName
;
525 if( tableAndColumnIndex(pSrc
, 0, i
, zName
, 0, 0, 1) ){
526 pUsing
= sqlite3IdListAppend(pParse
, pUsing
, 0);
528 assert( pUsing
->nId
>0 );
529 assert( pUsing
->a
[pUsing
->nId
-1].zName
==0 );
530 pUsing
->a
[pUsing
->nId
-1].zName
= sqlite3DbStrDup(pParse
->db
, zName
);
535 pRight
->fg
.isUsing
= 1;
536 pRight
->fg
.isSynthUsing
= 1;
537 pRight
->u3
.pUsing
= pUsing
;
539 if( pParse
->nErr
) return 1;
542 /* Create extra terms on the WHERE clause for each column named
543 ** in the USING clause. Example: If the two tables to be joined are
544 ** A and B and the USING clause names X, Y, and Z, then add this
545 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
546 ** Report an error if any column mentioned in the USING clause is
547 ** not contained in both tables to be joined.
549 if( pRight
->fg
.isUsing
){
550 IdList
*pList
= pRight
->u3
.pUsing
;
551 sqlite3
*db
= pParse
->db
;
553 for(j
=0; j
<pList
->nId
; j
++){
554 char *zName
; /* Name of the term in the USING clause */
555 int iLeft
; /* Table on the left with matching column name */
556 int iLeftCol
; /* Column number of matching column on the left */
557 int iRightCol
; /* Column number of matching column on the right */
558 Expr
*pE1
; /* Reference to the column on the LEFT of the join */
559 Expr
*pE2
; /* Reference to the column on the RIGHT of the join */
560 Expr
*pEq
; /* Equality constraint. pE1 == pE2 */
562 zName
= pList
->a
[j
].zName
;
563 iRightCol
= sqlite3ColumnIndex(pRightTab
, zName
);
565 || tableAndColumnIndex(pSrc
, 0, i
, zName
, &iLeft
, &iLeftCol
,
566 pRight
->fg
.isSynthUsing
)==0
568 sqlite3ErrorMsg(pParse
, "cannot join using column %s - column "
569 "not present in both tables", zName
);
572 pE1
= sqlite3CreateColumnExpr(db
, pSrc
, iLeft
, iLeftCol
);
573 sqlite3SrcItemColumnUsed(&pSrc
->a
[iLeft
], iLeftCol
);
574 if( (pSrc
->a
[0].fg
.jointype
& JT_LTORJ
)!=0 ){
575 /* This branch runs if the query contains one or more RIGHT or FULL
576 ** JOINs. If only a single table on the left side of this join
577 ** contains the zName column, then this branch is a no-op.
578 ** But if there are two or more tables on the left side
579 ** of the join, construct a coalesce() function that gathers all
580 ** such tables. Raise an error if more than one of those references
581 ** to zName is not also within a prior USING clause.
583 ** We really ought to raise an error if there are two or more
584 ** non-USING references to zName on the left of an INNER or LEFT
585 ** JOIN. But older versions of SQLite do not do that, so we avoid
586 ** adding a new error so as to not break legacy applications.
588 ExprList
*pFuncArgs
= 0; /* Arguments to the coalesce() */
589 static const Token tkCoalesce
= { "coalesce", 8 };
590 while( tableAndColumnIndex(pSrc
, iLeft
+1, i
, zName
, &iLeft
, &iLeftCol
,
591 pRight
->fg
.isSynthUsing
)!=0 ){
592 if( pSrc
->a
[iLeft
].fg
.isUsing
==0
593 || sqlite3IdListIndex(pSrc
->a
[iLeft
].u3
.pUsing
, zName
)<0
595 sqlite3ErrorMsg(pParse
, "ambiguous reference to %s in USING()",
599 pFuncArgs
= sqlite3ExprListAppend(pParse
, pFuncArgs
, pE1
);
600 pE1
= sqlite3CreateColumnExpr(db
, pSrc
, iLeft
, iLeftCol
);
601 sqlite3SrcItemColumnUsed(&pSrc
->a
[iLeft
], iLeftCol
);
604 pFuncArgs
= sqlite3ExprListAppend(pParse
, pFuncArgs
, pE1
);
605 pE1
= sqlite3ExprFunction(pParse
, pFuncArgs
, &tkCoalesce
, 0);
608 pE2
= sqlite3CreateColumnExpr(db
, pSrc
, i
+1, iRightCol
);
609 sqlite3SrcItemColumnUsed(pRight
, iRightCol
);
610 pEq
= sqlite3PExpr(pParse
, TK_EQ
, pE1
, pE2
);
611 assert( pE2
!=0 || pEq
==0 );
613 ExprSetProperty(pEq
, joinType
);
614 assert( !ExprHasProperty(pEq
, EP_TokenOnly
|EP_Reduced
) );
615 ExprSetVVAProperty(pEq
, EP_NoReduce
);
616 pEq
->w
.iJoin
= pE2
->iTable
;
618 p
->pWhere
= sqlite3ExprAnd(pParse
, p
->pWhere
, pEq
);
622 /* Add the ON clause to the end of the WHERE clause, connected by
625 else if( pRight
->u3
.pOn
){
626 sqlite3SetJoinExpr(pRight
->u3
.pOn
, pRight
->iCursor
, joinType
);
627 p
->pWhere
= sqlite3ExprAnd(pParse
, p
->pWhere
, pRight
->u3
.pOn
);
636 ** An instance of this object holds information (beyond pParse and pSelect)
637 ** needed to load the next result row that is to be added to the sorter.
639 typedef struct RowLoadInfo RowLoadInfo
;
641 int regResult
; /* Store results in array of registers here */
642 u8 ecelFlags
; /* Flag argument to ExprCodeExprList() */
643 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
644 ExprList
*pExtra
; /* Extra columns needed by sorter refs */
645 int regExtraResult
; /* Where to load the extra columns */
650 ** This routine does the work of loading query data into an array of
651 ** registers so that it can be added to the sorter.
653 static void innerLoopLoadRow(
654 Parse
*pParse
, /* Statement under construction */
655 Select
*pSelect
, /* The query being coded */
656 RowLoadInfo
*pInfo
/* Info needed to complete the row load */
658 sqlite3ExprCodeExprList(pParse
, pSelect
->pEList
, pInfo
->regResult
,
659 0, pInfo
->ecelFlags
);
660 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
662 sqlite3ExprCodeExprList(pParse
, pInfo
->pExtra
, pInfo
->regExtraResult
, 0, 0);
663 sqlite3ExprListDelete(pParse
->db
, pInfo
->pExtra
);
669 ** Code the OP_MakeRecord instruction that generates the entry to be
670 ** added into the sorter.
672 ** Return the register in which the result is stored.
674 static int makeSorterRecord(
681 int nOBSat
= pSort
->nOBSat
;
682 Vdbe
*v
= pParse
->pVdbe
;
683 int regOut
= ++pParse
->nMem
;
684 if( pSort
->pDeferredRowLoad
){
685 innerLoopLoadRow(pParse
, pSelect
, pSort
->pDeferredRowLoad
);
687 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regBase
+nOBSat
, nBase
-nOBSat
, regOut
);
692 ** Generate code that will push the record in registers regData
693 ** through regData+nData-1 onto the sorter.
695 static void pushOntoSorter(
696 Parse
*pParse
, /* Parser context */
697 SortCtx
*pSort
, /* Information about the ORDER BY clause */
698 Select
*pSelect
, /* The whole SELECT statement */
699 int regData
, /* First register holding data to be sorted */
700 int regOrigData
, /* First register holding data before packing */
701 int nData
, /* Number of elements in the regData data array */
702 int nPrefixReg
/* No. of reg prior to regData available for use */
704 Vdbe
*v
= pParse
->pVdbe
; /* Stmt under construction */
705 int bSeq
= ((pSort
->sortFlags
& SORTFLAG_UseSorter
)==0);
706 int nExpr
= pSort
->pOrderBy
->nExpr
; /* No. of ORDER BY terms */
707 int nBase
= nExpr
+ bSeq
+ nData
; /* Fields in sorter record */
708 int regBase
; /* Regs for sorter record */
709 int regRecord
= 0; /* Assembled sorter record */
710 int nOBSat
= pSort
->nOBSat
; /* ORDER BY terms to skip */
711 int op
; /* Opcode to add sorter record to sorter */
712 int iLimit
; /* LIMIT counter */
713 int iSkip
= 0; /* End of the sorter insert loop */
715 assert( bSeq
==0 || bSeq
==1 );
718 ** (1) The data to be sorted has already been packed into a Record
719 ** by a prior OP_MakeRecord. In this case nData==1 and regData
720 ** will be completely unrelated to regOrigData.
721 ** (2) All output columns are included in the sort record. In that
722 ** case regData==regOrigData.
723 ** (3) Some output columns are omitted from the sort record due to
724 ** the SQLITE_ENABLE_SORTER_REFERENCES optimization, or due to the
725 ** SQLITE_ECEL_OMITREF optimization, or due to the
726 ** SortCtx.pDeferredRowLoad optimization. In any of these cases
727 ** regOrigData is 0 to prevent this routine from trying to copy
728 ** values that might not yet exist.
730 assert( nData
==1 || regData
==regOrigData
|| regOrigData
==0 );
732 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
733 pSort
->addrPush
= sqlite3VdbeCurrentAddr(v
);
737 assert( nPrefixReg
==nExpr
+bSeq
);
738 regBase
= regData
- nPrefixReg
;
740 regBase
= pParse
->nMem
+ 1;
741 pParse
->nMem
+= nBase
;
743 assert( pSelect
->iOffset
==0 || pSelect
->iLimit
!=0 );
744 iLimit
= pSelect
->iOffset
? pSelect
->iOffset
+1 : pSelect
->iLimit
;
745 pSort
->labelDone
= sqlite3VdbeMakeLabel(pParse
);
746 sqlite3ExprCodeExprList(pParse
, pSort
->pOrderBy
, regBase
, regOrigData
,
747 SQLITE_ECEL_DUP
| (regOrigData
? SQLITE_ECEL_REF
: 0));
749 sqlite3VdbeAddOp2(v
, OP_Sequence
, pSort
->iECursor
, regBase
+nExpr
);
751 if( nPrefixReg
==0 && nData
>0 ){
752 sqlite3ExprCodeMove(pParse
, regData
, regBase
+nExpr
+bSeq
, nData
);
755 int regPrevKey
; /* The first nOBSat columns of the previous row */
756 int addrFirst
; /* Address of the OP_IfNot opcode */
757 int addrJmp
; /* Address of the OP_Jump opcode */
758 VdbeOp
*pOp
; /* Opcode that opens the sorter */
759 int nKey
; /* Number of sorting key columns, including OP_Sequence */
760 KeyInfo
*pKI
; /* Original KeyInfo on the sorter table */
762 regRecord
= makeSorterRecord(pParse
, pSort
, pSelect
, regBase
, nBase
);
763 regPrevKey
= pParse
->nMem
+1;
764 pParse
->nMem
+= pSort
->nOBSat
;
765 nKey
= nExpr
- pSort
->nOBSat
+ bSeq
;
767 addrFirst
= sqlite3VdbeAddOp1(v
, OP_IfNot
, regBase
+nExpr
);
769 addrFirst
= sqlite3VdbeAddOp1(v
, OP_SequenceTest
, pSort
->iECursor
);
772 sqlite3VdbeAddOp3(v
, OP_Compare
, regPrevKey
, regBase
, pSort
->nOBSat
);
773 pOp
= sqlite3VdbeGetOp(v
, pSort
->addrSortIndex
);
774 if( pParse
->db
->mallocFailed
) return;
775 pOp
->p2
= nKey
+ nData
;
776 pKI
= pOp
->p4
.pKeyInfo
;
777 memset(pKI
->aSortFlags
, 0, pKI
->nKeyField
); /* Makes OP_Jump testable */
778 sqlite3VdbeChangeP4(v
, -1, (char*)pKI
, P4_KEYINFO
);
779 testcase( pKI
->nAllField
> pKI
->nKeyField
+2 );
780 pOp
->p4
.pKeyInfo
= sqlite3KeyInfoFromExprList(pParse
,pSort
->pOrderBy
,nOBSat
,
781 pKI
->nAllField
-pKI
->nKeyField
-1);
782 pOp
= 0; /* Ensure pOp not used after sqlite3VdbeAddOp3() */
783 addrJmp
= sqlite3VdbeCurrentAddr(v
);
784 sqlite3VdbeAddOp3(v
, OP_Jump
, addrJmp
+1, 0, addrJmp
+1); VdbeCoverage(v
);
785 pSort
->labelBkOut
= sqlite3VdbeMakeLabel(pParse
);
786 pSort
->regReturn
= ++pParse
->nMem
;
787 sqlite3VdbeAddOp2(v
, OP_Gosub
, pSort
->regReturn
, pSort
->labelBkOut
);
788 sqlite3VdbeAddOp1(v
, OP_ResetSorter
, pSort
->iECursor
);
790 sqlite3VdbeAddOp2(v
, OP_IfNot
, iLimit
, pSort
->labelDone
);
793 sqlite3VdbeJumpHere(v
, addrFirst
);
794 sqlite3ExprCodeMove(pParse
, regBase
, regPrevKey
, pSort
->nOBSat
);
795 sqlite3VdbeJumpHere(v
, addrJmp
);
798 /* At this point the values for the new sorter entry are stored
799 ** in an array of registers. They need to be composed into a record
800 ** and inserted into the sorter if either (a) there are currently
801 ** less than LIMIT+OFFSET items or (b) the new record is smaller than
802 ** the largest record currently in the sorter. If (b) is true and there
803 ** are already LIMIT+OFFSET items in the sorter, delete the largest
804 ** entry before inserting the new one. This way there are never more
805 ** than LIMIT+OFFSET items in the sorter.
807 ** If the new record does not need to be inserted into the sorter,
808 ** jump to the next iteration of the loop. If the pSort->labelOBLopt
809 ** value is not zero, then it is a label of where to jump. Otherwise,
810 ** just bypass the row insert logic. See the header comment on the
811 ** sqlite3WhereOrderByLimitOptLabel() function for additional info.
813 int iCsr
= pSort
->iECursor
;
814 sqlite3VdbeAddOp2(v
, OP_IfNotZero
, iLimit
, sqlite3VdbeCurrentAddr(v
)+4);
816 sqlite3VdbeAddOp2(v
, OP_Last
, iCsr
, 0);
817 iSkip
= sqlite3VdbeAddOp4Int(v
, OP_IdxLE
,
818 iCsr
, 0, regBase
+nOBSat
, nExpr
-nOBSat
);
820 sqlite3VdbeAddOp1(v
, OP_Delete
, iCsr
);
823 regRecord
= makeSorterRecord(pParse
, pSort
, pSelect
, regBase
, nBase
);
825 if( pSort
->sortFlags
& SORTFLAG_UseSorter
){
826 op
= OP_SorterInsert
;
830 sqlite3VdbeAddOp4Int(v
, op
, pSort
->iECursor
, regRecord
,
831 regBase
+nOBSat
, nBase
-nOBSat
);
833 sqlite3VdbeChangeP2(v
, iSkip
,
834 pSort
->labelOBLopt
? pSort
->labelOBLopt
: sqlite3VdbeCurrentAddr(v
));
836 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
837 pSort
->addrPushEnd
= sqlite3VdbeCurrentAddr(v
)-1;
842 ** Add code to implement the OFFSET
844 static void codeOffset(
845 Vdbe
*v
, /* Generate code into this VM */
846 int iOffset
, /* Register holding the offset counter */
847 int iContinue
/* Jump here to skip the current record */
850 sqlite3VdbeAddOp3(v
, OP_IfPos
, iOffset
, iContinue
, 1); VdbeCoverage(v
);
851 VdbeComment((v
, "OFFSET"));
856 ** Add code that will check to make sure the array of registers starting at
857 ** iMem form a distinct entry. This is used by both "SELECT DISTINCT ..." and
858 ** distinct aggregates ("SELECT count(DISTINCT <expr>) ..."). Three strategies
859 ** are available. Which is used depends on the value of parameter eTnctType,
862 ** WHERE_DISTINCT_UNORDERED/WHERE_DISTINCT_NOOP:
863 ** Build an ephemeral table that contains all entries seen before and
864 ** skip entries which have been seen before.
866 ** Parameter iTab is the cursor number of an ephemeral table that must
867 ** be opened before the VM code generated by this routine is executed.
868 ** The ephemeral cursor table is queried for a record identical to the
869 ** record formed by the current array of registers. If one is found,
870 ** jump to VM address addrRepeat. Otherwise, insert a new record into
871 ** the ephemeral cursor and proceed.
873 ** The returned value in this case is a copy of parameter iTab.
875 ** WHERE_DISTINCT_ORDERED:
876 ** In this case rows are being delivered sorted order. The ephemeral
877 ** table is not required. Instead, the current set of values
878 ** is compared against previous row. If they match, the new row
879 ** is not distinct and control jumps to VM address addrRepeat. Otherwise,
880 ** the VM program proceeds with processing the new row.
882 ** The returned value in this case is the register number of the first
883 ** in an array of registers used to store the previous result row so that
884 ** it can be compared to the next. The caller must ensure that this
885 ** register is initialized to NULL. (The fixDistinctOpenEph() routine
886 ** will take care of this initialization.)
888 ** WHERE_DISTINCT_UNIQUE:
889 ** In this case it has already been determined that the rows are distinct.
890 ** No special action is required. The return value is zero.
892 ** Parameter pEList is the list of expressions used to generated the
893 ** contents of each row. It is used by this routine to determine (a)
894 ** how many elements there are in the array of registers and (b) the
895 ** collation sequences that should be used for the comparisons if
896 ** eTnctType is WHERE_DISTINCT_ORDERED.
898 static int codeDistinct(
899 Parse
*pParse
, /* Parsing and code generating context */
900 int eTnctType
, /* WHERE_DISTINCT_* value */
901 int iTab
, /* A sorting index used to test for distinctness */
902 int addrRepeat
, /* Jump to here if not distinct */
903 ExprList
*pEList
, /* Expression for each element */
904 int regElem
/* First element */
907 int nResultCol
= pEList
->nExpr
;
908 Vdbe
*v
= pParse
->pVdbe
;
911 case WHERE_DISTINCT_ORDERED
: {
913 int iJump
; /* Jump destination */
914 int regPrev
; /* Previous row content */
916 /* Allocate space for the previous row */
917 iRet
= regPrev
= pParse
->nMem
+1;
918 pParse
->nMem
+= nResultCol
;
920 iJump
= sqlite3VdbeCurrentAddr(v
) + nResultCol
;
921 for(i
=0; i
<nResultCol
; i
++){
922 CollSeq
*pColl
= sqlite3ExprCollSeq(pParse
, pEList
->a
[i
].pExpr
);
923 if( i
<nResultCol
-1 ){
924 sqlite3VdbeAddOp3(v
, OP_Ne
, regElem
+i
, iJump
, regPrev
+i
);
927 sqlite3VdbeAddOp3(v
, OP_Eq
, regElem
+i
, addrRepeat
, regPrev
+i
);
930 sqlite3VdbeChangeP4(v
, -1, (const char *)pColl
, P4_COLLSEQ
);
931 sqlite3VdbeChangeP5(v
, SQLITE_NULLEQ
);
933 assert( sqlite3VdbeCurrentAddr(v
)==iJump
|| pParse
->db
->mallocFailed
);
934 sqlite3VdbeAddOp3(v
, OP_Copy
, regElem
, regPrev
, nResultCol
-1);
938 case WHERE_DISTINCT_UNIQUE
: {
944 int r1
= sqlite3GetTempReg(pParse
);
945 sqlite3VdbeAddOp4Int(v
, OP_Found
, iTab
, addrRepeat
, regElem
, nResultCol
);
947 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regElem
, nResultCol
, r1
);
948 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, iTab
, r1
, regElem
, nResultCol
);
949 sqlite3VdbeChangeP5(v
, OPFLAG_USESEEKRESULT
);
950 sqlite3ReleaseTempReg(pParse
, r1
);
960 ** This routine runs after codeDistinct(). It makes necessary
961 ** adjustments to the OP_OpenEphemeral opcode that the codeDistinct()
962 ** routine made use of. This processing must be done separately since
963 ** sometimes codeDistinct is called before the OP_OpenEphemeral is actually
966 ** WHERE_DISTINCT_NOOP:
967 ** WHERE_DISTINCT_UNORDERED:
969 ** No adjustments necessary. This function is a no-op.
971 ** WHERE_DISTINCT_UNIQUE:
973 ** The ephemeral table is not needed. So change the
974 ** OP_OpenEphemeral opcode into an OP_Noop.
976 ** WHERE_DISTINCT_ORDERED:
978 ** The ephemeral table is not needed. But we do need register
979 ** iVal to be initialized to NULL. So change the OP_OpenEphemeral
980 ** into an OP_Null on the iVal register.
982 static void fixDistinctOpenEph(
983 Parse
*pParse
, /* Parsing and code generating context */
984 int eTnctType
, /* WHERE_DISTINCT_* value */
985 int iVal
, /* Value returned by codeDistinct() */
986 int iOpenEphAddr
/* Address of OP_OpenEphemeral instruction for iTab */
989 && (eTnctType
==WHERE_DISTINCT_UNIQUE
|| eTnctType
==WHERE_DISTINCT_ORDERED
)
991 Vdbe
*v
= pParse
->pVdbe
;
992 sqlite3VdbeChangeToNoop(v
, iOpenEphAddr
);
993 if( sqlite3VdbeGetOp(v
, iOpenEphAddr
+1)->opcode
==OP_Explain
){
994 sqlite3VdbeChangeToNoop(v
, iOpenEphAddr
+1);
996 if( eTnctType
==WHERE_DISTINCT_ORDERED
){
997 /* Change the OP_OpenEphemeral to an OP_Null that sets the MEM_Cleared
998 ** bit on the first register of the previous value. This will cause the
999 ** OP_Ne added in codeDistinct() to always fail on the first iteration of
1000 ** the loop even if the first row is all NULLs. */
1001 VdbeOp
*pOp
= sqlite3VdbeGetOp(v
, iOpenEphAddr
);
1002 pOp
->opcode
= OP_Null
;
1009 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1011 ** This function is called as part of inner-loop generation for a SELECT
1012 ** statement with an ORDER BY that is not optimized by an index. It
1013 ** determines the expressions, if any, that the sorter-reference
1014 ** optimization should be used for. The sorter-reference optimization
1015 ** is used for SELECT queries like:
1017 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10
1019 ** If the optimization is used for expression "bigblob", then instead of
1020 ** storing values read from that column in the sorter records, the PK of
1021 ** the row from table t1 is stored instead. Then, as records are extracted from
1022 ** the sorter to return to the user, the required value of bigblob is
1023 ** retrieved directly from table t1. If the values are very large, this
1024 ** can be more efficient than storing them directly in the sorter records.
1026 ** The ExprList_item.fg.bSorterRef flag is set for each expression in pEList
1027 ** for which the sorter-reference optimization should be enabled.
1028 ** Additionally, the pSort->aDefer[] array is populated with entries
1029 ** for all cursors required to evaluate all selected expressions. Finally.
1030 ** output variable (*ppExtra) is set to an expression list containing
1031 ** expressions for all extra PK values that should be stored in the
1034 static void selectExprDefer(
1035 Parse
*pParse
, /* Leave any error here */
1036 SortCtx
*pSort
, /* Sorter context */
1037 ExprList
*pEList
, /* Expressions destined for sorter */
1038 ExprList
**ppExtra
/* Expressions to append to sorter record */
1042 ExprList
*pExtra
= 0;
1043 for(i
=0; i
<pEList
->nExpr
; i
++){
1044 struct ExprList_item
*pItem
= &pEList
->a
[i
];
1045 if( pItem
->u
.x
.iOrderByCol
==0 ){
1046 Expr
*pExpr
= pItem
->pExpr
;
1048 if( pExpr
->op
==TK_COLUMN
1049 && pExpr
->iColumn
>=0
1050 && ALWAYS( ExprUseYTab(pExpr
) )
1051 && (pTab
= pExpr
->y
.pTab
)!=0
1052 && IsOrdinaryTable(pTab
)
1053 && (pTab
->aCol
[pExpr
->iColumn
].colFlags
& COLFLAG_SORTERREF
)!=0
1056 for(j
=0; j
<nDefer
; j
++){
1057 if( pSort
->aDefer
[j
].iCsr
==pExpr
->iTable
) break;
1060 if( nDefer
==ArraySize(pSort
->aDefer
) ){
1066 if( !HasRowid(pTab
) ){
1067 pPk
= sqlite3PrimaryKeyIndex(pTab
);
1068 nKey
= pPk
->nKeyCol
;
1070 for(k
=0; k
<nKey
; k
++){
1071 Expr
*pNew
= sqlite3PExpr(pParse
, TK_COLUMN
, 0, 0);
1073 pNew
->iTable
= pExpr
->iTable
;
1074 assert( ExprUseYTab(pNew
) );
1075 pNew
->y
.pTab
= pExpr
->y
.pTab
;
1076 pNew
->iColumn
= pPk
? pPk
->aiColumn
[k
] : -1;
1077 pExtra
= sqlite3ExprListAppend(pParse
, pExtra
, pNew
);
1080 pSort
->aDefer
[nDefer
].pTab
= pExpr
->y
.pTab
;
1081 pSort
->aDefer
[nDefer
].iCsr
= pExpr
->iTable
;
1082 pSort
->aDefer
[nDefer
].nKey
= nKey
;
1086 pItem
->fg
.bSorterRef
= 1;
1090 pSort
->nDefer
= (u8
)nDefer
;
1096 ** This routine generates the code for the inside of the inner loop
1099 ** If srcTab is negative, then the p->pEList expressions
1100 ** are evaluated in order to get the data for this row. If srcTab is
1101 ** zero or more, then data is pulled from srcTab and p->pEList is used only
1102 ** to get the number of columns and the collation sequence for each column.
1104 static void selectInnerLoop(
1105 Parse
*pParse
, /* The parser context */
1106 Select
*p
, /* The complete select statement being coded */
1107 int srcTab
, /* Pull data from this table if non-negative */
1108 SortCtx
*pSort
, /* If not NULL, info on how to process ORDER BY */
1109 DistinctCtx
*pDistinct
, /* If not NULL, info on how to process DISTINCT */
1110 SelectDest
*pDest
, /* How to dispose of the results */
1111 int iContinue
, /* Jump here to continue with next row */
1112 int iBreak
/* Jump here to break out of the inner loop */
1114 Vdbe
*v
= pParse
->pVdbe
;
1116 int hasDistinct
; /* True if the DISTINCT keyword is present */
1117 int eDest
= pDest
->eDest
; /* How to dispose of results */
1118 int iParm
= pDest
->iSDParm
; /* First argument to disposal method */
1119 int nResultCol
; /* Number of result columns */
1120 int nPrefixReg
= 0; /* Number of extra registers before regResult */
1121 RowLoadInfo sRowLoadInfo
; /* Info for deferred row loading */
1123 /* Usually, regResult is the first cell in an array of memory cells
1124 ** containing the current result row. In this case regOrig is set to the
1125 ** same value. However, if the results are being sent to the sorter, the
1126 ** values for any expressions that are also part of the sort-key are omitted
1127 ** from this array. In this case regOrig is set to zero. */
1128 int regResult
; /* Start of memory holding current results */
1129 int regOrig
; /* Start of memory holding full result (or 0) */
1132 assert( p
->pEList
!=0 );
1133 hasDistinct
= pDistinct
? pDistinct
->eTnctType
: WHERE_DISTINCT_NOOP
;
1134 if( pSort
&& pSort
->pOrderBy
==0 ) pSort
= 0;
1135 if( pSort
==0 && !hasDistinct
){
1136 assert( iContinue
!=0 );
1137 codeOffset(v
, p
->iOffset
, iContinue
);
1140 /* Pull the requested columns.
1142 nResultCol
= p
->pEList
->nExpr
;
1144 if( pDest
->iSdst
==0 ){
1146 nPrefixReg
= pSort
->pOrderBy
->nExpr
;
1147 if( !(pSort
->sortFlags
& SORTFLAG_UseSorter
) ) nPrefixReg
++;
1148 pParse
->nMem
+= nPrefixReg
;
1150 pDest
->iSdst
= pParse
->nMem
+1;
1151 pParse
->nMem
+= nResultCol
;
1152 }else if( pDest
->iSdst
+nResultCol
> pParse
->nMem
){
1153 /* This is an error condition that can result, for example, when a SELECT
1154 ** on the right-hand side of an INSERT contains more result columns than
1155 ** there are columns in the table on the left. The error will be caught
1156 ** and reported later. But we need to make sure enough memory is allocated
1157 ** to avoid other spurious errors in the meantime. */
1158 pParse
->nMem
+= nResultCol
;
1160 pDest
->nSdst
= nResultCol
;
1161 regOrig
= regResult
= pDest
->iSdst
;
1163 for(i
=0; i
<nResultCol
; i
++){
1164 sqlite3VdbeAddOp3(v
, OP_Column
, srcTab
, i
, regResult
+i
);
1165 VdbeComment((v
, "%s", p
->pEList
->a
[i
].zEName
));
1167 }else if( eDest
!=SRT_Exists
){
1168 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1169 ExprList
*pExtra
= 0;
1171 /* If the destination is an EXISTS(...) expression, the actual
1172 ** values returned by the SELECT are not required.
1174 u8 ecelFlags
; /* "ecel" is an abbreviation of "ExprCodeExprList" */
1176 if( eDest
==SRT_Mem
|| eDest
==SRT_Output
|| eDest
==SRT_Coroutine
){
1177 ecelFlags
= SQLITE_ECEL_DUP
;
1181 if( pSort
&& hasDistinct
==0 && eDest
!=SRT_EphemTab
&& eDest
!=SRT_Table
){
1182 /* For each expression in p->pEList that is a copy of an expression in
1183 ** the ORDER BY clause (pSort->pOrderBy), set the associated
1184 ** iOrderByCol value to one more than the index of the ORDER BY
1185 ** expression within the sort-key that pushOntoSorter() will generate.
1186 ** This allows the p->pEList field to be omitted from the sorted record,
1187 ** saving space and CPU cycles. */
1188 ecelFlags
|= (SQLITE_ECEL_OMITREF
|SQLITE_ECEL_REF
);
1190 for(i
=pSort
->nOBSat
; i
<pSort
->pOrderBy
->nExpr
; i
++){
1192 if( (j
= pSort
->pOrderBy
->a
[i
].u
.x
.iOrderByCol
)>0 ){
1193 p
->pEList
->a
[j
-1].u
.x
.iOrderByCol
= i
+1-pSort
->nOBSat
;
1196 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1197 selectExprDefer(pParse
, pSort
, p
->pEList
, &pExtra
);
1198 if( pExtra
&& pParse
->db
->mallocFailed
==0 ){
1199 /* If there are any extra PK columns to add to the sorter records,
1200 ** allocate extra memory cells and adjust the OpenEphemeral
1201 ** instruction to account for the larger records. This is only
1202 ** required if there are one or more WITHOUT ROWID tables with
1203 ** composite primary keys in the SortCtx.aDefer[] array. */
1204 VdbeOp
*pOp
= sqlite3VdbeGetOp(v
, pSort
->addrSortIndex
);
1205 pOp
->p2
+= (pExtra
->nExpr
- pSort
->nDefer
);
1206 pOp
->p4
.pKeyInfo
->nAllField
+= (pExtra
->nExpr
- pSort
->nDefer
);
1207 pParse
->nMem
+= pExtra
->nExpr
;
1211 /* Adjust nResultCol to account for columns that are omitted
1212 ** from the sorter by the optimizations in this branch */
1214 for(i
=0; i
<pEList
->nExpr
; i
++){
1215 if( pEList
->a
[i
].u
.x
.iOrderByCol
>0
1216 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1217 || pEList
->a
[i
].fg
.bSorterRef
1225 testcase( regOrig
);
1226 testcase( eDest
==SRT_Set
);
1227 testcase( eDest
==SRT_Mem
);
1228 testcase( eDest
==SRT_Coroutine
);
1229 testcase( eDest
==SRT_Output
);
1230 assert( eDest
==SRT_Set
|| eDest
==SRT_Mem
1231 || eDest
==SRT_Coroutine
|| eDest
==SRT_Output
1232 || eDest
==SRT_Upfrom
);
1234 sRowLoadInfo
.regResult
= regResult
;
1235 sRowLoadInfo
.ecelFlags
= ecelFlags
;
1236 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1237 sRowLoadInfo
.pExtra
= pExtra
;
1238 sRowLoadInfo
.regExtraResult
= regResult
+ nResultCol
;
1239 if( pExtra
) nResultCol
+= pExtra
->nExpr
;
1242 && (ecelFlags
& SQLITE_ECEL_OMITREF
)!=0
1246 assert( hasDistinct
==0 );
1247 pSort
->pDeferredRowLoad
= &sRowLoadInfo
;
1250 innerLoopLoadRow(pParse
, p
, &sRowLoadInfo
);
1254 /* If the DISTINCT keyword was present on the SELECT statement
1255 ** and this row has been seen before, then do not make this row
1256 ** part of the result.
1259 int eType
= pDistinct
->eTnctType
;
1260 int iTab
= pDistinct
->tabTnct
;
1261 assert( nResultCol
==p
->pEList
->nExpr
);
1262 iTab
= codeDistinct(pParse
, eType
, iTab
, iContinue
, p
->pEList
, regResult
);
1263 fixDistinctOpenEph(pParse
, eType
, iTab
, pDistinct
->addrTnct
);
1265 codeOffset(v
, p
->iOffset
, iContinue
);
1270 /* In this mode, write each query result to the key of the temporary
1273 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1276 r1
= sqlite3GetTempReg(pParse
);
1277 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regResult
, nResultCol
, r1
);
1278 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, iParm
, r1
, regResult
, nResultCol
);
1279 sqlite3ReleaseTempReg(pParse
, r1
);
1283 /* Construct a record from the query result, but instead of
1284 ** saving that record, use it as a key to delete elements from
1285 ** the temporary table iParm.
1288 sqlite3VdbeAddOp3(v
, OP_IdxDelete
, iParm
, regResult
, nResultCol
);
1291 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1293 /* Store the result as data using a unique key.
1298 case SRT_EphemTab
: {
1299 int r1
= sqlite3GetTempRange(pParse
, nPrefixReg
+1);
1300 testcase( eDest
==SRT_Table
);
1301 testcase( eDest
==SRT_EphemTab
);
1302 testcase( eDest
==SRT_Fifo
);
1303 testcase( eDest
==SRT_DistFifo
);
1304 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regResult
, nResultCol
, r1
+nPrefixReg
);
1305 #if !defined(SQLITE_ENABLE_NULL_TRIM) && defined(SQLITE_DEBUG)
1306 /* A destination of SRT_Table and a non-zero iSDParm2 parameter means
1307 ** that this is an "UPDATE ... FROM" on a virtual table or view. In this
1308 ** case set the p5 parameter of the OP_MakeRecord to OPFLAG_NOCHNG_MAGIC.
1309 ** This does not affect operation in any way - it just allows MakeRecord
1310 ** to process OPFLAG_NOCHANGE values without an assert() failing. */
1311 if( eDest
==SRT_Table
&& pDest
->iSDParm2
){
1312 sqlite3VdbeChangeP5(v
, OPFLAG_NOCHNG_MAGIC
);
1315 #ifndef SQLITE_OMIT_CTE
1316 if( eDest
==SRT_DistFifo
){
1317 /* If the destination is DistFifo, then cursor (iParm+1) is open
1318 ** on an ephemeral index. If the current row is already present
1319 ** in the index, do not write it to the output. If not, add the
1320 ** current row to the index and proceed with writing it to the
1321 ** output table as well. */
1322 int addr
= sqlite3VdbeCurrentAddr(v
) + 4;
1323 sqlite3VdbeAddOp4Int(v
, OP_Found
, iParm
+1, addr
, r1
, 0);
1325 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, iParm
+1, r1
,regResult
,nResultCol
);
1330 assert( regResult
==regOrig
);
1331 pushOntoSorter(pParse
, pSort
, p
, r1
+nPrefixReg
, regOrig
, 1, nPrefixReg
);
1333 int r2
= sqlite3GetTempReg(pParse
);
1334 sqlite3VdbeAddOp2(v
, OP_NewRowid
, iParm
, r2
);
1335 sqlite3VdbeAddOp3(v
, OP_Insert
, iParm
, r1
, r2
);
1336 sqlite3VdbeChangeP5(v
, OPFLAG_APPEND
);
1337 sqlite3ReleaseTempReg(pParse
, r2
);
1339 sqlite3ReleaseTempRange(pParse
, r1
, nPrefixReg
+1);
1346 pParse
, pSort
, p
, regResult
, regOrig
, nResultCol
, nPrefixReg
);
1348 int i2
= pDest
->iSDParm2
;
1349 int r1
= sqlite3GetTempReg(pParse
);
1351 /* If the UPDATE FROM join is an aggregate that matches no rows, it
1352 ** might still be trying to return one row, because that is what
1353 ** aggregates do. Don't record that empty row in the output table. */
1354 sqlite3VdbeAddOp2(v
, OP_IsNull
, regResult
, iBreak
); VdbeCoverage(v
);
1356 sqlite3VdbeAddOp3(v
, OP_MakeRecord
,
1357 regResult
+(i2
<0), nResultCol
-(i2
<0), r1
);
1359 sqlite3VdbeAddOp3(v
, OP_Insert
, iParm
, r1
, regResult
);
1361 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, iParm
, r1
, regResult
, i2
);
1367 #ifndef SQLITE_OMIT_SUBQUERY
1368 /* If we are creating a set for an "expr IN (SELECT ...)" construct,
1369 ** then there should be a single item on the stack. Write this
1370 ** item into the set table with bogus data.
1374 /* At first glance you would think we could optimize out the
1375 ** ORDER BY in this case since the order of entries in the set
1376 ** does not matter. But there might be a LIMIT clause, in which
1377 ** case the order does matter */
1379 pParse
, pSort
, p
, regResult
, regOrig
, nResultCol
, nPrefixReg
);
1381 int r1
= sqlite3GetTempReg(pParse
);
1382 assert( sqlite3Strlen30(pDest
->zAffSdst
)==nResultCol
);
1383 sqlite3VdbeAddOp4(v
, OP_MakeRecord
, regResult
, nResultCol
,
1384 r1
, pDest
->zAffSdst
, nResultCol
);
1385 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, iParm
, r1
, regResult
, nResultCol
);
1386 sqlite3ReleaseTempReg(pParse
, r1
);
1392 /* If any row exist in the result set, record that fact and abort.
1395 sqlite3VdbeAddOp2(v
, OP_Integer
, 1, iParm
);
1396 /* The LIMIT clause will terminate the loop for us */
1400 /* If this is a scalar select that is part of an expression, then
1401 ** store the results in the appropriate memory cell or array of
1402 ** memory cells and break out of the scan loop.
1406 assert( nResultCol
<=pDest
->nSdst
);
1408 pParse
, pSort
, p
, regResult
, regOrig
, nResultCol
, nPrefixReg
);
1410 assert( nResultCol
==pDest
->nSdst
);
1411 assert( regResult
==iParm
);
1412 /* The LIMIT clause will jump out of the loop for us */
1416 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
1418 case SRT_Coroutine
: /* Send data to a co-routine */
1419 case SRT_Output
: { /* Return the results */
1420 testcase( eDest
==SRT_Coroutine
);
1421 testcase( eDest
==SRT_Output
);
1423 pushOntoSorter(pParse
, pSort
, p
, regResult
, regOrig
, nResultCol
,
1425 }else if( eDest
==SRT_Coroutine
){
1426 sqlite3VdbeAddOp1(v
, OP_Yield
, pDest
->iSDParm
);
1428 sqlite3VdbeAddOp2(v
, OP_ResultRow
, regResult
, nResultCol
);
1433 #ifndef SQLITE_OMIT_CTE
1434 /* Write the results into a priority queue that is order according to
1435 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an
1436 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first
1437 ** pSO->nExpr columns, then make sure all keys are unique by adding a
1438 ** final OP_Sequence column. The last column is the record as a blob.
1446 pSO
= pDest
->pOrderBy
;
1449 r1
= sqlite3GetTempReg(pParse
);
1450 r2
= sqlite3GetTempRange(pParse
, nKey
+2);
1452 if( eDest
==SRT_DistQueue
){
1453 /* If the destination is DistQueue, then cursor (iParm+1) is open
1454 ** on a second ephemeral index that holds all values every previously
1455 ** added to the queue. */
1456 addrTest
= sqlite3VdbeAddOp4Int(v
, OP_Found
, iParm
+1, 0,
1457 regResult
, nResultCol
);
1460 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regResult
, nResultCol
, r3
);
1461 if( eDest
==SRT_DistQueue
){
1462 sqlite3VdbeAddOp2(v
, OP_IdxInsert
, iParm
+1, r3
);
1463 sqlite3VdbeChangeP5(v
, OPFLAG_USESEEKRESULT
);
1465 for(i
=0; i
<nKey
; i
++){
1466 sqlite3VdbeAddOp2(v
, OP_SCopy
,
1467 regResult
+ pSO
->a
[i
].u
.x
.iOrderByCol
- 1,
1470 sqlite3VdbeAddOp2(v
, OP_Sequence
, iParm
, r2
+nKey
);
1471 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, r2
, nKey
+2, r1
);
1472 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, iParm
, r1
, r2
, nKey
+2);
1473 if( addrTest
) sqlite3VdbeJumpHere(v
, addrTest
);
1474 sqlite3ReleaseTempReg(pParse
, r1
);
1475 sqlite3ReleaseTempRange(pParse
, r2
, nKey
+2);
1478 #endif /* SQLITE_OMIT_CTE */
1482 #if !defined(SQLITE_OMIT_TRIGGER)
1483 /* Discard the results. This is used for SELECT statements inside
1484 ** the body of a TRIGGER. The purpose of such selects is to call
1485 ** user-defined functions that have side effects. We do not care
1486 ** about the actual results of the select.
1489 assert( eDest
==SRT_Discard
);
1495 /* Jump to the end of the loop if the LIMIT is reached. Except, if
1496 ** there is a sorter, in which case the sorter has already limited
1497 ** the output for us.
1499 if( pSort
==0 && p
->iLimit
){
1500 sqlite3VdbeAddOp2(v
, OP_DecrJumpZero
, p
->iLimit
, iBreak
); VdbeCoverage(v
);
1505 ** Allocate a KeyInfo object sufficient for an index of N key columns and
1508 KeyInfo
*sqlite3KeyInfoAlloc(sqlite3
*db
, int N
, int X
){
1509 int nExtra
= (N
+X
)*(sizeof(CollSeq
*)+1) - sizeof(CollSeq
*);
1510 KeyInfo
*p
= sqlite3DbMallocRawNN(db
, sizeof(KeyInfo
) + nExtra
);
1512 p
->aSortFlags
= (u8
*)&p
->aColl
[N
+X
];
1513 p
->nKeyField
= (u16
)N
;
1514 p
->nAllField
= (u16
)(N
+X
);
1518 memset(&p
[1], 0, nExtra
);
1520 return (KeyInfo
*)sqlite3OomFault(db
);
1526 ** Deallocate a KeyInfo object
1528 void sqlite3KeyInfoUnref(KeyInfo
*p
){
1531 assert( p
->nRef
>0 );
1533 if( p
->nRef
==0 ) sqlite3DbNNFreeNN(p
->db
, p
);
1538 ** Make a new pointer to a KeyInfo object
1540 KeyInfo
*sqlite3KeyInfoRef(KeyInfo
*p
){
1542 assert( p
->nRef
>0 );
1550 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object
1551 ** can only be changed if this is just a single reference to the object.
1553 ** This routine is used only inside of assert() statements.
1555 int sqlite3KeyInfoIsWriteable(KeyInfo
*p
){ return p
->nRef
==1; }
1556 #endif /* SQLITE_DEBUG */
1559 ** Given an expression list, generate a KeyInfo structure that records
1560 ** the collating sequence for each expression in that expression list.
1562 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1563 ** KeyInfo structure is appropriate for initializing a virtual index to
1564 ** implement that clause. If the ExprList is the result set of a SELECT
1565 ** then the KeyInfo structure is appropriate for initializing a virtual
1566 ** index to implement a DISTINCT test.
1568 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
1569 ** function is responsible for seeing that this structure is eventually
1572 KeyInfo
*sqlite3KeyInfoFromExprList(
1573 Parse
*pParse
, /* Parsing context */
1574 ExprList
*pList
, /* Form the KeyInfo object from this ExprList */
1575 int iStart
, /* Begin with this column of pList */
1576 int nExtra
/* Add this many extra columns to the end */
1580 struct ExprList_item
*pItem
;
1581 sqlite3
*db
= pParse
->db
;
1584 nExpr
= pList
->nExpr
;
1585 pInfo
= sqlite3KeyInfoAlloc(db
, nExpr
-iStart
, nExtra
+1);
1587 assert( sqlite3KeyInfoIsWriteable(pInfo
) );
1588 for(i
=iStart
, pItem
=pList
->a
+iStart
; i
<nExpr
; i
++, pItem
++){
1589 pInfo
->aColl
[i
-iStart
] = sqlite3ExprNNCollSeq(pParse
, pItem
->pExpr
);
1590 pInfo
->aSortFlags
[i
-iStart
] = pItem
->fg
.sortFlags
;
1597 ** Name of the connection operator, used for error messages.
1599 const char *sqlite3SelectOpName(int id
){
1602 case TK_ALL
: z
= "UNION ALL"; break;
1603 case TK_INTERSECT
: z
= "INTERSECT"; break;
1604 case TK_EXCEPT
: z
= "EXCEPT"; break;
1605 default: z
= "UNION"; break;
1610 #ifndef SQLITE_OMIT_EXPLAIN
1612 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1613 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1614 ** where the caption is of the form:
1616 ** "USE TEMP B-TREE FOR xxx"
1618 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1619 ** is determined by the zUsage argument.
1621 static void explainTempTable(Parse
*pParse
, const char *zUsage
){
1622 ExplainQueryPlan((pParse
, 0, "USE TEMP B-TREE FOR %s", zUsage
));
1626 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1627 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1628 ** in sqlite3Select() to assign values to structure member variables that
1629 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1630 ** code with #ifndef directives.
1632 # define explainSetInteger(a, b) a = b
1635 /* No-op versions of the explainXXX() functions and macros. */
1636 # define explainTempTable(y,z)
1637 # define explainSetInteger(y,z)
1642 ** If the inner loop was generated using a non-null pOrderBy argument,
1643 ** then the results were placed in a sorter. After the loop is terminated
1644 ** we need to run the sorter and output the results. The following
1645 ** routine generates the code needed to do that.
1647 static void generateSortTail(
1648 Parse
*pParse
, /* Parsing context */
1649 Select
*p
, /* The SELECT statement */
1650 SortCtx
*pSort
, /* Information on the ORDER BY clause */
1651 int nColumn
, /* Number of columns of data */
1652 SelectDest
*pDest
/* Write the sorted results here */
1654 Vdbe
*v
= pParse
->pVdbe
; /* The prepared statement */
1655 int addrBreak
= pSort
->labelDone
; /* Jump here to exit loop */
1656 int addrContinue
= sqlite3VdbeMakeLabel(pParse
);/* Jump here for next cycle */
1657 int addr
; /* Top of output loop. Jump for Next. */
1660 ExprList
*pOrderBy
= pSort
->pOrderBy
;
1661 int eDest
= pDest
->eDest
;
1662 int iParm
= pDest
->iSDParm
;
1666 int nKey
; /* Number of key columns in sorter record */
1667 int iSortTab
; /* Sorter cursor to read from */
1669 int bSeq
; /* True if sorter record includes seq. no. */
1671 struct ExprList_item
*aOutEx
= p
->pEList
->a
;
1672 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
1673 int addrExplain
; /* Address of OP_Explain instruction */
1676 ExplainQueryPlan2(addrExplain
, (pParse
, 0,
1677 "USE TEMP B-TREE FOR %sORDER BY", pSort
->nOBSat
>0?"RIGHT PART OF ":"")
1679 sqlite3VdbeScanStatusRange(v
, addrExplain
,pSort
->addrPush
,pSort
->addrPushEnd
);
1680 sqlite3VdbeScanStatusCounters(v
, addrExplain
, addrExplain
, pSort
->addrPush
);
1683 assert( addrBreak
<0 );
1684 if( pSort
->labelBkOut
){
1685 sqlite3VdbeAddOp2(v
, OP_Gosub
, pSort
->regReturn
, pSort
->labelBkOut
);
1686 sqlite3VdbeGoto(v
, addrBreak
);
1687 sqlite3VdbeResolveLabel(v
, pSort
->labelBkOut
);
1690 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1691 /* Open any cursors needed for sorter-reference expressions */
1692 for(i
=0; i
<pSort
->nDefer
; i
++){
1693 Table
*pTab
= pSort
->aDefer
[i
].pTab
;
1694 int iDb
= sqlite3SchemaToIndex(pParse
->db
, pTab
->pSchema
);
1695 sqlite3OpenTable(pParse
, pSort
->aDefer
[i
].iCsr
, iDb
, pTab
, OP_OpenRead
);
1696 nRefKey
= MAX(nRefKey
, pSort
->aDefer
[i
].nKey
);
1700 iTab
= pSort
->iECursor
;
1701 if( eDest
==SRT_Output
|| eDest
==SRT_Coroutine
|| eDest
==SRT_Mem
){
1702 if( eDest
==SRT_Mem
&& p
->iOffset
){
1703 sqlite3VdbeAddOp2(v
, OP_Null
, 0, pDest
->iSdst
);
1706 regRow
= pDest
->iSdst
;
1708 regRowid
= sqlite3GetTempReg(pParse
);
1709 if( eDest
==SRT_EphemTab
|| eDest
==SRT_Table
){
1710 regRow
= sqlite3GetTempReg(pParse
);
1713 regRow
= sqlite3GetTempRange(pParse
, nColumn
);
1716 nKey
= pOrderBy
->nExpr
- pSort
->nOBSat
;
1717 if( pSort
->sortFlags
& SORTFLAG_UseSorter
){
1718 int regSortOut
= ++pParse
->nMem
;
1719 iSortTab
= pParse
->nTab
++;
1720 if( pSort
->labelBkOut
){
1721 addrOnce
= sqlite3VdbeAddOp0(v
, OP_Once
); VdbeCoverage(v
);
1723 sqlite3VdbeAddOp3(v
, OP_OpenPseudo
, iSortTab
, regSortOut
,
1724 nKey
+1+nColumn
+nRefKey
);
1725 if( addrOnce
) sqlite3VdbeJumpHere(v
, addrOnce
);
1726 addr
= 1 + sqlite3VdbeAddOp2(v
, OP_SorterSort
, iTab
, addrBreak
);
1728 assert( p
->iLimit
==0 && p
->iOffset
==0 );
1729 sqlite3VdbeAddOp3(v
, OP_SorterData
, iTab
, regSortOut
, iSortTab
);
1732 addr
= 1 + sqlite3VdbeAddOp2(v
, OP_Sort
, iTab
, addrBreak
); VdbeCoverage(v
);
1733 codeOffset(v
, p
->iOffset
, addrContinue
);
1737 sqlite3VdbeAddOp2(v
, OP_AddImm
, p
->iLimit
, -1);
1740 for(i
=0, iCol
=nKey
+bSeq
-1; i
<nColumn
; i
++){
1741 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1742 if( aOutEx
[i
].fg
.bSorterRef
) continue;
1744 if( aOutEx
[i
].u
.x
.iOrderByCol
==0 ) iCol
++;
1746 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1747 if( pSort
->nDefer
){
1749 int regKey
= sqlite3GetTempRange(pParse
, nRefKey
);
1751 for(i
=0; i
<pSort
->nDefer
; i
++){
1752 int iCsr
= pSort
->aDefer
[i
].iCsr
;
1753 Table
*pTab
= pSort
->aDefer
[i
].pTab
;
1754 int nKey
= pSort
->aDefer
[i
].nKey
;
1756 sqlite3VdbeAddOp1(v
, OP_NullRow
, iCsr
);
1757 if( HasRowid(pTab
) ){
1758 sqlite3VdbeAddOp3(v
, OP_Column
, iSortTab
, iKey
++, regKey
);
1759 sqlite3VdbeAddOp3(v
, OP_SeekRowid
, iCsr
,
1760 sqlite3VdbeCurrentAddr(v
)+1, regKey
);
1764 assert( sqlite3PrimaryKeyIndex(pTab
)->nKeyCol
==nKey
);
1765 for(k
=0; k
<nKey
; k
++){
1766 sqlite3VdbeAddOp3(v
, OP_Column
, iSortTab
, iKey
++, regKey
+k
);
1768 iJmp
= sqlite3VdbeCurrentAddr(v
);
1769 sqlite3VdbeAddOp4Int(v
, OP_SeekGE
, iCsr
, iJmp
+2, regKey
, nKey
);
1770 sqlite3VdbeAddOp4Int(v
, OP_IdxLE
, iCsr
, iJmp
+3, regKey
, nKey
);
1771 sqlite3VdbeAddOp1(v
, OP_NullRow
, iCsr
);
1774 sqlite3ReleaseTempRange(pParse
, regKey
, nRefKey
);
1777 for(i
=nColumn
-1; i
>=0; i
--){
1778 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1779 if( aOutEx
[i
].fg
.bSorterRef
){
1780 sqlite3ExprCode(pParse
, aOutEx
[i
].pExpr
, regRow
+i
);
1785 if( aOutEx
[i
].u
.x
.iOrderByCol
){
1786 iRead
= aOutEx
[i
].u
.x
.iOrderByCol
-1;
1790 sqlite3VdbeAddOp3(v
, OP_Column
, iSortTab
, iRead
, regRow
+i
);
1791 VdbeComment((v
, "%s", aOutEx
[i
].zEName
));
1794 sqlite3VdbeScanStatusRange(v
, addrExplain
, addrExplain
, -1);
1797 case SRT_EphemTab
: {
1798 sqlite3VdbeAddOp3(v
, OP_Column
, iSortTab
, nKey
+bSeq
, regRow
);
1799 sqlite3VdbeAddOp2(v
, OP_NewRowid
, iParm
, regRowid
);
1800 sqlite3VdbeAddOp3(v
, OP_Insert
, iParm
, regRow
, regRowid
);
1801 sqlite3VdbeChangeP5(v
, OPFLAG_APPEND
);
1804 #ifndef SQLITE_OMIT_SUBQUERY
1806 assert( nColumn
==sqlite3Strlen30(pDest
->zAffSdst
) );
1807 sqlite3VdbeAddOp4(v
, OP_MakeRecord
, regRow
, nColumn
, regRowid
,
1808 pDest
->zAffSdst
, nColumn
);
1809 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, iParm
, regRowid
, regRow
, nColumn
);
1813 /* The LIMIT clause will terminate the loop for us */
1818 int i2
= pDest
->iSDParm2
;
1819 int r1
= sqlite3GetTempReg(pParse
);
1820 sqlite3VdbeAddOp3(v
, OP_MakeRecord
,regRow
+(i2
<0),nColumn
-(i2
<0),r1
);
1822 sqlite3VdbeAddOp3(v
, OP_Insert
, iParm
, r1
, regRow
);
1824 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, iParm
, r1
, regRow
, i2
);
1829 assert( eDest
==SRT_Output
|| eDest
==SRT_Coroutine
);
1830 testcase( eDest
==SRT_Output
);
1831 testcase( eDest
==SRT_Coroutine
);
1832 if( eDest
==SRT_Output
){
1833 sqlite3VdbeAddOp2(v
, OP_ResultRow
, pDest
->iSdst
, nColumn
);
1835 sqlite3VdbeAddOp1(v
, OP_Yield
, pDest
->iSDParm
);
1841 if( eDest
==SRT_Set
){
1842 sqlite3ReleaseTempRange(pParse
, regRow
, nColumn
);
1844 sqlite3ReleaseTempReg(pParse
, regRow
);
1846 sqlite3ReleaseTempReg(pParse
, regRowid
);
1848 /* The bottom of the loop
1850 sqlite3VdbeResolveLabel(v
, addrContinue
);
1851 if( pSort
->sortFlags
& SORTFLAG_UseSorter
){
1852 sqlite3VdbeAddOp2(v
, OP_SorterNext
, iTab
, addr
); VdbeCoverage(v
);
1854 sqlite3VdbeAddOp2(v
, OP_Next
, iTab
, addr
); VdbeCoverage(v
);
1856 sqlite3VdbeScanStatusRange(v
, addrExplain
, sqlite3VdbeCurrentAddr(v
)-1, -1);
1857 if( pSort
->regReturn
) sqlite3VdbeAddOp1(v
, OP_Return
, pSort
->regReturn
);
1858 sqlite3VdbeResolveLabel(v
, addrBreak
);
1862 ** Return a pointer to a string containing the 'declaration type' of the
1863 ** expression pExpr. The string may be treated as static by the caller.
1865 ** The declaration type is the exact datatype definition extracted from the
1866 ** original CREATE TABLE statement if the expression is a column. The
1867 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1868 ** is considered a column can be complex in the presence of subqueries. The
1869 ** result-set expression in all of the following SELECT statements is
1870 ** considered a column by this function.
1872 ** SELECT col FROM tbl;
1873 ** SELECT (SELECT col FROM tbl;
1874 ** SELECT (SELECT col FROM tbl);
1875 ** SELECT abc FROM (SELECT col AS abc FROM tbl);
1877 ** The declaration type for any expression other than a column is NULL.
1879 ** This routine has either 3 or 6 parameters depending on whether or not
1880 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1882 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1883 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E)
1884 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1885 # define columnType(A,B,C,D,E) columnTypeImpl(A,B)
1887 static const char *columnTypeImpl(
1889 #ifndef SQLITE_ENABLE_COLUMN_METADATA
1893 const char **pzOrigDb
,
1894 const char **pzOrigTab
,
1895 const char **pzOrigCol
1898 char const *zType
= 0;
1900 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1901 char const *zOrigDb
= 0;
1902 char const *zOrigTab
= 0;
1903 char const *zOrigCol
= 0;
1907 assert( pNC
->pSrcList
!=0 );
1908 switch( pExpr
->op
){
1910 /* The expression is a column. Locate the table the column is being
1911 ** extracted from in NameContext.pSrcList. This table may be real
1912 ** database table or a subquery.
1914 Table
*pTab
= 0; /* Table structure column is extracted from */
1915 Select
*pS
= 0; /* Select the column is extracted from */
1916 int iCol
= pExpr
->iColumn
; /* Index of column in pTab */
1917 while( pNC
&& !pTab
){
1918 SrcList
*pTabList
= pNC
->pSrcList
;
1919 for(j
=0;j
<pTabList
->nSrc
&& pTabList
->a
[j
].iCursor
!=pExpr
->iTable
;j
++);
1920 if( j
<pTabList
->nSrc
){
1921 pTab
= pTabList
->a
[j
].pTab
;
1922 pS
= pTabList
->a
[j
].pSelect
;
1929 /* At one time, code such as "SELECT new.x" within a trigger would
1930 ** cause this condition to run. Since then, we have restructured how
1931 ** trigger code is generated and so this condition is no longer
1932 ** possible. However, it can still be true for statements like
1935 ** CREATE TABLE t1(col INTEGER);
1936 ** SELECT (SELECT t1.col) FROM FROM t1;
1938 ** when columnType() is called on the expression "t1.col" in the
1939 ** sub-select. In this case, set the column type to NULL, even
1940 ** though it should really be "INTEGER".
1942 ** This is not a problem, as the column type of "t1.col" is never
1943 ** used. When columnType() is called on the expression
1944 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1949 assert( pTab
&& ExprUseYTab(pExpr
) && pExpr
->y
.pTab
==pTab
);
1951 /* The "table" is actually a sub-select or a view in the FROM clause
1952 ** of the SELECT statement. Return the declaration type and origin
1953 ** data for the result-set column of the sub-select.
1955 if( iCol
<pS
->pEList
->nExpr
1956 && (!ViewCanHaveRowid
|| iCol
>=0)
1958 /* If iCol is less than zero, then the expression requests the
1959 ** rowid of the sub-select or view. This expression is legal (see
1960 ** test case misc2.2.2) - it always evaluates to NULL.
1963 Expr
*p
= pS
->pEList
->a
[iCol
].pExpr
;
1964 sNC
.pSrcList
= pS
->pSrc
;
1966 sNC
.pParse
= pNC
->pParse
;
1967 zType
= columnType(&sNC
, p
,&zOrigDb
,&zOrigTab
,&zOrigCol
);
1970 /* A real table or a CTE table */
1972 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1973 if( iCol
<0 ) iCol
= pTab
->iPKey
;
1974 assert( iCol
==XN_ROWID
|| (iCol
>=0 && iCol
<pTab
->nCol
) );
1979 zOrigCol
= pTab
->aCol
[iCol
].zCnName
;
1980 zType
= sqlite3ColumnType(&pTab
->aCol
[iCol
],0);
1982 zOrigTab
= pTab
->zName
;
1983 if( pNC
->pParse
&& pTab
->pSchema
){
1984 int iDb
= sqlite3SchemaToIndex(pNC
->pParse
->db
, pTab
->pSchema
);
1985 zOrigDb
= pNC
->pParse
->db
->aDb
[iDb
].zDbSName
;
1988 assert( iCol
==XN_ROWID
|| (iCol
>=0 && iCol
<pTab
->nCol
) );
1992 zType
= sqlite3ColumnType(&pTab
->aCol
[iCol
],0);
1998 #ifndef SQLITE_OMIT_SUBQUERY
2000 /* The expression is a sub-select. Return the declaration type and
2001 ** origin info for the single column in the result set of the SELECT
2007 assert( ExprUseXSelect(pExpr
) );
2008 pS
= pExpr
->x
.pSelect
;
2009 p
= pS
->pEList
->a
[0].pExpr
;
2010 sNC
.pSrcList
= pS
->pSrc
;
2012 sNC
.pParse
= pNC
->pParse
;
2013 zType
= columnType(&sNC
, p
, &zOrigDb
, &zOrigTab
, &zOrigCol
);
2019 #ifdef SQLITE_ENABLE_COLUMN_METADATA
2021 assert( pzOrigTab
&& pzOrigCol
);
2022 *pzOrigDb
= zOrigDb
;
2023 *pzOrigTab
= zOrigTab
;
2024 *pzOrigCol
= zOrigCol
;
2031 ** Generate code that will tell the VDBE the declaration types of columns
2032 ** in the result set.
2034 static void generateColumnTypes(
2035 Parse
*pParse
, /* Parser context */
2036 SrcList
*pTabList
, /* List of tables */
2037 ExprList
*pEList
/* Expressions defining the result set */
2039 #ifndef SQLITE_OMIT_DECLTYPE
2040 Vdbe
*v
= pParse
->pVdbe
;
2043 sNC
.pSrcList
= pTabList
;
2044 sNC
.pParse
= pParse
;
2046 for(i
=0; i
<pEList
->nExpr
; i
++){
2047 Expr
*p
= pEList
->a
[i
].pExpr
;
2049 #ifdef SQLITE_ENABLE_COLUMN_METADATA
2050 const char *zOrigDb
= 0;
2051 const char *zOrigTab
= 0;
2052 const char *zOrigCol
= 0;
2053 zType
= columnType(&sNC
, p
, &zOrigDb
, &zOrigTab
, &zOrigCol
);
2055 /* The vdbe must make its own copy of the column-type and other
2056 ** column specific strings, in case the schema is reset before this
2057 ** virtual machine is deleted.
2059 sqlite3VdbeSetColName(v
, i
, COLNAME_DATABASE
, zOrigDb
, SQLITE_TRANSIENT
);
2060 sqlite3VdbeSetColName(v
, i
, COLNAME_TABLE
, zOrigTab
, SQLITE_TRANSIENT
);
2061 sqlite3VdbeSetColName(v
, i
, COLNAME_COLUMN
, zOrigCol
, SQLITE_TRANSIENT
);
2063 zType
= columnType(&sNC
, p
, 0, 0, 0);
2065 sqlite3VdbeSetColName(v
, i
, COLNAME_DECLTYPE
, zType
, SQLITE_TRANSIENT
);
2067 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
2072 ** Compute the column names for a SELECT statement.
2074 ** The only guarantee that SQLite makes about column names is that if the
2075 ** column has an AS clause assigning it a name, that will be the name used.
2076 ** That is the only documented guarantee. However, countless applications
2077 ** developed over the years have made baseless assumptions about column names
2078 ** and will break if those assumptions changes. Hence, use extreme caution
2079 ** when modifying this routine to avoid breaking legacy.
2081 ** See Also: sqlite3ColumnsFromExprList()
2083 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are
2084 ** deprecated. The default setting is short=ON, full=OFF. 99.9% of all
2085 ** applications should operate this way. Nevertheless, we need to support the
2086 ** other modes for legacy:
2088 ** short=OFF, full=OFF: Column name is the text of the expression has it
2089 ** originally appears in the SELECT statement. In
2090 ** other words, the zSpan of the result expression.
2092 ** short=ON, full=OFF: (This is the default setting). If the result
2093 ** refers directly to a table column, then the
2094 ** result column name is just the table column
2095 ** name: COLUMN. Otherwise use zSpan.
2097 ** full=ON, short=ANY: If the result refers directly to a table column,
2098 ** then the result column name with the table name
2099 ** prefix, ex: TABLE.COLUMN. Otherwise use zSpan.
2101 void sqlite3GenerateColumnNames(
2102 Parse
*pParse
, /* Parser context */
2103 Select
*pSelect
/* Generate column names for this SELECT statement */
2105 Vdbe
*v
= pParse
->pVdbe
;
2110 sqlite3
*db
= pParse
->db
;
2111 int fullName
; /* TABLE.COLUMN if no AS clause and is a direct table ref */
2112 int srcName
; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */
2114 if( pParse
->colNamesSet
) return;
2115 /* Column names are determined by the left-most term of a compound select */
2116 while( pSelect
->pPrior
) pSelect
= pSelect
->pPrior
;
2117 TREETRACE(0x80,pParse
,pSelect
,("generating column names\n"));
2118 pTabList
= pSelect
->pSrc
;
2119 pEList
= pSelect
->pEList
;
2121 assert( pTabList
!=0 );
2122 pParse
->colNamesSet
= 1;
2123 fullName
= (db
->flags
& SQLITE_FullColNames
)!=0;
2124 srcName
= (db
->flags
& SQLITE_ShortColNames
)!=0 || fullName
;
2125 sqlite3VdbeSetNumCols(v
, pEList
->nExpr
);
2126 for(i
=0; i
<pEList
->nExpr
; i
++){
2127 Expr
*p
= pEList
->a
[i
].pExpr
;
2130 assert( p
->op
!=TK_AGG_COLUMN
); /* Agg processing has not run yet */
2131 assert( p
->op
!=TK_COLUMN
2132 || (ExprUseYTab(p
) && p
->y
.pTab
!=0) ); /* Covering idx not yet coded */
2133 if( pEList
->a
[i
].zEName
&& pEList
->a
[i
].fg
.eEName
==ENAME_NAME
){
2134 /* An AS clause always takes first priority */
2135 char *zName
= pEList
->a
[i
].zEName
;
2136 sqlite3VdbeSetColName(v
, i
, COLNAME_NAME
, zName
, SQLITE_TRANSIENT
);
2137 }else if( srcName
&& p
->op
==TK_COLUMN
){
2139 int iCol
= p
->iColumn
;
2142 if( iCol
<0 ) iCol
= pTab
->iPKey
;
2143 assert( iCol
==-1 || (iCol
>=0 && iCol
<pTab
->nCol
) );
2147 zCol
= pTab
->aCol
[iCol
].zCnName
;
2151 zName
= sqlite3MPrintf(db
, "%s.%s", pTab
->zName
, zCol
);
2152 sqlite3VdbeSetColName(v
, i
, COLNAME_NAME
, zName
, SQLITE_DYNAMIC
);
2154 sqlite3VdbeSetColName(v
, i
, COLNAME_NAME
, zCol
, SQLITE_TRANSIENT
);
2157 const char *z
= pEList
->a
[i
].zEName
;
2158 z
= z
==0 ? sqlite3MPrintf(db
, "column%d", i
+1) : sqlite3DbStrDup(db
, z
);
2159 sqlite3VdbeSetColName(v
, i
, COLNAME_NAME
, z
, SQLITE_DYNAMIC
);
2162 generateColumnTypes(pParse
, pTabList
, pEList
);
2166 ** Given an expression list (which is really the list of expressions
2167 ** that form the result set of a SELECT statement) compute appropriate
2168 ** column names for a table that would hold the expression list.
2170 ** All column names will be unique.
2172 ** Only the column names are computed. Column.zType, Column.zColl,
2173 ** and other fields of Column are zeroed.
2175 ** Return SQLITE_OK on success. If a memory allocation error occurs,
2176 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
2178 ** The only guarantee that SQLite makes about column names is that if the
2179 ** column has an AS clause assigning it a name, that will be the name used.
2180 ** That is the only documented guarantee. However, countless applications
2181 ** developed over the years have made baseless assumptions about column names
2182 ** and will break if those assumptions changes. Hence, use extreme caution
2183 ** when modifying this routine to avoid breaking legacy.
2185 ** See Also: sqlite3GenerateColumnNames()
2187 int sqlite3ColumnsFromExprList(
2188 Parse
*pParse
, /* Parsing context */
2189 ExprList
*pEList
, /* Expr list from which to derive column names */
2190 i16
*pnCol
, /* Write the number of columns here */
2191 Column
**paCol
/* Write the new column list here */
2193 sqlite3
*db
= pParse
->db
; /* Database connection */
2194 int i
, j
; /* Loop counters */
2195 u32 cnt
; /* Index added to make the name unique */
2196 Column
*aCol
, *pCol
; /* For looping over result columns */
2197 int nCol
; /* Number of columns in the result set */
2198 char *zName
; /* Column name */
2199 int nName
; /* Size of name in zName[] */
2200 Hash ht
; /* Hash table of column names */
2203 sqlite3HashInit(&ht
);
2205 nCol
= pEList
->nExpr
;
2206 aCol
= sqlite3DbMallocZero(db
, sizeof(aCol
[0])*nCol
);
2207 testcase( aCol
==0 );
2208 if( NEVER(nCol
>32767) ) nCol
= 32767;
2213 assert( nCol
==(i16
)nCol
);
2217 for(i
=0, pCol
=aCol
; i
<nCol
&& !pParse
->nErr
; i
++, pCol
++){
2218 struct ExprList_item
*pX
= &pEList
->a
[i
];
2219 struct ExprList_item
*pCollide
;
2220 /* Get an appropriate name for the column
2222 if( (zName
= pX
->zEName
)!=0 && pX
->fg
.eEName
==ENAME_NAME
){
2223 /* If the column contains an "AS <name>" phrase, use <name> as the name */
2225 Expr
*pColExpr
= sqlite3ExprSkipCollateAndLikely(pX
->pExpr
);
2226 while( ALWAYS(pColExpr
!=0) && pColExpr
->op
==TK_DOT
){
2227 pColExpr
= pColExpr
->pRight
;
2228 assert( pColExpr
!=0 );
2230 if( pColExpr
->op
==TK_COLUMN
2231 && ALWAYS( ExprUseYTab(pColExpr
) )
2232 && ALWAYS( pColExpr
->y
.pTab
!=0 )
2234 /* For columns use the column name name */
2235 int iCol
= pColExpr
->iColumn
;
2236 pTab
= pColExpr
->y
.pTab
;
2237 if( iCol
<0 ) iCol
= pTab
->iPKey
;
2238 zName
= iCol
>=0 ? pTab
->aCol
[iCol
].zCnName
: "rowid";
2239 }else if( pColExpr
->op
==TK_ID
){
2240 assert( !ExprHasProperty(pColExpr
, EP_IntValue
) );
2241 zName
= pColExpr
->u
.zToken
;
2243 /* Use the original text of the column expression as its name */
2244 assert( zName
==pX
->zEName
); /* pointer comparison intended */
2247 if( zName
&& !sqlite3IsTrueOrFalse(zName
) ){
2248 zName
= sqlite3DbStrDup(db
, zName
);
2250 zName
= sqlite3MPrintf(db
,"column%d",i
+1);
2253 /* Make sure the column name is unique. If the name is not unique,
2254 ** append an integer to the name so that it becomes unique.
2257 while( zName
&& (pCollide
= sqlite3HashFind(&ht
, zName
))!=0 ){
2258 if( pCollide
->fg
.bUsingTerm
){
2259 pCol
->colFlags
|= COLFLAG_NOEXPAND
;
2261 nName
= sqlite3Strlen30(zName
);
2263 for(j
=nName
-1; j
>0 && sqlite3Isdigit(zName
[j
]); j
--){}
2264 if( zName
[j
]==':' ) nName
= j
;
2266 zName
= sqlite3MPrintf(db
, "%.*z:%u", nName
, zName
, ++cnt
);
2267 sqlite3ProgressCheck(pParse
);
2269 sqlite3_randomness(sizeof(cnt
), &cnt
);
2272 pCol
->zCnName
= zName
;
2273 pCol
->hName
= sqlite3StrIHash(zName
);
2274 if( pX
->fg
.bNoExpand
){
2275 pCol
->colFlags
|= COLFLAG_NOEXPAND
;
2277 sqlite3ColumnPropertiesFromName(0, pCol
);
2278 if( zName
&& sqlite3HashInsert(&ht
, zName
, pX
)==pX
){
2279 sqlite3OomFault(db
);
2282 sqlite3HashClear(&ht
);
2285 sqlite3DbFree(db
, aCol
[j
].zCnName
);
2287 sqlite3DbFree(db
, aCol
);
2296 ** pTab is a transient Table object that represents a subquery of some
2297 ** kind (maybe a parenthesized subquery in the FROM clause of a larger
2298 ** query, or a VIEW, or a CTE). This routine computes type information
2299 ** for that Table object based on the Select object that implements the
2300 ** subquery. For the purposes of this routine, "type information" means:
2302 ** * The datatype name, as it might appear in a CREATE TABLE statement
2303 ** * Which collating sequence to use for the column
2304 ** * The affinity of the column
2306 void sqlite3SubqueryColumnTypes(
2307 Parse
*pParse
, /* Parsing contexts */
2308 Table
*pTab
, /* Add column type information to this table */
2309 Select
*pSelect
, /* SELECT used to determine types and collations */
2310 char aff
/* Default affinity. */
2312 sqlite3
*db
= pParse
->db
;
2317 struct ExprList_item
*a
;
2320 assert( pSelect
!=0 );
2321 testcase( (pSelect
->selFlags
& SF_Resolved
)==0 );
2322 assert( (pSelect
->selFlags
& SF_Resolved
)!=0 || IN_RENAME_OBJECT
);
2323 assert( pTab
->nCol
==pSelect
->pEList
->nExpr
|| pParse
->nErr
>0 );
2324 assert( aff
==SQLITE_AFF_NONE
|| aff
==SQLITE_AFF_BLOB
);
2325 if( db
->mallocFailed
|| IN_RENAME_OBJECT
) return;
2326 while( pSelect
->pPrior
) pSelect
= pSelect
->pPrior
;
2327 a
= pSelect
->pEList
->a
;
2328 memset(&sNC
, 0, sizeof(sNC
));
2329 sNC
.pSrcList
= pSelect
->pSrc
;
2330 for(i
=0, pCol
=pTab
->aCol
; i
<pTab
->nCol
; i
++, pCol
++){
2333 pTab
->tabFlags
|= (pCol
->colFlags
& COLFLAG_NOINSERT
);
2335 /* pCol->szEst = ... // Column size est for SELECT tables never used */
2336 pCol
->affinity
= sqlite3ExprAffinity(p
);
2337 if( pCol
->affinity
<=SQLITE_AFF_NONE
){
2338 pCol
->affinity
= aff
;
2340 if( pCol
->affinity
>=SQLITE_AFF_TEXT
&& pSelect
->pNext
){
2343 for(m
=0, pS2
=pSelect
->pNext
; pS2
; pS2
=pS2
->pNext
){
2344 m
|= sqlite3ExprDataType(pS2
->pEList
->a
[i
].pExpr
);
2346 if( pCol
->affinity
==SQLITE_AFF_TEXT
&& (m
&0x01)!=0 ){
2347 pCol
->affinity
= SQLITE_AFF_BLOB
;
2349 if( pCol
->affinity
>=SQLITE_AFF_NUMERIC
&& (m
&0x02)!=0 ){
2350 pCol
->affinity
= SQLITE_AFF_BLOB
;
2352 if( pCol
->affinity
>=SQLITE_AFF_NUMERIC
&& p
->op
==TK_CAST
){
2353 pCol
->affinity
= SQLITE_AFF_FLEXNUM
;
2356 zType
= columnType(&sNC
, p
, 0, 0, 0);
2357 if( zType
==0 || pCol
->affinity
!=sqlite3AffinityType(zType
, 0) ){
2358 if( pCol
->affinity
==SQLITE_AFF_NUMERIC
2359 || pCol
->affinity
==SQLITE_AFF_FLEXNUM
2364 for(j
=1; j
<SQLITE_N_STDTYPE
; j
++){
2365 if( sqlite3StdTypeAffinity
[j
]==pCol
->affinity
){
2366 zType
= sqlite3StdType
[j
];
2373 i64 m
= sqlite3Strlen30(zType
);
2374 n
= sqlite3Strlen30(pCol
->zCnName
);
2375 pCol
->zCnName
= sqlite3DbReallocOrFree(db
, pCol
->zCnName
, n
+m
+2);
2376 pCol
->colFlags
&= ~(COLFLAG_HASTYPE
|COLFLAG_HASCOLL
);
2377 if( pCol
->zCnName
){
2378 memcpy(&pCol
->zCnName
[n
+1], zType
, m
+1);
2379 pCol
->colFlags
|= COLFLAG_HASTYPE
;
2382 pColl
= sqlite3ExprCollSeq(pParse
, p
);
2384 assert( pTab
->pIndex
==0 );
2385 sqlite3ColumnSetColl(db
, pCol
, pColl
->zName
);
2388 pTab
->szTabRow
= 1; /* Any non-zero value works */
2392 ** Given a SELECT statement, generate a Table structure that describes
2393 ** the result set of that SELECT.
2395 Table
*sqlite3ResultSetOfSelect(Parse
*pParse
, Select
*pSelect
, char aff
){
2397 sqlite3
*db
= pParse
->db
;
2400 savedFlags
= db
->flags
;
2401 db
->flags
&= ~(u64
)SQLITE_FullColNames
;
2402 db
->flags
|= SQLITE_ShortColNames
;
2403 sqlite3SelectPrep(pParse
, pSelect
, 0);
2404 db
->flags
= savedFlags
;
2405 if( pParse
->nErr
) return 0;
2406 while( pSelect
->pPrior
) pSelect
= pSelect
->pPrior
;
2407 pTab
= sqlite3DbMallocZero(db
, sizeof(Table
) );
2413 pTab
->nRowLogEst
= 200; assert( 200==sqlite3LogEst(1048576) );
2414 sqlite3ColumnsFromExprList(pParse
, pSelect
->pEList
, &pTab
->nCol
, &pTab
->aCol
);
2415 sqlite3SubqueryColumnTypes(pParse
, pTab
, pSelect
, aff
);
2417 if( db
->mallocFailed
){
2418 sqlite3DeleteTable(db
, pTab
);
2425 ** Get a VDBE for the given parser context. Create a new one if necessary.
2426 ** If an error occurs, return NULL and leave a message in pParse.
2428 Vdbe
*sqlite3GetVdbe(Parse
*pParse
){
2429 if( pParse
->pVdbe
){
2430 return pParse
->pVdbe
;
2432 if( pParse
->pToplevel
==0
2433 && OptimizationEnabled(pParse
->db
,SQLITE_FactorOutConst
)
2435 pParse
->okConstFactor
= 1;
2437 return sqlite3VdbeCreate(pParse
);
2442 ** Compute the iLimit and iOffset fields of the SELECT based on the
2443 ** pLimit expressions. pLimit->pLeft and pLimit->pRight hold the expressions
2444 ** that appear in the original SQL statement after the LIMIT and OFFSET
2445 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset
2446 ** are the integer memory register numbers for counters used to compute
2447 ** the limit and offset. If there is no limit and/or offset, then
2448 ** iLimit and iOffset are negative.
2450 ** This routine changes the values of iLimit and iOffset only if
2451 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight. iLimit
2452 ** and iOffset should have been preset to appropriate default values (zero)
2453 ** prior to calling this routine.
2455 ** The iOffset register (if it exists) is initialized to the value
2456 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register
2457 ** iOffset+1 is initialized to LIMIT+OFFSET.
2459 ** Only if pLimit->pLeft!=0 do the limit registers get
2460 ** redefined. The UNION ALL operator uses this property to force
2461 ** the reuse of the same limit and offset registers across multiple
2462 ** SELECT statements.
2464 static void computeLimitRegisters(Parse
*pParse
, Select
*p
, int iBreak
){
2469 Expr
*pLimit
= p
->pLimit
;
2471 if( p
->iLimit
) return;
2474 ** "LIMIT -1" always shows all rows. There is some
2475 ** controversy about what the correct behavior should be.
2476 ** The current implementation interprets "LIMIT 0" to mean
2480 assert( pLimit
->op
==TK_LIMIT
);
2481 assert( pLimit
->pLeft
!=0 );
2482 p
->iLimit
= iLimit
= ++pParse
->nMem
;
2483 v
= sqlite3GetVdbe(pParse
);
2485 if( sqlite3ExprIsInteger(pLimit
->pLeft
, &n
) ){
2486 sqlite3VdbeAddOp2(v
, OP_Integer
, n
, iLimit
);
2487 VdbeComment((v
, "LIMIT counter"));
2489 sqlite3VdbeGoto(v
, iBreak
);
2490 }else if( n
>=0 && p
->nSelectRow
>sqlite3LogEst((u64
)n
) ){
2491 p
->nSelectRow
= sqlite3LogEst((u64
)n
);
2492 p
->selFlags
|= SF_FixedLimit
;
2495 sqlite3ExprCode(pParse
, pLimit
->pLeft
, iLimit
);
2496 sqlite3VdbeAddOp1(v
, OP_MustBeInt
, iLimit
); VdbeCoverage(v
);
2497 VdbeComment((v
, "LIMIT counter"));
2498 sqlite3VdbeAddOp2(v
, OP_IfNot
, iLimit
, iBreak
); VdbeCoverage(v
);
2500 if( pLimit
->pRight
){
2501 p
->iOffset
= iOffset
= ++pParse
->nMem
;
2502 pParse
->nMem
++; /* Allocate an extra register for limit+offset */
2503 sqlite3ExprCode(pParse
, pLimit
->pRight
, iOffset
);
2504 sqlite3VdbeAddOp1(v
, OP_MustBeInt
, iOffset
); VdbeCoverage(v
);
2505 VdbeComment((v
, "OFFSET counter"));
2506 sqlite3VdbeAddOp3(v
, OP_OffsetLimit
, iLimit
, iOffset
+1, iOffset
);
2507 VdbeComment((v
, "LIMIT+OFFSET"));
2512 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2514 ** Return the appropriate collating sequence for the iCol-th column of
2515 ** the result set for the compound-select statement "p". Return NULL if
2516 ** the column has no default collating sequence.
2518 ** The collating sequence for the compound select is taken from the
2519 ** left-most term of the select that has a collating sequence.
2521 static CollSeq
*multiSelectCollSeq(Parse
*pParse
, Select
*p
, int iCol
){
2524 pRet
= multiSelectCollSeq(pParse
, p
->pPrior
, iCol
);
2529 /* iCol must be less than p->pEList->nExpr. Otherwise an error would
2530 ** have been thrown during name resolution and we would not have gotten
2532 if( pRet
==0 && ALWAYS(iCol
<p
->pEList
->nExpr
) ){
2533 pRet
= sqlite3ExprCollSeq(pParse
, p
->pEList
->a
[iCol
].pExpr
);
2539 ** The select statement passed as the second parameter is a compound SELECT
2540 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
2541 ** structure suitable for implementing the ORDER BY.
2543 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
2544 ** function is responsible for ensuring that this structure is eventually
2547 static KeyInfo
*multiSelectOrderByKeyInfo(Parse
*pParse
, Select
*p
, int nExtra
){
2548 ExprList
*pOrderBy
= p
->pOrderBy
;
2549 int nOrderBy
= ALWAYS(pOrderBy
!=0) ? pOrderBy
->nExpr
: 0;
2550 sqlite3
*db
= pParse
->db
;
2551 KeyInfo
*pRet
= sqlite3KeyInfoAlloc(db
, nOrderBy
+nExtra
, 1);
2554 for(i
=0; i
<nOrderBy
; i
++){
2555 struct ExprList_item
*pItem
= &pOrderBy
->a
[i
];
2556 Expr
*pTerm
= pItem
->pExpr
;
2559 if( pTerm
->flags
& EP_Collate
){
2560 pColl
= sqlite3ExprCollSeq(pParse
, pTerm
);
2562 pColl
= multiSelectCollSeq(pParse
, p
, pItem
->u
.x
.iOrderByCol
-1);
2563 if( pColl
==0 ) pColl
= db
->pDfltColl
;
2564 pOrderBy
->a
[i
].pExpr
=
2565 sqlite3ExprAddCollateString(pParse
, pTerm
, pColl
->zName
);
2567 assert( sqlite3KeyInfoIsWriteable(pRet
) );
2568 pRet
->aColl
[i
] = pColl
;
2569 pRet
->aSortFlags
[i
] = pOrderBy
->a
[i
].fg
.sortFlags
;
2576 #ifndef SQLITE_OMIT_CTE
2578 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
2579 ** query of the form:
2581 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
2582 ** \___________/ \_______________/
2586 ** There is exactly one reference to the recursive-table in the FROM clause
2587 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
2589 ** The setup-query runs once to generate an initial set of rows that go
2590 ** into a Queue table. Rows are extracted from the Queue table one by
2591 ** one. Each row extracted from Queue is output to pDest. Then the single
2592 ** extracted row (now in the iCurrent table) becomes the content of the
2593 ** recursive-table for a recursive-query run. The output of the recursive-query
2594 ** is added back into the Queue table. Then another row is extracted from Queue
2595 ** and the iteration continues until the Queue table is empty.
2597 ** If the compound query operator is UNION then no duplicate rows are ever
2598 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows
2599 ** that have ever been inserted into Queue and causes duplicates to be
2600 ** discarded. If the operator is UNION ALL, then duplicates are allowed.
2602 ** If the query has an ORDER BY, then entries in the Queue table are kept in
2603 ** ORDER BY order and the first entry is extracted for each cycle. Without
2604 ** an ORDER BY, the Queue table is just a FIFO.
2606 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
2607 ** have been output to pDest. A LIMIT of zero means to output no rows and a
2608 ** negative LIMIT means to output all rows. If there is also an OFFSET clause
2609 ** with a positive value, then the first OFFSET outputs are discarded rather
2610 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET
2611 ** rows have been skipped.
2613 static void generateWithRecursiveQuery(
2614 Parse
*pParse
, /* Parsing context */
2615 Select
*p
, /* The recursive SELECT to be coded */
2616 SelectDest
*pDest
/* What to do with query results */
2618 SrcList
*pSrc
= p
->pSrc
; /* The FROM clause of the recursive query */
2619 int nCol
= p
->pEList
->nExpr
; /* Number of columns in the recursive table */
2620 Vdbe
*v
= pParse
->pVdbe
; /* The prepared statement under construction */
2621 Select
*pSetup
; /* The setup query */
2622 Select
*pFirstRec
; /* Left-most recursive term */
2623 int addrTop
; /* Top of the loop */
2624 int addrCont
, addrBreak
; /* CONTINUE and BREAK addresses */
2625 int iCurrent
= 0; /* The Current table */
2626 int regCurrent
; /* Register holding Current table */
2627 int iQueue
; /* The Queue table */
2628 int iDistinct
= 0; /* To ensure unique results if UNION */
2629 int eDest
= SRT_Fifo
; /* How to write to Queue */
2630 SelectDest destQueue
; /* SelectDest targeting the Queue table */
2631 int i
; /* Loop counter */
2632 int rc
; /* Result code */
2633 ExprList
*pOrderBy
; /* The ORDER BY clause */
2634 Expr
*pLimit
; /* Saved LIMIT and OFFSET */
2635 int regLimit
, regOffset
; /* Registers used by LIMIT and OFFSET */
2637 #ifndef SQLITE_OMIT_WINDOWFUNC
2639 sqlite3ErrorMsg(pParse
, "cannot use window functions in recursive queries");
2644 /* Obtain authorization to do a recursive query */
2645 if( sqlite3AuthCheck(pParse
, SQLITE_RECURSIVE
, 0, 0, 0) ) return;
2647 /* Process the LIMIT and OFFSET clauses, if they exist */
2648 addrBreak
= sqlite3VdbeMakeLabel(pParse
);
2649 p
->nSelectRow
= 320; /* 4 billion rows */
2650 computeLimitRegisters(pParse
, p
, addrBreak
);
2652 regLimit
= p
->iLimit
;
2653 regOffset
= p
->iOffset
;
2655 p
->iLimit
= p
->iOffset
= 0;
2656 pOrderBy
= p
->pOrderBy
;
2658 /* Locate the cursor number of the Current table */
2659 for(i
=0; ALWAYS(i
<pSrc
->nSrc
); i
++){
2660 if( pSrc
->a
[i
].fg
.isRecursive
){
2661 iCurrent
= pSrc
->a
[i
].iCursor
;
2666 /* Allocate cursors numbers for Queue and Distinct. The cursor number for
2667 ** the Distinct table must be exactly one greater than Queue in order
2668 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2669 iQueue
= pParse
->nTab
++;
2670 if( p
->op
==TK_UNION
){
2671 eDest
= pOrderBy
? SRT_DistQueue
: SRT_DistFifo
;
2672 iDistinct
= pParse
->nTab
++;
2674 eDest
= pOrderBy
? SRT_Queue
: SRT_Fifo
;
2676 sqlite3SelectDestInit(&destQueue
, eDest
, iQueue
);
2678 /* Allocate cursors for Current, Queue, and Distinct. */
2679 regCurrent
= ++pParse
->nMem
;
2680 sqlite3VdbeAddOp3(v
, OP_OpenPseudo
, iCurrent
, regCurrent
, nCol
);
2682 KeyInfo
*pKeyInfo
= multiSelectOrderByKeyInfo(pParse
, p
, 1);
2683 sqlite3VdbeAddOp4(v
, OP_OpenEphemeral
, iQueue
, pOrderBy
->nExpr
+2, 0,
2684 (char*)pKeyInfo
, P4_KEYINFO
);
2685 destQueue
.pOrderBy
= pOrderBy
;
2687 sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, iQueue
, nCol
);
2689 VdbeComment((v
, "Queue table"));
2691 p
->addrOpenEphm
[0] = sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, iDistinct
, 0);
2692 p
->selFlags
|= SF_UsesEphemeral
;
2695 /* Detach the ORDER BY clause from the compound SELECT */
2698 /* Figure out how many elements of the compound SELECT are part of the
2699 ** recursive query. Make sure no recursive elements use aggregate
2700 ** functions. Mark the recursive elements as UNION ALL even if they
2701 ** are really UNION because the distinctness will be enforced by the
2702 ** iDistinct table. pFirstRec is left pointing to the left-most
2703 ** recursive term of the CTE.
2705 for(pFirstRec
=p
; ALWAYS(pFirstRec
!=0); pFirstRec
=pFirstRec
->pPrior
){
2706 if( pFirstRec
->selFlags
& SF_Aggregate
){
2707 sqlite3ErrorMsg(pParse
, "recursive aggregate queries not supported");
2708 goto end_of_recursive_query
;
2710 pFirstRec
->op
= TK_ALL
;
2711 if( (pFirstRec
->pPrior
->selFlags
& SF_Recursive
)==0 ) break;
2714 /* Store the results of the setup-query in Queue. */
2715 pSetup
= pFirstRec
->pPrior
;
2717 ExplainQueryPlan((pParse
, 1, "SETUP"));
2718 rc
= sqlite3Select(pParse
, pSetup
, &destQueue
);
2720 if( rc
) goto end_of_recursive_query
;
2722 /* Find the next row in the Queue and output that row */
2723 addrTop
= sqlite3VdbeAddOp2(v
, OP_Rewind
, iQueue
, addrBreak
); VdbeCoverage(v
);
2725 /* Transfer the next row in Queue over to Current */
2726 sqlite3VdbeAddOp1(v
, OP_NullRow
, iCurrent
); /* To reset column cache */
2728 sqlite3VdbeAddOp3(v
, OP_Column
, iQueue
, pOrderBy
->nExpr
+1, regCurrent
);
2730 sqlite3VdbeAddOp2(v
, OP_RowData
, iQueue
, regCurrent
);
2732 sqlite3VdbeAddOp1(v
, OP_Delete
, iQueue
);
2734 /* Output the single row in Current */
2735 addrCont
= sqlite3VdbeMakeLabel(pParse
);
2736 codeOffset(v
, regOffset
, addrCont
);
2737 selectInnerLoop(pParse
, p
, iCurrent
,
2738 0, 0, pDest
, addrCont
, addrBreak
);
2740 sqlite3VdbeAddOp2(v
, OP_DecrJumpZero
, regLimit
, addrBreak
);
2743 sqlite3VdbeResolveLabel(v
, addrCont
);
2745 /* Execute the recursive SELECT taking the single row in Current as
2746 ** the value for the recursive-table. Store the results in the Queue.
2748 pFirstRec
->pPrior
= 0;
2749 ExplainQueryPlan((pParse
, 1, "RECURSIVE STEP"));
2750 sqlite3Select(pParse
, p
, &destQueue
);
2751 assert( pFirstRec
->pPrior
==0 );
2752 pFirstRec
->pPrior
= pSetup
;
2754 /* Keep running the loop until the Queue is empty */
2755 sqlite3VdbeGoto(v
, addrTop
);
2756 sqlite3VdbeResolveLabel(v
, addrBreak
);
2758 end_of_recursive_query
:
2759 sqlite3ExprListDelete(pParse
->db
, p
->pOrderBy
);
2760 p
->pOrderBy
= pOrderBy
;
2764 #endif /* SQLITE_OMIT_CTE */
2766 /* Forward references */
2767 static int multiSelectOrderBy(
2768 Parse
*pParse
, /* Parsing context */
2769 Select
*p
, /* The right-most of SELECTs to be coded */
2770 SelectDest
*pDest
/* What to do with query results */
2774 ** Handle the special case of a compound-select that originates from a
2775 ** VALUES clause. By handling this as a special case, we avoid deep
2776 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2777 ** on a VALUES clause.
2779 ** Because the Select object originates from a VALUES clause:
2780 ** (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1
2781 ** (2) All terms are UNION ALL
2782 ** (3) There is no ORDER BY clause
2784 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES
2785 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))").
2786 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case.
2787 ** Since the limit is exactly 1, we only need to evaluate the left-most VALUES.
2789 static int multiSelectValues(
2790 Parse
*pParse
, /* Parsing context */
2791 Select
*p
, /* The right-most of SELECTs to be coded */
2792 SelectDest
*pDest
/* What to do with query results */
2796 int bShowAll
= p
->pLimit
==0;
2797 assert( p
->selFlags
& SF_MultiValue
);
2799 assert( p
->selFlags
& SF_Values
);
2800 assert( p
->op
==TK_ALL
|| (p
->op
==TK_SELECT
&& p
->pPrior
==0) );
2801 assert( p
->pNext
==0 || p
->pEList
->nExpr
==p
->pNext
->pEList
->nExpr
);
2802 #ifndef SQLITE_OMIT_WINDOWFUNC
2803 if( p
->pWin
) return -1;
2805 if( p
->pPrior
==0 ) break;
2806 assert( p
->pPrior
->pNext
==p
);
2810 ExplainQueryPlan((pParse
, 0, "SCAN %d CONSTANT ROW%s", nRow
,
2811 nRow
==1 ? "" : "S"));
2813 selectInnerLoop(pParse
, p
, -1, 0, 0, pDest
, 1, 1);
2814 if( !bShowAll
) break;
2815 p
->nSelectRow
= nRow
;
2822 ** Return true if the SELECT statement which is known to be the recursive
2823 ** part of a recursive CTE still has its anchor terms attached. If the
2824 ** anchor terms have already been removed, then return false.
2826 static int hasAnchor(Select
*p
){
2827 while( p
&& (p
->selFlags
& SF_Recursive
)!=0 ){ p
= p
->pPrior
; }
2832 ** This routine is called to process a compound query form from
2833 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2836 ** "p" points to the right-most of the two queries. the query on the
2837 ** left is p->pPrior. The left query could also be a compound query
2838 ** in which case this routine will be called recursively.
2840 ** The results of the total query are to be written into a destination
2841 ** of type eDest with parameter iParm.
2843 ** Example 1: Consider a three-way compound SQL statement.
2845 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2847 ** This statement is parsed up as follows:
2851 ** `-----> SELECT b FROM t2
2853 ** `------> SELECT a FROM t1
2855 ** The arrows in the diagram above represent the Select.pPrior pointer.
2856 ** So if this routine is called with p equal to the t3 query, then
2857 ** pPrior will be the t2 query. p->op will be TK_UNION in this case.
2859 ** Notice that because of the way SQLite parses compound SELECTs, the
2860 ** individual selects always group from left to right.
2862 static int multiSelect(
2863 Parse
*pParse
, /* Parsing context */
2864 Select
*p
, /* The right-most of SELECTs to be coded */
2865 SelectDest
*pDest
/* What to do with query results */
2867 int rc
= SQLITE_OK
; /* Success code from a subroutine */
2868 Select
*pPrior
; /* Another SELECT immediately to our left */
2869 Vdbe
*v
; /* Generate code to this VDBE */
2870 SelectDest dest
; /* Alternative data destination */
2871 Select
*pDelete
= 0; /* Chain of simple selects to delete */
2872 sqlite3
*db
; /* Database connection */
2874 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only
2875 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2877 assert( p
&& p
->pPrior
); /* Calling function guarantees this much */
2878 assert( (p
->selFlags
& SF_Recursive
)==0 || p
->op
==TK_ALL
|| p
->op
==TK_UNION
);
2879 assert( p
->selFlags
& SF_Compound
);
2883 assert( pPrior
->pOrderBy
==0 );
2884 assert( pPrior
->pLimit
==0 );
2886 v
= sqlite3GetVdbe(pParse
);
2887 assert( v
!=0 ); /* The VDBE already created by calling function */
2889 /* Create the destination temporary table if necessary
2891 if( dest
.eDest
==SRT_EphemTab
){
2892 assert( p
->pEList
);
2893 sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, dest
.iSDParm
, p
->pEList
->nExpr
);
2894 dest
.eDest
= SRT_Table
;
2897 /* Special handling for a compound-select that originates as a VALUES clause.
2899 if( p
->selFlags
& SF_MultiValue
){
2900 rc
= multiSelectValues(pParse
, p
, &dest
);
2901 if( rc
>=0 ) goto multi_select_end
;
2905 /* Make sure all SELECTs in the statement have the same number of elements
2906 ** in their result sets.
2908 assert( p
->pEList
&& pPrior
->pEList
);
2909 assert( p
->pEList
->nExpr
==pPrior
->pEList
->nExpr
);
2911 #ifndef SQLITE_OMIT_CTE
2912 if( (p
->selFlags
& SF_Recursive
)!=0 && hasAnchor(p
) ){
2913 generateWithRecursiveQuery(pParse
, p
, &dest
);
2917 /* Compound SELECTs that have an ORDER BY clause are handled separately.
2920 return multiSelectOrderBy(pParse
, p
, pDest
);
2923 #ifndef SQLITE_OMIT_EXPLAIN
2924 if( pPrior
->pPrior
==0 ){
2925 ExplainQueryPlan((pParse
, 1, "COMPOUND QUERY"));
2926 ExplainQueryPlan((pParse
, 1, "LEFT-MOST SUBQUERY"));
2930 /* Generate code for the left and right SELECT statements.
2935 int nLimit
= 0; /* Initialize to suppress harmless compiler warning */
2936 assert( !pPrior
->pLimit
);
2937 pPrior
->iLimit
= p
->iLimit
;
2938 pPrior
->iOffset
= p
->iOffset
;
2939 pPrior
->pLimit
= p
->pLimit
;
2940 TREETRACE(0x200, pParse
, p
, ("multiSelect UNION ALL left...\n"));
2941 rc
= sqlite3Select(pParse
, pPrior
, &dest
);
2944 goto multi_select_end
;
2947 p
->iLimit
= pPrior
->iLimit
;
2948 p
->iOffset
= pPrior
->iOffset
;
2950 addr
= sqlite3VdbeAddOp1(v
, OP_IfNot
, p
->iLimit
); VdbeCoverage(v
);
2951 VdbeComment((v
, "Jump ahead if LIMIT reached"));
2953 sqlite3VdbeAddOp3(v
, OP_OffsetLimit
,
2954 p
->iLimit
, p
->iOffset
+1, p
->iOffset
);
2957 ExplainQueryPlan((pParse
, 1, "UNION ALL"));
2958 TREETRACE(0x200, pParse
, p
, ("multiSelect UNION ALL right...\n"));
2959 rc
= sqlite3Select(pParse
, p
, &dest
);
2960 testcase( rc
!=SQLITE_OK
);
2961 pDelete
= p
->pPrior
;
2963 p
->nSelectRow
= sqlite3LogEstAdd(p
->nSelectRow
, pPrior
->nSelectRow
);
2965 && sqlite3ExprIsInteger(p
->pLimit
->pLeft
, &nLimit
)
2966 && nLimit
>0 && p
->nSelectRow
> sqlite3LogEst((u64
)nLimit
)
2968 p
->nSelectRow
= sqlite3LogEst((u64
)nLimit
);
2971 sqlite3VdbeJumpHere(v
, addr
);
2977 int unionTab
; /* Cursor number of the temp table holding result */
2978 u8 op
= 0; /* One of the SRT_ operations to apply to self */
2979 int priorOp
; /* The SRT_ operation to apply to prior selects */
2980 Expr
*pLimit
; /* Saved values of p->nLimit */
2982 SelectDest uniondest
;
2984 testcase( p
->op
==TK_EXCEPT
);
2985 testcase( p
->op
==TK_UNION
);
2986 priorOp
= SRT_Union
;
2987 if( dest
.eDest
==priorOp
){
2988 /* We can reuse a temporary table generated by a SELECT to our
2991 assert( p
->pLimit
==0 ); /* Not allowed on leftward elements */
2992 unionTab
= dest
.iSDParm
;
2994 /* We will need to create our own temporary table to hold the
2995 ** intermediate results.
2997 unionTab
= pParse
->nTab
++;
2998 assert( p
->pOrderBy
==0 );
2999 addr
= sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, unionTab
, 0);
3000 assert( p
->addrOpenEphm
[0] == -1 );
3001 p
->addrOpenEphm
[0] = addr
;
3002 findRightmost(p
)->selFlags
|= SF_UsesEphemeral
;
3003 assert( p
->pEList
);
3007 /* Code the SELECT statements to our left
3009 assert( !pPrior
->pOrderBy
);
3010 sqlite3SelectDestInit(&uniondest
, priorOp
, unionTab
);
3011 TREETRACE(0x200, pParse
, p
, ("multiSelect EXCEPT/UNION left...\n"));
3012 rc
= sqlite3Select(pParse
, pPrior
, &uniondest
);
3014 goto multi_select_end
;
3017 /* Code the current SELECT statement
3019 if( p
->op
==TK_EXCEPT
){
3022 assert( p
->op
==TK_UNION
);
3028 uniondest
.eDest
= op
;
3029 ExplainQueryPlan((pParse
, 1, "%s USING TEMP B-TREE",
3030 sqlite3SelectOpName(p
->op
)));
3031 TREETRACE(0x200, pParse
, p
, ("multiSelect EXCEPT/UNION right...\n"));
3032 rc
= sqlite3Select(pParse
, p
, &uniondest
);
3033 testcase( rc
!=SQLITE_OK
);
3034 assert( p
->pOrderBy
==0 );
3035 pDelete
= p
->pPrior
;
3038 if( p
->op
==TK_UNION
){
3039 p
->nSelectRow
= sqlite3LogEstAdd(p
->nSelectRow
, pPrior
->nSelectRow
);
3041 sqlite3ExprDelete(db
, p
->pLimit
);
3046 /* Convert the data in the temporary table into whatever form
3047 ** it is that we currently need.
3049 assert( unionTab
==dest
.iSDParm
|| dest
.eDest
!=priorOp
);
3050 assert( p
->pEList
|| db
->mallocFailed
);
3051 if( dest
.eDest
!=priorOp
&& db
->mallocFailed
==0 ){
3052 int iCont
, iBreak
, iStart
;
3053 iBreak
= sqlite3VdbeMakeLabel(pParse
);
3054 iCont
= sqlite3VdbeMakeLabel(pParse
);
3055 computeLimitRegisters(pParse
, p
, iBreak
);
3056 sqlite3VdbeAddOp2(v
, OP_Rewind
, unionTab
, iBreak
); VdbeCoverage(v
);
3057 iStart
= sqlite3VdbeCurrentAddr(v
);
3058 selectInnerLoop(pParse
, p
, unionTab
,
3059 0, 0, &dest
, iCont
, iBreak
);
3060 sqlite3VdbeResolveLabel(v
, iCont
);
3061 sqlite3VdbeAddOp2(v
, OP_Next
, unionTab
, iStart
); VdbeCoverage(v
);
3062 sqlite3VdbeResolveLabel(v
, iBreak
);
3063 sqlite3VdbeAddOp2(v
, OP_Close
, unionTab
, 0);
3067 default: assert( p
->op
==TK_INTERSECT
); {
3069 int iCont
, iBreak
, iStart
;
3072 SelectDest intersectdest
;
3075 /* INTERSECT is different from the others since it requires
3076 ** two temporary tables. Hence it has its own case. Begin
3077 ** by allocating the tables we will need.
3079 tab1
= pParse
->nTab
++;
3080 tab2
= pParse
->nTab
++;
3081 assert( p
->pOrderBy
==0 );
3083 addr
= sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, tab1
, 0);
3084 assert( p
->addrOpenEphm
[0] == -1 );
3085 p
->addrOpenEphm
[0] = addr
;
3086 findRightmost(p
)->selFlags
|= SF_UsesEphemeral
;
3087 assert( p
->pEList
);
3089 /* Code the SELECTs to our left into temporary table "tab1".
3091 sqlite3SelectDestInit(&intersectdest
, SRT_Union
, tab1
);
3092 TREETRACE(0x400, pParse
, p
, ("multiSelect INTERSECT left...\n"));
3093 rc
= sqlite3Select(pParse
, pPrior
, &intersectdest
);
3095 goto multi_select_end
;
3098 /* Code the current SELECT into temporary table "tab2"
3100 addr
= sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, tab2
, 0);
3101 assert( p
->addrOpenEphm
[1] == -1 );
3102 p
->addrOpenEphm
[1] = addr
;
3106 intersectdest
.iSDParm
= tab2
;
3107 ExplainQueryPlan((pParse
, 1, "%s USING TEMP B-TREE",
3108 sqlite3SelectOpName(p
->op
)));
3109 TREETRACE(0x400, pParse
, p
, ("multiSelect INTERSECT right...\n"));
3110 rc
= sqlite3Select(pParse
, p
, &intersectdest
);
3111 testcase( rc
!=SQLITE_OK
);
3112 pDelete
= p
->pPrior
;
3114 if( p
->nSelectRow
>pPrior
->nSelectRow
){
3115 p
->nSelectRow
= pPrior
->nSelectRow
;
3117 sqlite3ExprDelete(db
, p
->pLimit
);
3120 /* Generate code to take the intersection of the two temporary
3124 assert( p
->pEList
);
3125 iBreak
= sqlite3VdbeMakeLabel(pParse
);
3126 iCont
= sqlite3VdbeMakeLabel(pParse
);
3127 computeLimitRegisters(pParse
, p
, iBreak
);
3128 sqlite3VdbeAddOp2(v
, OP_Rewind
, tab1
, iBreak
); VdbeCoverage(v
);
3129 r1
= sqlite3GetTempReg(pParse
);
3130 iStart
= sqlite3VdbeAddOp2(v
, OP_RowData
, tab1
, r1
);
3131 sqlite3VdbeAddOp4Int(v
, OP_NotFound
, tab2
, iCont
, r1
, 0);
3133 sqlite3ReleaseTempReg(pParse
, r1
);
3134 selectInnerLoop(pParse
, p
, tab1
,
3135 0, 0, &dest
, iCont
, iBreak
);
3136 sqlite3VdbeResolveLabel(v
, iCont
);
3137 sqlite3VdbeAddOp2(v
, OP_Next
, tab1
, iStart
); VdbeCoverage(v
);
3138 sqlite3VdbeResolveLabel(v
, iBreak
);
3139 sqlite3VdbeAddOp2(v
, OP_Close
, tab2
, 0);
3140 sqlite3VdbeAddOp2(v
, OP_Close
, tab1
, 0);
3145 #ifndef SQLITE_OMIT_EXPLAIN
3147 ExplainQueryPlanPop(pParse
);
3151 if( pParse
->nErr
) goto multi_select_end
;
3153 /* Compute collating sequences used by
3154 ** temporary tables needed to implement the compound select.
3155 ** Attach the KeyInfo structure to all temporary tables.
3157 ** This section is run by the right-most SELECT statement only.
3158 ** SELECT statements to the left always skip this part. The right-most
3159 ** SELECT might also skip this part if it has no ORDER BY clause and
3160 ** no temp tables are required.
3162 if( p
->selFlags
& SF_UsesEphemeral
){
3163 int i
; /* Loop counter */
3164 KeyInfo
*pKeyInfo
; /* Collating sequence for the result set */
3165 Select
*pLoop
; /* For looping through SELECT statements */
3166 CollSeq
**apColl
; /* For looping through pKeyInfo->aColl[] */
3167 int nCol
; /* Number of columns in result set */
3169 assert( p
->pNext
==0 );
3170 assert( p
->pEList
!=0 );
3171 nCol
= p
->pEList
->nExpr
;
3172 pKeyInfo
= sqlite3KeyInfoAlloc(db
, nCol
, 1);
3174 rc
= SQLITE_NOMEM_BKPT
;
3175 goto multi_select_end
;
3177 for(i
=0, apColl
=pKeyInfo
->aColl
; i
<nCol
; i
++, apColl
++){
3178 *apColl
= multiSelectCollSeq(pParse
, p
, i
);
3180 *apColl
= db
->pDfltColl
;
3184 for(pLoop
=p
; pLoop
; pLoop
=pLoop
->pPrior
){
3186 int addr
= pLoop
->addrOpenEphm
[i
];
3188 /* If [0] is unused then [1] is also unused. So we can
3189 ** always safely abort as soon as the first unused slot is found */
3190 assert( pLoop
->addrOpenEphm
[1]<0 );
3193 sqlite3VdbeChangeP2(v
, addr
, nCol
);
3194 sqlite3VdbeChangeP4(v
, addr
, (char*)sqlite3KeyInfoRef(pKeyInfo
),
3196 pLoop
->addrOpenEphm
[i
] = -1;
3199 sqlite3KeyInfoUnref(pKeyInfo
);
3203 pDest
->iSdst
= dest
.iSdst
;
3204 pDest
->nSdst
= dest
.nSdst
;
3206 sqlite3ParserAddCleanup(pParse
, sqlite3SelectDeleteGeneric
, pDelete
);
3210 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
3213 ** Error message for when two or more terms of a compound select have different
3214 ** size result sets.
3216 void sqlite3SelectWrongNumTermsError(Parse
*pParse
, Select
*p
){
3217 if( p
->selFlags
& SF_Values
){
3218 sqlite3ErrorMsg(pParse
, "all VALUES must have the same number of terms");
3220 sqlite3ErrorMsg(pParse
, "SELECTs to the left and right of %s"
3221 " do not have the same number of result columns",
3222 sqlite3SelectOpName(p
->op
));
3227 ** Code an output subroutine for a coroutine implementation of a
3228 ** SELECT statement.
3230 ** The data to be output is contained in pIn->iSdst. There are
3231 ** pIn->nSdst columns to be output. pDest is where the output should
3234 ** regReturn is the number of the register holding the subroutine
3237 ** If regPrev>0 then it is the first register in a vector that
3238 ** records the previous output. mem[regPrev] is a flag that is false
3239 ** if there has been no previous output. If regPrev>0 then code is
3240 ** generated to suppress duplicates. pKeyInfo is used for comparing
3243 ** If the LIMIT found in p->iLimit is reached, jump immediately to
3246 static int generateOutputSubroutine(
3247 Parse
*pParse
, /* Parsing context */
3248 Select
*p
, /* The SELECT statement */
3249 SelectDest
*pIn
, /* Coroutine supplying data */
3250 SelectDest
*pDest
, /* Where to send the data */
3251 int regReturn
, /* The return address register */
3252 int regPrev
, /* Previous result register. No uniqueness if 0 */
3253 KeyInfo
*pKeyInfo
, /* For comparing with previous entry */
3254 int iBreak
/* Jump here if we hit the LIMIT */
3256 Vdbe
*v
= pParse
->pVdbe
;
3260 addr
= sqlite3VdbeCurrentAddr(v
);
3261 iContinue
= sqlite3VdbeMakeLabel(pParse
);
3263 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
3267 addr1
= sqlite3VdbeAddOp1(v
, OP_IfNot
, regPrev
); VdbeCoverage(v
);
3268 addr2
= sqlite3VdbeAddOp4(v
, OP_Compare
, pIn
->iSdst
, regPrev
+1, pIn
->nSdst
,
3269 (char*)sqlite3KeyInfoRef(pKeyInfo
), P4_KEYINFO
);
3270 sqlite3VdbeAddOp3(v
, OP_Jump
, addr2
+2, iContinue
, addr2
+2); VdbeCoverage(v
);
3271 sqlite3VdbeJumpHere(v
, addr1
);
3272 sqlite3VdbeAddOp3(v
, OP_Copy
, pIn
->iSdst
, regPrev
+1, pIn
->nSdst
-1);
3273 sqlite3VdbeAddOp2(v
, OP_Integer
, 1, regPrev
);
3275 if( pParse
->db
->mallocFailed
) return 0;
3277 /* Suppress the first OFFSET entries if there is an OFFSET clause
3279 codeOffset(v
, p
->iOffset
, iContinue
);
3281 assert( pDest
->eDest
!=SRT_Exists
);
3282 assert( pDest
->eDest
!=SRT_Table
);
3283 switch( pDest
->eDest
){
3284 /* Store the result as data using a unique key.
3286 case SRT_EphemTab
: {
3287 int r1
= sqlite3GetTempReg(pParse
);
3288 int r2
= sqlite3GetTempReg(pParse
);
3289 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, pIn
->iSdst
, pIn
->nSdst
, r1
);
3290 sqlite3VdbeAddOp2(v
, OP_NewRowid
, pDest
->iSDParm
, r2
);
3291 sqlite3VdbeAddOp3(v
, OP_Insert
, pDest
->iSDParm
, r1
, r2
);
3292 sqlite3VdbeChangeP5(v
, OPFLAG_APPEND
);
3293 sqlite3ReleaseTempReg(pParse
, r2
);
3294 sqlite3ReleaseTempReg(pParse
, r1
);
3298 #ifndef SQLITE_OMIT_SUBQUERY
3299 /* If we are creating a set for an "expr IN (SELECT ...)".
3303 testcase( pIn
->nSdst
>1 );
3304 r1
= sqlite3GetTempReg(pParse
);
3305 sqlite3VdbeAddOp4(v
, OP_MakeRecord
, pIn
->iSdst
, pIn
->nSdst
,
3306 r1
, pDest
->zAffSdst
, pIn
->nSdst
);
3307 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, pDest
->iSDParm
, r1
,
3308 pIn
->iSdst
, pIn
->nSdst
);
3309 sqlite3ReleaseTempReg(pParse
, r1
);
3313 /* If this is a scalar select that is part of an expression, then
3314 ** store the results in the appropriate memory cell and break out
3315 ** of the scan loop. Note that the select might return multiple columns
3316 ** if it is the RHS of a row-value IN operator.
3319 testcase( pIn
->nSdst
>1 );
3320 sqlite3ExprCodeMove(pParse
, pIn
->iSdst
, pDest
->iSDParm
, pIn
->nSdst
);
3321 /* The LIMIT clause will jump out of the loop for us */
3324 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
3326 /* The results are stored in a sequence of registers
3327 ** starting at pDest->iSdst. Then the co-routine yields.
3329 case SRT_Coroutine
: {
3330 if( pDest
->iSdst
==0 ){
3331 pDest
->iSdst
= sqlite3GetTempRange(pParse
, pIn
->nSdst
);
3332 pDest
->nSdst
= pIn
->nSdst
;
3334 sqlite3ExprCodeMove(pParse
, pIn
->iSdst
, pDest
->iSdst
, pIn
->nSdst
);
3335 sqlite3VdbeAddOp1(v
, OP_Yield
, pDest
->iSDParm
);
3339 /* If none of the above, then the result destination must be
3340 ** SRT_Output. This routine is never called with any other
3341 ** destination other than the ones handled above or SRT_Output.
3343 ** For SRT_Output, results are stored in a sequence of registers.
3344 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
3345 ** return the next row of result.
3348 assert( pDest
->eDest
==SRT_Output
);
3349 sqlite3VdbeAddOp2(v
, OP_ResultRow
, pIn
->iSdst
, pIn
->nSdst
);
3354 /* Jump to the end of the loop if the LIMIT is reached.
3357 sqlite3VdbeAddOp2(v
, OP_DecrJumpZero
, p
->iLimit
, iBreak
); VdbeCoverage(v
);
3360 /* Generate the subroutine return
3362 sqlite3VdbeResolveLabel(v
, iContinue
);
3363 sqlite3VdbeAddOp1(v
, OP_Return
, regReturn
);
3369 ** Alternative compound select code generator for cases when there
3370 ** is an ORDER BY clause.
3372 ** We assume a query of the following form:
3374 ** <selectA> <operator> <selectB> ORDER BY <orderbylist>
3376 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea
3377 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
3378 ** co-routines. Then run the co-routines in parallel and merge the results
3379 ** into the output. In addition to the two coroutines (called selectA and
3380 ** selectB) there are 7 subroutines:
3382 ** outA: Move the output of the selectA coroutine into the output
3383 ** of the compound query.
3385 ** outB: Move the output of the selectB coroutine into the output
3386 ** of the compound query. (Only generated for UNION and
3387 ** UNION ALL. EXCEPT and INSERTSECT never output a row that
3388 ** appears only in B.)
3390 ** AltB: Called when there is data from both coroutines and A<B.
3392 ** AeqB: Called when there is data from both coroutines and A==B.
3394 ** AgtB: Called when there is data from both coroutines and A>B.
3396 ** EofA: Called when data is exhausted from selectA.
3398 ** EofB: Called when data is exhausted from selectB.
3400 ** The implementation of the latter five subroutines depend on which
3401 ** <operator> is used:
3404 ** UNION ALL UNION EXCEPT INTERSECT
3405 ** ------------- ----------------- -------------- -----------------
3406 ** AltB: outA, nextA outA, nextA outA, nextA nextA
3408 ** AeqB: outA, nextA nextA nextA outA, nextA
3410 ** AgtB: outB, nextB outB, nextB nextB nextB
3412 ** EofA: outB, nextB outB, nextB halt halt
3414 ** EofB: outA, nextA outA, nextA outA, nextA halt
3416 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
3417 ** causes an immediate jump to EofA and an EOF on B following nextB causes
3418 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or
3419 ** following nextX causes a jump to the end of the select processing.
3421 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
3422 ** within the output subroutine. The regPrev register set holds the previously
3423 ** output value. A comparison is made against this value and the output
3424 ** is skipped if the next results would be the same as the previous.
3426 ** The implementation plan is to implement the two coroutines and seven
3427 ** subroutines first, then put the control logic at the bottom. Like this:
3430 ** coA: coroutine for left query (A)
3431 ** coB: coroutine for right query (B)
3432 ** outA: output one row of A
3433 ** outB: output one row of B (UNION and UNION ALL only)
3439 ** Init: initialize coroutine registers
3441 ** if eof(A) goto EofA
3443 ** if eof(B) goto EofB
3444 ** Cmpr: Compare A, B
3445 ** Jump AltB, AeqB, AgtB
3448 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
3449 ** actually called using Gosub and they do not Return. EofA and EofB loop
3450 ** until all data is exhausted then jump to the "end" label. AltB, AeqB,
3451 ** and AgtB jump to either L2 or to one of EofA or EofB.
3453 #ifndef SQLITE_OMIT_COMPOUND_SELECT
3454 static int multiSelectOrderBy(
3455 Parse
*pParse
, /* Parsing context */
3456 Select
*p
, /* The right-most of SELECTs to be coded */
3457 SelectDest
*pDest
/* What to do with query results */
3459 int i
, j
; /* Loop counters */
3460 Select
*pPrior
; /* Another SELECT immediately to our left */
3461 Select
*pSplit
; /* Left-most SELECT in the right-hand group */
3462 int nSelect
; /* Number of SELECT statements in the compound */
3463 Vdbe
*v
; /* Generate code to this VDBE */
3464 SelectDest destA
; /* Destination for coroutine A */
3465 SelectDest destB
; /* Destination for coroutine B */
3466 int regAddrA
; /* Address register for select-A coroutine */
3467 int regAddrB
; /* Address register for select-B coroutine */
3468 int addrSelectA
; /* Address of the select-A coroutine */
3469 int addrSelectB
; /* Address of the select-B coroutine */
3470 int regOutA
; /* Address register for the output-A subroutine */
3471 int regOutB
; /* Address register for the output-B subroutine */
3472 int addrOutA
; /* Address of the output-A subroutine */
3473 int addrOutB
= 0; /* Address of the output-B subroutine */
3474 int addrEofA
; /* Address of the select-A-exhausted subroutine */
3475 int addrEofA_noB
; /* Alternate addrEofA if B is uninitialized */
3476 int addrEofB
; /* Address of the select-B-exhausted subroutine */
3477 int addrAltB
; /* Address of the A<B subroutine */
3478 int addrAeqB
; /* Address of the A==B subroutine */
3479 int addrAgtB
; /* Address of the A>B subroutine */
3480 int regLimitA
; /* Limit register for select-A */
3481 int regLimitB
; /* Limit register for select-A */
3482 int regPrev
; /* A range of registers to hold previous output */
3483 int savedLimit
; /* Saved value of p->iLimit */
3484 int savedOffset
; /* Saved value of p->iOffset */
3485 int labelCmpr
; /* Label for the start of the merge algorithm */
3486 int labelEnd
; /* Label for the end of the overall SELECT stmt */
3487 int addr1
; /* Jump instructions that get retargeted */
3488 int op
; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
3489 KeyInfo
*pKeyDup
= 0; /* Comparison information for duplicate removal */
3490 KeyInfo
*pKeyMerge
; /* Comparison information for merging rows */
3491 sqlite3
*db
; /* Database connection */
3492 ExprList
*pOrderBy
; /* The ORDER BY clause */
3493 int nOrderBy
; /* Number of terms in the ORDER BY clause */
3494 u32
*aPermute
; /* Mapping from ORDER BY terms to result set columns */
3496 assert( p
->pOrderBy
!=0 );
3497 assert( pKeyDup
==0 ); /* "Managed" code needs this. Ticket #3382. */
3500 assert( v
!=0 ); /* Already thrown the error if VDBE alloc failed */
3501 labelEnd
= sqlite3VdbeMakeLabel(pParse
);
3502 labelCmpr
= sqlite3VdbeMakeLabel(pParse
);
3505 /* Patch up the ORDER BY clause
3508 assert( p
->pPrior
->pOrderBy
==0 );
3509 pOrderBy
= p
->pOrderBy
;
3511 nOrderBy
= pOrderBy
->nExpr
;
3513 /* For operators other than UNION ALL we have to make sure that
3514 ** the ORDER BY clause covers every term of the result set. Add
3515 ** terms to the ORDER BY clause as necessary.
3518 for(i
=1; db
->mallocFailed
==0 && i
<=p
->pEList
->nExpr
; i
++){
3519 struct ExprList_item
*pItem
;
3520 for(j
=0, pItem
=pOrderBy
->a
; j
<nOrderBy
; j
++, pItem
++){
3522 assert( pItem
->u
.x
.iOrderByCol
>0 );
3523 if( pItem
->u
.x
.iOrderByCol
==i
) break;
3526 Expr
*pNew
= sqlite3Expr(db
, TK_INTEGER
, 0);
3527 if( pNew
==0 ) return SQLITE_NOMEM_BKPT
;
3528 pNew
->flags
|= EP_IntValue
;
3530 p
->pOrderBy
= pOrderBy
= sqlite3ExprListAppend(pParse
, pOrderBy
, pNew
);
3531 if( pOrderBy
) pOrderBy
->a
[nOrderBy
++].u
.x
.iOrderByCol
= (u16
)i
;
3536 /* Compute the comparison permutation and keyinfo that is used with
3537 ** the permutation used to determine if the next
3538 ** row of results comes from selectA or selectB. Also add explicit
3539 ** collations to the ORDER BY clause terms so that when the subqueries
3540 ** to the right and the left are evaluated, they use the correct
3543 aPermute
= sqlite3DbMallocRawNN(db
, sizeof(u32
)*(nOrderBy
+ 1));
3545 struct ExprList_item
*pItem
;
3546 aPermute
[0] = nOrderBy
;
3547 for(i
=1, pItem
=pOrderBy
->a
; i
<=nOrderBy
; i
++, pItem
++){
3549 assert( pItem
->u
.x
.iOrderByCol
>0 );
3550 assert( pItem
->u
.x
.iOrderByCol
<=p
->pEList
->nExpr
);
3551 aPermute
[i
] = pItem
->u
.x
.iOrderByCol
- 1;
3553 pKeyMerge
= multiSelectOrderByKeyInfo(pParse
, p
, 1);
3558 /* Allocate a range of temporary registers and the KeyInfo needed
3559 ** for the logic that removes duplicate result rows when the
3560 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
3565 int nExpr
= p
->pEList
->nExpr
;
3566 assert( nOrderBy
>=nExpr
|| db
->mallocFailed
);
3567 regPrev
= pParse
->nMem
+1;
3568 pParse
->nMem
+= nExpr
+1;
3569 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, regPrev
);
3570 pKeyDup
= sqlite3KeyInfoAlloc(db
, nExpr
, 1);
3572 assert( sqlite3KeyInfoIsWriteable(pKeyDup
) );
3573 for(i
=0; i
<nExpr
; i
++){
3574 pKeyDup
->aColl
[i
] = multiSelectCollSeq(pParse
, p
, i
);
3575 pKeyDup
->aSortFlags
[i
] = 0;
3580 /* Separate the left and the right query from one another
3583 if( (op
==TK_ALL
|| op
==TK_UNION
)
3584 && OptimizationEnabled(db
, SQLITE_BalancedMerge
)
3586 for(pSplit
=p
; pSplit
->pPrior
!=0 && pSplit
->op
==op
; pSplit
=pSplit
->pPrior
){
3588 assert( pSplit
->pPrior
->pNext
==pSplit
);
3595 for(i
=2; i
<nSelect
; i
+=2){ pSplit
= pSplit
->pPrior
; }
3597 pPrior
= pSplit
->pPrior
;
3598 assert( pPrior
!=0 );
3601 assert( p
->pOrderBy
== pOrderBy
);
3602 assert( pOrderBy
!=0 || db
->mallocFailed
);
3603 pPrior
->pOrderBy
= sqlite3ExprListDup(pParse
->db
, pOrderBy
, 0);
3604 sqlite3ResolveOrderGroupBy(pParse
, p
, p
->pOrderBy
, "ORDER");
3605 sqlite3ResolveOrderGroupBy(pParse
, pPrior
, pPrior
->pOrderBy
, "ORDER");
3607 /* Compute the limit registers */
3608 computeLimitRegisters(pParse
, p
, labelEnd
);
3609 if( p
->iLimit
&& op
==TK_ALL
){
3610 regLimitA
= ++pParse
->nMem
;
3611 regLimitB
= ++pParse
->nMem
;
3612 sqlite3VdbeAddOp2(v
, OP_Copy
, p
->iOffset
? p
->iOffset
+1 : p
->iLimit
,
3614 sqlite3VdbeAddOp2(v
, OP_Copy
, regLimitA
, regLimitB
);
3616 regLimitA
= regLimitB
= 0;
3618 sqlite3ExprDelete(db
, p
->pLimit
);
3621 regAddrA
= ++pParse
->nMem
;
3622 regAddrB
= ++pParse
->nMem
;
3623 regOutA
= ++pParse
->nMem
;
3624 regOutB
= ++pParse
->nMem
;
3625 sqlite3SelectDestInit(&destA
, SRT_Coroutine
, regAddrA
);
3626 sqlite3SelectDestInit(&destB
, SRT_Coroutine
, regAddrB
);
3628 ExplainQueryPlan((pParse
, 1, "MERGE (%s)", sqlite3SelectOpName(p
->op
)));
3630 /* Generate a coroutine to evaluate the SELECT statement to the
3631 ** left of the compound operator - the "A" select.
3633 addrSelectA
= sqlite3VdbeCurrentAddr(v
) + 1;
3634 addr1
= sqlite3VdbeAddOp3(v
, OP_InitCoroutine
, regAddrA
, 0, addrSelectA
);
3635 VdbeComment((v
, "left SELECT"));
3636 pPrior
->iLimit
= regLimitA
;
3637 ExplainQueryPlan((pParse
, 1, "LEFT"));
3638 sqlite3Select(pParse
, pPrior
, &destA
);
3639 sqlite3VdbeEndCoroutine(v
, regAddrA
);
3640 sqlite3VdbeJumpHere(v
, addr1
);
3642 /* Generate a coroutine to evaluate the SELECT statement on
3643 ** the right - the "B" select
3645 addrSelectB
= sqlite3VdbeCurrentAddr(v
) + 1;
3646 addr1
= sqlite3VdbeAddOp3(v
, OP_InitCoroutine
, regAddrB
, 0, addrSelectB
);
3647 VdbeComment((v
, "right SELECT"));
3648 savedLimit
= p
->iLimit
;
3649 savedOffset
= p
->iOffset
;
3650 p
->iLimit
= regLimitB
;
3652 ExplainQueryPlan((pParse
, 1, "RIGHT"));
3653 sqlite3Select(pParse
, p
, &destB
);
3654 p
->iLimit
= savedLimit
;
3655 p
->iOffset
= savedOffset
;
3656 sqlite3VdbeEndCoroutine(v
, regAddrB
);
3658 /* Generate a subroutine that outputs the current row of the A
3659 ** select as the next output row of the compound select.
3661 VdbeNoopComment((v
, "Output routine for A"));
3662 addrOutA
= generateOutputSubroutine(pParse
,
3663 p
, &destA
, pDest
, regOutA
,
3664 regPrev
, pKeyDup
, labelEnd
);
3666 /* Generate a subroutine that outputs the current row of the B
3667 ** select as the next output row of the compound select.
3669 if( op
==TK_ALL
|| op
==TK_UNION
){
3670 VdbeNoopComment((v
, "Output routine for B"));
3671 addrOutB
= generateOutputSubroutine(pParse
,
3672 p
, &destB
, pDest
, regOutB
,
3673 regPrev
, pKeyDup
, labelEnd
);
3675 sqlite3KeyInfoUnref(pKeyDup
);
3677 /* Generate a subroutine to run when the results from select A
3678 ** are exhausted and only data in select B remains.
3680 if( op
==TK_EXCEPT
|| op
==TK_INTERSECT
){
3681 addrEofA_noB
= addrEofA
= labelEnd
;
3683 VdbeNoopComment((v
, "eof-A subroutine"));
3684 addrEofA
= sqlite3VdbeAddOp2(v
, OP_Gosub
, regOutB
, addrOutB
);
3685 addrEofA_noB
= sqlite3VdbeAddOp2(v
, OP_Yield
, regAddrB
, labelEnd
);
3687 sqlite3VdbeGoto(v
, addrEofA
);
3688 p
->nSelectRow
= sqlite3LogEstAdd(p
->nSelectRow
, pPrior
->nSelectRow
);
3691 /* Generate a subroutine to run when the results from select B
3692 ** are exhausted and only data in select A remains.
3694 if( op
==TK_INTERSECT
){
3695 addrEofB
= addrEofA
;
3696 if( p
->nSelectRow
> pPrior
->nSelectRow
) p
->nSelectRow
= pPrior
->nSelectRow
;
3698 VdbeNoopComment((v
, "eof-B subroutine"));
3699 addrEofB
= sqlite3VdbeAddOp2(v
, OP_Gosub
, regOutA
, addrOutA
);
3700 sqlite3VdbeAddOp2(v
, OP_Yield
, regAddrA
, labelEnd
); VdbeCoverage(v
);
3701 sqlite3VdbeGoto(v
, addrEofB
);
3704 /* Generate code to handle the case of A<B
3706 VdbeNoopComment((v
, "A-lt-B subroutine"));
3707 addrAltB
= sqlite3VdbeAddOp2(v
, OP_Gosub
, regOutA
, addrOutA
);
3708 sqlite3VdbeAddOp2(v
, OP_Yield
, regAddrA
, addrEofA
); VdbeCoverage(v
);
3709 sqlite3VdbeGoto(v
, labelCmpr
);
3711 /* Generate code to handle the case of A==B
3714 addrAeqB
= addrAltB
;
3715 }else if( op
==TK_INTERSECT
){
3716 addrAeqB
= addrAltB
;
3719 VdbeNoopComment((v
, "A-eq-B subroutine"));
3721 sqlite3VdbeAddOp2(v
, OP_Yield
, regAddrA
, addrEofA
); VdbeCoverage(v
);
3722 sqlite3VdbeGoto(v
, labelCmpr
);
3725 /* Generate code to handle the case of A>B
3727 VdbeNoopComment((v
, "A-gt-B subroutine"));
3728 addrAgtB
= sqlite3VdbeCurrentAddr(v
);
3729 if( op
==TK_ALL
|| op
==TK_UNION
){
3730 sqlite3VdbeAddOp2(v
, OP_Gosub
, regOutB
, addrOutB
);
3732 sqlite3VdbeAddOp2(v
, OP_Yield
, regAddrB
, addrEofB
); VdbeCoverage(v
);
3733 sqlite3VdbeGoto(v
, labelCmpr
);
3735 /* This code runs once to initialize everything.
3737 sqlite3VdbeJumpHere(v
, addr1
);
3738 sqlite3VdbeAddOp2(v
, OP_Yield
, regAddrA
, addrEofA_noB
); VdbeCoverage(v
);
3739 sqlite3VdbeAddOp2(v
, OP_Yield
, regAddrB
, addrEofB
); VdbeCoverage(v
);
3741 /* Implement the main merge loop
3743 sqlite3VdbeResolveLabel(v
, labelCmpr
);
3744 sqlite3VdbeAddOp4(v
, OP_Permutation
, 0, 0, 0, (char*)aPermute
, P4_INTARRAY
);
3745 sqlite3VdbeAddOp4(v
, OP_Compare
, destA
.iSdst
, destB
.iSdst
, nOrderBy
,
3746 (char*)pKeyMerge
, P4_KEYINFO
);
3747 sqlite3VdbeChangeP5(v
, OPFLAG_PERMUTE
);
3748 sqlite3VdbeAddOp3(v
, OP_Jump
, addrAltB
, addrAeqB
, addrAgtB
); VdbeCoverage(v
);
3750 /* Jump to the this point in order to terminate the query.
3752 sqlite3VdbeResolveLabel(v
, labelEnd
);
3754 /* Make arrangements to free the 2nd and subsequent arms of the compound
3755 ** after the parse has finished */
3756 if( pSplit
->pPrior
){
3757 sqlite3ParserAddCleanup(pParse
, sqlite3SelectDeleteGeneric
, pSplit
->pPrior
);
3759 pSplit
->pPrior
= pPrior
;
3760 pPrior
->pNext
= pSplit
;
3761 sqlite3ExprListDelete(db
, pPrior
->pOrderBy
);
3762 pPrior
->pOrderBy
= 0;
3764 /*** TBD: Insert subroutine calls to close cursors on incomplete
3765 **** subqueries ****/
3766 ExplainQueryPlanPop(pParse
);
3767 return pParse
->nErr
!=0;
3771 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3773 /* An instance of the SubstContext object describes an substitution edit
3774 ** to be performed on a parse tree.
3776 ** All references to columns in table iTable are to be replaced by corresponding
3777 ** expressions in pEList.
3779 ** ## About "isOuterJoin":
3781 ** The isOuterJoin column indicates that the replacement will occur into a
3782 ** position in the parent that NULL-able due to an OUTER JOIN. Either the
3783 ** target slot in the parent is the right operand of a LEFT JOIN, or one of
3784 ** the left operands of a RIGHT JOIN. In either case, we need to potentially
3785 ** bypass the substituted expression with OP_IfNullRow.
3787 ** Suppose the original expression is an integer constant. Even though the table
3788 ** has the nullRow flag set, because the expression is an integer constant,
3789 ** it will not be NULLed out. So instead, we insert an OP_IfNullRow opcode
3790 ** that checks to see if the nullRow flag is set on the table. If the nullRow
3791 ** flag is set, then the value in the register is set to NULL and the original
3792 ** expression is bypassed. If the nullRow flag is not set, then the original
3793 ** expression runs to populate the register.
3795 ** Example where this is needed:
3797 ** CREATE TABLE t1(a INTEGER PRIMARY KEY, b INT);
3798 ** CREATE TABLE t2(x INT UNIQUE);
3800 ** SELECT a,b,m,x FROM t1 LEFT JOIN (SELECT 59 AS m,x FROM t2) ON b=x;
3802 ** When the subquery on the right side of the LEFT JOIN is flattened, we
3803 ** have to add OP_IfNullRow in front of the OP_Integer that implements the
3804 ** "m" value of the subquery so that a NULL will be loaded instead of 59
3805 ** when processing a non-matched row of the left.
3807 typedef struct SubstContext
{
3808 Parse
*pParse
; /* The parsing context */
3809 int iTable
; /* Replace references to this table */
3810 int iNewTable
; /* New table number */
3811 int isOuterJoin
; /* Add TK_IF_NULL_ROW opcodes on each replacement */
3812 ExprList
*pEList
; /* Replacement expressions */
3813 ExprList
*pCList
; /* Collation sequences for replacement expr */
3816 /* Forward Declarations */
3817 static void substExprList(SubstContext
*, ExprList
*);
3818 static void substSelect(SubstContext
*, Select
*, int);
3821 ** Scan through the expression pExpr. Replace every reference to
3822 ** a column in table number iTable with a copy of the iColumn-th
3823 ** entry in pEList. (But leave references to the ROWID column
3826 ** This routine is part of the flattening procedure. A subquery
3827 ** whose result set is defined by pEList appears as entry in the
3828 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3829 ** FORM clause entry is iTable. This routine makes the necessary
3830 ** changes to pExpr so that it refers directly to the source table
3831 ** of the subquery rather the result set of the subquery.
3833 static Expr
*substExpr(
3834 SubstContext
*pSubst
, /* Description of the substitution */
3835 Expr
*pExpr
/* Expr in which substitution occurs */
3837 if( pExpr
==0 ) return 0;
3838 if( ExprHasProperty(pExpr
, EP_OuterON
|EP_InnerON
)
3839 && pExpr
->w
.iJoin
==pSubst
->iTable
3841 testcase( ExprHasProperty(pExpr
, EP_InnerON
) );
3842 pExpr
->w
.iJoin
= pSubst
->iNewTable
;
3844 if( pExpr
->op
==TK_COLUMN
3845 && pExpr
->iTable
==pSubst
->iTable
3846 && !ExprHasProperty(pExpr
, EP_FixedCol
)
3848 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
3849 if( pExpr
->iColumn
<0 ){
3850 pExpr
->op
= TK_NULL
;
3858 iColumn
= pExpr
->iColumn
;
3859 assert( iColumn
>=0 );
3860 assert( pSubst
->pEList
!=0 && iColumn
<pSubst
->pEList
->nExpr
);
3861 assert( pExpr
->pRight
==0 );
3862 pCopy
= pSubst
->pEList
->a
[iColumn
].pExpr
;
3863 if( sqlite3ExprIsVector(pCopy
) ){
3864 sqlite3VectorErrorMsg(pSubst
->pParse
, pCopy
);
3866 sqlite3
*db
= pSubst
->pParse
->db
;
3867 if( pSubst
->isOuterJoin
3868 && (pCopy
->op
!=TK_COLUMN
|| pCopy
->iTable
!=pSubst
->iNewTable
)
3870 memset(&ifNullRow
, 0, sizeof(ifNullRow
));
3871 ifNullRow
.op
= TK_IF_NULL_ROW
;
3872 ifNullRow
.pLeft
= pCopy
;
3873 ifNullRow
.iTable
= pSubst
->iNewTable
;
3874 ifNullRow
.iColumn
= -99;
3875 ifNullRow
.flags
= EP_IfNullRow
;
3878 testcase( ExprHasProperty(pCopy
, EP_Subquery
) );
3879 pNew
= sqlite3ExprDup(db
, pCopy
, 0);
3880 if( db
->mallocFailed
){
3881 sqlite3ExprDelete(db
, pNew
);
3884 if( pSubst
->isOuterJoin
){
3885 ExprSetProperty(pNew
, EP_CanBeNull
);
3887 if( ExprHasProperty(pExpr
,EP_OuterON
|EP_InnerON
) ){
3888 sqlite3SetJoinExpr(pNew
, pExpr
->w
.iJoin
,
3889 pExpr
->flags
& (EP_OuterON
|EP_InnerON
));
3891 sqlite3ExprDelete(db
, pExpr
);
3893 if( pExpr
->op
==TK_TRUEFALSE
){
3894 pExpr
->u
.iValue
= sqlite3ExprTruthValue(pExpr
);
3895 pExpr
->op
= TK_INTEGER
;
3896 ExprSetProperty(pExpr
, EP_IntValue
);
3899 /* Ensure that the expression now has an implicit collation sequence,
3900 ** just as it did when it was a column of a view or sub-query. */
3902 CollSeq
*pNat
= sqlite3ExprCollSeq(pSubst
->pParse
, pExpr
);
3903 CollSeq
*pColl
= sqlite3ExprCollSeq(pSubst
->pParse
,
3904 pSubst
->pCList
->a
[iColumn
].pExpr
3906 if( pNat
!=pColl
|| (pExpr
->op
!=TK_COLUMN
&& pExpr
->op
!=TK_COLLATE
) ){
3907 pExpr
= sqlite3ExprAddCollateString(pSubst
->pParse
, pExpr
,
3908 (pColl
? pColl
->zName
: "BINARY")
3912 ExprClearProperty(pExpr
, EP_Collate
);
3916 if( pExpr
->op
==TK_IF_NULL_ROW
&& pExpr
->iTable
==pSubst
->iTable
){
3917 pExpr
->iTable
= pSubst
->iNewTable
;
3919 pExpr
->pLeft
= substExpr(pSubst
, pExpr
->pLeft
);
3920 pExpr
->pRight
= substExpr(pSubst
, pExpr
->pRight
);
3921 if( ExprUseXSelect(pExpr
) ){
3922 substSelect(pSubst
, pExpr
->x
.pSelect
, 1);
3924 substExprList(pSubst
, pExpr
->x
.pList
);
3926 #ifndef SQLITE_OMIT_WINDOWFUNC
3927 if( ExprHasProperty(pExpr
, EP_WinFunc
) ){
3928 Window
*pWin
= pExpr
->y
.pWin
;
3929 pWin
->pFilter
= substExpr(pSubst
, pWin
->pFilter
);
3930 substExprList(pSubst
, pWin
->pPartition
);
3931 substExprList(pSubst
, pWin
->pOrderBy
);
3937 static void substExprList(
3938 SubstContext
*pSubst
, /* Description of the substitution */
3939 ExprList
*pList
/* List to scan and in which to make substitutes */
3942 if( pList
==0 ) return;
3943 for(i
=0; i
<pList
->nExpr
; i
++){
3944 pList
->a
[i
].pExpr
= substExpr(pSubst
, pList
->a
[i
].pExpr
);
3947 static void substSelect(
3948 SubstContext
*pSubst
, /* Description of the substitution */
3949 Select
*p
, /* SELECT statement in which to make substitutions */
3950 int doPrior
/* Do substitutes on p->pPrior too */
3957 substExprList(pSubst
, p
->pEList
);
3958 substExprList(pSubst
, p
->pGroupBy
);
3959 substExprList(pSubst
, p
->pOrderBy
);
3960 p
->pHaving
= substExpr(pSubst
, p
->pHaving
);
3961 p
->pWhere
= substExpr(pSubst
, p
->pWhere
);
3964 for(i
=pSrc
->nSrc
, pItem
=pSrc
->a
; i
>0; i
--, pItem
++){
3965 substSelect(pSubst
, pItem
->pSelect
, 1);
3966 if( pItem
->fg
.isTabFunc
){
3967 substExprList(pSubst
, pItem
->u1
.pFuncArg
);
3970 }while( doPrior
&& (p
= p
->pPrior
)!=0 );
3972 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3974 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3976 ** pSelect is a SELECT statement and pSrcItem is one item in the FROM
3977 ** clause of that SELECT.
3979 ** This routine scans the entire SELECT statement and recomputes the
3980 ** pSrcItem->colUsed mask.
3982 static int recomputeColumnsUsedExpr(Walker
*pWalker
, Expr
*pExpr
){
3984 if( pExpr
->op
!=TK_COLUMN
) return WRC_Continue
;
3985 pItem
= pWalker
->u
.pSrcItem
;
3986 if( pItem
->iCursor
!=pExpr
->iTable
) return WRC_Continue
;
3987 if( pExpr
->iColumn
<0 ) return WRC_Continue
;
3988 pItem
->colUsed
|= sqlite3ExprColUsed(pExpr
);
3989 return WRC_Continue
;
3991 static void recomputeColumnsUsed(
3992 Select
*pSelect
, /* The complete SELECT statement */
3993 SrcItem
*pSrcItem
/* Which FROM clause item to recompute */
3996 if( NEVER(pSrcItem
->pTab
==0) ) return;
3997 memset(&w
, 0, sizeof(w
));
3998 w
.xExprCallback
= recomputeColumnsUsedExpr
;
3999 w
.xSelectCallback
= sqlite3SelectWalkNoop
;
4000 w
.u
.pSrcItem
= pSrcItem
;
4001 pSrcItem
->colUsed
= 0;
4002 sqlite3WalkSelect(&w
, pSelect
);
4004 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4006 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4008 ** Assign new cursor numbers to each of the items in pSrc. For each
4009 ** new cursor number assigned, set an entry in the aCsrMap[] array
4010 ** to map the old cursor number to the new:
4012 ** aCsrMap[iOld+1] = iNew;
4014 ** The array is guaranteed by the caller to be large enough for all
4015 ** existing cursor numbers in pSrc. aCsrMap[0] is the array size.
4017 ** If pSrc contains any sub-selects, call this routine recursively
4018 ** on the FROM clause of each such sub-select, with iExcept set to -1.
4020 static void srclistRenumberCursors(
4021 Parse
*pParse
, /* Parse context */
4022 int *aCsrMap
, /* Array to store cursor mappings in */
4023 SrcList
*pSrc
, /* FROM clause to renumber */
4024 int iExcept
/* FROM clause item to skip */
4028 for(i
=0, pItem
=pSrc
->a
; i
<pSrc
->nSrc
; i
++, pItem
++){
4031 assert( pItem
->iCursor
< aCsrMap
[0] );
4032 if( !pItem
->fg
.isRecursive
|| aCsrMap
[pItem
->iCursor
+1]==0 ){
4033 aCsrMap
[pItem
->iCursor
+1] = pParse
->nTab
++;
4035 pItem
->iCursor
= aCsrMap
[pItem
->iCursor
+1];
4036 for(p
=pItem
->pSelect
; p
; p
=p
->pPrior
){
4037 srclistRenumberCursors(pParse
, aCsrMap
, p
->pSrc
, -1);
4044 ** *piCursor is a cursor number. Change it if it needs to be mapped.
4046 static void renumberCursorDoMapping(Walker
*pWalker
, int *piCursor
){
4047 int *aCsrMap
= pWalker
->u
.aiCol
;
4048 int iCsr
= *piCursor
;
4049 if( iCsr
< aCsrMap
[0] && aCsrMap
[iCsr
+1]>0 ){
4050 *piCursor
= aCsrMap
[iCsr
+1];
4055 ** Expression walker callback used by renumberCursors() to update
4056 ** Expr objects to match newly assigned cursor numbers.
4058 static int renumberCursorsCb(Walker
*pWalker
, Expr
*pExpr
){
4060 if( op
==TK_COLUMN
|| op
==TK_IF_NULL_ROW
){
4061 renumberCursorDoMapping(pWalker
, &pExpr
->iTable
);
4063 if( ExprHasProperty(pExpr
, EP_OuterON
) ){
4064 renumberCursorDoMapping(pWalker
, &pExpr
->w
.iJoin
);
4066 return WRC_Continue
;
4070 ** Assign a new cursor number to each cursor in the FROM clause (Select.pSrc)
4071 ** of the SELECT statement passed as the second argument, and to each
4072 ** cursor in the FROM clause of any FROM clause sub-selects, recursively.
4073 ** Except, do not assign a new cursor number to the iExcept'th element in
4074 ** the FROM clause of (*p). Update all expressions and other references
4075 ** to refer to the new cursor numbers.
4077 ** Argument aCsrMap is an array that may be used for temporary working
4078 ** space. Two guarantees are made by the caller:
4080 ** * the array is larger than the largest cursor number used within the
4081 ** select statement passed as an argument, and
4083 ** * the array entries for all cursor numbers that do *not* appear in
4084 ** FROM clauses of the select statement as described above are
4085 ** initialized to zero.
4087 static void renumberCursors(
4088 Parse
*pParse
, /* Parse context */
4089 Select
*p
, /* Select to renumber cursors within */
4090 int iExcept
, /* FROM clause item to skip */
4091 int *aCsrMap
/* Working space */
4094 srclistRenumberCursors(pParse
, aCsrMap
, p
->pSrc
, iExcept
);
4095 memset(&w
, 0, sizeof(w
));
4096 w
.u
.aiCol
= aCsrMap
;
4097 w
.xExprCallback
= renumberCursorsCb
;
4098 w
.xSelectCallback
= sqlite3SelectWalkNoop
;
4099 sqlite3WalkSelect(&w
, p
);
4101 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4104 ** If pSel is not part of a compound SELECT, return a pointer to its
4105 ** expression list. Otherwise, return a pointer to the expression list
4106 ** of the leftmost SELECT in the compound.
4108 static ExprList
*findLeftmostExprlist(Select
*pSel
){
4109 while( pSel
->pPrior
){
4110 pSel
= pSel
->pPrior
;
4112 return pSel
->pEList
;
4116 ** Return true if any of the result-set columns in the compound query
4117 ** have incompatible affinities on one or more arms of the compound.
4119 static int compoundHasDifferentAffinities(Select
*p
){
4123 assert( p
->pEList
!=0 );
4124 assert( p
->pPrior
!=0 );
4126 for(ii
=0; ii
<pList
->nExpr
; ii
++){
4129 assert( pList
->a
[ii
].pExpr
!=0 );
4130 aff
= sqlite3ExprAffinity(pList
->a
[ii
].pExpr
);
4131 for(pSub1
=p
->pPrior
; pSub1
; pSub1
=pSub1
->pPrior
){
4132 assert( pSub1
->pEList
!=0 );
4133 assert( pSub1
->pEList
->nExpr
>ii
);
4134 assert( pSub1
->pEList
->a
[ii
].pExpr
!=0 );
4135 if( sqlite3ExprAffinity(pSub1
->pEList
->a
[ii
].pExpr
)!=aff
){
4143 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4145 ** This routine attempts to flatten subqueries as a performance optimization.
4146 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
4148 ** To understand the concept of flattening, consider the following
4151 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
4153 ** The default way of implementing this query is to execute the
4154 ** subquery first and store the results in a temporary table, then
4155 ** run the outer query on that temporary table. This requires two
4156 ** passes over the data. Furthermore, because the temporary table
4157 ** has no indices, the WHERE clause on the outer query cannot be
4160 ** This routine attempts to rewrite queries such as the above into
4161 ** a single flat select, like this:
4163 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
4165 ** The code generated for this simplification gives the same result
4166 ** but only has to scan the data once. And because indices might
4167 ** exist on the table t1, a complete scan of the data might be
4170 ** Flattening is subject to the following constraints:
4172 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
4173 ** The subquery and the outer query cannot both be aggregates.
4175 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
4176 ** (2) If the subquery is an aggregate then
4177 ** (2a) the outer query must not be a join and
4178 ** (2b) the outer query must not use subqueries
4179 ** other than the one FROM-clause subquery that is a candidate
4180 ** for flattening. (This is due to ticket [2f7170d73bf9abf80]
4181 ** from 2015-02-09.)
4183 ** (3) If the subquery is the right operand of a LEFT JOIN then
4184 ** (3a) the subquery may not be a join and
4185 ** (3b) the FROM clause of the subquery may not contain a virtual
4187 ** (**) Was: "The outer query may not have a GROUP BY." This case
4188 ** is now managed correctly
4189 ** (3d) the outer query may not be DISTINCT.
4190 ** See also (26) for restrictions on RIGHT JOIN.
4192 ** (4) The subquery can not be DISTINCT.
4194 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT
4195 ** sub-queries that were excluded from this optimization. Restriction
4196 ** (4) has since been expanded to exclude all DISTINCT subqueries.
4198 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
4199 ** If the subquery is aggregate, the outer query may not be DISTINCT.
4201 ** (7) The subquery must have a FROM clause. TODO: For subqueries without
4202 ** A FROM clause, consider adding a FROM clause with the special
4203 ** table sqlite_once that consists of a single row containing a
4206 ** (8) If the subquery uses LIMIT then the outer query may not be a join.
4208 ** (9) If the subquery uses LIMIT then the outer query may not be aggregate.
4210 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we
4211 ** accidentally carried the comment forward until 2014-09-15. Original
4212 ** constraint: "If the subquery is aggregate then the outer query
4213 ** may not use LIMIT."
4215 ** (11) The subquery and the outer query may not both have ORDER BY clauses.
4217 ** (**) Not implemented. Subsumed into restriction (3). Was previously
4218 ** a separate restriction deriving from ticket #350.
4220 ** (13) The subquery and outer query may not both use LIMIT.
4222 ** (14) The subquery may not use OFFSET.
4224 ** (15) If the outer query is part of a compound select, then the
4225 ** subquery may not use LIMIT.
4226 ** (See ticket #2339 and ticket [02a8e81d44]).
4228 ** (16) If the outer query is aggregate, then the subquery may not
4229 ** use ORDER BY. (Ticket #2942) This used to not matter
4230 ** until we introduced the group_concat() function.
4232 ** (17) If the subquery is a compound select, then
4233 ** (17a) all compound operators must be a UNION ALL, and
4234 ** (17b) no terms within the subquery compound may be aggregate
4236 ** (17c) every term within the subquery compound must have a FROM clause
4237 ** (17d) the outer query may not be
4238 ** (17d1) aggregate, or
4240 ** (17e) the subquery may not contain window functions, and
4241 ** (17f) the subquery must not be the RHS of a LEFT JOIN.
4242 ** (17g) either the subquery is the first element of the outer
4243 ** query or there are no RIGHT or FULL JOINs in any arm
4244 ** of the subquery. (This is a duplicate of condition (27b).)
4245 ** (17h) The corresponding result set expressions in all arms of the
4246 ** compound must have the same affinity.
4248 ** The parent and sub-query may contain WHERE clauses. Subject to
4249 ** rules (11), (13) and (14), they may also contain ORDER BY,
4250 ** LIMIT and OFFSET clauses. The subquery cannot use any compound
4251 ** operator other than UNION ALL because all the other compound
4252 ** operators have an implied DISTINCT which is disallowed by
4255 ** Also, each component of the sub-query must return the same number
4256 ** of result columns. This is actually a requirement for any compound
4257 ** SELECT statement, but all the code here does is make sure that no
4258 ** such (illegal) sub-query is flattened. The caller will detect the
4259 ** syntax error and return a detailed message.
4261 ** (18) If the sub-query is a compound select, then all terms of the
4262 ** ORDER BY clause of the parent must be copies of a term returned
4263 ** by the parent query.
4265 ** (19) If the subquery uses LIMIT then the outer query may not
4266 ** have a WHERE clause.
4268 ** (20) If the sub-query is a compound select, then it must not use
4269 ** an ORDER BY clause. Ticket #3773. We could relax this constraint
4270 ** somewhat by saying that the terms of the ORDER BY clause must
4271 ** appear as unmodified result columns in the outer query. But we
4272 ** have other optimizations in mind to deal with that case.
4274 ** (21) If the subquery uses LIMIT then the outer query may not be
4275 ** DISTINCT. (See ticket [752e1646fc]).
4277 ** (22) The subquery may not be a recursive CTE.
4279 ** (23) If the outer query is a recursive CTE, then the sub-query may not be
4280 ** a compound query. This restriction is because transforming the
4281 ** parent to a compound query confuses the code that handles
4282 ** recursive queries in multiSelect().
4284 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
4285 ** The subquery may not be an aggregate that uses the built-in min() or
4286 ** or max() functions. (Without this restriction, a query like:
4287 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
4288 ** return the value X for which Y was maximal.)
4290 ** (25) If either the subquery or the parent query contains a window
4291 ** function in the select list or ORDER BY clause, flattening
4292 ** is not attempted.
4294 ** (26) The subquery may not be the right operand of a RIGHT JOIN.
4295 ** See also (3) for restrictions on LEFT JOIN.
4297 ** (27) The subquery may not contain a FULL or RIGHT JOIN unless it
4298 ** is the first element of the parent query. Two subcases:
4299 ** (27a) the subquery is not a compound query.
4300 ** (27b) the subquery is a compound query and the RIGHT JOIN occurs
4301 ** in any arm of the compound query. (See also (17g).)
4303 ** (28) The subquery is not a MATERIALIZED CTE. (This is handled
4304 ** in the caller before ever reaching this routine.)
4307 ** In this routine, the "p" parameter is a pointer to the outer query.
4308 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query
4311 ** If flattening is not attempted, this routine is a no-op and returns 0.
4312 ** If flattening is attempted this routine returns 1.
4314 ** All of the expression analysis must occur on both the outer query and
4315 ** the subquery before this routine runs.
4317 static int flattenSubquery(
4318 Parse
*pParse
, /* Parsing context */
4319 Select
*p
, /* The parent or outer SELECT statement */
4320 int iFrom
, /* Index in p->pSrc->a[] of the inner subquery */
4321 int isAgg
/* True if outer SELECT uses aggregate functions */
4323 const char *zSavedAuthContext
= pParse
->zAuthContext
;
4324 Select
*pParent
; /* Current UNION ALL term of the other query */
4325 Select
*pSub
; /* The inner query or "subquery" */
4326 Select
*pSub1
; /* Pointer to the rightmost select in sub-query */
4327 SrcList
*pSrc
; /* The FROM clause of the outer query */
4328 SrcList
*pSubSrc
; /* The FROM clause of the subquery */
4329 int iParent
; /* VDBE cursor number of the pSub result set temp table */
4330 int iNewParent
= -1;/* Replacement table for iParent */
4331 int isOuterJoin
= 0; /* True if pSub is the right side of a LEFT JOIN */
4332 int i
; /* Loop counter */
4333 Expr
*pWhere
; /* The WHERE clause */
4334 SrcItem
*pSubitem
; /* The subquery */
4335 sqlite3
*db
= pParse
->db
;
4336 Walker w
; /* Walker to persist agginfo data */
4339 /* Check to see if flattening is permitted. Return 0 if not.
4342 assert( p
->pPrior
==0 );
4343 if( OptimizationDisabled(db
, SQLITE_QueryFlattener
) ) return 0;
4345 assert( pSrc
&& iFrom
>=0 && iFrom
<pSrc
->nSrc
);
4346 pSubitem
= &pSrc
->a
[iFrom
];
4347 iParent
= pSubitem
->iCursor
;
4348 pSub
= pSubitem
->pSelect
;
4351 #ifndef SQLITE_OMIT_WINDOWFUNC
4352 if( p
->pWin
|| pSub
->pWin
) return 0; /* Restriction (25) */
4355 pSubSrc
= pSub
->pSrc
;
4357 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
4358 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
4359 ** because they could be computed at compile-time. But when LIMIT and OFFSET
4360 ** became arbitrary expressions, we were forced to add restrictions (13)
4362 if( pSub
->pLimit
&& p
->pLimit
) return 0; /* Restriction (13) */
4363 if( pSub
->pLimit
&& pSub
->pLimit
->pRight
) return 0; /* Restriction (14) */
4364 if( (p
->selFlags
& SF_Compound
)!=0 && pSub
->pLimit
){
4365 return 0; /* Restriction (15) */
4367 if( pSubSrc
->nSrc
==0 ) return 0; /* Restriction (7) */
4368 if( pSub
->selFlags
& SF_Distinct
) return 0; /* Restriction (4) */
4369 if( pSub
->pLimit
&& (pSrc
->nSrc
>1 || isAgg
) ){
4370 return 0; /* Restrictions (8)(9) */
4372 if( p
->pOrderBy
&& pSub
->pOrderBy
){
4373 return 0; /* Restriction (11) */
4375 if( isAgg
&& pSub
->pOrderBy
) return 0; /* Restriction (16) */
4376 if( pSub
->pLimit
&& p
->pWhere
) return 0; /* Restriction (19) */
4377 if( pSub
->pLimit
&& (p
->selFlags
& SF_Distinct
)!=0 ){
4378 return 0; /* Restriction (21) */
4380 if( pSub
->selFlags
& (SF_Recursive
) ){
4381 return 0; /* Restrictions (22) */
4385 ** If the subquery is the right operand of a LEFT JOIN, then the
4386 ** subquery may not be a join itself (3a). Example of why this is not
4389 ** t1 LEFT OUTER JOIN (t2 JOIN t3)
4391 ** If we flatten the above, we would get
4393 ** (t1 LEFT OUTER JOIN t2) JOIN t3
4395 ** which is not at all the same thing.
4397 ** See also tickets #306, #350, and #3300.
4399 if( (pSubitem
->fg
.jointype
& (JT_OUTER
|JT_LTORJ
))!=0 ){
4400 if( pSubSrc
->nSrc
>1 /* (3a) */
4401 || IsVirtual(pSubSrc
->a
[0].pTab
) /* (3b) */
4402 || (p
->selFlags
& SF_Distinct
)!=0 /* (3d) */
4403 || (pSubitem
->fg
.jointype
& JT_RIGHT
)!=0 /* (26) */
4410 assert( pSubSrc
->nSrc
>0 ); /* True by restriction (7) */
4411 if( iFrom
>0 && (pSubSrc
->a
[0].fg
.jointype
& JT_LTORJ
)!=0 ){
4412 return 0; /* Restriction (27a) */
4415 /* Condition (28) is blocked by the caller */
4416 assert( !pSubitem
->fg
.isCte
|| pSubitem
->u2
.pCteUse
->eM10d
!=M10d_Yes
);
4418 /* Restriction (17): If the sub-query is a compound SELECT, then it must
4419 ** use only the UNION ALL operator. And none of the simple select queries
4420 ** that make up the compound SELECT are allowed to be aggregate or distinct
4425 if( pSub
->pOrderBy
){
4426 return 0; /* Restriction (20) */
4428 if( isAgg
|| (p
->selFlags
& SF_Distinct
)!=0 || isOuterJoin
>0 ){
4429 return 0; /* (17d1), (17d2), or (17f) */
4431 for(pSub1
=pSub
; pSub1
; pSub1
=pSub1
->pPrior
){
4432 testcase( (pSub1
->selFlags
& (SF_Distinct
|SF_Aggregate
))==SF_Distinct
);
4433 testcase( (pSub1
->selFlags
& (SF_Distinct
|SF_Aggregate
))==SF_Aggregate
);
4434 assert( pSub
->pSrc
!=0 );
4435 assert( (pSub
->selFlags
& SF_Recursive
)==0 );
4436 assert( pSub
->pEList
->nExpr
==pSub1
->pEList
->nExpr
);
4437 if( (pSub1
->selFlags
& (SF_Distinct
|SF_Aggregate
))!=0 /* (17b) */
4438 || (pSub1
->pPrior
&& pSub1
->op
!=TK_ALL
) /* (17a) */
4439 || pSub1
->pSrc
->nSrc
<1 /* (17c) */
4440 #ifndef SQLITE_OMIT_WINDOWFUNC
4441 || pSub1
->pWin
/* (17e) */
4446 if( iFrom
>0 && (pSub1
->pSrc
->a
[0].fg
.jointype
& JT_LTORJ
)!=0 ){
4447 /* Without this restriction, the JT_LTORJ flag would end up being
4448 ** omitted on left-hand tables of the right join that is being
4450 return 0; /* Restrictions (17g), (27b) */
4452 testcase( pSub1
->pSrc
->nSrc
>1 );
4455 /* Restriction (18). */
4457 for(ii
=0; ii
<p
->pOrderBy
->nExpr
; ii
++){
4458 if( p
->pOrderBy
->a
[ii
].u
.x
.iOrderByCol
==0 ) return 0;
4462 /* Restriction (23) */
4463 if( (p
->selFlags
& SF_Recursive
) ) return 0;
4465 /* Restriction (17h) */
4466 if( compoundHasDifferentAffinities(pSub
) ) return 0;
4469 if( pParse
->nSelect
>500 ) return 0;
4470 if( OptimizationDisabled(db
, SQLITE_FlttnUnionAll
) ) return 0;
4471 aCsrMap
= sqlite3DbMallocZero(db
, ((i64
)pParse
->nTab
+1)*sizeof(int));
4472 if( aCsrMap
) aCsrMap
[0] = pParse
->nTab
;
4476 /***** If we reach this point, flattening is permitted. *****/
4477 TREETRACE(0x4,pParse
,p
,("flatten %u.%p from term %d\n",
4478 pSub
->selId
, pSub
, iFrom
));
4480 /* Authorize the subquery */
4481 pParse
->zAuthContext
= pSubitem
->zName
;
4482 TESTONLY(i
=) sqlite3AuthCheck(pParse
, SQLITE_SELECT
, 0, 0, 0);
4483 testcase( i
==SQLITE_DENY
);
4484 pParse
->zAuthContext
= zSavedAuthContext
;
4486 /* Delete the transient structures associated with the subquery */
4487 pSub1
= pSubitem
->pSelect
;
4488 sqlite3DbFree(db
, pSubitem
->zDatabase
);
4489 sqlite3DbFree(db
, pSubitem
->zName
);
4490 sqlite3DbFree(db
, pSubitem
->zAlias
);
4491 pSubitem
->zDatabase
= 0;
4492 pSubitem
->zName
= 0;
4493 pSubitem
->zAlias
= 0;
4494 pSubitem
->pSelect
= 0;
4495 assert( pSubitem
->fg
.isUsing
!=0 || pSubitem
->u3
.pOn
==0 );
4497 /* If the sub-query is a compound SELECT statement, then (by restrictions
4498 ** 17 and 18 above) it must be a UNION ALL and the parent query must
4501 ** SELECT <expr-list> FROM (<sub-query>) <where-clause>
4503 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
4504 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
4505 ** OFFSET clauses and joins them to the left-hand-side of the original
4506 ** using UNION ALL operators. In this case N is the number of simple
4507 ** select statements in the compound sub-query.
4511 ** SELECT a+1 FROM (
4512 ** SELECT x FROM tab
4514 ** SELECT y FROM tab
4516 ** SELECT abs(z*2) FROM tab2
4517 ** ) WHERE a!=5 ORDER BY 1
4519 ** Transformed into:
4521 ** SELECT x+1 FROM tab WHERE x+1!=5
4523 ** SELECT y+1 FROM tab WHERE y+1!=5
4525 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
4528 ** We call this the "compound-subquery flattening".
4530 for(pSub
=pSub
->pPrior
; pSub
; pSub
=pSub
->pPrior
){
4532 ExprList
*pOrderBy
= p
->pOrderBy
;
4533 Expr
*pLimit
= p
->pLimit
;
4534 Select
*pPrior
= p
->pPrior
;
4535 Table
*pItemTab
= pSubitem
->pTab
;
4540 pNew
= sqlite3SelectDup(db
, p
, 0);
4542 p
->pOrderBy
= pOrderBy
;
4544 pSubitem
->pTab
= pItemTab
;
4548 pNew
->selId
= ++pParse
->nSelect
;
4549 if( aCsrMap
&& ALWAYS(db
->mallocFailed
==0) ){
4550 renumberCursors(pParse
, pNew
, iFrom
, aCsrMap
);
4552 pNew
->pPrior
= pPrior
;
4553 if( pPrior
) pPrior
->pNext
= pNew
;
4556 TREETRACE(0x4,pParse
,p
,("compound-subquery flattener"
4557 " creates %u as peer\n",pNew
->selId
));
4559 assert( pSubitem
->pSelect
==0 );
4561 sqlite3DbFree(db
, aCsrMap
);
4562 if( db
->mallocFailed
){
4563 pSubitem
->pSelect
= pSub1
;
4567 /* Defer deleting the Table object associated with the
4568 ** subquery until code generation is
4569 ** complete, since there may still exist Expr.pTab entries that
4570 ** refer to the subquery even after flattening. Ticket #3346.
4572 ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
4574 if( ALWAYS(pSubitem
->pTab
!=0) ){
4575 Table
*pTabToDel
= pSubitem
->pTab
;
4576 if( pTabToDel
->nTabRef
==1 ){
4577 Parse
*pToplevel
= sqlite3ParseToplevel(pParse
);
4578 sqlite3ParserAddCleanup(pToplevel
, sqlite3DeleteTableGeneric
, pTabToDel
);
4579 testcase( pToplevel
->earlyCleanup
);
4581 pTabToDel
->nTabRef
--;
4586 /* The following loop runs once for each term in a compound-subquery
4587 ** flattening (as described above). If we are doing a different kind
4588 ** of flattening - a flattening other than a compound-subquery flattening -
4589 ** then this loop only runs once.
4591 ** This loop moves all of the FROM elements of the subquery into the
4592 ** the FROM clause of the outer query. Before doing this, remember
4593 ** the cursor number for the original outer query FROM element in
4594 ** iParent. The iParent cursor will never be used. Subsequent code
4595 ** will scan expressions looking for iParent references and replace
4596 ** those references with expressions that resolve to the subquery FROM
4597 ** elements we are now copying in.
4600 for(pParent
=p
; pParent
; pParent
=pParent
->pPrior
, pSub
=pSub
->pPrior
){
4603 u8 ltorj
= pSrc
->a
[iFrom
].fg
.jointype
& JT_LTORJ
;
4605 pSubSrc
= pSub
->pSrc
; /* FROM clause of subquery */
4606 nSubSrc
= pSubSrc
->nSrc
; /* Number of terms in subquery FROM clause */
4607 pSrc
= pParent
->pSrc
; /* FROM clause of the outer query */
4610 jointype
= pSubitem
->fg
.jointype
; /* First time through the loop */
4613 /* The subquery uses a single slot of the FROM clause of the outer
4614 ** query. If the subquery has more than one element in its FROM clause,
4615 ** then expand the outer query to make space for it to hold all elements
4620 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
4622 ** The outer query has 3 slots in its FROM clause. One slot of the
4623 ** outer query (the middle slot) is used by the subquery. The next
4624 ** block of code will expand the outer query FROM clause to 4 slots.
4625 ** The middle slot is expanded to two slots in order to make space
4626 ** for the two elements in the FROM clause of the subquery.
4629 pSrc
= sqlite3SrcListEnlarge(pParse
, pSrc
, nSubSrc
-1,iFrom
+1);
4630 if( pSrc
==0 ) break;
4631 pParent
->pSrc
= pSrc
;
4634 /* Transfer the FROM clause terms from the subquery into the
4637 for(i
=0; i
<nSubSrc
; i
++){
4638 SrcItem
*pItem
= &pSrc
->a
[i
+iFrom
];
4639 if( pItem
->fg
.isUsing
) sqlite3IdListDelete(db
, pItem
->u3
.pUsing
);
4640 assert( pItem
->fg
.isTabFunc
==0 );
4641 *pItem
= pSubSrc
->a
[i
];
4642 pItem
->fg
.jointype
|= ltorj
;
4643 iNewParent
= pSubSrc
->a
[i
].iCursor
;
4644 memset(&pSubSrc
->a
[i
], 0, sizeof(pSubSrc
->a
[i
]));
4646 pSrc
->a
[iFrom
].fg
.jointype
&= JT_LTORJ
;
4647 pSrc
->a
[iFrom
].fg
.jointype
|= jointype
| ltorj
;
4649 /* Now begin substituting subquery result set expressions for
4650 ** references to the iParent in the outer query.
4654 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
4655 ** \ \_____________ subquery __________/ /
4656 ** \_____________________ outer query ______________________________/
4658 ** We look at every expression in the outer query and every place we see
4659 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
4661 if( pSub
->pOrderBy
&& (pParent
->selFlags
& SF_NoopOrderBy
)==0 ){
4662 /* At this point, any non-zero iOrderByCol values indicate that the
4663 ** ORDER BY column expression is identical to the iOrderByCol'th
4664 ** expression returned by SELECT statement pSub. Since these values
4665 ** do not necessarily correspond to columns in SELECT statement pParent,
4666 ** zero them before transferring the ORDER BY clause.
4668 ** Not doing this may cause an error if a subsequent call to this
4669 ** function attempts to flatten a compound sub-query into pParent
4670 ** (the only way this can happen is if the compound sub-query is
4671 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */
4672 ExprList
*pOrderBy
= pSub
->pOrderBy
;
4673 for(i
=0; i
<pOrderBy
->nExpr
; i
++){
4674 pOrderBy
->a
[i
].u
.x
.iOrderByCol
= 0;
4676 assert( pParent
->pOrderBy
==0 );
4677 pParent
->pOrderBy
= pOrderBy
;
4680 pWhere
= pSub
->pWhere
;
4682 if( isOuterJoin
>0 ){
4683 sqlite3SetJoinExpr(pWhere
, iNewParent
, EP_OuterON
);
4686 if( pParent
->pWhere
){
4687 pParent
->pWhere
= sqlite3PExpr(pParse
, TK_AND
, pWhere
, pParent
->pWhere
);
4689 pParent
->pWhere
= pWhere
;
4692 if( db
->mallocFailed
==0 ){
4696 x
.iNewTable
= iNewParent
;
4697 x
.isOuterJoin
= isOuterJoin
;
4698 x
.pEList
= pSub
->pEList
;
4699 x
.pCList
= findLeftmostExprlist(pSub
);
4700 substSelect(&x
, pParent
, 0);
4703 /* The flattened query is a compound if either the inner or the
4704 ** outer query is a compound. */
4705 pParent
->selFlags
|= pSub
->selFlags
& SF_Compound
;
4706 assert( (pSub
->selFlags
& SF_Distinct
)==0 ); /* restriction (17b) */
4709 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
4711 ** One is tempted to try to add a and b to combine the limits. But this
4712 ** does not work if either limit is negative.
4715 pParent
->pLimit
= pSub
->pLimit
;
4719 /* Recompute the SrcItem.colUsed masks for the flattened
4721 for(i
=0; i
<nSubSrc
; i
++){
4722 recomputeColumnsUsed(pParent
, &pSrc
->a
[i
+iFrom
]);
4726 /* Finally, delete what is left of the subquery and return success.
4728 sqlite3AggInfoPersistWalkerInit(&w
, pParse
);
4729 sqlite3WalkSelect(&w
,pSub1
);
4730 sqlite3SelectDelete(db
, pSub1
);
4732 #if TREETRACE_ENABLED
4733 if( sqlite3TreeTrace
& 0x4 ){
4734 TREETRACE(0x4,pParse
,p
,("After flattening:\n"));
4735 sqlite3TreeViewSelect(0, p
, 0);
4741 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4744 ** A structure to keep track of all of the column values that are fixed to
4745 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE.
4747 typedef struct WhereConst WhereConst
;
4749 Parse
*pParse
; /* Parsing context */
4750 u8
*pOomFault
; /* Pointer to pParse->db->mallocFailed */
4751 int nConst
; /* Number for COLUMN=CONSTANT terms */
4752 int nChng
; /* Number of times a constant is propagated */
4753 int bHasAffBlob
; /* At least one column in apExpr[] as affinity BLOB */
4754 u32 mExcludeOn
; /* Which ON expressions to exclude from considertion.
4755 ** Either EP_OuterON or EP_InnerON|EP_OuterON */
4756 Expr
**apExpr
; /* [i*2] is COLUMN and [i*2+1] is VALUE */
4760 ** Add a new entry to the pConst object. Except, do not add duplicate
4761 ** pColumn entries. Also, do not add if doing so would not be appropriate.
4763 ** The caller guarantees the pColumn is a column and pValue is a constant.
4764 ** This routine has to do some additional checks before completing the
4767 static void constInsert(
4768 WhereConst
*pConst
, /* The WhereConst into which we are inserting */
4769 Expr
*pColumn
, /* The COLUMN part of the constraint */
4770 Expr
*pValue
, /* The VALUE part of the constraint */
4771 Expr
*pExpr
/* Overall expression: COLUMN=VALUE or VALUE=COLUMN */
4774 assert( pColumn
->op
==TK_COLUMN
);
4775 assert( sqlite3ExprIsConstant(pValue
) );
4777 if( ExprHasProperty(pColumn
, EP_FixedCol
) ) return;
4778 if( sqlite3ExprAffinity(pValue
)!=0 ) return;
4779 if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst
->pParse
,pExpr
)) ){
4783 /* 2018-10-25 ticket [cf5ed20f]
4784 ** Make sure the same pColumn is not inserted more than once */
4785 for(i
=0; i
<pConst
->nConst
; i
++){
4786 const Expr
*pE2
= pConst
->apExpr
[i
*2];
4787 assert( pE2
->op
==TK_COLUMN
);
4788 if( pE2
->iTable
==pColumn
->iTable
4789 && pE2
->iColumn
==pColumn
->iColumn
4791 return; /* Already present. Return without doing anything. */
4794 if( sqlite3ExprAffinity(pColumn
)==SQLITE_AFF_BLOB
){
4795 pConst
->bHasAffBlob
= 1;
4799 pConst
->apExpr
= sqlite3DbReallocOrFree(pConst
->pParse
->db
, pConst
->apExpr
,
4800 pConst
->nConst
*2*sizeof(Expr
*));
4801 if( pConst
->apExpr
==0 ){
4804 pConst
->apExpr
[pConst
->nConst
*2-2] = pColumn
;
4805 pConst
->apExpr
[pConst
->nConst
*2-1] = pValue
;
4810 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE
4811 ** is a constant expression and where the term must be true because it
4812 ** is part of the AND-connected terms of the expression. For each term
4813 ** found, add it to the pConst structure.
4815 static void findConstInWhere(WhereConst
*pConst
, Expr
*pExpr
){
4816 Expr
*pRight
, *pLeft
;
4817 if( NEVER(pExpr
==0) ) return;
4818 if( ExprHasProperty(pExpr
, pConst
->mExcludeOn
) ){
4819 testcase( ExprHasProperty(pExpr
, EP_OuterON
) );
4820 testcase( ExprHasProperty(pExpr
, EP_InnerON
) );
4823 if( pExpr
->op
==TK_AND
){
4824 findConstInWhere(pConst
, pExpr
->pRight
);
4825 findConstInWhere(pConst
, pExpr
->pLeft
);
4828 if( pExpr
->op
!=TK_EQ
) return;
4829 pRight
= pExpr
->pRight
;
4830 pLeft
= pExpr
->pLeft
;
4831 assert( pRight
!=0 );
4833 if( pRight
->op
==TK_COLUMN
&& sqlite3ExprIsConstant(pLeft
) ){
4834 constInsert(pConst
,pRight
,pLeft
,pExpr
);
4836 if( pLeft
->op
==TK_COLUMN
&& sqlite3ExprIsConstant(pRight
) ){
4837 constInsert(pConst
,pLeft
,pRight
,pExpr
);
4842 ** This is a helper function for Walker callback propagateConstantExprRewrite().
4844 ** Argument pExpr is a candidate expression to be replaced by a value. If
4845 ** pExpr is equivalent to one of the columns named in pWalker->u.pConst,
4846 ** then overwrite it with the corresponding value. Except, do not do so
4847 ** if argument bIgnoreAffBlob is non-zero and the affinity of pExpr
4848 ** is SQLITE_AFF_BLOB.
4850 static int propagateConstantExprRewriteOne(
4856 if( pConst
->pOomFault
[0] ) return WRC_Prune
;
4857 if( pExpr
->op
!=TK_COLUMN
) return WRC_Continue
;
4858 if( ExprHasProperty(pExpr
, EP_FixedCol
|pConst
->mExcludeOn
) ){
4859 testcase( ExprHasProperty(pExpr
, EP_FixedCol
) );
4860 testcase( ExprHasProperty(pExpr
, EP_OuterON
) );
4861 testcase( ExprHasProperty(pExpr
, EP_InnerON
) );
4862 return WRC_Continue
;
4864 for(i
=0; i
<pConst
->nConst
; i
++){
4865 Expr
*pColumn
= pConst
->apExpr
[i
*2];
4866 if( pColumn
==pExpr
) continue;
4867 if( pColumn
->iTable
!=pExpr
->iTable
) continue;
4868 if( pColumn
->iColumn
!=pExpr
->iColumn
) continue;
4869 if( bIgnoreAffBlob
&& sqlite3ExprAffinity(pColumn
)==SQLITE_AFF_BLOB
){
4872 /* A match is found. Add the EP_FixedCol property */
4874 ExprClearProperty(pExpr
, EP_Leaf
);
4875 ExprSetProperty(pExpr
, EP_FixedCol
);
4876 assert( pExpr
->pLeft
==0 );
4877 pExpr
->pLeft
= sqlite3ExprDup(pConst
->pParse
->db
, pConst
->apExpr
[i
*2+1], 0);
4878 if( pConst
->pParse
->db
->mallocFailed
) return WRC_Prune
;
4885 ** This is a Walker expression callback. pExpr is a node from the WHERE
4886 ** clause of a SELECT statement. This function examines pExpr to see if
4887 ** any substitutions based on the contents of pWalker->u.pConst should
4888 ** be made to pExpr or its immediate children.
4890 ** A substitution is made if:
4892 ** + pExpr is a column with an affinity other than BLOB that matches
4893 ** one of the columns in pWalker->u.pConst, or
4895 ** + pExpr is a binary comparison operator (=, <=, >=, <, >) that
4896 ** uses an affinity other than TEXT and one of its immediate
4897 ** children is a column that matches one of the columns in
4898 ** pWalker->u.pConst.
4900 static int propagateConstantExprRewrite(Walker
*pWalker
, Expr
*pExpr
){
4901 WhereConst
*pConst
= pWalker
->u
.pConst
;
4902 assert( TK_GT
==TK_EQ
+1 );
4903 assert( TK_LE
==TK_EQ
+2 );
4904 assert( TK_LT
==TK_EQ
+3 );
4905 assert( TK_GE
==TK_EQ
+4 );
4906 if( pConst
->bHasAffBlob
){
4907 if( (pExpr
->op
>=TK_EQ
&& pExpr
->op
<=TK_GE
)
4910 propagateConstantExprRewriteOne(pConst
, pExpr
->pLeft
, 0);
4911 if( pConst
->pOomFault
[0] ) return WRC_Prune
;
4912 if( sqlite3ExprAffinity(pExpr
->pLeft
)!=SQLITE_AFF_TEXT
){
4913 propagateConstantExprRewriteOne(pConst
, pExpr
->pRight
, 0);
4917 return propagateConstantExprRewriteOne(pConst
, pExpr
, pConst
->bHasAffBlob
);
4921 ** The WHERE-clause constant propagation optimization.
4923 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or
4924 ** CONSTANT=COLUMN that are top-level AND-connected terms that are not
4925 ** part of a ON clause from a LEFT JOIN, then throughout the query
4926 ** replace all other occurrences of COLUMN with CONSTANT.
4928 ** For example, the query:
4930 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b
4932 ** Is transformed into
4934 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39
4936 ** Return true if any transformations where made and false if not.
4938 ** Implementation note: Constant propagation is tricky due to affinity
4939 ** and collating sequence interactions. Consider this example:
4941 ** CREATE TABLE t1(a INT,b TEXT);
4942 ** INSERT INTO t1 VALUES(123,'0123');
4943 ** SELECT * FROM t1 WHERE a=123 AND b=a;
4944 ** SELECT * FROM t1 WHERE a=123 AND b=123;
4946 ** The two SELECT statements above should return different answers. b=a
4947 ** is always true because the comparison uses numeric affinity, but b=123
4948 ** is false because it uses text affinity and '0123' is not the same as '123'.
4949 ** To work around this, the expression tree is not actually changed from
4950 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol
4951 ** and the "123" value is hung off of the pLeft pointer. Code generator
4952 ** routines know to generate the constant "123" instead of looking up the
4953 ** column value. Also, to avoid collation problems, this optimization is
4954 ** only attempted if the "a=123" term uses the default BINARY collation.
4956 ** 2021-05-25 forum post 6a06202608: Another troublesome case is...
4958 ** CREATE TABLE t1(x);
4959 ** INSERT INTO t1 VALUES(10.0);
4960 ** SELECT 1 FROM t1 WHERE x=10 AND x LIKE 10;
4962 ** The query should return no rows, because the t1.x value is '10.0' not '10'
4963 ** and '10.0' is not LIKE '10'. But if we are not careful, the first WHERE
4964 ** term "x=10" will cause the second WHERE term to become "10 LIKE 10",
4965 ** resulting in a false positive. To avoid this, constant propagation for
4966 ** columns with BLOB affinity is only allowed if the constant is used with
4967 ** operators ==, <=, <, >=, >, or IS in a way that will cause the correct
4968 ** type conversions to occur. See logic associated with the bHasAffBlob flag
4971 static int propagateConstants(
4972 Parse
*pParse
, /* The parsing context */
4973 Select
*p
/* The query in which to propagate constants */
4979 x
.pOomFault
= &pParse
->db
->mallocFailed
;
4985 if( ALWAYS(p
->pSrc
!=0)
4987 && (p
->pSrc
->a
[0].fg
.jointype
& JT_LTORJ
)!=0
4989 /* Do not propagate constants on any ON clause if there is a
4990 ** RIGHT JOIN anywhere in the query */
4991 x
.mExcludeOn
= EP_InnerON
| EP_OuterON
;
4993 /* Do not propagate constants through the ON clause of a LEFT JOIN */
4994 x
.mExcludeOn
= EP_OuterON
;
4996 findConstInWhere(&x
, p
->pWhere
);
4998 memset(&w
, 0, sizeof(w
));
5000 w
.xExprCallback
= propagateConstantExprRewrite
;
5001 w
.xSelectCallback
= sqlite3SelectWalkNoop
;
5002 w
.xSelectCallback2
= 0;
5005 sqlite3WalkExpr(&w
, p
->pWhere
);
5006 sqlite3DbFree(x
.pParse
->db
, x
.apExpr
);
5013 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5014 # if !defined(SQLITE_OMIT_WINDOWFUNC)
5016 ** This function is called to determine whether or not it is safe to
5017 ** push WHERE clause expression pExpr down to FROM clause sub-query
5018 ** pSubq, which contains at least one window function. Return 1
5019 ** if it is safe and the expression should be pushed down, or 0
5022 ** It is only safe to push the expression down if it consists only
5023 ** of constants and copies of expressions that appear in the PARTITION
5024 ** BY clause of all window function used by the sub-query. It is safe
5025 ** to filter out entire partitions, but not rows within partitions, as
5026 ** this may change the results of the window functions.
5028 ** At the time this function is called it is guaranteed that
5030 ** * the sub-query uses only one distinct window frame, and
5031 ** * that the window frame has a PARTITION BY clause.
5033 static int pushDownWindowCheck(Parse
*pParse
, Select
*pSubq
, Expr
*pExpr
){
5034 assert( pSubq
->pWin
->pPartition
);
5035 assert( (pSubq
->selFlags
& SF_MultiPart
)==0 );
5036 assert( pSubq
->pPrior
==0 );
5037 return sqlite3ExprIsConstantOrGroupBy(pParse
, pExpr
, pSubq
->pWin
->pPartition
);
5039 # endif /* SQLITE_OMIT_WINDOWFUNC */
5040 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
5042 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5044 ** Make copies of relevant WHERE clause terms of the outer query into
5045 ** the WHERE clause of subquery. Example:
5047 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
5049 ** Transformed into:
5051 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
5052 ** WHERE x=5 AND y=10;
5054 ** The hope is that the terms added to the inner query will make it more
5057 ** Do not attempt this optimization if:
5059 ** (1) (** This restriction was removed on 2017-09-29. We used to
5060 ** disallow this optimization for aggregate subqueries, but now
5061 ** it is allowed by putting the extra terms on the HAVING clause.
5062 ** The added HAVING clause is pointless if the subquery lacks
5063 ** a GROUP BY clause. But such a HAVING clause is also harmless
5064 ** so there does not appear to be any reason to add extra logic
5065 ** to suppress it. **)
5067 ** (2) The inner query is the recursive part of a common table expression.
5069 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE
5070 ** clause would change the meaning of the LIMIT).
5072 ** (4) The inner query is the right operand of a LEFT JOIN and the
5073 ** expression to be pushed down does not come from the ON clause
5074 ** on that LEFT JOIN.
5076 ** (5) The WHERE clause expression originates in the ON or USING clause
5077 ** of a LEFT JOIN where iCursor is not the right-hand table of that
5078 ** left join. An example:
5081 ** FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa
5082 ** JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2)
5083 ** LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2);
5085 ** The correct answer is three rows: (1,1,NULL),(2,2,8),(2,2,9).
5086 ** But if the (b2=2) term were to be pushed down into the bb subquery,
5087 ** then the (1,1,NULL) row would be suppressed.
5089 ** (6) Window functions make things tricky as changes to the WHERE clause
5090 ** of the inner query could change the window over which window
5091 ** functions are calculated. Therefore, do not attempt the optimization
5094 ** (6a) The inner query uses multiple incompatible window partitions.
5096 ** (6b) The inner query is a compound and uses window-functions.
5098 ** (6c) The WHERE clause does not consist entirely of constants and
5099 ** copies of expressions found in the PARTITION BY clause of
5100 ** all window-functions used by the sub-query. It is safe to
5101 ** filter out entire partitions, as this does not change the
5102 ** window over which any window-function is calculated.
5104 ** (7) The inner query is a Common Table Expression (CTE) that should
5105 ** be materialized. (This restriction is implemented in the calling
5108 ** (8) If the subquery is a compound that uses UNION, INTERSECT,
5109 ** or EXCEPT, then all of the result set columns for all arms of
5110 ** the compound must use the BINARY collating sequence.
5112 ** (9) All three of the following are true:
5114 ** (9a) The WHERE clause expression originates in the ON or USING clause
5115 ** of a join (either an INNER or an OUTER join), and
5117 ** (9b) The subquery is to the right of the ON/USING clause
5119 ** (9c) There is a RIGHT JOIN (or FULL JOIN) in between the ON/USING
5120 ** clause and the subquery.
5122 ** Without this restriction, the push-down optimization might move
5123 ** the ON/USING filter expression from the left side of a RIGHT JOIN
5124 ** over to the right side, which leads to incorrect answers. See
5125 ** also restriction (6) in sqlite3ExprIsSingleTableConstraint().
5127 ** (10) The inner query is not the right-hand table of a RIGHT JOIN.
5129 ** (11) The subquery is not a VALUES clause
5131 ** (12) The WHERE clause is not "rowid ISNULL" or the equivalent. This
5132 ** case only comes up if SQLite is compiled using
5133 ** SQLITE_ALLOW_ROWID_IN_VIEW.
5135 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
5136 ** terms are duplicated into the subquery.
5138 static int pushDownWhereTerms(
5139 Parse
*pParse
, /* Parse context (for malloc() and error reporting) */
5140 Select
*pSubq
, /* The subquery whose WHERE clause is to be augmented */
5141 Expr
*pWhere
, /* The WHERE clause of the outer query */
5142 SrcList
*pSrcList
, /* The complete from clause of the outer query */
5143 int iSrc
/* Which FROM clause term to try to push into */
5146 SrcItem
*pSrc
; /* The subquery FROM term into which WHERE is pushed */
5148 pSrc
= &pSrcList
->a
[iSrc
];
5149 if( pWhere
==0 ) return 0;
5150 if( pSubq
->selFlags
& (SF_Recursive
|SF_MultiPart
) ){
5151 return 0; /* restrictions (2) and (11) */
5153 if( pSrc
->fg
.jointype
& (JT_LTORJ
|JT_RIGHT
) ){
5154 return 0; /* restrictions (10) */
5157 if( pSubq
->pPrior
){
5159 int notUnionAll
= 0;
5160 for(pSel
=pSubq
; pSel
; pSel
=pSel
->pPrior
){
5162 assert( op
==TK_ALL
|| op
==TK_SELECT
5163 || op
==TK_UNION
|| op
==TK_INTERSECT
|| op
==TK_EXCEPT
);
5164 if( op
!=TK_ALL
&& op
!=TK_SELECT
){
5167 #ifndef SQLITE_OMIT_WINDOWFUNC
5168 if( pSel
->pWin
) return 0; /* restriction (6b) */
5172 /* If any of the compound arms are connected using UNION, INTERSECT,
5173 ** or EXCEPT, then we must ensure that none of the columns use a
5174 ** non-BINARY collating sequence. */
5175 for(pSel
=pSubq
; pSel
; pSel
=pSel
->pPrior
){
5177 const ExprList
*pList
= pSel
->pEList
;
5179 for(ii
=0; ii
<pList
->nExpr
; ii
++){
5180 CollSeq
*pColl
= sqlite3ExprCollSeq(pParse
, pList
->a
[ii
].pExpr
);
5181 if( !sqlite3IsBinary(pColl
) ){
5182 return 0; /* Restriction (8) */
5188 #ifndef SQLITE_OMIT_WINDOWFUNC
5189 if( pSubq
->pWin
&& pSubq
->pWin
->pPartition
==0 ) return 0;
5194 /* Only the first term of a compound can have a WITH clause. But make
5195 ** sure no other terms are marked SF_Recursive in case something changes
5200 for(pX
=pSubq
; pX
; pX
=pX
->pPrior
){
5201 assert( (pX
->selFlags
& (SF_Recursive
))==0 );
5206 if( pSubq
->pLimit
!=0 ){
5207 return 0; /* restriction (3) */
5209 while( pWhere
->op
==TK_AND
){
5210 nChng
+= pushDownWhereTerms(pParse
, pSubq
, pWhere
->pRight
, pSrcList
, iSrc
);
5211 pWhere
= pWhere
->pLeft
;
5214 #if 0 /* These checks now done by sqlite3ExprIsSingleTableConstraint() */
5215 if( ExprHasProperty(pWhere
, EP_OuterON
|EP_InnerON
) /* (9a) */
5216 && (pSrcList
->a
[0].fg
.jointype
& JT_LTORJ
)!=0 /* Fast pre-test of (9c) */
5219 for(jj
=0; jj
<iSrc
; jj
++){
5220 if( pWhere
->w
.iJoin
==pSrcList
->a
[jj
].iCursor
){
5221 /* If we reach this point, both (9a) and (9b) are satisfied.
5222 ** The following loop checks (9c):
5224 for(jj
++; jj
<iSrc
; jj
++){
5225 if( (pSrcList
->a
[jj
].fg
.jointype
& JT_RIGHT
)!=0 ){
5226 return 0; /* restriction (9) */
5233 && (ExprHasProperty(pWhere
,EP_OuterON
)==0
5234 || pWhere
->w
.iJoin
!=iCursor
)
5236 return 0; /* restriction (4) */
5238 if( ExprHasProperty(pWhere
,EP_OuterON
)
5239 && pWhere
->w
.iJoin
!=iCursor
5241 return 0; /* restriction (5) */
5245 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
5246 if( ViewCanHaveRowid
&& (pWhere
->op
==TK_ISNULL
|| pWhere
->op
==TK_NOTNULL
) ){
5247 Expr
*pLeft
= pWhere
->pLeft
;
5249 && pLeft
->op
==TK_COLUMN
5250 && pLeft
->iColumn
< 0
5252 return 0; /* Restriction (12) */
5257 if( sqlite3ExprIsSingleTableConstraint(pWhere
, pSrcList
, iSrc
) ){
5259 pSubq
->selFlags
|= SF_PushDown
;
5262 pNew
= sqlite3ExprDup(pParse
->db
, pWhere
, 0);
5263 unsetJoinExpr(pNew
, -1, 1);
5265 x
.iTable
= pSrc
->iCursor
;
5266 x
.iNewTable
= pSrc
->iCursor
;
5268 x
.pEList
= pSubq
->pEList
;
5269 x
.pCList
= findLeftmostExprlist(pSubq
);
5270 pNew
= substExpr(&x
, pNew
);
5271 #ifndef SQLITE_OMIT_WINDOWFUNC
5272 if( pSubq
->pWin
&& 0==pushDownWindowCheck(pParse
, pSubq
, pNew
) ){
5273 /* Restriction 6c has prevented push-down in this case */
5274 sqlite3ExprDelete(pParse
->db
, pNew
);
5279 if( pSubq
->selFlags
& SF_Aggregate
){
5280 pSubq
->pHaving
= sqlite3ExprAnd(pParse
, pSubq
->pHaving
, pNew
);
5282 pSubq
->pWhere
= sqlite3ExprAnd(pParse
, pSubq
->pWhere
, pNew
);
5284 pSubq
= pSubq
->pPrior
;
5289 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
5292 ** Check to see if a subquery contains result-set columns that are
5293 ** never used. If it does, change the value of those result-set columns
5294 ** to NULL so that they do not cause unnecessary work to compute.
5296 ** Return the number of column that were changed to NULL.
5298 static int disableUnusedSubqueryResultColumns(SrcItem
*pItem
){
5300 Select
*pSub
; /* The subquery to be simplified */
5301 Select
*pX
; /* For looping over compound elements of pSub */
5302 Table
*pTab
; /* The table that describes the subquery */
5303 int j
; /* Column number */
5304 int nChng
= 0; /* Number of columns converted to NULL */
5305 Bitmask colUsed
; /* Columns that may not be NULLed out */
5308 if( pItem
->fg
.isCorrelated
|| pItem
->fg
.isCte
){
5311 assert( pItem
->pTab
!=0 );
5313 assert( pItem
->pSelect
!=0 );
5314 pSub
= pItem
->pSelect
;
5315 assert( pSub
->pEList
->nExpr
==pTab
->nCol
);
5316 for(pX
=pSub
; pX
; pX
=pX
->pPrior
){
5317 if( (pX
->selFlags
& (SF_Distinct
|SF_Aggregate
))!=0 ){
5318 testcase( pX
->selFlags
& SF_Distinct
);
5319 testcase( pX
->selFlags
& SF_Aggregate
);
5322 if( pX
->pPrior
&& pX
->op
!=TK_ALL
){
5323 /* This optimization does not work for compound subqueries that
5324 ** use UNION, INTERSECT, or EXCEPT. Only UNION ALL is allowed. */
5327 #ifndef SQLITE_OMIT_WINDOWFUNC
5329 /* This optimization does not work for subqueries that use window
5335 colUsed
= pItem
->colUsed
;
5336 if( pSub
->pOrderBy
){
5337 ExprList
*pList
= pSub
->pOrderBy
;
5338 for(j
=0; j
<pList
->nExpr
; j
++){
5339 u16 iCol
= pList
->a
[j
].u
.x
.iOrderByCol
;
5342 colUsed
|= ((Bitmask
)1)<<(iCol
>=BMS
? BMS
-1 : iCol
);
5347 for(j
=0; j
<nCol
; j
++){
5348 Bitmask m
= j
<BMS
-1 ? MASKBIT(j
) : TOPBIT
;
5349 if( (m
& colUsed
)!=0 ) continue;
5350 for(pX
=pSub
; pX
; pX
=pX
->pPrior
) {
5351 Expr
*pY
= pX
->pEList
->a
[j
].pExpr
;
5352 if( pY
->op
==TK_NULL
) continue;
5354 ExprClearProperty(pY
, EP_Skip
|EP_Unlikely
);
5355 pX
->selFlags
|= SF_PushDown
;
5364 ** The pFunc is the only aggregate function in the query. Check to see
5365 ** if the query is a candidate for the min/max optimization.
5367 ** If the query is a candidate for the min/max optimization, then set
5368 ** *ppMinMax to be an ORDER BY clause to be used for the optimization
5369 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on
5370 ** whether pFunc is a min() or max() function.
5372 ** If the query is not a candidate for the min/max optimization, return
5373 ** WHERE_ORDERBY_NORMAL (which must be zero).
5375 ** This routine must be called after aggregate functions have been
5376 ** located but before their arguments have been subjected to aggregate
5379 static u8
minMaxQuery(sqlite3
*db
, Expr
*pFunc
, ExprList
**ppMinMax
){
5380 int eRet
= WHERE_ORDERBY_NORMAL
; /* Return value */
5381 ExprList
*pEList
; /* Arguments to agg function */
5382 const char *zFunc
; /* Name of aggregate function pFunc */
5386 assert( *ppMinMax
==0 );
5387 assert( pFunc
->op
==TK_AGG_FUNCTION
);
5388 assert( !IsWindowFunc(pFunc
) );
5389 assert( ExprUseXList(pFunc
) );
5390 pEList
= pFunc
->x
.pList
;
5393 || ExprHasProperty(pFunc
, EP_WinFunc
)
5394 || OptimizationDisabled(db
, SQLITE_MinMaxOpt
)
5398 assert( !ExprHasProperty(pFunc
, EP_IntValue
) );
5399 zFunc
= pFunc
->u
.zToken
;
5400 if( sqlite3StrICmp(zFunc
, "min")==0 ){
5401 eRet
= WHERE_ORDERBY_MIN
;
5402 if( sqlite3ExprCanBeNull(pEList
->a
[0].pExpr
) ){
5403 sortFlags
= KEYINFO_ORDER_BIGNULL
;
5405 }else if( sqlite3StrICmp(zFunc
, "max")==0 ){
5406 eRet
= WHERE_ORDERBY_MAX
;
5407 sortFlags
= KEYINFO_ORDER_DESC
;
5411 *ppMinMax
= pOrderBy
= sqlite3ExprListDup(db
, pEList
, 0);
5412 assert( pOrderBy
!=0 || db
->mallocFailed
);
5413 if( pOrderBy
) pOrderBy
->a
[0].fg
.sortFlags
= sortFlags
;
5418 ** The select statement passed as the first argument is an aggregate query.
5419 ** The second argument is the associated aggregate-info object. This
5420 ** function tests if the SELECT is of the form:
5422 ** SELECT count(*) FROM <tbl>
5424 ** where table is a database table, not a sub-select or view. If the query
5425 ** does match this pattern, then a pointer to the Table object representing
5426 ** <tbl> is returned. Otherwise, NULL is returned.
5428 ** This routine checks to see if it is safe to use the count optimization.
5429 ** A correct answer is still obtained (though perhaps more slowly) if
5430 ** this routine returns NULL when it could have returned a table pointer.
5431 ** But returning the pointer when NULL should have been returned can
5432 ** result in incorrect answers and/or crashes. So, when in doubt, return NULL.
5434 static Table
*isSimpleCount(Select
*p
, AggInfo
*pAggInfo
){
5438 assert( !p
->pGroupBy
);
5441 || p
->pEList
->nExpr
!=1
5443 || p
->pSrc
->a
[0].pSelect
5444 || pAggInfo
->nFunc
!=1
5449 pTab
= p
->pSrc
->a
[0].pTab
;
5451 assert( !IsView(pTab
) );
5452 if( !IsOrdinaryTable(pTab
) ) return 0;
5453 pExpr
= p
->pEList
->a
[0].pExpr
;
5455 if( pExpr
->op
!=TK_AGG_FUNCTION
) return 0;
5456 if( pExpr
->pAggInfo
!=pAggInfo
) return 0;
5457 if( (pAggInfo
->aFunc
[0].pFunc
->funcFlags
&SQLITE_FUNC_COUNT
)==0 ) return 0;
5458 assert( pAggInfo
->aFunc
[0].pFExpr
==pExpr
);
5459 testcase( ExprHasProperty(pExpr
, EP_Distinct
) );
5460 testcase( ExprHasProperty(pExpr
, EP_WinFunc
) );
5461 if( ExprHasProperty(pExpr
, EP_Distinct
|EP_WinFunc
) ) return 0;
5467 ** If the source-list item passed as an argument was augmented with an
5468 ** INDEXED BY clause, then try to locate the specified index. If there
5469 ** was such a clause and the named index cannot be found, return
5470 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
5471 ** pFrom->pIndex and return SQLITE_OK.
5473 int sqlite3IndexedByLookup(Parse
*pParse
, SrcItem
*pFrom
){
5474 Table
*pTab
= pFrom
->pTab
;
5475 char *zIndexedBy
= pFrom
->u1
.zIndexedBy
;
5478 assert( pFrom
->fg
.isIndexedBy
!=0 );
5480 for(pIdx
=pTab
->pIndex
;
5481 pIdx
&& sqlite3StrICmp(pIdx
->zName
, zIndexedBy
);
5485 sqlite3ErrorMsg(pParse
, "no such index: %s", zIndexedBy
, 0);
5486 pParse
->checkSchema
= 1;
5487 return SQLITE_ERROR
;
5489 assert( pFrom
->fg
.isCte
==0 );
5490 pFrom
->u2
.pIBIndex
= pIdx
;
5495 ** Detect compound SELECT statements that use an ORDER BY clause with
5496 ** an alternative collating sequence.
5498 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
5500 ** These are rewritten as a subquery:
5502 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
5503 ** ORDER BY ... COLLATE ...
5505 ** This transformation is necessary because the multiSelectOrderBy() routine
5506 ** above that generates the code for a compound SELECT with an ORDER BY clause
5507 ** uses a merge algorithm that requires the same collating sequence on the
5508 ** result columns as on the ORDER BY clause. See ticket
5509 ** http://www.sqlite.org/src/info/6709574d2a
5511 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
5512 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
5513 ** there are COLLATE terms in the ORDER BY.
5515 static int convertCompoundSelectToSubquery(Walker
*pWalker
, Select
*p
){
5520 struct ExprList_item
*a
;
5525 if( p
->pPrior
==0 ) return WRC_Continue
;
5526 if( p
->pOrderBy
==0 ) return WRC_Continue
;
5527 for(pX
=p
; pX
&& (pX
->op
==TK_ALL
|| pX
->op
==TK_SELECT
); pX
=pX
->pPrior
){}
5528 if( pX
==0 ) return WRC_Continue
;
5530 #ifndef SQLITE_OMIT_WINDOWFUNC
5531 /* If iOrderByCol is already non-zero, then it has already been matched
5532 ** to a result column of the SELECT statement. This occurs when the
5533 ** SELECT is rewritten for window-functions processing and then passed
5534 ** to sqlite3SelectPrep() and similar a second time. The rewriting done
5535 ** by this function is not required in this case. */
5536 if( a
[0].u
.x
.iOrderByCol
) return WRC_Continue
;
5538 for(i
=p
->pOrderBy
->nExpr
-1; i
>=0; i
--){
5539 if( a
[i
].pExpr
->flags
& EP_Collate
) break;
5541 if( i
<0 ) return WRC_Continue
;
5543 /* If we reach this point, that means the transformation is required. */
5545 pParse
= pWalker
->pParse
;
5547 pNew
= sqlite3DbMallocZero(db
, sizeof(*pNew
) );
5548 if( pNew
==0 ) return WRC_Abort
;
5549 memset(&dummy
, 0, sizeof(dummy
));
5550 pNewSrc
= sqlite3SrcListAppendFromTerm(pParse
,0,0,0,&dummy
,pNew
,0);
5551 if( pNewSrc
==0 ) return WRC_Abort
;
5554 p
->pEList
= sqlite3ExprListAppend(pParse
, 0, sqlite3Expr(db
, TK_ASTERISK
, 0));
5563 #ifndef SQLITE_OMIT_WINDOWFUNC
5566 p
->selFlags
&= ~SF_Compound
;
5567 assert( (p
->selFlags
& SF_Converted
)==0 );
5568 p
->selFlags
|= SF_Converted
;
5569 assert( pNew
->pPrior
!=0 );
5570 pNew
->pPrior
->pNext
= pNew
;
5572 return WRC_Continue
;
5576 ** Check to see if the FROM clause term pFrom has table-valued function
5577 ** arguments. If it does, leave an error message in pParse and return
5578 ** non-zero, since pFrom is not allowed to be a table-valued function.
5580 static int cannotBeFunction(Parse
*pParse
, SrcItem
*pFrom
){
5581 if( pFrom
->fg
.isTabFunc
){
5582 sqlite3ErrorMsg(pParse
, "'%s' is not a function", pFrom
->zName
);
5588 #ifndef SQLITE_OMIT_CTE
5590 ** Argument pWith (which may be NULL) points to a linked list of nested
5591 ** WITH contexts, from inner to outermost. If the table identified by
5592 ** FROM clause element pItem is really a common-table-expression (CTE)
5593 ** then return a pointer to the CTE definition for that table. Otherwise
5596 ** If a non-NULL value is returned, set *ppContext to point to the With
5597 ** object that the returned CTE belongs to.
5599 static struct Cte
*searchWith(
5600 With
*pWith
, /* Current innermost WITH clause */
5601 SrcItem
*pItem
, /* FROM clause element to resolve */
5602 With
**ppContext
/* OUT: WITH clause return value belongs to */
5604 const char *zName
= pItem
->zName
;
5606 assert( pItem
->zDatabase
==0 );
5608 for(p
=pWith
; p
; p
=p
->pOuter
){
5610 for(i
=0; i
<p
->nCte
; i
++){
5611 if( sqlite3StrICmp(zName
, p
->a
[i
].zName
)==0 ){
5616 if( p
->bView
) break;
5621 /* The code generator maintains a stack of active WITH clauses
5622 ** with the inner-most WITH clause being at the top of the stack.
5624 ** This routine pushes the WITH clause passed as the second argument
5625 ** onto the top of the stack. If argument bFree is true, then this
5626 ** WITH clause will never be popped from the stack but should instead
5627 ** be freed along with the Parse object. In other cases, when
5628 ** bFree==0, the With object will be freed along with the SELECT
5629 ** statement with which it is associated.
5631 ** This routine returns a copy of pWith. Or, if bFree is true and
5632 ** the pWith object is destroyed immediately due to an OOM condition,
5633 ** then this routine return NULL.
5635 ** If bFree is true, do not continue to use the pWith pointer after
5636 ** calling this routine, Instead, use only the return value.
5638 With
*sqlite3WithPush(Parse
*pParse
, With
*pWith
, u8 bFree
){
5641 pWith
= (With
*)sqlite3ParserAddCleanup(pParse
, sqlite3WithDeleteGeneric
,
5643 if( pWith
==0 ) return 0;
5645 if( pParse
->nErr
==0 ){
5646 assert( pParse
->pWith
!=pWith
);
5647 pWith
->pOuter
= pParse
->pWith
;
5648 pParse
->pWith
= pWith
;
5655 ** This function checks if argument pFrom refers to a CTE declared by
5656 ** a WITH clause on the stack currently maintained by the parser (on the
5657 ** pParse->pWith linked list). And if currently processing a CTE
5658 ** CTE expression, through routine checks to see if the reference is
5659 ** a recursive reference to the CTE.
5661 ** If pFrom matches a CTE according to either of these two above, pFrom->pTab
5662 ** and other fields are populated accordingly.
5664 ** Return 0 if no match is found.
5665 ** Return 1 if a match is found.
5666 ** Return 2 if an error condition is detected.
5668 static int resolveFromTermToCte(
5669 Parse
*pParse
, /* The parsing context */
5670 Walker
*pWalker
, /* Current tree walker */
5671 SrcItem
*pFrom
/* The FROM clause term to check */
5673 Cte
*pCte
; /* Matched CTE (or NULL if no match) */
5674 With
*pWith
; /* The matching WITH */
5676 assert( pFrom
->pTab
==0 );
5677 if( pParse
->pWith
==0 ){
5678 /* There are no WITH clauses in the stack. No match is possible */
5682 /* Prior errors might have left pParse->pWith in a goofy state, so
5683 ** go no further. */
5686 if( pFrom
->zDatabase
!=0 ){
5687 /* The FROM term contains a schema qualifier (ex: main.t1) and so
5688 ** it cannot possibly be a CTE reference. */
5691 if( pFrom
->fg
.notCte
){
5692 /* The FROM term is specifically excluded from matching a CTE.
5693 ** (1) It is part of a trigger that used to have zDatabase but had
5694 ** zDatabase removed by sqlite3FixTriggerStep().
5695 ** (2) This is the first term in the FROM clause of an UPDATE.
5699 pCte
= searchWith(pParse
->pWith
, pFrom
, &pWith
);
5701 sqlite3
*db
= pParse
->db
;
5705 Select
*pLeft
; /* Left-most SELECT statement */
5706 Select
*pRecTerm
; /* Left-most recursive term */
5707 int bMayRecursive
; /* True if compound joined by UNION [ALL] */
5708 With
*pSavedWith
; /* Initial value of pParse->pWith */
5709 int iRecTab
= -1; /* Cursor for recursive table */
5712 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
5713 ** recursive reference to CTE pCte. Leave an error in pParse and return
5714 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
5715 ** In this case, proceed. */
5716 if( pCte
->zCteErr
){
5717 sqlite3ErrorMsg(pParse
, pCte
->zCteErr
, pCte
->zName
);
5720 if( cannotBeFunction(pParse
, pFrom
) ) return 2;
5722 assert( pFrom
->pTab
==0 );
5723 pTab
= sqlite3DbMallocZero(db
, sizeof(Table
));
5724 if( pTab
==0 ) return 2;
5725 pCteUse
= pCte
->pUse
;
5727 pCte
->pUse
= pCteUse
= sqlite3DbMallocZero(db
, sizeof(pCteUse
[0]));
5729 || sqlite3ParserAddCleanup(pParse
,sqlite3DbFree
,pCteUse
)==0
5731 sqlite3DbFree(db
, pTab
);
5734 pCteUse
->eM10d
= pCte
->eM10d
;
5738 pTab
->zName
= sqlite3DbStrDup(db
, pCte
->zName
);
5740 pTab
->nRowLogEst
= 200; assert( 200==sqlite3LogEst(1048576) );
5741 pTab
->tabFlags
|= TF_Ephemeral
| TF_NoVisibleRowid
;
5742 pFrom
->pSelect
= sqlite3SelectDup(db
, pCte
->pSelect
, 0);
5743 if( db
->mallocFailed
) return 2;
5744 pFrom
->pSelect
->selFlags
|= SF_CopyCte
;
5745 assert( pFrom
->pSelect
);
5746 if( pFrom
->fg
.isIndexedBy
){
5747 sqlite3ErrorMsg(pParse
, "no such index: \"%s\"", pFrom
->u1
.zIndexedBy
);
5750 pFrom
->fg
.isCte
= 1;
5751 pFrom
->u2
.pCteUse
= pCteUse
;
5754 /* Check if this is a recursive CTE. */
5755 pRecTerm
= pSel
= pFrom
->pSelect
;
5756 bMayRecursive
= ( pSel
->op
==TK_ALL
|| pSel
->op
==TK_UNION
);
5757 while( bMayRecursive
&& pRecTerm
->op
==pSel
->op
){
5759 SrcList
*pSrc
= pRecTerm
->pSrc
;
5760 assert( pRecTerm
->pPrior
!=0 );
5761 for(i
=0; i
<pSrc
->nSrc
; i
++){
5762 SrcItem
*pItem
= &pSrc
->a
[i
];
5763 if( pItem
->zDatabase
==0
5765 && 0==sqlite3StrICmp(pItem
->zName
, pCte
->zName
)
5769 pItem
->fg
.isRecursive
= 1;
5770 if( pRecTerm
->selFlags
& SF_Recursive
){
5771 sqlite3ErrorMsg(pParse
,
5772 "multiple references to recursive table: %s", pCte
->zName
5776 pRecTerm
->selFlags
|= SF_Recursive
;
5777 if( iRecTab
<0 ) iRecTab
= pParse
->nTab
++;
5778 pItem
->iCursor
= iRecTab
;
5781 if( (pRecTerm
->selFlags
& SF_Recursive
)==0 ) break;
5782 pRecTerm
= pRecTerm
->pPrior
;
5785 pCte
->zCteErr
= "circular reference: %s";
5786 pSavedWith
= pParse
->pWith
;
5787 pParse
->pWith
= pWith
;
5788 if( pSel
->selFlags
& SF_Recursive
){
5790 assert( pRecTerm
!=0 );
5791 assert( (pRecTerm
->selFlags
& SF_Recursive
)==0 );
5792 assert( pRecTerm
->pNext
!=0 );
5793 assert( (pRecTerm
->pNext
->selFlags
& SF_Recursive
)!=0 );
5794 assert( pRecTerm
->pWith
==0 );
5795 pRecTerm
->pWith
= pSel
->pWith
;
5796 rc
= sqlite3WalkSelect(pWalker
, pRecTerm
);
5797 pRecTerm
->pWith
= 0;
5799 pParse
->pWith
= pSavedWith
;
5803 if( sqlite3WalkSelect(pWalker
, pSel
) ){
5804 pParse
->pWith
= pSavedWith
;
5808 pParse
->pWith
= pWith
;
5810 for(pLeft
=pSel
; pLeft
->pPrior
; pLeft
=pLeft
->pPrior
);
5811 pEList
= pLeft
->pEList
;
5813 if( pEList
&& pEList
->nExpr
!=pCte
->pCols
->nExpr
){
5814 sqlite3ErrorMsg(pParse
, "table %s has %d values for %d columns",
5815 pCte
->zName
, pEList
->nExpr
, pCte
->pCols
->nExpr
5817 pParse
->pWith
= pSavedWith
;
5820 pEList
= pCte
->pCols
;
5823 sqlite3ColumnsFromExprList(pParse
, pEList
, &pTab
->nCol
, &pTab
->aCol
);
5824 if( bMayRecursive
){
5825 if( pSel
->selFlags
& SF_Recursive
){
5826 pCte
->zCteErr
= "multiple recursive references: %s";
5828 pCte
->zCteErr
= "recursive reference in a subquery: %s";
5830 sqlite3WalkSelect(pWalker
, pSel
);
5833 pParse
->pWith
= pSavedWith
;
5834 return 1; /* Success */
5836 return 0; /* No match */
5840 #ifndef SQLITE_OMIT_CTE
5842 ** If the SELECT passed as the second argument has an associated WITH
5843 ** clause, pop it from the stack stored as part of the Parse object.
5845 ** This function is used as the xSelectCallback2() callback by
5846 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
5847 ** names and other FROM clause elements.
5849 void sqlite3SelectPopWith(Walker
*pWalker
, Select
*p
){
5850 Parse
*pParse
= pWalker
->pParse
;
5851 if( OK_IF_ALWAYS_TRUE(pParse
->pWith
) && p
->pPrior
==0 ){
5852 With
*pWith
= findRightmost(p
)->pWith
;
5854 assert( pParse
->pWith
==pWith
|| pParse
->nErr
);
5855 pParse
->pWith
= pWith
->pOuter
;
5862 ** The SrcItem structure passed as the second argument represents a
5863 ** sub-query in the FROM clause of a SELECT statement. This function
5864 ** allocates and populates the SrcItem.pTab object. If successful,
5865 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered,
5868 int sqlite3ExpandSubquery(Parse
*pParse
, SrcItem
*pFrom
){
5869 Select
*pSel
= pFrom
->pSelect
;
5873 pFrom
->pTab
= pTab
= sqlite3DbMallocZero(pParse
->db
, sizeof(Table
));
5874 if( pTab
==0 ) return SQLITE_NOMEM
;
5876 if( pFrom
->zAlias
){
5877 pTab
->zName
= sqlite3DbStrDup(pParse
->db
, pFrom
->zAlias
);
5879 pTab
->zName
= sqlite3MPrintf(pParse
->db
, "%!S", pFrom
);
5881 while( pSel
->pPrior
){ pSel
= pSel
->pPrior
; }
5882 sqlite3ColumnsFromExprList(pParse
, pSel
->pEList
,&pTab
->nCol
,&pTab
->aCol
);
5884 pTab
->eTabType
= TABTYP_VIEW
;
5885 pTab
->nRowLogEst
= 200; assert( 200==sqlite3LogEst(1048576) );
5886 #ifndef SQLITE_ALLOW_ROWID_IN_VIEW
5887 /* The usual case - do not allow ROWID on a subquery */
5888 pTab
->tabFlags
|= TF_Ephemeral
| TF_NoVisibleRowid
;
5890 /* Legacy compatibility mode */
5891 pTab
->tabFlags
|= TF_Ephemeral
| sqlite3Config
.mNoVisibleRowid
;
5893 return pParse
->nErr
? SQLITE_ERROR
: SQLITE_OK
;
5898 ** Check the N SrcItem objects to the right of pBase. (N might be zero!)
5899 ** If any of those SrcItem objects have a USING clause containing zName
5900 ** then return true.
5902 ** If N is zero, or none of the N SrcItem objects to the right of pBase
5903 ** contains a USING clause, or if none of the USING clauses contain zName,
5904 ** then return false.
5906 static int inAnyUsingClause(
5907 const char *zName
, /* Name we are looking for */
5908 SrcItem
*pBase
, /* The base SrcItem. Looking at pBase[1] and following */
5909 int N
/* How many SrcItems to check */
5914 if( pBase
->fg
.isUsing
==0 ) continue;
5915 if( NEVER(pBase
->u3
.pUsing
==0) ) continue;
5916 if( sqlite3IdListIndex(pBase
->u3
.pUsing
, zName
)>=0 ) return 1;
5923 ** This routine is a Walker callback for "expanding" a SELECT statement.
5924 ** "Expanding" means to do the following:
5926 ** (1) Make sure VDBE cursor numbers have been assigned to every
5927 ** element of the FROM clause.
5929 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that
5930 ** defines FROM clause. When views appear in the FROM clause,
5931 ** fill pTabList->a[].pSelect with a copy of the SELECT statement
5932 ** that implements the view. A copy is made of the view's SELECT
5933 ** statement so that we can freely modify or delete that statement
5934 ** without worrying about messing up the persistent representation
5937 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword
5938 ** on joins and the ON and USING clause of joins.
5940 ** (4) Scan the list of columns in the result set (pEList) looking
5941 ** for instances of the "*" operator or the TABLE.* operator.
5942 ** If found, expand each "*" to be every column in every table
5943 ** and TABLE.* to be every column in TABLE.
5946 static int selectExpander(Walker
*pWalker
, Select
*p
){
5947 Parse
*pParse
= pWalker
->pParse
;
5952 sqlite3
*db
= pParse
->db
;
5953 Expr
*pE
, *pRight
, *pExpr
;
5954 u16 selFlags
= p
->selFlags
;
5957 p
->selFlags
|= SF_Expanded
;
5958 if( db
->mallocFailed
){
5961 assert( p
->pSrc
!=0 );
5962 if( (selFlags
& SF_Expanded
)!=0 ){
5965 if( pWalker
->eCode
){
5966 /* Renumber selId because it has been copied from a view */
5967 p
->selId
= ++pParse
->nSelect
;
5971 if( pParse
->pWith
&& (p
->selFlags
& SF_View
) ){
5973 p
->pWith
= (With
*)sqlite3DbMallocZero(db
, sizeof(With
));
5978 p
->pWith
->bView
= 1;
5980 sqlite3WithPush(pParse
, p
->pWith
, 0);
5982 /* Make sure cursor numbers have been assigned to all entries in
5983 ** the FROM clause of the SELECT statement.
5985 sqlite3SrcListAssignCursors(pParse
, pTabList
);
5987 /* Look up every table named in the FROM clause of the select. If
5988 ** an entry of the FROM clause is a subquery instead of a table or view,
5989 ** then create a transient table structure to describe the subquery.
5991 for(i
=0, pFrom
=pTabList
->a
; i
<pTabList
->nSrc
; i
++, pFrom
++){
5993 assert( pFrom
->fg
.isRecursive
==0 || pFrom
->pTab
!=0 );
5994 if( pFrom
->pTab
) continue;
5995 assert( pFrom
->fg
.isRecursive
==0 );
5996 if( pFrom
->zName
==0 ){
5997 #ifndef SQLITE_OMIT_SUBQUERY
5998 Select
*pSel
= pFrom
->pSelect
;
5999 /* A sub-query in the FROM clause of a SELECT */
6001 assert( pFrom
->pTab
==0 );
6002 if( sqlite3WalkSelect(pWalker
, pSel
) ) return WRC_Abort
;
6003 if( sqlite3ExpandSubquery(pParse
, pFrom
) ) return WRC_Abort
;
6005 #ifndef SQLITE_OMIT_CTE
6006 }else if( (rc
= resolveFromTermToCte(pParse
, pWalker
, pFrom
))!=0 ){
6007 if( rc
>1 ) return WRC_Abort
;
6012 /* An ordinary table or view name in the FROM clause */
6013 assert( pFrom
->pTab
==0 );
6014 pFrom
->pTab
= pTab
= sqlite3LocateTableItem(pParse
, 0, pFrom
);
6015 if( pTab
==0 ) return WRC_Abort
;
6016 if( pTab
->nTabRef
>=0xffff ){
6017 sqlite3ErrorMsg(pParse
, "too many references to \"%s\": max 65535",
6023 if( !IsVirtual(pTab
) && cannotBeFunction(pParse
, pFrom
) ){
6026 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
6027 if( !IsOrdinaryTable(pTab
) ){
6029 u8 eCodeOrig
= pWalker
->eCode
;
6030 if( sqlite3ViewGetColumnNames(pParse
, pTab
) ) return WRC_Abort
;
6031 assert( pFrom
->pSelect
==0 );
6033 if( (db
->flags
& SQLITE_EnableView
)==0
6034 && pTab
->pSchema
!=db
->aDb
[1].pSchema
6036 sqlite3ErrorMsg(pParse
, "access to view \"%s\" prohibited",
6039 pFrom
->pSelect
= sqlite3SelectDup(db
, pTab
->u
.view
.pSelect
, 0);
6041 #ifndef SQLITE_OMIT_VIRTUALTABLE
6042 else if( ALWAYS(IsVirtual(pTab
))
6043 && pFrom
->fg
.fromDDL
6044 && ALWAYS(pTab
->u
.vtab
.p
!=0)
6045 && pTab
->u
.vtab
.p
->eVtabRisk
> ((db
->flags
& SQLITE_TrustedSchema
)!=0)
6047 sqlite3ErrorMsg(pParse
, "unsafe use of virtual table \"%s\"",
6050 assert( SQLITE_VTABRISK_Normal
==1 && SQLITE_VTABRISK_High
==2 );
6054 pWalker
->eCode
= 1; /* Turn on Select.selId renumbering */
6055 sqlite3WalkSelect(pWalker
, pFrom
->pSelect
);
6056 pWalker
->eCode
= eCodeOrig
;
6062 /* Locate the index named by the INDEXED BY clause, if any. */
6063 if( pFrom
->fg
.isIndexedBy
&& sqlite3IndexedByLookup(pParse
, pFrom
) ){
6068 /* Process NATURAL keywords, and ON and USING clauses of joins.
6070 assert( db
->mallocFailed
==0 || pParse
->nErr
!=0 );
6071 if( pParse
->nErr
|| sqlite3ProcessJoin(pParse
, p
) ){
6075 /* For every "*" that occurs in the column list, insert the names of
6076 ** all columns in all tables. And for every TABLE.* insert the names
6077 ** of all columns in TABLE. The parser inserted a special expression
6078 ** with the TK_ASTERISK operator for each "*" that it found in the column
6079 ** list. The following code just has to locate the TK_ASTERISK
6080 ** expressions and expand each one to the list of all columns in
6083 ** The first loop just checks to see if there are any "*" operators
6084 ** that need expanding.
6086 for(k
=0; k
<pEList
->nExpr
; k
++){
6087 pE
= pEList
->a
[k
].pExpr
;
6088 if( pE
->op
==TK_ASTERISK
) break;
6089 assert( pE
->op
!=TK_DOT
|| pE
->pRight
!=0 );
6090 assert( pE
->op
!=TK_DOT
|| (pE
->pLeft
!=0 && pE
->pLeft
->op
==TK_ID
) );
6091 if( pE
->op
==TK_DOT
&& pE
->pRight
->op
==TK_ASTERISK
) break;
6092 elistFlags
|= pE
->flags
;
6094 if( k
<pEList
->nExpr
){
6096 ** If we get here it means the result set contains one or more "*"
6097 ** operators that need to be expanded. Loop through each expression
6098 ** in the result set and expand them one by one.
6100 struct ExprList_item
*a
= pEList
->a
;
6102 int flags
= pParse
->db
->flags
;
6103 int longNames
= (flags
& SQLITE_FullColNames
)!=0
6104 && (flags
& SQLITE_ShortColNames
)==0;
6106 for(k
=0; k
<pEList
->nExpr
; k
++){
6108 elistFlags
|= pE
->flags
;
6109 pRight
= pE
->pRight
;
6110 assert( pE
->op
!=TK_DOT
|| pRight
!=0 );
6111 if( pE
->op
!=TK_ASTERISK
6112 && (pE
->op
!=TK_DOT
|| pRight
->op
!=TK_ASTERISK
)
6114 /* This particular expression does not need to be expanded.
6116 pNew
= sqlite3ExprListAppend(pParse
, pNew
, a
[k
].pExpr
);
6118 pNew
->a
[pNew
->nExpr
-1].zEName
= a
[k
].zEName
;
6119 pNew
->a
[pNew
->nExpr
-1].fg
.eEName
= a
[k
].fg
.eEName
;
6124 /* This expression is a "*" or a "TABLE.*" and needs to be
6126 int tableSeen
= 0; /* Set to 1 when TABLE matches */
6127 char *zTName
= 0; /* text of name of TABLE */
6129 if( pE
->op
==TK_DOT
){
6130 assert( (selFlags
& SF_NestedFrom
)==0 );
6131 assert( pE
->pLeft
!=0 );
6132 assert( !ExprHasProperty(pE
->pLeft
, EP_IntValue
) );
6133 zTName
= pE
->pLeft
->u
.zToken
;
6134 assert( ExprUseWOfst(pE
->pLeft
) );
6135 iErrOfst
= pE
->pRight
->w
.iOfst
;
6137 assert( ExprUseWOfst(pE
) );
6138 iErrOfst
= pE
->w
.iOfst
;
6140 for(i
=0, pFrom
=pTabList
->a
; i
<pTabList
->nSrc
; i
++, pFrom
++){
6141 int nAdd
; /* Number of cols including rowid */
6142 Table
*pTab
= pFrom
->pTab
; /* Table for this data source */
6143 ExprList
*pNestedFrom
; /* Result-set of a nested FROM clause */
6144 char *zTabName
; /* AS name for this data source */
6145 const char *zSchemaName
= 0; /* Schema name for this data source */
6146 int iDb
; /* Schema index for this data src */
6147 IdList
*pUsing
; /* USING clause for pFrom[1] */
6149 if( (zTabName
= pFrom
->zAlias
)==0 ){
6150 zTabName
= pTab
->zName
;
6152 if( db
->mallocFailed
) break;
6153 assert( (int)pFrom
->fg
.isNestedFrom
== IsNestedFrom(pFrom
->pSelect
) );
6154 if( pFrom
->fg
.isNestedFrom
){
6155 assert( pFrom
->pSelect
!=0 );
6156 pNestedFrom
= pFrom
->pSelect
->pEList
;
6157 assert( pNestedFrom
!=0 );
6158 assert( pNestedFrom
->nExpr
==pTab
->nCol
);
6159 assert( VisibleRowid(pTab
)==0 || ViewCanHaveRowid
);
6161 if( zTName
&& sqlite3StrICmp(zTName
, zTabName
)!=0 ){
6165 iDb
= sqlite3SchemaToIndex(db
, pTab
->pSchema
);
6166 zSchemaName
= iDb
>=0 ? db
->aDb
[iDb
].zDbSName
: "*";
6168 if( i
+1<pTabList
->nSrc
6169 && pFrom
[1].fg
.isUsing
6170 && (selFlags
& SF_NestedFrom
)!=0
6173 pUsing
= pFrom
[1].u3
.pUsing
;
6174 for(ii
=0; ii
<pUsing
->nId
; ii
++){
6175 const char *zUName
= pUsing
->a
[ii
].zName
;
6176 pRight
= sqlite3Expr(db
, TK_ID
, zUName
);
6177 sqlite3ExprSetErrorOffset(pRight
, iErrOfst
);
6178 pNew
= sqlite3ExprListAppend(pParse
, pNew
, pRight
);
6180 struct ExprList_item
*pX
= &pNew
->a
[pNew
->nExpr
-1];
6181 assert( pX
->zEName
==0 );
6182 pX
->zEName
= sqlite3MPrintf(db
,"..%s", zUName
);
6183 pX
->fg
.eEName
= ENAME_TAB
;
6184 pX
->fg
.bUsingTerm
= 1;
6192 if( VisibleRowid(pTab
) && (selFlags
& SF_NestedFrom
)!=0 ) nAdd
++;
6193 for(j
=0; j
<nAdd
; j
++){
6195 struct ExprList_item
*pX
; /* Newly added ExprList term */
6197 if( j
==pTab
->nCol
){
6198 zName
= sqlite3RowidAlias(pTab
);
6199 if( zName
==0 ) continue;
6201 zName
= pTab
->aCol
[j
].zCnName
;
6203 /* If pTab is actually an SF_NestedFrom sub-select, do not
6204 ** expand any ENAME_ROWID columns. */
6205 if( pNestedFrom
&& pNestedFrom
->a
[j
].fg
.eEName
==ENAME_ROWID
){
6211 && sqlite3MatchEName(&pNestedFrom
->a
[j
], 0, zTName
, 0, 0)==0
6216 /* If a column is marked as 'hidden', omit it from the expanded
6217 ** result-set list unless the SELECT has the SF_IncludeHidden
6220 if( (p
->selFlags
& SF_IncludeHidden
)==0
6221 && IsHiddenColumn(&pTab
->aCol
[j
])
6225 if( (pTab
->aCol
[j
].colFlags
& COLFLAG_NOEXPAND
)!=0
6227 && (selFlags
& (SF_NestedFrom
))==0
6235 if( i
>0 && zTName
==0 && (selFlags
& SF_NestedFrom
)==0 ){
6236 if( pFrom
->fg
.isUsing
6237 && sqlite3IdListIndex(pFrom
->u3
.pUsing
, zName
)>=0
6239 /* In a join with a USING clause, omit columns in the
6240 ** using clause from the table on the right. */
6244 pRight
= sqlite3Expr(db
, TK_ID
, zName
);
6245 if( (pTabList
->nSrc
>1
6246 && ( (pFrom
->fg
.jointype
& JT_LTORJ
)==0
6247 || (selFlags
& SF_NestedFrom
)!=0
6248 || !inAnyUsingClause(zName
,pFrom
,pTabList
->nSrc
-i
-1)
6254 pLeft
= sqlite3Expr(db
, TK_ID
, zTabName
);
6255 pExpr
= sqlite3PExpr(pParse
, TK_DOT
, pLeft
, pRight
);
6256 if( IN_RENAME_OBJECT
&& pE
->pLeft
){
6257 sqlite3RenameTokenRemap(pParse
, pLeft
, pE
->pLeft
);
6260 pLeft
= sqlite3Expr(db
, TK_ID
, zSchemaName
);
6261 pExpr
= sqlite3PExpr(pParse
, TK_DOT
, pLeft
, pExpr
);
6266 sqlite3ExprSetErrorOffset(pExpr
, iErrOfst
);
6267 pNew
= sqlite3ExprListAppend(pParse
, pNew
, pExpr
);
6271 pX
= &pNew
->a
[pNew
->nExpr
-1];
6272 assert( pX
->zEName
==0 );
6273 if( (selFlags
& SF_NestedFrom
)!=0 && !IN_RENAME_OBJECT
){
6274 if( pNestedFrom
&& (!ViewCanHaveRowid
|| j
<pNestedFrom
->nExpr
) ){
6275 assert( j
<pNestedFrom
->nExpr
);
6276 pX
->zEName
= sqlite3DbStrDup(db
, pNestedFrom
->a
[j
].zEName
);
6277 testcase( pX
->zEName
==0 );
6279 pX
->zEName
= sqlite3MPrintf(db
, "%s.%s.%s",
6280 zSchemaName
, zTabName
, zName
);
6281 testcase( pX
->zEName
==0 );
6283 pX
->fg
.eEName
= (j
==pTab
->nCol
? ENAME_ROWID
: ENAME_TAB
);
6284 if( (pFrom
->fg
.isUsing
6285 && sqlite3IdListIndex(pFrom
->u3
.pUsing
, zName
)>=0)
6286 || (pUsing
&& sqlite3IdListIndex(pUsing
, zName
)>=0)
6287 || (j
<pTab
->nCol
&& (pTab
->aCol
[j
].colFlags
& COLFLAG_NOEXPAND
))
6289 pX
->fg
.bNoExpand
= 1;
6291 }else if( longNames
){
6292 pX
->zEName
= sqlite3MPrintf(db
, "%s.%s", zTabName
, zName
);
6293 pX
->fg
.eEName
= ENAME_NAME
;
6295 pX
->zEName
= sqlite3DbStrDup(db
, zName
);
6296 pX
->fg
.eEName
= ENAME_NAME
;
6302 sqlite3ErrorMsg(pParse
, "no such table: %s", zTName
);
6304 sqlite3ErrorMsg(pParse
, "no tables specified");
6309 sqlite3ExprListDelete(db
, pEList
);
6313 if( p
->pEList
->nExpr
>db
->aLimit
[SQLITE_LIMIT_COLUMN
] ){
6314 sqlite3ErrorMsg(pParse
, "too many columns in result set");
6317 if( (elistFlags
& (EP_HasFunc
|EP_Subquery
))!=0 ){
6318 p
->selFlags
|= SF_ComplexResult
;
6321 #if TREETRACE_ENABLED
6322 if( sqlite3TreeTrace
& 0x8 ){
6323 TREETRACE(0x8,pParse
,p
,("After result-set wildcard expansion:\n"));
6324 sqlite3TreeViewSelect(0, p
, 0);
6327 return WRC_Continue
;
6332 ** Always assert. This xSelectCallback2 implementation proves that the
6333 ** xSelectCallback2 is never invoked.
6335 void sqlite3SelectWalkAssert2(Walker
*NotUsed
, Select
*NotUsed2
){
6336 UNUSED_PARAMETER2(NotUsed
, NotUsed2
);
6341 ** This routine "expands" a SELECT statement and all of its subqueries.
6342 ** For additional information on what it means to "expand" a SELECT
6343 ** statement, see the comment on the selectExpand worker callback above.
6345 ** Expanding a SELECT statement is the first step in processing a
6346 ** SELECT statement. The SELECT statement must be expanded before
6347 ** name resolution is performed.
6349 ** If anything goes wrong, an error message is written into pParse.
6350 ** The calling function can detect the problem by looking at pParse->nErr
6351 ** and/or pParse->db->mallocFailed.
6353 static void sqlite3SelectExpand(Parse
*pParse
, Select
*pSelect
){
6355 w
.xExprCallback
= sqlite3ExprWalkNoop
;
6357 if( OK_IF_ALWAYS_TRUE(pParse
->hasCompound
) ){
6358 w
.xSelectCallback
= convertCompoundSelectToSubquery
;
6359 w
.xSelectCallback2
= 0;
6360 sqlite3WalkSelect(&w
, pSelect
);
6362 w
.xSelectCallback
= selectExpander
;
6363 w
.xSelectCallback2
= sqlite3SelectPopWith
;
6365 sqlite3WalkSelect(&w
, pSelect
);
6369 #ifndef SQLITE_OMIT_SUBQUERY
6371 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
6374 ** For each FROM-clause subquery, add Column.zType, Column.zColl, and
6375 ** Column.affinity information to the Table structure that represents
6376 ** the result set of that subquery.
6378 ** The Table structure that represents the result set was constructed
6379 ** by selectExpander() but the type and collation and affinity information
6380 ** was omitted at that point because identifiers had not yet been resolved.
6381 ** This routine is called after identifier resolution.
6383 static void selectAddSubqueryTypeInfo(Walker
*pWalker
, Select
*p
){
6389 if( p
->selFlags
& SF_HasTypeInfo
) return;
6390 p
->selFlags
|= SF_HasTypeInfo
;
6391 pParse
= pWalker
->pParse
;
6392 testcase( (p
->selFlags
& SF_Resolved
)==0 );
6393 assert( (p
->selFlags
& SF_Resolved
) || IN_RENAME_OBJECT
);
6395 for(i
=0, pFrom
=pTabList
->a
; i
<pTabList
->nSrc
; i
++, pFrom
++){
6396 Table
*pTab
= pFrom
->pTab
;
6398 if( (pTab
->tabFlags
& TF_Ephemeral
)!=0 ){
6399 /* A sub-query in the FROM clause of a SELECT */
6400 Select
*pSel
= pFrom
->pSelect
;
6402 sqlite3SubqueryColumnTypes(pParse
, pTab
, pSel
, SQLITE_AFF_NONE
);
6411 ** This routine adds datatype and collating sequence information to
6412 ** the Table structures of all FROM-clause subqueries in a
6413 ** SELECT statement.
6415 ** Use this routine after name resolution.
6417 static void sqlite3SelectAddTypeInfo(Parse
*pParse
, Select
*pSelect
){
6418 #ifndef SQLITE_OMIT_SUBQUERY
6420 w
.xSelectCallback
= sqlite3SelectWalkNoop
;
6421 w
.xSelectCallback2
= selectAddSubqueryTypeInfo
;
6422 w
.xExprCallback
= sqlite3ExprWalkNoop
;
6424 sqlite3WalkSelect(&w
, pSelect
);
6430 ** This routine sets up a SELECT statement for processing. The
6431 ** following is accomplished:
6433 ** * VDBE Cursor numbers are assigned to all FROM-clause terms.
6434 ** * Ephemeral Table objects are created for all FROM-clause subqueries.
6435 ** * ON and USING clauses are shifted into WHERE statements
6436 ** * Wildcards "*" and "TABLE.*" in result sets are expanded.
6437 ** * Identifiers in expression are matched to tables.
6439 ** This routine acts recursively on all subqueries within the SELECT.
6441 void sqlite3SelectPrep(
6442 Parse
*pParse
, /* The parser context */
6443 Select
*p
, /* The SELECT statement being coded. */
6444 NameContext
*pOuterNC
/* Name context for container */
6446 assert( p
!=0 || pParse
->db
->mallocFailed
);
6447 assert( pParse
->db
->pParse
==pParse
);
6448 if( pParse
->db
->mallocFailed
) return;
6449 if( p
->selFlags
& SF_HasTypeInfo
) return;
6450 sqlite3SelectExpand(pParse
, p
);
6451 if( pParse
->nErr
) return;
6452 sqlite3ResolveSelectNames(pParse
, p
, pOuterNC
);
6453 if( pParse
->nErr
) return;
6454 sqlite3SelectAddTypeInfo(pParse
, p
);
6457 #if TREETRACE_ENABLED
6459 ** Display all information about an AggInfo object
6461 static void printAggInfo(AggInfo
*pAggInfo
){
6463 for(ii
=0; ii
<pAggInfo
->nColumn
; ii
++){
6464 struct AggInfo_col
*pCol
= &pAggInfo
->aCol
[ii
];
6466 "agg-column[%d] pTab=%s iTable=%d iColumn=%d iMem=%d"
6467 " iSorterColumn=%d %s\n",
6468 ii
, pCol
->pTab
? pCol
->pTab
->zName
: "NULL",
6469 pCol
->iTable
, pCol
->iColumn
, pAggInfo
->iFirstReg
+ii
,
6470 pCol
->iSorterColumn
,
6471 ii
>=pAggInfo
->nAccumulator
? "" : " Accumulator");
6472 sqlite3TreeViewExpr(0, pAggInfo
->aCol
[ii
].pCExpr
, 0);
6474 for(ii
=0; ii
<pAggInfo
->nFunc
; ii
++){
6475 sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n",
6476 ii
, pAggInfo
->iFirstReg
+pAggInfo
->nColumn
+ii
);
6477 sqlite3TreeViewExpr(0, pAggInfo
->aFunc
[ii
].pFExpr
, 0);
6480 #endif /* TREETRACE_ENABLED */
6483 ** Analyze the arguments to aggregate functions. Create new pAggInfo->aCol[]
6484 ** entries for columns that are arguments to aggregate functions but which
6485 ** are not otherwise used.
6487 ** The aCol[] entries in AggInfo prior to nAccumulator are columns that
6488 ** are referenced outside of aggregate functions. These might be columns
6489 ** that are part of the GROUP by clause, for example. Other database engines
6490 ** would throw an error if there is a column reference that is not in the
6491 ** GROUP BY clause and that is not part of an aggregate function argument.
6492 ** But SQLite allows this.
6494 ** The aCol[] entries beginning with the aCol[nAccumulator] and following
6495 ** are column references that are used exclusively as arguments to
6496 ** aggregate functions. This routine is responsible for computing
6497 ** (or recomputing) those aCol[] entries.
6499 static void analyzeAggFuncArgs(
6504 assert( pAggInfo
!=0 );
6505 assert( pAggInfo
->iFirstReg
==0 );
6506 pNC
->ncFlags
|= NC_InAggFunc
;
6507 for(i
=0; i
<pAggInfo
->nFunc
; i
++){
6508 Expr
*pExpr
= pAggInfo
->aFunc
[i
].pFExpr
;
6509 assert( pExpr
->op
==TK_FUNCTION
|| pExpr
->op
==TK_AGG_FUNCTION
);
6510 assert( ExprUseXList(pExpr
) );
6511 sqlite3ExprAnalyzeAggList(pNC
, pExpr
->x
.pList
);
6513 assert( pExpr
->pLeft
->op
==TK_ORDER
);
6514 assert( ExprUseXList(pExpr
->pLeft
) );
6515 sqlite3ExprAnalyzeAggList(pNC
, pExpr
->pLeft
->x
.pList
);
6517 #ifndef SQLITE_OMIT_WINDOWFUNC
6518 assert( !IsWindowFunc(pExpr
) );
6519 if( ExprHasProperty(pExpr
, EP_WinFunc
) ){
6520 sqlite3ExprAnalyzeAggregates(pNC
, pExpr
->y
.pWin
->pFilter
);
6524 pNC
->ncFlags
&= ~NC_InAggFunc
;
6528 ** An index on expressions is being used in the inner loop of an
6529 ** aggregate query with a GROUP BY clause. This routine attempts
6530 ** to adjust the AggInfo object to take advantage of index and to
6531 ** perhaps use the index as a covering index.
6534 static void optimizeAggregateUseOfIndexedExpr(
6535 Parse
*pParse
, /* Parsing context */
6536 Select
*pSelect
, /* The SELECT statement being processed */
6537 AggInfo
*pAggInfo
, /* The aggregate info */
6538 NameContext
*pNC
/* Name context used to resolve agg-func args */
6540 assert( pAggInfo
->iFirstReg
==0 );
6541 assert( pSelect
!=0 );
6542 assert( pSelect
->pGroupBy
!=0 );
6543 pAggInfo
->nColumn
= pAggInfo
->nAccumulator
;
6544 if( ALWAYS(pAggInfo
->nSortingColumn
>0) ){
6545 int mx
= pSelect
->pGroupBy
->nExpr
- 1;
6547 for(j
=0; j
<pAggInfo
->nColumn
; j
++){
6548 k
= pAggInfo
->aCol
[j
].iSorterColumn
;
6551 pAggInfo
->nSortingColumn
= mx
+1;
6553 analyzeAggFuncArgs(pAggInfo
, pNC
);
6554 #if TREETRACE_ENABLED
6555 if( sqlite3TreeTrace
& 0x20 ){
6557 TREETRACE(0x20, pParse
, pSelect
,
6558 ("AggInfo (possibly) adjusted for Indexed Exprs\n"));
6559 sqlite3TreeViewSelect(0, pSelect
, 0);
6560 for(pIEpr
=pParse
->pIdxEpr
; pIEpr
; pIEpr
=pIEpr
->pIENext
){
6561 printf("data-cursor=%d index={%d,%d}\n",
6562 pIEpr
->iDataCur
, pIEpr
->iIdxCur
, pIEpr
->iIdxCol
);
6563 sqlite3TreeViewExpr(0, pIEpr
->pExpr
, 0);
6565 printAggInfo(pAggInfo
);
6568 UNUSED_PARAMETER(pSelect
);
6569 UNUSED_PARAMETER(pParse
);
6574 ** Walker callback for aggregateConvertIndexedExprRefToColumn().
6576 static int aggregateIdxEprRefToColCallback(Walker
*pWalker
, Expr
*pExpr
){
6578 struct AggInfo_col
*pCol
;
6579 UNUSED_PARAMETER(pWalker
);
6580 if( pExpr
->pAggInfo
==0 ) return WRC_Continue
;
6581 if( pExpr
->op
==TK_AGG_COLUMN
) return WRC_Continue
;
6582 if( pExpr
->op
==TK_AGG_FUNCTION
) return WRC_Continue
;
6583 if( pExpr
->op
==TK_IF_NULL_ROW
) return WRC_Continue
;
6584 pAggInfo
= pExpr
->pAggInfo
;
6585 if( NEVER(pExpr
->iAgg
>=pAggInfo
->nColumn
) ) return WRC_Continue
;
6586 assert( pExpr
->iAgg
>=0 );
6587 pCol
= &pAggInfo
->aCol
[pExpr
->iAgg
];
6588 pExpr
->op
= TK_AGG_COLUMN
;
6589 pExpr
->iTable
= pCol
->iTable
;
6590 pExpr
->iColumn
= pCol
->iColumn
;
6591 ExprClearProperty(pExpr
, EP_Skip
|EP_Collate
|EP_Unlikely
);
6596 ** Convert every pAggInfo->aFunc[].pExpr such that any node within
6597 ** those expressions that has pAppInfo set is changed into a TK_AGG_COLUMN
6600 static void aggregateConvertIndexedExprRefToColumn(AggInfo
*pAggInfo
){
6603 memset(&w
, 0, sizeof(w
));
6604 w
.xExprCallback
= aggregateIdxEprRefToColCallback
;
6605 for(i
=0; i
<pAggInfo
->nFunc
; i
++){
6606 sqlite3WalkExpr(&w
, pAggInfo
->aFunc
[i
].pFExpr
);
6612 ** Allocate a block of registers so that there is one register for each
6613 ** pAggInfo->aCol[] and pAggInfo->aFunc[] entry in pAggInfo. The first
6614 ** register in this block is stored in pAggInfo->iFirstReg.
6616 ** This routine may only be called once for each AggInfo object. Prior
6617 ** to calling this routine:
6619 ** * The aCol[] and aFunc[] arrays may be modified
6620 ** * The AggInfoColumnReg() and AggInfoFuncReg() macros may not be used
6622 ** After calling this routine:
6624 ** * The aCol[] and aFunc[] arrays are fixed
6625 ** * The AggInfoColumnReg() and AggInfoFuncReg() macros may be used
6628 static void assignAggregateRegisters(Parse
*pParse
, AggInfo
*pAggInfo
){
6629 assert( pAggInfo
!=0 );
6630 assert( pAggInfo
->iFirstReg
==0 );
6631 pAggInfo
->iFirstReg
= pParse
->nMem
+ 1;
6632 pParse
->nMem
+= pAggInfo
->nColumn
+ pAggInfo
->nFunc
;
6636 ** Reset the aggregate accumulator.
6638 ** The aggregate accumulator is a set of memory cells that hold
6639 ** intermediate results while calculating an aggregate. This
6640 ** routine generates code that stores NULLs in all of those memory
6643 static void resetAccumulator(Parse
*pParse
, AggInfo
*pAggInfo
){
6644 Vdbe
*v
= pParse
->pVdbe
;
6646 struct AggInfo_func
*pFunc
;
6647 int nReg
= pAggInfo
->nFunc
+ pAggInfo
->nColumn
;
6648 assert( pAggInfo
->iFirstReg
>0 );
6649 assert( pParse
->db
->pParse
==pParse
);
6650 assert( pParse
->db
->mallocFailed
==0 || pParse
->nErr
!=0 );
6651 if( nReg
==0 ) return;
6652 if( pParse
->nErr
) return;
6653 sqlite3VdbeAddOp3(v
, OP_Null
, 0, pAggInfo
->iFirstReg
,
6654 pAggInfo
->iFirstReg
+nReg
-1);
6655 for(pFunc
=pAggInfo
->aFunc
, i
=0; i
<pAggInfo
->nFunc
; i
++, pFunc
++){
6656 if( pFunc
->iDistinct
>=0 ){
6657 Expr
*pE
= pFunc
->pFExpr
;
6658 assert( ExprUseXList(pE
) );
6659 if( pE
->x
.pList
==0 || pE
->x
.pList
->nExpr
!=1 ){
6660 sqlite3ErrorMsg(pParse
, "DISTINCT aggregates must have exactly one "
6662 pFunc
->iDistinct
= -1;
6664 KeyInfo
*pKeyInfo
= sqlite3KeyInfoFromExprList(pParse
, pE
->x
.pList
,0,0);
6665 pFunc
->iDistAddr
= sqlite3VdbeAddOp4(v
, OP_OpenEphemeral
,
6666 pFunc
->iDistinct
, 0, 0, (char*)pKeyInfo
, P4_KEYINFO
);
6667 ExplainQueryPlan((pParse
, 0, "USE TEMP B-TREE FOR %s(DISTINCT)",
6668 pFunc
->pFunc
->zName
));
6671 if( pFunc
->iOBTab
>=0 ){
6675 assert( pFunc
->pFExpr
->pLeft
!=0 );
6676 assert( pFunc
->pFExpr
->pLeft
->op
==TK_ORDER
);
6677 assert( ExprUseXList(pFunc
->pFExpr
->pLeft
) );
6678 assert( pFunc
->pFunc
!=0 );
6679 pOBList
= pFunc
->pFExpr
->pLeft
->x
.pList
;
6680 if( !pFunc
->bOBUnique
){
6681 nExtra
++; /* One extra column for the OP_Sequence */
6683 if( pFunc
->bOBPayload
){
6684 /* extra columns for the function arguments */
6685 assert( ExprUseXList(pFunc
->pFExpr
) );
6686 nExtra
+= pFunc
->pFExpr
->x
.pList
->nExpr
;
6688 if( pFunc
->bUseSubtype
){
6689 nExtra
+= pFunc
->pFExpr
->x
.pList
->nExpr
;
6691 pKeyInfo
= sqlite3KeyInfoFromExprList(pParse
, pOBList
, 0, nExtra
);
6692 if( !pFunc
->bOBUnique
&& pParse
->nErr
==0 ){
6693 pKeyInfo
->nKeyField
++;
6695 sqlite3VdbeAddOp4(v
, OP_OpenEphemeral
,
6696 pFunc
->iOBTab
, pOBList
->nExpr
+nExtra
, 0,
6697 (char*)pKeyInfo
, P4_KEYINFO
);
6698 ExplainQueryPlan((pParse
, 0, "USE TEMP B-TREE FOR %s(ORDER BY)",
6699 pFunc
->pFunc
->zName
));
6705 ** Invoke the OP_AggFinalize opcode for every aggregate function
6706 ** in the AggInfo structure.
6708 static void finalizeAggFunctions(Parse
*pParse
, AggInfo
*pAggInfo
){
6709 Vdbe
*v
= pParse
->pVdbe
;
6711 struct AggInfo_func
*pF
;
6712 for(i
=0, pF
=pAggInfo
->aFunc
; i
<pAggInfo
->nFunc
; i
++, pF
++){
6714 assert( ExprUseXList(pF
->pFExpr
) );
6715 pList
= pF
->pFExpr
->x
.pList
;
6716 if( pF
->iOBTab
>=0 ){
6717 /* For an ORDER BY aggregate, calls to OP_AggStep were deferred. Inputs
6718 ** were stored in emphermal table pF->iOBTab. Here, we extract those
6719 ** inputs (in ORDER BY order) and make all calls to OP_AggStep
6720 ** before doing the OP_AggFinal call. */
6721 int iTop
; /* Start of loop for extracting columns */
6722 int nArg
; /* Number of columns to extract */
6723 int nKey
; /* Key columns to be skipped */
6724 int regAgg
; /* Extract into this array */
6725 int j
; /* Loop counter */
6727 assert( pF
->pFunc
!=0 );
6728 nArg
= pList
->nExpr
;
6729 regAgg
= sqlite3GetTempRange(pParse
, nArg
);
6731 if( pF
->bOBPayload
==0 ){
6734 assert( pF
->pFExpr
->pLeft
!=0 );
6735 assert( ExprUseXList(pF
->pFExpr
->pLeft
) );
6736 assert( pF
->pFExpr
->pLeft
->x
.pList
!=0 );
6737 nKey
= pF
->pFExpr
->pLeft
->x
.pList
->nExpr
;
6738 if( ALWAYS(!pF
->bOBUnique
) ) nKey
++;
6740 iTop
= sqlite3VdbeAddOp1(v
, OP_Rewind
, pF
->iOBTab
); VdbeCoverage(v
);
6741 for(j
=nArg
-1; j
>=0; j
--){
6742 sqlite3VdbeAddOp3(v
, OP_Column
, pF
->iOBTab
, nKey
+j
, regAgg
+j
);
6744 if( pF
->bUseSubtype
){
6745 int regSubtype
= sqlite3GetTempReg(pParse
);
6746 int iBaseCol
= nKey
+ nArg
+ (pF
->bOBPayload
==0 && pF
->bOBUnique
==0);
6747 for(j
=nArg
-1; j
>=0; j
--){
6748 sqlite3VdbeAddOp3(v
, OP_Column
, pF
->iOBTab
, iBaseCol
+j
, regSubtype
);
6749 sqlite3VdbeAddOp2(v
, OP_SetSubtype
, regSubtype
, regAgg
+j
);
6751 sqlite3ReleaseTempReg(pParse
, regSubtype
);
6753 sqlite3VdbeAddOp3(v
, OP_AggStep
, 0, regAgg
, AggInfoFuncReg(pAggInfo
,i
));
6754 sqlite3VdbeAppendP4(v
, pF
->pFunc
, P4_FUNCDEF
);
6755 sqlite3VdbeChangeP5(v
, (u8
)nArg
);
6756 sqlite3VdbeAddOp2(v
, OP_Next
, pF
->iOBTab
, iTop
+1); VdbeCoverage(v
);
6757 sqlite3VdbeJumpHere(v
, iTop
);
6758 sqlite3ReleaseTempRange(pParse
, regAgg
, nArg
);
6760 sqlite3VdbeAddOp2(v
, OP_AggFinal
, AggInfoFuncReg(pAggInfo
,i
),
6761 pList
? pList
->nExpr
: 0);
6762 sqlite3VdbeAppendP4(v
, pF
->pFunc
, P4_FUNCDEF
);
6767 ** Generate code that will update the accumulator memory cells for an
6768 ** aggregate based on the current cursor position.
6770 ** If regAcc is non-zero and there are no min() or max() aggregates
6771 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator
6772 ** registers if register regAcc contains 0. The caller will take care
6773 ** of setting and clearing regAcc.
6775 ** For an ORDER BY aggregate, the actual accumulator memory cell update
6776 ** is deferred until after all input rows have been received, so that they
6777 ** can be run in the requested order. In that case, instead of invoking
6778 ** OP_AggStep to update the accumulator, just add the arguments that would
6779 ** have been passed into OP_AggStep into the sorting ephemeral table
6780 ** (along with the appropriate sort key).
6782 static void updateAccumulator(
6788 Vdbe
*v
= pParse
->pVdbe
;
6791 int addrHitTest
= 0;
6792 struct AggInfo_func
*pF
;
6793 struct AggInfo_col
*pC
;
6795 assert( pAggInfo
->iFirstReg
>0 );
6796 if( pParse
->nErr
) return;
6797 pAggInfo
->directMode
= 1;
6798 for(i
=0, pF
=pAggInfo
->aFunc
; i
<pAggInfo
->nFunc
; i
++, pF
++){
6803 int regDistinct
= 0;
6805 assert( ExprUseXList(pF
->pFExpr
) );
6806 assert( !IsWindowFunc(pF
->pFExpr
) );
6807 assert( pF
->pFunc
!=0 );
6808 pList
= pF
->pFExpr
->x
.pList
;
6809 if( ExprHasProperty(pF
->pFExpr
, EP_WinFunc
) ){
6810 Expr
*pFilter
= pF
->pFExpr
->y
.pWin
->pFilter
;
6811 if( pAggInfo
->nAccumulator
6812 && (pF
->pFunc
->funcFlags
& SQLITE_FUNC_NEEDCOLL
)
6815 /* If regAcc==0, there there exists some min() or max() function
6816 ** without a FILTER clause that will ensure the magnet registers
6817 ** are populated. */
6818 if( regHit
==0 ) regHit
= ++pParse
->nMem
;
6819 /* If this is the first row of the group (regAcc contains 0), clear the
6820 ** "magnet" register regHit so that the accumulator registers
6821 ** are populated if the FILTER clause jumps over the the
6822 ** invocation of min() or max() altogether. Or, if this is not
6823 ** the first row (regAcc contains 1), set the magnet register so that
6824 ** the accumulators are not populated unless the min()/max() is invoked
6825 ** and indicates that they should be. */
6826 sqlite3VdbeAddOp2(v
, OP_Copy
, regAcc
, regHit
);
6828 addrNext
= sqlite3VdbeMakeLabel(pParse
);
6829 sqlite3ExprIfFalse(pParse
, pFilter
, addrNext
, SQLITE_JUMPIFNULL
);
6831 if( pF
->iOBTab
>=0 ){
6832 /* Instead of invoking AggStep, we must push the arguments that would
6833 ** have been passed to AggStep onto the sorting table. */
6834 int jj
; /* Registered used so far in building the record */
6835 ExprList
*pOBList
; /* The ORDER BY clause */
6837 nArg
= pList
->nExpr
;
6839 assert( pF
->pFExpr
->pLeft
!=0 );
6840 assert( pF
->pFExpr
->pLeft
->op
==TK_ORDER
);
6841 assert( ExprUseXList(pF
->pFExpr
->pLeft
) );
6842 pOBList
= pF
->pFExpr
->pLeft
->x
.pList
;
6843 assert( pOBList
!=0 );
6844 assert( pOBList
->nExpr
>0 );
6845 regAggSz
= pOBList
->nExpr
;
6846 if( !pF
->bOBUnique
){
6847 regAggSz
++; /* One register for OP_Sequence */
6849 if( pF
->bOBPayload
){
6852 if( pF
->bUseSubtype
){
6855 regAggSz
++; /* One extra register to hold result of MakeRecord */
6856 regAgg
= sqlite3GetTempRange(pParse
, regAggSz
);
6857 regDistinct
= regAgg
;
6858 sqlite3ExprCodeExprList(pParse
, pOBList
, regAgg
, 0, SQLITE_ECEL_DUP
);
6859 jj
= pOBList
->nExpr
;
6860 if( !pF
->bOBUnique
){
6861 sqlite3VdbeAddOp2(v
, OP_Sequence
, pF
->iOBTab
, regAgg
+jj
);
6864 if( pF
->bOBPayload
){
6865 regDistinct
= regAgg
+jj
;
6866 sqlite3ExprCodeExprList(pParse
, pList
, regDistinct
, 0, SQLITE_ECEL_DUP
);
6869 if( pF
->bUseSubtype
){
6871 int regBase
= pF
->bOBPayload
? regDistinct
: regAgg
;
6872 for(kk
=0; kk
<nArg
; kk
++, jj
++){
6873 sqlite3VdbeAddOp2(v
, OP_GetSubtype
, regBase
+kk
, regAgg
+jj
);
6877 nArg
= pList
->nExpr
;
6878 regAgg
= sqlite3GetTempRange(pParse
, nArg
);
6879 regDistinct
= regAgg
;
6880 sqlite3ExprCodeExprList(pParse
, pList
, regAgg
, 0, SQLITE_ECEL_DUP
);
6885 if( pF
->iDistinct
>=0 && pList
){
6887 addrNext
= sqlite3VdbeMakeLabel(pParse
);
6889 pF
->iDistinct
= codeDistinct(pParse
, eDistinctType
,
6890 pF
->iDistinct
, addrNext
, pList
, regDistinct
);
6892 if( pF
->iOBTab
>=0 ){
6893 /* Insert a new record into the ORDER BY table */
6894 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regAgg
, regAggSz
-1,
6896 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, pF
->iOBTab
, regAgg
+regAggSz
-1,
6897 regAgg
, regAggSz
-1);
6898 sqlite3ReleaseTempRange(pParse
, regAgg
, regAggSz
);
6900 /* Invoke the AggStep function */
6901 if( pF
->pFunc
->funcFlags
& SQLITE_FUNC_NEEDCOLL
){
6903 struct ExprList_item
*pItem
;
6905 assert( pList
!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */
6906 for(j
=0, pItem
=pList
->a
; !pColl
&& j
<nArg
; j
++, pItem
++){
6907 pColl
= sqlite3ExprCollSeq(pParse
, pItem
->pExpr
);
6910 pColl
= pParse
->db
->pDfltColl
;
6912 if( regHit
==0 && pAggInfo
->nAccumulator
) regHit
= ++pParse
->nMem
;
6913 sqlite3VdbeAddOp4(v
, OP_CollSeq
, regHit
, 0, 0,
6914 (char *)pColl
, P4_COLLSEQ
);
6916 sqlite3VdbeAddOp3(v
, OP_AggStep
, 0, regAgg
, AggInfoFuncReg(pAggInfo
,i
));
6917 sqlite3VdbeAppendP4(v
, pF
->pFunc
, P4_FUNCDEF
);
6918 sqlite3VdbeChangeP5(v
, (u8
)nArg
);
6919 sqlite3ReleaseTempRange(pParse
, regAgg
, nArg
);
6922 sqlite3VdbeResolveLabel(v
, addrNext
);
6925 if( regHit
==0 && pAggInfo
->nAccumulator
){
6929 addrHitTest
= sqlite3VdbeAddOp1(v
, OP_If
, regHit
); VdbeCoverage(v
);
6931 for(i
=0, pC
=pAggInfo
->aCol
; i
<pAggInfo
->nAccumulator
; i
++, pC
++){
6932 sqlite3ExprCode(pParse
, pC
->pCExpr
, AggInfoColumnReg(pAggInfo
,i
));
6935 pAggInfo
->directMode
= 0;
6937 sqlite3VdbeJumpHereOrPopInst(v
, addrHitTest
);
6942 ** Add a single OP_Explain instruction to the VDBE to explain a simple
6943 ** count(*) query ("SELECT count(*) FROM pTab").
6945 #ifndef SQLITE_OMIT_EXPLAIN
6946 static void explainSimpleCount(
6947 Parse
*pParse
, /* Parse context */
6948 Table
*pTab
, /* Table being queried */
6949 Index
*pIdx
/* Index used to optimize scan, or NULL */
6951 if( pParse
->explain
==2 ){
6952 int bCover
= (pIdx
!=0 && (HasRowid(pTab
) || !IsPrimaryKeyIndex(pIdx
)));
6953 sqlite3VdbeExplain(pParse
, 0, "SCAN %s%s%s",
6955 bCover
? " USING COVERING INDEX " : "",
6956 bCover
? pIdx
->zName
: ""
6961 # define explainSimpleCount(a,b,c)
6965 ** sqlite3WalkExpr() callback used by havingToWhere().
6967 ** If the node passed to the callback is a TK_AND node, return
6968 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes.
6970 ** Otherwise, return WRC_Prune. In this case, also check if the
6971 ** sub-expression matches the criteria for being moved to the WHERE
6972 ** clause. If so, add it to the WHERE clause and replace the sub-expression
6973 ** within the HAVING expression with a constant "1".
6975 static int havingToWhereExprCb(Walker
*pWalker
, Expr
*pExpr
){
6976 if( pExpr
->op
!=TK_AND
){
6977 Select
*pS
= pWalker
->u
.pSelect
;
6978 /* This routine is called before the HAVING clause of the current
6979 ** SELECT is analyzed for aggregates. So if pExpr->pAggInfo is set
6980 ** here, it indicates that the expression is a correlated reference to a
6981 ** column from an outer aggregate query, or an aggregate function that
6982 ** belongs to an outer query. Do not move the expression to the WHERE
6983 ** clause in this obscure case, as doing so may corrupt the outer Select
6984 ** statements AggInfo structure. */
6985 if( sqlite3ExprIsConstantOrGroupBy(pWalker
->pParse
, pExpr
, pS
->pGroupBy
)
6986 && ExprAlwaysFalse(pExpr
)==0
6987 && pExpr
->pAggInfo
==0
6989 sqlite3
*db
= pWalker
->pParse
->db
;
6990 Expr
*pNew
= sqlite3Expr(db
, TK_INTEGER
, "1");
6992 Expr
*pWhere
= pS
->pWhere
;
6993 SWAP(Expr
, *pNew
, *pExpr
);
6994 pNew
= sqlite3ExprAnd(pWalker
->pParse
, pWhere
, pNew
);
7001 return WRC_Continue
;
7005 ** Transfer eligible terms from the HAVING clause of a query, which is
7006 ** processed after grouping, to the WHERE clause, which is processed before
7007 ** grouping. For example, the query:
7009 ** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=?
7011 ** can be rewritten as:
7013 ** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=?
7015 ** A term of the HAVING expression is eligible for transfer if it consists
7016 ** entirely of constants and expressions that are also GROUP BY terms that
7017 ** use the "BINARY" collation sequence.
7019 static void havingToWhere(Parse
*pParse
, Select
*p
){
7021 memset(&sWalker
, 0, sizeof(sWalker
));
7022 sWalker
.pParse
= pParse
;
7023 sWalker
.xExprCallback
= havingToWhereExprCb
;
7024 sWalker
.u
.pSelect
= p
;
7025 sqlite3WalkExpr(&sWalker
, p
->pHaving
);
7026 #if TREETRACE_ENABLED
7027 if( sWalker
.eCode
&& (sqlite3TreeTrace
& 0x100)!=0 ){
7028 TREETRACE(0x100,pParse
,p
,("Move HAVING terms into WHERE:\n"));
7029 sqlite3TreeViewSelect(0, p
, 0);
7035 ** Check to see if the pThis entry of pTabList is a self-join of another view.
7036 ** Search FROM-clause entries in the range of iFirst..iEnd, including iFirst
7037 ** but stopping before iEnd.
7039 ** If pThis is a self-join, then return the SrcItem for the first other
7040 ** instance of that view found. If pThis is not a self-join then return 0.
7042 static SrcItem
*isSelfJoinView(
7043 SrcList
*pTabList
, /* Search for self-joins in this FROM clause */
7044 SrcItem
*pThis
, /* Search for prior reference to this subquery */
7045 int iFirst
, int iEnd
/* Range of FROM-clause entries to search. */
7048 assert( pThis
->pSelect
!=0 );
7049 if( pThis
->pSelect
->selFlags
& SF_PushDown
) return 0;
7050 while( iFirst
<iEnd
){
7052 pItem
= &pTabList
->a
[iFirst
++];
7053 if( pItem
->pSelect
==0 ) continue;
7054 if( pItem
->fg
.viaCoroutine
) continue;
7055 if( pItem
->zName
==0 ) continue;
7056 assert( pItem
->pTab
!=0 );
7057 assert( pThis
->pTab
!=0 );
7058 if( pItem
->pTab
->pSchema
!=pThis
->pTab
->pSchema
) continue;
7059 if( sqlite3_stricmp(pItem
->zName
, pThis
->zName
)!=0 ) continue;
7060 pS1
= pItem
->pSelect
;
7061 if( pItem
->pTab
->pSchema
==0 && pThis
->pSelect
->selId
!=pS1
->selId
){
7062 /* The query flattener left two different CTE tables with identical
7063 ** names in the same FROM clause. */
7066 if( pItem
->pSelect
->selFlags
& SF_PushDown
){
7067 /* The view was modified by some other optimization such as
7068 ** pushDownWhereTerms() */
7077 ** Deallocate a single AggInfo object
7079 static void agginfoFree(sqlite3
*db
, void *pArg
){
7080 AggInfo
*p
= (AggInfo
*)pArg
;
7081 sqlite3DbFree(db
, p
->aCol
);
7082 sqlite3DbFree(db
, p
->aFunc
);
7083 sqlite3DbFreeNN(db
, p
);
7087 ** Attempt to transform a query of the form
7089 ** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2)
7093 ** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2)
7095 ** The transformation only works if all of the following are true:
7097 ** * The subquery is a UNION ALL of two or more terms
7098 ** * The subquery does not have a LIMIT clause
7099 ** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries
7100 ** * The outer query is a simple count(*) with no WHERE clause or other
7101 ** extraneous syntax.
7103 ** Return TRUE if the optimization is undertaken.
7105 static int countOfViewOptimization(Parse
*pParse
, Select
*p
){
7106 Select
*pSub
, *pPrior
;
7110 if( (p
->selFlags
& SF_Aggregate
)==0 ) return 0; /* This is an aggregate */
7111 if( p
->pEList
->nExpr
!=1 ) return 0; /* Single result column */
7112 if( p
->pWhere
) return 0;
7113 if( p
->pHaving
) return 0;
7114 if( p
->pGroupBy
) return 0;
7115 if( p
->pOrderBy
) return 0;
7116 pExpr
= p
->pEList
->a
[0].pExpr
;
7117 if( pExpr
->op
!=TK_AGG_FUNCTION
) return 0; /* Result is an aggregate */
7118 assert( ExprUseUToken(pExpr
) );
7119 if( sqlite3_stricmp(pExpr
->u
.zToken
,"count") ) return 0; /* Is count() */
7120 assert( ExprUseXList(pExpr
) );
7121 if( pExpr
->x
.pList
!=0 ) return 0; /* Must be count(*) */
7122 if( p
->pSrc
->nSrc
!=1 ) return 0; /* One table in FROM */
7123 if( ExprHasProperty(pExpr
, EP_WinFunc
) ) return 0;/* Not a window function */
7124 pSub
= p
->pSrc
->a
[0].pSelect
;
7125 if( pSub
==0 ) return 0; /* The FROM is a subquery */
7126 if( pSub
->pPrior
==0 ) return 0; /* Must be a compound */
7127 if( pSub
->selFlags
& SF_CopyCte
) return 0; /* Not a CTE */
7129 if( pSub
->op
!=TK_ALL
&& pSub
->pPrior
) return 0; /* Must be UNION ALL */
7130 if( pSub
->pWhere
) return 0; /* No WHERE clause */
7131 if( pSub
->pLimit
) return 0; /* No LIMIT clause */
7132 if( pSub
->selFlags
& SF_Aggregate
) return 0; /* Not an aggregate */
7133 assert( pSub
->pHaving
==0 ); /* Due to the previous */
7134 pSub
= pSub
->pPrior
; /* Repeat over compound */
7137 /* If we reach this point then it is OK to perform the transformation */
7142 pSub
= p
->pSrc
->a
[0].pSelect
;
7143 p
->pSrc
->a
[0].pSelect
= 0;
7144 sqlite3SrcListDelete(db
, p
->pSrc
);
7145 p
->pSrc
= sqlite3DbMallocZero(pParse
->db
, sizeof(*p
->pSrc
));
7148 pPrior
= pSub
->pPrior
;
7151 pSub
->selFlags
|= SF_Aggregate
;
7152 pSub
->selFlags
&= ~SF_Compound
;
7153 pSub
->nSelectRow
= 0;
7154 sqlite3ParserAddCleanup(pParse
, sqlite3ExprListDeleteGeneric
, pSub
->pEList
);
7155 pTerm
= pPrior
? sqlite3ExprDup(db
, pCount
, 0) : pCount
;
7156 pSub
->pEList
= sqlite3ExprListAppend(pParse
, 0, pTerm
);
7157 pTerm
= sqlite3PExpr(pParse
, TK_SELECT
, 0, 0);
7158 sqlite3PExprAddSelect(pParse
, pTerm
, pSub
);
7162 pExpr
= sqlite3PExpr(pParse
, TK_PLUS
, pTerm
, pExpr
);
7166 p
->pEList
->a
[0].pExpr
= pExpr
;
7167 p
->selFlags
&= ~SF_Aggregate
;
7169 #if TREETRACE_ENABLED
7170 if( sqlite3TreeTrace
& 0x200 ){
7171 TREETRACE(0x200,pParse
,p
,("After count-of-view optimization:\n"));
7172 sqlite3TreeViewSelect(0, p
, 0);
7179 ** If any term of pSrc, or any SF_NestedFrom sub-query, is not the same
7180 ** as pSrcItem but has the same alias as p0, then return true.
7181 ** Otherwise return false.
7183 static int sameSrcAlias(SrcItem
*p0
, SrcList
*pSrc
){
7185 for(i
=0; i
<pSrc
->nSrc
; i
++){
7186 SrcItem
*p1
= &pSrc
->a
[i
];
7187 if( p1
==p0
) continue;
7188 if( p0
->pTab
==p1
->pTab
&& 0==sqlite3_stricmp(p0
->zAlias
, p1
->zAlias
) ){
7192 && (p1
->pSelect
->selFlags
& SF_NestedFrom
)!=0
7193 && sameSrcAlias(p0
, p1
->pSelect
->pSrc
)
7202 ** Return TRUE (non-zero) if the i-th entry in the pTabList SrcList can
7203 ** be implemented as a co-routine. The i-th entry is guaranteed to be
7206 ** The subquery is implemented as a co-routine if all of the following are
7209 ** (1) The subquery will likely be implemented in the outer loop of
7210 ** the query. This will be the case if any one of the following
7212 ** (a) The subquery is the only term in the FROM clause
7213 ** (b) The subquery is the left-most term and a CROSS JOIN or similar
7214 ** requires it to be the outer loop
7215 ** (c) All of the following are true:
7216 ** (i) The subquery is the left-most subquery in the FROM clause
7217 ** (ii) There is nothing that would prevent the subquery from
7218 ** being used as the outer loop if the sqlite3WhereBegin()
7219 ** routine nominates it to that position.
7220 ** (iii) The query is not a UPDATE ... FROM
7221 ** (2) The subquery is not a CTE that should be materialized because
7222 ** (a) the AS MATERIALIZED keyword is used, or
7223 ** (b) the CTE is used multiple times and does not have the
7224 ** NOT MATERIALIZED keyword
7225 ** (3) The subquery is not part of a left operand for a RIGHT JOIN
7226 ** (4) The SQLITE_Coroutine optimization disable flag is not set
7227 ** (5) The subquery is not self-joined
7229 static int fromClauseTermCanBeCoroutine(
7230 Parse
*pParse
, /* Parsing context */
7231 SrcList
*pTabList
, /* FROM clause */
7232 int i
, /* Which term of the FROM clause holds the subquery */
7233 int selFlags
/* Flags on the SELECT statement */
7235 SrcItem
*pItem
= &pTabList
->a
[i
];
7236 if( pItem
->fg
.isCte
){
7237 const CteUse
*pCteUse
= pItem
->u2
.pCteUse
;
7238 if( pCteUse
->eM10d
==M10d_Yes
) return 0; /* (2a) */
7239 if( pCteUse
->nUse
>=2 && pCteUse
->eM10d
!=M10d_No
) return 0; /* (2b) */
7241 if( pTabList
->a
[0].fg
.jointype
& JT_LTORJ
) return 0; /* (3) */
7242 if( OptimizationDisabled(pParse
->db
, SQLITE_Coroutines
) ) return 0; /* (4) */
7243 if( isSelfJoinView(pTabList
, pItem
, i
+1, pTabList
->nSrc
)!=0 ){
7247 if( pTabList
->nSrc
==1 ) return 1; /* (1a) */
7248 if( pTabList
->a
[1].fg
.jointype
& JT_CROSS
) return 1; /* (1b) */
7249 if( selFlags
& SF_UpdateFrom
) return 0; /* (1c-iii) */
7252 if( selFlags
& SF_UpdateFrom
) return 0; /* (1c-iii) */
7253 while( 1 /*exit-by-break*/ ){
7254 if( pItem
->fg
.jointype
& (JT_OUTER
|JT_CROSS
) ) return 0; /* (1c-ii) */
7258 if( pItem
->pSelect
!=0 ) return 0; /* (1c-i) */
7264 ** Generate code for the SELECT statement given in the p argument.
7266 ** The results are returned according to the SelectDest structure.
7267 ** See comments in sqliteInt.h for further information.
7269 ** This routine returns the number of errors. If any errors are
7270 ** encountered, then an appropriate error message is left in
7273 ** This routine does NOT free the Select structure passed in. The
7274 ** calling function needs to do that.
7277 Parse
*pParse
, /* The parser context */
7278 Select
*p
, /* The SELECT statement being coded. */
7279 SelectDest
*pDest
/* What to do with the query results */
7281 int i
, j
; /* Loop counters */
7282 WhereInfo
*pWInfo
; /* Return from sqlite3WhereBegin() */
7283 Vdbe
*v
; /* The virtual machine under construction */
7284 int isAgg
; /* True for select lists like "count(*)" */
7285 ExprList
*pEList
= 0; /* List of columns to extract. */
7286 SrcList
*pTabList
; /* List of tables to select from */
7287 Expr
*pWhere
; /* The WHERE clause. May be NULL */
7288 ExprList
*pGroupBy
; /* The GROUP BY clause. May be NULL */
7289 Expr
*pHaving
; /* The HAVING clause. May be NULL */
7290 AggInfo
*pAggInfo
= 0; /* Aggregate information */
7291 int rc
= 1; /* Value to return from this function */
7292 DistinctCtx sDistinct
; /* Info on how to code the DISTINCT keyword */
7293 SortCtx sSort
; /* Info on how to code the ORDER BY clause */
7294 int iEnd
; /* Address of the end of the query */
7295 sqlite3
*db
; /* The database connection */
7296 ExprList
*pMinMaxOrderBy
= 0; /* Added ORDER BY for min/max queries */
7297 u8 minMaxFlag
; /* Flag for min/max queries */
7300 assert( pParse
==db
->pParse
);
7301 v
= sqlite3GetVdbe(pParse
);
7302 if( p
==0 || pParse
->nErr
){
7305 assert( db
->mallocFailed
==0 );
7306 if( sqlite3AuthCheck(pParse
, SQLITE_SELECT
, 0, 0, 0) ) return 1;
7307 #if TREETRACE_ENABLED
7308 TREETRACE(0x1,pParse
,p
, ("begin processing:\n", pParse
->addrExplain
));
7309 if( sqlite3TreeTrace
& 0x10000 ){
7310 if( (sqlite3TreeTrace
& 0x10001)==0x10000 ){
7311 sqlite3TreeViewLine(0, "In sqlite3Select() at %s:%d",
7312 __FILE__
, __LINE__
);
7314 sqlite3ShowSelect(p
);
7318 assert( p
->pOrderBy
==0 || pDest
->eDest
!=SRT_DistFifo
);
7319 assert( p
->pOrderBy
==0 || pDest
->eDest
!=SRT_Fifo
);
7320 assert( p
->pOrderBy
==0 || pDest
->eDest
!=SRT_DistQueue
);
7321 assert( p
->pOrderBy
==0 || pDest
->eDest
!=SRT_Queue
);
7322 if( IgnorableDistinct(pDest
) ){
7323 assert(pDest
->eDest
==SRT_Exists
|| pDest
->eDest
==SRT_Union
||
7324 pDest
->eDest
==SRT_Except
|| pDest
->eDest
==SRT_Discard
||
7325 pDest
->eDest
==SRT_DistQueue
|| pDest
->eDest
==SRT_DistFifo
);
7326 /* All of these destinations are also able to ignore the ORDER BY clause */
7328 #if TREETRACE_ENABLED
7329 TREETRACE(0x800,pParse
,p
, ("dropping superfluous ORDER BY:\n"));
7330 if( sqlite3TreeTrace
& 0x800 ){
7331 sqlite3TreeViewExprList(0, p
->pOrderBy
, 0, "ORDERBY");
7334 sqlite3ParserAddCleanup(pParse
, sqlite3ExprListDeleteGeneric
,
7336 testcase( pParse
->earlyCleanup
);
7339 p
->selFlags
&= ~SF_Distinct
;
7340 p
->selFlags
|= SF_NoopOrderBy
;
7342 sqlite3SelectPrep(pParse
, p
, 0);
7346 assert( db
->mallocFailed
==0 );
7347 assert( p
->pEList
!=0 );
7348 #if TREETRACE_ENABLED
7349 if( sqlite3TreeTrace
& 0x10 ){
7350 TREETRACE(0x10,pParse
,p
, ("after name resolution:\n"));
7351 sqlite3TreeViewSelect(0, p
, 0);
7355 /* If the SF_UFSrcCheck flag is set, then this function is being called
7356 ** as part of populating the temp table for an UPDATE...FROM statement.
7357 ** In this case, it is an error if the target object (pSrc->a[0]) name
7358 ** or alias is duplicated within FROM clause (pSrc->a[1..n]).
7360 ** Postgres disallows this case too. The reason is that some other
7361 ** systems handle this case differently, and not all the same way,
7362 ** which is just confusing. To avoid this, we follow PG's lead and
7363 ** disallow it altogether. */
7364 if( p
->selFlags
& SF_UFSrcCheck
){
7365 SrcItem
*p0
= &p
->pSrc
->a
[0];
7366 if( sameSrcAlias(p0
, p
->pSrc
) ){
7367 sqlite3ErrorMsg(pParse
,
7368 "target object/alias may not appear in FROM clause: %s",
7369 p0
->zAlias
? p0
->zAlias
: p0
->pTab
->zName
7374 /* Clear the SF_UFSrcCheck flag. The check has already been performed,
7375 ** and leaving this flag set can cause errors if a compound sub-query
7376 ** in p->pSrc is flattened into this query and this function called
7377 ** again as part of compound SELECT processing. */
7378 p
->selFlags
&= ~SF_UFSrcCheck
;
7381 if( pDest
->eDest
==SRT_Output
){
7382 sqlite3GenerateColumnNames(pParse
, p
);
7385 #ifndef SQLITE_OMIT_WINDOWFUNC
7386 if( sqlite3WindowRewrite(pParse
, p
) ){
7387 assert( pParse
->nErr
);
7390 #if TREETRACE_ENABLED
7391 if( p
->pWin
&& (sqlite3TreeTrace
& 0x40)!=0 ){
7392 TREETRACE(0x40,pParse
,p
, ("after window rewrite:\n"));
7393 sqlite3TreeViewSelect(0, p
, 0);
7396 #endif /* SQLITE_OMIT_WINDOWFUNC */
7398 isAgg
= (p
->selFlags
& SF_Aggregate
)!=0;
7399 memset(&sSort
, 0, sizeof(sSort
));
7400 sSort
.pOrderBy
= p
->pOrderBy
;
7402 /* Try to do various optimizations (flattening subqueries, and strength
7403 ** reduction of join operators) in the FROM clause up into the main query
7405 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
7406 for(i
=0; !p
->pPrior
&& i
<pTabList
->nSrc
; i
++){
7407 SrcItem
*pItem
= &pTabList
->a
[i
];
7408 Select
*pSub
= pItem
->pSelect
;
7409 Table
*pTab
= pItem
->pTab
;
7411 /* The expander should have already created transient Table objects
7412 ** even for FROM clause elements such as subqueries that do not correspond
7413 ** to a real table */
7416 /* Try to simplify joins:
7418 ** LEFT JOIN -> JOIN
7419 ** RIGHT JOIN -> JOIN
7420 ** FULL JOIN -> RIGHT JOIN
7422 ** If terms of the i-th table are used in the WHERE clause in such a
7423 ** way that the i-th table cannot be the NULL row of a join, then
7424 ** perform the appropriate simplification. This is called
7425 ** "OUTER JOIN strength reduction" in the SQLite documentation.
7427 if( (pItem
->fg
.jointype
& (JT_LEFT
|JT_LTORJ
))!=0
7428 && sqlite3ExprImpliesNonNullRow(p
->pWhere
, pItem
->iCursor
,
7429 pItem
->fg
.jointype
& JT_LTORJ
)
7430 && OptimizationEnabled(db
, SQLITE_SimplifyJoin
)
7432 if( pItem
->fg
.jointype
& JT_LEFT
){
7433 if( pItem
->fg
.jointype
& JT_RIGHT
){
7434 TREETRACE(0x1000,pParse
,p
,
7435 ("FULL-JOIN simplifies to RIGHT-JOIN on term %d\n",i
));
7436 pItem
->fg
.jointype
&= ~JT_LEFT
;
7438 TREETRACE(0x1000,pParse
,p
,
7439 ("LEFT-JOIN simplifies to JOIN on term %d\n",i
));
7440 pItem
->fg
.jointype
&= ~(JT_LEFT
|JT_OUTER
);
7441 unsetJoinExpr(p
->pWhere
, pItem
->iCursor
, 0);
7444 if( pItem
->fg
.jointype
& JT_LTORJ
){
7445 for(j
=i
+1; j
<pTabList
->nSrc
; j
++){
7446 SrcItem
*pI2
= &pTabList
->a
[j
];
7447 if( pI2
->fg
.jointype
& JT_RIGHT
){
7448 if( pI2
->fg
.jointype
& JT_LEFT
){
7449 TREETRACE(0x1000,pParse
,p
,
7450 ("FULL-JOIN simplifies to LEFT-JOIN on term %d\n",j
));
7451 pI2
->fg
.jointype
&= ~JT_RIGHT
;
7453 TREETRACE(0x1000,pParse
,p
,
7454 ("RIGHT-JOIN simplifies to JOIN on term %d\n",j
));
7455 pI2
->fg
.jointype
&= ~(JT_RIGHT
|JT_OUTER
);
7456 unsetJoinExpr(p
->pWhere
, pI2
->iCursor
, 1);
7460 for(j
=pTabList
->nSrc
-1; j
>=0; j
--){
7461 pTabList
->a
[j
].fg
.jointype
&= ~JT_LTORJ
;
7462 if( pTabList
->a
[j
].fg
.jointype
& JT_RIGHT
) break;
7467 /* No further action if this term of the FROM clause is not a subquery */
7468 if( pSub
==0 ) continue;
7470 /* Catch mismatch in the declared columns of a view and the number of
7471 ** columns in the SELECT on the RHS */
7472 if( pTab
->nCol
!=pSub
->pEList
->nExpr
){
7473 sqlite3ErrorMsg(pParse
, "expected %d columns for '%s' but got %d",
7474 pTab
->nCol
, pTab
->zName
, pSub
->pEList
->nExpr
);
7478 /* Do not attempt the usual optimizations (flattening and ORDER BY
7479 ** elimination) on a MATERIALIZED common table expression because
7480 ** a MATERIALIZED common table expression is an optimization fence.
7482 if( pItem
->fg
.isCte
&& pItem
->u2
.pCteUse
->eM10d
==M10d_Yes
){
7486 /* Do not try to flatten an aggregate subquery.
7488 ** Flattening an aggregate subquery is only possible if the outer query
7489 ** is not a join. But if the outer query is not a join, then the subquery
7490 ** will be implemented as a co-routine and there is no advantage to
7491 ** flattening in that case.
7493 if( (pSub
->selFlags
& SF_Aggregate
)!=0 ) continue;
7494 assert( pSub
->pGroupBy
==0 );
7496 /* If a FROM-clause subquery has an ORDER BY clause that is not
7497 ** really doing anything, then delete it now so that it does not
7498 ** interfere with query flattening. See the discussion at
7499 ** https://sqlite.org/forum/forumpost/2d76f2bcf65d256a
7501 ** Beware of these cases where the ORDER BY clause may not be safely
7504 ** (1) There is also a LIMIT clause
7505 ** (2) The subquery was added to help with window-function
7507 ** (3) The subquery is in the FROM clause of an UPDATE
7508 ** (4) The outer query uses an aggregate function other than
7509 ** the built-in count(), min(), or max().
7510 ** (5) The ORDER BY isn't going to accomplish anything because
7512 ** (a) The outer query has a different ORDER BY clause
7513 ** (b) The subquery is part of a join
7514 ** See forum post 062d576715d277c8
7516 ** Also retain the ORDER BY if the OmitOrderBy optimization is disabled.
7518 if( pSub
->pOrderBy
!=0
7519 && (p
->pOrderBy
!=0 || pTabList
->nSrc
>1) /* Condition (5) */
7520 && pSub
->pLimit
==0 /* Condition (1) */
7521 && (pSub
->selFlags
& SF_OrderByReqd
)==0 /* Condition (2) */
7522 && (p
->selFlags
& SF_OrderByReqd
)==0 /* Condition (3) and (4) */
7523 && OptimizationEnabled(db
, SQLITE_OmitOrderBy
)
7525 TREETRACE(0x800,pParse
,p
,
7526 ("omit superfluous ORDER BY on %r FROM-clause subquery\n",i
+1));
7527 sqlite3ParserAddCleanup(pParse
, sqlite3ExprListDeleteGeneric
,
7532 /* If the outer query contains a "complex" result set (that is,
7533 ** if the result set of the outer query uses functions or subqueries)
7534 ** and if the subquery contains an ORDER BY clause and if
7535 ** it will be implemented as a co-routine, then do not flatten. This
7536 ** restriction allows SQL constructs like this:
7538 ** SELECT expensive_function(x)
7539 ** FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
7541 ** The expensive_function() is only computed on the 10 rows that
7542 ** are output, rather than every row of the table.
7544 ** The requirement that the outer query have a complex result set
7545 ** means that flattening does occur on simpler SQL constraints without
7546 ** the expensive_function() like:
7548 ** SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
7550 if( pSub
->pOrderBy
!=0
7552 && (p
->selFlags
& SF_ComplexResult
)!=0
7553 && (pTabList
->nSrc
==1
7554 || (pTabList
->a
[1].fg
.jointype
&(JT_OUTER
|JT_CROSS
))!=0)
7559 if( flattenSubquery(pParse
, p
, i
, isAgg
) ){
7560 if( pParse
->nErr
) goto select_end
;
7561 /* This subquery can be absorbed into its parent. */
7565 if( db
->mallocFailed
) goto select_end
;
7566 if( !IgnorableOrderby(pDest
) ){
7567 sSort
.pOrderBy
= p
->pOrderBy
;
7572 #ifndef SQLITE_OMIT_COMPOUND_SELECT
7573 /* Handle compound SELECT statements using the separate multiSelect()
7577 rc
= multiSelect(pParse
, p
, pDest
);
7578 #if TREETRACE_ENABLED
7579 TREETRACE(0x400,pParse
,p
,("end compound-select processing\n"));
7580 if( (sqlite3TreeTrace
& 0x400)!=0 && ExplainQueryPlanParent(pParse
)==0 ){
7581 sqlite3TreeViewSelect(0, p
, 0);
7584 if( p
->pNext
==0 ) ExplainQueryPlanPop(pParse
);
7589 /* Do the WHERE-clause constant propagation optimization if this is
7590 ** a join. No need to speed time on this operation for non-join queries
7591 ** as the equivalent optimization will be handled by query planner in
7592 ** sqlite3WhereBegin().
7595 && p
->pWhere
->op
==TK_AND
7596 && OptimizationEnabled(db
, SQLITE_PropagateConst
)
7597 && propagateConstants(pParse
, p
)
7599 #if TREETRACE_ENABLED
7600 if( sqlite3TreeTrace
& 0x2000 ){
7601 TREETRACE(0x2000,pParse
,p
,("After constant propagation:\n"));
7602 sqlite3TreeViewSelect(0, p
, 0);
7606 TREETRACE(0x2000,pParse
,p
,("Constant propagation not helpful\n"));
7609 if( OptimizationEnabled(db
, SQLITE_QueryFlattener
|SQLITE_CountOfView
)
7610 && countOfViewOptimization(pParse
, p
)
7612 if( db
->mallocFailed
) goto select_end
;
7616 /* For each term in the FROM clause, do two things:
7617 ** (1) Authorized unreferenced tables
7618 ** (2) Generate code for all sub-queries
7620 for(i
=0; i
<pTabList
->nSrc
; i
++){
7621 SrcItem
*pItem
= &pTabList
->a
[i
];
7625 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
7626 const char *zSavedAuthContext
;
7629 /* Issue SQLITE_READ authorizations with a fake column name for any
7630 ** tables that are referenced but from which no values are extracted.
7631 ** Examples of where these kinds of null SQLITE_READ authorizations
7634 ** SELECT count(*) FROM t1; -- SQLITE_READ t1.""
7635 ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2.""
7637 ** The fake column name is an empty string. It is possible for a table to
7638 ** have a column named by the empty string, in which case there is no way to
7639 ** distinguish between an unreferenced table and an actual reference to the
7640 ** "" column. The original design was for the fake column name to be a NULL,
7641 ** which would be unambiguous. But legacy authorization callbacks might
7642 ** assume the column name is non-NULL and segfault. The use of an empty
7643 ** string for the fake column name seems safer.
7645 if( pItem
->colUsed
==0 && pItem
->zName
!=0 ){
7646 sqlite3AuthCheck(pParse
, SQLITE_READ
, pItem
->zName
, "", pItem
->zDatabase
);
7649 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
7650 /* Generate code for all sub-queries in the FROM clause
7652 pSub
= pItem
->pSelect
;
7653 if( pSub
==0 ) continue;
7655 /* The code for a subquery should only be generated once. */
7656 assert( pItem
->addrFillSub
==0 );
7658 /* Increment Parse.nHeight by the height of the largest expression
7659 ** tree referred to by this, the parent select. The child select
7660 ** may contain expression trees of at most
7661 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
7662 ** more conservative than necessary, but much easier than enforcing
7665 pParse
->nHeight
+= sqlite3SelectExprHeight(p
);
7667 /* Make copies of constant WHERE-clause terms in the outer query down
7668 ** inside the subquery. This can help the subquery to run more efficiently.
7670 if( OptimizationEnabled(db
, SQLITE_PushDown
)
7671 && (pItem
->fg
.isCte
==0
7672 || (pItem
->u2
.pCteUse
->eM10d
!=M10d_Yes
&& pItem
->u2
.pCteUse
->nUse
<2))
7673 && pushDownWhereTerms(pParse
, pSub
, p
->pWhere
, pTabList
, i
)
7675 #if TREETRACE_ENABLED
7676 if( sqlite3TreeTrace
& 0x4000 ){
7677 TREETRACE(0x4000,pParse
,p
,
7678 ("After WHERE-clause push-down into subquery %d:\n", pSub
->selId
));
7679 sqlite3TreeViewSelect(0, p
, 0);
7682 assert( pItem
->pSelect
&& (pItem
->pSelect
->selFlags
& SF_PushDown
)!=0 );
7684 TREETRACE(0x4000,pParse
,p
,("Push-down not possible\n"));
7687 /* Convert unused result columns of the subquery into simple NULL
7688 ** expressions, to avoid unneeded searching and computation.
7690 if( OptimizationEnabled(db
, SQLITE_NullUnusedCols
)
7691 && disableUnusedSubqueryResultColumns(pItem
)
7693 #if TREETRACE_ENABLED
7694 if( sqlite3TreeTrace
& 0x4000 ){
7695 TREETRACE(0x4000,pParse
,p
,
7696 ("Change unused result columns to NULL for subquery %d:\n",
7698 sqlite3TreeViewSelect(0, p
, 0);
7703 zSavedAuthContext
= pParse
->zAuthContext
;
7704 pParse
->zAuthContext
= pItem
->zName
;
7706 /* Generate code to implement the subquery
7708 if( fromClauseTermCanBeCoroutine(pParse
, pTabList
, i
, p
->selFlags
) ){
7709 /* Implement a co-routine that will return a single row of the result
7710 ** set on each invocation.
7712 int addrTop
= sqlite3VdbeCurrentAddr(v
)+1;
7714 pItem
->regReturn
= ++pParse
->nMem
;
7715 sqlite3VdbeAddOp3(v
, OP_InitCoroutine
, pItem
->regReturn
, 0, addrTop
);
7716 VdbeComment((v
, "%!S", pItem
));
7717 pItem
->addrFillSub
= addrTop
;
7718 sqlite3SelectDestInit(&dest
, SRT_Coroutine
, pItem
->regReturn
);
7719 ExplainQueryPlan((pParse
, 1, "CO-ROUTINE %!S", pItem
));
7720 sqlite3Select(pParse
, pSub
, &dest
);
7721 pItem
->pTab
->nRowLogEst
= pSub
->nSelectRow
;
7722 pItem
->fg
.viaCoroutine
= 1;
7723 pItem
->regResult
= dest
.iSdst
;
7724 sqlite3VdbeEndCoroutine(v
, pItem
->regReturn
);
7725 sqlite3VdbeJumpHere(v
, addrTop
-1);
7726 sqlite3ClearTempRegCache(pParse
);
7727 }else if( pItem
->fg
.isCte
&& pItem
->u2
.pCteUse
->addrM9e
>0 ){
7728 /* This is a CTE for which materialization code has already been
7729 ** generated. Invoke the subroutine to compute the materialization,
7730 ** the make the pItem->iCursor be a copy of the ephemeral table that
7731 ** holds the result of the materialization. */
7732 CteUse
*pCteUse
= pItem
->u2
.pCteUse
;
7733 sqlite3VdbeAddOp2(v
, OP_Gosub
, pCteUse
->regRtn
, pCteUse
->addrM9e
);
7734 if( pItem
->iCursor
!=pCteUse
->iCur
){
7735 sqlite3VdbeAddOp2(v
, OP_OpenDup
, pItem
->iCursor
, pCteUse
->iCur
);
7736 VdbeComment((v
, "%!S", pItem
));
7738 pSub
->nSelectRow
= pCteUse
->nRowEst
;
7739 }else if( (pPrior
= isSelfJoinView(pTabList
, pItem
, 0, i
))!=0 ){
7740 /* This view has already been materialized by a prior entry in
7741 ** this same FROM clause. Reuse it. */
7742 if( pPrior
->addrFillSub
){
7743 sqlite3VdbeAddOp2(v
, OP_Gosub
, pPrior
->regReturn
, pPrior
->addrFillSub
);
7745 sqlite3VdbeAddOp2(v
, OP_OpenDup
, pItem
->iCursor
, pPrior
->iCursor
);
7746 pSub
->nSelectRow
= pPrior
->pSelect
->nSelectRow
;
7748 /* Materialize the view. If the view is not correlated, generate a
7749 ** subroutine to do the materialization so that subsequent uses of
7750 ** the same view can reuse the materialization. */
7753 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
7757 pItem
->regReturn
= ++pParse
->nMem
;
7758 topAddr
= sqlite3VdbeAddOp0(v
, OP_Goto
);
7759 pItem
->addrFillSub
= topAddr
+1;
7760 pItem
->fg
.isMaterialized
= 1;
7761 if( pItem
->fg
.isCorrelated
==0 ){
7762 /* If the subquery is not correlated and if we are not inside of
7763 ** a trigger, then we only need to compute the value of the subquery
7765 onceAddr
= sqlite3VdbeAddOp0(v
, OP_Once
); VdbeCoverage(v
);
7766 VdbeComment((v
, "materialize %!S", pItem
));
7768 VdbeNoopComment((v
, "materialize %!S", pItem
));
7770 sqlite3SelectDestInit(&dest
, SRT_EphemTab
, pItem
->iCursor
);
7772 ExplainQueryPlan2(addrExplain
, (pParse
, 1, "MATERIALIZE %!S", pItem
));
7773 sqlite3Select(pParse
, pSub
, &dest
);
7774 pItem
->pTab
->nRowLogEst
= pSub
->nSelectRow
;
7775 if( onceAddr
) sqlite3VdbeJumpHere(v
, onceAddr
);
7776 sqlite3VdbeAddOp2(v
, OP_Return
, pItem
->regReturn
, topAddr
+1);
7777 VdbeComment((v
, "end %!S", pItem
));
7778 sqlite3VdbeScanStatusRange(v
, addrExplain
, addrExplain
, -1);
7779 sqlite3VdbeJumpHere(v
, topAddr
);
7780 sqlite3ClearTempRegCache(pParse
);
7781 if( pItem
->fg
.isCte
&& pItem
->fg
.isCorrelated
==0 ){
7782 CteUse
*pCteUse
= pItem
->u2
.pCteUse
;
7783 pCteUse
->addrM9e
= pItem
->addrFillSub
;
7784 pCteUse
->regRtn
= pItem
->regReturn
;
7785 pCteUse
->iCur
= pItem
->iCursor
;
7786 pCteUse
->nRowEst
= pSub
->nSelectRow
;
7789 if( db
->mallocFailed
) goto select_end
;
7790 pParse
->nHeight
-= sqlite3SelectExprHeight(p
);
7791 pParse
->zAuthContext
= zSavedAuthContext
;
7795 /* Various elements of the SELECT copied into local variables for
7799 pGroupBy
= p
->pGroupBy
;
7800 pHaving
= p
->pHaving
;
7801 sDistinct
.isTnct
= (p
->selFlags
& SF_Distinct
)!=0;
7803 #if TREETRACE_ENABLED
7804 if( sqlite3TreeTrace
& 0x8000 ){
7805 TREETRACE(0x8000,pParse
,p
,("After all FROM-clause analysis:\n"));
7806 sqlite3TreeViewSelect(0, p
, 0);
7810 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
7811 ** if the select-list is the same as the ORDER BY list, then this query
7812 ** can be rewritten as a GROUP BY. In other words, this:
7814 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz
7816 ** is transformed to:
7818 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
7820 ** The second form is preferred as a single index (or temp-table) may be
7821 ** used for both the ORDER BY and DISTINCT processing. As originally
7822 ** written the query must use a temp-table for at least one of the ORDER
7823 ** BY and DISTINCT, and an index or separate temp-table for the other.
7825 if( (p
->selFlags
& (SF_Distinct
|SF_Aggregate
))==SF_Distinct
7826 && sqlite3ExprListCompare(sSort
.pOrderBy
, pEList
, -1)==0
7827 #ifndef SQLITE_OMIT_WINDOWFUNC
7831 p
->selFlags
&= ~SF_Distinct
;
7832 pGroupBy
= p
->pGroupBy
= sqlite3ExprListDup(db
, pEList
, 0);
7833 p
->selFlags
|= SF_Aggregate
;
7834 /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
7835 ** the sDistinct.isTnct is still set. Hence, isTnct represents the
7836 ** original setting of the SF_Distinct flag, not the current setting */
7837 assert( sDistinct
.isTnct
);
7838 sDistinct
.isTnct
= 2;
7840 #if TREETRACE_ENABLED
7841 if( sqlite3TreeTrace
& 0x20000 ){
7842 TREETRACE(0x20000,pParse
,p
,("Transform DISTINCT into GROUP BY:\n"));
7843 sqlite3TreeViewSelect(0, p
, 0);
7848 /* If there is an ORDER BY clause, then create an ephemeral index to
7849 ** do the sorting. But this sorting ephemeral index might end up
7850 ** being unused if the data can be extracted in pre-sorted order.
7851 ** If that is the case, then the OP_OpenEphemeral instruction will be
7852 ** changed to an OP_Noop once we figure out that the sorting index is
7853 ** not needed. The sSort.addrSortIndex variable is used to facilitate
7856 if( sSort
.pOrderBy
){
7858 pKeyInfo
= sqlite3KeyInfoFromExprList(
7859 pParse
, sSort
.pOrderBy
, 0, pEList
->nExpr
);
7860 sSort
.iECursor
= pParse
->nTab
++;
7861 sSort
.addrSortIndex
=
7862 sqlite3VdbeAddOp4(v
, OP_OpenEphemeral
,
7863 sSort
.iECursor
, sSort
.pOrderBy
->nExpr
+1+pEList
->nExpr
, 0,
7864 (char*)pKeyInfo
, P4_KEYINFO
7867 sSort
.addrSortIndex
= -1;
7870 /* If the output is destined for a temporary table, open that table.
7872 if( pDest
->eDest
==SRT_EphemTab
){
7873 sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, pDest
->iSDParm
, pEList
->nExpr
);
7874 if( p
->selFlags
& SF_NestedFrom
){
7875 /* Delete or NULL-out result columns that will never be used */
7877 for(ii
=pEList
->nExpr
-1; ii
>0 && pEList
->a
[ii
].fg
.bUsed
==0; ii
--){
7878 sqlite3ExprDelete(db
, pEList
->a
[ii
].pExpr
);
7879 sqlite3DbFree(db
, pEList
->a
[ii
].zEName
);
7882 for(ii
=0; ii
<pEList
->nExpr
; ii
++){
7883 if( pEList
->a
[ii
].fg
.bUsed
==0 ) pEList
->a
[ii
].pExpr
->op
= TK_NULL
;
7890 iEnd
= sqlite3VdbeMakeLabel(pParse
);
7891 if( (p
->selFlags
& SF_FixedLimit
)==0 ){
7892 p
->nSelectRow
= 320; /* 4 billion rows */
7894 if( p
->pLimit
) computeLimitRegisters(pParse
, p
, iEnd
);
7895 if( p
->iLimit
==0 && sSort
.addrSortIndex
>=0 ){
7896 sqlite3VdbeChangeOpcode(v
, sSort
.addrSortIndex
, OP_SorterOpen
);
7897 sSort
.sortFlags
|= SORTFLAG_UseSorter
;
7900 /* Open an ephemeral index to use for the distinct set.
7902 if( p
->selFlags
& SF_Distinct
){
7903 sDistinct
.tabTnct
= pParse
->nTab
++;
7904 sDistinct
.addrTnct
= sqlite3VdbeAddOp4(v
, OP_OpenEphemeral
,
7905 sDistinct
.tabTnct
, 0, 0,
7906 (char*)sqlite3KeyInfoFromExprList(pParse
, p
->pEList
,0,0),
7908 sqlite3VdbeChangeP5(v
, BTREE_UNORDERED
);
7909 sDistinct
.eTnctType
= WHERE_DISTINCT_UNORDERED
;
7911 sDistinct
.eTnctType
= WHERE_DISTINCT_NOOP
;
7914 if( !isAgg
&& pGroupBy
==0 ){
7915 /* No aggregate functions and no GROUP BY clause */
7916 u16 wctrlFlags
= (sDistinct
.isTnct
? WHERE_WANT_DISTINCT
: 0)
7917 | (p
->selFlags
& SF_FixedLimit
);
7918 #ifndef SQLITE_OMIT_WINDOWFUNC
7919 Window
*pWin
= p
->pWin
; /* Main window object (or NULL) */
7921 sqlite3WindowCodeInit(pParse
, p
);
7924 assert( WHERE_USE_LIMIT
==SF_FixedLimit
);
7927 /* Begin the database scan. */
7928 TREETRACE(0x2,pParse
,p
,("WhereBegin\n"));
7929 pWInfo
= sqlite3WhereBegin(pParse
, pTabList
, pWhere
, sSort
.pOrderBy
,
7930 p
->pEList
, p
, wctrlFlags
, p
->nSelectRow
);
7931 if( pWInfo
==0 ) goto select_end
;
7932 if( sqlite3WhereOutputRowCount(pWInfo
) < p
->nSelectRow
){
7933 p
->nSelectRow
= sqlite3WhereOutputRowCount(pWInfo
);
7935 if( sDistinct
.isTnct
&& sqlite3WhereIsDistinct(pWInfo
) ){
7936 sDistinct
.eTnctType
= sqlite3WhereIsDistinct(pWInfo
);
7938 if( sSort
.pOrderBy
){
7939 sSort
.nOBSat
= sqlite3WhereIsOrdered(pWInfo
);
7940 sSort
.labelOBLopt
= sqlite3WhereOrderByLimitOptLabel(pWInfo
);
7941 if( sSort
.nOBSat
==sSort
.pOrderBy
->nExpr
){
7945 TREETRACE(0x2,pParse
,p
,("WhereBegin returns\n"));
7947 /* If sorting index that was created by a prior OP_OpenEphemeral
7948 ** instruction ended up not being needed, then change the OP_OpenEphemeral
7951 if( sSort
.addrSortIndex
>=0 && sSort
.pOrderBy
==0 ){
7952 sqlite3VdbeChangeToNoop(v
, sSort
.addrSortIndex
);
7955 assert( p
->pEList
==pEList
);
7956 #ifndef SQLITE_OMIT_WINDOWFUNC
7958 int addrGosub
= sqlite3VdbeMakeLabel(pParse
);
7959 int iCont
= sqlite3VdbeMakeLabel(pParse
);
7960 int iBreak
= sqlite3VdbeMakeLabel(pParse
);
7961 int regGosub
= ++pParse
->nMem
;
7963 sqlite3WindowCodeStep(pParse
, p
, pWInfo
, regGosub
, addrGosub
);
7965 sqlite3VdbeAddOp2(v
, OP_Goto
, 0, iBreak
);
7966 sqlite3VdbeResolveLabel(v
, addrGosub
);
7967 VdbeNoopComment((v
, "inner-loop subroutine"));
7968 sSort
.labelOBLopt
= 0;
7969 selectInnerLoop(pParse
, p
, -1, &sSort
, &sDistinct
, pDest
, iCont
, iBreak
);
7970 sqlite3VdbeResolveLabel(v
, iCont
);
7971 sqlite3VdbeAddOp1(v
, OP_Return
, regGosub
);
7972 VdbeComment((v
, "end inner-loop subroutine"));
7973 sqlite3VdbeResolveLabel(v
, iBreak
);
7975 #endif /* SQLITE_OMIT_WINDOWFUNC */
7977 /* Use the standard inner loop. */
7978 selectInnerLoop(pParse
, p
, -1, &sSort
, &sDistinct
, pDest
,
7979 sqlite3WhereContinueLabel(pWInfo
),
7980 sqlite3WhereBreakLabel(pWInfo
));
7982 /* End the database scan loop.
7984 TREETRACE(0x2,pParse
,p
,("WhereEnd\n"));
7985 sqlite3WhereEnd(pWInfo
);
7988 /* This case when there exist aggregate functions or a GROUP BY clause
7990 NameContext sNC
; /* Name context for processing aggregate information */
7991 int iAMem
; /* First Mem address for storing current GROUP BY */
7992 int iBMem
; /* First Mem address for previous GROUP BY */
7993 int iUseFlag
; /* Mem address holding flag indicating that at least
7994 ** one row of the input to the aggregator has been
7996 int iAbortFlag
; /* Mem address which causes query abort if positive */
7997 int groupBySort
; /* Rows come from source in GROUP BY order */
7998 int addrEnd
; /* End of processing for this SELECT */
7999 int sortPTab
= 0; /* Pseudotable used to decode sorting results */
8000 int sortOut
= 0; /* Output register from the sorter */
8001 int orderByGrp
= 0; /* True if the GROUP BY and ORDER BY are the same */
8003 /* Remove any and all aliases between the result set and the
8007 int k
; /* Loop counter */
8008 struct ExprList_item
*pItem
; /* For looping over expression in a list */
8010 for(k
=p
->pEList
->nExpr
, pItem
=p
->pEList
->a
; k
>0; k
--, pItem
++){
8011 pItem
->u
.x
.iAlias
= 0;
8013 for(k
=pGroupBy
->nExpr
, pItem
=pGroupBy
->a
; k
>0; k
--, pItem
++){
8014 pItem
->u
.x
.iAlias
= 0;
8016 assert( 66==sqlite3LogEst(100) );
8017 if( p
->nSelectRow
>66 ) p
->nSelectRow
= 66;
8019 /* If there is both a GROUP BY and an ORDER BY clause and they are
8020 ** identical, then it may be possible to disable the ORDER BY clause
8021 ** on the grounds that the GROUP BY will cause elements to come out
8022 ** in the correct order. It also may not - the GROUP BY might use a
8023 ** database index that causes rows to be grouped together as required
8024 ** but not actually sorted. Either way, record the fact that the
8025 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
8027 if( sSort
.pOrderBy
&& pGroupBy
->nExpr
==sSort
.pOrderBy
->nExpr
){
8029 /* The GROUP BY processing doesn't care whether rows are delivered in
8030 ** ASC or DESC order - only that each group is returned contiguously.
8031 ** So set the ASC/DESC flags in the GROUP BY to match those in the
8032 ** ORDER BY to maximize the chances of rows being delivered in an
8033 ** order that makes the ORDER BY redundant. */
8034 for(ii
=0; ii
<pGroupBy
->nExpr
; ii
++){
8036 sortFlags
= sSort
.pOrderBy
->a
[ii
].fg
.sortFlags
& KEYINFO_ORDER_DESC
;
8037 pGroupBy
->a
[ii
].fg
.sortFlags
= sortFlags
;
8039 if( sqlite3ExprListCompare(pGroupBy
, sSort
.pOrderBy
, -1)==0 ){
8044 assert( 0==sqlite3LogEst(1) );
8048 /* Create a label to jump to when we want to abort the query */
8049 addrEnd
= sqlite3VdbeMakeLabel(pParse
);
8051 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
8052 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
8053 ** SELECT statement.
8055 pAggInfo
= sqlite3DbMallocZero(db
, sizeof(*pAggInfo
) );
8057 sqlite3ParserAddCleanup(pParse
, agginfoFree
, pAggInfo
);
8058 testcase( pParse
->earlyCleanup
);
8060 if( db
->mallocFailed
){
8063 pAggInfo
->selId
= p
->selId
;
8065 pAggInfo
->pSelect
= p
;
8067 memset(&sNC
, 0, sizeof(sNC
));
8068 sNC
.pParse
= pParse
;
8069 sNC
.pSrcList
= pTabList
;
8070 sNC
.uNC
.pAggInfo
= pAggInfo
;
8071 VVA_ONLY( sNC
.ncFlags
= NC_UAggInfo
; )
8072 pAggInfo
->nSortingColumn
= pGroupBy
? pGroupBy
->nExpr
: 0;
8073 pAggInfo
->pGroupBy
= pGroupBy
;
8074 sqlite3ExprAnalyzeAggList(&sNC
, pEList
);
8075 sqlite3ExprAnalyzeAggList(&sNC
, sSort
.pOrderBy
);
8078 assert( pWhere
==p
->pWhere
);
8079 assert( pHaving
==p
->pHaving
);
8080 assert( pGroupBy
==p
->pGroupBy
);
8081 havingToWhere(pParse
, p
);
8084 sqlite3ExprAnalyzeAggregates(&sNC
, pHaving
);
8086 pAggInfo
->nAccumulator
= pAggInfo
->nColumn
;
8087 if( p
->pGroupBy
==0 && p
->pHaving
==0 && pAggInfo
->nFunc
==1 ){
8088 minMaxFlag
= minMaxQuery(db
, pAggInfo
->aFunc
[0].pFExpr
, &pMinMaxOrderBy
);
8090 minMaxFlag
= WHERE_ORDERBY_NORMAL
;
8092 analyzeAggFuncArgs(pAggInfo
, &sNC
);
8093 if( db
->mallocFailed
) goto select_end
;
8094 #if TREETRACE_ENABLED
8095 if( sqlite3TreeTrace
& 0x20 ){
8096 TREETRACE(0x20,pParse
,p
,("After aggregate analysis %p:\n", pAggInfo
));
8097 sqlite3TreeViewSelect(0, p
, 0);
8099 sqlite3DebugPrintf("MIN/MAX Optimization (0x%02x) adds:\n", minMaxFlag
);
8100 sqlite3TreeViewExprList(0, pMinMaxOrderBy
, 0, "ORDERBY");
8102 printAggInfo(pAggInfo
);
8107 /* Processing for aggregates with GROUP BY is very different and
8108 ** much more complex than aggregates without a GROUP BY.
8111 KeyInfo
*pKeyInfo
; /* Keying information for the group by clause */
8112 int addr1
; /* A-vs-B comparison jump */
8113 int addrOutputRow
; /* Start of subroutine that outputs a result row */
8114 int regOutputRow
; /* Return address register for output subroutine */
8115 int addrSetAbort
; /* Set the abort flag and return */
8116 int addrTopOfLoop
; /* Top of the input loop */
8117 int addrSortingIdx
; /* The OP_OpenEphemeral for the sorting index */
8118 int addrReset
; /* Subroutine for resetting the accumulator */
8119 int regReset
; /* Return address register for reset subroutine */
8120 ExprList
*pDistinct
= 0;
8122 int eDist
= WHERE_DISTINCT_NOOP
;
8124 if( pAggInfo
->nFunc
==1
8125 && pAggInfo
->aFunc
[0].iDistinct
>=0
8126 && ALWAYS(pAggInfo
->aFunc
[0].pFExpr
!=0)
8127 && ALWAYS(ExprUseXList(pAggInfo
->aFunc
[0].pFExpr
))
8128 && pAggInfo
->aFunc
[0].pFExpr
->x
.pList
!=0
8130 Expr
*pExpr
= pAggInfo
->aFunc
[0].pFExpr
->x
.pList
->a
[0].pExpr
;
8131 pExpr
= sqlite3ExprDup(db
, pExpr
, 0);
8132 pDistinct
= sqlite3ExprListDup(db
, pGroupBy
, 0);
8133 pDistinct
= sqlite3ExprListAppend(pParse
, pDistinct
, pExpr
);
8134 distFlag
= pDistinct
? (WHERE_WANT_DISTINCT
|WHERE_AGG_DISTINCT
) : 0;
8137 /* If there is a GROUP BY clause we might need a sorting index to
8138 ** implement it. Allocate that sorting index now. If it turns out
8139 ** that we do not need it after all, the OP_SorterOpen instruction
8140 ** will be converted into a Noop.
8142 pAggInfo
->sortingIdx
= pParse
->nTab
++;
8143 pKeyInfo
= sqlite3KeyInfoFromExprList(pParse
, pGroupBy
,
8144 0, pAggInfo
->nColumn
);
8145 addrSortingIdx
= sqlite3VdbeAddOp4(v
, OP_SorterOpen
,
8146 pAggInfo
->sortingIdx
, pAggInfo
->nSortingColumn
,
8147 0, (char*)pKeyInfo
, P4_KEYINFO
);
8149 /* Initialize memory locations used by GROUP BY aggregate processing
8151 iUseFlag
= ++pParse
->nMem
;
8152 iAbortFlag
= ++pParse
->nMem
;
8153 regOutputRow
= ++pParse
->nMem
;
8154 addrOutputRow
= sqlite3VdbeMakeLabel(pParse
);
8155 regReset
= ++pParse
->nMem
;
8156 addrReset
= sqlite3VdbeMakeLabel(pParse
);
8157 iAMem
= pParse
->nMem
+ 1;
8158 pParse
->nMem
+= pGroupBy
->nExpr
;
8159 iBMem
= pParse
->nMem
+ 1;
8160 pParse
->nMem
+= pGroupBy
->nExpr
;
8161 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, iAbortFlag
);
8162 VdbeComment((v
, "clear abort flag"));
8163 sqlite3VdbeAddOp3(v
, OP_Null
, 0, iAMem
, iAMem
+pGroupBy
->nExpr
-1);
8165 /* Begin a loop that will extract all source rows in GROUP BY order.
8166 ** This might involve two separate loops with an OP_Sort in between, or
8167 ** it might be a single loop that uses an index to extract information
8168 ** in the right order to begin with.
8170 sqlite3VdbeAddOp2(v
, OP_Gosub
, regReset
, addrReset
);
8171 TREETRACE(0x2,pParse
,p
,("WhereBegin\n"));
8172 pWInfo
= sqlite3WhereBegin(pParse
, pTabList
, pWhere
, pGroupBy
, pDistinct
,
8173 p
, (sDistinct
.isTnct
==2 ? WHERE_DISTINCTBY
: WHERE_GROUPBY
)
8174 | (orderByGrp
? WHERE_SORTBYGROUP
: 0) | distFlag
, 0
8177 sqlite3ExprListDelete(db
, pDistinct
);
8180 if( pParse
->pIdxEpr
){
8181 optimizeAggregateUseOfIndexedExpr(pParse
, p
, pAggInfo
, &sNC
);
8183 assignAggregateRegisters(pParse
, pAggInfo
);
8184 eDist
= sqlite3WhereIsDistinct(pWInfo
);
8185 TREETRACE(0x2,pParse
,p
,("WhereBegin returns\n"));
8186 if( sqlite3WhereIsOrdered(pWInfo
)==pGroupBy
->nExpr
){
8187 /* The optimizer is able to deliver rows in group by order so
8188 ** we do not have to sort. The OP_OpenEphemeral table will be
8189 ** cancelled later because we still need to use the pKeyInfo
8193 /* Rows are coming out in undetermined order. We have to push
8194 ** each row into a sorting index, terminate the first loop,
8195 ** then loop over the sorting index in order to get the output
8203 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
8204 int addrExp
; /* Address of OP_Explain instruction */
8206 ExplainQueryPlan2(addrExp
, (pParse
, 0, "USE TEMP B-TREE FOR %s",
8207 (sDistinct
.isTnct
&& (p
->selFlags
&SF_Distinct
)==0) ?
8208 "DISTINCT" : "GROUP BY"
8212 nGroupBy
= pGroupBy
->nExpr
;
8215 for(i
=0; i
<pAggInfo
->nColumn
; i
++){
8216 if( pAggInfo
->aCol
[i
].iSorterColumn
>=j
){
8221 regBase
= sqlite3GetTempRange(pParse
, nCol
);
8222 sqlite3ExprCodeExprList(pParse
, pGroupBy
, regBase
, 0, 0);
8224 pAggInfo
->directMode
= 1;
8225 for(i
=0; i
<pAggInfo
->nColumn
; i
++){
8226 struct AggInfo_col
*pCol
= &pAggInfo
->aCol
[i
];
8227 if( pCol
->iSorterColumn
>=j
){
8228 sqlite3ExprCode(pParse
, pCol
->pCExpr
, j
+ regBase
);
8232 pAggInfo
->directMode
= 0;
8233 regRecord
= sqlite3GetTempReg(pParse
);
8234 sqlite3VdbeScanStatusCounters(v
, addrExp
, 0, sqlite3VdbeCurrentAddr(v
));
8235 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regBase
, nCol
, regRecord
);
8236 sqlite3VdbeAddOp2(v
, OP_SorterInsert
, pAggInfo
->sortingIdx
, regRecord
);
8237 sqlite3VdbeScanStatusRange(v
, addrExp
, sqlite3VdbeCurrentAddr(v
)-2, -1);
8238 sqlite3ReleaseTempReg(pParse
, regRecord
);
8239 sqlite3ReleaseTempRange(pParse
, regBase
, nCol
);
8240 TREETRACE(0x2,pParse
,p
,("WhereEnd\n"));
8241 sqlite3WhereEnd(pWInfo
);
8242 pAggInfo
->sortingIdxPTab
= sortPTab
= pParse
->nTab
++;
8243 sortOut
= sqlite3GetTempReg(pParse
);
8244 sqlite3VdbeScanStatusCounters(v
, addrExp
, sqlite3VdbeCurrentAddr(v
), 0);
8245 sqlite3VdbeAddOp3(v
, OP_OpenPseudo
, sortPTab
, sortOut
, nCol
);
8246 sqlite3VdbeAddOp2(v
, OP_SorterSort
, pAggInfo
->sortingIdx
, addrEnd
);
8247 VdbeComment((v
, "GROUP BY sort")); VdbeCoverage(v
);
8248 pAggInfo
->useSortingIdx
= 1;
8249 sqlite3VdbeScanStatusRange(v
, addrExp
, -1, sortPTab
);
8250 sqlite3VdbeScanStatusRange(v
, addrExp
, -1, pAggInfo
->sortingIdx
);
8253 /* If there are entries in pAgggInfo->aFunc[] that contain subexpressions
8254 ** that are indexed (and that were previously identified and tagged
8255 ** in optimizeAggregateUseOfIndexedExpr()) then those subexpressions
8256 ** must now be converted into a TK_AGG_COLUMN node so that the value
8257 ** is correctly pulled from the index rather than being recomputed. */
8258 if( pParse
->pIdxEpr
){
8259 aggregateConvertIndexedExprRefToColumn(pAggInfo
);
8260 #if TREETRACE_ENABLED
8261 if( sqlite3TreeTrace
& 0x20 ){
8262 TREETRACE(0x20, pParse
, p
,
8263 ("AggInfo function expressions converted to reference index\n"));
8264 sqlite3TreeViewSelect(0, p
, 0);
8265 printAggInfo(pAggInfo
);
8270 /* If the index or temporary table used by the GROUP BY sort
8271 ** will naturally deliver rows in the order required by the ORDER BY
8272 ** clause, cancel the ephemeral table open coded earlier.
8274 ** This is an optimization - the correct answer should result regardless.
8275 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
8276 ** disable this optimization for testing purposes. */
8277 if( orderByGrp
&& OptimizationEnabled(db
, SQLITE_GroupByOrder
)
8278 && (groupBySort
|| sqlite3WhereIsSorted(pWInfo
))
8281 sqlite3VdbeChangeToNoop(v
, sSort
.addrSortIndex
);
8284 /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
8285 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
8286 ** Then compare the current GROUP BY terms against the GROUP BY terms
8287 ** from the previous row currently stored in a0, a1, a2...
8289 addrTopOfLoop
= sqlite3VdbeCurrentAddr(v
);
8291 sqlite3VdbeAddOp3(v
, OP_SorterData
, pAggInfo
->sortingIdx
,
8294 for(j
=0; j
<pGroupBy
->nExpr
; j
++){
8296 sqlite3VdbeAddOp3(v
, OP_Column
, sortPTab
, j
, iBMem
+j
);
8298 pAggInfo
->directMode
= 1;
8299 sqlite3ExprCode(pParse
, pGroupBy
->a
[j
].pExpr
, iBMem
+j
);
8302 sqlite3VdbeAddOp4(v
, OP_Compare
, iAMem
, iBMem
, pGroupBy
->nExpr
,
8303 (char*)sqlite3KeyInfoRef(pKeyInfo
), P4_KEYINFO
);
8304 addr1
= sqlite3VdbeCurrentAddr(v
);
8305 sqlite3VdbeAddOp3(v
, OP_Jump
, addr1
+1, 0, addr1
+1); VdbeCoverage(v
);
8307 /* Generate code that runs whenever the GROUP BY changes.
8308 ** Changes in the GROUP BY are detected by the previous code
8309 ** block. If there were no changes, this block is skipped.
8311 ** This code copies current group by terms in b0,b1,b2,...
8312 ** over to a0,a1,a2. It then calls the output subroutine
8313 ** and resets the aggregate accumulator registers in preparation
8314 ** for the next GROUP BY batch.
8316 sqlite3ExprCodeMove(pParse
, iBMem
, iAMem
, pGroupBy
->nExpr
);
8317 sqlite3VdbeAddOp2(v
, OP_Gosub
, regOutputRow
, addrOutputRow
);
8318 VdbeComment((v
, "output one row"));
8319 sqlite3VdbeAddOp2(v
, OP_IfPos
, iAbortFlag
, addrEnd
); VdbeCoverage(v
);
8320 VdbeComment((v
, "check abort flag"));
8321 sqlite3VdbeAddOp2(v
, OP_Gosub
, regReset
, addrReset
);
8322 VdbeComment((v
, "reset accumulator"));
8324 /* Update the aggregate accumulators based on the content of
8327 sqlite3VdbeJumpHere(v
, addr1
);
8328 updateAccumulator(pParse
, iUseFlag
, pAggInfo
, eDist
);
8329 sqlite3VdbeAddOp2(v
, OP_Integer
, 1, iUseFlag
);
8330 VdbeComment((v
, "indicate data in accumulator"));
8335 sqlite3VdbeAddOp2(v
, OP_SorterNext
, pAggInfo
->sortingIdx
,addrTopOfLoop
);
8338 TREETRACE(0x2,pParse
,p
,("WhereEnd\n"));
8339 sqlite3WhereEnd(pWInfo
);
8340 sqlite3VdbeChangeToNoop(v
, addrSortingIdx
);
8342 sqlite3ExprListDelete(db
, pDistinct
);
8344 /* Output the final row of result
8346 sqlite3VdbeAddOp2(v
, OP_Gosub
, regOutputRow
, addrOutputRow
);
8347 VdbeComment((v
, "output final row"));
8349 /* Jump over the subroutines
8351 sqlite3VdbeGoto(v
, addrEnd
);
8353 /* Generate a subroutine that outputs a single row of the result
8354 ** set. This subroutine first looks at the iUseFlag. If iUseFlag
8355 ** is less than or equal to zero, the subroutine is a no-op. If
8356 ** the processing calls for the query to abort, this subroutine
8357 ** increments the iAbortFlag memory location before returning in
8358 ** order to signal the caller to abort.
8360 addrSetAbort
= sqlite3VdbeCurrentAddr(v
);
8361 sqlite3VdbeAddOp2(v
, OP_Integer
, 1, iAbortFlag
);
8362 VdbeComment((v
, "set abort flag"));
8363 sqlite3VdbeAddOp1(v
, OP_Return
, regOutputRow
);
8364 sqlite3VdbeResolveLabel(v
, addrOutputRow
);
8365 addrOutputRow
= sqlite3VdbeCurrentAddr(v
);
8366 sqlite3VdbeAddOp2(v
, OP_IfPos
, iUseFlag
, addrOutputRow
+2);
8368 VdbeComment((v
, "Groupby result generator entry point"));
8369 sqlite3VdbeAddOp1(v
, OP_Return
, regOutputRow
);
8370 finalizeAggFunctions(pParse
, pAggInfo
);
8371 sqlite3ExprIfFalse(pParse
, pHaving
, addrOutputRow
+1, SQLITE_JUMPIFNULL
);
8372 selectInnerLoop(pParse
, p
, -1, &sSort
,
8374 addrOutputRow
+1, addrSetAbort
);
8375 sqlite3VdbeAddOp1(v
, OP_Return
, regOutputRow
);
8376 VdbeComment((v
, "end groupby result generator"));
8378 /* Generate a subroutine that will reset the group-by accumulator
8380 sqlite3VdbeResolveLabel(v
, addrReset
);
8381 resetAccumulator(pParse
, pAggInfo
);
8382 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, iUseFlag
);
8383 VdbeComment((v
, "indicate accumulator empty"));
8384 sqlite3VdbeAddOp1(v
, OP_Return
, regReset
);
8386 if( distFlag
!=0 && eDist
!=WHERE_DISTINCT_NOOP
){
8387 struct AggInfo_func
*pF
= &pAggInfo
->aFunc
[0];
8388 fixDistinctOpenEph(pParse
, eDist
, pF
->iDistinct
, pF
->iDistAddr
);
8390 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */
8393 if( (pTab
= isSimpleCount(p
, pAggInfo
))!=0 ){
8394 /* If isSimpleCount() returns a pointer to a Table structure, then
8395 ** the SQL statement is of the form:
8397 ** SELECT count(*) FROM <tbl>
8399 ** where the Table structure returned represents table <tbl>.
8401 ** This statement is so common that it is optimized specially. The
8402 ** OP_Count instruction is executed either on the intkey table that
8403 ** contains the data for table <tbl> or on one of its indexes. It
8404 ** is better to execute the op on an index, as indexes are almost
8405 ** always spread across less pages than their corresponding tables.
8407 const int iDb
= sqlite3SchemaToIndex(pParse
->db
, pTab
->pSchema
);
8408 const int iCsr
= pParse
->nTab
++; /* Cursor to scan b-tree */
8409 Index
*pIdx
; /* Iterator variable */
8410 KeyInfo
*pKeyInfo
= 0; /* Keyinfo for scanned index */
8411 Index
*pBest
= 0; /* Best index found so far */
8412 Pgno iRoot
= pTab
->tnum
; /* Root page of scanned b-tree */
8414 sqlite3CodeVerifySchema(pParse
, iDb
);
8415 sqlite3TableLock(pParse
, iDb
, pTab
->tnum
, 0, pTab
->zName
);
8417 /* Search for the index that has the lowest scan cost.
8419 ** (2011-04-15) Do not do a full scan of an unordered index.
8421 ** (2013-10-03) Do not count the entries in a partial index.
8423 ** In practice the KeyInfo structure will not be used. It is only
8424 ** passed to keep OP_OpenRead happy.
8426 if( !HasRowid(pTab
) ) pBest
= sqlite3PrimaryKeyIndex(pTab
);
8427 if( !p
->pSrc
->a
[0].fg
.notIndexed
){
8428 for(pIdx
=pTab
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
){
8429 if( pIdx
->bUnordered
==0
8430 && pIdx
->szIdxRow
<pTab
->szTabRow
8431 && pIdx
->pPartIdxWhere
==0
8432 && (!pBest
|| pIdx
->szIdxRow
<pBest
->szIdxRow
)
8439 iRoot
= pBest
->tnum
;
8440 pKeyInfo
= sqlite3KeyInfoOfIndex(pParse
, pBest
);
8443 /* Open a read-only cursor, execute the OP_Count, close the cursor. */
8444 sqlite3VdbeAddOp4Int(v
, OP_OpenRead
, iCsr
, (int)iRoot
, iDb
, 1);
8446 sqlite3VdbeChangeP4(v
, -1, (char *)pKeyInfo
, P4_KEYINFO
);
8448 assignAggregateRegisters(pParse
, pAggInfo
);
8449 sqlite3VdbeAddOp2(v
, OP_Count
, iCsr
, AggInfoFuncReg(pAggInfo
,0));
8450 sqlite3VdbeAddOp1(v
, OP_Close
, iCsr
);
8451 explainSimpleCount(pParse
, pTab
, pBest
);
8453 int regAcc
= 0; /* "populate accumulators" flag */
8454 ExprList
*pDistinct
= 0;
8458 /* If there are accumulator registers but no min() or max() functions
8459 ** without FILTER clauses, allocate register regAcc. Register regAcc
8460 ** will contain 0 the first time the inner loop runs, and 1 thereafter.
8461 ** The code generated by updateAccumulator() uses this to ensure
8462 ** that the accumulator registers are (a) updated only once if
8463 ** there are no min() or max functions or (b) always updated for the
8464 ** first row visited by the aggregate, so that they are updated at
8465 ** least once even if the FILTER clause means the min() or max()
8466 ** function visits zero rows. */
8467 if( pAggInfo
->nAccumulator
){
8468 for(i
=0; i
<pAggInfo
->nFunc
; i
++){
8469 if( ExprHasProperty(pAggInfo
->aFunc
[i
].pFExpr
, EP_WinFunc
) ){
8472 if( pAggInfo
->aFunc
[i
].pFunc
->funcFlags
&SQLITE_FUNC_NEEDCOLL
){
8476 if( i
==pAggInfo
->nFunc
){
8477 regAcc
= ++pParse
->nMem
;
8478 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, regAcc
);
8480 }else if( pAggInfo
->nFunc
==1 && pAggInfo
->aFunc
[0].iDistinct
>=0 ){
8481 assert( ExprUseXList(pAggInfo
->aFunc
[0].pFExpr
) );
8482 pDistinct
= pAggInfo
->aFunc
[0].pFExpr
->x
.pList
;
8483 distFlag
= pDistinct
? (WHERE_WANT_DISTINCT
|WHERE_AGG_DISTINCT
) : 0;
8485 assignAggregateRegisters(pParse
, pAggInfo
);
8487 /* This case runs if the aggregate has no GROUP BY clause. The
8488 ** processing is much simpler since there is only a single row
8491 assert( p
->pGroupBy
==0 );
8492 resetAccumulator(pParse
, pAggInfo
);
8494 /* If this query is a candidate for the min/max optimization, then
8495 ** minMaxFlag will have been previously set to either
8496 ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will
8497 ** be an appropriate ORDER BY expression for the optimization.
8499 assert( minMaxFlag
==WHERE_ORDERBY_NORMAL
|| pMinMaxOrderBy
!=0 );
8500 assert( pMinMaxOrderBy
==0 || pMinMaxOrderBy
->nExpr
==1 );
8502 TREETRACE(0x2,pParse
,p
,("WhereBegin\n"));
8503 pWInfo
= sqlite3WhereBegin(pParse
, pTabList
, pWhere
, pMinMaxOrderBy
,
8504 pDistinct
, p
, minMaxFlag
|distFlag
, 0);
8508 TREETRACE(0x2,pParse
,p
,("WhereBegin returns\n"));
8509 eDist
= sqlite3WhereIsDistinct(pWInfo
);
8510 updateAccumulator(pParse
, regAcc
, pAggInfo
, eDist
);
8511 if( eDist
!=WHERE_DISTINCT_NOOP
){
8512 struct AggInfo_func
*pF
= pAggInfo
->aFunc
;
8514 fixDistinctOpenEph(pParse
, eDist
, pF
->iDistinct
, pF
->iDistAddr
);
8518 if( regAcc
) sqlite3VdbeAddOp2(v
, OP_Integer
, 1, regAcc
);
8520 sqlite3WhereMinMaxOptEarlyOut(v
, pWInfo
);
8522 TREETRACE(0x2,pParse
,p
,("WhereEnd\n"));
8523 sqlite3WhereEnd(pWInfo
);
8524 finalizeAggFunctions(pParse
, pAggInfo
);
8528 sqlite3ExprIfFalse(pParse
, pHaving
, addrEnd
, SQLITE_JUMPIFNULL
);
8529 selectInnerLoop(pParse
, p
, -1, 0, 0,
8530 pDest
, addrEnd
, addrEnd
);
8532 sqlite3VdbeResolveLabel(v
, addrEnd
);
8534 } /* endif aggregate query */
8536 if( sDistinct
.eTnctType
==WHERE_DISTINCT_UNORDERED
){
8537 explainTempTable(pParse
, "DISTINCT");
8540 /* If there is an ORDER BY clause, then we need to sort the results
8541 ** and send them to the callback one by one.
8543 if( sSort
.pOrderBy
){
8544 assert( p
->pEList
==pEList
);
8545 generateSortTail(pParse
, p
, &sSort
, pEList
->nExpr
, pDest
);
8548 /* Jump here to skip this query
8550 sqlite3VdbeResolveLabel(v
, iEnd
);
8552 /* The SELECT has been coded. If there is an error in the Parse structure,
8553 ** set the return code to 1. Otherwise 0. */
8554 rc
= (pParse
->nErr
>0);
8556 /* Control jumps to here if an error is encountered above, or upon
8557 ** successful coding of the SELECT.
8560 assert( db
->mallocFailed
==0 || db
->mallocFailed
==1 );
8561 assert( db
->mallocFailed
==0 || pParse
->nErr
!=0 );
8562 sqlite3ExprListDelete(db
, pMinMaxOrderBy
);
8564 if( pAggInfo
&& !db
->mallocFailed
){
8565 for(i
=0; i
<pAggInfo
->nColumn
; i
++){
8566 Expr
*pExpr
= pAggInfo
->aCol
[i
].pCExpr
;
8567 if( pExpr
==0 ) continue;
8568 assert( pExpr
->pAggInfo
==pAggInfo
);
8569 assert( pExpr
->iAgg
==i
);
8571 for(i
=0; i
<pAggInfo
->nFunc
; i
++){
8572 Expr
*pExpr
= pAggInfo
->aFunc
[i
].pFExpr
;
8574 assert( pExpr
->pAggInfo
==pAggInfo
);
8575 assert( pExpr
->iAgg
==i
);
8580 #if TREETRACE_ENABLED
8581 TREETRACE(0x1,pParse
,p
,("end processing\n"));
8582 if( (sqlite3TreeTrace
& 0x40000)!=0 && ExplainQueryPlanParent(pParse
)==0 ){
8583 sqlite3TreeViewSelect(0, p
, 0);
8586 ExplainQueryPlanPop(pParse
);