adjustments for constant time function volatile variables
[sqlcipher.git] / src / wherecode.c
bloba998c0a4f4d113aca22660cb8411ca5ea9db8420
1 /*
2 ** 2015-06-06
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.
15 ** This file was split off from where.c on 2015-06-06 in order to reduce the
16 ** size of where.c and make it easier to edit. This file contains the routines
17 ** that actually generate the bulk of the WHERE loop code. The original where.c
18 ** file retains the code that does query planning and analysis.
20 #include "sqliteInt.h"
21 #include "whereInt.h"
23 #ifndef SQLITE_OMIT_EXPLAIN
26 ** Return the name of the i-th column of the pIdx index.
28 static const char *explainIndexColumnName(Index *pIdx, int i){
29 i = pIdx->aiColumn[i];
30 if( i==XN_EXPR ) return "<expr>";
31 if( i==XN_ROWID ) return "rowid";
32 return pIdx->pTable->aCol[i].zCnName;
36 ** This routine is a helper for explainIndexRange() below
38 ** pStr holds the text of an expression that we are building up one term
39 ** at a time. This routine adds a new term to the end of the expression.
40 ** Terms are separated by AND so add the "AND" text for second and subsequent
41 ** terms only.
43 static void explainAppendTerm(
44 StrAccum *pStr, /* The text expression being built */
45 Index *pIdx, /* Index to read column names from */
46 int nTerm, /* Number of terms */
47 int iTerm, /* Zero-based index of first term. */
48 int bAnd, /* Non-zero to append " AND " */
49 const char *zOp /* Name of the operator */
51 int i;
53 assert( nTerm>=1 );
54 if( bAnd ) sqlite3_str_append(pStr, " AND ", 5);
56 if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1);
57 for(i=0; i<nTerm; i++){
58 if( i ) sqlite3_str_append(pStr, ",", 1);
59 sqlite3_str_appendall(pStr, explainIndexColumnName(pIdx, iTerm+i));
61 if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1);
63 sqlite3_str_append(pStr, zOp, 1);
65 if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1);
66 for(i=0; i<nTerm; i++){
67 if( i ) sqlite3_str_append(pStr, ",", 1);
68 sqlite3_str_append(pStr, "?", 1);
70 if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1);
74 ** Argument pLevel describes a strategy for scanning table pTab. This
75 ** function appends text to pStr that describes the subset of table
76 ** rows scanned by the strategy in the form of an SQL expression.
78 ** For example, if the query:
80 ** SELECT * FROM t1 WHERE a=1 AND b>2;
82 ** is run and there is an index on (a, b), then this function returns a
83 ** string similar to:
85 ** "a=? AND b>?"
87 static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop){
88 Index *pIndex = pLoop->u.btree.pIndex;
89 u16 nEq = pLoop->u.btree.nEq;
90 u16 nSkip = pLoop->nSkip;
91 int i, j;
93 if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return;
94 sqlite3_str_append(pStr, " (", 2);
95 for(i=0; i<nEq; i++){
96 const char *z = explainIndexColumnName(pIndex, i);
97 if( i ) sqlite3_str_append(pStr, " AND ", 5);
98 sqlite3_str_appendf(pStr, i>=nSkip ? "%s=?" : "ANY(%s)", z);
101 j = i;
102 if( pLoop->wsFlags&WHERE_BTM_LIMIT ){
103 explainAppendTerm(pStr, pIndex, pLoop->u.btree.nBtm, j, i, ">");
104 i = 1;
106 if( pLoop->wsFlags&WHERE_TOP_LIMIT ){
107 explainAppendTerm(pStr, pIndex, pLoop->u.btree.nTop, j, i, "<");
109 sqlite3_str_append(pStr, ")", 1);
113 ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN
114 ** command, or if stmt_scanstatus_v2() stats are enabled, or if SQLITE_DEBUG
115 ** was defined at compile-time. If it is not a no-op, a single OP_Explain
116 ** opcode is added to the output to describe the table scan strategy in pLevel.
118 ** If an OP_Explain opcode is added to the VM, its address is returned.
119 ** Otherwise, if no OP_Explain is coded, zero is returned.
121 int sqlite3WhereExplainOneScan(
122 Parse *pParse, /* Parse context */
123 SrcList *pTabList, /* Table list this loop refers to */
124 WhereLevel *pLevel, /* Scan to write OP_Explain opcode for */
125 u16 wctrlFlags /* Flags passed to sqlite3WhereBegin() */
127 int ret = 0;
128 #if !defined(SQLITE_DEBUG)
129 if( sqlite3ParseToplevel(pParse)->explain==2 || IS_STMT_SCANSTATUS(pParse->db) )
130 #endif
132 SrcItem *pItem = &pTabList->a[pLevel->iFrom];
133 Vdbe *v = pParse->pVdbe; /* VM being constructed */
134 sqlite3 *db = pParse->db; /* Database handle */
135 int isSearch; /* True for a SEARCH. False for SCAN. */
136 WhereLoop *pLoop; /* The controlling WhereLoop object */
137 u32 flags; /* Flags that describe this loop */
138 char *zMsg; /* Text to add to EQP output */
139 StrAccum str; /* EQP output string */
140 char zBuf[100]; /* Initial space for EQP output string */
142 pLoop = pLevel->pWLoop;
143 flags = pLoop->wsFlags;
144 if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_OR_SUBCLAUSE) ) return 0;
146 isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0
147 || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0))
148 || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX));
150 sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH);
151 str.printfFlags = SQLITE_PRINTF_INTERNAL;
152 sqlite3_str_appendf(&str, "%s %S", isSearch ? "SEARCH" : "SCAN", pItem);
153 if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){
154 const char *zFmt = 0;
155 Index *pIdx;
157 assert( pLoop->u.btree.pIndex!=0 );
158 pIdx = pLoop->u.btree.pIndex;
159 assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) );
160 if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){
161 if( isSearch ){
162 zFmt = "PRIMARY KEY";
164 }else if( flags & WHERE_PARTIALIDX ){
165 zFmt = "AUTOMATIC PARTIAL COVERING INDEX";
166 }else if( flags & WHERE_AUTO_INDEX ){
167 zFmt = "AUTOMATIC COVERING INDEX";
168 }else if( flags & WHERE_IDX_ONLY ){
169 zFmt = "COVERING INDEX %s";
170 }else{
171 zFmt = "INDEX %s";
173 if( zFmt ){
174 sqlite3_str_append(&str, " USING ", 7);
175 sqlite3_str_appendf(&str, zFmt, pIdx->zName);
176 explainIndexRange(&str, pLoop);
178 }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){
179 char cRangeOp;
180 #if 0 /* Better output, but breaks many tests */
181 const Table *pTab = pItem->pTab;
182 const char *zRowid = pTab->iPKey>=0 ? pTab->aCol[pTab->iPKey].zCnName:
183 "rowid";
184 #else
185 const char *zRowid = "rowid";
186 #endif
187 sqlite3_str_appendf(&str, " USING INTEGER PRIMARY KEY (%s", zRowid);
188 if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){
189 cRangeOp = '=';
190 }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){
191 sqlite3_str_appendf(&str, ">? AND %s", zRowid);
192 cRangeOp = '<';
193 }else if( flags&WHERE_BTM_LIMIT ){
194 cRangeOp = '>';
195 }else{
196 assert( flags&WHERE_TOP_LIMIT);
197 cRangeOp = '<';
199 sqlite3_str_appendf(&str, "%c?)", cRangeOp);
201 #ifndef SQLITE_OMIT_VIRTUALTABLE
202 else if( (flags & WHERE_VIRTUALTABLE)!=0 ){
203 sqlite3_str_appendf(&str, " VIRTUAL TABLE INDEX %d:%s",
204 pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr);
206 #endif
207 if( pItem->fg.jointype & JT_LEFT ){
208 sqlite3_str_appendf(&str, " LEFT-JOIN");
210 #ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS
211 if( pLoop->nOut>=10 ){
212 sqlite3_str_appendf(&str, " (~%llu rows)",
213 sqlite3LogEstToInt(pLoop->nOut));
214 }else{
215 sqlite3_str_append(&str, " (~1 row)", 9);
217 #endif
218 zMsg = sqlite3StrAccumFinish(&str);
219 sqlite3ExplainBreakpoint("",zMsg);
220 ret = sqlite3VdbeAddOp4(v, OP_Explain, sqlite3VdbeCurrentAddr(v),
221 pParse->addrExplain, 0, zMsg,P4_DYNAMIC);
223 return ret;
227 ** Add a single OP_Explain opcode that describes a Bloom filter.
229 ** Or if not processing EXPLAIN QUERY PLAN and not in a SQLITE_DEBUG and/or
230 ** SQLITE_ENABLE_STMT_SCANSTATUS build, then OP_Explain opcodes are not
231 ** required and this routine is a no-op.
233 ** If an OP_Explain opcode is added to the VM, its address is returned.
234 ** Otherwise, if no OP_Explain is coded, zero is returned.
236 int sqlite3WhereExplainBloomFilter(
237 const Parse *pParse, /* Parse context */
238 const WhereInfo *pWInfo, /* WHERE clause */
239 const WhereLevel *pLevel /* Bloom filter on this level */
241 int ret = 0;
242 SrcItem *pItem = &pWInfo->pTabList->a[pLevel->iFrom];
243 Vdbe *v = pParse->pVdbe; /* VM being constructed */
244 sqlite3 *db = pParse->db; /* Database handle */
245 char *zMsg; /* Text to add to EQP output */
246 int i; /* Loop counter */
247 WhereLoop *pLoop; /* The where loop */
248 StrAccum str; /* EQP output string */
249 char zBuf[100]; /* Initial space for EQP output string */
251 sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH);
252 str.printfFlags = SQLITE_PRINTF_INTERNAL;
253 sqlite3_str_appendf(&str, "BLOOM FILTER ON %S (", pItem);
254 pLoop = pLevel->pWLoop;
255 if( pLoop->wsFlags & WHERE_IPK ){
256 const Table *pTab = pItem->pTab;
257 if( pTab->iPKey>=0 ){
258 sqlite3_str_appendf(&str, "%s=?", pTab->aCol[pTab->iPKey].zCnName);
259 }else{
260 sqlite3_str_appendf(&str, "rowid=?");
262 }else{
263 for(i=pLoop->nSkip; i<pLoop->u.btree.nEq; i++){
264 const char *z = explainIndexColumnName(pLoop->u.btree.pIndex, i);
265 if( i>pLoop->nSkip ) sqlite3_str_append(&str, " AND ", 5);
266 sqlite3_str_appendf(&str, "%s=?", z);
269 sqlite3_str_append(&str, ")", 1);
270 zMsg = sqlite3StrAccumFinish(&str);
271 ret = sqlite3VdbeAddOp4(v, OP_Explain, sqlite3VdbeCurrentAddr(v),
272 pParse->addrExplain, 0, zMsg,P4_DYNAMIC);
274 sqlite3VdbeScanStatus(v, sqlite3VdbeCurrentAddr(v)-1, 0, 0, 0, 0);
275 return ret;
277 #endif /* SQLITE_OMIT_EXPLAIN */
279 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
281 ** Configure the VM passed as the first argument with an
282 ** sqlite3_stmt_scanstatus() entry corresponding to the scan used to
283 ** implement level pLvl. Argument pSrclist is a pointer to the FROM
284 ** clause that the scan reads data from.
286 ** If argument addrExplain is not 0, it must be the address of an
287 ** OP_Explain instruction that describes the same loop.
289 void sqlite3WhereAddScanStatus(
290 Vdbe *v, /* Vdbe to add scanstatus entry to */
291 SrcList *pSrclist, /* FROM clause pLvl reads data from */
292 WhereLevel *pLvl, /* Level to add scanstatus() entry for */
293 int addrExplain /* Address of OP_Explain (or 0) */
295 if( IS_STMT_SCANSTATUS( sqlite3VdbeDb(v) ) ){
296 const char *zObj = 0;
297 WhereLoop *pLoop = pLvl->pWLoop;
298 int wsFlags = pLoop->wsFlags;
299 int viaCoroutine = 0;
301 if( (wsFlags & WHERE_VIRTUALTABLE)==0 && pLoop->u.btree.pIndex!=0 ){
302 zObj = pLoop->u.btree.pIndex->zName;
303 }else{
304 zObj = pSrclist->a[pLvl->iFrom].zName;
305 viaCoroutine = pSrclist->a[pLvl->iFrom].fg.viaCoroutine;
307 sqlite3VdbeScanStatus(
308 v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj
311 if( viaCoroutine==0 ){
312 if( (wsFlags & (WHERE_MULTI_OR|WHERE_AUTO_INDEX))==0 ){
313 sqlite3VdbeScanStatusRange(v, addrExplain, -1, pLvl->iTabCur);
315 if( wsFlags & WHERE_INDEXED ){
316 sqlite3VdbeScanStatusRange(v, addrExplain, -1, pLvl->iIdxCur);
321 #endif
325 ** Disable a term in the WHERE clause. Except, do not disable the term
326 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON
327 ** or USING clause of that join.
329 ** Consider the term t2.z='ok' in the following queries:
331 ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
332 ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
333 ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
335 ** The t2.z='ok' is disabled in the in (2) because it originates
336 ** in the ON clause. The term is disabled in (3) because it is not part
337 ** of a LEFT OUTER JOIN. In (1), the term is not disabled.
339 ** Disabling a term causes that term to not be tested in the inner loop
340 ** of the join. Disabling is an optimization. When terms are satisfied
341 ** by indices, we disable them to prevent redundant tests in the inner
342 ** loop. We would get the correct results if nothing were ever disabled,
343 ** but joins might run a little slower. The trick is to disable as much
344 ** as we can without disabling too much. If we disabled in (1), we'd get
345 ** the wrong answer. See ticket #813.
347 ** If all the children of a term are disabled, then that term is also
348 ** automatically disabled. In this way, terms get disabled if derived
349 ** virtual terms are tested first. For example:
351 ** x GLOB 'abc*' AND x>='abc' AND x<'acd'
352 ** \___________/ \______/ \_____/
353 ** parent child1 child2
355 ** Only the parent term was in the original WHERE clause. The child1
356 ** and child2 terms were added by the LIKE optimization. If both of
357 ** the virtual child terms are valid, then testing of the parent can be
358 ** skipped.
360 ** Usually the parent term is marked as TERM_CODED. But if the parent
361 ** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead.
362 ** The TERM_LIKECOND marking indicates that the term should be coded inside
363 ** a conditional such that is only evaluated on the second pass of a
364 ** LIKE-optimization loop, when scanning BLOBs instead of strings.
366 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
367 int nLoop = 0;
368 assert( pTerm!=0 );
369 while( (pTerm->wtFlags & TERM_CODED)==0
370 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_OuterON))
371 && (pLevel->notReady & pTerm->prereqAll)==0
373 if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){
374 pTerm->wtFlags |= TERM_LIKECOND;
375 }else{
376 pTerm->wtFlags |= TERM_CODED;
378 #ifdef WHERETRACE_ENABLED
379 if( (sqlite3WhereTrace & 0x4001)==0x4001 ){
380 sqlite3DebugPrintf("DISABLE-");
381 sqlite3WhereTermPrint(pTerm, (int)(pTerm - (pTerm->pWC->a)));
383 #endif
384 if( pTerm->iParent<0 ) break;
385 pTerm = &pTerm->pWC->a[pTerm->iParent];
386 assert( pTerm!=0 );
387 pTerm->nChild--;
388 if( pTerm->nChild!=0 ) break;
389 nLoop++;
394 ** Code an OP_Affinity opcode to apply the column affinity string zAff
395 ** to the n registers starting at base.
397 ** As an optimization, SQLITE_AFF_BLOB and SQLITE_AFF_NONE entries (which
398 ** are no-ops) at the beginning and end of zAff are ignored. If all entries
399 ** in zAff are SQLITE_AFF_BLOB or SQLITE_AFF_NONE, then no code gets generated.
401 ** This routine makes its own copy of zAff so that the caller is free
402 ** to modify zAff after this routine returns.
404 static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){
405 Vdbe *v = pParse->pVdbe;
406 if( zAff==0 ){
407 assert( pParse->db->mallocFailed );
408 return;
410 assert( v!=0 );
412 /* Adjust base and n to skip over SQLITE_AFF_BLOB and SQLITE_AFF_NONE
413 ** entries at the beginning and end of the affinity string.
415 assert( SQLITE_AFF_NONE<SQLITE_AFF_BLOB );
416 while( n>0 && zAff[0]<=SQLITE_AFF_BLOB ){
417 n--;
418 base++;
419 zAff++;
421 while( n>1 && zAff[n-1]<=SQLITE_AFF_BLOB ){
422 n--;
425 /* Code the OP_Affinity opcode if there is anything left to do. */
426 if( n>0 ){
427 sqlite3VdbeAddOp4(v, OP_Affinity, base, n, 0, zAff, n);
432 ** Expression pRight, which is the RHS of a comparison operation, is
433 ** either a vector of n elements or, if n==1, a scalar expression.
434 ** Before the comparison operation, affinity zAff is to be applied
435 ** to the pRight values. This function modifies characters within the
436 ** affinity string to SQLITE_AFF_BLOB if either:
438 ** * the comparison will be performed with no affinity, or
439 ** * the affinity change in zAff is guaranteed not to change the value.
441 static void updateRangeAffinityStr(
442 Expr *pRight, /* RHS of comparison */
443 int n, /* Number of vector elements in comparison */
444 char *zAff /* Affinity string to modify */
446 int i;
447 for(i=0; i<n; i++){
448 Expr *p = sqlite3VectorFieldSubexpr(pRight, i);
449 if( sqlite3CompareAffinity(p, zAff[i])==SQLITE_AFF_BLOB
450 || sqlite3ExprNeedsNoAffinityChange(p, zAff[i])
452 zAff[i] = SQLITE_AFF_BLOB;
459 ** pX is an expression of the form: (vector) IN (SELECT ...)
460 ** In other words, it is a vector IN operator with a SELECT clause on the
461 ** LHS. But not all terms in the vector are indexable and the terms might
462 ** not be in the correct order for indexing.
464 ** This routine makes a copy of the input pX expression and then adjusts
465 ** the vector on the LHS with corresponding changes to the SELECT so that
466 ** the vector contains only index terms and those terms are in the correct
467 ** order. The modified IN expression is returned. The caller is responsible
468 ** for deleting the returned expression.
470 ** Example:
472 ** CREATE TABLE t1(a,b,c,d,e,f);
473 ** CREATE INDEX t1x1 ON t1(e,c);
474 ** SELECT * FROM t1 WHERE (a,b,c,d,e) IN (SELECT v,w,x,y,z FROM t2)
475 ** \_______________________________________/
476 ** The pX expression
478 ** Since only columns e and c can be used with the index, in that order,
479 ** the modified IN expression that is returned will be:
481 ** (e,c) IN (SELECT z,x FROM t2)
483 ** The reduced pX is different from the original (obviously) and thus is
484 ** only used for indexing, to improve performance. The original unaltered
485 ** IN expression must also be run on each output row for correctness.
487 static Expr *removeUnindexableInClauseTerms(
488 Parse *pParse, /* The parsing context */
489 int iEq, /* Look at loop terms starting here */
490 WhereLoop *pLoop, /* The current loop */
491 Expr *pX /* The IN expression to be reduced */
493 sqlite3 *db = pParse->db;
494 Select *pSelect; /* Pointer to the SELECT on the RHS */
495 Expr *pNew;
496 pNew = sqlite3ExprDup(db, pX, 0);
497 if( db->mallocFailed==0 ){
498 for(pSelect=pNew->x.pSelect; pSelect; pSelect=pSelect->pPrior){
499 ExprList *pOrigRhs; /* Original unmodified RHS */
500 ExprList *pOrigLhs = 0; /* Original unmodified LHS */
501 ExprList *pRhs = 0; /* New RHS after modifications */
502 ExprList *pLhs = 0; /* New LHS after mods */
503 int i; /* Loop counter */
505 assert( ExprUseXSelect(pNew) );
506 pOrigRhs = pSelect->pEList;
507 assert( pNew->pLeft!=0 );
508 assert( ExprUseXList(pNew->pLeft) );
509 if( pSelect==pNew->x.pSelect ){
510 pOrigLhs = pNew->pLeft->x.pList;
512 for(i=iEq; i<pLoop->nLTerm; i++){
513 if( pLoop->aLTerm[i]->pExpr==pX ){
514 int iField;
515 assert( (pLoop->aLTerm[i]->eOperator & (WO_OR|WO_AND))==0 );
516 iField = pLoop->aLTerm[i]->u.x.iField - 1;
517 if( pOrigRhs->a[iField].pExpr==0 ) continue; /* Duplicate PK column */
518 pRhs = sqlite3ExprListAppend(pParse, pRhs, pOrigRhs->a[iField].pExpr);
519 pOrigRhs->a[iField].pExpr = 0;
520 if( pOrigLhs ){
521 assert( pOrigLhs->a[iField].pExpr!=0 );
522 pLhs = sqlite3ExprListAppend(pParse,pLhs,pOrigLhs->a[iField].pExpr);
523 pOrigLhs->a[iField].pExpr = 0;
527 sqlite3ExprListDelete(db, pOrigRhs);
528 if( pOrigLhs ){
529 sqlite3ExprListDelete(db, pOrigLhs);
530 pNew->pLeft->x.pList = pLhs;
532 pSelect->pEList = pRhs;
533 if( pLhs && pLhs->nExpr==1 ){
534 /* Take care here not to generate a TK_VECTOR containing only a
535 ** single value. Since the parser never creates such a vector, some
536 ** of the subroutines do not handle this case. */
537 Expr *p = pLhs->a[0].pExpr;
538 pLhs->a[0].pExpr = 0;
539 sqlite3ExprDelete(db, pNew->pLeft);
540 pNew->pLeft = p;
542 if( pSelect->pOrderBy ){
543 /* If the SELECT statement has an ORDER BY clause, zero the
544 ** iOrderByCol variables. These are set to non-zero when an
545 ** ORDER BY term exactly matches one of the terms of the
546 ** result-set. Since the result-set of the SELECT statement may
547 ** have been modified or reordered, these variables are no longer
548 ** set correctly. Since setting them is just an optimization,
549 ** it's easiest just to zero them here. */
550 ExprList *pOrderBy = pSelect->pOrderBy;
551 for(i=0; i<pOrderBy->nExpr; i++){
552 pOrderBy->a[i].u.x.iOrderByCol = 0;
556 #if 0
557 printf("For indexing, change the IN expr:\n");
558 sqlite3TreeViewExpr(0, pX, 0);
559 printf("Into:\n");
560 sqlite3TreeViewExpr(0, pNew, 0);
561 #endif
564 return pNew;
569 ** Generate code for a single equality term of the WHERE clause. An equality
570 ** term can be either X=expr or X IN (...). pTerm is the term to be
571 ** coded.
573 ** The current value for the constraint is left in a register, the index
574 ** of which is returned. An attempt is made store the result in iTarget but
575 ** this is only guaranteed for TK_ISNULL and TK_IN constraints. If the
576 ** constraint is a TK_EQ or TK_IS, then the current value might be left in
577 ** some other register and it is the caller's responsibility to compensate.
579 ** For a constraint of the form X=expr, the expression is evaluated in
580 ** straight-line code. For constraints of the form X IN (...)
581 ** this routine sets up a loop that will iterate over all values of X.
583 static int codeEqualityTerm(
584 Parse *pParse, /* The parsing context */
585 WhereTerm *pTerm, /* The term of the WHERE clause to be coded */
586 WhereLevel *pLevel, /* The level of the FROM clause we are working on */
587 int iEq, /* Index of the equality term within this level */
588 int bRev, /* True for reverse-order IN operations */
589 int iTarget /* Attempt to leave results in this register */
591 Expr *pX = pTerm->pExpr;
592 Vdbe *v = pParse->pVdbe;
593 int iReg; /* Register holding results */
595 assert( pLevel->pWLoop->aLTerm[iEq]==pTerm );
596 assert( iTarget>0 );
597 if( pX->op==TK_EQ || pX->op==TK_IS ){
598 iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget);
599 }else if( pX->op==TK_ISNULL ){
600 iReg = iTarget;
601 sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
602 #ifndef SQLITE_OMIT_SUBQUERY
603 }else{
604 int eType = IN_INDEX_NOOP;
605 int iTab;
606 struct InLoop *pIn;
607 WhereLoop *pLoop = pLevel->pWLoop;
608 int i;
609 int nEq = 0;
610 int *aiMap = 0;
612 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0
613 && pLoop->u.btree.pIndex!=0
614 && pLoop->u.btree.pIndex->aSortOrder[iEq]
616 testcase( iEq==0 );
617 testcase( bRev );
618 bRev = !bRev;
620 assert( pX->op==TK_IN );
621 iReg = iTarget;
623 for(i=0; i<iEq; i++){
624 if( pLoop->aLTerm[i] && pLoop->aLTerm[i]->pExpr==pX ){
625 disableTerm(pLevel, pTerm);
626 return iTarget;
629 for(i=iEq;i<pLoop->nLTerm; i++){
630 assert( pLoop->aLTerm[i]!=0 );
631 if( pLoop->aLTerm[i]->pExpr==pX ) nEq++;
634 iTab = 0;
635 if( !ExprUseXSelect(pX) || pX->x.pSelect->pEList->nExpr==1 ){
636 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, 0, &iTab);
637 }else{
638 Expr *pExpr = pTerm->pExpr;
639 if( pExpr->iTable==0 || !ExprHasProperty(pExpr, EP_Subrtn) ){
640 sqlite3 *db = pParse->db;
641 pX = removeUnindexableInClauseTerms(pParse, iEq, pLoop, pX);
642 if( !db->mallocFailed ){
643 aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*nEq);
644 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap,&iTab);
645 pExpr->iTable = iTab;
647 sqlite3ExprDelete(db, pX);
648 }else{
649 int n = sqlite3ExprVectorSize(pX->pLeft);
650 aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*MAX(nEq,n));
651 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap, &iTab);
653 pX = pExpr;
656 if( eType==IN_INDEX_INDEX_DESC ){
657 testcase( bRev );
658 bRev = !bRev;
660 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0);
661 VdbeCoverageIf(v, bRev);
662 VdbeCoverageIf(v, !bRev);
664 assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 );
665 pLoop->wsFlags |= WHERE_IN_ABLE;
666 if( pLevel->u.in.nIn==0 ){
667 pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse);
669 if( iEq>0 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0 ){
670 pLoop->wsFlags |= WHERE_IN_EARLYOUT;
673 i = pLevel->u.in.nIn;
674 pLevel->u.in.nIn += nEq;
675 pLevel->u.in.aInLoop =
676 sqlite3WhereRealloc(pTerm->pWC->pWInfo,
677 pLevel->u.in.aInLoop,
678 sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn);
679 pIn = pLevel->u.in.aInLoop;
680 if( pIn ){
681 int iMap = 0; /* Index in aiMap[] */
682 pIn += i;
683 for(i=iEq;i<pLoop->nLTerm; i++){
684 if( pLoop->aLTerm[i]->pExpr==pX ){
685 int iOut = iReg + i - iEq;
686 if( eType==IN_INDEX_ROWID ){
687 pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iOut);
688 }else{
689 int iCol = aiMap ? aiMap[iMap++] : 0;
690 pIn->addrInTop = sqlite3VdbeAddOp3(v,OP_Column,iTab, iCol, iOut);
692 sqlite3VdbeAddOp1(v, OP_IsNull, iOut); VdbeCoverage(v);
693 if( i==iEq ){
694 pIn->iCur = iTab;
695 pIn->eEndLoopOp = bRev ? OP_Prev : OP_Next;
696 if( iEq>0 ){
697 pIn->iBase = iReg - i;
698 pIn->nPrefix = i;
699 }else{
700 pIn->nPrefix = 0;
702 }else{
703 pIn->eEndLoopOp = OP_Noop;
705 pIn++;
708 testcase( iEq>0
709 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0
710 && (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 );
711 if( iEq>0
712 && (pLoop->wsFlags & (WHERE_IN_SEEKSCAN|WHERE_VIRTUALTABLE))==0
714 sqlite3VdbeAddOp3(v, OP_SeekHit, pLevel->iIdxCur, 0, iEq);
716 }else{
717 pLevel->u.in.nIn = 0;
719 sqlite3DbFree(pParse->db, aiMap);
720 #endif
723 /* As an optimization, try to disable the WHERE clause term that is
724 ** driving the index as it will always be true. The correct answer is
725 ** obtained regardless, but we might get the answer with fewer CPU cycles
726 ** by omitting the term.
728 ** But do not disable the term unless we are certain that the term is
729 ** not a transitive constraint. For an example of where that does not
730 ** work, see https://sqlite.org/forum/forumpost/eb8613976a (2021-05-04)
732 if( (pLevel->pWLoop->wsFlags & WHERE_TRANSCONS)==0
733 || (pTerm->eOperator & WO_EQUIV)==0
735 disableTerm(pLevel, pTerm);
738 return iReg;
742 ** Generate code that will evaluate all == and IN constraints for an
743 ** index scan.
745 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
746 ** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10
747 ** The index has as many as three equality constraints, but in this
748 ** example, the third "c" value is an inequality. So only two
749 ** constraints are coded. This routine will generate code to evaluate
750 ** a==5 and b IN (1,2,3). The current values for a and b will be stored
751 ** in consecutive registers and the index of the first register is returned.
753 ** In the example above nEq==2. But this subroutine works for any value
754 ** of nEq including 0. If nEq==0, this routine is nearly a no-op.
755 ** The only thing it does is allocate the pLevel->iMem memory cell and
756 ** compute the affinity string.
758 ** The nExtraReg parameter is 0 or 1. It is 0 if all WHERE clause constraints
759 ** are == or IN and are covered by the nEq. nExtraReg is 1 if there is
760 ** an inequality constraint (such as the "c>=5 AND c<10" in the example) that
761 ** occurs after the nEq quality constraints.
763 ** This routine allocates a range of nEq+nExtraReg memory cells and returns
764 ** the index of the first memory cell in that range. The code that
765 ** calls this routine will use that memory range to store keys for
766 ** start and termination conditions of the loop.
767 ** key value of the loop. If one or more IN operators appear, then
768 ** this routine allocates an additional nEq memory cells for internal
769 ** use.
771 ** Before returning, *pzAff is set to point to a buffer containing a
772 ** copy of the column affinity string of the index allocated using
773 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated
774 ** with equality constraints that use BLOB or NONE affinity are set to
775 ** SQLITE_AFF_BLOB. This is to deal with SQL such as the following:
777 ** CREATE TABLE t1(a TEXT PRIMARY KEY, b);
778 ** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b;
780 ** In the example above, the index on t1(a) has TEXT affinity. But since
781 ** the right hand side of the equality constraint (t2.b) has BLOB/NONE affinity,
782 ** no conversion should be attempted before using a t2.b value as part of
783 ** a key to search the index. Hence the first byte in the returned affinity
784 ** string in this example would be set to SQLITE_AFF_BLOB.
786 static int codeAllEqualityTerms(
787 Parse *pParse, /* Parsing context */
788 WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */
789 int bRev, /* Reverse the order of IN operators */
790 int nExtraReg, /* Number of extra registers to allocate */
791 char **pzAff /* OUT: Set to point to affinity string */
793 u16 nEq; /* The number of == or IN constraints to code */
794 u16 nSkip; /* Number of left-most columns to skip */
795 Vdbe *v = pParse->pVdbe; /* The vm under construction */
796 Index *pIdx; /* The index being used for this loop */
797 WhereTerm *pTerm; /* A single constraint term */
798 WhereLoop *pLoop; /* The WhereLoop object */
799 int j; /* Loop counter */
800 int regBase; /* Base register */
801 int nReg; /* Number of registers to allocate */
802 char *zAff; /* Affinity string to return */
804 /* This module is only called on query plans that use an index. */
805 pLoop = pLevel->pWLoop;
806 assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 );
807 nEq = pLoop->u.btree.nEq;
808 nSkip = pLoop->nSkip;
809 pIdx = pLoop->u.btree.pIndex;
810 assert( pIdx!=0 );
812 /* Figure out how many memory cells we will need then allocate them.
814 regBase = pParse->nMem + 1;
815 nReg = pLoop->u.btree.nEq + nExtraReg;
816 pParse->nMem += nReg;
818 zAff = sqlite3DbStrDup(pParse->db,sqlite3IndexAffinityStr(pParse->db,pIdx));
819 assert( zAff!=0 || pParse->db->mallocFailed );
821 if( nSkip ){
822 int iIdxCur = pLevel->iIdxCur;
823 sqlite3VdbeAddOp3(v, OP_Null, 0, regBase, regBase+nSkip-1);
824 sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur);
825 VdbeCoverageIf(v, bRev==0);
826 VdbeCoverageIf(v, bRev!=0);
827 VdbeComment((v, "begin skip-scan on %s", pIdx->zName));
828 j = sqlite3VdbeAddOp0(v, OP_Goto);
829 assert( pLevel->addrSkip==0 );
830 pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT),
831 iIdxCur, 0, regBase, nSkip);
832 VdbeCoverageIf(v, bRev==0);
833 VdbeCoverageIf(v, bRev!=0);
834 sqlite3VdbeJumpHere(v, j);
835 for(j=0; j<nSkip; j++){
836 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j);
837 testcase( pIdx->aiColumn[j]==XN_EXPR );
838 VdbeComment((v, "%s", explainIndexColumnName(pIdx, j)));
842 /* Evaluate the equality constraints
844 assert( zAff==0 || (int)strlen(zAff)>=nEq );
845 for(j=nSkip; j<nEq; j++){
846 int r1;
847 pTerm = pLoop->aLTerm[j];
848 assert( pTerm!=0 );
849 /* The following testcase is true for indices with redundant columns.
850 ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */
851 testcase( (pTerm->wtFlags & TERM_CODED)!=0 );
852 testcase( pTerm->wtFlags & TERM_VIRTUAL );
853 r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j);
854 if( r1!=regBase+j ){
855 if( nReg==1 ){
856 sqlite3ReleaseTempReg(pParse, regBase);
857 regBase = r1;
858 }else{
859 sqlite3VdbeAddOp2(v, OP_Copy, r1, regBase+j);
863 for(j=nSkip; j<nEq; j++){
864 pTerm = pLoop->aLTerm[j];
865 if( pTerm->eOperator & WO_IN ){
866 if( pTerm->pExpr->flags & EP_xIsSelect ){
867 /* No affinity ever needs to be (or should be) applied to a value
868 ** from the RHS of an "? IN (SELECT ...)" expression. The
869 ** sqlite3FindInIndex() routine has already ensured that the
870 ** affinity of the comparison has been applied to the value. */
871 if( zAff ) zAff[j] = SQLITE_AFF_BLOB;
873 }else if( (pTerm->eOperator & WO_ISNULL)==0 ){
874 Expr *pRight = pTerm->pExpr->pRight;
875 if( (pTerm->wtFlags & TERM_IS)==0 && sqlite3ExprCanBeNull(pRight) ){
876 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk);
877 VdbeCoverage(v);
879 if( pParse->nErr==0 ){
880 assert( pParse->db->mallocFailed==0 );
881 if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_BLOB ){
882 zAff[j] = SQLITE_AFF_BLOB;
884 if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){
885 zAff[j] = SQLITE_AFF_BLOB;
890 *pzAff = zAff;
891 return regBase;
894 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
896 ** If the most recently coded instruction is a constant range constraint
897 ** (a string literal) that originated from the LIKE optimization, then
898 ** set P3 and P5 on the OP_String opcode so that the string will be cast
899 ** to a BLOB at appropriate times.
901 ** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range
902 ** expression: "x>='ABC' AND x<'abd'". But this requires that the range
903 ** scan loop run twice, once for strings and a second time for BLOBs.
904 ** The OP_String opcodes on the second pass convert the upper and lower
905 ** bound string constants to blobs. This routine makes the necessary changes
906 ** to the OP_String opcodes for that to happen.
908 ** Except, of course, if SQLITE_LIKE_DOESNT_MATCH_BLOBS is defined, then
909 ** only the one pass through the string space is required, so this routine
910 ** becomes a no-op.
912 static void whereLikeOptimizationStringFixup(
913 Vdbe *v, /* prepared statement under construction */
914 WhereLevel *pLevel, /* The loop that contains the LIKE operator */
915 WhereTerm *pTerm /* The upper or lower bound just coded */
917 if( pTerm->wtFlags & TERM_LIKEOPT ){
918 VdbeOp *pOp;
919 assert( pLevel->iLikeRepCntr>0 );
920 pOp = sqlite3VdbeGetLastOp(v);
921 assert( pOp!=0 );
922 assert( pOp->opcode==OP_String8
923 || pTerm->pWC->pWInfo->pParse->db->mallocFailed );
924 pOp->p3 = (int)(pLevel->iLikeRepCntr>>1); /* Register holding counter */
925 pOp->p5 = (u8)(pLevel->iLikeRepCntr&1); /* ASC or DESC */
928 #else
929 # define whereLikeOptimizationStringFixup(A,B,C)
930 #endif
932 #ifdef SQLITE_ENABLE_CURSOR_HINTS
934 ** Information is passed from codeCursorHint() down to individual nodes of
935 ** the expression tree (by sqlite3WalkExpr()) using an instance of this
936 ** structure.
938 struct CCurHint {
939 int iTabCur; /* Cursor for the main table */
940 int iIdxCur; /* Cursor for the index, if pIdx!=0. Unused otherwise */
941 Index *pIdx; /* The index used to access the table */
945 ** This function is called for every node of an expression that is a candidate
946 ** for a cursor hint on an index cursor. For TK_COLUMN nodes that reference
947 ** the table CCurHint.iTabCur, verify that the same column can be
948 ** accessed through the index. If it cannot, then set pWalker->eCode to 1.
950 static int codeCursorHintCheckExpr(Walker *pWalker, Expr *pExpr){
951 struct CCurHint *pHint = pWalker->u.pCCurHint;
952 assert( pHint->pIdx!=0 );
953 if( pExpr->op==TK_COLUMN
954 && pExpr->iTable==pHint->iTabCur
955 && sqlite3TableColumnToIndex(pHint->pIdx, pExpr->iColumn)<0
957 pWalker->eCode = 1;
959 return WRC_Continue;
963 ** Test whether or not expression pExpr, which was part of a WHERE clause,
964 ** should be included in the cursor-hint for a table that is on the rhs
965 ** of a LEFT JOIN. Set Walker.eCode to non-zero before returning if the
966 ** expression is not suitable.
968 ** An expression is unsuitable if it might evaluate to non NULL even if
969 ** a TK_COLUMN node that does affect the value of the expression is set
970 ** to NULL. For example:
972 ** col IS NULL
973 ** col IS NOT NULL
974 ** coalesce(col, 1)
975 ** CASE WHEN col THEN 0 ELSE 1 END
977 static int codeCursorHintIsOrFunction(Walker *pWalker, Expr *pExpr){
978 if( pExpr->op==TK_IS
979 || pExpr->op==TK_ISNULL || pExpr->op==TK_ISNOT
980 || pExpr->op==TK_NOTNULL || pExpr->op==TK_CASE
982 pWalker->eCode = 1;
983 }else if( pExpr->op==TK_FUNCTION ){
984 int d1;
985 char d2[4];
986 if( 0==sqlite3IsLikeFunction(pWalker->pParse->db, pExpr, &d1, d2) ){
987 pWalker->eCode = 1;
991 return WRC_Continue;
996 ** This function is called on every node of an expression tree used as an
997 ** argument to the OP_CursorHint instruction. If the node is a TK_COLUMN
998 ** that accesses any table other than the one identified by
999 ** CCurHint.iTabCur, then do the following:
1001 ** 1) allocate a register and code an OP_Column instruction to read
1002 ** the specified column into the new register, and
1004 ** 2) transform the expression node to a TK_REGISTER node that reads
1005 ** from the newly populated register.
1007 ** Also, if the node is a TK_COLUMN that does access the table idenified
1008 ** by pCCurHint.iTabCur, and an index is being used (which we will
1009 ** know because CCurHint.pIdx!=0) then transform the TK_COLUMN into
1010 ** an access of the index rather than the original table.
1012 static int codeCursorHintFixExpr(Walker *pWalker, Expr *pExpr){
1013 int rc = WRC_Continue;
1014 int reg;
1015 struct CCurHint *pHint = pWalker->u.pCCurHint;
1016 if( pExpr->op==TK_COLUMN ){
1017 if( pExpr->iTable!=pHint->iTabCur ){
1018 reg = ++pWalker->pParse->nMem; /* Register for column value */
1019 reg = sqlite3ExprCodeTarget(pWalker->pParse, pExpr, reg);
1020 pExpr->op = TK_REGISTER;
1021 pExpr->iTable = reg;
1022 }else if( pHint->pIdx!=0 ){
1023 pExpr->iTable = pHint->iIdxCur;
1024 pExpr->iColumn = sqlite3TableColumnToIndex(pHint->pIdx, pExpr->iColumn);
1025 assert( pExpr->iColumn>=0 );
1027 }else if( pExpr->pAggInfo ){
1028 rc = WRC_Prune;
1029 reg = ++pWalker->pParse->nMem; /* Register for column value */
1030 reg = sqlite3ExprCodeTarget(pWalker->pParse, pExpr, reg);
1031 pExpr->op = TK_REGISTER;
1032 pExpr->iTable = reg;
1033 }else if( pExpr->op==TK_TRUEFALSE ){
1034 /* Do not walk disabled expressions. tag-20230504-1 */
1035 return WRC_Prune;
1037 return rc;
1041 ** Insert an OP_CursorHint instruction if it is appropriate to do so.
1043 static void codeCursorHint(
1044 SrcItem *pTabItem, /* FROM clause item */
1045 WhereInfo *pWInfo, /* The where clause */
1046 WhereLevel *pLevel, /* Which loop to provide hints for */
1047 WhereTerm *pEndRange /* Hint this end-of-scan boundary term if not NULL */
1049 Parse *pParse = pWInfo->pParse;
1050 sqlite3 *db = pParse->db;
1051 Vdbe *v = pParse->pVdbe;
1052 Expr *pExpr = 0;
1053 WhereLoop *pLoop = pLevel->pWLoop;
1054 int iCur;
1055 WhereClause *pWC;
1056 WhereTerm *pTerm;
1057 int i, j;
1058 struct CCurHint sHint;
1059 Walker sWalker;
1061 if( OptimizationDisabled(db, SQLITE_CursorHints) ) return;
1062 iCur = pLevel->iTabCur;
1063 assert( iCur==pWInfo->pTabList->a[pLevel->iFrom].iCursor );
1064 sHint.iTabCur = iCur;
1065 sHint.iIdxCur = pLevel->iIdxCur;
1066 sHint.pIdx = pLoop->u.btree.pIndex;
1067 memset(&sWalker, 0, sizeof(sWalker));
1068 sWalker.pParse = pParse;
1069 sWalker.u.pCCurHint = &sHint;
1070 pWC = &pWInfo->sWC;
1071 for(i=0; i<pWC->nBase; i++){
1072 pTerm = &pWC->a[i];
1073 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
1074 if( pTerm->prereqAll & pLevel->notReady ) continue;
1076 /* Any terms specified as part of the ON(...) clause for any LEFT
1077 ** JOIN for which the current table is not the rhs are omitted
1078 ** from the cursor-hint.
1080 ** If this table is the rhs of a LEFT JOIN, "IS" or "IS NULL" terms
1081 ** that were specified as part of the WHERE clause must be excluded.
1082 ** This is to address the following:
1084 ** SELECT ... t1 LEFT JOIN t2 ON (t1.a=t2.b) WHERE t2.c IS NULL;
1086 ** Say there is a single row in t2 that matches (t1.a=t2.b), but its
1087 ** t2.c values is not NULL. If the (t2.c IS NULL) constraint is
1088 ** pushed down to the cursor, this row is filtered out, causing
1089 ** SQLite to synthesize a row of NULL values. Which does match the
1090 ** WHERE clause, and so the query returns a row. Which is incorrect.
1092 ** For the same reason, WHERE terms such as:
1094 ** WHERE 1 = (t2.c IS NULL)
1096 ** are also excluded. See codeCursorHintIsOrFunction() for details.
1098 if( pTabItem->fg.jointype & JT_LEFT ){
1099 Expr *pExpr = pTerm->pExpr;
1100 if( !ExprHasProperty(pExpr, EP_OuterON)
1101 || pExpr->w.iJoin!=pTabItem->iCursor
1103 sWalker.eCode = 0;
1104 sWalker.xExprCallback = codeCursorHintIsOrFunction;
1105 sqlite3WalkExpr(&sWalker, pTerm->pExpr);
1106 if( sWalker.eCode ) continue;
1108 }else{
1109 if( ExprHasProperty(pTerm->pExpr, EP_OuterON) ) continue;
1112 /* All terms in pWLoop->aLTerm[] except pEndRange are used to initialize
1113 ** the cursor. These terms are not needed as hints for a pure range
1114 ** scan (that has no == terms) so omit them. */
1115 if( pLoop->u.btree.nEq==0 && pTerm!=pEndRange ){
1116 for(j=0; j<pLoop->nLTerm && pLoop->aLTerm[j]!=pTerm; j++){}
1117 if( j<pLoop->nLTerm ) continue;
1120 /* No subqueries or non-deterministic functions allowed */
1121 if( sqlite3ExprContainsSubquery(pTerm->pExpr) ) continue;
1123 /* For an index scan, make sure referenced columns are actually in
1124 ** the index. */
1125 if( sHint.pIdx!=0 ){
1126 sWalker.eCode = 0;
1127 sWalker.xExprCallback = codeCursorHintCheckExpr;
1128 sqlite3WalkExpr(&sWalker, pTerm->pExpr);
1129 if( sWalker.eCode ) continue;
1132 /* If we survive all prior tests, that means this term is worth hinting */
1133 pExpr = sqlite3ExprAnd(pParse, pExpr, sqlite3ExprDup(db, pTerm->pExpr, 0));
1135 if( pExpr!=0 ){
1136 sWalker.xExprCallback = codeCursorHintFixExpr;
1137 if( pParse->nErr==0 ) sqlite3WalkExpr(&sWalker, pExpr);
1138 sqlite3VdbeAddOp4(v, OP_CursorHint,
1139 (sHint.pIdx ? sHint.iIdxCur : sHint.iTabCur), 0, 0,
1140 (const char*)pExpr, P4_EXPR);
1143 #else
1144 # define codeCursorHint(A,B,C,D) /* No-op */
1145 #endif /* SQLITE_ENABLE_CURSOR_HINTS */
1148 ** Cursor iCur is open on an intkey b-tree (a table). Register iRowid contains
1149 ** a rowid value just read from cursor iIdxCur, open on index pIdx. This
1150 ** function generates code to do a deferred seek of cursor iCur to the
1151 ** rowid stored in register iRowid.
1153 ** Normally, this is just:
1155 ** OP_DeferredSeek $iCur $iRowid
1157 ** Which causes a seek on $iCur to the row with rowid $iRowid.
1159 ** However, if the scan currently being coded is a branch of an OR-loop and
1160 ** the statement currently being coded is a SELECT, then additional information
1161 ** is added that might allow OP_Column to omit the seek and instead do its
1162 ** lookup on the index, thus avoiding an expensive seek operation. To
1163 ** enable this optimization, the P3 of OP_DeferredSeek is set to iIdxCur
1164 ** and P4 is set to an array of integers containing one entry for each column
1165 ** in the table. For each table column, if the column is the i'th
1166 ** column of the index, then the corresponding array entry is set to (i+1).
1167 ** If the column does not appear in the index at all, the array entry is set
1168 ** to 0. The OP_Column opcode can check this array to see if the column it
1169 ** wants is in the index and if it is, it will substitute the index cursor
1170 ** and column number and continue with those new values, rather than seeking
1171 ** the table cursor.
1173 static void codeDeferredSeek(
1174 WhereInfo *pWInfo, /* Where clause context */
1175 Index *pIdx, /* Index scan is using */
1176 int iCur, /* Cursor for IPK b-tree */
1177 int iIdxCur /* Index cursor */
1179 Parse *pParse = pWInfo->pParse; /* Parse context */
1180 Vdbe *v = pParse->pVdbe; /* Vdbe to generate code within */
1182 assert( iIdxCur>0 );
1183 assert( pIdx->aiColumn[pIdx->nColumn-1]==-1 );
1185 pWInfo->bDeferredSeek = 1;
1186 sqlite3VdbeAddOp3(v, OP_DeferredSeek, iIdxCur, 0, iCur);
1187 if( (pWInfo->wctrlFlags & (WHERE_OR_SUBCLAUSE|WHERE_RIGHT_JOIN))
1188 && DbMaskAllZero(sqlite3ParseToplevel(pParse)->writeMask)
1190 int i;
1191 Table *pTab = pIdx->pTable;
1192 u32 *ai = (u32*)sqlite3DbMallocZero(pParse->db, sizeof(u32)*(pTab->nCol+1));
1193 if( ai ){
1194 ai[0] = pTab->nCol;
1195 for(i=0; i<pIdx->nColumn-1; i++){
1196 int x1, x2;
1197 assert( pIdx->aiColumn[i]<pTab->nCol );
1198 x1 = pIdx->aiColumn[i];
1199 x2 = sqlite3TableColumnToStorage(pTab, x1);
1200 testcase( x1!=x2 );
1201 if( x1>=0 ) ai[x2+1] = i+1;
1203 sqlite3VdbeChangeP4(v, -1, (char*)ai, P4_INTARRAY);
1209 ** If the expression passed as the second argument is a vector, generate
1210 ** code to write the first nReg elements of the vector into an array
1211 ** of registers starting with iReg.
1213 ** If the expression is not a vector, then nReg must be passed 1. In
1214 ** this case, generate code to evaluate the expression and leave the
1215 ** result in register iReg.
1217 static void codeExprOrVector(Parse *pParse, Expr *p, int iReg, int nReg){
1218 assert( nReg>0 );
1219 if( p && sqlite3ExprIsVector(p) ){
1220 #ifndef SQLITE_OMIT_SUBQUERY
1221 if( ExprUseXSelect(p) ){
1222 Vdbe *v = pParse->pVdbe;
1223 int iSelect;
1224 assert( p->op==TK_SELECT );
1225 iSelect = sqlite3CodeSubselect(pParse, p);
1226 sqlite3VdbeAddOp3(v, OP_Copy, iSelect, iReg, nReg-1);
1227 }else
1228 #endif
1230 int i;
1231 const ExprList *pList;
1232 assert( ExprUseXList(p) );
1233 pList = p->x.pList;
1234 assert( nReg<=pList->nExpr );
1235 for(i=0; i<nReg; i++){
1236 sqlite3ExprCode(pParse, pList->a[i].pExpr, iReg+i);
1239 }else{
1240 assert( nReg==1 || pParse->nErr );
1241 sqlite3ExprCode(pParse, p, iReg);
1246 ** The pTruth expression is always true because it is the WHERE clause
1247 ** a partial index that is driving a query loop. Look through all of the
1248 ** WHERE clause terms on the query, and if any of those terms must be
1249 ** true because pTruth is true, then mark those WHERE clause terms as
1250 ** coded.
1252 static void whereApplyPartialIndexConstraints(
1253 Expr *pTruth,
1254 int iTabCur,
1255 WhereClause *pWC
1257 int i;
1258 WhereTerm *pTerm;
1259 while( pTruth->op==TK_AND ){
1260 whereApplyPartialIndexConstraints(pTruth->pLeft, iTabCur, pWC);
1261 pTruth = pTruth->pRight;
1263 for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1264 Expr *pExpr;
1265 if( pTerm->wtFlags & TERM_CODED ) continue;
1266 pExpr = pTerm->pExpr;
1267 if( sqlite3ExprCompare(0, pExpr, pTruth, iTabCur)==0 ){
1268 pTerm->wtFlags |= TERM_CODED;
1274 ** This routine is called right after An OP_Filter has been generated and
1275 ** before the corresponding index search has been performed. This routine
1276 ** checks to see if there are additional Bloom filters in inner loops that
1277 ** can be checked prior to doing the index lookup. If there are available
1278 ** inner-loop Bloom filters, then evaluate those filters now, before the
1279 ** index lookup. The idea is that a Bloom filter check is way faster than
1280 ** an index lookup, and the Bloom filter might return false, meaning that
1281 ** the index lookup can be skipped.
1283 ** We know that an inner loop uses a Bloom filter because it has the
1284 ** WhereLevel.regFilter set. If an inner-loop Bloom filter is checked,
1285 ** then clear the WhereLevel.regFilter value to prevent the Bloom filter
1286 ** from being checked a second time when the inner loop is evaluated.
1288 static SQLITE_NOINLINE void filterPullDown(
1289 Parse *pParse, /* Parsing context */
1290 WhereInfo *pWInfo, /* Complete information about the WHERE clause */
1291 int iLevel, /* Which level of pWInfo->a[] should be coded */
1292 int addrNxt, /* Jump here to bypass inner loops */
1293 Bitmask notReady /* Loops that are not ready */
1295 while( ++iLevel < pWInfo->nLevel ){
1296 WhereLevel *pLevel = &pWInfo->a[iLevel];
1297 WhereLoop *pLoop = pLevel->pWLoop;
1298 if( pLevel->regFilter==0 ) continue;
1299 if( pLevel->pWLoop->nSkip ) continue;
1300 /* ,--- Because sqlite3ConstructBloomFilter() has will not have set
1301 ** vvvvv--' pLevel->regFilter if this were true. */
1302 if( NEVER(pLoop->prereq & notReady) ) continue;
1303 assert( pLevel->addrBrk==0 );
1304 pLevel->addrBrk = addrNxt;
1305 if( pLoop->wsFlags & WHERE_IPK ){
1306 WhereTerm *pTerm = pLoop->aLTerm[0];
1307 int regRowid;
1308 assert( pTerm!=0 );
1309 assert( pTerm->pExpr!=0 );
1310 testcase( pTerm->wtFlags & TERM_VIRTUAL );
1311 regRowid = sqlite3GetTempReg(pParse);
1312 regRowid = codeEqualityTerm(pParse, pTerm, pLevel, 0, 0, regRowid);
1313 sqlite3VdbeAddOp2(pParse->pVdbe, OP_MustBeInt, regRowid, addrNxt);
1314 VdbeCoverage(pParse->pVdbe);
1315 sqlite3VdbeAddOp4Int(pParse->pVdbe, OP_Filter, pLevel->regFilter,
1316 addrNxt, regRowid, 1);
1317 VdbeCoverage(pParse->pVdbe);
1318 }else{
1319 u16 nEq = pLoop->u.btree.nEq;
1320 int r1;
1321 char *zStartAff;
1323 assert( pLoop->wsFlags & WHERE_INDEXED );
1324 assert( (pLoop->wsFlags & WHERE_COLUMN_IN)==0 );
1325 r1 = codeAllEqualityTerms(pParse,pLevel,0,0,&zStartAff);
1326 codeApplyAffinity(pParse, r1, nEq, zStartAff);
1327 sqlite3DbFree(pParse->db, zStartAff);
1328 sqlite3VdbeAddOp4Int(pParse->pVdbe, OP_Filter, pLevel->regFilter,
1329 addrNxt, r1, nEq);
1330 VdbeCoverage(pParse->pVdbe);
1332 pLevel->regFilter = 0;
1333 pLevel->addrBrk = 0;
1338 ** Generate code for the start of the iLevel-th loop in the WHERE clause
1339 ** implementation described by pWInfo.
1341 Bitmask sqlite3WhereCodeOneLoopStart(
1342 Parse *pParse, /* Parsing context */
1343 Vdbe *v, /* Prepared statement under construction */
1344 WhereInfo *pWInfo, /* Complete information about the WHERE clause */
1345 int iLevel, /* Which level of pWInfo->a[] should be coded */
1346 WhereLevel *pLevel, /* The current level pointer */
1347 Bitmask notReady /* Which tables are currently available */
1349 int j, k; /* Loop counters */
1350 int iCur; /* The VDBE cursor for the table */
1351 int addrNxt; /* Where to jump to continue with the next IN case */
1352 int bRev; /* True if we need to scan in reverse order */
1353 WhereLoop *pLoop; /* The WhereLoop object being coded */
1354 WhereClause *pWC; /* Decomposition of the entire WHERE clause */
1355 WhereTerm *pTerm; /* A WHERE clause term */
1356 sqlite3 *db; /* Database connection */
1357 SrcItem *pTabItem; /* FROM clause term being coded */
1358 int addrBrk; /* Jump here to break out of the loop */
1359 int addrHalt; /* addrBrk for the outermost loop */
1360 int addrCont; /* Jump here to continue with next cycle */
1361 int iRowidReg = 0; /* Rowid is stored in this register, if not zero */
1362 int iReleaseReg = 0; /* Temp register to free before returning */
1363 Index *pIdx = 0; /* Index used by loop (if any) */
1364 int iLoop; /* Iteration of constraint generator loop */
1366 pWC = &pWInfo->sWC;
1367 db = pParse->db;
1368 pLoop = pLevel->pWLoop;
1369 pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
1370 iCur = pTabItem->iCursor;
1371 pLevel->notReady = notReady & ~sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur);
1372 bRev = (pWInfo->revMask>>iLevel)&1;
1373 VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName));
1374 #if WHERETRACE_ENABLED /* 0x4001 */
1375 if( sqlite3WhereTrace & 0x1 ){
1376 sqlite3DebugPrintf("Coding level %d of %d: notReady=%llx iFrom=%d\n",
1377 iLevel, pWInfo->nLevel, (u64)notReady, pLevel->iFrom);
1378 if( sqlite3WhereTrace & 0x1000 ){
1379 sqlite3WhereLoopPrint(pLoop, pWC);
1382 if( (sqlite3WhereTrace & 0x4001)==0x4001 ){
1383 if( iLevel==0 ){
1384 sqlite3DebugPrintf("WHERE clause being coded:\n");
1385 sqlite3TreeViewExpr(0, pWInfo->pWhere, 0);
1387 sqlite3DebugPrintf("All WHERE-clause terms before coding:\n");
1388 sqlite3WhereClausePrint(pWC);
1390 #endif
1392 /* Create labels for the "break" and "continue" instructions
1393 ** for the current loop. Jump to addrBrk to break out of a loop.
1394 ** Jump to cont to go immediately to the next iteration of the
1395 ** loop.
1397 ** When there is an IN operator, we also have a "addrNxt" label that
1398 ** means to continue with the next IN value combination. When
1399 ** there are no IN operators in the constraints, the "addrNxt" label
1400 ** is the same as "addrBrk".
1402 addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse);
1403 addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(pParse);
1405 /* If this is the right table of a LEFT OUTER JOIN, allocate and
1406 ** initialize a memory cell that records if this table matches any
1407 ** row of the left table of the join.
1409 assert( (pWInfo->wctrlFlags & (WHERE_OR_SUBCLAUSE|WHERE_RIGHT_JOIN))
1410 || pLevel->iFrom>0 || (pTabItem[0].fg.jointype & JT_LEFT)==0
1412 if( pLevel->iFrom>0 && (pTabItem[0].fg.jointype & JT_LEFT)!=0 ){
1413 pLevel->iLeftJoin = ++pParse->nMem;
1414 sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin);
1415 VdbeComment((v, "init LEFT JOIN no-match flag"));
1418 /* Compute a safe address to jump to if we discover that the table for
1419 ** this loop is empty and can never contribute content. */
1420 for(j=iLevel; j>0; j--){
1421 if( pWInfo->a[j].iLeftJoin ) break;
1422 if( pWInfo->a[j].pRJ ) break;
1424 addrHalt = pWInfo->a[j].addrBrk;
1426 /* Special case of a FROM clause subquery implemented as a co-routine */
1427 if( pTabItem->fg.viaCoroutine ){
1428 int regYield = pTabItem->regReturn;
1429 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
1430 pLevel->p2 = sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk);
1431 VdbeCoverage(v);
1432 VdbeComment((v, "next row of %s", pTabItem->pTab->zName));
1433 pLevel->op = OP_Goto;
1434 }else
1436 #ifndef SQLITE_OMIT_VIRTUALTABLE
1437 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
1438 /* Case 1: The table is a virtual-table. Use the VFilter and VNext
1439 ** to access the data.
1441 int iReg; /* P3 Value for OP_VFilter */
1442 int addrNotFound;
1443 int nConstraint = pLoop->nLTerm;
1445 iReg = sqlite3GetTempRange(pParse, nConstraint+2);
1446 addrNotFound = pLevel->addrBrk;
1447 for(j=0; j<nConstraint; j++){
1448 int iTarget = iReg+j+2;
1449 pTerm = pLoop->aLTerm[j];
1450 if( NEVER(pTerm==0) ) continue;
1451 if( pTerm->eOperator & WO_IN ){
1452 if( SMASKBIT32(j) & pLoop->u.vtab.mHandleIn ){
1453 int iTab = pParse->nTab++;
1454 int iCache = ++pParse->nMem;
1455 sqlite3CodeRhsOfIN(pParse, pTerm->pExpr, iTab);
1456 sqlite3VdbeAddOp3(v, OP_VInitIn, iTab, iTarget, iCache);
1457 }else{
1458 codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget);
1459 addrNotFound = pLevel->addrNxt;
1461 }else{
1462 Expr *pRight = pTerm->pExpr->pRight;
1463 codeExprOrVector(pParse, pRight, iTarget, 1);
1464 if( pTerm->eMatchOp==SQLITE_INDEX_CONSTRAINT_OFFSET
1465 && pLoop->u.vtab.bOmitOffset
1467 assert( pTerm->eOperator==WO_AUX );
1468 assert( pWInfo->pSelect!=0 );
1469 assert( pWInfo->pSelect->iOffset>0 );
1470 sqlite3VdbeAddOp2(v, OP_Integer, 0, pWInfo->pSelect->iOffset);
1471 VdbeComment((v,"Zero OFFSET counter"));
1475 sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg);
1476 sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1);
1477 sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg,
1478 pLoop->u.vtab.idxStr,
1479 pLoop->u.vtab.needFree ? P4_DYNAMIC : P4_STATIC);
1480 VdbeCoverage(v);
1481 pLoop->u.vtab.needFree = 0;
1482 /* An OOM inside of AddOp4(OP_VFilter) instruction above might have freed
1483 ** the u.vtab.idxStr. NULL it out to prevent a use-after-free */
1484 if( db->mallocFailed ) pLoop->u.vtab.idxStr = 0;
1485 pLevel->p1 = iCur;
1486 pLevel->op = pWInfo->eOnePass ? OP_Noop : OP_VNext;
1487 pLevel->p2 = sqlite3VdbeCurrentAddr(v);
1488 assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 );
1490 for(j=0; j<nConstraint; j++){
1491 pTerm = pLoop->aLTerm[j];
1492 if( j<16 && (pLoop->u.vtab.omitMask>>j)&1 ){
1493 disableTerm(pLevel, pTerm);
1494 continue;
1496 if( (pTerm->eOperator & WO_IN)!=0
1497 && (SMASKBIT32(j) & pLoop->u.vtab.mHandleIn)==0
1498 && !db->mallocFailed
1500 Expr *pCompare; /* The comparison operator */
1501 Expr *pRight; /* RHS of the comparison */
1502 VdbeOp *pOp; /* Opcode to access the value of the IN constraint */
1503 int iIn; /* IN loop corresponding to the j-th constraint */
1505 /* Reload the constraint value into reg[iReg+j+2]. The same value
1506 ** was loaded into the same register prior to the OP_VFilter, but
1507 ** the xFilter implementation might have changed the datatype or
1508 ** encoding of the value in the register, so it *must* be reloaded.
1510 for(iIn=0; ALWAYS(iIn<pLevel->u.in.nIn); iIn++){
1511 pOp = sqlite3VdbeGetOp(v, pLevel->u.in.aInLoop[iIn].addrInTop);
1512 if( (pOp->opcode==OP_Column && pOp->p3==iReg+j+2)
1513 || (pOp->opcode==OP_Rowid && pOp->p2==iReg+j+2)
1515 testcase( pOp->opcode==OP_Rowid );
1516 sqlite3VdbeAddOp3(v, pOp->opcode, pOp->p1, pOp->p2, pOp->p3);
1517 break;
1521 /* Generate code that will continue to the next row if
1522 ** the IN constraint is not satisfied
1524 pCompare = sqlite3PExpr(pParse, TK_EQ, 0, 0);
1525 if( !db->mallocFailed ){
1526 int iFld = pTerm->u.x.iField;
1527 Expr *pLeft = pTerm->pExpr->pLeft;
1528 assert( pLeft!=0 );
1529 if( iFld>0 ){
1530 assert( pLeft->op==TK_VECTOR );
1531 assert( ExprUseXList(pLeft) );
1532 assert( iFld<=pLeft->x.pList->nExpr );
1533 pCompare->pLeft = pLeft->x.pList->a[iFld-1].pExpr;
1534 }else{
1535 pCompare->pLeft = pLeft;
1537 pCompare->pRight = pRight = sqlite3Expr(db, TK_REGISTER, 0);
1538 if( pRight ){
1539 pRight->iTable = iReg+j+2;
1540 sqlite3ExprIfFalse(
1541 pParse, pCompare, pLevel->addrCont, SQLITE_JUMPIFNULL
1544 pCompare->pLeft = 0;
1546 sqlite3ExprDelete(db, pCompare);
1550 /* These registers need to be preserved in case there is an IN operator
1551 ** loop. So we could deallocate the registers here (and potentially
1552 ** reuse them later) if (pLoop->wsFlags & WHERE_IN_ABLE)==0. But it seems
1553 ** simpler and safer to simply not reuse the registers.
1555 ** sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);
1557 }else
1558 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1560 if( (pLoop->wsFlags & WHERE_IPK)!=0
1561 && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0
1563 /* Case 2: We can directly reference a single row using an
1564 ** equality comparison against the ROWID field. Or
1565 ** we reference multiple rows using a "rowid IN (...)"
1566 ** construct.
1568 assert( pLoop->u.btree.nEq==1 );
1569 pTerm = pLoop->aLTerm[0];
1570 assert( pTerm!=0 );
1571 assert( pTerm->pExpr!=0 );
1572 testcase( pTerm->wtFlags & TERM_VIRTUAL );
1573 iReleaseReg = ++pParse->nMem;
1574 iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg);
1575 if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg);
1576 addrNxt = pLevel->addrNxt;
1577 if( pLevel->regFilter ){
1578 sqlite3VdbeAddOp2(v, OP_MustBeInt, iRowidReg, addrNxt);
1579 VdbeCoverage(v);
1580 sqlite3VdbeAddOp4Int(v, OP_Filter, pLevel->regFilter, addrNxt,
1581 iRowidReg, 1);
1582 VdbeCoverage(v);
1583 filterPullDown(pParse, pWInfo, iLevel, addrNxt, notReady);
1585 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCur, addrNxt, iRowidReg);
1586 VdbeCoverage(v);
1587 pLevel->op = OP_Noop;
1588 }else if( (pLoop->wsFlags & WHERE_IPK)!=0
1589 && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0
1591 /* Case 3: We have an inequality comparison against the ROWID field.
1593 int testOp = OP_Noop;
1594 int start;
1595 int memEndValue = 0;
1596 WhereTerm *pStart, *pEnd;
1598 j = 0;
1599 pStart = pEnd = 0;
1600 if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++];
1601 if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++];
1602 assert( pStart!=0 || pEnd!=0 );
1603 if( bRev ){
1604 pTerm = pStart;
1605 pStart = pEnd;
1606 pEnd = pTerm;
1608 codeCursorHint(pTabItem, pWInfo, pLevel, pEnd);
1609 if( pStart ){
1610 Expr *pX; /* The expression that defines the start bound */
1611 int r1, rTemp; /* Registers for holding the start boundary */
1612 int op; /* Cursor seek operation */
1614 /* The following constant maps TK_xx codes into corresponding
1615 ** seek opcodes. It depends on a particular ordering of TK_xx
1617 const u8 aMoveOp[] = {
1618 /* TK_GT */ OP_SeekGT,
1619 /* TK_LE */ OP_SeekLE,
1620 /* TK_LT */ OP_SeekLT,
1621 /* TK_GE */ OP_SeekGE
1623 assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */
1624 assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */
1625 assert( TK_GE==TK_GT+3 ); /* ... is correcct. */
1627 assert( (pStart->wtFlags & TERM_VNULL)==0 );
1628 testcase( pStart->wtFlags & TERM_VIRTUAL );
1629 pX = pStart->pExpr;
1630 assert( pX!=0 );
1631 testcase( pStart->leftCursor!=iCur ); /* transitive constraints */
1632 if( sqlite3ExprIsVector(pX->pRight) ){
1633 r1 = rTemp = sqlite3GetTempReg(pParse);
1634 codeExprOrVector(pParse, pX->pRight, r1, 1);
1635 testcase( pX->op==TK_GT );
1636 testcase( pX->op==TK_GE );
1637 testcase( pX->op==TK_LT );
1638 testcase( pX->op==TK_LE );
1639 op = aMoveOp[((pX->op - TK_GT - 1) & 0x3) | 0x1];
1640 assert( pX->op!=TK_GT || op==OP_SeekGE );
1641 assert( pX->op!=TK_GE || op==OP_SeekGE );
1642 assert( pX->op!=TK_LT || op==OP_SeekLE );
1643 assert( pX->op!=TK_LE || op==OP_SeekLE );
1644 }else{
1645 r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp);
1646 disableTerm(pLevel, pStart);
1647 op = aMoveOp[(pX->op - TK_GT)];
1649 sqlite3VdbeAddOp3(v, op, iCur, addrBrk, r1);
1650 VdbeComment((v, "pk"));
1651 VdbeCoverageIf(v, pX->op==TK_GT);
1652 VdbeCoverageIf(v, pX->op==TK_LE);
1653 VdbeCoverageIf(v, pX->op==TK_LT);
1654 VdbeCoverageIf(v, pX->op==TK_GE);
1655 sqlite3ReleaseTempReg(pParse, rTemp);
1656 }else{
1657 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrHalt);
1658 VdbeCoverageIf(v, bRev==0);
1659 VdbeCoverageIf(v, bRev!=0);
1661 if( pEnd ){
1662 Expr *pX;
1663 pX = pEnd->pExpr;
1664 assert( pX!=0 );
1665 assert( (pEnd->wtFlags & TERM_VNULL)==0 );
1666 testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */
1667 testcase( pEnd->wtFlags & TERM_VIRTUAL );
1668 memEndValue = ++pParse->nMem;
1669 codeExprOrVector(pParse, pX->pRight, memEndValue, 1);
1670 if( 0==sqlite3ExprIsVector(pX->pRight)
1671 && (pX->op==TK_LT || pX->op==TK_GT)
1673 testOp = bRev ? OP_Le : OP_Ge;
1674 }else{
1675 testOp = bRev ? OP_Lt : OP_Gt;
1677 if( 0==sqlite3ExprIsVector(pX->pRight) ){
1678 disableTerm(pLevel, pEnd);
1681 start = sqlite3VdbeCurrentAddr(v);
1682 pLevel->op = bRev ? OP_Prev : OP_Next;
1683 pLevel->p1 = iCur;
1684 pLevel->p2 = start;
1685 assert( pLevel->p5==0 );
1686 if( testOp!=OP_Noop ){
1687 iRowidReg = ++pParse->nMem;
1688 sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg);
1689 sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg);
1690 VdbeCoverageIf(v, testOp==OP_Le);
1691 VdbeCoverageIf(v, testOp==OP_Lt);
1692 VdbeCoverageIf(v, testOp==OP_Ge);
1693 VdbeCoverageIf(v, testOp==OP_Gt);
1694 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL);
1696 }else if( pLoop->wsFlags & WHERE_INDEXED ){
1697 /* Case 4: A scan using an index.
1699 ** The WHERE clause may contain zero or more equality
1700 ** terms ("==" or "IN" operators) that refer to the N
1701 ** left-most columns of the index. It may also contain
1702 ** inequality constraints (>, <, >= or <=) on the indexed
1703 ** column that immediately follows the N equalities. Only
1704 ** the right-most column can be an inequality - the rest must
1705 ** use the "==" and "IN" operators. For example, if the
1706 ** index is on (x,y,z), then the following clauses are all
1707 ** optimized:
1709 ** x=5
1710 ** x=5 AND y=10
1711 ** x=5 AND y<10
1712 ** x=5 AND y>5 AND y<10
1713 ** x=5 AND y=5 AND z<=10
1715 ** The z<10 term of the following cannot be used, only
1716 ** the x=5 term:
1718 ** x=5 AND z<10
1720 ** N may be zero if there are inequality constraints.
1721 ** If there are no inequality constraints, then N is at
1722 ** least one.
1724 ** This case is also used when there are no WHERE clause
1725 ** constraints but an index is selected anyway, in order
1726 ** to force the output order to conform to an ORDER BY.
1728 static const u8 aStartOp[] = {
1731 OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */
1732 OP_Last, /* 3: (!start_constraints && startEq && bRev) */
1733 OP_SeekGT, /* 4: (start_constraints && !startEq && !bRev) */
1734 OP_SeekLT, /* 5: (start_constraints && !startEq && bRev) */
1735 OP_SeekGE, /* 6: (start_constraints && startEq && !bRev) */
1736 OP_SeekLE /* 7: (start_constraints && startEq && bRev) */
1738 static const u8 aEndOp[] = {
1739 OP_IdxGE, /* 0: (end_constraints && !bRev && !endEq) */
1740 OP_IdxGT, /* 1: (end_constraints && !bRev && endEq) */
1741 OP_IdxLE, /* 2: (end_constraints && bRev && !endEq) */
1742 OP_IdxLT, /* 3: (end_constraints && bRev && endEq) */
1744 u16 nEq = pLoop->u.btree.nEq; /* Number of == or IN terms */
1745 u16 nBtm = pLoop->u.btree.nBtm; /* Length of BTM vector */
1746 u16 nTop = pLoop->u.btree.nTop; /* Length of TOP vector */
1747 int regBase; /* Base register holding constraint values */
1748 WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */
1749 WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */
1750 int startEq; /* True if range start uses ==, >= or <= */
1751 int endEq; /* True if range end uses ==, >= or <= */
1752 int start_constraints; /* Start of range is constrained */
1753 int nConstraint; /* Number of constraint terms */
1754 int iIdxCur; /* The VDBE cursor for the index */
1755 int nExtraReg = 0; /* Number of extra registers needed */
1756 int op; /* Instruction opcode */
1757 char *zStartAff; /* Affinity for start of range constraint */
1758 char *zEndAff = 0; /* Affinity for end of range constraint */
1759 u8 bSeekPastNull = 0; /* True to seek past initial nulls */
1760 u8 bStopAtNull = 0; /* Add condition to terminate at NULLs */
1761 int omitTable; /* True if we use the index only */
1762 int regBignull = 0; /* big-null flag register */
1763 int addrSeekScan = 0; /* Opcode of the OP_SeekScan, if any */
1765 pIdx = pLoop->u.btree.pIndex;
1766 iIdxCur = pLevel->iIdxCur;
1767 assert( nEq>=pLoop->nSkip );
1769 /* Find any inequality constraint terms for the start and end
1770 ** of the range.
1772 j = nEq;
1773 if( pLoop->wsFlags & WHERE_BTM_LIMIT ){
1774 pRangeStart = pLoop->aLTerm[j++];
1775 nExtraReg = MAX(nExtraReg, pLoop->u.btree.nBtm);
1776 /* Like optimization range constraints always occur in pairs */
1777 assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 ||
1778 (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 );
1780 if( pLoop->wsFlags & WHERE_TOP_LIMIT ){
1781 pRangeEnd = pLoop->aLTerm[j++];
1782 nExtraReg = MAX(nExtraReg, pLoop->u.btree.nTop);
1783 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
1784 if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){
1785 assert( pRangeStart!=0 ); /* LIKE opt constraints */
1786 assert( pRangeStart->wtFlags & TERM_LIKEOPT ); /* occur in pairs */
1787 pLevel->iLikeRepCntr = (u32)++pParse->nMem;
1788 sqlite3VdbeAddOp2(v, OP_Integer, 1, (int)pLevel->iLikeRepCntr);
1789 VdbeComment((v, "LIKE loop counter"));
1790 pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v);
1791 /* iLikeRepCntr actually stores 2x the counter register number. The
1792 ** bottom bit indicates whether the search order is ASC or DESC. */
1793 testcase( bRev );
1794 testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC );
1795 assert( (bRev & ~1)==0 );
1796 pLevel->iLikeRepCntr <<=1;
1797 pLevel->iLikeRepCntr |= bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC);
1799 #endif
1800 if( pRangeStart==0 ){
1801 j = pIdx->aiColumn[nEq];
1802 if( (j>=0 && pIdx->pTable->aCol[j].notNull==0) || j==XN_EXPR ){
1803 bSeekPastNull = 1;
1807 assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 );
1809 /* If the WHERE_BIGNULL_SORT flag is set, then index column nEq uses
1810 ** a non-default "big-null" sort (either ASC NULLS LAST or DESC NULLS
1811 ** FIRST). In both cases separate ordered scans are made of those
1812 ** index entries for which the column is null and for those for which
1813 ** it is not. For an ASC sort, the non-NULL entries are scanned first.
1814 ** For DESC, NULL entries are scanned first.
1816 if( (pLoop->wsFlags & (WHERE_TOP_LIMIT|WHERE_BTM_LIMIT))==0
1817 && (pLoop->wsFlags & WHERE_BIGNULL_SORT)!=0
1819 assert( bSeekPastNull==0 && nExtraReg==0 && nBtm==0 && nTop==0 );
1820 assert( pRangeEnd==0 && pRangeStart==0 );
1821 testcase( pLoop->nSkip>0 );
1822 nExtraReg = 1;
1823 bSeekPastNull = 1;
1824 pLevel->regBignull = regBignull = ++pParse->nMem;
1825 if( pLevel->iLeftJoin ){
1826 sqlite3VdbeAddOp2(v, OP_Integer, 0, regBignull);
1828 pLevel->addrBignull = sqlite3VdbeMakeLabel(pParse);
1831 /* If we are doing a reverse order scan on an ascending index, or
1832 ** a forward order scan on a descending index, interchange the
1833 ** start and end terms (pRangeStart and pRangeEnd).
1835 if( (nEq<pIdx->nColumn && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC)) ){
1836 SWAP(WhereTerm *, pRangeEnd, pRangeStart);
1837 SWAP(u8, bSeekPastNull, bStopAtNull);
1838 SWAP(u8, nBtm, nTop);
1841 if( iLevel>0 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)!=0 ){
1842 /* In case OP_SeekScan is used, ensure that the index cursor does not
1843 ** point to a valid row for the first iteration of this loop. */
1844 sqlite3VdbeAddOp1(v, OP_NullRow, iIdxCur);
1847 /* Generate code to evaluate all constraint terms using == or IN
1848 ** and store the values of those terms in an array of registers
1849 ** starting at regBase.
1851 codeCursorHint(pTabItem, pWInfo, pLevel, pRangeEnd);
1852 regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff);
1853 assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq );
1854 if( zStartAff && nTop ){
1855 zEndAff = sqlite3DbStrDup(db, &zStartAff[nEq]);
1857 addrNxt = (regBignull ? pLevel->addrBignull : pLevel->addrNxt);
1859 testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 );
1860 testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 );
1861 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 );
1862 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 );
1863 startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE);
1864 endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE);
1865 start_constraints = pRangeStart || nEq>0;
1867 /* Seek the index cursor to the start of the range. */
1868 nConstraint = nEq;
1869 if( pRangeStart ){
1870 Expr *pRight = pRangeStart->pExpr->pRight;
1871 codeExprOrVector(pParse, pRight, regBase+nEq, nBtm);
1872 whereLikeOptimizationStringFixup(v, pLevel, pRangeStart);
1873 if( (pRangeStart->wtFlags & TERM_VNULL)==0
1874 && sqlite3ExprCanBeNull(pRight)
1876 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
1877 VdbeCoverage(v);
1879 if( zStartAff ){
1880 updateRangeAffinityStr(pRight, nBtm, &zStartAff[nEq]);
1882 nConstraint += nBtm;
1883 testcase( pRangeStart->wtFlags & TERM_VIRTUAL );
1884 if( sqlite3ExprIsVector(pRight)==0 ){
1885 disableTerm(pLevel, pRangeStart);
1886 }else{
1887 startEq = 1;
1889 bSeekPastNull = 0;
1890 }else if( bSeekPastNull ){
1891 startEq = 0;
1892 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1893 start_constraints = 1;
1894 nConstraint++;
1895 }else if( regBignull ){
1896 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1897 start_constraints = 1;
1898 nConstraint++;
1900 codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff);
1901 if( pLoop->nSkip>0 && nConstraint==pLoop->nSkip ){
1902 /* The skip-scan logic inside the call to codeAllEqualityConstraints()
1903 ** above has already left the cursor sitting on the correct row,
1904 ** so no further seeking is needed */
1905 }else{
1906 if( regBignull ){
1907 sqlite3VdbeAddOp2(v, OP_Integer, 1, regBignull);
1908 VdbeComment((v, "NULL-scan pass ctr"));
1910 if( pLevel->regFilter ){
1911 sqlite3VdbeAddOp4Int(v, OP_Filter, pLevel->regFilter, addrNxt,
1912 regBase, nEq);
1913 VdbeCoverage(v);
1914 filterPullDown(pParse, pWInfo, iLevel, addrNxt, notReady);
1917 op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev];
1918 assert( op!=0 );
1919 if( (pLoop->wsFlags & WHERE_IN_SEEKSCAN)!=0 && op==OP_SeekGE ){
1920 assert( regBignull==0 );
1921 /* TUNING: The OP_SeekScan opcode seeks to reduce the number
1922 ** of expensive seek operations by replacing a single seek with
1923 ** 1 or more step operations. The question is, how many steps
1924 ** should we try before giving up and going with a seek. The cost
1925 ** of a seek is proportional to the logarithm of the of the number
1926 ** of entries in the tree, so basing the number of steps to try
1927 ** on the estimated number of rows in the btree seems like a good
1928 ** guess. */
1929 addrSeekScan = sqlite3VdbeAddOp1(v, OP_SeekScan,
1930 (pIdx->aiRowLogEst[0]+9)/10);
1931 if( pRangeStart || pRangeEnd ){
1932 sqlite3VdbeChangeP5(v, 1);
1933 sqlite3VdbeChangeP2(v, addrSeekScan, sqlite3VdbeCurrentAddr(v)+1);
1934 addrSeekScan = 0;
1936 VdbeCoverage(v);
1938 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
1939 VdbeCoverage(v);
1940 VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind );
1941 VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last );
1942 VdbeCoverageIf(v, op==OP_SeekGT); testcase( op==OP_SeekGT );
1943 VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE );
1944 VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE );
1945 VdbeCoverageIf(v, op==OP_SeekLT); testcase( op==OP_SeekLT );
1947 assert( bSeekPastNull==0 || bStopAtNull==0 );
1948 if( regBignull ){
1949 assert( bSeekPastNull==1 || bStopAtNull==1 );
1950 assert( bSeekPastNull==!bStopAtNull );
1951 assert( bStopAtNull==startEq );
1952 sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+2);
1953 op = aStartOp[(nConstraint>1)*4 + 2 + bRev];
1954 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase,
1955 nConstraint-startEq);
1956 VdbeCoverage(v);
1957 VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind );
1958 VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last );
1959 VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE );
1960 VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE );
1961 assert( op==OP_Rewind || op==OP_Last || op==OP_SeekGE || op==OP_SeekLE);
1965 /* Load the value for the inequality constraint at the end of the
1966 ** range (if any).
1968 nConstraint = nEq;
1969 assert( pLevel->p2==0 );
1970 if( pRangeEnd ){
1971 Expr *pRight = pRangeEnd->pExpr->pRight;
1972 assert( addrSeekScan==0 );
1973 codeExprOrVector(pParse, pRight, regBase+nEq, nTop);
1974 whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd);
1975 if( (pRangeEnd->wtFlags & TERM_VNULL)==0
1976 && sqlite3ExprCanBeNull(pRight)
1978 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
1979 VdbeCoverage(v);
1981 if( zEndAff ){
1982 updateRangeAffinityStr(pRight, nTop, zEndAff);
1983 codeApplyAffinity(pParse, regBase+nEq, nTop, zEndAff);
1984 }else{
1985 assert( pParse->db->mallocFailed );
1987 nConstraint += nTop;
1988 testcase( pRangeEnd->wtFlags & TERM_VIRTUAL );
1990 if( sqlite3ExprIsVector(pRight)==0 ){
1991 disableTerm(pLevel, pRangeEnd);
1992 }else{
1993 endEq = 1;
1995 }else if( bStopAtNull ){
1996 if( regBignull==0 ){
1997 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1998 endEq = 0;
2000 nConstraint++;
2002 if( zStartAff ) sqlite3DbNNFreeNN(db, zStartAff);
2003 if( zEndAff ) sqlite3DbNNFreeNN(db, zEndAff);
2005 /* Top of the loop body */
2006 pLevel->p2 = sqlite3VdbeCurrentAddr(v);
2008 /* Check if the index cursor is past the end of the range. */
2009 if( nConstraint ){
2010 if( regBignull ){
2011 /* Except, skip the end-of-range check while doing the NULL-scan */
2012 sqlite3VdbeAddOp2(v, OP_IfNot, regBignull, sqlite3VdbeCurrentAddr(v)+3);
2013 VdbeComment((v, "If NULL-scan 2nd pass"));
2014 VdbeCoverage(v);
2016 op = aEndOp[bRev*2 + endEq];
2017 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
2018 testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT );
2019 testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE );
2020 testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT );
2021 testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE );
2022 if( addrSeekScan ) sqlite3VdbeJumpHere(v, addrSeekScan);
2024 if( regBignull ){
2025 /* During a NULL-scan, check to see if we have reached the end of
2026 ** the NULLs */
2027 assert( bSeekPastNull==!bStopAtNull );
2028 assert( bSeekPastNull+bStopAtNull==1 );
2029 assert( nConstraint+bSeekPastNull>0 );
2030 sqlite3VdbeAddOp2(v, OP_If, regBignull, sqlite3VdbeCurrentAddr(v)+2);
2031 VdbeComment((v, "If NULL-scan 1st pass"));
2032 VdbeCoverage(v);
2033 op = aEndOp[bRev*2 + bSeekPastNull];
2034 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase,
2035 nConstraint+bSeekPastNull);
2036 testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT );
2037 testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE );
2038 testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT );
2039 testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE );
2042 if( (pLoop->wsFlags & WHERE_IN_EARLYOUT)!=0 ){
2043 sqlite3VdbeAddOp3(v, OP_SeekHit, iIdxCur, nEq, nEq);
2046 /* Seek the table cursor, if required */
2047 omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0
2048 && (pWInfo->wctrlFlags & (WHERE_OR_SUBCLAUSE|WHERE_RIGHT_JOIN))==0;
2049 if( omitTable ){
2050 /* pIdx is a covering index. No need to access the main table. */
2051 }else if( HasRowid(pIdx->pTable) ){
2052 codeDeferredSeek(pWInfo, pIdx, iCur, iIdxCur);
2053 }else if( iCur!=iIdxCur ){
2054 Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable);
2055 iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol);
2056 for(j=0; j<pPk->nKeyCol; j++){
2057 k = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[j]);
2058 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j);
2060 sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont,
2061 iRowidReg, pPk->nKeyCol); VdbeCoverage(v);
2064 if( pLevel->iLeftJoin==0 ){
2065 /* If a partial index is driving the loop, try to eliminate WHERE clause
2066 ** terms from the query that must be true due to the WHERE clause of
2067 ** the partial index.
2069 ** 2019-11-02 ticket 623eff57e76d45f6: This optimization does not work
2070 ** for a LEFT JOIN.
2072 if( pIdx->pPartIdxWhere ){
2073 whereApplyPartialIndexConstraints(pIdx->pPartIdxWhere, iCur, pWC);
2075 }else{
2076 testcase( pIdx->pPartIdxWhere );
2077 /* The following assert() is not a requirement, merely an observation:
2078 ** The OR-optimization doesn't work for the right hand table of
2079 ** a LEFT JOIN: */
2080 assert( (pWInfo->wctrlFlags & (WHERE_OR_SUBCLAUSE|WHERE_RIGHT_JOIN))==0 );
2083 /* Record the instruction used to terminate the loop. */
2084 if( pLoop->wsFlags & WHERE_ONEROW ){
2085 pLevel->op = OP_Noop;
2086 }else if( bRev ){
2087 pLevel->op = OP_Prev;
2088 }else{
2089 pLevel->op = OP_Next;
2091 pLevel->p1 = iIdxCur;
2092 pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0;
2093 if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){
2094 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
2095 }else{
2096 assert( pLevel->p5==0 );
2098 if( omitTable ) pIdx = 0;
2099 }else
2101 #ifndef SQLITE_OMIT_OR_OPTIMIZATION
2102 if( pLoop->wsFlags & WHERE_MULTI_OR ){
2103 /* Case 5: Two or more separately indexed terms connected by OR
2105 ** Example:
2107 ** CREATE TABLE t1(a,b,c,d);
2108 ** CREATE INDEX i1 ON t1(a);
2109 ** CREATE INDEX i2 ON t1(b);
2110 ** CREATE INDEX i3 ON t1(c);
2112 ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13)
2114 ** In the example, there are three indexed terms connected by OR.
2115 ** The top of the loop looks like this:
2117 ** Null 1 # Zero the rowset in reg 1
2119 ** Then, for each indexed term, the following. The arguments to
2120 ** RowSetTest are such that the rowid of the current row is inserted
2121 ** into the RowSet. If it is already present, control skips the
2122 ** Gosub opcode and jumps straight to the code generated by WhereEnd().
2124 ** sqlite3WhereBegin(<term>)
2125 ** RowSetTest # Insert rowid into rowset
2126 ** Gosub 2 A
2127 ** sqlite3WhereEnd()
2129 ** Following the above, code to terminate the loop. Label A, the target
2130 ** of the Gosub above, jumps to the instruction right after the Goto.
2132 ** Null 1 # Zero the rowset in reg 1
2133 ** Goto B # The loop is finished.
2135 ** A: <loop body> # Return data, whatever.
2137 ** Return 2 # Jump back to the Gosub
2139 ** B: <after the loop>
2141 ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then
2142 ** use an ephemeral index instead of a RowSet to record the primary
2143 ** keys of the rows we have already seen.
2146 WhereClause *pOrWc; /* The OR-clause broken out into subterms */
2147 SrcList *pOrTab; /* Shortened table list or OR-clause generation */
2148 Index *pCov = 0; /* Potential covering index (or NULL) */
2149 int iCovCur = pParse->nTab++; /* Cursor used for index scans (if any) */
2151 int regReturn = ++pParse->nMem; /* Register used with OP_Gosub */
2152 int regRowset = 0; /* Register for RowSet object */
2153 int regRowid = 0; /* Register holding rowid */
2154 int iLoopBody = sqlite3VdbeMakeLabel(pParse);/* Start of loop body */
2155 int iRetInit; /* Address of regReturn init */
2156 int untestedTerms = 0; /* Some terms not completely tested */
2157 int ii; /* Loop counter */
2158 Expr *pAndExpr = 0; /* An ".. AND (...)" expression */
2159 Table *pTab = pTabItem->pTab;
2161 pTerm = pLoop->aLTerm[0];
2162 assert( pTerm!=0 );
2163 assert( pTerm->eOperator & WO_OR );
2164 assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );
2165 pOrWc = &pTerm->u.pOrInfo->wc;
2166 pLevel->op = OP_Return;
2167 pLevel->p1 = regReturn;
2169 /* Set up a new SrcList in pOrTab containing the table being scanned
2170 ** by this loop in the a[0] slot and all notReady tables in a[1..] slots.
2171 ** This becomes the SrcList in the recursive call to sqlite3WhereBegin().
2173 if( pWInfo->nLevel>1 ){
2174 int nNotReady; /* The number of notReady tables */
2175 SrcItem *origSrc; /* Original list of tables */
2176 nNotReady = pWInfo->nLevel - iLevel - 1;
2177 pOrTab = sqlite3DbMallocRawNN(db,
2178 sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0]));
2179 if( pOrTab==0 ) return notReady;
2180 pOrTab->nAlloc = (u8)(nNotReady + 1);
2181 pOrTab->nSrc = pOrTab->nAlloc;
2182 memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem));
2183 origSrc = pWInfo->pTabList->a;
2184 for(k=1; k<=nNotReady; k++){
2185 memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k]));
2187 }else{
2188 pOrTab = pWInfo->pTabList;
2191 /* Initialize the rowset register to contain NULL. An SQL NULL is
2192 ** equivalent to an empty rowset. Or, create an ephemeral index
2193 ** capable of holding primary keys in the case of a WITHOUT ROWID.
2195 ** Also initialize regReturn to contain the address of the instruction
2196 ** immediately following the OP_Return at the bottom of the loop. This
2197 ** is required in a few obscure LEFT JOIN cases where control jumps
2198 ** over the top of the loop into the body of it. In this case the
2199 ** correct response for the end-of-loop code (the OP_Return) is to
2200 ** fall through to the next instruction, just as an OP_Next does if
2201 ** called on an uninitialized cursor.
2203 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
2204 if( HasRowid(pTab) ){
2205 regRowset = ++pParse->nMem;
2206 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset);
2207 }else{
2208 Index *pPk = sqlite3PrimaryKeyIndex(pTab);
2209 regRowset = pParse->nTab++;
2210 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol);
2211 sqlite3VdbeSetP4KeyInfo(pParse, pPk);
2213 regRowid = ++pParse->nMem;
2215 iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn);
2217 /* If the original WHERE clause is z of the form: (x1 OR x2 OR ...) AND y
2218 ** Then for every term xN, evaluate as the subexpression: xN AND y
2219 ** That way, terms in y that are factored into the disjunction will
2220 ** be picked up by the recursive calls to sqlite3WhereBegin() below.
2222 ** Actually, each subexpression is converted to "xN AND w" where w is
2223 ** the "interesting" terms of z - terms that did not originate in the
2224 ** ON or USING clause of a LEFT JOIN, and terms that are usable as
2225 ** indices.
2227 ** This optimization also only applies if the (x1 OR x2 OR ...) term
2228 ** is not contained in the ON clause of a LEFT JOIN.
2229 ** See ticket http://www.sqlite.org/src/info/f2369304e4
2231 ** 2022-02-04: Do not push down slices of a row-value comparison.
2232 ** In other words, "w" or "y" may not be a slice of a vector. Otherwise,
2233 ** the initialization of the right-hand operand of the vector comparison
2234 ** might not occur, or might occur only in an OR branch that is not
2235 ** taken. dbsqlfuzz 80a9fade844b4fb43564efc972bcb2c68270f5d1.
2237 ** 2022-03-03: Do not push down expressions that involve subqueries.
2238 ** The subquery might get coded as a subroutine. Any table-references
2239 ** in the subquery might be resolved to index-references for the index on
2240 ** the OR branch in which the subroutine is coded. But if the subroutine
2241 ** is invoked from a different OR branch that uses a different index, such
2242 ** index-references will not work. tag-20220303a
2243 ** https://sqlite.org/forum/forumpost/36937b197273d403
2245 if( pWC->nTerm>1 ){
2246 int iTerm;
2247 for(iTerm=0; iTerm<pWC->nTerm; iTerm++){
2248 Expr *pExpr = pWC->a[iTerm].pExpr;
2249 if( &pWC->a[iTerm] == pTerm ) continue;
2250 testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL );
2251 testcase( pWC->a[iTerm].wtFlags & TERM_CODED );
2252 testcase( pWC->a[iTerm].wtFlags & TERM_SLICE );
2253 if( (pWC->a[iTerm].wtFlags & (TERM_VIRTUAL|TERM_CODED|TERM_SLICE))!=0 ){
2254 continue;
2256 if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue;
2257 if( ExprHasProperty(pExpr, EP_Subquery) ) continue; /* tag-20220303a */
2258 pExpr = sqlite3ExprDup(db, pExpr, 0);
2259 pAndExpr = sqlite3ExprAnd(pParse, pAndExpr, pExpr);
2261 if( pAndExpr ){
2262 /* The extra 0x10000 bit on the opcode is masked off and does not
2263 ** become part of the new Expr.op. However, it does make the
2264 ** op==TK_AND comparison inside of sqlite3PExpr() false, and this
2265 ** prevents sqlite3PExpr() from applying the AND short-circuit
2266 ** optimization, which we do not want here. */
2267 pAndExpr = sqlite3PExpr(pParse, TK_AND|0x10000, 0, pAndExpr);
2271 /* Run a separate WHERE clause for each term of the OR clause. After
2272 ** eliminating duplicates from other WHERE clauses, the action for each
2273 ** sub-WHERE clause is to to invoke the main loop body as a subroutine.
2275 ExplainQueryPlan((pParse, 1, "MULTI-INDEX OR"));
2276 for(ii=0; ii<pOrWc->nTerm; ii++){
2277 WhereTerm *pOrTerm = &pOrWc->a[ii];
2278 if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){
2279 WhereInfo *pSubWInfo; /* Info for single OR-term scan */
2280 Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */
2281 Expr *pDelete; /* Local copy of OR clause term */
2282 int jmp1 = 0; /* Address of jump operation */
2283 testcase( (pTabItem[0].fg.jointype & JT_LEFT)!=0
2284 && !ExprHasProperty(pOrExpr, EP_OuterON)
2285 ); /* See TH3 vtab25.400 and ticket 614b25314c766238 */
2286 pDelete = pOrExpr = sqlite3ExprDup(db, pOrExpr, 0);
2287 if( db->mallocFailed ){
2288 sqlite3ExprDelete(db, pDelete);
2289 continue;
2291 if( pAndExpr ){
2292 pAndExpr->pLeft = pOrExpr;
2293 pOrExpr = pAndExpr;
2295 /* Loop through table entries that match term pOrTerm. */
2296 ExplainQueryPlan((pParse, 1, "INDEX %d", ii+1));
2297 WHERETRACE(0xffffffff, ("Subplan for OR-clause:\n"));
2298 pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0, 0,
2299 WHERE_OR_SUBCLAUSE, iCovCur);
2300 assert( pSubWInfo || pParse->nErr );
2301 if( pSubWInfo ){
2302 WhereLoop *pSubLoop;
2303 int addrExplain = sqlite3WhereExplainOneScan(
2304 pParse, pOrTab, &pSubWInfo->a[0], 0
2306 sqlite3WhereAddScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain);
2308 /* This is the sub-WHERE clause body. First skip over
2309 ** duplicate rows from prior sub-WHERE clauses, and record the
2310 ** rowid (or PRIMARY KEY) for the current row so that the same
2311 ** row will be skipped in subsequent sub-WHERE clauses.
2313 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
2314 int iSet = ((ii==pOrWc->nTerm-1)?-1:ii);
2315 if( HasRowid(pTab) ){
2316 sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, -1, regRowid);
2317 jmp1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0,
2318 regRowid, iSet);
2319 VdbeCoverage(v);
2320 }else{
2321 Index *pPk = sqlite3PrimaryKeyIndex(pTab);
2322 int nPk = pPk->nKeyCol;
2323 int iPk;
2324 int r;
2326 /* Read the PK into an array of temp registers. */
2327 r = sqlite3GetTempRange(pParse, nPk);
2328 for(iPk=0; iPk<nPk; iPk++){
2329 int iCol = pPk->aiColumn[iPk];
2330 sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, iCol,r+iPk);
2333 /* Check if the temp table already contains this key. If so,
2334 ** the row has already been included in the result set and
2335 ** can be ignored (by jumping past the Gosub below). Otherwise,
2336 ** insert the key into the temp table and proceed with processing
2337 ** the row.
2339 ** Use some of the same optimizations as OP_RowSetTest: If iSet
2340 ** is zero, assume that the key cannot already be present in
2341 ** the temp table. And if iSet is -1, assume that there is no
2342 ** need to insert the key into the temp table, as it will never
2343 ** be tested for. */
2344 if( iSet ){
2345 jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk);
2346 VdbeCoverage(v);
2348 if( iSet>=0 ){
2349 sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid);
2350 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, regRowset, regRowid,
2351 r, nPk);
2352 if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
2355 /* Release the array of temp registers */
2356 sqlite3ReleaseTempRange(pParse, r, nPk);
2360 /* Invoke the main loop body as a subroutine */
2361 sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody);
2363 /* Jump here (skipping the main loop body subroutine) if the
2364 ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */
2365 if( jmp1 ) sqlite3VdbeJumpHere(v, jmp1);
2367 /* The pSubWInfo->untestedTerms flag means that this OR term
2368 ** contained one or more AND term from a notReady table. The
2369 ** terms from the notReady table could not be tested and will
2370 ** need to be tested later.
2372 if( pSubWInfo->untestedTerms ) untestedTerms = 1;
2374 /* If all of the OR-connected terms are optimized using the same
2375 ** index, and the index is opened using the same cursor number
2376 ** by each call to sqlite3WhereBegin() made by this loop, it may
2377 ** be possible to use that index as a covering index.
2379 ** If the call to sqlite3WhereBegin() above resulted in a scan that
2380 ** uses an index, and this is either the first OR-connected term
2381 ** processed or the index is the same as that used by all previous
2382 ** terms, set pCov to the candidate covering index. Otherwise, set
2383 ** pCov to NULL to indicate that no candidate covering index will
2384 ** be available.
2386 pSubLoop = pSubWInfo->a[0].pWLoop;
2387 assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
2388 if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0
2389 && (ii==0 || pSubLoop->u.btree.pIndex==pCov)
2390 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex))
2392 assert( pSubWInfo->a[0].iIdxCur==iCovCur );
2393 pCov = pSubLoop->u.btree.pIndex;
2394 }else{
2395 pCov = 0;
2397 if( sqlite3WhereUsesDeferredSeek(pSubWInfo) ){
2398 pWInfo->bDeferredSeek = 1;
2401 /* Finish the loop through table entries that match term pOrTerm. */
2402 sqlite3WhereEnd(pSubWInfo);
2403 ExplainQueryPlanPop(pParse);
2405 sqlite3ExprDelete(db, pDelete);
2408 ExplainQueryPlanPop(pParse);
2409 assert( pLevel->pWLoop==pLoop );
2410 assert( (pLoop->wsFlags & WHERE_MULTI_OR)!=0 );
2411 assert( (pLoop->wsFlags & WHERE_IN_ABLE)==0 );
2412 pLevel->u.pCoveringIdx = pCov;
2413 if( pCov ) pLevel->iIdxCur = iCovCur;
2414 if( pAndExpr ){
2415 pAndExpr->pLeft = 0;
2416 sqlite3ExprDelete(db, pAndExpr);
2418 sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v));
2419 sqlite3VdbeGoto(v, pLevel->addrBrk);
2420 sqlite3VdbeResolveLabel(v, iLoopBody);
2422 /* Set the P2 operand of the OP_Return opcode that will end the current
2423 ** loop to point to this spot, which is the top of the next containing
2424 ** loop. The byte-code formatter will use that P2 value as a hint to
2425 ** indent everything in between the this point and the final OP_Return.
2426 ** See tag-20220407a in vdbe.c and shell.c */
2427 assert( pLevel->op==OP_Return );
2428 pLevel->p2 = sqlite3VdbeCurrentAddr(v);
2430 if( pWInfo->nLevel>1 ){ sqlite3DbFreeNN(db, pOrTab); }
2431 if( !untestedTerms ) disableTerm(pLevel, pTerm);
2432 }else
2433 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
2436 /* Case 6: There is no usable index. We must do a complete
2437 ** scan of the entire table.
2439 static const u8 aStep[] = { OP_Next, OP_Prev };
2440 static const u8 aStart[] = { OP_Rewind, OP_Last };
2441 assert( bRev==0 || bRev==1 );
2442 if( pTabItem->fg.isRecursive ){
2443 /* Tables marked isRecursive have only a single row that is stored in
2444 ** a pseudo-cursor. No need to Rewind or Next such cursors. */
2445 pLevel->op = OP_Noop;
2446 }else{
2447 codeCursorHint(pTabItem, pWInfo, pLevel, 0);
2448 pLevel->op = aStep[bRev];
2449 pLevel->p1 = iCur;
2450 pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrHalt);
2451 VdbeCoverageIf(v, bRev==0);
2452 VdbeCoverageIf(v, bRev!=0);
2453 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
2457 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2458 pLevel->addrVisit = sqlite3VdbeCurrentAddr(v);
2459 #endif
2461 /* Insert code to test every subexpression that can be completely
2462 ** computed using the current set of tables.
2464 ** This loop may run between one and three times, depending on the
2465 ** constraints to be generated. The value of stack variable iLoop
2466 ** determines the constraints coded by each iteration, as follows:
2468 ** iLoop==1: Code only expressions that are entirely covered by pIdx.
2469 ** iLoop==2: Code remaining expressions that do not contain correlated
2470 ** sub-queries.
2471 ** iLoop==3: Code all remaining expressions.
2473 ** An effort is made to skip unnecessary iterations of the loop.
2475 iLoop = (pIdx ? 1 : 2);
2477 int iNext = 0; /* Next value for iLoop */
2478 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
2479 Expr *pE;
2480 int skipLikeAddr = 0;
2481 testcase( pTerm->wtFlags & TERM_VIRTUAL );
2482 testcase( pTerm->wtFlags & TERM_CODED );
2483 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2484 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
2485 testcase( pWInfo->untestedTerms==0
2486 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 );
2487 pWInfo->untestedTerms = 1;
2488 continue;
2490 pE = pTerm->pExpr;
2491 assert( pE!=0 );
2492 if( pTabItem->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT) ){
2493 if( !ExprHasProperty(pE,EP_OuterON|EP_InnerON) ){
2494 /* Defer processing WHERE clause constraints until after outer
2495 ** join processing. tag-20220513a */
2496 continue;
2497 }else if( (pTabItem->fg.jointype & JT_LEFT)==JT_LEFT
2498 && !ExprHasProperty(pE,EP_OuterON) ){
2499 continue;
2500 }else{
2501 Bitmask m = sqlite3WhereGetMask(&pWInfo->sMaskSet, pE->w.iJoin);
2502 if( m & pLevel->notReady ){
2503 /* An ON clause that is not ripe */
2504 continue;
2508 if( iLoop==1 && !sqlite3ExprCoveredByIndex(pE, pLevel->iTabCur, pIdx) ){
2509 iNext = 2;
2510 continue;
2512 if( iLoop<3 && (pTerm->wtFlags & TERM_VARSELECT) ){
2513 if( iNext==0 ) iNext = 3;
2514 continue;
2517 if( (pTerm->wtFlags & TERM_LIKECOND)!=0 ){
2518 /* If the TERM_LIKECOND flag is set, that means that the range search
2519 ** is sufficient to guarantee that the LIKE operator is true, so we
2520 ** can skip the call to the like(A,B) function. But this only works
2521 ** for strings. So do not skip the call to the function on the pass
2522 ** that compares BLOBs. */
2523 #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS
2524 continue;
2525 #else
2526 u32 x = pLevel->iLikeRepCntr;
2527 if( x>0 ){
2528 skipLikeAddr = sqlite3VdbeAddOp1(v, (x&1)?OP_IfNot:OP_If,(int)(x>>1));
2529 VdbeCoverageIf(v, (x&1)==1);
2530 VdbeCoverageIf(v, (x&1)==0);
2532 #endif
2534 #ifdef WHERETRACE_ENABLED /* 0xffffffff */
2535 if( sqlite3WhereTrace ){
2536 VdbeNoopComment((v, "WhereTerm[%d] (%p) priority=%d",
2537 pWC->nTerm-j, pTerm, iLoop));
2539 if( sqlite3WhereTrace & 0x4000 ){
2540 sqlite3DebugPrintf("Coding auxiliary constraint:\n");
2541 sqlite3WhereTermPrint(pTerm, pWC->nTerm-j);
2543 #endif
2544 sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL);
2545 if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr);
2546 pTerm->wtFlags |= TERM_CODED;
2548 iLoop = iNext;
2549 }while( iLoop>0 );
2551 /* Insert code to test for implied constraints based on transitivity
2552 ** of the "==" operator.
2554 ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123"
2555 ** and we are coding the t1 loop and the t2 loop has not yet coded,
2556 ** then we cannot use the "t1.a=t2.b" constraint, but we can code
2557 ** the implied "t1.a=123" constraint.
2559 for(pTerm=pWC->a, j=pWC->nBase; j>0; j--, pTerm++){
2560 Expr *pE, sEAlt;
2561 WhereTerm *pAlt;
2562 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2563 if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) continue;
2564 if( (pTerm->eOperator & WO_EQUIV)==0 ) continue;
2565 if( pTerm->leftCursor!=iCur ) continue;
2566 if( pTabItem->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT) ) continue;
2567 pE = pTerm->pExpr;
2568 #ifdef WHERETRACE_ENABLED /* 0x4001 */
2569 if( (sqlite3WhereTrace & 0x4001)==0x4001 ){
2570 sqlite3DebugPrintf("Coding transitive constraint:\n");
2571 sqlite3WhereTermPrint(pTerm, pWC->nTerm-j);
2573 #endif
2574 assert( !ExprHasProperty(pE, EP_OuterON) );
2575 assert( (pTerm->prereqRight & pLevel->notReady)!=0 );
2576 assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
2577 pAlt = sqlite3WhereFindTerm(pWC, iCur, pTerm->u.x.leftColumn, notReady,
2578 WO_EQ|WO_IN|WO_IS, 0);
2579 if( pAlt==0 ) continue;
2580 if( pAlt->wtFlags & (TERM_CODED) ) continue;
2581 if( (pAlt->eOperator & WO_IN)
2582 && ExprUseXSelect(pAlt->pExpr)
2583 && (pAlt->pExpr->x.pSelect->pEList->nExpr>1)
2585 continue;
2587 testcase( pAlt->eOperator & WO_EQ );
2588 testcase( pAlt->eOperator & WO_IS );
2589 testcase( pAlt->eOperator & WO_IN );
2590 VdbeModuleComment((v, "begin transitive constraint"));
2591 sEAlt = *pAlt->pExpr;
2592 sEAlt.pLeft = pE->pLeft;
2593 sqlite3ExprIfFalse(pParse, &sEAlt, addrCont, SQLITE_JUMPIFNULL);
2594 pAlt->wtFlags |= TERM_CODED;
2597 /* For a RIGHT OUTER JOIN, record the fact that the current row has
2598 ** been matched at least once.
2600 if( pLevel->pRJ ){
2601 Table *pTab;
2602 int nPk;
2603 int r;
2604 int jmp1 = 0;
2605 WhereRightJoin *pRJ = pLevel->pRJ;
2607 /* pTab is the right-hand table of the RIGHT JOIN. Generate code that
2608 ** will record that the current row of that table has been matched at
2609 ** least once. This is accomplished by storing the PK for the row in
2610 ** both the iMatch index and the regBloom Bloom filter.
2612 pTab = pWInfo->pTabList->a[pLevel->iFrom].pTab;
2613 if( HasRowid(pTab) ){
2614 r = sqlite3GetTempRange(pParse, 2);
2615 sqlite3ExprCodeGetColumnOfTable(v, pTab, pLevel->iTabCur, -1, r+1);
2616 nPk = 1;
2617 }else{
2618 int iPk;
2619 Index *pPk = sqlite3PrimaryKeyIndex(pTab);
2620 nPk = pPk->nKeyCol;
2621 r = sqlite3GetTempRange(pParse, nPk+1);
2622 for(iPk=0; iPk<nPk; iPk++){
2623 int iCol = pPk->aiColumn[iPk];
2624 sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, iCol,r+1+iPk);
2627 jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, pRJ->iMatch, 0, r+1, nPk);
2628 VdbeCoverage(v);
2629 VdbeComment((v, "match against %s", pTab->zName));
2630 sqlite3VdbeAddOp3(v, OP_MakeRecord, r+1, nPk, r);
2631 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pRJ->iMatch, r, r+1, nPk);
2632 sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pRJ->regBloom, 0, r+1, nPk);
2633 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
2634 sqlite3VdbeJumpHere(v, jmp1);
2635 sqlite3ReleaseTempRange(pParse, r, nPk+1);
2638 /* For a LEFT OUTER JOIN, generate code that will record the fact that
2639 ** at least one row of the right table has matched the left table.
2641 if( pLevel->iLeftJoin ){
2642 pLevel->addrFirst = sqlite3VdbeCurrentAddr(v);
2643 sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin);
2644 VdbeComment((v, "record LEFT JOIN hit"));
2645 if( pLevel->pRJ==0 ){
2646 goto code_outer_join_constraints; /* WHERE clause constraints */
2650 if( pLevel->pRJ ){
2651 /* Create a subroutine used to process all interior loops and code
2652 ** of the RIGHT JOIN. During normal operation, the subroutine will
2653 ** be in-line with the rest of the code. But at the end, a separate
2654 ** loop will run that invokes this subroutine for unmatched rows
2655 ** of pTab, with all tables to left begin set to NULL.
2657 WhereRightJoin *pRJ = pLevel->pRJ;
2658 sqlite3VdbeAddOp2(v, OP_BeginSubrtn, 0, pRJ->regReturn);
2659 pRJ->addrSubrtn = sqlite3VdbeCurrentAddr(v);
2660 assert( pParse->withinRJSubrtn < 255 );
2661 pParse->withinRJSubrtn++;
2663 /* WHERE clause constraints must be deferred until after outer join
2664 ** row elimination has completed, since WHERE clause constraints apply
2665 ** to the results of the OUTER JOIN. The following loop generates the
2666 ** appropriate WHERE clause constraint checks. tag-20220513a.
2668 code_outer_join_constraints:
2669 for(pTerm=pWC->a, j=0; j<pWC->nBase; j++, pTerm++){
2670 testcase( pTerm->wtFlags & TERM_VIRTUAL );
2671 testcase( pTerm->wtFlags & TERM_CODED );
2672 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2673 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
2674 assert( pWInfo->untestedTerms );
2675 continue;
2677 if( pTabItem->fg.jointype & JT_LTORJ ) continue;
2678 assert( pTerm->pExpr );
2679 sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
2680 pTerm->wtFlags |= TERM_CODED;
2684 #if WHERETRACE_ENABLED /* 0x4001 */
2685 if( sqlite3WhereTrace & 0x4000 ){
2686 sqlite3DebugPrintf("All WHERE-clause terms after coding level %d:\n",
2687 iLevel);
2688 sqlite3WhereClausePrint(pWC);
2690 if( sqlite3WhereTrace & 0x1 ){
2691 sqlite3DebugPrintf("End Coding level %d: notReady=%llx\n",
2692 iLevel, (u64)pLevel->notReady);
2694 #endif
2695 return pLevel->notReady;
2699 ** Generate the code for the loop that finds all non-matched terms
2700 ** for a RIGHT JOIN.
2702 SQLITE_NOINLINE void sqlite3WhereRightJoinLoop(
2703 WhereInfo *pWInfo,
2704 int iLevel,
2705 WhereLevel *pLevel
2707 Parse *pParse = pWInfo->pParse;
2708 Vdbe *v = pParse->pVdbe;
2709 WhereRightJoin *pRJ = pLevel->pRJ;
2710 Expr *pSubWhere = 0;
2711 WhereClause *pWC = &pWInfo->sWC;
2712 WhereInfo *pSubWInfo;
2713 WhereLoop *pLoop = pLevel->pWLoop;
2714 SrcItem *pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
2715 SrcList sFrom;
2716 Bitmask mAll = 0;
2717 int k;
2719 ExplainQueryPlan((pParse, 1, "RIGHT-JOIN %s", pTabItem->pTab->zName));
2720 sqlite3VdbeNoJumpsOutsideSubrtn(v, pRJ->addrSubrtn, pRJ->endSubrtn,
2721 pRJ->regReturn);
2722 for(k=0; k<iLevel; k++){
2723 int iIdxCur;
2724 mAll |= pWInfo->a[k].pWLoop->maskSelf;
2725 sqlite3VdbeAddOp1(v, OP_NullRow, pWInfo->a[k].iTabCur);
2726 iIdxCur = pWInfo->a[k].iIdxCur;
2727 if( iIdxCur ){
2728 sqlite3VdbeAddOp1(v, OP_NullRow, iIdxCur);
2731 if( (pTabItem->fg.jointype & JT_LTORJ)==0 ){
2732 mAll |= pLoop->maskSelf;
2733 for(k=0; k<pWC->nTerm; k++){
2734 WhereTerm *pTerm = &pWC->a[k];
2735 if( (pTerm->wtFlags & (TERM_VIRTUAL|TERM_SLICE))!=0
2736 && pTerm->eOperator!=WO_ROWVAL
2738 break;
2740 if( pTerm->prereqAll & ~mAll ) continue;
2741 if( ExprHasProperty(pTerm->pExpr, EP_OuterON|EP_InnerON) ) continue;
2742 pSubWhere = sqlite3ExprAnd(pParse, pSubWhere,
2743 sqlite3ExprDup(pParse->db, pTerm->pExpr, 0));
2746 sFrom.nSrc = 1;
2747 sFrom.nAlloc = 1;
2748 memcpy(&sFrom.a[0], pTabItem, sizeof(SrcItem));
2749 sFrom.a[0].fg.jointype = 0;
2750 assert( pParse->withinRJSubrtn < 100 );
2751 pParse->withinRJSubrtn++;
2752 pSubWInfo = sqlite3WhereBegin(pParse, &sFrom, pSubWhere, 0, 0, 0,
2753 WHERE_RIGHT_JOIN, 0);
2754 if( pSubWInfo ){
2755 int iCur = pLevel->iTabCur;
2756 int r = ++pParse->nMem;
2757 int nPk;
2758 int jmp;
2759 int addrCont = sqlite3WhereContinueLabel(pSubWInfo);
2760 Table *pTab = pTabItem->pTab;
2761 if( HasRowid(pTab) ){
2762 sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, -1, r);
2763 nPk = 1;
2764 }else{
2765 int iPk;
2766 Index *pPk = sqlite3PrimaryKeyIndex(pTab);
2767 nPk = pPk->nKeyCol;
2768 pParse->nMem += nPk - 1;
2769 for(iPk=0; iPk<nPk; iPk++){
2770 int iCol = pPk->aiColumn[iPk];
2771 sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, iCol,r+iPk);
2774 jmp = sqlite3VdbeAddOp4Int(v, OP_Filter, pRJ->regBloom, 0, r, nPk);
2775 VdbeCoverage(v);
2776 sqlite3VdbeAddOp4Int(v, OP_Found, pRJ->iMatch, addrCont, r, nPk);
2777 VdbeCoverage(v);
2778 sqlite3VdbeJumpHere(v, jmp);
2779 sqlite3VdbeAddOp2(v, OP_Gosub, pRJ->regReturn, pRJ->addrSubrtn);
2780 sqlite3WhereEnd(pSubWInfo);
2782 sqlite3ExprDelete(pParse->db, pSubWhere);
2783 ExplainQueryPlanPop(pParse);
2784 assert( pParse->withinRJSubrtn>0 );
2785 pParse->withinRJSubrtn--;