4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** The code in this file implements the function that runs the
13 ** bytecode of a prepared statement.
15 ** Various scripts scan this source file in order to generate HTML
16 ** documentation, headers files, or other derived files. The formatting
17 ** of the code in this file is, therefore, important. See other comments
18 ** in this file for details. If in doubt, do not deviate from existing
19 ** commenting and indentation practices when changing or adding code.
21 #include "sqliteInt.h"
25 ** Invoke this macro on memory cells just prior to changing the
26 ** value of the cell. This macro verifies that shallow copies are
27 ** not misused. A shallow copy of a string or blob just copies a
28 ** pointer to the string or blob, not the content. If the original
29 ** is changed while the copy is still in use, the string or blob might
30 ** be changed out from under the copy. This macro verifies that nothing
31 ** like that ever happens.
34 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
36 # define memAboutToChange(P,M)
40 ** The following global variable is incremented every time a cursor
41 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test
42 ** procedures use this information to make sure that indices are
43 ** working correctly. This variable has no function other than to
44 ** help verify the correct operation of the library.
47 int sqlite3_search_count
= 0;
51 ** When this global variable is positive, it gets decremented once before
52 ** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted
53 ** field of the sqlite3 structure is set in order to simulate an interrupt.
55 ** This facility is used for testing purposes only. It does not function
56 ** in an ordinary build.
59 int sqlite3_interrupt_count
= 0;
63 ** The next global variable is incremented each type the OP_Sort opcode
64 ** is executed. The test procedures use this information to make sure that
65 ** sorting is occurring or not occurring at appropriate times. This variable
66 ** has no function other than to help verify the correct operation of the
70 int sqlite3_sort_count
= 0;
74 ** The next global variable records the size of the largest MEM_Blob
75 ** or MEM_Str that has been used by a VDBE opcode. The test procedures
76 ** use this information to make sure that the zero-blob functionality
77 ** is working correctly. This variable has no function other than to
78 ** help verify the correct operation of the library.
81 int sqlite3_max_blobsize
= 0;
82 static void updateMaxBlobsize(Mem
*p
){
83 if( (p
->flags
& (MEM_Str
|MEM_Blob
))!=0 && p
->n
>sqlite3_max_blobsize
){
84 sqlite3_max_blobsize
= p
->n
;
90 ** This macro evaluates to true if either the update hook or the preupdate
91 ** hook are enabled for database connect DB.
93 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
94 # define HAS_UPDATE_HOOK(DB) ((DB)->xPreUpdateCallback||(DB)->xUpdateCallback)
96 # define HAS_UPDATE_HOOK(DB) ((DB)->xUpdateCallback)
100 ** The next global variable is incremented each time the OP_Found opcode
101 ** is executed. This is used to test whether or not the foreign key
102 ** operation implemented using OP_FkIsZero is working. This variable
103 ** has no function other than to help verify the correct operation of the
107 int sqlite3_found_count
= 0;
111 ** Test a register to see if it exceeds the current maximum blob size.
112 ** If it does, record the new maximum blob size.
114 #if defined(SQLITE_TEST) && !defined(SQLITE_UNTESTABLE)
115 # define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P)
117 # define UPDATE_MAX_BLOBSIZE(P)
121 /* This routine provides a convenient place to set a breakpoint during
122 ** tracing with PRAGMA vdbe_trace=on. The breakpoint fires right after
123 ** each opcode is printed. Variables "pc" (program counter) and pOp are
124 ** available to add conditionals to the breakpoint. GDB example:
126 ** break test_trace_breakpoint if pc=22
128 ** Other useful labels for breakpoints include:
129 ** test_addop_breakpoint(pc,pOp)
130 ** sqlite3CorruptError(lineno)
131 ** sqlite3MisuseError(lineno)
132 ** sqlite3CantopenError(lineno)
134 static void test_trace_breakpoint(int pc
, Op
*pOp
, Vdbe
*v
){
144 ** Invoke the VDBE coverage callback, if that callback is defined. This
145 ** feature is used for test suite validation only and does not appear an
146 ** production builds.
148 ** M is the type of branch. I is the direction taken for this instance of
151 ** M: 2 - two-way branch (I=0: fall-thru 1: jump )
152 ** 3 - two-way + NULL (I=0: fall-thru 1: jump 2: NULL )
153 ** 4 - OP_Jump (I=0: jump p1 1: jump p2 2: jump p3)
155 ** In other words, if M is 2, then I is either 0 (for fall-through) or
156 ** 1 (for when the branch is taken). If M is 3, the I is 0 for an
157 ** ordinary fall-through, I is 1 if the branch was taken, and I is 2
158 ** if the result of comparison is NULL. For M=3, I=2 the jump may or
159 ** may not be taken, depending on the SQLITE_JUMPIFNULL flags in p5.
160 ** When M is 4, that means that an OP_Jump is being run. I is 0, 1, or 2
161 ** depending on if the operands are less than, equal, or greater than.
163 ** iSrcLine is the source code line (from the __LINE__ macro) that
164 ** generated the VDBE instruction combined with flag bits. The source
165 ** code line number is in the lower 24 bits of iSrcLine and the upper
166 ** 8 bytes are flags. The lower three bits of the flags indicate
167 ** values for I that should never occur. For example, if the branch is
168 ** always taken, the flags should be 0x05 since the fall-through and
169 ** alternate branch are never taken. If a branch is never taken then
170 ** flags should be 0x06 since only the fall-through approach is allowed.
172 ** Bit 0x08 of the flags indicates an OP_Jump opcode that is only
173 ** interested in equal or not-equal. In other words, I==0 and I==2
174 ** should be treated as equivalent
176 ** Since only a line number is retained, not the filename, this macro
177 ** only works for amalgamation builds. But that is ok, since these macros
178 ** should be no-ops except for special builds used to measure test coverage.
180 #if !defined(SQLITE_VDBE_COVERAGE)
181 # define VdbeBranchTaken(I,M)
183 # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M)
184 static void vdbeTakeBranch(u32 iSrcLine
, u8 I
, u8 M
){
186 assert( I
<=2 ); /* 0: fall through, 1: taken, 2: alternate taken */
187 assert( M
<=4 ); /* 2: two-way branch, 3: three-way branch, 4: OP_Jump */
188 assert( I
<M
); /* I can only be 2 if M is 3 or 4 */
189 /* Transform I from a integer [0,1,2] into a bitmask of [1,2,4] */
191 /* The upper 8 bits of iSrcLine are flags. The lower three bits of
192 ** the flags indicate directions that the branch can never go. If
193 ** a branch really does go in one of those directions, assert right
195 mNever
= iSrcLine
>> 24;
196 assert( (I
& mNever
)==0 );
197 if( sqlite3GlobalConfig
.xVdbeBranch
==0 ) return; /*NO_TEST*/
198 /* Invoke the branch coverage callback with three arguments:
199 ** iSrcLine - the line number of the VdbeCoverage() macro, with
201 ** I - Mask of bits 0x07 indicating which cases are are
202 ** fulfilled by this instance of the jump. 0x01 means
203 ** fall-thru, 0x02 means taken, 0x04 means NULL. Any
204 ** impossible cases (ex: if the comparison is never NULL)
205 ** are filled in automatically so that the coverage
206 ** measurement logic does not flag those impossible cases
207 ** as missed coverage.
208 ** M - Type of jump. Same as M argument above
211 if( M
==2 ) I
|= 0x04;
214 if( (mNever
&0x08)!=0 && (I
&0x05)!=0) I
|= 0x05; /*NO_TEST*/
216 sqlite3GlobalConfig
.xVdbeBranch(sqlite3GlobalConfig
.pVdbeBranchArg
,
217 iSrcLine
&0xffffff, I
, M
);
222 ** An ephemeral string value (signified by the MEM_Ephem flag) contains
223 ** a pointer to a dynamically allocated string where some other entity
224 ** is responsible for deallocating that string. Because the register
225 ** does not control the string, it might be deleted without the register
228 ** This routine converts an ephemeral string into a dynamically allocated
229 ** string that the register itself controls. In other words, it
230 ** converts an MEM_Ephem string into a string with P.z==P.zMalloc.
232 #define Deephemeralize(P) \
233 if( ((P)->flags&MEM_Ephem)!=0 \
234 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
236 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */
237 #define isSorter(x) ((x)->eCurType==CURTYPE_SORTER)
240 ** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL
241 ** if we run out of memory.
243 static VdbeCursor
*allocateCursor(
244 Vdbe
*p
, /* The virtual machine */
245 int iCur
, /* Index of the new VdbeCursor */
246 int nField
, /* Number of fields in the table or index */
247 u8 eCurType
/* Type of the new cursor */
249 /* Find the memory cell that will be used to store the blob of memory
250 ** required for this VdbeCursor structure. It is convenient to use a
251 ** vdbe memory cell to manage the memory allocation required for a
252 ** VdbeCursor structure for the following reasons:
254 ** * Sometimes cursor numbers are used for a couple of different
255 ** purposes in a vdbe program. The different uses might require
256 ** different sized allocations. Memory cells provide growable
259 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
260 ** be freed lazily via the sqlite3_release_memory() API. This
261 ** minimizes the number of malloc calls made by the system.
263 ** The memory cell for cursor 0 is aMem[0]. The rest are allocated from
264 ** the top of the register space. Cursor 1 is at Mem[p->nMem-1].
265 ** Cursor 2 is at Mem[p->nMem-2]. And so forth.
267 Mem
*pMem
= iCur
>0 ? &p
->aMem
[p
->nMem
-iCur
] : p
->aMem
;
272 ROUND8P(sizeof(VdbeCursor
)) + 2*sizeof(u32
)*nField
+
273 (eCurType
==CURTYPE_BTREE
?sqlite3BtreeCursorSize():0);
275 assert( iCur
>=0 && iCur
<p
->nCursor
);
276 if( p
->apCsr
[iCur
] ){ /*OPTIMIZATION-IF-FALSE*/
277 sqlite3VdbeFreeCursorNN(p
, p
->apCsr
[iCur
]);
281 /* There used to be a call to sqlite3VdbeMemClearAndResize() to make sure
282 ** the pMem used to hold space for the cursor has enough storage available
283 ** in pMem->zMalloc. But for the special case of the aMem[] entries used
284 ** to hold cursors, it is faster to in-line the logic. */
285 assert( pMem
->flags
==MEM_Undefined
);
286 assert( (pMem
->flags
& MEM_Dyn
)==0 );
287 assert( pMem
->szMalloc
==0 || pMem
->z
==pMem
->zMalloc
);
288 if( pMem
->szMalloc
<nByte
){
289 if( pMem
->szMalloc
>0 ){
290 sqlite3DbFreeNN(pMem
->db
, pMem
->zMalloc
);
292 pMem
->z
= pMem
->zMalloc
= sqlite3DbMallocRaw(pMem
->db
, nByte
);
293 if( pMem
->zMalloc
==0 ){
297 pMem
->szMalloc
= nByte
;
300 p
->apCsr
[iCur
] = pCx
= (VdbeCursor
*)pMem
->zMalloc
;
301 memset(pCx
, 0, offsetof(VdbeCursor
,pAltCursor
));
302 pCx
->eCurType
= eCurType
;
303 pCx
->nField
= nField
;
304 pCx
->aOffset
= &pCx
->aType
[nField
];
305 if( eCurType
==CURTYPE_BTREE
){
306 pCx
->uc
.pCursor
= (BtCursor
*)
307 &pMem
->z
[ROUND8P(sizeof(VdbeCursor
))+2*sizeof(u32
)*nField
];
308 sqlite3BtreeCursorZero(pCx
->uc
.pCursor
);
314 ** The string in pRec is known to look like an integer and to have a
315 ** floating point value of rValue. Return true and set *piValue to the
316 ** integer value if the string is in range to be an integer. Otherwise,
319 static int alsoAnInt(Mem
*pRec
, double rValue
, i64
*piValue
){
321 iValue
= sqlite3RealToI64(rValue
);
322 if( sqlite3RealSameAsInt(rValue
,iValue
) ){
326 return 0==sqlite3Atoi64(pRec
->z
, piValue
, pRec
->n
, pRec
->enc
);
330 ** Try to convert a value into a numeric representation if we can
331 ** do so without loss of information. In other words, if the string
332 ** looks like a number, convert it into a number. If it does not
333 ** look like a number, leave it alone.
335 ** If the bTryForInt flag is true, then extra effort is made to give
336 ** an integer representation. Strings that look like floating point
337 ** values but which have no fractional component (example: '48.00')
338 ** will have a MEM_Int representation when bTryForInt is true.
340 ** If bTryForInt is false, then if the input string contains a decimal
341 ** point or exponential notation, the result is only MEM_Real, even
342 ** if there is an exact integer representation of the quantity.
344 static void applyNumericAffinity(Mem
*pRec
, int bTryForInt
){
348 assert( (pRec
->flags
& (MEM_Str
|MEM_Int
|MEM_Real
|MEM_IntReal
))==MEM_Str
);
349 rc
= sqlite3AtoF(pRec
->z
, &rValue
, pRec
->n
, enc
);
351 if( rc
==1 && alsoAnInt(pRec
, rValue
, &pRec
->u
.i
) ){
352 pRec
->flags
|= MEM_Int
;
355 pRec
->flags
|= MEM_Real
;
356 if( bTryForInt
) sqlite3VdbeIntegerAffinity(pRec
);
358 /* TEXT->NUMERIC is many->one. Hence, it is important to invalidate the
359 ** string representation after computing a numeric equivalent, because the
360 ** string representation might not be the canonical representation for the
361 ** numeric value. Ticket [343634942dd54ab57b7024] 2018-01-31. */
362 pRec
->flags
&= ~MEM_Str
;
366 ** Processing is determine by the affinity parameter:
368 ** SQLITE_AFF_INTEGER:
370 ** SQLITE_AFF_NUMERIC:
371 ** Try to convert pRec to an integer representation or a
372 ** floating-point representation if an integer representation
373 ** is not possible. Note that the integer representation is
374 ** always preferred, even if the affinity is REAL, because
375 ** an integer representation is more space efficient on disk.
377 ** SQLITE_AFF_FLEXNUM:
378 ** If the value is text, then try to convert it into a number of
379 ** some kind (integer or real) but do not make any other changes.
382 ** Convert pRec to a text representation.
386 ** No-op. pRec is unchanged.
388 static void applyAffinity(
389 Mem
*pRec
, /* The value to apply affinity to */
390 char affinity
, /* The affinity to be applied */
391 u8 enc
/* Use this text encoding */
393 if( affinity
>=SQLITE_AFF_NUMERIC
){
394 assert( affinity
==SQLITE_AFF_INTEGER
|| affinity
==SQLITE_AFF_REAL
395 || affinity
==SQLITE_AFF_NUMERIC
|| affinity
==SQLITE_AFF_FLEXNUM
);
396 if( (pRec
->flags
& MEM_Int
)==0 ){ /*OPTIMIZATION-IF-FALSE*/
397 if( (pRec
->flags
& (MEM_Real
|MEM_IntReal
))==0 ){
398 if( pRec
->flags
& MEM_Str
) applyNumericAffinity(pRec
,1);
399 }else if( affinity
<=SQLITE_AFF_REAL
){
400 sqlite3VdbeIntegerAffinity(pRec
);
403 }else if( affinity
==SQLITE_AFF_TEXT
){
404 /* Only attempt the conversion to TEXT if there is an integer or real
405 ** representation (blob and NULL do not get converted) but no string
406 ** representation. It would be harmless to repeat the conversion if
407 ** there is already a string rep, but it is pointless to waste those
409 if( 0==(pRec
->flags
&MEM_Str
) ){ /*OPTIMIZATION-IF-FALSE*/
410 if( (pRec
->flags
&(MEM_Real
|MEM_Int
|MEM_IntReal
)) ){
411 testcase( pRec
->flags
& MEM_Int
);
412 testcase( pRec
->flags
& MEM_Real
);
413 testcase( pRec
->flags
& MEM_IntReal
);
414 sqlite3VdbeMemStringify(pRec
, enc
, 1);
417 pRec
->flags
&= ~(MEM_Real
|MEM_Int
|MEM_IntReal
);
422 ** Try to convert the type of a function argument or a result column
423 ** into a numeric representation. Use either INTEGER or REAL whichever
424 ** is appropriate. But only do the conversion if it is possible without
425 ** loss of information and return the revised type of the argument.
427 int sqlite3_value_numeric_type(sqlite3_value
*pVal
){
428 int eType
= sqlite3_value_type(pVal
);
429 if( eType
==SQLITE_TEXT
){
430 Mem
*pMem
= (Mem
*)pVal
;
431 applyNumericAffinity(pMem
, 0);
432 eType
= sqlite3_value_type(pVal
);
438 ** Exported version of applyAffinity(). This one works on sqlite3_value*,
439 ** not the internal Mem* type.
441 void sqlite3ValueApplyAffinity(
446 applyAffinity((Mem
*)pVal
, affinity
, enc
);
450 ** pMem currently only holds a string type (or maybe a BLOB that we can
451 ** interpret as a string if we want to). Compute its corresponding
452 ** numeric type, if has one. Set the pMem->u.r and pMem->u.i fields
455 static u16 SQLITE_NOINLINE
computeNumericType(Mem
*pMem
){
458 assert( (pMem
->flags
& (MEM_Int
|MEM_Real
|MEM_IntReal
))==0 );
459 assert( (pMem
->flags
& (MEM_Str
|MEM_Blob
))!=0 );
460 if( ExpandBlob(pMem
) ){
464 rc
= sqlite3AtoF(pMem
->z
, &pMem
->u
.r
, pMem
->n
, pMem
->enc
);
466 if( rc
==0 && sqlite3Atoi64(pMem
->z
, &ix
, pMem
->n
, pMem
->enc
)<=1 ){
472 }else if( rc
==1 && sqlite3Atoi64(pMem
->z
, &ix
, pMem
->n
, pMem
->enc
)==0 ){
480 ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or
483 ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags.
484 ** But it does set pMem->u.r and pMem->u.i appropriately.
486 static u16
numericType(Mem
*pMem
){
487 assert( (pMem
->flags
& MEM_Null
)==0
488 || pMem
->db
==0 || pMem
->db
->mallocFailed
);
489 if( pMem
->flags
& (MEM_Int
|MEM_Real
|MEM_IntReal
|MEM_Null
) ){
490 testcase( pMem
->flags
& MEM_Int
);
491 testcase( pMem
->flags
& MEM_Real
);
492 testcase( pMem
->flags
& MEM_IntReal
);
493 return pMem
->flags
& (MEM_Int
|MEM_Real
|MEM_IntReal
|MEM_Null
);
495 assert( pMem
->flags
& (MEM_Str
|MEM_Blob
) );
496 testcase( pMem
->flags
& MEM_Str
);
497 testcase( pMem
->flags
& MEM_Blob
);
498 return computeNumericType(pMem
);
504 ** Write a nice string representation of the contents of cell pMem
505 ** into buffer zBuf, length nBuf.
507 void sqlite3VdbeMemPrettyPrint(Mem
*pMem
, StrAccum
*pStr
){
509 static const char *const encnames
[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
515 assert( (f
& (MEM_Static
|MEM_Ephem
))==0 );
516 }else if( f
& MEM_Static
){
518 assert( (f
& (MEM_Dyn
|MEM_Ephem
))==0 );
519 }else if( f
& MEM_Ephem
){
521 assert( (f
& (MEM_Static
|MEM_Dyn
))==0 );
525 sqlite3_str_appendf(pStr
, "%cx[", c
);
526 for(i
=0; i
<25 && i
<pMem
->n
; i
++){
527 sqlite3_str_appendf(pStr
, "%02X", ((int)pMem
->z
[i
] & 0xFF));
529 sqlite3_str_appendf(pStr
, "|");
530 for(i
=0; i
<25 && i
<pMem
->n
; i
++){
532 sqlite3_str_appendchar(pStr
, 1, (z
<32||z
>126)?'.':z
);
534 sqlite3_str_appendf(pStr
,"]");
536 sqlite3_str_appendf(pStr
, "+%dz",pMem
->u
.nZero
);
538 }else if( f
& MEM_Str
){
543 assert( (f
& (MEM_Static
|MEM_Ephem
))==0 );
544 }else if( f
& MEM_Static
){
546 assert( (f
& (MEM_Dyn
|MEM_Ephem
))==0 );
547 }else if( f
& MEM_Ephem
){
549 assert( (f
& (MEM_Static
|MEM_Dyn
))==0 );
553 sqlite3_str_appendf(pStr
, " %c%d[", c
, pMem
->n
);
554 for(j
=0; j
<25 && j
<pMem
->n
; j
++){
556 sqlite3_str_appendchar(pStr
, 1, (c
>=0x20&&c
<=0x7f) ? c
: '.');
558 sqlite3_str_appendf(pStr
, "]%s", encnames
[pMem
->enc
]);
565 ** Print the value of a register for tracing purposes:
567 static void memTracePrint(Mem
*p
){
568 if( p
->flags
& MEM_Undefined
){
569 printf(" undefined");
570 }else if( p
->flags
& MEM_Null
){
571 printf(p
->flags
& MEM_Zero
? " NULL-nochng" : " NULL");
572 }else if( (p
->flags
& (MEM_Int
|MEM_Str
))==(MEM_Int
|MEM_Str
) ){
573 printf(" si:%lld", p
->u
.i
);
574 }else if( (p
->flags
& (MEM_IntReal
))!=0 ){
575 printf(" ir:%lld", p
->u
.i
);
576 }else if( p
->flags
& MEM_Int
){
577 printf(" i:%lld", p
->u
.i
);
578 #ifndef SQLITE_OMIT_FLOATING_POINT
579 }else if( p
->flags
& MEM_Real
){
580 printf(" r:%.17g", p
->u
.r
);
582 }else if( sqlite3VdbeMemIsRowSet(p
) ){
587 sqlite3StrAccumInit(&acc
, 0, zBuf
, sizeof(zBuf
), 0);
588 sqlite3VdbeMemPrettyPrint(p
, &acc
);
589 printf(" %s", sqlite3StrAccumFinish(&acc
));
591 if( p
->flags
& MEM_Subtype
) printf(" subtype=0x%02x", p
->eSubtype
);
593 static void registerTrace(int iReg
, Mem
*p
){
594 printf("R[%d] = ", iReg
);
597 printf(" <== R[%d]", (int)(p
->pScopyFrom
- &p
[-iReg
]));
600 sqlite3VdbeCheckMemInvariants(p
);
602 /**/ void sqlite3PrintMem(Mem
*pMem
){
611 ** Show the values of all registers in the virtual machine. Used for
612 ** interactive debugging.
614 void sqlite3VdbeRegisterDump(Vdbe
*v
){
616 for(i
=1; i
<v
->nMem
; i
++) registerTrace(i
, v
->aMem
+i
);
618 #endif /* SQLITE_DEBUG */
622 # define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M)
624 # define REGISTER_TRACE(R,M)
629 ** This function is only called from within an assert() expression. It
630 ** checks that the sqlite3.nTransaction variable is correctly set to
631 ** the number of non-transaction savepoints currently in the
632 ** linked list starting at sqlite3.pSavepoint.
636 ** assert( checkSavepointCount(db) );
638 static int checkSavepointCount(sqlite3
*db
){
641 for(p
=db
->pSavepoint
; p
; p
=p
->pNext
) n
++;
642 assert( n
==(db
->nSavepoint
+ db
->isTransactionSavepoint
) );
648 ** Return the register of pOp->p2 after first preparing it to be
649 ** overwritten with an integer value.
651 static SQLITE_NOINLINE Mem
*out2PrereleaseWithClear(Mem
*pOut
){
652 sqlite3VdbeMemSetNull(pOut
);
653 pOut
->flags
= MEM_Int
;
656 static Mem
*out2Prerelease(Vdbe
*p
, VdbeOp
*pOp
){
659 assert( pOp
->p2
<=(p
->nMem
+1 - p
->nCursor
) );
660 pOut
= &p
->aMem
[pOp
->p2
];
661 memAboutToChange(p
, pOut
);
662 if( VdbeMemDynamic(pOut
) ){ /*OPTIMIZATION-IF-FALSE*/
663 return out2PrereleaseWithClear(pOut
);
665 pOut
->flags
= MEM_Int
;
671 ** Compute a bloom filter hash using pOp->p4.i registers from aMem[] beginning
672 ** with pOp->p3. Return the hash.
674 static u64
filterHash(const Mem
*aMem
, const Op
*pOp
){
678 assert( pOp
->p4type
==P4_INT32
);
679 for(i
=pOp
->p3
, mx
=i
+pOp
->p4
.i
; i
<mx
; i
++){
680 const Mem
*p
= &aMem
[i
];
681 if( p
->flags
& (MEM_Int
|MEM_IntReal
) ){
683 }else if( p
->flags
& MEM_Real
){
684 h
+= sqlite3VdbeIntValue(p
);
685 }else if( p
->flags
& (MEM_Str
|MEM_Blob
) ){
686 /* All strings have the same hash and all blobs have the same hash,
687 ** though, at least, those hashes are different from each other and
689 h
+= 4093 + (p
->flags
& (MEM_Str
|MEM_Blob
));
696 ** Return the symbolic name for the data type of a pMem
698 static const char *vdbeMemTypeName(Mem
*pMem
){
699 static const char *azTypes
[] = {
700 /* SQLITE_INTEGER */ "INT",
701 /* SQLITE_FLOAT */ "REAL",
702 /* SQLITE_TEXT */ "TEXT",
703 /* SQLITE_BLOB */ "BLOB",
704 /* SQLITE_NULL */ "NULL"
706 return azTypes
[sqlite3_value_type(pMem
)-1];
710 ** Execute as much of a VDBE program as we can.
711 ** This is the core of sqlite3_step().
714 Vdbe
*p
/* The VDBE */
716 Op
*aOp
= p
->aOp
; /* Copy of p->aOp */
717 Op
*pOp
= aOp
; /* Current operation */
719 Op
*pOrigOp
; /* Value of pOp at the top of the loop */
720 int nExtraDelete
= 0; /* Verifies FORDELETE and AUXDELETE flags */
721 u8 iCompareIsInit
= 0; /* iCompare is initialized */
723 int rc
= SQLITE_OK
; /* Value to return */
724 sqlite3
*db
= p
->db
; /* The database */
725 u8 resetSchemaOnFault
= 0; /* Reset schema after an error if positive */
726 u8 encoding
= ENC(db
); /* The database encoding */
727 int iCompare
= 0; /* Result of last comparison */
728 u64 nVmStep
= 0; /* Number of virtual machine steps */
729 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
730 u64 nProgressLimit
; /* Invoke xProgress() when nVmStep reaches this */
732 Mem
*aMem
= p
->aMem
; /* Copy of p->aMem */
733 Mem
*pIn1
= 0; /* 1st input operand */
734 Mem
*pIn2
= 0; /* 2nd input operand */
735 Mem
*pIn3
= 0; /* 3rd input operand */
736 Mem
*pOut
= 0; /* Output operand */
737 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || defined(VDBE_PROFILE)
739 int bStmtScanStatus
= IS_STMT_SCANSTATUS(db
)!=0;
741 /*** INSERT STACK UNION HERE ***/
743 assert( p
->eVdbeState
==VDBE_RUN_STATE
); /* sqlite3_step() verifies this */
744 if( DbMaskNonZero(p
->lockMask
) ){
747 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
749 u32 iPrior
= p
->aCounter
[SQLITE_STMTSTATUS_VM_STEP
];
750 assert( 0 < db
->nProgressOps
);
751 nProgressLimit
= db
->nProgressOps
- (iPrior
% db
->nProgressOps
);
753 nProgressLimit
= LARGEST_UINT64
;
756 if( p
->rc
==SQLITE_NOMEM
){
757 /* This happens if a malloc() inside a call to sqlite3_column_text() or
758 ** sqlite3_column_text16() failed. */
761 assert( p
->rc
==SQLITE_OK
|| (p
->rc
&0xff)==SQLITE_BUSY
);
762 testcase( p
->rc
!=SQLITE_OK
);
764 assert( p
->bIsReader
|| p
->readOnly
!=0 );
766 assert( p
->explain
==0 );
767 db
->busyHandler
.nBusy
= 0;
768 if( AtomicLoad(&db
->u1
.isInterrupted
) ) goto abort_due_to_interrupt
;
769 sqlite3VdbeIOTraceSql(p
);
771 sqlite3BeginBenignMalloc();
773 && (p
->db
->flags
& (SQLITE_VdbeListing
|SQLITE_VdbeEQP
|SQLITE_VdbeTrace
))!=0
777 sqlite3VdbePrintSql(p
);
778 if( p
->db
->flags
& SQLITE_VdbeListing
){
779 printf("VDBE Program Listing:\n");
780 for(i
=0; i
<p
->nOp
; i
++){
781 sqlite3VdbePrintOp(stdout
, i
, &aOp
[i
]);
784 if( p
->db
->flags
& SQLITE_VdbeEQP
){
785 for(i
=0; i
<p
->nOp
; i
++){
786 if( aOp
[i
].opcode
==OP_Explain
){
787 if( once
) printf("VDBE Query Plan:\n");
788 printf("%s\n", aOp
[i
].p4
.z
);
793 if( p
->db
->flags
& SQLITE_VdbeTrace
) printf("VDBE Trace:\n");
795 sqlite3EndBenignMalloc();
797 for(pOp
=&aOp
[p
->pc
]; 1; pOp
++){
798 /* Errors are detected by individual opcodes, with an immediate
799 ** jumps to abort_due_to_error. */
800 assert( rc
==SQLITE_OK
);
802 assert( pOp
>=aOp
&& pOp
<&aOp
[p
->nOp
]);
805 #if defined(VDBE_PROFILE)
807 pnCycle
= &pOp
->nCycle
;
808 if( sqlite3NProfileCnt
==0 ) *pnCycle
-= sqlite3Hwtime();
809 #elif defined(SQLITE_ENABLE_STMT_SCANSTATUS)
810 if( bStmtScanStatus
){
812 pnCycle
= &pOp
->nCycle
;
813 *pnCycle
-= sqlite3Hwtime();
817 /* Only allow tracing if SQLITE_DEBUG is defined.
820 if( db
->flags
& SQLITE_VdbeTrace
){
821 sqlite3VdbePrintOp(stdout
, (int)(pOp
- aOp
), pOp
);
822 test_trace_breakpoint((int)(pOp
- aOp
),pOp
,p
);
827 /* Check to see if we need to simulate an interrupt. This only happens
828 ** if we have a special test build.
831 if( sqlite3_interrupt_count
>0 ){
832 sqlite3_interrupt_count
--;
833 if( sqlite3_interrupt_count
==0 ){
834 sqlite3_interrupt(db
);
839 /* Sanity checking on other operands */
842 u8 opProperty
= sqlite3OpcodeProperty
[pOp
->opcode
];
843 if( (opProperty
& OPFLG_IN1
)!=0 ){
845 assert( pOp
->p1
<=(p
->nMem
+1 - p
->nCursor
) );
846 assert( memIsValid(&aMem
[pOp
->p1
]) );
847 assert( sqlite3VdbeCheckMemInvariants(&aMem
[pOp
->p1
]) );
848 REGISTER_TRACE(pOp
->p1
, &aMem
[pOp
->p1
]);
850 if( (opProperty
& OPFLG_IN2
)!=0 ){
852 assert( pOp
->p2
<=(p
->nMem
+1 - p
->nCursor
) );
853 assert( memIsValid(&aMem
[pOp
->p2
]) );
854 assert( sqlite3VdbeCheckMemInvariants(&aMem
[pOp
->p2
]) );
855 REGISTER_TRACE(pOp
->p2
, &aMem
[pOp
->p2
]);
857 if( (opProperty
& OPFLG_IN3
)!=0 ){
859 assert( pOp
->p3
<=(p
->nMem
+1 - p
->nCursor
) );
860 assert( memIsValid(&aMem
[pOp
->p3
]) );
861 assert( sqlite3VdbeCheckMemInvariants(&aMem
[pOp
->p3
]) );
862 REGISTER_TRACE(pOp
->p3
, &aMem
[pOp
->p3
]);
864 if( (opProperty
& OPFLG_OUT2
)!=0 ){
866 assert( pOp
->p2
<=(p
->nMem
+1 - p
->nCursor
) );
867 memAboutToChange(p
, &aMem
[pOp
->p2
]);
869 if( (opProperty
& OPFLG_OUT3
)!=0 ){
871 assert( pOp
->p3
<=(p
->nMem
+1 - p
->nCursor
) );
872 memAboutToChange(p
, &aMem
[pOp
->p3
]);
880 switch( pOp
->opcode
){
882 /*****************************************************************************
883 ** What follows is a massive switch statement where each case implements a
884 ** separate instruction in the virtual machine. If we follow the usual
885 ** indentation conventions, each case should be indented by 6 spaces. But
886 ** that is a lot of wasted space on the left margin. So the code within
887 ** the switch statement will break with convention and be flush-left. Another
888 ** big comment (similar to this one) will mark the point in the code where
889 ** we transition back to normal indentation.
891 ** The formatting of each case is important. The makefile for SQLite
892 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this
893 ** file looking for lines that begin with "case OP_". The opcodes.h files
894 ** will be filled with #defines that give unique integer values to each
895 ** opcode and the opcodes.c file is filled with an array of strings where
896 ** each string is the symbolic name for the corresponding opcode. If the
897 ** case statement is followed by a comment of the form "/# same as ... #/"
898 ** that comment is used to determine the particular value of the opcode.
900 ** Other keywords in the comment that follows each case are used to
901 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
902 ** Keywords include: in1, in2, in3, out2, out3. See
903 ** the mkopcodeh.awk script for additional information.
905 ** Documentation about VDBE opcodes is generated by scanning this file
906 ** for lines of that contain "Opcode:". That line and all subsequent
907 ** comment lines are used in the generation of the opcode.html documentation
912 ** Formatting is important to scripts that scan this file.
913 ** Do not deviate from the formatting style currently in use.
915 *****************************************************************************/
917 /* Opcode: Goto * P2 * * *
919 ** An unconditional jump to address P2.
920 ** The next instruction executed will be
921 ** the one at index P2 from the beginning of
924 ** The P1 parameter is not actually used by this opcode. However, it
925 ** is sometimes set to 1 instead of 0 as a hint to the command-line shell
926 ** that this Goto is the bottom of a loop and that the lines from P2 down
927 ** to the current line should be indented for EXPLAIN output.
929 case OP_Goto
: { /* jump */
932 /* In debuggging mode, when the p5 flags is set on an OP_Goto, that
933 ** means we should really jump back to the preceeding OP_ReleaseReg
936 assert( pOp
->p2
< (int)(pOp
- aOp
) );
937 assert( pOp
->p2
> 1 );
938 pOp
= &aOp
[pOp
->p2
- 2];
939 assert( pOp
[1].opcode
==OP_ReleaseReg
);
940 goto check_for_interrupt
;
944 jump_to_p2_and_check_for_interrupt
:
945 pOp
= &aOp
[pOp
->p2
- 1];
947 /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev,
948 ** OP_VNext, or OP_SorterNext) all jump here upon
949 ** completion. Check to see if sqlite3_interrupt() has been called
950 ** or if the progress callback needs to be invoked.
952 ** This code uses unstructured "goto" statements and does not look clean.
953 ** But that is not due to sloppy coding habits. The code is written this
954 ** way for performance, to avoid having to run the interrupt and progress
955 ** checks on every opcode. This helps sqlite3_step() to run about 1.5%
956 ** faster according to "valgrind --tool=cachegrind" */
958 if( AtomicLoad(&db
->u1
.isInterrupted
) ) goto abort_due_to_interrupt
;
959 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
960 /* Call the progress callback if it is configured and the required number
961 ** of VDBE ops have been executed (either since this invocation of
962 ** sqlite3VdbeExec() or since last time the progress callback was called).
963 ** If the progress callback returns non-zero, exit the virtual machine with
964 ** a return code SQLITE_ABORT.
966 while( nVmStep
>=nProgressLimit
&& db
->xProgress
!=0 ){
967 assert( db
->nProgressOps
!=0 );
968 nProgressLimit
+= db
->nProgressOps
;
969 if( db
->xProgress(db
->pProgressArg
) ){
970 nProgressLimit
= LARGEST_UINT64
;
971 rc
= SQLITE_INTERRUPT
;
972 goto abort_due_to_error
;
980 /* Opcode: Gosub P1 P2 * * *
982 ** Write the current address onto register P1
983 ** and then jump to address P2.
985 case OP_Gosub
: { /* jump */
986 assert( pOp
->p1
>0 && pOp
->p1
<=(p
->nMem
+1 - p
->nCursor
) );
987 pIn1
= &aMem
[pOp
->p1
];
988 assert( VdbeMemDynamic(pIn1
)==0 );
989 memAboutToChange(p
, pIn1
);
990 pIn1
->flags
= MEM_Int
;
991 pIn1
->u
.i
= (int)(pOp
-aOp
);
992 REGISTER_TRACE(pOp
->p1
, pIn1
);
993 goto jump_to_p2_and_check_for_interrupt
;
996 /* Opcode: Return P1 P2 P3 * *
998 ** Jump to the address stored in register P1. If P1 is a return address
999 ** register, then this accomplishes a return from a subroutine.
1001 ** If P3 is 1, then the jump is only taken if register P1 holds an integer
1002 ** values, otherwise execution falls through to the next opcode, and the
1003 ** OP_Return becomes a no-op. If P3 is 0, then register P1 must hold an
1004 ** integer or else an assert() is raised. P3 should be set to 1 when
1005 ** this opcode is used in combination with OP_BeginSubrtn, and set to 0
1008 ** The value in register P1 is unchanged by this opcode.
1010 ** P2 is not used by the byte-code engine. However, if P2 is positive
1011 ** and also less than the current address, then the "EXPLAIN" output
1012 ** formatter in the CLI will indent all opcodes from the P2 opcode up
1013 ** to be not including the current Return. P2 should be the first opcode
1014 ** in the subroutine from which this opcode is returning. Thus the P2
1015 ** value is a byte-code indentation hint. See tag-20220407a in
1016 ** wherecode.c and shell.c.
1018 case OP_Return
: { /* in1 */
1019 pIn1
= &aMem
[pOp
->p1
];
1020 if( pIn1
->flags
& MEM_Int
){
1021 if( pOp
->p3
){ VdbeBranchTaken(1, 2); }
1022 pOp
= &aOp
[pIn1
->u
.i
];
1023 }else if( ALWAYS(pOp
->p3
) ){
1024 VdbeBranchTaken(0, 2);
1029 /* Opcode: InitCoroutine P1 P2 P3 * *
1031 ** Set up register P1 so that it will Yield to the coroutine
1032 ** located at address P3.
1034 ** If P2!=0 then the coroutine implementation immediately follows
1035 ** this opcode. So jump over the coroutine implementation to
1038 ** See also: EndCoroutine
1040 case OP_InitCoroutine
: { /* jump */
1041 assert( pOp
->p1
>0 && pOp
->p1
<=(p
->nMem
+1 - p
->nCursor
) );
1042 assert( pOp
->p2
>=0 && pOp
->p2
<p
->nOp
);
1043 assert( pOp
->p3
>=0 && pOp
->p3
<p
->nOp
);
1044 pOut
= &aMem
[pOp
->p1
];
1045 assert( !VdbeMemDynamic(pOut
) );
1046 pOut
->u
.i
= pOp
->p3
- 1;
1047 pOut
->flags
= MEM_Int
;
1048 if( pOp
->p2
==0 ) break;
1050 /* Most jump operations do a goto to this spot in order to update
1051 ** the pOp pointer. */
1053 assert( pOp
->p2
>0 ); /* There are never any jumps to instruction 0 */
1054 assert( pOp
->p2
<p
->nOp
); /* Jumps must be in range */
1055 pOp
= &aOp
[pOp
->p2
- 1];
1059 /* Opcode: EndCoroutine P1 * * * *
1061 ** The instruction at the address in register P1 is a Yield.
1062 ** Jump to the P2 parameter of that Yield.
1063 ** After the jump, register P1 becomes undefined.
1065 ** See also: InitCoroutine
1067 case OP_EndCoroutine
: { /* in1 */
1069 pIn1
= &aMem
[pOp
->p1
];
1070 assert( pIn1
->flags
==MEM_Int
);
1071 assert( pIn1
->u
.i
>=0 && pIn1
->u
.i
<p
->nOp
);
1072 pCaller
= &aOp
[pIn1
->u
.i
];
1073 assert( pCaller
->opcode
==OP_Yield
);
1074 assert( pCaller
->p2
>=0 && pCaller
->p2
<p
->nOp
);
1075 pOp
= &aOp
[pCaller
->p2
- 1];
1076 pIn1
->flags
= MEM_Undefined
;
1080 /* Opcode: Yield P1 P2 * * *
1082 ** Swap the program counter with the value in register P1. This
1083 ** has the effect of yielding to a coroutine.
1085 ** If the coroutine that is launched by this instruction ends with
1086 ** Yield or Return then continue to the next instruction. But if
1087 ** the coroutine launched by this instruction ends with
1088 ** EndCoroutine, then jump to P2 rather than continuing with the
1089 ** next instruction.
1091 ** See also: InitCoroutine
1093 case OP_Yield
: { /* in1, jump */
1095 pIn1
= &aMem
[pOp
->p1
];
1096 assert( VdbeMemDynamic(pIn1
)==0 );
1097 pIn1
->flags
= MEM_Int
;
1098 pcDest
= (int)pIn1
->u
.i
;
1099 pIn1
->u
.i
= (int)(pOp
- aOp
);
1100 REGISTER_TRACE(pOp
->p1
, pIn1
);
1105 /* Opcode: HaltIfNull P1 P2 P3 P4 P5
1106 ** Synopsis: if r[P3]=null halt
1108 ** Check the value in register P3. If it is NULL then Halt using
1109 ** parameter P1, P2, and P4 as if this were a Halt instruction. If the
1110 ** value in register P3 is not NULL, then this routine is a no-op.
1111 ** The P5 parameter should be 1.
1113 case OP_HaltIfNull
: { /* in3 */
1114 pIn3
= &aMem
[pOp
->p3
];
1116 if( pOp
->p2
==OE_Abort
){ sqlite3VdbeAssertAbortable(p
); }
1118 if( (pIn3
->flags
& MEM_Null
)==0 ) break;
1119 /* Fall through into OP_Halt */
1120 /* no break */ deliberate_fall_through
1123 /* Opcode: Halt P1 P2 * P4 P5
1125 ** Exit immediately. All open cursors, etc are closed
1128 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
1129 ** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0).
1130 ** For errors, it can be some other value. If P1!=0 then P2 will determine
1131 ** whether or not to rollback the current transaction. Do not rollback
1132 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort,
1133 ** then back out all changes that have occurred during this execution of the
1134 ** VDBE, but do not rollback the transaction.
1136 ** If P4 is not null then it is an error message string.
1138 ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string.
1141 ** 1: NOT NULL contraint failed: P4
1142 ** 2: UNIQUE constraint failed: P4
1143 ** 3: CHECK constraint failed: P4
1144 ** 4: FOREIGN KEY constraint failed: P4
1146 ** If P5 is not zero and P4 is NULL, then everything after the ":" is
1149 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of
1150 ** every program. So a jump past the last instruction of the program
1151 ** is the same as executing Halt.
1158 if( pOp
->p2
==OE_Abort
){ sqlite3VdbeAssertAbortable(p
); }
1161 /* A deliberately coded "OP_Halt SQLITE_INTERNAL * * * *" opcode indicates
1162 ** something is wrong with the code generator. Raise an assertion in order
1163 ** to bring this to the attention of fuzzers and other testing tools. */
1164 assert( pOp
->p1
!=SQLITE_INTERNAL
);
1166 if( p
->pFrame
&& pOp
->p1
==SQLITE_OK
){
1167 /* Halt the sub-program. Return control to the parent frame. */
1169 p
->pFrame
= pFrame
->pParent
;
1171 sqlite3VdbeSetChanges(db
, p
->nChange
);
1172 pcx
= sqlite3VdbeFrameRestore(pFrame
);
1173 if( pOp
->p2
==OE_Ignore
){
1174 /* Instruction pcx is the OP_Program that invoked the sub-program
1175 ** currently being halted. If the p2 instruction of this OP_Halt
1176 ** instruction is set to OE_Ignore, then the sub-program is throwing
1177 ** an IGNORE exception. In this case jump to the address specified
1178 ** as the p2 of the calling OP_Program. */
1179 pcx
= p
->aOp
[pcx
].p2
-1;
1187 p
->errorAction
= (u8
)pOp
->p2
;
1188 assert( pOp
->p5
<=4 );
1191 static const char * const azType
[] = { "NOT NULL", "UNIQUE", "CHECK",
1193 testcase( pOp
->p5
==1 );
1194 testcase( pOp
->p5
==2 );
1195 testcase( pOp
->p5
==3 );
1196 testcase( pOp
->p5
==4 );
1197 sqlite3VdbeError(p
, "%s constraint failed", azType
[pOp
->p5
-1]);
1199 p
->zErrMsg
= sqlite3MPrintf(db
, "%z: %s", p
->zErrMsg
, pOp
->p4
.z
);
1202 sqlite3VdbeError(p
, "%s", pOp
->p4
.z
);
1204 pcx
= (int)(pOp
- aOp
);
1205 sqlite3_log(pOp
->p1
, "abort at %d in [%s]: %s", pcx
, p
->zSql
, p
->zErrMsg
);
1207 rc
= sqlite3VdbeHalt(p
);
1208 assert( rc
==SQLITE_BUSY
|| rc
==SQLITE_OK
|| rc
==SQLITE_ERROR
);
1209 if( rc
==SQLITE_BUSY
){
1210 p
->rc
= SQLITE_BUSY
;
1212 assert( rc
==SQLITE_OK
|| (p
->rc
&0xff)==SQLITE_CONSTRAINT
);
1213 assert( rc
==SQLITE_OK
|| db
->nDeferredCons
>0 || db
->nDeferredImmCons
>0 );
1214 rc
= p
->rc
? SQLITE_ERROR
: SQLITE_DONE
;
1219 /* Opcode: Integer P1 P2 * * *
1220 ** Synopsis: r[P2]=P1
1222 ** The 32-bit integer value P1 is written into register P2.
1224 case OP_Integer
: { /* out2 */
1225 pOut
= out2Prerelease(p
, pOp
);
1226 pOut
->u
.i
= pOp
->p1
;
1230 /* Opcode: Int64 * P2 * P4 *
1231 ** Synopsis: r[P2]=P4
1233 ** P4 is a pointer to a 64-bit integer value.
1234 ** Write that value into register P2.
1236 case OP_Int64
: { /* out2 */
1237 pOut
= out2Prerelease(p
, pOp
);
1238 assert( pOp
->p4
.pI64
!=0 );
1239 pOut
->u
.i
= *pOp
->p4
.pI64
;
1243 #ifndef SQLITE_OMIT_FLOATING_POINT
1244 /* Opcode: Real * P2 * P4 *
1245 ** Synopsis: r[P2]=P4
1247 ** P4 is a pointer to a 64-bit floating point value.
1248 ** Write that value into register P2.
1250 case OP_Real
: { /* same as TK_FLOAT, out2 */
1251 pOut
= out2Prerelease(p
, pOp
);
1252 pOut
->flags
= MEM_Real
;
1253 assert( !sqlite3IsNaN(*pOp
->p4
.pReal
) );
1254 pOut
->u
.r
= *pOp
->p4
.pReal
;
1259 /* Opcode: String8 * P2 * P4 *
1260 ** Synopsis: r[P2]='P4'
1262 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed
1263 ** into a String opcode before it is executed for the first time. During
1264 ** this transformation, the length of string P4 is computed and stored
1265 ** as the P1 parameter.
1267 case OP_String8
: { /* same as TK_STRING, out2 */
1268 assert( pOp
->p4
.z
!=0 );
1269 pOut
= out2Prerelease(p
, pOp
);
1270 pOp
->p1
= sqlite3Strlen30(pOp
->p4
.z
);
1272 #ifndef SQLITE_OMIT_UTF16
1273 if( encoding
!=SQLITE_UTF8
){
1274 rc
= sqlite3VdbeMemSetStr(pOut
, pOp
->p4
.z
, -1, SQLITE_UTF8
, SQLITE_STATIC
);
1275 assert( rc
==SQLITE_OK
|| rc
==SQLITE_TOOBIG
);
1276 if( rc
) goto too_big
;
1277 if( SQLITE_OK
!=sqlite3VdbeChangeEncoding(pOut
, encoding
) ) goto no_mem
;
1278 assert( pOut
->szMalloc
>0 && pOut
->zMalloc
==pOut
->z
);
1279 assert( VdbeMemDynamic(pOut
)==0 );
1281 pOut
->flags
|= MEM_Static
;
1282 if( pOp
->p4type
==P4_DYNAMIC
){
1283 sqlite3DbFree(db
, pOp
->p4
.z
);
1285 pOp
->p4type
= P4_DYNAMIC
;
1286 pOp
->p4
.z
= pOut
->z
;
1290 if( pOp
->p1
>db
->aLimit
[SQLITE_LIMIT_LENGTH
] ){
1293 pOp
->opcode
= OP_String
;
1294 assert( rc
==SQLITE_OK
);
1295 /* Fall through to the next case, OP_String */
1296 /* no break */ deliberate_fall_through
1299 /* Opcode: String P1 P2 P3 P4 P5
1300 ** Synopsis: r[P2]='P4' (len=P1)
1302 ** The string value P4 of length P1 (bytes) is stored in register P2.
1304 ** If P3 is not zero and the content of register P3 is equal to P5, then
1305 ** the datatype of the register P2 is converted to BLOB. The content is
1306 ** the same sequence of bytes, it is merely interpreted as a BLOB instead
1307 ** of a string, as if it had been CAST. In other words:
1309 ** if( P3!=0 and reg[P3]==P5 ) reg[P2] := CAST(reg[P2] as BLOB)
1311 case OP_String
: { /* out2 */
1312 assert( pOp
->p4
.z
!=0 );
1313 pOut
= out2Prerelease(p
, pOp
);
1314 pOut
->flags
= MEM_Str
|MEM_Static
|MEM_Term
;
1315 pOut
->z
= pOp
->p4
.z
;
1317 pOut
->enc
= encoding
;
1318 UPDATE_MAX_BLOBSIZE(pOut
);
1319 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
1321 assert( pOp
->p3
<=(p
->nMem
+1 - p
->nCursor
) );
1322 pIn3
= &aMem
[pOp
->p3
];
1323 assert( pIn3
->flags
& MEM_Int
);
1324 if( pIn3
->u
.i
==pOp
->p5
) pOut
->flags
= MEM_Blob
|MEM_Static
|MEM_Term
;
1330 /* Opcode: BeginSubrtn * P2 * * *
1331 ** Synopsis: r[P2]=NULL
1333 ** Mark the beginning of a subroutine that can be entered in-line
1334 ** or that can be called using OP_Gosub. The subroutine should
1335 ** be terminated by an OP_Return instruction that has a P1 operand that
1336 ** is the same as the P2 operand to this opcode and that has P3 set to 1.
1337 ** If the subroutine is entered in-line, then the OP_Return will simply
1338 ** fall through. But if the subroutine is entered using OP_Gosub, then
1339 ** the OP_Return will jump back to the first instruction after the OP_Gosub.
1341 ** This routine works by loading a NULL into the P2 register. When the
1342 ** return address register contains a NULL, the OP_Return instruction is
1343 ** a no-op that simply falls through to the next instruction (assuming that
1344 ** the OP_Return opcode has a P3 value of 1). Thus if the subroutine is
1345 ** entered in-line, then the OP_Return will cause in-line execution to
1346 ** continue. But if the subroutine is entered via OP_Gosub, then the
1347 ** OP_Return will cause a return to the address following the OP_Gosub.
1349 ** This opcode is identical to OP_Null. It has a different name
1350 ** only to make the byte code easier to read and verify.
1352 /* Opcode: Null P1 P2 P3 * *
1353 ** Synopsis: r[P2..P3]=NULL
1355 ** Write a NULL into registers P2. If P3 greater than P2, then also write
1356 ** NULL into register P3 and every register in between P2 and P3. If P3
1357 ** is less than P2 (typically P3 is zero) then only register P2 is
1360 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that
1361 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on
1364 case OP_BeginSubrtn
:
1365 case OP_Null
: { /* out2 */
1368 pOut
= out2Prerelease(p
, pOp
);
1369 cnt
= pOp
->p3
-pOp
->p2
;
1370 assert( pOp
->p3
<=(p
->nMem
+1 - p
->nCursor
) );
1371 pOut
->flags
= nullFlag
= pOp
->p1
? (MEM_Null
|MEM_Cleared
) : MEM_Null
;
1378 memAboutToChange(p
, pOut
);
1379 sqlite3VdbeMemSetNull(pOut
);
1380 pOut
->flags
= nullFlag
;
1387 /* Opcode: SoftNull P1 * * * *
1388 ** Synopsis: r[P1]=NULL
1390 ** Set register P1 to have the value NULL as seen by the OP_MakeRecord
1391 ** instruction, but do not free any string or blob memory associated with
1392 ** the register, so that if the value was a string or blob that was
1393 ** previously copied using OP_SCopy, the copies will continue to be valid.
1396 assert( pOp
->p1
>0 && pOp
->p1
<=(p
->nMem
+1 - p
->nCursor
) );
1397 pOut
= &aMem
[pOp
->p1
];
1398 pOut
->flags
= (pOut
->flags
&~(MEM_Undefined
|MEM_AffMask
))|MEM_Null
;
1402 /* Opcode: Blob P1 P2 * P4 *
1403 ** Synopsis: r[P2]=P4 (len=P1)
1405 ** P4 points to a blob of data P1 bytes long. Store this
1406 ** blob in register P2. If P4 is a NULL pointer, then construct
1407 ** a zero-filled blob that is P1 bytes long in P2.
1409 case OP_Blob
: { /* out2 */
1410 assert( pOp
->p1
<= SQLITE_MAX_LENGTH
);
1411 pOut
= out2Prerelease(p
, pOp
);
1413 sqlite3VdbeMemSetZeroBlob(pOut
, pOp
->p1
);
1414 if( sqlite3VdbeMemExpandBlob(pOut
) ) goto no_mem
;
1416 sqlite3VdbeMemSetStr(pOut
, pOp
->p4
.z
, pOp
->p1
, 0, 0);
1418 pOut
->enc
= encoding
;
1419 UPDATE_MAX_BLOBSIZE(pOut
);
1423 /* Opcode: Variable P1 P2 * P4 *
1424 ** Synopsis: r[P2]=parameter(P1,P4)
1426 ** Transfer the values of bound parameter P1 into register P2
1428 ** If the parameter is named, then its name appears in P4.
1429 ** The P4 value is used by sqlite3_bind_parameter_name().
1431 case OP_Variable
: { /* out2 */
1432 Mem
*pVar
; /* Value being transferred */
1434 assert( pOp
->p1
>0 && pOp
->p1
<=p
->nVar
);
1435 assert( pOp
->p4
.z
==0 || pOp
->p4
.z
==sqlite3VListNumToName(p
->pVList
,pOp
->p1
) );
1436 pVar
= &p
->aVar
[pOp
->p1
- 1];
1437 if( sqlite3VdbeMemTooBig(pVar
) ){
1440 pOut
= &aMem
[pOp
->p2
];
1441 if( VdbeMemDynamic(pOut
) ) sqlite3VdbeMemSetNull(pOut
);
1442 memcpy(pOut
, pVar
, MEMCELLSIZE
);
1443 pOut
->flags
&= ~(MEM_Dyn
|MEM_Ephem
);
1444 pOut
->flags
|= MEM_Static
|MEM_FromBind
;
1445 UPDATE_MAX_BLOBSIZE(pOut
);
1449 /* Opcode: Move P1 P2 P3 * *
1450 ** Synopsis: r[P2@P3]=r[P1@P3]
1452 ** Move the P3 values in register P1..P1+P3-1 over into
1453 ** registers P2..P2+P3-1. Registers P1..P1+P3-1 are
1454 ** left holding a NULL. It is an error for register ranges
1455 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap. It is an error
1456 ** for P3 to be less than 1.
1459 int n
; /* Number of registers left to copy */
1460 int p1
; /* Register to copy from */
1461 int p2
; /* Register to copy to */
1466 assert( n
>0 && p1
>0 && p2
>0 );
1467 assert( p1
+n
<=p2
|| p2
+n
<=p1
);
1472 assert( pOut
<=&aMem
[(p
->nMem
+1 - p
->nCursor
)] );
1473 assert( pIn1
<=&aMem
[(p
->nMem
+1 - p
->nCursor
)] );
1474 assert( memIsValid(pIn1
) );
1475 memAboutToChange(p
, pOut
);
1476 sqlite3VdbeMemMove(pOut
, pIn1
);
1478 pIn1
->pScopyFrom
= 0;
1480 for(i
=1; i
<p
->nMem
; i
++){
1481 if( aMem
[i
].pScopyFrom
==pIn1
){
1482 aMem
[i
].pScopyFrom
= pOut
;
1487 Deephemeralize(pOut
);
1488 REGISTER_TRACE(p2
++, pOut
);
1495 /* Opcode: Copy P1 P2 P3 * P5
1496 ** Synopsis: r[P2@P3+1]=r[P1@P3+1]
1498 ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
1500 ** If the 0x0002 bit of P5 is set then also clear the MEM_Subtype flag in the
1501 ** destination. The 0x0001 bit of P5 indicates that this Copy opcode cannot
1502 ** be merged. The 0x0001 bit is used by the query planner and does not
1503 ** come into play during query execution.
1505 ** This instruction makes a deep copy of the value. A duplicate
1506 ** is made of any string or blob constant. See also OP_SCopy.
1512 pIn1
= &aMem
[pOp
->p1
];
1513 pOut
= &aMem
[pOp
->p2
];
1514 assert( pOut
!=pIn1
);
1516 memAboutToChange(p
, pOut
);
1517 sqlite3VdbeMemShallowCopy(pOut
, pIn1
, MEM_Ephem
);
1518 Deephemeralize(pOut
);
1519 if( (pOut
->flags
& MEM_Subtype
)!=0 && (pOp
->p5
& 0x0002)!=0 ){
1520 pOut
->flags
&= ~MEM_Subtype
;
1523 pOut
->pScopyFrom
= 0;
1525 REGISTER_TRACE(pOp
->p2
+pOp
->p3
-n
, pOut
);
1526 if( (n
--)==0 ) break;
1533 /* Opcode: SCopy P1 P2 * * *
1534 ** Synopsis: r[P2]=r[P1]
1536 ** Make a shallow copy of register P1 into register P2.
1538 ** This instruction makes a shallow copy of the value. If the value
1539 ** is a string or blob, then the copy is only a pointer to the
1540 ** original and hence if the original changes so will the copy.
1541 ** Worse, if the original is deallocated, the copy becomes invalid.
1542 ** Thus the program must guarantee that the original will not change
1543 ** during the lifetime of the copy. Use OP_Copy to make a complete
1546 case OP_SCopy
: { /* out2 */
1547 pIn1
= &aMem
[pOp
->p1
];
1548 pOut
= &aMem
[pOp
->p2
];
1549 assert( pOut
!=pIn1
);
1550 sqlite3VdbeMemShallowCopy(pOut
, pIn1
, MEM_Ephem
);
1552 pOut
->pScopyFrom
= pIn1
;
1553 pOut
->mScopyFlags
= pIn1
->flags
;
1558 /* Opcode: IntCopy P1 P2 * * *
1559 ** Synopsis: r[P2]=r[P1]
1561 ** Transfer the integer value held in register P1 into register P2.
1563 ** This is an optimized version of SCopy that works only for integer
1566 case OP_IntCopy
: { /* out2 */
1567 pIn1
= &aMem
[pOp
->p1
];
1568 assert( (pIn1
->flags
& MEM_Int
)!=0 );
1569 pOut
= &aMem
[pOp
->p2
];
1570 sqlite3VdbeMemSetInt64(pOut
, pIn1
->u
.i
);
1574 /* Opcode: FkCheck * * * * *
1576 ** Halt with an SQLITE_CONSTRAINT error if there are any unresolved
1577 ** foreign key constraint violations. If there are no foreign key
1578 ** constraint violations, this is a no-op.
1580 ** FK constraint violations are also checked when the prepared statement
1581 ** exits. This opcode is used to raise foreign key constraint errors prior
1582 ** to returning results such as a row change count or the result of a
1583 ** RETURNING clause.
1586 if( (rc
= sqlite3VdbeCheckFk(p
,0))!=SQLITE_OK
){
1587 goto abort_due_to_error
;
1592 /* Opcode: ResultRow P1 P2 * * *
1593 ** Synopsis: output=r[P1@P2]
1595 ** The registers P1 through P1+P2-1 contain a single row of
1596 ** results. This opcode causes the sqlite3_step() call to terminate
1597 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
1598 ** structure to provide access to the r(P1)..r(P1+P2-1) values as
1601 case OP_ResultRow
: {
1602 assert( p
->nResColumn
==pOp
->p2
);
1603 assert( pOp
->p1
>0 || CORRUPT_DB
);
1604 assert( pOp
->p1
+pOp
->p2
<=(p
->nMem
+1 - p
->nCursor
)+1 );
1606 p
->cacheCtr
= (p
->cacheCtr
+ 2)|1;
1607 p
->pResultRow
= &aMem
[pOp
->p1
];
1610 Mem
*pMem
= p
->pResultRow
;
1612 for(i
=0; i
<pOp
->p2
; i
++){
1613 assert( memIsValid(&pMem
[i
]) );
1614 REGISTER_TRACE(pOp
->p1
+i
, &pMem
[i
]);
1615 /* The registers in the result will not be used again when the
1616 ** prepared statement restarts. This is because sqlite3_column()
1617 ** APIs might have caused type conversions of made other changes to
1618 ** the register values. Therefore, we can go ahead and break any
1619 ** OP_SCopy dependencies. */
1620 pMem
[i
].pScopyFrom
= 0;
1624 if( db
->mallocFailed
) goto no_mem
;
1625 if( db
->mTrace
& SQLITE_TRACE_ROW
){
1626 db
->trace
.xV2(SQLITE_TRACE_ROW
, db
->pTraceArg
, p
, 0);
1628 p
->pc
= (int)(pOp
- aOp
) + 1;
1633 /* Opcode: Concat P1 P2 P3 * *
1634 ** Synopsis: r[P3]=r[P2]+r[P1]
1636 ** Add the text in register P1 onto the end of the text in
1637 ** register P2 and store the result in register P3.
1638 ** If either the P1 or P2 text are NULL then store NULL in P3.
1642 ** It is illegal for P1 and P3 to be the same register. Sometimes,
1643 ** if P3 is the same register as P2, the implementation is able
1644 ** to avoid a memcpy().
1646 case OP_Concat
: { /* same as TK_CONCAT, in1, in2, out3 */
1647 i64 nByte
; /* Total size of the output string or blob */
1648 u16 flags1
; /* Initial flags for P1 */
1649 u16 flags2
; /* Initial flags for P2 */
1651 pIn1
= &aMem
[pOp
->p1
];
1652 pIn2
= &aMem
[pOp
->p2
];
1653 pOut
= &aMem
[pOp
->p3
];
1654 testcase( pOut
==pIn2
);
1655 assert( pIn1
!=pOut
);
1656 flags1
= pIn1
->flags
;
1657 testcase( flags1
& MEM_Null
);
1658 testcase( pIn2
->flags
& MEM_Null
);
1659 if( (flags1
| pIn2
->flags
) & MEM_Null
){
1660 sqlite3VdbeMemSetNull(pOut
);
1663 if( (flags1
& (MEM_Str
|MEM_Blob
))==0 ){
1664 if( sqlite3VdbeMemStringify(pIn1
,encoding
,0) ) goto no_mem
;
1665 flags1
= pIn1
->flags
& ~MEM_Str
;
1666 }else if( (flags1
& MEM_Zero
)!=0 ){
1667 if( sqlite3VdbeMemExpandBlob(pIn1
) ) goto no_mem
;
1668 flags1
= pIn1
->flags
& ~MEM_Str
;
1670 flags2
= pIn2
->flags
;
1671 if( (flags2
& (MEM_Str
|MEM_Blob
))==0 ){
1672 if( sqlite3VdbeMemStringify(pIn2
,encoding
,0) ) goto no_mem
;
1673 flags2
= pIn2
->flags
& ~MEM_Str
;
1674 }else if( (flags2
& MEM_Zero
)!=0 ){
1675 if( sqlite3VdbeMemExpandBlob(pIn2
) ) goto no_mem
;
1676 flags2
= pIn2
->flags
& ~MEM_Str
;
1678 nByte
= pIn1
->n
+ pIn2
->n
;
1679 if( nByte
>db
->aLimit
[SQLITE_LIMIT_LENGTH
] ){
1682 if( sqlite3VdbeMemGrow(pOut
, (int)nByte
+2, pOut
==pIn2
) ){
1685 MemSetTypeFlag(pOut
, MEM_Str
);
1687 memcpy(pOut
->z
, pIn2
->z
, pIn2
->n
);
1688 assert( (pIn2
->flags
& MEM_Dyn
) == (flags2
& MEM_Dyn
) );
1689 pIn2
->flags
= flags2
;
1691 memcpy(&pOut
->z
[pIn2
->n
], pIn1
->z
, pIn1
->n
);
1692 assert( (pIn1
->flags
& MEM_Dyn
) == (flags1
& MEM_Dyn
) );
1693 pIn1
->flags
= flags1
;
1694 if( encoding
>SQLITE_UTF8
) nByte
&= ~1;
1696 pOut
->z
[nByte
+1] = 0;
1697 pOut
->flags
|= MEM_Term
;
1698 pOut
->n
= (int)nByte
;
1699 pOut
->enc
= encoding
;
1700 UPDATE_MAX_BLOBSIZE(pOut
);
1704 /* Opcode: Add P1 P2 P3 * *
1705 ** Synopsis: r[P3]=r[P1]+r[P2]
1707 ** Add the value in register P1 to the value in register P2
1708 ** and store the result in register P3.
1709 ** If either input is NULL, the result is NULL.
1711 /* Opcode: Multiply P1 P2 P3 * *
1712 ** Synopsis: r[P3]=r[P1]*r[P2]
1715 ** Multiply the value in register P1 by the value in register P2
1716 ** and store the result in register P3.
1717 ** If either input is NULL, the result is NULL.
1719 /* Opcode: Subtract P1 P2 P3 * *
1720 ** Synopsis: r[P3]=r[P2]-r[P1]
1722 ** Subtract the value in register P1 from the value in register P2
1723 ** and store the result in register P3.
1724 ** If either input is NULL, the result is NULL.
1726 /* Opcode: Divide P1 P2 P3 * *
1727 ** Synopsis: r[P3]=r[P2]/r[P1]
1729 ** Divide the value in register P1 by the value in register P2
1730 ** and store the result in register P3 (P3=P2/P1). If the value in
1731 ** register P1 is zero, then the result is NULL. If either input is
1732 ** NULL, the result is NULL.
1734 /* Opcode: Remainder P1 P2 P3 * *
1735 ** Synopsis: r[P3]=r[P2]%r[P1]
1737 ** Compute the remainder after integer register P2 is divided by
1738 ** register P1 and store the result in register P3.
1739 ** If the value in register P1 is zero the result is NULL.
1740 ** If either operand is NULL, the result is NULL.
1742 case OP_Add
: /* same as TK_PLUS, in1, in2, out3 */
1743 case OP_Subtract
: /* same as TK_MINUS, in1, in2, out3 */
1744 case OP_Multiply
: /* same as TK_STAR, in1, in2, out3 */
1745 case OP_Divide
: /* same as TK_SLASH, in1, in2, out3 */
1746 case OP_Remainder
: { /* same as TK_REM, in1, in2, out3 */
1747 u16 type1
; /* Numeric type of left operand */
1748 u16 type2
; /* Numeric type of right operand */
1749 i64 iA
; /* Integer value of left operand */
1750 i64 iB
; /* Integer value of right operand */
1751 double rA
; /* Real value of left operand */
1752 double rB
; /* Real value of right operand */
1754 pIn1
= &aMem
[pOp
->p1
];
1755 type1
= pIn1
->flags
;
1756 pIn2
= &aMem
[pOp
->p2
];
1757 type2
= pIn2
->flags
;
1758 pOut
= &aMem
[pOp
->p3
];
1759 if( (type1
& type2
& MEM_Int
)!=0 ){
1763 switch( pOp
->opcode
){
1764 case OP_Add
: if( sqlite3AddInt64(&iB
,iA
) ) goto fp_math
; break;
1765 case OP_Subtract
: if( sqlite3SubInt64(&iB
,iA
) ) goto fp_math
; break;
1766 case OP_Multiply
: if( sqlite3MulInt64(&iB
,iA
) ) goto fp_math
; break;
1768 if( iA
==0 ) goto arithmetic_result_is_null
;
1769 if( iA
==-1 && iB
==SMALLEST_INT64
) goto fp_math
;
1774 if( iA
==0 ) goto arithmetic_result_is_null
;
1775 if( iA
==-1 ) iA
= 1;
1781 MemSetTypeFlag(pOut
, MEM_Int
);
1782 }else if( ((type1
| type2
) & MEM_Null
)!=0 ){
1783 goto arithmetic_result_is_null
;
1785 type1
= numericType(pIn1
);
1786 type2
= numericType(pIn2
);
1787 if( (type1
& type2
& MEM_Int
)!=0 ) goto int_math
;
1789 rA
= sqlite3VdbeRealValue(pIn1
);
1790 rB
= sqlite3VdbeRealValue(pIn2
);
1791 switch( pOp
->opcode
){
1792 case OP_Add
: rB
+= rA
; break;
1793 case OP_Subtract
: rB
-= rA
; break;
1794 case OP_Multiply
: rB
*= rA
; break;
1796 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
1797 if( rA
==(double)0 ) goto arithmetic_result_is_null
;
1802 iA
= sqlite3VdbeIntValue(pIn1
);
1803 iB
= sqlite3VdbeIntValue(pIn2
);
1804 if( iA
==0 ) goto arithmetic_result_is_null
;
1805 if( iA
==-1 ) iA
= 1;
1806 rB
= (double)(iB
% iA
);
1810 #ifdef SQLITE_OMIT_FLOATING_POINT
1812 MemSetTypeFlag(pOut
, MEM_Int
);
1814 if( sqlite3IsNaN(rB
) ){
1815 goto arithmetic_result_is_null
;
1818 MemSetTypeFlag(pOut
, MEM_Real
);
1823 arithmetic_result_is_null
:
1824 sqlite3VdbeMemSetNull(pOut
);
1828 /* Opcode: CollSeq P1 * * P4
1830 ** P4 is a pointer to a CollSeq object. If the next call to a user function
1831 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
1832 ** be returned. This is used by the built-in min(), max() and nullif()
1835 ** If P1 is not zero, then it is a register that a subsequent min() or
1836 ** max() aggregate will set to 1 if the current row is not the minimum or
1837 ** maximum. The P1 register is initialized to 0 by this instruction.
1839 ** The interface used by the implementation of the aforementioned functions
1840 ** to retrieve the collation sequence set by this opcode is not available
1841 ** publicly. Only built-in functions have access to this feature.
1844 assert( pOp
->p4type
==P4_COLLSEQ
);
1846 sqlite3VdbeMemSetInt64(&aMem
[pOp
->p1
], 0);
1851 /* Opcode: BitAnd P1 P2 P3 * *
1852 ** Synopsis: r[P3]=r[P1]&r[P2]
1854 ** Take the bit-wise AND of the values in register P1 and P2 and
1855 ** store the result in register P3.
1856 ** If either input is NULL, the result is NULL.
1858 /* Opcode: BitOr P1 P2 P3 * *
1859 ** Synopsis: r[P3]=r[P1]|r[P2]
1861 ** Take the bit-wise OR of the values in register P1 and P2 and
1862 ** store the result in register P3.
1863 ** If either input is NULL, the result is NULL.
1865 /* Opcode: ShiftLeft P1 P2 P3 * *
1866 ** Synopsis: r[P3]=r[P2]<<r[P1]
1868 ** Shift the integer value in register P2 to the left by the
1869 ** number of bits specified by the integer in register P1.
1870 ** Store the result in register P3.
1871 ** If either input is NULL, the result is NULL.
1873 /* Opcode: ShiftRight P1 P2 P3 * *
1874 ** Synopsis: r[P3]=r[P2]>>r[P1]
1876 ** Shift the integer value in register P2 to the right by the
1877 ** number of bits specified by the integer in register P1.
1878 ** Store the result in register P3.
1879 ** If either input is NULL, the result is NULL.
1881 case OP_BitAnd
: /* same as TK_BITAND, in1, in2, out3 */
1882 case OP_BitOr
: /* same as TK_BITOR, in1, in2, out3 */
1883 case OP_ShiftLeft
: /* same as TK_LSHIFT, in1, in2, out3 */
1884 case OP_ShiftRight
: { /* same as TK_RSHIFT, in1, in2, out3 */
1890 pIn1
= &aMem
[pOp
->p1
];
1891 pIn2
= &aMem
[pOp
->p2
];
1892 pOut
= &aMem
[pOp
->p3
];
1893 if( (pIn1
->flags
| pIn2
->flags
) & MEM_Null
){
1894 sqlite3VdbeMemSetNull(pOut
);
1897 iA
= sqlite3VdbeIntValue(pIn2
);
1898 iB
= sqlite3VdbeIntValue(pIn1
);
1900 if( op
==OP_BitAnd
){
1902 }else if( op
==OP_BitOr
){
1905 assert( op
==OP_ShiftRight
|| op
==OP_ShiftLeft
);
1907 /* If shifting by a negative amount, shift in the other direction */
1909 assert( OP_ShiftRight
==OP_ShiftLeft
+1 );
1910 op
= 2*OP_ShiftLeft
+ 1 - op
;
1911 iB
= iB
>(-64) ? -iB
: 64;
1915 iA
= (iA
>=0 || op
==OP_ShiftLeft
) ? 0 : -1;
1917 memcpy(&uA
, &iA
, sizeof(uA
));
1918 if( op
==OP_ShiftLeft
){
1922 /* Sign-extend on a right shift of a negative number */
1923 if( iA
<0 ) uA
|= ((((u64
)0xffffffff)<<32)|0xffffffff) << (64-iB
);
1925 memcpy(&iA
, &uA
, sizeof(iA
));
1929 MemSetTypeFlag(pOut
, MEM_Int
);
1933 /* Opcode: AddImm P1 P2 * * *
1934 ** Synopsis: r[P1]=r[P1]+P2
1936 ** Add the constant P2 to the value in register P1.
1937 ** The result is always an integer.
1939 ** To force any register to be an integer, just add 0.
1941 case OP_AddImm
: { /* in1 */
1942 pIn1
= &aMem
[pOp
->p1
];
1943 memAboutToChange(p
, pIn1
);
1944 sqlite3VdbeMemIntegerify(pIn1
);
1945 pIn1
->u
.i
+= pOp
->p2
;
1949 /* Opcode: MustBeInt P1 P2 * * *
1951 ** Force the value in register P1 to be an integer. If the value
1952 ** in P1 is not an integer and cannot be converted into an integer
1953 ** without data loss, then jump immediately to P2, or if P2==0
1954 ** raise an SQLITE_MISMATCH exception.
1956 case OP_MustBeInt
: { /* jump, in1 */
1957 pIn1
= &aMem
[pOp
->p1
];
1958 if( (pIn1
->flags
& MEM_Int
)==0 ){
1959 applyAffinity(pIn1
, SQLITE_AFF_NUMERIC
, encoding
);
1960 if( (pIn1
->flags
& MEM_Int
)==0 ){
1961 VdbeBranchTaken(1, 2);
1963 rc
= SQLITE_MISMATCH
;
1964 goto abort_due_to_error
;
1970 VdbeBranchTaken(0, 2);
1971 MemSetTypeFlag(pIn1
, MEM_Int
);
1975 #ifndef SQLITE_OMIT_FLOATING_POINT
1976 /* Opcode: RealAffinity P1 * * * *
1978 ** If register P1 holds an integer convert it to a real value.
1980 ** This opcode is used when extracting information from a column that
1981 ** has REAL affinity. Such column values may still be stored as
1982 ** integers, for space efficiency, but after extraction we want them
1983 ** to have only a real value.
1985 case OP_RealAffinity
: { /* in1 */
1986 pIn1
= &aMem
[pOp
->p1
];
1987 if( pIn1
->flags
& (MEM_Int
|MEM_IntReal
) ){
1988 testcase( pIn1
->flags
& MEM_Int
);
1989 testcase( pIn1
->flags
& MEM_IntReal
);
1990 sqlite3VdbeMemRealify(pIn1
);
1991 REGISTER_TRACE(pOp
->p1
, pIn1
);
1997 #ifndef SQLITE_OMIT_CAST
1998 /* Opcode: Cast P1 P2 * * *
1999 ** Synopsis: affinity(r[P1])
2001 ** Force the value in register P1 to be the type defined by P2.
2004 ** <li> P2=='A' → BLOB
2005 ** <li> P2=='B' → TEXT
2006 ** <li> P2=='C' → NUMERIC
2007 ** <li> P2=='D' → INTEGER
2008 ** <li> P2=='E' → REAL
2011 ** A NULL value is not changed by this routine. It remains NULL.
2013 case OP_Cast
: { /* in1 */
2014 assert( pOp
->p2
>=SQLITE_AFF_BLOB
&& pOp
->p2
<=SQLITE_AFF_REAL
);
2015 testcase( pOp
->p2
==SQLITE_AFF_TEXT
);
2016 testcase( pOp
->p2
==SQLITE_AFF_BLOB
);
2017 testcase( pOp
->p2
==SQLITE_AFF_NUMERIC
);
2018 testcase( pOp
->p2
==SQLITE_AFF_INTEGER
);
2019 testcase( pOp
->p2
==SQLITE_AFF_REAL
);
2020 pIn1
= &aMem
[pOp
->p1
];
2021 memAboutToChange(p
, pIn1
);
2022 rc
= ExpandBlob(pIn1
);
2023 if( rc
) goto abort_due_to_error
;
2024 rc
= sqlite3VdbeMemCast(pIn1
, pOp
->p2
, encoding
);
2025 if( rc
) goto abort_due_to_error
;
2026 UPDATE_MAX_BLOBSIZE(pIn1
);
2027 REGISTER_TRACE(pOp
->p1
, pIn1
);
2030 #endif /* SQLITE_OMIT_CAST */
2032 /* Opcode: Eq P1 P2 P3 P4 P5
2033 ** Synopsis: IF r[P3]==r[P1]
2035 ** Compare the values in register P1 and P3. If reg(P3)==reg(P1) then
2036 ** jump to address P2.
2038 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
2039 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
2040 ** to coerce both inputs according to this affinity before the
2041 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
2042 ** affinity is used. Note that the affinity conversions are stored
2043 ** back into the input registers P1 and P3. So this opcode can cause
2044 ** persistent changes to registers P1 and P3.
2046 ** Once any conversions have taken place, and neither value is NULL,
2047 ** the values are compared. If both values are blobs then memcmp() is
2048 ** used to determine the results of the comparison. If both values
2049 ** are text, then the appropriate collating function specified in
2050 ** P4 is used to do the comparison. If P4 is not specified then
2051 ** memcmp() is used to compare text string. If both values are
2052 ** numeric, then a numeric comparison is used. If the two values
2053 ** are of different types, then numbers are considered less than
2054 ** strings and strings are considered less than blobs.
2056 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
2057 ** true or false and is never NULL. If both operands are NULL then the result
2058 ** of comparison is true. If either operand is NULL then the result is false.
2059 ** If neither operand is NULL the result is the same as it would be if
2060 ** the SQLITE_NULLEQ flag were omitted from P5.
2062 ** This opcode saves the result of comparison for use by the new
2065 /* Opcode: Ne P1 P2 P3 P4 P5
2066 ** Synopsis: IF r[P3]!=r[P1]
2068 ** This works just like the Eq opcode except that the jump is taken if
2069 ** the operands in registers P1 and P3 are not equal. See the Eq opcode for
2070 ** additional information.
2072 /* Opcode: Lt P1 P2 P3 P4 P5
2073 ** Synopsis: IF r[P3]<r[P1]
2075 ** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then
2076 ** jump to address P2.
2078 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
2079 ** reg(P3) is NULL then the take the jump. If the SQLITE_JUMPIFNULL
2080 ** bit is clear then fall through if either operand is NULL.
2082 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
2083 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
2084 ** to coerce both inputs according to this affinity before the
2085 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
2086 ** affinity is used. Note that the affinity conversions are stored
2087 ** back into the input registers P1 and P3. So this opcode can cause
2088 ** persistent changes to registers P1 and P3.
2090 ** Once any conversions have taken place, and neither value is NULL,
2091 ** the values are compared. If both values are blobs then memcmp() is
2092 ** used to determine the results of the comparison. If both values
2093 ** are text, then the appropriate collating function specified in
2094 ** P4 is used to do the comparison. If P4 is not specified then
2095 ** memcmp() is used to compare text string. If both values are
2096 ** numeric, then a numeric comparison is used. If the two values
2097 ** are of different types, then numbers are considered less than
2098 ** strings and strings are considered less than blobs.
2100 ** This opcode saves the result of comparison for use by the new
2103 /* Opcode: Le P1 P2 P3 P4 P5
2104 ** Synopsis: IF r[P3]<=r[P1]
2106 ** This works just like the Lt opcode except that the jump is taken if
2107 ** the content of register P3 is less than or equal to the content of
2108 ** register P1. See the Lt opcode for additional information.
2110 /* Opcode: Gt P1 P2 P3 P4 P5
2111 ** Synopsis: IF r[P3]>r[P1]
2113 ** This works just like the Lt opcode except that the jump is taken if
2114 ** the content of register P3 is greater than the content of
2115 ** register P1. See the Lt opcode for additional information.
2117 /* Opcode: Ge P1 P2 P3 P4 P5
2118 ** Synopsis: IF r[P3]>=r[P1]
2120 ** This works just like the Lt opcode except that the jump is taken if
2121 ** the content of register P3 is greater than or equal to the content of
2122 ** register P1. See the Lt opcode for additional information.
2124 case OP_Eq
: /* same as TK_EQ, jump, in1, in3 */
2125 case OP_Ne
: /* same as TK_NE, jump, in1, in3 */
2126 case OP_Lt
: /* same as TK_LT, jump, in1, in3 */
2127 case OP_Le
: /* same as TK_LE, jump, in1, in3 */
2128 case OP_Gt
: /* same as TK_GT, jump, in1, in3 */
2129 case OP_Ge
: { /* same as TK_GE, jump, in1, in3 */
2130 int res
, res2
; /* Result of the comparison of pIn1 against pIn3 */
2131 char affinity
; /* Affinity to use for comparison */
2132 u16 flags1
; /* Copy of initial value of pIn1->flags */
2133 u16 flags3
; /* Copy of initial value of pIn3->flags */
2135 pIn1
= &aMem
[pOp
->p1
];
2136 pIn3
= &aMem
[pOp
->p3
];
2137 flags1
= pIn1
->flags
;
2138 flags3
= pIn3
->flags
;
2139 if( (flags1
& flags3
& MEM_Int
)!=0 ){
2140 /* Common case of comparison of two integers */
2141 if( pIn3
->u
.i
> pIn1
->u
.i
){
2142 if( sqlite3aGTb
[pOp
->opcode
] ){
2143 VdbeBranchTaken(1, (pOp
->p5
& SQLITE_NULLEQ
)?2:3);
2147 VVA_ONLY( iCompareIsInit
= 1; )
2148 }else if( pIn3
->u
.i
< pIn1
->u
.i
){
2149 if( sqlite3aLTb
[pOp
->opcode
] ){
2150 VdbeBranchTaken(1, (pOp
->p5
& SQLITE_NULLEQ
)?2:3);
2154 VVA_ONLY( iCompareIsInit
= 1; )
2156 if( sqlite3aEQb
[pOp
->opcode
] ){
2157 VdbeBranchTaken(1, (pOp
->p5
& SQLITE_NULLEQ
)?2:3);
2161 VVA_ONLY( iCompareIsInit
= 1; )
2163 VdbeBranchTaken(0, (pOp
->p5
& SQLITE_NULLEQ
)?2:3);
2166 if( (flags1
| flags3
)&MEM_Null
){
2167 /* One or both operands are NULL */
2168 if( pOp
->p5
& SQLITE_NULLEQ
){
2169 /* If SQLITE_NULLEQ is set (which will only happen if the operator is
2170 ** OP_Eq or OP_Ne) then take the jump or not depending on whether
2171 ** or not both operands are null.
2173 assert( (flags1
& MEM_Cleared
)==0 );
2174 assert( (pOp
->p5
& SQLITE_JUMPIFNULL
)==0 || CORRUPT_DB
);
2175 testcase( (pOp
->p5
& SQLITE_JUMPIFNULL
)!=0 );
2176 if( (flags1
&flags3
&MEM_Null
)!=0
2177 && (flags3
&MEM_Cleared
)==0
2179 res
= 0; /* Operands are equal */
2181 res
= ((flags3
& MEM_Null
) ? -1 : +1); /* Operands are not equal */
2184 /* SQLITE_NULLEQ is clear and at least one operand is NULL,
2185 ** then the result is always NULL.
2186 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
2188 VdbeBranchTaken(2,3);
2189 if( pOp
->p5
& SQLITE_JUMPIFNULL
){
2192 iCompare
= 1; /* Operands are not equal */
2193 VVA_ONLY( iCompareIsInit
= 1; )
2197 /* Neither operand is NULL and we couldn't do the special high-speed
2198 ** integer comparison case. So do a general-case comparison. */
2199 affinity
= pOp
->p5
& SQLITE_AFF_MASK
;
2200 if( affinity
>=SQLITE_AFF_NUMERIC
){
2201 if( (flags1
| flags3
)&MEM_Str
){
2202 if( (flags1
& (MEM_Int
|MEM_IntReal
|MEM_Real
|MEM_Str
))==MEM_Str
){
2203 applyNumericAffinity(pIn1
,0);
2204 assert( flags3
==pIn3
->flags
|| CORRUPT_DB
);
2205 flags3
= pIn3
->flags
;
2207 if( (flags3
& (MEM_Int
|MEM_IntReal
|MEM_Real
|MEM_Str
))==MEM_Str
){
2208 applyNumericAffinity(pIn3
,0);
2211 }else if( affinity
==SQLITE_AFF_TEXT
&& ((flags1
| flags3
) & MEM_Str
)!=0 ){
2212 if( (flags1
& MEM_Str
)==0 && (flags1
&(MEM_Int
|MEM_Real
|MEM_IntReal
))!=0 ){
2213 testcase( pIn1
->flags
& MEM_Int
);
2214 testcase( pIn1
->flags
& MEM_Real
);
2215 testcase( pIn1
->flags
& MEM_IntReal
);
2216 sqlite3VdbeMemStringify(pIn1
, encoding
, 1);
2217 testcase( (flags1
&MEM_Dyn
) != (pIn1
->flags
&MEM_Dyn
) );
2218 flags1
= (pIn1
->flags
& ~MEM_TypeMask
) | (flags1
& MEM_TypeMask
);
2219 if( NEVER(pIn1
==pIn3
) ) flags3
= flags1
| MEM_Str
;
2221 if( (flags3
& MEM_Str
)==0 && (flags3
&(MEM_Int
|MEM_Real
|MEM_IntReal
))!=0 ){
2222 testcase( pIn3
->flags
& MEM_Int
);
2223 testcase( pIn3
->flags
& MEM_Real
);
2224 testcase( pIn3
->flags
& MEM_IntReal
);
2225 sqlite3VdbeMemStringify(pIn3
, encoding
, 1);
2226 testcase( (flags3
&MEM_Dyn
) != (pIn3
->flags
&MEM_Dyn
) );
2227 flags3
= (pIn3
->flags
& ~MEM_TypeMask
) | (flags3
& MEM_TypeMask
);
2230 assert( pOp
->p4type
==P4_COLLSEQ
|| pOp
->p4
.pColl
==0 );
2231 res
= sqlite3MemCompare(pIn3
, pIn1
, pOp
->p4
.pColl
);
2234 /* At this point, res is negative, zero, or positive if reg[P1] is
2235 ** less than, equal to, or greater than reg[P3], respectively. Compute
2236 ** the answer to this operator in res2, depending on what the comparison
2237 ** operator actually is. The next block of code depends on the fact
2238 ** that the 6 comparison operators are consecutive integers in this
2239 ** order: NE, EQ, GT, LE, LT, GE */
2240 assert( OP_Eq
==OP_Ne
+1 ); assert( OP_Gt
==OP_Ne
+2 ); assert( OP_Le
==OP_Ne
+3 );
2241 assert( OP_Lt
==OP_Ne
+4 ); assert( OP_Ge
==OP_Ne
+5 );
2243 res2
= sqlite3aLTb
[pOp
->opcode
];
2245 res2
= sqlite3aEQb
[pOp
->opcode
];
2247 res2
= sqlite3aGTb
[pOp
->opcode
];
2250 VVA_ONLY( iCompareIsInit
= 1; )
2252 /* Undo any changes made by applyAffinity() to the input registers. */
2253 assert( (pIn3
->flags
& MEM_Dyn
) == (flags3
& MEM_Dyn
) );
2254 pIn3
->flags
= flags3
;
2255 assert( (pIn1
->flags
& MEM_Dyn
) == (flags1
& MEM_Dyn
) );
2256 pIn1
->flags
= flags1
;
2258 VdbeBranchTaken(res2
!=0, (pOp
->p5
& SQLITE_NULLEQ
)?2:3);
2265 /* Opcode: ElseEq * P2 * * *
2267 ** This opcode must follow an OP_Lt or OP_Gt comparison operator. There
2268 ** can be zero or more OP_ReleaseReg opcodes intervening, but no other
2269 ** opcodes are allowed to occur between this instruction and the previous
2272 ** If result of an OP_Eq comparison on the same two operands as the
2273 ** prior OP_Lt or OP_Gt would have been true, then jump to P2.
2274 ** If the result of an OP_Eq comparison on the two previous
2275 ** operands would have been false or NULL, then fall through.
2277 case OP_ElseEq
: { /* same as TK_ESCAPE, jump */
2280 /* Verify the preconditions of this opcode - that it follows an OP_Lt or
2281 ** OP_Gt with zero or more intervening OP_ReleaseReg opcodes */
2283 for(iAddr
= (int)(pOp
- aOp
) - 1; ALWAYS(iAddr
>=0); iAddr
--){
2284 if( aOp
[iAddr
].opcode
==OP_ReleaseReg
) continue;
2285 assert( aOp
[iAddr
].opcode
==OP_Lt
|| aOp
[iAddr
].opcode
==OP_Gt
);
2288 #endif /* SQLITE_DEBUG */
2289 assert( iCompareIsInit
);
2290 VdbeBranchTaken(iCompare
==0, 2);
2291 if( iCompare
==0 ) goto jump_to_p2
;
2296 /* Opcode: Permutation * * * P4 *
2298 ** Set the permutation used by the OP_Compare operator in the next
2299 ** instruction. The permutation is stored in the P4 operand.
2301 ** The permutation is only valid for the next opcode which must be
2302 ** an OP_Compare that has the OPFLAG_PERMUTE bit set in P5.
2304 ** The first integer in the P4 integer array is the length of the array
2305 ** and does not become part of the permutation.
2307 case OP_Permutation
: {
2308 assert( pOp
->p4type
==P4_INTARRAY
);
2309 assert( pOp
->p4
.ai
);
2310 assert( pOp
[1].opcode
==OP_Compare
);
2311 assert( pOp
[1].p5
& OPFLAG_PERMUTE
);
2315 /* Opcode: Compare P1 P2 P3 P4 P5
2316 ** Synopsis: r[P1@P3] <-> r[P2@P3]
2318 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
2319 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of
2320 ** the comparison for use by the next OP_Jump instruct.
2322 ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is
2323 ** determined by the most recent OP_Permutation operator. If the
2324 ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential
2327 ** P4 is a KeyInfo structure that defines collating sequences and sort
2328 ** orders for the comparison. The permutation applies to registers
2329 ** only. The KeyInfo elements are used sequentially.
2331 ** The comparison is a sort comparison, so NULLs compare equal,
2332 ** NULLs are less than numbers, numbers are less than strings,
2333 ** and strings are less than blobs.
2335 ** This opcode must be immediately followed by an OP_Jump opcode.
2342 const KeyInfo
*pKeyInfo
;
2344 CollSeq
*pColl
; /* Collating sequence to use on this term */
2345 int bRev
; /* True for DESCENDING sort order */
2346 u32
*aPermute
; /* The permutation */
2348 if( (pOp
->p5
& OPFLAG_PERMUTE
)==0 ){
2352 assert( pOp
[-1].opcode
==OP_Permutation
);
2353 assert( pOp
[-1].p4type
==P4_INTARRAY
);
2354 aPermute
= pOp
[-1].p4
.ai
+ 1;
2355 assert( aPermute
!=0 );
2358 pKeyInfo
= pOp
->p4
.pKeyInfo
;
2360 assert( pKeyInfo
!=0 );
2366 for(k
=0; k
<n
; k
++) if( aPermute
[k
]>(u32
)mx
) mx
= aPermute
[k
];
2367 assert( p1
>0 && p1
+mx
<=(p
->nMem
+1 - p
->nCursor
)+1 );
2368 assert( p2
>0 && p2
+mx
<=(p
->nMem
+1 - p
->nCursor
)+1 );
2370 assert( p1
>0 && p1
+n
<=(p
->nMem
+1 - p
->nCursor
)+1 );
2371 assert( p2
>0 && p2
+n
<=(p
->nMem
+1 - p
->nCursor
)+1 );
2373 #endif /* SQLITE_DEBUG */
2375 idx
= aPermute
? aPermute
[i
] : (u32
)i
;
2376 assert( memIsValid(&aMem
[p1
+idx
]) );
2377 assert( memIsValid(&aMem
[p2
+idx
]) );
2378 REGISTER_TRACE(p1
+idx
, &aMem
[p1
+idx
]);
2379 REGISTER_TRACE(p2
+idx
, &aMem
[p2
+idx
]);
2380 assert( i
<pKeyInfo
->nKeyField
);
2381 pColl
= pKeyInfo
->aColl
[i
];
2382 bRev
= (pKeyInfo
->aSortFlags
[i
] & KEYINFO_ORDER_DESC
);
2383 iCompare
= sqlite3MemCompare(&aMem
[p1
+idx
], &aMem
[p2
+idx
], pColl
);
2384 VVA_ONLY( iCompareIsInit
= 1; )
2386 if( (pKeyInfo
->aSortFlags
[i
] & KEYINFO_ORDER_BIGNULL
)
2387 && ((aMem
[p1
+idx
].flags
& MEM_Null
) || (aMem
[p2
+idx
].flags
& MEM_Null
))
2389 iCompare
= -iCompare
;
2391 if( bRev
) iCompare
= -iCompare
;
2395 assert( pOp
[1].opcode
==OP_Jump
);
2399 /* Opcode: Jump P1 P2 P3 * *
2401 ** Jump to the instruction at address P1, P2, or P3 depending on whether
2402 ** in the most recent OP_Compare instruction the P1 vector was less than,
2403 ** equal to, or greater than the P2 vector, respectively.
2405 ** This opcode must immediately follow an OP_Compare opcode.
2407 case OP_Jump
: { /* jump */
2408 assert( pOp
>aOp
&& pOp
[-1].opcode
==OP_Compare
);
2409 assert( iCompareIsInit
);
2411 VdbeBranchTaken(0,4); pOp
= &aOp
[pOp
->p1
- 1];
2412 }else if( iCompare
==0 ){
2413 VdbeBranchTaken(1,4); pOp
= &aOp
[pOp
->p2
- 1];
2415 VdbeBranchTaken(2,4); pOp
= &aOp
[pOp
->p3
- 1];
2420 /* Opcode: And P1 P2 P3 * *
2421 ** Synopsis: r[P3]=(r[P1] && r[P2])
2423 ** Take the logical AND of the values in registers P1 and P2 and
2424 ** write the result into register P3.
2426 ** If either P1 or P2 is 0 (false) then the result is 0 even if
2427 ** the other input is NULL. A NULL and true or two NULLs give
2430 /* Opcode: Or P1 P2 P3 * *
2431 ** Synopsis: r[P3]=(r[P1] || r[P2])
2433 ** Take the logical OR of the values in register P1 and P2 and
2434 ** store the answer in register P3.
2436 ** If either P1 or P2 is nonzero (true) then the result is 1 (true)
2437 ** even if the other input is NULL. A NULL and false or two NULLs
2438 ** give a NULL output.
2440 case OP_And
: /* same as TK_AND, in1, in2, out3 */
2441 case OP_Or
: { /* same as TK_OR, in1, in2, out3 */
2442 int v1
; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2443 int v2
; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2445 v1
= sqlite3VdbeBooleanValue(&aMem
[pOp
->p1
], 2);
2446 v2
= sqlite3VdbeBooleanValue(&aMem
[pOp
->p2
], 2);
2447 if( pOp
->opcode
==OP_And
){
2448 static const unsigned char and_logic
[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
2449 v1
= and_logic
[v1
*3+v2
];
2451 static const unsigned char or_logic
[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
2452 v1
= or_logic
[v1
*3+v2
];
2454 pOut
= &aMem
[pOp
->p3
];
2456 MemSetTypeFlag(pOut
, MEM_Null
);
2459 MemSetTypeFlag(pOut
, MEM_Int
);
2464 /* Opcode: IsTrue P1 P2 P3 P4 *
2465 ** Synopsis: r[P2] = coalesce(r[P1]==TRUE,P3) ^ P4
2467 ** This opcode implements the IS TRUE, IS FALSE, IS NOT TRUE, and
2468 ** IS NOT FALSE operators.
2470 ** Interpret the value in register P1 as a boolean value. Store that
2471 ** boolean (a 0 or 1) in register P2. Or if the value in register P1 is
2472 ** NULL, then the P3 is stored in register P2. Invert the answer if P4
2475 ** The logic is summarized like this:
2478 ** <li> If P3==0 and P4==0 then r[P2] := r[P1] IS TRUE
2479 ** <li> If P3==1 and P4==1 then r[P2] := r[P1] IS FALSE
2480 ** <li> If P3==0 and P4==1 then r[P2] := r[P1] IS NOT TRUE
2481 ** <li> If P3==1 and P4==0 then r[P2] := r[P1] IS NOT FALSE
2484 case OP_IsTrue
: { /* in1, out2 */
2485 assert( pOp
->p4type
==P4_INT32
);
2486 assert( pOp
->p4
.i
==0 || pOp
->p4
.i
==1 );
2487 assert( pOp
->p3
==0 || pOp
->p3
==1 );
2488 sqlite3VdbeMemSetInt64(&aMem
[pOp
->p2
],
2489 sqlite3VdbeBooleanValue(&aMem
[pOp
->p1
], pOp
->p3
) ^ pOp
->p4
.i
);
2493 /* Opcode: Not P1 P2 * * *
2494 ** Synopsis: r[P2]= !r[P1]
2496 ** Interpret the value in register P1 as a boolean value. Store the
2497 ** boolean complement in register P2. If the value in register P1 is
2498 ** NULL, then a NULL is stored in P2.
2500 case OP_Not
: { /* same as TK_NOT, in1, out2 */
2501 pIn1
= &aMem
[pOp
->p1
];
2502 pOut
= &aMem
[pOp
->p2
];
2503 if( (pIn1
->flags
& MEM_Null
)==0 ){
2504 sqlite3VdbeMemSetInt64(pOut
, !sqlite3VdbeBooleanValue(pIn1
,0));
2506 sqlite3VdbeMemSetNull(pOut
);
2511 /* Opcode: BitNot P1 P2 * * *
2512 ** Synopsis: r[P2]= ~r[P1]
2514 ** Interpret the content of register P1 as an integer. Store the
2515 ** ones-complement of the P1 value into register P2. If P1 holds
2516 ** a NULL then store a NULL in P2.
2518 case OP_BitNot
: { /* same as TK_BITNOT, in1, out2 */
2519 pIn1
= &aMem
[pOp
->p1
];
2520 pOut
= &aMem
[pOp
->p2
];
2521 sqlite3VdbeMemSetNull(pOut
);
2522 if( (pIn1
->flags
& MEM_Null
)==0 ){
2523 pOut
->flags
= MEM_Int
;
2524 pOut
->u
.i
= ~sqlite3VdbeIntValue(pIn1
);
2529 /* Opcode: Once P1 P2 * * *
2531 ** Fall through to the next instruction the first time this opcode is
2532 ** encountered on each invocation of the byte-code program. Jump to P2
2533 ** on the second and all subsequent encounters during the same invocation.
2535 ** Top-level programs determine first invocation by comparing the P1
2536 ** operand against the P1 operand on the OP_Init opcode at the beginning
2537 ** of the program. If the P1 values differ, then fall through and make
2538 ** the P1 of this opcode equal to the P1 of OP_Init. If P1 values are
2539 ** the same then take the jump.
2541 ** For subprograms, there is a bitmask in the VdbeFrame that determines
2542 ** whether or not the jump should be taken. The bitmask is necessary
2543 ** because the self-altering code trick does not work for recursive
2546 case OP_Once
: { /* jump */
2547 u32 iAddr
; /* Address of this instruction */
2548 assert( p
->aOp
[0].opcode
==OP_Init
);
2550 iAddr
= (int)(pOp
- p
->aOp
);
2551 if( (p
->pFrame
->aOnce
[iAddr
/8] & (1<<(iAddr
& 7)))!=0 ){
2552 VdbeBranchTaken(1, 2);
2555 p
->pFrame
->aOnce
[iAddr
/8] |= 1<<(iAddr
& 7);
2557 if( p
->aOp
[0].p1
==pOp
->p1
){
2558 VdbeBranchTaken(1, 2);
2562 VdbeBranchTaken(0, 2);
2563 pOp
->p1
= p
->aOp
[0].p1
;
2567 /* Opcode: If P1 P2 P3 * *
2569 ** Jump to P2 if the value in register P1 is true. The value
2570 ** is considered true if it is numeric and non-zero. If the value
2571 ** in P1 is NULL then take the jump if and only if P3 is non-zero.
2573 case OP_If
: { /* jump, in1 */
2575 c
= sqlite3VdbeBooleanValue(&aMem
[pOp
->p1
], pOp
->p3
);
2576 VdbeBranchTaken(c
!=0, 2);
2577 if( c
) goto jump_to_p2
;
2581 /* Opcode: IfNot P1 P2 P3 * *
2583 ** Jump to P2 if the value in register P1 is False. The value
2584 ** is considered false if it has a numeric value of zero. If the value
2585 ** in P1 is NULL then take the jump if and only if P3 is non-zero.
2587 case OP_IfNot
: { /* jump, in1 */
2589 c
= !sqlite3VdbeBooleanValue(&aMem
[pOp
->p1
], !pOp
->p3
);
2590 VdbeBranchTaken(c
!=0, 2);
2591 if( c
) goto jump_to_p2
;
2595 /* Opcode: IsNull P1 P2 * * *
2596 ** Synopsis: if r[P1]==NULL goto P2
2598 ** Jump to P2 if the value in register P1 is NULL.
2600 case OP_IsNull
: { /* same as TK_ISNULL, jump, in1 */
2601 pIn1
= &aMem
[pOp
->p1
];
2602 VdbeBranchTaken( (pIn1
->flags
& MEM_Null
)!=0, 2);
2603 if( (pIn1
->flags
& MEM_Null
)!=0 ){
2609 /* Opcode: IsType P1 P2 P3 P4 P5
2610 ** Synopsis: if typeof(P1.P3) in P5 goto P2
2612 ** Jump to P2 if the type of a column in a btree is one of the types specified
2613 ** by the P5 bitmask.
2615 ** P1 is normally a cursor on a btree for which the row decode cache is
2616 ** valid through at least column P3. In other words, there should have been
2617 ** a prior OP_Column for column P3 or greater. If the cursor is not valid,
2618 ** then this opcode might give spurious results.
2619 ** The the btree row has fewer than P3 columns, then use P4 as the
2622 ** If P1 is -1, then P3 is a register number and the datatype is taken
2623 ** from the value in that register.
2625 ** P5 is a bitmask of data types. SQLITE_INTEGER is the least significant
2626 ** (0x01) bit. SQLITE_FLOAT is the 0x02 bit. SQLITE_TEXT is 0x04.
2627 ** SQLITE_BLOB is 0x08. SQLITE_NULL is 0x10.
2629 ** WARNING: This opcode does not reliably distinguish between NULL and REAL
2630 ** when P1>=0. If the database contains a NaN value, this opcode will think
2631 ** that the datatype is REAL when it should be NULL. When P1<0 and the value
2632 ** is already stored in register P3, then this opcode does reliably
2633 ** distinguish between NULL and REAL. The problem only arises then P1>=0.
2635 ** Take the jump to address P2 if and only if the datatype of the
2636 ** value determined by P1 and P3 corresponds to one of the bits in the
2640 case OP_IsType
: { /* jump */
2645 assert( pOp
->p1
>=(-1) && pOp
->p1
<p
->nCursor
);
2646 assert( pOp
->p1
>=0 || (pOp
->p3
>=0 && pOp
->p3
<=(p
->nMem
+1 - p
->nCursor
)) );
2648 pC
= p
->apCsr
[pOp
->p1
];
2650 assert( pOp
->p3
>=0 );
2651 if( pOp
->p3
<pC
->nHdrParsed
){
2652 serialType
= pC
->aType
[pOp
->p3
];
2653 if( serialType
>=12 ){
2655 typeMask
= 0x04; /* SQLITE_TEXT */
2657 typeMask
= 0x08; /* SQLITE_BLOB */
2660 static const unsigned char aMask
[] = {
2661 0x10, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x2,
2662 0x01, 0x01, 0x10, 0x10
2664 testcase( serialType
==0 );
2665 testcase( serialType
==1 );
2666 testcase( serialType
==2 );
2667 testcase( serialType
==3 );
2668 testcase( serialType
==4 );
2669 testcase( serialType
==5 );
2670 testcase( serialType
==6 );
2671 testcase( serialType
==7 );
2672 testcase( serialType
==8 );
2673 testcase( serialType
==9 );
2674 testcase( serialType
==10 );
2675 testcase( serialType
==11 );
2676 typeMask
= aMask
[serialType
];
2679 typeMask
= 1 << (pOp
->p4
.i
- 1);
2680 testcase( typeMask
==0x01 );
2681 testcase( typeMask
==0x02 );
2682 testcase( typeMask
==0x04 );
2683 testcase( typeMask
==0x08 );
2684 testcase( typeMask
==0x10 );
2687 assert( memIsValid(&aMem
[pOp
->p3
]) );
2688 typeMask
= 1 << (sqlite3_value_type((sqlite3_value
*)&aMem
[pOp
->p3
])-1);
2689 testcase( typeMask
==0x01 );
2690 testcase( typeMask
==0x02 );
2691 testcase( typeMask
==0x04 );
2692 testcase( typeMask
==0x08 );
2693 testcase( typeMask
==0x10 );
2695 VdbeBranchTaken( (typeMask
& pOp
->p5
)!=0, 2);
2696 if( typeMask
& pOp
->p5
){
2702 /* Opcode: ZeroOrNull P1 P2 P3 * *
2703 ** Synopsis: r[P2] = 0 OR NULL
2705 ** If all both registers P1 and P3 are NOT NULL, then store a zero in
2706 ** register P2. If either registers P1 or P3 are NULL then put
2707 ** a NULL in register P2.
2709 case OP_ZeroOrNull
: { /* in1, in2, out2, in3 */
2710 if( (aMem
[pOp
->p1
].flags
& MEM_Null
)!=0
2711 || (aMem
[pOp
->p3
].flags
& MEM_Null
)!=0
2713 sqlite3VdbeMemSetNull(aMem
+ pOp
->p2
);
2715 sqlite3VdbeMemSetInt64(aMem
+ pOp
->p2
, 0);
2720 /* Opcode: NotNull P1 P2 * * *
2721 ** Synopsis: if r[P1]!=NULL goto P2
2723 ** Jump to P2 if the value in register P1 is not NULL.
2725 case OP_NotNull
: { /* same as TK_NOTNULL, jump, in1 */
2726 pIn1
= &aMem
[pOp
->p1
];
2727 VdbeBranchTaken( (pIn1
->flags
& MEM_Null
)==0, 2);
2728 if( (pIn1
->flags
& MEM_Null
)==0 ){
2734 /* Opcode: IfNullRow P1 P2 P3 * *
2735 ** Synopsis: if P1.nullRow then r[P3]=NULL, goto P2
2737 ** Check the cursor P1 to see if it is currently pointing at a NULL row.
2738 ** If it is, then set register P3 to NULL and jump immediately to P2.
2739 ** If P1 is not on a NULL row, then fall through without making any
2742 ** If P1 is not an open cursor, then this opcode is a no-op.
2744 case OP_IfNullRow
: { /* jump */
2746 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
2747 pC
= p
->apCsr
[pOp
->p1
];
2748 if( pC
&& pC
->nullRow
){
2749 sqlite3VdbeMemSetNull(aMem
+ pOp
->p3
);
2755 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
2756 /* Opcode: Offset P1 P2 P3 * *
2757 ** Synopsis: r[P3] = sqlite_offset(P1)
2759 ** Store in register r[P3] the byte offset into the database file that is the
2760 ** start of the payload for the record at which that cursor P1 is currently
2763 ** P2 is the column number for the argument to the sqlite_offset() function.
2764 ** This opcode does not use P2 itself, but the P2 value is used by the
2765 ** code generator. The P1, P2, and P3 operands to this opcode are the
2766 ** same as for OP_Column.
2768 ** This opcode is only available if SQLite is compiled with the
2769 ** -DSQLITE_ENABLE_OFFSET_SQL_FUNC option.
2771 case OP_Offset
: { /* out3 */
2772 VdbeCursor
*pC
; /* The VDBE cursor */
2773 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
2774 pC
= p
->apCsr
[pOp
->p1
];
2775 pOut
= &p
->aMem
[pOp
->p3
];
2776 if( pC
==0 || pC
->eCurType
!=CURTYPE_BTREE
){
2777 sqlite3VdbeMemSetNull(pOut
);
2779 if( pC
->deferredMoveto
){
2780 rc
= sqlite3VdbeFinishMoveto(pC
);
2781 if( rc
) goto abort_due_to_error
;
2783 if( sqlite3BtreeEof(pC
->uc
.pCursor
) ){
2784 sqlite3VdbeMemSetNull(pOut
);
2786 sqlite3VdbeMemSetInt64(pOut
, sqlite3BtreeOffset(pC
->uc
.pCursor
));
2791 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */
2793 /* Opcode: Column P1 P2 P3 P4 P5
2794 ** Synopsis: r[P3]=PX cursor P1 column P2
2796 ** Interpret the data that cursor P1 points to as a structure built using
2797 ** the MakeRecord instruction. (See the MakeRecord opcode for additional
2798 ** information about the format of the data.) Extract the P2-th column
2799 ** from this record. If there are less than (P2+1)
2800 ** values in the record, extract a NULL.
2802 ** The value extracted is stored in register P3.
2804 ** If the record contains fewer than P2 fields, then extract a NULL. Or,
2805 ** if the P4 argument is a P4_MEM use the value of the P4 argument as
2808 ** If the OPFLAG_LENGTHARG bit is set in P5 then the result is guaranteed
2809 ** to only be used by the length() function or the equivalent. The content
2810 ** of large blobs is not loaded, thus saving CPU cycles. If the
2811 ** OPFLAG_TYPEOFARG bit is set then the result will only be used by the
2812 ** typeof() function or the IS NULL or IS NOT NULL operators or the
2813 ** equivalent. In this case, all content loading can be omitted.
2815 case OP_Column
: { /* ncycle */
2816 u32 p2
; /* column number to retrieve */
2817 VdbeCursor
*pC
; /* The VDBE cursor */
2818 BtCursor
*pCrsr
; /* The B-Tree cursor corresponding to pC */
2819 u32
*aOffset
; /* aOffset[i] is offset to start of data for i-th column */
2820 int len
; /* The length of the serialized data for the column */
2821 int i
; /* Loop counter */
2822 Mem
*pDest
; /* Where to write the extracted value */
2823 Mem sMem
; /* For storing the record being decoded */
2824 const u8
*zData
; /* Part of the record being decoded */
2825 const u8
*zHdr
; /* Next unparsed byte of the header */
2826 const u8
*zEndHdr
; /* Pointer to first byte after the header */
2827 u64 offset64
; /* 64-bit offset */
2828 u32 t
; /* A type code from the record header */
2829 Mem
*pReg
; /* PseudoTable input register */
2831 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
2832 assert( pOp
->p3
>0 && pOp
->p3
<=(p
->nMem
+1 - p
->nCursor
) );
2833 pC
= p
->apCsr
[pOp
->p1
];
2838 assert( p2
<(u32
)pC
->nField
2839 || (pC
->eCurType
==CURTYPE_PSEUDO
&& pC
->seekResult
==0) );
2840 aOffset
= pC
->aOffset
;
2841 assert( aOffset
==pC
->aType
+pC
->nField
);
2842 assert( pC
->eCurType
!=CURTYPE_VTAB
);
2843 assert( pC
->eCurType
!=CURTYPE_PSEUDO
|| pC
->nullRow
);
2844 assert( pC
->eCurType
!=CURTYPE_SORTER
);
2846 if( pC
->cacheStatus
!=p
->cacheCtr
){ /*OPTIMIZATION-IF-FALSE*/
2848 if( pC
->eCurType
==CURTYPE_PSEUDO
&& pC
->seekResult
>0 ){
2849 /* For the special case of as pseudo-cursor, the seekResult field
2850 ** identifies the register that holds the record */
2851 pReg
= &aMem
[pC
->seekResult
];
2852 assert( pReg
->flags
& MEM_Blob
);
2853 assert( memIsValid(pReg
) );
2854 pC
->payloadSize
= pC
->szRow
= pReg
->n
;
2855 pC
->aRow
= (u8
*)pReg
->z
;
2857 pDest
= &aMem
[pOp
->p3
];
2858 memAboutToChange(p
, pDest
);
2859 sqlite3VdbeMemSetNull(pDest
);
2863 pCrsr
= pC
->uc
.pCursor
;
2864 if( pC
->deferredMoveto
){
2866 assert( !pC
->isEphemeral
);
2867 if( pC
->ub
.aAltMap
&& (iMap
= pC
->ub
.aAltMap
[1+p2
])>0 ){
2868 pC
= pC
->pAltCursor
;
2870 goto op_column_restart
;
2872 rc
= sqlite3VdbeFinishMoveto(pC
);
2873 if( rc
) goto abort_due_to_error
;
2874 }else if( sqlite3BtreeCursorHasMoved(pCrsr
) ){
2875 rc
= sqlite3VdbeHandleMovedCursor(pC
);
2876 if( rc
) goto abort_due_to_error
;
2877 goto op_column_restart
;
2879 assert( pC
->eCurType
==CURTYPE_BTREE
);
2881 assert( sqlite3BtreeCursorIsValid(pCrsr
) );
2882 pC
->payloadSize
= sqlite3BtreePayloadSize(pCrsr
);
2883 pC
->aRow
= sqlite3BtreePayloadFetch(pCrsr
, &pC
->szRow
);
2884 assert( pC
->szRow
<=pC
->payloadSize
);
2885 assert( pC
->szRow
<=65536 ); /* Maximum page size is 64KiB */
2887 pC
->cacheStatus
= p
->cacheCtr
;
2888 if( (aOffset
[0] = pC
->aRow
[0])<0x80 ){
2891 pC
->iHdrOffset
= sqlite3GetVarint32(pC
->aRow
, aOffset
);
2895 if( pC
->szRow
<aOffset
[0] ){ /*OPTIMIZATION-IF-FALSE*/
2896 /* pC->aRow does not have to hold the entire row, but it does at least
2897 ** need to cover the header of the record. If pC->aRow does not contain
2898 ** the complete header, then set it to zero, forcing the header to be
2899 ** dynamically allocated. */
2903 /* Make sure a corrupt database has not given us an oversize header.
2904 ** Do this now to avoid an oversize memory allocation.
2906 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte
2907 ** types use so much data space that there can only be 4096 and 32 of
2908 ** them, respectively. So the maximum header length results from a
2909 ** 3-byte type for each of the maximum of 32768 columns plus three
2910 ** extra bytes for the header length itself. 32768*3 + 3 = 98307.
2912 if( aOffset
[0] > 98307 || aOffset
[0] > pC
->payloadSize
){
2913 goto op_column_corrupt
;
2916 /* This is an optimization. By skipping over the first few tests
2917 ** (ex: pC->nHdrParsed<=p2) in the next section, we achieve a
2918 ** measurable performance gain.
2920 ** This branch is taken even if aOffset[0]==0. Such a record is never
2921 ** generated by SQLite, and could be considered corruption, but we
2922 ** accept it for historical reasons. When aOffset[0]==0, the code this
2923 ** branch jumps to reads past the end of the record, but never more
2924 ** than a few bytes. Even if the record occurs at the end of the page
2925 ** content area, the "page header" comes after the page content and so
2926 ** this overread is harmless. Similar overreads can occur for a corrupt
2930 assert( pC
->nHdrParsed
<=p2
); /* Conditional skipped */
2931 testcase( aOffset
[0]==0 );
2932 goto op_column_read_header
;
2934 }else if( sqlite3BtreeCursorHasMoved(pC
->uc
.pCursor
) ){
2935 rc
= sqlite3VdbeHandleMovedCursor(pC
);
2936 if( rc
) goto abort_due_to_error
;
2937 goto op_column_restart
;
2940 /* Make sure at least the first p2+1 entries of the header have been
2941 ** parsed and valid information is in aOffset[] and pC->aType[].
2943 if( pC
->nHdrParsed
<=p2
){
2944 /* If there is more header available for parsing in the record, try
2945 ** to extract additional fields up through the p2+1-th field
2947 if( pC
->iHdrOffset
<aOffset
[0] ){
2948 /* Make sure zData points to enough of the record to cover the header. */
2950 memset(&sMem
, 0, sizeof(sMem
));
2951 rc
= sqlite3VdbeMemFromBtreeZeroOffset(pC
->uc
.pCursor
,aOffset
[0],&sMem
);
2952 if( rc
!=SQLITE_OK
) goto abort_due_to_error
;
2953 zData
= (u8
*)sMem
.z
;
2958 /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */
2959 op_column_read_header
:
2961 offset64
= aOffset
[i
];
2962 zHdr
= zData
+ pC
->iHdrOffset
;
2963 zEndHdr
= zData
+ aOffset
[0];
2964 testcase( zHdr
>=zEndHdr
);
2966 if( (pC
->aType
[i
] = t
= zHdr
[0])<0x80 ){
2968 offset64
+= sqlite3VdbeOneByteSerialTypeLen(t
);
2970 zHdr
+= sqlite3GetVarint32(zHdr
, &t
);
2972 offset64
+= sqlite3VdbeSerialTypeLen(t
);
2974 aOffset
[++i
] = (u32
)(offset64
& 0xffffffff);
2975 }while( (u32
)i
<=p2
&& zHdr
<zEndHdr
);
2977 /* The record is corrupt if any of the following are true:
2978 ** (1) the bytes of the header extend past the declared header size
2979 ** (2) the entire header was used but not all data was used
2980 ** (3) the end of the data extends beyond the end of the record.
2982 if( (zHdr
>=zEndHdr
&& (zHdr
>zEndHdr
|| offset64
!=pC
->payloadSize
))
2983 || (offset64
> pC
->payloadSize
)
2985 if( aOffset
[0]==0 ){
2989 if( pC
->aRow
==0 ) sqlite3VdbeMemRelease(&sMem
);
2990 goto op_column_corrupt
;
2995 pC
->iHdrOffset
= (u32
)(zHdr
- zData
);
2996 if( pC
->aRow
==0 ) sqlite3VdbeMemRelease(&sMem
);
3001 /* If after trying to extract new entries from the header, nHdrParsed is
3002 ** still not up to p2, that means that the record has fewer than p2
3003 ** columns. So the result will be either the default value or a NULL.
3005 if( pC
->nHdrParsed
<=p2
){
3006 pDest
= &aMem
[pOp
->p3
];
3007 memAboutToChange(p
, pDest
);
3008 if( pOp
->p4type
==P4_MEM
){
3009 sqlite3VdbeMemShallowCopy(pDest
, pOp
->p4
.pMem
, MEM_Static
);
3011 sqlite3VdbeMemSetNull(pDest
);
3019 /* Extract the content for the p2+1-th column. Control can only
3020 ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are
3023 assert( p2
<pC
->nHdrParsed
);
3024 assert( rc
==SQLITE_OK
);
3025 pDest
= &aMem
[pOp
->p3
];
3026 memAboutToChange(p
, pDest
);
3027 assert( sqlite3VdbeCheckMemInvariants(pDest
) );
3028 if( VdbeMemDynamic(pDest
) ){
3029 sqlite3VdbeMemSetNull(pDest
);
3031 assert( t
==pC
->aType
[p2
] );
3032 if( pC
->szRow
>=aOffset
[p2
+1] ){
3033 /* This is the common case where the desired content fits on the original
3034 ** page - where the content is not on an overflow page */
3035 zData
= pC
->aRow
+ aOffset
[p2
];
3037 sqlite3VdbeSerialGet(zData
, t
, pDest
);
3039 /* If the column value is a string, we need a persistent value, not
3040 ** a MEM_Ephem value. This branch is a fast short-cut that is equivalent
3041 ** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize().
3043 static const u16 aFlag
[] = { MEM_Blob
, MEM_Str
|MEM_Term
};
3044 pDest
->n
= len
= (t
-12)/2;
3045 pDest
->enc
= encoding
;
3046 if( pDest
->szMalloc
< len
+2 ){
3047 if( len
>db
->aLimit
[SQLITE_LIMIT_LENGTH
] ) goto too_big
;
3048 pDest
->flags
= MEM_Null
;
3049 if( sqlite3VdbeMemGrow(pDest
, len
+2, 0) ) goto no_mem
;
3051 pDest
->z
= pDest
->zMalloc
;
3053 memcpy(pDest
->z
, zData
, len
);
3055 pDest
->z
[len
+1] = 0;
3056 pDest
->flags
= aFlag
[t
&1];
3059 pDest
->enc
= encoding
;
3060 /* This branch happens only when content is on overflow pages */
3061 if( ((pOp
->p5
& (OPFLAG_LENGTHARG
|OPFLAG_TYPEOFARG
))!=0
3062 && ((t
>=12 && (t
&1)==0) || (pOp
->p5
& OPFLAG_TYPEOFARG
)!=0))
3063 || (len
= sqlite3VdbeSerialTypeLen(t
))==0
3065 /* Content is irrelevant for
3066 ** 1. the typeof() function,
3067 ** 2. the length(X) function if X is a blob, and
3068 ** 3. if the content length is zero.
3069 ** So we might as well use bogus content rather than reading
3070 ** content from disk.
3072 ** Although sqlite3VdbeSerialGet() may read at most 8 bytes from the
3073 ** buffer passed to it, debugging function VdbeMemPrettyPrint() may
3074 ** read more. Use the global constant sqlite3CtypeMap[] as the array,
3075 ** as that array is 256 bytes long (plenty for VdbeMemPrettyPrint())
3076 ** and it begins with a bunch of zeros.
3078 sqlite3VdbeSerialGet((u8
*)sqlite3CtypeMap
, t
, pDest
);
3080 if( len
>db
->aLimit
[SQLITE_LIMIT_LENGTH
] ) goto too_big
;
3081 rc
= sqlite3VdbeMemFromBtree(pC
->uc
.pCursor
, aOffset
[p2
], len
, pDest
);
3082 if( rc
!=SQLITE_OK
) goto abort_due_to_error
;
3083 sqlite3VdbeSerialGet((const u8
*)pDest
->z
, t
, pDest
);
3084 pDest
->flags
&= ~MEM_Ephem
;
3089 UPDATE_MAX_BLOBSIZE(pDest
);
3090 REGISTER_TRACE(pOp
->p3
, pDest
);
3095 pOp
= &aOp
[aOp
[0].p3
-1];
3098 rc
= SQLITE_CORRUPT_BKPT
;
3099 goto abort_due_to_error
;
3103 /* Opcode: TypeCheck P1 P2 P3 P4 *
3104 ** Synopsis: typecheck(r[P1@P2])
3106 ** Apply affinities to the range of P2 registers beginning with P1.
3107 ** Take the affinities from the Table object in P4. If any value
3108 ** cannot be coerced into the correct type, then raise an error.
3110 ** This opcode is similar to OP_Affinity except that this opcode
3111 ** forces the register type to the Table column type. This is used
3112 ** to implement "strict affinity".
3114 ** GENERATED ALWAYS AS ... STATIC columns are only checked if P3
3115 ** is zero. When P3 is non-zero, no type checking occurs for
3116 ** static generated columns. Virtual columns are computed at query time
3117 ** and so they are never checked.
3122 ** <li> P2 should be the number of non-virtual columns in the
3124 ** <li> Table P4 should be a STRICT table.
3127 ** If any precondition is false, an assertion fault occurs.
3129 case OP_TypeCheck
: {
3134 assert( pOp
->p4type
==P4_TABLE
);
3135 pTab
= pOp
->p4
.pTab
;
3136 assert( pTab
->tabFlags
& TF_Strict
);
3137 assert( pTab
->nNVCol
==pOp
->p2
);
3139 pIn1
= &aMem
[pOp
->p1
];
3140 for(i
=0; i
<pTab
->nCol
; i
++){
3141 if( aCol
[i
].colFlags
& COLFLAG_GENERATED
){
3142 if( aCol
[i
].colFlags
& COLFLAG_VIRTUAL
) continue;
3143 if( pOp
->p3
){ pIn1
++; continue; }
3145 assert( pIn1
< &aMem
[pOp
->p1
+pOp
->p2
] );
3146 applyAffinity(pIn1
, aCol
[i
].affinity
, encoding
);
3147 if( (pIn1
->flags
& MEM_Null
)==0 ){
3148 switch( aCol
[i
].eCType
){
3149 case COLTYPE_BLOB
: {
3150 if( (pIn1
->flags
& MEM_Blob
)==0 ) goto vdbe_type_error
;
3153 case COLTYPE_INTEGER
:
3155 if( (pIn1
->flags
& MEM_Int
)==0 ) goto vdbe_type_error
;
3158 case COLTYPE_TEXT
: {
3159 if( (pIn1
->flags
& MEM_Str
)==0 ) goto vdbe_type_error
;
3162 case COLTYPE_REAL
: {
3163 testcase( (pIn1
->flags
& (MEM_Real
|MEM_IntReal
))==MEM_Real
);
3164 assert( (pIn1
->flags
& MEM_IntReal
)==0 );
3165 if( pIn1
->flags
& MEM_Int
){
3166 /* When applying REAL affinity, if the result is still an MEM_Int
3167 ** that will fit in 6 bytes, then change the type to MEM_IntReal
3168 ** so that we keep the high-resolution integer value but know that
3169 ** the type really wants to be REAL. */
3170 testcase( pIn1
->u
.i
==140737488355328LL );
3171 testcase( pIn1
->u
.i
==140737488355327LL );
3172 testcase( pIn1
->u
.i
==-140737488355328LL );
3173 testcase( pIn1
->u
.i
==-140737488355329LL );
3174 if( pIn1
->u
.i
<=140737488355327LL && pIn1
->u
.i
>=-140737488355328LL){
3175 pIn1
->flags
|= MEM_IntReal
;
3176 pIn1
->flags
&= ~MEM_Int
;
3178 pIn1
->u
.r
= (double)pIn1
->u
.i
;
3179 pIn1
->flags
|= MEM_Real
;
3180 pIn1
->flags
&= ~MEM_Int
;
3182 }else if( (pIn1
->flags
& (MEM_Real
|MEM_IntReal
))==0 ){
3183 goto vdbe_type_error
;
3188 /* COLTYPE_ANY. Accept anything. */
3193 REGISTER_TRACE((int)(pIn1
-aMem
), pIn1
);
3196 assert( pIn1
== &aMem
[pOp
->p1
+pOp
->p2
] );
3200 sqlite3VdbeError(p
, "cannot store %s value in %s column %s.%s",
3201 vdbeMemTypeName(pIn1
), sqlite3StdType
[aCol
[i
].eCType
-1],
3202 pTab
->zName
, aCol
[i
].zCnName
);
3203 rc
= SQLITE_CONSTRAINT_DATATYPE
;
3204 goto abort_due_to_error
;
3207 /* Opcode: Affinity P1 P2 * P4 *
3208 ** Synopsis: affinity(r[P1@P2])
3210 ** Apply affinities to a range of P2 registers starting with P1.
3212 ** P4 is a string that is P2 characters long. The N-th character of the
3213 ** string indicates the column affinity that should be used for the N-th
3214 ** memory cell in the range.
3217 const char *zAffinity
; /* The affinity to be applied */
3219 zAffinity
= pOp
->p4
.z
;
3220 assert( zAffinity
!=0 );
3221 assert( pOp
->p2
>0 );
3222 assert( zAffinity
[pOp
->p2
]==0 );
3223 pIn1
= &aMem
[pOp
->p1
];
3224 while( 1 /*exit-by-break*/ ){
3225 assert( pIn1
<= &p
->aMem
[(p
->nMem
+1 - p
->nCursor
)] );
3226 assert( zAffinity
[0]==SQLITE_AFF_NONE
|| memIsValid(pIn1
) );
3227 applyAffinity(pIn1
, zAffinity
[0], encoding
);
3228 if( zAffinity
[0]==SQLITE_AFF_REAL
&& (pIn1
->flags
& MEM_Int
)!=0 ){
3229 /* When applying REAL affinity, if the result is still an MEM_Int
3230 ** that will fit in 6 bytes, then change the type to MEM_IntReal
3231 ** so that we keep the high-resolution integer value but know that
3232 ** the type really wants to be REAL. */
3233 testcase( pIn1
->u
.i
==140737488355328LL );
3234 testcase( pIn1
->u
.i
==140737488355327LL );
3235 testcase( pIn1
->u
.i
==-140737488355328LL );
3236 testcase( pIn1
->u
.i
==-140737488355329LL );
3237 if( pIn1
->u
.i
<=140737488355327LL && pIn1
->u
.i
>=-140737488355328LL ){
3238 pIn1
->flags
|= MEM_IntReal
;
3239 pIn1
->flags
&= ~MEM_Int
;
3241 pIn1
->u
.r
= (double)pIn1
->u
.i
;
3242 pIn1
->flags
|= MEM_Real
;
3243 pIn1
->flags
&= ~(MEM_Int
|MEM_Str
);
3246 REGISTER_TRACE((int)(pIn1
-aMem
), pIn1
);
3248 if( zAffinity
[0]==0 ) break;
3254 /* Opcode: MakeRecord P1 P2 P3 P4 *
3255 ** Synopsis: r[P3]=mkrec(r[P1@P2])
3257 ** Convert P2 registers beginning with P1 into the [record format]
3258 ** use as a data record in a database table or as a key
3259 ** in an index. The OP_Column opcode can decode the record later.
3261 ** P4 may be a string that is P2 characters long. The N-th character of the
3262 ** string indicates the column affinity that should be used for the N-th
3263 ** field of the index key.
3265 ** The mapping from character to affinity is given by the SQLITE_AFF_
3266 ** macros defined in sqliteInt.h.
3268 ** If P4 is NULL then all index fields have the affinity BLOB.
3270 ** The meaning of P5 depends on whether or not the SQLITE_ENABLE_NULL_TRIM
3271 ** compile-time option is enabled:
3273 ** * If SQLITE_ENABLE_NULL_TRIM is enabled, then the P5 is the index
3274 ** of the right-most table that can be null-trimmed.
3276 ** * If SQLITE_ENABLE_NULL_TRIM is omitted, then P5 has the value
3277 ** OPFLAG_NOCHNG_MAGIC if the OP_MakeRecord opcode is allowed to
3278 ** accept no-change records with serial_type 10. This value is
3279 ** only used inside an assert() and does not affect the end result.
3281 case OP_MakeRecord
: {
3282 Mem
*pRec
; /* The new record */
3283 u64 nData
; /* Number of bytes of data space */
3284 int nHdr
; /* Number of bytes of header space */
3285 i64 nByte
; /* Data space required for this record */
3286 i64 nZero
; /* Number of zero bytes at the end of the record */
3287 int nVarint
; /* Number of bytes in a varint */
3288 u32 serial_type
; /* Type field */
3289 Mem
*pData0
; /* First field to be combined into the record */
3290 Mem
*pLast
; /* Last field of the record */
3291 int nField
; /* Number of fields in the record */
3292 char *zAffinity
; /* The affinity string for the record */
3293 u32 len
; /* Length of a field */
3294 u8
*zHdr
; /* Where to write next byte of the header */
3295 u8
*zPayload
; /* Where to write next byte of the payload */
3297 /* Assuming the record contains N fields, the record format looks
3300 ** ------------------------------------------------------------------------
3301 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
3302 ** ------------------------------------------------------------------------
3304 ** Data(0) is taken from register P1. Data(1) comes from register P1+1
3307 ** Each type field is a varint representing the serial type of the
3308 ** corresponding data element (see sqlite3VdbeSerialType()). The
3309 ** hdr-size field is also a varint which is the offset from the beginning
3310 ** of the record to data0.
3312 nData
= 0; /* Number of bytes of data space */
3313 nHdr
= 0; /* Number of bytes of header space */
3314 nZero
= 0; /* Number of zero bytes at the end of the record */
3316 zAffinity
= pOp
->p4
.z
;
3317 assert( nField
>0 && pOp
->p2
>0 && pOp
->p2
+nField
<=(p
->nMem
+1 - p
->nCursor
)+1 );
3318 pData0
= &aMem
[nField
];
3320 pLast
= &pData0
[nField
-1];
3322 /* Identify the output register */
3323 assert( pOp
->p3
<pOp
->p1
|| pOp
->p3
>=pOp
->p1
+pOp
->p2
);
3324 pOut
= &aMem
[pOp
->p3
];
3325 memAboutToChange(p
, pOut
);
3327 /* Apply the requested affinity to all inputs
3329 assert( pData0
<=pLast
);
3333 applyAffinity(pRec
, zAffinity
[0], encoding
);
3334 if( zAffinity
[0]==SQLITE_AFF_REAL
&& (pRec
->flags
& MEM_Int
) ){
3335 pRec
->flags
|= MEM_IntReal
;
3336 pRec
->flags
&= ~(MEM_Int
);
3338 REGISTER_TRACE((int)(pRec
-aMem
), pRec
);
3341 assert( zAffinity
[0]==0 || pRec
<=pLast
);
3342 }while( zAffinity
[0] );
3345 #ifdef SQLITE_ENABLE_NULL_TRIM
3346 /* NULLs can be safely trimmed from the end of the record, as long as
3347 ** as the schema format is 2 or more and none of the omitted columns
3348 ** have a non-NULL default value. Also, the record must be left with
3349 ** at least one field. If P5>0 then it will be one more than the
3350 ** index of the right-most column with a non-NULL default value */
3352 while( (pLast
->flags
& MEM_Null
)!=0 && nField
>pOp
->p5
){
3359 /* Loop through the elements that will make up the record to figure
3360 ** out how much space is required for the new record. After this loop,
3361 ** the Mem.uTemp field of each term should hold the serial-type that will
3362 ** be used for that term in the generated record:
3364 ** Mem.uTemp value type
3365 ** --------------- ---------------
3367 ** 1 1-byte signed integer
3368 ** 2 2-byte signed integer
3369 ** 3 3-byte signed integer
3370 ** 4 4-byte signed integer
3371 ** 5 6-byte signed integer
3372 ** 6 8-byte signed integer
3374 ** 8 Integer constant 0
3375 ** 9 Integer constant 1
3376 ** 10,11 reserved for expansion
3377 ** N>=12 and even BLOB
3378 ** N>=13 and odd text
3380 ** The following additional values are computed:
3381 ** nHdr Number of bytes needed for the record header
3382 ** nData Number of bytes of data space needed for the record
3383 ** nZero Zero bytes at the end of the record
3387 assert( memIsValid(pRec
) );
3388 if( pRec
->flags
& MEM_Null
){
3389 if( pRec
->flags
& MEM_Zero
){
3390 /* Values with MEM_Null and MEM_Zero are created by xColumn virtual
3391 ** table methods that never invoke sqlite3_result_xxxxx() while
3392 ** computing an unchanging column value in an UPDATE statement.
3393 ** Give such values a special internal-use-only serial-type of 10
3394 ** so that they can be passed through to xUpdate and have
3395 ** a true sqlite3_value_nochange(). */
3396 #ifndef SQLITE_ENABLE_NULL_TRIM
3397 assert( pOp
->p5
==OPFLAG_NOCHNG_MAGIC
|| CORRUPT_DB
);
3404 }else if( pRec
->flags
& (MEM_Int
|MEM_IntReal
) ){
3405 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
3408 testcase( pRec
->flags
& MEM_Int
);
3409 testcase( pRec
->flags
& MEM_IntReal
);
3416 testcase( uu
==127 ); testcase( uu
==128 );
3417 testcase( uu
==32767 ); testcase( uu
==32768 );
3418 testcase( uu
==8388607 ); testcase( uu
==8388608 );
3419 testcase( uu
==2147483647 ); testcase( uu
==2147483648LL );
3420 testcase( uu
==140737488355327LL ); testcase( uu
==140737488355328LL );
3422 if( (i
&1)==i
&& p
->minWriteFileFormat
>=4 ){
3423 pRec
->uTemp
= 8+(u32
)uu
;
3428 }else if( uu
<=32767 ){
3431 }else if( uu
<=8388607 ){
3434 }else if( uu
<=2147483647 ){
3437 }else if( uu
<=140737488355327LL ){
3442 if( pRec
->flags
& MEM_IntReal
){
3443 /* If the value is IntReal and is going to take up 8 bytes to store
3444 ** as an integer, then we might as well make it an 8-byte floating
3446 pRec
->u
.r
= (double)pRec
->u
.i
;
3447 pRec
->flags
&= ~MEM_IntReal
;
3448 pRec
->flags
|= MEM_Real
;
3454 }else if( pRec
->flags
& MEM_Real
){
3459 assert( db
->mallocFailed
|| pRec
->flags
&(MEM_Str
|MEM_Blob
) );
3460 assert( pRec
->n
>=0 );
3462 serial_type
= (len
*2) + 12 + ((pRec
->flags
& MEM_Str
)!=0);
3463 if( pRec
->flags
& MEM_Zero
){
3464 serial_type
+= pRec
->u
.nZero
*2;
3466 if( sqlite3VdbeMemExpandBlob(pRec
) ) goto no_mem
;
3467 len
+= pRec
->u
.nZero
;
3469 nZero
+= pRec
->u
.nZero
;
3473 nHdr
+= sqlite3VarintLen(serial_type
);
3474 pRec
->uTemp
= serial_type
;
3476 if( pRec
==pData0
) break;
3480 /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint
3481 ** which determines the total number of bytes in the header. The varint
3482 ** value is the size of the header in bytes including the size varint
3484 testcase( nHdr
==126 );
3485 testcase( nHdr
==127 );
3487 /* The common case */
3490 /* Rare case of a really large header */
3491 nVarint
= sqlite3VarintLen(nHdr
);
3493 if( nVarint
<sqlite3VarintLen(nHdr
) ) nHdr
++;
3497 /* Make sure the output register has a buffer large enough to store
3498 ** the new record. The output register (pOp->p3) is not allowed to
3499 ** be one of the input registers (because the following call to
3500 ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used).
3502 if( nByte
+nZero
<=pOut
->szMalloc
){
3503 /* The output register is already large enough to hold the record.
3504 ** No error checks or buffer enlargement is required */
3505 pOut
->z
= pOut
->zMalloc
;
3507 /* Need to make sure that the output is not too big and then enlarge
3508 ** the output register to hold the full result */
3509 if( nByte
+nZero
>db
->aLimit
[SQLITE_LIMIT_LENGTH
] ){
3512 if( sqlite3VdbeMemClearAndResize(pOut
, (int)nByte
) ){
3516 pOut
->n
= (int)nByte
;
3517 pOut
->flags
= MEM_Blob
;
3519 pOut
->u
.nZero
= nZero
;
3520 pOut
->flags
|= MEM_Zero
;
3522 UPDATE_MAX_BLOBSIZE(pOut
);
3523 zHdr
= (u8
*)pOut
->z
;
3524 zPayload
= zHdr
+ nHdr
;
3526 /* Write the record */
3530 zHdr
+= sqlite3PutVarint(zHdr
,nHdr
);
3532 assert( pData0
<=pLast
);
3534 while( 1 /*exit-by-break*/ ){
3535 serial_type
= pRec
->uTemp
;
3536 /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more
3537 ** additional varints, one per column.
3538 ** EVIDENCE-OF: R-64536-51728 The values for each column in the record
3539 ** immediately follow the header. */
3540 if( serial_type
<=7 ){
3541 *(zHdr
++) = serial_type
;
3542 if( serial_type
==0 ){
3543 /* NULL value. No change in zPayload */
3547 if( serial_type
==7 ){
3548 assert( sizeof(v
)==sizeof(pRec
->u
.r
) );
3549 memcpy(&v
, &pRec
->u
.r
, sizeof(v
));
3550 swapMixedEndianFloat(v
);
3554 len
= i
= sqlite3SmallTypeSizes
[serial_type
];
3556 while( 1 /*exit-by-break*/ ){
3557 zPayload
[--i
] = (u8
)(v
&0xFF);
3563 }else if( serial_type
<0x80 ){
3564 *(zHdr
++) = serial_type
;
3565 if( serial_type
>=14 && pRec
->n
>0 ){
3566 assert( pRec
->z
!=0 );
3567 memcpy(zPayload
, pRec
->z
, pRec
->n
);
3568 zPayload
+= pRec
->n
;
3571 zHdr
+= sqlite3PutVarint(zHdr
, serial_type
);
3573 assert( pRec
->z
!=0 );
3574 memcpy(zPayload
, pRec
->z
, pRec
->n
);
3575 zPayload
+= pRec
->n
;
3578 if( pRec
==pLast
) break;
3581 assert( nHdr
==(int)(zHdr
- (u8
*)pOut
->z
) );
3582 assert( nByte
==(int)(zPayload
- (u8
*)pOut
->z
) );
3584 assert( pOp
->p3
>0 && pOp
->p3
<=(p
->nMem
+1 - p
->nCursor
) );
3585 REGISTER_TRACE(pOp
->p3
, pOut
);
3589 /* Opcode: Count P1 P2 P3 * *
3590 ** Synopsis: r[P2]=count()
3592 ** Store the number of entries (an integer value) in the table or index
3593 ** opened by cursor P1 in register P2.
3595 ** If P3==0, then an exact count is obtained, which involves visiting
3596 ** every btree page of the table. But if P3 is non-zero, an estimate
3597 ** is returned based on the current cursor position.
3599 case OP_Count
: { /* out2 */
3603 assert( p
->apCsr
[pOp
->p1
]->eCurType
==CURTYPE_BTREE
);
3604 pCrsr
= p
->apCsr
[pOp
->p1
]->uc
.pCursor
;
3607 nEntry
= sqlite3BtreeRowCountEst(pCrsr
);
3609 nEntry
= 0; /* Not needed. Only used to silence a warning. */
3610 rc
= sqlite3BtreeCount(db
, pCrsr
, &nEntry
);
3611 if( rc
) goto abort_due_to_error
;
3613 pOut
= out2Prerelease(p
, pOp
);
3615 goto check_for_interrupt
;
3618 /* Opcode: Savepoint P1 * * P4 *
3620 ** Open, release or rollback the savepoint named by parameter P4, depending
3621 ** on the value of P1. To open a new savepoint set P1==0 (SAVEPOINT_BEGIN).
3622 ** To release (commit) an existing savepoint set P1==1 (SAVEPOINT_RELEASE).
3623 ** To rollback an existing savepoint set P1==2 (SAVEPOINT_ROLLBACK).
3625 case OP_Savepoint
: {
3626 int p1
; /* Value of P1 operand */
3627 char *zName
; /* Name of savepoint */
3630 Savepoint
*pSavepoint
;
3638 /* Assert that the p1 parameter is valid. Also that if there is no open
3639 ** transaction, then there cannot be any savepoints.
3641 assert( db
->pSavepoint
==0 || db
->autoCommit
==0 );
3642 assert( p1
==SAVEPOINT_BEGIN
||p1
==SAVEPOINT_RELEASE
||p1
==SAVEPOINT_ROLLBACK
);
3643 assert( db
->pSavepoint
|| db
->isTransactionSavepoint
==0 );
3644 assert( checkSavepointCount(db
) );
3645 assert( p
->bIsReader
);
3647 if( p1
==SAVEPOINT_BEGIN
){
3648 if( db
->nVdbeWrite
>0 ){
3649 /* A new savepoint cannot be created if there are active write
3650 ** statements (i.e. open read/write incremental blob handles).
3652 sqlite3VdbeError(p
, "cannot open savepoint - SQL statements in progress");
3655 nName
= sqlite3Strlen30(zName
);
3657 #ifndef SQLITE_OMIT_VIRTUALTABLE
3658 /* This call is Ok even if this savepoint is actually a transaction
3659 ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
3660 ** If this is a transaction savepoint being opened, it is guaranteed
3661 ** that the db->aVTrans[] array is empty. */
3662 assert( db
->autoCommit
==0 || db
->nVTrans
==0 );
3663 rc
= sqlite3VtabSavepoint(db
, SAVEPOINT_BEGIN
,
3664 db
->nStatement
+db
->nSavepoint
);
3665 if( rc
!=SQLITE_OK
) goto abort_due_to_error
;
3668 /* Create a new savepoint structure. */
3669 pNew
= sqlite3DbMallocRawNN(db
, sizeof(Savepoint
)+nName
+1);
3671 pNew
->zName
= (char *)&pNew
[1];
3672 memcpy(pNew
->zName
, zName
, nName
+1);
3674 /* If there is no open transaction, then mark this as a special
3675 ** "transaction savepoint". */
3676 if( db
->autoCommit
){
3678 db
->isTransactionSavepoint
= 1;
3683 /* Link the new savepoint into the database handle's list. */
3684 pNew
->pNext
= db
->pSavepoint
;
3685 db
->pSavepoint
= pNew
;
3686 pNew
->nDeferredCons
= db
->nDeferredCons
;
3687 pNew
->nDeferredImmCons
= db
->nDeferredImmCons
;
3691 assert( p1
==SAVEPOINT_RELEASE
|| p1
==SAVEPOINT_ROLLBACK
);
3694 /* Find the named savepoint. If there is no such savepoint, then an
3695 ** an error is returned to the user. */
3697 pSavepoint
= db
->pSavepoint
;
3698 pSavepoint
&& sqlite3StrICmp(pSavepoint
->zName
, zName
);
3699 pSavepoint
= pSavepoint
->pNext
3704 sqlite3VdbeError(p
, "no such savepoint: %s", zName
);
3706 }else if( db
->nVdbeWrite
>0 && p1
==SAVEPOINT_RELEASE
){
3707 /* It is not possible to release (commit) a savepoint if there are
3708 ** active write statements.
3710 sqlite3VdbeError(p
, "cannot release savepoint - "
3711 "SQL statements in progress");
3715 /* Determine whether or not this is a transaction savepoint. If so,
3716 ** and this is a RELEASE command, then the current transaction
3719 int isTransaction
= pSavepoint
->pNext
==0 && db
->isTransactionSavepoint
;
3720 if( isTransaction
&& p1
==SAVEPOINT_RELEASE
){
3721 if( (rc
= sqlite3VdbeCheckFk(p
, 1))!=SQLITE_OK
){
3725 if( sqlite3VdbeHalt(p
)==SQLITE_BUSY
){
3726 p
->pc
= (int)(pOp
- aOp
);
3728 p
->rc
= rc
= SQLITE_BUSY
;
3735 db
->isTransactionSavepoint
= 0;
3739 iSavepoint
= db
->nSavepoint
- iSavepoint
- 1;
3740 if( p1
==SAVEPOINT_ROLLBACK
){
3741 isSchemaChange
= (db
->mDbFlags
& DBFLAG_SchemaChange
)!=0;
3742 for(ii
=0; ii
<db
->nDb
; ii
++){
3743 rc
= sqlite3BtreeTripAllCursors(db
->aDb
[ii
].pBt
,
3744 SQLITE_ABORT_ROLLBACK
,
3746 if( rc
!=SQLITE_OK
) goto abort_due_to_error
;
3749 assert( p1
==SAVEPOINT_RELEASE
);
3752 for(ii
=0; ii
<db
->nDb
; ii
++){
3753 rc
= sqlite3BtreeSavepoint(db
->aDb
[ii
].pBt
, p1
, iSavepoint
);
3754 if( rc
!=SQLITE_OK
){
3755 goto abort_due_to_error
;
3758 if( isSchemaChange
){
3759 sqlite3ExpirePreparedStatements(db
, 0);
3760 sqlite3ResetAllSchemasOfConnection(db
);
3761 db
->mDbFlags
|= DBFLAG_SchemaChange
;
3764 if( rc
) goto abort_due_to_error
;
3766 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
3767 ** savepoints nested inside of the savepoint being operated on. */
3768 while( db
->pSavepoint
!=pSavepoint
){
3769 pTmp
= db
->pSavepoint
;
3770 db
->pSavepoint
= pTmp
->pNext
;
3771 sqlite3DbFree(db
, pTmp
);
3775 /* If it is a RELEASE, then destroy the savepoint being operated on
3776 ** too. If it is a ROLLBACK TO, then set the number of deferred
3777 ** constraint violations present in the database to the value stored
3778 ** when the savepoint was created. */
3779 if( p1
==SAVEPOINT_RELEASE
){
3780 assert( pSavepoint
==db
->pSavepoint
);
3781 db
->pSavepoint
= pSavepoint
->pNext
;
3782 sqlite3DbFree(db
, pSavepoint
);
3783 if( !isTransaction
){
3787 assert( p1
==SAVEPOINT_ROLLBACK
);
3788 db
->nDeferredCons
= pSavepoint
->nDeferredCons
;
3789 db
->nDeferredImmCons
= pSavepoint
->nDeferredImmCons
;
3792 if( !isTransaction
|| p1
==SAVEPOINT_ROLLBACK
){
3793 rc
= sqlite3VtabSavepoint(db
, p1
, iSavepoint
);
3794 if( rc
!=SQLITE_OK
) goto abort_due_to_error
;
3798 if( rc
) goto abort_due_to_error
;
3799 if( p
->eVdbeState
==VDBE_HALT_STATE
){
3806 /* Opcode: AutoCommit P1 P2 * * *
3808 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
3809 ** back any currently active btree transactions. If there are any active
3810 ** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if
3811 ** there are active writing VMs or active VMs that use shared cache.
3813 ** This instruction causes the VM to halt.
3815 case OP_AutoCommit
: {
3816 int desiredAutoCommit
;
3819 desiredAutoCommit
= pOp
->p1
;
3820 iRollback
= pOp
->p2
;
3821 assert( desiredAutoCommit
==1 || desiredAutoCommit
==0 );
3822 assert( desiredAutoCommit
==1 || iRollback
==0 );
3823 assert( db
->nVdbeActive
>0 ); /* At least this one VM is active */
3824 assert( p
->bIsReader
);
3826 if( desiredAutoCommit
!=db
->autoCommit
){
3828 assert( desiredAutoCommit
==1 );
3829 sqlite3RollbackAll(db
, SQLITE_ABORT_ROLLBACK
);
3831 }else if( desiredAutoCommit
&& db
->nVdbeWrite
>0 ){
3832 /* If this instruction implements a COMMIT and other VMs are writing
3833 ** return an error indicating that the other VMs must complete first.
3835 sqlite3VdbeError(p
, "cannot commit transaction - "
3836 "SQL statements in progress");
3838 goto abort_due_to_error
;
3839 }else if( (rc
= sqlite3VdbeCheckFk(p
, 1))!=SQLITE_OK
){
3842 db
->autoCommit
= (u8
)desiredAutoCommit
;
3844 if( sqlite3VdbeHalt(p
)==SQLITE_BUSY
){
3845 p
->pc
= (int)(pOp
- aOp
);
3846 db
->autoCommit
= (u8
)(1-desiredAutoCommit
);
3847 p
->rc
= rc
= SQLITE_BUSY
;
3850 sqlite3CloseSavepoints(db
);
3851 if( p
->rc
==SQLITE_OK
){
3859 (!desiredAutoCommit
)?"cannot start a transaction within a transaction":(
3860 (iRollback
)?"cannot rollback - no transaction is active":
3861 "cannot commit - no transaction is active"));
3864 goto abort_due_to_error
;
3866 /*NOTREACHED*/ assert(0);
3869 /* Opcode: Transaction P1 P2 P3 P4 P5
3871 ** Begin a transaction on database P1 if a transaction is not already
3873 ** If P2 is non-zero, then a write-transaction is started, or if a
3874 ** read-transaction is already active, it is upgraded to a write-transaction.
3875 ** If P2 is zero, then a read-transaction is started. If P2 is 2 or more
3876 ** then an exclusive transaction is started.
3878 ** P1 is the index of the database file on which the transaction is
3879 ** started. Index 0 is the main database file and index 1 is the
3880 ** file used for temporary tables. Indices of 2 or more are used for
3881 ** attached databases.
3883 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
3884 ** true (this flag is set if the Vdbe may modify more than one row and may
3885 ** throw an ABORT exception), a statement transaction may also be opened.
3886 ** More specifically, a statement transaction is opened iff the database
3887 ** connection is currently not in autocommit mode, or if there are other
3888 ** active statements. A statement transaction allows the changes made by this
3889 ** VDBE to be rolled back after an error without having to roll back the
3890 ** entire transaction. If no error is encountered, the statement transaction
3891 ** will automatically commit when the VDBE halts.
3893 ** If P5!=0 then this opcode also checks the schema cookie against P3
3894 ** and the schema generation counter against P4.
3895 ** The cookie changes its value whenever the database schema changes.
3896 ** This operation is used to detect when that the cookie has changed
3897 ** and that the current process needs to reread the schema. If the schema
3898 ** cookie in P3 differs from the schema cookie in the database header or
3899 ** if the schema generation counter in P4 differs from the current
3900 ** generation counter, then an SQLITE_SCHEMA error is raised and execution
3901 ** halts. The sqlite3_step() wrapper function might then reprepare the
3902 ** statement and rerun it from the beginning.
3904 case OP_Transaction
: {
3909 assert( p
->bIsReader
);
3910 assert( p
->readOnly
==0 || pOp
->p2
==0 );
3911 assert( pOp
->p2
>=0 && pOp
->p2
<=2 );
3912 assert( pOp
->p1
>=0 && pOp
->p1
<db
->nDb
);
3913 assert( DbMaskTest(p
->btreeMask
, pOp
->p1
) );
3914 assert( rc
==SQLITE_OK
);
3915 if( pOp
->p2
&& (db
->flags
& (SQLITE_QueryOnly
|SQLITE_CorruptRdOnly
))!=0 ){
3916 if( db
->flags
& SQLITE_QueryOnly
){
3917 /* Writes prohibited by the "PRAGMA query_only=TRUE" statement */
3918 rc
= SQLITE_READONLY
;
3920 /* Writes prohibited due to a prior SQLITE_CORRUPT in the current
3922 rc
= SQLITE_CORRUPT
;
3924 goto abort_due_to_error
;
3926 pDb
= &db
->aDb
[pOp
->p1
];
3930 rc
= sqlite3BtreeBeginTrans(pBt
, pOp
->p2
, &iMeta
);
3931 testcase( rc
==SQLITE_BUSY_SNAPSHOT
);
3932 testcase( rc
==SQLITE_BUSY_RECOVERY
);
3933 if( rc
!=SQLITE_OK
){
3934 if( (rc
&0xff)==SQLITE_BUSY
){
3935 p
->pc
= (int)(pOp
- aOp
);
3939 goto abort_due_to_error
;
3942 if( p
->usesStmtJournal
3944 && (db
->autoCommit
==0 || db
->nVdbeRead
>1)
3946 assert( sqlite3BtreeTxnState(pBt
)==SQLITE_TXN_WRITE
);
3947 if( p
->iStatement
==0 ){
3948 assert( db
->nStatement
>=0 && db
->nSavepoint
>=0 );
3950 p
->iStatement
= db
->nSavepoint
+ db
->nStatement
;
3953 rc
= sqlite3VtabSavepoint(db
, SAVEPOINT_BEGIN
, p
->iStatement
-1);
3954 if( rc
==SQLITE_OK
){
3955 rc
= sqlite3BtreeBeginStmt(pBt
, p
->iStatement
);
3958 /* Store the current value of the database handles deferred constraint
3959 ** counter. If the statement transaction needs to be rolled back,
3960 ** the value of this counter needs to be restored too. */
3961 p
->nStmtDefCons
= db
->nDeferredCons
;
3962 p
->nStmtDefImmCons
= db
->nDeferredImmCons
;
3965 assert( pOp
->p5
==0 || pOp
->p4type
==P4_INT32
);
3968 && (iMeta
!=pOp
->p3
|| pDb
->pSchema
->iGeneration
!=pOp
->p4
.i
)
3971 ** IMPLEMENTATION-OF: R-03189-51135 As each SQL statement runs, the schema
3972 ** version is checked to ensure that the schema has not changed since the
3973 ** SQL statement was prepared.
3975 sqlite3DbFree(db
, p
->zErrMsg
);
3976 p
->zErrMsg
= sqlite3DbStrDup(db
, "database schema has changed");
3977 /* If the schema-cookie from the database file matches the cookie
3978 ** stored with the in-memory representation of the schema, do
3979 ** not reload the schema from the database file.
3981 ** If virtual-tables are in use, this is not just an optimization.
3982 ** Often, v-tables store their data in other SQLite tables, which
3983 ** are queried from within xNext() and other v-table methods using
3984 ** prepared queries. If such a query is out-of-date, we do not want to
3985 ** discard the database schema, as the user code implementing the
3986 ** v-table would have to be ready for the sqlite3_vtab structure itself
3987 ** to be invalidated whenever sqlite3_step() is called from within
3988 ** a v-table method.
3990 if( db
->aDb
[pOp
->p1
].pSchema
->schema_cookie
!=iMeta
){
3991 sqlite3ResetOneSchema(db
, pOp
->p1
);
3996 /* Set changeCntOn to 0 to prevent the value returned by sqlite3_changes()
3997 ** from being modified in sqlite3VdbeHalt(). If this statement is
3998 ** reprepared, changeCntOn will be set again. */
4001 if( rc
) goto abort_due_to_error
;
4005 /* Opcode: ReadCookie P1 P2 P3 * *
4007 ** Read cookie number P3 from database P1 and write it into register P2.
4008 ** P3==1 is the schema version. P3==2 is the database format.
4009 ** P3==3 is the recommended pager cache size, and so forth. P1==0 is
4010 ** the main database file and P1==1 is the database file used to store
4011 ** temporary tables.
4013 ** There must be a read-lock on the database (either a transaction
4014 ** must be started or there must be an open cursor) before
4015 ** executing this instruction.
4017 case OP_ReadCookie
: { /* out2 */
4022 assert( p
->bIsReader
);
4025 assert( pOp
->p3
<SQLITE_N_BTREE_META
);
4026 assert( iDb
>=0 && iDb
<db
->nDb
);
4027 assert( db
->aDb
[iDb
].pBt
!=0 );
4028 assert( DbMaskTest(p
->btreeMask
, iDb
) );
4030 sqlite3BtreeGetMeta(db
->aDb
[iDb
].pBt
, iCookie
, (u32
*)&iMeta
);
4031 pOut
= out2Prerelease(p
, pOp
);
4036 /* Opcode: SetCookie P1 P2 P3 * P5
4038 ** Write the integer value P3 into cookie number P2 of database P1.
4039 ** P2==1 is the schema version. P2==2 is the database format.
4040 ** P2==3 is the recommended pager cache
4041 ** size, and so forth. P1==0 is the main database file and P1==1 is the
4042 ** database file used to store temporary tables.
4044 ** A transaction must be started before executing this opcode.
4046 ** If P2 is the SCHEMA_VERSION cookie (cookie number 1) then the internal
4047 ** schema version is set to P3-P5. The "PRAGMA schema_version=N" statement
4048 ** has P5 set to 1, so that the internal schema version will be different
4049 ** from the database schema version, resulting in a schema reset.
4051 case OP_SetCookie
: {
4054 sqlite3VdbeIncrWriteCounter(p
, 0);
4055 assert( pOp
->p2
<SQLITE_N_BTREE_META
);
4056 assert( pOp
->p1
>=0 && pOp
->p1
<db
->nDb
);
4057 assert( DbMaskTest(p
->btreeMask
, pOp
->p1
) );
4058 assert( p
->readOnly
==0 );
4059 pDb
= &db
->aDb
[pOp
->p1
];
4060 assert( pDb
->pBt
!=0 );
4061 assert( sqlite3SchemaMutexHeld(db
, pOp
->p1
, 0) );
4062 /* See note about index shifting on OP_ReadCookie */
4063 rc
= sqlite3BtreeUpdateMeta(pDb
->pBt
, pOp
->p2
, pOp
->p3
);
4064 if( pOp
->p2
==BTREE_SCHEMA_VERSION
){
4065 /* When the schema cookie changes, record the new cookie internally */
4066 *(u32
*)&pDb
->pSchema
->schema_cookie
= *(u32
*)&pOp
->p3
- pOp
->p5
;
4067 db
->mDbFlags
|= DBFLAG_SchemaChange
;
4068 sqlite3FkClearTriggerCache(db
, pOp
->p1
);
4069 }else if( pOp
->p2
==BTREE_FILE_FORMAT
){
4070 /* Record changes in the file format */
4071 pDb
->pSchema
->file_format
= pOp
->p3
;
4074 /* Invalidate all prepared statements whenever the TEMP database
4075 ** schema is changed. Ticket #1644 */
4076 sqlite3ExpirePreparedStatements(db
, 0);
4079 if( rc
) goto abort_due_to_error
;
4083 /* Opcode: OpenRead P1 P2 P3 P4 P5
4084 ** Synopsis: root=P2 iDb=P3
4086 ** Open a read-only cursor for the database table whose root page is
4087 ** P2 in a database file. The database file is determined by P3.
4088 ** P3==0 means the main database, P3==1 means the database used for
4089 ** temporary tables, and P3>1 means used the corresponding attached
4090 ** database. Give the new cursor an identifier of P1. The P1
4091 ** values need not be contiguous but all P1 values should be small integers.
4092 ** It is an error for P1 to be negative.
4096 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
4097 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
4098 ** of OP_SeekLE/OP_IdxLT)
4101 ** The P4 value may be either an integer (P4_INT32) or a pointer to
4102 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
4103 ** object, then table being opened must be an [index b-tree] where the
4104 ** KeyInfo object defines the content and collating
4105 ** sequence of that index b-tree. Otherwise, if P4 is an integer
4106 ** value, then the table being opened must be a [table b-tree] with a
4107 ** number of columns no less than the value of P4.
4109 ** See also: OpenWrite, ReopenIdx
4111 /* Opcode: ReopenIdx P1 P2 P3 P4 P5
4112 ** Synopsis: root=P2 iDb=P3
4114 ** The ReopenIdx opcode works like OP_OpenRead except that it first
4115 ** checks to see if the cursor on P1 is already open on the same
4116 ** b-tree and if it is this opcode becomes a no-op. In other words,
4117 ** if the cursor is already open, do not reopen it.
4119 ** The ReopenIdx opcode may only be used with P5==0 or P5==OPFLAG_SEEKEQ
4120 ** and with P4 being a P4_KEYINFO object. Furthermore, the P3 value must
4121 ** be the same as every other ReopenIdx or OpenRead for the same cursor
4126 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
4127 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
4128 ** of OP_SeekLE/OP_IdxLT)
4131 ** See also: OP_OpenRead, OP_OpenWrite
4133 /* Opcode: OpenWrite P1 P2 P3 P4 P5
4134 ** Synopsis: root=P2 iDb=P3
4136 ** Open a read/write cursor named P1 on the table or index whose root
4137 ** page is P2 (or whose root page is held in register P2 if the
4138 ** OPFLAG_P2ISREG bit is set in P5 - see below).
4140 ** The P4 value may be either an integer (P4_INT32) or a pointer to
4141 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
4142 ** object, then table being opened must be an [index b-tree] where the
4143 ** KeyInfo object defines the content and collating
4144 ** sequence of that index b-tree. Otherwise, if P4 is an integer
4145 ** value, then the table being opened must be a [table b-tree] with a
4146 ** number of columns no less than the value of P4.
4150 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
4151 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
4152 ** of OP_SeekLE/OP_IdxLT)
4153 ** <li> <b>0x08 OPFLAG_FORDELETE</b>: This cursor is used only to seek
4154 ** and subsequently delete entries in an index btree. This is a
4155 ** hint to the storage engine that the storage engine is allowed to
4156 ** ignore. The hint is not used by the official SQLite b*tree storage
4157 ** engine, but is used by COMDB2.
4158 ** <li> <b>0x10 OPFLAG_P2ISREG</b>: Use the content of register P2
4159 ** as the root page, not the value of P2 itself.
4162 ** This instruction works like OpenRead except that it opens the cursor
4163 ** in read/write mode.
4165 ** See also: OP_OpenRead, OP_ReopenIdx
4167 case OP_ReopenIdx
: { /* ncycle */
4177 assert( pOp
->p5
==0 || pOp
->p5
==OPFLAG_SEEKEQ
);
4178 assert( pOp
->p4type
==P4_KEYINFO
);
4179 pCur
= p
->apCsr
[pOp
->p1
];
4180 if( pCur
&& pCur
->pgnoRoot
==(u32
)pOp
->p2
){
4181 assert( pCur
->iDb
==pOp
->p3
); /* Guaranteed by the code generator */
4182 assert( pCur
->eCurType
==CURTYPE_BTREE
);
4183 sqlite3BtreeClearCursor(pCur
->uc
.pCursor
);
4184 goto open_cursor_set_hints
;
4186 /* If the cursor is not currently open or is open on a different
4187 ** index, then fall through into OP_OpenRead to force a reopen */
4188 case OP_OpenRead
: /* ncycle */
4191 assert( pOp
->opcode
==OP_OpenWrite
|| pOp
->p5
==0 || pOp
->p5
==OPFLAG_SEEKEQ
);
4192 assert( p
->bIsReader
);
4193 assert( pOp
->opcode
==OP_OpenRead
|| pOp
->opcode
==OP_ReopenIdx
4194 || p
->readOnly
==0 );
4196 if( p
->expired
==1 ){
4197 rc
= SQLITE_ABORT_ROLLBACK
;
4198 goto abort_due_to_error
;
4205 assert( iDb
>=0 && iDb
<db
->nDb
);
4206 assert( DbMaskTest(p
->btreeMask
, iDb
) );
4207 pDb
= &db
->aDb
[iDb
];
4210 if( pOp
->opcode
==OP_OpenWrite
){
4211 assert( OPFLAG_FORDELETE
==BTREE_FORDELETE
);
4212 wrFlag
= BTREE_WRCSR
| (pOp
->p5
& OPFLAG_FORDELETE
);
4213 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
4214 if( pDb
->pSchema
->file_format
< p
->minWriteFileFormat
){
4215 p
->minWriteFileFormat
= pDb
->pSchema
->file_format
;
4220 if( pOp
->p5
& OPFLAG_P2ISREG
){
4222 assert( p2
<=(u32
)(p
->nMem
+1 - p
->nCursor
) );
4223 assert( pOp
->opcode
==OP_OpenWrite
);
4225 assert( memIsValid(pIn2
) );
4226 assert( (pIn2
->flags
& MEM_Int
)!=0 );
4227 sqlite3VdbeMemIntegerify(pIn2
);
4228 p2
= (int)pIn2
->u
.i
;
4229 /* The p2 value always comes from a prior OP_CreateBtree opcode and
4230 ** that opcode will always set the p2 value to 2 or more or else fail.
4231 ** If there were a failure, the prepared statement would have halted
4232 ** before reaching this instruction. */
4235 if( pOp
->p4type
==P4_KEYINFO
){
4236 pKeyInfo
= pOp
->p4
.pKeyInfo
;
4237 assert( pKeyInfo
->enc
==ENC(db
) );
4238 assert( pKeyInfo
->db
==db
);
4239 nField
= pKeyInfo
->nAllField
;
4240 }else if( pOp
->p4type
==P4_INT32
){
4243 assert( pOp
->p1
>=0 );
4244 assert( nField
>=0 );
4245 testcase( nField
==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */
4246 pCur
= allocateCursor(p
, pOp
->p1
, nField
, CURTYPE_BTREE
);
4247 if( pCur
==0 ) goto no_mem
;
4250 pCur
->isOrdered
= 1;
4251 pCur
->pgnoRoot
= p2
;
4253 pCur
->wrFlag
= wrFlag
;
4255 rc
= sqlite3BtreeCursor(pX
, p2
, wrFlag
, pKeyInfo
, pCur
->uc
.pCursor
);
4256 pCur
->pKeyInfo
= pKeyInfo
;
4257 /* Set the VdbeCursor.isTable variable. Previous versions of
4258 ** SQLite used to check if the root-page flags were sane at this point
4259 ** and report database corruption if they were not, but this check has
4260 ** since moved into the btree layer. */
4261 pCur
->isTable
= pOp
->p4type
!=P4_KEYINFO
;
4263 open_cursor_set_hints
:
4264 assert( OPFLAG_BULKCSR
==BTREE_BULKLOAD
);
4265 assert( OPFLAG_SEEKEQ
==BTREE_SEEK_EQ
);
4266 testcase( pOp
->p5
& OPFLAG_BULKCSR
);
4267 testcase( pOp
->p2
& OPFLAG_SEEKEQ
);
4268 sqlite3BtreeCursorHintFlags(pCur
->uc
.pCursor
,
4269 (pOp
->p5
& (OPFLAG_BULKCSR
|OPFLAG_SEEKEQ
)));
4270 if( rc
) goto abort_due_to_error
;
4274 /* Opcode: OpenDup P1 P2 * * *
4276 ** Open a new cursor P1 that points to the same ephemeral table as
4277 ** cursor P2. The P2 cursor must have been opened by a prior OP_OpenEphemeral
4278 ** opcode. Only ephemeral cursors may be duplicated.
4280 ** Duplicate ephemeral cursors are used for self-joins of materialized views.
4282 case OP_OpenDup
: { /* ncycle */
4283 VdbeCursor
*pOrig
; /* The original cursor to be duplicated */
4284 VdbeCursor
*pCx
; /* The new cursor */
4286 pOrig
= p
->apCsr
[pOp
->p2
];
4288 assert( pOrig
->isEphemeral
); /* Only ephemeral cursors can be duplicated */
4290 pCx
= allocateCursor(p
, pOp
->p1
, pOrig
->nField
, CURTYPE_BTREE
);
4291 if( pCx
==0 ) goto no_mem
;
4293 pCx
->isEphemeral
= 1;
4294 pCx
->pKeyInfo
= pOrig
->pKeyInfo
;
4295 pCx
->isTable
= pOrig
->isTable
;
4296 pCx
->pgnoRoot
= pOrig
->pgnoRoot
;
4297 pCx
->isOrdered
= pOrig
->isOrdered
;
4298 pCx
->ub
.pBtx
= pOrig
->ub
.pBtx
;
4301 rc
= sqlite3BtreeCursor(pCx
->ub
.pBtx
, pCx
->pgnoRoot
, BTREE_WRCSR
,
4302 pCx
->pKeyInfo
, pCx
->uc
.pCursor
);
4303 /* The sqlite3BtreeCursor() routine can only fail for the first cursor
4304 ** opened for a database. Since there is already an open cursor when this
4305 ** opcode is run, the sqlite3BtreeCursor() cannot fail */
4306 assert( rc
==SQLITE_OK
);
4311 /* Opcode: OpenEphemeral P1 P2 P3 P4 P5
4312 ** Synopsis: nColumn=P2
4314 ** Open a new cursor P1 to a transient table.
4315 ** The cursor is always opened read/write even if
4316 ** the main database is read-only. The ephemeral
4317 ** table is deleted automatically when the cursor is closed.
4319 ** If the cursor P1 is already opened on an ephemeral table, the table
4320 ** is cleared (all content is erased).
4322 ** P2 is the number of columns in the ephemeral table.
4323 ** The cursor points to a BTree table if P4==0 and to a BTree index
4324 ** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure
4325 ** that defines the format of keys in the index.
4327 ** The P5 parameter can be a mask of the BTREE_* flags defined
4328 ** in btree.h. These flags control aspects of the operation of
4329 ** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
4330 ** added automatically.
4332 ** If P3 is positive, then reg[P3] is modified slightly so that it
4333 ** can be used as zero-length data for OP_Insert. This is an optimization
4334 ** that avoids an extra OP_Blob opcode to initialize that register.
4336 /* Opcode: OpenAutoindex P1 P2 * P4 *
4337 ** Synopsis: nColumn=P2
4339 ** This opcode works the same as OP_OpenEphemeral. It has a
4340 ** different name to distinguish its use. Tables created using
4341 ** by this opcode will be used for automatically created transient
4342 ** indices in joins.
4344 case OP_OpenAutoindex
: /* ncycle */
4345 case OP_OpenEphemeral
: { /* ncycle */
4349 static const int vfsFlags
=
4350 SQLITE_OPEN_READWRITE
|
4351 SQLITE_OPEN_CREATE
|
4352 SQLITE_OPEN_EXCLUSIVE
|
4353 SQLITE_OPEN_DELETEONCLOSE
|
4354 SQLITE_OPEN_TRANSIENT_DB
;
4355 assert( pOp
->p1
>=0 );
4356 assert( pOp
->p2
>=0 );
4358 /* Make register reg[P3] into a value that can be used as the data
4359 ** form sqlite3BtreeInsert() where the length of the data is zero. */
4360 assert( pOp
->p2
==0 ); /* Only used when number of columns is zero */
4361 assert( pOp
->opcode
==OP_OpenEphemeral
);
4362 assert( aMem
[pOp
->p3
].flags
& MEM_Null
);
4363 aMem
[pOp
->p3
].n
= 0;
4364 aMem
[pOp
->p3
].z
= "";
4366 pCx
= p
->apCsr
[pOp
->p1
];
4367 if( pCx
&& !pCx
->noReuse
&& ALWAYS(pOp
->p2
<=pCx
->nField
) ){
4368 /* If the ephermeral table is already open and has no duplicates from
4369 ** OP_OpenDup, then erase all existing content so that the table is
4370 ** empty again, rather than creating a new table. */
4371 assert( pCx
->isEphemeral
);
4373 pCx
->cacheStatus
= CACHE_STALE
;
4374 rc
= sqlite3BtreeClearTable(pCx
->ub
.pBtx
, pCx
->pgnoRoot
, 0);
4376 pCx
= allocateCursor(p
, pOp
->p1
, pOp
->p2
, CURTYPE_BTREE
);
4377 if( pCx
==0 ) goto no_mem
;
4378 pCx
->isEphemeral
= 1;
4379 rc
= sqlite3BtreeOpen(db
->pVfs
, 0, db
, &pCx
->ub
.pBtx
,
4380 BTREE_OMIT_JOURNAL
| BTREE_SINGLE
| pOp
->p5
,
4382 if( rc
==SQLITE_OK
){
4383 rc
= sqlite3BtreeBeginTrans(pCx
->ub
.pBtx
, 1, 0);
4384 if( rc
==SQLITE_OK
){
4385 /* If a transient index is required, create it by calling
4386 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
4387 ** opening it. If a transient table is required, just use the
4388 ** automatically created table with root-page 1 (an BLOB_INTKEY table).
4390 if( (pCx
->pKeyInfo
= pKeyInfo
= pOp
->p4
.pKeyInfo
)!=0 ){
4391 assert( pOp
->p4type
==P4_KEYINFO
);
4392 rc
= sqlite3BtreeCreateTable(pCx
->ub
.pBtx
, &pCx
->pgnoRoot
,
4393 BTREE_BLOBKEY
| pOp
->p5
);
4394 if( rc
==SQLITE_OK
){
4395 assert( pCx
->pgnoRoot
==SCHEMA_ROOT
+1 );
4396 assert( pKeyInfo
->db
==db
);
4397 assert( pKeyInfo
->enc
==ENC(db
) );
4398 rc
= sqlite3BtreeCursor(pCx
->ub
.pBtx
, pCx
->pgnoRoot
, BTREE_WRCSR
,
4399 pKeyInfo
, pCx
->uc
.pCursor
);
4403 pCx
->pgnoRoot
= SCHEMA_ROOT
;
4404 rc
= sqlite3BtreeCursor(pCx
->ub
.pBtx
, SCHEMA_ROOT
, BTREE_WRCSR
,
4405 0, pCx
->uc
.pCursor
);
4409 pCx
->isOrdered
= (pOp
->p5
!=BTREE_UNORDERED
);
4411 sqlite3BtreeClose(pCx
->ub
.pBtx
);
4415 if( rc
) goto abort_due_to_error
;
4420 /* Opcode: SorterOpen P1 P2 P3 P4 *
4422 ** This opcode works like OP_OpenEphemeral except that it opens
4423 ** a transient index that is specifically designed to sort large
4424 ** tables using an external merge-sort algorithm.
4426 ** If argument P3 is non-zero, then it indicates that the sorter may
4427 ** assume that a stable sort considering the first P3 fields of each
4428 ** key is sufficient to produce the required results.
4430 case OP_SorterOpen
: {
4433 assert( pOp
->p1
>=0 );
4434 assert( pOp
->p2
>=0 );
4435 pCx
= allocateCursor(p
, pOp
->p1
, pOp
->p2
, CURTYPE_SORTER
);
4436 if( pCx
==0 ) goto no_mem
;
4437 pCx
->pKeyInfo
= pOp
->p4
.pKeyInfo
;
4438 assert( pCx
->pKeyInfo
->db
==db
);
4439 assert( pCx
->pKeyInfo
->enc
==ENC(db
) );
4440 rc
= sqlite3VdbeSorterInit(db
, pOp
->p3
, pCx
);
4441 if( rc
) goto abort_due_to_error
;
4445 /* Opcode: SequenceTest P1 P2 * * *
4446 ** Synopsis: if( cursor[P1].ctr++ ) pc = P2
4448 ** P1 is a sorter cursor. If the sequence counter is currently zero, jump
4449 ** to P2. Regardless of whether or not the jump is taken, increment the
4450 ** the sequence value.
4452 case OP_SequenceTest
: {
4454 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4455 pC
= p
->apCsr
[pOp
->p1
];
4456 assert( isSorter(pC
) );
4457 if( (pC
->seqCount
++)==0 ){
4463 /* Opcode: OpenPseudo P1 P2 P3 * *
4464 ** Synopsis: P3 columns in r[P2]
4466 ** Open a new cursor that points to a fake table that contains a single
4467 ** row of data. The content of that one row is the content of memory
4468 ** register P2. In other words, cursor P1 becomes an alias for the
4469 ** MEM_Blob content contained in register P2.
4471 ** A pseudo-table created by this opcode is used to hold a single
4472 ** row output from the sorter so that the row can be decomposed into
4473 ** individual columns using the OP_Column opcode. The OP_Column opcode
4474 ** is the only cursor opcode that works with a pseudo-table.
4476 ** P3 is the number of fields in the records that will be stored by
4477 ** the pseudo-table.
4479 case OP_OpenPseudo
: {
4482 assert( pOp
->p1
>=0 );
4483 assert( pOp
->p3
>=0 );
4484 pCx
= allocateCursor(p
, pOp
->p1
, pOp
->p3
, CURTYPE_PSEUDO
);
4485 if( pCx
==0 ) goto no_mem
;
4487 pCx
->seekResult
= pOp
->p2
;
4489 /* Give this pseudo-cursor a fake BtCursor pointer so that pCx
4490 ** can be safely passed to sqlite3VdbeCursorMoveto(). This avoids a test
4491 ** for pCx->eCurType==CURTYPE_BTREE inside of sqlite3VdbeCursorMoveto()
4492 ** which is a performance optimization */
4493 pCx
->uc
.pCursor
= sqlite3BtreeFakeValidCursor();
4494 assert( pOp
->p5
==0 );
4498 /* Opcode: Close P1 * * * *
4500 ** Close a cursor previously opened as P1. If P1 is not
4501 ** currently open, this instruction is a no-op.
4503 case OP_Close
: { /* ncycle */
4504 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4505 sqlite3VdbeFreeCursor(p
, p
->apCsr
[pOp
->p1
]);
4506 p
->apCsr
[pOp
->p1
] = 0;
4510 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
4511 /* Opcode: ColumnsUsed P1 * * P4 *
4513 ** This opcode (which only exists if SQLite was compiled with
4514 ** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the
4515 ** table or index for cursor P1 are used. P4 is a 64-bit integer
4516 ** (P4_INT64) in which the first 63 bits are one for each of the
4517 ** first 63 columns of the table or index that are actually used
4518 ** by the cursor. The high-order bit is set if any column after
4519 ** the 64th is used.
4521 case OP_ColumnsUsed
: {
4523 pC
= p
->apCsr
[pOp
->p1
];
4524 assert( pC
->eCurType
==CURTYPE_BTREE
);
4525 pC
->maskUsed
= *(u64
*)pOp
->p4
.pI64
;
4530 /* Opcode: SeekGE P1 P2 P3 P4 *
4531 ** Synopsis: key=r[P3@P4]
4533 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4534 ** use the value in register P3 as the key. If cursor P1 refers
4535 ** to an SQL index, then P3 is the first in an array of P4 registers
4536 ** that are used as an unpacked index key.
4538 ** Reposition cursor P1 so that it points to the smallest entry that
4539 ** is greater than or equal to the key value. If there are no records
4540 ** greater than or equal to the key and P2 is not zero, then jump to P2.
4542 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
4543 ** opcode will either land on a record that exactly matches the key, or
4544 ** else it will cause a jump to P2. When the cursor is OPFLAG_SEEKEQ,
4545 ** this opcode must be followed by an IdxLE opcode with the same arguments.
4546 ** The IdxGT opcode will be skipped if this opcode succeeds, but the
4547 ** IdxGT opcode will be used on subsequent loop iterations. The
4548 ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this
4549 ** is an equality search.
4551 ** This opcode leaves the cursor configured to move in forward order,
4552 ** from the beginning toward the end. In other words, the cursor is
4553 ** configured to use Next, not Prev.
4555 ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe
4557 /* Opcode: SeekGT P1 P2 P3 P4 *
4558 ** Synopsis: key=r[P3@P4]
4560 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4561 ** use the value in register P3 as a key. If cursor P1 refers
4562 ** to an SQL index, then P3 is the first in an array of P4 registers
4563 ** that are used as an unpacked index key.
4565 ** Reposition cursor P1 so that it points to the smallest entry that
4566 ** is greater than the key value. If there are no records greater than
4567 ** the key and P2 is not zero, then jump to P2.
4569 ** This opcode leaves the cursor configured to move in forward order,
4570 ** from the beginning toward the end. In other words, the cursor is
4571 ** configured to use Next, not Prev.
4573 ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe
4575 /* Opcode: SeekLT P1 P2 P3 P4 *
4576 ** Synopsis: key=r[P3@P4]
4578 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4579 ** use the value in register P3 as a key. If cursor P1 refers
4580 ** to an SQL index, then P3 is the first in an array of P4 registers
4581 ** that are used as an unpacked index key.
4583 ** Reposition cursor P1 so that it points to the largest entry that
4584 ** is less than the key value. If there are no records less than
4585 ** the key and P2 is not zero, then jump to P2.
4587 ** This opcode leaves the cursor configured to move in reverse order,
4588 ** from the end toward the beginning. In other words, the cursor is
4589 ** configured to use Prev, not Next.
4591 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe
4593 /* Opcode: SeekLE P1 P2 P3 P4 *
4594 ** Synopsis: key=r[P3@P4]
4596 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4597 ** use the value in register P3 as a key. If cursor P1 refers
4598 ** to an SQL index, then P3 is the first in an array of P4 registers
4599 ** that are used as an unpacked index key.
4601 ** Reposition cursor P1 so that it points to the largest entry that
4602 ** is less than or equal to the key value. If there are no records
4603 ** less than or equal to the key and P2 is not zero, then jump to P2.
4605 ** This opcode leaves the cursor configured to move in reverse order,
4606 ** from the end toward the beginning. In other words, the cursor is
4607 ** configured to use Prev, not Next.
4609 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
4610 ** opcode will either land on a record that exactly matches the key, or
4611 ** else it will cause a jump to P2. When the cursor is OPFLAG_SEEKEQ,
4612 ** this opcode must be followed by an IdxLE opcode with the same arguments.
4613 ** The IdxGE opcode will be skipped if this opcode succeeds, but the
4614 ** IdxGE opcode will be used on subsequent loop iterations. The
4615 ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this
4616 ** is an equality search.
4618 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt
4620 case OP_SeekLT
: /* jump, in3, group, ncycle */
4621 case OP_SeekLE
: /* jump, in3, group, ncycle */
4622 case OP_SeekGE
: /* jump, in3, group, ncycle */
4623 case OP_SeekGT
: { /* jump, in3, group, ncycle */
4624 int res
; /* Comparison result */
4625 int oc
; /* Opcode */
4626 VdbeCursor
*pC
; /* The cursor to seek */
4627 UnpackedRecord r
; /* The key to seek for */
4628 int nField
; /* Number of columns or fields in the key */
4629 i64 iKey
; /* The rowid we are to seek to */
4630 int eqOnly
; /* Only interested in == results */
4632 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4633 assert( pOp
->p2
!=0 );
4634 pC
= p
->apCsr
[pOp
->p1
];
4636 assert( pC
->eCurType
==CURTYPE_BTREE
);
4637 assert( OP_SeekLE
== OP_SeekLT
+1 );
4638 assert( OP_SeekGE
== OP_SeekLT
+2 );
4639 assert( OP_SeekGT
== OP_SeekLT
+3 );
4640 assert( pC
->isOrdered
);
4641 assert( pC
->uc
.pCursor
!=0 );
4646 pC
->seekOp
= pOp
->opcode
;
4649 pC
->deferredMoveto
= 0;
4650 pC
->cacheStatus
= CACHE_STALE
;
4652 u16 flags3
, newType
;
4653 /* The OPFLAG_SEEKEQ/BTREE_SEEK_EQ flag is only set on index cursors */
4654 assert( sqlite3BtreeCursorHasHint(pC
->uc
.pCursor
, BTREE_SEEK_EQ
)==0
4657 /* The input value in P3 might be of any type: integer, real, string,
4658 ** blob, or NULL. But it needs to be an integer before we can do
4659 ** the seek, so convert it. */
4660 pIn3
= &aMem
[pOp
->p3
];
4661 flags3
= pIn3
->flags
;
4662 if( (flags3
& (MEM_Int
|MEM_Real
|MEM_IntReal
|MEM_Str
))==MEM_Str
){
4663 applyNumericAffinity(pIn3
, 0);
4665 iKey
= sqlite3VdbeIntValue(pIn3
); /* Get the integer key value */
4666 newType
= pIn3
->flags
; /* Record the type after applying numeric affinity */
4667 pIn3
->flags
= flags3
; /* But convert the type back to its original */
4669 /* If the P3 value could not be converted into an integer without
4670 ** loss of information, then special processing is required... */
4671 if( (newType
& (MEM_Int
|MEM_IntReal
))==0 ){
4673 if( (newType
& MEM_Real
)==0 ){
4674 if( (newType
& MEM_Null
) || oc
>=OP_SeekGE
){
4675 VdbeBranchTaken(1,2);
4678 rc
= sqlite3BtreeLast(pC
->uc
.pCursor
, &res
);
4679 if( rc
!=SQLITE_OK
) goto abort_due_to_error
;
4680 goto seek_not_found
;
4683 c
= sqlite3IntFloatCompare(iKey
, pIn3
->u
.r
);
4685 /* If the approximation iKey is larger than the actual real search
4686 ** term, substitute >= for > and < for <=. e.g. if the search term
4687 ** is 4.9 and the integer approximation 5:
4689 ** (x > 4.9) -> (x >= 5)
4690 ** (x <= 4.9) -> (x < 5)
4693 assert( OP_SeekGE
==(OP_SeekGT
-1) );
4694 assert( OP_SeekLT
==(OP_SeekLE
-1) );
4695 assert( (OP_SeekLE
& 0x0001)==(OP_SeekGT
& 0x0001) );
4696 if( (oc
& 0x0001)==(OP_SeekGT
& 0x0001) ) oc
--;
4699 /* If the approximation iKey is smaller than the actual real search
4700 ** term, substitute <= for < and > for >=. */
4702 assert( OP_SeekLE
==(OP_SeekLT
+1) );
4703 assert( OP_SeekGT
==(OP_SeekGE
+1) );
4704 assert( (OP_SeekLT
& 0x0001)==(OP_SeekGE
& 0x0001) );
4705 if( (oc
& 0x0001)==(OP_SeekLT
& 0x0001) ) oc
++;
4708 rc
= sqlite3BtreeTableMoveto(pC
->uc
.pCursor
, (u64
)iKey
, 0, &res
);
4709 pC
->movetoTarget
= iKey
; /* Used by OP_Delete */
4710 if( rc
!=SQLITE_OK
){
4711 goto abort_due_to_error
;
4714 /* For a cursor with the OPFLAG_SEEKEQ/BTREE_SEEK_EQ hint, only the
4715 ** OP_SeekGE and OP_SeekLE opcodes are allowed, and these must be
4716 ** immediately followed by an OP_IdxGT or OP_IdxLT opcode, respectively,
4717 ** with the same key.
4719 if( sqlite3BtreeCursorHasHint(pC
->uc
.pCursor
, BTREE_SEEK_EQ
) ){
4721 assert( pOp
->opcode
==OP_SeekGE
|| pOp
->opcode
==OP_SeekLE
);
4722 assert( pOp
[1].opcode
==OP_IdxLT
|| pOp
[1].opcode
==OP_IdxGT
);
4723 assert( pOp
->opcode
==OP_SeekGE
|| pOp
[1].opcode
==OP_IdxLT
);
4724 assert( pOp
->opcode
==OP_SeekLE
|| pOp
[1].opcode
==OP_IdxGT
);
4725 assert( pOp
[1].p1
==pOp
[0].p1
);
4726 assert( pOp
[1].p2
==pOp
[0].p2
);
4727 assert( pOp
[1].p3
==pOp
[0].p3
);
4728 assert( pOp
[1].p4
.i
==pOp
[0].p4
.i
);
4732 assert( pOp
->p4type
==P4_INT32
);
4734 r
.pKeyInfo
= pC
->pKeyInfo
;
4735 r
.nField
= (u16
)nField
;
4737 /* The next line of code computes as follows, only faster:
4738 ** if( oc==OP_SeekGT || oc==OP_SeekLE ){
4739 ** r.default_rc = -1;
4741 ** r.default_rc = +1;
4744 r
.default_rc
= ((1 & (oc
- OP_SeekLT
)) ? -1 : +1);
4745 assert( oc
!=OP_SeekGT
|| r
.default_rc
==-1 );
4746 assert( oc
!=OP_SeekLE
|| r
.default_rc
==-1 );
4747 assert( oc
!=OP_SeekGE
|| r
.default_rc
==+1 );
4748 assert( oc
!=OP_SeekLT
|| r
.default_rc
==+1 );
4750 r
.aMem
= &aMem
[pOp
->p3
];
4754 for(i
=0; i
<r
.nField
; i
++){
4755 assert( memIsValid(&r
.aMem
[i
]) );
4756 if( i
>0 ) REGISTER_TRACE(pOp
->p3
+i
, &r
.aMem
[i
]);
4761 rc
= sqlite3BtreeIndexMoveto(pC
->uc
.pCursor
, &r
, &res
);
4762 if( rc
!=SQLITE_OK
){
4763 goto abort_due_to_error
;
4765 if( eqOnly
&& r
.eqSeen
==0 ){
4767 goto seek_not_found
;
4771 sqlite3_search_count
++;
4773 if( oc
>=OP_SeekGE
){ assert( oc
==OP_SeekGE
|| oc
==OP_SeekGT
);
4774 if( res
<0 || (res
==0 && oc
==OP_SeekGT
) ){
4776 rc
= sqlite3BtreeNext(pC
->uc
.pCursor
, 0);
4777 if( rc
!=SQLITE_OK
){
4778 if( rc
==SQLITE_DONE
){
4782 goto abort_due_to_error
;
4789 assert( oc
==OP_SeekLT
|| oc
==OP_SeekLE
);
4790 if( res
>0 || (res
==0 && oc
==OP_SeekLT
) ){
4792 rc
= sqlite3BtreePrevious(pC
->uc
.pCursor
, 0);
4793 if( rc
!=SQLITE_OK
){
4794 if( rc
==SQLITE_DONE
){
4798 goto abort_due_to_error
;
4802 /* res might be negative because the table is empty. Check to
4803 ** see if this is the case.
4805 res
= sqlite3BtreeEof(pC
->uc
.pCursor
);
4809 assert( pOp
->p2
>0 );
4810 VdbeBranchTaken(res
!=0,2);
4814 assert( pOp
[1].opcode
==OP_IdxLT
|| pOp
[1].opcode
==OP_IdxGT
);
4815 pOp
++; /* Skip the OP_IdxLt or OP_IdxGT that follows */
4821 /* Opcode: SeekScan P1 P2 * * P5
4822 ** Synopsis: Scan-ahead up to P1 rows
4824 ** This opcode is a prefix opcode to OP_SeekGE. In other words, this
4825 ** opcode must be immediately followed by OP_SeekGE. This constraint is
4826 ** checked by assert() statements.
4828 ** This opcode uses the P1 through P4 operands of the subsequent
4829 ** OP_SeekGE. In the text that follows, the operands of the subsequent
4830 ** OP_SeekGE opcode are denoted as SeekOP.P1 through SeekOP.P4. Only
4831 ** the P1, P2 and P5 operands of this opcode are also used, and are called
4832 ** This.P1, This.P2 and This.P5.
4834 ** This opcode helps to optimize IN operators on a multi-column index
4835 ** where the IN operator is on the later terms of the index by avoiding
4836 ** unnecessary seeks on the btree, substituting steps to the next row
4837 ** of the b-tree instead. A correct answer is obtained if this opcode
4838 ** is omitted or is a no-op.
4840 ** The SeekGE.P3 and SeekGE.P4 operands identify an unpacked key which
4841 ** is the desired entry that we want the cursor SeekGE.P1 to be pointing
4842 ** to. Call this SeekGE.P3/P4 row the "target".
4844 ** If the SeekGE.P1 cursor is not currently pointing to a valid row,
4845 ** then this opcode is a no-op and control passes through into the OP_SeekGE.
4847 ** If the SeekGE.P1 cursor is pointing to a valid row, then that row
4848 ** might be the target row, or it might be near and slightly before the
4849 ** target row, or it might be after the target row. If the cursor is
4850 ** currently before the target row, then this opcode attempts to position
4851 ** the cursor on or after the target row by invoking sqlite3BtreeStep()
4852 ** on the cursor between 1 and This.P1 times.
4854 ** The This.P5 parameter is a flag that indicates what to do if the
4855 ** cursor ends up pointing at a valid row that is past the target
4856 ** row. If This.P5 is false (0) then a jump is made to SeekGE.P2. If
4857 ** This.P5 is true (non-zero) then a jump is made to This.P2. The P5==0
4858 ** case occurs when there are no inequality constraints to the right of
4859 ** the IN constraing. The jump to SeekGE.P2 ends the loop. The P5!=0 case
4860 ** occurs when there are inequality constraints to the right of the IN
4861 ** operator. In that case, the This.P2 will point either directly to or
4862 ** to setup code prior to the OP_IdxGT or OP_IdxGE opcode that checks for
4865 ** Possible outcomes from this opcode:<ol>
4867 ** <li> If the cursor is initally not pointed to any valid row, then
4868 ** fall through into the subsequent OP_SeekGE opcode.
4870 ** <li> If the cursor is left pointing to a row that is before the target
4871 ** row, even after making as many as This.P1 calls to
4872 ** sqlite3BtreeNext(), then also fall through into OP_SeekGE.
4874 ** <li> If the cursor is left pointing at the target row, either because it
4875 ** was at the target row to begin with or because one or more
4876 ** sqlite3BtreeNext() calls moved the cursor to the target row,
4877 ** then jump to This.P2..,
4879 ** <li> If the cursor started out before the target row and a call to
4880 ** to sqlite3BtreeNext() moved the cursor off the end of the index
4881 ** (indicating that the target row definitely does not exist in the
4882 ** btree) then jump to SeekGE.P2, ending the loop.
4884 ** <li> If the cursor ends up on a valid row that is past the target row
4885 ** (indicating that the target row does not exist in the btree) then
4886 ** jump to SeekOP.P2 if This.P5==0 or to This.P2 if This.P5>0.
4889 case OP_SeekScan
: { /* ncycle */
4895 assert( pOp
[1].opcode
==OP_SeekGE
);
4897 /* If pOp->p5 is clear, then pOp->p2 points to the first instruction past the
4898 ** OP_IdxGT that follows the OP_SeekGE. Otherwise, it points to the first
4899 ** opcode past the OP_SeekGE itself. */
4900 assert( pOp
->p2
>=(int)(pOp
-aOp
)+2 );
4903 /* There are no inequality constraints following the IN constraint. */
4904 assert( pOp
[1].p1
==aOp
[pOp
->p2
-1].p1
);
4905 assert( pOp
[1].p2
==aOp
[pOp
->p2
-1].p2
);
4906 assert( pOp
[1].p3
==aOp
[pOp
->p2
-1].p3
);
4907 assert( aOp
[pOp
->p2
-1].opcode
==OP_IdxGT
4908 || aOp
[pOp
->p2
-1].opcode
==OP_IdxGE
);
4909 testcase( aOp
[pOp
->p2
-1].opcode
==OP_IdxGE
);
4911 /* There are inequality constraints. */
4912 assert( pOp
->p2
==(int)(pOp
-aOp
)+2 );
4913 assert( aOp
[pOp
->p2
-1].opcode
==OP_SeekGE
);
4917 assert( pOp
->p1
>0 );
4918 pC
= p
->apCsr
[pOp
[1].p1
];
4920 assert( pC
->eCurType
==CURTYPE_BTREE
);
4921 assert( !pC
->isTable
);
4922 if( !sqlite3BtreeCursorIsValidNN(pC
->uc
.pCursor
) ){
4924 if( db
->flags
&SQLITE_VdbeTrace
){
4925 printf("... cursor not valid - fall through\n");
4932 r
.pKeyInfo
= pC
->pKeyInfo
;
4933 r
.nField
= (u16
)pOp
[1].p4
.i
;
4935 r
.aMem
= &aMem
[pOp
[1].p3
];
4939 for(i
=0; i
<r
.nField
; i
++){
4940 assert( memIsValid(&r
.aMem
[i
]) );
4941 REGISTER_TRACE(pOp
[1].p3
+i
, &aMem
[pOp
[1].p3
+i
]);
4945 res
= 0; /* Not needed. Only used to silence a warning. */
4947 rc
= sqlite3VdbeIdxKeyCompare(db
, pC
, &r
, &res
);
4948 if( rc
) goto abort_due_to_error
;
4949 if( res
>0 && pOp
->p5
==0 ){
4950 seekscan_search_fail
:
4951 /* Jump to SeekGE.P2, ending the loop */
4953 if( db
->flags
&SQLITE_VdbeTrace
){
4954 printf("... %d steps and then skip\n", pOp
->p1
- nStep
);
4957 VdbeBranchTaken(1,3);
4962 /* Jump to This.P2, bypassing the OP_SeekGE opcode */
4964 if( db
->flags
&SQLITE_VdbeTrace
){
4965 printf("... %d steps and then success\n", pOp
->p1
- nStep
);
4968 VdbeBranchTaken(2,3);
4974 if( db
->flags
&SQLITE_VdbeTrace
){
4975 printf("... fall through after %d steps\n", pOp
->p1
);
4978 VdbeBranchTaken(0,3);
4982 pC
->cacheStatus
= CACHE_STALE
;
4983 rc
= sqlite3BtreeNext(pC
->uc
.pCursor
, 0);
4985 if( rc
==SQLITE_DONE
){
4987 goto seekscan_search_fail
;
4989 goto abort_due_to_error
;
4998 /* Opcode: SeekHit P1 P2 P3 * *
4999 ** Synopsis: set P2<=seekHit<=P3
5001 ** Increase or decrease the seekHit value for cursor P1, if necessary,
5002 ** so that it is no less than P2 and no greater than P3.
5004 ** The seekHit integer represents the maximum of terms in an index for which
5005 ** there is known to be at least one match. If the seekHit value is smaller
5006 ** than the total number of equality terms in an index lookup, then the
5007 ** OP_IfNoHope opcode might run to see if the IN loop can be abandoned
5008 ** early, thus saving work. This is part of the IN-early-out optimization.
5010 ** P1 must be a valid b-tree cursor.
5012 case OP_SeekHit
: { /* ncycle */
5014 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
5015 pC
= p
->apCsr
[pOp
->p1
];
5017 assert( pOp
->p3
>=pOp
->p2
);
5018 if( pC
->seekHit
<pOp
->p2
){
5020 if( db
->flags
&SQLITE_VdbeTrace
){
5021 printf("seekHit changes from %d to %d\n", pC
->seekHit
, pOp
->p2
);
5024 pC
->seekHit
= pOp
->p2
;
5025 }else if( pC
->seekHit
>pOp
->p3
){
5027 if( db
->flags
&SQLITE_VdbeTrace
){
5028 printf("seekHit changes from %d to %d\n", pC
->seekHit
, pOp
->p3
);
5031 pC
->seekHit
= pOp
->p3
;
5036 /* Opcode: IfNotOpen P1 P2 * * *
5037 ** Synopsis: if( !csr[P1] ) goto P2
5039 ** If cursor P1 is not open or if P1 is set to a NULL row using the
5040 ** OP_NullRow opcode, then jump to instruction P2. Otherwise, fall through.
5042 case OP_IfNotOpen
: { /* jump */
5045 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
5046 pCur
= p
->apCsr
[pOp
->p1
];
5047 VdbeBranchTaken(pCur
==0 || pCur
->nullRow
, 2);
5048 if( pCur
==0 || pCur
->nullRow
){
5049 goto jump_to_p2_and_check_for_interrupt
;
5054 /* Opcode: Found P1 P2 P3 P4 *
5055 ** Synopsis: key=r[P3@P4]
5057 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
5058 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
5061 ** Cursor P1 is on an index btree. If the record identified by P3 and P4
5062 ** is a prefix of any entry in P1 then a jump is made to P2 and
5063 ** P1 is left pointing at the matching entry.
5065 ** This operation leaves the cursor in a state where it can be
5066 ** advanced in the forward direction. The Next instruction will work,
5067 ** but not the Prev instruction.
5069 ** See also: NotFound, NoConflict, NotExists. SeekGe
5071 /* Opcode: NotFound P1 P2 P3 P4 *
5072 ** Synopsis: key=r[P3@P4]
5074 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
5075 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
5078 ** Cursor P1 is on an index btree. If the record identified by P3 and P4
5079 ** is not the prefix of any entry in P1 then a jump is made to P2. If P1
5080 ** does contain an entry whose prefix matches the P3/P4 record then control
5081 ** falls through to the next instruction and P1 is left pointing at the
5084 ** This operation leaves the cursor in a state where it cannot be
5085 ** advanced in either direction. In other words, the Next and Prev
5086 ** opcodes do not work after this operation.
5088 ** See also: Found, NotExists, NoConflict, IfNoHope
5090 /* Opcode: IfNoHope P1 P2 P3 P4 *
5091 ** Synopsis: key=r[P3@P4]
5093 ** Register P3 is the first of P4 registers that form an unpacked
5094 ** record. Cursor P1 is an index btree. P2 is a jump destination.
5095 ** In other words, the operands to this opcode are the same as the
5096 ** operands to OP_NotFound and OP_IdxGT.
5098 ** This opcode is an optimization attempt only. If this opcode always
5099 ** falls through, the correct answer is still obtained, but extra works
5102 ** A value of N in the seekHit flag of cursor P1 means that there exists
5103 ** a key P3:N that will match some record in the index. We want to know
5104 ** if it is possible for a record P3:P4 to match some record in the
5105 ** index. If it is not possible, we can skips some work. So if seekHit
5106 ** is less than P4, attempt to find out if a match is possible by running
5109 ** This opcode is used in IN clause processing for a multi-column key.
5110 ** If an IN clause is attached to an element of the key other than the
5111 ** left-most element, and if there are no matches on the most recent
5112 ** seek over the whole key, then it might be that one of the key element
5113 ** to the left is prohibiting a match, and hence there is "no hope" of
5114 ** any match regardless of how many IN clause elements are checked.
5115 ** In such a case, we abandon the IN clause search early, using this
5116 ** opcode. The opcode name comes from the fact that the
5117 ** jump is taken if there is "no hope" of achieving a match.
5119 ** See also: NotFound, SeekHit
5121 /* Opcode: NoConflict P1 P2 P3 P4 *
5122 ** Synopsis: key=r[P3@P4]
5124 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
5125 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
5128 ** Cursor P1 is on an index btree. If the record identified by P3 and P4
5129 ** contains any NULL value, jump immediately to P2. If all terms of the
5130 ** record are not-NULL then a check is done to determine if any row in the
5131 ** P1 index btree has a matching key prefix. If there are no matches, jump
5132 ** immediately to P2. If there is a match, fall through and leave the P1
5133 ** cursor pointing to the matching row.
5135 ** This opcode is similar to OP_NotFound with the exceptions that the
5136 ** branch is always taken if any part of the search key input is NULL.
5138 ** This operation leaves the cursor in a state where it cannot be
5139 ** advanced in either direction. In other words, the Next and Prev
5140 ** opcodes do not work after this operation.
5142 ** See also: NotFound, Found, NotExists
5144 case OP_IfNoHope
: { /* jump, in3, ncycle */
5146 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
5147 pC
= p
->apCsr
[pOp
->p1
];
5150 if( db
->flags
&SQLITE_VdbeTrace
){
5151 printf("seekHit is %d\n", pC
->seekHit
);
5154 if( pC
->seekHit
>=pOp
->p4
.i
) break;
5155 /* Fall through into OP_NotFound */
5156 /* no break */ deliberate_fall_through
5158 case OP_NoConflict
: /* jump, in3, ncycle */
5159 case OP_NotFound
: /* jump, in3, ncycle */
5160 case OP_Found
: { /* jump, in3, ncycle */
5164 UnpackedRecord
*pIdxKey
;
5168 if( pOp
->opcode
!=OP_NoConflict
) sqlite3_found_count
++;
5171 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
5172 assert( pOp
->p4type
==P4_INT32
);
5173 pC
= p
->apCsr
[pOp
->p1
];
5176 pC
->seekOp
= pOp
->opcode
;
5178 r
.aMem
= &aMem
[pOp
->p3
];
5179 assert( pC
->eCurType
==CURTYPE_BTREE
);
5180 assert( pC
->uc
.pCursor
!=0 );
5181 assert( pC
->isTable
==0 );
5182 r
.nField
= (u16
)pOp
->p4
.i
;
5184 /* Key values in an array of registers */
5185 r
.pKeyInfo
= pC
->pKeyInfo
;
5188 for(ii
=0; ii
<r
.nField
; ii
++){
5189 assert( memIsValid(&r
.aMem
[ii
]) );
5190 assert( (r
.aMem
[ii
].flags
& MEM_Zero
)==0 || r
.aMem
[ii
].n
==0 );
5191 if( ii
) REGISTER_TRACE(pOp
->p3
+ii
, &r
.aMem
[ii
]);
5194 rc
= sqlite3BtreeIndexMoveto(pC
->uc
.pCursor
, &r
, &pC
->seekResult
);
5196 /* Composite key generated by OP_MakeRecord */
5197 assert( r
.aMem
->flags
& MEM_Blob
);
5198 assert( pOp
->opcode
!=OP_NoConflict
);
5199 rc
= ExpandBlob(r
.aMem
);
5200 assert( rc
==SQLITE_OK
|| rc
==SQLITE_NOMEM
);
5201 if( rc
) goto no_mem
;
5202 pIdxKey
= sqlite3VdbeAllocUnpackedRecord(pC
->pKeyInfo
);
5203 if( pIdxKey
==0 ) goto no_mem
;
5204 sqlite3VdbeRecordUnpack(pC
->pKeyInfo
, r
.aMem
->n
, r
.aMem
->z
, pIdxKey
);
5205 pIdxKey
->default_rc
= 0;
5206 rc
= sqlite3BtreeIndexMoveto(pC
->uc
.pCursor
, pIdxKey
, &pC
->seekResult
);
5207 sqlite3DbFreeNN(db
, pIdxKey
);
5209 if( rc
!=SQLITE_OK
){
5210 goto abort_due_to_error
;
5212 alreadyExists
= (pC
->seekResult
==0);
5213 pC
->nullRow
= 1-alreadyExists
;
5214 pC
->deferredMoveto
= 0;
5215 pC
->cacheStatus
= CACHE_STALE
;
5216 if( pOp
->opcode
==OP_Found
){
5217 VdbeBranchTaken(alreadyExists
!=0,2);
5218 if( alreadyExists
) goto jump_to_p2
;
5220 if( !alreadyExists
){
5221 VdbeBranchTaken(1,2);
5224 if( pOp
->opcode
==OP_NoConflict
){
5225 /* For the OP_NoConflict opcode, take the jump if any of the
5226 ** input fields are NULL, since any key with a NULL will not
5228 for(ii
=0; ii
<r
.nField
; ii
++){
5229 if( r
.aMem
[ii
].flags
& MEM_Null
){
5230 VdbeBranchTaken(1,2);
5235 VdbeBranchTaken(0,2);
5236 if( pOp
->opcode
==OP_IfNoHope
){
5237 pC
->seekHit
= pOp
->p4
.i
;
5243 /* Opcode: SeekRowid P1 P2 P3 * *
5244 ** Synopsis: intkey=r[P3]
5246 ** P1 is the index of a cursor open on an SQL table btree (with integer
5247 ** keys). If register P3 does not contain an integer or if P1 does not
5248 ** contain a record with rowid P3 then jump immediately to P2.
5249 ** Or, if P2 is 0, raise an SQLITE_CORRUPT error. If P1 does contain
5250 ** a record with rowid P3 then
5251 ** leave the cursor pointing at that record and fall through to the next
5254 ** The OP_NotExists opcode performs the same operation, but with OP_NotExists
5255 ** the P3 register must be guaranteed to contain an integer value. With this
5256 ** opcode, register P3 might not contain an integer.
5258 ** The OP_NotFound opcode performs the same operation on index btrees
5259 ** (with arbitrary multi-value keys).
5261 ** This opcode leaves the cursor in a state where it cannot be advanced
5262 ** in either direction. In other words, the Next and Prev opcodes will
5263 ** not work following this opcode.
5265 ** See also: Found, NotFound, NoConflict, SeekRowid
5267 /* Opcode: NotExists P1 P2 P3 * *
5268 ** Synopsis: intkey=r[P3]
5270 ** P1 is the index of a cursor open on an SQL table btree (with integer
5271 ** keys). P3 is an integer rowid. If P1 does not contain a record with
5272 ** rowid P3 then jump immediately to P2. Or, if P2 is 0, raise an
5273 ** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then
5274 ** leave the cursor pointing at that record and fall through to the next
5277 ** The OP_SeekRowid opcode performs the same operation but also allows the
5278 ** P3 register to contain a non-integer value, in which case the jump is
5279 ** always taken. This opcode requires that P3 always contain an integer.
5281 ** The OP_NotFound opcode performs the same operation on index btrees
5282 ** (with arbitrary multi-value keys).
5284 ** This opcode leaves the cursor in a state where it cannot be advanced
5285 ** in either direction. In other words, the Next and Prev opcodes will
5286 ** not work following this opcode.
5288 ** See also: Found, NotFound, NoConflict, SeekRowid
5290 case OP_SeekRowid
: { /* jump, in3, ncycle */
5296 pIn3
= &aMem
[pOp
->p3
];
5297 testcase( pIn3
->flags
& MEM_Int
);
5298 testcase( pIn3
->flags
& MEM_IntReal
);
5299 testcase( pIn3
->flags
& MEM_Real
);
5300 testcase( (pIn3
->flags
& (MEM_Str
|MEM_Int
))==MEM_Str
);
5301 if( (pIn3
->flags
& (MEM_Int
|MEM_IntReal
))==0 ){
5302 /* If pIn3->u.i does not contain an integer, compute iKey as the
5303 ** integer value of pIn3. Jump to P2 if pIn3 cannot be converted
5304 ** into an integer without loss of information. Take care to avoid
5305 ** changing the datatype of pIn3, however, as it is used by other
5306 ** parts of the prepared statement. */
5308 applyAffinity(&x
, SQLITE_AFF_NUMERIC
, encoding
);
5309 if( (x
.flags
& MEM_Int
)==0 ) goto jump_to_p2
;
5311 goto notExistsWithKey
;
5313 /* Fall through into OP_NotExists */
5314 /* no break */ deliberate_fall_through
5315 case OP_NotExists
: /* jump, in3, ncycle */
5316 pIn3
= &aMem
[pOp
->p3
];
5317 assert( (pIn3
->flags
& MEM_Int
)!=0 || pOp
->opcode
==OP_SeekRowid
);
5318 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
5321 pC
= p
->apCsr
[pOp
->p1
];
5324 if( pOp
->opcode
==OP_SeekRowid
) pC
->seekOp
= OP_SeekRowid
;
5326 assert( pC
->isTable
);
5327 assert( pC
->eCurType
==CURTYPE_BTREE
);
5328 pCrsr
= pC
->uc
.pCursor
;
5331 rc
= sqlite3BtreeTableMoveto(pCrsr
, iKey
, 0, &res
);
5332 assert( rc
==SQLITE_OK
|| res
==0 );
5333 pC
->movetoTarget
= iKey
; /* Used by OP_Delete */
5335 pC
->cacheStatus
= CACHE_STALE
;
5336 pC
->deferredMoveto
= 0;
5337 VdbeBranchTaken(res
!=0,2);
5338 pC
->seekResult
= res
;
5340 assert( rc
==SQLITE_OK
);
5342 rc
= SQLITE_CORRUPT_BKPT
;
5347 if( rc
) goto abort_due_to_error
;
5351 /* Opcode: Sequence P1 P2 * * *
5352 ** Synopsis: r[P2]=cursor[P1].ctr++
5354 ** Find the next available sequence number for cursor P1.
5355 ** Write the sequence number into register P2.
5356 ** The sequence number on the cursor is incremented after this
5359 case OP_Sequence
: { /* out2 */
5360 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
5361 assert( p
->apCsr
[pOp
->p1
]!=0 );
5362 assert( p
->apCsr
[pOp
->p1
]->eCurType
!=CURTYPE_VTAB
);
5363 pOut
= out2Prerelease(p
, pOp
);
5364 pOut
->u
.i
= p
->apCsr
[pOp
->p1
]->seqCount
++;
5369 /* Opcode: NewRowid P1 P2 P3 * *
5370 ** Synopsis: r[P2]=rowid
5372 ** Get a new integer record number (a.k.a "rowid") used as the key to a table.
5373 ** The record number is not previously used as a key in the database
5374 ** table that cursor P1 points to. The new record number is written
5375 ** written to register P2.
5377 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds
5378 ** the largest previously generated record number. No new record numbers are
5379 ** allowed to be less than this value. When this value reaches its maximum,
5380 ** an SQLITE_FULL error is generated. The P3 register is updated with the '
5381 ** generated record number. This P3 mechanism is used to help implement the
5382 ** AUTOINCREMENT feature.
5384 case OP_NewRowid
: { /* out2 */
5385 i64 v
; /* The new rowid */
5386 VdbeCursor
*pC
; /* Cursor of table to get the new rowid */
5387 int res
; /* Result of an sqlite3BtreeLast() */
5388 int cnt
; /* Counter to limit the number of searches */
5389 #ifndef SQLITE_OMIT_AUTOINCREMENT
5390 Mem
*pMem
; /* Register holding largest rowid for AUTOINCREMENT */
5391 VdbeFrame
*pFrame
; /* Root frame of VDBE */
5396 pOut
= out2Prerelease(p
, pOp
);
5397 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
5398 pC
= p
->apCsr
[pOp
->p1
];
5400 assert( pC
->isTable
);
5401 assert( pC
->eCurType
==CURTYPE_BTREE
);
5402 assert( pC
->uc
.pCursor
!=0 );
5404 /* The next rowid or record number (different terms for the same
5405 ** thing) is obtained in a two-step algorithm.
5407 ** First we attempt to find the largest existing rowid and add one
5408 ** to that. But if the largest existing rowid is already the maximum
5409 ** positive integer, we have to fall through to the second
5410 ** probabilistic algorithm
5412 ** The second algorithm is to select a rowid at random and see if
5413 ** it already exists in the table. If it does not exist, we have
5414 ** succeeded. If the random rowid does exist, we select a new one
5415 ** and try again, up to 100 times.
5417 assert( pC
->isTable
);
5419 #ifdef SQLITE_32BIT_ROWID
5420 # define MAX_ROWID 0x7fffffff
5422 /* Some compilers complain about constants of the form 0x7fffffffffffffff.
5423 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems
5424 ** to provide the constant while making all compilers happy.
5426 # define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
5429 if( !pC
->useRandomRowid
){
5430 rc
= sqlite3BtreeLast(pC
->uc
.pCursor
, &res
);
5431 if( rc
!=SQLITE_OK
){
5432 goto abort_due_to_error
;
5435 v
= 1; /* IMP: R-61914-48074 */
5437 assert( sqlite3BtreeCursorIsValid(pC
->uc
.pCursor
) );
5438 v
= sqlite3BtreeIntegerKey(pC
->uc
.pCursor
);
5440 pC
->useRandomRowid
= 1;
5442 v
++; /* IMP: R-29538-34987 */
5447 #ifndef SQLITE_OMIT_AUTOINCREMENT
5449 /* Assert that P3 is a valid memory cell. */
5450 assert( pOp
->p3
>0 );
5452 for(pFrame
=p
->pFrame
; pFrame
->pParent
; pFrame
=pFrame
->pParent
);
5453 /* Assert that P3 is a valid memory cell. */
5454 assert( pOp
->p3
<=pFrame
->nMem
);
5455 pMem
= &pFrame
->aMem
[pOp
->p3
];
5457 /* Assert that P3 is a valid memory cell. */
5458 assert( pOp
->p3
<=(p
->nMem
+1 - p
->nCursor
) );
5459 pMem
= &aMem
[pOp
->p3
];
5460 memAboutToChange(p
, pMem
);
5462 assert( memIsValid(pMem
) );
5464 REGISTER_TRACE(pOp
->p3
, pMem
);
5465 sqlite3VdbeMemIntegerify(pMem
);
5466 assert( (pMem
->flags
& MEM_Int
)!=0 ); /* mem(P3) holds an integer */
5467 if( pMem
->u
.i
==MAX_ROWID
|| pC
->useRandomRowid
){
5468 rc
= SQLITE_FULL
; /* IMP: R-17817-00630 */
5469 goto abort_due_to_error
;
5471 if( v
<pMem
->u
.i
+1 ){
5477 if( pC
->useRandomRowid
){
5478 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
5479 ** largest possible integer (9223372036854775807) then the database
5480 ** engine starts picking positive candidate ROWIDs at random until
5481 ** it finds one that is not previously used. */
5482 assert( pOp
->p3
==0 ); /* We cannot be in random rowid mode if this is
5483 ** an AUTOINCREMENT table. */
5486 sqlite3_randomness(sizeof(v
), &v
);
5487 v
&= (MAX_ROWID
>>1); v
++; /* Ensure that v is greater than zero */
5488 }while( ((rc
= sqlite3BtreeTableMoveto(pC
->uc
.pCursor
, (u64
)v
,
5489 0, &res
))==SQLITE_OK
)
5492 if( rc
) goto abort_due_to_error
;
5494 rc
= SQLITE_FULL
; /* IMP: R-38219-53002 */
5495 goto abort_due_to_error
;
5497 assert( v
>0 ); /* EV: R-40812-03570 */
5499 pC
->deferredMoveto
= 0;
5500 pC
->cacheStatus
= CACHE_STALE
;
5506 /* Opcode: Insert P1 P2 P3 P4 P5
5507 ** Synopsis: intkey=r[P3] data=r[P2]
5509 ** Write an entry into the table of cursor P1. A new entry is
5510 ** created if it doesn't already exist or the data for an existing
5511 ** entry is overwritten. The data is the value MEM_Blob stored in register
5512 ** number P2. The key is stored in register P3. The key must
5515 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
5516 ** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set,
5517 ** then rowid is stored for subsequent return by the
5518 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
5520 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
5521 ** run faster by avoiding an unnecessary seek on cursor P1. However,
5522 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
5523 ** seeks on the cursor or if the most recent seek used a key equal to P3.
5525 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
5526 ** UPDATE operation. Otherwise (if the flag is clear) then this opcode
5527 ** is part of an INSERT operation. The difference is only important to
5530 ** Parameter P4 may point to a Table structure, or may be NULL. If it is
5531 ** not NULL, then the update-hook (sqlite3.xUpdateCallback) is invoked
5532 ** following a successful insert.
5534 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
5535 ** allocated, then ownership of P2 is transferred to the pseudo-cursor
5536 ** and register P2 becomes ephemeral. If the cursor is changed, the
5537 ** value of register P2 will then change. Make sure this does not
5538 ** cause any problems.)
5540 ** This instruction only works on tables. The equivalent instruction
5541 ** for indices is OP_IdxInsert.
5544 Mem
*pData
; /* MEM cell holding data for the record to be inserted */
5545 Mem
*pKey
; /* MEM cell holding key for the record */
5546 VdbeCursor
*pC
; /* Cursor to table into which insert is written */
5547 int seekResult
; /* Result of prior seek or 0 if no USESEEKRESULT flag */
5548 const char *zDb
; /* database name - used by the update hook */
5549 Table
*pTab
; /* Table structure - used by update and pre-update hooks */
5550 BtreePayload x
; /* Payload to be inserted */
5552 pData
= &aMem
[pOp
->p2
];
5553 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
5554 assert( memIsValid(pData
) );
5555 pC
= p
->apCsr
[pOp
->p1
];
5557 assert( pC
->eCurType
==CURTYPE_BTREE
);
5558 assert( pC
->deferredMoveto
==0 );
5559 assert( pC
->uc
.pCursor
!=0 );
5560 assert( (pOp
->p5
& OPFLAG_ISNOOP
) || pC
->isTable
);
5561 assert( pOp
->p4type
==P4_TABLE
|| pOp
->p4type
>=P4_STATIC
);
5562 REGISTER_TRACE(pOp
->p2
, pData
);
5563 sqlite3VdbeIncrWriteCounter(p
, pC
);
5565 pKey
= &aMem
[pOp
->p3
];
5566 assert( pKey
->flags
& MEM_Int
);
5567 assert( memIsValid(pKey
) );
5568 REGISTER_TRACE(pOp
->p3
, pKey
);
5571 if( pOp
->p4type
==P4_TABLE
&& HAS_UPDATE_HOOK(db
) ){
5572 assert( pC
->iDb
>=0 );
5573 zDb
= db
->aDb
[pC
->iDb
].zDbSName
;
5574 pTab
= pOp
->p4
.pTab
;
5575 assert( (pOp
->p5
& OPFLAG_ISNOOP
) || HasRowid(pTab
) );
5581 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5582 /* Invoke the pre-update hook, if any */
5584 if( db
->xPreUpdateCallback
&& !(pOp
->p5
& OPFLAG_ISUPDATE
) ){
5585 sqlite3VdbePreUpdateHook(p
,pC
,SQLITE_INSERT
,zDb
,pTab
,x
.nKey
,pOp
->p2
,-1);
5587 if( db
->xUpdateCallback
==0 || pTab
->aCol
==0 ){
5588 /* Prevent post-update hook from running in cases when it should not */
5592 if( pOp
->p5
& OPFLAG_ISNOOP
) break;
5595 assert( (pOp
->p5
& OPFLAG_LASTROWID
)==0 || (pOp
->p5
& OPFLAG_NCHANGE
)!=0 );
5596 if( pOp
->p5
& OPFLAG_NCHANGE
){
5598 if( pOp
->p5
& OPFLAG_LASTROWID
) db
->lastRowid
= x
.nKey
;
5600 assert( (pData
->flags
& (MEM_Blob
|MEM_Str
))!=0 || pData
->n
==0 );
5603 seekResult
= ((pOp
->p5
& OPFLAG_USESEEKRESULT
) ? pC
->seekResult
: 0);
5604 if( pData
->flags
& MEM_Zero
){
5605 x
.nZero
= pData
->u
.nZero
;
5610 assert( BTREE_PREFORMAT
==OPFLAG_PREFORMAT
);
5611 rc
= sqlite3BtreeInsert(pC
->uc
.pCursor
, &x
,
5612 (pOp
->p5
& (OPFLAG_APPEND
|OPFLAG_SAVEPOSITION
|OPFLAG_PREFORMAT
)),
5615 pC
->deferredMoveto
= 0;
5616 pC
->cacheStatus
= CACHE_STALE
;
5618 /* Invoke the update-hook if required. */
5619 if( rc
) goto abort_due_to_error
;
5621 assert( db
->xUpdateCallback
!=0 );
5622 assert( pTab
->aCol
!=0 );
5623 db
->xUpdateCallback(db
->pUpdateArg
,
5624 (pOp
->p5
& OPFLAG_ISUPDATE
) ? SQLITE_UPDATE
: SQLITE_INSERT
,
5625 zDb
, pTab
->zName
, x
.nKey
);
5630 /* Opcode: RowCell P1 P2 P3 * *
5632 ** P1 and P2 are both open cursors. Both must be opened on the same type
5633 ** of table - intkey or index. This opcode is used as part of copying
5634 ** the current row from P2 into P1. If the cursors are opened on intkey
5635 ** tables, register P3 contains the rowid to use with the new record in
5636 ** P1. If they are opened on index tables, P3 is not used.
5638 ** This opcode must be followed by either an Insert or InsertIdx opcode
5639 ** with the OPFLAG_PREFORMAT flag set to complete the insert operation.
5642 VdbeCursor
*pDest
; /* Cursor to write to */
5643 VdbeCursor
*pSrc
; /* Cursor to read from */
5644 i64 iKey
; /* Rowid value to insert with */
5645 assert( pOp
[1].opcode
==OP_Insert
|| pOp
[1].opcode
==OP_IdxInsert
);
5646 assert( pOp
[1].opcode
==OP_Insert
|| pOp
->p3
==0 );
5647 assert( pOp
[1].opcode
==OP_IdxInsert
|| pOp
->p3
>0 );
5648 assert( pOp
[1].p5
& OPFLAG_PREFORMAT
);
5649 pDest
= p
->apCsr
[pOp
->p1
];
5650 pSrc
= p
->apCsr
[pOp
->p2
];
5651 iKey
= pOp
->p3
? aMem
[pOp
->p3
].u
.i
: 0;
5652 rc
= sqlite3BtreeTransferRow(pDest
->uc
.pCursor
, pSrc
->uc
.pCursor
, iKey
);
5653 if( rc
!=SQLITE_OK
) goto abort_due_to_error
;
5657 /* Opcode: Delete P1 P2 P3 P4 P5
5659 ** Delete the record at which the P1 cursor is currently pointing.
5661 ** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then
5662 ** the cursor will be left pointing at either the next or the previous
5663 ** record in the table. If it is left pointing at the next record, then
5664 ** the next Next instruction will be a no-op. As a result, in this case
5665 ** it is ok to delete a record from within a Next loop. If
5666 ** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be
5667 ** left in an undefined state.
5669 ** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this
5670 ** delete one of several associated with deleting a table row and all its
5671 ** associated index entries. Exactly one of those deletes is the "primary"
5672 ** delete. The others are all on OPFLAG_FORDELETE cursors or else are
5673 ** marked with the AUXDELETE flag.
5675 ** If the OPFLAG_NCHANGE flag of P2 (NB: P2 not P5) is set, then the row
5676 ** change count is incremented (otherwise not).
5678 ** P1 must not be pseudo-table. It has to be a real table with
5681 ** If P4 is not NULL then it points to a Table object. In this case either
5682 ** the update or pre-update hook, or both, may be invoked. The P1 cursor must
5683 ** have been positioned using OP_NotFound prior to invoking this opcode in
5684 ** this case. Specifically, if one is configured, the pre-update hook is
5685 ** invoked if P4 is not NULL. The update-hook is invoked if one is configured,
5686 ** P4 is not NULL, and the OPFLAG_NCHANGE flag is set in P2.
5688 ** If the OPFLAG_ISUPDATE flag is set in P2, then P3 contains the address
5689 ** of the memory cell that contains the value that the rowid of the row will
5690 ** be set to by the update.
5699 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
5700 pC
= p
->apCsr
[pOp
->p1
];
5702 assert( pC
->eCurType
==CURTYPE_BTREE
);
5703 assert( pC
->uc
.pCursor
!=0 );
5704 assert( pC
->deferredMoveto
==0 );
5705 sqlite3VdbeIncrWriteCounter(p
, pC
);
5708 if( pOp
->p4type
==P4_TABLE
5709 && HasRowid(pOp
->p4
.pTab
)
5711 && sqlite3BtreeCursorIsValidNN(pC
->uc
.pCursor
)
5713 /* If p5 is zero, the seek operation that positioned the cursor prior to
5714 ** OP_Delete will have also set the pC->movetoTarget field to the rowid of
5715 ** the row that is being deleted */
5716 i64 iKey
= sqlite3BtreeIntegerKey(pC
->uc
.pCursor
);
5717 assert( CORRUPT_DB
|| pC
->movetoTarget
==iKey
);
5721 /* If the update-hook or pre-update-hook will be invoked, set zDb to
5722 ** the name of the db to pass as to it. Also set local pTab to a copy
5723 ** of p4.pTab. Finally, if p5 is true, indicating that this cursor was
5724 ** last moved with OP_Next or OP_Prev, not Seek or NotFound, set
5725 ** VdbeCursor.movetoTarget to the current rowid. */
5726 if( pOp
->p4type
==P4_TABLE
&& HAS_UPDATE_HOOK(db
) ){
5727 assert( pC
->iDb
>=0 );
5728 assert( pOp
->p4
.pTab
!=0 );
5729 zDb
= db
->aDb
[pC
->iDb
].zDbSName
;
5730 pTab
= pOp
->p4
.pTab
;
5731 if( (pOp
->p5
& OPFLAG_SAVEPOSITION
)!=0 && pC
->isTable
){
5732 pC
->movetoTarget
= sqlite3BtreeIntegerKey(pC
->uc
.pCursor
);
5739 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5740 /* Invoke the pre-update-hook if required. */
5741 assert( db
->xPreUpdateCallback
==0 || pTab
==pOp
->p4
.pTab
);
5742 if( db
->xPreUpdateCallback
&& pTab
){
5743 assert( !(opflags
& OPFLAG_ISUPDATE
)
5744 || HasRowid(pTab
)==0
5745 || (aMem
[pOp
->p3
].flags
& MEM_Int
)
5747 sqlite3VdbePreUpdateHook(p
, pC
,
5748 (opflags
& OPFLAG_ISUPDATE
) ? SQLITE_UPDATE
: SQLITE_DELETE
,
5749 zDb
, pTab
, pC
->movetoTarget
,
5753 if( opflags
& OPFLAG_ISNOOP
) break;
5756 /* Only flags that can be set are SAVEPOISTION and AUXDELETE */
5757 assert( (pOp
->p5
& ~(OPFLAG_SAVEPOSITION
|OPFLAG_AUXDELETE
))==0 );
5758 assert( OPFLAG_SAVEPOSITION
==BTREE_SAVEPOSITION
);
5759 assert( OPFLAG_AUXDELETE
==BTREE_AUXDELETE
);
5763 if( pC
->isEphemeral
==0
5764 && (pOp
->p5
& OPFLAG_AUXDELETE
)==0
5765 && (pC
->wrFlag
& OPFLAG_FORDELETE
)==0
5769 if( pOp
->p2
& OPFLAG_NCHANGE
){
5775 rc
= sqlite3BtreeDelete(pC
->uc
.pCursor
, pOp
->p5
);
5776 pC
->cacheStatus
= CACHE_STALE
;
5778 if( rc
) goto abort_due_to_error
;
5780 /* Invoke the update-hook if required. */
5781 if( opflags
& OPFLAG_NCHANGE
){
5783 if( db
->xUpdateCallback
&& ALWAYS(pTab
!=0) && HasRowid(pTab
) ){
5784 db
->xUpdateCallback(db
->pUpdateArg
, SQLITE_DELETE
, zDb
, pTab
->zName
,
5786 assert( pC
->iDb
>=0 );
5792 /* Opcode: ResetCount * * * * *
5794 ** The value of the change counter is copied to the database handle
5795 ** change counter (returned by subsequent calls to sqlite3_changes()).
5796 ** Then the VMs internal change counter resets to 0.
5797 ** This is used by trigger programs.
5799 case OP_ResetCount
: {
5800 sqlite3VdbeSetChanges(db
, p
->nChange
);
5805 /* Opcode: SorterCompare P1 P2 P3 P4
5806 ** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2
5808 ** P1 is a sorter cursor. This instruction compares a prefix of the
5809 ** record blob in register P3 against a prefix of the entry that
5810 ** the sorter cursor currently points to. Only the first P4 fields
5811 ** of r[P3] and the sorter record are compared.
5813 ** If either P3 or the sorter contains a NULL in one of their significant
5814 ** fields (not counting the P4 fields at the end which are ignored) then
5815 ** the comparison is assumed to be equal.
5817 ** Fall through to next instruction if the two records compare equal to
5818 ** each other. Jump to P2 if they are different.
5820 case OP_SorterCompare
: {
5825 pC
= p
->apCsr
[pOp
->p1
];
5826 assert( isSorter(pC
) );
5827 assert( pOp
->p4type
==P4_INT32
);
5828 pIn3
= &aMem
[pOp
->p3
];
5829 nKeyCol
= pOp
->p4
.i
;
5831 rc
= sqlite3VdbeSorterCompare(pC
, pIn3
, nKeyCol
, &res
);
5832 VdbeBranchTaken(res
!=0,2);
5833 if( rc
) goto abort_due_to_error
;
5834 if( res
) goto jump_to_p2
;
5838 /* Opcode: SorterData P1 P2 P3 * *
5839 ** Synopsis: r[P2]=data
5841 ** Write into register P2 the current sorter data for sorter cursor P1.
5842 ** Then clear the column header cache on cursor P3.
5844 ** This opcode is normally use to move a record out of the sorter and into
5845 ** a register that is the source for a pseudo-table cursor created using
5846 ** OpenPseudo. That pseudo-table cursor is the one that is identified by
5847 ** parameter P3. Clearing the P3 column cache as part of this opcode saves
5848 ** us from having to issue a separate NullRow instruction to clear that cache.
5850 case OP_SorterData
: {
5853 pOut
= &aMem
[pOp
->p2
];
5854 pC
= p
->apCsr
[pOp
->p1
];
5855 assert( isSorter(pC
) );
5856 rc
= sqlite3VdbeSorterRowkey(pC
, pOut
);
5857 assert( rc
!=SQLITE_OK
|| (pOut
->flags
& MEM_Blob
) );
5858 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
5859 if( rc
) goto abort_due_to_error
;
5860 p
->apCsr
[pOp
->p3
]->cacheStatus
= CACHE_STALE
;
5864 /* Opcode: RowData P1 P2 P3 * *
5865 ** Synopsis: r[P2]=data
5867 ** Write into register P2 the complete row content for the row at
5868 ** which cursor P1 is currently pointing.
5869 ** There is no interpretation of the data.
5870 ** It is just copied onto the P2 register exactly as
5871 ** it is found in the database file.
5873 ** If cursor P1 is an index, then the content is the key of the row.
5874 ** If cursor P2 is a table, then the content extracted is the data.
5876 ** If the P1 cursor must be pointing to a valid row (not a NULL row)
5877 ** of a real table, not a pseudo-table.
5879 ** If P3!=0 then this opcode is allowed to make an ephemeral pointer
5880 ** into the database page. That means that the content of the output
5881 ** register will be invalidated as soon as the cursor moves - including
5882 ** moves caused by other cursors that "save" the current cursors
5883 ** position in order that they can write to the same table. If P3==0
5884 ** then a copy of the data is made into memory. P3!=0 is faster, but
5887 ** If P3!=0 then the content of the P2 register is unsuitable for use
5888 ** in OP_Result and any OP_Result will invalidate the P2 register content.
5889 ** The P2 register content is invalidated by opcodes like OP_Function or
5890 ** by any use of another cursor pointing to the same table.
5897 pOut
= out2Prerelease(p
, pOp
);
5899 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
5900 pC
= p
->apCsr
[pOp
->p1
];
5902 assert( pC
->eCurType
==CURTYPE_BTREE
);
5903 assert( isSorter(pC
)==0 );
5904 assert( pC
->nullRow
==0 );
5905 assert( pC
->uc
.pCursor
!=0 );
5906 pCrsr
= pC
->uc
.pCursor
;
5908 /* The OP_RowData opcodes always follow OP_NotExists or
5909 ** OP_SeekRowid or OP_Rewind/Op_Next with no intervening instructions
5910 ** that might invalidate the cursor.
5911 ** If this where not the case, on of the following assert()s
5912 ** would fail. Should this ever change (because of changes in the code
5913 ** generator) then the fix would be to insert a call to
5914 ** sqlite3VdbeCursorMoveto().
5916 assert( pC
->deferredMoveto
==0 );
5917 assert( sqlite3BtreeCursorIsValid(pCrsr
) );
5919 n
= sqlite3BtreePayloadSize(pCrsr
);
5920 if( n
>(u32
)db
->aLimit
[SQLITE_LIMIT_LENGTH
] ){
5924 rc
= sqlite3VdbeMemFromBtreeZeroOffset(pCrsr
, n
, pOut
);
5925 if( rc
) goto abort_due_to_error
;
5926 if( !pOp
->p3
) Deephemeralize(pOut
);
5927 UPDATE_MAX_BLOBSIZE(pOut
);
5928 REGISTER_TRACE(pOp
->p2
, pOut
);
5932 /* Opcode: Rowid P1 P2 * * *
5933 ** Synopsis: r[P2]=PX rowid of P1
5935 ** Store in register P2 an integer which is the key of the table entry that
5936 ** P1 is currently point to.
5938 ** P1 can be either an ordinary table or a virtual table. There used to
5939 ** be a separate OP_VRowid opcode for use with virtual tables, but this
5940 ** one opcode now works for both table types.
5942 case OP_Rowid
: { /* out2, ncycle */
5945 sqlite3_vtab
*pVtab
;
5946 const sqlite3_module
*pModule
;
5948 pOut
= out2Prerelease(p
, pOp
);
5949 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
5950 pC
= p
->apCsr
[pOp
->p1
];
5952 assert( pC
->eCurType
!=CURTYPE_PSEUDO
|| pC
->nullRow
);
5954 pOut
->flags
= MEM_Null
;
5956 }else if( pC
->deferredMoveto
){
5957 v
= pC
->movetoTarget
;
5958 #ifndef SQLITE_OMIT_VIRTUALTABLE
5959 }else if( pC
->eCurType
==CURTYPE_VTAB
){
5960 assert( pC
->uc
.pVCur
!=0 );
5961 pVtab
= pC
->uc
.pVCur
->pVtab
;
5962 pModule
= pVtab
->pModule
;
5963 assert( pModule
->xRowid
);
5964 rc
= pModule
->xRowid(pC
->uc
.pVCur
, &v
);
5965 sqlite3VtabImportErrmsg(p
, pVtab
);
5966 if( rc
) goto abort_due_to_error
;
5967 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5969 assert( pC
->eCurType
==CURTYPE_BTREE
);
5970 assert( pC
->uc
.pCursor
!=0 );
5971 rc
= sqlite3VdbeCursorRestore(pC
);
5972 if( rc
) goto abort_due_to_error
;
5974 pOut
->flags
= MEM_Null
;
5977 v
= sqlite3BtreeIntegerKey(pC
->uc
.pCursor
);
5983 /* Opcode: NullRow P1 * * * *
5985 ** Move the cursor P1 to a null row. Any OP_Column operations
5986 ** that occur while the cursor is on the null row will always
5989 ** If cursor P1 is not previously opened, open it now to a special
5990 ** pseudo-cursor that always returns NULL for every column.
5995 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
5996 pC
= p
->apCsr
[pOp
->p1
];
5998 /* If the cursor is not already open, create a special kind of
5999 ** pseudo-cursor that always gives null rows. */
6000 pC
= allocateCursor(p
, pOp
->p1
, 1, CURTYPE_PSEUDO
);
6001 if( pC
==0 ) goto no_mem
;
6005 pC
->uc
.pCursor
= sqlite3BtreeFakeValidCursor();
6008 pC
->cacheStatus
= CACHE_STALE
;
6009 if( pC
->eCurType
==CURTYPE_BTREE
){
6010 assert( pC
->uc
.pCursor
!=0 );
6011 sqlite3BtreeClearCursor(pC
->uc
.pCursor
);
6014 if( pC
->seekOp
==0 ) pC
->seekOp
= OP_NullRow
;
6019 /* Opcode: SeekEnd P1 * * * *
6021 ** Position cursor P1 at the end of the btree for the purpose of
6022 ** appending a new entry onto the btree.
6024 ** It is assumed that the cursor is used only for appending and so
6025 ** if the cursor is valid, then the cursor must already be pointing
6026 ** at the end of the btree and so no changes are made to
6029 /* Opcode: Last P1 P2 * * *
6031 ** The next use of the Rowid or Column or Prev instruction for P1
6032 ** will refer to the last entry in the database table or index.
6033 ** If the table or index is empty and P2>0, then jump immediately to P2.
6034 ** If P2 is 0 or if the table or index is not empty, fall through
6035 ** to the following instruction.
6037 ** This opcode leaves the cursor configured to move in reverse order,
6038 ** from the end toward the beginning. In other words, the cursor is
6039 ** configured to use Prev, not Next.
6041 case OP_SeekEnd
: /* ncycle */
6042 case OP_Last
: { /* jump, ncycle */
6047 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
6048 pC
= p
->apCsr
[pOp
->p1
];
6050 assert( pC
->eCurType
==CURTYPE_BTREE
);
6051 pCrsr
= pC
->uc
.pCursor
;
6055 pC
->seekOp
= pOp
->opcode
;
6057 if( pOp
->opcode
==OP_SeekEnd
){
6058 assert( pOp
->p2
==0 );
6059 pC
->seekResult
= -1;
6060 if( sqlite3BtreeCursorIsValidNN(pCrsr
) ){
6064 rc
= sqlite3BtreeLast(pCrsr
, &res
);
6065 pC
->nullRow
= (u8
)res
;
6066 pC
->deferredMoveto
= 0;
6067 pC
->cacheStatus
= CACHE_STALE
;
6068 if( rc
) goto abort_due_to_error
;
6070 VdbeBranchTaken(res
!=0,2);
6071 if( res
) goto jump_to_p2
;
6076 /* Opcode: IfSmaller P1 P2 P3 * *
6078 ** Estimate the number of rows in the table P1. Jump to P2 if that
6079 ** estimate is less than approximately 2**(0.1*P3).
6081 case OP_IfSmaller
: { /* jump */
6087 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
6088 pC
= p
->apCsr
[pOp
->p1
];
6090 pCrsr
= pC
->uc
.pCursor
;
6092 rc
= sqlite3BtreeFirst(pCrsr
, &res
);
6093 if( rc
) goto abort_due_to_error
;
6095 sz
= sqlite3BtreeRowCountEst(pCrsr
);
6096 if( ALWAYS(sz
>=0) && sqlite3LogEst((u64
)sz
)<pOp
->p3
) res
= 1;
6098 VdbeBranchTaken(res
!=0,2);
6099 if( res
) goto jump_to_p2
;
6104 /* Opcode: SorterSort P1 P2 * * *
6106 ** After all records have been inserted into the Sorter object
6107 ** identified by P1, invoke this opcode to actually do the sorting.
6108 ** Jump to P2 if there are no records to be sorted.
6110 ** This opcode is an alias for OP_Sort and OP_Rewind that is used
6111 ** for Sorter objects.
6113 /* Opcode: Sort P1 P2 * * *
6115 ** This opcode does exactly the same thing as OP_Rewind except that
6116 ** it increments an undocumented global variable used for testing.
6118 ** Sorting is accomplished by writing records into a sorting index,
6119 ** then rewinding that index and playing it back from beginning to
6120 ** end. We use the OP_Sort opcode instead of OP_Rewind to do the
6121 ** rewinding so that the global variable will be incremented and
6122 ** regression tests can determine whether or not the optimizer is
6123 ** correctly optimizing out sorts.
6125 case OP_SorterSort
: /* jump */
6126 case OP_Sort
: { /* jump */
6128 sqlite3_sort_count
++;
6129 sqlite3_search_count
--;
6131 p
->aCounter
[SQLITE_STMTSTATUS_SORT
]++;
6132 /* Fall through into OP_Rewind */
6133 /* no break */ deliberate_fall_through
6135 /* Opcode: Rewind P1 P2 * * *
6137 ** The next use of the Rowid or Column or Next instruction for P1
6138 ** will refer to the first entry in the database table or index.
6139 ** If the table or index is empty, jump immediately to P2.
6140 ** If the table or index is not empty, fall through to the following
6143 ** If P2 is zero, that is an assertion that the P1 table is never
6144 ** empty and hence the jump will never be taken.
6146 ** This opcode leaves the cursor configured to move in forward order,
6147 ** from the beginning toward the end. In other words, the cursor is
6148 ** configured to use Next, not Prev.
6150 case OP_Rewind
: { /* jump, ncycle */
6155 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
6156 assert( pOp
->p5
==0 );
6157 assert( pOp
->p2
>=0 && pOp
->p2
<p
->nOp
);
6159 pC
= p
->apCsr
[pOp
->p1
];
6161 assert( isSorter(pC
)==(pOp
->opcode
==OP_SorterSort
) );
6164 pC
->seekOp
= OP_Rewind
;
6167 rc
= sqlite3VdbeSorterRewind(pC
, &res
);
6169 assert( pC
->eCurType
==CURTYPE_BTREE
);
6170 pCrsr
= pC
->uc
.pCursor
;
6172 rc
= sqlite3BtreeFirst(pCrsr
, &res
);
6173 pC
->deferredMoveto
= 0;
6174 pC
->cacheStatus
= CACHE_STALE
;
6176 if( rc
) goto abort_due_to_error
;
6177 pC
->nullRow
= (u8
)res
;
6179 VdbeBranchTaken(res
!=0,2);
6180 if( res
) goto jump_to_p2
;
6185 /* Opcode: Next P1 P2 P3 * P5
6187 ** Advance cursor P1 so that it points to the next key/data pair in its
6188 ** table or index. If there are no more key/value pairs then fall through
6189 ** to the following instruction. But if the cursor advance was successful,
6190 ** jump immediately to P2.
6192 ** The Next opcode is only valid following an SeekGT, SeekGE, or
6193 ** OP_Rewind opcode used to position the cursor. Next is not allowed
6194 ** to follow SeekLT, SeekLE, or OP_Last.
6196 ** The P1 cursor must be for a real table, not a pseudo-table. P1 must have
6197 ** been opened prior to this opcode or the program will segfault.
6199 ** The P3 value is a hint to the btree implementation. If P3==1, that
6200 ** means P1 is an SQL index and that this instruction could have been
6201 ** omitted if that index had been unique. P3 is usually 0. P3 is
6202 ** always either 0 or 1.
6204 ** If P5 is positive and the jump is taken, then event counter
6205 ** number P5-1 in the prepared statement is incremented.
6209 /* Opcode: Prev P1 P2 P3 * P5
6211 ** Back up cursor P1 so that it points to the previous key/data pair in its
6212 ** table or index. If there is no previous key/value pairs then fall through
6213 ** to the following instruction. But if the cursor backup was successful,
6214 ** jump immediately to P2.
6217 ** The Prev opcode is only valid following an SeekLT, SeekLE, or
6218 ** OP_Last opcode used to position the cursor. Prev is not allowed
6219 ** to follow SeekGT, SeekGE, or OP_Rewind.
6221 ** The P1 cursor must be for a real table, not a pseudo-table. If P1 is
6222 ** not open then the behavior is undefined.
6224 ** The P3 value is a hint to the btree implementation. If P3==1, that
6225 ** means P1 is an SQL index and that this instruction could have been
6226 ** omitted if that index had been unique. P3 is usually 0. P3 is
6227 ** always either 0 or 1.
6229 ** If P5 is positive and the jump is taken, then event counter
6230 ** number P5-1 in the prepared statement is incremented.
6232 /* Opcode: SorterNext P1 P2 * * P5
6234 ** This opcode works just like OP_Next except that P1 must be a
6235 ** sorter object for which the OP_SorterSort opcode has been
6236 ** invoked. This opcode advances the cursor to the next sorted
6237 ** record, or jumps to P2 if there are no more sorted records.
6239 case OP_SorterNext
: { /* jump */
6242 pC
= p
->apCsr
[pOp
->p1
];
6243 assert( isSorter(pC
) );
6244 rc
= sqlite3VdbeSorterNext(db
, pC
);
6247 case OP_Prev
: /* jump, ncycle */
6248 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
6250 || pOp
->p5
==SQLITE_STMTSTATUS_FULLSCAN_STEP
6251 || pOp
->p5
==SQLITE_STMTSTATUS_AUTOINDEX
);
6252 pC
= p
->apCsr
[pOp
->p1
];
6254 assert( pC
->deferredMoveto
==0 );
6255 assert( pC
->eCurType
==CURTYPE_BTREE
);
6256 assert( pC
->seekOp
==OP_SeekLT
|| pC
->seekOp
==OP_SeekLE
6257 || pC
->seekOp
==OP_Last
|| pC
->seekOp
==OP_IfNoHope
6258 || pC
->seekOp
==OP_NullRow
);
6259 rc
= sqlite3BtreePrevious(pC
->uc
.pCursor
, pOp
->p3
);
6262 case OP_Next
: /* jump, ncycle */
6263 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
6265 || pOp
->p5
==SQLITE_STMTSTATUS_FULLSCAN_STEP
6266 || pOp
->p5
==SQLITE_STMTSTATUS_AUTOINDEX
);
6267 pC
= p
->apCsr
[pOp
->p1
];
6269 assert( pC
->deferredMoveto
==0 );
6270 assert( pC
->eCurType
==CURTYPE_BTREE
);
6271 assert( pC
->seekOp
==OP_SeekGT
|| pC
->seekOp
==OP_SeekGE
6272 || pC
->seekOp
==OP_Rewind
|| pC
->seekOp
==OP_Found
6273 || pC
->seekOp
==OP_NullRow
|| pC
->seekOp
==OP_SeekRowid
6274 || pC
->seekOp
==OP_IfNoHope
);
6275 rc
= sqlite3BtreeNext(pC
->uc
.pCursor
, pOp
->p3
);
6278 pC
->cacheStatus
= CACHE_STALE
;
6279 VdbeBranchTaken(rc
==SQLITE_OK
,2);
6280 if( rc
==SQLITE_OK
){
6282 p
->aCounter
[pOp
->p5
]++;
6284 sqlite3_search_count
++;
6286 goto jump_to_p2_and_check_for_interrupt
;
6288 if( rc
!=SQLITE_DONE
) goto abort_due_to_error
;
6291 goto check_for_interrupt
;
6294 /* Opcode: IdxInsert P1 P2 P3 P4 P5
6295 ** Synopsis: key=r[P2]
6297 ** Register P2 holds an SQL index key made using the
6298 ** MakeRecord instructions. This opcode writes that key
6299 ** into the index P1. Data for the entry is nil.
6301 ** If P4 is not zero, then it is the number of values in the unpacked
6302 ** key of reg(P2). In that case, P3 is the index of the first register
6303 ** for the unpacked key. The availability of the unpacked key can sometimes
6304 ** be an optimization.
6306 ** If P5 has the OPFLAG_APPEND bit set, that is a hint to the b-tree layer
6307 ** that this insert is likely to be an append.
6309 ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is
6310 ** incremented by this instruction. If the OPFLAG_NCHANGE bit is clear,
6311 ** then the change counter is unchanged.
6313 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
6314 ** run faster by avoiding an unnecessary seek on cursor P1. However,
6315 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
6316 ** seeks on the cursor or if the most recent seek used a key equivalent
6319 ** This instruction only works for indices. The equivalent instruction
6320 ** for tables is OP_Insert.
6322 case OP_IdxInsert
: { /* in2 */
6326 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
6327 pC
= p
->apCsr
[pOp
->p1
];
6328 sqlite3VdbeIncrWriteCounter(p
, pC
);
6330 assert( !isSorter(pC
) );
6331 pIn2
= &aMem
[pOp
->p2
];
6332 assert( (pIn2
->flags
& MEM_Blob
) || (pOp
->p5
& OPFLAG_PREFORMAT
) );
6333 if( pOp
->p5
& OPFLAG_NCHANGE
) p
->nChange
++;
6334 assert( pC
->eCurType
==CURTYPE_BTREE
);
6335 assert( pC
->isTable
==0 );
6336 rc
= ExpandBlob(pIn2
);
6337 if( rc
) goto abort_due_to_error
;
6340 x
.aMem
= aMem
+ pOp
->p3
;
6341 x
.nMem
= (u16
)pOp
->p4
.i
;
6342 rc
= sqlite3BtreeInsert(pC
->uc
.pCursor
, &x
,
6343 (pOp
->p5
& (OPFLAG_APPEND
|OPFLAG_SAVEPOSITION
|OPFLAG_PREFORMAT
)),
6344 ((pOp
->p5
& OPFLAG_USESEEKRESULT
) ? pC
->seekResult
: 0)
6346 assert( pC
->deferredMoveto
==0 );
6347 pC
->cacheStatus
= CACHE_STALE
;
6348 if( rc
) goto abort_due_to_error
;
6352 /* Opcode: SorterInsert P1 P2 * * *
6353 ** Synopsis: key=r[P2]
6355 ** Register P2 holds an SQL index key made using the
6356 ** MakeRecord instructions. This opcode writes that key
6357 ** into the sorter P1. Data for the entry is nil.
6359 case OP_SorterInsert
: { /* in2 */
6362 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
6363 pC
= p
->apCsr
[pOp
->p1
];
6364 sqlite3VdbeIncrWriteCounter(p
, pC
);
6366 assert( isSorter(pC
) );
6367 pIn2
= &aMem
[pOp
->p2
];
6368 assert( pIn2
->flags
& MEM_Blob
);
6369 assert( pC
->isTable
==0 );
6370 rc
= ExpandBlob(pIn2
);
6371 if( rc
) goto abort_due_to_error
;
6372 rc
= sqlite3VdbeSorterWrite(pC
, pIn2
);
6373 if( rc
) goto abort_due_to_error
;
6377 /* Opcode: IdxDelete P1 P2 P3 * P5
6378 ** Synopsis: key=r[P2@P3]
6380 ** The content of P3 registers starting at register P2 form
6381 ** an unpacked index key. This opcode removes that entry from the
6382 ** index opened by cursor P1.
6384 ** If P5 is not zero, then raise an SQLITE_CORRUPT_INDEX error
6385 ** if no matching index entry is found. This happens when running
6386 ** an UPDATE or DELETE statement and the index entry to be updated
6387 ** or deleted is not found. For some uses of IdxDelete
6388 ** (example: the EXCEPT operator) it does not matter that no matching
6389 ** entry is found. For those cases, P5 is zero. Also, do not raise
6390 ** this (self-correcting and non-critical) error if in writable_schema mode.
6392 case OP_IdxDelete
: {
6398 assert( pOp
->p3
>0 );
6399 assert( pOp
->p2
>0 && pOp
->p2
+pOp
->p3
<=(p
->nMem
+1 - p
->nCursor
)+1 );
6400 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
6401 pC
= p
->apCsr
[pOp
->p1
];
6403 assert( pC
->eCurType
==CURTYPE_BTREE
);
6404 sqlite3VdbeIncrWriteCounter(p
, pC
);
6405 pCrsr
= pC
->uc
.pCursor
;
6407 r
.pKeyInfo
= pC
->pKeyInfo
;
6408 r
.nField
= (u16
)pOp
->p3
;
6410 r
.aMem
= &aMem
[pOp
->p2
];
6411 rc
= sqlite3BtreeIndexMoveto(pCrsr
, &r
, &res
);
6412 if( rc
) goto abort_due_to_error
;
6414 rc
= sqlite3BtreeDelete(pCrsr
, BTREE_AUXDELETE
);
6415 if( rc
) goto abort_due_to_error
;
6416 }else if( pOp
->p5
&& !sqlite3WritableSchema(db
) ){
6417 rc
= sqlite3ReportError(SQLITE_CORRUPT_INDEX
, __LINE__
, "index corruption");
6418 goto abort_due_to_error
;
6420 assert( pC
->deferredMoveto
==0 );
6421 pC
->cacheStatus
= CACHE_STALE
;
6426 /* Opcode: DeferredSeek P1 * P3 P4 *
6427 ** Synopsis: Move P3 to P1.rowid if needed
6429 ** P1 is an open index cursor and P3 is a cursor on the corresponding
6430 ** table. This opcode does a deferred seek of the P3 table cursor
6431 ** to the row that corresponds to the current row of P1.
6433 ** This is a deferred seek. Nothing actually happens until
6434 ** the cursor is used to read a record. That way, if no reads
6435 ** occur, no unnecessary I/O happens.
6437 ** P4 may be an array of integers (type P4_INTARRAY) containing
6438 ** one entry for each column in the P3 table. If array entry a(i)
6439 ** is non-zero, then reading column a(i)-1 from cursor P3 is
6440 ** equivalent to performing the deferred seek and then reading column i
6441 ** from P1. This information is stored in P3 and used to redirect
6442 ** reads against P3 over to P1, thus possibly avoiding the need to
6443 ** seek and read cursor P3.
6445 /* Opcode: IdxRowid P1 P2 * * *
6446 ** Synopsis: r[P2]=rowid
6448 ** Write into register P2 an integer which is the last entry in the record at
6449 ** the end of the index key pointed to by cursor P1. This integer should be
6450 ** the rowid of the table entry to which this index entry points.
6452 ** See also: Rowid, MakeRecord.
6454 case OP_DeferredSeek
: /* ncycle */
6455 case OP_IdxRowid
: { /* out2, ncycle */
6456 VdbeCursor
*pC
; /* The P1 index cursor */
6457 VdbeCursor
*pTabCur
; /* The P2 table cursor (OP_DeferredSeek only) */
6458 i64 rowid
; /* Rowid that P1 current points to */
6460 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
6461 pC
= p
->apCsr
[pOp
->p1
];
6463 assert( pC
->eCurType
==CURTYPE_BTREE
|| IsNullCursor(pC
) );
6464 assert( pC
->uc
.pCursor
!=0 );
6465 assert( pC
->isTable
==0 || IsNullCursor(pC
) );
6466 assert( pC
->deferredMoveto
==0 );
6467 assert( !pC
->nullRow
|| pOp
->opcode
==OP_IdxRowid
);
6469 /* The IdxRowid and Seek opcodes are combined because of the commonality
6470 ** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */
6471 rc
= sqlite3VdbeCursorRestore(pC
);
6473 /* sqlite3VdbeCursorRestore() may fail if the cursor has been disturbed
6474 ** since it was last positioned and an error (e.g. OOM or an IO error)
6475 ** occurs while trying to reposition it. */
6476 if( rc
!=SQLITE_OK
) goto abort_due_to_error
;
6479 rowid
= 0; /* Not needed. Only used to silence a warning. */
6480 rc
= sqlite3VdbeIdxRowid(db
, pC
->uc
.pCursor
, &rowid
);
6481 if( rc
!=SQLITE_OK
){
6482 goto abort_due_to_error
;
6484 if( pOp
->opcode
==OP_DeferredSeek
){
6485 assert( pOp
->p3
>=0 && pOp
->p3
<p
->nCursor
);
6486 pTabCur
= p
->apCsr
[pOp
->p3
];
6487 assert( pTabCur
!=0 );
6488 assert( pTabCur
->eCurType
==CURTYPE_BTREE
);
6489 assert( pTabCur
->uc
.pCursor
!=0 );
6490 assert( pTabCur
->isTable
);
6491 pTabCur
->nullRow
= 0;
6492 pTabCur
->movetoTarget
= rowid
;
6493 pTabCur
->deferredMoveto
= 1;
6494 pTabCur
->cacheStatus
= CACHE_STALE
;
6495 assert( pOp
->p4type
==P4_INTARRAY
|| pOp
->p4
.ai
==0 );
6496 assert( !pTabCur
->isEphemeral
);
6497 pTabCur
->ub
.aAltMap
= pOp
->p4
.ai
;
6498 assert( !pC
->isEphemeral
);
6499 pTabCur
->pAltCursor
= pC
;
6501 pOut
= out2Prerelease(p
, pOp
);
6505 assert( pOp
->opcode
==OP_IdxRowid
);
6506 sqlite3VdbeMemSetNull(&aMem
[pOp
->p2
]);
6511 /* Opcode: FinishSeek P1 * * * *
6513 ** If cursor P1 was previously moved via OP_DeferredSeek, complete that
6514 ** seek operation now, without further delay. If the cursor seek has
6515 ** already occurred, this instruction is a no-op.
6517 case OP_FinishSeek
: { /* ncycle */
6518 VdbeCursor
*pC
; /* The P1 index cursor */
6520 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
6521 pC
= p
->apCsr
[pOp
->p1
];
6522 if( pC
->deferredMoveto
){
6523 rc
= sqlite3VdbeFinishMoveto(pC
);
6524 if( rc
) goto abort_due_to_error
;
6529 /* Opcode: IdxGE P1 P2 P3 P4 *
6530 ** Synopsis: key=r[P3@P4]
6532 ** The P4 register values beginning with P3 form an unpacked index
6533 ** key that omits the PRIMARY KEY. Compare this key value against the index
6534 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
6535 ** fields at the end.
6537 ** If the P1 index entry is greater than or equal to the key value
6538 ** then jump to P2. Otherwise fall through to the next instruction.
6540 /* Opcode: IdxGT P1 P2 P3 P4 *
6541 ** Synopsis: key=r[P3@P4]
6543 ** The P4 register values beginning with P3 form an unpacked index
6544 ** key that omits the PRIMARY KEY. Compare this key value against the index
6545 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
6546 ** fields at the end.
6548 ** If the P1 index entry is greater than the key value
6549 ** then jump to P2. Otherwise fall through to the next instruction.
6551 /* Opcode: IdxLT P1 P2 P3 P4 *
6552 ** Synopsis: key=r[P3@P4]
6554 ** The P4 register values beginning with P3 form an unpacked index
6555 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against
6556 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
6557 ** ROWID on the P1 index.
6559 ** If the P1 index entry is less than the key value then jump to P2.
6560 ** Otherwise fall through to the next instruction.
6562 /* Opcode: IdxLE P1 P2 P3 P4 *
6563 ** Synopsis: key=r[P3@P4]
6565 ** The P4 register values beginning with P3 form an unpacked index
6566 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against
6567 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
6568 ** ROWID on the P1 index.
6570 ** If the P1 index entry is less than or equal to the key value then jump
6571 ** to P2. Otherwise fall through to the next instruction.
6573 case OP_IdxLE
: /* jump, ncycle */
6574 case OP_IdxGT
: /* jump, ncycle */
6575 case OP_IdxLT
: /* jump, ncycle */
6576 case OP_IdxGE
: { /* jump, ncycle */
6581 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
6582 pC
= p
->apCsr
[pOp
->p1
];
6584 assert( pC
->isOrdered
);
6585 assert( pC
->eCurType
==CURTYPE_BTREE
);
6586 assert( pC
->uc
.pCursor
!=0);
6587 assert( pC
->deferredMoveto
==0 );
6588 assert( pOp
->p4type
==P4_INT32
);
6589 r
.pKeyInfo
= pC
->pKeyInfo
;
6590 r
.nField
= (u16
)pOp
->p4
.i
;
6591 if( pOp
->opcode
<OP_IdxLT
){
6592 assert( pOp
->opcode
==OP_IdxLE
|| pOp
->opcode
==OP_IdxGT
);
6595 assert( pOp
->opcode
==OP_IdxGE
|| pOp
->opcode
==OP_IdxLT
);
6598 r
.aMem
= &aMem
[pOp
->p3
];
6602 for(i
=0; i
<r
.nField
; i
++){
6603 assert( memIsValid(&r
.aMem
[i
]) );
6604 REGISTER_TRACE(pOp
->p3
+i
, &aMem
[pOp
->p3
+i
]);
6609 /* Inlined version of sqlite3VdbeIdxKeyCompare() */
6615 assert( pC
->eCurType
==CURTYPE_BTREE
);
6616 pCur
= pC
->uc
.pCursor
;
6617 assert( sqlite3BtreeCursorIsValid(pCur
) );
6618 nCellKey
= sqlite3BtreePayloadSize(pCur
);
6619 /* nCellKey will always be between 0 and 0xffffffff because of the way
6620 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
6621 if( nCellKey
<=0 || nCellKey
>0x7fffffff ){
6622 rc
= SQLITE_CORRUPT_BKPT
;
6623 goto abort_due_to_error
;
6625 sqlite3VdbeMemInit(&m
, db
, 0);
6626 rc
= sqlite3VdbeMemFromBtreeZeroOffset(pCur
, (u32
)nCellKey
, &m
);
6627 if( rc
) goto abort_due_to_error
;
6628 res
= sqlite3VdbeRecordCompareWithSkip(m
.n
, m
.z
, &r
, 0);
6629 sqlite3VdbeMemReleaseMalloc(&m
);
6631 /* End of inlined sqlite3VdbeIdxKeyCompare() */
6633 assert( (OP_IdxLE
&1)==(OP_IdxLT
&1) && (OP_IdxGE
&1)==(OP_IdxGT
&1) );
6634 if( (pOp
->opcode
&1)==(OP_IdxLT
&1) ){
6635 assert( pOp
->opcode
==OP_IdxLE
|| pOp
->opcode
==OP_IdxLT
);
6638 assert( pOp
->opcode
==OP_IdxGE
|| pOp
->opcode
==OP_IdxGT
);
6641 VdbeBranchTaken(res
>0,2);
6642 assert( rc
==SQLITE_OK
);
6643 if( res
>0 ) goto jump_to_p2
;
6647 /* Opcode: Destroy P1 P2 P3 * *
6649 ** Delete an entire database table or index whose root page in the database
6650 ** file is given by P1.
6652 ** The table being destroyed is in the main database file if P3==0. If
6653 ** P3==1 then the table to be clear is in the auxiliary database file
6654 ** that is used to store tables create using CREATE TEMPORARY TABLE.
6656 ** If AUTOVACUUM is enabled then it is possible that another root page
6657 ** might be moved into the newly deleted root page in order to keep all
6658 ** root pages contiguous at the beginning of the database. The former
6659 ** value of the root page that moved - its value before the move occurred -
6660 ** is stored in register P2. If no page movement was required (because the
6661 ** table being dropped was already the last one in the database) then a
6662 ** zero is stored in register P2. If AUTOVACUUM is disabled then a zero
6663 ** is stored in register P2.
6665 ** This opcode throws an error if there are any active reader VMs when
6666 ** it is invoked. This is done to avoid the difficulty associated with
6667 ** updating existing cursors when a root page is moved in an AUTOVACUUM
6668 ** database. This error is thrown even if the database is not an AUTOVACUUM
6669 ** db in order to avoid introducing an incompatibility between autovacuum
6670 ** and non-autovacuum modes.
6674 case OP_Destroy
: { /* out2 */
6678 sqlite3VdbeIncrWriteCounter(p
, 0);
6679 assert( p
->readOnly
==0 );
6680 assert( pOp
->p1
>1 );
6681 pOut
= out2Prerelease(p
, pOp
);
6682 pOut
->flags
= MEM_Null
;
6683 if( db
->nVdbeRead
> db
->nVDestroy
+1 ){
6685 p
->errorAction
= OE_Abort
;
6686 goto abort_due_to_error
;
6689 assert( DbMaskTest(p
->btreeMask
, iDb
) );
6690 iMoved
= 0; /* Not needed. Only to silence a warning. */
6691 rc
= sqlite3BtreeDropTable(db
->aDb
[iDb
].pBt
, pOp
->p1
, &iMoved
);
6692 pOut
->flags
= MEM_Int
;
6694 if( rc
) goto abort_due_to_error
;
6695 #ifndef SQLITE_OMIT_AUTOVACUUM
6697 sqlite3RootPageMoved(db
, iDb
, iMoved
, pOp
->p1
);
6698 /* All OP_Destroy operations occur on the same btree */
6699 assert( resetSchemaOnFault
==0 || resetSchemaOnFault
==iDb
+1 );
6700 resetSchemaOnFault
= iDb
+1;
6707 /* Opcode: Clear P1 P2 P3
6709 ** Delete all contents of the database table or index whose root page
6710 ** in the database file is given by P1. But, unlike Destroy, do not
6711 ** remove the table or index from the database file.
6713 ** The table being clear is in the main database file if P2==0. If
6714 ** P2==1 then the table to be clear is in the auxiliary database file
6715 ** that is used to store tables create using CREATE TEMPORARY TABLE.
6717 ** If the P3 value is non-zero, then the row change count is incremented
6718 ** by the number of rows in the table being cleared. If P3 is greater
6719 ** than zero, then the value stored in register P3 is also incremented
6720 ** by the number of rows in the table being cleared.
6722 ** See also: Destroy
6727 sqlite3VdbeIncrWriteCounter(p
, 0);
6729 assert( p
->readOnly
==0 );
6730 assert( DbMaskTest(p
->btreeMask
, pOp
->p2
) );
6731 rc
= sqlite3BtreeClearTable(db
->aDb
[pOp
->p2
].pBt
, (u32
)pOp
->p1
, &nChange
);
6733 p
->nChange
+= nChange
;
6735 assert( memIsValid(&aMem
[pOp
->p3
]) );
6736 memAboutToChange(p
, &aMem
[pOp
->p3
]);
6737 aMem
[pOp
->p3
].u
.i
+= nChange
;
6740 if( rc
) goto abort_due_to_error
;
6744 /* Opcode: ResetSorter P1 * * * *
6746 ** Delete all contents from the ephemeral table or sorter
6747 ** that is open on cursor P1.
6749 ** This opcode only works for cursors used for sorting and
6750 ** opened with OP_OpenEphemeral or OP_SorterOpen.
6752 case OP_ResetSorter
: {
6755 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
6756 pC
= p
->apCsr
[pOp
->p1
];
6759 sqlite3VdbeSorterReset(db
, pC
->uc
.pSorter
);
6761 assert( pC
->eCurType
==CURTYPE_BTREE
);
6762 assert( pC
->isEphemeral
);
6763 rc
= sqlite3BtreeClearTableOfCursor(pC
->uc
.pCursor
);
6764 if( rc
) goto abort_due_to_error
;
6769 /* Opcode: CreateBtree P1 P2 P3 * *
6770 ** Synopsis: r[P2]=root iDb=P1 flags=P3
6772 ** Allocate a new b-tree in the main database file if P1==0 or in the
6773 ** TEMP database file if P1==1 or in an attached database if
6774 ** P1>1. The P3 argument must be 1 (BTREE_INTKEY) for a rowid table
6775 ** it must be 2 (BTREE_BLOBKEY) for an index or WITHOUT ROWID table.
6776 ** The root page number of the new b-tree is stored in register P2.
6778 case OP_CreateBtree
: { /* out2 */
6782 sqlite3VdbeIncrWriteCounter(p
, 0);
6783 pOut
= out2Prerelease(p
, pOp
);
6785 assert( pOp
->p3
==BTREE_INTKEY
|| pOp
->p3
==BTREE_BLOBKEY
);
6786 assert( pOp
->p1
>=0 && pOp
->p1
<db
->nDb
);
6787 assert( DbMaskTest(p
->btreeMask
, pOp
->p1
) );
6788 assert( p
->readOnly
==0 );
6789 pDb
= &db
->aDb
[pOp
->p1
];
6790 assert( pDb
->pBt
!=0 );
6791 rc
= sqlite3BtreeCreateTable(pDb
->pBt
, &pgno
, pOp
->p3
);
6792 if( rc
) goto abort_due_to_error
;
6797 /* Opcode: SqlExec * * * P4 *
6799 ** Run the SQL statement or statements specified in the P4 string.
6802 sqlite3VdbeIncrWriteCounter(p
, 0);
6804 rc
= sqlite3_exec(db
, pOp
->p4
.z
, 0, 0, 0);
6806 if( rc
) goto abort_due_to_error
;
6810 /* Opcode: ParseSchema P1 * * P4 *
6812 ** Read and parse all entries from the schema table of database P1
6813 ** that match the WHERE clause P4. If P4 is a NULL pointer, then the
6814 ** entire schema for P1 is reparsed.
6816 ** This opcode invokes the parser to create a new virtual machine,
6817 ** then runs the new virtual machine. It is thus a re-entrant opcode.
6819 case OP_ParseSchema
: {
6821 const char *zSchema
;
6825 /* Any prepared statement that invokes this opcode will hold mutexes
6826 ** on every btree. This is a prerequisite for invoking
6827 ** sqlite3InitCallback().
6830 for(iDb
=0; iDb
<db
->nDb
; iDb
++){
6831 assert( iDb
==1 || sqlite3BtreeHoldsMutex(db
->aDb
[iDb
].pBt
) );
6836 assert( iDb
>=0 && iDb
<db
->nDb
);
6837 assert( DbHasProperty(db
, iDb
, DB_SchemaLoaded
)
6839 || (CORRUPT_DB
&& (db
->flags
& SQLITE_NoSchemaError
)!=0) );
6841 #ifndef SQLITE_OMIT_ALTERTABLE
6843 sqlite3SchemaClear(db
->aDb
[iDb
].pSchema
);
6844 db
->mDbFlags
&= ~DBFLAG_SchemaKnownOk
;
6845 rc
= sqlite3InitOne(db
, iDb
, &p
->zErrMsg
, pOp
->p5
);
6846 db
->mDbFlags
|= DBFLAG_SchemaChange
;
6851 zSchema
= LEGACY_SCHEMA_TABLE
;
6854 initData
.pzErrMsg
= &p
->zErrMsg
;
6855 initData
.mInitFlags
= 0;
6856 initData
.mxPage
= sqlite3BtreeLastPage(db
->aDb
[iDb
].pBt
);
6857 zSql
= sqlite3MPrintf(db
,
6858 "SELECT*FROM\"%w\".%s WHERE %s ORDER BY rowid",
6859 db
->aDb
[iDb
].zDbSName
, zSchema
, pOp
->p4
.z
);
6861 rc
= SQLITE_NOMEM_BKPT
;
6863 assert( db
->init
.busy
==0 );
6865 initData
.rc
= SQLITE_OK
;
6866 initData
.nInitRow
= 0;
6867 assert( !db
->mallocFailed
);
6868 rc
= sqlite3_exec(db
, zSql
, sqlite3InitCallback
, &initData
, 0);
6869 if( rc
==SQLITE_OK
) rc
= initData
.rc
;
6870 if( rc
==SQLITE_OK
&& initData
.nInitRow
==0 ){
6871 /* The OP_ParseSchema opcode with a non-NULL P4 argument should parse
6872 ** at least one SQL statement. Any less than that indicates that
6873 ** the sqlite_schema table is corrupt. */
6874 rc
= SQLITE_CORRUPT_BKPT
;
6876 sqlite3DbFreeNN(db
, zSql
);
6881 sqlite3ResetAllSchemasOfConnection(db
);
6882 if( rc
==SQLITE_NOMEM
){
6885 goto abort_due_to_error
;
6890 #if !defined(SQLITE_OMIT_ANALYZE)
6891 /* Opcode: LoadAnalysis P1 * * * *
6893 ** Read the sqlite_stat1 table for database P1 and load the content
6894 ** of that table into the internal index hash table. This will cause
6895 ** the analysis to be used when preparing all subsequent queries.
6897 case OP_LoadAnalysis
: {
6898 assert( pOp
->p1
>=0 && pOp
->p1
<db
->nDb
);
6899 rc
= sqlite3AnalysisLoad(db
, pOp
->p1
);
6900 if( rc
) goto abort_due_to_error
;
6903 #endif /* !defined(SQLITE_OMIT_ANALYZE) */
6905 /* Opcode: DropTable P1 * * P4 *
6907 ** Remove the internal (in-memory) data structures that describe
6908 ** the table named P4 in database P1. This is called after a table
6909 ** is dropped from disk (using the Destroy opcode) in order to keep
6910 ** the internal representation of the
6911 ** schema consistent with what is on disk.
6913 case OP_DropTable
: {
6914 sqlite3VdbeIncrWriteCounter(p
, 0);
6915 sqlite3UnlinkAndDeleteTable(db
, pOp
->p1
, pOp
->p4
.z
);
6919 /* Opcode: DropIndex P1 * * P4 *
6921 ** Remove the internal (in-memory) data structures that describe
6922 ** the index named P4 in database P1. This is called after an index
6923 ** is dropped from disk (using the Destroy opcode)
6924 ** in order to keep the internal representation of the
6925 ** schema consistent with what is on disk.
6927 case OP_DropIndex
: {
6928 sqlite3VdbeIncrWriteCounter(p
, 0);
6929 sqlite3UnlinkAndDeleteIndex(db
, pOp
->p1
, pOp
->p4
.z
);
6933 /* Opcode: DropTrigger P1 * * P4 *
6935 ** Remove the internal (in-memory) data structures that describe
6936 ** the trigger named P4 in database P1. This is called after a trigger
6937 ** is dropped from disk (using the Destroy opcode) in order to keep
6938 ** the internal representation of the
6939 ** schema consistent with what is on disk.
6941 case OP_DropTrigger
: {
6942 sqlite3VdbeIncrWriteCounter(p
, 0);
6943 sqlite3UnlinkAndDeleteTrigger(db
, pOp
->p1
, pOp
->p4
.z
);
6948 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
6949 /* Opcode: IntegrityCk P1 P2 P3 P4 P5
6951 ** Do an analysis of the currently open database. Store in
6952 ** register P1 the text of an error message describing any problems.
6953 ** If no problems are found, store a NULL in register P1.
6955 ** The register P3 contains one less than the maximum number of allowed errors.
6956 ** At most reg(P3) errors will be reported.
6957 ** In other words, the analysis stops as soon as reg(P1) errors are
6958 ** seen. Reg(P1) is updated with the number of errors remaining.
6960 ** The root page numbers of all tables in the database are integers
6961 ** stored in P4_INTARRAY argument.
6963 ** If P5 is not zero, the check is done on the auxiliary database
6964 ** file, not the main database file.
6966 ** This opcode is used to implement the integrity_check pragma.
6968 case OP_IntegrityCk
: {
6969 int nRoot
; /* Number of tables to check. (Number of root pages.) */
6970 Pgno
*aRoot
; /* Array of rootpage numbers for tables to be checked */
6971 int nErr
; /* Number of errors reported */
6972 char *z
; /* Text of the error report */
6973 Mem
*pnErr
; /* Register keeping track of errors remaining */
6975 assert( p
->bIsReader
);
6979 assert( aRoot
[0]==(Pgno
)nRoot
);
6980 assert( pOp
->p3
>0 && pOp
->p3
<=(p
->nMem
+1 - p
->nCursor
) );
6981 pnErr
= &aMem
[pOp
->p3
];
6982 assert( (pnErr
->flags
& MEM_Int
)!=0 );
6983 assert( (pnErr
->flags
& (MEM_Str
|MEM_Blob
))==0 );
6984 pIn1
= &aMem
[pOp
->p1
];
6985 assert( pOp
->p5
<db
->nDb
);
6986 assert( DbMaskTest(p
->btreeMask
, pOp
->p5
) );
6987 rc
= sqlite3BtreeIntegrityCheck(db
, db
->aDb
[pOp
->p5
].pBt
, &aRoot
[1], nRoot
,
6988 (int)pnErr
->u
.i
+1, &nErr
, &z
);
6989 sqlite3VdbeMemSetNull(pIn1
);
6994 goto abort_due_to_error
;
6996 pnErr
->u
.i
-= nErr
-1;
6997 sqlite3VdbeMemSetStr(pIn1
, z
, -1, SQLITE_UTF8
, sqlite3_free
);
6999 UPDATE_MAX_BLOBSIZE(pIn1
);
7000 sqlite3VdbeChangeEncoding(pIn1
, encoding
);
7001 goto check_for_interrupt
;
7003 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
7005 /* Opcode: RowSetAdd P1 P2 * * *
7006 ** Synopsis: rowset(P1)=r[P2]
7008 ** Insert the integer value held by register P2 into a RowSet object
7009 ** held in register P1.
7011 ** An assertion fails if P2 is not an integer.
7013 case OP_RowSetAdd
: { /* in1, in2 */
7014 pIn1
= &aMem
[pOp
->p1
];
7015 pIn2
= &aMem
[pOp
->p2
];
7016 assert( (pIn2
->flags
& MEM_Int
)!=0 );
7017 if( (pIn1
->flags
& MEM_Blob
)==0 ){
7018 if( sqlite3VdbeMemSetRowSet(pIn1
) ) goto no_mem
;
7020 assert( sqlite3VdbeMemIsRowSet(pIn1
) );
7021 sqlite3RowSetInsert((RowSet
*)pIn1
->z
, pIn2
->u
.i
);
7025 /* Opcode: RowSetRead P1 P2 P3 * *
7026 ** Synopsis: r[P3]=rowset(P1)
7028 ** Extract the smallest value from the RowSet object in P1
7029 ** and put that value into register P3.
7030 ** Or, if RowSet object P1 is initially empty, leave P3
7031 ** unchanged and jump to instruction P2.
7033 case OP_RowSetRead
: { /* jump, in1, out3 */
7036 pIn1
= &aMem
[pOp
->p1
];
7037 assert( (pIn1
->flags
& MEM_Blob
)==0 || sqlite3VdbeMemIsRowSet(pIn1
) );
7038 if( (pIn1
->flags
& MEM_Blob
)==0
7039 || sqlite3RowSetNext((RowSet
*)pIn1
->z
, &val
)==0
7041 /* The boolean index is empty */
7042 sqlite3VdbeMemSetNull(pIn1
);
7043 VdbeBranchTaken(1,2);
7044 goto jump_to_p2_and_check_for_interrupt
;
7046 /* A value was pulled from the index */
7047 VdbeBranchTaken(0,2);
7048 sqlite3VdbeMemSetInt64(&aMem
[pOp
->p3
], val
);
7050 goto check_for_interrupt
;
7053 /* Opcode: RowSetTest P1 P2 P3 P4
7054 ** Synopsis: if r[P3] in rowset(P1) goto P2
7056 ** Register P3 is assumed to hold a 64-bit integer value. If register P1
7057 ** contains a RowSet object and that RowSet object contains
7058 ** the value held in P3, jump to register P2. Otherwise, insert the
7059 ** integer in P3 into the RowSet and continue on to the
7062 ** The RowSet object is optimized for the case where sets of integers
7063 ** are inserted in distinct phases, which each set contains no duplicates.
7064 ** Each set is identified by a unique P4 value. The first set
7065 ** must have P4==0, the final set must have P4==-1, and for all other sets
7068 ** This allows optimizations: (a) when P4==0 there is no need to test
7069 ** the RowSet object for P3, as it is guaranteed not to contain it,
7070 ** (b) when P4==-1 there is no need to insert the value, as it will
7071 ** never be tested for, and (c) when a value that is part of set X is
7072 ** inserted, there is no need to search to see if the same value was
7073 ** previously inserted as part of set X (only if it was previously
7074 ** inserted as part of some other set).
7076 case OP_RowSetTest
: { /* jump, in1, in3 */
7080 pIn1
= &aMem
[pOp
->p1
];
7081 pIn3
= &aMem
[pOp
->p3
];
7083 assert( pIn3
->flags
&MEM_Int
);
7085 /* If there is anything other than a rowset object in memory cell P1,
7086 ** delete it now and initialize P1 with an empty rowset
7088 if( (pIn1
->flags
& MEM_Blob
)==0 ){
7089 if( sqlite3VdbeMemSetRowSet(pIn1
) ) goto no_mem
;
7091 assert( sqlite3VdbeMemIsRowSet(pIn1
) );
7092 assert( pOp
->p4type
==P4_INT32
);
7093 assert( iSet
==-1 || iSet
>=0 );
7095 exists
= sqlite3RowSetTest((RowSet
*)pIn1
->z
, iSet
, pIn3
->u
.i
);
7096 VdbeBranchTaken(exists
!=0,2);
7097 if( exists
) goto jump_to_p2
;
7100 sqlite3RowSetInsert((RowSet
*)pIn1
->z
, pIn3
->u
.i
);
7106 #ifndef SQLITE_OMIT_TRIGGER
7108 /* Opcode: Program P1 P2 P3 P4 P5
7110 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
7112 ** P1 contains the address of the memory cell that contains the first memory
7113 ** cell in an array of values used as arguments to the sub-program. P2
7114 ** contains the address to jump to if the sub-program throws an IGNORE
7115 ** exception using the RAISE() function. Register P3 contains the address
7116 ** of a memory cell in this (the parent) VM that is used to allocate the
7117 ** memory required by the sub-vdbe at runtime.
7119 ** P4 is a pointer to the VM containing the trigger program.
7121 ** If P5 is non-zero, then recursive program invocation is enabled.
7123 case OP_Program
: { /* jump */
7124 int nMem
; /* Number of memory registers for sub-program */
7125 int nByte
; /* Bytes of runtime space required for sub-program */
7126 Mem
*pRt
; /* Register to allocate runtime space */
7127 Mem
*pMem
; /* Used to iterate through memory cells */
7128 Mem
*pEnd
; /* Last memory cell in new array */
7129 VdbeFrame
*pFrame
; /* New vdbe frame to execute in */
7130 SubProgram
*pProgram
; /* Sub-program to execute */
7131 void *t
; /* Token identifying trigger */
7133 pProgram
= pOp
->p4
.pProgram
;
7134 pRt
= &aMem
[pOp
->p3
];
7135 assert( pProgram
->nOp
>0 );
7137 /* If the p5 flag is clear, then recursive invocation of triggers is
7138 ** disabled for backwards compatibility (p5 is set if this sub-program
7139 ** is really a trigger, not a foreign key action, and the flag set
7140 ** and cleared by the "PRAGMA recursive_triggers" command is clear).
7142 ** It is recursive invocation of triggers, at the SQL level, that is
7143 ** disabled. In some cases a single trigger may generate more than one
7144 ** SubProgram (if the trigger may be executed with more than one different
7145 ** ON CONFLICT algorithm). SubProgram structures associated with a
7146 ** single trigger all have the same value for the SubProgram.token
7149 t
= pProgram
->token
;
7150 for(pFrame
=p
->pFrame
; pFrame
&& pFrame
->token
!=t
; pFrame
=pFrame
->pParent
);
7154 if( p
->nFrame
>=db
->aLimit
[SQLITE_LIMIT_TRIGGER_DEPTH
] ){
7156 sqlite3VdbeError(p
, "too many levels of trigger recursion");
7157 goto abort_due_to_error
;
7160 /* Register pRt is used to store the memory required to save the state
7161 ** of the current program, and the memory required at runtime to execute
7162 ** the trigger program. If this trigger has been fired before, then pRt
7163 ** is already allocated. Otherwise, it must be initialized. */
7164 if( (pRt
->flags
&MEM_Blob
)==0 ){
7165 /* SubProgram.nMem is set to the number of memory cells used by the
7166 ** program stored in SubProgram.aOp. As well as these, one memory
7167 ** cell is required for each cursor used by the program. Set local
7168 ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
7170 nMem
= pProgram
->nMem
+ pProgram
->nCsr
;
7172 if( pProgram
->nCsr
==0 ) nMem
++;
7173 nByte
= ROUND8(sizeof(VdbeFrame
))
7174 + nMem
* sizeof(Mem
)
7175 + pProgram
->nCsr
* sizeof(VdbeCursor
*)
7176 + (pProgram
->nOp
+ 7)/8;
7177 pFrame
= sqlite3DbMallocZero(db
, nByte
);
7181 sqlite3VdbeMemRelease(pRt
);
7182 pRt
->flags
= MEM_Blob
|MEM_Dyn
;
7183 pRt
->z
= (char*)pFrame
;
7185 pRt
->xDel
= sqlite3VdbeFrameMemDel
;
7188 pFrame
->nChildMem
= nMem
;
7189 pFrame
->nChildCsr
= pProgram
->nCsr
;
7190 pFrame
->pc
= (int)(pOp
- aOp
);
7191 pFrame
->aMem
= p
->aMem
;
7192 pFrame
->nMem
= p
->nMem
;
7193 pFrame
->apCsr
= p
->apCsr
;
7194 pFrame
->nCursor
= p
->nCursor
;
7195 pFrame
->aOp
= p
->aOp
;
7196 pFrame
->nOp
= p
->nOp
;
7197 pFrame
->token
= pProgram
->token
;
7199 pFrame
->iFrameMagic
= SQLITE_FRAME_MAGIC
;
7202 pEnd
= &VdbeFrameMem(pFrame
)[pFrame
->nChildMem
];
7203 for(pMem
=VdbeFrameMem(pFrame
); pMem
!=pEnd
; pMem
++){
7204 pMem
->flags
= MEM_Undefined
;
7208 pFrame
= (VdbeFrame
*)pRt
->z
;
7209 assert( pRt
->xDel
==sqlite3VdbeFrameMemDel
);
7210 assert( pProgram
->nMem
+pProgram
->nCsr
==pFrame
->nChildMem
7211 || (pProgram
->nCsr
==0 && pProgram
->nMem
+1==pFrame
->nChildMem
) );
7212 assert( pProgram
->nCsr
==pFrame
->nChildCsr
);
7213 assert( (int)(pOp
- aOp
)==pFrame
->pc
);
7217 pFrame
->pParent
= p
->pFrame
;
7218 pFrame
->lastRowid
= db
->lastRowid
;
7219 pFrame
->nChange
= p
->nChange
;
7220 pFrame
->nDbChange
= p
->db
->nChange
;
7221 assert( pFrame
->pAuxData
==0 );
7222 pFrame
->pAuxData
= p
->pAuxData
;
7226 p
->aMem
= aMem
= VdbeFrameMem(pFrame
);
7227 p
->nMem
= pFrame
->nChildMem
;
7228 p
->nCursor
= (u16
)pFrame
->nChildCsr
;
7229 p
->apCsr
= (VdbeCursor
**)&aMem
[p
->nMem
];
7230 pFrame
->aOnce
= (u8
*)&p
->apCsr
[pProgram
->nCsr
];
7231 memset(pFrame
->aOnce
, 0, (pProgram
->nOp
+ 7)/8);
7232 p
->aOp
= aOp
= pProgram
->aOp
;
7233 p
->nOp
= pProgram
->nOp
;
7235 /* Verify that second and subsequent executions of the same trigger do not
7236 ** try to reuse register values from the first use. */
7239 for(i
=0; i
<p
->nMem
; i
++){
7240 aMem
[i
].pScopyFrom
= 0; /* Prevent false-positive AboutToChange() errs */
7241 MemSetTypeFlag(&aMem
[i
], MEM_Undefined
); /* Fault if this reg is reused */
7246 goto check_for_interrupt
;
7249 /* Opcode: Param P1 P2 * * *
7251 ** This opcode is only ever present in sub-programs called via the
7252 ** OP_Program instruction. Copy a value currently stored in a memory
7253 ** cell of the calling (parent) frame to cell P2 in the current frames
7254 ** address space. This is used by trigger programs to access the new.*
7255 ** and old.* values.
7257 ** The address of the cell in the parent frame is determined by adding
7258 ** the value of the P1 argument to the value of the P1 argument to the
7259 ** calling OP_Program instruction.
7261 case OP_Param
: { /* out2 */
7264 pOut
= out2Prerelease(p
, pOp
);
7266 pIn
= &pFrame
->aMem
[pOp
->p1
+ pFrame
->aOp
[pFrame
->pc
].p1
];
7267 sqlite3VdbeMemShallowCopy(pOut
, pIn
, MEM_Ephem
);
7271 #endif /* #ifndef SQLITE_OMIT_TRIGGER */
7273 #ifndef SQLITE_OMIT_FOREIGN_KEY
7274 /* Opcode: FkCounter P1 P2 * * *
7275 ** Synopsis: fkctr[P1]+=P2
7277 ** Increment a "constraint counter" by P2 (P2 may be negative or positive).
7278 ** If P1 is non-zero, the database constraint counter is incremented
7279 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the
7280 ** statement counter is incremented (immediate foreign key constraints).
7282 case OP_FkCounter
: {
7283 if( db
->flags
& SQLITE_DeferFKs
){
7284 db
->nDeferredImmCons
+= pOp
->p2
;
7285 }else if( pOp
->p1
){
7286 db
->nDeferredCons
+= pOp
->p2
;
7288 p
->nFkConstraint
+= pOp
->p2
;
7293 /* Opcode: FkIfZero P1 P2 * * *
7294 ** Synopsis: if fkctr[P1]==0 goto P2
7296 ** This opcode tests if a foreign key constraint-counter is currently zero.
7297 ** If so, jump to instruction P2. Otherwise, fall through to the next
7300 ** If P1 is non-zero, then the jump is taken if the database constraint-counter
7301 ** is zero (the one that counts deferred constraint violations). If P1 is
7302 ** zero, the jump is taken if the statement constraint-counter is zero
7303 ** (immediate foreign key constraint violations).
7305 case OP_FkIfZero
: { /* jump */
7307 VdbeBranchTaken(db
->nDeferredCons
==0 && db
->nDeferredImmCons
==0, 2);
7308 if( db
->nDeferredCons
==0 && db
->nDeferredImmCons
==0 ) goto jump_to_p2
;
7310 VdbeBranchTaken(p
->nFkConstraint
==0 && db
->nDeferredImmCons
==0, 2);
7311 if( p
->nFkConstraint
==0 && db
->nDeferredImmCons
==0 ) goto jump_to_p2
;
7315 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
7317 #ifndef SQLITE_OMIT_AUTOINCREMENT
7318 /* Opcode: MemMax P1 P2 * * *
7319 ** Synopsis: r[P1]=max(r[P1],r[P2])
7321 ** P1 is a register in the root frame of this VM (the root frame is
7322 ** different from the current frame if this instruction is being executed
7323 ** within a sub-program). Set the value of register P1 to the maximum of
7324 ** its current value and the value in register P2.
7326 ** This instruction throws an error if the memory cell is not initially
7329 case OP_MemMax
: { /* in2 */
7332 for(pFrame
=p
->pFrame
; pFrame
->pParent
; pFrame
=pFrame
->pParent
);
7333 pIn1
= &pFrame
->aMem
[pOp
->p1
];
7335 pIn1
= &aMem
[pOp
->p1
];
7337 assert( memIsValid(pIn1
) );
7338 sqlite3VdbeMemIntegerify(pIn1
);
7339 pIn2
= &aMem
[pOp
->p2
];
7340 sqlite3VdbeMemIntegerify(pIn2
);
7341 if( pIn1
->u
.i
<pIn2
->u
.i
){
7342 pIn1
->u
.i
= pIn2
->u
.i
;
7346 #endif /* SQLITE_OMIT_AUTOINCREMENT */
7348 /* Opcode: IfPos P1 P2 P3 * *
7349 ** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2
7351 ** Register P1 must contain an integer.
7352 ** If the value of register P1 is 1 or greater, subtract P3 from the
7353 ** value in P1 and jump to P2.
7355 ** If the initial value of register P1 is less than 1, then the
7356 ** value is unchanged and control passes through to the next instruction.
7358 case OP_IfPos
: { /* jump, in1 */
7359 pIn1
= &aMem
[pOp
->p1
];
7360 assert( pIn1
->flags
&MEM_Int
);
7361 VdbeBranchTaken( pIn1
->u
.i
>0, 2);
7363 pIn1
->u
.i
-= pOp
->p3
;
7369 /* Opcode: OffsetLimit P1 P2 P3 * *
7370 ** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1)
7372 ** This opcode performs a commonly used computation associated with
7373 ** LIMIT and OFFSET processing. r[P1] holds the limit counter. r[P3]
7374 ** holds the offset counter. The opcode computes the combined value
7375 ** of the LIMIT and OFFSET and stores that value in r[P2]. The r[P2]
7376 ** value computed is the total number of rows that will need to be
7377 ** visited in order to complete the query.
7379 ** If r[P3] is zero or negative, that means there is no OFFSET
7380 ** and r[P2] is set to be the value of the LIMIT, r[P1].
7382 ** if r[P1] is zero or negative, that means there is no LIMIT
7383 ** and r[P2] is set to -1.
7385 ** Otherwise, r[P2] is set to the sum of r[P1] and r[P3].
7387 case OP_OffsetLimit
: { /* in1, out2, in3 */
7389 pIn1
= &aMem
[pOp
->p1
];
7390 pIn3
= &aMem
[pOp
->p3
];
7391 pOut
= out2Prerelease(p
, pOp
);
7392 assert( pIn1
->flags
& MEM_Int
);
7393 assert( pIn3
->flags
& MEM_Int
);
7395 if( x
<=0 || sqlite3AddInt64(&x
, pIn3
->u
.i
>0?pIn3
->u
.i
:0) ){
7396 /* If the LIMIT is less than or equal to zero, loop forever. This
7397 ** is documented. But also, if the LIMIT+OFFSET exceeds 2^63 then
7398 ** also loop forever. This is undocumented. In fact, one could argue
7399 ** that the loop should terminate. But assuming 1 billion iterations
7400 ** per second (far exceeding the capabilities of any current hardware)
7401 ** it would take nearly 300 years to actually reach the limit. So
7402 ** looping forever is a reasonable approximation. */
7410 /* Opcode: IfNotZero P1 P2 * * *
7411 ** Synopsis: if r[P1]!=0 then r[P1]--, goto P2
7413 ** Register P1 must contain an integer. If the content of register P1 is
7414 ** initially greater than zero, then decrement the value in register P1.
7415 ** If it is non-zero (negative or positive) and then also jump to P2.
7416 ** If register P1 is initially zero, leave it unchanged and fall through.
7418 case OP_IfNotZero
: { /* jump, in1 */
7419 pIn1
= &aMem
[pOp
->p1
];
7420 assert( pIn1
->flags
&MEM_Int
);
7421 VdbeBranchTaken(pIn1
->u
.i
<0, 2);
7423 if( pIn1
->u
.i
>0 ) pIn1
->u
.i
--;
7429 /* Opcode: DecrJumpZero P1 P2 * * *
7430 ** Synopsis: if (--r[P1])==0 goto P2
7432 ** Register P1 must hold an integer. Decrement the value in P1
7433 ** and jump to P2 if the new value is exactly zero.
7435 case OP_DecrJumpZero
: { /* jump, in1 */
7436 pIn1
= &aMem
[pOp
->p1
];
7437 assert( pIn1
->flags
&MEM_Int
);
7438 if( pIn1
->u
.i
>SMALLEST_INT64
) pIn1
->u
.i
--;
7439 VdbeBranchTaken(pIn1
->u
.i
==0, 2);
7440 if( pIn1
->u
.i
==0 ) goto jump_to_p2
;
7445 /* Opcode: AggStep * P2 P3 P4 P5
7446 ** Synopsis: accum=r[P3] step(r[P2@P5])
7448 ** Execute the xStep function for an aggregate.
7449 ** The function has P5 arguments. P4 is a pointer to the
7450 ** FuncDef structure that specifies the function. Register P3 is the
7453 ** The P5 arguments are taken from register P2 and its
7456 /* Opcode: AggInverse * P2 P3 P4 P5
7457 ** Synopsis: accum=r[P3] inverse(r[P2@P5])
7459 ** Execute the xInverse function for an aggregate.
7460 ** The function has P5 arguments. P4 is a pointer to the
7461 ** FuncDef structure that specifies the function. Register P3 is the
7464 ** The P5 arguments are taken from register P2 and its
7467 /* Opcode: AggStep1 P1 P2 P3 P4 P5
7468 ** Synopsis: accum=r[P3] step(r[P2@P5])
7470 ** Execute the xStep (if P1==0) or xInverse (if P1!=0) function for an
7471 ** aggregate. The function has P5 arguments. P4 is a pointer to the
7472 ** FuncDef structure that specifies the function. Register P3 is the
7475 ** The P5 arguments are taken from register P2 and its
7478 ** This opcode is initially coded as OP_AggStep0. On first evaluation,
7479 ** the FuncDef stored in P4 is converted into an sqlite3_context and
7480 ** the opcode is changed. In this way, the initialization of the
7481 ** sqlite3_context only happens once, instead of on each call to the
7487 sqlite3_context
*pCtx
;
7489 assert( pOp
->p4type
==P4_FUNCDEF
);
7491 assert( pOp
->p3
>0 && pOp
->p3
<=(p
->nMem
+1 - p
->nCursor
) );
7492 assert( n
==0 || (pOp
->p2
>0 && pOp
->p2
+n
<=(p
->nMem
+1 - p
->nCursor
)+1) );
7493 assert( pOp
->p3
<pOp
->p2
|| pOp
->p3
>=pOp
->p2
+n
);
7494 pCtx
= sqlite3DbMallocRawNN(db
, n
*sizeof(sqlite3_value
*) +
7495 (sizeof(pCtx
[0]) + sizeof(Mem
) - sizeof(sqlite3_value
*)));
7496 if( pCtx
==0 ) goto no_mem
;
7498 pCtx
->pOut
= (Mem
*)&(pCtx
->argv
[n
]);
7499 sqlite3VdbeMemInit(pCtx
->pOut
, db
, MEM_Null
);
7500 pCtx
->pFunc
= pOp
->p4
.pFunc
;
7501 pCtx
->iOp
= (int)(pOp
- aOp
);
7505 pCtx
->enc
= encoding
;
7507 pOp
->p4type
= P4_FUNCCTX
;
7508 pOp
->p4
.pCtx
= pCtx
;
7510 /* OP_AggInverse must have P1==1 and OP_AggStep must have P1==0 */
7511 assert( pOp
->p1
==(pOp
->opcode
==OP_AggInverse
) );
7513 pOp
->opcode
= OP_AggStep1
;
7514 /* Fall through into OP_AggStep */
7515 /* no break */ deliberate_fall_through
7519 sqlite3_context
*pCtx
;
7522 assert( pOp
->p4type
==P4_FUNCCTX
);
7523 pCtx
= pOp
->p4
.pCtx
;
7524 pMem
= &aMem
[pOp
->p3
];
7528 /* This is an OP_AggInverse call. Verify that xStep has always
7529 ** been called at least once prior to any xInverse call. */
7530 assert( pMem
->uTemp
==0x1122e0e3 );
7532 /* This is an OP_AggStep call. Mark it as such. */
7533 pMem
->uTemp
= 0x1122e0e3;
7537 /* If this function is inside of a trigger, the register array in aMem[]
7538 ** might change from one evaluation to the next. The next block of code
7539 ** checks to see if the register array has changed, and if so it
7540 ** reinitializes the relavant parts of the sqlite3_context object */
7541 if( pCtx
->pMem
!= pMem
){
7543 for(i
=pCtx
->argc
-1; i
>=0; i
--) pCtx
->argv
[i
] = &aMem
[pOp
->p2
+i
];
7547 for(i
=0; i
<pCtx
->argc
; i
++){
7548 assert( memIsValid(pCtx
->argv
[i
]) );
7549 REGISTER_TRACE(pOp
->p2
+i
, pCtx
->argv
[i
]);
7554 assert( pCtx
->pOut
->flags
==MEM_Null
);
7555 assert( pCtx
->isError
==0 );
7556 assert( pCtx
->skipFlag
==0 );
7557 #ifndef SQLITE_OMIT_WINDOWFUNC
7559 (pCtx
->pFunc
->xInverse
)(pCtx
,pCtx
->argc
,pCtx
->argv
);
7562 (pCtx
->pFunc
->xSFunc
)(pCtx
,pCtx
->argc
,pCtx
->argv
); /* IMP: R-24505-23230 */
7564 if( pCtx
->isError
){
7565 if( pCtx
->isError
>0 ){
7566 sqlite3VdbeError(p
, "%s", sqlite3_value_text(pCtx
->pOut
));
7569 if( pCtx
->skipFlag
){
7570 assert( pOp
[-1].opcode
==OP_CollSeq
);
7572 if( i
) sqlite3VdbeMemSetInt64(&aMem
[i
], 1);
7575 sqlite3VdbeMemRelease(pCtx
->pOut
);
7576 pCtx
->pOut
->flags
= MEM_Null
;
7578 if( rc
) goto abort_due_to_error
;
7580 assert( pCtx
->pOut
->flags
==MEM_Null
);
7581 assert( pCtx
->skipFlag
==0 );
7585 /* Opcode: AggFinal P1 P2 * P4 *
7586 ** Synopsis: accum=r[P1] N=P2
7588 ** P1 is the memory location that is the accumulator for an aggregate
7589 ** or window function. Execute the finalizer function
7590 ** for an aggregate and store the result in P1.
7592 ** P2 is the number of arguments that the step function takes and
7593 ** P4 is a pointer to the FuncDef for this function. The P2
7594 ** argument is not used by this opcode. It is only there to disambiguate
7595 ** functions that can take varying numbers of arguments. The
7596 ** P4 argument is only needed for the case where
7597 ** the step function was not previously called.
7599 /* Opcode: AggValue * P2 P3 P4 *
7600 ** Synopsis: r[P3]=value N=P2
7602 ** Invoke the xValue() function and store the result in register P3.
7604 ** P2 is the number of arguments that the step function takes and
7605 ** P4 is a pointer to the FuncDef for this function. The P2
7606 ** argument is not used by this opcode. It is only there to disambiguate
7607 ** functions that can take varying numbers of arguments. The
7608 ** P4 argument is only needed for the case where
7609 ** the step function was not previously called.
7614 assert( pOp
->p1
>0 && pOp
->p1
<=(p
->nMem
+1 - p
->nCursor
) );
7615 assert( pOp
->p3
==0 || pOp
->opcode
==OP_AggValue
);
7616 pMem
= &aMem
[pOp
->p1
];
7617 assert( (pMem
->flags
& ~(MEM_Null
|MEM_Agg
))==0 );
7618 #ifndef SQLITE_OMIT_WINDOWFUNC
7620 memAboutToChange(p
, &aMem
[pOp
->p3
]);
7621 rc
= sqlite3VdbeMemAggValue(pMem
, &aMem
[pOp
->p3
], pOp
->p4
.pFunc
);
7622 pMem
= &aMem
[pOp
->p3
];
7626 rc
= sqlite3VdbeMemFinalize(pMem
, pOp
->p4
.pFunc
);
7630 sqlite3VdbeError(p
, "%s", sqlite3_value_text(pMem
));
7631 goto abort_due_to_error
;
7633 sqlite3VdbeChangeEncoding(pMem
, encoding
);
7634 UPDATE_MAX_BLOBSIZE(pMem
);
7635 REGISTER_TRACE((int)(pMem
-aMem
), pMem
);
7639 #ifndef SQLITE_OMIT_WAL
7640 /* Opcode: Checkpoint P1 P2 P3 * *
7642 ** Checkpoint database P1. This is a no-op if P1 is not currently in
7643 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL,
7644 ** RESTART, or TRUNCATE. Write 1 or 0 into mem[P3] if the checkpoint returns
7645 ** SQLITE_BUSY or not, respectively. Write the number of pages in the
7646 ** WAL after the checkpoint into mem[P3+1] and the number of pages
7647 ** in the WAL that have been checkpointed after the checkpoint
7648 ** completes into mem[P3+2]. However on an error, mem[P3+1] and
7649 ** mem[P3+2] are initialized to -1.
7651 case OP_Checkpoint
: {
7652 int i
; /* Loop counter */
7653 int aRes
[3]; /* Results */
7654 Mem
*pMem
; /* Write results here */
7656 assert( p
->readOnly
==0 );
7658 aRes
[1] = aRes
[2] = -1;
7659 assert( pOp
->p2
==SQLITE_CHECKPOINT_PASSIVE
7660 || pOp
->p2
==SQLITE_CHECKPOINT_FULL
7661 || pOp
->p2
==SQLITE_CHECKPOINT_RESTART
7662 || pOp
->p2
==SQLITE_CHECKPOINT_TRUNCATE
7664 rc
= sqlite3Checkpoint(db
, pOp
->p1
, pOp
->p2
, &aRes
[1], &aRes
[2]);
7666 if( rc
!=SQLITE_BUSY
) goto abort_due_to_error
;
7670 for(i
=0, pMem
= &aMem
[pOp
->p3
]; i
<3; i
++, pMem
++){
7671 sqlite3VdbeMemSetInt64(pMem
, (i64
)aRes
[i
]);
7677 #ifndef SQLITE_OMIT_PRAGMA
7678 /* Opcode: JournalMode P1 P2 P3 * *
7680 ** Change the journal mode of database P1 to P3. P3 must be one of the
7681 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
7682 ** modes (delete, truncate, persist, off and memory), this is a simple
7683 ** operation. No IO is required.
7685 ** If changing into or out of WAL mode the procedure is more complicated.
7687 ** Write a string containing the final journal-mode to register P2.
7689 case OP_JournalMode
: { /* out2 */
7690 Btree
*pBt
; /* Btree to change journal mode of */
7691 Pager
*pPager
; /* Pager associated with pBt */
7692 int eNew
; /* New journal mode */
7693 int eOld
; /* The old journal mode */
7694 #ifndef SQLITE_OMIT_WAL
7695 const char *zFilename
; /* Name of database file for pPager */
7698 pOut
= out2Prerelease(p
, pOp
);
7700 assert( eNew
==PAGER_JOURNALMODE_DELETE
7701 || eNew
==PAGER_JOURNALMODE_TRUNCATE
7702 || eNew
==PAGER_JOURNALMODE_PERSIST
7703 || eNew
==PAGER_JOURNALMODE_OFF
7704 || eNew
==PAGER_JOURNALMODE_MEMORY
7705 || eNew
==PAGER_JOURNALMODE_WAL
7706 || eNew
==PAGER_JOURNALMODE_QUERY
7708 assert( pOp
->p1
>=0 && pOp
->p1
<db
->nDb
);
7709 assert( p
->readOnly
==0 );
7711 pBt
= db
->aDb
[pOp
->p1
].pBt
;
7712 pPager
= sqlite3BtreePager(pBt
);
7713 eOld
= sqlite3PagerGetJournalMode(pPager
);
7714 if( eNew
==PAGER_JOURNALMODE_QUERY
) eNew
= eOld
;
7715 assert( sqlite3BtreeHoldsMutex(pBt
) );
7716 if( !sqlite3PagerOkToChangeJournalMode(pPager
) ) eNew
= eOld
;
7718 #ifndef SQLITE_OMIT_WAL
7719 zFilename
= sqlite3PagerFilename(pPager
, 1);
7721 /* Do not allow a transition to journal_mode=WAL for a database
7722 ** in temporary storage or if the VFS does not support shared memory
7724 if( eNew
==PAGER_JOURNALMODE_WAL
7725 && (sqlite3Strlen30(zFilename
)==0 /* Temp file */
7726 || !sqlite3PagerWalSupported(pPager
)) /* No shared-memory support */
7732 && (eOld
==PAGER_JOURNALMODE_WAL
|| eNew
==PAGER_JOURNALMODE_WAL
)
7734 if( !db
->autoCommit
|| db
->nVdbeRead
>1 ){
7737 "cannot change %s wal mode from within a transaction",
7738 (eNew
==PAGER_JOURNALMODE_WAL
? "into" : "out of")
7740 goto abort_due_to_error
;
7743 if( eOld
==PAGER_JOURNALMODE_WAL
){
7744 /* If leaving WAL mode, close the log file. If successful, the call
7745 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
7746 ** file. An EXCLUSIVE lock may still be held on the database file
7747 ** after a successful return.
7749 rc
= sqlite3PagerCloseWal(pPager
, db
);
7750 if( rc
==SQLITE_OK
){
7751 sqlite3PagerSetJournalMode(pPager
, eNew
);
7753 }else if( eOld
==PAGER_JOURNALMODE_MEMORY
){
7754 /* Cannot transition directly from MEMORY to WAL. Use mode OFF
7755 ** as an intermediate */
7756 sqlite3PagerSetJournalMode(pPager
, PAGER_JOURNALMODE_OFF
);
7759 /* Open a transaction on the database file. Regardless of the journal
7760 ** mode, this transaction always uses a rollback journal.
7762 assert( sqlite3BtreeTxnState(pBt
)!=SQLITE_TXN_WRITE
);
7763 if( rc
==SQLITE_OK
){
7764 rc
= sqlite3BtreeSetVersion(pBt
, (eNew
==PAGER_JOURNALMODE_WAL
? 2 : 1));
7768 #endif /* ifndef SQLITE_OMIT_WAL */
7770 if( rc
) eNew
= eOld
;
7771 eNew
= sqlite3PagerSetJournalMode(pPager
, eNew
);
7773 pOut
->flags
= MEM_Str
|MEM_Static
|MEM_Term
;
7774 pOut
->z
= (char *)sqlite3JournalModename(eNew
);
7775 pOut
->n
= sqlite3Strlen30(pOut
->z
);
7776 pOut
->enc
= SQLITE_UTF8
;
7777 sqlite3VdbeChangeEncoding(pOut
, encoding
);
7778 if( rc
) goto abort_due_to_error
;
7781 #endif /* SQLITE_OMIT_PRAGMA */
7783 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
7784 /* Opcode: Vacuum P1 P2 * * *
7786 ** Vacuum the entire database P1. P1 is 0 for "main", and 2 or more
7787 ** for an attached database. The "temp" database may not be vacuumed.
7789 ** If P2 is not zero, then it is a register holding a string which is
7790 ** the file into which the result of vacuum should be written. When
7791 ** P2 is zero, the vacuum overwrites the original database.
7794 assert( p
->readOnly
==0 );
7795 rc
= sqlite3RunVacuum(&p
->zErrMsg
, db
, pOp
->p1
,
7796 pOp
->p2
? &aMem
[pOp
->p2
] : 0);
7797 if( rc
) goto abort_due_to_error
;
7802 #if !defined(SQLITE_OMIT_AUTOVACUUM)
7803 /* Opcode: IncrVacuum P1 P2 * * *
7805 ** Perform a single step of the incremental vacuum procedure on
7806 ** the P1 database. If the vacuum has finished, jump to instruction
7807 ** P2. Otherwise, fall through to the next instruction.
7809 case OP_IncrVacuum
: { /* jump */
7812 assert( pOp
->p1
>=0 && pOp
->p1
<db
->nDb
);
7813 assert( DbMaskTest(p
->btreeMask
, pOp
->p1
) );
7814 assert( p
->readOnly
==0 );
7815 pBt
= db
->aDb
[pOp
->p1
].pBt
;
7816 rc
= sqlite3BtreeIncrVacuum(pBt
);
7817 VdbeBranchTaken(rc
==SQLITE_DONE
,2);
7819 if( rc
!=SQLITE_DONE
) goto abort_due_to_error
;
7827 /* Opcode: Expire P1 P2 * * *
7829 ** Cause precompiled statements to expire. When an expired statement
7830 ** is executed using sqlite3_step() it will either automatically
7831 ** reprepare itself (if it was originally created using sqlite3_prepare_v2())
7832 ** or it will fail with SQLITE_SCHEMA.
7834 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
7835 ** then only the currently executing statement is expired.
7837 ** If P2 is 0, then SQL statements are expired immediately. If P2 is 1,
7838 ** then running SQL statements are allowed to continue to run to completion.
7839 ** The P2==1 case occurs when a CREATE INDEX or similar schema change happens
7840 ** that might help the statement run faster but which does not affect the
7841 ** correctness of operation.
7844 assert( pOp
->p2
==0 || pOp
->p2
==1 );
7846 sqlite3ExpirePreparedStatements(db
, pOp
->p2
);
7848 p
->expired
= pOp
->p2
+1;
7853 /* Opcode: CursorLock P1 * * * *
7855 ** Lock the btree to which cursor P1 is pointing so that the btree cannot be
7856 ** written by an other cursor.
7858 case OP_CursorLock
: {
7860 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
7861 pC
= p
->apCsr
[pOp
->p1
];
7863 assert( pC
->eCurType
==CURTYPE_BTREE
);
7864 sqlite3BtreeCursorPin(pC
->uc
.pCursor
);
7868 /* Opcode: CursorUnlock P1 * * * *
7870 ** Unlock the btree to which cursor P1 is pointing so that it can be
7871 ** written by other cursors.
7873 case OP_CursorUnlock
: {
7875 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
7876 pC
= p
->apCsr
[pOp
->p1
];
7878 assert( pC
->eCurType
==CURTYPE_BTREE
);
7879 sqlite3BtreeCursorUnpin(pC
->uc
.pCursor
);
7883 #ifndef SQLITE_OMIT_SHARED_CACHE
7884 /* Opcode: TableLock P1 P2 P3 P4 *
7885 ** Synopsis: iDb=P1 root=P2 write=P3
7887 ** Obtain a lock on a particular table. This instruction is only used when
7888 ** the shared-cache feature is enabled.
7890 ** P1 is the index of the database in sqlite3.aDb[] of the database
7891 ** on which the lock is acquired. A readlock is obtained if P3==0 or
7892 ** a write lock if P3==1.
7894 ** P2 contains the root-page of the table to lock.
7896 ** P4 contains a pointer to the name of the table being locked. This is only
7897 ** used to generate an error message if the lock cannot be obtained.
7899 case OP_TableLock
: {
7900 u8 isWriteLock
= (u8
)pOp
->p3
;
7901 if( isWriteLock
|| 0==(db
->flags
&SQLITE_ReadUncommit
) ){
7903 assert( p1
>=0 && p1
<db
->nDb
);
7904 assert( DbMaskTest(p
->btreeMask
, p1
) );
7905 assert( isWriteLock
==0 || isWriteLock
==1 );
7906 rc
= sqlite3BtreeLockTable(db
->aDb
[p1
].pBt
, pOp
->p2
, isWriteLock
);
7908 if( (rc
&0xFF)==SQLITE_LOCKED
){
7909 const char *z
= pOp
->p4
.z
;
7910 sqlite3VdbeError(p
, "database table is locked: %s", z
);
7912 goto abort_due_to_error
;
7917 #endif /* SQLITE_OMIT_SHARED_CACHE */
7919 #ifndef SQLITE_OMIT_VIRTUALTABLE
7920 /* Opcode: VBegin * * * P4 *
7922 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
7923 ** xBegin method for that table.
7925 ** Also, whether or not P4 is set, check that this is not being called from
7926 ** within a callback to a virtual table xSync() method. If it is, the error
7927 ** code will be set to SQLITE_LOCKED.
7931 pVTab
= pOp
->p4
.pVtab
;
7932 rc
= sqlite3VtabBegin(db
, pVTab
);
7933 if( pVTab
) sqlite3VtabImportErrmsg(p
, pVTab
->pVtab
);
7934 if( rc
) goto abort_due_to_error
;
7937 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7939 #ifndef SQLITE_OMIT_VIRTUALTABLE
7940 /* Opcode: VCreate P1 P2 * * *
7942 ** P2 is a register that holds the name of a virtual table in database
7943 ** P1. Call the xCreate method for that table.
7946 Mem sMem
; /* For storing the record being decoded */
7947 const char *zTab
; /* Name of the virtual table */
7949 memset(&sMem
, 0, sizeof(sMem
));
7951 /* Because P2 is always a static string, it is impossible for the
7952 ** sqlite3VdbeMemCopy() to fail */
7953 assert( (aMem
[pOp
->p2
].flags
& MEM_Str
)!=0 );
7954 assert( (aMem
[pOp
->p2
].flags
& MEM_Static
)!=0 );
7955 rc
= sqlite3VdbeMemCopy(&sMem
, &aMem
[pOp
->p2
]);
7956 assert( rc
==SQLITE_OK
);
7957 zTab
= (const char*)sqlite3_value_text(&sMem
);
7958 assert( zTab
|| db
->mallocFailed
);
7960 rc
= sqlite3VtabCallCreate(db
, pOp
->p1
, zTab
, &p
->zErrMsg
);
7962 sqlite3VdbeMemRelease(&sMem
);
7963 if( rc
) goto abort_due_to_error
;
7966 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7968 #ifndef SQLITE_OMIT_VIRTUALTABLE
7969 /* Opcode: VDestroy P1 * * P4 *
7971 ** P4 is the name of a virtual table in database P1. Call the xDestroy method
7976 rc
= sqlite3VtabCallDestroy(db
, pOp
->p1
, pOp
->p4
.z
);
7978 assert( p
->errorAction
==OE_Abort
&& p
->usesStmtJournal
);
7979 if( rc
) goto abort_due_to_error
;
7982 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7984 #ifndef SQLITE_OMIT_VIRTUALTABLE
7985 /* Opcode: VOpen P1 * * P4 *
7987 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
7988 ** P1 is a cursor number. This opcode opens a cursor to the virtual
7989 ** table and stores that cursor in P1.
7991 case OP_VOpen
: { /* ncycle */
7993 sqlite3_vtab_cursor
*pVCur
;
7994 sqlite3_vtab
*pVtab
;
7995 const sqlite3_module
*pModule
;
7997 assert( p
->bIsReader
);
8000 pVtab
= pOp
->p4
.pVtab
->pVtab
;
8001 if( pVtab
==0 || NEVER(pVtab
->pModule
==0) ){
8003 goto abort_due_to_error
;
8005 pModule
= pVtab
->pModule
;
8006 rc
= pModule
->xOpen(pVtab
, &pVCur
);
8007 sqlite3VtabImportErrmsg(p
, pVtab
);
8008 if( rc
) goto abort_due_to_error
;
8010 /* Initialize sqlite3_vtab_cursor base class */
8011 pVCur
->pVtab
= pVtab
;
8013 /* Initialize vdbe cursor object */
8014 pCur
= allocateCursor(p
, pOp
->p1
, 0, CURTYPE_VTAB
);
8016 pCur
->uc
.pVCur
= pVCur
;
8019 assert( db
->mallocFailed
);
8020 pModule
->xClose(pVCur
);
8025 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8027 #ifndef SQLITE_OMIT_VIRTUALTABLE
8028 /* Opcode: VInitIn P1 P2 P3 * *
8029 ** Synopsis: r[P2]=ValueList(P1,P3)
8031 ** Set register P2 to be a pointer to a ValueList object for cursor P1
8032 ** with cache register P3 and output register P3+1. This ValueList object
8033 ** can be used as the first argument to sqlite3_vtab_in_first() and
8034 ** sqlite3_vtab_in_next() to extract all of the values stored in the P1
8035 ** cursor. Register P3 is used to hold the values returned by
8036 ** sqlite3_vtab_in_first() and sqlite3_vtab_in_next().
8038 case OP_VInitIn
: { /* out2, ncycle */
8039 VdbeCursor
*pC
; /* The cursor containing the RHS values */
8040 ValueList
*pRhs
; /* New ValueList object to put in reg[P2] */
8042 pC
= p
->apCsr
[pOp
->p1
];
8043 pRhs
= sqlite3_malloc64( sizeof(*pRhs
) );
8044 if( pRhs
==0 ) goto no_mem
;
8045 pRhs
->pCsr
= pC
->uc
.pCursor
;
8046 pRhs
->pOut
= &aMem
[pOp
->p3
];
8047 pOut
= out2Prerelease(p
, pOp
);
8048 pOut
->flags
= MEM_Null
;
8049 sqlite3VdbeMemSetPointer(pOut
, pRhs
, "ValueList", sqlite3VdbeValueListFree
);
8052 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8055 #ifndef SQLITE_OMIT_VIRTUALTABLE
8056 /* Opcode: VFilter P1 P2 P3 P4 *
8057 ** Synopsis: iplan=r[P3] zplan='P4'
8059 ** P1 is a cursor opened using VOpen. P2 is an address to jump to if
8060 ** the filtered result set is empty.
8062 ** P4 is either NULL or a string that was generated by the xBestIndex
8063 ** method of the module. The interpretation of the P4 string is left
8064 ** to the module implementation.
8066 ** This opcode invokes the xFilter method on the virtual table specified
8067 ** by P1. The integer query plan parameter to xFilter is stored in register
8068 ** P3. Register P3+1 stores the argc parameter to be passed to the
8069 ** xFilter method. Registers P3+2..P3+1+argc are the argc
8070 ** additional parameters which are passed to
8071 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
8073 ** A jump is made to P2 if the result set after filtering would be empty.
8075 case OP_VFilter
: { /* jump, ncycle */
8078 const sqlite3_module
*pModule
;
8081 sqlite3_vtab_cursor
*pVCur
;
8082 sqlite3_vtab
*pVtab
;
8088 pQuery
= &aMem
[pOp
->p3
];
8090 pCur
= p
->apCsr
[pOp
->p1
];
8091 assert( memIsValid(pQuery
) );
8092 REGISTER_TRACE(pOp
->p3
, pQuery
);
8094 assert( pCur
->eCurType
==CURTYPE_VTAB
);
8095 pVCur
= pCur
->uc
.pVCur
;
8096 pVtab
= pVCur
->pVtab
;
8097 pModule
= pVtab
->pModule
;
8099 /* Grab the index number and argc parameters */
8100 assert( (pQuery
->flags
&MEM_Int
)!=0 && pArgc
->flags
==MEM_Int
);
8101 nArg
= (int)pArgc
->u
.i
;
8102 iQuery
= (int)pQuery
->u
.i
;
8104 /* Invoke the xFilter method */
8106 for(i
= 0; i
<nArg
; i
++){
8107 apArg
[i
] = &pArgc
[i
+1];
8109 rc
= pModule
->xFilter(pVCur
, iQuery
, pOp
->p4
.z
, nArg
, apArg
);
8110 sqlite3VtabImportErrmsg(p
, pVtab
);
8111 if( rc
) goto abort_due_to_error
;
8112 res
= pModule
->xEof(pVCur
);
8114 VdbeBranchTaken(res
!=0,2);
8115 if( res
) goto jump_to_p2
;
8118 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8120 #ifndef SQLITE_OMIT_VIRTUALTABLE
8121 /* Opcode: VColumn P1 P2 P3 * P5
8122 ** Synopsis: r[P3]=vcolumn(P2)
8124 ** Store in register P3 the value of the P2-th column of
8125 ** the current row of the virtual-table of cursor P1.
8127 ** If the VColumn opcode is being used to fetch the value of
8128 ** an unchanging column during an UPDATE operation, then the P5
8129 ** value is OPFLAG_NOCHNG. This will cause the sqlite3_vtab_nochange()
8130 ** function to return true inside the xColumn method of the virtual
8131 ** table implementation. The P5 column might also contain other
8132 ** bits (OPFLAG_LENGTHARG or OPFLAG_TYPEOFARG) but those bits are
8133 ** unused by OP_VColumn.
8135 case OP_VColumn
: { /* ncycle */
8136 sqlite3_vtab
*pVtab
;
8137 const sqlite3_module
*pModule
;
8139 sqlite3_context sContext
;
8141 VdbeCursor
*pCur
= p
->apCsr
[pOp
->p1
];
8143 assert( pOp
->p3
>0 && pOp
->p3
<=(p
->nMem
+1 - p
->nCursor
) );
8144 pDest
= &aMem
[pOp
->p3
];
8145 memAboutToChange(p
, pDest
);
8146 if( pCur
->nullRow
){
8147 sqlite3VdbeMemSetNull(pDest
);
8150 assert( pCur
->eCurType
==CURTYPE_VTAB
);
8151 pVtab
= pCur
->uc
.pVCur
->pVtab
;
8152 pModule
= pVtab
->pModule
;
8153 assert( pModule
->xColumn
);
8154 memset(&sContext
, 0, sizeof(sContext
));
8155 sContext
.pOut
= pDest
;
8156 sContext
.enc
= encoding
;
8157 assert( pOp
->p5
==OPFLAG_NOCHNG
|| pOp
->p5
==0 );
8158 if( pOp
->p5
& OPFLAG_NOCHNG
){
8159 sqlite3VdbeMemSetNull(pDest
);
8160 pDest
->flags
= MEM_Null
|MEM_Zero
;
8163 MemSetTypeFlag(pDest
, MEM_Null
);
8165 rc
= pModule
->xColumn(pCur
->uc
.pVCur
, &sContext
, pOp
->p2
);
8166 sqlite3VtabImportErrmsg(p
, pVtab
);
8167 if( sContext
.isError
>0 ){
8168 sqlite3VdbeError(p
, "%s", sqlite3_value_text(pDest
));
8169 rc
= sContext
.isError
;
8171 sqlite3VdbeChangeEncoding(pDest
, encoding
);
8172 REGISTER_TRACE(pOp
->p3
, pDest
);
8173 UPDATE_MAX_BLOBSIZE(pDest
);
8175 if( rc
) goto abort_due_to_error
;
8178 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8180 #ifndef SQLITE_OMIT_VIRTUALTABLE
8181 /* Opcode: VNext P1 P2 * * *
8183 ** Advance virtual table P1 to the next row in its result set and
8184 ** jump to instruction P2. Or, if the virtual table has reached
8185 ** the end of its result set, then fall through to the next instruction.
8187 case OP_VNext
: { /* jump, ncycle */
8188 sqlite3_vtab
*pVtab
;
8189 const sqlite3_module
*pModule
;
8193 pCur
= p
->apCsr
[pOp
->p1
];
8195 assert( pCur
->eCurType
==CURTYPE_VTAB
);
8196 if( pCur
->nullRow
){
8199 pVtab
= pCur
->uc
.pVCur
->pVtab
;
8200 pModule
= pVtab
->pModule
;
8201 assert( pModule
->xNext
);
8203 /* Invoke the xNext() method of the module. There is no way for the
8204 ** underlying implementation to return an error if one occurs during
8205 ** xNext(). Instead, if an error occurs, true is returned (indicating that
8206 ** data is available) and the error code returned when xColumn or
8207 ** some other method is next invoked on the save virtual table cursor.
8209 rc
= pModule
->xNext(pCur
->uc
.pVCur
);
8210 sqlite3VtabImportErrmsg(p
, pVtab
);
8211 if( rc
) goto abort_due_to_error
;
8212 res
= pModule
->xEof(pCur
->uc
.pVCur
);
8213 VdbeBranchTaken(!res
,2);
8215 /* If there is data, jump to P2 */
8216 goto jump_to_p2_and_check_for_interrupt
;
8218 goto check_for_interrupt
;
8220 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8222 #ifndef SQLITE_OMIT_VIRTUALTABLE
8223 /* Opcode: VRename P1 * * P4 *
8225 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
8226 ** This opcode invokes the corresponding xRename method. The value
8227 ** in register P1 is passed as the zName argument to the xRename method.
8230 sqlite3_vtab
*pVtab
;
8234 isLegacy
= (db
->flags
& SQLITE_LegacyAlter
);
8235 db
->flags
|= SQLITE_LegacyAlter
;
8236 pVtab
= pOp
->p4
.pVtab
->pVtab
;
8237 pName
= &aMem
[pOp
->p1
];
8238 assert( pVtab
->pModule
->xRename
);
8239 assert( memIsValid(pName
) );
8240 assert( p
->readOnly
==0 );
8241 REGISTER_TRACE(pOp
->p1
, pName
);
8242 assert( pName
->flags
& MEM_Str
);
8243 testcase( pName
->enc
==SQLITE_UTF8
);
8244 testcase( pName
->enc
==SQLITE_UTF16BE
);
8245 testcase( pName
->enc
==SQLITE_UTF16LE
);
8246 rc
= sqlite3VdbeChangeEncoding(pName
, SQLITE_UTF8
);
8247 if( rc
) goto abort_due_to_error
;
8248 rc
= pVtab
->pModule
->xRename(pVtab
, pName
->z
);
8249 if( isLegacy
==0 ) db
->flags
&= ~(u64
)SQLITE_LegacyAlter
;
8250 sqlite3VtabImportErrmsg(p
, pVtab
);
8252 if( rc
) goto abort_due_to_error
;
8257 #ifndef SQLITE_OMIT_VIRTUALTABLE
8258 /* Opcode: VUpdate P1 P2 P3 P4 P5
8259 ** Synopsis: data=r[P3@P2]
8261 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
8262 ** This opcode invokes the corresponding xUpdate method. P2 values
8263 ** are contiguous memory cells starting at P3 to pass to the xUpdate
8264 ** invocation. The value in register (P3+P2-1) corresponds to the
8265 ** p2th element of the argv array passed to xUpdate.
8267 ** The xUpdate method will do a DELETE or an INSERT or both.
8268 ** The argv[0] element (which corresponds to memory cell P3)
8269 ** is the rowid of a row to delete. If argv[0] is NULL then no
8270 ** deletion occurs. The argv[1] element is the rowid of the new
8271 ** row. This can be NULL to have the virtual table select the new
8272 ** rowid for itself. The subsequent elements in the array are
8273 ** the values of columns in the new row.
8275 ** If P2==1 then no insert is performed. argv[0] is the rowid of
8278 ** P1 is a boolean flag. If it is set to true and the xUpdate call
8279 ** is successful, then the value returned by sqlite3_last_insert_rowid()
8280 ** is set to the value of the rowid for the row just inserted.
8282 ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to
8283 ** apply in the case of a constraint failure on an insert or update.
8286 sqlite3_vtab
*pVtab
;
8287 const sqlite3_module
*pModule
;
8290 sqlite_int64 rowid
= 0;
8294 assert( pOp
->p2
==1 || pOp
->p5
==OE_Fail
|| pOp
->p5
==OE_Rollback
8295 || pOp
->p5
==OE_Abort
|| pOp
->p5
==OE_Ignore
|| pOp
->p5
==OE_Replace
8297 assert( p
->readOnly
==0 );
8298 if( db
->mallocFailed
) goto no_mem
;
8299 sqlite3VdbeIncrWriteCounter(p
, 0);
8300 pVtab
= pOp
->p4
.pVtab
->pVtab
;
8301 if( pVtab
==0 || NEVER(pVtab
->pModule
==0) ){
8303 goto abort_due_to_error
;
8305 pModule
= pVtab
->pModule
;
8307 assert( pOp
->p4type
==P4_VTAB
);
8308 if( ALWAYS(pModule
->xUpdate
) ){
8309 u8 vtabOnConflict
= db
->vtabOnConflict
;
8311 pX
= &aMem
[pOp
->p3
];
8312 for(i
=0; i
<nArg
; i
++){
8313 assert( memIsValid(pX
) );
8314 memAboutToChange(p
, pX
);
8318 db
->vtabOnConflict
= pOp
->p5
;
8319 rc
= pModule
->xUpdate(pVtab
, nArg
, apArg
, &rowid
);
8320 db
->vtabOnConflict
= vtabOnConflict
;
8321 sqlite3VtabImportErrmsg(p
, pVtab
);
8322 if( rc
==SQLITE_OK
&& pOp
->p1
){
8323 assert( nArg
>1 && apArg
[0] && (apArg
[0]->flags
&MEM_Null
) );
8324 db
->lastRowid
= rowid
;
8326 if( (rc
&0xff)==SQLITE_CONSTRAINT
&& pOp
->p4
.pVtab
->bConstraint
){
8327 if( pOp
->p5
==OE_Ignore
){
8330 p
->errorAction
= ((pOp
->p5
==OE_Replace
) ? OE_Abort
: pOp
->p5
);
8335 if( rc
) goto abort_due_to_error
;
8339 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8341 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
8342 /* Opcode: Pagecount P1 P2 * * *
8344 ** Write the current number of pages in database P1 to memory cell P2.
8346 case OP_Pagecount
: { /* out2 */
8347 pOut
= out2Prerelease(p
, pOp
);
8348 pOut
->u
.i
= sqlite3BtreeLastPage(db
->aDb
[pOp
->p1
].pBt
);
8354 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
8355 /* Opcode: MaxPgcnt P1 P2 P3 * *
8357 ** Try to set the maximum page count for database P1 to the value in P3.
8358 ** Do not let the maximum page count fall below the current page count and
8359 ** do not change the maximum page count value if P3==0.
8361 ** Store the maximum page count after the change in register P2.
8363 case OP_MaxPgcnt
: { /* out2 */
8364 unsigned int newMax
;
8367 pOut
= out2Prerelease(p
, pOp
);
8368 pBt
= db
->aDb
[pOp
->p1
].pBt
;
8371 newMax
= sqlite3BtreeLastPage(pBt
);
8372 if( newMax
< (unsigned)pOp
->p3
) newMax
= (unsigned)pOp
->p3
;
8374 pOut
->u
.i
= sqlite3BtreeMaxPageCount(pBt
, newMax
);
8379 /* Opcode: Function P1 P2 P3 P4 *
8380 ** Synopsis: r[P3]=func(r[P2@NP])
8382 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that
8383 ** contains a pointer to the function to be run) with arguments taken
8384 ** from register P2 and successors. The number of arguments is in
8385 ** the sqlite3_context object that P4 points to.
8386 ** The result of the function is stored
8387 ** in register P3. Register P3 must not be one of the function inputs.
8389 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
8390 ** function was determined to be constant at compile time. If the first
8391 ** argument was constant then bit 0 of P1 is set. This is used to determine
8392 ** whether meta data associated with a user function argument using the
8393 ** sqlite3_set_auxdata() API may be safely retained until the next
8394 ** invocation of this opcode.
8396 ** See also: AggStep, AggFinal, PureFunc
8398 /* Opcode: PureFunc P1 P2 P3 P4 *
8399 ** Synopsis: r[P3]=func(r[P2@NP])
8401 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that
8402 ** contains a pointer to the function to be run) with arguments taken
8403 ** from register P2 and successors. The number of arguments is in
8404 ** the sqlite3_context object that P4 points to.
8405 ** The result of the function is stored
8406 ** in register P3. Register P3 must not be one of the function inputs.
8408 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
8409 ** function was determined to be constant at compile time. If the first
8410 ** argument was constant then bit 0 of P1 is set. This is used to determine
8411 ** whether meta data associated with a user function argument using the
8412 ** sqlite3_set_auxdata() API may be safely retained until the next
8413 ** invocation of this opcode.
8415 ** This opcode works exactly like OP_Function. The only difference is in
8416 ** its name. This opcode is used in places where the function must be
8417 ** purely non-deterministic. Some built-in date/time functions can be
8418 ** either determinitic of non-deterministic, depending on their arguments.
8419 ** When those function are used in a non-deterministic way, they will check
8420 ** to see if they were called using OP_PureFunc instead of OP_Function, and
8421 ** if they were, they throw an error.
8423 ** See also: AggStep, AggFinal, Function
8425 case OP_PureFunc
: /* group */
8426 case OP_Function
: { /* group */
8428 sqlite3_context
*pCtx
;
8430 assert( pOp
->p4type
==P4_FUNCCTX
);
8431 pCtx
= pOp
->p4
.pCtx
;
8433 /* If this function is inside of a trigger, the register array in aMem[]
8434 ** might change from one evaluation to the next. The next block of code
8435 ** checks to see if the register array has changed, and if so it
8436 ** reinitializes the relavant parts of the sqlite3_context object */
8437 pOut
= &aMem
[pOp
->p3
];
8438 if( pCtx
->pOut
!= pOut
){
8441 pCtx
->enc
= encoding
;
8442 for(i
=pCtx
->argc
-1; i
>=0; i
--) pCtx
->argv
[i
] = &aMem
[pOp
->p2
+i
];
8444 assert( pCtx
->pVdbe
==p
);
8446 memAboutToChange(p
, pOut
);
8448 for(i
=0; i
<pCtx
->argc
; i
++){
8449 assert( memIsValid(pCtx
->argv
[i
]) );
8450 REGISTER_TRACE(pOp
->p2
+i
, pCtx
->argv
[i
]);
8453 MemSetTypeFlag(pOut
, MEM_Null
);
8454 assert( pCtx
->isError
==0 );
8455 (*pCtx
->pFunc
->xSFunc
)(pCtx
, pCtx
->argc
, pCtx
->argv
);/* IMP: R-24505-23230 */
8457 /* If the function returned an error, throw an exception */
8458 if( pCtx
->isError
){
8459 if( pCtx
->isError
>0 ){
8460 sqlite3VdbeError(p
, "%s", sqlite3_value_text(pOut
));
8463 sqlite3VdbeDeleteAuxData(db
, &p
->pAuxData
, pCtx
->iOp
, pOp
->p1
);
8465 if( rc
) goto abort_due_to_error
;
8468 assert( (pOut
->flags
&MEM_Str
)==0
8469 || pOut
->enc
==encoding
8470 || db
->mallocFailed
);
8471 assert( !sqlite3VdbeMemTooBig(pOut
) );
8473 REGISTER_TRACE(pOp
->p3
, pOut
);
8474 UPDATE_MAX_BLOBSIZE(pOut
);
8478 /* Opcode: ClrSubtype P1 * * * *
8479 ** Synopsis: r[P1].subtype = 0
8481 ** Clear the subtype from register P1.
8483 case OP_ClrSubtype
: { /* in1 */
8484 pIn1
= &aMem
[pOp
->p1
];
8485 pIn1
->flags
&= ~MEM_Subtype
;
8489 /* Opcode: FilterAdd P1 * P3 P4 *
8490 ** Synopsis: filter(P1) += key(P3@P4)
8492 ** Compute a hash on the P4 registers starting with r[P3] and
8493 ** add that hash to the bloom filter contained in r[P1].
8495 case OP_FilterAdd
: {
8498 assert( pOp
->p1
>0 && pOp
->p1
<=(p
->nMem
+1 - p
->nCursor
) );
8499 pIn1
= &aMem
[pOp
->p1
];
8500 assert( pIn1
->flags
& MEM_Blob
);
8501 assert( pIn1
->n
>0 );
8502 h
= filterHash(aMem
, pOp
);
8504 if( db
->flags
&SQLITE_VdbeTrace
){
8506 for(ii
=pOp
->p3
; ii
<pOp
->p3
+pOp
->p4
.i
; ii
++){
8507 registerTrace(ii
, &aMem
[ii
]);
8509 printf("hash: %llu modulo %d -> %u\n", h
, pIn1
->n
, (int)(h
%pIn1
->n
));
8513 pIn1
->z
[h
/8] |= 1<<(h
&7);
8517 /* Opcode: Filter P1 P2 P3 P4 *
8518 ** Synopsis: if key(P3@P4) not in filter(P1) goto P2
8520 ** Compute a hash on the key contained in the P4 registers starting
8521 ** with r[P3]. Check to see if that hash is found in the
8522 ** bloom filter hosted by register P1. If it is not present then
8523 ** maybe jump to P2. Otherwise fall through.
8525 ** False negatives are harmless. It is always safe to fall through,
8526 ** even if the value is in the bloom filter. A false negative causes
8527 ** more CPU cycles to be used, but it should still yield the correct
8528 ** answer. However, an incorrect answer may well arise from a
8529 ** false positive - if the jump is taken when it should fall through.
8531 case OP_Filter
: { /* jump */
8534 assert( pOp
->p1
>0 && pOp
->p1
<=(p
->nMem
+1 - p
->nCursor
) );
8535 pIn1
= &aMem
[pOp
->p1
];
8536 assert( (pIn1
->flags
& MEM_Blob
)!=0 );
8537 assert( pIn1
->n
>= 1 );
8538 h
= filterHash(aMem
, pOp
);
8540 if( db
->flags
&SQLITE_VdbeTrace
){
8542 for(ii
=pOp
->p3
; ii
<pOp
->p3
+pOp
->p4
.i
; ii
++){
8543 registerTrace(ii
, &aMem
[ii
]);
8545 printf("hash: %llu modulo %d -> %u\n", h
, pIn1
->n
, (int)(h
%pIn1
->n
));
8549 if( (pIn1
->z
[h
/8] & (1<<(h
&7)))==0 ){
8550 VdbeBranchTaken(1, 2);
8551 p
->aCounter
[SQLITE_STMTSTATUS_FILTER_HIT
]++;
8554 p
->aCounter
[SQLITE_STMTSTATUS_FILTER_MISS
]++;
8555 VdbeBranchTaken(0, 2);
8560 /* Opcode: Trace P1 P2 * P4 *
8562 ** Write P4 on the statement trace output if statement tracing is
8565 ** Operand P1 must be 0x7fffffff and P2 must positive.
8567 /* Opcode: Init P1 P2 P3 P4 *
8568 ** Synopsis: Start at P2
8570 ** Programs contain a single instance of this opcode as the very first
8573 ** If tracing is enabled (by the sqlite3_trace()) interface, then
8574 ** the UTF-8 string contained in P4 is emitted on the trace callback.
8575 ** Or if P4 is blank, use the string returned by sqlite3_sql().
8577 ** If P2 is not zero, jump to instruction P2.
8579 ** Increment the value of P1 so that OP_Once opcodes will jump the
8580 ** first time they are evaluated for this run.
8582 ** If P3 is not zero, then it is an address to jump to if an SQLITE_CORRUPT
8583 ** error is encountered.
8586 case OP_Init
: { /* jump */
8588 #ifndef SQLITE_OMIT_TRACE
8592 /* If the P4 argument is not NULL, then it must be an SQL comment string.
8593 ** The "--" string is broken up to prevent false-positives with srcck1.c.
8595 ** This assert() provides evidence for:
8596 ** EVIDENCE-OF: R-50676-09860 The callback can compute the same text that
8597 ** would have been returned by the legacy sqlite3_trace() interface by
8598 ** using the X argument when X begins with "--" and invoking
8599 ** sqlite3_expanded_sql(P) otherwise.
8601 assert( pOp
->p4
.z
==0 || strncmp(pOp
->p4
.z
, "-" "- ", 3)==0 );
8603 /* OP_Init is always instruction 0 */
8604 assert( pOp
==p
->aOp
|| pOp
->opcode
==OP_Trace
);
8606 #ifndef SQLITE_OMIT_TRACE
8607 if( (db
->mTrace
& (SQLITE_TRACE_STMT
|SQLITE_TRACE_LEGACY
))!=0
8608 && p
->minWriteFileFormat
!=254 /* tag-20220401a */
8609 && (zTrace
= (pOp
->p4
.z
? pOp
->p4
.z
: p
->zSql
))!=0
8611 #ifndef SQLITE_OMIT_DEPRECATED
8612 if( db
->mTrace
& SQLITE_TRACE_LEGACY
){
8613 char *z
= sqlite3VdbeExpandSql(p
, zTrace
);
8614 db
->trace
.xLegacy(db
->pTraceArg
, z
);
8618 if( db
->nVdbeExec
>1 ){
8619 char *z
= sqlite3MPrintf(db
, "-- %s", zTrace
);
8620 (void)db
->trace
.xV2(SQLITE_TRACE_STMT
, db
->pTraceArg
, p
, z
);
8621 sqlite3DbFree(db
, z
);
8623 (void)db
->trace
.xV2(SQLITE_TRACE_STMT
, db
->pTraceArg
, p
, zTrace
);
8626 #ifdef SQLITE_USE_FCNTL_TRACE
8627 zTrace
= (pOp
->p4
.z
? pOp
->p4
.z
: p
->zSql
);
8630 for(j
=0; j
<db
->nDb
; j
++){
8631 if( DbMaskTest(p
->btreeMask
, j
)==0 ) continue;
8632 sqlite3_file_control(db
, db
->aDb
[j
].zDbSName
, SQLITE_FCNTL_TRACE
, zTrace
);
8635 #endif /* SQLITE_USE_FCNTL_TRACE */
8637 if( (db
->flags
& SQLITE_SqlTrace
)!=0
8638 && (zTrace
= (pOp
->p4
.z
? pOp
->p4
.z
: p
->zSql
))!=0
8640 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace
);
8642 #endif /* SQLITE_DEBUG */
8643 #endif /* SQLITE_OMIT_TRACE */
8644 assert( pOp
->p2
>0 );
8645 if( pOp
->p1
>=sqlite3GlobalConfig
.iOnceResetThreshold
){
8646 if( pOp
->opcode
==OP_Trace
) break;
8647 for(i
=1; i
<p
->nOp
; i
++){
8648 if( p
->aOp
[i
].opcode
==OP_Once
) p
->aOp
[i
].p1
= 0;
8653 p
->aCounter
[SQLITE_STMTSTATUS_RUN
]++;
8657 #ifdef SQLITE_ENABLE_CURSOR_HINTS
8658 /* Opcode: CursorHint P1 * * P4 *
8660 ** Provide a hint to cursor P1 that it only needs to return rows that
8661 ** satisfy the Expr in P4. TK_REGISTER terms in the P4 expression refer
8662 ** to values currently held in registers. TK_COLUMN terms in the P4
8663 ** expression refer to columns in the b-tree to which cursor P1 is pointing.
8665 case OP_CursorHint
: {
8668 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
8669 assert( pOp
->p4type
==P4_EXPR
);
8670 pC
= p
->apCsr
[pOp
->p1
];
8672 assert( pC
->eCurType
==CURTYPE_BTREE
);
8673 sqlite3BtreeCursorHint(pC
->uc
.pCursor
, BTREE_HINT_RANGE
,
8674 pOp
->p4
.pExpr
, aMem
);
8678 #endif /* SQLITE_ENABLE_CURSOR_HINTS */
8681 /* Opcode: Abortable * * * * *
8683 ** Verify that an Abort can happen. Assert if an Abort at this point
8684 ** might cause database corruption. This opcode only appears in debugging
8687 ** An Abort is safe if either there have been no writes, or if there is
8688 ** an active statement journal.
8690 case OP_Abortable
: {
8691 sqlite3VdbeAssertAbortable(p
);
8697 /* Opcode: ReleaseReg P1 P2 P3 * P5
8698 ** Synopsis: release r[P1@P2] mask P3
8700 ** Release registers from service. Any content that was in the
8701 ** the registers is unreliable after this opcode completes.
8703 ** The registers released will be the P2 registers starting at P1,
8704 ** except if bit ii of P3 set, then do not release register P1+ii.
8705 ** In other words, P3 is a mask of registers to preserve.
8707 ** Releasing a register clears the Mem.pScopyFrom pointer. That means
8708 ** that if the content of the released register was set using OP_SCopy,
8709 ** a change to the value of the source register for the OP_SCopy will no longer
8710 ** generate an assertion fault in sqlite3VdbeMemAboutToChange().
8712 ** If P5 is set, then all released registers have their type set
8713 ** to MEM_Undefined so that any subsequent attempt to read the released
8714 ** register (before it is reinitialized) will generate an assertion fault.
8716 ** P5 ought to be set on every call to this opcode.
8717 ** However, there are places in the code generator will release registers
8718 ** before their are used, under the (valid) assumption that the registers
8719 ** will not be reallocated for some other purpose before they are used and
8720 ** hence are safe to release.
8722 ** This opcode is only available in testing and debugging builds. It is
8723 ** not generated for release builds. The purpose of this opcode is to help
8724 ** validate the generated bytecode. This opcode does not actually contribute
8725 ** to computing an answer.
8727 case OP_ReleaseReg
: {
8731 assert( pOp
->p1
>0 );
8732 assert( pOp
->p1
+pOp
->p2
<=(p
->nMem
+1 - p
->nCursor
)+1 );
8733 pMem
= &aMem
[pOp
->p1
];
8734 constMask
= pOp
->p3
;
8735 for(i
=0; i
<pOp
->p2
; i
++, pMem
++){
8736 if( i
>=32 || (constMask
& MASKBIT32(i
))==0 ){
8737 pMem
->pScopyFrom
= 0;
8738 if( i
<32 && pOp
->p5
) MemSetTypeFlag(pMem
, MEM_Undefined
);
8745 /* Opcode: Noop * * * * *
8747 ** Do nothing. This instruction is often useful as a jump
8751 ** The magic Explain opcode are only inserted when explain==2 (which
8752 ** is to say when the EXPLAIN QUERY PLAN syntax is used.)
8753 ** This opcode records information from the optimizer. It is the
8754 ** the same as a no-op. This opcodesnever appears in a real VM program.
8756 default: { /* This is really OP_Noop, OP_Explain */
8757 assert( pOp
->opcode
==OP_Noop
|| pOp
->opcode
==OP_Explain
);
8762 /*****************************************************************************
8763 ** The cases of the switch statement above this line should all be indented
8764 ** by 6 spaces. But the left-most 6 spaces have been removed to improve the
8765 ** readability. From this point on down, the normal indentation rules are
8767 *****************************************************************************/
8770 #if defined(VDBE_PROFILE)
8771 *pnCycle
+= sqlite3NProfileCnt
? sqlite3NProfileCnt
: sqlite3Hwtime();
8773 #elif defined(SQLITE_ENABLE_STMT_SCANSTATUS)
8775 *pnCycle
+= sqlite3Hwtime();
8780 /* The following code adds nothing to the actual functionality
8781 ** of the program. It is only here for testing and debugging.
8782 ** On the other hand, it does burn CPU cycles every time through
8783 ** the evaluator loop. So we can leave it out when NDEBUG is defined.
8786 assert( pOp
>=&aOp
[-1] && pOp
<&aOp
[p
->nOp
-1] );
8789 if( db
->flags
& SQLITE_VdbeTrace
){
8790 u8 opProperty
= sqlite3OpcodeProperty
[pOrigOp
->opcode
];
8791 if( rc
!=0 ) printf("rc=%d\n",rc
);
8792 if( opProperty
& (OPFLG_OUT2
) ){
8793 registerTrace(pOrigOp
->p2
, &aMem
[pOrigOp
->p2
]);
8795 if( opProperty
& OPFLG_OUT3
){
8796 registerTrace(pOrigOp
->p3
, &aMem
[pOrigOp
->p3
]);
8798 if( opProperty
==0xff ){
8799 /* Never happens. This code exists to avoid a harmless linkage
8800 ** warning aboud sqlite3VdbeRegisterDump() being defined but not
8802 sqlite3VdbeRegisterDump(p
);
8805 #endif /* SQLITE_DEBUG */
8807 } /* The end of the for(;;) loop the loops through opcodes */
8809 /* If we reach this point, it means that execution is finished with
8810 ** an error of some kind.
8813 if( db
->mallocFailed
){
8814 rc
= SQLITE_NOMEM_BKPT
;
8815 }else if( rc
==SQLITE_IOERR_CORRUPTFS
){
8816 rc
= SQLITE_CORRUPT_BKPT
;
8820 if( db
->flags
& SQLITE_VdbeTrace
){
8821 const char *zTrace
= p
->zSql
;
8823 if( aOp
[0].opcode
==OP_Trace
){
8824 zTrace
= aOp
[0].p4
.z
;
8826 if( zTrace
==0 ) zTrace
= "???";
8828 printf("ABORT-due-to-error (rc=%d): %s\n", rc
, zTrace
);
8831 if( p
->zErrMsg
==0 && rc
!=SQLITE_IOERR_NOMEM
){
8832 sqlite3VdbeError(p
, "%s", sqlite3ErrStr(rc
));
8835 sqlite3SystemError(db
, rc
);
8836 testcase( sqlite3GlobalConfig
.xLog
!=0 );
8837 sqlite3_log(rc
, "statement aborts at %d: [%s] %s",
8838 (int)(pOp
- aOp
), p
->zSql
, p
->zErrMsg
);
8839 if( p
->eVdbeState
==VDBE_RUN_STATE
) sqlite3VdbeHalt(p
);
8840 if( rc
==SQLITE_IOERR_NOMEM
) sqlite3OomFault(db
);
8841 if( rc
==SQLITE_CORRUPT
&& db
->autoCommit
==0 ){
8842 db
->flags
|= SQLITE_CorruptRdOnly
;
8845 if( resetSchemaOnFault
>0 ){
8846 sqlite3ResetOneSchema(db
, resetSchemaOnFault
-1);
8849 /* This is the only way out of this procedure. We have to
8850 ** release the mutexes on btrees that were acquired at the
8853 #if defined(VDBE_PROFILE)
8855 *pnCycle
+= sqlite3NProfileCnt
? sqlite3NProfileCnt
: sqlite3Hwtime();
8858 #elif defined(SQLITE_ENABLE_STMT_SCANSTATUS)
8860 *pnCycle
+= sqlite3Hwtime();
8865 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
8866 while( nVmStep
>=nProgressLimit
&& db
->xProgress
!=0 ){
8867 nProgressLimit
+= db
->nProgressOps
;
8868 if( db
->xProgress(db
->pProgressArg
) ){
8869 nProgressLimit
= LARGEST_UINT64
;
8870 rc
= SQLITE_INTERRUPT
;
8871 goto abort_due_to_error
;
8875 p
->aCounter
[SQLITE_STMTSTATUS_VM_STEP
] += (int)nVmStep
;
8876 if( DbMaskNonZero(p
->lockMask
) ){
8877 sqlite3VdbeLeave(p
);
8879 assert( rc
!=SQLITE_OK
|| nExtraDelete
==0
8880 || sqlite3_strlike("DELETE%",p
->zSql
,0)!=0
8884 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
8888 sqlite3VdbeError(p
, "string or blob too big");
8890 goto abort_due_to_error
;
8892 /* Jump to here if a malloc() fails.
8895 sqlite3OomFault(db
);
8896 sqlite3VdbeError(p
, "out of memory");
8897 rc
= SQLITE_NOMEM_BKPT
;
8898 goto abort_due_to_error
;
8900 /* Jump to here if the sqlite3_interrupt() API sets the interrupt
8903 abort_due_to_interrupt
:
8904 assert( AtomicLoad(&db
->u1
.isInterrupted
) );
8905 rc
= SQLITE_INTERRUPT
;
8906 goto abort_due_to_error
;