4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains the C functions that implement date and time
13 ** functions for SQLite.
15 ** There is only one exported symbol in this file - the function
16 ** sqlite3RegisterDateTimeFunctions() found at the bottom of the file.
17 ** All other code has file scope.
19 ** SQLite processes all times and dates as julian day numbers. The
20 ** dates and times are stored as the number of days since noon
21 ** in Greenwich on November 24, 4714 B.C. according to the Gregorian
24 ** 1970-01-01 00:00:00 is JD 2440587.5
25 ** 2000-01-01 00:00:00 is JD 2451544.5
27 ** This implementation requires years to be expressed as a 4-digit number
28 ** which means that only dates between 0000-01-01 and 9999-12-31 can
29 ** be represented, even though julian day numbers allow a much wider
32 ** The Gregorian calendar system is used for all dates and times,
33 ** even those that predate the Gregorian calendar. Historians usually
34 ** use the julian calendar for dates prior to 1582-10-15 and for some
35 ** dates afterwards, depending on locale. Beware of this difference.
37 ** The conversion algorithms are implemented based on descriptions
38 ** in the following text:
41 ** Astronomical Algorithms, 2nd Edition, 1998
44 ** Richmond, Virginia (USA)
46 #include "sqliteInt.h"
51 #ifndef SQLITE_OMIT_DATETIME_FUNCS
54 ** The MSVC CRT on Windows CE may not have a localtime() function.
55 ** So declare a substitute. The substitute function itself is
56 ** defined in "os_win.c".
58 #if !defined(SQLITE_OMIT_LOCALTIME) && defined(_WIN32_WCE) && \
59 (!defined(SQLITE_MSVC_LOCALTIME_API) || !SQLITE_MSVC_LOCALTIME_API)
60 struct tm
*__cdecl
localtime(const time_t *);
64 ** A structure for holding a single date and time.
66 typedef struct DateTime DateTime
;
68 sqlite3_int64 iJD
; /* The julian day number times 86400000 */
69 int Y
, M
, D
; /* Year, month, and day */
70 int h
, m
; /* Hour and minutes */
71 int tz
; /* Timezone offset in minutes */
72 double s
; /* Seconds */
73 char validJD
; /* True (1) if iJD is valid */
74 char rawS
; /* Raw numeric value stored in s */
75 char validYMD
; /* True (1) if Y,M,D are valid */
76 char validHMS
; /* True (1) if h,m,s are valid */
77 char validTZ
; /* True (1) if tz is valid */
78 char tzSet
; /* Timezone was set explicitly */
79 char isError
; /* An overflow has occurred */
80 char useSubsec
; /* Display subsecond precision */
85 ** Convert zDate into one or more integers according to the conversion
88 ** zFormat[] contains 4 characters for each integer converted, except for
89 ** the last integer which is specified by three characters. The meaning
90 ** of a four-character format specifiers ABCD is:
92 ** A: number of digits to convert. Always "2" or "4".
93 ** B: minimum value. Always "0" or "1".
94 ** C: maximum value, decoded as:
101 ** D: the separator character, or \000 to indicate this is the
102 ** last number to convert.
104 ** Example: To translate an ISO-8601 date YYYY-MM-DD, the format would
105 ** be "40f-21a-20c". The "40f-" indicates the 4-digit year followed by "-".
106 ** The "21a-" indicates the 2-digit month followed by "-". The "20c" indicates
107 ** the 2-digit day which is the last integer in the set.
109 ** The function returns the number of successful conversions.
111 static int getDigits(const char *zDate
, const char *zFormat
, ...){
112 /* The aMx[] array translates the 3rd character of each format
113 ** spec into a max size: a b c d e f */
114 static const u16 aMx
[] = { 12, 14, 24, 31, 59, 9999 };
118 va_start(ap
, zFormat
);
120 char N
= zFormat
[0] - '0';
121 char min
= zFormat
[1] - '0';
125 assert( zFormat
[2]>='a' && zFormat
[2]<='f' );
126 max
= aMx
[zFormat
[2] - 'a'];
130 if( !sqlite3Isdigit(*zDate
) ){
133 val
= val
*10 + *zDate
- '0';
136 if( val
<(int)min
|| val
>(int)max
|| (nextC
!=0 && nextC
!=*zDate
) ){
139 *va_arg(ap
,int*) = val
;
150 ** Parse a timezone extension on the end of a date-time.
151 ** The extension is of the form:
155 ** Or the "zulu" notation:
159 ** If the parse is successful, write the number of minutes
160 ** of change in p->tz and return 0. If a parser error occurs,
163 ** A missing specifier is not considered an error.
165 static int parseTimezone(const char *zDate
, DateTime
*p
){
169 while( sqlite3Isspace(*zDate
) ){ zDate
++; }
176 }else if( c
=='Z' || c
=='z' ){
183 if( getDigits(zDate
, "20b:20e", &nHr
, &nMn
)!=2 ){
187 p
->tz
= sgn
*(nMn
+ nHr
*60);
189 while( sqlite3Isspace(*zDate
) ){ zDate
++; }
195 ** Parse times of the form HH:MM or HH:MM:SS or HH:MM:SS.FFFF.
196 ** The HH, MM, and SS must each be exactly 2 digits. The
197 ** fractional seconds FFFF can be one or more digits.
199 ** Return 1 if there is a parsing error and 0 on success.
201 static int parseHhMmSs(const char *zDate
, DateTime
*p
){
204 if( getDigits(zDate
, "20c:20e", &h
, &m
)!=2 ){
210 if( getDigits(zDate
, "20e", &s
)!=1 ){
214 if( *zDate
=='.' && sqlite3Isdigit(zDate
[1]) ){
217 while( sqlite3Isdigit(*zDate
) ){
218 ms
= ms
*10.0 + *zDate
- '0';
233 if( parseTimezone(zDate
, p
) ) return 1;
234 p
->validTZ
= (p
->tz
!=0)?1:0;
239 ** Put the DateTime object into its error state.
241 static void datetimeError(DateTime
*p
){
242 memset(p
, 0, sizeof(*p
));
247 ** Convert from YYYY-MM-DD HH:MM:SS to julian day. We always assume
248 ** that the YYYY-MM-DD is according to the Gregorian calendar.
250 ** Reference: Meeus page 61
252 static void computeJD(DateTime
*p
){
253 int Y
, M
, D
, A
, B
, X1
, X2
;
255 if( p
->validJD
) return;
261 Y
= 2000; /* If no YMD specified, assume 2000-Jan-01 */
265 if( Y
<-4713 || Y
>9999 || p
->rawS
){
275 X1
= 36525*(Y
+4716)/100;
276 X2
= 306001*(M
+1)/10000;
277 p
->iJD
= (sqlite3_int64
)((X1
+ X2
+ D
+ B
- 1524.5 ) * 86400000);
280 p
->iJD
+= p
->h
*3600000 + p
->m
*60000 + (sqlite3_int64
)(p
->s
*1000 + 0.5);
282 p
->iJD
-= p
->tz
*60000;
291 ** Parse dates of the form
293 ** YYYY-MM-DD HH:MM:SS.FFF
294 ** YYYY-MM-DD HH:MM:SS
298 ** Write the result into the DateTime structure and return 0
299 ** on success and 1 if the input string is not a well-formed
302 static int parseYyyyMmDd(const char *zDate
, DateTime
*p
){
311 if( getDigits(zDate
, "40f-21a-21d", &Y
, &M
, &D
)!=3 ){
315 while( sqlite3Isspace(*zDate
) || 'T'==*(u8
*)zDate
){ zDate
++; }
316 if( parseHhMmSs(zDate
, p
)==0 ){
317 /* We got the time */
318 }else if( *zDate
==0 ){
335 ** Set the time to the current time reported by the VFS.
337 ** Return the number of errors.
339 static int setDateTimeToCurrent(sqlite3_context
*context
, DateTime
*p
){
340 p
->iJD
= sqlite3StmtCurrentTime(context
);
350 ** Input "r" is a numeric quantity which might be a julian day number,
351 ** or the number of seconds since 1970. If the value if r is within
352 ** range of a julian day number, install it as such and set validJD.
353 ** If the value is a valid unix timestamp, put it in p->s and set p->rawS.
355 static void setRawDateNumber(DateTime
*p
, double r
){
358 if( r
>=0.0 && r
<5373484.5 ){
359 p
->iJD
= (sqlite3_int64
)(r
*86400000.0 + 0.5);
365 ** Attempt to parse the given string into a julian day number. Return
366 ** the number of errors.
368 ** The following are acceptable forms for the input string:
370 ** YYYY-MM-DD HH:MM:SS.FFF +/-HH:MM
374 ** In the first form, the +/-HH:MM is always optional. The fractional
375 ** seconds extension (the ".FFF") is optional. The seconds portion
376 ** (":SS.FFF") is option. The year and date can be omitted as long
377 ** as there is a time string. The time string can be omitted as long
378 ** as there is a year and date.
380 static int parseDateOrTime(
381 sqlite3_context
*context
,
386 if( parseYyyyMmDd(zDate
,p
)==0 ){
388 }else if( parseHhMmSs(zDate
, p
)==0 ){
390 }else if( sqlite3StrICmp(zDate
,"now")==0 && sqlite3NotPureFunc(context
) ){
391 return setDateTimeToCurrent(context
, p
);
392 }else if( sqlite3AtoF(zDate
, &r
, sqlite3Strlen30(zDate
), SQLITE_UTF8
)>0 ){
393 setRawDateNumber(p
, r
);
395 }else if( (sqlite3StrICmp(zDate
,"subsec")==0
396 || sqlite3StrICmp(zDate
,"subsecond")==0)
397 && sqlite3NotPureFunc(context
) ){
399 return setDateTimeToCurrent(context
, p
);
404 /* The julian day number for 9999-12-31 23:59:59.999 is 5373484.4999999.
405 ** Multiplying this by 86400000 gives 464269060799999 as the maximum value
408 ** But some older compilers (ex: gcc 4.2.1 on older Macs) cannot deal with
409 ** such a large integer literal, so we have to encode it.
411 #define INT_464269060799999 ((((i64)0x1a640)<<32)|0x1072fdff)
414 ** Return TRUE if the given julian day number is within range.
416 ** The input is the JulianDay times 86400000.
418 static int validJulianDay(sqlite3_int64 iJD
){
419 return iJD
>=0 && iJD
<=INT_464269060799999
;
423 ** Compute the Year, Month, and Day from the julian day number.
425 static void computeYMD(DateTime
*p
){
426 int Z
, A
, B
, C
, D
, E
, X1
;
427 if( p
->validYMD
) return;
432 }else if( !validJulianDay(p
->iJD
) ){
436 Z
= (int)((p
->iJD
+ 43200000)/86400000);
437 A
= (int)((Z
- 1867216.25)/36524.25);
438 A
= Z
+ 1 + A
- (A
/4);
440 C
= (int)((B
- 122.1)/365.25);
441 D
= (36525*(C
&32767))/100;
442 E
= (int)((B
-D
)/30.6001);
443 X1
= (int)(30.6001*E
);
445 p
->M
= E
<14 ? E
-1 : E
-13;
446 p
->Y
= p
->M
>2 ? C
- 4716 : C
- 4715;
452 ** Compute the Hour, Minute, and Seconds from the julian day number.
454 static void computeHMS(DateTime
*p
){
456 if( p
->validHMS
) return;
458 s
= (int)((p
->iJD
+ 43200000) % 86400000);
471 ** Compute both YMD and HMS
473 static void computeYMD_HMS(DateTime
*p
){
479 ** Clear the YMD and HMS and the TZ
481 static void clearYMD_HMS_TZ(DateTime
*p
){
487 #ifndef SQLITE_OMIT_LOCALTIME
489 ** On recent Windows platforms, the localtime_s() function is available
490 ** as part of the "Secure CRT". It is essentially equivalent to
491 ** localtime_r() available under most POSIX platforms, except that the
492 ** order of the parameters is reversed.
494 ** See http://msdn.microsoft.com/en-us/library/a442x3ye(VS.80).aspx.
496 ** If the user has not indicated to use localtime_r() or localtime_s()
497 ** already, check for an MSVC build environment that provides
500 #if !HAVE_LOCALTIME_R && !HAVE_LOCALTIME_S \
501 && defined(_MSC_VER) && defined(_CRT_INSECURE_DEPRECATE)
502 #undef HAVE_LOCALTIME_S
503 #define HAVE_LOCALTIME_S 1
507 ** The following routine implements the rough equivalent of localtime_r()
508 ** using whatever operating-system specific localtime facility that
509 ** is available. This routine returns 0 on success and
510 ** non-zero on any kind of error.
512 ** If the sqlite3GlobalConfig.bLocaltimeFault variable is non-zero then this
513 ** routine will always fail. If bLocaltimeFault is nonzero and
514 ** sqlite3GlobalConfig.xAltLocaltime is not NULL, then xAltLocaltime() is
515 ** invoked in place of the OS-defined localtime() function.
517 ** EVIDENCE-OF: R-62172-00036 In this implementation, the standard C
518 ** library function localtime_r() is used to assist in the calculation of
521 static int osLocaltime(time_t *t
, struct tm
*pTm
){
523 #if !HAVE_LOCALTIME_R && !HAVE_LOCALTIME_S
525 #if SQLITE_THREADSAFE>0
526 sqlite3_mutex
*mutex
= sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN
);
528 sqlite3_mutex_enter(mutex
);
530 #ifndef SQLITE_UNTESTABLE
531 if( sqlite3GlobalConfig
.bLocaltimeFault
){
532 if( sqlite3GlobalConfig
.xAltLocaltime
!=0
533 && 0==sqlite3GlobalConfig
.xAltLocaltime((const void*)t
,(void*)pTm
)
542 #if SQLITE_THREADSAFE>0
543 sqlite3_mutex_leave(mutex
);
547 #ifndef SQLITE_UNTESTABLE
548 if( sqlite3GlobalConfig
.bLocaltimeFault
){
549 if( sqlite3GlobalConfig
.xAltLocaltime
!=0 ){
550 return sqlite3GlobalConfig
.xAltLocaltime((const void*)t
,(void*)pTm
);
557 rc
= localtime_r(t
, pTm
)==0;
559 rc
= localtime_s(pTm
, t
);
560 #endif /* HAVE_LOCALTIME_R */
561 #endif /* HAVE_LOCALTIME_R || HAVE_LOCALTIME_S */
564 #endif /* SQLITE_OMIT_LOCALTIME */
567 #ifndef SQLITE_OMIT_LOCALTIME
569 ** Assuming the input DateTime is UTC, move it to its localtime equivalent.
571 static int toLocaltime(
572 DateTime
*p
, /* Date at which to calculate offset */
573 sqlite3_context
*pCtx
/* Write error here if one occurs */
579 /* Initialize the contents of sLocal to avoid a compiler warning. */
580 memset(&sLocal
, 0, sizeof(sLocal
));
583 if( p
->iJD
<2108667600*(i64
)100000 /* 1970-01-01 */
584 || p
->iJD
>2130141456*(i64
)100000 /* 2038-01-18 */
586 /* EVIDENCE-OF: R-55269-29598 The localtime_r() C function normally only
587 ** works for years between 1970 and 2037. For dates outside this range,
588 ** SQLite attempts to map the year into an equivalent year within this
589 ** range, do the calculation, then map the year back.
593 iYearDiff
= (2000 + x
.Y
%4) - x
.Y
;
597 t
= (time_t)(x
.iJD
/1000 - 21086676*(i64
)10000);
600 t
= (time_t)(p
->iJD
/1000 - 21086676*(i64
)10000);
602 if( osLocaltime(&t
, &sLocal
) ){
603 sqlite3_result_error(pCtx
, "local time unavailable", -1);
606 p
->Y
= sLocal
.tm_year
+ 1900 - iYearDiff
;
607 p
->M
= sLocal
.tm_mon
+ 1;
608 p
->D
= sLocal
.tm_mday
;
609 p
->h
= sLocal
.tm_hour
;
610 p
->m
= sLocal
.tm_min
;
611 p
->s
= sLocal
.tm_sec
+ (p
->iJD
%1000)*0.001;
620 #endif /* SQLITE_OMIT_LOCALTIME */
623 ** The following table defines various date transformations of the form
627 ** Where NNN is an arbitrary floating-point number and "days" can be one
628 ** of several units of time.
630 static const struct {
631 u8 nName
; /* Length of the name */
632 char zName
[7]; /* Name of the transformation */
633 float rLimit
; /* Maximum NNN value for this transform */
634 float rXform
; /* Constant used for this transform */
636 { 6, "second", 4.6427e+14, 1.0 },
637 { 6, "minute", 7.7379e+12, 60.0 },
638 { 4, "hour", 1.2897e+11, 3600.0 },
639 { 3, "day", 5373485.0, 86400.0 },
640 { 5, "month", 176546.0, 2592000.0 },
641 { 4, "year", 14713.0, 31536000.0 },
645 ** Process a modifier to a date-time stamp. The modifiers are
663 ** Return 0 on success and 1 if there is any kind of error. If the error
664 ** is in a system call (i.e. localtime()), then an error message is written
665 ** to context pCtx. If the error is an unrecognized modifier, no error is
668 static int parseModifier(
669 sqlite3_context
*pCtx
, /* Function context */
670 const char *z
, /* The text of the modifier */
671 int n
, /* Length of zMod in bytes */
672 DateTime
*p
, /* The date/time value to be modified */
673 int idx
/* Parameter index of the modifier */
677 switch(sqlite3UpperToLower
[(u8
)z
[0]] ){
682 ** If rawS is available, then interpret as a julian day number, or
683 ** a unix timestamp, depending on its magnitude.
685 if( sqlite3_stricmp(z
, "auto")==0 ){
686 if( idx
>1 ) return 1; /* IMP: R-33611-57934 */
687 if( !p
->rawS
|| p
->validJD
){
690 }else if( p
->s
>=-21086676*(i64
)10000 /* -4713-11-24 12:00:00 */
691 && p
->s
<=(25340230*(i64
)10000)+799 /* 9999-12-31 23:59:59 */
693 r
= p
->s
*1000.0 + 210866760000000.0;
695 p
->iJD
= (sqlite3_int64
)(r
+ 0.5);
707 ** Always interpret the prior number as a julian-day value. If this
708 ** is not the first modifier, or if the prior argument is not a numeric
709 ** value in the allowed range of julian day numbers understood by
710 ** SQLite (0..5373484.5) then the result will be NULL.
712 if( sqlite3_stricmp(z
, "julianday")==0 ){
713 if( idx
>1 ) return 1; /* IMP: R-31176-64601 */
714 if( p
->validJD
&& p
->rawS
){
721 #ifndef SQLITE_OMIT_LOCALTIME
725 ** Assuming the current time value is UTC (a.k.a. GMT), shift it to
728 if( sqlite3_stricmp(z
, "localtime")==0 && sqlite3NotPureFunc(pCtx
) ){
729 rc
= toLocaltime(p
, pCtx
);
738 ** Treat the current value of p->s as the number of
739 ** seconds since 1970. Convert to a real julian day number.
741 if( sqlite3_stricmp(z
, "unixepoch")==0 && p
->rawS
){
742 if( idx
>1 ) return 1; /* IMP: R-49255-55373 */
743 r
= p
->s
*1000.0 + 210866760000000.0;
744 if( r
>=0.0 && r
<464269060800000.0 ){
746 p
->iJD
= (sqlite3_int64
)(r
+ 0.5);
752 #ifndef SQLITE_OMIT_LOCALTIME
753 else if( sqlite3_stricmp(z
, "utc")==0 && sqlite3NotPureFunc(pCtx
) ){
755 i64 iOrigJD
; /* Original localtime */
756 i64 iGuess
; /* Guess at the corresponding utc time */
757 int cnt
= 0; /* Safety to prevent infinite loop */
758 i64 iErr
; /* Guess is off by this much */
761 iGuess
= iOrigJD
= p
->iJD
;
765 memset(&new, 0, sizeof(new));
769 rc
= toLocaltime(&new, pCtx
);
772 iErr
= new.iJD
- iOrigJD
;
773 }while( iErr
&& cnt
++<3 );
774 memset(p
, 0, sizeof(*p
));
788 ** Move the date to the same time on the next occurrence of
789 ** weekday N where 0==Sunday, 1==Monday, and so forth. If the
790 ** date is already on the appropriate weekday, this is a no-op.
792 if( sqlite3_strnicmp(z
, "weekday ", 8)==0
793 && sqlite3AtoF(&z
[8], &r
, sqlite3Strlen30(&z
[8]), SQLITE_UTF8
)>0
794 && r
>=0.0 && r
<7.0 && (n
=(int)r
)==r
){
800 Z
= ((p
->iJD
+ 129600000)/86400000) % 7;
802 p
->iJD
+= (n
- Z
)*86400000;
812 ** Move the date backwards to the beginning of the current day,
818 ** Show subsecond precision in the output of datetime() and
819 ** unixepoch() and strftime('%s').
821 if( sqlite3_strnicmp(z
, "start of ", 9)!=0 ){
822 if( sqlite3_stricmp(z
, "subsec")==0
823 || sqlite3_stricmp(z
, "subsecond")==0
830 if( !p
->validJD
&& !p
->validYMD
&& !p
->validHMS
) break;
839 if( sqlite3_stricmp(z
,"month")==0 ){
842 }else if( sqlite3_stricmp(z
,"year")==0 ){
846 }else if( sqlite3_stricmp(z
,"day")==0 ){
865 for(n
=1; z
[n
] && z
[n
]!=':' && !sqlite3Isspace(z
[n
]); n
++){}
866 if( sqlite3AtoF(z
, &r
, n
, SQLITE_UTF8
)<=0 ){
871 /* A modifier of the form (+|-)HH:MM:SS.FFF adds (or subtracts) the
872 ** specified number of hours, minutes, seconds, and fractional seconds
873 ** to the time. The ".FFF" may be omitted. The ":SS.FFF" may be
879 if( !sqlite3Isdigit(*z2
) ) z2
++;
880 memset(&tx
, 0, sizeof(tx
));
881 if( parseHhMmSs(z2
, &tx
) ) break;
884 day
= tx
.iJD
/86400000;
885 tx
.iJD
-= day
*86400000;
886 if( z
[0]=='-' ) tx
.iJD
= -tx
.iJD
;
894 /* If control reaches this point, it means the transformation is
895 ** one of the forms like "+NNN days". */
897 while( sqlite3Isspace(*z
) ) z
++;
898 n
= sqlite3Strlen30(z
);
899 if( n
>10 || n
<3 ) break;
900 if( sqlite3UpperToLower
[(u8
)z
[n
-1]]=='s' ) n
--;
903 rRounder
= r
<0 ? -0.5 : +0.5;
904 for(i
=0; i
<ArraySize(aXformType
); i
++){
905 if( aXformType
[i
].nName
==n
906 && sqlite3_strnicmp(aXformType
[i
].zName
, z
, n
)==0
907 && r
>-aXformType
[i
].rLimit
&& r
<aXformType
[i
].rLimit
910 case 4: { /* Special processing to add months */
912 assert( strcmp(aXformType
[i
].zName
,"month")==0 );
915 x
= p
->M
>0 ? (p
->M
-1)/12 : (p
->M
-12)/12;
922 case 5: { /* Special processing to add years */
924 assert( strcmp(aXformType
[i
].zName
,"year")==0 );
933 p
->iJD
+= (sqlite3_int64
)(r
*1000.0*aXformType
[i
].rXform
+ rRounder
);
949 ** Process time function arguments. argv[0] is a date-time stamp.
950 ** argv[1] and following are modifiers. Parse them all and write
951 ** the resulting time into the DateTime structure p. Return 0
952 ** on success and 1 if there are any errors.
954 ** If there are zero parameters (if even argv[0] is undefined)
955 ** then assume a default value of "now" for argv[0].
958 sqlite3_context
*context
,
960 sqlite3_value
**argv
,
964 const unsigned char *z
;
966 memset(p
, 0, sizeof(*p
));
968 if( !sqlite3NotPureFunc(context
) ) return 1;
969 return setDateTimeToCurrent(context
, p
);
971 if( (eType
= sqlite3_value_type(argv
[0]))==SQLITE_FLOAT
972 || eType
==SQLITE_INTEGER
){
973 setRawDateNumber(p
, sqlite3_value_double(argv
[0]));
975 z
= sqlite3_value_text(argv
[0]);
976 if( !z
|| parseDateOrTime(context
, (char*)z
, p
) ){
980 for(i
=1; i
<argc
; i
++){
981 z
= sqlite3_value_text(argv
[i
]);
982 n
= sqlite3_value_bytes(argv
[i
]);
983 if( z
==0 || parseModifier(context
, (char*)z
, n
, p
, i
) ) return 1;
986 if( p
->isError
|| !validJulianDay(p
->iJD
) ) return 1;
992 ** The following routines implement the various date and time functions
997 ** julianday( TIMESTRING, MOD, MOD, ...)
999 ** Return the julian day number of the date specified in the arguments
1001 static void juliandayFunc(
1002 sqlite3_context
*context
,
1004 sqlite3_value
**argv
1007 if( isDate(context
, argc
, argv
, &x
)==0 ){
1009 sqlite3_result_double(context
, x
.iJD
/86400000.0);
1014 ** unixepoch( TIMESTRING, MOD, MOD, ...)
1016 ** Return the number of seconds (including fractional seconds) since
1017 ** the unix epoch of 1970-01-01 00:00:00 GMT.
1019 static void unixepochFunc(
1020 sqlite3_context
*context
,
1022 sqlite3_value
**argv
1025 if( isDate(context
, argc
, argv
, &x
)==0 ){
1028 sqlite3_result_double(context
, (x
.iJD
- 21086676*(i64
)10000000)/1000.0);
1030 sqlite3_result_int64(context
, x
.iJD
/1000 - 21086676*(i64
)10000);
1036 ** datetime( TIMESTRING, MOD, MOD, ...)
1038 ** Return YYYY-MM-DD HH:MM:SS
1040 static void datetimeFunc(
1041 sqlite3_context
*context
,
1043 sqlite3_value
**argv
1046 if( isDate(context
, argc
, argv
, &x
)==0 ){
1052 zBuf
[1] = '0' + (Y
/1000)%10;
1053 zBuf
[2] = '0' + (Y
/100)%10;
1054 zBuf
[3] = '0' + (Y
/10)%10;
1055 zBuf
[4] = '0' + (Y
)%10;
1057 zBuf
[6] = '0' + (x
.M
/10)%10;
1058 zBuf
[7] = '0' + (x
.M
)%10;
1060 zBuf
[9] = '0' + (x
.D
/10)%10;
1061 zBuf
[10] = '0' + (x
.D
)%10;
1063 zBuf
[12] = '0' + (x
.h
/10)%10;
1064 zBuf
[13] = '0' + (x
.h
)%10;
1066 zBuf
[15] = '0' + (x
.m
/10)%10;
1067 zBuf
[16] = '0' + (x
.m
)%10;
1070 s
= (int)1000.0*x
.s
;
1071 zBuf
[18] = '0' + (s
/10000)%10;
1072 zBuf
[19] = '0' + (s
/1000)%10;
1074 zBuf
[21] = '0' + (s
/100)%10;
1075 zBuf
[22] = '0' + (s
/10)%10;
1076 zBuf
[23] = '0' + (s
)%10;
1081 zBuf
[18] = '0' + (s
/10)%10;
1082 zBuf
[19] = '0' + (s
)%10;
1088 sqlite3_result_text(context
, zBuf
, n
, SQLITE_TRANSIENT
);
1090 sqlite3_result_text(context
, &zBuf
[1], n
-1, SQLITE_TRANSIENT
);
1096 ** time( TIMESTRING, MOD, MOD, ...)
1100 static void timeFunc(
1101 sqlite3_context
*context
,
1103 sqlite3_value
**argv
1106 if( isDate(context
, argc
, argv
, &x
)==0 ){
1110 zBuf
[0] = '0' + (x
.h
/10)%10;
1111 zBuf
[1] = '0' + (x
.h
)%10;
1113 zBuf
[3] = '0' + (x
.m
/10)%10;
1114 zBuf
[4] = '0' + (x
.m
)%10;
1117 s
= (int)1000.0*x
.s
;
1118 zBuf
[6] = '0' + (s
/10000)%10;
1119 zBuf
[7] = '0' + (s
/1000)%10;
1121 zBuf
[9] = '0' + (s
/100)%10;
1122 zBuf
[10] = '0' + (s
/10)%10;
1123 zBuf
[11] = '0' + (s
)%10;
1128 zBuf
[6] = '0' + (s
/10)%10;
1129 zBuf
[7] = '0' + (s
)%10;
1133 sqlite3_result_text(context
, zBuf
, n
, SQLITE_TRANSIENT
);
1138 ** date( TIMESTRING, MOD, MOD, ...)
1140 ** Return YYYY-MM-DD
1142 static void dateFunc(
1143 sqlite3_context
*context
,
1145 sqlite3_value
**argv
1148 if( isDate(context
, argc
, argv
, &x
)==0 ){
1154 zBuf
[1] = '0' + (Y
/1000)%10;
1155 zBuf
[2] = '0' + (Y
/100)%10;
1156 zBuf
[3] = '0' + (Y
/10)%10;
1157 zBuf
[4] = '0' + (Y
)%10;
1159 zBuf
[6] = '0' + (x
.M
/10)%10;
1160 zBuf
[7] = '0' + (x
.M
)%10;
1162 zBuf
[9] = '0' + (x
.D
/10)%10;
1163 zBuf
[10] = '0' + (x
.D
)%10;
1167 sqlite3_result_text(context
, zBuf
, 11, SQLITE_TRANSIENT
);
1169 sqlite3_result_text(context
, &zBuf
[1], 10, SQLITE_TRANSIENT
);
1175 ** strftime( FORMAT, TIMESTRING, MOD, MOD, ...)
1177 ** Return a string described by FORMAT. Conversions as follows:
1180 ** %f ** fractional seconds SS.SSS
1182 ** %j day of year 000-366
1183 ** %J ** julian day number
1186 ** %s seconds since 1970-01-01
1188 ** %w day of week 0-6 sunday==0
1189 ** %W week of year 00-53
1190 ** %Y year 0000-9999
1193 static void strftimeFunc(
1194 sqlite3_context
*context
,
1196 sqlite3_value
**argv
1205 if( argc
==0 ) return;
1206 zFmt
= (const char*)sqlite3_value_text(argv
[0]);
1207 if( zFmt
==0 || isDate(context
, argc
-1, argv
+1, &x
) ) return;
1208 db
= sqlite3_context_db_handle(context
);
1209 sqlite3StrAccumInit(&sRes
, 0, 0, 0, db
->aLimit
[SQLITE_LIMIT_LENGTH
]);
1213 for(i
=j
=0; zFmt
[i
]; i
++){
1214 if( zFmt
[i
]!='%' ) continue;
1215 if( j
<i
) sqlite3_str_append(&sRes
, zFmt
+j
, (int)(i
-j
));
1220 sqlite3_str_appendf(&sRes
, "%02d", x
.D
);
1225 if( s
>59.999 ) s
= 59.999;
1226 sqlite3_str_appendf(&sRes
, "%06.3f", s
);
1230 sqlite3_str_appendf(&sRes
, "%02d", x
.h
);
1233 case 'W': /* Fall thru */
1235 int nDay
; /* Number of days since 1st day of year */
1241 nDay
= (int)((x
.iJD
-y
.iJD
+43200000)/86400000);
1243 int wd
; /* 0=Monday, 1=Tuesday, ... 6=Sunday */
1244 wd
= (int)(((x
.iJD
+43200000)/86400000)%7);
1245 sqlite3_str_appendf(&sRes
,"%02d",(nDay
+7-wd
)/7);
1247 sqlite3_str_appendf(&sRes
,"%03d",nDay
+1);
1252 sqlite3_str_appendf(&sRes
,"%.16g",x
.iJD
/86400000.0);
1256 sqlite3_str_appendf(&sRes
,"%02d",x
.M
);
1260 sqlite3_str_appendf(&sRes
,"%02d",x
.m
);
1265 sqlite3_str_appendf(&sRes
,"%.3f",
1266 (x
.iJD
- 21086676*(i64
)10000000)/1000.0);
1268 i64 iS
= (i64
)(x
.iJD
/1000 - 21086676*(i64
)10000);
1269 sqlite3_str_appendf(&sRes
,"%lld",iS
);
1274 sqlite3_str_appendf(&sRes
,"%02d",(int)x
.s
);
1278 sqlite3_str_appendchar(&sRes
, 1,
1279 (char)(((x
.iJD
+129600000)/86400000) % 7) + '0');
1283 sqlite3_str_appendf(&sRes
,"%04d",x
.Y
);
1287 sqlite3_str_appendchar(&sRes
, 1, '%');
1291 sqlite3_str_reset(&sRes
);
1296 if( j
<i
) sqlite3_str_append(&sRes
, zFmt
+j
, (int)(i
-j
));
1297 sqlite3ResultStrAccum(context
, &sRes
);
1303 ** This function returns the same value as time('now').
1305 static void ctimeFunc(
1306 sqlite3_context
*context
,
1308 sqlite3_value
**NotUsed2
1310 UNUSED_PARAMETER2(NotUsed
, NotUsed2
);
1311 timeFunc(context
, 0, 0);
1317 ** This function returns the same value as date('now').
1319 static void cdateFunc(
1320 sqlite3_context
*context
,
1322 sqlite3_value
**NotUsed2
1324 UNUSED_PARAMETER2(NotUsed
, NotUsed2
);
1325 dateFunc(context
, 0, 0);
1329 ** current_timestamp()
1331 ** This function returns the same value as datetime('now').
1333 static void ctimestampFunc(
1334 sqlite3_context
*context
,
1336 sqlite3_value
**NotUsed2
1338 UNUSED_PARAMETER2(NotUsed
, NotUsed2
);
1339 datetimeFunc(context
, 0, 0);
1341 #endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */
1343 #ifdef SQLITE_OMIT_DATETIME_FUNCS
1345 ** If the library is compiled to omit the full-scale date and time
1346 ** handling (to get a smaller binary), the following minimal version
1347 ** of the functions current_time(), current_date() and current_timestamp()
1348 ** are included instead. This is to support column declarations that
1349 ** include "DEFAULT CURRENT_TIME" etc.
1351 ** This function uses the C-library functions time(), gmtime()
1352 ** and strftime(). The format string to pass to strftime() is supplied
1353 ** as the user-data for the function.
1355 static void currentTimeFunc(
1356 sqlite3_context
*context
,
1358 sqlite3_value
**argv
1361 char *zFormat
= (char *)sqlite3_user_data(context
);
1367 UNUSED_PARAMETER(argc
);
1368 UNUSED_PARAMETER(argv
);
1370 iT
= sqlite3StmtCurrentTime(context
);
1372 t
= iT
/1000 - 10000*(sqlite3_int64
)21086676;
1374 pTm
= gmtime_r(&t
, &sNow
);
1376 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN
));
1378 if( pTm
) memcpy(&sNow
, pTm
, sizeof(sNow
));
1379 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN
));
1382 strftime(zBuf
, 20, zFormat
, &sNow
);
1383 sqlite3_result_text(context
, zBuf
, -1, SQLITE_TRANSIENT
);
1389 ** This function registered all of the above C functions as SQL
1390 ** functions. This should be the only routine in this file with
1391 ** external linkage.
1393 void sqlite3RegisterDateTimeFunctions(void){
1394 static FuncDef aDateTimeFuncs
[] = {
1395 #ifndef SQLITE_OMIT_DATETIME_FUNCS
1396 PURE_DATE(julianday
, -1, 0, 0, juliandayFunc
),
1397 PURE_DATE(unixepoch
, -1, 0, 0, unixepochFunc
),
1398 PURE_DATE(date
, -1, 0, 0, dateFunc
),
1399 PURE_DATE(time
, -1, 0, 0, timeFunc
),
1400 PURE_DATE(datetime
, -1, 0, 0, datetimeFunc
),
1401 PURE_DATE(strftime
, -1, 0, 0, strftimeFunc
),
1402 DFUNCTION(current_time
, 0, 0, 0, ctimeFunc
),
1403 DFUNCTION(current_timestamp
, 0, 0, 0, ctimestampFunc
),
1404 DFUNCTION(current_date
, 0, 0, 0, cdateFunc
),
1406 STR_FUNCTION(current_time
, 0, "%H:%M:%S", 0, currentTimeFunc
),
1407 STR_FUNCTION(current_date
, 0, "%Y-%m-%d", 0, currentTimeFunc
),
1408 STR_FUNCTION(current_timestamp
, 0, "%Y-%m-%d %H:%M:%S", 0, currentTimeFunc
),
1411 sqlite3InsertBuiltinFuncs(aDateTimeFuncs
, ArraySize(aDateTimeFuncs
));