Snapshot of upstream SQLite 3.45.3
[sqlcipher.git] / src / util.c
blobca886a1c2ef3b47831062447997b5718bf391301
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** Utility functions used throughout sqlite.
14 ** This file contains functions for allocating memory, comparing
15 ** strings, and stuff like that.
18 #include "sqliteInt.h"
19 #include <stdarg.h>
20 #ifndef SQLITE_OMIT_FLOATING_POINT
21 #include <math.h>
22 #endif
25 ** Calls to sqlite3FaultSim() are used to simulate a failure during testing,
26 ** or to bypass normal error detection during testing in order to let
27 ** execute proceed further downstream.
29 ** In deployment, sqlite3FaultSim() *always* return SQLITE_OK (0). The
30 ** sqlite3FaultSim() function only returns non-zero during testing.
32 ** During testing, if the test harness has set a fault-sim callback using
33 ** a call to sqlite3_test_control(SQLITE_TESTCTRL_FAULT_INSTALL), then
34 ** each call to sqlite3FaultSim() is relayed to that application-supplied
35 ** callback and the integer return value form the application-supplied
36 ** callback is returned by sqlite3FaultSim().
38 ** The integer argument to sqlite3FaultSim() is a code to identify which
39 ** sqlite3FaultSim() instance is being invoked. Each call to sqlite3FaultSim()
40 ** should have a unique code. To prevent legacy testing applications from
41 ** breaking, the codes should not be changed or reused.
43 #ifndef SQLITE_UNTESTABLE
44 int sqlite3FaultSim(int iTest){
45 int (*xCallback)(int) = sqlite3GlobalConfig.xTestCallback;
46 return xCallback ? xCallback(iTest) : SQLITE_OK;
48 #endif
50 #ifndef SQLITE_OMIT_FLOATING_POINT
52 ** Return true if the floating point value is Not a Number (NaN).
54 ** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN.
55 ** Otherwise, we have our own implementation that works on most systems.
57 int sqlite3IsNaN(double x){
58 int rc; /* The value return */
59 #if !SQLITE_HAVE_ISNAN && !HAVE_ISNAN
60 u64 y;
61 memcpy(&y,&x,sizeof(y));
62 rc = IsNaN(y);
63 #else
64 rc = isnan(x);
65 #endif /* HAVE_ISNAN */
66 testcase( rc );
67 return rc;
69 #endif /* SQLITE_OMIT_FLOATING_POINT */
71 #ifndef SQLITE_OMIT_FLOATING_POINT
73 ** Return true if the floating point value is NaN or +Inf or -Inf.
75 int sqlite3IsOverflow(double x){
76 int rc; /* The value return */
77 u64 y;
78 memcpy(&y,&x,sizeof(y));
79 rc = IsOvfl(y);
80 return rc;
82 #endif /* SQLITE_OMIT_FLOATING_POINT */
85 ** Compute a string length that is limited to what can be stored in
86 ** lower 30 bits of a 32-bit signed integer.
88 ** The value returned will never be negative. Nor will it ever be greater
89 ** than the actual length of the string. For very long strings (greater
90 ** than 1GiB) the value returned might be less than the true string length.
92 int sqlite3Strlen30(const char *z){
93 if( z==0 ) return 0;
94 return 0x3fffffff & (int)strlen(z);
98 ** Return the declared type of a column. Or return zDflt if the column
99 ** has no declared type.
101 ** The column type is an extra string stored after the zero-terminator on
102 ** the column name if and only if the COLFLAG_HASTYPE flag is set.
104 char *sqlite3ColumnType(Column *pCol, char *zDflt){
105 if( pCol->colFlags & COLFLAG_HASTYPE ){
106 return pCol->zCnName + strlen(pCol->zCnName) + 1;
107 }else if( pCol->eCType ){
108 assert( pCol->eCType<=SQLITE_N_STDTYPE );
109 return (char*)sqlite3StdType[pCol->eCType-1];
110 }else{
111 return zDflt;
116 ** Helper function for sqlite3Error() - called rarely. Broken out into
117 ** a separate routine to avoid unnecessary register saves on entry to
118 ** sqlite3Error().
120 static SQLITE_NOINLINE void sqlite3ErrorFinish(sqlite3 *db, int err_code){
121 if( db->pErr ) sqlite3ValueSetNull(db->pErr);
122 sqlite3SystemError(db, err_code);
126 ** Set the current error code to err_code and clear any prior error message.
127 ** Also set iSysErrno (by calling sqlite3System) if the err_code indicates
128 ** that would be appropriate.
130 void sqlite3Error(sqlite3 *db, int err_code){
131 assert( db!=0 );
132 db->errCode = err_code;
133 if( err_code || db->pErr ){
134 sqlite3ErrorFinish(db, err_code);
135 }else{
136 db->errByteOffset = -1;
141 ** The equivalent of sqlite3Error(db, SQLITE_OK). Clear the error state
142 ** and error message.
144 void sqlite3ErrorClear(sqlite3 *db){
145 assert( db!=0 );
146 db->errCode = SQLITE_OK;
147 db->errByteOffset = -1;
148 if( db->pErr ) sqlite3ValueSetNull(db->pErr);
152 ** Load the sqlite3.iSysErrno field if that is an appropriate thing
153 ** to do based on the SQLite error code in rc.
155 void sqlite3SystemError(sqlite3 *db, int rc){
156 if( rc==SQLITE_IOERR_NOMEM ) return;
157 #if defined(SQLITE_USE_SEH) && !defined(SQLITE_OMIT_WAL)
158 if( rc==SQLITE_IOERR_IN_PAGE ){
159 int ii;
160 int iErr;
161 sqlite3BtreeEnterAll(db);
162 for(ii=0; ii<db->nDb; ii++){
163 if( db->aDb[ii].pBt ){
164 iErr = sqlite3PagerWalSystemErrno(sqlite3BtreePager(db->aDb[ii].pBt));
165 if( iErr ){
166 db->iSysErrno = iErr;
170 sqlite3BtreeLeaveAll(db);
171 return;
173 #endif
174 rc &= 0xff;
175 if( rc==SQLITE_CANTOPEN || rc==SQLITE_IOERR ){
176 db->iSysErrno = sqlite3OsGetLastError(db->pVfs);
181 ** Set the most recent error code and error string for the sqlite
182 ** handle "db". The error code is set to "err_code".
184 ** If it is not NULL, string zFormat specifies the format of the
185 ** error string. zFormat and any string tokens that follow it are
186 ** assumed to be encoded in UTF-8.
188 ** To clear the most recent error for sqlite handle "db", sqlite3Error
189 ** should be called with err_code set to SQLITE_OK and zFormat set
190 ** to NULL.
192 void sqlite3ErrorWithMsg(sqlite3 *db, int err_code, const char *zFormat, ...){
193 assert( db!=0 );
194 db->errCode = err_code;
195 sqlite3SystemError(db, err_code);
196 if( zFormat==0 ){
197 sqlite3Error(db, err_code);
198 }else if( db->pErr || (db->pErr = sqlite3ValueNew(db))!=0 ){
199 char *z;
200 va_list ap;
201 va_start(ap, zFormat);
202 z = sqlite3VMPrintf(db, zFormat, ap);
203 va_end(ap);
204 sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC);
209 ** Check for interrupts and invoke progress callback.
211 void sqlite3ProgressCheck(Parse *p){
212 sqlite3 *db = p->db;
213 if( AtomicLoad(&db->u1.isInterrupted) ){
214 p->nErr++;
215 p->rc = SQLITE_INTERRUPT;
217 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
218 if( db->xProgress ){
219 if( p->rc==SQLITE_INTERRUPT ){
220 p->nProgressSteps = 0;
221 }else if( (++p->nProgressSteps)>=db->nProgressOps ){
222 if( db->xProgress(db->pProgressArg) ){
223 p->nErr++;
224 p->rc = SQLITE_INTERRUPT;
226 p->nProgressSteps = 0;
229 #endif
233 ** Add an error message to pParse->zErrMsg and increment pParse->nErr.
235 ** This function should be used to report any error that occurs while
236 ** compiling an SQL statement (i.e. within sqlite3_prepare()). The
237 ** last thing the sqlite3_prepare() function does is copy the error
238 ** stored by this function into the database handle using sqlite3Error().
239 ** Functions sqlite3Error() or sqlite3ErrorWithMsg() should be used
240 ** during statement execution (sqlite3_step() etc.).
242 void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){
243 char *zMsg;
244 va_list ap;
245 sqlite3 *db = pParse->db;
246 assert( db!=0 );
247 assert( db->pParse==pParse || db->pParse->pToplevel==pParse );
248 db->errByteOffset = -2;
249 va_start(ap, zFormat);
250 zMsg = sqlite3VMPrintf(db, zFormat, ap);
251 va_end(ap);
252 if( db->errByteOffset<-1 ) db->errByteOffset = -1;
253 if( db->suppressErr ){
254 sqlite3DbFree(db, zMsg);
255 if( db->mallocFailed ){
256 pParse->nErr++;
257 pParse->rc = SQLITE_NOMEM;
259 }else{
260 pParse->nErr++;
261 sqlite3DbFree(db, pParse->zErrMsg);
262 pParse->zErrMsg = zMsg;
263 pParse->rc = SQLITE_ERROR;
264 pParse->pWith = 0;
269 ** If database connection db is currently parsing SQL, then transfer
270 ** error code errCode to that parser if the parser has not already
271 ** encountered some other kind of error.
273 int sqlite3ErrorToParser(sqlite3 *db, int errCode){
274 Parse *pParse;
275 if( db==0 || (pParse = db->pParse)==0 ) return errCode;
276 pParse->rc = errCode;
277 pParse->nErr++;
278 return errCode;
282 ** Convert an SQL-style quoted string into a normal string by removing
283 ** the quote characters. The conversion is done in-place. If the
284 ** input does not begin with a quote character, then this routine
285 ** is a no-op.
287 ** The input string must be zero-terminated. A new zero-terminator
288 ** is added to the dequoted string.
290 ** The return value is -1 if no dequoting occurs or the length of the
291 ** dequoted string, exclusive of the zero terminator, if dequoting does
292 ** occur.
294 ** 2002-02-14: This routine is extended to remove MS-Access style
295 ** brackets from around identifiers. For example: "[a-b-c]" becomes
296 ** "a-b-c".
298 void sqlite3Dequote(char *z){
299 char quote;
300 int i, j;
301 if( z==0 ) return;
302 quote = z[0];
303 if( !sqlite3Isquote(quote) ) return;
304 if( quote=='[' ) quote = ']';
305 for(i=1, j=0;; i++){
306 assert( z[i] );
307 if( z[i]==quote ){
308 if( z[i+1]==quote ){
309 z[j++] = quote;
310 i++;
311 }else{
312 break;
314 }else{
315 z[j++] = z[i];
318 z[j] = 0;
320 void sqlite3DequoteExpr(Expr *p){
321 assert( !ExprHasProperty(p, EP_IntValue) );
322 assert( sqlite3Isquote(p->u.zToken[0]) );
323 p->flags |= p->u.zToken[0]=='"' ? EP_Quoted|EP_DblQuoted : EP_Quoted;
324 sqlite3Dequote(p->u.zToken);
328 ** If the input token p is quoted, try to adjust the token to remove
329 ** the quotes. This is not always possible:
331 ** "abc" -> abc
332 ** "ab""cd" -> (not possible because of the interior "")
334 ** Remove the quotes if possible. This is a optimization. The overall
335 ** system should still return the correct answer even if this routine
336 ** is always a no-op.
338 void sqlite3DequoteToken(Token *p){
339 unsigned int i;
340 if( p->n<2 ) return;
341 if( !sqlite3Isquote(p->z[0]) ) return;
342 for(i=1; i<p->n-1; i++){
343 if( sqlite3Isquote(p->z[i]) ) return;
345 p->n -= 2;
346 p->z++;
350 ** Generate a Token object from a string
352 void sqlite3TokenInit(Token *p, char *z){
353 p->z = z;
354 p->n = sqlite3Strlen30(z);
357 /* Convenient short-hand */
358 #define UpperToLower sqlite3UpperToLower
361 ** Some systems have stricmp(). Others have strcasecmp(). Because
362 ** there is no consistency, we will define our own.
364 ** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and
365 ** sqlite3_strnicmp() APIs allow applications and extensions to compare
366 ** the contents of two buffers containing UTF-8 strings in a
367 ** case-independent fashion, using the same definition of "case
368 ** independence" that SQLite uses internally when comparing identifiers.
370 int sqlite3_stricmp(const char *zLeft, const char *zRight){
371 if( zLeft==0 ){
372 return zRight ? -1 : 0;
373 }else if( zRight==0 ){
374 return 1;
376 return sqlite3StrICmp(zLeft, zRight);
378 int sqlite3StrICmp(const char *zLeft, const char *zRight){
379 unsigned char *a, *b;
380 int c, x;
381 a = (unsigned char *)zLeft;
382 b = (unsigned char *)zRight;
383 for(;;){
384 c = *a;
385 x = *b;
386 if( c==x ){
387 if( c==0 ) break;
388 }else{
389 c = (int)UpperToLower[c] - (int)UpperToLower[x];
390 if( c ) break;
392 a++;
393 b++;
395 return c;
397 int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){
398 register unsigned char *a, *b;
399 if( zLeft==0 ){
400 return zRight ? -1 : 0;
401 }else if( zRight==0 ){
402 return 1;
404 a = (unsigned char *)zLeft;
405 b = (unsigned char *)zRight;
406 while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
407 return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b];
411 ** Compute an 8-bit hash on a string that is insensitive to case differences
413 u8 sqlite3StrIHash(const char *z){
414 u8 h = 0;
415 if( z==0 ) return 0;
416 while( z[0] ){
417 h += UpperToLower[(unsigned char)z[0]];
418 z++;
420 return h;
423 /* Double-Double multiplication. (x[0],x[1]) *= (y,yy)
425 ** Reference:
426 ** T. J. Dekker, "A Floating-Point Technique for Extending the
427 ** Available Precision". 1971-07-26.
429 static void dekkerMul2(volatile double *x, double y, double yy){
431 ** The "volatile" keywords on parameter x[] and on local variables
432 ** below are needed force intermediate results to be truncated to
433 ** binary64 rather than be carried around in an extended-precision
434 ** format. The truncation is necessary for the Dekker algorithm to
435 ** work. Intel x86 floating point might omit the truncation without
436 ** the use of volatile.
438 volatile double tx, ty, p, q, c, cc;
439 double hx, hy;
440 u64 m;
441 memcpy(&m, (void*)&x[0], 8);
442 m &= 0xfffffffffc000000LL;
443 memcpy(&hx, &m, 8);
444 tx = x[0] - hx;
445 memcpy(&m, &y, 8);
446 m &= 0xfffffffffc000000LL;
447 memcpy(&hy, &m, 8);
448 ty = y - hy;
449 p = hx*hy;
450 q = hx*ty + tx*hy;
451 c = p+q;
452 cc = p - c + q + tx*ty;
453 cc = x[0]*yy + x[1]*y + cc;
454 x[0] = c + cc;
455 x[1] = c - x[0];
456 x[1] += cc;
460 ** The string z[] is an text representation of a real number.
461 ** Convert this string to a double and write it into *pResult.
463 ** The string z[] is length bytes in length (bytes, not characters) and
464 ** uses the encoding enc. The string is not necessarily zero-terminated.
466 ** Return TRUE if the result is a valid real number (or integer) and FALSE
467 ** if the string is empty or contains extraneous text. More specifically
468 ** return
469 ** 1 => The input string is a pure integer
470 ** 2 or more => The input has a decimal point or eNNN clause
471 ** 0 or less => The input string is not a valid number
472 ** -1 => Not a valid number, but has a valid prefix which
473 ** includes a decimal point and/or an eNNN clause
475 ** Valid numbers are in one of these formats:
477 ** [+-]digits[E[+-]digits]
478 ** [+-]digits.[digits][E[+-]digits]
479 ** [+-].digits[E[+-]digits]
481 ** Leading and trailing whitespace is ignored for the purpose of determining
482 ** validity.
484 ** If some prefix of the input string is a valid number, this routine
485 ** returns FALSE but it still converts the prefix and writes the result
486 ** into *pResult.
488 #if defined(_MSC_VER)
489 #pragma warning(disable : 4756)
490 #endif
491 int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){
492 #ifndef SQLITE_OMIT_FLOATING_POINT
493 int incr;
494 const char *zEnd;
495 /* sign * significand * (10 ^ (esign * exponent)) */
496 int sign = 1; /* sign of significand */
497 u64 s = 0; /* significand */
498 int d = 0; /* adjust exponent for shifting decimal point */
499 int esign = 1; /* sign of exponent */
500 int e = 0; /* exponent */
501 int eValid = 1; /* True exponent is either not used or is well-formed */
502 int nDigit = 0; /* Number of digits processed */
503 int eType = 1; /* 1: pure integer, 2+: fractional -1 or less: bad UTF16 */
505 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
506 *pResult = 0.0; /* Default return value, in case of an error */
507 if( length==0 ) return 0;
509 if( enc==SQLITE_UTF8 ){
510 incr = 1;
511 zEnd = z + length;
512 }else{
513 int i;
514 incr = 2;
515 length &= ~1;
516 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
517 testcase( enc==SQLITE_UTF16LE );
518 testcase( enc==SQLITE_UTF16BE );
519 for(i=3-enc; i<length && z[i]==0; i+=2){}
520 if( i<length ) eType = -100;
521 zEnd = &z[i^1];
522 z += (enc&1);
525 /* skip leading spaces */
526 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
527 if( z>=zEnd ) return 0;
529 /* get sign of significand */
530 if( *z=='-' ){
531 sign = -1;
532 z+=incr;
533 }else if( *z=='+' ){
534 z+=incr;
537 /* copy max significant digits to significand */
538 while( z<zEnd && sqlite3Isdigit(*z) ){
539 s = s*10 + (*z - '0');
540 z+=incr; nDigit++;
541 if( s>=((LARGEST_UINT64-9)/10) ){
542 /* skip non-significant significand digits
543 ** (increase exponent by d to shift decimal left) */
544 while( z<zEnd && sqlite3Isdigit(*z) ){ z+=incr; d++; }
547 if( z>=zEnd ) goto do_atof_calc;
549 /* if decimal point is present */
550 if( *z=='.' ){
551 z+=incr;
552 eType++;
553 /* copy digits from after decimal to significand
554 ** (decrease exponent by d to shift decimal right) */
555 while( z<zEnd && sqlite3Isdigit(*z) ){
556 if( s<((LARGEST_UINT64-9)/10) ){
557 s = s*10 + (*z - '0');
558 d--;
559 nDigit++;
561 z+=incr;
564 if( z>=zEnd ) goto do_atof_calc;
566 /* if exponent is present */
567 if( *z=='e' || *z=='E' ){
568 z+=incr;
569 eValid = 0;
570 eType++;
572 /* This branch is needed to avoid a (harmless) buffer overread. The
573 ** special comment alerts the mutation tester that the correct answer
574 ** is obtained even if the branch is omitted */
575 if( z>=zEnd ) goto do_atof_calc; /*PREVENTS-HARMLESS-OVERREAD*/
577 /* get sign of exponent */
578 if( *z=='-' ){
579 esign = -1;
580 z+=incr;
581 }else if( *z=='+' ){
582 z+=incr;
584 /* copy digits to exponent */
585 while( z<zEnd && sqlite3Isdigit(*z) ){
586 e = e<10000 ? (e*10 + (*z - '0')) : 10000;
587 z+=incr;
588 eValid = 1;
592 /* skip trailing spaces */
593 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
595 do_atof_calc:
596 /* Zero is a special case */
597 if( s==0 ){
598 *pResult = sign<0 ? -0.0 : +0.0;
599 goto atof_return;
602 /* adjust exponent by d, and update sign */
603 e = (e*esign) + d;
605 /* Try to adjust the exponent to make it smaller */
606 while( e>0 && s<(LARGEST_UINT64/10) ){
607 s *= 10;
608 e--;
610 while( e<0 && (s%10)==0 ){
611 s /= 10;
612 e++;
615 if( e==0 ){
616 *pResult = s;
617 }else if( sqlite3Config.bUseLongDouble ){
618 LONGDOUBLE_TYPE r = (LONGDOUBLE_TYPE)s;
619 if( e>0 ){
620 while( e>=100 ){ e-=100; r *= 1.0e+100L; }
621 while( e>=10 ){ e-=10; r *= 1.0e+10L; }
622 while( e>=1 ){ e-=1; r *= 1.0e+01L; }
623 }else{
624 while( e<=-100 ){ e+=100; r *= 1.0e-100L; }
625 while( e<=-10 ){ e+=10; r *= 1.0e-10L; }
626 while( e<=-1 ){ e+=1; r *= 1.0e-01L; }
628 assert( r>=0.0 );
629 if( r>+1.7976931348623157081452742373e+308L ){
630 #ifdef INFINITY
631 *pResult = +INFINITY;
632 #else
633 *pResult = 1.0e308*10.0;
634 #endif
635 }else{
636 *pResult = (double)r;
638 }else{
639 double rr[2];
640 u64 s2;
641 rr[0] = (double)s;
642 s2 = (u64)rr[0];
643 #if defined(_MSC_VER) && _MSC_VER<1700
644 if( s2==0x8000000000000000LL ){ s2 = 2*(u64)(0.5*rr[0]); }
645 #endif
646 rr[1] = s>=s2 ? (double)(s - s2) : -(double)(s2 - s);
647 if( e>0 ){
648 while( e>=100 ){
649 e -= 100;
650 dekkerMul2(rr, 1.0e+100, -1.5902891109759918046e+83);
652 while( e>=10 ){
653 e -= 10;
654 dekkerMul2(rr, 1.0e+10, 0.0);
656 while( e>=1 ){
657 e -= 1;
658 dekkerMul2(rr, 1.0e+01, 0.0);
660 }else{
661 while( e<=-100 ){
662 e += 100;
663 dekkerMul2(rr, 1.0e-100, -1.99918998026028836196e-117);
665 while( e<=-10 ){
666 e += 10;
667 dekkerMul2(rr, 1.0e-10, -3.6432197315497741579e-27);
669 while( e<=-1 ){
670 e += 1;
671 dekkerMul2(rr, 1.0e-01, -5.5511151231257827021e-18);
674 *pResult = rr[0]+rr[1];
675 if( sqlite3IsNaN(*pResult) ) *pResult = 1e300*1e300;
677 if( sign<0 ) *pResult = -*pResult;
678 assert( !sqlite3IsNaN(*pResult) );
680 atof_return:
681 /* return true if number and no extra non-whitespace characters after */
682 if( z==zEnd && nDigit>0 && eValid && eType>0 ){
683 return eType;
684 }else if( eType>=2 && (eType==3 || eValid) && nDigit>0 ){
685 return -1;
686 }else{
687 return 0;
689 #else
690 return !sqlite3Atoi64(z, pResult, length, enc);
691 #endif /* SQLITE_OMIT_FLOATING_POINT */
693 #if defined(_MSC_VER)
694 #pragma warning(default : 4756)
695 #endif
698 ** Render an signed 64-bit integer as text. Store the result in zOut[] and
699 ** return the length of the string that was stored, in bytes. The value
700 ** returned does not include the zero terminator at the end of the output
701 ** string.
703 ** The caller must ensure that zOut[] is at least 21 bytes in size.
705 int sqlite3Int64ToText(i64 v, char *zOut){
706 int i;
707 u64 x;
708 char zTemp[22];
709 if( v<0 ){
710 x = (v==SMALLEST_INT64) ? ((u64)1)<<63 : (u64)-v;
711 }else{
712 x = v;
714 i = sizeof(zTemp)-2;
715 zTemp[sizeof(zTemp)-1] = 0;
716 while( 1 /*exit-by-break*/ ){
717 zTemp[i] = (x%10) + '0';
718 x = x/10;
719 if( x==0 ) break;
720 i--;
722 if( v<0 ) zTemp[--i] = '-';
723 memcpy(zOut, &zTemp[i], sizeof(zTemp)-i);
724 return sizeof(zTemp)-1-i;
728 ** Compare the 19-character string zNum against the text representation
729 ** value 2^63: 9223372036854775808. Return negative, zero, or positive
730 ** if zNum is less than, equal to, or greater than the string.
731 ** Note that zNum must contain exactly 19 characters.
733 ** Unlike memcmp() this routine is guaranteed to return the difference
734 ** in the values of the last digit if the only difference is in the
735 ** last digit. So, for example,
737 ** compare2pow63("9223372036854775800", 1)
739 ** will return -8.
741 static int compare2pow63(const char *zNum, int incr){
742 int c = 0;
743 int i;
744 /* 012345678901234567 */
745 const char *pow63 = "922337203685477580";
746 for(i=0; c==0 && i<18; i++){
747 c = (zNum[i*incr]-pow63[i])*10;
749 if( c==0 ){
750 c = zNum[18*incr] - '8';
751 testcase( c==(-1) );
752 testcase( c==0 );
753 testcase( c==(+1) );
755 return c;
759 ** Convert zNum to a 64-bit signed integer. zNum must be decimal. This
760 ** routine does *not* accept hexadecimal notation.
762 ** Returns:
764 ** -1 Not even a prefix of the input text looks like an integer
765 ** 0 Successful transformation. Fits in a 64-bit signed integer.
766 ** 1 Excess non-space text after the integer value
767 ** 2 Integer too large for a 64-bit signed integer or is malformed
768 ** 3 Special case of 9223372036854775808
770 ** length is the number of bytes in the string (bytes, not characters).
771 ** The string is not necessarily zero-terminated. The encoding is
772 ** given by enc.
774 int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){
775 int incr;
776 u64 u = 0;
777 int neg = 0; /* assume positive */
778 int i;
779 int c = 0;
780 int nonNum = 0; /* True if input contains UTF16 with high byte non-zero */
781 int rc; /* Baseline return code */
782 const char *zStart;
783 const char *zEnd = zNum + length;
784 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
785 if( enc==SQLITE_UTF8 ){
786 incr = 1;
787 }else{
788 incr = 2;
789 length &= ~1;
790 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
791 for(i=3-enc; i<length && zNum[i]==0; i+=2){}
792 nonNum = i<length;
793 zEnd = &zNum[i^1];
794 zNum += (enc&1);
796 while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr;
797 if( zNum<zEnd ){
798 if( *zNum=='-' ){
799 neg = 1;
800 zNum+=incr;
801 }else if( *zNum=='+' ){
802 zNum+=incr;
805 zStart = zNum;
806 while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */
807 for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){
808 u = u*10 + c - '0';
810 testcase( i==18*incr );
811 testcase( i==19*incr );
812 testcase( i==20*incr );
813 if( u>LARGEST_INT64 ){
814 /* This test and assignment is needed only to suppress UB warnings
815 ** from clang and -fsanitize=undefined. This test and assignment make
816 ** the code a little larger and slower, and no harm comes from omitting
817 ** them, but we must appease the undefined-behavior pharisees. */
818 *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64;
819 }else if( neg ){
820 *pNum = -(i64)u;
821 }else{
822 *pNum = (i64)u;
824 rc = 0;
825 if( i==0 && zStart==zNum ){ /* No digits */
826 rc = -1;
827 }else if( nonNum ){ /* UTF16 with high-order bytes non-zero */
828 rc = 1;
829 }else if( &zNum[i]<zEnd ){ /* Extra bytes at the end */
830 int jj = i;
832 if( !sqlite3Isspace(zNum[jj]) ){
833 rc = 1; /* Extra non-space text after the integer */
834 break;
836 jj += incr;
837 }while( &zNum[jj]<zEnd );
839 if( i<19*incr ){
840 /* Less than 19 digits, so we know that it fits in 64 bits */
841 assert( u<=LARGEST_INT64 );
842 return rc;
843 }else{
844 /* zNum is a 19-digit numbers. Compare it against 9223372036854775808. */
845 c = i>19*incr ? 1 : compare2pow63(zNum, incr);
846 if( c<0 ){
847 /* zNum is less than 9223372036854775808 so it fits */
848 assert( u<=LARGEST_INT64 );
849 return rc;
850 }else{
851 *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64;
852 if( c>0 ){
853 /* zNum is greater than 9223372036854775808 so it overflows */
854 return 2;
855 }else{
856 /* zNum is exactly 9223372036854775808. Fits if negative. The
857 ** special case 2 overflow if positive */
858 assert( u-1==LARGEST_INT64 );
859 return neg ? rc : 3;
866 ** Transform a UTF-8 integer literal, in either decimal or hexadecimal,
867 ** into a 64-bit signed integer. This routine accepts hexadecimal literals,
868 ** whereas sqlite3Atoi64() does not.
870 ** Returns:
872 ** 0 Successful transformation. Fits in a 64-bit signed integer.
873 ** 1 Excess text after the integer value
874 ** 2 Integer too large for a 64-bit signed integer or is malformed
875 ** 3 Special case of 9223372036854775808
877 int sqlite3DecOrHexToI64(const char *z, i64 *pOut){
878 #ifndef SQLITE_OMIT_HEX_INTEGER
879 if( z[0]=='0'
880 && (z[1]=='x' || z[1]=='X')
882 u64 u = 0;
883 int i, k;
884 for(i=2; z[i]=='0'; i++){}
885 for(k=i; sqlite3Isxdigit(z[k]); k++){
886 u = u*16 + sqlite3HexToInt(z[k]);
888 memcpy(pOut, &u, 8);
889 if( k-i>16 ) return 2;
890 if( z[k]!=0 ) return 1;
891 return 0;
892 }else
893 #endif /* SQLITE_OMIT_HEX_INTEGER */
895 int n = (int)(0x3fffffff&strspn(z,"+- \n\t0123456789"));
896 if( z[n] ) n++;
897 return sqlite3Atoi64(z, pOut, n, SQLITE_UTF8);
902 ** If zNum represents an integer that will fit in 32-bits, then set
903 ** *pValue to that integer and return true. Otherwise return false.
905 ** This routine accepts both decimal and hexadecimal notation for integers.
907 ** Any non-numeric characters that following zNum are ignored.
908 ** This is different from sqlite3Atoi64() which requires the
909 ** input number to be zero-terminated.
911 int sqlite3GetInt32(const char *zNum, int *pValue){
912 sqlite_int64 v = 0;
913 int i, c;
914 int neg = 0;
915 if( zNum[0]=='-' ){
916 neg = 1;
917 zNum++;
918 }else if( zNum[0]=='+' ){
919 zNum++;
921 #ifndef SQLITE_OMIT_HEX_INTEGER
922 else if( zNum[0]=='0'
923 && (zNum[1]=='x' || zNum[1]=='X')
924 && sqlite3Isxdigit(zNum[2])
926 u32 u = 0;
927 zNum += 2;
928 while( zNum[0]=='0' ) zNum++;
929 for(i=0; i<8 && sqlite3Isxdigit(zNum[i]); i++){
930 u = u*16 + sqlite3HexToInt(zNum[i]);
932 if( (u&0x80000000)==0 && sqlite3Isxdigit(zNum[i])==0 ){
933 memcpy(pValue, &u, 4);
934 return 1;
935 }else{
936 return 0;
939 #endif
940 if( !sqlite3Isdigit(zNum[0]) ) return 0;
941 while( zNum[0]=='0' ) zNum++;
942 for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){
943 v = v*10 + c;
946 /* The longest decimal representation of a 32 bit integer is 10 digits:
948 ** 1234567890
949 ** 2^31 -> 2147483648
951 testcase( i==10 );
952 if( i>10 ){
953 return 0;
955 testcase( v-neg==2147483647 );
956 if( v-neg>2147483647 ){
957 return 0;
959 if( neg ){
960 v = -v;
962 *pValue = (int)v;
963 return 1;
967 ** Return a 32-bit integer value extracted from a string. If the
968 ** string is not an integer, just return 0.
970 int sqlite3Atoi(const char *z){
971 int x = 0;
972 sqlite3GetInt32(z, &x);
973 return x;
977 ** Decode a floating-point value into an approximate decimal
978 ** representation.
980 ** Round the decimal representation to n significant digits if
981 ** n is positive. Or round to -n signficant digits after the
982 ** decimal point if n is negative. No rounding is performed if
983 ** n is zero.
985 ** The significant digits of the decimal representation are
986 ** stored in p->z[] which is a often (but not always) a pointer
987 ** into the middle of p->zBuf[]. There are p->n significant digits.
988 ** The p->z[] array is *not* zero-terminated.
990 void sqlite3FpDecode(FpDecode *p, double r, int iRound, int mxRound){
991 int i;
992 u64 v;
993 int e, exp = 0;
994 p->isSpecial = 0;
995 p->z = p->zBuf;
997 /* Convert negative numbers to positive. Deal with Infinity, 0.0, and
998 ** NaN. */
999 if( r<0.0 ){
1000 p->sign = '-';
1001 r = -r;
1002 }else if( r==0.0 ){
1003 p->sign = '+';
1004 p->n = 1;
1005 p->iDP = 1;
1006 p->z = "0";
1007 return;
1008 }else{
1009 p->sign = '+';
1011 memcpy(&v,&r,8);
1012 e = v>>52;
1013 if( (e&0x7ff)==0x7ff ){
1014 p->isSpecial = 1 + (v!=0x7ff0000000000000LL);
1015 p->n = 0;
1016 p->iDP = 0;
1017 return;
1020 /* Multiply r by powers of ten until it lands somewhere in between
1021 ** 1.0e+19 and 1.0e+17.
1023 if( sqlite3Config.bUseLongDouble ){
1024 LONGDOUBLE_TYPE rr = r;
1025 if( rr>=1.0e+19 ){
1026 while( rr>=1.0e+119L ){ exp+=100; rr *= 1.0e-100L; }
1027 while( rr>=1.0e+29L ){ exp+=10; rr *= 1.0e-10L; }
1028 while( rr>=1.0e+19L ){ exp++; rr *= 1.0e-1L; }
1029 }else{
1030 while( rr<1.0e-97L ){ exp-=100; rr *= 1.0e+100L; }
1031 while( rr<1.0e+07L ){ exp-=10; rr *= 1.0e+10L; }
1032 while( rr<1.0e+17L ){ exp--; rr *= 1.0e+1L; }
1034 v = (u64)rr;
1035 }else{
1036 /* If high-precision floating point is not available using "long double",
1037 ** then use Dekker-style double-double computation to increase the
1038 ** precision.
1040 ** The error terms on constants like 1.0e+100 computed using the
1041 ** decimal extension, for example as follows:
1043 ** SELECT decimal_exp(decimal_sub('1.0e+100',decimal(1.0e+100)));
1045 double rr[2];
1046 rr[0] = r;
1047 rr[1] = 0.0;
1048 if( rr[0]>9.223372036854774784e+18 ){
1049 while( rr[0]>9.223372036854774784e+118 ){
1050 exp += 100;
1051 dekkerMul2(rr, 1.0e-100, -1.99918998026028836196e-117);
1053 while( rr[0]>9.223372036854774784e+28 ){
1054 exp += 10;
1055 dekkerMul2(rr, 1.0e-10, -3.6432197315497741579e-27);
1057 while( rr[0]>9.223372036854774784e+18 ){
1058 exp += 1;
1059 dekkerMul2(rr, 1.0e-01, -5.5511151231257827021e-18);
1061 }else{
1062 while( rr[0]<9.223372036854774784e-83 ){
1063 exp -= 100;
1064 dekkerMul2(rr, 1.0e+100, -1.5902891109759918046e+83);
1066 while( rr[0]<9.223372036854774784e+07 ){
1067 exp -= 10;
1068 dekkerMul2(rr, 1.0e+10, 0.0);
1070 while( rr[0]<9.22337203685477478e+17 ){
1071 exp -= 1;
1072 dekkerMul2(rr, 1.0e+01, 0.0);
1075 v = rr[1]<0.0 ? (u64)rr[0]-(u64)(-rr[1]) : (u64)rr[0]+(u64)rr[1];
1079 /* Extract significant digits. */
1080 i = sizeof(p->zBuf)-1;
1081 assert( v>0 );
1082 while( v ){ p->zBuf[i--] = (v%10) + '0'; v /= 10; }
1083 assert( i>=0 && i<sizeof(p->zBuf)-1 );
1084 p->n = sizeof(p->zBuf) - 1 - i;
1085 assert( p->n>0 );
1086 assert( p->n<sizeof(p->zBuf) );
1087 p->iDP = p->n + exp;
1088 if( iRound<=0 ){
1089 iRound = p->iDP - iRound;
1090 if( iRound==0 && p->zBuf[i+1]>='5' ){
1091 iRound = 1;
1092 p->zBuf[i--] = '0';
1093 p->n++;
1094 p->iDP++;
1097 if( iRound>0 && (iRound<p->n || p->n>mxRound) ){
1098 char *z = &p->zBuf[i+1];
1099 if( iRound>mxRound ) iRound = mxRound;
1100 p->n = iRound;
1101 if( z[iRound]>='5' ){
1102 int j = iRound-1;
1103 while( 1 /*exit-by-break*/ ){
1104 z[j]++;
1105 if( z[j]<='9' ) break;
1106 z[j] = '0';
1107 if( j==0 ){
1108 p->z[i--] = '1';
1109 p->n++;
1110 p->iDP++;
1111 break;
1112 }else{
1113 j--;
1118 p->z = &p->zBuf[i+1];
1119 assert( i+p->n < sizeof(p->zBuf) );
1120 while( ALWAYS(p->n>0) && p->z[p->n-1]=='0' ){ p->n--; }
1124 ** Try to convert z into an unsigned 32-bit integer. Return true on
1125 ** success and false if there is an error.
1127 ** Only decimal notation is accepted.
1129 int sqlite3GetUInt32(const char *z, u32 *pI){
1130 u64 v = 0;
1131 int i;
1132 for(i=0; sqlite3Isdigit(z[i]); i++){
1133 v = v*10 + z[i] - '0';
1134 if( v>4294967296LL ){ *pI = 0; return 0; }
1136 if( i==0 || z[i]!=0 ){ *pI = 0; return 0; }
1137 *pI = (u32)v;
1138 return 1;
1142 ** The variable-length integer encoding is as follows:
1144 ** KEY:
1145 ** A = 0xxxxxxx 7 bits of data and one flag bit
1146 ** B = 1xxxxxxx 7 bits of data and one flag bit
1147 ** C = xxxxxxxx 8 bits of data
1149 ** 7 bits - A
1150 ** 14 bits - BA
1151 ** 21 bits - BBA
1152 ** 28 bits - BBBA
1153 ** 35 bits - BBBBA
1154 ** 42 bits - BBBBBA
1155 ** 49 bits - BBBBBBA
1156 ** 56 bits - BBBBBBBA
1157 ** 64 bits - BBBBBBBBC
1161 ** Write a 64-bit variable-length integer to memory starting at p[0].
1162 ** The length of data write will be between 1 and 9 bytes. The number
1163 ** of bytes written is returned.
1165 ** A variable-length integer consists of the lower 7 bits of each byte
1166 ** for all bytes that have the 8th bit set and one byte with the 8th
1167 ** bit clear. Except, if we get to the 9th byte, it stores the full
1168 ** 8 bits and is the last byte.
1170 static int SQLITE_NOINLINE putVarint64(unsigned char *p, u64 v){
1171 int i, j, n;
1172 u8 buf[10];
1173 if( v & (((u64)0xff000000)<<32) ){
1174 p[8] = (u8)v;
1175 v >>= 8;
1176 for(i=7; i>=0; i--){
1177 p[i] = (u8)((v & 0x7f) | 0x80);
1178 v >>= 7;
1180 return 9;
1182 n = 0;
1184 buf[n++] = (u8)((v & 0x7f) | 0x80);
1185 v >>= 7;
1186 }while( v!=0 );
1187 buf[0] &= 0x7f;
1188 assert( n<=9 );
1189 for(i=0, j=n-1; j>=0; j--, i++){
1190 p[i] = buf[j];
1192 return n;
1194 int sqlite3PutVarint(unsigned char *p, u64 v){
1195 if( v<=0x7f ){
1196 p[0] = v&0x7f;
1197 return 1;
1199 if( v<=0x3fff ){
1200 p[0] = ((v>>7)&0x7f)|0x80;
1201 p[1] = v&0x7f;
1202 return 2;
1204 return putVarint64(p,v);
1208 ** Bitmasks used by sqlite3GetVarint(). These precomputed constants
1209 ** are defined here rather than simply putting the constant expressions
1210 ** inline in order to work around bugs in the RVT compiler.
1212 ** SLOT_2_0 A mask for (0x7f<<14) | 0x7f
1214 ** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0
1216 #define SLOT_2_0 0x001fc07f
1217 #define SLOT_4_2_0 0xf01fc07f
1221 ** Read a 64-bit variable-length integer from memory starting at p[0].
1222 ** Return the number of bytes read. The value is stored in *v.
1224 u8 sqlite3GetVarint(const unsigned char *p, u64 *v){
1225 u32 a,b,s;
1227 if( ((signed char*)p)[0]>=0 ){
1228 *v = *p;
1229 return 1;
1231 if( ((signed char*)p)[1]>=0 ){
1232 *v = ((u32)(p[0]&0x7f)<<7) | p[1];
1233 return 2;
1236 /* Verify that constants are precomputed correctly */
1237 assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) );
1238 assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) );
1240 a = ((u32)p[0])<<14;
1241 b = p[1];
1242 p += 2;
1243 a |= *p;
1244 /* a: p0<<14 | p2 (unmasked) */
1245 if (!(a&0x80))
1247 a &= SLOT_2_0;
1248 b &= 0x7f;
1249 b = b<<7;
1250 a |= b;
1251 *v = a;
1252 return 3;
1255 /* CSE1 from below */
1256 a &= SLOT_2_0;
1257 p++;
1258 b = b<<14;
1259 b |= *p;
1260 /* b: p1<<14 | p3 (unmasked) */
1261 if (!(b&0x80))
1263 b &= SLOT_2_0;
1264 /* moved CSE1 up */
1265 /* a &= (0x7f<<14)|(0x7f); */
1266 a = a<<7;
1267 a |= b;
1268 *v = a;
1269 return 4;
1272 /* a: p0<<14 | p2 (masked) */
1273 /* b: p1<<14 | p3 (unmasked) */
1274 /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
1275 /* moved CSE1 up */
1276 /* a &= (0x7f<<14)|(0x7f); */
1277 b &= SLOT_2_0;
1278 s = a;
1279 /* s: p0<<14 | p2 (masked) */
1281 p++;
1282 a = a<<14;
1283 a |= *p;
1284 /* a: p0<<28 | p2<<14 | p4 (unmasked) */
1285 if (!(a&0x80))
1287 /* we can skip these cause they were (effectively) done above
1288 ** while calculating s */
1289 /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
1290 /* b &= (0x7f<<14)|(0x7f); */
1291 b = b<<7;
1292 a |= b;
1293 s = s>>18;
1294 *v = ((u64)s)<<32 | a;
1295 return 5;
1298 /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
1299 s = s<<7;
1300 s |= b;
1301 /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
1303 p++;
1304 b = b<<14;
1305 b |= *p;
1306 /* b: p1<<28 | p3<<14 | p5 (unmasked) */
1307 if (!(b&0x80))
1309 /* we can skip this cause it was (effectively) done above in calc'ing s */
1310 /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
1311 a &= SLOT_2_0;
1312 a = a<<7;
1313 a |= b;
1314 s = s>>18;
1315 *v = ((u64)s)<<32 | a;
1316 return 6;
1319 p++;
1320 a = a<<14;
1321 a |= *p;
1322 /* a: p2<<28 | p4<<14 | p6 (unmasked) */
1323 if (!(a&0x80))
1325 a &= SLOT_4_2_0;
1326 b &= SLOT_2_0;
1327 b = b<<7;
1328 a |= b;
1329 s = s>>11;
1330 *v = ((u64)s)<<32 | a;
1331 return 7;
1334 /* CSE2 from below */
1335 a &= SLOT_2_0;
1336 p++;
1337 b = b<<14;
1338 b |= *p;
1339 /* b: p3<<28 | p5<<14 | p7 (unmasked) */
1340 if (!(b&0x80))
1342 b &= SLOT_4_2_0;
1343 /* moved CSE2 up */
1344 /* a &= (0x7f<<14)|(0x7f); */
1345 a = a<<7;
1346 a |= b;
1347 s = s>>4;
1348 *v = ((u64)s)<<32 | a;
1349 return 8;
1352 p++;
1353 a = a<<15;
1354 a |= *p;
1355 /* a: p4<<29 | p6<<15 | p8 (unmasked) */
1357 /* moved CSE2 up */
1358 /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */
1359 b &= SLOT_2_0;
1360 b = b<<8;
1361 a |= b;
1363 s = s<<4;
1364 b = p[-4];
1365 b &= 0x7f;
1366 b = b>>3;
1367 s |= b;
1369 *v = ((u64)s)<<32 | a;
1371 return 9;
1375 ** Read a 32-bit variable-length integer from memory starting at p[0].
1376 ** Return the number of bytes read. The value is stored in *v.
1378 ** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned
1379 ** integer, then set *v to 0xffffffff.
1381 ** A MACRO version, getVarint32, is provided which inlines the
1382 ** single-byte case. All code should use the MACRO version as
1383 ** this function assumes the single-byte case has already been handled.
1385 u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){
1386 u64 v64;
1387 u8 n;
1389 /* Assume that the single-byte case has already been handled by
1390 ** the getVarint32() macro */
1391 assert( (p[0] & 0x80)!=0 );
1393 if( (p[1] & 0x80)==0 ){
1394 /* This is the two-byte case */
1395 *v = ((p[0]&0x7f)<<7) | p[1];
1396 return 2;
1398 if( (p[2] & 0x80)==0 ){
1399 /* This is the three-byte case */
1400 *v = ((p[0]&0x7f)<<14) | ((p[1]&0x7f)<<7) | p[2];
1401 return 3;
1403 /* four or more bytes */
1404 n = sqlite3GetVarint(p, &v64);
1405 assert( n>3 && n<=9 );
1406 if( (v64 & SQLITE_MAX_U32)!=v64 ){
1407 *v = 0xffffffff;
1408 }else{
1409 *v = (u32)v64;
1411 return n;
1415 ** Return the number of bytes that will be needed to store the given
1416 ** 64-bit integer.
1418 int sqlite3VarintLen(u64 v){
1419 int i;
1420 for(i=1; (v >>= 7)!=0; i++){ assert( i<10 ); }
1421 return i;
1426 ** Read or write a four-byte big-endian integer value.
1428 u32 sqlite3Get4byte(const u8 *p){
1429 #if SQLITE_BYTEORDER==4321
1430 u32 x;
1431 memcpy(&x,p,4);
1432 return x;
1433 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
1434 u32 x;
1435 memcpy(&x,p,4);
1436 return __builtin_bswap32(x);
1437 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
1438 u32 x;
1439 memcpy(&x,p,4);
1440 return _byteswap_ulong(x);
1441 #else
1442 testcase( p[0]&0x80 );
1443 return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
1444 #endif
1446 void sqlite3Put4byte(unsigned char *p, u32 v){
1447 #if SQLITE_BYTEORDER==4321
1448 memcpy(p,&v,4);
1449 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
1450 u32 x = __builtin_bswap32(v);
1451 memcpy(p,&x,4);
1452 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
1453 u32 x = _byteswap_ulong(v);
1454 memcpy(p,&x,4);
1455 #else
1456 p[0] = (u8)(v>>24);
1457 p[1] = (u8)(v>>16);
1458 p[2] = (u8)(v>>8);
1459 p[3] = (u8)v;
1460 #endif
1466 ** Translate a single byte of Hex into an integer.
1467 ** This routine only works if h really is a valid hexadecimal
1468 ** character: 0..9a..fA..F
1470 u8 sqlite3HexToInt(int h){
1471 assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') );
1472 #ifdef SQLITE_ASCII
1473 h += 9*(1&(h>>6));
1474 #endif
1475 #ifdef SQLITE_EBCDIC
1476 h += 9*(1&~(h>>4));
1477 #endif
1478 return (u8)(h & 0xf);
1481 #if !defined(SQLITE_OMIT_BLOB_LITERAL)
1483 ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary
1484 ** value. Return a pointer to its binary value. Space to hold the
1485 ** binary value has been obtained from malloc and must be freed by
1486 ** the calling routine.
1488 void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){
1489 char *zBlob;
1490 int i;
1492 zBlob = (char *)sqlite3DbMallocRawNN(db, n/2 + 1);
1493 n--;
1494 if( zBlob ){
1495 for(i=0; i<n; i+=2){
1496 zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]);
1498 zBlob[i/2] = 0;
1500 return zBlob;
1502 #endif /* !SQLITE_OMIT_BLOB_LITERAL */
1505 ** Log an error that is an API call on a connection pointer that should
1506 ** not have been used. The "type" of connection pointer is given as the
1507 ** argument. The zType is a word like "NULL" or "closed" or "invalid".
1509 static void logBadConnection(const char *zType){
1510 sqlite3_log(SQLITE_MISUSE,
1511 "API call with %s database connection pointer",
1512 zType
1517 ** Check to make sure we have a valid db pointer. This test is not
1518 ** foolproof but it does provide some measure of protection against
1519 ** misuse of the interface such as passing in db pointers that are
1520 ** NULL or which have been previously closed. If this routine returns
1521 ** 1 it means that the db pointer is valid and 0 if it should not be
1522 ** dereferenced for any reason. The calling function should invoke
1523 ** SQLITE_MISUSE immediately.
1525 ** sqlite3SafetyCheckOk() requires that the db pointer be valid for
1526 ** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to
1527 ** open properly and is not fit for general use but which can be
1528 ** used as an argument to sqlite3_errmsg() or sqlite3_close().
1530 int sqlite3SafetyCheckOk(sqlite3 *db){
1531 u8 eOpenState;
1532 if( db==0 ){
1533 logBadConnection("NULL");
1534 return 0;
1536 eOpenState = db->eOpenState;
1537 if( eOpenState!=SQLITE_STATE_OPEN ){
1538 if( sqlite3SafetyCheckSickOrOk(db) ){
1539 testcase( sqlite3GlobalConfig.xLog!=0 );
1540 logBadConnection("unopened");
1542 return 0;
1543 }else{
1544 return 1;
1547 int sqlite3SafetyCheckSickOrOk(sqlite3 *db){
1548 u8 eOpenState;
1549 eOpenState = db->eOpenState;
1550 if( eOpenState!=SQLITE_STATE_SICK &&
1551 eOpenState!=SQLITE_STATE_OPEN &&
1552 eOpenState!=SQLITE_STATE_BUSY ){
1553 testcase( sqlite3GlobalConfig.xLog!=0 );
1554 logBadConnection("invalid");
1555 return 0;
1556 }else{
1557 return 1;
1562 ** Attempt to add, subtract, or multiply the 64-bit signed value iB against
1563 ** the other 64-bit signed integer at *pA and store the result in *pA.
1564 ** Return 0 on success. Or if the operation would have resulted in an
1565 ** overflow, leave *pA unchanged and return 1.
1567 int sqlite3AddInt64(i64 *pA, i64 iB){
1568 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
1569 return __builtin_add_overflow(*pA, iB, pA);
1570 #else
1571 i64 iA = *pA;
1572 testcase( iA==0 ); testcase( iA==1 );
1573 testcase( iB==-1 ); testcase( iB==0 );
1574 if( iB>=0 ){
1575 testcase( iA>0 && LARGEST_INT64 - iA == iB );
1576 testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 );
1577 if( iA>0 && LARGEST_INT64 - iA < iB ) return 1;
1578 }else{
1579 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 );
1580 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 );
1581 if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1;
1583 *pA += iB;
1584 return 0;
1585 #endif
1587 int sqlite3SubInt64(i64 *pA, i64 iB){
1588 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
1589 return __builtin_sub_overflow(*pA, iB, pA);
1590 #else
1591 testcase( iB==SMALLEST_INT64+1 );
1592 if( iB==SMALLEST_INT64 ){
1593 testcase( (*pA)==(-1) ); testcase( (*pA)==0 );
1594 if( (*pA)>=0 ) return 1;
1595 *pA -= iB;
1596 return 0;
1597 }else{
1598 return sqlite3AddInt64(pA, -iB);
1600 #endif
1602 int sqlite3MulInt64(i64 *pA, i64 iB){
1603 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
1604 return __builtin_mul_overflow(*pA, iB, pA);
1605 #else
1606 i64 iA = *pA;
1607 if( iB>0 ){
1608 if( iA>LARGEST_INT64/iB ) return 1;
1609 if( iA<SMALLEST_INT64/iB ) return 1;
1610 }else if( iB<0 ){
1611 if( iA>0 ){
1612 if( iB<SMALLEST_INT64/iA ) return 1;
1613 }else if( iA<0 ){
1614 if( iB==SMALLEST_INT64 ) return 1;
1615 if( iA==SMALLEST_INT64 ) return 1;
1616 if( -iA>LARGEST_INT64/-iB ) return 1;
1619 *pA = iA*iB;
1620 return 0;
1621 #endif
1625 ** Compute the absolute value of a 32-bit signed integer, of possible. Or
1626 ** if the integer has a value of -2147483648, return +2147483647
1628 int sqlite3AbsInt32(int x){
1629 if( x>=0 ) return x;
1630 if( x==(int)0x80000000 ) return 0x7fffffff;
1631 return -x;
1634 #ifdef SQLITE_ENABLE_8_3_NAMES
1636 ** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database
1637 ** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and
1638 ** if filename in z[] has a suffix (a.k.a. "extension") that is longer than
1639 ** three characters, then shorten the suffix on z[] to be the last three
1640 ** characters of the original suffix.
1642 ** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always
1643 ** do the suffix shortening regardless of URI parameter.
1645 ** Examples:
1647 ** test.db-journal => test.nal
1648 ** test.db-wal => test.wal
1649 ** test.db-shm => test.shm
1650 ** test.db-mj7f3319fa => test.9fa
1652 void sqlite3FileSuffix3(const char *zBaseFilename, char *z){
1653 #if SQLITE_ENABLE_8_3_NAMES<2
1654 if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) )
1655 #endif
1657 int i, sz;
1658 sz = sqlite3Strlen30(z);
1659 for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){}
1660 if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4);
1663 #endif
1666 ** Find (an approximate) sum of two LogEst values. This computation is
1667 ** not a simple "+" operator because LogEst is stored as a logarithmic
1668 ** value.
1671 LogEst sqlite3LogEstAdd(LogEst a, LogEst b){
1672 static const unsigned char x[] = {
1673 10, 10, /* 0,1 */
1674 9, 9, /* 2,3 */
1675 8, 8, /* 4,5 */
1676 7, 7, 7, /* 6,7,8 */
1677 6, 6, 6, /* 9,10,11 */
1678 5, 5, 5, /* 12-14 */
1679 4, 4, 4, 4, /* 15-18 */
1680 3, 3, 3, 3, 3, 3, /* 19-24 */
1681 2, 2, 2, 2, 2, 2, 2, /* 25-31 */
1683 if( a>=b ){
1684 if( a>b+49 ) return a;
1685 if( a>b+31 ) return a+1;
1686 return a+x[a-b];
1687 }else{
1688 if( b>a+49 ) return b;
1689 if( b>a+31 ) return b+1;
1690 return b+x[b-a];
1695 ** Convert an integer into a LogEst. In other words, compute an
1696 ** approximation for 10*log2(x).
1698 LogEst sqlite3LogEst(u64 x){
1699 static LogEst a[] = { 0, 2, 3, 5, 6, 7, 8, 9 };
1700 LogEst y = 40;
1701 if( x<8 ){
1702 if( x<2 ) return 0;
1703 while( x<8 ){ y -= 10; x <<= 1; }
1704 }else{
1705 #if GCC_VERSION>=5004000
1706 int i = 60 - __builtin_clzll(x);
1707 y += i*10;
1708 x >>= i;
1709 #else
1710 while( x>255 ){ y += 40; x >>= 4; } /*OPTIMIZATION-IF-TRUE*/
1711 while( x>15 ){ y += 10; x >>= 1; }
1712 #endif
1714 return a[x&7] + y - 10;
1718 ** Convert a double into a LogEst
1719 ** In other words, compute an approximation for 10*log2(x).
1721 LogEst sqlite3LogEstFromDouble(double x){
1722 u64 a;
1723 LogEst e;
1724 assert( sizeof(x)==8 && sizeof(a)==8 );
1725 if( x<=1 ) return 0;
1726 if( x<=2000000000 ) return sqlite3LogEst((u64)x);
1727 memcpy(&a, &x, 8);
1728 e = (a>>52) - 1022;
1729 return e*10;
1733 ** Convert a LogEst into an integer.
1735 u64 sqlite3LogEstToInt(LogEst x){
1736 u64 n;
1737 n = x%10;
1738 x /= 10;
1739 if( n>=5 ) n -= 2;
1740 else if( n>=1 ) n -= 1;
1741 if( x>60 ) return (u64)LARGEST_INT64;
1742 return x>=3 ? (n+8)<<(x-3) : (n+8)>>(3-x);
1746 ** Add a new name/number pair to a VList. This might require that the
1747 ** VList object be reallocated, so return the new VList. If an OOM
1748 ** error occurs, the original VList returned and the
1749 ** db->mallocFailed flag is set.
1751 ** A VList is really just an array of integers. To destroy a VList,
1752 ** simply pass it to sqlite3DbFree().
1754 ** The first integer is the number of integers allocated for the whole
1755 ** VList. The second integer is the number of integers actually used.
1756 ** Each name/number pair is encoded by subsequent groups of 3 or more
1757 ** integers.
1759 ** Each name/number pair starts with two integers which are the numeric
1760 ** value for the pair and the size of the name/number pair, respectively.
1761 ** The text name overlays one or more following integers. The text name
1762 ** is always zero-terminated.
1764 ** Conceptually:
1766 ** struct VList {
1767 ** int nAlloc; // Number of allocated slots
1768 ** int nUsed; // Number of used slots
1769 ** struct VListEntry {
1770 ** int iValue; // Value for this entry
1771 ** int nSlot; // Slots used by this entry
1772 ** // ... variable name goes here
1773 ** } a[0];
1774 ** }
1776 ** During code generation, pointers to the variable names within the
1777 ** VList are taken. When that happens, nAlloc is set to zero as an
1778 ** indication that the VList may never again be enlarged, since the
1779 ** accompanying realloc() would invalidate the pointers.
1781 VList *sqlite3VListAdd(
1782 sqlite3 *db, /* The database connection used for malloc() */
1783 VList *pIn, /* The input VList. Might be NULL */
1784 const char *zName, /* Name of symbol to add */
1785 int nName, /* Bytes of text in zName */
1786 int iVal /* Value to associate with zName */
1788 int nInt; /* number of sizeof(int) objects needed for zName */
1789 char *z; /* Pointer to where zName will be stored */
1790 int i; /* Index in pIn[] where zName is stored */
1792 nInt = nName/4 + 3;
1793 assert( pIn==0 || pIn[0]>=3 ); /* Verify ok to add new elements */
1794 if( pIn==0 || pIn[1]+nInt > pIn[0] ){
1795 /* Enlarge the allocation */
1796 sqlite3_int64 nAlloc = (pIn ? 2*(sqlite3_int64)pIn[0] : 10) + nInt;
1797 VList *pOut = sqlite3DbRealloc(db, pIn, nAlloc*sizeof(int));
1798 if( pOut==0 ) return pIn;
1799 if( pIn==0 ) pOut[1] = 2;
1800 pIn = pOut;
1801 pIn[0] = nAlloc;
1803 i = pIn[1];
1804 pIn[i] = iVal;
1805 pIn[i+1] = nInt;
1806 z = (char*)&pIn[i+2];
1807 pIn[1] = i+nInt;
1808 assert( pIn[1]<=pIn[0] );
1809 memcpy(z, zName, nName);
1810 z[nName] = 0;
1811 return pIn;
1815 ** Return a pointer to the name of a variable in the given VList that
1816 ** has the value iVal. Or return a NULL if there is no such variable in
1817 ** the list
1819 const char *sqlite3VListNumToName(VList *pIn, int iVal){
1820 int i, mx;
1821 if( pIn==0 ) return 0;
1822 mx = pIn[1];
1823 i = 2;
1825 if( pIn[i]==iVal ) return (char*)&pIn[i+2];
1826 i += pIn[i+1];
1827 }while( i<mx );
1828 return 0;
1832 ** Return the number of the variable named zName, if it is in VList.
1833 ** or return 0 if there is no such variable.
1835 int sqlite3VListNameToNum(VList *pIn, const char *zName, int nName){
1836 int i, mx;
1837 if( pIn==0 ) return 0;
1838 mx = pIn[1];
1839 i = 2;
1841 const char *z = (const char*)&pIn[i+2];
1842 if( strncmp(z,zName,nName)==0 && z[nName]==0 ) return pIn[i];
1843 i += pIn[i+1];
1844 }while( i<mx );
1845 return 0;
1849 ** High-resolution hardware timer used for debugging and testing only.
1851 #if defined(VDBE_PROFILE) \
1852 || defined(SQLITE_PERFORMANCE_TRACE) \
1853 || defined(SQLITE_ENABLE_STMT_SCANSTATUS)
1854 # include "hwtime.h"
1855 #endif