update version
[sqlcipher.git] / src / where.c
blob5315520db49d0b722799ba26e1cb3c73cf341c66
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements. This module is responsible for
14 ** generating the code that loops through a table looking for applicable
15 ** rows. Indices are selected and used to speed the search when doing
16 ** so is applicable. Because this module is responsible for selecting
17 ** indices, you might also think of this module as the "query optimizer".
19 #include "sqliteInt.h"
20 #include "whereInt.h"
23 ** Extra information appended to the end of sqlite3_index_info but not
24 ** visible to the xBestIndex function, at least not directly. The
25 ** sqlite3_vtab_collation() interface knows how to reach it, however.
27 ** This object is not an API and can be changed from one release to the
28 ** next. As long as allocateIndexInfo() and sqlite3_vtab_collation()
29 ** agree on the structure, all will be well.
31 typedef struct HiddenIndexInfo HiddenIndexInfo;
32 struct HiddenIndexInfo {
33 WhereClause *pWC; /* The Where clause being analyzed */
34 Parse *pParse; /* The parsing context */
37 /* Forward declaration of methods */
38 static int whereLoopResize(sqlite3*, WhereLoop*, int);
41 ** Return the estimated number of output rows from a WHERE clause
43 LogEst sqlite3WhereOutputRowCount(WhereInfo *pWInfo){
44 return pWInfo->nRowOut;
48 ** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this
49 ** WHERE clause returns outputs for DISTINCT processing.
51 int sqlite3WhereIsDistinct(WhereInfo *pWInfo){
52 return pWInfo->eDistinct;
56 ** Return the number of ORDER BY terms that are satisfied by the
57 ** WHERE clause. A return of 0 means that the output must be
58 ** completely sorted. A return equal to the number of ORDER BY
59 ** terms means that no sorting is needed at all. A return that
60 ** is positive but less than the number of ORDER BY terms means that
61 ** block sorting is required.
63 int sqlite3WhereIsOrdered(WhereInfo *pWInfo){
64 return pWInfo->nOBSat;
68 ** In the ORDER BY LIMIT optimization, if the inner-most loop is known
69 ** to emit rows in increasing order, and if the last row emitted by the
70 ** inner-most loop did not fit within the sorter, then we can skip all
71 ** subsequent rows for the current iteration of the inner loop (because they
72 ** will not fit in the sorter either) and continue with the second inner
73 ** loop - the loop immediately outside the inner-most.
75 ** When a row does not fit in the sorter (because the sorter already
76 ** holds LIMIT+OFFSET rows that are smaller), then a jump is made to the
77 ** label returned by this function.
79 ** If the ORDER BY LIMIT optimization applies, the jump destination should
80 ** be the continuation for the second-inner-most loop. If the ORDER BY
81 ** LIMIT optimization does not apply, then the jump destination should
82 ** be the continuation for the inner-most loop.
84 ** It is always safe for this routine to return the continuation of the
85 ** inner-most loop, in the sense that a correct answer will result.
86 ** Returning the continuation the second inner loop is an optimization
87 ** that might make the code run a little faster, but should not change
88 ** the final answer.
90 int sqlite3WhereOrderByLimitOptLabel(WhereInfo *pWInfo){
91 WhereLevel *pInner;
92 if( !pWInfo->bOrderedInnerLoop ){
93 /* The ORDER BY LIMIT optimization does not apply. Jump to the
94 ** continuation of the inner-most loop. */
95 return pWInfo->iContinue;
97 pInner = &pWInfo->a[pWInfo->nLevel-1];
98 assert( pInner->addrNxt!=0 );
99 return pInner->addrNxt;
103 ** While generating code for the min/max optimization, after handling
104 ** the aggregate-step call to min() or max(), check to see if any
105 ** additional looping is required. If the output order is such that
106 ** we are certain that the correct answer has already been found, then
107 ** code an OP_Goto to by pass subsequent processing.
109 ** Any extra OP_Goto that is coded here is an optimization. The
110 ** correct answer should be obtained regardless. This OP_Goto just
111 ** makes the answer appear faster.
113 void sqlite3WhereMinMaxOptEarlyOut(Vdbe *v, WhereInfo *pWInfo){
114 WhereLevel *pInner;
115 int i;
116 if( !pWInfo->bOrderedInnerLoop ) return;
117 if( pWInfo->nOBSat==0 ) return;
118 for(i=pWInfo->nLevel-1; i>=0; i--){
119 pInner = &pWInfo->a[i];
120 if( (pInner->pWLoop->wsFlags & WHERE_COLUMN_IN)!=0 ){
121 sqlite3VdbeGoto(v, pInner->addrNxt);
122 return;
125 sqlite3VdbeGoto(v, pWInfo->iBreak);
129 ** Return the VDBE address or label to jump to in order to continue
130 ** immediately with the next row of a WHERE clause.
132 int sqlite3WhereContinueLabel(WhereInfo *pWInfo){
133 assert( pWInfo->iContinue!=0 );
134 return pWInfo->iContinue;
138 ** Return the VDBE address or label to jump to in order to break
139 ** out of a WHERE loop.
141 int sqlite3WhereBreakLabel(WhereInfo *pWInfo){
142 return pWInfo->iBreak;
146 ** Return ONEPASS_OFF (0) if an UPDATE or DELETE statement is unable to
147 ** operate directly on the rowids returned by a WHERE clause. Return
148 ** ONEPASS_SINGLE (1) if the statement can operation directly because only
149 ** a single row is to be changed. Return ONEPASS_MULTI (2) if the one-pass
150 ** optimization can be used on multiple
152 ** If the ONEPASS optimization is used (if this routine returns true)
153 ** then also write the indices of open cursors used by ONEPASS
154 ** into aiCur[0] and aiCur[1]. iaCur[0] gets the cursor of the data
155 ** table and iaCur[1] gets the cursor used by an auxiliary index.
156 ** Either value may be -1, indicating that cursor is not used.
157 ** Any cursors returned will have been opened for writing.
159 ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is
160 ** unable to use the ONEPASS optimization.
162 int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){
163 memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2);
164 #ifdef WHERETRACE_ENABLED
165 if( sqlite3WhereTrace && pWInfo->eOnePass!=ONEPASS_OFF ){
166 sqlite3DebugPrintf("%s cursors: %d %d\n",
167 pWInfo->eOnePass==ONEPASS_SINGLE ? "ONEPASS_SINGLE" : "ONEPASS_MULTI",
168 aiCur[0], aiCur[1]);
170 #endif
171 return pWInfo->eOnePass;
175 ** Return TRUE if the WHERE loop uses the OP_DeferredSeek opcode to move
176 ** the data cursor to the row selected by the index cursor.
178 int sqlite3WhereUsesDeferredSeek(WhereInfo *pWInfo){
179 return pWInfo->bDeferredSeek;
183 ** Move the content of pSrc into pDest
185 static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){
186 pDest->n = pSrc->n;
187 memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0]));
191 ** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet.
193 ** The new entry might overwrite an existing entry, or it might be
194 ** appended, or it might be discarded. Do whatever is the right thing
195 ** so that pSet keeps the N_OR_COST best entries seen so far.
197 static int whereOrInsert(
198 WhereOrSet *pSet, /* The WhereOrSet to be updated */
199 Bitmask prereq, /* Prerequisites of the new entry */
200 LogEst rRun, /* Run-cost of the new entry */
201 LogEst nOut /* Number of outputs for the new entry */
203 u16 i;
204 WhereOrCost *p;
205 for(i=pSet->n, p=pSet->a; i>0; i--, p++){
206 if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){
207 goto whereOrInsert_done;
209 if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){
210 return 0;
213 if( pSet->n<N_OR_COST ){
214 p = &pSet->a[pSet->n++];
215 p->nOut = nOut;
216 }else{
217 p = pSet->a;
218 for(i=1; i<pSet->n; i++){
219 if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i;
221 if( p->rRun<=rRun ) return 0;
223 whereOrInsert_done:
224 p->prereq = prereq;
225 p->rRun = rRun;
226 if( p->nOut>nOut ) p->nOut = nOut;
227 return 1;
231 ** Return the bitmask for the given cursor number. Return 0 if
232 ** iCursor is not in the set.
234 Bitmask sqlite3WhereGetMask(WhereMaskSet *pMaskSet, int iCursor){
235 int i;
236 assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 );
237 for(i=0; i<pMaskSet->n; i++){
238 if( pMaskSet->ix[i]==iCursor ){
239 return MASKBIT(i);
242 return 0;
246 ** Create a new mask for cursor iCursor.
248 ** There is one cursor per table in the FROM clause. The number of
249 ** tables in the FROM clause is limited by a test early in the
250 ** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[]
251 ** array will never overflow.
253 static void createMask(WhereMaskSet *pMaskSet, int iCursor){
254 assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
255 pMaskSet->ix[pMaskSet->n++] = iCursor;
259 ** If the right-hand branch of the expression is a TK_COLUMN, then return
260 ** a pointer to the right-hand branch. Otherwise, return NULL.
262 static Expr *whereRightSubexprIsColumn(Expr *p){
263 p = sqlite3ExprSkipCollateAndLikely(p->pRight);
264 if( ALWAYS(p!=0) && p->op==TK_COLUMN && !ExprHasProperty(p, EP_FixedCol) ){
265 return p;
267 return 0;
271 ** Advance to the next WhereTerm that matches according to the criteria
272 ** established when the pScan object was initialized by whereScanInit().
273 ** Return NULL if there are no more matching WhereTerms.
275 static WhereTerm *whereScanNext(WhereScan *pScan){
276 int iCur; /* The cursor on the LHS of the term */
277 i16 iColumn; /* The column on the LHS of the term. -1 for IPK */
278 Expr *pX; /* An expression being tested */
279 WhereClause *pWC; /* Shorthand for pScan->pWC */
280 WhereTerm *pTerm; /* The term being tested */
281 int k = pScan->k; /* Where to start scanning */
283 assert( pScan->iEquiv<=pScan->nEquiv );
284 pWC = pScan->pWC;
285 while(1){
286 iColumn = pScan->aiColumn[pScan->iEquiv-1];
287 iCur = pScan->aiCur[pScan->iEquiv-1];
288 assert( pWC!=0 );
290 for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){
291 if( pTerm->leftCursor==iCur
292 && pTerm->u.x.leftColumn==iColumn
293 && (iColumn!=XN_EXPR
294 || sqlite3ExprCompareSkip(pTerm->pExpr->pLeft,
295 pScan->pIdxExpr,iCur)==0)
296 && (pScan->iEquiv<=1 || !ExprHasProperty(pTerm->pExpr, EP_FromJoin))
298 if( (pTerm->eOperator & WO_EQUIV)!=0
299 && pScan->nEquiv<ArraySize(pScan->aiCur)
300 && (pX = whereRightSubexprIsColumn(pTerm->pExpr))!=0
302 int j;
303 for(j=0; j<pScan->nEquiv; j++){
304 if( pScan->aiCur[j]==pX->iTable
305 && pScan->aiColumn[j]==pX->iColumn ){
306 break;
309 if( j==pScan->nEquiv ){
310 pScan->aiCur[j] = pX->iTable;
311 pScan->aiColumn[j] = pX->iColumn;
312 pScan->nEquiv++;
315 if( (pTerm->eOperator & pScan->opMask)!=0 ){
316 /* Verify the affinity and collating sequence match */
317 if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){
318 CollSeq *pColl;
319 Parse *pParse = pWC->pWInfo->pParse;
320 pX = pTerm->pExpr;
321 if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){
322 continue;
324 assert(pX->pLeft);
325 pColl = sqlite3ExprCompareCollSeq(pParse, pX);
326 if( pColl==0 ) pColl = pParse->db->pDfltColl;
327 if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){
328 continue;
331 if( (pTerm->eOperator & (WO_EQ|WO_IS))!=0
332 && (pX = pTerm->pExpr->pRight)->op==TK_COLUMN
333 && pX->iTable==pScan->aiCur[0]
334 && pX->iColumn==pScan->aiColumn[0]
336 testcase( pTerm->eOperator & WO_IS );
337 continue;
339 pScan->pWC = pWC;
340 pScan->k = k+1;
341 #ifdef WHERETRACE_ENABLED
342 if( sqlite3WhereTrace & 0x20000 ){
343 int ii;
344 sqlite3DebugPrintf("SCAN-TERM %p: nEquiv=%d",
345 pTerm, pScan->nEquiv);
346 for(ii=0; ii<pScan->nEquiv; ii++){
347 sqlite3DebugPrintf(" {%d:%d}",
348 pScan->aiCur[ii], pScan->aiColumn[ii]);
350 sqlite3DebugPrintf("\n");
352 #endif
353 return pTerm;
357 pWC = pWC->pOuter;
358 k = 0;
359 }while( pWC!=0 );
360 if( pScan->iEquiv>=pScan->nEquiv ) break;
361 pWC = pScan->pOrigWC;
362 k = 0;
363 pScan->iEquiv++;
365 return 0;
369 ** This is whereScanInit() for the case of an index on an expression.
370 ** It is factored out into a separate tail-recursion subroutine so that
371 ** the normal whereScanInit() routine, which is a high-runner, does not
372 ** need to push registers onto the stack as part of its prologue.
374 static SQLITE_NOINLINE WhereTerm *whereScanInitIndexExpr(WhereScan *pScan){
375 pScan->idxaff = sqlite3ExprAffinity(pScan->pIdxExpr);
376 return whereScanNext(pScan);
380 ** Initialize a WHERE clause scanner object. Return a pointer to the
381 ** first match. Return NULL if there are no matches.
383 ** The scanner will be searching the WHERE clause pWC. It will look
384 ** for terms of the form "X <op> <expr>" where X is column iColumn of table
385 ** iCur. Or if pIdx!=0 then X is column iColumn of index pIdx. pIdx
386 ** must be one of the indexes of table iCur.
388 ** The <op> must be one of the operators described by opMask.
390 ** If the search is for X and the WHERE clause contains terms of the
391 ** form X=Y then this routine might also return terms of the form
392 ** "Y <op> <expr>". The number of levels of transitivity is limited,
393 ** but is enough to handle most commonly occurring SQL statements.
395 ** If X is not the INTEGER PRIMARY KEY then X must be compatible with
396 ** index pIdx.
398 static WhereTerm *whereScanInit(
399 WhereScan *pScan, /* The WhereScan object being initialized */
400 WhereClause *pWC, /* The WHERE clause to be scanned */
401 int iCur, /* Cursor to scan for */
402 int iColumn, /* Column to scan for */
403 u32 opMask, /* Operator(s) to scan for */
404 Index *pIdx /* Must be compatible with this index */
406 pScan->pOrigWC = pWC;
407 pScan->pWC = pWC;
408 pScan->pIdxExpr = 0;
409 pScan->idxaff = 0;
410 pScan->zCollName = 0;
411 pScan->opMask = opMask;
412 pScan->k = 0;
413 pScan->aiCur[0] = iCur;
414 pScan->nEquiv = 1;
415 pScan->iEquiv = 1;
416 if( pIdx ){
417 int j = iColumn;
418 iColumn = pIdx->aiColumn[j];
419 if( iColumn==XN_EXPR ){
420 pScan->pIdxExpr = pIdx->aColExpr->a[j].pExpr;
421 pScan->zCollName = pIdx->azColl[j];
422 pScan->aiColumn[0] = XN_EXPR;
423 return whereScanInitIndexExpr(pScan);
424 }else if( iColumn==pIdx->pTable->iPKey ){
425 iColumn = XN_ROWID;
426 }else if( iColumn>=0 ){
427 pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity;
428 pScan->zCollName = pIdx->azColl[j];
430 }else if( iColumn==XN_EXPR ){
431 return 0;
433 pScan->aiColumn[0] = iColumn;
434 return whereScanNext(pScan);
438 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
439 ** where X is a reference to the iColumn of table iCur or of index pIdx
440 ** if pIdx!=0 and <op> is one of the WO_xx operator codes specified by
441 ** the op parameter. Return a pointer to the term. Return 0 if not found.
443 ** If pIdx!=0 then it must be one of the indexes of table iCur.
444 ** Search for terms matching the iColumn-th column of pIdx
445 ** rather than the iColumn-th column of table iCur.
447 ** The term returned might by Y=<expr> if there is another constraint in
448 ** the WHERE clause that specifies that X=Y. Any such constraints will be
449 ** identified by the WO_EQUIV bit in the pTerm->eOperator field. The
450 ** aiCur[]/iaColumn[] arrays hold X and all its equivalents. There are 11
451 ** slots in aiCur[]/aiColumn[] so that means we can look for X plus up to 10
452 ** other equivalent values. Hence a search for X will return <expr> if X=A1
453 ** and A1=A2 and A2=A3 and ... and A9=A10 and A10=<expr>.
455 ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>"
456 ** then try for the one with no dependencies on <expr> - in other words where
457 ** <expr> is a constant expression of some kind. Only return entries of
458 ** the form "X <op> Y" where Y is a column in another table if no terms of
459 ** the form "X <op> <const-expr>" exist. If no terms with a constant RHS
460 ** exist, try to return a term that does not use WO_EQUIV.
462 WhereTerm *sqlite3WhereFindTerm(
463 WhereClause *pWC, /* The WHERE clause to be searched */
464 int iCur, /* Cursor number of LHS */
465 int iColumn, /* Column number of LHS */
466 Bitmask notReady, /* RHS must not overlap with this mask */
467 u32 op, /* Mask of WO_xx values describing operator */
468 Index *pIdx /* Must be compatible with this index, if not NULL */
470 WhereTerm *pResult = 0;
471 WhereTerm *p;
472 WhereScan scan;
474 p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx);
475 op &= WO_EQ|WO_IS;
476 while( p ){
477 if( (p->prereqRight & notReady)==0 ){
478 if( p->prereqRight==0 && (p->eOperator&op)!=0 ){
479 testcase( p->eOperator & WO_IS );
480 return p;
482 if( pResult==0 ) pResult = p;
484 p = whereScanNext(&scan);
486 return pResult;
490 ** This function searches pList for an entry that matches the iCol-th column
491 ** of index pIdx.
493 ** If such an expression is found, its index in pList->a[] is returned. If
494 ** no expression is found, -1 is returned.
496 static int findIndexCol(
497 Parse *pParse, /* Parse context */
498 ExprList *pList, /* Expression list to search */
499 int iBase, /* Cursor for table associated with pIdx */
500 Index *pIdx, /* Index to match column of */
501 int iCol /* Column of index to match */
503 int i;
504 const char *zColl = pIdx->azColl[iCol];
506 for(i=0; i<pList->nExpr; i++){
507 Expr *p = sqlite3ExprSkipCollateAndLikely(pList->a[i].pExpr);
508 if( ALWAYS(p!=0)
509 && (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN)
510 && p->iColumn==pIdx->aiColumn[iCol]
511 && p->iTable==iBase
513 CollSeq *pColl = sqlite3ExprNNCollSeq(pParse, pList->a[i].pExpr);
514 if( 0==sqlite3StrICmp(pColl->zName, zColl) ){
515 return i;
520 return -1;
524 ** Return TRUE if the iCol-th column of index pIdx is NOT NULL
526 static int indexColumnNotNull(Index *pIdx, int iCol){
527 int j;
528 assert( pIdx!=0 );
529 assert( iCol>=0 && iCol<pIdx->nColumn );
530 j = pIdx->aiColumn[iCol];
531 if( j>=0 ){
532 return pIdx->pTable->aCol[j].notNull;
533 }else if( j==(-1) ){
534 return 1;
535 }else{
536 assert( j==(-2) );
537 return 0; /* Assume an indexed expression can always yield a NULL */
543 ** Return true if the DISTINCT expression-list passed as the third argument
544 ** is redundant.
546 ** A DISTINCT list is redundant if any subset of the columns in the
547 ** DISTINCT list are collectively unique and individually non-null.
549 static int isDistinctRedundant(
550 Parse *pParse, /* Parsing context */
551 SrcList *pTabList, /* The FROM clause */
552 WhereClause *pWC, /* The WHERE clause */
553 ExprList *pDistinct /* The result set that needs to be DISTINCT */
555 Table *pTab;
556 Index *pIdx;
557 int i;
558 int iBase;
560 /* If there is more than one table or sub-select in the FROM clause of
561 ** this query, then it will not be possible to show that the DISTINCT
562 ** clause is redundant. */
563 if( pTabList->nSrc!=1 ) return 0;
564 iBase = pTabList->a[0].iCursor;
565 pTab = pTabList->a[0].pTab;
567 /* If any of the expressions is an IPK column on table iBase, then return
568 ** true. Note: The (p->iTable==iBase) part of this test may be false if the
569 ** current SELECT is a correlated sub-query.
571 for(i=0; i<pDistinct->nExpr; i++){
572 Expr *p = sqlite3ExprSkipCollateAndLikely(pDistinct->a[i].pExpr);
573 if( NEVER(p==0) ) continue;
574 if( p->op!=TK_COLUMN && p->op!=TK_AGG_COLUMN ) continue;
575 if( p->iTable==iBase && p->iColumn<0 ) return 1;
578 /* Loop through all indices on the table, checking each to see if it makes
579 ** the DISTINCT qualifier redundant. It does so if:
581 ** 1. The index is itself UNIQUE, and
583 ** 2. All of the columns in the index are either part of the pDistinct
584 ** list, or else the WHERE clause contains a term of the form "col=X",
585 ** where X is a constant value. The collation sequences of the
586 ** comparison and select-list expressions must match those of the index.
588 ** 3. All of those index columns for which the WHERE clause does not
589 ** contain a "col=X" term are subject to a NOT NULL constraint.
591 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
592 if( !IsUniqueIndex(pIdx) ) continue;
593 if( pIdx->pPartIdxWhere ) continue;
594 for(i=0; i<pIdx->nKeyCol; i++){
595 if( 0==sqlite3WhereFindTerm(pWC, iBase, i, ~(Bitmask)0, WO_EQ, pIdx) ){
596 if( findIndexCol(pParse, pDistinct, iBase, pIdx, i)<0 ) break;
597 if( indexColumnNotNull(pIdx, i)==0 ) break;
600 if( i==pIdx->nKeyCol ){
601 /* This index implies that the DISTINCT qualifier is redundant. */
602 return 1;
606 return 0;
611 ** Estimate the logarithm of the input value to base 2.
613 static LogEst estLog(LogEst N){
614 return N<=10 ? 0 : sqlite3LogEst(N) - 33;
618 ** Convert OP_Column opcodes to OP_Copy in previously generated code.
620 ** This routine runs over generated VDBE code and translates OP_Column
621 ** opcodes into OP_Copy when the table is being accessed via co-routine
622 ** instead of via table lookup.
624 ** If the iAutoidxCur is not zero, then any OP_Rowid instructions on
625 ** cursor iTabCur are transformed into OP_Sequence opcode for the
626 ** iAutoidxCur cursor, in order to generate unique rowids for the
627 ** automatic index being generated.
629 static void translateColumnToCopy(
630 Parse *pParse, /* Parsing context */
631 int iStart, /* Translate from this opcode to the end */
632 int iTabCur, /* OP_Column/OP_Rowid references to this table */
633 int iRegister, /* The first column is in this register */
634 int iAutoidxCur /* If non-zero, cursor of autoindex being generated */
636 Vdbe *v = pParse->pVdbe;
637 VdbeOp *pOp = sqlite3VdbeGetOp(v, iStart);
638 int iEnd = sqlite3VdbeCurrentAddr(v);
639 if( pParse->db->mallocFailed ) return;
640 for(; iStart<iEnd; iStart++, pOp++){
641 if( pOp->p1!=iTabCur ) continue;
642 if( pOp->opcode==OP_Column ){
643 pOp->opcode = OP_Copy;
644 pOp->p1 = pOp->p2 + iRegister;
645 pOp->p2 = pOp->p3;
646 pOp->p3 = 0;
647 }else if( pOp->opcode==OP_Rowid ){
648 pOp->opcode = OP_Sequence;
649 pOp->p1 = iAutoidxCur;
650 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
651 if( iAutoidxCur==0 ){
652 pOp->opcode = OP_Null;
653 pOp->p3 = 0;
655 #endif
661 ** Two routines for printing the content of an sqlite3_index_info
662 ** structure. Used for testing and debugging only. If neither
663 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
664 ** are no-ops.
666 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED)
667 static void whereTraceIndexInfoInputs(sqlite3_index_info *p){
668 int i;
669 if( !sqlite3WhereTrace ) return;
670 for(i=0; i<p->nConstraint; i++){
671 sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n",
673 p->aConstraint[i].iColumn,
674 p->aConstraint[i].iTermOffset,
675 p->aConstraint[i].op,
676 p->aConstraint[i].usable);
678 for(i=0; i<p->nOrderBy; i++){
679 sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n",
681 p->aOrderBy[i].iColumn,
682 p->aOrderBy[i].desc);
685 static void whereTraceIndexInfoOutputs(sqlite3_index_info *p){
686 int i;
687 if( !sqlite3WhereTrace ) return;
688 for(i=0; i<p->nConstraint; i++){
689 sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n",
691 p->aConstraintUsage[i].argvIndex,
692 p->aConstraintUsage[i].omit);
694 sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum);
695 sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr);
696 sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed);
697 sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost);
698 sqlite3DebugPrintf(" estimatedRows=%lld\n", p->estimatedRows);
700 #else
701 #define whereTraceIndexInfoInputs(A)
702 #define whereTraceIndexInfoOutputs(A)
703 #endif
705 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
707 ** Return TRUE if the WHERE clause term pTerm is of a form where it
708 ** could be used with an index to access pSrc, assuming an appropriate
709 ** index existed.
711 static int termCanDriveIndex(
712 WhereTerm *pTerm, /* WHERE clause term to check */
713 SrcItem *pSrc, /* Table we are trying to access */
714 Bitmask notReady /* Tables in outer loops of the join */
716 char aff;
717 if( pTerm->leftCursor!=pSrc->iCursor ) return 0;
718 if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) return 0;
719 if( (pSrc->fg.jointype & JT_LEFT)
720 && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
721 && (pTerm->eOperator & WO_IS)
723 /* Cannot use an IS term from the WHERE clause as an index driver for
724 ** the RHS of a LEFT JOIN. Such a term can only be used if it is from
725 ** the ON clause. */
726 return 0;
728 if( (pTerm->prereqRight & notReady)!=0 ) return 0;
729 if( pTerm->u.x.leftColumn<0 ) return 0;
730 aff = pSrc->pTab->aCol[pTerm->u.x.leftColumn].affinity;
731 if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0;
732 testcase( pTerm->pExpr->op==TK_IS );
733 return 1;
735 #endif
738 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
740 ** Generate code to construct the Index object for an automatic index
741 ** and to set up the WhereLevel object pLevel so that the code generator
742 ** makes use of the automatic index.
744 static void constructAutomaticIndex(
745 Parse *pParse, /* The parsing context */
746 WhereClause *pWC, /* The WHERE clause */
747 SrcItem *pSrc, /* The FROM clause term to get the next index */
748 Bitmask notReady, /* Mask of cursors that are not available */
749 WhereLevel *pLevel /* Write new index here */
751 int nKeyCol; /* Number of columns in the constructed index */
752 WhereTerm *pTerm; /* A single term of the WHERE clause */
753 WhereTerm *pWCEnd; /* End of pWC->a[] */
754 Index *pIdx; /* Object describing the transient index */
755 Vdbe *v; /* Prepared statement under construction */
756 int addrInit; /* Address of the initialization bypass jump */
757 Table *pTable; /* The table being indexed */
758 int addrTop; /* Top of the index fill loop */
759 int regRecord; /* Register holding an index record */
760 int n; /* Column counter */
761 int i; /* Loop counter */
762 int mxBitCol; /* Maximum column in pSrc->colUsed */
763 CollSeq *pColl; /* Collating sequence to on a column */
764 WhereLoop *pLoop; /* The Loop object */
765 char *zNotUsed; /* Extra space on the end of pIdx */
766 Bitmask idxCols; /* Bitmap of columns used for indexing */
767 Bitmask extraCols; /* Bitmap of additional columns */
768 u8 sentWarning = 0; /* True if a warnning has been issued */
769 Expr *pPartial = 0; /* Partial Index Expression */
770 int iContinue = 0; /* Jump here to skip excluded rows */
771 SrcItem *pTabItem; /* FROM clause term being indexed */
772 int addrCounter = 0; /* Address where integer counter is initialized */
773 int regBase; /* Array of registers where record is assembled */
775 /* Generate code to skip over the creation and initialization of the
776 ** transient index on 2nd and subsequent iterations of the loop. */
777 v = pParse->pVdbe;
778 assert( v!=0 );
779 addrInit = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
781 /* Count the number of columns that will be added to the index
782 ** and used to match WHERE clause constraints */
783 nKeyCol = 0;
784 pTable = pSrc->pTab;
785 pWCEnd = &pWC->a[pWC->nTerm];
786 pLoop = pLevel->pWLoop;
787 idxCols = 0;
788 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
789 Expr *pExpr = pTerm->pExpr;
790 assert( !ExprHasProperty(pExpr, EP_FromJoin) /* prereq always non-zero */
791 || pExpr->iRightJoinTable!=pSrc->iCursor /* for the right-hand */
792 || pLoop->prereq!=0 ); /* table of a LEFT JOIN */
793 if( pLoop->prereq==0
794 && (pTerm->wtFlags & TERM_VIRTUAL)==0
795 && !ExprHasProperty(pExpr, EP_FromJoin)
796 && sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor) ){
797 pPartial = sqlite3ExprAnd(pParse, pPartial,
798 sqlite3ExprDup(pParse->db, pExpr, 0));
800 if( termCanDriveIndex(pTerm, pSrc, notReady) ){
801 int iCol = pTerm->u.x.leftColumn;
802 Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
803 testcase( iCol==BMS );
804 testcase( iCol==BMS-1 );
805 if( !sentWarning ){
806 sqlite3_log(SQLITE_WARNING_AUTOINDEX,
807 "automatic index on %s(%s)", pTable->zName,
808 pTable->aCol[iCol].zName);
809 sentWarning = 1;
811 if( (idxCols & cMask)==0 ){
812 if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ){
813 goto end_auto_index_create;
815 pLoop->aLTerm[nKeyCol++] = pTerm;
816 idxCols |= cMask;
820 assert( nKeyCol>0 || pParse->db->mallocFailed );
821 pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol;
822 pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED
823 | WHERE_AUTO_INDEX;
825 /* Count the number of additional columns needed to create a
826 ** covering index. A "covering index" is an index that contains all
827 ** columns that are needed by the query. With a covering index, the
828 ** original table never needs to be accessed. Automatic indices must
829 ** be a covering index because the index will not be updated if the
830 ** original table changes and the index and table cannot both be used
831 ** if they go out of sync.
833 extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1));
834 mxBitCol = MIN(BMS-1,pTable->nCol);
835 testcase( pTable->nCol==BMS-1 );
836 testcase( pTable->nCol==BMS-2 );
837 for(i=0; i<mxBitCol; i++){
838 if( extraCols & MASKBIT(i) ) nKeyCol++;
840 if( pSrc->colUsed & MASKBIT(BMS-1) ){
841 nKeyCol += pTable->nCol - BMS + 1;
844 /* Construct the Index object to describe this index */
845 pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed);
846 if( pIdx==0 ) goto end_auto_index_create;
847 pLoop->u.btree.pIndex = pIdx;
848 pIdx->zName = "auto-index";
849 pIdx->pTable = pTable;
850 n = 0;
851 idxCols = 0;
852 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
853 if( termCanDriveIndex(pTerm, pSrc, notReady) ){
854 int iCol = pTerm->u.x.leftColumn;
855 Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
856 testcase( iCol==BMS-1 );
857 testcase( iCol==BMS );
858 if( (idxCols & cMask)==0 ){
859 Expr *pX = pTerm->pExpr;
860 idxCols |= cMask;
861 pIdx->aiColumn[n] = pTerm->u.x.leftColumn;
862 pColl = sqlite3ExprCompareCollSeq(pParse, pX);
863 assert( pColl!=0 || pParse->nErr>0 ); /* TH3 collate01.800 */
864 pIdx->azColl[n] = pColl ? pColl->zName : sqlite3StrBINARY;
865 n++;
869 assert( (u32)n==pLoop->u.btree.nEq );
871 /* Add additional columns needed to make the automatic index into
872 ** a covering index */
873 for(i=0; i<mxBitCol; i++){
874 if( extraCols & MASKBIT(i) ){
875 pIdx->aiColumn[n] = i;
876 pIdx->azColl[n] = sqlite3StrBINARY;
877 n++;
880 if( pSrc->colUsed & MASKBIT(BMS-1) ){
881 for(i=BMS-1; i<pTable->nCol; i++){
882 pIdx->aiColumn[n] = i;
883 pIdx->azColl[n] = sqlite3StrBINARY;
884 n++;
887 assert( n==nKeyCol );
888 pIdx->aiColumn[n] = XN_ROWID;
889 pIdx->azColl[n] = sqlite3StrBINARY;
891 /* Create the automatic index */
892 assert( pLevel->iIdxCur>=0 );
893 pLevel->iIdxCur = pParse->nTab++;
894 sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1);
895 sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
896 VdbeComment((v, "for %s", pTable->zName));
898 /* Fill the automatic index with content */
899 pTabItem = &pWC->pWInfo->pTabList->a[pLevel->iFrom];
900 if( pTabItem->fg.viaCoroutine ){
901 int regYield = pTabItem->regReturn;
902 addrCounter = sqlite3VdbeAddOp2(v, OP_Integer, 0, 0);
903 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
904 addrTop = sqlite3VdbeAddOp1(v, OP_Yield, regYield);
905 VdbeCoverage(v);
906 VdbeComment((v, "next row of %s", pTabItem->pTab->zName));
907 }else{
908 addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v);
910 if( pPartial ){
911 iContinue = sqlite3VdbeMakeLabel(pParse);
912 sqlite3ExprIfFalse(pParse, pPartial, iContinue, SQLITE_JUMPIFNULL);
913 pLoop->wsFlags |= WHERE_PARTIALIDX;
915 regRecord = sqlite3GetTempReg(pParse);
916 regBase = sqlite3GenerateIndexKey(
917 pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0
919 sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord);
920 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
921 if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue);
922 if( pTabItem->fg.viaCoroutine ){
923 sqlite3VdbeChangeP2(v, addrCounter, regBase+n);
924 testcase( pParse->db->mallocFailed );
925 assert( pLevel->iIdxCur>0 );
926 translateColumnToCopy(pParse, addrTop, pLevel->iTabCur,
927 pTabItem->regResult, pLevel->iIdxCur);
928 sqlite3VdbeGoto(v, addrTop);
929 pTabItem->fg.viaCoroutine = 0;
930 }else{
931 sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v);
932 sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX);
934 sqlite3VdbeJumpHere(v, addrTop);
935 sqlite3ReleaseTempReg(pParse, regRecord);
937 /* Jump here when skipping the initialization */
938 sqlite3VdbeJumpHere(v, addrInit);
940 end_auto_index_create:
941 sqlite3ExprDelete(pParse->db, pPartial);
943 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
945 #ifndef SQLITE_OMIT_VIRTUALTABLE
947 ** Allocate and populate an sqlite3_index_info structure. It is the
948 ** responsibility of the caller to eventually release the structure
949 ** by passing the pointer returned by this function to sqlite3_free().
951 static sqlite3_index_info *allocateIndexInfo(
952 Parse *pParse, /* The parsing context */
953 WhereClause *pWC, /* The WHERE clause being analyzed */
954 Bitmask mUnusable, /* Ignore terms with these prereqs */
955 SrcItem *pSrc, /* The FROM clause term that is the vtab */
956 ExprList *pOrderBy, /* The ORDER BY clause */
957 u16 *pmNoOmit /* Mask of terms not to omit */
959 int i, j;
960 int nTerm;
961 struct sqlite3_index_constraint *pIdxCons;
962 struct sqlite3_index_orderby *pIdxOrderBy;
963 struct sqlite3_index_constraint_usage *pUsage;
964 struct HiddenIndexInfo *pHidden;
965 WhereTerm *pTerm;
966 int nOrderBy;
967 sqlite3_index_info *pIdxInfo;
968 u16 mNoOmit = 0;
970 /* Count the number of possible WHERE clause constraints referring
971 ** to this virtual table */
972 for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
973 if( pTerm->leftCursor != pSrc->iCursor ) continue;
974 if( pTerm->prereqRight & mUnusable ) continue;
975 assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
976 testcase( pTerm->eOperator & WO_IN );
977 testcase( pTerm->eOperator & WO_ISNULL );
978 testcase( pTerm->eOperator & WO_IS );
979 testcase( pTerm->eOperator & WO_ALL );
980 if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue;
981 if( pTerm->wtFlags & TERM_VNULL ) continue;
982 assert( pTerm->u.x.leftColumn>=(-1) );
983 nTerm++;
986 /* If the ORDER BY clause contains only columns in the current
987 ** virtual table then allocate space for the aOrderBy part of
988 ** the sqlite3_index_info structure.
990 nOrderBy = 0;
991 if( pOrderBy ){
992 int n = pOrderBy->nExpr;
993 for(i=0; i<n; i++){
994 Expr *pExpr = pOrderBy->a[i].pExpr;
995 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break;
996 if( pOrderBy->a[i].sortFlags & KEYINFO_ORDER_BIGNULL ) break;
998 if( i==n){
999 nOrderBy = n;
1003 /* Allocate the sqlite3_index_info structure
1005 pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
1006 + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
1007 + sizeof(*pIdxOrderBy)*nOrderBy + sizeof(*pHidden) );
1008 if( pIdxInfo==0 ){
1009 sqlite3ErrorMsg(pParse, "out of memory");
1010 return 0;
1012 pHidden = (struct HiddenIndexInfo*)&pIdxInfo[1];
1013 pIdxCons = (struct sqlite3_index_constraint*)&pHidden[1];
1014 pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm];
1015 pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
1016 pIdxInfo->nOrderBy = nOrderBy;
1017 pIdxInfo->aConstraint = pIdxCons;
1018 pIdxInfo->aOrderBy = pIdxOrderBy;
1019 pIdxInfo->aConstraintUsage = pUsage;
1020 pHidden->pWC = pWC;
1021 pHidden->pParse = pParse;
1022 for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1023 u16 op;
1024 if( pTerm->leftCursor != pSrc->iCursor ) continue;
1025 if( pTerm->prereqRight & mUnusable ) continue;
1026 assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
1027 testcase( pTerm->eOperator & WO_IN );
1028 testcase( pTerm->eOperator & WO_IS );
1029 testcase( pTerm->eOperator & WO_ISNULL );
1030 testcase( pTerm->eOperator & WO_ALL );
1031 if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue;
1032 if( pTerm->wtFlags & TERM_VNULL ) continue;
1034 /* tag-20191211-002: WHERE-clause constraints are not useful to the
1035 ** right-hand table of a LEFT JOIN. See tag-20191211-001 for the
1036 ** equivalent restriction for ordinary tables. */
1037 if( (pSrc->fg.jointype & JT_LEFT)!=0
1038 && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
1040 continue;
1042 assert( pTerm->u.x.leftColumn>=(-1) );
1043 pIdxCons[j].iColumn = pTerm->u.x.leftColumn;
1044 pIdxCons[j].iTermOffset = i;
1045 op = pTerm->eOperator & WO_ALL;
1046 if( op==WO_IN ) op = WO_EQ;
1047 if( op==WO_AUX ){
1048 pIdxCons[j].op = pTerm->eMatchOp;
1049 }else if( op & (WO_ISNULL|WO_IS) ){
1050 if( op==WO_ISNULL ){
1051 pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_ISNULL;
1052 }else{
1053 pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_IS;
1055 }else{
1056 pIdxCons[j].op = (u8)op;
1057 /* The direct assignment in the previous line is possible only because
1058 ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The
1059 ** following asserts verify this fact. */
1060 assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
1061 assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
1062 assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
1063 assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
1064 assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
1065 assert( pTerm->eOperator&(WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_AUX) );
1067 if( op & (WO_LT|WO_LE|WO_GT|WO_GE)
1068 && sqlite3ExprIsVector(pTerm->pExpr->pRight)
1070 testcase( j!=i );
1071 if( j<16 ) mNoOmit |= (1 << j);
1072 if( op==WO_LT ) pIdxCons[j].op = WO_LE;
1073 if( op==WO_GT ) pIdxCons[j].op = WO_GE;
1077 j++;
1079 pIdxInfo->nConstraint = j;
1080 for(i=0; i<nOrderBy; i++){
1081 Expr *pExpr = pOrderBy->a[i].pExpr;
1082 pIdxOrderBy[i].iColumn = pExpr->iColumn;
1083 pIdxOrderBy[i].desc = pOrderBy->a[i].sortFlags & KEYINFO_ORDER_DESC;
1086 *pmNoOmit = mNoOmit;
1087 return pIdxInfo;
1091 ** The table object reference passed as the second argument to this function
1092 ** must represent a virtual table. This function invokes the xBestIndex()
1093 ** method of the virtual table with the sqlite3_index_info object that
1094 ** comes in as the 3rd argument to this function.
1096 ** If an error occurs, pParse is populated with an error message and an
1097 ** appropriate error code is returned. A return of SQLITE_CONSTRAINT from
1098 ** xBestIndex is not considered an error. SQLITE_CONSTRAINT indicates that
1099 ** the current configuration of "unusable" flags in sqlite3_index_info can
1100 ** not result in a valid plan.
1102 ** Whether or not an error is returned, it is the responsibility of the
1103 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates
1104 ** that this is required.
1106 static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){
1107 sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab;
1108 int rc;
1110 whereTraceIndexInfoInputs(p);
1111 rc = pVtab->pModule->xBestIndex(pVtab, p);
1112 whereTraceIndexInfoOutputs(p);
1114 if( rc!=SQLITE_OK && rc!=SQLITE_CONSTRAINT ){
1115 if( rc==SQLITE_NOMEM ){
1116 sqlite3OomFault(pParse->db);
1117 }else if( !pVtab->zErrMsg ){
1118 sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
1119 }else{
1120 sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg);
1123 sqlite3_free(pVtab->zErrMsg);
1124 pVtab->zErrMsg = 0;
1125 return rc;
1127 #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */
1129 #ifdef SQLITE_ENABLE_STAT4
1131 ** Estimate the location of a particular key among all keys in an
1132 ** index. Store the results in aStat as follows:
1134 ** aStat[0] Est. number of rows less than pRec
1135 ** aStat[1] Est. number of rows equal to pRec
1137 ** Return the index of the sample that is the smallest sample that
1138 ** is greater than or equal to pRec. Note that this index is not an index
1139 ** into the aSample[] array - it is an index into a virtual set of samples
1140 ** based on the contents of aSample[] and the number of fields in record
1141 ** pRec.
1143 static int whereKeyStats(
1144 Parse *pParse, /* Database connection */
1145 Index *pIdx, /* Index to consider domain of */
1146 UnpackedRecord *pRec, /* Vector of values to consider */
1147 int roundUp, /* Round up if true. Round down if false */
1148 tRowcnt *aStat /* OUT: stats written here */
1150 IndexSample *aSample = pIdx->aSample;
1151 int iCol; /* Index of required stats in anEq[] etc. */
1152 int i; /* Index of first sample >= pRec */
1153 int iSample; /* Smallest sample larger than or equal to pRec */
1154 int iMin = 0; /* Smallest sample not yet tested */
1155 int iTest; /* Next sample to test */
1156 int res; /* Result of comparison operation */
1157 int nField; /* Number of fields in pRec */
1158 tRowcnt iLower = 0; /* anLt[] + anEq[] of largest sample pRec is > */
1160 #ifndef SQLITE_DEBUG
1161 UNUSED_PARAMETER( pParse );
1162 #endif
1163 assert( pRec!=0 );
1164 assert( pIdx->nSample>0 );
1165 assert( pRec->nField>0 && pRec->nField<=pIdx->nSampleCol );
1167 /* Do a binary search to find the first sample greater than or equal
1168 ** to pRec. If pRec contains a single field, the set of samples to search
1169 ** is simply the aSample[] array. If the samples in aSample[] contain more
1170 ** than one fields, all fields following the first are ignored.
1172 ** If pRec contains N fields, where N is more than one, then as well as the
1173 ** samples in aSample[] (truncated to N fields), the search also has to
1174 ** consider prefixes of those samples. For example, if the set of samples
1175 ** in aSample is:
1177 ** aSample[0] = (a, 5)
1178 ** aSample[1] = (a, 10)
1179 ** aSample[2] = (b, 5)
1180 ** aSample[3] = (c, 100)
1181 ** aSample[4] = (c, 105)
1183 ** Then the search space should ideally be the samples above and the
1184 ** unique prefixes [a], [b] and [c]. But since that is hard to organize,
1185 ** the code actually searches this set:
1187 ** 0: (a)
1188 ** 1: (a, 5)
1189 ** 2: (a, 10)
1190 ** 3: (a, 10)
1191 ** 4: (b)
1192 ** 5: (b, 5)
1193 ** 6: (c)
1194 ** 7: (c, 100)
1195 ** 8: (c, 105)
1196 ** 9: (c, 105)
1198 ** For each sample in the aSample[] array, N samples are present in the
1199 ** effective sample array. In the above, samples 0 and 1 are based on
1200 ** sample aSample[0]. Samples 2 and 3 on aSample[1] etc.
1202 ** Often, sample i of each block of N effective samples has (i+1) fields.
1203 ** Except, each sample may be extended to ensure that it is greater than or
1204 ** equal to the previous sample in the array. For example, in the above,
1205 ** sample 2 is the first sample of a block of N samples, so at first it
1206 ** appears that it should be 1 field in size. However, that would make it
1207 ** smaller than sample 1, so the binary search would not work. As a result,
1208 ** it is extended to two fields. The duplicates that this creates do not
1209 ** cause any problems.
1211 nField = pRec->nField;
1212 iCol = 0;
1213 iSample = pIdx->nSample * nField;
1215 int iSamp; /* Index in aSample[] of test sample */
1216 int n; /* Number of fields in test sample */
1218 iTest = (iMin+iSample)/2;
1219 iSamp = iTest / nField;
1220 if( iSamp>0 ){
1221 /* The proposed effective sample is a prefix of sample aSample[iSamp].
1222 ** Specifically, the shortest prefix of at least (1 + iTest%nField)
1223 ** fields that is greater than the previous effective sample. */
1224 for(n=(iTest % nField) + 1; n<nField; n++){
1225 if( aSample[iSamp-1].anLt[n-1]!=aSample[iSamp].anLt[n-1] ) break;
1227 }else{
1228 n = iTest + 1;
1231 pRec->nField = n;
1232 res = sqlite3VdbeRecordCompare(aSample[iSamp].n, aSample[iSamp].p, pRec);
1233 if( res<0 ){
1234 iLower = aSample[iSamp].anLt[n-1] + aSample[iSamp].anEq[n-1];
1235 iMin = iTest+1;
1236 }else if( res==0 && n<nField ){
1237 iLower = aSample[iSamp].anLt[n-1];
1238 iMin = iTest+1;
1239 res = -1;
1240 }else{
1241 iSample = iTest;
1242 iCol = n-1;
1244 }while( res && iMin<iSample );
1245 i = iSample / nField;
1247 #ifdef SQLITE_DEBUG
1248 /* The following assert statements check that the binary search code
1249 ** above found the right answer. This block serves no purpose other
1250 ** than to invoke the asserts. */
1251 if( pParse->db->mallocFailed==0 ){
1252 if( res==0 ){
1253 /* If (res==0) is true, then pRec must be equal to sample i. */
1254 assert( i<pIdx->nSample );
1255 assert( iCol==nField-1 );
1256 pRec->nField = nField;
1257 assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)
1258 || pParse->db->mallocFailed
1260 }else{
1261 /* Unless i==pIdx->nSample, indicating that pRec is larger than
1262 ** all samples in the aSample[] array, pRec must be smaller than the
1263 ** (iCol+1) field prefix of sample i. */
1264 assert( i<=pIdx->nSample && i>=0 );
1265 pRec->nField = iCol+1;
1266 assert( i==pIdx->nSample
1267 || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0
1268 || pParse->db->mallocFailed );
1270 /* if i==0 and iCol==0, then record pRec is smaller than all samples
1271 ** in the aSample[] array. Otherwise, if (iCol>0) then pRec must
1272 ** be greater than or equal to the (iCol) field prefix of sample i.
1273 ** If (i>0), then pRec must also be greater than sample (i-1). */
1274 if( iCol>0 ){
1275 pRec->nField = iCol;
1276 assert( sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)<=0
1277 || pParse->db->mallocFailed );
1279 if( i>0 ){
1280 pRec->nField = nField;
1281 assert( sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0
1282 || pParse->db->mallocFailed );
1286 #endif /* ifdef SQLITE_DEBUG */
1288 if( res==0 ){
1289 /* Record pRec is equal to sample i */
1290 assert( iCol==nField-1 );
1291 aStat[0] = aSample[i].anLt[iCol];
1292 aStat[1] = aSample[i].anEq[iCol];
1293 }else{
1294 /* At this point, the (iCol+1) field prefix of aSample[i] is the first
1295 ** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec
1296 ** is larger than all samples in the array. */
1297 tRowcnt iUpper, iGap;
1298 if( i>=pIdx->nSample ){
1299 iUpper = sqlite3LogEstToInt(pIdx->aiRowLogEst[0]);
1300 }else{
1301 iUpper = aSample[i].anLt[iCol];
1304 if( iLower>=iUpper ){
1305 iGap = 0;
1306 }else{
1307 iGap = iUpper - iLower;
1309 if( roundUp ){
1310 iGap = (iGap*2)/3;
1311 }else{
1312 iGap = iGap/3;
1314 aStat[0] = iLower + iGap;
1315 aStat[1] = pIdx->aAvgEq[nField-1];
1318 /* Restore the pRec->nField value before returning. */
1319 pRec->nField = nField;
1320 return i;
1322 #endif /* SQLITE_ENABLE_STAT4 */
1325 ** If it is not NULL, pTerm is a term that provides an upper or lower
1326 ** bound on a range scan. Without considering pTerm, it is estimated
1327 ** that the scan will visit nNew rows. This function returns the number
1328 ** estimated to be visited after taking pTerm into account.
1330 ** If the user explicitly specified a likelihood() value for this term,
1331 ** then the return value is the likelihood multiplied by the number of
1332 ** input rows. Otherwise, this function assumes that an "IS NOT NULL" term
1333 ** has a likelihood of 0.50, and any other term a likelihood of 0.25.
1335 static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){
1336 LogEst nRet = nNew;
1337 if( pTerm ){
1338 if( pTerm->truthProb<=0 ){
1339 nRet += pTerm->truthProb;
1340 }else if( (pTerm->wtFlags & TERM_VNULL)==0 ){
1341 nRet -= 20; assert( 20==sqlite3LogEst(4) );
1344 return nRet;
1348 #ifdef SQLITE_ENABLE_STAT4
1350 ** Return the affinity for a single column of an index.
1352 char sqlite3IndexColumnAffinity(sqlite3 *db, Index *pIdx, int iCol){
1353 assert( iCol>=0 && iCol<pIdx->nColumn );
1354 if( !pIdx->zColAff ){
1355 if( sqlite3IndexAffinityStr(db, pIdx)==0 ) return SQLITE_AFF_BLOB;
1357 assert( pIdx->zColAff[iCol]!=0 );
1358 return pIdx->zColAff[iCol];
1360 #endif
1363 #ifdef SQLITE_ENABLE_STAT4
1365 ** This function is called to estimate the number of rows visited by a
1366 ** range-scan on a skip-scan index. For example:
1368 ** CREATE INDEX i1 ON t1(a, b, c);
1369 ** SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?;
1371 ** Value pLoop->nOut is currently set to the estimated number of rows
1372 ** visited for scanning (a=? AND b=?). This function reduces that estimate
1373 ** by some factor to account for the (c BETWEEN ? AND ?) expression based
1374 ** on the stat4 data for the index. this scan will be peformed multiple
1375 ** times (once for each (a,b) combination that matches a=?) is dealt with
1376 ** by the caller.
1378 ** It does this by scanning through all stat4 samples, comparing values
1379 ** extracted from pLower and pUpper with the corresponding column in each
1380 ** sample. If L and U are the number of samples found to be less than or
1381 ** equal to the values extracted from pLower and pUpper respectively, and
1382 ** N is the total number of samples, the pLoop->nOut value is adjusted
1383 ** as follows:
1385 ** nOut = nOut * ( min(U - L, 1) / N )
1387 ** If pLower is NULL, or a value cannot be extracted from the term, L is
1388 ** set to zero. If pUpper is NULL, or a value cannot be extracted from it,
1389 ** U is set to N.
1391 ** Normally, this function sets *pbDone to 1 before returning. However,
1392 ** if no value can be extracted from either pLower or pUpper (and so the
1393 ** estimate of the number of rows delivered remains unchanged), *pbDone
1394 ** is left as is.
1396 ** If an error occurs, an SQLite error code is returned. Otherwise,
1397 ** SQLITE_OK.
1399 static int whereRangeSkipScanEst(
1400 Parse *pParse, /* Parsing & code generating context */
1401 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */
1402 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */
1403 WhereLoop *pLoop, /* Update the .nOut value of this loop */
1404 int *pbDone /* Set to true if at least one expr. value extracted */
1406 Index *p = pLoop->u.btree.pIndex;
1407 int nEq = pLoop->u.btree.nEq;
1408 sqlite3 *db = pParse->db;
1409 int nLower = -1;
1410 int nUpper = p->nSample+1;
1411 int rc = SQLITE_OK;
1412 u8 aff = sqlite3IndexColumnAffinity(db, p, nEq);
1413 CollSeq *pColl;
1415 sqlite3_value *p1 = 0; /* Value extracted from pLower */
1416 sqlite3_value *p2 = 0; /* Value extracted from pUpper */
1417 sqlite3_value *pVal = 0; /* Value extracted from record */
1419 pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]);
1420 if( pLower ){
1421 rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1);
1422 nLower = 0;
1424 if( pUpper && rc==SQLITE_OK ){
1425 rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2);
1426 nUpper = p2 ? 0 : p->nSample;
1429 if( p1 || p2 ){
1430 int i;
1431 int nDiff;
1432 for(i=0; rc==SQLITE_OK && i<p->nSample; i++){
1433 rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal);
1434 if( rc==SQLITE_OK && p1 ){
1435 int res = sqlite3MemCompare(p1, pVal, pColl);
1436 if( res>=0 ) nLower++;
1438 if( rc==SQLITE_OK && p2 ){
1439 int res = sqlite3MemCompare(p2, pVal, pColl);
1440 if( res>=0 ) nUpper++;
1443 nDiff = (nUpper - nLower);
1444 if( nDiff<=0 ) nDiff = 1;
1446 /* If there is both an upper and lower bound specified, and the
1447 ** comparisons indicate that they are close together, use the fallback
1448 ** method (assume that the scan visits 1/64 of the rows) for estimating
1449 ** the number of rows visited. Otherwise, estimate the number of rows
1450 ** using the method described in the header comment for this function. */
1451 if( nDiff!=1 || pUpper==0 || pLower==0 ){
1452 int nAdjust = (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff));
1453 pLoop->nOut -= nAdjust;
1454 *pbDone = 1;
1455 WHERETRACE(0x10, ("range skip-scan regions: %u..%u adjust=%d est=%d\n",
1456 nLower, nUpper, nAdjust*-1, pLoop->nOut));
1459 }else{
1460 assert( *pbDone==0 );
1463 sqlite3ValueFree(p1);
1464 sqlite3ValueFree(p2);
1465 sqlite3ValueFree(pVal);
1467 return rc;
1469 #endif /* SQLITE_ENABLE_STAT4 */
1472 ** This function is used to estimate the number of rows that will be visited
1473 ** by scanning an index for a range of values. The range may have an upper
1474 ** bound, a lower bound, or both. The WHERE clause terms that set the upper
1475 ** and lower bounds are represented by pLower and pUpper respectively. For
1476 ** example, assuming that index p is on t1(a):
1478 ** ... FROM t1 WHERE a > ? AND a < ? ...
1479 ** |_____| |_____|
1480 ** | |
1481 ** pLower pUpper
1483 ** If either of the upper or lower bound is not present, then NULL is passed in
1484 ** place of the corresponding WhereTerm.
1486 ** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index
1487 ** column subject to the range constraint. Or, equivalently, the number of
1488 ** equality constraints optimized by the proposed index scan. For example,
1489 ** assuming index p is on t1(a, b), and the SQL query is:
1491 ** ... FROM t1 WHERE a = ? AND b > ? AND b < ? ...
1493 ** then nEq is set to 1 (as the range restricted column, b, is the second
1494 ** left-most column of the index). Or, if the query is:
1496 ** ... FROM t1 WHERE a > ? AND a < ? ...
1498 ** then nEq is set to 0.
1500 ** When this function is called, *pnOut is set to the sqlite3LogEst() of the
1501 ** number of rows that the index scan is expected to visit without
1502 ** considering the range constraints. If nEq is 0, then *pnOut is the number of
1503 ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced)
1504 ** to account for the range constraints pLower and pUpper.
1506 ** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be
1507 ** used, a single range inequality reduces the search space by a factor of 4.
1508 ** and a pair of constraints (x>? AND x<?) reduces the expected number of
1509 ** rows visited by a factor of 64.
1511 static int whereRangeScanEst(
1512 Parse *pParse, /* Parsing & code generating context */
1513 WhereLoopBuilder *pBuilder,
1514 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */
1515 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */
1516 WhereLoop *pLoop /* Modify the .nOut and maybe .rRun fields */
1518 int rc = SQLITE_OK;
1519 int nOut = pLoop->nOut;
1520 LogEst nNew;
1522 #ifdef SQLITE_ENABLE_STAT4
1523 Index *p = pLoop->u.btree.pIndex;
1524 int nEq = pLoop->u.btree.nEq;
1526 if( p->nSample>0 && ALWAYS(nEq<p->nSampleCol)
1527 && OptimizationEnabled(pParse->db, SQLITE_Stat4)
1529 if( nEq==pBuilder->nRecValid ){
1530 UnpackedRecord *pRec = pBuilder->pRec;
1531 tRowcnt a[2];
1532 int nBtm = pLoop->u.btree.nBtm;
1533 int nTop = pLoop->u.btree.nTop;
1535 /* Variable iLower will be set to the estimate of the number of rows in
1536 ** the index that are less than the lower bound of the range query. The
1537 ** lower bound being the concatenation of $P and $L, where $P is the
1538 ** key-prefix formed by the nEq values matched against the nEq left-most
1539 ** columns of the index, and $L is the value in pLower.
1541 ** Or, if pLower is NULL or $L cannot be extracted from it (because it
1542 ** is not a simple variable or literal value), the lower bound of the
1543 ** range is $P. Due to a quirk in the way whereKeyStats() works, even
1544 ** if $L is available, whereKeyStats() is called for both ($P) and
1545 ** ($P:$L) and the larger of the two returned values is used.
1547 ** Similarly, iUpper is to be set to the estimate of the number of rows
1548 ** less than the upper bound of the range query. Where the upper bound
1549 ** is either ($P) or ($P:$U). Again, even if $U is available, both values
1550 ** of iUpper are requested of whereKeyStats() and the smaller used.
1552 ** The number of rows between the two bounds is then just iUpper-iLower.
1554 tRowcnt iLower; /* Rows less than the lower bound */
1555 tRowcnt iUpper; /* Rows less than the upper bound */
1556 int iLwrIdx = -2; /* aSample[] for the lower bound */
1557 int iUprIdx = -1; /* aSample[] for the upper bound */
1559 if( pRec ){
1560 testcase( pRec->nField!=pBuilder->nRecValid );
1561 pRec->nField = pBuilder->nRecValid;
1563 /* Determine iLower and iUpper using ($P) only. */
1564 if( nEq==0 ){
1565 iLower = 0;
1566 iUpper = p->nRowEst0;
1567 }else{
1568 /* Note: this call could be optimized away - since the same values must
1569 ** have been requested when testing key $P in whereEqualScanEst(). */
1570 whereKeyStats(pParse, p, pRec, 0, a);
1571 iLower = a[0];
1572 iUpper = a[0] + a[1];
1575 assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 );
1576 assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 );
1577 assert( p->aSortOrder!=0 );
1578 if( p->aSortOrder[nEq] ){
1579 /* The roles of pLower and pUpper are swapped for a DESC index */
1580 SWAP(WhereTerm*, pLower, pUpper);
1581 SWAP(int, nBtm, nTop);
1584 /* If possible, improve on the iLower estimate using ($P:$L). */
1585 if( pLower ){
1586 int n; /* Values extracted from pExpr */
1587 Expr *pExpr = pLower->pExpr->pRight;
1588 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nBtm, nEq, &n);
1589 if( rc==SQLITE_OK && n ){
1590 tRowcnt iNew;
1591 u16 mask = WO_GT|WO_LE;
1592 if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT);
1593 iLwrIdx = whereKeyStats(pParse, p, pRec, 0, a);
1594 iNew = a[0] + ((pLower->eOperator & mask) ? a[1] : 0);
1595 if( iNew>iLower ) iLower = iNew;
1596 nOut--;
1597 pLower = 0;
1601 /* If possible, improve on the iUpper estimate using ($P:$U). */
1602 if( pUpper ){
1603 int n; /* Values extracted from pExpr */
1604 Expr *pExpr = pUpper->pExpr->pRight;
1605 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nTop, nEq, &n);
1606 if( rc==SQLITE_OK && n ){
1607 tRowcnt iNew;
1608 u16 mask = WO_GT|WO_LE;
1609 if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT);
1610 iUprIdx = whereKeyStats(pParse, p, pRec, 1, a);
1611 iNew = a[0] + ((pUpper->eOperator & mask) ? a[1] : 0);
1612 if( iNew<iUpper ) iUpper = iNew;
1613 nOut--;
1614 pUpper = 0;
1618 pBuilder->pRec = pRec;
1619 if( rc==SQLITE_OK ){
1620 if( iUpper>iLower ){
1621 nNew = sqlite3LogEst(iUpper - iLower);
1622 /* TUNING: If both iUpper and iLower are derived from the same
1623 ** sample, then assume they are 4x more selective. This brings
1624 ** the estimated selectivity more in line with what it would be
1625 ** if estimated without the use of STAT4 tables. */
1626 if( iLwrIdx==iUprIdx ) nNew -= 20; assert( 20==sqlite3LogEst(4) );
1627 }else{
1628 nNew = 10; assert( 10==sqlite3LogEst(2) );
1630 if( nNew<nOut ){
1631 nOut = nNew;
1633 WHERETRACE(0x10, ("STAT4 range scan: %u..%u est=%d\n",
1634 (u32)iLower, (u32)iUpper, nOut));
1636 }else{
1637 int bDone = 0;
1638 rc = whereRangeSkipScanEst(pParse, pLower, pUpper, pLoop, &bDone);
1639 if( bDone ) return rc;
1642 #else
1643 UNUSED_PARAMETER(pParse);
1644 UNUSED_PARAMETER(pBuilder);
1645 assert( pLower || pUpper );
1646 #endif
1647 assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 );
1648 nNew = whereRangeAdjust(pLower, nOut);
1649 nNew = whereRangeAdjust(pUpper, nNew);
1651 /* TUNING: If there is both an upper and lower limit and neither limit
1652 ** has an application-defined likelihood(), assume the range is
1653 ** reduced by an additional 75%. This means that, by default, an open-ended
1654 ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the
1655 ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to
1656 ** match 1/64 of the index. */
1657 if( pLower && pLower->truthProb>0 && pUpper && pUpper->truthProb>0 ){
1658 nNew -= 20;
1661 nOut -= (pLower!=0) + (pUpper!=0);
1662 if( nNew<10 ) nNew = 10;
1663 if( nNew<nOut ) nOut = nNew;
1664 #if defined(WHERETRACE_ENABLED)
1665 if( pLoop->nOut>nOut ){
1666 WHERETRACE(0x10,("Range scan lowers nOut from %d to %d\n",
1667 pLoop->nOut, nOut));
1669 #endif
1670 pLoop->nOut = (LogEst)nOut;
1671 return rc;
1674 #ifdef SQLITE_ENABLE_STAT4
1676 ** Estimate the number of rows that will be returned based on
1677 ** an equality constraint x=VALUE and where that VALUE occurs in
1678 ** the histogram data. This only works when x is the left-most
1679 ** column of an index and sqlite_stat4 histogram data is available
1680 ** for that index. When pExpr==NULL that means the constraint is
1681 ** "x IS NULL" instead of "x=VALUE".
1683 ** Write the estimated row count into *pnRow and return SQLITE_OK.
1684 ** If unable to make an estimate, leave *pnRow unchanged and return
1685 ** non-zero.
1687 ** This routine can fail if it is unable to load a collating sequence
1688 ** required for string comparison, or if unable to allocate memory
1689 ** for a UTF conversion required for comparison. The error is stored
1690 ** in the pParse structure.
1692 static int whereEqualScanEst(
1693 Parse *pParse, /* Parsing & code generating context */
1694 WhereLoopBuilder *pBuilder,
1695 Expr *pExpr, /* Expression for VALUE in the x=VALUE constraint */
1696 tRowcnt *pnRow /* Write the revised row estimate here */
1698 Index *p = pBuilder->pNew->u.btree.pIndex;
1699 int nEq = pBuilder->pNew->u.btree.nEq;
1700 UnpackedRecord *pRec = pBuilder->pRec;
1701 int rc; /* Subfunction return code */
1702 tRowcnt a[2]; /* Statistics */
1703 int bOk;
1705 assert( nEq>=1 );
1706 assert( nEq<=p->nColumn );
1707 assert( p->aSample!=0 );
1708 assert( p->nSample>0 );
1709 assert( pBuilder->nRecValid<nEq );
1711 /* If values are not available for all fields of the index to the left
1712 ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */
1713 if( pBuilder->nRecValid<(nEq-1) ){
1714 return SQLITE_NOTFOUND;
1717 /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue()
1718 ** below would return the same value. */
1719 if( nEq>=p->nColumn ){
1720 *pnRow = 1;
1721 return SQLITE_OK;
1724 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, 1, nEq-1, &bOk);
1725 pBuilder->pRec = pRec;
1726 if( rc!=SQLITE_OK ) return rc;
1727 if( bOk==0 ) return SQLITE_NOTFOUND;
1728 pBuilder->nRecValid = nEq;
1730 whereKeyStats(pParse, p, pRec, 0, a);
1731 WHERETRACE(0x10,("equality scan regions %s(%d): %d\n",
1732 p->zName, nEq-1, (int)a[1]));
1733 *pnRow = a[1];
1735 return rc;
1737 #endif /* SQLITE_ENABLE_STAT4 */
1739 #ifdef SQLITE_ENABLE_STAT4
1741 ** Estimate the number of rows that will be returned based on
1742 ** an IN constraint where the right-hand side of the IN operator
1743 ** is a list of values. Example:
1745 ** WHERE x IN (1,2,3,4)
1747 ** Write the estimated row count into *pnRow and return SQLITE_OK.
1748 ** If unable to make an estimate, leave *pnRow unchanged and return
1749 ** non-zero.
1751 ** This routine can fail if it is unable to load a collating sequence
1752 ** required for string comparison, or if unable to allocate memory
1753 ** for a UTF conversion required for comparison. The error is stored
1754 ** in the pParse structure.
1756 static int whereInScanEst(
1757 Parse *pParse, /* Parsing & code generating context */
1758 WhereLoopBuilder *pBuilder,
1759 ExprList *pList, /* The value list on the RHS of "x IN (v1,v2,v3,...)" */
1760 tRowcnt *pnRow /* Write the revised row estimate here */
1762 Index *p = pBuilder->pNew->u.btree.pIndex;
1763 i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]);
1764 int nRecValid = pBuilder->nRecValid;
1765 int rc = SQLITE_OK; /* Subfunction return code */
1766 tRowcnt nEst; /* Number of rows for a single term */
1767 tRowcnt nRowEst = 0; /* New estimate of the number of rows */
1768 int i; /* Loop counter */
1770 assert( p->aSample!=0 );
1771 for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){
1772 nEst = nRow0;
1773 rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst);
1774 nRowEst += nEst;
1775 pBuilder->nRecValid = nRecValid;
1778 if( rc==SQLITE_OK ){
1779 if( nRowEst > nRow0 ) nRowEst = nRow0;
1780 *pnRow = nRowEst;
1781 WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst));
1783 assert( pBuilder->nRecValid==nRecValid );
1784 return rc;
1786 #endif /* SQLITE_ENABLE_STAT4 */
1789 #ifdef WHERETRACE_ENABLED
1791 ** Print the content of a WhereTerm object
1793 void sqlite3WhereTermPrint(WhereTerm *pTerm, int iTerm){
1794 if( pTerm==0 ){
1795 sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm);
1796 }else{
1797 char zType[8];
1798 char zLeft[50];
1799 memcpy(zType, "....", 5);
1800 if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V';
1801 if( pTerm->eOperator & WO_EQUIV ) zType[1] = 'E';
1802 if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) zType[2] = 'L';
1803 if( pTerm->wtFlags & TERM_CODED ) zType[3] = 'C';
1804 if( pTerm->eOperator & WO_SINGLE ){
1805 sqlite3_snprintf(sizeof(zLeft),zLeft,"left={%d:%d}",
1806 pTerm->leftCursor, pTerm->u.x.leftColumn);
1807 }else if( (pTerm->eOperator & WO_OR)!=0 && pTerm->u.pOrInfo!=0 ){
1808 sqlite3_snprintf(sizeof(zLeft),zLeft,"indexable=0x%llx",
1809 pTerm->u.pOrInfo->indexable);
1810 }else{
1811 sqlite3_snprintf(sizeof(zLeft),zLeft,"left=%d", pTerm->leftCursor);
1813 sqlite3DebugPrintf(
1814 "TERM-%-3d %p %s %-12s op=%03x wtFlags=%04x",
1815 iTerm, pTerm, zType, zLeft, pTerm->eOperator, pTerm->wtFlags);
1816 /* The 0x10000 .wheretrace flag causes extra information to be
1817 ** shown about each Term */
1818 if( sqlite3WhereTrace & 0x10000 ){
1819 sqlite3DebugPrintf(" prob=%-3d prereq=%llx,%llx",
1820 pTerm->truthProb, (u64)pTerm->prereqAll, (u64)pTerm->prereqRight);
1822 if( pTerm->u.x.iField ){
1823 sqlite3DebugPrintf(" iField=%d", pTerm->u.x.iField);
1825 if( pTerm->iParent>=0 ){
1826 sqlite3DebugPrintf(" iParent=%d", pTerm->iParent);
1828 sqlite3DebugPrintf("\n");
1829 sqlite3TreeViewExpr(0, pTerm->pExpr, 0);
1832 #endif
1834 #ifdef WHERETRACE_ENABLED
1836 ** Show the complete content of a WhereClause
1838 void sqlite3WhereClausePrint(WhereClause *pWC){
1839 int i;
1840 for(i=0; i<pWC->nTerm; i++){
1841 sqlite3WhereTermPrint(&pWC->a[i], i);
1844 #endif
1846 #ifdef WHERETRACE_ENABLED
1848 ** Print a WhereLoop object for debugging purposes
1850 void sqlite3WhereLoopPrint(WhereLoop *p, WhereClause *pWC){
1851 WhereInfo *pWInfo = pWC->pWInfo;
1852 int nb = 1+(pWInfo->pTabList->nSrc+3)/4;
1853 SrcItem *pItem = pWInfo->pTabList->a + p->iTab;
1854 Table *pTab = pItem->pTab;
1855 Bitmask mAll = (((Bitmask)1)<<(nb*4)) - 1;
1856 sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId,
1857 p->iTab, nb, p->maskSelf, nb, p->prereq & mAll);
1858 sqlite3DebugPrintf(" %12s",
1859 pItem->zAlias ? pItem->zAlias : pTab->zName);
1860 if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
1861 const char *zName;
1862 if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){
1863 if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){
1864 int i = sqlite3Strlen30(zName) - 1;
1865 while( zName[i]!='_' ) i--;
1866 zName += i;
1868 sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq);
1869 }else{
1870 sqlite3DebugPrintf("%20s","");
1872 }else{
1873 char *z;
1874 if( p->u.vtab.idxStr ){
1875 z = sqlite3_mprintf("(%d,\"%s\",%#x)",
1876 p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask);
1877 }else{
1878 z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask);
1880 sqlite3DebugPrintf(" %-19s", z);
1881 sqlite3_free(z);
1883 if( p->wsFlags & WHERE_SKIPSCAN ){
1884 sqlite3DebugPrintf(" f %05x %d-%d", p->wsFlags, p->nLTerm,p->nSkip);
1885 }else{
1886 sqlite3DebugPrintf(" f %05x N %d", p->wsFlags, p->nLTerm);
1888 sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut);
1889 if( p->nLTerm && (sqlite3WhereTrace & 0x100)!=0 ){
1890 int i;
1891 for(i=0; i<p->nLTerm; i++){
1892 sqlite3WhereTermPrint(p->aLTerm[i], i);
1896 #endif
1899 ** Convert bulk memory into a valid WhereLoop that can be passed
1900 ** to whereLoopClear harmlessly.
1902 static void whereLoopInit(WhereLoop *p){
1903 p->aLTerm = p->aLTermSpace;
1904 p->nLTerm = 0;
1905 p->nLSlot = ArraySize(p->aLTermSpace);
1906 p->wsFlags = 0;
1910 ** Clear the WhereLoop.u union. Leave WhereLoop.pLTerm intact.
1912 static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){
1913 if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){
1914 if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){
1915 sqlite3_free(p->u.vtab.idxStr);
1916 p->u.vtab.needFree = 0;
1917 p->u.vtab.idxStr = 0;
1918 }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){
1919 sqlite3DbFree(db, p->u.btree.pIndex->zColAff);
1920 sqlite3DbFreeNN(db, p->u.btree.pIndex);
1921 p->u.btree.pIndex = 0;
1927 ** Deallocate internal memory used by a WhereLoop object
1929 static void whereLoopClear(sqlite3 *db, WhereLoop *p){
1930 if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm);
1931 whereLoopClearUnion(db, p);
1932 whereLoopInit(p);
1936 ** Increase the memory allocation for pLoop->aLTerm[] to be at least n.
1938 static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){
1939 WhereTerm **paNew;
1940 if( p->nLSlot>=n ) return SQLITE_OK;
1941 n = (n+7)&~7;
1942 paNew = sqlite3DbMallocRawNN(db, sizeof(p->aLTerm[0])*n);
1943 if( paNew==0 ) return SQLITE_NOMEM_BKPT;
1944 memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot);
1945 if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm);
1946 p->aLTerm = paNew;
1947 p->nLSlot = n;
1948 return SQLITE_OK;
1952 ** Transfer content from the second pLoop into the first.
1954 static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){
1955 whereLoopClearUnion(db, pTo);
1956 if( whereLoopResize(db, pTo, pFrom->nLTerm) ){
1957 memset(pTo, 0, WHERE_LOOP_XFER_SZ);
1958 return SQLITE_NOMEM_BKPT;
1960 memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ);
1961 memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0]));
1962 if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){
1963 pFrom->u.vtab.needFree = 0;
1964 }else if( (pFrom->wsFlags & WHERE_AUTO_INDEX)!=0 ){
1965 pFrom->u.btree.pIndex = 0;
1967 return SQLITE_OK;
1971 ** Delete a WhereLoop object
1973 static void whereLoopDelete(sqlite3 *db, WhereLoop *p){
1974 whereLoopClear(db, p);
1975 sqlite3DbFreeNN(db, p);
1979 ** Free a WhereInfo structure
1981 static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){
1982 int i;
1983 assert( pWInfo!=0 );
1984 for(i=0; i<pWInfo->nLevel; i++){
1985 WhereLevel *pLevel = &pWInfo->a[i];
1986 if( pLevel->pWLoop && (pLevel->pWLoop->wsFlags & WHERE_IN_ABLE) ){
1987 sqlite3DbFree(db, pLevel->u.in.aInLoop);
1990 sqlite3WhereClauseClear(&pWInfo->sWC);
1991 while( pWInfo->pLoops ){
1992 WhereLoop *p = pWInfo->pLoops;
1993 pWInfo->pLoops = p->pNextLoop;
1994 whereLoopDelete(db, p);
1996 assert( pWInfo->pExprMods==0 );
1997 sqlite3DbFreeNN(db, pWInfo);
2000 /* Undo all Expr node modifications
2002 static void whereUndoExprMods(WhereInfo *pWInfo){
2003 while( pWInfo->pExprMods ){
2004 WhereExprMod *p = pWInfo->pExprMods;
2005 pWInfo->pExprMods = p->pNext;
2006 memcpy(p->pExpr, &p->orig, sizeof(p->orig));
2007 sqlite3DbFree(pWInfo->pParse->db, p);
2012 ** Return TRUE if all of the following are true:
2014 ** (1) X has the same or lower cost that Y
2015 ** (2) X uses fewer WHERE clause terms than Y
2016 ** (3) Every WHERE clause term used by X is also used by Y
2017 ** (4) X skips at least as many columns as Y
2018 ** (5) If X is a covering index, than Y is too
2020 ** Conditions (2) and (3) mean that X is a "proper subset" of Y.
2021 ** If X is a proper subset of Y then Y is a better choice and ought
2022 ** to have a lower cost. This routine returns TRUE when that cost
2023 ** relationship is inverted and needs to be adjusted. Constraint (4)
2024 ** was added because if X uses skip-scan less than Y it still might
2025 ** deserve a lower cost even if it is a proper subset of Y. Constraint (5)
2026 ** was added because a covering index probably deserves to have a lower cost
2027 ** than a non-covering index even if it is a proper subset.
2029 static int whereLoopCheaperProperSubset(
2030 const WhereLoop *pX, /* First WhereLoop to compare */
2031 const WhereLoop *pY /* Compare against this WhereLoop */
2033 int i, j;
2034 if( pX->nLTerm-pX->nSkip >= pY->nLTerm-pY->nSkip ){
2035 return 0; /* X is not a subset of Y */
2037 if( pY->nSkip > pX->nSkip ) return 0;
2038 if( pX->rRun >= pY->rRun ){
2039 if( pX->rRun > pY->rRun ) return 0; /* X costs more than Y */
2040 if( pX->nOut > pY->nOut ) return 0; /* X costs more than Y */
2042 for(i=pX->nLTerm-1; i>=0; i--){
2043 if( pX->aLTerm[i]==0 ) continue;
2044 for(j=pY->nLTerm-1; j>=0; j--){
2045 if( pY->aLTerm[j]==pX->aLTerm[i] ) break;
2047 if( j<0 ) return 0; /* X not a subset of Y since term X[i] not used by Y */
2049 if( (pX->wsFlags&WHERE_IDX_ONLY)!=0
2050 && (pY->wsFlags&WHERE_IDX_ONLY)==0 ){
2051 return 0; /* Constraint (5) */
2053 return 1; /* All conditions meet */
2057 ** Try to adjust the cost of WhereLoop pTemplate upwards or downwards so
2058 ** that:
2060 ** (1) pTemplate costs less than any other WhereLoops that are a proper
2061 ** subset of pTemplate
2063 ** (2) pTemplate costs more than any other WhereLoops for which pTemplate
2064 ** is a proper subset.
2066 ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer
2067 ** WHERE clause terms than Y and that every WHERE clause term used by X is
2068 ** also used by Y.
2070 static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){
2071 if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return;
2072 for(; p; p=p->pNextLoop){
2073 if( p->iTab!=pTemplate->iTab ) continue;
2074 if( (p->wsFlags & WHERE_INDEXED)==0 ) continue;
2075 if( whereLoopCheaperProperSubset(p, pTemplate) ){
2076 /* Adjust pTemplate cost downward so that it is cheaper than its
2077 ** subset p. */
2078 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
2079 pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut-1));
2080 pTemplate->rRun = p->rRun;
2081 pTemplate->nOut = p->nOut - 1;
2082 }else if( whereLoopCheaperProperSubset(pTemplate, p) ){
2083 /* Adjust pTemplate cost upward so that it is costlier than p since
2084 ** pTemplate is a proper subset of p */
2085 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
2086 pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut+1));
2087 pTemplate->rRun = p->rRun;
2088 pTemplate->nOut = p->nOut + 1;
2094 ** Search the list of WhereLoops in *ppPrev looking for one that can be
2095 ** replaced by pTemplate.
2097 ** Return NULL if pTemplate does not belong on the WhereLoop list.
2098 ** In other words if pTemplate ought to be dropped from further consideration.
2100 ** If pX is a WhereLoop that pTemplate can replace, then return the
2101 ** link that points to pX.
2103 ** If pTemplate cannot replace any existing element of the list but needs
2104 ** to be added to the list as a new entry, then return a pointer to the
2105 ** tail of the list.
2107 static WhereLoop **whereLoopFindLesser(
2108 WhereLoop **ppPrev,
2109 const WhereLoop *pTemplate
2111 WhereLoop *p;
2112 for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){
2113 if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){
2114 /* If either the iTab or iSortIdx values for two WhereLoop are different
2115 ** then those WhereLoops need to be considered separately. Neither is
2116 ** a candidate to replace the other. */
2117 continue;
2119 /* In the current implementation, the rSetup value is either zero
2120 ** or the cost of building an automatic index (NlogN) and the NlogN
2121 ** is the same for compatible WhereLoops. */
2122 assert( p->rSetup==0 || pTemplate->rSetup==0
2123 || p->rSetup==pTemplate->rSetup );
2125 /* whereLoopAddBtree() always generates and inserts the automatic index
2126 ** case first. Hence compatible candidate WhereLoops never have a larger
2127 ** rSetup. Call this SETUP-INVARIANT */
2128 assert( p->rSetup>=pTemplate->rSetup );
2130 /* Any loop using an appliation-defined index (or PRIMARY KEY or
2131 ** UNIQUE constraint) with one or more == constraints is better
2132 ** than an automatic index. Unless it is a skip-scan. */
2133 if( (p->wsFlags & WHERE_AUTO_INDEX)!=0
2134 && (pTemplate->nSkip)==0
2135 && (pTemplate->wsFlags & WHERE_INDEXED)!=0
2136 && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0
2137 && (p->prereq & pTemplate->prereq)==pTemplate->prereq
2139 break;
2142 /* If existing WhereLoop p is better than pTemplate, pTemplate can be
2143 ** discarded. WhereLoop p is better if:
2144 ** (1) p has no more dependencies than pTemplate, and
2145 ** (2) p has an equal or lower cost than pTemplate
2147 if( (p->prereq & pTemplate->prereq)==p->prereq /* (1) */
2148 && p->rSetup<=pTemplate->rSetup /* (2a) */
2149 && p->rRun<=pTemplate->rRun /* (2b) */
2150 && p->nOut<=pTemplate->nOut /* (2c) */
2152 return 0; /* Discard pTemplate */
2155 /* If pTemplate is always better than p, then cause p to be overwritten
2156 ** with pTemplate. pTemplate is better than p if:
2157 ** (1) pTemplate has no more dependences than p, and
2158 ** (2) pTemplate has an equal or lower cost than p.
2160 if( (p->prereq & pTemplate->prereq)==pTemplate->prereq /* (1) */
2161 && p->rRun>=pTemplate->rRun /* (2a) */
2162 && p->nOut>=pTemplate->nOut /* (2b) */
2164 assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */
2165 break; /* Cause p to be overwritten by pTemplate */
2168 return ppPrev;
2172 ** Insert or replace a WhereLoop entry using the template supplied.
2174 ** An existing WhereLoop entry might be overwritten if the new template
2175 ** is better and has fewer dependencies. Or the template will be ignored
2176 ** and no insert will occur if an existing WhereLoop is faster and has
2177 ** fewer dependencies than the template. Otherwise a new WhereLoop is
2178 ** added based on the template.
2180 ** If pBuilder->pOrSet is not NULL then we care about only the
2181 ** prerequisites and rRun and nOut costs of the N best loops. That
2182 ** information is gathered in the pBuilder->pOrSet object. This special
2183 ** processing mode is used only for OR clause processing.
2185 ** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we
2186 ** still might overwrite similar loops with the new template if the
2187 ** new template is better. Loops may be overwritten if the following
2188 ** conditions are met:
2190 ** (1) They have the same iTab.
2191 ** (2) They have the same iSortIdx.
2192 ** (3) The template has same or fewer dependencies than the current loop
2193 ** (4) The template has the same or lower cost than the current loop
2195 static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){
2196 WhereLoop **ppPrev, *p;
2197 WhereInfo *pWInfo = pBuilder->pWInfo;
2198 sqlite3 *db = pWInfo->pParse->db;
2199 int rc;
2201 /* Stop the search once we hit the query planner search limit */
2202 if( pBuilder->iPlanLimit==0 ){
2203 WHERETRACE(0xffffffff,("=== query planner search limit reached ===\n"));
2204 if( pBuilder->pOrSet ) pBuilder->pOrSet->n = 0;
2205 return SQLITE_DONE;
2207 pBuilder->iPlanLimit--;
2209 whereLoopAdjustCost(pWInfo->pLoops, pTemplate);
2211 /* If pBuilder->pOrSet is defined, then only keep track of the costs
2212 ** and prereqs.
2214 if( pBuilder->pOrSet!=0 ){
2215 if( pTemplate->nLTerm ){
2216 #if WHERETRACE_ENABLED
2217 u16 n = pBuilder->pOrSet->n;
2218 int x =
2219 #endif
2220 whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun,
2221 pTemplate->nOut);
2222 #if WHERETRACE_ENABLED /* 0x8 */
2223 if( sqlite3WhereTrace & 0x8 ){
2224 sqlite3DebugPrintf(x?" or-%d: ":" or-X: ", n);
2225 sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC);
2227 #endif
2229 return SQLITE_OK;
2232 /* Look for an existing WhereLoop to replace with pTemplate
2234 ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate);
2236 if( ppPrev==0 ){
2237 /* There already exists a WhereLoop on the list that is better
2238 ** than pTemplate, so just ignore pTemplate */
2239 #if WHERETRACE_ENABLED /* 0x8 */
2240 if( sqlite3WhereTrace & 0x8 ){
2241 sqlite3DebugPrintf(" skip: ");
2242 sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC);
2244 #endif
2245 return SQLITE_OK;
2246 }else{
2247 p = *ppPrev;
2250 /* If we reach this point it means that either p[] should be overwritten
2251 ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new
2252 ** WhereLoop and insert it.
2254 #if WHERETRACE_ENABLED /* 0x8 */
2255 if( sqlite3WhereTrace & 0x8 ){
2256 if( p!=0 ){
2257 sqlite3DebugPrintf("replace: ");
2258 sqlite3WhereLoopPrint(p, pBuilder->pWC);
2259 sqlite3DebugPrintf(" with: ");
2260 }else{
2261 sqlite3DebugPrintf(" add: ");
2263 sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC);
2265 #endif
2266 if( p==0 ){
2267 /* Allocate a new WhereLoop to add to the end of the list */
2268 *ppPrev = p = sqlite3DbMallocRawNN(db, sizeof(WhereLoop));
2269 if( p==0 ) return SQLITE_NOMEM_BKPT;
2270 whereLoopInit(p);
2271 p->pNextLoop = 0;
2272 }else{
2273 /* We will be overwriting WhereLoop p[]. But before we do, first
2274 ** go through the rest of the list and delete any other entries besides
2275 ** p[] that are also supplated by pTemplate */
2276 WhereLoop **ppTail = &p->pNextLoop;
2277 WhereLoop *pToDel;
2278 while( *ppTail ){
2279 ppTail = whereLoopFindLesser(ppTail, pTemplate);
2280 if( ppTail==0 ) break;
2281 pToDel = *ppTail;
2282 if( pToDel==0 ) break;
2283 *ppTail = pToDel->pNextLoop;
2284 #if WHERETRACE_ENABLED /* 0x8 */
2285 if( sqlite3WhereTrace & 0x8 ){
2286 sqlite3DebugPrintf(" delete: ");
2287 sqlite3WhereLoopPrint(pToDel, pBuilder->pWC);
2289 #endif
2290 whereLoopDelete(db, pToDel);
2293 rc = whereLoopXfer(db, p, pTemplate);
2294 if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
2295 Index *pIndex = p->u.btree.pIndex;
2296 if( pIndex && pIndex->idxType==SQLITE_IDXTYPE_IPK ){
2297 p->u.btree.pIndex = 0;
2300 return rc;
2304 ** Adjust the WhereLoop.nOut value downward to account for terms of the
2305 ** WHERE clause that reference the loop but which are not used by an
2306 ** index.
2308 ** For every WHERE clause term that is not used by the index
2309 ** and which has a truth probability assigned by one of the likelihood(),
2310 ** likely(), or unlikely() SQL functions, reduce the estimated number
2311 ** of output rows by the probability specified.
2313 ** TUNING: For every WHERE clause term that is not used by the index
2314 ** and which does not have an assigned truth probability, heuristics
2315 ** described below are used to try to estimate the truth probability.
2316 ** TODO --> Perhaps this is something that could be improved by better
2317 ** table statistics.
2319 ** Heuristic 1: Estimate the truth probability as 93.75%. The 93.75%
2320 ** value corresponds to -1 in LogEst notation, so this means decrement
2321 ** the WhereLoop.nOut field for every such WHERE clause term.
2323 ** Heuristic 2: If there exists one or more WHERE clause terms of the
2324 ** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the
2325 ** final output row estimate is no greater than 1/4 of the total number
2326 ** of rows in the table. In other words, assume that x==EXPR will filter
2327 ** out at least 3 out of 4 rows. If EXPR is -1 or 0 or 1, then maybe the
2328 ** "x" column is boolean or else -1 or 0 or 1 is a common default value
2329 ** on the "x" column and so in that case only cap the output row estimate
2330 ** at 1/2 instead of 1/4.
2332 static void whereLoopOutputAdjust(
2333 WhereClause *pWC, /* The WHERE clause */
2334 WhereLoop *pLoop, /* The loop to adjust downward */
2335 LogEst nRow /* Number of rows in the entire table */
2337 WhereTerm *pTerm, *pX;
2338 Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf);
2339 int i, j;
2340 LogEst iReduce = 0; /* pLoop->nOut should not exceed nRow-iReduce */
2342 assert( (pLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
2343 for(i=pWC->nTerm, pTerm=pWC->a; i>0; i--, pTerm++){
2344 assert( pTerm!=0 );
2345 if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) break;
2346 if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue;
2347 if( (pTerm->prereqAll & notAllowed)!=0 ) continue;
2348 for(j=pLoop->nLTerm-1; j>=0; j--){
2349 pX = pLoop->aLTerm[j];
2350 if( pX==0 ) continue;
2351 if( pX==pTerm ) break;
2352 if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break;
2354 if( j<0 ){
2355 if( pTerm->truthProb<=0 ){
2356 /* If a truth probability is specified using the likelihood() hints,
2357 ** then use the probability provided by the application. */
2358 pLoop->nOut += pTerm->truthProb;
2359 }else{
2360 /* In the absence of explicit truth probabilities, use heuristics to
2361 ** guess a reasonable truth probability. */
2362 pLoop->nOut--;
2363 if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0
2364 && (pTerm->wtFlags & TERM_HIGHTRUTH)==0 /* tag-20200224-1 */
2366 Expr *pRight = pTerm->pExpr->pRight;
2367 int k = 0;
2368 testcase( pTerm->pExpr->op==TK_IS );
2369 if( sqlite3ExprIsInteger(pRight, &k) && k>=(-1) && k<=1 ){
2370 k = 10;
2371 }else{
2372 k = 20;
2374 if( iReduce<k ){
2375 pTerm->wtFlags |= TERM_HEURTRUTH;
2376 iReduce = k;
2382 if( pLoop->nOut > nRow-iReduce ) pLoop->nOut = nRow - iReduce;
2386 ** Term pTerm is a vector range comparison operation. The first comparison
2387 ** in the vector can be optimized using column nEq of the index. This
2388 ** function returns the total number of vector elements that can be used
2389 ** as part of the range comparison.
2391 ** For example, if the query is:
2393 ** WHERE a = ? AND (b, c, d) > (?, ?, ?)
2395 ** and the index:
2397 ** CREATE INDEX ... ON (a, b, c, d, e)
2399 ** then this function would be invoked with nEq=1. The value returned in
2400 ** this case is 3.
2402 static int whereRangeVectorLen(
2403 Parse *pParse, /* Parsing context */
2404 int iCur, /* Cursor open on pIdx */
2405 Index *pIdx, /* The index to be used for a inequality constraint */
2406 int nEq, /* Number of prior equality constraints on same index */
2407 WhereTerm *pTerm /* The vector inequality constraint */
2409 int nCmp = sqlite3ExprVectorSize(pTerm->pExpr->pLeft);
2410 int i;
2412 nCmp = MIN(nCmp, (pIdx->nColumn - nEq));
2413 for(i=1; i<nCmp; i++){
2414 /* Test if comparison i of pTerm is compatible with column (i+nEq)
2415 ** of the index. If not, exit the loop. */
2416 char aff; /* Comparison affinity */
2417 char idxaff = 0; /* Indexed columns affinity */
2418 CollSeq *pColl; /* Comparison collation sequence */
2419 Expr *pLhs = pTerm->pExpr->pLeft->x.pList->a[i].pExpr;
2420 Expr *pRhs = pTerm->pExpr->pRight;
2421 if( pRhs->flags & EP_xIsSelect ){
2422 pRhs = pRhs->x.pSelect->pEList->a[i].pExpr;
2423 }else{
2424 pRhs = pRhs->x.pList->a[i].pExpr;
2427 /* Check that the LHS of the comparison is a column reference to
2428 ** the right column of the right source table. And that the sort
2429 ** order of the index column is the same as the sort order of the
2430 ** leftmost index column. */
2431 if( pLhs->op!=TK_COLUMN
2432 || pLhs->iTable!=iCur
2433 || pLhs->iColumn!=pIdx->aiColumn[i+nEq]
2434 || pIdx->aSortOrder[i+nEq]!=pIdx->aSortOrder[nEq]
2436 break;
2439 testcase( pLhs->iColumn==XN_ROWID );
2440 aff = sqlite3CompareAffinity(pRhs, sqlite3ExprAffinity(pLhs));
2441 idxaff = sqlite3TableColumnAffinity(pIdx->pTable, pLhs->iColumn);
2442 if( aff!=idxaff ) break;
2444 pColl = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2445 if( pColl==0 ) break;
2446 if( sqlite3StrICmp(pColl->zName, pIdx->azColl[i+nEq]) ) break;
2448 return i;
2452 ** Adjust the cost C by the costMult facter T. This only occurs if
2453 ** compiled with -DSQLITE_ENABLE_COSTMULT
2455 #ifdef SQLITE_ENABLE_COSTMULT
2456 # define ApplyCostMultiplier(C,T) C += T
2457 #else
2458 # define ApplyCostMultiplier(C,T)
2459 #endif
2462 ** We have so far matched pBuilder->pNew->u.btree.nEq terms of the
2463 ** index pIndex. Try to match one more.
2465 ** When this function is called, pBuilder->pNew->nOut contains the
2466 ** number of rows expected to be visited by filtering using the nEq
2467 ** terms only. If it is modified, this value is restored before this
2468 ** function returns.
2470 ** If pProbe->idxType==SQLITE_IDXTYPE_IPK, that means pIndex is
2471 ** a fake index used for the INTEGER PRIMARY KEY.
2473 static int whereLoopAddBtreeIndex(
2474 WhereLoopBuilder *pBuilder, /* The WhereLoop factory */
2475 SrcItem *pSrc, /* FROM clause term being analyzed */
2476 Index *pProbe, /* An index on pSrc */
2477 LogEst nInMul /* log(Number of iterations due to IN) */
2479 WhereInfo *pWInfo = pBuilder->pWInfo; /* WHERE analyse context */
2480 Parse *pParse = pWInfo->pParse; /* Parsing context */
2481 sqlite3 *db = pParse->db; /* Database connection malloc context */
2482 WhereLoop *pNew; /* Template WhereLoop under construction */
2483 WhereTerm *pTerm; /* A WhereTerm under consideration */
2484 int opMask; /* Valid operators for constraints */
2485 WhereScan scan; /* Iterator for WHERE terms */
2486 Bitmask saved_prereq; /* Original value of pNew->prereq */
2487 u16 saved_nLTerm; /* Original value of pNew->nLTerm */
2488 u16 saved_nEq; /* Original value of pNew->u.btree.nEq */
2489 u16 saved_nBtm; /* Original value of pNew->u.btree.nBtm */
2490 u16 saved_nTop; /* Original value of pNew->u.btree.nTop */
2491 u16 saved_nSkip; /* Original value of pNew->nSkip */
2492 u32 saved_wsFlags; /* Original value of pNew->wsFlags */
2493 LogEst saved_nOut; /* Original value of pNew->nOut */
2494 int rc = SQLITE_OK; /* Return code */
2495 LogEst rSize; /* Number of rows in the table */
2496 LogEst rLogSize; /* Logarithm of table size */
2497 WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */
2499 pNew = pBuilder->pNew;
2500 if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;
2501 WHERETRACE(0x800, ("BEGIN %s.addBtreeIdx(%s), nEq=%d, nSkip=%d, rRun=%d\n",
2502 pProbe->pTable->zName,pProbe->zName,
2503 pNew->u.btree.nEq, pNew->nSkip, pNew->rRun));
2505 assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 );
2506 assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 );
2507 if( pNew->wsFlags & WHERE_BTM_LIMIT ){
2508 opMask = WO_LT|WO_LE;
2509 }else{
2510 assert( pNew->u.btree.nBtm==0 );
2511 opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE|WO_ISNULL|WO_IS;
2513 if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE);
2515 assert( pNew->u.btree.nEq<pProbe->nColumn );
2516 assert( pNew->u.btree.nEq<pProbe->nKeyCol
2517 || pProbe->idxType!=SQLITE_IDXTYPE_PRIMARYKEY );
2519 saved_nEq = pNew->u.btree.nEq;
2520 saved_nBtm = pNew->u.btree.nBtm;
2521 saved_nTop = pNew->u.btree.nTop;
2522 saved_nSkip = pNew->nSkip;
2523 saved_nLTerm = pNew->nLTerm;
2524 saved_wsFlags = pNew->wsFlags;
2525 saved_prereq = pNew->prereq;
2526 saved_nOut = pNew->nOut;
2527 pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, saved_nEq,
2528 opMask, pProbe);
2529 pNew->rSetup = 0;
2530 rSize = pProbe->aiRowLogEst[0];
2531 rLogSize = estLog(rSize);
2532 for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){
2533 u16 eOp = pTerm->eOperator; /* Shorthand for pTerm->eOperator */
2534 LogEst rCostIdx;
2535 LogEst nOutUnadjusted; /* nOut before IN() and WHERE adjustments */
2536 int nIn = 0;
2537 #ifdef SQLITE_ENABLE_STAT4
2538 int nRecValid = pBuilder->nRecValid;
2539 #endif
2540 if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0)
2541 && indexColumnNotNull(pProbe, saved_nEq)
2543 continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */
2545 if( pTerm->prereqRight & pNew->maskSelf ) continue;
2547 /* Do not allow the upper bound of a LIKE optimization range constraint
2548 ** to mix with a lower range bound from some other source */
2549 if( pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT ) continue;
2551 /* tag-20191211-001: Do not allow constraints from the WHERE clause to
2552 ** be used by the right table of a LEFT JOIN. Only constraints in the
2553 ** ON clause are allowed. See tag-20191211-002 for the vtab equivalent. */
2554 if( (pSrc->fg.jointype & JT_LEFT)!=0
2555 && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
2557 continue;
2560 if( IsUniqueIndex(pProbe) && saved_nEq==pProbe->nKeyCol-1 ){
2561 pBuilder->bldFlags1 |= SQLITE_BLDF1_UNIQUE;
2562 }else{
2563 pBuilder->bldFlags1 |= SQLITE_BLDF1_INDEXED;
2565 pNew->wsFlags = saved_wsFlags;
2566 pNew->u.btree.nEq = saved_nEq;
2567 pNew->u.btree.nBtm = saved_nBtm;
2568 pNew->u.btree.nTop = saved_nTop;
2569 pNew->nLTerm = saved_nLTerm;
2570 if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
2571 pNew->aLTerm[pNew->nLTerm++] = pTerm;
2572 pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf;
2574 assert( nInMul==0
2575 || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0
2576 || (pNew->wsFlags & WHERE_COLUMN_IN)!=0
2577 || (pNew->wsFlags & WHERE_SKIPSCAN)!=0
2580 if( eOp & WO_IN ){
2581 Expr *pExpr = pTerm->pExpr;
2582 if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2583 /* "x IN (SELECT ...)": TUNING: the SELECT returns 25 rows */
2584 int i;
2585 nIn = 46; assert( 46==sqlite3LogEst(25) );
2587 /* The expression may actually be of the form (x, y) IN (SELECT...).
2588 ** In this case there is a separate term for each of (x) and (y).
2589 ** However, the nIn multiplier should only be applied once, not once
2590 ** for each such term. The following loop checks that pTerm is the
2591 ** first such term in use, and sets nIn back to 0 if it is not. */
2592 for(i=0; i<pNew->nLTerm-1; i++){
2593 if( pNew->aLTerm[i] && pNew->aLTerm[i]->pExpr==pExpr ) nIn = 0;
2595 }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){
2596 /* "x IN (value, value, ...)" */
2597 nIn = sqlite3LogEst(pExpr->x.pList->nExpr);
2599 if( pProbe->hasStat1 && rLogSize>=10 ){
2600 LogEst M, logK, x;
2601 /* Let:
2602 ** N = the total number of rows in the table
2603 ** K = the number of entries on the RHS of the IN operator
2604 ** M = the number of rows in the table that match terms to the
2605 ** to the left in the same index. If the IN operator is on
2606 ** the left-most index column, M==N.
2608 ** Given the definitions above, it is better to omit the IN operator
2609 ** from the index lookup and instead do a scan of the M elements,
2610 ** testing each scanned row against the IN operator separately, if:
2612 ** M*log(K) < K*log(N)
2614 ** Our estimates for M, K, and N might be inaccurate, so we build in
2615 ** a safety margin of 2 (LogEst: 10) that favors using the IN operator
2616 ** with the index, as using an index has better worst-case behavior.
2617 ** If we do not have real sqlite_stat1 data, always prefer to use
2618 ** the index. Do not bother with this optimization on very small
2619 ** tables (less than 2 rows) as it is pointless in that case.
2621 M = pProbe->aiRowLogEst[saved_nEq];
2622 logK = estLog(nIn);
2623 /* TUNING v----- 10 to bias toward indexed IN */
2624 x = M + logK + 10 - (nIn + rLogSize);
2625 if( x>=0 ){
2626 WHERETRACE(0x40,
2627 ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d) "
2628 "prefers indexed lookup\n",
2629 saved_nEq, M, logK, nIn, rLogSize, x));
2630 }else if( nInMul<2 && OptimizationEnabled(db, SQLITE_SeekScan) ){
2631 WHERETRACE(0x40,
2632 ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d"
2633 " nInMul=%d) prefers skip-scan\n",
2634 saved_nEq, M, logK, nIn, rLogSize, x, nInMul));
2635 pNew->wsFlags |= WHERE_IN_SEEKSCAN;
2636 }else{
2637 WHERETRACE(0x40,
2638 ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d"
2639 " nInMul=%d) prefers normal scan\n",
2640 saved_nEq, M, logK, nIn, rLogSize, x, nInMul));
2641 continue;
2644 pNew->wsFlags |= WHERE_COLUMN_IN;
2645 }else if( eOp & (WO_EQ|WO_IS) ){
2646 int iCol = pProbe->aiColumn[saved_nEq];
2647 pNew->wsFlags |= WHERE_COLUMN_EQ;
2648 assert( saved_nEq==pNew->u.btree.nEq );
2649 if( iCol==XN_ROWID
2650 || (iCol>=0 && nInMul==0 && saved_nEq==pProbe->nKeyCol-1)
2652 if( iCol==XN_ROWID || pProbe->uniqNotNull
2653 || (pProbe->nKeyCol==1 && pProbe->onError && eOp==WO_EQ)
2655 pNew->wsFlags |= WHERE_ONEROW;
2656 }else{
2657 pNew->wsFlags |= WHERE_UNQ_WANTED;
2660 if( scan.iEquiv>1 ) pNew->wsFlags |= WHERE_TRANSCONS;
2661 }else if( eOp & WO_ISNULL ){
2662 pNew->wsFlags |= WHERE_COLUMN_NULL;
2663 }else if( eOp & (WO_GT|WO_GE) ){
2664 testcase( eOp & WO_GT );
2665 testcase( eOp & WO_GE );
2666 pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT;
2667 pNew->u.btree.nBtm = whereRangeVectorLen(
2668 pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm
2670 pBtm = pTerm;
2671 pTop = 0;
2672 if( pTerm->wtFlags & TERM_LIKEOPT ){
2673 /* Range constraints that come from the LIKE optimization are
2674 ** always used in pairs. */
2675 pTop = &pTerm[1];
2676 assert( (pTop-(pTerm->pWC->a))<pTerm->pWC->nTerm );
2677 assert( pTop->wtFlags & TERM_LIKEOPT );
2678 assert( pTop->eOperator==WO_LT );
2679 if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
2680 pNew->aLTerm[pNew->nLTerm++] = pTop;
2681 pNew->wsFlags |= WHERE_TOP_LIMIT;
2682 pNew->u.btree.nTop = 1;
2684 }else{
2685 assert( eOp & (WO_LT|WO_LE) );
2686 testcase( eOp & WO_LT );
2687 testcase( eOp & WO_LE );
2688 pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT;
2689 pNew->u.btree.nTop = whereRangeVectorLen(
2690 pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm
2692 pTop = pTerm;
2693 pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ?
2694 pNew->aLTerm[pNew->nLTerm-2] : 0;
2697 /* At this point pNew->nOut is set to the number of rows expected to
2698 ** be visited by the index scan before considering term pTerm, or the
2699 ** values of nIn and nInMul. In other words, assuming that all
2700 ** "x IN(...)" terms are replaced with "x = ?". This block updates
2701 ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul). */
2702 assert( pNew->nOut==saved_nOut );
2703 if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
2704 /* Adjust nOut using stat4 data. Or, if there is no stat4
2705 ** data, using some other estimate. */
2706 whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew);
2707 }else{
2708 int nEq = ++pNew->u.btree.nEq;
2709 assert( eOp & (WO_ISNULL|WO_EQ|WO_IN|WO_IS) );
2711 assert( pNew->nOut==saved_nOut );
2712 if( pTerm->truthProb<=0 && pProbe->aiColumn[saved_nEq]>=0 ){
2713 assert( (eOp & WO_IN) || nIn==0 );
2714 testcase( eOp & WO_IN );
2715 pNew->nOut += pTerm->truthProb;
2716 pNew->nOut -= nIn;
2717 }else{
2718 #ifdef SQLITE_ENABLE_STAT4
2719 tRowcnt nOut = 0;
2720 if( nInMul==0
2721 && pProbe->nSample
2722 && ALWAYS(pNew->u.btree.nEq<=pProbe->nSampleCol)
2723 && ((eOp & WO_IN)==0 || !ExprHasProperty(pTerm->pExpr, EP_xIsSelect))
2724 && OptimizationEnabled(db, SQLITE_Stat4)
2726 Expr *pExpr = pTerm->pExpr;
2727 if( (eOp & (WO_EQ|WO_ISNULL|WO_IS))!=0 ){
2728 testcase( eOp & WO_EQ );
2729 testcase( eOp & WO_IS );
2730 testcase( eOp & WO_ISNULL );
2731 rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut);
2732 }else{
2733 rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut);
2735 if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK;
2736 if( rc!=SQLITE_OK ) break; /* Jump out of the pTerm loop */
2737 if( nOut ){
2738 pNew->nOut = sqlite3LogEst(nOut);
2739 if( nEq==1
2740 /* TUNING: Mark terms as "low selectivity" if they seem likely
2741 ** to be true for half or more of the rows in the table.
2742 ** See tag-202002240-1 */
2743 && pNew->nOut+10 > pProbe->aiRowLogEst[0]
2745 #if WHERETRACE_ENABLED /* 0x01 */
2746 if( sqlite3WhereTrace & 0x01 ){
2747 sqlite3DebugPrintf(
2748 "STAT4 determines term has low selectivity:\n");
2749 sqlite3WhereTermPrint(pTerm, 999);
2751 #endif
2752 pTerm->wtFlags |= TERM_HIGHTRUTH;
2753 if( pTerm->wtFlags & TERM_HEURTRUTH ){
2754 /* If the term has previously been used with an assumption of
2755 ** higher selectivity, then set the flag to rerun the
2756 ** loop computations. */
2757 pBuilder->bldFlags2 |= SQLITE_BLDF2_2NDPASS;
2760 if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut;
2761 pNew->nOut -= nIn;
2764 if( nOut==0 )
2765 #endif
2767 pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]);
2768 if( eOp & WO_ISNULL ){
2769 /* TUNING: If there is no likelihood() value, assume that a
2770 ** "col IS NULL" expression matches twice as many rows
2771 ** as (col=?). */
2772 pNew->nOut += 10;
2778 /* Set rCostIdx to the cost of visiting selected rows in index. Add
2779 ** it to pNew->rRun, which is currently set to the cost of the index
2780 ** seek only. Then, if this is a non-covering index, add the cost of
2781 ** visiting the rows in the main table. */
2782 assert( pSrc->pTab->szTabRow>0 );
2783 rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow;
2784 pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx);
2785 if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0 ){
2786 pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16);
2788 ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult);
2790 nOutUnadjusted = pNew->nOut;
2791 pNew->rRun += nInMul + nIn;
2792 pNew->nOut += nInMul + nIn;
2793 whereLoopOutputAdjust(pBuilder->pWC, pNew, rSize);
2794 rc = whereLoopInsert(pBuilder, pNew);
2796 if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
2797 pNew->nOut = saved_nOut;
2798 }else{
2799 pNew->nOut = nOutUnadjusted;
2802 if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0
2803 && pNew->u.btree.nEq<pProbe->nColumn
2804 && (pNew->u.btree.nEq<pProbe->nKeyCol ||
2805 pProbe->idxType!=SQLITE_IDXTYPE_PRIMARYKEY)
2807 whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn);
2809 pNew->nOut = saved_nOut;
2810 #ifdef SQLITE_ENABLE_STAT4
2811 pBuilder->nRecValid = nRecValid;
2812 #endif
2814 pNew->prereq = saved_prereq;
2815 pNew->u.btree.nEq = saved_nEq;
2816 pNew->u.btree.nBtm = saved_nBtm;
2817 pNew->u.btree.nTop = saved_nTop;
2818 pNew->nSkip = saved_nSkip;
2819 pNew->wsFlags = saved_wsFlags;
2820 pNew->nOut = saved_nOut;
2821 pNew->nLTerm = saved_nLTerm;
2823 /* Consider using a skip-scan if there are no WHERE clause constraints
2824 ** available for the left-most terms of the index, and if the average
2825 ** number of repeats in the left-most terms is at least 18.
2827 ** The magic number 18 is selected on the basis that scanning 17 rows
2828 ** is almost always quicker than an index seek (even though if the index
2829 ** contains fewer than 2^17 rows we assume otherwise in other parts of
2830 ** the code). And, even if it is not, it should not be too much slower.
2831 ** On the other hand, the extra seeks could end up being significantly
2832 ** more expensive. */
2833 assert( 42==sqlite3LogEst(18) );
2834 if( saved_nEq==saved_nSkip
2835 && saved_nEq+1<pProbe->nKeyCol
2836 && saved_nEq==pNew->nLTerm
2837 && pProbe->noSkipScan==0
2838 && pProbe->hasStat1!=0
2839 && OptimizationEnabled(db, SQLITE_SkipScan)
2840 && pProbe->aiRowLogEst[saved_nEq+1]>=42 /* TUNING: Minimum for skip-scan */
2841 && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK
2843 LogEst nIter;
2844 pNew->u.btree.nEq++;
2845 pNew->nSkip++;
2846 pNew->aLTerm[pNew->nLTerm++] = 0;
2847 pNew->wsFlags |= WHERE_SKIPSCAN;
2848 nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1];
2849 pNew->nOut -= nIter;
2850 /* TUNING: Because uncertainties in the estimates for skip-scan queries,
2851 ** add a 1.375 fudge factor to make skip-scan slightly less likely. */
2852 nIter += 5;
2853 whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul);
2854 pNew->nOut = saved_nOut;
2855 pNew->u.btree.nEq = saved_nEq;
2856 pNew->nSkip = saved_nSkip;
2857 pNew->wsFlags = saved_wsFlags;
2860 WHERETRACE(0x800, ("END %s.addBtreeIdx(%s), nEq=%d, rc=%d\n",
2861 pProbe->pTable->zName, pProbe->zName, saved_nEq, rc));
2862 return rc;
2866 ** Return True if it is possible that pIndex might be useful in
2867 ** implementing the ORDER BY clause in pBuilder.
2869 ** Return False if pBuilder does not contain an ORDER BY clause or
2870 ** if there is no way for pIndex to be useful in implementing that
2871 ** ORDER BY clause.
2873 static int indexMightHelpWithOrderBy(
2874 WhereLoopBuilder *pBuilder,
2875 Index *pIndex,
2876 int iCursor
2878 ExprList *pOB;
2879 ExprList *aColExpr;
2880 int ii, jj;
2882 if( pIndex->bUnordered ) return 0;
2883 if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0;
2884 for(ii=0; ii<pOB->nExpr; ii++){
2885 Expr *pExpr = sqlite3ExprSkipCollateAndLikely(pOB->a[ii].pExpr);
2886 if( NEVER(pExpr==0) ) continue;
2887 if( pExpr->op==TK_COLUMN && pExpr->iTable==iCursor ){
2888 if( pExpr->iColumn<0 ) return 1;
2889 for(jj=0; jj<pIndex->nKeyCol; jj++){
2890 if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1;
2892 }else if( (aColExpr = pIndex->aColExpr)!=0 ){
2893 for(jj=0; jj<pIndex->nKeyCol; jj++){
2894 if( pIndex->aiColumn[jj]!=XN_EXPR ) continue;
2895 if( sqlite3ExprCompareSkip(pExpr,aColExpr->a[jj].pExpr,iCursor)==0 ){
2896 return 1;
2901 return 0;
2904 /* Check to see if a partial index with pPartIndexWhere can be used
2905 ** in the current query. Return true if it can be and false if not.
2907 static int whereUsablePartialIndex(
2908 int iTab, /* The table for which we want an index */
2909 int isLeft, /* True if iTab is the right table of a LEFT JOIN */
2910 WhereClause *pWC, /* The WHERE clause of the query */
2911 Expr *pWhere /* The WHERE clause from the partial index */
2913 int i;
2914 WhereTerm *pTerm;
2915 Parse *pParse = pWC->pWInfo->pParse;
2916 while( pWhere->op==TK_AND ){
2917 if( !whereUsablePartialIndex(iTab,isLeft,pWC,pWhere->pLeft) ) return 0;
2918 pWhere = pWhere->pRight;
2920 if( pParse->db->flags & SQLITE_EnableQPSG ) pParse = 0;
2921 for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
2922 Expr *pExpr;
2923 pExpr = pTerm->pExpr;
2924 if( (!ExprHasProperty(pExpr, EP_FromJoin) || pExpr->iRightJoinTable==iTab)
2925 && (isLeft==0 || ExprHasProperty(pExpr, EP_FromJoin))
2926 && sqlite3ExprImpliesExpr(pParse, pExpr, pWhere, iTab)
2927 && (pTerm->wtFlags & TERM_VNULL)==0
2929 return 1;
2932 return 0;
2936 ** Add all WhereLoop objects for a single table of the join where the table
2937 ** is identified by pBuilder->pNew->iTab. That table is guaranteed to be
2938 ** a b-tree table, not a virtual table.
2940 ** The costs (WhereLoop.rRun) of the b-tree loops added by this function
2941 ** are calculated as follows:
2943 ** For a full scan, assuming the table (or index) contains nRow rows:
2945 ** cost = nRow * 3.0 // full-table scan
2946 ** cost = nRow * K // scan of covering index
2947 ** cost = nRow * (K+3.0) // scan of non-covering index
2949 ** where K is a value between 1.1 and 3.0 set based on the relative
2950 ** estimated average size of the index and table records.
2952 ** For an index scan, where nVisit is the number of index rows visited
2953 ** by the scan, and nSeek is the number of seek operations required on
2954 ** the index b-tree:
2956 ** cost = nSeek * (log(nRow) + K * nVisit) // covering index
2957 ** cost = nSeek * (log(nRow) + (K+3.0) * nVisit) // non-covering index
2959 ** Normally, nSeek is 1. nSeek values greater than 1 come about if the
2960 ** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when
2961 ** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans.
2963 ** The estimated values (nRow, nVisit, nSeek) often contain a large amount
2964 ** of uncertainty. For this reason, scoring is designed to pick plans that
2965 ** "do the least harm" if the estimates are inaccurate. For example, a
2966 ** log(nRow) factor is omitted from a non-covering index scan in order to
2967 ** bias the scoring in favor of using an index, since the worst-case
2968 ** performance of using an index is far better than the worst-case performance
2969 ** of a full table scan.
2971 static int whereLoopAddBtree(
2972 WhereLoopBuilder *pBuilder, /* WHERE clause information */
2973 Bitmask mPrereq /* Extra prerequesites for using this table */
2975 WhereInfo *pWInfo; /* WHERE analysis context */
2976 Index *pProbe; /* An index we are evaluating */
2977 Index sPk; /* A fake index object for the primary key */
2978 LogEst aiRowEstPk[2]; /* The aiRowLogEst[] value for the sPk index */
2979 i16 aiColumnPk = -1; /* The aColumn[] value for the sPk index */
2980 SrcList *pTabList; /* The FROM clause */
2981 SrcItem *pSrc; /* The FROM clause btree term to add */
2982 WhereLoop *pNew; /* Template WhereLoop object */
2983 int rc = SQLITE_OK; /* Return code */
2984 int iSortIdx = 1; /* Index number */
2985 int b; /* A boolean value */
2986 LogEst rSize; /* number of rows in the table */
2987 LogEst rLogSize; /* Logarithm of the number of rows in the table */
2988 WhereClause *pWC; /* The parsed WHERE clause */
2989 Table *pTab; /* Table being queried */
2991 pNew = pBuilder->pNew;
2992 pWInfo = pBuilder->pWInfo;
2993 pTabList = pWInfo->pTabList;
2994 pSrc = pTabList->a + pNew->iTab;
2995 pTab = pSrc->pTab;
2996 pWC = pBuilder->pWC;
2997 assert( !IsVirtual(pSrc->pTab) );
2999 if( pSrc->fg.isIndexedBy ){
3000 /* An INDEXED BY clause specifies a particular index to use */
3001 pProbe = pSrc->u2.pIBIndex;
3002 }else if( !HasRowid(pTab) ){
3003 pProbe = pTab->pIndex;
3004 }else{
3005 /* There is no INDEXED BY clause. Create a fake Index object in local
3006 ** variable sPk to represent the rowid primary key index. Make this
3007 ** fake index the first in a chain of Index objects with all of the real
3008 ** indices to follow */
3009 Index *pFirst; /* First of real indices on the table */
3010 memset(&sPk, 0, sizeof(Index));
3011 sPk.nKeyCol = 1;
3012 sPk.nColumn = 1;
3013 sPk.aiColumn = &aiColumnPk;
3014 sPk.aiRowLogEst = aiRowEstPk;
3015 sPk.onError = OE_Replace;
3016 sPk.pTable = pTab;
3017 sPk.szIdxRow = pTab->szTabRow;
3018 sPk.idxType = SQLITE_IDXTYPE_IPK;
3019 aiRowEstPk[0] = pTab->nRowLogEst;
3020 aiRowEstPk[1] = 0;
3021 pFirst = pSrc->pTab->pIndex;
3022 if( pSrc->fg.notIndexed==0 ){
3023 /* The real indices of the table are only considered if the
3024 ** NOT INDEXED qualifier is omitted from the FROM clause */
3025 sPk.pNext = pFirst;
3027 pProbe = &sPk;
3029 rSize = pTab->nRowLogEst;
3030 rLogSize = estLog(rSize);
3032 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
3033 /* Automatic indexes */
3034 if( !pBuilder->pOrSet /* Not part of an OR optimization */
3035 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0
3036 && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0
3037 && !pSrc->fg.isIndexedBy /* Has no INDEXED BY clause */
3038 && !pSrc->fg.notIndexed /* Has no NOT INDEXED clause */
3039 && HasRowid(pTab) /* Not WITHOUT ROWID table. (FIXME: Why not?) */
3040 && !pSrc->fg.isCorrelated /* Not a correlated subquery */
3041 && !pSrc->fg.isRecursive /* Not a recursive common table expression. */
3043 /* Generate auto-index WhereLoops */
3044 WhereTerm *pTerm;
3045 WhereTerm *pWCEnd = pWC->a + pWC->nTerm;
3046 for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){
3047 if( pTerm->prereqRight & pNew->maskSelf ) continue;
3048 if( termCanDriveIndex(pTerm, pSrc, 0) ){
3049 pNew->u.btree.nEq = 1;
3050 pNew->nSkip = 0;
3051 pNew->u.btree.pIndex = 0;
3052 pNew->nLTerm = 1;
3053 pNew->aLTerm[0] = pTerm;
3054 /* TUNING: One-time cost for computing the automatic index is
3055 ** estimated to be X*N*log2(N) where N is the number of rows in
3056 ** the table being indexed and where X is 7 (LogEst=28) for normal
3057 ** tables or 0.5 (LogEst=-10) for views and subqueries. The value
3058 ** of X is smaller for views and subqueries so that the query planner
3059 ** will be more aggressive about generating automatic indexes for
3060 ** those objects, since there is no opportunity to add schema
3061 ** indexes on subqueries and views. */
3062 pNew->rSetup = rLogSize + rSize;
3063 if( pTab->pSelect==0 && (pTab->tabFlags & TF_Ephemeral)==0 ){
3064 pNew->rSetup += 28;
3065 }else{
3066 pNew->rSetup -= 10;
3068 ApplyCostMultiplier(pNew->rSetup, pTab->costMult);
3069 if( pNew->rSetup<0 ) pNew->rSetup = 0;
3070 /* TUNING: Each index lookup yields 20 rows in the table. This
3071 ** is more than the usual guess of 10 rows, since we have no way
3072 ** of knowing how selective the index will ultimately be. It would
3073 ** not be unreasonable to make this value much larger. */
3074 pNew->nOut = 43; assert( 43==sqlite3LogEst(20) );
3075 pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut);
3076 pNew->wsFlags = WHERE_AUTO_INDEX;
3077 pNew->prereq = mPrereq | pTerm->prereqRight;
3078 rc = whereLoopInsert(pBuilder, pNew);
3082 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
3084 /* Loop over all indices. If there was an INDEXED BY clause, then only
3085 ** consider index pProbe. */
3086 for(; rc==SQLITE_OK && pProbe;
3087 pProbe=(pSrc->fg.isIndexedBy ? 0 : pProbe->pNext), iSortIdx++
3089 int isLeft = (pSrc->fg.jointype & JT_OUTER)!=0;
3090 if( pProbe->pPartIdxWhere!=0
3091 && !whereUsablePartialIndex(pSrc->iCursor, isLeft, pWC,
3092 pProbe->pPartIdxWhere)
3094 testcase( pNew->iTab!=pSrc->iCursor ); /* See ticket [98d973b8f5] */
3095 continue; /* Partial index inappropriate for this query */
3097 if( pProbe->bNoQuery ) continue;
3098 rSize = pProbe->aiRowLogEst[0];
3099 pNew->u.btree.nEq = 0;
3100 pNew->u.btree.nBtm = 0;
3101 pNew->u.btree.nTop = 0;
3102 pNew->nSkip = 0;
3103 pNew->nLTerm = 0;
3104 pNew->iSortIdx = 0;
3105 pNew->rSetup = 0;
3106 pNew->prereq = mPrereq;
3107 pNew->nOut = rSize;
3108 pNew->u.btree.pIndex = pProbe;
3109 b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor);
3111 /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */
3112 assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 );
3113 if( pProbe->idxType==SQLITE_IDXTYPE_IPK ){
3114 /* Integer primary key index */
3115 pNew->wsFlags = WHERE_IPK;
3117 /* Full table scan */
3118 pNew->iSortIdx = b ? iSortIdx : 0;
3119 /* TUNING: Cost of full table scan is 3.0*N. The 3.0 factor is an
3120 ** extra cost designed to discourage the use of full table scans,
3121 ** since index lookups have better worst-case performance if our
3122 ** stat guesses are wrong. Reduce the 3.0 penalty slightly
3123 ** (to 2.75) if we have valid STAT4 information for the table.
3124 ** At 2.75, a full table scan is preferred over using an index on
3125 ** a column with just two distinct values where each value has about
3126 ** an equal number of appearances. Without STAT4 data, we still want
3127 ** to use an index in that case, since the constraint might be for
3128 ** the scarcer of the two values, and in that case an index lookup is
3129 ** better.
3131 #ifdef SQLITE_ENABLE_STAT4
3132 pNew->rRun = rSize + 16 - 2*((pTab->tabFlags & TF_HasStat4)!=0);
3133 #else
3134 pNew->rRun = rSize + 16;
3135 #endif
3136 ApplyCostMultiplier(pNew->rRun, pTab->costMult);
3137 whereLoopOutputAdjust(pWC, pNew, rSize);
3138 rc = whereLoopInsert(pBuilder, pNew);
3139 pNew->nOut = rSize;
3140 if( rc ) break;
3141 }else{
3142 Bitmask m;
3143 if( pProbe->isCovering ){
3144 pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED;
3145 m = 0;
3146 }else{
3147 m = pSrc->colUsed & pProbe->colNotIdxed;
3148 pNew->wsFlags = (m==0) ? (WHERE_IDX_ONLY|WHERE_INDEXED) : WHERE_INDEXED;
3151 /* Full scan via index */
3152 if( b
3153 || !HasRowid(pTab)
3154 || pProbe->pPartIdxWhere!=0
3155 || pSrc->fg.isIndexedBy
3156 || ( m==0
3157 && pProbe->bUnordered==0
3158 && (pProbe->szIdxRow<pTab->szTabRow)
3159 && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0
3160 && sqlite3GlobalConfig.bUseCis
3161 && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan)
3164 pNew->iSortIdx = b ? iSortIdx : 0;
3166 /* The cost of visiting the index rows is N*K, where K is
3167 ** between 1.1 and 3.0, depending on the relative sizes of the
3168 ** index and table rows. */
3169 pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow;
3170 if( m!=0 ){
3171 /* If this is a non-covering index scan, add in the cost of
3172 ** doing table lookups. The cost will be 3x the number of
3173 ** lookups. Take into account WHERE clause terms that can be
3174 ** satisfied using just the index, and that do not require a
3175 ** table lookup. */
3176 LogEst nLookup = rSize + 16; /* Base cost: N*3 */
3177 int ii;
3178 int iCur = pSrc->iCursor;
3179 WhereClause *pWC2 = &pWInfo->sWC;
3180 for(ii=0; ii<pWC2->nTerm; ii++){
3181 WhereTerm *pTerm = &pWC2->a[ii];
3182 if( !sqlite3ExprCoveredByIndex(pTerm->pExpr, iCur, pProbe) ){
3183 break;
3185 /* pTerm can be evaluated using just the index. So reduce
3186 ** the expected number of table lookups accordingly */
3187 if( pTerm->truthProb<=0 ){
3188 nLookup += pTerm->truthProb;
3189 }else{
3190 nLookup--;
3191 if( pTerm->eOperator & (WO_EQ|WO_IS) ) nLookup -= 19;
3195 pNew->rRun = sqlite3LogEstAdd(pNew->rRun, nLookup);
3197 ApplyCostMultiplier(pNew->rRun, pTab->costMult);
3198 whereLoopOutputAdjust(pWC, pNew, rSize);
3199 rc = whereLoopInsert(pBuilder, pNew);
3200 pNew->nOut = rSize;
3201 if( rc ) break;
3205 pBuilder->bldFlags1 = 0;
3206 rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0);
3207 if( pBuilder->bldFlags1==SQLITE_BLDF1_INDEXED ){
3208 /* If a non-unique index is used, or if a prefix of the key for
3209 ** unique index is used (making the index functionally non-unique)
3210 ** then the sqlite_stat1 data becomes important for scoring the
3211 ** plan */
3212 pTab->tabFlags |= TF_StatsUsed;
3214 #ifdef SQLITE_ENABLE_STAT4
3215 sqlite3Stat4ProbeFree(pBuilder->pRec);
3216 pBuilder->nRecValid = 0;
3217 pBuilder->pRec = 0;
3218 #endif
3220 return rc;
3223 #ifndef SQLITE_OMIT_VIRTUALTABLE
3226 ** Argument pIdxInfo is already populated with all constraints that may
3227 ** be used by the virtual table identified by pBuilder->pNew->iTab. This
3228 ** function marks a subset of those constraints usable, invokes the
3229 ** xBestIndex method and adds the returned plan to pBuilder.
3231 ** A constraint is marked usable if:
3233 ** * Argument mUsable indicates that its prerequisites are available, and
3235 ** * It is not one of the operators specified in the mExclude mask passed
3236 ** as the fourth argument (which in practice is either WO_IN or 0).
3238 ** Argument mPrereq is a mask of tables that must be scanned before the
3239 ** virtual table in question. These are added to the plans prerequisites
3240 ** before it is added to pBuilder.
3242 ** Output parameter *pbIn is set to true if the plan added to pBuilder
3243 ** uses one or more WO_IN terms, or false otherwise.
3245 static int whereLoopAddVirtualOne(
3246 WhereLoopBuilder *pBuilder,
3247 Bitmask mPrereq, /* Mask of tables that must be used. */
3248 Bitmask mUsable, /* Mask of usable tables */
3249 u16 mExclude, /* Exclude terms using these operators */
3250 sqlite3_index_info *pIdxInfo, /* Populated object for xBestIndex */
3251 u16 mNoOmit, /* Do not omit these constraints */
3252 int *pbIn /* OUT: True if plan uses an IN(...) op */
3254 WhereClause *pWC = pBuilder->pWC;
3255 struct sqlite3_index_constraint *pIdxCons;
3256 struct sqlite3_index_constraint_usage *pUsage = pIdxInfo->aConstraintUsage;
3257 int i;
3258 int mxTerm;
3259 int rc = SQLITE_OK;
3260 WhereLoop *pNew = pBuilder->pNew;
3261 Parse *pParse = pBuilder->pWInfo->pParse;
3262 SrcItem *pSrc = &pBuilder->pWInfo->pTabList->a[pNew->iTab];
3263 int nConstraint = pIdxInfo->nConstraint;
3265 assert( (mUsable & mPrereq)==mPrereq );
3266 *pbIn = 0;
3267 pNew->prereq = mPrereq;
3269 /* Set the usable flag on the subset of constraints identified by
3270 ** arguments mUsable and mExclude. */
3271 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
3272 for(i=0; i<nConstraint; i++, pIdxCons++){
3273 WhereTerm *pTerm = &pWC->a[pIdxCons->iTermOffset];
3274 pIdxCons->usable = 0;
3275 if( (pTerm->prereqRight & mUsable)==pTerm->prereqRight
3276 && (pTerm->eOperator & mExclude)==0
3278 pIdxCons->usable = 1;
3282 /* Initialize the output fields of the sqlite3_index_info structure */
3283 memset(pUsage, 0, sizeof(pUsage[0])*nConstraint);
3284 assert( pIdxInfo->needToFreeIdxStr==0 );
3285 pIdxInfo->idxStr = 0;
3286 pIdxInfo->idxNum = 0;
3287 pIdxInfo->orderByConsumed = 0;
3288 pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2;
3289 pIdxInfo->estimatedRows = 25;
3290 pIdxInfo->idxFlags = 0;
3291 pIdxInfo->colUsed = (sqlite3_int64)pSrc->colUsed;
3293 /* Invoke the virtual table xBestIndex() method */
3294 rc = vtabBestIndex(pParse, pSrc->pTab, pIdxInfo);
3295 if( rc ){
3296 if( rc==SQLITE_CONSTRAINT ){
3297 /* If the xBestIndex method returns SQLITE_CONSTRAINT, that means
3298 ** that the particular combination of parameters provided is unusable.
3299 ** Make no entries in the loop table.
3301 WHERETRACE(0xffff, (" ^^^^--- non-viable plan rejected!\n"));
3302 return SQLITE_OK;
3304 return rc;
3307 mxTerm = -1;
3308 assert( pNew->nLSlot>=nConstraint );
3309 for(i=0; i<nConstraint; i++) pNew->aLTerm[i] = 0;
3310 pNew->u.vtab.omitMask = 0;
3311 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
3312 for(i=0; i<nConstraint; i++, pIdxCons++){
3313 int iTerm;
3314 if( (iTerm = pUsage[i].argvIndex - 1)>=0 ){
3315 WhereTerm *pTerm;
3316 int j = pIdxCons->iTermOffset;
3317 if( iTerm>=nConstraint
3318 || j<0
3319 || j>=pWC->nTerm
3320 || pNew->aLTerm[iTerm]!=0
3321 || pIdxCons->usable==0
3323 sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName);
3324 testcase( pIdxInfo->needToFreeIdxStr );
3325 return SQLITE_ERROR;
3327 testcase( iTerm==nConstraint-1 );
3328 testcase( j==0 );
3329 testcase( j==pWC->nTerm-1 );
3330 pTerm = &pWC->a[j];
3331 pNew->prereq |= pTerm->prereqRight;
3332 assert( iTerm<pNew->nLSlot );
3333 pNew->aLTerm[iTerm] = pTerm;
3334 if( iTerm>mxTerm ) mxTerm = iTerm;
3335 testcase( iTerm==15 );
3336 testcase( iTerm==16 );
3337 if( pUsage[i].omit ){
3338 if( i<16 && ((1<<i)&mNoOmit)==0 ){
3339 testcase( i!=iTerm );
3340 pNew->u.vtab.omitMask |= 1<<iTerm;
3341 }else{
3342 testcase( i!=iTerm );
3345 if( (pTerm->eOperator & WO_IN)!=0 ){
3346 /* A virtual table that is constrained by an IN clause may not
3347 ** consume the ORDER BY clause because (1) the order of IN terms
3348 ** is not necessarily related to the order of output terms and
3349 ** (2) Multiple outputs from a single IN value will not merge
3350 ** together. */
3351 pIdxInfo->orderByConsumed = 0;
3352 pIdxInfo->idxFlags &= ~SQLITE_INDEX_SCAN_UNIQUE;
3353 *pbIn = 1; assert( (mExclude & WO_IN)==0 );
3358 pNew->nLTerm = mxTerm+1;
3359 for(i=0; i<=mxTerm; i++){
3360 if( pNew->aLTerm[i]==0 ){
3361 /* The non-zero argvIdx values must be contiguous. Raise an
3362 ** error if they are not */
3363 sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName);
3364 testcase( pIdxInfo->needToFreeIdxStr );
3365 return SQLITE_ERROR;
3368 assert( pNew->nLTerm<=pNew->nLSlot );
3369 pNew->u.vtab.idxNum = pIdxInfo->idxNum;
3370 pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr;
3371 pIdxInfo->needToFreeIdxStr = 0;
3372 pNew->u.vtab.idxStr = pIdxInfo->idxStr;
3373 pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ?
3374 pIdxInfo->nOrderBy : 0);
3375 pNew->rSetup = 0;
3376 pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost);
3377 pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows);
3379 /* Set the WHERE_ONEROW flag if the xBestIndex() method indicated
3380 ** that the scan will visit at most one row. Clear it otherwise. */
3381 if( pIdxInfo->idxFlags & SQLITE_INDEX_SCAN_UNIQUE ){
3382 pNew->wsFlags |= WHERE_ONEROW;
3383 }else{
3384 pNew->wsFlags &= ~WHERE_ONEROW;
3386 rc = whereLoopInsert(pBuilder, pNew);
3387 if( pNew->u.vtab.needFree ){
3388 sqlite3_free(pNew->u.vtab.idxStr);
3389 pNew->u.vtab.needFree = 0;
3391 WHERETRACE(0xffff, (" bIn=%d prereqIn=%04llx prereqOut=%04llx\n",
3392 *pbIn, (sqlite3_uint64)mPrereq,
3393 (sqlite3_uint64)(pNew->prereq & ~mPrereq)));
3395 return rc;
3399 ** If this function is invoked from within an xBestIndex() callback, it
3400 ** returns a pointer to a buffer containing the name of the collation
3401 ** sequence associated with element iCons of the sqlite3_index_info.aConstraint
3402 ** array. Or, if iCons is out of range or there is no active xBestIndex
3403 ** call, return NULL.
3405 const char *sqlite3_vtab_collation(sqlite3_index_info *pIdxInfo, int iCons){
3406 HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
3407 const char *zRet = 0;
3408 if( iCons>=0 && iCons<pIdxInfo->nConstraint ){
3409 CollSeq *pC = 0;
3410 int iTerm = pIdxInfo->aConstraint[iCons].iTermOffset;
3411 Expr *pX = pHidden->pWC->a[iTerm].pExpr;
3412 if( pX->pLeft ){
3413 pC = sqlite3ExprCompareCollSeq(pHidden->pParse, pX);
3415 zRet = (pC ? pC->zName : sqlite3StrBINARY);
3417 return zRet;
3421 ** Add all WhereLoop objects for a table of the join identified by
3422 ** pBuilder->pNew->iTab. That table is guaranteed to be a virtual table.
3424 ** If there are no LEFT or CROSS JOIN joins in the query, both mPrereq and
3425 ** mUnusable are set to 0. Otherwise, mPrereq is a mask of all FROM clause
3426 ** entries that occur before the virtual table in the FROM clause and are
3427 ** separated from it by at least one LEFT or CROSS JOIN. Similarly, the
3428 ** mUnusable mask contains all FROM clause entries that occur after the
3429 ** virtual table and are separated from it by at least one LEFT or
3430 ** CROSS JOIN.
3432 ** For example, if the query were:
3434 ** ... FROM t1, t2 LEFT JOIN t3, t4, vt CROSS JOIN t5, t6;
3436 ** then mPrereq corresponds to (t1, t2) and mUnusable to (t5, t6).
3438 ** All the tables in mPrereq must be scanned before the current virtual
3439 ** table. So any terms for which all prerequisites are satisfied by
3440 ** mPrereq may be specified as "usable" in all calls to xBestIndex.
3441 ** Conversely, all tables in mUnusable must be scanned after the current
3442 ** virtual table, so any terms for which the prerequisites overlap with
3443 ** mUnusable should always be configured as "not-usable" for xBestIndex.
3445 static int whereLoopAddVirtual(
3446 WhereLoopBuilder *pBuilder, /* WHERE clause information */
3447 Bitmask mPrereq, /* Tables that must be scanned before this one */
3448 Bitmask mUnusable /* Tables that must be scanned after this one */
3450 int rc = SQLITE_OK; /* Return code */
3451 WhereInfo *pWInfo; /* WHERE analysis context */
3452 Parse *pParse; /* The parsing context */
3453 WhereClause *pWC; /* The WHERE clause */
3454 SrcItem *pSrc; /* The FROM clause term to search */
3455 sqlite3_index_info *p; /* Object to pass to xBestIndex() */
3456 int nConstraint; /* Number of constraints in p */
3457 int bIn; /* True if plan uses IN(...) operator */
3458 WhereLoop *pNew;
3459 Bitmask mBest; /* Tables used by best possible plan */
3460 u16 mNoOmit;
3462 assert( (mPrereq & mUnusable)==0 );
3463 pWInfo = pBuilder->pWInfo;
3464 pParse = pWInfo->pParse;
3465 pWC = pBuilder->pWC;
3466 pNew = pBuilder->pNew;
3467 pSrc = &pWInfo->pTabList->a[pNew->iTab];
3468 assert( IsVirtual(pSrc->pTab) );
3469 p = allocateIndexInfo(pParse, pWC, mUnusable, pSrc, pBuilder->pOrderBy,
3470 &mNoOmit);
3471 if( p==0 ) return SQLITE_NOMEM_BKPT;
3472 pNew->rSetup = 0;
3473 pNew->wsFlags = WHERE_VIRTUALTABLE;
3474 pNew->nLTerm = 0;
3475 pNew->u.vtab.needFree = 0;
3476 nConstraint = p->nConstraint;
3477 if( whereLoopResize(pParse->db, pNew, nConstraint) ){
3478 sqlite3DbFree(pParse->db, p);
3479 return SQLITE_NOMEM_BKPT;
3482 /* First call xBestIndex() with all constraints usable. */
3483 WHERETRACE(0x800, ("BEGIN %s.addVirtual()\n", pSrc->pTab->zName));
3484 WHERETRACE(0x40, (" VirtualOne: all usable\n"));
3485 rc = whereLoopAddVirtualOne(pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn);
3487 /* If the call to xBestIndex() with all terms enabled produced a plan
3488 ** that does not require any source tables (IOW: a plan with mBest==0)
3489 ** and does not use an IN(...) operator, then there is no point in making
3490 ** any further calls to xBestIndex() since they will all return the same
3491 ** result (if the xBestIndex() implementation is sane). */
3492 if( rc==SQLITE_OK && ((mBest = (pNew->prereq & ~mPrereq))!=0 || bIn) ){
3493 int seenZero = 0; /* True if a plan with no prereqs seen */
3494 int seenZeroNoIN = 0; /* Plan with no prereqs and no IN(...) seen */
3495 Bitmask mPrev = 0;
3496 Bitmask mBestNoIn = 0;
3498 /* If the plan produced by the earlier call uses an IN(...) term, call
3499 ** xBestIndex again, this time with IN(...) terms disabled. */
3500 if( bIn ){
3501 WHERETRACE(0x40, (" VirtualOne: all usable w/o IN\n"));
3502 rc = whereLoopAddVirtualOne(
3503 pBuilder, mPrereq, ALLBITS, WO_IN, p, mNoOmit, &bIn);
3504 assert( bIn==0 );
3505 mBestNoIn = pNew->prereq & ~mPrereq;
3506 if( mBestNoIn==0 ){
3507 seenZero = 1;
3508 seenZeroNoIN = 1;
3512 /* Call xBestIndex once for each distinct value of (prereqRight & ~mPrereq)
3513 ** in the set of terms that apply to the current virtual table. */
3514 while( rc==SQLITE_OK ){
3515 int i;
3516 Bitmask mNext = ALLBITS;
3517 assert( mNext>0 );
3518 for(i=0; i<nConstraint; i++){
3519 Bitmask mThis = (
3520 pWC->a[p->aConstraint[i].iTermOffset].prereqRight & ~mPrereq
3522 if( mThis>mPrev && mThis<mNext ) mNext = mThis;
3524 mPrev = mNext;
3525 if( mNext==ALLBITS ) break;
3526 if( mNext==mBest || mNext==mBestNoIn ) continue;
3527 WHERETRACE(0x40, (" VirtualOne: mPrev=%04llx mNext=%04llx\n",
3528 (sqlite3_uint64)mPrev, (sqlite3_uint64)mNext));
3529 rc = whereLoopAddVirtualOne(
3530 pBuilder, mPrereq, mNext|mPrereq, 0, p, mNoOmit, &bIn);
3531 if( pNew->prereq==mPrereq ){
3532 seenZero = 1;
3533 if( bIn==0 ) seenZeroNoIN = 1;
3537 /* If the calls to xBestIndex() in the above loop did not find a plan
3538 ** that requires no source tables at all (i.e. one guaranteed to be
3539 ** usable), make a call here with all source tables disabled */
3540 if( rc==SQLITE_OK && seenZero==0 ){
3541 WHERETRACE(0x40, (" VirtualOne: all disabled\n"));
3542 rc = whereLoopAddVirtualOne(
3543 pBuilder, mPrereq, mPrereq, 0, p, mNoOmit, &bIn);
3544 if( bIn==0 ) seenZeroNoIN = 1;
3547 /* If the calls to xBestIndex() have so far failed to find a plan
3548 ** that requires no source tables at all and does not use an IN(...)
3549 ** operator, make a final call to obtain one here. */
3550 if( rc==SQLITE_OK && seenZeroNoIN==0 ){
3551 WHERETRACE(0x40, (" VirtualOne: all disabled and w/o IN\n"));
3552 rc = whereLoopAddVirtualOne(
3553 pBuilder, mPrereq, mPrereq, WO_IN, p, mNoOmit, &bIn);
3557 if( p->needToFreeIdxStr ) sqlite3_free(p->idxStr);
3558 sqlite3DbFreeNN(pParse->db, p);
3559 WHERETRACE(0x800, ("END %s.addVirtual(), rc=%d\n", pSrc->pTab->zName, rc));
3560 return rc;
3562 #endif /* SQLITE_OMIT_VIRTUALTABLE */
3565 ** Add WhereLoop entries to handle OR terms. This works for either
3566 ** btrees or virtual tables.
3568 static int whereLoopAddOr(
3569 WhereLoopBuilder *pBuilder,
3570 Bitmask mPrereq,
3571 Bitmask mUnusable
3573 WhereInfo *pWInfo = pBuilder->pWInfo;
3574 WhereClause *pWC;
3575 WhereLoop *pNew;
3576 WhereTerm *pTerm, *pWCEnd;
3577 int rc = SQLITE_OK;
3578 int iCur;
3579 WhereClause tempWC;
3580 WhereLoopBuilder sSubBuild;
3581 WhereOrSet sSum, sCur;
3582 SrcItem *pItem;
3584 pWC = pBuilder->pWC;
3585 pWCEnd = pWC->a + pWC->nTerm;
3586 pNew = pBuilder->pNew;
3587 memset(&sSum, 0, sizeof(sSum));
3588 pItem = pWInfo->pTabList->a + pNew->iTab;
3589 iCur = pItem->iCursor;
3591 for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){
3592 if( (pTerm->eOperator & WO_OR)!=0
3593 && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0
3595 WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc;
3596 WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm];
3597 WhereTerm *pOrTerm;
3598 int once = 1;
3599 int i, j;
3601 sSubBuild = *pBuilder;
3602 sSubBuild.pOrderBy = 0;
3603 sSubBuild.pOrSet = &sCur;
3605 WHERETRACE(0x200, ("Begin processing OR-clause %p\n", pTerm));
3606 for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){
3607 if( (pOrTerm->eOperator & WO_AND)!=0 ){
3608 sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc;
3609 }else if( pOrTerm->leftCursor==iCur ){
3610 tempWC.pWInfo = pWC->pWInfo;
3611 tempWC.pOuter = pWC;
3612 tempWC.op = TK_AND;
3613 tempWC.nTerm = 1;
3614 tempWC.a = pOrTerm;
3615 sSubBuild.pWC = &tempWC;
3616 }else{
3617 continue;
3619 sCur.n = 0;
3620 #ifdef WHERETRACE_ENABLED
3621 WHERETRACE(0x200, ("OR-term %d of %p has %d subterms:\n",
3622 (int)(pOrTerm-pOrWC->a), pTerm, sSubBuild.pWC->nTerm));
3623 if( sqlite3WhereTrace & 0x400 ){
3624 sqlite3WhereClausePrint(sSubBuild.pWC);
3626 #endif
3627 #ifndef SQLITE_OMIT_VIRTUALTABLE
3628 if( IsVirtual(pItem->pTab) ){
3629 rc = whereLoopAddVirtual(&sSubBuild, mPrereq, mUnusable);
3630 }else
3631 #endif
3633 rc = whereLoopAddBtree(&sSubBuild, mPrereq);
3635 if( rc==SQLITE_OK ){
3636 rc = whereLoopAddOr(&sSubBuild, mPrereq, mUnusable);
3638 assert( rc==SQLITE_OK || rc==SQLITE_DONE || sCur.n==0
3639 || rc==SQLITE_NOMEM );
3640 testcase( rc==SQLITE_NOMEM && sCur.n>0 );
3641 testcase( rc==SQLITE_DONE );
3642 if( sCur.n==0 ){
3643 sSum.n = 0;
3644 break;
3645 }else if( once ){
3646 whereOrMove(&sSum, &sCur);
3647 once = 0;
3648 }else{
3649 WhereOrSet sPrev;
3650 whereOrMove(&sPrev, &sSum);
3651 sSum.n = 0;
3652 for(i=0; i<sPrev.n; i++){
3653 for(j=0; j<sCur.n; j++){
3654 whereOrInsert(&sSum, sPrev.a[i].prereq | sCur.a[j].prereq,
3655 sqlite3LogEstAdd(sPrev.a[i].rRun, sCur.a[j].rRun),
3656 sqlite3LogEstAdd(sPrev.a[i].nOut, sCur.a[j].nOut));
3661 pNew->nLTerm = 1;
3662 pNew->aLTerm[0] = pTerm;
3663 pNew->wsFlags = WHERE_MULTI_OR;
3664 pNew->rSetup = 0;
3665 pNew->iSortIdx = 0;
3666 memset(&pNew->u, 0, sizeof(pNew->u));
3667 for(i=0; rc==SQLITE_OK && i<sSum.n; i++){
3668 /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs
3669 ** of all sub-scans required by the OR-scan. However, due to rounding
3670 ** errors, it may be that the cost of the OR-scan is equal to its
3671 ** most expensive sub-scan. Add the smallest possible penalty
3672 ** (equivalent to multiplying the cost by 1.07) to ensure that
3673 ** this does not happen. Otherwise, for WHERE clauses such as the
3674 ** following where there is an index on "y":
3676 ** WHERE likelihood(x=?, 0.99) OR y=?
3678 ** the planner may elect to "OR" together a full-table scan and an
3679 ** index lookup. And other similarly odd results. */
3680 pNew->rRun = sSum.a[i].rRun + 1;
3681 pNew->nOut = sSum.a[i].nOut;
3682 pNew->prereq = sSum.a[i].prereq;
3683 rc = whereLoopInsert(pBuilder, pNew);
3685 WHERETRACE(0x200, ("End processing OR-clause %p\n", pTerm));
3688 return rc;
3692 ** Add all WhereLoop objects for all tables
3694 static int whereLoopAddAll(WhereLoopBuilder *pBuilder){
3695 WhereInfo *pWInfo = pBuilder->pWInfo;
3696 Bitmask mPrereq = 0;
3697 Bitmask mPrior = 0;
3698 int iTab;
3699 SrcList *pTabList = pWInfo->pTabList;
3700 SrcItem *pItem;
3701 SrcItem *pEnd = &pTabList->a[pWInfo->nLevel];
3702 sqlite3 *db = pWInfo->pParse->db;
3703 int rc = SQLITE_OK;
3704 WhereLoop *pNew;
3706 /* Loop over the tables in the join, from left to right */
3707 pNew = pBuilder->pNew;
3708 whereLoopInit(pNew);
3709 pBuilder->iPlanLimit = SQLITE_QUERY_PLANNER_LIMIT;
3710 for(iTab=0, pItem=pTabList->a; pItem<pEnd; iTab++, pItem++){
3711 Bitmask mUnusable = 0;
3712 pNew->iTab = iTab;
3713 pBuilder->iPlanLimit += SQLITE_QUERY_PLANNER_LIMIT_INCR;
3714 pNew->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, pItem->iCursor);
3715 if( (pItem->fg.jointype & (JT_LEFT|JT_CROSS))!=0 ){
3716 /* This condition is true when pItem is the FROM clause term on the
3717 ** right-hand-side of a LEFT or CROSS JOIN. */
3718 mPrereq = mPrior;
3719 }else{
3720 mPrereq = 0;
3722 #ifndef SQLITE_OMIT_VIRTUALTABLE
3723 if( IsVirtual(pItem->pTab) ){
3724 SrcItem *p;
3725 for(p=&pItem[1]; p<pEnd; p++){
3726 if( mUnusable || (p->fg.jointype & (JT_LEFT|JT_CROSS)) ){
3727 mUnusable |= sqlite3WhereGetMask(&pWInfo->sMaskSet, p->iCursor);
3730 rc = whereLoopAddVirtual(pBuilder, mPrereq, mUnusable);
3731 }else
3732 #endif /* SQLITE_OMIT_VIRTUALTABLE */
3734 rc = whereLoopAddBtree(pBuilder, mPrereq);
3736 if( rc==SQLITE_OK && pBuilder->pWC->hasOr ){
3737 rc = whereLoopAddOr(pBuilder, mPrereq, mUnusable);
3739 mPrior |= pNew->maskSelf;
3740 if( rc || db->mallocFailed ){
3741 if( rc==SQLITE_DONE ){
3742 /* We hit the query planner search limit set by iPlanLimit */
3743 sqlite3_log(SQLITE_WARNING, "abbreviated query algorithm search");
3744 rc = SQLITE_OK;
3745 }else{
3746 break;
3751 whereLoopClear(db, pNew);
3752 return rc;
3756 ** Examine a WherePath (with the addition of the extra WhereLoop of the 6th
3757 ** parameters) to see if it outputs rows in the requested ORDER BY
3758 ** (or GROUP BY) without requiring a separate sort operation. Return N:
3760 ** N>0: N terms of the ORDER BY clause are satisfied
3761 ** N==0: No terms of the ORDER BY clause are satisfied
3762 ** N<0: Unknown yet how many terms of ORDER BY might be satisfied.
3764 ** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as
3765 ** strict. With GROUP BY and DISTINCT the only requirement is that
3766 ** equivalent rows appear immediately adjacent to one another. GROUP BY
3767 ** and DISTINCT do not require rows to appear in any particular order as long
3768 ** as equivalent rows are grouped together. Thus for GROUP BY and DISTINCT
3769 ** the pOrderBy terms can be matched in any order. With ORDER BY, the
3770 ** pOrderBy terms must be matched in strict left-to-right order.
3772 static i8 wherePathSatisfiesOrderBy(
3773 WhereInfo *pWInfo, /* The WHERE clause */
3774 ExprList *pOrderBy, /* ORDER BY or GROUP BY or DISTINCT clause to check */
3775 WherePath *pPath, /* The WherePath to check */
3776 u16 wctrlFlags, /* WHERE_GROUPBY or _DISTINCTBY or _ORDERBY_LIMIT */
3777 u16 nLoop, /* Number of entries in pPath->aLoop[] */
3778 WhereLoop *pLast, /* Add this WhereLoop to the end of pPath->aLoop[] */
3779 Bitmask *pRevMask /* OUT: Mask of WhereLoops to run in reverse order */
3781 u8 revSet; /* True if rev is known */
3782 u8 rev; /* Composite sort order */
3783 u8 revIdx; /* Index sort order */
3784 u8 isOrderDistinct; /* All prior WhereLoops are order-distinct */
3785 u8 distinctColumns; /* True if the loop has UNIQUE NOT NULL columns */
3786 u8 isMatch; /* iColumn matches a term of the ORDER BY clause */
3787 u16 eqOpMask; /* Allowed equality operators */
3788 u16 nKeyCol; /* Number of key columns in pIndex */
3789 u16 nColumn; /* Total number of ordered columns in the index */
3790 u16 nOrderBy; /* Number terms in the ORDER BY clause */
3791 int iLoop; /* Index of WhereLoop in pPath being processed */
3792 int i, j; /* Loop counters */
3793 int iCur; /* Cursor number for current WhereLoop */
3794 int iColumn; /* A column number within table iCur */
3795 WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */
3796 WhereTerm *pTerm; /* A single term of the WHERE clause */
3797 Expr *pOBExpr; /* An expression from the ORDER BY clause */
3798 CollSeq *pColl; /* COLLATE function from an ORDER BY clause term */
3799 Index *pIndex; /* The index associated with pLoop */
3800 sqlite3 *db = pWInfo->pParse->db; /* Database connection */
3801 Bitmask obSat = 0; /* Mask of ORDER BY terms satisfied so far */
3802 Bitmask obDone; /* Mask of all ORDER BY terms */
3803 Bitmask orderDistinctMask; /* Mask of all well-ordered loops */
3804 Bitmask ready; /* Mask of inner loops */
3807 ** We say the WhereLoop is "one-row" if it generates no more than one
3808 ** row of output. A WhereLoop is one-row if all of the following are true:
3809 ** (a) All index columns match with WHERE_COLUMN_EQ.
3810 ** (b) The index is unique
3811 ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row.
3812 ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags.
3814 ** We say the WhereLoop is "order-distinct" if the set of columns from
3815 ** that WhereLoop that are in the ORDER BY clause are different for every
3816 ** row of the WhereLoop. Every one-row WhereLoop is automatically
3817 ** order-distinct. A WhereLoop that has no columns in the ORDER BY clause
3818 ** is not order-distinct. To be order-distinct is not quite the same as being
3819 ** UNIQUE since a UNIQUE column or index can have multiple rows that
3820 ** are NULL and NULL values are equivalent for the purpose of order-distinct.
3821 ** To be order-distinct, the columns must be UNIQUE and NOT NULL.
3823 ** The rowid for a table is always UNIQUE and NOT NULL so whenever the
3824 ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is
3825 ** automatically order-distinct.
3828 assert( pOrderBy!=0 );
3829 if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0;
3831 nOrderBy = pOrderBy->nExpr;
3832 testcase( nOrderBy==BMS-1 );
3833 if( nOrderBy>BMS-1 ) return 0; /* Cannot optimize overly large ORDER BYs */
3834 isOrderDistinct = 1;
3835 obDone = MASKBIT(nOrderBy)-1;
3836 orderDistinctMask = 0;
3837 ready = 0;
3838 eqOpMask = WO_EQ | WO_IS | WO_ISNULL;
3839 if( wctrlFlags & (WHERE_ORDERBY_LIMIT|WHERE_ORDERBY_MAX|WHERE_ORDERBY_MIN) ){
3840 eqOpMask |= WO_IN;
3842 for(iLoop=0; isOrderDistinct && obSat<obDone && iLoop<=nLoop; iLoop++){
3843 if( iLoop>0 ) ready |= pLoop->maskSelf;
3844 if( iLoop<nLoop ){
3845 pLoop = pPath->aLoop[iLoop];
3846 if( wctrlFlags & WHERE_ORDERBY_LIMIT ) continue;
3847 }else{
3848 pLoop = pLast;
3850 if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){
3851 if( pLoop->u.vtab.isOrdered && (wctrlFlags & WHERE_DISTINCTBY)==0 ){
3852 obSat = obDone;
3854 break;
3855 }else if( wctrlFlags & WHERE_DISTINCTBY ){
3856 pLoop->u.btree.nDistinctCol = 0;
3858 iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor;
3860 /* Mark off any ORDER BY term X that is a column in the table of
3861 ** the current loop for which there is term in the WHERE
3862 ** clause of the form X IS NULL or X=? that reference only outer
3863 ** loops.
3865 for(i=0; i<nOrderBy; i++){
3866 if( MASKBIT(i) & obSat ) continue;
3867 pOBExpr = sqlite3ExprSkipCollateAndLikely(pOrderBy->a[i].pExpr);
3868 if( NEVER(pOBExpr==0) ) continue;
3869 if( pOBExpr->op!=TK_COLUMN && pOBExpr->op!=TK_AGG_COLUMN ) continue;
3870 if( pOBExpr->iTable!=iCur ) continue;
3871 pTerm = sqlite3WhereFindTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn,
3872 ~ready, eqOpMask, 0);
3873 if( pTerm==0 ) continue;
3874 if( pTerm->eOperator==WO_IN ){
3875 /* IN terms are only valid for sorting in the ORDER BY LIMIT
3876 ** optimization, and then only if they are actually used
3877 ** by the query plan */
3878 assert( wctrlFlags &
3879 (WHERE_ORDERBY_LIMIT|WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX) );
3880 for(j=0; j<pLoop->nLTerm && pTerm!=pLoop->aLTerm[j]; j++){}
3881 if( j>=pLoop->nLTerm ) continue;
3883 if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 && pOBExpr->iColumn>=0 ){
3884 Parse *pParse = pWInfo->pParse;
3885 CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pOrderBy->a[i].pExpr);
3886 CollSeq *pColl2 = sqlite3ExprCompareCollSeq(pParse, pTerm->pExpr);
3887 assert( pColl1 );
3888 if( pColl2==0 || sqlite3StrICmp(pColl1->zName, pColl2->zName) ){
3889 continue;
3891 testcase( pTerm->pExpr->op==TK_IS );
3893 obSat |= MASKBIT(i);
3896 if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){
3897 if( pLoop->wsFlags & WHERE_IPK ){
3898 pIndex = 0;
3899 nKeyCol = 0;
3900 nColumn = 1;
3901 }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){
3902 return 0;
3903 }else{
3904 nKeyCol = pIndex->nKeyCol;
3905 nColumn = pIndex->nColumn;
3906 assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) );
3907 assert( pIndex->aiColumn[nColumn-1]==XN_ROWID
3908 || !HasRowid(pIndex->pTable));
3909 /* All relevant terms of the index must also be non-NULL in order
3910 ** for isOrderDistinct to be true. So the isOrderDistint value
3911 ** computed here might be a false positive. Corrections will be
3912 ** made at tag-20210426-1 below */
3913 isOrderDistinct = IsUniqueIndex(pIndex)
3914 && (pLoop->wsFlags & WHERE_SKIPSCAN)==0;
3917 /* Loop through all columns of the index and deal with the ones
3918 ** that are not constrained by == or IN.
3920 rev = revSet = 0;
3921 distinctColumns = 0;
3922 for(j=0; j<nColumn; j++){
3923 u8 bOnce = 1; /* True to run the ORDER BY search loop */
3925 assert( j>=pLoop->u.btree.nEq
3926 || (pLoop->aLTerm[j]==0)==(j<pLoop->nSkip)
3928 if( j<pLoop->u.btree.nEq && j>=pLoop->nSkip ){
3929 u16 eOp = pLoop->aLTerm[j]->eOperator;
3931 /* Skip over == and IS and ISNULL terms. (Also skip IN terms when
3932 ** doing WHERE_ORDERBY_LIMIT processing). Except, IS and ISNULL
3933 ** terms imply that the index is not UNIQUE NOT NULL in which case
3934 ** the loop need to be marked as not order-distinct because it can
3935 ** have repeated NULL rows.
3937 ** If the current term is a column of an ((?,?) IN (SELECT...))
3938 ** expression for which the SELECT returns more than one column,
3939 ** check that it is the only column used by this loop. Otherwise,
3940 ** if it is one of two or more, none of the columns can be
3941 ** considered to match an ORDER BY term.
3943 if( (eOp & eqOpMask)!=0 ){
3944 if( eOp & (WO_ISNULL|WO_IS) ){
3945 testcase( eOp & WO_ISNULL );
3946 testcase( eOp & WO_IS );
3947 testcase( isOrderDistinct );
3948 isOrderDistinct = 0;
3950 continue;
3951 }else if( ALWAYS(eOp & WO_IN) ){
3952 /* ALWAYS() justification: eOp is an equality operator due to the
3953 ** j<pLoop->u.btree.nEq constraint above. Any equality other
3954 ** than WO_IN is captured by the previous "if". So this one
3955 ** always has to be WO_IN. */
3956 Expr *pX = pLoop->aLTerm[j]->pExpr;
3957 for(i=j+1; i<pLoop->u.btree.nEq; i++){
3958 if( pLoop->aLTerm[i]->pExpr==pX ){
3959 assert( (pLoop->aLTerm[i]->eOperator & WO_IN) );
3960 bOnce = 0;
3961 break;
3967 /* Get the column number in the table (iColumn) and sort order
3968 ** (revIdx) for the j-th column of the index.
3970 if( pIndex ){
3971 iColumn = pIndex->aiColumn[j];
3972 revIdx = pIndex->aSortOrder[j] & KEYINFO_ORDER_DESC;
3973 if( iColumn==pIndex->pTable->iPKey ) iColumn = XN_ROWID;
3974 }else{
3975 iColumn = XN_ROWID;
3976 revIdx = 0;
3979 /* An unconstrained column that might be NULL means that this
3980 ** WhereLoop is not well-ordered. tag-20210426-1
3982 if( isOrderDistinct ){
3983 if( iColumn>=0
3984 && j>=pLoop->u.btree.nEq
3985 && pIndex->pTable->aCol[iColumn].notNull==0
3987 isOrderDistinct = 0;
3989 if( iColumn==XN_EXPR ){
3990 isOrderDistinct = 0;
3994 /* Find the ORDER BY term that corresponds to the j-th column
3995 ** of the index and mark that ORDER BY term off
3997 isMatch = 0;
3998 for(i=0; bOnce && i<nOrderBy; i++){
3999 if( MASKBIT(i) & obSat ) continue;
4000 pOBExpr = sqlite3ExprSkipCollateAndLikely(pOrderBy->a[i].pExpr);
4001 testcase( wctrlFlags & WHERE_GROUPBY );
4002 testcase( wctrlFlags & WHERE_DISTINCTBY );
4003 if( NEVER(pOBExpr==0) ) continue;
4004 if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0;
4005 if( iColumn>=XN_ROWID ){
4006 if( pOBExpr->op!=TK_COLUMN && pOBExpr->op!=TK_AGG_COLUMN ) continue;
4007 if( pOBExpr->iTable!=iCur ) continue;
4008 if( pOBExpr->iColumn!=iColumn ) continue;
4009 }else{
4010 Expr *pIdxExpr = pIndex->aColExpr->a[j].pExpr;
4011 if( sqlite3ExprCompareSkip(pOBExpr, pIdxExpr, iCur) ){
4012 continue;
4015 if( iColumn!=XN_ROWID ){
4016 pColl = sqlite3ExprNNCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr);
4017 if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue;
4019 if( wctrlFlags & WHERE_DISTINCTBY ){
4020 pLoop->u.btree.nDistinctCol = j+1;
4022 isMatch = 1;
4023 break;
4025 if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){
4026 /* Make sure the sort order is compatible in an ORDER BY clause.
4027 ** Sort order is irrelevant for a GROUP BY clause. */
4028 if( revSet ){
4029 if( (rev ^ revIdx)!=(pOrderBy->a[i].sortFlags&KEYINFO_ORDER_DESC) ){
4030 isMatch = 0;
4032 }else{
4033 rev = revIdx ^ (pOrderBy->a[i].sortFlags & KEYINFO_ORDER_DESC);
4034 if( rev ) *pRevMask |= MASKBIT(iLoop);
4035 revSet = 1;
4038 if( isMatch && (pOrderBy->a[i].sortFlags & KEYINFO_ORDER_BIGNULL) ){
4039 if( j==pLoop->u.btree.nEq ){
4040 pLoop->wsFlags |= WHERE_BIGNULL_SORT;
4041 }else{
4042 isMatch = 0;
4045 if( isMatch ){
4046 if( iColumn==XN_ROWID ){
4047 testcase( distinctColumns==0 );
4048 distinctColumns = 1;
4050 obSat |= MASKBIT(i);
4051 }else{
4052 /* No match found */
4053 if( j==0 || j<nKeyCol ){
4054 testcase( isOrderDistinct!=0 );
4055 isOrderDistinct = 0;
4057 break;
4059 } /* end Loop over all index columns */
4060 if( distinctColumns ){
4061 testcase( isOrderDistinct==0 );
4062 isOrderDistinct = 1;
4064 } /* end-if not one-row */
4066 /* Mark off any other ORDER BY terms that reference pLoop */
4067 if( isOrderDistinct ){
4068 orderDistinctMask |= pLoop->maskSelf;
4069 for(i=0; i<nOrderBy; i++){
4070 Expr *p;
4071 Bitmask mTerm;
4072 if( MASKBIT(i) & obSat ) continue;
4073 p = pOrderBy->a[i].pExpr;
4074 mTerm = sqlite3WhereExprUsage(&pWInfo->sMaskSet,p);
4075 if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue;
4076 if( (mTerm&~orderDistinctMask)==0 ){
4077 obSat |= MASKBIT(i);
4081 } /* End the loop over all WhereLoops from outer-most down to inner-most */
4082 if( obSat==obDone ) return (i8)nOrderBy;
4083 if( !isOrderDistinct ){
4084 for(i=nOrderBy-1; i>0; i--){
4085 Bitmask m = MASKBIT(i) - 1;
4086 if( (obSat&m)==m ) return i;
4088 return 0;
4090 return -1;
4095 ** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(),
4096 ** the planner assumes that the specified pOrderBy list is actually a GROUP
4097 ** BY clause - and so any order that groups rows as required satisfies the
4098 ** request.
4100 ** Normally, in this case it is not possible for the caller to determine
4101 ** whether or not the rows are really being delivered in sorted order, or
4102 ** just in some other order that provides the required grouping. However,
4103 ** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then
4104 ** this function may be called on the returned WhereInfo object. It returns
4105 ** true if the rows really will be sorted in the specified order, or false
4106 ** otherwise.
4108 ** For example, assuming:
4110 ** CREATE INDEX i1 ON t1(x, Y);
4112 ** then
4114 ** SELECT * FROM t1 GROUP BY x,y ORDER BY x,y; -- IsSorted()==1
4115 ** SELECT * FROM t1 GROUP BY y,x ORDER BY y,x; -- IsSorted()==0
4117 int sqlite3WhereIsSorted(WhereInfo *pWInfo){
4118 assert( pWInfo->wctrlFlags & WHERE_GROUPBY );
4119 assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP );
4120 return pWInfo->sorted;
4123 #ifdef WHERETRACE_ENABLED
4124 /* For debugging use only: */
4125 static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){
4126 static char zName[65];
4127 int i;
4128 for(i=0; i<nLoop; i++){ zName[i] = pPath->aLoop[i]->cId; }
4129 if( pLast ) zName[i++] = pLast->cId;
4130 zName[i] = 0;
4131 return zName;
4133 #endif
4136 ** Return the cost of sorting nRow rows, assuming that the keys have
4137 ** nOrderby columns and that the first nSorted columns are already in
4138 ** order.
4140 static LogEst whereSortingCost(
4141 WhereInfo *pWInfo,
4142 LogEst nRow,
4143 int nOrderBy,
4144 int nSorted
4146 /* TUNING: Estimated cost of a full external sort, where N is
4147 ** the number of rows to sort is:
4149 ** cost = (3.0 * N * log(N)).
4151 ** Or, if the order-by clause has X terms but only the last Y
4152 ** terms are out of order, then block-sorting will reduce the
4153 ** sorting cost to:
4155 ** cost = (3.0 * N * log(N)) * (Y/X)
4157 ** The (Y/X) term is implemented using stack variable rScale
4158 ** below.
4160 LogEst rScale, rSortCost;
4161 assert( nOrderBy>0 && 66==sqlite3LogEst(100) );
4162 rScale = sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66;
4163 rSortCost = nRow + rScale + 16;
4165 /* Multiple by log(M) where M is the number of output rows.
4166 ** Use the LIMIT for M if it is smaller. Or if this sort is for
4167 ** a DISTINCT operator, M will be the number of distinct output
4168 ** rows, so fudge it downwards a bit.
4170 if( (pWInfo->wctrlFlags & WHERE_USE_LIMIT)!=0 && pWInfo->iLimit<nRow ){
4171 nRow = pWInfo->iLimit;
4172 }else if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT) ){
4173 /* TUNING: In the sort for a DISTINCT operator, assume that the DISTINCT
4174 ** reduces the number of output rows by a factor of 2 */
4175 if( nRow>10 ){ nRow -= 10; assert( 10==sqlite3LogEst(2) ); }
4177 rSortCost += estLog(nRow);
4178 return rSortCost;
4182 ** Given the list of WhereLoop objects at pWInfo->pLoops, this routine
4183 ** attempts to find the lowest cost path that visits each WhereLoop
4184 ** once. This path is then loaded into the pWInfo->a[].pWLoop fields.
4186 ** Assume that the total number of output rows that will need to be sorted
4187 ** will be nRowEst (in the 10*log2 representation). Or, ignore sorting
4188 ** costs if nRowEst==0.
4190 ** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation
4191 ** error occurs.
4193 static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){
4194 int mxChoice; /* Maximum number of simultaneous paths tracked */
4195 int nLoop; /* Number of terms in the join */
4196 Parse *pParse; /* Parsing context */
4197 sqlite3 *db; /* The database connection */
4198 int iLoop; /* Loop counter over the terms of the join */
4199 int ii, jj; /* Loop counters */
4200 int mxI = 0; /* Index of next entry to replace */
4201 int nOrderBy; /* Number of ORDER BY clause terms */
4202 LogEst mxCost = 0; /* Maximum cost of a set of paths */
4203 LogEst mxUnsorted = 0; /* Maximum unsorted cost of a set of path */
4204 int nTo, nFrom; /* Number of valid entries in aTo[] and aFrom[] */
4205 WherePath *aFrom; /* All nFrom paths at the previous level */
4206 WherePath *aTo; /* The nTo best paths at the current level */
4207 WherePath *pFrom; /* An element of aFrom[] that we are working on */
4208 WherePath *pTo; /* An element of aTo[] that we are working on */
4209 WhereLoop *pWLoop; /* One of the WhereLoop objects */
4210 WhereLoop **pX; /* Used to divy up the pSpace memory */
4211 LogEst *aSortCost = 0; /* Sorting and partial sorting costs */
4212 char *pSpace; /* Temporary memory used by this routine */
4213 int nSpace; /* Bytes of space allocated at pSpace */
4215 pParse = pWInfo->pParse;
4216 db = pParse->db;
4217 nLoop = pWInfo->nLevel;
4218 /* TUNING: For simple queries, only the best path is tracked.
4219 ** For 2-way joins, the 5 best paths are followed.
4220 ** For joins of 3 or more tables, track the 10 best paths */
4221 mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10);
4222 assert( nLoop<=pWInfo->pTabList->nSrc );
4223 WHERETRACE(0x002, ("---- begin solver. (nRowEst=%d)\n", nRowEst));
4225 /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this
4226 ** case the purpose of this call is to estimate the number of rows returned
4227 ** by the overall query. Once this estimate has been obtained, the caller
4228 ** will invoke this function a second time, passing the estimate as the
4229 ** nRowEst parameter. */
4230 if( pWInfo->pOrderBy==0 || nRowEst==0 ){
4231 nOrderBy = 0;
4232 }else{
4233 nOrderBy = pWInfo->pOrderBy->nExpr;
4236 /* Allocate and initialize space for aTo, aFrom and aSortCost[] */
4237 nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2;
4238 nSpace += sizeof(LogEst) * nOrderBy;
4239 pSpace = sqlite3DbMallocRawNN(db, nSpace);
4240 if( pSpace==0 ) return SQLITE_NOMEM_BKPT;
4241 aTo = (WherePath*)pSpace;
4242 aFrom = aTo+mxChoice;
4243 memset(aFrom, 0, sizeof(aFrom[0]));
4244 pX = (WhereLoop**)(aFrom+mxChoice);
4245 for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){
4246 pFrom->aLoop = pX;
4248 if( nOrderBy ){
4249 /* If there is an ORDER BY clause and it is not being ignored, set up
4250 ** space for the aSortCost[] array. Each element of the aSortCost array
4251 ** is either zero - meaning it has not yet been initialized - or the
4252 ** cost of sorting nRowEst rows of data where the first X terms of
4253 ** the ORDER BY clause are already in order, where X is the array
4254 ** index. */
4255 aSortCost = (LogEst*)pX;
4256 memset(aSortCost, 0, sizeof(LogEst) * nOrderBy);
4258 assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] );
4259 assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX );
4261 /* Seed the search with a single WherePath containing zero WhereLoops.
4263 ** TUNING: Do not let the number of iterations go above 28. If the cost
4264 ** of computing an automatic index is not paid back within the first 28
4265 ** rows, then do not use the automatic index. */
4266 aFrom[0].nRow = MIN(pParse->nQueryLoop, 48); assert( 48==sqlite3LogEst(28) );
4267 nFrom = 1;
4268 assert( aFrom[0].isOrdered==0 );
4269 if( nOrderBy ){
4270 /* If nLoop is zero, then there are no FROM terms in the query. Since
4271 ** in this case the query may return a maximum of one row, the results
4272 ** are already in the requested order. Set isOrdered to nOrderBy to
4273 ** indicate this. Or, if nLoop is greater than zero, set isOrdered to
4274 ** -1, indicating that the result set may or may not be ordered,
4275 ** depending on the loops added to the current plan. */
4276 aFrom[0].isOrdered = nLoop>0 ? -1 : nOrderBy;
4279 /* Compute successively longer WherePaths using the previous generation
4280 ** of WherePaths as the basis for the next. Keep track of the mxChoice
4281 ** best paths at each generation */
4282 for(iLoop=0; iLoop<nLoop; iLoop++){
4283 nTo = 0;
4284 for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){
4285 for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){
4286 LogEst nOut; /* Rows visited by (pFrom+pWLoop) */
4287 LogEst rCost; /* Cost of path (pFrom+pWLoop) */
4288 LogEst rUnsorted; /* Unsorted cost of (pFrom+pWLoop) */
4289 i8 isOrdered = pFrom->isOrdered; /* isOrdered for (pFrom+pWLoop) */
4290 Bitmask maskNew; /* Mask of src visited by (..) */
4291 Bitmask revMask = 0; /* Mask of rev-order loops for (..) */
4293 if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue;
4294 if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue;
4295 if( (pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 && pFrom->nRow<3 ){
4296 /* Do not use an automatic index if the this loop is expected
4297 ** to run less than 1.25 times. It is tempting to also exclude
4298 ** automatic index usage on an outer loop, but sometimes an automatic
4299 ** index is useful in the outer loop of a correlated subquery. */
4300 assert( 10==sqlite3LogEst(2) );
4301 continue;
4304 /* At this point, pWLoop is a candidate to be the next loop.
4305 ** Compute its cost */
4306 rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow);
4307 rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted);
4308 nOut = pFrom->nRow + pWLoop->nOut;
4309 maskNew = pFrom->maskLoop | pWLoop->maskSelf;
4310 if( isOrdered<0 ){
4311 isOrdered = wherePathSatisfiesOrderBy(pWInfo,
4312 pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags,
4313 iLoop, pWLoop, &revMask);
4314 }else{
4315 revMask = pFrom->revLoop;
4317 if( isOrdered>=0 && isOrdered<nOrderBy ){
4318 if( aSortCost[isOrdered]==0 ){
4319 aSortCost[isOrdered] = whereSortingCost(
4320 pWInfo, nRowEst, nOrderBy, isOrdered
4323 /* TUNING: Add a small extra penalty (5) to sorting as an
4324 ** extra encouragment to the query planner to select a plan
4325 ** where the rows emerge in the correct order without any sorting
4326 ** required. */
4327 rCost = sqlite3LogEstAdd(rUnsorted, aSortCost[isOrdered]) + 5;
4329 WHERETRACE(0x002,
4330 ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n",
4331 aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy,
4332 rUnsorted, rCost));
4333 }else{
4334 rCost = rUnsorted;
4335 rUnsorted -= 2; /* TUNING: Slight bias in favor of no-sort plans */
4338 /* Check to see if pWLoop should be added to the set of
4339 ** mxChoice best-so-far paths.
4341 ** First look for an existing path among best-so-far paths
4342 ** that covers the same set of loops and has the same isOrdered
4343 ** setting as the current path candidate.
4345 ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent
4346 ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range
4347 ** of legal values for isOrdered, -1..64.
4349 for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){
4350 if( pTo->maskLoop==maskNew
4351 && ((pTo->isOrdered^isOrdered)&0x80)==0
4353 testcase( jj==nTo-1 );
4354 break;
4357 if( jj>=nTo ){
4358 /* None of the existing best-so-far paths match the candidate. */
4359 if( nTo>=mxChoice
4360 && (rCost>mxCost || (rCost==mxCost && rUnsorted>=mxUnsorted))
4362 /* The current candidate is no better than any of the mxChoice
4363 ** paths currently in the best-so-far buffer. So discard
4364 ** this candidate as not viable. */
4365 #ifdef WHERETRACE_ENABLED /* 0x4 */
4366 if( sqlite3WhereTrace&0x4 ){
4367 sqlite3DebugPrintf("Skip %s cost=%-3d,%3d,%3d order=%c\n",
4368 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4369 isOrdered>=0 ? isOrdered+'0' : '?');
4371 #endif
4372 continue;
4374 /* If we reach this points it means that the new candidate path
4375 ** needs to be added to the set of best-so-far paths. */
4376 if( nTo<mxChoice ){
4377 /* Increase the size of the aTo set by one */
4378 jj = nTo++;
4379 }else{
4380 /* New path replaces the prior worst to keep count below mxChoice */
4381 jj = mxI;
4383 pTo = &aTo[jj];
4384 #ifdef WHERETRACE_ENABLED /* 0x4 */
4385 if( sqlite3WhereTrace&0x4 ){
4386 sqlite3DebugPrintf("New %s cost=%-3d,%3d,%3d order=%c\n",
4387 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4388 isOrdered>=0 ? isOrdered+'0' : '?');
4390 #endif
4391 }else{
4392 /* Control reaches here if best-so-far path pTo=aTo[jj] covers the
4393 ** same set of loops and has the same isOrdered setting as the
4394 ** candidate path. Check to see if the candidate should replace
4395 ** pTo or if the candidate should be skipped.
4397 ** The conditional is an expanded vector comparison equivalent to:
4398 ** (pTo->rCost,pTo->nRow,pTo->rUnsorted) <= (rCost,nOut,rUnsorted)
4400 if( pTo->rCost<rCost
4401 || (pTo->rCost==rCost
4402 && (pTo->nRow<nOut
4403 || (pTo->nRow==nOut && pTo->rUnsorted<=rUnsorted)
4407 #ifdef WHERETRACE_ENABLED /* 0x4 */
4408 if( sqlite3WhereTrace&0x4 ){
4409 sqlite3DebugPrintf(
4410 "Skip %s cost=%-3d,%3d,%3d order=%c",
4411 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4412 isOrdered>=0 ? isOrdered+'0' : '?');
4413 sqlite3DebugPrintf(" vs %s cost=%-3d,%3d,%3d order=%c\n",
4414 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4415 pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
4417 #endif
4418 /* Discard the candidate path from further consideration */
4419 testcase( pTo->rCost==rCost );
4420 continue;
4422 testcase( pTo->rCost==rCost+1 );
4423 /* Control reaches here if the candidate path is better than the
4424 ** pTo path. Replace pTo with the candidate. */
4425 #ifdef WHERETRACE_ENABLED /* 0x4 */
4426 if( sqlite3WhereTrace&0x4 ){
4427 sqlite3DebugPrintf(
4428 "Update %s cost=%-3d,%3d,%3d order=%c",
4429 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4430 isOrdered>=0 ? isOrdered+'0' : '?');
4431 sqlite3DebugPrintf(" was %s cost=%-3d,%3d,%3d order=%c\n",
4432 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4433 pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
4435 #endif
4437 /* pWLoop is a winner. Add it to the set of best so far */
4438 pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf;
4439 pTo->revLoop = revMask;
4440 pTo->nRow = nOut;
4441 pTo->rCost = rCost;
4442 pTo->rUnsorted = rUnsorted;
4443 pTo->isOrdered = isOrdered;
4444 memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop);
4445 pTo->aLoop[iLoop] = pWLoop;
4446 if( nTo>=mxChoice ){
4447 mxI = 0;
4448 mxCost = aTo[0].rCost;
4449 mxUnsorted = aTo[0].nRow;
4450 for(jj=1, pTo=&aTo[1]; jj<mxChoice; jj++, pTo++){
4451 if( pTo->rCost>mxCost
4452 || (pTo->rCost==mxCost && pTo->rUnsorted>mxUnsorted)
4454 mxCost = pTo->rCost;
4455 mxUnsorted = pTo->rUnsorted;
4456 mxI = jj;
4463 #ifdef WHERETRACE_ENABLED /* >=2 */
4464 if( sqlite3WhereTrace & 0x02 ){
4465 sqlite3DebugPrintf("---- after round %d ----\n", iLoop);
4466 for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){
4467 sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c",
4468 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4469 pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?');
4470 if( pTo->isOrdered>0 ){
4471 sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop);
4472 }else{
4473 sqlite3DebugPrintf("\n");
4477 #endif
4479 /* Swap the roles of aFrom and aTo for the next generation */
4480 pFrom = aTo;
4481 aTo = aFrom;
4482 aFrom = pFrom;
4483 nFrom = nTo;
4486 if( nFrom==0 ){
4487 sqlite3ErrorMsg(pParse, "no query solution");
4488 sqlite3DbFreeNN(db, pSpace);
4489 return SQLITE_ERROR;
4492 /* Find the lowest cost path. pFrom will be left pointing to that path */
4493 pFrom = aFrom;
4494 for(ii=1; ii<nFrom; ii++){
4495 if( pFrom->rCost>aFrom[ii].rCost ) pFrom = &aFrom[ii];
4497 assert( pWInfo->nLevel==nLoop );
4498 /* Load the lowest cost path into pWInfo */
4499 for(iLoop=0; iLoop<nLoop; iLoop++){
4500 WhereLevel *pLevel = pWInfo->a + iLoop;
4501 pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop];
4502 pLevel->iFrom = pWLoop->iTab;
4503 pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor;
4505 if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0
4506 && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0
4507 && pWInfo->eDistinct==WHERE_DISTINCT_NOOP
4508 && nRowEst
4510 Bitmask notUsed;
4511 int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pResultSet, pFrom,
4512 WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], &notUsed);
4513 if( rc==pWInfo->pResultSet->nExpr ){
4514 pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
4517 pWInfo->bOrderedInnerLoop = 0;
4518 if( pWInfo->pOrderBy ){
4519 if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){
4520 if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){
4521 pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
4523 }else{
4524 pWInfo->nOBSat = pFrom->isOrdered;
4525 pWInfo->revMask = pFrom->revLoop;
4526 if( pWInfo->nOBSat<=0 ){
4527 pWInfo->nOBSat = 0;
4528 if( nLoop>0 ){
4529 u32 wsFlags = pFrom->aLoop[nLoop-1]->wsFlags;
4530 if( (wsFlags & WHERE_ONEROW)==0
4531 && (wsFlags&(WHERE_IPK|WHERE_COLUMN_IN))!=(WHERE_IPK|WHERE_COLUMN_IN)
4533 Bitmask m = 0;
4534 int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, pFrom,
4535 WHERE_ORDERBY_LIMIT, nLoop-1, pFrom->aLoop[nLoop-1], &m);
4536 testcase( wsFlags & WHERE_IPK );
4537 testcase( wsFlags & WHERE_COLUMN_IN );
4538 if( rc==pWInfo->pOrderBy->nExpr ){
4539 pWInfo->bOrderedInnerLoop = 1;
4540 pWInfo->revMask = m;
4544 }else if( nLoop
4545 && pWInfo->nOBSat==1
4546 && (pWInfo->wctrlFlags & (WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX))!=0
4548 pWInfo->bOrderedInnerLoop = 1;
4551 if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP)
4552 && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr && nLoop>0
4554 Bitmask revMask = 0;
4555 int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy,
4556 pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask
4558 assert( pWInfo->sorted==0 );
4559 if( nOrder==pWInfo->pOrderBy->nExpr ){
4560 pWInfo->sorted = 1;
4561 pWInfo->revMask = revMask;
4567 pWInfo->nRowOut = pFrom->nRow;
4569 /* Free temporary memory and return success */
4570 sqlite3DbFreeNN(db, pSpace);
4571 return SQLITE_OK;
4575 ** Most queries use only a single table (they are not joins) and have
4576 ** simple == constraints against indexed fields. This routine attempts
4577 ** to plan those simple cases using much less ceremony than the
4578 ** general-purpose query planner, and thereby yield faster sqlite3_prepare()
4579 ** times for the common case.
4581 ** Return non-zero on success, if this query can be handled by this
4582 ** no-frills query planner. Return zero if this query needs the
4583 ** general-purpose query planner.
4585 static int whereShortCut(WhereLoopBuilder *pBuilder){
4586 WhereInfo *pWInfo;
4587 SrcItem *pItem;
4588 WhereClause *pWC;
4589 WhereTerm *pTerm;
4590 WhereLoop *pLoop;
4591 int iCur;
4592 int j;
4593 Table *pTab;
4594 Index *pIdx;
4596 pWInfo = pBuilder->pWInfo;
4597 if( pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE ) return 0;
4598 assert( pWInfo->pTabList->nSrc>=1 );
4599 pItem = pWInfo->pTabList->a;
4600 pTab = pItem->pTab;
4601 if( IsVirtual(pTab) ) return 0;
4602 if( pItem->fg.isIndexedBy ) return 0;
4603 iCur = pItem->iCursor;
4604 pWC = &pWInfo->sWC;
4605 pLoop = pBuilder->pNew;
4606 pLoop->wsFlags = 0;
4607 pLoop->nSkip = 0;
4608 pTerm = sqlite3WhereFindTerm(pWC, iCur, -1, 0, WO_EQ|WO_IS, 0);
4609 if( pTerm ){
4610 testcase( pTerm->eOperator & WO_IS );
4611 pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW;
4612 pLoop->aLTerm[0] = pTerm;
4613 pLoop->nLTerm = 1;
4614 pLoop->u.btree.nEq = 1;
4615 /* TUNING: Cost of a rowid lookup is 10 */
4616 pLoop->rRun = 33; /* 33==sqlite3LogEst(10) */
4617 }else{
4618 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
4619 int opMask;
4620 assert( pLoop->aLTermSpace==pLoop->aLTerm );
4621 if( !IsUniqueIndex(pIdx)
4622 || pIdx->pPartIdxWhere!=0
4623 || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace)
4624 ) continue;
4625 opMask = pIdx->uniqNotNull ? (WO_EQ|WO_IS) : WO_EQ;
4626 for(j=0; j<pIdx->nKeyCol; j++){
4627 pTerm = sqlite3WhereFindTerm(pWC, iCur, j, 0, opMask, pIdx);
4628 if( pTerm==0 ) break;
4629 testcase( pTerm->eOperator & WO_IS );
4630 pLoop->aLTerm[j] = pTerm;
4632 if( j!=pIdx->nKeyCol ) continue;
4633 pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED;
4634 if( pIdx->isCovering || (pItem->colUsed & pIdx->colNotIdxed)==0 ){
4635 pLoop->wsFlags |= WHERE_IDX_ONLY;
4637 pLoop->nLTerm = j;
4638 pLoop->u.btree.nEq = j;
4639 pLoop->u.btree.pIndex = pIdx;
4640 /* TUNING: Cost of a unique index lookup is 15 */
4641 pLoop->rRun = 39; /* 39==sqlite3LogEst(15) */
4642 break;
4645 if( pLoop->wsFlags ){
4646 pLoop->nOut = (LogEst)1;
4647 pWInfo->a[0].pWLoop = pLoop;
4648 assert( pWInfo->sMaskSet.n==1 && iCur==pWInfo->sMaskSet.ix[0] );
4649 pLoop->maskSelf = 1; /* sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); */
4650 pWInfo->a[0].iTabCur = iCur;
4651 pWInfo->nRowOut = 1;
4652 if( pWInfo->pOrderBy ) pWInfo->nOBSat = pWInfo->pOrderBy->nExpr;
4653 if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){
4654 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
4656 #ifdef SQLITE_DEBUG
4657 pLoop->cId = '0';
4658 #endif
4659 return 1;
4661 return 0;
4665 ** Helper function for exprIsDeterministic().
4667 static int exprNodeIsDeterministic(Walker *pWalker, Expr *pExpr){
4668 if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_ConstFunc)==0 ){
4669 pWalker->eCode = 0;
4670 return WRC_Abort;
4672 return WRC_Continue;
4676 ** Return true if the expression contains no non-deterministic SQL
4677 ** functions. Do not consider non-deterministic SQL functions that are
4678 ** part of sub-select statements.
4680 static int exprIsDeterministic(Expr *p){
4681 Walker w;
4682 memset(&w, 0, sizeof(w));
4683 w.eCode = 1;
4684 w.xExprCallback = exprNodeIsDeterministic;
4685 w.xSelectCallback = sqlite3SelectWalkFail;
4686 sqlite3WalkExpr(&w, p);
4687 return w.eCode;
4691 #ifdef WHERETRACE_ENABLED
4693 ** Display all WhereLoops in pWInfo
4695 static void showAllWhereLoops(WhereInfo *pWInfo, WhereClause *pWC){
4696 if( sqlite3WhereTrace ){ /* Display all of the WhereLoop objects */
4697 WhereLoop *p;
4698 int i;
4699 static const char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz"
4700 "ABCDEFGHIJKLMNOPQRSTUVWYXZ";
4701 for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){
4702 p->cId = zLabel[i%(sizeof(zLabel)-1)];
4703 sqlite3WhereLoopPrint(p, pWC);
4707 # define WHERETRACE_ALL_LOOPS(W,C) showAllWhereLoops(W,C)
4708 #else
4709 # define WHERETRACE_ALL_LOOPS(W,C)
4710 #endif
4713 ** Generate the beginning of the loop used for WHERE clause processing.
4714 ** The return value is a pointer to an opaque structure that contains
4715 ** information needed to terminate the loop. Later, the calling routine
4716 ** should invoke sqlite3WhereEnd() with the return value of this function
4717 ** in order to complete the WHERE clause processing.
4719 ** If an error occurs, this routine returns NULL.
4721 ** The basic idea is to do a nested loop, one loop for each table in
4722 ** the FROM clause of a select. (INSERT and UPDATE statements are the
4723 ** same as a SELECT with only a single table in the FROM clause.) For
4724 ** example, if the SQL is this:
4726 ** SELECT * FROM t1, t2, t3 WHERE ...;
4728 ** Then the code generated is conceptually like the following:
4730 ** foreach row1 in t1 do \ Code generated
4731 ** foreach row2 in t2 do |-- by sqlite3WhereBegin()
4732 ** foreach row3 in t3 do /
4733 ** ...
4734 ** end \ Code generated
4735 ** end |-- by sqlite3WhereEnd()
4736 ** end /
4738 ** Note that the loops might not be nested in the order in which they
4739 ** appear in the FROM clause if a different order is better able to make
4740 ** use of indices. Note also that when the IN operator appears in
4741 ** the WHERE clause, it might result in additional nested loops for
4742 ** scanning through all values on the right-hand side of the IN.
4744 ** There are Btree cursors associated with each table. t1 uses cursor
4745 ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor.
4746 ** And so forth. This routine generates code to open those VDBE cursors
4747 ** and sqlite3WhereEnd() generates the code to close them.
4749 ** The code that sqlite3WhereBegin() generates leaves the cursors named
4750 ** in pTabList pointing at their appropriate entries. The [...] code
4751 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract
4752 ** data from the various tables of the loop.
4754 ** If the WHERE clause is empty, the foreach loops must each scan their
4755 ** entire tables. Thus a three-way join is an O(N^3) operation. But if
4756 ** the tables have indices and there are terms in the WHERE clause that
4757 ** refer to those indices, a complete table scan can be avoided and the
4758 ** code will run much faster. Most of the work of this routine is checking
4759 ** to see if there are indices that can be used to speed up the loop.
4761 ** Terms of the WHERE clause are also used to limit which rows actually
4762 ** make it to the "..." in the middle of the loop. After each "foreach",
4763 ** terms of the WHERE clause that use only terms in that loop and outer
4764 ** loops are evaluated and if false a jump is made around all subsequent
4765 ** inner loops (or around the "..." if the test occurs within the inner-
4766 ** most loop)
4768 ** OUTER JOINS
4770 ** An outer join of tables t1 and t2 is conceptally coded as follows:
4772 ** foreach row1 in t1 do
4773 ** flag = 0
4774 ** foreach row2 in t2 do
4775 ** start:
4776 ** ...
4777 ** flag = 1
4778 ** end
4779 ** if flag==0 then
4780 ** move the row2 cursor to a null row
4781 ** goto start
4782 ** fi
4783 ** end
4785 ** ORDER BY CLAUSE PROCESSING
4787 ** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause
4788 ** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement
4789 ** if there is one. If there is no ORDER BY clause or if this routine
4790 ** is called from an UPDATE or DELETE statement, then pOrderBy is NULL.
4792 ** The iIdxCur parameter is the cursor number of an index. If
4793 ** WHERE_OR_SUBCLAUSE is set, iIdxCur is the cursor number of an index
4794 ** to use for OR clause processing. The WHERE clause should use this
4795 ** specific cursor. If WHERE_ONEPASS_DESIRED is set, then iIdxCur is
4796 ** the first cursor in an array of cursors for all indices. iIdxCur should
4797 ** be used to compute the appropriate cursor depending on which index is
4798 ** used.
4800 WhereInfo *sqlite3WhereBegin(
4801 Parse *pParse, /* The parser context */
4802 SrcList *pTabList, /* FROM clause: A list of all tables to be scanned */
4803 Expr *pWhere, /* The WHERE clause */
4804 ExprList *pOrderBy, /* An ORDER BY (or GROUP BY) clause, or NULL */
4805 ExprList *pResultSet, /* Query result set. Req'd for DISTINCT */
4806 u16 wctrlFlags, /* The WHERE_* flags defined in sqliteInt.h */
4807 int iAuxArg /* If WHERE_OR_SUBCLAUSE is set, index cursor number
4808 ** If WHERE_USE_LIMIT, then the limit amount */
4810 int nByteWInfo; /* Num. bytes allocated for WhereInfo struct */
4811 int nTabList; /* Number of elements in pTabList */
4812 WhereInfo *pWInfo; /* Will become the return value of this function */
4813 Vdbe *v = pParse->pVdbe; /* The virtual database engine */
4814 Bitmask notReady; /* Cursors that are not yet positioned */
4815 WhereLoopBuilder sWLB; /* The WhereLoop builder */
4816 WhereMaskSet *pMaskSet; /* The expression mask set */
4817 WhereLevel *pLevel; /* A single level in pWInfo->a[] */
4818 WhereLoop *pLoop; /* Pointer to a single WhereLoop object */
4819 int ii; /* Loop counter */
4820 sqlite3 *db; /* Database connection */
4821 int rc; /* Return code */
4822 u8 bFordelete = 0; /* OPFLAG_FORDELETE or zero, as appropriate */
4824 assert( (wctrlFlags & WHERE_ONEPASS_MULTIROW)==0 || (
4825 (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0
4826 && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0
4829 /* Only one of WHERE_OR_SUBCLAUSE or WHERE_USE_LIMIT */
4830 assert( (wctrlFlags & WHERE_OR_SUBCLAUSE)==0
4831 || (wctrlFlags & WHERE_USE_LIMIT)==0 );
4833 /* Variable initialization */
4834 db = pParse->db;
4835 memset(&sWLB, 0, sizeof(sWLB));
4837 /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */
4838 testcase( pOrderBy && pOrderBy->nExpr==BMS-1 );
4839 if( pOrderBy && pOrderBy->nExpr>=BMS ) pOrderBy = 0;
4840 sWLB.pOrderBy = pOrderBy;
4842 /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via
4843 ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */
4844 if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){
4845 wctrlFlags &= ~WHERE_WANT_DISTINCT;
4848 /* The number of tables in the FROM clause is limited by the number of
4849 ** bits in a Bitmask
4851 testcase( pTabList->nSrc==BMS );
4852 if( pTabList->nSrc>BMS ){
4853 sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
4854 return 0;
4857 /* This function normally generates a nested loop for all tables in
4858 ** pTabList. But if the WHERE_OR_SUBCLAUSE flag is set, then we should
4859 ** only generate code for the first table in pTabList and assume that
4860 ** any cursors associated with subsequent tables are uninitialized.
4862 nTabList = (wctrlFlags & WHERE_OR_SUBCLAUSE) ? 1 : pTabList->nSrc;
4864 /* Allocate and initialize the WhereInfo structure that will become the
4865 ** return value. A single allocation is used to store the WhereInfo
4866 ** struct, the contents of WhereInfo.a[], the WhereClause structure
4867 ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte
4868 ** field (type Bitmask) it must be aligned on an 8-byte boundary on
4869 ** some architectures. Hence the ROUND8() below.
4871 nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel));
4872 pWInfo = sqlite3DbMallocRawNN(db, nByteWInfo + sizeof(WhereLoop));
4873 if( db->mallocFailed ){
4874 sqlite3DbFree(db, pWInfo);
4875 pWInfo = 0;
4876 goto whereBeginError;
4878 pWInfo->pParse = pParse;
4879 pWInfo->pTabList = pTabList;
4880 pWInfo->pOrderBy = pOrderBy;
4881 pWInfo->pWhere = pWhere;
4882 pWInfo->pResultSet = pResultSet;
4883 pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1;
4884 pWInfo->nLevel = nTabList;
4885 pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(pParse);
4886 pWInfo->wctrlFlags = wctrlFlags;
4887 pWInfo->iLimit = iAuxArg;
4888 pWInfo->savedNQueryLoop = pParse->nQueryLoop;
4889 memset(&pWInfo->nOBSat, 0,
4890 offsetof(WhereInfo,sWC) - offsetof(WhereInfo,nOBSat));
4891 memset(&pWInfo->a[0], 0, sizeof(WhereLoop)+nTabList*sizeof(WhereLevel));
4892 assert( pWInfo->eOnePass==ONEPASS_OFF ); /* ONEPASS defaults to OFF */
4893 pMaskSet = &pWInfo->sMaskSet;
4894 sWLB.pWInfo = pWInfo;
4895 sWLB.pWC = &pWInfo->sWC;
4896 sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo);
4897 assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) );
4898 whereLoopInit(sWLB.pNew);
4899 #ifdef SQLITE_DEBUG
4900 sWLB.pNew->cId = '*';
4901 #endif
4903 /* Split the WHERE clause into separate subexpressions where each
4904 ** subexpression is separated by an AND operator.
4906 initMaskSet(pMaskSet);
4907 sqlite3WhereClauseInit(&pWInfo->sWC, pWInfo);
4908 sqlite3WhereSplit(&pWInfo->sWC, pWhere, TK_AND);
4910 /* Special case: No FROM clause
4912 if( nTabList==0 ){
4913 if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr;
4914 if( wctrlFlags & WHERE_WANT_DISTINCT ){
4915 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
4917 ExplainQueryPlan((pParse, 0, "SCAN CONSTANT ROW"));
4918 }else{
4919 /* Assign a bit from the bitmask to every term in the FROM clause.
4921 ** The N-th term of the FROM clause is assigned a bitmask of 1<<N.
4923 ** The rule of the previous sentence ensures thta if X is the bitmask for
4924 ** a table T, then X-1 is the bitmask for all other tables to the left of T.
4925 ** Knowing the bitmask for all tables to the left of a left join is
4926 ** important. Ticket #3015.
4928 ** Note that bitmasks are created for all pTabList->nSrc tables in
4929 ** pTabList, not just the first nTabList tables. nTabList is normally
4930 ** equal to pTabList->nSrc but might be shortened to 1 if the
4931 ** WHERE_OR_SUBCLAUSE flag is set.
4933 ii = 0;
4935 createMask(pMaskSet, pTabList->a[ii].iCursor);
4936 sqlite3WhereTabFuncArgs(pParse, &pTabList->a[ii], &pWInfo->sWC);
4937 }while( (++ii)<pTabList->nSrc );
4938 #ifdef SQLITE_DEBUG
4940 Bitmask mx = 0;
4941 for(ii=0; ii<pTabList->nSrc; ii++){
4942 Bitmask m = sqlite3WhereGetMask(pMaskSet, pTabList->a[ii].iCursor);
4943 assert( m>=mx );
4944 mx = m;
4947 #endif
4950 /* Analyze all of the subexpressions. */
4951 sqlite3WhereExprAnalyze(pTabList, &pWInfo->sWC);
4952 if( db->mallocFailed ) goto whereBeginError;
4954 /* Special case: WHERE terms that do not refer to any tables in the join
4955 ** (constant expressions). Evaluate each such term, and jump over all the
4956 ** generated code if the result is not true.
4958 ** Do not do this if the expression contains non-deterministic functions
4959 ** that are not within a sub-select. This is not strictly required, but
4960 ** preserves SQLite's legacy behaviour in the following two cases:
4962 ** FROM ... WHERE random()>0; -- eval random() once per row
4963 ** FROM ... WHERE (SELECT random())>0; -- eval random() once overall
4965 for(ii=0; ii<sWLB.pWC->nTerm; ii++){
4966 WhereTerm *pT = &sWLB.pWC->a[ii];
4967 if( pT->wtFlags & TERM_VIRTUAL ) continue;
4968 if( pT->prereqAll==0 && (nTabList==0 || exprIsDeterministic(pT->pExpr)) ){
4969 sqlite3ExprIfFalse(pParse, pT->pExpr, pWInfo->iBreak, SQLITE_JUMPIFNULL);
4970 pT->wtFlags |= TERM_CODED;
4974 if( wctrlFlags & WHERE_WANT_DISTINCT ){
4975 if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){
4976 /* The DISTINCT marking is pointless. Ignore it. */
4977 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
4978 }else if( pOrderBy==0 ){
4979 /* Try to ORDER BY the result set to make distinct processing easier */
4980 pWInfo->wctrlFlags |= WHERE_DISTINCTBY;
4981 pWInfo->pOrderBy = pResultSet;
4985 /* Construct the WhereLoop objects */
4986 #if defined(WHERETRACE_ENABLED)
4987 if( sqlite3WhereTrace & 0xffff ){
4988 sqlite3DebugPrintf("*** Optimizer Start *** (wctrlFlags: 0x%x",wctrlFlags);
4989 if( wctrlFlags & WHERE_USE_LIMIT ){
4990 sqlite3DebugPrintf(", limit: %d", iAuxArg);
4992 sqlite3DebugPrintf(")\n");
4993 if( sqlite3WhereTrace & 0x100 ){
4994 Select sSelect;
4995 memset(&sSelect, 0, sizeof(sSelect));
4996 sSelect.selFlags = SF_WhereBegin;
4997 sSelect.pSrc = pTabList;
4998 sSelect.pWhere = pWhere;
4999 sSelect.pOrderBy = pOrderBy;
5000 sSelect.pEList = pResultSet;
5001 sqlite3TreeViewSelect(0, &sSelect, 0);
5004 if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */
5005 sqlite3DebugPrintf("---- WHERE clause at start of analysis:\n");
5006 sqlite3WhereClausePrint(sWLB.pWC);
5008 #endif
5010 if( nTabList!=1 || whereShortCut(&sWLB)==0 ){
5011 rc = whereLoopAddAll(&sWLB);
5012 if( rc ) goto whereBeginError;
5014 #ifdef SQLITE_ENABLE_STAT4
5015 /* If one or more WhereTerm.truthProb values were used in estimating
5016 ** loop parameters, but then those truthProb values were subsequently
5017 ** changed based on STAT4 information while computing subsequent loops,
5018 ** then we need to rerun the whole loop building process so that all
5019 ** loops will be built using the revised truthProb values. */
5020 if( sWLB.bldFlags2 & SQLITE_BLDF2_2NDPASS ){
5021 WHERETRACE_ALL_LOOPS(pWInfo, sWLB.pWC);
5022 WHERETRACE(0xffff,
5023 ("**** Redo all loop computations due to"
5024 " TERM_HIGHTRUTH changes ****\n"));
5025 while( pWInfo->pLoops ){
5026 WhereLoop *p = pWInfo->pLoops;
5027 pWInfo->pLoops = p->pNextLoop;
5028 whereLoopDelete(db, p);
5030 rc = whereLoopAddAll(&sWLB);
5031 if( rc ) goto whereBeginError;
5033 #endif
5034 WHERETRACE_ALL_LOOPS(pWInfo, sWLB.pWC);
5036 wherePathSolver(pWInfo, 0);
5037 if( db->mallocFailed ) goto whereBeginError;
5038 if( pWInfo->pOrderBy ){
5039 wherePathSolver(pWInfo, pWInfo->nRowOut+1);
5040 if( db->mallocFailed ) goto whereBeginError;
5043 if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){
5044 pWInfo->revMask = ALLBITS;
5046 if( pParse->nErr || db->mallocFailed ){
5047 goto whereBeginError;
5049 #ifdef WHERETRACE_ENABLED
5050 if( sqlite3WhereTrace ){
5051 sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut);
5052 if( pWInfo->nOBSat>0 ){
5053 sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask);
5055 switch( pWInfo->eDistinct ){
5056 case WHERE_DISTINCT_UNIQUE: {
5057 sqlite3DebugPrintf(" DISTINCT=unique");
5058 break;
5060 case WHERE_DISTINCT_ORDERED: {
5061 sqlite3DebugPrintf(" DISTINCT=ordered");
5062 break;
5064 case WHERE_DISTINCT_UNORDERED: {
5065 sqlite3DebugPrintf(" DISTINCT=unordered");
5066 break;
5069 sqlite3DebugPrintf("\n");
5070 for(ii=0; ii<pWInfo->nLevel; ii++){
5071 sqlite3WhereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC);
5074 #endif
5076 /* Attempt to omit tables from the join that do not affect the result.
5077 ** For a table to not affect the result, the following must be true:
5079 ** 1) The query must not be an aggregate.
5080 ** 2) The table must be the RHS of a LEFT JOIN.
5081 ** 3) Either the query must be DISTINCT, or else the ON or USING clause
5082 ** must contain a constraint that limits the scan of the table to
5083 ** at most a single row.
5084 ** 4) The table must not be referenced by any part of the query apart
5085 ** from its own USING or ON clause.
5087 ** For example, given:
5089 ** CREATE TABLE t1(ipk INTEGER PRIMARY KEY, v1);
5090 ** CREATE TABLE t2(ipk INTEGER PRIMARY KEY, v2);
5091 ** CREATE TABLE t3(ipk INTEGER PRIMARY KEY, v3);
5093 ** then table t2 can be omitted from the following:
5095 ** SELECT v1, v3 FROM t1
5096 ** LEFT JOIN t2 ON (t1.ipk=t2.ipk)
5097 ** LEFT JOIN t3 ON (t1.ipk=t3.ipk)
5099 ** or from:
5101 ** SELECT DISTINCT v1, v3 FROM t1
5102 ** LEFT JOIN t2
5103 ** LEFT JOIN t3 ON (t1.ipk=t3.ipk)
5105 notReady = ~(Bitmask)0;
5106 if( pWInfo->nLevel>=2
5107 && pResultSet!=0 /* these two combine to guarantee */
5108 && 0==(wctrlFlags & WHERE_AGG_DISTINCT) /* condition (1) above */
5109 && OptimizationEnabled(db, SQLITE_OmitNoopJoin)
5111 int i;
5112 Bitmask tabUsed = sqlite3WhereExprListUsage(pMaskSet, pResultSet);
5113 if( sWLB.pOrderBy ){
5114 tabUsed |= sqlite3WhereExprListUsage(pMaskSet, sWLB.pOrderBy);
5116 for(i=pWInfo->nLevel-1; i>=1; i--){
5117 WhereTerm *pTerm, *pEnd;
5118 SrcItem *pItem;
5119 pLoop = pWInfo->a[i].pWLoop;
5120 pItem = &pWInfo->pTabList->a[pLoop->iTab];
5121 if( (pItem->fg.jointype & JT_LEFT)==0 ) continue;
5122 if( (wctrlFlags & WHERE_WANT_DISTINCT)==0
5123 && (pLoop->wsFlags & WHERE_ONEROW)==0
5125 continue;
5127 if( (tabUsed & pLoop->maskSelf)!=0 ) continue;
5128 pEnd = sWLB.pWC->a + sWLB.pWC->nTerm;
5129 for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){
5130 if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){
5131 if( !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
5132 || pTerm->pExpr->iRightJoinTable!=pItem->iCursor
5134 break;
5138 if( pTerm<pEnd ) continue;
5139 WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop->cId));
5140 notReady &= ~pLoop->maskSelf;
5141 for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){
5142 if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){
5143 pTerm->wtFlags |= TERM_CODED;
5146 if( i!=pWInfo->nLevel-1 ){
5147 int nByte = (pWInfo->nLevel-1-i) * sizeof(WhereLevel);
5148 memmove(&pWInfo->a[i], &pWInfo->a[i+1], nByte);
5150 pWInfo->nLevel--;
5151 nTabList--;
5154 #if defined(WHERETRACE_ENABLED)
5155 if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */
5156 sqlite3DebugPrintf("---- WHERE clause at end of analysis:\n");
5157 sqlite3WhereClausePrint(sWLB.pWC);
5159 WHERETRACE(0xffff,("*** Optimizer Finished ***\n"));
5160 #endif
5161 pWInfo->pParse->nQueryLoop += pWInfo->nRowOut;
5163 /* If the caller is an UPDATE or DELETE statement that is requesting
5164 ** to use a one-pass algorithm, determine if this is appropriate.
5166 ** A one-pass approach can be used if the caller has requested one
5167 ** and either (a) the scan visits at most one row or (b) each
5168 ** of the following are true:
5170 ** * the caller has indicated that a one-pass approach can be used
5171 ** with multiple rows (by setting WHERE_ONEPASS_MULTIROW), and
5172 ** * the table is not a virtual table, and
5173 ** * either the scan does not use the OR optimization or the caller
5174 ** is a DELETE operation (WHERE_DUPLICATES_OK is only specified
5175 ** for DELETE).
5177 ** The last qualification is because an UPDATE statement uses
5178 ** WhereInfo.aiCurOnePass[1] to determine whether or not it really can
5179 ** use a one-pass approach, and this is not set accurately for scans
5180 ** that use the OR optimization.
5182 assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 );
5183 if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 ){
5184 int wsFlags = pWInfo->a[0].pWLoop->wsFlags;
5185 int bOnerow = (wsFlags & WHERE_ONEROW)!=0;
5186 assert( !(wsFlags & WHERE_VIRTUALTABLE) || IsVirtual(pTabList->a[0].pTab) );
5187 if( bOnerow || (
5188 0!=(wctrlFlags & WHERE_ONEPASS_MULTIROW)
5189 && !IsVirtual(pTabList->a[0].pTab)
5190 && (0==(wsFlags & WHERE_MULTI_OR) || (wctrlFlags & WHERE_DUPLICATES_OK))
5192 pWInfo->eOnePass = bOnerow ? ONEPASS_SINGLE : ONEPASS_MULTI;
5193 if( HasRowid(pTabList->a[0].pTab) && (wsFlags & WHERE_IDX_ONLY) ){
5194 if( wctrlFlags & WHERE_ONEPASS_MULTIROW ){
5195 bFordelete = OPFLAG_FORDELETE;
5197 pWInfo->a[0].pWLoop->wsFlags = (wsFlags & ~WHERE_IDX_ONLY);
5202 /* Open all tables in the pTabList and any indices selected for
5203 ** searching those tables.
5205 for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){
5206 Table *pTab; /* Table to open */
5207 int iDb; /* Index of database containing table/index */
5208 SrcItem *pTabItem;
5210 pTabItem = &pTabList->a[pLevel->iFrom];
5211 pTab = pTabItem->pTab;
5212 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
5213 pLoop = pLevel->pWLoop;
5214 if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ){
5215 /* Do nothing */
5216 }else
5217 #ifndef SQLITE_OMIT_VIRTUALTABLE
5218 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
5219 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
5220 int iCur = pTabItem->iCursor;
5221 sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB);
5222 }else if( IsVirtual(pTab) ){
5223 /* noop */
5224 }else
5225 #endif
5226 if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0
5227 && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 ){
5228 int op = OP_OpenRead;
5229 if( pWInfo->eOnePass!=ONEPASS_OFF ){
5230 op = OP_OpenWrite;
5231 pWInfo->aiCurOnePass[0] = pTabItem->iCursor;
5233 sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op);
5234 assert( pTabItem->iCursor==pLevel->iTabCur );
5235 testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS-1 );
5236 testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS );
5237 if( pWInfo->eOnePass==ONEPASS_OFF
5238 && pTab->nCol<BMS
5239 && (pTab->tabFlags & (TF_HasGenerated|TF_WithoutRowid))==0
5241 /* If we know that only a prefix of the record will be used,
5242 ** it is advantageous to reduce the "column count" field in
5243 ** the P4 operand of the OP_OpenRead/Write opcode. */
5244 Bitmask b = pTabItem->colUsed;
5245 int n = 0;
5246 for(; b; b=b>>1, n++){}
5247 sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(n), P4_INT32);
5248 assert( n<=pTab->nCol );
5250 #ifdef SQLITE_ENABLE_CURSOR_HINTS
5251 if( pLoop->u.btree.pIndex!=0 ){
5252 sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ|bFordelete);
5253 }else
5254 #endif
5256 sqlite3VdbeChangeP5(v, bFordelete);
5258 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
5259 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, pTabItem->iCursor, 0, 0,
5260 (const u8*)&pTabItem->colUsed, P4_INT64);
5261 #endif
5262 }else{
5263 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
5265 if( pLoop->wsFlags & WHERE_INDEXED ){
5266 Index *pIx = pLoop->u.btree.pIndex;
5267 int iIndexCur;
5268 int op = OP_OpenRead;
5269 /* iAuxArg is always set to a positive value if ONEPASS is possible */
5270 assert( iAuxArg!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 );
5271 if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx)
5272 && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0
5274 /* This is one term of an OR-optimization using the PRIMARY KEY of a
5275 ** WITHOUT ROWID table. No need for a separate index */
5276 iIndexCur = pLevel->iTabCur;
5277 op = 0;
5278 }else if( pWInfo->eOnePass!=ONEPASS_OFF ){
5279 Index *pJ = pTabItem->pTab->pIndex;
5280 iIndexCur = iAuxArg;
5281 assert( wctrlFlags & WHERE_ONEPASS_DESIRED );
5282 while( ALWAYS(pJ) && pJ!=pIx ){
5283 iIndexCur++;
5284 pJ = pJ->pNext;
5286 op = OP_OpenWrite;
5287 pWInfo->aiCurOnePass[1] = iIndexCur;
5288 }else if( iAuxArg && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ){
5289 iIndexCur = iAuxArg;
5290 op = OP_ReopenIdx;
5291 }else{
5292 iIndexCur = pParse->nTab++;
5294 pLevel->iIdxCur = iIndexCur;
5295 assert( pIx->pSchema==pTab->pSchema );
5296 assert( iIndexCur>=0 );
5297 if( op ){
5298 sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb);
5299 sqlite3VdbeSetP4KeyInfo(pParse, pIx);
5300 if( (pLoop->wsFlags & WHERE_CONSTRAINT)!=0
5301 && (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0
5302 && (pLoop->wsFlags & WHERE_BIGNULL_SORT)==0
5303 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0
5304 && (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0
5305 && pWInfo->eDistinct!=WHERE_DISTINCT_ORDERED
5307 sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ);
5309 VdbeComment((v, "%s", pIx->zName));
5310 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
5312 u64 colUsed = 0;
5313 int ii, jj;
5314 for(ii=0; ii<pIx->nColumn; ii++){
5315 jj = pIx->aiColumn[ii];
5316 if( jj<0 ) continue;
5317 if( jj>63 ) jj = 63;
5318 if( (pTabItem->colUsed & MASKBIT(jj))==0 ) continue;
5319 colUsed |= ((u64)1)<<(ii<63 ? ii : 63);
5321 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, iIndexCur, 0, 0,
5322 (u8*)&colUsed, P4_INT64);
5324 #endif /* SQLITE_ENABLE_COLUMN_USED_MASK */
5327 if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb);
5329 pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
5330 if( db->mallocFailed ) goto whereBeginError;
5332 /* Generate the code to do the search. Each iteration of the for
5333 ** loop below generates code for a single nested loop of the VM
5334 ** program.
5336 for(ii=0; ii<nTabList; ii++){
5337 int addrExplain;
5338 int wsFlags;
5339 pLevel = &pWInfo->a[ii];
5340 wsFlags = pLevel->pWLoop->wsFlags;
5341 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
5342 if( (pLevel->pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 ){
5343 constructAutomaticIndex(pParse, &pWInfo->sWC,
5344 &pTabList->a[pLevel->iFrom], notReady, pLevel);
5345 if( db->mallocFailed ) goto whereBeginError;
5347 #endif
5348 addrExplain = sqlite3WhereExplainOneScan(
5349 pParse, pTabList, pLevel, wctrlFlags
5351 pLevel->addrBody = sqlite3VdbeCurrentAddr(v);
5352 notReady = sqlite3WhereCodeOneLoopStart(pParse,v,pWInfo,ii,pLevel,notReady);
5353 pWInfo->iContinue = pLevel->addrCont;
5354 if( (wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_OR_SUBCLAUSE)==0 ){
5355 sqlite3WhereAddScanStatus(v, pTabList, pLevel, addrExplain);
5359 /* Done. */
5360 VdbeModuleComment((v, "Begin WHERE-core"));
5361 pWInfo->iEndWhere = sqlite3VdbeCurrentAddr(v);
5362 return pWInfo;
5364 /* Jump here if malloc fails */
5365 whereBeginError:
5366 if( pWInfo ){
5367 testcase( pWInfo->pExprMods!=0 );
5368 whereUndoExprMods(pWInfo);
5369 pParse->nQueryLoop = pWInfo->savedNQueryLoop;
5370 whereInfoFree(db, pWInfo);
5372 return 0;
5376 ** Part of sqlite3WhereEnd() will rewrite opcodes to reference the
5377 ** index rather than the main table. In SQLITE_DEBUG mode, we want
5378 ** to trace those changes if PRAGMA vdbe_addoptrace=on. This routine
5379 ** does that.
5381 #ifndef SQLITE_DEBUG
5382 # define OpcodeRewriteTrace(D,K,P) /* no-op */
5383 #else
5384 # define OpcodeRewriteTrace(D,K,P) sqlite3WhereOpcodeRewriteTrace(D,K,P)
5385 static void sqlite3WhereOpcodeRewriteTrace(
5386 sqlite3 *db,
5387 int pc,
5388 VdbeOp *pOp
5390 if( (db->flags & SQLITE_VdbeAddopTrace)==0 ) return;
5391 sqlite3VdbePrintOp(0, pc, pOp);
5393 #endif
5396 ** Generate the end of the WHERE loop. See comments on
5397 ** sqlite3WhereBegin() for additional information.
5399 void sqlite3WhereEnd(WhereInfo *pWInfo){
5400 Parse *pParse = pWInfo->pParse;
5401 Vdbe *v = pParse->pVdbe;
5402 int i;
5403 WhereLevel *pLevel;
5404 WhereLoop *pLoop;
5405 SrcList *pTabList = pWInfo->pTabList;
5406 sqlite3 *db = pParse->db;
5407 int iEnd = sqlite3VdbeCurrentAddr(v);
5409 /* Generate loop termination code.
5411 VdbeModuleComment((v, "End WHERE-core"));
5412 for(i=pWInfo->nLevel-1; i>=0; i--){
5413 int addr;
5414 pLevel = &pWInfo->a[i];
5415 pLoop = pLevel->pWLoop;
5416 if( pLevel->op!=OP_Noop ){
5417 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
5418 int addrSeek = 0;
5419 Index *pIdx;
5420 int n;
5421 if( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED
5422 && i==pWInfo->nLevel-1 /* Ticket [ef9318757b152e3] 2017-10-21 */
5423 && (pLoop->wsFlags & WHERE_INDEXED)!=0
5424 && (pIdx = pLoop->u.btree.pIndex)->hasStat1
5425 && (n = pLoop->u.btree.nDistinctCol)>0
5426 && pIdx->aiRowLogEst[n]>=36
5428 int r1 = pParse->nMem+1;
5429 int j, op;
5430 for(j=0; j<n; j++){
5431 sqlite3VdbeAddOp3(v, OP_Column, pLevel->iIdxCur, j, r1+j);
5433 pParse->nMem += n+1;
5434 op = pLevel->op==OP_Prev ? OP_SeekLT : OP_SeekGT;
5435 addrSeek = sqlite3VdbeAddOp4Int(v, op, pLevel->iIdxCur, 0, r1, n);
5436 VdbeCoverageIf(v, op==OP_SeekLT);
5437 VdbeCoverageIf(v, op==OP_SeekGT);
5438 sqlite3VdbeAddOp2(v, OP_Goto, 1, pLevel->p2);
5440 #endif /* SQLITE_DISABLE_SKIPAHEAD_DISTINCT */
5441 /* The common case: Advance to the next row */
5442 sqlite3VdbeResolveLabel(v, pLevel->addrCont);
5443 sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3);
5444 sqlite3VdbeChangeP5(v, pLevel->p5);
5445 VdbeCoverage(v);
5446 VdbeCoverageIf(v, pLevel->op==OP_Next);
5447 VdbeCoverageIf(v, pLevel->op==OP_Prev);
5448 VdbeCoverageIf(v, pLevel->op==OP_VNext);
5449 if( pLevel->regBignull ){
5450 sqlite3VdbeResolveLabel(v, pLevel->addrBignull);
5451 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, pLevel->regBignull, pLevel->p2-1);
5452 VdbeCoverage(v);
5454 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
5455 if( addrSeek ) sqlite3VdbeJumpHere(v, addrSeek);
5456 #endif
5457 }else{
5458 sqlite3VdbeResolveLabel(v, pLevel->addrCont);
5460 if( pLoop->wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){
5461 struct InLoop *pIn;
5462 int j;
5463 sqlite3VdbeResolveLabel(v, pLevel->addrNxt);
5464 for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){
5465 assert( sqlite3VdbeGetOp(v, pIn->addrInTop+1)->opcode==OP_IsNull
5466 || pParse->db->mallocFailed );
5467 sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
5468 if( pIn->eEndLoopOp!=OP_Noop ){
5469 if( pIn->nPrefix ){
5470 int bEarlyOut =
5471 (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0
5472 && (pLoop->wsFlags & WHERE_IN_EARLYOUT)!=0;
5473 if( pLevel->iLeftJoin ){
5474 /* For LEFT JOIN queries, cursor pIn->iCur may not have been
5475 ** opened yet. This occurs for WHERE clauses such as
5476 ** "a = ? AND b IN (...)", where the index is on (a, b). If
5477 ** the RHS of the (a=?) is NULL, then the "b IN (...)" may
5478 ** never have been coded, but the body of the loop run to
5479 ** return the null-row. So, if the cursor is not open yet,
5480 ** jump over the OP_Next or OP_Prev instruction about to
5481 ** be coded. */
5482 sqlite3VdbeAddOp2(v, OP_IfNotOpen, pIn->iCur,
5483 sqlite3VdbeCurrentAddr(v) + 2 + bEarlyOut);
5484 VdbeCoverage(v);
5486 if( bEarlyOut ){
5487 sqlite3VdbeAddOp4Int(v, OP_IfNoHope, pLevel->iIdxCur,
5488 sqlite3VdbeCurrentAddr(v)+2,
5489 pIn->iBase, pIn->nPrefix);
5490 VdbeCoverage(v);
5491 /* Retarget the OP_IsNull against the left operand of IN so
5492 ** it jumps past the OP_IfNoHope. This is because the
5493 ** OP_IsNull also bypasses the OP_Affinity opcode that is
5494 ** required by OP_IfNoHope. */
5495 sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
5498 sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop);
5499 VdbeCoverage(v);
5500 VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Prev);
5501 VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Next);
5503 sqlite3VdbeJumpHere(v, pIn->addrInTop-1);
5506 sqlite3VdbeResolveLabel(v, pLevel->addrBrk);
5507 if( pLevel->addrSkip ){
5508 sqlite3VdbeGoto(v, pLevel->addrSkip);
5509 VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName));
5510 sqlite3VdbeJumpHere(v, pLevel->addrSkip);
5511 sqlite3VdbeJumpHere(v, pLevel->addrSkip-2);
5513 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
5514 if( pLevel->addrLikeRep ){
5515 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, (int)(pLevel->iLikeRepCntr>>1),
5516 pLevel->addrLikeRep);
5517 VdbeCoverage(v);
5519 #endif
5520 if( pLevel->iLeftJoin ){
5521 int ws = pLoop->wsFlags;
5522 addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v);
5523 assert( (ws & WHERE_IDX_ONLY)==0 || (ws & WHERE_INDEXED)!=0 );
5524 if( (ws & WHERE_IDX_ONLY)==0 ){
5525 assert( pLevel->iTabCur==pTabList->a[pLevel->iFrom].iCursor );
5526 sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iTabCur);
5528 if( (ws & WHERE_INDEXED)
5529 || ((ws & WHERE_MULTI_OR) && pLevel->u.pCovidx)
5531 sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur);
5533 if( pLevel->op==OP_Return ){
5534 sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst);
5535 }else{
5536 sqlite3VdbeGoto(v, pLevel->addrFirst);
5538 sqlite3VdbeJumpHere(v, addr);
5540 VdbeModuleComment((v, "End WHERE-loop%d: %s", i,
5541 pWInfo->pTabList->a[pLevel->iFrom].pTab->zName));
5544 /* The "break" point is here, just past the end of the outer loop.
5545 ** Set it.
5547 sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
5549 assert( pWInfo->nLevel<=pTabList->nSrc );
5550 for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){
5551 int k, last;
5552 VdbeOp *pOp, *pLastOp;
5553 Index *pIdx = 0;
5554 SrcItem *pTabItem = &pTabList->a[pLevel->iFrom];
5555 Table *pTab = pTabItem->pTab;
5556 assert( pTab!=0 );
5557 pLoop = pLevel->pWLoop;
5559 /* For a co-routine, change all OP_Column references to the table of
5560 ** the co-routine into OP_Copy of result contained in a register.
5561 ** OP_Rowid becomes OP_Null.
5563 if( pTabItem->fg.viaCoroutine ){
5564 testcase( pParse->db->mallocFailed );
5565 translateColumnToCopy(pParse, pLevel->addrBody, pLevel->iTabCur,
5566 pTabItem->regResult, 0);
5567 continue;
5570 #ifdef SQLITE_ENABLE_EARLY_CURSOR_CLOSE
5571 /* Close all of the cursors that were opened by sqlite3WhereBegin.
5572 ** Except, do not close cursors that will be reused by the OR optimization
5573 ** (WHERE_OR_SUBCLAUSE). And do not close the OP_OpenWrite cursors
5574 ** created for the ONEPASS optimization.
5576 if( (pTab->tabFlags & TF_Ephemeral)==0
5577 && pTab->pSelect==0
5578 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0
5580 int ws = pLoop->wsFlags;
5581 if( pWInfo->eOnePass==ONEPASS_OFF && (ws & WHERE_IDX_ONLY)==0 ){
5582 sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor);
5584 if( (ws & WHERE_INDEXED)!=0
5585 && (ws & (WHERE_IPK|WHERE_AUTO_INDEX))==0
5586 && pLevel->iIdxCur!=pWInfo->aiCurOnePass[1]
5588 sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur);
5591 #endif
5593 /* If this scan uses an index, make VDBE code substitutions to read data
5594 ** from the index instead of from the table where possible. In some cases
5595 ** this optimization prevents the table from ever being read, which can
5596 ** yield a significant performance boost.
5598 ** Calls to the code generator in between sqlite3WhereBegin and
5599 ** sqlite3WhereEnd will have created code that references the table
5600 ** directly. This loop scans all that code looking for opcodes
5601 ** that reference the table and converts them into opcodes that
5602 ** reference the index.
5604 if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){
5605 pIdx = pLoop->u.btree.pIndex;
5606 }else if( pLoop->wsFlags & WHERE_MULTI_OR ){
5607 pIdx = pLevel->u.pCovidx;
5609 if( pIdx
5610 && !db->mallocFailed
5612 if( pWInfo->eOnePass==ONEPASS_OFF || !HasRowid(pIdx->pTable) ){
5613 last = iEnd;
5614 }else{
5615 last = pWInfo->iEndWhere;
5617 k = pLevel->addrBody + 1;
5618 #ifdef SQLITE_DEBUG
5619 if( db->flags & SQLITE_VdbeAddopTrace ){
5620 printf("TRANSLATE opcodes in range %d..%d\n", k, last-1);
5622 /* Proof that the "+1" on the k value above is safe */
5623 pOp = sqlite3VdbeGetOp(v, k - 1);
5624 assert( pOp->opcode!=OP_Column || pOp->p1!=pLevel->iTabCur );
5625 assert( pOp->opcode!=OP_Rowid || pOp->p1!=pLevel->iTabCur );
5626 assert( pOp->opcode!=OP_IfNullRow || pOp->p1!=pLevel->iTabCur );
5627 #endif
5628 pOp = sqlite3VdbeGetOp(v, k);
5629 pLastOp = pOp + (last - k);
5630 assert( pOp<=pLastOp );
5632 if( pOp->p1!=pLevel->iTabCur ){
5633 /* no-op */
5634 }else if( pOp->opcode==OP_Column
5635 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
5636 || pOp->opcode==OP_Offset
5637 #endif
5639 int x = pOp->p2;
5640 assert( pIdx->pTable==pTab );
5641 if( !HasRowid(pTab) ){
5642 Index *pPk = sqlite3PrimaryKeyIndex(pTab);
5643 x = pPk->aiColumn[x];
5644 assert( x>=0 );
5645 }else{
5646 testcase( x!=sqlite3StorageColumnToTable(pTab,x) );
5647 x = sqlite3StorageColumnToTable(pTab,x);
5649 x = sqlite3TableColumnToIndex(pIdx, x);
5650 if( x>=0 ){
5651 pOp->p2 = x;
5652 pOp->p1 = pLevel->iIdxCur;
5653 OpcodeRewriteTrace(db, k, pOp);
5655 assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || x>=0
5656 || pWInfo->eOnePass );
5657 }else if( pOp->opcode==OP_Rowid ){
5658 pOp->p1 = pLevel->iIdxCur;
5659 pOp->opcode = OP_IdxRowid;
5660 OpcodeRewriteTrace(db, k, pOp);
5661 }else if( pOp->opcode==OP_IfNullRow ){
5662 pOp->p1 = pLevel->iIdxCur;
5663 OpcodeRewriteTrace(db, k, pOp);
5665 #ifdef SQLITE_DEBUG
5666 k++;
5667 #endif
5668 }while( (++pOp)<pLastOp );
5669 #ifdef SQLITE_DEBUG
5670 if( db->flags & SQLITE_VdbeAddopTrace ) printf("TRANSLATE complete\n");
5671 #endif
5675 /* Final cleanup
5677 if( pWInfo->pExprMods ) whereUndoExprMods(pWInfo);
5678 pParse->nQueryLoop = pWInfo->savedNQueryLoop;
5679 whereInfoFree(db, pWInfo);
5680 return;