4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements. This module is responsible for
14 ** generating the code that loops through a table looking for applicable
15 ** rows. Indices are selected and used to speed the search when doing
16 ** so is applicable. Because this module is responsible for selecting
17 ** indices, you might also think of this module as the "query optimizer".
19 #include "sqliteInt.h"
23 ** Extra information appended to the end of sqlite3_index_info but not
24 ** visible to the xBestIndex function, at least not directly. The
25 ** sqlite3_vtab_collation() interface knows how to reach it, however.
27 ** This object is not an API and can be changed from one release to the
28 ** next. As long as allocateIndexInfo() and sqlite3_vtab_collation()
29 ** agree on the structure, all will be well.
31 typedef struct HiddenIndexInfo HiddenIndexInfo
;
32 struct HiddenIndexInfo
{
33 WhereClause
*pWC
; /* The Where clause being analyzed */
34 Parse
*pParse
; /* The parsing context */
37 /* Forward declaration of methods */
38 static int whereLoopResize(sqlite3
*, WhereLoop
*, int);
41 ** Return the estimated number of output rows from a WHERE clause
43 LogEst
sqlite3WhereOutputRowCount(WhereInfo
*pWInfo
){
44 return pWInfo
->nRowOut
;
48 ** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this
49 ** WHERE clause returns outputs for DISTINCT processing.
51 int sqlite3WhereIsDistinct(WhereInfo
*pWInfo
){
52 return pWInfo
->eDistinct
;
56 ** Return the number of ORDER BY terms that are satisfied by the
57 ** WHERE clause. A return of 0 means that the output must be
58 ** completely sorted. A return equal to the number of ORDER BY
59 ** terms means that no sorting is needed at all. A return that
60 ** is positive but less than the number of ORDER BY terms means that
61 ** block sorting is required.
63 int sqlite3WhereIsOrdered(WhereInfo
*pWInfo
){
64 return pWInfo
->nOBSat
;
68 ** In the ORDER BY LIMIT optimization, if the inner-most loop is known
69 ** to emit rows in increasing order, and if the last row emitted by the
70 ** inner-most loop did not fit within the sorter, then we can skip all
71 ** subsequent rows for the current iteration of the inner loop (because they
72 ** will not fit in the sorter either) and continue with the second inner
73 ** loop - the loop immediately outside the inner-most.
75 ** When a row does not fit in the sorter (because the sorter already
76 ** holds LIMIT+OFFSET rows that are smaller), then a jump is made to the
77 ** label returned by this function.
79 ** If the ORDER BY LIMIT optimization applies, the jump destination should
80 ** be the continuation for the second-inner-most loop. If the ORDER BY
81 ** LIMIT optimization does not apply, then the jump destination should
82 ** be the continuation for the inner-most loop.
84 ** It is always safe for this routine to return the continuation of the
85 ** inner-most loop, in the sense that a correct answer will result.
86 ** Returning the continuation the second inner loop is an optimization
87 ** that might make the code run a little faster, but should not change
90 int sqlite3WhereOrderByLimitOptLabel(WhereInfo
*pWInfo
){
92 if( !pWInfo
->bOrderedInnerLoop
){
93 /* The ORDER BY LIMIT optimization does not apply. Jump to the
94 ** continuation of the inner-most loop. */
95 return pWInfo
->iContinue
;
97 pInner
= &pWInfo
->a
[pWInfo
->nLevel
-1];
98 assert( pInner
->addrNxt
!=0 );
99 return pInner
->addrNxt
;
103 ** While generating code for the min/max optimization, after handling
104 ** the aggregate-step call to min() or max(), check to see if any
105 ** additional looping is required. If the output order is such that
106 ** we are certain that the correct answer has already been found, then
107 ** code an OP_Goto to by pass subsequent processing.
109 ** Any extra OP_Goto that is coded here is an optimization. The
110 ** correct answer should be obtained regardless. This OP_Goto just
111 ** makes the answer appear faster.
113 void sqlite3WhereMinMaxOptEarlyOut(Vdbe
*v
, WhereInfo
*pWInfo
){
116 if( !pWInfo
->bOrderedInnerLoop
) return;
117 if( pWInfo
->nOBSat
==0 ) return;
118 for(i
=pWInfo
->nLevel
-1; i
>=0; i
--){
119 pInner
= &pWInfo
->a
[i
];
120 if( (pInner
->pWLoop
->wsFlags
& WHERE_COLUMN_IN
)!=0 ){
121 sqlite3VdbeGoto(v
, pInner
->addrNxt
);
125 sqlite3VdbeGoto(v
, pWInfo
->iBreak
);
129 ** Return the VDBE address or label to jump to in order to continue
130 ** immediately with the next row of a WHERE clause.
132 int sqlite3WhereContinueLabel(WhereInfo
*pWInfo
){
133 assert( pWInfo
->iContinue
!=0 );
134 return pWInfo
->iContinue
;
138 ** Return the VDBE address or label to jump to in order to break
139 ** out of a WHERE loop.
141 int sqlite3WhereBreakLabel(WhereInfo
*pWInfo
){
142 return pWInfo
->iBreak
;
146 ** Return ONEPASS_OFF (0) if an UPDATE or DELETE statement is unable to
147 ** operate directly on the rowids returned by a WHERE clause. Return
148 ** ONEPASS_SINGLE (1) if the statement can operation directly because only
149 ** a single row is to be changed. Return ONEPASS_MULTI (2) if the one-pass
150 ** optimization can be used on multiple
152 ** If the ONEPASS optimization is used (if this routine returns true)
153 ** then also write the indices of open cursors used by ONEPASS
154 ** into aiCur[0] and aiCur[1]. iaCur[0] gets the cursor of the data
155 ** table and iaCur[1] gets the cursor used by an auxiliary index.
156 ** Either value may be -1, indicating that cursor is not used.
157 ** Any cursors returned will have been opened for writing.
159 ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is
160 ** unable to use the ONEPASS optimization.
162 int sqlite3WhereOkOnePass(WhereInfo
*pWInfo
, int *aiCur
){
163 memcpy(aiCur
, pWInfo
->aiCurOnePass
, sizeof(int)*2);
164 #ifdef WHERETRACE_ENABLED
165 if( sqlite3WhereTrace
&& pWInfo
->eOnePass
!=ONEPASS_OFF
){
166 sqlite3DebugPrintf("%s cursors: %d %d\n",
167 pWInfo
->eOnePass
==ONEPASS_SINGLE
? "ONEPASS_SINGLE" : "ONEPASS_MULTI",
171 return pWInfo
->eOnePass
;
175 ** Return TRUE if the WHERE loop uses the OP_DeferredSeek opcode to move
176 ** the data cursor to the row selected by the index cursor.
178 int sqlite3WhereUsesDeferredSeek(WhereInfo
*pWInfo
){
179 return pWInfo
->bDeferredSeek
;
183 ** Move the content of pSrc into pDest
185 static void whereOrMove(WhereOrSet
*pDest
, WhereOrSet
*pSrc
){
187 memcpy(pDest
->a
, pSrc
->a
, pDest
->n
*sizeof(pDest
->a
[0]));
191 ** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet.
193 ** The new entry might overwrite an existing entry, or it might be
194 ** appended, or it might be discarded. Do whatever is the right thing
195 ** so that pSet keeps the N_OR_COST best entries seen so far.
197 static int whereOrInsert(
198 WhereOrSet
*pSet
, /* The WhereOrSet to be updated */
199 Bitmask prereq
, /* Prerequisites of the new entry */
200 LogEst rRun
, /* Run-cost of the new entry */
201 LogEst nOut
/* Number of outputs for the new entry */
205 for(i
=pSet
->n
, p
=pSet
->a
; i
>0; i
--, p
++){
206 if( rRun
<=p
->rRun
&& (prereq
& p
->prereq
)==prereq
){
207 goto whereOrInsert_done
;
209 if( p
->rRun
<=rRun
&& (p
->prereq
& prereq
)==p
->prereq
){
213 if( pSet
->n
<N_OR_COST
){
214 p
= &pSet
->a
[pSet
->n
++];
218 for(i
=1; i
<pSet
->n
; i
++){
219 if( p
->rRun
>pSet
->a
[i
].rRun
) p
= pSet
->a
+ i
;
221 if( p
->rRun
<=rRun
) return 0;
226 if( p
->nOut
>nOut
) p
->nOut
= nOut
;
231 ** Return the bitmask for the given cursor number. Return 0 if
232 ** iCursor is not in the set.
234 Bitmask
sqlite3WhereGetMask(WhereMaskSet
*pMaskSet
, int iCursor
){
236 assert( pMaskSet
->n
<=(int)sizeof(Bitmask
)*8 );
237 for(i
=0; i
<pMaskSet
->n
; i
++){
238 if( pMaskSet
->ix
[i
]==iCursor
){
246 ** Create a new mask for cursor iCursor.
248 ** There is one cursor per table in the FROM clause. The number of
249 ** tables in the FROM clause is limited by a test early in the
250 ** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[]
251 ** array will never overflow.
253 static void createMask(WhereMaskSet
*pMaskSet
, int iCursor
){
254 assert( pMaskSet
->n
< ArraySize(pMaskSet
->ix
) );
255 pMaskSet
->ix
[pMaskSet
->n
++] = iCursor
;
259 ** If the right-hand branch of the expression is a TK_COLUMN, then return
260 ** a pointer to the right-hand branch. Otherwise, return NULL.
262 static Expr
*whereRightSubexprIsColumn(Expr
*p
){
263 p
= sqlite3ExprSkipCollateAndLikely(p
->pRight
);
264 if( ALWAYS(p
!=0) && p
->op
==TK_COLUMN
&& !ExprHasProperty(p
, EP_FixedCol
) ){
271 ** Advance to the next WhereTerm that matches according to the criteria
272 ** established when the pScan object was initialized by whereScanInit().
273 ** Return NULL if there are no more matching WhereTerms.
275 static WhereTerm
*whereScanNext(WhereScan
*pScan
){
276 int iCur
; /* The cursor on the LHS of the term */
277 i16 iColumn
; /* The column on the LHS of the term. -1 for IPK */
278 Expr
*pX
; /* An expression being tested */
279 WhereClause
*pWC
; /* Shorthand for pScan->pWC */
280 WhereTerm
*pTerm
; /* The term being tested */
281 int k
= pScan
->k
; /* Where to start scanning */
283 assert( pScan
->iEquiv
<=pScan
->nEquiv
);
286 iColumn
= pScan
->aiColumn
[pScan
->iEquiv
-1];
287 iCur
= pScan
->aiCur
[pScan
->iEquiv
-1];
290 for(pTerm
=pWC
->a
+k
; k
<pWC
->nTerm
; k
++, pTerm
++){
291 if( pTerm
->leftCursor
==iCur
292 && pTerm
->u
.x
.leftColumn
==iColumn
294 || sqlite3ExprCompareSkip(pTerm
->pExpr
->pLeft
,
295 pScan
->pIdxExpr
,iCur
)==0)
296 && (pScan
->iEquiv
<=1 || !ExprHasProperty(pTerm
->pExpr
, EP_FromJoin
))
298 if( (pTerm
->eOperator
& WO_EQUIV
)!=0
299 && pScan
->nEquiv
<ArraySize(pScan
->aiCur
)
300 && (pX
= whereRightSubexprIsColumn(pTerm
->pExpr
))!=0
303 for(j
=0; j
<pScan
->nEquiv
; j
++){
304 if( pScan
->aiCur
[j
]==pX
->iTable
305 && pScan
->aiColumn
[j
]==pX
->iColumn
){
309 if( j
==pScan
->nEquiv
){
310 pScan
->aiCur
[j
] = pX
->iTable
;
311 pScan
->aiColumn
[j
] = pX
->iColumn
;
315 if( (pTerm
->eOperator
& pScan
->opMask
)!=0 ){
316 /* Verify the affinity and collating sequence match */
317 if( pScan
->zCollName
&& (pTerm
->eOperator
& WO_ISNULL
)==0 ){
319 Parse
*pParse
= pWC
->pWInfo
->pParse
;
321 if( !sqlite3IndexAffinityOk(pX
, pScan
->idxaff
) ){
325 pColl
= sqlite3ExprCompareCollSeq(pParse
, pX
);
326 if( pColl
==0 ) pColl
= pParse
->db
->pDfltColl
;
327 if( sqlite3StrICmp(pColl
->zName
, pScan
->zCollName
) ){
331 if( (pTerm
->eOperator
& (WO_EQ
|WO_IS
))!=0
332 && (pX
= pTerm
->pExpr
->pRight
)->op
==TK_COLUMN
333 && pX
->iTable
==pScan
->aiCur
[0]
334 && pX
->iColumn
==pScan
->aiColumn
[0]
336 testcase( pTerm
->eOperator
& WO_IS
);
341 #ifdef WHERETRACE_ENABLED
342 if( sqlite3WhereTrace
& 0x20000 ){
344 sqlite3DebugPrintf("SCAN-TERM %p: nEquiv=%d",
345 pTerm
, pScan
->nEquiv
);
346 for(ii
=0; ii
<pScan
->nEquiv
; ii
++){
347 sqlite3DebugPrintf(" {%d:%d}",
348 pScan
->aiCur
[ii
], pScan
->aiColumn
[ii
]);
350 sqlite3DebugPrintf("\n");
360 if( pScan
->iEquiv
>=pScan
->nEquiv
) break;
361 pWC
= pScan
->pOrigWC
;
369 ** This is whereScanInit() for the case of an index on an expression.
370 ** It is factored out into a separate tail-recursion subroutine so that
371 ** the normal whereScanInit() routine, which is a high-runner, does not
372 ** need to push registers onto the stack as part of its prologue.
374 static SQLITE_NOINLINE WhereTerm
*whereScanInitIndexExpr(WhereScan
*pScan
){
375 pScan
->idxaff
= sqlite3ExprAffinity(pScan
->pIdxExpr
);
376 return whereScanNext(pScan
);
380 ** Initialize a WHERE clause scanner object. Return a pointer to the
381 ** first match. Return NULL if there are no matches.
383 ** The scanner will be searching the WHERE clause pWC. It will look
384 ** for terms of the form "X <op> <expr>" where X is column iColumn of table
385 ** iCur. Or if pIdx!=0 then X is column iColumn of index pIdx. pIdx
386 ** must be one of the indexes of table iCur.
388 ** The <op> must be one of the operators described by opMask.
390 ** If the search is for X and the WHERE clause contains terms of the
391 ** form X=Y then this routine might also return terms of the form
392 ** "Y <op> <expr>". The number of levels of transitivity is limited,
393 ** but is enough to handle most commonly occurring SQL statements.
395 ** If X is not the INTEGER PRIMARY KEY then X must be compatible with
398 static WhereTerm
*whereScanInit(
399 WhereScan
*pScan
, /* The WhereScan object being initialized */
400 WhereClause
*pWC
, /* The WHERE clause to be scanned */
401 int iCur
, /* Cursor to scan for */
402 int iColumn
, /* Column to scan for */
403 u32 opMask
, /* Operator(s) to scan for */
404 Index
*pIdx
/* Must be compatible with this index */
406 pScan
->pOrigWC
= pWC
;
410 pScan
->zCollName
= 0;
411 pScan
->opMask
= opMask
;
413 pScan
->aiCur
[0] = iCur
;
418 iColumn
= pIdx
->aiColumn
[j
];
419 if( iColumn
==XN_EXPR
){
420 pScan
->pIdxExpr
= pIdx
->aColExpr
->a
[j
].pExpr
;
421 pScan
->zCollName
= pIdx
->azColl
[j
];
422 pScan
->aiColumn
[0] = XN_EXPR
;
423 return whereScanInitIndexExpr(pScan
);
424 }else if( iColumn
==pIdx
->pTable
->iPKey
){
426 }else if( iColumn
>=0 ){
427 pScan
->idxaff
= pIdx
->pTable
->aCol
[iColumn
].affinity
;
428 pScan
->zCollName
= pIdx
->azColl
[j
];
430 }else if( iColumn
==XN_EXPR
){
433 pScan
->aiColumn
[0] = iColumn
;
434 return whereScanNext(pScan
);
438 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
439 ** where X is a reference to the iColumn of table iCur or of index pIdx
440 ** if pIdx!=0 and <op> is one of the WO_xx operator codes specified by
441 ** the op parameter. Return a pointer to the term. Return 0 if not found.
443 ** If pIdx!=0 then it must be one of the indexes of table iCur.
444 ** Search for terms matching the iColumn-th column of pIdx
445 ** rather than the iColumn-th column of table iCur.
447 ** The term returned might by Y=<expr> if there is another constraint in
448 ** the WHERE clause that specifies that X=Y. Any such constraints will be
449 ** identified by the WO_EQUIV bit in the pTerm->eOperator field. The
450 ** aiCur[]/iaColumn[] arrays hold X and all its equivalents. There are 11
451 ** slots in aiCur[]/aiColumn[] so that means we can look for X plus up to 10
452 ** other equivalent values. Hence a search for X will return <expr> if X=A1
453 ** and A1=A2 and A2=A3 and ... and A9=A10 and A10=<expr>.
455 ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>"
456 ** then try for the one with no dependencies on <expr> - in other words where
457 ** <expr> is a constant expression of some kind. Only return entries of
458 ** the form "X <op> Y" where Y is a column in another table if no terms of
459 ** the form "X <op> <const-expr>" exist. If no terms with a constant RHS
460 ** exist, try to return a term that does not use WO_EQUIV.
462 WhereTerm
*sqlite3WhereFindTerm(
463 WhereClause
*pWC
, /* The WHERE clause to be searched */
464 int iCur
, /* Cursor number of LHS */
465 int iColumn
, /* Column number of LHS */
466 Bitmask notReady
, /* RHS must not overlap with this mask */
467 u32 op
, /* Mask of WO_xx values describing operator */
468 Index
*pIdx
/* Must be compatible with this index, if not NULL */
470 WhereTerm
*pResult
= 0;
474 p
= whereScanInit(&scan
, pWC
, iCur
, iColumn
, op
, pIdx
);
477 if( (p
->prereqRight
& notReady
)==0 ){
478 if( p
->prereqRight
==0 && (p
->eOperator
&op
)!=0 ){
479 testcase( p
->eOperator
& WO_IS
);
482 if( pResult
==0 ) pResult
= p
;
484 p
= whereScanNext(&scan
);
490 ** This function searches pList for an entry that matches the iCol-th column
493 ** If such an expression is found, its index in pList->a[] is returned. If
494 ** no expression is found, -1 is returned.
496 static int findIndexCol(
497 Parse
*pParse
, /* Parse context */
498 ExprList
*pList
, /* Expression list to search */
499 int iBase
, /* Cursor for table associated with pIdx */
500 Index
*pIdx
, /* Index to match column of */
501 int iCol
/* Column of index to match */
504 const char *zColl
= pIdx
->azColl
[iCol
];
506 for(i
=0; i
<pList
->nExpr
; i
++){
507 Expr
*p
= sqlite3ExprSkipCollateAndLikely(pList
->a
[i
].pExpr
);
509 && (p
->op
==TK_COLUMN
|| p
->op
==TK_AGG_COLUMN
)
510 && p
->iColumn
==pIdx
->aiColumn
[iCol
]
513 CollSeq
*pColl
= sqlite3ExprNNCollSeq(pParse
, pList
->a
[i
].pExpr
);
514 if( 0==sqlite3StrICmp(pColl
->zName
, zColl
) ){
524 ** Return TRUE if the iCol-th column of index pIdx is NOT NULL
526 static int indexColumnNotNull(Index
*pIdx
, int iCol
){
529 assert( iCol
>=0 && iCol
<pIdx
->nColumn
);
530 j
= pIdx
->aiColumn
[iCol
];
532 return pIdx
->pTable
->aCol
[j
].notNull
;
537 return 0; /* Assume an indexed expression can always yield a NULL */
543 ** Return true if the DISTINCT expression-list passed as the third argument
546 ** A DISTINCT list is redundant if any subset of the columns in the
547 ** DISTINCT list are collectively unique and individually non-null.
549 static int isDistinctRedundant(
550 Parse
*pParse
, /* Parsing context */
551 SrcList
*pTabList
, /* The FROM clause */
552 WhereClause
*pWC
, /* The WHERE clause */
553 ExprList
*pDistinct
/* The result set that needs to be DISTINCT */
560 /* If there is more than one table or sub-select in the FROM clause of
561 ** this query, then it will not be possible to show that the DISTINCT
562 ** clause is redundant. */
563 if( pTabList
->nSrc
!=1 ) return 0;
564 iBase
= pTabList
->a
[0].iCursor
;
565 pTab
= pTabList
->a
[0].pTab
;
567 /* If any of the expressions is an IPK column on table iBase, then return
568 ** true. Note: The (p->iTable==iBase) part of this test may be false if the
569 ** current SELECT is a correlated sub-query.
571 for(i
=0; i
<pDistinct
->nExpr
; i
++){
572 Expr
*p
= sqlite3ExprSkipCollateAndLikely(pDistinct
->a
[i
].pExpr
);
573 if( NEVER(p
==0) ) continue;
574 if( p
->op
!=TK_COLUMN
&& p
->op
!=TK_AGG_COLUMN
) continue;
575 if( p
->iTable
==iBase
&& p
->iColumn
<0 ) return 1;
578 /* Loop through all indices on the table, checking each to see if it makes
579 ** the DISTINCT qualifier redundant. It does so if:
581 ** 1. The index is itself UNIQUE, and
583 ** 2. All of the columns in the index are either part of the pDistinct
584 ** list, or else the WHERE clause contains a term of the form "col=X",
585 ** where X is a constant value. The collation sequences of the
586 ** comparison and select-list expressions must match those of the index.
588 ** 3. All of those index columns for which the WHERE clause does not
589 ** contain a "col=X" term are subject to a NOT NULL constraint.
591 for(pIdx
=pTab
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
){
592 if( !IsUniqueIndex(pIdx
) ) continue;
593 if( pIdx
->pPartIdxWhere
) continue;
594 for(i
=0; i
<pIdx
->nKeyCol
; i
++){
595 if( 0==sqlite3WhereFindTerm(pWC
, iBase
, i
, ~(Bitmask
)0, WO_EQ
, pIdx
) ){
596 if( findIndexCol(pParse
, pDistinct
, iBase
, pIdx
, i
)<0 ) break;
597 if( indexColumnNotNull(pIdx
, i
)==0 ) break;
600 if( i
==pIdx
->nKeyCol
){
601 /* This index implies that the DISTINCT qualifier is redundant. */
611 ** Estimate the logarithm of the input value to base 2.
613 static LogEst
estLog(LogEst N
){
614 return N
<=10 ? 0 : sqlite3LogEst(N
) - 33;
618 ** Convert OP_Column opcodes to OP_Copy in previously generated code.
620 ** This routine runs over generated VDBE code and translates OP_Column
621 ** opcodes into OP_Copy when the table is being accessed via co-routine
622 ** instead of via table lookup.
624 ** If the iAutoidxCur is not zero, then any OP_Rowid instructions on
625 ** cursor iTabCur are transformed into OP_Sequence opcode for the
626 ** iAutoidxCur cursor, in order to generate unique rowids for the
627 ** automatic index being generated.
629 static void translateColumnToCopy(
630 Parse
*pParse
, /* Parsing context */
631 int iStart
, /* Translate from this opcode to the end */
632 int iTabCur
, /* OP_Column/OP_Rowid references to this table */
633 int iRegister
, /* The first column is in this register */
634 int iAutoidxCur
/* If non-zero, cursor of autoindex being generated */
636 Vdbe
*v
= pParse
->pVdbe
;
637 VdbeOp
*pOp
= sqlite3VdbeGetOp(v
, iStart
);
638 int iEnd
= sqlite3VdbeCurrentAddr(v
);
639 if( pParse
->db
->mallocFailed
) return;
640 for(; iStart
<iEnd
; iStart
++, pOp
++){
641 if( pOp
->p1
!=iTabCur
) continue;
642 if( pOp
->opcode
==OP_Column
){
643 pOp
->opcode
= OP_Copy
;
644 pOp
->p1
= pOp
->p2
+ iRegister
;
647 }else if( pOp
->opcode
==OP_Rowid
){
648 pOp
->opcode
= OP_Sequence
;
649 pOp
->p1
= iAutoidxCur
;
650 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
651 if( iAutoidxCur
==0 ){
652 pOp
->opcode
= OP_Null
;
661 ** Two routines for printing the content of an sqlite3_index_info
662 ** structure. Used for testing and debugging only. If neither
663 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
666 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED)
667 static void whereTraceIndexInfoInputs(sqlite3_index_info
*p
){
669 if( !sqlite3WhereTrace
) return;
670 for(i
=0; i
<p
->nConstraint
; i
++){
671 sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n",
673 p
->aConstraint
[i
].iColumn
,
674 p
->aConstraint
[i
].iTermOffset
,
675 p
->aConstraint
[i
].op
,
676 p
->aConstraint
[i
].usable
);
678 for(i
=0; i
<p
->nOrderBy
; i
++){
679 sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n",
681 p
->aOrderBy
[i
].iColumn
,
682 p
->aOrderBy
[i
].desc
);
685 static void whereTraceIndexInfoOutputs(sqlite3_index_info
*p
){
687 if( !sqlite3WhereTrace
) return;
688 for(i
=0; i
<p
->nConstraint
; i
++){
689 sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n",
691 p
->aConstraintUsage
[i
].argvIndex
,
692 p
->aConstraintUsage
[i
].omit
);
694 sqlite3DebugPrintf(" idxNum=%d\n", p
->idxNum
);
695 sqlite3DebugPrintf(" idxStr=%s\n", p
->idxStr
);
696 sqlite3DebugPrintf(" orderByConsumed=%d\n", p
->orderByConsumed
);
697 sqlite3DebugPrintf(" estimatedCost=%g\n", p
->estimatedCost
);
698 sqlite3DebugPrintf(" estimatedRows=%lld\n", p
->estimatedRows
);
701 #define whereTraceIndexInfoInputs(A)
702 #define whereTraceIndexInfoOutputs(A)
705 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
707 ** Return TRUE if the WHERE clause term pTerm is of a form where it
708 ** could be used with an index to access pSrc, assuming an appropriate
711 static int termCanDriveIndex(
712 WhereTerm
*pTerm
, /* WHERE clause term to check */
713 SrcItem
*pSrc
, /* Table we are trying to access */
714 Bitmask notReady
/* Tables in outer loops of the join */
717 if( pTerm
->leftCursor
!=pSrc
->iCursor
) return 0;
718 if( (pTerm
->eOperator
& (WO_EQ
|WO_IS
))==0 ) return 0;
719 if( (pSrc
->fg
.jointype
& JT_LEFT
)
720 && !ExprHasProperty(pTerm
->pExpr
, EP_FromJoin
)
721 && (pTerm
->eOperator
& WO_IS
)
723 /* Cannot use an IS term from the WHERE clause as an index driver for
724 ** the RHS of a LEFT JOIN. Such a term can only be used if it is from
728 if( (pTerm
->prereqRight
& notReady
)!=0 ) return 0;
729 if( pTerm
->u
.x
.leftColumn
<0 ) return 0;
730 aff
= pSrc
->pTab
->aCol
[pTerm
->u
.x
.leftColumn
].affinity
;
731 if( !sqlite3IndexAffinityOk(pTerm
->pExpr
, aff
) ) return 0;
732 testcase( pTerm
->pExpr
->op
==TK_IS
);
738 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
740 ** Generate code to construct the Index object for an automatic index
741 ** and to set up the WhereLevel object pLevel so that the code generator
742 ** makes use of the automatic index.
744 static void constructAutomaticIndex(
745 Parse
*pParse
, /* The parsing context */
746 WhereClause
*pWC
, /* The WHERE clause */
747 SrcItem
*pSrc
, /* The FROM clause term to get the next index */
748 Bitmask notReady
, /* Mask of cursors that are not available */
749 WhereLevel
*pLevel
/* Write new index here */
751 int nKeyCol
; /* Number of columns in the constructed index */
752 WhereTerm
*pTerm
; /* A single term of the WHERE clause */
753 WhereTerm
*pWCEnd
; /* End of pWC->a[] */
754 Index
*pIdx
; /* Object describing the transient index */
755 Vdbe
*v
; /* Prepared statement under construction */
756 int addrInit
; /* Address of the initialization bypass jump */
757 Table
*pTable
; /* The table being indexed */
758 int addrTop
; /* Top of the index fill loop */
759 int regRecord
; /* Register holding an index record */
760 int n
; /* Column counter */
761 int i
; /* Loop counter */
762 int mxBitCol
; /* Maximum column in pSrc->colUsed */
763 CollSeq
*pColl
; /* Collating sequence to on a column */
764 WhereLoop
*pLoop
; /* The Loop object */
765 char *zNotUsed
; /* Extra space on the end of pIdx */
766 Bitmask idxCols
; /* Bitmap of columns used for indexing */
767 Bitmask extraCols
; /* Bitmap of additional columns */
768 u8 sentWarning
= 0; /* True if a warnning has been issued */
769 Expr
*pPartial
= 0; /* Partial Index Expression */
770 int iContinue
= 0; /* Jump here to skip excluded rows */
771 SrcItem
*pTabItem
; /* FROM clause term being indexed */
772 int addrCounter
= 0; /* Address where integer counter is initialized */
773 int regBase
; /* Array of registers where record is assembled */
775 /* Generate code to skip over the creation and initialization of the
776 ** transient index on 2nd and subsequent iterations of the loop. */
779 addrInit
= sqlite3VdbeAddOp0(v
, OP_Once
); VdbeCoverage(v
);
781 /* Count the number of columns that will be added to the index
782 ** and used to match WHERE clause constraints */
785 pWCEnd
= &pWC
->a
[pWC
->nTerm
];
786 pLoop
= pLevel
->pWLoop
;
788 for(pTerm
=pWC
->a
; pTerm
<pWCEnd
; pTerm
++){
789 Expr
*pExpr
= pTerm
->pExpr
;
790 assert( !ExprHasProperty(pExpr
, EP_FromJoin
) /* prereq always non-zero */
791 || pExpr
->iRightJoinTable
!=pSrc
->iCursor
/* for the right-hand */
792 || pLoop
->prereq
!=0 ); /* table of a LEFT JOIN */
794 && (pTerm
->wtFlags
& TERM_VIRTUAL
)==0
795 && !ExprHasProperty(pExpr
, EP_FromJoin
)
796 && sqlite3ExprIsTableConstant(pExpr
, pSrc
->iCursor
) ){
797 pPartial
= sqlite3ExprAnd(pParse
, pPartial
,
798 sqlite3ExprDup(pParse
->db
, pExpr
, 0));
800 if( termCanDriveIndex(pTerm
, pSrc
, notReady
) ){
801 int iCol
= pTerm
->u
.x
.leftColumn
;
802 Bitmask cMask
= iCol
>=BMS
? MASKBIT(BMS
-1) : MASKBIT(iCol
);
803 testcase( iCol
==BMS
);
804 testcase( iCol
==BMS
-1 );
806 sqlite3_log(SQLITE_WARNING_AUTOINDEX
,
807 "automatic index on %s(%s)", pTable
->zName
,
808 pTable
->aCol
[iCol
].zName
);
811 if( (idxCols
& cMask
)==0 ){
812 if( whereLoopResize(pParse
->db
, pLoop
, nKeyCol
+1) ){
813 goto end_auto_index_create
;
815 pLoop
->aLTerm
[nKeyCol
++] = pTerm
;
820 assert( nKeyCol
>0 || pParse
->db
->mallocFailed
);
821 pLoop
->u
.btree
.nEq
= pLoop
->nLTerm
= nKeyCol
;
822 pLoop
->wsFlags
= WHERE_COLUMN_EQ
| WHERE_IDX_ONLY
| WHERE_INDEXED
825 /* Count the number of additional columns needed to create a
826 ** covering index. A "covering index" is an index that contains all
827 ** columns that are needed by the query. With a covering index, the
828 ** original table never needs to be accessed. Automatic indices must
829 ** be a covering index because the index will not be updated if the
830 ** original table changes and the index and table cannot both be used
831 ** if they go out of sync.
833 extraCols
= pSrc
->colUsed
& (~idxCols
| MASKBIT(BMS
-1));
834 mxBitCol
= MIN(BMS
-1,pTable
->nCol
);
835 testcase( pTable
->nCol
==BMS
-1 );
836 testcase( pTable
->nCol
==BMS
-2 );
837 for(i
=0; i
<mxBitCol
; i
++){
838 if( extraCols
& MASKBIT(i
) ) nKeyCol
++;
840 if( pSrc
->colUsed
& MASKBIT(BMS
-1) ){
841 nKeyCol
+= pTable
->nCol
- BMS
+ 1;
844 /* Construct the Index object to describe this index */
845 pIdx
= sqlite3AllocateIndexObject(pParse
->db
, nKeyCol
+1, 0, &zNotUsed
);
846 if( pIdx
==0 ) goto end_auto_index_create
;
847 pLoop
->u
.btree
.pIndex
= pIdx
;
848 pIdx
->zName
= "auto-index";
849 pIdx
->pTable
= pTable
;
852 for(pTerm
=pWC
->a
; pTerm
<pWCEnd
; pTerm
++){
853 if( termCanDriveIndex(pTerm
, pSrc
, notReady
) ){
854 int iCol
= pTerm
->u
.x
.leftColumn
;
855 Bitmask cMask
= iCol
>=BMS
? MASKBIT(BMS
-1) : MASKBIT(iCol
);
856 testcase( iCol
==BMS
-1 );
857 testcase( iCol
==BMS
);
858 if( (idxCols
& cMask
)==0 ){
859 Expr
*pX
= pTerm
->pExpr
;
861 pIdx
->aiColumn
[n
] = pTerm
->u
.x
.leftColumn
;
862 pColl
= sqlite3ExprCompareCollSeq(pParse
, pX
);
863 assert( pColl
!=0 || pParse
->nErr
>0 ); /* TH3 collate01.800 */
864 pIdx
->azColl
[n
] = pColl
? pColl
->zName
: sqlite3StrBINARY
;
869 assert( (u32
)n
==pLoop
->u
.btree
.nEq
);
871 /* Add additional columns needed to make the automatic index into
872 ** a covering index */
873 for(i
=0; i
<mxBitCol
; i
++){
874 if( extraCols
& MASKBIT(i
) ){
875 pIdx
->aiColumn
[n
] = i
;
876 pIdx
->azColl
[n
] = sqlite3StrBINARY
;
880 if( pSrc
->colUsed
& MASKBIT(BMS
-1) ){
881 for(i
=BMS
-1; i
<pTable
->nCol
; i
++){
882 pIdx
->aiColumn
[n
] = i
;
883 pIdx
->azColl
[n
] = sqlite3StrBINARY
;
887 assert( n
==nKeyCol
);
888 pIdx
->aiColumn
[n
] = XN_ROWID
;
889 pIdx
->azColl
[n
] = sqlite3StrBINARY
;
891 /* Create the automatic index */
892 assert( pLevel
->iIdxCur
>=0 );
893 pLevel
->iIdxCur
= pParse
->nTab
++;
894 sqlite3VdbeAddOp2(v
, OP_OpenAutoindex
, pLevel
->iIdxCur
, nKeyCol
+1);
895 sqlite3VdbeSetP4KeyInfo(pParse
, pIdx
);
896 VdbeComment((v
, "for %s", pTable
->zName
));
898 /* Fill the automatic index with content */
899 pTabItem
= &pWC
->pWInfo
->pTabList
->a
[pLevel
->iFrom
];
900 if( pTabItem
->fg
.viaCoroutine
){
901 int regYield
= pTabItem
->regReturn
;
902 addrCounter
= sqlite3VdbeAddOp2(v
, OP_Integer
, 0, 0);
903 sqlite3VdbeAddOp3(v
, OP_InitCoroutine
, regYield
, 0, pTabItem
->addrFillSub
);
904 addrTop
= sqlite3VdbeAddOp1(v
, OP_Yield
, regYield
);
906 VdbeComment((v
, "next row of %s", pTabItem
->pTab
->zName
));
908 addrTop
= sqlite3VdbeAddOp1(v
, OP_Rewind
, pLevel
->iTabCur
); VdbeCoverage(v
);
911 iContinue
= sqlite3VdbeMakeLabel(pParse
);
912 sqlite3ExprIfFalse(pParse
, pPartial
, iContinue
, SQLITE_JUMPIFNULL
);
913 pLoop
->wsFlags
|= WHERE_PARTIALIDX
;
915 regRecord
= sqlite3GetTempReg(pParse
);
916 regBase
= sqlite3GenerateIndexKey(
917 pParse
, pIdx
, pLevel
->iTabCur
, regRecord
, 0, 0, 0, 0
919 sqlite3VdbeAddOp2(v
, OP_IdxInsert
, pLevel
->iIdxCur
, regRecord
);
920 sqlite3VdbeChangeP5(v
, OPFLAG_USESEEKRESULT
);
921 if( pPartial
) sqlite3VdbeResolveLabel(v
, iContinue
);
922 if( pTabItem
->fg
.viaCoroutine
){
923 sqlite3VdbeChangeP2(v
, addrCounter
, regBase
+n
);
924 testcase( pParse
->db
->mallocFailed
);
925 assert( pLevel
->iIdxCur
>0 );
926 translateColumnToCopy(pParse
, addrTop
, pLevel
->iTabCur
,
927 pTabItem
->regResult
, pLevel
->iIdxCur
);
928 sqlite3VdbeGoto(v
, addrTop
);
929 pTabItem
->fg
.viaCoroutine
= 0;
931 sqlite3VdbeAddOp2(v
, OP_Next
, pLevel
->iTabCur
, addrTop
+1); VdbeCoverage(v
);
932 sqlite3VdbeChangeP5(v
, SQLITE_STMTSTATUS_AUTOINDEX
);
934 sqlite3VdbeJumpHere(v
, addrTop
);
935 sqlite3ReleaseTempReg(pParse
, regRecord
);
937 /* Jump here when skipping the initialization */
938 sqlite3VdbeJumpHere(v
, addrInit
);
940 end_auto_index_create
:
941 sqlite3ExprDelete(pParse
->db
, pPartial
);
943 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
945 #ifndef SQLITE_OMIT_VIRTUALTABLE
947 ** Allocate and populate an sqlite3_index_info structure. It is the
948 ** responsibility of the caller to eventually release the structure
949 ** by passing the pointer returned by this function to sqlite3_free().
951 static sqlite3_index_info
*allocateIndexInfo(
952 Parse
*pParse
, /* The parsing context */
953 WhereClause
*pWC
, /* The WHERE clause being analyzed */
954 Bitmask mUnusable
, /* Ignore terms with these prereqs */
955 SrcItem
*pSrc
, /* The FROM clause term that is the vtab */
956 ExprList
*pOrderBy
, /* The ORDER BY clause */
957 u16
*pmNoOmit
/* Mask of terms not to omit */
961 struct sqlite3_index_constraint
*pIdxCons
;
962 struct sqlite3_index_orderby
*pIdxOrderBy
;
963 struct sqlite3_index_constraint_usage
*pUsage
;
964 struct HiddenIndexInfo
*pHidden
;
967 sqlite3_index_info
*pIdxInfo
;
970 /* Count the number of possible WHERE clause constraints referring
971 ** to this virtual table */
972 for(i
=nTerm
=0, pTerm
=pWC
->a
; i
<pWC
->nTerm
; i
++, pTerm
++){
973 if( pTerm
->leftCursor
!= pSrc
->iCursor
) continue;
974 if( pTerm
->prereqRight
& mUnusable
) continue;
975 assert( IsPowerOfTwo(pTerm
->eOperator
& ~WO_EQUIV
) );
976 testcase( pTerm
->eOperator
& WO_IN
);
977 testcase( pTerm
->eOperator
& WO_ISNULL
);
978 testcase( pTerm
->eOperator
& WO_IS
);
979 testcase( pTerm
->eOperator
& WO_ALL
);
980 if( (pTerm
->eOperator
& ~(WO_EQUIV
))==0 ) continue;
981 if( pTerm
->wtFlags
& TERM_VNULL
) continue;
982 assert( pTerm
->u
.x
.leftColumn
>=(-1) );
986 /* If the ORDER BY clause contains only columns in the current
987 ** virtual table then allocate space for the aOrderBy part of
988 ** the sqlite3_index_info structure.
992 int n
= pOrderBy
->nExpr
;
994 Expr
*pExpr
= pOrderBy
->a
[i
].pExpr
;
995 if( pExpr
->op
!=TK_COLUMN
|| pExpr
->iTable
!=pSrc
->iCursor
) break;
996 if( pOrderBy
->a
[i
].sortFlags
& KEYINFO_ORDER_BIGNULL
) break;
1003 /* Allocate the sqlite3_index_info structure
1005 pIdxInfo
= sqlite3DbMallocZero(pParse
->db
, sizeof(*pIdxInfo
)
1006 + (sizeof(*pIdxCons
) + sizeof(*pUsage
))*nTerm
1007 + sizeof(*pIdxOrderBy
)*nOrderBy
+ sizeof(*pHidden
) );
1009 sqlite3ErrorMsg(pParse
, "out of memory");
1012 pHidden
= (struct HiddenIndexInfo
*)&pIdxInfo
[1];
1013 pIdxCons
= (struct sqlite3_index_constraint
*)&pHidden
[1];
1014 pIdxOrderBy
= (struct sqlite3_index_orderby
*)&pIdxCons
[nTerm
];
1015 pUsage
= (struct sqlite3_index_constraint_usage
*)&pIdxOrderBy
[nOrderBy
];
1016 pIdxInfo
->nOrderBy
= nOrderBy
;
1017 pIdxInfo
->aConstraint
= pIdxCons
;
1018 pIdxInfo
->aOrderBy
= pIdxOrderBy
;
1019 pIdxInfo
->aConstraintUsage
= pUsage
;
1021 pHidden
->pParse
= pParse
;
1022 for(i
=j
=0, pTerm
=pWC
->a
; i
<pWC
->nTerm
; i
++, pTerm
++){
1024 if( pTerm
->leftCursor
!= pSrc
->iCursor
) continue;
1025 if( pTerm
->prereqRight
& mUnusable
) continue;
1026 assert( IsPowerOfTwo(pTerm
->eOperator
& ~WO_EQUIV
) );
1027 testcase( pTerm
->eOperator
& WO_IN
);
1028 testcase( pTerm
->eOperator
& WO_IS
);
1029 testcase( pTerm
->eOperator
& WO_ISNULL
);
1030 testcase( pTerm
->eOperator
& WO_ALL
);
1031 if( (pTerm
->eOperator
& ~(WO_EQUIV
))==0 ) continue;
1032 if( pTerm
->wtFlags
& TERM_VNULL
) continue;
1034 /* tag-20191211-002: WHERE-clause constraints are not useful to the
1035 ** right-hand table of a LEFT JOIN. See tag-20191211-001 for the
1036 ** equivalent restriction for ordinary tables. */
1037 if( (pSrc
->fg
.jointype
& JT_LEFT
)!=0
1038 && !ExprHasProperty(pTerm
->pExpr
, EP_FromJoin
)
1042 assert( pTerm
->u
.x
.leftColumn
>=(-1) );
1043 pIdxCons
[j
].iColumn
= pTerm
->u
.x
.leftColumn
;
1044 pIdxCons
[j
].iTermOffset
= i
;
1045 op
= pTerm
->eOperator
& WO_ALL
;
1046 if( op
==WO_IN
) op
= WO_EQ
;
1048 pIdxCons
[j
].op
= pTerm
->eMatchOp
;
1049 }else if( op
& (WO_ISNULL
|WO_IS
) ){
1050 if( op
==WO_ISNULL
){
1051 pIdxCons
[j
].op
= SQLITE_INDEX_CONSTRAINT_ISNULL
;
1053 pIdxCons
[j
].op
= SQLITE_INDEX_CONSTRAINT_IS
;
1056 pIdxCons
[j
].op
= (u8
)op
;
1057 /* The direct assignment in the previous line is possible only because
1058 ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The
1059 ** following asserts verify this fact. */
1060 assert( WO_EQ
==SQLITE_INDEX_CONSTRAINT_EQ
);
1061 assert( WO_LT
==SQLITE_INDEX_CONSTRAINT_LT
);
1062 assert( WO_LE
==SQLITE_INDEX_CONSTRAINT_LE
);
1063 assert( WO_GT
==SQLITE_INDEX_CONSTRAINT_GT
);
1064 assert( WO_GE
==SQLITE_INDEX_CONSTRAINT_GE
);
1065 assert( pTerm
->eOperator
&(WO_IN
|WO_EQ
|WO_LT
|WO_LE
|WO_GT
|WO_GE
|WO_AUX
) );
1067 if( op
& (WO_LT
|WO_LE
|WO_GT
|WO_GE
)
1068 && sqlite3ExprIsVector(pTerm
->pExpr
->pRight
)
1071 if( j
<16 ) mNoOmit
|= (1 << j
);
1072 if( op
==WO_LT
) pIdxCons
[j
].op
= WO_LE
;
1073 if( op
==WO_GT
) pIdxCons
[j
].op
= WO_GE
;
1079 pIdxInfo
->nConstraint
= j
;
1080 for(i
=0; i
<nOrderBy
; i
++){
1081 Expr
*pExpr
= pOrderBy
->a
[i
].pExpr
;
1082 pIdxOrderBy
[i
].iColumn
= pExpr
->iColumn
;
1083 pIdxOrderBy
[i
].desc
= pOrderBy
->a
[i
].sortFlags
& KEYINFO_ORDER_DESC
;
1086 *pmNoOmit
= mNoOmit
;
1091 ** The table object reference passed as the second argument to this function
1092 ** must represent a virtual table. This function invokes the xBestIndex()
1093 ** method of the virtual table with the sqlite3_index_info object that
1094 ** comes in as the 3rd argument to this function.
1096 ** If an error occurs, pParse is populated with an error message and an
1097 ** appropriate error code is returned. A return of SQLITE_CONSTRAINT from
1098 ** xBestIndex is not considered an error. SQLITE_CONSTRAINT indicates that
1099 ** the current configuration of "unusable" flags in sqlite3_index_info can
1100 ** not result in a valid plan.
1102 ** Whether or not an error is returned, it is the responsibility of the
1103 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates
1104 ** that this is required.
1106 static int vtabBestIndex(Parse
*pParse
, Table
*pTab
, sqlite3_index_info
*p
){
1107 sqlite3_vtab
*pVtab
= sqlite3GetVTable(pParse
->db
, pTab
)->pVtab
;
1110 whereTraceIndexInfoInputs(p
);
1111 rc
= pVtab
->pModule
->xBestIndex(pVtab
, p
);
1112 whereTraceIndexInfoOutputs(p
);
1114 if( rc
!=SQLITE_OK
&& rc
!=SQLITE_CONSTRAINT
){
1115 if( rc
==SQLITE_NOMEM
){
1116 sqlite3OomFault(pParse
->db
);
1117 }else if( !pVtab
->zErrMsg
){
1118 sqlite3ErrorMsg(pParse
, "%s", sqlite3ErrStr(rc
));
1120 sqlite3ErrorMsg(pParse
, "%s", pVtab
->zErrMsg
);
1123 sqlite3_free(pVtab
->zErrMsg
);
1127 #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */
1129 #ifdef SQLITE_ENABLE_STAT4
1131 ** Estimate the location of a particular key among all keys in an
1132 ** index. Store the results in aStat as follows:
1134 ** aStat[0] Est. number of rows less than pRec
1135 ** aStat[1] Est. number of rows equal to pRec
1137 ** Return the index of the sample that is the smallest sample that
1138 ** is greater than or equal to pRec. Note that this index is not an index
1139 ** into the aSample[] array - it is an index into a virtual set of samples
1140 ** based on the contents of aSample[] and the number of fields in record
1143 static int whereKeyStats(
1144 Parse
*pParse
, /* Database connection */
1145 Index
*pIdx
, /* Index to consider domain of */
1146 UnpackedRecord
*pRec
, /* Vector of values to consider */
1147 int roundUp
, /* Round up if true. Round down if false */
1148 tRowcnt
*aStat
/* OUT: stats written here */
1150 IndexSample
*aSample
= pIdx
->aSample
;
1151 int iCol
; /* Index of required stats in anEq[] etc. */
1152 int i
; /* Index of first sample >= pRec */
1153 int iSample
; /* Smallest sample larger than or equal to pRec */
1154 int iMin
= 0; /* Smallest sample not yet tested */
1155 int iTest
; /* Next sample to test */
1156 int res
; /* Result of comparison operation */
1157 int nField
; /* Number of fields in pRec */
1158 tRowcnt iLower
= 0; /* anLt[] + anEq[] of largest sample pRec is > */
1160 #ifndef SQLITE_DEBUG
1161 UNUSED_PARAMETER( pParse
);
1164 assert( pIdx
->nSample
>0 );
1165 assert( pRec
->nField
>0 && pRec
->nField
<=pIdx
->nSampleCol
);
1167 /* Do a binary search to find the first sample greater than or equal
1168 ** to pRec. If pRec contains a single field, the set of samples to search
1169 ** is simply the aSample[] array. If the samples in aSample[] contain more
1170 ** than one fields, all fields following the first are ignored.
1172 ** If pRec contains N fields, where N is more than one, then as well as the
1173 ** samples in aSample[] (truncated to N fields), the search also has to
1174 ** consider prefixes of those samples. For example, if the set of samples
1177 ** aSample[0] = (a, 5)
1178 ** aSample[1] = (a, 10)
1179 ** aSample[2] = (b, 5)
1180 ** aSample[3] = (c, 100)
1181 ** aSample[4] = (c, 105)
1183 ** Then the search space should ideally be the samples above and the
1184 ** unique prefixes [a], [b] and [c]. But since that is hard to organize,
1185 ** the code actually searches this set:
1198 ** For each sample in the aSample[] array, N samples are present in the
1199 ** effective sample array. In the above, samples 0 and 1 are based on
1200 ** sample aSample[0]. Samples 2 and 3 on aSample[1] etc.
1202 ** Often, sample i of each block of N effective samples has (i+1) fields.
1203 ** Except, each sample may be extended to ensure that it is greater than or
1204 ** equal to the previous sample in the array. For example, in the above,
1205 ** sample 2 is the first sample of a block of N samples, so at first it
1206 ** appears that it should be 1 field in size. However, that would make it
1207 ** smaller than sample 1, so the binary search would not work. As a result,
1208 ** it is extended to two fields. The duplicates that this creates do not
1209 ** cause any problems.
1211 nField
= pRec
->nField
;
1213 iSample
= pIdx
->nSample
* nField
;
1215 int iSamp
; /* Index in aSample[] of test sample */
1216 int n
; /* Number of fields in test sample */
1218 iTest
= (iMin
+iSample
)/2;
1219 iSamp
= iTest
/ nField
;
1221 /* The proposed effective sample is a prefix of sample aSample[iSamp].
1222 ** Specifically, the shortest prefix of at least (1 + iTest%nField)
1223 ** fields that is greater than the previous effective sample. */
1224 for(n
=(iTest
% nField
) + 1; n
<nField
; n
++){
1225 if( aSample
[iSamp
-1].anLt
[n
-1]!=aSample
[iSamp
].anLt
[n
-1] ) break;
1232 res
= sqlite3VdbeRecordCompare(aSample
[iSamp
].n
, aSample
[iSamp
].p
, pRec
);
1234 iLower
= aSample
[iSamp
].anLt
[n
-1] + aSample
[iSamp
].anEq
[n
-1];
1236 }else if( res
==0 && n
<nField
){
1237 iLower
= aSample
[iSamp
].anLt
[n
-1];
1244 }while( res
&& iMin
<iSample
);
1245 i
= iSample
/ nField
;
1248 /* The following assert statements check that the binary search code
1249 ** above found the right answer. This block serves no purpose other
1250 ** than to invoke the asserts. */
1251 if( pParse
->db
->mallocFailed
==0 ){
1253 /* If (res==0) is true, then pRec must be equal to sample i. */
1254 assert( i
<pIdx
->nSample
);
1255 assert( iCol
==nField
-1 );
1256 pRec
->nField
= nField
;
1257 assert( 0==sqlite3VdbeRecordCompare(aSample
[i
].n
, aSample
[i
].p
, pRec
)
1258 || pParse
->db
->mallocFailed
1261 /* Unless i==pIdx->nSample, indicating that pRec is larger than
1262 ** all samples in the aSample[] array, pRec must be smaller than the
1263 ** (iCol+1) field prefix of sample i. */
1264 assert( i
<=pIdx
->nSample
&& i
>=0 );
1265 pRec
->nField
= iCol
+1;
1266 assert( i
==pIdx
->nSample
1267 || sqlite3VdbeRecordCompare(aSample
[i
].n
, aSample
[i
].p
, pRec
)>0
1268 || pParse
->db
->mallocFailed
);
1270 /* if i==0 and iCol==0, then record pRec is smaller than all samples
1271 ** in the aSample[] array. Otherwise, if (iCol>0) then pRec must
1272 ** be greater than or equal to the (iCol) field prefix of sample i.
1273 ** If (i>0), then pRec must also be greater than sample (i-1). */
1275 pRec
->nField
= iCol
;
1276 assert( sqlite3VdbeRecordCompare(aSample
[i
].n
, aSample
[i
].p
, pRec
)<=0
1277 || pParse
->db
->mallocFailed
);
1280 pRec
->nField
= nField
;
1281 assert( sqlite3VdbeRecordCompare(aSample
[i
-1].n
, aSample
[i
-1].p
, pRec
)<0
1282 || pParse
->db
->mallocFailed
);
1286 #endif /* ifdef SQLITE_DEBUG */
1289 /* Record pRec is equal to sample i */
1290 assert( iCol
==nField
-1 );
1291 aStat
[0] = aSample
[i
].anLt
[iCol
];
1292 aStat
[1] = aSample
[i
].anEq
[iCol
];
1294 /* At this point, the (iCol+1) field prefix of aSample[i] is the first
1295 ** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec
1296 ** is larger than all samples in the array. */
1297 tRowcnt iUpper
, iGap
;
1298 if( i
>=pIdx
->nSample
){
1299 iUpper
= sqlite3LogEstToInt(pIdx
->aiRowLogEst
[0]);
1301 iUpper
= aSample
[i
].anLt
[iCol
];
1304 if( iLower
>=iUpper
){
1307 iGap
= iUpper
- iLower
;
1314 aStat
[0] = iLower
+ iGap
;
1315 aStat
[1] = pIdx
->aAvgEq
[nField
-1];
1318 /* Restore the pRec->nField value before returning. */
1319 pRec
->nField
= nField
;
1322 #endif /* SQLITE_ENABLE_STAT4 */
1325 ** If it is not NULL, pTerm is a term that provides an upper or lower
1326 ** bound on a range scan. Without considering pTerm, it is estimated
1327 ** that the scan will visit nNew rows. This function returns the number
1328 ** estimated to be visited after taking pTerm into account.
1330 ** If the user explicitly specified a likelihood() value for this term,
1331 ** then the return value is the likelihood multiplied by the number of
1332 ** input rows. Otherwise, this function assumes that an "IS NOT NULL" term
1333 ** has a likelihood of 0.50, and any other term a likelihood of 0.25.
1335 static LogEst
whereRangeAdjust(WhereTerm
*pTerm
, LogEst nNew
){
1338 if( pTerm
->truthProb
<=0 ){
1339 nRet
+= pTerm
->truthProb
;
1340 }else if( (pTerm
->wtFlags
& TERM_VNULL
)==0 ){
1341 nRet
-= 20; assert( 20==sqlite3LogEst(4) );
1348 #ifdef SQLITE_ENABLE_STAT4
1350 ** Return the affinity for a single column of an index.
1352 char sqlite3IndexColumnAffinity(sqlite3
*db
, Index
*pIdx
, int iCol
){
1353 assert( iCol
>=0 && iCol
<pIdx
->nColumn
);
1354 if( !pIdx
->zColAff
){
1355 if( sqlite3IndexAffinityStr(db
, pIdx
)==0 ) return SQLITE_AFF_BLOB
;
1357 assert( pIdx
->zColAff
[iCol
]!=0 );
1358 return pIdx
->zColAff
[iCol
];
1363 #ifdef SQLITE_ENABLE_STAT4
1365 ** This function is called to estimate the number of rows visited by a
1366 ** range-scan on a skip-scan index. For example:
1368 ** CREATE INDEX i1 ON t1(a, b, c);
1369 ** SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?;
1371 ** Value pLoop->nOut is currently set to the estimated number of rows
1372 ** visited for scanning (a=? AND b=?). This function reduces that estimate
1373 ** by some factor to account for the (c BETWEEN ? AND ?) expression based
1374 ** on the stat4 data for the index. this scan will be peformed multiple
1375 ** times (once for each (a,b) combination that matches a=?) is dealt with
1378 ** It does this by scanning through all stat4 samples, comparing values
1379 ** extracted from pLower and pUpper with the corresponding column in each
1380 ** sample. If L and U are the number of samples found to be less than or
1381 ** equal to the values extracted from pLower and pUpper respectively, and
1382 ** N is the total number of samples, the pLoop->nOut value is adjusted
1385 ** nOut = nOut * ( min(U - L, 1) / N )
1387 ** If pLower is NULL, or a value cannot be extracted from the term, L is
1388 ** set to zero. If pUpper is NULL, or a value cannot be extracted from it,
1391 ** Normally, this function sets *pbDone to 1 before returning. However,
1392 ** if no value can be extracted from either pLower or pUpper (and so the
1393 ** estimate of the number of rows delivered remains unchanged), *pbDone
1396 ** If an error occurs, an SQLite error code is returned. Otherwise,
1399 static int whereRangeSkipScanEst(
1400 Parse
*pParse
, /* Parsing & code generating context */
1401 WhereTerm
*pLower
, /* Lower bound on the range. ex: "x>123" Might be NULL */
1402 WhereTerm
*pUpper
, /* Upper bound on the range. ex: "x<455" Might be NULL */
1403 WhereLoop
*pLoop
, /* Update the .nOut value of this loop */
1404 int *pbDone
/* Set to true if at least one expr. value extracted */
1406 Index
*p
= pLoop
->u
.btree
.pIndex
;
1407 int nEq
= pLoop
->u
.btree
.nEq
;
1408 sqlite3
*db
= pParse
->db
;
1410 int nUpper
= p
->nSample
+1;
1412 u8 aff
= sqlite3IndexColumnAffinity(db
, p
, nEq
);
1415 sqlite3_value
*p1
= 0; /* Value extracted from pLower */
1416 sqlite3_value
*p2
= 0; /* Value extracted from pUpper */
1417 sqlite3_value
*pVal
= 0; /* Value extracted from record */
1419 pColl
= sqlite3LocateCollSeq(pParse
, p
->azColl
[nEq
]);
1421 rc
= sqlite3Stat4ValueFromExpr(pParse
, pLower
->pExpr
->pRight
, aff
, &p1
);
1424 if( pUpper
&& rc
==SQLITE_OK
){
1425 rc
= sqlite3Stat4ValueFromExpr(pParse
, pUpper
->pExpr
->pRight
, aff
, &p2
);
1426 nUpper
= p2
? 0 : p
->nSample
;
1432 for(i
=0; rc
==SQLITE_OK
&& i
<p
->nSample
; i
++){
1433 rc
= sqlite3Stat4Column(db
, p
->aSample
[i
].p
, p
->aSample
[i
].n
, nEq
, &pVal
);
1434 if( rc
==SQLITE_OK
&& p1
){
1435 int res
= sqlite3MemCompare(p1
, pVal
, pColl
);
1436 if( res
>=0 ) nLower
++;
1438 if( rc
==SQLITE_OK
&& p2
){
1439 int res
= sqlite3MemCompare(p2
, pVal
, pColl
);
1440 if( res
>=0 ) nUpper
++;
1443 nDiff
= (nUpper
- nLower
);
1444 if( nDiff
<=0 ) nDiff
= 1;
1446 /* If there is both an upper and lower bound specified, and the
1447 ** comparisons indicate that they are close together, use the fallback
1448 ** method (assume that the scan visits 1/64 of the rows) for estimating
1449 ** the number of rows visited. Otherwise, estimate the number of rows
1450 ** using the method described in the header comment for this function. */
1451 if( nDiff
!=1 || pUpper
==0 || pLower
==0 ){
1452 int nAdjust
= (sqlite3LogEst(p
->nSample
) - sqlite3LogEst(nDiff
));
1453 pLoop
->nOut
-= nAdjust
;
1455 WHERETRACE(0x10, ("range skip-scan regions: %u..%u adjust=%d est=%d\n",
1456 nLower
, nUpper
, nAdjust
*-1, pLoop
->nOut
));
1460 assert( *pbDone
==0 );
1463 sqlite3ValueFree(p1
);
1464 sqlite3ValueFree(p2
);
1465 sqlite3ValueFree(pVal
);
1469 #endif /* SQLITE_ENABLE_STAT4 */
1472 ** This function is used to estimate the number of rows that will be visited
1473 ** by scanning an index for a range of values. The range may have an upper
1474 ** bound, a lower bound, or both. The WHERE clause terms that set the upper
1475 ** and lower bounds are represented by pLower and pUpper respectively. For
1476 ** example, assuming that index p is on t1(a):
1478 ** ... FROM t1 WHERE a > ? AND a < ? ...
1483 ** If either of the upper or lower bound is not present, then NULL is passed in
1484 ** place of the corresponding WhereTerm.
1486 ** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index
1487 ** column subject to the range constraint. Or, equivalently, the number of
1488 ** equality constraints optimized by the proposed index scan. For example,
1489 ** assuming index p is on t1(a, b), and the SQL query is:
1491 ** ... FROM t1 WHERE a = ? AND b > ? AND b < ? ...
1493 ** then nEq is set to 1 (as the range restricted column, b, is the second
1494 ** left-most column of the index). Or, if the query is:
1496 ** ... FROM t1 WHERE a > ? AND a < ? ...
1498 ** then nEq is set to 0.
1500 ** When this function is called, *pnOut is set to the sqlite3LogEst() of the
1501 ** number of rows that the index scan is expected to visit without
1502 ** considering the range constraints. If nEq is 0, then *pnOut is the number of
1503 ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced)
1504 ** to account for the range constraints pLower and pUpper.
1506 ** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be
1507 ** used, a single range inequality reduces the search space by a factor of 4.
1508 ** and a pair of constraints (x>? AND x<?) reduces the expected number of
1509 ** rows visited by a factor of 64.
1511 static int whereRangeScanEst(
1512 Parse
*pParse
, /* Parsing & code generating context */
1513 WhereLoopBuilder
*pBuilder
,
1514 WhereTerm
*pLower
, /* Lower bound on the range. ex: "x>123" Might be NULL */
1515 WhereTerm
*pUpper
, /* Upper bound on the range. ex: "x<455" Might be NULL */
1516 WhereLoop
*pLoop
/* Modify the .nOut and maybe .rRun fields */
1519 int nOut
= pLoop
->nOut
;
1522 #ifdef SQLITE_ENABLE_STAT4
1523 Index
*p
= pLoop
->u
.btree
.pIndex
;
1524 int nEq
= pLoop
->u
.btree
.nEq
;
1526 if( p
->nSample
>0 && ALWAYS(nEq
<p
->nSampleCol
)
1527 && OptimizationEnabled(pParse
->db
, SQLITE_Stat4
)
1529 if( nEq
==pBuilder
->nRecValid
){
1530 UnpackedRecord
*pRec
= pBuilder
->pRec
;
1532 int nBtm
= pLoop
->u
.btree
.nBtm
;
1533 int nTop
= pLoop
->u
.btree
.nTop
;
1535 /* Variable iLower will be set to the estimate of the number of rows in
1536 ** the index that are less than the lower bound of the range query. The
1537 ** lower bound being the concatenation of $P and $L, where $P is the
1538 ** key-prefix formed by the nEq values matched against the nEq left-most
1539 ** columns of the index, and $L is the value in pLower.
1541 ** Or, if pLower is NULL or $L cannot be extracted from it (because it
1542 ** is not a simple variable or literal value), the lower bound of the
1543 ** range is $P. Due to a quirk in the way whereKeyStats() works, even
1544 ** if $L is available, whereKeyStats() is called for both ($P) and
1545 ** ($P:$L) and the larger of the two returned values is used.
1547 ** Similarly, iUpper is to be set to the estimate of the number of rows
1548 ** less than the upper bound of the range query. Where the upper bound
1549 ** is either ($P) or ($P:$U). Again, even if $U is available, both values
1550 ** of iUpper are requested of whereKeyStats() and the smaller used.
1552 ** The number of rows between the two bounds is then just iUpper-iLower.
1554 tRowcnt iLower
; /* Rows less than the lower bound */
1555 tRowcnt iUpper
; /* Rows less than the upper bound */
1556 int iLwrIdx
= -2; /* aSample[] for the lower bound */
1557 int iUprIdx
= -1; /* aSample[] for the upper bound */
1560 testcase( pRec
->nField
!=pBuilder
->nRecValid
);
1561 pRec
->nField
= pBuilder
->nRecValid
;
1563 /* Determine iLower and iUpper using ($P) only. */
1566 iUpper
= p
->nRowEst0
;
1568 /* Note: this call could be optimized away - since the same values must
1569 ** have been requested when testing key $P in whereEqualScanEst(). */
1570 whereKeyStats(pParse
, p
, pRec
, 0, a
);
1572 iUpper
= a
[0] + a
[1];
1575 assert( pLower
==0 || (pLower
->eOperator
& (WO_GT
|WO_GE
))!=0 );
1576 assert( pUpper
==0 || (pUpper
->eOperator
& (WO_LT
|WO_LE
))!=0 );
1577 assert( p
->aSortOrder
!=0 );
1578 if( p
->aSortOrder
[nEq
] ){
1579 /* The roles of pLower and pUpper are swapped for a DESC index */
1580 SWAP(WhereTerm
*, pLower
, pUpper
);
1581 SWAP(int, nBtm
, nTop
);
1584 /* If possible, improve on the iLower estimate using ($P:$L). */
1586 int n
; /* Values extracted from pExpr */
1587 Expr
*pExpr
= pLower
->pExpr
->pRight
;
1588 rc
= sqlite3Stat4ProbeSetValue(pParse
, p
, &pRec
, pExpr
, nBtm
, nEq
, &n
);
1589 if( rc
==SQLITE_OK
&& n
){
1591 u16 mask
= WO_GT
|WO_LE
;
1592 if( sqlite3ExprVectorSize(pExpr
)>n
) mask
= (WO_LE
|WO_LT
);
1593 iLwrIdx
= whereKeyStats(pParse
, p
, pRec
, 0, a
);
1594 iNew
= a
[0] + ((pLower
->eOperator
& mask
) ? a
[1] : 0);
1595 if( iNew
>iLower
) iLower
= iNew
;
1601 /* If possible, improve on the iUpper estimate using ($P:$U). */
1603 int n
; /* Values extracted from pExpr */
1604 Expr
*pExpr
= pUpper
->pExpr
->pRight
;
1605 rc
= sqlite3Stat4ProbeSetValue(pParse
, p
, &pRec
, pExpr
, nTop
, nEq
, &n
);
1606 if( rc
==SQLITE_OK
&& n
){
1608 u16 mask
= WO_GT
|WO_LE
;
1609 if( sqlite3ExprVectorSize(pExpr
)>n
) mask
= (WO_LE
|WO_LT
);
1610 iUprIdx
= whereKeyStats(pParse
, p
, pRec
, 1, a
);
1611 iNew
= a
[0] + ((pUpper
->eOperator
& mask
) ? a
[1] : 0);
1612 if( iNew
<iUpper
) iUpper
= iNew
;
1618 pBuilder
->pRec
= pRec
;
1619 if( rc
==SQLITE_OK
){
1620 if( iUpper
>iLower
){
1621 nNew
= sqlite3LogEst(iUpper
- iLower
);
1622 /* TUNING: If both iUpper and iLower are derived from the same
1623 ** sample, then assume they are 4x more selective. This brings
1624 ** the estimated selectivity more in line with what it would be
1625 ** if estimated without the use of STAT4 tables. */
1626 if( iLwrIdx
==iUprIdx
) nNew
-= 20; assert( 20==sqlite3LogEst(4) );
1628 nNew
= 10; assert( 10==sqlite3LogEst(2) );
1633 WHERETRACE(0x10, ("STAT4 range scan: %u..%u est=%d\n",
1634 (u32
)iLower
, (u32
)iUpper
, nOut
));
1638 rc
= whereRangeSkipScanEst(pParse
, pLower
, pUpper
, pLoop
, &bDone
);
1639 if( bDone
) return rc
;
1643 UNUSED_PARAMETER(pParse
);
1644 UNUSED_PARAMETER(pBuilder
);
1645 assert( pLower
|| pUpper
);
1647 assert( pUpper
==0 || (pUpper
->wtFlags
& TERM_VNULL
)==0 );
1648 nNew
= whereRangeAdjust(pLower
, nOut
);
1649 nNew
= whereRangeAdjust(pUpper
, nNew
);
1651 /* TUNING: If there is both an upper and lower limit and neither limit
1652 ** has an application-defined likelihood(), assume the range is
1653 ** reduced by an additional 75%. This means that, by default, an open-ended
1654 ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the
1655 ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to
1656 ** match 1/64 of the index. */
1657 if( pLower
&& pLower
->truthProb
>0 && pUpper
&& pUpper
->truthProb
>0 ){
1661 nOut
-= (pLower
!=0) + (pUpper
!=0);
1662 if( nNew
<10 ) nNew
= 10;
1663 if( nNew
<nOut
) nOut
= nNew
;
1664 #if defined(WHERETRACE_ENABLED)
1665 if( pLoop
->nOut
>nOut
){
1666 WHERETRACE(0x10,("Range scan lowers nOut from %d to %d\n",
1667 pLoop
->nOut
, nOut
));
1670 pLoop
->nOut
= (LogEst
)nOut
;
1674 #ifdef SQLITE_ENABLE_STAT4
1676 ** Estimate the number of rows that will be returned based on
1677 ** an equality constraint x=VALUE and where that VALUE occurs in
1678 ** the histogram data. This only works when x is the left-most
1679 ** column of an index and sqlite_stat4 histogram data is available
1680 ** for that index. When pExpr==NULL that means the constraint is
1681 ** "x IS NULL" instead of "x=VALUE".
1683 ** Write the estimated row count into *pnRow and return SQLITE_OK.
1684 ** If unable to make an estimate, leave *pnRow unchanged and return
1687 ** This routine can fail if it is unable to load a collating sequence
1688 ** required for string comparison, or if unable to allocate memory
1689 ** for a UTF conversion required for comparison. The error is stored
1690 ** in the pParse structure.
1692 static int whereEqualScanEst(
1693 Parse
*pParse
, /* Parsing & code generating context */
1694 WhereLoopBuilder
*pBuilder
,
1695 Expr
*pExpr
, /* Expression for VALUE in the x=VALUE constraint */
1696 tRowcnt
*pnRow
/* Write the revised row estimate here */
1698 Index
*p
= pBuilder
->pNew
->u
.btree
.pIndex
;
1699 int nEq
= pBuilder
->pNew
->u
.btree
.nEq
;
1700 UnpackedRecord
*pRec
= pBuilder
->pRec
;
1701 int rc
; /* Subfunction return code */
1702 tRowcnt a
[2]; /* Statistics */
1706 assert( nEq
<=p
->nColumn
);
1707 assert( p
->aSample
!=0 );
1708 assert( p
->nSample
>0 );
1709 assert( pBuilder
->nRecValid
<nEq
);
1711 /* If values are not available for all fields of the index to the left
1712 ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */
1713 if( pBuilder
->nRecValid
<(nEq
-1) ){
1714 return SQLITE_NOTFOUND
;
1717 /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue()
1718 ** below would return the same value. */
1719 if( nEq
>=p
->nColumn
){
1724 rc
= sqlite3Stat4ProbeSetValue(pParse
, p
, &pRec
, pExpr
, 1, nEq
-1, &bOk
);
1725 pBuilder
->pRec
= pRec
;
1726 if( rc
!=SQLITE_OK
) return rc
;
1727 if( bOk
==0 ) return SQLITE_NOTFOUND
;
1728 pBuilder
->nRecValid
= nEq
;
1730 whereKeyStats(pParse
, p
, pRec
, 0, a
);
1731 WHERETRACE(0x10,("equality scan regions %s(%d): %d\n",
1732 p
->zName
, nEq
-1, (int)a
[1]));
1737 #endif /* SQLITE_ENABLE_STAT4 */
1739 #ifdef SQLITE_ENABLE_STAT4
1741 ** Estimate the number of rows that will be returned based on
1742 ** an IN constraint where the right-hand side of the IN operator
1743 ** is a list of values. Example:
1745 ** WHERE x IN (1,2,3,4)
1747 ** Write the estimated row count into *pnRow and return SQLITE_OK.
1748 ** If unable to make an estimate, leave *pnRow unchanged and return
1751 ** This routine can fail if it is unable to load a collating sequence
1752 ** required for string comparison, or if unable to allocate memory
1753 ** for a UTF conversion required for comparison. The error is stored
1754 ** in the pParse structure.
1756 static int whereInScanEst(
1757 Parse
*pParse
, /* Parsing & code generating context */
1758 WhereLoopBuilder
*pBuilder
,
1759 ExprList
*pList
, /* The value list on the RHS of "x IN (v1,v2,v3,...)" */
1760 tRowcnt
*pnRow
/* Write the revised row estimate here */
1762 Index
*p
= pBuilder
->pNew
->u
.btree
.pIndex
;
1763 i64 nRow0
= sqlite3LogEstToInt(p
->aiRowLogEst
[0]);
1764 int nRecValid
= pBuilder
->nRecValid
;
1765 int rc
= SQLITE_OK
; /* Subfunction return code */
1766 tRowcnt nEst
; /* Number of rows for a single term */
1767 tRowcnt nRowEst
= 0; /* New estimate of the number of rows */
1768 int i
; /* Loop counter */
1770 assert( p
->aSample
!=0 );
1771 for(i
=0; rc
==SQLITE_OK
&& i
<pList
->nExpr
; i
++){
1773 rc
= whereEqualScanEst(pParse
, pBuilder
, pList
->a
[i
].pExpr
, &nEst
);
1775 pBuilder
->nRecValid
= nRecValid
;
1778 if( rc
==SQLITE_OK
){
1779 if( nRowEst
> nRow0
) nRowEst
= nRow0
;
1781 WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst
));
1783 assert( pBuilder
->nRecValid
==nRecValid
);
1786 #endif /* SQLITE_ENABLE_STAT4 */
1789 #ifdef WHERETRACE_ENABLED
1791 ** Print the content of a WhereTerm object
1793 void sqlite3WhereTermPrint(WhereTerm
*pTerm
, int iTerm
){
1795 sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm
);
1799 memcpy(zType
, "....", 5);
1800 if( pTerm
->wtFlags
& TERM_VIRTUAL
) zType
[0] = 'V';
1801 if( pTerm
->eOperator
& WO_EQUIV
) zType
[1] = 'E';
1802 if( ExprHasProperty(pTerm
->pExpr
, EP_FromJoin
) ) zType
[2] = 'L';
1803 if( pTerm
->wtFlags
& TERM_CODED
) zType
[3] = 'C';
1804 if( pTerm
->eOperator
& WO_SINGLE
){
1805 sqlite3_snprintf(sizeof(zLeft
),zLeft
,"left={%d:%d}",
1806 pTerm
->leftCursor
, pTerm
->u
.x
.leftColumn
);
1807 }else if( (pTerm
->eOperator
& WO_OR
)!=0 && pTerm
->u
.pOrInfo
!=0 ){
1808 sqlite3_snprintf(sizeof(zLeft
),zLeft
,"indexable=0x%llx",
1809 pTerm
->u
.pOrInfo
->indexable
);
1811 sqlite3_snprintf(sizeof(zLeft
),zLeft
,"left=%d", pTerm
->leftCursor
);
1814 "TERM-%-3d %p %s %-12s op=%03x wtFlags=%04x",
1815 iTerm
, pTerm
, zType
, zLeft
, pTerm
->eOperator
, pTerm
->wtFlags
);
1816 /* The 0x10000 .wheretrace flag causes extra information to be
1817 ** shown about each Term */
1818 if( sqlite3WhereTrace
& 0x10000 ){
1819 sqlite3DebugPrintf(" prob=%-3d prereq=%llx,%llx",
1820 pTerm
->truthProb
, (u64
)pTerm
->prereqAll
, (u64
)pTerm
->prereqRight
);
1822 if( pTerm
->u
.x
.iField
){
1823 sqlite3DebugPrintf(" iField=%d", pTerm
->u
.x
.iField
);
1825 if( pTerm
->iParent
>=0 ){
1826 sqlite3DebugPrintf(" iParent=%d", pTerm
->iParent
);
1828 sqlite3DebugPrintf("\n");
1829 sqlite3TreeViewExpr(0, pTerm
->pExpr
, 0);
1834 #ifdef WHERETRACE_ENABLED
1836 ** Show the complete content of a WhereClause
1838 void sqlite3WhereClausePrint(WhereClause
*pWC
){
1840 for(i
=0; i
<pWC
->nTerm
; i
++){
1841 sqlite3WhereTermPrint(&pWC
->a
[i
], i
);
1846 #ifdef WHERETRACE_ENABLED
1848 ** Print a WhereLoop object for debugging purposes
1850 void sqlite3WhereLoopPrint(WhereLoop
*p
, WhereClause
*pWC
){
1851 WhereInfo
*pWInfo
= pWC
->pWInfo
;
1852 int nb
= 1+(pWInfo
->pTabList
->nSrc
+3)/4;
1853 SrcItem
*pItem
= pWInfo
->pTabList
->a
+ p
->iTab
;
1854 Table
*pTab
= pItem
->pTab
;
1855 Bitmask mAll
= (((Bitmask
)1)<<(nb
*4)) - 1;
1856 sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p
->cId
,
1857 p
->iTab
, nb
, p
->maskSelf
, nb
, p
->prereq
& mAll
);
1858 sqlite3DebugPrintf(" %12s",
1859 pItem
->zAlias
? pItem
->zAlias
: pTab
->zName
);
1860 if( (p
->wsFlags
& WHERE_VIRTUALTABLE
)==0 ){
1862 if( p
->u
.btree
.pIndex
&& (zName
= p
->u
.btree
.pIndex
->zName
)!=0 ){
1863 if( strncmp(zName
, "sqlite_autoindex_", 17)==0 ){
1864 int i
= sqlite3Strlen30(zName
) - 1;
1865 while( zName
[i
]!='_' ) i
--;
1868 sqlite3DebugPrintf(".%-16s %2d", zName
, p
->u
.btree
.nEq
);
1870 sqlite3DebugPrintf("%20s","");
1874 if( p
->u
.vtab
.idxStr
){
1875 z
= sqlite3_mprintf("(%d,\"%s\",%#x)",
1876 p
->u
.vtab
.idxNum
, p
->u
.vtab
.idxStr
, p
->u
.vtab
.omitMask
);
1878 z
= sqlite3_mprintf("(%d,%x)", p
->u
.vtab
.idxNum
, p
->u
.vtab
.omitMask
);
1880 sqlite3DebugPrintf(" %-19s", z
);
1883 if( p
->wsFlags
& WHERE_SKIPSCAN
){
1884 sqlite3DebugPrintf(" f %05x %d-%d", p
->wsFlags
, p
->nLTerm
,p
->nSkip
);
1886 sqlite3DebugPrintf(" f %05x N %d", p
->wsFlags
, p
->nLTerm
);
1888 sqlite3DebugPrintf(" cost %d,%d,%d\n", p
->rSetup
, p
->rRun
, p
->nOut
);
1889 if( p
->nLTerm
&& (sqlite3WhereTrace
& 0x100)!=0 ){
1891 for(i
=0; i
<p
->nLTerm
; i
++){
1892 sqlite3WhereTermPrint(p
->aLTerm
[i
], i
);
1899 ** Convert bulk memory into a valid WhereLoop that can be passed
1900 ** to whereLoopClear harmlessly.
1902 static void whereLoopInit(WhereLoop
*p
){
1903 p
->aLTerm
= p
->aLTermSpace
;
1905 p
->nLSlot
= ArraySize(p
->aLTermSpace
);
1910 ** Clear the WhereLoop.u union. Leave WhereLoop.pLTerm intact.
1912 static void whereLoopClearUnion(sqlite3
*db
, WhereLoop
*p
){
1913 if( p
->wsFlags
& (WHERE_VIRTUALTABLE
|WHERE_AUTO_INDEX
) ){
1914 if( (p
->wsFlags
& WHERE_VIRTUALTABLE
)!=0 && p
->u
.vtab
.needFree
){
1915 sqlite3_free(p
->u
.vtab
.idxStr
);
1916 p
->u
.vtab
.needFree
= 0;
1917 p
->u
.vtab
.idxStr
= 0;
1918 }else if( (p
->wsFlags
& WHERE_AUTO_INDEX
)!=0 && p
->u
.btree
.pIndex
!=0 ){
1919 sqlite3DbFree(db
, p
->u
.btree
.pIndex
->zColAff
);
1920 sqlite3DbFreeNN(db
, p
->u
.btree
.pIndex
);
1921 p
->u
.btree
.pIndex
= 0;
1927 ** Deallocate internal memory used by a WhereLoop object
1929 static void whereLoopClear(sqlite3
*db
, WhereLoop
*p
){
1930 if( p
->aLTerm
!=p
->aLTermSpace
) sqlite3DbFreeNN(db
, p
->aLTerm
);
1931 whereLoopClearUnion(db
, p
);
1936 ** Increase the memory allocation for pLoop->aLTerm[] to be at least n.
1938 static int whereLoopResize(sqlite3
*db
, WhereLoop
*p
, int n
){
1940 if( p
->nLSlot
>=n
) return SQLITE_OK
;
1942 paNew
= sqlite3DbMallocRawNN(db
, sizeof(p
->aLTerm
[0])*n
);
1943 if( paNew
==0 ) return SQLITE_NOMEM_BKPT
;
1944 memcpy(paNew
, p
->aLTerm
, sizeof(p
->aLTerm
[0])*p
->nLSlot
);
1945 if( p
->aLTerm
!=p
->aLTermSpace
) sqlite3DbFreeNN(db
, p
->aLTerm
);
1952 ** Transfer content from the second pLoop into the first.
1954 static int whereLoopXfer(sqlite3
*db
, WhereLoop
*pTo
, WhereLoop
*pFrom
){
1955 whereLoopClearUnion(db
, pTo
);
1956 if( whereLoopResize(db
, pTo
, pFrom
->nLTerm
) ){
1957 memset(pTo
, 0, WHERE_LOOP_XFER_SZ
);
1958 return SQLITE_NOMEM_BKPT
;
1960 memcpy(pTo
, pFrom
, WHERE_LOOP_XFER_SZ
);
1961 memcpy(pTo
->aLTerm
, pFrom
->aLTerm
, pTo
->nLTerm
*sizeof(pTo
->aLTerm
[0]));
1962 if( pFrom
->wsFlags
& WHERE_VIRTUALTABLE
){
1963 pFrom
->u
.vtab
.needFree
= 0;
1964 }else if( (pFrom
->wsFlags
& WHERE_AUTO_INDEX
)!=0 ){
1965 pFrom
->u
.btree
.pIndex
= 0;
1971 ** Delete a WhereLoop object
1973 static void whereLoopDelete(sqlite3
*db
, WhereLoop
*p
){
1974 whereLoopClear(db
, p
);
1975 sqlite3DbFreeNN(db
, p
);
1979 ** Free a WhereInfo structure
1981 static void whereInfoFree(sqlite3
*db
, WhereInfo
*pWInfo
){
1983 assert( pWInfo
!=0 );
1984 for(i
=0; i
<pWInfo
->nLevel
; i
++){
1985 WhereLevel
*pLevel
= &pWInfo
->a
[i
];
1986 if( pLevel
->pWLoop
&& (pLevel
->pWLoop
->wsFlags
& WHERE_IN_ABLE
) ){
1987 sqlite3DbFree(db
, pLevel
->u
.in
.aInLoop
);
1990 sqlite3WhereClauseClear(&pWInfo
->sWC
);
1991 while( pWInfo
->pLoops
){
1992 WhereLoop
*p
= pWInfo
->pLoops
;
1993 pWInfo
->pLoops
= p
->pNextLoop
;
1994 whereLoopDelete(db
, p
);
1996 assert( pWInfo
->pExprMods
==0 );
1997 sqlite3DbFreeNN(db
, pWInfo
);
2000 /* Undo all Expr node modifications
2002 static void whereUndoExprMods(WhereInfo
*pWInfo
){
2003 while( pWInfo
->pExprMods
){
2004 WhereExprMod
*p
= pWInfo
->pExprMods
;
2005 pWInfo
->pExprMods
= p
->pNext
;
2006 memcpy(p
->pExpr
, &p
->orig
, sizeof(p
->orig
));
2007 sqlite3DbFree(pWInfo
->pParse
->db
, p
);
2012 ** Return TRUE if all of the following are true:
2014 ** (1) X has the same or lower cost that Y
2015 ** (2) X uses fewer WHERE clause terms than Y
2016 ** (3) Every WHERE clause term used by X is also used by Y
2017 ** (4) X skips at least as many columns as Y
2018 ** (5) If X is a covering index, than Y is too
2020 ** Conditions (2) and (3) mean that X is a "proper subset" of Y.
2021 ** If X is a proper subset of Y then Y is a better choice and ought
2022 ** to have a lower cost. This routine returns TRUE when that cost
2023 ** relationship is inverted and needs to be adjusted. Constraint (4)
2024 ** was added because if X uses skip-scan less than Y it still might
2025 ** deserve a lower cost even if it is a proper subset of Y. Constraint (5)
2026 ** was added because a covering index probably deserves to have a lower cost
2027 ** than a non-covering index even if it is a proper subset.
2029 static int whereLoopCheaperProperSubset(
2030 const WhereLoop
*pX
, /* First WhereLoop to compare */
2031 const WhereLoop
*pY
/* Compare against this WhereLoop */
2034 if( pX
->nLTerm
-pX
->nSkip
>= pY
->nLTerm
-pY
->nSkip
){
2035 return 0; /* X is not a subset of Y */
2037 if( pY
->nSkip
> pX
->nSkip
) return 0;
2038 if( pX
->rRun
>= pY
->rRun
){
2039 if( pX
->rRun
> pY
->rRun
) return 0; /* X costs more than Y */
2040 if( pX
->nOut
> pY
->nOut
) return 0; /* X costs more than Y */
2042 for(i
=pX
->nLTerm
-1; i
>=0; i
--){
2043 if( pX
->aLTerm
[i
]==0 ) continue;
2044 for(j
=pY
->nLTerm
-1; j
>=0; j
--){
2045 if( pY
->aLTerm
[j
]==pX
->aLTerm
[i
] ) break;
2047 if( j
<0 ) return 0; /* X not a subset of Y since term X[i] not used by Y */
2049 if( (pX
->wsFlags
&WHERE_IDX_ONLY
)!=0
2050 && (pY
->wsFlags
&WHERE_IDX_ONLY
)==0 ){
2051 return 0; /* Constraint (5) */
2053 return 1; /* All conditions meet */
2057 ** Try to adjust the cost of WhereLoop pTemplate upwards or downwards so
2060 ** (1) pTemplate costs less than any other WhereLoops that are a proper
2061 ** subset of pTemplate
2063 ** (2) pTemplate costs more than any other WhereLoops for which pTemplate
2064 ** is a proper subset.
2066 ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer
2067 ** WHERE clause terms than Y and that every WHERE clause term used by X is
2070 static void whereLoopAdjustCost(const WhereLoop
*p
, WhereLoop
*pTemplate
){
2071 if( (pTemplate
->wsFlags
& WHERE_INDEXED
)==0 ) return;
2072 for(; p
; p
=p
->pNextLoop
){
2073 if( p
->iTab
!=pTemplate
->iTab
) continue;
2074 if( (p
->wsFlags
& WHERE_INDEXED
)==0 ) continue;
2075 if( whereLoopCheaperProperSubset(p
, pTemplate
) ){
2076 /* Adjust pTemplate cost downward so that it is cheaper than its
2078 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
2079 pTemplate
->rRun
, pTemplate
->nOut
, p
->rRun
, p
->nOut
-1));
2080 pTemplate
->rRun
= p
->rRun
;
2081 pTemplate
->nOut
= p
->nOut
- 1;
2082 }else if( whereLoopCheaperProperSubset(pTemplate
, p
) ){
2083 /* Adjust pTemplate cost upward so that it is costlier than p since
2084 ** pTemplate is a proper subset of p */
2085 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
2086 pTemplate
->rRun
, pTemplate
->nOut
, p
->rRun
, p
->nOut
+1));
2087 pTemplate
->rRun
= p
->rRun
;
2088 pTemplate
->nOut
= p
->nOut
+ 1;
2094 ** Search the list of WhereLoops in *ppPrev looking for one that can be
2095 ** replaced by pTemplate.
2097 ** Return NULL if pTemplate does not belong on the WhereLoop list.
2098 ** In other words if pTemplate ought to be dropped from further consideration.
2100 ** If pX is a WhereLoop that pTemplate can replace, then return the
2101 ** link that points to pX.
2103 ** If pTemplate cannot replace any existing element of the list but needs
2104 ** to be added to the list as a new entry, then return a pointer to the
2105 ** tail of the list.
2107 static WhereLoop
**whereLoopFindLesser(
2109 const WhereLoop
*pTemplate
2112 for(p
=(*ppPrev
); p
; ppPrev
=&p
->pNextLoop
, p
=*ppPrev
){
2113 if( p
->iTab
!=pTemplate
->iTab
|| p
->iSortIdx
!=pTemplate
->iSortIdx
){
2114 /* If either the iTab or iSortIdx values for two WhereLoop are different
2115 ** then those WhereLoops need to be considered separately. Neither is
2116 ** a candidate to replace the other. */
2119 /* In the current implementation, the rSetup value is either zero
2120 ** or the cost of building an automatic index (NlogN) and the NlogN
2121 ** is the same for compatible WhereLoops. */
2122 assert( p
->rSetup
==0 || pTemplate
->rSetup
==0
2123 || p
->rSetup
==pTemplate
->rSetup
);
2125 /* whereLoopAddBtree() always generates and inserts the automatic index
2126 ** case first. Hence compatible candidate WhereLoops never have a larger
2127 ** rSetup. Call this SETUP-INVARIANT */
2128 assert( p
->rSetup
>=pTemplate
->rSetup
);
2130 /* Any loop using an appliation-defined index (or PRIMARY KEY or
2131 ** UNIQUE constraint) with one or more == constraints is better
2132 ** than an automatic index. Unless it is a skip-scan. */
2133 if( (p
->wsFlags
& WHERE_AUTO_INDEX
)!=0
2134 && (pTemplate
->nSkip
)==0
2135 && (pTemplate
->wsFlags
& WHERE_INDEXED
)!=0
2136 && (pTemplate
->wsFlags
& WHERE_COLUMN_EQ
)!=0
2137 && (p
->prereq
& pTemplate
->prereq
)==pTemplate
->prereq
2142 /* If existing WhereLoop p is better than pTemplate, pTemplate can be
2143 ** discarded. WhereLoop p is better if:
2144 ** (1) p has no more dependencies than pTemplate, and
2145 ** (2) p has an equal or lower cost than pTemplate
2147 if( (p
->prereq
& pTemplate
->prereq
)==p
->prereq
/* (1) */
2148 && p
->rSetup
<=pTemplate
->rSetup
/* (2a) */
2149 && p
->rRun
<=pTemplate
->rRun
/* (2b) */
2150 && p
->nOut
<=pTemplate
->nOut
/* (2c) */
2152 return 0; /* Discard pTemplate */
2155 /* If pTemplate is always better than p, then cause p to be overwritten
2156 ** with pTemplate. pTemplate is better than p if:
2157 ** (1) pTemplate has no more dependences than p, and
2158 ** (2) pTemplate has an equal or lower cost than p.
2160 if( (p
->prereq
& pTemplate
->prereq
)==pTemplate
->prereq
/* (1) */
2161 && p
->rRun
>=pTemplate
->rRun
/* (2a) */
2162 && p
->nOut
>=pTemplate
->nOut
/* (2b) */
2164 assert( p
->rSetup
>=pTemplate
->rSetup
); /* SETUP-INVARIANT above */
2165 break; /* Cause p to be overwritten by pTemplate */
2172 ** Insert or replace a WhereLoop entry using the template supplied.
2174 ** An existing WhereLoop entry might be overwritten if the new template
2175 ** is better and has fewer dependencies. Or the template will be ignored
2176 ** and no insert will occur if an existing WhereLoop is faster and has
2177 ** fewer dependencies than the template. Otherwise a new WhereLoop is
2178 ** added based on the template.
2180 ** If pBuilder->pOrSet is not NULL then we care about only the
2181 ** prerequisites and rRun and nOut costs of the N best loops. That
2182 ** information is gathered in the pBuilder->pOrSet object. This special
2183 ** processing mode is used only for OR clause processing.
2185 ** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we
2186 ** still might overwrite similar loops with the new template if the
2187 ** new template is better. Loops may be overwritten if the following
2188 ** conditions are met:
2190 ** (1) They have the same iTab.
2191 ** (2) They have the same iSortIdx.
2192 ** (3) The template has same or fewer dependencies than the current loop
2193 ** (4) The template has the same or lower cost than the current loop
2195 static int whereLoopInsert(WhereLoopBuilder
*pBuilder
, WhereLoop
*pTemplate
){
2196 WhereLoop
**ppPrev
, *p
;
2197 WhereInfo
*pWInfo
= pBuilder
->pWInfo
;
2198 sqlite3
*db
= pWInfo
->pParse
->db
;
2201 /* Stop the search once we hit the query planner search limit */
2202 if( pBuilder
->iPlanLimit
==0 ){
2203 WHERETRACE(0xffffffff,("=== query planner search limit reached ===\n"));
2204 if( pBuilder
->pOrSet
) pBuilder
->pOrSet
->n
= 0;
2207 pBuilder
->iPlanLimit
--;
2209 whereLoopAdjustCost(pWInfo
->pLoops
, pTemplate
);
2211 /* If pBuilder->pOrSet is defined, then only keep track of the costs
2214 if( pBuilder
->pOrSet
!=0 ){
2215 if( pTemplate
->nLTerm
){
2216 #if WHERETRACE_ENABLED
2217 u16 n
= pBuilder
->pOrSet
->n
;
2220 whereOrInsert(pBuilder
->pOrSet
, pTemplate
->prereq
, pTemplate
->rRun
,
2222 #if WHERETRACE_ENABLED /* 0x8 */
2223 if( sqlite3WhereTrace
& 0x8 ){
2224 sqlite3DebugPrintf(x
?" or-%d: ":" or-X: ", n
);
2225 sqlite3WhereLoopPrint(pTemplate
, pBuilder
->pWC
);
2232 /* Look for an existing WhereLoop to replace with pTemplate
2234 ppPrev
= whereLoopFindLesser(&pWInfo
->pLoops
, pTemplate
);
2237 /* There already exists a WhereLoop on the list that is better
2238 ** than pTemplate, so just ignore pTemplate */
2239 #if WHERETRACE_ENABLED /* 0x8 */
2240 if( sqlite3WhereTrace
& 0x8 ){
2241 sqlite3DebugPrintf(" skip: ");
2242 sqlite3WhereLoopPrint(pTemplate
, pBuilder
->pWC
);
2250 /* If we reach this point it means that either p[] should be overwritten
2251 ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new
2252 ** WhereLoop and insert it.
2254 #if WHERETRACE_ENABLED /* 0x8 */
2255 if( sqlite3WhereTrace
& 0x8 ){
2257 sqlite3DebugPrintf("replace: ");
2258 sqlite3WhereLoopPrint(p
, pBuilder
->pWC
);
2259 sqlite3DebugPrintf(" with: ");
2261 sqlite3DebugPrintf(" add: ");
2263 sqlite3WhereLoopPrint(pTemplate
, pBuilder
->pWC
);
2267 /* Allocate a new WhereLoop to add to the end of the list */
2268 *ppPrev
= p
= sqlite3DbMallocRawNN(db
, sizeof(WhereLoop
));
2269 if( p
==0 ) return SQLITE_NOMEM_BKPT
;
2273 /* We will be overwriting WhereLoop p[]. But before we do, first
2274 ** go through the rest of the list and delete any other entries besides
2275 ** p[] that are also supplated by pTemplate */
2276 WhereLoop
**ppTail
= &p
->pNextLoop
;
2279 ppTail
= whereLoopFindLesser(ppTail
, pTemplate
);
2280 if( ppTail
==0 ) break;
2282 if( pToDel
==0 ) break;
2283 *ppTail
= pToDel
->pNextLoop
;
2284 #if WHERETRACE_ENABLED /* 0x8 */
2285 if( sqlite3WhereTrace
& 0x8 ){
2286 sqlite3DebugPrintf(" delete: ");
2287 sqlite3WhereLoopPrint(pToDel
, pBuilder
->pWC
);
2290 whereLoopDelete(db
, pToDel
);
2293 rc
= whereLoopXfer(db
, p
, pTemplate
);
2294 if( (p
->wsFlags
& WHERE_VIRTUALTABLE
)==0 ){
2295 Index
*pIndex
= p
->u
.btree
.pIndex
;
2296 if( pIndex
&& pIndex
->idxType
==SQLITE_IDXTYPE_IPK
){
2297 p
->u
.btree
.pIndex
= 0;
2304 ** Adjust the WhereLoop.nOut value downward to account for terms of the
2305 ** WHERE clause that reference the loop but which are not used by an
2308 ** For every WHERE clause term that is not used by the index
2309 ** and which has a truth probability assigned by one of the likelihood(),
2310 ** likely(), or unlikely() SQL functions, reduce the estimated number
2311 ** of output rows by the probability specified.
2313 ** TUNING: For every WHERE clause term that is not used by the index
2314 ** and which does not have an assigned truth probability, heuristics
2315 ** described below are used to try to estimate the truth probability.
2316 ** TODO --> Perhaps this is something that could be improved by better
2317 ** table statistics.
2319 ** Heuristic 1: Estimate the truth probability as 93.75%. The 93.75%
2320 ** value corresponds to -1 in LogEst notation, so this means decrement
2321 ** the WhereLoop.nOut field for every such WHERE clause term.
2323 ** Heuristic 2: If there exists one or more WHERE clause terms of the
2324 ** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the
2325 ** final output row estimate is no greater than 1/4 of the total number
2326 ** of rows in the table. In other words, assume that x==EXPR will filter
2327 ** out at least 3 out of 4 rows. If EXPR is -1 or 0 or 1, then maybe the
2328 ** "x" column is boolean or else -1 or 0 or 1 is a common default value
2329 ** on the "x" column and so in that case only cap the output row estimate
2330 ** at 1/2 instead of 1/4.
2332 static void whereLoopOutputAdjust(
2333 WhereClause
*pWC
, /* The WHERE clause */
2334 WhereLoop
*pLoop
, /* The loop to adjust downward */
2335 LogEst nRow
/* Number of rows in the entire table */
2337 WhereTerm
*pTerm
, *pX
;
2338 Bitmask notAllowed
= ~(pLoop
->prereq
|pLoop
->maskSelf
);
2340 LogEst iReduce
= 0; /* pLoop->nOut should not exceed nRow-iReduce */
2342 assert( (pLoop
->wsFlags
& WHERE_AUTO_INDEX
)==0 );
2343 for(i
=pWC
->nTerm
, pTerm
=pWC
->a
; i
>0; i
--, pTerm
++){
2345 if( (pTerm
->wtFlags
& TERM_VIRTUAL
)!=0 ) break;
2346 if( (pTerm
->prereqAll
& pLoop
->maskSelf
)==0 ) continue;
2347 if( (pTerm
->prereqAll
& notAllowed
)!=0 ) continue;
2348 for(j
=pLoop
->nLTerm
-1; j
>=0; j
--){
2349 pX
= pLoop
->aLTerm
[j
];
2350 if( pX
==0 ) continue;
2351 if( pX
==pTerm
) break;
2352 if( pX
->iParent
>=0 && (&pWC
->a
[pX
->iParent
])==pTerm
) break;
2355 if( pTerm
->truthProb
<=0 ){
2356 /* If a truth probability is specified using the likelihood() hints,
2357 ** then use the probability provided by the application. */
2358 pLoop
->nOut
+= pTerm
->truthProb
;
2360 /* In the absence of explicit truth probabilities, use heuristics to
2361 ** guess a reasonable truth probability. */
2363 if( (pTerm
->eOperator
&(WO_EQ
|WO_IS
))!=0
2364 && (pTerm
->wtFlags
& TERM_HIGHTRUTH
)==0 /* tag-20200224-1 */
2366 Expr
*pRight
= pTerm
->pExpr
->pRight
;
2368 testcase( pTerm
->pExpr
->op
==TK_IS
);
2369 if( sqlite3ExprIsInteger(pRight
, &k
) && k
>=(-1) && k
<=1 ){
2375 pTerm
->wtFlags
|= TERM_HEURTRUTH
;
2382 if( pLoop
->nOut
> nRow
-iReduce
) pLoop
->nOut
= nRow
- iReduce
;
2386 ** Term pTerm is a vector range comparison operation. The first comparison
2387 ** in the vector can be optimized using column nEq of the index. This
2388 ** function returns the total number of vector elements that can be used
2389 ** as part of the range comparison.
2391 ** For example, if the query is:
2393 ** WHERE a = ? AND (b, c, d) > (?, ?, ?)
2397 ** CREATE INDEX ... ON (a, b, c, d, e)
2399 ** then this function would be invoked with nEq=1. The value returned in
2402 static int whereRangeVectorLen(
2403 Parse
*pParse
, /* Parsing context */
2404 int iCur
, /* Cursor open on pIdx */
2405 Index
*pIdx
, /* The index to be used for a inequality constraint */
2406 int nEq
, /* Number of prior equality constraints on same index */
2407 WhereTerm
*pTerm
/* The vector inequality constraint */
2409 int nCmp
= sqlite3ExprVectorSize(pTerm
->pExpr
->pLeft
);
2412 nCmp
= MIN(nCmp
, (pIdx
->nColumn
- nEq
));
2413 for(i
=1; i
<nCmp
; i
++){
2414 /* Test if comparison i of pTerm is compatible with column (i+nEq)
2415 ** of the index. If not, exit the loop. */
2416 char aff
; /* Comparison affinity */
2417 char idxaff
= 0; /* Indexed columns affinity */
2418 CollSeq
*pColl
; /* Comparison collation sequence */
2419 Expr
*pLhs
= pTerm
->pExpr
->pLeft
->x
.pList
->a
[i
].pExpr
;
2420 Expr
*pRhs
= pTerm
->pExpr
->pRight
;
2421 if( pRhs
->flags
& EP_xIsSelect
){
2422 pRhs
= pRhs
->x
.pSelect
->pEList
->a
[i
].pExpr
;
2424 pRhs
= pRhs
->x
.pList
->a
[i
].pExpr
;
2427 /* Check that the LHS of the comparison is a column reference to
2428 ** the right column of the right source table. And that the sort
2429 ** order of the index column is the same as the sort order of the
2430 ** leftmost index column. */
2431 if( pLhs
->op
!=TK_COLUMN
2432 || pLhs
->iTable
!=iCur
2433 || pLhs
->iColumn
!=pIdx
->aiColumn
[i
+nEq
]
2434 || pIdx
->aSortOrder
[i
+nEq
]!=pIdx
->aSortOrder
[nEq
]
2439 testcase( pLhs
->iColumn
==XN_ROWID
);
2440 aff
= sqlite3CompareAffinity(pRhs
, sqlite3ExprAffinity(pLhs
));
2441 idxaff
= sqlite3TableColumnAffinity(pIdx
->pTable
, pLhs
->iColumn
);
2442 if( aff
!=idxaff
) break;
2444 pColl
= sqlite3BinaryCompareCollSeq(pParse
, pLhs
, pRhs
);
2445 if( pColl
==0 ) break;
2446 if( sqlite3StrICmp(pColl
->zName
, pIdx
->azColl
[i
+nEq
]) ) break;
2452 ** Adjust the cost C by the costMult facter T. This only occurs if
2453 ** compiled with -DSQLITE_ENABLE_COSTMULT
2455 #ifdef SQLITE_ENABLE_COSTMULT
2456 # define ApplyCostMultiplier(C,T) C += T
2458 # define ApplyCostMultiplier(C,T)
2462 ** We have so far matched pBuilder->pNew->u.btree.nEq terms of the
2463 ** index pIndex. Try to match one more.
2465 ** When this function is called, pBuilder->pNew->nOut contains the
2466 ** number of rows expected to be visited by filtering using the nEq
2467 ** terms only. If it is modified, this value is restored before this
2468 ** function returns.
2470 ** If pProbe->idxType==SQLITE_IDXTYPE_IPK, that means pIndex is
2471 ** a fake index used for the INTEGER PRIMARY KEY.
2473 static int whereLoopAddBtreeIndex(
2474 WhereLoopBuilder
*pBuilder
, /* The WhereLoop factory */
2475 SrcItem
*pSrc
, /* FROM clause term being analyzed */
2476 Index
*pProbe
, /* An index on pSrc */
2477 LogEst nInMul
/* log(Number of iterations due to IN) */
2479 WhereInfo
*pWInfo
= pBuilder
->pWInfo
; /* WHERE analyse context */
2480 Parse
*pParse
= pWInfo
->pParse
; /* Parsing context */
2481 sqlite3
*db
= pParse
->db
; /* Database connection malloc context */
2482 WhereLoop
*pNew
; /* Template WhereLoop under construction */
2483 WhereTerm
*pTerm
; /* A WhereTerm under consideration */
2484 int opMask
; /* Valid operators for constraints */
2485 WhereScan scan
; /* Iterator for WHERE terms */
2486 Bitmask saved_prereq
; /* Original value of pNew->prereq */
2487 u16 saved_nLTerm
; /* Original value of pNew->nLTerm */
2488 u16 saved_nEq
; /* Original value of pNew->u.btree.nEq */
2489 u16 saved_nBtm
; /* Original value of pNew->u.btree.nBtm */
2490 u16 saved_nTop
; /* Original value of pNew->u.btree.nTop */
2491 u16 saved_nSkip
; /* Original value of pNew->nSkip */
2492 u32 saved_wsFlags
; /* Original value of pNew->wsFlags */
2493 LogEst saved_nOut
; /* Original value of pNew->nOut */
2494 int rc
= SQLITE_OK
; /* Return code */
2495 LogEst rSize
; /* Number of rows in the table */
2496 LogEst rLogSize
; /* Logarithm of table size */
2497 WhereTerm
*pTop
= 0, *pBtm
= 0; /* Top and bottom range constraints */
2499 pNew
= pBuilder
->pNew
;
2500 if( db
->mallocFailed
) return SQLITE_NOMEM_BKPT
;
2501 WHERETRACE(0x800, ("BEGIN %s.addBtreeIdx(%s), nEq=%d, nSkip=%d, rRun=%d\n",
2502 pProbe
->pTable
->zName
,pProbe
->zName
,
2503 pNew
->u
.btree
.nEq
, pNew
->nSkip
, pNew
->rRun
));
2505 assert( (pNew
->wsFlags
& WHERE_VIRTUALTABLE
)==0 );
2506 assert( (pNew
->wsFlags
& WHERE_TOP_LIMIT
)==0 );
2507 if( pNew
->wsFlags
& WHERE_BTM_LIMIT
){
2508 opMask
= WO_LT
|WO_LE
;
2510 assert( pNew
->u
.btree
.nBtm
==0 );
2511 opMask
= WO_EQ
|WO_IN
|WO_GT
|WO_GE
|WO_LT
|WO_LE
|WO_ISNULL
|WO_IS
;
2513 if( pProbe
->bUnordered
) opMask
&= ~(WO_GT
|WO_GE
|WO_LT
|WO_LE
);
2515 assert( pNew
->u
.btree
.nEq
<pProbe
->nColumn
);
2516 assert( pNew
->u
.btree
.nEq
<pProbe
->nKeyCol
2517 || pProbe
->idxType
!=SQLITE_IDXTYPE_PRIMARYKEY
);
2519 saved_nEq
= pNew
->u
.btree
.nEq
;
2520 saved_nBtm
= pNew
->u
.btree
.nBtm
;
2521 saved_nTop
= pNew
->u
.btree
.nTop
;
2522 saved_nSkip
= pNew
->nSkip
;
2523 saved_nLTerm
= pNew
->nLTerm
;
2524 saved_wsFlags
= pNew
->wsFlags
;
2525 saved_prereq
= pNew
->prereq
;
2526 saved_nOut
= pNew
->nOut
;
2527 pTerm
= whereScanInit(&scan
, pBuilder
->pWC
, pSrc
->iCursor
, saved_nEq
,
2530 rSize
= pProbe
->aiRowLogEst
[0];
2531 rLogSize
= estLog(rSize
);
2532 for(; rc
==SQLITE_OK
&& pTerm
!=0; pTerm
= whereScanNext(&scan
)){
2533 u16 eOp
= pTerm
->eOperator
; /* Shorthand for pTerm->eOperator */
2535 LogEst nOutUnadjusted
; /* nOut before IN() and WHERE adjustments */
2537 #ifdef SQLITE_ENABLE_STAT4
2538 int nRecValid
= pBuilder
->nRecValid
;
2540 if( (eOp
==WO_ISNULL
|| (pTerm
->wtFlags
&TERM_VNULL
)!=0)
2541 && indexColumnNotNull(pProbe
, saved_nEq
)
2543 continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */
2545 if( pTerm
->prereqRight
& pNew
->maskSelf
) continue;
2547 /* Do not allow the upper bound of a LIKE optimization range constraint
2548 ** to mix with a lower range bound from some other source */
2549 if( pTerm
->wtFlags
& TERM_LIKEOPT
&& pTerm
->eOperator
==WO_LT
) continue;
2551 /* tag-20191211-001: Do not allow constraints from the WHERE clause to
2552 ** be used by the right table of a LEFT JOIN. Only constraints in the
2553 ** ON clause are allowed. See tag-20191211-002 for the vtab equivalent. */
2554 if( (pSrc
->fg
.jointype
& JT_LEFT
)!=0
2555 && !ExprHasProperty(pTerm
->pExpr
, EP_FromJoin
)
2560 if( IsUniqueIndex(pProbe
) && saved_nEq
==pProbe
->nKeyCol
-1 ){
2561 pBuilder
->bldFlags1
|= SQLITE_BLDF1_UNIQUE
;
2563 pBuilder
->bldFlags1
|= SQLITE_BLDF1_INDEXED
;
2565 pNew
->wsFlags
= saved_wsFlags
;
2566 pNew
->u
.btree
.nEq
= saved_nEq
;
2567 pNew
->u
.btree
.nBtm
= saved_nBtm
;
2568 pNew
->u
.btree
.nTop
= saved_nTop
;
2569 pNew
->nLTerm
= saved_nLTerm
;
2570 if( whereLoopResize(db
, pNew
, pNew
->nLTerm
+1) ) break; /* OOM */
2571 pNew
->aLTerm
[pNew
->nLTerm
++] = pTerm
;
2572 pNew
->prereq
= (saved_prereq
| pTerm
->prereqRight
) & ~pNew
->maskSelf
;
2575 || (pNew
->wsFlags
& WHERE_COLUMN_NULL
)!=0
2576 || (pNew
->wsFlags
& WHERE_COLUMN_IN
)!=0
2577 || (pNew
->wsFlags
& WHERE_SKIPSCAN
)!=0
2581 Expr
*pExpr
= pTerm
->pExpr
;
2582 if( ExprHasProperty(pExpr
, EP_xIsSelect
) ){
2583 /* "x IN (SELECT ...)": TUNING: the SELECT returns 25 rows */
2585 nIn
= 46; assert( 46==sqlite3LogEst(25) );
2587 /* The expression may actually be of the form (x, y) IN (SELECT...).
2588 ** In this case there is a separate term for each of (x) and (y).
2589 ** However, the nIn multiplier should only be applied once, not once
2590 ** for each such term. The following loop checks that pTerm is the
2591 ** first such term in use, and sets nIn back to 0 if it is not. */
2592 for(i
=0; i
<pNew
->nLTerm
-1; i
++){
2593 if( pNew
->aLTerm
[i
] && pNew
->aLTerm
[i
]->pExpr
==pExpr
) nIn
= 0;
2595 }else if( ALWAYS(pExpr
->x
.pList
&& pExpr
->x
.pList
->nExpr
) ){
2596 /* "x IN (value, value, ...)" */
2597 nIn
= sqlite3LogEst(pExpr
->x
.pList
->nExpr
);
2599 if( pProbe
->hasStat1
&& rLogSize
>=10 ){
2602 ** N = the total number of rows in the table
2603 ** K = the number of entries on the RHS of the IN operator
2604 ** M = the number of rows in the table that match terms to the
2605 ** to the left in the same index. If the IN operator is on
2606 ** the left-most index column, M==N.
2608 ** Given the definitions above, it is better to omit the IN operator
2609 ** from the index lookup and instead do a scan of the M elements,
2610 ** testing each scanned row against the IN operator separately, if:
2612 ** M*log(K) < K*log(N)
2614 ** Our estimates for M, K, and N might be inaccurate, so we build in
2615 ** a safety margin of 2 (LogEst: 10) that favors using the IN operator
2616 ** with the index, as using an index has better worst-case behavior.
2617 ** If we do not have real sqlite_stat1 data, always prefer to use
2618 ** the index. Do not bother with this optimization on very small
2619 ** tables (less than 2 rows) as it is pointless in that case.
2621 M
= pProbe
->aiRowLogEst
[saved_nEq
];
2623 /* TUNING v----- 10 to bias toward indexed IN */
2624 x
= M
+ logK
+ 10 - (nIn
+ rLogSize
);
2627 ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d) "
2628 "prefers indexed lookup\n",
2629 saved_nEq
, M
, logK
, nIn
, rLogSize
, x
));
2630 }else if( nInMul
<2 && OptimizationEnabled(db
, SQLITE_SeekScan
) ){
2632 ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d"
2633 " nInMul=%d) prefers skip-scan\n",
2634 saved_nEq
, M
, logK
, nIn
, rLogSize
, x
, nInMul
));
2635 pNew
->wsFlags
|= WHERE_IN_SEEKSCAN
;
2638 ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d"
2639 " nInMul=%d) prefers normal scan\n",
2640 saved_nEq
, M
, logK
, nIn
, rLogSize
, x
, nInMul
));
2644 pNew
->wsFlags
|= WHERE_COLUMN_IN
;
2645 }else if( eOp
& (WO_EQ
|WO_IS
) ){
2646 int iCol
= pProbe
->aiColumn
[saved_nEq
];
2647 pNew
->wsFlags
|= WHERE_COLUMN_EQ
;
2648 assert( saved_nEq
==pNew
->u
.btree
.nEq
);
2650 || (iCol
>=0 && nInMul
==0 && saved_nEq
==pProbe
->nKeyCol
-1)
2652 if( iCol
==XN_ROWID
|| pProbe
->uniqNotNull
2653 || (pProbe
->nKeyCol
==1 && pProbe
->onError
&& eOp
==WO_EQ
)
2655 pNew
->wsFlags
|= WHERE_ONEROW
;
2657 pNew
->wsFlags
|= WHERE_UNQ_WANTED
;
2660 if( scan
.iEquiv
>1 ) pNew
->wsFlags
|= WHERE_TRANSCONS
;
2661 }else if( eOp
& WO_ISNULL
){
2662 pNew
->wsFlags
|= WHERE_COLUMN_NULL
;
2663 }else if( eOp
& (WO_GT
|WO_GE
) ){
2664 testcase( eOp
& WO_GT
);
2665 testcase( eOp
& WO_GE
);
2666 pNew
->wsFlags
|= WHERE_COLUMN_RANGE
|WHERE_BTM_LIMIT
;
2667 pNew
->u
.btree
.nBtm
= whereRangeVectorLen(
2668 pParse
, pSrc
->iCursor
, pProbe
, saved_nEq
, pTerm
2672 if( pTerm
->wtFlags
& TERM_LIKEOPT
){
2673 /* Range constraints that come from the LIKE optimization are
2674 ** always used in pairs. */
2676 assert( (pTop
-(pTerm
->pWC
->a
))<pTerm
->pWC
->nTerm
);
2677 assert( pTop
->wtFlags
& TERM_LIKEOPT
);
2678 assert( pTop
->eOperator
==WO_LT
);
2679 if( whereLoopResize(db
, pNew
, pNew
->nLTerm
+1) ) break; /* OOM */
2680 pNew
->aLTerm
[pNew
->nLTerm
++] = pTop
;
2681 pNew
->wsFlags
|= WHERE_TOP_LIMIT
;
2682 pNew
->u
.btree
.nTop
= 1;
2685 assert( eOp
& (WO_LT
|WO_LE
) );
2686 testcase( eOp
& WO_LT
);
2687 testcase( eOp
& WO_LE
);
2688 pNew
->wsFlags
|= WHERE_COLUMN_RANGE
|WHERE_TOP_LIMIT
;
2689 pNew
->u
.btree
.nTop
= whereRangeVectorLen(
2690 pParse
, pSrc
->iCursor
, pProbe
, saved_nEq
, pTerm
2693 pBtm
= (pNew
->wsFlags
& WHERE_BTM_LIMIT
)!=0 ?
2694 pNew
->aLTerm
[pNew
->nLTerm
-2] : 0;
2697 /* At this point pNew->nOut is set to the number of rows expected to
2698 ** be visited by the index scan before considering term pTerm, or the
2699 ** values of nIn and nInMul. In other words, assuming that all
2700 ** "x IN(...)" terms are replaced with "x = ?". This block updates
2701 ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul). */
2702 assert( pNew
->nOut
==saved_nOut
);
2703 if( pNew
->wsFlags
& WHERE_COLUMN_RANGE
){
2704 /* Adjust nOut using stat4 data. Or, if there is no stat4
2705 ** data, using some other estimate. */
2706 whereRangeScanEst(pParse
, pBuilder
, pBtm
, pTop
, pNew
);
2708 int nEq
= ++pNew
->u
.btree
.nEq
;
2709 assert( eOp
& (WO_ISNULL
|WO_EQ
|WO_IN
|WO_IS
) );
2711 assert( pNew
->nOut
==saved_nOut
);
2712 if( pTerm
->truthProb
<=0 && pProbe
->aiColumn
[saved_nEq
]>=0 ){
2713 assert( (eOp
& WO_IN
) || nIn
==0 );
2714 testcase( eOp
& WO_IN
);
2715 pNew
->nOut
+= pTerm
->truthProb
;
2718 #ifdef SQLITE_ENABLE_STAT4
2722 && ALWAYS(pNew
->u
.btree
.nEq
<=pProbe
->nSampleCol
)
2723 && ((eOp
& WO_IN
)==0 || !ExprHasProperty(pTerm
->pExpr
, EP_xIsSelect
))
2724 && OptimizationEnabled(db
, SQLITE_Stat4
)
2726 Expr
*pExpr
= pTerm
->pExpr
;
2727 if( (eOp
& (WO_EQ
|WO_ISNULL
|WO_IS
))!=0 ){
2728 testcase( eOp
& WO_EQ
);
2729 testcase( eOp
& WO_IS
);
2730 testcase( eOp
& WO_ISNULL
);
2731 rc
= whereEqualScanEst(pParse
, pBuilder
, pExpr
->pRight
, &nOut
);
2733 rc
= whereInScanEst(pParse
, pBuilder
, pExpr
->x
.pList
, &nOut
);
2735 if( rc
==SQLITE_NOTFOUND
) rc
= SQLITE_OK
;
2736 if( rc
!=SQLITE_OK
) break; /* Jump out of the pTerm loop */
2738 pNew
->nOut
= sqlite3LogEst(nOut
);
2740 /* TUNING: Mark terms as "low selectivity" if they seem likely
2741 ** to be true for half or more of the rows in the table.
2742 ** See tag-202002240-1 */
2743 && pNew
->nOut
+10 > pProbe
->aiRowLogEst
[0]
2745 #if WHERETRACE_ENABLED /* 0x01 */
2746 if( sqlite3WhereTrace
& 0x01 ){
2748 "STAT4 determines term has low selectivity:\n");
2749 sqlite3WhereTermPrint(pTerm
, 999);
2752 pTerm
->wtFlags
|= TERM_HIGHTRUTH
;
2753 if( pTerm
->wtFlags
& TERM_HEURTRUTH
){
2754 /* If the term has previously been used with an assumption of
2755 ** higher selectivity, then set the flag to rerun the
2756 ** loop computations. */
2757 pBuilder
->bldFlags2
|= SQLITE_BLDF2_2NDPASS
;
2760 if( pNew
->nOut
>saved_nOut
) pNew
->nOut
= saved_nOut
;
2767 pNew
->nOut
+= (pProbe
->aiRowLogEst
[nEq
] - pProbe
->aiRowLogEst
[nEq
-1]);
2768 if( eOp
& WO_ISNULL
){
2769 /* TUNING: If there is no likelihood() value, assume that a
2770 ** "col IS NULL" expression matches twice as many rows
2778 /* Set rCostIdx to the cost of visiting selected rows in index. Add
2779 ** it to pNew->rRun, which is currently set to the cost of the index
2780 ** seek only. Then, if this is a non-covering index, add the cost of
2781 ** visiting the rows in the main table. */
2782 assert( pSrc
->pTab
->szTabRow
>0 );
2783 rCostIdx
= pNew
->nOut
+ 1 + (15*pProbe
->szIdxRow
)/pSrc
->pTab
->szTabRow
;
2784 pNew
->rRun
= sqlite3LogEstAdd(rLogSize
, rCostIdx
);
2785 if( (pNew
->wsFlags
& (WHERE_IDX_ONLY
|WHERE_IPK
))==0 ){
2786 pNew
->rRun
= sqlite3LogEstAdd(pNew
->rRun
, pNew
->nOut
+ 16);
2788 ApplyCostMultiplier(pNew
->rRun
, pProbe
->pTable
->costMult
);
2790 nOutUnadjusted
= pNew
->nOut
;
2791 pNew
->rRun
+= nInMul
+ nIn
;
2792 pNew
->nOut
+= nInMul
+ nIn
;
2793 whereLoopOutputAdjust(pBuilder
->pWC
, pNew
, rSize
);
2794 rc
= whereLoopInsert(pBuilder
, pNew
);
2796 if( pNew
->wsFlags
& WHERE_COLUMN_RANGE
){
2797 pNew
->nOut
= saved_nOut
;
2799 pNew
->nOut
= nOutUnadjusted
;
2802 if( (pNew
->wsFlags
& WHERE_TOP_LIMIT
)==0
2803 && pNew
->u
.btree
.nEq
<pProbe
->nColumn
2804 && (pNew
->u
.btree
.nEq
<pProbe
->nKeyCol
||
2805 pProbe
->idxType
!=SQLITE_IDXTYPE_PRIMARYKEY
)
2807 whereLoopAddBtreeIndex(pBuilder
, pSrc
, pProbe
, nInMul
+nIn
);
2809 pNew
->nOut
= saved_nOut
;
2810 #ifdef SQLITE_ENABLE_STAT4
2811 pBuilder
->nRecValid
= nRecValid
;
2814 pNew
->prereq
= saved_prereq
;
2815 pNew
->u
.btree
.nEq
= saved_nEq
;
2816 pNew
->u
.btree
.nBtm
= saved_nBtm
;
2817 pNew
->u
.btree
.nTop
= saved_nTop
;
2818 pNew
->nSkip
= saved_nSkip
;
2819 pNew
->wsFlags
= saved_wsFlags
;
2820 pNew
->nOut
= saved_nOut
;
2821 pNew
->nLTerm
= saved_nLTerm
;
2823 /* Consider using a skip-scan if there are no WHERE clause constraints
2824 ** available for the left-most terms of the index, and if the average
2825 ** number of repeats in the left-most terms is at least 18.
2827 ** The magic number 18 is selected on the basis that scanning 17 rows
2828 ** is almost always quicker than an index seek (even though if the index
2829 ** contains fewer than 2^17 rows we assume otherwise in other parts of
2830 ** the code). And, even if it is not, it should not be too much slower.
2831 ** On the other hand, the extra seeks could end up being significantly
2832 ** more expensive. */
2833 assert( 42==sqlite3LogEst(18) );
2834 if( saved_nEq
==saved_nSkip
2835 && saved_nEq
+1<pProbe
->nKeyCol
2836 && saved_nEq
==pNew
->nLTerm
2837 && pProbe
->noSkipScan
==0
2838 && pProbe
->hasStat1
!=0
2839 && OptimizationEnabled(db
, SQLITE_SkipScan
)
2840 && pProbe
->aiRowLogEst
[saved_nEq
+1]>=42 /* TUNING: Minimum for skip-scan */
2841 && (rc
= whereLoopResize(db
, pNew
, pNew
->nLTerm
+1))==SQLITE_OK
2844 pNew
->u
.btree
.nEq
++;
2846 pNew
->aLTerm
[pNew
->nLTerm
++] = 0;
2847 pNew
->wsFlags
|= WHERE_SKIPSCAN
;
2848 nIter
= pProbe
->aiRowLogEst
[saved_nEq
] - pProbe
->aiRowLogEst
[saved_nEq
+1];
2849 pNew
->nOut
-= nIter
;
2850 /* TUNING: Because uncertainties in the estimates for skip-scan queries,
2851 ** add a 1.375 fudge factor to make skip-scan slightly less likely. */
2853 whereLoopAddBtreeIndex(pBuilder
, pSrc
, pProbe
, nIter
+ nInMul
);
2854 pNew
->nOut
= saved_nOut
;
2855 pNew
->u
.btree
.nEq
= saved_nEq
;
2856 pNew
->nSkip
= saved_nSkip
;
2857 pNew
->wsFlags
= saved_wsFlags
;
2860 WHERETRACE(0x800, ("END %s.addBtreeIdx(%s), nEq=%d, rc=%d\n",
2861 pProbe
->pTable
->zName
, pProbe
->zName
, saved_nEq
, rc
));
2866 ** Return True if it is possible that pIndex might be useful in
2867 ** implementing the ORDER BY clause in pBuilder.
2869 ** Return False if pBuilder does not contain an ORDER BY clause or
2870 ** if there is no way for pIndex to be useful in implementing that
2873 static int indexMightHelpWithOrderBy(
2874 WhereLoopBuilder
*pBuilder
,
2882 if( pIndex
->bUnordered
) return 0;
2883 if( (pOB
= pBuilder
->pWInfo
->pOrderBy
)==0 ) return 0;
2884 for(ii
=0; ii
<pOB
->nExpr
; ii
++){
2885 Expr
*pExpr
= sqlite3ExprSkipCollateAndLikely(pOB
->a
[ii
].pExpr
);
2886 if( NEVER(pExpr
==0) ) continue;
2887 if( pExpr
->op
==TK_COLUMN
&& pExpr
->iTable
==iCursor
){
2888 if( pExpr
->iColumn
<0 ) return 1;
2889 for(jj
=0; jj
<pIndex
->nKeyCol
; jj
++){
2890 if( pExpr
->iColumn
==pIndex
->aiColumn
[jj
] ) return 1;
2892 }else if( (aColExpr
= pIndex
->aColExpr
)!=0 ){
2893 for(jj
=0; jj
<pIndex
->nKeyCol
; jj
++){
2894 if( pIndex
->aiColumn
[jj
]!=XN_EXPR
) continue;
2895 if( sqlite3ExprCompareSkip(pExpr
,aColExpr
->a
[jj
].pExpr
,iCursor
)==0 ){
2904 /* Check to see if a partial index with pPartIndexWhere can be used
2905 ** in the current query. Return true if it can be and false if not.
2907 static int whereUsablePartialIndex(
2908 int iTab
, /* The table for which we want an index */
2909 int isLeft
, /* True if iTab is the right table of a LEFT JOIN */
2910 WhereClause
*pWC
, /* The WHERE clause of the query */
2911 Expr
*pWhere
/* The WHERE clause from the partial index */
2915 Parse
*pParse
= pWC
->pWInfo
->pParse
;
2916 while( pWhere
->op
==TK_AND
){
2917 if( !whereUsablePartialIndex(iTab
,isLeft
,pWC
,pWhere
->pLeft
) ) return 0;
2918 pWhere
= pWhere
->pRight
;
2920 if( pParse
->db
->flags
& SQLITE_EnableQPSG
) pParse
= 0;
2921 for(i
=0, pTerm
=pWC
->a
; i
<pWC
->nTerm
; i
++, pTerm
++){
2923 pExpr
= pTerm
->pExpr
;
2924 if( (!ExprHasProperty(pExpr
, EP_FromJoin
) || pExpr
->iRightJoinTable
==iTab
)
2925 && (isLeft
==0 || ExprHasProperty(pExpr
, EP_FromJoin
))
2926 && sqlite3ExprImpliesExpr(pParse
, pExpr
, pWhere
, iTab
)
2927 && (pTerm
->wtFlags
& TERM_VNULL
)==0
2936 ** Add all WhereLoop objects for a single table of the join where the table
2937 ** is identified by pBuilder->pNew->iTab. That table is guaranteed to be
2938 ** a b-tree table, not a virtual table.
2940 ** The costs (WhereLoop.rRun) of the b-tree loops added by this function
2941 ** are calculated as follows:
2943 ** For a full scan, assuming the table (or index) contains nRow rows:
2945 ** cost = nRow * 3.0 // full-table scan
2946 ** cost = nRow * K // scan of covering index
2947 ** cost = nRow * (K+3.0) // scan of non-covering index
2949 ** where K is a value between 1.1 and 3.0 set based on the relative
2950 ** estimated average size of the index and table records.
2952 ** For an index scan, where nVisit is the number of index rows visited
2953 ** by the scan, and nSeek is the number of seek operations required on
2954 ** the index b-tree:
2956 ** cost = nSeek * (log(nRow) + K * nVisit) // covering index
2957 ** cost = nSeek * (log(nRow) + (K+3.0) * nVisit) // non-covering index
2959 ** Normally, nSeek is 1. nSeek values greater than 1 come about if the
2960 ** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when
2961 ** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans.
2963 ** The estimated values (nRow, nVisit, nSeek) often contain a large amount
2964 ** of uncertainty. For this reason, scoring is designed to pick plans that
2965 ** "do the least harm" if the estimates are inaccurate. For example, a
2966 ** log(nRow) factor is omitted from a non-covering index scan in order to
2967 ** bias the scoring in favor of using an index, since the worst-case
2968 ** performance of using an index is far better than the worst-case performance
2969 ** of a full table scan.
2971 static int whereLoopAddBtree(
2972 WhereLoopBuilder
*pBuilder
, /* WHERE clause information */
2973 Bitmask mPrereq
/* Extra prerequesites for using this table */
2975 WhereInfo
*pWInfo
; /* WHERE analysis context */
2976 Index
*pProbe
; /* An index we are evaluating */
2977 Index sPk
; /* A fake index object for the primary key */
2978 LogEst aiRowEstPk
[2]; /* The aiRowLogEst[] value for the sPk index */
2979 i16 aiColumnPk
= -1; /* The aColumn[] value for the sPk index */
2980 SrcList
*pTabList
; /* The FROM clause */
2981 SrcItem
*pSrc
; /* The FROM clause btree term to add */
2982 WhereLoop
*pNew
; /* Template WhereLoop object */
2983 int rc
= SQLITE_OK
; /* Return code */
2984 int iSortIdx
= 1; /* Index number */
2985 int b
; /* A boolean value */
2986 LogEst rSize
; /* number of rows in the table */
2987 LogEst rLogSize
; /* Logarithm of the number of rows in the table */
2988 WhereClause
*pWC
; /* The parsed WHERE clause */
2989 Table
*pTab
; /* Table being queried */
2991 pNew
= pBuilder
->pNew
;
2992 pWInfo
= pBuilder
->pWInfo
;
2993 pTabList
= pWInfo
->pTabList
;
2994 pSrc
= pTabList
->a
+ pNew
->iTab
;
2996 pWC
= pBuilder
->pWC
;
2997 assert( !IsVirtual(pSrc
->pTab
) );
2999 if( pSrc
->fg
.isIndexedBy
){
3000 /* An INDEXED BY clause specifies a particular index to use */
3001 pProbe
= pSrc
->u2
.pIBIndex
;
3002 }else if( !HasRowid(pTab
) ){
3003 pProbe
= pTab
->pIndex
;
3005 /* There is no INDEXED BY clause. Create a fake Index object in local
3006 ** variable sPk to represent the rowid primary key index. Make this
3007 ** fake index the first in a chain of Index objects with all of the real
3008 ** indices to follow */
3009 Index
*pFirst
; /* First of real indices on the table */
3010 memset(&sPk
, 0, sizeof(Index
));
3013 sPk
.aiColumn
= &aiColumnPk
;
3014 sPk
.aiRowLogEst
= aiRowEstPk
;
3015 sPk
.onError
= OE_Replace
;
3017 sPk
.szIdxRow
= pTab
->szTabRow
;
3018 sPk
.idxType
= SQLITE_IDXTYPE_IPK
;
3019 aiRowEstPk
[0] = pTab
->nRowLogEst
;
3021 pFirst
= pSrc
->pTab
->pIndex
;
3022 if( pSrc
->fg
.notIndexed
==0 ){
3023 /* The real indices of the table are only considered if the
3024 ** NOT INDEXED qualifier is omitted from the FROM clause */
3029 rSize
= pTab
->nRowLogEst
;
3030 rLogSize
= estLog(rSize
);
3032 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
3033 /* Automatic indexes */
3034 if( !pBuilder
->pOrSet
/* Not part of an OR optimization */
3035 && (pWInfo
->wctrlFlags
& WHERE_OR_SUBCLAUSE
)==0
3036 && (pWInfo
->pParse
->db
->flags
& SQLITE_AutoIndex
)!=0
3037 && !pSrc
->fg
.isIndexedBy
/* Has no INDEXED BY clause */
3038 && !pSrc
->fg
.notIndexed
/* Has no NOT INDEXED clause */
3039 && HasRowid(pTab
) /* Not WITHOUT ROWID table. (FIXME: Why not?) */
3040 && !pSrc
->fg
.isCorrelated
/* Not a correlated subquery */
3041 && !pSrc
->fg
.isRecursive
/* Not a recursive common table expression. */
3043 /* Generate auto-index WhereLoops */
3045 WhereTerm
*pWCEnd
= pWC
->a
+ pWC
->nTerm
;
3046 for(pTerm
=pWC
->a
; rc
==SQLITE_OK
&& pTerm
<pWCEnd
; pTerm
++){
3047 if( pTerm
->prereqRight
& pNew
->maskSelf
) continue;
3048 if( termCanDriveIndex(pTerm
, pSrc
, 0) ){
3049 pNew
->u
.btree
.nEq
= 1;
3051 pNew
->u
.btree
.pIndex
= 0;
3053 pNew
->aLTerm
[0] = pTerm
;
3054 /* TUNING: One-time cost for computing the automatic index is
3055 ** estimated to be X*N*log2(N) where N is the number of rows in
3056 ** the table being indexed and where X is 7 (LogEst=28) for normal
3057 ** tables or 0.5 (LogEst=-10) for views and subqueries. The value
3058 ** of X is smaller for views and subqueries so that the query planner
3059 ** will be more aggressive about generating automatic indexes for
3060 ** those objects, since there is no opportunity to add schema
3061 ** indexes on subqueries and views. */
3062 pNew
->rSetup
= rLogSize
+ rSize
;
3063 if( pTab
->pSelect
==0 && (pTab
->tabFlags
& TF_Ephemeral
)==0 ){
3068 ApplyCostMultiplier(pNew
->rSetup
, pTab
->costMult
);
3069 if( pNew
->rSetup
<0 ) pNew
->rSetup
= 0;
3070 /* TUNING: Each index lookup yields 20 rows in the table. This
3071 ** is more than the usual guess of 10 rows, since we have no way
3072 ** of knowing how selective the index will ultimately be. It would
3073 ** not be unreasonable to make this value much larger. */
3074 pNew
->nOut
= 43; assert( 43==sqlite3LogEst(20) );
3075 pNew
->rRun
= sqlite3LogEstAdd(rLogSize
,pNew
->nOut
);
3076 pNew
->wsFlags
= WHERE_AUTO_INDEX
;
3077 pNew
->prereq
= mPrereq
| pTerm
->prereqRight
;
3078 rc
= whereLoopInsert(pBuilder
, pNew
);
3082 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
3084 /* Loop over all indices. If there was an INDEXED BY clause, then only
3085 ** consider index pProbe. */
3086 for(; rc
==SQLITE_OK
&& pProbe
;
3087 pProbe
=(pSrc
->fg
.isIndexedBy
? 0 : pProbe
->pNext
), iSortIdx
++
3089 int isLeft
= (pSrc
->fg
.jointype
& JT_OUTER
)!=0;
3090 if( pProbe
->pPartIdxWhere
!=0
3091 && !whereUsablePartialIndex(pSrc
->iCursor
, isLeft
, pWC
,
3092 pProbe
->pPartIdxWhere
)
3094 testcase( pNew
->iTab
!=pSrc
->iCursor
); /* See ticket [98d973b8f5] */
3095 continue; /* Partial index inappropriate for this query */
3097 if( pProbe
->bNoQuery
) continue;
3098 rSize
= pProbe
->aiRowLogEst
[0];
3099 pNew
->u
.btree
.nEq
= 0;
3100 pNew
->u
.btree
.nBtm
= 0;
3101 pNew
->u
.btree
.nTop
= 0;
3106 pNew
->prereq
= mPrereq
;
3108 pNew
->u
.btree
.pIndex
= pProbe
;
3109 b
= indexMightHelpWithOrderBy(pBuilder
, pProbe
, pSrc
->iCursor
);
3111 /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */
3112 assert( (pWInfo
->wctrlFlags
& WHERE_ONEPASS_DESIRED
)==0 || b
==0 );
3113 if( pProbe
->idxType
==SQLITE_IDXTYPE_IPK
){
3114 /* Integer primary key index */
3115 pNew
->wsFlags
= WHERE_IPK
;
3117 /* Full table scan */
3118 pNew
->iSortIdx
= b
? iSortIdx
: 0;
3119 /* TUNING: Cost of full table scan is 3.0*N. The 3.0 factor is an
3120 ** extra cost designed to discourage the use of full table scans,
3121 ** since index lookups have better worst-case performance if our
3122 ** stat guesses are wrong. Reduce the 3.0 penalty slightly
3123 ** (to 2.75) if we have valid STAT4 information for the table.
3124 ** At 2.75, a full table scan is preferred over using an index on
3125 ** a column with just two distinct values where each value has about
3126 ** an equal number of appearances. Without STAT4 data, we still want
3127 ** to use an index in that case, since the constraint might be for
3128 ** the scarcer of the two values, and in that case an index lookup is
3131 #ifdef SQLITE_ENABLE_STAT4
3132 pNew
->rRun
= rSize
+ 16 - 2*((pTab
->tabFlags
& TF_HasStat4
)!=0);
3134 pNew
->rRun
= rSize
+ 16;
3136 ApplyCostMultiplier(pNew
->rRun
, pTab
->costMult
);
3137 whereLoopOutputAdjust(pWC
, pNew
, rSize
);
3138 rc
= whereLoopInsert(pBuilder
, pNew
);
3143 if( pProbe
->isCovering
){
3144 pNew
->wsFlags
= WHERE_IDX_ONLY
| WHERE_INDEXED
;
3147 m
= pSrc
->colUsed
& pProbe
->colNotIdxed
;
3148 pNew
->wsFlags
= (m
==0) ? (WHERE_IDX_ONLY
|WHERE_INDEXED
) : WHERE_INDEXED
;
3151 /* Full scan via index */
3154 || pProbe
->pPartIdxWhere
!=0
3155 || pSrc
->fg
.isIndexedBy
3157 && pProbe
->bUnordered
==0
3158 && (pProbe
->szIdxRow
<pTab
->szTabRow
)
3159 && (pWInfo
->wctrlFlags
& WHERE_ONEPASS_DESIRED
)==0
3160 && sqlite3GlobalConfig
.bUseCis
3161 && OptimizationEnabled(pWInfo
->pParse
->db
, SQLITE_CoverIdxScan
)
3164 pNew
->iSortIdx
= b
? iSortIdx
: 0;
3166 /* The cost of visiting the index rows is N*K, where K is
3167 ** between 1.1 and 3.0, depending on the relative sizes of the
3168 ** index and table rows. */
3169 pNew
->rRun
= rSize
+ 1 + (15*pProbe
->szIdxRow
)/pTab
->szTabRow
;
3171 /* If this is a non-covering index scan, add in the cost of
3172 ** doing table lookups. The cost will be 3x the number of
3173 ** lookups. Take into account WHERE clause terms that can be
3174 ** satisfied using just the index, and that do not require a
3176 LogEst nLookup
= rSize
+ 16; /* Base cost: N*3 */
3178 int iCur
= pSrc
->iCursor
;
3179 WhereClause
*pWC2
= &pWInfo
->sWC
;
3180 for(ii
=0; ii
<pWC2
->nTerm
; ii
++){
3181 WhereTerm
*pTerm
= &pWC2
->a
[ii
];
3182 if( !sqlite3ExprCoveredByIndex(pTerm
->pExpr
, iCur
, pProbe
) ){
3185 /* pTerm can be evaluated using just the index. So reduce
3186 ** the expected number of table lookups accordingly */
3187 if( pTerm
->truthProb
<=0 ){
3188 nLookup
+= pTerm
->truthProb
;
3191 if( pTerm
->eOperator
& (WO_EQ
|WO_IS
) ) nLookup
-= 19;
3195 pNew
->rRun
= sqlite3LogEstAdd(pNew
->rRun
, nLookup
);
3197 ApplyCostMultiplier(pNew
->rRun
, pTab
->costMult
);
3198 whereLoopOutputAdjust(pWC
, pNew
, rSize
);
3199 rc
= whereLoopInsert(pBuilder
, pNew
);
3205 pBuilder
->bldFlags1
= 0;
3206 rc
= whereLoopAddBtreeIndex(pBuilder
, pSrc
, pProbe
, 0);
3207 if( pBuilder
->bldFlags1
==SQLITE_BLDF1_INDEXED
){
3208 /* If a non-unique index is used, or if a prefix of the key for
3209 ** unique index is used (making the index functionally non-unique)
3210 ** then the sqlite_stat1 data becomes important for scoring the
3212 pTab
->tabFlags
|= TF_StatsUsed
;
3214 #ifdef SQLITE_ENABLE_STAT4
3215 sqlite3Stat4ProbeFree(pBuilder
->pRec
);
3216 pBuilder
->nRecValid
= 0;
3223 #ifndef SQLITE_OMIT_VIRTUALTABLE
3226 ** Argument pIdxInfo is already populated with all constraints that may
3227 ** be used by the virtual table identified by pBuilder->pNew->iTab. This
3228 ** function marks a subset of those constraints usable, invokes the
3229 ** xBestIndex method and adds the returned plan to pBuilder.
3231 ** A constraint is marked usable if:
3233 ** * Argument mUsable indicates that its prerequisites are available, and
3235 ** * It is not one of the operators specified in the mExclude mask passed
3236 ** as the fourth argument (which in practice is either WO_IN or 0).
3238 ** Argument mPrereq is a mask of tables that must be scanned before the
3239 ** virtual table in question. These are added to the plans prerequisites
3240 ** before it is added to pBuilder.
3242 ** Output parameter *pbIn is set to true if the plan added to pBuilder
3243 ** uses one or more WO_IN terms, or false otherwise.
3245 static int whereLoopAddVirtualOne(
3246 WhereLoopBuilder
*pBuilder
,
3247 Bitmask mPrereq
, /* Mask of tables that must be used. */
3248 Bitmask mUsable
, /* Mask of usable tables */
3249 u16 mExclude
, /* Exclude terms using these operators */
3250 sqlite3_index_info
*pIdxInfo
, /* Populated object for xBestIndex */
3251 u16 mNoOmit
, /* Do not omit these constraints */
3252 int *pbIn
/* OUT: True if plan uses an IN(...) op */
3254 WhereClause
*pWC
= pBuilder
->pWC
;
3255 struct sqlite3_index_constraint
*pIdxCons
;
3256 struct sqlite3_index_constraint_usage
*pUsage
= pIdxInfo
->aConstraintUsage
;
3260 WhereLoop
*pNew
= pBuilder
->pNew
;
3261 Parse
*pParse
= pBuilder
->pWInfo
->pParse
;
3262 SrcItem
*pSrc
= &pBuilder
->pWInfo
->pTabList
->a
[pNew
->iTab
];
3263 int nConstraint
= pIdxInfo
->nConstraint
;
3265 assert( (mUsable
& mPrereq
)==mPrereq
);
3267 pNew
->prereq
= mPrereq
;
3269 /* Set the usable flag on the subset of constraints identified by
3270 ** arguments mUsable and mExclude. */
3271 pIdxCons
= *(struct sqlite3_index_constraint
**)&pIdxInfo
->aConstraint
;
3272 for(i
=0; i
<nConstraint
; i
++, pIdxCons
++){
3273 WhereTerm
*pTerm
= &pWC
->a
[pIdxCons
->iTermOffset
];
3274 pIdxCons
->usable
= 0;
3275 if( (pTerm
->prereqRight
& mUsable
)==pTerm
->prereqRight
3276 && (pTerm
->eOperator
& mExclude
)==0
3278 pIdxCons
->usable
= 1;
3282 /* Initialize the output fields of the sqlite3_index_info structure */
3283 memset(pUsage
, 0, sizeof(pUsage
[0])*nConstraint
);
3284 assert( pIdxInfo
->needToFreeIdxStr
==0 );
3285 pIdxInfo
->idxStr
= 0;
3286 pIdxInfo
->idxNum
= 0;
3287 pIdxInfo
->orderByConsumed
= 0;
3288 pIdxInfo
->estimatedCost
= SQLITE_BIG_DBL
/ (double)2;
3289 pIdxInfo
->estimatedRows
= 25;
3290 pIdxInfo
->idxFlags
= 0;
3291 pIdxInfo
->colUsed
= (sqlite3_int64
)pSrc
->colUsed
;
3293 /* Invoke the virtual table xBestIndex() method */
3294 rc
= vtabBestIndex(pParse
, pSrc
->pTab
, pIdxInfo
);
3296 if( rc
==SQLITE_CONSTRAINT
){
3297 /* If the xBestIndex method returns SQLITE_CONSTRAINT, that means
3298 ** that the particular combination of parameters provided is unusable.
3299 ** Make no entries in the loop table.
3301 WHERETRACE(0xffff, (" ^^^^--- non-viable plan rejected!\n"));
3308 assert( pNew
->nLSlot
>=nConstraint
);
3309 for(i
=0; i
<nConstraint
; i
++) pNew
->aLTerm
[i
] = 0;
3310 pNew
->u
.vtab
.omitMask
= 0;
3311 pIdxCons
= *(struct sqlite3_index_constraint
**)&pIdxInfo
->aConstraint
;
3312 for(i
=0; i
<nConstraint
; i
++, pIdxCons
++){
3314 if( (iTerm
= pUsage
[i
].argvIndex
- 1)>=0 ){
3316 int j
= pIdxCons
->iTermOffset
;
3317 if( iTerm
>=nConstraint
3320 || pNew
->aLTerm
[iTerm
]!=0
3321 || pIdxCons
->usable
==0
3323 sqlite3ErrorMsg(pParse
,"%s.xBestIndex malfunction",pSrc
->pTab
->zName
);
3324 testcase( pIdxInfo
->needToFreeIdxStr
);
3325 return SQLITE_ERROR
;
3327 testcase( iTerm
==nConstraint
-1 );
3329 testcase( j
==pWC
->nTerm
-1 );
3331 pNew
->prereq
|= pTerm
->prereqRight
;
3332 assert( iTerm
<pNew
->nLSlot
);
3333 pNew
->aLTerm
[iTerm
] = pTerm
;
3334 if( iTerm
>mxTerm
) mxTerm
= iTerm
;
3335 testcase( iTerm
==15 );
3336 testcase( iTerm
==16 );
3337 if( pUsage
[i
].omit
){
3338 if( i
<16 && ((1<<i
)&mNoOmit
)==0 ){
3339 testcase( i
!=iTerm
);
3340 pNew
->u
.vtab
.omitMask
|= 1<<iTerm
;
3342 testcase( i
!=iTerm
);
3345 if( (pTerm
->eOperator
& WO_IN
)!=0 ){
3346 /* A virtual table that is constrained by an IN clause may not
3347 ** consume the ORDER BY clause because (1) the order of IN terms
3348 ** is not necessarily related to the order of output terms and
3349 ** (2) Multiple outputs from a single IN value will not merge
3351 pIdxInfo
->orderByConsumed
= 0;
3352 pIdxInfo
->idxFlags
&= ~SQLITE_INDEX_SCAN_UNIQUE
;
3353 *pbIn
= 1; assert( (mExclude
& WO_IN
)==0 );
3358 pNew
->nLTerm
= mxTerm
+1;
3359 for(i
=0; i
<=mxTerm
; i
++){
3360 if( pNew
->aLTerm
[i
]==0 ){
3361 /* The non-zero argvIdx values must be contiguous. Raise an
3362 ** error if they are not */
3363 sqlite3ErrorMsg(pParse
,"%s.xBestIndex malfunction",pSrc
->pTab
->zName
);
3364 testcase( pIdxInfo
->needToFreeIdxStr
);
3365 return SQLITE_ERROR
;
3368 assert( pNew
->nLTerm
<=pNew
->nLSlot
);
3369 pNew
->u
.vtab
.idxNum
= pIdxInfo
->idxNum
;
3370 pNew
->u
.vtab
.needFree
= pIdxInfo
->needToFreeIdxStr
;
3371 pIdxInfo
->needToFreeIdxStr
= 0;
3372 pNew
->u
.vtab
.idxStr
= pIdxInfo
->idxStr
;
3373 pNew
->u
.vtab
.isOrdered
= (i8
)(pIdxInfo
->orderByConsumed
?
3374 pIdxInfo
->nOrderBy
: 0);
3376 pNew
->rRun
= sqlite3LogEstFromDouble(pIdxInfo
->estimatedCost
);
3377 pNew
->nOut
= sqlite3LogEst(pIdxInfo
->estimatedRows
);
3379 /* Set the WHERE_ONEROW flag if the xBestIndex() method indicated
3380 ** that the scan will visit at most one row. Clear it otherwise. */
3381 if( pIdxInfo
->idxFlags
& SQLITE_INDEX_SCAN_UNIQUE
){
3382 pNew
->wsFlags
|= WHERE_ONEROW
;
3384 pNew
->wsFlags
&= ~WHERE_ONEROW
;
3386 rc
= whereLoopInsert(pBuilder
, pNew
);
3387 if( pNew
->u
.vtab
.needFree
){
3388 sqlite3_free(pNew
->u
.vtab
.idxStr
);
3389 pNew
->u
.vtab
.needFree
= 0;
3391 WHERETRACE(0xffff, (" bIn=%d prereqIn=%04llx prereqOut=%04llx\n",
3392 *pbIn
, (sqlite3_uint64
)mPrereq
,
3393 (sqlite3_uint64
)(pNew
->prereq
& ~mPrereq
)));
3399 ** If this function is invoked from within an xBestIndex() callback, it
3400 ** returns a pointer to a buffer containing the name of the collation
3401 ** sequence associated with element iCons of the sqlite3_index_info.aConstraint
3402 ** array. Or, if iCons is out of range or there is no active xBestIndex
3403 ** call, return NULL.
3405 const char *sqlite3_vtab_collation(sqlite3_index_info
*pIdxInfo
, int iCons
){
3406 HiddenIndexInfo
*pHidden
= (HiddenIndexInfo
*)&pIdxInfo
[1];
3407 const char *zRet
= 0;
3408 if( iCons
>=0 && iCons
<pIdxInfo
->nConstraint
){
3410 int iTerm
= pIdxInfo
->aConstraint
[iCons
].iTermOffset
;
3411 Expr
*pX
= pHidden
->pWC
->a
[iTerm
].pExpr
;
3413 pC
= sqlite3ExprCompareCollSeq(pHidden
->pParse
, pX
);
3415 zRet
= (pC
? pC
->zName
: sqlite3StrBINARY
);
3421 ** Add all WhereLoop objects for a table of the join identified by
3422 ** pBuilder->pNew->iTab. That table is guaranteed to be a virtual table.
3424 ** If there are no LEFT or CROSS JOIN joins in the query, both mPrereq and
3425 ** mUnusable are set to 0. Otherwise, mPrereq is a mask of all FROM clause
3426 ** entries that occur before the virtual table in the FROM clause and are
3427 ** separated from it by at least one LEFT or CROSS JOIN. Similarly, the
3428 ** mUnusable mask contains all FROM clause entries that occur after the
3429 ** virtual table and are separated from it by at least one LEFT or
3432 ** For example, if the query were:
3434 ** ... FROM t1, t2 LEFT JOIN t3, t4, vt CROSS JOIN t5, t6;
3436 ** then mPrereq corresponds to (t1, t2) and mUnusable to (t5, t6).
3438 ** All the tables in mPrereq must be scanned before the current virtual
3439 ** table. So any terms for which all prerequisites are satisfied by
3440 ** mPrereq may be specified as "usable" in all calls to xBestIndex.
3441 ** Conversely, all tables in mUnusable must be scanned after the current
3442 ** virtual table, so any terms for which the prerequisites overlap with
3443 ** mUnusable should always be configured as "not-usable" for xBestIndex.
3445 static int whereLoopAddVirtual(
3446 WhereLoopBuilder
*pBuilder
, /* WHERE clause information */
3447 Bitmask mPrereq
, /* Tables that must be scanned before this one */
3448 Bitmask mUnusable
/* Tables that must be scanned after this one */
3450 int rc
= SQLITE_OK
; /* Return code */
3451 WhereInfo
*pWInfo
; /* WHERE analysis context */
3452 Parse
*pParse
; /* The parsing context */
3453 WhereClause
*pWC
; /* The WHERE clause */
3454 SrcItem
*pSrc
; /* The FROM clause term to search */
3455 sqlite3_index_info
*p
; /* Object to pass to xBestIndex() */
3456 int nConstraint
; /* Number of constraints in p */
3457 int bIn
; /* True if plan uses IN(...) operator */
3459 Bitmask mBest
; /* Tables used by best possible plan */
3462 assert( (mPrereq
& mUnusable
)==0 );
3463 pWInfo
= pBuilder
->pWInfo
;
3464 pParse
= pWInfo
->pParse
;
3465 pWC
= pBuilder
->pWC
;
3466 pNew
= pBuilder
->pNew
;
3467 pSrc
= &pWInfo
->pTabList
->a
[pNew
->iTab
];
3468 assert( IsVirtual(pSrc
->pTab
) );
3469 p
= allocateIndexInfo(pParse
, pWC
, mUnusable
, pSrc
, pBuilder
->pOrderBy
,
3471 if( p
==0 ) return SQLITE_NOMEM_BKPT
;
3473 pNew
->wsFlags
= WHERE_VIRTUALTABLE
;
3475 pNew
->u
.vtab
.needFree
= 0;
3476 nConstraint
= p
->nConstraint
;
3477 if( whereLoopResize(pParse
->db
, pNew
, nConstraint
) ){
3478 sqlite3DbFree(pParse
->db
, p
);
3479 return SQLITE_NOMEM_BKPT
;
3482 /* First call xBestIndex() with all constraints usable. */
3483 WHERETRACE(0x800, ("BEGIN %s.addVirtual()\n", pSrc
->pTab
->zName
));
3484 WHERETRACE(0x40, (" VirtualOne: all usable\n"));
3485 rc
= whereLoopAddVirtualOne(pBuilder
, mPrereq
, ALLBITS
, 0, p
, mNoOmit
, &bIn
);
3487 /* If the call to xBestIndex() with all terms enabled produced a plan
3488 ** that does not require any source tables (IOW: a plan with mBest==0)
3489 ** and does not use an IN(...) operator, then there is no point in making
3490 ** any further calls to xBestIndex() since they will all return the same
3491 ** result (if the xBestIndex() implementation is sane). */
3492 if( rc
==SQLITE_OK
&& ((mBest
= (pNew
->prereq
& ~mPrereq
))!=0 || bIn
) ){
3493 int seenZero
= 0; /* True if a plan with no prereqs seen */
3494 int seenZeroNoIN
= 0; /* Plan with no prereqs and no IN(...) seen */
3496 Bitmask mBestNoIn
= 0;
3498 /* If the plan produced by the earlier call uses an IN(...) term, call
3499 ** xBestIndex again, this time with IN(...) terms disabled. */
3501 WHERETRACE(0x40, (" VirtualOne: all usable w/o IN\n"));
3502 rc
= whereLoopAddVirtualOne(
3503 pBuilder
, mPrereq
, ALLBITS
, WO_IN
, p
, mNoOmit
, &bIn
);
3505 mBestNoIn
= pNew
->prereq
& ~mPrereq
;
3512 /* Call xBestIndex once for each distinct value of (prereqRight & ~mPrereq)
3513 ** in the set of terms that apply to the current virtual table. */
3514 while( rc
==SQLITE_OK
){
3516 Bitmask mNext
= ALLBITS
;
3518 for(i
=0; i
<nConstraint
; i
++){
3520 pWC
->a
[p
->aConstraint
[i
].iTermOffset
].prereqRight
& ~mPrereq
3522 if( mThis
>mPrev
&& mThis
<mNext
) mNext
= mThis
;
3525 if( mNext
==ALLBITS
) break;
3526 if( mNext
==mBest
|| mNext
==mBestNoIn
) continue;
3527 WHERETRACE(0x40, (" VirtualOne: mPrev=%04llx mNext=%04llx\n",
3528 (sqlite3_uint64
)mPrev
, (sqlite3_uint64
)mNext
));
3529 rc
= whereLoopAddVirtualOne(
3530 pBuilder
, mPrereq
, mNext
|mPrereq
, 0, p
, mNoOmit
, &bIn
);
3531 if( pNew
->prereq
==mPrereq
){
3533 if( bIn
==0 ) seenZeroNoIN
= 1;
3537 /* If the calls to xBestIndex() in the above loop did not find a plan
3538 ** that requires no source tables at all (i.e. one guaranteed to be
3539 ** usable), make a call here with all source tables disabled */
3540 if( rc
==SQLITE_OK
&& seenZero
==0 ){
3541 WHERETRACE(0x40, (" VirtualOne: all disabled\n"));
3542 rc
= whereLoopAddVirtualOne(
3543 pBuilder
, mPrereq
, mPrereq
, 0, p
, mNoOmit
, &bIn
);
3544 if( bIn
==0 ) seenZeroNoIN
= 1;
3547 /* If the calls to xBestIndex() have so far failed to find a plan
3548 ** that requires no source tables at all and does not use an IN(...)
3549 ** operator, make a final call to obtain one here. */
3550 if( rc
==SQLITE_OK
&& seenZeroNoIN
==0 ){
3551 WHERETRACE(0x40, (" VirtualOne: all disabled and w/o IN\n"));
3552 rc
= whereLoopAddVirtualOne(
3553 pBuilder
, mPrereq
, mPrereq
, WO_IN
, p
, mNoOmit
, &bIn
);
3557 if( p
->needToFreeIdxStr
) sqlite3_free(p
->idxStr
);
3558 sqlite3DbFreeNN(pParse
->db
, p
);
3559 WHERETRACE(0x800, ("END %s.addVirtual(), rc=%d\n", pSrc
->pTab
->zName
, rc
));
3562 #endif /* SQLITE_OMIT_VIRTUALTABLE */
3565 ** Add WhereLoop entries to handle OR terms. This works for either
3566 ** btrees or virtual tables.
3568 static int whereLoopAddOr(
3569 WhereLoopBuilder
*pBuilder
,
3573 WhereInfo
*pWInfo
= pBuilder
->pWInfo
;
3576 WhereTerm
*pTerm
, *pWCEnd
;
3580 WhereLoopBuilder sSubBuild
;
3581 WhereOrSet sSum
, sCur
;
3584 pWC
= pBuilder
->pWC
;
3585 pWCEnd
= pWC
->a
+ pWC
->nTerm
;
3586 pNew
= pBuilder
->pNew
;
3587 memset(&sSum
, 0, sizeof(sSum
));
3588 pItem
= pWInfo
->pTabList
->a
+ pNew
->iTab
;
3589 iCur
= pItem
->iCursor
;
3591 for(pTerm
=pWC
->a
; pTerm
<pWCEnd
&& rc
==SQLITE_OK
; pTerm
++){
3592 if( (pTerm
->eOperator
& WO_OR
)!=0
3593 && (pTerm
->u
.pOrInfo
->indexable
& pNew
->maskSelf
)!=0
3595 WhereClause
* const pOrWC
= &pTerm
->u
.pOrInfo
->wc
;
3596 WhereTerm
* const pOrWCEnd
= &pOrWC
->a
[pOrWC
->nTerm
];
3601 sSubBuild
= *pBuilder
;
3602 sSubBuild
.pOrderBy
= 0;
3603 sSubBuild
.pOrSet
= &sCur
;
3605 WHERETRACE(0x200, ("Begin processing OR-clause %p\n", pTerm
));
3606 for(pOrTerm
=pOrWC
->a
; pOrTerm
<pOrWCEnd
; pOrTerm
++){
3607 if( (pOrTerm
->eOperator
& WO_AND
)!=0 ){
3608 sSubBuild
.pWC
= &pOrTerm
->u
.pAndInfo
->wc
;
3609 }else if( pOrTerm
->leftCursor
==iCur
){
3610 tempWC
.pWInfo
= pWC
->pWInfo
;
3611 tempWC
.pOuter
= pWC
;
3615 sSubBuild
.pWC
= &tempWC
;
3620 #ifdef WHERETRACE_ENABLED
3621 WHERETRACE(0x200, ("OR-term %d of %p has %d subterms:\n",
3622 (int)(pOrTerm
-pOrWC
->a
), pTerm
, sSubBuild
.pWC
->nTerm
));
3623 if( sqlite3WhereTrace
& 0x400 ){
3624 sqlite3WhereClausePrint(sSubBuild
.pWC
);
3627 #ifndef SQLITE_OMIT_VIRTUALTABLE
3628 if( IsVirtual(pItem
->pTab
) ){
3629 rc
= whereLoopAddVirtual(&sSubBuild
, mPrereq
, mUnusable
);
3633 rc
= whereLoopAddBtree(&sSubBuild
, mPrereq
);
3635 if( rc
==SQLITE_OK
){
3636 rc
= whereLoopAddOr(&sSubBuild
, mPrereq
, mUnusable
);
3638 assert( rc
==SQLITE_OK
|| rc
==SQLITE_DONE
|| sCur
.n
==0
3639 || rc
==SQLITE_NOMEM
);
3640 testcase( rc
==SQLITE_NOMEM
&& sCur
.n
>0 );
3641 testcase( rc
==SQLITE_DONE
);
3646 whereOrMove(&sSum
, &sCur
);
3650 whereOrMove(&sPrev
, &sSum
);
3652 for(i
=0; i
<sPrev
.n
; i
++){
3653 for(j
=0; j
<sCur
.n
; j
++){
3654 whereOrInsert(&sSum
, sPrev
.a
[i
].prereq
| sCur
.a
[j
].prereq
,
3655 sqlite3LogEstAdd(sPrev
.a
[i
].rRun
, sCur
.a
[j
].rRun
),
3656 sqlite3LogEstAdd(sPrev
.a
[i
].nOut
, sCur
.a
[j
].nOut
));
3662 pNew
->aLTerm
[0] = pTerm
;
3663 pNew
->wsFlags
= WHERE_MULTI_OR
;
3666 memset(&pNew
->u
, 0, sizeof(pNew
->u
));
3667 for(i
=0; rc
==SQLITE_OK
&& i
<sSum
.n
; i
++){
3668 /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs
3669 ** of all sub-scans required by the OR-scan. However, due to rounding
3670 ** errors, it may be that the cost of the OR-scan is equal to its
3671 ** most expensive sub-scan. Add the smallest possible penalty
3672 ** (equivalent to multiplying the cost by 1.07) to ensure that
3673 ** this does not happen. Otherwise, for WHERE clauses such as the
3674 ** following where there is an index on "y":
3676 ** WHERE likelihood(x=?, 0.99) OR y=?
3678 ** the planner may elect to "OR" together a full-table scan and an
3679 ** index lookup. And other similarly odd results. */
3680 pNew
->rRun
= sSum
.a
[i
].rRun
+ 1;
3681 pNew
->nOut
= sSum
.a
[i
].nOut
;
3682 pNew
->prereq
= sSum
.a
[i
].prereq
;
3683 rc
= whereLoopInsert(pBuilder
, pNew
);
3685 WHERETRACE(0x200, ("End processing OR-clause %p\n", pTerm
));
3692 ** Add all WhereLoop objects for all tables
3694 static int whereLoopAddAll(WhereLoopBuilder
*pBuilder
){
3695 WhereInfo
*pWInfo
= pBuilder
->pWInfo
;
3696 Bitmask mPrereq
= 0;
3699 SrcList
*pTabList
= pWInfo
->pTabList
;
3701 SrcItem
*pEnd
= &pTabList
->a
[pWInfo
->nLevel
];
3702 sqlite3
*db
= pWInfo
->pParse
->db
;
3706 /* Loop over the tables in the join, from left to right */
3707 pNew
= pBuilder
->pNew
;
3708 whereLoopInit(pNew
);
3709 pBuilder
->iPlanLimit
= SQLITE_QUERY_PLANNER_LIMIT
;
3710 for(iTab
=0, pItem
=pTabList
->a
; pItem
<pEnd
; iTab
++, pItem
++){
3711 Bitmask mUnusable
= 0;
3713 pBuilder
->iPlanLimit
+= SQLITE_QUERY_PLANNER_LIMIT_INCR
;
3714 pNew
->maskSelf
= sqlite3WhereGetMask(&pWInfo
->sMaskSet
, pItem
->iCursor
);
3715 if( (pItem
->fg
.jointype
& (JT_LEFT
|JT_CROSS
))!=0 ){
3716 /* This condition is true when pItem is the FROM clause term on the
3717 ** right-hand-side of a LEFT or CROSS JOIN. */
3722 #ifndef SQLITE_OMIT_VIRTUALTABLE
3723 if( IsVirtual(pItem
->pTab
) ){
3725 for(p
=&pItem
[1]; p
<pEnd
; p
++){
3726 if( mUnusable
|| (p
->fg
.jointype
& (JT_LEFT
|JT_CROSS
)) ){
3727 mUnusable
|= sqlite3WhereGetMask(&pWInfo
->sMaskSet
, p
->iCursor
);
3730 rc
= whereLoopAddVirtual(pBuilder
, mPrereq
, mUnusable
);
3732 #endif /* SQLITE_OMIT_VIRTUALTABLE */
3734 rc
= whereLoopAddBtree(pBuilder
, mPrereq
);
3736 if( rc
==SQLITE_OK
&& pBuilder
->pWC
->hasOr
){
3737 rc
= whereLoopAddOr(pBuilder
, mPrereq
, mUnusable
);
3739 mPrior
|= pNew
->maskSelf
;
3740 if( rc
|| db
->mallocFailed
){
3741 if( rc
==SQLITE_DONE
){
3742 /* We hit the query planner search limit set by iPlanLimit */
3743 sqlite3_log(SQLITE_WARNING
, "abbreviated query algorithm search");
3751 whereLoopClear(db
, pNew
);
3756 ** Examine a WherePath (with the addition of the extra WhereLoop of the 6th
3757 ** parameters) to see if it outputs rows in the requested ORDER BY
3758 ** (or GROUP BY) without requiring a separate sort operation. Return N:
3760 ** N>0: N terms of the ORDER BY clause are satisfied
3761 ** N==0: No terms of the ORDER BY clause are satisfied
3762 ** N<0: Unknown yet how many terms of ORDER BY might be satisfied.
3764 ** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as
3765 ** strict. With GROUP BY and DISTINCT the only requirement is that
3766 ** equivalent rows appear immediately adjacent to one another. GROUP BY
3767 ** and DISTINCT do not require rows to appear in any particular order as long
3768 ** as equivalent rows are grouped together. Thus for GROUP BY and DISTINCT
3769 ** the pOrderBy terms can be matched in any order. With ORDER BY, the
3770 ** pOrderBy terms must be matched in strict left-to-right order.
3772 static i8
wherePathSatisfiesOrderBy(
3773 WhereInfo
*pWInfo
, /* The WHERE clause */
3774 ExprList
*pOrderBy
, /* ORDER BY or GROUP BY or DISTINCT clause to check */
3775 WherePath
*pPath
, /* The WherePath to check */
3776 u16 wctrlFlags
, /* WHERE_GROUPBY or _DISTINCTBY or _ORDERBY_LIMIT */
3777 u16 nLoop
, /* Number of entries in pPath->aLoop[] */
3778 WhereLoop
*pLast
, /* Add this WhereLoop to the end of pPath->aLoop[] */
3779 Bitmask
*pRevMask
/* OUT: Mask of WhereLoops to run in reverse order */
3781 u8 revSet
; /* True if rev is known */
3782 u8 rev
; /* Composite sort order */
3783 u8 revIdx
; /* Index sort order */
3784 u8 isOrderDistinct
; /* All prior WhereLoops are order-distinct */
3785 u8 distinctColumns
; /* True if the loop has UNIQUE NOT NULL columns */
3786 u8 isMatch
; /* iColumn matches a term of the ORDER BY clause */
3787 u16 eqOpMask
; /* Allowed equality operators */
3788 u16 nKeyCol
; /* Number of key columns in pIndex */
3789 u16 nColumn
; /* Total number of ordered columns in the index */
3790 u16 nOrderBy
; /* Number terms in the ORDER BY clause */
3791 int iLoop
; /* Index of WhereLoop in pPath being processed */
3792 int i
, j
; /* Loop counters */
3793 int iCur
; /* Cursor number for current WhereLoop */
3794 int iColumn
; /* A column number within table iCur */
3795 WhereLoop
*pLoop
= 0; /* Current WhereLoop being processed. */
3796 WhereTerm
*pTerm
; /* A single term of the WHERE clause */
3797 Expr
*pOBExpr
; /* An expression from the ORDER BY clause */
3798 CollSeq
*pColl
; /* COLLATE function from an ORDER BY clause term */
3799 Index
*pIndex
; /* The index associated with pLoop */
3800 sqlite3
*db
= pWInfo
->pParse
->db
; /* Database connection */
3801 Bitmask obSat
= 0; /* Mask of ORDER BY terms satisfied so far */
3802 Bitmask obDone
; /* Mask of all ORDER BY terms */
3803 Bitmask orderDistinctMask
; /* Mask of all well-ordered loops */
3804 Bitmask ready
; /* Mask of inner loops */
3807 ** We say the WhereLoop is "one-row" if it generates no more than one
3808 ** row of output. A WhereLoop is one-row if all of the following are true:
3809 ** (a) All index columns match with WHERE_COLUMN_EQ.
3810 ** (b) The index is unique
3811 ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row.
3812 ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags.
3814 ** We say the WhereLoop is "order-distinct" if the set of columns from
3815 ** that WhereLoop that are in the ORDER BY clause are different for every
3816 ** row of the WhereLoop. Every one-row WhereLoop is automatically
3817 ** order-distinct. A WhereLoop that has no columns in the ORDER BY clause
3818 ** is not order-distinct. To be order-distinct is not quite the same as being
3819 ** UNIQUE since a UNIQUE column or index can have multiple rows that
3820 ** are NULL and NULL values are equivalent for the purpose of order-distinct.
3821 ** To be order-distinct, the columns must be UNIQUE and NOT NULL.
3823 ** The rowid for a table is always UNIQUE and NOT NULL so whenever the
3824 ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is
3825 ** automatically order-distinct.
3828 assert( pOrderBy
!=0 );
3829 if( nLoop
&& OptimizationDisabled(db
, SQLITE_OrderByIdxJoin
) ) return 0;
3831 nOrderBy
= pOrderBy
->nExpr
;
3832 testcase( nOrderBy
==BMS
-1 );
3833 if( nOrderBy
>BMS
-1 ) return 0; /* Cannot optimize overly large ORDER BYs */
3834 isOrderDistinct
= 1;
3835 obDone
= MASKBIT(nOrderBy
)-1;
3836 orderDistinctMask
= 0;
3838 eqOpMask
= WO_EQ
| WO_IS
| WO_ISNULL
;
3839 if( wctrlFlags
& (WHERE_ORDERBY_LIMIT
|WHERE_ORDERBY_MAX
|WHERE_ORDERBY_MIN
) ){
3842 for(iLoop
=0; isOrderDistinct
&& obSat
<obDone
&& iLoop
<=nLoop
; iLoop
++){
3843 if( iLoop
>0 ) ready
|= pLoop
->maskSelf
;
3845 pLoop
= pPath
->aLoop
[iLoop
];
3846 if( wctrlFlags
& WHERE_ORDERBY_LIMIT
) continue;
3850 if( pLoop
->wsFlags
& WHERE_VIRTUALTABLE
){
3851 if( pLoop
->u
.vtab
.isOrdered
&& (wctrlFlags
& WHERE_DISTINCTBY
)==0 ){
3855 }else if( wctrlFlags
& WHERE_DISTINCTBY
){
3856 pLoop
->u
.btree
.nDistinctCol
= 0;
3858 iCur
= pWInfo
->pTabList
->a
[pLoop
->iTab
].iCursor
;
3860 /* Mark off any ORDER BY term X that is a column in the table of
3861 ** the current loop for which there is term in the WHERE
3862 ** clause of the form X IS NULL or X=? that reference only outer
3865 for(i
=0; i
<nOrderBy
; i
++){
3866 if( MASKBIT(i
) & obSat
) continue;
3867 pOBExpr
= sqlite3ExprSkipCollateAndLikely(pOrderBy
->a
[i
].pExpr
);
3868 if( NEVER(pOBExpr
==0) ) continue;
3869 if( pOBExpr
->op
!=TK_COLUMN
&& pOBExpr
->op
!=TK_AGG_COLUMN
) continue;
3870 if( pOBExpr
->iTable
!=iCur
) continue;
3871 pTerm
= sqlite3WhereFindTerm(&pWInfo
->sWC
, iCur
, pOBExpr
->iColumn
,
3872 ~ready
, eqOpMask
, 0);
3873 if( pTerm
==0 ) continue;
3874 if( pTerm
->eOperator
==WO_IN
){
3875 /* IN terms are only valid for sorting in the ORDER BY LIMIT
3876 ** optimization, and then only if they are actually used
3877 ** by the query plan */
3878 assert( wctrlFlags
&
3879 (WHERE_ORDERBY_LIMIT
|WHERE_ORDERBY_MIN
|WHERE_ORDERBY_MAX
) );
3880 for(j
=0; j
<pLoop
->nLTerm
&& pTerm
!=pLoop
->aLTerm
[j
]; j
++){}
3881 if( j
>=pLoop
->nLTerm
) continue;
3883 if( (pTerm
->eOperator
&(WO_EQ
|WO_IS
))!=0 && pOBExpr
->iColumn
>=0 ){
3884 Parse
*pParse
= pWInfo
->pParse
;
3885 CollSeq
*pColl1
= sqlite3ExprNNCollSeq(pParse
, pOrderBy
->a
[i
].pExpr
);
3886 CollSeq
*pColl2
= sqlite3ExprCompareCollSeq(pParse
, pTerm
->pExpr
);
3888 if( pColl2
==0 || sqlite3StrICmp(pColl1
->zName
, pColl2
->zName
) ){
3891 testcase( pTerm
->pExpr
->op
==TK_IS
);
3893 obSat
|= MASKBIT(i
);
3896 if( (pLoop
->wsFlags
& WHERE_ONEROW
)==0 ){
3897 if( pLoop
->wsFlags
& WHERE_IPK
){
3901 }else if( (pIndex
= pLoop
->u
.btree
.pIndex
)==0 || pIndex
->bUnordered
){
3904 nKeyCol
= pIndex
->nKeyCol
;
3905 nColumn
= pIndex
->nColumn
;
3906 assert( nColumn
==nKeyCol
+1 || !HasRowid(pIndex
->pTable
) );
3907 assert( pIndex
->aiColumn
[nColumn
-1]==XN_ROWID
3908 || !HasRowid(pIndex
->pTable
));
3909 /* All relevant terms of the index must also be non-NULL in order
3910 ** for isOrderDistinct to be true. So the isOrderDistint value
3911 ** computed here might be a false positive. Corrections will be
3912 ** made at tag-20210426-1 below */
3913 isOrderDistinct
= IsUniqueIndex(pIndex
)
3914 && (pLoop
->wsFlags
& WHERE_SKIPSCAN
)==0;
3917 /* Loop through all columns of the index and deal with the ones
3918 ** that are not constrained by == or IN.
3921 distinctColumns
= 0;
3922 for(j
=0; j
<nColumn
; j
++){
3923 u8 bOnce
= 1; /* True to run the ORDER BY search loop */
3925 assert( j
>=pLoop
->u
.btree
.nEq
3926 || (pLoop
->aLTerm
[j
]==0)==(j
<pLoop
->nSkip
)
3928 if( j
<pLoop
->u
.btree
.nEq
&& j
>=pLoop
->nSkip
){
3929 u16 eOp
= pLoop
->aLTerm
[j
]->eOperator
;
3931 /* Skip over == and IS and ISNULL terms. (Also skip IN terms when
3932 ** doing WHERE_ORDERBY_LIMIT processing). Except, IS and ISNULL
3933 ** terms imply that the index is not UNIQUE NOT NULL in which case
3934 ** the loop need to be marked as not order-distinct because it can
3935 ** have repeated NULL rows.
3937 ** If the current term is a column of an ((?,?) IN (SELECT...))
3938 ** expression for which the SELECT returns more than one column,
3939 ** check that it is the only column used by this loop. Otherwise,
3940 ** if it is one of two or more, none of the columns can be
3941 ** considered to match an ORDER BY term.
3943 if( (eOp
& eqOpMask
)!=0 ){
3944 if( eOp
& (WO_ISNULL
|WO_IS
) ){
3945 testcase( eOp
& WO_ISNULL
);
3946 testcase( eOp
& WO_IS
);
3947 testcase( isOrderDistinct
);
3948 isOrderDistinct
= 0;
3951 }else if( ALWAYS(eOp
& WO_IN
) ){
3952 /* ALWAYS() justification: eOp is an equality operator due to the
3953 ** j<pLoop->u.btree.nEq constraint above. Any equality other
3954 ** than WO_IN is captured by the previous "if". So this one
3955 ** always has to be WO_IN. */
3956 Expr
*pX
= pLoop
->aLTerm
[j
]->pExpr
;
3957 for(i
=j
+1; i
<pLoop
->u
.btree
.nEq
; i
++){
3958 if( pLoop
->aLTerm
[i
]->pExpr
==pX
){
3959 assert( (pLoop
->aLTerm
[i
]->eOperator
& WO_IN
) );
3967 /* Get the column number in the table (iColumn) and sort order
3968 ** (revIdx) for the j-th column of the index.
3971 iColumn
= pIndex
->aiColumn
[j
];
3972 revIdx
= pIndex
->aSortOrder
[j
] & KEYINFO_ORDER_DESC
;
3973 if( iColumn
==pIndex
->pTable
->iPKey
) iColumn
= XN_ROWID
;
3979 /* An unconstrained column that might be NULL means that this
3980 ** WhereLoop is not well-ordered. tag-20210426-1
3982 if( isOrderDistinct
){
3984 && j
>=pLoop
->u
.btree
.nEq
3985 && pIndex
->pTable
->aCol
[iColumn
].notNull
==0
3987 isOrderDistinct
= 0;
3989 if( iColumn
==XN_EXPR
){
3990 isOrderDistinct
= 0;
3994 /* Find the ORDER BY term that corresponds to the j-th column
3995 ** of the index and mark that ORDER BY term off
3998 for(i
=0; bOnce
&& i
<nOrderBy
; i
++){
3999 if( MASKBIT(i
) & obSat
) continue;
4000 pOBExpr
= sqlite3ExprSkipCollateAndLikely(pOrderBy
->a
[i
].pExpr
);
4001 testcase( wctrlFlags
& WHERE_GROUPBY
);
4002 testcase( wctrlFlags
& WHERE_DISTINCTBY
);
4003 if( NEVER(pOBExpr
==0) ) continue;
4004 if( (wctrlFlags
& (WHERE_GROUPBY
|WHERE_DISTINCTBY
))==0 ) bOnce
= 0;
4005 if( iColumn
>=XN_ROWID
){
4006 if( pOBExpr
->op
!=TK_COLUMN
&& pOBExpr
->op
!=TK_AGG_COLUMN
) continue;
4007 if( pOBExpr
->iTable
!=iCur
) continue;
4008 if( pOBExpr
->iColumn
!=iColumn
) continue;
4010 Expr
*pIdxExpr
= pIndex
->aColExpr
->a
[j
].pExpr
;
4011 if( sqlite3ExprCompareSkip(pOBExpr
, pIdxExpr
, iCur
) ){
4015 if( iColumn
!=XN_ROWID
){
4016 pColl
= sqlite3ExprNNCollSeq(pWInfo
->pParse
, pOrderBy
->a
[i
].pExpr
);
4017 if( sqlite3StrICmp(pColl
->zName
, pIndex
->azColl
[j
])!=0 ) continue;
4019 if( wctrlFlags
& WHERE_DISTINCTBY
){
4020 pLoop
->u
.btree
.nDistinctCol
= j
+1;
4025 if( isMatch
&& (wctrlFlags
& WHERE_GROUPBY
)==0 ){
4026 /* Make sure the sort order is compatible in an ORDER BY clause.
4027 ** Sort order is irrelevant for a GROUP BY clause. */
4029 if( (rev
^ revIdx
)!=(pOrderBy
->a
[i
].sortFlags
&KEYINFO_ORDER_DESC
) ){
4033 rev
= revIdx
^ (pOrderBy
->a
[i
].sortFlags
& KEYINFO_ORDER_DESC
);
4034 if( rev
) *pRevMask
|= MASKBIT(iLoop
);
4038 if( isMatch
&& (pOrderBy
->a
[i
].sortFlags
& KEYINFO_ORDER_BIGNULL
) ){
4039 if( j
==pLoop
->u
.btree
.nEq
){
4040 pLoop
->wsFlags
|= WHERE_BIGNULL_SORT
;
4046 if( iColumn
==XN_ROWID
){
4047 testcase( distinctColumns
==0 );
4048 distinctColumns
= 1;
4050 obSat
|= MASKBIT(i
);
4052 /* No match found */
4053 if( j
==0 || j
<nKeyCol
){
4054 testcase( isOrderDistinct
!=0 );
4055 isOrderDistinct
= 0;
4059 } /* end Loop over all index columns */
4060 if( distinctColumns
){
4061 testcase( isOrderDistinct
==0 );
4062 isOrderDistinct
= 1;
4064 } /* end-if not one-row */
4066 /* Mark off any other ORDER BY terms that reference pLoop */
4067 if( isOrderDistinct
){
4068 orderDistinctMask
|= pLoop
->maskSelf
;
4069 for(i
=0; i
<nOrderBy
; i
++){
4072 if( MASKBIT(i
) & obSat
) continue;
4073 p
= pOrderBy
->a
[i
].pExpr
;
4074 mTerm
= sqlite3WhereExprUsage(&pWInfo
->sMaskSet
,p
);
4075 if( mTerm
==0 && !sqlite3ExprIsConstant(p
) ) continue;
4076 if( (mTerm
&~orderDistinctMask
)==0 ){
4077 obSat
|= MASKBIT(i
);
4081 } /* End the loop over all WhereLoops from outer-most down to inner-most */
4082 if( obSat
==obDone
) return (i8
)nOrderBy
;
4083 if( !isOrderDistinct
){
4084 for(i
=nOrderBy
-1; i
>0; i
--){
4085 Bitmask m
= MASKBIT(i
) - 1;
4086 if( (obSat
&m
)==m
) return i
;
4095 ** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(),
4096 ** the planner assumes that the specified pOrderBy list is actually a GROUP
4097 ** BY clause - and so any order that groups rows as required satisfies the
4100 ** Normally, in this case it is not possible for the caller to determine
4101 ** whether or not the rows are really being delivered in sorted order, or
4102 ** just in some other order that provides the required grouping. However,
4103 ** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then
4104 ** this function may be called on the returned WhereInfo object. It returns
4105 ** true if the rows really will be sorted in the specified order, or false
4108 ** For example, assuming:
4110 ** CREATE INDEX i1 ON t1(x, Y);
4114 ** SELECT * FROM t1 GROUP BY x,y ORDER BY x,y; -- IsSorted()==1
4115 ** SELECT * FROM t1 GROUP BY y,x ORDER BY y,x; -- IsSorted()==0
4117 int sqlite3WhereIsSorted(WhereInfo
*pWInfo
){
4118 assert( pWInfo
->wctrlFlags
& WHERE_GROUPBY
);
4119 assert( pWInfo
->wctrlFlags
& WHERE_SORTBYGROUP
);
4120 return pWInfo
->sorted
;
4123 #ifdef WHERETRACE_ENABLED
4124 /* For debugging use only: */
4125 static const char *wherePathName(WherePath
*pPath
, int nLoop
, WhereLoop
*pLast
){
4126 static char zName
[65];
4128 for(i
=0; i
<nLoop
; i
++){ zName
[i
] = pPath
->aLoop
[i
]->cId
; }
4129 if( pLast
) zName
[i
++] = pLast
->cId
;
4136 ** Return the cost of sorting nRow rows, assuming that the keys have
4137 ** nOrderby columns and that the first nSorted columns are already in
4140 static LogEst
whereSortingCost(
4146 /* TUNING: Estimated cost of a full external sort, where N is
4147 ** the number of rows to sort is:
4149 ** cost = (3.0 * N * log(N)).
4151 ** Or, if the order-by clause has X terms but only the last Y
4152 ** terms are out of order, then block-sorting will reduce the
4155 ** cost = (3.0 * N * log(N)) * (Y/X)
4157 ** The (Y/X) term is implemented using stack variable rScale
4160 LogEst rScale
, rSortCost
;
4161 assert( nOrderBy
>0 && 66==sqlite3LogEst(100) );
4162 rScale
= sqlite3LogEst((nOrderBy
-nSorted
)*100/nOrderBy
) - 66;
4163 rSortCost
= nRow
+ rScale
+ 16;
4165 /* Multiple by log(M) where M is the number of output rows.
4166 ** Use the LIMIT for M if it is smaller. Or if this sort is for
4167 ** a DISTINCT operator, M will be the number of distinct output
4168 ** rows, so fudge it downwards a bit.
4170 if( (pWInfo
->wctrlFlags
& WHERE_USE_LIMIT
)!=0 && pWInfo
->iLimit
<nRow
){
4171 nRow
= pWInfo
->iLimit
;
4172 }else if( (pWInfo
->wctrlFlags
& WHERE_WANT_DISTINCT
) ){
4173 /* TUNING: In the sort for a DISTINCT operator, assume that the DISTINCT
4174 ** reduces the number of output rows by a factor of 2 */
4175 if( nRow
>10 ){ nRow
-= 10; assert( 10==sqlite3LogEst(2) ); }
4177 rSortCost
+= estLog(nRow
);
4182 ** Given the list of WhereLoop objects at pWInfo->pLoops, this routine
4183 ** attempts to find the lowest cost path that visits each WhereLoop
4184 ** once. This path is then loaded into the pWInfo->a[].pWLoop fields.
4186 ** Assume that the total number of output rows that will need to be sorted
4187 ** will be nRowEst (in the 10*log2 representation). Or, ignore sorting
4188 ** costs if nRowEst==0.
4190 ** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation
4193 static int wherePathSolver(WhereInfo
*pWInfo
, LogEst nRowEst
){
4194 int mxChoice
; /* Maximum number of simultaneous paths tracked */
4195 int nLoop
; /* Number of terms in the join */
4196 Parse
*pParse
; /* Parsing context */
4197 sqlite3
*db
; /* The database connection */
4198 int iLoop
; /* Loop counter over the terms of the join */
4199 int ii
, jj
; /* Loop counters */
4200 int mxI
= 0; /* Index of next entry to replace */
4201 int nOrderBy
; /* Number of ORDER BY clause terms */
4202 LogEst mxCost
= 0; /* Maximum cost of a set of paths */
4203 LogEst mxUnsorted
= 0; /* Maximum unsorted cost of a set of path */
4204 int nTo
, nFrom
; /* Number of valid entries in aTo[] and aFrom[] */
4205 WherePath
*aFrom
; /* All nFrom paths at the previous level */
4206 WherePath
*aTo
; /* The nTo best paths at the current level */
4207 WherePath
*pFrom
; /* An element of aFrom[] that we are working on */
4208 WherePath
*pTo
; /* An element of aTo[] that we are working on */
4209 WhereLoop
*pWLoop
; /* One of the WhereLoop objects */
4210 WhereLoop
**pX
; /* Used to divy up the pSpace memory */
4211 LogEst
*aSortCost
= 0; /* Sorting and partial sorting costs */
4212 char *pSpace
; /* Temporary memory used by this routine */
4213 int nSpace
; /* Bytes of space allocated at pSpace */
4215 pParse
= pWInfo
->pParse
;
4217 nLoop
= pWInfo
->nLevel
;
4218 /* TUNING: For simple queries, only the best path is tracked.
4219 ** For 2-way joins, the 5 best paths are followed.
4220 ** For joins of 3 or more tables, track the 10 best paths */
4221 mxChoice
= (nLoop
<=1) ? 1 : (nLoop
==2 ? 5 : 10);
4222 assert( nLoop
<=pWInfo
->pTabList
->nSrc
);
4223 WHERETRACE(0x002, ("---- begin solver. (nRowEst=%d)\n", nRowEst
));
4225 /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this
4226 ** case the purpose of this call is to estimate the number of rows returned
4227 ** by the overall query. Once this estimate has been obtained, the caller
4228 ** will invoke this function a second time, passing the estimate as the
4229 ** nRowEst parameter. */
4230 if( pWInfo
->pOrderBy
==0 || nRowEst
==0 ){
4233 nOrderBy
= pWInfo
->pOrderBy
->nExpr
;
4236 /* Allocate and initialize space for aTo, aFrom and aSortCost[] */
4237 nSpace
= (sizeof(WherePath
)+sizeof(WhereLoop
*)*nLoop
)*mxChoice
*2;
4238 nSpace
+= sizeof(LogEst
) * nOrderBy
;
4239 pSpace
= sqlite3DbMallocRawNN(db
, nSpace
);
4240 if( pSpace
==0 ) return SQLITE_NOMEM_BKPT
;
4241 aTo
= (WherePath
*)pSpace
;
4242 aFrom
= aTo
+mxChoice
;
4243 memset(aFrom
, 0, sizeof(aFrom
[0]));
4244 pX
= (WhereLoop
**)(aFrom
+mxChoice
);
4245 for(ii
=mxChoice
*2, pFrom
=aTo
; ii
>0; ii
--, pFrom
++, pX
+= nLoop
){
4249 /* If there is an ORDER BY clause and it is not being ignored, set up
4250 ** space for the aSortCost[] array. Each element of the aSortCost array
4251 ** is either zero - meaning it has not yet been initialized - or the
4252 ** cost of sorting nRowEst rows of data where the first X terms of
4253 ** the ORDER BY clause are already in order, where X is the array
4255 aSortCost
= (LogEst
*)pX
;
4256 memset(aSortCost
, 0, sizeof(LogEst
) * nOrderBy
);
4258 assert( aSortCost
==0 || &pSpace
[nSpace
]==(char*)&aSortCost
[nOrderBy
] );
4259 assert( aSortCost
!=0 || &pSpace
[nSpace
]==(char*)pX
);
4261 /* Seed the search with a single WherePath containing zero WhereLoops.
4263 ** TUNING: Do not let the number of iterations go above 28. If the cost
4264 ** of computing an automatic index is not paid back within the first 28
4265 ** rows, then do not use the automatic index. */
4266 aFrom
[0].nRow
= MIN(pParse
->nQueryLoop
, 48); assert( 48==sqlite3LogEst(28) );
4268 assert( aFrom
[0].isOrdered
==0 );
4270 /* If nLoop is zero, then there are no FROM terms in the query. Since
4271 ** in this case the query may return a maximum of one row, the results
4272 ** are already in the requested order. Set isOrdered to nOrderBy to
4273 ** indicate this. Or, if nLoop is greater than zero, set isOrdered to
4274 ** -1, indicating that the result set may or may not be ordered,
4275 ** depending on the loops added to the current plan. */
4276 aFrom
[0].isOrdered
= nLoop
>0 ? -1 : nOrderBy
;
4279 /* Compute successively longer WherePaths using the previous generation
4280 ** of WherePaths as the basis for the next. Keep track of the mxChoice
4281 ** best paths at each generation */
4282 for(iLoop
=0; iLoop
<nLoop
; iLoop
++){
4284 for(ii
=0, pFrom
=aFrom
; ii
<nFrom
; ii
++, pFrom
++){
4285 for(pWLoop
=pWInfo
->pLoops
; pWLoop
; pWLoop
=pWLoop
->pNextLoop
){
4286 LogEst nOut
; /* Rows visited by (pFrom+pWLoop) */
4287 LogEst rCost
; /* Cost of path (pFrom+pWLoop) */
4288 LogEst rUnsorted
; /* Unsorted cost of (pFrom+pWLoop) */
4289 i8 isOrdered
= pFrom
->isOrdered
; /* isOrdered for (pFrom+pWLoop) */
4290 Bitmask maskNew
; /* Mask of src visited by (..) */
4291 Bitmask revMask
= 0; /* Mask of rev-order loops for (..) */
4293 if( (pWLoop
->prereq
& ~pFrom
->maskLoop
)!=0 ) continue;
4294 if( (pWLoop
->maskSelf
& pFrom
->maskLoop
)!=0 ) continue;
4295 if( (pWLoop
->wsFlags
& WHERE_AUTO_INDEX
)!=0 && pFrom
->nRow
<3 ){
4296 /* Do not use an automatic index if the this loop is expected
4297 ** to run less than 1.25 times. It is tempting to also exclude
4298 ** automatic index usage on an outer loop, but sometimes an automatic
4299 ** index is useful in the outer loop of a correlated subquery. */
4300 assert( 10==sqlite3LogEst(2) );
4304 /* At this point, pWLoop is a candidate to be the next loop.
4305 ** Compute its cost */
4306 rUnsorted
= sqlite3LogEstAdd(pWLoop
->rSetup
,pWLoop
->rRun
+ pFrom
->nRow
);
4307 rUnsorted
= sqlite3LogEstAdd(rUnsorted
, pFrom
->rUnsorted
);
4308 nOut
= pFrom
->nRow
+ pWLoop
->nOut
;
4309 maskNew
= pFrom
->maskLoop
| pWLoop
->maskSelf
;
4311 isOrdered
= wherePathSatisfiesOrderBy(pWInfo
,
4312 pWInfo
->pOrderBy
, pFrom
, pWInfo
->wctrlFlags
,
4313 iLoop
, pWLoop
, &revMask
);
4315 revMask
= pFrom
->revLoop
;
4317 if( isOrdered
>=0 && isOrdered
<nOrderBy
){
4318 if( aSortCost
[isOrdered
]==0 ){
4319 aSortCost
[isOrdered
] = whereSortingCost(
4320 pWInfo
, nRowEst
, nOrderBy
, isOrdered
4323 /* TUNING: Add a small extra penalty (5) to sorting as an
4324 ** extra encouragment to the query planner to select a plan
4325 ** where the rows emerge in the correct order without any sorting
4327 rCost
= sqlite3LogEstAdd(rUnsorted
, aSortCost
[isOrdered
]) + 5;
4330 ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n",
4331 aSortCost
[isOrdered
], (nOrderBy
-isOrdered
), nOrderBy
,
4335 rUnsorted
-= 2; /* TUNING: Slight bias in favor of no-sort plans */
4338 /* Check to see if pWLoop should be added to the set of
4339 ** mxChoice best-so-far paths.
4341 ** First look for an existing path among best-so-far paths
4342 ** that covers the same set of loops and has the same isOrdered
4343 ** setting as the current path candidate.
4345 ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent
4346 ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range
4347 ** of legal values for isOrdered, -1..64.
4349 for(jj
=0, pTo
=aTo
; jj
<nTo
; jj
++, pTo
++){
4350 if( pTo
->maskLoop
==maskNew
4351 && ((pTo
->isOrdered
^isOrdered
)&0x80)==0
4353 testcase( jj
==nTo
-1 );
4358 /* None of the existing best-so-far paths match the candidate. */
4360 && (rCost
>mxCost
|| (rCost
==mxCost
&& rUnsorted
>=mxUnsorted
))
4362 /* The current candidate is no better than any of the mxChoice
4363 ** paths currently in the best-so-far buffer. So discard
4364 ** this candidate as not viable. */
4365 #ifdef WHERETRACE_ENABLED /* 0x4 */
4366 if( sqlite3WhereTrace
&0x4 ){
4367 sqlite3DebugPrintf("Skip %s cost=%-3d,%3d,%3d order=%c\n",
4368 wherePathName(pFrom
, iLoop
, pWLoop
), rCost
, nOut
, rUnsorted
,
4369 isOrdered
>=0 ? isOrdered
+'0' : '?');
4374 /* If we reach this points it means that the new candidate path
4375 ** needs to be added to the set of best-so-far paths. */
4377 /* Increase the size of the aTo set by one */
4380 /* New path replaces the prior worst to keep count below mxChoice */
4384 #ifdef WHERETRACE_ENABLED /* 0x4 */
4385 if( sqlite3WhereTrace
&0x4 ){
4386 sqlite3DebugPrintf("New %s cost=%-3d,%3d,%3d order=%c\n",
4387 wherePathName(pFrom
, iLoop
, pWLoop
), rCost
, nOut
, rUnsorted
,
4388 isOrdered
>=0 ? isOrdered
+'0' : '?');
4392 /* Control reaches here if best-so-far path pTo=aTo[jj] covers the
4393 ** same set of loops and has the same isOrdered setting as the
4394 ** candidate path. Check to see if the candidate should replace
4395 ** pTo or if the candidate should be skipped.
4397 ** The conditional is an expanded vector comparison equivalent to:
4398 ** (pTo->rCost,pTo->nRow,pTo->rUnsorted) <= (rCost,nOut,rUnsorted)
4400 if( pTo
->rCost
<rCost
4401 || (pTo
->rCost
==rCost
4403 || (pTo
->nRow
==nOut
&& pTo
->rUnsorted
<=rUnsorted
)
4407 #ifdef WHERETRACE_ENABLED /* 0x4 */
4408 if( sqlite3WhereTrace
&0x4 ){
4410 "Skip %s cost=%-3d,%3d,%3d order=%c",
4411 wherePathName(pFrom
, iLoop
, pWLoop
), rCost
, nOut
, rUnsorted
,
4412 isOrdered
>=0 ? isOrdered
+'0' : '?');
4413 sqlite3DebugPrintf(" vs %s cost=%-3d,%3d,%3d order=%c\n",
4414 wherePathName(pTo
, iLoop
+1, 0), pTo
->rCost
, pTo
->nRow
,
4415 pTo
->rUnsorted
, pTo
->isOrdered
>=0 ? pTo
->isOrdered
+'0' : '?');
4418 /* Discard the candidate path from further consideration */
4419 testcase( pTo
->rCost
==rCost
);
4422 testcase( pTo
->rCost
==rCost
+1 );
4423 /* Control reaches here if the candidate path is better than the
4424 ** pTo path. Replace pTo with the candidate. */
4425 #ifdef WHERETRACE_ENABLED /* 0x4 */
4426 if( sqlite3WhereTrace
&0x4 ){
4428 "Update %s cost=%-3d,%3d,%3d order=%c",
4429 wherePathName(pFrom
, iLoop
, pWLoop
), rCost
, nOut
, rUnsorted
,
4430 isOrdered
>=0 ? isOrdered
+'0' : '?');
4431 sqlite3DebugPrintf(" was %s cost=%-3d,%3d,%3d order=%c\n",
4432 wherePathName(pTo
, iLoop
+1, 0), pTo
->rCost
, pTo
->nRow
,
4433 pTo
->rUnsorted
, pTo
->isOrdered
>=0 ? pTo
->isOrdered
+'0' : '?');
4437 /* pWLoop is a winner. Add it to the set of best so far */
4438 pTo
->maskLoop
= pFrom
->maskLoop
| pWLoop
->maskSelf
;
4439 pTo
->revLoop
= revMask
;
4442 pTo
->rUnsorted
= rUnsorted
;
4443 pTo
->isOrdered
= isOrdered
;
4444 memcpy(pTo
->aLoop
, pFrom
->aLoop
, sizeof(WhereLoop
*)*iLoop
);
4445 pTo
->aLoop
[iLoop
] = pWLoop
;
4446 if( nTo
>=mxChoice
){
4448 mxCost
= aTo
[0].rCost
;
4449 mxUnsorted
= aTo
[0].nRow
;
4450 for(jj
=1, pTo
=&aTo
[1]; jj
<mxChoice
; jj
++, pTo
++){
4451 if( pTo
->rCost
>mxCost
4452 || (pTo
->rCost
==mxCost
&& pTo
->rUnsorted
>mxUnsorted
)
4454 mxCost
= pTo
->rCost
;
4455 mxUnsorted
= pTo
->rUnsorted
;
4463 #ifdef WHERETRACE_ENABLED /* >=2 */
4464 if( sqlite3WhereTrace
& 0x02 ){
4465 sqlite3DebugPrintf("---- after round %d ----\n", iLoop
);
4466 for(ii
=0, pTo
=aTo
; ii
<nTo
; ii
++, pTo
++){
4467 sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c",
4468 wherePathName(pTo
, iLoop
+1, 0), pTo
->rCost
, pTo
->nRow
,
4469 pTo
->isOrdered
>=0 ? (pTo
->isOrdered
+'0') : '?');
4470 if( pTo
->isOrdered
>0 ){
4471 sqlite3DebugPrintf(" rev=0x%llx\n", pTo
->revLoop
);
4473 sqlite3DebugPrintf("\n");
4479 /* Swap the roles of aFrom and aTo for the next generation */
4487 sqlite3ErrorMsg(pParse
, "no query solution");
4488 sqlite3DbFreeNN(db
, pSpace
);
4489 return SQLITE_ERROR
;
4492 /* Find the lowest cost path. pFrom will be left pointing to that path */
4494 for(ii
=1; ii
<nFrom
; ii
++){
4495 if( pFrom
->rCost
>aFrom
[ii
].rCost
) pFrom
= &aFrom
[ii
];
4497 assert( pWInfo
->nLevel
==nLoop
);
4498 /* Load the lowest cost path into pWInfo */
4499 for(iLoop
=0; iLoop
<nLoop
; iLoop
++){
4500 WhereLevel
*pLevel
= pWInfo
->a
+ iLoop
;
4501 pLevel
->pWLoop
= pWLoop
= pFrom
->aLoop
[iLoop
];
4502 pLevel
->iFrom
= pWLoop
->iTab
;
4503 pLevel
->iTabCur
= pWInfo
->pTabList
->a
[pLevel
->iFrom
].iCursor
;
4505 if( (pWInfo
->wctrlFlags
& WHERE_WANT_DISTINCT
)!=0
4506 && (pWInfo
->wctrlFlags
& WHERE_DISTINCTBY
)==0
4507 && pWInfo
->eDistinct
==WHERE_DISTINCT_NOOP
4511 int rc
= wherePathSatisfiesOrderBy(pWInfo
, pWInfo
->pResultSet
, pFrom
,
4512 WHERE_DISTINCTBY
, nLoop
-1, pFrom
->aLoop
[nLoop
-1], ¬Used
);
4513 if( rc
==pWInfo
->pResultSet
->nExpr
){
4514 pWInfo
->eDistinct
= WHERE_DISTINCT_ORDERED
;
4517 pWInfo
->bOrderedInnerLoop
= 0;
4518 if( pWInfo
->pOrderBy
){
4519 if( pWInfo
->wctrlFlags
& WHERE_DISTINCTBY
){
4520 if( pFrom
->isOrdered
==pWInfo
->pOrderBy
->nExpr
){
4521 pWInfo
->eDistinct
= WHERE_DISTINCT_ORDERED
;
4524 pWInfo
->nOBSat
= pFrom
->isOrdered
;
4525 pWInfo
->revMask
= pFrom
->revLoop
;
4526 if( pWInfo
->nOBSat
<=0 ){
4529 u32 wsFlags
= pFrom
->aLoop
[nLoop
-1]->wsFlags
;
4530 if( (wsFlags
& WHERE_ONEROW
)==0
4531 && (wsFlags
&(WHERE_IPK
|WHERE_COLUMN_IN
))!=(WHERE_IPK
|WHERE_COLUMN_IN
)
4534 int rc
= wherePathSatisfiesOrderBy(pWInfo
, pWInfo
->pOrderBy
, pFrom
,
4535 WHERE_ORDERBY_LIMIT
, nLoop
-1, pFrom
->aLoop
[nLoop
-1], &m
);
4536 testcase( wsFlags
& WHERE_IPK
);
4537 testcase( wsFlags
& WHERE_COLUMN_IN
);
4538 if( rc
==pWInfo
->pOrderBy
->nExpr
){
4539 pWInfo
->bOrderedInnerLoop
= 1;
4540 pWInfo
->revMask
= m
;
4545 && pWInfo
->nOBSat
==1
4546 && (pWInfo
->wctrlFlags
& (WHERE_ORDERBY_MIN
|WHERE_ORDERBY_MAX
))!=0
4548 pWInfo
->bOrderedInnerLoop
= 1;
4551 if( (pWInfo
->wctrlFlags
& WHERE_SORTBYGROUP
)
4552 && pWInfo
->nOBSat
==pWInfo
->pOrderBy
->nExpr
&& nLoop
>0
4554 Bitmask revMask
= 0;
4555 int nOrder
= wherePathSatisfiesOrderBy(pWInfo
, pWInfo
->pOrderBy
,
4556 pFrom
, 0, nLoop
-1, pFrom
->aLoop
[nLoop
-1], &revMask
4558 assert( pWInfo
->sorted
==0 );
4559 if( nOrder
==pWInfo
->pOrderBy
->nExpr
){
4561 pWInfo
->revMask
= revMask
;
4567 pWInfo
->nRowOut
= pFrom
->nRow
;
4569 /* Free temporary memory and return success */
4570 sqlite3DbFreeNN(db
, pSpace
);
4575 ** Most queries use only a single table (they are not joins) and have
4576 ** simple == constraints against indexed fields. This routine attempts
4577 ** to plan those simple cases using much less ceremony than the
4578 ** general-purpose query planner, and thereby yield faster sqlite3_prepare()
4579 ** times for the common case.
4581 ** Return non-zero on success, if this query can be handled by this
4582 ** no-frills query planner. Return zero if this query needs the
4583 ** general-purpose query planner.
4585 static int whereShortCut(WhereLoopBuilder
*pBuilder
){
4596 pWInfo
= pBuilder
->pWInfo
;
4597 if( pWInfo
->wctrlFlags
& WHERE_OR_SUBCLAUSE
) return 0;
4598 assert( pWInfo
->pTabList
->nSrc
>=1 );
4599 pItem
= pWInfo
->pTabList
->a
;
4601 if( IsVirtual(pTab
) ) return 0;
4602 if( pItem
->fg
.isIndexedBy
) return 0;
4603 iCur
= pItem
->iCursor
;
4605 pLoop
= pBuilder
->pNew
;
4608 pTerm
= sqlite3WhereFindTerm(pWC
, iCur
, -1, 0, WO_EQ
|WO_IS
, 0);
4610 testcase( pTerm
->eOperator
& WO_IS
);
4611 pLoop
->wsFlags
= WHERE_COLUMN_EQ
|WHERE_IPK
|WHERE_ONEROW
;
4612 pLoop
->aLTerm
[0] = pTerm
;
4614 pLoop
->u
.btree
.nEq
= 1;
4615 /* TUNING: Cost of a rowid lookup is 10 */
4616 pLoop
->rRun
= 33; /* 33==sqlite3LogEst(10) */
4618 for(pIdx
=pTab
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
){
4620 assert( pLoop
->aLTermSpace
==pLoop
->aLTerm
);
4621 if( !IsUniqueIndex(pIdx
)
4622 || pIdx
->pPartIdxWhere
!=0
4623 || pIdx
->nKeyCol
>ArraySize(pLoop
->aLTermSpace
)
4625 opMask
= pIdx
->uniqNotNull
? (WO_EQ
|WO_IS
) : WO_EQ
;
4626 for(j
=0; j
<pIdx
->nKeyCol
; j
++){
4627 pTerm
= sqlite3WhereFindTerm(pWC
, iCur
, j
, 0, opMask
, pIdx
);
4628 if( pTerm
==0 ) break;
4629 testcase( pTerm
->eOperator
& WO_IS
);
4630 pLoop
->aLTerm
[j
] = pTerm
;
4632 if( j
!=pIdx
->nKeyCol
) continue;
4633 pLoop
->wsFlags
= WHERE_COLUMN_EQ
|WHERE_ONEROW
|WHERE_INDEXED
;
4634 if( pIdx
->isCovering
|| (pItem
->colUsed
& pIdx
->colNotIdxed
)==0 ){
4635 pLoop
->wsFlags
|= WHERE_IDX_ONLY
;
4638 pLoop
->u
.btree
.nEq
= j
;
4639 pLoop
->u
.btree
.pIndex
= pIdx
;
4640 /* TUNING: Cost of a unique index lookup is 15 */
4641 pLoop
->rRun
= 39; /* 39==sqlite3LogEst(15) */
4645 if( pLoop
->wsFlags
){
4646 pLoop
->nOut
= (LogEst
)1;
4647 pWInfo
->a
[0].pWLoop
= pLoop
;
4648 assert( pWInfo
->sMaskSet
.n
==1 && iCur
==pWInfo
->sMaskSet
.ix
[0] );
4649 pLoop
->maskSelf
= 1; /* sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); */
4650 pWInfo
->a
[0].iTabCur
= iCur
;
4651 pWInfo
->nRowOut
= 1;
4652 if( pWInfo
->pOrderBy
) pWInfo
->nOBSat
= pWInfo
->pOrderBy
->nExpr
;
4653 if( pWInfo
->wctrlFlags
& WHERE_WANT_DISTINCT
){
4654 pWInfo
->eDistinct
= WHERE_DISTINCT_UNIQUE
;
4665 ** Helper function for exprIsDeterministic().
4667 static int exprNodeIsDeterministic(Walker
*pWalker
, Expr
*pExpr
){
4668 if( pExpr
->op
==TK_FUNCTION
&& ExprHasProperty(pExpr
, EP_ConstFunc
)==0 ){
4672 return WRC_Continue
;
4676 ** Return true if the expression contains no non-deterministic SQL
4677 ** functions. Do not consider non-deterministic SQL functions that are
4678 ** part of sub-select statements.
4680 static int exprIsDeterministic(Expr
*p
){
4682 memset(&w
, 0, sizeof(w
));
4684 w
.xExprCallback
= exprNodeIsDeterministic
;
4685 w
.xSelectCallback
= sqlite3SelectWalkFail
;
4686 sqlite3WalkExpr(&w
, p
);
4691 #ifdef WHERETRACE_ENABLED
4693 ** Display all WhereLoops in pWInfo
4695 static void showAllWhereLoops(WhereInfo
*pWInfo
, WhereClause
*pWC
){
4696 if( sqlite3WhereTrace
){ /* Display all of the WhereLoop objects */
4699 static const char zLabel
[] = "0123456789abcdefghijklmnopqrstuvwyxz"
4700 "ABCDEFGHIJKLMNOPQRSTUVWYXZ";
4701 for(p
=pWInfo
->pLoops
, i
=0; p
; p
=p
->pNextLoop
, i
++){
4702 p
->cId
= zLabel
[i
%(sizeof(zLabel
)-1)];
4703 sqlite3WhereLoopPrint(p
, pWC
);
4707 # define WHERETRACE_ALL_LOOPS(W,C) showAllWhereLoops(W,C)
4709 # define WHERETRACE_ALL_LOOPS(W,C)
4713 ** Generate the beginning of the loop used for WHERE clause processing.
4714 ** The return value is a pointer to an opaque structure that contains
4715 ** information needed to terminate the loop. Later, the calling routine
4716 ** should invoke sqlite3WhereEnd() with the return value of this function
4717 ** in order to complete the WHERE clause processing.
4719 ** If an error occurs, this routine returns NULL.
4721 ** The basic idea is to do a nested loop, one loop for each table in
4722 ** the FROM clause of a select. (INSERT and UPDATE statements are the
4723 ** same as a SELECT with only a single table in the FROM clause.) For
4724 ** example, if the SQL is this:
4726 ** SELECT * FROM t1, t2, t3 WHERE ...;
4728 ** Then the code generated is conceptually like the following:
4730 ** foreach row1 in t1 do \ Code generated
4731 ** foreach row2 in t2 do |-- by sqlite3WhereBegin()
4732 ** foreach row3 in t3 do /
4734 ** end \ Code generated
4735 ** end |-- by sqlite3WhereEnd()
4738 ** Note that the loops might not be nested in the order in which they
4739 ** appear in the FROM clause if a different order is better able to make
4740 ** use of indices. Note also that when the IN operator appears in
4741 ** the WHERE clause, it might result in additional nested loops for
4742 ** scanning through all values on the right-hand side of the IN.
4744 ** There are Btree cursors associated with each table. t1 uses cursor
4745 ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor.
4746 ** And so forth. This routine generates code to open those VDBE cursors
4747 ** and sqlite3WhereEnd() generates the code to close them.
4749 ** The code that sqlite3WhereBegin() generates leaves the cursors named
4750 ** in pTabList pointing at their appropriate entries. The [...] code
4751 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract
4752 ** data from the various tables of the loop.
4754 ** If the WHERE clause is empty, the foreach loops must each scan their
4755 ** entire tables. Thus a three-way join is an O(N^3) operation. But if
4756 ** the tables have indices and there are terms in the WHERE clause that
4757 ** refer to those indices, a complete table scan can be avoided and the
4758 ** code will run much faster. Most of the work of this routine is checking
4759 ** to see if there are indices that can be used to speed up the loop.
4761 ** Terms of the WHERE clause are also used to limit which rows actually
4762 ** make it to the "..." in the middle of the loop. After each "foreach",
4763 ** terms of the WHERE clause that use only terms in that loop and outer
4764 ** loops are evaluated and if false a jump is made around all subsequent
4765 ** inner loops (or around the "..." if the test occurs within the inner-
4770 ** An outer join of tables t1 and t2 is conceptally coded as follows:
4772 ** foreach row1 in t1 do
4774 ** foreach row2 in t2 do
4780 ** move the row2 cursor to a null row
4785 ** ORDER BY CLAUSE PROCESSING
4787 ** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause
4788 ** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement
4789 ** if there is one. If there is no ORDER BY clause or if this routine
4790 ** is called from an UPDATE or DELETE statement, then pOrderBy is NULL.
4792 ** The iIdxCur parameter is the cursor number of an index. If
4793 ** WHERE_OR_SUBCLAUSE is set, iIdxCur is the cursor number of an index
4794 ** to use for OR clause processing. The WHERE clause should use this
4795 ** specific cursor. If WHERE_ONEPASS_DESIRED is set, then iIdxCur is
4796 ** the first cursor in an array of cursors for all indices. iIdxCur should
4797 ** be used to compute the appropriate cursor depending on which index is
4800 WhereInfo
*sqlite3WhereBegin(
4801 Parse
*pParse
, /* The parser context */
4802 SrcList
*pTabList
, /* FROM clause: A list of all tables to be scanned */
4803 Expr
*pWhere
, /* The WHERE clause */
4804 ExprList
*pOrderBy
, /* An ORDER BY (or GROUP BY) clause, or NULL */
4805 ExprList
*pResultSet
, /* Query result set. Req'd for DISTINCT */
4806 u16 wctrlFlags
, /* The WHERE_* flags defined in sqliteInt.h */
4807 int iAuxArg
/* If WHERE_OR_SUBCLAUSE is set, index cursor number
4808 ** If WHERE_USE_LIMIT, then the limit amount */
4810 int nByteWInfo
; /* Num. bytes allocated for WhereInfo struct */
4811 int nTabList
; /* Number of elements in pTabList */
4812 WhereInfo
*pWInfo
; /* Will become the return value of this function */
4813 Vdbe
*v
= pParse
->pVdbe
; /* The virtual database engine */
4814 Bitmask notReady
; /* Cursors that are not yet positioned */
4815 WhereLoopBuilder sWLB
; /* The WhereLoop builder */
4816 WhereMaskSet
*pMaskSet
; /* The expression mask set */
4817 WhereLevel
*pLevel
; /* A single level in pWInfo->a[] */
4818 WhereLoop
*pLoop
; /* Pointer to a single WhereLoop object */
4819 int ii
; /* Loop counter */
4820 sqlite3
*db
; /* Database connection */
4821 int rc
; /* Return code */
4822 u8 bFordelete
= 0; /* OPFLAG_FORDELETE or zero, as appropriate */
4824 assert( (wctrlFlags
& WHERE_ONEPASS_MULTIROW
)==0 || (
4825 (wctrlFlags
& WHERE_ONEPASS_DESIRED
)!=0
4826 && (wctrlFlags
& WHERE_OR_SUBCLAUSE
)==0
4829 /* Only one of WHERE_OR_SUBCLAUSE or WHERE_USE_LIMIT */
4830 assert( (wctrlFlags
& WHERE_OR_SUBCLAUSE
)==0
4831 || (wctrlFlags
& WHERE_USE_LIMIT
)==0 );
4833 /* Variable initialization */
4835 memset(&sWLB
, 0, sizeof(sWLB
));
4837 /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */
4838 testcase( pOrderBy
&& pOrderBy
->nExpr
==BMS
-1 );
4839 if( pOrderBy
&& pOrderBy
->nExpr
>=BMS
) pOrderBy
= 0;
4840 sWLB
.pOrderBy
= pOrderBy
;
4842 /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via
4843 ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */
4844 if( OptimizationDisabled(db
, SQLITE_DistinctOpt
) ){
4845 wctrlFlags
&= ~WHERE_WANT_DISTINCT
;
4848 /* The number of tables in the FROM clause is limited by the number of
4849 ** bits in a Bitmask
4851 testcase( pTabList
->nSrc
==BMS
);
4852 if( pTabList
->nSrc
>BMS
){
4853 sqlite3ErrorMsg(pParse
, "at most %d tables in a join", BMS
);
4857 /* This function normally generates a nested loop for all tables in
4858 ** pTabList. But if the WHERE_OR_SUBCLAUSE flag is set, then we should
4859 ** only generate code for the first table in pTabList and assume that
4860 ** any cursors associated with subsequent tables are uninitialized.
4862 nTabList
= (wctrlFlags
& WHERE_OR_SUBCLAUSE
) ? 1 : pTabList
->nSrc
;
4864 /* Allocate and initialize the WhereInfo structure that will become the
4865 ** return value. A single allocation is used to store the WhereInfo
4866 ** struct, the contents of WhereInfo.a[], the WhereClause structure
4867 ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte
4868 ** field (type Bitmask) it must be aligned on an 8-byte boundary on
4869 ** some architectures. Hence the ROUND8() below.
4871 nByteWInfo
= ROUND8(sizeof(WhereInfo
)+(nTabList
-1)*sizeof(WhereLevel
));
4872 pWInfo
= sqlite3DbMallocRawNN(db
, nByteWInfo
+ sizeof(WhereLoop
));
4873 if( db
->mallocFailed
){
4874 sqlite3DbFree(db
, pWInfo
);
4876 goto whereBeginError
;
4878 pWInfo
->pParse
= pParse
;
4879 pWInfo
->pTabList
= pTabList
;
4880 pWInfo
->pOrderBy
= pOrderBy
;
4881 pWInfo
->pWhere
= pWhere
;
4882 pWInfo
->pResultSet
= pResultSet
;
4883 pWInfo
->aiCurOnePass
[0] = pWInfo
->aiCurOnePass
[1] = -1;
4884 pWInfo
->nLevel
= nTabList
;
4885 pWInfo
->iBreak
= pWInfo
->iContinue
= sqlite3VdbeMakeLabel(pParse
);
4886 pWInfo
->wctrlFlags
= wctrlFlags
;
4887 pWInfo
->iLimit
= iAuxArg
;
4888 pWInfo
->savedNQueryLoop
= pParse
->nQueryLoop
;
4889 memset(&pWInfo
->nOBSat
, 0,
4890 offsetof(WhereInfo
,sWC
) - offsetof(WhereInfo
,nOBSat
));
4891 memset(&pWInfo
->a
[0], 0, sizeof(WhereLoop
)+nTabList
*sizeof(WhereLevel
));
4892 assert( pWInfo
->eOnePass
==ONEPASS_OFF
); /* ONEPASS defaults to OFF */
4893 pMaskSet
= &pWInfo
->sMaskSet
;
4894 sWLB
.pWInfo
= pWInfo
;
4895 sWLB
.pWC
= &pWInfo
->sWC
;
4896 sWLB
.pNew
= (WhereLoop
*)(((char*)pWInfo
)+nByteWInfo
);
4897 assert( EIGHT_BYTE_ALIGNMENT(sWLB
.pNew
) );
4898 whereLoopInit(sWLB
.pNew
);
4900 sWLB
.pNew
->cId
= '*';
4903 /* Split the WHERE clause into separate subexpressions where each
4904 ** subexpression is separated by an AND operator.
4906 initMaskSet(pMaskSet
);
4907 sqlite3WhereClauseInit(&pWInfo
->sWC
, pWInfo
);
4908 sqlite3WhereSplit(&pWInfo
->sWC
, pWhere
, TK_AND
);
4910 /* Special case: No FROM clause
4913 if( pOrderBy
) pWInfo
->nOBSat
= pOrderBy
->nExpr
;
4914 if( wctrlFlags
& WHERE_WANT_DISTINCT
){
4915 pWInfo
->eDistinct
= WHERE_DISTINCT_UNIQUE
;
4917 ExplainQueryPlan((pParse
, 0, "SCAN CONSTANT ROW"));
4919 /* Assign a bit from the bitmask to every term in the FROM clause.
4921 ** The N-th term of the FROM clause is assigned a bitmask of 1<<N.
4923 ** The rule of the previous sentence ensures thta if X is the bitmask for
4924 ** a table T, then X-1 is the bitmask for all other tables to the left of T.
4925 ** Knowing the bitmask for all tables to the left of a left join is
4926 ** important. Ticket #3015.
4928 ** Note that bitmasks are created for all pTabList->nSrc tables in
4929 ** pTabList, not just the first nTabList tables. nTabList is normally
4930 ** equal to pTabList->nSrc but might be shortened to 1 if the
4931 ** WHERE_OR_SUBCLAUSE flag is set.
4935 createMask(pMaskSet
, pTabList
->a
[ii
].iCursor
);
4936 sqlite3WhereTabFuncArgs(pParse
, &pTabList
->a
[ii
], &pWInfo
->sWC
);
4937 }while( (++ii
)<pTabList
->nSrc
);
4941 for(ii
=0; ii
<pTabList
->nSrc
; ii
++){
4942 Bitmask m
= sqlite3WhereGetMask(pMaskSet
, pTabList
->a
[ii
].iCursor
);
4950 /* Analyze all of the subexpressions. */
4951 sqlite3WhereExprAnalyze(pTabList
, &pWInfo
->sWC
);
4952 if( db
->mallocFailed
) goto whereBeginError
;
4954 /* Special case: WHERE terms that do not refer to any tables in the join
4955 ** (constant expressions). Evaluate each such term, and jump over all the
4956 ** generated code if the result is not true.
4958 ** Do not do this if the expression contains non-deterministic functions
4959 ** that are not within a sub-select. This is not strictly required, but
4960 ** preserves SQLite's legacy behaviour in the following two cases:
4962 ** FROM ... WHERE random()>0; -- eval random() once per row
4963 ** FROM ... WHERE (SELECT random())>0; -- eval random() once overall
4965 for(ii
=0; ii
<sWLB
.pWC
->nTerm
; ii
++){
4966 WhereTerm
*pT
= &sWLB
.pWC
->a
[ii
];
4967 if( pT
->wtFlags
& TERM_VIRTUAL
) continue;
4968 if( pT
->prereqAll
==0 && (nTabList
==0 || exprIsDeterministic(pT
->pExpr
)) ){
4969 sqlite3ExprIfFalse(pParse
, pT
->pExpr
, pWInfo
->iBreak
, SQLITE_JUMPIFNULL
);
4970 pT
->wtFlags
|= TERM_CODED
;
4974 if( wctrlFlags
& WHERE_WANT_DISTINCT
){
4975 if( isDistinctRedundant(pParse
, pTabList
, &pWInfo
->sWC
, pResultSet
) ){
4976 /* The DISTINCT marking is pointless. Ignore it. */
4977 pWInfo
->eDistinct
= WHERE_DISTINCT_UNIQUE
;
4978 }else if( pOrderBy
==0 ){
4979 /* Try to ORDER BY the result set to make distinct processing easier */
4980 pWInfo
->wctrlFlags
|= WHERE_DISTINCTBY
;
4981 pWInfo
->pOrderBy
= pResultSet
;
4985 /* Construct the WhereLoop objects */
4986 #if defined(WHERETRACE_ENABLED)
4987 if( sqlite3WhereTrace
& 0xffff ){
4988 sqlite3DebugPrintf("*** Optimizer Start *** (wctrlFlags: 0x%x",wctrlFlags
);
4989 if( wctrlFlags
& WHERE_USE_LIMIT
){
4990 sqlite3DebugPrintf(", limit: %d", iAuxArg
);
4992 sqlite3DebugPrintf(")\n");
4993 if( sqlite3WhereTrace
& 0x100 ){
4995 memset(&sSelect
, 0, sizeof(sSelect
));
4996 sSelect
.selFlags
= SF_WhereBegin
;
4997 sSelect
.pSrc
= pTabList
;
4998 sSelect
.pWhere
= pWhere
;
4999 sSelect
.pOrderBy
= pOrderBy
;
5000 sSelect
.pEList
= pResultSet
;
5001 sqlite3TreeViewSelect(0, &sSelect
, 0);
5004 if( sqlite3WhereTrace
& 0x100 ){ /* Display all terms of the WHERE clause */
5005 sqlite3DebugPrintf("---- WHERE clause at start of analysis:\n");
5006 sqlite3WhereClausePrint(sWLB
.pWC
);
5010 if( nTabList
!=1 || whereShortCut(&sWLB
)==0 ){
5011 rc
= whereLoopAddAll(&sWLB
);
5012 if( rc
) goto whereBeginError
;
5014 #ifdef SQLITE_ENABLE_STAT4
5015 /* If one or more WhereTerm.truthProb values were used in estimating
5016 ** loop parameters, but then those truthProb values were subsequently
5017 ** changed based on STAT4 information while computing subsequent loops,
5018 ** then we need to rerun the whole loop building process so that all
5019 ** loops will be built using the revised truthProb values. */
5020 if( sWLB
.bldFlags2
& SQLITE_BLDF2_2NDPASS
){
5021 WHERETRACE_ALL_LOOPS(pWInfo
, sWLB
.pWC
);
5023 ("**** Redo all loop computations due to"
5024 " TERM_HIGHTRUTH changes ****\n"));
5025 while( pWInfo
->pLoops
){
5026 WhereLoop
*p
= pWInfo
->pLoops
;
5027 pWInfo
->pLoops
= p
->pNextLoop
;
5028 whereLoopDelete(db
, p
);
5030 rc
= whereLoopAddAll(&sWLB
);
5031 if( rc
) goto whereBeginError
;
5034 WHERETRACE_ALL_LOOPS(pWInfo
, sWLB
.pWC
);
5036 wherePathSolver(pWInfo
, 0);
5037 if( db
->mallocFailed
) goto whereBeginError
;
5038 if( pWInfo
->pOrderBy
){
5039 wherePathSolver(pWInfo
, pWInfo
->nRowOut
+1);
5040 if( db
->mallocFailed
) goto whereBeginError
;
5043 if( pWInfo
->pOrderBy
==0 && (db
->flags
& SQLITE_ReverseOrder
)!=0 ){
5044 pWInfo
->revMask
= ALLBITS
;
5046 if( pParse
->nErr
|| db
->mallocFailed
){
5047 goto whereBeginError
;
5049 #ifdef WHERETRACE_ENABLED
5050 if( sqlite3WhereTrace
){
5051 sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo
->nRowOut
);
5052 if( pWInfo
->nOBSat
>0 ){
5053 sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo
->nOBSat
, pWInfo
->revMask
);
5055 switch( pWInfo
->eDistinct
){
5056 case WHERE_DISTINCT_UNIQUE
: {
5057 sqlite3DebugPrintf(" DISTINCT=unique");
5060 case WHERE_DISTINCT_ORDERED
: {
5061 sqlite3DebugPrintf(" DISTINCT=ordered");
5064 case WHERE_DISTINCT_UNORDERED
: {
5065 sqlite3DebugPrintf(" DISTINCT=unordered");
5069 sqlite3DebugPrintf("\n");
5070 for(ii
=0; ii
<pWInfo
->nLevel
; ii
++){
5071 sqlite3WhereLoopPrint(pWInfo
->a
[ii
].pWLoop
, sWLB
.pWC
);
5076 /* Attempt to omit tables from the join that do not affect the result.
5077 ** For a table to not affect the result, the following must be true:
5079 ** 1) The query must not be an aggregate.
5080 ** 2) The table must be the RHS of a LEFT JOIN.
5081 ** 3) Either the query must be DISTINCT, or else the ON or USING clause
5082 ** must contain a constraint that limits the scan of the table to
5083 ** at most a single row.
5084 ** 4) The table must not be referenced by any part of the query apart
5085 ** from its own USING or ON clause.
5087 ** For example, given:
5089 ** CREATE TABLE t1(ipk INTEGER PRIMARY KEY, v1);
5090 ** CREATE TABLE t2(ipk INTEGER PRIMARY KEY, v2);
5091 ** CREATE TABLE t3(ipk INTEGER PRIMARY KEY, v3);
5093 ** then table t2 can be omitted from the following:
5095 ** SELECT v1, v3 FROM t1
5096 ** LEFT JOIN t2 ON (t1.ipk=t2.ipk)
5097 ** LEFT JOIN t3 ON (t1.ipk=t3.ipk)
5101 ** SELECT DISTINCT v1, v3 FROM t1
5103 ** LEFT JOIN t3 ON (t1.ipk=t3.ipk)
5105 notReady
= ~(Bitmask
)0;
5106 if( pWInfo
->nLevel
>=2
5107 && pResultSet
!=0 /* these two combine to guarantee */
5108 && 0==(wctrlFlags
& WHERE_AGG_DISTINCT
) /* condition (1) above */
5109 && OptimizationEnabled(db
, SQLITE_OmitNoopJoin
)
5112 Bitmask tabUsed
= sqlite3WhereExprListUsage(pMaskSet
, pResultSet
);
5113 if( sWLB
.pOrderBy
){
5114 tabUsed
|= sqlite3WhereExprListUsage(pMaskSet
, sWLB
.pOrderBy
);
5116 for(i
=pWInfo
->nLevel
-1; i
>=1; i
--){
5117 WhereTerm
*pTerm
, *pEnd
;
5119 pLoop
= pWInfo
->a
[i
].pWLoop
;
5120 pItem
= &pWInfo
->pTabList
->a
[pLoop
->iTab
];
5121 if( (pItem
->fg
.jointype
& JT_LEFT
)==0 ) continue;
5122 if( (wctrlFlags
& WHERE_WANT_DISTINCT
)==0
5123 && (pLoop
->wsFlags
& WHERE_ONEROW
)==0
5127 if( (tabUsed
& pLoop
->maskSelf
)!=0 ) continue;
5128 pEnd
= sWLB
.pWC
->a
+ sWLB
.pWC
->nTerm
;
5129 for(pTerm
=sWLB
.pWC
->a
; pTerm
<pEnd
; pTerm
++){
5130 if( (pTerm
->prereqAll
& pLoop
->maskSelf
)!=0 ){
5131 if( !ExprHasProperty(pTerm
->pExpr
, EP_FromJoin
)
5132 || pTerm
->pExpr
->iRightJoinTable
!=pItem
->iCursor
5138 if( pTerm
<pEnd
) continue;
5139 WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop
->cId
));
5140 notReady
&= ~pLoop
->maskSelf
;
5141 for(pTerm
=sWLB
.pWC
->a
; pTerm
<pEnd
; pTerm
++){
5142 if( (pTerm
->prereqAll
& pLoop
->maskSelf
)!=0 ){
5143 pTerm
->wtFlags
|= TERM_CODED
;
5146 if( i
!=pWInfo
->nLevel
-1 ){
5147 int nByte
= (pWInfo
->nLevel
-1-i
) * sizeof(WhereLevel
);
5148 memmove(&pWInfo
->a
[i
], &pWInfo
->a
[i
+1], nByte
);
5154 #if defined(WHERETRACE_ENABLED)
5155 if( sqlite3WhereTrace
& 0x100 ){ /* Display all terms of the WHERE clause */
5156 sqlite3DebugPrintf("---- WHERE clause at end of analysis:\n");
5157 sqlite3WhereClausePrint(sWLB
.pWC
);
5159 WHERETRACE(0xffff,("*** Optimizer Finished ***\n"));
5161 pWInfo
->pParse
->nQueryLoop
+= pWInfo
->nRowOut
;
5163 /* If the caller is an UPDATE or DELETE statement that is requesting
5164 ** to use a one-pass algorithm, determine if this is appropriate.
5166 ** A one-pass approach can be used if the caller has requested one
5167 ** and either (a) the scan visits at most one row or (b) each
5168 ** of the following are true:
5170 ** * the caller has indicated that a one-pass approach can be used
5171 ** with multiple rows (by setting WHERE_ONEPASS_MULTIROW), and
5172 ** * the table is not a virtual table, and
5173 ** * either the scan does not use the OR optimization or the caller
5174 ** is a DELETE operation (WHERE_DUPLICATES_OK is only specified
5177 ** The last qualification is because an UPDATE statement uses
5178 ** WhereInfo.aiCurOnePass[1] to determine whether or not it really can
5179 ** use a one-pass approach, and this is not set accurately for scans
5180 ** that use the OR optimization.
5182 assert( (wctrlFlags
& WHERE_ONEPASS_DESIRED
)==0 || pWInfo
->nLevel
==1 );
5183 if( (wctrlFlags
& WHERE_ONEPASS_DESIRED
)!=0 ){
5184 int wsFlags
= pWInfo
->a
[0].pWLoop
->wsFlags
;
5185 int bOnerow
= (wsFlags
& WHERE_ONEROW
)!=0;
5186 assert( !(wsFlags
& WHERE_VIRTUALTABLE
) || IsVirtual(pTabList
->a
[0].pTab
) );
5188 0!=(wctrlFlags
& WHERE_ONEPASS_MULTIROW
)
5189 && !IsVirtual(pTabList
->a
[0].pTab
)
5190 && (0==(wsFlags
& WHERE_MULTI_OR
) || (wctrlFlags
& WHERE_DUPLICATES_OK
))
5192 pWInfo
->eOnePass
= bOnerow
? ONEPASS_SINGLE
: ONEPASS_MULTI
;
5193 if( HasRowid(pTabList
->a
[0].pTab
) && (wsFlags
& WHERE_IDX_ONLY
) ){
5194 if( wctrlFlags
& WHERE_ONEPASS_MULTIROW
){
5195 bFordelete
= OPFLAG_FORDELETE
;
5197 pWInfo
->a
[0].pWLoop
->wsFlags
= (wsFlags
& ~WHERE_IDX_ONLY
);
5202 /* Open all tables in the pTabList and any indices selected for
5203 ** searching those tables.
5205 for(ii
=0, pLevel
=pWInfo
->a
; ii
<nTabList
; ii
++, pLevel
++){
5206 Table
*pTab
; /* Table to open */
5207 int iDb
; /* Index of database containing table/index */
5210 pTabItem
= &pTabList
->a
[pLevel
->iFrom
];
5211 pTab
= pTabItem
->pTab
;
5212 iDb
= sqlite3SchemaToIndex(db
, pTab
->pSchema
);
5213 pLoop
= pLevel
->pWLoop
;
5214 if( (pTab
->tabFlags
& TF_Ephemeral
)!=0 || pTab
->pSelect
){
5217 #ifndef SQLITE_OMIT_VIRTUALTABLE
5218 if( (pLoop
->wsFlags
& WHERE_VIRTUALTABLE
)!=0 ){
5219 const char *pVTab
= (const char *)sqlite3GetVTable(db
, pTab
);
5220 int iCur
= pTabItem
->iCursor
;
5221 sqlite3VdbeAddOp4(v
, OP_VOpen
, iCur
, 0, 0, pVTab
, P4_VTAB
);
5222 }else if( IsVirtual(pTab
) ){
5226 if( (pLoop
->wsFlags
& WHERE_IDX_ONLY
)==0
5227 && (wctrlFlags
& WHERE_OR_SUBCLAUSE
)==0 ){
5228 int op
= OP_OpenRead
;
5229 if( pWInfo
->eOnePass
!=ONEPASS_OFF
){
5231 pWInfo
->aiCurOnePass
[0] = pTabItem
->iCursor
;
5233 sqlite3OpenTable(pParse
, pTabItem
->iCursor
, iDb
, pTab
, op
);
5234 assert( pTabItem
->iCursor
==pLevel
->iTabCur
);
5235 testcase( pWInfo
->eOnePass
==ONEPASS_OFF
&& pTab
->nCol
==BMS
-1 );
5236 testcase( pWInfo
->eOnePass
==ONEPASS_OFF
&& pTab
->nCol
==BMS
);
5237 if( pWInfo
->eOnePass
==ONEPASS_OFF
5239 && (pTab
->tabFlags
& (TF_HasGenerated
|TF_WithoutRowid
))==0
5241 /* If we know that only a prefix of the record will be used,
5242 ** it is advantageous to reduce the "column count" field in
5243 ** the P4 operand of the OP_OpenRead/Write opcode. */
5244 Bitmask b
= pTabItem
->colUsed
;
5246 for(; b
; b
=b
>>1, n
++){}
5247 sqlite3VdbeChangeP4(v
, -1, SQLITE_INT_TO_PTR(n
), P4_INT32
);
5248 assert( n
<=pTab
->nCol
);
5250 #ifdef SQLITE_ENABLE_CURSOR_HINTS
5251 if( pLoop
->u
.btree
.pIndex
!=0 ){
5252 sqlite3VdbeChangeP5(v
, OPFLAG_SEEKEQ
|bFordelete
);
5256 sqlite3VdbeChangeP5(v
, bFordelete
);
5258 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
5259 sqlite3VdbeAddOp4Dup8(v
, OP_ColumnsUsed
, pTabItem
->iCursor
, 0, 0,
5260 (const u8
*)&pTabItem
->colUsed
, P4_INT64
);
5263 sqlite3TableLock(pParse
, iDb
, pTab
->tnum
, 0, pTab
->zName
);
5265 if( pLoop
->wsFlags
& WHERE_INDEXED
){
5266 Index
*pIx
= pLoop
->u
.btree
.pIndex
;
5268 int op
= OP_OpenRead
;
5269 /* iAuxArg is always set to a positive value if ONEPASS is possible */
5270 assert( iAuxArg
!=0 || (pWInfo
->wctrlFlags
& WHERE_ONEPASS_DESIRED
)==0 );
5271 if( !HasRowid(pTab
) && IsPrimaryKeyIndex(pIx
)
5272 && (wctrlFlags
& WHERE_OR_SUBCLAUSE
)!=0
5274 /* This is one term of an OR-optimization using the PRIMARY KEY of a
5275 ** WITHOUT ROWID table. No need for a separate index */
5276 iIndexCur
= pLevel
->iTabCur
;
5278 }else if( pWInfo
->eOnePass
!=ONEPASS_OFF
){
5279 Index
*pJ
= pTabItem
->pTab
->pIndex
;
5280 iIndexCur
= iAuxArg
;
5281 assert( wctrlFlags
& WHERE_ONEPASS_DESIRED
);
5282 while( ALWAYS(pJ
) && pJ
!=pIx
){
5287 pWInfo
->aiCurOnePass
[1] = iIndexCur
;
5288 }else if( iAuxArg
&& (wctrlFlags
& WHERE_OR_SUBCLAUSE
)!=0 ){
5289 iIndexCur
= iAuxArg
;
5292 iIndexCur
= pParse
->nTab
++;
5294 pLevel
->iIdxCur
= iIndexCur
;
5295 assert( pIx
->pSchema
==pTab
->pSchema
);
5296 assert( iIndexCur
>=0 );
5298 sqlite3VdbeAddOp3(v
, op
, iIndexCur
, pIx
->tnum
, iDb
);
5299 sqlite3VdbeSetP4KeyInfo(pParse
, pIx
);
5300 if( (pLoop
->wsFlags
& WHERE_CONSTRAINT
)!=0
5301 && (pLoop
->wsFlags
& (WHERE_COLUMN_RANGE
|WHERE_SKIPSCAN
))==0
5302 && (pLoop
->wsFlags
& WHERE_BIGNULL_SORT
)==0
5303 && (pLoop
->wsFlags
& WHERE_IN_SEEKSCAN
)==0
5304 && (pWInfo
->wctrlFlags
&WHERE_ORDERBY_MIN
)==0
5305 && pWInfo
->eDistinct
!=WHERE_DISTINCT_ORDERED
5307 sqlite3VdbeChangeP5(v
, OPFLAG_SEEKEQ
);
5309 VdbeComment((v
, "%s", pIx
->zName
));
5310 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
5314 for(ii
=0; ii
<pIx
->nColumn
; ii
++){
5315 jj
= pIx
->aiColumn
[ii
];
5316 if( jj
<0 ) continue;
5317 if( jj
>63 ) jj
= 63;
5318 if( (pTabItem
->colUsed
& MASKBIT(jj
))==0 ) continue;
5319 colUsed
|= ((u64
)1)<<(ii
<63 ? ii
: 63);
5321 sqlite3VdbeAddOp4Dup8(v
, OP_ColumnsUsed
, iIndexCur
, 0, 0,
5322 (u8
*)&colUsed
, P4_INT64
);
5324 #endif /* SQLITE_ENABLE_COLUMN_USED_MASK */
5327 if( iDb
>=0 ) sqlite3CodeVerifySchema(pParse
, iDb
);
5329 pWInfo
->iTop
= sqlite3VdbeCurrentAddr(v
);
5330 if( db
->mallocFailed
) goto whereBeginError
;
5332 /* Generate the code to do the search. Each iteration of the for
5333 ** loop below generates code for a single nested loop of the VM
5336 for(ii
=0; ii
<nTabList
; ii
++){
5339 pLevel
= &pWInfo
->a
[ii
];
5340 wsFlags
= pLevel
->pWLoop
->wsFlags
;
5341 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
5342 if( (pLevel
->pWLoop
->wsFlags
& WHERE_AUTO_INDEX
)!=0 ){
5343 constructAutomaticIndex(pParse
, &pWInfo
->sWC
,
5344 &pTabList
->a
[pLevel
->iFrom
], notReady
, pLevel
);
5345 if( db
->mallocFailed
) goto whereBeginError
;
5348 addrExplain
= sqlite3WhereExplainOneScan(
5349 pParse
, pTabList
, pLevel
, wctrlFlags
5351 pLevel
->addrBody
= sqlite3VdbeCurrentAddr(v
);
5352 notReady
= sqlite3WhereCodeOneLoopStart(pParse
,v
,pWInfo
,ii
,pLevel
,notReady
);
5353 pWInfo
->iContinue
= pLevel
->addrCont
;
5354 if( (wsFlags
&WHERE_MULTI_OR
)==0 && (wctrlFlags
&WHERE_OR_SUBCLAUSE
)==0 ){
5355 sqlite3WhereAddScanStatus(v
, pTabList
, pLevel
, addrExplain
);
5360 VdbeModuleComment((v
, "Begin WHERE-core"));
5361 pWInfo
->iEndWhere
= sqlite3VdbeCurrentAddr(v
);
5364 /* Jump here if malloc fails */
5367 testcase( pWInfo
->pExprMods
!=0 );
5368 whereUndoExprMods(pWInfo
);
5369 pParse
->nQueryLoop
= pWInfo
->savedNQueryLoop
;
5370 whereInfoFree(db
, pWInfo
);
5376 ** Part of sqlite3WhereEnd() will rewrite opcodes to reference the
5377 ** index rather than the main table. In SQLITE_DEBUG mode, we want
5378 ** to trace those changes if PRAGMA vdbe_addoptrace=on. This routine
5381 #ifndef SQLITE_DEBUG
5382 # define OpcodeRewriteTrace(D,K,P) /* no-op */
5384 # define OpcodeRewriteTrace(D,K,P) sqlite3WhereOpcodeRewriteTrace(D,K,P)
5385 static void sqlite3WhereOpcodeRewriteTrace(
5390 if( (db
->flags
& SQLITE_VdbeAddopTrace
)==0 ) return;
5391 sqlite3VdbePrintOp(0, pc
, pOp
);
5396 ** Generate the end of the WHERE loop. See comments on
5397 ** sqlite3WhereBegin() for additional information.
5399 void sqlite3WhereEnd(WhereInfo
*pWInfo
){
5400 Parse
*pParse
= pWInfo
->pParse
;
5401 Vdbe
*v
= pParse
->pVdbe
;
5405 SrcList
*pTabList
= pWInfo
->pTabList
;
5406 sqlite3
*db
= pParse
->db
;
5407 int iEnd
= sqlite3VdbeCurrentAddr(v
);
5409 /* Generate loop termination code.
5411 VdbeModuleComment((v
, "End WHERE-core"));
5412 for(i
=pWInfo
->nLevel
-1; i
>=0; i
--){
5414 pLevel
= &pWInfo
->a
[i
];
5415 pLoop
= pLevel
->pWLoop
;
5416 if( pLevel
->op
!=OP_Noop
){
5417 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
5421 if( pWInfo
->eDistinct
==WHERE_DISTINCT_ORDERED
5422 && i
==pWInfo
->nLevel
-1 /* Ticket [ef9318757b152e3] 2017-10-21 */
5423 && (pLoop
->wsFlags
& WHERE_INDEXED
)!=0
5424 && (pIdx
= pLoop
->u
.btree
.pIndex
)->hasStat1
5425 && (n
= pLoop
->u
.btree
.nDistinctCol
)>0
5426 && pIdx
->aiRowLogEst
[n
]>=36
5428 int r1
= pParse
->nMem
+1;
5431 sqlite3VdbeAddOp3(v
, OP_Column
, pLevel
->iIdxCur
, j
, r1
+j
);
5433 pParse
->nMem
+= n
+1;
5434 op
= pLevel
->op
==OP_Prev
? OP_SeekLT
: OP_SeekGT
;
5435 addrSeek
= sqlite3VdbeAddOp4Int(v
, op
, pLevel
->iIdxCur
, 0, r1
, n
);
5436 VdbeCoverageIf(v
, op
==OP_SeekLT
);
5437 VdbeCoverageIf(v
, op
==OP_SeekGT
);
5438 sqlite3VdbeAddOp2(v
, OP_Goto
, 1, pLevel
->p2
);
5440 #endif /* SQLITE_DISABLE_SKIPAHEAD_DISTINCT */
5441 /* The common case: Advance to the next row */
5442 sqlite3VdbeResolveLabel(v
, pLevel
->addrCont
);
5443 sqlite3VdbeAddOp3(v
, pLevel
->op
, pLevel
->p1
, pLevel
->p2
, pLevel
->p3
);
5444 sqlite3VdbeChangeP5(v
, pLevel
->p5
);
5446 VdbeCoverageIf(v
, pLevel
->op
==OP_Next
);
5447 VdbeCoverageIf(v
, pLevel
->op
==OP_Prev
);
5448 VdbeCoverageIf(v
, pLevel
->op
==OP_VNext
);
5449 if( pLevel
->regBignull
){
5450 sqlite3VdbeResolveLabel(v
, pLevel
->addrBignull
);
5451 sqlite3VdbeAddOp2(v
, OP_DecrJumpZero
, pLevel
->regBignull
, pLevel
->p2
-1);
5454 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
5455 if( addrSeek
) sqlite3VdbeJumpHere(v
, addrSeek
);
5458 sqlite3VdbeResolveLabel(v
, pLevel
->addrCont
);
5460 if( pLoop
->wsFlags
& WHERE_IN_ABLE
&& pLevel
->u
.in
.nIn
>0 ){
5463 sqlite3VdbeResolveLabel(v
, pLevel
->addrNxt
);
5464 for(j
=pLevel
->u
.in
.nIn
, pIn
=&pLevel
->u
.in
.aInLoop
[j
-1]; j
>0; j
--, pIn
--){
5465 assert( sqlite3VdbeGetOp(v
, pIn
->addrInTop
+1)->opcode
==OP_IsNull
5466 || pParse
->db
->mallocFailed
);
5467 sqlite3VdbeJumpHere(v
, pIn
->addrInTop
+1);
5468 if( pIn
->eEndLoopOp
!=OP_Noop
){
5471 (pLoop
->wsFlags
& WHERE_VIRTUALTABLE
)==0
5472 && (pLoop
->wsFlags
& WHERE_IN_EARLYOUT
)!=0;
5473 if( pLevel
->iLeftJoin
){
5474 /* For LEFT JOIN queries, cursor pIn->iCur may not have been
5475 ** opened yet. This occurs for WHERE clauses such as
5476 ** "a = ? AND b IN (...)", where the index is on (a, b). If
5477 ** the RHS of the (a=?) is NULL, then the "b IN (...)" may
5478 ** never have been coded, but the body of the loop run to
5479 ** return the null-row. So, if the cursor is not open yet,
5480 ** jump over the OP_Next or OP_Prev instruction about to
5482 sqlite3VdbeAddOp2(v
, OP_IfNotOpen
, pIn
->iCur
,
5483 sqlite3VdbeCurrentAddr(v
) + 2 + bEarlyOut
);
5487 sqlite3VdbeAddOp4Int(v
, OP_IfNoHope
, pLevel
->iIdxCur
,
5488 sqlite3VdbeCurrentAddr(v
)+2,
5489 pIn
->iBase
, pIn
->nPrefix
);
5491 /* Retarget the OP_IsNull against the left operand of IN so
5492 ** it jumps past the OP_IfNoHope. This is because the
5493 ** OP_IsNull also bypasses the OP_Affinity opcode that is
5494 ** required by OP_IfNoHope. */
5495 sqlite3VdbeJumpHere(v
, pIn
->addrInTop
+1);
5498 sqlite3VdbeAddOp2(v
, pIn
->eEndLoopOp
, pIn
->iCur
, pIn
->addrInTop
);
5500 VdbeCoverageIf(v
, pIn
->eEndLoopOp
==OP_Prev
);
5501 VdbeCoverageIf(v
, pIn
->eEndLoopOp
==OP_Next
);
5503 sqlite3VdbeJumpHere(v
, pIn
->addrInTop
-1);
5506 sqlite3VdbeResolveLabel(v
, pLevel
->addrBrk
);
5507 if( pLevel
->addrSkip
){
5508 sqlite3VdbeGoto(v
, pLevel
->addrSkip
);
5509 VdbeComment((v
, "next skip-scan on %s", pLoop
->u
.btree
.pIndex
->zName
));
5510 sqlite3VdbeJumpHere(v
, pLevel
->addrSkip
);
5511 sqlite3VdbeJumpHere(v
, pLevel
->addrSkip
-2);
5513 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
5514 if( pLevel
->addrLikeRep
){
5515 sqlite3VdbeAddOp2(v
, OP_DecrJumpZero
, (int)(pLevel
->iLikeRepCntr
>>1),
5516 pLevel
->addrLikeRep
);
5520 if( pLevel
->iLeftJoin
){
5521 int ws
= pLoop
->wsFlags
;
5522 addr
= sqlite3VdbeAddOp1(v
, OP_IfPos
, pLevel
->iLeftJoin
); VdbeCoverage(v
);
5523 assert( (ws
& WHERE_IDX_ONLY
)==0 || (ws
& WHERE_INDEXED
)!=0 );
5524 if( (ws
& WHERE_IDX_ONLY
)==0 ){
5525 assert( pLevel
->iTabCur
==pTabList
->a
[pLevel
->iFrom
].iCursor
);
5526 sqlite3VdbeAddOp1(v
, OP_NullRow
, pLevel
->iTabCur
);
5528 if( (ws
& WHERE_INDEXED
)
5529 || ((ws
& WHERE_MULTI_OR
) && pLevel
->u
.pCovidx
)
5531 sqlite3VdbeAddOp1(v
, OP_NullRow
, pLevel
->iIdxCur
);
5533 if( pLevel
->op
==OP_Return
){
5534 sqlite3VdbeAddOp2(v
, OP_Gosub
, pLevel
->p1
, pLevel
->addrFirst
);
5536 sqlite3VdbeGoto(v
, pLevel
->addrFirst
);
5538 sqlite3VdbeJumpHere(v
, addr
);
5540 VdbeModuleComment((v
, "End WHERE-loop%d: %s", i
,
5541 pWInfo
->pTabList
->a
[pLevel
->iFrom
].pTab
->zName
));
5544 /* The "break" point is here, just past the end of the outer loop.
5547 sqlite3VdbeResolveLabel(v
, pWInfo
->iBreak
);
5549 assert( pWInfo
->nLevel
<=pTabList
->nSrc
);
5550 for(i
=0, pLevel
=pWInfo
->a
; i
<pWInfo
->nLevel
; i
++, pLevel
++){
5552 VdbeOp
*pOp
, *pLastOp
;
5554 SrcItem
*pTabItem
= &pTabList
->a
[pLevel
->iFrom
];
5555 Table
*pTab
= pTabItem
->pTab
;
5557 pLoop
= pLevel
->pWLoop
;
5559 /* For a co-routine, change all OP_Column references to the table of
5560 ** the co-routine into OP_Copy of result contained in a register.
5561 ** OP_Rowid becomes OP_Null.
5563 if( pTabItem
->fg
.viaCoroutine
){
5564 testcase( pParse
->db
->mallocFailed
);
5565 translateColumnToCopy(pParse
, pLevel
->addrBody
, pLevel
->iTabCur
,
5566 pTabItem
->regResult
, 0);
5570 #ifdef SQLITE_ENABLE_EARLY_CURSOR_CLOSE
5571 /* Close all of the cursors that were opened by sqlite3WhereBegin.
5572 ** Except, do not close cursors that will be reused by the OR optimization
5573 ** (WHERE_OR_SUBCLAUSE). And do not close the OP_OpenWrite cursors
5574 ** created for the ONEPASS optimization.
5576 if( (pTab
->tabFlags
& TF_Ephemeral
)==0
5578 && (pWInfo
->wctrlFlags
& WHERE_OR_SUBCLAUSE
)==0
5580 int ws
= pLoop
->wsFlags
;
5581 if( pWInfo
->eOnePass
==ONEPASS_OFF
&& (ws
& WHERE_IDX_ONLY
)==0 ){
5582 sqlite3VdbeAddOp1(v
, OP_Close
, pTabItem
->iCursor
);
5584 if( (ws
& WHERE_INDEXED
)!=0
5585 && (ws
& (WHERE_IPK
|WHERE_AUTO_INDEX
))==0
5586 && pLevel
->iIdxCur
!=pWInfo
->aiCurOnePass
[1]
5588 sqlite3VdbeAddOp1(v
, OP_Close
, pLevel
->iIdxCur
);
5593 /* If this scan uses an index, make VDBE code substitutions to read data
5594 ** from the index instead of from the table where possible. In some cases
5595 ** this optimization prevents the table from ever being read, which can
5596 ** yield a significant performance boost.
5598 ** Calls to the code generator in between sqlite3WhereBegin and
5599 ** sqlite3WhereEnd will have created code that references the table
5600 ** directly. This loop scans all that code looking for opcodes
5601 ** that reference the table and converts them into opcodes that
5602 ** reference the index.
5604 if( pLoop
->wsFlags
& (WHERE_INDEXED
|WHERE_IDX_ONLY
) ){
5605 pIdx
= pLoop
->u
.btree
.pIndex
;
5606 }else if( pLoop
->wsFlags
& WHERE_MULTI_OR
){
5607 pIdx
= pLevel
->u
.pCovidx
;
5610 && !db
->mallocFailed
5612 if( pWInfo
->eOnePass
==ONEPASS_OFF
|| !HasRowid(pIdx
->pTable
) ){
5615 last
= pWInfo
->iEndWhere
;
5617 k
= pLevel
->addrBody
+ 1;
5619 if( db
->flags
& SQLITE_VdbeAddopTrace
){
5620 printf("TRANSLATE opcodes in range %d..%d\n", k
, last
-1);
5622 /* Proof that the "+1" on the k value above is safe */
5623 pOp
= sqlite3VdbeGetOp(v
, k
- 1);
5624 assert( pOp
->opcode
!=OP_Column
|| pOp
->p1
!=pLevel
->iTabCur
);
5625 assert( pOp
->opcode
!=OP_Rowid
|| pOp
->p1
!=pLevel
->iTabCur
);
5626 assert( pOp
->opcode
!=OP_IfNullRow
|| pOp
->p1
!=pLevel
->iTabCur
);
5628 pOp
= sqlite3VdbeGetOp(v
, k
);
5629 pLastOp
= pOp
+ (last
- k
);
5630 assert( pOp
<=pLastOp
);
5632 if( pOp
->p1
!=pLevel
->iTabCur
){
5634 }else if( pOp
->opcode
==OP_Column
5635 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
5636 || pOp
->opcode
==OP_Offset
5640 assert( pIdx
->pTable
==pTab
);
5641 if( !HasRowid(pTab
) ){
5642 Index
*pPk
= sqlite3PrimaryKeyIndex(pTab
);
5643 x
= pPk
->aiColumn
[x
];
5646 testcase( x
!=sqlite3StorageColumnToTable(pTab
,x
) );
5647 x
= sqlite3StorageColumnToTable(pTab
,x
);
5649 x
= sqlite3TableColumnToIndex(pIdx
, x
);
5652 pOp
->p1
= pLevel
->iIdxCur
;
5653 OpcodeRewriteTrace(db
, k
, pOp
);
5655 assert( (pLoop
->wsFlags
& WHERE_IDX_ONLY
)==0 || x
>=0
5656 || pWInfo
->eOnePass
);
5657 }else if( pOp
->opcode
==OP_Rowid
){
5658 pOp
->p1
= pLevel
->iIdxCur
;
5659 pOp
->opcode
= OP_IdxRowid
;
5660 OpcodeRewriteTrace(db
, k
, pOp
);
5661 }else if( pOp
->opcode
==OP_IfNullRow
){
5662 pOp
->p1
= pLevel
->iIdxCur
;
5663 OpcodeRewriteTrace(db
, k
, pOp
);
5668 }while( (++pOp
)<pLastOp
);
5670 if( db
->flags
& SQLITE_VdbeAddopTrace
) printf("TRANSLATE complete\n");
5677 if( pWInfo
->pExprMods
) whereUndoExprMods(pWInfo
);
5678 pParse
->nQueryLoop
= pWInfo
->savedNQueryLoop
;
5679 whereInfoFree(db
, pWInfo
);