4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** Utility functions used throughout sqlite.
14 ** This file contains functions for allocating memory, comparing
15 ** strings, and stuff like that.
18 #include "sqliteInt.h"
20 #ifndef SQLITE_OMIT_FLOATING_POINT
25 ** Calls to sqlite3FaultSim() are used to simulate a failure during testing,
26 ** or to bypass normal error detection during testing in order to let
27 ** execute proceed further downstream.
29 ** In deployment, sqlite3FaultSim() *always* return SQLITE_OK (0). The
30 ** sqlite3FaultSim() function only returns non-zero during testing.
32 ** During testing, if the test harness has set a fault-sim callback using
33 ** a call to sqlite3_test_control(SQLITE_TESTCTRL_FAULT_INSTALL), then
34 ** each call to sqlite3FaultSim() is relayed to that application-supplied
35 ** callback and the integer return value form the application-supplied
36 ** callback is returned by sqlite3FaultSim().
38 ** The integer argument to sqlite3FaultSim() is a code to identify which
39 ** sqlite3FaultSim() instance is being invoked. Each call to sqlite3FaultSim()
40 ** should have a unique code. To prevent legacy testing applications from
41 ** breaking, the codes should not be changed or reused.
43 #ifndef SQLITE_UNTESTABLE
44 int sqlite3FaultSim(int iTest
){
45 int (*xCallback
)(int) = sqlite3GlobalConfig
.xTestCallback
;
46 return xCallback
? xCallback(iTest
) : SQLITE_OK
;
50 #ifndef SQLITE_OMIT_FLOATING_POINT
52 ** Return true if the floating point value is Not a Number (NaN).
54 ** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN.
55 ** Otherwise, we have our own implementation that works on most systems.
57 int sqlite3IsNaN(double x
){
58 int rc
; /* The value return */
59 #if !SQLITE_HAVE_ISNAN && !HAVE_ISNAN
61 memcpy(&y
,&x
,sizeof(y
));
65 #endif /* HAVE_ISNAN */
69 #endif /* SQLITE_OMIT_FLOATING_POINT */
71 #ifndef SQLITE_OMIT_FLOATING_POINT
73 ** Return true if the floating point value is NaN or +Inf or -Inf.
75 int sqlite3IsOverflow(double x
){
76 int rc
; /* The value return */
78 memcpy(&y
,&x
,sizeof(y
));
82 #endif /* SQLITE_OMIT_FLOATING_POINT */
85 ** Compute a string length that is limited to what can be stored in
86 ** lower 30 bits of a 32-bit signed integer.
88 ** The value returned will never be negative. Nor will it ever be greater
89 ** than the actual length of the string. For very long strings (greater
90 ** than 1GiB) the value returned might be less than the true string length.
92 int sqlite3Strlen30(const char *z
){
94 return 0x3fffffff & (int)strlen(z
);
98 ** Return the declared type of a column. Or return zDflt if the column
99 ** has no declared type.
101 ** The column type is an extra string stored after the zero-terminator on
102 ** the column name if and only if the COLFLAG_HASTYPE flag is set.
104 char *sqlite3ColumnType(Column
*pCol
, char *zDflt
){
105 if( pCol
->colFlags
& COLFLAG_HASTYPE
){
106 return pCol
->zCnName
+ strlen(pCol
->zCnName
) + 1;
107 }else if( pCol
->eCType
){
108 assert( pCol
->eCType
<=SQLITE_N_STDTYPE
);
109 return (char*)sqlite3StdType
[pCol
->eCType
-1];
116 ** Helper function for sqlite3Error() - called rarely. Broken out into
117 ** a separate routine to avoid unnecessary register saves on entry to
120 static SQLITE_NOINLINE
void sqlite3ErrorFinish(sqlite3
*db
, int err_code
){
121 if( db
->pErr
) sqlite3ValueSetNull(db
->pErr
);
122 sqlite3SystemError(db
, err_code
);
126 ** Set the current error code to err_code and clear any prior error message.
127 ** Also set iSysErrno (by calling sqlite3System) if the err_code indicates
128 ** that would be appropriate.
130 void sqlite3Error(sqlite3
*db
, int err_code
){
132 db
->errCode
= err_code
;
133 if( err_code
|| db
->pErr
){
134 sqlite3ErrorFinish(db
, err_code
);
136 db
->errByteOffset
= -1;
141 ** The equivalent of sqlite3Error(db, SQLITE_OK). Clear the error state
142 ** and error message.
144 void sqlite3ErrorClear(sqlite3
*db
){
146 db
->errCode
= SQLITE_OK
;
147 db
->errByteOffset
= -1;
148 if( db
->pErr
) sqlite3ValueSetNull(db
->pErr
);
152 ** Load the sqlite3.iSysErrno field if that is an appropriate thing
153 ** to do based on the SQLite error code in rc.
155 void sqlite3SystemError(sqlite3
*db
, int rc
){
156 if( rc
==SQLITE_IOERR_NOMEM
) return;
157 #if defined(SQLITE_USE_SEH) && !defined(SQLITE_OMIT_WAL)
158 if( rc
==SQLITE_IOERR_IN_PAGE
){
161 sqlite3BtreeEnterAll(db
);
162 for(ii
=0; ii
<db
->nDb
; ii
++){
163 if( db
->aDb
[ii
].pBt
){
164 iErr
= sqlite3PagerWalSystemErrno(sqlite3BtreePager(db
->aDb
[ii
].pBt
));
166 db
->iSysErrno
= iErr
;
170 sqlite3BtreeLeaveAll(db
);
175 if( rc
==SQLITE_CANTOPEN
|| rc
==SQLITE_IOERR
){
176 db
->iSysErrno
= sqlite3OsGetLastError(db
->pVfs
);
181 ** Set the most recent error code and error string for the sqlite
182 ** handle "db". The error code is set to "err_code".
184 ** If it is not NULL, string zFormat specifies the format of the
185 ** error string. zFormat and any string tokens that follow it are
186 ** assumed to be encoded in UTF-8.
188 ** To clear the most recent error for sqlite handle "db", sqlite3Error
189 ** should be called with err_code set to SQLITE_OK and zFormat set
192 void sqlite3ErrorWithMsg(sqlite3
*db
, int err_code
, const char *zFormat
, ...){
194 db
->errCode
= err_code
;
195 sqlite3SystemError(db
, err_code
);
197 sqlite3Error(db
, err_code
);
198 }else if( db
->pErr
|| (db
->pErr
= sqlite3ValueNew(db
))!=0 ){
201 va_start(ap
, zFormat
);
202 z
= sqlite3VMPrintf(db
, zFormat
, ap
);
204 sqlite3ValueSetStr(db
->pErr
, -1, z
, SQLITE_UTF8
, SQLITE_DYNAMIC
);
209 ** Check for interrupts and invoke progress callback.
211 void sqlite3ProgressCheck(Parse
*p
){
213 if( AtomicLoad(&db
->u1
.isInterrupted
) ){
215 p
->rc
= SQLITE_INTERRUPT
;
217 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
219 if( p
->rc
==SQLITE_INTERRUPT
){
220 p
->nProgressSteps
= 0;
221 }else if( (++p
->nProgressSteps
)>=db
->nProgressOps
){
222 if( db
->xProgress(db
->pProgressArg
) ){
224 p
->rc
= SQLITE_INTERRUPT
;
226 p
->nProgressSteps
= 0;
233 ** Add an error message to pParse->zErrMsg and increment pParse->nErr.
235 ** This function should be used to report any error that occurs while
236 ** compiling an SQL statement (i.e. within sqlite3_prepare()). The
237 ** last thing the sqlite3_prepare() function does is copy the error
238 ** stored by this function into the database handle using sqlite3Error().
239 ** Functions sqlite3Error() or sqlite3ErrorWithMsg() should be used
240 ** during statement execution (sqlite3_step() etc.).
242 void sqlite3ErrorMsg(Parse
*pParse
, const char *zFormat
, ...){
245 sqlite3
*db
= pParse
->db
;
247 assert( db
->pParse
==pParse
|| db
->pParse
->pToplevel
==pParse
);
248 db
->errByteOffset
= -2;
249 va_start(ap
, zFormat
);
250 zMsg
= sqlite3VMPrintf(db
, zFormat
, ap
);
252 if( db
->errByteOffset
<-1 ) db
->errByteOffset
= -1;
253 if( db
->suppressErr
){
254 sqlite3DbFree(db
, zMsg
);
255 if( db
->mallocFailed
){
257 pParse
->rc
= SQLITE_NOMEM
;
261 sqlite3DbFree(db
, pParse
->zErrMsg
);
262 pParse
->zErrMsg
= zMsg
;
263 pParse
->rc
= SQLITE_ERROR
;
269 ** If database connection db is currently parsing SQL, then transfer
270 ** error code errCode to that parser if the parser has not already
271 ** encountered some other kind of error.
273 int sqlite3ErrorToParser(sqlite3
*db
, int errCode
){
275 if( db
==0 || (pParse
= db
->pParse
)==0 ) return errCode
;
276 pParse
->rc
= errCode
;
282 ** Convert an SQL-style quoted string into a normal string by removing
283 ** the quote characters. The conversion is done in-place. If the
284 ** input does not begin with a quote character, then this routine
287 ** The input string must be zero-terminated. A new zero-terminator
288 ** is added to the dequoted string.
290 ** The return value is -1 if no dequoting occurs or the length of the
291 ** dequoted string, exclusive of the zero terminator, if dequoting does
294 ** 2002-02-14: This routine is extended to remove MS-Access style
295 ** brackets from around identifiers. For example: "[a-b-c]" becomes
298 void sqlite3Dequote(char *z
){
303 if( !sqlite3Isquote(quote
) ) return;
304 if( quote
=='[' ) quote
= ']';
320 void sqlite3DequoteExpr(Expr
*p
){
321 assert( !ExprHasProperty(p
, EP_IntValue
) );
322 assert( sqlite3Isquote(p
->u
.zToken
[0]) );
323 p
->flags
|= p
->u
.zToken
[0]=='"' ? EP_Quoted
|EP_DblQuoted
: EP_Quoted
;
324 sqlite3Dequote(p
->u
.zToken
);
328 ** If the input token p is quoted, try to adjust the token to remove
329 ** the quotes. This is not always possible:
332 ** "ab""cd" -> (not possible because of the interior "")
334 ** Remove the quotes if possible. This is a optimization. The overall
335 ** system should still return the correct answer even if this routine
336 ** is always a no-op.
338 void sqlite3DequoteToken(Token
*p
){
341 if( !sqlite3Isquote(p
->z
[0]) ) return;
342 for(i
=1; i
<p
->n
-1; i
++){
343 if( sqlite3Isquote(p
->z
[i
]) ) return;
350 ** Generate a Token object from a string
352 void sqlite3TokenInit(Token
*p
, char *z
){
354 p
->n
= sqlite3Strlen30(z
);
357 /* Convenient short-hand */
358 #define UpperToLower sqlite3UpperToLower
361 ** Some systems have stricmp(). Others have strcasecmp(). Because
362 ** there is no consistency, we will define our own.
364 ** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and
365 ** sqlite3_strnicmp() APIs allow applications and extensions to compare
366 ** the contents of two buffers containing UTF-8 strings in a
367 ** case-independent fashion, using the same definition of "case
368 ** independence" that SQLite uses internally when comparing identifiers.
370 int sqlite3_stricmp(const char *zLeft
, const char *zRight
){
372 return zRight
? -1 : 0;
373 }else if( zRight
==0 ){
376 return sqlite3StrICmp(zLeft
, zRight
);
378 int sqlite3StrICmp(const char *zLeft
, const char *zRight
){
379 unsigned char *a
, *b
;
381 a
= (unsigned char *)zLeft
;
382 b
= (unsigned char *)zRight
;
389 c
= (int)UpperToLower
[c
] - (int)UpperToLower
[x
];
397 int sqlite3_strnicmp(const char *zLeft
, const char *zRight
, int N
){
398 register unsigned char *a
, *b
;
400 return zRight
? -1 : 0;
401 }else if( zRight
==0 ){
404 a
= (unsigned char *)zLeft
;
405 b
= (unsigned char *)zRight
;
406 while( N
-- > 0 && *a
!=0 && UpperToLower
[*a
]==UpperToLower
[*b
]){ a
++; b
++; }
407 return N
<0 ? 0 : UpperToLower
[*a
] - UpperToLower
[*b
];
411 ** Compute an 8-bit hash on a string that is insensitive to case differences
413 u8
sqlite3StrIHash(const char *z
){
417 h
+= UpperToLower
[(unsigned char)z
[0]];
423 /* Double-Double multiplication. (x[0],x[1]) *= (y,yy)
426 ** T. J. Dekker, "A Floating-Point Technique for Extending the
427 ** Available Precision". 1971-07-26.
429 static void dekkerMul2(volatile double *x
, double y
, double yy
){
431 ** The "volatile" keywords on parameter x[] and on local variables
432 ** below are needed force intermediate results to be truncated to
433 ** binary64 rather than be carried around in an extended-precision
434 ** format. The truncation is necessary for the Dekker algorithm to
435 ** work. Intel x86 floating point might omit the truncation without
436 ** the use of volatile.
438 volatile double tx
, ty
, p
, q
, c
, cc
;
441 memcpy(&m
, (void*)&x
[0], 8);
442 m
&= 0xfffffffffc000000LL
;
446 m
&= 0xfffffffffc000000LL
;
452 cc
= p
- c
+ q
+ tx
*ty
;
453 cc
= x
[0]*yy
+ x
[1]*y
+ cc
;
460 ** The string z[] is an text representation of a real number.
461 ** Convert this string to a double and write it into *pResult.
463 ** The string z[] is length bytes in length (bytes, not characters) and
464 ** uses the encoding enc. The string is not necessarily zero-terminated.
466 ** Return TRUE if the result is a valid real number (or integer) and FALSE
467 ** if the string is empty or contains extraneous text. More specifically
469 ** 1 => The input string is a pure integer
470 ** 2 or more => The input has a decimal point or eNNN clause
471 ** 0 or less => The input string is not a valid number
472 ** -1 => Not a valid number, but has a valid prefix which
473 ** includes a decimal point and/or an eNNN clause
475 ** Valid numbers are in one of these formats:
477 ** [+-]digits[E[+-]digits]
478 ** [+-]digits.[digits][E[+-]digits]
479 ** [+-].digits[E[+-]digits]
481 ** Leading and trailing whitespace is ignored for the purpose of determining
484 ** If some prefix of the input string is a valid number, this routine
485 ** returns FALSE but it still converts the prefix and writes the result
488 #if defined(_MSC_VER)
489 #pragma warning(disable : 4756)
491 int sqlite3AtoF(const char *z
, double *pResult
, int length
, u8 enc
){
492 #ifndef SQLITE_OMIT_FLOATING_POINT
495 /* sign * significand * (10 ^ (esign * exponent)) */
496 int sign
= 1; /* sign of significand */
497 u64 s
= 0; /* significand */
498 int d
= 0; /* adjust exponent for shifting decimal point */
499 int esign
= 1; /* sign of exponent */
500 int e
= 0; /* exponent */
501 int eValid
= 1; /* True exponent is either not used or is well-formed */
502 int nDigit
= 0; /* Number of digits processed */
503 int eType
= 1; /* 1: pure integer, 2+: fractional -1 or less: bad UTF16 */
505 assert( enc
==SQLITE_UTF8
|| enc
==SQLITE_UTF16LE
|| enc
==SQLITE_UTF16BE
);
506 *pResult
= 0.0; /* Default return value, in case of an error */
507 if( length
==0 ) return 0;
509 if( enc
==SQLITE_UTF8
){
516 assert( SQLITE_UTF16LE
==2 && SQLITE_UTF16BE
==3 );
517 testcase( enc
==SQLITE_UTF16LE
);
518 testcase( enc
==SQLITE_UTF16BE
);
519 for(i
=3-enc
; i
<length
&& z
[i
]==0; i
+=2){}
520 if( i
<length
) eType
= -100;
525 /* skip leading spaces */
526 while( z
<zEnd
&& sqlite3Isspace(*z
) ) z
+=incr
;
527 if( z
>=zEnd
) return 0;
529 /* get sign of significand */
537 /* copy max significant digits to significand */
538 while( z
<zEnd
&& sqlite3Isdigit(*z
) ){
539 s
= s
*10 + (*z
- '0');
541 if( s
>=((LARGEST_UINT64
-9)/10) ){
542 /* skip non-significant significand digits
543 ** (increase exponent by d to shift decimal left) */
544 while( z
<zEnd
&& sqlite3Isdigit(*z
) ){ z
+=incr
; d
++; }
547 if( z
>=zEnd
) goto do_atof_calc
;
549 /* if decimal point is present */
553 /* copy digits from after decimal to significand
554 ** (decrease exponent by d to shift decimal right) */
555 while( z
<zEnd
&& sqlite3Isdigit(*z
) ){
556 if( s
<((LARGEST_UINT64
-9)/10) ){
557 s
= s
*10 + (*z
- '0');
564 if( z
>=zEnd
) goto do_atof_calc
;
566 /* if exponent is present */
567 if( *z
=='e' || *z
=='E' ){
572 /* This branch is needed to avoid a (harmless) buffer overread. The
573 ** special comment alerts the mutation tester that the correct answer
574 ** is obtained even if the branch is omitted */
575 if( z
>=zEnd
) goto do_atof_calc
; /*PREVENTS-HARMLESS-OVERREAD*/
577 /* get sign of exponent */
584 /* copy digits to exponent */
585 while( z
<zEnd
&& sqlite3Isdigit(*z
) ){
586 e
= e
<10000 ? (e
*10 + (*z
- '0')) : 10000;
592 /* skip trailing spaces */
593 while( z
<zEnd
&& sqlite3Isspace(*z
) ) z
+=incr
;
596 /* Zero is a special case */
598 *pResult
= sign
<0 ? -0.0 : +0.0;
602 /* adjust exponent by d, and update sign */
605 /* Try to adjust the exponent to make it smaller */
606 while( e
>0 && s
<(LARGEST_UINT64
/10) ){
610 while( e
<0 && (s
%10)==0 ){
617 }else if( sqlite3Config
.bUseLongDouble
){
618 LONGDOUBLE_TYPE r
= (LONGDOUBLE_TYPE
)s
;
620 while( e
>=100 ){ e
-=100; r
*= 1.0e+100L; }
621 while( e
>=10 ){ e
-=10; r
*= 1.0e+10L; }
622 while( e
>=1 ){ e
-=1; r
*= 1.0e+01L; }
624 while( e
<=-100 ){ e
+=100; r
*= 1.0e-100L; }
625 while( e
<=-10 ){ e
+=10; r
*= 1.0e-10L; }
626 while( e
<=-1 ){ e
+=1; r
*= 1.0e-01L; }
629 if( r
>+1.7976931348623157081452742373e+308L ){
631 *pResult
= +INFINITY
;
633 *pResult
= 1.0e308
*10.0;
636 *pResult
= (double)r
;
643 #if defined(_MSC_VER) && _MSC_VER<1700
644 if( s2
==0x8000000000000000LL
){ s2
= 2*(u64
)(0.5*rr
[0]); }
646 rr
[1] = s
>=s2
? (double)(s
- s2
) : -(double)(s2
- s
);
650 dekkerMul2(rr
, 1.0e+100, -1.5902891109759918046e+83);
654 dekkerMul2(rr
, 1.0e+10, 0.0);
658 dekkerMul2(rr
, 1.0e+01, 0.0);
663 dekkerMul2(rr
, 1.0e-100, -1.99918998026028836196e-117);
667 dekkerMul2(rr
, 1.0e-10, -3.6432197315497741579e-27);
671 dekkerMul2(rr
, 1.0e-01, -5.5511151231257827021e-18);
674 *pResult
= rr
[0]+rr
[1];
675 if( sqlite3IsNaN(*pResult
) ) *pResult
= 1e300
*1e300
;
677 if( sign
<0 ) *pResult
= -*pResult
;
678 assert( !sqlite3IsNaN(*pResult
) );
681 /* return true if number and no extra non-whitespace characters after */
682 if( z
==zEnd
&& nDigit
>0 && eValid
&& eType
>0 ){
684 }else if( eType
>=2 && (eType
==3 || eValid
) && nDigit
>0 ){
690 return !sqlite3Atoi64(z
, pResult
, length
, enc
);
691 #endif /* SQLITE_OMIT_FLOATING_POINT */
693 #if defined(_MSC_VER)
694 #pragma warning(default : 4756)
698 ** Render an signed 64-bit integer as text. Store the result in zOut[] and
699 ** return the length of the string that was stored, in bytes. The value
700 ** returned does not include the zero terminator at the end of the output
703 ** The caller must ensure that zOut[] is at least 21 bytes in size.
705 int sqlite3Int64ToText(i64 v
, char *zOut
){
710 x
= (v
==SMALLEST_INT64
) ? ((u64
)1)<<63 : (u64
)-v
;
715 zTemp
[sizeof(zTemp
)-1] = 0;
716 while( 1 /*exit-by-break*/ ){
717 zTemp
[i
] = (x
%10) + '0';
722 if( v
<0 ) zTemp
[--i
] = '-';
723 memcpy(zOut
, &zTemp
[i
], sizeof(zTemp
)-i
);
724 return sizeof(zTemp
)-1-i
;
728 ** Compare the 19-character string zNum against the text representation
729 ** value 2^63: 9223372036854775808. Return negative, zero, or positive
730 ** if zNum is less than, equal to, or greater than the string.
731 ** Note that zNum must contain exactly 19 characters.
733 ** Unlike memcmp() this routine is guaranteed to return the difference
734 ** in the values of the last digit if the only difference is in the
735 ** last digit. So, for example,
737 ** compare2pow63("9223372036854775800", 1)
741 static int compare2pow63(const char *zNum
, int incr
){
744 /* 012345678901234567 */
745 const char *pow63
= "922337203685477580";
746 for(i
=0; c
==0 && i
<18; i
++){
747 c
= (zNum
[i
*incr
]-pow63
[i
])*10;
750 c
= zNum
[18*incr
] - '8';
759 ** Convert zNum to a 64-bit signed integer. zNum must be decimal. This
760 ** routine does *not* accept hexadecimal notation.
764 ** -1 Not even a prefix of the input text looks like an integer
765 ** 0 Successful transformation. Fits in a 64-bit signed integer.
766 ** 1 Excess non-space text after the integer value
767 ** 2 Integer too large for a 64-bit signed integer or is malformed
768 ** 3 Special case of 9223372036854775808
770 ** length is the number of bytes in the string (bytes, not characters).
771 ** The string is not necessarily zero-terminated. The encoding is
774 int sqlite3Atoi64(const char *zNum
, i64
*pNum
, int length
, u8 enc
){
777 int neg
= 0; /* assume positive */
780 int nonNum
= 0; /* True if input contains UTF16 with high byte non-zero */
781 int rc
; /* Baseline return code */
783 const char *zEnd
= zNum
+ length
;
784 assert( enc
==SQLITE_UTF8
|| enc
==SQLITE_UTF16LE
|| enc
==SQLITE_UTF16BE
);
785 if( enc
==SQLITE_UTF8
){
790 assert( SQLITE_UTF16LE
==2 && SQLITE_UTF16BE
==3 );
791 for(i
=3-enc
; i
<length
&& zNum
[i
]==0; i
+=2){}
796 while( zNum
<zEnd
&& sqlite3Isspace(*zNum
) ) zNum
+=incr
;
801 }else if( *zNum
=='+' ){
806 while( zNum
<zEnd
&& zNum
[0]=='0' ){ zNum
+=incr
; } /* Skip leading zeros. */
807 for(i
=0; &zNum
[i
]<zEnd
&& (c
=zNum
[i
])>='0' && c
<='9'; i
+=incr
){
810 testcase( i
==18*incr
);
811 testcase( i
==19*incr
);
812 testcase( i
==20*incr
);
813 if( u
>LARGEST_INT64
){
814 /* This test and assignment is needed only to suppress UB warnings
815 ** from clang and -fsanitize=undefined. This test and assignment make
816 ** the code a little larger and slower, and no harm comes from omitting
817 ** them, but we must appease the undefined-behavior pharisees. */
818 *pNum
= neg
? SMALLEST_INT64
: LARGEST_INT64
;
825 if( i
==0 && zStart
==zNum
){ /* No digits */
827 }else if( nonNum
){ /* UTF16 with high-order bytes non-zero */
829 }else if( &zNum
[i
]<zEnd
){ /* Extra bytes at the end */
832 if( !sqlite3Isspace(zNum
[jj
]) ){
833 rc
= 1; /* Extra non-space text after the integer */
837 }while( &zNum
[jj
]<zEnd
);
840 /* Less than 19 digits, so we know that it fits in 64 bits */
841 assert( u
<=LARGEST_INT64
);
844 /* zNum is a 19-digit numbers. Compare it against 9223372036854775808. */
845 c
= i
>19*incr
? 1 : compare2pow63(zNum
, incr
);
847 /* zNum is less than 9223372036854775808 so it fits */
848 assert( u
<=LARGEST_INT64
);
851 *pNum
= neg
? SMALLEST_INT64
: LARGEST_INT64
;
853 /* zNum is greater than 9223372036854775808 so it overflows */
856 /* zNum is exactly 9223372036854775808. Fits if negative. The
857 ** special case 2 overflow if positive */
858 assert( u
-1==LARGEST_INT64
);
866 ** Transform a UTF-8 integer literal, in either decimal or hexadecimal,
867 ** into a 64-bit signed integer. This routine accepts hexadecimal literals,
868 ** whereas sqlite3Atoi64() does not.
872 ** 0 Successful transformation. Fits in a 64-bit signed integer.
873 ** 1 Excess text after the integer value
874 ** 2 Integer too large for a 64-bit signed integer or is malformed
875 ** 3 Special case of 9223372036854775808
877 int sqlite3DecOrHexToI64(const char *z
, i64
*pOut
){
878 #ifndef SQLITE_OMIT_HEX_INTEGER
880 && (z
[1]=='x' || z
[1]=='X')
884 for(i
=2; z
[i
]=='0'; i
++){}
885 for(k
=i
; sqlite3Isxdigit(z
[k
]); k
++){
886 u
= u
*16 + sqlite3HexToInt(z
[k
]);
889 if( k
-i
>16 ) return 2;
890 if( z
[k
]!=0 ) return 1;
893 #endif /* SQLITE_OMIT_HEX_INTEGER */
895 int n
= (int)(0x3fffffff&strspn(z
,"+- \n\t0123456789"));
897 return sqlite3Atoi64(z
, pOut
, n
, SQLITE_UTF8
);
902 ** If zNum represents an integer that will fit in 32-bits, then set
903 ** *pValue to that integer and return true. Otherwise return false.
905 ** This routine accepts both decimal and hexadecimal notation for integers.
907 ** Any non-numeric characters that following zNum are ignored.
908 ** This is different from sqlite3Atoi64() which requires the
909 ** input number to be zero-terminated.
911 int sqlite3GetInt32(const char *zNum
, int *pValue
){
918 }else if( zNum
[0]=='+' ){
921 #ifndef SQLITE_OMIT_HEX_INTEGER
922 else if( zNum
[0]=='0'
923 && (zNum
[1]=='x' || zNum
[1]=='X')
924 && sqlite3Isxdigit(zNum
[2])
928 while( zNum
[0]=='0' ) zNum
++;
929 for(i
=0; i
<8 && sqlite3Isxdigit(zNum
[i
]); i
++){
930 u
= u
*16 + sqlite3HexToInt(zNum
[i
]);
932 if( (u
&0x80000000)==0 && sqlite3Isxdigit(zNum
[i
])==0 ){
933 memcpy(pValue
, &u
, 4);
940 if( !sqlite3Isdigit(zNum
[0]) ) return 0;
941 while( zNum
[0]=='0' ) zNum
++;
942 for(i
=0; i
<11 && (c
= zNum
[i
] - '0')>=0 && c
<=9; i
++){
946 /* The longest decimal representation of a 32 bit integer is 10 digits:
949 ** 2^31 -> 2147483648
955 testcase( v
-neg
==2147483647 );
956 if( v
-neg
>2147483647 ){
967 ** Return a 32-bit integer value extracted from a string. If the
968 ** string is not an integer, just return 0.
970 int sqlite3Atoi(const char *z
){
972 sqlite3GetInt32(z
, &x
);
977 ** Decode a floating-point value into an approximate decimal
980 ** Round the decimal representation to n significant digits if
981 ** n is positive. Or round to -n signficant digits after the
982 ** decimal point if n is negative. No rounding is performed if
985 ** The significant digits of the decimal representation are
986 ** stored in p->z[] which is a often (but not always) a pointer
987 ** into the middle of p->zBuf[]. There are p->n significant digits.
988 ** The p->z[] array is *not* zero-terminated.
990 void sqlite3FpDecode(FpDecode
*p
, double r
, int iRound
, int mxRound
){
997 /* Convert negative numbers to positive. Deal with Infinity, 0.0, and
1013 if( (e
&0x7ff)==0x7ff ){
1014 p
->isSpecial
= 1 + (v
!=0x7ff0000000000000LL
);
1020 /* Multiply r by powers of ten until it lands somewhere in between
1021 ** 1.0e+19 and 1.0e+17.
1023 if( sqlite3Config
.bUseLongDouble
){
1024 LONGDOUBLE_TYPE rr
= r
;
1026 while( rr
>=1.0e+119L ){ exp
+=100; rr
*= 1.0e-100L; }
1027 while( rr
>=1.0e+29L ){ exp
+=10; rr
*= 1.0e-10L; }
1028 while( rr
>=1.0e+19L ){ exp
++; rr
*= 1.0e-1L; }
1030 while( rr
<1.0e-97L ){ exp
-=100; rr
*= 1.0e+100L; }
1031 while( rr
<1.0e+07L ){ exp
-=10; rr
*= 1.0e+10L; }
1032 while( rr
<1.0e+17L ){ exp
--; rr
*= 1.0e+1L; }
1036 /* If high-precision floating point is not available using "long double",
1037 ** then use Dekker-style double-double computation to increase the
1040 ** The error terms on constants like 1.0e+100 computed using the
1041 ** decimal extension, for example as follows:
1043 ** SELECT decimal_exp(decimal_sub('1.0e+100',decimal(1.0e+100)));
1048 if( rr
[0]>9.223372036854774784e+18 ){
1049 while( rr
[0]>9.223372036854774784e+118 ){
1051 dekkerMul2(rr
, 1.0e-100, -1.99918998026028836196e-117);
1053 while( rr
[0]>9.223372036854774784e+28 ){
1055 dekkerMul2(rr
, 1.0e-10, -3.6432197315497741579e-27);
1057 while( rr
[0]>9.223372036854774784e+18 ){
1059 dekkerMul2(rr
, 1.0e-01, -5.5511151231257827021e-18);
1062 while( rr
[0]<9.223372036854774784e-83 ){
1064 dekkerMul2(rr
, 1.0e+100, -1.5902891109759918046e+83);
1066 while( rr
[0]<9.223372036854774784e+07 ){
1068 dekkerMul2(rr
, 1.0e+10, 0.0);
1070 while( rr
[0]<9.22337203685477478e+17 ){
1072 dekkerMul2(rr
, 1.0e+01, 0.0);
1075 v
= rr
[1]<0.0 ? (u64
)rr
[0]-(u64
)(-rr
[1]) : (u64
)rr
[0]+(u64
)rr
[1];
1079 /* Extract significant digits. */
1080 i
= sizeof(p
->zBuf
)-1;
1082 while( v
){ p
->zBuf
[i
--] = (v
%10) + '0'; v
/= 10; }
1083 assert( i
>=0 && i
<sizeof(p
->zBuf
)-1 );
1084 p
->n
= sizeof(p
->zBuf
) - 1 - i
;
1086 assert( p
->n
<sizeof(p
->zBuf
) );
1087 p
->iDP
= p
->n
+ exp
;
1089 iRound
= p
->iDP
- iRound
;
1090 if( iRound
==0 && p
->zBuf
[i
+1]>='5' ){
1097 if( iRound
>0 && (iRound
<p
->n
|| p
->n
>mxRound
) ){
1098 char *z
= &p
->zBuf
[i
+1];
1099 if( iRound
>mxRound
) iRound
= mxRound
;
1101 if( z
[iRound
]>='5' ){
1103 while( 1 /*exit-by-break*/ ){
1105 if( z
[j
]<='9' ) break;
1118 p
->z
= &p
->zBuf
[i
+1];
1119 assert( i
+p
->n
< sizeof(p
->zBuf
) );
1120 while( ALWAYS(p
->n
>0) && p
->z
[p
->n
-1]=='0' ){ p
->n
--; }
1124 ** Try to convert z into an unsigned 32-bit integer. Return true on
1125 ** success and false if there is an error.
1127 ** Only decimal notation is accepted.
1129 int sqlite3GetUInt32(const char *z
, u32
*pI
){
1132 for(i
=0; sqlite3Isdigit(z
[i
]); i
++){
1133 v
= v
*10 + z
[i
] - '0';
1134 if( v
>4294967296LL ){ *pI
= 0; return 0; }
1136 if( i
==0 || z
[i
]!=0 ){ *pI
= 0; return 0; }
1142 ** The variable-length integer encoding is as follows:
1145 ** A = 0xxxxxxx 7 bits of data and one flag bit
1146 ** B = 1xxxxxxx 7 bits of data and one flag bit
1147 ** C = xxxxxxxx 8 bits of data
1155 ** 49 bits - BBBBBBA
1156 ** 56 bits - BBBBBBBA
1157 ** 64 bits - BBBBBBBBC
1161 ** Write a 64-bit variable-length integer to memory starting at p[0].
1162 ** The length of data write will be between 1 and 9 bytes. The number
1163 ** of bytes written is returned.
1165 ** A variable-length integer consists of the lower 7 bits of each byte
1166 ** for all bytes that have the 8th bit set and one byte with the 8th
1167 ** bit clear. Except, if we get to the 9th byte, it stores the full
1168 ** 8 bits and is the last byte.
1170 static int SQLITE_NOINLINE
putVarint64(unsigned char *p
, u64 v
){
1173 if( v
& (((u64
)0xff000000)<<32) ){
1176 for(i
=7; i
>=0; i
--){
1177 p
[i
] = (u8
)((v
& 0x7f) | 0x80);
1184 buf
[n
++] = (u8
)((v
& 0x7f) | 0x80);
1189 for(i
=0, j
=n
-1; j
>=0; j
--, i
++){
1194 int sqlite3PutVarint(unsigned char *p
, u64 v
){
1200 p
[0] = ((v
>>7)&0x7f)|0x80;
1204 return putVarint64(p
,v
);
1208 ** Bitmasks used by sqlite3GetVarint(). These precomputed constants
1209 ** are defined here rather than simply putting the constant expressions
1210 ** inline in order to work around bugs in the RVT compiler.
1212 ** SLOT_2_0 A mask for (0x7f<<14) | 0x7f
1214 ** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0
1216 #define SLOT_2_0 0x001fc07f
1217 #define SLOT_4_2_0 0xf01fc07f
1221 ** Read a 64-bit variable-length integer from memory starting at p[0].
1222 ** Return the number of bytes read. The value is stored in *v.
1224 u8
sqlite3GetVarint(const unsigned char *p
, u64
*v
){
1227 if( ((signed char*)p
)[0]>=0 ){
1231 if( ((signed char*)p
)[1]>=0 ){
1232 *v
= ((u32
)(p
[0]&0x7f)<<7) | p
[1];
1236 /* Verify that constants are precomputed correctly */
1237 assert( SLOT_2_0
== ((0x7f<<14) | (0x7f)) );
1238 assert( SLOT_4_2_0
== ((0xfU
<<28) | (0x7f<<14) | (0x7f)) );
1240 a
= ((u32
)p
[0])<<14;
1244 /* a: p0<<14 | p2 (unmasked) */
1255 /* CSE1 from below */
1260 /* b: p1<<14 | p3 (unmasked) */
1265 /* a &= (0x7f<<14)|(0x7f); */
1272 /* a: p0<<14 | p2 (masked) */
1273 /* b: p1<<14 | p3 (unmasked) */
1274 /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
1276 /* a &= (0x7f<<14)|(0x7f); */
1279 /* s: p0<<14 | p2 (masked) */
1284 /* a: p0<<28 | p2<<14 | p4 (unmasked) */
1287 /* we can skip these cause they were (effectively) done above
1288 ** while calculating s */
1289 /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
1290 /* b &= (0x7f<<14)|(0x7f); */
1294 *v
= ((u64
)s
)<<32 | a
;
1298 /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
1301 /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
1306 /* b: p1<<28 | p3<<14 | p5 (unmasked) */
1309 /* we can skip this cause it was (effectively) done above in calc'ing s */
1310 /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
1315 *v
= ((u64
)s
)<<32 | a
;
1322 /* a: p2<<28 | p4<<14 | p6 (unmasked) */
1330 *v
= ((u64
)s
)<<32 | a
;
1334 /* CSE2 from below */
1339 /* b: p3<<28 | p5<<14 | p7 (unmasked) */
1344 /* a &= (0x7f<<14)|(0x7f); */
1348 *v
= ((u64
)s
)<<32 | a
;
1355 /* a: p4<<29 | p6<<15 | p8 (unmasked) */
1358 /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */
1369 *v
= ((u64
)s
)<<32 | a
;
1375 ** Read a 32-bit variable-length integer from memory starting at p[0].
1376 ** Return the number of bytes read. The value is stored in *v.
1378 ** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned
1379 ** integer, then set *v to 0xffffffff.
1381 ** A MACRO version, getVarint32, is provided which inlines the
1382 ** single-byte case. All code should use the MACRO version as
1383 ** this function assumes the single-byte case has already been handled.
1385 u8
sqlite3GetVarint32(const unsigned char *p
, u32
*v
){
1389 /* Assume that the single-byte case has already been handled by
1390 ** the getVarint32() macro */
1391 assert( (p
[0] & 0x80)!=0 );
1393 if( (p
[1] & 0x80)==0 ){
1394 /* This is the two-byte case */
1395 *v
= ((p
[0]&0x7f)<<7) | p
[1];
1398 if( (p
[2] & 0x80)==0 ){
1399 /* This is the three-byte case */
1400 *v
= ((p
[0]&0x7f)<<14) | ((p
[1]&0x7f)<<7) | p
[2];
1403 /* four or more bytes */
1404 n
= sqlite3GetVarint(p
, &v64
);
1405 assert( n
>3 && n
<=9 );
1406 if( (v64
& SQLITE_MAX_U32
)!=v64
){
1415 ** Return the number of bytes that will be needed to store the given
1418 int sqlite3VarintLen(u64 v
){
1420 for(i
=1; (v
>>= 7)!=0; i
++){ assert( i
<10 ); }
1426 ** Read or write a four-byte big-endian integer value.
1428 u32
sqlite3Get4byte(const u8
*p
){
1429 #if SQLITE_BYTEORDER==4321
1433 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
1436 return __builtin_bswap32(x
);
1437 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
1440 return _byteswap_ulong(x
);
1442 testcase( p
[0]&0x80 );
1443 return ((unsigned)p
[0]<<24) | (p
[1]<<16) | (p
[2]<<8) | p
[3];
1446 void sqlite3Put4byte(unsigned char *p
, u32 v
){
1447 #if SQLITE_BYTEORDER==4321
1449 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
1450 u32 x
= __builtin_bswap32(v
);
1452 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
1453 u32 x
= _byteswap_ulong(v
);
1466 ** Translate a single byte of Hex into an integer.
1467 ** This routine only works if h really is a valid hexadecimal
1468 ** character: 0..9a..fA..F
1470 u8
sqlite3HexToInt(int h
){
1471 assert( (h
>='0' && h
<='9') || (h
>='a' && h
<='f') || (h
>='A' && h
<='F') );
1475 #ifdef SQLITE_EBCDIC
1478 return (u8
)(h
& 0xf);
1481 #if !defined(SQLITE_OMIT_BLOB_LITERAL)
1483 ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary
1484 ** value. Return a pointer to its binary value. Space to hold the
1485 ** binary value has been obtained from malloc and must be freed by
1486 ** the calling routine.
1488 void *sqlite3HexToBlob(sqlite3
*db
, const char *z
, int n
){
1492 zBlob
= (char *)sqlite3DbMallocRawNN(db
, n
/2 + 1);
1495 for(i
=0; i
<n
; i
+=2){
1496 zBlob
[i
/2] = (sqlite3HexToInt(z
[i
])<<4) | sqlite3HexToInt(z
[i
+1]);
1502 #endif /* !SQLITE_OMIT_BLOB_LITERAL */
1505 ** Log an error that is an API call on a connection pointer that should
1506 ** not have been used. The "type" of connection pointer is given as the
1507 ** argument. The zType is a word like "NULL" or "closed" or "invalid".
1509 static void logBadConnection(const char *zType
){
1510 sqlite3_log(SQLITE_MISUSE
,
1511 "API call with %s database connection pointer",
1517 ** Check to make sure we have a valid db pointer. This test is not
1518 ** foolproof but it does provide some measure of protection against
1519 ** misuse of the interface such as passing in db pointers that are
1520 ** NULL or which have been previously closed. If this routine returns
1521 ** 1 it means that the db pointer is valid and 0 if it should not be
1522 ** dereferenced for any reason. The calling function should invoke
1523 ** SQLITE_MISUSE immediately.
1525 ** sqlite3SafetyCheckOk() requires that the db pointer be valid for
1526 ** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to
1527 ** open properly and is not fit for general use but which can be
1528 ** used as an argument to sqlite3_errmsg() or sqlite3_close().
1530 int sqlite3SafetyCheckOk(sqlite3
*db
){
1533 logBadConnection("NULL");
1536 eOpenState
= db
->eOpenState
;
1537 if( eOpenState
!=SQLITE_STATE_OPEN
){
1538 if( sqlite3SafetyCheckSickOrOk(db
) ){
1539 testcase( sqlite3GlobalConfig
.xLog
!=0 );
1540 logBadConnection("unopened");
1547 int sqlite3SafetyCheckSickOrOk(sqlite3
*db
){
1549 eOpenState
= db
->eOpenState
;
1550 if( eOpenState
!=SQLITE_STATE_SICK
&&
1551 eOpenState
!=SQLITE_STATE_OPEN
&&
1552 eOpenState
!=SQLITE_STATE_BUSY
){
1553 testcase( sqlite3GlobalConfig
.xLog
!=0 );
1554 logBadConnection("invalid");
1562 ** Attempt to add, subtract, or multiply the 64-bit signed value iB against
1563 ** the other 64-bit signed integer at *pA and store the result in *pA.
1564 ** Return 0 on success. Or if the operation would have resulted in an
1565 ** overflow, leave *pA unchanged and return 1.
1567 int sqlite3AddInt64(i64
*pA
, i64 iB
){
1568 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
1569 return __builtin_add_overflow(*pA
, iB
, pA
);
1572 testcase( iA
==0 ); testcase( iA
==1 );
1573 testcase( iB
==-1 ); testcase( iB
==0 );
1575 testcase( iA
>0 && LARGEST_INT64
- iA
== iB
);
1576 testcase( iA
>0 && LARGEST_INT64
- iA
== iB
- 1 );
1577 if( iA
>0 && LARGEST_INT64
- iA
< iB
) return 1;
1579 testcase( iA
<0 && -(iA
+ LARGEST_INT64
) == iB
+ 1 );
1580 testcase( iA
<0 && -(iA
+ LARGEST_INT64
) == iB
+ 2 );
1581 if( iA
<0 && -(iA
+ LARGEST_INT64
) > iB
+ 1 ) return 1;
1587 int sqlite3SubInt64(i64
*pA
, i64 iB
){
1588 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
1589 return __builtin_sub_overflow(*pA
, iB
, pA
);
1591 testcase( iB
==SMALLEST_INT64
+1 );
1592 if( iB
==SMALLEST_INT64
){
1593 testcase( (*pA
)==(-1) ); testcase( (*pA
)==0 );
1594 if( (*pA
)>=0 ) return 1;
1598 return sqlite3AddInt64(pA
, -iB
);
1602 int sqlite3MulInt64(i64
*pA
, i64 iB
){
1603 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
1604 return __builtin_mul_overflow(*pA
, iB
, pA
);
1608 if( iA
>LARGEST_INT64
/iB
) return 1;
1609 if( iA
<SMALLEST_INT64
/iB
) return 1;
1612 if( iB
<SMALLEST_INT64
/iA
) return 1;
1614 if( iB
==SMALLEST_INT64
) return 1;
1615 if( iA
==SMALLEST_INT64
) return 1;
1616 if( -iA
>LARGEST_INT64
/-iB
) return 1;
1625 ** Compute the absolute value of a 32-bit signed integer, of possible. Or
1626 ** if the integer has a value of -2147483648, return +2147483647
1628 int sqlite3AbsInt32(int x
){
1629 if( x
>=0 ) return x
;
1630 if( x
==(int)0x80000000 ) return 0x7fffffff;
1634 #ifdef SQLITE_ENABLE_8_3_NAMES
1636 ** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database
1637 ** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and
1638 ** if filename in z[] has a suffix (a.k.a. "extension") that is longer than
1639 ** three characters, then shorten the suffix on z[] to be the last three
1640 ** characters of the original suffix.
1642 ** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always
1643 ** do the suffix shortening regardless of URI parameter.
1647 ** test.db-journal => test.nal
1648 ** test.db-wal => test.wal
1649 ** test.db-shm => test.shm
1650 ** test.db-mj7f3319fa => test.9fa
1652 void sqlite3FileSuffix3(const char *zBaseFilename
, char *z
){
1653 #if SQLITE_ENABLE_8_3_NAMES<2
1654 if( sqlite3_uri_boolean(zBaseFilename
, "8_3_names", 0) )
1658 sz
= sqlite3Strlen30(z
);
1659 for(i
=sz
-1; i
>0 && z
[i
]!='/' && z
[i
]!='.'; i
--){}
1660 if( z
[i
]=='.' && ALWAYS(sz
>i
+4) ) memmove(&z
[i
+1], &z
[sz
-3], 4);
1666 ** Find (an approximate) sum of two LogEst values. This computation is
1667 ** not a simple "+" operator because LogEst is stored as a logarithmic
1671 LogEst
sqlite3LogEstAdd(LogEst a
, LogEst b
){
1672 static const unsigned char x
[] = {
1676 7, 7, 7, /* 6,7,8 */
1677 6, 6, 6, /* 9,10,11 */
1678 5, 5, 5, /* 12-14 */
1679 4, 4, 4, 4, /* 15-18 */
1680 3, 3, 3, 3, 3, 3, /* 19-24 */
1681 2, 2, 2, 2, 2, 2, 2, /* 25-31 */
1684 if( a
>b
+49 ) return a
;
1685 if( a
>b
+31 ) return a
+1;
1688 if( b
>a
+49 ) return b
;
1689 if( b
>a
+31 ) return b
+1;
1695 ** Convert an integer into a LogEst. In other words, compute an
1696 ** approximation for 10*log2(x).
1698 LogEst
sqlite3LogEst(u64 x
){
1699 static LogEst a
[] = { 0, 2, 3, 5, 6, 7, 8, 9 };
1703 while( x
<8 ){ y
-= 10; x
<<= 1; }
1705 #if GCC_VERSION>=5004000
1706 int i
= 60 - __builtin_clzll(x
);
1710 while( x
>255 ){ y
+= 40; x
>>= 4; } /*OPTIMIZATION-IF-TRUE*/
1711 while( x
>15 ){ y
+= 10; x
>>= 1; }
1714 return a
[x
&7] + y
- 10;
1718 ** Convert a double into a LogEst
1719 ** In other words, compute an approximation for 10*log2(x).
1721 LogEst
sqlite3LogEstFromDouble(double x
){
1724 assert( sizeof(x
)==8 && sizeof(a
)==8 );
1725 if( x
<=1 ) return 0;
1726 if( x
<=2000000000 ) return sqlite3LogEst((u64
)x
);
1733 ** Convert a LogEst into an integer.
1735 u64
sqlite3LogEstToInt(LogEst x
){
1740 else if( n
>=1 ) n
-= 1;
1741 if( x
>60 ) return (u64
)LARGEST_INT64
;
1742 return x
>=3 ? (n
+8)<<(x
-3) : (n
+8)>>(3-x
);
1746 ** Add a new name/number pair to a VList. This might require that the
1747 ** VList object be reallocated, so return the new VList. If an OOM
1748 ** error occurs, the original VList returned and the
1749 ** db->mallocFailed flag is set.
1751 ** A VList is really just an array of integers. To destroy a VList,
1752 ** simply pass it to sqlite3DbFree().
1754 ** The first integer is the number of integers allocated for the whole
1755 ** VList. The second integer is the number of integers actually used.
1756 ** Each name/number pair is encoded by subsequent groups of 3 or more
1759 ** Each name/number pair starts with two integers which are the numeric
1760 ** value for the pair and the size of the name/number pair, respectively.
1761 ** The text name overlays one or more following integers. The text name
1762 ** is always zero-terminated.
1767 ** int nAlloc; // Number of allocated slots
1768 ** int nUsed; // Number of used slots
1769 ** struct VListEntry {
1770 ** int iValue; // Value for this entry
1771 ** int nSlot; // Slots used by this entry
1772 ** // ... variable name goes here
1776 ** During code generation, pointers to the variable names within the
1777 ** VList are taken. When that happens, nAlloc is set to zero as an
1778 ** indication that the VList may never again be enlarged, since the
1779 ** accompanying realloc() would invalidate the pointers.
1781 VList
*sqlite3VListAdd(
1782 sqlite3
*db
, /* The database connection used for malloc() */
1783 VList
*pIn
, /* The input VList. Might be NULL */
1784 const char *zName
, /* Name of symbol to add */
1785 int nName
, /* Bytes of text in zName */
1786 int iVal
/* Value to associate with zName */
1788 int nInt
; /* number of sizeof(int) objects needed for zName */
1789 char *z
; /* Pointer to where zName will be stored */
1790 int i
; /* Index in pIn[] where zName is stored */
1793 assert( pIn
==0 || pIn
[0]>=3 ); /* Verify ok to add new elements */
1794 if( pIn
==0 || pIn
[1]+nInt
> pIn
[0] ){
1795 /* Enlarge the allocation */
1796 sqlite3_int64 nAlloc
= (pIn
? 2*(sqlite3_int64
)pIn
[0] : 10) + nInt
;
1797 VList
*pOut
= sqlite3DbRealloc(db
, pIn
, nAlloc
*sizeof(int));
1798 if( pOut
==0 ) return pIn
;
1799 if( pIn
==0 ) pOut
[1] = 2;
1806 z
= (char*)&pIn
[i
+2];
1808 assert( pIn
[1]<=pIn
[0] );
1809 memcpy(z
, zName
, nName
);
1815 ** Return a pointer to the name of a variable in the given VList that
1816 ** has the value iVal. Or return a NULL if there is no such variable in
1819 const char *sqlite3VListNumToName(VList
*pIn
, int iVal
){
1821 if( pIn
==0 ) return 0;
1825 if( pIn
[i
]==iVal
) return (char*)&pIn
[i
+2];
1832 ** Return the number of the variable named zName, if it is in VList.
1833 ** or return 0 if there is no such variable.
1835 int sqlite3VListNameToNum(VList
*pIn
, const char *zName
, int nName
){
1837 if( pIn
==0 ) return 0;
1841 const char *z
= (const char*)&pIn
[i
+2];
1842 if( strncmp(z
,zName
,nName
)==0 && z
[nName
]==0 ) return pIn
[i
];
1849 ** High-resolution hardware timer used for debugging and testing only.
1851 #if defined(VDBE_PROFILE) \
1852 || defined(SQLITE_PERFORMANCE_TRACE) \
1853 || defined(SQLITE_ENABLE_STMT_SCANSTATUS)
1854 # include "hwtime.h"