Snapshot of upstream SQLite 3.45.3
[sqlcipher.git] / src / select.c
blobfdc7f5e6750fe66e7fafbd46516fbd9c59ee22d1
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
15 #include "sqliteInt.h"
18 ** An instance of the following object is used to record information about
19 ** how to process the DISTINCT keyword, to simplify passing that information
20 ** into the selectInnerLoop() routine.
22 typedef struct DistinctCtx DistinctCtx;
23 struct DistinctCtx {
24 u8 isTnct; /* 0: Not distinct. 1: DISTICT 2: DISTINCT and ORDER BY */
25 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */
26 int tabTnct; /* Ephemeral table used for DISTINCT processing */
27 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */
31 ** An instance of the following object is used to record information about
32 ** the ORDER BY (or GROUP BY) clause of query is being coded.
34 ** The aDefer[] array is used by the sorter-references optimization. For
35 ** example, assuming there is no index that can be used for the ORDER BY,
36 ** for the query:
38 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10;
40 ** it may be more efficient to add just the "a" values to the sorter, and
41 ** retrieve the associated "bigblob" values directly from table t1 as the
42 ** 10 smallest "a" values are extracted from the sorter.
44 ** When the sorter-reference optimization is used, there is one entry in the
45 ** aDefer[] array for each database table that may be read as values are
46 ** extracted from the sorter.
48 typedef struct SortCtx SortCtx;
49 struct SortCtx {
50 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */
51 int nOBSat; /* Number of ORDER BY terms satisfied by indices */
52 int iECursor; /* Cursor number for the sorter */
53 int regReturn; /* Register holding block-output return address */
54 int labelBkOut; /* Start label for the block-output subroutine */
55 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */
56 int labelDone; /* Jump here when done, ex: LIMIT reached */
57 int labelOBLopt; /* Jump here when sorter is full */
58 u8 sortFlags; /* Zero or more SORTFLAG_* bits */
59 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
60 u8 nDefer; /* Number of valid entries in aDefer[] */
61 struct DeferredCsr {
62 Table *pTab; /* Table definition */
63 int iCsr; /* Cursor number for table */
64 int nKey; /* Number of PK columns for table pTab (>=1) */
65 } aDefer[4];
66 #endif
67 struct RowLoadInfo *pDeferredRowLoad; /* Deferred row loading info or NULL */
68 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
69 int addrPush; /* First instruction to push data into sorter */
70 int addrPushEnd; /* Last instruction that pushes data into sorter */
71 #endif
73 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */
76 ** Delete all the content of a Select structure. Deallocate the structure
77 ** itself depending on the value of bFree
79 ** If bFree==1, call sqlite3DbFree() on the p object.
80 ** If bFree==0, Leave the first Select object unfreed
82 static void clearSelect(sqlite3 *db, Select *p, int bFree){
83 assert( db!=0 );
84 while( p ){
85 Select *pPrior = p->pPrior;
86 sqlite3ExprListDelete(db, p->pEList);
87 sqlite3SrcListDelete(db, p->pSrc);
88 sqlite3ExprDelete(db, p->pWhere);
89 sqlite3ExprListDelete(db, p->pGroupBy);
90 sqlite3ExprDelete(db, p->pHaving);
91 sqlite3ExprListDelete(db, p->pOrderBy);
92 sqlite3ExprDelete(db, p->pLimit);
93 if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith);
94 #ifndef SQLITE_OMIT_WINDOWFUNC
95 if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){
96 sqlite3WindowListDelete(db, p->pWinDefn);
98 while( p->pWin ){
99 assert( p->pWin->ppThis==&p->pWin );
100 sqlite3WindowUnlinkFromSelect(p->pWin);
102 #endif
103 if( bFree ) sqlite3DbNNFreeNN(db, p);
104 p = pPrior;
105 bFree = 1;
110 ** Initialize a SelectDest structure.
112 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
113 pDest->eDest = (u8)eDest;
114 pDest->iSDParm = iParm;
115 pDest->iSDParm2 = 0;
116 pDest->zAffSdst = 0;
117 pDest->iSdst = 0;
118 pDest->nSdst = 0;
123 ** Allocate a new Select structure and return a pointer to that
124 ** structure.
126 Select *sqlite3SelectNew(
127 Parse *pParse, /* Parsing context */
128 ExprList *pEList, /* which columns to include in the result */
129 SrcList *pSrc, /* the FROM clause -- which tables to scan */
130 Expr *pWhere, /* the WHERE clause */
131 ExprList *pGroupBy, /* the GROUP BY clause */
132 Expr *pHaving, /* the HAVING clause */
133 ExprList *pOrderBy, /* the ORDER BY clause */
134 u32 selFlags, /* Flag parameters, such as SF_Distinct */
135 Expr *pLimit /* LIMIT value. NULL means not used */
137 Select *pNew, *pAllocated;
138 Select standin;
139 pAllocated = pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) );
140 if( pNew==0 ){
141 assert( pParse->db->mallocFailed );
142 pNew = &standin;
144 if( pEList==0 ){
145 pEList = sqlite3ExprListAppend(pParse, 0,
146 sqlite3Expr(pParse->db,TK_ASTERISK,0));
148 pNew->pEList = pEList;
149 pNew->op = TK_SELECT;
150 pNew->selFlags = selFlags;
151 pNew->iLimit = 0;
152 pNew->iOffset = 0;
153 pNew->selId = ++pParse->nSelect;
154 pNew->addrOpenEphm[0] = -1;
155 pNew->addrOpenEphm[1] = -1;
156 pNew->nSelectRow = 0;
157 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc));
158 pNew->pSrc = pSrc;
159 pNew->pWhere = pWhere;
160 pNew->pGroupBy = pGroupBy;
161 pNew->pHaving = pHaving;
162 pNew->pOrderBy = pOrderBy;
163 pNew->pPrior = 0;
164 pNew->pNext = 0;
165 pNew->pLimit = pLimit;
166 pNew->pWith = 0;
167 #ifndef SQLITE_OMIT_WINDOWFUNC
168 pNew->pWin = 0;
169 pNew->pWinDefn = 0;
170 #endif
171 if( pParse->db->mallocFailed ) {
172 clearSelect(pParse->db, pNew, pNew!=&standin);
173 pAllocated = 0;
174 }else{
175 assert( pNew->pSrc!=0 || pParse->nErr>0 );
177 return pAllocated;
182 ** Delete the given Select structure and all of its substructures.
184 void sqlite3SelectDelete(sqlite3 *db, Select *p){
185 if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1);
187 void sqlite3SelectDeleteGeneric(sqlite3 *db, void *p){
188 if( ALWAYS(p) ) clearSelect(db, (Select*)p, 1);
192 ** Return a pointer to the right-most SELECT statement in a compound.
194 static Select *findRightmost(Select *p){
195 while( p->pNext ) p = p->pNext;
196 return p;
200 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
201 ** type of join. Return an integer constant that expresses that type
202 ** in terms of the following bit values:
204 ** JT_INNER
205 ** JT_CROSS
206 ** JT_OUTER
207 ** JT_NATURAL
208 ** JT_LEFT
209 ** JT_RIGHT
211 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
213 ** If an illegal or unsupported join type is seen, then still return
214 ** a join type, but put an error in the pParse structure.
216 ** These are the valid join types:
219 ** pA pB pC Return Value
220 ** ------- ----- ----- ------------
221 ** CROSS - - JT_CROSS
222 ** INNER - - JT_INNER
223 ** LEFT - - JT_LEFT|JT_OUTER
224 ** LEFT OUTER - JT_LEFT|JT_OUTER
225 ** RIGHT - - JT_RIGHT|JT_OUTER
226 ** RIGHT OUTER - JT_RIGHT|JT_OUTER
227 ** FULL - - JT_LEFT|JT_RIGHT|JT_OUTER
228 ** FULL OUTER - JT_LEFT|JT_RIGHT|JT_OUTER
229 ** NATURAL INNER - JT_NATURAL|JT_INNER
230 ** NATURAL LEFT - JT_NATURAL|JT_LEFT|JT_OUTER
231 ** NATURAL LEFT OUTER JT_NATURAL|JT_LEFT|JT_OUTER
232 ** NATURAL RIGHT - JT_NATURAL|JT_RIGHT|JT_OUTER
233 ** NATURAL RIGHT OUTER JT_NATURAL|JT_RIGHT|JT_OUTER
234 ** NATURAL FULL - JT_NATURAL|JT_LEFT|JT_RIGHT
235 ** NATURAL FULL OUTER JT_NATRUAL|JT_LEFT|JT_RIGHT
237 ** To preserve historical compatibly, SQLite also accepts a variety
238 ** of other non-standard and in many cases nonsensical join types.
239 ** This routine makes as much sense at it can from the nonsense join
240 ** type and returns a result. Examples of accepted nonsense join types
241 ** include but are not limited to:
243 ** INNER CROSS JOIN -> same as JOIN
244 ** NATURAL CROSS JOIN -> same as NATURAL JOIN
245 ** OUTER LEFT JOIN -> same as LEFT JOIN
246 ** LEFT NATURAL JOIN -> same as NATURAL LEFT JOIN
247 ** LEFT RIGHT JOIN -> same as FULL JOIN
248 ** RIGHT OUTER FULL JOIN -> same as FULL JOIN
249 ** CROSS CROSS CROSS JOIN -> same as JOIN
251 ** The only restrictions on the join type name are:
253 ** * "INNER" cannot appear together with "OUTER", "LEFT", "RIGHT",
254 ** or "FULL".
256 ** * "CROSS" cannot appear together with "OUTER", "LEFT", "RIGHT,
257 ** or "FULL".
259 ** * If "OUTER" is present then there must also be one of
260 ** "LEFT", "RIGHT", or "FULL"
262 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
263 int jointype = 0;
264 Token *apAll[3];
265 Token *p;
266 /* 0123456789 123456789 123456789 123 */
267 static const char zKeyText[] = "naturaleftouterightfullinnercross";
268 static const struct {
269 u8 i; /* Beginning of keyword text in zKeyText[] */
270 u8 nChar; /* Length of the keyword in characters */
271 u8 code; /* Join type mask */
272 } aKeyword[] = {
273 /* (0) natural */ { 0, 7, JT_NATURAL },
274 /* (1) left */ { 6, 4, JT_LEFT|JT_OUTER },
275 /* (2) outer */ { 10, 5, JT_OUTER },
276 /* (3) right */ { 14, 5, JT_RIGHT|JT_OUTER },
277 /* (4) full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
278 /* (5) inner */ { 23, 5, JT_INNER },
279 /* (6) cross */ { 28, 5, JT_INNER|JT_CROSS },
281 int i, j;
282 apAll[0] = pA;
283 apAll[1] = pB;
284 apAll[2] = pC;
285 for(i=0; i<3 && apAll[i]; i++){
286 p = apAll[i];
287 for(j=0; j<ArraySize(aKeyword); j++){
288 if( p->n==aKeyword[j].nChar
289 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
290 jointype |= aKeyword[j].code;
291 break;
294 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
295 if( j>=ArraySize(aKeyword) ){
296 jointype |= JT_ERROR;
297 break;
301 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
302 (jointype & JT_ERROR)!=0 ||
303 (jointype & (JT_OUTER|JT_LEFT|JT_RIGHT))==JT_OUTER
305 const char *zSp1 = " ";
306 const char *zSp2 = " ";
307 if( pB==0 ){ zSp1++; }
308 if( pC==0 ){ zSp2++; }
309 sqlite3ErrorMsg(pParse, "unknown join type: "
310 "%T%s%T%s%T", pA, zSp1, pB, zSp2, pC);
311 jointype = JT_INNER;
313 return jointype;
317 ** Return the index of a column in a table. Return -1 if the column
318 ** is not contained in the table.
320 int sqlite3ColumnIndex(Table *pTab, const char *zCol){
321 int i;
322 u8 h = sqlite3StrIHash(zCol);
323 Column *pCol;
324 for(pCol=pTab->aCol, i=0; i<pTab->nCol; pCol++, i++){
325 if( pCol->hName==h && sqlite3StrICmp(pCol->zCnName, zCol)==0 ) return i;
327 return -1;
331 ** Mark a subquery result column as having been used.
333 void sqlite3SrcItemColumnUsed(SrcItem *pItem, int iCol){
334 assert( pItem!=0 );
335 assert( (int)pItem->fg.isNestedFrom == IsNestedFrom(pItem->pSelect) );
336 if( pItem->fg.isNestedFrom ){
337 ExprList *pResults;
338 assert( pItem->pSelect!=0 );
339 pResults = pItem->pSelect->pEList;
340 assert( pResults!=0 );
341 assert( iCol>=0 && iCol<pResults->nExpr );
342 pResults->a[iCol].fg.bUsed = 1;
347 ** Search the tables iStart..iEnd (inclusive) in pSrc, looking for a
348 ** table that has a column named zCol. The search is left-to-right.
349 ** The first match found is returned.
351 ** When found, set *piTab and *piCol to the table index and column index
352 ** of the matching column and return TRUE.
354 ** If not found, return FALSE.
356 static int tableAndColumnIndex(
357 SrcList *pSrc, /* Array of tables to search */
358 int iStart, /* First member of pSrc->a[] to check */
359 int iEnd, /* Last member of pSrc->a[] to check */
360 const char *zCol, /* Name of the column we are looking for */
361 int *piTab, /* Write index of pSrc->a[] here */
362 int *piCol, /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
363 int bIgnoreHidden /* Ignore hidden columns */
365 int i; /* For looping over tables in pSrc */
366 int iCol; /* Index of column matching zCol */
368 assert( iEnd<pSrc->nSrc );
369 assert( iStart>=0 );
370 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */
372 for(i=iStart; i<=iEnd; i++){
373 iCol = sqlite3ColumnIndex(pSrc->a[i].pTab, zCol);
374 if( iCol>=0
375 && (bIgnoreHidden==0 || IsHiddenColumn(&pSrc->a[i].pTab->aCol[iCol])==0)
377 if( piTab ){
378 sqlite3SrcItemColumnUsed(&pSrc->a[i], iCol);
379 *piTab = i;
380 *piCol = iCol;
382 return 1;
385 return 0;
389 ** Set the EP_OuterON property on all terms of the given expression.
390 ** And set the Expr.w.iJoin to iTable for every term in the
391 ** expression.
393 ** The EP_OuterON property is used on terms of an expression to tell
394 ** the OUTER JOIN processing logic that this term is part of the
395 ** join restriction specified in the ON or USING clause and not a part
396 ** of the more general WHERE clause. These terms are moved over to the
397 ** WHERE clause during join processing but we need to remember that they
398 ** originated in the ON or USING clause.
400 ** The Expr.w.iJoin tells the WHERE clause processing that the
401 ** expression depends on table w.iJoin even if that table is not
402 ** explicitly mentioned in the expression. That information is needed
403 ** for cases like this:
405 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
407 ** The where clause needs to defer the handling of the t1.x=5
408 ** term until after the t2 loop of the join. In that way, a
409 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not
410 ** defer the handling of t1.x=5, it will be processed immediately
411 ** after the t1 loop and rows with t1.x!=5 will never appear in
412 ** the output, which is incorrect.
414 void sqlite3SetJoinExpr(Expr *p, int iTable, u32 joinFlag){
415 assert( joinFlag==EP_OuterON || joinFlag==EP_InnerON );
416 while( p ){
417 ExprSetProperty(p, joinFlag);
418 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
419 ExprSetVVAProperty(p, EP_NoReduce);
420 p->w.iJoin = iTable;
421 if( p->op==TK_FUNCTION ){
422 assert( ExprUseXList(p) );
423 if( p->x.pList ){
424 int i;
425 for(i=0; i<p->x.pList->nExpr; i++){
426 sqlite3SetJoinExpr(p->x.pList->a[i].pExpr, iTable, joinFlag);
430 sqlite3SetJoinExpr(p->pLeft, iTable, joinFlag);
431 p = p->pRight;
435 /* Undo the work of sqlite3SetJoinExpr(). This is used when a LEFT JOIN
436 ** is simplified into an ordinary JOIN, and when an ON expression is
437 ** "pushed down" into the WHERE clause of a subquery.
439 ** Convert every term that is marked with EP_OuterON and w.iJoin==iTable into
440 ** an ordinary term that omits the EP_OuterON mark. Or if iTable<0, then
441 ** just clear every EP_OuterON and EP_InnerON mark from the expression tree.
443 ** If nullable is true, that means that Expr p might evaluate to NULL even
444 ** if it is a reference to a NOT NULL column. This can happen, for example,
445 ** if the table that p references is on the left side of a RIGHT JOIN.
446 ** If nullable is true, then take care to not remove the EP_CanBeNull bit.
447 ** See forum thread https://sqlite.org/forum/forumpost/b40696f50145d21c
449 static void unsetJoinExpr(Expr *p, int iTable, int nullable){
450 while( p ){
451 if( iTable<0 || (ExprHasProperty(p, EP_OuterON) && p->w.iJoin==iTable) ){
452 ExprClearProperty(p, EP_OuterON|EP_InnerON);
453 if( iTable>=0 ) ExprSetProperty(p, EP_InnerON);
455 if( p->op==TK_COLUMN && p->iTable==iTable && !nullable ){
456 ExprClearProperty(p, EP_CanBeNull);
458 if( p->op==TK_FUNCTION ){
459 assert( ExprUseXList(p) );
460 assert( p->pLeft==0 );
461 if( p->x.pList ){
462 int i;
463 for(i=0; i<p->x.pList->nExpr; i++){
464 unsetJoinExpr(p->x.pList->a[i].pExpr, iTable, nullable);
468 unsetJoinExpr(p->pLeft, iTable, nullable);
469 p = p->pRight;
474 ** This routine processes the join information for a SELECT statement.
476 ** * A NATURAL join is converted into a USING join. After that, we
477 ** do not need to be concerned with NATURAL joins and we only have
478 ** think about USING joins.
480 ** * ON and USING clauses result in extra terms being added to the
481 ** WHERE clause to enforce the specified constraints. The extra
482 ** WHERE clause terms will be tagged with EP_OuterON or
483 ** EP_InnerON so that we know that they originated in ON/USING.
485 ** The terms of a FROM clause are contained in the Select.pSrc structure.
486 ** The left most table is the first entry in Select.pSrc. The right-most
487 ** table is the last entry. The join operator is held in the entry to
488 ** the right. Thus entry 1 contains the join operator for the join between
489 ** entries 0 and 1. Any ON or USING clauses associated with the join are
490 ** also attached to the right entry.
492 ** This routine returns the number of errors encountered.
494 static int sqlite3ProcessJoin(Parse *pParse, Select *p){
495 SrcList *pSrc; /* All tables in the FROM clause */
496 int i, j; /* Loop counters */
497 SrcItem *pLeft; /* Left table being joined */
498 SrcItem *pRight; /* Right table being joined */
500 pSrc = p->pSrc;
501 pLeft = &pSrc->a[0];
502 pRight = &pLeft[1];
503 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
504 Table *pRightTab = pRight->pTab;
505 u32 joinType;
507 if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue;
508 joinType = (pRight->fg.jointype & JT_OUTER)!=0 ? EP_OuterON : EP_InnerON;
510 /* If this is a NATURAL join, synthesize an appropriate USING clause
511 ** to specify which columns should be joined.
513 if( pRight->fg.jointype & JT_NATURAL ){
514 IdList *pUsing = 0;
515 if( pRight->fg.isUsing || pRight->u3.pOn ){
516 sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
517 "an ON or USING clause", 0);
518 return 1;
520 for(j=0; j<pRightTab->nCol; j++){
521 char *zName; /* Name of column in the right table */
523 if( IsHiddenColumn(&pRightTab->aCol[j]) ) continue;
524 zName = pRightTab->aCol[j].zCnName;
525 if( tableAndColumnIndex(pSrc, 0, i, zName, 0, 0, 1) ){
526 pUsing = sqlite3IdListAppend(pParse, pUsing, 0);
527 if( pUsing ){
528 assert( pUsing->nId>0 );
529 assert( pUsing->a[pUsing->nId-1].zName==0 );
530 pUsing->a[pUsing->nId-1].zName = sqlite3DbStrDup(pParse->db, zName);
534 if( pUsing ){
535 pRight->fg.isUsing = 1;
536 pRight->fg.isSynthUsing = 1;
537 pRight->u3.pUsing = pUsing;
539 if( pParse->nErr ) return 1;
542 /* Create extra terms on the WHERE clause for each column named
543 ** in the USING clause. Example: If the two tables to be joined are
544 ** A and B and the USING clause names X, Y, and Z, then add this
545 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
546 ** Report an error if any column mentioned in the USING clause is
547 ** not contained in both tables to be joined.
549 if( pRight->fg.isUsing ){
550 IdList *pList = pRight->u3.pUsing;
551 sqlite3 *db = pParse->db;
552 assert( pList!=0 );
553 for(j=0; j<pList->nId; j++){
554 char *zName; /* Name of the term in the USING clause */
555 int iLeft; /* Table on the left with matching column name */
556 int iLeftCol; /* Column number of matching column on the left */
557 int iRightCol; /* Column number of matching column on the right */
558 Expr *pE1; /* Reference to the column on the LEFT of the join */
559 Expr *pE2; /* Reference to the column on the RIGHT of the join */
560 Expr *pEq; /* Equality constraint. pE1 == pE2 */
562 zName = pList->a[j].zName;
563 iRightCol = sqlite3ColumnIndex(pRightTab, zName);
564 if( iRightCol<0
565 || tableAndColumnIndex(pSrc, 0, i, zName, &iLeft, &iLeftCol,
566 pRight->fg.isSynthUsing)==0
568 sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
569 "not present in both tables", zName);
570 return 1;
572 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iLeftCol);
573 sqlite3SrcItemColumnUsed(&pSrc->a[iLeft], iLeftCol);
574 if( (pSrc->a[0].fg.jointype & JT_LTORJ)!=0 ){
575 /* This branch runs if the query contains one or more RIGHT or FULL
576 ** JOINs. If only a single table on the left side of this join
577 ** contains the zName column, then this branch is a no-op.
578 ** But if there are two or more tables on the left side
579 ** of the join, construct a coalesce() function that gathers all
580 ** such tables. Raise an error if more than one of those references
581 ** to zName is not also within a prior USING clause.
583 ** We really ought to raise an error if there are two or more
584 ** non-USING references to zName on the left of an INNER or LEFT
585 ** JOIN. But older versions of SQLite do not do that, so we avoid
586 ** adding a new error so as to not break legacy applications.
588 ExprList *pFuncArgs = 0; /* Arguments to the coalesce() */
589 static const Token tkCoalesce = { "coalesce", 8 };
590 while( tableAndColumnIndex(pSrc, iLeft+1, i, zName, &iLeft, &iLeftCol,
591 pRight->fg.isSynthUsing)!=0 ){
592 if( pSrc->a[iLeft].fg.isUsing==0
593 || sqlite3IdListIndex(pSrc->a[iLeft].u3.pUsing, zName)<0
595 sqlite3ErrorMsg(pParse, "ambiguous reference to %s in USING()",
596 zName);
597 break;
599 pFuncArgs = sqlite3ExprListAppend(pParse, pFuncArgs, pE1);
600 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iLeftCol);
601 sqlite3SrcItemColumnUsed(&pSrc->a[iLeft], iLeftCol);
603 if( pFuncArgs ){
604 pFuncArgs = sqlite3ExprListAppend(pParse, pFuncArgs, pE1);
605 pE1 = sqlite3ExprFunction(pParse, pFuncArgs, &tkCoalesce, 0);
608 pE2 = sqlite3CreateColumnExpr(db, pSrc, i+1, iRightCol);
609 sqlite3SrcItemColumnUsed(pRight, iRightCol);
610 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2);
611 assert( pE2!=0 || pEq==0 );
612 if( pEq ){
613 ExprSetProperty(pEq, joinType);
614 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
615 ExprSetVVAProperty(pEq, EP_NoReduce);
616 pEq->w.iJoin = pE2->iTable;
618 p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pEq);
622 /* Add the ON clause to the end of the WHERE clause, connected by
623 ** an AND operator.
625 else if( pRight->u3.pOn ){
626 sqlite3SetJoinExpr(pRight->u3.pOn, pRight->iCursor, joinType);
627 p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pRight->u3.pOn);
628 pRight->u3.pOn = 0;
629 pRight->fg.isOn = 1;
632 return 0;
636 ** An instance of this object holds information (beyond pParse and pSelect)
637 ** needed to load the next result row that is to be added to the sorter.
639 typedef struct RowLoadInfo RowLoadInfo;
640 struct RowLoadInfo {
641 int regResult; /* Store results in array of registers here */
642 u8 ecelFlags; /* Flag argument to ExprCodeExprList() */
643 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
644 ExprList *pExtra; /* Extra columns needed by sorter refs */
645 int regExtraResult; /* Where to load the extra columns */
646 #endif
650 ** This routine does the work of loading query data into an array of
651 ** registers so that it can be added to the sorter.
653 static void innerLoopLoadRow(
654 Parse *pParse, /* Statement under construction */
655 Select *pSelect, /* The query being coded */
656 RowLoadInfo *pInfo /* Info needed to complete the row load */
658 sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult,
659 0, pInfo->ecelFlags);
660 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
661 if( pInfo->pExtra ){
662 sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0);
663 sqlite3ExprListDelete(pParse->db, pInfo->pExtra);
665 #endif
669 ** Code the OP_MakeRecord instruction that generates the entry to be
670 ** added into the sorter.
672 ** Return the register in which the result is stored.
674 static int makeSorterRecord(
675 Parse *pParse,
676 SortCtx *pSort,
677 Select *pSelect,
678 int regBase,
679 int nBase
681 int nOBSat = pSort->nOBSat;
682 Vdbe *v = pParse->pVdbe;
683 int regOut = ++pParse->nMem;
684 if( pSort->pDeferredRowLoad ){
685 innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad);
687 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut);
688 return regOut;
692 ** Generate code that will push the record in registers regData
693 ** through regData+nData-1 onto the sorter.
695 static void pushOntoSorter(
696 Parse *pParse, /* Parser context */
697 SortCtx *pSort, /* Information about the ORDER BY clause */
698 Select *pSelect, /* The whole SELECT statement */
699 int regData, /* First register holding data to be sorted */
700 int regOrigData, /* First register holding data before packing */
701 int nData, /* Number of elements in the regData data array */
702 int nPrefixReg /* No. of reg prior to regData available for use */
704 Vdbe *v = pParse->pVdbe; /* Stmt under construction */
705 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
706 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */
707 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */
708 int regBase; /* Regs for sorter record */
709 int regRecord = 0; /* Assembled sorter record */
710 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */
711 int op; /* Opcode to add sorter record to sorter */
712 int iLimit; /* LIMIT counter */
713 int iSkip = 0; /* End of the sorter insert loop */
715 assert( bSeq==0 || bSeq==1 );
717 /* Three cases:
718 ** (1) The data to be sorted has already been packed into a Record
719 ** by a prior OP_MakeRecord. In this case nData==1 and regData
720 ** will be completely unrelated to regOrigData.
721 ** (2) All output columns are included in the sort record. In that
722 ** case regData==regOrigData.
723 ** (3) Some output columns are omitted from the sort record due to
724 ** the SQLITE_ENABLE_SORTER_REFERENCES optimization, or due to the
725 ** SQLITE_ECEL_OMITREF optimization, or due to the
726 ** SortCtx.pDeferredRowLoad optimization. In any of these cases
727 ** regOrigData is 0 to prevent this routine from trying to copy
728 ** values that might not yet exist.
730 assert( nData==1 || regData==regOrigData || regOrigData==0 );
732 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
733 pSort->addrPush = sqlite3VdbeCurrentAddr(v);
734 #endif
736 if( nPrefixReg ){
737 assert( nPrefixReg==nExpr+bSeq );
738 regBase = regData - nPrefixReg;
739 }else{
740 regBase = pParse->nMem + 1;
741 pParse->nMem += nBase;
743 assert( pSelect->iOffset==0 || pSelect->iLimit!=0 );
744 iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit;
745 pSort->labelDone = sqlite3VdbeMakeLabel(pParse);
746 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData,
747 SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0));
748 if( bSeq ){
749 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
751 if( nPrefixReg==0 && nData>0 ){
752 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
754 if( nOBSat>0 ){
755 int regPrevKey; /* The first nOBSat columns of the previous row */
756 int addrFirst; /* Address of the OP_IfNot opcode */
757 int addrJmp; /* Address of the OP_Jump opcode */
758 VdbeOp *pOp; /* Opcode that opens the sorter */
759 int nKey; /* Number of sorting key columns, including OP_Sequence */
760 KeyInfo *pKI; /* Original KeyInfo on the sorter table */
762 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
763 regPrevKey = pParse->nMem+1;
764 pParse->nMem += pSort->nOBSat;
765 nKey = nExpr - pSort->nOBSat + bSeq;
766 if( bSeq ){
767 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
768 }else{
769 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
771 VdbeCoverage(v);
772 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
773 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
774 if( pParse->db->mallocFailed ) return;
775 pOp->p2 = nKey + nData;
776 pKI = pOp->p4.pKeyInfo;
777 memset(pKI->aSortFlags, 0, pKI->nKeyField); /* Makes OP_Jump testable */
778 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
779 testcase( pKI->nAllField > pKI->nKeyField+2 );
780 pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat,
781 pKI->nAllField-pKI->nKeyField-1);
782 pOp = 0; /* Ensure pOp not used after sqlite3VdbeAddOp3() */
783 addrJmp = sqlite3VdbeCurrentAddr(v);
784 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
785 pSort->labelBkOut = sqlite3VdbeMakeLabel(pParse);
786 pSort->regReturn = ++pParse->nMem;
787 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
788 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
789 if( iLimit ){
790 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone);
791 VdbeCoverage(v);
793 sqlite3VdbeJumpHere(v, addrFirst);
794 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
795 sqlite3VdbeJumpHere(v, addrJmp);
797 if( iLimit ){
798 /* At this point the values for the new sorter entry are stored
799 ** in an array of registers. They need to be composed into a record
800 ** and inserted into the sorter if either (a) there are currently
801 ** less than LIMIT+OFFSET items or (b) the new record is smaller than
802 ** the largest record currently in the sorter. If (b) is true and there
803 ** are already LIMIT+OFFSET items in the sorter, delete the largest
804 ** entry before inserting the new one. This way there are never more
805 ** than LIMIT+OFFSET items in the sorter.
807 ** If the new record does not need to be inserted into the sorter,
808 ** jump to the next iteration of the loop. If the pSort->labelOBLopt
809 ** value is not zero, then it is a label of where to jump. Otherwise,
810 ** just bypass the row insert logic. See the header comment on the
811 ** sqlite3WhereOrderByLimitOptLabel() function for additional info.
813 int iCsr = pSort->iECursor;
814 sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4);
815 VdbeCoverage(v);
816 sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0);
817 iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE,
818 iCsr, 0, regBase+nOBSat, nExpr-nOBSat);
819 VdbeCoverage(v);
820 sqlite3VdbeAddOp1(v, OP_Delete, iCsr);
822 if( regRecord==0 ){
823 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
825 if( pSort->sortFlags & SORTFLAG_UseSorter ){
826 op = OP_SorterInsert;
827 }else{
828 op = OP_IdxInsert;
830 sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord,
831 regBase+nOBSat, nBase-nOBSat);
832 if( iSkip ){
833 sqlite3VdbeChangeP2(v, iSkip,
834 pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v));
836 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
837 pSort->addrPushEnd = sqlite3VdbeCurrentAddr(v)-1;
838 #endif
842 ** Add code to implement the OFFSET
844 static void codeOffset(
845 Vdbe *v, /* Generate code into this VM */
846 int iOffset, /* Register holding the offset counter */
847 int iContinue /* Jump here to skip the current record */
849 if( iOffset>0 ){
850 sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v);
851 VdbeComment((v, "OFFSET"));
856 ** Add code that will check to make sure the array of registers starting at
857 ** iMem form a distinct entry. This is used by both "SELECT DISTINCT ..." and
858 ** distinct aggregates ("SELECT count(DISTINCT <expr>) ..."). Three strategies
859 ** are available. Which is used depends on the value of parameter eTnctType,
860 ** as follows:
862 ** WHERE_DISTINCT_UNORDERED/WHERE_DISTINCT_NOOP:
863 ** Build an ephemeral table that contains all entries seen before and
864 ** skip entries which have been seen before.
866 ** Parameter iTab is the cursor number of an ephemeral table that must
867 ** be opened before the VM code generated by this routine is executed.
868 ** The ephemeral cursor table is queried for a record identical to the
869 ** record formed by the current array of registers. If one is found,
870 ** jump to VM address addrRepeat. Otherwise, insert a new record into
871 ** the ephemeral cursor and proceed.
873 ** The returned value in this case is a copy of parameter iTab.
875 ** WHERE_DISTINCT_ORDERED:
876 ** In this case rows are being delivered sorted order. The ephemeral
877 ** table is not required. Instead, the current set of values
878 ** is compared against previous row. If they match, the new row
879 ** is not distinct and control jumps to VM address addrRepeat. Otherwise,
880 ** the VM program proceeds with processing the new row.
882 ** The returned value in this case is the register number of the first
883 ** in an array of registers used to store the previous result row so that
884 ** it can be compared to the next. The caller must ensure that this
885 ** register is initialized to NULL. (The fixDistinctOpenEph() routine
886 ** will take care of this initialization.)
888 ** WHERE_DISTINCT_UNIQUE:
889 ** In this case it has already been determined that the rows are distinct.
890 ** No special action is required. The return value is zero.
892 ** Parameter pEList is the list of expressions used to generated the
893 ** contents of each row. It is used by this routine to determine (a)
894 ** how many elements there are in the array of registers and (b) the
895 ** collation sequences that should be used for the comparisons if
896 ** eTnctType is WHERE_DISTINCT_ORDERED.
898 static int codeDistinct(
899 Parse *pParse, /* Parsing and code generating context */
900 int eTnctType, /* WHERE_DISTINCT_* value */
901 int iTab, /* A sorting index used to test for distinctness */
902 int addrRepeat, /* Jump to here if not distinct */
903 ExprList *pEList, /* Expression for each element */
904 int regElem /* First element */
906 int iRet = 0;
907 int nResultCol = pEList->nExpr;
908 Vdbe *v = pParse->pVdbe;
910 switch( eTnctType ){
911 case WHERE_DISTINCT_ORDERED: {
912 int i;
913 int iJump; /* Jump destination */
914 int regPrev; /* Previous row content */
916 /* Allocate space for the previous row */
917 iRet = regPrev = pParse->nMem+1;
918 pParse->nMem += nResultCol;
920 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
921 for(i=0; i<nResultCol; i++){
922 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr);
923 if( i<nResultCol-1 ){
924 sqlite3VdbeAddOp3(v, OP_Ne, regElem+i, iJump, regPrev+i);
925 VdbeCoverage(v);
926 }else{
927 sqlite3VdbeAddOp3(v, OP_Eq, regElem+i, addrRepeat, regPrev+i);
928 VdbeCoverage(v);
930 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
931 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
933 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
934 sqlite3VdbeAddOp3(v, OP_Copy, regElem, regPrev, nResultCol-1);
935 break;
938 case WHERE_DISTINCT_UNIQUE: {
939 /* nothing to do */
940 break;
943 default: {
944 int r1 = sqlite3GetTempReg(pParse);
945 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, regElem, nResultCol);
946 VdbeCoverage(v);
947 sqlite3VdbeAddOp3(v, OP_MakeRecord, regElem, nResultCol, r1);
948 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, regElem, nResultCol);
949 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
950 sqlite3ReleaseTempReg(pParse, r1);
951 iRet = iTab;
952 break;
956 return iRet;
960 ** This routine runs after codeDistinct(). It makes necessary
961 ** adjustments to the OP_OpenEphemeral opcode that the codeDistinct()
962 ** routine made use of. This processing must be done separately since
963 ** sometimes codeDistinct is called before the OP_OpenEphemeral is actually
964 ** laid down.
966 ** WHERE_DISTINCT_NOOP:
967 ** WHERE_DISTINCT_UNORDERED:
969 ** No adjustments necessary. This function is a no-op.
971 ** WHERE_DISTINCT_UNIQUE:
973 ** The ephemeral table is not needed. So change the
974 ** OP_OpenEphemeral opcode into an OP_Noop.
976 ** WHERE_DISTINCT_ORDERED:
978 ** The ephemeral table is not needed. But we do need register
979 ** iVal to be initialized to NULL. So change the OP_OpenEphemeral
980 ** into an OP_Null on the iVal register.
982 static void fixDistinctOpenEph(
983 Parse *pParse, /* Parsing and code generating context */
984 int eTnctType, /* WHERE_DISTINCT_* value */
985 int iVal, /* Value returned by codeDistinct() */
986 int iOpenEphAddr /* Address of OP_OpenEphemeral instruction for iTab */
988 if( pParse->nErr==0
989 && (eTnctType==WHERE_DISTINCT_UNIQUE || eTnctType==WHERE_DISTINCT_ORDERED)
991 Vdbe *v = pParse->pVdbe;
992 sqlite3VdbeChangeToNoop(v, iOpenEphAddr);
993 if( sqlite3VdbeGetOp(v, iOpenEphAddr+1)->opcode==OP_Explain ){
994 sqlite3VdbeChangeToNoop(v, iOpenEphAddr+1);
996 if( eTnctType==WHERE_DISTINCT_ORDERED ){
997 /* Change the OP_OpenEphemeral to an OP_Null that sets the MEM_Cleared
998 ** bit on the first register of the previous value. This will cause the
999 ** OP_Ne added in codeDistinct() to always fail on the first iteration of
1000 ** the loop even if the first row is all NULLs. */
1001 VdbeOp *pOp = sqlite3VdbeGetOp(v, iOpenEphAddr);
1002 pOp->opcode = OP_Null;
1003 pOp->p1 = 1;
1004 pOp->p2 = iVal;
1009 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1011 ** This function is called as part of inner-loop generation for a SELECT
1012 ** statement with an ORDER BY that is not optimized by an index. It
1013 ** determines the expressions, if any, that the sorter-reference
1014 ** optimization should be used for. The sorter-reference optimization
1015 ** is used for SELECT queries like:
1017 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10
1019 ** If the optimization is used for expression "bigblob", then instead of
1020 ** storing values read from that column in the sorter records, the PK of
1021 ** the row from table t1 is stored instead. Then, as records are extracted from
1022 ** the sorter to return to the user, the required value of bigblob is
1023 ** retrieved directly from table t1. If the values are very large, this
1024 ** can be more efficient than storing them directly in the sorter records.
1026 ** The ExprList_item.fg.bSorterRef flag is set for each expression in pEList
1027 ** for which the sorter-reference optimization should be enabled.
1028 ** Additionally, the pSort->aDefer[] array is populated with entries
1029 ** for all cursors required to evaluate all selected expressions. Finally.
1030 ** output variable (*ppExtra) is set to an expression list containing
1031 ** expressions for all extra PK values that should be stored in the
1032 ** sorter records.
1034 static void selectExprDefer(
1035 Parse *pParse, /* Leave any error here */
1036 SortCtx *pSort, /* Sorter context */
1037 ExprList *pEList, /* Expressions destined for sorter */
1038 ExprList **ppExtra /* Expressions to append to sorter record */
1040 int i;
1041 int nDefer = 0;
1042 ExprList *pExtra = 0;
1043 for(i=0; i<pEList->nExpr; i++){
1044 struct ExprList_item *pItem = &pEList->a[i];
1045 if( pItem->u.x.iOrderByCol==0 ){
1046 Expr *pExpr = pItem->pExpr;
1047 Table *pTab;
1048 if( pExpr->op==TK_COLUMN
1049 && pExpr->iColumn>=0
1050 && ALWAYS( ExprUseYTab(pExpr) )
1051 && (pTab = pExpr->y.pTab)!=0
1052 && IsOrdinaryTable(pTab)
1053 && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF)!=0
1055 int j;
1056 for(j=0; j<nDefer; j++){
1057 if( pSort->aDefer[j].iCsr==pExpr->iTable ) break;
1059 if( j==nDefer ){
1060 if( nDefer==ArraySize(pSort->aDefer) ){
1061 continue;
1062 }else{
1063 int nKey = 1;
1064 int k;
1065 Index *pPk = 0;
1066 if( !HasRowid(pTab) ){
1067 pPk = sqlite3PrimaryKeyIndex(pTab);
1068 nKey = pPk->nKeyCol;
1070 for(k=0; k<nKey; k++){
1071 Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0);
1072 if( pNew ){
1073 pNew->iTable = pExpr->iTable;
1074 assert( ExprUseYTab(pNew) );
1075 pNew->y.pTab = pExpr->y.pTab;
1076 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1;
1077 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew);
1080 pSort->aDefer[nDefer].pTab = pExpr->y.pTab;
1081 pSort->aDefer[nDefer].iCsr = pExpr->iTable;
1082 pSort->aDefer[nDefer].nKey = nKey;
1083 nDefer++;
1086 pItem->fg.bSorterRef = 1;
1090 pSort->nDefer = (u8)nDefer;
1091 *ppExtra = pExtra;
1093 #endif
1096 ** This routine generates the code for the inside of the inner loop
1097 ** of a SELECT.
1099 ** If srcTab is negative, then the p->pEList expressions
1100 ** are evaluated in order to get the data for this row. If srcTab is
1101 ** zero or more, then data is pulled from srcTab and p->pEList is used only
1102 ** to get the number of columns and the collation sequence for each column.
1104 static void selectInnerLoop(
1105 Parse *pParse, /* The parser context */
1106 Select *p, /* The complete select statement being coded */
1107 int srcTab, /* Pull data from this table if non-negative */
1108 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */
1109 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
1110 SelectDest *pDest, /* How to dispose of the results */
1111 int iContinue, /* Jump here to continue with next row */
1112 int iBreak /* Jump here to break out of the inner loop */
1114 Vdbe *v = pParse->pVdbe;
1115 int i;
1116 int hasDistinct; /* True if the DISTINCT keyword is present */
1117 int eDest = pDest->eDest; /* How to dispose of results */
1118 int iParm = pDest->iSDParm; /* First argument to disposal method */
1119 int nResultCol; /* Number of result columns */
1120 int nPrefixReg = 0; /* Number of extra registers before regResult */
1121 RowLoadInfo sRowLoadInfo; /* Info for deferred row loading */
1123 /* Usually, regResult is the first cell in an array of memory cells
1124 ** containing the current result row. In this case regOrig is set to the
1125 ** same value. However, if the results are being sent to the sorter, the
1126 ** values for any expressions that are also part of the sort-key are omitted
1127 ** from this array. In this case regOrig is set to zero. */
1128 int regResult; /* Start of memory holding current results */
1129 int regOrig; /* Start of memory holding full result (or 0) */
1131 assert( v );
1132 assert( p->pEList!=0 );
1133 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
1134 if( pSort && pSort->pOrderBy==0 ) pSort = 0;
1135 if( pSort==0 && !hasDistinct ){
1136 assert( iContinue!=0 );
1137 codeOffset(v, p->iOffset, iContinue);
1140 /* Pull the requested columns.
1142 nResultCol = p->pEList->nExpr;
1144 if( pDest->iSdst==0 ){
1145 if( pSort ){
1146 nPrefixReg = pSort->pOrderBy->nExpr;
1147 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
1148 pParse->nMem += nPrefixReg;
1150 pDest->iSdst = pParse->nMem+1;
1151 pParse->nMem += nResultCol;
1152 }else if( pDest->iSdst+nResultCol > pParse->nMem ){
1153 /* This is an error condition that can result, for example, when a SELECT
1154 ** on the right-hand side of an INSERT contains more result columns than
1155 ** there are columns in the table on the left. The error will be caught
1156 ** and reported later. But we need to make sure enough memory is allocated
1157 ** to avoid other spurious errors in the meantime. */
1158 pParse->nMem += nResultCol;
1160 pDest->nSdst = nResultCol;
1161 regOrig = regResult = pDest->iSdst;
1162 if( srcTab>=0 ){
1163 for(i=0; i<nResultCol; i++){
1164 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
1165 VdbeComment((v, "%s", p->pEList->a[i].zEName));
1167 }else if( eDest!=SRT_Exists ){
1168 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1169 ExprList *pExtra = 0;
1170 #endif
1171 /* If the destination is an EXISTS(...) expression, the actual
1172 ** values returned by the SELECT are not required.
1174 u8 ecelFlags; /* "ecel" is an abbreviation of "ExprCodeExprList" */
1175 ExprList *pEList;
1176 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
1177 ecelFlags = SQLITE_ECEL_DUP;
1178 }else{
1179 ecelFlags = 0;
1181 if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){
1182 /* For each expression in p->pEList that is a copy of an expression in
1183 ** the ORDER BY clause (pSort->pOrderBy), set the associated
1184 ** iOrderByCol value to one more than the index of the ORDER BY
1185 ** expression within the sort-key that pushOntoSorter() will generate.
1186 ** This allows the p->pEList field to be omitted from the sorted record,
1187 ** saving space and CPU cycles. */
1188 ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF);
1190 for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){
1191 int j;
1192 if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){
1193 p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat;
1196 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1197 selectExprDefer(pParse, pSort, p->pEList, &pExtra);
1198 if( pExtra && pParse->db->mallocFailed==0 ){
1199 /* If there are any extra PK columns to add to the sorter records,
1200 ** allocate extra memory cells and adjust the OpenEphemeral
1201 ** instruction to account for the larger records. This is only
1202 ** required if there are one or more WITHOUT ROWID tables with
1203 ** composite primary keys in the SortCtx.aDefer[] array. */
1204 VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
1205 pOp->p2 += (pExtra->nExpr - pSort->nDefer);
1206 pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer);
1207 pParse->nMem += pExtra->nExpr;
1209 #endif
1211 /* Adjust nResultCol to account for columns that are omitted
1212 ** from the sorter by the optimizations in this branch */
1213 pEList = p->pEList;
1214 for(i=0; i<pEList->nExpr; i++){
1215 if( pEList->a[i].u.x.iOrderByCol>0
1216 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1217 || pEList->a[i].fg.bSorterRef
1218 #endif
1220 nResultCol--;
1221 regOrig = 0;
1225 testcase( regOrig );
1226 testcase( eDest==SRT_Set );
1227 testcase( eDest==SRT_Mem );
1228 testcase( eDest==SRT_Coroutine );
1229 testcase( eDest==SRT_Output );
1230 assert( eDest==SRT_Set || eDest==SRT_Mem
1231 || eDest==SRT_Coroutine || eDest==SRT_Output
1232 || eDest==SRT_Upfrom );
1234 sRowLoadInfo.regResult = regResult;
1235 sRowLoadInfo.ecelFlags = ecelFlags;
1236 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1237 sRowLoadInfo.pExtra = pExtra;
1238 sRowLoadInfo.regExtraResult = regResult + nResultCol;
1239 if( pExtra ) nResultCol += pExtra->nExpr;
1240 #endif
1241 if( p->iLimit
1242 && (ecelFlags & SQLITE_ECEL_OMITREF)!=0
1243 && nPrefixReg>0
1245 assert( pSort!=0 );
1246 assert( hasDistinct==0 );
1247 pSort->pDeferredRowLoad = &sRowLoadInfo;
1248 regOrig = 0;
1249 }else{
1250 innerLoopLoadRow(pParse, p, &sRowLoadInfo);
1254 /* If the DISTINCT keyword was present on the SELECT statement
1255 ** and this row has been seen before, then do not make this row
1256 ** part of the result.
1258 if( hasDistinct ){
1259 int eType = pDistinct->eTnctType;
1260 int iTab = pDistinct->tabTnct;
1261 assert( nResultCol==p->pEList->nExpr );
1262 iTab = codeDistinct(pParse, eType, iTab, iContinue, p->pEList, regResult);
1263 fixDistinctOpenEph(pParse, eType, iTab, pDistinct->addrTnct);
1264 if( pSort==0 ){
1265 codeOffset(v, p->iOffset, iContinue);
1269 switch( eDest ){
1270 /* In this mode, write each query result to the key of the temporary
1271 ** table iParm.
1273 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1274 case SRT_Union: {
1275 int r1;
1276 r1 = sqlite3GetTempReg(pParse);
1277 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
1278 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1279 sqlite3ReleaseTempReg(pParse, r1);
1280 break;
1283 /* Construct a record from the query result, but instead of
1284 ** saving that record, use it as a key to delete elements from
1285 ** the temporary table iParm.
1287 case SRT_Except: {
1288 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
1289 break;
1291 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1293 /* Store the result as data using a unique key.
1295 case SRT_Fifo:
1296 case SRT_DistFifo:
1297 case SRT_Table:
1298 case SRT_EphemTab: {
1299 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
1300 testcase( eDest==SRT_Table );
1301 testcase( eDest==SRT_EphemTab );
1302 testcase( eDest==SRT_Fifo );
1303 testcase( eDest==SRT_DistFifo );
1304 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
1305 #if !defined(SQLITE_ENABLE_NULL_TRIM) && defined(SQLITE_DEBUG)
1306 /* A destination of SRT_Table and a non-zero iSDParm2 parameter means
1307 ** that this is an "UPDATE ... FROM" on a virtual table or view. In this
1308 ** case set the p5 parameter of the OP_MakeRecord to OPFLAG_NOCHNG_MAGIC.
1309 ** This does not affect operation in any way - it just allows MakeRecord
1310 ** to process OPFLAG_NOCHANGE values without an assert() failing. */
1311 if( eDest==SRT_Table && pDest->iSDParm2 ){
1312 sqlite3VdbeChangeP5(v, OPFLAG_NOCHNG_MAGIC);
1314 #endif
1315 #ifndef SQLITE_OMIT_CTE
1316 if( eDest==SRT_DistFifo ){
1317 /* If the destination is DistFifo, then cursor (iParm+1) is open
1318 ** on an ephemeral index. If the current row is already present
1319 ** in the index, do not write it to the output. If not, add the
1320 ** current row to the index and proceed with writing it to the
1321 ** output table as well. */
1322 int addr = sqlite3VdbeCurrentAddr(v) + 4;
1323 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
1324 VdbeCoverage(v);
1325 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol);
1326 assert( pSort==0 );
1328 #endif
1329 if( pSort ){
1330 assert( regResult==regOrig );
1331 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg);
1332 }else{
1333 int r2 = sqlite3GetTempReg(pParse);
1334 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
1335 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
1336 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1337 sqlite3ReleaseTempReg(pParse, r2);
1339 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
1340 break;
1343 case SRT_Upfrom: {
1344 if( pSort ){
1345 pushOntoSorter(
1346 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1347 }else{
1348 int i2 = pDest->iSDParm2;
1349 int r1 = sqlite3GetTempReg(pParse);
1351 /* If the UPDATE FROM join is an aggregate that matches no rows, it
1352 ** might still be trying to return one row, because that is what
1353 ** aggregates do. Don't record that empty row in the output table. */
1354 sqlite3VdbeAddOp2(v, OP_IsNull, regResult, iBreak); VdbeCoverage(v);
1356 sqlite3VdbeAddOp3(v, OP_MakeRecord,
1357 regResult+(i2<0), nResultCol-(i2<0), r1);
1358 if( i2<0 ){
1359 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regResult);
1360 }else{
1361 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, i2);
1364 break;
1367 #ifndef SQLITE_OMIT_SUBQUERY
1368 /* If we are creating a set for an "expr IN (SELECT ...)" construct,
1369 ** then there should be a single item on the stack. Write this
1370 ** item into the set table with bogus data.
1372 case SRT_Set: {
1373 if( pSort ){
1374 /* At first glance you would think we could optimize out the
1375 ** ORDER BY in this case since the order of entries in the set
1376 ** does not matter. But there might be a LIMIT clause, in which
1377 ** case the order does matter */
1378 pushOntoSorter(
1379 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1380 }else{
1381 int r1 = sqlite3GetTempReg(pParse);
1382 assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol );
1383 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol,
1384 r1, pDest->zAffSdst, nResultCol);
1385 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1386 sqlite3ReleaseTempReg(pParse, r1);
1388 break;
1392 /* If any row exist in the result set, record that fact and abort.
1394 case SRT_Exists: {
1395 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
1396 /* The LIMIT clause will terminate the loop for us */
1397 break;
1400 /* If this is a scalar select that is part of an expression, then
1401 ** store the results in the appropriate memory cell or array of
1402 ** memory cells and break out of the scan loop.
1404 case SRT_Mem: {
1405 if( pSort ){
1406 assert( nResultCol<=pDest->nSdst );
1407 pushOntoSorter(
1408 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1409 }else{
1410 assert( nResultCol==pDest->nSdst );
1411 assert( regResult==iParm );
1412 /* The LIMIT clause will jump out of the loop for us */
1414 break;
1416 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
1418 case SRT_Coroutine: /* Send data to a co-routine */
1419 case SRT_Output: { /* Return the results */
1420 testcase( eDest==SRT_Coroutine );
1421 testcase( eDest==SRT_Output );
1422 if( pSort ){
1423 pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol,
1424 nPrefixReg);
1425 }else if( eDest==SRT_Coroutine ){
1426 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1427 }else{
1428 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
1430 break;
1433 #ifndef SQLITE_OMIT_CTE
1434 /* Write the results into a priority queue that is order according to
1435 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an
1436 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first
1437 ** pSO->nExpr columns, then make sure all keys are unique by adding a
1438 ** final OP_Sequence column. The last column is the record as a blob.
1440 case SRT_DistQueue:
1441 case SRT_Queue: {
1442 int nKey;
1443 int r1, r2, r3;
1444 int addrTest = 0;
1445 ExprList *pSO;
1446 pSO = pDest->pOrderBy;
1447 assert( pSO );
1448 nKey = pSO->nExpr;
1449 r1 = sqlite3GetTempReg(pParse);
1450 r2 = sqlite3GetTempRange(pParse, nKey+2);
1451 r3 = r2+nKey+1;
1452 if( eDest==SRT_DistQueue ){
1453 /* If the destination is DistQueue, then cursor (iParm+1) is open
1454 ** on a second ephemeral index that holds all values every previously
1455 ** added to the queue. */
1456 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
1457 regResult, nResultCol);
1458 VdbeCoverage(v);
1460 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
1461 if( eDest==SRT_DistQueue ){
1462 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
1463 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
1465 for(i=0; i<nKey; i++){
1466 sqlite3VdbeAddOp2(v, OP_SCopy,
1467 regResult + pSO->a[i].u.x.iOrderByCol - 1,
1468 r2+i);
1470 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
1471 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
1472 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2);
1473 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
1474 sqlite3ReleaseTempReg(pParse, r1);
1475 sqlite3ReleaseTempRange(pParse, r2, nKey+2);
1476 break;
1478 #endif /* SQLITE_OMIT_CTE */
1482 #if !defined(SQLITE_OMIT_TRIGGER)
1483 /* Discard the results. This is used for SELECT statements inside
1484 ** the body of a TRIGGER. The purpose of such selects is to call
1485 ** user-defined functions that have side effects. We do not care
1486 ** about the actual results of the select.
1488 default: {
1489 assert( eDest==SRT_Discard );
1490 break;
1492 #endif
1495 /* Jump to the end of the loop if the LIMIT is reached. Except, if
1496 ** there is a sorter, in which case the sorter has already limited
1497 ** the output for us.
1499 if( pSort==0 && p->iLimit ){
1500 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
1505 ** Allocate a KeyInfo object sufficient for an index of N key columns and
1506 ** X extra columns.
1508 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
1509 int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*);
1510 KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra);
1511 if( p ){
1512 p->aSortFlags = (u8*)&p->aColl[N+X];
1513 p->nKeyField = (u16)N;
1514 p->nAllField = (u16)(N+X);
1515 p->enc = ENC(db);
1516 p->db = db;
1517 p->nRef = 1;
1518 memset(&p[1], 0, nExtra);
1519 }else{
1520 return (KeyInfo*)sqlite3OomFault(db);
1522 return p;
1526 ** Deallocate a KeyInfo object
1528 void sqlite3KeyInfoUnref(KeyInfo *p){
1529 if( p ){
1530 assert( p->db!=0 );
1531 assert( p->nRef>0 );
1532 p->nRef--;
1533 if( p->nRef==0 ) sqlite3DbNNFreeNN(p->db, p);
1538 ** Make a new pointer to a KeyInfo object
1540 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
1541 if( p ){
1542 assert( p->nRef>0 );
1543 p->nRef++;
1545 return p;
1548 #ifdef SQLITE_DEBUG
1550 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object
1551 ** can only be changed if this is just a single reference to the object.
1553 ** This routine is used only inside of assert() statements.
1555 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
1556 #endif /* SQLITE_DEBUG */
1559 ** Given an expression list, generate a KeyInfo structure that records
1560 ** the collating sequence for each expression in that expression list.
1562 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1563 ** KeyInfo structure is appropriate for initializing a virtual index to
1564 ** implement that clause. If the ExprList is the result set of a SELECT
1565 ** then the KeyInfo structure is appropriate for initializing a virtual
1566 ** index to implement a DISTINCT test.
1568 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
1569 ** function is responsible for seeing that this structure is eventually
1570 ** freed.
1572 KeyInfo *sqlite3KeyInfoFromExprList(
1573 Parse *pParse, /* Parsing context */
1574 ExprList *pList, /* Form the KeyInfo object from this ExprList */
1575 int iStart, /* Begin with this column of pList */
1576 int nExtra /* Add this many extra columns to the end */
1578 int nExpr;
1579 KeyInfo *pInfo;
1580 struct ExprList_item *pItem;
1581 sqlite3 *db = pParse->db;
1582 int i;
1584 nExpr = pList->nExpr;
1585 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
1586 if( pInfo ){
1587 assert( sqlite3KeyInfoIsWriteable(pInfo) );
1588 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1589 pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr);
1590 pInfo->aSortFlags[i-iStart] = pItem->fg.sortFlags;
1593 return pInfo;
1597 ** Name of the connection operator, used for error messages.
1599 const char *sqlite3SelectOpName(int id){
1600 char *z;
1601 switch( id ){
1602 case TK_ALL: z = "UNION ALL"; break;
1603 case TK_INTERSECT: z = "INTERSECT"; break;
1604 case TK_EXCEPT: z = "EXCEPT"; break;
1605 default: z = "UNION"; break;
1607 return z;
1610 #ifndef SQLITE_OMIT_EXPLAIN
1612 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1613 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1614 ** where the caption is of the form:
1616 ** "USE TEMP B-TREE FOR xxx"
1618 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1619 ** is determined by the zUsage argument.
1621 static void explainTempTable(Parse *pParse, const char *zUsage){
1622 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage));
1626 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1627 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1628 ** in sqlite3Select() to assign values to structure member variables that
1629 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1630 ** code with #ifndef directives.
1632 # define explainSetInteger(a, b) a = b
1634 #else
1635 /* No-op versions of the explainXXX() functions and macros. */
1636 # define explainTempTable(y,z)
1637 # define explainSetInteger(y,z)
1638 #endif
1642 ** If the inner loop was generated using a non-null pOrderBy argument,
1643 ** then the results were placed in a sorter. After the loop is terminated
1644 ** we need to run the sorter and output the results. The following
1645 ** routine generates the code needed to do that.
1647 static void generateSortTail(
1648 Parse *pParse, /* Parsing context */
1649 Select *p, /* The SELECT statement */
1650 SortCtx *pSort, /* Information on the ORDER BY clause */
1651 int nColumn, /* Number of columns of data */
1652 SelectDest *pDest /* Write the sorted results here */
1654 Vdbe *v = pParse->pVdbe; /* The prepared statement */
1655 int addrBreak = pSort->labelDone; /* Jump here to exit loop */
1656 int addrContinue = sqlite3VdbeMakeLabel(pParse);/* Jump here for next cycle */
1657 int addr; /* Top of output loop. Jump for Next. */
1658 int addrOnce = 0;
1659 int iTab;
1660 ExprList *pOrderBy = pSort->pOrderBy;
1661 int eDest = pDest->eDest;
1662 int iParm = pDest->iSDParm;
1663 int regRow;
1664 int regRowid;
1665 int iCol;
1666 int nKey; /* Number of key columns in sorter record */
1667 int iSortTab; /* Sorter cursor to read from */
1668 int i;
1669 int bSeq; /* True if sorter record includes seq. no. */
1670 int nRefKey = 0;
1671 struct ExprList_item *aOutEx = p->pEList->a;
1672 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
1673 int addrExplain; /* Address of OP_Explain instruction */
1674 #endif
1676 ExplainQueryPlan2(addrExplain, (pParse, 0,
1677 "USE TEMP B-TREE FOR %sORDER BY", pSort->nOBSat>0?"RIGHT PART OF ":"")
1679 sqlite3VdbeScanStatusRange(v, addrExplain,pSort->addrPush,pSort->addrPushEnd);
1680 sqlite3VdbeScanStatusCounters(v, addrExplain, addrExplain, pSort->addrPush);
1683 assert( addrBreak<0 );
1684 if( pSort->labelBkOut ){
1685 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1686 sqlite3VdbeGoto(v, addrBreak);
1687 sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1690 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1691 /* Open any cursors needed for sorter-reference expressions */
1692 for(i=0; i<pSort->nDefer; i++){
1693 Table *pTab = pSort->aDefer[i].pTab;
1694 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1695 sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead);
1696 nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey);
1698 #endif
1700 iTab = pSort->iECursor;
1701 if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){
1702 if( eDest==SRT_Mem && p->iOffset ){
1703 sqlite3VdbeAddOp2(v, OP_Null, 0, pDest->iSdst);
1705 regRowid = 0;
1706 regRow = pDest->iSdst;
1707 }else{
1708 regRowid = sqlite3GetTempReg(pParse);
1709 if( eDest==SRT_EphemTab || eDest==SRT_Table ){
1710 regRow = sqlite3GetTempReg(pParse);
1711 nColumn = 0;
1712 }else{
1713 regRow = sqlite3GetTempRange(pParse, nColumn);
1716 nKey = pOrderBy->nExpr - pSort->nOBSat;
1717 if( pSort->sortFlags & SORTFLAG_UseSorter ){
1718 int regSortOut = ++pParse->nMem;
1719 iSortTab = pParse->nTab++;
1720 if( pSort->labelBkOut ){
1721 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
1723 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut,
1724 nKey+1+nColumn+nRefKey);
1725 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1726 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1727 VdbeCoverage(v);
1728 assert( p->iLimit==0 && p->iOffset==0 );
1729 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
1730 bSeq = 0;
1731 }else{
1732 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1733 codeOffset(v, p->iOffset, addrContinue);
1734 iSortTab = iTab;
1735 bSeq = 1;
1736 if( p->iOffset>0 ){
1737 sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1);
1740 for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){
1741 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1742 if( aOutEx[i].fg.bSorterRef ) continue;
1743 #endif
1744 if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++;
1746 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1747 if( pSort->nDefer ){
1748 int iKey = iCol+1;
1749 int regKey = sqlite3GetTempRange(pParse, nRefKey);
1751 for(i=0; i<pSort->nDefer; i++){
1752 int iCsr = pSort->aDefer[i].iCsr;
1753 Table *pTab = pSort->aDefer[i].pTab;
1754 int nKey = pSort->aDefer[i].nKey;
1756 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1757 if( HasRowid(pTab) ){
1758 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey);
1759 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr,
1760 sqlite3VdbeCurrentAddr(v)+1, regKey);
1761 }else{
1762 int k;
1763 int iJmp;
1764 assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey );
1765 for(k=0; k<nKey; k++){
1766 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k);
1768 iJmp = sqlite3VdbeCurrentAddr(v);
1769 sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey);
1770 sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey);
1771 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1774 sqlite3ReleaseTempRange(pParse, regKey, nRefKey);
1776 #endif
1777 for(i=nColumn-1; i>=0; i--){
1778 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1779 if( aOutEx[i].fg.bSorterRef ){
1780 sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i);
1781 }else
1782 #endif
1784 int iRead;
1785 if( aOutEx[i].u.x.iOrderByCol ){
1786 iRead = aOutEx[i].u.x.iOrderByCol-1;
1787 }else{
1788 iRead = iCol--;
1790 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i);
1791 VdbeComment((v, "%s", aOutEx[i].zEName));
1794 sqlite3VdbeScanStatusRange(v, addrExplain, addrExplain, -1);
1795 switch( eDest ){
1796 case SRT_Table:
1797 case SRT_EphemTab: {
1798 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq, regRow);
1799 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1800 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1801 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1802 break;
1804 #ifndef SQLITE_OMIT_SUBQUERY
1805 case SRT_Set: {
1806 assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) );
1807 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid,
1808 pDest->zAffSdst, nColumn);
1809 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn);
1810 break;
1812 case SRT_Mem: {
1813 /* The LIMIT clause will terminate the loop for us */
1814 break;
1816 #endif
1817 case SRT_Upfrom: {
1818 int i2 = pDest->iSDParm2;
1819 int r1 = sqlite3GetTempReg(pParse);
1820 sqlite3VdbeAddOp3(v, OP_MakeRecord,regRow+(i2<0),nColumn-(i2<0),r1);
1821 if( i2<0 ){
1822 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regRow);
1823 }else{
1824 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regRow, i2);
1826 break;
1828 default: {
1829 assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1830 testcase( eDest==SRT_Output );
1831 testcase( eDest==SRT_Coroutine );
1832 if( eDest==SRT_Output ){
1833 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1834 }else{
1835 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1837 break;
1840 if( regRowid ){
1841 if( eDest==SRT_Set ){
1842 sqlite3ReleaseTempRange(pParse, regRow, nColumn);
1843 }else{
1844 sqlite3ReleaseTempReg(pParse, regRow);
1846 sqlite3ReleaseTempReg(pParse, regRowid);
1848 /* The bottom of the loop
1850 sqlite3VdbeResolveLabel(v, addrContinue);
1851 if( pSort->sortFlags & SORTFLAG_UseSorter ){
1852 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1853 }else{
1854 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1856 sqlite3VdbeScanStatusRange(v, addrExplain, sqlite3VdbeCurrentAddr(v)-1, -1);
1857 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1858 sqlite3VdbeResolveLabel(v, addrBreak);
1862 ** Return a pointer to a string containing the 'declaration type' of the
1863 ** expression pExpr. The string may be treated as static by the caller.
1865 ** The declaration type is the exact datatype definition extracted from the
1866 ** original CREATE TABLE statement if the expression is a column. The
1867 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1868 ** is considered a column can be complex in the presence of subqueries. The
1869 ** result-set expression in all of the following SELECT statements is
1870 ** considered a column by this function.
1872 ** SELECT col FROM tbl;
1873 ** SELECT (SELECT col FROM tbl;
1874 ** SELECT (SELECT col FROM tbl);
1875 ** SELECT abc FROM (SELECT col AS abc FROM tbl);
1877 ** The declaration type for any expression other than a column is NULL.
1879 ** This routine has either 3 or 6 parameters depending on whether or not
1880 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1882 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1883 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E)
1884 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1885 # define columnType(A,B,C,D,E) columnTypeImpl(A,B)
1886 #endif
1887 static const char *columnTypeImpl(
1888 NameContext *pNC,
1889 #ifndef SQLITE_ENABLE_COLUMN_METADATA
1890 Expr *pExpr
1891 #else
1892 Expr *pExpr,
1893 const char **pzOrigDb,
1894 const char **pzOrigTab,
1895 const char **pzOrigCol
1896 #endif
1898 char const *zType = 0;
1899 int j;
1900 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1901 char const *zOrigDb = 0;
1902 char const *zOrigTab = 0;
1903 char const *zOrigCol = 0;
1904 #endif
1906 assert( pExpr!=0 );
1907 assert( pNC->pSrcList!=0 );
1908 switch( pExpr->op ){
1909 case TK_COLUMN: {
1910 /* The expression is a column. Locate the table the column is being
1911 ** extracted from in NameContext.pSrcList. This table may be real
1912 ** database table or a subquery.
1914 Table *pTab = 0; /* Table structure column is extracted from */
1915 Select *pS = 0; /* Select the column is extracted from */
1916 int iCol = pExpr->iColumn; /* Index of column in pTab */
1917 while( pNC && !pTab ){
1918 SrcList *pTabList = pNC->pSrcList;
1919 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1920 if( j<pTabList->nSrc ){
1921 pTab = pTabList->a[j].pTab;
1922 pS = pTabList->a[j].pSelect;
1923 }else{
1924 pNC = pNC->pNext;
1928 if( pTab==0 ){
1929 /* At one time, code such as "SELECT new.x" within a trigger would
1930 ** cause this condition to run. Since then, we have restructured how
1931 ** trigger code is generated and so this condition is no longer
1932 ** possible. However, it can still be true for statements like
1933 ** the following:
1935 ** CREATE TABLE t1(col INTEGER);
1936 ** SELECT (SELECT t1.col) FROM FROM t1;
1938 ** when columnType() is called on the expression "t1.col" in the
1939 ** sub-select. In this case, set the column type to NULL, even
1940 ** though it should really be "INTEGER".
1942 ** This is not a problem, as the column type of "t1.col" is never
1943 ** used. When columnType() is called on the expression
1944 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1945 ** branch below. */
1946 break;
1949 assert( pTab && ExprUseYTab(pExpr) && pExpr->y.pTab==pTab );
1950 if( pS ){
1951 /* The "table" is actually a sub-select or a view in the FROM clause
1952 ** of the SELECT statement. Return the declaration type and origin
1953 ** data for the result-set column of the sub-select.
1955 if( iCol<pS->pEList->nExpr
1956 && (!ViewCanHaveRowid || iCol>=0)
1958 /* If iCol is less than zero, then the expression requests the
1959 ** rowid of the sub-select or view. This expression is legal (see
1960 ** test case misc2.2.2) - it always evaluates to NULL.
1962 NameContext sNC;
1963 Expr *p = pS->pEList->a[iCol].pExpr;
1964 sNC.pSrcList = pS->pSrc;
1965 sNC.pNext = pNC;
1966 sNC.pParse = pNC->pParse;
1967 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol);
1969 }else{
1970 /* A real table or a CTE table */
1971 assert( !pS );
1972 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1973 if( iCol<0 ) iCol = pTab->iPKey;
1974 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1975 if( iCol<0 ){
1976 zType = "INTEGER";
1977 zOrigCol = "rowid";
1978 }else{
1979 zOrigCol = pTab->aCol[iCol].zCnName;
1980 zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1982 zOrigTab = pTab->zName;
1983 if( pNC->pParse && pTab->pSchema ){
1984 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1985 zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName;
1987 #else
1988 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1989 if( iCol<0 ){
1990 zType = "INTEGER";
1991 }else{
1992 zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1994 #endif
1996 break;
1998 #ifndef SQLITE_OMIT_SUBQUERY
1999 case TK_SELECT: {
2000 /* The expression is a sub-select. Return the declaration type and
2001 ** origin info for the single column in the result set of the SELECT
2002 ** statement.
2004 NameContext sNC;
2005 Select *pS;
2006 Expr *p;
2007 assert( ExprUseXSelect(pExpr) );
2008 pS = pExpr->x.pSelect;
2009 p = pS->pEList->a[0].pExpr;
2010 sNC.pSrcList = pS->pSrc;
2011 sNC.pNext = pNC;
2012 sNC.pParse = pNC->pParse;
2013 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
2014 break;
2016 #endif
2019 #ifdef SQLITE_ENABLE_COLUMN_METADATA
2020 if( pzOrigDb ){
2021 assert( pzOrigTab && pzOrigCol );
2022 *pzOrigDb = zOrigDb;
2023 *pzOrigTab = zOrigTab;
2024 *pzOrigCol = zOrigCol;
2026 #endif
2027 return zType;
2031 ** Generate code that will tell the VDBE the declaration types of columns
2032 ** in the result set.
2034 static void generateColumnTypes(
2035 Parse *pParse, /* Parser context */
2036 SrcList *pTabList, /* List of tables */
2037 ExprList *pEList /* Expressions defining the result set */
2039 #ifndef SQLITE_OMIT_DECLTYPE
2040 Vdbe *v = pParse->pVdbe;
2041 int i;
2042 NameContext sNC;
2043 sNC.pSrcList = pTabList;
2044 sNC.pParse = pParse;
2045 sNC.pNext = 0;
2046 for(i=0; i<pEList->nExpr; i++){
2047 Expr *p = pEList->a[i].pExpr;
2048 const char *zType;
2049 #ifdef SQLITE_ENABLE_COLUMN_METADATA
2050 const char *zOrigDb = 0;
2051 const char *zOrigTab = 0;
2052 const char *zOrigCol = 0;
2053 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
2055 /* The vdbe must make its own copy of the column-type and other
2056 ** column specific strings, in case the schema is reset before this
2057 ** virtual machine is deleted.
2059 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
2060 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
2061 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
2062 #else
2063 zType = columnType(&sNC, p, 0, 0, 0);
2064 #endif
2065 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
2067 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
2072 ** Compute the column names for a SELECT statement.
2074 ** The only guarantee that SQLite makes about column names is that if the
2075 ** column has an AS clause assigning it a name, that will be the name used.
2076 ** That is the only documented guarantee. However, countless applications
2077 ** developed over the years have made baseless assumptions about column names
2078 ** and will break if those assumptions changes. Hence, use extreme caution
2079 ** when modifying this routine to avoid breaking legacy.
2081 ** See Also: sqlite3ColumnsFromExprList()
2083 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are
2084 ** deprecated. The default setting is short=ON, full=OFF. 99.9% of all
2085 ** applications should operate this way. Nevertheless, we need to support the
2086 ** other modes for legacy:
2088 ** short=OFF, full=OFF: Column name is the text of the expression has it
2089 ** originally appears in the SELECT statement. In
2090 ** other words, the zSpan of the result expression.
2092 ** short=ON, full=OFF: (This is the default setting). If the result
2093 ** refers directly to a table column, then the
2094 ** result column name is just the table column
2095 ** name: COLUMN. Otherwise use zSpan.
2097 ** full=ON, short=ANY: If the result refers directly to a table column,
2098 ** then the result column name with the table name
2099 ** prefix, ex: TABLE.COLUMN. Otherwise use zSpan.
2101 void sqlite3GenerateColumnNames(
2102 Parse *pParse, /* Parser context */
2103 Select *pSelect /* Generate column names for this SELECT statement */
2105 Vdbe *v = pParse->pVdbe;
2106 int i;
2107 Table *pTab;
2108 SrcList *pTabList;
2109 ExprList *pEList;
2110 sqlite3 *db = pParse->db;
2111 int fullName; /* TABLE.COLUMN if no AS clause and is a direct table ref */
2112 int srcName; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */
2114 if( pParse->colNamesSet ) return;
2115 /* Column names are determined by the left-most term of a compound select */
2116 while( pSelect->pPrior ) pSelect = pSelect->pPrior;
2117 TREETRACE(0x80,pParse,pSelect,("generating column names\n"));
2118 pTabList = pSelect->pSrc;
2119 pEList = pSelect->pEList;
2120 assert( v!=0 );
2121 assert( pTabList!=0 );
2122 pParse->colNamesSet = 1;
2123 fullName = (db->flags & SQLITE_FullColNames)!=0;
2124 srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName;
2125 sqlite3VdbeSetNumCols(v, pEList->nExpr);
2126 for(i=0; i<pEList->nExpr; i++){
2127 Expr *p = pEList->a[i].pExpr;
2129 assert( p!=0 );
2130 assert( p->op!=TK_AGG_COLUMN ); /* Agg processing has not run yet */
2131 assert( p->op!=TK_COLUMN
2132 || (ExprUseYTab(p) && p->y.pTab!=0) ); /* Covering idx not yet coded */
2133 if( pEList->a[i].zEName && pEList->a[i].fg.eEName==ENAME_NAME ){
2134 /* An AS clause always takes first priority */
2135 char *zName = pEList->a[i].zEName;
2136 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
2137 }else if( srcName && p->op==TK_COLUMN ){
2138 char *zCol;
2139 int iCol = p->iColumn;
2140 pTab = p->y.pTab;
2141 assert( pTab!=0 );
2142 if( iCol<0 ) iCol = pTab->iPKey;
2143 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
2144 if( iCol<0 ){
2145 zCol = "rowid";
2146 }else{
2147 zCol = pTab->aCol[iCol].zCnName;
2149 if( fullName ){
2150 char *zName = 0;
2151 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
2152 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
2153 }else{
2154 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
2156 }else{
2157 const char *z = pEList->a[i].zEName;
2158 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
2159 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
2162 generateColumnTypes(pParse, pTabList, pEList);
2166 ** Given an expression list (which is really the list of expressions
2167 ** that form the result set of a SELECT statement) compute appropriate
2168 ** column names for a table that would hold the expression list.
2170 ** All column names will be unique.
2172 ** Only the column names are computed. Column.zType, Column.zColl,
2173 ** and other fields of Column are zeroed.
2175 ** Return SQLITE_OK on success. If a memory allocation error occurs,
2176 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
2178 ** The only guarantee that SQLite makes about column names is that if the
2179 ** column has an AS clause assigning it a name, that will be the name used.
2180 ** That is the only documented guarantee. However, countless applications
2181 ** developed over the years have made baseless assumptions about column names
2182 ** and will break if those assumptions changes. Hence, use extreme caution
2183 ** when modifying this routine to avoid breaking legacy.
2185 ** See Also: sqlite3GenerateColumnNames()
2187 int sqlite3ColumnsFromExprList(
2188 Parse *pParse, /* Parsing context */
2189 ExprList *pEList, /* Expr list from which to derive column names */
2190 i16 *pnCol, /* Write the number of columns here */
2191 Column **paCol /* Write the new column list here */
2193 sqlite3 *db = pParse->db; /* Database connection */
2194 int i, j; /* Loop counters */
2195 u32 cnt; /* Index added to make the name unique */
2196 Column *aCol, *pCol; /* For looping over result columns */
2197 int nCol; /* Number of columns in the result set */
2198 char *zName; /* Column name */
2199 int nName; /* Size of name in zName[] */
2200 Hash ht; /* Hash table of column names */
2201 Table *pTab;
2203 sqlite3HashInit(&ht);
2204 if( pEList ){
2205 nCol = pEList->nExpr;
2206 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
2207 testcase( aCol==0 );
2208 if( NEVER(nCol>32767) ) nCol = 32767;
2209 }else{
2210 nCol = 0;
2211 aCol = 0;
2213 assert( nCol==(i16)nCol );
2214 *pnCol = nCol;
2215 *paCol = aCol;
2217 for(i=0, pCol=aCol; i<nCol && !pParse->nErr; i++, pCol++){
2218 struct ExprList_item *pX = &pEList->a[i];
2219 struct ExprList_item *pCollide;
2220 /* Get an appropriate name for the column
2222 if( (zName = pX->zEName)!=0 && pX->fg.eEName==ENAME_NAME ){
2223 /* If the column contains an "AS <name>" phrase, use <name> as the name */
2224 }else{
2225 Expr *pColExpr = sqlite3ExprSkipCollateAndLikely(pX->pExpr);
2226 while( ALWAYS(pColExpr!=0) && pColExpr->op==TK_DOT ){
2227 pColExpr = pColExpr->pRight;
2228 assert( pColExpr!=0 );
2230 if( pColExpr->op==TK_COLUMN
2231 && ALWAYS( ExprUseYTab(pColExpr) )
2232 && ALWAYS( pColExpr->y.pTab!=0 )
2234 /* For columns use the column name name */
2235 int iCol = pColExpr->iColumn;
2236 pTab = pColExpr->y.pTab;
2237 if( iCol<0 ) iCol = pTab->iPKey;
2238 zName = iCol>=0 ? pTab->aCol[iCol].zCnName : "rowid";
2239 }else if( pColExpr->op==TK_ID ){
2240 assert( !ExprHasProperty(pColExpr, EP_IntValue) );
2241 zName = pColExpr->u.zToken;
2242 }else{
2243 /* Use the original text of the column expression as its name */
2244 assert( zName==pX->zEName ); /* pointer comparison intended */
2247 if( zName && !sqlite3IsTrueOrFalse(zName) ){
2248 zName = sqlite3DbStrDup(db, zName);
2249 }else{
2250 zName = sqlite3MPrintf(db,"column%d",i+1);
2253 /* Make sure the column name is unique. If the name is not unique,
2254 ** append an integer to the name so that it becomes unique.
2256 cnt = 0;
2257 while( zName && (pCollide = sqlite3HashFind(&ht, zName))!=0 ){
2258 if( pCollide->fg.bUsingTerm ){
2259 pCol->colFlags |= COLFLAG_NOEXPAND;
2261 nName = sqlite3Strlen30(zName);
2262 if( nName>0 ){
2263 for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){}
2264 if( zName[j]==':' ) nName = j;
2266 zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt);
2267 sqlite3ProgressCheck(pParse);
2268 if( cnt>3 ){
2269 sqlite3_randomness(sizeof(cnt), &cnt);
2272 pCol->zCnName = zName;
2273 pCol->hName = sqlite3StrIHash(zName);
2274 if( pX->fg.bNoExpand ){
2275 pCol->colFlags |= COLFLAG_NOEXPAND;
2277 sqlite3ColumnPropertiesFromName(0, pCol);
2278 if( zName && sqlite3HashInsert(&ht, zName, pX)==pX ){
2279 sqlite3OomFault(db);
2282 sqlite3HashClear(&ht);
2283 if( pParse->nErr ){
2284 for(j=0; j<i; j++){
2285 sqlite3DbFree(db, aCol[j].zCnName);
2287 sqlite3DbFree(db, aCol);
2288 *paCol = 0;
2289 *pnCol = 0;
2290 return pParse->rc;
2292 return SQLITE_OK;
2296 ** pTab is a transient Table object that represents a subquery of some
2297 ** kind (maybe a parenthesized subquery in the FROM clause of a larger
2298 ** query, or a VIEW, or a CTE). This routine computes type information
2299 ** for that Table object based on the Select object that implements the
2300 ** subquery. For the purposes of this routine, "type information" means:
2302 ** * The datatype name, as it might appear in a CREATE TABLE statement
2303 ** * Which collating sequence to use for the column
2304 ** * The affinity of the column
2306 void sqlite3SubqueryColumnTypes(
2307 Parse *pParse, /* Parsing contexts */
2308 Table *pTab, /* Add column type information to this table */
2309 Select *pSelect, /* SELECT used to determine types and collations */
2310 char aff /* Default affinity. */
2312 sqlite3 *db = pParse->db;
2313 Column *pCol;
2314 CollSeq *pColl;
2315 int i,j;
2316 Expr *p;
2317 struct ExprList_item *a;
2318 NameContext sNC;
2320 assert( pSelect!=0 );
2321 testcase( (pSelect->selFlags & SF_Resolved)==0 );
2322 assert( (pSelect->selFlags & SF_Resolved)!=0 || IN_RENAME_OBJECT );
2323 assert( pTab->nCol==pSelect->pEList->nExpr || pParse->nErr>0 );
2324 assert( aff==SQLITE_AFF_NONE || aff==SQLITE_AFF_BLOB );
2325 if( db->mallocFailed || IN_RENAME_OBJECT ) return;
2326 while( pSelect->pPrior ) pSelect = pSelect->pPrior;
2327 a = pSelect->pEList->a;
2328 memset(&sNC, 0, sizeof(sNC));
2329 sNC.pSrcList = pSelect->pSrc;
2330 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
2331 const char *zType;
2332 i64 n;
2333 pTab->tabFlags |= (pCol->colFlags & COLFLAG_NOINSERT);
2334 p = a[i].pExpr;
2335 /* pCol->szEst = ... // Column size est for SELECT tables never used */
2336 pCol->affinity = sqlite3ExprAffinity(p);
2337 if( pCol->affinity<=SQLITE_AFF_NONE ){
2338 pCol->affinity = aff;
2340 if( pCol->affinity>=SQLITE_AFF_TEXT && pSelect->pNext ){
2341 int m = 0;
2342 Select *pS2;
2343 for(m=0, pS2=pSelect->pNext; pS2; pS2=pS2->pNext){
2344 m |= sqlite3ExprDataType(pS2->pEList->a[i].pExpr);
2346 if( pCol->affinity==SQLITE_AFF_TEXT && (m&0x01)!=0 ){
2347 pCol->affinity = SQLITE_AFF_BLOB;
2348 }else
2349 if( pCol->affinity>=SQLITE_AFF_NUMERIC && (m&0x02)!=0 ){
2350 pCol->affinity = SQLITE_AFF_BLOB;
2352 if( pCol->affinity>=SQLITE_AFF_NUMERIC && p->op==TK_CAST ){
2353 pCol->affinity = SQLITE_AFF_FLEXNUM;
2356 zType = columnType(&sNC, p, 0, 0, 0);
2357 if( zType==0 || pCol->affinity!=sqlite3AffinityType(zType, 0) ){
2358 if( pCol->affinity==SQLITE_AFF_NUMERIC
2359 || pCol->affinity==SQLITE_AFF_FLEXNUM
2361 zType = "NUM";
2362 }else{
2363 zType = 0;
2364 for(j=1; j<SQLITE_N_STDTYPE; j++){
2365 if( sqlite3StdTypeAffinity[j]==pCol->affinity ){
2366 zType = sqlite3StdType[j];
2367 break;
2372 if( zType ){
2373 i64 m = sqlite3Strlen30(zType);
2374 n = sqlite3Strlen30(pCol->zCnName);
2375 pCol->zCnName = sqlite3DbReallocOrFree(db, pCol->zCnName, n+m+2);
2376 pCol->colFlags &= ~(COLFLAG_HASTYPE|COLFLAG_HASCOLL);
2377 if( pCol->zCnName ){
2378 memcpy(&pCol->zCnName[n+1], zType, m+1);
2379 pCol->colFlags |= COLFLAG_HASTYPE;
2382 pColl = sqlite3ExprCollSeq(pParse, p);
2383 if( pColl ){
2384 assert( pTab->pIndex==0 );
2385 sqlite3ColumnSetColl(db, pCol, pColl->zName);
2388 pTab->szTabRow = 1; /* Any non-zero value works */
2392 ** Given a SELECT statement, generate a Table structure that describes
2393 ** the result set of that SELECT.
2395 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect, char aff){
2396 Table *pTab;
2397 sqlite3 *db = pParse->db;
2398 u64 savedFlags;
2400 savedFlags = db->flags;
2401 db->flags &= ~(u64)SQLITE_FullColNames;
2402 db->flags |= SQLITE_ShortColNames;
2403 sqlite3SelectPrep(pParse, pSelect, 0);
2404 db->flags = savedFlags;
2405 if( pParse->nErr ) return 0;
2406 while( pSelect->pPrior ) pSelect = pSelect->pPrior;
2407 pTab = sqlite3DbMallocZero(db, sizeof(Table) );
2408 if( pTab==0 ){
2409 return 0;
2411 pTab->nTabRef = 1;
2412 pTab->zName = 0;
2413 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
2414 sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
2415 sqlite3SubqueryColumnTypes(pParse, pTab, pSelect, aff);
2416 pTab->iPKey = -1;
2417 if( db->mallocFailed ){
2418 sqlite3DeleteTable(db, pTab);
2419 return 0;
2421 return pTab;
2425 ** Get a VDBE for the given parser context. Create a new one if necessary.
2426 ** If an error occurs, return NULL and leave a message in pParse.
2428 Vdbe *sqlite3GetVdbe(Parse *pParse){
2429 if( pParse->pVdbe ){
2430 return pParse->pVdbe;
2432 if( pParse->pToplevel==0
2433 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
2435 pParse->okConstFactor = 1;
2437 return sqlite3VdbeCreate(pParse);
2442 ** Compute the iLimit and iOffset fields of the SELECT based on the
2443 ** pLimit expressions. pLimit->pLeft and pLimit->pRight hold the expressions
2444 ** that appear in the original SQL statement after the LIMIT and OFFSET
2445 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset
2446 ** are the integer memory register numbers for counters used to compute
2447 ** the limit and offset. If there is no limit and/or offset, then
2448 ** iLimit and iOffset are negative.
2450 ** This routine changes the values of iLimit and iOffset only if
2451 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight. iLimit
2452 ** and iOffset should have been preset to appropriate default values (zero)
2453 ** prior to calling this routine.
2455 ** The iOffset register (if it exists) is initialized to the value
2456 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register
2457 ** iOffset+1 is initialized to LIMIT+OFFSET.
2459 ** Only if pLimit->pLeft!=0 do the limit registers get
2460 ** redefined. The UNION ALL operator uses this property to force
2461 ** the reuse of the same limit and offset registers across multiple
2462 ** SELECT statements.
2464 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
2465 Vdbe *v = 0;
2466 int iLimit = 0;
2467 int iOffset;
2468 int n;
2469 Expr *pLimit = p->pLimit;
2471 if( p->iLimit ) return;
2474 ** "LIMIT -1" always shows all rows. There is some
2475 ** controversy about what the correct behavior should be.
2476 ** The current implementation interprets "LIMIT 0" to mean
2477 ** no rows.
2479 if( pLimit ){
2480 assert( pLimit->op==TK_LIMIT );
2481 assert( pLimit->pLeft!=0 );
2482 p->iLimit = iLimit = ++pParse->nMem;
2483 v = sqlite3GetVdbe(pParse);
2484 assert( v!=0 );
2485 if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){
2486 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
2487 VdbeComment((v, "LIMIT counter"));
2488 if( n==0 ){
2489 sqlite3VdbeGoto(v, iBreak);
2490 }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){
2491 p->nSelectRow = sqlite3LogEst((u64)n);
2492 p->selFlags |= SF_FixedLimit;
2494 }else{
2495 sqlite3ExprCode(pParse, pLimit->pLeft, iLimit);
2496 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
2497 VdbeComment((v, "LIMIT counter"));
2498 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v);
2500 if( pLimit->pRight ){
2501 p->iOffset = iOffset = ++pParse->nMem;
2502 pParse->nMem++; /* Allocate an extra register for limit+offset */
2503 sqlite3ExprCode(pParse, pLimit->pRight, iOffset);
2504 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
2505 VdbeComment((v, "OFFSET counter"));
2506 sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset);
2507 VdbeComment((v, "LIMIT+OFFSET"));
2512 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2514 ** Return the appropriate collating sequence for the iCol-th column of
2515 ** the result set for the compound-select statement "p". Return NULL if
2516 ** the column has no default collating sequence.
2518 ** The collating sequence for the compound select is taken from the
2519 ** left-most term of the select that has a collating sequence.
2521 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
2522 CollSeq *pRet;
2523 if( p->pPrior ){
2524 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
2525 }else{
2526 pRet = 0;
2528 assert( iCol>=0 );
2529 /* iCol must be less than p->pEList->nExpr. Otherwise an error would
2530 ** have been thrown during name resolution and we would not have gotten
2531 ** this far */
2532 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){
2533 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
2535 return pRet;
2539 ** The select statement passed as the second parameter is a compound SELECT
2540 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
2541 ** structure suitable for implementing the ORDER BY.
2543 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
2544 ** function is responsible for ensuring that this structure is eventually
2545 ** freed.
2547 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
2548 ExprList *pOrderBy = p->pOrderBy;
2549 int nOrderBy = ALWAYS(pOrderBy!=0) ? pOrderBy->nExpr : 0;
2550 sqlite3 *db = pParse->db;
2551 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
2552 if( pRet ){
2553 int i;
2554 for(i=0; i<nOrderBy; i++){
2555 struct ExprList_item *pItem = &pOrderBy->a[i];
2556 Expr *pTerm = pItem->pExpr;
2557 CollSeq *pColl;
2559 if( pTerm->flags & EP_Collate ){
2560 pColl = sqlite3ExprCollSeq(pParse, pTerm);
2561 }else{
2562 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
2563 if( pColl==0 ) pColl = db->pDfltColl;
2564 pOrderBy->a[i].pExpr =
2565 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
2567 assert( sqlite3KeyInfoIsWriteable(pRet) );
2568 pRet->aColl[i] = pColl;
2569 pRet->aSortFlags[i] = pOrderBy->a[i].fg.sortFlags;
2573 return pRet;
2576 #ifndef SQLITE_OMIT_CTE
2578 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
2579 ** query of the form:
2581 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
2582 ** \___________/ \_______________/
2583 ** p->pPrior p
2586 ** There is exactly one reference to the recursive-table in the FROM clause
2587 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
2589 ** The setup-query runs once to generate an initial set of rows that go
2590 ** into a Queue table. Rows are extracted from the Queue table one by
2591 ** one. Each row extracted from Queue is output to pDest. Then the single
2592 ** extracted row (now in the iCurrent table) becomes the content of the
2593 ** recursive-table for a recursive-query run. The output of the recursive-query
2594 ** is added back into the Queue table. Then another row is extracted from Queue
2595 ** and the iteration continues until the Queue table is empty.
2597 ** If the compound query operator is UNION then no duplicate rows are ever
2598 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows
2599 ** that have ever been inserted into Queue and causes duplicates to be
2600 ** discarded. If the operator is UNION ALL, then duplicates are allowed.
2602 ** If the query has an ORDER BY, then entries in the Queue table are kept in
2603 ** ORDER BY order and the first entry is extracted for each cycle. Without
2604 ** an ORDER BY, the Queue table is just a FIFO.
2606 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
2607 ** have been output to pDest. A LIMIT of zero means to output no rows and a
2608 ** negative LIMIT means to output all rows. If there is also an OFFSET clause
2609 ** with a positive value, then the first OFFSET outputs are discarded rather
2610 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET
2611 ** rows have been skipped.
2613 static void generateWithRecursiveQuery(
2614 Parse *pParse, /* Parsing context */
2615 Select *p, /* The recursive SELECT to be coded */
2616 SelectDest *pDest /* What to do with query results */
2618 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */
2619 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */
2620 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */
2621 Select *pSetup; /* The setup query */
2622 Select *pFirstRec; /* Left-most recursive term */
2623 int addrTop; /* Top of the loop */
2624 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */
2625 int iCurrent = 0; /* The Current table */
2626 int regCurrent; /* Register holding Current table */
2627 int iQueue; /* The Queue table */
2628 int iDistinct = 0; /* To ensure unique results if UNION */
2629 int eDest = SRT_Fifo; /* How to write to Queue */
2630 SelectDest destQueue; /* SelectDest targeting the Queue table */
2631 int i; /* Loop counter */
2632 int rc; /* Result code */
2633 ExprList *pOrderBy; /* The ORDER BY clause */
2634 Expr *pLimit; /* Saved LIMIT and OFFSET */
2635 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */
2637 #ifndef SQLITE_OMIT_WINDOWFUNC
2638 if( p->pWin ){
2639 sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries");
2640 return;
2642 #endif
2644 /* Obtain authorization to do a recursive query */
2645 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
2647 /* Process the LIMIT and OFFSET clauses, if they exist */
2648 addrBreak = sqlite3VdbeMakeLabel(pParse);
2649 p->nSelectRow = 320; /* 4 billion rows */
2650 computeLimitRegisters(pParse, p, addrBreak);
2651 pLimit = p->pLimit;
2652 regLimit = p->iLimit;
2653 regOffset = p->iOffset;
2654 p->pLimit = 0;
2655 p->iLimit = p->iOffset = 0;
2656 pOrderBy = p->pOrderBy;
2658 /* Locate the cursor number of the Current table */
2659 for(i=0; ALWAYS(i<pSrc->nSrc); i++){
2660 if( pSrc->a[i].fg.isRecursive ){
2661 iCurrent = pSrc->a[i].iCursor;
2662 break;
2666 /* Allocate cursors numbers for Queue and Distinct. The cursor number for
2667 ** the Distinct table must be exactly one greater than Queue in order
2668 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2669 iQueue = pParse->nTab++;
2670 if( p->op==TK_UNION ){
2671 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
2672 iDistinct = pParse->nTab++;
2673 }else{
2674 eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
2676 sqlite3SelectDestInit(&destQueue, eDest, iQueue);
2678 /* Allocate cursors for Current, Queue, and Distinct. */
2679 regCurrent = ++pParse->nMem;
2680 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
2681 if( pOrderBy ){
2682 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
2683 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
2684 (char*)pKeyInfo, P4_KEYINFO);
2685 destQueue.pOrderBy = pOrderBy;
2686 }else{
2687 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
2689 VdbeComment((v, "Queue table"));
2690 if( iDistinct ){
2691 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
2692 p->selFlags |= SF_UsesEphemeral;
2695 /* Detach the ORDER BY clause from the compound SELECT */
2696 p->pOrderBy = 0;
2698 /* Figure out how many elements of the compound SELECT are part of the
2699 ** recursive query. Make sure no recursive elements use aggregate
2700 ** functions. Mark the recursive elements as UNION ALL even if they
2701 ** are really UNION because the distinctness will be enforced by the
2702 ** iDistinct table. pFirstRec is left pointing to the left-most
2703 ** recursive term of the CTE.
2705 for(pFirstRec=p; ALWAYS(pFirstRec!=0); pFirstRec=pFirstRec->pPrior){
2706 if( pFirstRec->selFlags & SF_Aggregate ){
2707 sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported");
2708 goto end_of_recursive_query;
2710 pFirstRec->op = TK_ALL;
2711 if( (pFirstRec->pPrior->selFlags & SF_Recursive)==0 ) break;
2714 /* Store the results of the setup-query in Queue. */
2715 pSetup = pFirstRec->pPrior;
2716 pSetup->pNext = 0;
2717 ExplainQueryPlan((pParse, 1, "SETUP"));
2718 rc = sqlite3Select(pParse, pSetup, &destQueue);
2719 pSetup->pNext = p;
2720 if( rc ) goto end_of_recursive_query;
2722 /* Find the next row in the Queue and output that row */
2723 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
2725 /* Transfer the next row in Queue over to Current */
2726 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
2727 if( pOrderBy ){
2728 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
2729 }else{
2730 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
2732 sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
2734 /* Output the single row in Current */
2735 addrCont = sqlite3VdbeMakeLabel(pParse);
2736 codeOffset(v, regOffset, addrCont);
2737 selectInnerLoop(pParse, p, iCurrent,
2738 0, 0, pDest, addrCont, addrBreak);
2739 if( regLimit ){
2740 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak);
2741 VdbeCoverage(v);
2743 sqlite3VdbeResolveLabel(v, addrCont);
2745 /* Execute the recursive SELECT taking the single row in Current as
2746 ** the value for the recursive-table. Store the results in the Queue.
2748 pFirstRec->pPrior = 0;
2749 ExplainQueryPlan((pParse, 1, "RECURSIVE STEP"));
2750 sqlite3Select(pParse, p, &destQueue);
2751 assert( pFirstRec->pPrior==0 );
2752 pFirstRec->pPrior = pSetup;
2754 /* Keep running the loop until the Queue is empty */
2755 sqlite3VdbeGoto(v, addrTop);
2756 sqlite3VdbeResolveLabel(v, addrBreak);
2758 end_of_recursive_query:
2759 sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2760 p->pOrderBy = pOrderBy;
2761 p->pLimit = pLimit;
2762 return;
2764 #endif /* SQLITE_OMIT_CTE */
2766 /* Forward references */
2767 static int multiSelectOrderBy(
2768 Parse *pParse, /* Parsing context */
2769 Select *p, /* The right-most of SELECTs to be coded */
2770 SelectDest *pDest /* What to do with query results */
2774 ** Handle the special case of a compound-select that originates from a
2775 ** VALUES clause. By handling this as a special case, we avoid deep
2776 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2777 ** on a VALUES clause.
2779 ** Because the Select object originates from a VALUES clause:
2780 ** (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1
2781 ** (2) All terms are UNION ALL
2782 ** (3) There is no ORDER BY clause
2784 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES
2785 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))").
2786 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case.
2787 ** Since the limit is exactly 1, we only need to evaluate the left-most VALUES.
2789 static int multiSelectValues(
2790 Parse *pParse, /* Parsing context */
2791 Select *p, /* The right-most of SELECTs to be coded */
2792 SelectDest *pDest /* What to do with query results */
2794 int nRow = 1;
2795 int rc = 0;
2796 int bShowAll = p->pLimit==0;
2797 assert( p->selFlags & SF_MultiValue );
2799 assert( p->selFlags & SF_Values );
2800 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
2801 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr );
2802 #ifndef SQLITE_OMIT_WINDOWFUNC
2803 if( p->pWin ) return -1;
2804 #endif
2805 if( p->pPrior==0 ) break;
2806 assert( p->pPrior->pNext==p );
2807 p = p->pPrior;
2808 nRow += bShowAll;
2809 }while(1);
2810 ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow,
2811 nRow==1 ? "" : "S"));
2812 while( p ){
2813 selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1);
2814 if( !bShowAll ) break;
2815 p->nSelectRow = nRow;
2816 p = p->pNext;
2818 return rc;
2822 ** Return true if the SELECT statement which is known to be the recursive
2823 ** part of a recursive CTE still has its anchor terms attached. If the
2824 ** anchor terms have already been removed, then return false.
2826 static int hasAnchor(Select *p){
2827 while( p && (p->selFlags & SF_Recursive)!=0 ){ p = p->pPrior; }
2828 return p!=0;
2832 ** This routine is called to process a compound query form from
2833 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2834 ** INTERSECT
2836 ** "p" points to the right-most of the two queries. the query on the
2837 ** left is p->pPrior. The left query could also be a compound query
2838 ** in which case this routine will be called recursively.
2840 ** The results of the total query are to be written into a destination
2841 ** of type eDest with parameter iParm.
2843 ** Example 1: Consider a three-way compound SQL statement.
2845 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2847 ** This statement is parsed up as follows:
2849 ** SELECT c FROM t3
2850 ** |
2851 ** `-----> SELECT b FROM t2
2852 ** |
2853 ** `------> SELECT a FROM t1
2855 ** The arrows in the diagram above represent the Select.pPrior pointer.
2856 ** So if this routine is called with p equal to the t3 query, then
2857 ** pPrior will be the t2 query. p->op will be TK_UNION in this case.
2859 ** Notice that because of the way SQLite parses compound SELECTs, the
2860 ** individual selects always group from left to right.
2862 static int multiSelect(
2863 Parse *pParse, /* Parsing context */
2864 Select *p, /* The right-most of SELECTs to be coded */
2865 SelectDest *pDest /* What to do with query results */
2867 int rc = SQLITE_OK; /* Success code from a subroutine */
2868 Select *pPrior; /* Another SELECT immediately to our left */
2869 Vdbe *v; /* Generate code to this VDBE */
2870 SelectDest dest; /* Alternative data destination */
2871 Select *pDelete = 0; /* Chain of simple selects to delete */
2872 sqlite3 *db; /* Database connection */
2874 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only
2875 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2877 assert( p && p->pPrior ); /* Calling function guarantees this much */
2878 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2879 assert( p->selFlags & SF_Compound );
2880 db = pParse->db;
2881 pPrior = p->pPrior;
2882 dest = *pDest;
2883 assert( pPrior->pOrderBy==0 );
2884 assert( pPrior->pLimit==0 );
2886 v = sqlite3GetVdbe(pParse);
2887 assert( v!=0 ); /* The VDBE already created by calling function */
2889 /* Create the destination temporary table if necessary
2891 if( dest.eDest==SRT_EphemTab ){
2892 assert( p->pEList );
2893 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2894 dest.eDest = SRT_Table;
2897 /* Special handling for a compound-select that originates as a VALUES clause.
2899 if( p->selFlags & SF_MultiValue ){
2900 rc = multiSelectValues(pParse, p, &dest);
2901 if( rc>=0 ) goto multi_select_end;
2902 rc = SQLITE_OK;
2905 /* Make sure all SELECTs in the statement have the same number of elements
2906 ** in their result sets.
2908 assert( p->pEList && pPrior->pEList );
2909 assert( p->pEList->nExpr==pPrior->pEList->nExpr );
2911 #ifndef SQLITE_OMIT_CTE
2912 if( (p->selFlags & SF_Recursive)!=0 && hasAnchor(p) ){
2913 generateWithRecursiveQuery(pParse, p, &dest);
2914 }else
2915 #endif
2917 /* Compound SELECTs that have an ORDER BY clause are handled separately.
2919 if( p->pOrderBy ){
2920 return multiSelectOrderBy(pParse, p, pDest);
2921 }else{
2923 #ifndef SQLITE_OMIT_EXPLAIN
2924 if( pPrior->pPrior==0 ){
2925 ExplainQueryPlan((pParse, 1, "COMPOUND QUERY"));
2926 ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY"));
2928 #endif
2930 /* Generate code for the left and right SELECT statements.
2932 switch( p->op ){
2933 case TK_ALL: {
2934 int addr = 0;
2935 int nLimit = 0; /* Initialize to suppress harmless compiler warning */
2936 assert( !pPrior->pLimit );
2937 pPrior->iLimit = p->iLimit;
2938 pPrior->iOffset = p->iOffset;
2939 pPrior->pLimit = p->pLimit;
2940 TREETRACE(0x200, pParse, p, ("multiSelect UNION ALL left...\n"));
2941 rc = sqlite3Select(pParse, pPrior, &dest);
2942 pPrior->pLimit = 0;
2943 if( rc ){
2944 goto multi_select_end;
2946 p->pPrior = 0;
2947 p->iLimit = pPrior->iLimit;
2948 p->iOffset = pPrior->iOffset;
2949 if( p->iLimit ){
2950 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
2951 VdbeComment((v, "Jump ahead if LIMIT reached"));
2952 if( p->iOffset ){
2953 sqlite3VdbeAddOp3(v, OP_OffsetLimit,
2954 p->iLimit, p->iOffset+1, p->iOffset);
2957 ExplainQueryPlan((pParse, 1, "UNION ALL"));
2958 TREETRACE(0x200, pParse, p, ("multiSelect UNION ALL right...\n"));
2959 rc = sqlite3Select(pParse, p, &dest);
2960 testcase( rc!=SQLITE_OK );
2961 pDelete = p->pPrior;
2962 p->pPrior = pPrior;
2963 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2964 if( p->pLimit
2965 && sqlite3ExprIsInteger(p->pLimit->pLeft, &nLimit)
2966 && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit)
2968 p->nSelectRow = sqlite3LogEst((u64)nLimit);
2970 if( addr ){
2971 sqlite3VdbeJumpHere(v, addr);
2973 break;
2975 case TK_EXCEPT:
2976 case TK_UNION: {
2977 int unionTab; /* Cursor number of the temp table holding result */
2978 u8 op = 0; /* One of the SRT_ operations to apply to self */
2979 int priorOp; /* The SRT_ operation to apply to prior selects */
2980 Expr *pLimit; /* Saved values of p->nLimit */
2981 int addr;
2982 SelectDest uniondest;
2984 testcase( p->op==TK_EXCEPT );
2985 testcase( p->op==TK_UNION );
2986 priorOp = SRT_Union;
2987 if( dest.eDest==priorOp ){
2988 /* We can reuse a temporary table generated by a SELECT to our
2989 ** right.
2991 assert( p->pLimit==0 ); /* Not allowed on leftward elements */
2992 unionTab = dest.iSDParm;
2993 }else{
2994 /* We will need to create our own temporary table to hold the
2995 ** intermediate results.
2997 unionTab = pParse->nTab++;
2998 assert( p->pOrderBy==0 );
2999 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
3000 assert( p->addrOpenEphm[0] == -1 );
3001 p->addrOpenEphm[0] = addr;
3002 findRightmost(p)->selFlags |= SF_UsesEphemeral;
3003 assert( p->pEList );
3007 /* Code the SELECT statements to our left
3009 assert( !pPrior->pOrderBy );
3010 sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
3011 TREETRACE(0x200, pParse, p, ("multiSelect EXCEPT/UNION left...\n"));
3012 rc = sqlite3Select(pParse, pPrior, &uniondest);
3013 if( rc ){
3014 goto multi_select_end;
3017 /* Code the current SELECT statement
3019 if( p->op==TK_EXCEPT ){
3020 op = SRT_Except;
3021 }else{
3022 assert( p->op==TK_UNION );
3023 op = SRT_Union;
3025 p->pPrior = 0;
3026 pLimit = p->pLimit;
3027 p->pLimit = 0;
3028 uniondest.eDest = op;
3029 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
3030 sqlite3SelectOpName(p->op)));
3031 TREETRACE(0x200, pParse, p, ("multiSelect EXCEPT/UNION right...\n"));
3032 rc = sqlite3Select(pParse, p, &uniondest);
3033 testcase( rc!=SQLITE_OK );
3034 assert( p->pOrderBy==0 );
3035 pDelete = p->pPrior;
3036 p->pPrior = pPrior;
3037 p->pOrderBy = 0;
3038 if( p->op==TK_UNION ){
3039 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
3041 sqlite3ExprDelete(db, p->pLimit);
3042 p->pLimit = pLimit;
3043 p->iLimit = 0;
3044 p->iOffset = 0;
3046 /* Convert the data in the temporary table into whatever form
3047 ** it is that we currently need.
3049 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
3050 assert( p->pEList || db->mallocFailed );
3051 if( dest.eDest!=priorOp && db->mallocFailed==0 ){
3052 int iCont, iBreak, iStart;
3053 iBreak = sqlite3VdbeMakeLabel(pParse);
3054 iCont = sqlite3VdbeMakeLabel(pParse);
3055 computeLimitRegisters(pParse, p, iBreak);
3056 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
3057 iStart = sqlite3VdbeCurrentAddr(v);
3058 selectInnerLoop(pParse, p, unionTab,
3059 0, 0, &dest, iCont, iBreak);
3060 sqlite3VdbeResolveLabel(v, iCont);
3061 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
3062 sqlite3VdbeResolveLabel(v, iBreak);
3063 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
3065 break;
3067 default: assert( p->op==TK_INTERSECT ); {
3068 int tab1, tab2;
3069 int iCont, iBreak, iStart;
3070 Expr *pLimit;
3071 int addr;
3072 SelectDest intersectdest;
3073 int r1;
3075 /* INTERSECT is different from the others since it requires
3076 ** two temporary tables. Hence it has its own case. Begin
3077 ** by allocating the tables we will need.
3079 tab1 = pParse->nTab++;
3080 tab2 = pParse->nTab++;
3081 assert( p->pOrderBy==0 );
3083 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
3084 assert( p->addrOpenEphm[0] == -1 );
3085 p->addrOpenEphm[0] = addr;
3086 findRightmost(p)->selFlags |= SF_UsesEphemeral;
3087 assert( p->pEList );
3089 /* Code the SELECTs to our left into temporary table "tab1".
3091 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
3092 TREETRACE(0x400, pParse, p, ("multiSelect INTERSECT left...\n"));
3093 rc = sqlite3Select(pParse, pPrior, &intersectdest);
3094 if( rc ){
3095 goto multi_select_end;
3098 /* Code the current SELECT into temporary table "tab2"
3100 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
3101 assert( p->addrOpenEphm[1] == -1 );
3102 p->addrOpenEphm[1] = addr;
3103 p->pPrior = 0;
3104 pLimit = p->pLimit;
3105 p->pLimit = 0;
3106 intersectdest.iSDParm = tab2;
3107 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
3108 sqlite3SelectOpName(p->op)));
3109 TREETRACE(0x400, pParse, p, ("multiSelect INTERSECT right...\n"));
3110 rc = sqlite3Select(pParse, p, &intersectdest);
3111 testcase( rc!=SQLITE_OK );
3112 pDelete = p->pPrior;
3113 p->pPrior = pPrior;
3114 if( p->nSelectRow>pPrior->nSelectRow ){
3115 p->nSelectRow = pPrior->nSelectRow;
3117 sqlite3ExprDelete(db, p->pLimit);
3118 p->pLimit = pLimit;
3120 /* Generate code to take the intersection of the two temporary
3121 ** tables.
3123 if( rc ) break;
3124 assert( p->pEList );
3125 iBreak = sqlite3VdbeMakeLabel(pParse);
3126 iCont = sqlite3VdbeMakeLabel(pParse);
3127 computeLimitRegisters(pParse, p, iBreak);
3128 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
3129 r1 = sqlite3GetTempReg(pParse);
3130 iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1);
3131 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0);
3132 VdbeCoverage(v);
3133 sqlite3ReleaseTempReg(pParse, r1);
3134 selectInnerLoop(pParse, p, tab1,
3135 0, 0, &dest, iCont, iBreak);
3136 sqlite3VdbeResolveLabel(v, iCont);
3137 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
3138 sqlite3VdbeResolveLabel(v, iBreak);
3139 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
3140 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
3141 break;
3145 #ifndef SQLITE_OMIT_EXPLAIN
3146 if( p->pNext==0 ){
3147 ExplainQueryPlanPop(pParse);
3149 #endif
3151 if( pParse->nErr ) goto multi_select_end;
3153 /* Compute collating sequences used by
3154 ** temporary tables needed to implement the compound select.
3155 ** Attach the KeyInfo structure to all temporary tables.
3157 ** This section is run by the right-most SELECT statement only.
3158 ** SELECT statements to the left always skip this part. The right-most
3159 ** SELECT might also skip this part if it has no ORDER BY clause and
3160 ** no temp tables are required.
3162 if( p->selFlags & SF_UsesEphemeral ){
3163 int i; /* Loop counter */
3164 KeyInfo *pKeyInfo; /* Collating sequence for the result set */
3165 Select *pLoop; /* For looping through SELECT statements */
3166 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */
3167 int nCol; /* Number of columns in result set */
3169 assert( p->pNext==0 );
3170 assert( p->pEList!=0 );
3171 nCol = p->pEList->nExpr;
3172 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
3173 if( !pKeyInfo ){
3174 rc = SQLITE_NOMEM_BKPT;
3175 goto multi_select_end;
3177 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
3178 *apColl = multiSelectCollSeq(pParse, p, i);
3179 if( 0==*apColl ){
3180 *apColl = db->pDfltColl;
3184 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
3185 for(i=0; i<2; i++){
3186 int addr = pLoop->addrOpenEphm[i];
3187 if( addr<0 ){
3188 /* If [0] is unused then [1] is also unused. So we can
3189 ** always safely abort as soon as the first unused slot is found */
3190 assert( pLoop->addrOpenEphm[1]<0 );
3191 break;
3193 sqlite3VdbeChangeP2(v, addr, nCol);
3194 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
3195 P4_KEYINFO);
3196 pLoop->addrOpenEphm[i] = -1;
3199 sqlite3KeyInfoUnref(pKeyInfo);
3202 multi_select_end:
3203 pDest->iSdst = dest.iSdst;
3204 pDest->nSdst = dest.nSdst;
3205 if( pDelete ){
3206 sqlite3ParserAddCleanup(pParse, sqlite3SelectDeleteGeneric, pDelete);
3208 return rc;
3210 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
3213 ** Error message for when two or more terms of a compound select have different
3214 ** size result sets.
3216 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){
3217 if( p->selFlags & SF_Values ){
3218 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
3219 }else{
3220 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
3221 " do not have the same number of result columns",
3222 sqlite3SelectOpName(p->op));
3227 ** Code an output subroutine for a coroutine implementation of a
3228 ** SELECT statement.
3230 ** The data to be output is contained in pIn->iSdst. There are
3231 ** pIn->nSdst columns to be output. pDest is where the output should
3232 ** be sent.
3234 ** regReturn is the number of the register holding the subroutine
3235 ** return address.
3237 ** If regPrev>0 then it is the first register in a vector that
3238 ** records the previous output. mem[regPrev] is a flag that is false
3239 ** if there has been no previous output. If regPrev>0 then code is
3240 ** generated to suppress duplicates. pKeyInfo is used for comparing
3241 ** keys.
3243 ** If the LIMIT found in p->iLimit is reached, jump immediately to
3244 ** iBreak.
3246 static int generateOutputSubroutine(
3247 Parse *pParse, /* Parsing context */
3248 Select *p, /* The SELECT statement */
3249 SelectDest *pIn, /* Coroutine supplying data */
3250 SelectDest *pDest, /* Where to send the data */
3251 int regReturn, /* The return address register */
3252 int regPrev, /* Previous result register. No uniqueness if 0 */
3253 KeyInfo *pKeyInfo, /* For comparing with previous entry */
3254 int iBreak /* Jump here if we hit the LIMIT */
3256 Vdbe *v = pParse->pVdbe;
3257 int iContinue;
3258 int addr;
3260 addr = sqlite3VdbeCurrentAddr(v);
3261 iContinue = sqlite3VdbeMakeLabel(pParse);
3263 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
3265 if( regPrev ){
3266 int addr1, addr2;
3267 addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
3268 addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
3269 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
3270 sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v);
3271 sqlite3VdbeJumpHere(v, addr1);
3272 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
3273 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
3275 if( pParse->db->mallocFailed ) return 0;
3277 /* Suppress the first OFFSET entries if there is an OFFSET clause
3279 codeOffset(v, p->iOffset, iContinue);
3281 assert( pDest->eDest!=SRT_Exists );
3282 assert( pDest->eDest!=SRT_Table );
3283 switch( pDest->eDest ){
3284 /* Store the result as data using a unique key.
3286 case SRT_EphemTab: {
3287 int r1 = sqlite3GetTempReg(pParse);
3288 int r2 = sqlite3GetTempReg(pParse);
3289 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
3290 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
3291 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
3292 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
3293 sqlite3ReleaseTempReg(pParse, r2);
3294 sqlite3ReleaseTempReg(pParse, r1);
3295 break;
3298 #ifndef SQLITE_OMIT_SUBQUERY
3299 /* If we are creating a set for an "expr IN (SELECT ...)".
3301 case SRT_Set: {
3302 int r1;
3303 testcase( pIn->nSdst>1 );
3304 r1 = sqlite3GetTempReg(pParse);
3305 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst,
3306 r1, pDest->zAffSdst, pIn->nSdst);
3307 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1,
3308 pIn->iSdst, pIn->nSdst);
3309 sqlite3ReleaseTempReg(pParse, r1);
3310 break;
3313 /* If this is a scalar select that is part of an expression, then
3314 ** store the results in the appropriate memory cell and break out
3315 ** of the scan loop. Note that the select might return multiple columns
3316 ** if it is the RHS of a row-value IN operator.
3318 case SRT_Mem: {
3319 testcase( pIn->nSdst>1 );
3320 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, pIn->nSdst);
3321 /* The LIMIT clause will jump out of the loop for us */
3322 break;
3324 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
3326 /* The results are stored in a sequence of registers
3327 ** starting at pDest->iSdst. Then the co-routine yields.
3329 case SRT_Coroutine: {
3330 if( pDest->iSdst==0 ){
3331 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
3332 pDest->nSdst = pIn->nSdst;
3334 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst);
3335 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
3336 break;
3339 /* If none of the above, then the result destination must be
3340 ** SRT_Output. This routine is never called with any other
3341 ** destination other than the ones handled above or SRT_Output.
3343 ** For SRT_Output, results are stored in a sequence of registers.
3344 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
3345 ** return the next row of result.
3347 default: {
3348 assert( pDest->eDest==SRT_Output );
3349 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
3350 break;
3354 /* Jump to the end of the loop if the LIMIT is reached.
3356 if( p->iLimit ){
3357 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
3360 /* Generate the subroutine return
3362 sqlite3VdbeResolveLabel(v, iContinue);
3363 sqlite3VdbeAddOp1(v, OP_Return, regReturn);
3365 return addr;
3369 ** Alternative compound select code generator for cases when there
3370 ** is an ORDER BY clause.
3372 ** We assume a query of the following form:
3374 ** <selectA> <operator> <selectB> ORDER BY <orderbylist>
3376 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea
3377 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
3378 ** co-routines. Then run the co-routines in parallel and merge the results
3379 ** into the output. In addition to the two coroutines (called selectA and
3380 ** selectB) there are 7 subroutines:
3382 ** outA: Move the output of the selectA coroutine into the output
3383 ** of the compound query.
3385 ** outB: Move the output of the selectB coroutine into the output
3386 ** of the compound query. (Only generated for UNION and
3387 ** UNION ALL. EXCEPT and INSERTSECT never output a row that
3388 ** appears only in B.)
3390 ** AltB: Called when there is data from both coroutines and A<B.
3392 ** AeqB: Called when there is data from both coroutines and A==B.
3394 ** AgtB: Called when there is data from both coroutines and A>B.
3396 ** EofA: Called when data is exhausted from selectA.
3398 ** EofB: Called when data is exhausted from selectB.
3400 ** The implementation of the latter five subroutines depend on which
3401 ** <operator> is used:
3404 ** UNION ALL UNION EXCEPT INTERSECT
3405 ** ------------- ----------------- -------------- -----------------
3406 ** AltB: outA, nextA outA, nextA outA, nextA nextA
3408 ** AeqB: outA, nextA nextA nextA outA, nextA
3410 ** AgtB: outB, nextB outB, nextB nextB nextB
3412 ** EofA: outB, nextB outB, nextB halt halt
3414 ** EofB: outA, nextA outA, nextA outA, nextA halt
3416 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
3417 ** causes an immediate jump to EofA and an EOF on B following nextB causes
3418 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or
3419 ** following nextX causes a jump to the end of the select processing.
3421 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
3422 ** within the output subroutine. The regPrev register set holds the previously
3423 ** output value. A comparison is made against this value and the output
3424 ** is skipped if the next results would be the same as the previous.
3426 ** The implementation plan is to implement the two coroutines and seven
3427 ** subroutines first, then put the control logic at the bottom. Like this:
3429 ** goto Init
3430 ** coA: coroutine for left query (A)
3431 ** coB: coroutine for right query (B)
3432 ** outA: output one row of A
3433 ** outB: output one row of B (UNION and UNION ALL only)
3434 ** EofA: ...
3435 ** EofB: ...
3436 ** AltB: ...
3437 ** AeqB: ...
3438 ** AgtB: ...
3439 ** Init: initialize coroutine registers
3440 ** yield coA
3441 ** if eof(A) goto EofA
3442 ** yield coB
3443 ** if eof(B) goto EofB
3444 ** Cmpr: Compare A, B
3445 ** Jump AltB, AeqB, AgtB
3446 ** End: ...
3448 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
3449 ** actually called using Gosub and they do not Return. EofA and EofB loop
3450 ** until all data is exhausted then jump to the "end" label. AltB, AeqB,
3451 ** and AgtB jump to either L2 or to one of EofA or EofB.
3453 #ifndef SQLITE_OMIT_COMPOUND_SELECT
3454 static int multiSelectOrderBy(
3455 Parse *pParse, /* Parsing context */
3456 Select *p, /* The right-most of SELECTs to be coded */
3457 SelectDest *pDest /* What to do with query results */
3459 int i, j; /* Loop counters */
3460 Select *pPrior; /* Another SELECT immediately to our left */
3461 Select *pSplit; /* Left-most SELECT in the right-hand group */
3462 int nSelect; /* Number of SELECT statements in the compound */
3463 Vdbe *v; /* Generate code to this VDBE */
3464 SelectDest destA; /* Destination for coroutine A */
3465 SelectDest destB; /* Destination for coroutine B */
3466 int regAddrA; /* Address register for select-A coroutine */
3467 int regAddrB; /* Address register for select-B coroutine */
3468 int addrSelectA; /* Address of the select-A coroutine */
3469 int addrSelectB; /* Address of the select-B coroutine */
3470 int regOutA; /* Address register for the output-A subroutine */
3471 int regOutB; /* Address register for the output-B subroutine */
3472 int addrOutA; /* Address of the output-A subroutine */
3473 int addrOutB = 0; /* Address of the output-B subroutine */
3474 int addrEofA; /* Address of the select-A-exhausted subroutine */
3475 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */
3476 int addrEofB; /* Address of the select-B-exhausted subroutine */
3477 int addrAltB; /* Address of the A<B subroutine */
3478 int addrAeqB; /* Address of the A==B subroutine */
3479 int addrAgtB; /* Address of the A>B subroutine */
3480 int regLimitA; /* Limit register for select-A */
3481 int regLimitB; /* Limit register for select-A */
3482 int regPrev; /* A range of registers to hold previous output */
3483 int savedLimit; /* Saved value of p->iLimit */
3484 int savedOffset; /* Saved value of p->iOffset */
3485 int labelCmpr; /* Label for the start of the merge algorithm */
3486 int labelEnd; /* Label for the end of the overall SELECT stmt */
3487 int addr1; /* Jump instructions that get retargeted */
3488 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
3489 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
3490 KeyInfo *pKeyMerge; /* Comparison information for merging rows */
3491 sqlite3 *db; /* Database connection */
3492 ExprList *pOrderBy; /* The ORDER BY clause */
3493 int nOrderBy; /* Number of terms in the ORDER BY clause */
3494 u32 *aPermute; /* Mapping from ORDER BY terms to result set columns */
3496 assert( p->pOrderBy!=0 );
3497 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */
3498 db = pParse->db;
3499 v = pParse->pVdbe;
3500 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */
3501 labelEnd = sqlite3VdbeMakeLabel(pParse);
3502 labelCmpr = sqlite3VdbeMakeLabel(pParse);
3505 /* Patch up the ORDER BY clause
3507 op = p->op;
3508 assert( p->pPrior->pOrderBy==0 );
3509 pOrderBy = p->pOrderBy;
3510 assert( pOrderBy );
3511 nOrderBy = pOrderBy->nExpr;
3513 /* For operators other than UNION ALL we have to make sure that
3514 ** the ORDER BY clause covers every term of the result set. Add
3515 ** terms to the ORDER BY clause as necessary.
3517 if( op!=TK_ALL ){
3518 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
3519 struct ExprList_item *pItem;
3520 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
3521 assert( pItem!=0 );
3522 assert( pItem->u.x.iOrderByCol>0 );
3523 if( pItem->u.x.iOrderByCol==i ) break;
3525 if( j==nOrderBy ){
3526 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
3527 if( pNew==0 ) return SQLITE_NOMEM_BKPT;
3528 pNew->flags |= EP_IntValue;
3529 pNew->u.iValue = i;
3530 p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
3531 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
3536 /* Compute the comparison permutation and keyinfo that is used with
3537 ** the permutation used to determine if the next
3538 ** row of results comes from selectA or selectB. Also add explicit
3539 ** collations to the ORDER BY clause terms so that when the subqueries
3540 ** to the right and the left are evaluated, they use the correct
3541 ** collation.
3543 aPermute = sqlite3DbMallocRawNN(db, sizeof(u32)*(nOrderBy + 1));
3544 if( aPermute ){
3545 struct ExprList_item *pItem;
3546 aPermute[0] = nOrderBy;
3547 for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){
3548 assert( pItem!=0 );
3549 assert( pItem->u.x.iOrderByCol>0 );
3550 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr );
3551 aPermute[i] = pItem->u.x.iOrderByCol - 1;
3553 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
3554 }else{
3555 pKeyMerge = 0;
3558 /* Allocate a range of temporary registers and the KeyInfo needed
3559 ** for the logic that removes duplicate result rows when the
3560 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
3562 if( op==TK_ALL ){
3563 regPrev = 0;
3564 }else{
3565 int nExpr = p->pEList->nExpr;
3566 assert( nOrderBy>=nExpr || db->mallocFailed );
3567 regPrev = pParse->nMem+1;
3568 pParse->nMem += nExpr+1;
3569 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
3570 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
3571 if( pKeyDup ){
3572 assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
3573 for(i=0; i<nExpr; i++){
3574 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
3575 pKeyDup->aSortFlags[i] = 0;
3580 /* Separate the left and the right query from one another
3582 nSelect = 1;
3583 if( (op==TK_ALL || op==TK_UNION)
3584 && OptimizationEnabled(db, SQLITE_BalancedMerge)
3586 for(pSplit=p; pSplit->pPrior!=0 && pSplit->op==op; pSplit=pSplit->pPrior){
3587 nSelect++;
3588 assert( pSplit->pPrior->pNext==pSplit );
3591 if( nSelect<=3 ){
3592 pSplit = p;
3593 }else{
3594 pSplit = p;
3595 for(i=2; i<nSelect; i+=2){ pSplit = pSplit->pPrior; }
3597 pPrior = pSplit->pPrior;
3598 assert( pPrior!=0 );
3599 pSplit->pPrior = 0;
3600 pPrior->pNext = 0;
3601 assert( p->pOrderBy == pOrderBy );
3602 assert( pOrderBy!=0 || db->mallocFailed );
3603 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
3604 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
3605 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
3607 /* Compute the limit registers */
3608 computeLimitRegisters(pParse, p, labelEnd);
3609 if( p->iLimit && op==TK_ALL ){
3610 regLimitA = ++pParse->nMem;
3611 regLimitB = ++pParse->nMem;
3612 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
3613 regLimitA);
3614 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
3615 }else{
3616 regLimitA = regLimitB = 0;
3618 sqlite3ExprDelete(db, p->pLimit);
3619 p->pLimit = 0;
3621 regAddrA = ++pParse->nMem;
3622 regAddrB = ++pParse->nMem;
3623 regOutA = ++pParse->nMem;
3624 regOutB = ++pParse->nMem;
3625 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
3626 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
3628 ExplainQueryPlan((pParse, 1, "MERGE (%s)", sqlite3SelectOpName(p->op)));
3630 /* Generate a coroutine to evaluate the SELECT statement to the
3631 ** left of the compound operator - the "A" select.
3633 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
3634 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
3635 VdbeComment((v, "left SELECT"));
3636 pPrior->iLimit = regLimitA;
3637 ExplainQueryPlan((pParse, 1, "LEFT"));
3638 sqlite3Select(pParse, pPrior, &destA);
3639 sqlite3VdbeEndCoroutine(v, regAddrA);
3640 sqlite3VdbeJumpHere(v, addr1);
3642 /* Generate a coroutine to evaluate the SELECT statement on
3643 ** the right - the "B" select
3645 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
3646 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
3647 VdbeComment((v, "right SELECT"));
3648 savedLimit = p->iLimit;
3649 savedOffset = p->iOffset;
3650 p->iLimit = regLimitB;
3651 p->iOffset = 0;
3652 ExplainQueryPlan((pParse, 1, "RIGHT"));
3653 sqlite3Select(pParse, p, &destB);
3654 p->iLimit = savedLimit;
3655 p->iOffset = savedOffset;
3656 sqlite3VdbeEndCoroutine(v, regAddrB);
3658 /* Generate a subroutine that outputs the current row of the A
3659 ** select as the next output row of the compound select.
3661 VdbeNoopComment((v, "Output routine for A"));
3662 addrOutA = generateOutputSubroutine(pParse,
3663 p, &destA, pDest, regOutA,
3664 regPrev, pKeyDup, labelEnd);
3666 /* Generate a subroutine that outputs the current row of the B
3667 ** select as the next output row of the compound select.
3669 if( op==TK_ALL || op==TK_UNION ){
3670 VdbeNoopComment((v, "Output routine for B"));
3671 addrOutB = generateOutputSubroutine(pParse,
3672 p, &destB, pDest, regOutB,
3673 regPrev, pKeyDup, labelEnd);
3675 sqlite3KeyInfoUnref(pKeyDup);
3677 /* Generate a subroutine to run when the results from select A
3678 ** are exhausted and only data in select B remains.
3680 if( op==TK_EXCEPT || op==TK_INTERSECT ){
3681 addrEofA_noB = addrEofA = labelEnd;
3682 }else{
3683 VdbeNoopComment((v, "eof-A subroutine"));
3684 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3685 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
3686 VdbeCoverage(v);
3687 sqlite3VdbeGoto(v, addrEofA);
3688 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
3691 /* Generate a subroutine to run when the results from select B
3692 ** are exhausted and only data in select A remains.
3694 if( op==TK_INTERSECT ){
3695 addrEofB = addrEofA;
3696 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
3697 }else{
3698 VdbeNoopComment((v, "eof-B subroutine"));
3699 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3700 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
3701 sqlite3VdbeGoto(v, addrEofB);
3704 /* Generate code to handle the case of A<B
3706 VdbeNoopComment((v, "A-lt-B subroutine"));
3707 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3708 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3709 sqlite3VdbeGoto(v, labelCmpr);
3711 /* Generate code to handle the case of A==B
3713 if( op==TK_ALL ){
3714 addrAeqB = addrAltB;
3715 }else if( op==TK_INTERSECT ){
3716 addrAeqB = addrAltB;
3717 addrAltB++;
3718 }else{
3719 VdbeNoopComment((v, "A-eq-B subroutine"));
3720 addrAeqB =
3721 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3722 sqlite3VdbeGoto(v, labelCmpr);
3725 /* Generate code to handle the case of A>B
3727 VdbeNoopComment((v, "A-gt-B subroutine"));
3728 addrAgtB = sqlite3VdbeCurrentAddr(v);
3729 if( op==TK_ALL || op==TK_UNION ){
3730 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3732 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3733 sqlite3VdbeGoto(v, labelCmpr);
3735 /* This code runs once to initialize everything.
3737 sqlite3VdbeJumpHere(v, addr1);
3738 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
3739 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3741 /* Implement the main merge loop
3743 sqlite3VdbeResolveLabel(v, labelCmpr);
3744 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
3745 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
3746 (char*)pKeyMerge, P4_KEYINFO);
3747 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
3748 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
3750 /* Jump to the this point in order to terminate the query.
3752 sqlite3VdbeResolveLabel(v, labelEnd);
3754 /* Make arrangements to free the 2nd and subsequent arms of the compound
3755 ** after the parse has finished */
3756 if( pSplit->pPrior ){
3757 sqlite3ParserAddCleanup(pParse, sqlite3SelectDeleteGeneric, pSplit->pPrior);
3759 pSplit->pPrior = pPrior;
3760 pPrior->pNext = pSplit;
3761 sqlite3ExprListDelete(db, pPrior->pOrderBy);
3762 pPrior->pOrderBy = 0;
3764 /*** TBD: Insert subroutine calls to close cursors on incomplete
3765 **** subqueries ****/
3766 ExplainQueryPlanPop(pParse);
3767 return pParse->nErr!=0;
3769 #endif
3771 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3773 /* An instance of the SubstContext object describes an substitution edit
3774 ** to be performed on a parse tree.
3776 ** All references to columns in table iTable are to be replaced by corresponding
3777 ** expressions in pEList.
3779 ** ## About "isOuterJoin":
3781 ** The isOuterJoin column indicates that the replacement will occur into a
3782 ** position in the parent that NULL-able due to an OUTER JOIN. Either the
3783 ** target slot in the parent is the right operand of a LEFT JOIN, or one of
3784 ** the left operands of a RIGHT JOIN. In either case, we need to potentially
3785 ** bypass the substituted expression with OP_IfNullRow.
3787 ** Suppose the original expression is an integer constant. Even though the table
3788 ** has the nullRow flag set, because the expression is an integer constant,
3789 ** it will not be NULLed out. So instead, we insert an OP_IfNullRow opcode
3790 ** that checks to see if the nullRow flag is set on the table. If the nullRow
3791 ** flag is set, then the value in the register is set to NULL and the original
3792 ** expression is bypassed. If the nullRow flag is not set, then the original
3793 ** expression runs to populate the register.
3795 ** Example where this is needed:
3797 ** CREATE TABLE t1(a INTEGER PRIMARY KEY, b INT);
3798 ** CREATE TABLE t2(x INT UNIQUE);
3800 ** SELECT a,b,m,x FROM t1 LEFT JOIN (SELECT 59 AS m,x FROM t2) ON b=x;
3802 ** When the subquery on the right side of the LEFT JOIN is flattened, we
3803 ** have to add OP_IfNullRow in front of the OP_Integer that implements the
3804 ** "m" value of the subquery so that a NULL will be loaded instead of 59
3805 ** when processing a non-matched row of the left.
3807 typedef struct SubstContext {
3808 Parse *pParse; /* The parsing context */
3809 int iTable; /* Replace references to this table */
3810 int iNewTable; /* New table number */
3811 int isOuterJoin; /* Add TK_IF_NULL_ROW opcodes on each replacement */
3812 ExprList *pEList; /* Replacement expressions */
3813 ExprList *pCList; /* Collation sequences for replacement expr */
3814 } SubstContext;
3816 /* Forward Declarations */
3817 static void substExprList(SubstContext*, ExprList*);
3818 static void substSelect(SubstContext*, Select*, int);
3821 ** Scan through the expression pExpr. Replace every reference to
3822 ** a column in table number iTable with a copy of the iColumn-th
3823 ** entry in pEList. (But leave references to the ROWID column
3824 ** unchanged.)
3826 ** This routine is part of the flattening procedure. A subquery
3827 ** whose result set is defined by pEList appears as entry in the
3828 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3829 ** FORM clause entry is iTable. This routine makes the necessary
3830 ** changes to pExpr so that it refers directly to the source table
3831 ** of the subquery rather the result set of the subquery.
3833 static Expr *substExpr(
3834 SubstContext *pSubst, /* Description of the substitution */
3835 Expr *pExpr /* Expr in which substitution occurs */
3837 if( pExpr==0 ) return 0;
3838 if( ExprHasProperty(pExpr, EP_OuterON|EP_InnerON)
3839 && pExpr->w.iJoin==pSubst->iTable
3841 testcase( ExprHasProperty(pExpr, EP_InnerON) );
3842 pExpr->w.iJoin = pSubst->iNewTable;
3844 if( pExpr->op==TK_COLUMN
3845 && pExpr->iTable==pSubst->iTable
3846 && !ExprHasProperty(pExpr, EP_FixedCol)
3848 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
3849 if( pExpr->iColumn<0 ){
3850 pExpr->op = TK_NULL;
3851 }else
3852 #endif
3854 Expr *pNew;
3855 int iColumn;
3856 Expr *pCopy;
3857 Expr ifNullRow;
3858 iColumn = pExpr->iColumn;
3859 assert( iColumn>=0 );
3860 assert( pSubst->pEList!=0 && iColumn<pSubst->pEList->nExpr );
3861 assert( pExpr->pRight==0 );
3862 pCopy = pSubst->pEList->a[iColumn].pExpr;
3863 if( sqlite3ExprIsVector(pCopy) ){
3864 sqlite3VectorErrorMsg(pSubst->pParse, pCopy);
3865 }else{
3866 sqlite3 *db = pSubst->pParse->db;
3867 if( pSubst->isOuterJoin
3868 && (pCopy->op!=TK_COLUMN || pCopy->iTable!=pSubst->iNewTable)
3870 memset(&ifNullRow, 0, sizeof(ifNullRow));
3871 ifNullRow.op = TK_IF_NULL_ROW;
3872 ifNullRow.pLeft = pCopy;
3873 ifNullRow.iTable = pSubst->iNewTable;
3874 ifNullRow.iColumn = -99;
3875 ifNullRow.flags = EP_IfNullRow;
3876 pCopy = &ifNullRow;
3878 testcase( ExprHasProperty(pCopy, EP_Subquery) );
3879 pNew = sqlite3ExprDup(db, pCopy, 0);
3880 if( db->mallocFailed ){
3881 sqlite3ExprDelete(db, pNew);
3882 return pExpr;
3884 if( pSubst->isOuterJoin ){
3885 ExprSetProperty(pNew, EP_CanBeNull);
3887 if( ExprHasProperty(pExpr,EP_OuterON|EP_InnerON) ){
3888 sqlite3SetJoinExpr(pNew, pExpr->w.iJoin,
3889 pExpr->flags & (EP_OuterON|EP_InnerON));
3891 sqlite3ExprDelete(db, pExpr);
3892 pExpr = pNew;
3893 if( pExpr->op==TK_TRUEFALSE ){
3894 pExpr->u.iValue = sqlite3ExprTruthValue(pExpr);
3895 pExpr->op = TK_INTEGER;
3896 ExprSetProperty(pExpr, EP_IntValue);
3899 /* Ensure that the expression now has an implicit collation sequence,
3900 ** just as it did when it was a column of a view or sub-query. */
3902 CollSeq *pNat = sqlite3ExprCollSeq(pSubst->pParse, pExpr);
3903 CollSeq *pColl = sqlite3ExprCollSeq(pSubst->pParse,
3904 pSubst->pCList->a[iColumn].pExpr
3906 if( pNat!=pColl || (pExpr->op!=TK_COLUMN && pExpr->op!=TK_COLLATE) ){
3907 pExpr = sqlite3ExprAddCollateString(pSubst->pParse, pExpr,
3908 (pColl ? pColl->zName : "BINARY")
3912 ExprClearProperty(pExpr, EP_Collate);
3915 }else{
3916 if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){
3917 pExpr->iTable = pSubst->iNewTable;
3919 pExpr->pLeft = substExpr(pSubst, pExpr->pLeft);
3920 pExpr->pRight = substExpr(pSubst, pExpr->pRight);
3921 if( ExprUseXSelect(pExpr) ){
3922 substSelect(pSubst, pExpr->x.pSelect, 1);
3923 }else{
3924 substExprList(pSubst, pExpr->x.pList);
3926 #ifndef SQLITE_OMIT_WINDOWFUNC
3927 if( ExprHasProperty(pExpr, EP_WinFunc) ){
3928 Window *pWin = pExpr->y.pWin;
3929 pWin->pFilter = substExpr(pSubst, pWin->pFilter);
3930 substExprList(pSubst, pWin->pPartition);
3931 substExprList(pSubst, pWin->pOrderBy);
3933 #endif
3935 return pExpr;
3937 static void substExprList(
3938 SubstContext *pSubst, /* Description of the substitution */
3939 ExprList *pList /* List to scan and in which to make substitutes */
3941 int i;
3942 if( pList==0 ) return;
3943 for(i=0; i<pList->nExpr; i++){
3944 pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr);
3947 static void substSelect(
3948 SubstContext *pSubst, /* Description of the substitution */
3949 Select *p, /* SELECT statement in which to make substitutions */
3950 int doPrior /* Do substitutes on p->pPrior too */
3952 SrcList *pSrc;
3953 SrcItem *pItem;
3954 int i;
3955 if( !p ) return;
3957 substExprList(pSubst, p->pEList);
3958 substExprList(pSubst, p->pGroupBy);
3959 substExprList(pSubst, p->pOrderBy);
3960 p->pHaving = substExpr(pSubst, p->pHaving);
3961 p->pWhere = substExpr(pSubst, p->pWhere);
3962 pSrc = p->pSrc;
3963 assert( pSrc!=0 );
3964 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3965 substSelect(pSubst, pItem->pSelect, 1);
3966 if( pItem->fg.isTabFunc ){
3967 substExprList(pSubst, pItem->u1.pFuncArg);
3970 }while( doPrior && (p = p->pPrior)!=0 );
3972 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3974 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3976 ** pSelect is a SELECT statement and pSrcItem is one item in the FROM
3977 ** clause of that SELECT.
3979 ** This routine scans the entire SELECT statement and recomputes the
3980 ** pSrcItem->colUsed mask.
3982 static int recomputeColumnsUsedExpr(Walker *pWalker, Expr *pExpr){
3983 SrcItem *pItem;
3984 if( pExpr->op!=TK_COLUMN ) return WRC_Continue;
3985 pItem = pWalker->u.pSrcItem;
3986 if( pItem->iCursor!=pExpr->iTable ) return WRC_Continue;
3987 if( pExpr->iColumn<0 ) return WRC_Continue;
3988 pItem->colUsed |= sqlite3ExprColUsed(pExpr);
3989 return WRC_Continue;
3991 static void recomputeColumnsUsed(
3992 Select *pSelect, /* The complete SELECT statement */
3993 SrcItem *pSrcItem /* Which FROM clause item to recompute */
3995 Walker w;
3996 if( NEVER(pSrcItem->pTab==0) ) return;
3997 memset(&w, 0, sizeof(w));
3998 w.xExprCallback = recomputeColumnsUsedExpr;
3999 w.xSelectCallback = sqlite3SelectWalkNoop;
4000 w.u.pSrcItem = pSrcItem;
4001 pSrcItem->colUsed = 0;
4002 sqlite3WalkSelect(&w, pSelect);
4004 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4006 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4008 ** Assign new cursor numbers to each of the items in pSrc. For each
4009 ** new cursor number assigned, set an entry in the aCsrMap[] array
4010 ** to map the old cursor number to the new:
4012 ** aCsrMap[iOld+1] = iNew;
4014 ** The array is guaranteed by the caller to be large enough for all
4015 ** existing cursor numbers in pSrc. aCsrMap[0] is the array size.
4017 ** If pSrc contains any sub-selects, call this routine recursively
4018 ** on the FROM clause of each such sub-select, with iExcept set to -1.
4020 static void srclistRenumberCursors(
4021 Parse *pParse, /* Parse context */
4022 int *aCsrMap, /* Array to store cursor mappings in */
4023 SrcList *pSrc, /* FROM clause to renumber */
4024 int iExcept /* FROM clause item to skip */
4026 int i;
4027 SrcItem *pItem;
4028 for(i=0, pItem=pSrc->a; i<pSrc->nSrc; i++, pItem++){
4029 if( i!=iExcept ){
4030 Select *p;
4031 assert( pItem->iCursor < aCsrMap[0] );
4032 if( !pItem->fg.isRecursive || aCsrMap[pItem->iCursor+1]==0 ){
4033 aCsrMap[pItem->iCursor+1] = pParse->nTab++;
4035 pItem->iCursor = aCsrMap[pItem->iCursor+1];
4036 for(p=pItem->pSelect; p; p=p->pPrior){
4037 srclistRenumberCursors(pParse, aCsrMap, p->pSrc, -1);
4044 ** *piCursor is a cursor number. Change it if it needs to be mapped.
4046 static void renumberCursorDoMapping(Walker *pWalker, int *piCursor){
4047 int *aCsrMap = pWalker->u.aiCol;
4048 int iCsr = *piCursor;
4049 if( iCsr < aCsrMap[0] && aCsrMap[iCsr+1]>0 ){
4050 *piCursor = aCsrMap[iCsr+1];
4055 ** Expression walker callback used by renumberCursors() to update
4056 ** Expr objects to match newly assigned cursor numbers.
4058 static int renumberCursorsCb(Walker *pWalker, Expr *pExpr){
4059 int op = pExpr->op;
4060 if( op==TK_COLUMN || op==TK_IF_NULL_ROW ){
4061 renumberCursorDoMapping(pWalker, &pExpr->iTable);
4063 if( ExprHasProperty(pExpr, EP_OuterON) ){
4064 renumberCursorDoMapping(pWalker, &pExpr->w.iJoin);
4066 return WRC_Continue;
4070 ** Assign a new cursor number to each cursor in the FROM clause (Select.pSrc)
4071 ** of the SELECT statement passed as the second argument, and to each
4072 ** cursor in the FROM clause of any FROM clause sub-selects, recursively.
4073 ** Except, do not assign a new cursor number to the iExcept'th element in
4074 ** the FROM clause of (*p). Update all expressions and other references
4075 ** to refer to the new cursor numbers.
4077 ** Argument aCsrMap is an array that may be used for temporary working
4078 ** space. Two guarantees are made by the caller:
4080 ** * the array is larger than the largest cursor number used within the
4081 ** select statement passed as an argument, and
4083 ** * the array entries for all cursor numbers that do *not* appear in
4084 ** FROM clauses of the select statement as described above are
4085 ** initialized to zero.
4087 static void renumberCursors(
4088 Parse *pParse, /* Parse context */
4089 Select *p, /* Select to renumber cursors within */
4090 int iExcept, /* FROM clause item to skip */
4091 int *aCsrMap /* Working space */
4093 Walker w;
4094 srclistRenumberCursors(pParse, aCsrMap, p->pSrc, iExcept);
4095 memset(&w, 0, sizeof(w));
4096 w.u.aiCol = aCsrMap;
4097 w.xExprCallback = renumberCursorsCb;
4098 w.xSelectCallback = sqlite3SelectWalkNoop;
4099 sqlite3WalkSelect(&w, p);
4101 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4104 ** If pSel is not part of a compound SELECT, return a pointer to its
4105 ** expression list. Otherwise, return a pointer to the expression list
4106 ** of the leftmost SELECT in the compound.
4108 static ExprList *findLeftmostExprlist(Select *pSel){
4109 while( pSel->pPrior ){
4110 pSel = pSel->pPrior;
4112 return pSel->pEList;
4116 ** Return true if any of the result-set columns in the compound query
4117 ** have incompatible affinities on one or more arms of the compound.
4119 static int compoundHasDifferentAffinities(Select *p){
4120 int ii;
4121 ExprList *pList;
4122 assert( p!=0 );
4123 assert( p->pEList!=0 );
4124 assert( p->pPrior!=0 );
4125 pList = p->pEList;
4126 for(ii=0; ii<pList->nExpr; ii++){
4127 char aff;
4128 Select *pSub1;
4129 assert( pList->a[ii].pExpr!=0 );
4130 aff = sqlite3ExprAffinity(pList->a[ii].pExpr);
4131 for(pSub1=p->pPrior; pSub1; pSub1=pSub1->pPrior){
4132 assert( pSub1->pEList!=0 );
4133 assert( pSub1->pEList->nExpr>ii );
4134 assert( pSub1->pEList->a[ii].pExpr!=0 );
4135 if( sqlite3ExprAffinity(pSub1->pEList->a[ii].pExpr)!=aff ){
4136 return 1;
4140 return 0;
4143 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4145 ** This routine attempts to flatten subqueries as a performance optimization.
4146 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
4148 ** To understand the concept of flattening, consider the following
4149 ** query:
4151 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
4153 ** The default way of implementing this query is to execute the
4154 ** subquery first and store the results in a temporary table, then
4155 ** run the outer query on that temporary table. This requires two
4156 ** passes over the data. Furthermore, because the temporary table
4157 ** has no indices, the WHERE clause on the outer query cannot be
4158 ** optimized.
4160 ** This routine attempts to rewrite queries such as the above into
4161 ** a single flat select, like this:
4163 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
4165 ** The code generated for this simplification gives the same result
4166 ** but only has to scan the data once. And because indices might
4167 ** exist on the table t1, a complete scan of the data might be
4168 ** avoided.
4170 ** Flattening is subject to the following constraints:
4172 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
4173 ** The subquery and the outer query cannot both be aggregates.
4175 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
4176 ** (2) If the subquery is an aggregate then
4177 ** (2a) the outer query must not be a join and
4178 ** (2b) the outer query must not use subqueries
4179 ** other than the one FROM-clause subquery that is a candidate
4180 ** for flattening. (This is due to ticket [2f7170d73bf9abf80]
4181 ** from 2015-02-09.)
4183 ** (3) If the subquery is the right operand of a LEFT JOIN then
4184 ** (3a) the subquery may not be a join and
4185 ** (3b) the FROM clause of the subquery may not contain a virtual
4186 ** table and
4187 ** (**) Was: "The outer query may not have a GROUP BY." This case
4188 ** is now managed correctly
4189 ** (3d) the outer query may not be DISTINCT.
4190 ** See also (26) for restrictions on RIGHT JOIN.
4192 ** (4) The subquery can not be DISTINCT.
4194 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT
4195 ** sub-queries that were excluded from this optimization. Restriction
4196 ** (4) has since been expanded to exclude all DISTINCT subqueries.
4198 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
4199 ** If the subquery is aggregate, the outer query may not be DISTINCT.
4201 ** (7) The subquery must have a FROM clause. TODO: For subqueries without
4202 ** A FROM clause, consider adding a FROM clause with the special
4203 ** table sqlite_once that consists of a single row containing a
4204 ** single NULL.
4206 ** (8) If the subquery uses LIMIT then the outer query may not be a join.
4208 ** (9) If the subquery uses LIMIT then the outer query may not be aggregate.
4210 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we
4211 ** accidentally carried the comment forward until 2014-09-15. Original
4212 ** constraint: "If the subquery is aggregate then the outer query
4213 ** may not use LIMIT."
4215 ** (11) The subquery and the outer query may not both have ORDER BY clauses.
4217 ** (**) Not implemented. Subsumed into restriction (3). Was previously
4218 ** a separate restriction deriving from ticket #350.
4220 ** (13) The subquery and outer query may not both use LIMIT.
4222 ** (14) The subquery may not use OFFSET.
4224 ** (15) If the outer query is part of a compound select, then the
4225 ** subquery may not use LIMIT.
4226 ** (See ticket #2339 and ticket [02a8e81d44]).
4228 ** (16) If the outer query is aggregate, then the subquery may not
4229 ** use ORDER BY. (Ticket #2942) This used to not matter
4230 ** until we introduced the group_concat() function.
4232 ** (17) If the subquery is a compound select, then
4233 ** (17a) all compound operators must be a UNION ALL, and
4234 ** (17b) no terms within the subquery compound may be aggregate
4235 ** or DISTINCT, and
4236 ** (17c) every term within the subquery compound must have a FROM clause
4237 ** (17d) the outer query may not be
4238 ** (17d1) aggregate, or
4239 ** (17d2) DISTINCT
4240 ** (17e) the subquery may not contain window functions, and
4241 ** (17f) the subquery must not be the RHS of a LEFT JOIN.
4242 ** (17g) either the subquery is the first element of the outer
4243 ** query or there are no RIGHT or FULL JOINs in any arm
4244 ** of the subquery. (This is a duplicate of condition (27b).)
4245 ** (17h) The corresponding result set expressions in all arms of the
4246 ** compound must have the same affinity.
4248 ** The parent and sub-query may contain WHERE clauses. Subject to
4249 ** rules (11), (13) and (14), they may also contain ORDER BY,
4250 ** LIMIT and OFFSET clauses. The subquery cannot use any compound
4251 ** operator other than UNION ALL because all the other compound
4252 ** operators have an implied DISTINCT which is disallowed by
4253 ** restriction (4).
4255 ** Also, each component of the sub-query must return the same number
4256 ** of result columns. This is actually a requirement for any compound
4257 ** SELECT statement, but all the code here does is make sure that no
4258 ** such (illegal) sub-query is flattened. The caller will detect the
4259 ** syntax error and return a detailed message.
4261 ** (18) If the sub-query is a compound select, then all terms of the
4262 ** ORDER BY clause of the parent must be copies of a term returned
4263 ** by the parent query.
4265 ** (19) If the subquery uses LIMIT then the outer query may not
4266 ** have a WHERE clause.
4268 ** (20) If the sub-query is a compound select, then it must not use
4269 ** an ORDER BY clause. Ticket #3773. We could relax this constraint
4270 ** somewhat by saying that the terms of the ORDER BY clause must
4271 ** appear as unmodified result columns in the outer query. But we
4272 ** have other optimizations in mind to deal with that case.
4274 ** (21) If the subquery uses LIMIT then the outer query may not be
4275 ** DISTINCT. (See ticket [752e1646fc]).
4277 ** (22) The subquery may not be a recursive CTE.
4279 ** (23) If the outer query is a recursive CTE, then the sub-query may not be
4280 ** a compound query. This restriction is because transforming the
4281 ** parent to a compound query confuses the code that handles
4282 ** recursive queries in multiSelect().
4284 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
4285 ** The subquery may not be an aggregate that uses the built-in min() or
4286 ** or max() functions. (Without this restriction, a query like:
4287 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
4288 ** return the value X for which Y was maximal.)
4290 ** (25) If either the subquery or the parent query contains a window
4291 ** function in the select list or ORDER BY clause, flattening
4292 ** is not attempted.
4294 ** (26) The subquery may not be the right operand of a RIGHT JOIN.
4295 ** See also (3) for restrictions on LEFT JOIN.
4297 ** (27) The subquery may not contain a FULL or RIGHT JOIN unless it
4298 ** is the first element of the parent query. Two subcases:
4299 ** (27a) the subquery is not a compound query.
4300 ** (27b) the subquery is a compound query and the RIGHT JOIN occurs
4301 ** in any arm of the compound query. (See also (17g).)
4303 ** (28) The subquery is not a MATERIALIZED CTE. (This is handled
4304 ** in the caller before ever reaching this routine.)
4307 ** In this routine, the "p" parameter is a pointer to the outer query.
4308 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query
4309 ** uses aggregates.
4311 ** If flattening is not attempted, this routine is a no-op and returns 0.
4312 ** If flattening is attempted this routine returns 1.
4314 ** All of the expression analysis must occur on both the outer query and
4315 ** the subquery before this routine runs.
4317 static int flattenSubquery(
4318 Parse *pParse, /* Parsing context */
4319 Select *p, /* The parent or outer SELECT statement */
4320 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */
4321 int isAgg /* True if outer SELECT uses aggregate functions */
4323 const char *zSavedAuthContext = pParse->zAuthContext;
4324 Select *pParent; /* Current UNION ALL term of the other query */
4325 Select *pSub; /* The inner query or "subquery" */
4326 Select *pSub1; /* Pointer to the rightmost select in sub-query */
4327 SrcList *pSrc; /* The FROM clause of the outer query */
4328 SrcList *pSubSrc; /* The FROM clause of the subquery */
4329 int iParent; /* VDBE cursor number of the pSub result set temp table */
4330 int iNewParent = -1;/* Replacement table for iParent */
4331 int isOuterJoin = 0; /* True if pSub is the right side of a LEFT JOIN */
4332 int i; /* Loop counter */
4333 Expr *pWhere; /* The WHERE clause */
4334 SrcItem *pSubitem; /* The subquery */
4335 sqlite3 *db = pParse->db;
4336 Walker w; /* Walker to persist agginfo data */
4337 int *aCsrMap = 0;
4339 /* Check to see if flattening is permitted. Return 0 if not.
4341 assert( p!=0 );
4342 assert( p->pPrior==0 );
4343 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
4344 pSrc = p->pSrc;
4345 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
4346 pSubitem = &pSrc->a[iFrom];
4347 iParent = pSubitem->iCursor;
4348 pSub = pSubitem->pSelect;
4349 assert( pSub!=0 );
4351 #ifndef SQLITE_OMIT_WINDOWFUNC
4352 if( p->pWin || pSub->pWin ) return 0; /* Restriction (25) */
4353 #endif
4355 pSubSrc = pSub->pSrc;
4356 assert( pSubSrc );
4357 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
4358 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
4359 ** because they could be computed at compile-time. But when LIMIT and OFFSET
4360 ** became arbitrary expressions, we were forced to add restrictions (13)
4361 ** and (14). */
4362 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */
4363 if( pSub->pLimit && pSub->pLimit->pRight ) return 0; /* Restriction (14) */
4364 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
4365 return 0; /* Restriction (15) */
4367 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */
4368 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (4) */
4369 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
4370 return 0; /* Restrictions (8)(9) */
4372 if( p->pOrderBy && pSub->pOrderBy ){
4373 return 0; /* Restriction (11) */
4375 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */
4376 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */
4377 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
4378 return 0; /* Restriction (21) */
4380 if( pSub->selFlags & (SF_Recursive) ){
4381 return 0; /* Restrictions (22) */
4385 ** If the subquery is the right operand of a LEFT JOIN, then the
4386 ** subquery may not be a join itself (3a). Example of why this is not
4387 ** allowed:
4389 ** t1 LEFT OUTER JOIN (t2 JOIN t3)
4391 ** If we flatten the above, we would get
4393 ** (t1 LEFT OUTER JOIN t2) JOIN t3
4395 ** which is not at all the same thing.
4397 ** See also tickets #306, #350, and #3300.
4399 if( (pSubitem->fg.jointype & (JT_OUTER|JT_LTORJ))!=0 ){
4400 if( pSubSrc->nSrc>1 /* (3a) */
4401 || IsVirtual(pSubSrc->a[0].pTab) /* (3b) */
4402 || (p->selFlags & SF_Distinct)!=0 /* (3d) */
4403 || (pSubitem->fg.jointype & JT_RIGHT)!=0 /* (26) */
4405 return 0;
4407 isOuterJoin = 1;
4410 assert( pSubSrc->nSrc>0 ); /* True by restriction (7) */
4411 if( iFrom>0 && (pSubSrc->a[0].fg.jointype & JT_LTORJ)!=0 ){
4412 return 0; /* Restriction (27a) */
4415 /* Condition (28) is blocked by the caller */
4416 assert( !pSubitem->fg.isCte || pSubitem->u2.pCteUse->eM10d!=M10d_Yes );
4418 /* Restriction (17): If the sub-query is a compound SELECT, then it must
4419 ** use only the UNION ALL operator. And none of the simple select queries
4420 ** that make up the compound SELECT are allowed to be aggregate or distinct
4421 ** queries.
4423 if( pSub->pPrior ){
4424 int ii;
4425 if( pSub->pOrderBy ){
4426 return 0; /* Restriction (20) */
4428 if( isAgg || (p->selFlags & SF_Distinct)!=0 || isOuterJoin>0 ){
4429 return 0; /* (17d1), (17d2), or (17f) */
4431 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
4432 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
4433 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
4434 assert( pSub->pSrc!=0 );
4435 assert( (pSub->selFlags & SF_Recursive)==0 );
4436 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr );
4437 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 /* (17b) */
4438 || (pSub1->pPrior && pSub1->op!=TK_ALL) /* (17a) */
4439 || pSub1->pSrc->nSrc<1 /* (17c) */
4440 #ifndef SQLITE_OMIT_WINDOWFUNC
4441 || pSub1->pWin /* (17e) */
4442 #endif
4444 return 0;
4446 if( iFrom>0 && (pSub1->pSrc->a[0].fg.jointype & JT_LTORJ)!=0 ){
4447 /* Without this restriction, the JT_LTORJ flag would end up being
4448 ** omitted on left-hand tables of the right join that is being
4449 ** flattened. */
4450 return 0; /* Restrictions (17g), (27b) */
4452 testcase( pSub1->pSrc->nSrc>1 );
4455 /* Restriction (18). */
4456 if( p->pOrderBy ){
4457 for(ii=0; ii<p->pOrderBy->nExpr; ii++){
4458 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
4462 /* Restriction (23) */
4463 if( (p->selFlags & SF_Recursive) ) return 0;
4465 /* Restriction (17h) */
4466 if( compoundHasDifferentAffinities(pSub) ) return 0;
4468 if( pSrc->nSrc>1 ){
4469 if( pParse->nSelect>500 ) return 0;
4470 if( OptimizationDisabled(db, SQLITE_FlttnUnionAll) ) return 0;
4471 aCsrMap = sqlite3DbMallocZero(db, ((i64)pParse->nTab+1)*sizeof(int));
4472 if( aCsrMap ) aCsrMap[0] = pParse->nTab;
4476 /***** If we reach this point, flattening is permitted. *****/
4477 TREETRACE(0x4,pParse,p,("flatten %u.%p from term %d\n",
4478 pSub->selId, pSub, iFrom));
4480 /* Authorize the subquery */
4481 pParse->zAuthContext = pSubitem->zName;
4482 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
4483 testcase( i==SQLITE_DENY );
4484 pParse->zAuthContext = zSavedAuthContext;
4486 /* Delete the transient structures associated with the subquery */
4487 pSub1 = pSubitem->pSelect;
4488 sqlite3DbFree(db, pSubitem->zDatabase);
4489 sqlite3DbFree(db, pSubitem->zName);
4490 sqlite3DbFree(db, pSubitem->zAlias);
4491 pSubitem->zDatabase = 0;
4492 pSubitem->zName = 0;
4493 pSubitem->zAlias = 0;
4494 pSubitem->pSelect = 0;
4495 assert( pSubitem->fg.isUsing!=0 || pSubitem->u3.pOn==0 );
4497 /* If the sub-query is a compound SELECT statement, then (by restrictions
4498 ** 17 and 18 above) it must be a UNION ALL and the parent query must
4499 ** be of the form:
4501 ** SELECT <expr-list> FROM (<sub-query>) <where-clause>
4503 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
4504 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
4505 ** OFFSET clauses and joins them to the left-hand-side of the original
4506 ** using UNION ALL operators. In this case N is the number of simple
4507 ** select statements in the compound sub-query.
4509 ** Example:
4511 ** SELECT a+1 FROM (
4512 ** SELECT x FROM tab
4513 ** UNION ALL
4514 ** SELECT y FROM tab
4515 ** UNION ALL
4516 ** SELECT abs(z*2) FROM tab2
4517 ** ) WHERE a!=5 ORDER BY 1
4519 ** Transformed into:
4521 ** SELECT x+1 FROM tab WHERE x+1!=5
4522 ** UNION ALL
4523 ** SELECT y+1 FROM tab WHERE y+1!=5
4524 ** UNION ALL
4525 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
4526 ** ORDER BY 1
4528 ** We call this the "compound-subquery flattening".
4530 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
4531 Select *pNew;
4532 ExprList *pOrderBy = p->pOrderBy;
4533 Expr *pLimit = p->pLimit;
4534 Select *pPrior = p->pPrior;
4535 Table *pItemTab = pSubitem->pTab;
4536 pSubitem->pTab = 0;
4537 p->pOrderBy = 0;
4538 p->pPrior = 0;
4539 p->pLimit = 0;
4540 pNew = sqlite3SelectDup(db, p, 0);
4541 p->pLimit = pLimit;
4542 p->pOrderBy = pOrderBy;
4543 p->op = TK_ALL;
4544 pSubitem->pTab = pItemTab;
4545 if( pNew==0 ){
4546 p->pPrior = pPrior;
4547 }else{
4548 pNew->selId = ++pParse->nSelect;
4549 if( aCsrMap && ALWAYS(db->mallocFailed==0) ){
4550 renumberCursors(pParse, pNew, iFrom, aCsrMap);
4552 pNew->pPrior = pPrior;
4553 if( pPrior ) pPrior->pNext = pNew;
4554 pNew->pNext = p;
4555 p->pPrior = pNew;
4556 TREETRACE(0x4,pParse,p,("compound-subquery flattener"
4557 " creates %u as peer\n",pNew->selId));
4559 assert( pSubitem->pSelect==0 );
4561 sqlite3DbFree(db, aCsrMap);
4562 if( db->mallocFailed ){
4563 pSubitem->pSelect = pSub1;
4564 return 1;
4567 /* Defer deleting the Table object associated with the
4568 ** subquery until code generation is
4569 ** complete, since there may still exist Expr.pTab entries that
4570 ** refer to the subquery even after flattening. Ticket #3346.
4572 ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
4574 if( ALWAYS(pSubitem->pTab!=0) ){
4575 Table *pTabToDel = pSubitem->pTab;
4576 if( pTabToDel->nTabRef==1 ){
4577 Parse *pToplevel = sqlite3ParseToplevel(pParse);
4578 sqlite3ParserAddCleanup(pToplevel, sqlite3DeleteTableGeneric, pTabToDel);
4579 testcase( pToplevel->earlyCleanup );
4580 }else{
4581 pTabToDel->nTabRef--;
4583 pSubitem->pTab = 0;
4586 /* The following loop runs once for each term in a compound-subquery
4587 ** flattening (as described above). If we are doing a different kind
4588 ** of flattening - a flattening other than a compound-subquery flattening -
4589 ** then this loop only runs once.
4591 ** This loop moves all of the FROM elements of the subquery into the
4592 ** the FROM clause of the outer query. Before doing this, remember
4593 ** the cursor number for the original outer query FROM element in
4594 ** iParent. The iParent cursor will never be used. Subsequent code
4595 ** will scan expressions looking for iParent references and replace
4596 ** those references with expressions that resolve to the subquery FROM
4597 ** elements we are now copying in.
4599 pSub = pSub1;
4600 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
4601 int nSubSrc;
4602 u8 jointype = 0;
4603 u8 ltorj = pSrc->a[iFrom].fg.jointype & JT_LTORJ;
4604 assert( pSub!=0 );
4605 pSubSrc = pSub->pSrc; /* FROM clause of subquery */
4606 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */
4607 pSrc = pParent->pSrc; /* FROM clause of the outer query */
4609 if( pParent==p ){
4610 jointype = pSubitem->fg.jointype; /* First time through the loop */
4613 /* The subquery uses a single slot of the FROM clause of the outer
4614 ** query. If the subquery has more than one element in its FROM clause,
4615 ** then expand the outer query to make space for it to hold all elements
4616 ** of the subquery.
4618 ** Example:
4620 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
4622 ** The outer query has 3 slots in its FROM clause. One slot of the
4623 ** outer query (the middle slot) is used by the subquery. The next
4624 ** block of code will expand the outer query FROM clause to 4 slots.
4625 ** The middle slot is expanded to two slots in order to make space
4626 ** for the two elements in the FROM clause of the subquery.
4628 if( nSubSrc>1 ){
4629 pSrc = sqlite3SrcListEnlarge(pParse, pSrc, nSubSrc-1,iFrom+1);
4630 if( pSrc==0 ) break;
4631 pParent->pSrc = pSrc;
4634 /* Transfer the FROM clause terms from the subquery into the
4635 ** outer query.
4637 for(i=0; i<nSubSrc; i++){
4638 SrcItem *pItem = &pSrc->a[i+iFrom];
4639 if( pItem->fg.isUsing ) sqlite3IdListDelete(db, pItem->u3.pUsing);
4640 assert( pItem->fg.isTabFunc==0 );
4641 *pItem = pSubSrc->a[i];
4642 pItem->fg.jointype |= ltorj;
4643 iNewParent = pSubSrc->a[i].iCursor;
4644 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
4646 pSrc->a[iFrom].fg.jointype &= JT_LTORJ;
4647 pSrc->a[iFrom].fg.jointype |= jointype | ltorj;
4649 /* Now begin substituting subquery result set expressions for
4650 ** references to the iParent in the outer query.
4652 ** Example:
4654 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
4655 ** \ \_____________ subquery __________/ /
4656 ** \_____________________ outer query ______________________________/
4658 ** We look at every expression in the outer query and every place we see
4659 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
4661 if( pSub->pOrderBy && (pParent->selFlags & SF_NoopOrderBy)==0 ){
4662 /* At this point, any non-zero iOrderByCol values indicate that the
4663 ** ORDER BY column expression is identical to the iOrderByCol'th
4664 ** expression returned by SELECT statement pSub. Since these values
4665 ** do not necessarily correspond to columns in SELECT statement pParent,
4666 ** zero them before transferring the ORDER BY clause.
4668 ** Not doing this may cause an error if a subsequent call to this
4669 ** function attempts to flatten a compound sub-query into pParent
4670 ** (the only way this can happen is if the compound sub-query is
4671 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */
4672 ExprList *pOrderBy = pSub->pOrderBy;
4673 for(i=0; i<pOrderBy->nExpr; i++){
4674 pOrderBy->a[i].u.x.iOrderByCol = 0;
4676 assert( pParent->pOrderBy==0 );
4677 pParent->pOrderBy = pOrderBy;
4678 pSub->pOrderBy = 0;
4680 pWhere = pSub->pWhere;
4681 pSub->pWhere = 0;
4682 if( isOuterJoin>0 ){
4683 sqlite3SetJoinExpr(pWhere, iNewParent, EP_OuterON);
4685 if( pWhere ){
4686 if( pParent->pWhere ){
4687 pParent->pWhere = sqlite3PExpr(pParse, TK_AND, pWhere, pParent->pWhere);
4688 }else{
4689 pParent->pWhere = pWhere;
4692 if( db->mallocFailed==0 ){
4693 SubstContext x;
4694 x.pParse = pParse;
4695 x.iTable = iParent;
4696 x.iNewTable = iNewParent;
4697 x.isOuterJoin = isOuterJoin;
4698 x.pEList = pSub->pEList;
4699 x.pCList = findLeftmostExprlist(pSub);
4700 substSelect(&x, pParent, 0);
4703 /* The flattened query is a compound if either the inner or the
4704 ** outer query is a compound. */
4705 pParent->selFlags |= pSub->selFlags & SF_Compound;
4706 assert( (pSub->selFlags & SF_Distinct)==0 ); /* restriction (17b) */
4709 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
4711 ** One is tempted to try to add a and b to combine the limits. But this
4712 ** does not work if either limit is negative.
4714 if( pSub->pLimit ){
4715 pParent->pLimit = pSub->pLimit;
4716 pSub->pLimit = 0;
4719 /* Recompute the SrcItem.colUsed masks for the flattened
4720 ** tables. */
4721 for(i=0; i<nSubSrc; i++){
4722 recomputeColumnsUsed(pParent, &pSrc->a[i+iFrom]);
4726 /* Finally, delete what is left of the subquery and return success.
4728 sqlite3AggInfoPersistWalkerInit(&w, pParse);
4729 sqlite3WalkSelect(&w,pSub1);
4730 sqlite3SelectDelete(db, pSub1);
4732 #if TREETRACE_ENABLED
4733 if( sqlite3TreeTrace & 0x4 ){
4734 TREETRACE(0x4,pParse,p,("After flattening:\n"));
4735 sqlite3TreeViewSelect(0, p, 0);
4737 #endif
4739 return 1;
4741 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4744 ** A structure to keep track of all of the column values that are fixed to
4745 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE.
4747 typedef struct WhereConst WhereConst;
4748 struct WhereConst {
4749 Parse *pParse; /* Parsing context */
4750 u8 *pOomFault; /* Pointer to pParse->db->mallocFailed */
4751 int nConst; /* Number for COLUMN=CONSTANT terms */
4752 int nChng; /* Number of times a constant is propagated */
4753 int bHasAffBlob; /* At least one column in apExpr[] as affinity BLOB */
4754 u32 mExcludeOn; /* Which ON expressions to exclude from considertion.
4755 ** Either EP_OuterON or EP_InnerON|EP_OuterON */
4756 Expr **apExpr; /* [i*2] is COLUMN and [i*2+1] is VALUE */
4760 ** Add a new entry to the pConst object. Except, do not add duplicate
4761 ** pColumn entries. Also, do not add if doing so would not be appropriate.
4763 ** The caller guarantees the pColumn is a column and pValue is a constant.
4764 ** This routine has to do some additional checks before completing the
4765 ** insert.
4767 static void constInsert(
4768 WhereConst *pConst, /* The WhereConst into which we are inserting */
4769 Expr *pColumn, /* The COLUMN part of the constraint */
4770 Expr *pValue, /* The VALUE part of the constraint */
4771 Expr *pExpr /* Overall expression: COLUMN=VALUE or VALUE=COLUMN */
4773 int i;
4774 assert( pColumn->op==TK_COLUMN );
4775 assert( sqlite3ExprIsConstant(pValue) );
4777 if( ExprHasProperty(pColumn, EP_FixedCol) ) return;
4778 if( sqlite3ExprAffinity(pValue)!=0 ) return;
4779 if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst->pParse,pExpr)) ){
4780 return;
4783 /* 2018-10-25 ticket [cf5ed20f]
4784 ** Make sure the same pColumn is not inserted more than once */
4785 for(i=0; i<pConst->nConst; i++){
4786 const Expr *pE2 = pConst->apExpr[i*2];
4787 assert( pE2->op==TK_COLUMN );
4788 if( pE2->iTable==pColumn->iTable
4789 && pE2->iColumn==pColumn->iColumn
4791 return; /* Already present. Return without doing anything. */
4794 if( sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){
4795 pConst->bHasAffBlob = 1;
4798 pConst->nConst++;
4799 pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr,
4800 pConst->nConst*2*sizeof(Expr*));
4801 if( pConst->apExpr==0 ){
4802 pConst->nConst = 0;
4803 }else{
4804 pConst->apExpr[pConst->nConst*2-2] = pColumn;
4805 pConst->apExpr[pConst->nConst*2-1] = pValue;
4810 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE
4811 ** is a constant expression and where the term must be true because it
4812 ** is part of the AND-connected terms of the expression. For each term
4813 ** found, add it to the pConst structure.
4815 static void findConstInWhere(WhereConst *pConst, Expr *pExpr){
4816 Expr *pRight, *pLeft;
4817 if( NEVER(pExpr==0) ) return;
4818 if( ExprHasProperty(pExpr, pConst->mExcludeOn) ){
4819 testcase( ExprHasProperty(pExpr, EP_OuterON) );
4820 testcase( ExprHasProperty(pExpr, EP_InnerON) );
4821 return;
4823 if( pExpr->op==TK_AND ){
4824 findConstInWhere(pConst, pExpr->pRight);
4825 findConstInWhere(pConst, pExpr->pLeft);
4826 return;
4828 if( pExpr->op!=TK_EQ ) return;
4829 pRight = pExpr->pRight;
4830 pLeft = pExpr->pLeft;
4831 assert( pRight!=0 );
4832 assert( pLeft!=0 );
4833 if( pRight->op==TK_COLUMN && sqlite3ExprIsConstant(pLeft) ){
4834 constInsert(pConst,pRight,pLeft,pExpr);
4836 if( pLeft->op==TK_COLUMN && sqlite3ExprIsConstant(pRight) ){
4837 constInsert(pConst,pLeft,pRight,pExpr);
4842 ** This is a helper function for Walker callback propagateConstantExprRewrite().
4844 ** Argument pExpr is a candidate expression to be replaced by a value. If
4845 ** pExpr is equivalent to one of the columns named in pWalker->u.pConst,
4846 ** then overwrite it with the corresponding value. Except, do not do so
4847 ** if argument bIgnoreAffBlob is non-zero and the affinity of pExpr
4848 ** is SQLITE_AFF_BLOB.
4850 static int propagateConstantExprRewriteOne(
4851 WhereConst *pConst,
4852 Expr *pExpr,
4853 int bIgnoreAffBlob
4855 int i;
4856 if( pConst->pOomFault[0] ) return WRC_Prune;
4857 if( pExpr->op!=TK_COLUMN ) return WRC_Continue;
4858 if( ExprHasProperty(pExpr, EP_FixedCol|pConst->mExcludeOn) ){
4859 testcase( ExprHasProperty(pExpr, EP_FixedCol) );
4860 testcase( ExprHasProperty(pExpr, EP_OuterON) );
4861 testcase( ExprHasProperty(pExpr, EP_InnerON) );
4862 return WRC_Continue;
4864 for(i=0; i<pConst->nConst; i++){
4865 Expr *pColumn = pConst->apExpr[i*2];
4866 if( pColumn==pExpr ) continue;
4867 if( pColumn->iTable!=pExpr->iTable ) continue;
4868 if( pColumn->iColumn!=pExpr->iColumn ) continue;
4869 if( bIgnoreAffBlob && sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){
4870 break;
4872 /* A match is found. Add the EP_FixedCol property */
4873 pConst->nChng++;
4874 ExprClearProperty(pExpr, EP_Leaf);
4875 ExprSetProperty(pExpr, EP_FixedCol);
4876 assert( pExpr->pLeft==0 );
4877 pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0);
4878 if( pConst->pParse->db->mallocFailed ) return WRC_Prune;
4879 break;
4881 return WRC_Prune;
4885 ** This is a Walker expression callback. pExpr is a node from the WHERE
4886 ** clause of a SELECT statement. This function examines pExpr to see if
4887 ** any substitutions based on the contents of pWalker->u.pConst should
4888 ** be made to pExpr or its immediate children.
4890 ** A substitution is made if:
4892 ** + pExpr is a column with an affinity other than BLOB that matches
4893 ** one of the columns in pWalker->u.pConst, or
4895 ** + pExpr is a binary comparison operator (=, <=, >=, <, >) that
4896 ** uses an affinity other than TEXT and one of its immediate
4897 ** children is a column that matches one of the columns in
4898 ** pWalker->u.pConst.
4900 static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){
4901 WhereConst *pConst = pWalker->u.pConst;
4902 assert( TK_GT==TK_EQ+1 );
4903 assert( TK_LE==TK_EQ+2 );
4904 assert( TK_LT==TK_EQ+3 );
4905 assert( TK_GE==TK_EQ+4 );
4906 if( pConst->bHasAffBlob ){
4907 if( (pExpr->op>=TK_EQ && pExpr->op<=TK_GE)
4908 || pExpr->op==TK_IS
4910 propagateConstantExprRewriteOne(pConst, pExpr->pLeft, 0);
4911 if( pConst->pOomFault[0] ) return WRC_Prune;
4912 if( sqlite3ExprAffinity(pExpr->pLeft)!=SQLITE_AFF_TEXT ){
4913 propagateConstantExprRewriteOne(pConst, pExpr->pRight, 0);
4917 return propagateConstantExprRewriteOne(pConst, pExpr, pConst->bHasAffBlob);
4921 ** The WHERE-clause constant propagation optimization.
4923 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or
4924 ** CONSTANT=COLUMN that are top-level AND-connected terms that are not
4925 ** part of a ON clause from a LEFT JOIN, then throughout the query
4926 ** replace all other occurrences of COLUMN with CONSTANT.
4928 ** For example, the query:
4930 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b
4932 ** Is transformed into
4934 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39
4936 ** Return true if any transformations where made and false if not.
4938 ** Implementation note: Constant propagation is tricky due to affinity
4939 ** and collating sequence interactions. Consider this example:
4941 ** CREATE TABLE t1(a INT,b TEXT);
4942 ** INSERT INTO t1 VALUES(123,'0123');
4943 ** SELECT * FROM t1 WHERE a=123 AND b=a;
4944 ** SELECT * FROM t1 WHERE a=123 AND b=123;
4946 ** The two SELECT statements above should return different answers. b=a
4947 ** is always true because the comparison uses numeric affinity, but b=123
4948 ** is false because it uses text affinity and '0123' is not the same as '123'.
4949 ** To work around this, the expression tree is not actually changed from
4950 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol
4951 ** and the "123" value is hung off of the pLeft pointer. Code generator
4952 ** routines know to generate the constant "123" instead of looking up the
4953 ** column value. Also, to avoid collation problems, this optimization is
4954 ** only attempted if the "a=123" term uses the default BINARY collation.
4956 ** 2021-05-25 forum post 6a06202608: Another troublesome case is...
4958 ** CREATE TABLE t1(x);
4959 ** INSERT INTO t1 VALUES(10.0);
4960 ** SELECT 1 FROM t1 WHERE x=10 AND x LIKE 10;
4962 ** The query should return no rows, because the t1.x value is '10.0' not '10'
4963 ** and '10.0' is not LIKE '10'. But if we are not careful, the first WHERE
4964 ** term "x=10" will cause the second WHERE term to become "10 LIKE 10",
4965 ** resulting in a false positive. To avoid this, constant propagation for
4966 ** columns with BLOB affinity is only allowed if the constant is used with
4967 ** operators ==, <=, <, >=, >, or IS in a way that will cause the correct
4968 ** type conversions to occur. See logic associated with the bHasAffBlob flag
4969 ** for details.
4971 static int propagateConstants(
4972 Parse *pParse, /* The parsing context */
4973 Select *p /* The query in which to propagate constants */
4975 WhereConst x;
4976 Walker w;
4977 int nChng = 0;
4978 x.pParse = pParse;
4979 x.pOomFault = &pParse->db->mallocFailed;
4981 x.nConst = 0;
4982 x.nChng = 0;
4983 x.apExpr = 0;
4984 x.bHasAffBlob = 0;
4985 if( ALWAYS(p->pSrc!=0)
4986 && p->pSrc->nSrc>0
4987 && (p->pSrc->a[0].fg.jointype & JT_LTORJ)!=0
4989 /* Do not propagate constants on any ON clause if there is a
4990 ** RIGHT JOIN anywhere in the query */
4991 x.mExcludeOn = EP_InnerON | EP_OuterON;
4992 }else{
4993 /* Do not propagate constants through the ON clause of a LEFT JOIN */
4994 x.mExcludeOn = EP_OuterON;
4996 findConstInWhere(&x, p->pWhere);
4997 if( x.nConst ){
4998 memset(&w, 0, sizeof(w));
4999 w.pParse = pParse;
5000 w.xExprCallback = propagateConstantExprRewrite;
5001 w.xSelectCallback = sqlite3SelectWalkNoop;
5002 w.xSelectCallback2 = 0;
5003 w.walkerDepth = 0;
5004 w.u.pConst = &x;
5005 sqlite3WalkExpr(&w, p->pWhere);
5006 sqlite3DbFree(x.pParse->db, x.apExpr);
5007 nChng += x.nChng;
5009 }while( x.nChng );
5010 return nChng;
5013 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5014 # if !defined(SQLITE_OMIT_WINDOWFUNC)
5016 ** This function is called to determine whether or not it is safe to
5017 ** push WHERE clause expression pExpr down to FROM clause sub-query
5018 ** pSubq, which contains at least one window function. Return 1
5019 ** if it is safe and the expression should be pushed down, or 0
5020 ** otherwise.
5022 ** It is only safe to push the expression down if it consists only
5023 ** of constants and copies of expressions that appear in the PARTITION
5024 ** BY clause of all window function used by the sub-query. It is safe
5025 ** to filter out entire partitions, but not rows within partitions, as
5026 ** this may change the results of the window functions.
5028 ** At the time this function is called it is guaranteed that
5030 ** * the sub-query uses only one distinct window frame, and
5031 ** * that the window frame has a PARTITION BY clause.
5033 static int pushDownWindowCheck(Parse *pParse, Select *pSubq, Expr *pExpr){
5034 assert( pSubq->pWin->pPartition );
5035 assert( (pSubq->selFlags & SF_MultiPart)==0 );
5036 assert( pSubq->pPrior==0 );
5037 return sqlite3ExprIsConstantOrGroupBy(pParse, pExpr, pSubq->pWin->pPartition);
5039 # endif /* SQLITE_OMIT_WINDOWFUNC */
5040 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
5042 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5044 ** Make copies of relevant WHERE clause terms of the outer query into
5045 ** the WHERE clause of subquery. Example:
5047 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
5049 ** Transformed into:
5051 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
5052 ** WHERE x=5 AND y=10;
5054 ** The hope is that the terms added to the inner query will make it more
5055 ** efficient.
5057 ** Do not attempt this optimization if:
5059 ** (1) (** This restriction was removed on 2017-09-29. We used to
5060 ** disallow this optimization for aggregate subqueries, but now
5061 ** it is allowed by putting the extra terms on the HAVING clause.
5062 ** The added HAVING clause is pointless if the subquery lacks
5063 ** a GROUP BY clause. But such a HAVING clause is also harmless
5064 ** so there does not appear to be any reason to add extra logic
5065 ** to suppress it. **)
5067 ** (2) The inner query is the recursive part of a common table expression.
5069 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE
5070 ** clause would change the meaning of the LIMIT).
5072 ** (4) The inner query is the right operand of a LEFT JOIN and the
5073 ** expression to be pushed down does not come from the ON clause
5074 ** on that LEFT JOIN.
5076 ** (5) The WHERE clause expression originates in the ON or USING clause
5077 ** of a LEFT JOIN where iCursor is not the right-hand table of that
5078 ** left join. An example:
5080 ** SELECT *
5081 ** FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa
5082 ** JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2)
5083 ** LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2);
5085 ** The correct answer is three rows: (1,1,NULL),(2,2,8),(2,2,9).
5086 ** But if the (b2=2) term were to be pushed down into the bb subquery,
5087 ** then the (1,1,NULL) row would be suppressed.
5089 ** (6) Window functions make things tricky as changes to the WHERE clause
5090 ** of the inner query could change the window over which window
5091 ** functions are calculated. Therefore, do not attempt the optimization
5092 ** if:
5094 ** (6a) The inner query uses multiple incompatible window partitions.
5096 ** (6b) The inner query is a compound and uses window-functions.
5098 ** (6c) The WHERE clause does not consist entirely of constants and
5099 ** copies of expressions found in the PARTITION BY clause of
5100 ** all window-functions used by the sub-query. It is safe to
5101 ** filter out entire partitions, as this does not change the
5102 ** window over which any window-function is calculated.
5104 ** (7) The inner query is a Common Table Expression (CTE) that should
5105 ** be materialized. (This restriction is implemented in the calling
5106 ** routine.)
5108 ** (8) If the subquery is a compound that uses UNION, INTERSECT,
5109 ** or EXCEPT, then all of the result set columns for all arms of
5110 ** the compound must use the BINARY collating sequence.
5112 ** (9) All three of the following are true:
5114 ** (9a) The WHERE clause expression originates in the ON or USING clause
5115 ** of a join (either an INNER or an OUTER join), and
5117 ** (9b) The subquery is to the right of the ON/USING clause
5119 ** (9c) There is a RIGHT JOIN (or FULL JOIN) in between the ON/USING
5120 ** clause and the subquery.
5122 ** Without this restriction, the push-down optimization might move
5123 ** the ON/USING filter expression from the left side of a RIGHT JOIN
5124 ** over to the right side, which leads to incorrect answers. See
5125 ** also restriction (6) in sqlite3ExprIsSingleTableConstraint().
5127 ** (10) The inner query is not the right-hand table of a RIGHT JOIN.
5129 ** (11) The subquery is not a VALUES clause
5131 ** (12) The WHERE clause is not "rowid ISNULL" or the equivalent. This
5132 ** case only comes up if SQLite is compiled using
5133 ** SQLITE_ALLOW_ROWID_IN_VIEW.
5135 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
5136 ** terms are duplicated into the subquery.
5138 static int pushDownWhereTerms(
5139 Parse *pParse, /* Parse context (for malloc() and error reporting) */
5140 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */
5141 Expr *pWhere, /* The WHERE clause of the outer query */
5142 SrcList *pSrcList, /* The complete from clause of the outer query */
5143 int iSrc /* Which FROM clause term to try to push into */
5145 Expr *pNew;
5146 SrcItem *pSrc; /* The subquery FROM term into which WHERE is pushed */
5147 int nChng = 0;
5148 pSrc = &pSrcList->a[iSrc];
5149 if( pWhere==0 ) return 0;
5150 if( pSubq->selFlags & (SF_Recursive|SF_MultiPart) ){
5151 return 0; /* restrictions (2) and (11) */
5153 if( pSrc->fg.jointype & (JT_LTORJ|JT_RIGHT) ){
5154 return 0; /* restrictions (10) */
5157 if( pSubq->pPrior ){
5158 Select *pSel;
5159 int notUnionAll = 0;
5160 for(pSel=pSubq; pSel; pSel=pSel->pPrior){
5161 u8 op = pSel->op;
5162 assert( op==TK_ALL || op==TK_SELECT
5163 || op==TK_UNION || op==TK_INTERSECT || op==TK_EXCEPT );
5164 if( op!=TK_ALL && op!=TK_SELECT ){
5165 notUnionAll = 1;
5167 #ifndef SQLITE_OMIT_WINDOWFUNC
5168 if( pSel->pWin ) return 0; /* restriction (6b) */
5169 #endif
5171 if( notUnionAll ){
5172 /* If any of the compound arms are connected using UNION, INTERSECT,
5173 ** or EXCEPT, then we must ensure that none of the columns use a
5174 ** non-BINARY collating sequence. */
5175 for(pSel=pSubq; pSel; pSel=pSel->pPrior){
5176 int ii;
5177 const ExprList *pList = pSel->pEList;
5178 assert( pList!=0 );
5179 for(ii=0; ii<pList->nExpr; ii++){
5180 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pList->a[ii].pExpr);
5181 if( !sqlite3IsBinary(pColl) ){
5182 return 0; /* Restriction (8) */
5187 }else{
5188 #ifndef SQLITE_OMIT_WINDOWFUNC
5189 if( pSubq->pWin && pSubq->pWin->pPartition==0 ) return 0;
5190 #endif
5193 #ifdef SQLITE_DEBUG
5194 /* Only the first term of a compound can have a WITH clause. But make
5195 ** sure no other terms are marked SF_Recursive in case something changes
5196 ** in the future.
5199 Select *pX;
5200 for(pX=pSubq; pX; pX=pX->pPrior){
5201 assert( (pX->selFlags & (SF_Recursive))==0 );
5204 #endif
5206 if( pSubq->pLimit!=0 ){
5207 return 0; /* restriction (3) */
5209 while( pWhere->op==TK_AND ){
5210 nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, pSrcList, iSrc);
5211 pWhere = pWhere->pLeft;
5214 #if 0 /* These checks now done by sqlite3ExprIsSingleTableConstraint() */
5215 if( ExprHasProperty(pWhere, EP_OuterON|EP_InnerON) /* (9a) */
5216 && (pSrcList->a[0].fg.jointype & JT_LTORJ)!=0 /* Fast pre-test of (9c) */
5218 int jj;
5219 for(jj=0; jj<iSrc; jj++){
5220 if( pWhere->w.iJoin==pSrcList->a[jj].iCursor ){
5221 /* If we reach this point, both (9a) and (9b) are satisfied.
5222 ** The following loop checks (9c):
5224 for(jj++; jj<iSrc; jj++){
5225 if( (pSrcList->a[jj].fg.jointype & JT_RIGHT)!=0 ){
5226 return 0; /* restriction (9) */
5232 if( isLeftJoin
5233 && (ExprHasProperty(pWhere,EP_OuterON)==0
5234 || pWhere->w.iJoin!=iCursor)
5236 return 0; /* restriction (4) */
5238 if( ExprHasProperty(pWhere,EP_OuterON)
5239 && pWhere->w.iJoin!=iCursor
5241 return 0; /* restriction (5) */
5243 #endif
5245 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
5246 if( ViewCanHaveRowid && (pWhere->op==TK_ISNULL || pWhere->op==TK_NOTNULL) ){
5247 Expr *pLeft = pWhere->pLeft;
5248 if( ALWAYS(pLeft)
5249 && pLeft->op==TK_COLUMN
5250 && pLeft->iColumn < 0
5252 return 0; /* Restriction (12) */
5255 #endif
5257 if( sqlite3ExprIsSingleTableConstraint(pWhere, pSrcList, iSrc) ){
5258 nChng++;
5259 pSubq->selFlags |= SF_PushDown;
5260 while( pSubq ){
5261 SubstContext x;
5262 pNew = sqlite3ExprDup(pParse->db, pWhere, 0);
5263 unsetJoinExpr(pNew, -1, 1);
5264 x.pParse = pParse;
5265 x.iTable = pSrc->iCursor;
5266 x.iNewTable = pSrc->iCursor;
5267 x.isOuterJoin = 0;
5268 x.pEList = pSubq->pEList;
5269 x.pCList = findLeftmostExprlist(pSubq);
5270 pNew = substExpr(&x, pNew);
5271 #ifndef SQLITE_OMIT_WINDOWFUNC
5272 if( pSubq->pWin && 0==pushDownWindowCheck(pParse, pSubq, pNew) ){
5273 /* Restriction 6c has prevented push-down in this case */
5274 sqlite3ExprDelete(pParse->db, pNew);
5275 nChng--;
5276 break;
5278 #endif
5279 if( pSubq->selFlags & SF_Aggregate ){
5280 pSubq->pHaving = sqlite3ExprAnd(pParse, pSubq->pHaving, pNew);
5281 }else{
5282 pSubq->pWhere = sqlite3ExprAnd(pParse, pSubq->pWhere, pNew);
5284 pSubq = pSubq->pPrior;
5287 return nChng;
5289 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
5292 ** Check to see if a subquery contains result-set columns that are
5293 ** never used. If it does, change the value of those result-set columns
5294 ** to NULL so that they do not cause unnecessary work to compute.
5296 ** Return the number of column that were changed to NULL.
5298 static int disableUnusedSubqueryResultColumns(SrcItem *pItem){
5299 int nCol;
5300 Select *pSub; /* The subquery to be simplified */
5301 Select *pX; /* For looping over compound elements of pSub */
5302 Table *pTab; /* The table that describes the subquery */
5303 int j; /* Column number */
5304 int nChng = 0; /* Number of columns converted to NULL */
5305 Bitmask colUsed; /* Columns that may not be NULLed out */
5307 assert( pItem!=0 );
5308 if( pItem->fg.isCorrelated || pItem->fg.isCte ){
5309 return 0;
5311 assert( pItem->pTab!=0 );
5312 pTab = pItem->pTab;
5313 assert( pItem->pSelect!=0 );
5314 pSub = pItem->pSelect;
5315 assert( pSub->pEList->nExpr==pTab->nCol );
5316 for(pX=pSub; pX; pX=pX->pPrior){
5317 if( (pX->selFlags & (SF_Distinct|SF_Aggregate))!=0 ){
5318 testcase( pX->selFlags & SF_Distinct );
5319 testcase( pX->selFlags & SF_Aggregate );
5320 return 0;
5322 if( pX->pPrior && pX->op!=TK_ALL ){
5323 /* This optimization does not work for compound subqueries that
5324 ** use UNION, INTERSECT, or EXCEPT. Only UNION ALL is allowed. */
5325 return 0;
5327 #ifndef SQLITE_OMIT_WINDOWFUNC
5328 if( pX->pWin ){
5329 /* This optimization does not work for subqueries that use window
5330 ** functions. */
5331 return 0;
5333 #endif
5335 colUsed = pItem->colUsed;
5336 if( pSub->pOrderBy ){
5337 ExprList *pList = pSub->pOrderBy;
5338 for(j=0; j<pList->nExpr; j++){
5339 u16 iCol = pList->a[j].u.x.iOrderByCol;
5340 if( iCol>0 ){
5341 iCol--;
5342 colUsed |= ((Bitmask)1)<<(iCol>=BMS ? BMS-1 : iCol);
5346 nCol = pTab->nCol;
5347 for(j=0; j<nCol; j++){
5348 Bitmask m = j<BMS-1 ? MASKBIT(j) : TOPBIT;
5349 if( (m & colUsed)!=0 ) continue;
5350 for(pX=pSub; pX; pX=pX->pPrior) {
5351 Expr *pY = pX->pEList->a[j].pExpr;
5352 if( pY->op==TK_NULL ) continue;
5353 pY->op = TK_NULL;
5354 ExprClearProperty(pY, EP_Skip|EP_Unlikely);
5355 pX->selFlags |= SF_PushDown;
5356 nChng++;
5359 return nChng;
5364 ** The pFunc is the only aggregate function in the query. Check to see
5365 ** if the query is a candidate for the min/max optimization.
5367 ** If the query is a candidate for the min/max optimization, then set
5368 ** *ppMinMax to be an ORDER BY clause to be used for the optimization
5369 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on
5370 ** whether pFunc is a min() or max() function.
5372 ** If the query is not a candidate for the min/max optimization, return
5373 ** WHERE_ORDERBY_NORMAL (which must be zero).
5375 ** This routine must be called after aggregate functions have been
5376 ** located but before their arguments have been subjected to aggregate
5377 ** analysis.
5379 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){
5380 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */
5381 ExprList *pEList; /* Arguments to agg function */
5382 const char *zFunc; /* Name of aggregate function pFunc */
5383 ExprList *pOrderBy;
5384 u8 sortFlags = 0;
5386 assert( *ppMinMax==0 );
5387 assert( pFunc->op==TK_AGG_FUNCTION );
5388 assert( !IsWindowFunc(pFunc) );
5389 assert( ExprUseXList(pFunc) );
5390 pEList = pFunc->x.pList;
5391 if( pEList==0
5392 || pEList->nExpr!=1
5393 || ExprHasProperty(pFunc, EP_WinFunc)
5394 || OptimizationDisabled(db, SQLITE_MinMaxOpt)
5396 return eRet;
5398 assert( !ExprHasProperty(pFunc, EP_IntValue) );
5399 zFunc = pFunc->u.zToken;
5400 if( sqlite3StrICmp(zFunc, "min")==0 ){
5401 eRet = WHERE_ORDERBY_MIN;
5402 if( sqlite3ExprCanBeNull(pEList->a[0].pExpr) ){
5403 sortFlags = KEYINFO_ORDER_BIGNULL;
5405 }else if( sqlite3StrICmp(zFunc, "max")==0 ){
5406 eRet = WHERE_ORDERBY_MAX;
5407 sortFlags = KEYINFO_ORDER_DESC;
5408 }else{
5409 return eRet;
5411 *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0);
5412 assert( pOrderBy!=0 || db->mallocFailed );
5413 if( pOrderBy ) pOrderBy->a[0].fg.sortFlags = sortFlags;
5414 return eRet;
5418 ** The select statement passed as the first argument is an aggregate query.
5419 ** The second argument is the associated aggregate-info object. This
5420 ** function tests if the SELECT is of the form:
5422 ** SELECT count(*) FROM <tbl>
5424 ** where table is a database table, not a sub-select or view. If the query
5425 ** does match this pattern, then a pointer to the Table object representing
5426 ** <tbl> is returned. Otherwise, NULL is returned.
5428 ** This routine checks to see if it is safe to use the count optimization.
5429 ** A correct answer is still obtained (though perhaps more slowly) if
5430 ** this routine returns NULL when it could have returned a table pointer.
5431 ** But returning the pointer when NULL should have been returned can
5432 ** result in incorrect answers and/or crashes. So, when in doubt, return NULL.
5434 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
5435 Table *pTab;
5436 Expr *pExpr;
5438 assert( !p->pGroupBy );
5440 if( p->pWhere
5441 || p->pEList->nExpr!=1
5442 || p->pSrc->nSrc!=1
5443 || p->pSrc->a[0].pSelect
5444 || pAggInfo->nFunc!=1
5445 || p->pHaving
5447 return 0;
5449 pTab = p->pSrc->a[0].pTab;
5450 assert( pTab!=0 );
5451 assert( !IsView(pTab) );
5452 if( !IsOrdinaryTable(pTab) ) return 0;
5453 pExpr = p->pEList->a[0].pExpr;
5454 assert( pExpr!=0 );
5455 if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
5456 if( pExpr->pAggInfo!=pAggInfo ) return 0;
5457 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
5458 assert( pAggInfo->aFunc[0].pFExpr==pExpr );
5459 testcase( ExprHasProperty(pExpr, EP_Distinct) );
5460 testcase( ExprHasProperty(pExpr, EP_WinFunc) );
5461 if( ExprHasProperty(pExpr, EP_Distinct|EP_WinFunc) ) return 0;
5463 return pTab;
5467 ** If the source-list item passed as an argument was augmented with an
5468 ** INDEXED BY clause, then try to locate the specified index. If there
5469 ** was such a clause and the named index cannot be found, return
5470 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
5471 ** pFrom->pIndex and return SQLITE_OK.
5473 int sqlite3IndexedByLookup(Parse *pParse, SrcItem *pFrom){
5474 Table *pTab = pFrom->pTab;
5475 char *zIndexedBy = pFrom->u1.zIndexedBy;
5476 Index *pIdx;
5477 assert( pTab!=0 );
5478 assert( pFrom->fg.isIndexedBy!=0 );
5480 for(pIdx=pTab->pIndex;
5481 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy);
5482 pIdx=pIdx->pNext
5484 if( !pIdx ){
5485 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0);
5486 pParse->checkSchema = 1;
5487 return SQLITE_ERROR;
5489 assert( pFrom->fg.isCte==0 );
5490 pFrom->u2.pIBIndex = pIdx;
5491 return SQLITE_OK;
5495 ** Detect compound SELECT statements that use an ORDER BY clause with
5496 ** an alternative collating sequence.
5498 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
5500 ** These are rewritten as a subquery:
5502 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
5503 ** ORDER BY ... COLLATE ...
5505 ** This transformation is necessary because the multiSelectOrderBy() routine
5506 ** above that generates the code for a compound SELECT with an ORDER BY clause
5507 ** uses a merge algorithm that requires the same collating sequence on the
5508 ** result columns as on the ORDER BY clause. See ticket
5509 ** http://www.sqlite.org/src/info/6709574d2a
5511 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
5512 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
5513 ** there are COLLATE terms in the ORDER BY.
5515 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
5516 int i;
5517 Select *pNew;
5518 Select *pX;
5519 sqlite3 *db;
5520 struct ExprList_item *a;
5521 SrcList *pNewSrc;
5522 Parse *pParse;
5523 Token dummy;
5525 if( p->pPrior==0 ) return WRC_Continue;
5526 if( p->pOrderBy==0 ) return WRC_Continue;
5527 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
5528 if( pX==0 ) return WRC_Continue;
5529 a = p->pOrderBy->a;
5530 #ifndef SQLITE_OMIT_WINDOWFUNC
5531 /* If iOrderByCol is already non-zero, then it has already been matched
5532 ** to a result column of the SELECT statement. This occurs when the
5533 ** SELECT is rewritten for window-functions processing and then passed
5534 ** to sqlite3SelectPrep() and similar a second time. The rewriting done
5535 ** by this function is not required in this case. */
5536 if( a[0].u.x.iOrderByCol ) return WRC_Continue;
5537 #endif
5538 for(i=p->pOrderBy->nExpr-1; i>=0; i--){
5539 if( a[i].pExpr->flags & EP_Collate ) break;
5541 if( i<0 ) return WRC_Continue;
5543 /* If we reach this point, that means the transformation is required. */
5545 pParse = pWalker->pParse;
5546 db = pParse->db;
5547 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
5548 if( pNew==0 ) return WRC_Abort;
5549 memset(&dummy, 0, sizeof(dummy));
5550 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0);
5551 if( pNewSrc==0 ) return WRC_Abort;
5552 *pNew = *p;
5553 p->pSrc = pNewSrc;
5554 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0));
5555 p->op = TK_SELECT;
5556 p->pWhere = 0;
5557 pNew->pGroupBy = 0;
5558 pNew->pHaving = 0;
5559 pNew->pOrderBy = 0;
5560 p->pPrior = 0;
5561 p->pNext = 0;
5562 p->pWith = 0;
5563 #ifndef SQLITE_OMIT_WINDOWFUNC
5564 p->pWinDefn = 0;
5565 #endif
5566 p->selFlags &= ~SF_Compound;
5567 assert( (p->selFlags & SF_Converted)==0 );
5568 p->selFlags |= SF_Converted;
5569 assert( pNew->pPrior!=0 );
5570 pNew->pPrior->pNext = pNew;
5571 pNew->pLimit = 0;
5572 return WRC_Continue;
5576 ** Check to see if the FROM clause term pFrom has table-valued function
5577 ** arguments. If it does, leave an error message in pParse and return
5578 ** non-zero, since pFrom is not allowed to be a table-valued function.
5580 static int cannotBeFunction(Parse *pParse, SrcItem *pFrom){
5581 if( pFrom->fg.isTabFunc ){
5582 sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName);
5583 return 1;
5585 return 0;
5588 #ifndef SQLITE_OMIT_CTE
5590 ** Argument pWith (which may be NULL) points to a linked list of nested
5591 ** WITH contexts, from inner to outermost. If the table identified by
5592 ** FROM clause element pItem is really a common-table-expression (CTE)
5593 ** then return a pointer to the CTE definition for that table. Otherwise
5594 ** return NULL.
5596 ** If a non-NULL value is returned, set *ppContext to point to the With
5597 ** object that the returned CTE belongs to.
5599 static struct Cte *searchWith(
5600 With *pWith, /* Current innermost WITH clause */
5601 SrcItem *pItem, /* FROM clause element to resolve */
5602 With **ppContext /* OUT: WITH clause return value belongs to */
5604 const char *zName = pItem->zName;
5605 With *p;
5606 assert( pItem->zDatabase==0 );
5607 assert( zName!=0 );
5608 for(p=pWith; p; p=p->pOuter){
5609 int i;
5610 for(i=0; i<p->nCte; i++){
5611 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
5612 *ppContext = p;
5613 return &p->a[i];
5616 if( p->bView ) break;
5618 return 0;
5621 /* The code generator maintains a stack of active WITH clauses
5622 ** with the inner-most WITH clause being at the top of the stack.
5624 ** This routine pushes the WITH clause passed as the second argument
5625 ** onto the top of the stack. If argument bFree is true, then this
5626 ** WITH clause will never be popped from the stack but should instead
5627 ** be freed along with the Parse object. In other cases, when
5628 ** bFree==0, the With object will be freed along with the SELECT
5629 ** statement with which it is associated.
5631 ** This routine returns a copy of pWith. Or, if bFree is true and
5632 ** the pWith object is destroyed immediately due to an OOM condition,
5633 ** then this routine return NULL.
5635 ** If bFree is true, do not continue to use the pWith pointer after
5636 ** calling this routine, Instead, use only the return value.
5638 With *sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
5639 if( pWith ){
5640 if( bFree ){
5641 pWith = (With*)sqlite3ParserAddCleanup(pParse, sqlite3WithDeleteGeneric,
5642 pWith);
5643 if( pWith==0 ) return 0;
5645 if( pParse->nErr==0 ){
5646 assert( pParse->pWith!=pWith );
5647 pWith->pOuter = pParse->pWith;
5648 pParse->pWith = pWith;
5651 return pWith;
5655 ** This function checks if argument pFrom refers to a CTE declared by
5656 ** a WITH clause on the stack currently maintained by the parser (on the
5657 ** pParse->pWith linked list). And if currently processing a CTE
5658 ** CTE expression, through routine checks to see if the reference is
5659 ** a recursive reference to the CTE.
5661 ** If pFrom matches a CTE according to either of these two above, pFrom->pTab
5662 ** and other fields are populated accordingly.
5664 ** Return 0 if no match is found.
5665 ** Return 1 if a match is found.
5666 ** Return 2 if an error condition is detected.
5668 static int resolveFromTermToCte(
5669 Parse *pParse, /* The parsing context */
5670 Walker *pWalker, /* Current tree walker */
5671 SrcItem *pFrom /* The FROM clause term to check */
5673 Cte *pCte; /* Matched CTE (or NULL if no match) */
5674 With *pWith; /* The matching WITH */
5676 assert( pFrom->pTab==0 );
5677 if( pParse->pWith==0 ){
5678 /* There are no WITH clauses in the stack. No match is possible */
5679 return 0;
5681 if( pParse->nErr ){
5682 /* Prior errors might have left pParse->pWith in a goofy state, so
5683 ** go no further. */
5684 return 0;
5686 if( pFrom->zDatabase!=0 ){
5687 /* The FROM term contains a schema qualifier (ex: main.t1) and so
5688 ** it cannot possibly be a CTE reference. */
5689 return 0;
5691 if( pFrom->fg.notCte ){
5692 /* The FROM term is specifically excluded from matching a CTE.
5693 ** (1) It is part of a trigger that used to have zDatabase but had
5694 ** zDatabase removed by sqlite3FixTriggerStep().
5695 ** (2) This is the first term in the FROM clause of an UPDATE.
5697 return 0;
5699 pCte = searchWith(pParse->pWith, pFrom, &pWith);
5700 if( pCte ){
5701 sqlite3 *db = pParse->db;
5702 Table *pTab;
5703 ExprList *pEList;
5704 Select *pSel;
5705 Select *pLeft; /* Left-most SELECT statement */
5706 Select *pRecTerm; /* Left-most recursive term */
5707 int bMayRecursive; /* True if compound joined by UNION [ALL] */
5708 With *pSavedWith; /* Initial value of pParse->pWith */
5709 int iRecTab = -1; /* Cursor for recursive table */
5710 CteUse *pCteUse;
5712 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
5713 ** recursive reference to CTE pCte. Leave an error in pParse and return
5714 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
5715 ** In this case, proceed. */
5716 if( pCte->zCteErr ){
5717 sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName);
5718 return 2;
5720 if( cannotBeFunction(pParse, pFrom) ) return 2;
5722 assert( pFrom->pTab==0 );
5723 pTab = sqlite3DbMallocZero(db, sizeof(Table));
5724 if( pTab==0 ) return 2;
5725 pCteUse = pCte->pUse;
5726 if( pCteUse==0 ){
5727 pCte->pUse = pCteUse = sqlite3DbMallocZero(db, sizeof(pCteUse[0]));
5728 if( pCteUse==0
5729 || sqlite3ParserAddCleanup(pParse,sqlite3DbFree,pCteUse)==0
5731 sqlite3DbFree(db, pTab);
5732 return 2;
5734 pCteUse->eM10d = pCte->eM10d;
5736 pFrom->pTab = pTab;
5737 pTab->nTabRef = 1;
5738 pTab->zName = sqlite3DbStrDup(db, pCte->zName);
5739 pTab->iPKey = -1;
5740 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
5741 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
5742 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
5743 if( db->mallocFailed ) return 2;
5744 pFrom->pSelect->selFlags |= SF_CopyCte;
5745 assert( pFrom->pSelect );
5746 if( pFrom->fg.isIndexedBy ){
5747 sqlite3ErrorMsg(pParse, "no such index: \"%s\"", pFrom->u1.zIndexedBy);
5748 return 2;
5750 pFrom->fg.isCte = 1;
5751 pFrom->u2.pCteUse = pCteUse;
5752 pCteUse->nUse++;
5754 /* Check if this is a recursive CTE. */
5755 pRecTerm = pSel = pFrom->pSelect;
5756 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
5757 while( bMayRecursive && pRecTerm->op==pSel->op ){
5758 int i;
5759 SrcList *pSrc = pRecTerm->pSrc;
5760 assert( pRecTerm->pPrior!=0 );
5761 for(i=0; i<pSrc->nSrc; i++){
5762 SrcItem *pItem = &pSrc->a[i];
5763 if( pItem->zDatabase==0
5764 && pItem->zName!=0
5765 && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
5767 pItem->pTab = pTab;
5768 pTab->nTabRef++;
5769 pItem->fg.isRecursive = 1;
5770 if( pRecTerm->selFlags & SF_Recursive ){
5771 sqlite3ErrorMsg(pParse,
5772 "multiple references to recursive table: %s", pCte->zName
5774 return 2;
5776 pRecTerm->selFlags |= SF_Recursive;
5777 if( iRecTab<0 ) iRecTab = pParse->nTab++;
5778 pItem->iCursor = iRecTab;
5781 if( (pRecTerm->selFlags & SF_Recursive)==0 ) break;
5782 pRecTerm = pRecTerm->pPrior;
5785 pCte->zCteErr = "circular reference: %s";
5786 pSavedWith = pParse->pWith;
5787 pParse->pWith = pWith;
5788 if( pSel->selFlags & SF_Recursive ){
5789 int rc;
5790 assert( pRecTerm!=0 );
5791 assert( (pRecTerm->selFlags & SF_Recursive)==0 );
5792 assert( pRecTerm->pNext!=0 );
5793 assert( (pRecTerm->pNext->selFlags & SF_Recursive)!=0 );
5794 assert( pRecTerm->pWith==0 );
5795 pRecTerm->pWith = pSel->pWith;
5796 rc = sqlite3WalkSelect(pWalker, pRecTerm);
5797 pRecTerm->pWith = 0;
5798 if( rc ){
5799 pParse->pWith = pSavedWith;
5800 return 2;
5802 }else{
5803 if( sqlite3WalkSelect(pWalker, pSel) ){
5804 pParse->pWith = pSavedWith;
5805 return 2;
5808 pParse->pWith = pWith;
5810 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
5811 pEList = pLeft->pEList;
5812 if( pCte->pCols ){
5813 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
5814 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
5815 pCte->zName, pEList->nExpr, pCte->pCols->nExpr
5817 pParse->pWith = pSavedWith;
5818 return 2;
5820 pEList = pCte->pCols;
5823 sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
5824 if( bMayRecursive ){
5825 if( pSel->selFlags & SF_Recursive ){
5826 pCte->zCteErr = "multiple recursive references: %s";
5827 }else{
5828 pCte->zCteErr = "recursive reference in a subquery: %s";
5830 sqlite3WalkSelect(pWalker, pSel);
5832 pCte->zCteErr = 0;
5833 pParse->pWith = pSavedWith;
5834 return 1; /* Success */
5836 return 0; /* No match */
5838 #endif
5840 #ifndef SQLITE_OMIT_CTE
5842 ** If the SELECT passed as the second argument has an associated WITH
5843 ** clause, pop it from the stack stored as part of the Parse object.
5845 ** This function is used as the xSelectCallback2() callback by
5846 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
5847 ** names and other FROM clause elements.
5849 void sqlite3SelectPopWith(Walker *pWalker, Select *p){
5850 Parse *pParse = pWalker->pParse;
5851 if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){
5852 With *pWith = findRightmost(p)->pWith;
5853 if( pWith!=0 ){
5854 assert( pParse->pWith==pWith || pParse->nErr );
5855 pParse->pWith = pWith->pOuter;
5859 #endif
5862 ** The SrcItem structure passed as the second argument represents a
5863 ** sub-query in the FROM clause of a SELECT statement. This function
5864 ** allocates and populates the SrcItem.pTab object. If successful,
5865 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered,
5866 ** SQLITE_NOMEM.
5868 int sqlite3ExpandSubquery(Parse *pParse, SrcItem *pFrom){
5869 Select *pSel = pFrom->pSelect;
5870 Table *pTab;
5872 assert( pSel );
5873 pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table));
5874 if( pTab==0 ) return SQLITE_NOMEM;
5875 pTab->nTabRef = 1;
5876 if( pFrom->zAlias ){
5877 pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias);
5878 }else{
5879 pTab->zName = sqlite3MPrintf(pParse->db, "%!S", pFrom);
5881 while( pSel->pPrior ){ pSel = pSel->pPrior; }
5882 sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol);
5883 pTab->iPKey = -1;
5884 pTab->eTabType = TABTYP_VIEW;
5885 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
5886 #ifndef SQLITE_ALLOW_ROWID_IN_VIEW
5887 /* The usual case - do not allow ROWID on a subquery */
5888 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
5889 #else
5890 /* Legacy compatibility mode */
5891 pTab->tabFlags |= TF_Ephemeral | sqlite3Config.mNoVisibleRowid;
5892 #endif
5893 return pParse->nErr ? SQLITE_ERROR : SQLITE_OK;
5898 ** Check the N SrcItem objects to the right of pBase. (N might be zero!)
5899 ** If any of those SrcItem objects have a USING clause containing zName
5900 ** then return true.
5902 ** If N is zero, or none of the N SrcItem objects to the right of pBase
5903 ** contains a USING clause, or if none of the USING clauses contain zName,
5904 ** then return false.
5906 static int inAnyUsingClause(
5907 const char *zName, /* Name we are looking for */
5908 SrcItem *pBase, /* The base SrcItem. Looking at pBase[1] and following */
5909 int N /* How many SrcItems to check */
5911 while( N>0 ){
5912 N--;
5913 pBase++;
5914 if( pBase->fg.isUsing==0 ) continue;
5915 if( NEVER(pBase->u3.pUsing==0) ) continue;
5916 if( sqlite3IdListIndex(pBase->u3.pUsing, zName)>=0 ) return 1;
5918 return 0;
5923 ** This routine is a Walker callback for "expanding" a SELECT statement.
5924 ** "Expanding" means to do the following:
5926 ** (1) Make sure VDBE cursor numbers have been assigned to every
5927 ** element of the FROM clause.
5929 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that
5930 ** defines FROM clause. When views appear in the FROM clause,
5931 ** fill pTabList->a[].pSelect with a copy of the SELECT statement
5932 ** that implements the view. A copy is made of the view's SELECT
5933 ** statement so that we can freely modify or delete that statement
5934 ** without worrying about messing up the persistent representation
5935 ** of the view.
5937 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword
5938 ** on joins and the ON and USING clause of joins.
5940 ** (4) Scan the list of columns in the result set (pEList) looking
5941 ** for instances of the "*" operator or the TABLE.* operator.
5942 ** If found, expand each "*" to be every column in every table
5943 ** and TABLE.* to be every column in TABLE.
5946 static int selectExpander(Walker *pWalker, Select *p){
5947 Parse *pParse = pWalker->pParse;
5948 int i, j, k, rc;
5949 SrcList *pTabList;
5950 ExprList *pEList;
5951 SrcItem *pFrom;
5952 sqlite3 *db = pParse->db;
5953 Expr *pE, *pRight, *pExpr;
5954 u16 selFlags = p->selFlags;
5955 u32 elistFlags = 0;
5957 p->selFlags |= SF_Expanded;
5958 if( db->mallocFailed ){
5959 return WRC_Abort;
5961 assert( p->pSrc!=0 );
5962 if( (selFlags & SF_Expanded)!=0 ){
5963 return WRC_Prune;
5965 if( pWalker->eCode ){
5966 /* Renumber selId because it has been copied from a view */
5967 p->selId = ++pParse->nSelect;
5969 pTabList = p->pSrc;
5970 pEList = p->pEList;
5971 if( pParse->pWith && (p->selFlags & SF_View) ){
5972 if( p->pWith==0 ){
5973 p->pWith = (With*)sqlite3DbMallocZero(db, sizeof(With));
5974 if( p->pWith==0 ){
5975 return WRC_Abort;
5978 p->pWith->bView = 1;
5980 sqlite3WithPush(pParse, p->pWith, 0);
5982 /* Make sure cursor numbers have been assigned to all entries in
5983 ** the FROM clause of the SELECT statement.
5985 sqlite3SrcListAssignCursors(pParse, pTabList);
5987 /* Look up every table named in the FROM clause of the select. If
5988 ** an entry of the FROM clause is a subquery instead of a table or view,
5989 ** then create a transient table structure to describe the subquery.
5991 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5992 Table *pTab;
5993 assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 );
5994 if( pFrom->pTab ) continue;
5995 assert( pFrom->fg.isRecursive==0 );
5996 if( pFrom->zName==0 ){
5997 #ifndef SQLITE_OMIT_SUBQUERY
5998 Select *pSel = pFrom->pSelect;
5999 /* A sub-query in the FROM clause of a SELECT */
6000 assert( pSel!=0 );
6001 assert( pFrom->pTab==0 );
6002 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
6003 if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort;
6004 #endif
6005 #ifndef SQLITE_OMIT_CTE
6006 }else if( (rc = resolveFromTermToCte(pParse, pWalker, pFrom))!=0 ){
6007 if( rc>1 ) return WRC_Abort;
6008 pTab = pFrom->pTab;
6009 assert( pTab!=0 );
6010 #endif
6011 }else{
6012 /* An ordinary table or view name in the FROM clause */
6013 assert( pFrom->pTab==0 );
6014 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
6015 if( pTab==0 ) return WRC_Abort;
6016 if( pTab->nTabRef>=0xffff ){
6017 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
6018 pTab->zName);
6019 pFrom->pTab = 0;
6020 return WRC_Abort;
6022 pTab->nTabRef++;
6023 if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){
6024 return WRC_Abort;
6026 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
6027 if( !IsOrdinaryTable(pTab) ){
6028 i16 nCol;
6029 u8 eCodeOrig = pWalker->eCode;
6030 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
6031 assert( pFrom->pSelect==0 );
6032 if( IsView(pTab) ){
6033 if( (db->flags & SQLITE_EnableView)==0
6034 && pTab->pSchema!=db->aDb[1].pSchema
6036 sqlite3ErrorMsg(pParse, "access to view \"%s\" prohibited",
6037 pTab->zName);
6039 pFrom->pSelect = sqlite3SelectDup(db, pTab->u.view.pSelect, 0);
6041 #ifndef SQLITE_OMIT_VIRTUALTABLE
6042 else if( ALWAYS(IsVirtual(pTab))
6043 && pFrom->fg.fromDDL
6044 && ALWAYS(pTab->u.vtab.p!=0)
6045 && pTab->u.vtab.p->eVtabRisk > ((db->flags & SQLITE_TrustedSchema)!=0)
6047 sqlite3ErrorMsg(pParse, "unsafe use of virtual table \"%s\"",
6048 pTab->zName);
6050 assert( SQLITE_VTABRISK_Normal==1 && SQLITE_VTABRISK_High==2 );
6051 #endif
6052 nCol = pTab->nCol;
6053 pTab->nCol = -1;
6054 pWalker->eCode = 1; /* Turn on Select.selId renumbering */
6055 sqlite3WalkSelect(pWalker, pFrom->pSelect);
6056 pWalker->eCode = eCodeOrig;
6057 pTab->nCol = nCol;
6059 #endif
6062 /* Locate the index named by the INDEXED BY clause, if any. */
6063 if( pFrom->fg.isIndexedBy && sqlite3IndexedByLookup(pParse, pFrom) ){
6064 return WRC_Abort;
6068 /* Process NATURAL keywords, and ON and USING clauses of joins.
6070 assert( db->mallocFailed==0 || pParse->nErr!=0 );
6071 if( pParse->nErr || sqlite3ProcessJoin(pParse, p) ){
6072 return WRC_Abort;
6075 /* For every "*" that occurs in the column list, insert the names of
6076 ** all columns in all tables. And for every TABLE.* insert the names
6077 ** of all columns in TABLE. The parser inserted a special expression
6078 ** with the TK_ASTERISK operator for each "*" that it found in the column
6079 ** list. The following code just has to locate the TK_ASTERISK
6080 ** expressions and expand each one to the list of all columns in
6081 ** all tables.
6083 ** The first loop just checks to see if there are any "*" operators
6084 ** that need expanding.
6086 for(k=0; k<pEList->nExpr; k++){
6087 pE = pEList->a[k].pExpr;
6088 if( pE->op==TK_ASTERISK ) break;
6089 assert( pE->op!=TK_DOT || pE->pRight!=0 );
6090 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
6091 if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break;
6092 elistFlags |= pE->flags;
6094 if( k<pEList->nExpr ){
6096 ** If we get here it means the result set contains one or more "*"
6097 ** operators that need to be expanded. Loop through each expression
6098 ** in the result set and expand them one by one.
6100 struct ExprList_item *a = pEList->a;
6101 ExprList *pNew = 0;
6102 int flags = pParse->db->flags;
6103 int longNames = (flags & SQLITE_FullColNames)!=0
6104 && (flags & SQLITE_ShortColNames)==0;
6106 for(k=0; k<pEList->nExpr; k++){
6107 pE = a[k].pExpr;
6108 elistFlags |= pE->flags;
6109 pRight = pE->pRight;
6110 assert( pE->op!=TK_DOT || pRight!=0 );
6111 if( pE->op!=TK_ASTERISK
6112 && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK)
6114 /* This particular expression does not need to be expanded.
6116 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
6117 if( pNew ){
6118 pNew->a[pNew->nExpr-1].zEName = a[k].zEName;
6119 pNew->a[pNew->nExpr-1].fg.eEName = a[k].fg.eEName;
6120 a[k].zEName = 0;
6122 a[k].pExpr = 0;
6123 }else{
6124 /* This expression is a "*" or a "TABLE.*" and needs to be
6125 ** expanded. */
6126 int tableSeen = 0; /* Set to 1 when TABLE matches */
6127 char *zTName = 0; /* text of name of TABLE */
6128 int iErrOfst;
6129 if( pE->op==TK_DOT ){
6130 assert( (selFlags & SF_NestedFrom)==0 );
6131 assert( pE->pLeft!=0 );
6132 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
6133 zTName = pE->pLeft->u.zToken;
6134 assert( ExprUseWOfst(pE->pLeft) );
6135 iErrOfst = pE->pRight->w.iOfst;
6136 }else{
6137 assert( ExprUseWOfst(pE) );
6138 iErrOfst = pE->w.iOfst;
6140 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
6141 int nAdd; /* Number of cols including rowid */
6142 Table *pTab = pFrom->pTab; /* Table for this data source */
6143 ExprList *pNestedFrom; /* Result-set of a nested FROM clause */
6144 char *zTabName; /* AS name for this data source */
6145 const char *zSchemaName = 0; /* Schema name for this data source */
6146 int iDb; /* Schema index for this data src */
6147 IdList *pUsing; /* USING clause for pFrom[1] */
6149 if( (zTabName = pFrom->zAlias)==0 ){
6150 zTabName = pTab->zName;
6152 if( db->mallocFailed ) break;
6153 assert( (int)pFrom->fg.isNestedFrom == IsNestedFrom(pFrom->pSelect) );
6154 if( pFrom->fg.isNestedFrom ){
6155 assert( pFrom->pSelect!=0 );
6156 pNestedFrom = pFrom->pSelect->pEList;
6157 assert( pNestedFrom!=0 );
6158 assert( pNestedFrom->nExpr==pTab->nCol );
6159 assert( VisibleRowid(pTab)==0 || ViewCanHaveRowid );
6160 }else{
6161 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
6162 continue;
6164 pNestedFrom = 0;
6165 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
6166 zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*";
6168 if( i+1<pTabList->nSrc
6169 && pFrom[1].fg.isUsing
6170 && (selFlags & SF_NestedFrom)!=0
6172 int ii;
6173 pUsing = pFrom[1].u3.pUsing;
6174 for(ii=0; ii<pUsing->nId; ii++){
6175 const char *zUName = pUsing->a[ii].zName;
6176 pRight = sqlite3Expr(db, TK_ID, zUName);
6177 sqlite3ExprSetErrorOffset(pRight, iErrOfst);
6178 pNew = sqlite3ExprListAppend(pParse, pNew, pRight);
6179 if( pNew ){
6180 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
6181 assert( pX->zEName==0 );
6182 pX->zEName = sqlite3MPrintf(db,"..%s", zUName);
6183 pX->fg.eEName = ENAME_TAB;
6184 pX->fg.bUsingTerm = 1;
6187 }else{
6188 pUsing = 0;
6191 nAdd = pTab->nCol;
6192 if( VisibleRowid(pTab) && (selFlags & SF_NestedFrom)!=0 ) nAdd++;
6193 for(j=0; j<nAdd; j++){
6194 const char *zName;
6195 struct ExprList_item *pX; /* Newly added ExprList term */
6197 if( j==pTab->nCol ){
6198 zName = sqlite3RowidAlias(pTab);
6199 if( zName==0 ) continue;
6200 }else{
6201 zName = pTab->aCol[j].zCnName;
6203 /* If pTab is actually an SF_NestedFrom sub-select, do not
6204 ** expand any ENAME_ROWID columns. */
6205 if( pNestedFrom && pNestedFrom->a[j].fg.eEName==ENAME_ROWID ){
6206 continue;
6209 if( zTName
6210 && pNestedFrom
6211 && sqlite3MatchEName(&pNestedFrom->a[j], 0, zTName, 0, 0)==0
6213 continue;
6216 /* If a column is marked as 'hidden', omit it from the expanded
6217 ** result-set list unless the SELECT has the SF_IncludeHidden
6218 ** bit set.
6220 if( (p->selFlags & SF_IncludeHidden)==0
6221 && IsHiddenColumn(&pTab->aCol[j])
6223 continue;
6225 if( (pTab->aCol[j].colFlags & COLFLAG_NOEXPAND)!=0
6226 && zTName==0
6227 && (selFlags & (SF_NestedFrom))==0
6229 continue;
6232 assert( zName );
6233 tableSeen = 1;
6235 if( i>0 && zTName==0 && (selFlags & SF_NestedFrom)==0 ){
6236 if( pFrom->fg.isUsing
6237 && sqlite3IdListIndex(pFrom->u3.pUsing, zName)>=0
6239 /* In a join with a USING clause, omit columns in the
6240 ** using clause from the table on the right. */
6241 continue;
6244 pRight = sqlite3Expr(db, TK_ID, zName);
6245 if( (pTabList->nSrc>1
6246 && ( (pFrom->fg.jointype & JT_LTORJ)==0
6247 || (selFlags & SF_NestedFrom)!=0
6248 || !inAnyUsingClause(zName,pFrom,pTabList->nSrc-i-1)
6251 || IN_RENAME_OBJECT
6253 Expr *pLeft;
6254 pLeft = sqlite3Expr(db, TK_ID, zTabName);
6255 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight);
6256 if( IN_RENAME_OBJECT && pE->pLeft ){
6257 sqlite3RenameTokenRemap(pParse, pLeft, pE->pLeft);
6259 if( zSchemaName ){
6260 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
6261 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr);
6263 }else{
6264 pExpr = pRight;
6266 sqlite3ExprSetErrorOffset(pExpr, iErrOfst);
6267 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
6268 if( pNew==0 ){
6269 break; /* OOM */
6271 pX = &pNew->a[pNew->nExpr-1];
6272 assert( pX->zEName==0 );
6273 if( (selFlags & SF_NestedFrom)!=0 && !IN_RENAME_OBJECT ){
6274 if( pNestedFrom && (!ViewCanHaveRowid || j<pNestedFrom->nExpr) ){
6275 assert( j<pNestedFrom->nExpr );
6276 pX->zEName = sqlite3DbStrDup(db, pNestedFrom->a[j].zEName);
6277 testcase( pX->zEName==0 );
6278 }else{
6279 pX->zEName = sqlite3MPrintf(db, "%s.%s.%s",
6280 zSchemaName, zTabName, zName);
6281 testcase( pX->zEName==0 );
6283 pX->fg.eEName = (j==pTab->nCol ? ENAME_ROWID : ENAME_TAB);
6284 if( (pFrom->fg.isUsing
6285 && sqlite3IdListIndex(pFrom->u3.pUsing, zName)>=0)
6286 || (pUsing && sqlite3IdListIndex(pUsing, zName)>=0)
6287 || (j<pTab->nCol && (pTab->aCol[j].colFlags & COLFLAG_NOEXPAND))
6289 pX->fg.bNoExpand = 1;
6291 }else if( longNames ){
6292 pX->zEName = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
6293 pX->fg.eEName = ENAME_NAME;
6294 }else{
6295 pX->zEName = sqlite3DbStrDup(db, zName);
6296 pX->fg.eEName = ENAME_NAME;
6300 if( !tableSeen ){
6301 if( zTName ){
6302 sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
6303 }else{
6304 sqlite3ErrorMsg(pParse, "no tables specified");
6309 sqlite3ExprListDelete(db, pEList);
6310 p->pEList = pNew;
6312 if( p->pEList ){
6313 if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
6314 sqlite3ErrorMsg(pParse, "too many columns in result set");
6315 return WRC_Abort;
6317 if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){
6318 p->selFlags |= SF_ComplexResult;
6321 #if TREETRACE_ENABLED
6322 if( sqlite3TreeTrace & 0x8 ){
6323 TREETRACE(0x8,pParse,p,("After result-set wildcard expansion:\n"));
6324 sqlite3TreeViewSelect(0, p, 0);
6326 #endif
6327 return WRC_Continue;
6330 #if SQLITE_DEBUG
6332 ** Always assert. This xSelectCallback2 implementation proves that the
6333 ** xSelectCallback2 is never invoked.
6335 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){
6336 UNUSED_PARAMETER2(NotUsed, NotUsed2);
6337 assert( 0 );
6339 #endif
6341 ** This routine "expands" a SELECT statement and all of its subqueries.
6342 ** For additional information on what it means to "expand" a SELECT
6343 ** statement, see the comment on the selectExpand worker callback above.
6345 ** Expanding a SELECT statement is the first step in processing a
6346 ** SELECT statement. The SELECT statement must be expanded before
6347 ** name resolution is performed.
6349 ** If anything goes wrong, an error message is written into pParse.
6350 ** The calling function can detect the problem by looking at pParse->nErr
6351 ** and/or pParse->db->mallocFailed.
6353 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
6354 Walker w;
6355 w.xExprCallback = sqlite3ExprWalkNoop;
6356 w.pParse = pParse;
6357 if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){
6358 w.xSelectCallback = convertCompoundSelectToSubquery;
6359 w.xSelectCallback2 = 0;
6360 sqlite3WalkSelect(&w, pSelect);
6362 w.xSelectCallback = selectExpander;
6363 w.xSelectCallback2 = sqlite3SelectPopWith;
6364 w.eCode = 0;
6365 sqlite3WalkSelect(&w, pSelect);
6369 #ifndef SQLITE_OMIT_SUBQUERY
6371 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
6372 ** interface.
6374 ** For each FROM-clause subquery, add Column.zType, Column.zColl, and
6375 ** Column.affinity information to the Table structure that represents
6376 ** the result set of that subquery.
6378 ** The Table structure that represents the result set was constructed
6379 ** by selectExpander() but the type and collation and affinity information
6380 ** was omitted at that point because identifiers had not yet been resolved.
6381 ** This routine is called after identifier resolution.
6383 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
6384 Parse *pParse;
6385 int i;
6386 SrcList *pTabList;
6387 SrcItem *pFrom;
6389 if( p->selFlags & SF_HasTypeInfo ) return;
6390 p->selFlags |= SF_HasTypeInfo;
6391 pParse = pWalker->pParse;
6392 testcase( (p->selFlags & SF_Resolved)==0 );
6393 assert( (p->selFlags & SF_Resolved) || IN_RENAME_OBJECT );
6394 pTabList = p->pSrc;
6395 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
6396 Table *pTab = pFrom->pTab;
6397 assert( pTab!=0 );
6398 if( (pTab->tabFlags & TF_Ephemeral)!=0 ){
6399 /* A sub-query in the FROM clause of a SELECT */
6400 Select *pSel = pFrom->pSelect;
6401 if( pSel ){
6402 sqlite3SubqueryColumnTypes(pParse, pTab, pSel, SQLITE_AFF_NONE);
6407 #endif
6411 ** This routine adds datatype and collating sequence information to
6412 ** the Table structures of all FROM-clause subqueries in a
6413 ** SELECT statement.
6415 ** Use this routine after name resolution.
6417 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
6418 #ifndef SQLITE_OMIT_SUBQUERY
6419 Walker w;
6420 w.xSelectCallback = sqlite3SelectWalkNoop;
6421 w.xSelectCallback2 = selectAddSubqueryTypeInfo;
6422 w.xExprCallback = sqlite3ExprWalkNoop;
6423 w.pParse = pParse;
6424 sqlite3WalkSelect(&w, pSelect);
6425 #endif
6430 ** This routine sets up a SELECT statement for processing. The
6431 ** following is accomplished:
6433 ** * VDBE Cursor numbers are assigned to all FROM-clause terms.
6434 ** * Ephemeral Table objects are created for all FROM-clause subqueries.
6435 ** * ON and USING clauses are shifted into WHERE statements
6436 ** * Wildcards "*" and "TABLE.*" in result sets are expanded.
6437 ** * Identifiers in expression are matched to tables.
6439 ** This routine acts recursively on all subqueries within the SELECT.
6441 void sqlite3SelectPrep(
6442 Parse *pParse, /* The parser context */
6443 Select *p, /* The SELECT statement being coded. */
6444 NameContext *pOuterNC /* Name context for container */
6446 assert( p!=0 || pParse->db->mallocFailed );
6447 assert( pParse->db->pParse==pParse );
6448 if( pParse->db->mallocFailed ) return;
6449 if( p->selFlags & SF_HasTypeInfo ) return;
6450 sqlite3SelectExpand(pParse, p);
6451 if( pParse->nErr ) return;
6452 sqlite3ResolveSelectNames(pParse, p, pOuterNC);
6453 if( pParse->nErr ) return;
6454 sqlite3SelectAddTypeInfo(pParse, p);
6457 #if TREETRACE_ENABLED
6459 ** Display all information about an AggInfo object
6461 static void printAggInfo(AggInfo *pAggInfo){
6462 int ii;
6463 for(ii=0; ii<pAggInfo->nColumn; ii++){
6464 struct AggInfo_col *pCol = &pAggInfo->aCol[ii];
6465 sqlite3DebugPrintf(
6466 "agg-column[%d] pTab=%s iTable=%d iColumn=%d iMem=%d"
6467 " iSorterColumn=%d %s\n",
6468 ii, pCol->pTab ? pCol->pTab->zName : "NULL",
6469 pCol->iTable, pCol->iColumn, pAggInfo->iFirstReg+ii,
6470 pCol->iSorterColumn,
6471 ii>=pAggInfo->nAccumulator ? "" : " Accumulator");
6472 sqlite3TreeViewExpr(0, pAggInfo->aCol[ii].pCExpr, 0);
6474 for(ii=0; ii<pAggInfo->nFunc; ii++){
6475 sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n",
6476 ii, pAggInfo->iFirstReg+pAggInfo->nColumn+ii);
6477 sqlite3TreeViewExpr(0, pAggInfo->aFunc[ii].pFExpr, 0);
6480 #endif /* TREETRACE_ENABLED */
6483 ** Analyze the arguments to aggregate functions. Create new pAggInfo->aCol[]
6484 ** entries for columns that are arguments to aggregate functions but which
6485 ** are not otherwise used.
6487 ** The aCol[] entries in AggInfo prior to nAccumulator are columns that
6488 ** are referenced outside of aggregate functions. These might be columns
6489 ** that are part of the GROUP by clause, for example. Other database engines
6490 ** would throw an error if there is a column reference that is not in the
6491 ** GROUP BY clause and that is not part of an aggregate function argument.
6492 ** But SQLite allows this.
6494 ** The aCol[] entries beginning with the aCol[nAccumulator] and following
6495 ** are column references that are used exclusively as arguments to
6496 ** aggregate functions. This routine is responsible for computing
6497 ** (or recomputing) those aCol[] entries.
6499 static void analyzeAggFuncArgs(
6500 AggInfo *pAggInfo,
6501 NameContext *pNC
6503 int i;
6504 assert( pAggInfo!=0 );
6505 assert( pAggInfo->iFirstReg==0 );
6506 pNC->ncFlags |= NC_InAggFunc;
6507 for(i=0; i<pAggInfo->nFunc; i++){
6508 Expr *pExpr = pAggInfo->aFunc[i].pFExpr;
6509 assert( pExpr->op==TK_FUNCTION || pExpr->op==TK_AGG_FUNCTION );
6510 assert( ExprUseXList(pExpr) );
6511 sqlite3ExprAnalyzeAggList(pNC, pExpr->x.pList);
6512 if( pExpr->pLeft ){
6513 assert( pExpr->pLeft->op==TK_ORDER );
6514 assert( ExprUseXList(pExpr->pLeft) );
6515 sqlite3ExprAnalyzeAggList(pNC, pExpr->pLeft->x.pList);
6517 #ifndef SQLITE_OMIT_WINDOWFUNC
6518 assert( !IsWindowFunc(pExpr) );
6519 if( ExprHasProperty(pExpr, EP_WinFunc) ){
6520 sqlite3ExprAnalyzeAggregates(pNC, pExpr->y.pWin->pFilter);
6522 #endif
6524 pNC->ncFlags &= ~NC_InAggFunc;
6528 ** An index on expressions is being used in the inner loop of an
6529 ** aggregate query with a GROUP BY clause. This routine attempts
6530 ** to adjust the AggInfo object to take advantage of index and to
6531 ** perhaps use the index as a covering index.
6534 static void optimizeAggregateUseOfIndexedExpr(
6535 Parse *pParse, /* Parsing context */
6536 Select *pSelect, /* The SELECT statement being processed */
6537 AggInfo *pAggInfo, /* The aggregate info */
6538 NameContext *pNC /* Name context used to resolve agg-func args */
6540 assert( pAggInfo->iFirstReg==0 );
6541 assert( pSelect!=0 );
6542 assert( pSelect->pGroupBy!=0 );
6543 pAggInfo->nColumn = pAggInfo->nAccumulator;
6544 if( ALWAYS(pAggInfo->nSortingColumn>0) ){
6545 int mx = pSelect->pGroupBy->nExpr - 1;
6546 int j, k;
6547 for(j=0; j<pAggInfo->nColumn; j++){
6548 k = pAggInfo->aCol[j].iSorterColumn;
6549 if( k>mx ) mx = k;
6551 pAggInfo->nSortingColumn = mx+1;
6553 analyzeAggFuncArgs(pAggInfo, pNC);
6554 #if TREETRACE_ENABLED
6555 if( sqlite3TreeTrace & 0x20 ){
6556 IndexedExpr *pIEpr;
6557 TREETRACE(0x20, pParse, pSelect,
6558 ("AggInfo (possibly) adjusted for Indexed Exprs\n"));
6559 sqlite3TreeViewSelect(0, pSelect, 0);
6560 for(pIEpr=pParse->pIdxEpr; pIEpr; pIEpr=pIEpr->pIENext){
6561 printf("data-cursor=%d index={%d,%d}\n",
6562 pIEpr->iDataCur, pIEpr->iIdxCur, pIEpr->iIdxCol);
6563 sqlite3TreeViewExpr(0, pIEpr->pExpr, 0);
6565 printAggInfo(pAggInfo);
6567 #else
6568 UNUSED_PARAMETER(pSelect);
6569 UNUSED_PARAMETER(pParse);
6570 #endif
6574 ** Walker callback for aggregateConvertIndexedExprRefToColumn().
6576 static int aggregateIdxEprRefToColCallback(Walker *pWalker, Expr *pExpr){
6577 AggInfo *pAggInfo;
6578 struct AggInfo_col *pCol;
6579 UNUSED_PARAMETER(pWalker);
6580 if( pExpr->pAggInfo==0 ) return WRC_Continue;
6581 if( pExpr->op==TK_AGG_COLUMN ) return WRC_Continue;
6582 if( pExpr->op==TK_AGG_FUNCTION ) return WRC_Continue;
6583 if( pExpr->op==TK_IF_NULL_ROW ) return WRC_Continue;
6584 pAggInfo = pExpr->pAggInfo;
6585 if( NEVER(pExpr->iAgg>=pAggInfo->nColumn) ) return WRC_Continue;
6586 assert( pExpr->iAgg>=0 );
6587 pCol = &pAggInfo->aCol[pExpr->iAgg];
6588 pExpr->op = TK_AGG_COLUMN;
6589 pExpr->iTable = pCol->iTable;
6590 pExpr->iColumn = pCol->iColumn;
6591 ExprClearProperty(pExpr, EP_Skip|EP_Collate|EP_Unlikely);
6592 return WRC_Prune;
6596 ** Convert every pAggInfo->aFunc[].pExpr such that any node within
6597 ** those expressions that has pAppInfo set is changed into a TK_AGG_COLUMN
6598 ** opcode.
6600 static void aggregateConvertIndexedExprRefToColumn(AggInfo *pAggInfo){
6601 int i;
6602 Walker w;
6603 memset(&w, 0, sizeof(w));
6604 w.xExprCallback = aggregateIdxEprRefToColCallback;
6605 for(i=0; i<pAggInfo->nFunc; i++){
6606 sqlite3WalkExpr(&w, pAggInfo->aFunc[i].pFExpr);
6612 ** Allocate a block of registers so that there is one register for each
6613 ** pAggInfo->aCol[] and pAggInfo->aFunc[] entry in pAggInfo. The first
6614 ** register in this block is stored in pAggInfo->iFirstReg.
6616 ** This routine may only be called once for each AggInfo object. Prior
6617 ** to calling this routine:
6619 ** * The aCol[] and aFunc[] arrays may be modified
6620 ** * The AggInfoColumnReg() and AggInfoFuncReg() macros may not be used
6622 ** After calling this routine:
6624 ** * The aCol[] and aFunc[] arrays are fixed
6625 ** * The AggInfoColumnReg() and AggInfoFuncReg() macros may be used
6628 static void assignAggregateRegisters(Parse *pParse, AggInfo *pAggInfo){
6629 assert( pAggInfo!=0 );
6630 assert( pAggInfo->iFirstReg==0 );
6631 pAggInfo->iFirstReg = pParse->nMem + 1;
6632 pParse->nMem += pAggInfo->nColumn + pAggInfo->nFunc;
6636 ** Reset the aggregate accumulator.
6638 ** The aggregate accumulator is a set of memory cells that hold
6639 ** intermediate results while calculating an aggregate. This
6640 ** routine generates code that stores NULLs in all of those memory
6641 ** cells.
6643 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
6644 Vdbe *v = pParse->pVdbe;
6645 int i;
6646 struct AggInfo_func *pFunc;
6647 int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
6648 assert( pAggInfo->iFirstReg>0 );
6649 assert( pParse->db->pParse==pParse );
6650 assert( pParse->db->mallocFailed==0 || pParse->nErr!=0 );
6651 if( nReg==0 ) return;
6652 if( pParse->nErr ) return;
6653 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->iFirstReg,
6654 pAggInfo->iFirstReg+nReg-1);
6655 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
6656 if( pFunc->iDistinct>=0 ){
6657 Expr *pE = pFunc->pFExpr;
6658 assert( ExprUseXList(pE) );
6659 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
6660 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
6661 "argument");
6662 pFunc->iDistinct = -1;
6663 }else{
6664 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0);
6665 pFunc->iDistAddr = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
6666 pFunc->iDistinct, 0, 0, (char*)pKeyInfo, P4_KEYINFO);
6667 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s(DISTINCT)",
6668 pFunc->pFunc->zName));
6671 if( pFunc->iOBTab>=0 ){
6672 ExprList *pOBList;
6673 KeyInfo *pKeyInfo;
6674 int nExtra = 0;
6675 assert( pFunc->pFExpr->pLeft!=0 );
6676 assert( pFunc->pFExpr->pLeft->op==TK_ORDER );
6677 assert( ExprUseXList(pFunc->pFExpr->pLeft) );
6678 assert( pFunc->pFunc!=0 );
6679 pOBList = pFunc->pFExpr->pLeft->x.pList;
6680 if( !pFunc->bOBUnique ){
6681 nExtra++; /* One extra column for the OP_Sequence */
6683 if( pFunc->bOBPayload ){
6684 /* extra columns for the function arguments */
6685 assert( ExprUseXList(pFunc->pFExpr) );
6686 nExtra += pFunc->pFExpr->x.pList->nExpr;
6688 if( pFunc->bUseSubtype ){
6689 nExtra += pFunc->pFExpr->x.pList->nExpr;
6691 pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pOBList, 0, nExtra);
6692 if( !pFunc->bOBUnique && pParse->nErr==0 ){
6693 pKeyInfo->nKeyField++;
6695 sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
6696 pFunc->iOBTab, pOBList->nExpr+nExtra, 0,
6697 (char*)pKeyInfo, P4_KEYINFO);
6698 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s(ORDER BY)",
6699 pFunc->pFunc->zName));
6705 ** Invoke the OP_AggFinalize opcode for every aggregate function
6706 ** in the AggInfo structure.
6708 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
6709 Vdbe *v = pParse->pVdbe;
6710 int i;
6711 struct AggInfo_func *pF;
6712 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
6713 ExprList *pList;
6714 assert( ExprUseXList(pF->pFExpr) );
6715 pList = pF->pFExpr->x.pList;
6716 if( pF->iOBTab>=0 ){
6717 /* For an ORDER BY aggregate, calls to OP_AggStep were deferred. Inputs
6718 ** were stored in emphermal table pF->iOBTab. Here, we extract those
6719 ** inputs (in ORDER BY order) and make all calls to OP_AggStep
6720 ** before doing the OP_AggFinal call. */
6721 int iTop; /* Start of loop for extracting columns */
6722 int nArg; /* Number of columns to extract */
6723 int nKey; /* Key columns to be skipped */
6724 int regAgg; /* Extract into this array */
6725 int j; /* Loop counter */
6727 assert( pF->pFunc!=0 );
6728 nArg = pList->nExpr;
6729 regAgg = sqlite3GetTempRange(pParse, nArg);
6731 if( pF->bOBPayload==0 ){
6732 nKey = 0;
6733 }else{
6734 assert( pF->pFExpr->pLeft!=0 );
6735 assert( ExprUseXList(pF->pFExpr->pLeft) );
6736 assert( pF->pFExpr->pLeft->x.pList!=0 );
6737 nKey = pF->pFExpr->pLeft->x.pList->nExpr;
6738 if( ALWAYS(!pF->bOBUnique) ) nKey++;
6740 iTop = sqlite3VdbeAddOp1(v, OP_Rewind, pF->iOBTab); VdbeCoverage(v);
6741 for(j=nArg-1; j>=0; j--){
6742 sqlite3VdbeAddOp3(v, OP_Column, pF->iOBTab, nKey+j, regAgg+j);
6744 if( pF->bUseSubtype ){
6745 int regSubtype = sqlite3GetTempReg(pParse);
6746 int iBaseCol = nKey + nArg + (pF->bOBPayload==0 && pF->bOBUnique==0);
6747 for(j=nArg-1; j>=0; j--){
6748 sqlite3VdbeAddOp3(v, OP_Column, pF->iOBTab, iBaseCol+j, regSubtype);
6749 sqlite3VdbeAddOp2(v, OP_SetSubtype, regSubtype, regAgg+j);
6751 sqlite3ReleaseTempReg(pParse, regSubtype);
6753 sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, AggInfoFuncReg(pAggInfo,i));
6754 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
6755 sqlite3VdbeChangeP5(v, (u8)nArg);
6756 sqlite3VdbeAddOp2(v, OP_Next, pF->iOBTab, iTop+1); VdbeCoverage(v);
6757 sqlite3VdbeJumpHere(v, iTop);
6758 sqlite3ReleaseTempRange(pParse, regAgg, nArg);
6760 sqlite3VdbeAddOp2(v, OP_AggFinal, AggInfoFuncReg(pAggInfo,i),
6761 pList ? pList->nExpr : 0);
6762 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
6767 ** Generate code that will update the accumulator memory cells for an
6768 ** aggregate based on the current cursor position.
6770 ** If regAcc is non-zero and there are no min() or max() aggregates
6771 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator
6772 ** registers if register regAcc contains 0. The caller will take care
6773 ** of setting and clearing regAcc.
6775 ** For an ORDER BY aggregate, the actual accumulator memory cell update
6776 ** is deferred until after all input rows have been received, so that they
6777 ** can be run in the requested order. In that case, instead of invoking
6778 ** OP_AggStep to update the accumulator, just add the arguments that would
6779 ** have been passed into OP_AggStep into the sorting ephemeral table
6780 ** (along with the appropriate sort key).
6782 static void updateAccumulator(
6783 Parse *pParse,
6784 int regAcc,
6785 AggInfo *pAggInfo,
6786 int eDistinctType
6788 Vdbe *v = pParse->pVdbe;
6789 int i;
6790 int regHit = 0;
6791 int addrHitTest = 0;
6792 struct AggInfo_func *pF;
6793 struct AggInfo_col *pC;
6795 assert( pAggInfo->iFirstReg>0 );
6796 if( pParse->nErr ) return;
6797 pAggInfo->directMode = 1;
6798 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
6799 int nArg;
6800 int addrNext = 0;
6801 int regAgg;
6802 int regAggSz = 0;
6803 int regDistinct = 0;
6804 ExprList *pList;
6805 assert( ExprUseXList(pF->pFExpr) );
6806 assert( !IsWindowFunc(pF->pFExpr) );
6807 assert( pF->pFunc!=0 );
6808 pList = pF->pFExpr->x.pList;
6809 if( ExprHasProperty(pF->pFExpr, EP_WinFunc) ){
6810 Expr *pFilter = pF->pFExpr->y.pWin->pFilter;
6811 if( pAggInfo->nAccumulator
6812 && (pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL)
6813 && regAcc
6815 /* If regAcc==0, there there exists some min() or max() function
6816 ** without a FILTER clause that will ensure the magnet registers
6817 ** are populated. */
6818 if( regHit==0 ) regHit = ++pParse->nMem;
6819 /* If this is the first row of the group (regAcc contains 0), clear the
6820 ** "magnet" register regHit so that the accumulator registers
6821 ** are populated if the FILTER clause jumps over the the
6822 ** invocation of min() or max() altogether. Or, if this is not
6823 ** the first row (regAcc contains 1), set the magnet register so that
6824 ** the accumulators are not populated unless the min()/max() is invoked
6825 ** and indicates that they should be. */
6826 sqlite3VdbeAddOp2(v, OP_Copy, regAcc, regHit);
6828 addrNext = sqlite3VdbeMakeLabel(pParse);
6829 sqlite3ExprIfFalse(pParse, pFilter, addrNext, SQLITE_JUMPIFNULL);
6831 if( pF->iOBTab>=0 ){
6832 /* Instead of invoking AggStep, we must push the arguments that would
6833 ** have been passed to AggStep onto the sorting table. */
6834 int jj; /* Registered used so far in building the record */
6835 ExprList *pOBList; /* The ORDER BY clause */
6836 assert( pList!=0 );
6837 nArg = pList->nExpr;
6838 assert( nArg>0 );
6839 assert( pF->pFExpr->pLeft!=0 );
6840 assert( pF->pFExpr->pLeft->op==TK_ORDER );
6841 assert( ExprUseXList(pF->pFExpr->pLeft) );
6842 pOBList = pF->pFExpr->pLeft->x.pList;
6843 assert( pOBList!=0 );
6844 assert( pOBList->nExpr>0 );
6845 regAggSz = pOBList->nExpr;
6846 if( !pF->bOBUnique ){
6847 regAggSz++; /* One register for OP_Sequence */
6849 if( pF->bOBPayload ){
6850 regAggSz += nArg;
6852 if( pF->bUseSubtype ){
6853 regAggSz += nArg;
6855 regAggSz++; /* One extra register to hold result of MakeRecord */
6856 regAgg = sqlite3GetTempRange(pParse, regAggSz);
6857 regDistinct = regAgg;
6858 sqlite3ExprCodeExprList(pParse, pOBList, regAgg, 0, SQLITE_ECEL_DUP);
6859 jj = pOBList->nExpr;
6860 if( !pF->bOBUnique ){
6861 sqlite3VdbeAddOp2(v, OP_Sequence, pF->iOBTab, regAgg+jj);
6862 jj++;
6864 if( pF->bOBPayload ){
6865 regDistinct = regAgg+jj;
6866 sqlite3ExprCodeExprList(pParse, pList, regDistinct, 0, SQLITE_ECEL_DUP);
6867 jj += nArg;
6869 if( pF->bUseSubtype ){
6870 int kk;
6871 int regBase = pF->bOBPayload ? regDistinct : regAgg;
6872 for(kk=0; kk<nArg; kk++, jj++){
6873 sqlite3VdbeAddOp2(v, OP_GetSubtype, regBase+kk, regAgg+jj);
6876 }else if( pList ){
6877 nArg = pList->nExpr;
6878 regAgg = sqlite3GetTempRange(pParse, nArg);
6879 regDistinct = regAgg;
6880 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP);
6881 }else{
6882 nArg = 0;
6883 regAgg = 0;
6885 if( pF->iDistinct>=0 && pList ){
6886 if( addrNext==0 ){
6887 addrNext = sqlite3VdbeMakeLabel(pParse);
6889 pF->iDistinct = codeDistinct(pParse, eDistinctType,
6890 pF->iDistinct, addrNext, pList, regDistinct);
6892 if( pF->iOBTab>=0 ){
6893 /* Insert a new record into the ORDER BY table */
6894 sqlite3VdbeAddOp3(v, OP_MakeRecord, regAgg, regAggSz-1,
6895 regAgg+regAggSz-1);
6896 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pF->iOBTab, regAgg+regAggSz-1,
6897 regAgg, regAggSz-1);
6898 sqlite3ReleaseTempRange(pParse, regAgg, regAggSz);
6899 }else{
6900 /* Invoke the AggStep function */
6901 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
6902 CollSeq *pColl = 0;
6903 struct ExprList_item *pItem;
6904 int j;
6905 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */
6906 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
6907 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
6909 if( !pColl ){
6910 pColl = pParse->db->pDfltColl;
6912 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
6913 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0,
6914 (char *)pColl, P4_COLLSEQ);
6916 sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, AggInfoFuncReg(pAggInfo,i));
6917 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
6918 sqlite3VdbeChangeP5(v, (u8)nArg);
6919 sqlite3ReleaseTempRange(pParse, regAgg, nArg);
6921 if( addrNext ){
6922 sqlite3VdbeResolveLabel(v, addrNext);
6925 if( regHit==0 && pAggInfo->nAccumulator ){
6926 regHit = regAcc;
6928 if( regHit ){
6929 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
6931 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
6932 sqlite3ExprCode(pParse, pC->pCExpr, AggInfoColumnReg(pAggInfo,i));
6935 pAggInfo->directMode = 0;
6936 if( addrHitTest ){
6937 sqlite3VdbeJumpHereOrPopInst(v, addrHitTest);
6942 ** Add a single OP_Explain instruction to the VDBE to explain a simple
6943 ** count(*) query ("SELECT count(*) FROM pTab").
6945 #ifndef SQLITE_OMIT_EXPLAIN
6946 static void explainSimpleCount(
6947 Parse *pParse, /* Parse context */
6948 Table *pTab, /* Table being queried */
6949 Index *pIdx /* Index used to optimize scan, or NULL */
6951 if( pParse->explain==2 ){
6952 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
6953 sqlite3VdbeExplain(pParse, 0, "SCAN %s%s%s",
6954 pTab->zName,
6955 bCover ? " USING COVERING INDEX " : "",
6956 bCover ? pIdx->zName : ""
6960 #else
6961 # define explainSimpleCount(a,b,c)
6962 #endif
6965 ** sqlite3WalkExpr() callback used by havingToWhere().
6967 ** If the node passed to the callback is a TK_AND node, return
6968 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes.
6970 ** Otherwise, return WRC_Prune. In this case, also check if the
6971 ** sub-expression matches the criteria for being moved to the WHERE
6972 ** clause. If so, add it to the WHERE clause and replace the sub-expression
6973 ** within the HAVING expression with a constant "1".
6975 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){
6976 if( pExpr->op!=TK_AND ){
6977 Select *pS = pWalker->u.pSelect;
6978 /* This routine is called before the HAVING clause of the current
6979 ** SELECT is analyzed for aggregates. So if pExpr->pAggInfo is set
6980 ** here, it indicates that the expression is a correlated reference to a
6981 ** column from an outer aggregate query, or an aggregate function that
6982 ** belongs to an outer query. Do not move the expression to the WHERE
6983 ** clause in this obscure case, as doing so may corrupt the outer Select
6984 ** statements AggInfo structure. */
6985 if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy)
6986 && ExprAlwaysFalse(pExpr)==0
6987 && pExpr->pAggInfo==0
6989 sqlite3 *db = pWalker->pParse->db;
6990 Expr *pNew = sqlite3Expr(db, TK_INTEGER, "1");
6991 if( pNew ){
6992 Expr *pWhere = pS->pWhere;
6993 SWAP(Expr, *pNew, *pExpr);
6994 pNew = sqlite3ExprAnd(pWalker->pParse, pWhere, pNew);
6995 pS->pWhere = pNew;
6996 pWalker->eCode = 1;
6999 return WRC_Prune;
7001 return WRC_Continue;
7005 ** Transfer eligible terms from the HAVING clause of a query, which is
7006 ** processed after grouping, to the WHERE clause, which is processed before
7007 ** grouping. For example, the query:
7009 ** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=?
7011 ** can be rewritten as:
7013 ** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=?
7015 ** A term of the HAVING expression is eligible for transfer if it consists
7016 ** entirely of constants and expressions that are also GROUP BY terms that
7017 ** use the "BINARY" collation sequence.
7019 static void havingToWhere(Parse *pParse, Select *p){
7020 Walker sWalker;
7021 memset(&sWalker, 0, sizeof(sWalker));
7022 sWalker.pParse = pParse;
7023 sWalker.xExprCallback = havingToWhereExprCb;
7024 sWalker.u.pSelect = p;
7025 sqlite3WalkExpr(&sWalker, p->pHaving);
7026 #if TREETRACE_ENABLED
7027 if( sWalker.eCode && (sqlite3TreeTrace & 0x100)!=0 ){
7028 TREETRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n"));
7029 sqlite3TreeViewSelect(0, p, 0);
7031 #endif
7035 ** Check to see if the pThis entry of pTabList is a self-join of another view.
7036 ** Search FROM-clause entries in the range of iFirst..iEnd, including iFirst
7037 ** but stopping before iEnd.
7039 ** If pThis is a self-join, then return the SrcItem for the first other
7040 ** instance of that view found. If pThis is not a self-join then return 0.
7042 static SrcItem *isSelfJoinView(
7043 SrcList *pTabList, /* Search for self-joins in this FROM clause */
7044 SrcItem *pThis, /* Search for prior reference to this subquery */
7045 int iFirst, int iEnd /* Range of FROM-clause entries to search. */
7047 SrcItem *pItem;
7048 assert( pThis->pSelect!=0 );
7049 if( pThis->pSelect->selFlags & SF_PushDown ) return 0;
7050 while( iFirst<iEnd ){
7051 Select *pS1;
7052 pItem = &pTabList->a[iFirst++];
7053 if( pItem->pSelect==0 ) continue;
7054 if( pItem->fg.viaCoroutine ) continue;
7055 if( pItem->zName==0 ) continue;
7056 assert( pItem->pTab!=0 );
7057 assert( pThis->pTab!=0 );
7058 if( pItem->pTab->pSchema!=pThis->pTab->pSchema ) continue;
7059 if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue;
7060 pS1 = pItem->pSelect;
7061 if( pItem->pTab->pSchema==0 && pThis->pSelect->selId!=pS1->selId ){
7062 /* The query flattener left two different CTE tables with identical
7063 ** names in the same FROM clause. */
7064 continue;
7066 if( pItem->pSelect->selFlags & SF_PushDown ){
7067 /* The view was modified by some other optimization such as
7068 ** pushDownWhereTerms() */
7069 continue;
7071 return pItem;
7073 return 0;
7077 ** Deallocate a single AggInfo object
7079 static void agginfoFree(sqlite3 *db, void *pArg){
7080 AggInfo *p = (AggInfo*)pArg;
7081 sqlite3DbFree(db, p->aCol);
7082 sqlite3DbFree(db, p->aFunc);
7083 sqlite3DbFreeNN(db, p);
7087 ** Attempt to transform a query of the form
7089 ** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2)
7091 ** Into this:
7093 ** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2)
7095 ** The transformation only works if all of the following are true:
7097 ** * The subquery is a UNION ALL of two or more terms
7098 ** * The subquery does not have a LIMIT clause
7099 ** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries
7100 ** * The outer query is a simple count(*) with no WHERE clause or other
7101 ** extraneous syntax.
7103 ** Return TRUE if the optimization is undertaken.
7105 static int countOfViewOptimization(Parse *pParse, Select *p){
7106 Select *pSub, *pPrior;
7107 Expr *pExpr;
7108 Expr *pCount;
7109 sqlite3 *db;
7110 if( (p->selFlags & SF_Aggregate)==0 ) return 0; /* This is an aggregate */
7111 if( p->pEList->nExpr!=1 ) return 0; /* Single result column */
7112 if( p->pWhere ) return 0;
7113 if( p->pHaving ) return 0;
7114 if( p->pGroupBy ) return 0;
7115 if( p->pOrderBy ) return 0;
7116 pExpr = p->pEList->a[0].pExpr;
7117 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; /* Result is an aggregate */
7118 assert( ExprUseUToken(pExpr) );
7119 if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0; /* Is count() */
7120 assert( ExprUseXList(pExpr) );
7121 if( pExpr->x.pList!=0 ) return 0; /* Must be count(*) */
7122 if( p->pSrc->nSrc!=1 ) return 0; /* One table in FROM */
7123 if( ExprHasProperty(pExpr, EP_WinFunc) ) return 0;/* Not a window function */
7124 pSub = p->pSrc->a[0].pSelect;
7125 if( pSub==0 ) return 0; /* The FROM is a subquery */
7126 if( pSub->pPrior==0 ) return 0; /* Must be a compound */
7127 if( pSub->selFlags & SF_CopyCte ) return 0; /* Not a CTE */
7129 if( pSub->op!=TK_ALL && pSub->pPrior ) return 0; /* Must be UNION ALL */
7130 if( pSub->pWhere ) return 0; /* No WHERE clause */
7131 if( pSub->pLimit ) return 0; /* No LIMIT clause */
7132 if( pSub->selFlags & SF_Aggregate ) return 0; /* Not an aggregate */
7133 assert( pSub->pHaving==0 ); /* Due to the previous */
7134 pSub = pSub->pPrior; /* Repeat over compound */
7135 }while( pSub );
7137 /* If we reach this point then it is OK to perform the transformation */
7139 db = pParse->db;
7140 pCount = pExpr;
7141 pExpr = 0;
7142 pSub = p->pSrc->a[0].pSelect;
7143 p->pSrc->a[0].pSelect = 0;
7144 sqlite3SrcListDelete(db, p->pSrc);
7145 p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc));
7146 while( pSub ){
7147 Expr *pTerm;
7148 pPrior = pSub->pPrior;
7149 pSub->pPrior = 0;
7150 pSub->pNext = 0;
7151 pSub->selFlags |= SF_Aggregate;
7152 pSub->selFlags &= ~SF_Compound;
7153 pSub->nSelectRow = 0;
7154 sqlite3ParserAddCleanup(pParse, sqlite3ExprListDeleteGeneric, pSub->pEList);
7155 pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount;
7156 pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm);
7157 pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0);
7158 sqlite3PExprAddSelect(pParse, pTerm, pSub);
7159 if( pExpr==0 ){
7160 pExpr = pTerm;
7161 }else{
7162 pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr);
7164 pSub = pPrior;
7166 p->pEList->a[0].pExpr = pExpr;
7167 p->selFlags &= ~SF_Aggregate;
7169 #if TREETRACE_ENABLED
7170 if( sqlite3TreeTrace & 0x200 ){
7171 TREETRACE(0x200,pParse,p,("After count-of-view optimization:\n"));
7172 sqlite3TreeViewSelect(0, p, 0);
7174 #endif
7175 return 1;
7179 ** If any term of pSrc, or any SF_NestedFrom sub-query, is not the same
7180 ** as pSrcItem but has the same alias as p0, then return true.
7181 ** Otherwise return false.
7183 static int sameSrcAlias(SrcItem *p0, SrcList *pSrc){
7184 int i;
7185 for(i=0; i<pSrc->nSrc; i++){
7186 SrcItem *p1 = &pSrc->a[i];
7187 if( p1==p0 ) continue;
7188 if( p0->pTab==p1->pTab && 0==sqlite3_stricmp(p0->zAlias, p1->zAlias) ){
7189 return 1;
7191 if( p1->pSelect
7192 && (p1->pSelect->selFlags & SF_NestedFrom)!=0
7193 && sameSrcAlias(p0, p1->pSelect->pSrc)
7195 return 1;
7198 return 0;
7202 ** Return TRUE (non-zero) if the i-th entry in the pTabList SrcList can
7203 ** be implemented as a co-routine. The i-th entry is guaranteed to be
7204 ** a subquery.
7206 ** The subquery is implemented as a co-routine if all of the following are
7207 ** true:
7209 ** (1) The subquery will likely be implemented in the outer loop of
7210 ** the query. This will be the case if any one of the following
7211 ** conditions hold:
7212 ** (a) The subquery is the only term in the FROM clause
7213 ** (b) The subquery is the left-most term and a CROSS JOIN or similar
7214 ** requires it to be the outer loop
7215 ** (c) All of the following are true:
7216 ** (i) The subquery is the left-most subquery in the FROM clause
7217 ** (ii) There is nothing that would prevent the subquery from
7218 ** being used as the outer loop if the sqlite3WhereBegin()
7219 ** routine nominates it to that position.
7220 ** (iii) The query is not a UPDATE ... FROM
7221 ** (2) The subquery is not a CTE that should be materialized because
7222 ** (a) the AS MATERIALIZED keyword is used, or
7223 ** (b) the CTE is used multiple times and does not have the
7224 ** NOT MATERIALIZED keyword
7225 ** (3) The subquery is not part of a left operand for a RIGHT JOIN
7226 ** (4) The SQLITE_Coroutine optimization disable flag is not set
7227 ** (5) The subquery is not self-joined
7229 static int fromClauseTermCanBeCoroutine(
7230 Parse *pParse, /* Parsing context */
7231 SrcList *pTabList, /* FROM clause */
7232 int i, /* Which term of the FROM clause holds the subquery */
7233 int selFlags /* Flags on the SELECT statement */
7235 SrcItem *pItem = &pTabList->a[i];
7236 if( pItem->fg.isCte ){
7237 const CteUse *pCteUse = pItem->u2.pCteUse;
7238 if( pCteUse->eM10d==M10d_Yes ) return 0; /* (2a) */
7239 if( pCteUse->nUse>=2 && pCteUse->eM10d!=M10d_No ) return 0; /* (2b) */
7241 if( pTabList->a[0].fg.jointype & JT_LTORJ ) return 0; /* (3) */
7242 if( OptimizationDisabled(pParse->db, SQLITE_Coroutines) ) return 0; /* (4) */
7243 if( isSelfJoinView(pTabList, pItem, i+1, pTabList->nSrc)!=0 ){
7244 return 0; /* (5) */
7246 if( i==0 ){
7247 if( pTabList->nSrc==1 ) return 1; /* (1a) */
7248 if( pTabList->a[1].fg.jointype & JT_CROSS ) return 1; /* (1b) */
7249 if( selFlags & SF_UpdateFrom ) return 0; /* (1c-iii) */
7250 return 1;
7252 if( selFlags & SF_UpdateFrom ) return 0; /* (1c-iii) */
7253 while( 1 /*exit-by-break*/ ){
7254 if( pItem->fg.jointype & (JT_OUTER|JT_CROSS) ) return 0; /* (1c-ii) */
7255 if( i==0 ) break;
7256 i--;
7257 pItem--;
7258 if( pItem->pSelect!=0 ) return 0; /* (1c-i) */
7260 return 1;
7264 ** Generate code for the SELECT statement given in the p argument.
7266 ** The results are returned according to the SelectDest structure.
7267 ** See comments in sqliteInt.h for further information.
7269 ** This routine returns the number of errors. If any errors are
7270 ** encountered, then an appropriate error message is left in
7271 ** pParse->zErrMsg.
7273 ** This routine does NOT free the Select structure passed in. The
7274 ** calling function needs to do that.
7276 int sqlite3Select(
7277 Parse *pParse, /* The parser context */
7278 Select *p, /* The SELECT statement being coded. */
7279 SelectDest *pDest /* What to do with the query results */
7281 int i, j; /* Loop counters */
7282 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */
7283 Vdbe *v; /* The virtual machine under construction */
7284 int isAgg; /* True for select lists like "count(*)" */
7285 ExprList *pEList = 0; /* List of columns to extract. */
7286 SrcList *pTabList; /* List of tables to select from */
7287 Expr *pWhere; /* The WHERE clause. May be NULL */
7288 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */
7289 Expr *pHaving; /* The HAVING clause. May be NULL */
7290 AggInfo *pAggInfo = 0; /* Aggregate information */
7291 int rc = 1; /* Value to return from this function */
7292 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
7293 SortCtx sSort; /* Info on how to code the ORDER BY clause */
7294 int iEnd; /* Address of the end of the query */
7295 sqlite3 *db; /* The database connection */
7296 ExprList *pMinMaxOrderBy = 0; /* Added ORDER BY for min/max queries */
7297 u8 minMaxFlag; /* Flag for min/max queries */
7299 db = pParse->db;
7300 assert( pParse==db->pParse );
7301 v = sqlite3GetVdbe(pParse);
7302 if( p==0 || pParse->nErr ){
7303 return 1;
7305 assert( db->mallocFailed==0 );
7306 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
7307 #if TREETRACE_ENABLED
7308 TREETRACE(0x1,pParse,p, ("begin processing:\n", pParse->addrExplain));
7309 if( sqlite3TreeTrace & 0x10000 ){
7310 if( (sqlite3TreeTrace & 0x10001)==0x10000 ){
7311 sqlite3TreeViewLine(0, "In sqlite3Select() at %s:%d",
7312 __FILE__, __LINE__);
7314 sqlite3ShowSelect(p);
7316 #endif
7318 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
7319 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
7320 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
7321 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
7322 if( IgnorableDistinct(pDest) ){
7323 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
7324 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard ||
7325 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_DistFifo );
7326 /* All of these destinations are also able to ignore the ORDER BY clause */
7327 if( p->pOrderBy ){
7328 #if TREETRACE_ENABLED
7329 TREETRACE(0x800,pParse,p, ("dropping superfluous ORDER BY:\n"));
7330 if( sqlite3TreeTrace & 0x800 ){
7331 sqlite3TreeViewExprList(0, p->pOrderBy, 0, "ORDERBY");
7333 #endif
7334 sqlite3ParserAddCleanup(pParse, sqlite3ExprListDeleteGeneric,
7335 p->pOrderBy);
7336 testcase( pParse->earlyCleanup );
7337 p->pOrderBy = 0;
7339 p->selFlags &= ~SF_Distinct;
7340 p->selFlags |= SF_NoopOrderBy;
7342 sqlite3SelectPrep(pParse, p, 0);
7343 if( pParse->nErr ){
7344 goto select_end;
7346 assert( db->mallocFailed==0 );
7347 assert( p->pEList!=0 );
7348 #if TREETRACE_ENABLED
7349 if( sqlite3TreeTrace & 0x10 ){
7350 TREETRACE(0x10,pParse,p, ("after name resolution:\n"));
7351 sqlite3TreeViewSelect(0, p, 0);
7353 #endif
7355 /* If the SF_UFSrcCheck flag is set, then this function is being called
7356 ** as part of populating the temp table for an UPDATE...FROM statement.
7357 ** In this case, it is an error if the target object (pSrc->a[0]) name
7358 ** or alias is duplicated within FROM clause (pSrc->a[1..n]).
7360 ** Postgres disallows this case too. The reason is that some other
7361 ** systems handle this case differently, and not all the same way,
7362 ** which is just confusing. To avoid this, we follow PG's lead and
7363 ** disallow it altogether. */
7364 if( p->selFlags & SF_UFSrcCheck ){
7365 SrcItem *p0 = &p->pSrc->a[0];
7366 if( sameSrcAlias(p0, p->pSrc) ){
7367 sqlite3ErrorMsg(pParse,
7368 "target object/alias may not appear in FROM clause: %s",
7369 p0->zAlias ? p0->zAlias : p0->pTab->zName
7371 goto select_end;
7374 /* Clear the SF_UFSrcCheck flag. The check has already been performed,
7375 ** and leaving this flag set can cause errors if a compound sub-query
7376 ** in p->pSrc is flattened into this query and this function called
7377 ** again as part of compound SELECT processing. */
7378 p->selFlags &= ~SF_UFSrcCheck;
7381 if( pDest->eDest==SRT_Output ){
7382 sqlite3GenerateColumnNames(pParse, p);
7385 #ifndef SQLITE_OMIT_WINDOWFUNC
7386 if( sqlite3WindowRewrite(pParse, p) ){
7387 assert( pParse->nErr );
7388 goto select_end;
7390 #if TREETRACE_ENABLED
7391 if( p->pWin && (sqlite3TreeTrace & 0x40)!=0 ){
7392 TREETRACE(0x40,pParse,p, ("after window rewrite:\n"));
7393 sqlite3TreeViewSelect(0, p, 0);
7395 #endif
7396 #endif /* SQLITE_OMIT_WINDOWFUNC */
7397 pTabList = p->pSrc;
7398 isAgg = (p->selFlags & SF_Aggregate)!=0;
7399 memset(&sSort, 0, sizeof(sSort));
7400 sSort.pOrderBy = p->pOrderBy;
7402 /* Try to do various optimizations (flattening subqueries, and strength
7403 ** reduction of join operators) in the FROM clause up into the main query
7405 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
7406 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
7407 SrcItem *pItem = &pTabList->a[i];
7408 Select *pSub = pItem->pSelect;
7409 Table *pTab = pItem->pTab;
7411 /* The expander should have already created transient Table objects
7412 ** even for FROM clause elements such as subqueries that do not correspond
7413 ** to a real table */
7414 assert( pTab!=0 );
7416 /* Try to simplify joins:
7418 ** LEFT JOIN -> JOIN
7419 ** RIGHT JOIN -> JOIN
7420 ** FULL JOIN -> RIGHT JOIN
7422 ** If terms of the i-th table are used in the WHERE clause in such a
7423 ** way that the i-th table cannot be the NULL row of a join, then
7424 ** perform the appropriate simplification. This is called
7425 ** "OUTER JOIN strength reduction" in the SQLite documentation.
7427 if( (pItem->fg.jointype & (JT_LEFT|JT_LTORJ))!=0
7428 && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor,
7429 pItem->fg.jointype & JT_LTORJ)
7430 && OptimizationEnabled(db, SQLITE_SimplifyJoin)
7432 if( pItem->fg.jointype & JT_LEFT ){
7433 if( pItem->fg.jointype & JT_RIGHT ){
7434 TREETRACE(0x1000,pParse,p,
7435 ("FULL-JOIN simplifies to RIGHT-JOIN on term %d\n",i));
7436 pItem->fg.jointype &= ~JT_LEFT;
7437 }else{
7438 TREETRACE(0x1000,pParse,p,
7439 ("LEFT-JOIN simplifies to JOIN on term %d\n",i));
7440 pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER);
7441 unsetJoinExpr(p->pWhere, pItem->iCursor, 0);
7444 if( pItem->fg.jointype & JT_LTORJ ){
7445 for(j=i+1; j<pTabList->nSrc; j++){
7446 SrcItem *pI2 = &pTabList->a[j];
7447 if( pI2->fg.jointype & JT_RIGHT ){
7448 if( pI2->fg.jointype & JT_LEFT ){
7449 TREETRACE(0x1000,pParse,p,
7450 ("FULL-JOIN simplifies to LEFT-JOIN on term %d\n",j));
7451 pI2->fg.jointype &= ~JT_RIGHT;
7452 }else{
7453 TREETRACE(0x1000,pParse,p,
7454 ("RIGHT-JOIN simplifies to JOIN on term %d\n",j));
7455 pI2->fg.jointype &= ~(JT_RIGHT|JT_OUTER);
7456 unsetJoinExpr(p->pWhere, pI2->iCursor, 1);
7460 for(j=pTabList->nSrc-1; j>=0; j--){
7461 pTabList->a[j].fg.jointype &= ~JT_LTORJ;
7462 if( pTabList->a[j].fg.jointype & JT_RIGHT ) break;
7467 /* No further action if this term of the FROM clause is not a subquery */
7468 if( pSub==0 ) continue;
7470 /* Catch mismatch in the declared columns of a view and the number of
7471 ** columns in the SELECT on the RHS */
7472 if( pTab->nCol!=pSub->pEList->nExpr ){
7473 sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d",
7474 pTab->nCol, pTab->zName, pSub->pEList->nExpr);
7475 goto select_end;
7478 /* Do not attempt the usual optimizations (flattening and ORDER BY
7479 ** elimination) on a MATERIALIZED common table expression because
7480 ** a MATERIALIZED common table expression is an optimization fence.
7482 if( pItem->fg.isCte && pItem->u2.pCteUse->eM10d==M10d_Yes ){
7483 continue;
7486 /* Do not try to flatten an aggregate subquery.
7488 ** Flattening an aggregate subquery is only possible if the outer query
7489 ** is not a join. But if the outer query is not a join, then the subquery
7490 ** will be implemented as a co-routine and there is no advantage to
7491 ** flattening in that case.
7493 if( (pSub->selFlags & SF_Aggregate)!=0 ) continue;
7494 assert( pSub->pGroupBy==0 );
7496 /* If a FROM-clause subquery has an ORDER BY clause that is not
7497 ** really doing anything, then delete it now so that it does not
7498 ** interfere with query flattening. See the discussion at
7499 ** https://sqlite.org/forum/forumpost/2d76f2bcf65d256a
7501 ** Beware of these cases where the ORDER BY clause may not be safely
7502 ** omitted:
7504 ** (1) There is also a LIMIT clause
7505 ** (2) The subquery was added to help with window-function
7506 ** processing
7507 ** (3) The subquery is in the FROM clause of an UPDATE
7508 ** (4) The outer query uses an aggregate function other than
7509 ** the built-in count(), min(), or max().
7510 ** (5) The ORDER BY isn't going to accomplish anything because
7511 ** one of:
7512 ** (a) The outer query has a different ORDER BY clause
7513 ** (b) The subquery is part of a join
7514 ** See forum post 062d576715d277c8
7516 ** Also retain the ORDER BY if the OmitOrderBy optimization is disabled.
7518 if( pSub->pOrderBy!=0
7519 && (p->pOrderBy!=0 || pTabList->nSrc>1) /* Condition (5) */
7520 && pSub->pLimit==0 /* Condition (1) */
7521 && (pSub->selFlags & SF_OrderByReqd)==0 /* Condition (2) */
7522 && (p->selFlags & SF_OrderByReqd)==0 /* Condition (3) and (4) */
7523 && OptimizationEnabled(db, SQLITE_OmitOrderBy)
7525 TREETRACE(0x800,pParse,p,
7526 ("omit superfluous ORDER BY on %r FROM-clause subquery\n",i+1));
7527 sqlite3ParserAddCleanup(pParse, sqlite3ExprListDeleteGeneric,
7528 pSub->pOrderBy);
7529 pSub->pOrderBy = 0;
7532 /* If the outer query contains a "complex" result set (that is,
7533 ** if the result set of the outer query uses functions or subqueries)
7534 ** and if the subquery contains an ORDER BY clause and if
7535 ** it will be implemented as a co-routine, then do not flatten. This
7536 ** restriction allows SQL constructs like this:
7538 ** SELECT expensive_function(x)
7539 ** FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
7541 ** The expensive_function() is only computed on the 10 rows that
7542 ** are output, rather than every row of the table.
7544 ** The requirement that the outer query have a complex result set
7545 ** means that flattening does occur on simpler SQL constraints without
7546 ** the expensive_function() like:
7548 ** SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
7550 if( pSub->pOrderBy!=0
7551 && i==0
7552 && (p->selFlags & SF_ComplexResult)!=0
7553 && (pTabList->nSrc==1
7554 || (pTabList->a[1].fg.jointype&(JT_OUTER|JT_CROSS))!=0)
7556 continue;
7559 if( flattenSubquery(pParse, p, i, isAgg) ){
7560 if( pParse->nErr ) goto select_end;
7561 /* This subquery can be absorbed into its parent. */
7562 i = -1;
7564 pTabList = p->pSrc;
7565 if( db->mallocFailed ) goto select_end;
7566 if( !IgnorableOrderby(pDest) ){
7567 sSort.pOrderBy = p->pOrderBy;
7570 #endif
7572 #ifndef SQLITE_OMIT_COMPOUND_SELECT
7573 /* Handle compound SELECT statements using the separate multiSelect()
7574 ** procedure.
7576 if( p->pPrior ){
7577 rc = multiSelect(pParse, p, pDest);
7578 #if TREETRACE_ENABLED
7579 TREETRACE(0x400,pParse,p,("end compound-select processing\n"));
7580 if( (sqlite3TreeTrace & 0x400)!=0 && ExplainQueryPlanParent(pParse)==0 ){
7581 sqlite3TreeViewSelect(0, p, 0);
7583 #endif
7584 if( p->pNext==0 ) ExplainQueryPlanPop(pParse);
7585 return rc;
7587 #endif
7589 /* Do the WHERE-clause constant propagation optimization if this is
7590 ** a join. No need to speed time on this operation for non-join queries
7591 ** as the equivalent optimization will be handled by query planner in
7592 ** sqlite3WhereBegin().
7594 if( p->pWhere!=0
7595 && p->pWhere->op==TK_AND
7596 && OptimizationEnabled(db, SQLITE_PropagateConst)
7597 && propagateConstants(pParse, p)
7599 #if TREETRACE_ENABLED
7600 if( sqlite3TreeTrace & 0x2000 ){
7601 TREETRACE(0x2000,pParse,p,("After constant propagation:\n"));
7602 sqlite3TreeViewSelect(0, p, 0);
7604 #endif
7605 }else{
7606 TREETRACE(0x2000,pParse,p,("Constant propagation not helpful\n"));
7609 if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView)
7610 && countOfViewOptimization(pParse, p)
7612 if( db->mallocFailed ) goto select_end;
7613 pTabList = p->pSrc;
7616 /* For each term in the FROM clause, do two things:
7617 ** (1) Authorized unreferenced tables
7618 ** (2) Generate code for all sub-queries
7620 for(i=0; i<pTabList->nSrc; i++){
7621 SrcItem *pItem = &pTabList->a[i];
7622 SrcItem *pPrior;
7623 SelectDest dest;
7624 Select *pSub;
7625 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
7626 const char *zSavedAuthContext;
7627 #endif
7629 /* Issue SQLITE_READ authorizations with a fake column name for any
7630 ** tables that are referenced but from which no values are extracted.
7631 ** Examples of where these kinds of null SQLITE_READ authorizations
7632 ** would occur:
7634 ** SELECT count(*) FROM t1; -- SQLITE_READ t1.""
7635 ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2.""
7637 ** The fake column name is an empty string. It is possible for a table to
7638 ** have a column named by the empty string, in which case there is no way to
7639 ** distinguish between an unreferenced table and an actual reference to the
7640 ** "" column. The original design was for the fake column name to be a NULL,
7641 ** which would be unambiguous. But legacy authorization callbacks might
7642 ** assume the column name is non-NULL and segfault. The use of an empty
7643 ** string for the fake column name seems safer.
7645 if( pItem->colUsed==0 && pItem->zName!=0 ){
7646 sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase);
7649 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
7650 /* Generate code for all sub-queries in the FROM clause
7652 pSub = pItem->pSelect;
7653 if( pSub==0 ) continue;
7655 /* The code for a subquery should only be generated once. */
7656 assert( pItem->addrFillSub==0 );
7658 /* Increment Parse.nHeight by the height of the largest expression
7659 ** tree referred to by this, the parent select. The child select
7660 ** may contain expression trees of at most
7661 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
7662 ** more conservative than necessary, but much easier than enforcing
7663 ** an exact limit.
7665 pParse->nHeight += sqlite3SelectExprHeight(p);
7667 /* Make copies of constant WHERE-clause terms in the outer query down
7668 ** inside the subquery. This can help the subquery to run more efficiently.
7670 if( OptimizationEnabled(db, SQLITE_PushDown)
7671 && (pItem->fg.isCte==0
7672 || (pItem->u2.pCteUse->eM10d!=M10d_Yes && pItem->u2.pCteUse->nUse<2))
7673 && pushDownWhereTerms(pParse, pSub, p->pWhere, pTabList, i)
7675 #if TREETRACE_ENABLED
7676 if( sqlite3TreeTrace & 0x4000 ){
7677 TREETRACE(0x4000,pParse,p,
7678 ("After WHERE-clause push-down into subquery %d:\n", pSub->selId));
7679 sqlite3TreeViewSelect(0, p, 0);
7681 #endif
7682 assert( pItem->pSelect && (pItem->pSelect->selFlags & SF_PushDown)!=0 );
7683 }else{
7684 TREETRACE(0x4000,pParse,p,("Push-down not possible\n"));
7687 /* Convert unused result columns of the subquery into simple NULL
7688 ** expressions, to avoid unneeded searching and computation.
7690 if( OptimizationEnabled(db, SQLITE_NullUnusedCols)
7691 && disableUnusedSubqueryResultColumns(pItem)
7693 #if TREETRACE_ENABLED
7694 if( sqlite3TreeTrace & 0x4000 ){
7695 TREETRACE(0x4000,pParse,p,
7696 ("Change unused result columns to NULL for subquery %d:\n",
7697 pSub->selId));
7698 sqlite3TreeViewSelect(0, p, 0);
7700 #endif
7703 zSavedAuthContext = pParse->zAuthContext;
7704 pParse->zAuthContext = pItem->zName;
7706 /* Generate code to implement the subquery
7708 if( fromClauseTermCanBeCoroutine(pParse, pTabList, i, p->selFlags) ){
7709 /* Implement a co-routine that will return a single row of the result
7710 ** set on each invocation.
7712 int addrTop = sqlite3VdbeCurrentAddr(v)+1;
7714 pItem->regReturn = ++pParse->nMem;
7715 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
7716 VdbeComment((v, "%!S", pItem));
7717 pItem->addrFillSub = addrTop;
7718 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
7719 ExplainQueryPlan((pParse, 1, "CO-ROUTINE %!S", pItem));
7720 sqlite3Select(pParse, pSub, &dest);
7721 pItem->pTab->nRowLogEst = pSub->nSelectRow;
7722 pItem->fg.viaCoroutine = 1;
7723 pItem->regResult = dest.iSdst;
7724 sqlite3VdbeEndCoroutine(v, pItem->regReturn);
7725 sqlite3VdbeJumpHere(v, addrTop-1);
7726 sqlite3ClearTempRegCache(pParse);
7727 }else if( pItem->fg.isCte && pItem->u2.pCteUse->addrM9e>0 ){
7728 /* This is a CTE for which materialization code has already been
7729 ** generated. Invoke the subroutine to compute the materialization,
7730 ** the make the pItem->iCursor be a copy of the ephemeral table that
7731 ** holds the result of the materialization. */
7732 CteUse *pCteUse = pItem->u2.pCteUse;
7733 sqlite3VdbeAddOp2(v, OP_Gosub, pCteUse->regRtn, pCteUse->addrM9e);
7734 if( pItem->iCursor!=pCteUse->iCur ){
7735 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pCteUse->iCur);
7736 VdbeComment((v, "%!S", pItem));
7738 pSub->nSelectRow = pCteUse->nRowEst;
7739 }else if( (pPrior = isSelfJoinView(pTabList, pItem, 0, i))!=0 ){
7740 /* This view has already been materialized by a prior entry in
7741 ** this same FROM clause. Reuse it. */
7742 if( pPrior->addrFillSub ){
7743 sqlite3VdbeAddOp2(v, OP_Gosub, pPrior->regReturn, pPrior->addrFillSub);
7745 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor);
7746 pSub->nSelectRow = pPrior->pSelect->nSelectRow;
7747 }else{
7748 /* Materialize the view. If the view is not correlated, generate a
7749 ** subroutine to do the materialization so that subsequent uses of
7750 ** the same view can reuse the materialization. */
7751 int topAddr;
7752 int onceAddr = 0;
7753 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
7754 int addrExplain;
7755 #endif
7757 pItem->regReturn = ++pParse->nMem;
7758 topAddr = sqlite3VdbeAddOp0(v, OP_Goto);
7759 pItem->addrFillSub = topAddr+1;
7760 pItem->fg.isMaterialized = 1;
7761 if( pItem->fg.isCorrelated==0 ){
7762 /* If the subquery is not correlated and if we are not inside of
7763 ** a trigger, then we only need to compute the value of the subquery
7764 ** once. */
7765 onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
7766 VdbeComment((v, "materialize %!S", pItem));
7767 }else{
7768 VdbeNoopComment((v, "materialize %!S", pItem));
7770 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
7772 ExplainQueryPlan2(addrExplain, (pParse, 1, "MATERIALIZE %!S", pItem));
7773 sqlite3Select(pParse, pSub, &dest);
7774 pItem->pTab->nRowLogEst = pSub->nSelectRow;
7775 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
7776 sqlite3VdbeAddOp2(v, OP_Return, pItem->regReturn, topAddr+1);
7777 VdbeComment((v, "end %!S", pItem));
7778 sqlite3VdbeScanStatusRange(v, addrExplain, addrExplain, -1);
7779 sqlite3VdbeJumpHere(v, topAddr);
7780 sqlite3ClearTempRegCache(pParse);
7781 if( pItem->fg.isCte && pItem->fg.isCorrelated==0 ){
7782 CteUse *pCteUse = pItem->u2.pCteUse;
7783 pCteUse->addrM9e = pItem->addrFillSub;
7784 pCteUse->regRtn = pItem->regReturn;
7785 pCteUse->iCur = pItem->iCursor;
7786 pCteUse->nRowEst = pSub->nSelectRow;
7789 if( db->mallocFailed ) goto select_end;
7790 pParse->nHeight -= sqlite3SelectExprHeight(p);
7791 pParse->zAuthContext = zSavedAuthContext;
7792 #endif
7795 /* Various elements of the SELECT copied into local variables for
7796 ** convenience */
7797 pEList = p->pEList;
7798 pWhere = p->pWhere;
7799 pGroupBy = p->pGroupBy;
7800 pHaving = p->pHaving;
7801 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
7803 #if TREETRACE_ENABLED
7804 if( sqlite3TreeTrace & 0x8000 ){
7805 TREETRACE(0x8000,pParse,p,("After all FROM-clause analysis:\n"));
7806 sqlite3TreeViewSelect(0, p, 0);
7808 #endif
7810 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
7811 ** if the select-list is the same as the ORDER BY list, then this query
7812 ** can be rewritten as a GROUP BY. In other words, this:
7814 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz
7816 ** is transformed to:
7818 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
7820 ** The second form is preferred as a single index (or temp-table) may be
7821 ** used for both the ORDER BY and DISTINCT processing. As originally
7822 ** written the query must use a temp-table for at least one of the ORDER
7823 ** BY and DISTINCT, and an index or separate temp-table for the other.
7825 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
7826 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0
7827 #ifndef SQLITE_OMIT_WINDOWFUNC
7828 && p->pWin==0
7829 #endif
7831 p->selFlags &= ~SF_Distinct;
7832 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0);
7833 p->selFlags |= SF_Aggregate;
7834 /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
7835 ** the sDistinct.isTnct is still set. Hence, isTnct represents the
7836 ** original setting of the SF_Distinct flag, not the current setting */
7837 assert( sDistinct.isTnct );
7838 sDistinct.isTnct = 2;
7840 #if TREETRACE_ENABLED
7841 if( sqlite3TreeTrace & 0x20000 ){
7842 TREETRACE(0x20000,pParse,p,("Transform DISTINCT into GROUP BY:\n"));
7843 sqlite3TreeViewSelect(0, p, 0);
7845 #endif
7848 /* If there is an ORDER BY clause, then create an ephemeral index to
7849 ** do the sorting. But this sorting ephemeral index might end up
7850 ** being unused if the data can be extracted in pre-sorted order.
7851 ** If that is the case, then the OP_OpenEphemeral instruction will be
7852 ** changed to an OP_Noop once we figure out that the sorting index is
7853 ** not needed. The sSort.addrSortIndex variable is used to facilitate
7854 ** that change.
7856 if( sSort.pOrderBy ){
7857 KeyInfo *pKeyInfo;
7858 pKeyInfo = sqlite3KeyInfoFromExprList(
7859 pParse, sSort.pOrderBy, 0, pEList->nExpr);
7860 sSort.iECursor = pParse->nTab++;
7861 sSort.addrSortIndex =
7862 sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
7863 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
7864 (char*)pKeyInfo, P4_KEYINFO
7866 }else{
7867 sSort.addrSortIndex = -1;
7870 /* If the output is destined for a temporary table, open that table.
7872 if( pDest->eDest==SRT_EphemTab ){
7873 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
7874 if( p->selFlags & SF_NestedFrom ){
7875 /* Delete or NULL-out result columns that will never be used */
7876 int ii;
7877 for(ii=pEList->nExpr-1; ii>0 && pEList->a[ii].fg.bUsed==0; ii--){
7878 sqlite3ExprDelete(db, pEList->a[ii].pExpr);
7879 sqlite3DbFree(db, pEList->a[ii].zEName);
7880 pEList->nExpr--;
7882 for(ii=0; ii<pEList->nExpr; ii++){
7883 if( pEList->a[ii].fg.bUsed==0 ) pEList->a[ii].pExpr->op = TK_NULL;
7888 /* Set the limiter.
7890 iEnd = sqlite3VdbeMakeLabel(pParse);
7891 if( (p->selFlags & SF_FixedLimit)==0 ){
7892 p->nSelectRow = 320; /* 4 billion rows */
7894 if( p->pLimit ) computeLimitRegisters(pParse, p, iEnd);
7895 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
7896 sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen);
7897 sSort.sortFlags |= SORTFLAG_UseSorter;
7900 /* Open an ephemeral index to use for the distinct set.
7902 if( p->selFlags & SF_Distinct ){
7903 sDistinct.tabTnct = pParse->nTab++;
7904 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
7905 sDistinct.tabTnct, 0, 0,
7906 (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0),
7907 P4_KEYINFO);
7908 sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
7909 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
7910 }else{
7911 sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
7914 if( !isAgg && pGroupBy==0 ){
7915 /* No aggregate functions and no GROUP BY clause */
7916 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0)
7917 | (p->selFlags & SF_FixedLimit);
7918 #ifndef SQLITE_OMIT_WINDOWFUNC
7919 Window *pWin = p->pWin; /* Main window object (or NULL) */
7920 if( pWin ){
7921 sqlite3WindowCodeInit(pParse, p);
7923 #endif
7924 assert( WHERE_USE_LIMIT==SF_FixedLimit );
7927 /* Begin the database scan. */
7928 TREETRACE(0x2,pParse,p,("WhereBegin\n"));
7929 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
7930 p->pEList, p, wctrlFlags, p->nSelectRow);
7931 if( pWInfo==0 ) goto select_end;
7932 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
7933 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
7935 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
7936 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
7938 if( sSort.pOrderBy ){
7939 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
7940 sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo);
7941 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
7942 sSort.pOrderBy = 0;
7945 TREETRACE(0x2,pParse,p,("WhereBegin returns\n"));
7947 /* If sorting index that was created by a prior OP_OpenEphemeral
7948 ** instruction ended up not being needed, then change the OP_OpenEphemeral
7949 ** into an OP_Noop.
7951 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
7952 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
7955 assert( p->pEList==pEList );
7956 #ifndef SQLITE_OMIT_WINDOWFUNC
7957 if( pWin ){
7958 int addrGosub = sqlite3VdbeMakeLabel(pParse);
7959 int iCont = sqlite3VdbeMakeLabel(pParse);
7960 int iBreak = sqlite3VdbeMakeLabel(pParse);
7961 int regGosub = ++pParse->nMem;
7963 sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub);
7965 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
7966 sqlite3VdbeResolveLabel(v, addrGosub);
7967 VdbeNoopComment((v, "inner-loop subroutine"));
7968 sSort.labelOBLopt = 0;
7969 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak);
7970 sqlite3VdbeResolveLabel(v, iCont);
7971 sqlite3VdbeAddOp1(v, OP_Return, regGosub);
7972 VdbeComment((v, "end inner-loop subroutine"));
7973 sqlite3VdbeResolveLabel(v, iBreak);
7974 }else
7975 #endif /* SQLITE_OMIT_WINDOWFUNC */
7977 /* Use the standard inner loop. */
7978 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest,
7979 sqlite3WhereContinueLabel(pWInfo),
7980 sqlite3WhereBreakLabel(pWInfo));
7982 /* End the database scan loop.
7984 TREETRACE(0x2,pParse,p,("WhereEnd\n"));
7985 sqlite3WhereEnd(pWInfo);
7987 }else{
7988 /* This case when there exist aggregate functions or a GROUP BY clause
7989 ** or both */
7990 NameContext sNC; /* Name context for processing aggregate information */
7991 int iAMem; /* First Mem address for storing current GROUP BY */
7992 int iBMem; /* First Mem address for previous GROUP BY */
7993 int iUseFlag; /* Mem address holding flag indicating that at least
7994 ** one row of the input to the aggregator has been
7995 ** processed */
7996 int iAbortFlag; /* Mem address which causes query abort if positive */
7997 int groupBySort; /* Rows come from source in GROUP BY order */
7998 int addrEnd; /* End of processing for this SELECT */
7999 int sortPTab = 0; /* Pseudotable used to decode sorting results */
8000 int sortOut = 0; /* Output register from the sorter */
8001 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
8003 /* Remove any and all aliases between the result set and the
8004 ** GROUP BY clause.
8006 if( pGroupBy ){
8007 int k; /* Loop counter */
8008 struct ExprList_item *pItem; /* For looping over expression in a list */
8010 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
8011 pItem->u.x.iAlias = 0;
8013 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
8014 pItem->u.x.iAlias = 0;
8016 assert( 66==sqlite3LogEst(100) );
8017 if( p->nSelectRow>66 ) p->nSelectRow = 66;
8019 /* If there is both a GROUP BY and an ORDER BY clause and they are
8020 ** identical, then it may be possible to disable the ORDER BY clause
8021 ** on the grounds that the GROUP BY will cause elements to come out
8022 ** in the correct order. It also may not - the GROUP BY might use a
8023 ** database index that causes rows to be grouped together as required
8024 ** but not actually sorted. Either way, record the fact that the
8025 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
8026 ** variable. */
8027 if( sSort.pOrderBy && pGroupBy->nExpr==sSort.pOrderBy->nExpr ){
8028 int ii;
8029 /* The GROUP BY processing doesn't care whether rows are delivered in
8030 ** ASC or DESC order - only that each group is returned contiguously.
8031 ** So set the ASC/DESC flags in the GROUP BY to match those in the
8032 ** ORDER BY to maximize the chances of rows being delivered in an
8033 ** order that makes the ORDER BY redundant. */
8034 for(ii=0; ii<pGroupBy->nExpr; ii++){
8035 u8 sortFlags;
8036 sortFlags = sSort.pOrderBy->a[ii].fg.sortFlags & KEYINFO_ORDER_DESC;
8037 pGroupBy->a[ii].fg.sortFlags = sortFlags;
8039 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
8040 orderByGrp = 1;
8043 }else{
8044 assert( 0==sqlite3LogEst(1) );
8045 p->nSelectRow = 0;
8048 /* Create a label to jump to when we want to abort the query */
8049 addrEnd = sqlite3VdbeMakeLabel(pParse);
8051 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
8052 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
8053 ** SELECT statement.
8055 pAggInfo = sqlite3DbMallocZero(db, sizeof(*pAggInfo) );
8056 if( pAggInfo ){
8057 sqlite3ParserAddCleanup(pParse, agginfoFree, pAggInfo);
8058 testcase( pParse->earlyCleanup );
8060 if( db->mallocFailed ){
8061 goto select_end;
8063 pAggInfo->selId = p->selId;
8064 #ifdef SQLITE_DEBUG
8065 pAggInfo->pSelect = p;
8066 #endif
8067 memset(&sNC, 0, sizeof(sNC));
8068 sNC.pParse = pParse;
8069 sNC.pSrcList = pTabList;
8070 sNC.uNC.pAggInfo = pAggInfo;
8071 VVA_ONLY( sNC.ncFlags = NC_UAggInfo; )
8072 pAggInfo->nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
8073 pAggInfo->pGroupBy = pGroupBy;
8074 sqlite3ExprAnalyzeAggList(&sNC, pEList);
8075 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
8076 if( pHaving ){
8077 if( pGroupBy ){
8078 assert( pWhere==p->pWhere );
8079 assert( pHaving==p->pHaving );
8080 assert( pGroupBy==p->pGroupBy );
8081 havingToWhere(pParse, p);
8082 pWhere = p->pWhere;
8084 sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
8086 pAggInfo->nAccumulator = pAggInfo->nColumn;
8087 if( p->pGroupBy==0 && p->pHaving==0 && pAggInfo->nFunc==1 ){
8088 minMaxFlag = minMaxQuery(db, pAggInfo->aFunc[0].pFExpr, &pMinMaxOrderBy);
8089 }else{
8090 minMaxFlag = WHERE_ORDERBY_NORMAL;
8092 analyzeAggFuncArgs(pAggInfo, &sNC);
8093 if( db->mallocFailed ) goto select_end;
8094 #if TREETRACE_ENABLED
8095 if( sqlite3TreeTrace & 0x20 ){
8096 TREETRACE(0x20,pParse,p,("After aggregate analysis %p:\n", pAggInfo));
8097 sqlite3TreeViewSelect(0, p, 0);
8098 if( minMaxFlag ){
8099 sqlite3DebugPrintf("MIN/MAX Optimization (0x%02x) adds:\n", minMaxFlag);
8100 sqlite3TreeViewExprList(0, pMinMaxOrderBy, 0, "ORDERBY");
8102 printAggInfo(pAggInfo);
8104 #endif
8107 /* Processing for aggregates with GROUP BY is very different and
8108 ** much more complex than aggregates without a GROUP BY.
8110 if( pGroupBy ){
8111 KeyInfo *pKeyInfo; /* Keying information for the group by clause */
8112 int addr1; /* A-vs-B comparison jump */
8113 int addrOutputRow; /* Start of subroutine that outputs a result row */
8114 int regOutputRow; /* Return address register for output subroutine */
8115 int addrSetAbort; /* Set the abort flag and return */
8116 int addrTopOfLoop; /* Top of the input loop */
8117 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
8118 int addrReset; /* Subroutine for resetting the accumulator */
8119 int regReset; /* Return address register for reset subroutine */
8120 ExprList *pDistinct = 0;
8121 u16 distFlag = 0;
8122 int eDist = WHERE_DISTINCT_NOOP;
8124 if( pAggInfo->nFunc==1
8125 && pAggInfo->aFunc[0].iDistinct>=0
8126 && ALWAYS(pAggInfo->aFunc[0].pFExpr!=0)
8127 && ALWAYS(ExprUseXList(pAggInfo->aFunc[0].pFExpr))
8128 && pAggInfo->aFunc[0].pFExpr->x.pList!=0
8130 Expr *pExpr = pAggInfo->aFunc[0].pFExpr->x.pList->a[0].pExpr;
8131 pExpr = sqlite3ExprDup(db, pExpr, 0);
8132 pDistinct = sqlite3ExprListDup(db, pGroupBy, 0);
8133 pDistinct = sqlite3ExprListAppend(pParse, pDistinct, pExpr);
8134 distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0;
8137 /* If there is a GROUP BY clause we might need a sorting index to
8138 ** implement it. Allocate that sorting index now. If it turns out
8139 ** that we do not need it after all, the OP_SorterOpen instruction
8140 ** will be converted into a Noop.
8142 pAggInfo->sortingIdx = pParse->nTab++;
8143 pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pGroupBy,
8144 0, pAggInfo->nColumn);
8145 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
8146 pAggInfo->sortingIdx, pAggInfo->nSortingColumn,
8147 0, (char*)pKeyInfo, P4_KEYINFO);
8149 /* Initialize memory locations used by GROUP BY aggregate processing
8151 iUseFlag = ++pParse->nMem;
8152 iAbortFlag = ++pParse->nMem;
8153 regOutputRow = ++pParse->nMem;
8154 addrOutputRow = sqlite3VdbeMakeLabel(pParse);
8155 regReset = ++pParse->nMem;
8156 addrReset = sqlite3VdbeMakeLabel(pParse);
8157 iAMem = pParse->nMem + 1;
8158 pParse->nMem += pGroupBy->nExpr;
8159 iBMem = pParse->nMem + 1;
8160 pParse->nMem += pGroupBy->nExpr;
8161 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
8162 VdbeComment((v, "clear abort flag"));
8163 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
8165 /* Begin a loop that will extract all source rows in GROUP BY order.
8166 ** This might involve two separate loops with an OP_Sort in between, or
8167 ** it might be a single loop that uses an index to extract information
8168 ** in the right order to begin with.
8170 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
8171 TREETRACE(0x2,pParse,p,("WhereBegin\n"));
8172 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, pDistinct,
8173 p, (sDistinct.isTnct==2 ? WHERE_DISTINCTBY : WHERE_GROUPBY)
8174 | (orderByGrp ? WHERE_SORTBYGROUP : 0) | distFlag, 0
8176 if( pWInfo==0 ){
8177 sqlite3ExprListDelete(db, pDistinct);
8178 goto select_end;
8180 if( pParse->pIdxEpr ){
8181 optimizeAggregateUseOfIndexedExpr(pParse, p, pAggInfo, &sNC);
8183 assignAggregateRegisters(pParse, pAggInfo);
8184 eDist = sqlite3WhereIsDistinct(pWInfo);
8185 TREETRACE(0x2,pParse,p,("WhereBegin returns\n"));
8186 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
8187 /* The optimizer is able to deliver rows in group by order so
8188 ** we do not have to sort. The OP_OpenEphemeral table will be
8189 ** cancelled later because we still need to use the pKeyInfo
8191 groupBySort = 0;
8192 }else{
8193 /* Rows are coming out in undetermined order. We have to push
8194 ** each row into a sorting index, terminate the first loop,
8195 ** then loop over the sorting index in order to get the output
8196 ** in sorted order
8198 int regBase;
8199 int regRecord;
8200 int nCol;
8201 int nGroupBy;
8203 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
8204 int addrExp; /* Address of OP_Explain instruction */
8205 #endif
8206 ExplainQueryPlan2(addrExp, (pParse, 0, "USE TEMP B-TREE FOR %s",
8207 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
8208 "DISTINCT" : "GROUP BY"
8211 groupBySort = 1;
8212 nGroupBy = pGroupBy->nExpr;
8213 nCol = nGroupBy;
8214 j = nGroupBy;
8215 for(i=0; i<pAggInfo->nColumn; i++){
8216 if( pAggInfo->aCol[i].iSorterColumn>=j ){
8217 nCol++;
8218 j++;
8221 regBase = sqlite3GetTempRange(pParse, nCol);
8222 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0);
8223 j = nGroupBy;
8224 pAggInfo->directMode = 1;
8225 for(i=0; i<pAggInfo->nColumn; i++){
8226 struct AggInfo_col *pCol = &pAggInfo->aCol[i];
8227 if( pCol->iSorterColumn>=j ){
8228 sqlite3ExprCode(pParse, pCol->pCExpr, j + regBase);
8229 j++;
8232 pAggInfo->directMode = 0;
8233 regRecord = sqlite3GetTempReg(pParse);
8234 sqlite3VdbeScanStatusCounters(v, addrExp, 0, sqlite3VdbeCurrentAddr(v));
8235 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
8236 sqlite3VdbeAddOp2(v, OP_SorterInsert, pAggInfo->sortingIdx, regRecord);
8237 sqlite3VdbeScanStatusRange(v, addrExp, sqlite3VdbeCurrentAddr(v)-2, -1);
8238 sqlite3ReleaseTempReg(pParse, regRecord);
8239 sqlite3ReleaseTempRange(pParse, regBase, nCol);
8240 TREETRACE(0x2,pParse,p,("WhereEnd\n"));
8241 sqlite3WhereEnd(pWInfo);
8242 pAggInfo->sortingIdxPTab = sortPTab = pParse->nTab++;
8243 sortOut = sqlite3GetTempReg(pParse);
8244 sqlite3VdbeScanStatusCounters(v, addrExp, sqlite3VdbeCurrentAddr(v), 0);
8245 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
8246 sqlite3VdbeAddOp2(v, OP_SorterSort, pAggInfo->sortingIdx, addrEnd);
8247 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
8248 pAggInfo->useSortingIdx = 1;
8249 sqlite3VdbeScanStatusRange(v, addrExp, -1, sortPTab);
8250 sqlite3VdbeScanStatusRange(v, addrExp, -1, pAggInfo->sortingIdx);
8253 /* If there are entries in pAgggInfo->aFunc[] that contain subexpressions
8254 ** that are indexed (and that were previously identified and tagged
8255 ** in optimizeAggregateUseOfIndexedExpr()) then those subexpressions
8256 ** must now be converted into a TK_AGG_COLUMN node so that the value
8257 ** is correctly pulled from the index rather than being recomputed. */
8258 if( pParse->pIdxEpr ){
8259 aggregateConvertIndexedExprRefToColumn(pAggInfo);
8260 #if TREETRACE_ENABLED
8261 if( sqlite3TreeTrace & 0x20 ){
8262 TREETRACE(0x20, pParse, p,
8263 ("AggInfo function expressions converted to reference index\n"));
8264 sqlite3TreeViewSelect(0, p, 0);
8265 printAggInfo(pAggInfo);
8267 #endif
8270 /* If the index or temporary table used by the GROUP BY sort
8271 ** will naturally deliver rows in the order required by the ORDER BY
8272 ** clause, cancel the ephemeral table open coded earlier.
8274 ** This is an optimization - the correct answer should result regardless.
8275 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
8276 ** disable this optimization for testing purposes. */
8277 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
8278 && (groupBySort || sqlite3WhereIsSorted(pWInfo))
8280 sSort.pOrderBy = 0;
8281 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
8284 /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
8285 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
8286 ** Then compare the current GROUP BY terms against the GROUP BY terms
8287 ** from the previous row currently stored in a0, a1, a2...
8289 addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
8290 if( groupBySort ){
8291 sqlite3VdbeAddOp3(v, OP_SorterData, pAggInfo->sortingIdx,
8292 sortOut, sortPTab);
8294 for(j=0; j<pGroupBy->nExpr; j++){
8295 if( groupBySort ){
8296 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
8297 }else{
8298 pAggInfo->directMode = 1;
8299 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
8302 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
8303 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
8304 addr1 = sqlite3VdbeCurrentAddr(v);
8305 sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v);
8307 /* Generate code that runs whenever the GROUP BY changes.
8308 ** Changes in the GROUP BY are detected by the previous code
8309 ** block. If there were no changes, this block is skipped.
8311 ** This code copies current group by terms in b0,b1,b2,...
8312 ** over to a0,a1,a2. It then calls the output subroutine
8313 ** and resets the aggregate accumulator registers in preparation
8314 ** for the next GROUP BY batch.
8316 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
8317 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
8318 VdbeComment((v, "output one row"));
8319 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
8320 VdbeComment((v, "check abort flag"));
8321 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
8322 VdbeComment((v, "reset accumulator"));
8324 /* Update the aggregate accumulators based on the content of
8325 ** the current row
8327 sqlite3VdbeJumpHere(v, addr1);
8328 updateAccumulator(pParse, iUseFlag, pAggInfo, eDist);
8329 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
8330 VdbeComment((v, "indicate data in accumulator"));
8332 /* End of the loop
8334 if( groupBySort ){
8335 sqlite3VdbeAddOp2(v, OP_SorterNext, pAggInfo->sortingIdx,addrTopOfLoop);
8336 VdbeCoverage(v);
8337 }else{
8338 TREETRACE(0x2,pParse,p,("WhereEnd\n"));
8339 sqlite3WhereEnd(pWInfo);
8340 sqlite3VdbeChangeToNoop(v, addrSortingIdx);
8342 sqlite3ExprListDelete(db, pDistinct);
8344 /* Output the final row of result
8346 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
8347 VdbeComment((v, "output final row"));
8349 /* Jump over the subroutines
8351 sqlite3VdbeGoto(v, addrEnd);
8353 /* Generate a subroutine that outputs a single row of the result
8354 ** set. This subroutine first looks at the iUseFlag. If iUseFlag
8355 ** is less than or equal to zero, the subroutine is a no-op. If
8356 ** the processing calls for the query to abort, this subroutine
8357 ** increments the iAbortFlag memory location before returning in
8358 ** order to signal the caller to abort.
8360 addrSetAbort = sqlite3VdbeCurrentAddr(v);
8361 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
8362 VdbeComment((v, "set abort flag"));
8363 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
8364 sqlite3VdbeResolveLabel(v, addrOutputRow);
8365 addrOutputRow = sqlite3VdbeCurrentAddr(v);
8366 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
8367 VdbeCoverage(v);
8368 VdbeComment((v, "Groupby result generator entry point"));
8369 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
8370 finalizeAggFunctions(pParse, pAggInfo);
8371 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
8372 selectInnerLoop(pParse, p, -1, &sSort,
8373 &sDistinct, pDest,
8374 addrOutputRow+1, addrSetAbort);
8375 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
8376 VdbeComment((v, "end groupby result generator"));
8378 /* Generate a subroutine that will reset the group-by accumulator
8380 sqlite3VdbeResolveLabel(v, addrReset);
8381 resetAccumulator(pParse, pAggInfo);
8382 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
8383 VdbeComment((v, "indicate accumulator empty"));
8384 sqlite3VdbeAddOp1(v, OP_Return, regReset);
8386 if( distFlag!=0 && eDist!=WHERE_DISTINCT_NOOP ){
8387 struct AggInfo_func *pF = &pAggInfo->aFunc[0];
8388 fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr);
8390 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */
8391 else {
8392 Table *pTab;
8393 if( (pTab = isSimpleCount(p, pAggInfo))!=0 ){
8394 /* If isSimpleCount() returns a pointer to a Table structure, then
8395 ** the SQL statement is of the form:
8397 ** SELECT count(*) FROM <tbl>
8399 ** where the Table structure returned represents table <tbl>.
8401 ** This statement is so common that it is optimized specially. The
8402 ** OP_Count instruction is executed either on the intkey table that
8403 ** contains the data for table <tbl> or on one of its indexes. It
8404 ** is better to execute the op on an index, as indexes are almost
8405 ** always spread across less pages than their corresponding tables.
8407 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
8408 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */
8409 Index *pIdx; /* Iterator variable */
8410 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */
8411 Index *pBest = 0; /* Best index found so far */
8412 Pgno iRoot = pTab->tnum; /* Root page of scanned b-tree */
8414 sqlite3CodeVerifySchema(pParse, iDb);
8415 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
8417 /* Search for the index that has the lowest scan cost.
8419 ** (2011-04-15) Do not do a full scan of an unordered index.
8421 ** (2013-10-03) Do not count the entries in a partial index.
8423 ** In practice the KeyInfo structure will not be used. It is only
8424 ** passed to keep OP_OpenRead happy.
8426 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
8427 if( !p->pSrc->a[0].fg.notIndexed ){
8428 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
8429 if( pIdx->bUnordered==0
8430 && pIdx->szIdxRow<pTab->szTabRow
8431 && pIdx->pPartIdxWhere==0
8432 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
8434 pBest = pIdx;
8438 if( pBest ){
8439 iRoot = pBest->tnum;
8440 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
8443 /* Open a read-only cursor, execute the OP_Count, close the cursor. */
8444 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, (int)iRoot, iDb, 1);
8445 if( pKeyInfo ){
8446 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
8448 assignAggregateRegisters(pParse, pAggInfo);
8449 sqlite3VdbeAddOp2(v, OP_Count, iCsr, AggInfoFuncReg(pAggInfo,0));
8450 sqlite3VdbeAddOp1(v, OP_Close, iCsr);
8451 explainSimpleCount(pParse, pTab, pBest);
8452 }else{
8453 int regAcc = 0; /* "populate accumulators" flag */
8454 ExprList *pDistinct = 0;
8455 u16 distFlag = 0;
8456 int eDist;
8458 /* If there are accumulator registers but no min() or max() functions
8459 ** without FILTER clauses, allocate register regAcc. Register regAcc
8460 ** will contain 0 the first time the inner loop runs, and 1 thereafter.
8461 ** The code generated by updateAccumulator() uses this to ensure
8462 ** that the accumulator registers are (a) updated only once if
8463 ** there are no min() or max functions or (b) always updated for the
8464 ** first row visited by the aggregate, so that they are updated at
8465 ** least once even if the FILTER clause means the min() or max()
8466 ** function visits zero rows. */
8467 if( pAggInfo->nAccumulator ){
8468 for(i=0; i<pAggInfo->nFunc; i++){
8469 if( ExprHasProperty(pAggInfo->aFunc[i].pFExpr, EP_WinFunc) ){
8470 continue;
8472 if( pAggInfo->aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ){
8473 break;
8476 if( i==pAggInfo->nFunc ){
8477 regAcc = ++pParse->nMem;
8478 sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc);
8480 }else if( pAggInfo->nFunc==1 && pAggInfo->aFunc[0].iDistinct>=0 ){
8481 assert( ExprUseXList(pAggInfo->aFunc[0].pFExpr) );
8482 pDistinct = pAggInfo->aFunc[0].pFExpr->x.pList;
8483 distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0;
8485 assignAggregateRegisters(pParse, pAggInfo);
8487 /* This case runs if the aggregate has no GROUP BY clause. The
8488 ** processing is much simpler since there is only a single row
8489 ** of output.
8491 assert( p->pGroupBy==0 );
8492 resetAccumulator(pParse, pAggInfo);
8494 /* If this query is a candidate for the min/max optimization, then
8495 ** minMaxFlag will have been previously set to either
8496 ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will
8497 ** be an appropriate ORDER BY expression for the optimization.
8499 assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 );
8500 assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 );
8502 TREETRACE(0x2,pParse,p,("WhereBegin\n"));
8503 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy,
8504 pDistinct, p, minMaxFlag|distFlag, 0);
8505 if( pWInfo==0 ){
8506 goto select_end;
8508 TREETRACE(0x2,pParse,p,("WhereBegin returns\n"));
8509 eDist = sqlite3WhereIsDistinct(pWInfo);
8510 updateAccumulator(pParse, regAcc, pAggInfo, eDist);
8511 if( eDist!=WHERE_DISTINCT_NOOP ){
8512 struct AggInfo_func *pF = pAggInfo->aFunc;
8513 if( pF ){
8514 fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr);
8518 if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc);
8519 if( minMaxFlag ){
8520 sqlite3WhereMinMaxOptEarlyOut(v, pWInfo);
8522 TREETRACE(0x2,pParse,p,("WhereEnd\n"));
8523 sqlite3WhereEnd(pWInfo);
8524 finalizeAggFunctions(pParse, pAggInfo);
8527 sSort.pOrderBy = 0;
8528 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
8529 selectInnerLoop(pParse, p, -1, 0, 0,
8530 pDest, addrEnd, addrEnd);
8532 sqlite3VdbeResolveLabel(v, addrEnd);
8534 } /* endif aggregate query */
8536 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
8537 explainTempTable(pParse, "DISTINCT");
8540 /* If there is an ORDER BY clause, then we need to sort the results
8541 ** and send them to the callback one by one.
8543 if( sSort.pOrderBy ){
8544 assert( p->pEList==pEList );
8545 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
8548 /* Jump here to skip this query
8550 sqlite3VdbeResolveLabel(v, iEnd);
8552 /* The SELECT has been coded. If there is an error in the Parse structure,
8553 ** set the return code to 1. Otherwise 0. */
8554 rc = (pParse->nErr>0);
8556 /* Control jumps to here if an error is encountered above, or upon
8557 ** successful coding of the SELECT.
8559 select_end:
8560 assert( db->mallocFailed==0 || db->mallocFailed==1 );
8561 assert( db->mallocFailed==0 || pParse->nErr!=0 );
8562 sqlite3ExprListDelete(db, pMinMaxOrderBy);
8563 #ifdef SQLITE_DEBUG
8564 if( pAggInfo && !db->mallocFailed ){
8565 for(i=0; i<pAggInfo->nColumn; i++){
8566 Expr *pExpr = pAggInfo->aCol[i].pCExpr;
8567 if( pExpr==0 ) continue;
8568 assert( pExpr->pAggInfo==pAggInfo );
8569 assert( pExpr->iAgg==i );
8571 for(i=0; i<pAggInfo->nFunc; i++){
8572 Expr *pExpr = pAggInfo->aFunc[i].pFExpr;
8573 assert( pExpr!=0 );
8574 assert( pExpr->pAggInfo==pAggInfo );
8575 assert( pExpr->iAgg==i );
8578 #endif
8580 #if TREETRACE_ENABLED
8581 TREETRACE(0x1,pParse,p,("end processing\n"));
8582 if( (sqlite3TreeTrace & 0x40000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
8583 sqlite3TreeViewSelect(0, p, 0);
8585 #endif
8586 ExplainQueryPlanPop(pParse);
8587 return rc;