4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file implements that page cache.
14 #include "sqliteInt.h"
17 ** A complete page cache is an instance of this structure. Every
18 ** entry in the cache holds a single page of the database file. The
19 ** btree layer only operates on the cached copy of the database pages.
21 ** A page cache entry is "clean" if it exactly matches what is currently
22 ** on disk. A page is "dirty" if it has been modified and needs to be
25 ** pDirty, pDirtyTail, pSynced:
26 ** All dirty pages are linked into the doubly linked list using
27 ** PgHdr.pDirtyNext and pDirtyPrev. The list is maintained in LRU order
28 ** such that p was added to the list more recently than p->pDirtyNext.
29 ** PCache.pDirty points to the first (newest) element in the list and
30 ** pDirtyTail to the last (oldest).
32 ** The PCache.pSynced variable is used to optimize searching for a dirty
33 ** page to eject from the cache mid-transaction. It is better to eject
34 ** a page that does not require a journal sync than one that does.
35 ** Therefore, pSynced is maintained so that it *almost* always points
36 ** to either the oldest page in the pDirty/pDirtyTail list that has a
37 ** clear PGHDR_NEED_SYNC flag or to a page that is older than this one
38 ** (so that the right page to eject can be found by following pDirtyPrev
42 PgHdr
*pDirty
, *pDirtyTail
; /* List of dirty pages in LRU order */
43 PgHdr
*pSynced
; /* Last synced page in dirty page list */
44 i64 nRefSum
; /* Sum of ref counts over all pages */
45 int szCache
; /* Configured cache size */
46 int szSpill
; /* Size before spilling occurs */
47 int szPage
; /* Size of every page in this cache */
48 int szExtra
; /* Size of extra space for each page */
49 u8 bPurgeable
; /* True if pages are on backing store */
50 u8 eCreate
; /* eCreate value for for xFetch() */
51 int (*xStress
)(void*,PgHdr
*); /* Call to try make a page clean */
52 void *pStress
; /* Argument to xStress */
53 sqlite3_pcache
*pCache
; /* Pluggable cache module */
56 /********************************** Test and Debug Logic **********************/
58 ** Debug tracing macros. Enable by by changing the "0" to "1" and
61 ** When sqlite3PcacheTrace is 1, single line trace messages are issued.
62 ** When sqlite3PcacheTrace is 2, a dump of the pcache showing all cache entries
63 ** is displayed for many operations, resulting in a lot of output.
65 #if defined(SQLITE_DEBUG) && 0
66 int sqlite3PcacheTrace
= 2; /* 0: off 1: simple 2: cache dumps */
67 int sqlite3PcacheMxDump
= 9999; /* Max cache entries for pcacheDump() */
68 # define pcacheTrace(X) if(sqlite3PcacheTrace){sqlite3DebugPrintf X;}
69 static void pcachePageTrace(int i
, sqlite3_pcache_page
*pLower
){
74 printf("%3d: NULL\n", i
);
76 pPg
= (PgHdr
*)pLower
->pExtra
;
77 printf("%3d: nRef %2lld flgs %02x data ", i
, pPg
->nRef
, pPg
->flags
);
78 a
= (unsigned char *)pLower
->pBuf
;
79 for(j
=0; j
<12; j
++) printf("%02x", a
[j
]);
80 printf(" ptr %p\n", pPg
);
83 static void pcacheDump(PCache
*pCache
){
86 sqlite3_pcache_page
*pLower
;
88 if( sqlite3PcacheTrace
<2 ) return;
89 if( pCache
->pCache
==0 ) return;
90 N
= sqlite3PcachePagecount(pCache
);
91 if( N
>sqlite3PcacheMxDump
) N
= sqlite3PcacheMxDump
;
93 pLower
= sqlite3GlobalConfig
.pcache2
.xFetch(pCache
->pCache
, i
, 0);
94 pcachePageTrace(i
, pLower
);
95 if( pLower
&& ((PgHdr
*)pLower
)->pPage
==0 ){
96 sqlite3GlobalConfig
.pcache2
.xUnpin(pCache
->pCache
, pLower
, 0);
101 # define pcacheTrace(X)
102 # define pcachePageTrace(PGNO, X)
103 # define pcacheDump(X)
107 ** Return 1 if pPg is on the dirty list for pCache. Return 0 if not.
108 ** This routine runs inside of assert() statements only.
111 static int pageOnDirtyList(PCache
*pCache
, PgHdr
*pPg
){
113 for(p
=pCache
->pDirty
; p
; p
=p
->pDirtyNext
){
114 if( p
==pPg
) return 1;
121 ** Check invariants on a PgHdr entry. Return true if everything is OK.
122 ** Return false if any invariant is violated.
124 ** This routine is for use inside of assert() statements only. For
127 ** assert( sqlite3PcachePageSanity(pPg) );
130 int sqlite3PcachePageSanity(PgHdr
*pPg
){
133 assert( pPg
->pgno
>0 || pPg
->pPager
==0 ); /* Page number is 1 or more */
134 pCache
= pPg
->pCache
;
135 assert( pCache
!=0 ); /* Every page has an associated PCache */
136 if( pPg
->flags
& PGHDR_CLEAN
){
137 assert( (pPg
->flags
& PGHDR_DIRTY
)==0 );/* Cannot be both CLEAN and DIRTY */
138 assert( !pageOnDirtyList(pCache
, pPg
) );/* CLEAN pages not on dirty list */
140 assert( (pPg
->flags
& PGHDR_DIRTY
)!=0 );/* If not CLEAN must be DIRTY */
141 assert( pPg
->pDirtyNext
==0 || pPg
->pDirtyNext
->pDirtyPrev
==pPg
);
142 assert( pPg
->pDirtyPrev
==0 || pPg
->pDirtyPrev
->pDirtyNext
==pPg
);
143 assert( pPg
->pDirtyPrev
!=0 || pCache
->pDirty
==pPg
);
144 assert( pageOnDirtyList(pCache
, pPg
) );
146 /* WRITEABLE pages must also be DIRTY */
147 if( pPg
->flags
& PGHDR_WRITEABLE
){
148 assert( pPg
->flags
& PGHDR_DIRTY
); /* WRITEABLE implies DIRTY */
150 /* NEED_SYNC can be set independently of WRITEABLE. This can happen,
151 ** for example, when using the sqlite3PagerDontWrite() optimization:
152 ** (1) Page X is journalled, and gets WRITEABLE and NEED_SEEK.
153 ** (2) Page X moved to freelist, WRITEABLE is cleared
154 ** (3) Page X reused, WRITEABLE is set again
155 ** If NEED_SYNC had been cleared in step 2, then it would not be reset
156 ** in step 3, and page might be written into the database without first
157 ** syncing the rollback journal, which might cause corruption on a power
160 ** Another example is when the database page size is smaller than the
161 ** disk sector size. When any page of a sector is journalled, all pages
162 ** in that sector are marked NEED_SYNC even if they are still CLEAN, just
163 ** in case they are later modified, since all pages in the same sector
164 ** must be journalled and synced before any of those pages can be safely
169 #endif /* SQLITE_DEBUG */
172 /********************************** Linked List Management ********************/
174 /* Allowed values for second argument to pcacheManageDirtyList() */
175 #define PCACHE_DIRTYLIST_REMOVE 1 /* Remove pPage from dirty list */
176 #define PCACHE_DIRTYLIST_ADD 2 /* Add pPage to the dirty list */
177 #define PCACHE_DIRTYLIST_FRONT 3 /* Move pPage to the front of the list */
180 ** Manage pPage's participation on the dirty list. Bits of the addRemove
181 ** argument determines what operation to do. The 0x01 bit means first
182 ** remove pPage from the dirty list. The 0x02 means add pPage back to
183 ** the dirty list. Doing both moves pPage to the front of the dirty list.
185 static void pcacheManageDirtyList(PgHdr
*pPage
, u8 addRemove
){
186 PCache
*p
= pPage
->pCache
;
188 pcacheTrace(("%p.DIRTYLIST.%s %d\n", p
,
189 addRemove
==1 ? "REMOVE" : addRemove
==2 ? "ADD" : "FRONT",
191 if( addRemove
& PCACHE_DIRTYLIST_REMOVE
){
192 assert( pPage
->pDirtyNext
|| pPage
==p
->pDirtyTail
);
193 assert( pPage
->pDirtyPrev
|| pPage
==p
->pDirty
);
195 /* Update the PCache1.pSynced variable if necessary. */
196 if( p
->pSynced
==pPage
){
197 p
->pSynced
= pPage
->pDirtyPrev
;
200 if( pPage
->pDirtyNext
){
201 pPage
->pDirtyNext
->pDirtyPrev
= pPage
->pDirtyPrev
;
203 assert( pPage
==p
->pDirtyTail
);
204 p
->pDirtyTail
= pPage
->pDirtyPrev
;
206 if( pPage
->pDirtyPrev
){
207 pPage
->pDirtyPrev
->pDirtyNext
= pPage
->pDirtyNext
;
209 /* If there are now no dirty pages in the cache, set eCreate to 2.
210 ** This is an optimization that allows sqlite3PcacheFetch() to skip
211 ** searching for a dirty page to eject from the cache when it might
212 ** otherwise have to. */
213 assert( pPage
==p
->pDirty
);
214 p
->pDirty
= pPage
->pDirtyNext
;
215 assert( p
->bPurgeable
|| p
->eCreate
==2 );
216 if( p
->pDirty
==0 ){ /*OPTIMIZATION-IF-TRUE*/
217 assert( p
->bPurgeable
==0 || p
->eCreate
==1 );
222 if( addRemove
& PCACHE_DIRTYLIST_ADD
){
223 pPage
->pDirtyPrev
= 0;
224 pPage
->pDirtyNext
= p
->pDirty
;
225 if( pPage
->pDirtyNext
){
226 assert( pPage
->pDirtyNext
->pDirtyPrev
==0 );
227 pPage
->pDirtyNext
->pDirtyPrev
= pPage
;
229 p
->pDirtyTail
= pPage
;
231 assert( p
->eCreate
==2 );
237 /* If pSynced is NULL and this page has a clear NEED_SYNC flag, set
238 ** pSynced to point to it. Checking the NEED_SYNC flag is an
239 ** optimization, as if pSynced points to a page with the NEED_SYNC
240 ** flag set sqlite3PcacheFetchStress() searches through all newer
241 ** entries of the dirty-list for a page with NEED_SYNC clear anyway. */
243 && 0==(pPage
->flags
&PGHDR_NEED_SYNC
) /*OPTIMIZATION-IF-FALSE*/
252 ** Wrapper around the pluggable caches xUnpin method. If the cache is
253 ** being used for an in-memory database, this function is a no-op.
255 static void pcacheUnpin(PgHdr
*p
){
256 if( p
->pCache
->bPurgeable
){
257 pcacheTrace(("%p.UNPIN %d\n", p
->pCache
, p
->pgno
));
258 sqlite3GlobalConfig
.pcache2
.xUnpin(p
->pCache
->pCache
, p
->pPage
, 0);
259 pcacheDump(p
->pCache
);
264 ** Compute the number of pages of cache requested. p->szCache is the
265 ** cache size requested by the "PRAGMA cache_size" statement.
267 static int numberOfCachePages(PCache
*p
){
269 /* IMPLEMENTATION-OF: R-42059-47211 If the argument N is positive then the
270 ** suggested cache size is set to N. */
274 /* IMPLEMANTATION-OF: R-59858-46238 If the argument N is negative, then the
275 ** number of cache pages is adjusted to be a number of pages that would
276 ** use approximately abs(N*1024) bytes of memory based on the current
278 n
= ((-1024*(i64
)p
->szCache
)/(p
->szPage
+p
->szExtra
));
279 if( n
>1000000000 ) n
= 1000000000;
284 /*************************************************** General Interfaces ******
286 ** Initialize and shutdown the page cache subsystem. Neither of these
287 ** functions are threadsafe.
289 int sqlite3PcacheInitialize(void){
290 if( sqlite3GlobalConfig
.pcache2
.xInit
==0 ){
291 /* IMPLEMENTATION-OF: R-26801-64137 If the xInit() method is NULL, then the
292 ** built-in default page cache is used instead of the application defined
294 sqlite3PCacheSetDefault();
295 assert( sqlite3GlobalConfig
.pcache2
.xInit
!=0 );
297 return sqlite3GlobalConfig
.pcache2
.xInit(sqlite3GlobalConfig
.pcache2
.pArg
);
299 void sqlite3PcacheShutdown(void){
300 if( sqlite3GlobalConfig
.pcache2
.xShutdown
){
301 /* IMPLEMENTATION-OF: R-26000-56589 The xShutdown() method may be NULL. */
302 sqlite3GlobalConfig
.pcache2
.xShutdown(sqlite3GlobalConfig
.pcache2
.pArg
);
307 ** Return the size in bytes of a PCache object.
309 int sqlite3PcacheSize(void){ return sizeof(PCache
); }
312 ** Create a new PCache object. Storage space to hold the object
313 ** has already been allocated and is passed in as the p pointer.
314 ** The caller discovers how much space needs to be allocated by
315 ** calling sqlite3PcacheSize().
317 ** szExtra is some extra space allocated for each page. The first
318 ** 8 bytes of the extra space will be zeroed as the page is allocated,
319 ** but remaining content will be uninitialized. Though it is opaque
320 ** to this module, the extra space really ends up being the MemPage
321 ** structure in the pager.
323 int sqlite3PcacheOpen(
324 int szPage
, /* Size of every page */
325 int szExtra
, /* Extra space associated with each page */
326 int bPurgeable
, /* True if pages are on backing store */
327 int (*xStress
)(void*,PgHdr
*),/* Call to try to make pages clean */
328 void *pStress
, /* Argument to xStress */
329 PCache
*p
/* Preallocated space for the PCache */
331 memset(p
, 0, sizeof(PCache
));
333 p
->szExtra
= szExtra
;
334 assert( szExtra
>=8 ); /* First 8 bytes will be zeroed */
335 p
->bPurgeable
= bPurgeable
;
337 p
->xStress
= xStress
;
338 p
->pStress
= pStress
;
341 pcacheTrace(("%p.OPEN szPage %d bPurgeable %d\n",p
,szPage
,bPurgeable
));
342 return sqlite3PcacheSetPageSize(p
, szPage
);
346 ** Change the page size for PCache object. The caller must ensure that there
347 ** are no outstanding page references when this function is called.
349 int sqlite3PcacheSetPageSize(PCache
*pCache
, int szPage
){
350 assert( pCache
->nRefSum
==0 && pCache
->pDirty
==0 );
351 if( pCache
->szPage
){
352 sqlite3_pcache
*pNew
;
353 pNew
= sqlite3GlobalConfig
.pcache2
.xCreate(
354 szPage
, pCache
->szExtra
+ ROUND8(sizeof(PgHdr
)),
357 if( pNew
==0 ) return SQLITE_NOMEM_BKPT
;
358 sqlite3GlobalConfig
.pcache2
.xCachesize(pNew
, numberOfCachePages(pCache
));
359 if( pCache
->pCache
){
360 sqlite3GlobalConfig
.pcache2
.xDestroy(pCache
->pCache
);
362 pCache
->pCache
= pNew
;
363 pCache
->szPage
= szPage
;
364 pcacheTrace(("%p.PAGESIZE %d\n",pCache
,szPage
));
370 ** Try to obtain a page from the cache.
372 ** This routine returns a pointer to an sqlite3_pcache_page object if
373 ** such an object is already in cache, or if a new one is created.
374 ** This routine returns a NULL pointer if the object was not in cache
375 ** and could not be created.
377 ** The createFlags should be 0 to check for existing pages and should
378 ** be 3 (not 1, but 3) to try to create a new page.
380 ** If the createFlag is 0, then NULL is always returned if the page
381 ** is not already in the cache. If createFlag is 1, then a new page
382 ** is created only if that can be done without spilling dirty pages
383 ** and without exceeding the cache size limit.
385 ** The caller needs to invoke sqlite3PcacheFetchFinish() to properly
386 ** initialize the sqlite3_pcache_page object and convert it into a
387 ** PgHdr object. The sqlite3PcacheFetch() and sqlite3PcacheFetchFinish()
388 ** routines are split this way for performance reasons. When separated
389 ** they can both (usually) operate without having to push values to
390 ** the stack on entry and pop them back off on exit, which saves a
391 ** lot of pushing and popping.
393 sqlite3_pcache_page
*sqlite3PcacheFetch(
394 PCache
*pCache
, /* Obtain the page from this cache */
395 Pgno pgno
, /* Page number to obtain */
396 int createFlag
/* If true, create page if it does not exist already */
399 sqlite3_pcache_page
*pRes
;
402 assert( pCache
->pCache
!=0 );
403 assert( createFlag
==3 || createFlag
==0 );
404 assert( pCache
->eCreate
==((pCache
->bPurgeable
&& pCache
->pDirty
) ? 1 : 2) );
406 /* eCreate defines what to do if the page does not exist.
407 ** 0 Do not allocate a new page. (createFlag==0)
408 ** 1 Allocate a new page if doing so is inexpensive.
409 ** (createFlag==1 AND bPurgeable AND pDirty)
410 ** 2 Allocate a new page even it doing so is difficult.
411 ** (createFlag==1 AND !(bPurgeable AND pDirty)
413 eCreate
= createFlag
& pCache
->eCreate
;
414 assert( eCreate
==0 || eCreate
==1 || eCreate
==2 );
415 assert( createFlag
==0 || pCache
->eCreate
==eCreate
);
416 assert( createFlag
==0 || eCreate
==1+(!pCache
->bPurgeable
||!pCache
->pDirty
) );
417 pRes
= sqlite3GlobalConfig
.pcache2
.xFetch(pCache
->pCache
, pgno
, eCreate
);
418 pcacheTrace(("%p.FETCH %d%s (result: %p) ",pCache
,pgno
,
419 createFlag
?" create":"",pRes
));
420 pcachePageTrace(pgno
, pRes
);
425 ** If the sqlite3PcacheFetch() routine is unable to allocate a new
426 ** page because no clean pages are available for reuse and the cache
427 ** size limit has been reached, then this routine can be invoked to
428 ** try harder to allocate a page. This routine might invoke the stress
429 ** callback to spill dirty pages to the journal. It will then try to
430 ** allocate the new page and will only fail to allocate a new page on
433 ** This routine should be invoked only after sqlite3PcacheFetch() fails.
435 int sqlite3PcacheFetchStress(
436 PCache
*pCache
, /* Obtain the page from this cache */
437 Pgno pgno
, /* Page number to obtain */
438 sqlite3_pcache_page
**ppPage
/* Write result here */
441 if( pCache
->eCreate
==2 ) return 0;
443 if( sqlite3PcachePagecount(pCache
)>pCache
->szSpill
){
444 /* Find a dirty page to write-out and recycle. First try to find a
445 ** page that does not require a journal-sync (one with PGHDR_NEED_SYNC
446 ** cleared), but if that is not possible settle for any other
447 ** unreferenced dirty page.
449 ** If the LRU page in the dirty list that has a clear PGHDR_NEED_SYNC
450 ** flag is currently referenced, then the following may leave pSynced
451 ** set incorrectly (pointing to other than the LRU page with NEED_SYNC
452 ** cleared). This is Ok, as pSynced is just an optimization. */
453 for(pPg
=pCache
->pSynced
;
454 pPg
&& (pPg
->nRef
|| (pPg
->flags
&PGHDR_NEED_SYNC
));
457 pCache
->pSynced
= pPg
;
459 for(pPg
=pCache
->pDirtyTail
; pPg
&& pPg
->nRef
; pPg
=pPg
->pDirtyPrev
);
463 #ifdef SQLITE_LOG_CACHE_SPILL
464 sqlite3_log(SQLITE_FULL
,
465 "spill page %d making room for %d - cache used: %d/%d",
467 sqlite3GlobalConfig
.pcache2
.xPagecount(pCache
->pCache
),
468 numberOfCachePages(pCache
));
470 pcacheTrace(("%p.SPILL %d\n",pCache
,pPg
->pgno
));
471 rc
= pCache
->xStress(pCache
->pStress
, pPg
);
473 if( rc
!=SQLITE_OK
&& rc
!=SQLITE_BUSY
){
478 *ppPage
= sqlite3GlobalConfig
.pcache2
.xFetch(pCache
->pCache
, pgno
, 2);
479 return *ppPage
==0 ? SQLITE_NOMEM_BKPT
: SQLITE_OK
;
483 ** This is a helper routine for sqlite3PcacheFetchFinish()
485 ** In the uncommon case where the page being fetched has not been
486 ** initialized, this routine is invoked to do the initialization.
487 ** This routine is broken out into a separate function since it
488 ** requires extra stack manipulation that can be avoided in the common
491 static SQLITE_NOINLINE PgHdr
*pcacheFetchFinishWithInit(
492 PCache
*pCache
, /* Obtain the page from this cache */
493 Pgno pgno
, /* Page number obtained */
494 sqlite3_pcache_page
*pPage
/* Page obtained by prior PcacheFetch() call */
498 pPgHdr
= (PgHdr
*)pPage
->pExtra
;
499 assert( pPgHdr
->pPage
==0 );
500 memset(&pPgHdr
->pDirty
, 0, sizeof(PgHdr
) - offsetof(PgHdr
,pDirty
));
501 pPgHdr
->pPage
= pPage
;
502 pPgHdr
->pData
= pPage
->pBuf
;
503 pPgHdr
->pExtra
= (void *)&pPgHdr
[1];
504 memset(pPgHdr
->pExtra
, 0, 8);
505 pPgHdr
->pCache
= pCache
;
507 pPgHdr
->flags
= PGHDR_CLEAN
;
508 return sqlite3PcacheFetchFinish(pCache
,pgno
,pPage
);
512 ** This routine converts the sqlite3_pcache_page object returned by
513 ** sqlite3PcacheFetch() into an initialized PgHdr object. This routine
514 ** must be called after sqlite3PcacheFetch() in order to get a usable
517 PgHdr
*sqlite3PcacheFetchFinish(
518 PCache
*pCache
, /* Obtain the page from this cache */
519 Pgno pgno
, /* Page number obtained */
520 sqlite3_pcache_page
*pPage
/* Page obtained by prior PcacheFetch() call */
525 pPgHdr
= (PgHdr
*)pPage
->pExtra
;
527 if( !pPgHdr
->pPage
){
528 return pcacheFetchFinishWithInit(pCache
, pgno
, pPage
);
532 assert( sqlite3PcachePageSanity(pPgHdr
) );
537 ** Decrement the reference count on a page. If the page is clean and the
538 ** reference count drops to 0, then it is made eligible for recycling.
540 void SQLITE_NOINLINE
sqlite3PcacheRelease(PgHdr
*p
){
542 p
->pCache
->nRefSum
--;
543 if( (--p
->nRef
)==0 ){
544 if( p
->flags
&PGHDR_CLEAN
){
547 pcacheManageDirtyList(p
, PCACHE_DIRTYLIST_FRONT
);
548 assert( sqlite3PcachePageSanity(p
) );
554 ** Increase the reference count of a supplied page by 1.
556 void sqlite3PcacheRef(PgHdr
*p
){
558 assert( sqlite3PcachePageSanity(p
) );
560 p
->pCache
->nRefSum
++;
564 ** Drop a page from the cache. There must be exactly one reference to the
565 ** page. This function deletes that reference, so after it returns the
566 ** page pointed to by p is invalid.
568 void sqlite3PcacheDrop(PgHdr
*p
){
569 assert( p
->nRef
==1 );
570 assert( sqlite3PcachePageSanity(p
) );
571 if( p
->flags
&PGHDR_DIRTY
){
572 pcacheManageDirtyList(p
, PCACHE_DIRTYLIST_REMOVE
);
574 p
->pCache
->nRefSum
--;
575 sqlite3GlobalConfig
.pcache2
.xUnpin(p
->pCache
->pCache
, p
->pPage
, 1);
579 ** Make sure the page is marked as dirty. If it isn't dirty already,
582 void sqlite3PcacheMakeDirty(PgHdr
*p
){
584 assert( sqlite3PcachePageSanity(p
) );
585 if( p
->flags
& (PGHDR_CLEAN
|PGHDR_DONT_WRITE
) ){ /*OPTIMIZATION-IF-FALSE*/
586 p
->flags
&= ~PGHDR_DONT_WRITE
;
587 if( p
->flags
& PGHDR_CLEAN
){
588 p
->flags
^= (PGHDR_DIRTY
|PGHDR_CLEAN
);
589 pcacheTrace(("%p.DIRTY %d\n",p
->pCache
,p
->pgno
));
590 assert( (p
->flags
& (PGHDR_DIRTY
|PGHDR_CLEAN
))==PGHDR_DIRTY
);
591 pcacheManageDirtyList(p
, PCACHE_DIRTYLIST_ADD
);
592 assert( sqlite3PcachePageSanity(p
) );
594 assert( sqlite3PcachePageSanity(p
) );
599 ** Make sure the page is marked as clean. If it isn't clean already,
602 void sqlite3PcacheMakeClean(PgHdr
*p
){
603 assert( sqlite3PcachePageSanity(p
) );
604 assert( (p
->flags
& PGHDR_DIRTY
)!=0 );
605 assert( (p
->flags
& PGHDR_CLEAN
)==0 );
606 pcacheManageDirtyList(p
, PCACHE_DIRTYLIST_REMOVE
);
607 p
->flags
&= ~(PGHDR_DIRTY
|PGHDR_NEED_SYNC
|PGHDR_WRITEABLE
);
608 p
->flags
|= PGHDR_CLEAN
;
609 pcacheTrace(("%p.CLEAN %d\n",p
->pCache
,p
->pgno
));
610 assert( sqlite3PcachePageSanity(p
) );
617 ** Make every page in the cache clean.
619 void sqlite3PcacheCleanAll(PCache
*pCache
){
621 pcacheTrace(("%p.CLEAN-ALL\n",pCache
));
622 while( (p
= pCache
->pDirty
)!=0 ){
623 sqlite3PcacheMakeClean(p
);
628 ** Clear the PGHDR_NEED_SYNC and PGHDR_WRITEABLE flag from all dirty pages.
630 void sqlite3PcacheClearWritable(PCache
*pCache
){
632 pcacheTrace(("%p.CLEAR-WRITEABLE\n",pCache
));
633 for(p
=pCache
->pDirty
; p
; p
=p
->pDirtyNext
){
634 p
->flags
&= ~(PGHDR_NEED_SYNC
|PGHDR_WRITEABLE
);
636 pCache
->pSynced
= pCache
->pDirtyTail
;
640 ** Clear the PGHDR_NEED_SYNC flag from all dirty pages.
642 void sqlite3PcacheClearSyncFlags(PCache
*pCache
){
644 for(p
=pCache
->pDirty
; p
; p
=p
->pDirtyNext
){
645 p
->flags
&= ~PGHDR_NEED_SYNC
;
647 pCache
->pSynced
= pCache
->pDirtyTail
;
651 ** Change the page number of page p to newPgno.
653 void sqlite3PcacheMove(PgHdr
*p
, Pgno newPgno
){
654 PCache
*pCache
= p
->pCache
;
655 sqlite3_pcache_page
*pOther
;
658 assert( sqlite3PcachePageSanity(p
) );
659 pcacheTrace(("%p.MOVE %d -> %d\n",pCache
,p
->pgno
,newPgno
));
660 pOther
= sqlite3GlobalConfig
.pcache2
.xFetch(pCache
->pCache
, newPgno
, 0);
662 PgHdr
*pXPage
= (PgHdr
*)pOther
->pExtra
;
663 assert( pXPage
->nRef
==0 );
666 sqlite3PcacheDrop(pXPage
);
668 sqlite3GlobalConfig
.pcache2
.xRekey(pCache
->pCache
, p
->pPage
, p
->pgno
,newPgno
);
670 if( (p
->flags
&PGHDR_DIRTY
) && (p
->flags
&PGHDR_NEED_SYNC
) ){
671 pcacheManageDirtyList(p
, PCACHE_DIRTYLIST_FRONT
);
672 assert( sqlite3PcachePageSanity(p
) );
677 ** Drop every cache entry whose page number is greater than "pgno". The
678 ** caller must ensure that there are no outstanding references to any pages
679 ** other than page 1 with a page number greater than pgno.
681 ** If there is a reference to page 1 and the pgno parameter passed to this
682 ** function is 0, then the data area associated with page 1 is zeroed, but
683 ** the page object is not dropped.
685 void sqlite3PcacheTruncate(PCache
*pCache
, Pgno pgno
){
686 if( pCache
->pCache
){
689 pcacheTrace(("%p.TRUNCATE %d\n",pCache
,pgno
));
690 for(p
=pCache
->pDirty
; p
; p
=pNext
){
691 pNext
= p
->pDirtyNext
;
692 /* This routine never gets call with a positive pgno except right
693 ** after sqlite3PcacheCleanAll(). So if there are dirty pages,
694 ** it must be that pgno==0.
698 assert( p
->flags
&PGHDR_DIRTY
);
699 sqlite3PcacheMakeClean(p
);
702 if( pgno
==0 && pCache
->nRefSum
){
703 sqlite3_pcache_page
*pPage1
;
704 pPage1
= sqlite3GlobalConfig
.pcache2
.xFetch(pCache
->pCache
,1,0);
705 if( ALWAYS(pPage1
) ){ /* Page 1 is always available in cache, because
706 ** pCache->nRefSum>0 */
707 memset(pPage1
->pBuf
, 0, pCache
->szPage
);
711 sqlite3GlobalConfig
.pcache2
.xTruncate(pCache
->pCache
, pgno
+1);
718 void sqlite3PcacheClose(PCache
*pCache
){
719 assert( pCache
->pCache
!=0 );
720 pcacheTrace(("%p.CLOSE\n",pCache
));
721 sqlite3GlobalConfig
.pcache2
.xDestroy(pCache
->pCache
);
725 ** Discard the contents of the cache.
727 void sqlite3PcacheClear(PCache
*pCache
){
728 sqlite3PcacheTruncate(pCache
, 0);
732 ** Merge two lists of pages connected by pDirty and in pgno order.
733 ** Do not bother fixing the pDirtyPrev pointers.
735 static PgHdr
*pcacheMergeDirtyList(PgHdr
*pA
, PgHdr
*pB
){
736 PgHdr result
, *pTail
;
738 assert( pA
!=0 && pB
!=0 );
740 if( pA
->pgno
<pB
->pgno
){
758 return result
.pDirty
;
762 ** Sort the list of pages in accending order by pgno. Pages are
763 ** connected by pDirty pointers. The pDirtyPrev pointers are
764 ** corrupted by this sort.
766 ** Since there cannot be more than 2^31 distinct pages in a database,
767 ** there cannot be more than 31 buckets required by the merge sorter.
768 ** One extra bucket is added to catch overflow in case something
769 ** ever changes to make the previous sentence incorrect.
771 #define N_SORT_BUCKET 32
772 static PgHdr
*pcacheSortDirtyList(PgHdr
*pIn
){
773 PgHdr
*a
[N_SORT_BUCKET
], *p
;
775 memset(a
, 0, sizeof(a
));
780 for(i
=0; ALWAYS(i
<N_SORT_BUCKET
-1); i
++){
785 p
= pcacheMergeDirtyList(a
[i
], p
);
789 if( NEVER(i
==N_SORT_BUCKET
-1) ){
790 /* To get here, there need to be 2^(N_SORT_BUCKET) elements in
791 ** the input list. But that is impossible.
793 a
[i
] = pcacheMergeDirtyList(a
[i
], p
);
797 for(i
=1; i
<N_SORT_BUCKET
; i
++){
798 if( a
[i
]==0 ) continue;
799 p
= p
? pcacheMergeDirtyList(p
, a
[i
]) : a
[i
];
805 ** Return a list of all dirty pages in the cache, sorted by page number.
807 PgHdr
*sqlite3PcacheDirtyList(PCache
*pCache
){
809 for(p
=pCache
->pDirty
; p
; p
=p
->pDirtyNext
){
810 p
->pDirty
= p
->pDirtyNext
;
812 return pcacheSortDirtyList(pCache
->pDirty
);
816 ** Return the total number of references to all pages held by the cache.
818 ** This is not the total number of pages referenced, but the sum of the
819 ** reference count for all pages.
821 i64
sqlite3PcacheRefCount(PCache
*pCache
){
822 return pCache
->nRefSum
;
826 ** Return the number of references to the page supplied as an argument.
828 i64
sqlite3PcachePageRefcount(PgHdr
*p
){
833 ** Return the total number of pages in the cache.
835 int sqlite3PcachePagecount(PCache
*pCache
){
836 assert( pCache
->pCache
!=0 );
837 return sqlite3GlobalConfig
.pcache2
.xPagecount(pCache
->pCache
);
842 ** Get the suggested cache-size value.
844 int sqlite3PcacheGetCachesize(PCache
*pCache
){
845 return numberOfCachePages(pCache
);
850 ** Set the suggested cache-size value.
852 void sqlite3PcacheSetCachesize(PCache
*pCache
, int mxPage
){
853 assert( pCache
->pCache
!=0 );
854 pCache
->szCache
= mxPage
;
855 sqlite3GlobalConfig
.pcache2
.xCachesize(pCache
->pCache
,
856 numberOfCachePages(pCache
));
860 ** Set the suggested cache-spill value. Make no changes if if the
861 ** argument is zero. Return the effective cache-spill size, which will
862 ** be the larger of the szSpill and szCache.
864 int sqlite3PcacheSetSpillsize(PCache
*p
, int mxPage
){
866 assert( p
->pCache
!=0 );
869 mxPage
= (int)((-1024*(i64
)mxPage
)/(p
->szPage
+p
->szExtra
));
873 res
= numberOfCachePages(p
);
874 if( res
<p
->szSpill
) res
= p
->szSpill
;
879 ** Free up as much memory as possible from the page cache.
881 void sqlite3PcacheShrink(PCache
*pCache
){
882 assert( pCache
->pCache
!=0 );
883 sqlite3GlobalConfig
.pcache2
.xShrink(pCache
->pCache
);
887 ** Return the size of the header added by this middleware layer
888 ** in the page-cache hierarchy.
890 int sqlite3HeaderSizePcache(void){ return ROUND8(sizeof(PgHdr
)); }
893 ** Return the number of dirty pages currently in the cache, as a percentage
894 ** of the configured cache size.
896 int sqlite3PCachePercentDirty(PCache
*pCache
){
899 int nCache
= numberOfCachePages(pCache
);
900 for(pDirty
=pCache
->pDirty
; pDirty
; pDirty
=pDirty
->pDirtyNext
) nDirty
++;
901 return nCache
? (int)(((i64
)nDirty
* 100) / nCache
) : 0;
904 #ifdef SQLITE_DIRECT_OVERFLOW_READ
906 ** Return true if there are one or more dirty pages in the cache. Else false.
908 int sqlite3PCacheIsDirty(PCache
*pCache
){
909 return (pCache
->pDirty
!=0);
913 #if defined(SQLITE_CHECK_PAGES) || defined(SQLITE_DEBUG)
915 ** For all dirty pages currently in the cache, invoke the specified
916 ** callback. This is only used if the SQLITE_CHECK_PAGES macro is
919 void sqlite3PcacheIterateDirty(PCache
*pCache
, void (*xIter
)(PgHdr
*)){
921 for(pDirty
=pCache
->pDirty
; pDirty
; pDirty
=pDirty
->pDirtyNext
){