4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains code used for creating, destroying, and populating
13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)
15 #include "sqliteInt.h"
18 /* Forward references */
19 static void freeEphemeralFunction(sqlite3
*db
, FuncDef
*pDef
);
20 static void vdbeFreeOpArray(sqlite3
*, Op
*, int);
23 ** Create a new virtual database engine.
25 Vdbe
*sqlite3VdbeCreate(Parse
*pParse
){
26 sqlite3
*db
= pParse
->db
;
28 p
= sqlite3DbMallocRawNN(db
, sizeof(Vdbe
) );
30 memset(&p
->aOp
, 0, sizeof(Vdbe
)-offsetof(Vdbe
,aOp
));
33 db
->pVdbe
->ppVPrev
= &p
->pVNext
;
35 p
->pVNext
= db
->pVdbe
;
36 p
->ppVPrev
= &db
->pVdbe
;
38 assert( p
->eVdbeState
==VDBE_INIT_STATE
);
41 assert( pParse
->aLabel
==0 );
42 assert( pParse
->nLabel
==0 );
43 assert( p
->nOpAlloc
==0 );
44 assert( pParse
->szOpAlloc
==0 );
45 sqlite3VdbeAddOp2(p
, OP_Init
, 0, 1);
50 ** Return the Parse object that owns a Vdbe object.
52 Parse
*sqlite3VdbeParser(Vdbe
*p
){
57 ** Change the error string stored in Vdbe.zErrMsg
59 void sqlite3VdbeError(Vdbe
*p
, const char *zFormat
, ...){
61 sqlite3DbFree(p
->db
, p
->zErrMsg
);
62 va_start(ap
, zFormat
);
63 p
->zErrMsg
= sqlite3VMPrintf(p
->db
, zFormat
, ap
);
68 ** Remember the SQL string for a prepared statement.
70 void sqlite3VdbeSetSql(Vdbe
*p
, const char *z
, int n
, u8 prepFlags
){
72 p
->prepFlags
= prepFlags
;
73 if( (prepFlags
& SQLITE_PREPARE_SAVESQL
)==0 ){
77 p
->zSql
= sqlite3DbStrNDup(p
->db
, z
, n
);
80 #ifdef SQLITE_ENABLE_NORMALIZE
82 ** Add a new element to the Vdbe->pDblStr list.
84 void sqlite3VdbeAddDblquoteStr(sqlite3
*db
, Vdbe
*p
, const char *z
){
86 int n
= sqlite3Strlen30(z
);
87 DblquoteStr
*pStr
= sqlite3DbMallocRawNN(db
,
88 sizeof(*pStr
)+n
+1-sizeof(pStr
->z
));
90 pStr
->pNextStr
= p
->pDblStr
;
92 memcpy(pStr
->z
, z
, n
+1);
98 #ifdef SQLITE_ENABLE_NORMALIZE
100 ** zId of length nId is a double-quoted identifier. Check to see if
101 ** that identifier is really used as a string literal.
103 int sqlite3VdbeUsesDoubleQuotedString(
104 Vdbe
*pVdbe
, /* The prepared statement */
105 const char *zId
/* The double-quoted identifier, already dequoted */
109 if( pVdbe
->pDblStr
==0 ) return 0;
110 for(pStr
=pVdbe
->pDblStr
; pStr
; pStr
=pStr
->pNextStr
){
111 if( strcmp(zId
, pStr
->z
)==0 ) return 1;
118 ** Swap byte-code between two VDBE structures.
120 ** This happens after pB was previously run and returned
121 ** SQLITE_SCHEMA. The statement was then reprepared in pA.
122 ** This routine transfers the new bytecode in pA over to pB
123 ** so that pB can be run again. The old pB byte code is
124 ** moved back to pA so that it will be cleaned up when pA is
127 void sqlite3VdbeSwap(Vdbe
*pA
, Vdbe
*pB
){
128 Vdbe tmp
, *pTmp
, **ppTmp
;
130 assert( pA
->db
==pB
->db
);
135 pA
->pVNext
= pB
->pVNext
;
138 pA
->ppVPrev
= pB
->ppVPrev
;
143 #ifdef SQLITE_ENABLE_NORMALIZE
145 pA
->zNormSql
= pB
->zNormSql
;
148 pB
->expmask
= pA
->expmask
;
149 pB
->prepFlags
= pA
->prepFlags
;
150 memcpy(pB
->aCounter
, pA
->aCounter
, sizeof(pB
->aCounter
));
151 pB
->aCounter
[SQLITE_STMTSTATUS_REPREPARE
]++;
155 ** Resize the Vdbe.aOp array so that it is at least nOp elements larger
156 ** than its current size. nOp is guaranteed to be less than or equal
157 ** to 1024/sizeof(Op).
159 ** If an out-of-memory error occurs while resizing the array, return
160 ** SQLITE_NOMEM. In this case Vdbe.aOp and Vdbe.nOpAlloc remain
161 ** unchanged (this is so that any opcodes already allocated can be
162 ** correctly deallocated along with the rest of the Vdbe).
164 static int growOpArray(Vdbe
*v
, int nOp
){
166 Parse
*p
= v
->pParse
;
168 /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force
169 ** more frequent reallocs and hence provide more opportunities for
170 ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used
171 ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array
172 ** by the minimum* amount required until the size reaches 512. Normal
173 ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current
174 ** size of the op array or add 1KB of space, whichever is smaller. */
175 #ifdef SQLITE_TEST_REALLOC_STRESS
176 sqlite3_int64 nNew
= (v
->nOpAlloc
>=512 ? 2*(sqlite3_int64
)v
->nOpAlloc
177 : (sqlite3_int64
)v
->nOpAlloc
+nOp
);
179 sqlite3_int64 nNew
= (v
->nOpAlloc
? 2*(sqlite3_int64
)v
->nOpAlloc
180 : (sqlite3_int64
)(1024/sizeof(Op
)));
181 UNUSED_PARAMETER(nOp
);
184 /* Ensure that the size of a VDBE does not grow too large */
185 if( nNew
> p
->db
->aLimit
[SQLITE_LIMIT_VDBE_OP
] ){
186 sqlite3OomFault(p
->db
);
190 assert( nOp
<=(int)(1024/sizeof(Op
)) );
191 assert( nNew
>=(v
->nOpAlloc
+nOp
) );
192 pNew
= sqlite3DbRealloc(p
->db
, v
->aOp
, nNew
*sizeof(Op
));
194 p
->szOpAlloc
= sqlite3DbMallocSize(p
->db
, pNew
);
195 v
->nOpAlloc
= p
->szOpAlloc
/sizeof(Op
);
198 return (pNew
? SQLITE_OK
: SQLITE_NOMEM_BKPT
);
202 /* This routine is just a convenient place to set a breakpoint that will
203 ** fire after each opcode is inserted and displayed using
204 ** "PRAGMA vdbe_addoptrace=on". Parameters "pc" (program counter) and
205 ** pOp are available to make the breakpoint conditional.
207 ** Other useful labels for breakpoints include:
208 ** test_trace_breakpoint(pc,pOp)
209 ** sqlite3CorruptError(lineno)
210 ** sqlite3MisuseError(lineno)
211 ** sqlite3CantopenError(lineno)
213 static void test_addop_breakpoint(int pc
, Op
*pOp
){
222 ** Add a new instruction to the list of instructions current in the
223 ** VDBE. Return the address of the new instruction.
227 ** p Pointer to the VDBE
229 ** op The opcode for this instruction
231 ** p1, p2, p3 Operands
233 ** Use the sqlite3VdbeResolveLabel() function to fix an address and
234 ** the sqlite3VdbeChangeP4() function to change the value of the P4
237 static SQLITE_NOINLINE
int growOp3(Vdbe
*p
, int op
, int p1
, int p2
, int p3
){
238 assert( p
->nOpAlloc
<=p
->nOp
);
239 if( growOpArray(p
, 1) ) return 1;
240 assert( p
->nOpAlloc
>p
->nOp
);
241 return sqlite3VdbeAddOp3(p
, op
, p1
, p2
, p3
);
243 int sqlite3VdbeAddOp3(Vdbe
*p
, int op
, int p1
, int p2
, int p3
){
248 assert( p
->eVdbeState
==VDBE_INIT_STATE
);
249 assert( op
>=0 && op
<0xff );
250 if( p
->nOpAlloc
<=i
){
251 return growOp3(p
, op
, p1
, p2
, p3
);
257 pOp
->opcode
= (u8
)op
;
263 pOp
->p4type
= P4_NOTUSED
;
264 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
267 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || defined(VDBE_PROFILE)
272 if( p
->db
->flags
& SQLITE_VdbeAddopTrace
){
273 sqlite3VdbePrintOp(0, i
, &p
->aOp
[i
]);
274 test_addop_breakpoint(i
, &p
->aOp
[i
]);
277 #ifdef SQLITE_VDBE_COVERAGE
282 int sqlite3VdbeAddOp0(Vdbe
*p
, int op
){
283 return sqlite3VdbeAddOp3(p
, op
, 0, 0, 0);
285 int sqlite3VdbeAddOp1(Vdbe
*p
, int op
, int p1
){
286 return sqlite3VdbeAddOp3(p
, op
, p1
, 0, 0);
288 int sqlite3VdbeAddOp2(Vdbe
*p
, int op
, int p1
, int p2
){
289 return sqlite3VdbeAddOp3(p
, op
, p1
, p2
, 0);
292 /* Generate code for an unconditional jump to instruction iDest
294 int sqlite3VdbeGoto(Vdbe
*p
, int iDest
){
295 return sqlite3VdbeAddOp3(p
, OP_Goto
, 0, iDest
, 0);
298 /* Generate code to cause the string zStr to be loaded into
301 int sqlite3VdbeLoadString(Vdbe
*p
, int iDest
, const char *zStr
){
302 return sqlite3VdbeAddOp4(p
, OP_String8
, 0, iDest
, 0, zStr
, 0);
306 ** Generate code that initializes multiple registers to string or integer
307 ** constants. The registers begin with iDest and increase consecutively.
308 ** One register is initialized for each characgter in zTypes[]. For each
309 ** "s" character in zTypes[], the register is a string if the argument is
310 ** not NULL, or OP_Null if the value is a null pointer. For each "i" character
311 ** in zTypes[], the register is initialized to an integer.
313 ** If the input string does not end with "X" then an OP_ResultRow instruction
314 ** is generated for the values inserted.
316 void sqlite3VdbeMultiLoad(Vdbe
*p
, int iDest
, const char *zTypes
, ...){
320 va_start(ap
, zTypes
);
321 for(i
=0; (c
= zTypes
[i
])!=0; i
++){
323 const char *z
= va_arg(ap
, const char*);
324 sqlite3VdbeAddOp4(p
, z
==0 ? OP_Null
: OP_String8
, 0, iDest
+i
, 0, z
, 0);
326 sqlite3VdbeAddOp2(p
, OP_Integer
, va_arg(ap
, int), iDest
+i
);
328 goto skip_op_resultrow
;
331 sqlite3VdbeAddOp2(p
, OP_ResultRow
, iDest
, i
);
337 ** Add an opcode that includes the p4 value as a pointer.
339 int sqlite3VdbeAddOp4(
340 Vdbe
*p
, /* Add the opcode to this VM */
341 int op
, /* The new opcode */
342 int p1
, /* The P1 operand */
343 int p2
, /* The P2 operand */
344 int p3
, /* The P3 operand */
345 const char *zP4
, /* The P4 operand */
346 int p4type
/* P4 operand type */
348 int addr
= sqlite3VdbeAddOp3(p
, op
, p1
, p2
, p3
);
349 sqlite3VdbeChangeP4(p
, addr
, zP4
, p4type
);
354 ** Add an OP_Function or OP_PureFunc opcode.
356 ** The eCallCtx argument is information (typically taken from Expr.op2)
357 ** that describes the calling context of the function. 0 means a general
358 ** function call. NC_IsCheck means called by a check constraint,
359 ** NC_IdxExpr means called as part of an index expression. NC_PartIdx
360 ** means in the WHERE clause of a partial index. NC_GenCol means called
361 ** while computing a generated column value. 0 is the usual case.
363 int sqlite3VdbeAddFunctionCall(
364 Parse
*pParse
, /* Parsing context */
365 int p1
, /* Constant argument mask */
366 int p2
, /* First argument register */
367 int p3
, /* Register into which results are written */
368 int nArg
, /* Number of argument */
369 const FuncDef
*pFunc
, /* The function to be invoked */
370 int eCallCtx
/* Calling context */
372 Vdbe
*v
= pParse
->pVdbe
;
375 sqlite3_context
*pCtx
;
377 nByte
= sizeof(*pCtx
) + (nArg
-1)*sizeof(sqlite3_value
*);
378 pCtx
= sqlite3DbMallocRawNN(pParse
->db
, nByte
);
380 assert( pParse
->db
->mallocFailed
);
381 freeEphemeralFunction(pParse
->db
, (FuncDef
*)pFunc
);
385 pCtx
->pFunc
= (FuncDef
*)pFunc
;
389 pCtx
->iOp
= sqlite3VdbeCurrentAddr(v
);
390 addr
= sqlite3VdbeAddOp4(v
, eCallCtx
? OP_PureFunc
: OP_Function
,
391 p1
, p2
, p3
, (char*)pCtx
, P4_FUNCCTX
);
392 sqlite3VdbeChangeP5(v
, eCallCtx
& NC_SelfRef
);
393 sqlite3MayAbort(pParse
);
398 ** Add an opcode that includes the p4 value with a P4_INT64 or
401 int sqlite3VdbeAddOp4Dup8(
402 Vdbe
*p
, /* Add the opcode to this VM */
403 int op
, /* The new opcode */
404 int p1
, /* The P1 operand */
405 int p2
, /* The P2 operand */
406 int p3
, /* The P3 operand */
407 const u8
*zP4
, /* The P4 operand */
408 int p4type
/* P4 operand type */
410 char *p4copy
= sqlite3DbMallocRawNN(sqlite3VdbeDb(p
), 8);
411 if( p4copy
) memcpy(p4copy
, zP4
, 8);
412 return sqlite3VdbeAddOp4(p
, op
, p1
, p2
, p3
, p4copy
, p4type
);
415 #ifndef SQLITE_OMIT_EXPLAIN
417 ** Return the address of the current EXPLAIN QUERY PLAN baseline.
420 int sqlite3VdbeExplainParent(Parse
*pParse
){
422 if( pParse
->addrExplain
==0 ) return 0;
423 pOp
= sqlite3VdbeGetOp(pParse
->pVdbe
, pParse
->addrExplain
);
428 ** Set a debugger breakpoint on the following routine in order to
429 ** monitor the EXPLAIN QUERY PLAN code generation.
431 #if defined(SQLITE_DEBUG)
432 void sqlite3ExplainBreakpoint(const char *z1
, const char *z2
){
439 ** Add a new OP_Explain opcode.
441 ** If the bPush flag is true, then make this opcode the parent for
442 ** subsequent Explains until sqlite3VdbeExplainPop() is called.
444 int sqlite3VdbeExplain(Parse
*pParse
, u8 bPush
, const char *zFmt
, ...){
446 #if !defined(SQLITE_DEBUG)
447 /* Always include the OP_Explain opcodes if SQLITE_DEBUG is defined.
448 ** But omit them (for performance) during production builds */
449 if( pParse
->explain
==2 || IS_STMT_SCANSTATUS(pParse
->db
) )
457 zMsg
= sqlite3VMPrintf(pParse
->db
, zFmt
, ap
);
461 addr
= sqlite3VdbeAddOp4(v
, OP_Explain
, iThis
, pParse
->addrExplain
, 0,
463 sqlite3ExplainBreakpoint(bPush
?"PUSH":"", sqlite3VdbeGetLastOp(v
)->p4
.z
);
465 pParse
->addrExplain
= iThis
;
467 sqlite3VdbeScanStatus(v
, iThis
, 0, 0, 0, 0);
473 ** Pop the EXPLAIN QUERY PLAN stack one level.
475 void sqlite3VdbeExplainPop(Parse
*pParse
){
476 sqlite3ExplainBreakpoint("POP", 0);
477 pParse
->addrExplain
= sqlite3VdbeExplainParent(pParse
);
479 #endif /* SQLITE_OMIT_EXPLAIN */
482 ** Add an OP_ParseSchema opcode. This routine is broken out from
483 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees
484 ** as having been used.
486 ** The zWhere string must have been obtained from sqlite3_malloc().
487 ** This routine will take ownership of the allocated memory.
489 void sqlite3VdbeAddParseSchemaOp(Vdbe
*p
, int iDb
, char *zWhere
, u16 p5
){
491 sqlite3VdbeAddOp4(p
, OP_ParseSchema
, iDb
, 0, 0, zWhere
, P4_DYNAMIC
);
492 sqlite3VdbeChangeP5(p
, p5
);
493 for(j
=0; j
<p
->db
->nDb
; j
++) sqlite3VdbeUsesBtree(p
, j
);
494 sqlite3MayAbort(p
->pParse
);
498 ** Add an opcode that includes the p4 value as an integer.
500 int sqlite3VdbeAddOp4Int(
501 Vdbe
*p
, /* Add the opcode to this VM */
502 int op
, /* The new opcode */
503 int p1
, /* The P1 operand */
504 int p2
, /* The P2 operand */
505 int p3
, /* The P3 operand */
506 int p4
/* The P4 operand as an integer */
508 int addr
= sqlite3VdbeAddOp3(p
, op
, p1
, p2
, p3
);
509 if( p
->db
->mallocFailed
==0 ){
510 VdbeOp
*pOp
= &p
->aOp
[addr
];
511 pOp
->p4type
= P4_INT32
;
517 /* Insert the end of a co-routine
519 void sqlite3VdbeEndCoroutine(Vdbe
*v
, int regYield
){
520 sqlite3VdbeAddOp1(v
, OP_EndCoroutine
, regYield
);
522 /* Clear the temporary register cache, thereby ensuring that each
523 ** co-routine has its own independent set of registers, because co-routines
524 ** might expect their registers to be preserved across an OP_Yield, and
525 ** that could cause problems if two or more co-routines are using the same
526 ** temporary register.
528 v
->pParse
->nTempReg
= 0;
529 v
->pParse
->nRangeReg
= 0;
533 ** Create a new symbolic label for an instruction that has yet to be
534 ** coded. The symbolic label is really just a negative number. The
535 ** label can be used as the P2 value of an operation. Later, when
536 ** the label is resolved to a specific address, the VDBE will scan
537 ** through its operation list and change all values of P2 which match
538 ** the label into the resolved address.
540 ** The VDBE knows that a P2 value is a label because labels are
541 ** always negative and P2 values are suppose to be non-negative.
542 ** Hence, a negative P2 value is a label that has yet to be resolved.
543 ** (Later:) This is only true for opcodes that have the OPFLG_JUMP
546 ** Variable usage notes:
548 ** Parse.aLabel[x] Stores the address that the x-th label resolves
549 ** into. For testing (SQLITE_DEBUG), unresolved
550 ** labels stores -1, but that is not required.
551 ** Parse.nLabelAlloc Number of slots allocated to Parse.aLabel[]
552 ** Parse.nLabel The *negative* of the number of labels that have
553 ** been issued. The negative is stored because
554 ** that gives a performance improvement over storing
555 ** the equivalent positive value.
557 int sqlite3VdbeMakeLabel(Parse
*pParse
){
558 return --pParse
->nLabel
;
562 ** Resolve label "x" to be the address of the next instruction to
563 ** be inserted. The parameter "x" must have been obtained from
564 ** a prior call to sqlite3VdbeMakeLabel().
566 static SQLITE_NOINLINE
void resizeResolveLabel(Parse
*p
, Vdbe
*v
, int j
){
567 int nNewSize
= 10 - p
->nLabel
;
568 p
->aLabel
= sqlite3DbReallocOrFree(p
->db
, p
->aLabel
,
569 nNewSize
*sizeof(p
->aLabel
[0]));
575 for(i
=p
->nLabelAlloc
; i
<nNewSize
; i
++) p
->aLabel
[i
] = -1;
577 if( nNewSize
>=100 && (nNewSize
/100)>(p
->nLabelAlloc
/100) ){
578 sqlite3ProgressCheck(p
);
580 p
->nLabelAlloc
= nNewSize
;
581 p
->aLabel
[j
] = v
->nOp
;
584 void sqlite3VdbeResolveLabel(Vdbe
*v
, int x
){
585 Parse
*p
= v
->pParse
;
587 assert( v
->eVdbeState
==VDBE_INIT_STATE
);
588 assert( j
<-p
->nLabel
);
591 if( p
->db
->flags
& SQLITE_VdbeAddopTrace
){
592 printf("RESOLVE LABEL %d to %d\n", x
, v
->nOp
);
595 if( p
->nLabelAlloc
+ p
->nLabel
< 0 ){
596 resizeResolveLabel(p
,v
,j
);
598 assert( p
->aLabel
[j
]==(-1) ); /* Labels may only be resolved once */
599 p
->aLabel
[j
] = v
->nOp
;
604 ** Mark the VDBE as one that can only be run one time.
606 void sqlite3VdbeRunOnlyOnce(Vdbe
*p
){
607 sqlite3VdbeAddOp2(p
, OP_Expire
, 1, 1);
611 ** Mark the VDBE as one that can be run multiple times.
613 void sqlite3VdbeReusable(Vdbe
*p
){
615 for(i
=1; ALWAYS(i
<p
->nOp
); i
++){
616 if( ALWAYS(p
->aOp
[i
].opcode
==OP_Expire
) ){
617 p
->aOp
[1].opcode
= OP_Noop
;
623 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */
626 ** The following type and function are used to iterate through all opcodes
627 ** in a Vdbe main program and each of the sub-programs (triggers) it may
628 ** invoke directly or indirectly. It should be used as follows:
633 ** memset(&sIter, 0, sizeof(sIter));
634 ** sIter.v = v; // v is of type Vdbe*
635 ** while( (pOp = opIterNext(&sIter)) ){
636 ** // Do something with pOp
638 ** sqlite3DbFree(v->db, sIter.apSub);
641 typedef struct VdbeOpIter VdbeOpIter
;
643 Vdbe
*v
; /* Vdbe to iterate through the opcodes of */
644 SubProgram
**apSub
; /* Array of subprograms */
645 int nSub
; /* Number of entries in apSub */
646 int iAddr
; /* Address of next instruction to return */
647 int iSub
; /* 0 = main program, 1 = first sub-program etc. */
649 static Op
*opIterNext(VdbeOpIter
*p
){
655 if( p
->iSub
<=p
->nSub
){
661 aOp
= p
->apSub
[p
->iSub
-1]->aOp
;
662 nOp
= p
->apSub
[p
->iSub
-1]->nOp
;
664 assert( p
->iAddr
<nOp
);
666 pRet
= &aOp
[p
->iAddr
];
673 if( pRet
->p4type
==P4_SUBPROGRAM
){
674 int nByte
= (p
->nSub
+1)*sizeof(SubProgram
*);
676 for(j
=0; j
<p
->nSub
; j
++){
677 if( p
->apSub
[j
]==pRet
->p4
.pProgram
) break;
680 p
->apSub
= sqlite3DbReallocOrFree(v
->db
, p
->apSub
, nByte
);
684 p
->apSub
[p
->nSub
++] = pRet
->p4
.pProgram
;
694 ** Check if the program stored in the VM associated with pParse may
695 ** throw an ABORT exception (causing the statement, but not entire transaction
696 ** to be rolled back). This condition is true if the main program or any
697 ** sub-programs contains any of the following:
699 ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
700 ** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
705 ** * OP_FkCounter with P2==0 (immediate foreign key constraint)
706 ** * OP_CreateBtree/BTREE_INTKEY and OP_InitCoroutine
707 ** (for CREATE TABLE AS SELECT ...)
709 ** Then check that the value of Parse.mayAbort is true if an
710 ** ABORT may be thrown, or false otherwise. Return true if it does
711 ** match, or false otherwise. This function is intended to be used as
712 ** part of an assert statement in the compiler. Similar to:
714 ** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) );
716 int sqlite3VdbeAssertMayAbort(Vdbe
*v
, int mayAbort
){
718 int hasFkCounter
= 0;
719 int hasCreateTable
= 0;
720 int hasCreateIndex
= 0;
721 int hasInitCoroutine
= 0;
726 memset(&sIter
, 0, sizeof(sIter
));
729 while( (pOp
= opIterNext(&sIter
))!=0 ){
730 int opcode
= pOp
->opcode
;
731 if( opcode
==OP_Destroy
|| opcode
==OP_VUpdate
|| opcode
==OP_VRename
732 || opcode
==OP_VDestroy
733 || opcode
==OP_VCreate
734 || opcode
==OP_ParseSchema
735 || opcode
==OP_Function
|| opcode
==OP_PureFunc
736 || ((opcode
==OP_Halt
|| opcode
==OP_HaltIfNull
)
737 && ((pOp
->p1
)!=SQLITE_OK
&& pOp
->p2
==OE_Abort
))
742 if( opcode
==OP_CreateBtree
&& pOp
->p3
==BTREE_INTKEY
) hasCreateTable
= 1;
744 /* hasCreateIndex may also be set for some DELETE statements that use
745 ** OP_Clear. So this routine may end up returning true in the case
746 ** where a "DELETE FROM tbl" has a statement-journal but does not
747 ** require one. This is not so bad - it is an inefficiency, not a bug. */
748 if( opcode
==OP_CreateBtree
&& pOp
->p3
==BTREE_BLOBKEY
) hasCreateIndex
= 1;
749 if( opcode
==OP_Clear
) hasCreateIndex
= 1;
751 if( opcode
==OP_InitCoroutine
) hasInitCoroutine
= 1;
752 #ifndef SQLITE_OMIT_FOREIGN_KEY
753 if( opcode
==OP_FkCounter
&& pOp
->p1
==0 && pOp
->p2
==1 ){
758 sqlite3DbFree(v
->db
, sIter
.apSub
);
760 /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred.
761 ** If malloc failed, then the while() loop above may not have iterated
762 ** through all opcodes and hasAbort may be set incorrectly. Return
763 ** true for this case to prevent the assert() in the callers frame
765 return ( v
->db
->mallocFailed
|| hasAbort
==mayAbort
|| hasFkCounter
766 || (hasCreateTable
&& hasInitCoroutine
) || hasCreateIndex
769 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */
773 ** Increment the nWrite counter in the VDBE if the cursor is not an
774 ** ephemeral cursor, or if the cursor argument is NULL.
776 void sqlite3VdbeIncrWriteCounter(Vdbe
*p
, VdbeCursor
*pC
){
778 || (pC
->eCurType
!=CURTYPE_SORTER
779 && pC
->eCurType
!=CURTYPE_PSEUDO
789 ** Assert if an Abort at this point in time might result in a corrupt
792 void sqlite3VdbeAssertAbortable(Vdbe
*p
){
793 assert( p
->nWrite
==0 || p
->usesStmtJournal
);
798 ** This routine is called after all opcodes have been inserted. It loops
799 ** through all the opcodes and fixes up some details.
801 ** (1) For each jump instruction with a negative P2 value (a label)
802 ** resolve the P2 value to an actual address.
804 ** (2) Compute the maximum number of arguments used by any SQL function
805 ** and store that value in *pMaxFuncArgs.
807 ** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately
808 ** indicate what the prepared statement actually does.
810 ** (4) (discontinued)
812 ** (5) Reclaim the memory allocated for storing labels.
814 ** This routine will only function correctly if the mkopcodeh.tcl generator
815 ** script numbers the opcodes correctly. Changes to this routine must be
816 ** coordinated with changes to mkopcodeh.tcl.
818 static void resolveP2Values(Vdbe
*p
, int *pMaxFuncArgs
){
819 int nMaxArgs
= *pMaxFuncArgs
;
821 Parse
*pParse
= p
->pParse
;
822 int *aLabel
= pParse
->aLabel
;
824 assert( pParse
->db
->mallocFailed
==0 ); /* tag-20230419-1 */
827 pOp
= &p
->aOp
[p
->nOp
-1];
828 assert( p
->aOp
[0].opcode
==OP_Init
);
829 while( 1 /* Loop termates when it reaches the OP_Init opcode */ ){
830 /* Only JUMP opcodes and the short list of special opcodes in the switch
831 ** below need to be considered. The mkopcodeh.tcl generator script groups
832 ** all these opcodes together near the front of the opcode list. Skip
833 ** any opcode that does not need processing by virtual of the fact that
834 ** it is larger than SQLITE_MX_JUMP_OPCODE, as a performance optimization.
836 if( pOp
->opcode
<=SQLITE_MX_JUMP_OPCODE
){
837 /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing
838 ** cases from this switch! */
839 switch( pOp
->opcode
){
840 case OP_Transaction
: {
841 if( pOp
->p2
!=0 ) p
->readOnly
= 0;
842 /* no break */ deliberate_fall_through
849 #ifndef SQLITE_OMIT_WAL
853 case OP_JournalMode
: {
859 assert( pOp
->p2
>=0 );
860 goto resolve_p2_values_loop_exit
;
862 #ifndef SQLITE_OMIT_VIRTUALTABLE
864 if( pOp
->p2
>nMaxArgs
) nMaxArgs
= pOp
->p2
;
869 assert( (pOp
- p
->aOp
) >= 3 );
870 assert( pOp
[-1].opcode
==OP_Integer
);
872 if( n
>nMaxArgs
) nMaxArgs
= n
;
873 /* Fall through into the default case */
874 /* no break */ deliberate_fall_through
879 /* The mkopcodeh.tcl script has so arranged things that the only
880 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to
881 ** have non-negative values for P2. */
882 assert( (sqlite3OpcodeProperty
[pOp
->opcode
] & OPFLG_JUMP
)!=0 );
883 assert( ADDR(pOp
->p2
)<-pParse
->nLabel
);
884 assert( aLabel
!=0 ); /* True because of tag-20230419-1 */
885 pOp
->p2
= aLabel
[ADDR(pOp
->p2
)];
890 /* The mkopcodeh.tcl script has so arranged things that the only
891 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to
892 ** have non-negative values for P2. */
893 assert( (sqlite3OpcodeProperty
[pOp
->opcode
]&OPFLG_JUMP
)==0 || pOp
->p2
>=0);
895 assert( pOp
>p
->aOp
);
898 resolve_p2_values_loop_exit
:
900 sqlite3DbNNFreeNN(p
->db
, pParse
->aLabel
);
904 *pMaxFuncArgs
= nMaxArgs
;
905 assert( p
->bIsReader
!=0 || DbMaskAllZero(p
->btreeMask
) );
910 ** Check to see if a subroutine contains a jump to a location outside of
911 ** the subroutine. If a jump outside the subroutine is detected, add code
912 ** that will cause the program to halt with an error message.
914 ** The subroutine consists of opcodes between iFirst and iLast. Jumps to
915 ** locations within the subroutine are acceptable. iRetReg is a register
916 ** that contains the return address. Jumps to outside the range of iFirst
917 ** through iLast are also acceptable as long as the jump destination is
918 ** an OP_Return to iReturnAddr.
920 ** A jump to an unresolved label means that the jump destination will be
921 ** beyond the current address. That is normally a jump to an early
922 ** termination and is consider acceptable.
924 ** This routine only runs during debug builds. The purpose is (of course)
925 ** to detect invalid escapes out of a subroutine. The OP_Halt opcode
926 ** is generated rather than an assert() or other error, so that ".eqp full"
927 ** will still work to show the original bytecode, to aid in debugging.
929 void sqlite3VdbeNoJumpsOutsideSubrtn(
930 Vdbe
*v
, /* The byte-code program under construction */
931 int iFirst
, /* First opcode of the subroutine */
932 int iLast
, /* Last opcode of the subroutine */
933 int iRetReg
/* Subroutine return address register */
938 sqlite3_str
*pErr
= 0;
942 if( pParse
->nErr
) return;
943 assert( iLast
>=iFirst
);
944 assert( iLast
<v
->nOp
);
945 pOp
= &v
->aOp
[iFirst
];
946 for(i
=iFirst
; i
<=iLast
; i
++, pOp
++){
947 if( (sqlite3OpcodeProperty
[pOp
->opcode
] & OPFLG_JUMP
)!=0 ){
948 int iDest
= pOp
->p2
; /* Jump destination */
949 if( iDest
==0 ) continue;
950 if( pOp
->opcode
==OP_Gosub
) continue;
954 if( j
>=-pParse
->nLabel
|| pParse
->aLabel
[j
]<0 ){
957 iDest
= pParse
->aLabel
[j
];
959 if( iDest
<iFirst
|| iDest
>iLast
){
961 for(; j
<v
->nOp
; j
++){
962 VdbeOp
*pX
= &v
->aOp
[j
];
963 if( pX
->opcode
==OP_Return
){
964 if( pX
->p1
==iRetReg
) break;
967 if( pX
->opcode
==OP_Noop
) continue;
968 if( pX
->opcode
==OP_Explain
) continue;
970 pErr
= sqlite3_str_new(0);
972 sqlite3_str_appendchar(pErr
, 1, '\n');
974 sqlite3_str_appendf(pErr
,
975 "Opcode at %d jumps to %d which is outside the "
976 "subroutine at %d..%d",
977 i
, iDest
, iFirst
, iLast
);
984 char *zErr
= sqlite3_str_finish(pErr
);
985 sqlite3VdbeAddOp4(v
, OP_Halt
, SQLITE_INTERNAL
, OE_Abort
, 0, zErr
, 0);
987 sqlite3MayAbort(pParse
);
990 #endif /* SQLITE_DEBUG */
993 ** Return the address of the next instruction to be inserted.
995 int sqlite3VdbeCurrentAddr(Vdbe
*p
){
996 assert( p
->eVdbeState
==VDBE_INIT_STATE
);
1001 ** Verify that at least N opcode slots are available in p without
1002 ** having to malloc for more space (except when compiled using
1003 ** SQLITE_TEST_REALLOC_STRESS). This interface is used during testing
1004 ** to verify that certain calls to sqlite3VdbeAddOpList() can never
1005 ** fail due to a OOM fault and hence that the return value from
1006 ** sqlite3VdbeAddOpList() will always be non-NULL.
1008 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
1009 void sqlite3VdbeVerifyNoMallocRequired(Vdbe
*p
, int N
){
1010 assert( p
->nOp
+ N
<= p
->nOpAlloc
);
1015 ** Verify that the VM passed as the only argument does not contain
1016 ** an OP_ResultRow opcode. Fail an assert() if it does. This is used
1017 ** by code in pragma.c to ensure that the implementation of certain
1018 ** pragmas comports with the flags specified in the mkpragmatab.tcl
1021 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
1022 void sqlite3VdbeVerifyNoResultRow(Vdbe
*p
){
1024 for(i
=0; i
<p
->nOp
; i
++){
1025 assert( p
->aOp
[i
].opcode
!=OP_ResultRow
);
1031 ** Generate code (a single OP_Abortable opcode) that will
1032 ** verify that the VDBE program can safely call Abort in the current
1035 #if defined(SQLITE_DEBUG)
1036 void sqlite3VdbeVerifyAbortable(Vdbe
*p
, int onError
){
1037 if( onError
==OE_Abort
) sqlite3VdbeAddOp0(p
, OP_Abortable
);
1042 ** This function returns a pointer to the array of opcodes associated with
1043 ** the Vdbe passed as the first argument. It is the callers responsibility
1044 ** to arrange for the returned array to be eventually freed using the
1045 ** vdbeFreeOpArray() function.
1047 ** Before returning, *pnOp is set to the number of entries in the returned
1048 ** array. Also, *pnMaxArg is set to the larger of its current value and
1049 ** the number of entries in the Vdbe.apArg[] array required to execute the
1050 ** returned program.
1052 VdbeOp
*sqlite3VdbeTakeOpArray(Vdbe
*p
, int *pnOp
, int *pnMaxArg
){
1053 VdbeOp
*aOp
= p
->aOp
;
1054 assert( aOp
&& !p
->db
->mallocFailed
);
1056 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */
1057 assert( DbMaskAllZero(p
->btreeMask
) );
1059 resolveP2Values(p
, pnMaxArg
);
1066 ** Add a whole list of operations to the operation stack. Return a
1067 ** pointer to the first operation inserted.
1069 ** Non-zero P2 arguments to jump instructions are automatically adjusted
1070 ** so that the jump target is relative to the first operation inserted.
1072 VdbeOp
*sqlite3VdbeAddOpList(
1073 Vdbe
*p
, /* Add opcodes to the prepared statement */
1074 int nOp
, /* Number of opcodes to add */
1075 VdbeOpList
const *aOp
, /* The opcodes to be added */
1076 int iLineno
/* Source-file line number of first opcode */
1079 VdbeOp
*pOut
, *pFirst
;
1081 assert( p
->eVdbeState
==VDBE_INIT_STATE
);
1082 if( p
->nOp
+ nOp
> p
->nOpAlloc
&& growOpArray(p
, nOp
) ){
1085 pFirst
= pOut
= &p
->aOp
[p
->nOp
];
1086 for(i
=0; i
<nOp
; i
++, aOp
++, pOut
++){
1087 pOut
->opcode
= aOp
->opcode
;
1090 assert( aOp
->p2
>=0 );
1091 if( (sqlite3OpcodeProperty
[aOp
->opcode
] & OPFLG_JUMP
)!=0 && aOp
->p2
>0 ){
1095 pOut
->p4type
= P4_NOTUSED
;
1098 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1101 #ifdef SQLITE_VDBE_COVERAGE
1102 pOut
->iSrcLine
= iLineno
+i
;
1107 if( p
->db
->flags
& SQLITE_VdbeAddopTrace
){
1108 sqlite3VdbePrintOp(0, i
+p
->nOp
, &p
->aOp
[i
+p
->nOp
]);
1116 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS)
1118 ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus().
1120 void sqlite3VdbeScanStatus(
1121 Vdbe
*p
, /* VM to add scanstatus() to */
1122 int addrExplain
, /* Address of OP_Explain (or 0) */
1123 int addrLoop
, /* Address of loop counter */
1124 int addrVisit
, /* Address of rows visited counter */
1125 LogEst nEst
, /* Estimated number of output rows */
1126 const char *zName
/* Name of table or index being scanned */
1128 if( IS_STMT_SCANSTATUS(p
->db
) ){
1129 sqlite3_int64 nByte
= (p
->nScan
+1) * sizeof(ScanStatus
);
1131 aNew
= (ScanStatus
*)sqlite3DbRealloc(p
->db
, p
->aScan
, nByte
);
1133 ScanStatus
*pNew
= &aNew
[p
->nScan
++];
1134 memset(pNew
, 0, sizeof(ScanStatus
));
1135 pNew
->addrExplain
= addrExplain
;
1136 pNew
->addrLoop
= addrLoop
;
1137 pNew
->addrVisit
= addrVisit
;
1139 pNew
->zName
= sqlite3DbStrDup(p
->db
, zName
);
1146 ** Add the range of instructions from addrStart to addrEnd (inclusive) to
1147 ** the set of those corresponding to the sqlite3_stmt_scanstatus() counters
1148 ** associated with the OP_Explain instruction at addrExplain. The
1149 ** sum of the sqlite3Hwtime() values for each of these instructions
1150 ** will be returned for SQLITE_SCANSTAT_NCYCLE requests.
1152 void sqlite3VdbeScanStatusRange(
1158 if( IS_STMT_SCANSTATUS(p
->db
) ){
1159 ScanStatus
*pScan
= 0;
1161 for(ii
=p
->nScan
-1; ii
>=0; ii
--){
1162 pScan
= &p
->aScan
[ii
];
1163 if( pScan
->addrExplain
==addrExplain
) break;
1167 if( addrEnd
<0 ) addrEnd
= sqlite3VdbeCurrentAddr(p
)-1;
1168 for(ii
=0; ii
<ArraySize(pScan
->aAddrRange
); ii
+=2){
1169 if( pScan
->aAddrRange
[ii
]==0 ){
1170 pScan
->aAddrRange
[ii
] = addrStart
;
1171 pScan
->aAddrRange
[ii
+1] = addrEnd
;
1180 ** Set the addresses for the SQLITE_SCANSTAT_NLOOP and SQLITE_SCANSTAT_NROW
1181 ** counters for the query element associated with the OP_Explain at
1184 void sqlite3VdbeScanStatusCounters(
1190 if( IS_STMT_SCANSTATUS(p
->db
) ){
1191 ScanStatus
*pScan
= 0;
1193 for(ii
=p
->nScan
-1; ii
>=0; ii
--){
1194 pScan
= &p
->aScan
[ii
];
1195 if( pScan
->addrExplain
==addrExplain
) break;
1199 pScan
->addrLoop
= addrLoop
;
1200 pScan
->addrVisit
= addrVisit
;
1204 #endif /* defined(SQLITE_ENABLE_STMT_SCANSTATUS) */
1208 ** Change the value of the opcode, or P1, P2, P3, or P5 operands
1209 ** for a specific instruction.
1211 void sqlite3VdbeChangeOpcode(Vdbe
*p
, int addr
, u8 iNewOpcode
){
1213 sqlite3VdbeGetOp(p
,addr
)->opcode
= iNewOpcode
;
1215 void sqlite3VdbeChangeP1(Vdbe
*p
, int addr
, int val
){
1217 sqlite3VdbeGetOp(p
,addr
)->p1
= val
;
1219 void sqlite3VdbeChangeP2(Vdbe
*p
, int addr
, int val
){
1220 assert( addr
>=0 || p
->db
->mallocFailed
);
1221 sqlite3VdbeGetOp(p
,addr
)->p2
= val
;
1223 void sqlite3VdbeChangeP3(Vdbe
*p
, int addr
, int val
){
1225 sqlite3VdbeGetOp(p
,addr
)->p3
= val
;
1227 void sqlite3VdbeChangeP5(Vdbe
*p
, u16 p5
){
1228 assert( p
->nOp
>0 || p
->db
->mallocFailed
);
1229 if( p
->nOp
>0 ) p
->aOp
[p
->nOp
-1].p5
= p5
;
1233 ** If the previous opcode is an OP_Column that delivers results
1234 ** into register iDest, then add the OPFLAG_TYPEOFARG flag to that
1237 void sqlite3VdbeTypeofColumn(Vdbe
*p
, int iDest
){
1238 VdbeOp
*pOp
= sqlite3VdbeGetLastOp(p
);
1239 if( pOp
->p3
==iDest
&& pOp
->opcode
==OP_Column
){
1240 pOp
->p5
|= OPFLAG_TYPEOFARG
;
1245 ** Change the P2 operand of instruction addr so that it points to
1246 ** the address of the next instruction to be coded.
1248 void sqlite3VdbeJumpHere(Vdbe
*p
, int addr
){
1249 sqlite3VdbeChangeP2(p
, addr
, p
->nOp
);
1253 ** Change the P2 operand of the jump instruction at addr so that
1254 ** the jump lands on the next opcode. Or if the jump instruction was
1255 ** the previous opcode (and is thus a no-op) then simply back up
1256 ** the next instruction counter by one slot so that the jump is
1257 ** overwritten by the next inserted opcode.
1259 ** This routine is an optimization of sqlite3VdbeJumpHere() that
1260 ** strives to omit useless byte-code like this:
1265 void sqlite3VdbeJumpHereOrPopInst(Vdbe
*p
, int addr
){
1266 if( addr
==p
->nOp
-1 ){
1267 assert( p
->aOp
[addr
].opcode
==OP_Once
1268 || p
->aOp
[addr
].opcode
==OP_If
1269 || p
->aOp
[addr
].opcode
==OP_FkIfZero
);
1270 assert( p
->aOp
[addr
].p4type
==0 );
1271 #ifdef SQLITE_VDBE_COVERAGE
1272 sqlite3VdbeGetLastOp(p
)->iSrcLine
= 0; /* Erase VdbeCoverage() macros */
1276 sqlite3VdbeChangeP2(p
, addr
, p
->nOp
);
1282 ** If the input FuncDef structure is ephemeral, then free it. If
1283 ** the FuncDef is not ephermal, then do nothing.
1285 static void freeEphemeralFunction(sqlite3
*db
, FuncDef
*pDef
){
1287 if( (pDef
->funcFlags
& SQLITE_FUNC_EPHEM
)!=0 ){
1288 sqlite3DbNNFreeNN(db
, pDef
);
1293 ** Delete a P4 value if necessary.
1295 static SQLITE_NOINLINE
void freeP4Mem(sqlite3
*db
, Mem
*p
){
1296 if( p
->szMalloc
) sqlite3DbFree(db
, p
->zMalloc
);
1297 sqlite3DbNNFreeNN(db
, p
);
1299 static SQLITE_NOINLINE
void freeP4FuncCtx(sqlite3
*db
, sqlite3_context
*p
){
1301 freeEphemeralFunction(db
, p
->pFunc
);
1302 sqlite3DbNNFreeNN(db
, p
);
1304 static void freeP4(sqlite3
*db
, int p4type
, void *p4
){
1308 freeP4FuncCtx(db
, (sqlite3_context
*)p4
);
1315 if( p4
) sqlite3DbNNFreeNN(db
, p4
);
1319 if( db
->pnBytesFreed
==0 ) sqlite3KeyInfoUnref((KeyInfo
*)p4
);
1322 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1324 sqlite3ExprDelete(db
, (Expr
*)p4
);
1329 freeEphemeralFunction(db
, (FuncDef
*)p4
);
1333 if( db
->pnBytesFreed
==0 ){
1334 sqlite3ValueFree((sqlite3_value
*)p4
);
1336 freeP4Mem(db
, (Mem
*)p4
);
1341 if( db
->pnBytesFreed
==0 ) sqlite3VtabUnlock((VTable
*)p4
);
1348 ** Free the space allocated for aOp and any p4 values allocated for the
1349 ** opcodes contained within. If aOp is not NULL it is assumed to contain
1352 static void vdbeFreeOpArray(sqlite3
*db
, Op
*aOp
, int nOp
){
1356 Op
*pOp
= &aOp
[nOp
-1];
1357 while(1){ /* Exit via break */
1358 if( pOp
->p4type
<= P4_FREE_IF_LE
) freeP4(db
, pOp
->p4type
, pOp
->p4
.p
);
1359 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1360 sqlite3DbFree(db
, pOp
->zComment
);
1362 if( pOp
==aOp
) break;
1365 sqlite3DbNNFreeNN(db
, aOp
);
1370 ** Link the SubProgram object passed as the second argument into the linked
1371 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program
1372 ** objects when the VM is no longer required.
1374 void sqlite3VdbeLinkSubProgram(Vdbe
*pVdbe
, SubProgram
*p
){
1375 p
->pNext
= pVdbe
->pProgram
;
1376 pVdbe
->pProgram
= p
;
1380 ** Return true if the given Vdbe has any SubPrograms.
1382 int sqlite3VdbeHasSubProgram(Vdbe
*pVdbe
){
1383 return pVdbe
->pProgram
!=0;
1387 ** Change the opcode at addr into OP_Noop
1389 int sqlite3VdbeChangeToNoop(Vdbe
*p
, int addr
){
1391 if( p
->db
->mallocFailed
) return 0;
1392 assert( addr
>=0 && addr
<p
->nOp
);
1393 pOp
= &p
->aOp
[addr
];
1394 freeP4(p
->db
, pOp
->p4type
, pOp
->p4
.p
);
1395 pOp
->p4type
= P4_NOTUSED
;
1397 pOp
->opcode
= OP_Noop
;
1402 ** If the last opcode is "op" and it is not a jump destination,
1403 ** then remove it. Return true if and only if an opcode was removed.
1405 int sqlite3VdbeDeletePriorOpcode(Vdbe
*p
, u8 op
){
1406 if( p
->nOp
>0 && p
->aOp
[p
->nOp
-1].opcode
==op
){
1407 return sqlite3VdbeChangeToNoop(p
, p
->nOp
-1);
1415 ** Generate an OP_ReleaseReg opcode to indicate that a range of
1416 ** registers, except any identified by mask, are no longer in use.
1418 void sqlite3VdbeReleaseRegisters(
1419 Parse
*pParse
, /* Parsing context */
1420 int iFirst
, /* Index of first register to be released */
1421 int N
, /* Number of registers to release */
1422 u32 mask
, /* Mask of registers to NOT release */
1423 int bUndefine
/* If true, mark registers as undefined */
1425 if( N
==0 || OptimizationDisabled(pParse
->db
, SQLITE_ReleaseReg
) ) return;
1426 assert( pParse
->pVdbe
);
1427 assert( iFirst
>=1 );
1428 assert( iFirst
+N
-1<=pParse
->nMem
);
1429 if( N
<=31 && mask
!=0 ){
1430 while( N
>0 && (mask
&1)!=0 ){
1435 while( N
>0 && N
<=32 && (mask
& MASKBIT32(N
-1))!=0 ){
1436 mask
&= ~MASKBIT32(N
-1);
1441 sqlite3VdbeAddOp3(pParse
->pVdbe
, OP_ReleaseReg
, iFirst
, N
, *(int*)&mask
);
1442 if( bUndefine
) sqlite3VdbeChangeP5(pParse
->pVdbe
, 1);
1445 #endif /* SQLITE_DEBUG */
1449 ** Change the value of the P4 operand for a specific instruction.
1450 ** This routine is useful when a large program is loaded from a
1451 ** static array using sqlite3VdbeAddOpList but we want to make a
1452 ** few minor changes to the program.
1454 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of
1455 ** the string is made into memory obtained from sqlite3_malloc().
1456 ** A value of n==0 means copy bytes of zP4 up to and including the
1457 ** first null byte. If n>0 then copy n+1 bytes of zP4.
1459 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
1460 ** to a string or structure that is guaranteed to exist for the lifetime of
1461 ** the Vdbe. In these cases we can just copy the pointer.
1463 ** If addr<0 then change P4 on the most recently inserted instruction.
1465 static void SQLITE_NOINLINE
vdbeChangeP4Full(
1472 freeP4(p
->db
, pOp
->p4type
, pOp
->p4
.p
);
1477 sqlite3VdbeChangeP4(p
, (int)(pOp
- p
->aOp
), zP4
, n
);
1479 if( n
==0 ) n
= sqlite3Strlen30(zP4
);
1480 pOp
->p4
.z
= sqlite3DbStrNDup(p
->db
, zP4
, n
);
1481 pOp
->p4type
= P4_DYNAMIC
;
1484 void sqlite3VdbeChangeP4(Vdbe
*p
, int addr
, const char *zP4
, int n
){
1489 assert( p
->eVdbeState
==VDBE_INIT_STATE
);
1490 assert( p
->aOp
!=0 || db
->mallocFailed
);
1491 if( db
->mallocFailed
){
1492 if( n
!=P4_VTAB
) freeP4(db
, n
, (void*)*(char**)&zP4
);
1496 assert( addr
<p
->nOp
);
1500 pOp
= &p
->aOp
[addr
];
1501 if( n
>=0 || pOp
->p4type
){
1502 vdbeChangeP4Full(p
, pOp
, zP4
, n
);
1506 /* Note: this cast is safe, because the origin data point was an int
1507 ** that was cast to a (const char *). */
1508 pOp
->p4
.i
= SQLITE_PTR_TO_INT(zP4
);
1509 pOp
->p4type
= P4_INT32
;
1512 pOp
->p4
.p
= (void*)zP4
;
1513 pOp
->p4type
= (signed char)n
;
1514 if( n
==P4_VTAB
) sqlite3VtabLock((VTable
*)zP4
);
1519 ** Change the P4 operand of the most recently coded instruction
1520 ** to the value defined by the arguments. This is a high-speed
1521 ** version of sqlite3VdbeChangeP4().
1523 ** The P4 operand must not have been previously defined. And the new
1524 ** P4 must not be P4_INT32. Use sqlite3VdbeChangeP4() in either of
1527 void sqlite3VdbeAppendP4(Vdbe
*p
, void *pP4
, int n
){
1529 assert( n
!=P4_INT32
&& n
!=P4_VTAB
);
1531 if( p
->db
->mallocFailed
){
1532 freeP4(p
->db
, n
, pP4
);
1534 assert( pP4
!=0 || n
==P4_DYNAMIC
);
1536 pOp
= &p
->aOp
[p
->nOp
-1];
1537 assert( pOp
->p4type
==P4_NOTUSED
);
1544 ** Set the P4 on the most recently added opcode to the KeyInfo for the
1547 void sqlite3VdbeSetP4KeyInfo(Parse
*pParse
, Index
*pIdx
){
1548 Vdbe
*v
= pParse
->pVdbe
;
1552 pKeyInfo
= sqlite3KeyInfoOfIndex(pParse
, pIdx
);
1553 if( pKeyInfo
) sqlite3VdbeAppendP4(v
, pKeyInfo
, P4_KEYINFO
);
1556 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1558 ** Change the comment on the most recently coded instruction. Or
1559 ** insert a No-op and add the comment to that new instruction. This
1560 ** makes the code easier to read during debugging. None of this happens
1561 ** in a production build.
1563 static void vdbeVComment(Vdbe
*p
, const char *zFormat
, va_list ap
){
1564 assert( p
->nOp
>0 || p
->aOp
==0 );
1565 assert( p
->aOp
==0 || p
->aOp
[p
->nOp
-1].zComment
==0 || p
->pParse
->nErr
>0 );
1568 sqlite3DbFree(p
->db
, p
->aOp
[p
->nOp
-1].zComment
);
1569 p
->aOp
[p
->nOp
-1].zComment
= sqlite3VMPrintf(p
->db
, zFormat
, ap
);
1572 void sqlite3VdbeComment(Vdbe
*p
, const char *zFormat
, ...){
1575 va_start(ap
, zFormat
);
1576 vdbeVComment(p
, zFormat
, ap
);
1580 void sqlite3VdbeNoopComment(Vdbe
*p
, const char *zFormat
, ...){
1583 sqlite3VdbeAddOp0(p
, OP_Noop
);
1584 va_start(ap
, zFormat
);
1585 vdbeVComment(p
, zFormat
, ap
);
1591 #ifdef SQLITE_VDBE_COVERAGE
1593 ** Set the value if the iSrcLine field for the previously coded instruction.
1595 void sqlite3VdbeSetLineNumber(Vdbe
*v
, int iLine
){
1596 sqlite3VdbeGetLastOp(v
)->iSrcLine
= iLine
;
1598 #endif /* SQLITE_VDBE_COVERAGE */
1601 ** Return the opcode for a given address. The address must be non-negative.
1602 ** See sqlite3VdbeGetLastOp() to get the most recently added opcode.
1604 ** If a memory allocation error has occurred prior to the calling of this
1605 ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode
1606 ** is readable but not writable, though it is cast to a writable value.
1607 ** The return of a dummy opcode allows the call to continue functioning
1608 ** after an OOM fault without having to check to see if the return from
1609 ** this routine is a valid pointer. But because the dummy.opcode is 0,
1610 ** dummy will never be written to. This is verified by code inspection and
1611 ** by running with Valgrind.
1613 VdbeOp
*sqlite3VdbeGetOp(Vdbe
*p
, int addr
){
1614 /* C89 specifies that the constant "dummy" will be initialized to all
1615 ** zeros, which is correct. MSVC generates a warning, nevertheless. */
1616 static VdbeOp dummy
; /* Ignore the MSVC warning about no initializer */
1617 assert( p
->eVdbeState
==VDBE_INIT_STATE
);
1618 assert( (addr
>=0 && addr
<p
->nOp
) || p
->db
->mallocFailed
);
1619 if( p
->db
->mallocFailed
){
1620 return (VdbeOp
*)&dummy
;
1622 return &p
->aOp
[addr
];
1626 /* Return the most recently added opcode
1628 VdbeOp
*sqlite3VdbeGetLastOp(Vdbe
*p
){
1629 return sqlite3VdbeGetOp(p
, p
->nOp
- 1);
1632 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS)
1634 ** Return an integer value for one of the parameters to the opcode pOp
1635 ** determined by character c.
1637 static int translateP(char c
, const Op
*pOp
){
1638 if( c
=='1' ) return pOp
->p1
;
1639 if( c
=='2' ) return pOp
->p2
;
1640 if( c
=='3' ) return pOp
->p3
;
1641 if( c
=='4' ) return pOp
->p4
.i
;
1646 ** Compute a string for the "comment" field of a VDBE opcode listing.
1648 ** The Synopsis: field in comments in the vdbe.c source file gets converted
1649 ** to an extra string that is appended to the sqlite3OpcodeName(). In the
1650 ** absence of other comments, this synopsis becomes the comment on the opcode.
1651 ** Some translation occurs:
1654 ** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1
1655 ** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0
1656 ** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x
1658 char *sqlite3VdbeDisplayComment(
1659 sqlite3
*db
, /* Optional - Oom error reporting only */
1660 const Op
*pOp
, /* The opcode to be commented */
1661 const char *zP4
/* Previously obtained value for P4 */
1663 const char *zOpName
;
1664 const char *zSynopsis
;
1670 sqlite3StrAccumInit(&x
, 0, 0, 0, SQLITE_MAX_LENGTH
);
1671 zOpName
= sqlite3OpcodeName(pOp
->opcode
);
1672 nOpName
= sqlite3Strlen30(zOpName
);
1673 if( zOpName
[nOpName
+1] ){
1676 zSynopsis
= zOpName
+ nOpName
+ 1;
1677 if( strncmp(zSynopsis
,"IF ",3)==0 ){
1678 sqlite3_snprintf(sizeof(zAlt
), zAlt
, "if %s goto P2", zSynopsis
+3);
1681 for(ii
=0; (c
= zSynopsis
[ii
])!=0; ii
++){
1683 c
= zSynopsis
[++ii
];
1685 sqlite3_str_appendall(&x
, zP4
);
1687 if( pOp
->zComment
&& pOp
->zComment
[0] ){
1688 sqlite3_str_appendall(&x
, pOp
->zComment
);
1693 int v1
= translateP(c
, pOp
);
1695 if( strncmp(zSynopsis
+ii
+1, "@P", 2)==0 ){
1697 v2
= translateP(zSynopsis
[ii
], pOp
);
1698 if( strncmp(zSynopsis
+ii
+1,"+1",2)==0 ){
1703 sqlite3_str_appendf(&x
, "%d", v1
);
1705 sqlite3_str_appendf(&x
, "%d..%d", v1
, v1
+v2
-1);
1707 }else if( strncmp(zSynopsis
+ii
+1, "@NP", 3)==0 ){
1708 sqlite3_context
*pCtx
= pOp
->p4
.pCtx
;
1709 if( pOp
->p4type
!=P4_FUNCCTX
|| pCtx
->argc
==1 ){
1710 sqlite3_str_appendf(&x
, "%d", v1
);
1711 }else if( pCtx
->argc
>1 ){
1712 sqlite3_str_appendf(&x
, "%d..%d", v1
, v1
+pCtx
->argc
-1);
1713 }else if( x
.accError
==0 ){
1714 assert( x
.nChar
>2 );
1720 sqlite3_str_appendf(&x
, "%d", v1
);
1721 if( strncmp(zSynopsis
+ii
+1, "..P3", 4)==0 && pOp
->p3
==0 ){
1727 sqlite3_str_appendchar(&x
, 1, c
);
1730 if( !seenCom
&& pOp
->zComment
){
1731 sqlite3_str_appendf(&x
, "; %s", pOp
->zComment
);
1733 }else if( pOp
->zComment
){
1734 sqlite3_str_appendall(&x
, pOp
->zComment
);
1736 if( (x
.accError
& SQLITE_NOMEM
)!=0 && db
!=0 ){
1737 sqlite3OomFault(db
);
1739 return sqlite3StrAccumFinish(&x
);
1741 #endif /* SQLITE_ENABLE_EXPLAIN_COMMENTS */
1743 #if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS)
1745 ** Translate the P4.pExpr value for an OP_CursorHint opcode into text
1746 ** that can be displayed in the P4 column of EXPLAIN output.
1748 static void displayP4Expr(StrAccum
*p
, Expr
*pExpr
){
1749 const char *zOp
= 0;
1750 switch( pExpr
->op
){
1752 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
1753 sqlite3_str_appendf(p
, "%Q", pExpr
->u
.zToken
);
1756 sqlite3_str_appendf(p
, "%d", pExpr
->u
.iValue
);
1759 sqlite3_str_appendf(p
, "NULL");
1762 sqlite3_str_appendf(p
, "r[%d]", pExpr
->iTable
);
1766 if( pExpr
->iColumn
<0 ){
1767 sqlite3_str_appendf(p
, "rowid");
1769 sqlite3_str_appendf(p
, "c%d", (int)pExpr
->iColumn
);
1773 case TK_LT
: zOp
= "LT"; break;
1774 case TK_LE
: zOp
= "LE"; break;
1775 case TK_GT
: zOp
= "GT"; break;
1776 case TK_GE
: zOp
= "GE"; break;
1777 case TK_NE
: zOp
= "NE"; break;
1778 case TK_EQ
: zOp
= "EQ"; break;
1779 case TK_IS
: zOp
= "IS"; break;
1780 case TK_ISNOT
: zOp
= "ISNOT"; break;
1781 case TK_AND
: zOp
= "AND"; break;
1782 case TK_OR
: zOp
= "OR"; break;
1783 case TK_PLUS
: zOp
= "ADD"; break;
1784 case TK_STAR
: zOp
= "MUL"; break;
1785 case TK_MINUS
: zOp
= "SUB"; break;
1786 case TK_REM
: zOp
= "REM"; break;
1787 case TK_BITAND
: zOp
= "BITAND"; break;
1788 case TK_BITOR
: zOp
= "BITOR"; break;
1789 case TK_SLASH
: zOp
= "DIV"; break;
1790 case TK_LSHIFT
: zOp
= "LSHIFT"; break;
1791 case TK_RSHIFT
: zOp
= "RSHIFT"; break;
1792 case TK_CONCAT
: zOp
= "CONCAT"; break;
1793 case TK_UMINUS
: zOp
= "MINUS"; break;
1794 case TK_UPLUS
: zOp
= "PLUS"; break;
1795 case TK_BITNOT
: zOp
= "BITNOT"; break;
1796 case TK_NOT
: zOp
= "NOT"; break;
1797 case TK_ISNULL
: zOp
= "ISNULL"; break;
1798 case TK_NOTNULL
: zOp
= "NOTNULL"; break;
1801 sqlite3_str_appendf(p
, "%s", "expr");
1806 sqlite3_str_appendf(p
, "%s(", zOp
);
1807 displayP4Expr(p
, pExpr
->pLeft
);
1808 if( pExpr
->pRight
){
1809 sqlite3_str_append(p
, ",", 1);
1810 displayP4Expr(p
, pExpr
->pRight
);
1812 sqlite3_str_append(p
, ")", 1);
1815 #endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */
1820 ** Compute a string that describes the P4 parameter for an opcode.
1821 ** Use zTemp for any required temporary buffer space.
1823 char *sqlite3VdbeDisplayP4(sqlite3
*db
, Op
*pOp
){
1827 sqlite3StrAccumInit(&x
, 0, 0, 0, SQLITE_MAX_LENGTH
);
1828 switch( pOp
->p4type
){
1831 KeyInfo
*pKeyInfo
= pOp
->p4
.pKeyInfo
;
1832 assert( pKeyInfo
->aSortFlags
!=0 );
1833 sqlite3_str_appendf(&x
, "k(%d", pKeyInfo
->nKeyField
);
1834 for(j
=0; j
<pKeyInfo
->nKeyField
; j
++){
1835 CollSeq
*pColl
= pKeyInfo
->aColl
[j
];
1836 const char *zColl
= pColl
? pColl
->zName
: "";
1837 if( strcmp(zColl
, "BINARY")==0 ) zColl
= "B";
1838 sqlite3_str_appendf(&x
, ",%s%s%s",
1839 (pKeyInfo
->aSortFlags
[j
] & KEYINFO_ORDER_DESC
) ? "-" : "",
1840 (pKeyInfo
->aSortFlags
[j
] & KEYINFO_ORDER_BIGNULL
)? "N." : "",
1843 sqlite3_str_append(&x
, ")", 1);
1846 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1848 displayP4Expr(&x
, pOp
->p4
.pExpr
);
1853 static const char *const encnames
[] = {"?", "8", "16LE", "16BE"};
1854 CollSeq
*pColl
= pOp
->p4
.pColl
;
1855 assert( pColl
->enc
<4 );
1856 sqlite3_str_appendf(&x
, "%.18s-%s", pColl
->zName
,
1857 encnames
[pColl
->enc
]);
1861 FuncDef
*pDef
= pOp
->p4
.pFunc
;
1862 sqlite3_str_appendf(&x
, "%s(%d)", pDef
->zName
, pDef
->nArg
);
1866 FuncDef
*pDef
= pOp
->p4
.pCtx
->pFunc
;
1867 sqlite3_str_appendf(&x
, "%s(%d)", pDef
->zName
, pDef
->nArg
);
1871 sqlite3_str_appendf(&x
, "%lld", *pOp
->p4
.pI64
);
1875 sqlite3_str_appendf(&x
, "%d", pOp
->p4
.i
);
1879 sqlite3_str_appendf(&x
, "%.16g", *pOp
->p4
.pReal
);
1883 Mem
*pMem
= pOp
->p4
.pMem
;
1884 if( pMem
->flags
& MEM_Str
){
1886 }else if( pMem
->flags
& (MEM_Int
|MEM_IntReal
) ){
1887 sqlite3_str_appendf(&x
, "%lld", pMem
->u
.i
);
1888 }else if( pMem
->flags
& MEM_Real
){
1889 sqlite3_str_appendf(&x
, "%.16g", pMem
->u
.r
);
1890 }else if( pMem
->flags
& MEM_Null
){
1893 assert( pMem
->flags
& MEM_Blob
);
1898 #ifndef SQLITE_OMIT_VIRTUALTABLE
1900 sqlite3_vtab
*pVtab
= pOp
->p4
.pVtab
->pVtab
;
1901 sqlite3_str_appendf(&x
, "vtab:%p", pVtab
);
1907 u32
*ai
= pOp
->p4
.ai
;
1908 u32 n
= ai
[0]; /* The first element of an INTARRAY is always the
1909 ** count of the number of elements to follow */
1910 for(i
=1; i
<=n
; i
++){
1911 sqlite3_str_appendf(&x
, "%c%u", (i
==1 ? '[' : ','), ai
[i
]);
1913 sqlite3_str_append(&x
, "]", 1);
1916 case P4_SUBPROGRAM
: {
1921 zP4
= pOp
->p4
.pTab
->zName
;
1928 if( zP4
) sqlite3_str_appendall(&x
, zP4
);
1929 if( (x
.accError
& SQLITE_NOMEM
)!=0 ){
1930 sqlite3OomFault(db
);
1932 return sqlite3StrAccumFinish(&x
);
1934 #endif /* VDBE_DISPLAY_P4 */
1937 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
1939 ** The prepared statements need to know in advance the complete set of
1940 ** attached databases that will be use. A mask of these databases
1941 ** is maintained in p->btreeMask. The p->lockMask value is the subset of
1942 ** p->btreeMask of databases that will require a lock.
1944 void sqlite3VdbeUsesBtree(Vdbe
*p
, int i
){
1945 assert( i
>=0 && i
<p
->db
->nDb
&& i
<(int)sizeof(yDbMask
)*8 );
1946 assert( i
<(int)sizeof(p
->btreeMask
)*8 );
1947 DbMaskSet(p
->btreeMask
, i
);
1948 if( i
!=1 && sqlite3BtreeSharable(p
->db
->aDb
[i
].pBt
) ){
1949 DbMaskSet(p
->lockMask
, i
);
1953 #if !defined(SQLITE_OMIT_SHARED_CACHE)
1955 ** If SQLite is compiled to support shared-cache mode and to be threadsafe,
1956 ** this routine obtains the mutex associated with each BtShared structure
1957 ** that may be accessed by the VM passed as an argument. In doing so it also
1958 ** sets the BtShared.db member of each of the BtShared structures, ensuring
1959 ** that the correct busy-handler callback is invoked if required.
1961 ** If SQLite is not threadsafe but does support shared-cache mode, then
1962 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables
1963 ** of all of BtShared structures accessible via the database handle
1964 ** associated with the VM.
1966 ** If SQLite is not threadsafe and does not support shared-cache mode, this
1967 ** function is a no-op.
1969 ** The p->btreeMask field is a bitmask of all btrees that the prepared
1970 ** statement p will ever use. Let N be the number of bits in p->btreeMask
1971 ** corresponding to btrees that use shared cache. Then the runtime of
1972 ** this routine is N*N. But as N is rarely more than 1, this should not
1975 void sqlite3VdbeEnter(Vdbe
*p
){
1980 if( DbMaskAllZero(p
->lockMask
) ) return; /* The common case */
1984 for(i
=0; i
<nDb
; i
++){
1985 if( i
!=1 && DbMaskTest(p
->lockMask
,i
) && ALWAYS(aDb
[i
].pBt
!=0) ){
1986 sqlite3BtreeEnter(aDb
[i
].pBt
);
1992 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
1994 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter().
1996 static SQLITE_NOINLINE
void vdbeLeave(Vdbe
*p
){
2004 for(i
=0; i
<nDb
; i
++){
2005 if( i
!=1 && DbMaskTest(p
->lockMask
,i
) && ALWAYS(aDb
[i
].pBt
!=0) ){
2006 sqlite3BtreeLeave(aDb
[i
].pBt
);
2010 void sqlite3VdbeLeave(Vdbe
*p
){
2011 if( DbMaskAllZero(p
->lockMask
) ) return; /* The common case */
2016 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
2018 ** Print a single opcode. This routine is used for debugging only.
2020 void sqlite3VdbePrintOp(FILE *pOut
, int pc
, VdbeOp
*pOp
){
2024 static const char *zFormat1
= "%4d %-13s %4d %4d %4d %-13s %.2X %s\n";
2025 if( pOut
==0 ) pOut
= stdout
;
2026 sqlite3BeginBenignMalloc();
2027 dummyDb
.mallocFailed
= 1;
2028 zP4
= sqlite3VdbeDisplayP4(&dummyDb
, pOp
);
2029 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
2030 zCom
= sqlite3VdbeDisplayComment(0, pOp
, zP4
);
2034 /* NB: The sqlite3OpcodeName() function is implemented by code created
2035 ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the
2036 ** information from the vdbe.c source text */
2037 fprintf(pOut
, zFormat1
, pc
,
2038 sqlite3OpcodeName(pOp
->opcode
), pOp
->p1
, pOp
->p2
, pOp
->p3
,
2039 zP4
? zP4
: "", pOp
->p5
,
2045 sqlite3EndBenignMalloc();
2050 ** Initialize an array of N Mem element.
2052 ** This is a high-runner, so only those fields that really do need to
2053 ** be initialized are set. The Mem structure is organized so that
2054 ** the fields that get initialized are nearby and hopefully on the same
2057 ** Mem.flags = flags
2061 ** All other fields of Mem can safely remain uninitialized for now. They
2062 ** will be initialized before use.
2064 static void initMemArray(Mem
*p
, int N
, sqlite3
*db
, u16 flags
){
2079 ** Release auxiliary memory held in an array of N Mem elements.
2081 ** After this routine returns, all Mem elements in the array will still
2082 ** be valid. Those Mem elements that were not holding auxiliary resources
2083 ** will be unchanged. Mem elements which had something freed will be
2084 ** set to MEM_Undefined.
2086 static void releaseMemArray(Mem
*p
, int N
){
2089 sqlite3
*db
= p
->db
;
2090 if( db
->pnBytesFreed
){
2092 if( p
->szMalloc
) sqlite3DbFree(db
, p
->zMalloc
);
2093 }while( (++p
)<pEnd
);
2097 assert( (&p
[1])==pEnd
|| p
[0].db
==p
[1].db
);
2098 assert( sqlite3VdbeCheckMemInvariants(p
) );
2100 /* This block is really an inlined version of sqlite3VdbeMemRelease()
2101 ** that takes advantage of the fact that the memory cell value is
2102 ** being set to NULL after releasing any dynamic resources.
2104 ** The justification for duplicating code is that according to
2105 ** callgrind, this causes a certain test case to hit the CPU 4.7
2106 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if
2107 ** sqlite3MemRelease() were called from here. With -O2, this jumps
2108 ** to 6.6 percent. The test case is inserting 1000 rows into a table
2109 ** with no indexes using a single prepared INSERT statement, bind()
2110 ** and reset(). Inserts are grouped into a transaction.
2112 testcase( p
->flags
& MEM_Agg
);
2113 testcase( p
->flags
& MEM_Dyn
);
2114 if( p
->flags
&(MEM_Agg
|MEM_Dyn
) ){
2115 testcase( (p
->flags
& MEM_Dyn
)!=0 && p
->xDel
==sqlite3VdbeFrameMemDel
);
2116 sqlite3VdbeMemRelease(p
);
2117 p
->flags
= MEM_Undefined
;
2118 }else if( p
->szMalloc
){
2119 sqlite3DbNNFreeNN(db
, p
->zMalloc
);
2121 p
->flags
= MEM_Undefined
;
2125 p
->flags
= MEM_Undefined
;
2128 }while( (++p
)<pEnd
);
2134 ** Verify that pFrame is a valid VdbeFrame pointer. Return true if it is
2135 ** and false if something is wrong.
2137 ** This routine is intended for use inside of assert() statements only.
2139 int sqlite3VdbeFrameIsValid(VdbeFrame
*pFrame
){
2140 if( pFrame
->iFrameMagic
!=SQLITE_FRAME_MAGIC
) return 0;
2147 ** This is a destructor on a Mem object (which is really an sqlite3_value)
2148 ** that deletes the Frame object that is attached to it as a blob.
2150 ** This routine does not delete the Frame right away. It merely adds the
2151 ** frame to a list of frames to be deleted when the Vdbe halts.
2153 void sqlite3VdbeFrameMemDel(void *pArg
){
2154 VdbeFrame
*pFrame
= (VdbeFrame
*)pArg
;
2155 assert( sqlite3VdbeFrameIsValid(pFrame
) );
2156 pFrame
->pParent
= pFrame
->v
->pDelFrame
;
2157 pFrame
->v
->pDelFrame
= pFrame
;
2160 #if defined(SQLITE_ENABLE_BYTECODE_VTAB) || !defined(SQLITE_OMIT_EXPLAIN)
2162 ** Locate the next opcode to be displayed in EXPLAIN or EXPLAIN
2163 ** QUERY PLAN output.
2165 ** Return SQLITE_ROW on success. Return SQLITE_DONE if there are no
2166 ** more opcodes to be displayed.
2168 int sqlite3VdbeNextOpcode(
2169 Vdbe
*p
, /* The statement being explained */
2170 Mem
*pSub
, /* Storage for keeping track of subprogram nesting */
2171 int eMode
, /* 0: normal. 1: EQP. 2: TablesUsed */
2172 int *piPc
, /* IN/OUT: Current rowid. Overwritten with next rowid */
2173 int *piAddr
, /* OUT: Write index into (*paOp)[] here */
2174 Op
**paOp
/* OUT: Write the opcode array here */
2176 int nRow
; /* Stop when row count reaches this */
2177 int nSub
= 0; /* Number of sub-vdbes seen so far */
2178 SubProgram
**apSub
= 0; /* Array of sub-vdbes */
2179 int i
; /* Next instruction address */
2180 int rc
= SQLITE_OK
; /* Result code */
2181 Op
*aOp
= 0; /* Opcode array */
2182 int iPc
; /* Rowid. Copy of value in *piPc */
2184 /* When the number of output rows reaches nRow, that means the
2185 ** listing has finished and sqlite3_step() should return SQLITE_DONE.
2186 ** nRow is the sum of the number of rows in the main program, plus
2187 ** the sum of the number of rows in all trigger subprograms encountered
2188 ** so far. The nRow value will increase as new trigger subprograms are
2189 ** encountered, but p->pc will eventually catch up to nRow.
2193 if( pSub
->flags
&MEM_Blob
){
2194 /* pSub is initiallly NULL. It is initialized to a BLOB by
2195 ** the P4_SUBPROGRAM processing logic below */
2196 nSub
= pSub
->n
/sizeof(Vdbe
*);
2197 apSub
= (SubProgram
**)pSub
->z
;
2199 for(i
=0; i
<nSub
; i
++){
2200 nRow
+= apSub
[i
]->nOp
;
2204 while(1){ /* Loop exits via break */
2212 /* The rowid is small enough that we are still in the
2216 /* We are currently listing subprograms. Figure out which one and
2217 ** pick up the appropriate opcode. */
2222 for(j
=0; i
>=apSub
[j
]->nOp
; j
++){
2224 assert( i
<apSub
[j
]->nOp
|| j
+1<nSub
);
2226 aOp
= apSub
[j
]->aOp
;
2229 /* When an OP_Program opcode is encounter (the only opcode that has
2230 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms
2231 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram
2232 ** has not already been seen.
2234 if( pSub
!=0 && aOp
[i
].p4type
==P4_SUBPROGRAM
){
2235 int nByte
= (nSub
+1)*sizeof(SubProgram
*);
2237 for(j
=0; j
<nSub
; j
++){
2238 if( apSub
[j
]==aOp
[i
].p4
.pProgram
) break;
2241 p
->rc
= sqlite3VdbeMemGrow(pSub
, nByte
, nSub
!=0);
2242 if( p
->rc
!=SQLITE_OK
){
2246 apSub
= (SubProgram
**)pSub
->z
;
2247 apSub
[nSub
++] = aOp
[i
].p4
.pProgram
;
2248 MemSetTypeFlag(pSub
, MEM_Blob
);
2249 pSub
->n
= nSub
*sizeof(SubProgram
*);
2250 nRow
+= aOp
[i
].p4
.pProgram
->nOp
;
2253 if( eMode
==0 ) break;
2254 #ifdef SQLITE_ENABLE_BYTECODE_VTAB
2257 if( pOp
->opcode
==OP_OpenRead
) break;
2258 if( pOp
->opcode
==OP_OpenWrite
&& (pOp
->p5
& OPFLAG_P2ISREG
)==0 ) break;
2259 if( pOp
->opcode
==OP_ReopenIdx
) break;
2264 if( aOp
[i
].opcode
==OP_Explain
) break;
2265 if( aOp
[i
].opcode
==OP_Init
&& iPc
>1 ) break;
2273 #endif /* SQLITE_ENABLE_BYTECODE_VTAB || !SQLITE_OMIT_EXPLAIN */
2277 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are
2278 ** allocated by the OP_Program opcode in sqlite3VdbeExec().
2280 void sqlite3VdbeFrameDelete(VdbeFrame
*p
){
2282 Mem
*aMem
= VdbeFrameMem(p
);
2283 VdbeCursor
**apCsr
= (VdbeCursor
**)&aMem
[p
->nChildMem
];
2284 assert( sqlite3VdbeFrameIsValid(p
) );
2285 for(i
=0; i
<p
->nChildCsr
; i
++){
2286 if( apCsr
[i
] ) sqlite3VdbeFreeCursorNN(p
->v
, apCsr
[i
]);
2288 releaseMemArray(aMem
, p
->nChildMem
);
2289 sqlite3VdbeDeleteAuxData(p
->v
->db
, &p
->pAuxData
, -1, 0);
2290 sqlite3DbFree(p
->v
->db
, p
);
2293 #ifndef SQLITE_OMIT_EXPLAIN
2295 ** Give a listing of the program in the virtual machine.
2297 ** The interface is the same as sqlite3VdbeExec(). But instead of
2298 ** running the code, it invokes the callback once for each instruction.
2299 ** This feature is used to implement "EXPLAIN".
2301 ** When p->explain==1, each instruction is listed. When
2302 ** p->explain==2, only OP_Explain instructions are listed and these
2303 ** are shown in a different format. p->explain==2 is used to implement
2304 ** EXPLAIN QUERY PLAN.
2305 ** 2018-04-24: In p->explain==2 mode, the OP_Init opcodes of triggers
2306 ** are also shown, so that the boundaries between the main program and
2307 ** each trigger are clear.
2309 ** When p->explain==1, first the main program is listed, then each of
2310 ** the trigger subprograms are listed one by one.
2312 int sqlite3VdbeList(
2313 Vdbe
*p
/* The VDBE */
2315 Mem
*pSub
= 0; /* Memory cell hold array of subprogs */
2316 sqlite3
*db
= p
->db
; /* The database connection */
2317 int i
; /* Loop counter */
2318 int rc
= SQLITE_OK
; /* Return code */
2319 Mem
*pMem
= &p
->aMem
[1]; /* First Mem of result set */
2320 int bListSubprogs
= (p
->explain
==1 || (db
->flags
& SQLITE_TriggerEQP
)!=0);
2321 Op
*aOp
; /* Array of opcodes */
2322 Op
*pOp
; /* Current opcode */
2324 assert( p
->explain
);
2325 assert( p
->eVdbeState
==VDBE_RUN_STATE
);
2326 assert( p
->rc
==SQLITE_OK
|| p
->rc
==SQLITE_BUSY
|| p
->rc
==SQLITE_NOMEM
);
2328 /* Even though this opcode does not use dynamic strings for
2329 ** the result, result columns may become dynamic if the user calls
2330 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
2332 releaseMemArray(pMem
, 8);
2334 if( p
->rc
==SQLITE_NOMEM
){
2335 /* This happens if a malloc() inside a call to sqlite3_column_text() or
2336 ** sqlite3_column_text16() failed. */
2337 sqlite3OomFault(db
);
2338 return SQLITE_ERROR
;
2341 if( bListSubprogs
){
2342 /* The first 8 memory cells are used for the result set. So we will
2343 ** commandeer the 9th cell to use as storage for an array of pointers
2344 ** to trigger subprograms. The VDBE is guaranteed to have at least 9
2346 assert( p
->nMem
>9 );
2352 /* Figure out which opcode is next to display */
2353 rc
= sqlite3VdbeNextOpcode(p
, pSub
, p
->explain
==2, &p
->pc
, &i
, &aOp
);
2355 if( rc
==SQLITE_OK
){
2357 if( AtomicLoad(&db
->u1
.isInterrupted
) ){
2358 p
->rc
= SQLITE_INTERRUPT
;
2360 sqlite3VdbeError(p
, sqlite3ErrStr(p
->rc
));
2362 char *zP4
= sqlite3VdbeDisplayP4(db
, pOp
);
2363 if( p
->explain
==2 ){
2364 sqlite3VdbeMemSetInt64(pMem
, pOp
->p1
);
2365 sqlite3VdbeMemSetInt64(pMem
+1, pOp
->p2
);
2366 sqlite3VdbeMemSetInt64(pMem
+2, pOp
->p3
);
2367 sqlite3VdbeMemSetStr(pMem
+3, zP4
, -1, SQLITE_UTF8
, sqlite3_free
);
2370 sqlite3VdbeMemSetInt64(pMem
+0, i
);
2371 sqlite3VdbeMemSetStr(pMem
+1, (char*)sqlite3OpcodeName(pOp
->opcode
),
2372 -1, SQLITE_UTF8
, SQLITE_STATIC
);
2373 sqlite3VdbeMemSetInt64(pMem
+2, pOp
->p1
);
2374 sqlite3VdbeMemSetInt64(pMem
+3, pOp
->p2
);
2375 sqlite3VdbeMemSetInt64(pMem
+4, pOp
->p3
);
2376 /* pMem+5 for p4 is done last */
2377 sqlite3VdbeMemSetInt64(pMem
+6, pOp
->p5
);
2378 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
2380 char *zCom
= sqlite3VdbeDisplayComment(db
, pOp
, zP4
);
2381 sqlite3VdbeMemSetStr(pMem
+7, zCom
, -1, SQLITE_UTF8
, sqlite3_free
);
2384 sqlite3VdbeMemSetNull(pMem
+7);
2386 sqlite3VdbeMemSetStr(pMem
+5, zP4
, -1, SQLITE_UTF8
, sqlite3_free
);
2389 p
->pResultRow
= pMem
;
2390 if( db
->mallocFailed
){
2391 p
->rc
= SQLITE_NOMEM
;
2401 #endif /* SQLITE_OMIT_EXPLAIN */
2405 ** Print the SQL that was used to generate a VDBE program.
2407 void sqlite3VdbePrintSql(Vdbe
*p
){
2411 }else if( p
->nOp
>=1 ){
2412 const VdbeOp
*pOp
= &p
->aOp
[0];
2413 if( pOp
->opcode
==OP_Init
&& pOp
->p4
.z
!=0 ){
2415 while( sqlite3Isspace(*z
) ) z
++;
2418 if( z
) printf("SQL: [%s]\n", z
);
2422 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
2424 ** Print an IOTRACE message showing SQL content.
2426 void sqlite3VdbeIOTraceSql(Vdbe
*p
){
2429 if( sqlite3IoTrace
==0 ) return;
2432 if( pOp
->opcode
==OP_Init
&& pOp
->p4
.z
!=0 ){
2435 sqlite3_snprintf(sizeof(z
), z
, "%s", pOp
->p4
.z
);
2436 for(i
=0; sqlite3Isspace(z
[i
]); i
++){}
2437 for(j
=0; z
[i
]; i
++){
2438 if( sqlite3Isspace(z
[i
]) ){
2447 sqlite3IoTrace("SQL %s\n", z
);
2450 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
2452 /* An instance of this object describes bulk memory available for use
2453 ** by subcomponents of a prepared statement. Space is allocated out
2454 ** of a ReusableSpace object by the allocSpace() routine below.
2456 struct ReusableSpace
{
2457 u8
*pSpace
; /* Available memory */
2458 sqlite3_int64 nFree
; /* Bytes of available memory */
2459 sqlite3_int64 nNeeded
; /* Total bytes that could not be allocated */
2462 /* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf
2463 ** from the ReusableSpace object. Return a pointer to the allocated
2464 ** memory on success. If insufficient memory is available in the
2465 ** ReusableSpace object, increase the ReusableSpace.nNeeded
2466 ** value by the amount needed and return NULL.
2468 ** If pBuf is not initially NULL, that means that the memory has already
2469 ** been allocated by a prior call to this routine, so just return a copy
2470 ** of pBuf and leave ReusableSpace unchanged.
2472 ** This allocator is employed to repurpose unused slots at the end of the
2473 ** opcode array of prepared state for other memory needs of the prepared
2476 static void *allocSpace(
2477 struct ReusableSpace
*p
, /* Bulk memory available for allocation */
2478 void *pBuf
, /* Pointer to a prior allocation */
2479 sqlite3_int64 nByte
/* Bytes of memory needed. */
2481 assert( EIGHT_BYTE_ALIGNMENT(p
->pSpace
) );
2483 nByte
= ROUND8P(nByte
);
2484 if( nByte
<= p
->nFree
){
2486 pBuf
= &p
->pSpace
[p
->nFree
];
2488 p
->nNeeded
+= nByte
;
2491 assert( EIGHT_BYTE_ALIGNMENT(pBuf
) );
2496 ** Rewind the VDBE back to the beginning in preparation for
2499 void sqlite3VdbeRewind(Vdbe
*p
){
2500 #if defined(SQLITE_DEBUG)
2504 assert( p
->eVdbeState
==VDBE_INIT_STATE
2505 || p
->eVdbeState
==VDBE_READY_STATE
2506 || p
->eVdbeState
==VDBE_HALT_STATE
);
2508 /* There should be at least one opcode.
2512 p
->eVdbeState
= VDBE_READY_STATE
;
2515 for(i
=0; i
<p
->nMem
; i
++){
2516 assert( p
->aMem
[i
].db
==p
->db
);
2521 p
->errorAction
= OE_Abort
;
2524 p
->minWriteFileFormat
= 255;
2526 p
->nFkConstraint
= 0;
2528 for(i
=0; i
<p
->nOp
; i
++){
2529 p
->aOp
[i
].nExec
= 0;
2530 p
->aOp
[i
].nCycle
= 0;
2536 ** Prepare a virtual machine for execution for the first time after
2537 ** creating the virtual machine. This involves things such
2538 ** as allocating registers and initializing the program counter.
2539 ** After the VDBE has be prepped, it can be executed by one or more
2540 ** calls to sqlite3VdbeExec().
2542 ** This function may be called exactly once on each virtual machine.
2543 ** After this routine is called the VM has been "packaged" and is ready
2544 ** to run. After this routine is called, further calls to
2545 ** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects
2546 ** the Vdbe from the Parse object that helped generate it so that the
2547 ** the Vdbe becomes an independent entity and the Parse object can be
2550 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back
2551 ** to its initial state after it has been run.
2553 void sqlite3VdbeMakeReady(
2554 Vdbe
*p
, /* The VDBE */
2555 Parse
*pParse
/* Parsing context */
2557 sqlite3
*db
; /* The database connection */
2558 int nVar
; /* Number of parameters */
2559 int nMem
; /* Number of VM memory registers */
2560 int nCursor
; /* Number of cursors required */
2561 int nArg
; /* Number of arguments in subprograms */
2562 int n
; /* Loop counter */
2563 struct ReusableSpace x
; /* Reusable bulk memory */
2567 assert( pParse
!=0 );
2568 assert( p
->eVdbeState
==VDBE_INIT_STATE
);
2569 assert( pParse
==p
->pParse
);
2570 p
->pVList
= pParse
->pVList
;
2573 assert( db
->mallocFailed
==0 );
2574 nVar
= pParse
->nVar
;
2575 nMem
= pParse
->nMem
;
2576 nCursor
= pParse
->nTab
;
2577 nArg
= pParse
->nMaxArg
;
2579 /* Each cursor uses a memory cell. The first cursor (cursor 0) can
2580 ** use aMem[0] which is not otherwise used by the VDBE program. Allocate
2581 ** space at the end of aMem[] for cursors 1 and greater.
2582 ** See also: allocateCursor().
2585 if( nCursor
==0 && nMem
>0 ) nMem
++; /* Space for aMem[0] even if not used */
2587 /* Figure out how much reusable memory is available at the end of the
2588 ** opcode array. This extra memory will be reallocated for other elements
2589 ** of the prepared statement.
2591 n
= ROUND8P(sizeof(Op
)*p
->nOp
); /* Bytes of opcode memory used */
2592 x
.pSpace
= &((u8
*)p
->aOp
)[n
]; /* Unused opcode memory */
2593 assert( EIGHT_BYTE_ALIGNMENT(x
.pSpace
) );
2594 x
.nFree
= ROUNDDOWN8(pParse
->szOpAlloc
- n
); /* Bytes of unused memory */
2595 assert( x
.nFree
>=0 );
2596 assert( EIGHT_BYTE_ALIGNMENT(&x
.pSpace
[x
.nFree
]) );
2598 resolveP2Values(p
, &nArg
);
2599 p
->usesStmtJournal
= (u8
)(pParse
->isMultiWrite
&& pParse
->mayAbort
);
2600 if( pParse
->explain
){
2601 static const char * const azColName
[] = {
2602 "addr", "opcode", "p1", "p2", "p3", "p4", "p5", "comment",
2603 "id", "parent", "notused", "detail"
2606 if( nMem
<10 ) nMem
= 10;
2607 p
->explain
= pParse
->explain
;
2608 if( pParse
->explain
==2 ){
2609 sqlite3VdbeSetNumCols(p
, 4);
2613 sqlite3VdbeSetNumCols(p
, 8);
2617 for(i
=iFirst
; i
<mx
; i
++){
2618 sqlite3VdbeSetColName(p
, i
-iFirst
, COLNAME_NAME
,
2619 azColName
[i
], SQLITE_STATIC
);
2624 /* Memory for registers, parameters, cursor, etc, is allocated in one or two
2625 ** passes. On the first pass, we try to reuse unused memory at the
2626 ** end of the opcode array. If we are unable to satisfy all memory
2627 ** requirements by reusing the opcode array tail, then the second
2628 ** pass will fill in the remainder using a fresh memory allocation.
2630 ** This two-pass approach that reuses as much memory as possible from
2631 ** the leftover memory at the end of the opcode array. This can significantly
2632 ** reduce the amount of memory held by a prepared statement.
2635 p
->aMem
= allocSpace(&x
, 0, nMem
*sizeof(Mem
));
2636 p
->aVar
= allocSpace(&x
, 0, nVar
*sizeof(Mem
));
2637 p
->apArg
= allocSpace(&x
, 0, nArg
*sizeof(Mem
*));
2638 p
->apCsr
= allocSpace(&x
, 0, nCursor
*sizeof(VdbeCursor
*));
2640 x
.pSpace
= p
->pFree
= sqlite3DbMallocRawNN(db
, x
.nNeeded
);
2641 x
.nFree
= x
.nNeeded
;
2642 if( !db
->mallocFailed
){
2643 p
->aMem
= allocSpace(&x
, p
->aMem
, nMem
*sizeof(Mem
));
2644 p
->aVar
= allocSpace(&x
, p
->aVar
, nVar
*sizeof(Mem
));
2645 p
->apArg
= allocSpace(&x
, p
->apArg
, nArg
*sizeof(Mem
*));
2646 p
->apCsr
= allocSpace(&x
, p
->apCsr
, nCursor
*sizeof(VdbeCursor
*));
2650 if( db
->mallocFailed
){
2655 p
->nCursor
= nCursor
;
2656 p
->nVar
= (ynVar
)nVar
;
2657 initMemArray(p
->aVar
, nVar
, db
, MEM_Null
);
2659 initMemArray(p
->aMem
, nMem
, db
, MEM_Undefined
);
2660 memset(p
->apCsr
, 0, nCursor
*sizeof(VdbeCursor
*));
2662 sqlite3VdbeRewind(p
);
2666 ** Close a VDBE cursor and release all the resources that cursor
2669 void sqlite3VdbeFreeCursor(Vdbe
*p
, VdbeCursor
*pCx
){
2670 if( pCx
) sqlite3VdbeFreeCursorNN(p
,pCx
);
2672 void sqlite3VdbeFreeCursorNN(Vdbe
*p
, VdbeCursor
*pCx
){
2673 switch( pCx
->eCurType
){
2674 case CURTYPE_SORTER
: {
2675 sqlite3VdbeSorterClose(p
->db
, pCx
);
2678 case CURTYPE_BTREE
: {
2679 assert( pCx
->uc
.pCursor
!=0 );
2680 sqlite3BtreeCloseCursor(pCx
->uc
.pCursor
);
2683 #ifndef SQLITE_OMIT_VIRTUALTABLE
2684 case CURTYPE_VTAB
: {
2685 sqlite3_vtab_cursor
*pVCur
= pCx
->uc
.pVCur
;
2686 const sqlite3_module
*pModule
= pVCur
->pVtab
->pModule
;
2687 assert( pVCur
->pVtab
->nRef
>0 );
2688 pVCur
->pVtab
->nRef
--;
2689 pModule
->xClose(pVCur
);
2697 ** Close all cursors in the current frame.
2699 static void closeCursorsInFrame(Vdbe
*p
){
2701 for(i
=0; i
<p
->nCursor
; i
++){
2702 VdbeCursor
*pC
= p
->apCsr
[i
];
2704 sqlite3VdbeFreeCursorNN(p
, pC
);
2711 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This
2712 ** is used, for example, when a trigger sub-program is halted to restore
2713 ** control to the main program.
2715 int sqlite3VdbeFrameRestore(VdbeFrame
*pFrame
){
2716 Vdbe
*v
= pFrame
->v
;
2717 closeCursorsInFrame(v
);
2718 v
->aOp
= pFrame
->aOp
;
2719 v
->nOp
= pFrame
->nOp
;
2720 v
->aMem
= pFrame
->aMem
;
2721 v
->nMem
= pFrame
->nMem
;
2722 v
->apCsr
= pFrame
->apCsr
;
2723 v
->nCursor
= pFrame
->nCursor
;
2724 v
->db
->lastRowid
= pFrame
->lastRowid
;
2725 v
->nChange
= pFrame
->nChange
;
2726 v
->db
->nChange
= pFrame
->nDbChange
;
2727 sqlite3VdbeDeleteAuxData(v
->db
, &v
->pAuxData
, -1, 0);
2728 v
->pAuxData
= pFrame
->pAuxData
;
2729 pFrame
->pAuxData
= 0;
2734 ** Close all cursors.
2736 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory
2737 ** cell array. This is necessary as the memory cell array may contain
2738 ** pointers to VdbeFrame objects, which may in turn contain pointers to
2741 static void closeAllCursors(Vdbe
*p
){
2744 for(pFrame
=p
->pFrame
; pFrame
->pParent
; pFrame
=pFrame
->pParent
);
2745 sqlite3VdbeFrameRestore(pFrame
);
2749 assert( p
->nFrame
==0 );
2750 closeCursorsInFrame(p
);
2751 releaseMemArray(p
->aMem
, p
->nMem
);
2752 while( p
->pDelFrame
){
2753 VdbeFrame
*pDel
= p
->pDelFrame
;
2754 p
->pDelFrame
= pDel
->pParent
;
2755 sqlite3VdbeFrameDelete(pDel
);
2758 /* Delete any auxdata allocations made by the VM */
2759 if( p
->pAuxData
) sqlite3VdbeDeleteAuxData(p
->db
, &p
->pAuxData
, -1, 0);
2760 assert( p
->pAuxData
==0 );
2764 ** Set the number of result columns that will be returned by this SQL
2765 ** statement. This is now set at compile time, rather than during
2766 ** execution of the vdbe program so that sqlite3_column_count() can
2767 ** be called on an SQL statement before sqlite3_step().
2769 void sqlite3VdbeSetNumCols(Vdbe
*p
, int nResColumn
){
2771 sqlite3
*db
= p
->db
;
2773 if( p
->nResColumn
){
2774 releaseMemArray(p
->aColName
, p
->nResColumn
*COLNAME_N
);
2775 sqlite3DbFree(db
, p
->aColName
);
2777 n
= nResColumn
*COLNAME_N
;
2778 p
->nResColumn
= (u16
)nResColumn
;
2779 p
->aColName
= (Mem
*)sqlite3DbMallocRawNN(db
, sizeof(Mem
)*n
);
2780 if( p
->aColName
==0 ) return;
2781 initMemArray(p
->aColName
, n
, db
, MEM_Null
);
2785 ** Set the name of the idx'th column to be returned by the SQL statement.
2786 ** zName must be a pointer to a nul terminated string.
2788 ** This call must be made after a call to sqlite3VdbeSetNumCols().
2790 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC
2791 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed
2792 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed.
2794 int sqlite3VdbeSetColName(
2795 Vdbe
*p
, /* Vdbe being configured */
2796 int idx
, /* Index of column zName applies to */
2797 int var
, /* One of the COLNAME_* constants */
2798 const char *zName
, /* Pointer to buffer containing name */
2799 void (*xDel
)(void*) /* Memory management strategy for zName */
2803 assert( idx
<p
->nResColumn
);
2804 assert( var
<COLNAME_N
);
2805 if( p
->db
->mallocFailed
){
2806 assert( !zName
|| xDel
!=SQLITE_DYNAMIC
);
2807 return SQLITE_NOMEM_BKPT
;
2809 assert( p
->aColName
!=0 );
2810 pColName
= &(p
->aColName
[idx
+var
*p
->nResColumn
]);
2811 rc
= sqlite3VdbeMemSetStr(pColName
, zName
, -1, SQLITE_UTF8
, xDel
);
2812 assert( rc
!=0 || !zName
|| (pColName
->flags
&MEM_Term
)!=0 );
2817 ** A read or write transaction may or may not be active on database handle
2818 ** db. If a transaction is active, commit it. If there is a
2819 ** write-transaction spanning more than one database file, this routine
2820 ** takes care of the super-journal trickery.
2822 static int vdbeCommit(sqlite3
*db
, Vdbe
*p
){
2824 int nTrans
= 0; /* Number of databases with an active write-transaction
2825 ** that are candidates for a two-phase commit using a
2828 int needXcommit
= 0;
2830 #ifdef SQLITE_OMIT_VIRTUALTABLE
2831 /* With this option, sqlite3VtabSync() is defined to be simply
2832 ** SQLITE_OK so p is not used.
2834 UNUSED_PARAMETER(p
);
2837 /* Before doing anything else, call the xSync() callback for any
2838 ** virtual module tables written in this transaction. This has to
2839 ** be done before determining whether a super-journal file is
2840 ** required, as an xSync() callback may add an attached database
2841 ** to the transaction.
2843 rc
= sqlite3VtabSync(db
, p
);
2845 /* This loop determines (a) if the commit hook should be invoked and
2846 ** (b) how many database files have open write transactions, not
2847 ** including the temp database. (b) is important because if more than
2848 ** one database file has an open write transaction, a super-journal
2849 ** file is required for an atomic commit.
2851 for(i
=0; rc
==SQLITE_OK
&& i
<db
->nDb
; i
++){
2852 Btree
*pBt
= db
->aDb
[i
].pBt
;
2853 if( sqlite3BtreeTxnState(pBt
)==SQLITE_TXN_WRITE
){
2854 /* Whether or not a database might need a super-journal depends upon
2855 ** its journal mode (among other things). This matrix determines which
2856 ** journal modes use a super-journal and which do not */
2857 static const u8 aMJNeeded
[] = {
2865 Pager
*pPager
; /* Pager associated with pBt */
2867 sqlite3BtreeEnter(pBt
);
2868 pPager
= sqlite3BtreePager(pBt
);
2869 if( db
->aDb
[i
].safety_level
!=PAGER_SYNCHRONOUS_OFF
2870 && aMJNeeded
[sqlite3PagerGetJournalMode(pPager
)]
2871 && sqlite3PagerIsMemdb(pPager
)==0
2876 rc
= sqlite3PagerExclusiveLock(pPager
);
2877 sqlite3BtreeLeave(pBt
);
2880 if( rc
!=SQLITE_OK
){
2884 /* If there are any write-transactions at all, invoke the commit hook */
2885 if( needXcommit
&& db
->xCommitCallback
){
2886 rc
= db
->xCommitCallback(db
->pCommitArg
);
2888 return SQLITE_CONSTRAINT_COMMITHOOK
;
2892 /* The simple case - no more than one database file (not counting the
2893 ** TEMP database) has a transaction active. There is no need for the
2896 ** If the return value of sqlite3BtreeGetFilename() is a zero length
2897 ** string, it means the main database is :memory: or a temp file. In
2898 ** that case we do not support atomic multi-file commits, so use the
2899 ** simple case then too.
2901 if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db
->aDb
[0].pBt
))
2904 for(i
=0; rc
==SQLITE_OK
&& i
<db
->nDb
; i
++){
2905 Btree
*pBt
= db
->aDb
[i
].pBt
;
2907 rc
= sqlite3BtreeCommitPhaseOne(pBt
, 0);
2911 /* Do the commit only if all databases successfully complete phase 1.
2912 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
2913 ** IO error while deleting or truncating a journal file. It is unlikely,
2914 ** but could happen. In this case abandon processing and return the error.
2916 for(i
=0; rc
==SQLITE_OK
&& i
<db
->nDb
; i
++){
2917 Btree
*pBt
= db
->aDb
[i
].pBt
;
2919 rc
= sqlite3BtreeCommitPhaseTwo(pBt
, 0);
2922 if( rc
==SQLITE_OK
){
2923 sqlite3VtabCommit(db
);
2927 /* The complex case - There is a multi-file write-transaction active.
2928 ** This requires a super-journal file to ensure the transaction is
2929 ** committed atomically.
2931 #ifndef SQLITE_OMIT_DISKIO
2933 sqlite3_vfs
*pVfs
= db
->pVfs
;
2934 char *zSuper
= 0; /* File-name for the super-journal */
2935 char const *zMainFile
= sqlite3BtreeGetFilename(db
->aDb
[0].pBt
);
2936 sqlite3_file
*pSuperJrnl
= 0;
2942 /* Select a super-journal file name */
2943 nMainFile
= sqlite3Strlen30(zMainFile
);
2944 zSuper
= sqlite3MPrintf(db
, "%.4c%s%.16c", 0,zMainFile
,0);
2945 if( zSuper
==0 ) return SQLITE_NOMEM_BKPT
;
2950 if( retryCount
>100 ){
2951 sqlite3_log(SQLITE_FULL
, "MJ delete: %s", zSuper
);
2952 sqlite3OsDelete(pVfs
, zSuper
, 0);
2954 }else if( retryCount
==1 ){
2955 sqlite3_log(SQLITE_FULL
, "MJ collide: %s", zSuper
);
2959 sqlite3_randomness(sizeof(iRandom
), &iRandom
);
2960 sqlite3_snprintf(13, &zSuper
[nMainFile
], "-mj%06X9%02X",
2961 (iRandom
>>8)&0xffffff, iRandom
&0xff);
2962 /* The antipenultimate character of the super-journal name must
2963 ** be "9" to avoid name collisions when using 8+3 filenames. */
2964 assert( zSuper
[sqlite3Strlen30(zSuper
)-3]=='9' );
2965 sqlite3FileSuffix3(zMainFile
, zSuper
);
2966 rc
= sqlite3OsAccess(pVfs
, zSuper
, SQLITE_ACCESS_EXISTS
, &res
);
2967 }while( rc
==SQLITE_OK
&& res
);
2968 if( rc
==SQLITE_OK
){
2969 /* Open the super-journal. */
2970 rc
= sqlite3OsOpenMalloc(pVfs
, zSuper
, &pSuperJrnl
,
2971 SQLITE_OPEN_READWRITE
|SQLITE_OPEN_CREATE
|
2972 SQLITE_OPEN_EXCLUSIVE
|SQLITE_OPEN_SUPER_JOURNAL
, 0
2975 if( rc
!=SQLITE_OK
){
2976 sqlite3DbFree(db
, zSuper
-4);
2980 /* Write the name of each database file in the transaction into the new
2981 ** super-journal file. If an error occurs at this point close
2982 ** and delete the super-journal file. All the individual journal files
2983 ** still have 'null' as the super-journal pointer, so they will roll
2984 ** back independently if a failure occurs.
2986 for(i
=0; i
<db
->nDb
; i
++){
2987 Btree
*pBt
= db
->aDb
[i
].pBt
;
2988 if( sqlite3BtreeTxnState(pBt
)==SQLITE_TXN_WRITE
){
2989 char const *zFile
= sqlite3BtreeGetJournalname(pBt
);
2991 continue; /* Ignore TEMP and :memory: databases */
2993 assert( zFile
[0]!=0 );
2994 rc
= sqlite3OsWrite(pSuperJrnl
, zFile
, sqlite3Strlen30(zFile
)+1,offset
);
2995 offset
+= sqlite3Strlen30(zFile
)+1;
2996 if( rc
!=SQLITE_OK
){
2997 sqlite3OsCloseFree(pSuperJrnl
);
2998 sqlite3OsDelete(pVfs
, zSuper
, 0);
2999 sqlite3DbFree(db
, zSuper
-4);
3005 /* Sync the super-journal file. If the IOCAP_SEQUENTIAL device
3006 ** flag is set this is not required.
3008 if( 0==(sqlite3OsDeviceCharacteristics(pSuperJrnl
)&SQLITE_IOCAP_SEQUENTIAL
)
3009 && SQLITE_OK
!=(rc
= sqlite3OsSync(pSuperJrnl
, SQLITE_SYNC_NORMAL
))
3011 sqlite3OsCloseFree(pSuperJrnl
);
3012 sqlite3OsDelete(pVfs
, zSuper
, 0);
3013 sqlite3DbFree(db
, zSuper
-4);
3017 /* Sync all the db files involved in the transaction. The same call
3018 ** sets the super-journal pointer in each individual journal. If
3019 ** an error occurs here, do not delete the super-journal file.
3021 ** If the error occurs during the first call to
3022 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
3023 ** super-journal file will be orphaned. But we cannot delete it,
3024 ** in case the super-journal file name was written into the journal
3025 ** file before the failure occurred.
3027 for(i
=0; rc
==SQLITE_OK
&& i
<db
->nDb
; i
++){
3028 Btree
*pBt
= db
->aDb
[i
].pBt
;
3030 rc
= sqlite3BtreeCommitPhaseOne(pBt
, zSuper
);
3033 sqlite3OsCloseFree(pSuperJrnl
);
3034 assert( rc
!=SQLITE_BUSY
);
3035 if( rc
!=SQLITE_OK
){
3036 sqlite3DbFree(db
, zSuper
-4);
3040 /* Delete the super-journal file. This commits the transaction. After
3041 ** doing this the directory is synced again before any individual
3042 ** transaction files are deleted.
3044 rc
= sqlite3OsDelete(pVfs
, zSuper
, 1);
3045 sqlite3DbFree(db
, zSuper
-4);
3051 /* All files and directories have already been synced, so the following
3052 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
3053 ** deleting or truncating journals. If something goes wrong while
3054 ** this is happening we don't really care. The integrity of the
3055 ** transaction is already guaranteed, but some stray 'cold' journals
3056 ** may be lying around. Returning an error code won't help matters.
3058 disable_simulated_io_errors();
3059 sqlite3BeginBenignMalloc();
3060 for(i
=0; i
<db
->nDb
; i
++){
3061 Btree
*pBt
= db
->aDb
[i
].pBt
;
3063 sqlite3BtreeCommitPhaseTwo(pBt
, 1);
3066 sqlite3EndBenignMalloc();
3067 enable_simulated_io_errors();
3069 sqlite3VtabCommit(db
);
3077 ** This routine checks that the sqlite3.nVdbeActive count variable
3078 ** matches the number of vdbe's in the list sqlite3.pVdbe that are
3079 ** currently active. An assertion fails if the two counts do not match.
3080 ** This is an internal self-check only - it is not an essential processing
3083 ** This is a no-op if NDEBUG is defined.
3086 static void checkActiveVdbeCnt(sqlite3
*db
){
3093 if( sqlite3_stmt_busy((sqlite3_stmt
*)p
) ){
3095 if( p
->readOnly
==0 ) nWrite
++;
3096 if( p
->bIsReader
) nRead
++;
3100 assert( cnt
==db
->nVdbeActive
);
3101 assert( nWrite
==db
->nVdbeWrite
);
3102 assert( nRead
==db
->nVdbeRead
);
3105 #define checkActiveVdbeCnt(x)
3109 ** If the Vdbe passed as the first argument opened a statement-transaction,
3110 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or
3111 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement
3112 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the
3113 ** statement transaction is committed.
3115 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned.
3116 ** Otherwise SQLITE_OK.
3118 static SQLITE_NOINLINE
int vdbeCloseStatement(Vdbe
*p
, int eOp
){
3119 sqlite3
*const db
= p
->db
;
3122 const int iSavepoint
= p
->iStatement
-1;
3124 assert( eOp
==SAVEPOINT_ROLLBACK
|| eOp
==SAVEPOINT_RELEASE
);
3125 assert( db
->nStatement
>0 );
3126 assert( p
->iStatement
==(db
->nStatement
+db
->nSavepoint
) );
3128 for(i
=0; i
<db
->nDb
; i
++){
3129 int rc2
= SQLITE_OK
;
3130 Btree
*pBt
= db
->aDb
[i
].pBt
;
3132 if( eOp
==SAVEPOINT_ROLLBACK
){
3133 rc2
= sqlite3BtreeSavepoint(pBt
, SAVEPOINT_ROLLBACK
, iSavepoint
);
3135 if( rc2
==SQLITE_OK
){
3136 rc2
= sqlite3BtreeSavepoint(pBt
, SAVEPOINT_RELEASE
, iSavepoint
);
3138 if( rc
==SQLITE_OK
){
3146 if( rc
==SQLITE_OK
){
3147 if( eOp
==SAVEPOINT_ROLLBACK
){
3148 rc
= sqlite3VtabSavepoint(db
, SAVEPOINT_ROLLBACK
, iSavepoint
);
3150 if( rc
==SQLITE_OK
){
3151 rc
= sqlite3VtabSavepoint(db
, SAVEPOINT_RELEASE
, iSavepoint
);
3155 /* If the statement transaction is being rolled back, also restore the
3156 ** database handles deferred constraint counter to the value it had when
3157 ** the statement transaction was opened. */
3158 if( eOp
==SAVEPOINT_ROLLBACK
){
3159 db
->nDeferredCons
= p
->nStmtDefCons
;
3160 db
->nDeferredImmCons
= p
->nStmtDefImmCons
;
3164 int sqlite3VdbeCloseStatement(Vdbe
*p
, int eOp
){
3165 if( p
->db
->nStatement
&& p
->iStatement
){
3166 return vdbeCloseStatement(p
, eOp
);
3173 ** This function is called when a transaction opened by the database
3174 ** handle associated with the VM passed as an argument is about to be
3175 ** committed. If there are outstanding deferred foreign key constraint
3176 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
3178 ** If there are outstanding FK violations and this function returns
3179 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY
3180 ** and write an error message to it. Then return SQLITE_ERROR.
3182 #ifndef SQLITE_OMIT_FOREIGN_KEY
3183 int sqlite3VdbeCheckFk(Vdbe
*p
, int deferred
){
3184 sqlite3
*db
= p
->db
;
3185 if( (deferred
&& (db
->nDeferredCons
+db
->nDeferredImmCons
)>0)
3186 || (!deferred
&& p
->nFkConstraint
>0)
3188 p
->rc
= SQLITE_CONSTRAINT_FOREIGNKEY
;
3189 p
->errorAction
= OE_Abort
;
3190 sqlite3VdbeError(p
, "FOREIGN KEY constraint failed");
3191 if( (p
->prepFlags
& SQLITE_PREPARE_SAVESQL
)==0 ) return SQLITE_ERROR
;
3192 return SQLITE_CONSTRAINT_FOREIGNKEY
;
3199 ** This routine is called the when a VDBE tries to halt. If the VDBE
3200 ** has made changes and is in autocommit mode, then commit those
3201 ** changes. If a rollback is needed, then do the rollback.
3203 ** This routine is the only way to move the sqlite3eOpenState of a VM from
3204 ** SQLITE_STATE_RUN to SQLITE_STATE_HALT. It is harmless to
3205 ** call this on a VM that is in the SQLITE_STATE_HALT state.
3207 ** Return an error code. If the commit could not complete because of
3208 ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it
3209 ** means the close did not happen and needs to be repeated.
3211 int sqlite3VdbeHalt(Vdbe
*p
){
3212 int rc
; /* Used to store transient return codes */
3213 sqlite3
*db
= p
->db
;
3215 /* This function contains the logic that determines if a statement or
3216 ** transaction will be committed or rolled back as a result of the
3217 ** execution of this virtual machine.
3219 ** If any of the following errors occur:
3226 ** Then the internal cache might have been left in an inconsistent
3227 ** state. We need to rollback the statement transaction, if there is
3228 ** one, or the complete transaction if there is no statement transaction.
3231 assert( p
->eVdbeState
==VDBE_RUN_STATE
);
3232 if( db
->mallocFailed
){
3233 p
->rc
= SQLITE_NOMEM_BKPT
;
3236 checkActiveVdbeCnt(db
);
3238 /* No commit or rollback needed if the program never started or if the
3239 ** SQL statement does not read or write a database file. */
3241 int mrc
; /* Primary error code from p->rc */
3242 int eStatementOp
= 0;
3243 int isSpecialError
; /* Set to true if a 'special' error */
3245 /* Lock all btrees used by the statement */
3246 sqlite3VdbeEnter(p
);
3248 /* Check for one of the special errors */
3251 isSpecialError
= mrc
==SQLITE_NOMEM
3252 || mrc
==SQLITE_IOERR
3253 || mrc
==SQLITE_INTERRUPT
3254 || mrc
==SQLITE_FULL
;
3256 mrc
= isSpecialError
= 0;
3258 if( isSpecialError
){
3259 /* If the query was read-only and the error code is SQLITE_INTERRUPT,
3260 ** no rollback is necessary. Otherwise, at least a savepoint
3261 ** transaction must be rolled back to restore the database to a
3262 ** consistent state.
3264 ** Even if the statement is read-only, it is important to perform
3265 ** a statement or transaction rollback operation. If the error
3266 ** occurred while writing to the journal, sub-journal or database
3267 ** file as part of an effort to free up cache space (see function
3268 ** pagerStress() in pager.c), the rollback is required to restore
3269 ** the pager to a consistent state.
3271 if( !p
->readOnly
|| mrc
!=SQLITE_INTERRUPT
){
3272 if( (mrc
==SQLITE_NOMEM
|| mrc
==SQLITE_FULL
) && p
->usesStmtJournal
){
3273 eStatementOp
= SAVEPOINT_ROLLBACK
;
3275 /* We are forced to roll back the active transaction. Before doing
3276 ** so, abort any other statements this handle currently has active.
3278 sqlite3RollbackAll(db
, SQLITE_ABORT_ROLLBACK
);
3279 sqlite3CloseSavepoints(db
);
3286 /* Check for immediate foreign key violations. */
3287 if( p
->rc
==SQLITE_OK
|| (p
->errorAction
==OE_Fail
&& !isSpecialError
) ){
3288 sqlite3VdbeCheckFk(p
, 0);
3291 /* If the auto-commit flag is set and this is the only active writer
3292 ** VM, then we do either a commit or rollback of the current transaction.
3294 ** Note: This block also runs if one of the special errors handled
3295 ** above has occurred.
3297 if( !sqlite3VtabInSync(db
)
3299 && db
->nVdbeWrite
==(p
->readOnly
==0)
3301 if( p
->rc
==SQLITE_OK
|| (p
->errorAction
==OE_Fail
&& !isSpecialError
) ){
3302 rc
= sqlite3VdbeCheckFk(p
, 1);
3303 if( rc
!=SQLITE_OK
){
3304 if( NEVER(p
->readOnly
) ){
3305 sqlite3VdbeLeave(p
);
3306 return SQLITE_ERROR
;
3308 rc
= SQLITE_CONSTRAINT_FOREIGNKEY
;
3309 }else if( db
->flags
& SQLITE_CorruptRdOnly
){
3310 rc
= SQLITE_CORRUPT
;
3311 db
->flags
&= ~SQLITE_CorruptRdOnly
;
3313 /* The auto-commit flag is true, the vdbe program was successful
3314 ** or hit an 'OR FAIL' constraint and there are no deferred foreign
3315 ** key constraints to hold up the transaction. This means a commit
3317 rc
= vdbeCommit(db
, p
);
3319 if( rc
==SQLITE_BUSY
&& p
->readOnly
){
3320 sqlite3VdbeLeave(p
);
3322 }else if( rc
!=SQLITE_OK
){
3324 sqlite3RollbackAll(db
, SQLITE_OK
);
3327 db
->nDeferredCons
= 0;
3328 db
->nDeferredImmCons
= 0;
3329 db
->flags
&= ~(u64
)SQLITE_DeferFKs
;
3330 sqlite3CommitInternalChanges(db
);
3332 }else if( p
->rc
==SQLITE_SCHEMA
&& db
->nVdbeActive
>1 ){
3335 sqlite3RollbackAll(db
, SQLITE_OK
);
3339 }else if( eStatementOp
==0 ){
3340 if( p
->rc
==SQLITE_OK
|| p
->errorAction
==OE_Fail
){
3341 eStatementOp
= SAVEPOINT_RELEASE
;
3342 }else if( p
->errorAction
==OE_Abort
){
3343 eStatementOp
= SAVEPOINT_ROLLBACK
;
3345 sqlite3RollbackAll(db
, SQLITE_ABORT_ROLLBACK
);
3346 sqlite3CloseSavepoints(db
);
3352 /* If eStatementOp is non-zero, then a statement transaction needs to
3353 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to
3354 ** do so. If this operation returns an error, and the current statement
3355 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the
3356 ** current statement error code.
3359 rc
= sqlite3VdbeCloseStatement(p
, eStatementOp
);
3361 if( p
->rc
==SQLITE_OK
|| (p
->rc
&0xff)==SQLITE_CONSTRAINT
){
3363 sqlite3DbFree(db
, p
->zErrMsg
);
3366 sqlite3RollbackAll(db
, SQLITE_ABORT_ROLLBACK
);
3367 sqlite3CloseSavepoints(db
);
3373 /* If this was an INSERT, UPDATE or DELETE and no statement transaction
3374 ** has been rolled back, update the database connection change-counter.
3376 if( p
->changeCntOn
){
3377 if( eStatementOp
!=SAVEPOINT_ROLLBACK
){
3378 sqlite3VdbeSetChanges(db
, p
->nChange
);
3380 sqlite3VdbeSetChanges(db
, 0);
3385 /* Release the locks */
3386 sqlite3VdbeLeave(p
);
3389 /* We have successfully halted and closed the VM. Record this fact. */
3391 if( !p
->readOnly
) db
->nVdbeWrite
--;
3392 if( p
->bIsReader
) db
->nVdbeRead
--;
3393 assert( db
->nVdbeActive
>=db
->nVdbeRead
);
3394 assert( db
->nVdbeRead
>=db
->nVdbeWrite
);
3395 assert( db
->nVdbeWrite
>=0 );
3396 p
->eVdbeState
= VDBE_HALT_STATE
;
3397 checkActiveVdbeCnt(db
);
3398 if( db
->mallocFailed
){
3399 p
->rc
= SQLITE_NOMEM_BKPT
;
3402 /* If the auto-commit flag is set to true, then any locks that were held
3403 ** by connection db have now been released. Call sqlite3ConnectionUnlocked()
3404 ** to invoke any required unlock-notify callbacks.
3406 if( db
->autoCommit
){
3407 sqlite3ConnectionUnlocked(db
);
3410 assert( db
->nVdbeActive
>0 || db
->autoCommit
==0 || db
->nStatement
==0 );
3411 return (p
->rc
==SQLITE_BUSY
? SQLITE_BUSY
: SQLITE_OK
);
3416 ** Each VDBE holds the result of the most recent sqlite3_step() call
3417 ** in p->rc. This routine sets that result back to SQLITE_OK.
3419 void sqlite3VdbeResetStepResult(Vdbe
*p
){
3424 ** Copy the error code and error message belonging to the VDBE passed
3425 ** as the first argument to its database handle (so that they will be
3426 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()).
3428 ** This function does not clear the VDBE error code or message, just
3429 ** copies them to the database handle.
3431 int sqlite3VdbeTransferError(Vdbe
*p
){
3432 sqlite3
*db
= p
->db
;
3435 db
->bBenignMalloc
++;
3436 sqlite3BeginBenignMalloc();
3437 if( db
->pErr
==0 ) db
->pErr
= sqlite3ValueNew(db
);
3438 sqlite3ValueSetStr(db
->pErr
, -1, p
->zErrMsg
, SQLITE_UTF8
, SQLITE_TRANSIENT
);
3439 sqlite3EndBenignMalloc();
3440 db
->bBenignMalloc
--;
3441 }else if( db
->pErr
){
3442 sqlite3ValueSetNull(db
->pErr
);
3445 db
->errByteOffset
= -1;
3449 #ifdef SQLITE_ENABLE_SQLLOG
3451 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run,
3454 static void vdbeInvokeSqllog(Vdbe
*v
){
3455 if( sqlite3GlobalConfig
.xSqllog
&& v
->rc
==SQLITE_OK
&& v
->zSql
&& v
->pc
>=0 ){
3456 char *zExpanded
= sqlite3VdbeExpandSql(v
, v
->zSql
);
3457 assert( v
->db
->init
.busy
==0 );
3459 sqlite3GlobalConfig
.xSqllog(
3460 sqlite3GlobalConfig
.pSqllogArg
, v
->db
, zExpanded
, 1
3462 sqlite3DbFree(v
->db
, zExpanded
);
3467 # define vdbeInvokeSqllog(x)
3471 ** Clean up a VDBE after execution but do not delete the VDBE just yet.
3472 ** Write any error messages into *pzErrMsg. Return the result code.
3474 ** After this routine is run, the VDBE should be ready to be executed
3477 ** To look at it another way, this routine resets the state of the
3478 ** virtual machine from VDBE_RUN_STATE or VDBE_HALT_STATE back to
3479 ** VDBE_READY_STATE.
3481 int sqlite3VdbeReset(Vdbe
*p
){
3482 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
3489 /* If the VM did not run to completion or if it encountered an
3490 ** error, then it might not have been halted properly. So halt
3493 if( p
->eVdbeState
==VDBE_RUN_STATE
) sqlite3VdbeHalt(p
);
3495 /* If the VDBE has been run even partially, then transfer the error code
3496 ** and error message from the VDBE into the main database structure. But
3497 ** if the VDBE has just been set to run but has not actually executed any
3498 ** instructions yet, leave the main database error information unchanged.
3501 vdbeInvokeSqllog(p
);
3502 if( db
->pErr
|| p
->zErrMsg
){
3503 sqlite3VdbeTransferError(p
);
3505 db
->errCode
= p
->rc
;
3509 /* Reset register contents and reclaim error message memory.
3512 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and
3513 ** Vdbe.aMem[] arrays have already been cleaned up. */
3514 if( p
->apCsr
) for(i
=0; i
<p
->nCursor
; i
++) assert( p
->apCsr
[i
]==0 );
3516 for(i
=0; i
<p
->nMem
; i
++) assert( p
->aMem
[i
].flags
==MEM_Undefined
);
3520 sqlite3DbFree(db
, p
->zErrMsg
);
3528 /* Save profiling information from this VDBE run.
3532 FILE *out
= fopen("vdbe_profile.out", "a");
3534 fprintf(out
, "---- ");
3535 for(i
=0; i
<p
->nOp
; i
++){
3536 fprintf(out
, "%02x", p
->aOp
[i
].opcode
);
3541 fprintf(out
, "-- ");
3542 for(i
=0; (c
= p
->zSql
[i
])!=0; i
++){
3543 if( pc
=='\n' ) fprintf(out
, "-- ");
3547 if( pc
!='\n' ) fprintf(out
, "\n");
3549 for(i
=0; i
<p
->nOp
; i
++){
3551 i64 cnt
= p
->aOp
[i
].nExec
;
3552 i64 cycles
= p
->aOp
[i
].nCycle
;
3553 sqlite3_snprintf(sizeof(zHdr
), zHdr
, "%6u %12llu %8llu ",
3556 cnt
>0 ? cycles
/cnt
: 0
3558 fprintf(out
, "%s", zHdr
);
3559 sqlite3VdbePrintOp(out
, i
, &p
->aOp
[i
]);
3565 return p
->rc
& db
->errMask
;
3569 ** Clean up and delete a VDBE after execution. Return an integer which is
3570 ** the result code. Write any error message text into *pzErrMsg.
3572 int sqlite3VdbeFinalize(Vdbe
*p
){
3574 assert( VDBE_RUN_STATE
>VDBE_READY_STATE
);
3575 assert( VDBE_HALT_STATE
>VDBE_READY_STATE
);
3576 assert( VDBE_INIT_STATE
<VDBE_READY_STATE
);
3577 if( p
->eVdbeState
>=VDBE_READY_STATE
){
3578 rc
= sqlite3VdbeReset(p
);
3579 assert( (rc
& p
->db
->errMask
)==rc
);
3581 sqlite3VdbeDelete(p
);
3586 ** If parameter iOp is less than zero, then invoke the destructor for
3587 ** all auxiliary data pointers currently cached by the VM passed as
3588 ** the first argument.
3590 ** Or, if iOp is greater than or equal to zero, then the destructor is
3591 ** only invoked for those auxiliary data pointers created by the user
3592 ** function invoked by the OP_Function opcode at instruction iOp of
3593 ** VM pVdbe, and only then if:
3595 ** * the associated function parameter is the 32nd or later (counting
3596 ** from left to right), or
3598 ** * the corresponding bit in argument mask is clear (where the first
3599 ** function parameter corresponds to bit 0 etc.).
3601 void sqlite3VdbeDeleteAuxData(sqlite3
*db
, AuxData
**pp
, int iOp
, int mask
){
3603 AuxData
*pAux
= *pp
;
3605 || (pAux
->iAuxOp
==iOp
3607 && (pAux
->iAuxArg
>31 || !(mask
& MASKBIT32(pAux
->iAuxArg
))))
3609 testcase( pAux
->iAuxArg
==31 );
3610 if( pAux
->xDeleteAux
){
3611 pAux
->xDeleteAux(pAux
->pAux
);
3613 *pp
= pAux
->pNextAux
;
3614 sqlite3DbFree(db
, pAux
);
3616 pp
= &pAux
->pNextAux
;
3622 ** Free all memory associated with the Vdbe passed as the second argument,
3623 ** except for object itself, which is preserved.
3625 ** The difference between this function and sqlite3VdbeDelete() is that
3626 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with
3627 ** the database connection and frees the object itself.
3629 static void sqlite3VdbeClearObject(sqlite3
*db
, Vdbe
*p
){
3630 SubProgram
*pSub
, *pNext
;
3632 assert( p
->db
==0 || p
->db
==db
);
3634 releaseMemArray(p
->aColName
, p
->nResColumn
*COLNAME_N
);
3635 sqlite3DbNNFreeNN(db
, p
->aColName
);
3637 for(pSub
=p
->pProgram
; pSub
; pSub
=pNext
){
3638 pNext
= pSub
->pNext
;
3639 vdbeFreeOpArray(db
, pSub
->aOp
, pSub
->nOp
);
3640 sqlite3DbFree(db
, pSub
);
3642 if( p
->eVdbeState
!=VDBE_INIT_STATE
){
3643 releaseMemArray(p
->aVar
, p
->nVar
);
3644 if( p
->pVList
) sqlite3DbNNFreeNN(db
, p
->pVList
);
3645 if( p
->pFree
) sqlite3DbNNFreeNN(db
, p
->pFree
);
3647 vdbeFreeOpArray(db
, p
->aOp
, p
->nOp
);
3648 if( p
->zSql
) sqlite3DbNNFreeNN(db
, p
->zSql
);
3649 #ifdef SQLITE_ENABLE_NORMALIZE
3650 sqlite3DbFree(db
, p
->zNormSql
);
3652 DblquoteStr
*pThis
, *pNxt
;
3653 for(pThis
=p
->pDblStr
; pThis
; pThis
=pNxt
){
3654 pNxt
= pThis
->pNextStr
;
3655 sqlite3DbFree(db
, pThis
);
3659 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
3662 for(i
=0; i
<p
->nScan
; i
++){
3663 sqlite3DbFree(db
, p
->aScan
[i
].zName
);
3665 sqlite3DbFree(db
, p
->aScan
);
3671 ** Delete an entire VDBE.
3673 void sqlite3VdbeDelete(Vdbe
*p
){
3679 assert( sqlite3_mutex_held(db
->mutex
) );
3680 sqlite3VdbeClearObject(db
, p
);
3681 if( db
->pnBytesFreed
==0 ){
3682 assert( p
->ppVPrev
!=0 );
3683 *p
->ppVPrev
= p
->pVNext
;
3685 p
->pVNext
->ppVPrev
= p
->ppVPrev
;
3688 sqlite3DbNNFreeNN(db
, p
);
3692 ** The cursor "p" has a pending seek operation that has not yet been
3693 ** carried out. Seek the cursor now. If an error occurs, return
3694 ** the appropriate error code.
3696 int SQLITE_NOINLINE
sqlite3VdbeFinishMoveto(VdbeCursor
*p
){
3699 extern int sqlite3_search_count
;
3701 assert( p
->deferredMoveto
);
3702 assert( p
->isTable
);
3703 assert( p
->eCurType
==CURTYPE_BTREE
);
3704 rc
= sqlite3BtreeTableMoveto(p
->uc
.pCursor
, p
->movetoTarget
, 0, &res
);
3706 if( res
!=0 ) return SQLITE_CORRUPT_BKPT
;
3708 sqlite3_search_count
++;
3710 p
->deferredMoveto
= 0;
3711 p
->cacheStatus
= CACHE_STALE
;
3716 ** Something has moved cursor "p" out of place. Maybe the row it was
3717 ** pointed to was deleted out from under it. Or maybe the btree was
3718 ** rebalanced. Whatever the cause, try to restore "p" to the place it
3719 ** is supposed to be pointing. If the row was deleted out from under the
3720 ** cursor, set the cursor to point to a NULL row.
3722 int SQLITE_NOINLINE
sqlite3VdbeHandleMovedCursor(VdbeCursor
*p
){
3723 int isDifferentRow
, rc
;
3724 assert( p
->eCurType
==CURTYPE_BTREE
);
3725 assert( p
->uc
.pCursor
!=0 );
3726 assert( sqlite3BtreeCursorHasMoved(p
->uc
.pCursor
) );
3727 rc
= sqlite3BtreeCursorRestore(p
->uc
.pCursor
, &isDifferentRow
);
3728 p
->cacheStatus
= CACHE_STALE
;
3729 if( isDifferentRow
) p
->nullRow
= 1;
3734 ** Check to ensure that the cursor is valid. Restore the cursor
3735 ** if need be. Return any I/O error from the restore operation.
3737 int sqlite3VdbeCursorRestore(VdbeCursor
*p
){
3738 assert( p
->eCurType
==CURTYPE_BTREE
|| IsNullCursor(p
) );
3739 if( sqlite3BtreeCursorHasMoved(p
->uc
.pCursor
) ){
3740 return sqlite3VdbeHandleMovedCursor(p
);
3746 ** The following functions:
3748 ** sqlite3VdbeSerialType()
3749 ** sqlite3VdbeSerialTypeLen()
3750 ** sqlite3VdbeSerialLen()
3751 ** sqlite3VdbeSerialPut() <--- in-lined into OP_MakeRecord as of 2022-04-02
3752 ** sqlite3VdbeSerialGet()
3754 ** encapsulate the code that serializes values for storage in SQLite
3755 ** data and index records. Each serialized value consists of a
3756 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
3757 ** integer, stored as a varint.
3759 ** In an SQLite index record, the serial type is stored directly before
3760 ** the blob of data that it corresponds to. In a table record, all serial
3761 ** types are stored at the start of the record, and the blobs of data at
3762 ** the end. Hence these functions allow the caller to handle the
3763 ** serial-type and data blob separately.
3765 ** The following table describes the various storage classes for data:
3767 ** serial type bytes of data type
3768 ** -------------- --------------- ---------------
3770 ** 1 1 signed integer
3771 ** 2 2 signed integer
3772 ** 3 3 signed integer
3773 ** 4 4 signed integer
3774 ** 5 6 signed integer
3775 ** 6 8 signed integer
3777 ** 8 0 Integer constant 0
3778 ** 9 0 Integer constant 1
3779 ** 10,11 reserved for expansion
3780 ** N>=12 and even (N-12)/2 BLOB
3781 ** N>=13 and odd (N-13)/2 text
3783 ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions
3784 ** of SQLite will not understand those serial types.
3787 #if 0 /* Inlined into the OP_MakeRecord opcode */
3789 ** Return the serial-type for the value stored in pMem.
3791 ** This routine might convert a large MEM_IntReal value into MEM_Real.
3793 ** 2019-07-11: The primary user of this subroutine was the OP_MakeRecord
3794 ** opcode in the byte-code engine. But by moving this routine in-line, we
3795 ** can omit some redundant tests and make that opcode a lot faster. So
3796 ** this routine is now only used by the STAT3 logic and STAT3 support has
3797 ** ended. The code is kept here for historical reference only.
3799 u32
sqlite3VdbeSerialType(Mem
*pMem
, int file_format
, u32
*pLen
){
3800 int flags
= pMem
->flags
;
3804 if( flags
&MEM_Null
){
3808 if( flags
&(MEM_Int
|MEM_IntReal
) ){
3809 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
3810 # define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
3813 testcase( flags
& MEM_Int
);
3814 testcase( flags
& MEM_IntReal
);
3821 if( (i
&1)==i
&& file_format
>=4 ){
3829 if( u
<=32767 ){ *pLen
= 2; return 2; }
3830 if( u
<=8388607 ){ *pLen
= 3; return 3; }
3831 if( u
<=2147483647 ){ *pLen
= 4; return 4; }
3832 if( u
<=MAX_6BYTE
){ *pLen
= 6; return 5; }
3834 if( flags
&MEM_IntReal
){
3835 /* If the value is IntReal and is going to take up 8 bytes to store
3836 ** as an integer, then we might as well make it an 8-byte floating
3838 pMem
->u
.r
= (double)pMem
->u
.i
;
3839 pMem
->flags
&= ~MEM_IntReal
;
3840 pMem
->flags
|= MEM_Real
;
3845 if( flags
&MEM_Real
){
3849 assert( pMem
->db
->mallocFailed
|| flags
&(MEM_Str
|MEM_Blob
) );
3850 assert( pMem
->n
>=0 );
3852 if( flags
& MEM_Zero
){
3856 return ((n
*2) + 12 + ((flags
&MEM_Str
)!=0));
3858 #endif /* inlined into OP_MakeRecord */
3861 ** The sizes for serial types less than 128
3863 const u8 sqlite3SmallTypeSizes
[128] = {
3864 /* 0 1 2 3 4 5 6 7 8 9 */
3865 /* 0 */ 0, 1, 2, 3, 4, 6, 8, 8, 0, 0,
3866 /* 10 */ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3,
3867 /* 20 */ 4, 4, 5, 5, 6, 6, 7, 7, 8, 8,
3868 /* 30 */ 9, 9, 10, 10, 11, 11, 12, 12, 13, 13,
3869 /* 40 */ 14, 14, 15, 15, 16, 16, 17, 17, 18, 18,
3870 /* 50 */ 19, 19, 20, 20, 21, 21, 22, 22, 23, 23,
3871 /* 60 */ 24, 24, 25, 25, 26, 26, 27, 27, 28, 28,
3872 /* 70 */ 29, 29, 30, 30, 31, 31, 32, 32, 33, 33,
3873 /* 80 */ 34, 34, 35, 35, 36, 36, 37, 37, 38, 38,
3874 /* 90 */ 39, 39, 40, 40, 41, 41, 42, 42, 43, 43,
3875 /* 100 */ 44, 44, 45, 45, 46, 46, 47, 47, 48, 48,
3876 /* 110 */ 49, 49, 50, 50, 51, 51, 52, 52, 53, 53,
3877 /* 120 */ 54, 54, 55, 55, 56, 56, 57, 57
3881 ** Return the length of the data corresponding to the supplied serial-type.
3883 u32
sqlite3VdbeSerialTypeLen(u32 serial_type
){
3884 if( serial_type
>=128 ){
3885 return (serial_type
-12)/2;
3887 assert( serial_type
<12
3888 || sqlite3SmallTypeSizes
[serial_type
]==(serial_type
- 12)/2 );
3889 return sqlite3SmallTypeSizes
[serial_type
];
3892 u8
sqlite3VdbeOneByteSerialTypeLen(u8 serial_type
){
3893 assert( serial_type
<128 );
3894 return sqlite3SmallTypeSizes
[serial_type
];
3898 ** If we are on an architecture with mixed-endian floating
3899 ** points (ex: ARM7) then swap the lower 4 bytes with the
3900 ** upper 4 bytes. Return the result.
3902 ** For most architectures, this is a no-op.
3904 ** (later): It is reported to me that the mixed-endian problem
3905 ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems
3906 ** that early versions of GCC stored the two words of a 64-bit
3907 ** float in the wrong order. And that error has been propagated
3908 ** ever since. The blame is not necessarily with GCC, though.
3909 ** GCC might have just copying the problem from a prior compiler.
3910 ** I am also told that newer versions of GCC that follow a different
3911 ** ABI get the byte order right.
3913 ** Developers using SQLite on an ARM7 should compile and run their
3914 ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG
3915 ** enabled, some asserts below will ensure that the byte order of
3916 ** floating point values is correct.
3918 ** (2007-08-30) Frank van Vugt has studied this problem closely
3919 ** and has send his findings to the SQLite developers. Frank
3920 ** writes that some Linux kernels offer floating point hardware
3921 ** emulation that uses only 32-bit mantissas instead of a full
3922 ** 48-bits as required by the IEEE standard. (This is the
3923 ** CONFIG_FPE_FASTFPE option.) On such systems, floating point
3924 ** byte swapping becomes very complicated. To avoid problems,
3925 ** the necessary byte swapping is carried out using a 64-bit integer
3926 ** rather than a 64-bit float. Frank assures us that the code here
3927 ** works for him. We, the developers, have no way to independently
3928 ** verify this, but Frank seems to know what he is talking about
3931 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
3932 u64
sqlite3FloatSwap(u64 in
){
3945 #endif /* SQLITE_MIXED_ENDIAN_64BIT_FLOAT */
3948 /* Input "x" is a sequence of unsigned characters that represent a
3949 ** big-endian integer. Return the equivalent native integer
3951 #define ONE_BYTE_INT(x) ((i8)(x)[0])
3952 #define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1])
3953 #define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2])
3954 #define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
3955 #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
3958 ** Deserialize the data blob pointed to by buf as serial type serial_type
3959 ** and store the result in pMem.
3961 ** This function is implemented as two separate routines for performance.
3962 ** The few cases that require local variables are broken out into a separate
3963 ** routine so that in most cases the overhead of moving the stack pointer
3966 static void serialGet(
3967 const unsigned char *buf
, /* Buffer to deserialize from */
3968 u32 serial_type
, /* Serial type to deserialize */
3969 Mem
*pMem
/* Memory cell to write value into */
3971 u64 x
= FOUR_BYTE_UINT(buf
);
3972 u32 y
= FOUR_BYTE_UINT(buf
+4);
3974 if( serial_type
==6 ){
3975 /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit
3976 ** twos-complement integer. */
3977 pMem
->u
.i
= *(i64
*)&x
;
3978 pMem
->flags
= MEM_Int
;
3979 testcase( pMem
->u
.i
<0 );
3981 /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit
3982 ** floating point number. */
3983 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
3984 /* Verify that integers and floating point values use the same
3985 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
3986 ** defined that 64-bit floating point values really are mixed
3989 static const u64 t1
= ((u64
)0x3ff00000)<<32;
3990 static const double r1
= 1.0;
3992 swapMixedEndianFloat(t2
);
3993 assert( sizeof(r1
)==sizeof(t2
) && memcmp(&r1
, &t2
, sizeof(r1
))==0 );
3995 assert( sizeof(x
)==8 && sizeof(pMem
->u
.r
)==8 );
3996 swapMixedEndianFloat(x
);
3997 memcpy(&pMem
->u
.r
, &x
, sizeof(x
));
3998 pMem
->flags
= IsNaN(x
) ? MEM_Null
: MEM_Real
;
4001 void sqlite3VdbeSerialGet(
4002 const unsigned char *buf
, /* Buffer to deserialize from */
4003 u32 serial_type
, /* Serial type to deserialize */
4004 Mem
*pMem
/* Memory cell to write value into */
4006 switch( serial_type
){
4007 case 10: { /* Internal use only: NULL with virtual table
4008 ** UPDATE no-change flag set */
4009 pMem
->flags
= MEM_Null
|MEM_Zero
;
4014 case 11: /* Reserved for future use */
4015 case 0: { /* Null */
4016 /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */
4017 pMem
->flags
= MEM_Null
;
4021 /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement
4023 pMem
->u
.i
= ONE_BYTE_INT(buf
);
4024 pMem
->flags
= MEM_Int
;
4025 testcase( pMem
->u
.i
<0 );
4028 case 2: { /* 2-byte signed integer */
4029 /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit
4030 ** twos-complement integer. */
4031 pMem
->u
.i
= TWO_BYTE_INT(buf
);
4032 pMem
->flags
= MEM_Int
;
4033 testcase( pMem
->u
.i
<0 );
4036 case 3: { /* 3-byte signed integer */
4037 /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit
4038 ** twos-complement integer. */
4039 pMem
->u
.i
= THREE_BYTE_INT(buf
);
4040 pMem
->flags
= MEM_Int
;
4041 testcase( pMem
->u
.i
<0 );
4044 case 4: { /* 4-byte signed integer */
4045 /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit
4046 ** twos-complement integer. */
4047 pMem
->u
.i
= FOUR_BYTE_INT(buf
);
4049 /* Work around a sign-extension bug in the HP compiler for HP/UX */
4050 if( buf
[0]&0x80 ) pMem
->u
.i
|= 0xffffffff80000000LL
;
4052 pMem
->flags
= MEM_Int
;
4053 testcase( pMem
->u
.i
<0 );
4056 case 5: { /* 6-byte signed integer */
4057 /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit
4058 ** twos-complement integer. */
4059 pMem
->u
.i
= FOUR_BYTE_UINT(buf
+2) + (((i64
)1)<<32)*TWO_BYTE_INT(buf
);
4060 pMem
->flags
= MEM_Int
;
4061 testcase( pMem
->u
.i
<0 );
4064 case 6: /* 8-byte signed integer */
4065 case 7: { /* IEEE floating point */
4066 /* These use local variables, so do them in a separate routine
4067 ** to avoid having to move the frame pointer in the common case */
4068 serialGet(buf
,serial_type
,pMem
);
4071 case 8: /* Integer 0 */
4072 case 9: { /* Integer 1 */
4073 /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */
4074 /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */
4075 pMem
->u
.i
= serial_type
-8;
4076 pMem
->flags
= MEM_Int
;
4080 /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in
4082 ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and
4083 ** (N-13)/2 bytes in length. */
4084 static const u16 aFlag
[] = { MEM_Blob
|MEM_Ephem
, MEM_Str
|MEM_Ephem
};
4085 pMem
->z
= (char *)buf
;
4086 pMem
->n
= (serial_type
-12)/2;
4087 pMem
->flags
= aFlag
[serial_type
&1];
4094 ** This routine is used to allocate sufficient space for an UnpackedRecord
4095 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if
4096 ** the first argument is a pointer to KeyInfo structure pKeyInfo.
4098 ** The space is either allocated using sqlite3DbMallocRaw() or from within
4099 ** the unaligned buffer passed via the second and third arguments (presumably
4100 ** stack space). If the former, then *ppFree is set to a pointer that should
4101 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the
4102 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL
4103 ** before returning.
4105 ** If an OOM error occurs, NULL is returned.
4107 UnpackedRecord
*sqlite3VdbeAllocUnpackedRecord(
4108 KeyInfo
*pKeyInfo
/* Description of the record */
4110 UnpackedRecord
*p
; /* Unpacked record to return */
4111 int nByte
; /* Number of bytes required for *p */
4112 nByte
= ROUND8P(sizeof(UnpackedRecord
)) + sizeof(Mem
)*(pKeyInfo
->nKeyField
+1);
4113 p
= (UnpackedRecord
*)sqlite3DbMallocRaw(pKeyInfo
->db
, nByte
);
4115 p
->aMem
= (Mem
*)&((char*)p
)[ROUND8P(sizeof(UnpackedRecord
))];
4116 assert( pKeyInfo
->aSortFlags
!=0 );
4117 p
->pKeyInfo
= pKeyInfo
;
4118 p
->nField
= pKeyInfo
->nKeyField
+ 1;
4123 ** Given the nKey-byte encoding of a record in pKey[], populate the
4124 ** UnpackedRecord structure indicated by the fourth argument with the
4125 ** contents of the decoded record.
4127 void sqlite3VdbeRecordUnpack(
4128 KeyInfo
*pKeyInfo
, /* Information about the record format */
4129 int nKey
, /* Size of the binary record */
4130 const void *pKey
, /* The binary record */
4131 UnpackedRecord
*p
/* Populate this structure before returning. */
4133 const unsigned char *aKey
= (const unsigned char *)pKey
;
4135 u32 idx
; /* Offset in aKey[] to read from */
4136 u16 u
; /* Unsigned loop counter */
4138 Mem
*pMem
= p
->aMem
;
4141 assert( EIGHT_BYTE_ALIGNMENT(pMem
) );
4142 idx
= getVarint32(aKey
, szHdr
);
4145 while( idx
<szHdr
&& d
<=(u32
)nKey
){
4148 idx
+= getVarint32(&aKey
[idx
], serial_type
);
4149 pMem
->enc
= pKeyInfo
->enc
;
4150 pMem
->db
= pKeyInfo
->db
;
4151 /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
4154 sqlite3VdbeSerialGet(&aKey
[d
], serial_type
, pMem
);
4155 d
+= sqlite3VdbeSerialTypeLen(serial_type
);
4157 if( (++u
)>=p
->nField
) break;
4159 if( d
>(u32
)nKey
&& u
){
4160 assert( CORRUPT_DB
);
4161 /* In a corrupt record entry, the last pMem might have been set up using
4162 ** uninitialized memory. Overwrite its value with NULL, to prevent
4163 ** warnings from MSAN. */
4164 sqlite3VdbeMemSetNull(pMem
-1);
4166 assert( u
<=pKeyInfo
->nKeyField
+ 1 );
4172 ** This function compares two index or table record keys in the same way
4173 ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(),
4174 ** this function deserializes and compares values using the
4175 ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used
4176 ** in assert() statements to ensure that the optimized code in
4177 ** sqlite3VdbeRecordCompare() returns results with these two primitives.
4179 ** Return true if the result of comparison is equivalent to desiredResult.
4180 ** Return false if there is a disagreement.
4182 static int vdbeRecordCompareDebug(
4183 int nKey1
, const void *pKey1
, /* Left key */
4184 const UnpackedRecord
*pPKey2
, /* Right key */
4185 int desiredResult
/* Correct answer */
4187 u32 d1
; /* Offset into aKey[] of next data element */
4188 u32 idx1
; /* Offset into aKey[] of next header element */
4189 u32 szHdr1
; /* Number of bytes in header */
4192 const unsigned char *aKey1
= (const unsigned char *)pKey1
;
4196 pKeyInfo
= pPKey2
->pKeyInfo
;
4197 if( pKeyInfo
->db
==0 ) return 1;
4198 mem1
.enc
= pKeyInfo
->enc
;
4199 mem1
.db
= pKeyInfo
->db
;
4200 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */
4201 VVA_ONLY( mem1
.szMalloc
= 0; ) /* Only needed by assert() statements */
4203 /* Compilers may complain that mem1.u.i is potentially uninitialized.
4204 ** We could initialize it, as shown here, to silence those complaints.
4205 ** But in fact, mem1.u.i will never actually be used uninitialized, and doing
4206 ** the unnecessary initialization has a measurable negative performance
4207 ** impact, since this routine is a very high runner. And so, we choose
4208 ** to ignore the compiler warnings and leave this variable uninitialized.
4210 /* mem1.u.i = 0; // not needed, here to silence compiler warning */
4212 idx1
= getVarint32(aKey1
, szHdr1
);
4213 if( szHdr1
>98307 ) return SQLITE_CORRUPT
;
4215 assert( pKeyInfo
->nAllField
>=pPKey2
->nField
|| CORRUPT_DB
);
4216 assert( pKeyInfo
->aSortFlags
!=0 );
4217 assert( pKeyInfo
->nKeyField
>0 );
4218 assert( idx1
<=szHdr1
|| CORRUPT_DB
);
4222 /* Read the serial types for the next element in each key. */
4223 idx1
+= getVarint32( aKey1
+idx1
, serial_type1
);
4225 /* Verify that there is enough key space remaining to avoid
4226 ** a buffer overread. The "d1+serial_type1+2" subexpression will
4227 ** always be greater than or equal to the amount of required key space.
4228 ** Use that approximation to avoid the more expensive call to
4229 ** sqlite3VdbeSerialTypeLen() in the common case.
4231 if( d1
+(u64
)serial_type1
+2>(u64
)nKey1
4232 && d1
+(u64
)sqlite3VdbeSerialTypeLen(serial_type1
)>(u64
)nKey1
4237 /* Extract the values to be compared.
4239 sqlite3VdbeSerialGet(&aKey1
[d1
], serial_type1
, &mem1
);
4240 d1
+= sqlite3VdbeSerialTypeLen(serial_type1
);
4242 /* Do the comparison
4244 rc
= sqlite3MemCompare(&mem1
, &pPKey2
->aMem
[i
],
4245 pKeyInfo
->nAllField
>i
? pKeyInfo
->aColl
[i
] : 0);
4247 assert( mem1
.szMalloc
==0 ); /* See comment below */
4248 if( (pKeyInfo
->aSortFlags
[i
] & KEYINFO_ORDER_BIGNULL
)
4249 && ((mem1
.flags
& MEM_Null
) || (pPKey2
->aMem
[i
].flags
& MEM_Null
))
4253 if( pKeyInfo
->aSortFlags
[i
] & KEYINFO_ORDER_DESC
){
4254 rc
= -rc
; /* Invert the result for DESC sort order. */
4256 goto debugCompareEnd
;
4259 }while( idx1
<szHdr1
&& i
<pPKey2
->nField
);
4261 /* No memory allocation is ever used on mem1. Prove this using
4262 ** the following assert(). If the assert() fails, it indicates a
4263 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
4265 assert( mem1
.szMalloc
==0 );
4267 /* rc==0 here means that one of the keys ran out of fields and
4268 ** all the fields up to that point were equal. Return the default_rc
4270 rc
= pPKey2
->default_rc
;
4273 if( desiredResult
==0 && rc
==0 ) return 1;
4274 if( desiredResult
<0 && rc
<0 ) return 1;
4275 if( desiredResult
>0 && rc
>0 ) return 1;
4276 if( CORRUPT_DB
) return 1;
4277 if( pKeyInfo
->db
->mallocFailed
) return 1;
4284 ** Count the number of fields (a.k.a. columns) in the record given by
4285 ** pKey,nKey. The verify that this count is less than or equal to the
4286 ** limit given by pKeyInfo->nAllField.
4288 ** If this constraint is not satisfied, it means that the high-speed
4289 ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will
4290 ** not work correctly. If this assert() ever fires, it probably means
4291 ** that the KeyInfo.nKeyField or KeyInfo.nAllField values were computed
4294 static void vdbeAssertFieldCountWithinLimits(
4295 int nKey
, const void *pKey
, /* The record to verify */
4296 const KeyInfo
*pKeyInfo
/* Compare size with this KeyInfo */
4302 const unsigned char *aKey
= (const unsigned char*)pKey
;
4304 if( CORRUPT_DB
) return;
4305 idx
= getVarint32(aKey
, szHdr
);
4307 assert( szHdr
<=(u32
)nKey
);
4309 idx
+= getVarint32(aKey
+idx
, notUsed
);
4312 assert( nField
<= pKeyInfo
->nAllField
);
4315 # define vdbeAssertFieldCountWithinLimits(A,B,C)
4319 ** Both *pMem1 and *pMem2 contain string values. Compare the two values
4320 ** using the collation sequence pColl. As usual, return a negative , zero
4321 ** or positive value if *pMem1 is less than, equal to or greater than
4322 ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);".
4324 static int vdbeCompareMemString(
4327 const CollSeq
*pColl
,
4328 u8
*prcErr
/* If an OOM occurs, set to SQLITE_NOMEM */
4330 if( pMem1
->enc
==pColl
->enc
){
4331 /* The strings are already in the correct encoding. Call the
4332 ** comparison function directly */
4333 return pColl
->xCmp(pColl
->pUser
,pMem1
->n
,pMem1
->z
,pMem2
->n
,pMem2
->z
);
4336 const void *v1
, *v2
;
4339 sqlite3VdbeMemInit(&c1
, pMem1
->db
, MEM_Null
);
4340 sqlite3VdbeMemInit(&c2
, pMem1
->db
, MEM_Null
);
4341 sqlite3VdbeMemShallowCopy(&c1
, pMem1
, MEM_Ephem
);
4342 sqlite3VdbeMemShallowCopy(&c2
, pMem2
, MEM_Ephem
);
4343 v1
= sqlite3ValueText((sqlite3_value
*)&c1
, pColl
->enc
);
4344 v2
= sqlite3ValueText((sqlite3_value
*)&c2
, pColl
->enc
);
4345 if( (v1
==0 || v2
==0) ){
4346 if( prcErr
) *prcErr
= SQLITE_NOMEM_BKPT
;
4349 rc
= pColl
->xCmp(pColl
->pUser
, c1
.n
, v1
, c2
.n
, v2
);
4351 sqlite3VdbeMemReleaseMalloc(&c1
);
4352 sqlite3VdbeMemReleaseMalloc(&c2
);
4358 ** The input pBlob is guaranteed to be a Blob that is not marked
4359 ** with MEM_Zero. Return true if it could be a zero-blob.
4361 static int isAllZero(const char *z
, int n
){
4364 if( z
[i
] ) return 0;
4370 ** Compare two blobs. Return negative, zero, or positive if the first
4371 ** is less than, equal to, or greater than the second, respectively.
4372 ** If one blob is a prefix of the other, then the shorter is the lessor.
4374 SQLITE_NOINLINE
int sqlite3BlobCompare(const Mem
*pB1
, const Mem
*pB2
){
4379 /* It is possible to have a Blob value that has some non-zero content
4380 ** followed by zero content. But that only comes up for Blobs formed
4381 ** by the OP_MakeRecord opcode, and such Blobs never get passed into
4382 ** sqlite3MemCompare(). */
4383 assert( (pB1
->flags
& MEM_Zero
)==0 || n1
==0 );
4384 assert( (pB2
->flags
& MEM_Zero
)==0 || n2
==0 );
4386 if( (pB1
->flags
|pB2
->flags
) & MEM_Zero
){
4387 if( pB1
->flags
& pB2
->flags
& MEM_Zero
){
4388 return pB1
->u
.nZero
- pB2
->u
.nZero
;
4389 }else if( pB1
->flags
& MEM_Zero
){
4390 if( !isAllZero(pB2
->z
, pB2
->n
) ) return -1;
4391 return pB1
->u
.nZero
- n2
;
4393 if( !isAllZero(pB1
->z
, pB1
->n
) ) return +1;
4394 return n1
- pB2
->u
.nZero
;
4397 c
= memcmp(pB1
->z
, pB2
->z
, n1
>n2
? n2
: n1
);
4403 ** Do a comparison between a 64-bit signed integer and a 64-bit floating-point
4404 ** number. Return negative, zero, or positive if the first (i64) is less than,
4405 ** equal to, or greater than the second (double).
4407 int sqlite3IntFloatCompare(i64 i
, double r
){
4408 if( sizeof(LONGDOUBLE_TYPE
)>8 ){
4409 LONGDOUBLE_TYPE x
= (LONGDOUBLE_TYPE
)i
;
4413 if( x
<r
) return -1;
4414 if( x
>r
) return +1; /*NO_TEST*/ /* work around bugs in gcov */
4415 return 0; /*NO_TEST*/ /* work around bugs in gcov */
4419 if( r
<-9223372036854775808.0 ) return +1;
4420 if( r
>=9223372036854775808.0 ) return -1;
4422 if( i
<y
) return -1;
4423 if( i
>y
) return +1;
4425 if( s
<r
) return -1;
4426 if( s
>r
) return +1;
4432 ** Compare the values contained by the two memory cells, returning
4433 ** negative, zero or positive if pMem1 is less than, equal to, or greater
4434 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers
4435 ** and reals) sorted numerically, followed by text ordered by the collating
4436 ** sequence pColl and finally blob's ordered by memcmp().
4438 ** Two NULL values are considered equal by this function.
4440 int sqlite3MemCompare(const Mem
*pMem1
, const Mem
*pMem2
, const CollSeq
*pColl
){
4446 combined_flags
= f1
|f2
;
4447 assert( !sqlite3VdbeMemIsRowSet(pMem1
) && !sqlite3VdbeMemIsRowSet(pMem2
) );
4449 /* If one value is NULL, it is less than the other. If both values
4450 ** are NULL, return 0.
4452 if( combined_flags
&MEM_Null
){
4453 return (f2
&MEM_Null
) - (f1
&MEM_Null
);
4456 /* At least one of the two values is a number
4458 if( combined_flags
&(MEM_Int
|MEM_Real
|MEM_IntReal
) ){
4459 testcase( combined_flags
& MEM_Int
);
4460 testcase( combined_flags
& MEM_Real
);
4461 testcase( combined_flags
& MEM_IntReal
);
4462 if( (f1
& f2
& (MEM_Int
|MEM_IntReal
))!=0 ){
4463 testcase( f1
& f2
& MEM_Int
);
4464 testcase( f1
& f2
& MEM_IntReal
);
4465 if( pMem1
->u
.i
< pMem2
->u
.i
) return -1;
4466 if( pMem1
->u
.i
> pMem2
->u
.i
) return +1;
4469 if( (f1
& f2
& MEM_Real
)!=0 ){
4470 if( pMem1
->u
.r
< pMem2
->u
.r
) return -1;
4471 if( pMem1
->u
.r
> pMem2
->u
.r
) return +1;
4474 if( (f1
&(MEM_Int
|MEM_IntReal
))!=0 ){
4475 testcase( f1
& MEM_Int
);
4476 testcase( f1
& MEM_IntReal
);
4477 if( (f2
&MEM_Real
)!=0 ){
4478 return sqlite3IntFloatCompare(pMem1
->u
.i
, pMem2
->u
.r
);
4479 }else if( (f2
&(MEM_Int
|MEM_IntReal
))!=0 ){
4480 if( pMem1
->u
.i
< pMem2
->u
.i
) return -1;
4481 if( pMem1
->u
.i
> pMem2
->u
.i
) return +1;
4487 if( (f1
&MEM_Real
)!=0 ){
4488 if( (f2
&(MEM_Int
|MEM_IntReal
))!=0 ){
4489 testcase( f2
& MEM_Int
);
4490 testcase( f2
& MEM_IntReal
);
4491 return -sqlite3IntFloatCompare(pMem2
->u
.i
, pMem1
->u
.r
);
4499 /* If one value is a string and the other is a blob, the string is less.
4500 ** If both are strings, compare using the collating functions.
4502 if( combined_flags
&MEM_Str
){
4503 if( (f1
& MEM_Str
)==0 ){
4506 if( (f2
& MEM_Str
)==0 ){
4510 assert( pMem1
->enc
==pMem2
->enc
|| pMem1
->db
->mallocFailed
);
4511 assert( pMem1
->enc
==SQLITE_UTF8
||
4512 pMem1
->enc
==SQLITE_UTF16LE
|| pMem1
->enc
==SQLITE_UTF16BE
);
4514 /* The collation sequence must be defined at this point, even if
4515 ** the user deletes the collation sequence after the vdbe program is
4516 ** compiled (this was not always the case).
4518 assert( !pColl
|| pColl
->xCmp
);
4521 return vdbeCompareMemString(pMem1
, pMem2
, pColl
, 0);
4523 /* If a NULL pointer was passed as the collate function, fall through
4524 ** to the blob case and use memcmp(). */
4527 /* Both values must be blobs. Compare using memcmp(). */
4528 return sqlite3BlobCompare(pMem1
, pMem2
);
4533 ** The first argument passed to this function is a serial-type that
4534 ** corresponds to an integer - all values between 1 and 9 inclusive
4535 ** except 7. The second points to a buffer containing an integer value
4536 ** serialized according to serial_type. This function deserializes
4537 ** and returns the value.
4539 static i64
vdbeRecordDecodeInt(u32 serial_type
, const u8
*aKey
){
4541 assert( CORRUPT_DB
|| (serial_type
>=1 && serial_type
<=9 && serial_type
!=7) );
4542 switch( serial_type
){
4545 testcase( aKey
[0]&0x80 );
4546 return ONE_BYTE_INT(aKey
);
4548 testcase( aKey
[0]&0x80 );
4549 return TWO_BYTE_INT(aKey
);
4551 testcase( aKey
[0]&0x80 );
4552 return THREE_BYTE_INT(aKey
);
4554 testcase( aKey
[0]&0x80 );
4555 y
= FOUR_BYTE_UINT(aKey
);
4556 return (i64
)*(int*)&y
;
4559 testcase( aKey
[0]&0x80 );
4560 return FOUR_BYTE_UINT(aKey
+2) + (((i64
)1)<<32)*TWO_BYTE_INT(aKey
);
4563 u64 x
= FOUR_BYTE_UINT(aKey
);
4564 testcase( aKey
[0]&0x80 );
4565 x
= (x
<<32) | FOUR_BYTE_UINT(aKey
+4);
4566 return (i64
)*(i64
*)&x
;
4570 return (serial_type
- 8);
4574 ** This function compares the two table rows or index records
4575 ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero
4576 ** or positive integer if key1 is less than, equal to or
4577 ** greater than key2. The {nKey1, pKey1} key must be a blob
4578 ** created by the OP_MakeRecord opcode of the VDBE. The pPKey2
4579 ** key must be a parsed key such as obtained from
4580 ** sqlite3VdbeParseRecord.
4582 ** If argument bSkip is non-zero, it is assumed that the caller has already
4583 ** determined that the first fields of the keys are equal.
4585 ** Key1 and Key2 do not have to contain the same number of fields. If all
4586 ** fields that appear in both keys are equal, then pPKey2->default_rc is
4589 ** If database corruption is discovered, set pPKey2->errCode to
4590 ** SQLITE_CORRUPT and return 0. If an OOM error is encountered,
4591 ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the
4592 ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db).
4594 int sqlite3VdbeRecordCompareWithSkip(
4595 int nKey1
, const void *pKey1
, /* Left key */
4596 UnpackedRecord
*pPKey2
, /* Right key */
4597 int bSkip
/* If true, skip the first field */
4599 u32 d1
; /* Offset into aKey[] of next data element */
4600 int i
; /* Index of next field to compare */
4601 u32 szHdr1
; /* Size of record header in bytes */
4602 u32 idx1
; /* Offset of first type in header */
4603 int rc
= 0; /* Return value */
4604 Mem
*pRhs
= pPKey2
->aMem
; /* Next field of pPKey2 to compare */
4606 const unsigned char *aKey1
= (const unsigned char *)pKey1
;
4609 /* If bSkip is true, then the caller has already determined that the first
4610 ** two elements in the keys are equal. Fix the various stack variables so
4611 ** that this routine begins comparing at the second field. */
4617 idx1
= 1 + sqlite3GetVarint32(&aKey1
[1], &s1
);
4620 d1
= szHdr1
+ sqlite3VdbeSerialTypeLen(s1
);
4624 if( (szHdr1
= aKey1
[0])<0x80 ){
4627 idx1
= sqlite3GetVarint32(aKey1
, &szHdr1
);
4632 if( d1
>(unsigned)nKey1
){
4633 pPKey2
->errCode
= (u8
)SQLITE_CORRUPT_BKPT
;
4634 return 0; /* Corruption */
4637 VVA_ONLY( mem1
.szMalloc
= 0; ) /* Only needed by assert() statements */
4638 assert( pPKey2
->pKeyInfo
->nAllField
>=pPKey2
->nField
4640 assert( pPKey2
->pKeyInfo
->aSortFlags
!=0 );
4641 assert( pPKey2
->pKeyInfo
->nKeyField
>0 );
4642 assert( idx1
<=szHdr1
|| CORRUPT_DB
);
4643 while( 1 /*exit-by-break*/ ){
4646 /* RHS is an integer */
4647 if( pRhs
->flags
& (MEM_Int
|MEM_IntReal
) ){
4648 testcase( pRhs
->flags
& MEM_Int
);
4649 testcase( pRhs
->flags
& MEM_IntReal
);
4650 serial_type
= aKey1
[idx1
];
4651 testcase( serial_type
==12 );
4652 if( serial_type
>=10 ){
4653 rc
= serial_type
==10 ? -1 : +1;
4654 }else if( serial_type
==0 ){
4656 }else if( serial_type
==7 ){
4657 sqlite3VdbeSerialGet(&aKey1
[d1
], serial_type
, &mem1
);
4658 rc
= -sqlite3IntFloatCompare(pRhs
->u
.i
, mem1
.u
.r
);
4660 i64 lhs
= vdbeRecordDecodeInt(serial_type
, &aKey1
[d1
]);
4661 i64 rhs
= pRhs
->u
.i
;
4664 }else if( lhs
>rhs
){
4671 else if( pRhs
->flags
& MEM_Real
){
4672 serial_type
= aKey1
[idx1
];
4673 if( serial_type
>=10 ){
4674 /* Serial types 12 or greater are strings and blobs (greater than
4675 ** numbers). Types 10 and 11 are currently "reserved for future
4676 ** use", so it doesn't really matter what the results of comparing
4677 ** them to numberic values are. */
4678 rc
= serial_type
==10 ? -1 : +1;
4679 }else if( serial_type
==0 ){
4682 sqlite3VdbeSerialGet(&aKey1
[d1
], serial_type
, &mem1
);
4683 if( serial_type
==7 ){
4684 if( mem1
.u
.r
<pRhs
->u
.r
){
4686 }else if( mem1
.u
.r
>pRhs
->u
.r
){
4690 rc
= sqlite3IntFloatCompare(mem1
.u
.i
, pRhs
->u
.r
);
4695 /* RHS is a string */
4696 else if( pRhs
->flags
& MEM_Str
){
4697 getVarint32NR(&aKey1
[idx1
], serial_type
);
4698 testcase( serial_type
==12 );
4699 if( serial_type
<12 ){
4701 }else if( !(serial_type
& 0x01) ){
4704 mem1
.n
= (serial_type
- 12) / 2;
4705 testcase( (d1
+mem1
.n
)==(unsigned)nKey1
);
4706 testcase( (d1
+mem1
.n
+1)==(unsigned)nKey1
);
4707 if( (d1
+mem1
.n
) > (unsigned)nKey1
4708 || (pKeyInfo
= pPKey2
->pKeyInfo
)->nAllField
<=i
4710 pPKey2
->errCode
= (u8
)SQLITE_CORRUPT_BKPT
;
4711 return 0; /* Corruption */
4712 }else if( pKeyInfo
->aColl
[i
] ){
4713 mem1
.enc
= pKeyInfo
->enc
;
4714 mem1
.db
= pKeyInfo
->db
;
4715 mem1
.flags
= MEM_Str
;
4716 mem1
.z
= (char*)&aKey1
[d1
];
4717 rc
= vdbeCompareMemString(
4718 &mem1
, pRhs
, pKeyInfo
->aColl
[i
], &pPKey2
->errCode
4721 int nCmp
= MIN(mem1
.n
, pRhs
->n
);
4722 rc
= memcmp(&aKey1
[d1
], pRhs
->z
, nCmp
);
4723 if( rc
==0 ) rc
= mem1
.n
- pRhs
->n
;
4729 else if( pRhs
->flags
& MEM_Blob
){
4730 assert( (pRhs
->flags
& MEM_Zero
)==0 || pRhs
->n
==0 );
4731 getVarint32NR(&aKey1
[idx1
], serial_type
);
4732 testcase( serial_type
==12 );
4733 if( serial_type
<12 || (serial_type
& 0x01) ){
4736 int nStr
= (serial_type
- 12) / 2;
4737 testcase( (d1
+nStr
)==(unsigned)nKey1
);
4738 testcase( (d1
+nStr
+1)==(unsigned)nKey1
);
4739 if( (d1
+nStr
) > (unsigned)nKey1
){
4740 pPKey2
->errCode
= (u8
)SQLITE_CORRUPT_BKPT
;
4741 return 0; /* Corruption */
4742 }else if( pRhs
->flags
& MEM_Zero
){
4743 if( !isAllZero((const char*)&aKey1
[d1
],nStr
) ){
4746 rc
= nStr
- pRhs
->u
.nZero
;
4749 int nCmp
= MIN(nStr
, pRhs
->n
);
4750 rc
= memcmp(&aKey1
[d1
], pRhs
->z
, nCmp
);
4751 if( rc
==0 ) rc
= nStr
- pRhs
->n
;
4758 serial_type
= aKey1
[idx1
];
4759 rc
= (serial_type
!=0 && serial_type
!=10);
4763 int sortFlags
= pPKey2
->pKeyInfo
->aSortFlags
[i
];
4765 if( (sortFlags
& KEYINFO_ORDER_BIGNULL
)==0
4766 || ((sortFlags
& KEYINFO_ORDER_DESC
)
4767 !=(serial_type
==0 || (pRhs
->flags
&MEM_Null
)))
4772 assert( vdbeRecordCompareDebug(nKey1
, pKey1
, pPKey2
, rc
) );
4773 assert( mem1
.szMalloc
==0 ); /* See comment below */
4778 if( i
==pPKey2
->nField
) break;
4780 d1
+= sqlite3VdbeSerialTypeLen(serial_type
);
4781 if( d1
>(unsigned)nKey1
) break;
4782 idx1
+= sqlite3VarintLen(serial_type
);
4783 if( idx1
>=(unsigned)szHdr1
){
4784 pPKey2
->errCode
= (u8
)SQLITE_CORRUPT_BKPT
;
4785 return 0; /* Corrupt index */
4789 /* No memory allocation is ever used on mem1. Prove this using
4790 ** the following assert(). If the assert() fails, it indicates a
4791 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */
4792 assert( mem1
.szMalloc
==0 );
4794 /* rc==0 here means that one or both of the keys ran out of fields and
4795 ** all the fields up to that point were equal. Return the default_rc
4798 || vdbeRecordCompareDebug(nKey1
, pKey1
, pPKey2
, pPKey2
->default_rc
)
4799 || pPKey2
->pKeyInfo
->db
->mallocFailed
4802 return pPKey2
->default_rc
;
4804 int sqlite3VdbeRecordCompare(
4805 int nKey1
, const void *pKey1
, /* Left key */
4806 UnpackedRecord
*pPKey2
/* Right key */
4808 return sqlite3VdbeRecordCompareWithSkip(nKey1
, pKey1
, pPKey2
, 0);
4813 ** This function is an optimized version of sqlite3VdbeRecordCompare()
4814 ** that (a) the first field of pPKey2 is an integer, and (b) the
4815 ** size-of-header varint at the start of (pKey1/nKey1) fits in a single
4816 ** byte (i.e. is less than 128).
4818 ** To avoid concerns about buffer overreads, this routine is only used
4819 ** on schemas where the maximum valid header size is 63 bytes or less.
4821 static int vdbeRecordCompareInt(
4822 int nKey1
, const void *pKey1
, /* Left key */
4823 UnpackedRecord
*pPKey2
/* Right key */
4825 const u8
*aKey
= &((const u8
*)pKey1
)[*(const u8
*)pKey1
& 0x3F];
4826 int serial_type
= ((const u8
*)pKey1
)[1];
4833 vdbeAssertFieldCountWithinLimits(nKey1
, pKey1
, pPKey2
->pKeyInfo
);
4834 assert( (*(u8
*)pKey1
)<=0x3F || CORRUPT_DB
);
4835 switch( serial_type
){
4836 case 1: { /* 1-byte signed integer */
4837 lhs
= ONE_BYTE_INT(aKey
);
4841 case 2: { /* 2-byte signed integer */
4842 lhs
= TWO_BYTE_INT(aKey
);
4846 case 3: { /* 3-byte signed integer */
4847 lhs
= THREE_BYTE_INT(aKey
);
4851 case 4: { /* 4-byte signed integer */
4852 y
= FOUR_BYTE_UINT(aKey
);
4853 lhs
= (i64
)*(int*)&y
;
4857 case 5: { /* 6-byte signed integer */
4858 lhs
= FOUR_BYTE_UINT(aKey
+2) + (((i64
)1)<<32)*TWO_BYTE_INT(aKey
);
4862 case 6: { /* 8-byte signed integer */
4863 x
= FOUR_BYTE_UINT(aKey
);
4864 x
= (x
<<32) | FOUR_BYTE_UINT(aKey
+4);
4876 /* This case could be removed without changing the results of running
4877 ** this code. Including it causes gcc to generate a faster switch
4878 ** statement (since the range of switch targets now starts at zero and
4879 ** is contiguous) but does not cause any duplicate code to be generated
4880 ** (as gcc is clever enough to combine the two like cases). Other
4881 ** compilers might be similar. */
4883 return sqlite3VdbeRecordCompare(nKey1
, pKey1
, pPKey2
);
4886 return sqlite3VdbeRecordCompare(nKey1
, pKey1
, pPKey2
);
4889 assert( pPKey2
->u
.i
== pPKey2
->aMem
[0].u
.i
);
4895 }else if( pPKey2
->nField
>1 ){
4896 /* The first fields of the two keys are equal. Compare the trailing
4898 res
= sqlite3VdbeRecordCompareWithSkip(nKey1
, pKey1
, pPKey2
, 1);
4900 /* The first fields of the two keys are equal and there are no trailing
4901 ** fields. Return pPKey2->default_rc in this case. */
4902 res
= pPKey2
->default_rc
;
4906 assert( vdbeRecordCompareDebug(nKey1
, pKey1
, pPKey2
, res
) );
4911 ** This function is an optimized version of sqlite3VdbeRecordCompare()
4912 ** that (a) the first field of pPKey2 is a string, that (b) the first field
4913 ** uses the collation sequence BINARY and (c) that the size-of-header varint
4914 ** at the start of (pKey1/nKey1) fits in a single byte.
4916 static int vdbeRecordCompareString(
4917 int nKey1
, const void *pKey1
, /* Left key */
4918 UnpackedRecord
*pPKey2
/* Right key */
4920 const u8
*aKey1
= (const u8
*)pKey1
;
4924 assert( pPKey2
->aMem
[0].flags
& MEM_Str
);
4925 assert( pPKey2
->aMem
[0].n
== pPKey2
->n
);
4926 assert( pPKey2
->aMem
[0].z
== pPKey2
->u
.z
);
4927 vdbeAssertFieldCountWithinLimits(nKey1
, pKey1
, pPKey2
->pKeyInfo
);
4928 serial_type
= (signed char)(aKey1
[1]);
4931 if( serial_type
<12 ){
4932 if( serial_type
<0 ){
4933 sqlite3GetVarint32(&aKey1
[1], (u32
*)&serial_type
);
4934 if( serial_type
>=12 ) goto vrcs_restart
;
4935 assert( CORRUPT_DB
);
4937 res
= pPKey2
->r1
; /* (pKey1/nKey1) is a number or a null */
4938 }else if( !(serial_type
& 0x01) ){
4939 res
= pPKey2
->r2
; /* (pKey1/nKey1) is a blob */
4943 int szHdr
= aKey1
[0];
4945 nStr
= (serial_type
-12) / 2;
4946 if( (szHdr
+ nStr
) > nKey1
){
4947 pPKey2
->errCode
= (u8
)SQLITE_CORRUPT_BKPT
;
4948 return 0; /* Corruption */
4950 nCmp
= MIN( pPKey2
->n
, nStr
);
4951 res
= memcmp(&aKey1
[szHdr
], pPKey2
->u
.z
, nCmp
);
4958 res
= nStr
- pPKey2
->n
;
4960 if( pPKey2
->nField
>1 ){
4961 res
= sqlite3VdbeRecordCompareWithSkip(nKey1
, pKey1
, pPKey2
, 1);
4963 res
= pPKey2
->default_rc
;
4974 assert( vdbeRecordCompareDebug(nKey1
, pKey1
, pPKey2
, res
)
4976 || pPKey2
->pKeyInfo
->db
->mallocFailed
4982 ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function
4983 ** suitable for comparing serialized records to the unpacked record passed
4984 ** as the only argument.
4986 RecordCompare
sqlite3VdbeFindCompare(UnpackedRecord
*p
){
4987 /* varintRecordCompareInt() and varintRecordCompareString() both assume
4988 ** that the size-of-header varint that occurs at the start of each record
4989 ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt()
4990 ** also assumes that it is safe to overread a buffer by at least the
4991 ** maximum possible legal header size plus 8 bytes. Because there is
4992 ** guaranteed to be at least 74 (but not 136) bytes of padding following each
4993 ** buffer passed to varintRecordCompareInt() this makes it convenient to
4994 ** limit the size of the header to 64 bytes in cases where the first field
4997 ** The easiest way to enforce this limit is to consider only records with
4998 ** 13 fields or less. If the first field is an integer, the maximum legal
4999 ** header size is (12*5 + 1 + 1) bytes. */
5000 if( p
->pKeyInfo
->nAllField
<=13 ){
5001 int flags
= p
->aMem
[0].flags
;
5002 if( p
->pKeyInfo
->aSortFlags
[0] ){
5003 if( p
->pKeyInfo
->aSortFlags
[0] & KEYINFO_ORDER_BIGNULL
){
5004 return sqlite3VdbeRecordCompare
;
5012 if( (flags
& MEM_Int
) ){
5013 p
->u
.i
= p
->aMem
[0].u
.i
;
5014 return vdbeRecordCompareInt
;
5016 testcase( flags
& MEM_Real
);
5017 testcase( flags
& MEM_Null
);
5018 testcase( flags
& MEM_Blob
);
5019 if( (flags
& (MEM_Real
|MEM_IntReal
|MEM_Null
|MEM_Blob
))==0
5020 && p
->pKeyInfo
->aColl
[0]==0
5022 assert( flags
& MEM_Str
);
5023 p
->u
.z
= p
->aMem
[0].z
;
5024 p
->n
= p
->aMem
[0].n
;
5025 return vdbeRecordCompareString
;
5029 return sqlite3VdbeRecordCompare
;
5033 ** pCur points at an index entry created using the OP_MakeRecord opcode.
5034 ** Read the rowid (the last field in the record) and store it in *rowid.
5035 ** Return SQLITE_OK if everything works, or an error code otherwise.
5037 ** pCur might be pointing to text obtained from a corrupt database file.
5038 ** So the content cannot be trusted. Do appropriate checks on the content.
5040 int sqlite3VdbeIdxRowid(sqlite3
*db
, BtCursor
*pCur
, i64
*rowid
){
5043 u32 szHdr
; /* Size of the header */
5044 u32 typeRowid
; /* Serial type of the rowid */
5045 u32 lenRowid
; /* Size of the rowid */
5048 /* Get the size of the index entry. Only indices entries of less
5049 ** than 2GiB are support - anything large must be database corruption.
5050 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
5051 ** this code can safely assume that nCellKey is 32-bits
5053 assert( sqlite3BtreeCursorIsValid(pCur
) );
5054 nCellKey
= sqlite3BtreePayloadSize(pCur
);
5055 assert( (nCellKey
& SQLITE_MAX_U32
)==(u64
)nCellKey
);
5057 /* Read in the complete content of the index entry */
5058 sqlite3VdbeMemInit(&m
, db
, 0);
5059 rc
= sqlite3VdbeMemFromBtreeZeroOffset(pCur
, (u32
)nCellKey
, &m
);
5064 /* The index entry must begin with a header size */
5065 getVarint32NR((u8
*)m
.z
, szHdr
);
5066 testcase( szHdr
==3 );
5067 testcase( szHdr
==(u32
)m
.n
);
5068 testcase( szHdr
>0x7fffffff );
5070 if( unlikely(szHdr
<3 || szHdr
>(unsigned)m
.n
) ){
5071 goto idx_rowid_corruption
;
5074 /* The last field of the index should be an integer - the ROWID.
5075 ** Verify that the last entry really is an integer. */
5076 getVarint32NR((u8
*)&m
.z
[szHdr
-1], typeRowid
);
5077 testcase( typeRowid
==1 );
5078 testcase( typeRowid
==2 );
5079 testcase( typeRowid
==3 );
5080 testcase( typeRowid
==4 );
5081 testcase( typeRowid
==5 );
5082 testcase( typeRowid
==6 );
5083 testcase( typeRowid
==8 );
5084 testcase( typeRowid
==9 );
5085 if( unlikely(typeRowid
<1 || typeRowid
>9 || typeRowid
==7) ){
5086 goto idx_rowid_corruption
;
5088 lenRowid
= sqlite3SmallTypeSizes
[typeRowid
];
5089 testcase( (u32
)m
.n
==szHdr
+lenRowid
);
5090 if( unlikely((u32
)m
.n
<szHdr
+lenRowid
) ){
5091 goto idx_rowid_corruption
;
5094 /* Fetch the integer off the end of the index record */
5095 sqlite3VdbeSerialGet((u8
*)&m
.z
[m
.n
-lenRowid
], typeRowid
, &v
);
5097 sqlite3VdbeMemReleaseMalloc(&m
);
5100 /* Jump here if database corruption is detected after m has been
5101 ** allocated. Free the m object and return SQLITE_CORRUPT. */
5102 idx_rowid_corruption
:
5103 testcase( m
.szMalloc
!=0 );
5104 sqlite3VdbeMemReleaseMalloc(&m
);
5105 return SQLITE_CORRUPT_BKPT
;
5109 ** Compare the key of the index entry that cursor pC is pointing to against
5110 ** the key string in pUnpacked. Write into *pRes a number
5111 ** that is negative, zero, or positive if pC is less than, equal to,
5112 ** or greater than pUnpacked. Return SQLITE_OK on success.
5114 ** pUnpacked is either created without a rowid or is truncated so that it
5115 ** omits the rowid at the end. The rowid at the end of the index entry
5116 ** is ignored as well. Hence, this routine only compares the prefixes
5117 ** of the keys prior to the final rowid, not the entire key.
5119 int sqlite3VdbeIdxKeyCompare(
5120 sqlite3
*db
, /* Database connection */
5121 VdbeCursor
*pC
, /* The cursor to compare against */
5122 UnpackedRecord
*pUnpacked
, /* Unpacked version of key */
5123 int *res
/* Write the comparison result here */
5130 assert( pC
->eCurType
==CURTYPE_BTREE
);
5131 pCur
= pC
->uc
.pCursor
;
5132 assert( sqlite3BtreeCursorIsValid(pCur
) );
5133 nCellKey
= sqlite3BtreePayloadSize(pCur
);
5134 /* nCellKey will always be between 0 and 0xffffffff because of the way
5135 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
5136 if( nCellKey
<=0 || nCellKey
>0x7fffffff ){
5138 return SQLITE_CORRUPT_BKPT
;
5140 sqlite3VdbeMemInit(&m
, db
, 0);
5141 rc
= sqlite3VdbeMemFromBtreeZeroOffset(pCur
, (u32
)nCellKey
, &m
);
5145 *res
= sqlite3VdbeRecordCompareWithSkip(m
.n
, m
.z
, pUnpacked
, 0);
5146 sqlite3VdbeMemReleaseMalloc(&m
);
5151 ** This routine sets the value to be returned by subsequent calls to
5152 ** sqlite3_changes() on the database handle 'db'.
5154 void sqlite3VdbeSetChanges(sqlite3
*db
, i64 nChange
){
5155 assert( sqlite3_mutex_held(db
->mutex
) );
5156 db
->nChange
= nChange
;
5157 db
->nTotalChange
+= nChange
;
5161 ** Set a flag in the vdbe to update the change counter when it is finalised
5164 void sqlite3VdbeCountChanges(Vdbe
*v
){
5169 ** Mark every prepared statement associated with a database connection
5172 ** An expired statement means that recompilation of the statement is
5173 ** recommend. Statements expire when things happen that make their
5174 ** programs obsolete. Removing user-defined functions or collating
5175 ** sequences, or changing an authorization function are the types of
5176 ** things that make prepared statements obsolete.
5178 ** If iCode is 1, then expiration is advisory. The statement should
5179 ** be reprepared before being restarted, but if it is already running
5180 ** it is allowed to run to completion.
5182 ** Internally, this function just sets the Vdbe.expired flag on all
5183 ** prepared statements. The flag is set to 1 for an immediate expiration
5184 ** and set to 2 for an advisory expiration.
5186 void sqlite3ExpirePreparedStatements(sqlite3
*db
, int iCode
){
5188 for(p
= db
->pVdbe
; p
; p
=p
->pVNext
){
5189 p
->expired
= iCode
+1;
5194 ** Return the database associated with the Vdbe.
5196 sqlite3
*sqlite3VdbeDb(Vdbe
*v
){
5201 ** Return the SQLITE_PREPARE flags for a Vdbe.
5203 u8
sqlite3VdbePrepareFlags(Vdbe
*v
){
5204 return v
->prepFlags
;
5208 ** Return a pointer to an sqlite3_value structure containing the value bound
5209 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return
5210 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_*
5211 ** constants) to the value before returning it.
5213 ** The returned value must be freed by the caller using sqlite3ValueFree().
5215 sqlite3_value
*sqlite3VdbeGetBoundValue(Vdbe
*v
, int iVar
, u8 aff
){
5218 Mem
*pMem
= &v
->aVar
[iVar
-1];
5219 assert( (v
->db
->flags
& SQLITE_EnableQPSG
)==0 );
5220 if( 0==(pMem
->flags
& MEM_Null
) ){
5221 sqlite3_value
*pRet
= sqlite3ValueNew(v
->db
);
5223 sqlite3VdbeMemCopy((Mem
*)pRet
, pMem
);
5224 sqlite3ValueApplyAffinity(pRet
, aff
, SQLITE_UTF8
);
5233 ** Configure SQL variable iVar so that binding a new value to it signals
5234 ** to sqlite3_reoptimize() that re-preparing the statement may result
5235 ** in a better query plan.
5237 void sqlite3VdbeSetVarmask(Vdbe
*v
, int iVar
){
5239 assert( (v
->db
->flags
& SQLITE_EnableQPSG
)==0 );
5241 v
->expmask
|= 0x80000000;
5243 v
->expmask
|= ((u32
)1 << (iVar
-1));
5248 ** Cause a function to throw an error if it was call from OP_PureFunc
5249 ** rather than OP_Function.
5251 ** OP_PureFunc means that the function must be deterministic, and should
5252 ** throw an error if it is given inputs that would make it non-deterministic.
5253 ** This routine is invoked by date/time functions that use non-deterministic
5254 ** features such as 'now'.
5256 int sqlite3NotPureFunc(sqlite3_context
*pCtx
){
5258 #ifdef SQLITE_ENABLE_STAT4
5259 if( pCtx
->pVdbe
==0 ) return 1;
5261 pOp
= pCtx
->pVdbe
->aOp
+ pCtx
->iOp
;
5262 if( pOp
->opcode
==OP_PureFunc
){
5263 const char *zContext
;
5265 if( pOp
->p5
& NC_IsCheck
){
5266 zContext
= "a CHECK constraint";
5267 }else if( pOp
->p5
& NC_GenCol
){
5268 zContext
= "a generated column";
5270 zContext
= "an index";
5272 zMsg
= sqlite3_mprintf("non-deterministic use of %s() in %s",
5273 pCtx
->pFunc
->zName
, zContext
);
5274 sqlite3_result_error(pCtx
, zMsg
, -1);
5281 #if defined(SQLITE_ENABLE_CURSOR_HINTS) && defined(SQLITE_DEBUG)
5283 ** This Walker callback is used to help verify that calls to
5284 ** sqlite3BtreeCursorHint() with opcode BTREE_HINT_RANGE have
5285 ** byte-code register values correctly initialized.
5287 int sqlite3CursorRangeHintExprCheck(Walker
*pWalker
, Expr
*pExpr
){
5288 if( pExpr
->op
==TK_REGISTER
){
5289 assert( (pWalker
->u
.aMem
[pExpr
->iTable
].flags
& MEM_Undefined
)==0 );
5291 return WRC_Continue
;
5293 #endif /* SQLITE_ENABLE_CURSOR_HINTS && SQLITE_DEBUG */
5295 #ifndef SQLITE_OMIT_VIRTUALTABLE
5297 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
5298 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
5299 ** in memory obtained from sqlite3DbMalloc).
5301 void sqlite3VtabImportErrmsg(Vdbe
*p
, sqlite3_vtab
*pVtab
){
5302 if( pVtab
->zErrMsg
){
5303 sqlite3
*db
= p
->db
;
5304 sqlite3DbFree(db
, p
->zErrMsg
);
5305 p
->zErrMsg
= sqlite3DbStrDup(db
, pVtab
->zErrMsg
);
5306 sqlite3_free(pVtab
->zErrMsg
);
5310 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5312 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5315 ** If the second argument is not NULL, release any allocations associated
5316 ** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord
5317 ** structure itself, using sqlite3DbFree().
5319 ** This function is used to free UnpackedRecord structures allocated by
5320 ** the vdbeUnpackRecord() function found in vdbeapi.c.
5322 static void vdbeFreeUnpacked(sqlite3
*db
, int nField
, UnpackedRecord
*p
){
5326 for(i
=0; i
<nField
; i
++){
5327 Mem
*pMem
= &p
->aMem
[i
];
5328 if( pMem
->zMalloc
) sqlite3VdbeMemReleaseMalloc(pMem
);
5330 sqlite3DbNNFreeNN(db
, p
);
5333 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
5335 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5337 ** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call,
5338 ** then cursor passed as the second argument should point to the row about
5339 ** to be update or deleted. If the application calls sqlite3_preupdate_old(),
5340 ** the required value will be read from the row the cursor points to.
5342 void sqlite3VdbePreUpdateHook(
5343 Vdbe
*v
, /* Vdbe pre-update hook is invoked by */
5344 VdbeCursor
*pCsr
, /* Cursor to grab old.* values from */
5345 int op
, /* SQLITE_INSERT, UPDATE or DELETE */
5346 const char *zDb
, /* Database name */
5347 Table
*pTab
, /* Modified table */
5348 i64 iKey1
, /* Initial key value */
5349 int iReg
, /* Register for new.* record */
5352 sqlite3
*db
= v
->db
;
5354 PreUpdate preupdate
;
5355 const char *zTbl
= pTab
->zName
;
5356 static const u8 fakeSortOrder
= 0;
5359 if( pTab
->tabFlags
& TF_WithoutRowid
){
5360 nRealCol
= sqlite3PrimaryKeyIndex(pTab
)->nColumn
;
5361 }else if( pTab
->tabFlags
& TF_HasVirtual
){
5362 nRealCol
= pTab
->nNVCol
;
5364 nRealCol
= pTab
->nCol
;
5368 assert( db
->pPreUpdate
==0 );
5369 memset(&preupdate
, 0, sizeof(PreUpdate
));
5370 if( HasRowid(pTab
)==0 ){
5372 preupdate
.pPk
= sqlite3PrimaryKeyIndex(pTab
);
5374 if( op
==SQLITE_UPDATE
){
5375 iKey2
= v
->aMem
[iReg
].u
.i
;
5382 assert( pCsr
->eCurType
==CURTYPE_BTREE
);
5383 assert( pCsr
->nField
==nRealCol
5384 || (pCsr
->nField
==nRealCol
+1 && op
==SQLITE_DELETE
&& iReg
==-1)
5388 preupdate
.pCsr
= pCsr
;
5390 preupdate
.iNewReg
= iReg
;
5391 preupdate
.keyinfo
.db
= db
;
5392 preupdate
.keyinfo
.enc
= ENC(db
);
5393 preupdate
.keyinfo
.nKeyField
= pTab
->nCol
;
5394 preupdate
.keyinfo
.aSortFlags
= (u8
*)&fakeSortOrder
;
5395 preupdate
.iKey1
= iKey1
;
5396 preupdate
.iKey2
= iKey2
;
5397 preupdate
.pTab
= pTab
;
5398 preupdate
.iBlobWrite
= iBlobWrite
;
5400 db
->pPreUpdate
= &preupdate
;
5401 db
->xPreUpdateCallback(db
->pPreUpdateArg
, db
, op
, zDb
, zTbl
, iKey1
, iKey2
);
5403 sqlite3DbFree(db
, preupdate
.aRecord
);
5404 vdbeFreeUnpacked(db
, preupdate
.keyinfo
.nKeyField
+1, preupdate
.pUnpacked
);
5405 vdbeFreeUnpacked(db
, preupdate
.keyinfo
.nKeyField
+1, preupdate
.pNewUnpacked
);
5406 if( preupdate
.aNew
){
5408 for(i
=0; i
<pCsr
->nField
; i
++){
5409 sqlite3VdbeMemRelease(&preupdate
.aNew
[i
]);
5411 sqlite3DbNNFreeNN(db
, preupdate
.aNew
);
5414 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */