4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
13 ** This file contains code use to manipulate "Mem" structure. A "Mem"
14 ** stores a single value in the VDBE. Mem is an opaque structure visible
15 ** only within the VDBE. Interface routines refer to a Mem using the
18 #include "sqliteInt.h"
21 /* True if X is a power of two. 0 is considered a power of two here.
22 ** In other words, return true if X has at most one bit set.
24 #define ISPOWEROF2(X) (((X)&((X)-1))==0)
28 ** Check invariants on a Mem object.
30 ** This routine is intended for use inside of assert() statements, like
31 ** this: assert( sqlite3VdbeCheckMemInvariants(pMem) );
33 int sqlite3VdbeCheckMemInvariants(Mem
*p
){
34 /* If MEM_Dyn is set then Mem.xDel!=0.
35 ** Mem.xDel might not be initialized if MEM_Dyn is clear.
37 assert( (p
->flags
& MEM_Dyn
)==0 || p
->xDel
!=0 );
39 /* MEM_Dyn may only be set if Mem.szMalloc==0. In this way we
40 ** ensure that if Mem.szMalloc>0 then it is safe to do
41 ** Mem.z = Mem.zMalloc without having to check Mem.flags&MEM_Dyn.
42 ** That saves a few cycles in inner loops. */
43 assert( (p
->flags
& MEM_Dyn
)==0 || p
->szMalloc
==0 );
45 /* Cannot have more than one of MEM_Int, MEM_Real, or MEM_IntReal */
46 assert( ISPOWEROF2(p
->flags
& (MEM_Int
|MEM_Real
|MEM_IntReal
)) );
48 if( p
->flags
& MEM_Null
){
49 /* Cannot be both MEM_Null and some other type */
50 assert( (p
->flags
& (MEM_Int
|MEM_Real
|MEM_Str
|MEM_Blob
|MEM_Agg
))==0 );
52 /* If MEM_Null is set, then either the value is a pure NULL (the usual
53 ** case) or it is a pointer set using sqlite3_bind_pointer() or
54 ** sqlite3_result_pointer(). If a pointer, then MEM_Term must also be
57 if( (p
->flags
& (MEM_Term
|MEM_Subtype
))==(MEM_Term
|MEM_Subtype
) ){
58 /* This is a pointer type. There may be a flag to indicate what to
59 ** do with the pointer. */
60 assert( ((p
->flags
&MEM_Dyn
)!=0 ? 1 : 0) +
61 ((p
->flags
&MEM_Ephem
)!=0 ? 1 : 0) +
62 ((p
->flags
&MEM_Static
)!=0 ? 1 : 0) <= 1 );
64 /* No other bits set */
65 assert( (p
->flags
& ~(MEM_Null
|MEM_Term
|MEM_Subtype
|MEM_FromBind
66 |MEM_Dyn
|MEM_Ephem
|MEM_Static
))==0 );
68 /* A pure NULL might have other flags, such as MEM_Static, MEM_Dyn,
69 ** MEM_Ephem, MEM_Cleared, or MEM_Subtype */
72 /* The MEM_Cleared bit is only allowed on NULLs */
73 assert( (p
->flags
& MEM_Cleared
)==0 );
76 /* The szMalloc field holds the correct memory allocation size */
77 assert( p
->szMalloc
==0
78 || (p
->flags
==MEM_Undefined
79 && p
->szMalloc
<=sqlite3DbMallocSize(p
->db
,p
->zMalloc
))
80 || p
->szMalloc
==sqlite3DbMallocSize(p
->db
,p
->zMalloc
));
82 /* If p holds a string or blob, the Mem.z must point to exactly
83 ** one of the following:
85 ** (1) Memory in Mem.zMalloc and managed by the Mem object
86 ** (2) Memory to be freed using Mem.xDel
87 ** (3) An ephemeral string or blob
88 ** (4) A static string or blob
90 if( (p
->flags
& (MEM_Str
|MEM_Blob
)) && p
->n
>0 ){
92 ((p
->szMalloc
>0 && p
->z
==p
->zMalloc
)? 1 : 0) +
93 ((p
->flags
&MEM_Dyn
)!=0 ? 1 : 0) +
94 ((p
->flags
&MEM_Ephem
)!=0 ? 1 : 0) +
95 ((p
->flags
&MEM_Static
)!=0 ? 1 : 0) == 1
103 ** Render a Mem object which is one of MEM_Int, MEM_Real, or MEM_IntReal
106 static void vdbeMemRenderNum(int sz
, char *zBuf
, Mem
*p
){
108 assert( p
->flags
& (MEM_Int
|MEM_Real
|MEM_IntReal
) );
110 if( p
->flags
& MEM_Int
){
111 #if GCC_VERSION>=7000000
112 /* Work-around for GCC bug
113 ** https://gcc.gnu.org/bugzilla/show_bug.cgi?id=96270 */
115 assert( (p
->flags
&MEM_Int
)*2==sizeof(x
) );
116 memcpy(&x
, (char*)&p
->u
, (p
->flags
&MEM_Int
)*2);
117 sqlite3Int64ToText(x
, zBuf
);
119 sqlite3Int64ToText(p
->u
.i
, zBuf
);
122 sqlite3StrAccumInit(&acc
, 0, zBuf
, sz
, 0);
123 sqlite3_str_appendf(&acc
, "%!.15g",
124 (p
->flags
& MEM_IntReal
)!=0 ? (double)p
->u
.i
: p
->u
.r
);
125 assert( acc
.zText
==zBuf
&& acc
.mxAlloc
<=0 );
126 zBuf
[acc
.nChar
] = 0; /* Fast version of sqlite3StrAccumFinish(&acc) */
132 ** Validity checks on pMem. pMem holds a string.
134 ** (1) Check that string value of pMem agrees with its integer or real value.
135 ** (2) Check that the string is correctly zero terminated
137 ** A single int or real value always converts to the same strings. But
138 ** many different strings can be converted into the same int or real.
139 ** If a table contains a numeric value and an index is based on the
140 ** corresponding string value, then it is important that the string be
141 ** derived from the numeric value, not the other way around, to ensure
142 ** that the index and table are consistent. See ticket
143 ** https://www.sqlite.org/src/info/343634942dd54ab (2018-01-31) for
146 ** This routine looks at pMem to verify that if it has both a numeric
147 ** representation and a string representation then the string rep has
148 ** been derived from the numeric and not the other way around. It returns
149 ** true if everything is ok and false if there is a problem.
151 ** This routine is for use inside of assert() statements only.
153 int sqlite3VdbeMemValidStrRep(Mem
*p
){
157 if( (p
->flags
& MEM_Str
)==0 ) return 1;
158 if( p
->flags
& MEM_Term
){
159 /* Insure that the string is properly zero-terminated. Pay particular
160 ** attention to the case where p->n is odd */
161 if( p
->szMalloc
>0 && p
->z
==p
->zMalloc
){
162 assert( p
->enc
==SQLITE_UTF8
|| p
->szMalloc
>= ((p
->n
+1)&~1)+2 );
163 assert( p
->enc
!=SQLITE_UTF8
|| p
->szMalloc
>= p
->n
+1 );
165 assert( p
->z
[p
->n
]==0 );
166 assert( p
->enc
==SQLITE_UTF8
|| p
->z
[(p
->n
+1)&~1]==0 );
167 assert( p
->enc
==SQLITE_UTF8
|| p
->z
[((p
->n
+1)&~1)+1]==0 );
169 if( (p
->flags
& (MEM_Int
|MEM_Real
|MEM_IntReal
))==0 ) return 1;
170 vdbeMemRenderNum(sizeof(zBuf
), zBuf
, p
);
174 if( p
->enc
!=SQLITE_UTF8
){
176 if( p
->enc
==SQLITE_UTF16BE
) z
++;
179 if( zBuf
[j
++]!=z
[i
] ) return 0;
184 #endif /* SQLITE_DEBUG */
187 ** If pMem is an object with a valid string representation, this routine
188 ** ensures the internal encoding for the string representation is
189 ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE.
191 ** If pMem is not a string object, or the encoding of the string
192 ** representation is already stored using the requested encoding, then this
193 ** routine is a no-op.
195 ** SQLITE_OK is returned if the conversion is successful (or not required).
196 ** SQLITE_NOMEM may be returned if a malloc() fails during conversion
199 int sqlite3VdbeChangeEncoding(Mem
*pMem
, int desiredEnc
){
200 #ifndef SQLITE_OMIT_UTF16
204 assert( !sqlite3VdbeMemIsRowSet(pMem
) );
205 assert( desiredEnc
==SQLITE_UTF8
|| desiredEnc
==SQLITE_UTF16LE
206 || desiredEnc
==SQLITE_UTF16BE
);
207 if( !(pMem
->flags
&MEM_Str
) ){
208 pMem
->enc
= desiredEnc
;
211 if( pMem
->enc
==desiredEnc
){
214 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
215 #ifdef SQLITE_OMIT_UTF16
219 /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned,
220 ** then the encoding of the value may not have changed.
222 rc
= sqlite3VdbeMemTranslate(pMem
, (u8
)desiredEnc
);
223 assert(rc
==SQLITE_OK
|| rc
==SQLITE_NOMEM
);
224 assert(rc
==SQLITE_OK
|| pMem
->enc
!=desiredEnc
);
225 assert(rc
==SQLITE_NOMEM
|| pMem
->enc
==desiredEnc
);
231 ** Make sure pMem->z points to a writable allocation of at least n bytes.
233 ** If the bPreserve argument is true, then copy of the content of
234 ** pMem->z into the new allocation. pMem must be either a string or
235 ** blob if bPreserve is true. If bPreserve is false, any prior content
236 ** in pMem->z is discarded.
238 SQLITE_NOINLINE
int sqlite3VdbeMemGrow(Mem
*pMem
, int n
, int bPreserve
){
239 assert( sqlite3VdbeCheckMemInvariants(pMem
) );
240 assert( !sqlite3VdbeMemIsRowSet(pMem
) );
241 testcase( pMem
->db
==0 );
243 /* If the bPreserve flag is set to true, then the memory cell must already
244 ** contain a valid string or blob value. */
245 assert( bPreserve
==0 || pMem
->flags
&(MEM_Blob
|MEM_Str
) );
246 testcase( bPreserve
&& pMem
->z
==0 );
248 assert( pMem
->szMalloc
==0
249 || (pMem
->flags
==MEM_Undefined
250 && pMem
->szMalloc
<=sqlite3DbMallocSize(pMem
->db
,pMem
->zMalloc
))
251 || pMem
->szMalloc
==sqlite3DbMallocSize(pMem
->db
,pMem
->zMalloc
));
252 if( pMem
->szMalloc
>0 && bPreserve
&& pMem
->z
==pMem
->zMalloc
){
254 pMem
->z
= pMem
->zMalloc
= sqlite3DbReallocOrFree(pMem
->db
, pMem
->z
, n
);
256 pMem
->zMalloc
= sqlite3Realloc(pMem
->z
, n
);
257 if( pMem
->zMalloc
==0 ) sqlite3_free(pMem
->z
);
258 pMem
->z
= pMem
->zMalloc
;
262 if( pMem
->szMalloc
>0 ) sqlite3DbFreeNN(pMem
->db
, pMem
->zMalloc
);
263 pMem
->zMalloc
= sqlite3DbMallocRaw(pMem
->db
, n
);
265 if( pMem
->zMalloc
==0 ){
266 sqlite3VdbeMemSetNull(pMem
);
269 return SQLITE_NOMEM_BKPT
;
271 pMem
->szMalloc
= sqlite3DbMallocSize(pMem
->db
, pMem
->zMalloc
);
274 if( bPreserve
&& pMem
->z
){
275 assert( pMem
->z
!=pMem
->zMalloc
);
276 memcpy(pMem
->zMalloc
, pMem
->z
, pMem
->n
);
278 if( (pMem
->flags
&MEM_Dyn
)!=0 ){
279 assert( pMem
->xDel
!=0 && pMem
->xDel
!=SQLITE_DYNAMIC
);
280 pMem
->xDel((void *)(pMem
->z
));
283 pMem
->z
= pMem
->zMalloc
;
284 pMem
->flags
&= ~(MEM_Dyn
|MEM_Ephem
|MEM_Static
);
289 ** Change the pMem->zMalloc allocation to be at least szNew bytes.
290 ** If pMem->zMalloc already meets or exceeds the requested size, this
291 ** routine is a no-op.
293 ** Any prior string or blob content in the pMem object may be discarded.
294 ** The pMem->xDel destructor is called, if it exists. Though MEM_Str
295 ** and MEM_Blob values may be discarded, MEM_Int, MEM_Real, MEM_IntReal,
296 ** and MEM_Null values are preserved.
298 ** Return SQLITE_OK on success or an error code (probably SQLITE_NOMEM)
299 ** if unable to complete the resizing.
301 int sqlite3VdbeMemClearAndResize(Mem
*pMem
, int szNew
){
302 assert( CORRUPT_DB
|| szNew
>0 );
303 assert( (pMem
->flags
& MEM_Dyn
)==0 || pMem
->szMalloc
==0 );
304 if( pMem
->szMalloc
<szNew
){
305 return sqlite3VdbeMemGrow(pMem
, szNew
, 0);
307 assert( (pMem
->flags
& MEM_Dyn
)==0 );
308 pMem
->z
= pMem
->zMalloc
;
309 pMem
->flags
&= (MEM_Null
|MEM_Int
|MEM_Real
|MEM_IntReal
);
314 ** It is already known that pMem contains an unterminated string.
315 ** Add the zero terminator.
317 ** Three bytes of zero are added. In this way, there is guaranteed
318 ** to be a double-zero byte at an even byte boundary in order to
319 ** terminate a UTF16 string, even if the initial size of the buffer
320 ** is an odd number of bytes.
322 static SQLITE_NOINLINE
int vdbeMemAddTerminator(Mem
*pMem
){
323 if( sqlite3VdbeMemGrow(pMem
, pMem
->n
+3, 1) ){
324 return SQLITE_NOMEM_BKPT
;
326 pMem
->z
[pMem
->n
] = 0;
327 pMem
->z
[pMem
->n
+1] = 0;
328 pMem
->z
[pMem
->n
+2] = 0;
329 pMem
->flags
|= MEM_Term
;
334 ** Change pMem so that its MEM_Str or MEM_Blob value is stored in
335 ** MEM.zMalloc, where it can be safely written.
337 ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
339 int sqlite3VdbeMemMakeWriteable(Mem
*pMem
){
341 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
342 assert( !sqlite3VdbeMemIsRowSet(pMem
) );
343 if( (pMem
->flags
& (MEM_Str
|MEM_Blob
))!=0 ){
344 if( ExpandBlob(pMem
) ) return SQLITE_NOMEM
;
345 if( pMem
->szMalloc
==0 || pMem
->z
!=pMem
->zMalloc
){
346 int rc
= vdbeMemAddTerminator(pMem
);
350 pMem
->flags
&= ~MEM_Ephem
;
352 pMem
->pScopyFrom
= 0;
359 ** If the given Mem* has a zero-filled tail, turn it into an ordinary
360 ** blob stored in dynamically allocated space.
362 #ifndef SQLITE_OMIT_INCRBLOB
363 int sqlite3VdbeMemExpandBlob(Mem
*pMem
){
366 assert( pMem
->flags
& MEM_Zero
);
367 assert( (pMem
->flags
&MEM_Blob
)!=0 || MemNullNochng(pMem
) );
368 testcase( sqlite3_value_nochange(pMem
) );
369 assert( !sqlite3VdbeMemIsRowSet(pMem
) );
370 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
372 /* Set nByte to the number of bytes required to store the expanded blob. */
373 nByte
= pMem
->n
+ pMem
->u
.nZero
;
375 if( (pMem
->flags
& MEM_Blob
)==0 ) return SQLITE_OK
;
378 if( sqlite3VdbeMemGrow(pMem
, nByte
, 1) ){
379 return SQLITE_NOMEM_BKPT
;
381 assert( pMem
->z
!=0 );
382 assert( sqlite3DbMallocSize(pMem
->db
,pMem
->z
) >= nByte
);
384 memset(&pMem
->z
[pMem
->n
], 0, pMem
->u
.nZero
);
385 pMem
->n
+= pMem
->u
.nZero
;
386 pMem
->flags
&= ~(MEM_Zero
|MEM_Term
);
392 ** Make sure the given Mem is \u0000 terminated.
394 int sqlite3VdbeMemNulTerminate(Mem
*pMem
){
396 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
397 testcase( (pMem
->flags
& (MEM_Term
|MEM_Str
))==(MEM_Term
|MEM_Str
) );
398 testcase( (pMem
->flags
& (MEM_Term
|MEM_Str
))==0 );
399 if( (pMem
->flags
& (MEM_Term
|MEM_Str
))!=MEM_Str
){
400 return SQLITE_OK
; /* Nothing to do */
402 return vdbeMemAddTerminator(pMem
);
407 ** Add MEM_Str to the set of representations for the given Mem. This
408 ** routine is only called if pMem is a number of some kind, not a NULL
411 ** Existing representations MEM_Int, MEM_Real, or MEM_IntReal are invalidated
412 ** if bForce is true but are retained if bForce is false.
414 ** A MEM_Null value will never be passed to this function. This function is
415 ** used for converting values to text for returning to the user (i.e. via
416 ** sqlite3_value_text()), or for ensuring that values to be used as btree
417 ** keys are strings. In the former case a NULL pointer is returned the
418 ** user and the latter is an internal programming error.
420 int sqlite3VdbeMemStringify(Mem
*pMem
, u8 enc
, u8 bForce
){
421 const int nByte
= 32;
424 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
425 assert( !(pMem
->flags
&MEM_Zero
) );
426 assert( !(pMem
->flags
&(MEM_Str
|MEM_Blob
)) );
427 assert( pMem
->flags
&(MEM_Int
|MEM_Real
|MEM_IntReal
) );
428 assert( !sqlite3VdbeMemIsRowSet(pMem
) );
429 assert( EIGHT_BYTE_ALIGNMENT(pMem
) );
432 if( sqlite3VdbeMemClearAndResize(pMem
, nByte
) ){
434 return SQLITE_NOMEM_BKPT
;
437 vdbeMemRenderNum(nByte
, pMem
->z
, pMem
);
438 assert( pMem
->z
!=0 );
439 pMem
->n
= sqlite3Strlen30NN(pMem
->z
);
440 pMem
->enc
= SQLITE_UTF8
;
441 pMem
->flags
|= MEM_Str
|MEM_Term
;
442 if( bForce
) pMem
->flags
&= ~(MEM_Int
|MEM_Real
|MEM_IntReal
);
443 sqlite3VdbeChangeEncoding(pMem
, enc
);
448 ** Memory cell pMem contains the context of an aggregate function.
449 ** This routine calls the finalize method for that function. The
450 ** result of the aggregate is stored back into pMem.
452 ** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK
455 int sqlite3VdbeMemFinalize(Mem
*pMem
, FuncDef
*pFunc
){
460 assert( pFunc
->xFinalize
!=0 );
461 assert( (pMem
->flags
& MEM_Null
)!=0 || pFunc
==pMem
->u
.pDef
);
462 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
463 memset(&ctx
, 0, sizeof(ctx
));
464 memset(&t
, 0, sizeof(t
));
470 pFunc
->xFinalize(&ctx
); /* IMP: R-24505-23230 */
471 assert( (pMem
->flags
& MEM_Dyn
)==0 );
472 if( pMem
->szMalloc
>0 ) sqlite3DbFreeNN(pMem
->db
, pMem
->zMalloc
);
473 memcpy(pMem
, &t
, sizeof(t
));
478 ** Memory cell pAccum contains the context of an aggregate function.
479 ** This routine calls the xValue method for that function and stores
480 ** the results in memory cell pMem.
482 ** SQLITE_ERROR is returned if xValue() reports an error. SQLITE_OK
485 #ifndef SQLITE_OMIT_WINDOWFUNC
486 int sqlite3VdbeMemAggValue(Mem
*pAccum
, Mem
*pOut
, FuncDef
*pFunc
){
489 assert( pFunc
->xValue
!=0 );
490 assert( (pAccum
->flags
& MEM_Null
)!=0 || pFunc
==pAccum
->u
.pDef
);
491 assert( pAccum
->db
==0 || sqlite3_mutex_held(pAccum
->db
->mutex
) );
492 memset(&ctx
, 0, sizeof(ctx
));
493 sqlite3VdbeMemSetNull(pOut
);
500 #endif /* SQLITE_OMIT_WINDOWFUNC */
503 ** If the memory cell contains a value that must be freed by
504 ** invoking the external callback in Mem.xDel, then this routine
505 ** will free that value. It also sets Mem.flags to MEM_Null.
507 ** This is a helper routine for sqlite3VdbeMemSetNull() and
508 ** for sqlite3VdbeMemRelease(). Use those other routines as the
509 ** entry point for releasing Mem resources.
511 static SQLITE_NOINLINE
void vdbeMemClearExternAndSetNull(Mem
*p
){
512 assert( p
->db
==0 || sqlite3_mutex_held(p
->db
->mutex
) );
513 assert( VdbeMemDynamic(p
) );
514 if( p
->flags
&MEM_Agg
){
515 sqlite3VdbeMemFinalize(p
, p
->u
.pDef
);
516 assert( (p
->flags
& MEM_Agg
)==0 );
517 testcase( p
->flags
& MEM_Dyn
);
519 if( p
->flags
&MEM_Dyn
){
520 assert( p
->xDel
!=SQLITE_DYNAMIC
&& p
->xDel
!=0 );
521 p
->xDel((void *)p
->z
);
527 ** Release memory held by the Mem p, both external memory cleared
528 ** by p->xDel and memory in p->zMalloc.
530 ** This is a helper routine invoked by sqlite3VdbeMemRelease() in
531 ** the unusual case where there really is memory in p that needs
534 static SQLITE_NOINLINE
void vdbeMemClear(Mem
*p
){
535 if( VdbeMemDynamic(p
) ){
536 vdbeMemClearExternAndSetNull(p
);
539 sqlite3DbFreeNN(p
->db
, p
->zMalloc
);
546 ** Release any memory resources held by the Mem. Both the memory that is
547 ** free by Mem.xDel and the Mem.zMalloc allocation are freed.
549 ** Use this routine prior to clean up prior to abandoning a Mem, or to
550 ** reset a Mem back to its minimum memory utilization.
552 ** Use sqlite3VdbeMemSetNull() to release just the Mem.xDel space
553 ** prior to inserting new content into the Mem.
555 void sqlite3VdbeMemRelease(Mem
*p
){
556 assert( sqlite3VdbeCheckMemInvariants(p
) );
557 if( VdbeMemDynamic(p
) || p
->szMalloc
){
563 ** Convert a 64-bit IEEE double into a 64-bit signed integer.
564 ** If the double is out of range of a 64-bit signed integer then
565 ** return the closest available 64-bit signed integer.
567 static SQLITE_NOINLINE i64
doubleToInt64(double r
){
568 #ifdef SQLITE_OMIT_FLOATING_POINT
569 /* When floating-point is omitted, double and int64 are the same thing */
573 ** Many compilers we encounter do not define constants for the
574 ** minimum and maximum 64-bit integers, or they define them
575 ** inconsistently. And many do not understand the "LL" notation.
576 ** So we define our own static constants here using nothing
577 ** larger than a 32-bit integer constant.
579 static const i64 maxInt
= LARGEST_INT64
;
580 static const i64 minInt
= SMALLEST_INT64
;
582 if( r
<=(double)minInt
){
584 }else if( r
>=(double)maxInt
){
593 ** Return some kind of integer value which is the best we can do
594 ** at representing the value that *pMem describes as an integer.
595 ** If pMem is an integer, then the value is exact. If pMem is
596 ** a floating-point then the value returned is the integer part.
597 ** If pMem is a string or blob, then we make an attempt to convert
598 ** it into an integer and return that. If pMem represents an
599 ** an SQL-NULL value, return 0.
601 ** If pMem represents a string value, its encoding might be changed.
603 static SQLITE_NOINLINE i64
memIntValue(const Mem
*pMem
){
605 sqlite3Atoi64(pMem
->z
, &value
, pMem
->n
, pMem
->enc
);
608 i64
sqlite3VdbeIntValue(const Mem
*pMem
){
611 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
612 assert( EIGHT_BYTE_ALIGNMENT(pMem
) );
614 if( flags
& (MEM_Int
|MEM_IntReal
) ){
615 testcase( flags
& MEM_IntReal
);
617 }else if( flags
& MEM_Real
){
618 return doubleToInt64(pMem
->u
.r
);
619 }else if( (flags
& (MEM_Str
|MEM_Blob
))!=0 && pMem
->z
!=0 ){
620 return memIntValue(pMem
);
627 ** Return the best representation of pMem that we can get into a
628 ** double. If pMem is already a double or an integer, return its
629 ** value. If it is a string or blob, try to convert it to a double.
630 ** If it is a NULL, return 0.0.
632 static SQLITE_NOINLINE
double memRealValue(Mem
*pMem
){
633 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
634 double val
= (double)0;
635 sqlite3AtoF(pMem
->z
, &val
, pMem
->n
, pMem
->enc
);
638 double sqlite3VdbeRealValue(Mem
*pMem
){
640 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
641 assert( EIGHT_BYTE_ALIGNMENT(pMem
) );
642 if( pMem
->flags
& MEM_Real
){
644 }else if( pMem
->flags
& (MEM_Int
|MEM_IntReal
) ){
645 testcase( pMem
->flags
& MEM_IntReal
);
646 return (double)pMem
->u
.i
;
647 }else if( pMem
->flags
& (MEM_Str
|MEM_Blob
) ){
648 return memRealValue(pMem
);
650 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
656 ** Return 1 if pMem represents true, and return 0 if pMem represents false.
657 ** Return the value ifNull if pMem is NULL.
659 int sqlite3VdbeBooleanValue(Mem
*pMem
, int ifNull
){
660 testcase( pMem
->flags
& MEM_IntReal
);
661 if( pMem
->flags
& (MEM_Int
|MEM_IntReal
) ) return pMem
->u
.i
!=0;
662 if( pMem
->flags
& MEM_Null
) return ifNull
;
663 return sqlite3VdbeRealValue(pMem
)!=0.0;
667 ** The MEM structure is already a MEM_Real. Try to also make it a
668 ** MEM_Int if we can.
670 void sqlite3VdbeIntegerAffinity(Mem
*pMem
){
673 assert( pMem
->flags
& MEM_Real
);
674 assert( !sqlite3VdbeMemIsRowSet(pMem
) );
675 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
676 assert( EIGHT_BYTE_ALIGNMENT(pMem
) );
678 ix
= doubleToInt64(pMem
->u
.r
);
680 /* Only mark the value as an integer if
682 ** (1) the round-trip conversion real->int->real is a no-op, and
683 ** (2) The integer is neither the largest nor the smallest
684 ** possible integer (ticket #3922)
686 ** The second and third terms in the following conditional enforces
687 ** the second condition under the assumption that addition overflow causes
688 ** values to wrap around.
690 if( pMem
->u
.r
==ix
&& ix
>SMALLEST_INT64
&& ix
<LARGEST_INT64
){
692 MemSetTypeFlag(pMem
, MEM_Int
);
697 ** Convert pMem to type integer. Invalidate any prior representations.
699 int sqlite3VdbeMemIntegerify(Mem
*pMem
){
701 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
702 assert( !sqlite3VdbeMemIsRowSet(pMem
) );
703 assert( EIGHT_BYTE_ALIGNMENT(pMem
) );
705 pMem
->u
.i
= sqlite3VdbeIntValue(pMem
);
706 MemSetTypeFlag(pMem
, MEM_Int
);
711 ** Convert pMem so that it is of type MEM_Real.
712 ** Invalidate any prior representations.
714 int sqlite3VdbeMemRealify(Mem
*pMem
){
716 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
717 assert( EIGHT_BYTE_ALIGNMENT(pMem
) );
719 pMem
->u
.r
= sqlite3VdbeRealValue(pMem
);
720 MemSetTypeFlag(pMem
, MEM_Real
);
724 /* Compare a floating point value to an integer. Return true if the two
725 ** values are the same within the precision of the floating point value.
727 ** This function assumes that i was obtained by assignment from r1.
729 ** For some versions of GCC on 32-bit machines, if you do the more obvious
730 ** comparison of "r1==(double)i" you sometimes get an answer of false even
731 ** though the r1 and (double)i values are bit-for-bit the same.
733 int sqlite3RealSameAsInt(double r1
, sqlite3_int64 i
){
734 double r2
= (double)i
;
736 || (memcmp(&r1
, &r2
, sizeof(r1
))==0
737 && i
>= -2251799813685248LL && i
< 2251799813685248LL);
741 ** Convert pMem so that it has type MEM_Real or MEM_Int.
742 ** Invalidate any prior representations.
744 ** Every effort is made to force the conversion, even if the input
745 ** is a string that does not look completely like a number. Convert
746 ** as much of the string as we can and ignore the rest.
748 int sqlite3VdbeMemNumerify(Mem
*pMem
){
750 testcase( pMem
->flags
& MEM_Int
);
751 testcase( pMem
->flags
& MEM_Real
);
752 testcase( pMem
->flags
& MEM_IntReal
);
753 testcase( pMem
->flags
& MEM_Null
);
754 if( (pMem
->flags
& (MEM_Int
|MEM_Real
|MEM_IntReal
|MEM_Null
))==0 ){
757 assert( (pMem
->flags
& (MEM_Blob
|MEM_Str
))!=0 );
758 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
759 rc
= sqlite3AtoF(pMem
->z
, &pMem
->u
.r
, pMem
->n
, pMem
->enc
);
760 if( ((rc
==0 || rc
==1) && sqlite3Atoi64(pMem
->z
, &ix
, pMem
->n
, pMem
->enc
)<=1)
761 || sqlite3RealSameAsInt(pMem
->u
.r
, (ix
= (i64
)pMem
->u
.r
))
764 MemSetTypeFlag(pMem
, MEM_Int
);
766 MemSetTypeFlag(pMem
, MEM_Real
);
769 assert( (pMem
->flags
& (MEM_Int
|MEM_Real
|MEM_IntReal
|MEM_Null
))!=0 );
770 pMem
->flags
&= ~(MEM_Str
|MEM_Blob
|MEM_Zero
);
775 ** Cast the datatype of the value in pMem according to the affinity
776 ** "aff". Casting is different from applying affinity in that a cast
777 ** is forced. In other words, the value is converted into the desired
778 ** affinity even if that results in loss of data. This routine is
779 ** used (for example) to implement the SQL "cast()" operator.
781 int sqlite3VdbeMemCast(Mem
*pMem
, u8 aff
, u8 encoding
){
782 if( pMem
->flags
& MEM_Null
) return SQLITE_OK
;
784 case SQLITE_AFF_BLOB
: { /* Really a cast to BLOB */
785 if( (pMem
->flags
& MEM_Blob
)==0 ){
786 sqlite3ValueApplyAffinity(pMem
, SQLITE_AFF_TEXT
, encoding
);
787 assert( pMem
->flags
& MEM_Str
|| pMem
->db
->mallocFailed
);
788 if( pMem
->flags
& MEM_Str
) MemSetTypeFlag(pMem
, MEM_Blob
);
790 pMem
->flags
&= ~(MEM_TypeMask
&~MEM_Blob
);
794 case SQLITE_AFF_NUMERIC
: {
795 sqlite3VdbeMemNumerify(pMem
);
798 case SQLITE_AFF_INTEGER
: {
799 sqlite3VdbeMemIntegerify(pMem
);
802 case SQLITE_AFF_REAL
: {
803 sqlite3VdbeMemRealify(pMem
);
807 assert( aff
==SQLITE_AFF_TEXT
);
808 assert( MEM_Str
==(MEM_Blob
>>3) );
809 pMem
->flags
|= (pMem
->flags
&MEM_Blob
)>>3;
810 sqlite3ValueApplyAffinity(pMem
, SQLITE_AFF_TEXT
, encoding
);
811 assert( pMem
->flags
& MEM_Str
|| pMem
->db
->mallocFailed
);
812 pMem
->flags
&= ~(MEM_Int
|MEM_Real
|MEM_IntReal
|MEM_Blob
|MEM_Zero
);
813 return sqlite3VdbeChangeEncoding(pMem
, encoding
);
820 ** Initialize bulk memory to be a consistent Mem object.
822 ** The minimum amount of initialization feasible is performed.
824 void sqlite3VdbeMemInit(Mem
*pMem
, sqlite3
*db
, u16 flags
){
825 assert( (flags
& ~MEM_TypeMask
)==0 );
833 ** Delete any previous value and set the value stored in *pMem to NULL.
835 ** This routine calls the Mem.xDel destructor to dispose of values that
836 ** require the destructor. But it preserves the Mem.zMalloc memory allocation.
837 ** To free all resources, use sqlite3VdbeMemRelease(), which both calls this
838 ** routine to invoke the destructor and deallocates Mem.zMalloc.
840 ** Use this routine to reset the Mem prior to insert a new value.
842 ** Use sqlite3VdbeMemRelease() to complete erase the Mem prior to abandoning it.
844 void sqlite3VdbeMemSetNull(Mem
*pMem
){
845 if( VdbeMemDynamic(pMem
) ){
846 vdbeMemClearExternAndSetNull(pMem
);
848 pMem
->flags
= MEM_Null
;
851 void sqlite3ValueSetNull(sqlite3_value
*p
){
852 sqlite3VdbeMemSetNull((Mem
*)p
);
856 ** Delete any previous value and set the value to be a BLOB of length
857 ** n containing all zeros.
859 #ifndef SQLITE_OMIT_INCRBLOB
860 void sqlite3VdbeMemSetZeroBlob(Mem
*pMem
, int n
){
861 sqlite3VdbeMemRelease(pMem
);
862 pMem
->flags
= MEM_Blob
|MEM_Zero
;
866 pMem
->enc
= SQLITE_UTF8
;
870 int sqlite3VdbeMemSetZeroBlob(Mem
*pMem
, int n
){
872 if( sqlite3VdbeMemGrow(pMem
, nByte
, 0) ){
873 return SQLITE_NOMEM_BKPT
;
875 assert( pMem
->z
!=0 );
876 assert( sqlite3DbMallocSize(pMem
->db
, pMem
->z
)>=nByte
);
877 memset(pMem
->z
, 0, nByte
);
879 pMem
->flags
= MEM_Blob
;
880 pMem
->enc
= SQLITE_UTF8
;
886 ** The pMem is known to contain content that needs to be destroyed prior
887 ** to a value change. So invoke the destructor, then set the value to
890 static SQLITE_NOINLINE
void vdbeReleaseAndSetInt64(Mem
*pMem
, i64 val
){
891 sqlite3VdbeMemSetNull(pMem
);
893 pMem
->flags
= MEM_Int
;
897 ** Delete any previous value and set the value stored in *pMem to val,
898 ** manifest type INTEGER.
900 void sqlite3VdbeMemSetInt64(Mem
*pMem
, i64 val
){
901 if( VdbeMemDynamic(pMem
) ){
902 vdbeReleaseAndSetInt64(pMem
, val
);
905 pMem
->flags
= MEM_Int
;
909 /* A no-op destructor */
910 void sqlite3NoopDestructor(void *p
){ UNUSED_PARAMETER(p
); }
913 ** Set the value stored in *pMem should already be a NULL.
914 ** Also store a pointer to go with it.
916 void sqlite3VdbeMemSetPointer(
920 void (*xDestructor
)(void*)
922 assert( pMem
->flags
==MEM_Null
);
924 pMem
->u
.zPType
= zPType
? zPType
: "";
926 pMem
->flags
= MEM_Null
|MEM_Dyn
|MEM_Subtype
|MEM_Term
;
927 pMem
->eSubtype
= 'p';
928 pMem
->xDel
= xDestructor
? xDestructor
: sqlite3NoopDestructor
;
931 #ifndef SQLITE_OMIT_FLOATING_POINT
933 ** Delete any previous value and set the value stored in *pMem to val,
934 ** manifest type REAL.
936 void sqlite3VdbeMemSetDouble(Mem
*pMem
, double val
){
937 sqlite3VdbeMemSetNull(pMem
);
938 if( !sqlite3IsNaN(val
) ){
940 pMem
->flags
= MEM_Real
;
947 ** Return true if the Mem holds a RowSet object. This routine is intended
948 ** for use inside of assert() statements.
950 int sqlite3VdbeMemIsRowSet(const Mem
*pMem
){
951 return (pMem
->flags
&(MEM_Blob
|MEM_Dyn
))==(MEM_Blob
|MEM_Dyn
)
952 && pMem
->xDel
==sqlite3RowSetDelete
;
957 ** Delete any previous value and set the value of pMem to be an
958 ** empty boolean index.
960 ** Return SQLITE_OK on success and SQLITE_NOMEM if a memory allocation
963 int sqlite3VdbeMemSetRowSet(Mem
*pMem
){
964 sqlite3
*db
= pMem
->db
;
967 assert( !sqlite3VdbeMemIsRowSet(pMem
) );
968 sqlite3VdbeMemRelease(pMem
);
969 p
= sqlite3RowSetInit(db
);
970 if( p
==0 ) return SQLITE_NOMEM
;
972 pMem
->flags
= MEM_Blob
|MEM_Dyn
;
973 pMem
->xDel
= sqlite3RowSetDelete
;
978 ** Return true if the Mem object contains a TEXT or BLOB that is
979 ** too large - whose size exceeds SQLITE_MAX_LENGTH.
981 int sqlite3VdbeMemTooBig(Mem
*p
){
983 if( p
->flags
& (MEM_Str
|MEM_Blob
) ){
985 if( p
->flags
& MEM_Zero
){
988 return n
>p
->db
->aLimit
[SQLITE_LIMIT_LENGTH
];
995 ** This routine prepares a memory cell for modification by breaking
996 ** its link to a shallow copy and by marking any current shallow
997 ** copies of this cell as invalid.
999 ** This is used for testing and debugging only - to help ensure that shallow
1000 ** copies (created by OP_SCopy) are not misused.
1002 void sqlite3VdbeMemAboutToChange(Vdbe
*pVdbe
, Mem
*pMem
){
1005 for(i
=1, pX
=pVdbe
->aMem
+1; i
<pVdbe
->nMem
; i
++, pX
++){
1006 if( pX
->pScopyFrom
==pMem
){
1008 if( pVdbe
->db
->flags
& SQLITE_VdbeTrace
){
1009 sqlite3DebugPrintf("Invalidate R[%d] due to change in R[%d]\n",
1010 (int)(pX
- pVdbe
->aMem
), (int)(pMem
- pVdbe
->aMem
));
1012 /* If pX is marked as a shallow copy of pMem, then try to verify that
1013 ** no significant changes have been made to pX since the OP_SCopy.
1014 ** A significant change would indicated a missed call to this
1015 ** function for pX. Minor changes, such as adding or removing a
1016 ** dual type, are allowed, as long as the underlying value is the
1018 mFlags
= pMem
->flags
& pX
->flags
& pX
->mScopyFlags
;
1019 assert( (mFlags
&(MEM_Int
|MEM_IntReal
))==0 || pMem
->u
.i
==pX
->u
.i
);
1021 /* pMem is the register that is changing. But also mark pX as
1022 ** undefined so that we can quickly detect the shallow-copy error */
1023 pX
->flags
= MEM_Undefined
;
1027 pMem
->pScopyFrom
= 0;
1029 #endif /* SQLITE_DEBUG */
1032 ** Make an shallow copy of pFrom into pTo. Prior contents of
1033 ** pTo are freed. The pFrom->z field is not duplicated. If
1034 ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z
1035 ** and flags gets srcType (either MEM_Ephem or MEM_Static).
1037 static SQLITE_NOINLINE
void vdbeClrCopy(Mem
*pTo
, const Mem
*pFrom
, int eType
){
1038 vdbeMemClearExternAndSetNull(pTo
);
1039 assert( !VdbeMemDynamic(pTo
) );
1040 sqlite3VdbeMemShallowCopy(pTo
, pFrom
, eType
);
1042 void sqlite3VdbeMemShallowCopy(Mem
*pTo
, const Mem
*pFrom
, int srcType
){
1043 assert( !sqlite3VdbeMemIsRowSet(pFrom
) );
1044 assert( pTo
->db
==pFrom
->db
);
1045 if( VdbeMemDynamic(pTo
) ){ vdbeClrCopy(pTo
,pFrom
,srcType
); return; }
1046 memcpy(pTo
, pFrom
, MEMCELLSIZE
);
1047 if( (pFrom
->flags
&MEM_Static
)==0 ){
1048 pTo
->flags
&= ~(MEM_Dyn
|MEM_Static
|MEM_Ephem
);
1049 assert( srcType
==MEM_Ephem
|| srcType
==MEM_Static
);
1050 pTo
->flags
|= srcType
;
1055 ** Make a full copy of pFrom into pTo. Prior contents of pTo are
1056 ** freed before the copy is made.
1058 int sqlite3VdbeMemCopy(Mem
*pTo
, const Mem
*pFrom
){
1061 assert( !sqlite3VdbeMemIsRowSet(pFrom
) );
1062 if( VdbeMemDynamic(pTo
) ) vdbeMemClearExternAndSetNull(pTo
);
1063 memcpy(pTo
, pFrom
, MEMCELLSIZE
);
1064 pTo
->flags
&= ~MEM_Dyn
;
1065 if( pTo
->flags
&(MEM_Str
|MEM_Blob
) ){
1066 if( 0==(pFrom
->flags
&MEM_Static
) ){
1067 pTo
->flags
|= MEM_Ephem
;
1068 rc
= sqlite3VdbeMemMakeWriteable(pTo
);
1076 ** Transfer the contents of pFrom to pTo. Any existing value in pTo is
1077 ** freed. If pFrom contains ephemeral data, a copy is made.
1079 ** pFrom contains an SQL NULL when this routine returns.
1081 void sqlite3VdbeMemMove(Mem
*pTo
, Mem
*pFrom
){
1082 assert( pFrom
->db
==0 || sqlite3_mutex_held(pFrom
->db
->mutex
) );
1083 assert( pTo
->db
==0 || sqlite3_mutex_held(pTo
->db
->mutex
) );
1084 assert( pFrom
->db
==0 || pTo
->db
==0 || pFrom
->db
==pTo
->db
);
1086 sqlite3VdbeMemRelease(pTo
);
1087 memcpy(pTo
, pFrom
, sizeof(Mem
));
1088 pFrom
->flags
= MEM_Null
;
1089 pFrom
->szMalloc
= 0;
1093 ** Change the value of a Mem to be a string or a BLOB.
1095 ** The memory management strategy depends on the value of the xDel
1096 ** parameter. If the value passed is SQLITE_TRANSIENT, then the
1097 ** string is copied into a (possibly existing) buffer managed by the
1098 ** Mem structure. Otherwise, any existing buffer is freed and the
1101 ** If the string is too large (if it exceeds the SQLITE_LIMIT_LENGTH
1102 ** size limit) then no memory allocation occurs. If the string can be
1103 ** stored without allocating memory, then it is. If a memory allocation
1104 ** is required to store the string, then value of pMem is unchanged. In
1105 ** either case, SQLITE_TOOBIG is returned.
1107 int sqlite3VdbeMemSetStr(
1108 Mem
*pMem
, /* Memory cell to set to string value */
1109 const char *z
, /* String pointer */
1110 i64 n
, /* Bytes in string, or negative */
1111 u8 enc
, /* Encoding of z. 0 for BLOBs */
1112 void (*xDel
)(void*) /* Destructor function */
1114 i64 nByte
= n
; /* New value for pMem->n */
1115 int iLimit
; /* Maximum allowed string or blob size */
1116 u16 flags
= 0; /* New value for pMem->flags */
1119 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
1120 assert( !sqlite3VdbeMemIsRowSet(pMem
) );
1122 /* If z is a NULL pointer, set pMem to contain an SQL NULL. */
1124 sqlite3VdbeMemSetNull(pMem
);
1129 iLimit
= pMem
->db
->aLimit
[SQLITE_LIMIT_LENGTH
];
1131 iLimit
= SQLITE_MAX_LENGTH
;
1133 flags
= (enc
==0?MEM_Blob
:MEM_Str
);
1136 if( enc
==SQLITE_UTF8
){
1139 for(nByte
=0; nByte
<=iLimit
&& (z
[nByte
] | z
[nByte
+1]); nByte
+=2){}
1144 /* The following block sets the new values of Mem.z and Mem.xDel. It
1145 ** also sets a flag in local variable "flags" to indicate the memory
1146 ** management (one of MEM_Dyn or MEM_Static).
1148 if( xDel
==SQLITE_TRANSIENT
){
1150 if( flags
&MEM_Term
){
1151 nAlloc
+= (enc
==SQLITE_UTF8
?1:2);
1154 return sqlite3ErrorToParser(pMem
->db
, SQLITE_TOOBIG
);
1156 testcase( nAlloc
==0 );
1157 testcase( nAlloc
==31 );
1158 testcase( nAlloc
==32 );
1159 if( sqlite3VdbeMemClearAndResize(pMem
, (int)MAX(nAlloc
,32)) ){
1160 return SQLITE_NOMEM_BKPT
;
1162 memcpy(pMem
->z
, z
, nAlloc
);
1164 sqlite3VdbeMemRelease(pMem
);
1165 pMem
->z
= (char *)z
;
1166 if( xDel
==SQLITE_DYNAMIC
){
1167 pMem
->zMalloc
= pMem
->z
;
1168 pMem
->szMalloc
= sqlite3DbMallocSize(pMem
->db
, pMem
->zMalloc
);
1171 flags
|= ((xDel
==SQLITE_STATIC
)?MEM_Static
:MEM_Dyn
);
1175 pMem
->n
= (int)(nByte
& 0x7fffffff);
1176 pMem
->flags
= flags
;
1179 #ifdef SQLITE_ENABLE_SESSION
1180 }else if( pMem
->db
==0 ){
1181 pMem
->enc
= SQLITE_UTF8
;
1184 assert( pMem
->db
!=0 );
1185 pMem
->enc
= ENC(pMem
->db
);
1188 #ifndef SQLITE_OMIT_UTF16
1189 if( enc
>SQLITE_UTF8
&& sqlite3VdbeMemHandleBom(pMem
) ){
1190 return SQLITE_NOMEM_BKPT
;
1195 return sqlite3ErrorToParser(pMem
->db
, SQLITE_TOOBIG
);
1202 ** Move data out of a btree key or data field and into a Mem structure.
1203 ** The data is payload from the entry that pCur is currently pointing
1204 ** to. offset and amt determine what portion of the data or key to retrieve.
1205 ** The result is written into the pMem element.
1207 ** The pMem object must have been initialized. This routine will use
1208 ** pMem->zMalloc to hold the content from the btree, if possible. New
1209 ** pMem->zMalloc space will be allocated if necessary. The calling routine
1210 ** is responsible for making sure that the pMem object is eventually
1213 ** If this routine fails for any reason (malloc returns NULL or unable
1214 ** to read from the disk) then the pMem is left in an inconsistent state.
1216 int sqlite3VdbeMemFromBtree(
1217 BtCursor
*pCur
, /* Cursor pointing at record to retrieve. */
1218 u32 offset
, /* Offset from the start of data to return bytes from. */
1219 u32 amt
, /* Number of bytes to return. */
1220 Mem
*pMem
/* OUT: Return data in this Mem structure. */
1223 pMem
->flags
= MEM_Null
;
1224 if( sqlite3BtreeMaxRecordSize(pCur
)<offset
+amt
){
1225 return SQLITE_CORRUPT_BKPT
;
1227 if( SQLITE_OK
==(rc
= sqlite3VdbeMemClearAndResize(pMem
, amt
+1)) ){
1228 rc
= sqlite3BtreePayload(pCur
, offset
, amt
, pMem
->z
);
1229 if( rc
==SQLITE_OK
){
1230 pMem
->z
[amt
] = 0; /* Overrun area used when reading malformed records */
1231 pMem
->flags
= MEM_Blob
;
1234 sqlite3VdbeMemRelease(pMem
);
1239 int sqlite3VdbeMemFromBtreeZeroOffset(
1240 BtCursor
*pCur
, /* Cursor pointing at record to retrieve. */
1241 u32 amt
, /* Number of bytes to return. */
1242 Mem
*pMem
/* OUT: Return data in this Mem structure. */
1244 u32 available
= 0; /* Number of bytes available on the local btree page */
1245 int rc
= SQLITE_OK
; /* Return code */
1247 assert( sqlite3BtreeCursorIsValid(pCur
) );
1248 assert( !VdbeMemDynamic(pMem
) );
1250 /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert()
1251 ** that both the BtShared and database handle mutexes are held. */
1252 assert( !sqlite3VdbeMemIsRowSet(pMem
) );
1253 pMem
->z
= (char *)sqlite3BtreePayloadFetch(pCur
, &available
);
1254 assert( pMem
->z
!=0 );
1256 if( amt
<=available
){
1257 pMem
->flags
= MEM_Blob
|MEM_Ephem
;
1260 rc
= sqlite3VdbeMemFromBtree(pCur
, 0, amt
, pMem
);
1267 ** The pVal argument is known to be a value other than NULL.
1268 ** Convert it into a string with encoding enc and return a pointer
1269 ** to a zero-terminated version of that string.
1271 static SQLITE_NOINLINE
const void *valueToText(sqlite3_value
* pVal
, u8 enc
){
1273 assert( pVal
->db
==0 || sqlite3_mutex_held(pVal
->db
->mutex
) );
1274 assert( (enc
&3)==(enc
&~SQLITE_UTF16_ALIGNED
) );
1275 assert( !sqlite3VdbeMemIsRowSet(pVal
) );
1276 assert( (pVal
->flags
& (MEM_Null
))==0 );
1277 if( pVal
->flags
& (MEM_Blob
|MEM_Str
) ){
1278 if( ExpandBlob(pVal
) ) return 0;
1279 pVal
->flags
|= MEM_Str
;
1280 if( pVal
->enc
!= (enc
& ~SQLITE_UTF16_ALIGNED
) ){
1281 sqlite3VdbeChangeEncoding(pVal
, enc
& ~SQLITE_UTF16_ALIGNED
);
1283 if( (enc
& SQLITE_UTF16_ALIGNED
)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal
->z
)) ){
1284 assert( (pVal
->flags
& (MEM_Ephem
|MEM_Static
))!=0 );
1285 if( sqlite3VdbeMemMakeWriteable(pVal
)!=SQLITE_OK
){
1289 sqlite3VdbeMemNulTerminate(pVal
); /* IMP: R-31275-44060 */
1291 sqlite3VdbeMemStringify(pVal
, enc
, 0);
1292 assert( 0==(1&SQLITE_PTR_TO_INT(pVal
->z
)) );
1294 assert(pVal
->enc
==(enc
& ~SQLITE_UTF16_ALIGNED
) || pVal
->db
==0
1295 || pVal
->db
->mallocFailed
);
1296 if( pVal
->enc
==(enc
& ~SQLITE_UTF16_ALIGNED
) ){
1297 assert( sqlite3VdbeMemValidStrRep(pVal
) );
1304 /* This function is only available internally, it is not part of the
1305 ** external API. It works in a similar way to sqlite3_value_text(),
1306 ** except the data returned is in the encoding specified by the second
1307 ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or
1310 ** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED.
1311 ** If that is the case, then the result must be aligned on an even byte
1314 const void *sqlite3ValueText(sqlite3_value
* pVal
, u8 enc
){
1315 if( !pVal
) return 0;
1316 assert( pVal
->db
==0 || sqlite3_mutex_held(pVal
->db
->mutex
) );
1317 assert( (enc
&3)==(enc
&~SQLITE_UTF16_ALIGNED
) );
1318 assert( !sqlite3VdbeMemIsRowSet(pVal
) );
1319 if( (pVal
->flags
&(MEM_Str
|MEM_Term
))==(MEM_Str
|MEM_Term
) && pVal
->enc
==enc
){
1320 assert( sqlite3VdbeMemValidStrRep(pVal
) );
1323 if( pVal
->flags
&MEM_Null
){
1326 return valueToText(pVal
, enc
);
1330 ** Create a new sqlite3_value object.
1332 sqlite3_value
*sqlite3ValueNew(sqlite3
*db
){
1333 Mem
*p
= sqlite3DbMallocZero(db
, sizeof(*p
));
1335 p
->flags
= MEM_Null
;
1342 ** Context object passed by sqlite3Stat4ProbeSetValue() through to
1343 ** valueNew(). See comments above valueNew() for details.
1345 struct ValueNewStat4Ctx
{
1348 UnpackedRecord
**ppRec
;
1353 ** Allocate and return a pointer to a new sqlite3_value object. If
1354 ** the second argument to this function is NULL, the object is allocated
1355 ** by calling sqlite3ValueNew().
1357 ** Otherwise, if the second argument is non-zero, then this function is
1358 ** being called indirectly by sqlite3Stat4ProbeSetValue(). If it has not
1359 ** already been allocated, allocate the UnpackedRecord structure that
1360 ** that function will return to its caller here. Then return a pointer to
1361 ** an sqlite3_value within the UnpackedRecord.a[] array.
1363 static sqlite3_value
*valueNew(sqlite3
*db
, struct ValueNewStat4Ctx
*p
){
1364 #ifdef SQLITE_ENABLE_STAT4
1366 UnpackedRecord
*pRec
= p
->ppRec
[0];
1369 Index
*pIdx
= p
->pIdx
; /* Index being probed */
1370 int nByte
; /* Bytes of space to allocate */
1371 int i
; /* Counter variable */
1372 int nCol
= pIdx
->nColumn
; /* Number of index columns including rowid */
1374 nByte
= sizeof(Mem
) * nCol
+ ROUND8(sizeof(UnpackedRecord
));
1375 pRec
= (UnpackedRecord
*)sqlite3DbMallocZero(db
, nByte
);
1377 pRec
->pKeyInfo
= sqlite3KeyInfoOfIndex(p
->pParse
, pIdx
);
1378 if( pRec
->pKeyInfo
){
1379 assert( pRec
->pKeyInfo
->nAllField
==nCol
);
1380 assert( pRec
->pKeyInfo
->enc
==ENC(db
) );
1381 pRec
->aMem
= (Mem
*)((u8
*)pRec
+ ROUND8(sizeof(UnpackedRecord
)));
1382 for(i
=0; i
<nCol
; i
++){
1383 pRec
->aMem
[i
].flags
= MEM_Null
;
1384 pRec
->aMem
[i
].db
= db
;
1387 sqlite3DbFreeNN(db
, pRec
);
1391 if( pRec
==0 ) return 0;
1395 pRec
->nField
= p
->iVal
+1;
1396 return &pRec
->aMem
[p
->iVal
];
1399 UNUSED_PARAMETER(p
);
1400 #endif /* defined(SQLITE_ENABLE_STAT4) */
1401 return sqlite3ValueNew(db
);
1405 ** The expression object indicated by the second argument is guaranteed
1406 ** to be a scalar SQL function. If
1408 ** * all function arguments are SQL literals,
1409 ** * one of the SQLITE_FUNC_CONSTANT or _SLOCHNG function flags is set, and
1410 ** * the SQLITE_FUNC_NEEDCOLL function flag is not set,
1412 ** then this routine attempts to invoke the SQL function. Assuming no
1413 ** error occurs, output parameter (*ppVal) is set to point to a value
1414 ** object containing the result before returning SQLITE_OK.
1416 ** Affinity aff is applied to the result of the function before returning.
1417 ** If the result is a text value, the sqlite3_value object uses encoding
1420 ** If the conditions above are not met, this function returns SQLITE_OK
1421 ** and sets (*ppVal) to NULL. Or, if an error occurs, (*ppVal) is set to
1422 ** NULL and an SQLite error code returned.
1424 #ifdef SQLITE_ENABLE_STAT4
1425 static int valueFromFunction(
1426 sqlite3
*db
, /* The database connection */
1427 const Expr
*p
, /* The expression to evaluate */
1428 u8 enc
, /* Encoding to use */
1429 u8 aff
, /* Affinity to use */
1430 sqlite3_value
**ppVal
, /* Write the new value here */
1431 struct ValueNewStat4Ctx
*pCtx
/* Second argument for valueNew() */
1433 sqlite3_context ctx
; /* Context object for function invocation */
1434 sqlite3_value
**apVal
= 0; /* Function arguments */
1435 int nVal
= 0; /* Size of apVal[] array */
1436 FuncDef
*pFunc
= 0; /* Function definition */
1437 sqlite3_value
*pVal
= 0; /* New value */
1438 int rc
= SQLITE_OK
; /* Return code */
1439 ExprList
*pList
= 0; /* Function arguments */
1440 int i
; /* Iterator variable */
1443 assert( (p
->flags
& EP_TokenOnly
)==0 );
1444 assert( ExprUseXList(p
) );
1446 if( pList
) nVal
= pList
->nExpr
;
1447 assert( !ExprHasProperty(p
, EP_IntValue
) );
1448 pFunc
= sqlite3FindFunction(db
, p
->u
.zToken
, nVal
, enc
, 0);
1450 if( (pFunc
->funcFlags
& (SQLITE_FUNC_CONSTANT
|SQLITE_FUNC_SLOCHNG
))==0
1451 || (pFunc
->funcFlags
& SQLITE_FUNC_NEEDCOLL
)
1457 apVal
= (sqlite3_value
**)sqlite3DbMallocZero(db
, sizeof(apVal
[0]) * nVal
);
1459 rc
= SQLITE_NOMEM_BKPT
;
1460 goto value_from_function_out
;
1462 for(i
=0; i
<nVal
; i
++){
1463 rc
= sqlite3ValueFromExpr(db
, pList
->a
[i
].pExpr
, enc
, aff
, &apVal
[i
]);
1464 if( apVal
[i
]==0 || rc
!=SQLITE_OK
) goto value_from_function_out
;
1468 pVal
= valueNew(db
, pCtx
);
1470 rc
= SQLITE_NOMEM_BKPT
;
1471 goto value_from_function_out
;
1474 assert( pCtx
->pParse
->rc
==SQLITE_OK
);
1475 memset(&ctx
, 0, sizeof(ctx
));
1478 pFunc
->xSFunc(&ctx
, nVal
, apVal
);
1481 sqlite3ErrorMsg(pCtx
->pParse
, "%s", sqlite3_value_text(pVal
));
1483 sqlite3ValueApplyAffinity(pVal
, aff
, SQLITE_UTF8
);
1484 assert( rc
==SQLITE_OK
);
1485 rc
= sqlite3VdbeChangeEncoding(pVal
, enc
);
1486 if( rc
==SQLITE_OK
&& sqlite3VdbeMemTooBig(pVal
) ){
1488 pCtx
->pParse
->nErr
++;
1491 pCtx
->pParse
->rc
= rc
;
1493 value_from_function_out
:
1494 if( rc
!=SQLITE_OK
){
1498 for(i
=0; i
<nVal
; i
++){
1499 sqlite3ValueFree(apVal
[i
]);
1501 sqlite3DbFreeNN(db
, apVal
);
1508 # define valueFromFunction(a,b,c,d,e,f) SQLITE_OK
1509 #endif /* defined(SQLITE_ENABLE_STAT4) */
1512 ** Extract a value from the supplied expression in the manner described
1513 ** above sqlite3ValueFromExpr(). Allocate the sqlite3_value object
1514 ** using valueNew().
1516 ** If pCtx is NULL and an error occurs after the sqlite3_value object
1517 ** has been allocated, it is freed before returning. Or, if pCtx is not
1518 ** NULL, it is assumed that the caller will free any allocated object
1521 static int valueFromExpr(
1522 sqlite3
*db
, /* The database connection */
1523 const Expr
*pExpr
, /* The expression to evaluate */
1524 u8 enc
, /* Encoding to use */
1525 u8 affinity
, /* Affinity to use */
1526 sqlite3_value
**ppVal
, /* Write the new value here */
1527 struct ValueNewStat4Ctx
*pCtx
/* Second argument for valueNew() */
1531 sqlite3_value
*pVal
= 0;
1533 const char *zNeg
= "";
1537 while( (op
= pExpr
->op
)==TK_UPLUS
|| op
==TK_SPAN
) pExpr
= pExpr
->pLeft
;
1538 if( op
==TK_REGISTER
) op
= pExpr
->op2
;
1540 /* Compressed expressions only appear when parsing the DEFAULT clause
1541 ** on a table column definition, and hence only when pCtx==0. This
1542 ** check ensures that an EP_TokenOnly expression is never passed down
1543 ** into valueFromFunction(). */
1544 assert( (pExpr
->flags
& EP_TokenOnly
)==0 || pCtx
==0 );
1548 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
1549 aff
= sqlite3AffinityType(pExpr
->u
.zToken
,0);
1550 rc
= valueFromExpr(db
, pExpr
->pLeft
, enc
, aff
, ppVal
, pCtx
);
1551 testcase( rc
!=SQLITE_OK
);
1553 sqlite3VdbeMemCast(*ppVal
, aff
, SQLITE_UTF8
);
1554 sqlite3ValueApplyAffinity(*ppVal
, affinity
, SQLITE_UTF8
);
1559 /* Handle negative integers in a single step. This is needed in the
1560 ** case when the value is -9223372036854775808.
1563 && (pExpr
->pLeft
->op
==TK_INTEGER
|| pExpr
->pLeft
->op
==TK_FLOAT
) ){
1564 pExpr
= pExpr
->pLeft
;
1570 if( op
==TK_STRING
|| op
==TK_FLOAT
|| op
==TK_INTEGER
){
1571 pVal
= valueNew(db
, pCtx
);
1572 if( pVal
==0 ) goto no_mem
;
1573 if( ExprHasProperty(pExpr
, EP_IntValue
) ){
1574 sqlite3VdbeMemSetInt64(pVal
, (i64
)pExpr
->u
.iValue
*negInt
);
1576 zVal
= sqlite3MPrintf(db
, "%s%s", zNeg
, pExpr
->u
.zToken
);
1577 if( zVal
==0 ) goto no_mem
;
1578 sqlite3ValueSetStr(pVal
, -1, zVal
, SQLITE_UTF8
, SQLITE_DYNAMIC
);
1580 if( (op
==TK_INTEGER
|| op
==TK_FLOAT
) && affinity
==SQLITE_AFF_BLOB
){
1581 sqlite3ValueApplyAffinity(pVal
, SQLITE_AFF_NUMERIC
, SQLITE_UTF8
);
1583 sqlite3ValueApplyAffinity(pVal
, affinity
, SQLITE_UTF8
);
1585 assert( (pVal
->flags
& MEM_IntReal
)==0 );
1586 if( pVal
->flags
& (MEM_Int
|MEM_IntReal
|MEM_Real
) ){
1587 testcase( pVal
->flags
& MEM_Int
);
1588 testcase( pVal
->flags
& MEM_Real
);
1589 pVal
->flags
&= ~MEM_Str
;
1591 if( enc
!=SQLITE_UTF8
){
1592 rc
= sqlite3VdbeChangeEncoding(pVal
, enc
);
1594 }else if( op
==TK_UMINUS
) {
1595 /* This branch happens for multiple negative signs. Ex: -(-5) */
1596 if( SQLITE_OK
==valueFromExpr(db
,pExpr
->pLeft
,enc
,affinity
,&pVal
,pCtx
)
1599 sqlite3VdbeMemNumerify(pVal
);
1600 if( pVal
->flags
& MEM_Real
){
1601 pVal
->u
.r
= -pVal
->u
.r
;
1602 }else if( pVal
->u
.i
==SMALLEST_INT64
){
1603 #ifndef SQLITE_OMIT_FLOATING_POINT
1604 pVal
->u
.r
= -(double)SMALLEST_INT64
;
1606 pVal
->u
.r
= LARGEST_INT64
;
1608 MemSetTypeFlag(pVal
, MEM_Real
);
1610 pVal
->u
.i
= -pVal
->u
.i
;
1612 sqlite3ValueApplyAffinity(pVal
, affinity
, enc
);
1614 }else if( op
==TK_NULL
){
1615 pVal
= valueNew(db
, pCtx
);
1616 if( pVal
==0 ) goto no_mem
;
1617 sqlite3VdbeMemSetNull(pVal
);
1619 #ifndef SQLITE_OMIT_BLOB_LITERAL
1620 else if( op
==TK_BLOB
){
1622 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
1623 assert( pExpr
->u
.zToken
[0]=='x' || pExpr
->u
.zToken
[0]=='X' );
1624 assert( pExpr
->u
.zToken
[1]=='\'' );
1625 pVal
= valueNew(db
, pCtx
);
1626 if( !pVal
) goto no_mem
;
1627 zVal
= &pExpr
->u
.zToken
[2];
1628 nVal
= sqlite3Strlen30(zVal
)-1;
1629 assert( zVal
[nVal
]=='\'' );
1630 sqlite3VdbeMemSetStr(pVal
, sqlite3HexToBlob(db
, zVal
, nVal
), nVal
/2,
1634 #ifdef SQLITE_ENABLE_STAT4
1635 else if( op
==TK_FUNCTION
&& pCtx
!=0 ){
1636 rc
= valueFromFunction(db
, pExpr
, enc
, affinity
, &pVal
, pCtx
);
1639 else if( op
==TK_TRUEFALSE
){
1640 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
1641 pVal
= valueNew(db
, pCtx
);
1643 pVal
->flags
= MEM_Int
;
1644 pVal
->u
.i
= pExpr
->u
.zToken
[4]==0;
1652 #ifdef SQLITE_ENABLE_STAT4
1653 if( pCtx
==0 || NEVER(pCtx
->pParse
->nErr
==0) )
1655 sqlite3OomFault(db
);
1656 sqlite3DbFree(db
, zVal
);
1657 assert( *ppVal
==0 );
1658 #ifdef SQLITE_ENABLE_STAT4
1659 if( pCtx
==0 ) sqlite3ValueFree(pVal
);
1661 assert( pCtx
==0 ); sqlite3ValueFree(pVal
);
1663 return SQLITE_NOMEM_BKPT
;
1667 ** Create a new sqlite3_value object, containing the value of pExpr.
1669 ** This only works for very simple expressions that consist of one constant
1670 ** token (i.e. "5", "5.1", "'a string'"). If the expression can
1671 ** be converted directly into a value, then the value is allocated and
1672 ** a pointer written to *ppVal. The caller is responsible for deallocating
1673 ** the value by passing it to sqlite3ValueFree() later on. If the expression
1674 ** cannot be converted to a value, then *ppVal is set to NULL.
1676 int sqlite3ValueFromExpr(
1677 sqlite3
*db
, /* The database connection */
1678 const Expr
*pExpr
, /* The expression to evaluate */
1679 u8 enc
, /* Encoding to use */
1680 u8 affinity
, /* Affinity to use */
1681 sqlite3_value
**ppVal
/* Write the new value here */
1683 return pExpr
? valueFromExpr(db
, pExpr
, enc
, affinity
, ppVal
, 0) : 0;
1686 #ifdef SQLITE_ENABLE_STAT4
1688 ** Attempt to extract a value from pExpr and use it to construct *ppVal.
1690 ** If pAlloc is not NULL, then an UnpackedRecord object is created for
1691 ** pAlloc if one does not exist and the new value is added to the
1692 ** UnpackedRecord object.
1694 ** A value is extracted in the following cases:
1696 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL,
1698 ** * The expression is a bound variable, and this is a reprepare, or
1700 ** * The expression is a literal value.
1702 ** On success, *ppVal is made to point to the extracted value. The caller
1703 ** is responsible for ensuring that the value is eventually freed.
1705 static int stat4ValueFromExpr(
1706 Parse
*pParse
, /* Parse context */
1707 Expr
*pExpr
, /* The expression to extract a value from */
1708 u8 affinity
, /* Affinity to use */
1709 struct ValueNewStat4Ctx
*pAlloc
,/* How to allocate space. Or NULL */
1710 sqlite3_value
**ppVal
/* OUT: New value object (or NULL) */
1713 sqlite3_value
*pVal
= 0;
1714 sqlite3
*db
= pParse
->db
;
1716 /* Skip over any TK_COLLATE nodes */
1717 pExpr
= sqlite3ExprSkipCollate(pExpr
);
1719 assert( pExpr
==0 || pExpr
->op
!=TK_REGISTER
|| pExpr
->op2
!=TK_VARIABLE
);
1721 pVal
= valueNew(db
, pAlloc
);
1723 sqlite3VdbeMemSetNull((Mem
*)pVal
);
1725 }else if( pExpr
->op
==TK_VARIABLE
&& (db
->flags
& SQLITE_EnableQPSG
)==0 ){
1727 int iBindVar
= pExpr
->iColumn
;
1728 sqlite3VdbeSetVarmask(pParse
->pVdbe
, iBindVar
);
1729 if( (v
= pParse
->pReprepare
)!=0 ){
1730 pVal
= valueNew(db
, pAlloc
);
1732 rc
= sqlite3VdbeMemCopy((Mem
*)pVal
, &v
->aVar
[iBindVar
-1]);
1733 sqlite3ValueApplyAffinity(pVal
, affinity
, ENC(db
));
1734 pVal
->db
= pParse
->db
;
1738 rc
= valueFromExpr(db
, pExpr
, ENC(db
), affinity
, &pVal
, pAlloc
);
1741 assert( pVal
==0 || pVal
->db
==db
);
1747 ** This function is used to allocate and populate UnpackedRecord
1748 ** structures intended to be compared against sample index keys stored
1749 ** in the sqlite_stat4 table.
1751 ** A single call to this function populates zero or more fields of the
1752 ** record starting with field iVal (fields are numbered from left to
1753 ** right starting with 0). A single field is populated if:
1755 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL,
1757 ** * The expression is a bound variable, and this is a reprepare, or
1759 ** * The sqlite3ValueFromExpr() function is able to extract a value
1760 ** from the expression (i.e. the expression is a literal value).
1762 ** Or, if pExpr is a TK_VECTOR, one field is populated for each of the
1763 ** vector components that match either of the two latter criteria listed
1766 ** Before any value is appended to the record, the affinity of the
1767 ** corresponding column within index pIdx is applied to it. Before
1768 ** this function returns, output parameter *pnExtract is set to the
1769 ** number of values appended to the record.
1771 ** When this function is called, *ppRec must either point to an object
1772 ** allocated by an earlier call to this function, or must be NULL. If it
1773 ** is NULL and a value can be successfully extracted, a new UnpackedRecord
1774 ** is allocated (and *ppRec set to point to it) before returning.
1776 ** Unless an error is encountered, SQLITE_OK is returned. It is not an
1777 ** error if a value cannot be extracted from pExpr. If an error does
1778 ** occur, an SQLite error code is returned.
1780 int sqlite3Stat4ProbeSetValue(
1781 Parse
*pParse
, /* Parse context */
1782 Index
*pIdx
, /* Index being probed */
1783 UnpackedRecord
**ppRec
, /* IN/OUT: Probe record */
1784 Expr
*pExpr
, /* The expression to extract a value from */
1785 int nElem
, /* Maximum number of values to append */
1786 int iVal
, /* Array element to populate */
1787 int *pnExtract
/* OUT: Values appended to the record */
1792 if( pExpr
==0 || pExpr
->op
!=TK_SELECT
){
1794 struct ValueNewStat4Ctx alloc
;
1796 alloc
.pParse
= pParse
;
1798 alloc
.ppRec
= ppRec
;
1800 for(i
=0; i
<nElem
; i
++){
1801 sqlite3_value
*pVal
= 0;
1802 Expr
*pElem
= (pExpr
? sqlite3VectorFieldSubexpr(pExpr
, i
) : 0);
1803 u8 aff
= sqlite3IndexColumnAffinity(pParse
->db
, pIdx
, iVal
+i
);
1804 alloc
.iVal
= iVal
+i
;
1805 rc
= stat4ValueFromExpr(pParse
, pElem
, aff
, &alloc
, &pVal
);
1811 *pnExtract
= nExtract
;
1816 ** Attempt to extract a value from expression pExpr using the methods
1817 ** as described for sqlite3Stat4ProbeSetValue() above.
1819 ** If successful, set *ppVal to point to a new value object and return
1820 ** SQLITE_OK. If no value can be extracted, but no other error occurs
1821 ** (e.g. OOM), return SQLITE_OK and set *ppVal to NULL. Or, if an error
1822 ** does occur, return an SQLite error code. The final value of *ppVal
1823 ** is undefined in this case.
1825 int sqlite3Stat4ValueFromExpr(
1826 Parse
*pParse
, /* Parse context */
1827 Expr
*pExpr
, /* The expression to extract a value from */
1828 u8 affinity
, /* Affinity to use */
1829 sqlite3_value
**ppVal
/* OUT: New value object (or NULL) */
1831 return stat4ValueFromExpr(pParse
, pExpr
, affinity
, 0, ppVal
);
1835 ** Extract the iCol-th column from the nRec-byte record in pRec. Write
1836 ** the column value into *ppVal. If *ppVal is initially NULL then a new
1837 ** sqlite3_value object is allocated.
1839 ** If *ppVal is initially NULL then the caller is responsible for
1840 ** ensuring that the value written into *ppVal is eventually freed.
1842 int sqlite3Stat4Column(
1843 sqlite3
*db
, /* Database handle */
1844 const void *pRec
, /* Pointer to buffer containing record */
1845 int nRec
, /* Size of buffer pRec in bytes */
1846 int iCol
, /* Column to extract */
1847 sqlite3_value
**ppVal
/* OUT: Extracted value */
1849 u32 t
= 0; /* a column type code */
1850 int nHdr
; /* Size of the header in the record */
1851 int iHdr
; /* Next unread header byte */
1852 int iField
; /* Next unread data byte */
1853 int szField
= 0; /* Size of the current data field */
1854 int i
; /* Column index */
1855 u8
*a
= (u8
*)pRec
; /* Typecast byte array */
1856 Mem
*pMem
= *ppVal
; /* Write result into this Mem object */
1859 iHdr
= getVarint32(a
, nHdr
);
1860 if( nHdr
>nRec
|| iHdr
>=nHdr
) return SQLITE_CORRUPT_BKPT
;
1862 for(i
=0; i
<=iCol
; i
++){
1863 iHdr
+= getVarint32(&a
[iHdr
], t
);
1864 testcase( iHdr
==nHdr
);
1865 testcase( iHdr
==nHdr
+1 );
1866 if( iHdr
>nHdr
) return SQLITE_CORRUPT_BKPT
;
1867 szField
= sqlite3VdbeSerialTypeLen(t
);
1870 testcase( iField
==nRec
);
1871 testcase( iField
==nRec
+1 );
1872 if( iField
>nRec
) return SQLITE_CORRUPT_BKPT
;
1874 pMem
= *ppVal
= sqlite3ValueNew(db
);
1875 if( pMem
==0 ) return SQLITE_NOMEM_BKPT
;
1877 sqlite3VdbeSerialGet(&a
[iField
-szField
], t
, pMem
);
1878 pMem
->enc
= ENC(db
);
1883 ** Unless it is NULL, the argument must be an UnpackedRecord object returned
1884 ** by an earlier call to sqlite3Stat4ProbeSetValue(). This call deletes
1887 void sqlite3Stat4ProbeFree(UnpackedRecord
*pRec
){
1890 int nCol
= pRec
->pKeyInfo
->nAllField
;
1891 Mem
*aMem
= pRec
->aMem
;
1892 sqlite3
*db
= aMem
[0].db
;
1893 for(i
=0; i
<nCol
; i
++){
1894 sqlite3VdbeMemRelease(&aMem
[i
]);
1896 sqlite3KeyInfoUnref(pRec
->pKeyInfo
);
1897 sqlite3DbFreeNN(db
, pRec
);
1900 #endif /* ifdef SQLITE_ENABLE_STAT4 */
1903 ** Change the string value of an sqlite3_value object
1905 void sqlite3ValueSetStr(
1906 sqlite3_value
*v
, /* Value to be set */
1907 int n
, /* Length of string z */
1908 const void *z
, /* Text of the new string */
1909 u8 enc
, /* Encoding to use */
1910 void (*xDel
)(void*) /* Destructor for the string */
1912 if( v
) sqlite3VdbeMemSetStr((Mem
*)v
, z
, n
, enc
, xDel
);
1916 ** Free an sqlite3_value object
1918 void sqlite3ValueFree(sqlite3_value
*v
){
1920 sqlite3VdbeMemRelease((Mem
*)v
);
1921 sqlite3DbFreeNN(((Mem
*)v
)->db
, v
);
1925 ** The sqlite3ValueBytes() routine returns the number of bytes in the
1926 ** sqlite3_value object assuming that it uses the encoding "enc".
1927 ** The valueBytes() routine is a helper function.
1929 static SQLITE_NOINLINE
int valueBytes(sqlite3_value
*pVal
, u8 enc
){
1930 return valueToText(pVal
, enc
)!=0 ? pVal
->n
: 0;
1932 int sqlite3ValueBytes(sqlite3_value
*pVal
, u8 enc
){
1933 Mem
*p
= (Mem
*)pVal
;
1934 assert( (p
->flags
& MEM_Null
)==0 || (p
->flags
& (MEM_Str
|MEM_Blob
))==0 );
1935 if( (p
->flags
& MEM_Str
)!=0 && pVal
->enc
==enc
){
1938 if( (p
->flags
& MEM_Blob
)!=0 ){
1939 if( p
->flags
& MEM_Zero
){
1940 return p
->n
+ p
->u
.nZero
;
1945 if( p
->flags
& MEM_Null
) return 0;
1946 return valueBytes(pVal
, enc
);