2 ** This file contains all sources (including headers) to the LEMON
3 ** LALR(1) parser generator. The sources have been combined into a
4 ** single file to make it easy to include LEMON in the source tree
5 ** and Makefile of another program.
7 ** The author of this program disclaims copyright.
16 #define ISSPACE(X) isspace((unsigned char)(X))
17 #define ISDIGIT(X) isdigit((unsigned char)(X))
18 #define ISALNUM(X) isalnum((unsigned char)(X))
19 #define ISALPHA(X) isalpha((unsigned char)(X))
20 #define ISUPPER(X) isupper((unsigned char)(X))
21 #define ISLOWER(X) islower((unsigned char)(X))
25 # if defined(_WIN32) || defined(WIN32)
34 extern int access(const char *path
, int mode
);
42 /* #define PRIVATE static */
46 #define MAXRHS 5 /* Set low to exercise exception code */
51 extern void memory_error();
52 static int showPrecedenceConflict
= 0;
53 static char *msort(char*,char**,int(*)(const char*,const char*));
56 ** Compilers are getting increasingly pedantic about type conversions
57 ** as C evolves ever closer to Ada.... To work around the latest problems
58 ** we have to define the following variant of strlen().
60 #define lemonStrlen(X) ((int)strlen(X))
63 ** Compilers are starting to complain about the use of sprintf() and strcpy(),
64 ** saying they are unsafe. So we define our own versions of those routines too.
66 ** There are three routines here: lemon_sprintf(), lemon_vsprintf(), and
67 ** lemon_addtext(). The first two are replacements for sprintf() and vsprintf().
68 ** The third is a helper routine for vsnprintf() that adds texts to the end of a
69 ** buffer, making sure the buffer is always zero-terminated.
71 ** The string formatter is a minimal subset of stdlib sprintf() supporting only
72 ** a few simply conversions:
79 static void lemon_addtext(
80 char *zBuf
, /* The buffer to which text is added */
81 int *pnUsed
, /* Slots of the buffer used so far */
82 const char *zIn
, /* Text to add */
83 int nIn
, /* Bytes of text to add. -1 to use strlen() */
84 int iWidth
/* Field width. Negative to left justify */
86 if( nIn
<0 ) for(nIn
=0; zIn
[nIn
]; nIn
++){}
87 while( iWidth
>nIn
){ zBuf
[(*pnUsed
)++] = ' '; iWidth
--; }
89 memcpy(&zBuf
[*pnUsed
], zIn
, nIn
);
91 while( (-iWidth
)>nIn
){ zBuf
[(*pnUsed
)++] = ' '; iWidth
++; }
94 static int lemon_vsprintf(char *str
, const char *zFormat
, va_list ap
){
100 for(i
=j
=0; (c
= zFormat
[i
])!=0; i
++){
103 lemon_addtext(str
, &nUsed
, &zFormat
[j
], i
-j
, 0);
105 if( ISDIGIT(c
) || (c
=='-' && ISDIGIT(zFormat
[i
+1])) ){
107 while( ISDIGIT(zFormat
[i
]) ) iWidth
= iWidth
*10 + zFormat
[i
++] - '0';
108 if( c
=='-' ) iWidth
= -iWidth
;
112 int v
= va_arg(ap
, int);
114 lemon_addtext(str
, &nUsed
, "-", 1, iWidth
);
117 lemon_addtext(str
, &nUsed
, "0", 1, iWidth
);
122 zTemp
[sizeof(zTemp
)-k
] = (v
%10) + '0';
125 lemon_addtext(str
, &nUsed
, &zTemp
[sizeof(zTemp
)-k
], k
, iWidth
);
127 z
= va_arg(ap
, const char*);
128 lemon_addtext(str
, &nUsed
, z
, -1, iWidth
);
129 }else if( c
=='.' && memcmp(&zFormat
[i
], ".*s", 3)==0 ){
132 z
= va_arg(ap
, const char*);
133 lemon_addtext(str
, &nUsed
, z
, k
, iWidth
);
135 lemon_addtext(str
, &nUsed
, "%", 1, 0);
137 fprintf(stderr
, "illegal format\n");
143 lemon_addtext(str
, &nUsed
, &zFormat
[j
], i
-j
, 0);
146 static int lemon_sprintf(char *str
, const char *format
, ...){
149 va_start(ap
, format
);
150 rc
= lemon_vsprintf(str
, format
, ap
);
154 static void lemon_strcpy(char *dest
, const char *src
){
155 while( (*(dest
++) = *(src
++))!=0 ){}
157 static void lemon_strcat(char *dest
, const char *src
){
158 while( *dest
) dest
++;
159 lemon_strcpy(dest
, src
);
163 /* a few forward declarations... */
168 static struct action
*Action_new(void);
169 static struct action
*Action_sort(struct action
*);
171 /********** From the file "build.h" ************************************/
172 void FindRulePrecedences(struct lemon
*);
173 void FindFirstSets(struct lemon
*);
174 void FindStates(struct lemon
*);
175 void FindLinks(struct lemon
*);
176 void FindFollowSets(struct lemon
*);
177 void FindActions(struct lemon
*);
179 /********* From the file "configlist.h" *********************************/
180 void Configlist_init(void);
181 struct config
*Configlist_add(struct rule
*, int);
182 struct config
*Configlist_addbasis(struct rule
*, int);
183 void Configlist_closure(struct lemon
*);
184 void Configlist_sort(void);
185 void Configlist_sortbasis(void);
186 struct config
*Configlist_return(void);
187 struct config
*Configlist_basis(void);
188 void Configlist_eat(struct config
*);
189 void Configlist_reset(void);
191 /********* From the file "error.h" ***************************************/
192 void ErrorMsg(const char *, int,const char *, ...);
194 /****** From the file "option.h" ******************************************/
195 enum option_type
{ OPT_FLAG
=1, OPT_INT
, OPT_DBL
, OPT_STR
,
196 OPT_FFLAG
, OPT_FINT
, OPT_FDBL
, OPT_FSTR
};
198 enum option_type type
;
203 int OptInit(char**,struct s_options
*,FILE*);
209 /******** From the file "parse.h" *****************************************/
210 void Parse(struct lemon
*lemp
);
212 /********* From the file "plink.h" ***************************************/
213 struct plink
*Plink_new(void);
214 void Plink_add(struct plink
**, struct config
*);
215 void Plink_copy(struct plink
**, struct plink
*);
216 void Plink_delete(struct plink
*);
218 /********** From the file "report.h" *************************************/
219 void Reprint(struct lemon
*);
220 void ReportOutput(struct lemon
*);
221 void ReportTable(struct lemon
*, int, int);
222 void ReportHeader(struct lemon
*);
223 void CompressTables(struct lemon
*);
224 void ResortStates(struct lemon
*);
226 /********** From the file "set.h" ****************************************/
227 void SetSize(int); /* All sets will be of size N */
228 char *SetNew(void); /* A new set for element 0..N */
229 void SetFree(char*); /* Deallocate a set */
230 int SetAdd(char*,int); /* Add element to a set */
231 int SetUnion(char *,char *); /* A <- A U B, thru element N */
232 #define SetFind(X,Y) (X[Y]) /* True if Y is in set X */
234 /********** From the file "struct.h" *************************************/
236 ** Principal data structures for the LEMON parser generator.
239 typedef enum {LEMON_FALSE
=0, LEMON_TRUE
} Boolean
;
241 /* Symbols (terminals and nonterminals) of the grammar are stored
242 ** in the following: */
255 const char *name
; /* Name of the symbol */
256 int index
; /* Index number for this symbol */
257 enum symbol_type type
; /* Symbols are all either TERMINALS or NTs */
258 struct rule
*rule
; /* Linked list of rules of this (if an NT) */
259 struct symbol
*fallback
; /* fallback token in case this token doesn't parse */
260 int prec
; /* Precedence if defined (-1 otherwise) */
261 enum e_assoc assoc
; /* Associativity if precedence is defined */
262 char *firstset
; /* First-set for all rules of this symbol */
263 Boolean lambda
; /* True if NT and can generate an empty string */
264 int useCnt
; /* Number of times used */
265 char *destructor
; /* Code which executes whenever this symbol is
266 ** popped from the stack during error processing */
267 int destLineno
; /* Line number for start of destructor. Set to
268 ** -1 for duplicate destructors. */
269 char *datatype
; /* The data type of information held by this
270 ** object. Only used if type==NONTERMINAL */
271 int dtnum
; /* The data type number. In the parser, the value
272 ** stack is a union. The .yy%d element of this
273 ** union is the correct data type for this object */
274 int bContent
; /* True if this symbol ever carries content - if
275 ** it is ever more than just syntax */
276 /* The following fields are used by MULTITERMINALs only */
277 int nsubsym
; /* Number of constituent symbols in the MULTI */
278 struct symbol
**subsym
; /* Array of constituent symbols */
281 /* Each production rule in the grammar is stored in the following
284 struct symbol
*lhs
; /* Left-hand side of the rule */
285 const char *lhsalias
; /* Alias for the LHS (NULL if none) */
286 int lhsStart
; /* True if left-hand side is the start symbol */
287 int ruleline
; /* Line number for the rule */
288 int nrhs
; /* Number of RHS symbols */
289 struct symbol
**rhs
; /* The RHS symbols */
290 const char **rhsalias
; /* An alias for each RHS symbol (NULL if none) */
291 int line
; /* Line number at which code begins */
292 const char *code
; /* The code executed when this rule is reduced */
293 const char *codePrefix
; /* Setup code before code[] above */
294 const char *codeSuffix
; /* Breakdown code after code[] above */
295 struct symbol
*precsym
; /* Precedence symbol for this rule */
296 int index
; /* An index number for this rule */
297 int iRule
; /* Rule number as used in the generated tables */
298 Boolean noCode
; /* True if this rule has no associated C code */
299 Boolean codeEmitted
; /* True if the code has been emitted already */
300 Boolean canReduce
; /* True if this rule is ever reduced */
301 Boolean doesReduce
; /* Reduce actions occur after optimization */
302 Boolean neverReduce
; /* Reduce is theoretically possible, but prevented
303 ** by actions or other outside implementation */
304 struct rule
*nextlhs
; /* Next rule with the same LHS */
305 struct rule
*next
; /* Next rule in the global list */
308 /* A configuration is a production rule of the grammar together with
309 ** a mark (dot) showing how much of that rule has been processed so far.
310 ** Configurations also contain a follow-set which is a list of terminal
311 ** symbols which are allowed to immediately follow the end of the rule.
312 ** Every configuration is recorded as an instance of the following: */
318 struct rule
*rp
; /* The rule upon which the configuration is based */
319 int dot
; /* The parse point */
320 char *fws
; /* Follow-set for this configuration only */
321 struct plink
*fplp
; /* Follow-set forward propagation links */
322 struct plink
*bplp
; /* Follow-set backwards propagation links */
323 struct state
*stp
; /* Pointer to state which contains this */
324 enum cfgstatus status
; /* used during followset and shift computations */
325 struct config
*next
; /* Next configuration in the state */
326 struct config
*bp
; /* The next basis configuration */
334 SSCONFLICT
, /* A shift/shift conflict */
335 SRCONFLICT
, /* Was a reduce, but part of a conflict */
336 RRCONFLICT
, /* Was a reduce, but part of a conflict */
337 SH_RESOLVED
, /* Was a shift. Precedence resolved conflict */
338 RD_RESOLVED
, /* Was reduce. Precedence resolved conflict */
339 NOT_USED
, /* Deleted by compression */
340 SHIFTREDUCE
/* Shift first, then reduce */
343 /* Every shift or reduce operation is stored as one of the following */
345 struct symbol
*sp
; /* The look-ahead symbol */
348 struct state
*stp
; /* The new state, if a shift */
349 struct rule
*rp
; /* The rule, if a reduce */
351 struct symbol
*spOpt
; /* SHIFTREDUCE optimization to this symbol */
352 struct action
*next
; /* Next action for this state */
353 struct action
*collide
; /* Next action with the same hash */
356 /* Each state of the generated parser's finite state machine
357 ** is encoded as an instance of the following structure. */
359 struct config
*bp
; /* The basis configurations for this state */
360 struct config
*cfp
; /* All configurations in this set */
361 int statenum
; /* Sequential number for this state */
362 struct action
*ap
; /* List of actions for this state */
363 int nTknAct
, nNtAct
; /* Number of actions on terminals and nonterminals */
364 int iTknOfst
, iNtOfst
; /* yy_action[] offset for terminals and nonterms */
365 int iDfltReduce
; /* Default action is to REDUCE by this rule */
366 struct rule
*pDfltReduce
;/* The default REDUCE rule. */
367 int autoReduce
; /* True if this is an auto-reduce state */
369 #define NO_OFFSET (-2147483647)
371 /* A followset propagation link indicates that the contents of one
372 ** configuration followset should be propagated to another whenever
373 ** the first changes. */
375 struct config
*cfp
; /* The configuration to which linked */
376 struct plink
*next
; /* The next propagate link */
379 /* The state vector for the entire parser generator is recorded as
380 ** follows. (LEMON uses no global variables and makes little use of
381 ** static variables. Fields in the following structure can be thought
382 ** of as begin global variables in the program.) */
384 struct state
**sorted
; /* Table of states sorted by state number */
385 struct rule
*rule
; /* List of all rules */
386 struct rule
*startRule
; /* First rule */
387 int nstate
; /* Number of states */
388 int nxstate
; /* nstate with tail degenerate states removed */
389 int nrule
; /* Number of rules */
390 int nruleWithAction
; /* Number of rules with actions */
391 int nsymbol
; /* Number of terminal and nonterminal symbols */
392 int nterminal
; /* Number of terminal symbols */
393 int minShiftReduce
; /* Minimum shift-reduce action value */
394 int errAction
; /* Error action value */
395 int accAction
; /* Accept action value */
396 int noAction
; /* No-op action value */
397 int minReduce
; /* Minimum reduce action */
398 int maxAction
; /* Maximum action value of any kind */
399 struct symbol
**symbols
; /* Sorted array of pointers to symbols */
400 int errorcnt
; /* Number of errors */
401 struct symbol
*errsym
; /* The error symbol */
402 struct symbol
*wildcard
; /* Token that matches anything */
403 char *name
; /* Name of the generated parser */
404 char *arg
; /* Declaration of the 3rd argument to parser */
405 char *ctx
; /* Declaration of 2nd argument to constructor */
406 char *tokentype
; /* Type of terminal symbols in the parser stack */
407 char *vartype
; /* The default type of non-terminal symbols */
408 char *start
; /* Name of the start symbol for the grammar */
409 char *stacksize
; /* Size of the parser stack */
410 char *include
; /* Code to put at the start of the C file */
411 char *error
; /* Code to execute when an error is seen */
412 char *overflow
; /* Code to execute on a stack overflow */
413 char *failure
; /* Code to execute on parser failure */
414 char *accept
; /* Code to execute when the parser excepts */
415 char *extracode
; /* Code appended to the generated file */
416 char *tokendest
; /* Code to execute to destroy token data */
417 char *vardest
; /* Code for the default non-terminal destructor */
418 char *filename
; /* Name of the input file */
419 char *outname
; /* Name of the current output file */
420 char *tokenprefix
; /* A prefix added to token names in the .h file */
421 int nconflict
; /* Number of parsing conflicts */
422 int nactiontab
; /* Number of entries in the yy_action[] table */
423 int nlookaheadtab
; /* Number of entries in yy_lookahead[] */
424 int tablesize
; /* Total table size of all tables in bytes */
425 int basisflag
; /* Print only basis configurations */
426 int printPreprocessed
; /* Show preprocessor output on stdout */
427 int has_fallback
; /* True if any %fallback is seen in the grammar */
428 int nolinenosflag
; /* True if #line statements should not be printed */
429 int argc
; /* Number of command-line arguments */
430 char **argv
; /* Command-line arguments */
433 #define MemoryCheck(X) if((X)==0){ \
434 extern void memory_error(); \
438 /**************** From the file "table.h" *********************************/
440 ** All code in this file has been automatically generated
441 ** from a specification in the file
443 ** by the associative array code building program "aagen".
444 ** Do not edit this file! Instead, edit the specification
445 ** file, then rerun aagen.
448 ** Code for processing tables in the LEMON parser generator.
450 /* Routines for handling a strings */
452 const char *Strsafe(const char *);
454 void Strsafe_init(void);
455 int Strsafe_insert(const char *);
456 const char *Strsafe_find(const char *);
458 /* Routines for handling symbols of the grammar */
460 struct symbol
*Symbol_new(const char *);
461 int Symbolcmpp(const void *, const void *);
462 void Symbol_init(void);
463 int Symbol_insert(struct symbol
*, const char *);
464 struct symbol
*Symbol_find(const char *);
465 struct symbol
*Symbol_Nth(int);
466 int Symbol_count(void);
467 struct symbol
**Symbol_arrayof(void);
469 /* Routines to manage the state table */
471 int Configcmp(const char *, const char *);
472 struct state
*State_new(void);
473 void State_init(void);
474 int State_insert(struct state
*, struct config
*);
475 struct state
*State_find(struct config
*);
476 struct state
**State_arrayof(void);
478 /* Routines used for efficiency in Configlist_add */
480 void Configtable_init(void);
481 int Configtable_insert(struct config
*);
482 struct config
*Configtable_find(struct config
*);
483 void Configtable_clear(int(*)(struct config
*));
485 /****************** From the file "action.c" *******************************/
487 ** Routines processing parser actions in the LEMON parser generator.
490 /* Allocate a new parser action */
491 static struct action
*Action_new(void){
492 static struct action
*actionfreelist
= 0;
493 struct action
*newaction
;
495 if( actionfreelist
==0 ){
498 actionfreelist
= (struct action
*)calloc(amt
, sizeof(struct action
));
499 if( actionfreelist
==0 ){
500 fprintf(stderr
,"Unable to allocate memory for a new parser action.");
503 for(i
=0; i
<amt
-1; i
++) actionfreelist
[i
].next
= &actionfreelist
[i
+1];
504 actionfreelist
[amt
-1].next
= 0;
506 newaction
= actionfreelist
;
507 actionfreelist
= actionfreelist
->next
;
511 /* Compare two actions for sorting purposes. Return negative, zero, or
512 ** positive if the first action is less than, equal to, or greater than
515 static int actioncmp(
520 rc
= ap1
->sp
->index
- ap2
->sp
->index
;
522 rc
= (int)ap1
->type
- (int)ap2
->type
;
524 if( rc
==0 && (ap1
->type
==REDUCE
|| ap1
->type
==SHIFTREDUCE
) ){
525 rc
= ap1
->x
.rp
->index
- ap2
->x
.rp
->index
;
528 rc
= (int) (ap2
- ap1
);
533 /* Sort parser actions */
534 static struct action
*Action_sort(
537 ap
= (struct action
*)msort((char *)ap
,(char **)&ap
->next
,
538 (int(*)(const char*,const char*))actioncmp
);
548 struct action
*newaction
;
549 newaction
= Action_new();
550 newaction
->next
= *app
;
552 newaction
->type
= type
;
554 newaction
->spOpt
= 0;
556 newaction
->x
.stp
= (struct state
*)arg
;
558 newaction
->x
.rp
= (struct rule
*)arg
;
561 /********************** New code to implement the "acttab" module ***********/
563 ** This module implements routines use to construct the yy_action[] table.
567 ** The state of the yy_action table under construction is an instance of
568 ** the following structure.
570 ** The yy_action table maps the pair (state_number, lookahead) into an
571 ** action_number. The table is an array of integers pairs. The state_number
572 ** determines an initial offset into the yy_action array. The lookahead
573 ** value is then added to this initial offset to get an index X into the
574 ** yy_action array. If the aAction[X].lookahead equals the value of the
575 ** of the lookahead input, then the value of the action_number output is
576 ** aAction[X].action. If the lookaheads do not match then the
577 ** default action for the state_number is returned.
579 ** All actions associated with a single state_number are first entered
580 ** into aLookahead[] using multiple calls to acttab_action(). Then the
581 ** actions for that single state_number are placed into the aAction[]
582 ** array with a single call to acttab_insert(). The acttab_insert() call
583 ** also resets the aLookahead[] array in preparation for the next
586 struct lookahead_action
{
587 int lookahead
; /* Value of the lookahead token */
588 int action
; /* Action to take on the given lookahead */
590 typedef struct acttab acttab
;
592 int nAction
; /* Number of used slots in aAction[] */
593 int nActionAlloc
; /* Slots allocated for aAction[] */
594 struct lookahead_action
595 *aAction
, /* The yy_action[] table under construction */
596 *aLookahead
; /* A single new transaction set */
597 int mnLookahead
; /* Minimum aLookahead[].lookahead */
598 int mnAction
; /* Action associated with mnLookahead */
599 int mxLookahead
; /* Maximum aLookahead[].lookahead */
600 int nLookahead
; /* Used slots in aLookahead[] */
601 int nLookaheadAlloc
; /* Slots allocated in aLookahead[] */
602 int nterminal
; /* Number of terminal symbols */
603 int nsymbol
; /* total number of symbols */
606 /* Return the number of entries in the yy_action table */
607 #define acttab_lookahead_size(X) ((X)->nAction)
609 /* The value for the N-th entry in yy_action */
610 #define acttab_yyaction(X,N) ((X)->aAction[N].action)
612 /* The value for the N-th entry in yy_lookahead */
613 #define acttab_yylookahead(X,N) ((X)->aAction[N].lookahead)
615 /* Free all memory associated with the given acttab */
616 void acttab_free(acttab
*p
){
618 free( p
->aLookahead
);
622 /* Allocate a new acttab structure */
623 acttab
*acttab_alloc(int nsymbol
, int nterminal
){
624 acttab
*p
= (acttab
*) calloc( 1, sizeof(*p
) );
626 fprintf(stderr
,"Unable to allocate memory for a new acttab.");
629 memset(p
, 0, sizeof(*p
));
630 p
->nsymbol
= nsymbol
;
631 p
->nterminal
= nterminal
;
635 /* Add a new action to the current transaction set.
637 ** This routine is called once for each lookahead for a particular
640 void acttab_action(acttab
*p
, int lookahead
, int action
){
641 if( p
->nLookahead
>=p
->nLookaheadAlloc
){
642 p
->nLookaheadAlloc
+= 25;
643 p
->aLookahead
= (struct lookahead_action
*) realloc( p
->aLookahead
,
644 sizeof(p
->aLookahead
[0])*p
->nLookaheadAlloc
);
645 if( p
->aLookahead
==0 ){
646 fprintf(stderr
,"malloc failed\n");
650 if( p
->nLookahead
==0 ){
651 p
->mxLookahead
= lookahead
;
652 p
->mnLookahead
= lookahead
;
653 p
->mnAction
= action
;
655 if( p
->mxLookahead
<lookahead
) p
->mxLookahead
= lookahead
;
656 if( p
->mnLookahead
>lookahead
){
657 p
->mnLookahead
= lookahead
;
658 p
->mnAction
= action
;
661 p
->aLookahead
[p
->nLookahead
].lookahead
= lookahead
;
662 p
->aLookahead
[p
->nLookahead
].action
= action
;
667 ** Add the transaction set built up with prior calls to acttab_action()
668 ** into the current action table. Then reset the transaction set back
669 ** to an empty set in preparation for a new round of acttab_action() calls.
671 ** Return the offset into the action table of the new transaction.
673 ** If the makeItSafe parameter is true, then the offset is chosen so that
674 ** it is impossible to overread the yy_lookaside[] table regardless of
675 ** the lookaside token. This is done for the terminal symbols, as they
676 ** come from external inputs and can contain syntax errors. When makeItSafe
677 ** is false, there is more flexibility in selecting offsets, resulting in
678 ** a smaller table. For non-terminal symbols, which are never syntax errors,
679 ** makeItSafe can be false.
681 int acttab_insert(acttab
*p
, int makeItSafe
){
683 assert( p
->nLookahead
>0 );
685 /* Make sure we have enough space to hold the expanded action table
686 ** in the worst case. The worst case occurs if the transaction set
687 ** must be appended to the current action table
690 if( p
->nAction
+ n
>= p
->nActionAlloc
){
691 int oldAlloc
= p
->nActionAlloc
;
692 p
->nActionAlloc
= p
->nAction
+ n
+ p
->nActionAlloc
+ 20;
693 p
->aAction
= (struct lookahead_action
*) realloc( p
->aAction
,
694 sizeof(p
->aAction
[0])*p
->nActionAlloc
);
696 fprintf(stderr
,"malloc failed\n");
699 for(i
=oldAlloc
; i
<p
->nActionAlloc
; i
++){
700 p
->aAction
[i
].lookahead
= -1;
701 p
->aAction
[i
].action
= -1;
705 /* Scan the existing action table looking for an offset that is a
706 ** duplicate of the current transaction set. Fall out of the loop
707 ** if and when the duplicate is found.
709 ** i is the index in p->aAction[] where p->mnLookahead is inserted.
711 end
= makeItSafe
? p
->mnLookahead
: 0;
712 for(i
=p
->nAction
-1; i
>=end
; i
--){
713 if( p
->aAction
[i
].lookahead
==p
->mnLookahead
){
714 /* All lookaheads and actions in the aLookahead[] transaction
715 ** must match against the candidate aAction[i] entry. */
716 if( p
->aAction
[i
].action
!=p
->mnAction
) continue;
717 for(j
=0; j
<p
->nLookahead
; j
++){
718 k
= p
->aLookahead
[j
].lookahead
- p
->mnLookahead
+ i
;
719 if( k
<0 || k
>=p
->nAction
) break;
720 if( p
->aLookahead
[j
].lookahead
!=p
->aAction
[k
].lookahead
) break;
721 if( p
->aLookahead
[j
].action
!=p
->aAction
[k
].action
) break;
723 if( j
<p
->nLookahead
) continue;
725 /* No possible lookahead value that is not in the aLookahead[]
726 ** transaction is allowed to match aAction[i] */
728 for(j
=0; j
<p
->nAction
; j
++){
729 if( p
->aAction
[j
].lookahead
<0 ) continue;
730 if( p
->aAction
[j
].lookahead
==j
+p
->mnLookahead
-i
) n
++;
732 if( n
==p
->nLookahead
){
733 break; /* An exact match is found at offset i */
738 /* If no existing offsets exactly match the current transaction, find an
739 ** an empty offset in the aAction[] table in which we can add the
740 ** aLookahead[] transaction.
743 /* Look for holes in the aAction[] table that fit the current
744 ** aLookahead[] transaction. Leave i set to the offset of the hole.
745 ** If no holes are found, i is left at p->nAction, which means the
746 ** transaction will be appended. */
747 i
= makeItSafe
? p
->mnLookahead
: 0;
748 for(; i
<p
->nActionAlloc
- p
->mxLookahead
; i
++){
749 if( p
->aAction
[i
].lookahead
<0 ){
750 for(j
=0; j
<p
->nLookahead
; j
++){
751 k
= p
->aLookahead
[j
].lookahead
- p
->mnLookahead
+ i
;
753 if( p
->aAction
[k
].lookahead
>=0 ) break;
755 if( j
<p
->nLookahead
) continue;
756 for(j
=0; j
<p
->nAction
; j
++){
757 if( p
->aAction
[j
].lookahead
==j
+p
->mnLookahead
-i
) break;
760 break; /* Fits in empty slots */
765 /* Insert transaction set at index i. */
768 for(j
=0; j
<p
->nLookahead
; j
++){
769 printf(" %d", p
->aLookahead
[j
].lookahead
);
771 printf(" inserted at %d\n", i
);
773 for(j
=0; j
<p
->nLookahead
; j
++){
774 k
= p
->aLookahead
[j
].lookahead
- p
->mnLookahead
+ i
;
775 p
->aAction
[k
] = p
->aLookahead
[j
];
776 if( k
>=p
->nAction
) p
->nAction
= k
+1;
778 if( makeItSafe
&& i
+p
->nterminal
>=p
->nAction
) p
->nAction
= i
+p
->nterminal
+1;
781 /* Return the offset that is added to the lookahead in order to get the
782 ** index into yy_action of the action */
783 return i
- p
->mnLookahead
;
787 ** Return the size of the action table without the trailing syntax error
790 int acttab_action_size(acttab
*p
){
792 while( n
>0 && p
->aAction
[n
-1].lookahead
<0 ){ n
--; }
796 /********************** From the file "build.c" *****************************/
798 ** Routines to construction the finite state machine for the LEMON
802 /* Find a precedence symbol of every rule in the grammar.
804 ** Those rules which have a precedence symbol coded in the input
805 ** grammar using the "[symbol]" construct will already have the
806 ** rp->precsym field filled. Other rules take as their precedence
807 ** symbol the first RHS symbol with a defined precedence. If there
808 ** are not RHS symbols with a defined precedence, the precedence
809 ** symbol field is left blank.
811 void FindRulePrecedences(struct lemon
*xp
)
814 for(rp
=xp
->rule
; rp
; rp
=rp
->next
){
815 if( rp
->precsym
==0 ){
817 for(i
=0; i
<rp
->nrhs
&& rp
->precsym
==0; i
++){
818 struct symbol
*sp
= rp
->rhs
[i
];
819 if( sp
->type
==MULTITERMINAL
){
820 for(j
=0; j
<sp
->nsubsym
; j
++){
821 if( sp
->subsym
[j
]->prec
>=0 ){
822 rp
->precsym
= sp
->subsym
[j
];
826 }else if( sp
->prec
>=0 ){
827 rp
->precsym
= rp
->rhs
[i
];
835 /* Find all nonterminals which will generate the empty string.
836 ** Then go back and compute the first sets of every nonterminal.
837 ** The first set is the set of all terminal symbols which can begin
838 ** a string generated by that nonterminal.
840 void FindFirstSets(struct lemon
*lemp
)
846 for(i
=0; i
<lemp
->nsymbol
; i
++){
847 lemp
->symbols
[i
]->lambda
= LEMON_FALSE
;
849 for(i
=lemp
->nterminal
; i
<lemp
->nsymbol
; i
++){
850 lemp
->symbols
[i
]->firstset
= SetNew();
853 /* First compute all lambdas */
856 for(rp
=lemp
->rule
; rp
; rp
=rp
->next
){
857 if( rp
->lhs
->lambda
) continue;
858 for(i
=0; i
<rp
->nrhs
; i
++){
859 struct symbol
*sp
= rp
->rhs
[i
];
860 assert( sp
->type
==NONTERMINAL
|| sp
->lambda
==LEMON_FALSE
);
861 if( sp
->lambda
==LEMON_FALSE
) break;
864 rp
->lhs
->lambda
= LEMON_TRUE
;
870 /* Now compute all first sets */
872 struct symbol
*s1
, *s2
;
874 for(rp
=lemp
->rule
; rp
; rp
=rp
->next
){
876 for(i
=0; i
<rp
->nrhs
; i
++){
878 if( s2
->type
==TERMINAL
){
879 progress
+= SetAdd(s1
->firstset
,s2
->index
);
881 }else if( s2
->type
==MULTITERMINAL
){
882 for(j
=0; j
<s2
->nsubsym
; j
++){
883 progress
+= SetAdd(s1
->firstset
,s2
->subsym
[j
]->index
);
887 if( s1
->lambda
==LEMON_FALSE
) break;
889 progress
+= SetUnion(s1
->firstset
,s2
->firstset
);
890 if( s2
->lambda
==LEMON_FALSE
) break;
898 /* Compute all LR(0) states for the grammar. Links
899 ** are added to between some states so that the LR(1) follow sets
900 ** can be computed later.
902 PRIVATE
struct state
*getstate(struct lemon
*); /* forward reference */
903 void FindStates(struct lemon
*lemp
)
910 /* Find the start symbol */
912 sp
= Symbol_find(lemp
->start
);
914 ErrorMsg(lemp
->filename
,0,
915 "The specified start symbol \"%s\" is not "
916 "in a nonterminal of the grammar. \"%s\" will be used as the start "
917 "symbol instead.",lemp
->start
,lemp
->startRule
->lhs
->name
);
919 sp
= lemp
->startRule
->lhs
;
921 }else if( lemp
->startRule
){
922 sp
= lemp
->startRule
->lhs
;
924 ErrorMsg(lemp
->filename
,0,"Internal error - no start rule\n");
928 /* Make sure the start symbol doesn't occur on the right-hand side of
929 ** any rule. Report an error if it does. (YACC would generate a new
930 ** start symbol in this case.) */
931 for(rp
=lemp
->rule
; rp
; rp
=rp
->next
){
933 for(i
=0; i
<rp
->nrhs
; i
++){
934 if( rp
->rhs
[i
]==sp
){ /* FIX ME: Deal with multiterminals */
935 ErrorMsg(lemp
->filename
,0,
936 "The start symbol \"%s\" occurs on the "
937 "right-hand side of a rule. This will result in a parser which "
938 "does not work properly.",sp
->name
);
944 /* The basis configuration set for the first state
945 ** is all rules which have the start symbol as their
947 for(rp
=sp
->rule
; rp
; rp
=rp
->nextlhs
){
948 struct config
*newcfp
;
950 newcfp
= Configlist_addbasis(rp
,0);
951 SetAdd(newcfp
->fws
,0);
954 /* Compute the first state. All other states will be
955 ** computed automatically during the computation of the first one.
956 ** The returned pointer to the first state is not used. */
957 (void)getstate(lemp
);
961 /* Return a pointer to a state which is described by the configuration
962 ** list which has been built from calls to Configlist_add.
964 PRIVATE
void buildshifts(struct lemon
*, struct state
*); /* Forwd ref */
965 PRIVATE
struct state
*getstate(struct lemon
*lemp
)
967 struct config
*cfp
, *bp
;
970 /* Extract the sorted basis of the new state. The basis was constructed
971 ** by prior calls to "Configlist_addbasis()". */
972 Configlist_sortbasis();
973 bp
= Configlist_basis();
975 /* Get a state with the same basis */
976 stp
= State_find(bp
);
978 /* A state with the same basis already exists! Copy all the follow-set
979 ** propagation links from the state under construction into the
980 ** preexisting state, then return a pointer to the preexisting state */
981 struct config
*x
, *y
;
982 for(x
=bp
, y
=stp
->bp
; x
&& y
; x
=x
->bp
, y
=y
->bp
){
983 Plink_copy(&y
->bplp
,x
->bplp
);
984 Plink_delete(x
->fplp
);
985 x
->fplp
= x
->bplp
= 0;
987 cfp
= Configlist_return();
990 /* This really is a new state. Construct all the details */
991 Configlist_closure(lemp
); /* Compute the configuration closure */
992 Configlist_sort(); /* Sort the configuration closure */
993 cfp
= Configlist_return(); /* Get a pointer to the config list */
994 stp
= State_new(); /* A new state structure */
996 stp
->bp
= bp
; /* Remember the configuration basis */
997 stp
->cfp
= cfp
; /* Remember the configuration closure */
998 stp
->statenum
= lemp
->nstate
++; /* Every state gets a sequence number */
999 stp
->ap
= 0; /* No actions, yet. */
1000 State_insert(stp
,stp
->bp
); /* Add to the state table */
1001 buildshifts(lemp
,stp
); /* Recursively compute successor states */
1007 ** Return true if two symbols are the same.
1009 int same_symbol(struct symbol
*a
, struct symbol
*b
)
1012 if( a
==b
) return 1;
1013 if( a
->type
!=MULTITERMINAL
) return 0;
1014 if( b
->type
!=MULTITERMINAL
) return 0;
1015 if( a
->nsubsym
!=b
->nsubsym
) return 0;
1016 for(i
=0; i
<a
->nsubsym
; i
++){
1017 if( a
->subsym
[i
]!=b
->subsym
[i
] ) return 0;
1022 /* Construct all successor states to the given state. A "successor"
1023 ** state is any state which can be reached by a shift action.
1025 PRIVATE
void buildshifts(struct lemon
*lemp
, struct state
*stp
)
1027 struct config
*cfp
; /* For looping thru the config closure of "stp" */
1028 struct config
*bcfp
; /* For the inner loop on config closure of "stp" */
1029 struct config
*newcfg
; /* */
1030 struct symbol
*sp
; /* Symbol following the dot in configuration "cfp" */
1031 struct symbol
*bsp
; /* Symbol following the dot in configuration "bcfp" */
1032 struct state
*newstp
; /* A pointer to a successor state */
1034 /* Each configuration becomes complete after it contributes to a successor
1035 ** state. Initially, all configurations are incomplete */
1036 for(cfp
=stp
->cfp
; cfp
; cfp
=cfp
->next
) cfp
->status
= INCOMPLETE
;
1038 /* Loop through all configurations of the state "stp" */
1039 for(cfp
=stp
->cfp
; cfp
; cfp
=cfp
->next
){
1040 if( cfp
->status
==COMPLETE
) continue; /* Already used by inner loop */
1041 if( cfp
->dot
>=cfp
->rp
->nrhs
) continue; /* Can't shift this config */
1042 Configlist_reset(); /* Reset the new config set */
1043 sp
= cfp
->rp
->rhs
[cfp
->dot
]; /* Symbol after the dot */
1045 /* For every configuration in the state "stp" which has the symbol "sp"
1046 ** following its dot, add the same configuration to the basis set under
1047 ** construction but with the dot shifted one symbol to the right. */
1048 for(bcfp
=cfp
; bcfp
; bcfp
=bcfp
->next
){
1049 if( bcfp
->status
==COMPLETE
) continue; /* Already used */
1050 if( bcfp
->dot
>=bcfp
->rp
->nrhs
) continue; /* Can't shift this one */
1051 bsp
= bcfp
->rp
->rhs
[bcfp
->dot
]; /* Get symbol after dot */
1052 if( !same_symbol(bsp
,sp
) ) continue; /* Must be same as for "cfp" */
1053 bcfp
->status
= COMPLETE
; /* Mark this config as used */
1054 newcfg
= Configlist_addbasis(bcfp
->rp
,bcfp
->dot
+1);
1055 Plink_add(&newcfg
->bplp
,bcfp
);
1058 /* Get a pointer to the state described by the basis configuration set
1059 ** constructed in the preceding loop */
1060 newstp
= getstate(lemp
);
1062 /* The state "newstp" is reached from the state "stp" by a shift action
1063 ** on the symbol "sp" */
1064 if( sp
->type
==MULTITERMINAL
){
1066 for(i
=0; i
<sp
->nsubsym
; i
++){
1067 Action_add(&stp
->ap
,SHIFT
,sp
->subsym
[i
],(char*)newstp
);
1070 Action_add(&stp
->ap
,SHIFT
,sp
,(char *)newstp
);
1076 ** Construct the propagation links
1078 void FindLinks(struct lemon
*lemp
)
1081 struct config
*cfp
, *other
;
1085 /* Housekeeping detail:
1086 ** Add to every propagate link a pointer back to the state to
1087 ** which the link is attached. */
1088 for(i
=0; i
<lemp
->nstate
; i
++){
1089 stp
= lemp
->sorted
[i
];
1090 for(cfp
=stp
?stp
->cfp
:0; cfp
; cfp
=cfp
->next
){
1095 /* Convert all backlinks into forward links. Only the forward
1096 ** links are used in the follow-set computation. */
1097 for(i
=0; i
<lemp
->nstate
; i
++){
1098 stp
= lemp
->sorted
[i
];
1099 for(cfp
=stp
?stp
->cfp
:0; cfp
; cfp
=cfp
->next
){
1100 for(plp
=cfp
->bplp
; plp
; plp
=plp
->next
){
1102 Plink_add(&other
->fplp
,cfp
);
1108 /* Compute all followsets.
1110 ** A followset is the set of all symbols which can come immediately
1111 ** after a configuration.
1113 void FindFollowSets(struct lemon
*lemp
)
1121 for(i
=0; i
<lemp
->nstate
; i
++){
1122 assert( lemp
->sorted
[i
]!=0 );
1123 for(cfp
=lemp
->sorted
[i
]->cfp
; cfp
; cfp
=cfp
->next
){
1124 cfp
->status
= INCOMPLETE
;
1130 for(i
=0; i
<lemp
->nstate
; i
++){
1131 assert( lemp
->sorted
[i
]!=0 );
1132 for(cfp
=lemp
->sorted
[i
]->cfp
; cfp
; cfp
=cfp
->next
){
1133 if( cfp
->status
==COMPLETE
) continue;
1134 for(plp
=cfp
->fplp
; plp
; plp
=plp
->next
){
1135 change
= SetUnion(plp
->cfp
->fws
,cfp
->fws
);
1137 plp
->cfp
->status
= INCOMPLETE
;
1141 cfp
->status
= COMPLETE
;
1147 static int resolve_conflict(struct action
*,struct action
*);
1149 /* Compute the reduce actions, and resolve conflicts.
1151 void FindActions(struct lemon
*lemp
)
1159 /* Add all of the reduce actions
1160 ** A reduce action is added for each element of the followset of
1161 ** a configuration which has its dot at the extreme right.
1163 for(i
=0; i
<lemp
->nstate
; i
++){ /* Loop over all states */
1164 stp
= lemp
->sorted
[i
];
1165 for(cfp
=stp
->cfp
; cfp
; cfp
=cfp
->next
){ /* Loop over all configurations */
1166 if( cfp
->rp
->nrhs
==cfp
->dot
){ /* Is dot at extreme right? */
1167 for(j
=0; j
<lemp
->nterminal
; j
++){
1168 if( SetFind(cfp
->fws
,j
) ){
1169 /* Add a reduce action to the state "stp" which will reduce by the
1170 ** rule "cfp->rp" if the lookahead symbol is "lemp->symbols[j]" */
1171 Action_add(&stp
->ap
,REDUCE
,lemp
->symbols
[j
],(char *)cfp
->rp
);
1178 /* Add the accepting token */
1180 sp
= Symbol_find(lemp
->start
);
1182 if( lemp
->startRule
==0 ){
1183 fprintf(stderr
, "internal error on source line %d: no start rule\n",
1187 sp
= lemp
->startRule
->lhs
;
1190 sp
= lemp
->startRule
->lhs
;
1192 /* Add to the first state (which is always the starting state of the
1193 ** finite state machine) an action to ACCEPT if the lookahead is the
1194 ** start nonterminal. */
1195 Action_add(&lemp
->sorted
[0]->ap
,ACCEPT
,sp
,0);
1197 /* Resolve conflicts */
1198 for(i
=0; i
<lemp
->nstate
; i
++){
1199 struct action
*ap
, *nap
;
1200 stp
= lemp
->sorted
[i
];
1201 /* assert( stp->ap ); */
1202 stp
->ap
= Action_sort(stp
->ap
);
1203 for(ap
=stp
->ap
; ap
&& ap
->next
; ap
=ap
->next
){
1204 for(nap
=ap
->next
; nap
&& nap
->sp
==ap
->sp
; nap
=nap
->next
){
1205 /* The two actions "ap" and "nap" have the same lookahead.
1206 ** Figure out which one should be used */
1207 lemp
->nconflict
+= resolve_conflict(ap
,nap
);
1212 /* Report an error for each rule that can never be reduced. */
1213 for(rp
=lemp
->rule
; rp
; rp
=rp
->next
) rp
->canReduce
= LEMON_FALSE
;
1214 for(i
=0; i
<lemp
->nstate
; i
++){
1216 for(ap
=lemp
->sorted
[i
]->ap
; ap
; ap
=ap
->next
){
1217 if( ap
->type
==REDUCE
) ap
->x
.rp
->canReduce
= LEMON_TRUE
;
1220 for(rp
=lemp
->rule
; rp
; rp
=rp
->next
){
1221 if( rp
->canReduce
) continue;
1222 ErrorMsg(lemp
->filename
,rp
->ruleline
,"This rule can not be reduced.\n");
1227 /* Resolve a conflict between the two given actions. If the
1228 ** conflict can't be resolved, return non-zero.
1231 ** To resolve a conflict, first look to see if either action
1232 ** is on an error rule. In that case, take the action which
1233 ** is not associated with the error rule. If neither or both
1234 ** actions are associated with an error rule, then try to
1235 ** use precedence to resolve the conflict.
1237 ** If either action is a SHIFT, then it must be apx. This
1238 ** function won't work if apx->type==REDUCE and apy->type==SHIFT.
1240 static int resolve_conflict(
1244 struct symbol
*spx
, *spy
;
1246 assert( apx
->sp
==apy
->sp
); /* Otherwise there would be no conflict */
1247 if( apx
->type
==SHIFT
&& apy
->type
==SHIFT
){
1248 apy
->type
= SSCONFLICT
;
1251 if( apx
->type
==SHIFT
&& apy
->type
==REDUCE
){
1253 spy
= apy
->x
.rp
->precsym
;
1254 if( spy
==0 || spx
->prec
<0 || spy
->prec
<0 ){
1255 /* Not enough precedence information. */
1256 apy
->type
= SRCONFLICT
;
1258 }else if( spx
->prec
>spy
->prec
){ /* higher precedence wins */
1259 apy
->type
= RD_RESOLVED
;
1260 }else if( spx
->prec
<spy
->prec
){
1261 apx
->type
= SH_RESOLVED
;
1262 }else if( spx
->prec
==spy
->prec
&& spx
->assoc
==RIGHT
){ /* Use operator */
1263 apy
->type
= RD_RESOLVED
; /* associativity */
1264 }else if( spx
->prec
==spy
->prec
&& spx
->assoc
==LEFT
){ /* to break tie */
1265 apx
->type
= SH_RESOLVED
;
1267 assert( spx
->prec
==spy
->prec
&& spx
->assoc
==NONE
);
1270 }else if( apx
->type
==REDUCE
&& apy
->type
==REDUCE
){
1271 spx
= apx
->x
.rp
->precsym
;
1272 spy
= apy
->x
.rp
->precsym
;
1273 if( spx
==0 || spy
==0 || spx
->prec
<0 ||
1274 spy
->prec
<0 || spx
->prec
==spy
->prec
){
1275 apy
->type
= RRCONFLICT
;
1277 }else if( spx
->prec
>spy
->prec
){
1278 apy
->type
= RD_RESOLVED
;
1279 }else if( spx
->prec
<spy
->prec
){
1280 apx
->type
= RD_RESOLVED
;
1284 apx
->type
==SH_RESOLVED
||
1285 apx
->type
==RD_RESOLVED
||
1286 apx
->type
==SSCONFLICT
||
1287 apx
->type
==SRCONFLICT
||
1288 apx
->type
==RRCONFLICT
||
1289 apy
->type
==SH_RESOLVED
||
1290 apy
->type
==RD_RESOLVED
||
1291 apy
->type
==SSCONFLICT
||
1292 apy
->type
==SRCONFLICT
||
1293 apy
->type
==RRCONFLICT
1295 /* The REDUCE/SHIFT case cannot happen because SHIFTs come before
1296 ** REDUCEs on the list. If we reach this point it must be because
1297 ** the parser conflict had already been resolved. */
1301 /********************* From the file "configlist.c" *************************/
1303 ** Routines to processing a configuration list and building a state
1304 ** in the LEMON parser generator.
1307 static struct config
*freelist
= 0; /* List of free configurations */
1308 static struct config
*current
= 0; /* Top of list of configurations */
1309 static struct config
**currentend
= 0; /* Last on list of configs */
1310 static struct config
*basis
= 0; /* Top of list of basis configs */
1311 static struct config
**basisend
= 0; /* End of list of basis configs */
1313 /* Return a pointer to a new configuration */
1314 PRIVATE
struct config
*newconfig(void){
1315 return (struct config
*)calloc(1, sizeof(struct config
));
1318 /* The configuration "old" is no longer used */
1319 PRIVATE
void deleteconfig(struct config
*old
)
1321 old
->next
= freelist
;
1325 /* Initialized the configuration list builder */
1326 void Configlist_init(void){
1328 currentend
= ¤t
;
1335 /* Initialized the configuration list builder */
1336 void Configlist_reset(void){
1338 currentend
= ¤t
;
1341 Configtable_clear(0);
1345 /* Add another configuration to the configuration list */
1346 struct config
*Configlist_add(
1347 struct rule
*rp
, /* The rule */
1348 int dot
/* Index into the RHS of the rule where the dot goes */
1350 struct config
*cfp
, model
;
1352 assert( currentend
!=0 );
1355 cfp
= Configtable_find(&model
);
1360 cfp
->fws
= SetNew();
1362 cfp
->fplp
= cfp
->bplp
= 0;
1366 currentend
= &cfp
->next
;
1367 Configtable_insert(cfp
);
1372 /* Add a basis configuration to the configuration list */
1373 struct config
*Configlist_addbasis(struct rule
*rp
, int dot
)
1375 struct config
*cfp
, model
;
1377 assert( basisend
!=0 );
1378 assert( currentend
!=0 );
1381 cfp
= Configtable_find(&model
);
1386 cfp
->fws
= SetNew();
1388 cfp
->fplp
= cfp
->bplp
= 0;
1392 currentend
= &cfp
->next
;
1394 basisend
= &cfp
->bp
;
1395 Configtable_insert(cfp
);
1400 /* Compute the closure of the configuration list */
1401 void Configlist_closure(struct lemon
*lemp
)
1403 struct config
*cfp
, *newcfp
;
1404 struct rule
*rp
, *newrp
;
1405 struct symbol
*sp
, *xsp
;
1408 assert( currentend
!=0 );
1409 for(cfp
=current
; cfp
; cfp
=cfp
->next
){
1412 if( dot
>=rp
->nrhs
) continue;
1414 if( sp
->type
==NONTERMINAL
){
1415 if( sp
->rule
==0 && sp
!=lemp
->errsym
){
1416 ErrorMsg(lemp
->filename
,rp
->line
,"Nonterminal \"%s\" has no rules.",
1420 for(newrp
=sp
->rule
; newrp
; newrp
=newrp
->nextlhs
){
1421 newcfp
= Configlist_add(newrp
,0);
1422 for(i
=dot
+1; i
<rp
->nrhs
; i
++){
1424 if( xsp
->type
==TERMINAL
){
1425 SetAdd(newcfp
->fws
,xsp
->index
);
1427 }else if( xsp
->type
==MULTITERMINAL
){
1429 for(k
=0; k
<xsp
->nsubsym
; k
++){
1430 SetAdd(newcfp
->fws
, xsp
->subsym
[k
]->index
);
1434 SetUnion(newcfp
->fws
,xsp
->firstset
);
1435 if( xsp
->lambda
==LEMON_FALSE
) break;
1438 if( i
==rp
->nrhs
) Plink_add(&cfp
->fplp
,newcfp
);
1445 /* Sort the configuration list */
1446 void Configlist_sort(void){
1447 current
= (struct config
*)msort((char*)current
,(char**)&(current
->next
),
1453 /* Sort the basis configuration list */
1454 void Configlist_sortbasis(void){
1455 basis
= (struct config
*)msort((char*)current
,(char**)&(current
->bp
),
1461 /* Return a pointer to the head of the configuration list and
1462 ** reset the list */
1463 struct config
*Configlist_return(void){
1471 /* Return a pointer to the head of the configuration list and
1472 ** reset the list */
1473 struct config
*Configlist_basis(void){
1481 /* Free all elements of the given configuration list */
1482 void Configlist_eat(struct config
*cfp
)
1484 struct config
*nextcfp
;
1485 for(; cfp
; cfp
=nextcfp
){
1486 nextcfp
= cfp
->next
;
1487 assert( cfp
->fplp
==0 );
1488 assert( cfp
->bplp
==0 );
1489 if( cfp
->fws
) SetFree(cfp
->fws
);
1494 /***************** From the file "error.c" *********************************/
1496 ** Code for printing error message.
1499 void ErrorMsg(const char *filename
, int lineno
, const char *format
, ...){
1501 fprintf(stderr
, "%s:%d: ", filename
, lineno
);
1502 va_start(ap
, format
);
1503 vfprintf(stderr
,format
,ap
);
1505 fprintf(stderr
, "\n");
1507 /**************** From the file "main.c" ************************************/
1509 ** Main program file for the LEMON parser generator.
1512 /* Report an out-of-memory condition and abort. This function
1513 ** is used mostly by the "MemoryCheck" macro in struct.h
1515 void memory_error(void){
1516 fprintf(stderr
,"Out of memory. Aborting...\n");
1520 static int nDefine
= 0; /* Number of -D options on the command line */
1521 static int nDefineUsed
= 0; /* Number of -D options actually used */
1522 static char **azDefine
= 0; /* Name of the -D macros */
1523 static char *bDefineUsed
= 0; /* True for every -D macro actually used */
1525 /* This routine is called with the argument to each -D command-line option.
1526 ** Add the macro defined to the azDefine array.
1528 static void handle_D_option(char *z
){
1531 azDefine
= (char **) realloc(azDefine
, sizeof(azDefine
[0])*nDefine
);
1533 fprintf(stderr
,"out of memory\n");
1536 bDefineUsed
= (char*)realloc(bDefineUsed
, nDefine
);
1537 if( bDefineUsed
==0 ){
1538 fprintf(stderr
,"out of memory\n");
1541 bDefineUsed
[nDefine
-1] = 0;
1542 paz
= &azDefine
[nDefine
-1];
1543 *paz
= (char *) malloc( lemonStrlen(z
)+1 );
1545 fprintf(stderr
,"out of memory\n");
1548 lemon_strcpy(*paz
, z
);
1549 for(z
=*paz
; *z
&& *z
!='='; z
++){}
1553 /* Rember the name of the output directory
1555 static char *outputDir
= NULL
;
1556 static void handle_d_option(char *z
){
1557 outputDir
= (char *) malloc( lemonStrlen(z
)+1 );
1559 fprintf(stderr
,"out of memory\n");
1562 lemon_strcpy(outputDir
, z
);
1565 static char *user_templatename
= NULL
;
1566 static void handle_T_option(char *z
){
1567 user_templatename
= (char *) malloc( lemonStrlen(z
)+1 );
1568 if( user_templatename
==0 ){
1571 lemon_strcpy(user_templatename
, z
);
1574 /* Merge together to lists of rules ordered by rule.iRule */
1575 static struct rule
*Rule_merge(struct rule
*pA
, struct rule
*pB
){
1576 struct rule
*pFirst
= 0;
1577 struct rule
**ppPrev
= &pFirst
;
1579 if( pA
->iRule
<pB
->iRule
){
1598 ** Sort a list of rules in order of increasing iRule value
1600 static struct rule
*Rule_sort(struct rule
*rp
){
1604 memset(x
, 0, sizeof(x
));
1608 for(i
=0; i
<sizeof(x
)/sizeof(x
[0])-1 && x
[i
]; i
++){
1609 rp
= Rule_merge(x
[i
], rp
);
1616 for(i
=0; i
<sizeof(x
)/sizeof(x
[0]); i
++){
1617 rp
= Rule_merge(x
[i
], rp
);
1622 /* forward reference */
1623 static const char *minimum_size_type(int lwr
, int upr
, int *pnByte
);
1625 /* Print a single line of the "Parser Stats" output
1627 static void stats_line(const char *zLabel
, int iValue
){
1628 int nLabel
= lemonStrlen(zLabel
);
1629 printf(" %s%.*s %5d\n", zLabel
,
1630 35-nLabel
, "................................",
1634 /* The main program. Parse the command line and do it... */
1635 int main(int argc
, char **argv
){
1636 static int version
= 0;
1637 static int rpflag
= 0;
1638 static int basisflag
= 0;
1639 static int compress
= 0;
1640 static int quiet
= 0;
1641 static int statistics
= 0;
1642 static int mhflag
= 0;
1643 static int nolinenosflag
= 0;
1644 static int noResort
= 0;
1645 static int sqlFlag
= 0;
1646 static int printPP
= 0;
1648 static struct s_options options
[] = {
1649 {OPT_FLAG
, "b", (char*)&basisflag
, "Print only the basis in report."},
1650 {OPT_FLAG
, "c", (char*)&compress
, "Don't compress the action table."},
1651 {OPT_FSTR
, "d", (char*)&handle_d_option
, "Output directory. Default '.'"},
1652 {OPT_FSTR
, "D", (char*)handle_D_option
, "Define an %ifdef macro."},
1653 {OPT_FLAG
, "E", (char*)&printPP
, "Print input file after preprocessing."},
1654 {OPT_FSTR
, "f", 0, "Ignored. (Placeholder for -f compiler options.)"},
1655 {OPT_FLAG
, "g", (char*)&rpflag
, "Print grammar without actions."},
1656 {OPT_FSTR
, "I", 0, "Ignored. (Placeholder for '-I' compiler options.)"},
1657 {OPT_FLAG
, "m", (char*)&mhflag
, "Output a makeheaders compatible file."},
1658 {OPT_FLAG
, "l", (char*)&nolinenosflag
, "Do not print #line statements."},
1659 {OPT_FSTR
, "O", 0, "Ignored. (Placeholder for '-O' compiler options.)"},
1660 {OPT_FLAG
, "p", (char*)&showPrecedenceConflict
,
1661 "Show conflicts resolved by precedence rules"},
1662 {OPT_FLAG
, "q", (char*)&quiet
, "(Quiet) Don't print the report file."},
1663 {OPT_FLAG
, "r", (char*)&noResort
, "Do not sort or renumber states"},
1664 {OPT_FLAG
, "s", (char*)&statistics
,
1665 "Print parser stats to standard output."},
1666 {OPT_FLAG
, "S", (char*)&sqlFlag
,
1667 "Generate the *.sql file describing the parser tables."},
1668 {OPT_FLAG
, "x", (char*)&version
, "Print the version number."},
1669 {OPT_FSTR
, "T", (char*)handle_T_option
, "Specify a template file."},
1670 {OPT_FSTR
, "W", 0, "Ignored. (Placeholder for '-W' compiler options.)"},
1678 OptInit(argv
,options
,stderr
);
1680 printf("Lemon version 1.0\n");
1683 if( OptNArgs()!=1 ){
1684 fprintf(stderr
,"Exactly one filename argument is required.\n");
1687 memset(&lem
, 0, sizeof(lem
));
1690 /* Initialize the machine */
1696 lem
.filename
= OptArg(0);
1697 lem
.basisflag
= basisflag
;
1698 lem
.nolinenosflag
= nolinenosflag
;
1699 lem
.printPreprocessed
= printPP
;
1702 /* Parse the input file */
1704 if( lem
.printPreprocessed
|| lem
.errorcnt
) exit(lem
.errorcnt
);
1706 fprintf(stderr
,"Empty grammar.\n");
1709 lem
.errsym
= Symbol_find("error");
1711 /* Count and index the symbols of the grammar */
1712 Symbol_new("{default}");
1713 lem
.nsymbol
= Symbol_count();
1714 lem
.symbols
= Symbol_arrayof();
1715 for(i
=0; i
<lem
.nsymbol
; i
++) lem
.symbols
[i
]->index
= i
;
1716 qsort(lem
.symbols
,lem
.nsymbol
,sizeof(struct symbol
*), Symbolcmpp
);
1717 for(i
=0; i
<lem
.nsymbol
; i
++) lem
.symbols
[i
]->index
= i
;
1718 while( lem
.symbols
[i
-1]->type
==MULTITERMINAL
){ i
--; }
1719 assert( strcmp(lem
.symbols
[i
-1]->name
,"{default}")==0 );
1720 lem
.nsymbol
= i
- 1;
1721 for(i
=1; ISUPPER(lem
.symbols
[i
]->name
[0]); i
++);
1724 /* Assign sequential rule numbers. Start with 0. Put rules that have no
1725 ** reduce action C-code associated with them last, so that the switch()
1726 ** statement that selects reduction actions will have a smaller jump table.
1728 for(i
=0, rp
=lem
.rule
; rp
; rp
=rp
->next
){
1729 rp
->iRule
= rp
->code
? i
++ : -1;
1731 lem
.nruleWithAction
= i
;
1732 for(rp
=lem
.rule
; rp
; rp
=rp
->next
){
1733 if( rp
->iRule
<0 ) rp
->iRule
= i
++;
1735 lem
.startRule
= lem
.rule
;
1736 lem
.rule
= Rule_sort(lem
.rule
);
1738 /* Generate a reprint of the grammar, if requested on the command line */
1742 /* Initialize the size for all follow and first sets */
1743 SetSize(lem
.nterminal
+1);
1745 /* Find the precedence for every production rule (that has one) */
1746 FindRulePrecedences(&lem
);
1748 /* Compute the lambda-nonterminals and the first-sets for every
1750 FindFirstSets(&lem
);
1752 /* Compute all LR(0) states. Also record follow-set propagation
1753 ** links so that the follow-set can be computed later */
1756 lem
.sorted
= State_arrayof();
1758 /* Tie up loose ends on the propagation links */
1761 /* Compute the follow set of every reducible configuration */
1762 FindFollowSets(&lem
);
1764 /* Compute the action tables */
1767 /* Compress the action tables */
1768 if( compress
==0 ) CompressTables(&lem
);
1770 /* Reorder and renumber the states so that states with fewer choices
1771 ** occur at the end. This is an optimization that helps make the
1772 ** generated parser tables smaller. */
1773 if( noResort
==0 ) ResortStates(&lem
);
1775 /* Generate a report of the parser generated. (the "y.output" file) */
1776 if( !quiet
) ReportOutput(&lem
);
1778 /* Generate the source code for the parser */
1779 ReportTable(&lem
, mhflag
, sqlFlag
);
1781 /* Produce a header file for use by the scanner. (This step is
1782 ** omitted if the "-m" option is used because makeheaders will
1783 ** generate the file for us.) */
1784 if( !mhflag
) ReportHeader(&lem
);
1787 printf("Parser statistics:\n");
1788 stats_line("terminal symbols", lem
.nterminal
);
1789 stats_line("non-terminal symbols", lem
.nsymbol
- lem
.nterminal
);
1790 stats_line("total symbols", lem
.nsymbol
);
1791 stats_line("rules", lem
.nrule
);
1792 stats_line("states", lem
.nxstate
);
1793 stats_line("conflicts", lem
.nconflict
);
1794 stats_line("action table entries", lem
.nactiontab
);
1795 stats_line("lookahead table entries", lem
.nlookaheadtab
);
1796 stats_line("total table size (bytes)", lem
.tablesize
);
1798 if( lem
.nconflict
> 0 ){
1799 fprintf(stderr
,"%d parsing conflicts.\n",lem
.nconflict
);
1802 /* return 0 on success, 1 on failure. */
1803 exitcode
= ((lem
.errorcnt
> 0) || (lem
.nconflict
> 0)) ? 1 : 0;
1807 /******************** From the file "msort.c" *******************************/
1809 ** A generic merge-sort program.
1812 ** Let "ptr" be a pointer to some structure which is at the head of
1813 ** a null-terminated list. Then to sort the list call:
1815 ** ptr = msort(ptr,&(ptr->next),cmpfnc);
1817 ** In the above, "cmpfnc" is a pointer to a function which compares
1818 ** two instances of the structure and returns an integer, as in
1819 ** strcmp. The second argument is a pointer to the pointer to the
1820 ** second element of the linked list. This address is used to compute
1821 ** the offset to the "next" field within the structure. The offset to
1822 ** the "next" field must be constant for all structures in the list.
1824 ** The function returns a new pointer which is the head of the list
1832 ** Return a pointer to the next structure in the linked list.
1834 #define NEXT(A) (*(char**)(((char*)A)+offset))
1838 ** a: A sorted, null-terminated linked list. (May be null).
1839 ** b: A sorted, null-terminated linked list. (May be null).
1840 ** cmp: A pointer to the comparison function.
1841 ** offset: Offset in the structure to the "next" field.
1844 ** A pointer to the head of a sorted list containing the elements
1848 ** The "next" pointers for elements in the lists a and b are
1854 int (*cmp
)(const char*,const char*),
1864 if( (*cmp
)(a
,b
)<=0 ){
1873 if( (*cmp
)(a
,b
)<=0 ){
1883 if( a
) NEXT(ptr
) = a
;
1891 ** list: Pointer to a singly-linked list of structures.
1892 ** next: Pointer to pointer to the second element of the list.
1893 ** cmp: A comparison function.
1896 ** A pointer to the head of a sorted list containing the elements
1897 ** originally in list.
1900 ** The "next" pointers for elements in list are changed.
1906 int (*cmp
)(const char*,const char*)
1908 unsigned long offset
;
1910 char *set
[LISTSIZE
];
1912 offset
= (unsigned long)((char*)next
- (char*)list
);
1913 for(i
=0; i
<LISTSIZE
; i
++) set
[i
] = 0;
1918 for(i
=0; i
<LISTSIZE
-1 && set
[i
]!=0; i
++){
1919 ep
= merge(ep
,set
[i
],cmp
,offset
);
1925 for(i
=0; i
<LISTSIZE
; i
++) if( set
[i
] ) ep
= merge(set
[i
],ep
,cmp
,offset
);
1928 /************************ From the file "option.c" **************************/
1929 static char **g_argv
;
1930 static struct s_options
*op
;
1931 static FILE *errstream
;
1933 #define ISOPT(X) ((X)[0]=='-'||(X)[0]=='+'||strchr((X),'=')!=0)
1936 ** Print the command line with a carrot pointing to the k-th character
1937 ** of the n-th field.
1939 static void errline(int n
, int k
, FILE *err
)
1943 fprintf(err
,"%s",g_argv
[0]);
1944 spcnt
= lemonStrlen(g_argv
[0]) + 1;
1948 for(i
=1; i
<n
&& g_argv
[i
]; i
++){
1949 fprintf(err
," %s",g_argv
[i
]);
1950 spcnt
+= lemonStrlen(g_argv
[i
])+1;
1953 for(; g_argv
[i
]; i
++) fprintf(err
," %s",g_argv
[i
]);
1955 fprintf(err
,"\n%*s^-- here\n",spcnt
,"");
1957 fprintf(err
,"\n%*shere --^\n",spcnt
-7,"");
1962 ** Return the index of the N-th non-switch argument. Return -1
1963 ** if N is out of range.
1965 static int argindex(int n
)
1969 if( g_argv
!=0 && *g_argv
!=0 ){
1970 for(i
=1; g_argv
[i
]; i
++){
1971 if( dashdash
|| !ISOPT(g_argv
[i
]) ){
1972 if( n
==0 ) return i
;
1975 if( strcmp(g_argv
[i
],"--")==0 ) dashdash
= 1;
1981 static char emsg
[] = "Command line syntax error: ";
1984 ** Process a flag command line argument.
1986 static int handleflags(int i
, FILE *err
)
1991 for(j
=0; op
[j
].label
; j
++){
1992 if( strncmp(&g_argv
[i
][1],op
[j
].label
,lemonStrlen(op
[j
].label
))==0 ) break;
1994 v
= g_argv
[i
][0]=='-' ? 1 : 0;
1995 if( op
[j
].label
==0 ){
1997 fprintf(err
,"%sundefined option.\n",emsg
);
2001 }else if( op
[j
].arg
==0 ){
2002 /* Ignore this option */
2003 }else if( op
[j
].type
==OPT_FLAG
){
2004 *((int*)op
[j
].arg
) = v
;
2005 }else if( op
[j
].type
==OPT_FFLAG
){
2006 (*(void(*)(int))(op
[j
].arg
))(v
);
2007 }else if( op
[j
].type
==OPT_FSTR
){
2008 (*(void(*)(char *))(op
[j
].arg
))(&g_argv
[i
][2]);
2011 fprintf(err
,"%smissing argument on switch.\n",emsg
);
2020 ** Process a command line switch which has an argument.
2022 static int handleswitch(int i
, FILE *err
)
2030 cp
= strchr(g_argv
[i
],'=');
2033 for(j
=0; op
[j
].label
; j
++){
2034 if( strcmp(g_argv
[i
],op
[j
].label
)==0 ) break;
2037 if( op
[j
].label
==0 ){
2039 fprintf(err
,"%sundefined option.\n",emsg
);
2045 switch( op
[j
].type
){
2049 fprintf(err
,"%soption requires an argument.\n",emsg
);
2056 dv
= strtod(cp
,&end
);
2060 "%sillegal character in floating-point argument.\n",emsg
);
2061 errline(i
,(int)((char*)end
-(char*)g_argv
[i
]),err
);
2068 lv
= strtol(cp
,&end
,0);
2071 fprintf(err
,"%sillegal character in integer argument.\n",emsg
);
2072 errline(i
,(int)((char*)end
-(char*)g_argv
[i
]),err
);
2082 switch( op
[j
].type
){
2087 *(double*)(op
[j
].arg
) = dv
;
2090 (*(void(*)(double))(op
[j
].arg
))(dv
);
2093 *(int*)(op
[j
].arg
) = lv
;
2096 (*(void(*)(int))(op
[j
].arg
))((int)lv
);
2099 *(char**)(op
[j
].arg
) = sv
;
2102 (*(void(*)(char *))(op
[j
].arg
))(sv
);
2109 int OptInit(char **a
, struct s_options
*o
, FILE *err
)
2115 if( g_argv
&& *g_argv
&& op
){
2117 for(i
=1; g_argv
[i
]; i
++){
2118 if( g_argv
[i
][0]=='+' || g_argv
[i
][0]=='-' ){
2119 errcnt
+= handleflags(i
,err
);
2120 }else if( strchr(g_argv
[i
],'=') ){
2121 errcnt
+= handleswitch(i
,err
);
2126 fprintf(err
,"Valid command line options for \"%s\" are:\n",*a
);
2137 if( g_argv
!=0 && g_argv
[0]!=0 ){
2138 for(i
=1; g_argv
[i
]; i
++){
2139 if( dashdash
|| !ISOPT(g_argv
[i
]) ) cnt
++;
2140 if( strcmp(g_argv
[i
],"--")==0 ) dashdash
= 1;
2150 return i
>=0 ? g_argv
[i
] : 0;
2157 if( i
>=0 ) errline(i
,0,errstream
);
2160 void OptPrint(void){
2164 for(i
=0; op
[i
].label
; i
++){
2165 len
= lemonStrlen(op
[i
].label
) + 1;
2166 switch( op
[i
].type
){
2172 len
+= 9; /* length of "<integer>" */
2176 len
+= 6; /* length of "<real>" */
2180 len
+= 8; /* length of "<string>" */
2183 if( len
>max
) max
= len
;
2185 for(i
=0; op
[i
].label
; i
++){
2186 switch( op
[i
].type
){
2189 fprintf(errstream
," -%-*s %s\n",max
,op
[i
].label
,op
[i
].message
);
2193 fprintf(errstream
," -%s<integer>%*s %s\n",op
[i
].label
,
2194 (int)(max
-lemonStrlen(op
[i
].label
)-9),"",op
[i
].message
);
2198 fprintf(errstream
," -%s<real>%*s %s\n",op
[i
].label
,
2199 (int)(max
-lemonStrlen(op
[i
].label
)-6),"",op
[i
].message
);
2203 fprintf(errstream
," -%s<string>%*s %s\n",op
[i
].label
,
2204 (int)(max
-lemonStrlen(op
[i
].label
)-8),"",op
[i
].message
);
2209 /*********************** From the file "parse.c" ****************************/
2211 ** Input file parser for the LEMON parser generator.
2214 /* The state of the parser */
2217 WAITING_FOR_DECL_OR_RULE
,
2218 WAITING_FOR_DECL_KEYWORD
,
2219 WAITING_FOR_DECL_ARG
,
2220 WAITING_FOR_PRECEDENCE_SYMBOL
,
2230 RESYNC_AFTER_RULE_ERROR
,
2231 RESYNC_AFTER_DECL_ERROR
,
2232 WAITING_FOR_DESTRUCTOR_SYMBOL
,
2233 WAITING_FOR_DATATYPE_SYMBOL
,
2234 WAITING_FOR_FALLBACK_ID
,
2235 WAITING_FOR_WILDCARD_ID
,
2236 WAITING_FOR_CLASS_ID
,
2237 WAITING_FOR_CLASS_TOKEN
,
2238 WAITING_FOR_TOKEN_NAME
2241 char *filename
; /* Name of the input file */
2242 int tokenlineno
; /* Linenumber at which current token starts */
2243 int errorcnt
; /* Number of errors so far */
2244 char *tokenstart
; /* Text of current token */
2245 struct lemon
*gp
; /* Global state vector */
2246 enum e_state state
; /* The state of the parser */
2247 struct symbol
*fallback
; /* The fallback token */
2248 struct symbol
*tkclass
; /* Token class symbol */
2249 struct symbol
*lhs
; /* Left-hand side of current rule */
2250 const char *lhsalias
; /* Alias for the LHS */
2251 int nrhs
; /* Number of right-hand side symbols seen */
2252 struct symbol
*rhs
[MAXRHS
]; /* RHS symbols */
2253 const char *alias
[MAXRHS
]; /* Aliases for each RHS symbol (or NULL) */
2254 struct rule
*prevrule
; /* Previous rule parsed */
2255 const char *declkeyword
; /* Keyword of a declaration */
2256 char **declargslot
; /* Where the declaration argument should be put */
2257 int insertLineMacro
; /* Add #line before declaration insert */
2258 int *decllinenoslot
; /* Where to write declaration line number */
2259 enum e_assoc declassoc
; /* Assign this association to decl arguments */
2260 int preccounter
; /* Assign this precedence to decl arguments */
2261 struct rule
*firstrule
; /* Pointer to first rule in the grammar */
2262 struct rule
*lastrule
; /* Pointer to the most recently parsed rule */
2265 /* Parse a single token */
2266 static void parseonetoken(struct pstate
*psp
)
2269 x
= Strsafe(psp
->tokenstart
); /* Save the token permanently */
2271 printf("%s:%d: Token=[%s] state=%d\n",psp
->filename
,psp
->tokenlineno
,
2274 switch( psp
->state
){
2277 psp
->preccounter
= 0;
2278 psp
->firstrule
= psp
->lastrule
= 0;
2281 case WAITING_FOR_DECL_OR_RULE
:
2283 psp
->state
= WAITING_FOR_DECL_KEYWORD
;
2284 }else if( ISLOWER(x
[0]) ){
2285 psp
->lhs
= Symbol_new(x
);
2288 psp
->state
= WAITING_FOR_ARROW
;
2289 }else if( x
[0]=='{' ){
2290 if( psp
->prevrule
==0 ){
2291 ErrorMsg(psp
->filename
,psp
->tokenlineno
,
2292 "There is no prior rule upon which to attach the code "
2293 "fragment which begins on this line.");
2295 }else if( psp
->prevrule
->code
!=0 ){
2296 ErrorMsg(psp
->filename
,psp
->tokenlineno
,
2297 "Code fragment beginning on this line is not the first "
2298 "to follow the previous rule.");
2300 }else if( strcmp(x
, "{NEVER-REDUCE")==0 ){
2301 psp
->prevrule
->neverReduce
= 1;
2303 psp
->prevrule
->line
= psp
->tokenlineno
;
2304 psp
->prevrule
->code
= &x
[1];
2305 psp
->prevrule
->noCode
= 0;
2307 }else if( x
[0]=='[' ){
2308 psp
->state
= PRECEDENCE_MARK_1
;
2310 ErrorMsg(psp
->filename
,psp
->tokenlineno
,
2311 "Token \"%s\" should be either \"%%\" or a nonterminal name.",
2316 case PRECEDENCE_MARK_1
:
2317 if( !ISUPPER(x
[0]) ){
2318 ErrorMsg(psp
->filename
,psp
->tokenlineno
,
2319 "The precedence symbol must be a terminal.");
2321 }else if( psp
->prevrule
==0 ){
2322 ErrorMsg(psp
->filename
,psp
->tokenlineno
,
2323 "There is no prior rule to assign precedence \"[%s]\".",x
);
2325 }else if( psp
->prevrule
->precsym
!=0 ){
2326 ErrorMsg(psp
->filename
,psp
->tokenlineno
,
2327 "Precedence mark on this line is not the first "
2328 "to follow the previous rule.");
2331 psp
->prevrule
->precsym
= Symbol_new(x
);
2333 psp
->state
= PRECEDENCE_MARK_2
;
2335 case PRECEDENCE_MARK_2
:
2337 ErrorMsg(psp
->filename
,psp
->tokenlineno
,
2338 "Missing \"]\" on precedence mark.");
2341 psp
->state
= WAITING_FOR_DECL_OR_RULE
;
2343 case WAITING_FOR_ARROW
:
2344 if( x
[0]==':' && x
[1]==':' && x
[2]=='=' ){
2345 psp
->state
= IN_RHS
;
2346 }else if( x
[0]=='(' ){
2347 psp
->state
= LHS_ALIAS_1
;
2349 ErrorMsg(psp
->filename
,psp
->tokenlineno
,
2350 "Expected to see a \":\" following the LHS symbol \"%s\".",
2353 psp
->state
= RESYNC_AFTER_RULE_ERROR
;
2357 if( ISALPHA(x
[0]) ){
2359 psp
->state
= LHS_ALIAS_2
;
2361 ErrorMsg(psp
->filename
,psp
->tokenlineno
,
2362 "\"%s\" is not a valid alias for the LHS \"%s\"\n",
2365 psp
->state
= RESYNC_AFTER_RULE_ERROR
;
2370 psp
->state
= LHS_ALIAS_3
;
2372 ErrorMsg(psp
->filename
,psp
->tokenlineno
,
2373 "Missing \")\" following LHS alias name \"%s\".",psp
->lhsalias
);
2375 psp
->state
= RESYNC_AFTER_RULE_ERROR
;
2379 if( x
[0]==':' && x
[1]==':' && x
[2]=='=' ){
2380 psp
->state
= IN_RHS
;
2382 ErrorMsg(psp
->filename
,psp
->tokenlineno
,
2383 "Missing \"->\" following: \"%s(%s)\".",
2384 psp
->lhs
->name
,psp
->lhsalias
);
2386 psp
->state
= RESYNC_AFTER_RULE_ERROR
;
2392 rp
= (struct rule
*)calloc( sizeof(struct rule
) +
2393 sizeof(struct symbol
*)*psp
->nrhs
+ sizeof(char*)*psp
->nrhs
, 1);
2395 ErrorMsg(psp
->filename
,psp
->tokenlineno
,
2396 "Can't allocate enough memory for this rule.");
2401 rp
->ruleline
= psp
->tokenlineno
;
2402 rp
->rhs
= (struct symbol
**)&rp
[1];
2403 rp
->rhsalias
= (const char**)&(rp
->rhs
[psp
->nrhs
]);
2404 for(i
=0; i
<psp
->nrhs
; i
++){
2405 rp
->rhs
[i
] = psp
->rhs
[i
];
2406 rp
->rhsalias
[i
] = psp
->alias
[i
];
2407 if( rp
->rhsalias
[i
]!=0 ){ rp
->rhs
[i
]->bContent
= 1; }
2410 rp
->lhsalias
= psp
->lhsalias
;
2411 rp
->nrhs
= psp
->nrhs
;
2415 rp
->index
= psp
->gp
->nrule
++;
2416 rp
->nextlhs
= rp
->lhs
->rule
;
2419 if( psp
->firstrule
==0 ){
2420 psp
->firstrule
= psp
->lastrule
= rp
;
2422 psp
->lastrule
->next
= rp
;
2427 psp
->state
= WAITING_FOR_DECL_OR_RULE
;
2428 }else if( ISALPHA(x
[0]) ){
2429 if( psp
->nrhs
>=MAXRHS
){
2430 ErrorMsg(psp
->filename
,psp
->tokenlineno
,
2431 "Too many symbols on RHS of rule beginning at \"%s\".",
2434 psp
->state
= RESYNC_AFTER_RULE_ERROR
;
2436 psp
->rhs
[psp
->nrhs
] = Symbol_new(x
);
2437 psp
->alias
[psp
->nrhs
] = 0;
2440 }else if( (x
[0]=='|' || x
[0]=='/') && psp
->nrhs
>0 && ISUPPER(x
[1]) ){
2441 struct symbol
*msp
= psp
->rhs
[psp
->nrhs
-1];
2442 if( msp
->type
!=MULTITERMINAL
){
2443 struct symbol
*origsp
= msp
;
2444 msp
= (struct symbol
*) calloc(1,sizeof(*msp
));
2445 memset(msp
, 0, sizeof(*msp
));
2446 msp
->type
= MULTITERMINAL
;
2448 msp
->subsym
= (struct symbol
**) calloc(1,sizeof(struct symbol
*));
2449 msp
->subsym
[0] = origsp
;
2450 msp
->name
= origsp
->name
;
2451 psp
->rhs
[psp
->nrhs
-1] = msp
;
2454 msp
->subsym
= (struct symbol
**) realloc(msp
->subsym
,
2455 sizeof(struct symbol
*)*msp
->nsubsym
);
2456 msp
->subsym
[msp
->nsubsym
-1] = Symbol_new(&x
[1]);
2457 if( ISLOWER(x
[1]) || ISLOWER(msp
->subsym
[0]->name
[0]) ){
2458 ErrorMsg(psp
->filename
,psp
->tokenlineno
,
2459 "Cannot form a compound containing a non-terminal");
2462 }else if( x
[0]=='(' && psp
->nrhs
>0 ){
2463 psp
->state
= RHS_ALIAS_1
;
2465 ErrorMsg(psp
->filename
,psp
->tokenlineno
,
2466 "Illegal character on RHS of rule: \"%s\".",x
);
2468 psp
->state
= RESYNC_AFTER_RULE_ERROR
;
2472 if( ISALPHA(x
[0]) ){
2473 psp
->alias
[psp
->nrhs
-1] = x
;
2474 psp
->state
= RHS_ALIAS_2
;
2476 ErrorMsg(psp
->filename
,psp
->tokenlineno
,
2477 "\"%s\" is not a valid alias for the RHS symbol \"%s\"\n",
2478 x
,psp
->rhs
[psp
->nrhs
-1]->name
);
2480 psp
->state
= RESYNC_AFTER_RULE_ERROR
;
2485 psp
->state
= IN_RHS
;
2487 ErrorMsg(psp
->filename
,psp
->tokenlineno
,
2488 "Missing \")\" following LHS alias name \"%s\".",psp
->lhsalias
);
2490 psp
->state
= RESYNC_AFTER_RULE_ERROR
;
2493 case WAITING_FOR_DECL_KEYWORD
:
2494 if( ISALPHA(x
[0]) ){
2495 psp
->declkeyword
= x
;
2496 psp
->declargslot
= 0;
2497 psp
->decllinenoslot
= 0;
2498 psp
->insertLineMacro
= 1;
2499 psp
->state
= WAITING_FOR_DECL_ARG
;
2500 if( strcmp(x
,"name")==0 ){
2501 psp
->declargslot
= &(psp
->gp
->name
);
2502 psp
->insertLineMacro
= 0;
2503 }else if( strcmp(x
,"include")==0 ){
2504 psp
->declargslot
= &(psp
->gp
->include
);
2505 }else if( strcmp(x
,"code")==0 ){
2506 psp
->declargslot
= &(psp
->gp
->extracode
);
2507 }else if( strcmp(x
,"token_destructor")==0 ){
2508 psp
->declargslot
= &psp
->gp
->tokendest
;
2509 }else if( strcmp(x
,"default_destructor")==0 ){
2510 psp
->declargslot
= &psp
->gp
->vardest
;
2511 }else if( strcmp(x
,"token_prefix")==0 ){
2512 psp
->declargslot
= &psp
->gp
->tokenprefix
;
2513 psp
->insertLineMacro
= 0;
2514 }else if( strcmp(x
,"syntax_error")==0 ){
2515 psp
->declargslot
= &(psp
->gp
->error
);
2516 }else if( strcmp(x
,"parse_accept")==0 ){
2517 psp
->declargslot
= &(psp
->gp
->accept
);
2518 }else if( strcmp(x
,"parse_failure")==0 ){
2519 psp
->declargslot
= &(psp
->gp
->failure
);
2520 }else if( strcmp(x
,"stack_overflow")==0 ){
2521 psp
->declargslot
= &(psp
->gp
->overflow
);
2522 }else if( strcmp(x
,"extra_argument")==0 ){
2523 psp
->declargslot
= &(psp
->gp
->arg
);
2524 psp
->insertLineMacro
= 0;
2525 }else if( strcmp(x
,"extra_context")==0 ){
2526 psp
->declargslot
= &(psp
->gp
->ctx
);
2527 psp
->insertLineMacro
= 0;
2528 }else if( strcmp(x
,"token_type")==0 ){
2529 psp
->declargslot
= &(psp
->gp
->tokentype
);
2530 psp
->insertLineMacro
= 0;
2531 }else if( strcmp(x
,"default_type")==0 ){
2532 psp
->declargslot
= &(psp
->gp
->vartype
);
2533 psp
->insertLineMacro
= 0;
2534 }else if( strcmp(x
,"stack_size")==0 ){
2535 psp
->declargslot
= &(psp
->gp
->stacksize
);
2536 psp
->insertLineMacro
= 0;
2537 }else if( strcmp(x
,"start_symbol")==0 ){
2538 psp
->declargslot
= &(psp
->gp
->start
);
2539 psp
->insertLineMacro
= 0;
2540 }else if( strcmp(x
,"left")==0 ){
2542 psp
->declassoc
= LEFT
;
2543 psp
->state
= WAITING_FOR_PRECEDENCE_SYMBOL
;
2544 }else if( strcmp(x
,"right")==0 ){
2546 psp
->declassoc
= RIGHT
;
2547 psp
->state
= WAITING_FOR_PRECEDENCE_SYMBOL
;
2548 }else if( strcmp(x
,"nonassoc")==0 ){
2550 psp
->declassoc
= NONE
;
2551 psp
->state
= WAITING_FOR_PRECEDENCE_SYMBOL
;
2552 }else if( strcmp(x
,"destructor")==0 ){
2553 psp
->state
= WAITING_FOR_DESTRUCTOR_SYMBOL
;
2554 }else if( strcmp(x
,"type")==0 ){
2555 psp
->state
= WAITING_FOR_DATATYPE_SYMBOL
;
2556 }else if( strcmp(x
,"fallback")==0 ){
2558 psp
->state
= WAITING_FOR_FALLBACK_ID
;
2559 }else if( strcmp(x
,"token")==0 ){
2560 psp
->state
= WAITING_FOR_TOKEN_NAME
;
2561 }else if( strcmp(x
,"wildcard")==0 ){
2562 psp
->state
= WAITING_FOR_WILDCARD_ID
;
2563 }else if( strcmp(x
,"token_class")==0 ){
2564 psp
->state
= WAITING_FOR_CLASS_ID
;
2566 ErrorMsg(psp
->filename
,psp
->tokenlineno
,
2567 "Unknown declaration keyword: \"%%%s\".",x
);
2569 psp
->state
= RESYNC_AFTER_DECL_ERROR
;
2572 ErrorMsg(psp
->filename
,psp
->tokenlineno
,
2573 "Illegal declaration keyword: \"%s\".",x
);
2575 psp
->state
= RESYNC_AFTER_DECL_ERROR
;
2578 case WAITING_FOR_DESTRUCTOR_SYMBOL
:
2579 if( !ISALPHA(x
[0]) ){
2580 ErrorMsg(psp
->filename
,psp
->tokenlineno
,
2581 "Symbol name missing after %%destructor keyword");
2583 psp
->state
= RESYNC_AFTER_DECL_ERROR
;
2585 struct symbol
*sp
= Symbol_new(x
);
2586 psp
->declargslot
= &sp
->destructor
;
2587 psp
->decllinenoslot
= &sp
->destLineno
;
2588 psp
->insertLineMacro
= 1;
2589 psp
->state
= WAITING_FOR_DECL_ARG
;
2592 case WAITING_FOR_DATATYPE_SYMBOL
:
2593 if( !ISALPHA(x
[0]) ){
2594 ErrorMsg(psp
->filename
,psp
->tokenlineno
,
2595 "Symbol name missing after %%type keyword");
2597 psp
->state
= RESYNC_AFTER_DECL_ERROR
;
2599 struct symbol
*sp
= Symbol_find(x
);
2600 if((sp
) && (sp
->datatype
)){
2601 ErrorMsg(psp
->filename
,psp
->tokenlineno
,
2602 "Symbol %%type \"%s\" already defined", x
);
2604 psp
->state
= RESYNC_AFTER_DECL_ERROR
;
2609 psp
->declargslot
= &sp
->datatype
;
2610 psp
->insertLineMacro
= 0;
2611 psp
->state
= WAITING_FOR_DECL_ARG
;
2615 case WAITING_FOR_PRECEDENCE_SYMBOL
:
2617 psp
->state
= WAITING_FOR_DECL_OR_RULE
;
2618 }else if( ISUPPER(x
[0]) ){
2622 ErrorMsg(psp
->filename
,psp
->tokenlineno
,
2623 "Symbol \"%s\" has already be given a precedence.",x
);
2626 sp
->prec
= psp
->preccounter
;
2627 sp
->assoc
= psp
->declassoc
;
2630 ErrorMsg(psp
->filename
,psp
->tokenlineno
,
2631 "Can't assign a precedence to \"%s\".",x
);
2635 case WAITING_FOR_DECL_ARG
:
2636 if( x
[0]=='{' || x
[0]=='\"' || ISALNUM(x
[0]) ){
2637 const char *zOld
, *zNew
;
2639 int nOld
, n
, nLine
= 0, nNew
, nBack
;
2643 if( zNew
[0]=='"' || zNew
[0]=='{' ) zNew
++;
2644 nNew
= lemonStrlen(zNew
);
2645 if( *psp
->declargslot
){
2646 zOld
= *psp
->declargslot
;
2650 nOld
= lemonStrlen(zOld
);
2651 n
= nOld
+ nNew
+ 20;
2652 addLineMacro
= !psp
->gp
->nolinenosflag
2653 && psp
->insertLineMacro
2654 && psp
->tokenlineno
>1
2655 && (psp
->decllinenoslot
==0 || psp
->decllinenoslot
[0]!=0);
2657 for(z
=psp
->filename
, nBack
=0; *z
; z
++){
2658 if( *z
=='\\' ) nBack
++;
2660 lemon_sprintf(zLine
, "#line %d ", psp
->tokenlineno
);
2661 nLine
= lemonStrlen(zLine
);
2662 n
+= nLine
+ lemonStrlen(psp
->filename
) + nBack
;
2664 *psp
->declargslot
= (char *) realloc(*psp
->declargslot
, n
);
2665 zBuf
= *psp
->declargslot
+ nOld
;
2667 if( nOld
&& zBuf
[-1]!='\n' ){
2670 memcpy(zBuf
, zLine
, nLine
);
2673 for(z
=psp
->filename
; *z
; z
++){
2682 if( psp
->decllinenoslot
&& psp
->decllinenoslot
[0]==0 ){
2683 psp
->decllinenoslot
[0] = psp
->tokenlineno
;
2685 memcpy(zBuf
, zNew
, nNew
);
2688 psp
->state
= WAITING_FOR_DECL_OR_RULE
;
2690 ErrorMsg(psp
->filename
,psp
->tokenlineno
,
2691 "Illegal argument to %%%s: %s",psp
->declkeyword
,x
);
2693 psp
->state
= RESYNC_AFTER_DECL_ERROR
;
2696 case WAITING_FOR_FALLBACK_ID
:
2698 psp
->state
= WAITING_FOR_DECL_OR_RULE
;
2699 }else if( !ISUPPER(x
[0]) ){
2700 ErrorMsg(psp
->filename
, psp
->tokenlineno
,
2701 "%%fallback argument \"%s\" should be a token", x
);
2704 struct symbol
*sp
= Symbol_new(x
);
2705 if( psp
->fallback
==0 ){
2707 }else if( sp
->fallback
){
2708 ErrorMsg(psp
->filename
, psp
->tokenlineno
,
2709 "More than one fallback assigned to token %s", x
);
2712 sp
->fallback
= psp
->fallback
;
2713 psp
->gp
->has_fallback
= 1;
2717 case WAITING_FOR_TOKEN_NAME
:
2718 /* Tokens do not have to be declared before use. But they can be
2719 ** in order to control their assigned integer number. The number for
2720 ** each token is assigned when it is first seen. So by including
2722 ** %token ONE TWO THREE.
2724 ** early in the grammar file, that assigns small consecutive values
2725 ** to each of the tokens ONE TWO and THREE.
2728 psp
->state
= WAITING_FOR_DECL_OR_RULE
;
2729 }else if( !ISUPPER(x
[0]) ){
2730 ErrorMsg(psp
->filename
, psp
->tokenlineno
,
2731 "%%token argument \"%s\" should be a token", x
);
2734 (void)Symbol_new(x
);
2737 case WAITING_FOR_WILDCARD_ID
:
2739 psp
->state
= WAITING_FOR_DECL_OR_RULE
;
2740 }else if( !ISUPPER(x
[0]) ){
2741 ErrorMsg(psp
->filename
, psp
->tokenlineno
,
2742 "%%wildcard argument \"%s\" should be a token", x
);
2745 struct symbol
*sp
= Symbol_new(x
);
2746 if( psp
->gp
->wildcard
==0 ){
2747 psp
->gp
->wildcard
= sp
;
2749 ErrorMsg(psp
->filename
, psp
->tokenlineno
,
2750 "Extra wildcard to token: %s", x
);
2755 case WAITING_FOR_CLASS_ID
:
2756 if( !ISLOWER(x
[0]) ){
2757 ErrorMsg(psp
->filename
, psp
->tokenlineno
,
2758 "%%token_class must be followed by an identifier: %s", x
);
2760 psp
->state
= RESYNC_AFTER_DECL_ERROR
;
2761 }else if( Symbol_find(x
) ){
2762 ErrorMsg(psp
->filename
, psp
->tokenlineno
,
2763 "Symbol \"%s\" already used", x
);
2765 psp
->state
= RESYNC_AFTER_DECL_ERROR
;
2767 psp
->tkclass
= Symbol_new(x
);
2768 psp
->tkclass
->type
= MULTITERMINAL
;
2769 psp
->state
= WAITING_FOR_CLASS_TOKEN
;
2772 case WAITING_FOR_CLASS_TOKEN
:
2774 psp
->state
= WAITING_FOR_DECL_OR_RULE
;
2775 }else if( ISUPPER(x
[0]) || ((x
[0]=='|' || x
[0]=='/') && ISUPPER(x
[1])) ){
2776 struct symbol
*msp
= psp
->tkclass
;
2778 msp
->subsym
= (struct symbol
**) realloc(msp
->subsym
,
2779 sizeof(struct symbol
*)*msp
->nsubsym
);
2780 if( !ISUPPER(x
[0]) ) x
++;
2781 msp
->subsym
[msp
->nsubsym
-1] = Symbol_new(x
);
2783 ErrorMsg(psp
->filename
, psp
->tokenlineno
,
2784 "%%token_class argument \"%s\" should be a token", x
);
2786 psp
->state
= RESYNC_AFTER_DECL_ERROR
;
2789 case RESYNC_AFTER_RULE_ERROR
:
2790 /* if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE;
2792 case RESYNC_AFTER_DECL_ERROR
:
2793 if( x
[0]=='.' ) psp
->state
= WAITING_FOR_DECL_OR_RULE
;
2794 if( x
[0]=='%' ) psp
->state
= WAITING_FOR_DECL_KEYWORD
;
2799 /* The text in the input is part of the argument to an %ifdef or %ifndef.
2800 ** Evaluate the text as a boolean expression. Return true or false.
2802 static int eval_preprocessor_boolean(char *z
, int lineno
){
2807 for(i
=0; z
[i
]!=0; i
++){
2808 if( ISSPACE(z
[i
]) ) continue;
2810 if( !okTerm
) goto pp_syntax_error
;
2814 if( z
[i
]=='|' && z
[i
+1]=='|' ){
2815 if( okTerm
) goto pp_syntax_error
;
2821 if( z
[i
]=='&' && z
[i
+1]=='&' ){
2822 if( okTerm
) goto pp_syntax_error
;
2823 if( !res
) return 0;
2831 if( !okTerm
) goto pp_syntax_error
;
2832 for(k
=i
+1; z
[k
]; k
++){
2837 res
= eval_preprocessor_boolean(&z
[i
+1], -1);
2841 goto pp_syntax_error
;
2846 }else if( z
[k
]=='(' ){
2848 }else if( z
[k
]==0 ){
2850 goto pp_syntax_error
;
2860 if( ISALPHA(z
[i
]) ){
2862 if( !okTerm
) goto pp_syntax_error
;
2863 for(k
=i
+1; ISALNUM(z
[k
]) || z
[k
]=='_'; k
++){}
2866 for(j
=0; j
<nDefine
; j
++){
2867 if( strncmp(azDefine
[j
],&z
[i
],n
)==0 && azDefine
[j
][n
]==0 ){
2868 if( !bDefineUsed
[j
] ){
2884 goto pp_syntax_error
;
2890 fprintf(stderr
, "%%if syntax error on line %d.\n", lineno
);
2891 fprintf(stderr
, " %.*s <-- syntax error here\n", i
+1, z
);
2898 /* Run the preprocessor over the input file text. The global variables
2899 ** azDefine[0] through azDefine[nDefine-1] contains the names of all defined
2900 ** macros. This routine looks for "%ifdef" and "%ifndef" and "%endif" and
2901 ** comments them out. Text in between is also commented out as appropriate.
2903 static void preprocess_input(char *z
){
2908 int start_lineno
= 1;
2909 for(i
=0; z
[i
]; i
++){
2910 if( z
[i
]=='\n' ) lineno
++;
2911 if( z
[i
]!='%' || (i
>0 && z
[i
-1]!='\n') ) continue;
2912 if( strncmp(&z
[i
],"%endif",6)==0 && ISSPACE(z
[i
+6]) ){
2916 for(j
=start
; j
<i
; j
++) if( z
[j
]!='\n' ) z
[j
] = ' ';
2919 for(j
=i
; z
[j
] && z
[j
]!='\n'; j
++) z
[j
] = ' ';
2920 }else if( strncmp(&z
[i
],"%else",5)==0 && ISSPACE(z
[i
+5]) ){
2923 for(j
=start
; j
<i
; j
++) if( z
[j
]!='\n' ) z
[j
] = ' ';
2924 }else if( exclude
==0 ){
2927 start_lineno
= lineno
;
2929 for(j
=i
; z
[j
] && z
[j
]!='\n'; j
++) z
[j
] = ' ';
2930 }else if( strncmp(&z
[i
],"%ifdef ",7)==0
2931 || strncmp(&z
[i
],"%if ",4)==0
2932 || strncmp(&z
[i
],"%ifndef ",8)==0 ){
2938 for(j
=i
; z
[j
] && !ISSPACE(z
[j
]); j
++){}
2941 while( z
[j
] && z
[j
]!='\n' ){ j
++; }
2944 exclude
= eval_preprocessor_boolean(&z
[iBool
], lineno
);
2946 if( !isNot
) exclude
= !exclude
;
2949 start_lineno
= lineno
;
2952 for(j
=i
; z
[j
] && z
[j
]!='\n'; j
++) z
[j
] = ' ';
2956 fprintf(stderr
,"unterminated %%ifdef starting on line %d\n", start_lineno
);
2961 /* In spite of its name, this function is really a scanner. It read
2962 ** in the entire input file (all at once) then tokenizes it. Each
2963 ** token is passed to the function "parseonetoken" which builds all
2964 ** the appropriate data structures in the global state vector "gp".
2966 void Parse(struct lemon
*gp
)
2971 unsigned int filesize
;
2977 memset(&ps
, '\0', sizeof(ps
));
2979 ps
.filename
= gp
->filename
;
2981 ps
.state
= INITIALIZE
;
2983 /* Begin by reading the input file */
2984 fp
= fopen(ps
.filename
,"rb");
2986 ErrorMsg(ps
.filename
,0,"Can't open this file for reading.");
2991 filesize
= ftell(fp
);
2993 filebuf
= (char *)malloc( filesize
+1 );
2994 if( filesize
>100000000 || filebuf
==0 ){
2995 ErrorMsg(ps
.filename
,0,"Input file too large.");
3001 if( fread(filebuf
,1,filesize
,fp
)!=filesize
){
3002 ErrorMsg(ps
.filename
,0,"Can't read in all %d bytes of this file.",
3010 filebuf
[filesize
] = 0;
3012 /* Make an initial pass through the file to handle %ifdef and %ifndef */
3013 preprocess_input(filebuf
);
3014 if( gp
->printPreprocessed
){
3015 printf("%s\n", filebuf
);
3019 /* Now scan the text of the input file */
3021 for(cp
=filebuf
; (c
= *cp
)!=0; ){
3022 if( c
=='\n' ) lineno
++; /* Keep track of the line number */
3023 if( ISSPACE(c
) ){ cp
++; continue; } /* Skip all white space */
3024 if( c
=='/' && cp
[1]=='/' ){ /* Skip C++ style comments */
3026 while( (c
= *cp
)!=0 && c
!='\n' ) cp
++;
3029 if( c
=='/' && cp
[1]=='*' ){ /* Skip C style comments */
3031 if( (*cp
)=='/' ) cp
++;
3032 while( (c
= *cp
)!=0 && (c
!='/' || cp
[-1]!='*') ){
3033 if( c
=='\n' ) lineno
++;
3039 ps
.tokenstart
= cp
; /* Mark the beginning of the token */
3040 ps
.tokenlineno
= lineno
; /* Linenumber on which token begins */
3041 if( c
=='\"' ){ /* String literals */
3043 while( (c
= *cp
)!=0 && c
!='\"' ){
3044 if( c
=='\n' ) lineno
++;
3048 ErrorMsg(ps
.filename
,startline
,
3049 "String starting on this line is not terminated before "
3050 "the end of the file.");
3056 }else if( c
=='{' ){ /* A block of C code */
3059 for(level
=1; (c
= *cp
)!=0 && (level
>1 || c
!='}'); cp
++){
3060 if( c
=='\n' ) lineno
++;
3061 else if( c
=='{' ) level
++;
3062 else if( c
=='}' ) level
--;
3063 else if( c
=='/' && cp
[1]=='*' ){ /* Skip comments */
3067 while( (c
= *cp
)!=0 && (c
!='/' || prevc
!='*') ){
3068 if( c
=='\n' ) lineno
++;
3072 }else if( c
=='/' && cp
[1]=='/' ){ /* Skip C++ style comments too */
3074 while( (c
= *cp
)!=0 && c
!='\n' ) cp
++;
3076 }else if( c
=='\'' || c
=='\"' ){ /* String a character literals */
3077 int startchar
, prevc
;
3080 for(cp
++; (c
= *cp
)!=0 && (c
!=startchar
|| prevc
=='\\'); cp
++){
3081 if( c
=='\n' ) lineno
++;
3082 if( prevc
=='\\' ) prevc
= 0;
3088 ErrorMsg(ps
.filename
,ps
.tokenlineno
,
3089 "C code starting on this line is not terminated before "
3090 "the end of the file.");
3096 }else if( ISALNUM(c
) ){ /* Identifiers */
3097 while( (c
= *cp
)!=0 && (ISALNUM(c
) || c
=='_') ) cp
++;
3099 }else if( c
==':' && cp
[1]==':' && cp
[2]=='=' ){ /* The operator "::=" */
3102 }else if( (c
=='/' || c
=='|') && ISALPHA(cp
[1]) ){
3104 while( (c
= *cp
)!=0 && (ISALNUM(c
) || c
=='_') ) cp
++;
3106 }else{ /* All other (one character) operators */
3111 *cp
= 0; /* Null terminate the token */
3112 parseonetoken(&ps
); /* Parse the token */
3113 *cp
= (char)c
; /* Restore the buffer */
3116 free(filebuf
); /* Release the buffer after parsing */
3117 gp
->rule
= ps
.firstrule
;
3118 gp
->errorcnt
= ps
.errorcnt
;
3120 /*************************** From the file "plink.c" *********************/
3122 ** Routines processing configuration follow-set propagation links
3123 ** in the LEMON parser generator.
3125 static struct plink
*plink_freelist
= 0;
3127 /* Allocate a new plink */
3128 struct plink
*Plink_new(void){
3129 struct plink
*newlink
;
3131 if( plink_freelist
==0 ){
3134 plink_freelist
= (struct plink
*)calloc( amt
, sizeof(struct plink
) );
3135 if( plink_freelist
==0 ){
3137 "Unable to allocate memory for a new follow-set propagation link.\n");
3140 for(i
=0; i
<amt
-1; i
++) plink_freelist
[i
].next
= &plink_freelist
[i
+1];
3141 plink_freelist
[amt
-1].next
= 0;
3143 newlink
= plink_freelist
;
3144 plink_freelist
= plink_freelist
->next
;
3148 /* Add a plink to a plink list */
3149 void Plink_add(struct plink
**plpp
, struct config
*cfp
)
3151 struct plink
*newlink
;
3152 newlink
= Plink_new();
3153 newlink
->next
= *plpp
;
3158 /* Transfer every plink on the list "from" to the list "to" */
3159 void Plink_copy(struct plink
**to
, struct plink
*from
)
3161 struct plink
*nextpl
;
3163 nextpl
= from
->next
;
3170 /* Delete every plink on the list */
3171 void Plink_delete(struct plink
*plp
)
3173 struct plink
*nextpl
;
3177 plp
->next
= plink_freelist
;
3178 plink_freelist
= plp
;
3182 /*********************** From the file "report.c" **************************/
3184 ** Procedures for generating reports and tables in the LEMON parser generator.
3187 /* Generate a filename with the given suffix. Space to hold the
3188 ** name comes from malloc() and must be freed by the calling
3191 PRIVATE
char *file_makename(struct lemon
*lemp
, const char *suffix
)
3195 char *filename
= lemp
->filename
;
3199 cp
= strrchr(filename
, '/');
3200 if( cp
) filename
= cp
+ 1;
3202 sz
= lemonStrlen(filename
);
3203 sz
+= lemonStrlen(suffix
);
3204 if( outputDir
) sz
+= lemonStrlen(outputDir
) + 1;
3206 name
= (char*)malloc( sz
);
3208 fprintf(stderr
,"Can't allocate space for a filename.\n");
3213 lemon_strcpy(name
, outputDir
);
3214 lemon_strcat(name
, "/");
3216 lemon_strcat(name
,filename
);
3217 cp
= strrchr(name
,'.');
3219 lemon_strcat(name
,suffix
);
3223 /* Open a file with a name based on the name of the input file,
3224 ** but with a different (specified) suffix, and return a pointer
3226 PRIVATE
FILE *file_open(
3233 if( lemp
->outname
) free(lemp
->outname
);
3234 lemp
->outname
= file_makename(lemp
, suffix
);
3235 fp
= fopen(lemp
->outname
,mode
);
3236 if( fp
==0 && *mode
=='w' ){
3237 fprintf(stderr
,"Can't open file \"%s\".\n",lemp
->outname
);
3244 /* Print the text of a rule
3246 void rule_print(FILE *out
, struct rule
*rp
){
3248 fprintf(out
, "%s",rp
->lhs
->name
);
3249 /* if( rp->lhsalias ) fprintf(out,"(%s)",rp->lhsalias); */
3250 fprintf(out
," ::=");
3251 for(i
=0; i
<rp
->nrhs
; i
++){
3252 struct symbol
*sp
= rp
->rhs
[i
];
3253 if( sp
->type
==MULTITERMINAL
){
3254 fprintf(out
," %s", sp
->subsym
[0]->name
);
3255 for(j
=1; j
<sp
->nsubsym
; j
++){
3256 fprintf(out
,"|%s", sp
->subsym
[j
]->name
);
3259 fprintf(out
," %s", sp
->name
);
3261 /* if( rp->rhsalias[i] ) fprintf(out,"(%s)",rp->rhsalias[i]); */
3265 /* Duplicate the input file without comments and without actions
3267 void Reprint(struct lemon
*lemp
)
3271 int i
, j
, maxlen
, len
, ncolumns
, skip
;
3272 printf("// Reprint of input file \"%s\".\n// Symbols:\n",lemp
->filename
);
3274 for(i
=0; i
<lemp
->nsymbol
; i
++){
3275 sp
= lemp
->symbols
[i
];
3276 len
= lemonStrlen(sp
->name
);
3277 if( len
>maxlen
) maxlen
= len
;
3279 ncolumns
= 76/(maxlen
+5);
3280 if( ncolumns
<1 ) ncolumns
= 1;
3281 skip
= (lemp
->nsymbol
+ ncolumns
- 1)/ncolumns
;
3282 for(i
=0; i
<skip
; i
++){
3284 for(j
=i
; j
<lemp
->nsymbol
; j
+=skip
){
3285 sp
= lemp
->symbols
[j
];
3286 assert( sp
->index
==j
);
3287 printf(" %3d %-*.*s",j
,maxlen
,maxlen
,sp
->name
);
3291 for(rp
=lemp
->rule
; rp
; rp
=rp
->next
){
3292 rule_print(stdout
, rp
);
3294 if( rp
->precsym
) printf(" [%s]",rp
->precsym
->name
);
3295 /* if( rp->code ) printf("\n %s",rp->code); */
3300 /* Print a single rule.
3302 void RulePrint(FILE *fp
, struct rule
*rp
, int iCursor
){
3305 fprintf(fp
,"%s ::=",rp
->lhs
->name
);
3306 for(i
=0; i
<=rp
->nrhs
; i
++){
3307 if( i
==iCursor
) fprintf(fp
," *");
3308 if( i
==rp
->nrhs
) break;
3310 if( sp
->type
==MULTITERMINAL
){
3311 fprintf(fp
," %s", sp
->subsym
[0]->name
);
3312 for(j
=1; j
<sp
->nsubsym
; j
++){
3313 fprintf(fp
,"|%s",sp
->subsym
[j
]->name
);
3316 fprintf(fp
," %s", sp
->name
);
3321 /* Print the rule for a configuration.
3323 void ConfigPrint(FILE *fp
, struct config
*cfp
){
3324 RulePrint(fp
, cfp
->rp
, cfp
->dot
);
3330 PRIVATE
void SetPrint(out
,set
,lemp
)
3338 fprintf(out
,"%12s[","");
3339 for(i
=0; i
<lemp
->nterminal
; i
++){
3340 if( SetFind(set
,i
) ){
3341 fprintf(out
,"%s%s",spacer
,lemp
->symbols
[i
]->name
);
3348 /* Print a plink chain */
3349 PRIVATE
void PlinkPrint(out
,plp
,tag
)
3355 fprintf(out
,"%12s%s (state %2d) ","",tag
,plp
->cfp
->stp
->statenum
);
3356 ConfigPrint(out
,plp
->cfp
);
3363 /* Print an action to the given file descriptor. Return FALSE if
3364 ** nothing was actually printed.
3367 struct action
*ap
, /* The action to print */
3368 FILE *fp
, /* Print the action here */
3369 int indent
/* Indent by this amount */
3374 struct state
*stp
= ap
->x
.stp
;
3375 fprintf(fp
,"%*s shift %-7d",indent
,ap
->sp
->name
,stp
->statenum
);
3379 struct rule
*rp
= ap
->x
.rp
;
3380 fprintf(fp
,"%*s reduce %-7d",indent
,ap
->sp
->name
,rp
->iRule
);
3381 RulePrint(fp
, rp
, -1);
3385 struct rule
*rp
= ap
->x
.rp
;
3386 fprintf(fp
,"%*s shift-reduce %-7d",indent
,ap
->sp
->name
,rp
->iRule
);
3387 RulePrint(fp
, rp
, -1);
3391 fprintf(fp
,"%*s accept",indent
,ap
->sp
->name
);
3394 fprintf(fp
,"%*s error",indent
,ap
->sp
->name
);
3398 fprintf(fp
,"%*s reduce %-7d ** Parsing conflict **",
3399 indent
,ap
->sp
->name
,ap
->x
.rp
->iRule
);
3402 fprintf(fp
,"%*s shift %-7d ** Parsing conflict **",
3403 indent
,ap
->sp
->name
,ap
->x
.stp
->statenum
);
3406 if( showPrecedenceConflict
){
3407 fprintf(fp
,"%*s shift %-7d -- dropped by precedence",
3408 indent
,ap
->sp
->name
,ap
->x
.stp
->statenum
);
3414 if( showPrecedenceConflict
){
3415 fprintf(fp
,"%*s reduce %-7d -- dropped by precedence",
3416 indent
,ap
->sp
->name
,ap
->x
.rp
->iRule
);
3425 if( result
&& ap
->spOpt
){
3426 fprintf(fp
," /* because %s==%s */", ap
->sp
->name
, ap
->spOpt
->name
);
3431 /* Generate the "*.out" log file */
3432 void ReportOutput(struct lemon
*lemp
)
3441 fp
= file_open(lemp
,".out","wb");
3443 for(i
=0; i
<lemp
->nxstate
; i
++){
3444 stp
= lemp
->sorted
[i
];
3445 fprintf(fp
,"State %d:\n",stp
->statenum
);
3446 if( lemp
->basisflag
) cfp
=stp
->bp
;
3450 if( cfp
->dot
==cfp
->rp
->nrhs
){
3451 lemon_sprintf(buf
,"(%d)",cfp
->rp
->iRule
);
3452 fprintf(fp
," %5s ",buf
);
3456 ConfigPrint(fp
,cfp
);
3459 SetPrint(fp
,cfp
->fws
,lemp
);
3460 PlinkPrint(fp
,cfp
->fplp
,"To ");
3461 PlinkPrint(fp
,cfp
->bplp
,"From");
3463 if( lemp
->basisflag
) cfp
=cfp
->bp
;
3467 for(ap
=stp
->ap
; ap
; ap
=ap
->next
){
3468 if( PrintAction(ap
,fp
,30) ) fprintf(fp
,"\n");
3472 fprintf(fp
, "----------------------------------------------------\n");
3473 fprintf(fp
, "Symbols:\n");
3474 fprintf(fp
, "The first-set of non-terminals is shown after the name.\n\n");
3475 for(i
=0; i
<lemp
->nsymbol
; i
++){
3479 sp
= lemp
->symbols
[i
];
3480 fprintf(fp
, " %3d: %s", i
, sp
->name
);
3481 if( sp
->type
==NONTERMINAL
){
3484 fprintf(fp
, " <lambda>");
3486 for(j
=0; j
<lemp
->nterminal
; j
++){
3487 if( sp
->firstset
&& SetFind(sp
->firstset
, j
) ){
3488 fprintf(fp
, " %s", lemp
->symbols
[j
]->name
);
3492 if( sp
->prec
>=0 ) fprintf(fp
," (precedence=%d)", sp
->prec
);
3495 fprintf(fp
, "----------------------------------------------------\n");
3496 fprintf(fp
, "Syntax-only Symbols:\n");
3497 fprintf(fp
, "The following symbols never carry semantic content.\n\n");
3498 for(i
=n
=0; i
<lemp
->nsymbol
; i
++){
3500 struct symbol
*sp
= lemp
->symbols
[i
];
3501 if( sp
->bContent
) continue;
3502 w
= (int)strlen(sp
->name
);
3503 if( n
>0 && n
+w
>75 ){
3511 fprintf(fp
, "%s", sp
->name
);
3514 if( n
>0 ) fprintf(fp
, "\n");
3515 fprintf(fp
, "----------------------------------------------------\n");
3516 fprintf(fp
, "Rules:\n");
3517 for(rp
=lemp
->rule
; rp
; rp
=rp
->next
){
3518 fprintf(fp
, "%4d: ", rp
->iRule
);
3522 fprintf(fp
," [%s precedence=%d]",
3523 rp
->precsym
->name
, rp
->precsym
->prec
);
3531 /* Search for the file "name" which is in the same directory as
3532 ** the executable */
3533 PRIVATE
char *pathsearch(char *argv0
, char *name
, int modemask
)
3535 const char *pathlist
;
3536 char *pathbufptr
= 0;
3542 cp
= strrchr(argv0
,'\\');
3544 cp
= strrchr(argv0
,'/');
3549 path
= (char *)malloc( lemonStrlen(argv0
) + lemonStrlen(name
) + 2 );
3550 if( path
) lemon_sprintf(path
,"%s/%s",argv0
,name
);
3553 pathlist
= getenv("PATH");
3554 if( pathlist
==0 ) pathlist
= ".:/bin:/usr/bin";
3555 pathbuf
= (char *) malloc( lemonStrlen(pathlist
) + 1 );
3556 path
= (char *)malloc( lemonStrlen(pathlist
)+lemonStrlen(name
)+2 );
3557 if( (pathbuf
!= 0) && (path
!=0) ){
3558 pathbufptr
= pathbuf
;
3559 lemon_strcpy(pathbuf
, pathlist
);
3561 cp
= strchr(pathbuf
,':');
3562 if( cp
==0 ) cp
= &pathbuf
[lemonStrlen(pathbuf
)];
3565 lemon_sprintf(path
,"%s/%s",pathbuf
,name
);
3567 if( c
==0 ) pathbuf
[0] = 0;
3568 else pathbuf
= &cp
[1];
3569 if( access(path
,modemask
)==0 ) break;
3577 /* Given an action, compute the integer value for that action
3578 ** which is to be put in the action table of the generated machine.
3579 ** Return negative if no action should be generated.
3581 PRIVATE
int compute_action(struct lemon
*lemp
, struct action
*ap
)
3585 case SHIFT
: act
= ap
->x
.stp
->statenum
; break;
3587 /* Since a SHIFT is inherient after a prior REDUCE, convert any
3588 ** SHIFTREDUCE action with a nonterminal on the LHS into a simple
3589 ** REDUCE action: */
3590 if( ap
->sp
->index
>=lemp
->nterminal
3591 && (lemp
->errsym
==0 || ap
->sp
->index
!=lemp
->errsym
->index
)
3593 act
= lemp
->minReduce
+ ap
->x
.rp
->iRule
;
3595 act
= lemp
->minShiftReduce
+ ap
->x
.rp
->iRule
;
3599 case REDUCE
: act
= lemp
->minReduce
+ ap
->x
.rp
->iRule
; break;
3600 case ERROR
: act
= lemp
->errAction
; break;
3601 case ACCEPT
: act
= lemp
->accAction
; break;
3602 default: act
= -1; break;
3607 #define LINESIZE 1000
3608 /* The next cluster of routines are for reading the template file
3609 ** and writing the results to the generated parser */
3610 /* The first function transfers data from "in" to "out" until
3611 ** a line is seen which begins with "%%". The line number is
3614 ** if name!=0, then any word that begin with "Parse" is changed to
3615 ** begin with *name instead.
3617 PRIVATE
void tplt_xfer(char *name
, FILE *in
, FILE *out
, int *lineno
)
3620 char line
[LINESIZE
];
3621 while( fgets(line
,LINESIZE
,in
) && (line
[0]!='%' || line
[1]!='%') ){
3625 for(i
=0; line
[i
]; i
++){
3626 if( line
[i
]=='P' && strncmp(&line
[i
],"Parse",5)==0
3627 && (i
==0 || !ISALPHA(line
[i
-1]))
3629 if( i
>iStart
) fprintf(out
,"%.*s",i
-iStart
,&line
[iStart
]);
3630 fprintf(out
,"%s",name
);
3636 fprintf(out
,"%s",&line
[iStart
]);
3640 /* Skip forward past the header of the template file to the first "%%"
3642 PRIVATE
void tplt_skip_header(FILE *in
, int *lineno
)
3644 char line
[LINESIZE
];
3645 while( fgets(line
,LINESIZE
,in
) && (line
[0]!='%' || line
[1]!='%') ){
3650 /* The next function finds the template file and opens it, returning
3651 ** a pointer to the opened file. */
3652 PRIVATE
FILE *tplt_open(struct lemon
*lemp
)
3654 static char templatename
[] = "lempar.c";
3661 /* first, see if user specified a template filename on the command line. */
3662 if (user_templatename
!= 0) {
3663 if( access(user_templatename
,004)==-1 ){
3664 fprintf(stderr
,"Can't find the parser driver template file \"%s\".\n",
3669 in
= fopen(user_templatename
,"rb");
3671 fprintf(stderr
,"Can't open the template file \"%s\".\n",
3679 cp
= strrchr(lemp
->filename
,'.');
3681 lemon_sprintf(buf
,"%.*s.lt",(int)(cp
-lemp
->filename
),lemp
->filename
);
3683 lemon_sprintf(buf
,"%s.lt",lemp
->filename
);
3685 if( access(buf
,004)==0 ){
3687 }else if( access(templatename
,004)==0 ){
3688 tpltname
= templatename
;
3690 toFree
= tpltname
= pathsearch(lemp
->argv
[0],templatename
,0);
3693 fprintf(stderr
,"Can't find the parser driver template file \"%s\".\n",
3698 in
= fopen(tpltname
,"rb");
3700 fprintf(stderr
,"Can't open the template file \"%s\".\n",tpltname
);
3707 /* Print a #line directive line to the output file. */
3708 PRIVATE
void tplt_linedir(FILE *out
, int lineno
, char *filename
)
3710 fprintf(out
,"#line %d \"",lineno
);
3712 if( *filename
== '\\' ) putc('\\',out
);
3713 putc(*filename
,out
);
3716 fprintf(out
,"\"\n");
3719 /* Print a string to the file and keep the linenumber up to date */
3720 PRIVATE
void tplt_print(FILE *out
, struct lemon
*lemp
, char *str
, int *lineno
)
3722 if( str
==0 ) return;
3725 if( *str
=='\n' ) (*lineno
)++;
3728 if( str
[-1]!='\n' ){
3732 if (!lemp
->nolinenosflag
) {
3733 (*lineno
)++; tplt_linedir(out
,*lineno
,lemp
->outname
);
3739 ** The following routine emits code for the destructor for the
3742 void emit_destructor_code(
3750 if( sp
->type
==TERMINAL
){
3751 cp
= lemp
->tokendest
;
3753 fprintf(out
,"{\n"); (*lineno
)++;
3754 }else if( sp
->destructor
){
3755 cp
= sp
->destructor
;
3756 fprintf(out
,"{\n"); (*lineno
)++;
3757 if( !lemp
->nolinenosflag
){
3759 tplt_linedir(out
,sp
->destLineno
,lemp
->filename
);
3761 }else if( lemp
->vardest
){
3764 fprintf(out
,"{\n"); (*lineno
)++;
3766 assert( 0 ); /* Cannot happen */
3769 if( *cp
=='$' && cp
[1]=='$' ){
3770 fprintf(out
,"(yypminor->yy%d)",sp
->dtnum
);
3774 if( *cp
=='\n' ) (*lineno
)++;
3777 fprintf(out
,"\n"); (*lineno
)++;
3778 if (!lemp
->nolinenosflag
) {
3779 (*lineno
)++; tplt_linedir(out
,*lineno
,lemp
->outname
);
3781 fprintf(out
,"}\n"); (*lineno
)++;
3786 ** Return TRUE (non-zero) if the given symbol has a destructor.
3788 int has_destructor(struct symbol
*sp
, struct lemon
*lemp
)
3791 if( sp
->type
==TERMINAL
){
3792 ret
= lemp
->tokendest
!=0;
3794 ret
= lemp
->vardest
!=0 || sp
->destructor
!=0;
3800 ** Append text to a dynamically allocated string. If zText is 0 then
3801 ** reset the string to be empty again. Always return the complete text
3802 ** of the string (which is overwritten with each call).
3804 ** n bytes of zText are stored. If n==0 then all of zText up to the first
3805 ** \000 terminator is stored. zText can contain up to two instances of
3806 ** %d. The values of p1 and p2 are written into the first and second
3809 ** If n==-1, then the previous character is overwritten.
3811 PRIVATE
char *append_str(const char *zText
, int n
, int p1
, int p2
){
3812 static char empty
[1] = { 0 };
3814 static int alloced
= 0;
3815 static int used
= 0;
3819 if( used
==0 && z
!=0 ) z
[0] = 0;
3828 n
= lemonStrlen(zText
);
3830 if( (int) (n
+sizeof(zInt
)*2+used
) >= alloced
){
3831 alloced
= n
+ sizeof(zInt
)*2 + used
+ 200;
3832 z
= (char *) realloc(z
, alloced
);
3834 if( z
==0 ) return empty
;
3837 if( c
=='%' && n
>0 && zText
[0]=='d' ){
3838 lemon_sprintf(zInt
, "%d", p1
);
3840 lemon_strcpy(&z
[used
], zInt
);
3841 used
+= lemonStrlen(&z
[used
]);
3845 z
[used
++] = (char)c
;
3853 ** Write and transform the rp->code string so that symbols are expanded.
3854 ** Populate the rp->codePrefix and rp->codeSuffix strings, as appropriate.
3856 ** Return 1 if the expanded code requires that "yylhsminor" local variable
3859 PRIVATE
int translate_code(struct lemon
*lemp
, struct rule
*rp
){
3862 int rc
= 0; /* True if yylhsminor is used */
3863 int dontUseRhs0
= 0; /* If true, use of left-most RHS label is illegal */
3864 const char *zSkip
= 0; /* The zOvwrt comment within rp->code, or NULL */
3865 char lhsused
= 0; /* True if the LHS element has been used */
3866 char lhsdirect
; /* True if LHS writes directly into stack */
3867 char used
[MAXRHS
]; /* True for each RHS element which is used */
3868 char zLhs
[50]; /* Convert the LHS symbol into this string */
3869 char zOvwrt
[900]; /* Comment that to allow LHS to overwrite RHS */
3871 for(i
=0; i
<rp
->nrhs
; i
++) used
[i
] = 0;
3875 static char newlinestr
[2] = { '\n', '\0' };
3876 rp
->code
= newlinestr
;
3877 rp
->line
= rp
->ruleline
;
3885 /* If there are no RHS symbols, then writing directly to the LHS is ok */
3887 }else if( rp
->rhsalias
[0]==0 ){
3888 /* The left-most RHS symbol has no value. LHS direct is ok. But
3889 ** we have to call the destructor on the RHS symbol first. */
3891 if( has_destructor(rp
->rhs
[0],lemp
) ){
3892 append_str(0,0,0,0);
3893 append_str(" yy_destructor(yypParser,%d,&yymsp[%d].minor);\n", 0,
3894 rp
->rhs
[0]->index
,1-rp
->nrhs
);
3895 rp
->codePrefix
= Strsafe(append_str(0,0,0,0));
3898 }else if( rp
->lhsalias
==0 ){
3899 /* There is no LHS value symbol. */
3901 }else if( strcmp(rp
->lhsalias
,rp
->rhsalias
[0])==0 ){
3902 /* The LHS symbol and the left-most RHS symbol are the same, so
3903 ** direct writing is allowed */
3907 if( rp
->lhs
->dtnum
!=rp
->rhs
[0]->dtnum
){
3908 ErrorMsg(lemp
->filename
,rp
->ruleline
,
3909 "%s(%s) and %s(%s) share the same label but have "
3910 "different datatypes.",
3911 rp
->lhs
->name
, rp
->lhsalias
, rp
->rhs
[0]->name
, rp
->rhsalias
[0]);
3915 lemon_sprintf(zOvwrt
, "/*%s-overwrites-%s*/",
3916 rp
->lhsalias
, rp
->rhsalias
[0]);
3917 zSkip
= strstr(rp
->code
, zOvwrt
);
3919 /* The code contains a special comment that indicates that it is safe
3920 ** for the LHS label to overwrite left-most RHS label. */
3927 sprintf(zLhs
, "yymsp[%d].minor.yy%d",1-rp
->nrhs
,rp
->lhs
->dtnum
);
3930 sprintf(zLhs
, "yylhsminor.yy%d",rp
->lhs
->dtnum
);
3933 append_str(0,0,0,0);
3935 /* This const cast is wrong but harmless, if we're careful. */
3936 for(cp
=(char *)rp
->code
; *cp
; cp
++){
3938 append_str(zOvwrt
,0,0,0);
3939 cp
+= lemonStrlen(zOvwrt
)-1;
3943 if( ISALPHA(*cp
) && (cp
==rp
->code
|| (!ISALNUM(cp
[-1]) && cp
[-1]!='_')) ){
3945 for(xp
= &cp
[1]; ISALNUM(*xp
) || *xp
=='_'; xp
++);
3948 if( rp
->lhsalias
&& strcmp(cp
,rp
->lhsalias
)==0 ){
3949 append_str(zLhs
,0,0,0);
3953 for(i
=0; i
<rp
->nrhs
; i
++){
3954 if( rp
->rhsalias
[i
] && strcmp(cp
,rp
->rhsalias
[i
])==0 ){
3955 if( i
==0 && dontUseRhs0
){
3956 ErrorMsg(lemp
->filename
,rp
->ruleline
,
3957 "Label %s used after '%s'.",
3958 rp
->rhsalias
[0], zOvwrt
);
3960 }else if( cp
!=rp
->code
&& cp
[-1]=='@' ){
3961 /* If the argument is of the form @X then substituted
3962 ** the token number of X, not the value of X */
3963 append_str("yymsp[%d].major",-1,i
-rp
->nrhs
+1,0);
3965 struct symbol
*sp
= rp
->rhs
[i
];
3967 if( sp
->type
==MULTITERMINAL
){
3968 dtnum
= sp
->subsym
[0]->dtnum
;
3972 append_str("yymsp[%d].minor.yy%d",0,i
-rp
->nrhs
+1, dtnum
);
3982 append_str(cp
, 1, 0, 0);
3985 /* Main code generation completed */
3986 cp
= append_str(0,0,0,0);
3987 if( cp
&& cp
[0] ) rp
->code
= Strsafe(cp
);
3988 append_str(0,0,0,0);
3990 /* Check to make sure the LHS has been used */
3991 if( rp
->lhsalias
&& !lhsused
){
3992 ErrorMsg(lemp
->filename
,rp
->ruleline
,
3993 "Label \"%s\" for \"%s(%s)\" is never used.",
3994 rp
->lhsalias
,rp
->lhs
->name
,rp
->lhsalias
);
3998 /* Generate destructor code for RHS minor values which are not referenced.
3999 ** Generate error messages for unused labels and duplicate labels.
4001 for(i
=0; i
<rp
->nrhs
; i
++){
4002 if( rp
->rhsalias
[i
] ){
4005 if( rp
->lhsalias
&& strcmp(rp
->lhsalias
,rp
->rhsalias
[i
])==0 ){
4006 ErrorMsg(lemp
->filename
,rp
->ruleline
,
4007 "%s(%s) has the same label as the LHS but is not the left-most "
4008 "symbol on the RHS.",
4009 rp
->rhs
[i
]->name
, rp
->rhsalias
[i
]);
4013 if( rp
->rhsalias
[j
] && strcmp(rp
->rhsalias
[j
],rp
->rhsalias
[i
])==0 ){
4014 ErrorMsg(lemp
->filename
,rp
->ruleline
,
4015 "Label %s used for multiple symbols on the RHS of a rule.",
4023 ErrorMsg(lemp
->filename
,rp
->ruleline
,
4024 "Label %s for \"%s(%s)\" is never used.",
4025 rp
->rhsalias
[i
],rp
->rhs
[i
]->name
,rp
->rhsalias
[i
]);
4028 }else if( i
>0 && has_destructor(rp
->rhs
[i
],lemp
) ){
4029 append_str(" yy_destructor(yypParser,%d,&yymsp[%d].minor);\n", 0,
4030 rp
->rhs
[i
]->index
,i
-rp
->nrhs
+1);
4034 /* If unable to write LHS values directly into the stack, write the
4035 ** saved LHS value now. */
4037 append_str(" yymsp[%d].minor.yy%d = ", 0, 1-rp
->nrhs
, rp
->lhs
->dtnum
);
4038 append_str(zLhs
, 0, 0, 0);
4039 append_str(";\n", 0, 0, 0);
4042 /* Suffix code generation complete */
4043 cp
= append_str(0,0,0,0);
4045 rp
->codeSuffix
= Strsafe(cp
);
4053 ** Generate code which executes when the rule "rp" is reduced. Write
4054 ** the code to "out". Make sure lineno stays up-to-date.
4056 PRIVATE
void emit_code(
4064 /* Setup code prior to the #line directive */
4065 if( rp
->codePrefix
&& rp
->codePrefix
[0] ){
4066 fprintf(out
, "{%s", rp
->codePrefix
);
4067 for(cp
=rp
->codePrefix
; *cp
; cp
++){ if( *cp
=='\n' ) (*lineno
)++; }
4070 /* Generate code to do the reduce action */
4072 if( !lemp
->nolinenosflag
){
4074 tplt_linedir(out
,rp
->line
,lemp
->filename
);
4076 fprintf(out
,"{%s",rp
->code
);
4077 for(cp
=rp
->code
; *cp
; cp
++){ if( *cp
=='\n' ) (*lineno
)++; }
4078 fprintf(out
,"}\n"); (*lineno
)++;
4079 if( !lemp
->nolinenosflag
){
4081 tplt_linedir(out
,*lineno
,lemp
->outname
);
4085 /* Generate breakdown code that occurs after the #line directive */
4086 if( rp
->codeSuffix
&& rp
->codeSuffix
[0] ){
4087 fprintf(out
, "%s", rp
->codeSuffix
);
4088 for(cp
=rp
->codeSuffix
; *cp
; cp
++){ if( *cp
=='\n' ) (*lineno
)++; }
4091 if( rp
->codePrefix
){
4092 fprintf(out
, "}\n"); (*lineno
)++;
4099 ** Print the definition of the union used for the parser's data stack.
4100 ** This union contains fields for every possible data type for tokens
4101 ** and nonterminals. In the process of computing and printing this
4102 ** union, also set the ".dtnum" field of every terminal and nonterminal
4105 void print_stack_union(
4106 FILE *out
, /* The output stream */
4107 struct lemon
*lemp
, /* The main info structure for this parser */
4108 int *plineno
, /* Pointer to the line number */
4109 int mhflag
/* True if generating makeheaders output */
4111 int lineno
; /* The line number of the output */
4112 char **types
; /* A hash table of datatypes */
4113 int arraysize
; /* Size of the "types" array */
4114 int maxdtlength
; /* Maximum length of any ".datatype" field. */
4115 char *stddt
; /* Standardized name for a datatype */
4116 int i
,j
; /* Loop counters */
4117 unsigned hash
; /* For hashing the name of a type */
4118 const char *name
; /* Name of the parser */
4120 /* Allocate and initialize types[] and allocate stddt[] */
4121 arraysize
= lemp
->nsymbol
* 2;
4122 types
= (char**)calloc( arraysize
, sizeof(char*) );
4124 fprintf(stderr
,"Out of memory.\n");
4127 for(i
=0; i
<arraysize
; i
++) types
[i
] = 0;
4129 if( lemp
->vartype
){
4130 maxdtlength
= lemonStrlen(lemp
->vartype
);
4132 for(i
=0; i
<lemp
->nsymbol
; i
++){
4134 struct symbol
*sp
= lemp
->symbols
[i
];
4135 if( sp
->datatype
==0 ) continue;
4136 len
= lemonStrlen(sp
->datatype
);
4137 if( len
>maxdtlength
) maxdtlength
= len
;
4139 stddt
= (char*)malloc( maxdtlength
*2 + 1 );
4141 fprintf(stderr
,"Out of memory.\n");
4145 /* Build a hash table of datatypes. The ".dtnum" field of each symbol
4146 ** is filled in with the hash index plus 1. A ".dtnum" value of 0 is
4147 ** used for terminal symbols. If there is no %default_type defined then
4148 ** 0 is also used as the .dtnum value for nonterminals which do not specify
4149 ** a datatype using the %type directive.
4151 for(i
=0; i
<lemp
->nsymbol
; i
++){
4152 struct symbol
*sp
= lemp
->symbols
[i
];
4154 if( sp
==lemp
->errsym
){
4155 sp
->dtnum
= arraysize
+1;
4158 if( sp
->type
!=NONTERMINAL
|| (sp
->datatype
==0 && lemp
->vartype
==0) ){
4163 if( cp
==0 ) cp
= lemp
->vartype
;
4165 while( ISSPACE(*cp
) ) cp
++;
4166 while( *cp
) stddt
[j
++] = *cp
++;
4167 while( j
>0 && ISSPACE(stddt
[j
-1]) ) j
--;
4169 if( lemp
->tokentype
&& strcmp(stddt
, lemp
->tokentype
)==0 ){
4174 for(j
=0; stddt
[j
]; j
++){
4175 hash
= hash
*53 + stddt
[j
];
4177 hash
= (hash
& 0x7fffffff)%arraysize
;
4178 while( types
[hash
] ){
4179 if( strcmp(types
[hash
],stddt
)==0 ){
4180 sp
->dtnum
= hash
+ 1;
4184 if( hash
>=(unsigned)arraysize
) hash
= 0;
4186 if( types
[hash
]==0 ){
4187 sp
->dtnum
= hash
+ 1;
4188 types
[hash
] = (char*)malloc( lemonStrlen(stddt
)+1 );
4189 if( types
[hash
]==0 ){
4190 fprintf(stderr
,"Out of memory.\n");
4193 lemon_strcpy(types
[hash
],stddt
);
4197 /* Print out the definition of YYTOKENTYPE and YYMINORTYPE */
4198 name
= lemp
->name
? lemp
->name
: "Parse";
4200 if( mhflag
){ fprintf(out
,"#if INTERFACE\n"); lineno
++; }
4201 fprintf(out
,"#define %sTOKENTYPE %s\n",name
,
4202 lemp
->tokentype
?lemp
->tokentype
:"void*"); lineno
++;
4203 if( mhflag
){ fprintf(out
,"#endif\n"); lineno
++; }
4204 fprintf(out
,"typedef union {\n"); lineno
++;
4205 fprintf(out
," int yyinit;\n"); lineno
++;
4206 fprintf(out
," %sTOKENTYPE yy0;\n",name
); lineno
++;
4207 for(i
=0; i
<arraysize
; i
++){
4208 if( types
[i
]==0 ) continue;
4209 fprintf(out
," %s yy%d;\n",types
[i
],i
+1); lineno
++;
4212 if( lemp
->errsym
&& lemp
->errsym
->useCnt
){
4213 fprintf(out
," int yy%d;\n",lemp
->errsym
->dtnum
); lineno
++;
4217 fprintf(out
,"} YYMINORTYPE;\n"); lineno
++;
4222 ** Return the name of a C datatype able to represent values between
4223 ** lwr and upr, inclusive. If pnByte!=NULL then also write the sizeof
4224 ** for that type (1, 2, or 4) into *pnByte.
4226 static const char *minimum_size_type(int lwr
, int upr
, int *pnByte
){
4227 const char *zType
= "int";
4231 zType
= "unsigned char";
4233 }else if( upr
<65535 ){
4234 zType
= "unsigned short int";
4237 zType
= "unsigned int";
4240 }else if( lwr
>=-127 && upr
<=127 ){
4241 zType
= "signed char";
4243 }else if( lwr
>=-32767 && upr
<32767 ){
4247 if( pnByte
) *pnByte
= nByte
;
4252 ** Each state contains a set of token transaction and a set of
4253 ** nonterminal transactions. Each of these sets makes an instance
4254 ** of the following structure. An array of these structures is used
4255 ** to order the creation of entries in the yy_action[] table.
4258 struct state
*stp
; /* A pointer to a state */
4259 int isTkn
; /* True to use tokens. False for non-terminals */
4260 int nAction
; /* Number of actions */
4261 int iOrder
; /* Original order of action sets */
4265 ** Compare to axset structures for sorting purposes
4267 static int axset_compare(const void *a
, const void *b
){
4268 struct axset
*p1
= (struct axset
*)a
;
4269 struct axset
*p2
= (struct axset
*)b
;
4271 c
= p2
->nAction
- p1
->nAction
;
4273 c
= p1
->iOrder
- p2
->iOrder
;
4275 assert( c
!=0 || p1
==p2
);
4280 ** Write text on "out" that describes the rule "rp".
4282 static void writeRuleText(FILE *out
, struct rule
*rp
){
4284 fprintf(out
,"%s ::=", rp
->lhs
->name
);
4285 for(j
=0; j
<rp
->nrhs
; j
++){
4286 struct symbol
*sp
= rp
->rhs
[j
];
4287 if( sp
->type
!=MULTITERMINAL
){
4288 fprintf(out
," %s", sp
->name
);
4291 fprintf(out
," %s", sp
->subsym
[0]->name
);
4292 for(k
=1; k
<sp
->nsubsym
; k
++){
4293 fprintf(out
,"|%s",sp
->subsym
[k
]->name
);
4300 /* Generate C source code for the parser */
4303 int mhflag
, /* Output in makeheaders format if true */
4304 int sqlFlag
/* Generate the *.sql file too */
4306 FILE *out
, *in
, *sql
;
4311 struct acttab
*pActtab
;
4314 int szActionType
; /* sizeof(YYACTIONTYPE) */
4315 int szCodeType
; /* sizeof(YYCODETYPE) */
4317 int mnTknOfst
, mxTknOfst
;
4318 int mnNtOfst
, mxNtOfst
;
4322 lemp
->minShiftReduce
= lemp
->nstate
;
4323 lemp
->errAction
= lemp
->minShiftReduce
+ lemp
->nrule
;
4324 lemp
->accAction
= lemp
->errAction
+ 1;
4325 lemp
->noAction
= lemp
->accAction
+ 1;
4326 lemp
->minReduce
= lemp
->noAction
+ 1;
4327 lemp
->maxAction
= lemp
->minReduce
+ lemp
->nrule
;
4329 in
= tplt_open(lemp
);
4331 out
= file_open(lemp
,".c","wb");
4339 sql
= file_open(lemp
, ".sql", "wb");
4347 "CREATE TABLE symbol(\n"
4348 " id INTEGER PRIMARY KEY,\n"
4349 " name TEXT NOT NULL,\n"
4350 " isTerminal BOOLEAN NOT NULL,\n"
4351 " fallback INTEGER REFERENCES symbol"
4352 " DEFERRABLE INITIALLY DEFERRED\n"
4355 for(i
=0; i
<lemp
->nsymbol
; i
++){
4357 "INSERT INTO symbol(id,name,isTerminal,fallback)"
4358 "VALUES(%d,'%s',%s",
4359 i
, lemp
->symbols
[i
]->name
,
4360 i
<lemp
->nterminal
? "TRUE" : "FALSE"
4362 if( lemp
->symbols
[i
]->fallback
){
4363 fprintf(sql
, ",%d);\n", lemp
->symbols
[i
]->fallback
->index
);
4365 fprintf(sql
, ",NULL);\n");
4369 "CREATE TABLE rule(\n"
4370 " ruleid INTEGER PRIMARY KEY,\n"
4371 " lhs INTEGER REFERENCES symbol(id),\n"
4374 "CREATE TABLE rulerhs(\n"
4375 " ruleid INTEGER REFERENCES rule(ruleid),\n"
4377 " sym INTEGER REFERENCES symbol(id)\n"
4380 for(i
=0, rp
=lemp
->rule
; rp
; rp
=rp
->next
, i
++){
4381 assert( i
==rp
->iRule
);
4383 "INSERT INTO rule(ruleid,lhs,txt)VALUES(%d,%d,'",
4384 rp
->iRule
, rp
->lhs
->index
4386 writeRuleText(sql
, rp
);
4387 fprintf(sql
,"');\n");
4388 for(j
=0; j
<rp
->nrhs
; j
++){
4389 struct symbol
*sp
= rp
->rhs
[j
];
4390 if( sp
->type
!=MULTITERMINAL
){
4392 "INSERT INTO rulerhs(ruleid,pos,sym)VALUES(%d,%d,%d);\n",
4397 for(k
=0; k
<sp
->nsubsym
; k
++){
4399 "INSERT INTO rulerhs(ruleid,pos,sym)VALUES(%d,%d,%d);\n",
4400 i
,j
,sp
->subsym
[k
]->index
4406 fprintf(sql
, "COMMIT;\n");
4411 "/* This file is automatically generated by Lemon from input grammar\n"
4412 "** source file \"%s\"", lemp
->filename
); lineno
++;
4413 if( nDefineUsed
==0 ){
4414 fprintf(out
, ".\n*/\n"); lineno
+= 2;
4416 fprintf(out
, " with these options:\n**\n"); lineno
+= 2;
4417 for(i
=0; i
<nDefine
; i
++){
4418 if( !bDefineUsed
[i
] ) continue;
4419 fprintf(out
, "** -D%s\n", azDefine
[i
]); lineno
++;
4421 fprintf(out
, "*/\n"); lineno
++;
4424 /* The first %include directive begins with a C-language comment,
4425 ** then skip over the header comment of the template file
4427 if( lemp
->include
==0 ) lemp
->include
= "";
4428 for(i
=0; ISSPACE(lemp
->include
[i
]); i
++){
4429 if( lemp
->include
[i
]=='\n' ){
4430 lemp
->include
+= i
+1;
4434 if( lemp
->include
[0]=='/' ){
4435 tplt_skip_header(in
,&lineno
);
4437 tplt_xfer(lemp
->name
,in
,out
,&lineno
);
4440 /* Generate the include code, if any */
4441 tplt_print(out
,lemp
,lemp
->include
,&lineno
);
4443 char *incName
= file_makename(lemp
, ".h");
4444 fprintf(out
,"#include \"%s\"\n", incName
); lineno
++;
4447 tplt_xfer(lemp
->name
,in
,out
,&lineno
);
4449 /* Generate #defines for all tokens */
4450 if( lemp
->tokenprefix
) prefix
= lemp
->tokenprefix
;
4453 fprintf(out
,"#if INTERFACE\n"); lineno
++;
4455 fprintf(out
,"#ifndef %s%s\n", prefix
, lemp
->symbols
[1]->name
);
4457 for(i
=1; i
<lemp
->nterminal
; i
++){
4458 fprintf(out
,"#define %s%-30s %2d\n",prefix
,lemp
->symbols
[i
]->name
,i
);
4461 fprintf(out
,"#endif\n"); lineno
++;
4462 tplt_xfer(lemp
->name
,in
,out
,&lineno
);
4464 /* Generate the defines */
4465 fprintf(out
,"#define YYCODETYPE %s\n",
4466 minimum_size_type(0, lemp
->nsymbol
, &szCodeType
)); lineno
++;
4467 fprintf(out
,"#define YYNOCODE %d\n",lemp
->nsymbol
); lineno
++;
4468 fprintf(out
,"#define YYACTIONTYPE %s\n",
4469 minimum_size_type(0,lemp
->maxAction
,&szActionType
)); lineno
++;
4470 if( lemp
->wildcard
){
4471 fprintf(out
,"#define YYWILDCARD %d\n",
4472 lemp
->wildcard
->index
); lineno
++;
4474 print_stack_union(out
,lemp
,&lineno
,mhflag
);
4475 fprintf(out
, "#ifndef YYSTACKDEPTH\n"); lineno
++;
4476 if( lemp
->stacksize
){
4477 fprintf(out
,"#define YYSTACKDEPTH %s\n",lemp
->stacksize
); lineno
++;
4479 fprintf(out
,"#define YYSTACKDEPTH 100\n"); lineno
++;
4481 fprintf(out
, "#endif\n"); lineno
++;
4483 fprintf(out
,"#if INTERFACE\n"); lineno
++;
4485 name
= lemp
->name
? lemp
->name
: "Parse";
4486 if( lemp
->arg
&& lemp
->arg
[0] ){
4487 i
= lemonStrlen(lemp
->arg
);
4488 while( i
>=1 && ISSPACE(lemp
->arg
[i
-1]) ) i
--;
4489 while( i
>=1 && (ISALNUM(lemp
->arg
[i
-1]) || lemp
->arg
[i
-1]=='_') ) i
--;
4490 fprintf(out
,"#define %sARG_SDECL %s;\n",name
,lemp
->arg
); lineno
++;
4491 fprintf(out
,"#define %sARG_PDECL ,%s\n",name
,lemp
->arg
); lineno
++;
4492 fprintf(out
,"#define %sARG_PARAM ,%s\n",name
,&lemp
->arg
[i
]); lineno
++;
4493 fprintf(out
,"#define %sARG_FETCH %s=yypParser->%s;\n",
4494 name
,lemp
->arg
,&lemp
->arg
[i
]); lineno
++;
4495 fprintf(out
,"#define %sARG_STORE yypParser->%s=%s;\n",
4496 name
,&lemp
->arg
[i
],&lemp
->arg
[i
]); lineno
++;
4498 fprintf(out
,"#define %sARG_SDECL\n",name
); lineno
++;
4499 fprintf(out
,"#define %sARG_PDECL\n",name
); lineno
++;
4500 fprintf(out
,"#define %sARG_PARAM\n",name
); lineno
++;
4501 fprintf(out
,"#define %sARG_FETCH\n",name
); lineno
++;
4502 fprintf(out
,"#define %sARG_STORE\n",name
); lineno
++;
4504 if( lemp
->ctx
&& lemp
->ctx
[0] ){
4505 i
= lemonStrlen(lemp
->ctx
);
4506 while( i
>=1 && ISSPACE(lemp
->ctx
[i
-1]) ) i
--;
4507 while( i
>=1 && (ISALNUM(lemp
->ctx
[i
-1]) || lemp
->ctx
[i
-1]=='_') ) i
--;
4508 fprintf(out
,"#define %sCTX_SDECL %s;\n",name
,lemp
->ctx
); lineno
++;
4509 fprintf(out
,"#define %sCTX_PDECL ,%s\n",name
,lemp
->ctx
); lineno
++;
4510 fprintf(out
,"#define %sCTX_PARAM ,%s\n",name
,&lemp
->ctx
[i
]); lineno
++;
4511 fprintf(out
,"#define %sCTX_FETCH %s=yypParser->%s;\n",
4512 name
,lemp
->ctx
,&lemp
->ctx
[i
]); lineno
++;
4513 fprintf(out
,"#define %sCTX_STORE yypParser->%s=%s;\n",
4514 name
,&lemp
->ctx
[i
],&lemp
->ctx
[i
]); lineno
++;
4516 fprintf(out
,"#define %sCTX_SDECL\n",name
); lineno
++;
4517 fprintf(out
,"#define %sCTX_PDECL\n",name
); lineno
++;
4518 fprintf(out
,"#define %sCTX_PARAM\n",name
); lineno
++;
4519 fprintf(out
,"#define %sCTX_FETCH\n",name
); lineno
++;
4520 fprintf(out
,"#define %sCTX_STORE\n",name
); lineno
++;
4523 fprintf(out
,"#endif\n"); lineno
++;
4525 if( lemp
->errsym
&& lemp
->errsym
->useCnt
){
4526 fprintf(out
,"#define YYERRORSYMBOL %d\n",lemp
->errsym
->index
); lineno
++;
4527 fprintf(out
,"#define YYERRSYMDT yy%d\n",lemp
->errsym
->dtnum
); lineno
++;
4529 if( lemp
->has_fallback
){
4530 fprintf(out
,"#define YYFALLBACK 1\n"); lineno
++;
4533 /* Compute the action table, but do not output it yet. The action
4534 ** table must be computed before generating the YYNSTATE macro because
4535 ** we need to know how many states can be eliminated.
4537 ax
= (struct axset
*) calloc(lemp
->nxstate
*2, sizeof(ax
[0]));
4539 fprintf(stderr
,"malloc failed\n");
4542 for(i
=0; i
<lemp
->nxstate
; i
++){
4543 stp
= lemp
->sorted
[i
];
4546 ax
[i
*2].nAction
= stp
->nTknAct
;
4547 ax
[i
*2+1].stp
= stp
;
4548 ax
[i
*2+1].isTkn
= 0;
4549 ax
[i
*2+1].nAction
= stp
->nNtAct
;
4551 mxTknOfst
= mnTknOfst
= 0;
4552 mxNtOfst
= mnNtOfst
= 0;
4553 /* In an effort to minimize the action table size, use the heuristic
4554 ** of placing the largest action sets first */
4555 for(i
=0; i
<lemp
->nxstate
*2; i
++) ax
[i
].iOrder
= i
;
4556 qsort(ax
, lemp
->nxstate
*2, sizeof(ax
[0]), axset_compare
);
4557 pActtab
= acttab_alloc(lemp
->nsymbol
, lemp
->nterminal
);
4558 for(i
=0; i
<lemp
->nxstate
*2 && ax
[i
].nAction
>0; i
++){
4561 for(ap
=stp
->ap
; ap
; ap
=ap
->next
){
4563 if( ap
->sp
->index
>=lemp
->nterminal
) continue;
4564 action
= compute_action(lemp
, ap
);
4565 if( action
<0 ) continue;
4566 acttab_action(pActtab
, ap
->sp
->index
, action
);
4568 stp
->iTknOfst
= acttab_insert(pActtab
, 1);
4569 if( stp
->iTknOfst
<mnTknOfst
) mnTknOfst
= stp
->iTknOfst
;
4570 if( stp
->iTknOfst
>mxTknOfst
) mxTknOfst
= stp
->iTknOfst
;
4572 for(ap
=stp
->ap
; ap
; ap
=ap
->next
){
4574 if( ap
->sp
->index
<lemp
->nterminal
) continue;
4575 if( ap
->sp
->index
==lemp
->nsymbol
) continue;
4576 action
= compute_action(lemp
, ap
);
4577 if( action
<0 ) continue;
4578 acttab_action(pActtab
, ap
->sp
->index
, action
);
4580 stp
->iNtOfst
= acttab_insert(pActtab
, 0);
4581 if( stp
->iNtOfst
<mnNtOfst
) mnNtOfst
= stp
->iNtOfst
;
4582 if( stp
->iNtOfst
>mxNtOfst
) mxNtOfst
= stp
->iNtOfst
;
4584 #if 0 /* Uncomment for a trace of how the yy_action[] table fills out */
4586 for(jj
=nn
=0; jj
<pActtab
->nAction
; jj
++){
4587 if( pActtab
->aAction
[jj
].action
<0 ) nn
++;
4589 printf("%4d: State %3d %s n: %2d size: %5d freespace: %d\n",
4590 i
, stp
->statenum
, ax
[i
].isTkn
? "Token" : "Var ",
4591 ax
[i
].nAction
, pActtab
->nAction
, nn
);
4597 /* Mark rules that are actually used for reduce actions after all
4598 ** optimizations have been applied
4600 for(rp
=lemp
->rule
; rp
; rp
=rp
->next
) rp
->doesReduce
= LEMON_FALSE
;
4601 for(i
=0; i
<lemp
->nxstate
; i
++){
4602 for(ap
=lemp
->sorted
[i
]->ap
; ap
; ap
=ap
->next
){
4603 if( ap
->type
==REDUCE
|| ap
->type
==SHIFTREDUCE
){
4604 ap
->x
.rp
->doesReduce
= 1;
4609 /* Finish rendering the constants now that the action table has
4611 fprintf(out
,"#define YYNSTATE %d\n",lemp
->nxstate
); lineno
++;
4612 fprintf(out
,"#define YYNRULE %d\n",lemp
->nrule
); lineno
++;
4613 fprintf(out
,"#define YYNRULE_WITH_ACTION %d\n",lemp
->nruleWithAction
);
4615 fprintf(out
,"#define YYNTOKEN %d\n",lemp
->nterminal
); lineno
++;
4616 fprintf(out
,"#define YY_MAX_SHIFT %d\n",lemp
->nxstate
-1); lineno
++;
4617 i
= lemp
->minShiftReduce
;
4618 fprintf(out
,"#define YY_MIN_SHIFTREDUCE %d\n",i
); lineno
++;
4620 fprintf(out
,"#define YY_MAX_SHIFTREDUCE %d\n", i
-1); lineno
++;
4621 fprintf(out
,"#define YY_ERROR_ACTION %d\n", lemp
->errAction
); lineno
++;
4622 fprintf(out
,"#define YY_ACCEPT_ACTION %d\n", lemp
->accAction
); lineno
++;
4623 fprintf(out
,"#define YY_NO_ACTION %d\n", lemp
->noAction
); lineno
++;
4624 fprintf(out
,"#define YY_MIN_REDUCE %d\n", lemp
->minReduce
); lineno
++;
4625 i
= lemp
->minReduce
+ lemp
->nrule
;
4626 fprintf(out
,"#define YY_MAX_REDUCE %d\n", i
-1); lineno
++;
4627 tplt_xfer(lemp
->name
,in
,out
,&lineno
);
4629 /* Now output the action table and its associates:
4631 ** yy_action[] A single table containing all actions.
4632 ** yy_lookahead[] A table containing the lookahead for each entry in
4633 ** yy_action. Used to detect hash collisions.
4634 ** yy_shift_ofst[] For each state, the offset into yy_action for
4635 ** shifting terminals.
4636 ** yy_reduce_ofst[] For each state, the offset into yy_action for
4637 ** shifting non-terminals after a reduce.
4638 ** yy_default[] Default action for each state.
4641 /* Output the yy_action table */
4642 lemp
->nactiontab
= n
= acttab_action_size(pActtab
);
4643 lemp
->tablesize
+= n
*szActionType
;
4644 fprintf(out
,"#define YY_ACTTAB_COUNT (%d)\n", n
); lineno
++;
4645 fprintf(out
,"static const YYACTIONTYPE yy_action[] = {\n"); lineno
++;
4646 for(i
=j
=0; i
<n
; i
++){
4647 int action
= acttab_yyaction(pActtab
, i
);
4648 if( action
<0 ) action
= lemp
->noAction
;
4649 if( j
==0 ) fprintf(out
," /* %5d */ ", i
);
4650 fprintf(out
, " %4d,", action
);
4651 if( j
==9 || i
==n
-1 ){
4652 fprintf(out
, "\n"); lineno
++;
4658 fprintf(out
, "};\n"); lineno
++;
4660 /* Output the yy_lookahead table */
4661 lemp
->nlookaheadtab
= n
= acttab_lookahead_size(pActtab
);
4662 lemp
->tablesize
+= n
*szCodeType
;
4663 fprintf(out
,"static const YYCODETYPE yy_lookahead[] = {\n"); lineno
++;
4664 for(i
=j
=0; i
<n
; i
++){
4665 int la
= acttab_yylookahead(pActtab
, i
);
4666 if( la
<0 ) la
= lemp
->nsymbol
;
4667 if( j
==0 ) fprintf(out
," /* %5d */ ", i
);
4668 fprintf(out
, " %4d,", la
);
4670 fprintf(out
, "\n"); lineno
++;
4676 /* Add extra entries to the end of the yy_lookahead[] table so that
4677 ** yy_shift_ofst[]+iToken will always be a valid index into the array,
4678 ** even for the largest possible value of yy_shift_ofst[] and iToken. */
4679 nLookAhead
= lemp
->nterminal
+ lemp
->nactiontab
;
4680 while( i
<nLookAhead
){
4681 if( j
==0 ) fprintf(out
," /* %5d */ ", i
);
4682 fprintf(out
, " %4d,", lemp
->nterminal
);
4684 fprintf(out
, "\n"); lineno
++;
4691 if( j
>0 ){ fprintf(out
, "\n"); lineno
++; }
4692 fprintf(out
, "};\n"); lineno
++;
4694 /* Output the yy_shift_ofst[] table */
4696 while( n
>0 && lemp
->sorted
[n
-1]->iTknOfst
==NO_OFFSET
) n
--;
4697 fprintf(out
, "#define YY_SHIFT_COUNT (%d)\n", n
-1); lineno
++;
4698 fprintf(out
, "#define YY_SHIFT_MIN (%d)\n", mnTknOfst
); lineno
++;
4699 fprintf(out
, "#define YY_SHIFT_MAX (%d)\n", mxTknOfst
); lineno
++;
4700 fprintf(out
, "static const %s yy_shift_ofst[] = {\n",
4701 minimum_size_type(mnTknOfst
, lemp
->nterminal
+lemp
->nactiontab
, &sz
));
4703 lemp
->tablesize
+= n
*sz
;
4704 for(i
=j
=0; i
<n
; i
++){
4706 stp
= lemp
->sorted
[i
];
4707 ofst
= stp
->iTknOfst
;
4708 if( ofst
==NO_OFFSET
) ofst
= lemp
->nactiontab
;
4709 if( j
==0 ) fprintf(out
," /* %5d */ ", i
);
4710 fprintf(out
, " %4d,", ofst
);
4711 if( j
==9 || i
==n
-1 ){
4712 fprintf(out
, "\n"); lineno
++;
4718 fprintf(out
, "};\n"); lineno
++;
4720 /* Output the yy_reduce_ofst[] table */
4722 while( n
>0 && lemp
->sorted
[n
-1]->iNtOfst
==NO_OFFSET
) n
--;
4723 fprintf(out
, "#define YY_REDUCE_COUNT (%d)\n", n
-1); lineno
++;
4724 fprintf(out
, "#define YY_REDUCE_MIN (%d)\n", mnNtOfst
); lineno
++;
4725 fprintf(out
, "#define YY_REDUCE_MAX (%d)\n", mxNtOfst
); lineno
++;
4726 fprintf(out
, "static const %s yy_reduce_ofst[] = {\n",
4727 minimum_size_type(mnNtOfst
-1, mxNtOfst
, &sz
)); lineno
++;
4728 lemp
->tablesize
+= n
*sz
;
4729 for(i
=j
=0; i
<n
; i
++){
4731 stp
= lemp
->sorted
[i
];
4732 ofst
= stp
->iNtOfst
;
4733 if( ofst
==NO_OFFSET
) ofst
= mnNtOfst
- 1;
4734 if( j
==0 ) fprintf(out
," /* %5d */ ", i
);
4735 fprintf(out
, " %4d,", ofst
);
4736 if( j
==9 || i
==n
-1 ){
4737 fprintf(out
, "\n"); lineno
++;
4743 fprintf(out
, "};\n"); lineno
++;
4745 /* Output the default action table */
4746 fprintf(out
, "static const YYACTIONTYPE yy_default[] = {\n"); lineno
++;
4748 lemp
->tablesize
+= n
*szActionType
;
4749 for(i
=j
=0; i
<n
; i
++){
4750 stp
= lemp
->sorted
[i
];
4751 if( j
==0 ) fprintf(out
," /* %5d */ ", i
);
4752 if( stp
->iDfltReduce
<0 ){
4753 fprintf(out
, " %4d,", lemp
->errAction
);
4755 fprintf(out
, " %4d,", stp
->iDfltReduce
+ lemp
->minReduce
);
4757 if( j
==9 || i
==n
-1 ){
4758 fprintf(out
, "\n"); lineno
++;
4764 fprintf(out
, "};\n"); lineno
++;
4765 tplt_xfer(lemp
->name
,in
,out
,&lineno
);
4767 /* Generate the table of fallback tokens.
4769 if( lemp
->has_fallback
){
4770 int mx
= lemp
->nterminal
- 1;
4771 /* 2019-08-28: Generate fallback entries for every token to avoid
4772 ** having to do a range check on the index */
4773 /* while( mx>0 && lemp->symbols[mx]->fallback==0 ){ mx--; } */
4774 lemp
->tablesize
+= (mx
+1)*szCodeType
;
4775 for(i
=0; i
<=mx
; i
++){
4776 struct symbol
*p
= lemp
->symbols
[i
];
4777 if( p
->fallback
==0 ){
4778 fprintf(out
, " 0, /* %10s => nothing */\n", p
->name
);
4780 fprintf(out
, " %3d, /* %10s => %s */\n", p
->fallback
->index
,
4781 p
->name
, p
->fallback
->name
);
4786 tplt_xfer(lemp
->name
, in
, out
, &lineno
);
4788 /* Generate a table containing the symbolic name of every symbol
4790 for(i
=0; i
<lemp
->nsymbol
; i
++){
4791 fprintf(out
," /* %4d */ \"%s\",\n",i
, lemp
->symbols
[i
]->name
); lineno
++;
4793 tplt_xfer(lemp
->name
,in
,out
,&lineno
);
4795 /* Generate a table containing a text string that describes every
4796 ** rule in the rule set of the grammar. This information is used
4797 ** when tracing REDUCE actions.
4799 for(i
=0, rp
=lemp
->rule
; rp
; rp
=rp
->next
, i
++){
4800 assert( rp
->iRule
==i
);
4801 fprintf(out
," /* %3d */ \"", i
);
4802 writeRuleText(out
, rp
);
4803 fprintf(out
,"\",\n"); lineno
++;
4805 tplt_xfer(lemp
->name
,in
,out
,&lineno
);
4807 /* Generate code which executes every time a symbol is popped from
4808 ** the stack while processing errors or while destroying the parser.
4809 ** (In other words, generate the %destructor actions)
4811 if( lemp
->tokendest
){
4813 for(i
=0; i
<lemp
->nsymbol
; i
++){
4814 struct symbol
*sp
= lemp
->symbols
[i
];
4815 if( sp
==0 || sp
->type
!=TERMINAL
) continue;
4817 fprintf(out
, " /* TERMINAL Destructor */\n"); lineno
++;
4820 fprintf(out
," case %d: /* %s */\n", sp
->index
, sp
->name
); lineno
++;
4822 for(i
=0; i
<lemp
->nsymbol
&& lemp
->symbols
[i
]->type
!=TERMINAL
; i
++);
4823 if( i
<lemp
->nsymbol
){
4824 emit_destructor_code(out
,lemp
->symbols
[i
],lemp
,&lineno
);
4825 fprintf(out
," break;\n"); lineno
++;
4828 if( lemp
->vardest
){
4829 struct symbol
*dflt_sp
= 0;
4831 for(i
=0; i
<lemp
->nsymbol
; i
++){
4832 struct symbol
*sp
= lemp
->symbols
[i
];
4833 if( sp
==0 || sp
->type
==TERMINAL
||
4834 sp
->index
<=0 || sp
->destructor
!=0 ) continue;
4836 fprintf(out
, " /* Default NON-TERMINAL Destructor */\n");lineno
++;
4839 fprintf(out
," case %d: /* %s */\n", sp
->index
, sp
->name
); lineno
++;
4843 emit_destructor_code(out
,dflt_sp
,lemp
,&lineno
);
4845 fprintf(out
," break;\n"); lineno
++;
4847 for(i
=0; i
<lemp
->nsymbol
; i
++){
4848 struct symbol
*sp
= lemp
->symbols
[i
];
4849 if( sp
==0 || sp
->type
==TERMINAL
|| sp
->destructor
==0 ) continue;
4850 if( sp
->destLineno
<0 ) continue; /* Already emitted */
4851 fprintf(out
," case %d: /* %s */\n", sp
->index
, sp
->name
); lineno
++;
4853 /* Combine duplicate destructors into a single case */
4854 for(j
=i
+1; j
<lemp
->nsymbol
; j
++){
4855 struct symbol
*sp2
= lemp
->symbols
[j
];
4856 if( sp2
&& sp2
->type
!=TERMINAL
&& sp2
->destructor
4857 && sp2
->dtnum
==sp
->dtnum
4858 && strcmp(sp
->destructor
,sp2
->destructor
)==0 ){
4859 fprintf(out
," case %d: /* %s */\n",
4860 sp2
->index
, sp2
->name
); lineno
++;
4861 sp2
->destLineno
= -1; /* Avoid emitting this destructor again */
4865 emit_destructor_code(out
,lemp
->symbols
[i
],lemp
,&lineno
);
4866 fprintf(out
," break;\n"); lineno
++;
4868 tplt_xfer(lemp
->name
,in
,out
,&lineno
);
4870 /* Generate code which executes whenever the parser stack overflows */
4871 tplt_print(out
,lemp
,lemp
->overflow
,&lineno
);
4872 tplt_xfer(lemp
->name
,in
,out
,&lineno
);
4874 /* Generate the tables of rule information. yyRuleInfoLhs[] and
4875 ** yyRuleInfoNRhs[].
4877 ** Note: This code depends on the fact that rules are number
4878 ** sequentially beginning with 0.
4880 for(i
=0, rp
=lemp
->rule
; rp
; rp
=rp
->next
, i
++){
4881 fprintf(out
," %4d, /* (%d) ", rp
->lhs
->index
, i
);
4882 rule_print(out
, rp
);
4883 fprintf(out
," */\n"); lineno
++;
4885 tplt_xfer(lemp
->name
,in
,out
,&lineno
);
4886 for(i
=0, rp
=lemp
->rule
; rp
; rp
=rp
->next
, i
++){
4887 fprintf(out
," %3d, /* (%d) ", -rp
->nrhs
, i
);
4888 rule_print(out
, rp
);
4889 fprintf(out
," */\n"); lineno
++;
4891 tplt_xfer(lemp
->name
,in
,out
,&lineno
);
4893 /* Generate code which execution during each REDUCE action */
4895 for(rp
=lemp
->rule
; rp
; rp
=rp
->next
){
4896 i
+= translate_code(lemp
, rp
);
4899 fprintf(out
," YYMINORTYPE yylhsminor;\n"); lineno
++;
4901 /* First output rules other than the default: rule */
4902 for(rp
=lemp
->rule
; rp
; rp
=rp
->next
){
4903 struct rule
*rp2
; /* Other rules with the same action */
4904 if( rp
->codeEmitted
) continue;
4906 /* No C code actions, so this will be part of the "default:" rule */
4909 fprintf(out
," case %d: /* ", rp
->iRule
);
4910 writeRuleText(out
, rp
);
4911 fprintf(out
, " */\n"); lineno
++;
4912 for(rp2
=rp
->next
; rp2
; rp2
=rp2
->next
){
4913 if( rp2
->code
==rp
->code
&& rp2
->codePrefix
==rp
->codePrefix
4914 && rp2
->codeSuffix
==rp
->codeSuffix
){
4915 fprintf(out
," case %d: /* ", rp2
->iRule
);
4916 writeRuleText(out
, rp2
);
4917 fprintf(out
," */ yytestcase(yyruleno==%d);\n", rp2
->iRule
); lineno
++;
4918 rp2
->codeEmitted
= 1;
4921 emit_code(out
,rp
,lemp
,&lineno
);
4922 fprintf(out
," break;\n"); lineno
++;
4923 rp
->codeEmitted
= 1;
4925 /* Finally, output the default: rule. We choose as the default: all
4926 ** empty actions. */
4927 fprintf(out
," default:\n"); lineno
++;
4928 for(rp
=lemp
->rule
; rp
; rp
=rp
->next
){
4929 if( rp
->codeEmitted
) continue;
4930 assert( rp
->noCode
);
4931 fprintf(out
," /* (%d) ", rp
->iRule
);
4932 writeRuleText(out
, rp
);
4933 if( rp
->neverReduce
){
4934 fprintf(out
, " (NEVER REDUCES) */ assert(yyruleno!=%d);\n",
4935 rp
->iRule
); lineno
++;
4936 }else if( rp
->doesReduce
){
4937 fprintf(out
, " */ yytestcase(yyruleno==%d);\n", rp
->iRule
); lineno
++;
4939 fprintf(out
, " (OPTIMIZED OUT) */ assert(yyruleno!=%d);\n",
4940 rp
->iRule
); lineno
++;
4943 fprintf(out
," break;\n"); lineno
++;
4944 tplt_xfer(lemp
->name
,in
,out
,&lineno
);
4946 /* Generate code which executes if a parse fails */
4947 tplt_print(out
,lemp
,lemp
->failure
,&lineno
);
4948 tplt_xfer(lemp
->name
,in
,out
,&lineno
);
4950 /* Generate code which executes when a syntax error occurs */
4951 tplt_print(out
,lemp
,lemp
->error
,&lineno
);
4952 tplt_xfer(lemp
->name
,in
,out
,&lineno
);
4954 /* Generate code which executes when the parser accepts its input */
4955 tplt_print(out
,lemp
,lemp
->accept
,&lineno
);
4956 tplt_xfer(lemp
->name
,in
,out
,&lineno
);
4958 /* Append any addition code the user desires */
4959 tplt_print(out
,lemp
,lemp
->extracode
,&lineno
);
4961 acttab_free(pActtab
);
4964 if( sql
) fclose(sql
);
4968 /* Generate a header file for the parser */
4969 void ReportHeader(struct lemon
*lemp
)
4973 char line
[LINESIZE
];
4974 char pattern
[LINESIZE
];
4977 if( lemp
->tokenprefix
) prefix
= lemp
->tokenprefix
;
4979 in
= file_open(lemp
,".h","rb");
4982 for(i
=1; i
<lemp
->nterminal
&& fgets(line
,LINESIZE
,in
); i
++){
4983 lemon_sprintf(pattern
,"#define %s%-30s %3d\n",
4984 prefix
,lemp
->symbols
[i
]->name
,i
);
4985 if( strcmp(line
,pattern
) ) break;
4987 nextChar
= fgetc(in
);
4989 if( i
==lemp
->nterminal
&& nextChar
==EOF
){
4990 /* No change in the file. Don't rewrite it. */
4994 out
= file_open(lemp
,".h","wb");
4996 for(i
=1; i
<lemp
->nterminal
; i
++){
4997 fprintf(out
,"#define %s%-30s %3d\n",prefix
,lemp
->symbols
[i
]->name
,i
);
5004 /* Reduce the size of the action tables, if possible, by making use
5007 ** In this version, we take the most frequent REDUCE action and make
5008 ** it the default. Except, there is no default if the wildcard token
5009 ** is a possible look-ahead.
5011 void CompressTables(struct lemon
*lemp
)
5014 struct action
*ap
, *ap2
, *nextap
;
5015 struct rule
*rp
, *rp2
, *rbest
;
5020 for(i
=0; i
<lemp
->nstate
; i
++){
5021 stp
= lemp
->sorted
[i
];
5026 for(ap
=stp
->ap
; ap
; ap
=ap
->next
){
5027 if( ap
->type
==SHIFT
&& ap
->sp
==lemp
->wildcard
){
5030 if( ap
->type
!=REDUCE
) continue;
5032 if( rp
->lhsStart
) continue;
5033 if( rp
==rbest
) continue;
5035 for(ap2
=ap
->next
; ap2
; ap2
=ap2
->next
){
5036 if( ap2
->type
!=REDUCE
) continue;
5038 if( rp2
==rbest
) continue;
5047 /* Do not make a default if the number of rules to default
5048 ** is not at least 1 or if the wildcard token is a possible
5051 if( nbest
<1 || usesWildcard
) continue;
5054 /* Combine matching REDUCE actions into a single default */
5055 for(ap
=stp
->ap
; ap
; ap
=ap
->next
){
5056 if( ap
->type
==REDUCE
&& ap
->x
.rp
==rbest
) break;
5059 ap
->sp
= Symbol_new("{default}");
5060 for(ap
=ap
->next
; ap
; ap
=ap
->next
){
5061 if( ap
->type
==REDUCE
&& ap
->x
.rp
==rbest
) ap
->type
= NOT_USED
;
5063 stp
->ap
= Action_sort(stp
->ap
);
5065 for(ap
=stp
->ap
; ap
; ap
=ap
->next
){
5066 if( ap
->type
==SHIFT
) break;
5067 if( ap
->type
==REDUCE
&& ap
->x
.rp
!=rbest
) break;
5070 stp
->autoReduce
= 1;
5071 stp
->pDfltReduce
= rbest
;
5075 /* Make a second pass over all states and actions. Convert
5076 ** every action that is a SHIFT to an autoReduce state into
5077 ** a SHIFTREDUCE action.
5079 for(i
=0; i
<lemp
->nstate
; i
++){
5080 stp
= lemp
->sorted
[i
];
5081 for(ap
=stp
->ap
; ap
; ap
=ap
->next
){
5082 struct state
*pNextState
;
5083 if( ap
->type
!=SHIFT
) continue;
5084 pNextState
= ap
->x
.stp
;
5085 if( pNextState
->autoReduce
&& pNextState
->pDfltReduce
!=0 ){
5086 ap
->type
= SHIFTREDUCE
;
5087 ap
->x
.rp
= pNextState
->pDfltReduce
;
5092 /* If a SHIFTREDUCE action specifies a rule that has a single RHS term
5093 ** (meaning that the SHIFTREDUCE will land back in the state where it
5094 ** started) and if there is no C-code associated with the reduce action,
5095 ** then we can go ahead and convert the action to be the same as the
5096 ** action for the RHS of the rule.
5098 for(i
=0; i
<lemp
->nstate
; i
++){
5099 stp
= lemp
->sorted
[i
];
5100 for(ap
=stp
->ap
; ap
; ap
=nextap
){
5102 if( ap
->type
!=SHIFTREDUCE
) continue;
5104 if( rp
->noCode
==0 ) continue;
5105 if( rp
->nrhs
!=1 ) continue;
5107 /* Only apply this optimization to non-terminals. It would be OK to
5108 ** apply it to terminal symbols too, but that makes the parser tables
5110 if( ap
->sp
->index
<lemp
->nterminal
) continue;
5112 /* If we reach this point, it means the optimization can be applied */
5114 for(ap2
=stp
->ap
; ap2
&& (ap2
==ap
|| ap2
->sp
!=rp
->lhs
); ap2
=ap2
->next
){}
5116 ap
->spOpt
= ap2
->sp
;
5117 ap
->type
= ap2
->type
;
5125 ** Compare two states for sorting purposes. The smaller state is the
5126 ** one with the most non-terminal actions. If they have the same number
5127 ** of non-terminal actions, then the smaller is the one with the most
5130 static int stateResortCompare(const void *a
, const void *b
){
5131 const struct state
*pA
= *(const struct state
**)a
;
5132 const struct state
*pB
= *(const struct state
**)b
;
5135 n
= pB
->nNtAct
- pA
->nNtAct
;
5137 n
= pB
->nTknAct
- pA
->nTknAct
;
5139 n
= pB
->statenum
- pA
->statenum
;
5148 ** Renumber and resort states so that states with fewer choices
5149 ** occur at the end. Except, keep state 0 as the first state.
5151 void ResortStates(struct lemon
*lemp
)
5157 for(i
=0; i
<lemp
->nstate
; i
++){
5158 stp
= lemp
->sorted
[i
];
5159 stp
->nTknAct
= stp
->nNtAct
= 0;
5160 stp
->iDfltReduce
= -1; /* Init dflt action to "syntax error" */
5161 stp
->iTknOfst
= NO_OFFSET
;
5162 stp
->iNtOfst
= NO_OFFSET
;
5163 for(ap
=stp
->ap
; ap
; ap
=ap
->next
){
5164 int iAction
= compute_action(lemp
,ap
);
5166 if( ap
->sp
->index
<lemp
->nterminal
){
5168 }else if( ap
->sp
->index
<lemp
->nsymbol
){
5171 assert( stp
->autoReduce
==0 || stp
->pDfltReduce
==ap
->x
.rp
);
5172 stp
->iDfltReduce
= iAction
;
5177 qsort(&lemp
->sorted
[1], lemp
->nstate
-1, sizeof(lemp
->sorted
[0]),
5178 stateResortCompare
);
5179 for(i
=0; i
<lemp
->nstate
; i
++){
5180 lemp
->sorted
[i
]->statenum
= i
;
5182 lemp
->nxstate
= lemp
->nstate
;
5183 while( lemp
->nxstate
>1 && lemp
->sorted
[lemp
->nxstate
-1]->autoReduce
){
5189 /***************** From the file "set.c" ************************************/
5191 ** Set manipulation routines for the LEMON parser generator.
5194 static int size
= 0;
5196 /* Set the set size */
5202 /* Allocate a new set */
5205 s
= (char*)calloc( size
, 1);
5212 /* Deallocate a set */
5213 void SetFree(char *s
)
5218 /* Add a new element to the set. Return TRUE if the element was added
5219 ** and FALSE if it was already there. */
5220 int SetAdd(char *s
, int e
)
5223 assert( e
>=0 && e
<size
);
5229 /* Add every element of s2 to s1. Return TRUE if s1 changes. */
5230 int SetUnion(char *s1
, char *s2
)
5234 for(i
=0; i
<size
; i
++){
5235 if( s2
[i
]==0 ) continue;
5243 /********************** From the file "table.c" ****************************/
5245 ** All code in this file has been automatically generated
5246 ** from a specification in the file
5248 ** by the associative array code building program "aagen".
5249 ** Do not edit this file! Instead, edit the specification
5250 ** file, then rerun aagen.
5253 ** Code for processing tables in the LEMON parser generator.
5256 PRIVATE
unsigned strhash(const char *x
)
5259 while( *x
) h
= h
*13 + *(x
++);
5263 /* Works like strdup, sort of. Save a string in malloced memory, but
5264 ** keep strings in a table so that the same string is not in more
5267 const char *Strsafe(const char *y
)
5272 if( y
==0 ) return 0;
5273 z
= Strsafe_find(y
);
5274 if( z
==0 && (cpy
=(char *)malloc( lemonStrlen(y
)+1 ))!=0 ){
5275 lemon_strcpy(cpy
,y
);
5283 /* There is one instance of the following structure for each
5284 ** associative array of type "x1".
5287 int size
; /* The number of available slots. */
5288 /* Must be a power of 2 greater than or */
5290 int count
; /* Number of currently slots filled */
5291 struct s_x1node
*tbl
; /* The data stored here */
5292 struct s_x1node
**ht
; /* Hash table for lookups */
5295 /* There is one instance of this structure for every data element
5296 ** in an associative array of type "x1".
5298 typedef struct s_x1node
{
5299 const char *data
; /* The data */
5300 struct s_x1node
*next
; /* Next entry with the same hash */
5301 struct s_x1node
**from
; /* Previous link */
5304 /* There is only one instance of the array, which is the following */
5305 static struct s_x1
*x1a
;
5307 /* Allocate a new associative array */
5308 void Strsafe_init(void){
5310 x1a
= (struct s_x1
*)malloc( sizeof(struct s_x1
) );
5314 x1a
->tbl
= (x1node
*)calloc(1024, sizeof(x1node
) + sizeof(x1node
*));
5320 x1a
->ht
= (x1node
**)&(x1a
->tbl
[1024]);
5321 for(i
=0; i
<1024; i
++) x1a
->ht
[i
] = 0;
5325 /* Insert a new record into the array. Return TRUE if successful.
5326 ** Prior data with the same key is NOT overwritten */
5327 int Strsafe_insert(const char *data
)
5333 if( x1a
==0 ) return 0;
5335 h
= ph
& (x1a
->size
-1);
5338 if( strcmp(np
->data
,data
)==0 ){
5339 /* An existing entry with the same key is found. */
5340 /* Fail because overwrite is not allows. */
5345 if( x1a
->count
>=x1a
->size
){
5346 /* Need to make the hash table bigger */
5349 array
.size
= arrSize
= x1a
->size
*2;
5350 array
.count
= x1a
->count
;
5351 array
.tbl
= (x1node
*)calloc(arrSize
, sizeof(x1node
) + sizeof(x1node
*));
5352 if( array
.tbl
==0 ) return 0; /* Fail due to malloc failure */
5353 array
.ht
= (x1node
**)&(array
.tbl
[arrSize
]);
5354 for(i
=0; i
<arrSize
; i
++) array
.ht
[i
] = 0;
5355 for(i
=0; i
<x1a
->count
; i
++){
5356 x1node
*oldnp
, *newnp
;
5357 oldnp
= &(x1a
->tbl
[i
]);
5358 h
= strhash(oldnp
->data
) & (arrSize
-1);
5359 newnp
= &(array
.tbl
[i
]);
5360 if( array
.ht
[h
] ) array
.ht
[h
]->from
= &(newnp
->next
);
5361 newnp
->next
= array
.ht
[h
];
5362 newnp
->data
= oldnp
->data
;
5363 newnp
->from
= &(array
.ht
[h
]);
5364 array
.ht
[h
] = newnp
;
5366 /* free(x1a->tbl); // This program was originally for 16-bit machines.
5367 ** Don't worry about freeing memory on modern platforms. */
5370 /* Insert the new data */
5371 h
= ph
& (x1a
->size
-1);
5372 np
= &(x1a
->tbl
[x1a
->count
++]);
5374 if( x1a
->ht
[h
] ) x1a
->ht
[h
]->from
= &(np
->next
);
5375 np
->next
= x1a
->ht
[h
];
5377 np
->from
= &(x1a
->ht
[h
]);
5381 /* Return a pointer to data assigned to the given key. Return NULL
5382 ** if no such key. */
5383 const char *Strsafe_find(const char *key
)
5388 if( x1a
==0 ) return 0;
5389 h
= strhash(key
) & (x1a
->size
-1);
5392 if( strcmp(np
->data
,key
)==0 ) break;
5395 return np
? np
->data
: 0;
5398 /* Return a pointer to the (terminal or nonterminal) symbol "x".
5399 ** Create a new symbol if this is the first time "x" has been seen.
5401 struct symbol
*Symbol_new(const char *x
)
5405 sp
= Symbol_find(x
);
5407 sp
= (struct symbol
*)calloc(1, sizeof(struct symbol
) );
5409 sp
->name
= Strsafe(x
);
5410 sp
->type
= ISUPPER(*x
) ? TERMINAL
: NONTERMINAL
;
5416 sp
->lambda
= LEMON_FALSE
;
5421 Symbol_insert(sp
,sp
->name
);
5427 /* Compare two symbols for sorting purposes. Return negative,
5428 ** zero, or positive if a is less then, equal to, or greater
5431 ** Symbols that begin with upper case letters (terminals or tokens)
5432 ** must sort before symbols that begin with lower case letters
5433 ** (non-terminals). And MULTITERMINAL symbols (created using the
5434 ** %token_class directive) must sort at the very end. Other than
5435 ** that, the order does not matter.
5437 ** We find experimentally that leaving the symbols in their original
5438 ** order (the order they appeared in the grammar file) gives the
5439 ** smallest parser tables in SQLite.
5441 int Symbolcmpp(const void *_a
, const void *_b
)
5443 const struct symbol
*a
= *(const struct symbol
**) _a
;
5444 const struct symbol
*b
= *(const struct symbol
**) _b
;
5445 int i1
= a
->type
==MULTITERMINAL
? 3 : a
->name
[0]>'Z' ? 2 : 1;
5446 int i2
= b
->type
==MULTITERMINAL
? 3 : b
->name
[0]>'Z' ? 2 : 1;
5447 return i1
==i2
? a
->index
- b
->index
: i1
- i2
;
5450 /* There is one instance of the following structure for each
5451 ** associative array of type "x2".
5454 int size
; /* The number of available slots. */
5455 /* Must be a power of 2 greater than or */
5457 int count
; /* Number of currently slots filled */
5458 struct s_x2node
*tbl
; /* The data stored here */
5459 struct s_x2node
**ht
; /* Hash table for lookups */
5462 /* There is one instance of this structure for every data element
5463 ** in an associative array of type "x2".
5465 typedef struct s_x2node
{
5466 struct symbol
*data
; /* The data */
5467 const char *key
; /* The key */
5468 struct s_x2node
*next
; /* Next entry with the same hash */
5469 struct s_x2node
**from
; /* Previous link */
5472 /* There is only one instance of the array, which is the following */
5473 static struct s_x2
*x2a
;
5475 /* Allocate a new associative array */
5476 void Symbol_init(void){
5478 x2a
= (struct s_x2
*)malloc( sizeof(struct s_x2
) );
5482 x2a
->tbl
= (x2node
*)calloc(128, sizeof(x2node
) + sizeof(x2node
*));
5488 x2a
->ht
= (x2node
**)&(x2a
->tbl
[128]);
5489 for(i
=0; i
<128; i
++) x2a
->ht
[i
] = 0;
5493 /* Insert a new record into the array. Return TRUE if successful.
5494 ** Prior data with the same key is NOT overwritten */
5495 int Symbol_insert(struct symbol
*data
, const char *key
)
5501 if( x2a
==0 ) return 0;
5503 h
= ph
& (x2a
->size
-1);
5506 if( strcmp(np
->key
,key
)==0 ){
5507 /* An existing entry with the same key is found. */
5508 /* Fail because overwrite is not allows. */
5513 if( x2a
->count
>=x2a
->size
){
5514 /* Need to make the hash table bigger */
5517 array
.size
= arrSize
= x2a
->size
*2;
5518 array
.count
= x2a
->count
;
5519 array
.tbl
= (x2node
*)calloc(arrSize
, sizeof(x2node
) + sizeof(x2node
*));
5520 if( array
.tbl
==0 ) return 0; /* Fail due to malloc failure */
5521 array
.ht
= (x2node
**)&(array
.tbl
[arrSize
]);
5522 for(i
=0; i
<arrSize
; i
++) array
.ht
[i
] = 0;
5523 for(i
=0; i
<x2a
->count
; i
++){
5524 x2node
*oldnp
, *newnp
;
5525 oldnp
= &(x2a
->tbl
[i
]);
5526 h
= strhash(oldnp
->key
) & (arrSize
-1);
5527 newnp
= &(array
.tbl
[i
]);
5528 if( array
.ht
[h
] ) array
.ht
[h
]->from
= &(newnp
->next
);
5529 newnp
->next
= array
.ht
[h
];
5530 newnp
->key
= oldnp
->key
;
5531 newnp
->data
= oldnp
->data
;
5532 newnp
->from
= &(array
.ht
[h
]);
5533 array
.ht
[h
] = newnp
;
5535 /* free(x2a->tbl); // This program was originally written for 16-bit
5536 ** machines. Don't worry about freeing this trivial amount of memory
5537 ** on modern platforms. Just leak it. */
5540 /* Insert the new data */
5541 h
= ph
& (x2a
->size
-1);
5542 np
= &(x2a
->tbl
[x2a
->count
++]);
5545 if( x2a
->ht
[h
] ) x2a
->ht
[h
]->from
= &(np
->next
);
5546 np
->next
= x2a
->ht
[h
];
5548 np
->from
= &(x2a
->ht
[h
]);
5552 /* Return a pointer to data assigned to the given key. Return NULL
5553 ** if no such key. */
5554 struct symbol
*Symbol_find(const char *key
)
5559 if( x2a
==0 ) return 0;
5560 h
= strhash(key
) & (x2a
->size
-1);
5563 if( strcmp(np
->key
,key
)==0 ) break;
5566 return np
? np
->data
: 0;
5569 /* Return the n-th data. Return NULL if n is out of range. */
5570 struct symbol
*Symbol_Nth(int n
)
5572 struct symbol
*data
;
5573 if( x2a
&& n
>0 && n
<=x2a
->count
){
5574 data
= x2a
->tbl
[n
-1].data
;
5581 /* Return the size of the array */
5584 return x2a
? x2a
->count
: 0;
5587 /* Return an array of pointers to all data in the table.
5588 ** The array is obtained from malloc. Return NULL if memory allocation
5589 ** problems, or if the array is empty. */
5590 struct symbol
**Symbol_arrayof()
5592 struct symbol
**array
;
5594 if( x2a
==0 ) return 0;
5595 arrSize
= x2a
->count
;
5596 array
= (struct symbol
**)calloc(arrSize
, sizeof(struct symbol
*));
5598 for(i
=0; i
<arrSize
; i
++) array
[i
] = x2a
->tbl
[i
].data
;
5603 /* Compare two configurations */
5604 int Configcmp(const char *_a
,const char *_b
)
5606 const struct config
*a
= (struct config
*) _a
;
5607 const struct config
*b
= (struct config
*) _b
;
5609 x
= a
->rp
->index
- b
->rp
->index
;
5610 if( x
==0 ) x
= a
->dot
- b
->dot
;
5614 /* Compare two states */
5615 PRIVATE
int statecmp(struct config
*a
, struct config
*b
)
5618 for(rc
=0; rc
==0 && a
&& b
; a
=a
->bp
, b
=b
->bp
){
5619 rc
= a
->rp
->index
- b
->rp
->index
;
5620 if( rc
==0 ) rc
= a
->dot
- b
->dot
;
5630 PRIVATE
unsigned statehash(struct config
*a
)
5634 h
= h
*571 + a
->rp
->index
*37 + a
->dot
;
5640 /* Allocate a new state structure */
5641 struct state
*State_new()
5643 struct state
*newstate
;
5644 newstate
= (struct state
*)calloc(1, sizeof(struct state
) );
5645 MemoryCheck(newstate
);
5649 /* There is one instance of the following structure for each
5650 ** associative array of type "x3".
5653 int size
; /* The number of available slots. */
5654 /* Must be a power of 2 greater than or */
5656 int count
; /* Number of currently slots filled */
5657 struct s_x3node
*tbl
; /* The data stored here */
5658 struct s_x3node
**ht
; /* Hash table for lookups */
5661 /* There is one instance of this structure for every data element
5662 ** in an associative array of type "x3".
5664 typedef struct s_x3node
{
5665 struct state
*data
; /* The data */
5666 struct config
*key
; /* The key */
5667 struct s_x3node
*next
; /* Next entry with the same hash */
5668 struct s_x3node
**from
; /* Previous link */
5671 /* There is only one instance of the array, which is the following */
5672 static struct s_x3
*x3a
;
5674 /* Allocate a new associative array */
5675 void State_init(void){
5677 x3a
= (struct s_x3
*)malloc( sizeof(struct s_x3
) );
5681 x3a
->tbl
= (x3node
*)calloc(128, sizeof(x3node
) + sizeof(x3node
*));
5687 x3a
->ht
= (x3node
**)&(x3a
->tbl
[128]);
5688 for(i
=0; i
<128; i
++) x3a
->ht
[i
] = 0;
5692 /* Insert a new record into the array. Return TRUE if successful.
5693 ** Prior data with the same key is NOT overwritten */
5694 int State_insert(struct state
*data
, struct config
*key
)
5700 if( x3a
==0 ) return 0;
5701 ph
= statehash(key
);
5702 h
= ph
& (x3a
->size
-1);
5705 if( statecmp(np
->key
,key
)==0 ){
5706 /* An existing entry with the same key is found. */
5707 /* Fail because overwrite is not allows. */
5712 if( x3a
->count
>=x3a
->size
){
5713 /* Need to make the hash table bigger */
5716 array
.size
= arrSize
= x3a
->size
*2;
5717 array
.count
= x3a
->count
;
5718 array
.tbl
= (x3node
*)calloc(arrSize
, sizeof(x3node
) + sizeof(x3node
*));
5719 if( array
.tbl
==0 ) return 0; /* Fail due to malloc failure */
5720 array
.ht
= (x3node
**)&(array
.tbl
[arrSize
]);
5721 for(i
=0; i
<arrSize
; i
++) array
.ht
[i
] = 0;
5722 for(i
=0; i
<x3a
->count
; i
++){
5723 x3node
*oldnp
, *newnp
;
5724 oldnp
= &(x3a
->tbl
[i
]);
5725 h
= statehash(oldnp
->key
) & (arrSize
-1);
5726 newnp
= &(array
.tbl
[i
]);
5727 if( array
.ht
[h
] ) array
.ht
[h
]->from
= &(newnp
->next
);
5728 newnp
->next
= array
.ht
[h
];
5729 newnp
->key
= oldnp
->key
;
5730 newnp
->data
= oldnp
->data
;
5731 newnp
->from
= &(array
.ht
[h
]);
5732 array
.ht
[h
] = newnp
;
5737 /* Insert the new data */
5738 h
= ph
& (x3a
->size
-1);
5739 np
= &(x3a
->tbl
[x3a
->count
++]);
5742 if( x3a
->ht
[h
] ) x3a
->ht
[h
]->from
= &(np
->next
);
5743 np
->next
= x3a
->ht
[h
];
5745 np
->from
= &(x3a
->ht
[h
]);
5749 /* Return a pointer to data assigned to the given key. Return NULL
5750 ** if no such key. */
5751 struct state
*State_find(struct config
*key
)
5756 if( x3a
==0 ) return 0;
5757 h
= statehash(key
) & (x3a
->size
-1);
5760 if( statecmp(np
->key
,key
)==0 ) break;
5763 return np
? np
->data
: 0;
5766 /* Return an array of pointers to all data in the table.
5767 ** The array is obtained from malloc. Return NULL if memory allocation
5768 ** problems, or if the array is empty. */
5769 struct state
**State_arrayof(void)
5771 struct state
**array
;
5773 if( x3a
==0 ) return 0;
5774 arrSize
= x3a
->count
;
5775 array
= (struct state
**)calloc(arrSize
, sizeof(struct state
*));
5777 for(i
=0; i
<arrSize
; i
++) array
[i
] = x3a
->tbl
[i
].data
;
5782 /* Hash a configuration */
5783 PRIVATE
unsigned confighash(struct config
*a
)
5786 h
= h
*571 + a
->rp
->index
*37 + a
->dot
;
5790 /* There is one instance of the following structure for each
5791 ** associative array of type "x4".
5794 int size
; /* The number of available slots. */
5795 /* Must be a power of 2 greater than or */
5797 int count
; /* Number of currently slots filled */
5798 struct s_x4node
*tbl
; /* The data stored here */
5799 struct s_x4node
**ht
; /* Hash table for lookups */
5802 /* There is one instance of this structure for every data element
5803 ** in an associative array of type "x4".
5805 typedef struct s_x4node
{
5806 struct config
*data
; /* The data */
5807 struct s_x4node
*next
; /* Next entry with the same hash */
5808 struct s_x4node
**from
; /* Previous link */
5811 /* There is only one instance of the array, which is the following */
5812 static struct s_x4
*x4a
;
5814 /* Allocate a new associative array */
5815 void Configtable_init(void){
5817 x4a
= (struct s_x4
*)malloc( sizeof(struct s_x4
) );
5821 x4a
->tbl
= (x4node
*)calloc(64, sizeof(x4node
) + sizeof(x4node
*));
5827 x4a
->ht
= (x4node
**)&(x4a
->tbl
[64]);
5828 for(i
=0; i
<64; i
++) x4a
->ht
[i
] = 0;
5832 /* Insert a new record into the array. Return TRUE if successful.
5833 ** Prior data with the same key is NOT overwritten */
5834 int Configtable_insert(struct config
*data
)
5840 if( x4a
==0 ) return 0;
5841 ph
= confighash(data
);
5842 h
= ph
& (x4a
->size
-1);
5845 if( Configcmp((const char *) np
->data
,(const char *) data
)==0 ){
5846 /* An existing entry with the same key is found. */
5847 /* Fail because overwrite is not allows. */
5852 if( x4a
->count
>=x4a
->size
){
5853 /* Need to make the hash table bigger */
5856 array
.size
= arrSize
= x4a
->size
*2;
5857 array
.count
= x4a
->count
;
5858 array
.tbl
= (x4node
*)calloc(arrSize
, sizeof(x4node
) + sizeof(x4node
*));
5859 if( array
.tbl
==0 ) return 0; /* Fail due to malloc failure */
5860 array
.ht
= (x4node
**)&(array
.tbl
[arrSize
]);
5861 for(i
=0; i
<arrSize
; i
++) array
.ht
[i
] = 0;
5862 for(i
=0; i
<x4a
->count
; i
++){
5863 x4node
*oldnp
, *newnp
;
5864 oldnp
= &(x4a
->tbl
[i
]);
5865 h
= confighash(oldnp
->data
) & (arrSize
-1);
5866 newnp
= &(array
.tbl
[i
]);
5867 if( array
.ht
[h
] ) array
.ht
[h
]->from
= &(newnp
->next
);
5868 newnp
->next
= array
.ht
[h
];
5869 newnp
->data
= oldnp
->data
;
5870 newnp
->from
= &(array
.ht
[h
]);
5871 array
.ht
[h
] = newnp
;
5873 /* free(x4a->tbl); // This code was originall written for 16-bit machines.
5874 ** on modern machines, don't worry about freeing this trival amount of
5878 /* Insert the new data */
5879 h
= ph
& (x4a
->size
-1);
5880 np
= &(x4a
->tbl
[x4a
->count
++]);
5882 if( x4a
->ht
[h
] ) x4a
->ht
[h
]->from
= &(np
->next
);
5883 np
->next
= x4a
->ht
[h
];
5885 np
->from
= &(x4a
->ht
[h
]);
5889 /* Return a pointer to data assigned to the given key. Return NULL
5890 ** if no such key. */
5891 struct config
*Configtable_find(struct config
*key
)
5896 if( x4a
==0 ) return 0;
5897 h
= confighash(key
) & (x4a
->size
-1);
5900 if( Configcmp((const char *) np
->data
,(const char *) key
)==0 ) break;
5903 return np
? np
->data
: 0;
5906 /* Remove all data from the table. Pass each data to the function "f"
5907 ** as it is removed. ("f" may be null to avoid this step.) */
5908 void Configtable_clear(int(*f
)(struct config
*))
5911 if( x4a
==0 || x4a
->count
==0 ) return;
5912 if( f
) for(i
=0; i
<x4a
->count
; i
++) (*f
)(x4a
->tbl
[i
].data
);
5913 for(i
=0; i
<x4a
->size
; i
++) x4a
->ht
[i
] = 0;