4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle INSERT statements in SQLite.
15 #include "sqliteInt.h"
18 ** Generate code that will
20 ** (1) acquire a lock for table pTab then
21 ** (2) open pTab as cursor iCur.
23 ** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index
24 ** for that table that is actually opened.
26 void sqlite3OpenTable(
27 Parse
*pParse
, /* Generate code into this VDBE */
28 int iCur
, /* The cursor number of the table */
29 int iDb
, /* The database index in sqlite3.aDb[] */
30 Table
*pTab
, /* The table to be opened */
31 int opcode
/* OP_OpenRead or OP_OpenWrite */
34 assert( !IsVirtual(pTab
) );
35 assert( pParse
->pVdbe
!=0 );
37 assert( opcode
==OP_OpenWrite
|| opcode
==OP_OpenRead
);
38 sqlite3TableLock(pParse
, iDb
, pTab
->tnum
,
39 (opcode
==OP_OpenWrite
)?1:0, pTab
->zName
);
41 sqlite3VdbeAddOp4Int(v
, opcode
, iCur
, pTab
->tnum
, iDb
, pTab
->nNVCol
);
42 VdbeComment((v
, "%s", pTab
->zName
));
44 Index
*pPk
= sqlite3PrimaryKeyIndex(pTab
);
46 assert( pPk
->tnum
==pTab
->tnum
|| CORRUPT_DB
);
47 sqlite3VdbeAddOp3(v
, opcode
, iCur
, pPk
->tnum
, iDb
);
48 sqlite3VdbeSetP4KeyInfo(pParse
, pPk
);
49 VdbeComment((v
, "%s", pTab
->zName
));
54 ** Return a pointer to the column affinity string associated with index
55 ** pIdx. A column affinity string has one character for each column in
56 ** the table, according to the affinity of the column:
58 ** Character Column affinity
59 ** ------------------------------
66 ** An extra 'D' is appended to the end of the string to cover the
67 ** rowid that appears as the last column in every index.
69 ** Memory for the buffer containing the column index affinity string
70 ** is managed along with the rest of the Index structure. It will be
71 ** released when sqlite3DeleteIndex() is called.
73 static SQLITE_NOINLINE
const char *computeIndexAffStr(sqlite3
*db
, Index
*pIdx
){
74 /* The first time a column affinity string for a particular index is
75 ** required, it is allocated and populated here. It is then stored as
76 ** a member of the Index structure for subsequent use.
78 ** The column affinity string will eventually be deleted by
79 ** sqliteDeleteIndex() when the Index structure itself is cleaned
83 Table
*pTab
= pIdx
->pTable
;
84 pIdx
->zColAff
= (char *)sqlite3DbMallocRaw(0, pIdx
->nColumn
+1);
89 for(n
=0; n
<pIdx
->nColumn
; n
++){
90 i16 x
= pIdx
->aiColumn
[n
];
93 aff
= pTab
->aCol
[x
].affinity
;
94 }else if( x
==XN_ROWID
){
95 aff
= SQLITE_AFF_INTEGER
;
98 assert( pIdx
->bHasExpr
);
99 assert( pIdx
->aColExpr
!=0 );
100 aff
= sqlite3ExprAffinity(pIdx
->aColExpr
->a
[n
].pExpr
);
102 if( aff
<SQLITE_AFF_BLOB
) aff
= SQLITE_AFF_BLOB
;
103 if( aff
>SQLITE_AFF_NUMERIC
) aff
= SQLITE_AFF_NUMERIC
;
104 pIdx
->zColAff
[n
] = aff
;
106 pIdx
->zColAff
[n
] = 0;
107 return pIdx
->zColAff
;
109 const char *sqlite3IndexAffinityStr(sqlite3
*db
, Index
*pIdx
){
110 if( !pIdx
->zColAff
) return computeIndexAffStr(db
, pIdx
);
111 return pIdx
->zColAff
;
116 ** Compute an affinity string for a table. Space is obtained
117 ** from sqlite3DbMalloc(). The caller is responsible for freeing
118 ** the space when done.
120 char *sqlite3TableAffinityStr(sqlite3
*db
, const Table
*pTab
){
122 zColAff
= (char *)sqlite3DbMallocRaw(db
, pTab
->nCol
+1);
125 for(i
=j
=0; i
<pTab
->nCol
; i
++){
126 if( (pTab
->aCol
[i
].colFlags
& COLFLAG_VIRTUAL
)==0 ){
127 zColAff
[j
++] = pTab
->aCol
[i
].affinity
;
132 }while( j
>=0 && zColAff
[j
]<=SQLITE_AFF_BLOB
);
138 ** Make changes to the evolving bytecode to do affinity transformations
139 ** of values that are about to be gathered into a row for table pTab.
141 ** For ordinary (legacy, non-strict) tables:
142 ** -----------------------------------------
144 ** Compute the affinity string for table pTab, if it has not already been
145 ** computed. As an optimization, omit trailing SQLITE_AFF_BLOB affinities.
147 ** If the affinity string is empty (because it was all SQLITE_AFF_BLOB entries
148 ** which were then optimized out) then this routine becomes a no-op.
150 ** Otherwise if iReg>0 then code an OP_Affinity opcode that will set the
151 ** affinities for register iReg and following. Or if iReg==0,
152 ** then just set the P4 operand of the previous opcode (which should be
153 ** an OP_MakeRecord) to the affinity string.
155 ** A column affinity string has one character per column:
157 ** Character Column affinity
158 ** --------- ---------------
165 ** For STRICT tables:
166 ** ------------------
168 ** Generate an appropropriate OP_TypeCheck opcode that will verify the
169 ** datatypes against the column definitions in pTab. If iReg==0, that
170 ** means an OP_MakeRecord opcode has already been generated and should be
171 ** the last opcode generated. The new OP_TypeCheck needs to be inserted
172 ** before the OP_MakeRecord. The new OP_TypeCheck should use the same
173 ** register set as the OP_MakeRecord. If iReg>0 then register iReg is
174 ** the first of a series of registers that will form the new record.
175 ** Apply the type checking to that array of registers.
177 void sqlite3TableAffinity(Vdbe
*v
, Table
*pTab
, int iReg
){
180 if( pTab
->tabFlags
& TF_Strict
){
182 /* Move the previous opcode (which should be OP_MakeRecord) forward
183 ** by one slot and insert a new OP_TypeCheck where the current
184 ** OP_MakeRecord is found */
186 sqlite3VdbeAppendP4(v
, pTab
, P4_TABLE
);
187 pPrev
= sqlite3VdbeGetLastOp(v
);
189 assert( pPrev
->opcode
==OP_MakeRecord
|| sqlite3VdbeDb(v
)->mallocFailed
);
190 pPrev
->opcode
= OP_TypeCheck
;
191 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, pPrev
->p1
, pPrev
->p2
, pPrev
->p3
);
193 /* Insert an isolated OP_Typecheck */
194 sqlite3VdbeAddOp2(v
, OP_TypeCheck
, iReg
, pTab
->nNVCol
);
195 sqlite3VdbeAppendP4(v
, pTab
, P4_TABLE
);
199 zColAff
= pTab
->zColAff
;
201 zColAff
= sqlite3TableAffinityStr(0, pTab
);
203 sqlite3OomFault(sqlite3VdbeDb(v
));
206 pTab
->zColAff
= zColAff
;
208 assert( zColAff
!=0 );
209 i
= sqlite3Strlen30NN(zColAff
);
212 sqlite3VdbeAddOp4(v
, OP_Affinity
, iReg
, i
, 0, zColAff
, i
);
214 assert( sqlite3VdbeGetLastOp(v
)->opcode
==OP_MakeRecord
215 || sqlite3VdbeDb(v
)->mallocFailed
);
216 sqlite3VdbeChangeP4(v
, -1, zColAff
, i
);
222 ** Return non-zero if the table pTab in database iDb or any of its indices
223 ** have been opened at any point in the VDBE program. This is used to see if
224 ** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can
225 ** run without using a temporary table for the results of the SELECT.
227 static int readsTable(Parse
*p
, int iDb
, Table
*pTab
){
228 Vdbe
*v
= sqlite3GetVdbe(p
);
230 int iEnd
= sqlite3VdbeCurrentAddr(v
);
231 #ifndef SQLITE_OMIT_VIRTUALTABLE
232 VTable
*pVTab
= IsVirtual(pTab
) ? sqlite3GetVTable(p
->db
, pTab
) : 0;
235 for(i
=1; i
<iEnd
; i
++){
236 VdbeOp
*pOp
= sqlite3VdbeGetOp(v
, i
);
238 if( pOp
->opcode
==OP_OpenRead
&& pOp
->p3
==iDb
){
241 if( tnum
==pTab
->tnum
){
244 for(pIndex
=pTab
->pIndex
; pIndex
; pIndex
=pIndex
->pNext
){
245 if( tnum
==pIndex
->tnum
){
250 #ifndef SQLITE_OMIT_VIRTUALTABLE
251 if( pOp
->opcode
==OP_VOpen
&& pOp
->p4
.pVtab
==pVTab
){
252 assert( pOp
->p4
.pVtab
!=0 );
253 assert( pOp
->p4type
==P4_VTAB
);
261 /* This walker callback will compute the union of colFlags flags for all
262 ** referenced columns in a CHECK constraint or generated column expression.
264 static int exprColumnFlagUnion(Walker
*pWalker
, Expr
*pExpr
){
265 if( pExpr
->op
==TK_COLUMN
&& pExpr
->iColumn
>=0 ){
266 assert( pExpr
->iColumn
< pWalker
->u
.pTab
->nCol
);
267 pWalker
->eCode
|= pWalker
->u
.pTab
->aCol
[pExpr
->iColumn
].colFlags
;
272 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
274 ** All regular columns for table pTab have been puts into registers
275 ** starting with iRegStore. The registers that correspond to STORED
276 ** or VIRTUAL columns have not yet been initialized. This routine goes
277 ** back and computes the values for those columns based on the previously
278 ** computed normal columns.
280 void sqlite3ComputeGeneratedColumns(
281 Parse
*pParse
, /* Parsing context */
282 int iRegStore
, /* Register holding the first column */
283 Table
*pTab
/* The table */
291 assert( pTab
->tabFlags
& TF_HasGenerated
);
292 testcase( pTab
->tabFlags
& TF_HasVirtual
);
293 testcase( pTab
->tabFlags
& TF_HasStored
);
295 /* Before computing generated columns, first go through and make sure
296 ** that appropriate affinity has been applied to the regular columns
298 sqlite3TableAffinity(pParse
->pVdbe
, pTab
, iRegStore
);
299 if( (pTab
->tabFlags
& TF_HasStored
)!=0 ){
300 pOp
= sqlite3VdbeGetLastOp(pParse
->pVdbe
);
301 if( pOp
->opcode
==OP_Affinity
){
302 /* Change the OP_Affinity argument to '@' (NONE) for all stored
303 ** columns. '@' is the no-op affinity and those columns have not
304 ** yet been computed. */
306 char *zP4
= pOp
->p4
.z
;
308 assert( pOp
->p4type
==P4_DYNAMIC
);
309 for(ii
=jj
=0; zP4
[jj
]; ii
++){
310 if( pTab
->aCol
[ii
].colFlags
& COLFLAG_VIRTUAL
){
313 if( pTab
->aCol
[ii
].colFlags
& COLFLAG_STORED
){
314 zP4
[jj
] = SQLITE_AFF_NONE
;
318 }else if( pOp
->opcode
==OP_TypeCheck
){
319 /* If an OP_TypeCheck was generated because the table is STRICT,
320 ** then set the P3 operand to indicate that generated columns should
326 /* Because there can be multiple generated columns that refer to one another,
327 ** this is a two-pass algorithm. On the first pass, mark all generated
328 ** columns as "not available".
330 for(i
=0; i
<pTab
->nCol
; i
++){
331 if( pTab
->aCol
[i
].colFlags
& COLFLAG_GENERATED
){
332 testcase( pTab
->aCol
[i
].colFlags
& COLFLAG_VIRTUAL
);
333 testcase( pTab
->aCol
[i
].colFlags
& COLFLAG_STORED
);
334 pTab
->aCol
[i
].colFlags
|= COLFLAG_NOTAVAIL
;
339 w
.xExprCallback
= exprColumnFlagUnion
;
340 w
.xSelectCallback
= 0;
341 w
.xSelectCallback2
= 0;
343 /* On the second pass, compute the value of each NOT-AVAILABLE column.
344 ** Companion code in the TK_COLUMN case of sqlite3ExprCodeTarget() will
345 ** compute dependencies and mark remove the COLSPAN_NOTAVAIL mark, as
348 pParse
->iSelfTab
= -iRegStore
;
352 for(i
=0; i
<pTab
->nCol
; i
++){
353 Column
*pCol
= pTab
->aCol
+ i
;
354 if( (pCol
->colFlags
& COLFLAG_NOTAVAIL
)!=0 ){
356 pCol
->colFlags
|= COLFLAG_BUSY
;
358 sqlite3WalkExpr(&w
, sqlite3ColumnExpr(pTab
, pCol
));
359 pCol
->colFlags
&= ~COLFLAG_BUSY
;
360 if( w
.eCode
& COLFLAG_NOTAVAIL
){
365 assert( pCol
->colFlags
& COLFLAG_GENERATED
);
366 x
= sqlite3TableColumnToStorage(pTab
, i
) + iRegStore
;
367 sqlite3ExprCodeGeneratedColumn(pParse
, pTab
, pCol
, x
);
368 pCol
->colFlags
&= ~COLFLAG_NOTAVAIL
;
371 }while( pRedo
&& eProgress
);
373 sqlite3ErrorMsg(pParse
, "generated column loop on \"%s\"", pRedo
->zCnName
);
375 pParse
->iSelfTab
= 0;
377 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
380 #ifndef SQLITE_OMIT_AUTOINCREMENT
382 ** Locate or create an AutoincInfo structure associated with table pTab
383 ** which is in database iDb. Return the register number for the register
384 ** that holds the maximum rowid. Return zero if pTab is not an AUTOINCREMENT
385 ** table. (Also return zero when doing a VACUUM since we do not want to
386 ** update the AUTOINCREMENT counters during a VACUUM.)
388 ** There is at most one AutoincInfo structure per table even if the
389 ** same table is autoincremented multiple times due to inserts within
390 ** triggers. A new AutoincInfo structure is created if this is the
391 ** first use of table pTab. On 2nd and subsequent uses, the original
392 ** AutoincInfo structure is used.
394 ** Four consecutive registers are allocated:
396 ** (1) The name of the pTab table.
397 ** (2) The maximum ROWID of pTab.
398 ** (3) The rowid in sqlite_sequence of pTab
399 ** (4) The original value of the max ROWID in pTab, or NULL if none
401 ** The 2nd register is the one that is returned. That is all the
402 ** insert routine needs to know about.
404 static int autoIncBegin(
405 Parse
*pParse
, /* Parsing context */
406 int iDb
, /* Index of the database holding pTab */
407 Table
*pTab
/* The table we are writing to */
409 int memId
= 0; /* Register holding maximum rowid */
410 assert( pParse
->db
->aDb
[iDb
].pSchema
!=0 );
411 if( (pTab
->tabFlags
& TF_Autoincrement
)!=0
412 && (pParse
->db
->mDbFlags
& DBFLAG_Vacuum
)==0
414 Parse
*pToplevel
= sqlite3ParseToplevel(pParse
);
416 Table
*pSeqTab
= pParse
->db
->aDb
[iDb
].pSchema
->pSeqTab
;
418 /* Verify that the sqlite_sequence table exists and is an ordinary
419 ** rowid table with exactly two columns.
420 ** Ticket d8dc2b3a58cd5dc2918a1d4acb 2018-05-23 */
422 || !HasRowid(pSeqTab
)
423 || NEVER(IsVirtual(pSeqTab
))
427 pParse
->rc
= SQLITE_CORRUPT_SEQUENCE
;
431 pInfo
= pToplevel
->pAinc
;
432 while( pInfo
&& pInfo
->pTab
!=pTab
){ pInfo
= pInfo
->pNext
; }
434 pInfo
= sqlite3DbMallocRawNN(pParse
->db
, sizeof(*pInfo
));
435 sqlite3ParserAddCleanup(pToplevel
, sqlite3DbFree
, pInfo
);
436 testcase( pParse
->earlyCleanup
);
437 if( pParse
->db
->mallocFailed
) return 0;
438 pInfo
->pNext
= pToplevel
->pAinc
;
439 pToplevel
->pAinc
= pInfo
;
442 pToplevel
->nMem
++; /* Register to hold name of table */
443 pInfo
->regCtr
= ++pToplevel
->nMem
; /* Max rowid register */
444 pToplevel
->nMem
+=2; /* Rowid in sqlite_sequence + orig max val */
446 memId
= pInfo
->regCtr
;
452 ** This routine generates code that will initialize all of the
453 ** register used by the autoincrement tracker.
455 void sqlite3AutoincrementBegin(Parse
*pParse
){
456 AutoincInfo
*p
; /* Information about an AUTOINCREMENT */
457 sqlite3
*db
= pParse
->db
; /* The database connection */
458 Db
*pDb
; /* Database only autoinc table */
459 int memId
; /* Register holding max rowid */
460 Vdbe
*v
= pParse
->pVdbe
; /* VDBE under construction */
462 /* This routine is never called during trigger-generation. It is
463 ** only called from the top-level */
464 assert( pParse
->pTriggerTab
==0 );
465 assert( sqlite3IsToplevel(pParse
) );
467 assert( v
); /* We failed long ago if this is not so */
468 for(p
= pParse
->pAinc
; p
; p
= p
->pNext
){
469 static const int iLn
= VDBE_OFFSET_LINENO(2);
470 static const VdbeOpList autoInc
[] = {
471 /* 0 */ {OP_Null
, 0, 0, 0},
472 /* 1 */ {OP_Rewind
, 0, 10, 0},
473 /* 2 */ {OP_Column
, 0, 0, 0},
474 /* 3 */ {OP_Ne
, 0, 9, 0},
475 /* 4 */ {OP_Rowid
, 0, 0, 0},
476 /* 5 */ {OP_Column
, 0, 1, 0},
477 /* 6 */ {OP_AddImm
, 0, 0, 0},
478 /* 7 */ {OP_Copy
, 0, 0, 0},
479 /* 8 */ {OP_Goto
, 0, 11, 0},
480 /* 9 */ {OP_Next
, 0, 2, 0},
481 /* 10 */ {OP_Integer
, 0, 0, 0},
482 /* 11 */ {OP_Close
, 0, 0, 0}
485 pDb
= &db
->aDb
[p
->iDb
];
487 assert( sqlite3SchemaMutexHeld(db
, 0, pDb
->pSchema
) );
488 sqlite3OpenTable(pParse
, 0, p
->iDb
, pDb
->pSchema
->pSeqTab
, OP_OpenRead
);
489 sqlite3VdbeLoadString(v
, memId
-1, p
->pTab
->zName
);
490 aOp
= sqlite3VdbeAddOpList(v
, ArraySize(autoInc
), autoInc
, iLn
);
497 aOp
[3].p5
= SQLITE_JUMPIFNULL
;
504 if( pParse
->nTab
==0 ) pParse
->nTab
= 1;
509 ** Update the maximum rowid for an autoincrement calculation.
511 ** This routine should be called when the regRowid register holds a
512 ** new rowid that is about to be inserted. If that new rowid is
513 ** larger than the maximum rowid in the memId memory cell, then the
514 ** memory cell is updated.
516 static void autoIncStep(Parse
*pParse
, int memId
, int regRowid
){
518 sqlite3VdbeAddOp2(pParse
->pVdbe
, OP_MemMax
, memId
, regRowid
);
523 ** This routine generates the code needed to write autoincrement
524 ** maximum rowid values back into the sqlite_sequence register.
525 ** Every statement that might do an INSERT into an autoincrement
526 ** table (either directly or through triggers) needs to call this
527 ** routine just before the "exit" code.
529 static SQLITE_NOINLINE
void autoIncrementEnd(Parse
*pParse
){
531 Vdbe
*v
= pParse
->pVdbe
;
532 sqlite3
*db
= pParse
->db
;
535 for(p
= pParse
->pAinc
; p
; p
= p
->pNext
){
536 static const int iLn
= VDBE_OFFSET_LINENO(2);
537 static const VdbeOpList autoIncEnd
[] = {
538 /* 0 */ {OP_NotNull
, 0, 2, 0},
539 /* 1 */ {OP_NewRowid
, 0, 0, 0},
540 /* 2 */ {OP_MakeRecord
, 0, 2, 0},
541 /* 3 */ {OP_Insert
, 0, 0, 0},
542 /* 4 */ {OP_Close
, 0, 0, 0}
545 Db
*pDb
= &db
->aDb
[p
->iDb
];
547 int memId
= p
->regCtr
;
549 iRec
= sqlite3GetTempReg(pParse
);
550 assert( sqlite3SchemaMutexHeld(db
, 0, pDb
->pSchema
) );
551 sqlite3VdbeAddOp3(v
, OP_Le
, memId
+2, sqlite3VdbeCurrentAddr(v
)+7, memId
);
553 sqlite3OpenTable(pParse
, 0, p
->iDb
, pDb
->pSchema
->pSeqTab
, OP_OpenWrite
);
554 aOp
= sqlite3VdbeAddOpList(v
, ArraySize(autoIncEnd
), autoIncEnd
, iLn
);
562 aOp
[3].p5
= OPFLAG_APPEND
;
563 sqlite3ReleaseTempReg(pParse
, iRec
);
566 void sqlite3AutoincrementEnd(Parse
*pParse
){
567 if( pParse
->pAinc
) autoIncrementEnd(pParse
);
571 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines
572 ** above are all no-ops
574 # define autoIncBegin(A,B,C) (0)
575 # define autoIncStep(A,B,C)
576 #endif /* SQLITE_OMIT_AUTOINCREMENT */
579 /* Forward declaration */
580 static int xferOptimization(
581 Parse
*pParse
, /* Parser context */
582 Table
*pDest
, /* The table we are inserting into */
583 Select
*pSelect
, /* A SELECT statement to use as the data source */
584 int onError
, /* How to handle constraint errors */
585 int iDbDest
/* The database of pDest */
589 ** This routine is called to handle SQL of the following forms:
591 ** insert into TABLE (IDLIST) values(EXPRLIST),(EXPRLIST),...
592 ** insert into TABLE (IDLIST) select
593 ** insert into TABLE (IDLIST) default values
595 ** The IDLIST following the table name is always optional. If omitted,
596 ** then a list of all (non-hidden) columns for the table is substituted.
597 ** The IDLIST appears in the pColumn parameter. pColumn is NULL if IDLIST
600 ** For the pSelect parameter holds the values to be inserted for the
601 ** first two forms shown above. A VALUES clause is really just short-hand
602 ** for a SELECT statement that omits the FROM clause and everything else
603 ** that follows. If the pSelect parameter is NULL, that means that the
604 ** DEFAULT VALUES form of the INSERT statement is intended.
606 ** The code generated follows one of four templates. For a simple
607 ** insert with data coming from a single-row VALUES clause, the code executes
608 ** once straight down through. Pseudo-code follows (we call this
609 ** the "1st template"):
611 ** open write cursor to <table> and its indices
612 ** put VALUES clause expressions into registers
613 ** write the resulting record into <table>
616 ** The three remaining templates assume the statement is of the form
618 ** INSERT INTO <table> SELECT ...
620 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" -
621 ** in other words if the SELECT pulls all columns from a single table
622 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and
623 ** if <table2> and <table1> are distinct tables but have identical
624 ** schemas, including all the same indices, then a special optimization
625 ** is invoked that copies raw records from <table2> over to <table1>.
626 ** See the xferOptimization() function for the implementation of this
627 ** template. This is the 2nd template.
629 ** open a write cursor to <table>
630 ** open read cursor on <table2>
631 ** transfer all records in <table2> over to <table>
633 ** foreach index on <table>
634 ** open a write cursor on the <table> index
635 ** open a read cursor on the corresponding <table2> index
636 ** transfer all records from the read to the write cursors
640 ** The 3rd template is for when the second template does not apply
641 ** and the SELECT clause does not read from <table> at any time.
642 ** The generated code follows this template:
646 ** A: setup for the SELECT
647 ** loop over the rows in the SELECT
648 ** load values into registers R..R+n
651 ** cleanup after the SELECT
653 ** B: open write cursor to <table> and its indices
654 ** C: yield X, at EOF goto D
655 ** insert the select result into <table> from R..R+n
659 ** The 4th template is used if the insert statement takes its
660 ** values from a SELECT but the data is being inserted into a table
661 ** that is also read as part of the SELECT. In the third form,
662 ** we have to use an intermediate table to store the results of
663 ** the select. The template is like this:
667 ** A: setup for the SELECT
668 ** loop over the tables in the SELECT
669 ** load value into register R..R+n
672 ** cleanup after the SELECT
674 ** B: open temp table
675 ** L: yield X, at EOF goto M
676 ** insert row from R..R+n into temp table
678 ** M: open write cursor to <table> and its indices
680 ** C: loop over rows of intermediate table
681 ** transfer values form intermediate table into <table>
686 Parse
*pParse
, /* Parser context */
687 SrcList
*pTabList
, /* Name of table into which we are inserting */
688 Select
*pSelect
, /* A SELECT statement to use as the data source */
689 IdList
*pColumn
, /* Column names corresponding to IDLIST, or NULL. */
690 int onError
, /* How to handle constraint errors */
691 Upsert
*pUpsert
/* ON CONFLICT clauses for upsert, or NULL */
693 sqlite3
*db
; /* The main database structure */
694 Table
*pTab
; /* The table to insert into. aka TABLE */
695 int i
, j
; /* Loop counters */
696 Vdbe
*v
; /* Generate code into this virtual machine */
697 Index
*pIdx
; /* For looping over indices of the table */
698 int nColumn
; /* Number of columns in the data */
699 int nHidden
= 0; /* Number of hidden columns if TABLE is virtual */
700 int iDataCur
= 0; /* VDBE cursor that is the main data repository */
701 int iIdxCur
= 0; /* First index cursor */
702 int ipkColumn
= -1; /* Column that is the INTEGER PRIMARY KEY */
703 int endOfLoop
; /* Label for the end of the insertion loop */
704 int srcTab
= 0; /* Data comes from this temporary cursor if >=0 */
705 int addrInsTop
= 0; /* Jump to label "D" */
706 int addrCont
= 0; /* Top of insert loop. Label "C" in templates 3 and 4 */
707 SelectDest dest
; /* Destination for SELECT on rhs of INSERT */
708 int iDb
; /* Index of database holding TABLE */
709 u8 useTempTable
= 0; /* Store SELECT results in intermediate table */
710 u8 appendFlag
= 0; /* True if the insert is likely to be an append */
711 u8 withoutRowid
; /* 0 for normal table. 1 for WITHOUT ROWID table */
712 u8 bIdListInOrder
; /* True if IDLIST is in table order */
713 ExprList
*pList
= 0; /* List of VALUES() to be inserted */
714 int iRegStore
; /* Register in which to store next column */
716 /* Register allocations */
717 int regFromSelect
= 0;/* Base register for data coming from SELECT */
718 int regAutoinc
= 0; /* Register holding the AUTOINCREMENT counter */
719 int regRowCount
= 0; /* Memory cell used for the row counter */
720 int regIns
; /* Block of regs holding rowid+data being inserted */
721 int regRowid
; /* registers holding insert rowid */
722 int regData
; /* register holding first column to insert */
723 int *aRegIdx
= 0; /* One register allocated to each index */
725 #ifndef SQLITE_OMIT_TRIGGER
726 int isView
; /* True if attempting to insert into a view */
727 Trigger
*pTrigger
; /* List of triggers on pTab, if required */
728 int tmask
; /* Mask of trigger times */
732 assert( db
->pParse
==pParse
);
736 assert( db
->mallocFailed
==0 );
737 dest
.iSDParm
= 0; /* Suppress a harmless compiler warning */
739 /* If the Select object is really just a simple VALUES() list with a
740 ** single row (the common case) then keep that one row of values
741 ** and discard the other (unused) parts of the pSelect object
743 if( pSelect
&& (pSelect
->selFlags
& SF_Values
)!=0 && pSelect
->pPrior
==0 ){
744 pList
= pSelect
->pEList
;
746 sqlite3SelectDelete(db
, pSelect
);
750 /* Locate the table into which we will be inserting new information.
752 assert( pTabList
->nSrc
==1 );
753 pTab
= sqlite3SrcListLookup(pParse
, pTabList
);
757 iDb
= sqlite3SchemaToIndex(db
, pTab
->pSchema
);
758 assert( iDb
<db
->nDb
);
759 if( sqlite3AuthCheck(pParse
, SQLITE_INSERT
, pTab
->zName
, 0,
760 db
->aDb
[iDb
].zDbSName
) ){
763 withoutRowid
= !HasRowid(pTab
);
765 /* Figure out if we have any triggers and if the table being
766 ** inserted into is a view
768 #ifndef SQLITE_OMIT_TRIGGER
769 pTrigger
= sqlite3TriggersExist(pParse
, pTab
, TK_INSERT
, 0, &tmask
);
770 isView
= IsView(pTab
);
776 #ifdef SQLITE_OMIT_VIEW
780 assert( (pTrigger
&& tmask
) || (pTrigger
==0 && tmask
==0) );
782 #if TREETRACE_ENABLED
783 if( sqlite3TreeTrace
& 0x10000 ){
784 sqlite3TreeViewLine(0, "In sqlite3Insert() at %s:%d", __FILE__
, __LINE__
);
785 sqlite3TreeViewInsert(pParse
->pWith
, pTabList
, pColumn
, pSelect
, pList
,
786 onError
, pUpsert
, pTrigger
);
790 /* If pTab is really a view, make sure it has been initialized.
791 ** ViewGetColumnNames() is a no-op if pTab is not a view.
793 if( sqlite3ViewGetColumnNames(pParse
, pTab
) ){
797 /* Cannot insert into a read-only table.
799 if( sqlite3IsReadOnly(pParse
, pTab
, pTrigger
) ){
805 v
= sqlite3GetVdbe(pParse
);
806 if( v
==0 ) goto insert_cleanup
;
807 if( pParse
->nested
==0 ) sqlite3VdbeCountChanges(v
);
808 sqlite3BeginWriteOperation(pParse
, pSelect
|| pTrigger
, iDb
);
810 #ifndef SQLITE_OMIT_XFER_OPT
811 /* If the statement is of the form
813 ** INSERT INTO <table1> SELECT * FROM <table2>;
815 ** Then special optimizations can be applied that make the transfer
816 ** very fast and which reduce fragmentation of indices.
818 ** This is the 2nd template.
823 && xferOptimization(pParse
, pTab
, pSelect
, onError
, iDb
)
829 #endif /* SQLITE_OMIT_XFER_OPT */
831 /* If this is an AUTOINCREMENT table, look up the sequence number in the
832 ** sqlite_sequence table and store it in memory cell regAutoinc.
834 regAutoinc
= autoIncBegin(pParse
, iDb
, pTab
);
836 /* Allocate a block registers to hold the rowid and the values
837 ** for all columns of the new row.
839 regRowid
= regIns
= pParse
->nMem
+1;
840 pParse
->nMem
+= pTab
->nCol
+ 1;
841 if( IsVirtual(pTab
) ){
845 regData
= regRowid
+1;
847 /* If the INSERT statement included an IDLIST term, then make sure
848 ** all elements of the IDLIST really are columns of the table and
849 ** remember the column indices.
851 ** If the table has an INTEGER PRIMARY KEY column and that column
852 ** is named in the IDLIST, then record in the ipkColumn variable
853 ** the index into IDLIST of the primary key column. ipkColumn is
854 ** the index of the primary key as it appears in IDLIST, not as
855 ** is appears in the original table. (The index of the INTEGER
856 ** PRIMARY KEY in the original table is pTab->iPKey.) After this
857 ** loop, if ipkColumn==(-1), that means that integer primary key
858 ** is unspecified, and hence the table is either WITHOUT ROWID or
859 ** it will automatically generated an integer primary key.
861 ** bIdListInOrder is true if the columns in IDLIST are in storage
862 ** order. This enables an optimization that avoids shuffling the
863 ** columns into storage order. False negatives are harmless,
864 ** but false positives will cause database corruption.
866 bIdListInOrder
= (pTab
->tabFlags
& (TF_OOOHidden
|TF_HasStored
))==0;
868 assert( pColumn
->eU4
!=EU4_EXPR
);
869 pColumn
->eU4
= EU4_IDX
;
870 for(i
=0; i
<pColumn
->nId
; i
++){
871 pColumn
->a
[i
].u4
.idx
= -1;
873 for(i
=0; i
<pColumn
->nId
; i
++){
874 for(j
=0; j
<pTab
->nCol
; j
++){
875 if( sqlite3StrICmp(pColumn
->a
[i
].zName
, pTab
->aCol
[j
].zCnName
)==0 ){
876 pColumn
->a
[i
].u4
.idx
= j
;
877 if( i
!=j
) bIdListInOrder
= 0;
878 if( j
==pTab
->iPKey
){
879 ipkColumn
= i
; assert( !withoutRowid
);
881 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
882 if( pTab
->aCol
[j
].colFlags
& (COLFLAG_STORED
|COLFLAG_VIRTUAL
) ){
883 sqlite3ErrorMsg(pParse
,
884 "cannot INSERT into generated column \"%s\"",
885 pTab
->aCol
[j
].zCnName
);
893 if( sqlite3IsRowid(pColumn
->a
[i
].zName
) && !withoutRowid
){
897 sqlite3ErrorMsg(pParse
, "table %S has no column named %s",
898 pTabList
->a
, pColumn
->a
[i
].zName
);
899 pParse
->checkSchema
= 1;
906 /* Figure out how many columns of data are supplied. If the data
907 ** is coming from a SELECT statement, then generate a co-routine that
908 ** produces a single row of the SELECT on each invocation. The
909 ** co-routine is the common header to the 3rd and 4th templates.
912 /* Data is coming from a SELECT or from a multi-row VALUES clause.
913 ** Generate a co-routine to run the SELECT. */
914 int regYield
; /* Register holding co-routine entry-point */
915 int addrTop
; /* Top of the co-routine */
916 int rc
; /* Result code */
918 regYield
= ++pParse
->nMem
;
919 addrTop
= sqlite3VdbeCurrentAddr(v
) + 1;
920 sqlite3VdbeAddOp3(v
, OP_InitCoroutine
, regYield
, 0, addrTop
);
921 sqlite3SelectDestInit(&dest
, SRT_Coroutine
, regYield
);
922 dest
.iSdst
= bIdListInOrder
? regData
: 0;
923 dest
.nSdst
= pTab
->nCol
;
924 rc
= sqlite3Select(pParse
, pSelect
, &dest
);
925 regFromSelect
= dest
.iSdst
;
926 assert( db
->pParse
==pParse
);
927 if( rc
|| pParse
->nErr
) goto insert_cleanup
;
928 assert( db
->mallocFailed
==0 );
929 sqlite3VdbeEndCoroutine(v
, regYield
);
930 sqlite3VdbeJumpHere(v
, addrTop
- 1); /* label B: */
931 assert( pSelect
->pEList
);
932 nColumn
= pSelect
->pEList
->nExpr
;
934 /* Set useTempTable to TRUE if the result of the SELECT statement
935 ** should be written into a temporary table (template 4). Set to
936 ** FALSE if each output row of the SELECT can be written directly into
937 ** the destination table (template 3).
939 ** A temp table must be used if the table being updated is also one
940 ** of the tables being read by the SELECT statement. Also use a
941 ** temp table in the case of row triggers.
943 if( pTrigger
|| readsTable(pParse
, iDb
, pTab
) ){
948 /* Invoke the coroutine to extract information from the SELECT
949 ** and add it to a transient table srcTab. The code generated
950 ** here is from the 4th template:
952 ** B: open temp table
953 ** L: yield X, goto M at EOF
954 ** insert row from R..R+n into temp table
958 int regRec
; /* Register to hold packed record */
959 int regTempRowid
; /* Register to hold temp table ROWID */
960 int addrL
; /* Label "L" */
962 srcTab
= pParse
->nTab
++;
963 regRec
= sqlite3GetTempReg(pParse
);
964 regTempRowid
= sqlite3GetTempReg(pParse
);
965 sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, srcTab
, nColumn
);
966 addrL
= sqlite3VdbeAddOp1(v
, OP_Yield
, dest
.iSDParm
); VdbeCoverage(v
);
967 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regFromSelect
, nColumn
, regRec
);
968 sqlite3VdbeAddOp2(v
, OP_NewRowid
, srcTab
, regTempRowid
);
969 sqlite3VdbeAddOp3(v
, OP_Insert
, srcTab
, regRec
, regTempRowid
);
970 sqlite3VdbeGoto(v
, addrL
);
971 sqlite3VdbeJumpHere(v
, addrL
);
972 sqlite3ReleaseTempReg(pParse
, regRec
);
973 sqlite3ReleaseTempReg(pParse
, regTempRowid
);
976 /* This is the case if the data for the INSERT is coming from a
977 ** single-row VALUES clause
980 memset(&sNC
, 0, sizeof(sNC
));
983 assert( useTempTable
==0 );
985 nColumn
= pList
->nExpr
;
986 if( sqlite3ResolveExprListNames(&sNC
, pList
) ){
994 /* If there is no IDLIST term but the table has an integer primary
995 ** key, the set the ipkColumn variable to the integer primary key
996 ** column index in the original table definition.
998 if( pColumn
==0 && nColumn
>0 ){
999 ipkColumn
= pTab
->iPKey
;
1000 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1001 if( ipkColumn
>=0 && (pTab
->tabFlags
& TF_HasGenerated
)!=0 ){
1002 testcase( pTab
->tabFlags
& TF_HasVirtual
);
1003 testcase( pTab
->tabFlags
& TF_HasStored
);
1004 for(i
=ipkColumn
-1; i
>=0; i
--){
1005 if( pTab
->aCol
[i
].colFlags
& COLFLAG_GENERATED
){
1006 testcase( pTab
->aCol
[i
].colFlags
& COLFLAG_VIRTUAL
);
1007 testcase( pTab
->aCol
[i
].colFlags
& COLFLAG_STORED
);
1014 /* Make sure the number of columns in the source data matches the number
1015 ** of columns to be inserted into the table.
1017 assert( TF_HasHidden
==COLFLAG_HIDDEN
);
1018 assert( TF_HasGenerated
==COLFLAG_GENERATED
);
1019 assert( COLFLAG_NOINSERT
==(COLFLAG_GENERATED
|COLFLAG_HIDDEN
) );
1020 if( (pTab
->tabFlags
& (TF_HasGenerated
|TF_HasHidden
))!=0 ){
1021 for(i
=0; i
<pTab
->nCol
; i
++){
1022 if( pTab
->aCol
[i
].colFlags
& COLFLAG_NOINSERT
) nHidden
++;
1025 if( nColumn
!=(pTab
->nCol
-nHidden
) ){
1026 sqlite3ErrorMsg(pParse
,
1027 "table %S has %d columns but %d values were supplied",
1028 pTabList
->a
, pTab
->nCol
-nHidden
, nColumn
);
1029 goto insert_cleanup
;
1032 if( pColumn
!=0 && nColumn
!=pColumn
->nId
){
1033 sqlite3ErrorMsg(pParse
, "%d values for %d columns", nColumn
, pColumn
->nId
);
1034 goto insert_cleanup
;
1037 /* Initialize the count of rows to be inserted
1039 if( (db
->flags
& SQLITE_CountRows
)!=0
1041 && !pParse
->pTriggerTab
1042 && !pParse
->bReturning
1044 regRowCount
= ++pParse
->nMem
;
1045 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, regRowCount
);
1048 /* If this is not a view, open the table and and all indices */
1051 nIdx
= sqlite3OpenTableAndIndices(pParse
, pTab
, OP_OpenWrite
, 0, -1, 0,
1052 &iDataCur
, &iIdxCur
);
1053 aRegIdx
= sqlite3DbMallocRawNN(db
, sizeof(int)*(nIdx
+2));
1055 goto insert_cleanup
;
1057 for(i
=0, pIdx
=pTab
->pIndex
; i
<nIdx
; pIdx
=pIdx
->pNext
, i
++){
1059 aRegIdx
[i
] = ++pParse
->nMem
;
1060 pParse
->nMem
+= pIdx
->nColumn
;
1062 aRegIdx
[i
] = ++pParse
->nMem
; /* Register to store the table record */
1064 #ifndef SQLITE_OMIT_UPSERT
1067 if( IsVirtual(pTab
) ){
1068 sqlite3ErrorMsg(pParse
, "UPSERT not implemented for virtual table \"%s\"",
1070 goto insert_cleanup
;
1073 sqlite3ErrorMsg(pParse
, "cannot UPSERT a view");
1074 goto insert_cleanup
;
1076 if( sqlite3HasExplicitNulls(pParse
, pUpsert
->pUpsertTarget
) ){
1077 goto insert_cleanup
;
1079 pTabList
->a
[0].iCursor
= iDataCur
;
1082 pNx
->pUpsertSrc
= pTabList
;
1083 pNx
->regData
= regData
;
1084 pNx
->iDataCur
= iDataCur
;
1085 pNx
->iIdxCur
= iIdxCur
;
1086 if( pNx
->pUpsertTarget
){
1087 if( sqlite3UpsertAnalyzeTarget(pParse
, pTabList
, pNx
) ){
1088 goto insert_cleanup
;
1091 pNx
= pNx
->pNextUpsert
;
1097 /* This is the top of the main insertion loop */
1099 /* This block codes the top of loop only. The complete loop is the
1100 ** following pseudocode (template 4):
1102 ** rewind temp table, if empty goto D
1103 ** C: loop over rows of intermediate table
1104 ** transfer values form intermediate table into <table>
1108 addrInsTop
= sqlite3VdbeAddOp1(v
, OP_Rewind
, srcTab
); VdbeCoverage(v
);
1109 addrCont
= sqlite3VdbeCurrentAddr(v
);
1110 }else if( pSelect
){
1111 /* This block codes the top of loop only. The complete loop is the
1112 ** following pseudocode (template 3):
1114 ** C: yield X, at EOF goto D
1115 ** insert the select result into <table> from R..R+n
1119 sqlite3VdbeReleaseRegisters(pParse
, regData
, pTab
->nCol
, 0, 0);
1120 addrInsTop
= addrCont
= sqlite3VdbeAddOp1(v
, OP_Yield
, dest
.iSDParm
);
1123 /* tag-20191021-001: If the INTEGER PRIMARY KEY is being generated by the
1124 ** SELECT, go ahead and copy the value into the rowid slot now, so that
1125 ** the value does not get overwritten by a NULL at tag-20191021-002. */
1126 sqlite3VdbeAddOp2(v
, OP_Copy
, regFromSelect
+ipkColumn
, regRowid
);
1130 /* Compute data for ordinary columns of the new entry. Values
1131 ** are written in storage order into registers starting with regData.
1132 ** Only ordinary columns are computed in this loop. The rowid
1133 ** (if there is one) is computed later and generated columns are
1134 ** computed after the rowid since they might depend on the value
1138 iRegStore
= regData
; assert( regData
==regRowid
+1 );
1139 for(i
=0; i
<pTab
->nCol
; i
++, iRegStore
++){
1142 assert( i
>=nHidden
);
1143 if( i
==pTab
->iPKey
){
1144 /* tag-20191021-002: References to the INTEGER PRIMARY KEY are filled
1145 ** using the rowid. So put a NULL in the IPK slot of the record to avoid
1146 ** using excess space. The file format definition requires this extra
1147 ** NULL - we cannot optimize further by skipping the column completely */
1148 sqlite3VdbeAddOp1(v
, OP_SoftNull
, iRegStore
);
1151 if( ((colFlags
= pTab
->aCol
[i
].colFlags
) & COLFLAG_NOINSERT
)!=0 ){
1153 if( (colFlags
& COLFLAG_VIRTUAL
)!=0 ){
1154 /* Virtual columns do not participate in OP_MakeRecord. So back up
1155 ** iRegStore by one slot to compensate for the iRegStore++ in the
1156 ** outer for() loop */
1159 }else if( (colFlags
& COLFLAG_STORED
)!=0 ){
1160 /* Stored columns are computed later. But if there are BEFORE
1161 ** triggers, the slots used for stored columns will be OP_Copy-ed
1162 ** to a second block of registers, so the register needs to be
1163 ** initialized to NULL to avoid an uninitialized register read */
1164 if( tmask
& TRIGGER_BEFORE
){
1165 sqlite3VdbeAddOp1(v
, OP_SoftNull
, iRegStore
);
1168 }else if( pColumn
==0 ){
1169 /* Hidden columns that are not explicitly named in the INSERT
1170 ** get there default value */
1171 sqlite3ExprCodeFactorable(pParse
,
1172 sqlite3ColumnExpr(pTab
, &pTab
->aCol
[i
]),
1178 assert( pColumn
->eU4
==EU4_IDX
);
1179 for(j
=0; j
<pColumn
->nId
&& pColumn
->a
[j
].u4
.idx
!=i
; j
++){}
1180 if( j
>=pColumn
->nId
){
1181 /* A column not named in the insert column list gets its
1183 sqlite3ExprCodeFactorable(pParse
,
1184 sqlite3ColumnExpr(pTab
, &pTab
->aCol
[i
]),
1189 }else if( nColumn
==0 ){
1190 /* This is INSERT INTO ... DEFAULT VALUES. Load the default value. */
1191 sqlite3ExprCodeFactorable(pParse
,
1192 sqlite3ColumnExpr(pTab
, &pTab
->aCol
[i
]),
1200 sqlite3VdbeAddOp3(v
, OP_Column
, srcTab
, k
, iRegStore
);
1201 }else if( pSelect
){
1202 if( regFromSelect
!=regData
){
1203 sqlite3VdbeAddOp2(v
, OP_SCopy
, regFromSelect
+k
, iRegStore
);
1206 Expr
*pX
= pList
->a
[k
].pExpr
;
1207 int y
= sqlite3ExprCodeTarget(pParse
, pX
, iRegStore
);
1209 sqlite3VdbeAddOp2(v
,
1210 ExprHasProperty(pX
, EP_Subquery
) ? OP_Copy
: OP_SCopy
, y
, iRegStore
);
1216 /* Run the BEFORE and INSTEAD OF triggers, if there are any
1218 endOfLoop
= sqlite3VdbeMakeLabel(pParse
);
1219 if( tmask
& TRIGGER_BEFORE
){
1220 int regCols
= sqlite3GetTempRange(pParse
, pTab
->nCol
+1);
1222 /* build the NEW.* reference row. Note that if there is an INTEGER
1223 ** PRIMARY KEY into which a NULL is being inserted, that NULL will be
1224 ** translated into a unique ID for the row. But on a BEFORE trigger,
1225 ** we do not know what the unique ID will be (because the insert has
1226 ** not happened yet) so we substitute a rowid of -1
1229 sqlite3VdbeAddOp2(v
, OP_Integer
, -1, regCols
);
1232 assert( !withoutRowid
);
1234 sqlite3VdbeAddOp3(v
, OP_Column
, srcTab
, ipkColumn
, regCols
);
1236 assert( pSelect
==0 ); /* Otherwise useTempTable is true */
1237 sqlite3ExprCode(pParse
, pList
->a
[ipkColumn
].pExpr
, regCols
);
1239 addr1
= sqlite3VdbeAddOp1(v
, OP_NotNull
, regCols
); VdbeCoverage(v
);
1240 sqlite3VdbeAddOp2(v
, OP_Integer
, -1, regCols
);
1241 sqlite3VdbeJumpHere(v
, addr1
);
1242 sqlite3VdbeAddOp1(v
, OP_MustBeInt
, regCols
); VdbeCoverage(v
);
1245 /* Copy the new data already generated. */
1246 assert( pTab
->nNVCol
>0 || pParse
->nErr
>0 );
1247 sqlite3VdbeAddOp3(v
, OP_Copy
, regRowid
+1, regCols
+1, pTab
->nNVCol
-1);
1249 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1250 /* Compute the new value for generated columns after all other
1251 ** columns have already been computed. This must be done after
1252 ** computing the ROWID in case one of the generated columns
1253 ** refers to the ROWID. */
1254 if( pTab
->tabFlags
& TF_HasGenerated
){
1255 testcase( pTab
->tabFlags
& TF_HasVirtual
);
1256 testcase( pTab
->tabFlags
& TF_HasStored
);
1257 sqlite3ComputeGeneratedColumns(pParse
, regCols
+1, pTab
);
1261 /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger,
1262 ** do not attempt any conversions before assembling the record.
1263 ** If this is a real table, attempt conversions as required by the
1264 ** table column affinities.
1267 sqlite3TableAffinity(v
, pTab
, regCols
+1);
1270 /* Fire BEFORE or INSTEAD OF triggers */
1271 sqlite3CodeRowTrigger(pParse
, pTrigger
, TK_INSERT
, 0, TRIGGER_BEFORE
,
1272 pTab
, regCols
-pTab
->nCol
-1, onError
, endOfLoop
);
1274 sqlite3ReleaseTempRange(pParse
, regCols
, pTab
->nCol
+1);
1278 if( IsVirtual(pTab
) ){
1279 /* The row that the VUpdate opcode will delete: none */
1280 sqlite3VdbeAddOp2(v
, OP_Null
, 0, regIns
);
1283 /* Compute the new rowid */
1285 sqlite3VdbeAddOp3(v
, OP_Column
, srcTab
, ipkColumn
, regRowid
);
1286 }else if( pSelect
){
1287 /* Rowid already initialized at tag-20191021-001 */
1289 Expr
*pIpk
= pList
->a
[ipkColumn
].pExpr
;
1290 if( pIpk
->op
==TK_NULL
&& !IsVirtual(pTab
) ){
1291 sqlite3VdbeAddOp3(v
, OP_NewRowid
, iDataCur
, regRowid
, regAutoinc
);
1294 sqlite3ExprCode(pParse
, pList
->a
[ipkColumn
].pExpr
, regRowid
);
1297 /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid
1298 ** to generate a unique primary key value.
1302 if( !IsVirtual(pTab
) ){
1303 addr1
= sqlite3VdbeAddOp1(v
, OP_NotNull
, regRowid
); VdbeCoverage(v
);
1304 sqlite3VdbeAddOp3(v
, OP_NewRowid
, iDataCur
, regRowid
, regAutoinc
);
1305 sqlite3VdbeJumpHere(v
, addr1
);
1307 addr1
= sqlite3VdbeCurrentAddr(v
);
1308 sqlite3VdbeAddOp2(v
, OP_IsNull
, regRowid
, addr1
+2); VdbeCoverage(v
);
1310 sqlite3VdbeAddOp1(v
, OP_MustBeInt
, regRowid
); VdbeCoverage(v
);
1312 }else if( IsVirtual(pTab
) || withoutRowid
){
1313 sqlite3VdbeAddOp2(v
, OP_Null
, 0, regRowid
);
1315 sqlite3VdbeAddOp3(v
, OP_NewRowid
, iDataCur
, regRowid
, regAutoinc
);
1318 autoIncStep(pParse
, regAutoinc
, regRowid
);
1320 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1321 /* Compute the new value for generated columns after all other
1322 ** columns have already been computed. This must be done after
1323 ** computing the ROWID in case one of the generated columns
1324 ** is derived from the INTEGER PRIMARY KEY. */
1325 if( pTab
->tabFlags
& TF_HasGenerated
){
1326 sqlite3ComputeGeneratedColumns(pParse
, regRowid
+1, pTab
);
1330 /* Generate code to check constraints and generate index keys and
1331 ** do the insertion.
1333 #ifndef SQLITE_OMIT_VIRTUALTABLE
1334 if( IsVirtual(pTab
) ){
1335 const char *pVTab
= (const char *)sqlite3GetVTable(db
, pTab
);
1336 sqlite3VtabMakeWritable(pParse
, pTab
);
1337 sqlite3VdbeAddOp4(v
, OP_VUpdate
, 1, pTab
->nCol
+2, regIns
, pVTab
, P4_VTAB
);
1338 sqlite3VdbeChangeP5(v
, onError
==OE_Default
? OE_Abort
: onError
);
1339 sqlite3MayAbort(pParse
);
1343 int isReplace
= 0;/* Set to true if constraints may cause a replace */
1344 int bUseSeek
; /* True to use OPFLAG_SEEKRESULT */
1345 sqlite3GenerateConstraintChecks(pParse
, pTab
, aRegIdx
, iDataCur
, iIdxCur
,
1346 regIns
, 0, ipkColumn
>=0, onError
, endOfLoop
, &isReplace
, 0, pUpsert
1348 if( db
->flags
& SQLITE_ForeignKeys
){
1349 sqlite3FkCheck(pParse
, pTab
, 0, regIns
, 0, 0);
1352 /* Set the OPFLAG_USESEEKRESULT flag if either (a) there are no REPLACE
1353 ** constraints or (b) there are no triggers and this table is not a
1354 ** parent table in a foreign key constraint. It is safe to set the
1355 ** flag in the second case as if any REPLACE constraint is hit, an
1356 ** OP_Delete or OP_IdxDelete instruction will be executed on each
1357 ** cursor that is disturbed. And these instructions both clear the
1358 ** VdbeCursor.seekResult variable, disabling the OPFLAG_USESEEKRESULT
1359 ** functionality. */
1360 bUseSeek
= (isReplace
==0 || !sqlite3VdbeHasSubProgram(v
));
1361 sqlite3CompleteInsertion(pParse
, pTab
, iDataCur
, iIdxCur
,
1362 regIns
, aRegIdx
, 0, appendFlag
, bUseSeek
1365 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
1366 }else if( pParse
->bReturning
){
1367 /* If there is a RETURNING clause, populate the rowid register with
1368 ** constant value -1, in case one or more of the returned expressions
1369 ** refer to the "rowid" of the view. */
1370 sqlite3VdbeAddOp2(v
, OP_Integer
, -1, regRowid
);
1374 /* Update the count of rows that are inserted
1377 sqlite3VdbeAddOp2(v
, OP_AddImm
, regRowCount
, 1);
1381 /* Code AFTER triggers */
1382 sqlite3CodeRowTrigger(pParse
, pTrigger
, TK_INSERT
, 0, TRIGGER_AFTER
,
1383 pTab
, regData
-2-pTab
->nCol
, onError
, endOfLoop
);
1386 /* The bottom of the main insertion loop, if the data source
1387 ** is a SELECT statement.
1389 sqlite3VdbeResolveLabel(v
, endOfLoop
);
1391 sqlite3VdbeAddOp2(v
, OP_Next
, srcTab
, addrCont
); VdbeCoverage(v
);
1392 sqlite3VdbeJumpHere(v
, addrInsTop
);
1393 sqlite3VdbeAddOp1(v
, OP_Close
, srcTab
);
1394 }else if( pSelect
){
1395 sqlite3VdbeGoto(v
, addrCont
);
1397 /* If we are jumping back to an OP_Yield that is preceded by an
1398 ** OP_ReleaseReg, set the p5 flag on the OP_Goto so that the
1399 ** OP_ReleaseReg will be included in the loop. */
1400 if( sqlite3VdbeGetOp(v
, addrCont
-1)->opcode
==OP_ReleaseReg
){
1401 assert( sqlite3VdbeGetOp(v
, addrCont
)->opcode
==OP_Yield
);
1402 sqlite3VdbeChangeP5(v
, 1);
1405 sqlite3VdbeJumpHere(v
, addrInsTop
);
1408 #ifndef SQLITE_OMIT_XFER_OPT
1410 #endif /* SQLITE_OMIT_XFER_OPT */
1411 /* Update the sqlite_sequence table by storing the content of the
1412 ** maximum rowid counter values recorded while inserting into
1413 ** autoincrement tables.
1415 if( pParse
->nested
==0 && pParse
->pTriggerTab
==0 ){
1416 sqlite3AutoincrementEnd(pParse
);
1420 ** Return the number of rows inserted. If this routine is
1421 ** generating code because of a call to sqlite3NestedParse(), do not
1422 ** invoke the callback function.
1425 sqlite3CodeChangeCount(v
, regRowCount
, "rows inserted");
1429 sqlite3SrcListDelete(db
, pTabList
);
1430 sqlite3ExprListDelete(db
, pList
);
1431 sqlite3UpsertDelete(db
, pUpsert
);
1432 sqlite3SelectDelete(db
, pSelect
);
1433 sqlite3IdListDelete(db
, pColumn
);
1434 if( aRegIdx
) sqlite3DbNNFreeNN(db
, aRegIdx
);
1437 /* Make sure "isView" and other macros defined above are undefined. Otherwise
1438 ** they may interfere with compilation of other functions in this file
1439 ** (or in another file, if this file becomes part of the amalgamation). */
1451 ** Meanings of bits in of pWalker->eCode for
1452 ** sqlite3ExprReferencesUpdatedColumn()
1454 #define CKCNSTRNT_COLUMN 0x01 /* CHECK constraint uses a changing column */
1455 #define CKCNSTRNT_ROWID 0x02 /* CHECK constraint references the ROWID */
1457 /* This is the Walker callback from sqlite3ExprReferencesUpdatedColumn().
1458 * Set bit 0x01 of pWalker->eCode if pWalker->eCode to 0 and if this
1459 ** expression node references any of the
1460 ** columns that are being modifed by an UPDATE statement.
1462 static int checkConstraintExprNode(Walker
*pWalker
, Expr
*pExpr
){
1463 if( pExpr
->op
==TK_COLUMN
){
1464 assert( pExpr
->iColumn
>=0 || pExpr
->iColumn
==-1 );
1465 if( pExpr
->iColumn
>=0 ){
1466 if( pWalker
->u
.aiCol
[pExpr
->iColumn
]>=0 ){
1467 pWalker
->eCode
|= CKCNSTRNT_COLUMN
;
1470 pWalker
->eCode
|= CKCNSTRNT_ROWID
;
1473 return WRC_Continue
;
1477 ** pExpr is a CHECK constraint on a row that is being UPDATE-ed. The
1478 ** only columns that are modified by the UPDATE are those for which
1479 ** aiChng[i]>=0, and also the ROWID is modified if chngRowid is true.
1481 ** Return true if CHECK constraint pExpr uses any of the
1482 ** changing columns (or the rowid if it is changing). In other words,
1483 ** return true if this CHECK constraint must be validated for
1484 ** the new row in the UPDATE statement.
1486 ** 2018-09-15: pExpr might also be an expression for an index-on-expressions.
1487 ** The operation of this routine is the same - return true if an only if
1488 ** the expression uses one or more of columns identified by the second and
1491 int sqlite3ExprReferencesUpdatedColumn(
1492 Expr
*pExpr
, /* The expression to be checked */
1493 int *aiChng
, /* aiChng[x]>=0 if column x changed by the UPDATE */
1494 int chngRowid
/* True if UPDATE changes the rowid */
1497 memset(&w
, 0, sizeof(w
));
1499 w
.xExprCallback
= checkConstraintExprNode
;
1501 sqlite3WalkExpr(&w
, pExpr
);
1503 testcase( (w
.eCode
& CKCNSTRNT_ROWID
)!=0 );
1504 w
.eCode
&= ~CKCNSTRNT_ROWID
;
1506 testcase( w
.eCode
==0 );
1507 testcase( w
.eCode
==CKCNSTRNT_COLUMN
);
1508 testcase( w
.eCode
==CKCNSTRNT_ROWID
);
1509 testcase( w
.eCode
==(CKCNSTRNT_ROWID
|CKCNSTRNT_COLUMN
) );
1514 ** The sqlite3GenerateConstraintChecks() routine usually wants to visit
1515 ** the indexes of a table in the order provided in the Table->pIndex list.
1516 ** However, sometimes (rarely - when there is an upsert) it wants to visit
1517 ** the indexes in a different order. The following data structures accomplish
1520 ** The IndexIterator object is used to walk through all of the indexes
1521 ** of a table in either Index.pNext order, or in some other order established
1522 ** by an array of IndexListTerm objects.
1524 typedef struct IndexListTerm IndexListTerm
;
1525 typedef struct IndexIterator IndexIterator
;
1526 struct IndexIterator
{
1527 int eType
; /* 0 for Index.pNext list. 1 for an array of IndexListTerm */
1528 int i
; /* Index of the current item from the list */
1530 struct { /* Use this object for eType==0: A Index.pNext list */
1531 Index
*pIdx
; /* The current Index */
1533 struct { /* Use this object for eType==1; Array of IndexListTerm */
1534 int nIdx
; /* Size of the array */
1535 IndexListTerm
*aIdx
; /* Array of IndexListTerms */
1540 /* When IndexIterator.eType==1, then each index is an array of instances
1541 ** of the following object
1543 struct IndexListTerm
{
1544 Index
*p
; /* The index */
1545 int ix
; /* Which entry in the original Table.pIndex list is this index*/
1548 /* Return the first index on the list */
1549 static Index
*indexIteratorFirst(IndexIterator
*pIter
, int *pIx
){
1550 assert( pIter
->i
==0 );
1552 *pIx
= pIter
->u
.ax
.aIdx
[0].ix
;
1553 return pIter
->u
.ax
.aIdx
[0].p
;
1556 return pIter
->u
.lx
.pIdx
;
1560 /* Return the next index from the list. Return NULL when out of indexes */
1561 static Index
*indexIteratorNext(IndexIterator
*pIter
, int *pIx
){
1564 if( i
>=pIter
->u
.ax
.nIdx
){
1568 *pIx
= pIter
->u
.ax
.aIdx
[i
].ix
;
1569 return pIter
->u
.ax
.aIdx
[i
].p
;
1572 pIter
->u
.lx
.pIdx
= pIter
->u
.lx
.pIdx
->pNext
;
1573 return pIter
->u
.lx
.pIdx
;
1578 ** Generate code to do constraint checks prior to an INSERT or an UPDATE
1581 ** The regNewData parameter is the first register in a range that contains
1582 ** the data to be inserted or the data after the update. There will be
1583 ** pTab->nCol+1 registers in this range. The first register (the one
1584 ** that regNewData points to) will contain the new rowid, or NULL in the
1585 ** case of a WITHOUT ROWID table. The second register in the range will
1586 ** contain the content of the first table column. The third register will
1587 ** contain the content of the second table column. And so forth.
1589 ** The regOldData parameter is similar to regNewData except that it contains
1590 ** the data prior to an UPDATE rather than afterwards. regOldData is zero
1591 ** for an INSERT. This routine can distinguish between UPDATE and INSERT by
1592 ** checking regOldData for zero.
1594 ** For an UPDATE, the pkChng boolean is true if the true primary key (the
1595 ** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table)
1596 ** might be modified by the UPDATE. If pkChng is false, then the key of
1597 ** the iDataCur content table is guaranteed to be unchanged by the UPDATE.
1599 ** For an INSERT, the pkChng boolean indicates whether or not the rowid
1600 ** was explicitly specified as part of the INSERT statement. If pkChng
1601 ** is zero, it means that the either rowid is computed automatically or
1602 ** that the table is a WITHOUT ROWID table and has no rowid. On an INSERT,
1603 ** pkChng will only be true if the INSERT statement provides an integer
1604 ** value for either the rowid column or its INTEGER PRIMARY KEY alias.
1606 ** The code generated by this routine will store new index entries into
1607 ** registers identified by aRegIdx[]. No index entry is created for
1608 ** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is
1609 ** the same as the order of indices on the linked list of indices
1612 ** (2019-05-07) The generated code also creates a new record for the
1613 ** main table, if pTab is a rowid table, and stores that record in the
1614 ** register identified by aRegIdx[nIdx] - in other words in the first
1615 ** entry of aRegIdx[] past the last index. It is important that the
1616 ** record be generated during constraint checks to avoid affinity changes
1617 ** to the register content that occur after constraint checks but before
1618 ** the new record is inserted.
1620 ** The caller must have already opened writeable cursors on the main
1621 ** table and all applicable indices (that is to say, all indices for which
1622 ** aRegIdx[] is not zero). iDataCur is the cursor for the main table when
1623 ** inserting or updating a rowid table, or the cursor for the PRIMARY KEY
1624 ** index when operating on a WITHOUT ROWID table. iIdxCur is the cursor
1625 ** for the first index in the pTab->pIndex list. Cursors for other indices
1626 ** are at iIdxCur+N for the N-th element of the pTab->pIndex list.
1628 ** This routine also generates code to check constraints. NOT NULL,
1629 ** CHECK, and UNIQUE constraints are all checked. If a constraint fails,
1630 ** then the appropriate action is performed. There are five possible
1631 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE.
1633 ** Constraint type Action What Happens
1634 ** --------------- ---------- ----------------------------------------
1635 ** any ROLLBACK The current transaction is rolled back and
1636 ** sqlite3_step() returns immediately with a
1637 ** return code of SQLITE_CONSTRAINT.
1639 ** any ABORT Back out changes from the current command
1640 ** only (do not do a complete rollback) then
1641 ** cause sqlite3_step() to return immediately
1642 ** with SQLITE_CONSTRAINT.
1644 ** any FAIL Sqlite3_step() returns immediately with a
1645 ** return code of SQLITE_CONSTRAINT. The
1646 ** transaction is not rolled back and any
1647 ** changes to prior rows are retained.
1649 ** any IGNORE The attempt in insert or update the current
1650 ** row is skipped, without throwing an error.
1651 ** Processing continues with the next row.
1652 ** (There is an immediate jump to ignoreDest.)
1654 ** NOT NULL REPLACE The NULL value is replace by the default
1655 ** value for that column. If the default value
1656 ** is NULL, the action is the same as ABORT.
1658 ** UNIQUE REPLACE The other row that conflicts with the row
1659 ** being inserted is removed.
1661 ** CHECK REPLACE Illegal. The results in an exception.
1663 ** Which action to take is determined by the overrideError parameter.
1664 ** Or if overrideError==OE_Default, then the pParse->onError parameter
1665 ** is used. Or if pParse->onError==OE_Default then the onError value
1666 ** for the constraint is used.
1668 void sqlite3GenerateConstraintChecks(
1669 Parse
*pParse
, /* The parser context */
1670 Table
*pTab
, /* The table being inserted or updated */
1671 int *aRegIdx
, /* Use register aRegIdx[i] for index i. 0 for unused */
1672 int iDataCur
, /* Canonical data cursor (main table or PK index) */
1673 int iIdxCur
, /* First index cursor */
1674 int regNewData
, /* First register in a range holding values to insert */
1675 int regOldData
, /* Previous content. 0 for INSERTs */
1676 u8 pkChng
, /* Non-zero if the rowid or PRIMARY KEY changed */
1677 u8 overrideError
, /* Override onError to this if not OE_Default */
1678 int ignoreDest
, /* Jump to this label on an OE_Ignore resolution */
1679 int *pbMayReplace
, /* OUT: Set to true if constraint may cause a replace */
1680 int *aiChng
, /* column i is unchanged if aiChng[i]<0 */
1681 Upsert
*pUpsert
/* ON CONFLICT clauses, if any. NULL otherwise */
1683 Vdbe
*v
; /* VDBE under constrution */
1684 Index
*pIdx
; /* Pointer to one of the indices */
1685 Index
*pPk
= 0; /* The PRIMARY KEY index for WITHOUT ROWID tables */
1686 sqlite3
*db
; /* Database connection */
1687 int i
; /* loop counter */
1688 int ix
; /* Index loop counter */
1689 int nCol
; /* Number of columns */
1690 int onError
; /* Conflict resolution strategy */
1691 int seenReplace
= 0; /* True if REPLACE is used to resolve INT PK conflict */
1692 int nPkField
; /* Number of fields in PRIMARY KEY. 1 for ROWID tables */
1693 Upsert
*pUpsertClause
= 0; /* The specific ON CONFLICT clause for pIdx */
1694 u8 isUpdate
; /* True if this is an UPDATE operation */
1695 u8 bAffinityDone
= 0; /* True if the OP_Affinity operation has been run */
1696 int upsertIpkReturn
= 0; /* Address of Goto at end of IPK uniqueness check */
1697 int upsertIpkDelay
= 0; /* Address of Goto to bypass initial IPK check */
1698 int ipkTop
= 0; /* Top of the IPK uniqueness check */
1699 int ipkBottom
= 0; /* OP_Goto at the end of the IPK uniqueness check */
1700 /* Variables associated with retesting uniqueness constraints after
1701 ** replace triggers fire have run */
1702 int regTrigCnt
; /* Register used to count replace trigger invocations */
1703 int addrRecheck
= 0; /* Jump here to recheck all uniqueness constraints */
1704 int lblRecheckOk
= 0; /* Each recheck jumps to this label if it passes */
1705 Trigger
*pTrigger
; /* List of DELETE triggers on the table pTab */
1706 int nReplaceTrig
= 0; /* Number of replace triggers coded */
1707 IndexIterator sIdxIter
; /* Index iterator */
1709 isUpdate
= regOldData
!=0;
1713 assert( !IsView(pTab
) ); /* This table is not a VIEW */
1716 /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for
1717 ** normal rowid tables. nPkField is the number of key fields in the
1718 ** pPk index or 1 for a rowid table. In other words, nPkField is the
1719 ** number of fields in the true primary key of the table. */
1720 if( HasRowid(pTab
) ){
1724 pPk
= sqlite3PrimaryKeyIndex(pTab
);
1725 nPkField
= pPk
->nKeyCol
;
1728 /* Record that this module has started */
1729 VdbeModuleComment((v
, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)",
1730 iDataCur
, iIdxCur
, regNewData
, regOldData
, pkChng
));
1732 /* Test all NOT NULL constraints.
1734 if( pTab
->tabFlags
& TF_HasNotNull
){
1735 int b2ndPass
= 0; /* True if currently running 2nd pass */
1736 int nSeenReplace
= 0; /* Number of ON CONFLICT REPLACE operations */
1737 int nGenerated
= 0; /* Number of generated columns with NOT NULL */
1738 while(1){ /* Make 2 passes over columns. Exit loop via "break" */
1739 for(i
=0; i
<nCol
; i
++){
1740 int iReg
; /* Register holding column value */
1741 Column
*pCol
= &pTab
->aCol
[i
]; /* The column to check for NOT NULL */
1742 int isGenerated
; /* non-zero if column is generated */
1743 onError
= pCol
->notNull
;
1744 if( onError
==OE_None
) continue; /* No NOT NULL on this column */
1745 if( i
==pTab
->iPKey
){
1746 continue; /* ROWID is never NULL */
1748 isGenerated
= pCol
->colFlags
& COLFLAG_GENERATED
;
1749 if( isGenerated
&& !b2ndPass
){
1751 continue; /* Generated columns processed on 2nd pass */
1753 if( aiChng
&& aiChng
[i
]<0 && !isGenerated
){
1754 /* Do not check NOT NULL on columns that do not change */
1757 if( overrideError
!=OE_Default
){
1758 onError
= overrideError
;
1759 }else if( onError
==OE_Default
){
1762 if( onError
==OE_Replace
){
1763 if( b2ndPass
/* REPLACE becomes ABORT on the 2nd pass */
1764 || pCol
->iDflt
==0 /* REPLACE is ABORT if no DEFAULT value */
1766 testcase( pCol
->colFlags
& COLFLAG_VIRTUAL
);
1767 testcase( pCol
->colFlags
& COLFLAG_STORED
);
1768 testcase( pCol
->colFlags
& COLFLAG_GENERATED
);
1771 assert( !isGenerated
);
1773 }else if( b2ndPass
&& !isGenerated
){
1776 assert( onError
==OE_Rollback
|| onError
==OE_Abort
|| onError
==OE_Fail
1777 || onError
==OE_Ignore
|| onError
==OE_Replace
);
1778 testcase( i
!=sqlite3TableColumnToStorage(pTab
, i
) );
1779 iReg
= sqlite3TableColumnToStorage(pTab
, i
) + regNewData
+ 1;
1782 int addr1
= sqlite3VdbeAddOp1(v
, OP_NotNull
, iReg
);
1784 assert( (pCol
->colFlags
& COLFLAG_GENERATED
)==0 );
1786 sqlite3ExprCodeCopy(pParse
,
1787 sqlite3ColumnExpr(pTab
, pCol
), iReg
);
1788 sqlite3VdbeJumpHere(v
, addr1
);
1792 sqlite3MayAbort(pParse
);
1793 /* no break */ deliberate_fall_through
1796 char *zMsg
= sqlite3MPrintf(db
, "%s.%s", pTab
->zName
,
1798 testcase( zMsg
==0 && db
->mallocFailed
==0 );
1799 sqlite3VdbeAddOp3(v
, OP_HaltIfNull
, SQLITE_CONSTRAINT_NOTNULL
,
1801 sqlite3VdbeAppendP4(v
, zMsg
, P4_DYNAMIC
);
1802 sqlite3VdbeChangeP5(v
, P5_ConstraintNotNull
);
1807 assert( onError
==OE_Ignore
);
1808 sqlite3VdbeAddOp2(v
, OP_IsNull
, iReg
, ignoreDest
);
1812 } /* end switch(onError) */
1813 } /* end loop i over columns */
1814 if( nGenerated
==0 && nSeenReplace
==0 ){
1815 /* If there are no generated columns with NOT NULL constraints
1816 ** and no NOT NULL ON CONFLICT REPLACE constraints, then a single
1817 ** pass is sufficient */
1820 if( b2ndPass
) break; /* Never need more than 2 passes */
1822 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1823 if( nSeenReplace
>0 && (pTab
->tabFlags
& TF_HasGenerated
)!=0 ){
1824 /* If any NOT NULL ON CONFLICT REPLACE constraints fired on the
1825 ** first pass, recomputed values for all generated columns, as
1826 ** those values might depend on columns affected by the REPLACE.
1828 sqlite3ComputeGeneratedColumns(pParse
, regNewData
+1, pTab
);
1831 } /* end of 2-pass loop */
1832 } /* end if( has-not-null-constraints ) */
1834 /* Test all CHECK constraints
1836 #ifndef SQLITE_OMIT_CHECK
1837 if( pTab
->pCheck
&& (db
->flags
& SQLITE_IgnoreChecks
)==0 ){
1838 ExprList
*pCheck
= pTab
->pCheck
;
1839 pParse
->iSelfTab
= -(regNewData
+1);
1840 onError
= overrideError
!=OE_Default
? overrideError
: OE_Abort
;
1841 for(i
=0; i
<pCheck
->nExpr
; i
++){
1844 Expr
*pExpr
= pCheck
->a
[i
].pExpr
;
1846 && !sqlite3ExprReferencesUpdatedColumn(pExpr
, aiChng
, pkChng
)
1848 /* The check constraints do not reference any of the columns being
1849 ** updated so there is no point it verifying the check constraint */
1852 if( bAffinityDone
==0 ){
1853 sqlite3TableAffinity(v
, pTab
, regNewData
+1);
1856 allOk
= sqlite3VdbeMakeLabel(pParse
);
1857 sqlite3VdbeVerifyAbortable(v
, onError
);
1858 pCopy
= sqlite3ExprDup(db
, pExpr
, 0);
1859 if( !db
->mallocFailed
){
1860 sqlite3ExprIfTrue(pParse
, pCopy
, allOk
, SQLITE_JUMPIFNULL
);
1862 sqlite3ExprDelete(db
, pCopy
);
1863 if( onError
==OE_Ignore
){
1864 sqlite3VdbeGoto(v
, ignoreDest
);
1866 char *zName
= pCheck
->a
[i
].zEName
;
1867 assert( zName
!=0 || pParse
->db
->mallocFailed
);
1868 if( onError
==OE_Replace
) onError
= OE_Abort
; /* IMP: R-26383-51744 */
1869 sqlite3HaltConstraint(pParse
, SQLITE_CONSTRAINT_CHECK
,
1870 onError
, zName
, P4_TRANSIENT
,
1871 P5_ConstraintCheck
);
1873 sqlite3VdbeResolveLabel(v
, allOk
);
1875 pParse
->iSelfTab
= 0;
1877 #endif /* !defined(SQLITE_OMIT_CHECK) */
1879 /* UNIQUE and PRIMARY KEY constraints should be handled in the following
1883 ** (2) OE_Abort, OE_Fail, OE_Rollback, OE_Ignore
1886 ** OE_Fail and OE_Ignore must happen before any changes are made.
1887 ** OE_Update guarantees that only a single row will change, so it
1888 ** must happen before OE_Replace. Technically, OE_Abort and OE_Rollback
1889 ** could happen in any order, but they are grouped up front for
1892 ** 2018-08-14: Ticket https://www.sqlite.org/src/info/908f001483982c43
1893 ** The order of constraints used to have OE_Update as (2) and OE_Abort
1894 ** and so forth as (1). But apparently PostgreSQL checks the OE_Update
1895 ** constraint before any others, so it had to be moved.
1897 ** Constraint checking code is generated in this order:
1898 ** (A) The rowid constraint
1899 ** (B) Unique index constraints that do not have OE_Replace as their
1900 ** default conflict resolution strategy
1901 ** (C) Unique index that do use OE_Replace by default.
1903 ** The ordering of (2) and (3) is accomplished by making sure the linked
1904 ** list of indexes attached to a table puts all OE_Replace indexes last
1905 ** in the list. See sqlite3CreateIndex() for where that happens.
1909 sIdxIter
.u
.ax
.aIdx
= 0; /* Silence harmless compiler warning */
1910 sIdxIter
.u
.lx
.pIdx
= pTab
->pIndex
;
1912 if( pUpsert
->pUpsertTarget
==0 ){
1913 /* There is just on ON CONFLICT clause and it has no constraint-target */
1914 assert( pUpsert
->pNextUpsert
==0 );
1915 if( pUpsert
->isDoUpdate
==0 ){
1916 /* A single ON CONFLICT DO NOTHING clause, without a constraint-target.
1917 ** Make all unique constraint resolution be OE_Ignore */
1918 overrideError
= OE_Ignore
;
1921 /* A single ON CONFLICT DO UPDATE. Make all resolutions OE_Update */
1922 overrideError
= OE_Update
;
1924 }else if( pTab
->pIndex
!=0 ){
1925 /* Otherwise, we'll need to run the IndexListTerm array version of the
1926 ** iterator to ensure that all of the ON CONFLICT conditions are
1927 ** checked first and in order. */
1932 for(nIdx
=0, pIdx
=pTab
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
, nIdx
++){
1933 assert( aRegIdx
[nIdx
]>0 );
1936 sIdxIter
.u
.ax
.nIdx
= nIdx
;
1937 nByte
= (sizeof(IndexListTerm
)+1)*nIdx
+ nIdx
;
1938 sIdxIter
.u
.ax
.aIdx
= sqlite3DbMallocZero(db
, nByte
);
1939 if( sIdxIter
.u
.ax
.aIdx
==0 ) return; /* OOM */
1940 bUsed
= (u8
*)&sIdxIter
.u
.ax
.aIdx
[nIdx
];
1941 pUpsert
->pToFree
= sIdxIter
.u
.ax
.aIdx
;
1942 for(i
=0, pTerm
=pUpsert
; pTerm
; pTerm
=pTerm
->pNextUpsert
){
1943 if( pTerm
->pUpsertTarget
==0 ) break;
1944 if( pTerm
->pUpsertIdx
==0 ) continue; /* Skip ON CONFLICT for the IPK */
1946 pIdx
= pTab
->pIndex
;
1947 while( ALWAYS(pIdx
!=0) && pIdx
!=pTerm
->pUpsertIdx
){
1951 if( bUsed
[jj
] ) continue; /* Duplicate ON CONFLICT clause ignored */
1953 sIdxIter
.u
.ax
.aIdx
[i
].p
= pIdx
;
1954 sIdxIter
.u
.ax
.aIdx
[i
].ix
= jj
;
1957 for(jj
=0, pIdx
=pTab
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
, jj
++){
1958 if( bUsed
[jj
] ) continue;
1959 sIdxIter
.u
.ax
.aIdx
[i
].p
= pIdx
;
1960 sIdxIter
.u
.ax
.aIdx
[i
].ix
= jj
;
1967 /* Determine if it is possible that triggers (either explicitly coded
1968 ** triggers or FK resolution actions) might run as a result of deletes
1969 ** that happen when OE_Replace conflict resolution occurs. (Call these
1970 ** "replace triggers".) If any replace triggers run, we will need to
1971 ** recheck all of the uniqueness constraints after they have all run.
1972 ** But on the recheck, the resolution is OE_Abort instead of OE_Replace.
1974 ** If replace triggers are a possibility, then
1976 ** (1) Allocate register regTrigCnt and initialize it to zero.
1977 ** That register will count the number of replace triggers that
1978 ** fire. Constraint recheck only occurs if the number is positive.
1979 ** (2) Initialize pTrigger to the list of all DELETE triggers on pTab.
1980 ** (3) Initialize addrRecheck and lblRecheckOk
1982 ** The uniqueness rechecking code will create a series of tests to run
1983 ** in a second pass. The addrRecheck and lblRecheckOk variables are
1984 ** used to link together these tests which are separated from each other
1985 ** in the generate bytecode.
1987 if( (db
->flags
& (SQLITE_RecTriggers
|SQLITE_ForeignKeys
))==0 ){
1988 /* There are not DELETE triggers nor FK constraints. No constraint
1989 ** rechecks are needed. */
1993 if( db
->flags
&SQLITE_RecTriggers
){
1994 pTrigger
= sqlite3TriggersExist(pParse
, pTab
, TK_DELETE
, 0, 0);
1995 regTrigCnt
= pTrigger
!=0 || sqlite3FkRequired(pParse
, pTab
, 0, 0);
1998 regTrigCnt
= sqlite3FkRequired(pParse
, pTab
, 0, 0);
2001 /* Replace triggers might exist. Allocate the counter and
2002 ** initialize it to zero. */
2003 regTrigCnt
= ++pParse
->nMem
;
2004 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, regTrigCnt
);
2005 VdbeComment((v
, "trigger count"));
2006 lblRecheckOk
= sqlite3VdbeMakeLabel(pParse
);
2007 addrRecheck
= lblRecheckOk
;
2011 /* If rowid is changing, make sure the new rowid does not previously
2012 ** exist in the table.
2014 if( pkChng
&& pPk
==0 ){
2015 int addrRowidOk
= sqlite3VdbeMakeLabel(pParse
);
2017 /* Figure out what action to take in case of a rowid collision */
2018 onError
= pTab
->keyConf
;
2019 if( overrideError
!=OE_Default
){
2020 onError
= overrideError
;
2021 }else if( onError
==OE_Default
){
2025 /* figure out whether or not upsert applies in this case */
2027 pUpsertClause
= sqlite3UpsertOfIndex(pUpsert
,0);
2028 if( pUpsertClause
!=0 ){
2029 if( pUpsertClause
->isDoUpdate
==0 ){
2030 onError
= OE_Ignore
; /* DO NOTHING is the same as INSERT OR IGNORE */
2032 onError
= OE_Update
; /* DO UPDATE */
2035 if( pUpsertClause
!=pUpsert
){
2036 /* The first ON CONFLICT clause has a conflict target other than
2037 ** the IPK. We have to jump ahead to that first ON CONFLICT clause
2038 ** and then come back here and deal with the IPK afterwards */
2039 upsertIpkDelay
= sqlite3VdbeAddOp0(v
, OP_Goto
);
2043 /* If the response to a rowid conflict is REPLACE but the response
2044 ** to some other UNIQUE constraint is FAIL or IGNORE, then we need
2045 ** to defer the running of the rowid conflict checking until after
2046 ** the UNIQUE constraints have run.
2048 if( onError
==OE_Replace
/* IPK rule is REPLACE */
2049 && onError
!=overrideError
/* Rules for other constraints are different */
2050 && pTab
->pIndex
/* There exist other constraints */
2051 && !upsertIpkDelay
/* IPK check already deferred by UPSERT */
2053 ipkTop
= sqlite3VdbeAddOp0(v
, OP_Goto
)+1;
2054 VdbeComment((v
, "defer IPK REPLACE until last"));
2058 /* pkChng!=0 does not mean that the rowid has changed, only that
2059 ** it might have changed. Skip the conflict logic below if the rowid
2061 sqlite3VdbeAddOp3(v
, OP_Eq
, regNewData
, addrRowidOk
, regOldData
);
2062 sqlite3VdbeChangeP5(v
, SQLITE_NOTNULL
);
2066 /* Check to see if the new rowid already exists in the table. Skip
2067 ** the following conflict logic if it does not. */
2068 VdbeNoopComment((v
, "uniqueness check for ROWID"));
2069 sqlite3VdbeVerifyAbortable(v
, onError
);
2070 sqlite3VdbeAddOp3(v
, OP_NotExists
, iDataCur
, addrRowidOk
, regNewData
);
2076 /* no break */ deliberate_fall_through
2081 testcase( onError
==OE_Rollback
);
2082 testcase( onError
==OE_Abort
);
2083 testcase( onError
==OE_Fail
);
2084 sqlite3RowidConstraint(pParse
, onError
, pTab
);
2088 /* If there are DELETE triggers on this table and the
2089 ** recursive-triggers flag is set, call GenerateRowDelete() to
2090 ** remove the conflicting row from the table. This will fire
2091 ** the triggers and remove both the table and index b-tree entries.
2093 ** Otherwise, if there are no triggers or the recursive-triggers
2094 ** flag is not set, but the table has one or more indexes, call
2095 ** GenerateRowIndexDelete(). This removes the index b-tree entries
2096 ** only. The table b-tree entry will be replaced by the new entry
2097 ** when it is inserted.
2099 ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called,
2100 ** also invoke MultiWrite() to indicate that this VDBE may require
2101 ** statement rollback (if the statement is aborted after the delete
2102 ** takes place). Earlier versions called sqlite3MultiWrite() regardless,
2103 ** but being more selective here allows statements like:
2105 ** REPLACE INTO t(rowid) VALUES($newrowid)
2107 ** to run without a statement journal if there are no indexes on the
2111 sqlite3MultiWrite(pParse
);
2112 sqlite3GenerateRowDelete(pParse
, pTab
, pTrigger
, iDataCur
, iIdxCur
,
2113 regNewData
, 1, 0, OE_Replace
, 1, -1);
2114 sqlite3VdbeAddOp2(v
, OP_AddImm
, regTrigCnt
, 1); /* incr trigger cnt */
2117 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
2118 assert( HasRowid(pTab
) );
2119 /* This OP_Delete opcode fires the pre-update-hook only. It does
2120 ** not modify the b-tree. It is more efficient to let the coming
2121 ** OP_Insert replace the existing entry than it is to delete the
2122 ** existing entry and then insert a new one. */
2123 sqlite3VdbeAddOp2(v
, OP_Delete
, iDataCur
, OPFLAG_ISNOOP
);
2124 sqlite3VdbeAppendP4(v
, pTab
, P4_TABLE
);
2125 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
2127 sqlite3MultiWrite(pParse
);
2128 sqlite3GenerateRowIndexDelete(pParse
, pTab
, iDataCur
, iIdxCur
,0,-1);
2134 #ifndef SQLITE_OMIT_UPSERT
2136 sqlite3UpsertDoUpdate(pParse
, pUpsert
, pTab
, 0, iDataCur
);
2137 /* no break */ deliberate_fall_through
2141 testcase( onError
==OE_Ignore
);
2142 sqlite3VdbeGoto(v
, ignoreDest
);
2146 sqlite3VdbeResolveLabel(v
, addrRowidOk
);
2147 if( pUpsert
&& pUpsertClause
!=pUpsert
){
2148 upsertIpkReturn
= sqlite3VdbeAddOp0(v
, OP_Goto
);
2150 ipkBottom
= sqlite3VdbeAddOp0(v
, OP_Goto
);
2151 sqlite3VdbeJumpHere(v
, ipkTop
-1);
2155 /* Test all UNIQUE constraints by creating entries for each UNIQUE
2156 ** index and making sure that duplicate entries do not already exist.
2157 ** Compute the revised record entries for indices as we go.
2159 ** This loop also handles the case of the PRIMARY KEY index for a
2160 ** WITHOUT ROWID table.
2162 for(pIdx
= indexIteratorFirst(&sIdxIter
, &ix
);
2164 pIdx
= indexIteratorNext(&sIdxIter
, &ix
)
2166 int regIdx
; /* Range of registers hold conent for pIdx */
2167 int regR
; /* Range of registers holding conflicting PK */
2168 int iThisCur
; /* Cursor for this UNIQUE index */
2169 int addrUniqueOk
; /* Jump here if the UNIQUE constraint is satisfied */
2170 int addrConflictCk
; /* First opcode in the conflict check logic */
2172 if( aRegIdx
[ix
]==0 ) continue; /* Skip indices that do not change */
2174 pUpsertClause
= sqlite3UpsertOfIndex(pUpsert
, pIdx
);
2175 if( upsertIpkDelay
&& pUpsertClause
==pUpsert
){
2176 sqlite3VdbeJumpHere(v
, upsertIpkDelay
);
2179 addrUniqueOk
= sqlite3VdbeMakeLabel(pParse
);
2180 if( bAffinityDone
==0 ){
2181 sqlite3TableAffinity(v
, pTab
, regNewData
+1);
2184 VdbeNoopComment((v
, "prep index %s", pIdx
->zName
));
2185 iThisCur
= iIdxCur
+ix
;
2188 /* Skip partial indices for which the WHERE clause is not true */
2189 if( pIdx
->pPartIdxWhere
){
2190 sqlite3VdbeAddOp2(v
, OP_Null
, 0, aRegIdx
[ix
]);
2191 pParse
->iSelfTab
= -(regNewData
+1);
2192 sqlite3ExprIfFalseDup(pParse
, pIdx
->pPartIdxWhere
, addrUniqueOk
,
2194 pParse
->iSelfTab
= 0;
2197 /* Create a record for this index entry as it should appear after
2198 ** the insert or update. Store that record in the aRegIdx[ix] register
2200 regIdx
= aRegIdx
[ix
]+1;
2201 for(i
=0; i
<pIdx
->nColumn
; i
++){
2202 int iField
= pIdx
->aiColumn
[i
];
2204 if( iField
==XN_EXPR
){
2205 pParse
->iSelfTab
= -(regNewData
+1);
2206 sqlite3ExprCodeCopy(pParse
, pIdx
->aColExpr
->a
[i
].pExpr
, regIdx
+i
);
2207 pParse
->iSelfTab
= 0;
2208 VdbeComment((v
, "%s column %d", pIdx
->zName
, i
));
2209 }else if( iField
==XN_ROWID
|| iField
==pTab
->iPKey
){
2211 sqlite3VdbeAddOp2(v
, OP_IntCopy
, x
, regIdx
+i
);
2212 VdbeComment((v
, "rowid"));
2214 testcase( sqlite3TableColumnToStorage(pTab
, iField
)!=iField
);
2215 x
= sqlite3TableColumnToStorage(pTab
, iField
) + regNewData
+ 1;
2216 sqlite3VdbeAddOp2(v
, OP_SCopy
, x
, regIdx
+i
);
2217 VdbeComment((v
, "%s", pTab
->aCol
[iField
].zCnName
));
2220 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regIdx
, pIdx
->nColumn
, aRegIdx
[ix
]);
2221 VdbeComment((v
, "for %s", pIdx
->zName
));
2222 #ifdef SQLITE_ENABLE_NULL_TRIM
2223 if( pIdx
->idxType
==SQLITE_IDXTYPE_PRIMARYKEY
){
2224 sqlite3SetMakeRecordP5(v
, pIdx
->pTable
);
2227 sqlite3VdbeReleaseRegisters(pParse
, regIdx
, pIdx
->nColumn
, 0, 0);
2229 /* In an UPDATE operation, if this index is the PRIMARY KEY index
2230 ** of a WITHOUT ROWID table and there has been no change the
2231 ** primary key, then no collision is possible. The collision detection
2232 ** logic below can all be skipped. */
2233 if( isUpdate
&& pPk
==pIdx
&& pkChng
==0 ){
2234 sqlite3VdbeResolveLabel(v
, addrUniqueOk
);
2238 /* Find out what action to take in case there is a uniqueness conflict */
2239 onError
= pIdx
->onError
;
2240 if( onError
==OE_None
){
2241 sqlite3VdbeResolveLabel(v
, addrUniqueOk
);
2242 continue; /* pIdx is not a UNIQUE index */
2244 if( overrideError
!=OE_Default
){
2245 onError
= overrideError
;
2246 }else if( onError
==OE_Default
){
2250 /* Figure out if the upsert clause applies to this index */
2251 if( pUpsertClause
){
2252 if( pUpsertClause
->isDoUpdate
==0 ){
2253 onError
= OE_Ignore
; /* DO NOTHING is the same as INSERT OR IGNORE */
2255 onError
= OE_Update
; /* DO UPDATE */
2259 /* Collision detection may be omitted if all of the following are true:
2260 ** (1) The conflict resolution algorithm is REPLACE
2261 ** (2) The table is a WITHOUT ROWID table
2262 ** (3) There are no secondary indexes on the table
2263 ** (4) No delete triggers need to be fired if there is a conflict
2264 ** (5) No FK constraint counters need to be updated if a conflict occurs.
2266 ** This is not possible for ENABLE_PREUPDATE_HOOK builds, as the row
2267 ** must be explicitly deleted in order to ensure any pre-update hook
2269 assert( IsOrdinaryTable(pTab
) );
2270 #ifndef SQLITE_ENABLE_PREUPDATE_HOOK
2271 if( (ix
==0 && pIdx
->pNext
==0) /* Condition 3 */
2272 && pPk
==pIdx
/* Condition 2 */
2273 && onError
==OE_Replace
/* Condition 1 */
2274 && ( 0==(db
->flags
&SQLITE_RecTriggers
) || /* Condition 4 */
2275 0==sqlite3TriggersExist(pParse
, pTab
, TK_DELETE
, 0, 0))
2276 && ( 0==(db
->flags
&SQLITE_ForeignKeys
) || /* Condition 5 */
2277 (0==pTab
->u
.tab
.pFKey
&& 0==sqlite3FkReferences(pTab
)))
2279 sqlite3VdbeResolveLabel(v
, addrUniqueOk
);
2282 #endif /* ifndef SQLITE_ENABLE_PREUPDATE_HOOK */
2284 /* Check to see if the new index entry will be unique */
2285 sqlite3VdbeVerifyAbortable(v
, onError
);
2287 sqlite3VdbeAddOp4Int(v
, OP_NoConflict
, iThisCur
, addrUniqueOk
,
2288 regIdx
, pIdx
->nKeyCol
); VdbeCoverage(v
);
2290 /* Generate code to handle collisions */
2291 regR
= pIdx
==pPk
? regIdx
: sqlite3GetTempRange(pParse
, nPkField
);
2292 if( isUpdate
|| onError
==OE_Replace
){
2293 if( HasRowid(pTab
) ){
2294 sqlite3VdbeAddOp2(v
, OP_IdxRowid
, iThisCur
, regR
);
2295 /* Conflict only if the rowid of the existing index entry
2296 ** is different from old-rowid */
2298 sqlite3VdbeAddOp3(v
, OP_Eq
, regR
, addrUniqueOk
, regOldData
);
2299 sqlite3VdbeChangeP5(v
, SQLITE_NOTNULL
);
2304 /* Extract the PRIMARY KEY from the end of the index entry and
2305 ** store it in registers regR..regR+nPk-1 */
2307 for(i
=0; i
<pPk
->nKeyCol
; i
++){
2308 assert( pPk
->aiColumn
[i
]>=0 );
2309 x
= sqlite3TableColumnToIndex(pIdx
, pPk
->aiColumn
[i
]);
2310 sqlite3VdbeAddOp3(v
, OP_Column
, iThisCur
, x
, regR
+i
);
2311 VdbeComment((v
, "%s.%s", pTab
->zName
,
2312 pTab
->aCol
[pPk
->aiColumn
[i
]].zCnName
));
2316 /* If currently processing the PRIMARY KEY of a WITHOUT ROWID
2317 ** table, only conflict if the new PRIMARY KEY values are actually
2318 ** different from the old. See TH3 withoutrowid04.test.
2320 ** For a UNIQUE index, only conflict if the PRIMARY KEY values
2321 ** of the matched index row are different from the original PRIMARY
2322 ** KEY values of this row before the update. */
2323 int addrJump
= sqlite3VdbeCurrentAddr(v
)+pPk
->nKeyCol
;
2325 int regCmp
= (IsPrimaryKeyIndex(pIdx
) ? regIdx
: regR
);
2327 for(i
=0; i
<pPk
->nKeyCol
; i
++){
2328 char *p4
= (char*)sqlite3LocateCollSeq(pParse
, pPk
->azColl
[i
]);
2329 x
= pPk
->aiColumn
[i
];
2331 if( i
==(pPk
->nKeyCol
-1) ){
2332 addrJump
= addrUniqueOk
;
2335 x
= sqlite3TableColumnToStorage(pTab
, x
);
2336 sqlite3VdbeAddOp4(v
, op
,
2337 regOldData
+1+x
, addrJump
, regCmp
+i
, p4
, P4_COLLSEQ
2339 sqlite3VdbeChangeP5(v
, SQLITE_NOTNULL
);
2340 VdbeCoverageIf(v
, op
==OP_Eq
);
2341 VdbeCoverageIf(v
, op
==OP_Ne
);
2347 /* Generate code that executes if the new index entry is not unique */
2348 assert( onError
==OE_Rollback
|| onError
==OE_Abort
|| onError
==OE_Fail
2349 || onError
==OE_Ignore
|| onError
==OE_Replace
|| onError
==OE_Update
);
2354 testcase( onError
==OE_Rollback
);
2355 testcase( onError
==OE_Abort
);
2356 testcase( onError
==OE_Fail
);
2357 sqlite3UniqueConstraint(pParse
, onError
, pIdx
);
2360 #ifndef SQLITE_OMIT_UPSERT
2362 sqlite3UpsertDoUpdate(pParse
, pUpsert
, pTab
, pIdx
, iIdxCur
+ix
);
2363 /* no break */ deliberate_fall_through
2367 testcase( onError
==OE_Ignore
);
2368 sqlite3VdbeGoto(v
, ignoreDest
);
2372 int nConflictCk
; /* Number of opcodes in conflict check logic */
2374 assert( onError
==OE_Replace
);
2375 nConflictCk
= sqlite3VdbeCurrentAddr(v
) - addrConflictCk
;
2376 assert( nConflictCk
>0 || db
->mallocFailed
);
2377 testcase( nConflictCk
<=0 );
2378 testcase( nConflictCk
>1 );
2380 sqlite3MultiWrite(pParse
);
2383 if( pTrigger
&& isUpdate
){
2384 sqlite3VdbeAddOp1(v
, OP_CursorLock
, iDataCur
);
2386 sqlite3GenerateRowDelete(pParse
, pTab
, pTrigger
, iDataCur
, iIdxCur
,
2387 regR
, nPkField
, 0, OE_Replace
,
2388 (pIdx
==pPk
? ONEPASS_SINGLE
: ONEPASS_OFF
), iThisCur
);
2389 if( pTrigger
&& isUpdate
){
2390 sqlite3VdbeAddOp1(v
, OP_CursorUnlock
, iDataCur
);
2393 int addrBypass
; /* Jump destination to bypass recheck logic */
2395 sqlite3VdbeAddOp2(v
, OP_AddImm
, regTrigCnt
, 1); /* incr trigger cnt */
2396 addrBypass
= sqlite3VdbeAddOp0(v
, OP_Goto
); /* Bypass recheck */
2397 VdbeComment((v
, "bypass recheck"));
2399 /* Here we insert code that will be invoked after all constraint
2400 ** checks have run, if and only if one or more replace triggers
2402 sqlite3VdbeResolveLabel(v
, lblRecheckOk
);
2403 lblRecheckOk
= sqlite3VdbeMakeLabel(pParse
);
2404 if( pIdx
->pPartIdxWhere
){
2405 /* Bypass the recheck if this partial index is not defined
2406 ** for the current row */
2407 sqlite3VdbeAddOp2(v
, OP_IsNull
, regIdx
-1, lblRecheckOk
);
2410 /* Copy the constraint check code from above, except change
2411 ** the constraint-ok jump destination to be the address of
2412 ** the next retest block */
2413 while( nConflictCk
>0 ){
2414 VdbeOp x
; /* Conflict check opcode to copy */
2415 /* The sqlite3VdbeAddOp4() call might reallocate the opcode array.
2416 ** Hence, make a complete copy of the opcode, rather than using
2417 ** a pointer to the opcode. */
2418 x
= *sqlite3VdbeGetOp(v
, addrConflictCk
);
2419 if( x
.opcode
!=OP_IdxRowid
){
2420 int p2
; /* New P2 value for copied conflict check opcode */
2422 if( sqlite3OpcodeProperty
[x
.opcode
]&OPFLG_JUMP
){
2427 zP4
= x
.p4type
==P4_INT32
? SQLITE_INT_TO_PTR(x
.p4
.i
) : x
.p4
.z
;
2428 sqlite3VdbeAddOp4(v
, x
.opcode
, x
.p1
, p2
, x
.p3
, zP4
, x
.p4type
);
2429 sqlite3VdbeChangeP5(v
, x
.p5
);
2430 VdbeCoverageIf(v
, p2
!=x
.p2
);
2435 /* If the retest fails, issue an abort */
2436 sqlite3UniqueConstraint(pParse
, OE_Abort
, pIdx
);
2438 sqlite3VdbeJumpHere(v
, addrBypass
); /* Terminate the recheck bypass */
2444 sqlite3VdbeResolveLabel(v
, addrUniqueOk
);
2445 if( regR
!=regIdx
) sqlite3ReleaseTempRange(pParse
, regR
, nPkField
);
2448 && sqlite3UpsertNextIsIPK(pUpsertClause
)
2450 sqlite3VdbeGoto(v
, upsertIpkDelay
+1);
2451 sqlite3VdbeJumpHere(v
, upsertIpkReturn
);
2452 upsertIpkReturn
= 0;
2456 /* If the IPK constraint is a REPLACE, run it last */
2458 sqlite3VdbeGoto(v
, ipkTop
);
2459 VdbeComment((v
, "Do IPK REPLACE"));
2460 assert( ipkBottom
>0 );
2461 sqlite3VdbeJumpHere(v
, ipkBottom
);
2464 /* Recheck all uniqueness constraints after replace triggers have run */
2465 testcase( regTrigCnt
!=0 && nReplaceTrig
==0 );
2466 assert( regTrigCnt
!=0 || nReplaceTrig
==0 );
2468 sqlite3VdbeAddOp2(v
, OP_IfNot
, regTrigCnt
, lblRecheckOk
);VdbeCoverage(v
);
2471 sqlite3VdbeAddOp3(v
, OP_Eq
, regNewData
, addrRecheck
, regOldData
);
2472 sqlite3VdbeChangeP5(v
, SQLITE_NOTNULL
);
2475 sqlite3VdbeAddOp3(v
, OP_NotExists
, iDataCur
, addrRecheck
, regNewData
);
2477 sqlite3RowidConstraint(pParse
, OE_Abort
, pTab
);
2479 sqlite3VdbeGoto(v
, addrRecheck
);
2481 sqlite3VdbeResolveLabel(v
, lblRecheckOk
);
2484 /* Generate the table record */
2485 if( HasRowid(pTab
) ){
2486 int regRec
= aRegIdx
[ix
];
2487 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regNewData
+1, pTab
->nNVCol
, regRec
);
2488 sqlite3SetMakeRecordP5(v
, pTab
);
2489 if( !bAffinityDone
){
2490 sqlite3TableAffinity(v
, pTab
, 0);
2494 *pbMayReplace
= seenReplace
;
2495 VdbeModuleComment((v
, "END: GenCnstCks(%d)", seenReplace
));
2498 #ifdef SQLITE_ENABLE_NULL_TRIM
2500 ** Change the P5 operand on the last opcode (which should be an OP_MakeRecord)
2501 ** to be the number of columns in table pTab that must not be NULL-trimmed.
2503 ** Or if no columns of pTab may be NULL-trimmed, leave P5 at zero.
2505 void sqlite3SetMakeRecordP5(Vdbe
*v
, Table
*pTab
){
2508 /* Records with omitted columns are only allowed for schema format
2509 ** version 2 and later (SQLite version 3.1.4, 2005-02-20). */
2510 if( pTab
->pSchema
->file_format
<2 ) return;
2512 for(i
=pTab
->nCol
-1; i
>0; i
--){
2513 if( pTab
->aCol
[i
].iDflt
!=0 ) break;
2514 if( pTab
->aCol
[i
].colFlags
& COLFLAG_PRIMKEY
) break;
2516 sqlite3VdbeChangeP5(v
, i
+1);
2521 ** Table pTab is a WITHOUT ROWID table that is being written to. The cursor
2522 ** number is iCur, and register regData contains the new record for the
2523 ** PK index. This function adds code to invoke the pre-update hook,
2524 ** if one is registered.
2526 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
2527 static void codeWithoutRowidPreupdate(
2528 Parse
*pParse
, /* Parse context */
2529 Table
*pTab
, /* Table being updated */
2530 int iCur
, /* Cursor number for table */
2531 int regData
/* Data containing new record */
2533 Vdbe
*v
= pParse
->pVdbe
;
2534 int r
= sqlite3GetTempReg(pParse
);
2535 assert( !HasRowid(pTab
) );
2536 assert( 0==(pParse
->db
->mDbFlags
& DBFLAG_Vacuum
) || CORRUPT_DB
);
2537 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, r
);
2538 sqlite3VdbeAddOp4(v
, OP_Insert
, iCur
, regData
, r
, (char*)pTab
, P4_TABLE
);
2539 sqlite3VdbeChangeP5(v
, OPFLAG_ISNOOP
);
2540 sqlite3ReleaseTempReg(pParse
, r
);
2543 # define codeWithoutRowidPreupdate(a,b,c,d)
2547 ** This routine generates code to finish the INSERT or UPDATE operation
2548 ** that was started by a prior call to sqlite3GenerateConstraintChecks.
2549 ** A consecutive range of registers starting at regNewData contains the
2550 ** rowid and the content to be inserted.
2552 ** The arguments to this routine should be the same as the first six
2553 ** arguments to sqlite3GenerateConstraintChecks.
2555 void sqlite3CompleteInsertion(
2556 Parse
*pParse
, /* The parser context */
2557 Table
*pTab
, /* the table into which we are inserting */
2558 int iDataCur
, /* Cursor of the canonical data source */
2559 int iIdxCur
, /* First index cursor */
2560 int regNewData
, /* Range of content */
2561 int *aRegIdx
, /* Register used by each index. 0 for unused indices */
2562 int update_flags
, /* True for UPDATE, False for INSERT */
2563 int appendBias
, /* True if this is likely to be an append */
2564 int useSeekResult
/* True to set the USESEEKRESULT flag on OP_[Idx]Insert */
2566 Vdbe
*v
; /* Prepared statements under construction */
2567 Index
*pIdx
; /* An index being inserted or updated */
2568 u8 pik_flags
; /* flag values passed to the btree insert */
2569 int i
; /* Loop counter */
2571 assert( update_flags
==0
2572 || update_flags
==OPFLAG_ISUPDATE
2573 || update_flags
==(OPFLAG_ISUPDATE
|OPFLAG_SAVEPOSITION
)
2578 assert( !IsView(pTab
) ); /* This table is not a VIEW */
2579 for(i
=0, pIdx
=pTab
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
, i
++){
2580 /* All REPLACE indexes are at the end of the list */
2581 assert( pIdx
->onError
!=OE_Replace
2583 || pIdx
->pNext
->onError
==OE_Replace
);
2584 if( aRegIdx
[i
]==0 ) continue;
2585 if( pIdx
->pPartIdxWhere
){
2586 sqlite3VdbeAddOp2(v
, OP_IsNull
, aRegIdx
[i
], sqlite3VdbeCurrentAddr(v
)+2);
2589 pik_flags
= (useSeekResult
? OPFLAG_USESEEKRESULT
: 0);
2590 if( IsPrimaryKeyIndex(pIdx
) && !HasRowid(pTab
) ){
2591 pik_flags
|= OPFLAG_NCHANGE
;
2592 pik_flags
|= (update_flags
& OPFLAG_SAVEPOSITION
);
2593 if( update_flags
==0 ){
2594 codeWithoutRowidPreupdate(pParse
, pTab
, iIdxCur
+i
, aRegIdx
[i
]);
2597 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, iIdxCur
+i
, aRegIdx
[i
],
2599 pIdx
->uniqNotNull
? pIdx
->nKeyCol
: pIdx
->nColumn
);
2600 sqlite3VdbeChangeP5(v
, pik_flags
);
2602 if( !HasRowid(pTab
) ) return;
2603 if( pParse
->nested
){
2606 pik_flags
= OPFLAG_NCHANGE
;
2607 pik_flags
|= (update_flags
?update_flags
:OPFLAG_LASTROWID
);
2610 pik_flags
|= OPFLAG_APPEND
;
2612 if( useSeekResult
){
2613 pik_flags
|= OPFLAG_USESEEKRESULT
;
2615 sqlite3VdbeAddOp3(v
, OP_Insert
, iDataCur
, aRegIdx
[i
], regNewData
);
2616 if( !pParse
->nested
){
2617 sqlite3VdbeAppendP4(v
, pTab
, P4_TABLE
);
2619 sqlite3VdbeChangeP5(v
, pik_flags
);
2623 ** Allocate cursors for the pTab table and all its indices and generate
2624 ** code to open and initialized those cursors.
2626 ** The cursor for the object that contains the complete data (normally
2627 ** the table itself, but the PRIMARY KEY index in the case of a WITHOUT
2628 ** ROWID table) is returned in *piDataCur. The first index cursor is
2629 ** returned in *piIdxCur. The number of indices is returned.
2631 ** Use iBase as the first cursor (either the *piDataCur for rowid tables
2632 ** or the first index for WITHOUT ROWID tables) if it is non-negative.
2633 ** If iBase is negative, then allocate the next available cursor.
2635 ** For a rowid table, *piDataCur will be exactly one less than *piIdxCur.
2636 ** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range
2637 ** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the
2638 ** pTab->pIndex list.
2640 ** If pTab is a virtual table, then this routine is a no-op and the
2641 ** *piDataCur and *piIdxCur values are left uninitialized.
2643 int sqlite3OpenTableAndIndices(
2644 Parse
*pParse
, /* Parsing context */
2645 Table
*pTab
, /* Table to be opened */
2646 int op
, /* OP_OpenRead or OP_OpenWrite */
2647 u8 p5
, /* P5 value for OP_Open* opcodes (except on WITHOUT ROWID) */
2648 int iBase
, /* Use this for the table cursor, if there is one */
2649 u8
*aToOpen
, /* If not NULL: boolean for each table and index */
2650 int *piDataCur
, /* Write the database source cursor number here */
2651 int *piIdxCur
/* Write the first index cursor number here */
2659 assert( op
==OP_OpenRead
|| op
==OP_OpenWrite
);
2660 assert( op
==OP_OpenWrite
|| p5
==0 );
2661 if( IsVirtual(pTab
) ){
2662 /* This routine is a no-op for virtual tables. Leave the output
2663 ** variables *piDataCur and *piIdxCur set to illegal cursor numbers
2664 ** for improved error detection. */
2665 *piDataCur
= *piIdxCur
= -999;
2668 iDb
= sqlite3SchemaToIndex(pParse
->db
, pTab
->pSchema
);
2671 if( iBase
<0 ) iBase
= pParse
->nTab
;
2673 if( piDataCur
) *piDataCur
= iDataCur
;
2674 if( HasRowid(pTab
) && (aToOpen
==0 || aToOpen
[0]) ){
2675 sqlite3OpenTable(pParse
, iDataCur
, iDb
, pTab
, op
);
2677 sqlite3TableLock(pParse
, iDb
, pTab
->tnum
, op
==OP_OpenWrite
, pTab
->zName
);
2679 if( piIdxCur
) *piIdxCur
= iBase
;
2680 for(i
=0, pIdx
=pTab
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
, i
++){
2681 int iIdxCur
= iBase
++;
2682 assert( pIdx
->pSchema
==pTab
->pSchema
);
2683 if( IsPrimaryKeyIndex(pIdx
) && !HasRowid(pTab
) ){
2684 if( piDataCur
) *piDataCur
= iIdxCur
;
2687 if( aToOpen
==0 || aToOpen
[i
+1] ){
2688 sqlite3VdbeAddOp3(v
, op
, iIdxCur
, pIdx
->tnum
, iDb
);
2689 sqlite3VdbeSetP4KeyInfo(pParse
, pIdx
);
2690 sqlite3VdbeChangeP5(v
, p5
);
2691 VdbeComment((v
, "%s", pIdx
->zName
));
2694 if( iBase
>pParse
->nTab
) pParse
->nTab
= iBase
;
2701 ** The following global variable is incremented whenever the
2702 ** transfer optimization is used. This is used for testing
2703 ** purposes only - to make sure the transfer optimization really
2704 ** is happening when it is supposed to.
2706 int sqlite3_xferopt_count
;
2707 #endif /* SQLITE_TEST */
2710 #ifndef SQLITE_OMIT_XFER_OPT
2712 ** Check to see if index pSrc is compatible as a source of data
2713 ** for index pDest in an insert transfer optimization. The rules
2714 ** for a compatible index:
2716 ** * The index is over the same set of columns
2717 ** * The same DESC and ASC markings occurs on all columns
2718 ** * The same onError processing (OE_Abort, OE_Ignore, etc)
2719 ** * The same collating sequence on each column
2720 ** * The index has the exact same WHERE clause
2722 static int xferCompatibleIndex(Index
*pDest
, Index
*pSrc
){
2724 assert( pDest
&& pSrc
);
2725 assert( pDest
->pTable
!=pSrc
->pTable
);
2726 if( pDest
->nKeyCol
!=pSrc
->nKeyCol
|| pDest
->nColumn
!=pSrc
->nColumn
){
2727 return 0; /* Different number of columns */
2729 if( pDest
->onError
!=pSrc
->onError
){
2730 return 0; /* Different conflict resolution strategies */
2732 for(i
=0; i
<pSrc
->nKeyCol
; i
++){
2733 if( pSrc
->aiColumn
[i
]!=pDest
->aiColumn
[i
] ){
2734 return 0; /* Different columns indexed */
2736 if( pSrc
->aiColumn
[i
]==XN_EXPR
){
2737 assert( pSrc
->aColExpr
!=0 && pDest
->aColExpr
!=0 );
2738 if( sqlite3ExprCompare(0, pSrc
->aColExpr
->a
[i
].pExpr
,
2739 pDest
->aColExpr
->a
[i
].pExpr
, -1)!=0 ){
2740 return 0; /* Different expressions in the index */
2743 if( pSrc
->aSortOrder
[i
]!=pDest
->aSortOrder
[i
] ){
2744 return 0; /* Different sort orders */
2746 if( sqlite3_stricmp(pSrc
->azColl
[i
],pDest
->azColl
[i
])!=0 ){
2747 return 0; /* Different collating sequences */
2750 if( sqlite3ExprCompare(0, pSrc
->pPartIdxWhere
, pDest
->pPartIdxWhere
, -1) ){
2751 return 0; /* Different WHERE clauses */
2754 /* If no test above fails then the indices must be compatible */
2759 ** Attempt the transfer optimization on INSERTs of the form
2761 ** INSERT INTO tab1 SELECT * FROM tab2;
2763 ** The xfer optimization transfers raw records from tab2 over to tab1.
2764 ** Columns are not decoded and reassembled, which greatly improves
2765 ** performance. Raw index records are transferred in the same way.
2767 ** The xfer optimization is only attempted if tab1 and tab2 are compatible.
2768 ** There are lots of rules for determining compatibility - see comments
2769 ** embedded in the code for details.
2771 ** This routine returns TRUE if the optimization is guaranteed to be used.
2772 ** Sometimes the xfer optimization will only work if the destination table
2773 ** is empty - a factor that can only be determined at run-time. In that
2774 ** case, this routine generates code for the xfer optimization but also
2775 ** does a test to see if the destination table is empty and jumps over the
2776 ** xfer optimization code if the test fails. In that case, this routine
2777 ** returns FALSE so that the caller will know to go ahead and generate
2778 ** an unoptimized transfer. This routine also returns FALSE if there
2779 ** is no chance that the xfer optimization can be applied.
2781 ** This optimization is particularly useful at making VACUUM run faster.
2783 static int xferOptimization(
2784 Parse
*pParse
, /* Parser context */
2785 Table
*pDest
, /* The table we are inserting into */
2786 Select
*pSelect
, /* A SELECT statement to use as the data source */
2787 int onError
, /* How to handle constraint errors */
2788 int iDbDest
/* The database of pDest */
2790 sqlite3
*db
= pParse
->db
;
2791 ExprList
*pEList
; /* The result set of the SELECT */
2792 Table
*pSrc
; /* The table in the FROM clause of SELECT */
2793 Index
*pSrcIdx
, *pDestIdx
; /* Source and destination indices */
2794 SrcItem
*pItem
; /* An element of pSelect->pSrc */
2795 int i
; /* Loop counter */
2796 int iDbSrc
; /* The database of pSrc */
2797 int iSrc
, iDest
; /* Cursors from source and destination */
2798 int addr1
, addr2
; /* Loop addresses */
2799 int emptyDestTest
= 0; /* Address of test for empty pDest */
2800 int emptySrcTest
= 0; /* Address of test for empty pSrc */
2801 Vdbe
*v
; /* The VDBE we are building */
2802 int regAutoinc
; /* Memory register used by AUTOINC */
2803 int destHasUniqueIdx
= 0; /* True if pDest has a UNIQUE index */
2804 int regData
, regRowid
; /* Registers holding data and rowid */
2806 assert( pSelect
!=0 );
2807 if( pParse
->pWith
|| pSelect
->pWith
){
2808 /* Do not attempt to process this query if there are an WITH clauses
2809 ** attached to it. Proceeding may generate a false "no such table: xxx"
2810 ** error if pSelect reads from a CTE named "xxx". */
2813 #ifndef SQLITE_OMIT_VIRTUALTABLE
2814 if( IsVirtual(pDest
) ){
2815 return 0; /* tab1 must not be a virtual table */
2818 if( onError
==OE_Default
){
2819 if( pDest
->iPKey
>=0 ) onError
= pDest
->keyConf
;
2820 if( onError
==OE_Default
) onError
= OE_Abort
;
2822 assert(pSelect
->pSrc
); /* allocated even if there is no FROM clause */
2823 if( pSelect
->pSrc
->nSrc
!=1 ){
2824 return 0; /* FROM clause must have exactly one term */
2826 if( pSelect
->pSrc
->a
[0].pSelect
){
2827 return 0; /* FROM clause cannot contain a subquery */
2829 if( pSelect
->pWhere
){
2830 return 0; /* SELECT may not have a WHERE clause */
2832 if( pSelect
->pOrderBy
){
2833 return 0; /* SELECT may not have an ORDER BY clause */
2835 /* Do not need to test for a HAVING clause. If HAVING is present but
2836 ** there is no ORDER BY, we will get an error. */
2837 if( pSelect
->pGroupBy
){
2838 return 0; /* SELECT may not have a GROUP BY clause */
2840 if( pSelect
->pLimit
){
2841 return 0; /* SELECT may not have a LIMIT clause */
2843 if( pSelect
->pPrior
){
2844 return 0; /* SELECT may not be a compound query */
2846 if( pSelect
->selFlags
& SF_Distinct
){
2847 return 0; /* SELECT may not be DISTINCT */
2849 pEList
= pSelect
->pEList
;
2850 assert( pEList
!=0 );
2851 if( pEList
->nExpr
!=1 ){
2852 return 0; /* The result set must have exactly one column */
2854 assert( pEList
->a
[0].pExpr
);
2855 if( pEList
->a
[0].pExpr
->op
!=TK_ASTERISK
){
2856 return 0; /* The result set must be the special operator "*" */
2859 /* At this point we have established that the statement is of the
2860 ** correct syntactic form to participate in this optimization. Now
2861 ** we have to check the semantics.
2863 pItem
= pSelect
->pSrc
->a
;
2864 pSrc
= sqlite3LocateTableItem(pParse
, 0, pItem
);
2866 return 0; /* FROM clause does not contain a real table */
2868 if( pSrc
->tnum
==pDest
->tnum
&& pSrc
->pSchema
==pDest
->pSchema
){
2869 testcase( pSrc
!=pDest
); /* Possible due to bad sqlite_schema.rootpage */
2870 return 0; /* tab1 and tab2 may not be the same table */
2872 if( HasRowid(pDest
)!=HasRowid(pSrc
) ){
2873 return 0; /* source and destination must both be WITHOUT ROWID or not */
2875 if( !IsOrdinaryTable(pSrc
) ){
2876 return 0; /* tab2 may not be a view or virtual table */
2878 if( pDest
->nCol
!=pSrc
->nCol
){
2879 return 0; /* Number of columns must be the same in tab1 and tab2 */
2881 if( pDest
->iPKey
!=pSrc
->iPKey
){
2882 return 0; /* Both tables must have the same INTEGER PRIMARY KEY */
2884 if( (pDest
->tabFlags
& TF_Strict
)!=0 && (pSrc
->tabFlags
& TF_Strict
)==0 ){
2885 return 0; /* Cannot feed from a non-strict into a strict table */
2887 for(i
=0; i
<pDest
->nCol
; i
++){
2888 Column
*pDestCol
= &pDest
->aCol
[i
];
2889 Column
*pSrcCol
= &pSrc
->aCol
[i
];
2890 #ifdef SQLITE_ENABLE_HIDDEN_COLUMNS
2891 if( (db
->mDbFlags
& DBFLAG_Vacuum
)==0
2892 && (pDestCol
->colFlags
| pSrcCol
->colFlags
) & COLFLAG_HIDDEN
2894 return 0; /* Neither table may have __hidden__ columns */
2897 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
2898 /* Even if tables t1 and t2 have identical schemas, if they contain
2899 ** generated columns, then this statement is semantically incorrect:
2901 ** INSERT INTO t2 SELECT * FROM t1;
2903 ** The reason is that generated column values are returned by the
2904 ** the SELECT statement on the right but the INSERT statement on the
2905 ** left wants them to be omitted.
2907 ** Nevertheless, this is a useful notational shorthand to tell SQLite
2908 ** to do a bulk transfer all of the content from t1 over to t2.
2910 ** We could, in theory, disable this (except for internal use by the
2911 ** VACUUM command where it is actually needed). But why do that? It
2912 ** seems harmless enough, and provides a useful service.
2914 if( (pDestCol
->colFlags
& COLFLAG_GENERATED
) !=
2915 (pSrcCol
->colFlags
& COLFLAG_GENERATED
) ){
2916 return 0; /* Both columns have the same generated-column type */
2918 /* But the transfer is only allowed if both the source and destination
2919 ** tables have the exact same expressions for generated columns.
2920 ** This requirement could be relaxed for VIRTUAL columns, I suppose.
2922 if( (pDestCol
->colFlags
& COLFLAG_GENERATED
)!=0 ){
2923 if( sqlite3ExprCompare(0,
2924 sqlite3ColumnExpr(pSrc
, pSrcCol
),
2925 sqlite3ColumnExpr(pDest
, pDestCol
), -1)!=0 ){
2926 testcase( pDestCol
->colFlags
& COLFLAG_VIRTUAL
);
2927 testcase( pDestCol
->colFlags
& COLFLAG_STORED
);
2928 return 0; /* Different generator expressions */
2932 if( pDestCol
->affinity
!=pSrcCol
->affinity
){
2933 return 0; /* Affinity must be the same on all columns */
2935 if( sqlite3_stricmp(sqlite3ColumnColl(pDestCol
),
2936 sqlite3ColumnColl(pSrcCol
))!=0 ){
2937 return 0; /* Collating sequence must be the same on all columns */
2939 if( pDestCol
->notNull
&& !pSrcCol
->notNull
){
2940 return 0; /* tab2 must be NOT NULL if tab1 is */
2942 /* Default values for second and subsequent columns need to match. */
2943 if( (pDestCol
->colFlags
& COLFLAG_GENERATED
)==0 && i
>0 ){
2944 Expr
*pDestExpr
= sqlite3ColumnExpr(pDest
, pDestCol
);
2945 Expr
*pSrcExpr
= sqlite3ColumnExpr(pSrc
, pSrcCol
);
2946 assert( pDestExpr
==0 || pDestExpr
->op
==TK_SPAN
);
2947 assert( pDestExpr
==0 || !ExprHasProperty(pDestExpr
, EP_IntValue
) );
2948 assert( pSrcExpr
==0 || pSrcExpr
->op
==TK_SPAN
);
2949 assert( pSrcExpr
==0 || !ExprHasProperty(pSrcExpr
, EP_IntValue
) );
2950 if( (pDestExpr
==0)!=(pSrcExpr
==0)
2951 || (pDestExpr
!=0 && strcmp(pDestExpr
->u
.zToken
,
2952 pSrcExpr
->u
.zToken
)!=0)
2954 return 0; /* Default values must be the same for all columns */
2958 for(pDestIdx
=pDest
->pIndex
; pDestIdx
; pDestIdx
=pDestIdx
->pNext
){
2959 if( IsUniqueIndex(pDestIdx
) ){
2960 destHasUniqueIdx
= 1;
2962 for(pSrcIdx
=pSrc
->pIndex
; pSrcIdx
; pSrcIdx
=pSrcIdx
->pNext
){
2963 if( xferCompatibleIndex(pDestIdx
, pSrcIdx
) ) break;
2966 return 0; /* pDestIdx has no corresponding index in pSrc */
2968 if( pSrcIdx
->tnum
==pDestIdx
->tnum
&& pSrc
->pSchema
==pDest
->pSchema
2969 && sqlite3FaultSim(411)==SQLITE_OK
){
2970 /* The sqlite3FaultSim() call allows this corruption test to be
2971 ** bypassed during testing, in order to exercise other corruption tests
2972 ** further downstream. */
2973 return 0; /* Corrupt schema - two indexes on the same btree */
2976 #ifndef SQLITE_OMIT_CHECK
2977 if( pDest
->pCheck
&& sqlite3ExprListCompare(pSrc
->pCheck
,pDest
->pCheck
,-1) ){
2978 return 0; /* Tables have different CHECK constraints. Ticket #2252 */
2981 #ifndef SQLITE_OMIT_FOREIGN_KEY
2982 /* Disallow the transfer optimization if the destination table constains
2983 ** any foreign key constraints. This is more restrictive than necessary.
2984 ** But the main beneficiary of the transfer optimization is the VACUUM
2985 ** command, and the VACUUM command disables foreign key constraints. So
2986 ** the extra complication to make this rule less restrictive is probably
2987 ** not worth the effort. Ticket [6284df89debdfa61db8073e062908af0c9b6118e]
2989 assert( IsOrdinaryTable(pDest
) );
2990 if( (db
->flags
& SQLITE_ForeignKeys
)!=0 && pDest
->u
.tab
.pFKey
!=0 ){
2994 if( (db
->flags
& SQLITE_CountRows
)!=0 ){
2995 return 0; /* xfer opt does not play well with PRAGMA count_changes */
2998 /* If we get this far, it means that the xfer optimization is at
2999 ** least a possibility, though it might only work if the destination
3000 ** table (tab1) is initially empty.
3003 sqlite3_xferopt_count
++;
3005 iDbSrc
= sqlite3SchemaToIndex(db
, pSrc
->pSchema
);
3006 v
= sqlite3GetVdbe(pParse
);
3007 sqlite3CodeVerifySchema(pParse
, iDbSrc
);
3008 iSrc
= pParse
->nTab
++;
3009 iDest
= pParse
->nTab
++;
3010 regAutoinc
= autoIncBegin(pParse
, iDbDest
, pDest
);
3011 regData
= sqlite3GetTempReg(pParse
);
3012 sqlite3VdbeAddOp2(v
, OP_Null
, 0, regData
);
3013 regRowid
= sqlite3GetTempReg(pParse
);
3014 sqlite3OpenTable(pParse
, iDest
, iDbDest
, pDest
, OP_OpenWrite
);
3015 assert( HasRowid(pDest
) || destHasUniqueIdx
);
3016 if( (db
->mDbFlags
& DBFLAG_Vacuum
)==0 && (
3017 (pDest
->iPKey
<0 && pDest
->pIndex
!=0) /* (1) */
3018 || destHasUniqueIdx
/* (2) */
3019 || (onError
!=OE_Abort
&& onError
!=OE_Rollback
) /* (3) */
3021 /* In some circumstances, we are able to run the xfer optimization
3022 ** only if the destination table is initially empty. Unless the
3023 ** DBFLAG_Vacuum flag is set, this block generates code to make
3024 ** that determination. If DBFLAG_Vacuum is set, then the destination
3025 ** table is always empty.
3027 ** Conditions under which the destination must be empty:
3029 ** (1) There is no INTEGER PRIMARY KEY but there are indices.
3030 ** (If the destination is not initially empty, the rowid fields
3031 ** of index entries might need to change.)
3033 ** (2) The destination has a unique index. (The xfer optimization
3034 ** is unable to test uniqueness.)
3036 ** (3) onError is something other than OE_Abort and OE_Rollback.
3038 addr1
= sqlite3VdbeAddOp2(v
, OP_Rewind
, iDest
, 0); VdbeCoverage(v
);
3039 emptyDestTest
= sqlite3VdbeAddOp0(v
, OP_Goto
);
3040 sqlite3VdbeJumpHere(v
, addr1
);
3042 if( HasRowid(pSrc
) ){
3044 sqlite3OpenTable(pParse
, iSrc
, iDbSrc
, pSrc
, OP_OpenRead
);
3045 emptySrcTest
= sqlite3VdbeAddOp2(v
, OP_Rewind
, iSrc
, 0); VdbeCoverage(v
);
3046 if( pDest
->iPKey
>=0 ){
3047 addr1
= sqlite3VdbeAddOp2(v
, OP_Rowid
, iSrc
, regRowid
);
3048 if( (db
->mDbFlags
& DBFLAG_Vacuum
)==0 ){
3049 sqlite3VdbeVerifyAbortable(v
, onError
);
3050 addr2
= sqlite3VdbeAddOp3(v
, OP_NotExists
, iDest
, 0, regRowid
);
3052 sqlite3RowidConstraint(pParse
, onError
, pDest
);
3053 sqlite3VdbeJumpHere(v
, addr2
);
3055 autoIncStep(pParse
, regAutoinc
, regRowid
);
3056 }else if( pDest
->pIndex
==0 && !(db
->mDbFlags
& DBFLAG_VacuumInto
) ){
3057 addr1
= sqlite3VdbeAddOp2(v
, OP_NewRowid
, iDest
, regRowid
);
3059 addr1
= sqlite3VdbeAddOp2(v
, OP_Rowid
, iSrc
, regRowid
);
3060 assert( (pDest
->tabFlags
& TF_Autoincrement
)==0 );
3063 if( db
->mDbFlags
& DBFLAG_Vacuum
){
3064 sqlite3VdbeAddOp1(v
, OP_SeekEnd
, iDest
);
3065 insFlags
= OPFLAG_APPEND
|OPFLAG_USESEEKRESULT
|OPFLAG_PREFORMAT
;
3067 insFlags
= OPFLAG_NCHANGE
|OPFLAG_LASTROWID
|OPFLAG_APPEND
|OPFLAG_PREFORMAT
;
3069 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
3070 if( (db
->mDbFlags
& DBFLAG_Vacuum
)==0 ){
3071 sqlite3VdbeAddOp3(v
, OP_RowData
, iSrc
, regData
, 1);
3072 insFlags
&= ~OPFLAG_PREFORMAT
;
3076 sqlite3VdbeAddOp3(v
, OP_RowCell
, iDest
, iSrc
, regRowid
);
3078 sqlite3VdbeAddOp3(v
, OP_Insert
, iDest
, regData
, regRowid
);
3079 if( (db
->mDbFlags
& DBFLAG_Vacuum
)==0 ){
3080 sqlite3VdbeChangeP4(v
, -1, (char*)pDest
, P4_TABLE
);
3082 sqlite3VdbeChangeP5(v
, insFlags
);
3084 sqlite3VdbeAddOp2(v
, OP_Next
, iSrc
, addr1
); VdbeCoverage(v
);
3085 sqlite3VdbeAddOp2(v
, OP_Close
, iSrc
, 0);
3086 sqlite3VdbeAddOp2(v
, OP_Close
, iDest
, 0);
3088 sqlite3TableLock(pParse
, iDbDest
, pDest
->tnum
, 1, pDest
->zName
);
3089 sqlite3TableLock(pParse
, iDbSrc
, pSrc
->tnum
, 0, pSrc
->zName
);
3091 for(pDestIdx
=pDest
->pIndex
; pDestIdx
; pDestIdx
=pDestIdx
->pNext
){
3093 for(pSrcIdx
=pSrc
->pIndex
; ALWAYS(pSrcIdx
); pSrcIdx
=pSrcIdx
->pNext
){
3094 if( xferCompatibleIndex(pDestIdx
, pSrcIdx
) ) break;
3097 sqlite3VdbeAddOp3(v
, OP_OpenRead
, iSrc
, pSrcIdx
->tnum
, iDbSrc
);
3098 sqlite3VdbeSetP4KeyInfo(pParse
, pSrcIdx
);
3099 VdbeComment((v
, "%s", pSrcIdx
->zName
));
3100 sqlite3VdbeAddOp3(v
, OP_OpenWrite
, iDest
, pDestIdx
->tnum
, iDbDest
);
3101 sqlite3VdbeSetP4KeyInfo(pParse
, pDestIdx
);
3102 sqlite3VdbeChangeP5(v
, OPFLAG_BULKCSR
);
3103 VdbeComment((v
, "%s", pDestIdx
->zName
));
3104 addr1
= sqlite3VdbeAddOp2(v
, OP_Rewind
, iSrc
, 0); VdbeCoverage(v
);
3105 if( db
->mDbFlags
& DBFLAG_Vacuum
){
3106 /* This INSERT command is part of a VACUUM operation, which guarantees
3107 ** that the destination table is empty. If all indexed columns use
3108 ** collation sequence BINARY, then it can also be assumed that the
3109 ** index will be populated by inserting keys in strictly sorted
3110 ** order. In this case, instead of seeking within the b-tree as part
3111 ** of every OP_IdxInsert opcode, an OP_SeekEnd is added before the
3112 ** OP_IdxInsert to seek to the point within the b-tree where each key
3113 ** should be inserted. This is faster.
3115 ** If any of the indexed columns use a collation sequence other than
3116 ** BINARY, this optimization is disabled. This is because the user
3117 ** might change the definition of a collation sequence and then run
3118 ** a VACUUM command. In that case keys may not be written in strictly
3120 for(i
=0; i
<pSrcIdx
->nColumn
; i
++){
3121 const char *zColl
= pSrcIdx
->azColl
[i
];
3122 if( sqlite3_stricmp(sqlite3StrBINARY
, zColl
) ) break;
3124 if( i
==pSrcIdx
->nColumn
){
3125 idxInsFlags
= OPFLAG_USESEEKRESULT
|OPFLAG_PREFORMAT
;
3126 sqlite3VdbeAddOp1(v
, OP_SeekEnd
, iDest
);
3127 sqlite3VdbeAddOp2(v
, OP_RowCell
, iDest
, iSrc
);
3129 }else if( !HasRowid(pSrc
) && pDestIdx
->idxType
==SQLITE_IDXTYPE_PRIMARYKEY
){
3130 idxInsFlags
|= OPFLAG_NCHANGE
;
3132 if( idxInsFlags
!=(OPFLAG_USESEEKRESULT
|OPFLAG_PREFORMAT
) ){
3133 sqlite3VdbeAddOp3(v
, OP_RowData
, iSrc
, regData
, 1);
3134 if( (db
->mDbFlags
& DBFLAG_Vacuum
)==0
3136 && IsPrimaryKeyIndex(pDestIdx
)
3138 codeWithoutRowidPreupdate(pParse
, pDest
, iDest
, regData
);
3141 sqlite3VdbeAddOp2(v
, OP_IdxInsert
, iDest
, regData
);
3142 sqlite3VdbeChangeP5(v
, idxInsFlags
|OPFLAG_APPEND
);
3143 sqlite3VdbeAddOp2(v
, OP_Next
, iSrc
, addr1
+1); VdbeCoverage(v
);
3144 sqlite3VdbeJumpHere(v
, addr1
);
3145 sqlite3VdbeAddOp2(v
, OP_Close
, iSrc
, 0);
3146 sqlite3VdbeAddOp2(v
, OP_Close
, iDest
, 0);
3148 if( emptySrcTest
) sqlite3VdbeJumpHere(v
, emptySrcTest
);
3149 sqlite3ReleaseTempReg(pParse
, regRowid
);
3150 sqlite3ReleaseTempReg(pParse
, regData
);
3151 if( emptyDestTest
){
3152 sqlite3AutoincrementEnd(pParse
);
3153 sqlite3VdbeAddOp2(v
, OP_Halt
, SQLITE_OK
, 0);
3154 sqlite3VdbeJumpHere(v
, emptyDestTest
);
3155 sqlite3VdbeAddOp2(v
, OP_Close
, iDest
, 0);
3161 #endif /* SQLITE_OMIT_XFER_OPT */