adjustments for constant time function volatile variables
[sqlcipher.git] / src / vdbeaux.c
blobecbf2d892e6b418fbbf408d417b725adfa9c1b18
1 /*
2 ** 2003 September 6
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains code used for creating, destroying, and populating
13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)
15 #include "sqliteInt.h"
16 #include "vdbeInt.h"
18 /* Forward references */
19 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef);
20 static void vdbeFreeOpArray(sqlite3 *, Op *, int);
23 ** Create a new virtual database engine.
25 Vdbe *sqlite3VdbeCreate(Parse *pParse){
26 sqlite3 *db = pParse->db;
27 Vdbe *p;
28 p = sqlite3DbMallocRawNN(db, sizeof(Vdbe) );
29 if( p==0 ) return 0;
30 memset(&p->aOp, 0, sizeof(Vdbe)-offsetof(Vdbe,aOp));
31 p->db = db;
32 if( db->pVdbe ){
33 db->pVdbe->ppVPrev = &p->pVNext;
35 p->pVNext = db->pVdbe;
36 p->ppVPrev = &db->pVdbe;
37 db->pVdbe = p;
38 assert( p->eVdbeState==VDBE_INIT_STATE );
39 p->pParse = pParse;
40 pParse->pVdbe = p;
41 assert( pParse->aLabel==0 );
42 assert( pParse->nLabel==0 );
43 assert( p->nOpAlloc==0 );
44 assert( pParse->szOpAlloc==0 );
45 sqlite3VdbeAddOp2(p, OP_Init, 0, 1);
46 return p;
50 ** Return the Parse object that owns a Vdbe object.
52 Parse *sqlite3VdbeParser(Vdbe *p){
53 return p->pParse;
57 ** Change the error string stored in Vdbe.zErrMsg
59 void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){
60 va_list ap;
61 sqlite3DbFree(p->db, p->zErrMsg);
62 va_start(ap, zFormat);
63 p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap);
64 va_end(ap);
68 ** Remember the SQL string for a prepared statement.
70 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, u8 prepFlags){
71 if( p==0 ) return;
72 p->prepFlags = prepFlags;
73 if( (prepFlags & SQLITE_PREPARE_SAVESQL)==0 ){
74 p->expmask = 0;
76 assert( p->zSql==0 );
77 p->zSql = sqlite3DbStrNDup(p->db, z, n);
80 #ifdef SQLITE_ENABLE_NORMALIZE
82 ** Add a new element to the Vdbe->pDblStr list.
84 void sqlite3VdbeAddDblquoteStr(sqlite3 *db, Vdbe *p, const char *z){
85 if( p ){
86 int n = sqlite3Strlen30(z);
87 DblquoteStr *pStr = sqlite3DbMallocRawNN(db,
88 sizeof(*pStr)+n+1-sizeof(pStr->z));
89 if( pStr ){
90 pStr->pNextStr = p->pDblStr;
91 p->pDblStr = pStr;
92 memcpy(pStr->z, z, n+1);
96 #endif
98 #ifdef SQLITE_ENABLE_NORMALIZE
100 ** zId of length nId is a double-quoted identifier. Check to see if
101 ** that identifier is really used as a string literal.
103 int sqlite3VdbeUsesDoubleQuotedString(
104 Vdbe *pVdbe, /* The prepared statement */
105 const char *zId /* The double-quoted identifier, already dequoted */
107 DblquoteStr *pStr;
108 assert( zId!=0 );
109 if( pVdbe->pDblStr==0 ) return 0;
110 for(pStr=pVdbe->pDblStr; pStr; pStr=pStr->pNextStr){
111 if( strcmp(zId, pStr->z)==0 ) return 1;
113 return 0;
115 #endif
118 ** Swap byte-code between two VDBE structures.
120 ** This happens after pB was previously run and returned
121 ** SQLITE_SCHEMA. The statement was then reprepared in pA.
122 ** This routine transfers the new bytecode in pA over to pB
123 ** so that pB can be run again. The old pB byte code is
124 ** moved back to pA so that it will be cleaned up when pA is
125 ** finalized.
127 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
128 Vdbe tmp, *pTmp, **ppTmp;
129 char *zTmp;
130 assert( pA->db==pB->db );
131 tmp = *pA;
132 *pA = *pB;
133 *pB = tmp;
134 pTmp = pA->pVNext;
135 pA->pVNext = pB->pVNext;
136 pB->pVNext = pTmp;
137 ppTmp = pA->ppVPrev;
138 pA->ppVPrev = pB->ppVPrev;
139 pB->ppVPrev = ppTmp;
140 zTmp = pA->zSql;
141 pA->zSql = pB->zSql;
142 pB->zSql = zTmp;
143 #ifdef SQLITE_ENABLE_NORMALIZE
144 zTmp = pA->zNormSql;
145 pA->zNormSql = pB->zNormSql;
146 pB->zNormSql = zTmp;
147 #endif
148 pB->expmask = pA->expmask;
149 pB->prepFlags = pA->prepFlags;
150 memcpy(pB->aCounter, pA->aCounter, sizeof(pB->aCounter));
151 pB->aCounter[SQLITE_STMTSTATUS_REPREPARE]++;
155 ** Resize the Vdbe.aOp array so that it is at least nOp elements larger
156 ** than its current size. nOp is guaranteed to be less than or equal
157 ** to 1024/sizeof(Op).
159 ** If an out-of-memory error occurs while resizing the array, return
160 ** SQLITE_NOMEM. In this case Vdbe.aOp and Vdbe.nOpAlloc remain
161 ** unchanged (this is so that any opcodes already allocated can be
162 ** correctly deallocated along with the rest of the Vdbe).
164 static int growOpArray(Vdbe *v, int nOp){
165 VdbeOp *pNew;
166 Parse *p = v->pParse;
168 /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force
169 ** more frequent reallocs and hence provide more opportunities for
170 ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used
171 ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array
172 ** by the minimum* amount required until the size reaches 512. Normal
173 ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current
174 ** size of the op array or add 1KB of space, whichever is smaller. */
175 #ifdef SQLITE_TEST_REALLOC_STRESS
176 sqlite3_int64 nNew = (v->nOpAlloc>=512 ? 2*(sqlite3_int64)v->nOpAlloc
177 : (sqlite3_int64)v->nOpAlloc+nOp);
178 #else
179 sqlite3_int64 nNew = (v->nOpAlloc ? 2*(sqlite3_int64)v->nOpAlloc
180 : (sqlite3_int64)(1024/sizeof(Op)));
181 UNUSED_PARAMETER(nOp);
182 #endif
184 /* Ensure that the size of a VDBE does not grow too large */
185 if( nNew > p->db->aLimit[SQLITE_LIMIT_VDBE_OP] ){
186 sqlite3OomFault(p->db);
187 return SQLITE_NOMEM;
190 assert( nOp<=(int)(1024/sizeof(Op)) );
191 assert( nNew>=(v->nOpAlloc+nOp) );
192 pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op));
193 if( pNew ){
194 p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew);
195 v->nOpAlloc = p->szOpAlloc/sizeof(Op);
196 v->aOp = pNew;
198 return (pNew ? SQLITE_OK : SQLITE_NOMEM_BKPT);
201 #ifdef SQLITE_DEBUG
202 /* This routine is just a convenient place to set a breakpoint that will
203 ** fire after each opcode is inserted and displayed using
204 ** "PRAGMA vdbe_addoptrace=on". Parameters "pc" (program counter) and
205 ** pOp are available to make the breakpoint conditional.
207 ** Other useful labels for breakpoints include:
208 ** test_trace_breakpoint(pc,pOp)
209 ** sqlite3CorruptError(lineno)
210 ** sqlite3MisuseError(lineno)
211 ** sqlite3CantopenError(lineno)
213 static void test_addop_breakpoint(int pc, Op *pOp){
214 static int n = 0;
215 (void)pc;
216 (void)pOp;
217 n++;
219 #endif
222 ** Add a new instruction to the list of instructions current in the
223 ** VDBE. Return the address of the new instruction.
225 ** Parameters:
227 ** p Pointer to the VDBE
229 ** op The opcode for this instruction
231 ** p1, p2, p3 Operands
233 ** Use the sqlite3VdbeResolveLabel() function to fix an address and
234 ** the sqlite3VdbeChangeP4() function to change the value of the P4
235 ** operand.
237 static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){
238 assert( p->nOpAlloc<=p->nOp );
239 if( growOpArray(p, 1) ) return 1;
240 assert( p->nOpAlloc>p->nOp );
241 return sqlite3VdbeAddOp3(p, op, p1, p2, p3);
243 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
244 int i;
245 VdbeOp *pOp;
247 i = p->nOp;
248 assert( p->eVdbeState==VDBE_INIT_STATE );
249 assert( op>=0 && op<0xff );
250 if( p->nOpAlloc<=i ){
251 return growOp3(p, op, p1, p2, p3);
253 assert( p->aOp!=0 );
254 p->nOp++;
255 pOp = &p->aOp[i];
256 assert( pOp!=0 );
257 pOp->opcode = (u8)op;
258 pOp->p5 = 0;
259 pOp->p1 = p1;
260 pOp->p2 = p2;
261 pOp->p3 = p3;
262 pOp->p4.p = 0;
263 pOp->p4type = P4_NOTUSED;
264 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
265 pOp->zComment = 0;
266 #endif
267 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || defined(VDBE_PROFILE)
268 pOp->nExec = 0;
269 pOp->nCycle = 0;
270 #endif
271 #ifdef SQLITE_DEBUG
272 if( p->db->flags & SQLITE_VdbeAddopTrace ){
273 sqlite3VdbePrintOp(0, i, &p->aOp[i]);
274 test_addop_breakpoint(i, &p->aOp[i]);
276 #endif
277 #ifdef SQLITE_VDBE_COVERAGE
278 pOp->iSrcLine = 0;
279 #endif
280 return i;
282 int sqlite3VdbeAddOp0(Vdbe *p, int op){
283 return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
285 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
286 return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
288 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
289 return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
292 /* Generate code for an unconditional jump to instruction iDest
294 int sqlite3VdbeGoto(Vdbe *p, int iDest){
295 return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0);
298 /* Generate code to cause the string zStr to be loaded into
299 ** register iDest
301 int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){
302 return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0);
306 ** Generate code that initializes multiple registers to string or integer
307 ** constants. The registers begin with iDest and increase consecutively.
308 ** One register is initialized for each characgter in zTypes[]. For each
309 ** "s" character in zTypes[], the register is a string if the argument is
310 ** not NULL, or OP_Null if the value is a null pointer. For each "i" character
311 ** in zTypes[], the register is initialized to an integer.
313 ** If the input string does not end with "X" then an OP_ResultRow instruction
314 ** is generated for the values inserted.
316 void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){
317 va_list ap;
318 int i;
319 char c;
320 va_start(ap, zTypes);
321 for(i=0; (c = zTypes[i])!=0; i++){
322 if( c=='s' ){
323 const char *z = va_arg(ap, const char*);
324 sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest+i, 0, z, 0);
325 }else if( c=='i' ){
326 sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest+i);
327 }else{
328 goto skip_op_resultrow;
331 sqlite3VdbeAddOp2(p, OP_ResultRow, iDest, i);
332 skip_op_resultrow:
333 va_end(ap);
337 ** Add an opcode that includes the p4 value as a pointer.
339 int sqlite3VdbeAddOp4(
340 Vdbe *p, /* Add the opcode to this VM */
341 int op, /* The new opcode */
342 int p1, /* The P1 operand */
343 int p2, /* The P2 operand */
344 int p3, /* The P3 operand */
345 const char *zP4, /* The P4 operand */
346 int p4type /* P4 operand type */
348 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
349 sqlite3VdbeChangeP4(p, addr, zP4, p4type);
350 return addr;
354 ** Add an OP_Function or OP_PureFunc opcode.
356 ** The eCallCtx argument is information (typically taken from Expr.op2)
357 ** that describes the calling context of the function. 0 means a general
358 ** function call. NC_IsCheck means called by a check constraint,
359 ** NC_IdxExpr means called as part of an index expression. NC_PartIdx
360 ** means in the WHERE clause of a partial index. NC_GenCol means called
361 ** while computing a generated column value. 0 is the usual case.
363 int sqlite3VdbeAddFunctionCall(
364 Parse *pParse, /* Parsing context */
365 int p1, /* Constant argument mask */
366 int p2, /* First argument register */
367 int p3, /* Register into which results are written */
368 int nArg, /* Number of argument */
369 const FuncDef *pFunc, /* The function to be invoked */
370 int eCallCtx /* Calling context */
372 Vdbe *v = pParse->pVdbe;
373 int nByte;
374 int addr;
375 sqlite3_context *pCtx;
376 assert( v );
377 nByte = sizeof(*pCtx) + (nArg-1)*sizeof(sqlite3_value*);
378 pCtx = sqlite3DbMallocRawNN(pParse->db, nByte);
379 if( pCtx==0 ){
380 assert( pParse->db->mallocFailed );
381 freeEphemeralFunction(pParse->db, (FuncDef*)pFunc);
382 return 0;
384 pCtx->pOut = 0;
385 pCtx->pFunc = (FuncDef*)pFunc;
386 pCtx->pVdbe = 0;
387 pCtx->isError = 0;
388 pCtx->argc = nArg;
389 pCtx->iOp = sqlite3VdbeCurrentAddr(v);
390 addr = sqlite3VdbeAddOp4(v, eCallCtx ? OP_PureFunc : OP_Function,
391 p1, p2, p3, (char*)pCtx, P4_FUNCCTX);
392 sqlite3VdbeChangeP5(v, eCallCtx & NC_SelfRef);
393 sqlite3MayAbort(pParse);
394 return addr;
398 ** Add an opcode that includes the p4 value with a P4_INT64 or
399 ** P4_REAL type.
401 int sqlite3VdbeAddOp4Dup8(
402 Vdbe *p, /* Add the opcode to this VM */
403 int op, /* The new opcode */
404 int p1, /* The P1 operand */
405 int p2, /* The P2 operand */
406 int p3, /* The P3 operand */
407 const u8 *zP4, /* The P4 operand */
408 int p4type /* P4 operand type */
410 char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8);
411 if( p4copy ) memcpy(p4copy, zP4, 8);
412 return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type);
415 #ifndef SQLITE_OMIT_EXPLAIN
417 ** Return the address of the current EXPLAIN QUERY PLAN baseline.
418 ** 0 means "none".
420 int sqlite3VdbeExplainParent(Parse *pParse){
421 VdbeOp *pOp;
422 if( pParse->addrExplain==0 ) return 0;
423 pOp = sqlite3VdbeGetOp(pParse->pVdbe, pParse->addrExplain);
424 return pOp->p2;
428 ** Set a debugger breakpoint on the following routine in order to
429 ** monitor the EXPLAIN QUERY PLAN code generation.
431 #if defined(SQLITE_DEBUG)
432 void sqlite3ExplainBreakpoint(const char *z1, const char *z2){
433 (void)z1;
434 (void)z2;
436 #endif
439 ** Add a new OP_Explain opcode.
441 ** If the bPush flag is true, then make this opcode the parent for
442 ** subsequent Explains until sqlite3VdbeExplainPop() is called.
444 int sqlite3VdbeExplain(Parse *pParse, u8 bPush, const char *zFmt, ...){
445 int addr = 0;
446 #if !defined(SQLITE_DEBUG)
447 /* Always include the OP_Explain opcodes if SQLITE_DEBUG is defined.
448 ** But omit them (for performance) during production builds */
449 if( pParse->explain==2 || IS_STMT_SCANSTATUS(pParse->db) )
450 #endif
452 char *zMsg;
453 Vdbe *v;
454 va_list ap;
455 int iThis;
456 va_start(ap, zFmt);
457 zMsg = sqlite3VMPrintf(pParse->db, zFmt, ap);
458 va_end(ap);
459 v = pParse->pVdbe;
460 iThis = v->nOp;
461 addr = sqlite3VdbeAddOp4(v, OP_Explain, iThis, pParse->addrExplain, 0,
462 zMsg, P4_DYNAMIC);
463 sqlite3ExplainBreakpoint(bPush?"PUSH":"", sqlite3VdbeGetLastOp(v)->p4.z);
464 if( bPush){
465 pParse->addrExplain = iThis;
467 sqlite3VdbeScanStatus(v, iThis, 0, 0, 0, 0);
469 return addr;
473 ** Pop the EXPLAIN QUERY PLAN stack one level.
475 void sqlite3VdbeExplainPop(Parse *pParse){
476 sqlite3ExplainBreakpoint("POP", 0);
477 pParse->addrExplain = sqlite3VdbeExplainParent(pParse);
479 #endif /* SQLITE_OMIT_EXPLAIN */
482 ** Add an OP_ParseSchema opcode. This routine is broken out from
483 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees
484 ** as having been used.
486 ** The zWhere string must have been obtained from sqlite3_malloc().
487 ** This routine will take ownership of the allocated memory.
489 void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere, u16 p5){
490 int j;
491 sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC);
492 sqlite3VdbeChangeP5(p, p5);
493 for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j);
494 sqlite3MayAbort(p->pParse);
498 ** Add an opcode that includes the p4 value as an integer.
500 int sqlite3VdbeAddOp4Int(
501 Vdbe *p, /* Add the opcode to this VM */
502 int op, /* The new opcode */
503 int p1, /* The P1 operand */
504 int p2, /* The P2 operand */
505 int p3, /* The P3 operand */
506 int p4 /* The P4 operand as an integer */
508 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
509 if( p->db->mallocFailed==0 ){
510 VdbeOp *pOp = &p->aOp[addr];
511 pOp->p4type = P4_INT32;
512 pOp->p4.i = p4;
514 return addr;
517 /* Insert the end of a co-routine
519 void sqlite3VdbeEndCoroutine(Vdbe *v, int regYield){
520 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield);
522 /* Clear the temporary register cache, thereby ensuring that each
523 ** co-routine has its own independent set of registers, because co-routines
524 ** might expect their registers to be preserved across an OP_Yield, and
525 ** that could cause problems if two or more co-routines are using the same
526 ** temporary register.
528 v->pParse->nTempReg = 0;
529 v->pParse->nRangeReg = 0;
533 ** Create a new symbolic label for an instruction that has yet to be
534 ** coded. The symbolic label is really just a negative number. The
535 ** label can be used as the P2 value of an operation. Later, when
536 ** the label is resolved to a specific address, the VDBE will scan
537 ** through its operation list and change all values of P2 which match
538 ** the label into the resolved address.
540 ** The VDBE knows that a P2 value is a label because labels are
541 ** always negative and P2 values are suppose to be non-negative.
542 ** Hence, a negative P2 value is a label that has yet to be resolved.
543 ** (Later:) This is only true for opcodes that have the OPFLG_JUMP
544 ** property.
546 ** Variable usage notes:
548 ** Parse.aLabel[x] Stores the address that the x-th label resolves
549 ** into. For testing (SQLITE_DEBUG), unresolved
550 ** labels stores -1, but that is not required.
551 ** Parse.nLabelAlloc Number of slots allocated to Parse.aLabel[]
552 ** Parse.nLabel The *negative* of the number of labels that have
553 ** been issued. The negative is stored because
554 ** that gives a performance improvement over storing
555 ** the equivalent positive value.
557 int sqlite3VdbeMakeLabel(Parse *pParse){
558 return --pParse->nLabel;
562 ** Resolve label "x" to be the address of the next instruction to
563 ** be inserted. The parameter "x" must have been obtained from
564 ** a prior call to sqlite3VdbeMakeLabel().
566 static SQLITE_NOINLINE void resizeResolveLabel(Parse *p, Vdbe *v, int j){
567 int nNewSize = 10 - p->nLabel;
568 p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
569 nNewSize*sizeof(p->aLabel[0]));
570 if( p->aLabel==0 ){
571 p->nLabelAlloc = 0;
572 }else{
573 #ifdef SQLITE_DEBUG
574 int i;
575 for(i=p->nLabelAlloc; i<nNewSize; i++) p->aLabel[i] = -1;
576 #endif
577 if( nNewSize>=100 && (nNewSize/100)>(p->nLabelAlloc/100) ){
578 sqlite3ProgressCheck(p);
580 p->nLabelAlloc = nNewSize;
581 p->aLabel[j] = v->nOp;
584 void sqlite3VdbeResolveLabel(Vdbe *v, int x){
585 Parse *p = v->pParse;
586 int j = ADDR(x);
587 assert( v->eVdbeState==VDBE_INIT_STATE );
588 assert( j<-p->nLabel );
589 assert( j>=0 );
590 #ifdef SQLITE_DEBUG
591 if( p->db->flags & SQLITE_VdbeAddopTrace ){
592 printf("RESOLVE LABEL %d to %d\n", x, v->nOp);
594 #endif
595 if( p->nLabelAlloc + p->nLabel < 0 ){
596 resizeResolveLabel(p,v,j);
597 }else{
598 assert( p->aLabel[j]==(-1) ); /* Labels may only be resolved once */
599 p->aLabel[j] = v->nOp;
604 ** Mark the VDBE as one that can only be run one time.
606 void sqlite3VdbeRunOnlyOnce(Vdbe *p){
607 sqlite3VdbeAddOp2(p, OP_Expire, 1, 1);
611 ** Mark the VDBE as one that can be run multiple times.
613 void sqlite3VdbeReusable(Vdbe *p){
614 int i;
615 for(i=1; ALWAYS(i<p->nOp); i++){
616 if( ALWAYS(p->aOp[i].opcode==OP_Expire) ){
617 p->aOp[1].opcode = OP_Noop;
618 break;
623 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */
626 ** The following type and function are used to iterate through all opcodes
627 ** in a Vdbe main program and each of the sub-programs (triggers) it may
628 ** invoke directly or indirectly. It should be used as follows:
630 ** Op *pOp;
631 ** VdbeOpIter sIter;
633 ** memset(&sIter, 0, sizeof(sIter));
634 ** sIter.v = v; // v is of type Vdbe*
635 ** while( (pOp = opIterNext(&sIter)) ){
636 ** // Do something with pOp
637 ** }
638 ** sqlite3DbFree(v->db, sIter.apSub);
641 typedef struct VdbeOpIter VdbeOpIter;
642 struct VdbeOpIter {
643 Vdbe *v; /* Vdbe to iterate through the opcodes of */
644 SubProgram **apSub; /* Array of subprograms */
645 int nSub; /* Number of entries in apSub */
646 int iAddr; /* Address of next instruction to return */
647 int iSub; /* 0 = main program, 1 = first sub-program etc. */
649 static Op *opIterNext(VdbeOpIter *p){
650 Vdbe *v = p->v;
651 Op *pRet = 0;
652 Op *aOp;
653 int nOp;
655 if( p->iSub<=p->nSub ){
657 if( p->iSub==0 ){
658 aOp = v->aOp;
659 nOp = v->nOp;
660 }else{
661 aOp = p->apSub[p->iSub-1]->aOp;
662 nOp = p->apSub[p->iSub-1]->nOp;
664 assert( p->iAddr<nOp );
666 pRet = &aOp[p->iAddr];
667 p->iAddr++;
668 if( p->iAddr==nOp ){
669 p->iSub++;
670 p->iAddr = 0;
673 if( pRet->p4type==P4_SUBPROGRAM ){
674 int nByte = (p->nSub+1)*sizeof(SubProgram*);
675 int j;
676 for(j=0; j<p->nSub; j++){
677 if( p->apSub[j]==pRet->p4.pProgram ) break;
679 if( j==p->nSub ){
680 p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte);
681 if( !p->apSub ){
682 pRet = 0;
683 }else{
684 p->apSub[p->nSub++] = pRet->p4.pProgram;
690 return pRet;
694 ** Check if the program stored in the VM associated with pParse may
695 ** throw an ABORT exception (causing the statement, but not entire transaction
696 ** to be rolled back). This condition is true if the main program or any
697 ** sub-programs contains any of the following:
699 ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
700 ** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
701 ** * OP_Destroy
702 ** * OP_VUpdate
703 ** * OP_VCreate
704 ** * OP_VRename
705 ** * OP_FkCounter with P2==0 (immediate foreign key constraint)
706 ** * OP_CreateBtree/BTREE_INTKEY and OP_InitCoroutine
707 ** (for CREATE TABLE AS SELECT ...)
709 ** Then check that the value of Parse.mayAbort is true if an
710 ** ABORT may be thrown, or false otherwise. Return true if it does
711 ** match, or false otherwise. This function is intended to be used as
712 ** part of an assert statement in the compiler. Similar to:
714 ** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) );
716 int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){
717 int hasAbort = 0;
718 int hasFkCounter = 0;
719 int hasCreateTable = 0;
720 int hasCreateIndex = 0;
721 int hasInitCoroutine = 0;
722 Op *pOp;
723 VdbeOpIter sIter;
725 if( v==0 ) return 0;
726 memset(&sIter, 0, sizeof(sIter));
727 sIter.v = v;
729 while( (pOp = opIterNext(&sIter))!=0 ){
730 int opcode = pOp->opcode;
731 if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename
732 || opcode==OP_VDestroy
733 || opcode==OP_VCreate
734 || opcode==OP_ParseSchema
735 || opcode==OP_Function || opcode==OP_PureFunc
736 || ((opcode==OP_Halt || opcode==OP_HaltIfNull)
737 && ((pOp->p1)!=SQLITE_OK && pOp->p2==OE_Abort))
739 hasAbort = 1;
740 break;
742 if( opcode==OP_CreateBtree && pOp->p3==BTREE_INTKEY ) hasCreateTable = 1;
743 if( mayAbort ){
744 /* hasCreateIndex may also be set for some DELETE statements that use
745 ** OP_Clear. So this routine may end up returning true in the case
746 ** where a "DELETE FROM tbl" has a statement-journal but does not
747 ** require one. This is not so bad - it is an inefficiency, not a bug. */
748 if( opcode==OP_CreateBtree && pOp->p3==BTREE_BLOBKEY ) hasCreateIndex = 1;
749 if( opcode==OP_Clear ) hasCreateIndex = 1;
751 if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1;
752 #ifndef SQLITE_OMIT_FOREIGN_KEY
753 if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){
754 hasFkCounter = 1;
756 #endif
758 sqlite3DbFree(v->db, sIter.apSub);
760 /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred.
761 ** If malloc failed, then the while() loop above may not have iterated
762 ** through all opcodes and hasAbort may be set incorrectly. Return
763 ** true for this case to prevent the assert() in the callers frame
764 ** from failing. */
765 return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter
766 || (hasCreateTable && hasInitCoroutine) || hasCreateIndex
769 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */
771 #ifdef SQLITE_DEBUG
773 ** Increment the nWrite counter in the VDBE if the cursor is not an
774 ** ephemeral cursor, or if the cursor argument is NULL.
776 void sqlite3VdbeIncrWriteCounter(Vdbe *p, VdbeCursor *pC){
777 if( pC==0
778 || (pC->eCurType!=CURTYPE_SORTER
779 && pC->eCurType!=CURTYPE_PSEUDO
780 && !pC->isEphemeral)
782 p->nWrite++;
785 #endif
787 #ifdef SQLITE_DEBUG
789 ** Assert if an Abort at this point in time might result in a corrupt
790 ** database.
792 void sqlite3VdbeAssertAbortable(Vdbe *p){
793 assert( p->nWrite==0 || p->usesStmtJournal );
795 #endif
798 ** This routine is called after all opcodes have been inserted. It loops
799 ** through all the opcodes and fixes up some details.
801 ** (1) For each jump instruction with a negative P2 value (a label)
802 ** resolve the P2 value to an actual address.
804 ** (2) Compute the maximum number of arguments used by any SQL function
805 ** and store that value in *pMaxFuncArgs.
807 ** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately
808 ** indicate what the prepared statement actually does.
810 ** (4) (discontinued)
812 ** (5) Reclaim the memory allocated for storing labels.
814 ** This routine will only function correctly if the mkopcodeh.tcl generator
815 ** script numbers the opcodes correctly. Changes to this routine must be
816 ** coordinated with changes to mkopcodeh.tcl.
818 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
819 int nMaxArgs = *pMaxFuncArgs;
820 Op *pOp;
821 Parse *pParse = p->pParse;
822 int *aLabel = pParse->aLabel;
824 assert( pParse->db->mallocFailed==0 ); /* tag-20230419-1 */
825 p->readOnly = 1;
826 p->bIsReader = 0;
827 pOp = &p->aOp[p->nOp-1];
828 assert( p->aOp[0].opcode==OP_Init );
829 while( 1 /* Loop termates when it reaches the OP_Init opcode */ ){
830 /* Only JUMP opcodes and the short list of special opcodes in the switch
831 ** below need to be considered. The mkopcodeh.tcl generator script groups
832 ** all these opcodes together near the front of the opcode list. Skip
833 ** any opcode that does not need processing by virtual of the fact that
834 ** it is larger than SQLITE_MX_JUMP_OPCODE, as a performance optimization.
836 if( pOp->opcode<=SQLITE_MX_JUMP_OPCODE ){
837 /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing
838 ** cases from this switch! */
839 switch( pOp->opcode ){
840 case OP_Transaction: {
841 if( pOp->p2!=0 ) p->readOnly = 0;
842 /* no break */ deliberate_fall_through
844 case OP_AutoCommit:
845 case OP_Savepoint: {
846 p->bIsReader = 1;
847 break;
849 #ifndef SQLITE_OMIT_WAL
850 case OP_Checkpoint:
851 #endif
852 case OP_Vacuum:
853 case OP_JournalMode: {
854 p->readOnly = 0;
855 p->bIsReader = 1;
856 break;
858 case OP_Init: {
859 assert( pOp->p2>=0 );
860 goto resolve_p2_values_loop_exit;
862 #ifndef SQLITE_OMIT_VIRTUALTABLE
863 case OP_VUpdate: {
864 if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
865 break;
867 case OP_VFilter: {
868 int n;
869 assert( (pOp - p->aOp) >= 3 );
870 assert( pOp[-1].opcode==OP_Integer );
871 n = pOp[-1].p1;
872 if( n>nMaxArgs ) nMaxArgs = n;
873 /* Fall through into the default case */
874 /* no break */ deliberate_fall_through
876 #endif
877 default: {
878 if( pOp->p2<0 ){
879 /* The mkopcodeh.tcl script has so arranged things that the only
880 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to
881 ** have non-negative values for P2. */
882 assert( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 );
883 assert( ADDR(pOp->p2)<-pParse->nLabel );
884 assert( aLabel!=0 ); /* True because of tag-20230419-1 */
885 pOp->p2 = aLabel[ADDR(pOp->p2)];
887 break;
890 /* The mkopcodeh.tcl script has so arranged things that the only
891 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to
892 ** have non-negative values for P2. */
893 assert( (sqlite3OpcodeProperty[pOp->opcode]&OPFLG_JUMP)==0 || pOp->p2>=0);
895 assert( pOp>p->aOp );
896 pOp--;
898 resolve_p2_values_loop_exit:
899 if( aLabel ){
900 sqlite3DbNNFreeNN(p->db, pParse->aLabel);
901 pParse->aLabel = 0;
903 pParse->nLabel = 0;
904 *pMaxFuncArgs = nMaxArgs;
905 assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) );
908 #ifdef SQLITE_DEBUG
910 ** Check to see if a subroutine contains a jump to a location outside of
911 ** the subroutine. If a jump outside the subroutine is detected, add code
912 ** that will cause the program to halt with an error message.
914 ** The subroutine consists of opcodes between iFirst and iLast. Jumps to
915 ** locations within the subroutine are acceptable. iRetReg is a register
916 ** that contains the return address. Jumps to outside the range of iFirst
917 ** through iLast are also acceptable as long as the jump destination is
918 ** an OP_Return to iReturnAddr.
920 ** A jump to an unresolved label means that the jump destination will be
921 ** beyond the current address. That is normally a jump to an early
922 ** termination and is consider acceptable.
924 ** This routine only runs during debug builds. The purpose is (of course)
925 ** to detect invalid escapes out of a subroutine. The OP_Halt opcode
926 ** is generated rather than an assert() or other error, so that ".eqp full"
927 ** will still work to show the original bytecode, to aid in debugging.
929 void sqlite3VdbeNoJumpsOutsideSubrtn(
930 Vdbe *v, /* The byte-code program under construction */
931 int iFirst, /* First opcode of the subroutine */
932 int iLast, /* Last opcode of the subroutine */
933 int iRetReg /* Subroutine return address register */
935 VdbeOp *pOp;
936 Parse *pParse;
937 int i;
938 sqlite3_str *pErr = 0;
939 assert( v!=0 );
940 pParse = v->pParse;
941 assert( pParse!=0 );
942 if( pParse->nErr ) return;
943 assert( iLast>=iFirst );
944 assert( iLast<v->nOp );
945 pOp = &v->aOp[iFirst];
946 for(i=iFirst; i<=iLast; i++, pOp++){
947 if( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 ){
948 int iDest = pOp->p2; /* Jump destination */
949 if( iDest==0 ) continue;
950 if( pOp->opcode==OP_Gosub ) continue;
951 if( iDest<0 ){
952 int j = ADDR(iDest);
953 assert( j>=0 );
954 if( j>=-pParse->nLabel || pParse->aLabel[j]<0 ){
955 continue;
957 iDest = pParse->aLabel[j];
959 if( iDest<iFirst || iDest>iLast ){
960 int j = iDest;
961 for(; j<v->nOp; j++){
962 VdbeOp *pX = &v->aOp[j];
963 if( pX->opcode==OP_Return ){
964 if( pX->p1==iRetReg ) break;
965 continue;
967 if( pX->opcode==OP_Noop ) continue;
968 if( pX->opcode==OP_Explain ) continue;
969 if( pErr==0 ){
970 pErr = sqlite3_str_new(0);
971 }else{
972 sqlite3_str_appendchar(pErr, 1, '\n');
974 sqlite3_str_appendf(pErr,
975 "Opcode at %d jumps to %d which is outside the "
976 "subroutine at %d..%d",
977 i, iDest, iFirst, iLast);
978 break;
983 if( pErr ){
984 char *zErr = sqlite3_str_finish(pErr);
985 sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_INTERNAL, OE_Abort, 0, zErr, 0);
986 sqlite3_free(zErr);
987 sqlite3MayAbort(pParse);
990 #endif /* SQLITE_DEBUG */
993 ** Return the address of the next instruction to be inserted.
995 int sqlite3VdbeCurrentAddr(Vdbe *p){
996 assert( p->eVdbeState==VDBE_INIT_STATE );
997 return p->nOp;
1001 ** Verify that at least N opcode slots are available in p without
1002 ** having to malloc for more space (except when compiled using
1003 ** SQLITE_TEST_REALLOC_STRESS). This interface is used during testing
1004 ** to verify that certain calls to sqlite3VdbeAddOpList() can never
1005 ** fail due to a OOM fault and hence that the return value from
1006 ** sqlite3VdbeAddOpList() will always be non-NULL.
1008 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
1009 void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){
1010 assert( p->nOp + N <= p->nOpAlloc );
1012 #endif
1015 ** Verify that the VM passed as the only argument does not contain
1016 ** an OP_ResultRow opcode. Fail an assert() if it does. This is used
1017 ** by code in pragma.c to ensure that the implementation of certain
1018 ** pragmas comports with the flags specified in the mkpragmatab.tcl
1019 ** script.
1021 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
1022 void sqlite3VdbeVerifyNoResultRow(Vdbe *p){
1023 int i;
1024 for(i=0; i<p->nOp; i++){
1025 assert( p->aOp[i].opcode!=OP_ResultRow );
1028 #endif
1031 ** Generate code (a single OP_Abortable opcode) that will
1032 ** verify that the VDBE program can safely call Abort in the current
1033 ** context.
1035 #if defined(SQLITE_DEBUG)
1036 void sqlite3VdbeVerifyAbortable(Vdbe *p, int onError){
1037 if( onError==OE_Abort ) sqlite3VdbeAddOp0(p, OP_Abortable);
1039 #endif
1042 ** This function returns a pointer to the array of opcodes associated with
1043 ** the Vdbe passed as the first argument. It is the callers responsibility
1044 ** to arrange for the returned array to be eventually freed using the
1045 ** vdbeFreeOpArray() function.
1047 ** Before returning, *pnOp is set to the number of entries in the returned
1048 ** array. Also, *pnMaxArg is set to the larger of its current value and
1049 ** the number of entries in the Vdbe.apArg[] array required to execute the
1050 ** returned program.
1052 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){
1053 VdbeOp *aOp = p->aOp;
1054 assert( aOp && !p->db->mallocFailed );
1056 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */
1057 assert( DbMaskAllZero(p->btreeMask) );
1059 resolveP2Values(p, pnMaxArg);
1060 *pnOp = p->nOp;
1061 p->aOp = 0;
1062 return aOp;
1066 ** Add a whole list of operations to the operation stack. Return a
1067 ** pointer to the first operation inserted.
1069 ** Non-zero P2 arguments to jump instructions are automatically adjusted
1070 ** so that the jump target is relative to the first operation inserted.
1072 VdbeOp *sqlite3VdbeAddOpList(
1073 Vdbe *p, /* Add opcodes to the prepared statement */
1074 int nOp, /* Number of opcodes to add */
1075 VdbeOpList const *aOp, /* The opcodes to be added */
1076 int iLineno /* Source-file line number of first opcode */
1078 int i;
1079 VdbeOp *pOut, *pFirst;
1080 assert( nOp>0 );
1081 assert( p->eVdbeState==VDBE_INIT_STATE );
1082 if( p->nOp + nOp > p->nOpAlloc && growOpArray(p, nOp) ){
1083 return 0;
1085 pFirst = pOut = &p->aOp[p->nOp];
1086 for(i=0; i<nOp; i++, aOp++, pOut++){
1087 pOut->opcode = aOp->opcode;
1088 pOut->p1 = aOp->p1;
1089 pOut->p2 = aOp->p2;
1090 assert( aOp->p2>=0 );
1091 if( (sqlite3OpcodeProperty[aOp->opcode] & OPFLG_JUMP)!=0 && aOp->p2>0 ){
1092 pOut->p2 += p->nOp;
1094 pOut->p3 = aOp->p3;
1095 pOut->p4type = P4_NOTUSED;
1096 pOut->p4.p = 0;
1097 pOut->p5 = 0;
1098 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1099 pOut->zComment = 0;
1100 #endif
1101 #ifdef SQLITE_VDBE_COVERAGE
1102 pOut->iSrcLine = iLineno+i;
1103 #else
1104 (void)iLineno;
1105 #endif
1106 #ifdef SQLITE_DEBUG
1107 if( p->db->flags & SQLITE_VdbeAddopTrace ){
1108 sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]);
1110 #endif
1112 p->nOp += nOp;
1113 return pFirst;
1116 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS)
1118 ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus().
1120 void sqlite3VdbeScanStatus(
1121 Vdbe *p, /* VM to add scanstatus() to */
1122 int addrExplain, /* Address of OP_Explain (or 0) */
1123 int addrLoop, /* Address of loop counter */
1124 int addrVisit, /* Address of rows visited counter */
1125 LogEst nEst, /* Estimated number of output rows */
1126 const char *zName /* Name of table or index being scanned */
1128 if( IS_STMT_SCANSTATUS(p->db) ){
1129 sqlite3_int64 nByte = (p->nScan+1) * sizeof(ScanStatus);
1130 ScanStatus *aNew;
1131 aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte);
1132 if( aNew ){
1133 ScanStatus *pNew = &aNew[p->nScan++];
1134 memset(pNew, 0, sizeof(ScanStatus));
1135 pNew->addrExplain = addrExplain;
1136 pNew->addrLoop = addrLoop;
1137 pNew->addrVisit = addrVisit;
1138 pNew->nEst = nEst;
1139 pNew->zName = sqlite3DbStrDup(p->db, zName);
1140 p->aScan = aNew;
1146 ** Add the range of instructions from addrStart to addrEnd (inclusive) to
1147 ** the set of those corresponding to the sqlite3_stmt_scanstatus() counters
1148 ** associated with the OP_Explain instruction at addrExplain. The
1149 ** sum of the sqlite3Hwtime() values for each of these instructions
1150 ** will be returned for SQLITE_SCANSTAT_NCYCLE requests.
1152 void sqlite3VdbeScanStatusRange(
1153 Vdbe *p,
1154 int addrExplain,
1155 int addrStart,
1156 int addrEnd
1158 if( IS_STMT_SCANSTATUS(p->db) ){
1159 ScanStatus *pScan = 0;
1160 int ii;
1161 for(ii=p->nScan-1; ii>=0; ii--){
1162 pScan = &p->aScan[ii];
1163 if( pScan->addrExplain==addrExplain ) break;
1164 pScan = 0;
1166 if( pScan ){
1167 if( addrEnd<0 ) addrEnd = sqlite3VdbeCurrentAddr(p)-1;
1168 for(ii=0; ii<ArraySize(pScan->aAddrRange); ii+=2){
1169 if( pScan->aAddrRange[ii]==0 ){
1170 pScan->aAddrRange[ii] = addrStart;
1171 pScan->aAddrRange[ii+1] = addrEnd;
1172 break;
1180 ** Set the addresses for the SQLITE_SCANSTAT_NLOOP and SQLITE_SCANSTAT_NROW
1181 ** counters for the query element associated with the OP_Explain at
1182 ** addrExplain.
1184 void sqlite3VdbeScanStatusCounters(
1185 Vdbe *p,
1186 int addrExplain,
1187 int addrLoop,
1188 int addrVisit
1190 if( IS_STMT_SCANSTATUS(p->db) ){
1191 ScanStatus *pScan = 0;
1192 int ii;
1193 for(ii=p->nScan-1; ii>=0; ii--){
1194 pScan = &p->aScan[ii];
1195 if( pScan->addrExplain==addrExplain ) break;
1196 pScan = 0;
1198 if( pScan ){
1199 pScan->addrLoop = addrLoop;
1200 pScan->addrVisit = addrVisit;
1204 #endif /* defined(SQLITE_ENABLE_STMT_SCANSTATUS) */
1208 ** Change the value of the opcode, or P1, P2, P3, or P5 operands
1209 ** for a specific instruction.
1211 void sqlite3VdbeChangeOpcode(Vdbe *p, int addr, u8 iNewOpcode){
1212 assert( addr>=0 );
1213 sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode;
1215 void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){
1216 assert( addr>=0 );
1217 sqlite3VdbeGetOp(p,addr)->p1 = val;
1219 void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){
1220 assert( addr>=0 || p->db->mallocFailed );
1221 sqlite3VdbeGetOp(p,addr)->p2 = val;
1223 void sqlite3VdbeChangeP3(Vdbe *p, int addr, int val){
1224 assert( addr>=0 );
1225 sqlite3VdbeGetOp(p,addr)->p3 = val;
1227 void sqlite3VdbeChangeP5(Vdbe *p, u16 p5){
1228 assert( p->nOp>0 || p->db->mallocFailed );
1229 if( p->nOp>0 ) p->aOp[p->nOp-1].p5 = p5;
1233 ** If the previous opcode is an OP_Column that delivers results
1234 ** into register iDest, then add the OPFLAG_TYPEOFARG flag to that
1235 ** opcode.
1237 void sqlite3VdbeTypeofColumn(Vdbe *p, int iDest){
1238 VdbeOp *pOp = sqlite3VdbeGetLastOp(p);
1239 if( pOp->p3==iDest && pOp->opcode==OP_Column ){
1240 pOp->p5 |= OPFLAG_TYPEOFARG;
1245 ** Change the P2 operand of instruction addr so that it points to
1246 ** the address of the next instruction to be coded.
1248 void sqlite3VdbeJumpHere(Vdbe *p, int addr){
1249 sqlite3VdbeChangeP2(p, addr, p->nOp);
1253 ** Change the P2 operand of the jump instruction at addr so that
1254 ** the jump lands on the next opcode. Or if the jump instruction was
1255 ** the previous opcode (and is thus a no-op) then simply back up
1256 ** the next instruction counter by one slot so that the jump is
1257 ** overwritten by the next inserted opcode.
1259 ** This routine is an optimization of sqlite3VdbeJumpHere() that
1260 ** strives to omit useless byte-code like this:
1262 ** 7 Once 0 8 0
1263 ** 8 ...
1265 void sqlite3VdbeJumpHereOrPopInst(Vdbe *p, int addr){
1266 if( addr==p->nOp-1 ){
1267 assert( p->aOp[addr].opcode==OP_Once
1268 || p->aOp[addr].opcode==OP_If
1269 || p->aOp[addr].opcode==OP_FkIfZero );
1270 assert( p->aOp[addr].p4type==0 );
1271 #ifdef SQLITE_VDBE_COVERAGE
1272 sqlite3VdbeGetLastOp(p)->iSrcLine = 0; /* Erase VdbeCoverage() macros */
1273 #endif
1274 p->nOp--;
1275 }else{
1276 sqlite3VdbeChangeP2(p, addr, p->nOp);
1282 ** If the input FuncDef structure is ephemeral, then free it. If
1283 ** the FuncDef is not ephermal, then do nothing.
1285 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
1286 assert( db!=0 );
1287 if( (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){
1288 sqlite3DbNNFreeNN(db, pDef);
1293 ** Delete a P4 value if necessary.
1295 static SQLITE_NOINLINE void freeP4Mem(sqlite3 *db, Mem *p){
1296 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
1297 sqlite3DbNNFreeNN(db, p);
1299 static SQLITE_NOINLINE void freeP4FuncCtx(sqlite3 *db, sqlite3_context *p){
1300 assert( db!=0 );
1301 freeEphemeralFunction(db, p->pFunc);
1302 sqlite3DbNNFreeNN(db, p);
1304 static void freeP4(sqlite3 *db, int p4type, void *p4){
1305 assert( db );
1306 switch( p4type ){
1307 case P4_FUNCCTX: {
1308 freeP4FuncCtx(db, (sqlite3_context*)p4);
1309 break;
1311 case P4_REAL:
1312 case P4_INT64:
1313 case P4_DYNAMIC:
1314 case P4_INTARRAY: {
1315 if( p4 ) sqlite3DbNNFreeNN(db, p4);
1316 break;
1318 case P4_KEYINFO: {
1319 if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4);
1320 break;
1322 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1323 case P4_EXPR: {
1324 sqlite3ExprDelete(db, (Expr*)p4);
1325 break;
1327 #endif
1328 case P4_FUNCDEF: {
1329 freeEphemeralFunction(db, (FuncDef*)p4);
1330 break;
1332 case P4_MEM: {
1333 if( db->pnBytesFreed==0 ){
1334 sqlite3ValueFree((sqlite3_value*)p4);
1335 }else{
1336 freeP4Mem(db, (Mem*)p4);
1338 break;
1340 case P4_VTAB : {
1341 if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4);
1342 break;
1348 ** Free the space allocated for aOp and any p4 values allocated for the
1349 ** opcodes contained within. If aOp is not NULL it is assumed to contain
1350 ** nOp entries.
1352 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){
1353 assert( nOp>=0 );
1354 assert( db!=0 );
1355 if( aOp ){
1356 Op *pOp = &aOp[nOp-1];
1357 while(1){ /* Exit via break */
1358 if( pOp->p4type <= P4_FREE_IF_LE ) freeP4(db, pOp->p4type, pOp->p4.p);
1359 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1360 sqlite3DbFree(db, pOp->zComment);
1361 #endif
1362 if( pOp==aOp ) break;
1363 pOp--;
1365 sqlite3DbNNFreeNN(db, aOp);
1370 ** Link the SubProgram object passed as the second argument into the linked
1371 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program
1372 ** objects when the VM is no longer required.
1374 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){
1375 p->pNext = pVdbe->pProgram;
1376 pVdbe->pProgram = p;
1380 ** Return true if the given Vdbe has any SubPrograms.
1382 int sqlite3VdbeHasSubProgram(Vdbe *pVdbe){
1383 return pVdbe->pProgram!=0;
1387 ** Change the opcode at addr into OP_Noop
1389 int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){
1390 VdbeOp *pOp;
1391 if( p->db->mallocFailed ) return 0;
1392 assert( addr>=0 && addr<p->nOp );
1393 pOp = &p->aOp[addr];
1394 freeP4(p->db, pOp->p4type, pOp->p4.p);
1395 pOp->p4type = P4_NOTUSED;
1396 pOp->p4.z = 0;
1397 pOp->opcode = OP_Noop;
1398 return 1;
1402 ** If the last opcode is "op" and it is not a jump destination,
1403 ** then remove it. Return true if and only if an opcode was removed.
1405 int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){
1406 if( p->nOp>0 && p->aOp[p->nOp-1].opcode==op ){
1407 return sqlite3VdbeChangeToNoop(p, p->nOp-1);
1408 }else{
1409 return 0;
1413 #ifdef SQLITE_DEBUG
1415 ** Generate an OP_ReleaseReg opcode to indicate that a range of
1416 ** registers, except any identified by mask, are no longer in use.
1418 void sqlite3VdbeReleaseRegisters(
1419 Parse *pParse, /* Parsing context */
1420 int iFirst, /* Index of first register to be released */
1421 int N, /* Number of registers to release */
1422 u32 mask, /* Mask of registers to NOT release */
1423 int bUndefine /* If true, mark registers as undefined */
1425 if( N==0 || OptimizationDisabled(pParse->db, SQLITE_ReleaseReg) ) return;
1426 assert( pParse->pVdbe );
1427 assert( iFirst>=1 );
1428 assert( iFirst+N-1<=pParse->nMem );
1429 if( N<=31 && mask!=0 ){
1430 while( N>0 && (mask&1)!=0 ){
1431 mask >>= 1;
1432 iFirst++;
1433 N--;
1435 while( N>0 && N<=32 && (mask & MASKBIT32(N-1))!=0 ){
1436 mask &= ~MASKBIT32(N-1);
1437 N--;
1440 if( N>0 ){
1441 sqlite3VdbeAddOp3(pParse->pVdbe, OP_ReleaseReg, iFirst, N, *(int*)&mask);
1442 if( bUndefine ) sqlite3VdbeChangeP5(pParse->pVdbe, 1);
1445 #endif /* SQLITE_DEBUG */
1449 ** Change the value of the P4 operand for a specific instruction.
1450 ** This routine is useful when a large program is loaded from a
1451 ** static array using sqlite3VdbeAddOpList but we want to make a
1452 ** few minor changes to the program.
1454 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of
1455 ** the string is made into memory obtained from sqlite3_malloc().
1456 ** A value of n==0 means copy bytes of zP4 up to and including the
1457 ** first null byte. If n>0 then copy n+1 bytes of zP4.
1459 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
1460 ** to a string or structure that is guaranteed to exist for the lifetime of
1461 ** the Vdbe. In these cases we can just copy the pointer.
1463 ** If addr<0 then change P4 on the most recently inserted instruction.
1465 static void SQLITE_NOINLINE vdbeChangeP4Full(
1466 Vdbe *p,
1467 Op *pOp,
1468 const char *zP4,
1469 int n
1471 if( pOp->p4type ){
1472 freeP4(p->db, pOp->p4type, pOp->p4.p);
1473 pOp->p4type = 0;
1474 pOp->p4.p = 0;
1476 if( n<0 ){
1477 sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n);
1478 }else{
1479 if( n==0 ) n = sqlite3Strlen30(zP4);
1480 pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
1481 pOp->p4type = P4_DYNAMIC;
1484 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
1485 Op *pOp;
1486 sqlite3 *db;
1487 assert( p!=0 );
1488 db = p->db;
1489 assert( p->eVdbeState==VDBE_INIT_STATE );
1490 assert( p->aOp!=0 || db->mallocFailed );
1491 if( db->mallocFailed ){
1492 if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4);
1493 return;
1495 assert( p->nOp>0 );
1496 assert( addr<p->nOp );
1497 if( addr<0 ){
1498 addr = p->nOp - 1;
1500 pOp = &p->aOp[addr];
1501 if( n>=0 || pOp->p4type ){
1502 vdbeChangeP4Full(p, pOp, zP4, n);
1503 return;
1505 if( n==P4_INT32 ){
1506 /* Note: this cast is safe, because the origin data point was an int
1507 ** that was cast to a (const char *). */
1508 pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
1509 pOp->p4type = P4_INT32;
1510 }else if( zP4!=0 ){
1511 assert( n<0 );
1512 pOp->p4.p = (void*)zP4;
1513 pOp->p4type = (signed char)n;
1514 if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4);
1519 ** Change the P4 operand of the most recently coded instruction
1520 ** to the value defined by the arguments. This is a high-speed
1521 ** version of sqlite3VdbeChangeP4().
1523 ** The P4 operand must not have been previously defined. And the new
1524 ** P4 must not be P4_INT32. Use sqlite3VdbeChangeP4() in either of
1525 ** those cases.
1527 void sqlite3VdbeAppendP4(Vdbe *p, void *pP4, int n){
1528 VdbeOp *pOp;
1529 assert( n!=P4_INT32 && n!=P4_VTAB );
1530 assert( n<=0 );
1531 if( p->db->mallocFailed ){
1532 freeP4(p->db, n, pP4);
1533 }else{
1534 assert( pP4!=0 || n==P4_DYNAMIC );
1535 assert( p->nOp>0 );
1536 pOp = &p->aOp[p->nOp-1];
1537 assert( pOp->p4type==P4_NOTUSED );
1538 pOp->p4type = n;
1539 pOp->p4.p = pP4;
1544 ** Set the P4 on the most recently added opcode to the KeyInfo for the
1545 ** index given.
1547 void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){
1548 Vdbe *v = pParse->pVdbe;
1549 KeyInfo *pKeyInfo;
1550 assert( v!=0 );
1551 assert( pIdx!=0 );
1552 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pIdx);
1553 if( pKeyInfo ) sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO);
1556 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1558 ** Change the comment on the most recently coded instruction. Or
1559 ** insert a No-op and add the comment to that new instruction. This
1560 ** makes the code easier to read during debugging. None of this happens
1561 ** in a production build.
1563 static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){
1564 assert( p->nOp>0 || p->aOp==0 );
1565 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->pParse->nErr>0 );
1566 if( p->nOp ){
1567 assert( p->aOp );
1568 sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment);
1569 p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap);
1572 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
1573 va_list ap;
1574 if( p ){
1575 va_start(ap, zFormat);
1576 vdbeVComment(p, zFormat, ap);
1577 va_end(ap);
1580 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
1581 va_list ap;
1582 if( p ){
1583 sqlite3VdbeAddOp0(p, OP_Noop);
1584 va_start(ap, zFormat);
1585 vdbeVComment(p, zFormat, ap);
1586 va_end(ap);
1589 #endif /* NDEBUG */
1591 #ifdef SQLITE_VDBE_COVERAGE
1593 ** Set the value if the iSrcLine field for the previously coded instruction.
1595 void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){
1596 sqlite3VdbeGetLastOp(v)->iSrcLine = iLine;
1598 #endif /* SQLITE_VDBE_COVERAGE */
1601 ** Return the opcode for a given address. The address must be non-negative.
1602 ** See sqlite3VdbeGetLastOp() to get the most recently added opcode.
1604 ** If a memory allocation error has occurred prior to the calling of this
1605 ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode
1606 ** is readable but not writable, though it is cast to a writable value.
1607 ** The return of a dummy opcode allows the call to continue functioning
1608 ** after an OOM fault without having to check to see if the return from
1609 ** this routine is a valid pointer. But because the dummy.opcode is 0,
1610 ** dummy will never be written to. This is verified by code inspection and
1611 ** by running with Valgrind.
1613 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
1614 /* C89 specifies that the constant "dummy" will be initialized to all
1615 ** zeros, which is correct. MSVC generates a warning, nevertheless. */
1616 static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */
1617 assert( p->eVdbeState==VDBE_INIT_STATE );
1618 assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
1619 if( p->db->mallocFailed ){
1620 return (VdbeOp*)&dummy;
1621 }else{
1622 return &p->aOp[addr];
1626 /* Return the most recently added opcode
1628 VdbeOp *sqlite3VdbeGetLastOp(Vdbe *p){
1629 return sqlite3VdbeGetOp(p, p->nOp - 1);
1632 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS)
1634 ** Return an integer value for one of the parameters to the opcode pOp
1635 ** determined by character c.
1637 static int translateP(char c, const Op *pOp){
1638 if( c=='1' ) return pOp->p1;
1639 if( c=='2' ) return pOp->p2;
1640 if( c=='3' ) return pOp->p3;
1641 if( c=='4' ) return pOp->p4.i;
1642 return pOp->p5;
1646 ** Compute a string for the "comment" field of a VDBE opcode listing.
1648 ** The Synopsis: field in comments in the vdbe.c source file gets converted
1649 ** to an extra string that is appended to the sqlite3OpcodeName(). In the
1650 ** absence of other comments, this synopsis becomes the comment on the opcode.
1651 ** Some translation occurs:
1653 ** "PX" -> "r[X]"
1654 ** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1
1655 ** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0
1656 ** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x
1658 char *sqlite3VdbeDisplayComment(
1659 sqlite3 *db, /* Optional - Oom error reporting only */
1660 const Op *pOp, /* The opcode to be commented */
1661 const char *zP4 /* Previously obtained value for P4 */
1663 const char *zOpName;
1664 const char *zSynopsis;
1665 int nOpName;
1666 int ii;
1667 char zAlt[50];
1668 StrAccum x;
1670 sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH);
1671 zOpName = sqlite3OpcodeName(pOp->opcode);
1672 nOpName = sqlite3Strlen30(zOpName);
1673 if( zOpName[nOpName+1] ){
1674 int seenCom = 0;
1675 char c;
1676 zSynopsis = zOpName + nOpName + 1;
1677 if( strncmp(zSynopsis,"IF ",3)==0 ){
1678 sqlite3_snprintf(sizeof(zAlt), zAlt, "if %s goto P2", zSynopsis+3);
1679 zSynopsis = zAlt;
1681 for(ii=0; (c = zSynopsis[ii])!=0; ii++){
1682 if( c=='P' ){
1683 c = zSynopsis[++ii];
1684 if( c=='4' ){
1685 sqlite3_str_appendall(&x, zP4);
1686 }else if( c=='X' ){
1687 if( pOp->zComment && pOp->zComment[0] ){
1688 sqlite3_str_appendall(&x, pOp->zComment);
1689 seenCom = 1;
1690 break;
1692 }else{
1693 int v1 = translateP(c, pOp);
1694 int v2;
1695 if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){
1696 ii += 3;
1697 v2 = translateP(zSynopsis[ii], pOp);
1698 if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){
1699 ii += 2;
1700 v2++;
1702 if( v2<2 ){
1703 sqlite3_str_appendf(&x, "%d", v1);
1704 }else{
1705 sqlite3_str_appendf(&x, "%d..%d", v1, v1+v2-1);
1707 }else if( strncmp(zSynopsis+ii+1, "@NP", 3)==0 ){
1708 sqlite3_context *pCtx = pOp->p4.pCtx;
1709 if( pOp->p4type!=P4_FUNCCTX || pCtx->argc==1 ){
1710 sqlite3_str_appendf(&x, "%d", v1);
1711 }else if( pCtx->argc>1 ){
1712 sqlite3_str_appendf(&x, "%d..%d", v1, v1+pCtx->argc-1);
1713 }else if( x.accError==0 ){
1714 assert( x.nChar>2 );
1715 x.nChar -= 2;
1716 ii++;
1718 ii += 3;
1719 }else{
1720 sqlite3_str_appendf(&x, "%d", v1);
1721 if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){
1722 ii += 4;
1726 }else{
1727 sqlite3_str_appendchar(&x, 1, c);
1730 if( !seenCom && pOp->zComment ){
1731 sqlite3_str_appendf(&x, "; %s", pOp->zComment);
1733 }else if( pOp->zComment ){
1734 sqlite3_str_appendall(&x, pOp->zComment);
1736 if( (x.accError & SQLITE_NOMEM)!=0 && db!=0 ){
1737 sqlite3OomFault(db);
1739 return sqlite3StrAccumFinish(&x);
1741 #endif /* SQLITE_ENABLE_EXPLAIN_COMMENTS */
1743 #if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS)
1745 ** Translate the P4.pExpr value for an OP_CursorHint opcode into text
1746 ** that can be displayed in the P4 column of EXPLAIN output.
1748 static void displayP4Expr(StrAccum *p, Expr *pExpr){
1749 const char *zOp = 0;
1750 switch( pExpr->op ){
1751 case TK_STRING:
1752 assert( !ExprHasProperty(pExpr, EP_IntValue) );
1753 sqlite3_str_appendf(p, "%Q", pExpr->u.zToken);
1754 break;
1755 case TK_INTEGER:
1756 sqlite3_str_appendf(p, "%d", pExpr->u.iValue);
1757 break;
1758 case TK_NULL:
1759 sqlite3_str_appendf(p, "NULL");
1760 break;
1761 case TK_REGISTER: {
1762 sqlite3_str_appendf(p, "r[%d]", pExpr->iTable);
1763 break;
1765 case TK_COLUMN: {
1766 if( pExpr->iColumn<0 ){
1767 sqlite3_str_appendf(p, "rowid");
1768 }else{
1769 sqlite3_str_appendf(p, "c%d", (int)pExpr->iColumn);
1771 break;
1773 case TK_LT: zOp = "LT"; break;
1774 case TK_LE: zOp = "LE"; break;
1775 case TK_GT: zOp = "GT"; break;
1776 case TK_GE: zOp = "GE"; break;
1777 case TK_NE: zOp = "NE"; break;
1778 case TK_EQ: zOp = "EQ"; break;
1779 case TK_IS: zOp = "IS"; break;
1780 case TK_ISNOT: zOp = "ISNOT"; break;
1781 case TK_AND: zOp = "AND"; break;
1782 case TK_OR: zOp = "OR"; break;
1783 case TK_PLUS: zOp = "ADD"; break;
1784 case TK_STAR: zOp = "MUL"; break;
1785 case TK_MINUS: zOp = "SUB"; break;
1786 case TK_REM: zOp = "REM"; break;
1787 case TK_BITAND: zOp = "BITAND"; break;
1788 case TK_BITOR: zOp = "BITOR"; break;
1789 case TK_SLASH: zOp = "DIV"; break;
1790 case TK_LSHIFT: zOp = "LSHIFT"; break;
1791 case TK_RSHIFT: zOp = "RSHIFT"; break;
1792 case TK_CONCAT: zOp = "CONCAT"; break;
1793 case TK_UMINUS: zOp = "MINUS"; break;
1794 case TK_UPLUS: zOp = "PLUS"; break;
1795 case TK_BITNOT: zOp = "BITNOT"; break;
1796 case TK_NOT: zOp = "NOT"; break;
1797 case TK_ISNULL: zOp = "ISNULL"; break;
1798 case TK_NOTNULL: zOp = "NOTNULL"; break;
1800 default:
1801 sqlite3_str_appendf(p, "%s", "expr");
1802 break;
1805 if( zOp ){
1806 sqlite3_str_appendf(p, "%s(", zOp);
1807 displayP4Expr(p, pExpr->pLeft);
1808 if( pExpr->pRight ){
1809 sqlite3_str_append(p, ",", 1);
1810 displayP4Expr(p, pExpr->pRight);
1812 sqlite3_str_append(p, ")", 1);
1815 #endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */
1818 #if VDBE_DISPLAY_P4
1820 ** Compute a string that describes the P4 parameter for an opcode.
1821 ** Use zTemp for any required temporary buffer space.
1823 char *sqlite3VdbeDisplayP4(sqlite3 *db, Op *pOp){
1824 char *zP4 = 0;
1825 StrAccum x;
1827 sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH);
1828 switch( pOp->p4type ){
1829 case P4_KEYINFO: {
1830 int j;
1831 KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
1832 assert( pKeyInfo->aSortFlags!=0 );
1833 sqlite3_str_appendf(&x, "k(%d", pKeyInfo->nKeyField);
1834 for(j=0; j<pKeyInfo->nKeyField; j++){
1835 CollSeq *pColl = pKeyInfo->aColl[j];
1836 const char *zColl = pColl ? pColl->zName : "";
1837 if( strcmp(zColl, "BINARY")==0 ) zColl = "B";
1838 sqlite3_str_appendf(&x, ",%s%s%s",
1839 (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_DESC) ? "-" : "",
1840 (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_BIGNULL)? "N." : "",
1841 zColl);
1843 sqlite3_str_append(&x, ")", 1);
1844 break;
1846 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1847 case P4_EXPR: {
1848 displayP4Expr(&x, pOp->p4.pExpr);
1849 break;
1851 #endif
1852 case P4_COLLSEQ: {
1853 static const char *const encnames[] = {"?", "8", "16LE", "16BE"};
1854 CollSeq *pColl = pOp->p4.pColl;
1855 assert( pColl->enc<4 );
1856 sqlite3_str_appendf(&x, "%.18s-%s", pColl->zName,
1857 encnames[pColl->enc]);
1858 break;
1860 case P4_FUNCDEF: {
1861 FuncDef *pDef = pOp->p4.pFunc;
1862 sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg);
1863 break;
1865 case P4_FUNCCTX: {
1866 FuncDef *pDef = pOp->p4.pCtx->pFunc;
1867 sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg);
1868 break;
1870 case P4_INT64: {
1871 sqlite3_str_appendf(&x, "%lld", *pOp->p4.pI64);
1872 break;
1874 case P4_INT32: {
1875 sqlite3_str_appendf(&x, "%d", pOp->p4.i);
1876 break;
1878 case P4_REAL: {
1879 sqlite3_str_appendf(&x, "%.16g", *pOp->p4.pReal);
1880 break;
1882 case P4_MEM: {
1883 Mem *pMem = pOp->p4.pMem;
1884 if( pMem->flags & MEM_Str ){
1885 zP4 = pMem->z;
1886 }else if( pMem->flags & (MEM_Int|MEM_IntReal) ){
1887 sqlite3_str_appendf(&x, "%lld", pMem->u.i);
1888 }else if( pMem->flags & MEM_Real ){
1889 sqlite3_str_appendf(&x, "%.16g", pMem->u.r);
1890 }else if( pMem->flags & MEM_Null ){
1891 zP4 = "NULL";
1892 }else{
1893 assert( pMem->flags & MEM_Blob );
1894 zP4 = "(blob)";
1896 break;
1898 #ifndef SQLITE_OMIT_VIRTUALTABLE
1899 case P4_VTAB: {
1900 sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab;
1901 sqlite3_str_appendf(&x, "vtab:%p", pVtab);
1902 break;
1904 #endif
1905 case P4_INTARRAY: {
1906 u32 i;
1907 u32 *ai = pOp->p4.ai;
1908 u32 n = ai[0]; /* The first element of an INTARRAY is always the
1909 ** count of the number of elements to follow */
1910 for(i=1; i<=n; i++){
1911 sqlite3_str_appendf(&x, "%c%u", (i==1 ? '[' : ','), ai[i]);
1913 sqlite3_str_append(&x, "]", 1);
1914 break;
1916 case P4_SUBPROGRAM: {
1917 zP4 = "program";
1918 break;
1920 case P4_TABLE: {
1921 zP4 = pOp->p4.pTab->zName;
1922 break;
1924 default: {
1925 zP4 = pOp->p4.z;
1928 if( zP4 ) sqlite3_str_appendall(&x, zP4);
1929 if( (x.accError & SQLITE_NOMEM)!=0 ){
1930 sqlite3OomFault(db);
1932 return sqlite3StrAccumFinish(&x);
1934 #endif /* VDBE_DISPLAY_P4 */
1937 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
1939 ** The prepared statements need to know in advance the complete set of
1940 ** attached databases that will be use. A mask of these databases
1941 ** is maintained in p->btreeMask. The p->lockMask value is the subset of
1942 ** p->btreeMask of databases that will require a lock.
1944 void sqlite3VdbeUsesBtree(Vdbe *p, int i){
1945 assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 );
1946 assert( i<(int)sizeof(p->btreeMask)*8 );
1947 DbMaskSet(p->btreeMask, i);
1948 if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){
1949 DbMaskSet(p->lockMask, i);
1953 #if !defined(SQLITE_OMIT_SHARED_CACHE)
1955 ** If SQLite is compiled to support shared-cache mode and to be threadsafe,
1956 ** this routine obtains the mutex associated with each BtShared structure
1957 ** that may be accessed by the VM passed as an argument. In doing so it also
1958 ** sets the BtShared.db member of each of the BtShared structures, ensuring
1959 ** that the correct busy-handler callback is invoked if required.
1961 ** If SQLite is not threadsafe but does support shared-cache mode, then
1962 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables
1963 ** of all of BtShared structures accessible via the database handle
1964 ** associated with the VM.
1966 ** If SQLite is not threadsafe and does not support shared-cache mode, this
1967 ** function is a no-op.
1969 ** The p->btreeMask field is a bitmask of all btrees that the prepared
1970 ** statement p will ever use. Let N be the number of bits in p->btreeMask
1971 ** corresponding to btrees that use shared cache. Then the runtime of
1972 ** this routine is N*N. But as N is rarely more than 1, this should not
1973 ** be a problem.
1975 void sqlite3VdbeEnter(Vdbe *p){
1976 int i;
1977 sqlite3 *db;
1978 Db *aDb;
1979 int nDb;
1980 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */
1981 db = p->db;
1982 aDb = db->aDb;
1983 nDb = db->nDb;
1984 for(i=0; i<nDb; i++){
1985 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
1986 sqlite3BtreeEnter(aDb[i].pBt);
1990 #endif
1992 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
1994 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter().
1996 static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){
1997 int i;
1998 sqlite3 *db;
1999 Db *aDb;
2000 int nDb;
2001 db = p->db;
2002 aDb = db->aDb;
2003 nDb = db->nDb;
2004 for(i=0; i<nDb; i++){
2005 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
2006 sqlite3BtreeLeave(aDb[i].pBt);
2010 void sqlite3VdbeLeave(Vdbe *p){
2011 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */
2012 vdbeLeave(p);
2014 #endif
2016 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
2018 ** Print a single opcode. This routine is used for debugging only.
2020 void sqlite3VdbePrintOp(FILE *pOut, int pc, VdbeOp *pOp){
2021 char *zP4;
2022 char *zCom;
2023 sqlite3 dummyDb;
2024 static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n";
2025 if( pOut==0 ) pOut = stdout;
2026 sqlite3BeginBenignMalloc();
2027 dummyDb.mallocFailed = 1;
2028 zP4 = sqlite3VdbeDisplayP4(&dummyDb, pOp);
2029 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
2030 zCom = sqlite3VdbeDisplayComment(0, pOp, zP4);
2031 #else
2032 zCom = 0;
2033 #endif
2034 /* NB: The sqlite3OpcodeName() function is implemented by code created
2035 ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the
2036 ** information from the vdbe.c source text */
2037 fprintf(pOut, zFormat1, pc,
2038 sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3,
2039 zP4 ? zP4 : "", pOp->p5,
2040 zCom ? zCom : ""
2042 fflush(pOut);
2043 sqlite3_free(zP4);
2044 sqlite3_free(zCom);
2045 sqlite3EndBenignMalloc();
2047 #endif
2050 ** Initialize an array of N Mem element.
2052 ** This is a high-runner, so only those fields that really do need to
2053 ** be initialized are set. The Mem structure is organized so that
2054 ** the fields that get initialized are nearby and hopefully on the same
2055 ** cache line.
2057 ** Mem.flags = flags
2058 ** Mem.db = db
2059 ** Mem.szMalloc = 0
2061 ** All other fields of Mem can safely remain uninitialized for now. They
2062 ** will be initialized before use.
2064 static void initMemArray(Mem *p, int N, sqlite3 *db, u16 flags){
2065 if( N>0 ){
2067 p->flags = flags;
2068 p->db = db;
2069 p->szMalloc = 0;
2070 #ifdef SQLITE_DEBUG
2071 p->pScopyFrom = 0;
2072 #endif
2073 p++;
2074 }while( (--N)>0 );
2079 ** Release auxiliary memory held in an array of N Mem elements.
2081 ** After this routine returns, all Mem elements in the array will still
2082 ** be valid. Those Mem elements that were not holding auxiliary resources
2083 ** will be unchanged. Mem elements which had something freed will be
2084 ** set to MEM_Undefined.
2086 static void releaseMemArray(Mem *p, int N){
2087 if( p && N ){
2088 Mem *pEnd = &p[N];
2089 sqlite3 *db = p->db;
2090 if( db->pnBytesFreed ){
2092 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
2093 }while( (++p)<pEnd );
2094 return;
2097 assert( (&p[1])==pEnd || p[0].db==p[1].db );
2098 assert( sqlite3VdbeCheckMemInvariants(p) );
2100 /* This block is really an inlined version of sqlite3VdbeMemRelease()
2101 ** that takes advantage of the fact that the memory cell value is
2102 ** being set to NULL after releasing any dynamic resources.
2104 ** The justification for duplicating code is that according to
2105 ** callgrind, this causes a certain test case to hit the CPU 4.7
2106 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if
2107 ** sqlite3MemRelease() were called from here. With -O2, this jumps
2108 ** to 6.6 percent. The test case is inserting 1000 rows into a table
2109 ** with no indexes using a single prepared INSERT statement, bind()
2110 ** and reset(). Inserts are grouped into a transaction.
2112 testcase( p->flags & MEM_Agg );
2113 testcase( p->flags & MEM_Dyn );
2114 if( p->flags&(MEM_Agg|MEM_Dyn) ){
2115 testcase( (p->flags & MEM_Dyn)!=0 && p->xDel==sqlite3VdbeFrameMemDel );
2116 sqlite3VdbeMemRelease(p);
2117 p->flags = MEM_Undefined;
2118 }else if( p->szMalloc ){
2119 sqlite3DbNNFreeNN(db, p->zMalloc);
2120 p->szMalloc = 0;
2121 p->flags = MEM_Undefined;
2123 #ifdef SQLITE_DEBUG
2124 else{
2125 p->flags = MEM_Undefined;
2127 #endif
2128 }while( (++p)<pEnd );
2132 #ifdef SQLITE_DEBUG
2134 ** Verify that pFrame is a valid VdbeFrame pointer. Return true if it is
2135 ** and false if something is wrong.
2137 ** This routine is intended for use inside of assert() statements only.
2139 int sqlite3VdbeFrameIsValid(VdbeFrame *pFrame){
2140 if( pFrame->iFrameMagic!=SQLITE_FRAME_MAGIC ) return 0;
2141 return 1;
2143 #endif
2147 ** This is a destructor on a Mem object (which is really an sqlite3_value)
2148 ** that deletes the Frame object that is attached to it as a blob.
2150 ** This routine does not delete the Frame right away. It merely adds the
2151 ** frame to a list of frames to be deleted when the Vdbe halts.
2153 void sqlite3VdbeFrameMemDel(void *pArg){
2154 VdbeFrame *pFrame = (VdbeFrame*)pArg;
2155 assert( sqlite3VdbeFrameIsValid(pFrame) );
2156 pFrame->pParent = pFrame->v->pDelFrame;
2157 pFrame->v->pDelFrame = pFrame;
2160 #if defined(SQLITE_ENABLE_BYTECODE_VTAB) || !defined(SQLITE_OMIT_EXPLAIN)
2162 ** Locate the next opcode to be displayed in EXPLAIN or EXPLAIN
2163 ** QUERY PLAN output.
2165 ** Return SQLITE_ROW on success. Return SQLITE_DONE if there are no
2166 ** more opcodes to be displayed.
2168 int sqlite3VdbeNextOpcode(
2169 Vdbe *p, /* The statement being explained */
2170 Mem *pSub, /* Storage for keeping track of subprogram nesting */
2171 int eMode, /* 0: normal. 1: EQP. 2: TablesUsed */
2172 int *piPc, /* IN/OUT: Current rowid. Overwritten with next rowid */
2173 int *piAddr, /* OUT: Write index into (*paOp)[] here */
2174 Op **paOp /* OUT: Write the opcode array here */
2176 int nRow; /* Stop when row count reaches this */
2177 int nSub = 0; /* Number of sub-vdbes seen so far */
2178 SubProgram **apSub = 0; /* Array of sub-vdbes */
2179 int i; /* Next instruction address */
2180 int rc = SQLITE_OK; /* Result code */
2181 Op *aOp = 0; /* Opcode array */
2182 int iPc; /* Rowid. Copy of value in *piPc */
2184 /* When the number of output rows reaches nRow, that means the
2185 ** listing has finished and sqlite3_step() should return SQLITE_DONE.
2186 ** nRow is the sum of the number of rows in the main program, plus
2187 ** the sum of the number of rows in all trigger subprograms encountered
2188 ** so far. The nRow value will increase as new trigger subprograms are
2189 ** encountered, but p->pc will eventually catch up to nRow.
2191 nRow = p->nOp;
2192 if( pSub!=0 ){
2193 if( pSub->flags&MEM_Blob ){
2194 /* pSub is initiallly NULL. It is initialized to a BLOB by
2195 ** the P4_SUBPROGRAM processing logic below */
2196 nSub = pSub->n/sizeof(Vdbe*);
2197 apSub = (SubProgram **)pSub->z;
2199 for(i=0; i<nSub; i++){
2200 nRow += apSub[i]->nOp;
2203 iPc = *piPc;
2204 while(1){ /* Loop exits via break */
2205 i = iPc++;
2206 if( i>=nRow ){
2207 p->rc = SQLITE_OK;
2208 rc = SQLITE_DONE;
2209 break;
2211 if( i<p->nOp ){
2212 /* The rowid is small enough that we are still in the
2213 ** main program. */
2214 aOp = p->aOp;
2215 }else{
2216 /* We are currently listing subprograms. Figure out which one and
2217 ** pick up the appropriate opcode. */
2218 int j;
2219 i -= p->nOp;
2220 assert( apSub!=0 );
2221 assert( nSub>0 );
2222 for(j=0; i>=apSub[j]->nOp; j++){
2223 i -= apSub[j]->nOp;
2224 assert( i<apSub[j]->nOp || j+1<nSub );
2226 aOp = apSub[j]->aOp;
2229 /* When an OP_Program opcode is encounter (the only opcode that has
2230 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms
2231 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram
2232 ** has not already been seen.
2234 if( pSub!=0 && aOp[i].p4type==P4_SUBPROGRAM ){
2235 int nByte = (nSub+1)*sizeof(SubProgram*);
2236 int j;
2237 for(j=0; j<nSub; j++){
2238 if( apSub[j]==aOp[i].p4.pProgram ) break;
2240 if( j==nSub ){
2241 p->rc = sqlite3VdbeMemGrow(pSub, nByte, nSub!=0);
2242 if( p->rc!=SQLITE_OK ){
2243 rc = SQLITE_ERROR;
2244 break;
2246 apSub = (SubProgram **)pSub->z;
2247 apSub[nSub++] = aOp[i].p4.pProgram;
2248 MemSetTypeFlag(pSub, MEM_Blob);
2249 pSub->n = nSub*sizeof(SubProgram*);
2250 nRow += aOp[i].p4.pProgram->nOp;
2253 if( eMode==0 ) break;
2254 #ifdef SQLITE_ENABLE_BYTECODE_VTAB
2255 if( eMode==2 ){
2256 Op *pOp = aOp + i;
2257 if( pOp->opcode==OP_OpenRead ) break;
2258 if( pOp->opcode==OP_OpenWrite && (pOp->p5 & OPFLAG_P2ISREG)==0 ) break;
2259 if( pOp->opcode==OP_ReopenIdx ) break;
2260 }else
2261 #endif
2263 assert( eMode==1 );
2264 if( aOp[i].opcode==OP_Explain ) break;
2265 if( aOp[i].opcode==OP_Init && iPc>1 ) break;
2268 *piPc = iPc;
2269 *piAddr = i;
2270 *paOp = aOp;
2271 return rc;
2273 #endif /* SQLITE_ENABLE_BYTECODE_VTAB || !SQLITE_OMIT_EXPLAIN */
2277 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are
2278 ** allocated by the OP_Program opcode in sqlite3VdbeExec().
2280 void sqlite3VdbeFrameDelete(VdbeFrame *p){
2281 int i;
2282 Mem *aMem = VdbeFrameMem(p);
2283 VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem];
2284 assert( sqlite3VdbeFrameIsValid(p) );
2285 for(i=0; i<p->nChildCsr; i++){
2286 if( apCsr[i] ) sqlite3VdbeFreeCursorNN(p->v, apCsr[i]);
2288 releaseMemArray(aMem, p->nChildMem);
2289 sqlite3VdbeDeleteAuxData(p->v->db, &p->pAuxData, -1, 0);
2290 sqlite3DbFree(p->v->db, p);
2293 #ifndef SQLITE_OMIT_EXPLAIN
2295 ** Give a listing of the program in the virtual machine.
2297 ** The interface is the same as sqlite3VdbeExec(). But instead of
2298 ** running the code, it invokes the callback once for each instruction.
2299 ** This feature is used to implement "EXPLAIN".
2301 ** When p->explain==1, each instruction is listed. When
2302 ** p->explain==2, only OP_Explain instructions are listed and these
2303 ** are shown in a different format. p->explain==2 is used to implement
2304 ** EXPLAIN QUERY PLAN.
2305 ** 2018-04-24: In p->explain==2 mode, the OP_Init opcodes of triggers
2306 ** are also shown, so that the boundaries between the main program and
2307 ** each trigger are clear.
2309 ** When p->explain==1, first the main program is listed, then each of
2310 ** the trigger subprograms are listed one by one.
2312 int sqlite3VdbeList(
2313 Vdbe *p /* The VDBE */
2315 Mem *pSub = 0; /* Memory cell hold array of subprogs */
2316 sqlite3 *db = p->db; /* The database connection */
2317 int i; /* Loop counter */
2318 int rc = SQLITE_OK; /* Return code */
2319 Mem *pMem = &p->aMem[1]; /* First Mem of result set */
2320 int bListSubprogs = (p->explain==1 || (db->flags & SQLITE_TriggerEQP)!=0);
2321 Op *aOp; /* Array of opcodes */
2322 Op *pOp; /* Current opcode */
2324 assert( p->explain );
2325 assert( p->eVdbeState==VDBE_RUN_STATE );
2326 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM );
2328 /* Even though this opcode does not use dynamic strings for
2329 ** the result, result columns may become dynamic if the user calls
2330 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
2332 releaseMemArray(pMem, 8);
2334 if( p->rc==SQLITE_NOMEM ){
2335 /* This happens if a malloc() inside a call to sqlite3_column_text() or
2336 ** sqlite3_column_text16() failed. */
2337 sqlite3OomFault(db);
2338 return SQLITE_ERROR;
2341 if( bListSubprogs ){
2342 /* The first 8 memory cells are used for the result set. So we will
2343 ** commandeer the 9th cell to use as storage for an array of pointers
2344 ** to trigger subprograms. The VDBE is guaranteed to have at least 9
2345 ** cells. */
2346 assert( p->nMem>9 );
2347 pSub = &p->aMem[9];
2348 }else{
2349 pSub = 0;
2352 /* Figure out which opcode is next to display */
2353 rc = sqlite3VdbeNextOpcode(p, pSub, p->explain==2, &p->pc, &i, &aOp);
2355 if( rc==SQLITE_OK ){
2356 pOp = aOp + i;
2357 if( AtomicLoad(&db->u1.isInterrupted) ){
2358 p->rc = SQLITE_INTERRUPT;
2359 rc = SQLITE_ERROR;
2360 sqlite3VdbeError(p, sqlite3ErrStr(p->rc));
2361 }else{
2362 char *zP4 = sqlite3VdbeDisplayP4(db, pOp);
2363 if( p->explain==2 ){
2364 sqlite3VdbeMemSetInt64(pMem, pOp->p1);
2365 sqlite3VdbeMemSetInt64(pMem+1, pOp->p2);
2366 sqlite3VdbeMemSetInt64(pMem+2, pOp->p3);
2367 sqlite3VdbeMemSetStr(pMem+3, zP4, -1, SQLITE_UTF8, sqlite3_free);
2368 p->nResColumn = 4;
2369 }else{
2370 sqlite3VdbeMemSetInt64(pMem+0, i);
2371 sqlite3VdbeMemSetStr(pMem+1, (char*)sqlite3OpcodeName(pOp->opcode),
2372 -1, SQLITE_UTF8, SQLITE_STATIC);
2373 sqlite3VdbeMemSetInt64(pMem+2, pOp->p1);
2374 sqlite3VdbeMemSetInt64(pMem+3, pOp->p2);
2375 sqlite3VdbeMemSetInt64(pMem+4, pOp->p3);
2376 /* pMem+5 for p4 is done last */
2377 sqlite3VdbeMemSetInt64(pMem+6, pOp->p5);
2378 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
2380 char *zCom = sqlite3VdbeDisplayComment(db, pOp, zP4);
2381 sqlite3VdbeMemSetStr(pMem+7, zCom, -1, SQLITE_UTF8, sqlite3_free);
2383 #else
2384 sqlite3VdbeMemSetNull(pMem+7);
2385 #endif
2386 sqlite3VdbeMemSetStr(pMem+5, zP4, -1, SQLITE_UTF8, sqlite3_free);
2387 p->nResColumn = 8;
2389 p->pResultRow = pMem;
2390 if( db->mallocFailed ){
2391 p->rc = SQLITE_NOMEM;
2392 rc = SQLITE_ERROR;
2393 }else{
2394 p->rc = SQLITE_OK;
2395 rc = SQLITE_ROW;
2399 return rc;
2401 #endif /* SQLITE_OMIT_EXPLAIN */
2403 #ifdef SQLITE_DEBUG
2405 ** Print the SQL that was used to generate a VDBE program.
2407 void sqlite3VdbePrintSql(Vdbe *p){
2408 const char *z = 0;
2409 if( p->zSql ){
2410 z = p->zSql;
2411 }else if( p->nOp>=1 ){
2412 const VdbeOp *pOp = &p->aOp[0];
2413 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
2414 z = pOp->p4.z;
2415 while( sqlite3Isspace(*z) ) z++;
2418 if( z ) printf("SQL: [%s]\n", z);
2420 #endif
2422 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
2424 ** Print an IOTRACE message showing SQL content.
2426 void sqlite3VdbeIOTraceSql(Vdbe *p){
2427 int nOp = p->nOp;
2428 VdbeOp *pOp;
2429 if( sqlite3IoTrace==0 ) return;
2430 if( nOp<1 ) return;
2431 pOp = &p->aOp[0];
2432 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
2433 int i, j;
2434 char z[1000];
2435 sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
2436 for(i=0; sqlite3Isspace(z[i]); i++){}
2437 for(j=0; z[i]; i++){
2438 if( sqlite3Isspace(z[i]) ){
2439 if( z[i-1]!=' ' ){
2440 z[j++] = ' ';
2442 }else{
2443 z[j++] = z[i];
2446 z[j] = 0;
2447 sqlite3IoTrace("SQL %s\n", z);
2450 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
2452 /* An instance of this object describes bulk memory available for use
2453 ** by subcomponents of a prepared statement. Space is allocated out
2454 ** of a ReusableSpace object by the allocSpace() routine below.
2456 struct ReusableSpace {
2457 u8 *pSpace; /* Available memory */
2458 sqlite3_int64 nFree; /* Bytes of available memory */
2459 sqlite3_int64 nNeeded; /* Total bytes that could not be allocated */
2462 /* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf
2463 ** from the ReusableSpace object. Return a pointer to the allocated
2464 ** memory on success. If insufficient memory is available in the
2465 ** ReusableSpace object, increase the ReusableSpace.nNeeded
2466 ** value by the amount needed and return NULL.
2468 ** If pBuf is not initially NULL, that means that the memory has already
2469 ** been allocated by a prior call to this routine, so just return a copy
2470 ** of pBuf and leave ReusableSpace unchanged.
2472 ** This allocator is employed to repurpose unused slots at the end of the
2473 ** opcode array of prepared state for other memory needs of the prepared
2474 ** statement.
2476 static void *allocSpace(
2477 struct ReusableSpace *p, /* Bulk memory available for allocation */
2478 void *pBuf, /* Pointer to a prior allocation */
2479 sqlite3_int64 nByte /* Bytes of memory needed. */
2481 assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) );
2482 if( pBuf==0 ){
2483 nByte = ROUND8P(nByte);
2484 if( nByte <= p->nFree ){
2485 p->nFree -= nByte;
2486 pBuf = &p->pSpace[p->nFree];
2487 }else{
2488 p->nNeeded += nByte;
2491 assert( EIGHT_BYTE_ALIGNMENT(pBuf) );
2492 return pBuf;
2496 ** Rewind the VDBE back to the beginning in preparation for
2497 ** running it.
2499 void sqlite3VdbeRewind(Vdbe *p){
2500 #if defined(SQLITE_DEBUG)
2501 int i;
2502 #endif
2503 assert( p!=0 );
2504 assert( p->eVdbeState==VDBE_INIT_STATE
2505 || p->eVdbeState==VDBE_READY_STATE
2506 || p->eVdbeState==VDBE_HALT_STATE );
2508 /* There should be at least one opcode.
2510 assert( p->nOp>0 );
2512 p->eVdbeState = VDBE_READY_STATE;
2514 #ifdef SQLITE_DEBUG
2515 for(i=0; i<p->nMem; i++){
2516 assert( p->aMem[i].db==p->db );
2518 #endif
2519 p->pc = -1;
2520 p->rc = SQLITE_OK;
2521 p->errorAction = OE_Abort;
2522 p->nChange = 0;
2523 p->cacheCtr = 1;
2524 p->minWriteFileFormat = 255;
2525 p->iStatement = 0;
2526 p->nFkConstraint = 0;
2527 #ifdef VDBE_PROFILE
2528 for(i=0; i<p->nOp; i++){
2529 p->aOp[i].nExec = 0;
2530 p->aOp[i].nCycle = 0;
2532 #endif
2536 ** Prepare a virtual machine for execution for the first time after
2537 ** creating the virtual machine. This involves things such
2538 ** as allocating registers and initializing the program counter.
2539 ** After the VDBE has be prepped, it can be executed by one or more
2540 ** calls to sqlite3VdbeExec().
2542 ** This function may be called exactly once on each virtual machine.
2543 ** After this routine is called the VM has been "packaged" and is ready
2544 ** to run. After this routine is called, further calls to
2545 ** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects
2546 ** the Vdbe from the Parse object that helped generate it so that the
2547 ** the Vdbe becomes an independent entity and the Parse object can be
2548 ** destroyed.
2550 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back
2551 ** to its initial state after it has been run.
2553 void sqlite3VdbeMakeReady(
2554 Vdbe *p, /* The VDBE */
2555 Parse *pParse /* Parsing context */
2557 sqlite3 *db; /* The database connection */
2558 int nVar; /* Number of parameters */
2559 int nMem; /* Number of VM memory registers */
2560 int nCursor; /* Number of cursors required */
2561 int nArg; /* Number of arguments in subprograms */
2562 int n; /* Loop counter */
2563 struct ReusableSpace x; /* Reusable bulk memory */
2565 assert( p!=0 );
2566 assert( p->nOp>0 );
2567 assert( pParse!=0 );
2568 assert( p->eVdbeState==VDBE_INIT_STATE );
2569 assert( pParse==p->pParse );
2570 p->pVList = pParse->pVList;
2571 pParse->pVList = 0;
2572 db = p->db;
2573 assert( db->mallocFailed==0 );
2574 nVar = pParse->nVar;
2575 nMem = pParse->nMem;
2576 nCursor = pParse->nTab;
2577 nArg = pParse->nMaxArg;
2579 /* Each cursor uses a memory cell. The first cursor (cursor 0) can
2580 ** use aMem[0] which is not otherwise used by the VDBE program. Allocate
2581 ** space at the end of aMem[] for cursors 1 and greater.
2582 ** See also: allocateCursor().
2584 nMem += nCursor;
2585 if( nCursor==0 && nMem>0 ) nMem++; /* Space for aMem[0] even if not used */
2587 /* Figure out how much reusable memory is available at the end of the
2588 ** opcode array. This extra memory will be reallocated for other elements
2589 ** of the prepared statement.
2591 n = ROUND8P(sizeof(Op)*p->nOp); /* Bytes of opcode memory used */
2592 x.pSpace = &((u8*)p->aOp)[n]; /* Unused opcode memory */
2593 assert( EIGHT_BYTE_ALIGNMENT(x.pSpace) );
2594 x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n); /* Bytes of unused memory */
2595 assert( x.nFree>=0 );
2596 assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) );
2598 resolveP2Values(p, &nArg);
2599 p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort);
2600 if( pParse->explain ){
2601 static const char * const azColName[] = {
2602 "addr", "opcode", "p1", "p2", "p3", "p4", "p5", "comment",
2603 "id", "parent", "notused", "detail"
2605 int iFirst, mx, i;
2606 if( nMem<10 ) nMem = 10;
2607 p->explain = pParse->explain;
2608 if( pParse->explain==2 ){
2609 sqlite3VdbeSetNumCols(p, 4);
2610 iFirst = 8;
2611 mx = 12;
2612 }else{
2613 sqlite3VdbeSetNumCols(p, 8);
2614 iFirst = 0;
2615 mx = 8;
2617 for(i=iFirst; i<mx; i++){
2618 sqlite3VdbeSetColName(p, i-iFirst, COLNAME_NAME,
2619 azColName[i], SQLITE_STATIC);
2622 p->expired = 0;
2624 /* Memory for registers, parameters, cursor, etc, is allocated in one or two
2625 ** passes. On the first pass, we try to reuse unused memory at the
2626 ** end of the opcode array. If we are unable to satisfy all memory
2627 ** requirements by reusing the opcode array tail, then the second
2628 ** pass will fill in the remainder using a fresh memory allocation.
2630 ** This two-pass approach that reuses as much memory as possible from
2631 ** the leftover memory at the end of the opcode array. This can significantly
2632 ** reduce the amount of memory held by a prepared statement.
2634 x.nNeeded = 0;
2635 p->aMem = allocSpace(&x, 0, nMem*sizeof(Mem));
2636 p->aVar = allocSpace(&x, 0, nVar*sizeof(Mem));
2637 p->apArg = allocSpace(&x, 0, nArg*sizeof(Mem*));
2638 p->apCsr = allocSpace(&x, 0, nCursor*sizeof(VdbeCursor*));
2639 if( x.nNeeded ){
2640 x.pSpace = p->pFree = sqlite3DbMallocRawNN(db, x.nNeeded);
2641 x.nFree = x.nNeeded;
2642 if( !db->mallocFailed ){
2643 p->aMem = allocSpace(&x, p->aMem, nMem*sizeof(Mem));
2644 p->aVar = allocSpace(&x, p->aVar, nVar*sizeof(Mem));
2645 p->apArg = allocSpace(&x, p->apArg, nArg*sizeof(Mem*));
2646 p->apCsr = allocSpace(&x, p->apCsr, nCursor*sizeof(VdbeCursor*));
2650 if( db->mallocFailed ){
2651 p->nVar = 0;
2652 p->nCursor = 0;
2653 p->nMem = 0;
2654 }else{
2655 p->nCursor = nCursor;
2656 p->nVar = (ynVar)nVar;
2657 initMemArray(p->aVar, nVar, db, MEM_Null);
2658 p->nMem = nMem;
2659 initMemArray(p->aMem, nMem, db, MEM_Undefined);
2660 memset(p->apCsr, 0, nCursor*sizeof(VdbeCursor*));
2662 sqlite3VdbeRewind(p);
2666 ** Close a VDBE cursor and release all the resources that cursor
2667 ** happens to hold.
2669 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
2670 if( pCx ) sqlite3VdbeFreeCursorNN(p,pCx);
2672 void sqlite3VdbeFreeCursorNN(Vdbe *p, VdbeCursor *pCx){
2673 switch( pCx->eCurType ){
2674 case CURTYPE_SORTER: {
2675 sqlite3VdbeSorterClose(p->db, pCx);
2676 break;
2678 case CURTYPE_BTREE: {
2679 assert( pCx->uc.pCursor!=0 );
2680 sqlite3BtreeCloseCursor(pCx->uc.pCursor);
2681 break;
2683 #ifndef SQLITE_OMIT_VIRTUALTABLE
2684 case CURTYPE_VTAB: {
2685 sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur;
2686 const sqlite3_module *pModule = pVCur->pVtab->pModule;
2687 assert( pVCur->pVtab->nRef>0 );
2688 pVCur->pVtab->nRef--;
2689 pModule->xClose(pVCur);
2690 break;
2692 #endif
2697 ** Close all cursors in the current frame.
2699 static void closeCursorsInFrame(Vdbe *p){
2700 int i;
2701 for(i=0; i<p->nCursor; i++){
2702 VdbeCursor *pC = p->apCsr[i];
2703 if( pC ){
2704 sqlite3VdbeFreeCursorNN(p, pC);
2705 p->apCsr[i] = 0;
2711 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This
2712 ** is used, for example, when a trigger sub-program is halted to restore
2713 ** control to the main program.
2715 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){
2716 Vdbe *v = pFrame->v;
2717 closeCursorsInFrame(v);
2718 v->aOp = pFrame->aOp;
2719 v->nOp = pFrame->nOp;
2720 v->aMem = pFrame->aMem;
2721 v->nMem = pFrame->nMem;
2722 v->apCsr = pFrame->apCsr;
2723 v->nCursor = pFrame->nCursor;
2724 v->db->lastRowid = pFrame->lastRowid;
2725 v->nChange = pFrame->nChange;
2726 v->db->nChange = pFrame->nDbChange;
2727 sqlite3VdbeDeleteAuxData(v->db, &v->pAuxData, -1, 0);
2728 v->pAuxData = pFrame->pAuxData;
2729 pFrame->pAuxData = 0;
2730 return pFrame->pc;
2734 ** Close all cursors.
2736 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory
2737 ** cell array. This is necessary as the memory cell array may contain
2738 ** pointers to VdbeFrame objects, which may in turn contain pointers to
2739 ** open cursors.
2741 static void closeAllCursors(Vdbe *p){
2742 if( p->pFrame ){
2743 VdbeFrame *pFrame;
2744 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
2745 sqlite3VdbeFrameRestore(pFrame);
2746 p->pFrame = 0;
2747 p->nFrame = 0;
2749 assert( p->nFrame==0 );
2750 closeCursorsInFrame(p);
2751 releaseMemArray(p->aMem, p->nMem);
2752 while( p->pDelFrame ){
2753 VdbeFrame *pDel = p->pDelFrame;
2754 p->pDelFrame = pDel->pParent;
2755 sqlite3VdbeFrameDelete(pDel);
2758 /* Delete any auxdata allocations made by the VM */
2759 if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p->db, &p->pAuxData, -1, 0);
2760 assert( p->pAuxData==0 );
2764 ** Set the number of result columns that will be returned by this SQL
2765 ** statement. This is now set at compile time, rather than during
2766 ** execution of the vdbe program so that sqlite3_column_count() can
2767 ** be called on an SQL statement before sqlite3_step().
2769 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
2770 int n;
2771 sqlite3 *db = p->db;
2773 if( p->nResColumn ){
2774 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
2775 sqlite3DbFree(db, p->aColName);
2777 n = nResColumn*COLNAME_N;
2778 p->nResColumn = (u16)nResColumn;
2779 p->aColName = (Mem*)sqlite3DbMallocRawNN(db, sizeof(Mem)*n );
2780 if( p->aColName==0 ) return;
2781 initMemArray(p->aColName, n, db, MEM_Null);
2785 ** Set the name of the idx'th column to be returned by the SQL statement.
2786 ** zName must be a pointer to a nul terminated string.
2788 ** This call must be made after a call to sqlite3VdbeSetNumCols().
2790 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC
2791 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed
2792 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed.
2794 int sqlite3VdbeSetColName(
2795 Vdbe *p, /* Vdbe being configured */
2796 int idx, /* Index of column zName applies to */
2797 int var, /* One of the COLNAME_* constants */
2798 const char *zName, /* Pointer to buffer containing name */
2799 void (*xDel)(void*) /* Memory management strategy for zName */
2801 int rc;
2802 Mem *pColName;
2803 assert( idx<p->nResColumn );
2804 assert( var<COLNAME_N );
2805 if( p->db->mallocFailed ){
2806 assert( !zName || xDel!=SQLITE_DYNAMIC );
2807 return SQLITE_NOMEM_BKPT;
2809 assert( p->aColName!=0 );
2810 pColName = &(p->aColName[idx+var*p->nResColumn]);
2811 rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel);
2812 assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 );
2813 return rc;
2817 ** A read or write transaction may or may not be active on database handle
2818 ** db. If a transaction is active, commit it. If there is a
2819 ** write-transaction spanning more than one database file, this routine
2820 ** takes care of the super-journal trickery.
2822 static int vdbeCommit(sqlite3 *db, Vdbe *p){
2823 int i;
2824 int nTrans = 0; /* Number of databases with an active write-transaction
2825 ** that are candidates for a two-phase commit using a
2826 ** super-journal */
2827 int rc = SQLITE_OK;
2828 int needXcommit = 0;
2830 #ifdef SQLITE_OMIT_VIRTUALTABLE
2831 /* With this option, sqlite3VtabSync() is defined to be simply
2832 ** SQLITE_OK so p is not used.
2834 UNUSED_PARAMETER(p);
2835 #endif
2837 /* Before doing anything else, call the xSync() callback for any
2838 ** virtual module tables written in this transaction. This has to
2839 ** be done before determining whether a super-journal file is
2840 ** required, as an xSync() callback may add an attached database
2841 ** to the transaction.
2843 rc = sqlite3VtabSync(db, p);
2845 /* This loop determines (a) if the commit hook should be invoked and
2846 ** (b) how many database files have open write transactions, not
2847 ** including the temp database. (b) is important because if more than
2848 ** one database file has an open write transaction, a super-journal
2849 ** file is required for an atomic commit.
2851 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2852 Btree *pBt = db->aDb[i].pBt;
2853 if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){
2854 /* Whether or not a database might need a super-journal depends upon
2855 ** its journal mode (among other things). This matrix determines which
2856 ** journal modes use a super-journal and which do not */
2857 static const u8 aMJNeeded[] = {
2858 /* DELETE */ 1,
2859 /* PERSIST */ 1,
2860 /* OFF */ 0,
2861 /* TRUNCATE */ 1,
2862 /* MEMORY */ 0,
2863 /* WAL */ 0
2865 Pager *pPager; /* Pager associated with pBt */
2866 needXcommit = 1;
2867 sqlite3BtreeEnter(pBt);
2868 pPager = sqlite3BtreePager(pBt);
2869 if( db->aDb[i].safety_level!=PAGER_SYNCHRONOUS_OFF
2870 && aMJNeeded[sqlite3PagerGetJournalMode(pPager)]
2871 && sqlite3PagerIsMemdb(pPager)==0
2873 assert( i!=1 );
2874 nTrans++;
2876 rc = sqlite3PagerExclusiveLock(pPager);
2877 sqlite3BtreeLeave(pBt);
2880 if( rc!=SQLITE_OK ){
2881 return rc;
2884 /* If there are any write-transactions at all, invoke the commit hook */
2885 if( needXcommit && db->xCommitCallback ){
2886 rc = db->xCommitCallback(db->pCommitArg);
2887 if( rc ){
2888 return SQLITE_CONSTRAINT_COMMITHOOK;
2892 /* The simple case - no more than one database file (not counting the
2893 ** TEMP database) has a transaction active. There is no need for the
2894 ** super-journal.
2896 ** If the return value of sqlite3BtreeGetFilename() is a zero length
2897 ** string, it means the main database is :memory: or a temp file. In
2898 ** that case we do not support atomic multi-file commits, so use the
2899 ** simple case then too.
2901 if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt))
2902 || nTrans<=1
2904 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2905 Btree *pBt = db->aDb[i].pBt;
2906 if( pBt ){
2907 rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
2911 /* Do the commit only if all databases successfully complete phase 1.
2912 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
2913 ** IO error while deleting or truncating a journal file. It is unlikely,
2914 ** but could happen. In this case abandon processing and return the error.
2916 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2917 Btree *pBt = db->aDb[i].pBt;
2918 if( pBt ){
2919 rc = sqlite3BtreeCommitPhaseTwo(pBt, 0);
2922 if( rc==SQLITE_OK ){
2923 sqlite3VtabCommit(db);
2927 /* The complex case - There is a multi-file write-transaction active.
2928 ** This requires a super-journal file to ensure the transaction is
2929 ** committed atomically.
2931 #ifndef SQLITE_OMIT_DISKIO
2932 else{
2933 sqlite3_vfs *pVfs = db->pVfs;
2934 char *zSuper = 0; /* File-name for the super-journal */
2935 char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
2936 sqlite3_file *pSuperJrnl = 0;
2937 i64 offset = 0;
2938 int res;
2939 int retryCount = 0;
2940 int nMainFile;
2942 /* Select a super-journal file name */
2943 nMainFile = sqlite3Strlen30(zMainFile);
2944 zSuper = sqlite3MPrintf(db, "%.4c%s%.16c", 0,zMainFile,0);
2945 if( zSuper==0 ) return SQLITE_NOMEM_BKPT;
2946 zSuper += 4;
2947 do {
2948 u32 iRandom;
2949 if( retryCount ){
2950 if( retryCount>100 ){
2951 sqlite3_log(SQLITE_FULL, "MJ delete: %s", zSuper);
2952 sqlite3OsDelete(pVfs, zSuper, 0);
2953 break;
2954 }else if( retryCount==1 ){
2955 sqlite3_log(SQLITE_FULL, "MJ collide: %s", zSuper);
2958 retryCount++;
2959 sqlite3_randomness(sizeof(iRandom), &iRandom);
2960 sqlite3_snprintf(13, &zSuper[nMainFile], "-mj%06X9%02X",
2961 (iRandom>>8)&0xffffff, iRandom&0xff);
2962 /* The antipenultimate character of the super-journal name must
2963 ** be "9" to avoid name collisions when using 8+3 filenames. */
2964 assert( zSuper[sqlite3Strlen30(zSuper)-3]=='9' );
2965 sqlite3FileSuffix3(zMainFile, zSuper);
2966 rc = sqlite3OsAccess(pVfs, zSuper, SQLITE_ACCESS_EXISTS, &res);
2967 }while( rc==SQLITE_OK && res );
2968 if( rc==SQLITE_OK ){
2969 /* Open the super-journal. */
2970 rc = sqlite3OsOpenMalloc(pVfs, zSuper, &pSuperJrnl,
2971 SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
2972 SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_SUPER_JOURNAL, 0
2975 if( rc!=SQLITE_OK ){
2976 sqlite3DbFree(db, zSuper-4);
2977 return rc;
2980 /* Write the name of each database file in the transaction into the new
2981 ** super-journal file. If an error occurs at this point close
2982 ** and delete the super-journal file. All the individual journal files
2983 ** still have 'null' as the super-journal pointer, so they will roll
2984 ** back independently if a failure occurs.
2986 for(i=0; i<db->nDb; i++){
2987 Btree *pBt = db->aDb[i].pBt;
2988 if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){
2989 char const *zFile = sqlite3BtreeGetJournalname(pBt);
2990 if( zFile==0 ){
2991 continue; /* Ignore TEMP and :memory: databases */
2993 assert( zFile[0]!=0 );
2994 rc = sqlite3OsWrite(pSuperJrnl, zFile, sqlite3Strlen30(zFile)+1,offset);
2995 offset += sqlite3Strlen30(zFile)+1;
2996 if( rc!=SQLITE_OK ){
2997 sqlite3OsCloseFree(pSuperJrnl);
2998 sqlite3OsDelete(pVfs, zSuper, 0);
2999 sqlite3DbFree(db, zSuper-4);
3000 return rc;
3005 /* Sync the super-journal file. If the IOCAP_SEQUENTIAL device
3006 ** flag is set this is not required.
3008 if( 0==(sqlite3OsDeviceCharacteristics(pSuperJrnl)&SQLITE_IOCAP_SEQUENTIAL)
3009 && SQLITE_OK!=(rc = sqlite3OsSync(pSuperJrnl, SQLITE_SYNC_NORMAL))
3011 sqlite3OsCloseFree(pSuperJrnl);
3012 sqlite3OsDelete(pVfs, zSuper, 0);
3013 sqlite3DbFree(db, zSuper-4);
3014 return rc;
3017 /* Sync all the db files involved in the transaction. The same call
3018 ** sets the super-journal pointer in each individual journal. If
3019 ** an error occurs here, do not delete the super-journal file.
3021 ** If the error occurs during the first call to
3022 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
3023 ** super-journal file will be orphaned. But we cannot delete it,
3024 ** in case the super-journal file name was written into the journal
3025 ** file before the failure occurred.
3027 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
3028 Btree *pBt = db->aDb[i].pBt;
3029 if( pBt ){
3030 rc = sqlite3BtreeCommitPhaseOne(pBt, zSuper);
3033 sqlite3OsCloseFree(pSuperJrnl);
3034 assert( rc!=SQLITE_BUSY );
3035 if( rc!=SQLITE_OK ){
3036 sqlite3DbFree(db, zSuper-4);
3037 return rc;
3040 /* Delete the super-journal file. This commits the transaction. After
3041 ** doing this the directory is synced again before any individual
3042 ** transaction files are deleted.
3044 rc = sqlite3OsDelete(pVfs, zSuper, 1);
3045 sqlite3DbFree(db, zSuper-4);
3046 zSuper = 0;
3047 if( rc ){
3048 return rc;
3051 /* All files and directories have already been synced, so the following
3052 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
3053 ** deleting or truncating journals. If something goes wrong while
3054 ** this is happening we don't really care. The integrity of the
3055 ** transaction is already guaranteed, but some stray 'cold' journals
3056 ** may be lying around. Returning an error code won't help matters.
3058 disable_simulated_io_errors();
3059 sqlite3BeginBenignMalloc();
3060 for(i=0; i<db->nDb; i++){
3061 Btree *pBt = db->aDb[i].pBt;
3062 if( pBt ){
3063 sqlite3BtreeCommitPhaseTwo(pBt, 1);
3066 sqlite3EndBenignMalloc();
3067 enable_simulated_io_errors();
3069 sqlite3VtabCommit(db);
3071 #endif
3073 return rc;
3077 ** This routine checks that the sqlite3.nVdbeActive count variable
3078 ** matches the number of vdbe's in the list sqlite3.pVdbe that are
3079 ** currently active. An assertion fails if the two counts do not match.
3080 ** This is an internal self-check only - it is not an essential processing
3081 ** step.
3083 ** This is a no-op if NDEBUG is defined.
3085 #ifndef NDEBUG
3086 static void checkActiveVdbeCnt(sqlite3 *db){
3087 Vdbe *p;
3088 int cnt = 0;
3089 int nWrite = 0;
3090 int nRead = 0;
3091 p = db->pVdbe;
3092 while( p ){
3093 if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){
3094 cnt++;
3095 if( p->readOnly==0 ) nWrite++;
3096 if( p->bIsReader ) nRead++;
3098 p = p->pVNext;
3100 assert( cnt==db->nVdbeActive );
3101 assert( nWrite==db->nVdbeWrite );
3102 assert( nRead==db->nVdbeRead );
3104 #else
3105 #define checkActiveVdbeCnt(x)
3106 #endif
3109 ** If the Vdbe passed as the first argument opened a statement-transaction,
3110 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or
3111 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement
3112 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the
3113 ** statement transaction is committed.
3115 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned.
3116 ** Otherwise SQLITE_OK.
3118 static SQLITE_NOINLINE int vdbeCloseStatement(Vdbe *p, int eOp){
3119 sqlite3 *const db = p->db;
3120 int rc = SQLITE_OK;
3121 int i;
3122 const int iSavepoint = p->iStatement-1;
3124 assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE);
3125 assert( db->nStatement>0 );
3126 assert( p->iStatement==(db->nStatement+db->nSavepoint) );
3128 for(i=0; i<db->nDb; i++){
3129 int rc2 = SQLITE_OK;
3130 Btree *pBt = db->aDb[i].pBt;
3131 if( pBt ){
3132 if( eOp==SAVEPOINT_ROLLBACK ){
3133 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint);
3135 if( rc2==SQLITE_OK ){
3136 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint);
3138 if( rc==SQLITE_OK ){
3139 rc = rc2;
3143 db->nStatement--;
3144 p->iStatement = 0;
3146 if( rc==SQLITE_OK ){
3147 if( eOp==SAVEPOINT_ROLLBACK ){
3148 rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint);
3150 if( rc==SQLITE_OK ){
3151 rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint);
3155 /* If the statement transaction is being rolled back, also restore the
3156 ** database handles deferred constraint counter to the value it had when
3157 ** the statement transaction was opened. */
3158 if( eOp==SAVEPOINT_ROLLBACK ){
3159 db->nDeferredCons = p->nStmtDefCons;
3160 db->nDeferredImmCons = p->nStmtDefImmCons;
3162 return rc;
3164 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){
3165 if( p->db->nStatement && p->iStatement ){
3166 return vdbeCloseStatement(p, eOp);
3168 return SQLITE_OK;
3173 ** This function is called when a transaction opened by the database
3174 ** handle associated with the VM passed as an argument is about to be
3175 ** committed. If there are outstanding deferred foreign key constraint
3176 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
3178 ** If there are outstanding FK violations and this function returns
3179 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY
3180 ** and write an error message to it. Then return SQLITE_ERROR.
3182 #ifndef SQLITE_OMIT_FOREIGN_KEY
3183 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){
3184 sqlite3 *db = p->db;
3185 if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0)
3186 || (!deferred && p->nFkConstraint>0)
3188 p->rc = SQLITE_CONSTRAINT_FOREIGNKEY;
3189 p->errorAction = OE_Abort;
3190 sqlite3VdbeError(p, "FOREIGN KEY constraint failed");
3191 if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)==0 ) return SQLITE_ERROR;
3192 return SQLITE_CONSTRAINT_FOREIGNKEY;
3194 return SQLITE_OK;
3196 #endif
3199 ** This routine is called the when a VDBE tries to halt. If the VDBE
3200 ** has made changes and is in autocommit mode, then commit those
3201 ** changes. If a rollback is needed, then do the rollback.
3203 ** This routine is the only way to move the sqlite3eOpenState of a VM from
3204 ** SQLITE_STATE_RUN to SQLITE_STATE_HALT. It is harmless to
3205 ** call this on a VM that is in the SQLITE_STATE_HALT state.
3207 ** Return an error code. If the commit could not complete because of
3208 ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it
3209 ** means the close did not happen and needs to be repeated.
3211 int sqlite3VdbeHalt(Vdbe *p){
3212 int rc; /* Used to store transient return codes */
3213 sqlite3 *db = p->db;
3215 /* This function contains the logic that determines if a statement or
3216 ** transaction will be committed or rolled back as a result of the
3217 ** execution of this virtual machine.
3219 ** If any of the following errors occur:
3221 ** SQLITE_NOMEM
3222 ** SQLITE_IOERR
3223 ** SQLITE_FULL
3224 ** SQLITE_INTERRUPT
3226 ** Then the internal cache might have been left in an inconsistent
3227 ** state. We need to rollback the statement transaction, if there is
3228 ** one, or the complete transaction if there is no statement transaction.
3231 assert( p->eVdbeState==VDBE_RUN_STATE );
3232 if( db->mallocFailed ){
3233 p->rc = SQLITE_NOMEM_BKPT;
3235 closeAllCursors(p);
3236 checkActiveVdbeCnt(db);
3238 /* No commit or rollback needed if the program never started or if the
3239 ** SQL statement does not read or write a database file. */
3240 if( p->bIsReader ){
3241 int mrc; /* Primary error code from p->rc */
3242 int eStatementOp = 0;
3243 int isSpecialError; /* Set to true if a 'special' error */
3245 /* Lock all btrees used by the statement */
3246 sqlite3VdbeEnter(p);
3248 /* Check for one of the special errors */
3249 if( p->rc ){
3250 mrc = p->rc & 0xff;
3251 isSpecialError = mrc==SQLITE_NOMEM
3252 || mrc==SQLITE_IOERR
3253 || mrc==SQLITE_INTERRUPT
3254 || mrc==SQLITE_FULL;
3255 }else{
3256 mrc = isSpecialError = 0;
3258 if( isSpecialError ){
3259 /* If the query was read-only and the error code is SQLITE_INTERRUPT,
3260 ** no rollback is necessary. Otherwise, at least a savepoint
3261 ** transaction must be rolled back to restore the database to a
3262 ** consistent state.
3264 ** Even if the statement is read-only, it is important to perform
3265 ** a statement or transaction rollback operation. If the error
3266 ** occurred while writing to the journal, sub-journal or database
3267 ** file as part of an effort to free up cache space (see function
3268 ** pagerStress() in pager.c), the rollback is required to restore
3269 ** the pager to a consistent state.
3271 if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){
3272 if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){
3273 eStatementOp = SAVEPOINT_ROLLBACK;
3274 }else{
3275 /* We are forced to roll back the active transaction. Before doing
3276 ** so, abort any other statements this handle currently has active.
3278 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3279 sqlite3CloseSavepoints(db);
3280 db->autoCommit = 1;
3281 p->nChange = 0;
3286 /* Check for immediate foreign key violations. */
3287 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
3288 sqlite3VdbeCheckFk(p, 0);
3291 /* If the auto-commit flag is set and this is the only active writer
3292 ** VM, then we do either a commit or rollback of the current transaction.
3294 ** Note: This block also runs if one of the special errors handled
3295 ** above has occurred.
3297 if( !sqlite3VtabInSync(db)
3298 && db->autoCommit
3299 && db->nVdbeWrite==(p->readOnly==0)
3301 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
3302 rc = sqlite3VdbeCheckFk(p, 1);
3303 if( rc!=SQLITE_OK ){
3304 if( NEVER(p->readOnly) ){
3305 sqlite3VdbeLeave(p);
3306 return SQLITE_ERROR;
3308 rc = SQLITE_CONSTRAINT_FOREIGNKEY;
3309 }else if( db->flags & SQLITE_CorruptRdOnly ){
3310 rc = SQLITE_CORRUPT;
3311 db->flags &= ~SQLITE_CorruptRdOnly;
3312 }else{
3313 /* The auto-commit flag is true, the vdbe program was successful
3314 ** or hit an 'OR FAIL' constraint and there are no deferred foreign
3315 ** key constraints to hold up the transaction. This means a commit
3316 ** is required. */
3317 rc = vdbeCommit(db, p);
3319 if( rc==SQLITE_BUSY && p->readOnly ){
3320 sqlite3VdbeLeave(p);
3321 return SQLITE_BUSY;
3322 }else if( rc!=SQLITE_OK ){
3323 p->rc = rc;
3324 sqlite3RollbackAll(db, SQLITE_OK);
3325 p->nChange = 0;
3326 }else{
3327 db->nDeferredCons = 0;
3328 db->nDeferredImmCons = 0;
3329 db->flags &= ~(u64)SQLITE_DeferFKs;
3330 sqlite3CommitInternalChanges(db);
3332 }else if( p->rc==SQLITE_SCHEMA && db->nVdbeActive>1 ){
3333 p->nChange = 0;
3334 }else{
3335 sqlite3RollbackAll(db, SQLITE_OK);
3336 p->nChange = 0;
3338 db->nStatement = 0;
3339 }else if( eStatementOp==0 ){
3340 if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
3341 eStatementOp = SAVEPOINT_RELEASE;
3342 }else if( p->errorAction==OE_Abort ){
3343 eStatementOp = SAVEPOINT_ROLLBACK;
3344 }else{
3345 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3346 sqlite3CloseSavepoints(db);
3347 db->autoCommit = 1;
3348 p->nChange = 0;
3352 /* If eStatementOp is non-zero, then a statement transaction needs to
3353 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to
3354 ** do so. If this operation returns an error, and the current statement
3355 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the
3356 ** current statement error code.
3358 if( eStatementOp ){
3359 rc = sqlite3VdbeCloseStatement(p, eStatementOp);
3360 if( rc ){
3361 if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){
3362 p->rc = rc;
3363 sqlite3DbFree(db, p->zErrMsg);
3364 p->zErrMsg = 0;
3366 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3367 sqlite3CloseSavepoints(db);
3368 db->autoCommit = 1;
3369 p->nChange = 0;
3373 /* If this was an INSERT, UPDATE or DELETE and no statement transaction
3374 ** has been rolled back, update the database connection change-counter.
3376 if( p->changeCntOn ){
3377 if( eStatementOp!=SAVEPOINT_ROLLBACK ){
3378 sqlite3VdbeSetChanges(db, p->nChange);
3379 }else{
3380 sqlite3VdbeSetChanges(db, 0);
3382 p->nChange = 0;
3385 /* Release the locks */
3386 sqlite3VdbeLeave(p);
3389 /* We have successfully halted and closed the VM. Record this fact. */
3390 db->nVdbeActive--;
3391 if( !p->readOnly ) db->nVdbeWrite--;
3392 if( p->bIsReader ) db->nVdbeRead--;
3393 assert( db->nVdbeActive>=db->nVdbeRead );
3394 assert( db->nVdbeRead>=db->nVdbeWrite );
3395 assert( db->nVdbeWrite>=0 );
3396 p->eVdbeState = VDBE_HALT_STATE;
3397 checkActiveVdbeCnt(db);
3398 if( db->mallocFailed ){
3399 p->rc = SQLITE_NOMEM_BKPT;
3402 /* If the auto-commit flag is set to true, then any locks that were held
3403 ** by connection db have now been released. Call sqlite3ConnectionUnlocked()
3404 ** to invoke any required unlock-notify callbacks.
3406 if( db->autoCommit ){
3407 sqlite3ConnectionUnlocked(db);
3410 assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 );
3411 return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK);
3416 ** Each VDBE holds the result of the most recent sqlite3_step() call
3417 ** in p->rc. This routine sets that result back to SQLITE_OK.
3419 void sqlite3VdbeResetStepResult(Vdbe *p){
3420 p->rc = SQLITE_OK;
3424 ** Copy the error code and error message belonging to the VDBE passed
3425 ** as the first argument to its database handle (so that they will be
3426 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()).
3428 ** This function does not clear the VDBE error code or message, just
3429 ** copies them to the database handle.
3431 int sqlite3VdbeTransferError(Vdbe *p){
3432 sqlite3 *db = p->db;
3433 int rc = p->rc;
3434 if( p->zErrMsg ){
3435 db->bBenignMalloc++;
3436 sqlite3BeginBenignMalloc();
3437 if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db);
3438 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
3439 sqlite3EndBenignMalloc();
3440 db->bBenignMalloc--;
3441 }else if( db->pErr ){
3442 sqlite3ValueSetNull(db->pErr);
3444 db->errCode = rc;
3445 db->errByteOffset = -1;
3446 return rc;
3449 #ifdef SQLITE_ENABLE_SQLLOG
3451 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run,
3452 ** invoke it.
3454 static void vdbeInvokeSqllog(Vdbe *v){
3455 if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){
3456 char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql);
3457 assert( v->db->init.busy==0 );
3458 if( zExpanded ){
3459 sqlite3GlobalConfig.xSqllog(
3460 sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1
3462 sqlite3DbFree(v->db, zExpanded);
3466 #else
3467 # define vdbeInvokeSqllog(x)
3468 #endif
3471 ** Clean up a VDBE after execution but do not delete the VDBE just yet.
3472 ** Write any error messages into *pzErrMsg. Return the result code.
3474 ** After this routine is run, the VDBE should be ready to be executed
3475 ** again.
3477 ** To look at it another way, this routine resets the state of the
3478 ** virtual machine from VDBE_RUN_STATE or VDBE_HALT_STATE back to
3479 ** VDBE_READY_STATE.
3481 int sqlite3VdbeReset(Vdbe *p){
3482 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
3483 int i;
3484 #endif
3486 sqlite3 *db;
3487 db = p->db;
3489 /* If the VM did not run to completion or if it encountered an
3490 ** error, then it might not have been halted properly. So halt
3491 ** it now.
3493 if( p->eVdbeState==VDBE_RUN_STATE ) sqlite3VdbeHalt(p);
3495 /* If the VDBE has been run even partially, then transfer the error code
3496 ** and error message from the VDBE into the main database structure. But
3497 ** if the VDBE has just been set to run but has not actually executed any
3498 ** instructions yet, leave the main database error information unchanged.
3500 if( p->pc>=0 ){
3501 vdbeInvokeSqllog(p);
3502 if( db->pErr || p->zErrMsg ){
3503 sqlite3VdbeTransferError(p);
3504 }else{
3505 db->errCode = p->rc;
3509 /* Reset register contents and reclaim error message memory.
3511 #ifdef SQLITE_DEBUG
3512 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and
3513 ** Vdbe.aMem[] arrays have already been cleaned up. */
3514 if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 );
3515 if( p->aMem ){
3516 for(i=0; i<p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined );
3518 #endif
3519 if( p->zErrMsg ){
3520 sqlite3DbFree(db, p->zErrMsg);
3521 p->zErrMsg = 0;
3523 p->pResultRow = 0;
3524 #ifdef SQLITE_DEBUG
3525 p->nWrite = 0;
3526 #endif
3528 /* Save profiling information from this VDBE run.
3530 #ifdef VDBE_PROFILE
3532 FILE *out = fopen("vdbe_profile.out", "a");
3533 if( out ){
3534 fprintf(out, "---- ");
3535 for(i=0; i<p->nOp; i++){
3536 fprintf(out, "%02x", p->aOp[i].opcode);
3538 fprintf(out, "\n");
3539 if( p->zSql ){
3540 char c, pc = 0;
3541 fprintf(out, "-- ");
3542 for(i=0; (c = p->zSql[i])!=0; i++){
3543 if( pc=='\n' ) fprintf(out, "-- ");
3544 putc(c, out);
3545 pc = c;
3547 if( pc!='\n' ) fprintf(out, "\n");
3549 for(i=0; i<p->nOp; i++){
3550 char zHdr[100];
3551 i64 cnt = p->aOp[i].nExec;
3552 i64 cycles = p->aOp[i].nCycle;
3553 sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ",
3554 cnt,
3555 cycles,
3556 cnt>0 ? cycles/cnt : 0
3558 fprintf(out, "%s", zHdr);
3559 sqlite3VdbePrintOp(out, i, &p->aOp[i]);
3561 fclose(out);
3564 #endif
3565 return p->rc & db->errMask;
3569 ** Clean up and delete a VDBE after execution. Return an integer which is
3570 ** the result code. Write any error message text into *pzErrMsg.
3572 int sqlite3VdbeFinalize(Vdbe *p){
3573 int rc = SQLITE_OK;
3574 assert( VDBE_RUN_STATE>VDBE_READY_STATE );
3575 assert( VDBE_HALT_STATE>VDBE_READY_STATE );
3576 assert( VDBE_INIT_STATE<VDBE_READY_STATE );
3577 if( p->eVdbeState>=VDBE_READY_STATE ){
3578 rc = sqlite3VdbeReset(p);
3579 assert( (rc & p->db->errMask)==rc );
3581 sqlite3VdbeDelete(p);
3582 return rc;
3586 ** If parameter iOp is less than zero, then invoke the destructor for
3587 ** all auxiliary data pointers currently cached by the VM passed as
3588 ** the first argument.
3590 ** Or, if iOp is greater than or equal to zero, then the destructor is
3591 ** only invoked for those auxiliary data pointers created by the user
3592 ** function invoked by the OP_Function opcode at instruction iOp of
3593 ** VM pVdbe, and only then if:
3595 ** * the associated function parameter is the 32nd or later (counting
3596 ** from left to right), or
3598 ** * the corresponding bit in argument mask is clear (where the first
3599 ** function parameter corresponds to bit 0 etc.).
3601 void sqlite3VdbeDeleteAuxData(sqlite3 *db, AuxData **pp, int iOp, int mask){
3602 while( *pp ){
3603 AuxData *pAux = *pp;
3604 if( (iOp<0)
3605 || (pAux->iAuxOp==iOp
3606 && pAux->iAuxArg>=0
3607 && (pAux->iAuxArg>31 || !(mask & MASKBIT32(pAux->iAuxArg))))
3609 testcase( pAux->iAuxArg==31 );
3610 if( pAux->xDeleteAux ){
3611 pAux->xDeleteAux(pAux->pAux);
3613 *pp = pAux->pNextAux;
3614 sqlite3DbFree(db, pAux);
3615 }else{
3616 pp= &pAux->pNextAux;
3622 ** Free all memory associated with the Vdbe passed as the second argument,
3623 ** except for object itself, which is preserved.
3625 ** The difference between this function and sqlite3VdbeDelete() is that
3626 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with
3627 ** the database connection and frees the object itself.
3629 static void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){
3630 SubProgram *pSub, *pNext;
3631 assert( db!=0 );
3632 assert( p->db==0 || p->db==db );
3633 if( p->aColName ){
3634 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
3635 sqlite3DbNNFreeNN(db, p->aColName);
3637 for(pSub=p->pProgram; pSub; pSub=pNext){
3638 pNext = pSub->pNext;
3639 vdbeFreeOpArray(db, pSub->aOp, pSub->nOp);
3640 sqlite3DbFree(db, pSub);
3642 if( p->eVdbeState!=VDBE_INIT_STATE ){
3643 releaseMemArray(p->aVar, p->nVar);
3644 if( p->pVList ) sqlite3DbNNFreeNN(db, p->pVList);
3645 if( p->pFree ) sqlite3DbNNFreeNN(db, p->pFree);
3647 vdbeFreeOpArray(db, p->aOp, p->nOp);
3648 if( p->zSql ) sqlite3DbNNFreeNN(db, p->zSql);
3649 #ifdef SQLITE_ENABLE_NORMALIZE
3650 sqlite3DbFree(db, p->zNormSql);
3652 DblquoteStr *pThis, *pNxt;
3653 for(pThis=p->pDblStr; pThis; pThis=pNxt){
3654 pNxt = pThis->pNextStr;
3655 sqlite3DbFree(db, pThis);
3658 #endif
3659 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
3661 int i;
3662 for(i=0; i<p->nScan; i++){
3663 sqlite3DbFree(db, p->aScan[i].zName);
3665 sqlite3DbFree(db, p->aScan);
3667 #endif
3671 ** Delete an entire VDBE.
3673 void sqlite3VdbeDelete(Vdbe *p){
3674 sqlite3 *db;
3676 assert( p!=0 );
3677 db = p->db;
3678 assert( db!=0 );
3679 assert( sqlite3_mutex_held(db->mutex) );
3680 sqlite3VdbeClearObject(db, p);
3681 if( db->pnBytesFreed==0 ){
3682 assert( p->ppVPrev!=0 );
3683 *p->ppVPrev = p->pVNext;
3684 if( p->pVNext ){
3685 p->pVNext->ppVPrev = p->ppVPrev;
3688 sqlite3DbNNFreeNN(db, p);
3692 ** The cursor "p" has a pending seek operation that has not yet been
3693 ** carried out. Seek the cursor now. If an error occurs, return
3694 ** the appropriate error code.
3696 int SQLITE_NOINLINE sqlite3VdbeFinishMoveto(VdbeCursor *p){
3697 int res, rc;
3698 #ifdef SQLITE_TEST
3699 extern int sqlite3_search_count;
3700 #endif
3701 assert( p->deferredMoveto );
3702 assert( p->isTable );
3703 assert( p->eCurType==CURTYPE_BTREE );
3704 rc = sqlite3BtreeTableMoveto(p->uc.pCursor, p->movetoTarget, 0, &res);
3705 if( rc ) return rc;
3706 if( res!=0 ) return SQLITE_CORRUPT_BKPT;
3707 #ifdef SQLITE_TEST
3708 sqlite3_search_count++;
3709 #endif
3710 p->deferredMoveto = 0;
3711 p->cacheStatus = CACHE_STALE;
3712 return SQLITE_OK;
3716 ** Something has moved cursor "p" out of place. Maybe the row it was
3717 ** pointed to was deleted out from under it. Or maybe the btree was
3718 ** rebalanced. Whatever the cause, try to restore "p" to the place it
3719 ** is supposed to be pointing. If the row was deleted out from under the
3720 ** cursor, set the cursor to point to a NULL row.
3722 int SQLITE_NOINLINE sqlite3VdbeHandleMovedCursor(VdbeCursor *p){
3723 int isDifferentRow, rc;
3724 assert( p->eCurType==CURTYPE_BTREE );
3725 assert( p->uc.pCursor!=0 );
3726 assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) );
3727 rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow);
3728 p->cacheStatus = CACHE_STALE;
3729 if( isDifferentRow ) p->nullRow = 1;
3730 return rc;
3734 ** Check to ensure that the cursor is valid. Restore the cursor
3735 ** if need be. Return any I/O error from the restore operation.
3737 int sqlite3VdbeCursorRestore(VdbeCursor *p){
3738 assert( p->eCurType==CURTYPE_BTREE || IsNullCursor(p) );
3739 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){
3740 return sqlite3VdbeHandleMovedCursor(p);
3742 return SQLITE_OK;
3746 ** The following functions:
3748 ** sqlite3VdbeSerialType()
3749 ** sqlite3VdbeSerialTypeLen()
3750 ** sqlite3VdbeSerialLen()
3751 ** sqlite3VdbeSerialPut() <--- in-lined into OP_MakeRecord as of 2022-04-02
3752 ** sqlite3VdbeSerialGet()
3754 ** encapsulate the code that serializes values for storage in SQLite
3755 ** data and index records. Each serialized value consists of a
3756 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
3757 ** integer, stored as a varint.
3759 ** In an SQLite index record, the serial type is stored directly before
3760 ** the blob of data that it corresponds to. In a table record, all serial
3761 ** types are stored at the start of the record, and the blobs of data at
3762 ** the end. Hence these functions allow the caller to handle the
3763 ** serial-type and data blob separately.
3765 ** The following table describes the various storage classes for data:
3767 ** serial type bytes of data type
3768 ** -------------- --------------- ---------------
3769 ** 0 0 NULL
3770 ** 1 1 signed integer
3771 ** 2 2 signed integer
3772 ** 3 3 signed integer
3773 ** 4 4 signed integer
3774 ** 5 6 signed integer
3775 ** 6 8 signed integer
3776 ** 7 8 IEEE float
3777 ** 8 0 Integer constant 0
3778 ** 9 0 Integer constant 1
3779 ** 10,11 reserved for expansion
3780 ** N>=12 and even (N-12)/2 BLOB
3781 ** N>=13 and odd (N-13)/2 text
3783 ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions
3784 ** of SQLite will not understand those serial types.
3787 #if 0 /* Inlined into the OP_MakeRecord opcode */
3789 ** Return the serial-type for the value stored in pMem.
3791 ** This routine might convert a large MEM_IntReal value into MEM_Real.
3793 ** 2019-07-11: The primary user of this subroutine was the OP_MakeRecord
3794 ** opcode in the byte-code engine. But by moving this routine in-line, we
3795 ** can omit some redundant tests and make that opcode a lot faster. So
3796 ** this routine is now only used by the STAT3 logic and STAT3 support has
3797 ** ended. The code is kept here for historical reference only.
3799 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){
3800 int flags = pMem->flags;
3801 u32 n;
3803 assert( pLen!=0 );
3804 if( flags&MEM_Null ){
3805 *pLen = 0;
3806 return 0;
3808 if( flags&(MEM_Int|MEM_IntReal) ){
3809 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
3810 # define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
3811 i64 i = pMem->u.i;
3812 u64 u;
3813 testcase( flags & MEM_Int );
3814 testcase( flags & MEM_IntReal );
3815 if( i<0 ){
3816 u = ~i;
3817 }else{
3818 u = i;
3820 if( u<=127 ){
3821 if( (i&1)==i && file_format>=4 ){
3822 *pLen = 0;
3823 return 8+(u32)u;
3824 }else{
3825 *pLen = 1;
3826 return 1;
3829 if( u<=32767 ){ *pLen = 2; return 2; }
3830 if( u<=8388607 ){ *pLen = 3; return 3; }
3831 if( u<=2147483647 ){ *pLen = 4; return 4; }
3832 if( u<=MAX_6BYTE ){ *pLen = 6; return 5; }
3833 *pLen = 8;
3834 if( flags&MEM_IntReal ){
3835 /* If the value is IntReal and is going to take up 8 bytes to store
3836 ** as an integer, then we might as well make it an 8-byte floating
3837 ** point value */
3838 pMem->u.r = (double)pMem->u.i;
3839 pMem->flags &= ~MEM_IntReal;
3840 pMem->flags |= MEM_Real;
3841 return 7;
3843 return 6;
3845 if( flags&MEM_Real ){
3846 *pLen = 8;
3847 return 7;
3849 assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) );
3850 assert( pMem->n>=0 );
3851 n = (u32)pMem->n;
3852 if( flags & MEM_Zero ){
3853 n += pMem->u.nZero;
3855 *pLen = n;
3856 return ((n*2) + 12 + ((flags&MEM_Str)!=0));
3858 #endif /* inlined into OP_MakeRecord */
3861 ** The sizes for serial types less than 128
3863 const u8 sqlite3SmallTypeSizes[128] = {
3864 /* 0 1 2 3 4 5 6 7 8 9 */
3865 /* 0 */ 0, 1, 2, 3, 4, 6, 8, 8, 0, 0,
3866 /* 10 */ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3,
3867 /* 20 */ 4, 4, 5, 5, 6, 6, 7, 7, 8, 8,
3868 /* 30 */ 9, 9, 10, 10, 11, 11, 12, 12, 13, 13,
3869 /* 40 */ 14, 14, 15, 15, 16, 16, 17, 17, 18, 18,
3870 /* 50 */ 19, 19, 20, 20, 21, 21, 22, 22, 23, 23,
3871 /* 60 */ 24, 24, 25, 25, 26, 26, 27, 27, 28, 28,
3872 /* 70 */ 29, 29, 30, 30, 31, 31, 32, 32, 33, 33,
3873 /* 80 */ 34, 34, 35, 35, 36, 36, 37, 37, 38, 38,
3874 /* 90 */ 39, 39, 40, 40, 41, 41, 42, 42, 43, 43,
3875 /* 100 */ 44, 44, 45, 45, 46, 46, 47, 47, 48, 48,
3876 /* 110 */ 49, 49, 50, 50, 51, 51, 52, 52, 53, 53,
3877 /* 120 */ 54, 54, 55, 55, 56, 56, 57, 57
3881 ** Return the length of the data corresponding to the supplied serial-type.
3883 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){
3884 if( serial_type>=128 ){
3885 return (serial_type-12)/2;
3886 }else{
3887 assert( serial_type<12
3888 || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 );
3889 return sqlite3SmallTypeSizes[serial_type];
3892 u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){
3893 assert( serial_type<128 );
3894 return sqlite3SmallTypeSizes[serial_type];
3898 ** If we are on an architecture with mixed-endian floating
3899 ** points (ex: ARM7) then swap the lower 4 bytes with the
3900 ** upper 4 bytes. Return the result.
3902 ** For most architectures, this is a no-op.
3904 ** (later): It is reported to me that the mixed-endian problem
3905 ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems
3906 ** that early versions of GCC stored the two words of a 64-bit
3907 ** float in the wrong order. And that error has been propagated
3908 ** ever since. The blame is not necessarily with GCC, though.
3909 ** GCC might have just copying the problem from a prior compiler.
3910 ** I am also told that newer versions of GCC that follow a different
3911 ** ABI get the byte order right.
3913 ** Developers using SQLite on an ARM7 should compile and run their
3914 ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG
3915 ** enabled, some asserts below will ensure that the byte order of
3916 ** floating point values is correct.
3918 ** (2007-08-30) Frank van Vugt has studied this problem closely
3919 ** and has send his findings to the SQLite developers. Frank
3920 ** writes that some Linux kernels offer floating point hardware
3921 ** emulation that uses only 32-bit mantissas instead of a full
3922 ** 48-bits as required by the IEEE standard. (This is the
3923 ** CONFIG_FPE_FASTFPE option.) On such systems, floating point
3924 ** byte swapping becomes very complicated. To avoid problems,
3925 ** the necessary byte swapping is carried out using a 64-bit integer
3926 ** rather than a 64-bit float. Frank assures us that the code here
3927 ** works for him. We, the developers, have no way to independently
3928 ** verify this, but Frank seems to know what he is talking about
3929 ** so we trust him.
3931 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
3932 u64 sqlite3FloatSwap(u64 in){
3933 union {
3934 u64 r;
3935 u32 i[2];
3936 } u;
3937 u32 t;
3939 u.r = in;
3940 t = u.i[0];
3941 u.i[0] = u.i[1];
3942 u.i[1] = t;
3943 return u.r;
3945 #endif /* SQLITE_MIXED_ENDIAN_64BIT_FLOAT */
3948 /* Input "x" is a sequence of unsigned characters that represent a
3949 ** big-endian integer. Return the equivalent native integer
3951 #define ONE_BYTE_INT(x) ((i8)(x)[0])
3952 #define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1])
3953 #define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2])
3954 #define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
3955 #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
3958 ** Deserialize the data blob pointed to by buf as serial type serial_type
3959 ** and store the result in pMem.
3961 ** This function is implemented as two separate routines for performance.
3962 ** The few cases that require local variables are broken out into a separate
3963 ** routine so that in most cases the overhead of moving the stack pointer
3964 ** is avoided.
3966 static void serialGet(
3967 const unsigned char *buf, /* Buffer to deserialize from */
3968 u32 serial_type, /* Serial type to deserialize */
3969 Mem *pMem /* Memory cell to write value into */
3971 u64 x = FOUR_BYTE_UINT(buf);
3972 u32 y = FOUR_BYTE_UINT(buf+4);
3973 x = (x<<32) + y;
3974 if( serial_type==6 ){
3975 /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit
3976 ** twos-complement integer. */
3977 pMem->u.i = *(i64*)&x;
3978 pMem->flags = MEM_Int;
3979 testcase( pMem->u.i<0 );
3980 }else{
3981 /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit
3982 ** floating point number. */
3983 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
3984 /* Verify that integers and floating point values use the same
3985 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
3986 ** defined that 64-bit floating point values really are mixed
3987 ** endian.
3989 static const u64 t1 = ((u64)0x3ff00000)<<32;
3990 static const double r1 = 1.0;
3991 u64 t2 = t1;
3992 swapMixedEndianFloat(t2);
3993 assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
3994 #endif
3995 assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 );
3996 swapMixedEndianFloat(x);
3997 memcpy(&pMem->u.r, &x, sizeof(x));
3998 pMem->flags = IsNaN(x) ? MEM_Null : MEM_Real;
4001 void sqlite3VdbeSerialGet(
4002 const unsigned char *buf, /* Buffer to deserialize from */
4003 u32 serial_type, /* Serial type to deserialize */
4004 Mem *pMem /* Memory cell to write value into */
4006 switch( serial_type ){
4007 case 10: { /* Internal use only: NULL with virtual table
4008 ** UPDATE no-change flag set */
4009 pMem->flags = MEM_Null|MEM_Zero;
4010 pMem->n = 0;
4011 pMem->u.nZero = 0;
4012 return;
4014 case 11: /* Reserved for future use */
4015 case 0: { /* Null */
4016 /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */
4017 pMem->flags = MEM_Null;
4018 return;
4020 case 1: {
4021 /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement
4022 ** integer. */
4023 pMem->u.i = ONE_BYTE_INT(buf);
4024 pMem->flags = MEM_Int;
4025 testcase( pMem->u.i<0 );
4026 return;
4028 case 2: { /* 2-byte signed integer */
4029 /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit
4030 ** twos-complement integer. */
4031 pMem->u.i = TWO_BYTE_INT(buf);
4032 pMem->flags = MEM_Int;
4033 testcase( pMem->u.i<0 );
4034 return;
4036 case 3: { /* 3-byte signed integer */
4037 /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit
4038 ** twos-complement integer. */
4039 pMem->u.i = THREE_BYTE_INT(buf);
4040 pMem->flags = MEM_Int;
4041 testcase( pMem->u.i<0 );
4042 return;
4044 case 4: { /* 4-byte signed integer */
4045 /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit
4046 ** twos-complement integer. */
4047 pMem->u.i = FOUR_BYTE_INT(buf);
4048 #ifdef __HP_cc
4049 /* Work around a sign-extension bug in the HP compiler for HP/UX */
4050 if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL;
4051 #endif
4052 pMem->flags = MEM_Int;
4053 testcase( pMem->u.i<0 );
4054 return;
4056 case 5: { /* 6-byte signed integer */
4057 /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit
4058 ** twos-complement integer. */
4059 pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf);
4060 pMem->flags = MEM_Int;
4061 testcase( pMem->u.i<0 );
4062 return;
4064 case 6: /* 8-byte signed integer */
4065 case 7: { /* IEEE floating point */
4066 /* These use local variables, so do them in a separate routine
4067 ** to avoid having to move the frame pointer in the common case */
4068 serialGet(buf,serial_type,pMem);
4069 return;
4071 case 8: /* Integer 0 */
4072 case 9: { /* Integer 1 */
4073 /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */
4074 /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */
4075 pMem->u.i = serial_type-8;
4076 pMem->flags = MEM_Int;
4077 return;
4079 default: {
4080 /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in
4081 ** length.
4082 ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and
4083 ** (N-13)/2 bytes in length. */
4084 static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem };
4085 pMem->z = (char *)buf;
4086 pMem->n = (serial_type-12)/2;
4087 pMem->flags = aFlag[serial_type&1];
4088 return;
4091 return;
4094 ** This routine is used to allocate sufficient space for an UnpackedRecord
4095 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if
4096 ** the first argument is a pointer to KeyInfo structure pKeyInfo.
4098 ** The space is either allocated using sqlite3DbMallocRaw() or from within
4099 ** the unaligned buffer passed via the second and third arguments (presumably
4100 ** stack space). If the former, then *ppFree is set to a pointer that should
4101 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the
4102 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL
4103 ** before returning.
4105 ** If an OOM error occurs, NULL is returned.
4107 UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(
4108 KeyInfo *pKeyInfo /* Description of the record */
4110 UnpackedRecord *p; /* Unpacked record to return */
4111 int nByte; /* Number of bytes required for *p */
4112 nByte = ROUND8P(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nKeyField+1);
4113 p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte);
4114 if( !p ) return 0;
4115 p->aMem = (Mem*)&((char*)p)[ROUND8P(sizeof(UnpackedRecord))];
4116 assert( pKeyInfo->aSortFlags!=0 );
4117 p->pKeyInfo = pKeyInfo;
4118 p->nField = pKeyInfo->nKeyField + 1;
4119 return p;
4123 ** Given the nKey-byte encoding of a record in pKey[], populate the
4124 ** UnpackedRecord structure indicated by the fourth argument with the
4125 ** contents of the decoded record.
4127 void sqlite3VdbeRecordUnpack(
4128 KeyInfo *pKeyInfo, /* Information about the record format */
4129 int nKey, /* Size of the binary record */
4130 const void *pKey, /* The binary record */
4131 UnpackedRecord *p /* Populate this structure before returning. */
4133 const unsigned char *aKey = (const unsigned char *)pKey;
4134 u32 d;
4135 u32 idx; /* Offset in aKey[] to read from */
4136 u16 u; /* Unsigned loop counter */
4137 u32 szHdr;
4138 Mem *pMem = p->aMem;
4140 p->default_rc = 0;
4141 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
4142 idx = getVarint32(aKey, szHdr);
4143 d = szHdr;
4144 u = 0;
4145 while( idx<szHdr && d<=(u32)nKey ){
4146 u32 serial_type;
4148 idx += getVarint32(&aKey[idx], serial_type);
4149 pMem->enc = pKeyInfo->enc;
4150 pMem->db = pKeyInfo->db;
4151 /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
4152 pMem->szMalloc = 0;
4153 pMem->z = 0;
4154 sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
4155 d += sqlite3VdbeSerialTypeLen(serial_type);
4156 pMem++;
4157 if( (++u)>=p->nField ) break;
4159 if( d>(u32)nKey && u ){
4160 assert( CORRUPT_DB );
4161 /* In a corrupt record entry, the last pMem might have been set up using
4162 ** uninitialized memory. Overwrite its value with NULL, to prevent
4163 ** warnings from MSAN. */
4164 sqlite3VdbeMemSetNull(pMem-1);
4166 assert( u<=pKeyInfo->nKeyField + 1 );
4167 p->nField = u;
4170 #ifdef SQLITE_DEBUG
4172 ** This function compares two index or table record keys in the same way
4173 ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(),
4174 ** this function deserializes and compares values using the
4175 ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used
4176 ** in assert() statements to ensure that the optimized code in
4177 ** sqlite3VdbeRecordCompare() returns results with these two primitives.
4179 ** Return true if the result of comparison is equivalent to desiredResult.
4180 ** Return false if there is a disagreement.
4182 static int vdbeRecordCompareDebug(
4183 int nKey1, const void *pKey1, /* Left key */
4184 const UnpackedRecord *pPKey2, /* Right key */
4185 int desiredResult /* Correct answer */
4187 u32 d1; /* Offset into aKey[] of next data element */
4188 u32 idx1; /* Offset into aKey[] of next header element */
4189 u32 szHdr1; /* Number of bytes in header */
4190 int i = 0;
4191 int rc = 0;
4192 const unsigned char *aKey1 = (const unsigned char *)pKey1;
4193 KeyInfo *pKeyInfo;
4194 Mem mem1;
4196 pKeyInfo = pPKey2->pKeyInfo;
4197 if( pKeyInfo->db==0 ) return 1;
4198 mem1.enc = pKeyInfo->enc;
4199 mem1.db = pKeyInfo->db;
4200 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */
4201 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
4203 /* Compilers may complain that mem1.u.i is potentially uninitialized.
4204 ** We could initialize it, as shown here, to silence those complaints.
4205 ** But in fact, mem1.u.i will never actually be used uninitialized, and doing
4206 ** the unnecessary initialization has a measurable negative performance
4207 ** impact, since this routine is a very high runner. And so, we choose
4208 ** to ignore the compiler warnings and leave this variable uninitialized.
4210 /* mem1.u.i = 0; // not needed, here to silence compiler warning */
4212 idx1 = getVarint32(aKey1, szHdr1);
4213 if( szHdr1>98307 ) return SQLITE_CORRUPT;
4214 d1 = szHdr1;
4215 assert( pKeyInfo->nAllField>=pPKey2->nField || CORRUPT_DB );
4216 assert( pKeyInfo->aSortFlags!=0 );
4217 assert( pKeyInfo->nKeyField>0 );
4218 assert( idx1<=szHdr1 || CORRUPT_DB );
4220 u32 serial_type1;
4222 /* Read the serial types for the next element in each key. */
4223 idx1 += getVarint32( aKey1+idx1, serial_type1 );
4225 /* Verify that there is enough key space remaining to avoid
4226 ** a buffer overread. The "d1+serial_type1+2" subexpression will
4227 ** always be greater than or equal to the amount of required key space.
4228 ** Use that approximation to avoid the more expensive call to
4229 ** sqlite3VdbeSerialTypeLen() in the common case.
4231 if( d1+(u64)serial_type1+2>(u64)nKey1
4232 && d1+(u64)sqlite3VdbeSerialTypeLen(serial_type1)>(u64)nKey1
4234 break;
4237 /* Extract the values to be compared.
4239 sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
4240 d1 += sqlite3VdbeSerialTypeLen(serial_type1);
4242 /* Do the comparison
4244 rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i],
4245 pKeyInfo->nAllField>i ? pKeyInfo->aColl[i] : 0);
4246 if( rc!=0 ){
4247 assert( mem1.szMalloc==0 ); /* See comment below */
4248 if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL)
4249 && ((mem1.flags & MEM_Null) || (pPKey2->aMem[i].flags & MEM_Null))
4251 rc = -rc;
4253 if( pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC ){
4254 rc = -rc; /* Invert the result for DESC sort order. */
4256 goto debugCompareEnd;
4258 i++;
4259 }while( idx1<szHdr1 && i<pPKey2->nField );
4261 /* No memory allocation is ever used on mem1. Prove this using
4262 ** the following assert(). If the assert() fails, it indicates a
4263 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
4265 assert( mem1.szMalloc==0 );
4267 /* rc==0 here means that one of the keys ran out of fields and
4268 ** all the fields up to that point were equal. Return the default_rc
4269 ** value. */
4270 rc = pPKey2->default_rc;
4272 debugCompareEnd:
4273 if( desiredResult==0 && rc==0 ) return 1;
4274 if( desiredResult<0 && rc<0 ) return 1;
4275 if( desiredResult>0 && rc>0 ) return 1;
4276 if( CORRUPT_DB ) return 1;
4277 if( pKeyInfo->db->mallocFailed ) return 1;
4278 return 0;
4280 #endif
4282 #ifdef SQLITE_DEBUG
4284 ** Count the number of fields (a.k.a. columns) in the record given by
4285 ** pKey,nKey. The verify that this count is less than or equal to the
4286 ** limit given by pKeyInfo->nAllField.
4288 ** If this constraint is not satisfied, it means that the high-speed
4289 ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will
4290 ** not work correctly. If this assert() ever fires, it probably means
4291 ** that the KeyInfo.nKeyField or KeyInfo.nAllField values were computed
4292 ** incorrectly.
4294 static void vdbeAssertFieldCountWithinLimits(
4295 int nKey, const void *pKey, /* The record to verify */
4296 const KeyInfo *pKeyInfo /* Compare size with this KeyInfo */
4298 int nField = 0;
4299 u32 szHdr;
4300 u32 idx;
4301 u32 notUsed;
4302 const unsigned char *aKey = (const unsigned char*)pKey;
4304 if( CORRUPT_DB ) return;
4305 idx = getVarint32(aKey, szHdr);
4306 assert( nKey>=0 );
4307 assert( szHdr<=(u32)nKey );
4308 while( idx<szHdr ){
4309 idx += getVarint32(aKey+idx, notUsed);
4310 nField++;
4312 assert( nField <= pKeyInfo->nAllField );
4314 #else
4315 # define vdbeAssertFieldCountWithinLimits(A,B,C)
4316 #endif
4319 ** Both *pMem1 and *pMem2 contain string values. Compare the two values
4320 ** using the collation sequence pColl. As usual, return a negative , zero
4321 ** or positive value if *pMem1 is less than, equal to or greater than
4322 ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);".
4324 static int vdbeCompareMemString(
4325 const Mem *pMem1,
4326 const Mem *pMem2,
4327 const CollSeq *pColl,
4328 u8 *prcErr /* If an OOM occurs, set to SQLITE_NOMEM */
4330 if( pMem1->enc==pColl->enc ){
4331 /* The strings are already in the correct encoding. Call the
4332 ** comparison function directly */
4333 return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
4334 }else{
4335 int rc;
4336 const void *v1, *v2;
4337 Mem c1;
4338 Mem c2;
4339 sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null);
4340 sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null);
4341 sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
4342 sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
4343 v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
4344 v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
4345 if( (v1==0 || v2==0) ){
4346 if( prcErr ) *prcErr = SQLITE_NOMEM_BKPT;
4347 rc = 0;
4348 }else{
4349 rc = pColl->xCmp(pColl->pUser, c1.n, v1, c2.n, v2);
4351 sqlite3VdbeMemReleaseMalloc(&c1);
4352 sqlite3VdbeMemReleaseMalloc(&c2);
4353 return rc;
4358 ** The input pBlob is guaranteed to be a Blob that is not marked
4359 ** with MEM_Zero. Return true if it could be a zero-blob.
4361 static int isAllZero(const char *z, int n){
4362 int i;
4363 for(i=0; i<n; i++){
4364 if( z[i] ) return 0;
4366 return 1;
4370 ** Compare two blobs. Return negative, zero, or positive if the first
4371 ** is less than, equal to, or greater than the second, respectively.
4372 ** If one blob is a prefix of the other, then the shorter is the lessor.
4374 SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){
4375 int c;
4376 int n1 = pB1->n;
4377 int n2 = pB2->n;
4379 /* It is possible to have a Blob value that has some non-zero content
4380 ** followed by zero content. But that only comes up for Blobs formed
4381 ** by the OP_MakeRecord opcode, and such Blobs never get passed into
4382 ** sqlite3MemCompare(). */
4383 assert( (pB1->flags & MEM_Zero)==0 || n1==0 );
4384 assert( (pB2->flags & MEM_Zero)==0 || n2==0 );
4386 if( (pB1->flags|pB2->flags) & MEM_Zero ){
4387 if( pB1->flags & pB2->flags & MEM_Zero ){
4388 return pB1->u.nZero - pB2->u.nZero;
4389 }else if( pB1->flags & MEM_Zero ){
4390 if( !isAllZero(pB2->z, pB2->n) ) return -1;
4391 return pB1->u.nZero - n2;
4392 }else{
4393 if( !isAllZero(pB1->z, pB1->n) ) return +1;
4394 return n1 - pB2->u.nZero;
4397 c = memcmp(pB1->z, pB2->z, n1>n2 ? n2 : n1);
4398 if( c ) return c;
4399 return n1 - n2;
4403 ** Do a comparison between a 64-bit signed integer and a 64-bit floating-point
4404 ** number. Return negative, zero, or positive if the first (i64) is less than,
4405 ** equal to, or greater than the second (double).
4407 int sqlite3IntFloatCompare(i64 i, double r){
4408 if( sizeof(LONGDOUBLE_TYPE)>8 ){
4409 LONGDOUBLE_TYPE x = (LONGDOUBLE_TYPE)i;
4410 testcase( x<r );
4411 testcase( x>r );
4412 testcase( x==r );
4413 if( x<r ) return -1;
4414 if( x>r ) return +1; /*NO_TEST*/ /* work around bugs in gcov */
4415 return 0; /*NO_TEST*/ /* work around bugs in gcov */
4416 }else{
4417 i64 y;
4418 double s;
4419 if( r<-9223372036854775808.0 ) return +1;
4420 if( r>=9223372036854775808.0 ) return -1;
4421 y = (i64)r;
4422 if( i<y ) return -1;
4423 if( i>y ) return +1;
4424 s = (double)i;
4425 if( s<r ) return -1;
4426 if( s>r ) return +1;
4427 return 0;
4432 ** Compare the values contained by the two memory cells, returning
4433 ** negative, zero or positive if pMem1 is less than, equal to, or greater
4434 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers
4435 ** and reals) sorted numerically, followed by text ordered by the collating
4436 ** sequence pColl and finally blob's ordered by memcmp().
4438 ** Two NULL values are considered equal by this function.
4440 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
4441 int f1, f2;
4442 int combined_flags;
4444 f1 = pMem1->flags;
4445 f2 = pMem2->flags;
4446 combined_flags = f1|f2;
4447 assert( !sqlite3VdbeMemIsRowSet(pMem1) && !sqlite3VdbeMemIsRowSet(pMem2) );
4449 /* If one value is NULL, it is less than the other. If both values
4450 ** are NULL, return 0.
4452 if( combined_flags&MEM_Null ){
4453 return (f2&MEM_Null) - (f1&MEM_Null);
4456 /* At least one of the two values is a number
4458 if( combined_flags&(MEM_Int|MEM_Real|MEM_IntReal) ){
4459 testcase( combined_flags & MEM_Int );
4460 testcase( combined_flags & MEM_Real );
4461 testcase( combined_flags & MEM_IntReal );
4462 if( (f1 & f2 & (MEM_Int|MEM_IntReal))!=0 ){
4463 testcase( f1 & f2 & MEM_Int );
4464 testcase( f1 & f2 & MEM_IntReal );
4465 if( pMem1->u.i < pMem2->u.i ) return -1;
4466 if( pMem1->u.i > pMem2->u.i ) return +1;
4467 return 0;
4469 if( (f1 & f2 & MEM_Real)!=0 ){
4470 if( pMem1->u.r < pMem2->u.r ) return -1;
4471 if( pMem1->u.r > pMem2->u.r ) return +1;
4472 return 0;
4474 if( (f1&(MEM_Int|MEM_IntReal))!=0 ){
4475 testcase( f1 & MEM_Int );
4476 testcase( f1 & MEM_IntReal );
4477 if( (f2&MEM_Real)!=0 ){
4478 return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r);
4479 }else if( (f2&(MEM_Int|MEM_IntReal))!=0 ){
4480 if( pMem1->u.i < pMem2->u.i ) return -1;
4481 if( pMem1->u.i > pMem2->u.i ) return +1;
4482 return 0;
4483 }else{
4484 return -1;
4487 if( (f1&MEM_Real)!=0 ){
4488 if( (f2&(MEM_Int|MEM_IntReal))!=0 ){
4489 testcase( f2 & MEM_Int );
4490 testcase( f2 & MEM_IntReal );
4491 return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r);
4492 }else{
4493 return -1;
4496 return +1;
4499 /* If one value is a string and the other is a blob, the string is less.
4500 ** If both are strings, compare using the collating functions.
4502 if( combined_flags&MEM_Str ){
4503 if( (f1 & MEM_Str)==0 ){
4504 return 1;
4506 if( (f2 & MEM_Str)==0 ){
4507 return -1;
4510 assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed );
4511 assert( pMem1->enc==SQLITE_UTF8 ||
4512 pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );
4514 /* The collation sequence must be defined at this point, even if
4515 ** the user deletes the collation sequence after the vdbe program is
4516 ** compiled (this was not always the case).
4518 assert( !pColl || pColl->xCmp );
4520 if( pColl ){
4521 return vdbeCompareMemString(pMem1, pMem2, pColl, 0);
4523 /* If a NULL pointer was passed as the collate function, fall through
4524 ** to the blob case and use memcmp(). */
4527 /* Both values must be blobs. Compare using memcmp(). */
4528 return sqlite3BlobCompare(pMem1, pMem2);
4533 ** The first argument passed to this function is a serial-type that
4534 ** corresponds to an integer - all values between 1 and 9 inclusive
4535 ** except 7. The second points to a buffer containing an integer value
4536 ** serialized according to serial_type. This function deserializes
4537 ** and returns the value.
4539 static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){
4540 u32 y;
4541 assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) );
4542 switch( serial_type ){
4543 case 0:
4544 case 1:
4545 testcase( aKey[0]&0x80 );
4546 return ONE_BYTE_INT(aKey);
4547 case 2:
4548 testcase( aKey[0]&0x80 );
4549 return TWO_BYTE_INT(aKey);
4550 case 3:
4551 testcase( aKey[0]&0x80 );
4552 return THREE_BYTE_INT(aKey);
4553 case 4: {
4554 testcase( aKey[0]&0x80 );
4555 y = FOUR_BYTE_UINT(aKey);
4556 return (i64)*(int*)&y;
4558 case 5: {
4559 testcase( aKey[0]&0x80 );
4560 return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
4562 case 6: {
4563 u64 x = FOUR_BYTE_UINT(aKey);
4564 testcase( aKey[0]&0x80 );
4565 x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
4566 return (i64)*(i64*)&x;
4570 return (serial_type - 8);
4574 ** This function compares the two table rows or index records
4575 ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero
4576 ** or positive integer if key1 is less than, equal to or
4577 ** greater than key2. The {nKey1, pKey1} key must be a blob
4578 ** created by the OP_MakeRecord opcode of the VDBE. The pPKey2
4579 ** key must be a parsed key such as obtained from
4580 ** sqlite3VdbeParseRecord.
4582 ** If argument bSkip is non-zero, it is assumed that the caller has already
4583 ** determined that the first fields of the keys are equal.
4585 ** Key1 and Key2 do not have to contain the same number of fields. If all
4586 ** fields that appear in both keys are equal, then pPKey2->default_rc is
4587 ** returned.
4589 ** If database corruption is discovered, set pPKey2->errCode to
4590 ** SQLITE_CORRUPT and return 0. If an OOM error is encountered,
4591 ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the
4592 ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db).
4594 int sqlite3VdbeRecordCompareWithSkip(
4595 int nKey1, const void *pKey1, /* Left key */
4596 UnpackedRecord *pPKey2, /* Right key */
4597 int bSkip /* If true, skip the first field */
4599 u32 d1; /* Offset into aKey[] of next data element */
4600 int i; /* Index of next field to compare */
4601 u32 szHdr1; /* Size of record header in bytes */
4602 u32 idx1; /* Offset of first type in header */
4603 int rc = 0; /* Return value */
4604 Mem *pRhs = pPKey2->aMem; /* Next field of pPKey2 to compare */
4605 KeyInfo *pKeyInfo;
4606 const unsigned char *aKey1 = (const unsigned char *)pKey1;
4607 Mem mem1;
4609 /* If bSkip is true, then the caller has already determined that the first
4610 ** two elements in the keys are equal. Fix the various stack variables so
4611 ** that this routine begins comparing at the second field. */
4612 if( bSkip ){
4613 u32 s1 = aKey1[1];
4614 if( s1<0x80 ){
4615 idx1 = 2;
4616 }else{
4617 idx1 = 1 + sqlite3GetVarint32(&aKey1[1], &s1);
4619 szHdr1 = aKey1[0];
4620 d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1);
4621 i = 1;
4622 pRhs++;
4623 }else{
4624 if( (szHdr1 = aKey1[0])<0x80 ){
4625 idx1 = 1;
4626 }else{
4627 idx1 = sqlite3GetVarint32(aKey1, &szHdr1);
4629 d1 = szHdr1;
4630 i = 0;
4632 if( d1>(unsigned)nKey1 ){
4633 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4634 return 0; /* Corruption */
4637 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
4638 assert( pPKey2->pKeyInfo->nAllField>=pPKey2->nField
4639 || CORRUPT_DB );
4640 assert( pPKey2->pKeyInfo->aSortFlags!=0 );
4641 assert( pPKey2->pKeyInfo->nKeyField>0 );
4642 assert( idx1<=szHdr1 || CORRUPT_DB );
4643 while( 1 /*exit-by-break*/ ){
4644 u32 serial_type;
4646 /* RHS is an integer */
4647 if( pRhs->flags & (MEM_Int|MEM_IntReal) ){
4648 testcase( pRhs->flags & MEM_Int );
4649 testcase( pRhs->flags & MEM_IntReal );
4650 serial_type = aKey1[idx1];
4651 testcase( serial_type==12 );
4652 if( serial_type>=10 ){
4653 rc = serial_type==10 ? -1 : +1;
4654 }else if( serial_type==0 ){
4655 rc = -1;
4656 }else if( serial_type==7 ){
4657 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
4658 rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r);
4659 }else{
4660 i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]);
4661 i64 rhs = pRhs->u.i;
4662 if( lhs<rhs ){
4663 rc = -1;
4664 }else if( lhs>rhs ){
4665 rc = +1;
4670 /* RHS is real */
4671 else if( pRhs->flags & MEM_Real ){
4672 serial_type = aKey1[idx1];
4673 if( serial_type>=10 ){
4674 /* Serial types 12 or greater are strings and blobs (greater than
4675 ** numbers). Types 10 and 11 are currently "reserved for future
4676 ** use", so it doesn't really matter what the results of comparing
4677 ** them to numberic values are. */
4678 rc = serial_type==10 ? -1 : +1;
4679 }else if( serial_type==0 ){
4680 rc = -1;
4681 }else{
4682 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
4683 if( serial_type==7 ){
4684 if( mem1.u.r<pRhs->u.r ){
4685 rc = -1;
4686 }else if( mem1.u.r>pRhs->u.r ){
4687 rc = +1;
4689 }else{
4690 rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r);
4695 /* RHS is a string */
4696 else if( pRhs->flags & MEM_Str ){
4697 getVarint32NR(&aKey1[idx1], serial_type);
4698 testcase( serial_type==12 );
4699 if( serial_type<12 ){
4700 rc = -1;
4701 }else if( !(serial_type & 0x01) ){
4702 rc = +1;
4703 }else{
4704 mem1.n = (serial_type - 12) / 2;
4705 testcase( (d1+mem1.n)==(unsigned)nKey1 );
4706 testcase( (d1+mem1.n+1)==(unsigned)nKey1 );
4707 if( (d1+mem1.n) > (unsigned)nKey1
4708 || (pKeyInfo = pPKey2->pKeyInfo)->nAllField<=i
4710 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4711 return 0; /* Corruption */
4712 }else if( pKeyInfo->aColl[i] ){
4713 mem1.enc = pKeyInfo->enc;
4714 mem1.db = pKeyInfo->db;
4715 mem1.flags = MEM_Str;
4716 mem1.z = (char*)&aKey1[d1];
4717 rc = vdbeCompareMemString(
4718 &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode
4720 }else{
4721 int nCmp = MIN(mem1.n, pRhs->n);
4722 rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
4723 if( rc==0 ) rc = mem1.n - pRhs->n;
4728 /* RHS is a blob */
4729 else if( pRhs->flags & MEM_Blob ){
4730 assert( (pRhs->flags & MEM_Zero)==0 || pRhs->n==0 );
4731 getVarint32NR(&aKey1[idx1], serial_type);
4732 testcase( serial_type==12 );
4733 if( serial_type<12 || (serial_type & 0x01) ){
4734 rc = -1;
4735 }else{
4736 int nStr = (serial_type - 12) / 2;
4737 testcase( (d1+nStr)==(unsigned)nKey1 );
4738 testcase( (d1+nStr+1)==(unsigned)nKey1 );
4739 if( (d1+nStr) > (unsigned)nKey1 ){
4740 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4741 return 0; /* Corruption */
4742 }else if( pRhs->flags & MEM_Zero ){
4743 if( !isAllZero((const char*)&aKey1[d1],nStr) ){
4744 rc = 1;
4745 }else{
4746 rc = nStr - pRhs->u.nZero;
4748 }else{
4749 int nCmp = MIN(nStr, pRhs->n);
4750 rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
4751 if( rc==0 ) rc = nStr - pRhs->n;
4756 /* RHS is null */
4757 else{
4758 serial_type = aKey1[idx1];
4759 rc = (serial_type!=0 && serial_type!=10);
4762 if( rc!=0 ){
4763 int sortFlags = pPKey2->pKeyInfo->aSortFlags[i];
4764 if( sortFlags ){
4765 if( (sortFlags & KEYINFO_ORDER_BIGNULL)==0
4766 || ((sortFlags & KEYINFO_ORDER_DESC)
4767 !=(serial_type==0 || (pRhs->flags&MEM_Null)))
4769 rc = -rc;
4772 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) );
4773 assert( mem1.szMalloc==0 ); /* See comment below */
4774 return rc;
4777 i++;
4778 if( i==pPKey2->nField ) break;
4779 pRhs++;
4780 d1 += sqlite3VdbeSerialTypeLen(serial_type);
4781 if( d1>(unsigned)nKey1 ) break;
4782 idx1 += sqlite3VarintLen(serial_type);
4783 if( idx1>=(unsigned)szHdr1 ){
4784 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4785 return 0; /* Corrupt index */
4789 /* No memory allocation is ever used on mem1. Prove this using
4790 ** the following assert(). If the assert() fails, it indicates a
4791 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */
4792 assert( mem1.szMalloc==0 );
4794 /* rc==0 here means that one or both of the keys ran out of fields and
4795 ** all the fields up to that point were equal. Return the default_rc
4796 ** value. */
4797 assert( CORRUPT_DB
4798 || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc)
4799 || pPKey2->pKeyInfo->db->mallocFailed
4801 pPKey2->eqSeen = 1;
4802 return pPKey2->default_rc;
4804 int sqlite3VdbeRecordCompare(
4805 int nKey1, const void *pKey1, /* Left key */
4806 UnpackedRecord *pPKey2 /* Right key */
4808 return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0);
4813 ** This function is an optimized version of sqlite3VdbeRecordCompare()
4814 ** that (a) the first field of pPKey2 is an integer, and (b) the
4815 ** size-of-header varint at the start of (pKey1/nKey1) fits in a single
4816 ** byte (i.e. is less than 128).
4818 ** To avoid concerns about buffer overreads, this routine is only used
4819 ** on schemas where the maximum valid header size is 63 bytes or less.
4821 static int vdbeRecordCompareInt(
4822 int nKey1, const void *pKey1, /* Left key */
4823 UnpackedRecord *pPKey2 /* Right key */
4825 const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F];
4826 int serial_type = ((const u8*)pKey1)[1];
4827 int res;
4828 u32 y;
4829 u64 x;
4830 i64 v;
4831 i64 lhs;
4833 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
4834 assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB );
4835 switch( serial_type ){
4836 case 1: { /* 1-byte signed integer */
4837 lhs = ONE_BYTE_INT(aKey);
4838 testcase( lhs<0 );
4839 break;
4841 case 2: { /* 2-byte signed integer */
4842 lhs = TWO_BYTE_INT(aKey);
4843 testcase( lhs<0 );
4844 break;
4846 case 3: { /* 3-byte signed integer */
4847 lhs = THREE_BYTE_INT(aKey);
4848 testcase( lhs<0 );
4849 break;
4851 case 4: { /* 4-byte signed integer */
4852 y = FOUR_BYTE_UINT(aKey);
4853 lhs = (i64)*(int*)&y;
4854 testcase( lhs<0 );
4855 break;
4857 case 5: { /* 6-byte signed integer */
4858 lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
4859 testcase( lhs<0 );
4860 break;
4862 case 6: { /* 8-byte signed integer */
4863 x = FOUR_BYTE_UINT(aKey);
4864 x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
4865 lhs = *(i64*)&x;
4866 testcase( lhs<0 );
4867 break;
4869 case 8:
4870 lhs = 0;
4871 break;
4872 case 9:
4873 lhs = 1;
4874 break;
4876 /* This case could be removed without changing the results of running
4877 ** this code. Including it causes gcc to generate a faster switch
4878 ** statement (since the range of switch targets now starts at zero and
4879 ** is contiguous) but does not cause any duplicate code to be generated
4880 ** (as gcc is clever enough to combine the two like cases). Other
4881 ** compilers might be similar. */
4882 case 0: case 7:
4883 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
4885 default:
4886 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
4889 assert( pPKey2->u.i == pPKey2->aMem[0].u.i );
4890 v = pPKey2->u.i;
4891 if( v>lhs ){
4892 res = pPKey2->r1;
4893 }else if( v<lhs ){
4894 res = pPKey2->r2;
4895 }else if( pPKey2->nField>1 ){
4896 /* The first fields of the two keys are equal. Compare the trailing
4897 ** fields. */
4898 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
4899 }else{
4900 /* The first fields of the two keys are equal and there are no trailing
4901 ** fields. Return pPKey2->default_rc in this case. */
4902 res = pPKey2->default_rc;
4903 pPKey2->eqSeen = 1;
4906 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) );
4907 return res;
4911 ** This function is an optimized version of sqlite3VdbeRecordCompare()
4912 ** that (a) the first field of pPKey2 is a string, that (b) the first field
4913 ** uses the collation sequence BINARY and (c) that the size-of-header varint
4914 ** at the start of (pKey1/nKey1) fits in a single byte.
4916 static int vdbeRecordCompareString(
4917 int nKey1, const void *pKey1, /* Left key */
4918 UnpackedRecord *pPKey2 /* Right key */
4920 const u8 *aKey1 = (const u8*)pKey1;
4921 int serial_type;
4922 int res;
4924 assert( pPKey2->aMem[0].flags & MEM_Str );
4925 assert( pPKey2->aMem[0].n == pPKey2->n );
4926 assert( pPKey2->aMem[0].z == pPKey2->u.z );
4927 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
4928 serial_type = (signed char)(aKey1[1]);
4930 vrcs_restart:
4931 if( serial_type<12 ){
4932 if( serial_type<0 ){
4933 sqlite3GetVarint32(&aKey1[1], (u32*)&serial_type);
4934 if( serial_type>=12 ) goto vrcs_restart;
4935 assert( CORRUPT_DB );
4937 res = pPKey2->r1; /* (pKey1/nKey1) is a number or a null */
4938 }else if( !(serial_type & 0x01) ){
4939 res = pPKey2->r2; /* (pKey1/nKey1) is a blob */
4940 }else{
4941 int nCmp;
4942 int nStr;
4943 int szHdr = aKey1[0];
4945 nStr = (serial_type-12) / 2;
4946 if( (szHdr + nStr) > nKey1 ){
4947 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4948 return 0; /* Corruption */
4950 nCmp = MIN( pPKey2->n, nStr );
4951 res = memcmp(&aKey1[szHdr], pPKey2->u.z, nCmp);
4953 if( res>0 ){
4954 res = pPKey2->r2;
4955 }else if( res<0 ){
4956 res = pPKey2->r1;
4957 }else{
4958 res = nStr - pPKey2->n;
4959 if( res==0 ){
4960 if( pPKey2->nField>1 ){
4961 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
4962 }else{
4963 res = pPKey2->default_rc;
4964 pPKey2->eqSeen = 1;
4966 }else if( res>0 ){
4967 res = pPKey2->r2;
4968 }else{
4969 res = pPKey2->r1;
4974 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res)
4975 || CORRUPT_DB
4976 || pPKey2->pKeyInfo->db->mallocFailed
4978 return res;
4982 ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function
4983 ** suitable for comparing serialized records to the unpacked record passed
4984 ** as the only argument.
4986 RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){
4987 /* varintRecordCompareInt() and varintRecordCompareString() both assume
4988 ** that the size-of-header varint that occurs at the start of each record
4989 ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt()
4990 ** also assumes that it is safe to overread a buffer by at least the
4991 ** maximum possible legal header size plus 8 bytes. Because there is
4992 ** guaranteed to be at least 74 (but not 136) bytes of padding following each
4993 ** buffer passed to varintRecordCompareInt() this makes it convenient to
4994 ** limit the size of the header to 64 bytes in cases where the first field
4995 ** is an integer.
4997 ** The easiest way to enforce this limit is to consider only records with
4998 ** 13 fields or less. If the first field is an integer, the maximum legal
4999 ** header size is (12*5 + 1 + 1) bytes. */
5000 if( p->pKeyInfo->nAllField<=13 ){
5001 int flags = p->aMem[0].flags;
5002 if( p->pKeyInfo->aSortFlags[0] ){
5003 if( p->pKeyInfo->aSortFlags[0] & KEYINFO_ORDER_BIGNULL ){
5004 return sqlite3VdbeRecordCompare;
5006 p->r1 = 1;
5007 p->r2 = -1;
5008 }else{
5009 p->r1 = -1;
5010 p->r2 = 1;
5012 if( (flags & MEM_Int) ){
5013 p->u.i = p->aMem[0].u.i;
5014 return vdbeRecordCompareInt;
5016 testcase( flags & MEM_Real );
5017 testcase( flags & MEM_Null );
5018 testcase( flags & MEM_Blob );
5019 if( (flags & (MEM_Real|MEM_IntReal|MEM_Null|MEM_Blob))==0
5020 && p->pKeyInfo->aColl[0]==0
5022 assert( flags & MEM_Str );
5023 p->u.z = p->aMem[0].z;
5024 p->n = p->aMem[0].n;
5025 return vdbeRecordCompareString;
5029 return sqlite3VdbeRecordCompare;
5033 ** pCur points at an index entry created using the OP_MakeRecord opcode.
5034 ** Read the rowid (the last field in the record) and store it in *rowid.
5035 ** Return SQLITE_OK if everything works, or an error code otherwise.
5037 ** pCur might be pointing to text obtained from a corrupt database file.
5038 ** So the content cannot be trusted. Do appropriate checks on the content.
5040 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){
5041 i64 nCellKey = 0;
5042 int rc;
5043 u32 szHdr; /* Size of the header */
5044 u32 typeRowid; /* Serial type of the rowid */
5045 u32 lenRowid; /* Size of the rowid */
5046 Mem m, v;
5048 /* Get the size of the index entry. Only indices entries of less
5049 ** than 2GiB are support - anything large must be database corruption.
5050 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
5051 ** this code can safely assume that nCellKey is 32-bits
5053 assert( sqlite3BtreeCursorIsValid(pCur) );
5054 nCellKey = sqlite3BtreePayloadSize(pCur);
5055 assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey );
5057 /* Read in the complete content of the index entry */
5058 sqlite3VdbeMemInit(&m, db, 0);
5059 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m);
5060 if( rc ){
5061 return rc;
5064 /* The index entry must begin with a header size */
5065 getVarint32NR((u8*)m.z, szHdr);
5066 testcase( szHdr==3 );
5067 testcase( szHdr==(u32)m.n );
5068 testcase( szHdr>0x7fffffff );
5069 assert( m.n>=0 );
5070 if( unlikely(szHdr<3 || szHdr>(unsigned)m.n) ){
5071 goto idx_rowid_corruption;
5074 /* The last field of the index should be an integer - the ROWID.
5075 ** Verify that the last entry really is an integer. */
5076 getVarint32NR((u8*)&m.z[szHdr-1], typeRowid);
5077 testcase( typeRowid==1 );
5078 testcase( typeRowid==2 );
5079 testcase( typeRowid==3 );
5080 testcase( typeRowid==4 );
5081 testcase( typeRowid==5 );
5082 testcase( typeRowid==6 );
5083 testcase( typeRowid==8 );
5084 testcase( typeRowid==9 );
5085 if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){
5086 goto idx_rowid_corruption;
5088 lenRowid = sqlite3SmallTypeSizes[typeRowid];
5089 testcase( (u32)m.n==szHdr+lenRowid );
5090 if( unlikely((u32)m.n<szHdr+lenRowid) ){
5091 goto idx_rowid_corruption;
5094 /* Fetch the integer off the end of the index record */
5095 sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
5096 *rowid = v.u.i;
5097 sqlite3VdbeMemReleaseMalloc(&m);
5098 return SQLITE_OK;
5100 /* Jump here if database corruption is detected after m has been
5101 ** allocated. Free the m object and return SQLITE_CORRUPT. */
5102 idx_rowid_corruption:
5103 testcase( m.szMalloc!=0 );
5104 sqlite3VdbeMemReleaseMalloc(&m);
5105 return SQLITE_CORRUPT_BKPT;
5109 ** Compare the key of the index entry that cursor pC is pointing to against
5110 ** the key string in pUnpacked. Write into *pRes a number
5111 ** that is negative, zero, or positive if pC is less than, equal to,
5112 ** or greater than pUnpacked. Return SQLITE_OK on success.
5114 ** pUnpacked is either created without a rowid or is truncated so that it
5115 ** omits the rowid at the end. The rowid at the end of the index entry
5116 ** is ignored as well. Hence, this routine only compares the prefixes
5117 ** of the keys prior to the final rowid, not the entire key.
5119 int sqlite3VdbeIdxKeyCompare(
5120 sqlite3 *db, /* Database connection */
5121 VdbeCursor *pC, /* The cursor to compare against */
5122 UnpackedRecord *pUnpacked, /* Unpacked version of key */
5123 int *res /* Write the comparison result here */
5125 i64 nCellKey = 0;
5126 int rc;
5127 BtCursor *pCur;
5128 Mem m;
5130 assert( pC->eCurType==CURTYPE_BTREE );
5131 pCur = pC->uc.pCursor;
5132 assert( sqlite3BtreeCursorIsValid(pCur) );
5133 nCellKey = sqlite3BtreePayloadSize(pCur);
5134 /* nCellKey will always be between 0 and 0xffffffff because of the way
5135 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
5136 if( nCellKey<=0 || nCellKey>0x7fffffff ){
5137 *res = 0;
5138 return SQLITE_CORRUPT_BKPT;
5140 sqlite3VdbeMemInit(&m, db, 0);
5141 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m);
5142 if( rc ){
5143 return rc;
5145 *res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, pUnpacked, 0);
5146 sqlite3VdbeMemReleaseMalloc(&m);
5147 return SQLITE_OK;
5151 ** This routine sets the value to be returned by subsequent calls to
5152 ** sqlite3_changes() on the database handle 'db'.
5154 void sqlite3VdbeSetChanges(sqlite3 *db, i64 nChange){
5155 assert( sqlite3_mutex_held(db->mutex) );
5156 db->nChange = nChange;
5157 db->nTotalChange += nChange;
5161 ** Set a flag in the vdbe to update the change counter when it is finalised
5162 ** or reset.
5164 void sqlite3VdbeCountChanges(Vdbe *v){
5165 v->changeCntOn = 1;
5169 ** Mark every prepared statement associated with a database connection
5170 ** as expired.
5172 ** An expired statement means that recompilation of the statement is
5173 ** recommend. Statements expire when things happen that make their
5174 ** programs obsolete. Removing user-defined functions or collating
5175 ** sequences, or changing an authorization function are the types of
5176 ** things that make prepared statements obsolete.
5178 ** If iCode is 1, then expiration is advisory. The statement should
5179 ** be reprepared before being restarted, but if it is already running
5180 ** it is allowed to run to completion.
5182 ** Internally, this function just sets the Vdbe.expired flag on all
5183 ** prepared statements. The flag is set to 1 for an immediate expiration
5184 ** and set to 2 for an advisory expiration.
5186 void sqlite3ExpirePreparedStatements(sqlite3 *db, int iCode){
5187 Vdbe *p;
5188 for(p = db->pVdbe; p; p=p->pVNext){
5189 p->expired = iCode+1;
5194 ** Return the database associated with the Vdbe.
5196 sqlite3 *sqlite3VdbeDb(Vdbe *v){
5197 return v->db;
5201 ** Return the SQLITE_PREPARE flags for a Vdbe.
5203 u8 sqlite3VdbePrepareFlags(Vdbe *v){
5204 return v->prepFlags;
5208 ** Return a pointer to an sqlite3_value structure containing the value bound
5209 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return
5210 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_*
5211 ** constants) to the value before returning it.
5213 ** The returned value must be freed by the caller using sqlite3ValueFree().
5215 sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){
5216 assert( iVar>0 );
5217 if( v ){
5218 Mem *pMem = &v->aVar[iVar-1];
5219 assert( (v->db->flags & SQLITE_EnableQPSG)==0 );
5220 if( 0==(pMem->flags & MEM_Null) ){
5221 sqlite3_value *pRet = sqlite3ValueNew(v->db);
5222 if( pRet ){
5223 sqlite3VdbeMemCopy((Mem *)pRet, pMem);
5224 sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8);
5226 return pRet;
5229 return 0;
5233 ** Configure SQL variable iVar so that binding a new value to it signals
5234 ** to sqlite3_reoptimize() that re-preparing the statement may result
5235 ** in a better query plan.
5237 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){
5238 assert( iVar>0 );
5239 assert( (v->db->flags & SQLITE_EnableQPSG)==0 );
5240 if( iVar>=32 ){
5241 v->expmask |= 0x80000000;
5242 }else{
5243 v->expmask |= ((u32)1 << (iVar-1));
5248 ** Cause a function to throw an error if it was call from OP_PureFunc
5249 ** rather than OP_Function.
5251 ** OP_PureFunc means that the function must be deterministic, and should
5252 ** throw an error if it is given inputs that would make it non-deterministic.
5253 ** This routine is invoked by date/time functions that use non-deterministic
5254 ** features such as 'now'.
5256 int sqlite3NotPureFunc(sqlite3_context *pCtx){
5257 const VdbeOp *pOp;
5258 #ifdef SQLITE_ENABLE_STAT4
5259 if( pCtx->pVdbe==0 ) return 1;
5260 #endif
5261 pOp = pCtx->pVdbe->aOp + pCtx->iOp;
5262 if( pOp->opcode==OP_PureFunc ){
5263 const char *zContext;
5264 char *zMsg;
5265 if( pOp->p5 & NC_IsCheck ){
5266 zContext = "a CHECK constraint";
5267 }else if( pOp->p5 & NC_GenCol ){
5268 zContext = "a generated column";
5269 }else{
5270 zContext = "an index";
5272 zMsg = sqlite3_mprintf("non-deterministic use of %s() in %s",
5273 pCtx->pFunc->zName, zContext);
5274 sqlite3_result_error(pCtx, zMsg, -1);
5275 sqlite3_free(zMsg);
5276 return 0;
5278 return 1;
5281 #if defined(SQLITE_ENABLE_CURSOR_HINTS) && defined(SQLITE_DEBUG)
5283 ** This Walker callback is used to help verify that calls to
5284 ** sqlite3BtreeCursorHint() with opcode BTREE_HINT_RANGE have
5285 ** byte-code register values correctly initialized.
5287 int sqlite3CursorRangeHintExprCheck(Walker *pWalker, Expr *pExpr){
5288 if( pExpr->op==TK_REGISTER ){
5289 assert( (pWalker->u.aMem[pExpr->iTable].flags & MEM_Undefined)==0 );
5291 return WRC_Continue;
5293 #endif /* SQLITE_ENABLE_CURSOR_HINTS && SQLITE_DEBUG */
5295 #ifndef SQLITE_OMIT_VIRTUALTABLE
5297 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
5298 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
5299 ** in memory obtained from sqlite3DbMalloc).
5301 void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){
5302 if( pVtab->zErrMsg ){
5303 sqlite3 *db = p->db;
5304 sqlite3DbFree(db, p->zErrMsg);
5305 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
5306 sqlite3_free(pVtab->zErrMsg);
5307 pVtab->zErrMsg = 0;
5310 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5312 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5315 ** If the second argument is not NULL, release any allocations associated
5316 ** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord
5317 ** structure itself, using sqlite3DbFree().
5319 ** This function is used to free UnpackedRecord structures allocated by
5320 ** the vdbeUnpackRecord() function found in vdbeapi.c.
5322 static void vdbeFreeUnpacked(sqlite3 *db, int nField, UnpackedRecord *p){
5323 assert( db!=0 );
5324 if( p ){
5325 int i;
5326 for(i=0; i<nField; i++){
5327 Mem *pMem = &p->aMem[i];
5328 if( pMem->zMalloc ) sqlite3VdbeMemReleaseMalloc(pMem);
5330 sqlite3DbNNFreeNN(db, p);
5333 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
5335 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5337 ** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call,
5338 ** then cursor passed as the second argument should point to the row about
5339 ** to be update or deleted. If the application calls sqlite3_preupdate_old(),
5340 ** the required value will be read from the row the cursor points to.
5342 void sqlite3VdbePreUpdateHook(
5343 Vdbe *v, /* Vdbe pre-update hook is invoked by */
5344 VdbeCursor *pCsr, /* Cursor to grab old.* values from */
5345 int op, /* SQLITE_INSERT, UPDATE or DELETE */
5346 const char *zDb, /* Database name */
5347 Table *pTab, /* Modified table */
5348 i64 iKey1, /* Initial key value */
5349 int iReg, /* Register for new.* record */
5350 int iBlobWrite
5352 sqlite3 *db = v->db;
5353 i64 iKey2;
5354 PreUpdate preupdate;
5355 const char *zTbl = pTab->zName;
5356 static const u8 fakeSortOrder = 0;
5357 #ifdef SQLITE_DEBUG
5358 int nRealCol;
5359 if( pTab->tabFlags & TF_WithoutRowid ){
5360 nRealCol = sqlite3PrimaryKeyIndex(pTab)->nColumn;
5361 }else if( pTab->tabFlags & TF_HasVirtual ){
5362 nRealCol = pTab->nNVCol;
5363 }else{
5364 nRealCol = pTab->nCol;
5366 #endif
5368 assert( db->pPreUpdate==0 );
5369 memset(&preupdate, 0, sizeof(PreUpdate));
5370 if( HasRowid(pTab)==0 ){
5371 iKey1 = iKey2 = 0;
5372 preupdate.pPk = sqlite3PrimaryKeyIndex(pTab);
5373 }else{
5374 if( op==SQLITE_UPDATE ){
5375 iKey2 = v->aMem[iReg].u.i;
5376 }else{
5377 iKey2 = iKey1;
5381 assert( pCsr!=0 );
5382 assert( pCsr->eCurType==CURTYPE_BTREE );
5383 assert( pCsr->nField==nRealCol
5384 || (pCsr->nField==nRealCol+1 && op==SQLITE_DELETE && iReg==-1)
5387 preupdate.v = v;
5388 preupdate.pCsr = pCsr;
5389 preupdate.op = op;
5390 preupdate.iNewReg = iReg;
5391 preupdate.keyinfo.db = db;
5392 preupdate.keyinfo.enc = ENC(db);
5393 preupdate.keyinfo.nKeyField = pTab->nCol;
5394 preupdate.keyinfo.aSortFlags = (u8*)&fakeSortOrder;
5395 preupdate.iKey1 = iKey1;
5396 preupdate.iKey2 = iKey2;
5397 preupdate.pTab = pTab;
5398 preupdate.iBlobWrite = iBlobWrite;
5400 db->pPreUpdate = &preupdate;
5401 db->xPreUpdateCallback(db->pPreUpdateArg, db, op, zDb, zTbl, iKey1, iKey2);
5402 db->pPreUpdate = 0;
5403 sqlite3DbFree(db, preupdate.aRecord);
5404 vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pUnpacked);
5405 vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pNewUnpacked);
5406 if( preupdate.aNew ){
5407 int i;
5408 for(i=0; i<pCsr->nField; i++){
5409 sqlite3VdbeMemRelease(&preupdate.aNew[i]);
5411 sqlite3DbNNFreeNN(db, preupdate.aNew);
5414 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */