Snapshot of upstream SQLite 3.41.0
[sqlcipher.git] / ext / fts3 / fts3.c
blob43a9daf60d0f9402f79ecf29fb7d6cad397d22e4
1 /*
2 ** 2006 Oct 10
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 ******************************************************************************
13 ** This is an SQLite module implementing full-text search.
17 ** The code in this file is only compiled if:
19 ** * The FTS3 module is being built as an extension
20 ** (in which case SQLITE_CORE is not defined), or
22 ** * The FTS3 module is being built into the core of
23 ** SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
26 /* The full-text index is stored in a series of b+tree (-like)
27 ** structures called segments which map terms to doclists. The
28 ** structures are like b+trees in layout, but are constructed from the
29 ** bottom up in optimal fashion and are not updatable. Since trees
30 ** are built from the bottom up, things will be described from the
31 ** bottom up.
34 **** Varints ****
35 ** The basic unit of encoding is a variable-length integer called a
36 ** varint. We encode variable-length integers in little-endian order
37 ** using seven bits * per byte as follows:
39 ** KEY:
40 ** A = 0xxxxxxx 7 bits of data and one flag bit
41 ** B = 1xxxxxxx 7 bits of data and one flag bit
43 ** 7 bits - A
44 ** 14 bits - BA
45 ** 21 bits - BBA
46 ** and so on.
48 ** This is similar in concept to how sqlite encodes "varints" but
49 ** the encoding is not the same. SQLite varints are big-endian
50 ** are are limited to 9 bytes in length whereas FTS3 varints are
51 ** little-endian and can be up to 10 bytes in length (in theory).
53 ** Example encodings:
55 ** 1: 0x01
56 ** 127: 0x7f
57 ** 128: 0x81 0x00
60 **** Document lists ****
61 ** A doclist (document list) holds a docid-sorted list of hits for a
62 ** given term. Doclists hold docids and associated token positions.
63 ** A docid is the unique integer identifier for a single document.
64 ** A position is the index of a word within the document. The first
65 ** word of the document has a position of 0.
67 ** FTS3 used to optionally store character offsets using a compile-time
68 ** option. But that functionality is no longer supported.
70 ** A doclist is stored like this:
72 ** array {
73 ** varint docid; (delta from previous doclist)
74 ** array { (position list for column 0)
75 ** varint position; (2 more than the delta from previous position)
76 ** }
77 ** array {
78 ** varint POS_COLUMN; (marks start of position list for new column)
79 ** varint column; (index of new column)
80 ** array {
81 ** varint position; (2 more than the delta from previous position)
82 ** }
83 ** }
84 ** varint POS_END; (marks end of positions for this document.
85 ** }
87 ** Here, array { X } means zero or more occurrences of X, adjacent in
88 ** memory. A "position" is an index of a token in the token stream
89 ** generated by the tokenizer. Note that POS_END and POS_COLUMN occur
90 ** in the same logical place as the position element, and act as sentinals
91 ** ending a position list array. POS_END is 0. POS_COLUMN is 1.
92 ** The positions numbers are not stored literally but rather as two more
93 ** than the difference from the prior position, or the just the position plus
94 ** 2 for the first position. Example:
96 ** label: A B C D E F G H I J K
97 ** value: 123 5 9 1 1 14 35 0 234 72 0
99 ** The 123 value is the first docid. For column zero in this document
100 ** there are two matches at positions 3 and 10 (5-2 and 9-2+3). The 1
101 ** at D signals the start of a new column; the 1 at E indicates that the
102 ** new column is column number 1. There are two positions at 12 and 45
103 ** (14-2 and 35-2+12). The 0 at H indicate the end-of-document. The
104 ** 234 at I is the delta to next docid (357). It has one position 70
105 ** (72-2) and then terminates with the 0 at K.
107 ** A "position-list" is the list of positions for multiple columns for
108 ** a single docid. A "column-list" is the set of positions for a single
109 ** column. Hence, a position-list consists of one or more column-lists,
110 ** a document record consists of a docid followed by a position-list and
111 ** a doclist consists of one or more document records.
113 ** A bare doclist omits the position information, becoming an
114 ** array of varint-encoded docids.
116 **** Segment leaf nodes ****
117 ** Segment leaf nodes store terms and doclists, ordered by term. Leaf
118 ** nodes are written using LeafWriter, and read using LeafReader (to
119 ** iterate through a single leaf node's data) and LeavesReader (to
120 ** iterate through a segment's entire leaf layer). Leaf nodes have
121 ** the format:
123 ** varint iHeight; (height from leaf level, always 0)
124 ** varint nTerm; (length of first term)
125 ** char pTerm[nTerm]; (content of first term)
126 ** varint nDoclist; (length of term's associated doclist)
127 ** char pDoclist[nDoclist]; (content of doclist)
128 ** array {
129 ** (further terms are delta-encoded)
130 ** varint nPrefix; (length of prefix shared with previous term)
131 ** varint nSuffix; (length of unshared suffix)
132 ** char pTermSuffix[nSuffix];(unshared suffix of next term)
133 ** varint nDoclist; (length of term's associated doclist)
134 ** char pDoclist[nDoclist]; (content of doclist)
135 ** }
137 ** Here, array { X } means zero or more occurrences of X, adjacent in
138 ** memory.
140 ** Leaf nodes are broken into blocks which are stored contiguously in
141 ** the %_segments table in sorted order. This means that when the end
142 ** of a node is reached, the next term is in the node with the next
143 ** greater node id.
145 ** New data is spilled to a new leaf node when the current node
146 ** exceeds LEAF_MAX bytes (default 2048). New data which itself is
147 ** larger than STANDALONE_MIN (default 1024) is placed in a standalone
148 ** node (a leaf node with a single term and doclist). The goal of
149 ** these settings is to pack together groups of small doclists while
150 ** making it efficient to directly access large doclists. The
151 ** assumption is that large doclists represent terms which are more
152 ** likely to be query targets.
154 ** TODO(shess) It may be useful for blocking decisions to be more
155 ** dynamic. For instance, it may make more sense to have a 2.5k leaf
156 ** node rather than splitting into 2k and .5k nodes. My intuition is
157 ** that this might extend through 2x or 4x the pagesize.
160 **** Segment interior nodes ****
161 ** Segment interior nodes store blockids for subtree nodes and terms
162 ** to describe what data is stored by the each subtree. Interior
163 ** nodes are written using InteriorWriter, and read using
164 ** InteriorReader. InteriorWriters are created as needed when
165 ** SegmentWriter creates new leaf nodes, or when an interior node
166 ** itself grows too big and must be split. The format of interior
167 ** nodes:
169 ** varint iHeight; (height from leaf level, always >0)
170 ** varint iBlockid; (block id of node's leftmost subtree)
171 ** optional {
172 ** varint nTerm; (length of first term)
173 ** char pTerm[nTerm]; (content of first term)
174 ** array {
175 ** (further terms are delta-encoded)
176 ** varint nPrefix; (length of shared prefix with previous term)
177 ** varint nSuffix; (length of unshared suffix)
178 ** char pTermSuffix[nSuffix]; (unshared suffix of next term)
179 ** }
180 ** }
182 ** Here, optional { X } means an optional element, while array { X }
183 ** means zero or more occurrences of X, adjacent in memory.
185 ** An interior node encodes n terms separating n+1 subtrees. The
186 ** subtree blocks are contiguous, so only the first subtree's blockid
187 ** is encoded. The subtree at iBlockid will contain all terms less
188 ** than the first term encoded (or all terms if no term is encoded).
189 ** Otherwise, for terms greater than or equal to pTerm[i] but less
190 ** than pTerm[i+1], the subtree for that term will be rooted at
191 ** iBlockid+i. Interior nodes only store enough term data to
192 ** distinguish adjacent children (if the rightmost term of the left
193 ** child is "something", and the leftmost term of the right child is
194 ** "wicked", only "w" is stored).
196 ** New data is spilled to a new interior node at the same height when
197 ** the current node exceeds INTERIOR_MAX bytes (default 2048).
198 ** INTERIOR_MIN_TERMS (default 7) keeps large terms from monopolizing
199 ** interior nodes and making the tree too skinny. The interior nodes
200 ** at a given height are naturally tracked by interior nodes at
201 ** height+1, and so on.
204 **** Segment directory ****
205 ** The segment directory in table %_segdir stores meta-information for
206 ** merging and deleting segments, and also the root node of the
207 ** segment's tree.
209 ** The root node is the top node of the segment's tree after encoding
210 ** the entire segment, restricted to ROOT_MAX bytes (default 1024).
211 ** This could be either a leaf node or an interior node. If the top
212 ** node requires more than ROOT_MAX bytes, it is flushed to %_segments
213 ** and a new root interior node is generated (which should always fit
214 ** within ROOT_MAX because it only needs space for 2 varints, the
215 ** height and the blockid of the previous root).
217 ** The meta-information in the segment directory is:
218 ** level - segment level (see below)
219 ** idx - index within level
220 ** - (level,idx uniquely identify a segment)
221 ** start_block - first leaf node
222 ** leaves_end_block - last leaf node
223 ** end_block - last block (including interior nodes)
224 ** root - contents of root node
226 ** If the root node is a leaf node, then start_block,
227 ** leaves_end_block, and end_block are all 0.
230 **** Segment merging ****
231 ** To amortize update costs, segments are grouped into levels and
232 ** merged in batches. Each increase in level represents exponentially
233 ** more documents.
235 ** New documents (actually, document updates) are tokenized and
236 ** written individually (using LeafWriter) to a level 0 segment, with
237 ** incrementing idx. When idx reaches MERGE_COUNT (default 16), all
238 ** level 0 segments are merged into a single level 1 segment. Level 1
239 ** is populated like level 0, and eventually MERGE_COUNT level 1
240 ** segments are merged to a single level 2 segment (representing
241 ** MERGE_COUNT^2 updates), and so on.
243 ** A segment merge traverses all segments at a given level in
244 ** parallel, performing a straightforward sorted merge. Since segment
245 ** leaf nodes are written in to the %_segments table in order, this
246 ** merge traverses the underlying sqlite disk structures efficiently.
247 ** After the merge, all segment blocks from the merged level are
248 ** deleted.
250 ** MERGE_COUNT controls how often we merge segments. 16 seems to be
251 ** somewhat of a sweet spot for insertion performance. 32 and 64 show
252 ** very similar performance numbers to 16 on insertion, though they're
253 ** a tiny bit slower (perhaps due to more overhead in merge-time
254 ** sorting). 8 is about 20% slower than 16, 4 about 50% slower than
255 ** 16, 2 about 66% slower than 16.
257 ** At query time, high MERGE_COUNT increases the number of segments
258 ** which need to be scanned and merged. For instance, with 100k docs
259 ** inserted:
261 ** MERGE_COUNT segments
262 ** 16 25
263 ** 8 12
264 ** 4 10
265 ** 2 6
267 ** This appears to have only a moderate impact on queries for very
268 ** frequent terms (which are somewhat dominated by segment merge
269 ** costs), and infrequent and non-existent terms still seem to be fast
270 ** even with many segments.
272 ** TODO(shess) That said, it would be nice to have a better query-side
273 ** argument for MERGE_COUNT of 16. Also, it is possible/likely that
274 ** optimizations to things like doclist merging will swing the sweet
275 ** spot around.
279 **** Handling of deletions and updates ****
280 ** Since we're using a segmented structure, with no docid-oriented
281 ** index into the term index, we clearly cannot simply update the term
282 ** index when a document is deleted or updated. For deletions, we
283 ** write an empty doclist (varint(docid) varint(POS_END)), for updates
284 ** we simply write the new doclist. Segment merges overwrite older
285 ** data for a particular docid with newer data, so deletes or updates
286 ** will eventually overtake the earlier data and knock it out. The
287 ** query logic likewise merges doclists so that newer data knocks out
288 ** older data.
291 #include "fts3Int.h"
292 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
294 #if defined(SQLITE_ENABLE_FTS3) && !defined(SQLITE_CORE)
295 # define SQLITE_CORE 1
296 #endif
298 #include <assert.h>
299 #include <stdlib.h>
300 #include <stddef.h>
301 #include <stdio.h>
302 #include <string.h>
303 #include <stdarg.h>
305 #include "fts3.h"
306 #ifndef SQLITE_CORE
307 # include "sqlite3ext.h"
308 SQLITE_EXTENSION_INIT1
309 #endif
311 typedef struct Fts3HashWrapper Fts3HashWrapper;
312 struct Fts3HashWrapper {
313 Fts3Hash hash; /* Hash table */
314 int nRef; /* Number of pointers to this object */
317 static int fts3EvalNext(Fts3Cursor *pCsr);
318 static int fts3EvalStart(Fts3Cursor *pCsr);
319 static int fts3TermSegReaderCursor(
320 Fts3Cursor *, const char *, int, int, Fts3MultiSegReader **);
323 ** This variable is set to false when running tests for which the on disk
324 ** structures should not be corrupt. Otherwise, true. If it is false, extra
325 ** assert() conditions in the fts3 code are activated - conditions that are
326 ** only true if it is guaranteed that the fts3 database is not corrupt.
328 #ifdef SQLITE_DEBUG
329 int sqlite3_fts3_may_be_corrupt = 1;
330 #endif
333 ** Write a 64-bit variable-length integer to memory starting at p[0].
334 ** The length of data written will be between 1 and FTS3_VARINT_MAX bytes.
335 ** The number of bytes written is returned.
337 int sqlite3Fts3PutVarint(char *p, sqlite_int64 v){
338 unsigned char *q = (unsigned char *) p;
339 sqlite_uint64 vu = v;
341 *q++ = (unsigned char) ((vu & 0x7f) | 0x80);
342 vu >>= 7;
343 }while( vu!=0 );
344 q[-1] &= 0x7f; /* turn off high bit in final byte */
345 assert( q - (unsigned char *)p <= FTS3_VARINT_MAX );
346 return (int) (q - (unsigned char *)p);
349 #define GETVARINT_STEP(v, ptr, shift, mask1, mask2, var, ret) \
350 v = (v & mask1) | ( (*(const unsigned char*)(ptr++)) << shift ); \
351 if( (v & mask2)==0 ){ var = v; return ret; }
352 #define GETVARINT_INIT(v, ptr, shift, mask1, mask2, var, ret) \
353 v = (*ptr++); \
354 if( (v & mask2)==0 ){ var = v; return ret; }
356 int sqlite3Fts3GetVarintU(const char *pBuf, sqlite_uint64 *v){
357 const unsigned char *p = (const unsigned char*)pBuf;
358 const unsigned char *pStart = p;
359 u32 a;
360 u64 b;
361 int shift;
363 GETVARINT_INIT(a, p, 0, 0x00, 0x80, *v, 1);
364 GETVARINT_STEP(a, p, 7, 0x7F, 0x4000, *v, 2);
365 GETVARINT_STEP(a, p, 14, 0x3FFF, 0x200000, *v, 3);
366 GETVARINT_STEP(a, p, 21, 0x1FFFFF, 0x10000000, *v, 4);
367 b = (a & 0x0FFFFFFF );
369 for(shift=28; shift<=63; shift+=7){
370 u64 c = *p++;
371 b += (c&0x7F) << shift;
372 if( (c & 0x80)==0 ) break;
374 *v = b;
375 return (int)(p - pStart);
379 ** Read a 64-bit variable-length integer from memory starting at p[0].
380 ** Return the number of bytes read, or 0 on error.
381 ** The value is stored in *v.
383 int sqlite3Fts3GetVarint(const char *pBuf, sqlite_int64 *v){
384 return sqlite3Fts3GetVarintU(pBuf, (sqlite3_uint64*)v);
388 ** Read a 64-bit variable-length integer from memory starting at p[0] and
389 ** not extending past pEnd[-1].
390 ** Return the number of bytes read, or 0 on error.
391 ** The value is stored in *v.
393 int sqlite3Fts3GetVarintBounded(
394 const char *pBuf,
395 const char *pEnd,
396 sqlite_int64 *v
398 const unsigned char *p = (const unsigned char*)pBuf;
399 const unsigned char *pStart = p;
400 const unsigned char *pX = (const unsigned char*)pEnd;
401 u64 b = 0;
402 int shift;
403 for(shift=0; shift<=63; shift+=7){
404 u64 c = p<pX ? *p : 0;
405 p++;
406 b += (c&0x7F) << shift;
407 if( (c & 0x80)==0 ) break;
409 *v = b;
410 return (int)(p - pStart);
414 ** Similar to sqlite3Fts3GetVarint(), except that the output is truncated to
415 ** a non-negative 32-bit integer before it is returned.
417 int sqlite3Fts3GetVarint32(const char *p, int *pi){
418 const unsigned char *ptr = (const unsigned char*)p;
419 u32 a;
421 #ifndef fts3GetVarint32
422 GETVARINT_INIT(a, ptr, 0, 0x00, 0x80, *pi, 1);
423 #else
424 a = (*ptr++);
425 assert( a & 0x80 );
426 #endif
428 GETVARINT_STEP(a, ptr, 7, 0x7F, 0x4000, *pi, 2);
429 GETVARINT_STEP(a, ptr, 14, 0x3FFF, 0x200000, *pi, 3);
430 GETVARINT_STEP(a, ptr, 21, 0x1FFFFF, 0x10000000, *pi, 4);
431 a = (a & 0x0FFFFFFF );
432 *pi = (int)(a | ((u32)(*ptr & 0x07) << 28));
433 assert( 0==(a & 0x80000000) );
434 assert( *pi>=0 );
435 return 5;
439 ** Return the number of bytes required to encode v as a varint
441 int sqlite3Fts3VarintLen(sqlite3_uint64 v){
442 int i = 0;
444 i++;
445 v >>= 7;
446 }while( v!=0 );
447 return i;
451 ** Convert an SQL-style quoted string into a normal string by removing
452 ** the quote characters. The conversion is done in-place. If the
453 ** input does not begin with a quote character, then this routine
454 ** is a no-op.
456 ** Examples:
458 ** "abc" becomes abc
459 ** 'xyz' becomes xyz
460 ** [pqr] becomes pqr
461 ** `mno` becomes mno
464 void sqlite3Fts3Dequote(char *z){
465 char quote; /* Quote character (if any ) */
467 quote = z[0];
468 if( quote=='[' || quote=='\'' || quote=='"' || quote=='`' ){
469 int iIn = 1; /* Index of next byte to read from input */
470 int iOut = 0; /* Index of next byte to write to output */
472 /* If the first byte was a '[', then the close-quote character is a ']' */
473 if( quote=='[' ) quote = ']';
475 while( z[iIn] ){
476 if( z[iIn]==quote ){
477 if( z[iIn+1]!=quote ) break;
478 z[iOut++] = quote;
479 iIn += 2;
480 }else{
481 z[iOut++] = z[iIn++];
484 z[iOut] = '\0';
489 ** Read a single varint from the doclist at *pp and advance *pp to point
490 ** to the first byte past the end of the varint. Add the value of the varint
491 ** to *pVal.
493 static void fts3GetDeltaVarint(char **pp, sqlite3_int64 *pVal){
494 sqlite3_int64 iVal;
495 *pp += sqlite3Fts3GetVarint(*pp, &iVal);
496 *pVal += iVal;
500 ** When this function is called, *pp points to the first byte following a
501 ** varint that is part of a doclist (or position-list, or any other list
502 ** of varints). This function moves *pp to point to the start of that varint,
503 ** and sets *pVal by the varint value.
505 ** Argument pStart points to the first byte of the doclist that the
506 ** varint is part of.
508 static void fts3GetReverseVarint(
509 char **pp,
510 char *pStart,
511 sqlite3_int64 *pVal
513 sqlite3_int64 iVal;
514 char *p;
516 /* Pointer p now points at the first byte past the varint we are
517 ** interested in. So, unless the doclist is corrupt, the 0x80 bit is
518 ** clear on character p[-1]. */
519 for(p = (*pp)-2; p>=pStart && *p&0x80; p--);
520 p++;
521 *pp = p;
523 sqlite3Fts3GetVarint(p, &iVal);
524 *pVal = iVal;
528 ** The xDisconnect() virtual table method.
530 static int fts3DisconnectMethod(sqlite3_vtab *pVtab){
531 Fts3Table *p = (Fts3Table *)pVtab;
532 int i;
534 assert( p->nPendingData==0 );
535 assert( p->pSegments==0 );
537 /* Free any prepared statements held */
538 sqlite3_finalize(p->pSeekStmt);
539 for(i=0; i<SizeofArray(p->aStmt); i++){
540 sqlite3_finalize(p->aStmt[i]);
542 sqlite3_free(p->zSegmentsTbl);
543 sqlite3_free(p->zReadExprlist);
544 sqlite3_free(p->zWriteExprlist);
545 sqlite3_free(p->zContentTbl);
546 sqlite3_free(p->zLanguageid);
548 /* Invoke the tokenizer destructor to free the tokenizer. */
549 p->pTokenizer->pModule->xDestroy(p->pTokenizer);
551 sqlite3_free(p);
552 return SQLITE_OK;
556 ** Write an error message into *pzErr
558 void sqlite3Fts3ErrMsg(char **pzErr, const char *zFormat, ...){
559 va_list ap;
560 sqlite3_free(*pzErr);
561 va_start(ap, zFormat);
562 *pzErr = sqlite3_vmprintf(zFormat, ap);
563 va_end(ap);
567 ** Construct one or more SQL statements from the format string given
568 ** and then evaluate those statements. The success code is written
569 ** into *pRc.
571 ** If *pRc is initially non-zero then this routine is a no-op.
573 static void fts3DbExec(
574 int *pRc, /* Success code */
575 sqlite3 *db, /* Database in which to run SQL */
576 const char *zFormat, /* Format string for SQL */
577 ... /* Arguments to the format string */
579 va_list ap;
580 char *zSql;
581 if( *pRc ) return;
582 va_start(ap, zFormat);
583 zSql = sqlite3_vmprintf(zFormat, ap);
584 va_end(ap);
585 if( zSql==0 ){
586 *pRc = SQLITE_NOMEM;
587 }else{
588 *pRc = sqlite3_exec(db, zSql, 0, 0, 0);
589 sqlite3_free(zSql);
594 ** The xDestroy() virtual table method.
596 static int fts3DestroyMethod(sqlite3_vtab *pVtab){
597 Fts3Table *p = (Fts3Table *)pVtab;
598 int rc = SQLITE_OK; /* Return code */
599 const char *zDb = p->zDb; /* Name of database (e.g. "main", "temp") */
600 sqlite3 *db = p->db; /* Database handle */
602 /* Drop the shadow tables */
603 fts3DbExec(&rc, db,
604 "DROP TABLE IF EXISTS %Q.'%q_segments';"
605 "DROP TABLE IF EXISTS %Q.'%q_segdir';"
606 "DROP TABLE IF EXISTS %Q.'%q_docsize';"
607 "DROP TABLE IF EXISTS %Q.'%q_stat';"
608 "%s DROP TABLE IF EXISTS %Q.'%q_content';",
609 zDb, p->zName,
610 zDb, p->zName,
611 zDb, p->zName,
612 zDb, p->zName,
613 (p->zContentTbl ? "--" : ""), zDb,p->zName
616 /* If everything has worked, invoke fts3DisconnectMethod() to free the
617 ** memory associated with the Fts3Table structure and return SQLITE_OK.
618 ** Otherwise, return an SQLite error code.
620 return (rc==SQLITE_OK ? fts3DisconnectMethod(pVtab) : rc);
625 ** Invoke sqlite3_declare_vtab() to declare the schema for the FTS3 table
626 ** passed as the first argument. This is done as part of the xConnect()
627 ** and xCreate() methods.
629 ** If *pRc is non-zero when this function is called, it is a no-op.
630 ** Otherwise, if an error occurs, an SQLite error code is stored in *pRc
631 ** before returning.
633 static void fts3DeclareVtab(int *pRc, Fts3Table *p){
634 if( *pRc==SQLITE_OK ){
635 int i; /* Iterator variable */
636 int rc; /* Return code */
637 char *zSql; /* SQL statement passed to declare_vtab() */
638 char *zCols; /* List of user defined columns */
639 const char *zLanguageid;
641 zLanguageid = (p->zLanguageid ? p->zLanguageid : "__langid");
642 sqlite3_vtab_config(p->db, SQLITE_VTAB_CONSTRAINT_SUPPORT, 1);
644 /* Create a list of user columns for the virtual table */
645 zCols = sqlite3_mprintf("%Q, ", p->azColumn[0]);
646 for(i=1; zCols && i<p->nColumn; i++){
647 zCols = sqlite3_mprintf("%z%Q, ", zCols, p->azColumn[i]);
650 /* Create the whole "CREATE TABLE" statement to pass to SQLite */
651 zSql = sqlite3_mprintf(
652 "CREATE TABLE x(%s %Q HIDDEN, docid HIDDEN, %Q HIDDEN)",
653 zCols, p->zName, zLanguageid
655 if( !zCols || !zSql ){
656 rc = SQLITE_NOMEM;
657 }else{
658 rc = sqlite3_declare_vtab(p->db, zSql);
661 sqlite3_free(zSql);
662 sqlite3_free(zCols);
663 *pRc = rc;
668 ** Create the %_stat table if it does not already exist.
670 void sqlite3Fts3CreateStatTable(int *pRc, Fts3Table *p){
671 fts3DbExec(pRc, p->db,
672 "CREATE TABLE IF NOT EXISTS %Q.'%q_stat'"
673 "(id INTEGER PRIMARY KEY, value BLOB);",
674 p->zDb, p->zName
676 if( (*pRc)==SQLITE_OK ) p->bHasStat = 1;
680 ** Create the backing store tables (%_content, %_segments and %_segdir)
681 ** required by the FTS3 table passed as the only argument. This is done
682 ** as part of the vtab xCreate() method.
684 ** If the p->bHasDocsize boolean is true (indicating that this is an
685 ** FTS4 table, not an FTS3 table) then also create the %_docsize and
686 ** %_stat tables required by FTS4.
688 static int fts3CreateTables(Fts3Table *p){
689 int rc = SQLITE_OK; /* Return code */
690 int i; /* Iterator variable */
691 sqlite3 *db = p->db; /* The database connection */
693 if( p->zContentTbl==0 ){
694 const char *zLanguageid = p->zLanguageid;
695 char *zContentCols; /* Columns of %_content table */
697 /* Create a list of user columns for the content table */
698 zContentCols = sqlite3_mprintf("docid INTEGER PRIMARY KEY");
699 for(i=0; zContentCols && i<p->nColumn; i++){
700 char *z = p->azColumn[i];
701 zContentCols = sqlite3_mprintf("%z, 'c%d%q'", zContentCols, i, z);
703 if( zLanguageid && zContentCols ){
704 zContentCols = sqlite3_mprintf("%z, langid", zContentCols, zLanguageid);
706 if( zContentCols==0 ) rc = SQLITE_NOMEM;
708 /* Create the content table */
709 fts3DbExec(&rc, db,
710 "CREATE TABLE %Q.'%q_content'(%s)",
711 p->zDb, p->zName, zContentCols
713 sqlite3_free(zContentCols);
716 /* Create other tables */
717 fts3DbExec(&rc, db,
718 "CREATE TABLE %Q.'%q_segments'(blockid INTEGER PRIMARY KEY, block BLOB);",
719 p->zDb, p->zName
721 fts3DbExec(&rc, db,
722 "CREATE TABLE %Q.'%q_segdir'("
723 "level INTEGER,"
724 "idx INTEGER,"
725 "start_block INTEGER,"
726 "leaves_end_block INTEGER,"
727 "end_block INTEGER,"
728 "root BLOB,"
729 "PRIMARY KEY(level, idx)"
730 ");",
731 p->zDb, p->zName
733 if( p->bHasDocsize ){
734 fts3DbExec(&rc, db,
735 "CREATE TABLE %Q.'%q_docsize'(docid INTEGER PRIMARY KEY, size BLOB);",
736 p->zDb, p->zName
739 assert( p->bHasStat==p->bFts4 );
740 if( p->bHasStat ){
741 sqlite3Fts3CreateStatTable(&rc, p);
743 return rc;
747 ** Store the current database page-size in bytes in p->nPgsz.
749 ** If *pRc is non-zero when this function is called, it is a no-op.
750 ** Otherwise, if an error occurs, an SQLite error code is stored in *pRc
751 ** before returning.
753 static void fts3DatabasePageSize(int *pRc, Fts3Table *p){
754 if( *pRc==SQLITE_OK ){
755 int rc; /* Return code */
756 char *zSql; /* SQL text "PRAGMA %Q.page_size" */
757 sqlite3_stmt *pStmt; /* Compiled "PRAGMA %Q.page_size" statement */
759 zSql = sqlite3_mprintf("PRAGMA %Q.page_size", p->zDb);
760 if( !zSql ){
761 rc = SQLITE_NOMEM;
762 }else{
763 rc = sqlite3_prepare(p->db, zSql, -1, &pStmt, 0);
764 if( rc==SQLITE_OK ){
765 sqlite3_step(pStmt);
766 p->nPgsz = sqlite3_column_int(pStmt, 0);
767 rc = sqlite3_finalize(pStmt);
768 }else if( rc==SQLITE_AUTH ){
769 p->nPgsz = 1024;
770 rc = SQLITE_OK;
773 assert( p->nPgsz>0 || rc!=SQLITE_OK );
774 sqlite3_free(zSql);
775 *pRc = rc;
780 ** "Special" FTS4 arguments are column specifications of the following form:
782 ** <key> = <value>
784 ** There may not be whitespace surrounding the "=" character. The <value>
785 ** term may be quoted, but the <key> may not.
787 static int fts3IsSpecialColumn(
788 const char *z,
789 int *pnKey,
790 char **pzValue
792 char *zValue;
793 const char *zCsr = z;
795 while( *zCsr!='=' ){
796 if( *zCsr=='\0' ) return 0;
797 zCsr++;
800 *pnKey = (int)(zCsr-z);
801 zValue = sqlite3_mprintf("%s", &zCsr[1]);
802 if( zValue ){
803 sqlite3Fts3Dequote(zValue);
805 *pzValue = zValue;
806 return 1;
810 ** Append the output of a printf() style formatting to an existing string.
812 static void fts3Appendf(
813 int *pRc, /* IN/OUT: Error code */
814 char **pz, /* IN/OUT: Pointer to string buffer */
815 const char *zFormat, /* Printf format string to append */
816 ... /* Arguments for printf format string */
818 if( *pRc==SQLITE_OK ){
819 va_list ap;
820 char *z;
821 va_start(ap, zFormat);
822 z = sqlite3_vmprintf(zFormat, ap);
823 va_end(ap);
824 if( z && *pz ){
825 char *z2 = sqlite3_mprintf("%s%s", *pz, z);
826 sqlite3_free(z);
827 z = z2;
829 if( z==0 ) *pRc = SQLITE_NOMEM;
830 sqlite3_free(*pz);
831 *pz = z;
836 ** Return a copy of input string zInput enclosed in double-quotes (") and
837 ** with all double quote characters escaped. For example:
839 ** fts3QuoteId("un \"zip\"") -> "un \"\"zip\"\""
841 ** The pointer returned points to memory obtained from sqlite3_malloc(). It
842 ** is the callers responsibility to call sqlite3_free() to release this
843 ** memory.
845 static char *fts3QuoteId(char const *zInput){
846 sqlite3_int64 nRet;
847 char *zRet;
848 nRet = 2 + (int)strlen(zInput)*2 + 1;
849 zRet = sqlite3_malloc64(nRet);
850 if( zRet ){
851 int i;
852 char *z = zRet;
853 *(z++) = '"';
854 for(i=0; zInput[i]; i++){
855 if( zInput[i]=='"' ) *(z++) = '"';
856 *(z++) = zInput[i];
858 *(z++) = '"';
859 *(z++) = '\0';
861 return zRet;
865 ** Return a list of comma separated SQL expressions and a FROM clause that
866 ** could be used in a SELECT statement such as the following:
868 ** SELECT <list of expressions> FROM %_content AS x ...
870 ** to return the docid, followed by each column of text data in order
871 ** from left to write. If parameter zFunc is not NULL, then instead of
872 ** being returned directly each column of text data is passed to an SQL
873 ** function named zFunc first. For example, if zFunc is "unzip" and the
874 ** table has the three user-defined columns "a", "b", and "c", the following
875 ** string is returned:
877 ** "docid, unzip(x.'a'), unzip(x.'b'), unzip(x.'c') FROM %_content AS x"
879 ** The pointer returned points to a buffer allocated by sqlite3_malloc(). It
880 ** is the responsibility of the caller to eventually free it.
882 ** If *pRc is not SQLITE_OK when this function is called, it is a no-op (and
883 ** a NULL pointer is returned). Otherwise, if an OOM error is encountered
884 ** by this function, NULL is returned and *pRc is set to SQLITE_NOMEM. If
885 ** no error occurs, *pRc is left unmodified.
887 static char *fts3ReadExprList(Fts3Table *p, const char *zFunc, int *pRc){
888 char *zRet = 0;
889 char *zFree = 0;
890 char *zFunction;
891 int i;
893 if( p->zContentTbl==0 ){
894 if( !zFunc ){
895 zFunction = "";
896 }else{
897 zFree = zFunction = fts3QuoteId(zFunc);
899 fts3Appendf(pRc, &zRet, "docid");
900 for(i=0; i<p->nColumn; i++){
901 fts3Appendf(pRc, &zRet, ",%s(x.'c%d%q')", zFunction, i, p->azColumn[i]);
903 if( p->zLanguageid ){
904 fts3Appendf(pRc, &zRet, ", x.%Q", "langid");
906 sqlite3_free(zFree);
907 }else{
908 fts3Appendf(pRc, &zRet, "rowid");
909 for(i=0; i<p->nColumn; i++){
910 fts3Appendf(pRc, &zRet, ", x.'%q'", p->azColumn[i]);
912 if( p->zLanguageid ){
913 fts3Appendf(pRc, &zRet, ", x.%Q", p->zLanguageid);
916 fts3Appendf(pRc, &zRet, " FROM '%q'.'%q%s' AS x",
917 p->zDb,
918 (p->zContentTbl ? p->zContentTbl : p->zName),
919 (p->zContentTbl ? "" : "_content")
921 return zRet;
925 ** Return a list of N comma separated question marks, where N is the number
926 ** of columns in the %_content table (one for the docid plus one for each
927 ** user-defined text column).
929 ** If argument zFunc is not NULL, then all but the first question mark
930 ** is preceded by zFunc and an open bracket, and followed by a closed
931 ** bracket. For example, if zFunc is "zip" and the FTS3 table has three
932 ** user-defined text columns, the following string is returned:
934 ** "?, zip(?), zip(?), zip(?)"
936 ** The pointer returned points to a buffer allocated by sqlite3_malloc(). It
937 ** is the responsibility of the caller to eventually free it.
939 ** If *pRc is not SQLITE_OK when this function is called, it is a no-op (and
940 ** a NULL pointer is returned). Otherwise, if an OOM error is encountered
941 ** by this function, NULL is returned and *pRc is set to SQLITE_NOMEM. If
942 ** no error occurs, *pRc is left unmodified.
944 static char *fts3WriteExprList(Fts3Table *p, const char *zFunc, int *pRc){
945 char *zRet = 0;
946 char *zFree = 0;
947 char *zFunction;
948 int i;
950 if( !zFunc ){
951 zFunction = "";
952 }else{
953 zFree = zFunction = fts3QuoteId(zFunc);
955 fts3Appendf(pRc, &zRet, "?");
956 for(i=0; i<p->nColumn; i++){
957 fts3Appendf(pRc, &zRet, ",%s(?)", zFunction);
959 if( p->zLanguageid ){
960 fts3Appendf(pRc, &zRet, ", ?");
962 sqlite3_free(zFree);
963 return zRet;
967 ** Buffer z contains a positive integer value encoded as utf-8 text.
968 ** Decode this value and store it in *pnOut, returning the number of bytes
969 ** consumed. If an overflow error occurs return a negative value.
971 int sqlite3Fts3ReadInt(const char *z, int *pnOut){
972 u64 iVal = 0;
973 int i;
974 for(i=0; z[i]>='0' && z[i]<='9'; i++){
975 iVal = iVal*10 + (z[i] - '0');
976 if( iVal>0x7FFFFFFF ) return -1;
978 *pnOut = (int)iVal;
979 return i;
983 ** This function interprets the string at (*pp) as a non-negative integer
984 ** value. It reads the integer and sets *pnOut to the value read, then
985 ** sets *pp to point to the byte immediately following the last byte of
986 ** the integer value.
988 ** Only decimal digits ('0'..'9') may be part of an integer value.
990 ** If *pp does not being with a decimal digit SQLITE_ERROR is returned and
991 ** the output value undefined. Otherwise SQLITE_OK is returned.
993 ** This function is used when parsing the "prefix=" FTS4 parameter.
995 static int fts3GobbleInt(const char **pp, int *pnOut){
996 const int MAX_NPREFIX = 10000000;
997 int nInt = 0; /* Output value */
998 int nByte;
999 nByte = sqlite3Fts3ReadInt(*pp, &nInt);
1000 if( nInt>MAX_NPREFIX ){
1001 nInt = 0;
1003 if( nByte==0 ){
1004 return SQLITE_ERROR;
1006 *pnOut = nInt;
1007 *pp += nByte;
1008 return SQLITE_OK;
1012 ** This function is called to allocate an array of Fts3Index structures
1013 ** representing the indexes maintained by the current FTS table. FTS tables
1014 ** always maintain the main "terms" index, but may also maintain one or
1015 ** more "prefix" indexes, depending on the value of the "prefix=" parameter
1016 ** (if any) specified as part of the CREATE VIRTUAL TABLE statement.
1018 ** Argument zParam is passed the value of the "prefix=" option if one was
1019 ** specified, or NULL otherwise.
1021 ** If no error occurs, SQLITE_OK is returned and *apIndex set to point to
1022 ** the allocated array. *pnIndex is set to the number of elements in the
1023 ** array. If an error does occur, an SQLite error code is returned.
1025 ** Regardless of whether or not an error is returned, it is the responsibility
1026 ** of the caller to call sqlite3_free() on the output array to free it.
1028 static int fts3PrefixParameter(
1029 const char *zParam, /* ABC in prefix=ABC parameter to parse */
1030 int *pnIndex, /* OUT: size of *apIndex[] array */
1031 struct Fts3Index **apIndex /* OUT: Array of indexes for this table */
1033 struct Fts3Index *aIndex; /* Allocated array */
1034 int nIndex = 1; /* Number of entries in array */
1036 if( zParam && zParam[0] ){
1037 const char *p;
1038 nIndex++;
1039 for(p=zParam; *p; p++){
1040 if( *p==',' ) nIndex++;
1044 aIndex = sqlite3_malloc64(sizeof(struct Fts3Index) * nIndex);
1045 *apIndex = aIndex;
1046 if( !aIndex ){
1047 return SQLITE_NOMEM;
1050 memset(aIndex, 0, sizeof(struct Fts3Index) * nIndex);
1051 if( zParam ){
1052 const char *p = zParam;
1053 int i;
1054 for(i=1; i<nIndex; i++){
1055 int nPrefix = 0;
1056 if( fts3GobbleInt(&p, &nPrefix) ) return SQLITE_ERROR;
1057 assert( nPrefix>=0 );
1058 if( nPrefix==0 ){
1059 nIndex--;
1060 i--;
1061 }else{
1062 aIndex[i].nPrefix = nPrefix;
1064 p++;
1068 *pnIndex = nIndex;
1069 return SQLITE_OK;
1073 ** This function is called when initializing an FTS4 table that uses the
1074 ** content=xxx option. It determines the number of and names of the columns
1075 ** of the new FTS4 table.
1077 ** The third argument passed to this function is the value passed to the
1078 ** config=xxx option (i.e. "xxx"). This function queries the database for
1079 ** a table of that name. If found, the output variables are populated
1080 ** as follows:
1082 ** *pnCol: Set to the number of columns table xxx has,
1084 ** *pnStr: Set to the total amount of space required to store a copy
1085 ** of each columns name, including the nul-terminator.
1087 ** *pazCol: Set to point to an array of *pnCol strings. Each string is
1088 ** the name of the corresponding column in table xxx. The array
1089 ** and its contents are allocated using a single allocation. It
1090 ** is the responsibility of the caller to free this allocation
1091 ** by eventually passing the *pazCol value to sqlite3_free().
1093 ** If the table cannot be found, an error code is returned and the output
1094 ** variables are undefined. Or, if an OOM is encountered, SQLITE_NOMEM is
1095 ** returned (and the output variables are undefined).
1097 static int fts3ContentColumns(
1098 sqlite3 *db, /* Database handle */
1099 const char *zDb, /* Name of db (i.e. "main", "temp" etc.) */
1100 const char *zTbl, /* Name of content table */
1101 const char ***pazCol, /* OUT: Malloc'd array of column names */
1102 int *pnCol, /* OUT: Size of array *pazCol */
1103 int *pnStr, /* OUT: Bytes of string content */
1104 char **pzErr /* OUT: error message */
1106 int rc = SQLITE_OK; /* Return code */
1107 char *zSql; /* "SELECT *" statement on zTbl */
1108 sqlite3_stmt *pStmt = 0; /* Compiled version of zSql */
1110 zSql = sqlite3_mprintf("SELECT * FROM %Q.%Q", zDb, zTbl);
1111 if( !zSql ){
1112 rc = SQLITE_NOMEM;
1113 }else{
1114 rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
1115 if( rc!=SQLITE_OK ){
1116 sqlite3Fts3ErrMsg(pzErr, "%s", sqlite3_errmsg(db));
1119 sqlite3_free(zSql);
1121 if( rc==SQLITE_OK ){
1122 const char **azCol; /* Output array */
1123 sqlite3_int64 nStr = 0; /* Size of all column names (incl. 0x00) */
1124 int nCol; /* Number of table columns */
1125 int i; /* Used to iterate through columns */
1127 /* Loop through the returned columns. Set nStr to the number of bytes of
1128 ** space required to store a copy of each column name, including the
1129 ** nul-terminator byte. */
1130 nCol = sqlite3_column_count(pStmt);
1131 for(i=0; i<nCol; i++){
1132 const char *zCol = sqlite3_column_name(pStmt, i);
1133 nStr += strlen(zCol) + 1;
1136 /* Allocate and populate the array to return. */
1137 azCol = (const char **)sqlite3_malloc64(sizeof(char *) * nCol + nStr);
1138 if( azCol==0 ){
1139 rc = SQLITE_NOMEM;
1140 }else{
1141 char *p = (char *)&azCol[nCol];
1142 for(i=0; i<nCol; i++){
1143 const char *zCol = sqlite3_column_name(pStmt, i);
1144 int n = (int)strlen(zCol)+1;
1145 memcpy(p, zCol, n);
1146 azCol[i] = p;
1147 p += n;
1150 sqlite3_finalize(pStmt);
1152 /* Set the output variables. */
1153 *pnCol = nCol;
1154 *pnStr = nStr;
1155 *pazCol = azCol;
1158 return rc;
1162 ** This function is the implementation of both the xConnect and xCreate
1163 ** methods of the FTS3 virtual table.
1165 ** The argv[] array contains the following:
1167 ** argv[0] -> module name ("fts3" or "fts4")
1168 ** argv[1] -> database name
1169 ** argv[2] -> table name
1170 ** argv[...] -> "column name" and other module argument fields.
1172 static int fts3InitVtab(
1173 int isCreate, /* True for xCreate, false for xConnect */
1174 sqlite3 *db, /* The SQLite database connection */
1175 void *pAux, /* Hash table containing tokenizers */
1176 int argc, /* Number of elements in argv array */
1177 const char * const *argv, /* xCreate/xConnect argument array */
1178 sqlite3_vtab **ppVTab, /* Write the resulting vtab structure here */
1179 char **pzErr /* Write any error message here */
1181 Fts3Hash *pHash = &((Fts3HashWrapper*)pAux)->hash;
1182 Fts3Table *p = 0; /* Pointer to allocated vtab */
1183 int rc = SQLITE_OK; /* Return code */
1184 int i; /* Iterator variable */
1185 sqlite3_int64 nByte; /* Size of allocation used for *p */
1186 int iCol; /* Column index */
1187 int nString = 0; /* Bytes required to hold all column names */
1188 int nCol = 0; /* Number of columns in the FTS table */
1189 char *zCsr; /* Space for holding column names */
1190 int nDb; /* Bytes required to hold database name */
1191 int nName; /* Bytes required to hold table name */
1192 int isFts4 = (argv[0][3]=='4'); /* True for FTS4, false for FTS3 */
1193 const char **aCol; /* Array of column names */
1194 sqlite3_tokenizer *pTokenizer = 0; /* Tokenizer for this table */
1196 int nIndex = 0; /* Size of aIndex[] array */
1197 struct Fts3Index *aIndex = 0; /* Array of indexes for this table */
1199 /* The results of parsing supported FTS4 key=value options: */
1200 int bNoDocsize = 0; /* True to omit %_docsize table */
1201 int bDescIdx = 0; /* True to store descending indexes */
1202 char *zPrefix = 0; /* Prefix parameter value (or NULL) */
1203 char *zCompress = 0; /* compress=? parameter (or NULL) */
1204 char *zUncompress = 0; /* uncompress=? parameter (or NULL) */
1205 char *zContent = 0; /* content=? parameter (or NULL) */
1206 char *zLanguageid = 0; /* languageid=? parameter (or NULL) */
1207 char **azNotindexed = 0; /* The set of notindexed= columns */
1208 int nNotindexed = 0; /* Size of azNotindexed[] array */
1210 assert( strlen(argv[0])==4 );
1211 assert( (sqlite3_strnicmp(argv[0], "fts4", 4)==0 && isFts4)
1212 || (sqlite3_strnicmp(argv[0], "fts3", 4)==0 && !isFts4)
1215 nDb = (int)strlen(argv[1]) + 1;
1216 nName = (int)strlen(argv[2]) + 1;
1218 nByte = sizeof(const char *) * (argc-2);
1219 aCol = (const char **)sqlite3_malloc64(nByte);
1220 if( aCol ){
1221 memset((void*)aCol, 0, nByte);
1222 azNotindexed = (char **)sqlite3_malloc64(nByte);
1224 if( azNotindexed ){
1225 memset(azNotindexed, 0, nByte);
1227 if( !aCol || !azNotindexed ){
1228 rc = SQLITE_NOMEM;
1229 goto fts3_init_out;
1232 /* Loop through all of the arguments passed by the user to the FTS3/4
1233 ** module (i.e. all the column names and special arguments). This loop
1234 ** does the following:
1236 ** + Figures out the number of columns the FTSX table will have, and
1237 ** the number of bytes of space that must be allocated to store copies
1238 ** of the column names.
1240 ** + If there is a tokenizer specification included in the arguments,
1241 ** initializes the tokenizer pTokenizer.
1243 for(i=3; rc==SQLITE_OK && i<argc; i++){
1244 char const *z = argv[i];
1245 int nKey;
1246 char *zVal;
1248 /* Check if this is a tokenizer specification */
1249 if( !pTokenizer
1250 && strlen(z)>8
1251 && 0==sqlite3_strnicmp(z, "tokenize", 8)
1252 && 0==sqlite3Fts3IsIdChar(z[8])
1254 rc = sqlite3Fts3InitTokenizer(pHash, &z[9], &pTokenizer, pzErr);
1257 /* Check if it is an FTS4 special argument. */
1258 else if( isFts4 && fts3IsSpecialColumn(z, &nKey, &zVal) ){
1259 struct Fts4Option {
1260 const char *zOpt;
1261 int nOpt;
1262 } aFts4Opt[] = {
1263 { "matchinfo", 9 }, /* 0 -> MATCHINFO */
1264 { "prefix", 6 }, /* 1 -> PREFIX */
1265 { "compress", 8 }, /* 2 -> COMPRESS */
1266 { "uncompress", 10 }, /* 3 -> UNCOMPRESS */
1267 { "order", 5 }, /* 4 -> ORDER */
1268 { "content", 7 }, /* 5 -> CONTENT */
1269 { "languageid", 10 }, /* 6 -> LANGUAGEID */
1270 { "notindexed", 10 } /* 7 -> NOTINDEXED */
1273 int iOpt;
1274 if( !zVal ){
1275 rc = SQLITE_NOMEM;
1276 }else{
1277 for(iOpt=0; iOpt<SizeofArray(aFts4Opt); iOpt++){
1278 struct Fts4Option *pOp = &aFts4Opt[iOpt];
1279 if( nKey==pOp->nOpt && !sqlite3_strnicmp(z, pOp->zOpt, pOp->nOpt) ){
1280 break;
1283 switch( iOpt ){
1284 case 0: /* MATCHINFO */
1285 if( strlen(zVal)!=4 || sqlite3_strnicmp(zVal, "fts3", 4) ){
1286 sqlite3Fts3ErrMsg(pzErr, "unrecognized matchinfo: %s", zVal);
1287 rc = SQLITE_ERROR;
1289 bNoDocsize = 1;
1290 break;
1292 case 1: /* PREFIX */
1293 sqlite3_free(zPrefix);
1294 zPrefix = zVal;
1295 zVal = 0;
1296 break;
1298 case 2: /* COMPRESS */
1299 sqlite3_free(zCompress);
1300 zCompress = zVal;
1301 zVal = 0;
1302 break;
1304 case 3: /* UNCOMPRESS */
1305 sqlite3_free(zUncompress);
1306 zUncompress = zVal;
1307 zVal = 0;
1308 break;
1310 case 4: /* ORDER */
1311 if( (strlen(zVal)!=3 || sqlite3_strnicmp(zVal, "asc", 3))
1312 && (strlen(zVal)!=4 || sqlite3_strnicmp(zVal, "desc", 4))
1314 sqlite3Fts3ErrMsg(pzErr, "unrecognized order: %s", zVal);
1315 rc = SQLITE_ERROR;
1317 bDescIdx = (zVal[0]=='d' || zVal[0]=='D');
1318 break;
1320 case 5: /* CONTENT */
1321 sqlite3_free(zContent);
1322 zContent = zVal;
1323 zVal = 0;
1324 break;
1326 case 6: /* LANGUAGEID */
1327 assert( iOpt==6 );
1328 sqlite3_free(zLanguageid);
1329 zLanguageid = zVal;
1330 zVal = 0;
1331 break;
1333 case 7: /* NOTINDEXED */
1334 azNotindexed[nNotindexed++] = zVal;
1335 zVal = 0;
1336 break;
1338 default:
1339 assert( iOpt==SizeofArray(aFts4Opt) );
1340 sqlite3Fts3ErrMsg(pzErr, "unrecognized parameter: %s", z);
1341 rc = SQLITE_ERROR;
1342 break;
1344 sqlite3_free(zVal);
1348 /* Otherwise, the argument is a column name. */
1349 else {
1350 nString += (int)(strlen(z) + 1);
1351 aCol[nCol++] = z;
1355 /* If a content=xxx option was specified, the following:
1357 ** 1. Ignore any compress= and uncompress= options.
1359 ** 2. If no column names were specified as part of the CREATE VIRTUAL
1360 ** TABLE statement, use all columns from the content table.
1362 if( rc==SQLITE_OK && zContent ){
1363 sqlite3_free(zCompress);
1364 sqlite3_free(zUncompress);
1365 zCompress = 0;
1366 zUncompress = 0;
1367 if( nCol==0 ){
1368 sqlite3_free((void*)aCol);
1369 aCol = 0;
1370 rc = fts3ContentColumns(db, argv[1], zContent,&aCol,&nCol,&nString,pzErr);
1372 /* If a languageid= option was specified, remove the language id
1373 ** column from the aCol[] array. */
1374 if( rc==SQLITE_OK && zLanguageid ){
1375 int j;
1376 for(j=0; j<nCol; j++){
1377 if( sqlite3_stricmp(zLanguageid, aCol[j])==0 ){
1378 int k;
1379 for(k=j; k<nCol; k++) aCol[k] = aCol[k+1];
1380 nCol--;
1381 break;
1387 if( rc!=SQLITE_OK ) goto fts3_init_out;
1389 if( nCol==0 ){
1390 assert( nString==0 );
1391 aCol[0] = "content";
1392 nString = 8;
1393 nCol = 1;
1396 if( pTokenizer==0 ){
1397 rc = sqlite3Fts3InitTokenizer(pHash, "simple", &pTokenizer, pzErr);
1398 if( rc!=SQLITE_OK ) goto fts3_init_out;
1400 assert( pTokenizer );
1402 rc = fts3PrefixParameter(zPrefix, &nIndex, &aIndex);
1403 if( rc==SQLITE_ERROR ){
1404 assert( zPrefix );
1405 sqlite3Fts3ErrMsg(pzErr, "error parsing prefix parameter: %s", zPrefix);
1407 if( rc!=SQLITE_OK ) goto fts3_init_out;
1409 /* Allocate and populate the Fts3Table structure. */
1410 nByte = sizeof(Fts3Table) + /* Fts3Table */
1411 nCol * sizeof(char *) + /* azColumn */
1412 nIndex * sizeof(struct Fts3Index) + /* aIndex */
1413 nCol * sizeof(u8) + /* abNotindexed */
1414 nName + /* zName */
1415 nDb + /* zDb */
1416 nString; /* Space for azColumn strings */
1417 p = (Fts3Table*)sqlite3_malloc64(nByte);
1418 if( p==0 ){
1419 rc = SQLITE_NOMEM;
1420 goto fts3_init_out;
1422 memset(p, 0, nByte);
1423 p->db = db;
1424 p->nColumn = nCol;
1425 p->nPendingData = 0;
1426 p->azColumn = (char **)&p[1];
1427 p->pTokenizer = pTokenizer;
1428 p->nMaxPendingData = FTS3_MAX_PENDING_DATA;
1429 p->bHasDocsize = (isFts4 && bNoDocsize==0);
1430 p->bHasStat = (u8)isFts4;
1431 p->bFts4 = (u8)isFts4;
1432 p->bDescIdx = (u8)bDescIdx;
1433 p->nAutoincrmerge = 0xff; /* 0xff means setting unknown */
1434 p->zContentTbl = zContent;
1435 p->zLanguageid = zLanguageid;
1436 zContent = 0;
1437 zLanguageid = 0;
1438 TESTONLY( p->inTransaction = -1 );
1439 TESTONLY( p->mxSavepoint = -1 );
1441 p->aIndex = (struct Fts3Index *)&p->azColumn[nCol];
1442 memcpy(p->aIndex, aIndex, sizeof(struct Fts3Index) * nIndex);
1443 p->nIndex = nIndex;
1444 for(i=0; i<nIndex; i++){
1445 fts3HashInit(&p->aIndex[i].hPending, FTS3_HASH_STRING, 1);
1447 p->abNotindexed = (u8 *)&p->aIndex[nIndex];
1449 /* Fill in the zName and zDb fields of the vtab structure. */
1450 zCsr = (char *)&p->abNotindexed[nCol];
1451 p->zName = zCsr;
1452 memcpy(zCsr, argv[2], nName);
1453 zCsr += nName;
1454 p->zDb = zCsr;
1455 memcpy(zCsr, argv[1], nDb);
1456 zCsr += nDb;
1458 /* Fill in the azColumn array */
1459 for(iCol=0; iCol<nCol; iCol++){
1460 char *z;
1461 int n = 0;
1462 z = (char *)sqlite3Fts3NextToken(aCol[iCol], &n);
1463 if( n>0 ){
1464 memcpy(zCsr, z, n);
1466 zCsr[n] = '\0';
1467 sqlite3Fts3Dequote(zCsr);
1468 p->azColumn[iCol] = zCsr;
1469 zCsr += n+1;
1470 assert( zCsr <= &((char *)p)[nByte] );
1473 /* Fill in the abNotindexed array */
1474 for(iCol=0; iCol<nCol; iCol++){
1475 int n = (int)strlen(p->azColumn[iCol]);
1476 for(i=0; i<nNotindexed; i++){
1477 char *zNot = azNotindexed[i];
1478 if( zNot && n==(int)strlen(zNot)
1479 && 0==sqlite3_strnicmp(p->azColumn[iCol], zNot, n)
1481 p->abNotindexed[iCol] = 1;
1482 sqlite3_free(zNot);
1483 azNotindexed[i] = 0;
1487 for(i=0; i<nNotindexed; i++){
1488 if( azNotindexed[i] ){
1489 sqlite3Fts3ErrMsg(pzErr, "no such column: %s", azNotindexed[i]);
1490 rc = SQLITE_ERROR;
1494 if( rc==SQLITE_OK && (zCompress==0)!=(zUncompress==0) ){
1495 char const *zMiss = (zCompress==0 ? "compress" : "uncompress");
1496 rc = SQLITE_ERROR;
1497 sqlite3Fts3ErrMsg(pzErr, "missing %s parameter in fts4 constructor", zMiss);
1499 p->zReadExprlist = fts3ReadExprList(p, zUncompress, &rc);
1500 p->zWriteExprlist = fts3WriteExprList(p, zCompress, &rc);
1501 if( rc!=SQLITE_OK ) goto fts3_init_out;
1503 /* If this is an xCreate call, create the underlying tables in the
1504 ** database. TODO: For xConnect(), it could verify that said tables exist.
1506 if( isCreate ){
1507 rc = fts3CreateTables(p);
1510 /* Check to see if a legacy fts3 table has been "upgraded" by the
1511 ** addition of a %_stat table so that it can use incremental merge.
1513 if( !isFts4 && !isCreate ){
1514 p->bHasStat = 2;
1517 /* Figure out the page-size for the database. This is required in order to
1518 ** estimate the cost of loading large doclists from the database. */
1519 fts3DatabasePageSize(&rc, p);
1520 p->nNodeSize = p->nPgsz-35;
1522 #if defined(SQLITE_DEBUG)||defined(SQLITE_TEST)
1523 p->nMergeCount = FTS3_MERGE_COUNT;
1524 #endif
1526 /* Declare the table schema to SQLite. */
1527 fts3DeclareVtab(&rc, p);
1529 fts3_init_out:
1530 sqlite3_free(zPrefix);
1531 sqlite3_free(aIndex);
1532 sqlite3_free(zCompress);
1533 sqlite3_free(zUncompress);
1534 sqlite3_free(zContent);
1535 sqlite3_free(zLanguageid);
1536 for(i=0; i<nNotindexed; i++) sqlite3_free(azNotindexed[i]);
1537 sqlite3_free((void *)aCol);
1538 sqlite3_free((void *)azNotindexed);
1539 if( rc!=SQLITE_OK ){
1540 if( p ){
1541 fts3DisconnectMethod((sqlite3_vtab *)p);
1542 }else if( pTokenizer ){
1543 pTokenizer->pModule->xDestroy(pTokenizer);
1545 }else{
1546 assert( p->pSegments==0 );
1547 *ppVTab = &p->base;
1549 return rc;
1553 ** The xConnect() and xCreate() methods for the virtual table. All the
1554 ** work is done in function fts3InitVtab().
1556 static int fts3ConnectMethod(
1557 sqlite3 *db, /* Database connection */
1558 void *pAux, /* Pointer to tokenizer hash table */
1559 int argc, /* Number of elements in argv array */
1560 const char * const *argv, /* xCreate/xConnect argument array */
1561 sqlite3_vtab **ppVtab, /* OUT: New sqlite3_vtab object */
1562 char **pzErr /* OUT: sqlite3_malloc'd error message */
1564 return fts3InitVtab(0, db, pAux, argc, argv, ppVtab, pzErr);
1566 static int fts3CreateMethod(
1567 sqlite3 *db, /* Database connection */
1568 void *pAux, /* Pointer to tokenizer hash table */
1569 int argc, /* Number of elements in argv array */
1570 const char * const *argv, /* xCreate/xConnect argument array */
1571 sqlite3_vtab **ppVtab, /* OUT: New sqlite3_vtab object */
1572 char **pzErr /* OUT: sqlite3_malloc'd error message */
1574 return fts3InitVtab(1, db, pAux, argc, argv, ppVtab, pzErr);
1578 ** Set the pIdxInfo->estimatedRows variable to nRow. Unless this
1579 ** extension is currently being used by a version of SQLite too old to
1580 ** support estimatedRows. In that case this function is a no-op.
1582 static void fts3SetEstimatedRows(sqlite3_index_info *pIdxInfo, i64 nRow){
1583 #if SQLITE_VERSION_NUMBER>=3008002
1584 if( sqlite3_libversion_number()>=3008002 ){
1585 pIdxInfo->estimatedRows = nRow;
1587 #endif
1591 ** Set the SQLITE_INDEX_SCAN_UNIQUE flag in pIdxInfo->flags. Unless this
1592 ** extension is currently being used by a version of SQLite too old to
1593 ** support index-info flags. In that case this function is a no-op.
1595 static void fts3SetUniqueFlag(sqlite3_index_info *pIdxInfo){
1596 #if SQLITE_VERSION_NUMBER>=3008012
1597 if( sqlite3_libversion_number()>=3008012 ){
1598 pIdxInfo->idxFlags |= SQLITE_INDEX_SCAN_UNIQUE;
1600 #endif
1604 ** Implementation of the xBestIndex method for FTS3 tables. There
1605 ** are three possible strategies, in order of preference:
1607 ** 1. Direct lookup by rowid or docid.
1608 ** 2. Full-text search using a MATCH operator on a non-docid column.
1609 ** 3. Linear scan of %_content table.
1611 static int fts3BestIndexMethod(sqlite3_vtab *pVTab, sqlite3_index_info *pInfo){
1612 Fts3Table *p = (Fts3Table *)pVTab;
1613 int i; /* Iterator variable */
1614 int iCons = -1; /* Index of constraint to use */
1616 int iLangidCons = -1; /* Index of langid=x constraint, if present */
1617 int iDocidGe = -1; /* Index of docid>=x constraint, if present */
1618 int iDocidLe = -1; /* Index of docid<=x constraint, if present */
1619 int iIdx;
1621 if( p->bLock ){
1622 return SQLITE_ERROR;
1625 /* By default use a full table scan. This is an expensive option,
1626 ** so search through the constraints to see if a more efficient
1627 ** strategy is possible.
1629 pInfo->idxNum = FTS3_FULLSCAN_SEARCH;
1630 pInfo->estimatedCost = 5000000;
1631 for(i=0; i<pInfo->nConstraint; i++){
1632 int bDocid; /* True if this constraint is on docid */
1633 struct sqlite3_index_constraint *pCons = &pInfo->aConstraint[i];
1634 if( pCons->usable==0 ){
1635 if( pCons->op==SQLITE_INDEX_CONSTRAINT_MATCH ){
1636 /* There exists an unusable MATCH constraint. This means that if
1637 ** the planner does elect to use the results of this call as part
1638 ** of the overall query plan the user will see an "unable to use
1639 ** function MATCH in the requested context" error. To discourage
1640 ** this, return a very high cost here. */
1641 pInfo->idxNum = FTS3_FULLSCAN_SEARCH;
1642 pInfo->estimatedCost = 1e50;
1643 fts3SetEstimatedRows(pInfo, ((sqlite3_int64)1) << 50);
1644 return SQLITE_OK;
1646 continue;
1649 bDocid = (pCons->iColumn<0 || pCons->iColumn==p->nColumn+1);
1651 /* A direct lookup on the rowid or docid column. Assign a cost of 1.0. */
1652 if( iCons<0 && pCons->op==SQLITE_INDEX_CONSTRAINT_EQ && bDocid ){
1653 pInfo->idxNum = FTS3_DOCID_SEARCH;
1654 pInfo->estimatedCost = 1.0;
1655 iCons = i;
1658 /* A MATCH constraint. Use a full-text search.
1660 ** If there is more than one MATCH constraint available, use the first
1661 ** one encountered. If there is both a MATCH constraint and a direct
1662 ** rowid/docid lookup, prefer the MATCH strategy. This is done even
1663 ** though the rowid/docid lookup is faster than a MATCH query, selecting
1664 ** it would lead to an "unable to use function MATCH in the requested
1665 ** context" error.
1667 if( pCons->op==SQLITE_INDEX_CONSTRAINT_MATCH
1668 && pCons->iColumn>=0 && pCons->iColumn<=p->nColumn
1670 pInfo->idxNum = FTS3_FULLTEXT_SEARCH + pCons->iColumn;
1671 pInfo->estimatedCost = 2.0;
1672 iCons = i;
1675 /* Equality constraint on the langid column */
1676 if( pCons->op==SQLITE_INDEX_CONSTRAINT_EQ
1677 && pCons->iColumn==p->nColumn + 2
1679 iLangidCons = i;
1682 if( bDocid ){
1683 switch( pCons->op ){
1684 case SQLITE_INDEX_CONSTRAINT_GE:
1685 case SQLITE_INDEX_CONSTRAINT_GT:
1686 iDocidGe = i;
1687 break;
1689 case SQLITE_INDEX_CONSTRAINT_LE:
1690 case SQLITE_INDEX_CONSTRAINT_LT:
1691 iDocidLe = i;
1692 break;
1697 /* If using a docid=? or rowid=? strategy, set the UNIQUE flag. */
1698 if( pInfo->idxNum==FTS3_DOCID_SEARCH ) fts3SetUniqueFlag(pInfo);
1700 iIdx = 1;
1701 if( iCons>=0 ){
1702 pInfo->aConstraintUsage[iCons].argvIndex = iIdx++;
1703 pInfo->aConstraintUsage[iCons].omit = 1;
1705 if( iLangidCons>=0 ){
1706 pInfo->idxNum |= FTS3_HAVE_LANGID;
1707 pInfo->aConstraintUsage[iLangidCons].argvIndex = iIdx++;
1709 if( iDocidGe>=0 ){
1710 pInfo->idxNum |= FTS3_HAVE_DOCID_GE;
1711 pInfo->aConstraintUsage[iDocidGe].argvIndex = iIdx++;
1713 if( iDocidLe>=0 ){
1714 pInfo->idxNum |= FTS3_HAVE_DOCID_LE;
1715 pInfo->aConstraintUsage[iDocidLe].argvIndex = iIdx++;
1718 /* Regardless of the strategy selected, FTS can deliver rows in rowid (or
1719 ** docid) order. Both ascending and descending are possible.
1721 if( pInfo->nOrderBy==1 ){
1722 struct sqlite3_index_orderby *pOrder = &pInfo->aOrderBy[0];
1723 if( pOrder->iColumn<0 || pOrder->iColumn==p->nColumn+1 ){
1724 if( pOrder->desc ){
1725 pInfo->idxStr = "DESC";
1726 }else{
1727 pInfo->idxStr = "ASC";
1729 pInfo->orderByConsumed = 1;
1733 assert( p->pSegments==0 );
1734 return SQLITE_OK;
1738 ** Implementation of xOpen method.
1740 static int fts3OpenMethod(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCsr){
1741 sqlite3_vtab_cursor *pCsr; /* Allocated cursor */
1743 UNUSED_PARAMETER(pVTab);
1745 /* Allocate a buffer large enough for an Fts3Cursor structure. If the
1746 ** allocation succeeds, zero it and return SQLITE_OK. Otherwise,
1747 ** if the allocation fails, return SQLITE_NOMEM.
1749 *ppCsr = pCsr = (sqlite3_vtab_cursor *)sqlite3_malloc(sizeof(Fts3Cursor));
1750 if( !pCsr ){
1751 return SQLITE_NOMEM;
1753 memset(pCsr, 0, sizeof(Fts3Cursor));
1754 return SQLITE_OK;
1758 ** Finalize the statement handle at pCsr->pStmt.
1760 ** Or, if that statement handle is one created by fts3CursorSeekStmt(),
1761 ** and the Fts3Table.pSeekStmt slot is currently NULL, save the statement
1762 ** pointer there instead of finalizing it.
1764 static void fts3CursorFinalizeStmt(Fts3Cursor *pCsr){
1765 if( pCsr->bSeekStmt ){
1766 Fts3Table *p = (Fts3Table *)pCsr->base.pVtab;
1767 if( p->pSeekStmt==0 ){
1768 p->pSeekStmt = pCsr->pStmt;
1769 sqlite3_reset(pCsr->pStmt);
1770 pCsr->pStmt = 0;
1772 pCsr->bSeekStmt = 0;
1774 sqlite3_finalize(pCsr->pStmt);
1778 ** Free all resources currently held by the cursor passed as the only
1779 ** argument.
1781 static void fts3ClearCursor(Fts3Cursor *pCsr){
1782 fts3CursorFinalizeStmt(pCsr);
1783 sqlite3Fts3FreeDeferredTokens(pCsr);
1784 sqlite3_free(pCsr->aDoclist);
1785 sqlite3Fts3MIBufferFree(pCsr->pMIBuffer);
1786 sqlite3Fts3ExprFree(pCsr->pExpr);
1787 memset(&(&pCsr->base)[1], 0, sizeof(Fts3Cursor)-sizeof(sqlite3_vtab_cursor));
1791 ** Close the cursor. For additional information see the documentation
1792 ** on the xClose method of the virtual table interface.
1794 static int fts3CloseMethod(sqlite3_vtab_cursor *pCursor){
1795 Fts3Cursor *pCsr = (Fts3Cursor *)pCursor;
1796 assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 );
1797 fts3ClearCursor(pCsr);
1798 assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 );
1799 sqlite3_free(pCsr);
1800 return SQLITE_OK;
1804 ** If pCsr->pStmt has not been prepared (i.e. if pCsr->pStmt==0), then
1805 ** compose and prepare an SQL statement of the form:
1807 ** "SELECT <columns> FROM %_content WHERE rowid = ?"
1809 ** (or the equivalent for a content=xxx table) and set pCsr->pStmt to
1810 ** it. If an error occurs, return an SQLite error code.
1812 static int fts3CursorSeekStmt(Fts3Cursor *pCsr){
1813 int rc = SQLITE_OK;
1814 if( pCsr->pStmt==0 ){
1815 Fts3Table *p = (Fts3Table *)pCsr->base.pVtab;
1816 char *zSql;
1817 if( p->pSeekStmt ){
1818 pCsr->pStmt = p->pSeekStmt;
1819 p->pSeekStmt = 0;
1820 }else{
1821 zSql = sqlite3_mprintf("SELECT %s WHERE rowid = ?", p->zReadExprlist);
1822 if( !zSql ) return SQLITE_NOMEM;
1823 p->bLock++;
1824 rc = sqlite3_prepare_v3(
1825 p->db, zSql,-1,SQLITE_PREPARE_PERSISTENT,&pCsr->pStmt,0
1827 p->bLock--;
1828 sqlite3_free(zSql);
1830 if( rc==SQLITE_OK ) pCsr->bSeekStmt = 1;
1832 return rc;
1836 ** Position the pCsr->pStmt statement so that it is on the row
1837 ** of the %_content table that contains the last match. Return
1838 ** SQLITE_OK on success.
1840 static int fts3CursorSeek(sqlite3_context *pContext, Fts3Cursor *pCsr){
1841 int rc = SQLITE_OK;
1842 if( pCsr->isRequireSeek ){
1843 rc = fts3CursorSeekStmt(pCsr);
1844 if( rc==SQLITE_OK ){
1845 Fts3Table *pTab = (Fts3Table*)pCsr->base.pVtab;
1846 pTab->bLock++;
1847 sqlite3_bind_int64(pCsr->pStmt, 1, pCsr->iPrevId);
1848 pCsr->isRequireSeek = 0;
1849 if( SQLITE_ROW==sqlite3_step(pCsr->pStmt) ){
1850 pTab->bLock--;
1851 return SQLITE_OK;
1852 }else{
1853 pTab->bLock--;
1854 rc = sqlite3_reset(pCsr->pStmt);
1855 if( rc==SQLITE_OK && ((Fts3Table *)pCsr->base.pVtab)->zContentTbl==0 ){
1856 /* If no row was found and no error has occurred, then the %_content
1857 ** table is missing a row that is present in the full-text index.
1858 ** The data structures are corrupt. */
1859 rc = FTS_CORRUPT_VTAB;
1860 pCsr->isEof = 1;
1866 if( rc!=SQLITE_OK && pContext ){
1867 sqlite3_result_error_code(pContext, rc);
1869 return rc;
1873 ** This function is used to process a single interior node when searching
1874 ** a b-tree for a term or term prefix. The node data is passed to this
1875 ** function via the zNode/nNode parameters. The term to search for is
1876 ** passed in zTerm/nTerm.
1878 ** If piFirst is not NULL, then this function sets *piFirst to the blockid
1879 ** of the child node that heads the sub-tree that may contain the term.
1881 ** If piLast is not NULL, then *piLast is set to the right-most child node
1882 ** that heads a sub-tree that may contain a term for which zTerm/nTerm is
1883 ** a prefix.
1885 ** If an OOM error occurs, SQLITE_NOMEM is returned. Otherwise, SQLITE_OK.
1887 static int fts3ScanInteriorNode(
1888 const char *zTerm, /* Term to select leaves for */
1889 int nTerm, /* Size of term zTerm in bytes */
1890 const char *zNode, /* Buffer containing segment interior node */
1891 int nNode, /* Size of buffer at zNode */
1892 sqlite3_int64 *piFirst, /* OUT: Selected child node */
1893 sqlite3_int64 *piLast /* OUT: Selected child node */
1895 int rc = SQLITE_OK; /* Return code */
1896 const char *zCsr = zNode; /* Cursor to iterate through node */
1897 const char *zEnd = &zCsr[nNode];/* End of interior node buffer */
1898 char *zBuffer = 0; /* Buffer to load terms into */
1899 i64 nAlloc = 0; /* Size of allocated buffer */
1900 int isFirstTerm = 1; /* True when processing first term on page */
1901 u64 iChild; /* Block id of child node to descend to */
1902 int nBuffer = 0; /* Total term size */
1904 /* Skip over the 'height' varint that occurs at the start of every
1905 ** interior node. Then load the blockid of the left-child of the b-tree
1906 ** node into variable iChild.
1908 ** Even if the data structure on disk is corrupted, this (reading two
1909 ** varints from the buffer) does not risk an overread. If zNode is a
1910 ** root node, then the buffer comes from a SELECT statement. SQLite does
1911 ** not make this guarantee explicitly, but in practice there are always
1912 ** either more than 20 bytes of allocated space following the nNode bytes of
1913 ** contents, or two zero bytes. Or, if the node is read from the %_segments
1914 ** table, then there are always 20 bytes of zeroed padding following the
1915 ** nNode bytes of content (see sqlite3Fts3ReadBlock() for details).
1917 zCsr += sqlite3Fts3GetVarintU(zCsr, &iChild);
1918 zCsr += sqlite3Fts3GetVarintU(zCsr, &iChild);
1919 if( zCsr>zEnd ){
1920 return FTS_CORRUPT_VTAB;
1923 while( zCsr<zEnd && (piFirst || piLast) ){
1924 int cmp; /* memcmp() result */
1925 int nSuffix; /* Size of term suffix */
1926 int nPrefix = 0; /* Size of term prefix */
1928 /* Load the next term on the node into zBuffer. Use realloc() to expand
1929 ** the size of zBuffer if required. */
1930 if( !isFirstTerm ){
1931 zCsr += fts3GetVarint32(zCsr, &nPrefix);
1932 if( nPrefix>nBuffer ){
1933 rc = FTS_CORRUPT_VTAB;
1934 goto finish_scan;
1937 isFirstTerm = 0;
1938 zCsr += fts3GetVarint32(zCsr, &nSuffix);
1940 assert( nPrefix>=0 && nSuffix>=0 );
1941 if( nPrefix>zCsr-zNode || nSuffix>zEnd-zCsr || nSuffix==0 ){
1942 rc = FTS_CORRUPT_VTAB;
1943 goto finish_scan;
1945 if( (i64)nPrefix+nSuffix>nAlloc ){
1946 char *zNew;
1947 nAlloc = ((i64)nPrefix+nSuffix) * 2;
1948 zNew = (char *)sqlite3_realloc64(zBuffer, nAlloc);
1949 if( !zNew ){
1950 rc = SQLITE_NOMEM;
1951 goto finish_scan;
1953 zBuffer = zNew;
1955 assert( zBuffer );
1956 memcpy(&zBuffer[nPrefix], zCsr, nSuffix);
1957 nBuffer = nPrefix + nSuffix;
1958 zCsr += nSuffix;
1960 /* Compare the term we are searching for with the term just loaded from
1961 ** the interior node. If the specified term is greater than or equal
1962 ** to the term from the interior node, then all terms on the sub-tree
1963 ** headed by node iChild are smaller than zTerm. No need to search
1964 ** iChild.
1966 ** If the interior node term is larger than the specified term, then
1967 ** the tree headed by iChild may contain the specified term.
1969 cmp = memcmp(zTerm, zBuffer, (nBuffer>nTerm ? nTerm : nBuffer));
1970 if( piFirst && (cmp<0 || (cmp==0 && nBuffer>nTerm)) ){
1971 *piFirst = (i64)iChild;
1972 piFirst = 0;
1975 if( piLast && cmp<0 ){
1976 *piLast = (i64)iChild;
1977 piLast = 0;
1980 iChild++;
1983 if( piFirst ) *piFirst = (i64)iChild;
1984 if( piLast ) *piLast = (i64)iChild;
1986 finish_scan:
1987 sqlite3_free(zBuffer);
1988 return rc;
1993 ** The buffer pointed to by argument zNode (size nNode bytes) contains an
1994 ** interior node of a b-tree segment. The zTerm buffer (size nTerm bytes)
1995 ** contains a term. This function searches the sub-tree headed by the zNode
1996 ** node for the range of leaf nodes that may contain the specified term
1997 ** or terms for which the specified term is a prefix.
1999 ** If piLeaf is not NULL, then *piLeaf is set to the blockid of the
2000 ** left-most leaf node in the tree that may contain the specified term.
2001 ** If piLeaf2 is not NULL, then *piLeaf2 is set to the blockid of the
2002 ** right-most leaf node that may contain a term for which the specified
2003 ** term is a prefix.
2005 ** It is possible that the range of returned leaf nodes does not contain
2006 ** the specified term or any terms for which it is a prefix. However, if the
2007 ** segment does contain any such terms, they are stored within the identified
2008 ** range. Because this function only inspects interior segment nodes (and
2009 ** never loads leaf nodes into memory), it is not possible to be sure.
2011 ** If an error occurs, an error code other than SQLITE_OK is returned.
2013 static int fts3SelectLeaf(
2014 Fts3Table *p, /* Virtual table handle */
2015 const char *zTerm, /* Term to select leaves for */
2016 int nTerm, /* Size of term zTerm in bytes */
2017 const char *zNode, /* Buffer containing segment interior node */
2018 int nNode, /* Size of buffer at zNode */
2019 sqlite3_int64 *piLeaf, /* Selected leaf node */
2020 sqlite3_int64 *piLeaf2 /* Selected leaf node */
2022 int rc = SQLITE_OK; /* Return code */
2023 int iHeight; /* Height of this node in tree */
2025 assert( piLeaf || piLeaf2 );
2027 fts3GetVarint32(zNode, &iHeight);
2028 rc = fts3ScanInteriorNode(zTerm, nTerm, zNode, nNode, piLeaf, piLeaf2);
2029 assert_fts3_nc( !piLeaf2 || !piLeaf || rc!=SQLITE_OK || (*piLeaf<=*piLeaf2) );
2031 if( rc==SQLITE_OK && iHeight>1 ){
2032 char *zBlob = 0; /* Blob read from %_segments table */
2033 int nBlob = 0; /* Size of zBlob in bytes */
2035 if( piLeaf && piLeaf2 && (*piLeaf!=*piLeaf2) ){
2036 rc = sqlite3Fts3ReadBlock(p, *piLeaf, &zBlob, &nBlob, 0);
2037 if( rc==SQLITE_OK ){
2038 rc = fts3SelectLeaf(p, zTerm, nTerm, zBlob, nBlob, piLeaf, 0);
2040 sqlite3_free(zBlob);
2041 piLeaf = 0;
2042 zBlob = 0;
2045 if( rc==SQLITE_OK ){
2046 rc = sqlite3Fts3ReadBlock(p, piLeaf?*piLeaf:*piLeaf2, &zBlob, &nBlob, 0);
2048 if( rc==SQLITE_OK ){
2049 int iNewHeight = 0;
2050 fts3GetVarint32(zBlob, &iNewHeight);
2051 if( iNewHeight>=iHeight ){
2052 rc = FTS_CORRUPT_VTAB;
2053 }else{
2054 rc = fts3SelectLeaf(p, zTerm, nTerm, zBlob, nBlob, piLeaf, piLeaf2);
2057 sqlite3_free(zBlob);
2060 return rc;
2064 ** This function is used to create delta-encoded serialized lists of FTS3
2065 ** varints. Each call to this function appends a single varint to a list.
2067 static void fts3PutDeltaVarint(
2068 char **pp, /* IN/OUT: Output pointer */
2069 sqlite3_int64 *piPrev, /* IN/OUT: Previous value written to list */
2070 sqlite3_int64 iVal /* Write this value to the list */
2072 assert_fts3_nc( iVal-*piPrev > 0 || (*piPrev==0 && iVal==0) );
2073 *pp += sqlite3Fts3PutVarint(*pp, iVal-*piPrev);
2074 *piPrev = iVal;
2078 ** When this function is called, *ppPoslist is assumed to point to the
2079 ** start of a position-list. After it returns, *ppPoslist points to the
2080 ** first byte after the position-list.
2082 ** A position list is list of positions (delta encoded) and columns for
2083 ** a single document record of a doclist. So, in other words, this
2084 ** routine advances *ppPoslist so that it points to the next docid in
2085 ** the doclist, or to the first byte past the end of the doclist.
2087 ** If pp is not NULL, then the contents of the position list are copied
2088 ** to *pp. *pp is set to point to the first byte past the last byte copied
2089 ** before this function returns.
2091 static void fts3PoslistCopy(char **pp, char **ppPoslist){
2092 char *pEnd = *ppPoslist;
2093 char c = 0;
2095 /* The end of a position list is marked by a zero encoded as an FTS3
2096 ** varint. A single POS_END (0) byte. Except, if the 0 byte is preceded by
2097 ** a byte with the 0x80 bit set, then it is not a varint 0, but the tail
2098 ** of some other, multi-byte, value.
2100 ** The following while-loop moves pEnd to point to the first byte that is not
2101 ** immediately preceded by a byte with the 0x80 bit set. Then increments
2102 ** pEnd once more so that it points to the byte immediately following the
2103 ** last byte in the position-list.
2105 while( *pEnd | c ){
2106 c = *pEnd++ & 0x80;
2107 testcase( c!=0 && (*pEnd)==0 );
2109 pEnd++; /* Advance past the POS_END terminator byte */
2111 if( pp ){
2112 int n = (int)(pEnd - *ppPoslist);
2113 char *p = *pp;
2114 memcpy(p, *ppPoslist, n);
2115 p += n;
2116 *pp = p;
2118 *ppPoslist = pEnd;
2122 ** When this function is called, *ppPoslist is assumed to point to the
2123 ** start of a column-list. After it returns, *ppPoslist points to the
2124 ** to the terminator (POS_COLUMN or POS_END) byte of the column-list.
2126 ** A column-list is list of delta-encoded positions for a single column
2127 ** within a single document within a doclist.
2129 ** The column-list is terminated either by a POS_COLUMN varint (1) or
2130 ** a POS_END varint (0). This routine leaves *ppPoslist pointing to
2131 ** the POS_COLUMN or POS_END that terminates the column-list.
2133 ** If pp is not NULL, then the contents of the column-list are copied
2134 ** to *pp. *pp is set to point to the first byte past the last byte copied
2135 ** before this function returns. The POS_COLUMN or POS_END terminator
2136 ** is not copied into *pp.
2138 static void fts3ColumnlistCopy(char **pp, char **ppPoslist){
2139 char *pEnd = *ppPoslist;
2140 char c = 0;
2142 /* A column-list is terminated by either a 0x01 or 0x00 byte that is
2143 ** not part of a multi-byte varint.
2145 while( 0xFE & (*pEnd | c) ){
2146 c = *pEnd++ & 0x80;
2147 testcase( c!=0 && ((*pEnd)&0xfe)==0 );
2149 if( pp ){
2150 int n = (int)(pEnd - *ppPoslist);
2151 char *p = *pp;
2152 memcpy(p, *ppPoslist, n);
2153 p += n;
2154 *pp = p;
2156 *ppPoslist = pEnd;
2160 ** Value used to signify the end of an position-list. This must be
2161 ** as large or larger than any value that might appear on the
2162 ** position-list, even a position list that has been corrupted.
2164 #define POSITION_LIST_END LARGEST_INT64
2167 ** This function is used to help parse position-lists. When this function is
2168 ** called, *pp may point to the start of the next varint in the position-list
2169 ** being parsed, or it may point to 1 byte past the end of the position-list
2170 ** (in which case **pp will be a terminator bytes POS_END (0) or
2171 ** (1)).
2173 ** If *pp points past the end of the current position-list, set *pi to
2174 ** POSITION_LIST_END and return. Otherwise, read the next varint from *pp,
2175 ** increment the current value of *pi by the value read, and set *pp to
2176 ** point to the next value before returning.
2178 ** Before calling this routine *pi must be initialized to the value of
2179 ** the previous position, or zero if we are reading the first position
2180 ** in the position-list. Because positions are delta-encoded, the value
2181 ** of the previous position is needed in order to compute the value of
2182 ** the next position.
2184 static void fts3ReadNextPos(
2185 char **pp, /* IN/OUT: Pointer into position-list buffer */
2186 sqlite3_int64 *pi /* IN/OUT: Value read from position-list */
2188 if( (**pp)&0xFE ){
2189 int iVal;
2190 *pp += fts3GetVarint32((*pp), &iVal);
2191 *pi += iVal;
2192 *pi -= 2;
2193 }else{
2194 *pi = POSITION_LIST_END;
2199 ** If parameter iCol is not 0, write an POS_COLUMN (1) byte followed by
2200 ** the value of iCol encoded as a varint to *pp. This will start a new
2201 ** column list.
2203 ** Set *pp to point to the byte just after the last byte written before
2204 ** returning (do not modify it if iCol==0). Return the total number of bytes
2205 ** written (0 if iCol==0).
2207 static int fts3PutColNumber(char **pp, int iCol){
2208 int n = 0; /* Number of bytes written */
2209 if( iCol ){
2210 char *p = *pp; /* Output pointer */
2211 n = 1 + sqlite3Fts3PutVarint(&p[1], iCol);
2212 *p = 0x01;
2213 *pp = &p[n];
2215 return n;
2219 ** Compute the union of two position lists. The output written
2220 ** into *pp contains all positions of both *pp1 and *pp2 in sorted
2221 ** order and with any duplicates removed. All pointers are
2222 ** updated appropriately. The caller is responsible for insuring
2223 ** that there is enough space in *pp to hold the complete output.
2225 static int fts3PoslistMerge(
2226 char **pp, /* Output buffer */
2227 char **pp1, /* Left input list */
2228 char **pp2 /* Right input list */
2230 char *p = *pp;
2231 char *p1 = *pp1;
2232 char *p2 = *pp2;
2234 while( *p1 || *p2 ){
2235 int iCol1; /* The current column index in pp1 */
2236 int iCol2; /* The current column index in pp2 */
2238 if( *p1==POS_COLUMN ){
2239 fts3GetVarint32(&p1[1], &iCol1);
2240 if( iCol1==0 ) return FTS_CORRUPT_VTAB;
2242 else if( *p1==POS_END ) iCol1 = 0x7fffffff;
2243 else iCol1 = 0;
2245 if( *p2==POS_COLUMN ){
2246 fts3GetVarint32(&p2[1], &iCol2);
2247 if( iCol2==0 ) return FTS_CORRUPT_VTAB;
2249 else if( *p2==POS_END ) iCol2 = 0x7fffffff;
2250 else iCol2 = 0;
2252 if( iCol1==iCol2 ){
2253 sqlite3_int64 i1 = 0; /* Last position from pp1 */
2254 sqlite3_int64 i2 = 0; /* Last position from pp2 */
2255 sqlite3_int64 iPrev = 0;
2256 int n = fts3PutColNumber(&p, iCol1);
2257 p1 += n;
2258 p2 += n;
2260 /* At this point, both p1 and p2 point to the start of column-lists
2261 ** for the same column (the column with index iCol1 and iCol2).
2262 ** A column-list is a list of non-negative delta-encoded varints, each
2263 ** incremented by 2 before being stored. Each list is terminated by a
2264 ** POS_END (0) or POS_COLUMN (1). The following block merges the two lists
2265 ** and writes the results to buffer p. p is left pointing to the byte
2266 ** after the list written. No terminator (POS_END or POS_COLUMN) is
2267 ** written to the output.
2269 fts3GetDeltaVarint(&p1, &i1);
2270 fts3GetDeltaVarint(&p2, &i2);
2271 if( i1<2 || i2<2 ){
2272 break;
2274 do {
2275 fts3PutDeltaVarint(&p, &iPrev, (i1<i2) ? i1 : i2);
2276 iPrev -= 2;
2277 if( i1==i2 ){
2278 fts3ReadNextPos(&p1, &i1);
2279 fts3ReadNextPos(&p2, &i2);
2280 }else if( i1<i2 ){
2281 fts3ReadNextPos(&p1, &i1);
2282 }else{
2283 fts3ReadNextPos(&p2, &i2);
2285 }while( i1!=POSITION_LIST_END || i2!=POSITION_LIST_END );
2286 }else if( iCol1<iCol2 ){
2287 p1 += fts3PutColNumber(&p, iCol1);
2288 fts3ColumnlistCopy(&p, &p1);
2289 }else{
2290 p2 += fts3PutColNumber(&p, iCol2);
2291 fts3ColumnlistCopy(&p, &p2);
2295 *p++ = POS_END;
2296 *pp = p;
2297 *pp1 = p1 + 1;
2298 *pp2 = p2 + 1;
2299 return SQLITE_OK;
2303 ** This function is used to merge two position lists into one. When it is
2304 ** called, *pp1 and *pp2 must both point to position lists. A position-list is
2305 ** the part of a doclist that follows each document id. For example, if a row
2306 ** contains:
2308 ** 'a b c'|'x y z'|'a b b a'
2310 ** Then the position list for this row for token 'b' would consist of:
2312 ** 0x02 0x01 0x02 0x03 0x03 0x00
2314 ** When this function returns, both *pp1 and *pp2 are left pointing to the
2315 ** byte following the 0x00 terminator of their respective position lists.
2317 ** If isSaveLeft is 0, an entry is added to the output position list for
2318 ** each position in *pp2 for which there exists one or more positions in
2319 ** *pp1 so that (pos(*pp2)>pos(*pp1) && pos(*pp2)-pos(*pp1)<=nToken). i.e.
2320 ** when the *pp1 token appears before the *pp2 token, but not more than nToken
2321 ** slots before it.
2323 ** e.g. nToken==1 searches for adjacent positions.
2325 static int fts3PoslistPhraseMerge(
2326 char **pp, /* IN/OUT: Preallocated output buffer */
2327 int nToken, /* Maximum difference in token positions */
2328 int isSaveLeft, /* Save the left position */
2329 int isExact, /* If *pp1 is exactly nTokens before *pp2 */
2330 char **pp1, /* IN/OUT: Left input list */
2331 char **pp2 /* IN/OUT: Right input list */
2333 char *p = *pp;
2334 char *p1 = *pp1;
2335 char *p2 = *pp2;
2336 int iCol1 = 0;
2337 int iCol2 = 0;
2339 /* Never set both isSaveLeft and isExact for the same invocation. */
2340 assert( isSaveLeft==0 || isExact==0 );
2342 assert_fts3_nc( p!=0 && *p1!=0 && *p2!=0 );
2343 if( *p1==POS_COLUMN ){
2344 p1++;
2345 p1 += fts3GetVarint32(p1, &iCol1);
2347 if( *p2==POS_COLUMN ){
2348 p2++;
2349 p2 += fts3GetVarint32(p2, &iCol2);
2352 while( 1 ){
2353 if( iCol1==iCol2 ){
2354 char *pSave = p;
2355 sqlite3_int64 iPrev = 0;
2356 sqlite3_int64 iPos1 = 0;
2357 sqlite3_int64 iPos2 = 0;
2359 if( iCol1 ){
2360 *p++ = POS_COLUMN;
2361 p += sqlite3Fts3PutVarint(p, iCol1);
2364 fts3GetDeltaVarint(&p1, &iPos1); iPos1 -= 2;
2365 fts3GetDeltaVarint(&p2, &iPos2); iPos2 -= 2;
2366 if( iPos1<0 || iPos2<0 ) break;
2368 while( 1 ){
2369 if( iPos2==iPos1+nToken
2370 || (isExact==0 && iPos2>iPos1 && iPos2<=iPos1+nToken)
2372 sqlite3_int64 iSave;
2373 iSave = isSaveLeft ? iPos1 : iPos2;
2374 fts3PutDeltaVarint(&p, &iPrev, iSave+2); iPrev -= 2;
2375 pSave = 0;
2376 assert( p );
2378 if( (!isSaveLeft && iPos2<=(iPos1+nToken)) || iPos2<=iPos1 ){
2379 if( (*p2&0xFE)==0 ) break;
2380 fts3GetDeltaVarint(&p2, &iPos2); iPos2 -= 2;
2381 }else{
2382 if( (*p1&0xFE)==0 ) break;
2383 fts3GetDeltaVarint(&p1, &iPos1); iPos1 -= 2;
2387 if( pSave ){
2388 assert( pp && p );
2389 p = pSave;
2392 fts3ColumnlistCopy(0, &p1);
2393 fts3ColumnlistCopy(0, &p2);
2394 assert( (*p1&0xFE)==0 && (*p2&0xFE)==0 );
2395 if( 0==*p1 || 0==*p2 ) break;
2397 p1++;
2398 p1 += fts3GetVarint32(p1, &iCol1);
2399 p2++;
2400 p2 += fts3GetVarint32(p2, &iCol2);
2403 /* Advance pointer p1 or p2 (whichever corresponds to the smaller of
2404 ** iCol1 and iCol2) so that it points to either the 0x00 that marks the
2405 ** end of the position list, or the 0x01 that precedes the next
2406 ** column-number in the position list.
2408 else if( iCol1<iCol2 ){
2409 fts3ColumnlistCopy(0, &p1);
2410 if( 0==*p1 ) break;
2411 p1++;
2412 p1 += fts3GetVarint32(p1, &iCol1);
2413 }else{
2414 fts3ColumnlistCopy(0, &p2);
2415 if( 0==*p2 ) break;
2416 p2++;
2417 p2 += fts3GetVarint32(p2, &iCol2);
2421 fts3PoslistCopy(0, &p2);
2422 fts3PoslistCopy(0, &p1);
2423 *pp1 = p1;
2424 *pp2 = p2;
2425 if( *pp==p ){
2426 return 0;
2428 *p++ = 0x00;
2429 *pp = p;
2430 return 1;
2434 ** Merge two position-lists as required by the NEAR operator. The argument
2435 ** position lists correspond to the left and right phrases of an expression
2436 ** like:
2438 ** "phrase 1" NEAR "phrase number 2"
2440 ** Position list *pp1 corresponds to the left-hand side of the NEAR
2441 ** expression and *pp2 to the right. As usual, the indexes in the position
2442 ** lists are the offsets of the last token in each phrase (tokens "1" and "2"
2443 ** in the example above).
2445 ** The output position list - written to *pp - is a copy of *pp2 with those
2446 ** entries that are not sufficiently NEAR entries in *pp1 removed.
2448 static int fts3PoslistNearMerge(
2449 char **pp, /* Output buffer */
2450 char *aTmp, /* Temporary buffer space */
2451 int nRight, /* Maximum difference in token positions */
2452 int nLeft, /* Maximum difference in token positions */
2453 char **pp1, /* IN/OUT: Left input list */
2454 char **pp2 /* IN/OUT: Right input list */
2456 char *p1 = *pp1;
2457 char *p2 = *pp2;
2459 char *pTmp1 = aTmp;
2460 char *pTmp2;
2461 char *aTmp2;
2462 int res = 1;
2464 fts3PoslistPhraseMerge(&pTmp1, nRight, 0, 0, pp1, pp2);
2465 aTmp2 = pTmp2 = pTmp1;
2466 *pp1 = p1;
2467 *pp2 = p2;
2468 fts3PoslistPhraseMerge(&pTmp2, nLeft, 1, 0, pp2, pp1);
2469 if( pTmp1!=aTmp && pTmp2!=aTmp2 ){
2470 fts3PoslistMerge(pp, &aTmp, &aTmp2);
2471 }else if( pTmp1!=aTmp ){
2472 fts3PoslistCopy(pp, &aTmp);
2473 }else if( pTmp2!=aTmp2 ){
2474 fts3PoslistCopy(pp, &aTmp2);
2475 }else{
2476 res = 0;
2479 return res;
2483 ** An instance of this function is used to merge together the (potentially
2484 ** large number of) doclists for each term that matches a prefix query.
2485 ** See function fts3TermSelectMerge() for details.
2487 typedef struct TermSelect TermSelect;
2488 struct TermSelect {
2489 char *aaOutput[16]; /* Malloc'd output buffers */
2490 int anOutput[16]; /* Size each output buffer in bytes */
2494 ** This function is used to read a single varint from a buffer. Parameter
2495 ** pEnd points 1 byte past the end of the buffer. When this function is
2496 ** called, if *pp points to pEnd or greater, then the end of the buffer
2497 ** has been reached. In this case *pp is set to 0 and the function returns.
2499 ** If *pp does not point to or past pEnd, then a single varint is read
2500 ** from *pp. *pp is then set to point 1 byte past the end of the read varint.
2502 ** If bDescIdx is false, the value read is added to *pVal before returning.
2503 ** If it is true, the value read is subtracted from *pVal before this
2504 ** function returns.
2506 static void fts3GetDeltaVarint3(
2507 char **pp, /* IN/OUT: Point to read varint from */
2508 char *pEnd, /* End of buffer */
2509 int bDescIdx, /* True if docids are descending */
2510 sqlite3_int64 *pVal /* IN/OUT: Integer value */
2512 if( *pp>=pEnd ){
2513 *pp = 0;
2514 }else{
2515 u64 iVal;
2516 *pp += sqlite3Fts3GetVarintU(*pp, &iVal);
2517 if( bDescIdx ){
2518 *pVal = (i64)((u64)*pVal - iVal);
2519 }else{
2520 *pVal = (i64)((u64)*pVal + iVal);
2526 ** This function is used to write a single varint to a buffer. The varint
2527 ** is written to *pp. Before returning, *pp is set to point 1 byte past the
2528 ** end of the value written.
2530 ** If *pbFirst is zero when this function is called, the value written to
2531 ** the buffer is that of parameter iVal.
2533 ** If *pbFirst is non-zero when this function is called, then the value
2534 ** written is either (iVal-*piPrev) (if bDescIdx is zero) or (*piPrev-iVal)
2535 ** (if bDescIdx is non-zero).
2537 ** Before returning, this function always sets *pbFirst to 1 and *piPrev
2538 ** to the value of parameter iVal.
2540 static void fts3PutDeltaVarint3(
2541 char **pp, /* IN/OUT: Output pointer */
2542 int bDescIdx, /* True for descending docids */
2543 sqlite3_int64 *piPrev, /* IN/OUT: Previous value written to list */
2544 int *pbFirst, /* IN/OUT: True after first int written */
2545 sqlite3_int64 iVal /* Write this value to the list */
2547 sqlite3_uint64 iWrite;
2548 if( bDescIdx==0 || *pbFirst==0 ){
2549 assert_fts3_nc( *pbFirst==0 || iVal>=*piPrev );
2550 iWrite = (u64)iVal - (u64)*piPrev;
2551 }else{
2552 assert_fts3_nc( *piPrev>=iVal );
2553 iWrite = (u64)*piPrev - (u64)iVal;
2555 assert( *pbFirst || *piPrev==0 );
2556 assert_fts3_nc( *pbFirst==0 || iWrite>0 );
2557 *pp += sqlite3Fts3PutVarint(*pp, iWrite);
2558 *piPrev = iVal;
2559 *pbFirst = 1;
2564 ** This macro is used by various functions that merge doclists. The two
2565 ** arguments are 64-bit docid values. If the value of the stack variable
2566 ** bDescDoclist is 0 when this macro is invoked, then it returns (i1-i2).
2567 ** Otherwise, (i2-i1).
2569 ** Using this makes it easier to write code that can merge doclists that are
2570 ** sorted in either ascending or descending order.
2572 /* #define DOCID_CMP(i1, i2) ((bDescDoclist?-1:1) * (i64)((u64)i1-i2)) */
2573 #define DOCID_CMP(i1, i2) ((bDescDoclist?-1:1) * (i1>i2?1:((i1==i2)?0:-1)))
2576 ** This function does an "OR" merge of two doclists (output contains all
2577 ** positions contained in either argument doclist). If the docids in the
2578 ** input doclists are sorted in ascending order, parameter bDescDoclist
2579 ** should be false. If they are sorted in ascending order, it should be
2580 ** passed a non-zero value.
2582 ** If no error occurs, *paOut is set to point at an sqlite3_malloc'd buffer
2583 ** containing the output doclist and SQLITE_OK is returned. In this case
2584 ** *pnOut is set to the number of bytes in the output doclist.
2586 ** If an error occurs, an SQLite error code is returned. The output values
2587 ** are undefined in this case.
2589 static int fts3DoclistOrMerge(
2590 int bDescDoclist, /* True if arguments are desc */
2591 char *a1, int n1, /* First doclist */
2592 char *a2, int n2, /* Second doclist */
2593 char **paOut, int *pnOut /* OUT: Malloc'd doclist */
2595 int rc = SQLITE_OK;
2596 sqlite3_int64 i1 = 0;
2597 sqlite3_int64 i2 = 0;
2598 sqlite3_int64 iPrev = 0;
2599 char *pEnd1 = &a1[n1];
2600 char *pEnd2 = &a2[n2];
2601 char *p1 = a1;
2602 char *p2 = a2;
2603 char *p;
2604 char *aOut;
2605 int bFirstOut = 0;
2607 *paOut = 0;
2608 *pnOut = 0;
2610 /* Allocate space for the output. Both the input and output doclists
2611 ** are delta encoded. If they are in ascending order (bDescDoclist==0),
2612 ** then the first docid in each list is simply encoded as a varint. For
2613 ** each subsequent docid, the varint stored is the difference between the
2614 ** current and previous docid (a positive number - since the list is in
2615 ** ascending order).
2617 ** The first docid written to the output is therefore encoded using the
2618 ** same number of bytes as it is in whichever of the input lists it is
2619 ** read from. And each subsequent docid read from the same input list
2620 ** consumes either the same or less bytes as it did in the input (since
2621 ** the difference between it and the previous value in the output must
2622 ** be a positive value less than or equal to the delta value read from
2623 ** the input list). The same argument applies to all but the first docid
2624 ** read from the 'other' list. And to the contents of all position lists
2625 ** that will be copied and merged from the input to the output.
2627 ** However, if the first docid copied to the output is a negative number,
2628 ** then the encoding of the first docid from the 'other' input list may
2629 ** be larger in the output than it was in the input (since the delta value
2630 ** may be a larger positive integer than the actual docid).
2632 ** The space required to store the output is therefore the sum of the
2633 ** sizes of the two inputs, plus enough space for exactly one of the input
2634 ** docids to grow.
2636 ** A symetric argument may be made if the doclists are in descending
2637 ** order.
2639 aOut = sqlite3_malloc64((i64)n1+n2+FTS3_VARINT_MAX-1+FTS3_BUFFER_PADDING);
2640 if( !aOut ) return SQLITE_NOMEM;
2642 p = aOut;
2643 fts3GetDeltaVarint3(&p1, pEnd1, 0, &i1);
2644 fts3GetDeltaVarint3(&p2, pEnd2, 0, &i2);
2645 while( p1 || p2 ){
2646 sqlite3_int64 iDiff = DOCID_CMP(i1, i2);
2648 if( p2 && p1 && iDiff==0 ){
2649 fts3PutDeltaVarint3(&p, bDescDoclist, &iPrev, &bFirstOut, i1);
2650 rc = fts3PoslistMerge(&p, &p1, &p2);
2651 if( rc ) break;
2652 fts3GetDeltaVarint3(&p1, pEnd1, bDescDoclist, &i1);
2653 fts3GetDeltaVarint3(&p2, pEnd2, bDescDoclist, &i2);
2654 }else if( !p2 || (p1 && iDiff<0) ){
2655 fts3PutDeltaVarint3(&p, bDescDoclist, &iPrev, &bFirstOut, i1);
2656 fts3PoslistCopy(&p, &p1);
2657 fts3GetDeltaVarint3(&p1, pEnd1, bDescDoclist, &i1);
2658 }else{
2659 fts3PutDeltaVarint3(&p, bDescDoclist, &iPrev, &bFirstOut, i2);
2660 fts3PoslistCopy(&p, &p2);
2661 fts3GetDeltaVarint3(&p2, pEnd2, bDescDoclist, &i2);
2664 assert( (p-aOut)<=((p1?(p1-a1):n1)+(p2?(p2-a2):n2)+FTS3_VARINT_MAX-1) );
2667 if( rc!=SQLITE_OK ){
2668 sqlite3_free(aOut);
2669 p = aOut = 0;
2670 }else{
2671 assert( (p-aOut)<=n1+n2+FTS3_VARINT_MAX-1 );
2672 memset(&aOut[(p-aOut)], 0, FTS3_BUFFER_PADDING);
2674 *paOut = aOut;
2675 *pnOut = (int)(p-aOut);
2676 return rc;
2680 ** This function does a "phrase" merge of two doclists. In a phrase merge,
2681 ** the output contains a copy of each position from the right-hand input
2682 ** doclist for which there is a position in the left-hand input doclist
2683 ** exactly nDist tokens before it.
2685 ** If the docids in the input doclists are sorted in ascending order,
2686 ** parameter bDescDoclist should be false. If they are sorted in ascending
2687 ** order, it should be passed a non-zero value.
2689 ** The right-hand input doclist is overwritten by this function.
2691 static int fts3DoclistPhraseMerge(
2692 int bDescDoclist, /* True if arguments are desc */
2693 int nDist, /* Distance from left to right (1=adjacent) */
2694 char *aLeft, int nLeft, /* Left doclist */
2695 char **paRight, int *pnRight /* IN/OUT: Right/output doclist */
2697 sqlite3_int64 i1 = 0;
2698 sqlite3_int64 i2 = 0;
2699 sqlite3_int64 iPrev = 0;
2700 char *aRight = *paRight;
2701 char *pEnd1 = &aLeft[nLeft];
2702 char *pEnd2 = &aRight[*pnRight];
2703 char *p1 = aLeft;
2704 char *p2 = aRight;
2705 char *p;
2706 int bFirstOut = 0;
2707 char *aOut;
2709 assert( nDist>0 );
2710 if( bDescDoclist ){
2711 aOut = sqlite3_malloc64((sqlite3_int64)*pnRight + FTS3_VARINT_MAX);
2712 if( aOut==0 ) return SQLITE_NOMEM;
2713 }else{
2714 aOut = aRight;
2716 p = aOut;
2718 fts3GetDeltaVarint3(&p1, pEnd1, 0, &i1);
2719 fts3GetDeltaVarint3(&p2, pEnd2, 0, &i2);
2721 while( p1 && p2 ){
2722 sqlite3_int64 iDiff = DOCID_CMP(i1, i2);
2723 if( iDiff==0 ){
2724 char *pSave = p;
2725 sqlite3_int64 iPrevSave = iPrev;
2726 int bFirstOutSave = bFirstOut;
2728 fts3PutDeltaVarint3(&p, bDescDoclist, &iPrev, &bFirstOut, i1);
2729 if( 0==fts3PoslistPhraseMerge(&p, nDist, 0, 1, &p1, &p2) ){
2730 p = pSave;
2731 iPrev = iPrevSave;
2732 bFirstOut = bFirstOutSave;
2734 fts3GetDeltaVarint3(&p1, pEnd1, bDescDoclist, &i1);
2735 fts3GetDeltaVarint3(&p2, pEnd2, bDescDoclist, &i2);
2736 }else if( iDiff<0 ){
2737 fts3PoslistCopy(0, &p1);
2738 fts3GetDeltaVarint3(&p1, pEnd1, bDescDoclist, &i1);
2739 }else{
2740 fts3PoslistCopy(0, &p2);
2741 fts3GetDeltaVarint3(&p2, pEnd2, bDescDoclist, &i2);
2745 *pnRight = (int)(p - aOut);
2746 if( bDescDoclist ){
2747 sqlite3_free(aRight);
2748 *paRight = aOut;
2751 return SQLITE_OK;
2755 ** Argument pList points to a position list nList bytes in size. This
2756 ** function checks to see if the position list contains any entries for
2757 ** a token in position 0 (of any column). If so, it writes argument iDelta
2758 ** to the output buffer pOut, followed by a position list consisting only
2759 ** of the entries from pList at position 0, and terminated by an 0x00 byte.
2760 ** The value returned is the number of bytes written to pOut (if any).
2762 int sqlite3Fts3FirstFilter(
2763 sqlite3_int64 iDelta, /* Varint that may be written to pOut */
2764 char *pList, /* Position list (no 0x00 term) */
2765 int nList, /* Size of pList in bytes */
2766 char *pOut /* Write output here */
2768 int nOut = 0;
2769 int bWritten = 0; /* True once iDelta has been written */
2770 char *p = pList;
2771 char *pEnd = &pList[nList];
2773 if( *p!=0x01 ){
2774 if( *p==0x02 ){
2775 nOut += sqlite3Fts3PutVarint(&pOut[nOut], iDelta);
2776 pOut[nOut++] = 0x02;
2777 bWritten = 1;
2779 fts3ColumnlistCopy(0, &p);
2782 while( p<pEnd ){
2783 sqlite3_int64 iCol;
2784 p++;
2785 p += sqlite3Fts3GetVarint(p, &iCol);
2786 if( *p==0x02 ){
2787 if( bWritten==0 ){
2788 nOut += sqlite3Fts3PutVarint(&pOut[nOut], iDelta);
2789 bWritten = 1;
2791 pOut[nOut++] = 0x01;
2792 nOut += sqlite3Fts3PutVarint(&pOut[nOut], iCol);
2793 pOut[nOut++] = 0x02;
2795 fts3ColumnlistCopy(0, &p);
2797 if( bWritten ){
2798 pOut[nOut++] = 0x00;
2801 return nOut;
2806 ** Merge all doclists in the TermSelect.aaOutput[] array into a single
2807 ** doclist stored in TermSelect.aaOutput[0]. If successful, delete all
2808 ** other doclists (except the aaOutput[0] one) and return SQLITE_OK.
2810 ** If an OOM error occurs, return SQLITE_NOMEM. In this case it is
2811 ** the responsibility of the caller to free any doclists left in the
2812 ** TermSelect.aaOutput[] array.
2814 static int fts3TermSelectFinishMerge(Fts3Table *p, TermSelect *pTS){
2815 char *aOut = 0;
2816 int nOut = 0;
2817 int i;
2819 /* Loop through the doclists in the aaOutput[] array. Merge them all
2820 ** into a single doclist.
2822 for(i=0; i<SizeofArray(pTS->aaOutput); i++){
2823 if( pTS->aaOutput[i] ){
2824 if( !aOut ){
2825 aOut = pTS->aaOutput[i];
2826 nOut = pTS->anOutput[i];
2827 pTS->aaOutput[i] = 0;
2828 }else{
2829 int nNew;
2830 char *aNew;
2832 int rc = fts3DoclistOrMerge(p->bDescIdx,
2833 pTS->aaOutput[i], pTS->anOutput[i], aOut, nOut, &aNew, &nNew
2835 if( rc!=SQLITE_OK ){
2836 sqlite3_free(aOut);
2837 return rc;
2840 sqlite3_free(pTS->aaOutput[i]);
2841 sqlite3_free(aOut);
2842 pTS->aaOutput[i] = 0;
2843 aOut = aNew;
2844 nOut = nNew;
2849 pTS->aaOutput[0] = aOut;
2850 pTS->anOutput[0] = nOut;
2851 return SQLITE_OK;
2855 ** Merge the doclist aDoclist/nDoclist into the TermSelect object passed
2856 ** as the first argument. The merge is an "OR" merge (see function
2857 ** fts3DoclistOrMerge() for details).
2859 ** This function is called with the doclist for each term that matches
2860 ** a queried prefix. It merges all these doclists into one, the doclist
2861 ** for the specified prefix. Since there can be a very large number of
2862 ** doclists to merge, the merging is done pair-wise using the TermSelect
2863 ** object.
2865 ** This function returns SQLITE_OK if the merge is successful, or an
2866 ** SQLite error code (SQLITE_NOMEM) if an error occurs.
2868 static int fts3TermSelectMerge(
2869 Fts3Table *p, /* FTS table handle */
2870 TermSelect *pTS, /* TermSelect object to merge into */
2871 char *aDoclist, /* Pointer to doclist */
2872 int nDoclist /* Size of aDoclist in bytes */
2874 if( pTS->aaOutput[0]==0 ){
2875 /* If this is the first term selected, copy the doclist to the output
2876 ** buffer using memcpy().
2878 ** Add FTS3_VARINT_MAX bytes of unused space to the end of the
2879 ** allocation. This is so as to ensure that the buffer is big enough
2880 ** to hold the current doclist AND'd with any other doclist. If the
2881 ** doclists are stored in order=ASC order, this padding would not be
2882 ** required (since the size of [doclistA AND doclistB] is always less
2883 ** than or equal to the size of [doclistA] in that case). But this is
2884 ** not true for order=DESC. For example, a doclist containing (1, -1)
2885 ** may be smaller than (-1), as in the first example the -1 may be stored
2886 ** as a single-byte delta, whereas in the second it must be stored as a
2887 ** FTS3_VARINT_MAX byte varint.
2889 ** Similar padding is added in the fts3DoclistOrMerge() function.
2891 pTS->aaOutput[0] = sqlite3_malloc64((i64)nDoclist + FTS3_VARINT_MAX + 1);
2892 pTS->anOutput[0] = nDoclist;
2893 if( pTS->aaOutput[0] ){
2894 memcpy(pTS->aaOutput[0], aDoclist, nDoclist);
2895 memset(&pTS->aaOutput[0][nDoclist], 0, FTS3_VARINT_MAX);
2896 }else{
2897 return SQLITE_NOMEM;
2899 }else{
2900 char *aMerge = aDoclist;
2901 int nMerge = nDoclist;
2902 int iOut;
2904 for(iOut=0; iOut<SizeofArray(pTS->aaOutput); iOut++){
2905 if( pTS->aaOutput[iOut]==0 ){
2906 assert( iOut>0 );
2907 pTS->aaOutput[iOut] = aMerge;
2908 pTS->anOutput[iOut] = nMerge;
2909 break;
2910 }else{
2911 char *aNew;
2912 int nNew;
2914 int rc = fts3DoclistOrMerge(p->bDescIdx, aMerge, nMerge,
2915 pTS->aaOutput[iOut], pTS->anOutput[iOut], &aNew, &nNew
2917 if( rc!=SQLITE_OK ){
2918 if( aMerge!=aDoclist ) sqlite3_free(aMerge);
2919 return rc;
2922 if( aMerge!=aDoclist ) sqlite3_free(aMerge);
2923 sqlite3_free(pTS->aaOutput[iOut]);
2924 pTS->aaOutput[iOut] = 0;
2926 aMerge = aNew;
2927 nMerge = nNew;
2928 if( (iOut+1)==SizeofArray(pTS->aaOutput) ){
2929 pTS->aaOutput[iOut] = aMerge;
2930 pTS->anOutput[iOut] = nMerge;
2935 return SQLITE_OK;
2939 ** Append SegReader object pNew to the end of the pCsr->apSegment[] array.
2941 static int fts3SegReaderCursorAppend(
2942 Fts3MultiSegReader *pCsr,
2943 Fts3SegReader *pNew
2945 if( (pCsr->nSegment%16)==0 ){
2946 Fts3SegReader **apNew;
2947 sqlite3_int64 nByte = (pCsr->nSegment + 16)*sizeof(Fts3SegReader*);
2948 apNew = (Fts3SegReader **)sqlite3_realloc64(pCsr->apSegment, nByte);
2949 if( !apNew ){
2950 sqlite3Fts3SegReaderFree(pNew);
2951 return SQLITE_NOMEM;
2953 pCsr->apSegment = apNew;
2955 pCsr->apSegment[pCsr->nSegment++] = pNew;
2956 return SQLITE_OK;
2960 ** Add seg-reader objects to the Fts3MultiSegReader object passed as the
2961 ** 8th argument.
2963 ** This function returns SQLITE_OK if successful, or an SQLite error code
2964 ** otherwise.
2966 static int fts3SegReaderCursor(
2967 Fts3Table *p, /* FTS3 table handle */
2968 int iLangid, /* Language id */
2969 int iIndex, /* Index to search (from 0 to p->nIndex-1) */
2970 int iLevel, /* Level of segments to scan */
2971 const char *zTerm, /* Term to query for */
2972 int nTerm, /* Size of zTerm in bytes */
2973 int isPrefix, /* True for a prefix search */
2974 int isScan, /* True to scan from zTerm to EOF */
2975 Fts3MultiSegReader *pCsr /* Cursor object to populate */
2977 int rc = SQLITE_OK; /* Error code */
2978 sqlite3_stmt *pStmt = 0; /* Statement to iterate through segments */
2979 int rc2; /* Result of sqlite3_reset() */
2981 /* If iLevel is less than 0 and this is not a scan, include a seg-reader
2982 ** for the pending-terms. If this is a scan, then this call must be being
2983 ** made by an fts4aux module, not an FTS table. In this case calling
2984 ** Fts3SegReaderPending might segfault, as the data structures used by
2985 ** fts4aux are not completely populated. So it's easiest to filter these
2986 ** calls out here. */
2987 if( iLevel<0 && p->aIndex && p->iPrevLangid==iLangid ){
2988 Fts3SegReader *pSeg = 0;
2989 rc = sqlite3Fts3SegReaderPending(p, iIndex, zTerm, nTerm, isPrefix||isScan, &pSeg);
2990 if( rc==SQLITE_OK && pSeg ){
2991 rc = fts3SegReaderCursorAppend(pCsr, pSeg);
2995 if( iLevel!=FTS3_SEGCURSOR_PENDING ){
2996 if( rc==SQLITE_OK ){
2997 rc = sqlite3Fts3AllSegdirs(p, iLangid, iIndex, iLevel, &pStmt);
3000 while( rc==SQLITE_OK && SQLITE_ROW==(rc = sqlite3_step(pStmt)) ){
3001 Fts3SegReader *pSeg = 0;
3003 /* Read the values returned by the SELECT into local variables. */
3004 sqlite3_int64 iStartBlock = sqlite3_column_int64(pStmt, 1);
3005 sqlite3_int64 iLeavesEndBlock = sqlite3_column_int64(pStmt, 2);
3006 sqlite3_int64 iEndBlock = sqlite3_column_int64(pStmt, 3);
3007 int nRoot = sqlite3_column_bytes(pStmt, 4);
3008 char const *zRoot = sqlite3_column_blob(pStmt, 4);
3010 /* If zTerm is not NULL, and this segment is not stored entirely on its
3011 ** root node, the range of leaves scanned can be reduced. Do this. */
3012 if( iStartBlock && zTerm && zRoot ){
3013 sqlite3_int64 *pi = (isPrefix ? &iLeavesEndBlock : 0);
3014 rc = fts3SelectLeaf(p, zTerm, nTerm, zRoot, nRoot, &iStartBlock, pi);
3015 if( rc!=SQLITE_OK ) goto finished;
3016 if( isPrefix==0 && isScan==0 ) iLeavesEndBlock = iStartBlock;
3019 rc = sqlite3Fts3SegReaderNew(pCsr->nSegment+1,
3020 (isPrefix==0 && isScan==0),
3021 iStartBlock, iLeavesEndBlock,
3022 iEndBlock, zRoot, nRoot, &pSeg
3024 if( rc!=SQLITE_OK ) goto finished;
3025 rc = fts3SegReaderCursorAppend(pCsr, pSeg);
3029 finished:
3030 rc2 = sqlite3_reset(pStmt);
3031 if( rc==SQLITE_DONE ) rc = rc2;
3033 return rc;
3037 ** Set up a cursor object for iterating through a full-text index or a
3038 ** single level therein.
3040 int sqlite3Fts3SegReaderCursor(
3041 Fts3Table *p, /* FTS3 table handle */
3042 int iLangid, /* Language-id to search */
3043 int iIndex, /* Index to search (from 0 to p->nIndex-1) */
3044 int iLevel, /* Level of segments to scan */
3045 const char *zTerm, /* Term to query for */
3046 int nTerm, /* Size of zTerm in bytes */
3047 int isPrefix, /* True for a prefix search */
3048 int isScan, /* True to scan from zTerm to EOF */
3049 Fts3MultiSegReader *pCsr /* Cursor object to populate */
3051 assert( iIndex>=0 && iIndex<p->nIndex );
3052 assert( iLevel==FTS3_SEGCURSOR_ALL
3053 || iLevel==FTS3_SEGCURSOR_PENDING
3054 || iLevel>=0
3056 assert( iLevel<FTS3_SEGDIR_MAXLEVEL );
3057 assert( FTS3_SEGCURSOR_ALL<0 && FTS3_SEGCURSOR_PENDING<0 );
3058 assert( isPrefix==0 || isScan==0 );
3060 memset(pCsr, 0, sizeof(Fts3MultiSegReader));
3061 return fts3SegReaderCursor(
3062 p, iLangid, iIndex, iLevel, zTerm, nTerm, isPrefix, isScan, pCsr
3067 ** In addition to its current configuration, have the Fts3MultiSegReader
3068 ** passed as the 4th argument also scan the doclist for term zTerm/nTerm.
3070 ** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code.
3072 static int fts3SegReaderCursorAddZero(
3073 Fts3Table *p, /* FTS virtual table handle */
3074 int iLangid,
3075 const char *zTerm, /* Term to scan doclist of */
3076 int nTerm, /* Number of bytes in zTerm */
3077 Fts3MultiSegReader *pCsr /* Fts3MultiSegReader to modify */
3079 return fts3SegReaderCursor(p,
3080 iLangid, 0, FTS3_SEGCURSOR_ALL, zTerm, nTerm, 0, 0,pCsr
3085 ** Open an Fts3MultiSegReader to scan the doclist for term zTerm/nTerm. Or,
3086 ** if isPrefix is true, to scan the doclist for all terms for which
3087 ** zTerm/nTerm is a prefix. If successful, return SQLITE_OK and write
3088 ** a pointer to the new Fts3MultiSegReader to *ppSegcsr. Otherwise, return
3089 ** an SQLite error code.
3091 ** It is the responsibility of the caller to free this object by eventually
3092 ** passing it to fts3SegReaderCursorFree()
3094 ** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code.
3095 ** Output parameter *ppSegcsr is set to 0 if an error occurs.
3097 static int fts3TermSegReaderCursor(
3098 Fts3Cursor *pCsr, /* Virtual table cursor handle */
3099 const char *zTerm, /* Term to query for */
3100 int nTerm, /* Size of zTerm in bytes */
3101 int isPrefix, /* True for a prefix search */
3102 Fts3MultiSegReader **ppSegcsr /* OUT: Allocated seg-reader cursor */
3104 Fts3MultiSegReader *pSegcsr; /* Object to allocate and return */
3105 int rc = SQLITE_NOMEM; /* Return code */
3107 pSegcsr = sqlite3_malloc(sizeof(Fts3MultiSegReader));
3108 if( pSegcsr ){
3109 int i;
3110 int bFound = 0; /* True once an index has been found */
3111 Fts3Table *p = (Fts3Table *)pCsr->base.pVtab;
3113 if( isPrefix ){
3114 for(i=1; bFound==0 && i<p->nIndex; i++){
3115 if( p->aIndex[i].nPrefix==nTerm ){
3116 bFound = 1;
3117 rc = sqlite3Fts3SegReaderCursor(p, pCsr->iLangid,
3118 i, FTS3_SEGCURSOR_ALL, zTerm, nTerm, 0, 0, pSegcsr
3120 pSegcsr->bLookup = 1;
3124 for(i=1; bFound==0 && i<p->nIndex; i++){
3125 if( p->aIndex[i].nPrefix==nTerm+1 ){
3126 bFound = 1;
3127 rc = sqlite3Fts3SegReaderCursor(p, pCsr->iLangid,
3128 i, FTS3_SEGCURSOR_ALL, zTerm, nTerm, 1, 0, pSegcsr
3130 if( rc==SQLITE_OK ){
3131 rc = fts3SegReaderCursorAddZero(
3132 p, pCsr->iLangid, zTerm, nTerm, pSegcsr
3139 if( bFound==0 ){
3140 rc = sqlite3Fts3SegReaderCursor(p, pCsr->iLangid,
3141 0, FTS3_SEGCURSOR_ALL, zTerm, nTerm, isPrefix, 0, pSegcsr
3143 pSegcsr->bLookup = !isPrefix;
3147 *ppSegcsr = pSegcsr;
3148 return rc;
3152 ** Free an Fts3MultiSegReader allocated by fts3TermSegReaderCursor().
3154 static void fts3SegReaderCursorFree(Fts3MultiSegReader *pSegcsr){
3155 sqlite3Fts3SegReaderFinish(pSegcsr);
3156 sqlite3_free(pSegcsr);
3160 ** This function retrieves the doclist for the specified term (or term
3161 ** prefix) from the database.
3163 static int fts3TermSelect(
3164 Fts3Table *p, /* Virtual table handle */
3165 Fts3PhraseToken *pTok, /* Token to query for */
3166 int iColumn, /* Column to query (or -ve for all columns) */
3167 int *pnOut, /* OUT: Size of buffer at *ppOut */
3168 char **ppOut /* OUT: Malloced result buffer */
3170 int rc; /* Return code */
3171 Fts3MultiSegReader *pSegcsr; /* Seg-reader cursor for this term */
3172 TermSelect tsc; /* Object for pair-wise doclist merging */
3173 Fts3SegFilter filter; /* Segment term filter configuration */
3175 pSegcsr = pTok->pSegcsr;
3176 memset(&tsc, 0, sizeof(TermSelect));
3178 filter.flags = FTS3_SEGMENT_IGNORE_EMPTY | FTS3_SEGMENT_REQUIRE_POS
3179 | (pTok->isPrefix ? FTS3_SEGMENT_PREFIX : 0)
3180 | (pTok->bFirst ? FTS3_SEGMENT_FIRST : 0)
3181 | (iColumn<p->nColumn ? FTS3_SEGMENT_COLUMN_FILTER : 0);
3182 filter.iCol = iColumn;
3183 filter.zTerm = pTok->z;
3184 filter.nTerm = pTok->n;
3186 rc = sqlite3Fts3SegReaderStart(p, pSegcsr, &filter);
3187 while( SQLITE_OK==rc
3188 && SQLITE_ROW==(rc = sqlite3Fts3SegReaderStep(p, pSegcsr))
3190 rc = fts3TermSelectMerge(p, &tsc, pSegcsr->aDoclist, pSegcsr->nDoclist);
3193 if( rc==SQLITE_OK ){
3194 rc = fts3TermSelectFinishMerge(p, &tsc);
3196 if( rc==SQLITE_OK ){
3197 *ppOut = tsc.aaOutput[0];
3198 *pnOut = tsc.anOutput[0];
3199 }else{
3200 int i;
3201 for(i=0; i<SizeofArray(tsc.aaOutput); i++){
3202 sqlite3_free(tsc.aaOutput[i]);
3206 fts3SegReaderCursorFree(pSegcsr);
3207 pTok->pSegcsr = 0;
3208 return rc;
3212 ** This function counts the total number of docids in the doclist stored
3213 ** in buffer aList[], size nList bytes.
3215 ** If the isPoslist argument is true, then it is assumed that the doclist
3216 ** contains a position-list following each docid. Otherwise, it is assumed
3217 ** that the doclist is simply a list of docids stored as delta encoded
3218 ** varints.
3220 static int fts3DoclistCountDocids(char *aList, int nList){
3221 int nDoc = 0; /* Return value */
3222 if( aList ){
3223 char *aEnd = &aList[nList]; /* Pointer to one byte after EOF */
3224 char *p = aList; /* Cursor */
3225 while( p<aEnd ){
3226 nDoc++;
3227 while( (*p++)&0x80 ); /* Skip docid varint */
3228 fts3PoslistCopy(0, &p); /* Skip over position list */
3232 return nDoc;
3236 ** Advance the cursor to the next row in the %_content table that
3237 ** matches the search criteria. For a MATCH search, this will be
3238 ** the next row that matches. For a full-table scan, this will be
3239 ** simply the next row in the %_content table. For a docid lookup,
3240 ** this routine simply sets the EOF flag.
3242 ** Return SQLITE_OK if nothing goes wrong. SQLITE_OK is returned
3243 ** even if we reach end-of-file. The fts3EofMethod() will be called
3244 ** subsequently to determine whether or not an EOF was hit.
3246 static int fts3NextMethod(sqlite3_vtab_cursor *pCursor){
3247 int rc;
3248 Fts3Cursor *pCsr = (Fts3Cursor *)pCursor;
3249 if( pCsr->eSearch==FTS3_DOCID_SEARCH || pCsr->eSearch==FTS3_FULLSCAN_SEARCH ){
3250 Fts3Table *pTab = (Fts3Table*)pCursor->pVtab;
3251 pTab->bLock++;
3252 if( SQLITE_ROW!=sqlite3_step(pCsr->pStmt) ){
3253 pCsr->isEof = 1;
3254 rc = sqlite3_reset(pCsr->pStmt);
3255 }else{
3256 pCsr->iPrevId = sqlite3_column_int64(pCsr->pStmt, 0);
3257 rc = SQLITE_OK;
3259 pTab->bLock--;
3260 }else{
3261 rc = fts3EvalNext((Fts3Cursor *)pCursor);
3263 assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 );
3264 return rc;
3268 ** If the numeric type of argument pVal is "integer", then return it
3269 ** converted to a 64-bit signed integer. Otherwise, return a copy of
3270 ** the second parameter, iDefault.
3272 static sqlite3_int64 fts3DocidRange(sqlite3_value *pVal, i64 iDefault){
3273 if( pVal ){
3274 int eType = sqlite3_value_numeric_type(pVal);
3275 if( eType==SQLITE_INTEGER ){
3276 return sqlite3_value_int64(pVal);
3279 return iDefault;
3283 ** This is the xFilter interface for the virtual table. See
3284 ** the virtual table xFilter method documentation for additional
3285 ** information.
3287 ** If idxNum==FTS3_FULLSCAN_SEARCH then do a full table scan against
3288 ** the %_content table.
3290 ** If idxNum==FTS3_DOCID_SEARCH then do a docid lookup for a single entry
3291 ** in the %_content table.
3293 ** If idxNum>=FTS3_FULLTEXT_SEARCH then use the full text index. The
3294 ** column on the left-hand side of the MATCH operator is column
3295 ** number idxNum-FTS3_FULLTEXT_SEARCH, 0 indexed. argv[0] is the right-hand
3296 ** side of the MATCH operator.
3298 static int fts3FilterMethod(
3299 sqlite3_vtab_cursor *pCursor, /* The cursor used for this query */
3300 int idxNum, /* Strategy index */
3301 const char *idxStr, /* Unused */
3302 int nVal, /* Number of elements in apVal */
3303 sqlite3_value **apVal /* Arguments for the indexing scheme */
3305 int rc = SQLITE_OK;
3306 char *zSql; /* SQL statement used to access %_content */
3307 int eSearch;
3308 Fts3Table *p = (Fts3Table *)pCursor->pVtab;
3309 Fts3Cursor *pCsr = (Fts3Cursor *)pCursor;
3311 sqlite3_value *pCons = 0; /* The MATCH or rowid constraint, if any */
3312 sqlite3_value *pLangid = 0; /* The "langid = ?" constraint, if any */
3313 sqlite3_value *pDocidGe = 0; /* The "docid >= ?" constraint, if any */
3314 sqlite3_value *pDocidLe = 0; /* The "docid <= ?" constraint, if any */
3315 int iIdx;
3317 UNUSED_PARAMETER(idxStr);
3318 UNUSED_PARAMETER(nVal);
3320 if( p->bLock ){
3321 return SQLITE_ERROR;
3324 eSearch = (idxNum & 0x0000FFFF);
3325 assert( eSearch>=0 && eSearch<=(FTS3_FULLTEXT_SEARCH+p->nColumn) );
3326 assert( p->pSegments==0 );
3328 /* Collect arguments into local variables */
3329 iIdx = 0;
3330 if( eSearch!=FTS3_FULLSCAN_SEARCH ) pCons = apVal[iIdx++];
3331 if( idxNum & FTS3_HAVE_LANGID ) pLangid = apVal[iIdx++];
3332 if( idxNum & FTS3_HAVE_DOCID_GE ) pDocidGe = apVal[iIdx++];
3333 if( idxNum & FTS3_HAVE_DOCID_LE ) pDocidLe = apVal[iIdx++];
3334 assert( iIdx==nVal );
3336 /* In case the cursor has been used before, clear it now. */
3337 fts3ClearCursor(pCsr);
3339 /* Set the lower and upper bounds on docids to return */
3340 pCsr->iMinDocid = fts3DocidRange(pDocidGe, SMALLEST_INT64);
3341 pCsr->iMaxDocid = fts3DocidRange(pDocidLe, LARGEST_INT64);
3343 if( idxStr ){
3344 pCsr->bDesc = (idxStr[0]=='D');
3345 }else{
3346 pCsr->bDesc = p->bDescIdx;
3348 pCsr->eSearch = (i16)eSearch;
3350 if( eSearch!=FTS3_DOCID_SEARCH && eSearch!=FTS3_FULLSCAN_SEARCH ){
3351 int iCol = eSearch-FTS3_FULLTEXT_SEARCH;
3352 const char *zQuery = (const char *)sqlite3_value_text(pCons);
3354 if( zQuery==0 && sqlite3_value_type(pCons)!=SQLITE_NULL ){
3355 return SQLITE_NOMEM;
3358 pCsr->iLangid = 0;
3359 if( pLangid ) pCsr->iLangid = sqlite3_value_int(pLangid);
3361 assert( p->base.zErrMsg==0 );
3362 rc = sqlite3Fts3ExprParse(p->pTokenizer, pCsr->iLangid,
3363 p->azColumn, p->bFts4, p->nColumn, iCol, zQuery, -1, &pCsr->pExpr,
3364 &p->base.zErrMsg
3366 if( rc!=SQLITE_OK ){
3367 return rc;
3370 rc = fts3EvalStart(pCsr);
3371 sqlite3Fts3SegmentsClose(p);
3372 if( rc!=SQLITE_OK ) return rc;
3373 pCsr->pNextId = pCsr->aDoclist;
3374 pCsr->iPrevId = 0;
3377 /* Compile a SELECT statement for this cursor. For a full-table-scan, the
3378 ** statement loops through all rows of the %_content table. For a
3379 ** full-text query or docid lookup, the statement retrieves a single
3380 ** row by docid.
3382 if( eSearch==FTS3_FULLSCAN_SEARCH ){
3383 if( pDocidGe || pDocidLe ){
3384 zSql = sqlite3_mprintf(
3385 "SELECT %s WHERE rowid BETWEEN %lld AND %lld ORDER BY rowid %s",
3386 p->zReadExprlist, pCsr->iMinDocid, pCsr->iMaxDocid,
3387 (pCsr->bDesc ? "DESC" : "ASC")
3389 }else{
3390 zSql = sqlite3_mprintf("SELECT %s ORDER BY rowid %s",
3391 p->zReadExprlist, (pCsr->bDesc ? "DESC" : "ASC")
3394 if( zSql ){
3395 p->bLock++;
3396 rc = sqlite3_prepare_v3(
3397 p->db,zSql,-1,SQLITE_PREPARE_PERSISTENT,&pCsr->pStmt,0
3399 p->bLock--;
3400 sqlite3_free(zSql);
3401 }else{
3402 rc = SQLITE_NOMEM;
3404 }else if( eSearch==FTS3_DOCID_SEARCH ){
3405 rc = fts3CursorSeekStmt(pCsr);
3406 if( rc==SQLITE_OK ){
3407 rc = sqlite3_bind_value(pCsr->pStmt, 1, pCons);
3410 if( rc!=SQLITE_OK ) return rc;
3412 return fts3NextMethod(pCursor);
3416 ** This is the xEof method of the virtual table. SQLite calls this
3417 ** routine to find out if it has reached the end of a result set.
3419 static int fts3EofMethod(sqlite3_vtab_cursor *pCursor){
3420 Fts3Cursor *pCsr = (Fts3Cursor*)pCursor;
3421 if( pCsr->isEof ){
3422 fts3ClearCursor(pCsr);
3423 pCsr->isEof = 1;
3425 return pCsr->isEof;
3429 ** This is the xRowid method. The SQLite core calls this routine to
3430 ** retrieve the rowid for the current row of the result set. fts3
3431 ** exposes %_content.docid as the rowid for the virtual table. The
3432 ** rowid should be written to *pRowid.
3434 static int fts3RowidMethod(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){
3435 Fts3Cursor *pCsr = (Fts3Cursor *) pCursor;
3436 *pRowid = pCsr->iPrevId;
3437 return SQLITE_OK;
3441 ** This is the xColumn method, called by SQLite to request a value from
3442 ** the row that the supplied cursor currently points to.
3444 ** If:
3446 ** (iCol < p->nColumn) -> The value of the iCol'th user column.
3447 ** (iCol == p->nColumn) -> Magic column with the same name as the table.
3448 ** (iCol == p->nColumn+1) -> Docid column
3449 ** (iCol == p->nColumn+2) -> Langid column
3451 static int fts3ColumnMethod(
3452 sqlite3_vtab_cursor *pCursor, /* Cursor to retrieve value from */
3453 sqlite3_context *pCtx, /* Context for sqlite3_result_xxx() calls */
3454 int iCol /* Index of column to read value from */
3456 int rc = SQLITE_OK; /* Return Code */
3457 Fts3Cursor *pCsr = (Fts3Cursor *) pCursor;
3458 Fts3Table *p = (Fts3Table *)pCursor->pVtab;
3460 /* The column value supplied by SQLite must be in range. */
3461 assert( iCol>=0 && iCol<=p->nColumn+2 );
3463 switch( iCol-p->nColumn ){
3464 case 0:
3465 /* The special 'table-name' column */
3466 sqlite3_result_pointer(pCtx, pCsr, "fts3cursor", 0);
3467 break;
3469 case 1:
3470 /* The docid column */
3471 sqlite3_result_int64(pCtx, pCsr->iPrevId);
3472 break;
3474 case 2:
3475 if( pCsr->pExpr ){
3476 sqlite3_result_int64(pCtx, pCsr->iLangid);
3477 break;
3478 }else if( p->zLanguageid==0 ){
3479 sqlite3_result_int(pCtx, 0);
3480 break;
3481 }else{
3482 iCol = p->nColumn;
3483 /* no break */ deliberate_fall_through
3486 default:
3487 /* A user column. Or, if this is a full-table scan, possibly the
3488 ** language-id column. Seek the cursor. */
3489 rc = fts3CursorSeek(0, pCsr);
3490 if( rc==SQLITE_OK && sqlite3_data_count(pCsr->pStmt)-1>iCol ){
3491 sqlite3_result_value(pCtx, sqlite3_column_value(pCsr->pStmt, iCol+1));
3493 break;
3496 assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 );
3497 return rc;
3501 ** This function is the implementation of the xUpdate callback used by
3502 ** FTS3 virtual tables. It is invoked by SQLite each time a row is to be
3503 ** inserted, updated or deleted.
3505 static int fts3UpdateMethod(
3506 sqlite3_vtab *pVtab, /* Virtual table handle */
3507 int nArg, /* Size of argument array */
3508 sqlite3_value **apVal, /* Array of arguments */
3509 sqlite_int64 *pRowid /* OUT: The affected (or effected) rowid */
3511 return sqlite3Fts3UpdateMethod(pVtab, nArg, apVal, pRowid);
3515 ** Implementation of xSync() method. Flush the contents of the pending-terms
3516 ** hash-table to the database.
3518 static int fts3SyncMethod(sqlite3_vtab *pVtab){
3520 /* Following an incremental-merge operation, assuming that the input
3521 ** segments are not completely consumed (the usual case), they are updated
3522 ** in place to remove the entries that have already been merged. This
3523 ** involves updating the leaf block that contains the smallest unmerged
3524 ** entry and each block (if any) between the leaf and the root node. So
3525 ** if the height of the input segment b-trees is N, and input segments
3526 ** are merged eight at a time, updating the input segments at the end
3527 ** of an incremental-merge requires writing (8*(1+N)) blocks. N is usually
3528 ** small - often between 0 and 2. So the overhead of the incremental
3529 ** merge is somewhere between 8 and 24 blocks. To avoid this overhead
3530 ** dwarfing the actual productive work accomplished, the incremental merge
3531 ** is only attempted if it will write at least 64 leaf blocks. Hence
3532 ** nMinMerge.
3534 ** Of course, updating the input segments also involves deleting a bunch
3535 ** of blocks from the segments table. But this is not considered overhead
3536 ** as it would also be required by a crisis-merge that used the same input
3537 ** segments.
3539 const u32 nMinMerge = 64; /* Minimum amount of incr-merge work to do */
3541 Fts3Table *p = (Fts3Table*)pVtab;
3542 int rc;
3543 i64 iLastRowid = sqlite3_last_insert_rowid(p->db);
3545 rc = sqlite3Fts3PendingTermsFlush(p);
3546 if( rc==SQLITE_OK
3547 && p->nLeafAdd>(nMinMerge/16)
3548 && p->nAutoincrmerge && p->nAutoincrmerge!=0xff
3550 int mxLevel = 0; /* Maximum relative level value in db */
3551 int A; /* Incr-merge parameter A */
3553 rc = sqlite3Fts3MaxLevel(p, &mxLevel);
3554 assert( rc==SQLITE_OK || mxLevel==0 );
3555 A = p->nLeafAdd * mxLevel;
3556 A += (A/2);
3557 if( A>(int)nMinMerge ) rc = sqlite3Fts3Incrmerge(p, A, p->nAutoincrmerge);
3559 sqlite3Fts3SegmentsClose(p);
3560 sqlite3_set_last_insert_rowid(p->db, iLastRowid);
3561 return rc;
3565 ** If it is currently unknown whether or not the FTS table has an %_stat
3566 ** table (if p->bHasStat==2), attempt to determine this (set p->bHasStat
3567 ** to 0 or 1). Return SQLITE_OK if successful, or an SQLite error code
3568 ** if an error occurs.
3570 static int fts3SetHasStat(Fts3Table *p){
3571 int rc = SQLITE_OK;
3572 if( p->bHasStat==2 ){
3573 char *zTbl = sqlite3_mprintf("%s_stat", p->zName);
3574 if( zTbl ){
3575 int res = sqlite3_table_column_metadata(p->db, p->zDb, zTbl, 0,0,0,0,0,0);
3576 sqlite3_free(zTbl);
3577 p->bHasStat = (res==SQLITE_OK);
3578 }else{
3579 rc = SQLITE_NOMEM;
3582 return rc;
3586 ** Implementation of xBegin() method.
3588 static int fts3BeginMethod(sqlite3_vtab *pVtab){
3589 Fts3Table *p = (Fts3Table*)pVtab;
3590 int rc;
3591 UNUSED_PARAMETER(pVtab);
3592 assert( p->pSegments==0 );
3593 assert( p->nPendingData==0 );
3594 assert( p->inTransaction!=1 );
3595 p->nLeafAdd = 0;
3596 rc = fts3SetHasStat(p);
3597 #ifdef SQLITE_DEBUG
3598 if( rc==SQLITE_OK ){
3599 p->inTransaction = 1;
3600 p->mxSavepoint = -1;
3602 #endif
3603 return rc;
3607 ** Implementation of xCommit() method. This is a no-op. The contents of
3608 ** the pending-terms hash-table have already been flushed into the database
3609 ** by fts3SyncMethod().
3611 static int fts3CommitMethod(sqlite3_vtab *pVtab){
3612 TESTONLY( Fts3Table *p = (Fts3Table*)pVtab );
3613 UNUSED_PARAMETER(pVtab);
3614 assert( p->nPendingData==0 );
3615 assert( p->inTransaction!=0 );
3616 assert( p->pSegments==0 );
3617 TESTONLY( p->inTransaction = 0 );
3618 TESTONLY( p->mxSavepoint = -1; );
3619 return SQLITE_OK;
3623 ** Implementation of xRollback(). Discard the contents of the pending-terms
3624 ** hash-table. Any changes made to the database are reverted by SQLite.
3626 static int fts3RollbackMethod(sqlite3_vtab *pVtab){
3627 Fts3Table *p = (Fts3Table*)pVtab;
3628 sqlite3Fts3PendingTermsClear(p);
3629 assert( p->inTransaction!=0 );
3630 TESTONLY( p->inTransaction = 0 );
3631 TESTONLY( p->mxSavepoint = -1; );
3632 return SQLITE_OK;
3636 ** When called, *ppPoslist must point to the byte immediately following the
3637 ** end of a position-list. i.e. ( (*ppPoslist)[-1]==POS_END ). This function
3638 ** moves *ppPoslist so that it instead points to the first byte of the
3639 ** same position list.
3641 static void fts3ReversePoslist(char *pStart, char **ppPoslist){
3642 char *p = &(*ppPoslist)[-2];
3643 char c = 0;
3645 /* Skip backwards passed any trailing 0x00 bytes added by NearTrim() */
3646 while( p>pStart && (c=*p--)==0 );
3648 /* Search backwards for a varint with value zero (the end of the previous
3649 ** poslist). This is an 0x00 byte preceded by some byte that does not
3650 ** have the 0x80 bit set. */
3651 while( p>pStart && (*p & 0x80) | c ){
3652 c = *p--;
3654 assert( p==pStart || c==0 );
3656 /* At this point p points to that preceding byte without the 0x80 bit
3657 ** set. So to find the start of the poslist, skip forward 2 bytes then
3658 ** over a varint.
3660 ** Normally. The other case is that p==pStart and the poslist to return
3661 ** is the first in the doclist. In this case do not skip forward 2 bytes.
3662 ** The second part of the if condition (c==0 && *ppPoslist>&p[2])
3663 ** is required for cases where the first byte of a doclist and the
3664 ** doclist is empty. For example, if the first docid is 10, a doclist
3665 ** that begins with:
3667 ** 0x0A 0x00 <next docid delta varint>
3669 if( p>pStart || (c==0 && *ppPoslist>&p[2]) ){ p = &p[2]; }
3670 while( *p++&0x80 );
3671 *ppPoslist = p;
3675 ** Helper function used by the implementation of the overloaded snippet(),
3676 ** offsets() and optimize() SQL functions.
3678 ** If the value passed as the third argument is a blob of size
3679 ** sizeof(Fts3Cursor*), then the blob contents are copied to the
3680 ** output variable *ppCsr and SQLITE_OK is returned. Otherwise, an error
3681 ** message is written to context pContext and SQLITE_ERROR returned. The
3682 ** string passed via zFunc is used as part of the error message.
3684 static int fts3FunctionArg(
3685 sqlite3_context *pContext, /* SQL function call context */
3686 const char *zFunc, /* Function name */
3687 sqlite3_value *pVal, /* argv[0] passed to function */
3688 Fts3Cursor **ppCsr /* OUT: Store cursor handle here */
3690 int rc;
3691 *ppCsr = (Fts3Cursor*)sqlite3_value_pointer(pVal, "fts3cursor");
3692 if( (*ppCsr)!=0 ){
3693 rc = SQLITE_OK;
3694 }else{
3695 char *zErr = sqlite3_mprintf("illegal first argument to %s", zFunc);
3696 sqlite3_result_error(pContext, zErr, -1);
3697 sqlite3_free(zErr);
3698 rc = SQLITE_ERROR;
3700 return rc;
3704 ** Implementation of the snippet() function for FTS3
3706 static void fts3SnippetFunc(
3707 sqlite3_context *pContext, /* SQLite function call context */
3708 int nVal, /* Size of apVal[] array */
3709 sqlite3_value **apVal /* Array of arguments */
3711 Fts3Cursor *pCsr; /* Cursor handle passed through apVal[0] */
3712 const char *zStart = "<b>";
3713 const char *zEnd = "</b>";
3714 const char *zEllipsis = "<b>...</b>";
3715 int iCol = -1;
3716 int nToken = 15; /* Default number of tokens in snippet */
3718 /* There must be at least one argument passed to this function (otherwise
3719 ** the non-overloaded version would have been called instead of this one).
3721 assert( nVal>=1 );
3723 if( nVal>6 ){
3724 sqlite3_result_error(pContext,
3725 "wrong number of arguments to function snippet()", -1);
3726 return;
3728 if( fts3FunctionArg(pContext, "snippet", apVal[0], &pCsr) ) return;
3730 switch( nVal ){
3731 case 6: nToken = sqlite3_value_int(apVal[5]);
3732 /* no break */ deliberate_fall_through
3733 case 5: iCol = sqlite3_value_int(apVal[4]);
3734 /* no break */ deliberate_fall_through
3735 case 4: zEllipsis = (const char*)sqlite3_value_text(apVal[3]);
3736 /* no break */ deliberate_fall_through
3737 case 3: zEnd = (const char*)sqlite3_value_text(apVal[2]);
3738 /* no break */ deliberate_fall_through
3739 case 2: zStart = (const char*)sqlite3_value_text(apVal[1]);
3741 if( !zEllipsis || !zEnd || !zStart ){
3742 sqlite3_result_error_nomem(pContext);
3743 }else if( nToken==0 ){
3744 sqlite3_result_text(pContext, "", -1, SQLITE_STATIC);
3745 }else if( SQLITE_OK==fts3CursorSeek(pContext, pCsr) ){
3746 sqlite3Fts3Snippet(pContext, pCsr, zStart, zEnd, zEllipsis, iCol, nToken);
3751 ** Implementation of the offsets() function for FTS3
3753 static void fts3OffsetsFunc(
3754 sqlite3_context *pContext, /* SQLite function call context */
3755 int nVal, /* Size of argument array */
3756 sqlite3_value **apVal /* Array of arguments */
3758 Fts3Cursor *pCsr; /* Cursor handle passed through apVal[0] */
3760 UNUSED_PARAMETER(nVal);
3762 assert( nVal==1 );
3763 if( fts3FunctionArg(pContext, "offsets", apVal[0], &pCsr) ) return;
3764 assert( pCsr );
3765 if( SQLITE_OK==fts3CursorSeek(pContext, pCsr) ){
3766 sqlite3Fts3Offsets(pContext, pCsr);
3771 ** Implementation of the special optimize() function for FTS3. This
3772 ** function merges all segments in the database to a single segment.
3773 ** Example usage is:
3775 ** SELECT optimize(t) FROM t LIMIT 1;
3777 ** where 't' is the name of an FTS3 table.
3779 static void fts3OptimizeFunc(
3780 sqlite3_context *pContext, /* SQLite function call context */
3781 int nVal, /* Size of argument array */
3782 sqlite3_value **apVal /* Array of arguments */
3784 int rc; /* Return code */
3785 Fts3Table *p; /* Virtual table handle */
3786 Fts3Cursor *pCursor; /* Cursor handle passed through apVal[0] */
3788 UNUSED_PARAMETER(nVal);
3790 assert( nVal==1 );
3791 if( fts3FunctionArg(pContext, "optimize", apVal[0], &pCursor) ) return;
3792 p = (Fts3Table *)pCursor->base.pVtab;
3793 assert( p );
3795 rc = sqlite3Fts3Optimize(p);
3797 switch( rc ){
3798 case SQLITE_OK:
3799 sqlite3_result_text(pContext, "Index optimized", -1, SQLITE_STATIC);
3800 break;
3801 case SQLITE_DONE:
3802 sqlite3_result_text(pContext, "Index already optimal", -1, SQLITE_STATIC);
3803 break;
3804 default:
3805 sqlite3_result_error_code(pContext, rc);
3806 break;
3811 ** Implementation of the matchinfo() function for FTS3
3813 static void fts3MatchinfoFunc(
3814 sqlite3_context *pContext, /* SQLite function call context */
3815 int nVal, /* Size of argument array */
3816 sqlite3_value **apVal /* Array of arguments */
3818 Fts3Cursor *pCsr; /* Cursor handle passed through apVal[0] */
3819 assert( nVal==1 || nVal==2 );
3820 if( SQLITE_OK==fts3FunctionArg(pContext, "matchinfo", apVal[0], &pCsr) ){
3821 const char *zArg = 0;
3822 if( nVal>1 ){
3823 zArg = (const char *)sqlite3_value_text(apVal[1]);
3825 sqlite3Fts3Matchinfo(pContext, pCsr, zArg);
3830 ** This routine implements the xFindFunction method for the FTS3
3831 ** virtual table.
3833 static int fts3FindFunctionMethod(
3834 sqlite3_vtab *pVtab, /* Virtual table handle */
3835 int nArg, /* Number of SQL function arguments */
3836 const char *zName, /* Name of SQL function */
3837 void (**pxFunc)(sqlite3_context*,int,sqlite3_value**), /* OUT: Result */
3838 void **ppArg /* Unused */
3840 struct Overloaded {
3841 const char *zName;
3842 void (*xFunc)(sqlite3_context*,int,sqlite3_value**);
3843 } aOverload[] = {
3844 { "snippet", fts3SnippetFunc },
3845 { "offsets", fts3OffsetsFunc },
3846 { "optimize", fts3OptimizeFunc },
3847 { "matchinfo", fts3MatchinfoFunc },
3849 int i; /* Iterator variable */
3851 UNUSED_PARAMETER(pVtab);
3852 UNUSED_PARAMETER(nArg);
3853 UNUSED_PARAMETER(ppArg);
3855 for(i=0; i<SizeofArray(aOverload); i++){
3856 if( strcmp(zName, aOverload[i].zName)==0 ){
3857 *pxFunc = aOverload[i].xFunc;
3858 return 1;
3862 /* No function of the specified name was found. Return 0. */
3863 return 0;
3867 ** Implementation of FTS3 xRename method. Rename an fts3 table.
3869 static int fts3RenameMethod(
3870 sqlite3_vtab *pVtab, /* Virtual table handle */
3871 const char *zName /* New name of table */
3873 Fts3Table *p = (Fts3Table *)pVtab;
3874 sqlite3 *db = p->db; /* Database connection */
3875 int rc; /* Return Code */
3877 /* At this point it must be known if the %_stat table exists or not.
3878 ** So bHasStat may not be 2. */
3879 rc = fts3SetHasStat(p);
3881 /* As it happens, the pending terms table is always empty here. This is
3882 ** because an "ALTER TABLE RENAME TABLE" statement inside a transaction
3883 ** always opens a savepoint transaction. And the xSavepoint() method
3884 ** flushes the pending terms table. But leave the (no-op) call to
3885 ** PendingTermsFlush() in in case that changes.
3887 assert( p->nPendingData==0 );
3888 if( rc==SQLITE_OK ){
3889 rc = sqlite3Fts3PendingTermsFlush(p);
3892 if( p->zContentTbl==0 ){
3893 fts3DbExec(&rc, db,
3894 "ALTER TABLE %Q.'%q_content' RENAME TO '%q_content';",
3895 p->zDb, p->zName, zName
3899 if( p->bHasDocsize ){
3900 fts3DbExec(&rc, db,
3901 "ALTER TABLE %Q.'%q_docsize' RENAME TO '%q_docsize';",
3902 p->zDb, p->zName, zName
3905 if( p->bHasStat ){
3906 fts3DbExec(&rc, db,
3907 "ALTER TABLE %Q.'%q_stat' RENAME TO '%q_stat';",
3908 p->zDb, p->zName, zName
3911 fts3DbExec(&rc, db,
3912 "ALTER TABLE %Q.'%q_segments' RENAME TO '%q_segments';",
3913 p->zDb, p->zName, zName
3915 fts3DbExec(&rc, db,
3916 "ALTER TABLE %Q.'%q_segdir' RENAME TO '%q_segdir';",
3917 p->zDb, p->zName, zName
3919 return rc;
3923 ** The xSavepoint() method.
3925 ** Flush the contents of the pending-terms table to disk.
3927 static int fts3SavepointMethod(sqlite3_vtab *pVtab, int iSavepoint){
3928 int rc = SQLITE_OK;
3929 UNUSED_PARAMETER(iSavepoint);
3930 assert( ((Fts3Table *)pVtab)->inTransaction );
3931 assert( ((Fts3Table *)pVtab)->mxSavepoint <= iSavepoint );
3932 TESTONLY( ((Fts3Table *)pVtab)->mxSavepoint = iSavepoint );
3933 if( ((Fts3Table *)pVtab)->bIgnoreSavepoint==0 ){
3934 rc = fts3SyncMethod(pVtab);
3936 return rc;
3940 ** The xRelease() method.
3942 ** This is a no-op.
3944 static int fts3ReleaseMethod(sqlite3_vtab *pVtab, int iSavepoint){
3945 TESTONLY( Fts3Table *p = (Fts3Table*)pVtab );
3946 UNUSED_PARAMETER(iSavepoint);
3947 UNUSED_PARAMETER(pVtab);
3948 assert( p->inTransaction );
3949 assert( p->mxSavepoint >= iSavepoint );
3950 TESTONLY( p->mxSavepoint = iSavepoint-1 );
3951 return SQLITE_OK;
3955 ** The xRollbackTo() method.
3957 ** Discard the contents of the pending terms table.
3959 static int fts3RollbackToMethod(sqlite3_vtab *pVtab, int iSavepoint){
3960 Fts3Table *p = (Fts3Table*)pVtab;
3961 UNUSED_PARAMETER(iSavepoint);
3962 assert( p->inTransaction );
3963 TESTONLY( p->mxSavepoint = iSavepoint );
3964 sqlite3Fts3PendingTermsClear(p);
3965 return SQLITE_OK;
3969 ** Return true if zName is the extension on one of the shadow tables used
3970 ** by this module.
3972 static int fts3ShadowName(const char *zName){
3973 static const char *azName[] = {
3974 "content", "docsize", "segdir", "segments", "stat",
3976 unsigned int i;
3977 for(i=0; i<sizeof(azName)/sizeof(azName[0]); i++){
3978 if( sqlite3_stricmp(zName, azName[i])==0 ) return 1;
3980 return 0;
3983 static const sqlite3_module fts3Module = {
3984 /* iVersion */ 3,
3985 /* xCreate */ fts3CreateMethod,
3986 /* xConnect */ fts3ConnectMethod,
3987 /* xBestIndex */ fts3BestIndexMethod,
3988 /* xDisconnect */ fts3DisconnectMethod,
3989 /* xDestroy */ fts3DestroyMethod,
3990 /* xOpen */ fts3OpenMethod,
3991 /* xClose */ fts3CloseMethod,
3992 /* xFilter */ fts3FilterMethod,
3993 /* xNext */ fts3NextMethod,
3994 /* xEof */ fts3EofMethod,
3995 /* xColumn */ fts3ColumnMethod,
3996 /* xRowid */ fts3RowidMethod,
3997 /* xUpdate */ fts3UpdateMethod,
3998 /* xBegin */ fts3BeginMethod,
3999 /* xSync */ fts3SyncMethod,
4000 /* xCommit */ fts3CommitMethod,
4001 /* xRollback */ fts3RollbackMethod,
4002 /* xFindFunction */ fts3FindFunctionMethod,
4003 /* xRename */ fts3RenameMethod,
4004 /* xSavepoint */ fts3SavepointMethod,
4005 /* xRelease */ fts3ReleaseMethod,
4006 /* xRollbackTo */ fts3RollbackToMethod,
4007 /* xShadowName */ fts3ShadowName,
4011 ** This function is registered as the module destructor (called when an
4012 ** FTS3 enabled database connection is closed). It frees the memory
4013 ** allocated for the tokenizer hash table.
4015 static void hashDestroy(void *p){
4016 Fts3HashWrapper *pHash = (Fts3HashWrapper *)p;
4017 pHash->nRef--;
4018 if( pHash->nRef<=0 ){
4019 sqlite3Fts3HashClear(&pHash->hash);
4020 sqlite3_free(pHash);
4025 ** The fts3 built-in tokenizers - "simple", "porter" and "icu"- are
4026 ** implemented in files fts3_tokenizer1.c, fts3_porter.c and fts3_icu.c
4027 ** respectively. The following three forward declarations are for functions
4028 ** declared in these files used to retrieve the respective implementations.
4030 ** Calling sqlite3Fts3SimpleTokenizerModule() sets the value pointed
4031 ** to by the argument to point to the "simple" tokenizer implementation.
4032 ** And so on.
4034 void sqlite3Fts3SimpleTokenizerModule(sqlite3_tokenizer_module const**ppModule);
4035 void sqlite3Fts3PorterTokenizerModule(sqlite3_tokenizer_module const**ppModule);
4036 #ifndef SQLITE_DISABLE_FTS3_UNICODE
4037 void sqlite3Fts3UnicodeTokenizer(sqlite3_tokenizer_module const**ppModule);
4038 #endif
4039 #ifdef SQLITE_ENABLE_ICU
4040 void sqlite3Fts3IcuTokenizerModule(sqlite3_tokenizer_module const**ppModule);
4041 #endif
4044 ** Initialize the fts3 extension. If this extension is built as part
4045 ** of the sqlite library, then this function is called directly by
4046 ** SQLite. If fts3 is built as a dynamically loadable extension, this
4047 ** function is called by the sqlite3_extension_init() entry point.
4049 int sqlite3Fts3Init(sqlite3 *db){
4050 int rc = SQLITE_OK;
4051 Fts3HashWrapper *pHash = 0;
4052 const sqlite3_tokenizer_module *pSimple = 0;
4053 const sqlite3_tokenizer_module *pPorter = 0;
4054 #ifndef SQLITE_DISABLE_FTS3_UNICODE
4055 const sqlite3_tokenizer_module *pUnicode = 0;
4056 #endif
4058 #ifdef SQLITE_ENABLE_ICU
4059 const sqlite3_tokenizer_module *pIcu = 0;
4060 sqlite3Fts3IcuTokenizerModule(&pIcu);
4061 #endif
4063 #ifndef SQLITE_DISABLE_FTS3_UNICODE
4064 sqlite3Fts3UnicodeTokenizer(&pUnicode);
4065 #endif
4067 #ifdef SQLITE_TEST
4068 rc = sqlite3Fts3InitTerm(db);
4069 if( rc!=SQLITE_OK ) return rc;
4070 #endif
4072 rc = sqlite3Fts3InitAux(db);
4073 if( rc!=SQLITE_OK ) return rc;
4075 sqlite3Fts3SimpleTokenizerModule(&pSimple);
4076 sqlite3Fts3PorterTokenizerModule(&pPorter);
4078 /* Allocate and initialize the hash-table used to store tokenizers. */
4079 pHash = sqlite3_malloc(sizeof(Fts3HashWrapper));
4080 if( !pHash ){
4081 rc = SQLITE_NOMEM;
4082 }else{
4083 sqlite3Fts3HashInit(&pHash->hash, FTS3_HASH_STRING, 1);
4084 pHash->nRef = 0;
4087 /* Load the built-in tokenizers into the hash table */
4088 if( rc==SQLITE_OK ){
4089 if( sqlite3Fts3HashInsert(&pHash->hash, "simple", 7, (void *)pSimple)
4090 || sqlite3Fts3HashInsert(&pHash->hash, "porter", 7, (void *)pPorter)
4092 #ifndef SQLITE_DISABLE_FTS3_UNICODE
4093 || sqlite3Fts3HashInsert(&pHash->hash, "unicode61", 10, (void *)pUnicode)
4094 #endif
4095 #ifdef SQLITE_ENABLE_ICU
4096 || (pIcu && sqlite3Fts3HashInsert(&pHash->hash, "icu", 4, (void *)pIcu))
4097 #endif
4099 rc = SQLITE_NOMEM;
4103 #ifdef SQLITE_TEST
4104 if( rc==SQLITE_OK ){
4105 rc = sqlite3Fts3ExprInitTestInterface(db, &pHash->hash);
4107 #endif
4109 /* Create the virtual table wrapper around the hash-table and overload
4110 ** the four scalar functions. If this is successful, register the
4111 ** module with sqlite.
4113 if( SQLITE_OK==rc
4114 && SQLITE_OK==(rc=sqlite3Fts3InitHashTable(db,&pHash->hash,"fts3_tokenizer"))
4115 && SQLITE_OK==(rc = sqlite3_overload_function(db, "snippet", -1))
4116 && SQLITE_OK==(rc = sqlite3_overload_function(db, "offsets", 1))
4117 && SQLITE_OK==(rc = sqlite3_overload_function(db, "matchinfo", 1))
4118 && SQLITE_OK==(rc = sqlite3_overload_function(db, "matchinfo", 2))
4119 && SQLITE_OK==(rc = sqlite3_overload_function(db, "optimize", 1))
4121 pHash->nRef++;
4122 rc = sqlite3_create_module_v2(
4123 db, "fts3", &fts3Module, (void *)pHash, hashDestroy
4125 if( rc==SQLITE_OK ){
4126 pHash->nRef++;
4127 rc = sqlite3_create_module_v2(
4128 db, "fts4", &fts3Module, (void *)pHash, hashDestroy
4131 if( rc==SQLITE_OK ){
4132 pHash->nRef++;
4133 rc = sqlite3Fts3InitTok(db, (void *)pHash, hashDestroy);
4135 return rc;
4139 /* An error has occurred. Delete the hash table and return the error code. */
4140 assert( rc!=SQLITE_OK );
4141 if( pHash ){
4142 sqlite3Fts3HashClear(&pHash->hash);
4143 sqlite3_free(pHash);
4145 return rc;
4149 ** Allocate an Fts3MultiSegReader for each token in the expression headed
4150 ** by pExpr.
4152 ** An Fts3SegReader object is a cursor that can seek or scan a range of
4153 ** entries within a single segment b-tree. An Fts3MultiSegReader uses multiple
4154 ** Fts3SegReader objects internally to provide an interface to seek or scan
4155 ** within the union of all segments of a b-tree. Hence the name.
4157 ** If the allocated Fts3MultiSegReader just seeks to a single entry in a
4158 ** segment b-tree (if the term is not a prefix or it is a prefix for which
4159 ** there exists prefix b-tree of the right length) then it may be traversed
4160 ** and merged incrementally. Otherwise, it has to be merged into an in-memory
4161 ** doclist and then traversed.
4163 static void fts3EvalAllocateReaders(
4164 Fts3Cursor *pCsr, /* FTS cursor handle */
4165 Fts3Expr *pExpr, /* Allocate readers for this expression */
4166 int *pnToken, /* OUT: Total number of tokens in phrase. */
4167 int *pnOr, /* OUT: Total number of OR nodes in expr. */
4168 int *pRc /* IN/OUT: Error code */
4170 if( pExpr && SQLITE_OK==*pRc ){
4171 if( pExpr->eType==FTSQUERY_PHRASE ){
4172 int i;
4173 int nToken = pExpr->pPhrase->nToken;
4174 *pnToken += nToken;
4175 for(i=0; i<nToken; i++){
4176 Fts3PhraseToken *pToken = &pExpr->pPhrase->aToken[i];
4177 int rc = fts3TermSegReaderCursor(pCsr,
4178 pToken->z, pToken->n, pToken->isPrefix, &pToken->pSegcsr
4180 if( rc!=SQLITE_OK ){
4181 *pRc = rc;
4182 return;
4185 assert( pExpr->pPhrase->iDoclistToken==0 );
4186 pExpr->pPhrase->iDoclistToken = -1;
4187 }else{
4188 *pnOr += (pExpr->eType==FTSQUERY_OR);
4189 fts3EvalAllocateReaders(pCsr, pExpr->pLeft, pnToken, pnOr, pRc);
4190 fts3EvalAllocateReaders(pCsr, pExpr->pRight, pnToken, pnOr, pRc);
4196 ** Arguments pList/nList contain the doclist for token iToken of phrase p.
4197 ** It is merged into the main doclist stored in p->doclist.aAll/nAll.
4199 ** This function assumes that pList points to a buffer allocated using
4200 ** sqlite3_malloc(). This function takes responsibility for eventually
4201 ** freeing the buffer.
4203 ** SQLITE_OK is returned if successful, or SQLITE_NOMEM if an error occurs.
4205 static int fts3EvalPhraseMergeToken(
4206 Fts3Table *pTab, /* FTS Table pointer */
4207 Fts3Phrase *p, /* Phrase to merge pList/nList into */
4208 int iToken, /* Token pList/nList corresponds to */
4209 char *pList, /* Pointer to doclist */
4210 int nList /* Number of bytes in pList */
4212 int rc = SQLITE_OK;
4213 assert( iToken!=p->iDoclistToken );
4215 if( pList==0 ){
4216 sqlite3_free(p->doclist.aAll);
4217 p->doclist.aAll = 0;
4218 p->doclist.nAll = 0;
4221 else if( p->iDoclistToken<0 ){
4222 p->doclist.aAll = pList;
4223 p->doclist.nAll = nList;
4226 else if( p->doclist.aAll==0 ){
4227 sqlite3_free(pList);
4230 else {
4231 char *pLeft;
4232 char *pRight;
4233 int nLeft;
4234 int nRight;
4235 int nDiff;
4237 if( p->iDoclistToken<iToken ){
4238 pLeft = p->doclist.aAll;
4239 nLeft = p->doclist.nAll;
4240 pRight = pList;
4241 nRight = nList;
4242 nDiff = iToken - p->iDoclistToken;
4243 }else{
4244 pRight = p->doclist.aAll;
4245 nRight = p->doclist.nAll;
4246 pLeft = pList;
4247 nLeft = nList;
4248 nDiff = p->iDoclistToken - iToken;
4251 rc = fts3DoclistPhraseMerge(
4252 pTab->bDescIdx, nDiff, pLeft, nLeft, &pRight, &nRight
4254 sqlite3_free(pLeft);
4255 p->doclist.aAll = pRight;
4256 p->doclist.nAll = nRight;
4259 if( iToken>p->iDoclistToken ) p->iDoclistToken = iToken;
4260 return rc;
4264 ** Load the doclist for phrase p into p->doclist.aAll/nAll. The loaded doclist
4265 ** does not take deferred tokens into account.
4267 ** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code.
4269 static int fts3EvalPhraseLoad(
4270 Fts3Cursor *pCsr, /* FTS Cursor handle */
4271 Fts3Phrase *p /* Phrase object */
4273 Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
4274 int iToken;
4275 int rc = SQLITE_OK;
4277 for(iToken=0; rc==SQLITE_OK && iToken<p->nToken; iToken++){
4278 Fts3PhraseToken *pToken = &p->aToken[iToken];
4279 assert( pToken->pDeferred==0 || pToken->pSegcsr==0 );
4281 if( pToken->pSegcsr ){
4282 int nThis = 0;
4283 char *pThis = 0;
4284 rc = fts3TermSelect(pTab, pToken, p->iColumn, &nThis, &pThis);
4285 if( rc==SQLITE_OK ){
4286 rc = fts3EvalPhraseMergeToken(pTab, p, iToken, pThis, nThis);
4289 assert( pToken->pSegcsr==0 );
4292 return rc;
4295 #ifndef SQLITE_DISABLE_FTS4_DEFERRED
4297 ** This function is called on each phrase after the position lists for
4298 ** any deferred tokens have been loaded into memory. It updates the phrases
4299 ** current position list to include only those positions that are really
4300 ** instances of the phrase (after considering deferred tokens). If this
4301 ** means that the phrase does not appear in the current row, doclist.pList
4302 ** and doclist.nList are both zeroed.
4304 ** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code.
4306 static int fts3EvalDeferredPhrase(Fts3Cursor *pCsr, Fts3Phrase *pPhrase){
4307 int iToken; /* Used to iterate through phrase tokens */
4308 char *aPoslist = 0; /* Position list for deferred tokens */
4309 int nPoslist = 0; /* Number of bytes in aPoslist */
4310 int iPrev = -1; /* Token number of previous deferred token */
4311 char *aFree = (pPhrase->doclist.bFreeList ? pPhrase->doclist.pList : 0);
4313 for(iToken=0; iToken<pPhrase->nToken; iToken++){
4314 Fts3PhraseToken *pToken = &pPhrase->aToken[iToken];
4315 Fts3DeferredToken *pDeferred = pToken->pDeferred;
4317 if( pDeferred ){
4318 char *pList;
4319 int nList;
4320 int rc = sqlite3Fts3DeferredTokenList(pDeferred, &pList, &nList);
4321 if( rc!=SQLITE_OK ) return rc;
4323 if( pList==0 ){
4324 sqlite3_free(aPoslist);
4325 sqlite3_free(aFree);
4326 pPhrase->doclist.pList = 0;
4327 pPhrase->doclist.nList = 0;
4328 return SQLITE_OK;
4330 }else if( aPoslist==0 ){
4331 aPoslist = pList;
4332 nPoslist = nList;
4334 }else{
4335 char *aOut = pList;
4336 char *p1 = aPoslist;
4337 char *p2 = aOut;
4339 assert( iPrev>=0 );
4340 fts3PoslistPhraseMerge(&aOut, iToken-iPrev, 0, 1, &p1, &p2);
4341 sqlite3_free(aPoslist);
4342 aPoslist = pList;
4343 nPoslist = (int)(aOut - aPoslist);
4344 if( nPoslist==0 ){
4345 sqlite3_free(aPoslist);
4346 sqlite3_free(aFree);
4347 pPhrase->doclist.pList = 0;
4348 pPhrase->doclist.nList = 0;
4349 return SQLITE_OK;
4352 iPrev = iToken;
4356 if( iPrev>=0 ){
4357 int nMaxUndeferred = pPhrase->iDoclistToken;
4358 if( nMaxUndeferred<0 ){
4359 pPhrase->doclist.pList = aPoslist;
4360 pPhrase->doclist.nList = nPoslist;
4361 pPhrase->doclist.iDocid = pCsr->iPrevId;
4362 pPhrase->doclist.bFreeList = 1;
4363 }else{
4364 int nDistance;
4365 char *p1;
4366 char *p2;
4367 char *aOut;
4369 if( nMaxUndeferred>iPrev ){
4370 p1 = aPoslist;
4371 p2 = pPhrase->doclist.pList;
4372 nDistance = nMaxUndeferred - iPrev;
4373 }else{
4374 p1 = pPhrase->doclist.pList;
4375 p2 = aPoslist;
4376 nDistance = iPrev - nMaxUndeferred;
4379 aOut = (char *)sqlite3Fts3MallocZero(nPoslist+FTS3_BUFFER_PADDING);
4380 if( !aOut ){
4381 sqlite3_free(aPoslist);
4382 return SQLITE_NOMEM;
4385 pPhrase->doclist.pList = aOut;
4386 assert( p1 && p2 );
4387 if( fts3PoslistPhraseMerge(&aOut, nDistance, 0, 1, &p1, &p2) ){
4388 pPhrase->doclist.bFreeList = 1;
4389 pPhrase->doclist.nList = (int)(aOut - pPhrase->doclist.pList);
4390 }else{
4391 sqlite3_free(aOut);
4392 pPhrase->doclist.pList = 0;
4393 pPhrase->doclist.nList = 0;
4395 sqlite3_free(aPoslist);
4399 if( pPhrase->doclist.pList!=aFree ) sqlite3_free(aFree);
4400 return SQLITE_OK;
4402 #endif /* SQLITE_DISABLE_FTS4_DEFERRED */
4405 ** Maximum number of tokens a phrase may have to be considered for the
4406 ** incremental doclists strategy.
4408 #define MAX_INCR_PHRASE_TOKENS 4
4411 ** This function is called for each Fts3Phrase in a full-text query
4412 ** expression to initialize the mechanism for returning rows. Once this
4413 ** function has been called successfully on an Fts3Phrase, it may be
4414 ** used with fts3EvalPhraseNext() to iterate through the matching docids.
4416 ** If parameter bOptOk is true, then the phrase may (or may not) use the
4417 ** incremental loading strategy. Otherwise, the entire doclist is loaded into
4418 ** memory within this call.
4420 ** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code.
4422 static int fts3EvalPhraseStart(Fts3Cursor *pCsr, int bOptOk, Fts3Phrase *p){
4423 Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
4424 int rc = SQLITE_OK; /* Error code */
4425 int i;
4427 /* Determine if doclists may be loaded from disk incrementally. This is
4428 ** possible if the bOptOk argument is true, the FTS doclists will be
4429 ** scanned in forward order, and the phrase consists of
4430 ** MAX_INCR_PHRASE_TOKENS or fewer tokens, none of which are are "^first"
4431 ** tokens or prefix tokens that cannot use a prefix-index. */
4432 int bHaveIncr = 0;
4433 int bIncrOk = (bOptOk
4434 && pCsr->bDesc==pTab->bDescIdx
4435 && p->nToken<=MAX_INCR_PHRASE_TOKENS && p->nToken>0
4436 #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
4437 && pTab->bNoIncrDoclist==0
4438 #endif
4440 for(i=0; bIncrOk==1 && i<p->nToken; i++){
4441 Fts3PhraseToken *pToken = &p->aToken[i];
4442 if( pToken->bFirst || (pToken->pSegcsr!=0 && !pToken->pSegcsr->bLookup) ){
4443 bIncrOk = 0;
4445 if( pToken->pSegcsr ) bHaveIncr = 1;
4448 if( bIncrOk && bHaveIncr ){
4449 /* Use the incremental approach. */
4450 int iCol = (p->iColumn >= pTab->nColumn ? -1 : p->iColumn);
4451 for(i=0; rc==SQLITE_OK && i<p->nToken; i++){
4452 Fts3PhraseToken *pToken = &p->aToken[i];
4453 Fts3MultiSegReader *pSegcsr = pToken->pSegcsr;
4454 if( pSegcsr ){
4455 rc = sqlite3Fts3MsrIncrStart(pTab, pSegcsr, iCol, pToken->z, pToken->n);
4458 p->bIncr = 1;
4459 }else{
4460 /* Load the full doclist for the phrase into memory. */
4461 rc = fts3EvalPhraseLoad(pCsr, p);
4462 p->bIncr = 0;
4465 assert( rc!=SQLITE_OK || p->nToken<1 || p->aToken[0].pSegcsr==0 || p->bIncr );
4466 return rc;
4470 ** This function is used to iterate backwards (from the end to start)
4471 ** through doclists. It is used by this module to iterate through phrase
4472 ** doclists in reverse and by the fts3_write.c module to iterate through
4473 ** pending-terms lists when writing to databases with "order=desc".
4475 ** The doclist may be sorted in ascending (parameter bDescIdx==0) or
4476 ** descending (parameter bDescIdx==1) order of docid. Regardless, this
4477 ** function iterates from the end of the doclist to the beginning.
4479 void sqlite3Fts3DoclistPrev(
4480 int bDescIdx, /* True if the doclist is desc */
4481 char *aDoclist, /* Pointer to entire doclist */
4482 int nDoclist, /* Length of aDoclist in bytes */
4483 char **ppIter, /* IN/OUT: Iterator pointer */
4484 sqlite3_int64 *piDocid, /* IN/OUT: Docid pointer */
4485 int *pnList, /* OUT: List length pointer */
4486 u8 *pbEof /* OUT: End-of-file flag */
4488 char *p = *ppIter;
4490 assert( nDoclist>0 );
4491 assert( *pbEof==0 );
4492 assert_fts3_nc( p || *piDocid==0 );
4493 assert( !p || (p>aDoclist && p<&aDoclist[nDoclist]) );
4495 if( p==0 ){
4496 sqlite3_int64 iDocid = 0;
4497 char *pNext = 0;
4498 char *pDocid = aDoclist;
4499 char *pEnd = &aDoclist[nDoclist];
4500 int iMul = 1;
4502 while( pDocid<pEnd ){
4503 sqlite3_int64 iDelta;
4504 pDocid += sqlite3Fts3GetVarint(pDocid, &iDelta);
4505 iDocid += (iMul * iDelta);
4506 pNext = pDocid;
4507 fts3PoslistCopy(0, &pDocid);
4508 while( pDocid<pEnd && *pDocid==0 ) pDocid++;
4509 iMul = (bDescIdx ? -1 : 1);
4512 *pnList = (int)(pEnd - pNext);
4513 *ppIter = pNext;
4514 *piDocid = iDocid;
4515 }else{
4516 int iMul = (bDescIdx ? -1 : 1);
4517 sqlite3_int64 iDelta;
4518 fts3GetReverseVarint(&p, aDoclist, &iDelta);
4519 *piDocid -= (iMul * iDelta);
4521 if( p==aDoclist ){
4522 *pbEof = 1;
4523 }else{
4524 char *pSave = p;
4525 fts3ReversePoslist(aDoclist, &p);
4526 *pnList = (int)(pSave - p);
4528 *ppIter = p;
4533 ** Iterate forwards through a doclist.
4535 void sqlite3Fts3DoclistNext(
4536 int bDescIdx, /* True if the doclist is desc */
4537 char *aDoclist, /* Pointer to entire doclist */
4538 int nDoclist, /* Length of aDoclist in bytes */
4539 char **ppIter, /* IN/OUT: Iterator pointer */
4540 sqlite3_int64 *piDocid, /* IN/OUT: Docid pointer */
4541 u8 *pbEof /* OUT: End-of-file flag */
4543 char *p = *ppIter;
4545 assert( nDoclist>0 );
4546 assert( *pbEof==0 );
4547 assert_fts3_nc( p || *piDocid==0 );
4548 assert( !p || (p>=aDoclist && p<=&aDoclist[nDoclist]) );
4550 if( p==0 ){
4551 p = aDoclist;
4552 p += sqlite3Fts3GetVarint(p, piDocid);
4553 }else{
4554 fts3PoslistCopy(0, &p);
4555 while( p<&aDoclist[nDoclist] && *p==0 ) p++;
4556 if( p>=&aDoclist[nDoclist] ){
4557 *pbEof = 1;
4558 }else{
4559 sqlite3_int64 iVar;
4560 p += sqlite3Fts3GetVarint(p, &iVar);
4561 *piDocid += ((bDescIdx ? -1 : 1) * iVar);
4565 *ppIter = p;
4569 ** Advance the iterator pDL to the next entry in pDL->aAll/nAll. Set *pbEof
4570 ** to true if EOF is reached.
4572 static void fts3EvalDlPhraseNext(
4573 Fts3Table *pTab,
4574 Fts3Doclist *pDL,
4575 u8 *pbEof
4577 char *pIter; /* Used to iterate through aAll */
4578 char *pEnd; /* 1 byte past end of aAll */
4580 if( pDL->pNextDocid ){
4581 pIter = pDL->pNextDocid;
4582 assert( pDL->aAll!=0 || pIter==0 );
4583 }else{
4584 pIter = pDL->aAll;
4587 if( pIter==0 || pIter>=(pEnd = pDL->aAll + pDL->nAll) ){
4588 /* We have already reached the end of this doclist. EOF. */
4589 *pbEof = 1;
4590 }else{
4591 sqlite3_int64 iDelta;
4592 pIter += sqlite3Fts3GetVarint(pIter, &iDelta);
4593 if( pTab->bDescIdx==0 || pDL->pNextDocid==0 ){
4594 pDL->iDocid += iDelta;
4595 }else{
4596 pDL->iDocid -= iDelta;
4598 pDL->pList = pIter;
4599 fts3PoslistCopy(0, &pIter);
4600 pDL->nList = (int)(pIter - pDL->pList);
4602 /* pIter now points just past the 0x00 that terminates the position-
4603 ** list for document pDL->iDocid. However, if this position-list was
4604 ** edited in place by fts3EvalNearTrim(), then pIter may not actually
4605 ** point to the start of the next docid value. The following line deals
4606 ** with this case by advancing pIter past the zero-padding added by
4607 ** fts3EvalNearTrim(). */
4608 while( pIter<pEnd && *pIter==0 ) pIter++;
4610 pDL->pNextDocid = pIter;
4611 assert( pIter>=&pDL->aAll[pDL->nAll] || *pIter );
4612 *pbEof = 0;
4617 ** Helper type used by fts3EvalIncrPhraseNext() and incrPhraseTokenNext().
4619 typedef struct TokenDoclist TokenDoclist;
4620 struct TokenDoclist {
4621 int bIgnore;
4622 sqlite3_int64 iDocid;
4623 char *pList;
4624 int nList;
4628 ** Token pToken is an incrementally loaded token that is part of a
4629 ** multi-token phrase. Advance it to the next matching document in the
4630 ** database and populate output variable *p with the details of the new
4631 ** entry. Or, if the iterator has reached EOF, set *pbEof to true.
4633 ** If an error occurs, return an SQLite error code. Otherwise, return
4634 ** SQLITE_OK.
4636 static int incrPhraseTokenNext(
4637 Fts3Table *pTab, /* Virtual table handle */
4638 Fts3Phrase *pPhrase, /* Phrase to advance token of */
4639 int iToken, /* Specific token to advance */
4640 TokenDoclist *p, /* OUT: Docid and doclist for new entry */
4641 u8 *pbEof /* OUT: True if iterator is at EOF */
4643 int rc = SQLITE_OK;
4645 if( pPhrase->iDoclistToken==iToken ){
4646 assert( p->bIgnore==0 );
4647 assert( pPhrase->aToken[iToken].pSegcsr==0 );
4648 fts3EvalDlPhraseNext(pTab, &pPhrase->doclist, pbEof);
4649 p->pList = pPhrase->doclist.pList;
4650 p->nList = pPhrase->doclist.nList;
4651 p->iDocid = pPhrase->doclist.iDocid;
4652 }else{
4653 Fts3PhraseToken *pToken = &pPhrase->aToken[iToken];
4654 assert( pToken->pDeferred==0 );
4655 assert( pToken->pSegcsr || pPhrase->iDoclistToken>=0 );
4656 if( pToken->pSegcsr ){
4657 assert( p->bIgnore==0 );
4658 rc = sqlite3Fts3MsrIncrNext(
4659 pTab, pToken->pSegcsr, &p->iDocid, &p->pList, &p->nList
4661 if( p->pList==0 ) *pbEof = 1;
4662 }else{
4663 p->bIgnore = 1;
4667 return rc;
4672 ** The phrase iterator passed as the second argument:
4674 ** * features at least one token that uses an incremental doclist, and
4676 ** * does not contain any deferred tokens.
4678 ** Advance it to the next matching documnent in the database and populate
4679 ** the Fts3Doclist.pList and nList fields.
4681 ** If there is no "next" entry and no error occurs, then *pbEof is set to
4682 ** 1 before returning. Otherwise, if no error occurs and the iterator is
4683 ** successfully advanced, *pbEof is set to 0.
4685 ** If an error occurs, return an SQLite error code. Otherwise, return
4686 ** SQLITE_OK.
4688 static int fts3EvalIncrPhraseNext(
4689 Fts3Cursor *pCsr, /* FTS Cursor handle */
4690 Fts3Phrase *p, /* Phrase object to advance to next docid */
4691 u8 *pbEof /* OUT: Set to 1 if EOF */
4693 int rc = SQLITE_OK;
4694 Fts3Doclist *pDL = &p->doclist;
4695 Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
4696 u8 bEof = 0;
4698 /* This is only called if it is guaranteed that the phrase has at least
4699 ** one incremental token. In which case the bIncr flag is set. */
4700 assert( p->bIncr==1 );
4702 if( p->nToken==1 ){
4703 rc = sqlite3Fts3MsrIncrNext(pTab, p->aToken[0].pSegcsr,
4704 &pDL->iDocid, &pDL->pList, &pDL->nList
4706 if( pDL->pList==0 ) bEof = 1;
4707 }else{
4708 int bDescDoclist = pCsr->bDesc;
4709 struct TokenDoclist a[MAX_INCR_PHRASE_TOKENS];
4711 memset(a, 0, sizeof(a));
4712 assert( p->nToken<=MAX_INCR_PHRASE_TOKENS );
4713 assert( p->iDoclistToken<MAX_INCR_PHRASE_TOKENS );
4715 while( bEof==0 ){
4716 int bMaxSet = 0;
4717 sqlite3_int64 iMax = 0; /* Largest docid for all iterators */
4718 int i; /* Used to iterate through tokens */
4720 /* Advance the iterator for each token in the phrase once. */
4721 for(i=0; rc==SQLITE_OK && i<p->nToken && bEof==0; i++){
4722 rc = incrPhraseTokenNext(pTab, p, i, &a[i], &bEof);
4723 if( a[i].bIgnore==0 && (bMaxSet==0 || DOCID_CMP(iMax, a[i].iDocid)<0) ){
4724 iMax = a[i].iDocid;
4725 bMaxSet = 1;
4728 assert( rc!=SQLITE_OK || (p->nToken>=1 && a[p->nToken-1].bIgnore==0) );
4729 assert( rc!=SQLITE_OK || bMaxSet );
4731 /* Keep advancing iterators until they all point to the same document */
4732 for(i=0; i<p->nToken; i++){
4733 while( rc==SQLITE_OK && bEof==0
4734 && a[i].bIgnore==0 && DOCID_CMP(a[i].iDocid, iMax)<0
4736 rc = incrPhraseTokenNext(pTab, p, i, &a[i], &bEof);
4737 if( DOCID_CMP(a[i].iDocid, iMax)>0 ){
4738 iMax = a[i].iDocid;
4739 i = 0;
4744 /* Check if the current entries really are a phrase match */
4745 if( bEof==0 ){
4746 int nList = 0;
4747 int nByte = a[p->nToken-1].nList;
4748 char *aDoclist = sqlite3_malloc64((i64)nByte+FTS3_BUFFER_PADDING);
4749 if( !aDoclist ) return SQLITE_NOMEM;
4750 memcpy(aDoclist, a[p->nToken-1].pList, nByte+1);
4751 memset(&aDoclist[nByte], 0, FTS3_BUFFER_PADDING);
4753 for(i=0; i<(p->nToken-1); i++){
4754 if( a[i].bIgnore==0 ){
4755 char *pL = a[i].pList;
4756 char *pR = aDoclist;
4757 char *pOut = aDoclist;
4758 int nDist = p->nToken-1-i;
4759 int res = fts3PoslistPhraseMerge(&pOut, nDist, 0, 1, &pL, &pR);
4760 if( res==0 ) break;
4761 nList = (int)(pOut - aDoclist);
4764 if( i==(p->nToken-1) ){
4765 pDL->iDocid = iMax;
4766 pDL->pList = aDoclist;
4767 pDL->nList = nList;
4768 pDL->bFreeList = 1;
4769 break;
4771 sqlite3_free(aDoclist);
4776 *pbEof = bEof;
4777 return rc;
4781 ** Attempt to move the phrase iterator to point to the next matching docid.
4782 ** If an error occurs, return an SQLite error code. Otherwise, return
4783 ** SQLITE_OK.
4785 ** If there is no "next" entry and no error occurs, then *pbEof is set to
4786 ** 1 before returning. Otherwise, if no error occurs and the iterator is
4787 ** successfully advanced, *pbEof is set to 0.
4789 static int fts3EvalPhraseNext(
4790 Fts3Cursor *pCsr, /* FTS Cursor handle */
4791 Fts3Phrase *p, /* Phrase object to advance to next docid */
4792 u8 *pbEof /* OUT: Set to 1 if EOF */
4794 int rc = SQLITE_OK;
4795 Fts3Doclist *pDL = &p->doclist;
4796 Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
4798 if( p->bIncr ){
4799 rc = fts3EvalIncrPhraseNext(pCsr, p, pbEof);
4800 }else if( pCsr->bDesc!=pTab->bDescIdx && pDL->nAll ){
4801 sqlite3Fts3DoclistPrev(pTab->bDescIdx, pDL->aAll, pDL->nAll,
4802 &pDL->pNextDocid, &pDL->iDocid, &pDL->nList, pbEof
4804 pDL->pList = pDL->pNextDocid;
4805 }else{
4806 fts3EvalDlPhraseNext(pTab, pDL, pbEof);
4809 return rc;
4814 ** If *pRc is not SQLITE_OK when this function is called, it is a no-op.
4815 ** Otherwise, fts3EvalPhraseStart() is called on all phrases within the
4816 ** expression. Also the Fts3Expr.bDeferred variable is set to true for any
4817 ** expressions for which all descendent tokens are deferred.
4819 ** If parameter bOptOk is zero, then it is guaranteed that the
4820 ** Fts3Phrase.doclist.aAll/nAll variables contain the entire doclist for
4821 ** each phrase in the expression (subject to deferred token processing).
4822 ** Or, if bOptOk is non-zero, then one or more tokens within the expression
4823 ** may be loaded incrementally, meaning doclist.aAll/nAll is not available.
4825 ** If an error occurs within this function, *pRc is set to an SQLite error
4826 ** code before returning.
4828 static void fts3EvalStartReaders(
4829 Fts3Cursor *pCsr, /* FTS Cursor handle */
4830 Fts3Expr *pExpr, /* Expression to initialize phrases in */
4831 int *pRc /* IN/OUT: Error code */
4833 if( pExpr && SQLITE_OK==*pRc ){
4834 if( pExpr->eType==FTSQUERY_PHRASE ){
4835 int nToken = pExpr->pPhrase->nToken;
4836 if( nToken ){
4837 int i;
4838 for(i=0; i<nToken; i++){
4839 if( pExpr->pPhrase->aToken[i].pDeferred==0 ) break;
4841 pExpr->bDeferred = (i==nToken);
4843 *pRc = fts3EvalPhraseStart(pCsr, 1, pExpr->pPhrase);
4844 }else{
4845 fts3EvalStartReaders(pCsr, pExpr->pLeft, pRc);
4846 fts3EvalStartReaders(pCsr, pExpr->pRight, pRc);
4847 pExpr->bDeferred = (pExpr->pLeft->bDeferred && pExpr->pRight->bDeferred);
4853 ** An array of the following structures is assembled as part of the process
4854 ** of selecting tokens to defer before the query starts executing (as part
4855 ** of the xFilter() method). There is one element in the array for each
4856 ** token in the FTS expression.
4858 ** Tokens are divided into AND/NEAR clusters. All tokens in a cluster belong
4859 ** to phrases that are connected only by AND and NEAR operators (not OR or
4860 ** NOT). When determining tokens to defer, each AND/NEAR cluster is considered
4861 ** separately. The root of a tokens AND/NEAR cluster is stored in
4862 ** Fts3TokenAndCost.pRoot.
4864 typedef struct Fts3TokenAndCost Fts3TokenAndCost;
4865 struct Fts3TokenAndCost {
4866 Fts3Phrase *pPhrase; /* The phrase the token belongs to */
4867 int iToken; /* Position of token in phrase */
4868 Fts3PhraseToken *pToken; /* The token itself */
4869 Fts3Expr *pRoot; /* Root of NEAR/AND cluster */
4870 int nOvfl; /* Number of overflow pages to load doclist */
4871 int iCol; /* The column the token must match */
4875 ** This function is used to populate an allocated Fts3TokenAndCost array.
4877 ** If *pRc is not SQLITE_OK when this function is called, it is a no-op.
4878 ** Otherwise, if an error occurs during execution, *pRc is set to an
4879 ** SQLite error code.
4881 static void fts3EvalTokenCosts(
4882 Fts3Cursor *pCsr, /* FTS Cursor handle */
4883 Fts3Expr *pRoot, /* Root of current AND/NEAR cluster */
4884 Fts3Expr *pExpr, /* Expression to consider */
4885 Fts3TokenAndCost **ppTC, /* Write new entries to *(*ppTC)++ */
4886 Fts3Expr ***ppOr, /* Write new OR root to *(*ppOr)++ */
4887 int *pRc /* IN/OUT: Error code */
4889 if( *pRc==SQLITE_OK ){
4890 if( pExpr->eType==FTSQUERY_PHRASE ){
4891 Fts3Phrase *pPhrase = pExpr->pPhrase;
4892 int i;
4893 for(i=0; *pRc==SQLITE_OK && i<pPhrase->nToken; i++){
4894 Fts3TokenAndCost *pTC = (*ppTC)++;
4895 pTC->pPhrase = pPhrase;
4896 pTC->iToken = i;
4897 pTC->pRoot = pRoot;
4898 pTC->pToken = &pPhrase->aToken[i];
4899 pTC->iCol = pPhrase->iColumn;
4900 *pRc = sqlite3Fts3MsrOvfl(pCsr, pTC->pToken->pSegcsr, &pTC->nOvfl);
4902 }else if( pExpr->eType!=FTSQUERY_NOT ){
4903 assert( pExpr->eType==FTSQUERY_OR
4904 || pExpr->eType==FTSQUERY_AND
4905 || pExpr->eType==FTSQUERY_NEAR
4907 assert( pExpr->pLeft && pExpr->pRight );
4908 if( pExpr->eType==FTSQUERY_OR ){
4909 pRoot = pExpr->pLeft;
4910 **ppOr = pRoot;
4911 (*ppOr)++;
4913 fts3EvalTokenCosts(pCsr, pRoot, pExpr->pLeft, ppTC, ppOr, pRc);
4914 if( pExpr->eType==FTSQUERY_OR ){
4915 pRoot = pExpr->pRight;
4916 **ppOr = pRoot;
4917 (*ppOr)++;
4919 fts3EvalTokenCosts(pCsr, pRoot, pExpr->pRight, ppTC, ppOr, pRc);
4925 ** Determine the average document (row) size in pages. If successful,
4926 ** write this value to *pnPage and return SQLITE_OK. Otherwise, return
4927 ** an SQLite error code.
4929 ** The average document size in pages is calculated by first calculating
4930 ** determining the average size in bytes, B. If B is less than the amount
4931 ** of data that will fit on a single leaf page of an intkey table in
4932 ** this database, then the average docsize is 1. Otherwise, it is 1 plus
4933 ** the number of overflow pages consumed by a record B bytes in size.
4935 static int fts3EvalAverageDocsize(Fts3Cursor *pCsr, int *pnPage){
4936 int rc = SQLITE_OK;
4937 if( pCsr->nRowAvg==0 ){
4938 /* The average document size, which is required to calculate the cost
4939 ** of each doclist, has not yet been determined. Read the required
4940 ** data from the %_stat table to calculate it.
4942 ** Entry 0 of the %_stat table is a blob containing (nCol+1) FTS3
4943 ** varints, where nCol is the number of columns in the FTS3 table.
4944 ** The first varint is the number of documents currently stored in
4945 ** the table. The following nCol varints contain the total amount of
4946 ** data stored in all rows of each column of the table, from left
4947 ** to right.
4949 Fts3Table *p = (Fts3Table*)pCsr->base.pVtab;
4950 sqlite3_stmt *pStmt;
4951 sqlite3_int64 nDoc = 0;
4952 sqlite3_int64 nByte = 0;
4953 const char *pEnd;
4954 const char *a;
4956 rc = sqlite3Fts3SelectDoctotal(p, &pStmt);
4957 if( rc!=SQLITE_OK ) return rc;
4958 a = sqlite3_column_blob(pStmt, 0);
4959 testcase( a==0 ); /* If %_stat.value set to X'' */
4960 if( a ){
4961 pEnd = &a[sqlite3_column_bytes(pStmt, 0)];
4962 a += sqlite3Fts3GetVarintBounded(a, pEnd, &nDoc);
4963 while( a<pEnd ){
4964 a += sqlite3Fts3GetVarintBounded(a, pEnd, &nByte);
4967 if( nDoc==0 || nByte==0 ){
4968 sqlite3_reset(pStmt);
4969 return FTS_CORRUPT_VTAB;
4972 pCsr->nDoc = nDoc;
4973 pCsr->nRowAvg = (int)(((nByte / nDoc) + p->nPgsz) / p->nPgsz);
4974 assert( pCsr->nRowAvg>0 );
4975 rc = sqlite3_reset(pStmt);
4978 *pnPage = pCsr->nRowAvg;
4979 return rc;
4983 ** This function is called to select the tokens (if any) that will be
4984 ** deferred. The array aTC[] has already been populated when this is
4985 ** called.
4987 ** This function is called once for each AND/NEAR cluster in the
4988 ** expression. Each invocation determines which tokens to defer within
4989 ** the cluster with root node pRoot. See comments above the definition
4990 ** of struct Fts3TokenAndCost for more details.
4992 ** If no error occurs, SQLITE_OK is returned and sqlite3Fts3DeferToken()
4993 ** called on each token to defer. Otherwise, an SQLite error code is
4994 ** returned.
4996 static int fts3EvalSelectDeferred(
4997 Fts3Cursor *pCsr, /* FTS Cursor handle */
4998 Fts3Expr *pRoot, /* Consider tokens with this root node */
4999 Fts3TokenAndCost *aTC, /* Array of expression tokens and costs */
5000 int nTC /* Number of entries in aTC[] */
5002 Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
5003 int nDocSize = 0; /* Number of pages per doc loaded */
5004 int rc = SQLITE_OK; /* Return code */
5005 int ii; /* Iterator variable for various purposes */
5006 int nOvfl = 0; /* Total overflow pages used by doclists */
5007 int nToken = 0; /* Total number of tokens in cluster */
5009 int nMinEst = 0; /* The minimum count for any phrase so far. */
5010 int nLoad4 = 1; /* (Phrases that will be loaded)^4. */
5012 /* Tokens are never deferred for FTS tables created using the content=xxx
5013 ** option. The reason being that it is not guaranteed that the content
5014 ** table actually contains the same data as the index. To prevent this from
5015 ** causing any problems, the deferred token optimization is completely
5016 ** disabled for content=xxx tables. */
5017 if( pTab->zContentTbl ){
5018 return SQLITE_OK;
5021 /* Count the tokens in this AND/NEAR cluster. If none of the doclists
5022 ** associated with the tokens spill onto overflow pages, or if there is
5023 ** only 1 token, exit early. No tokens to defer in this case. */
5024 for(ii=0; ii<nTC; ii++){
5025 if( aTC[ii].pRoot==pRoot ){
5026 nOvfl += aTC[ii].nOvfl;
5027 nToken++;
5030 if( nOvfl==0 || nToken<2 ) return SQLITE_OK;
5032 /* Obtain the average docsize (in pages). */
5033 rc = fts3EvalAverageDocsize(pCsr, &nDocSize);
5034 assert( rc!=SQLITE_OK || nDocSize>0 );
5037 /* Iterate through all tokens in this AND/NEAR cluster, in ascending order
5038 ** of the number of overflow pages that will be loaded by the pager layer
5039 ** to retrieve the entire doclist for the token from the full-text index.
5040 ** Load the doclists for tokens that are either:
5042 ** a. The cheapest token in the entire query (i.e. the one visited by the
5043 ** first iteration of this loop), or
5045 ** b. Part of a multi-token phrase.
5047 ** After each token doclist is loaded, merge it with the others from the
5048 ** same phrase and count the number of documents that the merged doclist
5049 ** contains. Set variable "nMinEst" to the smallest number of documents in
5050 ** any phrase doclist for which 1 or more token doclists have been loaded.
5051 ** Let nOther be the number of other phrases for which it is certain that
5052 ** one or more tokens will not be deferred.
5054 ** Then, for each token, defer it if loading the doclist would result in
5055 ** loading N or more overflow pages into memory, where N is computed as:
5057 ** (nMinEst + 4^nOther - 1) / (4^nOther)
5059 for(ii=0; ii<nToken && rc==SQLITE_OK; ii++){
5060 int iTC; /* Used to iterate through aTC[] array. */
5061 Fts3TokenAndCost *pTC = 0; /* Set to cheapest remaining token. */
5063 /* Set pTC to point to the cheapest remaining token. */
5064 for(iTC=0; iTC<nTC; iTC++){
5065 if( aTC[iTC].pToken && aTC[iTC].pRoot==pRoot
5066 && (!pTC || aTC[iTC].nOvfl<pTC->nOvfl)
5068 pTC = &aTC[iTC];
5071 assert( pTC );
5073 if( ii && pTC->nOvfl>=((nMinEst+(nLoad4/4)-1)/(nLoad4/4))*nDocSize ){
5074 /* The number of overflow pages to load for this (and therefore all
5075 ** subsequent) tokens is greater than the estimated number of pages
5076 ** that will be loaded if all subsequent tokens are deferred.
5078 Fts3PhraseToken *pToken = pTC->pToken;
5079 rc = sqlite3Fts3DeferToken(pCsr, pToken, pTC->iCol);
5080 fts3SegReaderCursorFree(pToken->pSegcsr);
5081 pToken->pSegcsr = 0;
5082 }else{
5083 /* Set nLoad4 to the value of (4^nOther) for the next iteration of the
5084 ** for-loop. Except, limit the value to 2^24 to prevent it from
5085 ** overflowing the 32-bit integer it is stored in. */
5086 if( ii<12 ) nLoad4 = nLoad4*4;
5088 if( ii==0 || (pTC->pPhrase->nToken>1 && ii!=nToken-1) ){
5089 /* Either this is the cheapest token in the entire query, or it is
5090 ** part of a multi-token phrase. Either way, the entire doclist will
5091 ** (eventually) be loaded into memory. It may as well be now. */
5092 Fts3PhraseToken *pToken = pTC->pToken;
5093 int nList = 0;
5094 char *pList = 0;
5095 rc = fts3TermSelect(pTab, pToken, pTC->iCol, &nList, &pList);
5096 assert( rc==SQLITE_OK || pList==0 );
5097 if( rc==SQLITE_OK ){
5098 rc = fts3EvalPhraseMergeToken(
5099 pTab, pTC->pPhrase, pTC->iToken,pList,nList
5102 if( rc==SQLITE_OK ){
5103 int nCount;
5104 nCount = fts3DoclistCountDocids(
5105 pTC->pPhrase->doclist.aAll, pTC->pPhrase->doclist.nAll
5107 if( ii==0 || nCount<nMinEst ) nMinEst = nCount;
5111 pTC->pToken = 0;
5114 return rc;
5118 ** This function is called from within the xFilter method. It initializes
5119 ** the full-text query currently stored in pCsr->pExpr. To iterate through
5120 ** the results of a query, the caller does:
5122 ** fts3EvalStart(pCsr);
5123 ** while( 1 ){
5124 ** fts3EvalNext(pCsr);
5125 ** if( pCsr->bEof ) break;
5126 ** ... return row pCsr->iPrevId to the caller ...
5127 ** }
5129 static int fts3EvalStart(Fts3Cursor *pCsr){
5130 Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
5131 int rc = SQLITE_OK;
5132 int nToken = 0;
5133 int nOr = 0;
5135 /* Allocate a MultiSegReader for each token in the expression. */
5136 fts3EvalAllocateReaders(pCsr, pCsr->pExpr, &nToken, &nOr, &rc);
5138 /* Determine which, if any, tokens in the expression should be deferred. */
5139 #ifndef SQLITE_DISABLE_FTS4_DEFERRED
5140 if( rc==SQLITE_OK && nToken>1 && pTab->bFts4 ){
5141 Fts3TokenAndCost *aTC;
5142 aTC = (Fts3TokenAndCost *)sqlite3_malloc64(
5143 sizeof(Fts3TokenAndCost) * nToken
5144 + sizeof(Fts3Expr *) * nOr * 2
5147 if( !aTC ){
5148 rc = SQLITE_NOMEM;
5149 }else{
5150 Fts3Expr **apOr = (Fts3Expr **)&aTC[nToken];
5151 int ii;
5152 Fts3TokenAndCost *pTC = aTC;
5153 Fts3Expr **ppOr = apOr;
5155 fts3EvalTokenCosts(pCsr, 0, pCsr->pExpr, &pTC, &ppOr, &rc);
5156 nToken = (int)(pTC-aTC);
5157 nOr = (int)(ppOr-apOr);
5159 if( rc==SQLITE_OK ){
5160 rc = fts3EvalSelectDeferred(pCsr, 0, aTC, nToken);
5161 for(ii=0; rc==SQLITE_OK && ii<nOr; ii++){
5162 rc = fts3EvalSelectDeferred(pCsr, apOr[ii], aTC, nToken);
5166 sqlite3_free(aTC);
5169 #endif
5171 fts3EvalStartReaders(pCsr, pCsr->pExpr, &rc);
5172 return rc;
5176 ** Invalidate the current position list for phrase pPhrase.
5178 static void fts3EvalInvalidatePoslist(Fts3Phrase *pPhrase){
5179 if( pPhrase->doclist.bFreeList ){
5180 sqlite3_free(pPhrase->doclist.pList);
5182 pPhrase->doclist.pList = 0;
5183 pPhrase->doclist.nList = 0;
5184 pPhrase->doclist.bFreeList = 0;
5188 ** This function is called to edit the position list associated with
5189 ** the phrase object passed as the fifth argument according to a NEAR
5190 ** condition. For example:
5192 ** abc NEAR/5 "def ghi"
5194 ** Parameter nNear is passed the NEAR distance of the expression (5 in
5195 ** the example above). When this function is called, *paPoslist points to
5196 ** the position list, and *pnToken is the number of phrase tokens in the
5197 ** phrase on the other side of the NEAR operator to pPhrase. For example,
5198 ** if pPhrase refers to the "def ghi" phrase, then *paPoslist points to
5199 ** the position list associated with phrase "abc".
5201 ** All positions in the pPhrase position list that are not sufficiently
5202 ** close to a position in the *paPoslist position list are removed. If this
5203 ** leaves 0 positions, zero is returned. Otherwise, non-zero.
5205 ** Before returning, *paPoslist is set to point to the position lsit
5206 ** associated with pPhrase. And *pnToken is set to the number of tokens in
5207 ** pPhrase.
5209 static int fts3EvalNearTrim(
5210 int nNear, /* NEAR distance. As in "NEAR/nNear". */
5211 char *aTmp, /* Temporary space to use */
5212 char **paPoslist, /* IN/OUT: Position list */
5213 int *pnToken, /* IN/OUT: Tokens in phrase of *paPoslist */
5214 Fts3Phrase *pPhrase /* The phrase object to trim the doclist of */
5216 int nParam1 = nNear + pPhrase->nToken;
5217 int nParam2 = nNear + *pnToken;
5218 int nNew;
5219 char *p2;
5220 char *pOut;
5221 int res;
5223 assert( pPhrase->doclist.pList );
5225 p2 = pOut = pPhrase->doclist.pList;
5226 res = fts3PoslistNearMerge(
5227 &pOut, aTmp, nParam1, nParam2, paPoslist, &p2
5229 if( res ){
5230 nNew = (int)(pOut - pPhrase->doclist.pList) - 1;
5231 assert_fts3_nc( nNew<=pPhrase->doclist.nList && nNew>0 );
5232 if( nNew>=0 && nNew<=pPhrase->doclist.nList ){
5233 assert( pPhrase->doclist.pList[nNew]=='\0' );
5234 memset(&pPhrase->doclist.pList[nNew], 0, pPhrase->doclist.nList - nNew);
5235 pPhrase->doclist.nList = nNew;
5237 *paPoslist = pPhrase->doclist.pList;
5238 *pnToken = pPhrase->nToken;
5241 return res;
5245 ** This function is a no-op if *pRc is other than SQLITE_OK when it is called.
5246 ** Otherwise, it advances the expression passed as the second argument to
5247 ** point to the next matching row in the database. Expressions iterate through
5248 ** matching rows in docid order. Ascending order if Fts3Cursor.bDesc is zero,
5249 ** or descending if it is non-zero.
5251 ** If an error occurs, *pRc is set to an SQLite error code. Otherwise, if
5252 ** successful, the following variables in pExpr are set:
5254 ** Fts3Expr.bEof (non-zero if EOF - there is no next row)
5255 ** Fts3Expr.iDocid (valid if bEof==0. The docid of the next row)
5257 ** If the expression is of type FTSQUERY_PHRASE, and the expression is not
5258 ** at EOF, then the following variables are populated with the position list
5259 ** for the phrase for the visited row:
5261 ** FTs3Expr.pPhrase->doclist.nList (length of pList in bytes)
5262 ** FTs3Expr.pPhrase->doclist.pList (pointer to position list)
5264 ** It says above that this function advances the expression to the next
5265 ** matching row. This is usually true, but there are the following exceptions:
5267 ** 1. Deferred tokens are not taken into account. If a phrase consists
5268 ** entirely of deferred tokens, it is assumed to match every row in
5269 ** the db. In this case the position-list is not populated at all.
5271 ** Or, if a phrase contains one or more deferred tokens and one or
5272 ** more non-deferred tokens, then the expression is advanced to the
5273 ** next possible match, considering only non-deferred tokens. In other
5274 ** words, if the phrase is "A B C", and "B" is deferred, the expression
5275 ** is advanced to the next row that contains an instance of "A * C",
5276 ** where "*" may match any single token. The position list in this case
5277 ** is populated as for "A * C" before returning.
5279 ** 2. NEAR is treated as AND. If the expression is "x NEAR y", it is
5280 ** advanced to point to the next row that matches "x AND y".
5282 ** See sqlite3Fts3EvalTestDeferred() for details on testing if a row is
5283 ** really a match, taking into account deferred tokens and NEAR operators.
5285 static void fts3EvalNextRow(
5286 Fts3Cursor *pCsr, /* FTS Cursor handle */
5287 Fts3Expr *pExpr, /* Expr. to advance to next matching row */
5288 int *pRc /* IN/OUT: Error code */
5290 if( *pRc==SQLITE_OK && pExpr->bEof==0 ){
5291 int bDescDoclist = pCsr->bDesc; /* Used by DOCID_CMP() macro */
5292 pExpr->bStart = 1;
5294 switch( pExpr->eType ){
5295 case FTSQUERY_NEAR:
5296 case FTSQUERY_AND: {
5297 Fts3Expr *pLeft = pExpr->pLeft;
5298 Fts3Expr *pRight = pExpr->pRight;
5299 assert( !pLeft->bDeferred || !pRight->bDeferred );
5301 if( pLeft->bDeferred ){
5302 /* LHS is entirely deferred. So we assume it matches every row.
5303 ** Advance the RHS iterator to find the next row visited. */
5304 fts3EvalNextRow(pCsr, pRight, pRc);
5305 pExpr->iDocid = pRight->iDocid;
5306 pExpr->bEof = pRight->bEof;
5307 }else if( pRight->bDeferred ){
5308 /* RHS is entirely deferred. So we assume it matches every row.
5309 ** Advance the LHS iterator to find the next row visited. */
5310 fts3EvalNextRow(pCsr, pLeft, pRc);
5311 pExpr->iDocid = pLeft->iDocid;
5312 pExpr->bEof = pLeft->bEof;
5313 }else{
5314 /* Neither the RHS or LHS are deferred. */
5315 fts3EvalNextRow(pCsr, pLeft, pRc);
5316 fts3EvalNextRow(pCsr, pRight, pRc);
5317 while( !pLeft->bEof && !pRight->bEof && *pRc==SQLITE_OK ){
5318 sqlite3_int64 iDiff = DOCID_CMP(pLeft->iDocid, pRight->iDocid);
5319 if( iDiff==0 ) break;
5320 if( iDiff<0 ){
5321 fts3EvalNextRow(pCsr, pLeft, pRc);
5322 }else{
5323 fts3EvalNextRow(pCsr, pRight, pRc);
5326 pExpr->iDocid = pLeft->iDocid;
5327 pExpr->bEof = (pLeft->bEof || pRight->bEof);
5328 if( pExpr->eType==FTSQUERY_NEAR && pExpr->bEof ){
5329 assert( pRight->eType==FTSQUERY_PHRASE );
5330 if( pRight->pPhrase->doclist.aAll ){
5331 Fts3Doclist *pDl = &pRight->pPhrase->doclist;
5332 while( *pRc==SQLITE_OK && pRight->bEof==0 ){
5333 memset(pDl->pList, 0, pDl->nList);
5334 fts3EvalNextRow(pCsr, pRight, pRc);
5337 if( pLeft->pPhrase && pLeft->pPhrase->doclist.aAll ){
5338 Fts3Doclist *pDl = &pLeft->pPhrase->doclist;
5339 while( *pRc==SQLITE_OK && pLeft->bEof==0 ){
5340 memset(pDl->pList, 0, pDl->nList);
5341 fts3EvalNextRow(pCsr, pLeft, pRc);
5344 pRight->bEof = pLeft->bEof = 1;
5347 break;
5350 case FTSQUERY_OR: {
5351 Fts3Expr *pLeft = pExpr->pLeft;
5352 Fts3Expr *pRight = pExpr->pRight;
5353 sqlite3_int64 iCmp = DOCID_CMP(pLeft->iDocid, pRight->iDocid);
5355 assert_fts3_nc( pLeft->bStart || pLeft->iDocid==pRight->iDocid );
5356 assert_fts3_nc( pRight->bStart || pLeft->iDocid==pRight->iDocid );
5358 if( pRight->bEof || (pLeft->bEof==0 && iCmp<0) ){
5359 fts3EvalNextRow(pCsr, pLeft, pRc);
5360 }else if( pLeft->bEof || iCmp>0 ){
5361 fts3EvalNextRow(pCsr, pRight, pRc);
5362 }else{
5363 fts3EvalNextRow(pCsr, pLeft, pRc);
5364 fts3EvalNextRow(pCsr, pRight, pRc);
5367 pExpr->bEof = (pLeft->bEof && pRight->bEof);
5368 iCmp = DOCID_CMP(pLeft->iDocid, pRight->iDocid);
5369 if( pRight->bEof || (pLeft->bEof==0 && iCmp<0) ){
5370 pExpr->iDocid = pLeft->iDocid;
5371 }else{
5372 pExpr->iDocid = pRight->iDocid;
5375 break;
5378 case FTSQUERY_NOT: {
5379 Fts3Expr *pLeft = pExpr->pLeft;
5380 Fts3Expr *pRight = pExpr->pRight;
5382 if( pRight->bStart==0 ){
5383 fts3EvalNextRow(pCsr, pRight, pRc);
5384 assert( *pRc!=SQLITE_OK || pRight->bStart );
5387 fts3EvalNextRow(pCsr, pLeft, pRc);
5388 if( pLeft->bEof==0 ){
5389 while( !*pRc
5390 && !pRight->bEof
5391 && DOCID_CMP(pLeft->iDocid, pRight->iDocid)>0
5393 fts3EvalNextRow(pCsr, pRight, pRc);
5396 pExpr->iDocid = pLeft->iDocid;
5397 pExpr->bEof = pLeft->bEof;
5398 break;
5401 default: {
5402 Fts3Phrase *pPhrase = pExpr->pPhrase;
5403 fts3EvalInvalidatePoslist(pPhrase);
5404 *pRc = fts3EvalPhraseNext(pCsr, pPhrase, &pExpr->bEof);
5405 pExpr->iDocid = pPhrase->doclist.iDocid;
5406 break;
5413 ** If *pRc is not SQLITE_OK, or if pExpr is not the root node of a NEAR
5414 ** cluster, then this function returns 1 immediately.
5416 ** Otherwise, it checks if the current row really does match the NEAR
5417 ** expression, using the data currently stored in the position lists
5418 ** (Fts3Expr->pPhrase.doclist.pList/nList) for each phrase in the expression.
5420 ** If the current row is a match, the position list associated with each
5421 ** phrase in the NEAR expression is edited in place to contain only those
5422 ** phrase instances sufficiently close to their peers to satisfy all NEAR
5423 ** constraints. In this case it returns 1. If the NEAR expression does not
5424 ** match the current row, 0 is returned. The position lists may or may not
5425 ** be edited if 0 is returned.
5427 static int fts3EvalNearTest(Fts3Expr *pExpr, int *pRc){
5428 int res = 1;
5430 /* The following block runs if pExpr is the root of a NEAR query.
5431 ** For example, the query:
5433 ** "w" NEAR "x" NEAR "y" NEAR "z"
5435 ** which is represented in tree form as:
5437 ** |
5438 ** +--NEAR--+ <-- root of NEAR query
5439 ** | |
5440 ** +--NEAR--+ "z"
5441 ** | |
5442 ** +--NEAR--+ "y"
5443 ** | |
5444 ** "w" "x"
5446 ** The right-hand child of a NEAR node is always a phrase. The
5447 ** left-hand child may be either a phrase or a NEAR node. There are
5448 ** no exceptions to this - it's the way the parser in fts3_expr.c works.
5450 if( *pRc==SQLITE_OK
5451 && pExpr->eType==FTSQUERY_NEAR
5452 && (pExpr->pParent==0 || pExpr->pParent->eType!=FTSQUERY_NEAR)
5454 Fts3Expr *p;
5455 sqlite3_int64 nTmp = 0; /* Bytes of temp space */
5456 char *aTmp; /* Temp space for PoslistNearMerge() */
5458 /* Allocate temporary working space. */
5459 for(p=pExpr; p->pLeft; p=p->pLeft){
5460 assert( p->pRight->pPhrase->doclist.nList>0 );
5461 nTmp += p->pRight->pPhrase->doclist.nList;
5463 nTmp += p->pPhrase->doclist.nList;
5464 aTmp = sqlite3_malloc64(nTmp*2);
5465 if( !aTmp ){
5466 *pRc = SQLITE_NOMEM;
5467 res = 0;
5468 }else{
5469 char *aPoslist = p->pPhrase->doclist.pList;
5470 int nToken = p->pPhrase->nToken;
5472 for(p=p->pParent;res && p && p->eType==FTSQUERY_NEAR; p=p->pParent){
5473 Fts3Phrase *pPhrase = p->pRight->pPhrase;
5474 int nNear = p->nNear;
5475 res = fts3EvalNearTrim(nNear, aTmp, &aPoslist, &nToken, pPhrase);
5478 aPoslist = pExpr->pRight->pPhrase->doclist.pList;
5479 nToken = pExpr->pRight->pPhrase->nToken;
5480 for(p=pExpr->pLeft; p && res; p=p->pLeft){
5481 int nNear;
5482 Fts3Phrase *pPhrase;
5483 assert( p->pParent && p->pParent->pLeft==p );
5484 nNear = p->pParent->nNear;
5485 pPhrase = (
5486 p->eType==FTSQUERY_NEAR ? p->pRight->pPhrase : p->pPhrase
5488 res = fts3EvalNearTrim(nNear, aTmp, &aPoslist, &nToken, pPhrase);
5492 sqlite3_free(aTmp);
5495 return res;
5499 ** This function is a helper function for sqlite3Fts3EvalTestDeferred().
5500 ** Assuming no error occurs or has occurred, It returns non-zero if the
5501 ** expression passed as the second argument matches the row that pCsr
5502 ** currently points to, or zero if it does not.
5504 ** If *pRc is not SQLITE_OK when this function is called, it is a no-op.
5505 ** If an error occurs during execution of this function, *pRc is set to
5506 ** the appropriate SQLite error code. In this case the returned value is
5507 ** undefined.
5509 static int fts3EvalTestExpr(
5510 Fts3Cursor *pCsr, /* FTS cursor handle */
5511 Fts3Expr *pExpr, /* Expr to test. May or may not be root. */
5512 int *pRc /* IN/OUT: Error code */
5514 int bHit = 1; /* Return value */
5515 if( *pRc==SQLITE_OK ){
5516 switch( pExpr->eType ){
5517 case FTSQUERY_NEAR:
5518 case FTSQUERY_AND:
5519 bHit = (
5520 fts3EvalTestExpr(pCsr, pExpr->pLeft, pRc)
5521 && fts3EvalTestExpr(pCsr, pExpr->pRight, pRc)
5522 && fts3EvalNearTest(pExpr, pRc)
5525 /* If the NEAR expression does not match any rows, zero the doclist for
5526 ** all phrases involved in the NEAR. This is because the snippet(),
5527 ** offsets() and matchinfo() functions are not supposed to recognize
5528 ** any instances of phrases that are part of unmatched NEAR queries.
5529 ** For example if this expression:
5531 ** ... MATCH 'a OR (b NEAR c)'
5533 ** is matched against a row containing:
5535 ** 'a b d e'
5537 ** then any snippet() should ony highlight the "a" term, not the "b"
5538 ** (as "b" is part of a non-matching NEAR clause).
5540 if( bHit==0
5541 && pExpr->eType==FTSQUERY_NEAR
5542 && (pExpr->pParent==0 || pExpr->pParent->eType!=FTSQUERY_NEAR)
5544 Fts3Expr *p;
5545 for(p=pExpr; p->pPhrase==0; p=p->pLeft){
5546 if( p->pRight->iDocid==pCsr->iPrevId ){
5547 fts3EvalInvalidatePoslist(p->pRight->pPhrase);
5550 if( p->iDocid==pCsr->iPrevId ){
5551 fts3EvalInvalidatePoslist(p->pPhrase);
5555 break;
5557 case FTSQUERY_OR: {
5558 int bHit1 = fts3EvalTestExpr(pCsr, pExpr->pLeft, pRc);
5559 int bHit2 = fts3EvalTestExpr(pCsr, pExpr->pRight, pRc);
5560 bHit = bHit1 || bHit2;
5561 break;
5564 case FTSQUERY_NOT:
5565 bHit = (
5566 fts3EvalTestExpr(pCsr, pExpr->pLeft, pRc)
5567 && !fts3EvalTestExpr(pCsr, pExpr->pRight, pRc)
5569 break;
5571 default: {
5572 #ifndef SQLITE_DISABLE_FTS4_DEFERRED
5573 if( pCsr->pDeferred && (pExpr->bDeferred || (
5574 pExpr->iDocid==pCsr->iPrevId && pExpr->pPhrase->doclist.pList
5575 ))){
5576 Fts3Phrase *pPhrase = pExpr->pPhrase;
5577 if( pExpr->bDeferred ){
5578 fts3EvalInvalidatePoslist(pPhrase);
5580 *pRc = fts3EvalDeferredPhrase(pCsr, pPhrase);
5581 bHit = (pPhrase->doclist.pList!=0);
5582 pExpr->iDocid = pCsr->iPrevId;
5583 }else
5584 #endif
5586 bHit = (
5587 pExpr->bEof==0 && pExpr->iDocid==pCsr->iPrevId
5588 && pExpr->pPhrase->doclist.nList>0
5591 break;
5595 return bHit;
5599 ** This function is called as the second part of each xNext operation when
5600 ** iterating through the results of a full-text query. At this point the
5601 ** cursor points to a row that matches the query expression, with the
5602 ** following caveats:
5604 ** * Up until this point, "NEAR" operators in the expression have been
5605 ** treated as "AND".
5607 ** * Deferred tokens have not yet been considered.
5609 ** If *pRc is not SQLITE_OK when this function is called, it immediately
5610 ** returns 0. Otherwise, it tests whether or not after considering NEAR
5611 ** operators and deferred tokens the current row is still a match for the
5612 ** expression. It returns 1 if both of the following are true:
5614 ** 1. *pRc is SQLITE_OK when this function returns, and
5616 ** 2. After scanning the current FTS table row for the deferred tokens,
5617 ** it is determined that the row does *not* match the query.
5619 ** Or, if no error occurs and it seems the current row does match the FTS
5620 ** query, return 0.
5622 int sqlite3Fts3EvalTestDeferred(Fts3Cursor *pCsr, int *pRc){
5623 int rc = *pRc;
5624 int bMiss = 0;
5625 if( rc==SQLITE_OK ){
5627 /* If there are one or more deferred tokens, load the current row into
5628 ** memory and scan it to determine the position list for each deferred
5629 ** token. Then, see if this row is really a match, considering deferred
5630 ** tokens and NEAR operators (neither of which were taken into account
5631 ** earlier, by fts3EvalNextRow()).
5633 if( pCsr->pDeferred ){
5634 rc = fts3CursorSeek(0, pCsr);
5635 if( rc==SQLITE_OK ){
5636 rc = sqlite3Fts3CacheDeferredDoclists(pCsr);
5639 bMiss = (0==fts3EvalTestExpr(pCsr, pCsr->pExpr, &rc));
5641 /* Free the position-lists accumulated for each deferred token above. */
5642 sqlite3Fts3FreeDeferredDoclists(pCsr);
5643 *pRc = rc;
5645 return (rc==SQLITE_OK && bMiss);
5649 ** Advance to the next document that matches the FTS expression in
5650 ** Fts3Cursor.pExpr.
5652 static int fts3EvalNext(Fts3Cursor *pCsr){
5653 int rc = SQLITE_OK; /* Return Code */
5654 Fts3Expr *pExpr = pCsr->pExpr;
5655 assert( pCsr->isEof==0 );
5656 if( pExpr==0 ){
5657 pCsr->isEof = 1;
5658 }else{
5659 do {
5660 if( pCsr->isRequireSeek==0 ){
5661 sqlite3_reset(pCsr->pStmt);
5663 assert( sqlite3_data_count(pCsr->pStmt)==0 );
5664 fts3EvalNextRow(pCsr, pExpr, &rc);
5665 pCsr->isEof = pExpr->bEof;
5666 pCsr->isRequireSeek = 1;
5667 pCsr->isMatchinfoNeeded = 1;
5668 pCsr->iPrevId = pExpr->iDocid;
5669 }while( pCsr->isEof==0 && sqlite3Fts3EvalTestDeferred(pCsr, &rc) );
5672 /* Check if the cursor is past the end of the docid range specified
5673 ** by Fts3Cursor.iMinDocid/iMaxDocid. If so, set the EOF flag. */
5674 if( rc==SQLITE_OK && (
5675 (pCsr->bDesc==0 && pCsr->iPrevId>pCsr->iMaxDocid)
5676 || (pCsr->bDesc!=0 && pCsr->iPrevId<pCsr->iMinDocid)
5678 pCsr->isEof = 1;
5681 return rc;
5685 ** Restart interation for expression pExpr so that the next call to
5686 ** fts3EvalNext() visits the first row. Do not allow incremental
5687 ** loading or merging of phrase doclists for this iteration.
5689 ** If *pRc is other than SQLITE_OK when this function is called, it is
5690 ** a no-op. If an error occurs within this function, *pRc is set to an
5691 ** SQLite error code before returning.
5693 static void fts3EvalRestart(
5694 Fts3Cursor *pCsr,
5695 Fts3Expr *pExpr,
5696 int *pRc
5698 if( pExpr && *pRc==SQLITE_OK ){
5699 Fts3Phrase *pPhrase = pExpr->pPhrase;
5701 if( pPhrase ){
5702 fts3EvalInvalidatePoslist(pPhrase);
5703 if( pPhrase->bIncr ){
5704 int i;
5705 for(i=0; i<pPhrase->nToken; i++){
5706 Fts3PhraseToken *pToken = &pPhrase->aToken[i];
5707 assert( pToken->pDeferred==0 );
5708 if( pToken->pSegcsr ){
5709 sqlite3Fts3MsrIncrRestart(pToken->pSegcsr);
5712 *pRc = fts3EvalPhraseStart(pCsr, 0, pPhrase);
5714 pPhrase->doclist.pNextDocid = 0;
5715 pPhrase->doclist.iDocid = 0;
5716 pPhrase->pOrPoslist = 0;
5719 pExpr->iDocid = 0;
5720 pExpr->bEof = 0;
5721 pExpr->bStart = 0;
5723 fts3EvalRestart(pCsr, pExpr->pLeft, pRc);
5724 fts3EvalRestart(pCsr, pExpr->pRight, pRc);
5729 ** After allocating the Fts3Expr.aMI[] array for each phrase in the
5730 ** expression rooted at pExpr, the cursor iterates through all rows matched
5731 ** by pExpr, calling this function for each row. This function increments
5732 ** the values in Fts3Expr.aMI[] according to the position-list currently
5733 ** found in Fts3Expr.pPhrase->doclist.pList for each of the phrase
5734 ** expression nodes.
5736 static void fts3EvalUpdateCounts(Fts3Expr *pExpr, int nCol){
5737 if( pExpr ){
5738 Fts3Phrase *pPhrase = pExpr->pPhrase;
5739 if( pPhrase && pPhrase->doclist.pList ){
5740 int iCol = 0;
5741 char *p = pPhrase->doclist.pList;
5744 u8 c = 0;
5745 int iCnt = 0;
5746 while( 0xFE & (*p | c) ){
5747 if( (c&0x80)==0 ) iCnt++;
5748 c = *p++ & 0x80;
5751 /* aMI[iCol*3 + 1] = Number of occurrences
5752 ** aMI[iCol*3 + 2] = Number of rows containing at least one instance
5754 pExpr->aMI[iCol*3 + 1] += iCnt;
5755 pExpr->aMI[iCol*3 + 2] += (iCnt>0);
5756 if( *p==0x00 ) break;
5757 p++;
5758 p += fts3GetVarint32(p, &iCol);
5759 }while( iCol<nCol );
5762 fts3EvalUpdateCounts(pExpr->pLeft, nCol);
5763 fts3EvalUpdateCounts(pExpr->pRight, nCol);
5768 ** This is an sqlite3Fts3ExprIterate() callback. If the Fts3Expr.aMI[] array
5769 ** has not yet been allocated, allocate and zero it. Otherwise, just zero
5770 ** it.
5772 static int fts3AllocateMSI(Fts3Expr *pExpr, int iPhrase, void *pCtx){
5773 Fts3Table *pTab = (Fts3Table*)pCtx;
5774 UNUSED_PARAMETER(iPhrase);
5775 if( pExpr->aMI==0 ){
5776 pExpr->aMI = (u32 *)sqlite3_malloc64(pTab->nColumn * 3 * sizeof(u32));
5777 if( pExpr->aMI==0 ) return SQLITE_NOMEM;
5779 memset(pExpr->aMI, 0, pTab->nColumn * 3 * sizeof(u32));
5780 return SQLITE_OK;
5784 ** Expression pExpr must be of type FTSQUERY_PHRASE.
5786 ** If it is not already allocated and populated, this function allocates and
5787 ** populates the Fts3Expr.aMI[] array for expression pExpr. If pExpr is part
5788 ** of a NEAR expression, then it also allocates and populates the same array
5789 ** for all other phrases that are part of the NEAR expression.
5791 ** SQLITE_OK is returned if the aMI[] array is successfully allocated and
5792 ** populated. Otherwise, if an error occurs, an SQLite error code is returned.
5794 static int fts3EvalGatherStats(
5795 Fts3Cursor *pCsr, /* Cursor object */
5796 Fts3Expr *pExpr /* FTSQUERY_PHRASE expression */
5798 int rc = SQLITE_OK; /* Return code */
5800 assert( pExpr->eType==FTSQUERY_PHRASE );
5801 if( pExpr->aMI==0 ){
5802 Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
5803 Fts3Expr *pRoot; /* Root of NEAR expression */
5805 sqlite3_int64 iPrevId = pCsr->iPrevId;
5806 sqlite3_int64 iDocid;
5807 u8 bEof;
5809 /* Find the root of the NEAR expression */
5810 pRoot = pExpr;
5811 while( pRoot->pParent
5812 && (pRoot->pParent->eType==FTSQUERY_NEAR || pRoot->bDeferred)
5814 pRoot = pRoot->pParent;
5816 iDocid = pRoot->iDocid;
5817 bEof = pRoot->bEof;
5818 assert( pRoot->bStart );
5820 /* Allocate space for the aMSI[] array of each FTSQUERY_PHRASE node */
5821 rc = sqlite3Fts3ExprIterate(pRoot, fts3AllocateMSI, (void*)pTab);
5822 if( rc!=SQLITE_OK ) return rc;
5823 fts3EvalRestart(pCsr, pRoot, &rc);
5825 while( pCsr->isEof==0 && rc==SQLITE_OK ){
5827 do {
5828 /* Ensure the %_content statement is reset. */
5829 if( pCsr->isRequireSeek==0 ) sqlite3_reset(pCsr->pStmt);
5830 assert( sqlite3_data_count(pCsr->pStmt)==0 );
5832 /* Advance to the next document */
5833 fts3EvalNextRow(pCsr, pRoot, &rc);
5834 pCsr->isEof = pRoot->bEof;
5835 pCsr->isRequireSeek = 1;
5836 pCsr->isMatchinfoNeeded = 1;
5837 pCsr->iPrevId = pRoot->iDocid;
5838 }while( pCsr->isEof==0
5839 && pRoot->eType==FTSQUERY_NEAR
5840 && sqlite3Fts3EvalTestDeferred(pCsr, &rc)
5843 if( rc==SQLITE_OK && pCsr->isEof==0 ){
5844 fts3EvalUpdateCounts(pRoot, pTab->nColumn);
5848 pCsr->isEof = 0;
5849 pCsr->iPrevId = iPrevId;
5851 if( bEof ){
5852 pRoot->bEof = bEof;
5853 }else{
5854 /* Caution: pRoot may iterate through docids in ascending or descending
5855 ** order. For this reason, even though it seems more defensive, the
5856 ** do loop can not be written:
5858 ** do {...} while( pRoot->iDocid<iDocid && rc==SQLITE_OK );
5860 fts3EvalRestart(pCsr, pRoot, &rc);
5861 do {
5862 fts3EvalNextRow(pCsr, pRoot, &rc);
5863 assert_fts3_nc( pRoot->bEof==0 );
5864 if( pRoot->bEof ) rc = FTS_CORRUPT_VTAB;
5865 }while( pRoot->iDocid!=iDocid && rc==SQLITE_OK );
5868 return rc;
5872 ** This function is used by the matchinfo() module to query a phrase
5873 ** expression node for the following information:
5875 ** 1. The total number of occurrences of the phrase in each column of
5876 ** the FTS table (considering all rows), and
5878 ** 2. For each column, the number of rows in the table for which the
5879 ** column contains at least one instance of the phrase.
5881 ** If no error occurs, SQLITE_OK is returned and the values for each column
5882 ** written into the array aiOut as follows:
5884 ** aiOut[iCol*3 + 1] = Number of occurrences
5885 ** aiOut[iCol*3 + 2] = Number of rows containing at least one instance
5887 ** Caveats:
5889 ** * If a phrase consists entirely of deferred tokens, then all output
5890 ** values are set to the number of documents in the table. In other
5891 ** words we assume that very common tokens occur exactly once in each
5892 ** column of each row of the table.
5894 ** * If a phrase contains some deferred tokens (and some non-deferred
5895 ** tokens), count the potential occurrence identified by considering
5896 ** the non-deferred tokens instead of actual phrase occurrences.
5898 ** * If the phrase is part of a NEAR expression, then only phrase instances
5899 ** that meet the NEAR constraint are included in the counts.
5901 int sqlite3Fts3EvalPhraseStats(
5902 Fts3Cursor *pCsr, /* FTS cursor handle */
5903 Fts3Expr *pExpr, /* Phrase expression */
5904 u32 *aiOut /* Array to write results into (see above) */
5906 Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
5907 int rc = SQLITE_OK;
5908 int iCol;
5910 if( pExpr->bDeferred && pExpr->pParent->eType!=FTSQUERY_NEAR ){
5911 assert( pCsr->nDoc>0 );
5912 for(iCol=0; iCol<pTab->nColumn; iCol++){
5913 aiOut[iCol*3 + 1] = (u32)pCsr->nDoc;
5914 aiOut[iCol*3 + 2] = (u32)pCsr->nDoc;
5916 }else{
5917 rc = fts3EvalGatherStats(pCsr, pExpr);
5918 if( rc==SQLITE_OK ){
5919 assert( pExpr->aMI );
5920 for(iCol=0; iCol<pTab->nColumn; iCol++){
5921 aiOut[iCol*3 + 1] = pExpr->aMI[iCol*3 + 1];
5922 aiOut[iCol*3 + 2] = pExpr->aMI[iCol*3 + 2];
5927 return rc;
5931 ** The expression pExpr passed as the second argument to this function
5932 ** must be of type FTSQUERY_PHRASE.
5934 ** The returned value is either NULL or a pointer to a buffer containing
5935 ** a position-list indicating the occurrences of the phrase in column iCol
5936 ** of the current row.
5938 ** More specifically, the returned buffer contains 1 varint for each
5939 ** occurrence of the phrase in the column, stored using the normal (delta+2)
5940 ** compression and is terminated by either an 0x01 or 0x00 byte. For example,
5941 ** if the requested column contains "a b X c d X X" and the position-list
5942 ** for 'X' is requested, the buffer returned may contain:
5944 ** 0x04 0x05 0x03 0x01 or 0x04 0x05 0x03 0x00
5946 ** This function works regardless of whether or not the phrase is deferred,
5947 ** incremental, or neither.
5949 int sqlite3Fts3EvalPhrasePoslist(
5950 Fts3Cursor *pCsr, /* FTS3 cursor object */
5951 Fts3Expr *pExpr, /* Phrase to return doclist for */
5952 int iCol, /* Column to return position list for */
5953 char **ppOut /* OUT: Pointer to position list */
5955 Fts3Phrase *pPhrase = pExpr->pPhrase;
5956 Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
5957 char *pIter;
5958 int iThis;
5959 sqlite3_int64 iDocid;
5961 /* If this phrase is applies specifically to some column other than
5962 ** column iCol, return a NULL pointer. */
5963 *ppOut = 0;
5964 assert( iCol>=0 && iCol<pTab->nColumn );
5965 if( (pPhrase->iColumn<pTab->nColumn && pPhrase->iColumn!=iCol) ){
5966 return SQLITE_OK;
5969 iDocid = pExpr->iDocid;
5970 pIter = pPhrase->doclist.pList;
5971 if( iDocid!=pCsr->iPrevId || pExpr->bEof ){
5972 int rc = SQLITE_OK;
5973 int bDescDoclist = pTab->bDescIdx; /* For DOCID_CMP macro */
5974 int bOr = 0;
5975 u8 bTreeEof = 0;
5976 Fts3Expr *p; /* Used to iterate from pExpr to root */
5977 Fts3Expr *pNear; /* Most senior NEAR ancestor (or pExpr) */
5978 Fts3Expr *pRun; /* Closest non-deferred ancestor of pNear */
5979 int bMatch;
5981 /* Check if this phrase descends from an OR expression node. If not,
5982 ** return NULL. Otherwise, the entry that corresponds to docid
5983 ** pCsr->iPrevId may lie earlier in the doclist buffer. Or, if the
5984 ** tree that the node is part of has been marked as EOF, but the node
5985 ** itself is not EOF, then it may point to an earlier entry. */
5986 pNear = pExpr;
5987 for(p=pExpr->pParent; p; p=p->pParent){
5988 if( p->eType==FTSQUERY_OR ) bOr = 1;
5989 if( p->eType==FTSQUERY_NEAR ) pNear = p;
5990 if( p->bEof ) bTreeEof = 1;
5992 if( bOr==0 ) return SQLITE_OK;
5993 pRun = pNear;
5994 while( pRun->bDeferred ){
5995 assert( pRun->pParent );
5996 pRun = pRun->pParent;
5999 /* This is the descendent of an OR node. In this case we cannot use
6000 ** an incremental phrase. Load the entire doclist for the phrase
6001 ** into memory in this case. */
6002 if( pPhrase->bIncr ){
6003 int bEofSave = pRun->bEof;
6004 fts3EvalRestart(pCsr, pRun, &rc);
6005 while( rc==SQLITE_OK && !pRun->bEof ){
6006 fts3EvalNextRow(pCsr, pRun, &rc);
6007 if( bEofSave==0 && pRun->iDocid==iDocid ) break;
6009 assert( rc!=SQLITE_OK || pPhrase->bIncr==0 );
6010 if( rc==SQLITE_OK && pRun->bEof!=bEofSave ){
6011 rc = FTS_CORRUPT_VTAB;
6014 if( bTreeEof ){
6015 while( rc==SQLITE_OK && !pRun->bEof ){
6016 fts3EvalNextRow(pCsr, pRun, &rc);
6019 if( rc!=SQLITE_OK ) return rc;
6021 bMatch = 1;
6022 for(p=pNear; p; p=p->pLeft){
6023 u8 bEof = 0;
6024 Fts3Expr *pTest = p;
6025 Fts3Phrase *pPh;
6026 assert( pTest->eType==FTSQUERY_NEAR || pTest->eType==FTSQUERY_PHRASE );
6027 if( pTest->eType==FTSQUERY_NEAR ) pTest = pTest->pRight;
6028 assert( pTest->eType==FTSQUERY_PHRASE );
6029 pPh = pTest->pPhrase;
6031 pIter = pPh->pOrPoslist;
6032 iDocid = pPh->iOrDocid;
6033 if( pCsr->bDesc==bDescDoclist ){
6034 bEof = !pPh->doclist.nAll ||
6035 (pIter >= (pPh->doclist.aAll + pPh->doclist.nAll));
6036 while( (pIter==0 || DOCID_CMP(iDocid, pCsr->iPrevId)<0 ) && bEof==0 ){
6037 sqlite3Fts3DoclistNext(
6038 bDescDoclist, pPh->doclist.aAll, pPh->doclist.nAll,
6039 &pIter, &iDocid, &bEof
6042 }else{
6043 bEof = !pPh->doclist.nAll || (pIter && pIter<=pPh->doclist.aAll);
6044 while( (pIter==0 || DOCID_CMP(iDocid, pCsr->iPrevId)>0 ) && bEof==0 ){
6045 int dummy;
6046 sqlite3Fts3DoclistPrev(
6047 bDescDoclist, pPh->doclist.aAll, pPh->doclist.nAll,
6048 &pIter, &iDocid, &dummy, &bEof
6052 pPh->pOrPoslist = pIter;
6053 pPh->iOrDocid = iDocid;
6054 if( bEof || iDocid!=pCsr->iPrevId ) bMatch = 0;
6057 if( bMatch ){
6058 pIter = pPhrase->pOrPoslist;
6059 }else{
6060 pIter = 0;
6063 if( pIter==0 ) return SQLITE_OK;
6065 if( *pIter==0x01 ){
6066 pIter++;
6067 pIter += fts3GetVarint32(pIter, &iThis);
6068 }else{
6069 iThis = 0;
6071 while( iThis<iCol ){
6072 fts3ColumnlistCopy(0, &pIter);
6073 if( *pIter==0x00 ) return SQLITE_OK;
6074 pIter++;
6075 pIter += fts3GetVarint32(pIter, &iThis);
6077 if( *pIter==0x00 ){
6078 pIter = 0;
6081 *ppOut = ((iCol==iThis)?pIter:0);
6082 return SQLITE_OK;
6086 ** Free all components of the Fts3Phrase structure that were allocated by
6087 ** the eval module. Specifically, this means to free:
6089 ** * the contents of pPhrase->doclist, and
6090 ** * any Fts3MultiSegReader objects held by phrase tokens.
6092 void sqlite3Fts3EvalPhraseCleanup(Fts3Phrase *pPhrase){
6093 if( pPhrase ){
6094 int i;
6095 sqlite3_free(pPhrase->doclist.aAll);
6096 fts3EvalInvalidatePoslist(pPhrase);
6097 memset(&pPhrase->doclist, 0, sizeof(Fts3Doclist));
6098 for(i=0; i<pPhrase->nToken; i++){
6099 fts3SegReaderCursorFree(pPhrase->aToken[i].pSegcsr);
6100 pPhrase->aToken[i].pSegcsr = 0;
6107 ** Return SQLITE_CORRUPT_VTAB.
6109 #ifdef SQLITE_DEBUG
6110 int sqlite3Fts3Corrupt(){
6111 return SQLITE_CORRUPT_VTAB;
6113 #endif
6115 #if !SQLITE_CORE
6117 ** Initialize API pointer table, if required.
6119 #ifdef _WIN32
6120 __declspec(dllexport)
6121 #endif
6122 int sqlite3_fts3_init(
6123 sqlite3 *db,
6124 char **pzErrMsg,
6125 const sqlite3_api_routines *pApi
6127 SQLITE_EXTENSION_INIT2(pApi)
6128 return sqlite3Fts3Init(db);
6130 #endif
6132 #endif