4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 ******************************************************************************
13 ** Low level access to the FTS index stored in the database file. The
14 ** routines in this file file implement all read and write access to the
15 ** %_data table. Other parts of the system access this functionality via
16 ** the interface defined in fts5Int.h.
25 ** The %_data table contains all the FTS indexes for an FTS5 virtual table.
26 ** As well as the main term index, there may be up to 31 prefix indexes.
27 ** The format is similar to FTS3/4, except that:
29 ** * all segment b-tree leaf data is stored in fixed size page records
30 ** (e.g. 1000 bytes). A single doclist may span multiple pages. Care is
31 ** taken to ensure it is possible to iterate in either direction through
32 ** the entries in a doclist, or to seek to a specific entry within a
33 ** doclist, without loading it into memory.
35 ** * large doclists that span many pages have associated "doclist index"
36 ** records that contain a copy of the first rowid on each page spanned by
37 ** the doclist. This is used to speed up seek operations, and merges of
38 ** large doclists with very small doclists.
40 ** * extra fields in the "structure record" record the state of ongoing
41 ** incremental merge operations.
46 #define FTS5_OPT_WORK_UNIT 1000 /* Number of leaf pages per optimize step */
47 #define FTS5_WORK_UNIT 64 /* Number of leaf pages in unit of work */
49 #define FTS5_MIN_DLIDX_SIZE 4 /* Add dlidx if this many empty pages */
51 #define FTS5_MAIN_PREFIX '0'
53 #if FTS5_MAX_PREFIX_INDEXES > 31
54 # error "FTS5_MAX_PREFIX_INDEXES is too large"
57 #define FTS5_MAX_LEVEL 64
62 ** The %_data table managed by this module,
64 ** CREATE TABLE %_data(id INTEGER PRIMARY KEY, block BLOB);
66 ** , contains the following 5 types of records. See the comments surrounding
67 ** the FTS5_*_ROWID macros below for a description of how %_data rowids are
68 ** assigned to each fo them.
70 ** 1. Structure Records:
72 ** The set of segments that make up an index - the index structure - are
73 ** recorded in a single record within the %_data table. The record consists
74 ** of a single 32-bit configuration cookie value followed by a list of
75 ** SQLite varints. If the FTS table features more than one index (because
76 ** there are one or more prefix indexes), it is guaranteed that all share
77 ** the same cookie value.
79 ** Immediately following the configuration cookie, the record begins with
82 ** + number of levels,
83 ** + total number of segments on all levels,
84 ** + value of write counter.
86 ** Then, for each level from 0 to nMax:
88 ** + number of input segments in ongoing merge.
89 ** + total number of segments in level.
90 ** + for each segment from oldest to newest:
91 ** + segment id (always > 0)
92 ** + first leaf page number (often 1, always greater than 0)
93 ** + final leaf page number
95 ** 2. The Averages Record:
97 ** A single record within the %_data table. The data is a list of varints.
98 ** The first value is the number of rows in the index. Then, for each column
99 ** from left to right, the total number of tokens in the column for all
100 ** rows of the table.
102 ** 3. Segment leaves:
104 ** TERM/DOCLIST FORMAT:
106 ** Most of each segment leaf is taken up by term/doclist data. The
107 ** general format of term/doclist, starting with the first term
108 ** on the leaf page, is:
110 ** varint : size of first term
111 ** blob: first term data
112 ** doclist: first doclist
114 ** varint: number of bytes in common with previous term
115 ** varint: number of bytes of new term data (nNew)
116 ** blob: nNew bytes of new term data
117 ** doclist: next doclist
122 ** varint: first rowid
123 ** poslist: first poslist
125 ** varint: rowid delta (always > 0)
126 ** poslist: next poslist
131 ** varint: size of poslist in bytes multiplied by 2, not including
132 ** this field. Plus 1 if this entry carries the "delete" flag.
133 ** collist: collist for column 0
136 ** varint: column number (I)
137 ** collist: collist for column I
142 ** varint: first offset + 2
144 ** varint: offset delta + 2
149 ** Each leaf page begins with a 4-byte header containing 2 16-bit
150 ** unsigned integer fields in big-endian format. They are:
152 ** * The byte offset of the first rowid on the page, if it exists
153 ** and occurs before the first term (otherwise 0).
155 ** * The byte offset of the start of the page footer. If the page
156 ** footer is 0 bytes in size, then this field is the same as the
157 ** size of the leaf page in bytes.
159 ** The page footer consists of a single varint for each term located
160 ** on the page. Each varint is the byte offset of the current term
161 ** within the page, delta-compressed against the previous value. In
162 ** other words, the first varint in the footer is the byte offset of
163 ** the first term, the second is the byte offset of the second less that
164 ** of the first, and so on.
166 ** The term/doclist format described above is accurate if the entire
167 ** term/doclist data fits on a single leaf page. If this is not the case,
168 ** the format is changed in two ways:
170 ** + if the first rowid on a page occurs before the first term, it
171 ** is stored as a literal value:
173 ** varint: first rowid
175 ** + the first term on each page is stored in the same way as the
176 ** very first term of the segment:
178 ** varint : size of first term
179 ** blob: first term data
181 ** 5. Segment doclist indexes:
183 ** Doclist indexes are themselves b-trees, however they usually consist of
184 ** a single leaf record only. The format of each doclist index leaf page
187 ** * Flags byte. Bits are:
188 ** 0x01: Clear if leaf is also the root page, otherwise set.
190 ** * Page number of fts index leaf page. As a varint.
192 ** * First rowid on page indicated by previous field. As a varint.
194 ** * A list of varints, one for each subsequent termless page. A
195 ** positive delta if the termless page contains at least one rowid,
196 ** or an 0x00 byte otherwise.
198 ** Internal doclist index nodes are:
200 ** * Flags byte. Bits are:
201 ** 0x01: Clear for root page, otherwise set.
203 ** * Page number of first child page. As a varint.
205 ** * Copy of first rowid on page indicated by previous field. As a varint.
207 ** * A list of delta-encoded varints - the first rowid on each subsequent
213 ** Rowids for the averages and structure records in the %_data table.
215 #define FTS5_AVERAGES_ROWID 1 /* Rowid used for the averages record */
216 #define FTS5_STRUCTURE_ROWID 10 /* The structure record */
219 ** Macros determining the rowids used by segment leaves and dlidx leaves
220 ** and nodes. All nodes and leaves are stored in the %_data table with large
223 ** Each segment has a unique non-zero 16-bit id.
225 ** The rowid for each segment leaf is found by passing the segment id and
226 ** the leaf page number to the FTS5_SEGMENT_ROWID macro. Leaves are numbered
227 ** sequentially starting from 1.
229 #define FTS5_DATA_ID_B 16 /* Max seg id number 65535 */
230 #define FTS5_DATA_DLI_B 1 /* Doclist-index flag (1 bit) */
231 #define FTS5_DATA_HEIGHT_B 5 /* Max dlidx tree height of 32 */
232 #define FTS5_DATA_PAGE_B 31 /* Max page number of 2147483648 */
234 #define fts5_dri(segid, dlidx, height, pgno) ( \
235 ((i64)(segid) << (FTS5_DATA_PAGE_B+FTS5_DATA_HEIGHT_B+FTS5_DATA_DLI_B)) + \
236 ((i64)(dlidx) << (FTS5_DATA_PAGE_B + FTS5_DATA_HEIGHT_B)) + \
237 ((i64)(height) << (FTS5_DATA_PAGE_B)) + \
241 #define FTS5_SEGMENT_ROWID(segid, pgno) fts5_dri(segid, 0, 0, pgno)
242 #define FTS5_DLIDX_ROWID(segid, height, pgno) fts5_dri(segid, 1, height, pgno)
245 int sqlite3Fts5Corrupt() { return SQLITE_CORRUPT_VTAB
; }
250 ** Each time a blob is read from the %_data table, it is padded with this
251 ** many zero bytes. This makes it easier to decode the various record formats
252 ** without overreading if the records are corrupt.
254 #define FTS5_DATA_ZERO_PADDING 8
255 #define FTS5_DATA_PADDING 20
257 typedef struct Fts5Data Fts5Data
;
258 typedef struct Fts5DlidxIter Fts5DlidxIter
;
259 typedef struct Fts5DlidxLvl Fts5DlidxLvl
;
260 typedef struct Fts5DlidxWriter Fts5DlidxWriter
;
261 typedef struct Fts5Iter Fts5Iter
;
262 typedef struct Fts5PageWriter Fts5PageWriter
;
263 typedef struct Fts5SegIter Fts5SegIter
;
264 typedef struct Fts5DoclistIter Fts5DoclistIter
;
265 typedef struct Fts5SegWriter Fts5SegWriter
;
266 typedef struct Fts5Structure Fts5Structure
;
267 typedef struct Fts5StructureLevel Fts5StructureLevel
;
268 typedef struct Fts5StructureSegment Fts5StructureSegment
;
271 u8
*p
; /* Pointer to buffer containing record */
272 int nn
; /* Size of record in bytes */
273 int szLeaf
; /* Size of leaf without page-index */
277 ** One object per %_data table.
280 Fts5Config
*pConfig
; /* Virtual table configuration */
281 char *zDataTbl
; /* Name of %_data table */
282 int nWorkUnit
; /* Leaf pages in a "unit" of work */
285 ** Variables related to the accumulation of tokens and doclists within the
286 ** in-memory hash tables before they are flushed to disk.
288 Fts5Hash
*pHash
; /* Hash table for in-memory data */
289 int nPendingData
; /* Current bytes of pending data */
290 i64 iWriteRowid
; /* Rowid for current doc being written */
291 int bDelete
; /* Current write is a delete */
294 int rc
; /* Current error code */
296 /* State used by the fts5DataXXX() functions. */
297 sqlite3_blob
*pReader
; /* RO incr-blob open on %_data table */
298 sqlite3_stmt
*pWriter
; /* "INSERT ... %_data VALUES(?,?)" */
299 sqlite3_stmt
*pDeleter
; /* "DELETE FROM %_data ... id>=? AND id<=?" */
300 sqlite3_stmt
*pIdxWriter
; /* "INSERT ... %_idx VALUES(?,?,?,?)" */
301 sqlite3_stmt
*pIdxDeleter
; /* "DELETE FROM %_idx WHERE segid=?" */
302 sqlite3_stmt
*pIdxSelect
;
303 int nRead
; /* Total number of blocks read */
305 sqlite3_stmt
*pDataVersion
;
306 i64 iStructVersion
; /* data_version when pStruct read */
307 Fts5Structure
*pStruct
; /* Current db structure (or NULL) */
310 struct Fts5DoclistIter
{
311 u8
*aEof
; /* Pointer to 1 byte past end of doclist */
313 /* Output variables. aPoslist==0 at EOF */
321 ** The contents of the "structure" record for each index are represented
322 ** using an Fts5Structure record in memory. Which uses instances of the
323 ** other Fts5StructureXXX types as components.
325 struct Fts5StructureSegment
{
326 int iSegid
; /* Segment id */
327 int pgnoFirst
; /* First leaf page number in segment */
328 int pgnoLast
; /* Last leaf page number in segment */
330 struct Fts5StructureLevel
{
331 int nMerge
; /* Number of segments in incr-merge */
332 int nSeg
; /* Total number of segments on level */
333 Fts5StructureSegment
*aSeg
; /* Array of segments. aSeg[0] is oldest. */
335 struct Fts5Structure
{
336 int nRef
; /* Object reference count */
337 u64 nWriteCounter
; /* Total leaves written to level 0 */
338 int nSegment
; /* Total segments in this structure */
339 int nLevel
; /* Number of levels in this index */
340 Fts5StructureLevel aLevel
[1]; /* Array of nLevel level objects */
344 ** An object of type Fts5SegWriter is used to write to segments.
346 struct Fts5PageWriter
{
347 int pgno
; /* Page number for this page */
348 int iPrevPgidx
; /* Previous value written into pgidx */
349 Fts5Buffer buf
; /* Buffer containing leaf data */
350 Fts5Buffer pgidx
; /* Buffer containing page-index */
351 Fts5Buffer term
; /* Buffer containing previous term on page */
353 struct Fts5DlidxWriter
{
354 int pgno
; /* Page number for this page */
355 int bPrevValid
; /* True if iPrev is valid */
356 i64 iPrev
; /* Previous rowid value written to page */
357 Fts5Buffer buf
; /* Buffer containing page data */
359 struct Fts5SegWriter
{
360 int iSegid
; /* Segid to write to */
361 Fts5PageWriter writer
; /* PageWriter object */
362 i64 iPrevRowid
; /* Previous rowid written to current leaf */
363 u8 bFirstRowidInDoclist
; /* True if next rowid is first in doclist */
364 u8 bFirstRowidInPage
; /* True if next rowid is first in page */
365 /* TODO1: Can use (writer.pgidx.n==0) instead of bFirstTermInPage */
366 u8 bFirstTermInPage
; /* True if next term will be first in leaf */
367 int nLeafWritten
; /* Number of leaf pages written */
368 int nEmpty
; /* Number of contiguous term-less nodes */
370 int nDlidx
; /* Allocated size of aDlidx[] array */
371 Fts5DlidxWriter
*aDlidx
; /* Array of Fts5DlidxWriter objects */
373 /* Values to insert into the %_idx table */
374 Fts5Buffer btterm
; /* Next term to insert into %_idx table */
375 int iBtPage
; /* Page number corresponding to btterm */
378 typedef struct Fts5CResult Fts5CResult
;
380 u16 iFirst
; /* aSeg[] index of firstest iterator */
381 u8 bTermEq
; /* True if the terms are equal */
385 ** Object for iterating through a single segment, visiting each term/rowid
386 ** pair in the segment.
389 ** The segment to iterate through.
392 ** Current leaf page number within segment.
395 ** Byte offset within the current leaf that is the first byte of the
396 ** position list data (one byte passed the position-list size field).
397 ** rowid field of the current entry. Usually this is the size field of the
398 ** position list data. The exception is if the rowid for the current entry
399 ** is the last thing on the leaf page.
402 ** Buffer containing current leaf page data. Set to NULL at EOF.
404 ** iTermLeafPgno, iTermLeafOffset:
405 ** Leaf page number containing the last term read from the segment. And
406 ** the offset immediately following the term data.
409 ** Mask of FTS5_SEGITER_XXX values. Interpreted as follows:
411 ** FTS5_SEGITER_ONETERM:
412 ** If set, set the iterator to point to EOF after the current doclist
413 ** has been exhausted. Do not proceed to the next term in the segment.
415 ** FTS5_SEGITER_REVERSE:
416 ** This flag is only ever set if FTS5_SEGITER_ONETERM is also set. If
417 ** it is set, iterate through rowid in descending order instead of the
418 ** default ascending order.
420 ** iRowidOffset/nRowidOffset/aRowidOffset:
421 ** These are used if the FTS5_SEGITER_REVERSE flag is set.
423 ** For each rowid on the page corresponding to the current term, the
424 ** corresponding aRowidOffset[] entry is set to the byte offset of the
425 ** start of the "position-list-size" field within the page.
428 ** Index of current term on iTermLeafPgno.
431 Fts5StructureSegment
*pSeg
; /* Segment to iterate through */
432 int flags
; /* Mask of configuration flags */
433 int iLeafPgno
; /* Current leaf page number */
434 Fts5Data
*pLeaf
; /* Current leaf data */
435 Fts5Data
*pNextLeaf
; /* Leaf page (iLeafPgno+1) */
436 i64 iLeafOffset
; /* Byte offset within current leaf */
439 void (*xNext
)(Fts5Index
*, Fts5SegIter
*, int*);
441 /* The page and offset from which the current term was read. The offset
442 ** is the offset of the first rowid in the current doclist. */
446 int iPgidxOff
; /* Next offset in pgidx */
449 /* The following are only used if the FTS5_SEGITER_REVERSE flag is set. */
450 int iRowidOffset
; /* Current entry in aRowidOffset[] */
451 int nRowidOffset
; /* Allocated size of aRowidOffset[] array */
452 int *aRowidOffset
; /* Array of offset to rowid fields */
454 Fts5DlidxIter
*pDlidx
; /* If there is a doclist-index */
456 /* Variables populated based on current entry. */
457 Fts5Buffer term
; /* Current term */
458 i64 iRowid
; /* Current rowid */
459 int nPos
; /* Number of bytes in current position list */
460 u8 bDel
; /* True if the delete flag is set */
464 ** Argument is a pointer to an Fts5Data structure that contains a
467 #define ASSERT_SZLEAF_OK(x) assert( \
468 (x)->szLeaf==(x)->nn || (x)->szLeaf==fts5GetU16(&(x)->p[2]) \
471 #define FTS5_SEGITER_ONETERM 0x01
472 #define FTS5_SEGITER_REVERSE 0x02
475 ** Argument is a pointer to an Fts5Data structure that contains a leaf
476 ** page. This macro evaluates to true if the leaf contains no terms, or
477 ** false if it contains at least one term.
479 #define fts5LeafIsTermless(x) ((x)->szLeaf >= (x)->nn)
481 #define fts5LeafTermOff(x, i) (fts5GetU16(&(x)->p[(x)->szLeaf + (i)*2]))
483 #define fts5LeafFirstRowidOff(x) (fts5GetU16((x)->p))
486 ** Object for iterating through the merged results of one or more segments,
487 ** visiting each term/rowid pair in the merged data.
489 ** nSeg is always a power of two greater than or equal to the number of
490 ** segments that this object is merging data from. Both the aSeg[] and
491 ** aFirst[] arrays are sized at nSeg entries. The aSeg[] array is padded
492 ** with zeroed objects - these are handled as if they were iterators opened
493 ** on empty segments.
495 ** The results of comparing segments aSeg[N] and aSeg[N+1], where N is an
496 ** even number, is stored in aFirst[(nSeg+N)/2]. The "result" of the
497 ** comparison in this context is the index of the iterator that currently
498 ** points to the smaller term/rowid combination. Iterators at EOF are
499 ** considered to be greater than all other iterators.
501 ** aFirst[1] contains the index in aSeg[] of the iterator that points to
502 ** the smallest key overall. aFirst[0] is unused.
505 ** Used by sqlite3Fts5IterPoslist() when the poslist needs to be buffered.
506 ** There is no way to tell if this is populated or not.
509 Fts5IndexIter base
; /* Base class containing output vars */
511 Fts5Index
*pIndex
; /* Index that owns this iterator */
512 Fts5Buffer poslist
; /* Buffer containing current poslist */
513 Fts5Colset
*pColset
; /* Restrict matches to these columns */
515 /* Invoked to set output variables. */
516 void (*xSetOutputs
)(Fts5Iter
*, Fts5SegIter
*);
518 int nSeg
; /* Size of aSeg[] array */
519 int bRev
; /* True to iterate in reverse order */
520 u8 bSkipEmpty
; /* True to skip deleted entries */
522 i64 iSwitchRowid
; /* Firstest rowid of other than aFirst[1] */
523 Fts5CResult
*aFirst
; /* Current merge state (see above) */
524 Fts5SegIter aSeg
[1]; /* Array of segment iterators */
529 ** An instance of the following type is used to iterate through the contents
530 ** of a doclist-index record.
533 ** Record containing the doclist-index data.
536 ** Set to true once iterator has reached EOF.
539 ** Set to the current offset within record pData.
541 struct Fts5DlidxLvl
{
542 Fts5Data
*pData
; /* Data for current page of this level */
543 int iOff
; /* Current offset into pData */
544 int bEof
; /* At EOF already */
545 int iFirstOff
; /* Used by reverse iterators */
547 /* Output variables */
548 int iLeafPgno
; /* Page number of current leaf page */
549 i64 iRowid
; /* First rowid on leaf iLeafPgno */
551 struct Fts5DlidxIter
{
554 Fts5DlidxLvl aLvl
[1];
557 static void fts5PutU16(u8
*aOut
, u16 iVal
){
559 aOut
[1] = (iVal
&0xFF);
562 static u16
fts5GetU16(const u8
*aIn
){
563 return ((u16
)aIn
[0] << 8) + aIn
[1];
567 ** Allocate and return a buffer at least nByte bytes in size.
569 ** If an OOM error is encountered, return NULL and set the error code in
570 ** the Fts5Index handle passed as the first argument.
572 static void *fts5IdxMalloc(Fts5Index
*p
, sqlite3_int64 nByte
){
573 return sqlite3Fts5MallocZero(&p
->rc
, nByte
);
577 ** Compare the contents of the pLeft buffer with the pRight/nRight blob.
579 ** Return -ve if pLeft is smaller than pRight, 0 if they are equal or
580 ** +ve if pRight is smaller than pLeft. In other words:
582 ** res = *pLeft - *pRight
585 static int fts5BufferCompareBlob(
586 Fts5Buffer
*pLeft
, /* Left hand side of comparison */
587 const u8
*pRight
, int nRight
/* Right hand side of comparison */
589 int nCmp
= MIN(pLeft
->n
, nRight
);
590 int res
= memcmp(pLeft
->p
, pRight
, nCmp
);
591 return (res
==0 ? (pLeft
->n
- nRight
) : res
);
596 ** Compare the contents of the two buffers using memcmp(). If one buffer
597 ** is a prefix of the other, it is considered the lesser.
599 ** Return -ve if pLeft is smaller than pRight, 0 if they are equal or
600 ** +ve if pRight is smaller than pLeft. In other words:
602 ** res = *pLeft - *pRight
604 static int fts5BufferCompare(Fts5Buffer
*pLeft
, Fts5Buffer
*pRight
){
606 nCmp
= MIN(pLeft
->n
, pRight
->n
);
607 assert( nCmp
<=0 || pLeft
->p
!=0 );
608 assert( nCmp
<=0 || pRight
->p
!=0 );
609 res
= fts5Memcmp(pLeft
->p
, pRight
->p
, nCmp
);
610 return (res
==0 ? (pLeft
->n
- pRight
->n
) : res
);
613 static int fts5LeafFirstTermOff(Fts5Data
*pLeaf
){
615 fts5GetVarint32(&pLeaf
->p
[pLeaf
->szLeaf
], ret
);
620 ** Close the read-only blob handle, if it is open.
622 void sqlite3Fts5IndexCloseReader(Fts5Index
*p
){
624 sqlite3_blob
*pReader
= p
->pReader
;
626 sqlite3_blob_close(pReader
);
631 ** Retrieve a record from the %_data table.
633 ** If an error occurs, NULL is returned and an error left in the
636 static Fts5Data
*fts5DataRead(Fts5Index
*p
, i64 iRowid
){
638 if( p
->rc
==SQLITE_OK
){
642 /* This call may return SQLITE_ABORT if there has been a savepoint
643 ** rollback since it was last used. In this case a new blob handle
645 sqlite3_blob
*pBlob
= p
->pReader
;
647 rc
= sqlite3_blob_reopen(pBlob
, iRowid
);
648 assert( p
->pReader
==0 );
651 sqlite3Fts5IndexCloseReader(p
);
653 if( rc
==SQLITE_ABORT
) rc
= SQLITE_OK
;
656 /* If the blob handle is not open at this point, open it and seek
657 ** to the requested entry. */
658 if( p
->pReader
==0 && rc
==SQLITE_OK
){
659 Fts5Config
*pConfig
= p
->pConfig
;
660 rc
= sqlite3_blob_open(pConfig
->db
,
661 pConfig
->zDb
, p
->zDataTbl
, "block", iRowid
, 0, &p
->pReader
665 /* If either of the sqlite3_blob_open() or sqlite3_blob_reopen() calls
666 ** above returned SQLITE_ERROR, return SQLITE_CORRUPT_VTAB instead.
667 ** All the reasons those functions might return SQLITE_ERROR - missing
668 ** table, missing row, non-blob/text in block column - indicate
669 ** backing store corruption. */
670 if( rc
==SQLITE_ERROR
) rc
= FTS5_CORRUPT
;
673 u8
*aOut
= 0; /* Read blob data into this buffer */
674 int nByte
= sqlite3_blob_bytes(p
->pReader
);
675 sqlite3_int64 nAlloc
= sizeof(Fts5Data
) + nByte
+ FTS5_DATA_PADDING
;
676 pRet
= (Fts5Data
*)sqlite3_malloc64(nAlloc
);
679 aOut
= pRet
->p
= (u8
*)&pRet
[1];
685 rc
= sqlite3_blob_read(p
->pReader
, aOut
, nByte
, 0);
691 /* TODO1: Fix this */
692 pRet
->p
[nByte
] = 0x00;
693 pRet
->p
[nByte
+1] = 0x00;
694 pRet
->szLeaf
= fts5GetU16(&pRet
->p
[2]);
701 assert( (pRet
==0)==(p
->rc
!=SQLITE_OK
) );
707 ** Release a reference to data record returned by an earlier call to
710 static void fts5DataRelease(Fts5Data
*pData
){
714 static Fts5Data
*fts5LeafRead(Fts5Index
*p
, i64 iRowid
){
715 Fts5Data
*pRet
= fts5DataRead(p
, iRowid
);
717 if( pRet
->nn
<4 || pRet
->szLeaf
>pRet
->nn
){
718 p
->rc
= FTS5_CORRUPT
;
719 fts5DataRelease(pRet
);
726 static int fts5IndexPrepareStmt(
728 sqlite3_stmt
**ppStmt
,
731 if( p
->rc
==SQLITE_OK
){
733 p
->rc
= sqlite3_prepare_v3(p
->pConfig
->db
, zSql
, -1,
734 SQLITE_PREPARE_PERSISTENT
|SQLITE_PREPARE_NO_VTAB
,
737 p
->rc
= SQLITE_NOMEM
;
746 ** INSERT OR REPLACE a record into the %_data table.
748 static void fts5DataWrite(Fts5Index
*p
, i64 iRowid
, const u8
*pData
, int nData
){
749 if( p
->rc
!=SQLITE_OK
) return;
752 Fts5Config
*pConfig
= p
->pConfig
;
753 fts5IndexPrepareStmt(p
, &p
->pWriter
, sqlite3_mprintf(
754 "REPLACE INTO '%q'.'%q_data'(id, block) VALUES(?,?)",
755 pConfig
->zDb
, pConfig
->zName
760 sqlite3_bind_int64(p
->pWriter
, 1, iRowid
);
761 sqlite3_bind_blob(p
->pWriter
, 2, pData
, nData
, SQLITE_STATIC
);
762 sqlite3_step(p
->pWriter
);
763 p
->rc
= sqlite3_reset(p
->pWriter
);
764 sqlite3_bind_null(p
->pWriter
, 2);
768 ** Execute the following SQL:
770 ** DELETE FROM %_data WHERE id BETWEEN $iFirst AND $iLast
772 static void fts5DataDelete(Fts5Index
*p
, i64 iFirst
, i64 iLast
){
773 if( p
->rc
!=SQLITE_OK
) return;
775 if( p
->pDeleter
==0 ){
776 Fts5Config
*pConfig
= p
->pConfig
;
777 char *zSql
= sqlite3_mprintf(
778 "DELETE FROM '%q'.'%q_data' WHERE id>=? AND id<=?",
779 pConfig
->zDb
, pConfig
->zName
781 if( fts5IndexPrepareStmt(p
, &p
->pDeleter
, zSql
) ) return;
784 sqlite3_bind_int64(p
->pDeleter
, 1, iFirst
);
785 sqlite3_bind_int64(p
->pDeleter
, 2, iLast
);
786 sqlite3_step(p
->pDeleter
);
787 p
->rc
= sqlite3_reset(p
->pDeleter
);
791 ** Remove all records associated with segment iSegid.
793 static void fts5DataRemoveSegment(Fts5Index
*p
, int iSegid
){
794 i64 iFirst
= FTS5_SEGMENT_ROWID(iSegid
, 0);
795 i64 iLast
= FTS5_SEGMENT_ROWID(iSegid
+1, 0)-1;
796 fts5DataDelete(p
, iFirst
, iLast
);
797 if( p
->pIdxDeleter
==0 ){
798 Fts5Config
*pConfig
= p
->pConfig
;
799 fts5IndexPrepareStmt(p
, &p
->pIdxDeleter
, sqlite3_mprintf(
800 "DELETE FROM '%q'.'%q_idx' WHERE segid=?",
801 pConfig
->zDb
, pConfig
->zName
804 if( p
->rc
==SQLITE_OK
){
805 sqlite3_bind_int(p
->pIdxDeleter
, 1, iSegid
);
806 sqlite3_step(p
->pIdxDeleter
);
807 p
->rc
= sqlite3_reset(p
->pIdxDeleter
);
812 ** Release a reference to an Fts5Structure object returned by an earlier
813 ** call to fts5StructureRead() or fts5StructureDecode().
815 static void fts5StructureRelease(Fts5Structure
*pStruct
){
816 if( pStruct
&& 0>=(--pStruct
->nRef
) ){
818 assert( pStruct
->nRef
==0 );
819 for(i
=0; i
<pStruct
->nLevel
; i
++){
820 sqlite3_free(pStruct
->aLevel
[i
].aSeg
);
822 sqlite3_free(pStruct
);
826 static void fts5StructureRef(Fts5Structure
*pStruct
){
830 void *sqlite3Fts5StructureRef(Fts5Index
*p
){
831 fts5StructureRef(p
->pStruct
);
832 return (void*)p
->pStruct
;
834 void sqlite3Fts5StructureRelease(void *p
){
836 fts5StructureRelease((Fts5Structure
*)p
);
839 int sqlite3Fts5StructureTest(Fts5Index
*p
, void *pStruct
){
840 if( p
->pStruct
!=(Fts5Structure
*)pStruct
){
847 ** Ensure that structure object (*pp) is writable.
849 ** This function is a no-op if (*pRc) is not SQLITE_OK when it is called. If
850 ** an error occurs, (*pRc) is set to an SQLite error code before returning.
852 static void fts5StructureMakeWritable(int *pRc
, Fts5Structure
**pp
){
853 Fts5Structure
*p
= *pp
;
854 if( *pRc
==SQLITE_OK
&& p
->nRef
>1 ){
855 i64 nByte
= sizeof(Fts5Structure
)+(p
->nLevel
-1)*sizeof(Fts5StructureLevel
);
857 pNew
= (Fts5Structure
*)sqlite3Fts5MallocZero(pRc
, nByte
);
860 memcpy(pNew
, p
, nByte
);
861 for(i
=0; i
<p
->nLevel
; i
++) pNew
->aLevel
[i
].aSeg
= 0;
862 for(i
=0; i
<p
->nLevel
; i
++){
863 Fts5StructureLevel
*pLvl
= &pNew
->aLevel
[i
];
864 nByte
= sizeof(Fts5StructureSegment
) * pNew
->aLevel
[i
].nSeg
;
865 pLvl
->aSeg
= (Fts5StructureSegment
*)sqlite3Fts5MallocZero(pRc
, nByte
);
867 for(i
=0; i
<p
->nLevel
; i
++){
868 sqlite3_free(pNew
->aLevel
[i
].aSeg
);
873 memcpy(pLvl
->aSeg
, p
->aLevel
[i
].aSeg
, nByte
);
883 ** Deserialize and return the structure record currently stored in serialized
884 ** form within buffer pData/nData.
886 ** The Fts5Structure.aLevel[] and each Fts5StructureLevel.aSeg[] array
887 ** are over-allocated by one slot. This allows the structure contents
888 ** to be more easily edited.
890 ** If an error occurs, *ppOut is set to NULL and an SQLite error code
891 ** returned. Otherwise, *ppOut is set to point to the new object and
892 ** SQLITE_OK returned.
894 static int fts5StructureDecode(
895 const u8
*pData
, /* Buffer containing serialized structure */
896 int nData
, /* Size of buffer pData in bytes */
897 int *piCookie
, /* Configuration cookie value */
898 Fts5Structure
**ppOut
/* OUT: Deserialized object */
905 sqlite3_int64 nByte
; /* Bytes of space to allocate at pRet */
906 Fts5Structure
*pRet
= 0; /* Structure object to return */
908 /* Grab the cookie value */
909 if( piCookie
) *piCookie
= sqlite3Fts5Get32(pData
);
912 /* Read the total number of levels and segments from the start of the
913 ** structure record. */
914 i
+= fts5GetVarint32(&pData
[i
], nLevel
);
915 i
+= fts5GetVarint32(&pData
[i
], nSegment
);
916 if( nLevel
>FTS5_MAX_SEGMENT
|| nLevel
<0
917 || nSegment
>FTS5_MAX_SEGMENT
|| nSegment
<0
922 sizeof(Fts5Structure
) + /* Main structure */
923 sizeof(Fts5StructureLevel
) * (nLevel
-1) /* aLevel[] array */
925 pRet
= (Fts5Structure
*)sqlite3Fts5MallocZero(&rc
, nByte
);
929 pRet
->nLevel
= nLevel
;
930 pRet
->nSegment
= nSegment
;
931 i
+= sqlite3Fts5GetVarint(&pData
[i
], &pRet
->nWriteCounter
);
933 for(iLvl
=0; rc
==SQLITE_OK
&& iLvl
<nLevel
; iLvl
++){
934 Fts5StructureLevel
*pLvl
= &pRet
->aLevel
[iLvl
];
941 i
+= fts5GetVarint32(&pData
[i
], pLvl
->nMerge
);
942 i
+= fts5GetVarint32(&pData
[i
], nTotal
);
943 if( nTotal
<pLvl
->nMerge
) rc
= FTS5_CORRUPT
;
944 pLvl
->aSeg
= (Fts5StructureSegment
*)sqlite3Fts5MallocZero(&rc
,
945 nTotal
* sizeof(Fts5StructureSegment
)
952 for(iSeg
=0; iSeg
<nTotal
; iSeg
++){
953 Fts5StructureSegment
*pSeg
= &pLvl
->aSeg
[iSeg
];
958 i
+= fts5GetVarint32(&pData
[i
], pSeg
->iSegid
);
959 i
+= fts5GetVarint32(&pData
[i
], pSeg
->pgnoFirst
);
960 i
+= fts5GetVarint32(&pData
[i
], pSeg
->pgnoLast
);
961 if( pSeg
->pgnoLast
<pSeg
->pgnoFirst
){
966 if( iLvl
>0 && pLvl
[-1].nMerge
&& nTotal
==0 ) rc
= FTS5_CORRUPT
;
967 if( iLvl
==nLevel
-1 && pLvl
->nMerge
) rc
= FTS5_CORRUPT
;
970 if( nSegment
!=0 && rc
==SQLITE_OK
) rc
= FTS5_CORRUPT
;
973 fts5StructureRelease(pRet
);
983 ** Add a level to the Fts5Structure.aLevel[] array of structure object
986 static void fts5StructureAddLevel(int *pRc
, Fts5Structure
**ppStruct
){
987 fts5StructureMakeWritable(pRc
, ppStruct
);
988 if( *pRc
==SQLITE_OK
){
989 Fts5Structure
*pStruct
= *ppStruct
;
990 int nLevel
= pStruct
->nLevel
;
991 sqlite3_int64 nByte
= (
992 sizeof(Fts5Structure
) + /* Main structure */
993 sizeof(Fts5StructureLevel
) * (nLevel
+1) /* aLevel[] array */
996 pStruct
= sqlite3_realloc64(pStruct
, nByte
);
998 memset(&pStruct
->aLevel
[nLevel
], 0, sizeof(Fts5StructureLevel
));
1000 *ppStruct
= pStruct
;
1002 *pRc
= SQLITE_NOMEM
;
1008 ** Extend level iLvl so that there is room for at least nExtra more
1011 static void fts5StructureExtendLevel(
1013 Fts5Structure
*pStruct
,
1018 if( *pRc
==SQLITE_OK
){
1019 Fts5StructureLevel
*pLvl
= &pStruct
->aLevel
[iLvl
];
1020 Fts5StructureSegment
*aNew
;
1021 sqlite3_int64 nByte
;
1023 nByte
= (pLvl
->nSeg
+ nExtra
) * sizeof(Fts5StructureSegment
);
1024 aNew
= sqlite3_realloc64(pLvl
->aSeg
, nByte
);
1027 memset(&aNew
[pLvl
->nSeg
], 0, sizeof(Fts5StructureSegment
) * nExtra
);
1029 int nMove
= pLvl
->nSeg
* sizeof(Fts5StructureSegment
);
1030 memmove(&aNew
[nExtra
], aNew
, nMove
);
1031 memset(aNew
, 0, sizeof(Fts5StructureSegment
) * nExtra
);
1035 *pRc
= SQLITE_NOMEM
;
1040 static Fts5Structure
*fts5StructureReadUncached(Fts5Index
*p
){
1041 Fts5Structure
*pRet
= 0;
1042 Fts5Config
*pConfig
= p
->pConfig
;
1043 int iCookie
; /* Configuration cookie */
1046 pData
= fts5DataRead(p
, FTS5_STRUCTURE_ROWID
);
1047 if( p
->rc
==SQLITE_OK
){
1048 /* TODO: Do we need this if the leaf-index is appended? Probably... */
1049 memset(&pData
->p
[pData
->nn
], 0, FTS5_DATA_PADDING
);
1050 p
->rc
= fts5StructureDecode(pData
->p
, pData
->nn
, &iCookie
, &pRet
);
1051 if( p
->rc
==SQLITE_OK
&& (pConfig
->pgsz
==0 || pConfig
->iCookie
!=iCookie
) ){
1052 p
->rc
= sqlite3Fts5ConfigLoad(pConfig
, iCookie
);
1054 fts5DataRelease(pData
);
1055 if( p
->rc
!=SQLITE_OK
){
1056 fts5StructureRelease(pRet
);
1064 static i64
fts5IndexDataVersion(Fts5Index
*p
){
1067 if( p
->rc
==SQLITE_OK
){
1068 if( p
->pDataVersion
==0 ){
1069 p
->rc
= fts5IndexPrepareStmt(p
, &p
->pDataVersion
,
1070 sqlite3_mprintf("PRAGMA %Q.data_version", p
->pConfig
->zDb
)
1072 if( p
->rc
) return 0;
1075 if( SQLITE_ROW
==sqlite3_step(p
->pDataVersion
) ){
1076 iVersion
= sqlite3_column_int64(p
->pDataVersion
, 0);
1078 p
->rc
= sqlite3_reset(p
->pDataVersion
);
1085 ** Read, deserialize and return the structure record.
1087 ** The Fts5Structure.aLevel[] and each Fts5StructureLevel.aSeg[] array
1088 ** are over-allocated as described for function fts5StructureDecode()
1091 ** If an error occurs, NULL is returned and an error code left in the
1092 ** Fts5Index handle. If an error has already occurred when this function
1093 ** is called, it is a no-op.
1095 static Fts5Structure
*fts5StructureRead(Fts5Index
*p
){
1097 if( p
->pStruct
==0 ){
1098 p
->iStructVersion
= fts5IndexDataVersion(p
);
1099 if( p
->rc
==SQLITE_OK
){
1100 p
->pStruct
= fts5StructureReadUncached(p
);
1106 Fts5Structure
*pTest
= fts5StructureReadUncached(p
);
1109 assert_nc( p
->pStruct
->nSegment
==pTest
->nSegment
);
1110 assert_nc( p
->pStruct
->nLevel
==pTest
->nLevel
);
1111 for(i
=0; i
<pTest
->nLevel
; i
++){
1112 assert_nc( p
->pStruct
->aLevel
[i
].nMerge
==pTest
->aLevel
[i
].nMerge
);
1113 assert_nc( p
->pStruct
->aLevel
[i
].nSeg
==pTest
->aLevel
[i
].nSeg
);
1114 for(j
=0; j
<pTest
->aLevel
[i
].nSeg
; j
++){
1115 Fts5StructureSegment
*p1
= &pTest
->aLevel
[i
].aSeg
[j
];
1116 Fts5StructureSegment
*p2
= &p
->pStruct
->aLevel
[i
].aSeg
[j
];
1117 assert_nc( p1
->iSegid
==p2
->iSegid
);
1118 assert_nc( p1
->pgnoFirst
==p2
->pgnoFirst
);
1119 assert_nc( p1
->pgnoLast
==p2
->pgnoLast
);
1122 fts5StructureRelease(pTest
);
1127 if( p
->rc
!=SQLITE_OK
) return 0;
1128 assert( p
->iStructVersion
!=0 );
1129 assert( p
->pStruct
!=0 );
1130 fts5StructureRef(p
->pStruct
);
1134 static void fts5StructureInvalidate(Fts5Index
*p
){
1136 fts5StructureRelease(p
->pStruct
);
1142 ** Return the total number of segments in index structure pStruct. This
1143 ** function is only ever used as part of assert() conditions.
1146 static int fts5StructureCountSegments(Fts5Structure
*pStruct
){
1147 int nSegment
= 0; /* Total number of segments */
1149 int iLvl
; /* Used to iterate through levels */
1150 for(iLvl
=0; iLvl
<pStruct
->nLevel
; iLvl
++){
1151 nSegment
+= pStruct
->aLevel
[iLvl
].nSeg
;
1159 #define fts5BufferSafeAppendBlob(pBuf, pBlob, nBlob) { \
1160 assert( (pBuf)->nSpace>=((pBuf)->n+nBlob) ); \
1161 memcpy(&(pBuf)->p[(pBuf)->n], pBlob, nBlob); \
1162 (pBuf)->n += nBlob; \
1165 #define fts5BufferSafeAppendVarint(pBuf, iVal) { \
1166 (pBuf)->n += sqlite3Fts5PutVarint(&(pBuf)->p[(pBuf)->n], (iVal)); \
1167 assert( (pBuf)->nSpace>=(pBuf)->n ); \
1172 ** Serialize and store the "structure" record.
1174 ** If an error occurs, leave an error code in the Fts5Index object. If an
1175 ** error has already occurred, this function is a no-op.
1177 static void fts5StructureWrite(Fts5Index
*p
, Fts5Structure
*pStruct
){
1178 if( p
->rc
==SQLITE_OK
){
1179 Fts5Buffer buf
; /* Buffer to serialize record into */
1180 int iLvl
; /* Used to iterate through levels */
1181 int iCookie
; /* Cookie value to store */
1183 assert( pStruct
->nSegment
==fts5StructureCountSegments(pStruct
) );
1184 memset(&buf
, 0, sizeof(Fts5Buffer
));
1186 /* Append the current configuration cookie */
1187 iCookie
= p
->pConfig
->iCookie
;
1188 if( iCookie
<0 ) iCookie
= 0;
1190 if( 0==sqlite3Fts5BufferSize(&p
->rc
, &buf
, 4+9+9+9) ){
1191 sqlite3Fts5Put32(buf
.p
, iCookie
);
1193 fts5BufferSafeAppendVarint(&buf
, pStruct
->nLevel
);
1194 fts5BufferSafeAppendVarint(&buf
, pStruct
->nSegment
);
1195 fts5BufferSafeAppendVarint(&buf
, (i64
)pStruct
->nWriteCounter
);
1198 for(iLvl
=0; iLvl
<pStruct
->nLevel
; iLvl
++){
1199 int iSeg
; /* Used to iterate through segments */
1200 Fts5StructureLevel
*pLvl
= &pStruct
->aLevel
[iLvl
];
1201 fts5BufferAppendVarint(&p
->rc
, &buf
, pLvl
->nMerge
);
1202 fts5BufferAppendVarint(&p
->rc
, &buf
, pLvl
->nSeg
);
1203 assert( pLvl
->nMerge
<=pLvl
->nSeg
);
1205 for(iSeg
=0; iSeg
<pLvl
->nSeg
; iSeg
++){
1206 fts5BufferAppendVarint(&p
->rc
, &buf
, pLvl
->aSeg
[iSeg
].iSegid
);
1207 fts5BufferAppendVarint(&p
->rc
, &buf
, pLvl
->aSeg
[iSeg
].pgnoFirst
);
1208 fts5BufferAppendVarint(&p
->rc
, &buf
, pLvl
->aSeg
[iSeg
].pgnoLast
);
1212 fts5DataWrite(p
, FTS5_STRUCTURE_ROWID
, buf
.p
, buf
.n
);
1213 fts5BufferFree(&buf
);
1218 static void fts5DebugStructure(int*,Fts5Buffer
*,Fts5Structure
*);
1219 static void fts5PrintStructure(const char *zCaption
, Fts5Structure
*pStruct
){
1222 memset(&buf
, 0, sizeof(buf
));
1223 fts5DebugStructure(&rc
, &buf
, pStruct
);
1224 fprintf(stdout
, "%s: %s\n", zCaption
, buf
.p
);
1226 fts5BufferFree(&buf
);
1229 # define fts5PrintStructure(x,y)
1232 static int fts5SegmentSize(Fts5StructureSegment
*pSeg
){
1233 return 1 + pSeg
->pgnoLast
- pSeg
->pgnoFirst
;
1237 ** Return a copy of index structure pStruct. Except, promote as many
1238 ** segments as possible to level iPromote. If an OOM occurs, NULL is
1241 static void fts5StructurePromoteTo(
1245 Fts5Structure
*pStruct
1248 Fts5StructureLevel
*pOut
= &pStruct
->aLevel
[iPromote
];
1250 if( pOut
->nMerge
==0 ){
1251 for(il
=iPromote
+1; il
<pStruct
->nLevel
; il
++){
1252 Fts5StructureLevel
*pLvl
= &pStruct
->aLevel
[il
];
1253 if( pLvl
->nMerge
) return;
1254 for(is
=pLvl
->nSeg
-1; is
>=0; is
--){
1255 int sz
= fts5SegmentSize(&pLvl
->aSeg
[is
]);
1256 if( sz
>szPromote
) return;
1257 fts5StructureExtendLevel(&p
->rc
, pStruct
, iPromote
, 1, 1);
1259 memcpy(pOut
->aSeg
, &pLvl
->aSeg
[is
], sizeof(Fts5StructureSegment
));
1268 ** A new segment has just been written to level iLvl of index structure
1269 ** pStruct. This function determines if any segments should be promoted
1270 ** as a result. Segments are promoted in two scenarios:
1272 ** a) If the segment just written is smaller than one or more segments
1273 ** within the previous populated level, it is promoted to the previous
1276 ** b) If the segment just written is larger than the newest segment on
1277 ** the next populated level, then that segment, and any other adjacent
1278 ** segments that are also smaller than the one just written, are
1281 ** If one or more segments are promoted, the structure object is updated
1284 static void fts5StructurePromote(
1285 Fts5Index
*p
, /* FTS5 backend object */
1286 int iLvl
, /* Index level just updated */
1287 Fts5Structure
*pStruct
/* Index structure */
1289 if( p
->rc
==SQLITE_OK
){
1292 int szPromote
= 0; /* Promote anything this size or smaller */
1293 Fts5StructureSegment
*pSeg
; /* Segment just written */
1294 int szSeg
; /* Size of segment just written */
1295 int nSeg
= pStruct
->aLevel
[iLvl
].nSeg
;
1297 if( nSeg
==0 ) return;
1298 pSeg
= &pStruct
->aLevel
[iLvl
].aSeg
[pStruct
->aLevel
[iLvl
].nSeg
-1];
1299 szSeg
= (1 + pSeg
->pgnoLast
- pSeg
->pgnoFirst
);
1301 /* Check for condition (a) */
1302 for(iTst
=iLvl
-1; iTst
>=0 && pStruct
->aLevel
[iTst
].nSeg
==0; iTst
--);
1306 Fts5StructureLevel
*pTst
= &pStruct
->aLevel
[iTst
];
1307 assert( pTst
->nMerge
==0 );
1308 for(i
=0; i
<pTst
->nSeg
; i
++){
1309 int sz
= pTst
->aSeg
[i
].pgnoLast
- pTst
->aSeg
[i
].pgnoFirst
+ 1;
1310 if( sz
>szMax
) szMax
= sz
;
1313 /* Condition (a) is true. Promote the newest segment on level
1314 ** iLvl to level iTst. */
1320 /* If condition (a) is not met, assume (b) is true. StructurePromoteTo()
1321 ** is a no-op if it is not. */
1326 fts5StructurePromoteTo(p
, iPromote
, szPromote
, pStruct
);
1332 ** Advance the iterator passed as the only argument. If the end of the
1333 ** doclist-index page is reached, return non-zero.
1335 static int fts5DlidxLvlNext(Fts5DlidxLvl
*pLvl
){
1336 Fts5Data
*pData
= pLvl
->pData
;
1338 if( pLvl
->iOff
==0 ){
1339 assert( pLvl
->bEof
==0 );
1341 pLvl
->iOff
+= fts5GetVarint32(&pData
->p
[1], pLvl
->iLeafPgno
);
1342 pLvl
->iOff
+= fts5GetVarint(&pData
->p
[pLvl
->iOff
], (u64
*)&pLvl
->iRowid
);
1343 pLvl
->iFirstOff
= pLvl
->iOff
;
1346 for(iOff
=pLvl
->iOff
; iOff
<pData
->nn
; iOff
++){
1347 if( pData
->p
[iOff
] ) break;
1350 if( iOff
<pData
->nn
){
1352 pLvl
->iLeafPgno
+= (iOff
- pLvl
->iOff
) + 1;
1353 iOff
+= fts5GetVarint(&pData
->p
[iOff
], (u64
*)&iVal
);
1354 pLvl
->iRowid
+= iVal
;
1365 ** Advance the iterator passed as the only argument.
1367 static int fts5DlidxIterNextR(Fts5Index
*p
, Fts5DlidxIter
*pIter
, int iLvl
){
1368 Fts5DlidxLvl
*pLvl
= &pIter
->aLvl
[iLvl
];
1370 assert( iLvl
<pIter
->nLvl
);
1371 if( fts5DlidxLvlNext(pLvl
) ){
1372 if( (iLvl
+1) < pIter
->nLvl
){
1373 fts5DlidxIterNextR(p
, pIter
, iLvl
+1);
1374 if( pLvl
[1].bEof
==0 ){
1375 fts5DataRelease(pLvl
->pData
);
1376 memset(pLvl
, 0, sizeof(Fts5DlidxLvl
));
1377 pLvl
->pData
= fts5DataRead(p
,
1378 FTS5_DLIDX_ROWID(pIter
->iSegid
, iLvl
, pLvl
[1].iLeafPgno
)
1380 if( pLvl
->pData
) fts5DlidxLvlNext(pLvl
);
1385 return pIter
->aLvl
[0].bEof
;
1387 static int fts5DlidxIterNext(Fts5Index
*p
, Fts5DlidxIter
*pIter
){
1388 return fts5DlidxIterNextR(p
, pIter
, 0);
1392 ** The iterator passed as the first argument has the following fields set
1393 ** as follows. This function sets up the rest of the iterator so that it
1394 ** points to the first rowid in the doclist-index.
1397 ** pointer to doclist-index record,
1399 ** When this function is called pIter->iLeafPgno is the page number the
1400 ** doclist is associated with (the one featuring the term).
1402 static int fts5DlidxIterFirst(Fts5DlidxIter
*pIter
){
1404 for(i
=0; i
<pIter
->nLvl
; i
++){
1405 fts5DlidxLvlNext(&pIter
->aLvl
[i
]);
1407 return pIter
->aLvl
[0].bEof
;
1411 static int fts5DlidxIterEof(Fts5Index
*p
, Fts5DlidxIter
*pIter
){
1412 return p
->rc
!=SQLITE_OK
|| pIter
->aLvl
[0].bEof
;
1415 static void fts5DlidxIterLast(Fts5Index
*p
, Fts5DlidxIter
*pIter
){
1418 /* Advance each level to the last entry on the last page */
1419 for(i
=pIter
->nLvl
-1; p
->rc
==SQLITE_OK
&& i
>=0; i
--){
1420 Fts5DlidxLvl
*pLvl
= &pIter
->aLvl
[i
];
1421 while( fts5DlidxLvlNext(pLvl
)==0 );
1425 Fts5DlidxLvl
*pChild
= &pLvl
[-1];
1426 fts5DataRelease(pChild
->pData
);
1427 memset(pChild
, 0, sizeof(Fts5DlidxLvl
));
1428 pChild
->pData
= fts5DataRead(p
,
1429 FTS5_DLIDX_ROWID(pIter
->iSegid
, i
-1, pLvl
->iLeafPgno
)
1436 ** Move the iterator passed as the only argument to the previous entry.
1438 static int fts5DlidxLvlPrev(Fts5DlidxLvl
*pLvl
){
1439 int iOff
= pLvl
->iOff
;
1441 assert( pLvl
->bEof
==0 );
1442 if( iOff
<=pLvl
->iFirstOff
){
1445 u8
*a
= pLvl
->pData
->p
;
1451 /* Currently iOff points to the first byte of a varint. This block
1452 ** decrements iOff until it points to the first byte of the previous
1453 ** varint. Taking care not to read any memory locations that occur
1454 ** before the buffer in memory. */
1455 iLimit
= (iOff
>9 ? iOff
-9 : 0);
1456 for(iOff
--; iOff
>iLimit
; iOff
--){
1457 if( (a
[iOff
-1] & 0x80)==0 ) break;
1460 fts5GetVarint(&a
[iOff
], (u64
*)&iVal
);
1461 pLvl
->iRowid
-= iVal
;
1464 /* Skip backwards past any 0x00 varints. */
1465 for(ii
=iOff
-1; ii
>=pLvl
->iFirstOff
&& a
[ii
]==0x00; ii
--){
1468 if( ii
>=pLvl
->iFirstOff
&& (a
[ii
] & 0x80) ){
1469 /* The byte immediately before the last 0x00 byte has the 0x80 bit
1470 ** set. So the last 0x00 is only a varint 0 if there are 8 more 0x80
1471 ** bytes before a[ii]. */
1472 int bZero
= 0; /* True if last 0x00 counts */
1473 if( (ii
-8)>=pLvl
->iFirstOff
){
1475 for(j
=1; j
<=8 && (a
[ii
-j
] & 0x80); j
++);
1478 if( bZero
==0 ) nZero
--;
1480 pLvl
->iLeafPgno
-= nZero
;
1481 pLvl
->iOff
= iOff
- nZero
;
1487 static int fts5DlidxIterPrevR(Fts5Index
*p
, Fts5DlidxIter
*pIter
, int iLvl
){
1488 Fts5DlidxLvl
*pLvl
= &pIter
->aLvl
[iLvl
];
1490 assert( iLvl
<pIter
->nLvl
);
1491 if( fts5DlidxLvlPrev(pLvl
) ){
1492 if( (iLvl
+1) < pIter
->nLvl
){
1493 fts5DlidxIterPrevR(p
, pIter
, iLvl
+1);
1494 if( pLvl
[1].bEof
==0 ){
1495 fts5DataRelease(pLvl
->pData
);
1496 memset(pLvl
, 0, sizeof(Fts5DlidxLvl
));
1497 pLvl
->pData
= fts5DataRead(p
,
1498 FTS5_DLIDX_ROWID(pIter
->iSegid
, iLvl
, pLvl
[1].iLeafPgno
)
1501 while( fts5DlidxLvlNext(pLvl
)==0 );
1508 return pIter
->aLvl
[0].bEof
;
1510 static int fts5DlidxIterPrev(Fts5Index
*p
, Fts5DlidxIter
*pIter
){
1511 return fts5DlidxIterPrevR(p
, pIter
, 0);
1515 ** Free a doclist-index iterator object allocated by fts5DlidxIterInit().
1517 static void fts5DlidxIterFree(Fts5DlidxIter
*pIter
){
1520 for(i
=0; i
<pIter
->nLvl
; i
++){
1521 fts5DataRelease(pIter
->aLvl
[i
].pData
);
1523 sqlite3_free(pIter
);
1527 static Fts5DlidxIter
*fts5DlidxIterInit(
1528 Fts5Index
*p
, /* Fts5 Backend to iterate within */
1529 int bRev
, /* True for ORDER BY ASC */
1530 int iSegid
, /* Segment id */
1531 int iLeafPg
/* Leaf page number to load dlidx for */
1533 Fts5DlidxIter
*pIter
= 0;
1537 for(i
=0; p
->rc
==SQLITE_OK
&& bDone
==0; i
++){
1538 sqlite3_int64 nByte
= sizeof(Fts5DlidxIter
) + i
* sizeof(Fts5DlidxLvl
);
1539 Fts5DlidxIter
*pNew
;
1541 pNew
= (Fts5DlidxIter
*)sqlite3_realloc64(pIter
, nByte
);
1543 p
->rc
= SQLITE_NOMEM
;
1545 i64 iRowid
= FTS5_DLIDX_ROWID(iSegid
, i
, iLeafPg
);
1546 Fts5DlidxLvl
*pLvl
= &pNew
->aLvl
[i
];
1548 memset(pLvl
, 0, sizeof(Fts5DlidxLvl
));
1549 pLvl
->pData
= fts5DataRead(p
, iRowid
);
1550 if( pLvl
->pData
&& (pLvl
->pData
->p
[0] & 0x0001)==0 ){
1557 if( p
->rc
==SQLITE_OK
){
1558 pIter
->iSegid
= iSegid
;
1560 fts5DlidxIterFirst(pIter
);
1562 fts5DlidxIterLast(p
, pIter
);
1566 if( p
->rc
!=SQLITE_OK
){
1567 fts5DlidxIterFree(pIter
);
1574 static i64
fts5DlidxIterRowid(Fts5DlidxIter
*pIter
){
1575 return pIter
->aLvl
[0].iRowid
;
1577 static int fts5DlidxIterPgno(Fts5DlidxIter
*pIter
){
1578 return pIter
->aLvl
[0].iLeafPgno
;
1582 ** Load the next leaf page into the segment iterator.
1584 static void fts5SegIterNextPage(
1585 Fts5Index
*p
, /* FTS5 backend object */
1586 Fts5SegIter
*pIter
/* Iterator to advance to next page */
1589 Fts5StructureSegment
*pSeg
= pIter
->pSeg
;
1590 fts5DataRelease(pIter
->pLeaf
);
1592 if( pIter
->pNextLeaf
){
1593 pIter
->pLeaf
= pIter
->pNextLeaf
;
1594 pIter
->pNextLeaf
= 0;
1595 }else if( pIter
->iLeafPgno
<=pSeg
->pgnoLast
){
1596 pIter
->pLeaf
= fts5LeafRead(p
,
1597 FTS5_SEGMENT_ROWID(pSeg
->iSegid
, pIter
->iLeafPgno
)
1602 pLeaf
= pIter
->pLeaf
;
1605 pIter
->iPgidxOff
= pLeaf
->szLeaf
;
1606 if( fts5LeafIsTermless(pLeaf
) ){
1607 pIter
->iEndofDoclist
= pLeaf
->nn
+1;
1609 pIter
->iPgidxOff
+= fts5GetVarint32(&pLeaf
->p
[pIter
->iPgidxOff
],
1610 pIter
->iEndofDoclist
1617 ** Argument p points to a buffer containing a varint to be interpreted as a
1618 ** position list size field. Read the varint and return the number of bytes
1619 ** read. Before returning, set *pnSz to the number of bytes in the position
1620 ** list, and *pbDel to true if the delete flag is set, or false otherwise.
1622 static int fts5GetPoslistSize(const u8
*p
, int *pnSz
, int *pbDel
){
1625 fts5FastGetVarint32(p
, n
, nSz
);
1626 assert_nc( nSz
>=0 );
1628 *pbDel
= nSz
& 0x0001;
1633 ** Fts5SegIter.iLeafOffset currently points to the first byte of a
1634 ** position-list size field. Read the value of the field and store it
1635 ** in the following variables:
1640 ** Leave Fts5SegIter.iLeafOffset pointing to the first byte of the
1641 ** position list content (if any).
1643 static void fts5SegIterLoadNPos(Fts5Index
*p
, Fts5SegIter
*pIter
){
1644 if( p
->rc
==SQLITE_OK
){
1645 int iOff
= pIter
->iLeafOffset
; /* Offset to read at */
1646 ASSERT_SZLEAF_OK(pIter
->pLeaf
);
1647 if( p
->pConfig
->eDetail
==FTS5_DETAIL_NONE
){
1648 int iEod
= MIN(pIter
->iEndofDoclist
, pIter
->pLeaf
->szLeaf
);
1651 if( iOff
<iEod
&& pIter
->pLeaf
->p
[iOff
]==0 ){
1654 if( iOff
<iEod
&& pIter
->pLeaf
->p
[iOff
]==0 ){
1663 fts5FastGetVarint32(pIter
->pLeaf
->p
, iOff
, nSz
);
1664 pIter
->bDel
= (nSz
& 0x0001);
1665 pIter
->nPos
= nSz
>>1;
1666 assert_nc( pIter
->nPos
>=0 );
1668 pIter
->iLeafOffset
= iOff
;
1672 static void fts5SegIterLoadRowid(Fts5Index
*p
, Fts5SegIter
*pIter
){
1673 u8
*a
= pIter
->pLeaf
->p
; /* Buffer to read data from */
1674 i64 iOff
= pIter
->iLeafOffset
;
1676 ASSERT_SZLEAF_OK(pIter
->pLeaf
);
1677 if( iOff
>=pIter
->pLeaf
->szLeaf
){
1678 fts5SegIterNextPage(p
, pIter
);
1679 if( pIter
->pLeaf
==0 ){
1680 if( p
->rc
==SQLITE_OK
) p
->rc
= FTS5_CORRUPT
;
1684 a
= pIter
->pLeaf
->p
;
1686 iOff
+= sqlite3Fts5GetVarint(&a
[iOff
], (u64
*)&pIter
->iRowid
);
1687 pIter
->iLeafOffset
= iOff
;
1691 ** Fts5SegIter.iLeafOffset currently points to the first byte of the
1692 ** "nSuffix" field of a term. Function parameter nKeep contains the value
1693 ** of the "nPrefix" field (if there was one - it is passed 0 if this is
1694 ** the first term in the segment).
1696 ** This function populates:
1699 ** Fts5SegIter.rowid
1701 ** accordingly and leaves (Fts5SegIter.iLeafOffset) set to the content of
1702 ** the first position list. The position list belonging to document
1703 ** (Fts5SegIter.iRowid).
1705 static void fts5SegIterLoadTerm(Fts5Index
*p
, Fts5SegIter
*pIter
, int nKeep
){
1706 u8
*a
= pIter
->pLeaf
->p
; /* Buffer to read data from */
1707 i64 iOff
= pIter
->iLeafOffset
; /* Offset to read at */
1708 int nNew
; /* Bytes of new data */
1710 iOff
+= fts5GetVarint32(&a
[iOff
], nNew
);
1711 if( iOff
+nNew
>pIter
->pLeaf
->szLeaf
|| nKeep
>pIter
->term
.n
|| nNew
==0 ){
1712 p
->rc
= FTS5_CORRUPT
;
1715 pIter
->term
.n
= nKeep
;
1716 fts5BufferAppendBlob(&p
->rc
, &pIter
->term
, nNew
, &a
[iOff
]);
1717 assert( pIter
->term
.n
<=pIter
->term
.nSpace
);
1719 pIter
->iTermLeafOffset
= iOff
;
1720 pIter
->iTermLeafPgno
= pIter
->iLeafPgno
;
1721 pIter
->iLeafOffset
= iOff
;
1723 if( pIter
->iPgidxOff
>=pIter
->pLeaf
->nn
){
1724 pIter
->iEndofDoclist
= pIter
->pLeaf
->nn
+1;
1727 pIter
->iPgidxOff
+= fts5GetVarint32(&a
[pIter
->iPgidxOff
], nExtra
);
1728 pIter
->iEndofDoclist
+= nExtra
;
1731 fts5SegIterLoadRowid(p
, pIter
);
1734 static void fts5SegIterNext(Fts5Index
*, Fts5SegIter
*, int*);
1735 static void fts5SegIterNext_Reverse(Fts5Index
*, Fts5SegIter
*, int*);
1736 static void fts5SegIterNext_None(Fts5Index
*, Fts5SegIter
*, int*);
1738 static void fts5SegIterSetNext(Fts5Index
*p
, Fts5SegIter
*pIter
){
1739 if( pIter
->flags
& FTS5_SEGITER_REVERSE
){
1740 pIter
->xNext
= fts5SegIterNext_Reverse
;
1741 }else if( p
->pConfig
->eDetail
==FTS5_DETAIL_NONE
){
1742 pIter
->xNext
= fts5SegIterNext_None
;
1744 pIter
->xNext
= fts5SegIterNext
;
1749 ** Initialize the iterator object pIter to iterate through the entries in
1750 ** segment pSeg. The iterator is left pointing to the first entry when
1751 ** this function returns.
1753 ** If an error occurs, Fts5Index.rc is set to an appropriate error code. If
1754 ** an error has already occurred when this function is called, it is a no-op.
1756 static void fts5SegIterInit(
1757 Fts5Index
*p
, /* FTS index object */
1758 Fts5StructureSegment
*pSeg
, /* Description of segment */
1759 Fts5SegIter
*pIter
/* Object to populate */
1761 if( pSeg
->pgnoFirst
==0 ){
1762 /* This happens if the segment is being used as an input to an incremental
1763 ** merge and all data has already been "trimmed". See function
1764 ** fts5TrimSegments() for details. In this case leave the iterator empty.
1765 ** The caller will see the (pIter->pLeaf==0) and assume the iterator is
1766 ** at EOF already. */
1767 assert( pIter
->pLeaf
==0 );
1771 if( p
->rc
==SQLITE_OK
){
1772 memset(pIter
, 0, sizeof(*pIter
));
1773 fts5SegIterSetNext(p
, pIter
);
1775 pIter
->iLeafPgno
= pSeg
->pgnoFirst
-1;
1776 fts5SegIterNextPage(p
, pIter
);
1779 if( p
->rc
==SQLITE_OK
){
1780 pIter
->iLeafOffset
= 4;
1781 assert( pIter
->pLeaf
!=0 );
1782 assert_nc( pIter
->pLeaf
->nn
>4 );
1783 assert_nc( fts5LeafFirstTermOff(pIter
->pLeaf
)==4 );
1784 pIter
->iPgidxOff
= pIter
->pLeaf
->szLeaf
+1;
1785 fts5SegIterLoadTerm(p
, pIter
, 0);
1786 fts5SegIterLoadNPos(p
, pIter
);
1791 ** This function is only ever called on iterators created by calls to
1792 ** Fts5IndexQuery() with the FTS5INDEX_QUERY_DESC flag set.
1794 ** The iterator is in an unusual state when this function is called: the
1795 ** Fts5SegIter.iLeafOffset variable is set to the offset of the start of
1796 ** the position-list size field for the first relevant rowid on the page.
1797 ** Fts5SegIter.rowid is set, but nPos and bDel are not.
1799 ** This function advances the iterator so that it points to the last
1800 ** relevant rowid on the page and, if necessary, initializes the
1801 ** aRowidOffset[] and iRowidOffset variables. At this point the iterator
1802 ** is in its regular state - Fts5SegIter.iLeafOffset points to the first
1803 ** byte of the position list content associated with said rowid.
1805 static void fts5SegIterReverseInitPage(Fts5Index
*p
, Fts5SegIter
*pIter
){
1806 int eDetail
= p
->pConfig
->eDetail
;
1807 int n
= pIter
->pLeaf
->szLeaf
;
1808 int i
= pIter
->iLeafOffset
;
1809 u8
*a
= pIter
->pLeaf
->p
;
1810 int iRowidOffset
= 0;
1812 if( n
>pIter
->iEndofDoclist
){
1813 n
= pIter
->iEndofDoclist
;
1816 ASSERT_SZLEAF_OK(pIter
->pLeaf
);
1820 if( eDetail
==FTS5_DETAIL_NONE
){
1822 if( i
<n
&& a
[i
]==0 ){
1824 if( i
<n
&& a
[i
]==0 ) i
++;
1829 i
+= fts5GetPoslistSize(&a
[i
], &nPos
, &bDummy
);
1833 i
+= fts5GetVarint(&a
[i
], &iDelta
);
1834 pIter
->iRowid
+= iDelta
;
1836 /* If necessary, grow the pIter->aRowidOffset[] array. */
1837 if( iRowidOffset
>=pIter
->nRowidOffset
){
1838 int nNew
= pIter
->nRowidOffset
+ 8;
1839 int *aNew
= (int*)sqlite3_realloc64(pIter
->aRowidOffset
,nNew
*sizeof(int));
1841 p
->rc
= SQLITE_NOMEM
;
1844 pIter
->aRowidOffset
= aNew
;
1845 pIter
->nRowidOffset
= nNew
;
1848 pIter
->aRowidOffset
[iRowidOffset
++] = pIter
->iLeafOffset
;
1849 pIter
->iLeafOffset
= i
;
1851 pIter
->iRowidOffset
= iRowidOffset
;
1852 fts5SegIterLoadNPos(p
, pIter
);
1858 static void fts5SegIterReverseNewPage(Fts5Index
*p
, Fts5SegIter
*pIter
){
1859 assert( pIter
->flags
& FTS5_SEGITER_REVERSE
);
1860 assert( pIter
->flags
& FTS5_SEGITER_ONETERM
);
1862 fts5DataRelease(pIter
->pLeaf
);
1864 while( p
->rc
==SQLITE_OK
&& pIter
->iLeafPgno
>pIter
->iTermLeafPgno
){
1867 pNew
= fts5DataRead(p
, FTS5_SEGMENT_ROWID(
1868 pIter
->pSeg
->iSegid
, pIter
->iLeafPgno
1871 /* iTermLeafOffset may be equal to szLeaf if the term is the last
1872 ** thing on the page - i.e. the first rowid is on the following page.
1873 ** In this case leave pIter->pLeaf==0, this iterator is at EOF. */
1874 if( pIter
->iLeafPgno
==pIter
->iTermLeafPgno
){
1875 assert( pIter
->pLeaf
==0 );
1876 if( pIter
->iTermLeafOffset
<pNew
->szLeaf
){
1877 pIter
->pLeaf
= pNew
;
1878 pIter
->iLeafOffset
= pIter
->iTermLeafOffset
;
1882 iRowidOff
= fts5LeafFirstRowidOff(pNew
);
1884 if( iRowidOff
>=pNew
->szLeaf
){
1885 p
->rc
= FTS5_CORRUPT
;
1887 pIter
->pLeaf
= pNew
;
1888 pIter
->iLeafOffset
= iRowidOff
;
1894 u8
*a
= &pIter
->pLeaf
->p
[pIter
->iLeafOffset
];
1895 pIter
->iLeafOffset
+= fts5GetVarint(a
, (u64
*)&pIter
->iRowid
);
1898 fts5DataRelease(pNew
);
1904 pIter
->iEndofDoclist
= pIter
->pLeaf
->nn
+1;
1905 fts5SegIterReverseInitPage(p
, pIter
);
1910 ** Return true if the iterator passed as the second argument currently
1911 ** points to a delete marker. A delete marker is an entry with a 0 byte
1914 static int fts5MultiIterIsEmpty(Fts5Index
*p
, Fts5Iter
*pIter
){
1915 Fts5SegIter
*pSeg
= &pIter
->aSeg
[pIter
->aFirst
[1].iFirst
];
1916 return (p
->rc
==SQLITE_OK
&& pSeg
->pLeaf
&& pSeg
->nPos
==0);
1920 ** Advance iterator pIter to the next entry.
1922 ** This version of fts5SegIterNext() is only used by reverse iterators.
1924 static void fts5SegIterNext_Reverse(
1925 Fts5Index
*p
, /* FTS5 backend object */
1926 Fts5SegIter
*pIter
, /* Iterator to advance */
1927 int *pbUnused
/* Unused */
1929 assert( pIter
->flags
& FTS5_SEGITER_REVERSE
);
1930 assert( pIter
->pNextLeaf
==0 );
1931 UNUSED_PARAM(pbUnused
);
1933 if( pIter
->iRowidOffset
>0 ){
1934 u8
*a
= pIter
->pLeaf
->p
;
1938 pIter
->iRowidOffset
--;
1939 pIter
->iLeafOffset
= pIter
->aRowidOffset
[pIter
->iRowidOffset
];
1940 fts5SegIterLoadNPos(p
, pIter
);
1941 iOff
= pIter
->iLeafOffset
;
1942 if( p
->pConfig
->eDetail
!=FTS5_DETAIL_NONE
){
1943 iOff
+= pIter
->nPos
;
1945 fts5GetVarint(&a
[iOff
], &iDelta
);
1946 pIter
->iRowid
-= iDelta
;
1948 fts5SegIterReverseNewPage(p
, pIter
);
1953 ** Advance iterator pIter to the next entry.
1955 ** This version of fts5SegIterNext() is only used if detail=none and the
1956 ** iterator is not a reverse direction iterator.
1958 static void fts5SegIterNext_None(
1959 Fts5Index
*p
, /* FTS5 backend object */
1960 Fts5SegIter
*pIter
, /* Iterator to advance */
1961 int *pbNewTerm
/* OUT: Set for new term */
1965 assert( p
->rc
==SQLITE_OK
);
1966 assert( (pIter
->flags
& FTS5_SEGITER_REVERSE
)==0 );
1967 assert( p
->pConfig
->eDetail
==FTS5_DETAIL_NONE
);
1969 ASSERT_SZLEAF_OK(pIter
->pLeaf
);
1970 iOff
= pIter
->iLeafOffset
;
1972 /* Next entry is on the next page */
1973 if( pIter
->pSeg
&& iOff
>=pIter
->pLeaf
->szLeaf
){
1974 fts5SegIterNextPage(p
, pIter
);
1975 if( p
->rc
|| pIter
->pLeaf
==0 ) return;
1980 if( iOff
<pIter
->iEndofDoclist
){
1981 /* Next entry is on the current page */
1983 iOff
+= sqlite3Fts5GetVarint(&pIter
->pLeaf
->p
[iOff
], (u64
*)&iDelta
);
1984 pIter
->iLeafOffset
= iOff
;
1985 pIter
->iRowid
+= iDelta
;
1986 }else if( (pIter
->flags
& FTS5_SEGITER_ONETERM
)==0 ){
1989 if( iOff
!=fts5LeafFirstTermOff(pIter
->pLeaf
) ){
1990 iOff
+= fts5GetVarint32(&pIter
->pLeaf
->p
[iOff
], nKeep
);
1992 pIter
->iLeafOffset
= iOff
;
1993 fts5SegIterLoadTerm(p
, pIter
, nKeep
);
1995 const u8
*pList
= 0;
1996 const char *zTerm
= 0;
1998 sqlite3Fts5HashScanNext(p
->pHash
);
1999 sqlite3Fts5HashScanEntry(p
->pHash
, &zTerm
, &pList
, &nList
);
2000 if( pList
==0 ) goto next_none_eof
;
2001 pIter
->pLeaf
->p
= (u8
*)pList
;
2002 pIter
->pLeaf
->nn
= nList
;
2003 pIter
->pLeaf
->szLeaf
= nList
;
2004 pIter
->iEndofDoclist
= nList
;
2005 sqlite3Fts5BufferSet(&p
->rc
,&pIter
->term
, (int)strlen(zTerm
), (u8
*)zTerm
);
2006 pIter
->iLeafOffset
= fts5GetVarint(pList
, (u64
*)&pIter
->iRowid
);
2009 if( pbNewTerm
) *pbNewTerm
= 1;
2014 fts5SegIterLoadNPos(p
, pIter
);
2018 fts5DataRelease(pIter
->pLeaf
);
2024 ** Advance iterator pIter to the next entry.
2026 ** If an error occurs, Fts5Index.rc is set to an appropriate error code. It
2027 ** is not considered an error if the iterator reaches EOF. If an error has
2028 ** already occurred when this function is called, it is a no-op.
2030 static void fts5SegIterNext(
2031 Fts5Index
*p
, /* FTS5 backend object */
2032 Fts5SegIter
*pIter
, /* Iterator to advance */
2033 int *pbNewTerm
/* OUT: Set for new term */
2035 Fts5Data
*pLeaf
= pIter
->pLeaf
;
2042 assert( pbNewTerm
==0 || *pbNewTerm
==0 );
2043 assert( p
->pConfig
->eDetail
!=FTS5_DETAIL_NONE
);
2045 /* Search for the end of the position list within the current page. */
2049 ASSERT_SZLEAF_OK(pLeaf
);
2050 iOff
= pIter
->iLeafOffset
+ pIter
->nPos
;
2053 /* The next entry is on the current page. */
2054 assert_nc( iOff
<=pIter
->iEndofDoclist
);
2055 if( iOff
>=pIter
->iEndofDoclist
){
2057 if( iOff
!=fts5LeafFirstTermOff(pLeaf
) ){
2058 iOff
+= fts5GetVarint32(&a
[iOff
], nKeep
);
2062 iOff
+= sqlite3Fts5GetVarint(&a
[iOff
], &iDelta
);
2063 pIter
->iRowid
+= iDelta
;
2064 assert_nc( iDelta
>0 );
2066 pIter
->iLeafOffset
= iOff
;
2068 }else if( pIter
->pSeg
==0 ){
2069 const u8
*pList
= 0;
2070 const char *zTerm
= 0;
2072 assert( (pIter
->flags
& FTS5_SEGITER_ONETERM
) || pbNewTerm
);
2073 if( 0==(pIter
->flags
& FTS5_SEGITER_ONETERM
) ){
2074 sqlite3Fts5HashScanNext(p
->pHash
);
2075 sqlite3Fts5HashScanEntry(p
->pHash
, &zTerm
, &pList
, &nList
);
2078 fts5DataRelease(pIter
->pLeaf
);
2081 pIter
->pLeaf
->p
= (u8
*)pList
;
2082 pIter
->pLeaf
->nn
= nList
;
2083 pIter
->pLeaf
->szLeaf
= nList
;
2084 pIter
->iEndofDoclist
= nList
+1;
2085 sqlite3Fts5BufferSet(&p
->rc
, &pIter
->term
, (int)strlen(zTerm
),
2087 pIter
->iLeafOffset
= fts5GetVarint(pList
, (u64
*)&pIter
->iRowid
);
2092 /* Next entry is not on the current page */
2094 fts5SegIterNextPage(p
, pIter
);
2095 pLeaf
= pIter
->pLeaf
;
2096 if( pLeaf
==0 ) break;
2097 ASSERT_SZLEAF_OK(pLeaf
);
2098 if( (iOff
= fts5LeafFirstRowidOff(pLeaf
)) && iOff
<pLeaf
->szLeaf
){
2099 iOff
+= sqlite3Fts5GetVarint(&pLeaf
->p
[iOff
], (u64
*)&pIter
->iRowid
);
2100 pIter
->iLeafOffset
= iOff
;
2102 if( pLeaf
->nn
>pLeaf
->szLeaf
){
2103 pIter
->iPgidxOff
= pLeaf
->szLeaf
+ fts5GetVarint32(
2104 &pLeaf
->p
[pLeaf
->szLeaf
], pIter
->iEndofDoclist
2108 else if( pLeaf
->nn
>pLeaf
->szLeaf
){
2109 pIter
->iPgidxOff
= pLeaf
->szLeaf
+ fts5GetVarint32(
2110 &pLeaf
->p
[pLeaf
->szLeaf
], iOff
2112 pIter
->iLeafOffset
= iOff
;
2113 pIter
->iEndofDoclist
= iOff
;
2116 assert_nc( iOff
<pLeaf
->szLeaf
);
2117 if( iOff
>pLeaf
->szLeaf
){
2118 p
->rc
= FTS5_CORRUPT
;
2124 /* Check if the iterator is now at EOF. If so, return early. */
2127 if( pIter
->flags
& FTS5_SEGITER_ONETERM
){
2128 fts5DataRelease(pIter
->pLeaf
);
2131 fts5SegIterLoadTerm(p
, pIter
, nKeep
);
2132 fts5SegIterLoadNPos(p
, pIter
);
2133 if( pbNewTerm
) *pbNewTerm
= 1;
2136 /* The following could be done by calling fts5SegIterLoadNPos(). But
2137 ** this block is particularly performance critical, so equivalent
2138 ** code is inlined. */
2140 assert_nc( pIter
->iLeafOffset
<=pIter
->pLeaf
->nn
);
2141 fts5FastGetVarint32(pIter
->pLeaf
->p
, pIter
->iLeafOffset
, nSz
);
2142 pIter
->bDel
= (nSz
& 0x0001);
2143 pIter
->nPos
= nSz
>>1;
2144 assert_nc( pIter
->nPos
>=0 );
2149 #define SWAPVAL(T, a, b) { T tmp; tmp=a; a=b; b=tmp; }
2151 #define fts5IndexSkipVarint(a, iOff) { \
2152 int iEnd = iOff+9; \
2153 while( (a[iOff++] & 0x80) && iOff<iEnd ); \
2157 ** Iterator pIter currently points to the first rowid in a doclist. This
2158 ** function sets the iterator up so that iterates in reverse order through
2161 static void fts5SegIterReverse(Fts5Index
*p
, Fts5SegIter
*pIter
){
2162 Fts5DlidxIter
*pDlidx
= pIter
->pDlidx
;
2163 Fts5Data
*pLast
= 0;
2167 int iSegid
= pIter
->pSeg
->iSegid
;
2168 pgnoLast
= fts5DlidxIterPgno(pDlidx
);
2169 pLast
= fts5LeafRead(p
, FTS5_SEGMENT_ROWID(iSegid
, pgnoLast
));
2171 Fts5Data
*pLeaf
= pIter
->pLeaf
; /* Current leaf data */
2173 /* Currently, Fts5SegIter.iLeafOffset points to the first byte of
2174 ** position-list content for the current rowid. Back it up so that it
2175 ** points to the start of the position-list size field. */
2177 if( pIter
->iTermLeafPgno
==pIter
->iLeafPgno
){
2178 iPoslist
= pIter
->iTermLeafOffset
;
2182 fts5IndexSkipVarint(pLeaf
->p
, iPoslist
);
2183 pIter
->iLeafOffset
= iPoslist
;
2185 /* If this condition is true then the largest rowid for the current
2186 ** term may not be stored on the current page. So search forward to
2187 ** see where said rowid really is. */
2188 if( pIter
->iEndofDoclist
>=pLeaf
->szLeaf
){
2190 Fts5StructureSegment
*pSeg
= pIter
->pSeg
;
2192 /* The last rowid in the doclist may not be on the current page. Search
2193 ** forward to find the page containing the last rowid. */
2194 for(pgno
=pIter
->iLeafPgno
+1; !p
->rc
&& pgno
<=pSeg
->pgnoLast
; pgno
++){
2195 i64 iAbs
= FTS5_SEGMENT_ROWID(pSeg
->iSegid
, pgno
);
2196 Fts5Data
*pNew
= fts5LeafRead(p
, iAbs
);
2198 int iRowid
, bTermless
;
2199 iRowid
= fts5LeafFirstRowidOff(pNew
);
2200 bTermless
= fts5LeafIsTermless(pNew
);
2202 SWAPVAL(Fts5Data
*, pNew
, pLast
);
2205 fts5DataRelease(pNew
);
2206 if( bTermless
==0 ) break;
2212 /* If pLast is NULL at this point, then the last rowid for this doclist
2213 ** lies on the page currently indicated by the iterator. In this case
2214 ** pIter->iLeafOffset is already set to point to the position-list size
2215 ** field associated with the first relevant rowid on the page.
2217 ** Or, if pLast is non-NULL, then it is the page that contains the last
2218 ** rowid. In this case configure the iterator so that it points to the
2219 ** first rowid on this page.
2223 fts5DataRelease(pIter
->pLeaf
);
2224 pIter
->pLeaf
= pLast
;
2225 pIter
->iLeafPgno
= pgnoLast
;
2226 iOff
= fts5LeafFirstRowidOff(pLast
);
2227 if( iOff
>pLast
->szLeaf
){
2228 p
->rc
= FTS5_CORRUPT
;
2231 iOff
+= fts5GetVarint(&pLast
->p
[iOff
], (u64
*)&pIter
->iRowid
);
2232 pIter
->iLeafOffset
= iOff
;
2234 if( fts5LeafIsTermless(pLast
) ){
2235 pIter
->iEndofDoclist
= pLast
->nn
+1;
2237 pIter
->iEndofDoclist
= fts5LeafFirstTermOff(pLast
);
2241 fts5SegIterReverseInitPage(p
, pIter
);
2245 ** Iterator pIter currently points to the first rowid of a doclist.
2246 ** There is a doclist-index associated with the final term on the current
2247 ** page. If the current term is the last term on the page, load the
2248 ** doclist-index from disk and initialize an iterator at (pIter->pDlidx).
2250 static void fts5SegIterLoadDlidx(Fts5Index
*p
, Fts5SegIter
*pIter
){
2251 int iSeg
= pIter
->pSeg
->iSegid
;
2252 int bRev
= (pIter
->flags
& FTS5_SEGITER_REVERSE
);
2253 Fts5Data
*pLeaf
= pIter
->pLeaf
; /* Current leaf data */
2255 assert( pIter
->flags
& FTS5_SEGITER_ONETERM
);
2256 assert( pIter
->pDlidx
==0 );
2258 /* Check if the current doclist ends on this page. If it does, return
2259 ** early without loading the doclist-index (as it belongs to a different
2261 if( pIter
->iTermLeafPgno
==pIter
->iLeafPgno
2262 && pIter
->iEndofDoclist
<pLeaf
->szLeaf
2267 pIter
->pDlidx
= fts5DlidxIterInit(p
, bRev
, iSeg
, pIter
->iTermLeafPgno
);
2271 ** The iterator object passed as the second argument currently contains
2272 ** no valid values except for the Fts5SegIter.pLeaf member variable. This
2273 ** function searches the leaf page for a term matching (pTerm/nTerm).
2275 ** If the specified term is found on the page, then the iterator is left
2276 ** pointing to it. If argument bGe is zero and the term is not found,
2277 ** the iterator is left pointing at EOF.
2279 ** If bGe is non-zero and the specified term is not found, then the
2280 ** iterator is left pointing to the smallest term in the segment that
2281 ** is larger than the specified term, even if this term is not on the
2284 static void fts5LeafSeek(
2285 Fts5Index
*p
, /* Leave any error code here */
2286 int bGe
, /* True for a >= search */
2287 Fts5SegIter
*pIter
, /* Iterator to seek */
2288 const u8
*pTerm
, int nTerm
/* Term to search for */
2291 const u8
*a
= pIter
->pLeaf
->p
;
2292 u32 n
= (u32
)pIter
->pLeaf
->nn
;
2298 u32 iPgidx
; /* Current offset in pgidx */
2301 assert( p
->rc
==SQLITE_OK
);
2303 iPgidx
= (u32
)pIter
->pLeaf
->szLeaf
;
2304 iPgidx
+= fts5GetVarint32(&a
[iPgidx
], iTermOff
);
2307 p
->rc
= FTS5_CORRUPT
;
2313 /* Figure out how many new bytes are in this term */
2314 fts5FastGetVarint32(a
, iOff
, nNew
);
2319 assert( nKeep
>=nMatch
);
2320 if( nKeep
==nMatch
){
2323 nCmp
= (u32
)MIN(nNew
, nTerm
-nMatch
);
2324 for(i
=0; i
<nCmp
; i
++){
2325 if( a
[iOff
+i
]!=pTerm
[nMatch
+i
] ) break;
2329 if( (u32
)nTerm
==nMatch
){
2331 goto search_success
;
2335 }else if( i
<nNew
&& a
[iOff
+i
]>pTerm
[nMatch
] ){
2345 iPgidx
+= fts5GetVarint32(&a
[iPgidx
], nKeep
);
2350 p
->rc
= FTS5_CORRUPT
;
2354 /* Read the nKeep field of the next term. */
2355 fts5FastGetVarint32(a
, iOff
, nKeep
);
2360 fts5DataRelease(pIter
->pLeaf
);
2363 }else if( bEndOfPage
){
2365 fts5SegIterNextPage(p
, pIter
);
2366 if( pIter
->pLeaf
==0 ) return;
2367 a
= pIter
->pLeaf
->p
;
2368 if( fts5LeafIsTermless(pIter
->pLeaf
)==0 ){
2369 iPgidx
= (u32
)pIter
->pLeaf
->szLeaf
;
2370 iPgidx
+= fts5GetVarint32(&pIter
->pLeaf
->p
[iPgidx
], iOff
);
2371 if( iOff
<4 || (i64
)iOff
>=pIter
->pLeaf
->szLeaf
){
2372 p
->rc
= FTS5_CORRUPT
;
2377 n
= (u32
)pIter
->pLeaf
->nn
;
2378 iOff
+= fts5GetVarint32(&a
[iOff
], nNew
);
2386 if( (i64
)iOff
+nNew
>n
|| nNew
<1 ){
2387 p
->rc
= FTS5_CORRUPT
;
2390 pIter
->iLeafOffset
= iOff
+ nNew
;
2391 pIter
->iTermLeafOffset
= pIter
->iLeafOffset
;
2392 pIter
->iTermLeafPgno
= pIter
->iLeafPgno
;
2394 fts5BufferSet(&p
->rc
, &pIter
->term
, nKeep
, pTerm
);
2395 fts5BufferAppendBlob(&p
->rc
, &pIter
->term
, nNew
, &a
[iOff
]);
2398 pIter
->iEndofDoclist
= pIter
->pLeaf
->nn
+1;
2401 iPgidx
+= fts5GetVarint32(&a
[iPgidx
], nExtra
);
2402 pIter
->iEndofDoclist
= iTermOff
+ nExtra
;
2404 pIter
->iPgidxOff
= iPgidx
;
2406 fts5SegIterLoadRowid(p
, pIter
);
2407 fts5SegIterLoadNPos(p
, pIter
);
2410 static sqlite3_stmt
*fts5IdxSelectStmt(Fts5Index
*p
){
2411 if( p
->pIdxSelect
==0 ){
2412 Fts5Config
*pConfig
= p
->pConfig
;
2413 fts5IndexPrepareStmt(p
, &p
->pIdxSelect
, sqlite3_mprintf(
2414 "SELECT pgno FROM '%q'.'%q_idx' WHERE "
2415 "segid=? AND term<=? ORDER BY term DESC LIMIT 1",
2416 pConfig
->zDb
, pConfig
->zName
2419 return p
->pIdxSelect
;
2423 ** Initialize the object pIter to point to term pTerm/nTerm within segment
2424 ** pSeg. If there is no such term in the index, the iterator is set to EOF.
2426 ** If an error occurs, Fts5Index.rc is set to an appropriate error code. If
2427 ** an error has already occurred when this function is called, it is a no-op.
2429 static void fts5SegIterSeekInit(
2430 Fts5Index
*p
, /* FTS5 backend */
2431 const u8
*pTerm
, int nTerm
, /* Term to seek to */
2432 int flags
, /* Mask of FTS5INDEX_XXX flags */
2433 Fts5StructureSegment
*pSeg
, /* Description of segment */
2434 Fts5SegIter
*pIter
/* Object to populate */
2437 int bGe
= (flags
& FTS5INDEX_QUERY_SCAN
);
2438 int bDlidx
= 0; /* True if there is a doclist-index */
2439 sqlite3_stmt
*pIdxSelect
= 0;
2441 assert( bGe
==0 || (flags
& FTS5INDEX_QUERY_DESC
)==0 );
2442 assert( pTerm
&& nTerm
);
2443 memset(pIter
, 0, sizeof(*pIter
));
2446 /* This block sets stack variable iPg to the leaf page number that may
2447 ** contain term (pTerm/nTerm), if it is present in the segment. */
2448 pIdxSelect
= fts5IdxSelectStmt(p
);
2450 sqlite3_bind_int(pIdxSelect
, 1, pSeg
->iSegid
);
2451 sqlite3_bind_blob(pIdxSelect
, 2, pTerm
, nTerm
, SQLITE_STATIC
);
2452 if( SQLITE_ROW
==sqlite3_step(pIdxSelect
) ){
2453 i64 val
= sqlite3_column_int(pIdxSelect
, 0);
2454 iPg
= (int)(val
>>1);
2455 bDlidx
= (val
& 0x0001);
2457 p
->rc
= sqlite3_reset(pIdxSelect
);
2458 sqlite3_bind_null(pIdxSelect
, 2);
2460 if( iPg
<pSeg
->pgnoFirst
){
2461 iPg
= pSeg
->pgnoFirst
;
2465 pIter
->iLeafPgno
= iPg
- 1;
2466 fts5SegIterNextPage(p
, pIter
);
2469 fts5LeafSeek(p
, bGe
, pIter
, pTerm
, nTerm
);
2472 if( p
->rc
==SQLITE_OK
&& bGe
==0 ){
2473 pIter
->flags
|= FTS5_SEGITER_ONETERM
;
2475 if( flags
& FTS5INDEX_QUERY_DESC
){
2476 pIter
->flags
|= FTS5_SEGITER_REVERSE
;
2479 fts5SegIterLoadDlidx(p
, pIter
);
2481 if( flags
& FTS5INDEX_QUERY_DESC
){
2482 fts5SegIterReverse(p
, pIter
);
2487 fts5SegIterSetNext(p
, pIter
);
2491 ** 1) an error has occurred, or
2492 ** 2) the iterator points to EOF, or
2493 ** 3) the iterator points to an entry with term (pTerm/nTerm), or
2494 ** 4) the FTS5INDEX_QUERY_SCAN flag was set and the iterator points
2495 ** to an entry with a term greater than or equal to (pTerm/nTerm).
2497 assert_nc( p
->rc
!=SQLITE_OK
/* 1 */
2498 || pIter
->pLeaf
==0 /* 2 */
2499 || fts5BufferCompareBlob(&pIter
->term
, pTerm
, nTerm
)==0 /* 3 */
2500 || (bGe
&& fts5BufferCompareBlob(&pIter
->term
, pTerm
, nTerm
)>0) /* 4 */
2505 ** Initialize the object pIter to point to term pTerm/nTerm within the
2506 ** in-memory hash table. If there is no such term in the hash-table, the
2507 ** iterator is set to EOF.
2509 ** If an error occurs, Fts5Index.rc is set to an appropriate error code. If
2510 ** an error has already occurred when this function is called, it is a no-op.
2512 static void fts5SegIterHashInit(
2513 Fts5Index
*p
, /* FTS5 backend */
2514 const u8
*pTerm
, int nTerm
, /* Term to seek to */
2515 int flags
, /* Mask of FTS5INDEX_XXX flags */
2516 Fts5SegIter
*pIter
/* Object to populate */
2521 Fts5Data
*pLeaf
= 0;
2524 assert( p
->rc
==SQLITE_OK
);
2526 if( pTerm
==0 || (flags
& FTS5INDEX_QUERY_SCAN
) ){
2527 const u8
*pList
= 0;
2529 p
->rc
= sqlite3Fts5HashScanInit(p
->pHash
, (const char*)pTerm
, nTerm
);
2530 sqlite3Fts5HashScanEntry(p
->pHash
, (const char**)&z
, &pList
, &nList
);
2531 n
= (z
? (int)strlen((const char*)z
) : 0);
2533 pLeaf
= fts5IdxMalloc(p
, sizeof(Fts5Data
));
2535 pLeaf
->p
= (u8
*)pList
;
2539 p
->rc
= sqlite3Fts5HashQuery(p
->pHash
, sizeof(Fts5Data
),
2540 (const char*)pTerm
, nTerm
, (void**)&pLeaf
, &nList
2543 pLeaf
->p
= (u8
*)&pLeaf
[1];
2547 pIter
->flags
|= FTS5_SEGITER_ONETERM
;
2551 sqlite3Fts5BufferSet(&p
->rc
, &pIter
->term
, n
, z
);
2552 pLeaf
->nn
= pLeaf
->szLeaf
= nList
;
2553 pIter
->pLeaf
= pLeaf
;
2554 pIter
->iLeafOffset
= fts5GetVarint(pLeaf
->p
, (u64
*)&pIter
->iRowid
);
2555 pIter
->iEndofDoclist
= pLeaf
->nn
;
2557 if( flags
& FTS5INDEX_QUERY_DESC
){
2558 pIter
->flags
|= FTS5_SEGITER_REVERSE
;
2559 fts5SegIterReverseInitPage(p
, pIter
);
2561 fts5SegIterLoadNPos(p
, pIter
);
2565 fts5SegIterSetNext(p
, pIter
);
2569 ** Zero the iterator passed as the only argument.
2571 static void fts5SegIterClear(Fts5SegIter
*pIter
){
2572 fts5BufferFree(&pIter
->term
);
2573 fts5DataRelease(pIter
->pLeaf
);
2574 fts5DataRelease(pIter
->pNextLeaf
);
2575 fts5DlidxIterFree(pIter
->pDlidx
);
2576 sqlite3_free(pIter
->aRowidOffset
);
2577 memset(pIter
, 0, sizeof(Fts5SegIter
));
2583 ** This function is used as part of the big assert() procedure implemented by
2584 ** fts5AssertMultiIterSetup(). It ensures that the result currently stored
2585 ** in *pRes is the correct result of comparing the current positions of the
2588 static void fts5AssertComparisonResult(
2594 int i1
= p1
- pIter
->aSeg
;
2595 int i2
= p2
- pIter
->aSeg
;
2597 if( p1
->pLeaf
|| p2
->pLeaf
){
2599 assert( pRes
->iFirst
==i2
);
2600 }else if( p2
->pLeaf
==0 ){
2601 assert( pRes
->iFirst
==i1
);
2603 int nMin
= MIN(p1
->term
.n
, p2
->term
.n
);
2604 int res
= fts5Memcmp(p1
->term
.p
, p2
->term
.p
, nMin
);
2605 if( res
==0 ) res
= p1
->term
.n
- p2
->term
.n
;
2608 assert( pRes
->bTermEq
==1 );
2609 assert( p1
->iRowid
!=p2
->iRowid
);
2610 res
= ((p1
->iRowid
> p2
->iRowid
)==pIter
->bRev
) ? -1 : 1;
2612 assert( pRes
->bTermEq
==0 );
2616 assert( pRes
->iFirst
==i1
);
2618 assert( pRes
->iFirst
==i2
);
2625 ** This function is a no-op unless SQLITE_DEBUG is defined when this module
2626 ** is compiled. In that case, this function is essentially an assert()
2627 ** statement used to verify that the contents of the pIter->aFirst[] array
2630 static void fts5AssertMultiIterSetup(Fts5Index
*p
, Fts5Iter
*pIter
){
2631 if( p
->rc
==SQLITE_OK
){
2632 Fts5SegIter
*pFirst
= &pIter
->aSeg
[ pIter
->aFirst
[1].iFirst
];
2635 assert( (pFirst
->pLeaf
==0)==pIter
->base
.bEof
);
2637 /* Check that pIter->iSwitchRowid is set correctly. */
2638 for(i
=0; i
<pIter
->nSeg
; i
++){
2639 Fts5SegIter
*p1
= &pIter
->aSeg
[i
];
2642 || fts5BufferCompare(&pFirst
->term
, &p1
->term
)
2643 || p1
->iRowid
==pIter
->iSwitchRowid
2644 || (p1
->iRowid
<pIter
->iSwitchRowid
)==pIter
->bRev
2648 for(i
=0; i
<pIter
->nSeg
; i
+=2){
2649 Fts5SegIter
*p1
= &pIter
->aSeg
[i
];
2650 Fts5SegIter
*p2
= &pIter
->aSeg
[i
+1];
2651 Fts5CResult
*pRes
= &pIter
->aFirst
[(pIter
->nSeg
+ i
) / 2];
2652 fts5AssertComparisonResult(pIter
, p1
, p2
, pRes
);
2655 for(i
=1; i
<(pIter
->nSeg
/ 2); i
+=2){
2656 Fts5SegIter
*p1
= &pIter
->aSeg
[ pIter
->aFirst
[i
*2].iFirst
];
2657 Fts5SegIter
*p2
= &pIter
->aSeg
[ pIter
->aFirst
[i
*2+1].iFirst
];
2658 Fts5CResult
*pRes
= &pIter
->aFirst
[i
];
2659 fts5AssertComparisonResult(pIter
, p1
, p2
, pRes
);
2664 # define fts5AssertMultiIterSetup(x,y)
2668 ** Do the comparison necessary to populate pIter->aFirst[iOut].
2670 ** If the returned value is non-zero, then it is the index of an entry
2671 ** in the pIter->aSeg[] array that is (a) not at EOF, and (b) pointing
2672 ** to a key that is a duplicate of another, higher priority,
2673 ** segment-iterator in the pSeg->aSeg[] array.
2675 static int fts5MultiIterDoCompare(Fts5Iter
*pIter
, int iOut
){
2676 int i1
; /* Index of left-hand Fts5SegIter */
2677 int i2
; /* Index of right-hand Fts5SegIter */
2679 Fts5SegIter
*p1
; /* Left-hand Fts5SegIter */
2680 Fts5SegIter
*p2
; /* Right-hand Fts5SegIter */
2681 Fts5CResult
*pRes
= &pIter
->aFirst
[iOut
];
2683 assert( iOut
<pIter
->nSeg
&& iOut
>0 );
2684 assert( pIter
->bRev
==0 || pIter
->bRev
==1 );
2686 if( iOut
>=(pIter
->nSeg
/2) ){
2687 i1
= (iOut
- pIter
->nSeg
/2) * 2;
2690 i1
= pIter
->aFirst
[iOut
*2].iFirst
;
2691 i2
= pIter
->aFirst
[iOut
*2+1].iFirst
;
2693 p1
= &pIter
->aSeg
[i1
];
2694 p2
= &pIter
->aSeg
[i2
];
2697 if( p1
->pLeaf
==0 ){ /* If p1 is at EOF */
2699 }else if( p2
->pLeaf
==0 ){ /* If p2 is at EOF */
2702 int res
= fts5BufferCompare(&p1
->term
, &p2
->term
);
2707 if( p1
->iRowid
==p2
->iRowid
){
2708 p1
->bDel
= p2
->bDel
;
2711 res
= ((p1
->iRowid
> p2
->iRowid
)==pIter
->bRev
) ? -1 : +1;
2721 pRes
->iFirst
= (u16
)iRes
;
2726 ** Move the seg-iter so that it points to the first rowid on page iLeafPgno.
2727 ** It is an error if leaf iLeafPgno does not exist or contains no rowids.
2729 static void fts5SegIterGotoPage(
2730 Fts5Index
*p
, /* FTS5 backend object */
2731 Fts5SegIter
*pIter
, /* Iterator to advance */
2734 assert( iLeafPgno
>pIter
->iLeafPgno
);
2736 if( iLeafPgno
>pIter
->pSeg
->pgnoLast
){
2737 p
->rc
= FTS5_CORRUPT
;
2739 fts5DataRelease(pIter
->pNextLeaf
);
2740 pIter
->pNextLeaf
= 0;
2741 pIter
->iLeafPgno
= iLeafPgno
-1;
2742 fts5SegIterNextPage(p
, pIter
);
2743 assert( p
->rc
!=SQLITE_OK
|| pIter
->iLeafPgno
==iLeafPgno
);
2745 if( p
->rc
==SQLITE_OK
&& ALWAYS(pIter
->pLeaf
!=0) ){
2747 u8
*a
= pIter
->pLeaf
->p
;
2748 int n
= pIter
->pLeaf
->szLeaf
;
2750 iOff
= fts5LeafFirstRowidOff(pIter
->pLeaf
);
2751 if( iOff
<4 || iOff
>=n
){
2752 p
->rc
= FTS5_CORRUPT
;
2754 iOff
+= fts5GetVarint(&a
[iOff
], (u64
*)&pIter
->iRowid
);
2755 pIter
->iLeafOffset
= iOff
;
2756 fts5SegIterLoadNPos(p
, pIter
);
2763 ** Advance the iterator passed as the second argument until it is at or
2764 ** past rowid iFrom. Regardless of the value of iFrom, the iterator is
2765 ** always advanced at least once.
2767 static void fts5SegIterNextFrom(
2768 Fts5Index
*p
, /* FTS5 backend object */
2769 Fts5SegIter
*pIter
, /* Iterator to advance */
2770 i64 iMatch
/* Advance iterator at least this far */
2772 int bRev
= (pIter
->flags
& FTS5_SEGITER_REVERSE
);
2773 Fts5DlidxIter
*pDlidx
= pIter
->pDlidx
;
2774 int iLeafPgno
= pIter
->iLeafPgno
;
2777 assert( pIter
->flags
& FTS5_SEGITER_ONETERM
);
2778 assert( pIter
->pDlidx
);
2779 assert( pIter
->pLeaf
);
2782 while( !fts5DlidxIterEof(p
, pDlidx
) && iMatch
>fts5DlidxIterRowid(pDlidx
) ){
2783 iLeafPgno
= fts5DlidxIterPgno(pDlidx
);
2784 fts5DlidxIterNext(p
, pDlidx
);
2786 assert_nc( iLeafPgno
>=pIter
->iLeafPgno
|| p
->rc
);
2787 if( iLeafPgno
>pIter
->iLeafPgno
){
2788 fts5SegIterGotoPage(p
, pIter
, iLeafPgno
);
2792 assert( pIter
->pNextLeaf
==0 );
2793 assert( iMatch
<pIter
->iRowid
);
2794 while( !fts5DlidxIterEof(p
, pDlidx
) && iMatch
<fts5DlidxIterRowid(pDlidx
) ){
2795 fts5DlidxIterPrev(p
, pDlidx
);
2797 iLeafPgno
= fts5DlidxIterPgno(pDlidx
);
2799 assert( fts5DlidxIterEof(p
, pDlidx
) || iLeafPgno
<=pIter
->iLeafPgno
);
2801 if( iLeafPgno
<pIter
->iLeafPgno
){
2802 pIter
->iLeafPgno
= iLeafPgno
+1;
2803 fts5SegIterReverseNewPage(p
, pIter
);
2809 if( bMove
&& p
->rc
==SQLITE_OK
) pIter
->xNext(p
, pIter
, 0);
2810 if( pIter
->pLeaf
==0 ) break;
2811 if( bRev
==0 && pIter
->iRowid
>=iMatch
) break;
2812 if( bRev
!=0 && pIter
->iRowid
<=iMatch
) break;
2814 }while( p
->rc
==SQLITE_OK
);
2819 ** Free the iterator object passed as the second argument.
2821 static void fts5MultiIterFree(Fts5Iter
*pIter
){
2824 for(i
=0; i
<pIter
->nSeg
; i
++){
2825 fts5SegIterClear(&pIter
->aSeg
[i
]);
2827 fts5BufferFree(&pIter
->poslist
);
2828 sqlite3_free(pIter
);
2832 static void fts5MultiIterAdvanced(
2833 Fts5Index
*p
, /* FTS5 backend to iterate within */
2834 Fts5Iter
*pIter
, /* Iterator to update aFirst[] array for */
2835 int iChanged
, /* Index of sub-iterator just advanced */
2836 int iMinset
/* Minimum entry in aFirst[] to set */
2839 for(i
=(pIter
->nSeg
+iChanged
)/2; i
>=iMinset
&& p
->rc
==SQLITE_OK
; i
=i
/2){
2841 if( (iEq
= fts5MultiIterDoCompare(pIter
, i
)) ){
2842 Fts5SegIter
*pSeg
= &pIter
->aSeg
[iEq
];
2843 assert( p
->rc
==SQLITE_OK
);
2844 pSeg
->xNext(p
, pSeg
, 0);
2845 i
= pIter
->nSeg
+ iEq
;
2851 ** Sub-iterator iChanged of iterator pIter has just been advanced. It still
2852 ** points to the same term though - just a different rowid. This function
2853 ** attempts to update the contents of the pIter->aFirst[] accordingly.
2854 ** If it does so successfully, 0 is returned. Otherwise 1.
2856 ** If non-zero is returned, the caller should call fts5MultiIterAdvanced()
2857 ** on the iterator instead. That function does the same as this one, except
2858 ** that it deals with more complicated cases as well.
2860 static int fts5MultiIterAdvanceRowid(
2861 Fts5Iter
*pIter
, /* Iterator to update aFirst[] array for */
2862 int iChanged
, /* Index of sub-iterator just advanced */
2863 Fts5SegIter
**ppFirst
2865 Fts5SegIter
*pNew
= &pIter
->aSeg
[iChanged
];
2867 if( pNew
->iRowid
==pIter
->iSwitchRowid
2868 || (pNew
->iRowid
<pIter
->iSwitchRowid
)==pIter
->bRev
2871 Fts5SegIter
*pOther
= &pIter
->aSeg
[iChanged
^ 0x0001];
2872 pIter
->iSwitchRowid
= pIter
->bRev
? SMALLEST_INT64
: LARGEST_INT64
;
2873 for(i
=(pIter
->nSeg
+iChanged
)/2; 1; i
=i
/2){
2874 Fts5CResult
*pRes
= &pIter
->aFirst
[i
];
2876 assert( pNew
->pLeaf
);
2877 assert( pRes
->bTermEq
==0 || pOther
->pLeaf
);
2879 if( pRes
->bTermEq
){
2880 if( pNew
->iRowid
==pOther
->iRowid
){
2882 }else if( (pOther
->iRowid
>pNew
->iRowid
)==pIter
->bRev
){
2883 pIter
->iSwitchRowid
= pOther
->iRowid
;
2885 }else if( (pOther
->iRowid
>pIter
->iSwitchRowid
)==pIter
->bRev
){
2886 pIter
->iSwitchRowid
= pOther
->iRowid
;
2889 pRes
->iFirst
= (u16
)(pNew
- pIter
->aSeg
);
2892 pOther
= &pIter
->aSeg
[ pIter
->aFirst
[i
^ 0x0001].iFirst
];
2901 ** Set the pIter->bEof variable based on the state of the sub-iterators.
2903 static void fts5MultiIterSetEof(Fts5Iter
*pIter
){
2904 Fts5SegIter
*pSeg
= &pIter
->aSeg
[ pIter
->aFirst
[1].iFirst
];
2905 pIter
->base
.bEof
= pSeg
->pLeaf
==0;
2906 pIter
->iSwitchRowid
= pSeg
->iRowid
;
2910 ** Move the iterator to the next entry.
2912 ** If an error occurs, an error code is left in Fts5Index.rc. It is not
2913 ** considered an error if the iterator reaches EOF, or if it is already at
2914 ** EOF when this function is called.
2916 static void fts5MultiIterNext(
2919 int bFrom
, /* True if argument iFrom is valid */
2920 i64 iFrom
/* Advance at least as far as this */
2922 int bUseFrom
= bFrom
;
2923 assert( pIter
->base
.bEof
==0 );
2924 while( p
->rc
==SQLITE_OK
){
2925 int iFirst
= pIter
->aFirst
[1].iFirst
;
2927 Fts5SegIter
*pSeg
= &pIter
->aSeg
[iFirst
];
2928 assert( p
->rc
==SQLITE_OK
);
2929 if( bUseFrom
&& pSeg
->pDlidx
){
2930 fts5SegIterNextFrom(p
, pSeg
, iFrom
);
2932 pSeg
->xNext(p
, pSeg
, &bNewTerm
);
2935 if( pSeg
->pLeaf
==0 || bNewTerm
2936 || fts5MultiIterAdvanceRowid(pIter
, iFirst
, &pSeg
)
2938 fts5MultiIterAdvanced(p
, pIter
, iFirst
, 1);
2939 fts5MultiIterSetEof(pIter
);
2940 pSeg
= &pIter
->aSeg
[pIter
->aFirst
[1].iFirst
];
2941 if( pSeg
->pLeaf
==0 ) return;
2944 fts5AssertMultiIterSetup(p
, pIter
);
2945 assert( pSeg
==&pIter
->aSeg
[pIter
->aFirst
[1].iFirst
] && pSeg
->pLeaf
);
2946 if( pIter
->bSkipEmpty
==0 || pSeg
->nPos
){
2947 pIter
->xSetOutputs(pIter
, pSeg
);
2954 static void fts5MultiIterNext2(
2957 int *pbNewTerm
/* OUT: True if *might* be new term */
2959 assert( pIter
->bSkipEmpty
);
2960 if( p
->rc
==SQLITE_OK
){
2963 int iFirst
= pIter
->aFirst
[1].iFirst
;
2964 Fts5SegIter
*pSeg
= &pIter
->aSeg
[iFirst
];
2967 assert( p
->rc
==SQLITE_OK
);
2968 pSeg
->xNext(p
, pSeg
, &bNewTerm
);
2969 if( pSeg
->pLeaf
==0 || bNewTerm
2970 || fts5MultiIterAdvanceRowid(pIter
, iFirst
, &pSeg
)
2972 fts5MultiIterAdvanced(p
, pIter
, iFirst
, 1);
2973 fts5MultiIterSetEof(pIter
);
2976 fts5AssertMultiIterSetup(p
, pIter
);
2978 }while( fts5MultiIterIsEmpty(p
, pIter
) );
2982 static void fts5IterSetOutputs_Noop(Fts5Iter
*pUnused1
, Fts5SegIter
*pUnused2
){
2983 UNUSED_PARAM2(pUnused1
, pUnused2
);
2986 static Fts5Iter
*fts5MultiIterAlloc(
2987 Fts5Index
*p
, /* FTS5 backend to iterate within */
2991 int nSlot
; /* Power of two >= nSeg */
2993 for(nSlot
=2; nSlot
<nSeg
; nSlot
=nSlot
*2);
2994 pNew
= fts5IdxMalloc(p
,
2995 sizeof(Fts5Iter
) + /* pNew */
2996 sizeof(Fts5SegIter
) * (nSlot
-1) + /* pNew->aSeg[] */
2997 sizeof(Fts5CResult
) * nSlot
/* pNew->aFirst[] */
3001 pNew
->aFirst
= (Fts5CResult
*)&pNew
->aSeg
[nSlot
];
3003 pNew
->xSetOutputs
= fts5IterSetOutputs_Noop
;
3008 static void fts5PoslistCallback(
3011 const u8
*pChunk
, int nChunk
3013 UNUSED_PARAM(pUnused
);
3014 assert_nc( nChunk
>=0 );
3016 fts5BufferSafeAppendBlob((Fts5Buffer
*)pContext
, pChunk
, nChunk
);
3020 typedef struct PoslistCallbackCtx PoslistCallbackCtx
;
3021 struct PoslistCallbackCtx
{
3022 Fts5Buffer
*pBuf
; /* Append to this buffer */
3023 Fts5Colset
*pColset
; /* Restrict matches to this column */
3024 int eState
; /* See above */
3027 typedef struct PoslistOffsetsCtx PoslistOffsetsCtx
;
3028 struct PoslistOffsetsCtx
{
3029 Fts5Buffer
*pBuf
; /* Append to this buffer */
3030 Fts5Colset
*pColset
; /* Restrict matches to this column */
3036 ** TODO: Make this more efficient!
3038 static int fts5IndexColsetTest(Fts5Colset
*pColset
, int iCol
){
3040 for(i
=0; i
<pColset
->nCol
; i
++){
3041 if( pColset
->aiCol
[i
]==iCol
) return 1;
3046 static void fts5PoslistOffsetsCallback(
3049 const u8
*pChunk
, int nChunk
3051 PoslistOffsetsCtx
*pCtx
= (PoslistOffsetsCtx
*)pContext
;
3052 UNUSED_PARAM(pUnused
);
3053 assert_nc( nChunk
>=0 );
3058 i
+= fts5GetVarint32(&pChunk
[i
], iVal
);
3059 iVal
+= pCtx
->iRead
- 2;
3061 if( fts5IndexColsetTest(pCtx
->pColset
, iVal
) ){
3062 fts5BufferSafeAppendVarint(pCtx
->pBuf
, iVal
+ 2 - pCtx
->iWrite
);
3063 pCtx
->iWrite
= iVal
;
3069 static void fts5PoslistFilterCallback(
3072 const u8
*pChunk
, int nChunk
3074 PoslistCallbackCtx
*pCtx
= (PoslistCallbackCtx
*)pContext
;
3075 UNUSED_PARAM(pUnused
);
3076 assert_nc( nChunk
>=0 );
3078 /* Search through to find the first varint with value 1. This is the
3079 ** start of the next columns hits. */
3083 if( pCtx
->eState
==2 ){
3085 fts5FastGetVarint32(pChunk
, i
, iCol
);
3086 if( fts5IndexColsetTest(pCtx
->pColset
, iCol
) ){
3088 fts5BufferSafeAppendVarint(pCtx
->pBuf
, 1);
3095 while( i
<nChunk
&& pChunk
[i
]!=0x01 ){
3096 while( pChunk
[i
] & 0x80 ) i
++;
3100 fts5BufferSafeAppendBlob(pCtx
->pBuf
, &pChunk
[iStart
], i
-iStart
);
3109 fts5FastGetVarint32(pChunk
, i
, iCol
);
3110 pCtx
->eState
= fts5IndexColsetTest(pCtx
->pColset
, iCol
);
3112 fts5BufferSafeAppendBlob(pCtx
->pBuf
, &pChunk
[iStart
], i
-iStart
);
3121 static void fts5ChunkIterate(
3122 Fts5Index
*p
, /* Index object */
3123 Fts5SegIter
*pSeg
, /* Poslist of this iterator */
3124 void *pCtx
, /* Context pointer for xChunk callback */
3125 void (*xChunk
)(Fts5Index
*, void*, const u8
*, int)
3127 int nRem
= pSeg
->nPos
; /* Number of bytes still to come */
3128 Fts5Data
*pData
= 0;
3129 u8
*pChunk
= &pSeg
->pLeaf
->p
[pSeg
->iLeafOffset
];
3130 int nChunk
= MIN(nRem
, pSeg
->pLeaf
->szLeaf
- pSeg
->iLeafOffset
);
3131 int pgno
= pSeg
->iLeafPgno
;
3134 /* This function does not work with detail=none databases. */
3135 assert( p
->pConfig
->eDetail
!=FTS5_DETAIL_NONE
);
3137 if( (pSeg
->flags
& FTS5_SEGITER_REVERSE
)==0 ){
3142 xChunk(p
, pCtx
, pChunk
, nChunk
);
3144 fts5DataRelease(pData
);
3147 }else if( pSeg
->pSeg
==0 ){
3148 p
->rc
= FTS5_CORRUPT
;
3152 pData
= fts5LeafRead(p
, FTS5_SEGMENT_ROWID(pSeg
->pSeg
->iSegid
, pgno
));
3153 if( pData
==0 ) break;
3154 pChunk
= &pData
->p
[4];
3155 nChunk
= MIN(nRem
, pData
->szLeaf
- 4);
3156 if( pgno
==pgnoSave
){
3157 assert( pSeg
->pNextLeaf
==0 );
3158 pSeg
->pNextLeaf
= pData
;
3166 ** Iterator pIter currently points to a valid entry (not EOF). This
3167 ** function appends the position list data for the current entry to
3168 ** buffer pBuf. It does not make a copy of the position-list size
3171 static void fts5SegiterPoslist(
3174 Fts5Colset
*pColset
,
3179 if( 0==fts5BufferGrow(&p
->rc
, pBuf
, pSeg
->nPos
+FTS5_DATA_ZERO_PADDING
) ){
3180 assert( pBuf
->p
!=0 );
3181 assert( pBuf
->nSpace
>= pBuf
->n
+pSeg
->nPos
+FTS5_DATA_ZERO_PADDING
);
3182 memset(&pBuf
->p
[pBuf
->n
+pSeg
->nPos
], 0, FTS5_DATA_ZERO_PADDING
);
3184 fts5ChunkIterate(p
, pSeg
, (void*)pBuf
, fts5PoslistCallback
);
3186 if( p
->pConfig
->eDetail
==FTS5_DETAIL_FULL
){
3187 PoslistCallbackCtx sCtx
;
3189 sCtx
.pColset
= pColset
;
3190 sCtx
.eState
= fts5IndexColsetTest(pColset
, 0);
3191 assert( sCtx
.eState
==0 || sCtx
.eState
==1 );
3192 fts5ChunkIterate(p
, pSeg
, (void*)&sCtx
, fts5PoslistFilterCallback
);
3194 PoslistOffsetsCtx sCtx
;
3195 memset(&sCtx
, 0, sizeof(sCtx
));
3197 sCtx
.pColset
= pColset
;
3198 fts5ChunkIterate(p
, pSeg
, (void*)&sCtx
, fts5PoslistOffsetsCallback
);
3205 ** Parameter pPos points to a buffer containing a position list, size nPos.
3206 ** This function filters it according to pColset (which must be non-NULL)
3207 ** and sets pIter->base.pData/nData to point to the new position list.
3208 ** If memory is required for the new position list, use buffer pIter->poslist.
3209 ** Or, if the new position list is a contiguous subset of the input, set
3210 ** pIter->base.pData/nData to point directly to it.
3212 ** This function is a no-op if *pRc is other than SQLITE_OK when it is
3213 ** called. If an OOM error is encountered, *pRc is set to SQLITE_NOMEM
3214 ** before returning.
3216 static void fts5IndexExtractColset(
3218 Fts5Colset
*pColset
, /* Colset to filter on */
3219 const u8
*pPos
, int nPos
, /* Position list */
3222 if( *pRc
==SQLITE_OK
){
3224 const u8
*aCopy
= p
;
3225 const u8
*pEnd
= &p
[nPos
]; /* One byte past end of position list */
3229 if( pColset
->nCol
>1 && sqlite3Fts5BufferSize(pRc
, &pIter
->poslist
, nPos
) ){
3234 while( pColset
->aiCol
[i
]<iCurrent
){
3236 if( i
==pColset
->nCol
){
3237 pIter
->base
.pData
= pIter
->poslist
.p
;
3238 pIter
->base
.nData
= pIter
->poslist
.n
;
3243 /* Advance pointer p until it points to pEnd or an 0x01 byte that is
3244 ** not part of a varint */
3245 while( p
<pEnd
&& *p
!=0x01 ){
3246 while( *p
++ & 0x80 );
3249 if( pColset
->aiCol
[i
]==iCurrent
){
3250 if( pColset
->nCol
==1 ){
3251 pIter
->base
.pData
= aCopy
;
3252 pIter
->base
.nData
= p
-aCopy
;
3255 fts5BufferSafeAppendBlob(&pIter
->poslist
, aCopy
, p
-aCopy
);
3258 pIter
->base
.pData
= pIter
->poslist
.p
;
3259 pIter
->base
.nData
= pIter
->poslist
.n
;
3264 if( iCurrent
& 0x80 ){
3266 p
+= fts5GetVarint32(p
, iCurrent
);
3274 ** xSetOutputs callback used by detail=none tables.
3276 static void fts5IterSetOutputs_None(Fts5Iter
*pIter
, Fts5SegIter
*pSeg
){
3277 assert( pIter
->pIndex
->pConfig
->eDetail
==FTS5_DETAIL_NONE
);
3278 pIter
->base
.iRowid
= pSeg
->iRowid
;
3279 pIter
->base
.nData
= pSeg
->nPos
;
3283 ** xSetOutputs callback used by detail=full and detail=col tables when no
3284 ** column filters are specified.
3286 static void fts5IterSetOutputs_Nocolset(Fts5Iter
*pIter
, Fts5SegIter
*pSeg
){
3287 pIter
->base
.iRowid
= pSeg
->iRowid
;
3288 pIter
->base
.nData
= pSeg
->nPos
;
3290 assert( pIter
->pIndex
->pConfig
->eDetail
!=FTS5_DETAIL_NONE
);
3291 assert( pIter
->pColset
==0 );
3293 if( pSeg
->iLeafOffset
+pSeg
->nPos
<=pSeg
->pLeaf
->szLeaf
){
3294 /* All data is stored on the current page. Populate the output
3295 ** variables to point into the body of the page object. */
3296 pIter
->base
.pData
= &pSeg
->pLeaf
->p
[pSeg
->iLeafOffset
];
3298 /* The data is distributed over two or more pages. Copy it into the
3299 ** Fts5Iter.poslist buffer and then set the output pointer to point
3300 ** to this buffer. */
3301 fts5BufferZero(&pIter
->poslist
);
3302 fts5SegiterPoslist(pIter
->pIndex
, pSeg
, 0, &pIter
->poslist
);
3303 pIter
->base
.pData
= pIter
->poslist
.p
;
3308 ** xSetOutputs callback used when the Fts5Colset object has nCol==0 (match
3309 ** against no columns at all).
3311 static void fts5IterSetOutputs_ZeroColset(Fts5Iter
*pIter
, Fts5SegIter
*pSeg
){
3313 pIter
->base
.nData
= 0;
3317 ** xSetOutputs callback used by detail=col when there is a column filter
3318 ** and there are 100 or more columns. Also called as a fallback from
3319 ** fts5IterSetOutputs_Col100 if the column-list spans more than one page.
3321 static void fts5IterSetOutputs_Col(Fts5Iter
*pIter
, Fts5SegIter
*pSeg
){
3322 fts5BufferZero(&pIter
->poslist
);
3323 fts5SegiterPoslist(pIter
->pIndex
, pSeg
, pIter
->pColset
, &pIter
->poslist
);
3324 pIter
->base
.iRowid
= pSeg
->iRowid
;
3325 pIter
->base
.pData
= pIter
->poslist
.p
;
3326 pIter
->base
.nData
= pIter
->poslist
.n
;
3330 ** xSetOutputs callback used when:
3333 ** * there is a column filter, and
3334 ** * the table contains 100 or fewer columns.
3336 ** The last point is to ensure all column numbers are stored as
3337 ** single-byte varints.
3339 static void fts5IterSetOutputs_Col100(Fts5Iter
*pIter
, Fts5SegIter
*pSeg
){
3341 assert( pIter
->pIndex
->pConfig
->eDetail
==FTS5_DETAIL_COLUMNS
);
3342 assert( pIter
->pColset
);
3344 if( pSeg
->iLeafOffset
+pSeg
->nPos
>pSeg
->pLeaf
->szLeaf
){
3345 fts5IterSetOutputs_Col(pIter
, pSeg
);
3347 u8
*a
= (u8
*)&pSeg
->pLeaf
->p
[pSeg
->iLeafOffset
];
3348 u8
*pEnd
= (u8
*)&a
[pSeg
->nPos
];
3350 int *aiCol
= pIter
->pColset
->aiCol
;
3351 int *aiColEnd
= &aiCol
[pIter
->pColset
->nCol
];
3353 u8
*aOut
= pIter
->poslist
.p
;
3356 pIter
->base
.iRowid
= pSeg
->iRowid
;
3359 iPrev
+= (int)a
++[0] - 2;
3360 while( *aiCol
<iPrev
){
3362 if( aiCol
==aiColEnd
) goto setoutputs_col_out
;
3364 if( *aiCol
==iPrev
){
3365 *aOut
++ = (u8
)((iPrev
- iPrevOut
) + 2);
3371 pIter
->base
.pData
= pIter
->poslist
.p
;
3372 pIter
->base
.nData
= aOut
- pIter
->poslist
.p
;
3377 ** xSetOutputs callback used by detail=full when there is a column filter.
3379 static void fts5IterSetOutputs_Full(Fts5Iter
*pIter
, Fts5SegIter
*pSeg
){
3380 Fts5Colset
*pColset
= pIter
->pColset
;
3381 pIter
->base
.iRowid
= pSeg
->iRowid
;
3383 assert( pIter
->pIndex
->pConfig
->eDetail
==FTS5_DETAIL_FULL
);
3386 if( pSeg
->iLeafOffset
+pSeg
->nPos
<=pSeg
->pLeaf
->szLeaf
){
3387 /* All data is stored on the current page. Populate the output
3388 ** variables to point into the body of the page object. */
3389 const u8
*a
= &pSeg
->pLeaf
->p
[pSeg
->iLeafOffset
];
3390 int *pRc
= &pIter
->pIndex
->rc
;
3391 fts5BufferZero(&pIter
->poslist
);
3392 fts5IndexExtractColset(pRc
, pColset
, a
, pSeg
->nPos
, pIter
);
3394 /* The data is distributed over two or more pages. Copy it into the
3395 ** Fts5Iter.poslist buffer and then set the output pointer to point
3396 ** to this buffer. */
3397 fts5BufferZero(&pIter
->poslist
);
3398 fts5SegiterPoslist(pIter
->pIndex
, pSeg
, pColset
, &pIter
->poslist
);
3399 pIter
->base
.pData
= pIter
->poslist
.p
;
3400 pIter
->base
.nData
= pIter
->poslist
.n
;
3404 static void fts5IterSetOutputCb(int *pRc
, Fts5Iter
*pIter
){
3405 assert( pIter
!=0 || (*pRc
)!=SQLITE_OK
);
3406 if( *pRc
==SQLITE_OK
){
3407 Fts5Config
*pConfig
= pIter
->pIndex
->pConfig
;
3408 if( pConfig
->eDetail
==FTS5_DETAIL_NONE
){
3409 pIter
->xSetOutputs
= fts5IterSetOutputs_None
;
3412 else if( pIter
->pColset
==0 ){
3413 pIter
->xSetOutputs
= fts5IterSetOutputs_Nocolset
;
3416 else if( pIter
->pColset
->nCol
==0 ){
3417 pIter
->xSetOutputs
= fts5IterSetOutputs_ZeroColset
;
3420 else if( pConfig
->eDetail
==FTS5_DETAIL_FULL
){
3421 pIter
->xSetOutputs
= fts5IterSetOutputs_Full
;
3425 assert( pConfig
->eDetail
==FTS5_DETAIL_COLUMNS
);
3426 if( pConfig
->nCol
<=100 ){
3427 pIter
->xSetOutputs
= fts5IterSetOutputs_Col100
;
3428 sqlite3Fts5BufferSize(pRc
, &pIter
->poslist
, pConfig
->nCol
);
3430 pIter
->xSetOutputs
= fts5IterSetOutputs_Col
;
3438 ** Allocate a new Fts5Iter object.
3440 ** The new object will be used to iterate through data in structure pStruct.
3441 ** If iLevel is -ve, then all data in all segments is merged. Or, if iLevel
3442 ** is zero or greater, data from the first nSegment segments on level iLevel
3445 ** The iterator initially points to the first term/rowid entry in the
3448 static void fts5MultiIterNew(
3449 Fts5Index
*p
, /* FTS5 backend to iterate within */
3450 Fts5Structure
*pStruct
, /* Structure of specific index */
3451 int flags
, /* FTS5INDEX_QUERY_XXX flags */
3452 Fts5Colset
*pColset
, /* Colset to filter on (or NULL) */
3453 const u8
*pTerm
, int nTerm
, /* Term to seek to (or NULL/0) */
3454 int iLevel
, /* Level to iterate (-1 for all) */
3455 int nSegment
, /* Number of segments to merge (iLevel>=0) */
3456 Fts5Iter
**ppOut
/* New object */
3458 int nSeg
= 0; /* Number of segment-iters in use */
3459 int iIter
= 0; /* */
3460 int iSeg
; /* Used to iterate through segments */
3461 Fts5StructureLevel
*pLvl
;
3464 assert( (pTerm
==0 && nTerm
==0) || iLevel
<0 );
3466 /* Allocate space for the new multi-seg-iterator. */
3467 if( p
->rc
==SQLITE_OK
){
3469 assert( pStruct
->nSegment
==fts5StructureCountSegments(pStruct
) );
3470 nSeg
= pStruct
->nSegment
;
3471 nSeg
+= (p
->pHash
? 1 : 0);
3473 nSeg
= MIN(pStruct
->aLevel
[iLevel
].nSeg
, nSegment
);
3476 *ppOut
= pNew
= fts5MultiIterAlloc(p
, nSeg
);
3478 assert( p
->rc
!=SQLITE_OK
);
3479 goto fts5MultiIterNew_post_check
;
3481 pNew
->bRev
= (0!=(flags
& FTS5INDEX_QUERY_DESC
));
3482 pNew
->bSkipEmpty
= (0!=(flags
& FTS5INDEX_QUERY_SKIPEMPTY
));
3483 pNew
->pColset
= pColset
;
3484 if( (flags
& FTS5INDEX_QUERY_NOOUTPUT
)==0 ){
3485 fts5IterSetOutputCb(&p
->rc
, pNew
);
3488 /* Initialize each of the component segment iterators. */
3489 if( p
->rc
==SQLITE_OK
){
3491 Fts5StructureLevel
*pEnd
= &pStruct
->aLevel
[pStruct
->nLevel
];
3493 /* Add a segment iterator for the current contents of the hash table. */
3494 Fts5SegIter
*pIter
= &pNew
->aSeg
[iIter
++];
3495 fts5SegIterHashInit(p
, pTerm
, nTerm
, flags
, pIter
);
3497 for(pLvl
=&pStruct
->aLevel
[0]; pLvl
<pEnd
; pLvl
++){
3498 for(iSeg
=pLvl
->nSeg
-1; iSeg
>=0; iSeg
--){
3499 Fts5StructureSegment
*pSeg
= &pLvl
->aSeg
[iSeg
];
3500 Fts5SegIter
*pIter
= &pNew
->aSeg
[iIter
++];
3502 fts5SegIterInit(p
, pSeg
, pIter
);
3504 fts5SegIterSeekInit(p
, pTerm
, nTerm
, flags
, pSeg
, pIter
);
3509 pLvl
= &pStruct
->aLevel
[iLevel
];
3510 for(iSeg
=nSeg
-1; iSeg
>=0; iSeg
--){
3511 fts5SegIterInit(p
, &pLvl
->aSeg
[iSeg
], &pNew
->aSeg
[iIter
++]);
3514 assert( iIter
==nSeg
);
3517 /* If the above was successful, each component iterators now points
3518 ** to the first entry in its segment. In this case initialize the
3519 ** aFirst[] array. Or, if an error has occurred, free the iterator
3520 ** object and set the output variable to NULL. */
3521 if( p
->rc
==SQLITE_OK
){
3522 for(iIter
=pNew
->nSeg
-1; iIter
>0; iIter
--){
3524 if( (iEq
= fts5MultiIterDoCompare(pNew
, iIter
)) ){
3525 Fts5SegIter
*pSeg
= &pNew
->aSeg
[iEq
];
3526 if( p
->rc
==SQLITE_OK
) pSeg
->xNext(p
, pSeg
, 0);
3527 fts5MultiIterAdvanced(p
, pNew
, iEq
, iIter
);
3530 fts5MultiIterSetEof(pNew
);
3531 fts5AssertMultiIterSetup(p
, pNew
);
3533 if( pNew
->bSkipEmpty
&& fts5MultiIterIsEmpty(p
, pNew
) ){
3534 fts5MultiIterNext(p
, pNew
, 0, 0);
3535 }else if( pNew
->base
.bEof
==0 ){
3536 Fts5SegIter
*pSeg
= &pNew
->aSeg
[pNew
->aFirst
[1].iFirst
];
3537 pNew
->xSetOutputs(pNew
, pSeg
);
3541 fts5MultiIterFree(pNew
);
3545 fts5MultiIterNew_post_check
:
3546 assert( (*ppOut
)!=0 || p
->rc
!=SQLITE_OK
);
3551 ** Create an Fts5Iter that iterates through the doclist provided
3552 ** as the second argument.
3554 static void fts5MultiIterNew2(
3555 Fts5Index
*p
, /* FTS5 backend to iterate within */
3556 Fts5Data
*pData
, /* Doclist to iterate through */
3557 int bDesc
, /* True for descending rowid order */
3558 Fts5Iter
**ppOut
/* New object */
3561 pNew
= fts5MultiIterAlloc(p
, 2);
3563 Fts5SegIter
*pIter
= &pNew
->aSeg
[1];
3565 pIter
->flags
= FTS5_SEGITER_ONETERM
;
3566 if( pData
->szLeaf
>0 ){
3567 pIter
->pLeaf
= pData
;
3568 pIter
->iLeafOffset
= fts5GetVarint(pData
->p
, (u64
*)&pIter
->iRowid
);
3569 pIter
->iEndofDoclist
= pData
->nn
;
3570 pNew
->aFirst
[1].iFirst
= 1;
3573 pIter
->flags
|= FTS5_SEGITER_REVERSE
;
3574 fts5SegIterReverseInitPage(p
, pIter
);
3576 fts5SegIterLoadNPos(p
, pIter
);
3580 pNew
->base
.bEof
= 1;
3582 fts5SegIterSetNext(p
, pIter
);
3587 fts5DataRelease(pData
);
3591 ** Return true if the iterator is at EOF or if an error has occurred.
3594 static int fts5MultiIterEof(Fts5Index
*p
, Fts5Iter
*pIter
){
3595 assert( pIter
!=0 || p
->rc
!=SQLITE_OK
);
3596 assert( p
->rc
!=SQLITE_OK
3597 || (pIter
->aSeg
[ pIter
->aFirst
[1].iFirst
].pLeaf
==0)==pIter
->base
.bEof
3599 return (p
->rc
|| pIter
->base
.bEof
);
3603 ** Return the rowid of the entry that the iterator currently points
3604 ** to. If the iterator points to EOF when this function is called the
3605 ** results are undefined.
3607 static i64
fts5MultiIterRowid(Fts5Iter
*pIter
){
3608 assert( pIter
->aSeg
[ pIter
->aFirst
[1].iFirst
].pLeaf
);
3609 return pIter
->aSeg
[ pIter
->aFirst
[1].iFirst
].iRowid
;
3613 ** Move the iterator to the next entry at or following iMatch.
3615 static void fts5MultiIterNextFrom(
3622 fts5MultiIterNext(p
, pIter
, 1, iMatch
);
3623 if( fts5MultiIterEof(p
, pIter
) ) break;
3624 iRowid
= fts5MultiIterRowid(pIter
);
3625 if( pIter
->bRev
==0 && iRowid
>=iMatch
) break;
3626 if( pIter
->bRev
!=0 && iRowid
<=iMatch
) break;
3631 ** Return a pointer to a buffer containing the term associated with the
3632 ** entry that the iterator currently points to.
3634 static const u8
*fts5MultiIterTerm(Fts5Iter
*pIter
, int *pn
){
3635 Fts5SegIter
*p
= &pIter
->aSeg
[ pIter
->aFirst
[1].iFirst
];
3641 ** Allocate a new segment-id for the structure pStruct. The new segment
3642 ** id must be between 1 and 65335 inclusive, and must not be used by
3643 ** any currently existing segment. If a free segment id cannot be found,
3644 ** SQLITE_FULL is returned.
3646 ** If an error has already occurred, this function is a no-op. 0 is
3647 ** returned in this case.
3649 static int fts5AllocateSegid(Fts5Index
*p
, Fts5Structure
*pStruct
){
3652 if( p
->rc
==SQLITE_OK
){
3653 if( pStruct
->nSegment
>=FTS5_MAX_SEGMENT
){
3654 p
->rc
= SQLITE_FULL
;
3656 /* FTS5_MAX_SEGMENT is currently defined as 2000. So the following
3657 ** array is 63 elements, or 252 bytes, in size. */
3658 u32 aUsed
[(FTS5_MAX_SEGMENT
+31) / 32];
3662 memset(aUsed
, 0, sizeof(aUsed
));
3663 for(iLvl
=0; iLvl
<pStruct
->nLevel
; iLvl
++){
3664 for(iSeg
=0; iSeg
<pStruct
->aLevel
[iLvl
].nSeg
; iSeg
++){
3665 int iId
= pStruct
->aLevel
[iLvl
].aSeg
[iSeg
].iSegid
;
3666 if( iId
<=FTS5_MAX_SEGMENT
&& iId
>0 ){
3667 aUsed
[(iId
-1) / 32] |= (u32
)1 << ((iId
-1) % 32);
3672 for(i
=0; aUsed
[i
]==0xFFFFFFFF; i
++);
3674 for(iSegid
=0; mask
& ((u32
)1 << iSegid
); iSegid
++);
3678 for(iLvl
=0; iLvl
<pStruct
->nLevel
; iLvl
++){
3679 for(iSeg
=0; iSeg
<pStruct
->aLevel
[iLvl
].nSeg
; iSeg
++){
3680 assert_nc( iSegid
!=pStruct
->aLevel
[iLvl
].aSeg
[iSeg
].iSegid
);
3683 assert_nc( iSegid
>0 && iSegid
<=FTS5_MAX_SEGMENT
);
3686 sqlite3_stmt
*pIdxSelect
= fts5IdxSelectStmt(p
);
3687 if( p
->rc
==SQLITE_OK
){
3688 u8 aBlob
[2] = {0xff, 0xff};
3689 sqlite3_bind_int(pIdxSelect
, 1, iSegid
);
3690 sqlite3_bind_blob(pIdxSelect
, 2, aBlob
, 2, SQLITE_STATIC
);
3691 assert_nc( sqlite3_step(pIdxSelect
)!=SQLITE_ROW
);
3692 p
->rc
= sqlite3_reset(pIdxSelect
);
3693 sqlite3_bind_null(pIdxSelect
, 2);
3704 ** Discard all data currently cached in the hash-tables.
3706 static void fts5IndexDiscardData(Fts5Index
*p
){
3707 assert( p
->pHash
|| p
->nPendingData
==0 );
3709 sqlite3Fts5HashClear(p
->pHash
);
3710 p
->nPendingData
= 0;
3715 ** Return the size of the prefix, in bytes, that buffer
3716 ** (pNew/<length-unknown>) shares with buffer (pOld/nOld).
3718 ** Buffer (pNew/<length-unknown>) is guaranteed to be greater
3719 ** than buffer (pOld/nOld).
3721 static int fts5PrefixCompress(int nOld
, const u8
*pOld
, const u8
*pNew
){
3723 for(i
=0; i
<nOld
; i
++){
3724 if( pOld
[i
]!=pNew
[i
] ) break;
3729 static void fts5WriteDlidxClear(
3731 Fts5SegWriter
*pWriter
,
3732 int bFlush
/* If true, write dlidx to disk */
3735 assert( bFlush
==0 || (pWriter
->nDlidx
>0 && pWriter
->aDlidx
[0].buf
.n
>0) );
3736 for(i
=0; i
<pWriter
->nDlidx
; i
++){
3737 Fts5DlidxWriter
*pDlidx
= &pWriter
->aDlidx
[i
];
3738 if( pDlidx
->buf
.n
==0 ) break;
3740 assert( pDlidx
->pgno
!=0 );
3742 FTS5_DLIDX_ROWID(pWriter
->iSegid
, i
, pDlidx
->pgno
),
3743 pDlidx
->buf
.p
, pDlidx
->buf
.n
3746 sqlite3Fts5BufferZero(&pDlidx
->buf
);
3747 pDlidx
->bPrevValid
= 0;
3752 ** Grow the pWriter->aDlidx[] array to at least nLvl elements in size.
3753 ** Any new array elements are zeroed before returning.
3755 static int fts5WriteDlidxGrow(
3757 Fts5SegWriter
*pWriter
,
3760 if( p
->rc
==SQLITE_OK
&& nLvl
>=pWriter
->nDlidx
){
3761 Fts5DlidxWriter
*aDlidx
= (Fts5DlidxWriter
*)sqlite3_realloc64(
3762 pWriter
->aDlidx
, sizeof(Fts5DlidxWriter
) * nLvl
3765 p
->rc
= SQLITE_NOMEM
;
3767 size_t nByte
= sizeof(Fts5DlidxWriter
) * (nLvl
- pWriter
->nDlidx
);
3768 memset(&aDlidx
[pWriter
->nDlidx
], 0, nByte
);
3769 pWriter
->aDlidx
= aDlidx
;
3770 pWriter
->nDlidx
= nLvl
;
3777 ** If the current doclist-index accumulating in pWriter->aDlidx[] is large
3778 ** enough, flush it to disk and return 1. Otherwise discard it and return
3781 static int fts5WriteFlushDlidx(Fts5Index
*p
, Fts5SegWriter
*pWriter
){
3784 /* If there were FTS5_MIN_DLIDX_SIZE or more empty leaf pages written
3785 ** to the database, also write the doclist-index to disk. */
3786 if( pWriter
->aDlidx
[0].buf
.n
>0 && pWriter
->nEmpty
>=FTS5_MIN_DLIDX_SIZE
){
3789 fts5WriteDlidxClear(p
, pWriter
, bFlag
);
3790 pWriter
->nEmpty
= 0;
3795 ** This function is called whenever processing of the doclist for the
3796 ** last term on leaf page (pWriter->iBtPage) is completed.
3798 ** The doclist-index for that term is currently stored in-memory within the
3799 ** Fts5SegWriter.aDlidx[] array. If it is large enough, this function
3800 ** writes it out to disk. Or, if it is too small to bother with, discards
3803 ** Fts5SegWriter.btterm currently contains the first term on page iBtPage.
3805 static void fts5WriteFlushBtree(Fts5Index
*p
, Fts5SegWriter
*pWriter
){
3808 assert( pWriter
->iBtPage
|| pWriter
->nEmpty
==0 );
3809 if( pWriter
->iBtPage
==0 ) return;
3810 bFlag
= fts5WriteFlushDlidx(p
, pWriter
);
3812 if( p
->rc
==SQLITE_OK
){
3813 const char *z
= (pWriter
->btterm
.n
>0?(const char*)pWriter
->btterm
.p
:"");
3814 /* The following was already done in fts5WriteInit(): */
3815 /* sqlite3_bind_int(p->pIdxWriter, 1, pWriter->iSegid); */
3816 sqlite3_bind_blob(p
->pIdxWriter
, 2, z
, pWriter
->btterm
.n
, SQLITE_STATIC
);
3817 sqlite3_bind_int64(p
->pIdxWriter
, 3, bFlag
+ ((i64
)pWriter
->iBtPage
<<1));
3818 sqlite3_step(p
->pIdxWriter
);
3819 p
->rc
= sqlite3_reset(p
->pIdxWriter
);
3820 sqlite3_bind_null(p
->pIdxWriter
, 2);
3822 pWriter
->iBtPage
= 0;
3826 ** This is called once for each leaf page except the first that contains
3827 ** at least one term. Argument (nTerm/pTerm) is the split-key - a term that
3828 ** is larger than all terms written to earlier leaves, and equal to or
3829 ** smaller than the first term on the new leaf.
3831 ** If an error occurs, an error code is left in Fts5Index.rc. If an error
3832 ** has already occurred when this function is called, it is a no-op.
3834 static void fts5WriteBtreeTerm(
3835 Fts5Index
*p
, /* FTS5 backend object */
3836 Fts5SegWriter
*pWriter
, /* Writer object */
3837 int nTerm
, const u8
*pTerm
/* First term on new page */
3839 fts5WriteFlushBtree(p
, pWriter
);
3840 if( p
->rc
==SQLITE_OK
){
3841 fts5BufferSet(&p
->rc
, &pWriter
->btterm
, nTerm
, pTerm
);
3842 pWriter
->iBtPage
= pWriter
->writer
.pgno
;
3847 ** This function is called when flushing a leaf page that contains no
3848 ** terms at all to disk.
3850 static void fts5WriteBtreeNoTerm(
3851 Fts5Index
*p
, /* FTS5 backend object */
3852 Fts5SegWriter
*pWriter
/* Writer object */
3854 /* If there were no rowids on the leaf page either and the doclist-index
3855 ** has already been started, append an 0x00 byte to it. */
3856 if( pWriter
->bFirstRowidInPage
&& pWriter
->aDlidx
[0].buf
.n
>0 ){
3857 Fts5DlidxWriter
*pDlidx
= &pWriter
->aDlidx
[0];
3858 assert( pDlidx
->bPrevValid
);
3859 sqlite3Fts5BufferAppendVarint(&p
->rc
, &pDlidx
->buf
, 0);
3862 /* Increment the "number of sequential leaves without a term" counter. */
3866 static i64
fts5DlidxExtractFirstRowid(Fts5Buffer
*pBuf
){
3870 iOff
= 1 + fts5GetVarint(&pBuf
->p
[1], (u64
*)&iRowid
);
3871 fts5GetVarint(&pBuf
->p
[iOff
], (u64
*)&iRowid
);
3876 ** Rowid iRowid has just been appended to the current leaf page. It is the
3877 ** first on the page. This function appends an appropriate entry to the current
3880 static void fts5WriteDlidxAppend(
3882 Fts5SegWriter
*pWriter
,
3888 for(i
=0; p
->rc
==SQLITE_OK
&& bDone
==0; i
++){
3890 Fts5DlidxWriter
*pDlidx
= &pWriter
->aDlidx
[i
];
3892 if( pDlidx
->buf
.n
>=p
->pConfig
->pgsz
){
3893 /* The current doclist-index page is full. Write it to disk and push
3894 ** a copy of iRowid (which will become the first rowid on the next
3895 ** doclist-index leaf page) up into the next level of the b-tree
3896 ** hierarchy. If the node being flushed is currently the root node,
3897 ** also push its first rowid upwards. */
3898 pDlidx
->buf
.p
[0] = 0x01; /* Not the root node */
3900 FTS5_DLIDX_ROWID(pWriter
->iSegid
, i
, pDlidx
->pgno
),
3901 pDlidx
->buf
.p
, pDlidx
->buf
.n
3903 fts5WriteDlidxGrow(p
, pWriter
, i
+2);
3904 pDlidx
= &pWriter
->aDlidx
[i
];
3905 if( p
->rc
==SQLITE_OK
&& pDlidx
[1].buf
.n
==0 ){
3906 i64 iFirst
= fts5DlidxExtractFirstRowid(&pDlidx
->buf
);
3908 /* This was the root node. Push its first rowid up to the new root. */
3909 pDlidx
[1].pgno
= pDlidx
->pgno
;
3910 sqlite3Fts5BufferAppendVarint(&p
->rc
, &pDlidx
[1].buf
, 0);
3911 sqlite3Fts5BufferAppendVarint(&p
->rc
, &pDlidx
[1].buf
, pDlidx
->pgno
);
3912 sqlite3Fts5BufferAppendVarint(&p
->rc
, &pDlidx
[1].buf
, iFirst
);
3913 pDlidx
[1].bPrevValid
= 1;
3914 pDlidx
[1].iPrev
= iFirst
;
3917 sqlite3Fts5BufferZero(&pDlidx
->buf
);
3918 pDlidx
->bPrevValid
= 0;
3924 if( pDlidx
->bPrevValid
){
3925 iVal
= iRowid
- pDlidx
->iPrev
;
3927 i64 iPgno
= (i
==0 ? pWriter
->writer
.pgno
: pDlidx
[-1].pgno
);
3928 assert( pDlidx
->buf
.n
==0 );
3929 sqlite3Fts5BufferAppendVarint(&p
->rc
, &pDlidx
->buf
, !bDone
);
3930 sqlite3Fts5BufferAppendVarint(&p
->rc
, &pDlidx
->buf
, iPgno
);
3934 sqlite3Fts5BufferAppendVarint(&p
->rc
, &pDlidx
->buf
, iVal
);
3935 pDlidx
->bPrevValid
= 1;
3936 pDlidx
->iPrev
= iRowid
;
3940 static void fts5WriteFlushLeaf(Fts5Index
*p
, Fts5SegWriter
*pWriter
){
3941 static const u8 zero
[] = { 0x00, 0x00, 0x00, 0x00 };
3942 Fts5PageWriter
*pPage
= &pWriter
->writer
;
3945 assert( (pPage
->pgidx
.n
==0)==(pWriter
->bFirstTermInPage
) );
3947 /* Set the szLeaf header field. */
3948 assert( 0==fts5GetU16(&pPage
->buf
.p
[2]) );
3949 fts5PutU16(&pPage
->buf
.p
[2], (u16
)pPage
->buf
.n
);
3951 if( pWriter
->bFirstTermInPage
){
3952 /* No term was written to this page. */
3953 assert( pPage
->pgidx
.n
==0 );
3954 fts5WriteBtreeNoTerm(p
, pWriter
);
3956 /* Append the pgidx to the page buffer. Set the szLeaf header field. */
3957 fts5BufferAppendBlob(&p
->rc
, &pPage
->buf
, pPage
->pgidx
.n
, pPage
->pgidx
.p
);
3960 /* Write the page out to disk */
3961 iRowid
= FTS5_SEGMENT_ROWID(pWriter
->iSegid
, pPage
->pgno
);
3962 fts5DataWrite(p
, iRowid
, pPage
->buf
.p
, pPage
->buf
.n
);
3964 /* Initialize the next page. */
3965 fts5BufferZero(&pPage
->buf
);
3966 fts5BufferZero(&pPage
->pgidx
);
3967 fts5BufferAppendBlob(&p
->rc
, &pPage
->buf
, 4, zero
);
3968 pPage
->iPrevPgidx
= 0;
3971 /* Increase the leaves written counter */
3972 pWriter
->nLeafWritten
++;
3974 /* The new leaf holds no terms or rowids */
3975 pWriter
->bFirstTermInPage
= 1;
3976 pWriter
->bFirstRowidInPage
= 1;
3980 ** Append term pTerm/nTerm to the segment being written by the writer passed
3981 ** as the second argument.
3983 ** If an error occurs, set the Fts5Index.rc error code. If an error has
3984 ** already occurred, this function is a no-op.
3986 static void fts5WriteAppendTerm(
3988 Fts5SegWriter
*pWriter
,
3989 int nTerm
, const u8
*pTerm
3991 int nPrefix
; /* Bytes of prefix compression for term */
3992 Fts5PageWriter
*pPage
= &pWriter
->writer
;
3993 Fts5Buffer
*pPgidx
= &pWriter
->writer
.pgidx
;
3994 int nMin
= MIN(pPage
->term
.n
, nTerm
);
3996 assert( p
->rc
==SQLITE_OK
);
3997 assert( pPage
->buf
.n
>=4 );
3998 assert( pPage
->buf
.n
>4 || pWriter
->bFirstTermInPage
);
4000 /* If the current leaf page is full, flush it to disk. */
4001 if( (pPage
->buf
.n
+ pPgidx
->n
+ nTerm
+ 2)>=p
->pConfig
->pgsz
){
4002 if( pPage
->buf
.n
>4 ){
4003 fts5WriteFlushLeaf(p
, pWriter
);
4004 if( p
->rc
!=SQLITE_OK
) return;
4006 fts5BufferGrow(&p
->rc
, &pPage
->buf
, nTerm
+FTS5_DATA_PADDING
);
4009 /* TODO1: Updating pgidx here. */
4010 pPgidx
->n
+= sqlite3Fts5PutVarint(
4011 &pPgidx
->p
[pPgidx
->n
], pPage
->buf
.n
- pPage
->iPrevPgidx
4013 pPage
->iPrevPgidx
= pPage
->buf
.n
;
4015 fts5PutU16(&pPgidx
->p
[pPgidx
->n
], pPage
->buf
.n
);
4019 if( pWriter
->bFirstTermInPage
){
4021 if( pPage
->pgno
!=1 ){
4022 /* This is the first term on a leaf that is not the leftmost leaf in
4023 ** the segment b-tree. In this case it is necessary to add a term to
4024 ** the b-tree hierarchy that is (a) larger than the largest term
4025 ** already written to the segment and (b) smaller than or equal to
4026 ** this term. In other words, a prefix of (pTerm/nTerm) that is one
4027 ** byte longer than the longest prefix (pTerm/nTerm) shares with the
4030 ** Usually, the previous term is available in pPage->term. The exception
4031 ** is if this is the first term written in an incremental-merge step.
4032 ** In this case the previous term is not available, so just write a
4033 ** copy of (pTerm/nTerm) into the parent node. This is slightly
4034 ** inefficient, but still correct. */
4036 if( pPage
->term
.n
){
4037 n
= 1 + fts5PrefixCompress(nMin
, pPage
->term
.p
, pTerm
);
4039 fts5WriteBtreeTerm(p
, pWriter
, n
, pTerm
);
4040 if( p
->rc
!=SQLITE_OK
) return;
4041 pPage
= &pWriter
->writer
;
4044 nPrefix
= fts5PrefixCompress(nMin
, pPage
->term
.p
, pTerm
);
4045 fts5BufferAppendVarint(&p
->rc
, &pPage
->buf
, nPrefix
);
4048 /* Append the number of bytes of new data, then the term data itself
4050 fts5BufferAppendVarint(&p
->rc
, &pPage
->buf
, nTerm
- nPrefix
);
4051 fts5BufferAppendBlob(&p
->rc
, &pPage
->buf
, nTerm
- nPrefix
, &pTerm
[nPrefix
]);
4053 /* Update the Fts5PageWriter.term field. */
4054 fts5BufferSet(&p
->rc
, &pPage
->term
, nTerm
, pTerm
);
4055 pWriter
->bFirstTermInPage
= 0;
4057 pWriter
->bFirstRowidInPage
= 0;
4058 pWriter
->bFirstRowidInDoclist
= 1;
4060 assert( p
->rc
|| (pWriter
->nDlidx
>0 && pWriter
->aDlidx
[0].buf
.n
==0) );
4061 pWriter
->aDlidx
[0].pgno
= pPage
->pgno
;
4065 ** Append a rowid and position-list size field to the writers output.
4067 static void fts5WriteAppendRowid(
4069 Fts5SegWriter
*pWriter
,
4072 if( p
->rc
==SQLITE_OK
){
4073 Fts5PageWriter
*pPage
= &pWriter
->writer
;
4075 if( (pPage
->buf
.n
+ pPage
->pgidx
.n
)>=p
->pConfig
->pgsz
){
4076 fts5WriteFlushLeaf(p
, pWriter
);
4079 /* If this is to be the first rowid written to the page, set the
4080 ** rowid-pointer in the page-header. Also append a value to the dlidx
4081 ** buffer, in case a doclist-index is required. */
4082 if( pWriter
->bFirstRowidInPage
){
4083 fts5PutU16(pPage
->buf
.p
, (u16
)pPage
->buf
.n
);
4084 fts5WriteDlidxAppend(p
, pWriter
, iRowid
);
4087 /* Write the rowid. */
4088 if( pWriter
->bFirstRowidInDoclist
|| pWriter
->bFirstRowidInPage
){
4089 fts5BufferAppendVarint(&p
->rc
, &pPage
->buf
, iRowid
);
4091 assert_nc( p
->rc
|| iRowid
>pWriter
->iPrevRowid
);
4092 fts5BufferAppendVarint(&p
->rc
, &pPage
->buf
,
4093 (u64
)iRowid
- (u64
)pWriter
->iPrevRowid
4096 pWriter
->iPrevRowid
= iRowid
;
4097 pWriter
->bFirstRowidInDoclist
= 0;
4098 pWriter
->bFirstRowidInPage
= 0;
4102 static void fts5WriteAppendPoslistData(
4104 Fts5SegWriter
*pWriter
,
4108 Fts5PageWriter
*pPage
= &pWriter
->writer
;
4109 const u8
*a
= aData
;
4112 assert( p
->pConfig
->pgsz
>0 );
4113 while( p
->rc
==SQLITE_OK
4114 && (pPage
->buf
.n
+ pPage
->pgidx
.n
+ n
)>=p
->pConfig
->pgsz
4116 int nReq
= p
->pConfig
->pgsz
- pPage
->buf
.n
- pPage
->pgidx
.n
;
4118 while( nCopy
<nReq
){
4120 nCopy
+= fts5GetVarint(&a
[nCopy
], (u64
*)&dummy
);
4122 fts5BufferAppendBlob(&p
->rc
, &pPage
->buf
, nCopy
, a
);
4125 fts5WriteFlushLeaf(p
, pWriter
);
4128 fts5BufferAppendBlob(&p
->rc
, &pPage
->buf
, n
, a
);
4133 ** Flush any data cached by the writer object to the database. Free any
4134 ** allocations associated with the writer.
4136 static void fts5WriteFinish(
4138 Fts5SegWriter
*pWriter
, /* Writer object */
4139 int *pnLeaf
/* OUT: Number of leaf pages in b-tree */
4142 Fts5PageWriter
*pLeaf
= &pWriter
->writer
;
4143 if( p
->rc
==SQLITE_OK
){
4144 assert( pLeaf
->pgno
>=1 );
4145 if( pLeaf
->buf
.n
>4 ){
4146 fts5WriteFlushLeaf(p
, pWriter
);
4148 *pnLeaf
= pLeaf
->pgno
-1;
4149 if( pLeaf
->pgno
>1 ){
4150 fts5WriteFlushBtree(p
, pWriter
);
4153 fts5BufferFree(&pLeaf
->term
);
4154 fts5BufferFree(&pLeaf
->buf
);
4155 fts5BufferFree(&pLeaf
->pgidx
);
4156 fts5BufferFree(&pWriter
->btterm
);
4158 for(i
=0; i
<pWriter
->nDlidx
; i
++){
4159 sqlite3Fts5BufferFree(&pWriter
->aDlidx
[i
].buf
);
4161 sqlite3_free(pWriter
->aDlidx
);
4164 static void fts5WriteInit(
4166 Fts5SegWriter
*pWriter
,
4169 const int nBuffer
= p
->pConfig
->pgsz
+ FTS5_DATA_PADDING
;
4171 memset(pWriter
, 0, sizeof(Fts5SegWriter
));
4172 pWriter
->iSegid
= iSegid
;
4174 fts5WriteDlidxGrow(p
, pWriter
, 1);
4175 pWriter
->writer
.pgno
= 1;
4176 pWriter
->bFirstTermInPage
= 1;
4177 pWriter
->iBtPage
= 1;
4179 assert( pWriter
->writer
.buf
.n
==0 );
4180 assert( pWriter
->writer
.pgidx
.n
==0 );
4182 /* Grow the two buffers to pgsz + padding bytes in size. */
4183 sqlite3Fts5BufferSize(&p
->rc
, &pWriter
->writer
.pgidx
, nBuffer
);
4184 sqlite3Fts5BufferSize(&p
->rc
, &pWriter
->writer
.buf
, nBuffer
);
4186 if( p
->pIdxWriter
==0 ){
4187 Fts5Config
*pConfig
= p
->pConfig
;
4188 fts5IndexPrepareStmt(p
, &p
->pIdxWriter
, sqlite3_mprintf(
4189 "INSERT INTO '%q'.'%q_idx'(segid,term,pgno) VALUES(?,?,?)",
4190 pConfig
->zDb
, pConfig
->zName
4194 if( p
->rc
==SQLITE_OK
){
4195 /* Initialize the 4-byte leaf-page header to 0x00. */
4196 memset(pWriter
->writer
.buf
.p
, 0, 4);
4197 pWriter
->writer
.buf
.n
= 4;
4199 /* Bind the current output segment id to the index-writer. This is an
4200 ** optimization over binding the same value over and over as rows are
4201 ** inserted into %_idx by the current writer. */
4202 sqlite3_bind_int(p
->pIdxWriter
, 1, pWriter
->iSegid
);
4207 ** Iterator pIter was used to iterate through the input segments of on an
4208 ** incremental merge operation. This function is called if the incremental
4209 ** merge step has finished but the input has not been completely exhausted.
4211 static void fts5TrimSegments(Fts5Index
*p
, Fts5Iter
*pIter
){
4214 memset(&buf
, 0, sizeof(Fts5Buffer
));
4215 for(i
=0; i
<pIter
->nSeg
&& p
->rc
==SQLITE_OK
; i
++){
4216 Fts5SegIter
*pSeg
= &pIter
->aSeg
[i
];
4217 if( pSeg
->pSeg
==0 ){
4219 }else if( pSeg
->pLeaf
==0 ){
4220 /* All keys from this input segment have been transfered to the output.
4221 ** Set both the first and last page-numbers to 0 to indicate that the
4222 ** segment is now empty. */
4223 pSeg
->pSeg
->pgnoLast
= 0;
4224 pSeg
->pSeg
->pgnoFirst
= 0;
4226 int iOff
= pSeg
->iTermLeafOffset
; /* Offset on new first leaf page */
4229 int iId
= pSeg
->pSeg
->iSegid
;
4230 u8 aHdr
[4] = {0x00, 0x00, 0x00, 0x00};
4232 iLeafRowid
= FTS5_SEGMENT_ROWID(iId
, pSeg
->iTermLeafPgno
);
4233 pData
= fts5LeafRead(p
, iLeafRowid
);
4235 if( iOff
>pData
->szLeaf
){
4236 /* This can occur if the pages that the segments occupy overlap - if
4237 ** a single page has been assigned to more than one segment. In
4238 ** this case a prior iteration of this loop may have corrupted the
4239 ** segment currently being trimmed. */
4240 p
->rc
= FTS5_CORRUPT
;
4242 fts5BufferZero(&buf
);
4243 fts5BufferGrow(&p
->rc
, &buf
, pData
->nn
);
4244 fts5BufferAppendBlob(&p
->rc
, &buf
, sizeof(aHdr
), aHdr
);
4245 fts5BufferAppendVarint(&p
->rc
, &buf
, pSeg
->term
.n
);
4246 fts5BufferAppendBlob(&p
->rc
, &buf
, pSeg
->term
.n
, pSeg
->term
.p
);
4247 fts5BufferAppendBlob(&p
->rc
, &buf
, pData
->szLeaf
-iOff
,&pData
->p
[iOff
]);
4248 if( p
->rc
==SQLITE_OK
){
4249 /* Set the szLeaf field */
4250 fts5PutU16(&buf
.p
[2], (u16
)buf
.n
);
4253 /* Set up the new page-index array */
4254 fts5BufferAppendVarint(&p
->rc
, &buf
, 4);
4255 if( pSeg
->iLeafPgno
==pSeg
->iTermLeafPgno
4256 && pSeg
->iEndofDoclist
<pData
->szLeaf
4257 && pSeg
->iPgidxOff
<=pData
->nn
4259 int nDiff
= pData
->szLeaf
- pSeg
->iEndofDoclist
;
4260 fts5BufferAppendVarint(&p
->rc
, &buf
, buf
.n
- 1 - nDiff
- 4);
4261 fts5BufferAppendBlob(&p
->rc
, &buf
,
4262 pData
->nn
- pSeg
->iPgidxOff
, &pData
->p
[pSeg
->iPgidxOff
]
4266 pSeg
->pSeg
->pgnoFirst
= pSeg
->iTermLeafPgno
;
4267 fts5DataDelete(p
, FTS5_SEGMENT_ROWID(iId
, 1), iLeafRowid
);
4268 fts5DataWrite(p
, iLeafRowid
, buf
.p
, buf
.n
);
4270 fts5DataRelease(pData
);
4274 fts5BufferFree(&buf
);
4277 static void fts5MergeChunkCallback(
4280 const u8
*pChunk
, int nChunk
4282 Fts5SegWriter
*pWriter
= (Fts5SegWriter
*)pCtx
;
4283 fts5WriteAppendPoslistData(p
, pWriter
, pChunk
, nChunk
);
4289 static void fts5IndexMergeLevel(
4290 Fts5Index
*p
, /* FTS5 backend object */
4291 Fts5Structure
**ppStruct
, /* IN/OUT: Stucture of index */
4292 int iLvl
, /* Level to read input from */
4293 int *pnRem
/* Write up to this many output leaves */
4295 Fts5Structure
*pStruct
= *ppStruct
;
4296 Fts5StructureLevel
*pLvl
= &pStruct
->aLevel
[iLvl
];
4297 Fts5StructureLevel
*pLvlOut
;
4298 Fts5Iter
*pIter
= 0; /* Iterator to read input data */
4299 int nRem
= pnRem
? *pnRem
: 0; /* Output leaf pages left to write */
4300 int nInput
; /* Number of input segments */
4301 Fts5SegWriter writer
; /* Writer object */
4302 Fts5StructureSegment
*pSeg
; /* Output segment */
4304 int bOldest
; /* True if the output segment is the oldest */
4305 int eDetail
= p
->pConfig
->eDetail
;
4306 const int flags
= FTS5INDEX_QUERY_NOOUTPUT
;
4307 int bTermWritten
= 0; /* True if current term already output */
4309 assert( iLvl
<pStruct
->nLevel
);
4310 assert( pLvl
->nMerge
<=pLvl
->nSeg
);
4312 memset(&writer
, 0, sizeof(Fts5SegWriter
));
4313 memset(&term
, 0, sizeof(Fts5Buffer
));
4315 pLvlOut
= &pStruct
->aLevel
[iLvl
+1];
4316 assert( pLvlOut
->nSeg
>0 );
4317 nInput
= pLvl
->nMerge
;
4318 pSeg
= &pLvlOut
->aSeg
[pLvlOut
->nSeg
-1];
4320 fts5WriteInit(p
, &writer
, pSeg
->iSegid
);
4321 writer
.writer
.pgno
= pSeg
->pgnoLast
+1;
4324 int iSegid
= fts5AllocateSegid(p
, pStruct
);
4326 /* Extend the Fts5Structure object as required to ensure the output
4327 ** segment exists. */
4328 if( iLvl
==pStruct
->nLevel
-1 ){
4329 fts5StructureAddLevel(&p
->rc
, ppStruct
);
4330 pStruct
= *ppStruct
;
4332 fts5StructureExtendLevel(&p
->rc
, pStruct
, iLvl
+1, 1, 0);
4334 pLvl
= &pStruct
->aLevel
[iLvl
];
4335 pLvlOut
= &pStruct
->aLevel
[iLvl
+1];
4337 fts5WriteInit(p
, &writer
, iSegid
);
4339 /* Add the new segment to the output level */
4340 pSeg
= &pLvlOut
->aSeg
[pLvlOut
->nSeg
];
4342 pSeg
->pgnoFirst
= 1;
4343 pSeg
->iSegid
= iSegid
;
4344 pStruct
->nSegment
++;
4346 /* Read input from all segments in the input level */
4347 nInput
= pLvl
->nSeg
;
4349 bOldest
= (pLvlOut
->nSeg
==1 && pStruct
->nLevel
==iLvl
+2);
4352 for(fts5MultiIterNew(p
, pStruct
, flags
, 0, 0, 0, iLvl
, nInput
, &pIter
);
4353 fts5MultiIterEof(p
, pIter
)==0;
4354 fts5MultiIterNext(p
, pIter
, 0, 0)
4356 Fts5SegIter
*pSegIter
= &pIter
->aSeg
[ pIter
->aFirst
[1].iFirst
];
4357 int nPos
; /* position-list size field value */
4361 pTerm
= fts5MultiIterTerm(pIter
, &nTerm
);
4362 if( nTerm
!=term
.n
|| fts5Memcmp(pTerm
, term
.p
, nTerm
) ){
4363 if( pnRem
&& writer
.nLeafWritten
>nRem
){
4366 fts5BufferSet(&p
->rc
, &term
, nTerm
, pTerm
);
4370 /* Check for key annihilation. */
4371 if( pSegIter
->nPos
==0 && (bOldest
|| pSegIter
->bDel
==0) ) continue;
4373 if( p
->rc
==SQLITE_OK
&& bTermWritten
==0 ){
4374 /* This is a new term. Append a term to the output segment. */
4375 fts5WriteAppendTerm(p
, &writer
, nTerm
, pTerm
);
4379 /* Append the rowid to the output */
4380 /* WRITEPOSLISTSIZE */
4381 fts5WriteAppendRowid(p
, &writer
, fts5MultiIterRowid(pIter
));
4383 if( eDetail
==FTS5_DETAIL_NONE
){
4384 if( pSegIter
->bDel
){
4385 fts5BufferAppendVarint(&p
->rc
, &writer
.writer
.buf
, 0);
4386 if( pSegIter
->nPos
>0 ){
4387 fts5BufferAppendVarint(&p
->rc
, &writer
.writer
.buf
, 0);
4391 /* Append the position-list data to the output */
4392 nPos
= pSegIter
->nPos
*2 + pSegIter
->bDel
;
4393 fts5BufferAppendVarint(&p
->rc
, &writer
.writer
.buf
, nPos
);
4394 fts5ChunkIterate(p
, pSegIter
, (void*)&writer
, fts5MergeChunkCallback
);
4398 /* Flush the last leaf page to disk. Set the output segment b-tree height
4399 ** and last leaf page number at the same time. */
4400 fts5WriteFinish(p
, &writer
, &pSeg
->pgnoLast
);
4402 assert( pIter
!=0 || p
->rc
!=SQLITE_OK
);
4403 if( fts5MultiIterEof(p
, pIter
) ){
4406 /* Remove the redundant segments from the %_data table */
4407 for(i
=0; i
<nInput
; i
++){
4408 fts5DataRemoveSegment(p
, pLvl
->aSeg
[i
].iSegid
);
4411 /* Remove the redundant segments from the input level */
4412 if( pLvl
->nSeg
!=nInput
){
4413 int nMove
= (pLvl
->nSeg
- nInput
) * sizeof(Fts5StructureSegment
);
4414 memmove(pLvl
->aSeg
, &pLvl
->aSeg
[nInput
], nMove
);
4416 pStruct
->nSegment
-= nInput
;
4417 pLvl
->nSeg
-= nInput
;
4419 if( pSeg
->pgnoLast
==0 ){
4421 pStruct
->nSegment
--;
4424 assert( pSeg
->pgnoLast
>0 );
4425 fts5TrimSegments(p
, pIter
);
4426 pLvl
->nMerge
= nInput
;
4429 fts5MultiIterFree(pIter
);
4430 fts5BufferFree(&term
);
4431 if( pnRem
) *pnRem
-= writer
.nLeafWritten
;
4435 ** Do up to nPg pages of automerge work on the index.
4437 ** Return true if any changes were actually made, or false otherwise.
4439 static int fts5IndexMerge(
4440 Fts5Index
*p
, /* FTS5 backend object */
4441 Fts5Structure
**ppStruct
, /* IN/OUT: Current structure of index */
4442 int nPg
, /* Pages of work to do */
4443 int nMin
/* Minimum number of segments to merge */
4447 Fts5Structure
*pStruct
= *ppStruct
;
4448 while( nRem
>0 && p
->rc
==SQLITE_OK
){
4449 int iLvl
; /* To iterate through levels */
4450 int iBestLvl
= 0; /* Level offering the most input segments */
4451 int nBest
= 0; /* Number of input segments on best level */
4453 /* Set iBestLvl to the level to read input segments from. */
4454 assert( pStruct
->nLevel
>0 );
4455 for(iLvl
=0; iLvl
<pStruct
->nLevel
; iLvl
++){
4456 Fts5StructureLevel
*pLvl
= &pStruct
->aLevel
[iLvl
];
4458 if( pLvl
->nMerge
>nBest
){
4460 nBest
= pLvl
->nMerge
;
4464 if( pLvl
->nSeg
>nBest
){
4470 /* If nBest is still 0, then the index must be empty. */
4472 for(iLvl
=0; nBest
==0 && iLvl
<pStruct
->nLevel
; iLvl
++){
4473 assert( pStruct
->aLevel
[iLvl
].nSeg
==0 );
4477 if( nBest
<nMin
&& pStruct
->aLevel
[iBestLvl
].nMerge
==0 ){
4481 fts5IndexMergeLevel(p
, &pStruct
, iBestLvl
, &nRem
);
4482 if( p
->rc
==SQLITE_OK
&& pStruct
->aLevel
[iBestLvl
].nMerge
==0 ){
4483 fts5StructurePromote(p
, iBestLvl
+1, pStruct
);
4486 *ppStruct
= pStruct
;
4491 ** A total of nLeaf leaf pages of data has just been flushed to a level-0
4492 ** segment. This function updates the write-counter accordingly and, if
4493 ** necessary, performs incremental merge work.
4495 ** If an error occurs, set the Fts5Index.rc error code. If an error has
4496 ** already occurred, this function is a no-op.
4498 static void fts5IndexAutomerge(
4499 Fts5Index
*p
, /* FTS5 backend object */
4500 Fts5Structure
**ppStruct
, /* IN/OUT: Current structure of index */
4501 int nLeaf
/* Number of output leaves just written */
4503 if( p
->rc
==SQLITE_OK
&& p
->pConfig
->nAutomerge
>0 && ALWAYS((*ppStruct
)!=0) ){
4504 Fts5Structure
*pStruct
= *ppStruct
;
4505 u64 nWrite
; /* Initial value of write-counter */
4506 int nWork
; /* Number of work-quanta to perform */
4507 int nRem
; /* Number of leaf pages left to write */
4509 /* Update the write-counter. While doing so, set nWork. */
4510 nWrite
= pStruct
->nWriteCounter
;
4511 nWork
= (int)(((nWrite
+ nLeaf
) / p
->nWorkUnit
) - (nWrite
/ p
->nWorkUnit
));
4512 pStruct
->nWriteCounter
+= nLeaf
;
4513 nRem
= (int)(p
->nWorkUnit
* nWork
* pStruct
->nLevel
);
4515 fts5IndexMerge(p
, ppStruct
, nRem
, p
->pConfig
->nAutomerge
);
4519 static void fts5IndexCrisismerge(
4520 Fts5Index
*p
, /* FTS5 backend object */
4521 Fts5Structure
**ppStruct
/* IN/OUT: Current structure of index */
4523 const int nCrisis
= p
->pConfig
->nCrisisMerge
;
4524 Fts5Structure
*pStruct
= *ppStruct
;
4527 assert( p
->rc
!=SQLITE_OK
|| pStruct
->nLevel
>0 );
4528 while( p
->rc
==SQLITE_OK
&& pStruct
->aLevel
[iLvl
].nSeg
>=nCrisis
){
4529 fts5IndexMergeLevel(p
, &pStruct
, iLvl
, 0);
4530 assert( p
->rc
!=SQLITE_OK
|| pStruct
->nLevel
>(iLvl
+1) );
4531 fts5StructurePromote(p
, iLvl
+1, pStruct
);
4534 *ppStruct
= pStruct
;
4537 static int fts5IndexReturn(Fts5Index
*p
){
4543 typedef struct Fts5FlushCtx Fts5FlushCtx
;
4544 struct Fts5FlushCtx
{
4546 Fts5SegWriter writer
;
4550 ** Buffer aBuf[] contains a list of varints, all small enough to fit
4551 ** in a 32-bit integer. Return the size of the largest prefix of this
4552 ** list nMax bytes or less in size.
4554 static int fts5PoslistPrefix(const u8
*aBuf
, int nMax
){
4557 ret
= fts5GetVarint32(aBuf
, dummy
);
4560 int i
= fts5GetVarint32(&aBuf
[ret
], dummy
);
4561 if( (ret
+ i
) > nMax
) break;
4569 ** Flush the contents of in-memory hash table iHash to a new level-0
4570 ** segment on disk. Also update the corresponding structure record.
4572 ** If an error occurs, set the Fts5Index.rc error code. If an error has
4573 ** already occurred, this function is a no-op.
4575 static void fts5FlushOneHash(Fts5Index
*p
){
4576 Fts5Hash
*pHash
= p
->pHash
;
4577 Fts5Structure
*pStruct
;
4579 int pgnoLast
= 0; /* Last leaf page number in segment */
4581 /* Obtain a reference to the index structure and allocate a new segment-id
4582 ** for the new level-0 segment. */
4583 pStruct
= fts5StructureRead(p
);
4584 iSegid
= fts5AllocateSegid(p
, pStruct
);
4585 fts5StructureInvalidate(p
);
4588 const int pgsz
= p
->pConfig
->pgsz
;
4589 int eDetail
= p
->pConfig
->eDetail
;
4590 Fts5StructureSegment
*pSeg
; /* New segment within pStruct */
4591 Fts5Buffer
*pBuf
; /* Buffer in which to assemble leaf page */
4592 Fts5Buffer
*pPgidx
; /* Buffer in which to assemble pgidx */
4594 Fts5SegWriter writer
;
4595 fts5WriteInit(p
, &writer
, iSegid
);
4597 pBuf
= &writer
.writer
.buf
;
4598 pPgidx
= &writer
.writer
.pgidx
;
4600 /* fts5WriteInit() should have initialized the buffers to (most likely)
4601 ** the maximum space required. */
4602 assert( p
->rc
|| pBuf
->nSpace
>=(pgsz
+ FTS5_DATA_PADDING
) );
4603 assert( p
->rc
|| pPgidx
->nSpace
>=(pgsz
+ FTS5_DATA_PADDING
) );
4605 /* Begin scanning through hash table entries. This loop runs once for each
4606 ** term/doclist currently stored within the hash table. */
4607 if( p
->rc
==SQLITE_OK
){
4608 p
->rc
= sqlite3Fts5HashScanInit(pHash
, 0, 0);
4610 while( p
->rc
==SQLITE_OK
&& 0==sqlite3Fts5HashScanEof(pHash
) ){
4611 const char *zTerm
; /* Buffer containing term */
4612 const u8
*pDoclist
; /* Pointer to doclist for this term */
4613 int nDoclist
; /* Size of doclist in bytes */
4615 /* Write the term for this entry to disk. */
4616 sqlite3Fts5HashScanEntry(pHash
, &zTerm
, &pDoclist
, &nDoclist
);
4617 fts5WriteAppendTerm(p
, &writer
, (int)strlen(zTerm
), (const u8
*)zTerm
);
4618 if( p
->rc
!=SQLITE_OK
) break;
4620 assert( writer
.bFirstRowidInPage
==0 );
4621 if( pgsz
>=(pBuf
->n
+ pPgidx
->n
+ nDoclist
+ 1) ){
4622 /* The entire doclist will fit on the current leaf. */
4623 fts5BufferSafeAppendBlob(pBuf
, pDoclist
, nDoclist
);
4629 /* The entire doclist will not fit on this leaf. The following
4630 ** loop iterates through the poslists that make up the current
4632 while( p
->rc
==SQLITE_OK
&& iOff
<nDoclist
){
4633 iOff
+= fts5GetVarint(&pDoclist
[iOff
], &iDelta
);
4636 if( writer
.bFirstRowidInPage
){
4637 fts5PutU16(&pBuf
->p
[0], (u16
)pBuf
->n
); /* first rowid on page */
4638 pBuf
->n
+= sqlite3Fts5PutVarint(&pBuf
->p
[pBuf
->n
], iRowid
);
4639 writer
.bFirstRowidInPage
= 0;
4640 fts5WriteDlidxAppend(p
, &writer
, iRowid
);
4641 if( p
->rc
!=SQLITE_OK
) break;
4643 pBuf
->n
+= sqlite3Fts5PutVarint(&pBuf
->p
[pBuf
->n
], iDelta
);
4645 assert( pBuf
->n
<=pBuf
->nSpace
);
4647 if( eDetail
==FTS5_DETAIL_NONE
){
4648 if( iOff
<nDoclist
&& pDoclist
[iOff
]==0 ){
4649 pBuf
->p
[pBuf
->n
++] = 0;
4651 if( iOff
<nDoclist
&& pDoclist
[iOff
]==0 ){
4652 pBuf
->p
[pBuf
->n
++] = 0;
4656 if( (pBuf
->n
+ pPgidx
->n
)>=pgsz
){
4657 fts5WriteFlushLeaf(p
, &writer
);
4662 int nCopy
= fts5GetPoslistSize(&pDoclist
[iOff
], &nPos
, &bDummy
);
4664 if( (pBuf
->n
+ pPgidx
->n
+ nCopy
) <= pgsz
){
4665 /* The entire poslist will fit on the current leaf. So copy
4667 fts5BufferSafeAppendBlob(pBuf
, &pDoclist
[iOff
], nCopy
);
4669 /* The entire poslist will not fit on this leaf. So it needs
4670 ** to be broken into sections. The only qualification being
4671 ** that each varint must be stored contiguously. */
4672 const u8
*pPoslist
= &pDoclist
[iOff
];
4674 while( p
->rc
==SQLITE_OK
){
4675 int nSpace
= pgsz
- pBuf
->n
- pPgidx
->n
;
4677 if( (nCopy
- iPos
)<=nSpace
){
4680 n
= fts5PoslistPrefix(&pPoslist
[iPos
], nSpace
);
4683 fts5BufferSafeAppendBlob(pBuf
, &pPoslist
[iPos
], n
);
4685 if( (pBuf
->n
+ pPgidx
->n
)>=pgsz
){
4686 fts5WriteFlushLeaf(p
, &writer
);
4688 if( iPos
>=nCopy
) break;
4696 /* TODO2: Doclist terminator written here. */
4697 /* pBuf->p[pBuf->n++] = '\0'; */
4698 assert( pBuf
->n
<=pBuf
->nSpace
);
4699 if( p
->rc
==SQLITE_OK
) sqlite3Fts5HashScanNext(pHash
);
4701 sqlite3Fts5HashClear(pHash
);
4702 fts5WriteFinish(p
, &writer
, &pgnoLast
);
4704 /* Update the Fts5Structure. It is written back to the database by the
4705 ** fts5StructureRelease() call below. */
4706 if( pStruct
->nLevel
==0 ){
4707 fts5StructureAddLevel(&p
->rc
, &pStruct
);
4709 fts5StructureExtendLevel(&p
->rc
, pStruct
, 0, 1, 0);
4710 if( p
->rc
==SQLITE_OK
){
4711 pSeg
= &pStruct
->aLevel
[0].aSeg
[ pStruct
->aLevel
[0].nSeg
++ ];
4712 pSeg
->iSegid
= iSegid
;
4713 pSeg
->pgnoFirst
= 1;
4714 pSeg
->pgnoLast
= pgnoLast
;
4715 pStruct
->nSegment
++;
4717 fts5StructurePromote(p
, 0, pStruct
);
4720 fts5IndexAutomerge(p
, &pStruct
, pgnoLast
);
4721 fts5IndexCrisismerge(p
, &pStruct
);
4722 fts5StructureWrite(p
, pStruct
);
4723 fts5StructureRelease(pStruct
);
4727 ** Flush any data stored in the in-memory hash tables to the database.
4729 static void fts5IndexFlush(Fts5Index
*p
){
4730 /* Unless it is empty, flush the hash table to disk */
4731 if( p
->nPendingData
){
4733 p
->nPendingData
= 0;
4734 fts5FlushOneHash(p
);
4738 static Fts5Structure
*fts5IndexOptimizeStruct(
4740 Fts5Structure
*pStruct
4742 Fts5Structure
*pNew
= 0;
4743 sqlite3_int64 nByte
= sizeof(Fts5Structure
);
4744 int nSeg
= pStruct
->nSegment
;
4747 /* Figure out if this structure requires optimization. A structure does
4748 ** not require optimization if either:
4750 ** + it consists of fewer than two segments, or
4751 ** + all segments are on the same level, or
4752 ** + all segments except one are currently inputs to a merge operation.
4754 ** In the first case, return NULL. In the second, increment the ref-count
4755 ** on *pStruct and return a copy of the pointer to it.
4757 if( nSeg
<2 ) return 0;
4758 for(i
=0; i
<pStruct
->nLevel
; i
++){
4759 int nThis
= pStruct
->aLevel
[i
].nSeg
;
4760 if( nThis
==nSeg
|| (nThis
==nSeg
-1 && pStruct
->aLevel
[i
].nMerge
==nThis
) ){
4761 fts5StructureRef(pStruct
);
4764 assert( pStruct
->aLevel
[i
].nMerge
<=nThis
);
4767 nByte
+= (pStruct
->nLevel
+1) * sizeof(Fts5StructureLevel
);
4768 pNew
= (Fts5Structure
*)sqlite3Fts5MallocZero(&p
->rc
, nByte
);
4771 Fts5StructureLevel
*pLvl
;
4772 nByte
= nSeg
* sizeof(Fts5StructureSegment
);
4773 pNew
->nLevel
= MIN(pStruct
->nLevel
+1, FTS5_MAX_LEVEL
);
4775 pNew
->nWriteCounter
= pStruct
->nWriteCounter
;
4776 pLvl
= &pNew
->aLevel
[pNew
->nLevel
-1];
4777 pLvl
->aSeg
= (Fts5StructureSegment
*)sqlite3Fts5MallocZero(&p
->rc
, nByte
);
4781 /* Iterate through all segments, from oldest to newest. Add them to
4782 ** the new Fts5Level object so that pLvl->aSeg[0] is the oldest
4783 ** segment in the data structure. */
4784 for(iLvl
=pStruct
->nLevel
-1; iLvl
>=0; iLvl
--){
4785 for(iSeg
=0; iSeg
<pStruct
->aLevel
[iLvl
].nSeg
; iSeg
++){
4786 pLvl
->aSeg
[iSegOut
] = pStruct
->aLevel
[iLvl
].aSeg
[iSeg
];
4790 pNew
->nSegment
= pLvl
->nSeg
= nSeg
;
4800 int sqlite3Fts5IndexOptimize(Fts5Index
*p
){
4801 Fts5Structure
*pStruct
;
4802 Fts5Structure
*pNew
= 0;
4804 assert( p
->rc
==SQLITE_OK
);
4806 pStruct
= fts5StructureRead(p
);
4807 fts5StructureInvalidate(p
);
4810 pNew
= fts5IndexOptimizeStruct(p
, pStruct
);
4812 fts5StructureRelease(pStruct
);
4814 assert( pNew
==0 || pNew
->nSegment
>0 );
4817 for(iLvl
=0; pNew
->aLevel
[iLvl
].nSeg
==0; iLvl
++){}
4818 while( p
->rc
==SQLITE_OK
&& pNew
->aLevel
[iLvl
].nSeg
>0 ){
4819 int nRem
= FTS5_OPT_WORK_UNIT
;
4820 fts5IndexMergeLevel(p
, &pNew
, iLvl
, &nRem
);
4823 fts5StructureWrite(p
, pNew
);
4824 fts5StructureRelease(pNew
);
4827 return fts5IndexReturn(p
);
4831 ** This is called to implement the special "VALUES('merge', $nMerge)"
4834 int sqlite3Fts5IndexMerge(Fts5Index
*p
, int nMerge
){
4835 Fts5Structure
*pStruct
= fts5StructureRead(p
);
4837 int nMin
= p
->pConfig
->nUsermerge
;
4838 fts5StructureInvalidate(p
);
4840 Fts5Structure
*pNew
= fts5IndexOptimizeStruct(p
, pStruct
);
4841 fts5StructureRelease(pStruct
);
4846 if( pStruct
&& pStruct
->nLevel
){
4847 if( fts5IndexMerge(p
, &pStruct
, nMerge
, nMin
) ){
4848 fts5StructureWrite(p
, pStruct
);
4851 fts5StructureRelease(pStruct
);
4853 return fts5IndexReturn(p
);
4856 static void fts5AppendRowid(
4862 UNUSED_PARAM(pUnused
);
4863 fts5BufferAppendVarint(&p
->rc
, pBuf
, iDelta
);
4866 static void fts5AppendPoslist(
4872 int nData
= pMulti
->base
.nData
;
4873 int nByte
= nData
+ 9 + 9 + FTS5_DATA_ZERO_PADDING
;
4875 if( p
->rc
==SQLITE_OK
&& 0==fts5BufferGrow(&p
->rc
, pBuf
, nByte
) ){
4876 fts5BufferSafeAppendVarint(pBuf
, iDelta
);
4877 fts5BufferSafeAppendVarint(pBuf
, nData
*2);
4878 fts5BufferSafeAppendBlob(pBuf
, pMulti
->base
.pData
, nData
);
4879 memset(&pBuf
->p
[pBuf
->n
], 0, FTS5_DATA_ZERO_PADDING
);
4884 static void fts5DoclistIterNext(Fts5DoclistIter
*pIter
){
4885 u8
*p
= pIter
->aPoslist
+ pIter
->nSize
+ pIter
->nPoslist
;
4887 assert( pIter
->aPoslist
|| (p
==0 && pIter
->aPoslist
==0) );
4888 if( p
>=pIter
->aEof
){
4889 pIter
->aPoslist
= 0;
4893 p
+= fts5GetVarint(p
, (u64
*)&iDelta
);
4894 pIter
->iRowid
+= iDelta
;
4896 /* Read position list size */
4899 pIter
->nSize
= fts5GetVarint32(p
, nPos
);
4900 pIter
->nPoslist
= (nPos
>>1);
4902 pIter
->nPoslist
= ((int)(p
[0])) >> 1;
4906 pIter
->aPoslist
= p
;
4907 if( &pIter
->aPoslist
[pIter
->nPoslist
]>pIter
->aEof
){
4908 pIter
->aPoslist
= 0;
4913 static void fts5DoclistIterInit(
4915 Fts5DoclistIter
*pIter
4917 memset(pIter
, 0, sizeof(*pIter
));
4919 pIter
->aPoslist
= pBuf
->p
;
4920 pIter
->aEof
= &pBuf
->p
[pBuf
->n
];
4921 fts5DoclistIterNext(pIter
);
4927 ** Append a doclist to buffer pBuf.
4929 ** This function assumes that space within the buffer has already been
4932 static void fts5MergeAppendDocid(
4933 Fts5Buffer
*pBuf
, /* Buffer to write to */
4934 i64
*piLastRowid
, /* IN/OUT: Previous rowid written (if any) */
4935 i64 iRowid
/* Rowid to append */
4937 assert( pBuf
->n
!=0 || (*piLastRowid
)==0 );
4938 fts5BufferSafeAppendVarint(pBuf
, iRowid
- *piLastRowid
);
4939 *piLastRowid
= iRowid
;
4943 #define fts5MergeAppendDocid(pBuf, iLastRowid, iRowid) { \
4944 assert( (pBuf)->n!=0 || (iLastRowid)==0 ); \
4945 fts5BufferSafeAppendVarint((pBuf), (u64)(iRowid) - (u64)(iLastRowid)); \
4946 (iLastRowid) = (iRowid); \
4950 ** Swap the contents of buffer *p1 with that of *p2.
4952 static void fts5BufferSwap(Fts5Buffer
*p1
, Fts5Buffer
*p2
){
4953 Fts5Buffer tmp
= *p1
;
4958 static void fts5NextRowid(Fts5Buffer
*pBuf
, int *piOff
, i64
*piRowid
){
4964 *piOff
= i
+ sqlite3Fts5GetVarint(&pBuf
->p
[i
], &iVal
);
4970 ** This is the equivalent of fts5MergePrefixLists() for detail=none mode.
4971 ** In this case the buffers consist of a delta-encoded list of rowids only.
4973 static void fts5MergeRowidLists(
4974 Fts5Index
*p
, /* FTS5 backend object */
4975 Fts5Buffer
*p1
, /* First list to merge */
4976 int nBuf
, /* Number of entries in apBuf[] */
4977 Fts5Buffer
*aBuf
/* Array of other lists to merge into p1 */
4984 Fts5Buffer
*p2
= &aBuf
[0];
4988 memset(&out
, 0, sizeof(out
));
4990 sqlite3Fts5BufferSize(&p
->rc
, &out
, p1
->n
+ p2
->n
);
4993 fts5NextRowid(p1
, &i1
, &iRowid1
);
4994 fts5NextRowid(p2
, &i2
, &iRowid2
);
4995 while( i1
>=0 || i2
>=0 ){
4996 if( i1
>=0 && (i2
<0 || iRowid1
<iRowid2
) ){
4997 assert( iOut
==0 || iRowid1
>iOut
);
4998 fts5BufferSafeAppendVarint(&out
, iRowid1
- iOut
);
5000 fts5NextRowid(p1
, &i1
, &iRowid1
);
5002 assert( iOut
==0 || iRowid2
>iOut
);
5003 fts5BufferSafeAppendVarint(&out
, iRowid2
- iOut
);
5005 if( i1
>=0 && iRowid1
==iRowid2
){
5006 fts5NextRowid(p1
, &i1
, &iRowid1
);
5008 fts5NextRowid(p2
, &i2
, &iRowid2
);
5012 fts5BufferSwap(&out
, p1
);
5013 fts5BufferFree(&out
);
5016 typedef struct PrefixMerger PrefixMerger
;
5017 struct PrefixMerger
{
5018 Fts5DoclistIter iter
; /* Doclist iterator */
5019 i64 iPos
; /* For iterating through a position list */
5022 PrefixMerger
*pNext
; /* Next in docid/poslist order */
5025 static void fts5PrefixMergerInsertByRowid(
5026 PrefixMerger
**ppHead
,
5029 if( p
->iter
.aPoslist
){
5030 PrefixMerger
**pp
= ppHead
;
5031 while( *pp
&& p
->iter
.iRowid
>(*pp
)->iter
.iRowid
){
5039 static void fts5PrefixMergerInsertByPosition(
5040 PrefixMerger
**ppHead
,
5044 PrefixMerger
**pp
= ppHead
;
5045 while( *pp
&& p
->iPos
>(*pp
)->iPos
){
5055 ** Array aBuf[] contains nBuf doclists. These are all merged in with the
5056 ** doclist in buffer p1.
5058 static void fts5MergePrefixLists(
5059 Fts5Index
*p
, /* FTS5 backend object */
5060 Fts5Buffer
*p1
, /* First list to merge */
5061 int nBuf
, /* Number of buffers in array aBuf[] */
5062 Fts5Buffer
*aBuf
/* Other lists to merge in */
5064 #define fts5PrefixMergerNextPosition(p) \
5065 sqlite3Fts5PoslistNext64((p)->aPos,(p)->iter.nPoslist,&(p)->iOff,&(p)->iPos)
5066 #define FTS5_MERGE_NLIST 16
5067 PrefixMerger aMerger
[FTS5_MERGE_NLIST
];
5068 PrefixMerger
*pHead
= 0;
5071 Fts5Buffer out
= {0, 0, 0};
5072 Fts5Buffer tmp
= {0, 0, 0};
5075 /* Initialize a doclist-iterator for each input buffer. Arrange them in
5076 ** a linked-list starting at pHead in ascending order of rowid. Avoid
5077 ** linking any iterators already at EOF into the linked list at all. */
5078 assert( nBuf
+1<=(int)(sizeof(aMerger
)/sizeof(aMerger
[0])) );
5079 memset(aMerger
, 0, sizeof(PrefixMerger
)*(nBuf
+1));
5080 pHead
= &aMerger
[nBuf
];
5081 fts5DoclistIterInit(p1
, &pHead
->iter
);
5082 for(i
=0; i
<nBuf
; i
++){
5083 fts5DoclistIterInit(&aBuf
[i
], &aMerger
[i
].iter
);
5084 fts5PrefixMergerInsertByRowid(&pHead
, &aMerger
[i
]);
5087 if( nOut
==0 ) return;
5088 nOut
+= p1
->n
+ 9 + 10*nBuf
;
5090 /* The maximum size of the output is equal to the sum of the
5091 ** input sizes + 1 varint (9 bytes). The extra varint is because if the
5092 ** first rowid in one input is a large negative number, and the first in
5093 ** the other a non-negative number, the delta for the non-negative
5094 ** number will be larger on disk than the literal integer value
5097 ** Or, if the input position-lists are corrupt, then the output might
5098 ** include up to (nBuf+1) extra 10-byte positions created by interpreting -1
5099 ** (the value PoslistNext64() uses for EOF) as a position and appending
5100 ** it to the output. This can happen at most once for each input
5101 ** position-list, hence (nBuf+1) 10 byte paddings. */
5102 if( sqlite3Fts5BufferSize(&p
->rc
, &out
, nOut
) ) return;
5105 fts5MergeAppendDocid(&out
, iLastRowid
, pHead
->iter
.iRowid
);
5107 if( pHead
->pNext
&& iLastRowid
==pHead
->pNext
->iter
.iRowid
){
5108 /* Merge data from two or more poslists */
5110 int nTmp
= FTS5_DATA_ZERO_PADDING
;
5112 PrefixMerger
*pSave
= pHead
;
5113 PrefixMerger
*pThis
= 0;
5117 while( pSave
&& pSave
->iter
.iRowid
==iLastRowid
){
5118 PrefixMerger
*pNext
= pSave
->pNext
;
5121 pSave
->aPos
= &pSave
->iter
.aPoslist
[pSave
->iter
.nSize
];
5122 fts5PrefixMergerNextPosition(pSave
);
5123 nTmp
+= pSave
->iter
.nPoslist
+ 10;
5125 fts5PrefixMergerInsertByPosition(&pHead
, pSave
);
5129 if( pHead
==0 || pHead
->pNext
==0 ){
5130 p
->rc
= FTS5_CORRUPT
;
5134 /* See the earlier comment in this function for an explanation of why
5135 ** corrupt input position lists might cause the output to consume
5136 ** at most nMerge*10 bytes of unexpected space. */
5137 if( sqlite3Fts5BufferSize(&p
->rc
, &tmp
, nTmp
+nMerge
*10) ){
5140 fts5BufferZero(&tmp
);
5143 pHead
= pThis
->pNext
;
5144 sqlite3Fts5PoslistSafeAppend(&tmp
, &iPrev
, pThis
->iPos
);
5145 fts5PrefixMergerNextPosition(pThis
);
5146 fts5PrefixMergerInsertByPosition(&pHead
, pThis
);
5148 while( pHead
->pNext
){
5150 if( pThis
->iPos
!=iPrev
){
5151 sqlite3Fts5PoslistSafeAppend(&tmp
, &iPrev
, pThis
->iPos
);
5153 fts5PrefixMergerNextPosition(pThis
);
5154 pHead
= pThis
->pNext
;
5155 fts5PrefixMergerInsertByPosition(&pHead
, pThis
);
5158 if( pHead
->iPos
!=iPrev
){
5159 sqlite3Fts5PoslistSafeAppend(&tmp
, &iPrev
, pHead
->iPos
);
5161 nTail
= pHead
->iter
.nPoslist
- pHead
->iOff
;
5163 /* WRITEPOSLISTSIZE */
5164 assert_nc( tmp
.n
+nTail
<=nTmp
);
5165 assert( tmp
.n
+nTail
<=nTmp
+nMerge
*10 );
5166 if( tmp
.n
+nTail
>nTmp
-FTS5_DATA_ZERO_PADDING
){
5167 if( p
->rc
==SQLITE_OK
) p
->rc
= FTS5_CORRUPT
;
5170 fts5BufferSafeAppendVarint(&out
, (tmp
.n
+nTail
) * 2);
5171 fts5BufferSafeAppendBlob(&out
, tmp
.p
, tmp
.n
);
5173 fts5BufferSafeAppendBlob(&out
, &pHead
->aPos
[pHead
->iOff
], nTail
);
5177 for(i
=0; i
<nBuf
+1; i
++){
5178 PrefixMerger
*pX
= &aMerger
[i
];
5179 if( pX
->iter
.aPoslist
&& pX
->iter
.iRowid
==iLastRowid
){
5180 fts5DoclistIterNext(&pX
->iter
);
5181 fts5PrefixMergerInsertByRowid(&pHead
, pX
);
5186 /* Copy poslist from pHead to output */
5187 PrefixMerger
*pThis
= pHead
;
5188 Fts5DoclistIter
*pI
= &pThis
->iter
;
5189 fts5BufferSafeAppendBlob(&out
, pI
->aPoslist
, pI
->nPoslist
+pI
->nSize
);
5190 fts5DoclistIterNext(pI
);
5191 pHead
= pThis
->pNext
;
5192 fts5PrefixMergerInsertByRowid(&pHead
, pThis
);
5197 fts5BufferFree(&tmp
);
5198 memset(&out
.p
[out
.n
], 0, FTS5_DATA_ZERO_PADDING
);
5202 static void fts5SetupPrefixIter(
5203 Fts5Index
*p
, /* Index to read from */
5204 int bDesc
, /* True for "ORDER BY rowid DESC" */
5205 int iIdx
, /* Index to scan for data */
5206 u8
*pToken
, /* Buffer containing prefix to match */
5207 int nToken
, /* Size of buffer pToken in bytes */
5208 Fts5Colset
*pColset
, /* Restrict matches to these columns */
5209 Fts5Iter
**ppIter
/* OUT: New iterator */
5211 Fts5Structure
*pStruct
;
5216 void (*xMerge
)(Fts5Index
*, Fts5Buffer
*, int, Fts5Buffer
*);
5217 void (*xAppend
)(Fts5Index
*, u64
, Fts5Iter
*, Fts5Buffer
*);
5218 if( p
->pConfig
->eDetail
==FTS5_DETAIL_NONE
){
5219 xMerge
= fts5MergeRowidLists
;
5220 xAppend
= fts5AppendRowid
;
5222 nMerge
= FTS5_MERGE_NLIST
-1;
5223 nBuf
= nMerge
*8; /* Sufficient to merge (16^8)==(2^32) lists */
5224 xMerge
= fts5MergePrefixLists
;
5225 xAppend
= fts5AppendPoslist
;
5228 aBuf
= (Fts5Buffer
*)fts5IdxMalloc(p
, sizeof(Fts5Buffer
)*nBuf
);
5229 pStruct
= fts5StructureRead(p
);
5231 if( aBuf
&& pStruct
){
5232 const int flags
= FTS5INDEX_QUERY_SCAN
5233 | FTS5INDEX_QUERY_SKIPEMPTY
5234 | FTS5INDEX_QUERY_NOOUTPUT
;
5237 Fts5Iter
*p1
= 0; /* Iterator used to gather data from index */
5242 memset(&doclist
, 0, sizeof(doclist
));
5245 const int f2
= FTS5INDEX_QUERY_SKIPEMPTY
|FTS5INDEX_QUERY_NOOUTPUT
;
5246 pToken
[0] = FTS5_MAIN_PREFIX
;
5247 fts5MultiIterNew(p
, pStruct
, f2
, pColset
, pToken
, nToken
, -1, 0, &p1
);
5248 fts5IterSetOutputCb(&p
->rc
, p1
);
5250 fts5MultiIterEof(p
, p1
)==0;
5251 fts5MultiIterNext2(p
, p1
, &dummy
)
5253 Fts5SegIter
*pSeg
= &p1
->aSeg
[ p1
->aFirst
[1].iFirst
];
5254 p1
->xSetOutputs(p1
, pSeg
);
5255 if( p1
->base
.nData
){
5256 xAppend(p
, (u64
)p1
->base
.iRowid
-(u64
)iLastRowid
, p1
, &doclist
);
5257 iLastRowid
= p1
->base
.iRowid
;
5260 fts5MultiIterFree(p1
);
5263 pToken
[0] = FTS5_MAIN_PREFIX
+ iIdx
;
5264 fts5MultiIterNew(p
, pStruct
, flags
, pColset
, pToken
, nToken
, -1, 0, &p1
);
5265 fts5IterSetOutputCb(&p
->rc
, p1
);
5267 fts5MultiIterEof(p
, p1
)==0;
5268 fts5MultiIterNext2(p
, p1
, &bNewTerm
)
5270 Fts5SegIter
*pSeg
= &p1
->aSeg
[ p1
->aFirst
[1].iFirst
];
5271 int nTerm
= pSeg
->term
.n
;
5272 const u8
*pTerm
= pSeg
->term
.p
;
5273 p1
->xSetOutputs(p1
, pSeg
);
5275 assert_nc( memcmp(pToken
, pTerm
, MIN(nToken
, nTerm
))<=0 );
5277 if( nTerm
<nToken
|| memcmp(pToken
, pTerm
, nToken
) ) break;
5280 if( p1
->base
.nData
==0 ) continue;
5282 if( p1
->base
.iRowid
<=iLastRowid
&& doclist
.n
>0 ){
5283 for(i
=0; p
->rc
==SQLITE_OK
&& doclist
.n
; i
++){
5286 assert( i1
+nMerge
<=nBuf
);
5287 for(iStore
=i1
; iStore
<i1
+nMerge
; iStore
++){
5288 if( aBuf
[iStore
].n
==0 ){
5289 fts5BufferSwap(&doclist
, &aBuf
[iStore
]);
5290 fts5BufferZero(&doclist
);
5294 if( iStore
==i1
+nMerge
){
5295 xMerge(p
, &doclist
, nMerge
, &aBuf
[i1
]);
5296 for(iStore
=i1
; iStore
<i1
+nMerge
; iStore
++){
5297 fts5BufferZero(&aBuf
[iStore
]);
5304 xAppend(p
, (u64
)p1
->base
.iRowid
-(u64
)iLastRowid
, p1
, &doclist
);
5305 iLastRowid
= p1
->base
.iRowid
;
5308 assert( (nBuf
%nMerge
)==0 );
5309 for(i
=0; i
<nBuf
; i
+=nMerge
){
5311 if( p
->rc
==SQLITE_OK
){
5312 xMerge(p
, &doclist
, nMerge
, &aBuf
[i
]);
5314 for(iFree
=i
; iFree
<i
+nMerge
; iFree
++){
5315 fts5BufferFree(&aBuf
[iFree
]);
5318 fts5MultiIterFree(p1
);
5320 pData
= fts5IdxMalloc(p
, sizeof(Fts5Data
)+doclist
.n
+FTS5_DATA_ZERO_PADDING
);
5322 pData
->p
= (u8
*)&pData
[1];
5323 pData
->nn
= pData
->szLeaf
= doclist
.n
;
5324 if( doclist
.n
) memcpy(pData
->p
, doclist
.p
, doclist
.n
);
5325 fts5MultiIterNew2(p
, pData
, bDesc
, ppIter
);
5327 fts5BufferFree(&doclist
);
5330 fts5StructureRelease(pStruct
);
5336 ** Indicate that all subsequent calls to sqlite3Fts5IndexWrite() pertain
5337 ** to the document with rowid iRowid.
5339 int sqlite3Fts5IndexBeginWrite(Fts5Index
*p
, int bDelete
, i64 iRowid
){
5340 assert( p
->rc
==SQLITE_OK
);
5342 /* Allocate the hash table if it has not already been allocated */
5344 p
->rc
= sqlite3Fts5HashNew(p
->pConfig
, &p
->pHash
, &p
->nPendingData
);
5347 /* Flush the hash table to disk if required */
5348 if( iRowid
<p
->iWriteRowid
5349 || (iRowid
==p
->iWriteRowid
&& p
->bDelete
==0)
5350 || (p
->nPendingData
> p
->pConfig
->nHashSize
)
5355 p
->iWriteRowid
= iRowid
;
5356 p
->bDelete
= bDelete
;
5357 return fts5IndexReturn(p
);
5361 ** Commit data to disk.
5363 int sqlite3Fts5IndexSync(Fts5Index
*p
){
5364 assert( p
->rc
==SQLITE_OK
);
5366 sqlite3Fts5IndexCloseReader(p
);
5367 return fts5IndexReturn(p
);
5371 ** Discard any data stored in the in-memory hash tables. Do not write it
5372 ** to the database. Additionally, assume that the contents of the %_data
5373 ** table may have changed on disk. So any in-memory caches of %_data
5374 ** records must be invalidated.
5376 int sqlite3Fts5IndexRollback(Fts5Index
*p
){
5377 sqlite3Fts5IndexCloseReader(p
);
5378 fts5IndexDiscardData(p
);
5379 fts5StructureInvalidate(p
);
5380 /* assert( p->rc==SQLITE_OK ); */
5385 ** The %_data table is completely empty when this function is called. This
5386 ** function populates it with the initial structure objects for each index,
5387 ** and the initial version of the "averages" record (a zero-byte blob).
5389 int sqlite3Fts5IndexReinit(Fts5Index
*p
){
5391 fts5StructureInvalidate(p
);
5392 fts5IndexDiscardData(p
);
5393 memset(&s
, 0, sizeof(Fts5Structure
));
5394 fts5DataWrite(p
, FTS5_AVERAGES_ROWID
, (const u8
*)"", 0);
5395 fts5StructureWrite(p
, &s
);
5396 return fts5IndexReturn(p
);
5400 ** Open a new Fts5Index handle. If the bCreate argument is true, create
5401 ** and initialize the underlying %_data table.
5403 ** If successful, set *pp to point to the new object and return SQLITE_OK.
5404 ** Otherwise, set *pp to NULL and return an SQLite error code.
5406 int sqlite3Fts5IndexOpen(
5407 Fts5Config
*pConfig
,
5413 Fts5Index
*p
; /* New object */
5415 *pp
= p
= (Fts5Index
*)sqlite3Fts5MallocZero(&rc
, sizeof(Fts5Index
));
5416 if( rc
==SQLITE_OK
){
5417 p
->pConfig
= pConfig
;
5418 p
->nWorkUnit
= FTS5_WORK_UNIT
;
5419 p
->zDataTbl
= sqlite3Fts5Mprintf(&rc
, "%s_data", pConfig
->zName
);
5420 if( p
->zDataTbl
&& bCreate
){
5421 rc
= sqlite3Fts5CreateTable(
5422 pConfig
, "data", "id INTEGER PRIMARY KEY, block BLOB", 0, pzErr
5424 if( rc
==SQLITE_OK
){
5425 rc
= sqlite3Fts5CreateTable(pConfig
, "idx",
5426 "segid, term, pgno, PRIMARY KEY(segid, term)",
5430 if( rc
==SQLITE_OK
){
5431 rc
= sqlite3Fts5IndexReinit(p
);
5436 assert( rc
!=SQLITE_OK
|| p
->rc
==SQLITE_OK
);
5438 sqlite3Fts5IndexClose(p
);
5445 ** Close a handle opened by an earlier call to sqlite3Fts5IndexOpen().
5447 int sqlite3Fts5IndexClose(Fts5Index
*p
){
5450 assert( p
->pReader
==0 );
5451 fts5StructureInvalidate(p
);
5452 sqlite3_finalize(p
->pWriter
);
5453 sqlite3_finalize(p
->pDeleter
);
5454 sqlite3_finalize(p
->pIdxWriter
);
5455 sqlite3_finalize(p
->pIdxDeleter
);
5456 sqlite3_finalize(p
->pIdxSelect
);
5457 sqlite3_finalize(p
->pDataVersion
);
5458 sqlite3Fts5HashFree(p
->pHash
);
5459 sqlite3_free(p
->zDataTbl
);
5466 ** Argument p points to a buffer containing utf-8 text that is n bytes in
5467 ** size. Return the number of bytes in the nChar character prefix of the
5468 ** buffer, or 0 if there are less than nChar characters in total.
5470 int sqlite3Fts5IndexCharlenToBytelen(
5477 for(i
=0; i
<nChar
; i
++){
5478 if( n
>=nByte
) return 0; /* Input contains fewer than nChar chars */
5479 if( (unsigned char)p
[n
++]>=0xc0 ){
5480 if( n
>=nByte
) return 0;
5481 while( (p
[n
] & 0xc0)==0x80 ){
5484 if( i
+1==nChar
) break;
5494 ** pIn is a UTF-8 encoded string, nIn bytes in size. Return the number of
5495 ** unicode characters in the string.
5497 static int fts5IndexCharlen(const char *pIn
, int nIn
){
5501 if( (unsigned char)pIn
[i
++]>=0xc0 ){
5502 while( i
<nIn
&& (pIn
[i
] & 0xc0)==0x80 ) i
++;
5510 ** Insert or remove data to or from the index. Each time a document is
5511 ** added to or removed from the index, this function is called one or more
5514 ** For an insert, it must be called once for each token in the new document.
5515 ** If the operation is a delete, it must be called (at least) once for each
5516 ** unique token in the document with an iCol value less than zero. The iPos
5517 ** argument is ignored for a delete.
5519 int sqlite3Fts5IndexWrite(
5520 Fts5Index
*p
, /* Index to write to */
5521 int iCol
, /* Column token appears in (-ve -> delete) */
5522 int iPos
, /* Position of token within column */
5523 const char *pToken
, int nToken
/* Token to add or remove to or from index */
5525 int i
; /* Used to iterate through indexes */
5526 int rc
= SQLITE_OK
; /* Return code */
5527 Fts5Config
*pConfig
= p
->pConfig
;
5529 assert( p
->rc
==SQLITE_OK
);
5530 assert( (iCol
<0)==p
->bDelete
);
5532 /* Add the entry to the main terms index. */
5533 rc
= sqlite3Fts5HashWrite(
5534 p
->pHash
, p
->iWriteRowid
, iCol
, iPos
, FTS5_MAIN_PREFIX
, pToken
, nToken
5537 for(i
=0; i
<pConfig
->nPrefix
&& rc
==SQLITE_OK
; i
++){
5538 const int nChar
= pConfig
->aPrefix
[i
];
5539 int nByte
= sqlite3Fts5IndexCharlenToBytelen(pToken
, nToken
, nChar
);
5541 rc
= sqlite3Fts5HashWrite(p
->pHash
,
5542 p
->iWriteRowid
, iCol
, iPos
, (char)(FTS5_MAIN_PREFIX
+i
+1), pToken
,
5552 ** Open a new iterator to iterate though all rowid that match the
5553 ** specified token or token prefix.
5555 int sqlite3Fts5IndexQuery(
5556 Fts5Index
*p
, /* FTS index to query */
5557 const char *pToken
, int nToken
, /* Token (or prefix) to query for */
5558 int flags
, /* Mask of FTS5INDEX_QUERY_X flags */
5559 Fts5Colset
*pColset
, /* Match these columns only */
5560 Fts5IndexIter
**ppIter
/* OUT: New iterator object */
5562 Fts5Config
*pConfig
= p
->pConfig
;
5564 Fts5Buffer buf
= {0, 0, 0};
5566 /* If the QUERY_SCAN flag is set, all other flags must be clear. */
5567 assert( (flags
& FTS5INDEX_QUERY_SCAN
)==0 || flags
==FTS5INDEX_QUERY_SCAN
);
5569 if( sqlite3Fts5BufferSize(&p
->rc
, &buf
, nToken
+1)==0 ){
5570 int iIdx
= 0; /* Index to search */
5571 int iPrefixIdx
= 0; /* +1 prefix index */
5572 if( nToken
>0 ) memcpy(&buf
.p
[1], pToken
, nToken
);
5574 /* Figure out which index to search and set iIdx accordingly. If this
5575 ** is a prefix query for which there is no prefix index, set iIdx to
5576 ** greater than pConfig->nPrefix to indicate that the query will be
5577 ** satisfied by scanning multiple terms in the main index.
5579 ** If the QUERY_TEST_NOIDX flag was specified, then this must be a
5580 ** prefix-query. Instead of using a prefix-index (if one exists),
5581 ** evaluate the prefix query using the main FTS index. This is used
5582 ** for internal sanity checking by the integrity-check in debug
5585 if( pConfig
->bPrefixIndex
==0 || (flags
& FTS5INDEX_QUERY_TEST_NOIDX
) ){
5586 assert( flags
& FTS5INDEX_QUERY_PREFIX
);
5587 iIdx
= 1+pConfig
->nPrefix
;
5590 if( flags
& FTS5INDEX_QUERY_PREFIX
){
5591 int nChar
= fts5IndexCharlen(pToken
, nToken
);
5592 for(iIdx
=1; iIdx
<=pConfig
->nPrefix
; iIdx
++){
5593 int nIdxChar
= pConfig
->aPrefix
[iIdx
-1];
5594 if( nIdxChar
==nChar
) break;
5595 if( nIdxChar
==nChar
+1 ) iPrefixIdx
= iIdx
;
5599 if( iIdx
<=pConfig
->nPrefix
){
5600 /* Straight index lookup */
5601 Fts5Structure
*pStruct
= fts5StructureRead(p
);
5602 buf
.p
[0] = (u8
)(FTS5_MAIN_PREFIX
+ iIdx
);
5604 fts5MultiIterNew(p
, pStruct
, flags
| FTS5INDEX_QUERY_SKIPEMPTY
,
5605 pColset
, buf
.p
, nToken
+1, -1, 0, &pRet
5607 fts5StructureRelease(pStruct
);
5610 /* Scan multiple terms in the main index */
5611 int bDesc
= (flags
& FTS5INDEX_QUERY_DESC
)!=0;
5612 fts5SetupPrefixIter(p
, bDesc
, iPrefixIdx
, buf
.p
, nToken
+1, pColset
,&pRet
);
5614 assert( p
->rc
!=SQLITE_OK
);
5616 assert( pRet
->pColset
==0 );
5617 fts5IterSetOutputCb(&p
->rc
, pRet
);
5618 if( p
->rc
==SQLITE_OK
){
5619 Fts5SegIter
*pSeg
= &pRet
->aSeg
[pRet
->aFirst
[1].iFirst
];
5620 if( pSeg
->pLeaf
) pRet
->xSetOutputs(pRet
, pSeg
);
5626 sqlite3Fts5IterClose((Fts5IndexIter
*)pRet
);
5628 sqlite3Fts5IndexCloseReader(p
);
5631 *ppIter
= (Fts5IndexIter
*)pRet
;
5632 sqlite3Fts5BufferFree(&buf
);
5634 return fts5IndexReturn(p
);
5638 ** Return true if the iterator passed as the only argument is at EOF.
5641 ** Move to the next matching rowid.
5643 int sqlite3Fts5IterNext(Fts5IndexIter
*pIndexIter
){
5644 Fts5Iter
*pIter
= (Fts5Iter
*)pIndexIter
;
5645 assert( pIter
->pIndex
->rc
==SQLITE_OK
);
5646 fts5MultiIterNext(pIter
->pIndex
, pIter
, 0, 0);
5647 return fts5IndexReturn(pIter
->pIndex
);
5651 ** Move to the next matching term/rowid. Used by the fts5vocab module.
5653 int sqlite3Fts5IterNextScan(Fts5IndexIter
*pIndexIter
){
5654 Fts5Iter
*pIter
= (Fts5Iter
*)pIndexIter
;
5655 Fts5Index
*p
= pIter
->pIndex
;
5657 assert( pIter
->pIndex
->rc
==SQLITE_OK
);
5659 fts5MultiIterNext(p
, pIter
, 0, 0);
5660 if( p
->rc
==SQLITE_OK
){
5661 Fts5SegIter
*pSeg
= &pIter
->aSeg
[ pIter
->aFirst
[1].iFirst
];
5662 if( pSeg
->pLeaf
&& pSeg
->term
.p
[0]!=FTS5_MAIN_PREFIX
){
5663 fts5DataRelease(pSeg
->pLeaf
);
5665 pIter
->base
.bEof
= 1;
5669 return fts5IndexReturn(pIter
->pIndex
);
5673 ** Move to the next matching rowid that occurs at or after iMatch. The
5674 ** definition of "at or after" depends on whether this iterator iterates
5675 ** in ascending or descending rowid order.
5677 int sqlite3Fts5IterNextFrom(Fts5IndexIter
*pIndexIter
, i64 iMatch
){
5678 Fts5Iter
*pIter
= (Fts5Iter
*)pIndexIter
;
5679 fts5MultiIterNextFrom(pIter
->pIndex
, pIter
, iMatch
);
5680 return fts5IndexReturn(pIter
->pIndex
);
5684 ** Return the current term.
5686 const char *sqlite3Fts5IterTerm(Fts5IndexIter
*pIndexIter
, int *pn
){
5688 const char *z
= (const char*)fts5MultiIterTerm((Fts5Iter
*)pIndexIter
, &n
);
5689 assert_nc( z
|| n
<=1 );
5691 return (z
? &z
[1] : 0);
5695 ** Close an iterator opened by an earlier call to sqlite3Fts5IndexQuery().
5697 void sqlite3Fts5IterClose(Fts5IndexIter
*pIndexIter
){
5699 Fts5Iter
*pIter
= (Fts5Iter
*)pIndexIter
;
5700 Fts5Index
*pIndex
= pIter
->pIndex
;
5701 fts5MultiIterFree(pIter
);
5702 sqlite3Fts5IndexCloseReader(pIndex
);
5707 ** Read and decode the "averages" record from the database.
5709 ** Parameter anSize must point to an array of size nCol, where nCol is
5710 ** the number of user defined columns in the FTS table.
5712 int sqlite3Fts5IndexGetAverages(Fts5Index
*p
, i64
*pnRow
, i64
*anSize
){
5713 int nCol
= p
->pConfig
->nCol
;
5717 memset(anSize
, 0, sizeof(i64
) * nCol
);
5718 pData
= fts5DataRead(p
, FTS5_AVERAGES_ROWID
);
5719 if( p
->rc
==SQLITE_OK
&& pData
->nn
){
5722 i
+= fts5GetVarint(&pData
->p
[i
], (u64
*)pnRow
);
5723 for(iCol
=0; i
<pData
->nn
&& iCol
<nCol
; iCol
++){
5724 i
+= fts5GetVarint(&pData
->p
[i
], (u64
*)&anSize
[iCol
]);
5728 fts5DataRelease(pData
);
5729 return fts5IndexReturn(p
);
5733 ** Replace the current "averages" record with the contents of the buffer
5734 ** supplied as the second argument.
5736 int sqlite3Fts5IndexSetAverages(Fts5Index
*p
, const u8
*pData
, int nData
){
5737 assert( p
->rc
==SQLITE_OK
);
5738 fts5DataWrite(p
, FTS5_AVERAGES_ROWID
, pData
, nData
);
5739 return fts5IndexReturn(p
);
5743 ** Return the total number of blocks this module has read from the %_data
5744 ** table since it was created.
5746 int sqlite3Fts5IndexReads(Fts5Index
*p
){
5751 ** Set the 32-bit cookie value stored at the start of all structure
5752 ** records to the value passed as the second argument.
5754 ** Return SQLITE_OK if successful, or an SQLite error code if an error
5757 int sqlite3Fts5IndexSetCookie(Fts5Index
*p
, int iNew
){
5758 int rc
; /* Return code */
5759 Fts5Config
*pConfig
= p
->pConfig
; /* Configuration object */
5760 u8 aCookie
[4]; /* Binary representation of iNew */
5761 sqlite3_blob
*pBlob
= 0;
5763 assert( p
->rc
==SQLITE_OK
);
5764 sqlite3Fts5Put32(aCookie
, iNew
);
5766 rc
= sqlite3_blob_open(pConfig
->db
, pConfig
->zDb
, p
->zDataTbl
,
5767 "block", FTS5_STRUCTURE_ROWID
, 1, &pBlob
5769 if( rc
==SQLITE_OK
){
5770 sqlite3_blob_write(pBlob
, aCookie
, 4, 0);
5771 rc
= sqlite3_blob_close(pBlob
);
5777 int sqlite3Fts5IndexLoadConfig(Fts5Index
*p
){
5778 Fts5Structure
*pStruct
;
5779 pStruct
= fts5StructureRead(p
);
5780 fts5StructureRelease(pStruct
);
5781 return fts5IndexReturn(p
);
5785 /*************************************************************************
5786 **************************************************************************
5787 ** Below this point is the implementation of the integrity-check
5792 ** Return a simple checksum value based on the arguments.
5794 u64
sqlite3Fts5IndexEntryCksum(
5804 ret
+= (ret
<<3) + iCol
;
5805 ret
+= (ret
<<3) + iPos
;
5806 if( iIdx
>=0 ) ret
+= (ret
<<3) + (FTS5_MAIN_PREFIX
+ iIdx
);
5807 for(i
=0; i
<nTerm
; i
++) ret
+= (ret
<<3) + pTerm
[i
];
5813 ** This function is purely an internal test. It does not contribute to
5814 ** FTS functionality, or even the integrity-check, in any way.
5816 ** Instead, it tests that the same set of pgno/rowid combinations are
5817 ** visited regardless of whether the doclist-index identified by parameters
5818 ** iSegid/iLeaf is iterated in forwards or reverse order.
5820 static void fts5TestDlidxReverse(
5822 int iSegid
, /* Segment id to load from */
5823 int iLeaf
/* Load doclist-index for this leaf */
5825 Fts5DlidxIter
*pDlidx
= 0;
5829 for(pDlidx
=fts5DlidxIterInit(p
, 0, iSegid
, iLeaf
);
5830 fts5DlidxIterEof(p
, pDlidx
)==0;
5831 fts5DlidxIterNext(p
, pDlidx
)
5833 i64 iRowid
= fts5DlidxIterRowid(pDlidx
);
5834 int pgno
= fts5DlidxIterPgno(pDlidx
);
5835 assert( pgno
>iLeaf
);
5836 cksum1
+= iRowid
+ ((i64
)pgno
<<32);
5838 fts5DlidxIterFree(pDlidx
);
5841 for(pDlidx
=fts5DlidxIterInit(p
, 1, iSegid
, iLeaf
);
5842 fts5DlidxIterEof(p
, pDlidx
)==0;
5843 fts5DlidxIterPrev(p
, pDlidx
)
5845 i64 iRowid
= fts5DlidxIterRowid(pDlidx
);
5846 int pgno
= fts5DlidxIterPgno(pDlidx
);
5847 assert( fts5DlidxIterPgno(pDlidx
)>iLeaf
);
5848 cksum2
+= iRowid
+ ((i64
)pgno
<<32);
5850 fts5DlidxIterFree(pDlidx
);
5853 if( p
->rc
==SQLITE_OK
&& cksum1
!=cksum2
) p
->rc
= FTS5_CORRUPT
;
5856 static int fts5QueryCksum(
5857 Fts5Index
*p
, /* Fts5 index object */
5859 const char *z
, /* Index key to query for */
5860 int n
, /* Size of index key in bytes */
5861 int flags
, /* Flags for Fts5IndexQuery */
5862 u64
*pCksum
/* IN/OUT: Checksum value */
5864 int eDetail
= p
->pConfig
->eDetail
;
5865 u64 cksum
= *pCksum
;
5866 Fts5IndexIter
*pIter
= 0;
5867 int rc
= sqlite3Fts5IndexQuery(p
, z
, n
, flags
, 0, &pIter
);
5869 while( rc
==SQLITE_OK
&& ALWAYS(pIter
!=0) && 0==sqlite3Fts5IterEof(pIter
) ){
5870 i64 rowid
= pIter
->iRowid
;
5872 if( eDetail
==FTS5_DETAIL_NONE
){
5873 cksum
^= sqlite3Fts5IndexEntryCksum(rowid
, 0, 0, iIdx
, z
, n
);
5875 Fts5PoslistReader sReader
;
5876 for(sqlite3Fts5PoslistReaderInit(pIter
->pData
, pIter
->nData
, &sReader
);
5878 sqlite3Fts5PoslistReaderNext(&sReader
)
5880 int iCol
= FTS5_POS2COLUMN(sReader
.iPos
);
5881 int iOff
= FTS5_POS2OFFSET(sReader
.iPos
);
5882 cksum
^= sqlite3Fts5IndexEntryCksum(rowid
, iCol
, iOff
, iIdx
, z
, n
);
5885 if( rc
==SQLITE_OK
){
5886 rc
= sqlite3Fts5IterNext(pIter
);
5889 sqlite3Fts5IterClose(pIter
);
5896 ** Check if buffer z[], size n bytes, contains as series of valid utf-8
5897 ** encoded codepoints. If so, return 0. Otherwise, if the buffer does not
5898 ** contain valid utf-8, return non-zero.
5900 static int fts5TestUtf8(const char *z
, int n
){
5904 if( (z
[i
] & 0x80)==0x00 ){
5907 if( (z
[i
] & 0xE0)==0xC0 ){
5908 if( i
+1>=n
|| (z
[i
+1] & 0xC0)!=0x80 ) return 1;
5911 if( (z
[i
] & 0xF0)==0xE0 ){
5912 if( i
+2>=n
|| (z
[i
+1] & 0xC0)!=0x80 || (z
[i
+2] & 0xC0)!=0x80 ) return 1;
5915 if( (z
[i
] & 0xF8)==0xF0 ){
5916 if( i
+3>=n
|| (z
[i
+1] & 0xC0)!=0x80 || (z
[i
+2] & 0xC0)!=0x80 ) return 1;
5917 if( (z
[i
+2] & 0xC0)!=0x80 ) return 1;
5928 ** This function is also purely an internal test. It does not contribute to
5929 ** FTS functionality, or even the integrity-check, in any way.
5931 static void fts5TestTerm(
5933 Fts5Buffer
*pPrev
, /* Previous term */
5934 const char *z
, int n
, /* Possibly new term to test */
5940 fts5BufferSet(&rc
, pPrev
, n
, (const u8
*)z
);
5942 if( rc
==SQLITE_OK
&& (pPrev
->n
!=n
|| memcmp(pPrev
->p
, z
, n
)) ){
5943 u64 cksum3
= *pCksum
;
5944 const char *zTerm
= (const char*)&pPrev
->p
[1]; /* term sans prefix-byte */
5945 int nTerm
= pPrev
->n
-1; /* Size of zTerm in bytes */
5946 int iIdx
= (pPrev
->p
[0] - FTS5_MAIN_PREFIX
);
5947 int flags
= (iIdx
==0 ? 0 : FTS5INDEX_QUERY_PREFIX
);
5951 /* Check that the results returned for ASC and DESC queries are
5952 ** the same. If not, call this corruption. */
5953 rc
= fts5QueryCksum(p
, iIdx
, zTerm
, nTerm
, flags
, &ck1
);
5954 if( rc
==SQLITE_OK
){
5955 int f
= flags
|FTS5INDEX_QUERY_DESC
;
5956 rc
= fts5QueryCksum(p
, iIdx
, zTerm
, nTerm
, f
, &ck2
);
5958 if( rc
==SQLITE_OK
&& ck1
!=ck2
) rc
= FTS5_CORRUPT
;
5960 /* If this is a prefix query, check that the results returned if the
5961 ** the index is disabled are the same. In both ASC and DESC order.
5963 ** This check may only be performed if the hash table is empty. This
5964 ** is because the hash table only supports a single scan query at
5965 ** a time, and the multi-iter loop from which this function is called
5966 ** is already performing such a scan.
5968 ** Also only do this if buffer zTerm contains nTerm bytes of valid
5969 ** utf-8. Otherwise, the last part of the buffer contents might contain
5970 ** a non-utf-8 sequence that happens to be a prefix of a valid utf-8
5971 ** character stored in the main fts index, which will cause the
5973 if( p
->nPendingData
==0 && 0==fts5TestUtf8(zTerm
, nTerm
) ){
5974 if( iIdx
>0 && rc
==SQLITE_OK
){
5975 int f
= flags
|FTS5INDEX_QUERY_TEST_NOIDX
;
5977 rc
= fts5QueryCksum(p
, iIdx
, zTerm
, nTerm
, f
, &ck2
);
5978 if( rc
==SQLITE_OK
&& ck1
!=ck2
) rc
= FTS5_CORRUPT
;
5980 if( iIdx
>0 && rc
==SQLITE_OK
){
5981 int f
= flags
|FTS5INDEX_QUERY_TEST_NOIDX
|FTS5INDEX_QUERY_DESC
;
5983 rc
= fts5QueryCksum(p
, iIdx
, zTerm
, nTerm
, f
, &ck2
);
5984 if( rc
==SQLITE_OK
&& ck1
!=ck2
) rc
= FTS5_CORRUPT
;
5989 fts5BufferSet(&rc
, pPrev
, n
, (const u8
*)z
);
5991 if( rc
==SQLITE_OK
&& cksum3
!=expected
){
6000 # define fts5TestDlidxReverse(x,y,z)
6001 # define fts5TestTerm(u,v,w,x,y,z)
6007 ** 1) All leaves of pSeg between iFirst and iLast (inclusive) exist and
6008 ** contain zero terms.
6009 ** 2) All leaves of pSeg between iNoRowid and iLast (inclusive) exist and
6010 ** contain zero rowids.
6012 static void fts5IndexIntegrityCheckEmpty(
6014 Fts5StructureSegment
*pSeg
, /* Segment to check internal consistency */
6021 /* Now check that the iter.nEmpty leaves following the current leaf
6022 ** (a) exist and (b) contain no terms. */
6023 for(i
=iFirst
; p
->rc
==SQLITE_OK
&& i
<=iLast
; i
++){
6024 Fts5Data
*pLeaf
= fts5DataRead(p
, FTS5_SEGMENT_ROWID(pSeg
->iSegid
, i
));
6026 if( !fts5LeafIsTermless(pLeaf
) ) p
->rc
= FTS5_CORRUPT
;
6027 if( i
>=iNoRowid
&& 0!=fts5LeafFirstRowidOff(pLeaf
) ) p
->rc
= FTS5_CORRUPT
;
6029 fts5DataRelease(pLeaf
);
6033 static void fts5IntegrityCheckPgidx(Fts5Index
*p
, Fts5Data
*pLeaf
){
6037 Fts5Buffer buf1
= {0,0,0};
6038 Fts5Buffer buf2
= {0,0,0};
6041 while( ii
<pLeaf
->nn
&& p
->rc
==SQLITE_OK
){
6046 ii
+= fts5GetVarint32(&pLeaf
->p
[ii
], nIncr
);
6050 if( iOff
>=pLeaf
->szLeaf
){
6051 p
->rc
= FTS5_CORRUPT
;
6052 }else if( iTermOff
==nIncr
){
6054 iOff
+= fts5GetVarint32(&pLeaf
->p
[iOff
], nByte
);
6055 if( (iOff
+nByte
)>pLeaf
->szLeaf
){
6056 p
->rc
= FTS5_CORRUPT
;
6058 fts5BufferSet(&p
->rc
, &buf1
, nByte
, &pLeaf
->p
[iOff
]);
6062 iOff
+= fts5GetVarint32(&pLeaf
->p
[iOff
], nKeep
);
6063 iOff
+= fts5GetVarint32(&pLeaf
->p
[iOff
], nByte
);
6064 if( nKeep
>buf1
.n
|| (iOff
+nByte
)>pLeaf
->szLeaf
){
6065 p
->rc
= FTS5_CORRUPT
;
6068 fts5BufferAppendBlob(&p
->rc
, &buf1
, nByte
, &pLeaf
->p
[iOff
]);
6071 if( p
->rc
==SQLITE_OK
){
6072 res
= fts5BufferCompare(&buf1
, &buf2
);
6073 if( res
<=0 ) p
->rc
= FTS5_CORRUPT
;
6076 fts5BufferSet(&p
->rc
, &buf2
, buf1
.n
, buf1
.p
);
6079 fts5BufferFree(&buf1
);
6080 fts5BufferFree(&buf2
);
6083 static void fts5IndexIntegrityCheckSegment(
6084 Fts5Index
*p
, /* FTS5 backend object */
6085 Fts5StructureSegment
*pSeg
/* Segment to check internal consistency */
6087 Fts5Config
*pConfig
= p
->pConfig
;
6088 sqlite3_stmt
*pStmt
= 0;
6090 int iIdxPrevLeaf
= pSeg
->pgnoFirst
-1;
6091 int iDlidxPrevLeaf
= pSeg
->pgnoLast
;
6093 if( pSeg
->pgnoFirst
==0 ) return;
6095 fts5IndexPrepareStmt(p
, &pStmt
, sqlite3_mprintf(
6096 "SELECT segid, term, (pgno>>1), (pgno&1) FROM %Q.'%q_idx' WHERE segid=%d "
6098 pConfig
->zDb
, pConfig
->zName
, pSeg
->iSegid
6101 /* Iterate through the b-tree hierarchy. */
6102 while( p
->rc
==SQLITE_OK
&& SQLITE_ROW
==sqlite3_step(pStmt
) ){
6103 i64 iRow
; /* Rowid for this leaf */
6104 Fts5Data
*pLeaf
; /* Data for this leaf */
6106 const char *zIdxTerm
= (const char*)sqlite3_column_blob(pStmt
, 1);
6107 int nIdxTerm
= sqlite3_column_bytes(pStmt
, 1);
6108 int iIdxLeaf
= sqlite3_column_int(pStmt
, 2);
6109 int bIdxDlidx
= sqlite3_column_int(pStmt
, 3);
6111 /* If the leaf in question has already been trimmed from the segment,
6112 ** ignore this b-tree entry. Otherwise, load it into memory. */
6113 if( iIdxLeaf
<pSeg
->pgnoFirst
) continue;
6114 iRow
= FTS5_SEGMENT_ROWID(pSeg
->iSegid
, iIdxLeaf
);
6115 pLeaf
= fts5LeafRead(p
, iRow
);
6116 if( pLeaf
==0 ) break;
6118 /* Check that the leaf contains at least one term, and that it is equal
6119 ** to or larger than the split-key in zIdxTerm. Also check that if there
6120 ** is also a rowid pointer within the leaf page header, it points to a
6121 ** location before the term. */
6122 if( pLeaf
->nn
<=pLeaf
->szLeaf
){
6123 p
->rc
= FTS5_CORRUPT
;
6125 int iOff
; /* Offset of first term on leaf */
6126 int iRowidOff
; /* Offset of first rowid on leaf */
6127 int nTerm
; /* Size of term on leaf in bytes */
6128 int res
; /* Comparison of term and split-key */
6130 iOff
= fts5LeafFirstTermOff(pLeaf
);
6131 iRowidOff
= fts5LeafFirstRowidOff(pLeaf
);
6132 if( iRowidOff
>=iOff
|| iOff
>=pLeaf
->szLeaf
){
6133 p
->rc
= FTS5_CORRUPT
;
6135 iOff
+= fts5GetVarint32(&pLeaf
->p
[iOff
], nTerm
);
6136 res
= fts5Memcmp(&pLeaf
->p
[iOff
], zIdxTerm
, MIN(nTerm
, nIdxTerm
));
6137 if( res
==0 ) res
= nTerm
- nIdxTerm
;
6138 if( res
<0 ) p
->rc
= FTS5_CORRUPT
;
6141 fts5IntegrityCheckPgidx(p
, pLeaf
);
6143 fts5DataRelease(pLeaf
);
6146 /* Now check that the iter.nEmpty leaves following the current leaf
6147 ** (a) exist and (b) contain no terms. */
6148 fts5IndexIntegrityCheckEmpty(
6149 p
, pSeg
, iIdxPrevLeaf
+1, iDlidxPrevLeaf
+1, iIdxLeaf
-1
6153 /* If there is a doclist-index, check that it looks right. */
6155 Fts5DlidxIter
*pDlidx
= 0; /* For iterating through doclist index */
6156 int iPrevLeaf
= iIdxLeaf
;
6157 int iSegid
= pSeg
->iSegid
;
6161 for(pDlidx
=fts5DlidxIterInit(p
, 0, iSegid
, iIdxLeaf
);
6162 fts5DlidxIterEof(p
, pDlidx
)==0;
6163 fts5DlidxIterNext(p
, pDlidx
)
6166 /* Check any rowid-less pages that occur before the current leaf. */
6167 for(iPg
=iPrevLeaf
+1; iPg
<fts5DlidxIterPgno(pDlidx
); iPg
++){
6168 iKey
= FTS5_SEGMENT_ROWID(iSegid
, iPg
);
6169 pLeaf
= fts5DataRead(p
, iKey
);
6171 if( fts5LeafFirstRowidOff(pLeaf
)!=0 ) p
->rc
= FTS5_CORRUPT
;
6172 fts5DataRelease(pLeaf
);
6175 iPrevLeaf
= fts5DlidxIterPgno(pDlidx
);
6177 /* Check that the leaf page indicated by the iterator really does
6178 ** contain the rowid suggested by the same. */
6179 iKey
= FTS5_SEGMENT_ROWID(iSegid
, iPrevLeaf
);
6180 pLeaf
= fts5DataRead(p
, iKey
);
6183 int iRowidOff
= fts5LeafFirstRowidOff(pLeaf
);
6184 ASSERT_SZLEAF_OK(pLeaf
);
6185 if( iRowidOff
>=pLeaf
->szLeaf
){
6186 p
->rc
= FTS5_CORRUPT
;
6188 fts5GetVarint(&pLeaf
->p
[iRowidOff
], (u64
*)&iRowid
);
6189 if( iRowid
!=fts5DlidxIterRowid(pDlidx
) ) p
->rc
= FTS5_CORRUPT
;
6191 fts5DataRelease(pLeaf
);
6195 iDlidxPrevLeaf
= iPg
;
6196 fts5DlidxIterFree(pDlidx
);
6197 fts5TestDlidxReverse(p
, iSegid
, iIdxLeaf
);
6199 iDlidxPrevLeaf
= pSeg
->pgnoLast
;
6200 /* TODO: Check there is no doclist index */
6203 iIdxPrevLeaf
= iIdxLeaf
;
6206 rc2
= sqlite3_finalize(pStmt
);
6207 if( p
->rc
==SQLITE_OK
) p
->rc
= rc2
;
6209 /* Page iter.iLeaf must now be the rightmost leaf-page in the segment */
6211 if( p
->rc
==SQLITE_OK
&& iter
.iLeaf
!=pSeg
->pgnoLast
){
6212 p
->rc
= FTS5_CORRUPT
;
6219 ** Run internal checks to ensure that the FTS index (a) is internally
6220 ** consistent and (b) contains entries for which the XOR of the checksums
6221 ** as calculated by sqlite3Fts5IndexEntryCksum() is cksum.
6223 ** Return SQLITE_CORRUPT if any of the internal checks fail, or if the
6224 ** checksum does not match. Return SQLITE_OK if all checks pass without
6225 ** error, or some other SQLite error code if another error (e.g. OOM)
6228 int sqlite3Fts5IndexIntegrityCheck(Fts5Index
*p
, u64 cksum
, int bUseCksum
){
6229 int eDetail
= p
->pConfig
->eDetail
;
6230 u64 cksum2
= 0; /* Checksum based on contents of indexes */
6231 Fts5Buffer poslist
= {0,0,0}; /* Buffer used to hold a poslist */
6232 Fts5Iter
*pIter
; /* Used to iterate through entire index */
6233 Fts5Structure
*pStruct
; /* Index structure */
6237 /* Used by extra internal tests only run if NDEBUG is not defined */
6238 u64 cksum3
= 0; /* Checksum based on contents of indexes */
6239 Fts5Buffer term
= {0,0,0}; /* Buffer used to hold most recent term */
6241 const int flags
= FTS5INDEX_QUERY_NOOUTPUT
;
6243 /* Load the FTS index structure */
6244 pStruct
= fts5StructureRead(p
);
6246 assert( p
->rc
!=SQLITE_OK
);
6247 return fts5IndexReturn(p
);
6250 /* Check that the internal nodes of each segment match the leaves */
6251 for(iLvl
=0; iLvl
<pStruct
->nLevel
; iLvl
++){
6252 for(iSeg
=0; iSeg
<pStruct
->aLevel
[iLvl
].nSeg
; iSeg
++){
6253 Fts5StructureSegment
*pSeg
= &pStruct
->aLevel
[iLvl
].aSeg
[iSeg
];
6254 fts5IndexIntegrityCheckSegment(p
, pSeg
);
6258 /* The cksum argument passed to this function is a checksum calculated
6259 ** based on all expected entries in the FTS index (including prefix index
6260 ** entries). This block checks that a checksum calculated based on the
6261 ** actual contents of FTS index is identical.
6263 ** Two versions of the same checksum are calculated. The first (stack
6264 ** variable cksum2) based on entries extracted from the full-text index
6265 ** while doing a linear scan of each individual index in turn.
6267 ** As each term visited by the linear scans, a separate query for the
6268 ** same term is performed. cksum3 is calculated based on the entries
6269 ** extracted by these queries.
6271 for(fts5MultiIterNew(p
, pStruct
, flags
, 0, 0, 0, -1, 0, &pIter
);
6272 fts5MultiIterEof(p
, pIter
)==0;
6273 fts5MultiIterNext(p
, pIter
, 0, 0)
6275 int n
; /* Size of term in bytes */
6276 i64 iPos
= 0; /* Position read from poslist */
6277 int iOff
= 0; /* Offset within poslist */
6278 i64 iRowid
= fts5MultiIterRowid(pIter
);
6279 char *z
= (char*)fts5MultiIterTerm(pIter
, &n
);
6281 /* If this is a new term, query for it. Update cksum3 with the results. */
6282 fts5TestTerm(p
, &term
, z
, n
, cksum2
, &cksum3
);
6285 if( eDetail
==FTS5_DETAIL_NONE
){
6286 if( 0==fts5MultiIterIsEmpty(p
, pIter
) ){
6287 cksum2
^= sqlite3Fts5IndexEntryCksum(iRowid
, 0, 0, -1, z
, n
);
6291 fts5SegiterPoslist(p
, &pIter
->aSeg
[pIter
->aFirst
[1].iFirst
], 0, &poslist
);
6292 fts5BufferAppendBlob(&p
->rc
, &poslist
, 4, (const u8
*)"\0\0\0\0");
6293 while( 0==sqlite3Fts5PoslistNext64(poslist
.p
, poslist
.n
, &iOff
, &iPos
) ){
6294 int iCol
= FTS5_POS2COLUMN(iPos
);
6295 int iTokOff
= FTS5_POS2OFFSET(iPos
);
6296 cksum2
^= sqlite3Fts5IndexEntryCksum(iRowid
, iCol
, iTokOff
, -1, z
, n
);
6300 fts5TestTerm(p
, &term
, 0, 0, cksum2
, &cksum3
);
6302 fts5MultiIterFree(pIter
);
6303 if( p
->rc
==SQLITE_OK
&& bUseCksum
&& cksum
!=cksum2
) p
->rc
= FTS5_CORRUPT
;
6305 fts5StructureRelease(pStruct
);
6307 fts5BufferFree(&term
);
6309 fts5BufferFree(&poslist
);
6310 return fts5IndexReturn(p
);
6313 /*************************************************************************
6314 **************************************************************************
6315 ** Below this point is the implementation of the fts5_decode() scalar
6321 ** Decode a segment-data rowid from the %_data table. This function is
6322 ** the opposite of macro FTS5_SEGMENT_ROWID().
6324 static void fts5DecodeRowid(
6325 i64 iRowid
, /* Rowid from %_data table */
6326 int *piSegid
, /* OUT: Segment id */
6327 int *pbDlidx
, /* OUT: Dlidx flag */
6328 int *piHeight
, /* OUT: Height */
6329 int *piPgno
/* OUT: Page number */
6331 *piPgno
= (int)(iRowid
& (((i64
)1 << FTS5_DATA_PAGE_B
) - 1));
6332 iRowid
>>= FTS5_DATA_PAGE_B
;
6334 *piHeight
= (int)(iRowid
& (((i64
)1 << FTS5_DATA_HEIGHT_B
) - 1));
6335 iRowid
>>= FTS5_DATA_HEIGHT_B
;
6337 *pbDlidx
= (int)(iRowid
& 0x0001);
6338 iRowid
>>= FTS5_DATA_DLI_B
;
6340 *piSegid
= (int)(iRowid
& (((i64
)1 << FTS5_DATA_ID_B
) - 1));
6342 #endif /* SQLITE_TEST */
6345 static void fts5DebugRowid(int *pRc
, Fts5Buffer
*pBuf
, i64 iKey
){
6346 int iSegid
, iHeight
, iPgno
, bDlidx
; /* Rowid compenents */
6347 fts5DecodeRowid(iKey
, &iSegid
, &bDlidx
, &iHeight
, &iPgno
);
6350 if( iKey
==FTS5_AVERAGES_ROWID
){
6351 sqlite3Fts5BufferAppendPrintf(pRc
, pBuf
, "{averages} ");
6353 sqlite3Fts5BufferAppendPrintf(pRc
, pBuf
, "{structure}");
6357 sqlite3Fts5BufferAppendPrintf(pRc
, pBuf
, "{%ssegid=%d h=%d pgno=%d}",
6358 bDlidx
? "dlidx " : "", iSegid
, iHeight
, iPgno
6362 #endif /* SQLITE_TEST */
6365 static void fts5DebugStructure(
6366 int *pRc
, /* IN/OUT: error code */
6370 int iLvl
, iSeg
; /* Iterate through levels, segments */
6372 for(iLvl
=0; iLvl
<p
->nLevel
; iLvl
++){
6373 Fts5StructureLevel
*pLvl
= &p
->aLevel
[iLvl
];
6374 sqlite3Fts5BufferAppendPrintf(pRc
, pBuf
,
6375 " {lvl=%d nMerge=%d nSeg=%d", iLvl
, pLvl
->nMerge
, pLvl
->nSeg
6377 for(iSeg
=0; iSeg
<pLvl
->nSeg
; iSeg
++){
6378 Fts5StructureSegment
*pSeg
= &pLvl
->aSeg
[iSeg
];
6379 sqlite3Fts5BufferAppendPrintf(pRc
, pBuf
, " {id=%d leaves=%d..%d}",
6380 pSeg
->iSegid
, pSeg
->pgnoFirst
, pSeg
->pgnoLast
6383 sqlite3Fts5BufferAppendPrintf(pRc
, pBuf
, "}");
6386 #endif /* SQLITE_TEST */
6390 ** This is part of the fts5_decode() debugging aid.
6392 ** Arguments pBlob/nBlob contain a serialized Fts5Structure object. This
6393 ** function appends a human-readable representation of the same object
6394 ** to the buffer passed as the second argument.
6396 static void fts5DecodeStructure(
6397 int *pRc
, /* IN/OUT: error code */
6399 const u8
*pBlob
, int nBlob
6401 int rc
; /* Return code */
6402 Fts5Structure
*p
= 0; /* Decoded structure object */
6404 rc
= fts5StructureDecode(pBlob
, nBlob
, 0, &p
);
6405 if( rc
!=SQLITE_OK
){
6410 fts5DebugStructure(pRc
, pBuf
, p
);
6411 fts5StructureRelease(p
);
6413 #endif /* SQLITE_TEST */
6417 ** This is part of the fts5_decode() debugging aid.
6419 ** Arguments pBlob/nBlob contain an "averages" record. This function
6420 ** appends a human-readable representation of record to the buffer passed
6421 ** as the second argument.
6423 static void fts5DecodeAverages(
6424 int *pRc
, /* IN/OUT: error code */
6426 const u8
*pBlob
, int nBlob
6429 const char *zSpace
= "";
6433 i
+= sqlite3Fts5GetVarint(&pBlob
[i
], &iVal
);
6434 sqlite3Fts5BufferAppendPrintf(pRc
, pBuf
, "%s%d", zSpace
, (int)iVal
);
6438 #endif /* SQLITE_TEST */
6442 ** Buffer (a/n) is assumed to contain a list of serialized varints. Read
6443 ** each varint and append its string representation to buffer pBuf. Return
6444 ** after either the input buffer is exhausted or a 0 value is read.
6446 ** The return value is the number of bytes read from the input buffer.
6448 static int fts5DecodePoslist(int *pRc
, Fts5Buffer
*pBuf
, const u8
*a
, int n
){
6452 iOff
+= fts5GetVarint32(&a
[iOff
], iVal
);
6453 sqlite3Fts5BufferAppendPrintf(pRc
, pBuf
, " %d", iVal
);
6457 #endif /* SQLITE_TEST */
6461 ** The start of buffer (a/n) contains the start of a doclist. The doclist
6462 ** may or may not finish within the buffer. This function appends a text
6463 ** representation of the part of the doclist that is present to buffer
6466 ** The return value is the number of bytes read from the input buffer.
6468 static int fts5DecodeDoclist(int *pRc
, Fts5Buffer
*pBuf
, const u8
*a
, int n
){
6473 iOff
= sqlite3Fts5GetVarint(a
, (u64
*)&iDocid
);
6474 sqlite3Fts5BufferAppendPrintf(pRc
, pBuf
, " id=%lld", iDocid
);
6479 iOff
+= fts5GetPoslistSize(&a
[iOff
], &nPos
, &bDel
);
6480 sqlite3Fts5BufferAppendPrintf(pRc
, pBuf
, " nPos=%d%s", nPos
, bDel
?"*":"");
6481 iOff
+= fts5DecodePoslist(pRc
, pBuf
, &a
[iOff
], MIN(n
-iOff
, nPos
));
6484 iOff
+= sqlite3Fts5GetVarint(&a
[iOff
], (u64
*)&iDelta
);
6486 sqlite3Fts5BufferAppendPrintf(pRc
, pBuf
, " id=%lld", iDocid
);
6492 #endif /* SQLITE_TEST */
6496 ** This function is part of the fts5_decode() debugging function. It is
6497 ** only ever used with detail=none tables.
6499 ** Buffer (pData/nData) contains a doclist in the format used by detail=none
6500 ** tables. This function appends a human-readable version of that list to
6503 ** If *pRc is other than SQLITE_OK when this function is called, it is a
6504 ** no-op. If an OOM or other error occurs within this function, *pRc is
6505 ** set to an SQLite error code before returning. The final state of buffer
6506 ** pBuf is undefined in this case.
6508 static void fts5DecodeRowidList(
6509 int *pRc
, /* IN/OUT: Error code */
6510 Fts5Buffer
*pBuf
, /* Buffer to append text to */
6511 const u8
*pData
, int nData
/* Data to decode list-of-rowids from */
6517 const char *zApp
= "";
6519 i
+= sqlite3Fts5GetVarint(&pData
[i
], &iVal
);
6522 if( i
<nData
&& pData
[i
]==0x00 ){
6524 if( i
<nData
&& pData
[i
]==0x00 ){
6532 sqlite3Fts5BufferAppendPrintf(pRc
, pBuf
, " %lld%s", iRowid
, zApp
);
6535 #endif /* SQLITE_TEST */
6539 ** The implementation of user-defined scalar function fts5_decode().
6541 static void fts5DecodeFunction(
6542 sqlite3_context
*pCtx
, /* Function call context */
6543 int nArg
, /* Number of args (always 2) */
6544 sqlite3_value
**apVal
/* Function arguments */
6546 i64 iRowid
; /* Rowid for record being decoded */
6547 int iSegid
,iHeight
,iPgno
,bDlidx
;/* Rowid components */
6548 const u8
*aBlob
; int n
; /* Record to decode */
6550 Fts5Buffer s
; /* Build up text to return here */
6551 int rc
= SQLITE_OK
; /* Return code */
6552 sqlite3_int64 nSpace
= 0;
6553 int eDetailNone
= (sqlite3_user_data(pCtx
)!=0);
6557 memset(&s
, 0, sizeof(Fts5Buffer
));
6558 iRowid
= sqlite3_value_int64(apVal
[0]);
6560 /* Make a copy of the second argument (a blob) in aBlob[]. The aBlob[]
6561 ** copy is followed by FTS5_DATA_ZERO_PADDING 0x00 bytes, which prevents
6562 ** buffer overreads even if the record is corrupt. */
6563 n
= sqlite3_value_bytes(apVal
[1]);
6564 aBlob
= sqlite3_value_blob(apVal
[1]);
6565 nSpace
= n
+ FTS5_DATA_ZERO_PADDING
;
6566 a
= (u8
*)sqlite3Fts5MallocZero(&rc
, nSpace
);
6567 if( a
==0 ) goto decode_out
;
6568 if( n
>0 ) memcpy(a
, aBlob
, n
);
6570 fts5DecodeRowid(iRowid
, &iSegid
, &bDlidx
, &iHeight
, &iPgno
);
6572 fts5DebugRowid(&rc
, &s
, iRowid
);
6580 memset(&lvl
, 0, sizeof(Fts5DlidxLvl
));
6582 lvl
.iLeafPgno
= iPgno
;
6584 for(fts5DlidxLvlNext(&lvl
); lvl
.bEof
==0; fts5DlidxLvlNext(&lvl
)){
6585 sqlite3Fts5BufferAppendPrintf(&rc
, &s
,
6586 " %d(%lld)", lvl
.iLeafPgno
, lvl
.iRowid
6589 }else if( iSegid
==0 ){
6590 if( iRowid
==FTS5_AVERAGES_ROWID
){
6591 fts5DecodeAverages(&rc
, &s
, a
, n
);
6593 fts5DecodeStructure(&rc
, &s
, a
, n
);
6595 }else if( eDetailNone
){
6596 Fts5Buffer term
; /* Current term read from page */
6598 int iPgidxOff
= szLeaf
= fts5GetU16(&a
[2]);
6603 memset(&term
, 0, sizeof(Fts5Buffer
));
6605 /* Decode any entries that occur before the first term. */
6607 iPgidxOff
+= fts5GetVarint32(&a
[iPgidxOff
], iTermOff
);
6611 fts5DecodeRowidList(&rc
, &s
, &a
[4], iTermOff
-4);
6614 while( iOff
<szLeaf
){
6617 /* Read the term data for the next term*/
6618 iOff
+= fts5GetVarint32(&a
[iOff
], nAppend
);
6620 fts5BufferAppendBlob(&rc
, &term
, nAppend
, &a
[iOff
]);
6621 sqlite3Fts5BufferAppendPrintf(
6622 &rc
, &s
, " term=%.*s", term
.n
, (const char*)term
.p
6626 /* Figure out where the doclist for this term ends */
6629 iPgidxOff
+= fts5GetVarint32(&a
[iPgidxOff
], nIncr
);
6635 fts5DecodeRowidList(&rc
, &s
, &a
[iOff
], iTermOff
-iOff
);
6638 iOff
+= fts5GetVarint32(&a
[iOff
], nKeep
);
6642 fts5BufferFree(&term
);
6644 Fts5Buffer term
; /* Current term read from page */
6645 int szLeaf
; /* Offset of pgidx in a[] */
6647 int iPgidxPrev
= 0; /* Previous value read from pgidx */
6653 memset(&term
, 0, sizeof(Fts5Buffer
));
6656 sqlite3Fts5BufferSet(&rc
, &s
, 7, (const u8
*)"corrupt");
6659 iRowidOff
= fts5GetU16(&a
[0]);
6660 iPgidxOff
= szLeaf
= fts5GetU16(&a
[2]);
6662 fts5GetVarint32(&a
[iPgidxOff
], iTermOff
);
6663 }else if( iPgidxOff
>n
){
6669 /* Decode the position list tail at the start of the page */
6672 }else if( iTermOff
!=0 ){
6681 fts5DecodePoslist(&rc
, &s
, &a
[4], iOff
-4);
6683 /* Decode any more doclist data that appears on the page before the
6685 nDoclist
= (iTermOff
? iTermOff
: szLeaf
) - iOff
;
6686 if( nDoclist
+iOff
>n
){
6690 fts5DecodeDoclist(&rc
, &s
, &a
[iOff
], nDoclist
);
6692 while( iPgidxOff
<n
&& rc
==SQLITE_OK
){
6693 int bFirst
= (iPgidxOff
==szLeaf
); /* True for first term on page */
6694 int nByte
; /* Bytes of data */
6697 iPgidxOff
+= fts5GetVarint32(&a
[iPgidxOff
], nByte
);
6698 iPgidxPrev
+= nByte
;
6702 fts5GetVarint32(&a
[iPgidxOff
], nByte
);
6703 iEnd
= iPgidxPrev
+ nByte
;
6713 iOff
+= fts5GetVarint32(&a
[iOff
], nByte
);
6720 iOff
+= fts5GetVarint32(&a
[iOff
], nByte
);
6725 fts5BufferAppendBlob(&rc
, &term
, nByte
, &a
[iOff
]);
6728 sqlite3Fts5BufferAppendPrintf(
6729 &rc
, &s
, " term=%.*s", term
.n
, (const char*)term
.p
6731 iOff
+= fts5DecodeDoclist(&rc
, &s
, &a
[iOff
], iEnd
-iOff
);
6734 fts5BufferFree(&term
);
6739 if( rc
==SQLITE_OK
){
6740 sqlite3_result_text(pCtx
, (const char*)s
.p
, s
.n
, SQLITE_TRANSIENT
);
6742 sqlite3_result_error_code(pCtx
, rc
);
6746 #endif /* SQLITE_TEST */
6750 ** The implementation of user-defined scalar function fts5_rowid().
6752 static void fts5RowidFunction(
6753 sqlite3_context
*pCtx
, /* Function call context */
6754 int nArg
, /* Number of args (always 2) */
6755 sqlite3_value
**apVal
/* Function arguments */
6759 sqlite3_result_error(pCtx
, "should be: fts5_rowid(subject, ....)", -1);
6761 zArg
= (const char*)sqlite3_value_text(apVal
[0]);
6762 if( 0==sqlite3_stricmp(zArg
, "segment") ){
6766 sqlite3_result_error(pCtx
,
6767 "should be: fts5_rowid('segment', segid, pgno))", -1
6770 segid
= sqlite3_value_int(apVal
[1]);
6771 pgno
= sqlite3_value_int(apVal
[2]);
6772 iRowid
= FTS5_SEGMENT_ROWID(segid
, pgno
);
6773 sqlite3_result_int64(pCtx
, iRowid
);
6776 sqlite3_result_error(pCtx
,
6777 "first arg to fts5_rowid() must be 'segment'" , -1
6782 #endif /* SQLITE_TEST */
6785 ** This is called as part of registering the FTS5 module with database
6786 ** connection db. It registers several user-defined scalar functions useful
6789 ** If successful, SQLITE_OK is returned. If an error occurs, some other
6790 ** SQLite error code is returned instead.
6792 int sqlite3Fts5IndexInit(sqlite3
*db
){
6794 int rc
= sqlite3_create_function(
6795 db
, "fts5_decode", 2, SQLITE_UTF8
, 0, fts5DecodeFunction
, 0, 0
6798 if( rc
==SQLITE_OK
){
6799 rc
= sqlite3_create_function(
6800 db
, "fts5_decode_none", 2,
6801 SQLITE_UTF8
, (void*)db
, fts5DecodeFunction
, 0, 0
6805 if( rc
==SQLITE_OK
){
6806 rc
= sqlite3_create_function(
6807 db
, "fts5_rowid", -1, SQLITE_UTF8
, 0, fts5RowidFunction
, 0, 0
6818 int sqlite3Fts5IndexReset(Fts5Index
*p
){
6819 assert( p
->pStruct
==0 || p
->iStructVersion
!=0 );
6820 if( fts5IndexDataVersion(p
)!=p
->iStructVersion
){
6821 fts5StructureInvalidate(p
);
6823 return fts5IndexReturn(p
);