4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file implements an external (disk-based) database using BTrees.
13 ** See the header comment on "btreeInt.h" for additional information.
14 ** Including a description of file format and an overview of operation.
19 ** The header string that appears at the beginning of every
22 static const char zMagicHeader
[] = SQLITE_FILE_HEADER
;
25 ** Set this global variable to 1 to enable tracing using the TRACE
29 int sqlite3BtreeTrace
=1; /* True to enable tracing */
30 # define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
36 ** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37 ** But if the value is zero, make it 65536.
39 ** This routine is used to extract the "offset to cell content area" value
40 ** from the header of a btree page. If the page size is 65536 and the page
41 ** is empty, the offset should be 65536, but the 2-byte value stores zero.
42 ** This routine makes the necessary adjustment to 65536.
44 #define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
47 ** Values passed as the 5th argument to allocateBtreePage()
49 #define BTALLOC_ANY 0 /* Allocate any page */
50 #define BTALLOC_EXACT 1 /* Allocate exact page if possible */
51 #define BTALLOC_LE 2 /* Allocate any page <= the parameter */
54 ** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55 ** defined, or 0 if it is. For example:
57 ** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
59 #ifndef SQLITE_OMIT_AUTOVACUUM
60 #define IfNotOmitAV(expr) (expr)
62 #define IfNotOmitAV(expr) 0
65 #ifndef SQLITE_OMIT_SHARED_CACHE
67 ** A list of BtShared objects that are eligible for participation
68 ** in shared cache. This variable has file scope during normal builds,
69 ** but the test harness needs to access it so we make it global for
72 ** Access to this variable is protected by SQLITE_MUTEX_STATIC_MAIN.
75 BtShared
*SQLITE_WSD sqlite3SharedCacheList
= 0;
77 static BtShared
*SQLITE_WSD sqlite3SharedCacheList
= 0;
79 #endif /* SQLITE_OMIT_SHARED_CACHE */
81 #ifndef SQLITE_OMIT_SHARED_CACHE
83 ** Enable or disable the shared pager and schema features.
85 ** This routine has no effect on existing database connections.
86 ** The shared cache setting effects only future calls to
87 ** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
89 int sqlite3_enable_shared_cache(int enable
){
90 sqlite3GlobalConfig
.sharedCacheEnabled
= enable
;
97 #ifdef SQLITE_OMIT_SHARED_CACHE
99 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100 ** and clearAllSharedCacheTableLocks()
101 ** manipulate entries in the BtShared.pLock linked list used to store
102 ** shared-cache table level locks. If the library is compiled with the
103 ** shared-cache feature disabled, then there is only ever one user
104 ** of each BtShared structure and so this locking is not necessary.
105 ** So define the lock related functions as no-ops.
107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109 #define clearAllSharedCacheTableLocks(a)
110 #define downgradeAllSharedCacheTableLocks(a)
111 #define hasSharedCacheTableLock(a,b,c,d) 1
112 #define hasReadConflicts(a, b) 0
117 ** Return and reset the seek counter for a Btree object.
119 sqlite3_uint64
sqlite3BtreeSeekCount(Btree
*pBt
){
127 ** Implementation of the SQLITE_CORRUPT_PAGE() macro. Takes a single
128 ** (MemPage*) as an argument. The (MemPage*) must not be NULL.
130 ** If SQLITE_DEBUG is not defined, then this macro is equivalent to
131 ** SQLITE_CORRUPT_BKPT. Or, if SQLITE_DEBUG is set, then the log message
132 ** normally produced as a side-effect of SQLITE_CORRUPT_BKPT is augmented
133 ** with the page number and filename associated with the (MemPage*).
136 int corruptPageError(int lineno
, MemPage
*p
){
138 sqlite3BeginBenignMalloc();
139 zMsg
= sqlite3_mprintf("database corruption page %d of %s",
140 (int)p
->pgno
, sqlite3PagerFilename(p
->pBt
->pPager
, 0)
142 sqlite3EndBenignMalloc();
144 sqlite3ReportError(SQLITE_CORRUPT
, lineno
, zMsg
);
147 return SQLITE_CORRUPT_BKPT
;
149 # define SQLITE_CORRUPT_PAGE(pMemPage) corruptPageError(__LINE__, pMemPage)
151 # define SQLITE_CORRUPT_PAGE(pMemPage) SQLITE_CORRUPT_PGNO(pMemPage->pgno)
154 #ifndef SQLITE_OMIT_SHARED_CACHE
158 **** This function is only used as part of an assert() statement. ***
160 ** Check to see if pBtree holds the required locks to read or write to the
161 ** table with root page iRoot. Return 1 if it does and 0 if not.
163 ** For example, when writing to a table with root-page iRoot via
164 ** Btree connection pBtree:
166 ** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
168 ** When writing to an index that resides in a sharable database, the
169 ** caller should have first obtained a lock specifying the root page of
170 ** the corresponding table. This makes things a bit more complicated,
171 ** as this module treats each table as a separate structure. To determine
172 ** the table corresponding to the index being written, this
173 ** function has to search through the database schema.
175 ** Instead of a lock on the table/index rooted at page iRoot, the caller may
176 ** hold a write-lock on the schema table (root page 1). This is also
179 static int hasSharedCacheTableLock(
180 Btree
*pBtree
, /* Handle that must hold lock */
181 Pgno iRoot
, /* Root page of b-tree */
182 int isIndex
, /* True if iRoot is the root of an index b-tree */
183 int eLockType
/* Required lock type (READ_LOCK or WRITE_LOCK) */
185 Schema
*pSchema
= (Schema
*)pBtree
->pBt
->pSchema
;
189 /* If this database is not shareable, or if the client is reading
190 ** and has the read-uncommitted flag set, then no lock is required.
191 ** Return true immediately.
193 if( (pBtree
->sharable
==0)
194 || (eLockType
==READ_LOCK
&& (pBtree
->db
->flags
& SQLITE_ReadUncommit
))
199 /* If the client is reading or writing an index and the schema is
200 ** not loaded, then it is too difficult to actually check to see if
201 ** the correct locks are held. So do not bother - just return true.
202 ** This case does not come up very often anyhow.
204 if( isIndex
&& (!pSchema
|| (pSchema
->schemaFlags
&DB_SchemaLoaded
)==0) ){
208 /* Figure out the root-page that the lock should be held on. For table
209 ** b-trees, this is just the root page of the b-tree being read or
210 ** written. For index b-trees, it is the root page of the associated
215 for(p
=sqliteHashFirst(&pSchema
->idxHash
); p
; p
=sqliteHashNext(p
)){
216 Index
*pIdx
= (Index
*)sqliteHashData(p
);
217 if( pIdx
->tnum
==iRoot
){
219 /* Two or more indexes share the same root page. There must
220 ** be imposter tables. So just return true. The assert is not
221 ** useful in that case. */
224 iTab
= pIdx
->pTable
->tnum
;
232 /* Search for the required lock. Either a write-lock on root-page iTab, a
233 ** write-lock on the schema table, or (if the client is reading) a
234 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
235 for(pLock
=pBtree
->pBt
->pLock
; pLock
; pLock
=pLock
->pNext
){
236 if( pLock
->pBtree
==pBtree
237 && (pLock
->iTable
==iTab
|| (pLock
->eLock
==WRITE_LOCK
&& pLock
->iTable
==1))
238 && pLock
->eLock
>=eLockType
244 /* Failed to find the required lock. */
247 #endif /* SQLITE_DEBUG */
251 **** This function may be used as part of assert() statements only. ****
253 ** Return true if it would be illegal for pBtree to write into the
254 ** table or index rooted at iRoot because other shared connections are
255 ** simultaneously reading that same table or index.
257 ** It is illegal for pBtree to write if some other Btree object that
258 ** shares the same BtShared object is currently reading or writing
259 ** the iRoot table. Except, if the other Btree object has the
260 ** read-uncommitted flag set, then it is OK for the other object to
261 ** have a read cursor.
263 ** For example, before writing to any part of the table or index
264 ** rooted at page iRoot, one should call:
266 ** assert( !hasReadConflicts(pBtree, iRoot) );
268 static int hasReadConflicts(Btree
*pBtree
, Pgno iRoot
){
270 for(p
=pBtree
->pBt
->pCursor
; p
; p
=p
->pNext
){
271 if( p
->pgnoRoot
==iRoot
273 && 0==(p
->pBtree
->db
->flags
& SQLITE_ReadUncommit
)
280 #endif /* #ifdef SQLITE_DEBUG */
283 ** Query to see if Btree handle p may obtain a lock of type eLock
284 ** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
285 ** SQLITE_OK if the lock may be obtained (by calling
286 ** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
288 static int querySharedCacheTableLock(Btree
*p
, Pgno iTab
, u8 eLock
){
289 BtShared
*pBt
= p
->pBt
;
292 assert( sqlite3BtreeHoldsMutex(p
) );
293 assert( eLock
==READ_LOCK
|| eLock
==WRITE_LOCK
);
295 assert( !(p
->db
->flags
&SQLITE_ReadUncommit
)||eLock
==WRITE_LOCK
||iTab
==1 );
297 /* If requesting a write-lock, then the Btree must have an open write
298 ** transaction on this file. And, obviously, for this to be so there
299 ** must be an open write transaction on the file itself.
301 assert( eLock
==READ_LOCK
|| (p
==pBt
->pWriter
&& p
->inTrans
==TRANS_WRITE
) );
302 assert( eLock
==READ_LOCK
|| pBt
->inTransaction
==TRANS_WRITE
);
304 /* This routine is a no-op if the shared-cache is not enabled */
309 /* If some other connection is holding an exclusive lock, the
310 ** requested lock may not be obtained.
312 if( pBt
->pWriter
!=p
&& (pBt
->btsFlags
& BTS_EXCLUSIVE
)!=0 ){
313 sqlite3ConnectionBlocked(p
->db
, pBt
->pWriter
->db
);
314 return SQLITE_LOCKED_SHAREDCACHE
;
317 for(pIter
=pBt
->pLock
; pIter
; pIter
=pIter
->pNext
){
318 /* The condition (pIter->eLock!=eLock) in the following if(...)
319 ** statement is a simplification of:
321 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
323 ** since we know that if eLock==WRITE_LOCK, then no other connection
324 ** may hold a WRITE_LOCK on any table in this file (since there can
325 ** only be a single writer).
327 assert( pIter
->eLock
==READ_LOCK
|| pIter
->eLock
==WRITE_LOCK
);
328 assert( eLock
==READ_LOCK
|| pIter
->pBtree
==p
|| pIter
->eLock
==READ_LOCK
);
329 if( pIter
->pBtree
!=p
&& pIter
->iTable
==iTab
&& pIter
->eLock
!=eLock
){
330 sqlite3ConnectionBlocked(p
->db
, pIter
->pBtree
->db
);
331 if( eLock
==WRITE_LOCK
){
332 assert( p
==pBt
->pWriter
);
333 pBt
->btsFlags
|= BTS_PENDING
;
335 return SQLITE_LOCKED_SHAREDCACHE
;
340 #endif /* !SQLITE_OMIT_SHARED_CACHE */
342 #ifndef SQLITE_OMIT_SHARED_CACHE
344 ** Add a lock on the table with root-page iTable to the shared-btree used
345 ** by Btree handle p. Parameter eLock must be either READ_LOCK or
348 ** This function assumes the following:
350 ** (a) The specified Btree object p is connected to a sharable
351 ** database (one with the BtShared.sharable flag set), and
353 ** (b) No other Btree objects hold a lock that conflicts
354 ** with the requested lock (i.e. querySharedCacheTableLock() has
355 ** already been called and returned SQLITE_OK).
357 ** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
358 ** is returned if a malloc attempt fails.
360 static int setSharedCacheTableLock(Btree
*p
, Pgno iTable
, u8 eLock
){
361 BtShared
*pBt
= p
->pBt
;
365 assert( sqlite3BtreeHoldsMutex(p
) );
366 assert( eLock
==READ_LOCK
|| eLock
==WRITE_LOCK
);
369 /* A connection with the read-uncommitted flag set will never try to
370 ** obtain a read-lock using this function. The only read-lock obtained
371 ** by a connection in read-uncommitted mode is on the sqlite_schema
372 ** table, and that lock is obtained in BtreeBeginTrans(). */
373 assert( 0==(p
->db
->flags
&SQLITE_ReadUncommit
) || eLock
==WRITE_LOCK
);
375 /* This function should only be called on a sharable b-tree after it
376 ** has been determined that no other b-tree holds a conflicting lock. */
377 assert( p
->sharable
);
378 assert( SQLITE_OK
==querySharedCacheTableLock(p
, iTable
, eLock
) );
380 /* First search the list for an existing lock on this table. */
381 for(pIter
=pBt
->pLock
; pIter
; pIter
=pIter
->pNext
){
382 if( pIter
->iTable
==iTable
&& pIter
->pBtree
==p
){
388 /* If the above search did not find a BtLock struct associating Btree p
389 ** with table iTable, allocate one and link it into the list.
392 pLock
= (BtLock
*)sqlite3MallocZero(sizeof(BtLock
));
394 return SQLITE_NOMEM_BKPT
;
396 pLock
->iTable
= iTable
;
398 pLock
->pNext
= pBt
->pLock
;
402 /* Set the BtLock.eLock variable to the maximum of the current lock
403 ** and the requested lock. This means if a write-lock was already held
404 ** and a read-lock requested, we don't incorrectly downgrade the lock.
406 assert( WRITE_LOCK
>READ_LOCK
);
407 if( eLock
>pLock
->eLock
){
408 pLock
->eLock
= eLock
;
413 #endif /* !SQLITE_OMIT_SHARED_CACHE */
415 #ifndef SQLITE_OMIT_SHARED_CACHE
417 ** Release all the table locks (locks obtained via calls to
418 ** the setSharedCacheTableLock() procedure) held by Btree object p.
420 ** This function assumes that Btree p has an open read or write
421 ** transaction. If it does not, then the BTS_PENDING flag
422 ** may be incorrectly cleared.
424 static void clearAllSharedCacheTableLocks(Btree
*p
){
425 BtShared
*pBt
= p
->pBt
;
426 BtLock
**ppIter
= &pBt
->pLock
;
428 assert( sqlite3BtreeHoldsMutex(p
) );
429 assert( p
->sharable
|| 0==*ppIter
);
430 assert( p
->inTrans
>0 );
433 BtLock
*pLock
= *ppIter
;
434 assert( (pBt
->btsFlags
& BTS_EXCLUSIVE
)==0 || pBt
->pWriter
==pLock
->pBtree
);
435 assert( pLock
->pBtree
->inTrans
>=pLock
->eLock
);
436 if( pLock
->pBtree
==p
){
437 *ppIter
= pLock
->pNext
;
438 assert( pLock
->iTable
!=1 || pLock
==&p
->lock
);
439 if( pLock
->iTable
!=1 ){
443 ppIter
= &pLock
->pNext
;
447 assert( (pBt
->btsFlags
& BTS_PENDING
)==0 || pBt
->pWriter
);
448 if( pBt
->pWriter
==p
){
450 pBt
->btsFlags
&= ~(BTS_EXCLUSIVE
|BTS_PENDING
);
451 }else if( pBt
->nTransaction
==2 ){
452 /* This function is called when Btree p is concluding its
453 ** transaction. If there currently exists a writer, and p is not
454 ** that writer, then the number of locks held by connections other
455 ** than the writer must be about to drop to zero. In this case
456 ** set the BTS_PENDING flag to 0.
458 ** If there is not currently a writer, then BTS_PENDING must
459 ** be zero already. So this next line is harmless in that case.
461 pBt
->btsFlags
&= ~BTS_PENDING
;
466 ** This function changes all write-locks held by Btree p into read-locks.
468 static void downgradeAllSharedCacheTableLocks(Btree
*p
){
469 BtShared
*pBt
= p
->pBt
;
470 if( pBt
->pWriter
==p
){
473 pBt
->btsFlags
&= ~(BTS_EXCLUSIVE
|BTS_PENDING
);
474 for(pLock
=pBt
->pLock
; pLock
; pLock
=pLock
->pNext
){
475 assert( pLock
->eLock
==READ_LOCK
|| pLock
->pBtree
==p
);
476 pLock
->eLock
= READ_LOCK
;
481 #endif /* SQLITE_OMIT_SHARED_CACHE */
483 static void releasePage(MemPage
*pPage
); /* Forward reference */
484 static void releasePageOne(MemPage
*pPage
); /* Forward reference */
485 static void releasePageNotNull(MemPage
*pPage
); /* Forward reference */
488 ***** This routine is used inside of assert() only ****
490 ** Verify that the cursor holds the mutex on its BtShared
493 static int cursorHoldsMutex(BtCursor
*p
){
494 return sqlite3_mutex_held(p
->pBt
->mutex
);
497 /* Verify that the cursor and the BtShared agree about what is the current
498 ** database connetion. This is important in shared-cache mode. If the database
499 ** connection pointers get out-of-sync, it is possible for routines like
500 ** btreeInitPage() to reference an stale connection pointer that references a
501 ** a connection that has already closed. This routine is used inside assert()
502 ** statements only and for the purpose of double-checking that the btree code
503 ** does keep the database connection pointers up-to-date.
505 static int cursorOwnsBtShared(BtCursor
*p
){
506 assert( cursorHoldsMutex(p
) );
507 return (p
->pBtree
->db
==p
->pBt
->db
);
512 ** Invalidate the overflow cache of the cursor passed as the first argument.
513 ** on the shared btree structure pBt.
515 #define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
518 ** Invalidate the overflow page-list cache for all cursors opened
519 ** on the shared btree structure pBt.
521 static void invalidateAllOverflowCache(BtShared
*pBt
){
523 assert( sqlite3_mutex_held(pBt
->mutex
) );
524 for(p
=pBt
->pCursor
; p
; p
=p
->pNext
){
525 invalidateOverflowCache(p
);
529 #ifndef SQLITE_OMIT_INCRBLOB
531 ** This function is called before modifying the contents of a table
532 ** to invalidate any incrblob cursors that are open on the
533 ** row or one of the rows being modified.
535 ** If argument isClearTable is true, then the entire contents of the
536 ** table is about to be deleted. In this case invalidate all incrblob
537 ** cursors open on any row within the table with root-page pgnoRoot.
539 ** Otherwise, if argument isClearTable is false, then the row with
540 ** rowid iRow is being replaced or deleted. In this case invalidate
541 ** only those incrblob cursors open on that specific row.
543 static void invalidateIncrblobCursors(
544 Btree
*pBtree
, /* The database file to check */
545 Pgno pgnoRoot
, /* The table that might be changing */
546 i64 iRow
, /* The rowid that might be changing */
547 int isClearTable
/* True if all rows are being deleted */
550 assert( pBtree
->hasIncrblobCur
);
551 assert( sqlite3BtreeHoldsMutex(pBtree
) );
552 pBtree
->hasIncrblobCur
= 0;
553 for(p
=pBtree
->pBt
->pCursor
; p
; p
=p
->pNext
){
554 if( (p
->curFlags
& BTCF_Incrblob
)!=0 ){
555 pBtree
->hasIncrblobCur
= 1;
556 if( p
->pgnoRoot
==pgnoRoot
&& (isClearTable
|| p
->info
.nKey
==iRow
) ){
557 p
->eState
= CURSOR_INVALID
;
564 /* Stub function when INCRBLOB is omitted */
565 #define invalidateIncrblobCursors(w,x,y,z)
566 #endif /* SQLITE_OMIT_INCRBLOB */
569 ** Set bit pgno of the BtShared.pHasContent bitvec. This is called
570 ** when a page that previously contained data becomes a free-list leaf
573 ** The BtShared.pHasContent bitvec exists to work around an obscure
574 ** bug caused by the interaction of two useful IO optimizations surrounding
575 ** free-list leaf pages:
577 ** 1) When all data is deleted from a page and the page becomes
578 ** a free-list leaf page, the page is not written to the database
579 ** (as free-list leaf pages contain no meaningful data). Sometimes
580 ** such a page is not even journalled (as it will not be modified,
581 ** why bother journalling it?).
583 ** 2) When a free-list leaf page is reused, its content is not read
584 ** from the database or written to the journal file (why should it
585 ** be, if it is not at all meaningful?).
587 ** By themselves, these optimizations work fine and provide a handy
588 ** performance boost to bulk delete or insert operations. However, if
589 ** a page is moved to the free-list and then reused within the same
590 ** transaction, a problem comes up. If the page is not journalled when
591 ** it is moved to the free-list and it is also not journalled when it
592 ** is extracted from the free-list and reused, then the original data
593 ** may be lost. In the event of a rollback, it may not be possible
594 ** to restore the database to its original configuration.
596 ** The solution is the BtShared.pHasContent bitvec. Whenever a page is
597 ** moved to become a free-list leaf page, the corresponding bit is
598 ** set in the bitvec. Whenever a leaf page is extracted from the free-list,
599 ** optimization 2 above is omitted if the corresponding bit is already
600 ** set in BtShared.pHasContent. The contents of the bitvec are cleared
601 ** at the end of every transaction.
603 static int btreeSetHasContent(BtShared
*pBt
, Pgno pgno
){
605 if( !pBt
->pHasContent
){
606 assert( pgno
<=pBt
->nPage
);
607 pBt
->pHasContent
= sqlite3BitvecCreate(pBt
->nPage
);
608 if( !pBt
->pHasContent
){
609 rc
= SQLITE_NOMEM_BKPT
;
612 if( rc
==SQLITE_OK
&& pgno
<=sqlite3BitvecSize(pBt
->pHasContent
) ){
613 rc
= sqlite3BitvecSet(pBt
->pHasContent
, pgno
);
619 ** Query the BtShared.pHasContent vector.
621 ** This function is called when a free-list leaf page is removed from the
622 ** free-list for reuse. It returns false if it is safe to retrieve the
623 ** page from the pager layer with the 'no-content' flag set. True otherwise.
625 static int btreeGetHasContent(BtShared
*pBt
, Pgno pgno
){
626 Bitvec
*p
= pBt
->pHasContent
;
627 return p
&& (pgno
>sqlite3BitvecSize(p
) || sqlite3BitvecTestNotNull(p
, pgno
));
631 ** Clear (destroy) the BtShared.pHasContent bitvec. This should be
632 ** invoked at the conclusion of each write-transaction.
634 static void btreeClearHasContent(BtShared
*pBt
){
635 sqlite3BitvecDestroy(pBt
->pHasContent
);
636 pBt
->pHasContent
= 0;
640 ** Release all of the apPage[] pages for a cursor.
642 static void btreeReleaseAllCursorPages(BtCursor
*pCur
){
644 if( pCur
->iPage
>=0 ){
645 for(i
=0; i
<pCur
->iPage
; i
++){
646 releasePageNotNull(pCur
->apPage
[i
]);
648 releasePageNotNull(pCur
->pPage
);
654 ** The cursor passed as the only argument must point to a valid entry
655 ** when this function is called (i.e. have eState==CURSOR_VALID). This
656 ** function saves the current cursor key in variables pCur->nKey and
657 ** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error
660 ** If the cursor is open on an intkey table, then the integer key
661 ** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to
662 ** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is
663 ** set to point to a malloced buffer pCur->nKey bytes in size containing
666 static int saveCursorKey(BtCursor
*pCur
){
668 assert( CURSOR_VALID
==pCur
->eState
);
669 assert( 0==pCur
->pKey
);
670 assert( cursorHoldsMutex(pCur
) );
672 if( pCur
->curIntKey
){
673 /* Only the rowid is required for a table btree */
674 pCur
->nKey
= sqlite3BtreeIntegerKey(pCur
);
676 /* For an index btree, save the complete key content. It is possible
677 ** that the current key is corrupt. In that case, it is possible that
678 ** the sqlite3VdbeRecordUnpack() function may overread the buffer by
679 ** up to the size of 1 varint plus 1 8-byte value when the cursor
680 ** position is restored. Hence the 17 bytes of padding allocated
683 pCur
->nKey
= sqlite3BtreePayloadSize(pCur
);
684 pKey
= sqlite3Malloc( pCur
->nKey
+ 9 + 8 );
686 rc
= sqlite3BtreePayload(pCur
, 0, (int)pCur
->nKey
, pKey
);
688 memset(((u8
*)pKey
)+pCur
->nKey
, 0, 9+8);
694 rc
= SQLITE_NOMEM_BKPT
;
697 assert( !pCur
->curIntKey
|| !pCur
->pKey
);
702 ** Save the current cursor position in the variables BtCursor.nKey
703 ** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
705 ** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
706 ** prior to calling this routine.
708 static int saveCursorPosition(BtCursor
*pCur
){
711 assert( CURSOR_VALID
==pCur
->eState
|| CURSOR_SKIPNEXT
==pCur
->eState
);
712 assert( 0==pCur
->pKey
);
713 assert( cursorHoldsMutex(pCur
) );
715 if( pCur
->curFlags
& BTCF_Pinned
){
716 return SQLITE_CONSTRAINT_PINNED
;
718 if( pCur
->eState
==CURSOR_SKIPNEXT
){
719 pCur
->eState
= CURSOR_VALID
;
724 rc
= saveCursorKey(pCur
);
726 btreeReleaseAllCursorPages(pCur
);
727 pCur
->eState
= CURSOR_REQUIRESEEK
;
730 pCur
->curFlags
&= ~(BTCF_ValidNKey
|BTCF_ValidOvfl
|BTCF_AtLast
);
734 /* Forward reference */
735 static int SQLITE_NOINLINE
saveCursorsOnList(BtCursor
*,Pgno
,BtCursor
*);
738 ** Save the positions of all cursors (except pExcept) that are open on
739 ** the table with root-page iRoot. "Saving the cursor position" means that
740 ** the location in the btree is remembered in such a way that it can be
741 ** moved back to the same spot after the btree has been modified. This
742 ** routine is called just before cursor pExcept is used to modify the
743 ** table, for example in BtreeDelete() or BtreeInsert().
745 ** If there are two or more cursors on the same btree, then all such
746 ** cursors should have their BTCF_Multiple flag set. The btreeCursor()
747 ** routine enforces that rule. This routine only needs to be called in
748 ** the uncommon case when pExpect has the BTCF_Multiple flag set.
750 ** If pExpect!=NULL and if no other cursors are found on the same root-page,
751 ** then the BTCF_Multiple flag on pExpect is cleared, to avoid another
752 ** pointless call to this routine.
754 ** Implementation note: This routine merely checks to see if any cursors
755 ** need to be saved. It calls out to saveCursorsOnList() in the (unusual)
756 ** event that cursors are in need to being saved.
758 static int saveAllCursors(BtShared
*pBt
, Pgno iRoot
, BtCursor
*pExcept
){
760 assert( sqlite3_mutex_held(pBt
->mutex
) );
761 assert( pExcept
==0 || pExcept
->pBt
==pBt
);
762 for(p
=pBt
->pCursor
; p
; p
=p
->pNext
){
763 if( p
!=pExcept
&& (0==iRoot
|| p
->pgnoRoot
==iRoot
) ) break;
765 if( p
) return saveCursorsOnList(p
, iRoot
, pExcept
);
766 if( pExcept
) pExcept
->curFlags
&= ~BTCF_Multiple
;
770 /* This helper routine to saveAllCursors does the actual work of saving
771 ** the cursors if and when a cursor is found that actually requires saving.
772 ** The common case is that no cursors need to be saved, so this routine is
773 ** broken out from its caller to avoid unnecessary stack pointer movement.
775 static int SQLITE_NOINLINE
saveCursorsOnList(
776 BtCursor
*p
, /* The first cursor that needs saving */
777 Pgno iRoot
, /* Only save cursor with this iRoot. Save all if zero */
778 BtCursor
*pExcept
/* Do not save this cursor */
781 if( p
!=pExcept
&& (0==iRoot
|| p
->pgnoRoot
==iRoot
) ){
782 if( p
->eState
==CURSOR_VALID
|| p
->eState
==CURSOR_SKIPNEXT
){
783 int rc
= saveCursorPosition(p
);
788 testcase( p
->iPage
>=0 );
789 btreeReleaseAllCursorPages(p
);
798 ** Clear the current cursor position.
800 void sqlite3BtreeClearCursor(BtCursor
*pCur
){
801 assert( cursorHoldsMutex(pCur
) );
802 sqlite3_free(pCur
->pKey
);
804 pCur
->eState
= CURSOR_INVALID
;
808 ** In this version of BtreeMoveto, pKey is a packed index record
809 ** such as is generated by the OP_MakeRecord opcode. Unpack the
810 ** record and then call sqlite3BtreeIndexMoveto() to do the work.
812 static int btreeMoveto(
813 BtCursor
*pCur
, /* Cursor open on the btree to be searched */
814 const void *pKey
, /* Packed key if the btree is an index */
815 i64 nKey
, /* Integer key for tables. Size of pKey for indices */
816 int bias
, /* Bias search to the high end */
817 int *pRes
/* Write search results here */
819 int rc
; /* Status code */
820 UnpackedRecord
*pIdxKey
; /* Unpacked index key */
823 KeyInfo
*pKeyInfo
= pCur
->pKeyInfo
;
824 assert( nKey
==(i64
)(int)nKey
);
825 pIdxKey
= sqlite3VdbeAllocUnpackedRecord(pKeyInfo
);
826 if( pIdxKey
==0 ) return SQLITE_NOMEM_BKPT
;
827 sqlite3VdbeRecordUnpack(pKeyInfo
, (int)nKey
, pKey
, pIdxKey
);
828 if( pIdxKey
->nField
==0 || pIdxKey
->nField
>pKeyInfo
->nAllField
){
829 rc
= SQLITE_CORRUPT_BKPT
;
831 rc
= sqlite3BtreeIndexMoveto(pCur
, pIdxKey
, pRes
);
833 sqlite3DbFree(pCur
->pKeyInfo
->db
, pIdxKey
);
836 rc
= sqlite3BtreeTableMoveto(pCur
, nKey
, bias
, pRes
);
842 ** Restore the cursor to the position it was in (or as close to as possible)
843 ** when saveCursorPosition() was called. Note that this call deletes the
844 ** saved position info stored by saveCursorPosition(), so there can be
845 ** at most one effective restoreCursorPosition() call after each
846 ** saveCursorPosition().
848 static int btreeRestoreCursorPosition(BtCursor
*pCur
){
851 assert( cursorOwnsBtShared(pCur
) );
852 assert( pCur
->eState
>=CURSOR_REQUIRESEEK
);
853 if( pCur
->eState
==CURSOR_FAULT
){
854 return pCur
->skipNext
;
856 pCur
->eState
= CURSOR_INVALID
;
857 if( sqlite3FaultSim(410) ){
860 rc
= btreeMoveto(pCur
, pCur
->pKey
, pCur
->nKey
, 0, &skipNext
);
863 sqlite3_free(pCur
->pKey
);
865 assert( pCur
->eState
==CURSOR_VALID
|| pCur
->eState
==CURSOR_INVALID
);
866 if( skipNext
) pCur
->skipNext
= skipNext
;
867 if( pCur
->skipNext
&& pCur
->eState
==CURSOR_VALID
){
868 pCur
->eState
= CURSOR_SKIPNEXT
;
874 #define restoreCursorPosition(p) \
875 (p->eState>=CURSOR_REQUIRESEEK ? \
876 btreeRestoreCursorPosition(p) : \
880 ** Determine whether or not a cursor has moved from the position where
881 ** it was last placed, or has been invalidated for any other reason.
882 ** Cursors can move when the row they are pointing at is deleted out
883 ** from under them, for example. Cursor might also move if a btree
886 ** Calling this routine with a NULL cursor pointer returns false.
888 ** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
889 ** back to where it ought to be if this routine returns true.
891 int sqlite3BtreeCursorHasMoved(BtCursor
*pCur
){
892 assert( EIGHT_BYTE_ALIGNMENT(pCur
)
893 || pCur
==sqlite3BtreeFakeValidCursor() );
894 assert( offsetof(BtCursor
, eState
)==0 );
895 assert( sizeof(pCur
->eState
)==1 );
896 return CURSOR_VALID
!= *(u8
*)pCur
;
900 ** Return a pointer to a fake BtCursor object that will always answer
901 ** false to the sqlite3BtreeCursorHasMoved() routine above. The fake
902 ** cursor returned must not be used with any other Btree interface.
904 BtCursor
*sqlite3BtreeFakeValidCursor(void){
905 static u8 fakeCursor
= CURSOR_VALID
;
906 assert( offsetof(BtCursor
, eState
)==0 );
907 return (BtCursor
*)&fakeCursor
;
911 ** This routine restores a cursor back to its original position after it
912 ** has been moved by some outside activity (such as a btree rebalance or
913 ** a row having been deleted out from under the cursor).
915 ** On success, the *pDifferentRow parameter is false if the cursor is left
916 ** pointing at exactly the same row. *pDifferntRow is the row the cursor
917 ** was pointing to has been deleted, forcing the cursor to point to some
920 ** This routine should only be called for a cursor that just returned
921 ** TRUE from sqlite3BtreeCursorHasMoved().
923 int sqlite3BtreeCursorRestore(BtCursor
*pCur
, int *pDifferentRow
){
927 assert( pCur
->eState
!=CURSOR_VALID
);
928 rc
= restoreCursorPosition(pCur
);
933 if( pCur
->eState
!=CURSOR_VALID
){
941 #ifdef SQLITE_ENABLE_CURSOR_HINTS
943 ** Provide hints to the cursor. The particular hint given (and the type
944 ** and number of the varargs parameters) is determined by the eHintType
945 ** parameter. See the definitions of the BTREE_HINT_* macros for details.
947 void sqlite3BtreeCursorHint(BtCursor
*pCur
, int eHintType
, ...){
948 /* Used only by system that substitute their own storage engine */
953 ** Provide flag hints to the cursor.
955 void sqlite3BtreeCursorHintFlags(BtCursor
*pCur
, unsigned x
){
956 assert( x
==BTREE_SEEK_EQ
|| x
==BTREE_BULKLOAD
|| x
==0 );
961 #ifndef SQLITE_OMIT_AUTOVACUUM
963 ** Given a page number of a regular database page, return the page
964 ** number for the pointer-map page that contains the entry for the
965 ** input page number.
967 ** Return 0 (not a valid page) for pgno==1 since there is
968 ** no pointer map associated with page 1. The integrity_check logic
969 ** requires that ptrmapPageno(*,1)!=1.
971 static Pgno
ptrmapPageno(BtShared
*pBt
, Pgno pgno
){
972 int nPagesPerMapPage
;
974 assert( sqlite3_mutex_held(pBt
->mutex
) );
975 if( pgno
<2 ) return 0;
976 nPagesPerMapPage
= (pBt
->usableSize
/5)+1;
977 iPtrMap
= (pgno
-2)/nPagesPerMapPage
;
978 ret
= (iPtrMap
*nPagesPerMapPage
) + 2;
979 if( ret
==PENDING_BYTE_PAGE(pBt
) ){
986 ** Write an entry into the pointer map.
988 ** This routine updates the pointer map entry for page number 'key'
989 ** so that it maps to type 'eType' and parent page number 'pgno'.
991 ** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
992 ** a no-op. If an error occurs, the appropriate error code is written
995 static void ptrmapPut(BtShared
*pBt
, Pgno key
, u8 eType
, Pgno parent
, int *pRC
){
996 DbPage
*pDbPage
; /* The pointer map page */
997 u8
*pPtrmap
; /* The pointer map data */
998 Pgno iPtrmap
; /* The pointer map page number */
999 int offset
; /* Offset in pointer map page */
1000 int rc
; /* Return code from subfunctions */
1004 assert( sqlite3_mutex_held(pBt
->mutex
) );
1005 /* The super-journal page number must never be used as a pointer map page */
1006 assert( 0==PTRMAP_ISPAGE(pBt
, PENDING_BYTE_PAGE(pBt
)) );
1008 assert( pBt
->autoVacuum
);
1010 *pRC
= SQLITE_CORRUPT_BKPT
;
1013 iPtrmap
= PTRMAP_PAGENO(pBt
, key
);
1014 rc
= sqlite3PagerGet(pBt
->pPager
, iPtrmap
, &pDbPage
, 0);
1015 if( rc
!=SQLITE_OK
){
1019 if( ((char*)sqlite3PagerGetExtra(pDbPage
))[0]!=0 ){
1020 /* The first byte of the extra data is the MemPage.isInit byte.
1021 ** If that byte is set, it means this page is also being used
1022 ** as a btree page. */
1023 *pRC
= SQLITE_CORRUPT_BKPT
;
1026 offset
= PTRMAP_PTROFFSET(iPtrmap
, key
);
1028 *pRC
= SQLITE_CORRUPT_BKPT
;
1031 assert( offset
<= (int)pBt
->usableSize
-5 );
1032 pPtrmap
= (u8
*)sqlite3PagerGetData(pDbPage
);
1034 if( eType
!=pPtrmap
[offset
] || get4byte(&pPtrmap
[offset
+1])!=parent
){
1035 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key
, eType
, parent
));
1036 *pRC
= rc
= sqlite3PagerWrite(pDbPage
);
1037 if( rc
==SQLITE_OK
){
1038 pPtrmap
[offset
] = eType
;
1039 put4byte(&pPtrmap
[offset
+1], parent
);
1044 sqlite3PagerUnref(pDbPage
);
1048 ** Read an entry from the pointer map.
1050 ** This routine retrieves the pointer map entry for page 'key', writing
1051 ** the type and parent page number to *pEType and *pPgno respectively.
1052 ** An error code is returned if something goes wrong, otherwise SQLITE_OK.
1054 static int ptrmapGet(BtShared
*pBt
, Pgno key
, u8
*pEType
, Pgno
*pPgno
){
1055 DbPage
*pDbPage
; /* The pointer map page */
1056 int iPtrmap
; /* Pointer map page index */
1057 u8
*pPtrmap
; /* Pointer map page data */
1058 int offset
; /* Offset of entry in pointer map */
1061 assert( sqlite3_mutex_held(pBt
->mutex
) );
1063 iPtrmap
= PTRMAP_PAGENO(pBt
, key
);
1064 rc
= sqlite3PagerGet(pBt
->pPager
, iPtrmap
, &pDbPage
, 0);
1068 pPtrmap
= (u8
*)sqlite3PagerGetData(pDbPage
);
1070 offset
= PTRMAP_PTROFFSET(iPtrmap
, key
);
1072 sqlite3PagerUnref(pDbPage
);
1073 return SQLITE_CORRUPT_BKPT
;
1075 assert( offset
<= (int)pBt
->usableSize
-5 );
1076 assert( pEType
!=0 );
1077 *pEType
= pPtrmap
[offset
];
1078 if( pPgno
) *pPgno
= get4byte(&pPtrmap
[offset
+1]);
1080 sqlite3PagerUnref(pDbPage
);
1081 if( *pEType
<1 || *pEType
>5 ) return SQLITE_CORRUPT_PGNO(iPtrmap
);
1085 #else /* if defined SQLITE_OMIT_AUTOVACUUM */
1086 #define ptrmapPut(w,x,y,z,rc)
1087 #define ptrmapGet(w,x,y,z) SQLITE_OK
1088 #define ptrmapPutOvflPtr(x, y, z, rc)
1092 ** Given a btree page and a cell index (0 means the first cell on
1093 ** the page, 1 means the second cell, and so forth) return a pointer
1094 ** to the cell content.
1096 ** findCellPastPtr() does the same except it skips past the initial
1097 ** 4-byte child pointer found on interior pages, if there is one.
1099 ** This routine works only for pages that do not contain overflow cells.
1101 #define findCell(P,I) \
1102 ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
1103 #define findCellPastPtr(P,I) \
1104 ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
1108 ** This is common tail processing for btreeParseCellPtr() and
1109 ** btreeParseCellPtrIndex() for the case when the cell does not fit entirely
1110 ** on a single B-tree page. Make necessary adjustments to the CellInfo
1113 static SQLITE_NOINLINE
void btreeParseCellAdjustSizeForOverflow(
1114 MemPage
*pPage
, /* Page containing the cell */
1115 u8
*pCell
, /* Pointer to the cell text. */
1116 CellInfo
*pInfo
/* Fill in this structure */
1118 /* If the payload will not fit completely on the local page, we have
1119 ** to decide how much to store locally and how much to spill onto
1120 ** overflow pages. The strategy is to minimize the amount of unused
1121 ** space on overflow pages while keeping the amount of local storage
1122 ** in between minLocal and maxLocal.
1124 ** Warning: changing the way overflow payload is distributed in any
1125 ** way will result in an incompatible file format.
1127 int minLocal
; /* Minimum amount of payload held locally */
1128 int maxLocal
; /* Maximum amount of payload held locally */
1129 int surplus
; /* Overflow payload available for local storage */
1131 minLocal
= pPage
->minLocal
;
1132 maxLocal
= pPage
->maxLocal
;
1133 surplus
= minLocal
+ (pInfo
->nPayload
- minLocal
)%(pPage
->pBt
->usableSize
-4);
1134 testcase( surplus
==maxLocal
);
1135 testcase( surplus
==maxLocal
+1 );
1136 if( surplus
<= maxLocal
){
1137 pInfo
->nLocal
= (u16
)surplus
;
1139 pInfo
->nLocal
= (u16
)minLocal
;
1141 pInfo
->nSize
= (u16
)(&pInfo
->pPayload
[pInfo
->nLocal
] - pCell
) + 4;
1145 ** Given a record with nPayload bytes of payload stored within btree
1146 ** page pPage, return the number of bytes of payload stored locally.
1148 static int btreePayloadToLocal(MemPage
*pPage
, i64 nPayload
){
1149 int maxLocal
; /* Maximum amount of payload held locally */
1150 maxLocal
= pPage
->maxLocal
;
1151 if( nPayload
<=maxLocal
){
1154 int minLocal
; /* Minimum amount of payload held locally */
1155 int surplus
; /* Overflow payload available for local storage */
1156 minLocal
= pPage
->minLocal
;
1157 surplus
= minLocal
+ (nPayload
- minLocal
)%(pPage
->pBt
->usableSize
-4);
1158 return ( surplus
<= maxLocal
) ? surplus
: minLocal
;
1163 ** The following routines are implementations of the MemPage.xParseCell()
1166 ** Parse a cell content block and fill in the CellInfo structure.
1168 ** btreeParseCellPtr() => table btree leaf nodes
1169 ** btreeParseCellNoPayload() => table btree internal nodes
1170 ** btreeParseCellPtrIndex() => index btree nodes
1172 ** There is also a wrapper function btreeParseCell() that works for
1173 ** all MemPage types and that references the cell by index rather than
1176 static void btreeParseCellPtrNoPayload(
1177 MemPage
*pPage
, /* Page containing the cell */
1178 u8
*pCell
, /* Pointer to the cell text. */
1179 CellInfo
*pInfo
/* Fill in this structure */
1181 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
1182 assert( pPage
->leaf
==0 );
1183 assert( pPage
->childPtrSize
==4 );
1184 #ifndef SQLITE_DEBUG
1185 UNUSED_PARAMETER(pPage
);
1187 pInfo
->nSize
= 4 + getVarint(&pCell
[4], (u64
*)&pInfo
->nKey
);
1188 pInfo
->nPayload
= 0;
1190 pInfo
->pPayload
= 0;
1193 static void btreeParseCellPtr(
1194 MemPage
*pPage
, /* Page containing the cell */
1195 u8
*pCell
, /* Pointer to the cell text. */
1196 CellInfo
*pInfo
/* Fill in this structure */
1198 u8
*pIter
; /* For scanning through pCell */
1199 u32 nPayload
; /* Number of bytes of cell payload */
1200 u64 iKey
; /* Extracted Key value */
1202 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
1203 assert( pPage
->leaf
==0 || pPage
->leaf
==1 );
1204 assert( pPage
->intKeyLeaf
);
1205 assert( pPage
->childPtrSize
==0 );
1208 /* The next block of code is equivalent to:
1210 ** pIter += getVarint32(pIter, nPayload);
1212 ** The code is inlined to avoid a function call.
1215 if( nPayload
>=0x80 ){
1216 u8
*pEnd
= &pIter
[8];
1219 nPayload
= (nPayload
<<7) | (*++pIter
& 0x7f);
1220 }while( (*pIter
)>=0x80 && pIter
<pEnd
);
1224 /* The next block of code is equivalent to:
1226 ** pIter += getVarint(pIter, (u64*)&pInfo->nKey);
1228 ** The code is inlined and the loop is unrolled for performance.
1229 ** This routine is a high-runner.
1234 iKey
= ((iKey
&0x7f)<<7) | ((x
= *++pIter
) & 0x7f);
1236 iKey
= (iKey
<<7) | ((x
=*++pIter
) & 0x7f);
1238 iKey
= (iKey
<<7) | ((x
= *++pIter
) & 0x7f);
1240 iKey
= (iKey
<<7) | ((x
= *++pIter
) & 0x7f);
1242 iKey
= (iKey
<<7) | ((x
= *++pIter
) & 0x7f);
1244 iKey
= (iKey
<<7) | ((x
= *++pIter
) & 0x7f);
1246 iKey
= (iKey
<<7) | ((x
= *++pIter
) & 0x7f);
1248 iKey
= (iKey
<<8) | (*++pIter
);
1259 pInfo
->nKey
= *(i64
*)&iKey
;
1260 pInfo
->nPayload
= nPayload
;
1261 pInfo
->pPayload
= pIter
;
1262 testcase( nPayload
==pPage
->maxLocal
);
1263 testcase( nPayload
==(u32
)pPage
->maxLocal
+1 );
1264 if( nPayload
<=pPage
->maxLocal
){
1265 /* This is the (easy) common case where the entire payload fits
1266 ** on the local page. No overflow is required.
1268 pInfo
->nSize
= nPayload
+ (u16
)(pIter
- pCell
);
1269 if( pInfo
->nSize
<4 ) pInfo
->nSize
= 4;
1270 pInfo
->nLocal
= (u16
)nPayload
;
1272 btreeParseCellAdjustSizeForOverflow(pPage
, pCell
, pInfo
);
1275 static void btreeParseCellPtrIndex(
1276 MemPage
*pPage
, /* Page containing the cell */
1277 u8
*pCell
, /* Pointer to the cell text. */
1278 CellInfo
*pInfo
/* Fill in this structure */
1280 u8
*pIter
; /* For scanning through pCell */
1281 u32 nPayload
; /* Number of bytes of cell payload */
1283 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
1284 assert( pPage
->leaf
==0 || pPage
->leaf
==1 );
1285 assert( pPage
->intKeyLeaf
==0 );
1286 pIter
= pCell
+ pPage
->childPtrSize
;
1288 if( nPayload
>=0x80 ){
1289 u8
*pEnd
= &pIter
[8];
1292 nPayload
= (nPayload
<<7) | (*++pIter
& 0x7f);
1293 }while( *(pIter
)>=0x80 && pIter
<pEnd
);
1296 pInfo
->nKey
= nPayload
;
1297 pInfo
->nPayload
= nPayload
;
1298 pInfo
->pPayload
= pIter
;
1299 testcase( nPayload
==pPage
->maxLocal
);
1300 testcase( nPayload
==(u32
)pPage
->maxLocal
+1 );
1301 if( nPayload
<=pPage
->maxLocal
){
1302 /* This is the (easy) common case where the entire payload fits
1303 ** on the local page. No overflow is required.
1305 pInfo
->nSize
= nPayload
+ (u16
)(pIter
- pCell
);
1306 if( pInfo
->nSize
<4 ) pInfo
->nSize
= 4;
1307 pInfo
->nLocal
= (u16
)nPayload
;
1309 btreeParseCellAdjustSizeForOverflow(pPage
, pCell
, pInfo
);
1312 static void btreeParseCell(
1313 MemPage
*pPage
, /* Page containing the cell */
1314 int iCell
, /* The cell index. First cell is 0 */
1315 CellInfo
*pInfo
/* Fill in this structure */
1317 pPage
->xParseCell(pPage
, findCell(pPage
, iCell
), pInfo
);
1321 ** The following routines are implementations of the MemPage.xCellSize
1324 ** Compute the total number of bytes that a Cell needs in the cell
1325 ** data area of the btree-page. The return number includes the cell
1326 ** data header and the local payload, but not any overflow page or
1327 ** the space used by the cell pointer.
1329 ** cellSizePtrNoPayload() => table internal nodes
1330 ** cellSizePtrTableLeaf() => table leaf nodes
1331 ** cellSizePtr() => all index nodes & table leaf nodes
1333 static u16
cellSizePtr(MemPage
*pPage
, u8
*pCell
){
1334 u8
*pIter
= pCell
+ pPage
->childPtrSize
; /* For looping over bytes of pCell */
1335 u8
*pEnd
; /* End mark for a varint */
1336 u32 nSize
; /* Size value to return */
1339 /* The value returned by this function should always be the same as
1340 ** the (CellInfo.nSize) value found by doing a full parse of the
1341 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1342 ** this function verifies that this invariant is not violated. */
1344 pPage
->xParseCell(pPage
, pCell
, &debuginfo
);
1352 nSize
= (nSize
<<7) | (*++pIter
& 0x7f);
1353 }while( *(pIter
)>=0x80 && pIter
<pEnd
);
1356 testcase( nSize
==pPage
->maxLocal
);
1357 testcase( nSize
==(u32
)pPage
->maxLocal
+1 );
1358 if( nSize
<=pPage
->maxLocal
){
1359 nSize
+= (u32
)(pIter
- pCell
);
1360 if( nSize
<4 ) nSize
= 4;
1362 int minLocal
= pPage
->minLocal
;
1363 nSize
= minLocal
+ (nSize
- minLocal
) % (pPage
->pBt
->usableSize
- 4);
1364 testcase( nSize
==pPage
->maxLocal
);
1365 testcase( nSize
==(u32
)pPage
->maxLocal
+1 );
1366 if( nSize
>pPage
->maxLocal
){
1369 nSize
+= 4 + (u16
)(pIter
- pCell
);
1371 assert( nSize
==debuginfo
.nSize
|| CORRUPT_DB
);
1374 static u16
cellSizePtrNoPayload(MemPage
*pPage
, u8
*pCell
){
1375 u8
*pIter
= pCell
+ 4; /* For looping over bytes of pCell */
1376 u8
*pEnd
; /* End mark for a varint */
1379 /* The value returned by this function should always be the same as
1380 ** the (CellInfo.nSize) value found by doing a full parse of the
1381 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1382 ** this function verifies that this invariant is not violated. */
1384 pPage
->xParseCell(pPage
, pCell
, &debuginfo
);
1386 UNUSED_PARAMETER(pPage
);
1389 assert( pPage
->childPtrSize
==4 );
1391 while( (*pIter
++)&0x80 && pIter
<pEnd
);
1392 assert( debuginfo
.nSize
==(u16
)(pIter
- pCell
) || CORRUPT_DB
);
1393 return (u16
)(pIter
- pCell
);
1395 static u16
cellSizePtrTableLeaf(MemPage
*pPage
, u8
*pCell
){
1396 u8
*pIter
= pCell
; /* For looping over bytes of pCell */
1397 u8
*pEnd
; /* End mark for a varint */
1398 u32 nSize
; /* Size value to return */
1401 /* The value returned by this function should always be the same as
1402 ** the (CellInfo.nSize) value found by doing a full parse of the
1403 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1404 ** this function verifies that this invariant is not violated. */
1406 pPage
->xParseCell(pPage
, pCell
, &debuginfo
);
1414 nSize
= (nSize
<<7) | (*++pIter
& 0x7f);
1415 }while( *(pIter
)>=0x80 && pIter
<pEnd
);
1418 /* pIter now points at the 64-bit integer key value, a variable length
1419 ** integer. The following block moves pIter to point at the first byte
1420 ** past the end of the key value. */
1428 && (*pIter
++)&0x80 ){ pIter
++; }
1429 testcase( nSize
==pPage
->maxLocal
);
1430 testcase( nSize
==(u32
)pPage
->maxLocal
+1 );
1431 if( nSize
<=pPage
->maxLocal
){
1432 nSize
+= (u32
)(pIter
- pCell
);
1433 if( nSize
<4 ) nSize
= 4;
1435 int minLocal
= pPage
->minLocal
;
1436 nSize
= minLocal
+ (nSize
- minLocal
) % (pPage
->pBt
->usableSize
- 4);
1437 testcase( nSize
==pPage
->maxLocal
);
1438 testcase( nSize
==(u32
)pPage
->maxLocal
+1 );
1439 if( nSize
>pPage
->maxLocal
){
1442 nSize
+= 4 + (u16
)(pIter
- pCell
);
1444 assert( nSize
==debuginfo
.nSize
|| CORRUPT_DB
);
1450 /* This variation on cellSizePtr() is used inside of assert() statements
1452 static u16
cellSize(MemPage
*pPage
, int iCell
){
1453 return pPage
->xCellSize(pPage
, findCell(pPage
, iCell
));
1457 #ifndef SQLITE_OMIT_AUTOVACUUM
1459 ** The cell pCell is currently part of page pSrc but will ultimately be part
1460 ** of pPage. (pSrc and pPage are often the same.) If pCell contains a
1461 ** pointer to an overflow page, insert an entry into the pointer-map for
1462 ** the overflow page that will be valid after pCell has been moved to pPage.
1464 static void ptrmapPutOvflPtr(MemPage
*pPage
, MemPage
*pSrc
, u8
*pCell
,int *pRC
){
1468 pPage
->xParseCell(pPage
, pCell
, &info
);
1469 if( info
.nLocal
<info
.nPayload
){
1471 if( SQLITE_WITHIN(pSrc
->aDataEnd
, pCell
, pCell
+info
.nLocal
) ){
1472 testcase( pSrc
!=pPage
);
1473 *pRC
= SQLITE_CORRUPT_BKPT
;
1476 ovfl
= get4byte(&pCell
[info
.nSize
-4]);
1477 ptrmapPut(pPage
->pBt
, ovfl
, PTRMAP_OVERFLOW1
, pPage
->pgno
, pRC
);
1484 ** Defragment the page given. This routine reorganizes cells within the
1485 ** page so that there are no free-blocks on the free-block list.
1487 ** Parameter nMaxFrag is the maximum amount of fragmented space that may be
1488 ** present in the page after this routine returns.
1490 ** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
1491 ** b-tree page so that there are no freeblocks or fragment bytes, all
1492 ** unused bytes are contained in the unallocated space region, and all
1493 ** cells are packed tightly at the end of the page.
1495 static int defragmentPage(MemPage
*pPage
, int nMaxFrag
){
1496 int i
; /* Loop counter */
1497 int pc
; /* Address of the i-th cell */
1498 int hdr
; /* Offset to the page header */
1499 int size
; /* Size of a cell */
1500 int usableSize
; /* Number of usable bytes on a page */
1501 int cellOffset
; /* Offset to the cell pointer array */
1502 int cbrk
; /* Offset to the cell content area */
1503 int nCell
; /* Number of cells on the page */
1504 unsigned char *data
; /* The page data */
1505 unsigned char *temp
; /* Temp area for cell content */
1506 unsigned char *src
; /* Source of content */
1507 int iCellFirst
; /* First allowable cell index */
1508 int iCellLast
; /* Last possible cell index */
1509 int iCellStart
; /* First cell offset in input */
1511 assert( sqlite3PagerIswriteable(pPage
->pDbPage
) );
1512 assert( pPage
->pBt
!=0 );
1513 assert( pPage
->pBt
->usableSize
<= SQLITE_MAX_PAGE_SIZE
);
1514 assert( pPage
->nOverflow
==0 );
1515 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
1516 data
= pPage
->aData
;
1517 hdr
= pPage
->hdrOffset
;
1518 cellOffset
= pPage
->cellOffset
;
1519 nCell
= pPage
->nCell
;
1520 assert( nCell
==get2byte(&data
[hdr
+3]) || CORRUPT_DB
);
1521 iCellFirst
= cellOffset
+ 2*nCell
;
1522 usableSize
= pPage
->pBt
->usableSize
;
1524 /* This block handles pages with two or fewer free blocks and nMaxFrag
1525 ** or fewer fragmented bytes. In this case it is faster to move the
1526 ** two (or one) blocks of cells using memmove() and add the required
1527 ** offsets to each pointer in the cell-pointer array than it is to
1528 ** reconstruct the entire page. */
1529 if( (int)data
[hdr
+7]<=nMaxFrag
){
1530 int iFree
= get2byte(&data
[hdr
+1]);
1531 if( iFree
>usableSize
-4 ) return SQLITE_CORRUPT_PAGE(pPage
);
1533 int iFree2
= get2byte(&data
[iFree
]);
1534 if( iFree2
>usableSize
-4 ) return SQLITE_CORRUPT_PAGE(pPage
);
1535 if( 0==iFree2
|| (data
[iFree2
]==0 && data
[iFree2
+1]==0) ){
1536 u8
*pEnd
= &data
[cellOffset
+ nCell
*2];
1539 int sz
= get2byte(&data
[iFree
+2]);
1540 int top
= get2byte(&data
[hdr
+5]);
1542 return SQLITE_CORRUPT_PAGE(pPage
);
1545 if( iFree
+sz
>iFree2
) return SQLITE_CORRUPT_PAGE(pPage
);
1546 sz2
= get2byte(&data
[iFree2
+2]);
1547 if( iFree2
+sz2
> usableSize
) return SQLITE_CORRUPT_PAGE(pPage
);
1548 memmove(&data
[iFree
+sz
+sz2
], &data
[iFree
+sz
], iFree2
-(iFree
+sz
));
1550 }else if( iFree
+sz
>usableSize
){
1551 return SQLITE_CORRUPT_PAGE(pPage
);
1555 assert( cbrk
+(iFree
-top
) <= usableSize
);
1556 memmove(&data
[cbrk
], &data
[top
], iFree
-top
);
1557 for(pAddr
=&data
[cellOffset
]; pAddr
<pEnd
; pAddr
+=2){
1558 pc
= get2byte(pAddr
);
1559 if( pc
<iFree
){ put2byte(pAddr
, pc
+sz
); }
1560 else if( pc
<iFree2
){ put2byte(pAddr
, pc
+sz2
); }
1562 goto defragment_out
;
1568 iCellLast
= usableSize
- 4;
1569 iCellStart
= get2byte(&data
[hdr
+5]);
1571 temp
= sqlite3PagerTempSpace(pPage
->pBt
->pPager
);
1572 memcpy(&temp
[iCellStart
], &data
[iCellStart
], usableSize
- iCellStart
);
1574 for(i
=0; i
<nCell
; i
++){
1575 u8
*pAddr
; /* The i-th cell pointer */
1576 pAddr
= &data
[cellOffset
+ i
*2];
1577 pc
= get2byte(pAddr
);
1578 testcase( pc
==iCellFirst
);
1579 testcase( pc
==iCellLast
);
1580 /* These conditions have already been verified in btreeInitPage()
1581 ** if PRAGMA cell_size_check=ON.
1583 if( pc
<iCellStart
|| pc
>iCellLast
){
1584 return SQLITE_CORRUPT_PAGE(pPage
);
1586 assert( pc
>=iCellStart
&& pc
<=iCellLast
);
1587 size
= pPage
->xCellSize(pPage
, &src
[pc
]);
1589 if( cbrk
<iCellStart
|| pc
+size
>usableSize
){
1590 return SQLITE_CORRUPT_PAGE(pPage
);
1592 assert( cbrk
+size
<=usableSize
&& cbrk
>=iCellStart
);
1593 testcase( cbrk
+size
==usableSize
);
1594 testcase( pc
+size
==usableSize
);
1595 put2byte(pAddr
, cbrk
);
1596 memcpy(&data
[cbrk
], &src
[pc
], size
);
1602 assert( pPage
->nFree
>=0 );
1603 if( data
[hdr
+7]+cbrk
-iCellFirst
!=pPage
->nFree
){
1604 return SQLITE_CORRUPT_PAGE(pPage
);
1606 assert( cbrk
>=iCellFirst
);
1607 put2byte(&data
[hdr
+5], cbrk
);
1610 memset(&data
[iCellFirst
], 0, cbrk
-iCellFirst
);
1611 assert( sqlite3PagerIswriteable(pPage
->pDbPage
) );
1616 ** Search the free-list on page pPg for space to store a cell nByte bytes in
1617 ** size. If one can be found, return a pointer to the space and remove it
1618 ** from the free-list.
1620 ** If no suitable space can be found on the free-list, return NULL.
1622 ** This function may detect corruption within pPg. If corruption is
1623 ** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned.
1625 ** Slots on the free list that are between 1 and 3 bytes larger than nByte
1626 ** will be ignored if adding the extra space to the fragmentation count
1627 ** causes the fragmentation count to exceed 60.
1629 static u8
*pageFindSlot(MemPage
*pPg
, int nByte
, int *pRc
){
1630 const int hdr
= pPg
->hdrOffset
; /* Offset to page header */
1631 u8
* const aData
= pPg
->aData
; /* Page data */
1632 int iAddr
= hdr
+ 1; /* Address of ptr to pc */
1633 u8
*pTmp
= &aData
[iAddr
]; /* Temporary ptr into aData[] */
1634 int pc
= get2byte(pTmp
); /* Address of a free slot */
1635 int x
; /* Excess size of the slot */
1636 int maxPC
= pPg
->pBt
->usableSize
- nByte
; /* Max address for a usable slot */
1637 int size
; /* Size of the free slot */
1641 /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
1642 ** freeblock form a big-endian integer which is the size of the freeblock
1643 ** in bytes, including the 4-byte header. */
1644 pTmp
= &aData
[pc
+2];
1645 size
= get2byte(pTmp
);
1646 if( (x
= size
- nByte
)>=0 ){
1650 /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
1651 ** number of bytes in fragments may not exceed 60. */
1652 if( aData
[hdr
+7]>57 ) return 0;
1654 /* Remove the slot from the free-list. Update the number of
1655 ** fragmented bytes within the page. */
1656 memcpy(&aData
[iAddr
], &aData
[pc
], 2);
1657 aData
[hdr
+7] += (u8
)x
;
1659 }else if( x
+pc
> maxPC
){
1660 /* This slot extends off the end of the usable part of the page */
1661 *pRc
= SQLITE_CORRUPT_PAGE(pPg
);
1664 /* The slot remains on the free-list. Reduce its size to account
1665 ** for the portion used by the new allocation. */
1666 put2byte(&aData
[pc
+2], x
);
1668 return &aData
[pc
+ x
];
1672 pc
= get2byte(pTmp
);
1675 /* The next slot in the chain comes before the current slot */
1676 *pRc
= SQLITE_CORRUPT_PAGE(pPg
);
1681 if( pc
>maxPC
+nByte
-4 ){
1682 /* The free slot chain extends off the end of the page */
1683 *pRc
= SQLITE_CORRUPT_PAGE(pPg
);
1689 ** Allocate nByte bytes of space from within the B-Tree page passed
1690 ** as the first argument. Write into *pIdx the index into pPage->aData[]
1691 ** of the first byte of allocated space. Return either SQLITE_OK or
1692 ** an error code (usually SQLITE_CORRUPT).
1694 ** The caller guarantees that there is sufficient space to make the
1695 ** allocation. This routine might need to defragment in order to bring
1696 ** all the space together, however. This routine will avoid using
1697 ** the first two bytes past the cell pointer area since presumably this
1698 ** allocation is being made in order to insert a new cell, so we will
1699 ** also end up needing a new cell pointer.
1701 static int allocateSpace(MemPage
*pPage
, int nByte
, int *pIdx
){
1702 const int hdr
= pPage
->hdrOffset
; /* Local cache of pPage->hdrOffset */
1703 u8
* const data
= pPage
->aData
; /* Local cache of pPage->aData */
1704 int top
; /* First byte of cell content area */
1705 int rc
= SQLITE_OK
; /* Integer return code */
1706 u8
*pTmp
; /* Temp ptr into data[] */
1707 int gap
; /* First byte of gap between cell pointers and cell content */
1709 assert( sqlite3PagerIswriteable(pPage
->pDbPage
) );
1710 assert( pPage
->pBt
);
1711 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
1712 assert( nByte
>=0 ); /* Minimum cell size is 4 */
1713 assert( pPage
->nFree
>=nByte
);
1714 assert( pPage
->nOverflow
==0 );
1715 assert( nByte
< (int)(pPage
->pBt
->usableSize
-8) );
1717 assert( pPage
->cellOffset
== hdr
+ 12 - 4*pPage
->leaf
);
1718 gap
= pPage
->cellOffset
+ 2*pPage
->nCell
;
1719 assert( gap
<=65536 );
1720 /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
1721 ** and the reserved space is zero (the usual value for reserved space)
1722 ** then the cell content offset of an empty page wants to be 65536.
1723 ** However, that integer is too large to be stored in a 2-byte unsigned
1724 ** integer, so a value of 0 is used in its place. */
1725 pTmp
= &data
[hdr
+5];
1726 top
= get2byte(pTmp
);
1727 assert( top
<=(int)pPage
->pBt
->usableSize
); /* by btreeComputeFreeSpace() */
1729 if( top
==0 && pPage
->pBt
->usableSize
==65536 ){
1732 return SQLITE_CORRUPT_PAGE(pPage
);
1736 /* If there is enough space between gap and top for one more cell pointer,
1737 ** and if the freelist is not empty, then search the
1738 ** freelist looking for a slot big enough to satisfy the request.
1740 testcase( gap
+2==top
);
1741 testcase( gap
+1==top
);
1742 testcase( gap
==top
);
1743 if( (data
[hdr
+2] || data
[hdr
+1]) && gap
+2<=top
){
1744 u8
*pSpace
= pageFindSlot(pPage
, nByte
, &rc
);
1747 assert( pSpace
+nByte
<=data
+pPage
->pBt
->usableSize
);
1748 *pIdx
= g2
= (int)(pSpace
-data
);
1750 return SQLITE_CORRUPT_PAGE(pPage
);
1759 /* The request could not be fulfilled using a freelist slot. Check
1760 ** to see if defragmentation is necessary.
1762 testcase( gap
+2+nByte
==top
);
1763 if( gap
+2+nByte
>top
){
1764 assert( pPage
->nCell
>0 || CORRUPT_DB
);
1765 assert( pPage
->nFree
>=0 );
1766 rc
= defragmentPage(pPage
, MIN(4, pPage
->nFree
- (2+nByte
)));
1768 top
= get2byteNotZero(&data
[hdr
+5]);
1769 assert( gap
+2+nByte
<=top
);
1773 /* Allocate memory from the gap in between the cell pointer array
1774 ** and the cell content area. The btreeComputeFreeSpace() call has already
1775 ** validated the freelist. Given that the freelist is valid, there
1776 ** is no way that the allocation can extend off the end of the page.
1777 ** The assert() below verifies the previous sentence.
1780 put2byte(&data
[hdr
+5], top
);
1781 assert( top
+nByte
<= (int)pPage
->pBt
->usableSize
);
1787 ** Return a section of the pPage->aData to the freelist.
1788 ** The first byte of the new free block is pPage->aData[iStart]
1789 ** and the size of the block is iSize bytes.
1791 ** Adjacent freeblocks are coalesced.
1793 ** Even though the freeblock list was checked by btreeComputeFreeSpace(),
1794 ** that routine will not detect overlap between cells or freeblocks. Nor
1795 ** does it detect cells or freeblocks that encrouch into the reserved bytes
1796 ** at the end of the page. So do additional corruption checks inside this
1797 ** routine and return SQLITE_CORRUPT if any problems are found.
1799 static int freeSpace(MemPage
*pPage
, u16 iStart
, u16 iSize
){
1800 u16 iPtr
; /* Address of ptr to next freeblock */
1801 u16 iFreeBlk
; /* Address of the next freeblock */
1802 u8 hdr
; /* Page header size. 0 or 100 */
1803 u8 nFrag
= 0; /* Reduction in fragmentation */
1804 u16 iOrigSize
= iSize
; /* Original value of iSize */
1805 u16 x
; /* Offset to cell content area */
1806 u32 iEnd
= iStart
+ iSize
; /* First byte past the iStart buffer */
1807 unsigned char *data
= pPage
->aData
; /* Page content */
1808 u8
*pTmp
; /* Temporary ptr into data[] */
1810 assert( pPage
->pBt
!=0 );
1811 assert( sqlite3PagerIswriteable(pPage
->pDbPage
) );
1812 assert( CORRUPT_DB
|| iStart
>=pPage
->hdrOffset
+6+pPage
->childPtrSize
);
1813 assert( CORRUPT_DB
|| iEnd
<= pPage
->pBt
->usableSize
);
1814 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
1815 assert( iSize
>=4 ); /* Minimum cell size is 4 */
1816 assert( iStart
<=pPage
->pBt
->usableSize
-4 );
1818 /* The list of freeblocks must be in ascending order. Find the
1819 ** spot on the list where iStart should be inserted.
1821 hdr
= pPage
->hdrOffset
;
1823 if( data
[iPtr
+1]==0 && data
[iPtr
]==0 ){
1824 iFreeBlk
= 0; /* Shortcut for the case when the freelist is empty */
1826 while( (iFreeBlk
= get2byte(&data
[iPtr
]))<iStart
){
1827 if( iFreeBlk
<=iPtr
){
1828 if( iFreeBlk
==0 ) break; /* TH3: corrupt082.100 */
1829 return SQLITE_CORRUPT_PAGE(pPage
);
1833 if( iFreeBlk
>pPage
->pBt
->usableSize
-4 ){ /* TH3: corrupt081.100 */
1834 return SQLITE_CORRUPT_PAGE(pPage
);
1836 assert( iFreeBlk
>iPtr
|| iFreeBlk
==0 || CORRUPT_DB
);
1839 ** iFreeBlk: First freeblock after iStart, or zero if none
1840 ** iPtr: The address of a pointer to iFreeBlk
1842 ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
1844 if( iFreeBlk
&& iEnd
+3>=iFreeBlk
){
1845 nFrag
= iFreeBlk
- iEnd
;
1846 if( iEnd
>iFreeBlk
) return SQLITE_CORRUPT_PAGE(pPage
);
1847 iEnd
= iFreeBlk
+ get2byte(&data
[iFreeBlk
+2]);
1848 if( iEnd
> pPage
->pBt
->usableSize
){
1849 return SQLITE_CORRUPT_PAGE(pPage
);
1851 iSize
= iEnd
- iStart
;
1852 iFreeBlk
= get2byte(&data
[iFreeBlk
]);
1855 /* If iPtr is another freeblock (that is, if iPtr is not the freelist
1856 ** pointer in the page header) then check to see if iStart should be
1857 ** coalesced onto the end of iPtr.
1860 int iPtrEnd
= iPtr
+ get2byte(&data
[iPtr
+2]);
1861 if( iPtrEnd
+3>=iStart
){
1862 if( iPtrEnd
>iStart
) return SQLITE_CORRUPT_PAGE(pPage
);
1863 nFrag
+= iStart
- iPtrEnd
;
1864 iSize
= iEnd
- iPtr
;
1868 if( nFrag
>data
[hdr
+7] ) return SQLITE_CORRUPT_PAGE(pPage
);
1869 data
[hdr
+7] -= nFrag
;
1871 pTmp
= &data
[hdr
+5];
1874 /* The new freeblock is at the beginning of the cell content area,
1875 ** so just extend the cell content area rather than create another
1876 ** freelist entry */
1877 if( iStart
<x
) return SQLITE_CORRUPT_PAGE(pPage
);
1878 if( iPtr
!=hdr
+1 ) return SQLITE_CORRUPT_PAGE(pPage
);
1879 put2byte(&data
[hdr
+1], iFreeBlk
);
1880 put2byte(&data
[hdr
+5], iEnd
);
1882 /* Insert the new freeblock into the freelist */
1883 put2byte(&data
[iPtr
], iStart
);
1885 if( pPage
->pBt
->btsFlags
& BTS_FAST_SECURE
){
1886 /* Overwrite deleted information with zeros when the secure_delete
1887 ** option is enabled */
1888 memset(&data
[iStart
], 0, iSize
);
1890 put2byte(&data
[iStart
], iFreeBlk
);
1891 put2byte(&data
[iStart
+2], iSize
);
1892 pPage
->nFree
+= iOrigSize
;
1897 ** Decode the flags byte (the first byte of the header) for a page
1898 ** and initialize fields of the MemPage structure accordingly.
1900 ** Only the following combinations are supported. Anything different
1901 ** indicates a corrupt database files:
1903 ** PTF_ZERODATA (0x02, 2)
1904 ** PTF_LEAFDATA | PTF_INTKEY (0x05, 5)
1905 ** PTF_ZERODATA | PTF_LEAF (0x0a, 10)
1906 ** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF (0x0d, 13)
1908 static int decodeFlags(MemPage
*pPage
, int flagByte
){
1909 BtShared
*pBt
; /* A copy of pPage->pBt */
1911 assert( pPage
->hdrOffset
==(pPage
->pgno
==1 ? 100 : 0) );
1912 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
1914 pPage
->max1bytePayload
= pBt
->max1bytePayload
;
1915 if( flagByte
>=(PTF_ZERODATA
| PTF_LEAF
) ){
1916 pPage
->childPtrSize
= 0;
1918 if( flagByte
==(PTF_LEAFDATA
| PTF_INTKEY
| PTF_LEAF
) ){
1919 pPage
->intKeyLeaf
= 1;
1920 pPage
->xCellSize
= cellSizePtrTableLeaf
;
1921 pPage
->xParseCell
= btreeParseCellPtr
;
1923 pPage
->maxLocal
= pBt
->maxLeaf
;
1924 pPage
->minLocal
= pBt
->minLeaf
;
1925 }else if( flagByte
==(PTF_ZERODATA
| PTF_LEAF
) ){
1927 pPage
->intKeyLeaf
= 0;
1928 pPage
->xCellSize
= cellSizePtr
;
1929 pPage
->xParseCell
= btreeParseCellPtrIndex
;
1930 pPage
->maxLocal
= pBt
->maxLocal
;
1931 pPage
->minLocal
= pBt
->minLocal
;
1934 pPage
->intKeyLeaf
= 0;
1935 pPage
->xCellSize
= cellSizePtr
;
1936 pPage
->xParseCell
= btreeParseCellPtrIndex
;
1937 return SQLITE_CORRUPT_PAGE(pPage
);
1940 pPage
->childPtrSize
= 4;
1942 if( flagByte
==(PTF_ZERODATA
) ){
1944 pPage
->intKeyLeaf
= 0;
1945 pPage
->xCellSize
= cellSizePtr
;
1946 pPage
->xParseCell
= btreeParseCellPtrIndex
;
1947 pPage
->maxLocal
= pBt
->maxLocal
;
1948 pPage
->minLocal
= pBt
->minLocal
;
1949 }else if( flagByte
==(PTF_LEAFDATA
| PTF_INTKEY
) ){
1950 pPage
->intKeyLeaf
= 0;
1951 pPage
->xCellSize
= cellSizePtrNoPayload
;
1952 pPage
->xParseCell
= btreeParseCellPtrNoPayload
;
1954 pPage
->maxLocal
= pBt
->maxLeaf
;
1955 pPage
->minLocal
= pBt
->minLeaf
;
1958 pPage
->intKeyLeaf
= 0;
1959 pPage
->xCellSize
= cellSizePtr
;
1960 pPage
->xParseCell
= btreeParseCellPtrIndex
;
1961 return SQLITE_CORRUPT_PAGE(pPage
);
1968 ** Compute the amount of freespace on the page. In other words, fill
1969 ** in the pPage->nFree field.
1971 static int btreeComputeFreeSpace(MemPage
*pPage
){
1972 int pc
; /* Address of a freeblock within pPage->aData[] */
1973 u8 hdr
; /* Offset to beginning of page header */
1974 u8
*data
; /* Equal to pPage->aData */
1975 int usableSize
; /* Amount of usable space on each page */
1976 int nFree
; /* Number of unused bytes on the page */
1977 int top
; /* First byte of the cell content area */
1978 int iCellFirst
; /* First allowable cell or freeblock offset */
1979 int iCellLast
; /* Last possible cell or freeblock offset */
1981 assert( pPage
->pBt
!=0 );
1982 assert( pPage
->pBt
->db
!=0 );
1983 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
1984 assert( pPage
->pgno
==sqlite3PagerPagenumber(pPage
->pDbPage
) );
1985 assert( pPage
== sqlite3PagerGetExtra(pPage
->pDbPage
) );
1986 assert( pPage
->aData
== sqlite3PagerGetData(pPage
->pDbPage
) );
1987 assert( pPage
->isInit
==1 );
1988 assert( pPage
->nFree
<0 );
1990 usableSize
= pPage
->pBt
->usableSize
;
1991 hdr
= pPage
->hdrOffset
;
1992 data
= pPage
->aData
;
1993 /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
1994 ** the start of the cell content area. A zero value for this integer is
1995 ** interpreted as 65536. */
1996 top
= get2byteNotZero(&data
[hdr
+5]);
1997 iCellFirst
= hdr
+ 8 + pPage
->childPtrSize
+ 2*pPage
->nCell
;
1998 iCellLast
= usableSize
- 4;
2000 /* Compute the total free space on the page
2001 ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
2002 ** start of the first freeblock on the page, or is zero if there are no
2004 pc
= get2byte(&data
[hdr
+1]);
2005 nFree
= data
[hdr
+7] + top
; /* Init nFree to non-freeblock free space */
2009 /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
2010 ** always be at least one cell before the first freeblock.
2012 return SQLITE_CORRUPT_PAGE(pPage
);
2016 /* Freeblock off the end of the page */
2017 return SQLITE_CORRUPT_PAGE(pPage
);
2019 next
= get2byte(&data
[pc
]);
2020 size
= get2byte(&data
[pc
+2]);
2021 nFree
= nFree
+ size
;
2022 if( next
<=pc
+size
+3 ) break;
2026 /* Freeblock not in ascending order */
2027 return SQLITE_CORRUPT_PAGE(pPage
);
2029 if( pc
+size
>(unsigned int)usableSize
){
2030 /* Last freeblock extends past page end */
2031 return SQLITE_CORRUPT_PAGE(pPage
);
2035 /* At this point, nFree contains the sum of the offset to the start
2036 ** of the cell-content area plus the number of free bytes within
2037 ** the cell-content area. If this is greater than the usable-size
2038 ** of the page, then the page must be corrupted. This check also
2039 ** serves to verify that the offset to the start of the cell-content
2040 ** area, according to the page header, lies within the page.
2042 if( nFree
>usableSize
|| nFree
<iCellFirst
){
2043 return SQLITE_CORRUPT_PAGE(pPage
);
2045 pPage
->nFree
= (u16
)(nFree
- iCellFirst
);
2050 ** Do additional sanity check after btreeInitPage() if
2051 ** PRAGMA cell_size_check=ON
2053 static SQLITE_NOINLINE
int btreeCellSizeCheck(MemPage
*pPage
){
2054 int iCellFirst
; /* First allowable cell or freeblock offset */
2055 int iCellLast
; /* Last possible cell or freeblock offset */
2056 int i
; /* Index into the cell pointer array */
2057 int sz
; /* Size of a cell */
2058 int pc
; /* Address of a freeblock within pPage->aData[] */
2059 u8
*data
; /* Equal to pPage->aData */
2060 int usableSize
; /* Maximum usable space on the page */
2061 int cellOffset
; /* Start of cell content area */
2063 iCellFirst
= pPage
->cellOffset
+ 2*pPage
->nCell
;
2064 usableSize
= pPage
->pBt
->usableSize
;
2065 iCellLast
= usableSize
- 4;
2066 data
= pPage
->aData
;
2067 cellOffset
= pPage
->cellOffset
;
2068 if( !pPage
->leaf
) iCellLast
--;
2069 for(i
=0; i
<pPage
->nCell
; i
++){
2070 pc
= get2byteAligned(&data
[cellOffset
+i
*2]);
2071 testcase( pc
==iCellFirst
);
2072 testcase( pc
==iCellLast
);
2073 if( pc
<iCellFirst
|| pc
>iCellLast
){
2074 return SQLITE_CORRUPT_PAGE(pPage
);
2076 sz
= pPage
->xCellSize(pPage
, &data
[pc
]);
2077 testcase( pc
+sz
==usableSize
);
2078 if( pc
+sz
>usableSize
){
2079 return SQLITE_CORRUPT_PAGE(pPage
);
2086 ** Initialize the auxiliary information for a disk block.
2088 ** Return SQLITE_OK on success. If we see that the page does
2089 ** not contain a well-formed database page, then return
2090 ** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
2091 ** guarantee that the page is well-formed. It only shows that
2092 ** we failed to detect any corruption.
2094 static int btreeInitPage(MemPage
*pPage
){
2095 u8
*data
; /* Equal to pPage->aData */
2096 BtShared
*pBt
; /* The main btree structure */
2098 assert( pPage
->pBt
!=0 );
2099 assert( pPage
->pBt
->db
!=0 );
2100 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
2101 assert( pPage
->pgno
==sqlite3PagerPagenumber(pPage
->pDbPage
) );
2102 assert( pPage
== sqlite3PagerGetExtra(pPage
->pDbPage
) );
2103 assert( pPage
->aData
== sqlite3PagerGetData(pPage
->pDbPage
) );
2104 assert( pPage
->isInit
==0 );
2107 data
= pPage
->aData
+ pPage
->hdrOffset
;
2108 /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
2109 ** the b-tree page type. */
2110 if( decodeFlags(pPage
, data
[0]) ){
2111 return SQLITE_CORRUPT_PAGE(pPage
);
2113 assert( pBt
->pageSize
>=512 && pBt
->pageSize
<=65536 );
2114 pPage
->maskPage
= (u16
)(pBt
->pageSize
- 1);
2115 pPage
->nOverflow
= 0;
2116 pPage
->cellOffset
= pPage
->hdrOffset
+ 8 + pPage
->childPtrSize
;
2117 pPage
->aCellIdx
= data
+ pPage
->childPtrSize
+ 8;
2118 pPage
->aDataEnd
= pPage
->aData
+ pBt
->pageSize
;
2119 pPage
->aDataOfst
= pPage
->aData
+ pPage
->childPtrSize
;
2120 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
2121 ** number of cells on the page. */
2122 pPage
->nCell
= get2byte(&data
[3]);
2123 if( pPage
->nCell
>MX_CELL(pBt
) ){
2124 /* To many cells for a single page. The page must be corrupt */
2125 return SQLITE_CORRUPT_PAGE(pPage
);
2127 testcase( pPage
->nCell
==MX_CELL(pBt
) );
2128 /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
2129 ** possible for a root page of a table that contains no rows) then the
2130 ** offset to the cell content area will equal the page size minus the
2131 ** bytes of reserved space. */
2132 assert( pPage
->nCell
>0
2133 || get2byteNotZero(&data
[5])==(int)pBt
->usableSize
2135 pPage
->nFree
= -1; /* Indicate that this value is yet uncomputed */
2137 if( pBt
->db
->flags
& SQLITE_CellSizeCk
){
2138 return btreeCellSizeCheck(pPage
);
2144 ** Set up a raw page so that it looks like a database page holding
2147 static void zeroPage(MemPage
*pPage
, int flags
){
2148 unsigned char *data
= pPage
->aData
;
2149 BtShared
*pBt
= pPage
->pBt
;
2150 u8 hdr
= pPage
->hdrOffset
;
2153 assert( sqlite3PagerPagenumber(pPage
->pDbPage
)==pPage
->pgno
|| CORRUPT_DB
);
2154 assert( sqlite3PagerGetExtra(pPage
->pDbPage
) == (void*)pPage
);
2155 assert( sqlite3PagerGetData(pPage
->pDbPage
) == data
);
2156 assert( sqlite3PagerIswriteable(pPage
->pDbPage
) );
2157 assert( sqlite3_mutex_held(pBt
->mutex
) );
2158 if( pBt
->btsFlags
& BTS_FAST_SECURE
){
2159 memset(&data
[hdr
], 0, pBt
->usableSize
- hdr
);
2161 data
[hdr
] = (char)flags
;
2162 first
= hdr
+ ((flags
&PTF_LEAF
)==0 ? 12 : 8);
2163 memset(&data
[hdr
+1], 0, 4);
2165 put2byte(&data
[hdr
+5], pBt
->usableSize
);
2166 pPage
->nFree
= (u16
)(pBt
->usableSize
- first
);
2167 decodeFlags(pPage
, flags
);
2168 pPage
->cellOffset
= first
;
2169 pPage
->aDataEnd
= &data
[pBt
->pageSize
];
2170 pPage
->aCellIdx
= &data
[first
];
2171 pPage
->aDataOfst
= &data
[pPage
->childPtrSize
];
2172 pPage
->nOverflow
= 0;
2173 assert( pBt
->pageSize
>=512 && pBt
->pageSize
<=65536 );
2174 pPage
->maskPage
= (u16
)(pBt
->pageSize
- 1);
2181 ** Convert a DbPage obtained from the pager into a MemPage used by
2184 static MemPage
*btreePageFromDbPage(DbPage
*pDbPage
, Pgno pgno
, BtShared
*pBt
){
2185 MemPage
*pPage
= (MemPage
*)sqlite3PagerGetExtra(pDbPage
);
2186 if( pgno
!=pPage
->pgno
){
2187 pPage
->aData
= sqlite3PagerGetData(pDbPage
);
2188 pPage
->pDbPage
= pDbPage
;
2191 pPage
->hdrOffset
= pgno
==1 ? 100 : 0;
2193 assert( pPage
->aData
==sqlite3PagerGetData(pDbPage
) );
2198 ** Get a page from the pager. Initialize the MemPage.pBt and
2199 ** MemPage.aData elements if needed. See also: btreeGetUnusedPage().
2201 ** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care
2202 ** about the content of the page at this time. So do not go to the disk
2203 ** to fetch the content. Just fill in the content with zeros for now.
2204 ** If in the future we call sqlite3PagerWrite() on this page, that
2205 ** means we have started to be concerned about content and the disk
2206 ** read should occur at that point.
2208 static int btreeGetPage(
2209 BtShared
*pBt
, /* The btree */
2210 Pgno pgno
, /* Number of the page to fetch */
2211 MemPage
**ppPage
, /* Return the page in this parameter */
2212 int flags
/* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2217 assert( flags
==0 || flags
==PAGER_GET_NOCONTENT
|| flags
==PAGER_GET_READONLY
);
2218 assert( sqlite3_mutex_held(pBt
->mutex
) );
2219 rc
= sqlite3PagerGet(pBt
->pPager
, pgno
, (DbPage
**)&pDbPage
, flags
);
2221 *ppPage
= btreePageFromDbPage(pDbPage
, pgno
, pBt
);
2226 ** Retrieve a page from the pager cache. If the requested page is not
2227 ** already in the pager cache return NULL. Initialize the MemPage.pBt and
2228 ** MemPage.aData elements if needed.
2230 static MemPage
*btreePageLookup(BtShared
*pBt
, Pgno pgno
){
2232 assert( sqlite3_mutex_held(pBt
->mutex
) );
2233 pDbPage
= sqlite3PagerLookup(pBt
->pPager
, pgno
);
2235 return btreePageFromDbPage(pDbPage
, pgno
, pBt
);
2241 ** Return the size of the database file in pages. If there is any kind of
2242 ** error, return ((unsigned int)-1).
2244 static Pgno
btreePagecount(BtShared
*pBt
){
2247 Pgno
sqlite3BtreeLastPage(Btree
*p
){
2248 assert( sqlite3BtreeHoldsMutex(p
) );
2249 return btreePagecount(p
->pBt
);
2253 ** Get a page from the pager and initialize it.
2255 ** If pCur!=0 then the page is being fetched as part of a moveToChild()
2256 ** call. Do additional sanity checking on the page in this case.
2257 ** And if the fetch fails, this routine must decrement pCur->iPage.
2259 ** The page is fetched as read-write unless pCur is not NULL and is
2260 ** a read-only cursor.
2262 ** If an error occurs, then *ppPage is undefined. It
2263 ** may remain unchanged, or it may be set to an invalid value.
2265 static int getAndInitPage(
2266 BtShared
*pBt
, /* The database file */
2267 Pgno pgno
, /* Number of the page to get */
2268 MemPage
**ppPage
, /* Write the page pointer here */
2269 BtCursor
*pCur
, /* Cursor to receive the page, or NULL */
2270 int bReadOnly
/* True for a read-only page */
2274 assert( sqlite3_mutex_held(pBt
->mutex
) );
2275 assert( pCur
==0 || ppPage
==&pCur
->pPage
);
2276 assert( pCur
==0 || bReadOnly
==pCur
->curPagerFlags
);
2277 assert( pCur
==0 || pCur
->iPage
>0 );
2279 if( pgno
>btreePagecount(pBt
) ){
2280 rc
= SQLITE_CORRUPT_BKPT
;
2281 goto getAndInitPage_error1
;
2283 rc
= sqlite3PagerGet(pBt
->pPager
, pgno
, (DbPage
**)&pDbPage
, bReadOnly
);
2285 goto getAndInitPage_error1
;
2287 *ppPage
= (MemPage
*)sqlite3PagerGetExtra(pDbPage
);
2288 if( (*ppPage
)->isInit
==0 ){
2289 btreePageFromDbPage(pDbPage
, pgno
, pBt
);
2290 rc
= btreeInitPage(*ppPage
);
2291 if( rc
!=SQLITE_OK
){
2292 goto getAndInitPage_error2
;
2295 assert( (*ppPage
)->pgno
==pgno
|| CORRUPT_DB
);
2296 assert( (*ppPage
)->aData
==sqlite3PagerGetData(pDbPage
) );
2298 /* If obtaining a child page for a cursor, we must verify that the page is
2299 ** compatible with the root page. */
2300 if( pCur
&& ((*ppPage
)->nCell
<1 || (*ppPage
)->intKey
!=pCur
->curIntKey
) ){
2301 rc
= SQLITE_CORRUPT_PGNO(pgno
);
2302 goto getAndInitPage_error2
;
2306 getAndInitPage_error2
:
2307 releasePage(*ppPage
);
2308 getAndInitPage_error1
:
2311 pCur
->pPage
= pCur
->apPage
[pCur
->iPage
];
2313 testcase( pgno
==0 );
2314 assert( pgno
!=0 || rc
!=SQLITE_OK
);
2319 ** Release a MemPage. This should be called once for each prior
2320 ** call to btreeGetPage.
2322 ** Page1 is a special case and must be released using releasePageOne().
2324 static void releasePageNotNull(MemPage
*pPage
){
2325 assert( pPage
->aData
);
2326 assert( pPage
->pBt
);
2327 assert( pPage
->pDbPage
!=0 );
2328 assert( sqlite3PagerGetExtra(pPage
->pDbPage
) == (void*)pPage
);
2329 assert( sqlite3PagerGetData(pPage
->pDbPage
)==pPage
->aData
);
2330 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
2331 sqlite3PagerUnrefNotNull(pPage
->pDbPage
);
2333 static void releasePage(MemPage
*pPage
){
2334 if( pPage
) releasePageNotNull(pPage
);
2336 static void releasePageOne(MemPage
*pPage
){
2338 assert( pPage
->aData
);
2339 assert( pPage
->pBt
);
2340 assert( pPage
->pDbPage
!=0 );
2341 assert( sqlite3PagerGetExtra(pPage
->pDbPage
) == (void*)pPage
);
2342 assert( sqlite3PagerGetData(pPage
->pDbPage
)==pPage
->aData
);
2343 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
2344 sqlite3PagerUnrefPageOne(pPage
->pDbPage
);
2348 ** Get an unused page.
2350 ** This works just like btreeGetPage() with the addition:
2352 ** * If the page is already in use for some other purpose, immediately
2353 ** release it and return an SQLITE_CURRUPT error.
2354 ** * Make sure the isInit flag is clear
2356 static int btreeGetUnusedPage(
2357 BtShared
*pBt
, /* The btree */
2358 Pgno pgno
, /* Number of the page to fetch */
2359 MemPage
**ppPage
, /* Return the page in this parameter */
2360 int flags
/* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2362 int rc
= btreeGetPage(pBt
, pgno
, ppPage
, flags
);
2363 if( rc
==SQLITE_OK
){
2364 if( sqlite3PagerPageRefcount((*ppPage
)->pDbPage
)>1 ){
2365 releasePage(*ppPage
);
2367 return SQLITE_CORRUPT_BKPT
;
2369 (*ppPage
)->isInit
= 0;
2378 ** During a rollback, when the pager reloads information into the cache
2379 ** so that the cache is restored to its original state at the start of
2380 ** the transaction, for each page restored this routine is called.
2382 ** This routine needs to reset the extra data section at the end of the
2383 ** page to agree with the restored data.
2385 static void pageReinit(DbPage
*pData
){
2387 pPage
= (MemPage
*)sqlite3PagerGetExtra(pData
);
2388 assert( sqlite3PagerPageRefcount(pData
)>0 );
2389 if( pPage
->isInit
){
2390 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
2392 if( sqlite3PagerPageRefcount(pData
)>1 ){
2393 /* pPage might not be a btree page; it might be an overflow page
2394 ** or ptrmap page or a free page. In those cases, the following
2395 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
2396 ** But no harm is done by this. And it is very important that
2397 ** btreeInitPage() be called on every btree page so we make
2398 ** the call for every page that comes in for re-initing. */
2399 btreeInitPage(pPage
);
2405 ** Invoke the busy handler for a btree.
2407 static int btreeInvokeBusyHandler(void *pArg
){
2408 BtShared
*pBt
= (BtShared
*)pArg
;
2410 assert( sqlite3_mutex_held(pBt
->db
->mutex
) );
2411 return sqlite3InvokeBusyHandler(&pBt
->db
->busyHandler
);
2415 ** Open a database file.
2417 ** zFilename is the name of the database file. If zFilename is NULL
2418 ** then an ephemeral database is created. The ephemeral database might
2419 ** be exclusively in memory, or it might use a disk-based memory cache.
2420 ** Either way, the ephemeral database will be automatically deleted
2421 ** when sqlite3BtreeClose() is called.
2423 ** If zFilename is ":memory:" then an in-memory database is created
2424 ** that is automatically destroyed when it is closed.
2426 ** The "flags" parameter is a bitmask that might contain bits like
2427 ** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
2429 ** If the database is already opened in the same database connection
2430 ** and we are in shared cache mode, then the open will fail with an
2431 ** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
2432 ** objects in the same database connection since doing so will lead
2433 ** to problems with locking.
2435 int sqlite3BtreeOpen(
2436 sqlite3_vfs
*pVfs
, /* VFS to use for this b-tree */
2437 const char *zFilename
, /* Name of the file containing the BTree database */
2438 sqlite3
*db
, /* Associated database handle */
2439 Btree
**ppBtree
, /* Pointer to new Btree object written here */
2440 int flags
, /* Options */
2441 int vfsFlags
/* Flags passed through to sqlite3_vfs.xOpen() */
2443 BtShared
*pBt
= 0; /* Shared part of btree structure */
2444 Btree
*p
; /* Handle to return */
2445 sqlite3_mutex
*mutexOpen
= 0; /* Prevents a race condition. Ticket #3537 */
2446 int rc
= SQLITE_OK
; /* Result code from this function */
2447 u8 nReserve
; /* Byte of unused space on each page */
2448 unsigned char zDbHeader
[100]; /* Database header content */
2450 /* True if opening an ephemeral, temporary database */
2451 const int isTempDb
= zFilename
==0 || zFilename
[0]==0;
2453 /* Set the variable isMemdb to true for an in-memory database, or
2454 ** false for a file-based database.
2456 #ifdef SQLITE_OMIT_MEMORYDB
2457 const int isMemdb
= 0;
2459 const int isMemdb
= (zFilename
&& strcmp(zFilename
, ":memory:")==0)
2460 || (isTempDb
&& sqlite3TempInMemory(db
))
2461 || (vfsFlags
& SQLITE_OPEN_MEMORY
)!=0;
2466 assert( sqlite3_mutex_held(db
->mutex
) );
2467 assert( (flags
&0xff)==flags
); /* flags fit in 8 bits */
2469 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
2470 assert( (flags
& BTREE_UNORDERED
)==0 || (flags
& BTREE_SINGLE
)!=0 );
2472 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
2473 assert( (flags
& BTREE_SINGLE
)==0 || isTempDb
);
2476 flags
|= BTREE_MEMORY
;
2478 if( (vfsFlags
& SQLITE_OPEN_MAIN_DB
)!=0 && (isMemdb
|| isTempDb
) ){
2479 vfsFlags
= (vfsFlags
& ~SQLITE_OPEN_MAIN_DB
) | SQLITE_OPEN_TEMP_DB
;
2481 p
= sqlite3MallocZero(sizeof(Btree
));
2483 return SQLITE_NOMEM_BKPT
;
2485 p
->inTrans
= TRANS_NONE
;
2487 #ifndef SQLITE_OMIT_SHARED_CACHE
2492 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2494 ** If this Btree is a candidate for shared cache, try to find an
2495 ** existing BtShared object that we can share with
2497 if( isTempDb
==0 && (isMemdb
==0 || (vfsFlags
&SQLITE_OPEN_URI
)!=0) ){
2498 if( vfsFlags
& SQLITE_OPEN_SHAREDCACHE
){
2499 int nFilename
= sqlite3Strlen30(zFilename
)+1;
2500 int nFullPathname
= pVfs
->mxPathname
+1;
2501 char *zFullPathname
= sqlite3Malloc(MAX(nFullPathname
,nFilename
));
2502 MUTEX_LOGIC( sqlite3_mutex
*mutexShared
; )
2505 if( !zFullPathname
){
2507 return SQLITE_NOMEM_BKPT
;
2510 memcpy(zFullPathname
, zFilename
, nFilename
);
2512 rc
= sqlite3OsFullPathname(pVfs
, zFilename
,
2513 nFullPathname
, zFullPathname
);
2515 if( rc
==SQLITE_OK_SYMLINK
){
2518 sqlite3_free(zFullPathname
);
2524 #if SQLITE_THREADSAFE
2525 mutexOpen
= sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN
);
2526 sqlite3_mutex_enter(mutexOpen
);
2527 mutexShared
= sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN
);
2528 sqlite3_mutex_enter(mutexShared
);
2530 for(pBt
=GLOBAL(BtShared
*,sqlite3SharedCacheList
); pBt
; pBt
=pBt
->pNext
){
2531 assert( pBt
->nRef
>0 );
2532 if( 0==strcmp(zFullPathname
, sqlite3PagerFilename(pBt
->pPager
, 0))
2533 && sqlite3PagerVfs(pBt
->pPager
)==pVfs
){
2535 for(iDb
=db
->nDb
-1; iDb
>=0; iDb
--){
2536 Btree
*pExisting
= db
->aDb
[iDb
].pBt
;
2537 if( pExisting
&& pExisting
->pBt
==pBt
){
2538 sqlite3_mutex_leave(mutexShared
);
2539 sqlite3_mutex_leave(mutexOpen
);
2540 sqlite3_free(zFullPathname
);
2542 return SQLITE_CONSTRAINT
;
2550 sqlite3_mutex_leave(mutexShared
);
2551 sqlite3_free(zFullPathname
);
2555 /* In debug mode, we mark all persistent databases as sharable
2556 ** even when they are not. This exercises the locking code and
2557 ** gives more opportunity for asserts(sqlite3_mutex_held())
2558 ** statements to find locking problems.
2567 ** The following asserts make sure that structures used by the btree are
2568 ** the right size. This is to guard against size changes that result
2569 ** when compiling on a different architecture.
2571 assert( sizeof(i64
)==8 );
2572 assert( sizeof(u64
)==8 );
2573 assert( sizeof(u32
)==4 );
2574 assert( sizeof(u16
)==2 );
2575 assert( sizeof(Pgno
)==4 );
2577 pBt
= sqlite3MallocZero( sizeof(*pBt
) );
2579 rc
= SQLITE_NOMEM_BKPT
;
2580 goto btree_open_out
;
2582 rc
= sqlite3PagerOpen(pVfs
, &pBt
->pPager
, zFilename
,
2583 sizeof(MemPage
), flags
, vfsFlags
, pageReinit
);
2584 if( rc
==SQLITE_OK
){
2585 sqlite3PagerSetMmapLimit(pBt
->pPager
, db
->szMmap
);
2586 rc
= sqlite3PagerReadFileheader(pBt
->pPager
,sizeof(zDbHeader
),zDbHeader
);
2588 if( rc
!=SQLITE_OK
){
2589 goto btree_open_out
;
2591 pBt
->openFlags
= (u8
)flags
;
2593 sqlite3PagerSetBusyHandler(pBt
->pPager
, btreeInvokeBusyHandler
, pBt
);
2598 if( sqlite3PagerIsreadonly(pBt
->pPager
) ) pBt
->btsFlags
|= BTS_READ_ONLY
;
2599 #if defined(SQLITE_SECURE_DELETE)
2600 pBt
->btsFlags
|= BTS_SECURE_DELETE
;
2601 #elif defined(SQLITE_FAST_SECURE_DELETE)
2602 pBt
->btsFlags
|= BTS_OVERWRITE
;
2604 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2605 ** determined by the 2-byte integer located at an offset of 16 bytes from
2606 ** the beginning of the database file. */
2607 pBt
->pageSize
= (zDbHeader
[16]<<8) | (zDbHeader
[17]<<16);
2608 if( pBt
->pageSize
<512 || pBt
->pageSize
>SQLITE_MAX_PAGE_SIZE
2609 || ((pBt
->pageSize
-1)&pBt
->pageSize
)!=0 ){
2611 #ifndef SQLITE_OMIT_AUTOVACUUM
2612 /* If the magic name ":memory:" will create an in-memory database, then
2613 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
2614 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
2615 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
2616 ** regular file-name. In this case the auto-vacuum applies as per normal.
2618 if( zFilename
&& !isMemdb
){
2619 pBt
->autoVacuum
= (SQLITE_DEFAULT_AUTOVACUUM
? 1 : 0);
2620 pBt
->incrVacuum
= (SQLITE_DEFAULT_AUTOVACUUM
==2 ? 1 : 0);
2625 /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2626 ** determined by the one-byte unsigned integer found at an offset of 20
2627 ** into the database file header. */
2628 nReserve
= zDbHeader
[20];
2629 pBt
->btsFlags
|= BTS_PAGESIZE_FIXED
;
2630 #ifndef SQLITE_OMIT_AUTOVACUUM
2631 pBt
->autoVacuum
= (get4byte(&zDbHeader
[36 + 4*4])?1:0);
2632 pBt
->incrVacuum
= (get4byte(&zDbHeader
[36 + 7*4])?1:0);
2635 rc
= sqlite3PagerSetPagesize(pBt
->pPager
, &pBt
->pageSize
, nReserve
);
2636 if( rc
) goto btree_open_out
;
2637 pBt
->usableSize
= pBt
->pageSize
- nReserve
;
2638 assert( (pBt
->pageSize
& 7)==0 ); /* 8-byte alignment of pageSize */
2640 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2641 /* Add the new BtShared object to the linked list sharable BtShareds.
2645 MUTEX_LOGIC( sqlite3_mutex
*mutexShared
; )
2646 MUTEX_LOGIC( mutexShared
= sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN
);)
2647 if( SQLITE_THREADSAFE
&& sqlite3GlobalConfig
.bCoreMutex
){
2648 pBt
->mutex
= sqlite3MutexAlloc(SQLITE_MUTEX_FAST
);
2649 if( pBt
->mutex
==0 ){
2650 rc
= SQLITE_NOMEM_BKPT
;
2651 goto btree_open_out
;
2654 sqlite3_mutex_enter(mutexShared
);
2655 pBt
->pNext
= GLOBAL(BtShared
*,sqlite3SharedCacheList
);
2656 GLOBAL(BtShared
*,sqlite3SharedCacheList
) = pBt
;
2657 sqlite3_mutex_leave(mutexShared
);
2662 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2663 /* If the new Btree uses a sharable pBtShared, then link the new
2664 ** Btree into the list of all sharable Btrees for the same connection.
2665 ** The list is kept in ascending order by pBt address.
2670 for(i
=0; i
<db
->nDb
; i
++){
2671 if( (pSib
= db
->aDb
[i
].pBt
)!=0 && pSib
->sharable
){
2672 while( pSib
->pPrev
){ pSib
= pSib
->pPrev
; }
2673 if( (uptr
)p
->pBt
<(uptr
)pSib
->pBt
){
2678 while( pSib
->pNext
&& (uptr
)pSib
->pNext
->pBt
<(uptr
)p
->pBt
){
2681 p
->pNext
= pSib
->pNext
;
2684 p
->pNext
->pPrev
= p
;
2696 if( rc
!=SQLITE_OK
){
2697 if( pBt
&& pBt
->pPager
){
2698 sqlite3PagerClose(pBt
->pPager
, 0);
2704 sqlite3_file
*pFile
;
2706 /* If the B-Tree was successfully opened, set the pager-cache size to the
2707 ** default value. Except, when opening on an existing shared pager-cache,
2708 ** do not change the pager-cache size.
2710 if( sqlite3BtreeSchema(p
, 0, 0)==0 ){
2711 sqlite3BtreeSetCacheSize(p
, SQLITE_DEFAULT_CACHE_SIZE
);
2714 pFile
= sqlite3PagerFile(pBt
->pPager
);
2715 if( pFile
->pMethods
){
2716 sqlite3OsFileControlHint(pFile
, SQLITE_FCNTL_PDB
, (void*)&pBt
->db
);
2720 assert( sqlite3_mutex_held(mutexOpen
) );
2721 sqlite3_mutex_leave(mutexOpen
);
2723 assert( rc
!=SQLITE_OK
|| sqlite3BtreeConnectionCount(*ppBtree
)>0 );
2728 ** Decrement the BtShared.nRef counter. When it reaches zero,
2729 ** remove the BtShared structure from the sharing list. Return
2730 ** true if the BtShared.nRef counter reaches zero and return
2731 ** false if it is still positive.
2733 static int removeFromSharingList(BtShared
*pBt
){
2734 #ifndef SQLITE_OMIT_SHARED_CACHE
2735 MUTEX_LOGIC( sqlite3_mutex
*pMainMtx
; )
2739 assert( sqlite3_mutex_notheld(pBt
->mutex
) );
2740 MUTEX_LOGIC( pMainMtx
= sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN
); )
2741 sqlite3_mutex_enter(pMainMtx
);
2744 if( GLOBAL(BtShared
*,sqlite3SharedCacheList
)==pBt
){
2745 GLOBAL(BtShared
*,sqlite3SharedCacheList
) = pBt
->pNext
;
2747 pList
= GLOBAL(BtShared
*,sqlite3SharedCacheList
);
2748 while( ALWAYS(pList
) && pList
->pNext
!=pBt
){
2751 if( ALWAYS(pList
) ){
2752 pList
->pNext
= pBt
->pNext
;
2755 if( SQLITE_THREADSAFE
){
2756 sqlite3_mutex_free(pBt
->mutex
);
2760 sqlite3_mutex_leave(pMainMtx
);
2768 ** Make sure pBt->pTmpSpace points to an allocation of
2769 ** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
2772 static SQLITE_NOINLINE
int allocateTempSpace(BtShared
*pBt
){
2774 assert( pBt
->pTmpSpace
==0 );
2775 /* This routine is called only by btreeCursor() when allocating the
2776 ** first write cursor for the BtShared object */
2777 assert( pBt
->pCursor
!=0 && (pBt
->pCursor
->curFlags
& BTCF_WriteFlag
)!=0 );
2778 pBt
->pTmpSpace
= sqlite3PageMalloc( pBt
->pageSize
);
2779 if( pBt
->pTmpSpace
==0 ){
2780 BtCursor
*pCur
= pBt
->pCursor
;
2781 pBt
->pCursor
= pCur
->pNext
; /* Unlink the cursor */
2782 memset(pCur
, 0, sizeof(*pCur
));
2783 return SQLITE_NOMEM_BKPT
;
2786 /* One of the uses of pBt->pTmpSpace is to format cells before
2787 ** inserting them into a leaf page (function fillInCell()). If
2788 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2789 ** by the various routines that manipulate binary cells. Which
2790 ** can mean that fillInCell() only initializes the first 2 or 3
2791 ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2792 ** it into a database page. This is not actually a problem, but it
2793 ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2794 ** data is passed to system call write(). So to avoid this error,
2795 ** zero the first 4 bytes of temp space here.
2797 ** Also: Provide four bytes of initialized space before the
2798 ** beginning of pTmpSpace as an area available to prepend the
2799 ** left-child pointer to the beginning of a cell.
2801 memset(pBt
->pTmpSpace
, 0, 8);
2802 pBt
->pTmpSpace
+= 4;
2807 ** Free the pBt->pTmpSpace allocation
2809 static void freeTempSpace(BtShared
*pBt
){
2810 if( pBt
->pTmpSpace
){
2811 pBt
->pTmpSpace
-= 4;
2812 sqlite3PageFree(pBt
->pTmpSpace
);
2818 ** Close an open database and invalidate all cursors.
2820 int sqlite3BtreeClose(Btree
*p
){
2821 BtShared
*pBt
= p
->pBt
;
2823 /* Close all cursors opened via this handle. */
2824 assert( sqlite3_mutex_held(p
->db
->mutex
) );
2825 sqlite3BtreeEnter(p
);
2827 /* Verify that no other cursors have this Btree open */
2830 BtCursor
*pCur
= pBt
->pCursor
;
2832 BtCursor
*pTmp
= pCur
;
2834 assert( pTmp
->pBtree
!=p
);
2840 /* Rollback any active transaction and free the handle structure.
2841 ** The call to sqlite3BtreeRollback() drops any table-locks held by
2844 sqlite3BtreeRollback(p
, SQLITE_OK
, 0);
2845 sqlite3BtreeLeave(p
);
2847 /* If there are still other outstanding references to the shared-btree
2848 ** structure, return now. The remainder of this procedure cleans
2849 ** up the shared-btree.
2851 assert( p
->wantToLock
==0 && p
->locked
==0 );
2852 if( !p
->sharable
|| removeFromSharingList(pBt
) ){
2853 /* The pBt is no longer on the sharing list, so we can access
2854 ** it without having to hold the mutex.
2856 ** Clean out and delete the BtShared object.
2858 assert( !pBt
->pCursor
);
2859 sqlite3PagerClose(pBt
->pPager
, p
->db
);
2860 if( pBt
->xFreeSchema
&& pBt
->pSchema
){
2861 pBt
->xFreeSchema(pBt
->pSchema
);
2863 sqlite3DbFree(0, pBt
->pSchema
);
2868 #ifndef SQLITE_OMIT_SHARED_CACHE
2869 assert( p
->wantToLock
==0 );
2870 assert( p
->locked
==0 );
2871 if( p
->pPrev
) p
->pPrev
->pNext
= p
->pNext
;
2872 if( p
->pNext
) p
->pNext
->pPrev
= p
->pPrev
;
2880 ** Change the "soft" limit on the number of pages in the cache.
2881 ** Unused and unmodified pages will be recycled when the number of
2882 ** pages in the cache exceeds this soft limit. But the size of the
2883 ** cache is allowed to grow larger than this limit if it contains
2884 ** dirty pages or pages still in active use.
2886 int sqlite3BtreeSetCacheSize(Btree
*p
, int mxPage
){
2887 BtShared
*pBt
= p
->pBt
;
2888 assert( sqlite3_mutex_held(p
->db
->mutex
) );
2889 sqlite3BtreeEnter(p
);
2890 sqlite3PagerSetCachesize(pBt
->pPager
, mxPage
);
2891 sqlite3BtreeLeave(p
);
2896 ** Change the "spill" limit on the number of pages in the cache.
2897 ** If the number of pages exceeds this limit during a write transaction,
2898 ** the pager might attempt to "spill" pages to the journal early in
2899 ** order to free up memory.
2901 ** The value returned is the current spill size. If zero is passed
2902 ** as an argument, no changes are made to the spill size setting, so
2903 ** using mxPage of 0 is a way to query the current spill size.
2905 int sqlite3BtreeSetSpillSize(Btree
*p
, int mxPage
){
2906 BtShared
*pBt
= p
->pBt
;
2908 assert( sqlite3_mutex_held(p
->db
->mutex
) );
2909 sqlite3BtreeEnter(p
);
2910 res
= sqlite3PagerSetSpillsize(pBt
->pPager
, mxPage
);
2911 sqlite3BtreeLeave(p
);
2915 #if SQLITE_MAX_MMAP_SIZE>0
2917 ** Change the limit on the amount of the database file that may be
2920 int sqlite3BtreeSetMmapLimit(Btree
*p
, sqlite3_int64 szMmap
){
2921 BtShared
*pBt
= p
->pBt
;
2922 assert( sqlite3_mutex_held(p
->db
->mutex
) );
2923 sqlite3BtreeEnter(p
);
2924 sqlite3PagerSetMmapLimit(pBt
->pPager
, szMmap
);
2925 sqlite3BtreeLeave(p
);
2928 #endif /* SQLITE_MAX_MMAP_SIZE>0 */
2931 ** Change the way data is synced to disk in order to increase or decrease
2932 ** how well the database resists damage due to OS crashes and power
2933 ** failures. Level 1 is the same as asynchronous (no syncs() occur and
2934 ** there is a high probability of damage) Level 2 is the default. There
2935 ** is a very low but non-zero probability of damage. Level 3 reduces the
2936 ** probability of damage to near zero but with a write performance reduction.
2938 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
2939 int sqlite3BtreeSetPagerFlags(
2940 Btree
*p
, /* The btree to set the safety level on */
2941 unsigned pgFlags
/* Various PAGER_* flags */
2943 BtShared
*pBt
= p
->pBt
;
2944 assert( sqlite3_mutex_held(p
->db
->mutex
) );
2945 sqlite3BtreeEnter(p
);
2946 sqlite3PagerSetFlags(pBt
->pPager
, pgFlags
);
2947 sqlite3BtreeLeave(p
);
2953 ** Change the default pages size and the number of reserved bytes per page.
2954 ** Or, if the page size has already been fixed, return SQLITE_READONLY
2955 ** without changing anything.
2957 ** The page size must be a power of 2 between 512 and 65536. If the page
2958 ** size supplied does not meet this constraint then the page size is not
2961 ** Page sizes are constrained to be a power of two so that the region
2962 ** of the database file used for locking (beginning at PENDING_BYTE,
2963 ** the first byte past the 1GB boundary, 0x40000000) needs to occur
2964 ** at the beginning of a page.
2966 ** If parameter nReserve is less than zero, then the number of reserved
2967 ** bytes per page is left unchanged.
2969 ** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
2970 ** and autovacuum mode can no longer be changed.
2972 int sqlite3BtreeSetPageSize(Btree
*p
, int pageSize
, int nReserve
, int iFix
){
2975 BtShared
*pBt
= p
->pBt
;
2976 assert( nReserve
>=0 && nReserve
<=255 );
2977 sqlite3BtreeEnter(p
);
2978 pBt
->nReserveWanted
= nReserve
;
2979 x
= pBt
->pageSize
- pBt
->usableSize
;
2980 if( nReserve
<x
) nReserve
= x
;
2981 if( pBt
->btsFlags
& BTS_PAGESIZE_FIXED
){
2982 sqlite3BtreeLeave(p
);
2983 return SQLITE_READONLY
;
2985 assert( nReserve
>=0 && nReserve
<=255 );
2986 if( pageSize
>=512 && pageSize
<=SQLITE_MAX_PAGE_SIZE
&&
2987 ((pageSize
-1)&pageSize
)==0 ){
2988 assert( (pageSize
& 7)==0 );
2989 assert( !pBt
->pCursor
);
2990 if( nReserve
>32 && pageSize
==512 ) pageSize
= 1024;
2991 pBt
->pageSize
= (u32
)pageSize
;
2994 rc
= sqlite3PagerSetPagesize(pBt
->pPager
, &pBt
->pageSize
, nReserve
);
2995 pBt
->usableSize
= pBt
->pageSize
- (u16
)nReserve
;
2996 if( iFix
) pBt
->btsFlags
|= BTS_PAGESIZE_FIXED
;
2997 sqlite3BtreeLeave(p
);
3002 ** Return the currently defined page size
3004 int sqlite3BtreeGetPageSize(Btree
*p
){
3005 return p
->pBt
->pageSize
;
3009 ** This function is similar to sqlite3BtreeGetReserve(), except that it
3010 ** may only be called if it is guaranteed that the b-tree mutex is already
3013 ** This is useful in one special case in the backup API code where it is
3014 ** known that the shared b-tree mutex is held, but the mutex on the
3015 ** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
3016 ** were to be called, it might collide with some other operation on the
3017 ** database handle that owns *p, causing undefined behavior.
3019 int sqlite3BtreeGetReserveNoMutex(Btree
*p
){
3021 assert( sqlite3_mutex_held(p
->pBt
->mutex
) );
3022 n
= p
->pBt
->pageSize
- p
->pBt
->usableSize
;
3027 ** Return the number of bytes of space at the end of every page that
3028 ** are intentually left unused. This is the "reserved" space that is
3029 ** sometimes used by extensions.
3031 ** The value returned is the larger of the current reserve size and
3032 ** the latest reserve size requested by SQLITE_FILECTRL_RESERVE_BYTES.
3033 ** The amount of reserve can only grow - never shrink.
3035 int sqlite3BtreeGetRequestedReserve(Btree
*p
){
3037 sqlite3BtreeEnter(p
);
3038 n1
= (int)p
->pBt
->nReserveWanted
;
3039 n2
= sqlite3BtreeGetReserveNoMutex(p
);
3040 sqlite3BtreeLeave(p
);
3041 return n1
>n2
? n1
: n2
;
3046 ** Set the maximum page count for a database if mxPage is positive.
3047 ** No changes are made if mxPage is 0 or negative.
3048 ** Regardless of the value of mxPage, return the maximum page count.
3050 Pgno
sqlite3BtreeMaxPageCount(Btree
*p
, Pgno mxPage
){
3052 sqlite3BtreeEnter(p
);
3053 n
= sqlite3PagerMaxPageCount(p
->pBt
->pPager
, mxPage
);
3054 sqlite3BtreeLeave(p
);
3059 ** Change the values for the BTS_SECURE_DELETE and BTS_OVERWRITE flags:
3061 ** newFlag==0 Both BTS_SECURE_DELETE and BTS_OVERWRITE are cleared
3062 ** newFlag==1 BTS_SECURE_DELETE set and BTS_OVERWRITE is cleared
3063 ** newFlag==2 BTS_SECURE_DELETE cleared and BTS_OVERWRITE is set
3064 ** newFlag==(-1) No changes
3066 ** This routine acts as a query if newFlag is less than zero
3068 ** With BTS_OVERWRITE set, deleted content is overwritten by zeros, but
3069 ** freelist leaf pages are not written back to the database. Thus in-page
3070 ** deleted content is cleared, but freelist deleted content is not.
3072 ** With BTS_SECURE_DELETE, operation is like BTS_OVERWRITE with the addition
3073 ** that freelist leaf pages are written back into the database, increasing
3074 ** the amount of disk I/O.
3076 int sqlite3BtreeSecureDelete(Btree
*p
, int newFlag
){
3078 if( p
==0 ) return 0;
3079 sqlite3BtreeEnter(p
);
3080 assert( BTS_OVERWRITE
==BTS_SECURE_DELETE
*2 );
3081 assert( BTS_FAST_SECURE
==(BTS_OVERWRITE
|BTS_SECURE_DELETE
) );
3083 p
->pBt
->btsFlags
&= ~BTS_FAST_SECURE
;
3084 p
->pBt
->btsFlags
|= BTS_SECURE_DELETE
*newFlag
;
3086 b
= (p
->pBt
->btsFlags
& BTS_FAST_SECURE
)/BTS_SECURE_DELETE
;
3087 sqlite3BtreeLeave(p
);
3092 ** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
3093 ** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
3094 ** is disabled. The default value for the auto-vacuum property is
3095 ** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
3097 int sqlite3BtreeSetAutoVacuum(Btree
*p
, int autoVacuum
){
3098 #ifdef SQLITE_OMIT_AUTOVACUUM
3099 return SQLITE_READONLY
;
3101 BtShared
*pBt
= p
->pBt
;
3103 u8 av
= (u8
)autoVacuum
;
3105 sqlite3BtreeEnter(p
);
3106 if( (pBt
->btsFlags
& BTS_PAGESIZE_FIXED
)!=0 && (av
?1:0)!=pBt
->autoVacuum
){
3107 rc
= SQLITE_READONLY
;
3109 pBt
->autoVacuum
= av
?1:0;
3110 pBt
->incrVacuum
= av
==2 ?1:0;
3112 sqlite3BtreeLeave(p
);
3118 ** Return the value of the 'auto-vacuum' property. If auto-vacuum is
3119 ** enabled 1 is returned. Otherwise 0.
3121 int sqlite3BtreeGetAutoVacuum(Btree
*p
){
3122 #ifdef SQLITE_OMIT_AUTOVACUUM
3123 return BTREE_AUTOVACUUM_NONE
;
3126 sqlite3BtreeEnter(p
);
3128 (!p
->pBt
->autoVacuum
)?BTREE_AUTOVACUUM_NONE
:
3129 (!p
->pBt
->incrVacuum
)?BTREE_AUTOVACUUM_FULL
:
3130 BTREE_AUTOVACUUM_INCR
3132 sqlite3BtreeLeave(p
);
3138 ** If the user has not set the safety-level for this database connection
3139 ** using "PRAGMA synchronous", and if the safety-level is not already
3140 ** set to the value passed to this function as the second parameter,
3143 #if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS \
3144 && !defined(SQLITE_OMIT_WAL)
3145 static void setDefaultSyncFlag(BtShared
*pBt
, u8 safety_level
){
3148 if( (db
=pBt
->db
)!=0 && (pDb
=db
->aDb
)!=0 ){
3149 while( pDb
->pBt
==0 || pDb
->pBt
->pBt
!=pBt
){ pDb
++; }
3150 if( pDb
->bSyncSet
==0
3151 && pDb
->safety_level
!=safety_level
3154 pDb
->safety_level
= safety_level
;
3155 sqlite3PagerSetFlags(pBt
->pPager
,
3156 pDb
->safety_level
| (db
->flags
& PAGER_FLAGS_MASK
));
3161 # define setDefaultSyncFlag(pBt,safety_level)
3164 /* Forward declaration */
3165 static int newDatabase(BtShared
*);
3169 ** Get a reference to pPage1 of the database file. This will
3170 ** also acquire a readlock on that file.
3172 ** SQLITE_OK is returned on success. If the file is not a
3173 ** well-formed database file, then SQLITE_CORRUPT is returned.
3174 ** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
3175 ** is returned if we run out of memory.
3177 static int lockBtree(BtShared
*pBt
){
3178 int rc
; /* Result code from subfunctions */
3179 MemPage
*pPage1
; /* Page 1 of the database file */
3180 u32 nPage
; /* Number of pages in the database */
3181 u32 nPageFile
= 0; /* Number of pages in the database file */
3183 assert( sqlite3_mutex_held(pBt
->mutex
) );
3184 assert( pBt
->pPage1
==0 );
3185 rc
= sqlite3PagerSharedLock(pBt
->pPager
);
3186 if( rc
!=SQLITE_OK
) return rc
;
3187 rc
= btreeGetPage(pBt
, 1, &pPage1
, 0);
3188 if( rc
!=SQLITE_OK
) return rc
;
3190 /* Do some checking to help insure the file we opened really is
3191 ** a valid database file.
3193 nPage
= get4byte(28+(u8
*)pPage1
->aData
);
3194 sqlite3PagerPagecount(pBt
->pPager
, (int*)&nPageFile
);
3195 if( nPage
==0 || memcmp(24+(u8
*)pPage1
->aData
, 92+(u8
*)pPage1
->aData
,4)!=0 ){
3198 if( (pBt
->db
->flags
& SQLITE_ResetDatabase
)!=0 ){
3204 u8
*page1
= pPage1
->aData
;
3206 /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
3207 ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
3208 ** 61 74 20 33 00. */
3209 if( memcmp(page1
, zMagicHeader
, 16)!=0 ){
3210 goto page1_init_failed
;
3213 #ifdef SQLITE_OMIT_WAL
3215 pBt
->btsFlags
|= BTS_READ_ONLY
;
3218 goto page1_init_failed
;
3222 pBt
->btsFlags
|= BTS_READ_ONLY
;
3225 goto page1_init_failed
;
3228 /* If the read version is set to 2, this database should be accessed
3229 ** in WAL mode. If the log is not already open, open it now. Then
3230 ** return SQLITE_OK and return without populating BtShared.pPage1.
3231 ** The caller detects this and calls this function again. This is
3232 ** required as the version of page 1 currently in the page1 buffer
3233 ** may not be the latest version - there may be a newer one in the log
3236 if( page1
[19]==2 && (pBt
->btsFlags
& BTS_NO_WAL
)==0 ){
3238 rc
= sqlite3PagerOpenWal(pBt
->pPager
, &isOpen
);
3239 if( rc
!=SQLITE_OK
){
3240 goto page1_init_failed
;
3242 setDefaultSyncFlag(pBt
, SQLITE_DEFAULT_WAL_SYNCHRONOUS
+1);
3244 releasePageOne(pPage1
);
3250 setDefaultSyncFlag(pBt
, SQLITE_DEFAULT_SYNCHRONOUS
+1);
3254 /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
3255 ** fractions and the leaf payload fraction values must be 64, 32, and 32.
3257 ** The original design allowed these amounts to vary, but as of
3258 ** version 3.6.0, we require them to be fixed.
3260 if( memcmp(&page1
[21], "\100\040\040",3)!=0 ){
3261 goto page1_init_failed
;
3263 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
3264 ** determined by the 2-byte integer located at an offset of 16 bytes from
3265 ** the beginning of the database file. */
3266 pageSize
= (page1
[16]<<8) | (page1
[17]<<16);
3267 /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
3268 ** between 512 and 65536 inclusive. */
3269 if( ((pageSize
-1)&pageSize
)!=0
3270 || pageSize
>SQLITE_MAX_PAGE_SIZE
3273 goto page1_init_failed
;
3275 pBt
->btsFlags
|= BTS_PAGESIZE_FIXED
;
3276 assert( (pageSize
& 7)==0 );
3277 /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
3278 ** integer at offset 20 is the number of bytes of space at the end of
3279 ** each page to reserve for extensions.
3281 ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
3282 ** determined by the one-byte unsigned integer found at an offset of 20
3283 ** into the database file header. */
3284 usableSize
= pageSize
- page1
[20];
3285 if( (u32
)pageSize
!=pBt
->pageSize
){
3286 /* After reading the first page of the database assuming a page size
3287 ** of BtShared.pageSize, we have discovered that the page-size is
3288 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
3289 ** zero and return SQLITE_OK. The caller will call this function
3290 ** again with the correct page-size.
3292 releasePageOne(pPage1
);
3293 pBt
->usableSize
= usableSize
;
3294 pBt
->pageSize
= pageSize
;
3296 rc
= sqlite3PagerSetPagesize(pBt
->pPager
, &pBt
->pageSize
,
3297 pageSize
-usableSize
);
3300 if( nPage
>nPageFile
){
3301 if( sqlite3WritableSchema(pBt
->db
)==0 ){
3302 rc
= SQLITE_CORRUPT_BKPT
;
3303 goto page1_init_failed
;
3308 /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
3309 ** be less than 480. In other words, if the page size is 512, then the
3310 ** reserved space size cannot exceed 32. */
3311 if( usableSize
<480 ){
3312 goto page1_init_failed
;
3314 pBt
->pageSize
= pageSize
;
3315 pBt
->usableSize
= usableSize
;
3316 #ifndef SQLITE_OMIT_AUTOVACUUM
3317 pBt
->autoVacuum
= (get4byte(&page1
[36 + 4*4])?1:0);
3318 pBt
->incrVacuum
= (get4byte(&page1
[36 + 7*4])?1:0);
3322 /* maxLocal is the maximum amount of payload to store locally for
3323 ** a cell. Make sure it is small enough so that at least minFanout
3324 ** cells can will fit on one page. We assume a 10-byte page header.
3325 ** Besides the payload, the cell must store:
3326 ** 2-byte pointer to the cell
3327 ** 4-byte child pointer
3328 ** 9-byte nKey value
3329 ** 4-byte nData value
3330 ** 4-byte overflow page pointer
3331 ** So a cell consists of a 2-byte pointer, a header which is as much as
3332 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
3335 pBt
->maxLocal
= (u16
)((pBt
->usableSize
-12)*64/255 - 23);
3336 pBt
->minLocal
= (u16
)((pBt
->usableSize
-12)*32/255 - 23);
3337 pBt
->maxLeaf
= (u16
)(pBt
->usableSize
- 35);
3338 pBt
->minLeaf
= (u16
)((pBt
->usableSize
-12)*32/255 - 23);
3339 if( pBt
->maxLocal
>127 ){
3340 pBt
->max1bytePayload
= 127;
3342 pBt
->max1bytePayload
= (u8
)pBt
->maxLocal
;
3344 assert( pBt
->maxLeaf
+ 23 <= MX_CELL_SIZE(pBt
) );
3345 pBt
->pPage1
= pPage1
;
3350 releasePageOne(pPage1
);
3357 ** Return the number of cursors open on pBt. This is for use
3358 ** in assert() expressions, so it is only compiled if NDEBUG is not
3361 ** Only write cursors are counted if wrOnly is true. If wrOnly is
3362 ** false then all cursors are counted.
3364 ** For the purposes of this routine, a cursor is any cursor that
3365 ** is capable of reading or writing to the database. Cursors that
3366 ** have been tripped into the CURSOR_FAULT state are not counted.
3368 static int countValidCursors(BtShared
*pBt
, int wrOnly
){
3371 for(pCur
=pBt
->pCursor
; pCur
; pCur
=pCur
->pNext
){
3372 if( (wrOnly
==0 || (pCur
->curFlags
& BTCF_WriteFlag
)!=0)
3373 && pCur
->eState
!=CURSOR_FAULT
) r
++;
3380 ** If there are no outstanding cursors and we are not in the middle
3381 ** of a transaction but there is a read lock on the database, then
3382 ** this routine unrefs the first page of the database file which
3383 ** has the effect of releasing the read lock.
3385 ** If there is a transaction in progress, this routine is a no-op.
3387 static void unlockBtreeIfUnused(BtShared
*pBt
){
3388 assert( sqlite3_mutex_held(pBt
->mutex
) );
3389 assert( countValidCursors(pBt
,0)==0 || pBt
->inTransaction
>TRANS_NONE
);
3390 if( pBt
->inTransaction
==TRANS_NONE
&& pBt
->pPage1
!=0 ){
3391 MemPage
*pPage1
= pBt
->pPage1
;
3392 assert( pPage1
->aData
);
3393 assert( sqlite3PagerRefcount(pBt
->pPager
)==1 );
3395 releasePageOne(pPage1
);
3400 ** If pBt points to an empty file then convert that empty file
3401 ** into a new empty database by initializing the first page of
3404 static int newDatabase(BtShared
*pBt
){
3406 unsigned char *data
;
3409 assert( sqlite3_mutex_held(pBt
->mutex
) );
3416 rc
= sqlite3PagerWrite(pP1
->pDbPage
);
3418 memcpy(data
, zMagicHeader
, sizeof(zMagicHeader
));
3419 assert( sizeof(zMagicHeader
)==16 );
3420 data
[16] = (u8
)((pBt
->pageSize
>>8)&0xff);
3421 data
[17] = (u8
)((pBt
->pageSize
>>16)&0xff);
3424 assert( pBt
->usableSize
<=pBt
->pageSize
&& pBt
->usableSize
+255>=pBt
->pageSize
);
3425 data
[20] = (u8
)(pBt
->pageSize
- pBt
->usableSize
);
3429 memset(&data
[24], 0, 100-24);
3430 zeroPage(pP1
, PTF_INTKEY
|PTF_LEAF
|PTF_LEAFDATA
);
3431 pBt
->btsFlags
|= BTS_PAGESIZE_FIXED
;
3432 #ifndef SQLITE_OMIT_AUTOVACUUM
3433 assert( pBt
->autoVacuum
==1 || pBt
->autoVacuum
==0 );
3434 assert( pBt
->incrVacuum
==1 || pBt
->incrVacuum
==0 );
3435 put4byte(&data
[36 + 4*4], pBt
->autoVacuum
);
3436 put4byte(&data
[36 + 7*4], pBt
->incrVacuum
);
3444 ** Initialize the first page of the database file (creating a database
3445 ** consisting of a single page and no schema objects). Return SQLITE_OK
3446 ** if successful, or an SQLite error code otherwise.
3448 int sqlite3BtreeNewDb(Btree
*p
){
3450 sqlite3BtreeEnter(p
);
3452 rc
= newDatabase(p
->pBt
);
3453 sqlite3BtreeLeave(p
);
3458 ** Attempt to start a new transaction. A write-transaction
3459 ** is started if the second argument is nonzero, otherwise a read-
3460 ** transaction. If the second argument is 2 or more and exclusive
3461 ** transaction is started, meaning that no other process is allowed
3462 ** to access the database. A preexisting transaction may not be
3463 ** upgraded to exclusive by calling this routine a second time - the
3464 ** exclusivity flag only works for a new transaction.
3466 ** A write-transaction must be started before attempting any
3467 ** changes to the database. None of the following routines
3468 ** will work unless a transaction is started first:
3470 ** sqlite3BtreeCreateTable()
3471 ** sqlite3BtreeCreateIndex()
3472 ** sqlite3BtreeClearTable()
3473 ** sqlite3BtreeDropTable()
3474 ** sqlite3BtreeInsert()
3475 ** sqlite3BtreeDelete()
3476 ** sqlite3BtreeUpdateMeta()
3478 ** If an initial attempt to acquire the lock fails because of lock contention
3479 ** and the database was previously unlocked, then invoke the busy handler
3480 ** if there is one. But if there was previously a read-lock, do not
3481 ** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
3482 ** returned when there is already a read-lock in order to avoid a deadlock.
3484 ** Suppose there are two processes A and B. A has a read lock and B has
3485 ** a reserved lock. B tries to promote to exclusive but is blocked because
3486 ** of A's read lock. A tries to promote to reserved but is blocked by B.
3487 ** One or the other of the two processes must give way or there can be
3488 ** no progress. By returning SQLITE_BUSY and not invoking the busy callback
3489 ** when A already has a read lock, we encourage A to give up and let B
3492 int sqlite3BtreeBeginTrans(Btree
*p
, int wrflag
, int *pSchemaVersion
){
3493 BtShared
*pBt
= p
->pBt
;
3494 Pager
*pPager
= pBt
->pPager
;
3497 sqlite3BtreeEnter(p
);
3500 /* If the btree is already in a write-transaction, or it
3501 ** is already in a read-transaction and a read-transaction
3502 ** is requested, this is a no-op.
3504 if( p
->inTrans
==TRANS_WRITE
|| (p
->inTrans
==TRANS_READ
&& !wrflag
) ){
3507 assert( pBt
->inTransaction
==TRANS_WRITE
|| IfNotOmitAV(pBt
->bDoTruncate
)==0 );
3509 if( (p
->db
->flags
& SQLITE_ResetDatabase
)
3510 && sqlite3PagerIsreadonly(pPager
)==0
3512 pBt
->btsFlags
&= ~BTS_READ_ONLY
;
3515 /* Write transactions are not possible on a read-only database */
3516 if( (pBt
->btsFlags
& BTS_READ_ONLY
)!=0 && wrflag
){
3517 rc
= SQLITE_READONLY
;
3521 #ifndef SQLITE_OMIT_SHARED_CACHE
3523 sqlite3
*pBlock
= 0;
3524 /* If another database handle has already opened a write transaction
3525 ** on this shared-btree structure and a second write transaction is
3526 ** requested, return SQLITE_LOCKED.
3528 if( (wrflag
&& pBt
->inTransaction
==TRANS_WRITE
)
3529 || (pBt
->btsFlags
& BTS_PENDING
)!=0
3531 pBlock
= pBt
->pWriter
->db
;
3532 }else if( wrflag
>1 ){
3534 for(pIter
=pBt
->pLock
; pIter
; pIter
=pIter
->pNext
){
3535 if( pIter
->pBtree
!=p
){
3536 pBlock
= pIter
->pBtree
->db
;
3542 sqlite3ConnectionBlocked(p
->db
, pBlock
);
3543 rc
= SQLITE_LOCKED_SHAREDCACHE
;
3549 /* Any read-only or read-write transaction implies a read-lock on
3550 ** page 1. So if some other shared-cache client already has a write-lock
3551 ** on page 1, the transaction cannot be opened. */
3552 rc
= querySharedCacheTableLock(p
, SCHEMA_ROOT
, READ_LOCK
);
3553 if( SQLITE_OK
!=rc
) goto trans_begun
;
3555 pBt
->btsFlags
&= ~BTS_INITIALLY_EMPTY
;
3556 if( pBt
->nPage
==0 ) pBt
->btsFlags
|= BTS_INITIALLY_EMPTY
;
3558 sqlite3PagerWalDb(pPager
, p
->db
);
3560 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
3561 /* If transitioning from no transaction directly to a write transaction,
3562 ** block for the WRITER lock first if possible. */
3563 if( pBt
->pPage1
==0 && wrflag
){
3564 assert( pBt
->inTransaction
==TRANS_NONE
);
3565 rc
= sqlite3PagerWalWriteLock(pPager
, 1);
3566 if( rc
!=SQLITE_BUSY
&& rc
!=SQLITE_OK
) break;
3570 /* Call lockBtree() until either pBt->pPage1 is populated or
3571 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
3572 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
3573 ** reading page 1 it discovers that the page-size of the database
3574 ** file is not pBt->pageSize. In this case lockBtree() will update
3575 ** pBt->pageSize to the page-size of the file on disk.
3577 while( pBt
->pPage1
==0 && SQLITE_OK
==(rc
= lockBtree(pBt
)) );
3579 if( rc
==SQLITE_OK
&& wrflag
){
3580 if( (pBt
->btsFlags
& BTS_READ_ONLY
)!=0 ){
3581 rc
= SQLITE_READONLY
;
3583 rc
= sqlite3PagerBegin(pPager
, wrflag
>1, sqlite3TempInMemory(p
->db
));
3584 if( rc
==SQLITE_OK
){
3585 rc
= newDatabase(pBt
);
3586 }else if( rc
==SQLITE_BUSY_SNAPSHOT
&& pBt
->inTransaction
==TRANS_NONE
){
3587 /* if there was no transaction opened when this function was
3588 ** called and SQLITE_BUSY_SNAPSHOT is returned, change the error
3589 ** code to SQLITE_BUSY. */
3595 if( rc
!=SQLITE_OK
){
3596 (void)sqlite3PagerWalWriteLock(pPager
, 0);
3597 unlockBtreeIfUnused(pBt
);
3599 }while( (rc
&0xFF)==SQLITE_BUSY
&& pBt
->inTransaction
==TRANS_NONE
&&
3600 btreeInvokeBusyHandler(pBt
) );
3601 sqlite3PagerWalDb(pPager
, 0);
3602 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
3603 if( rc
==SQLITE_BUSY_TIMEOUT
) rc
= SQLITE_BUSY
;
3606 if( rc
==SQLITE_OK
){
3607 if( p
->inTrans
==TRANS_NONE
){
3608 pBt
->nTransaction
++;
3609 #ifndef SQLITE_OMIT_SHARED_CACHE
3611 assert( p
->lock
.pBtree
==p
&& p
->lock
.iTable
==1 );
3612 p
->lock
.eLock
= READ_LOCK
;
3613 p
->lock
.pNext
= pBt
->pLock
;
3614 pBt
->pLock
= &p
->lock
;
3618 p
->inTrans
= (wrflag
?TRANS_WRITE
:TRANS_READ
);
3619 if( p
->inTrans
>pBt
->inTransaction
){
3620 pBt
->inTransaction
= p
->inTrans
;
3623 MemPage
*pPage1
= pBt
->pPage1
;
3624 #ifndef SQLITE_OMIT_SHARED_CACHE
3625 assert( !pBt
->pWriter
);
3627 pBt
->btsFlags
&= ~BTS_EXCLUSIVE
;
3628 if( wrflag
>1 ) pBt
->btsFlags
|= BTS_EXCLUSIVE
;
3631 /* If the db-size header field is incorrect (as it may be if an old
3632 ** client has been writing the database file), update it now. Doing
3633 ** this sooner rather than later means the database size can safely
3634 ** re-read the database size from page 1 if a savepoint or transaction
3635 ** rollback occurs within the transaction.
3637 if( pBt
->nPage
!=get4byte(&pPage1
->aData
[28]) ){
3638 rc
= sqlite3PagerWrite(pPage1
->pDbPage
);
3639 if( rc
==SQLITE_OK
){
3640 put4byte(&pPage1
->aData
[28], pBt
->nPage
);
3647 if( rc
==SQLITE_OK
){
3648 if( pSchemaVersion
){
3649 *pSchemaVersion
= get4byte(&pBt
->pPage1
->aData
[40]);
3652 /* This call makes sure that the pager has the correct number of
3653 ** open savepoints. If the second parameter is greater than 0 and
3654 ** the sub-journal is not already open, then it will be opened here.
3656 rc
= sqlite3PagerOpenSavepoint(pPager
, p
->db
->nSavepoint
);
3661 sqlite3BtreeLeave(p
);
3665 #ifndef SQLITE_OMIT_AUTOVACUUM
3668 ** Set the pointer-map entries for all children of page pPage. Also, if
3669 ** pPage contains cells that point to overflow pages, set the pointer
3670 ** map entries for the overflow pages as well.
3672 static int setChildPtrmaps(MemPage
*pPage
){
3673 int i
; /* Counter variable */
3674 int nCell
; /* Number of cells in page pPage */
3675 int rc
; /* Return code */
3676 BtShared
*pBt
= pPage
->pBt
;
3677 Pgno pgno
= pPage
->pgno
;
3679 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
3680 rc
= pPage
->isInit
? SQLITE_OK
: btreeInitPage(pPage
);
3681 if( rc
!=SQLITE_OK
) return rc
;
3682 nCell
= pPage
->nCell
;
3684 for(i
=0; i
<nCell
; i
++){
3685 u8
*pCell
= findCell(pPage
, i
);
3687 ptrmapPutOvflPtr(pPage
, pPage
, pCell
, &rc
);
3690 Pgno childPgno
= get4byte(pCell
);
3691 ptrmapPut(pBt
, childPgno
, PTRMAP_BTREE
, pgno
, &rc
);
3696 Pgno childPgno
= get4byte(&pPage
->aData
[pPage
->hdrOffset
+8]);
3697 ptrmapPut(pBt
, childPgno
, PTRMAP_BTREE
, pgno
, &rc
);
3704 ** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
3705 ** that it points to iTo. Parameter eType describes the type of pointer to
3706 ** be modified, as follows:
3708 ** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
3711 ** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
3712 ** page pointed to by one of the cells on pPage.
3714 ** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
3715 ** overflow page in the list.
3717 static int modifyPagePointer(MemPage
*pPage
, Pgno iFrom
, Pgno iTo
, u8 eType
){
3718 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
3719 assert( sqlite3PagerIswriteable(pPage
->pDbPage
) );
3720 if( eType
==PTRMAP_OVERFLOW2
){
3721 /* The pointer is always the first 4 bytes of the page in this case. */
3722 if( get4byte(pPage
->aData
)!=iFrom
){
3723 return SQLITE_CORRUPT_PAGE(pPage
);
3725 put4byte(pPage
->aData
, iTo
);
3731 rc
= pPage
->isInit
? SQLITE_OK
: btreeInitPage(pPage
);
3733 nCell
= pPage
->nCell
;
3735 for(i
=0; i
<nCell
; i
++){
3736 u8
*pCell
= findCell(pPage
, i
);
3737 if( eType
==PTRMAP_OVERFLOW1
){
3739 pPage
->xParseCell(pPage
, pCell
, &info
);
3740 if( info
.nLocal
<info
.nPayload
){
3741 if( pCell
+info
.nSize
> pPage
->aData
+pPage
->pBt
->usableSize
){
3742 return SQLITE_CORRUPT_PAGE(pPage
);
3744 if( iFrom
==get4byte(pCell
+info
.nSize
-4) ){
3745 put4byte(pCell
+info
.nSize
-4, iTo
);
3750 if( pCell
+4 > pPage
->aData
+pPage
->pBt
->usableSize
){
3751 return SQLITE_CORRUPT_PAGE(pPage
);
3753 if( get4byte(pCell
)==iFrom
){
3754 put4byte(pCell
, iTo
);
3761 if( eType
!=PTRMAP_BTREE
||
3762 get4byte(&pPage
->aData
[pPage
->hdrOffset
+8])!=iFrom
){
3763 return SQLITE_CORRUPT_PAGE(pPage
);
3765 put4byte(&pPage
->aData
[pPage
->hdrOffset
+8], iTo
);
3773 ** Move the open database page pDbPage to location iFreePage in the
3774 ** database. The pDbPage reference remains valid.
3776 ** The isCommit flag indicates that there is no need to remember that
3777 ** the journal needs to be sync()ed before database page pDbPage->pgno
3778 ** can be written to. The caller has already promised not to write to that
3781 static int relocatePage(
3782 BtShared
*pBt
, /* Btree */
3783 MemPage
*pDbPage
, /* Open page to move */
3784 u8 eType
, /* Pointer map 'type' entry for pDbPage */
3785 Pgno iPtrPage
, /* Pointer map 'page-no' entry for pDbPage */
3786 Pgno iFreePage
, /* The location to move pDbPage to */
3787 int isCommit
/* isCommit flag passed to sqlite3PagerMovepage */
3789 MemPage
*pPtrPage
; /* The page that contains a pointer to pDbPage */
3790 Pgno iDbPage
= pDbPage
->pgno
;
3791 Pager
*pPager
= pBt
->pPager
;
3794 assert( eType
==PTRMAP_OVERFLOW2
|| eType
==PTRMAP_OVERFLOW1
||
3795 eType
==PTRMAP_BTREE
|| eType
==PTRMAP_ROOTPAGE
);
3796 assert( sqlite3_mutex_held(pBt
->mutex
) );
3797 assert( pDbPage
->pBt
==pBt
);
3798 if( iDbPage
<3 ) return SQLITE_CORRUPT_BKPT
;
3800 /* Move page iDbPage from its current location to page number iFreePage */
3801 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
3802 iDbPage
, iFreePage
, iPtrPage
, eType
));
3803 rc
= sqlite3PagerMovepage(pPager
, pDbPage
->pDbPage
, iFreePage
, isCommit
);
3804 if( rc
!=SQLITE_OK
){
3807 pDbPage
->pgno
= iFreePage
;
3809 /* If pDbPage was a btree-page, then it may have child pages and/or cells
3810 ** that point to overflow pages. The pointer map entries for all these
3811 ** pages need to be changed.
3813 ** If pDbPage is an overflow page, then the first 4 bytes may store a
3814 ** pointer to a subsequent overflow page. If this is the case, then
3815 ** the pointer map needs to be updated for the subsequent overflow page.
3817 if( eType
==PTRMAP_BTREE
|| eType
==PTRMAP_ROOTPAGE
){
3818 rc
= setChildPtrmaps(pDbPage
);
3819 if( rc
!=SQLITE_OK
){
3823 Pgno nextOvfl
= get4byte(pDbPage
->aData
);
3825 ptrmapPut(pBt
, nextOvfl
, PTRMAP_OVERFLOW2
, iFreePage
, &rc
);
3826 if( rc
!=SQLITE_OK
){
3832 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
3833 ** that it points at iFreePage. Also fix the pointer map entry for
3836 if( eType
!=PTRMAP_ROOTPAGE
){
3837 rc
= btreeGetPage(pBt
, iPtrPage
, &pPtrPage
, 0);
3838 if( rc
!=SQLITE_OK
){
3841 rc
= sqlite3PagerWrite(pPtrPage
->pDbPage
);
3842 if( rc
!=SQLITE_OK
){
3843 releasePage(pPtrPage
);
3846 rc
= modifyPagePointer(pPtrPage
, iDbPage
, iFreePage
, eType
);
3847 releasePage(pPtrPage
);
3848 if( rc
==SQLITE_OK
){
3849 ptrmapPut(pBt
, iFreePage
, eType
, iPtrPage
, &rc
);
3855 /* Forward declaration required by incrVacuumStep(). */
3856 static int allocateBtreePage(BtShared
*, MemPage
**, Pgno
*, Pgno
, u8
);
3859 ** Perform a single step of an incremental-vacuum. If successful, return
3860 ** SQLITE_OK. If there is no work to do (and therefore no point in
3861 ** calling this function again), return SQLITE_DONE. Or, if an error
3862 ** occurs, return some other error code.
3864 ** More specifically, this function attempts to re-organize the database so
3865 ** that the last page of the file currently in use is no longer in use.
3867 ** Parameter nFin is the number of pages that this database would contain
3868 ** were this function called until it returns SQLITE_DONE.
3870 ** If the bCommit parameter is non-zero, this function assumes that the
3871 ** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
3872 ** or an error. bCommit is passed true for an auto-vacuum-on-commit
3873 ** operation, or false for an incremental vacuum.
3875 static int incrVacuumStep(BtShared
*pBt
, Pgno nFin
, Pgno iLastPg
, int bCommit
){
3876 Pgno nFreeList
; /* Number of pages still on the free-list */
3879 assert( sqlite3_mutex_held(pBt
->mutex
) );
3880 assert( iLastPg
>nFin
);
3882 if( !PTRMAP_ISPAGE(pBt
, iLastPg
) && iLastPg
!=PENDING_BYTE_PAGE(pBt
) ){
3886 nFreeList
= get4byte(&pBt
->pPage1
->aData
[36]);
3891 rc
= ptrmapGet(pBt
, iLastPg
, &eType
, &iPtrPage
);
3892 if( rc
!=SQLITE_OK
){
3895 if( eType
==PTRMAP_ROOTPAGE
){
3896 return SQLITE_CORRUPT_BKPT
;
3899 if( eType
==PTRMAP_FREEPAGE
){
3901 /* Remove the page from the files free-list. This is not required
3902 ** if bCommit is non-zero. In that case, the free-list will be
3903 ** truncated to zero after this function returns, so it doesn't
3904 ** matter if it still contains some garbage entries.
3908 rc
= allocateBtreePage(pBt
, &pFreePg
, &iFreePg
, iLastPg
, BTALLOC_EXACT
);
3909 if( rc
!=SQLITE_OK
){
3912 assert( iFreePg
==iLastPg
);
3913 releasePage(pFreePg
);
3916 Pgno iFreePg
; /* Index of free page to move pLastPg to */
3918 u8 eMode
= BTALLOC_ANY
; /* Mode parameter for allocateBtreePage() */
3919 Pgno iNear
= 0; /* nearby parameter for allocateBtreePage() */
3921 rc
= btreeGetPage(pBt
, iLastPg
, &pLastPg
, 0);
3922 if( rc
!=SQLITE_OK
){
3926 /* If bCommit is zero, this loop runs exactly once and page pLastPg
3927 ** is swapped with the first free page pulled off the free list.
3929 ** On the other hand, if bCommit is greater than zero, then keep
3930 ** looping until a free-page located within the first nFin pages
3931 ** of the file is found.
3939 Pgno dbSize
= btreePagecount(pBt
);
3940 rc
= allocateBtreePage(pBt
, &pFreePg
, &iFreePg
, iNear
, eMode
);
3941 if( rc
!=SQLITE_OK
){
3942 releasePage(pLastPg
);
3945 releasePage(pFreePg
);
3946 if( iFreePg
>dbSize
){
3947 releasePage(pLastPg
);
3948 return SQLITE_CORRUPT_BKPT
;
3950 }while( bCommit
&& iFreePg
>nFin
);
3951 assert( iFreePg
<iLastPg
);
3953 rc
= relocatePage(pBt
, pLastPg
, eType
, iPtrPage
, iFreePg
, bCommit
);
3954 releasePage(pLastPg
);
3955 if( rc
!=SQLITE_OK
){
3964 }while( iLastPg
==PENDING_BYTE_PAGE(pBt
) || PTRMAP_ISPAGE(pBt
, iLastPg
) );
3965 pBt
->bDoTruncate
= 1;
3966 pBt
->nPage
= iLastPg
;
3972 ** The database opened by the first argument is an auto-vacuum database
3973 ** nOrig pages in size containing nFree free pages. Return the expected
3974 ** size of the database in pages following an auto-vacuum operation.
3976 static Pgno
finalDbSize(BtShared
*pBt
, Pgno nOrig
, Pgno nFree
){
3977 int nEntry
; /* Number of entries on one ptrmap page */
3978 Pgno nPtrmap
; /* Number of PtrMap pages to be freed */
3979 Pgno nFin
; /* Return value */
3981 nEntry
= pBt
->usableSize
/5;
3982 nPtrmap
= (nFree
-nOrig
+PTRMAP_PAGENO(pBt
, nOrig
)+nEntry
)/nEntry
;
3983 nFin
= nOrig
- nFree
- nPtrmap
;
3984 if( nOrig
>PENDING_BYTE_PAGE(pBt
) && nFin
<PENDING_BYTE_PAGE(pBt
) ){
3987 while( PTRMAP_ISPAGE(pBt
, nFin
) || nFin
==PENDING_BYTE_PAGE(pBt
) ){
3995 ** A write-transaction must be opened before calling this function.
3996 ** It performs a single unit of work towards an incremental vacuum.
3998 ** If the incremental vacuum is finished after this function has run,
3999 ** SQLITE_DONE is returned. If it is not finished, but no error occurred,
4000 ** SQLITE_OK is returned. Otherwise an SQLite error code.
4002 int sqlite3BtreeIncrVacuum(Btree
*p
){
4004 BtShared
*pBt
= p
->pBt
;
4006 sqlite3BtreeEnter(p
);
4007 assert( pBt
->inTransaction
==TRANS_WRITE
&& p
->inTrans
==TRANS_WRITE
);
4008 if( !pBt
->autoVacuum
){
4011 Pgno nOrig
= btreePagecount(pBt
);
4012 Pgno nFree
= get4byte(&pBt
->pPage1
->aData
[36]);
4013 Pgno nFin
= finalDbSize(pBt
, nOrig
, nFree
);
4015 if( nOrig
<nFin
|| nFree
>=nOrig
){
4016 rc
= SQLITE_CORRUPT_BKPT
;
4017 }else if( nFree
>0 ){
4018 rc
= saveAllCursors(pBt
, 0, 0);
4019 if( rc
==SQLITE_OK
){
4020 invalidateAllOverflowCache(pBt
);
4021 rc
= incrVacuumStep(pBt
, nFin
, nOrig
, 0);
4023 if( rc
==SQLITE_OK
){
4024 rc
= sqlite3PagerWrite(pBt
->pPage1
->pDbPage
);
4025 put4byte(&pBt
->pPage1
->aData
[28], pBt
->nPage
);
4031 sqlite3BtreeLeave(p
);
4036 ** This routine is called prior to sqlite3PagerCommit when a transaction
4037 ** is committed for an auto-vacuum database.
4039 static int autoVacuumCommit(Btree
*p
){
4044 VVA_ONLY( int nRef
);
4048 pPager
= pBt
->pPager
;
4049 VVA_ONLY( nRef
= sqlite3PagerRefcount(pPager
); )
4051 assert( sqlite3_mutex_held(pBt
->mutex
) );
4052 invalidateAllOverflowCache(pBt
);
4053 assert(pBt
->autoVacuum
);
4054 if( !pBt
->incrVacuum
){
4055 Pgno nFin
; /* Number of pages in database after autovacuuming */
4056 Pgno nFree
; /* Number of pages on the freelist initially */
4057 Pgno nVac
; /* Number of pages to vacuum */
4058 Pgno iFree
; /* The next page to be freed */
4059 Pgno nOrig
; /* Database size before freeing */
4061 nOrig
= btreePagecount(pBt
);
4062 if( PTRMAP_ISPAGE(pBt
, nOrig
) || nOrig
==PENDING_BYTE_PAGE(pBt
) ){
4063 /* It is not possible to create a database for which the final page
4064 ** is either a pointer-map page or the pending-byte page. If one
4065 ** is encountered, this indicates corruption.
4067 return SQLITE_CORRUPT_BKPT
;
4070 nFree
= get4byte(&pBt
->pPage1
->aData
[36]);
4072 if( db
->xAutovacPages
){
4074 for(iDb
=0; ALWAYS(iDb
<db
->nDb
); iDb
++){
4075 if( db
->aDb
[iDb
].pBt
==p
) break;
4077 nVac
= db
->xAutovacPages(
4078 db
->pAutovacPagesArg
,
4079 db
->aDb
[iDb
].zDbSName
,
4093 nFin
= finalDbSize(pBt
, nOrig
, nVac
);
4094 if( nFin
>nOrig
) return SQLITE_CORRUPT_BKPT
;
4096 rc
= saveAllCursors(pBt
, 0, 0);
4098 for(iFree
=nOrig
; iFree
>nFin
&& rc
==SQLITE_OK
; iFree
--){
4099 rc
= incrVacuumStep(pBt
, nFin
, iFree
, nVac
==nFree
);
4101 if( (rc
==SQLITE_DONE
|| rc
==SQLITE_OK
) && nFree
>0 ){
4102 rc
= sqlite3PagerWrite(pBt
->pPage1
->pDbPage
);
4104 put4byte(&pBt
->pPage1
->aData
[32], 0);
4105 put4byte(&pBt
->pPage1
->aData
[36], 0);
4107 put4byte(&pBt
->pPage1
->aData
[28], nFin
);
4108 pBt
->bDoTruncate
= 1;
4111 if( rc
!=SQLITE_OK
){
4112 sqlite3PagerRollback(pPager
);
4116 assert( nRef
>=sqlite3PagerRefcount(pPager
) );
4120 #else /* ifndef SQLITE_OMIT_AUTOVACUUM */
4121 # define setChildPtrmaps(x) SQLITE_OK
4125 ** This routine does the first phase of a two-phase commit. This routine
4126 ** causes a rollback journal to be created (if it does not already exist)
4127 ** and populated with enough information so that if a power loss occurs
4128 ** the database can be restored to its original state by playing back
4129 ** the journal. Then the contents of the journal are flushed out to
4130 ** the disk. After the journal is safely on oxide, the changes to the
4131 ** database are written into the database file and flushed to oxide.
4132 ** At the end of this call, the rollback journal still exists on the
4133 ** disk and we are still holding all locks, so the transaction has not
4134 ** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
4137 ** This call is a no-op if no write-transaction is currently active on pBt.
4139 ** Otherwise, sync the database file for the btree pBt. zSuperJrnl points to
4140 ** the name of a super-journal file that should be written into the
4141 ** individual journal file, or is NULL, indicating no super-journal file
4142 ** (single database transaction).
4144 ** When this is called, the super-journal should already have been
4145 ** created, populated with this journal pointer and synced to disk.
4147 ** Once this is routine has returned, the only thing required to commit
4148 ** the write-transaction for this database file is to delete the journal.
4150 int sqlite3BtreeCommitPhaseOne(Btree
*p
, const char *zSuperJrnl
){
4152 if( p
->inTrans
==TRANS_WRITE
){
4153 BtShared
*pBt
= p
->pBt
;
4154 sqlite3BtreeEnter(p
);
4155 #ifndef SQLITE_OMIT_AUTOVACUUM
4156 if( pBt
->autoVacuum
){
4157 rc
= autoVacuumCommit(p
);
4158 if( rc
!=SQLITE_OK
){
4159 sqlite3BtreeLeave(p
);
4163 if( pBt
->bDoTruncate
){
4164 sqlite3PagerTruncateImage(pBt
->pPager
, pBt
->nPage
);
4167 rc
= sqlite3PagerCommitPhaseOne(pBt
->pPager
, zSuperJrnl
, 0);
4168 sqlite3BtreeLeave(p
);
4174 ** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
4175 ** at the conclusion of a transaction.
4177 static void btreeEndTransaction(Btree
*p
){
4178 BtShared
*pBt
= p
->pBt
;
4179 sqlite3
*db
= p
->db
;
4180 assert( sqlite3BtreeHoldsMutex(p
) );
4182 #ifndef SQLITE_OMIT_AUTOVACUUM
4183 pBt
->bDoTruncate
= 0;
4185 if( p
->inTrans
>TRANS_NONE
&& db
->nVdbeRead
>1 ){
4186 /* If there are other active statements that belong to this database
4187 ** handle, downgrade to a read-only transaction. The other statements
4188 ** may still be reading from the database. */
4189 downgradeAllSharedCacheTableLocks(p
);
4190 p
->inTrans
= TRANS_READ
;
4192 /* If the handle had any kind of transaction open, decrement the
4193 ** transaction count of the shared btree. If the transaction count
4194 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
4195 ** call below will unlock the pager. */
4196 if( p
->inTrans
!=TRANS_NONE
){
4197 clearAllSharedCacheTableLocks(p
);
4198 pBt
->nTransaction
--;
4199 if( 0==pBt
->nTransaction
){
4200 pBt
->inTransaction
= TRANS_NONE
;
4204 /* Set the current transaction state to TRANS_NONE and unlock the
4205 ** pager if this call closed the only read or write transaction. */
4206 p
->inTrans
= TRANS_NONE
;
4207 unlockBtreeIfUnused(pBt
);
4214 ** Commit the transaction currently in progress.
4216 ** This routine implements the second phase of a 2-phase commit. The
4217 ** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
4218 ** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
4219 ** routine did all the work of writing information out to disk and flushing the
4220 ** contents so that they are written onto the disk platter. All this
4221 ** routine has to do is delete or truncate or zero the header in the
4222 ** the rollback journal (which causes the transaction to commit) and
4225 ** Normally, if an error occurs while the pager layer is attempting to
4226 ** finalize the underlying journal file, this function returns an error and
4227 ** the upper layer will attempt a rollback. However, if the second argument
4228 ** is non-zero then this b-tree transaction is part of a multi-file
4229 ** transaction. In this case, the transaction has already been committed
4230 ** (by deleting a super-journal file) and the caller will ignore this
4231 ** functions return code. So, even if an error occurs in the pager layer,
4232 ** reset the b-tree objects internal state to indicate that the write
4233 ** transaction has been closed. This is quite safe, as the pager will have
4234 ** transitioned to the error state.
4236 ** This will release the write lock on the database file. If there
4237 ** are no active cursors, it also releases the read lock.
4239 int sqlite3BtreeCommitPhaseTwo(Btree
*p
, int bCleanup
){
4241 if( p
->inTrans
==TRANS_NONE
) return SQLITE_OK
;
4242 sqlite3BtreeEnter(p
);
4245 /* If the handle has a write-transaction open, commit the shared-btrees
4246 ** transaction and set the shared state to TRANS_READ.
4248 if( p
->inTrans
==TRANS_WRITE
){
4250 BtShared
*pBt
= p
->pBt
;
4251 assert( pBt
->inTransaction
==TRANS_WRITE
);
4252 assert( pBt
->nTransaction
>0 );
4253 rc
= sqlite3PagerCommitPhaseTwo(pBt
->pPager
);
4254 if( rc
!=SQLITE_OK
&& bCleanup
==0 ){
4255 sqlite3BtreeLeave(p
);
4258 p
->iBDataVersion
--; /* Compensate for pPager->iDataVersion++; */
4259 pBt
->inTransaction
= TRANS_READ
;
4260 btreeClearHasContent(pBt
);
4263 btreeEndTransaction(p
);
4264 sqlite3BtreeLeave(p
);
4269 ** Do both phases of a commit.
4271 int sqlite3BtreeCommit(Btree
*p
){
4273 sqlite3BtreeEnter(p
);
4274 rc
= sqlite3BtreeCommitPhaseOne(p
, 0);
4275 if( rc
==SQLITE_OK
){
4276 rc
= sqlite3BtreeCommitPhaseTwo(p
, 0);
4278 sqlite3BtreeLeave(p
);
4283 ** This routine sets the state to CURSOR_FAULT and the error
4284 ** code to errCode for every cursor on any BtShared that pBtree
4285 ** references. Or if the writeOnly flag is set to 1, then only
4286 ** trip write cursors and leave read cursors unchanged.
4288 ** Every cursor is a candidate to be tripped, including cursors
4289 ** that belong to other database connections that happen to be
4290 ** sharing the cache with pBtree.
4292 ** This routine gets called when a rollback occurs. If the writeOnly
4293 ** flag is true, then only write-cursors need be tripped - read-only
4294 ** cursors save their current positions so that they may continue
4295 ** following the rollback. Or, if writeOnly is false, all cursors are
4296 ** tripped. In general, writeOnly is false if the transaction being
4297 ** rolled back modified the database schema. In this case b-tree root
4298 ** pages may be moved or deleted from the database altogether, making
4299 ** it unsafe for read cursors to continue.
4301 ** If the writeOnly flag is true and an error is encountered while
4302 ** saving the current position of a read-only cursor, all cursors,
4303 ** including all read-cursors are tripped.
4305 ** SQLITE_OK is returned if successful, or if an error occurs while
4306 ** saving a cursor position, an SQLite error code.
4308 int sqlite3BtreeTripAllCursors(Btree
*pBtree
, int errCode
, int writeOnly
){
4312 assert( (writeOnly
==0 || writeOnly
==1) && BTCF_WriteFlag
==1 );
4314 sqlite3BtreeEnter(pBtree
);
4315 for(p
=pBtree
->pBt
->pCursor
; p
; p
=p
->pNext
){
4316 if( writeOnly
&& (p
->curFlags
& BTCF_WriteFlag
)==0 ){
4317 if( p
->eState
==CURSOR_VALID
|| p
->eState
==CURSOR_SKIPNEXT
){
4318 rc
= saveCursorPosition(p
);
4319 if( rc
!=SQLITE_OK
){
4320 (void)sqlite3BtreeTripAllCursors(pBtree
, rc
, 0);
4325 sqlite3BtreeClearCursor(p
);
4326 p
->eState
= CURSOR_FAULT
;
4327 p
->skipNext
= errCode
;
4329 btreeReleaseAllCursorPages(p
);
4331 sqlite3BtreeLeave(pBtree
);
4337 ** Set the pBt->nPage field correctly, according to the current
4338 ** state of the database. Assume pBt->pPage1 is valid.
4340 static void btreeSetNPage(BtShared
*pBt
, MemPage
*pPage1
){
4341 int nPage
= get4byte(&pPage1
->aData
[28]);
4342 testcase( nPage
==0 );
4343 if( nPage
==0 ) sqlite3PagerPagecount(pBt
->pPager
, &nPage
);
4344 testcase( pBt
->nPage
!=(u32
)nPage
);
4349 ** Rollback the transaction in progress.
4351 ** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
4352 ** Only write cursors are tripped if writeOnly is true but all cursors are
4353 ** tripped if writeOnly is false. Any attempt to use
4354 ** a tripped cursor will result in an error.
4356 ** This will release the write lock on the database file. If there
4357 ** are no active cursors, it also releases the read lock.
4359 int sqlite3BtreeRollback(Btree
*p
, int tripCode
, int writeOnly
){
4361 BtShared
*pBt
= p
->pBt
;
4364 assert( writeOnly
==1 || writeOnly
==0 );
4365 assert( tripCode
==SQLITE_ABORT_ROLLBACK
|| tripCode
==SQLITE_OK
);
4366 sqlite3BtreeEnter(p
);
4367 if( tripCode
==SQLITE_OK
){
4368 rc
= tripCode
= saveAllCursors(pBt
, 0, 0);
4369 if( rc
) writeOnly
= 0;
4374 int rc2
= sqlite3BtreeTripAllCursors(p
, tripCode
, writeOnly
);
4375 assert( rc
==SQLITE_OK
|| (writeOnly
==0 && rc2
==SQLITE_OK
) );
4376 if( rc2
!=SQLITE_OK
) rc
= rc2
;
4380 if( p
->inTrans
==TRANS_WRITE
){
4383 assert( TRANS_WRITE
==pBt
->inTransaction
);
4384 rc2
= sqlite3PagerRollback(pBt
->pPager
);
4385 if( rc2
!=SQLITE_OK
){
4389 /* The rollback may have destroyed the pPage1->aData value. So
4390 ** call btreeGetPage() on page 1 again to make
4391 ** sure pPage1->aData is set correctly. */
4392 if( btreeGetPage(pBt
, 1, &pPage1
, 0)==SQLITE_OK
){
4393 btreeSetNPage(pBt
, pPage1
);
4394 releasePageOne(pPage1
);
4396 assert( countValidCursors(pBt
, 1)==0 );
4397 pBt
->inTransaction
= TRANS_READ
;
4398 btreeClearHasContent(pBt
);
4401 btreeEndTransaction(p
);
4402 sqlite3BtreeLeave(p
);
4407 ** Start a statement subtransaction. The subtransaction can be rolled
4408 ** back independently of the main transaction. You must start a transaction
4409 ** before starting a subtransaction. The subtransaction is ended automatically
4410 ** if the main transaction commits or rolls back.
4412 ** Statement subtransactions are used around individual SQL statements
4413 ** that are contained within a BEGIN...COMMIT block. If a constraint
4414 ** error occurs within the statement, the effect of that one statement
4415 ** can be rolled back without having to rollback the entire transaction.
4417 ** A statement sub-transaction is implemented as an anonymous savepoint. The
4418 ** value passed as the second parameter is the total number of savepoints,
4419 ** including the new anonymous savepoint, open on the B-Tree. i.e. if there
4420 ** are no active savepoints and no other statement-transactions open,
4421 ** iStatement is 1. This anonymous savepoint can be released or rolled back
4422 ** using the sqlite3BtreeSavepoint() function.
4424 int sqlite3BtreeBeginStmt(Btree
*p
, int iStatement
){
4426 BtShared
*pBt
= p
->pBt
;
4427 sqlite3BtreeEnter(p
);
4428 assert( p
->inTrans
==TRANS_WRITE
);
4429 assert( (pBt
->btsFlags
& BTS_READ_ONLY
)==0 );
4430 assert( iStatement
>0 );
4431 assert( iStatement
>p
->db
->nSavepoint
);
4432 assert( pBt
->inTransaction
==TRANS_WRITE
);
4433 /* At the pager level, a statement transaction is a savepoint with
4434 ** an index greater than all savepoints created explicitly using
4435 ** SQL statements. It is illegal to open, release or rollback any
4436 ** such savepoints while the statement transaction savepoint is active.
4438 rc
= sqlite3PagerOpenSavepoint(pBt
->pPager
, iStatement
);
4439 sqlite3BtreeLeave(p
);
4444 ** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
4445 ** or SAVEPOINT_RELEASE. This function either releases or rolls back the
4446 ** savepoint identified by parameter iSavepoint, depending on the value
4449 ** Normally, iSavepoint is greater than or equal to zero. However, if op is
4450 ** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
4451 ** contents of the entire transaction are rolled back. This is different
4452 ** from a normal transaction rollback, as no locks are released and the
4453 ** transaction remains open.
4455 int sqlite3BtreeSavepoint(Btree
*p
, int op
, int iSavepoint
){
4457 if( p
&& p
->inTrans
==TRANS_WRITE
){
4458 BtShared
*pBt
= p
->pBt
;
4459 assert( op
==SAVEPOINT_RELEASE
|| op
==SAVEPOINT_ROLLBACK
);
4460 assert( iSavepoint
>=0 || (iSavepoint
==-1 && op
==SAVEPOINT_ROLLBACK
) );
4461 sqlite3BtreeEnter(p
);
4462 if( op
==SAVEPOINT_ROLLBACK
){
4463 rc
= saveAllCursors(pBt
, 0, 0);
4465 if( rc
==SQLITE_OK
){
4466 rc
= sqlite3PagerSavepoint(pBt
->pPager
, op
, iSavepoint
);
4468 if( rc
==SQLITE_OK
){
4469 if( iSavepoint
<0 && (pBt
->btsFlags
& BTS_INITIALLY_EMPTY
)!=0 ){
4472 rc
= newDatabase(pBt
);
4473 btreeSetNPage(pBt
, pBt
->pPage1
);
4475 /* pBt->nPage might be zero if the database was corrupt when
4476 ** the transaction was started. Otherwise, it must be at least 1. */
4477 assert( CORRUPT_DB
|| pBt
->nPage
>0 );
4479 sqlite3BtreeLeave(p
);
4485 ** Create a new cursor for the BTree whose root is on the page
4486 ** iTable. If a read-only cursor is requested, it is assumed that
4487 ** the caller already has at least a read-only transaction open
4488 ** on the database already. If a write-cursor is requested, then
4489 ** the caller is assumed to have an open write transaction.
4491 ** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only
4492 ** be used for reading. If the BTREE_WRCSR bit is set, then the cursor
4493 ** can be used for reading or for writing if other conditions for writing
4494 ** are also met. These are the conditions that must be met in order
4495 ** for writing to be allowed:
4497 ** 1: The cursor must have been opened with wrFlag containing BTREE_WRCSR
4499 ** 2: Other database connections that share the same pager cache
4500 ** but which are not in the READ_UNCOMMITTED state may not have
4501 ** cursors open with wrFlag==0 on the same table. Otherwise
4502 ** the changes made by this write cursor would be visible to
4503 ** the read cursors in the other database connection.
4505 ** 3: The database must be writable (not on read-only media)
4507 ** 4: There must be an active transaction.
4509 ** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR
4510 ** is set. If FORDELETE is set, that is a hint to the implementation that
4511 ** this cursor will only be used to seek to and delete entries of an index
4512 ** as part of a larger DELETE statement. The FORDELETE hint is not used by
4513 ** this implementation. But in a hypothetical alternative storage engine
4514 ** in which index entries are automatically deleted when corresponding table
4515 ** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE
4516 ** operations on this cursor can be no-ops and all READ operations can
4517 ** return a null row (2-bytes: 0x01 0x00).
4519 ** No checking is done to make sure that page iTable really is the
4520 ** root page of a b-tree. If it is not, then the cursor acquired
4521 ** will not work correctly.
4523 ** It is assumed that the sqlite3BtreeCursorZero() has been called
4524 ** on pCur to initialize the memory space prior to invoking this routine.
4526 static int btreeCursor(
4527 Btree
*p
, /* The btree */
4528 Pgno iTable
, /* Root page of table to open */
4529 int wrFlag
, /* 1 to write. 0 read-only */
4530 struct KeyInfo
*pKeyInfo
, /* First arg to comparison function */
4531 BtCursor
*pCur
/* Space for new cursor */
4533 BtShared
*pBt
= p
->pBt
; /* Shared b-tree handle */
4534 BtCursor
*pX
; /* Looping over other all cursors */
4536 assert( sqlite3BtreeHoldsMutex(p
) );
4538 || wrFlag
==BTREE_WRCSR
4539 || wrFlag
==(BTREE_WRCSR
|BTREE_FORDELETE
)
4542 /* The following assert statements verify that if this is a sharable
4543 ** b-tree database, the connection is holding the required table locks,
4544 ** and that no other connection has any open cursor that conflicts with
4545 ** this lock. The iTable<1 term disables the check for corrupt schemas. */
4546 assert( hasSharedCacheTableLock(p
, iTable
, pKeyInfo
!=0, (wrFlag
?2:1))
4548 assert( wrFlag
==0 || !hasReadConflicts(p
, iTable
) );
4550 /* Assert that the caller has opened the required transaction. */
4551 assert( p
->inTrans
>TRANS_NONE
);
4552 assert( wrFlag
==0 || p
->inTrans
==TRANS_WRITE
);
4553 assert( pBt
->pPage1
&& pBt
->pPage1
->aData
);
4554 assert( wrFlag
==0 || (pBt
->btsFlags
& BTS_READ_ONLY
)==0 );
4558 return SQLITE_CORRUPT_BKPT
;
4559 }else if( btreePagecount(pBt
)==0 ){
4560 assert( wrFlag
==0 );
4565 /* Now that no other errors can occur, finish filling in the BtCursor
4566 ** variables and link the cursor into the BtShared list. */
4567 pCur
->pgnoRoot
= iTable
;
4569 pCur
->pKeyInfo
= pKeyInfo
;
4573 /* If there are two or more cursors on the same btree, then all such
4574 ** cursors *must* have the BTCF_Multiple flag set. */
4575 for(pX
=pBt
->pCursor
; pX
; pX
=pX
->pNext
){
4576 if( pX
->pgnoRoot
==iTable
){
4577 pX
->curFlags
|= BTCF_Multiple
;
4578 pCur
->curFlags
= BTCF_Multiple
;
4581 pCur
->eState
= CURSOR_INVALID
;
4582 pCur
->pNext
= pBt
->pCursor
;
4583 pBt
->pCursor
= pCur
;
4585 pCur
->curFlags
|= BTCF_WriteFlag
;
4586 pCur
->curPagerFlags
= 0;
4587 if( pBt
->pTmpSpace
==0 ) return allocateTempSpace(pBt
);
4589 pCur
->curPagerFlags
= PAGER_GET_READONLY
;
4593 static int btreeCursorWithLock(
4594 Btree
*p
, /* The btree */
4595 Pgno iTable
, /* Root page of table to open */
4596 int wrFlag
, /* 1 to write. 0 read-only */
4597 struct KeyInfo
*pKeyInfo
, /* First arg to comparison function */
4598 BtCursor
*pCur
/* Space for new cursor */
4601 sqlite3BtreeEnter(p
);
4602 rc
= btreeCursor(p
, iTable
, wrFlag
, pKeyInfo
, pCur
);
4603 sqlite3BtreeLeave(p
);
4606 int sqlite3BtreeCursor(
4607 Btree
*p
, /* The btree */
4608 Pgno iTable
, /* Root page of table to open */
4609 int wrFlag
, /* 1 to write. 0 read-only */
4610 struct KeyInfo
*pKeyInfo
, /* First arg to xCompare() */
4611 BtCursor
*pCur
/* Write new cursor here */
4614 return btreeCursorWithLock(p
, iTable
, wrFlag
, pKeyInfo
, pCur
);
4616 return btreeCursor(p
, iTable
, wrFlag
, pKeyInfo
, pCur
);
4621 ** Return the size of a BtCursor object in bytes.
4623 ** This interfaces is needed so that users of cursors can preallocate
4624 ** sufficient storage to hold a cursor. The BtCursor object is opaque
4625 ** to users so they cannot do the sizeof() themselves - they must call
4628 int sqlite3BtreeCursorSize(void){
4629 return ROUND8(sizeof(BtCursor
));
4633 ** Initialize memory that will be converted into a BtCursor object.
4635 ** The simple approach here would be to memset() the entire object
4636 ** to zero. But it turns out that the apPage[] and aiIdx[] arrays
4637 ** do not need to be zeroed and they are large, so we can save a lot
4638 ** of run-time by skipping the initialization of those elements.
4640 void sqlite3BtreeCursorZero(BtCursor
*p
){
4641 memset(p
, 0, offsetof(BtCursor
, BTCURSOR_FIRST_UNINIT
));
4645 ** Close a cursor. The read lock on the database file is released
4646 ** when the last cursor is closed.
4648 int sqlite3BtreeCloseCursor(BtCursor
*pCur
){
4649 Btree
*pBtree
= pCur
->pBtree
;
4651 BtShared
*pBt
= pCur
->pBt
;
4652 sqlite3BtreeEnter(pBtree
);
4653 assert( pBt
->pCursor
!=0 );
4654 if( pBt
->pCursor
==pCur
){
4655 pBt
->pCursor
= pCur
->pNext
;
4657 BtCursor
*pPrev
= pBt
->pCursor
;
4659 if( pPrev
->pNext
==pCur
){
4660 pPrev
->pNext
= pCur
->pNext
;
4663 pPrev
= pPrev
->pNext
;
4664 }while( ALWAYS(pPrev
) );
4666 btreeReleaseAllCursorPages(pCur
);
4667 unlockBtreeIfUnused(pBt
);
4668 sqlite3_free(pCur
->aOverflow
);
4669 sqlite3_free(pCur
->pKey
);
4670 if( (pBt
->openFlags
& BTREE_SINGLE
) && pBt
->pCursor
==0 ){
4671 /* Since the BtShared is not sharable, there is no need to
4672 ** worry about the missing sqlite3BtreeLeave() call here. */
4673 assert( pBtree
->sharable
==0 );
4674 sqlite3BtreeClose(pBtree
);
4676 sqlite3BtreeLeave(pBtree
);
4684 ** Make sure the BtCursor* given in the argument has a valid
4685 ** BtCursor.info structure. If it is not already valid, call
4686 ** btreeParseCell() to fill it in.
4688 ** BtCursor.info is a cache of the information in the current cell.
4689 ** Using this cache reduces the number of calls to btreeParseCell().
4692 static int cellInfoEqual(CellInfo
*a
, CellInfo
*b
){
4693 if( a
->nKey
!=b
->nKey
) return 0;
4694 if( a
->pPayload
!=b
->pPayload
) return 0;
4695 if( a
->nPayload
!=b
->nPayload
) return 0;
4696 if( a
->nLocal
!=b
->nLocal
) return 0;
4697 if( a
->nSize
!=b
->nSize
) return 0;
4700 static void assertCellInfo(BtCursor
*pCur
){
4702 memset(&info
, 0, sizeof(info
));
4703 btreeParseCell(pCur
->pPage
, pCur
->ix
, &info
);
4704 assert( CORRUPT_DB
|| cellInfoEqual(&info
, &pCur
->info
) );
4707 #define assertCellInfo(x)
4709 static SQLITE_NOINLINE
void getCellInfo(BtCursor
*pCur
){
4710 if( pCur
->info
.nSize
==0 ){
4711 pCur
->curFlags
|= BTCF_ValidNKey
;
4712 btreeParseCell(pCur
->pPage
,pCur
->ix
,&pCur
->info
);
4714 assertCellInfo(pCur
);
4718 #ifndef NDEBUG /* The next routine used only within assert() statements */
4720 ** Return true if the given BtCursor is valid. A valid cursor is one
4721 ** that is currently pointing to a row in a (non-empty) table.
4722 ** This is a verification routine is used only within assert() statements.
4724 int sqlite3BtreeCursorIsValid(BtCursor
*pCur
){
4725 return pCur
&& pCur
->eState
==CURSOR_VALID
;
4728 int sqlite3BtreeCursorIsValidNN(BtCursor
*pCur
){
4730 return pCur
->eState
==CURSOR_VALID
;
4734 ** Return the value of the integer key or "rowid" for a table btree.
4735 ** This routine is only valid for a cursor that is pointing into a
4736 ** ordinary table btree. If the cursor points to an index btree or
4737 ** is invalid, the result of this routine is undefined.
4739 i64
sqlite3BtreeIntegerKey(BtCursor
*pCur
){
4740 assert( cursorHoldsMutex(pCur
) );
4741 assert( pCur
->eState
==CURSOR_VALID
);
4742 assert( pCur
->curIntKey
);
4744 return pCur
->info
.nKey
;
4748 ** Pin or unpin a cursor.
4750 void sqlite3BtreeCursorPin(BtCursor
*pCur
){
4751 assert( (pCur
->curFlags
& BTCF_Pinned
)==0 );
4752 pCur
->curFlags
|= BTCF_Pinned
;
4754 void sqlite3BtreeCursorUnpin(BtCursor
*pCur
){
4755 assert( (pCur
->curFlags
& BTCF_Pinned
)!=0 );
4756 pCur
->curFlags
&= ~BTCF_Pinned
;
4759 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
4761 ** Return the offset into the database file for the start of the
4762 ** payload to which the cursor is pointing.
4764 i64
sqlite3BtreeOffset(BtCursor
*pCur
){
4765 assert( cursorHoldsMutex(pCur
) );
4766 assert( pCur
->eState
==CURSOR_VALID
);
4768 return (i64
)pCur
->pBt
->pageSize
*((i64
)pCur
->pPage
->pgno
- 1) +
4769 (i64
)(pCur
->info
.pPayload
- pCur
->pPage
->aData
);
4771 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */
4774 ** Return the number of bytes of payload for the entry that pCur is
4775 ** currently pointing to. For table btrees, this will be the amount
4776 ** of data. For index btrees, this will be the size of the key.
4778 ** The caller must guarantee that the cursor is pointing to a non-NULL
4779 ** valid entry. In other words, the calling procedure must guarantee
4780 ** that the cursor has Cursor.eState==CURSOR_VALID.
4782 u32
sqlite3BtreePayloadSize(BtCursor
*pCur
){
4783 assert( cursorHoldsMutex(pCur
) );
4784 assert( pCur
->eState
==CURSOR_VALID
);
4786 return pCur
->info
.nPayload
;
4790 ** Return an upper bound on the size of any record for the table
4791 ** that the cursor is pointing into.
4793 ** This is an optimization. Everything will still work if this
4794 ** routine always returns 2147483647 (which is the largest record
4795 ** that SQLite can handle) or more. But returning a smaller value might
4796 ** prevent large memory allocations when trying to interpret a
4797 ** corrupt datrabase.
4799 ** The current implementation merely returns the size of the underlying
4802 sqlite3_int64
sqlite3BtreeMaxRecordSize(BtCursor
*pCur
){
4803 assert( cursorHoldsMutex(pCur
) );
4804 assert( pCur
->eState
==CURSOR_VALID
);
4805 return pCur
->pBt
->pageSize
* (sqlite3_int64
)pCur
->pBt
->nPage
;
4809 ** Given the page number of an overflow page in the database (parameter
4810 ** ovfl), this function finds the page number of the next page in the
4811 ** linked list of overflow pages. If possible, it uses the auto-vacuum
4812 ** pointer-map data instead of reading the content of page ovfl to do so.
4814 ** If an error occurs an SQLite error code is returned. Otherwise:
4816 ** The page number of the next overflow page in the linked list is
4817 ** written to *pPgnoNext. If page ovfl is the last page in its linked
4818 ** list, *pPgnoNext is set to zero.
4820 ** If ppPage is not NULL, and a reference to the MemPage object corresponding
4821 ** to page number pOvfl was obtained, then *ppPage is set to point to that
4822 ** reference. It is the responsibility of the caller to call releasePage()
4823 ** on *ppPage to free the reference. In no reference was obtained (because
4824 ** the pointer-map was used to obtain the value for *pPgnoNext), then
4825 ** *ppPage is set to zero.
4827 static int getOverflowPage(
4828 BtShared
*pBt
, /* The database file */
4829 Pgno ovfl
, /* Current overflow page number */
4830 MemPage
**ppPage
, /* OUT: MemPage handle (may be NULL) */
4831 Pgno
*pPgnoNext
/* OUT: Next overflow page number */
4837 assert( sqlite3_mutex_held(pBt
->mutex
) );
4840 #ifndef SQLITE_OMIT_AUTOVACUUM
4841 /* Try to find the next page in the overflow list using the
4842 ** autovacuum pointer-map pages. Guess that the next page in
4843 ** the overflow list is page number (ovfl+1). If that guess turns
4844 ** out to be wrong, fall back to loading the data of page
4845 ** number ovfl to determine the next page number.
4847 if( pBt
->autoVacuum
){
4849 Pgno iGuess
= ovfl
+1;
4852 while( PTRMAP_ISPAGE(pBt
, iGuess
) || iGuess
==PENDING_BYTE_PAGE(pBt
) ){
4856 if( iGuess
<=btreePagecount(pBt
) ){
4857 rc
= ptrmapGet(pBt
, iGuess
, &eType
, &pgno
);
4858 if( rc
==SQLITE_OK
&& eType
==PTRMAP_OVERFLOW2
&& pgno
==ovfl
){
4866 assert( next
==0 || rc
==SQLITE_DONE
);
4867 if( rc
==SQLITE_OK
){
4868 rc
= btreeGetPage(pBt
, ovfl
, &pPage
, (ppPage
==0) ? PAGER_GET_READONLY
: 0);
4869 assert( rc
==SQLITE_OK
|| pPage
==0 );
4870 if( rc
==SQLITE_OK
){
4871 next
= get4byte(pPage
->aData
);
4881 return (rc
==SQLITE_DONE
? SQLITE_OK
: rc
);
4885 ** Copy data from a buffer to a page, or from a page to a buffer.
4887 ** pPayload is a pointer to data stored on database page pDbPage.
4888 ** If argument eOp is false, then nByte bytes of data are copied
4889 ** from pPayload to the buffer pointed at by pBuf. If eOp is true,
4890 ** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
4891 ** of data are copied from the buffer pBuf to pPayload.
4893 ** SQLITE_OK is returned on success, otherwise an error code.
4895 static int copyPayload(
4896 void *pPayload
, /* Pointer to page data */
4897 void *pBuf
, /* Pointer to buffer */
4898 int nByte
, /* Number of bytes to copy */
4899 int eOp
, /* 0 -> copy from page, 1 -> copy to page */
4900 DbPage
*pDbPage
/* Page containing pPayload */
4903 /* Copy data from buffer to page (a write operation) */
4904 int rc
= sqlite3PagerWrite(pDbPage
);
4905 if( rc
!=SQLITE_OK
){
4908 memcpy(pPayload
, pBuf
, nByte
);
4910 /* Copy data from page to buffer (a read operation) */
4911 memcpy(pBuf
, pPayload
, nByte
);
4917 ** This function is used to read or overwrite payload information
4918 ** for the entry that the pCur cursor is pointing to. The eOp
4919 ** argument is interpreted as follows:
4921 ** 0: The operation is a read. Populate the overflow cache.
4922 ** 1: The operation is a write. Populate the overflow cache.
4924 ** A total of "amt" bytes are read or written beginning at "offset".
4925 ** Data is read to or from the buffer pBuf.
4927 ** The content being read or written might appear on the main page
4928 ** or be scattered out on multiple overflow pages.
4930 ** If the current cursor entry uses one or more overflow pages
4931 ** this function may allocate space for and lazily populate
4932 ** the overflow page-list cache array (BtCursor.aOverflow).
4933 ** Subsequent calls use this cache to make seeking to the supplied offset
4936 ** Once an overflow page-list cache has been allocated, it must be
4937 ** invalidated if some other cursor writes to the same table, or if
4938 ** the cursor is moved to a different row. Additionally, in auto-vacuum
4939 ** mode, the following events may invalidate an overflow page-list cache.
4941 ** * An incremental vacuum,
4942 ** * A commit in auto_vacuum="full" mode,
4943 ** * Creating a table (may require moving an overflow page).
4945 static int accessPayload(
4946 BtCursor
*pCur
, /* Cursor pointing to entry to read from */
4947 u32 offset
, /* Begin reading this far into payload */
4948 u32 amt
, /* Read this many bytes */
4949 unsigned char *pBuf
, /* Write the bytes into this buffer */
4950 int eOp
/* zero to read. non-zero to write. */
4952 unsigned char *aPayload
;
4955 MemPage
*pPage
= pCur
->pPage
; /* Btree page of current entry */
4956 BtShared
*pBt
= pCur
->pBt
; /* Btree this cursor belongs to */
4957 #ifdef SQLITE_DIRECT_OVERFLOW_READ
4958 unsigned char * const pBufStart
= pBuf
; /* Start of original out buffer */
4962 assert( eOp
==0 || eOp
==1 );
4963 assert( pCur
->eState
==CURSOR_VALID
);
4964 if( pCur
->ix
>=pPage
->nCell
){
4965 return SQLITE_CORRUPT_PAGE(pPage
);
4967 assert( cursorHoldsMutex(pCur
) );
4970 aPayload
= pCur
->info
.pPayload
;
4971 assert( offset
+amt
<= pCur
->info
.nPayload
);
4973 assert( aPayload
> pPage
->aData
);
4974 if( (uptr
)(aPayload
- pPage
->aData
) > (pBt
->usableSize
- pCur
->info
.nLocal
) ){
4975 /* Trying to read or write past the end of the data is an error. The
4976 ** conditional above is really:
4977 ** &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
4978 ** but is recast into its current form to avoid integer overflow problems
4980 return SQLITE_CORRUPT_PAGE(pPage
);
4983 /* Check if data must be read/written to/from the btree page itself. */
4984 if( offset
<pCur
->info
.nLocal
){
4986 if( a
+offset
>pCur
->info
.nLocal
){
4987 a
= pCur
->info
.nLocal
- offset
;
4989 rc
= copyPayload(&aPayload
[offset
], pBuf
, a
, eOp
, pPage
->pDbPage
);
4994 offset
-= pCur
->info
.nLocal
;
4998 if( rc
==SQLITE_OK
&& amt
>0 ){
4999 const u32 ovflSize
= pBt
->usableSize
- 4; /* Bytes content per ovfl page */
5002 nextPage
= get4byte(&aPayload
[pCur
->info
.nLocal
]);
5004 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
5006 ** The aOverflow[] array is sized at one entry for each overflow page
5007 ** in the overflow chain. The page number of the first overflow page is
5008 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
5009 ** means "not yet known" (the cache is lazily populated).
5011 if( (pCur
->curFlags
& BTCF_ValidOvfl
)==0 ){
5012 int nOvfl
= (pCur
->info
.nPayload
-pCur
->info
.nLocal
+ovflSize
-1)/ovflSize
;
5013 if( pCur
->aOverflow
==0
5014 || nOvfl
*(int)sizeof(Pgno
) > sqlite3MallocSize(pCur
->aOverflow
)
5016 Pgno
*aNew
= (Pgno
*)sqlite3Realloc(
5017 pCur
->aOverflow
, nOvfl
*2*sizeof(Pgno
)
5020 return SQLITE_NOMEM_BKPT
;
5022 pCur
->aOverflow
= aNew
;
5025 memset(pCur
->aOverflow
, 0, nOvfl
*sizeof(Pgno
));
5026 pCur
->curFlags
|= BTCF_ValidOvfl
;
5028 /* If the overflow page-list cache has been allocated and the
5029 ** entry for the first required overflow page is valid, skip
5032 if( pCur
->aOverflow
[offset
/ovflSize
] ){
5033 iIdx
= (offset
/ovflSize
);
5034 nextPage
= pCur
->aOverflow
[iIdx
];
5035 offset
= (offset
%ovflSize
);
5039 assert( rc
==SQLITE_OK
&& amt
>0 );
5041 /* If required, populate the overflow page-list cache. */
5042 if( nextPage
> pBt
->nPage
) return SQLITE_CORRUPT_BKPT
;
5043 assert( pCur
->aOverflow
[iIdx
]==0
5044 || pCur
->aOverflow
[iIdx
]==nextPage
5046 pCur
->aOverflow
[iIdx
] = nextPage
;
5048 if( offset
>=ovflSize
){
5049 /* The only reason to read this page is to obtain the page
5050 ** number for the next page in the overflow chain. The page
5051 ** data is not required. So first try to lookup the overflow
5052 ** page-list cache, if any, then fall back to the getOverflowPage()
5055 assert( pCur
->curFlags
& BTCF_ValidOvfl
);
5056 assert( pCur
->pBtree
->db
==pBt
->db
);
5057 if( pCur
->aOverflow
[iIdx
+1] ){
5058 nextPage
= pCur
->aOverflow
[iIdx
+1];
5060 rc
= getOverflowPage(pBt
, nextPage
, 0, &nextPage
);
5064 /* Need to read this page properly. It contains some of the
5065 ** range of data that is being read (eOp==0) or written (eOp!=0).
5068 if( a
+ offset
> ovflSize
){
5069 a
= ovflSize
- offset
;
5072 #ifdef SQLITE_DIRECT_OVERFLOW_READ
5073 /* If all the following are true:
5075 ** 1) this is a read operation, and
5076 ** 2) data is required from the start of this overflow page, and
5077 ** 3) there are no dirty pages in the page-cache
5078 ** 4) the database is file-backed, and
5079 ** 5) the page is not in the WAL file
5080 ** 6) at least 4 bytes have already been read into the output buffer
5082 ** then data can be read directly from the database file into the
5083 ** output buffer, bypassing the page-cache altogether. This speeds
5084 ** up loading large records that span many overflow pages.
5086 if( eOp
==0 /* (1) */
5087 && offset
==0 /* (2) */
5088 && sqlite3PagerDirectReadOk(pBt
->pPager
, nextPage
) /* (3,4,5) */
5089 && &pBuf
[-4]>=pBufStart
/* (6) */
5091 sqlite3_file
*fd
= sqlite3PagerFile(pBt
->pPager
);
5093 u8
*aWrite
= &pBuf
[-4];
5094 assert( aWrite
>=pBufStart
); /* due to (6) */
5095 memcpy(aSave
, aWrite
, 4);
5096 rc
= sqlite3OsRead(fd
, aWrite
, a
+4, (i64
)pBt
->pageSize
*(nextPage
-1));
5097 if( rc
&& nextPage
>pBt
->nPage
) rc
= SQLITE_CORRUPT_BKPT
;
5098 nextPage
= get4byte(aWrite
);
5099 memcpy(aWrite
, aSave
, 4);
5105 rc
= sqlite3PagerGet(pBt
->pPager
, nextPage
, &pDbPage
,
5106 (eOp
==0 ? PAGER_GET_READONLY
: 0)
5108 if( rc
==SQLITE_OK
){
5109 aPayload
= sqlite3PagerGetData(pDbPage
);
5110 nextPage
= get4byte(aPayload
);
5111 rc
= copyPayload(&aPayload
[offset
+4], pBuf
, a
, eOp
, pDbPage
);
5112 sqlite3PagerUnref(pDbPage
);
5117 if( amt
==0 ) return rc
;
5125 if( rc
==SQLITE_OK
&& amt
>0 ){
5126 /* Overflow chain ends prematurely */
5127 return SQLITE_CORRUPT_PAGE(pPage
);
5133 ** Read part of the payload for the row at which that cursor pCur is currently
5134 ** pointing. "amt" bytes will be transferred into pBuf[]. The transfer
5135 ** begins at "offset".
5137 ** pCur can be pointing to either a table or an index b-tree.
5138 ** If pointing to a table btree, then the content section is read. If
5139 ** pCur is pointing to an index b-tree then the key section is read.
5141 ** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing
5142 ** to a valid row in the table. For sqlite3BtreePayloadChecked(), the
5143 ** cursor might be invalid or might need to be restored before being read.
5145 ** Return SQLITE_OK on success or an error code if anything goes
5146 ** wrong. An error is returned if "offset+amt" is larger than
5147 ** the available payload.
5149 int sqlite3BtreePayload(BtCursor
*pCur
, u32 offset
, u32 amt
, void *pBuf
){
5150 assert( cursorHoldsMutex(pCur
) );
5151 assert( pCur
->eState
==CURSOR_VALID
);
5152 assert( pCur
->iPage
>=0 && pCur
->pPage
);
5153 return accessPayload(pCur
, offset
, amt
, (unsigned char*)pBuf
, 0);
5157 ** This variant of sqlite3BtreePayload() works even if the cursor has not
5158 ** in the CURSOR_VALID state. It is only used by the sqlite3_blob_read()
5161 #ifndef SQLITE_OMIT_INCRBLOB
5162 static SQLITE_NOINLINE
int accessPayloadChecked(
5169 if ( pCur
->eState
==CURSOR_INVALID
){
5170 return SQLITE_ABORT
;
5172 assert( cursorOwnsBtShared(pCur
) );
5173 rc
= btreeRestoreCursorPosition(pCur
);
5174 return rc
? rc
: accessPayload(pCur
, offset
, amt
, pBuf
, 0);
5176 int sqlite3BtreePayloadChecked(BtCursor
*pCur
, u32 offset
, u32 amt
, void *pBuf
){
5177 if( pCur
->eState
==CURSOR_VALID
){
5178 assert( cursorOwnsBtShared(pCur
) );
5179 return accessPayload(pCur
, offset
, amt
, pBuf
, 0);
5181 return accessPayloadChecked(pCur
, offset
, amt
, pBuf
);
5184 #endif /* SQLITE_OMIT_INCRBLOB */
5187 ** Return a pointer to payload information from the entry that the
5188 ** pCur cursor is pointing to. The pointer is to the beginning of
5189 ** the key if index btrees (pPage->intKey==0) and is the data for
5190 ** table btrees (pPage->intKey==1). The number of bytes of available
5191 ** key/data is written into *pAmt. If *pAmt==0, then the value
5192 ** returned will not be a valid pointer.
5194 ** This routine is an optimization. It is common for the entire key
5195 ** and data to fit on the local page and for there to be no overflow
5196 ** pages. When that is so, this routine can be used to access the
5197 ** key and data without making a copy. If the key and/or data spills
5198 ** onto overflow pages, then accessPayload() must be used to reassemble
5199 ** the key/data and copy it into a preallocated buffer.
5201 ** The pointer returned by this routine looks directly into the cached
5202 ** page of the database. The data might change or move the next time
5203 ** any btree routine is called.
5205 static const void *fetchPayload(
5206 BtCursor
*pCur
, /* Cursor pointing to entry to read from */
5207 u32
*pAmt
/* Write the number of available bytes here */
5210 assert( pCur
!=0 && pCur
->iPage
>=0 && pCur
->pPage
);
5211 assert( pCur
->eState
==CURSOR_VALID
);
5212 assert( sqlite3_mutex_held(pCur
->pBtree
->db
->mutex
) );
5213 assert( cursorOwnsBtShared(pCur
) );
5214 assert( pCur
->ix
<pCur
->pPage
->nCell
|| CORRUPT_DB
);
5215 assert( pCur
->info
.nSize
>0 );
5216 assert( pCur
->info
.pPayload
>pCur
->pPage
->aData
|| CORRUPT_DB
);
5217 assert( pCur
->info
.pPayload
<pCur
->pPage
->aDataEnd
||CORRUPT_DB
);
5218 amt
= pCur
->info
.nLocal
;
5219 if( amt
>(int)(pCur
->pPage
->aDataEnd
- pCur
->info
.pPayload
) ){
5220 /* There is too little space on the page for the expected amount
5221 ** of local content. Database must be corrupt. */
5222 assert( CORRUPT_DB
);
5223 amt
= MAX(0, (int)(pCur
->pPage
->aDataEnd
- pCur
->info
.pPayload
));
5226 return (void*)pCur
->info
.pPayload
;
5231 ** For the entry that cursor pCur is point to, return as
5232 ** many bytes of the key or data as are available on the local
5233 ** b-tree page. Write the number of available bytes into *pAmt.
5235 ** The pointer returned is ephemeral. The key/data may move
5236 ** or be destroyed on the next call to any Btree routine,
5237 ** including calls from other threads against the same cache.
5238 ** Hence, a mutex on the BtShared should be held prior to calling
5241 ** These routines is used to get quick access to key and data
5242 ** in the common case where no overflow pages are used.
5244 const void *sqlite3BtreePayloadFetch(BtCursor
*pCur
, u32
*pAmt
){
5245 return fetchPayload(pCur
, pAmt
);
5250 ** Move the cursor down to a new child page. The newPgno argument is the
5251 ** page number of the child page to move to.
5253 ** This function returns SQLITE_CORRUPT if the page-header flags field of
5254 ** the new child page does not match the flags field of the parent (i.e.
5255 ** if an intkey page appears to be the parent of a non-intkey page, or
5258 static int moveToChild(BtCursor
*pCur
, u32 newPgno
){
5259 assert( cursorOwnsBtShared(pCur
) );
5260 assert( pCur
->eState
==CURSOR_VALID
);
5261 assert( pCur
->iPage
<BTCURSOR_MAX_DEPTH
);
5262 assert( pCur
->iPage
>=0 );
5263 if( pCur
->iPage
>=(BTCURSOR_MAX_DEPTH
-1) ){
5264 return SQLITE_CORRUPT_BKPT
;
5266 pCur
->info
.nSize
= 0;
5267 pCur
->curFlags
&= ~(BTCF_ValidNKey
|BTCF_ValidOvfl
);
5268 pCur
->aiIdx
[pCur
->iPage
] = pCur
->ix
;
5269 pCur
->apPage
[pCur
->iPage
] = pCur
->pPage
;
5272 return getAndInitPage(pCur
->pBt
, newPgno
, &pCur
->pPage
, pCur
,
5273 pCur
->curPagerFlags
);
5278 ** Page pParent is an internal (non-leaf) tree page. This function
5279 ** asserts that page number iChild is the left-child if the iIdx'th
5280 ** cell in page pParent. Or, if iIdx is equal to the total number of
5281 ** cells in pParent, that page number iChild is the right-child of
5284 static void assertParentIndex(MemPage
*pParent
, int iIdx
, Pgno iChild
){
5285 if( CORRUPT_DB
) return; /* The conditions tested below might not be true
5286 ** in a corrupt database */
5287 assert( iIdx
<=pParent
->nCell
);
5288 if( iIdx
==pParent
->nCell
){
5289 assert( get4byte(&pParent
->aData
[pParent
->hdrOffset
+8])==iChild
);
5291 assert( get4byte(findCell(pParent
, iIdx
))==iChild
);
5295 # define assertParentIndex(x,y,z)
5299 ** Move the cursor up to the parent page.
5301 ** pCur->idx is set to the cell index that contains the pointer
5302 ** to the page we are coming from. If we are coming from the
5303 ** right-most child page then pCur->idx is set to one more than
5304 ** the largest cell index.
5306 static void moveToParent(BtCursor
*pCur
){
5308 assert( cursorOwnsBtShared(pCur
) );
5309 assert( pCur
->eState
==CURSOR_VALID
);
5310 assert( pCur
->iPage
>0 );
5311 assert( pCur
->pPage
);
5313 pCur
->apPage
[pCur
->iPage
-1],
5314 pCur
->aiIdx
[pCur
->iPage
-1],
5317 testcase( pCur
->aiIdx
[pCur
->iPage
-1] > pCur
->apPage
[pCur
->iPage
-1]->nCell
);
5318 pCur
->info
.nSize
= 0;
5319 pCur
->curFlags
&= ~(BTCF_ValidNKey
|BTCF_ValidOvfl
);
5320 pCur
->ix
= pCur
->aiIdx
[pCur
->iPage
-1];
5321 pLeaf
= pCur
->pPage
;
5322 pCur
->pPage
= pCur
->apPage
[--pCur
->iPage
];
5323 releasePageNotNull(pLeaf
);
5327 ** Move the cursor to point to the root page of its b-tree structure.
5329 ** If the table has a virtual root page, then the cursor is moved to point
5330 ** to the virtual root page instead of the actual root page. A table has a
5331 ** virtual root page when the actual root page contains no cells and a
5332 ** single child page. This can only happen with the table rooted at page 1.
5334 ** If the b-tree structure is empty, the cursor state is set to
5335 ** CURSOR_INVALID and this routine returns SQLITE_EMPTY. Otherwise,
5336 ** the cursor is set to point to the first cell located on the root
5337 ** (or virtual root) page and the cursor state is set to CURSOR_VALID.
5339 ** If this function returns successfully, it may be assumed that the
5340 ** page-header flags indicate that the [virtual] root-page is the expected
5341 ** kind of b-tree page (i.e. if when opening the cursor the caller did not
5342 ** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
5343 ** indicating a table b-tree, or if the caller did specify a KeyInfo
5344 ** structure the flags byte is set to 0x02 or 0x0A, indicating an index
5347 static int moveToRoot(BtCursor
*pCur
){
5351 assert( cursorOwnsBtShared(pCur
) );
5352 assert( CURSOR_INVALID
< CURSOR_REQUIRESEEK
);
5353 assert( CURSOR_VALID
< CURSOR_REQUIRESEEK
);
5354 assert( CURSOR_FAULT
> CURSOR_REQUIRESEEK
);
5355 assert( pCur
->eState
< CURSOR_REQUIRESEEK
|| pCur
->iPage
<0 );
5356 assert( pCur
->pgnoRoot
>0 || pCur
->iPage
<0 );
5358 if( pCur
->iPage
>=0 ){
5360 releasePageNotNull(pCur
->pPage
);
5361 while( --pCur
->iPage
){
5362 releasePageNotNull(pCur
->apPage
[pCur
->iPage
]);
5364 pRoot
= pCur
->pPage
= pCur
->apPage
[0];
5367 }else if( pCur
->pgnoRoot
==0 ){
5368 pCur
->eState
= CURSOR_INVALID
;
5369 return SQLITE_EMPTY
;
5371 assert( pCur
->iPage
==(-1) );
5372 if( pCur
->eState
>=CURSOR_REQUIRESEEK
){
5373 if( pCur
->eState
==CURSOR_FAULT
){
5374 assert( pCur
->skipNext
!=SQLITE_OK
);
5375 return pCur
->skipNext
;
5377 sqlite3BtreeClearCursor(pCur
);
5379 rc
= getAndInitPage(pCur
->pBt
, pCur
->pgnoRoot
, &pCur
->pPage
,
5380 0, pCur
->curPagerFlags
);
5381 if( rc
!=SQLITE_OK
){
5382 pCur
->eState
= CURSOR_INVALID
;
5386 pCur
->curIntKey
= pCur
->pPage
->intKey
;
5388 pRoot
= pCur
->pPage
;
5389 assert( pRoot
->pgno
==pCur
->pgnoRoot
|| CORRUPT_DB
);
5391 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
5392 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
5393 ** NULL, the caller expects a table b-tree. If this is not the case,
5394 ** return an SQLITE_CORRUPT error.
5396 ** Earlier versions of SQLite assumed that this test could not fail
5397 ** if the root page was already loaded when this function was called (i.e.
5398 ** if pCur->iPage>=0). But this is not so if the database is corrupted
5399 ** in such a way that page pRoot is linked into a second b-tree table
5400 ** (or the freelist). */
5401 assert( pRoot
->intKey
==1 || pRoot
->intKey
==0 );
5402 if( pRoot
->isInit
==0 || (pCur
->pKeyInfo
==0)!=pRoot
->intKey
){
5403 return SQLITE_CORRUPT_PAGE(pCur
->pPage
);
5408 pCur
->info
.nSize
= 0;
5409 pCur
->curFlags
&= ~(BTCF_AtLast
|BTCF_ValidNKey
|BTCF_ValidOvfl
);
5411 if( pRoot
->nCell
>0 ){
5412 pCur
->eState
= CURSOR_VALID
;
5413 }else if( !pRoot
->leaf
){
5415 if( pRoot
->pgno
!=1 ) return SQLITE_CORRUPT_BKPT
;
5416 subpage
= get4byte(&pRoot
->aData
[pRoot
->hdrOffset
+8]);
5417 pCur
->eState
= CURSOR_VALID
;
5418 rc
= moveToChild(pCur
, subpage
);
5420 pCur
->eState
= CURSOR_INVALID
;
5427 ** Move the cursor down to the left-most leaf entry beneath the
5428 ** entry to which it is currently pointing.
5430 ** The left-most leaf is the one with the smallest key - the first
5431 ** in ascending order.
5433 static int moveToLeftmost(BtCursor
*pCur
){
5438 assert( cursorOwnsBtShared(pCur
) );
5439 assert( pCur
->eState
==CURSOR_VALID
);
5440 while( rc
==SQLITE_OK
&& !(pPage
= pCur
->pPage
)->leaf
){
5441 assert( pCur
->ix
<pPage
->nCell
);
5442 pgno
= get4byte(findCell(pPage
, pCur
->ix
));
5443 rc
= moveToChild(pCur
, pgno
);
5449 ** Move the cursor down to the right-most leaf entry beneath the
5450 ** page to which it is currently pointing. Notice the difference
5451 ** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
5452 ** finds the left-most entry beneath the *entry* whereas moveToRightmost()
5453 ** finds the right-most entry beneath the *page*.
5455 ** The right-most entry is the one with the largest key - the last
5456 ** key in ascending order.
5458 static int moveToRightmost(BtCursor
*pCur
){
5463 assert( cursorOwnsBtShared(pCur
) );
5464 assert( pCur
->eState
==CURSOR_VALID
);
5465 while( !(pPage
= pCur
->pPage
)->leaf
){
5466 pgno
= get4byte(&pPage
->aData
[pPage
->hdrOffset
+8]);
5467 pCur
->ix
= pPage
->nCell
;
5468 rc
= moveToChild(pCur
, pgno
);
5471 pCur
->ix
= pPage
->nCell
-1;
5472 assert( pCur
->info
.nSize
==0 );
5473 assert( (pCur
->curFlags
& BTCF_ValidNKey
)==0 );
5477 /* Move the cursor to the first entry in the table. Return SQLITE_OK
5478 ** on success. Set *pRes to 0 if the cursor actually points to something
5479 ** or set *pRes to 1 if the table is empty.
5481 int sqlite3BtreeFirst(BtCursor
*pCur
, int *pRes
){
5484 assert( cursorOwnsBtShared(pCur
) );
5485 assert( sqlite3_mutex_held(pCur
->pBtree
->db
->mutex
) );
5486 rc
= moveToRoot(pCur
);
5487 if( rc
==SQLITE_OK
){
5488 assert( pCur
->pPage
->nCell
>0 );
5490 rc
= moveToLeftmost(pCur
);
5491 }else if( rc
==SQLITE_EMPTY
){
5492 assert( pCur
->pgnoRoot
==0 || pCur
->pPage
->nCell
==0 );
5499 /* Move the cursor to the last entry in the table. Return SQLITE_OK
5500 ** on success. Set *pRes to 0 if the cursor actually points to something
5501 ** or set *pRes to 1 if the table is empty.
5503 static SQLITE_NOINLINE
int btreeLast(BtCursor
*pCur
, int *pRes
){
5504 int rc
= moveToRoot(pCur
);
5505 if( rc
==SQLITE_OK
){
5506 assert( pCur
->eState
==CURSOR_VALID
);
5508 rc
= moveToRightmost(pCur
);
5509 if( rc
==SQLITE_OK
){
5510 pCur
->curFlags
|= BTCF_AtLast
;
5512 pCur
->curFlags
&= ~BTCF_AtLast
;
5514 }else if( rc
==SQLITE_EMPTY
){
5515 assert( pCur
->pgnoRoot
==0 || pCur
->pPage
->nCell
==0 );
5521 int sqlite3BtreeLast(BtCursor
*pCur
, int *pRes
){
5522 assert( cursorOwnsBtShared(pCur
) );
5523 assert( sqlite3_mutex_held(pCur
->pBtree
->db
->mutex
) );
5525 /* If the cursor already points to the last entry, this is a no-op. */
5526 if( CURSOR_VALID
==pCur
->eState
&& (pCur
->curFlags
& BTCF_AtLast
)!=0 ){
5528 /* This block serves to assert() that the cursor really does point
5529 ** to the last entry in the b-tree. */
5531 for(ii
=0; ii
<pCur
->iPage
; ii
++){
5532 assert( pCur
->aiIdx
[ii
]==pCur
->apPage
[ii
]->nCell
);
5534 assert( pCur
->ix
==pCur
->pPage
->nCell
-1 || CORRUPT_DB
);
5535 testcase( pCur
->ix
!=pCur
->pPage
->nCell
-1 );
5536 /* ^-- dbsqlfuzz b92b72e4de80b5140c30ab71372ca719b8feb618 */
5537 assert( pCur
->pPage
->leaf
);
5542 return btreeLast(pCur
, pRes
);
5545 /* Move the cursor so that it points to an entry in a table (a.k.a INTKEY)
5546 ** table near the key intKey. Return a success code.
5548 ** If an exact match is not found, then the cursor is always
5549 ** left pointing at a leaf page which would hold the entry if it
5550 ** were present. The cursor might point to an entry that comes
5551 ** before or after the key.
5553 ** An integer is written into *pRes which is the result of
5554 ** comparing the key with the entry to which the cursor is
5555 ** pointing. The meaning of the integer written into
5556 ** *pRes is as follows:
5558 ** *pRes<0 The cursor is left pointing at an entry that
5559 ** is smaller than intKey or if the table is empty
5560 ** and the cursor is therefore left point to nothing.
5562 ** *pRes==0 The cursor is left pointing at an entry that
5563 ** exactly matches intKey.
5565 ** *pRes>0 The cursor is left pointing at an entry that
5566 ** is larger than intKey.
5568 int sqlite3BtreeTableMoveto(
5569 BtCursor
*pCur
, /* The cursor to be moved */
5570 i64 intKey
, /* The table key */
5571 int biasRight
, /* If true, bias the search to the high end */
5572 int *pRes
/* Write search results here */
5576 assert( cursorOwnsBtShared(pCur
) );
5577 assert( sqlite3_mutex_held(pCur
->pBtree
->db
->mutex
) );
5579 assert( pCur
->pKeyInfo
==0 );
5580 assert( pCur
->eState
!=CURSOR_VALID
|| pCur
->curIntKey
!=0 );
5582 /* If the cursor is already positioned at the point we are trying
5583 ** to move to, then just return without doing any work */
5584 if( pCur
->eState
==CURSOR_VALID
&& (pCur
->curFlags
& BTCF_ValidNKey
)!=0 ){
5585 if( pCur
->info
.nKey
==intKey
){
5589 if( pCur
->info
.nKey
<intKey
){
5590 if( (pCur
->curFlags
& BTCF_AtLast
)!=0 ){
5594 /* If the requested key is one more than the previous key, then
5595 ** try to get there using sqlite3BtreeNext() rather than a full
5596 ** binary search. This is an optimization only. The correct answer
5597 ** is still obtained without this case, only a little more slowely */
5598 if( pCur
->info
.nKey
+1==intKey
){
5600 rc
= sqlite3BtreeNext(pCur
, 0);
5601 if( rc
==SQLITE_OK
){
5603 if( pCur
->info
.nKey
==intKey
){
5606 }else if( rc
!=SQLITE_DONE
){
5614 pCur
->pBtree
->nSeek
++; /* Performance measurement during testing */
5617 rc
= moveToRoot(pCur
);
5619 if( rc
==SQLITE_EMPTY
){
5620 assert( pCur
->pgnoRoot
==0 || pCur
->pPage
->nCell
==0 );
5626 assert( pCur
->pPage
);
5627 assert( pCur
->pPage
->isInit
);
5628 assert( pCur
->eState
==CURSOR_VALID
);
5629 assert( pCur
->pPage
->nCell
> 0 );
5630 assert( pCur
->iPage
==0 || pCur
->apPage
[0]->intKey
==pCur
->curIntKey
);
5631 assert( pCur
->curIntKey
);
5634 int lwr
, upr
, idx
, c
;
5636 MemPage
*pPage
= pCur
->pPage
;
5637 u8
*pCell
; /* Pointer to current cell in pPage */
5639 /* pPage->nCell must be greater than zero. If this is the root-page
5640 ** the cursor would have been INVALID above and this for(;;) loop
5641 ** not run. If this is not the root-page, then the moveToChild() routine
5642 ** would have already detected db corruption. Similarly, pPage must
5643 ** be the right kind (index or table) of b-tree page. Otherwise
5644 ** a moveToChild() or moveToRoot() call would have detected corruption. */
5645 assert( pPage
->nCell
>0 );
5646 assert( pPage
->intKey
);
5648 upr
= pPage
->nCell
-1;
5649 assert( biasRight
==0 || biasRight
==1 );
5650 idx
= upr
>>(1-biasRight
); /* idx = biasRight ? upr : (lwr+upr)/2; */
5653 pCell
= findCellPastPtr(pPage
, idx
);
5654 if( pPage
->intKeyLeaf
){
5655 while( 0x80 <= *(pCell
++) ){
5656 if( pCell
>=pPage
->aDataEnd
){
5657 return SQLITE_CORRUPT_PAGE(pPage
);
5661 getVarint(pCell
, (u64
*)&nCellKey
);
5662 if( nCellKey
<intKey
){
5664 if( lwr
>upr
){ c
= -1; break; }
5665 }else if( nCellKey
>intKey
){
5667 if( lwr
>upr
){ c
= +1; break; }
5669 assert( nCellKey
==intKey
);
5670 pCur
->ix
= (u16
)idx
;
5673 goto moveto_table_next_layer
;
5675 pCur
->curFlags
|= BTCF_ValidNKey
;
5676 pCur
->info
.nKey
= nCellKey
;
5677 pCur
->info
.nSize
= 0;
5682 assert( lwr
+upr
>=0 );
5683 idx
= (lwr
+upr
)>>1; /* idx = (lwr+upr)/2; */
5685 assert( lwr
==upr
+1 || !pPage
->leaf
);
5686 assert( pPage
->isInit
);
5688 assert( pCur
->ix
<pCur
->pPage
->nCell
);
5689 pCur
->ix
= (u16
)idx
;
5692 goto moveto_table_finish
;
5694 moveto_table_next_layer
:
5695 if( lwr
>=pPage
->nCell
){
5696 chldPg
= get4byte(&pPage
->aData
[pPage
->hdrOffset
+8]);
5698 chldPg
= get4byte(findCell(pPage
, lwr
));
5700 pCur
->ix
= (u16
)lwr
;
5701 rc
= moveToChild(pCur
, chldPg
);
5704 moveto_table_finish
:
5705 pCur
->info
.nSize
= 0;
5706 assert( (pCur
->curFlags
& BTCF_ValidOvfl
)==0 );
5711 ** Compare the "idx"-th cell on the page the cursor pCur is currently
5712 ** pointing to to pIdxKey using xRecordCompare. Return negative or
5713 ** zero if the cell is less than or equal pIdxKey. Return positive
5716 ** Return value negative: Cell at pCur[idx] less than pIdxKey
5718 ** Return value is zero: Cell at pCur[idx] equals pIdxKey
5720 ** Return value positive: Nothing is known about the relationship
5721 ** of the cell at pCur[idx] and pIdxKey.
5723 ** This routine is part of an optimization. It is always safe to return
5724 ** a positive value as that will cause the optimization to be skipped.
5726 static int indexCellCompare(
5729 UnpackedRecord
*pIdxKey
,
5730 RecordCompare xRecordCompare
5732 MemPage
*pPage
= pCur
->pPage
;
5734 int nCell
; /* Size of the pCell cell in bytes */
5735 u8
*pCell
= findCellPastPtr(pPage
, idx
);
5738 if( nCell
<=pPage
->max1bytePayload
){
5739 /* This branch runs if the record-size field of the cell is a
5740 ** single byte varint and the record fits entirely on the main
5742 testcase( pCell
+nCell
+1==pPage
->aDataEnd
);
5743 c
= xRecordCompare(nCell
, (void*)&pCell
[1], pIdxKey
);
5744 }else if( !(pCell
[1] & 0x80)
5745 && (nCell
= ((nCell
&0x7f)<<7) + pCell
[1])<=pPage
->maxLocal
5747 /* The record-size field is a 2 byte varint and the record
5748 ** fits entirely on the main b-tree page. */
5749 testcase( pCell
+nCell
+2==pPage
->aDataEnd
);
5750 c
= xRecordCompare(nCell
, (void*)&pCell
[2], pIdxKey
);
5752 /* If the record extends into overflow pages, do not attempt
5753 ** the optimization. */
5760 ** Return true (non-zero) if pCur is current pointing to the last
5763 static int cursorOnLastPage(BtCursor
*pCur
){
5765 assert( pCur
->eState
==CURSOR_VALID
);
5766 for(i
=0; i
<pCur
->iPage
; i
++){
5767 MemPage
*pPage
= pCur
->apPage
[i
];
5768 if( pCur
->aiIdx
[i
]<pPage
->nCell
) return 0;
5773 /* Move the cursor so that it points to an entry in an index table
5774 ** near the key pIdxKey. Return a success code.
5776 ** If an exact match is not found, then the cursor is always
5777 ** left pointing at a leaf page which would hold the entry if it
5778 ** were present. The cursor might point to an entry that comes
5779 ** before or after the key.
5781 ** An integer is written into *pRes which is the result of
5782 ** comparing the key with the entry to which the cursor is
5783 ** pointing. The meaning of the integer written into
5784 ** *pRes is as follows:
5786 ** *pRes<0 The cursor is left pointing at an entry that
5787 ** is smaller than pIdxKey or if the table is empty
5788 ** and the cursor is therefore left point to nothing.
5790 ** *pRes==0 The cursor is left pointing at an entry that
5791 ** exactly matches pIdxKey.
5793 ** *pRes>0 The cursor is left pointing at an entry that
5794 ** is larger than pIdxKey.
5796 ** The pIdxKey->eqSeen field is set to 1 if there
5797 ** exists an entry in the table that exactly matches pIdxKey.
5799 int sqlite3BtreeIndexMoveto(
5800 BtCursor
*pCur
, /* The cursor to be moved */
5801 UnpackedRecord
*pIdxKey
, /* Unpacked index key */
5802 int *pRes
/* Write search results here */
5805 RecordCompare xRecordCompare
;
5807 assert( cursorOwnsBtShared(pCur
) );
5808 assert( sqlite3_mutex_held(pCur
->pBtree
->db
->mutex
) );
5810 assert( pCur
->pKeyInfo
!=0 );
5813 pCur
->pBtree
->nSeek
++; /* Performance measurement during testing */
5816 xRecordCompare
= sqlite3VdbeFindCompare(pIdxKey
);
5817 pIdxKey
->errCode
= 0;
5818 assert( pIdxKey
->default_rc
==1
5819 || pIdxKey
->default_rc
==0
5820 || pIdxKey
->default_rc
==-1
5824 /* Check to see if we can skip a lot of work. Two cases:
5826 ** (1) If the cursor is already pointing to the very last cell
5827 ** in the table and the pIdxKey search key is greater than or
5828 ** equal to that last cell, then no movement is required.
5830 ** (2) If the cursor is on the last page of the table and the first
5831 ** cell on that last page is less than or equal to the pIdxKey
5832 ** search key, then we can start the search on the current page
5833 ** without needing to go back to root.
5835 if( pCur
->eState
==CURSOR_VALID
5836 && pCur
->pPage
->leaf
5837 && cursorOnLastPage(pCur
)
5840 if( pCur
->ix
==pCur
->pPage
->nCell
-1
5841 && (c
= indexCellCompare(pCur
, pCur
->ix
, pIdxKey
, xRecordCompare
))<=0
5842 && pIdxKey
->errCode
==SQLITE_OK
5845 return SQLITE_OK
; /* Cursor already pointing at the correct spot */
5848 && indexCellCompare(pCur
, 0, pIdxKey
, xRecordCompare
)<=0
5849 && pIdxKey
->errCode
==SQLITE_OK
5851 pCur
->curFlags
&= ~BTCF_ValidOvfl
;
5852 if( !pCur
->pPage
->isInit
){
5853 return SQLITE_CORRUPT_BKPT
;
5855 goto bypass_moveto_root
; /* Start search on the current page */
5857 pIdxKey
->errCode
= SQLITE_OK
;
5860 rc
= moveToRoot(pCur
);
5862 if( rc
==SQLITE_EMPTY
){
5863 assert( pCur
->pgnoRoot
==0 || pCur
->pPage
->nCell
==0 );
5871 assert( pCur
->pPage
);
5872 assert( pCur
->pPage
->isInit
);
5873 assert( pCur
->eState
==CURSOR_VALID
);
5874 assert( pCur
->pPage
->nCell
> 0 );
5875 assert( pCur
->curIntKey
==0 );
5876 assert( pIdxKey
!=0 );
5878 int lwr
, upr
, idx
, c
;
5880 MemPage
*pPage
= pCur
->pPage
;
5881 u8
*pCell
; /* Pointer to current cell in pPage */
5883 /* pPage->nCell must be greater than zero. If this is the root-page
5884 ** the cursor would have been INVALID above and this for(;;) loop
5885 ** not run. If this is not the root-page, then the moveToChild() routine
5886 ** would have already detected db corruption. Similarly, pPage must
5887 ** be the right kind (index or table) of b-tree page. Otherwise
5888 ** a moveToChild() or moveToRoot() call would have detected corruption. */
5889 assert( pPage
->nCell
>0 );
5890 assert( pPage
->intKey
==0 );
5892 upr
= pPage
->nCell
-1;
5893 idx
= upr
>>1; /* idx = (lwr+upr)/2; */
5895 int nCell
; /* Size of the pCell cell in bytes */
5896 pCell
= findCellPastPtr(pPage
, idx
);
5898 /* The maximum supported page-size is 65536 bytes. This means that
5899 ** the maximum number of record bytes stored on an index B-Tree
5900 ** page is less than 16384 bytes and may be stored as a 2-byte
5901 ** varint. This information is used to attempt to avoid parsing
5902 ** the entire cell by checking for the cases where the record is
5903 ** stored entirely within the b-tree page by inspecting the first
5904 ** 2 bytes of the cell.
5907 if( nCell
<=pPage
->max1bytePayload
){
5908 /* This branch runs if the record-size field of the cell is a
5909 ** single byte varint and the record fits entirely on the main
5911 testcase( pCell
+nCell
+1==pPage
->aDataEnd
);
5912 c
= xRecordCompare(nCell
, (void*)&pCell
[1], pIdxKey
);
5913 }else if( !(pCell
[1] & 0x80)
5914 && (nCell
= ((nCell
&0x7f)<<7) + pCell
[1])<=pPage
->maxLocal
5916 /* The record-size field is a 2 byte varint and the record
5917 ** fits entirely on the main b-tree page. */
5918 testcase( pCell
+nCell
+2==pPage
->aDataEnd
);
5919 c
= xRecordCompare(nCell
, (void*)&pCell
[2], pIdxKey
);
5921 /* The record flows over onto one or more overflow pages. In
5922 ** this case the whole cell needs to be parsed, a buffer allocated
5923 ** and accessPayload() used to retrieve the record into the
5924 ** buffer before VdbeRecordCompare() can be called.
5926 ** If the record is corrupt, the xRecordCompare routine may read
5927 ** up to two varints past the end of the buffer. An extra 18
5928 ** bytes of padding is allocated at the end of the buffer in
5929 ** case this happens. */
5931 u8
* const pCellBody
= pCell
- pPage
->childPtrSize
;
5932 const int nOverrun
= 18; /* Size of the overrun padding */
5933 pPage
->xParseCell(pPage
, pCellBody
, &pCur
->info
);
5934 nCell
= (int)pCur
->info
.nKey
;
5935 testcase( nCell
<0 ); /* True if key size is 2^32 or more */
5936 testcase( nCell
==0 ); /* Invalid key size: 0x80 0x80 0x00 */
5937 testcase( nCell
==1 ); /* Invalid key size: 0x80 0x80 0x01 */
5938 testcase( nCell
==2 ); /* Minimum legal index key size */
5939 if( nCell
<2 || nCell
/pCur
->pBt
->usableSize
>pCur
->pBt
->nPage
){
5940 rc
= SQLITE_CORRUPT_PAGE(pPage
);
5941 goto moveto_index_finish
;
5943 pCellKey
= sqlite3Malloc( nCell
+nOverrun
);
5945 rc
= SQLITE_NOMEM_BKPT
;
5946 goto moveto_index_finish
;
5948 pCur
->ix
= (u16
)idx
;
5949 rc
= accessPayload(pCur
, 0, nCell
, (unsigned char*)pCellKey
, 0);
5950 memset(((u8
*)pCellKey
)+nCell
,0,nOverrun
); /* Fix uninit warnings */
5951 pCur
->curFlags
&= ~BTCF_ValidOvfl
;
5953 sqlite3_free(pCellKey
);
5954 goto moveto_index_finish
;
5956 c
= sqlite3VdbeRecordCompare(nCell
, pCellKey
, pIdxKey
);
5957 sqlite3_free(pCellKey
);
5960 (pIdxKey
->errCode
!=SQLITE_CORRUPT
|| c
==0)
5961 && (pIdxKey
->errCode
!=SQLITE_NOMEM
|| pCur
->pBtree
->db
->mallocFailed
)
5971 pCur
->ix
= (u16
)idx
;
5972 if( pIdxKey
->errCode
) rc
= SQLITE_CORRUPT_BKPT
;
5973 goto moveto_index_finish
;
5975 if( lwr
>upr
) break;
5976 assert( lwr
+upr
>=0 );
5977 idx
= (lwr
+upr
)>>1; /* idx = (lwr+upr)/2 */
5979 assert( lwr
==upr
+1 || (pPage
->intKey
&& !pPage
->leaf
) );
5980 assert( pPage
->isInit
);
5982 assert( pCur
->ix
<pCur
->pPage
->nCell
|| CORRUPT_DB
);
5983 pCur
->ix
= (u16
)idx
;
5986 goto moveto_index_finish
;
5988 if( lwr
>=pPage
->nCell
){
5989 chldPg
= get4byte(&pPage
->aData
[pPage
->hdrOffset
+8]);
5991 chldPg
= get4byte(findCell(pPage
, lwr
));
5993 pCur
->ix
= (u16
)lwr
;
5994 rc
= moveToChild(pCur
, chldPg
);
5997 moveto_index_finish
:
5998 pCur
->info
.nSize
= 0;
5999 assert( (pCur
->curFlags
& BTCF_ValidOvfl
)==0 );
6005 ** Return TRUE if the cursor is not pointing at an entry of the table.
6007 ** TRUE will be returned after a call to sqlite3BtreeNext() moves
6008 ** past the last entry in the table or sqlite3BtreePrev() moves past
6009 ** the first entry. TRUE is also returned if the table is empty.
6011 int sqlite3BtreeEof(BtCursor
*pCur
){
6012 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
6013 ** have been deleted? This API will need to change to return an error code
6014 ** as well as the boolean result value.
6016 return (CURSOR_VALID
!=pCur
->eState
);
6020 ** Return an estimate for the number of rows in the table that pCur is
6021 ** pointing to. Return a negative number if no estimate is currently
6024 i64
sqlite3BtreeRowCountEst(BtCursor
*pCur
){
6028 assert( cursorOwnsBtShared(pCur
) );
6029 assert( sqlite3_mutex_held(pCur
->pBtree
->db
->mutex
) );
6031 /* Currently this interface is only called by the OP_IfSmaller
6032 ** opcode, and it that case the cursor will always be valid and
6033 ** will always point to a leaf node. */
6034 if( NEVER(pCur
->eState
!=CURSOR_VALID
) ) return -1;
6035 if( NEVER(pCur
->pPage
->leaf
==0) ) return -1;
6037 n
= pCur
->pPage
->nCell
;
6038 for(i
=0; i
<pCur
->iPage
; i
++){
6039 n
*= pCur
->apPage
[i
]->nCell
;
6045 ** Advance the cursor to the next entry in the database.
6048 ** SQLITE_OK success
6049 ** SQLITE_DONE cursor is already pointing at the last element
6050 ** otherwise some kind of error occurred
6052 ** The main entry point is sqlite3BtreeNext(). That routine is optimized
6053 ** for the common case of merely incrementing the cell counter BtCursor.aiIdx
6054 ** to the next cell on the current page. The (slower) btreeNext() helper
6055 ** routine is called when it is necessary to move to a different page or
6056 ** to restore the cursor.
6058 ** If bit 0x01 of the F argument in sqlite3BtreeNext(C,F) is 1, then the
6059 ** cursor corresponds to an SQL index and this routine could have been
6060 ** skipped if the SQL index had been a unique index. The F argument
6061 ** is a hint to the implement. SQLite btree implementation does not use
6062 ** this hint, but COMDB2 does.
6064 static SQLITE_NOINLINE
int btreeNext(BtCursor
*pCur
){
6069 assert( cursorOwnsBtShared(pCur
) );
6070 if( pCur
->eState
!=CURSOR_VALID
){
6071 assert( (pCur
->curFlags
& BTCF_ValidOvfl
)==0 );
6072 rc
= restoreCursorPosition(pCur
);
6073 if( rc
!=SQLITE_OK
){
6076 if( CURSOR_INVALID
==pCur
->eState
){
6079 if( pCur
->eState
==CURSOR_SKIPNEXT
){
6080 pCur
->eState
= CURSOR_VALID
;
6081 if( pCur
->skipNext
>0 ) return SQLITE_OK
;
6085 pPage
= pCur
->pPage
;
6087 if( NEVER(!pPage
->isInit
) || sqlite3FaultSim(412) ){
6088 return SQLITE_CORRUPT_BKPT
;
6091 if( idx
>=pPage
->nCell
){
6093 rc
= moveToChild(pCur
, get4byte(&pPage
->aData
[pPage
->hdrOffset
+8]));
6095 return moveToLeftmost(pCur
);
6098 if( pCur
->iPage
==0 ){
6099 pCur
->eState
= CURSOR_INVALID
;
6103 pPage
= pCur
->pPage
;
6104 }while( pCur
->ix
>=pPage
->nCell
);
6105 if( pPage
->intKey
){
6106 return sqlite3BtreeNext(pCur
, 0);
6114 return moveToLeftmost(pCur
);
6117 int sqlite3BtreeNext(BtCursor
*pCur
, int flags
){
6119 UNUSED_PARAMETER( flags
); /* Used in COMDB2 but not native SQLite */
6120 assert( cursorOwnsBtShared(pCur
) );
6121 assert( flags
==0 || flags
==1 );
6122 pCur
->info
.nSize
= 0;
6123 pCur
->curFlags
&= ~(BTCF_ValidNKey
|BTCF_ValidOvfl
);
6124 if( pCur
->eState
!=CURSOR_VALID
) return btreeNext(pCur
);
6125 pPage
= pCur
->pPage
;
6126 if( (++pCur
->ix
)>=pPage
->nCell
){
6128 return btreeNext(pCur
);
6133 return moveToLeftmost(pCur
);
6138 ** Step the cursor to the back to the previous entry in the database.
6141 ** SQLITE_OK success
6142 ** SQLITE_DONE the cursor is already on the first element of the table
6143 ** otherwise some kind of error occurred
6145 ** The main entry point is sqlite3BtreePrevious(). That routine is optimized
6146 ** for the common case of merely decrementing the cell counter BtCursor.aiIdx
6147 ** to the previous cell on the current page. The (slower) btreePrevious()
6148 ** helper routine is called when it is necessary to move to a different page
6149 ** or to restore the cursor.
6151 ** If bit 0x01 of the F argument to sqlite3BtreePrevious(C,F) is 1, then
6152 ** the cursor corresponds to an SQL index and this routine could have been
6153 ** skipped if the SQL index had been a unique index. The F argument is a
6154 ** hint to the implement. The native SQLite btree implementation does not
6155 ** use this hint, but COMDB2 does.
6157 static SQLITE_NOINLINE
int btreePrevious(BtCursor
*pCur
){
6161 assert( cursorOwnsBtShared(pCur
) );
6162 assert( (pCur
->curFlags
& (BTCF_AtLast
|BTCF_ValidOvfl
|BTCF_ValidNKey
))==0 );
6163 assert( pCur
->info
.nSize
==0 );
6164 if( pCur
->eState
!=CURSOR_VALID
){
6165 rc
= restoreCursorPosition(pCur
);
6166 if( rc
!=SQLITE_OK
){
6169 if( CURSOR_INVALID
==pCur
->eState
){
6172 if( CURSOR_SKIPNEXT
==pCur
->eState
){
6173 pCur
->eState
= CURSOR_VALID
;
6174 if( pCur
->skipNext
<0 ) return SQLITE_OK
;
6178 pPage
= pCur
->pPage
;
6179 assert( pPage
->isInit
);
6182 rc
= moveToChild(pCur
, get4byte(findCell(pPage
, idx
)));
6184 rc
= moveToRightmost(pCur
);
6186 while( pCur
->ix
==0 ){
6187 if( pCur
->iPage
==0 ){
6188 pCur
->eState
= CURSOR_INVALID
;
6193 assert( pCur
->info
.nSize
==0 );
6194 assert( (pCur
->curFlags
& (BTCF_ValidOvfl
))==0 );
6197 pPage
= pCur
->pPage
;
6198 if( pPage
->intKey
&& !pPage
->leaf
){
6199 rc
= sqlite3BtreePrevious(pCur
, 0);
6206 int sqlite3BtreePrevious(BtCursor
*pCur
, int flags
){
6207 assert( cursorOwnsBtShared(pCur
) );
6208 assert( flags
==0 || flags
==1 );
6209 UNUSED_PARAMETER( flags
); /* Used in COMDB2 but not native SQLite */
6210 pCur
->curFlags
&= ~(BTCF_AtLast
|BTCF_ValidOvfl
|BTCF_ValidNKey
);
6211 pCur
->info
.nSize
= 0;
6212 if( pCur
->eState
!=CURSOR_VALID
6214 || pCur
->pPage
->leaf
==0
6216 return btreePrevious(pCur
);
6223 ** Allocate a new page from the database file.
6225 ** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
6226 ** has already been called on the new page.) The new page has also
6227 ** been referenced and the calling routine is responsible for calling
6228 ** sqlite3PagerUnref() on the new page when it is done.
6230 ** SQLITE_OK is returned on success. Any other return value indicates
6231 ** an error. *ppPage is set to NULL in the event of an error.
6233 ** If the "nearby" parameter is not 0, then an effort is made to
6234 ** locate a page close to the page number "nearby". This can be used in an
6235 ** attempt to keep related pages close to each other in the database file,
6236 ** which in turn can make database access faster.
6238 ** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
6239 ** anywhere on the free-list, then it is guaranteed to be returned. If
6240 ** eMode is BTALLOC_LT then the page returned will be less than or equal
6241 ** to nearby if any such page exists. If eMode is BTALLOC_ANY then there
6242 ** are no restrictions on which page is returned.
6244 static int allocateBtreePage(
6245 BtShared
*pBt
, /* The btree */
6246 MemPage
**ppPage
, /* Store pointer to the allocated page here */
6247 Pgno
*pPgno
, /* Store the page number here */
6248 Pgno nearby
, /* Search for a page near this one */
6249 u8 eMode
/* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
6253 u32 n
; /* Number of pages on the freelist */
6254 u32 k
; /* Number of leaves on the trunk of the freelist */
6255 MemPage
*pTrunk
= 0;
6256 MemPage
*pPrevTrunk
= 0;
6257 Pgno mxPage
; /* Total size of the database file */
6259 assert( sqlite3_mutex_held(pBt
->mutex
) );
6260 assert( eMode
==BTALLOC_ANY
|| (nearby
>0 && IfNotOmitAV(pBt
->autoVacuum
)) );
6261 pPage1
= pBt
->pPage1
;
6262 mxPage
= btreePagecount(pBt
);
6263 /* EVIDENCE-OF: R-21003-45125 The 4-byte big-endian integer at offset 36
6264 ** stores the total number of pages on the freelist. */
6265 n
= get4byte(&pPage1
->aData
[36]);
6266 testcase( n
==mxPage
-1 );
6268 return SQLITE_CORRUPT_BKPT
;
6271 /* There are pages on the freelist. Reuse one of those pages. */
6273 u8 searchList
= 0; /* If the free-list must be searched for 'nearby' */
6274 u32 nSearch
= 0; /* Count of the number of search attempts */
6276 /* If eMode==BTALLOC_EXACT and a query of the pointer-map
6277 ** shows that the page 'nearby' is somewhere on the free-list, then
6278 ** the entire-list will be searched for that page.
6280 #ifndef SQLITE_OMIT_AUTOVACUUM
6281 if( eMode
==BTALLOC_EXACT
){
6282 if( nearby
<=mxPage
){
6285 assert( pBt
->autoVacuum
);
6286 rc
= ptrmapGet(pBt
, nearby
, &eType
, 0);
6288 if( eType
==PTRMAP_FREEPAGE
){
6292 }else if( eMode
==BTALLOC_LE
){
6297 /* Decrement the free-list count by 1. Set iTrunk to the index of the
6298 ** first free-list trunk page. iPrevTrunk is initially 1.
6300 rc
= sqlite3PagerWrite(pPage1
->pDbPage
);
6302 put4byte(&pPage1
->aData
[36], n
-1);
6304 /* The code within this loop is run only once if the 'searchList' variable
6305 ** is not true. Otherwise, it runs once for each trunk-page on the
6306 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
6307 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
6310 pPrevTrunk
= pTrunk
;
6312 /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
6313 ** is the page number of the next freelist trunk page in the list or
6314 ** zero if this is the last freelist trunk page. */
6315 iTrunk
= get4byte(&pPrevTrunk
->aData
[0]);
6317 /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
6318 ** stores the page number of the first page of the freelist, or zero if
6319 ** the freelist is empty. */
6320 iTrunk
= get4byte(&pPage1
->aData
[32]);
6322 testcase( iTrunk
==mxPage
);
6323 if( iTrunk
>mxPage
|| nSearch
++ > n
){
6324 rc
= SQLITE_CORRUPT_PGNO(pPrevTrunk
? pPrevTrunk
->pgno
: 1);
6326 rc
= btreeGetUnusedPage(pBt
, iTrunk
, &pTrunk
, 0);
6330 goto end_allocate_page
;
6332 assert( pTrunk
!=0 );
6333 assert( pTrunk
->aData
!=0 );
6334 /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
6335 ** is the number of leaf page pointers to follow. */
6336 k
= get4byte(&pTrunk
->aData
[4]);
6337 if( k
==0 && !searchList
){
6338 /* The trunk has no leaves and the list is not being searched.
6339 ** So extract the trunk page itself and use it as the newly
6340 ** allocated page */
6341 assert( pPrevTrunk
==0 );
6342 rc
= sqlite3PagerWrite(pTrunk
->pDbPage
);
6344 goto end_allocate_page
;
6347 memcpy(&pPage1
->aData
[32], &pTrunk
->aData
[0], 4);
6350 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno
, n
-1));
6351 }else if( k
>(u32
)(pBt
->usableSize
/4 - 2) ){
6352 /* Value of k is out of range. Database corruption */
6353 rc
= SQLITE_CORRUPT_PGNO(iTrunk
);
6354 goto end_allocate_page
;
6355 #ifndef SQLITE_OMIT_AUTOVACUUM
6356 }else if( searchList
6357 && (nearby
==iTrunk
|| (iTrunk
<nearby
&& eMode
==BTALLOC_LE
))
6359 /* The list is being searched and this trunk page is the page
6360 ** to allocate, regardless of whether it has leaves.
6365 rc
= sqlite3PagerWrite(pTrunk
->pDbPage
);
6367 goto end_allocate_page
;
6371 memcpy(&pPage1
->aData
[32], &pTrunk
->aData
[0], 4);
6373 rc
= sqlite3PagerWrite(pPrevTrunk
->pDbPage
);
6374 if( rc
!=SQLITE_OK
){
6375 goto end_allocate_page
;
6377 memcpy(&pPrevTrunk
->aData
[0], &pTrunk
->aData
[0], 4);
6380 /* The trunk page is required by the caller but it contains
6381 ** pointers to free-list leaves. The first leaf becomes a trunk
6382 ** page in this case.
6385 Pgno iNewTrunk
= get4byte(&pTrunk
->aData
[8]);
6386 if( iNewTrunk
>mxPage
){
6387 rc
= SQLITE_CORRUPT_PGNO(iTrunk
);
6388 goto end_allocate_page
;
6390 testcase( iNewTrunk
==mxPage
);
6391 rc
= btreeGetUnusedPage(pBt
, iNewTrunk
, &pNewTrunk
, 0);
6392 if( rc
!=SQLITE_OK
){
6393 goto end_allocate_page
;
6395 rc
= sqlite3PagerWrite(pNewTrunk
->pDbPage
);
6396 if( rc
!=SQLITE_OK
){
6397 releasePage(pNewTrunk
);
6398 goto end_allocate_page
;
6400 memcpy(&pNewTrunk
->aData
[0], &pTrunk
->aData
[0], 4);
6401 put4byte(&pNewTrunk
->aData
[4], k
-1);
6402 memcpy(&pNewTrunk
->aData
[8], &pTrunk
->aData
[12], (k
-1)*4);
6403 releasePage(pNewTrunk
);
6405 assert( sqlite3PagerIswriteable(pPage1
->pDbPage
) );
6406 put4byte(&pPage1
->aData
[32], iNewTrunk
);
6408 rc
= sqlite3PagerWrite(pPrevTrunk
->pDbPage
);
6410 goto end_allocate_page
;
6412 put4byte(&pPrevTrunk
->aData
[0], iNewTrunk
);
6416 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno
, n
-1));
6419 /* Extract a leaf from the trunk */
6422 unsigned char *aData
= pTrunk
->aData
;
6426 if( eMode
==BTALLOC_LE
){
6428 iPage
= get4byte(&aData
[8+i
*4]);
6429 if( iPage
<=nearby
){
6436 dist
= sqlite3AbsInt32(get4byte(&aData
[8]) - nearby
);
6438 int d2
= sqlite3AbsInt32(get4byte(&aData
[8+i
*4]) - nearby
);
6449 iPage
= get4byte(&aData
[8+closest
*4]);
6450 testcase( iPage
==mxPage
);
6451 if( iPage
>mxPage
|| iPage
<2 ){
6452 rc
= SQLITE_CORRUPT_PGNO(iTrunk
);
6453 goto end_allocate_page
;
6455 testcase( iPage
==mxPage
);
6457 || (iPage
==nearby
|| (iPage
<nearby
&& eMode
==BTALLOC_LE
))
6461 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
6462 ": %d more free pages\n",
6463 *pPgno
, closest
+1, k
, pTrunk
->pgno
, n
-1));
6464 rc
= sqlite3PagerWrite(pTrunk
->pDbPage
);
6465 if( rc
) goto end_allocate_page
;
6467 memcpy(&aData
[8+closest
*4], &aData
[4+k
*4], 4);
6469 put4byte(&aData
[4], k
-1);
6470 noContent
= !btreeGetHasContent(pBt
, *pPgno
)? PAGER_GET_NOCONTENT
: 0;
6471 rc
= btreeGetUnusedPage(pBt
, *pPgno
, ppPage
, noContent
);
6472 if( rc
==SQLITE_OK
){
6473 rc
= sqlite3PagerWrite((*ppPage
)->pDbPage
);
6474 if( rc
!=SQLITE_OK
){
6475 releasePage(*ppPage
);
6482 releasePage(pPrevTrunk
);
6484 }while( searchList
);
6486 /* There are no pages on the freelist, so append a new page to the
6489 ** Normally, new pages allocated by this block can be requested from the
6490 ** pager layer with the 'no-content' flag set. This prevents the pager
6491 ** from trying to read the pages content from disk. However, if the
6492 ** current transaction has already run one or more incremental-vacuum
6493 ** steps, then the page we are about to allocate may contain content
6494 ** that is required in the event of a rollback. In this case, do
6495 ** not set the no-content flag. This causes the pager to load and journal
6496 ** the current page content before overwriting it.
6498 ** Note that the pager will not actually attempt to load or journal
6499 ** content for any page that really does lie past the end of the database
6500 ** file on disk. So the effects of disabling the no-content optimization
6501 ** here are confined to those pages that lie between the end of the
6502 ** database image and the end of the database file.
6504 int bNoContent
= (0==IfNotOmitAV(pBt
->bDoTruncate
))? PAGER_GET_NOCONTENT
:0;
6506 rc
= sqlite3PagerWrite(pBt
->pPage1
->pDbPage
);
6509 if( pBt
->nPage
==PENDING_BYTE_PAGE(pBt
) ) pBt
->nPage
++;
6511 #ifndef SQLITE_OMIT_AUTOVACUUM
6512 if( pBt
->autoVacuum
&& PTRMAP_ISPAGE(pBt
, pBt
->nPage
) ){
6513 /* If *pPgno refers to a pointer-map page, allocate two new pages
6514 ** at the end of the file instead of one. The first allocated page
6515 ** becomes a new pointer-map page, the second is used by the caller.
6518 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt
->nPage
));
6519 assert( pBt
->nPage
!=PENDING_BYTE_PAGE(pBt
) );
6520 rc
= btreeGetUnusedPage(pBt
, pBt
->nPage
, &pPg
, bNoContent
);
6521 if( rc
==SQLITE_OK
){
6522 rc
= sqlite3PagerWrite(pPg
->pDbPage
);
6527 if( pBt
->nPage
==PENDING_BYTE_PAGE(pBt
) ){ pBt
->nPage
++; }
6530 put4byte(28 + (u8
*)pBt
->pPage1
->aData
, pBt
->nPage
);
6531 *pPgno
= pBt
->nPage
;
6533 assert( *pPgno
!=PENDING_BYTE_PAGE(pBt
) );
6534 rc
= btreeGetUnusedPage(pBt
, *pPgno
, ppPage
, bNoContent
);
6536 rc
= sqlite3PagerWrite((*ppPage
)->pDbPage
);
6537 if( rc
!=SQLITE_OK
){
6538 releasePage(*ppPage
);
6541 TRACE(("ALLOCATE: %d from end of file\n", *pPgno
));
6544 assert( CORRUPT_DB
|| *pPgno
!=PENDING_BYTE_PAGE(pBt
) );
6547 releasePage(pTrunk
);
6548 releasePage(pPrevTrunk
);
6549 assert( rc
!=SQLITE_OK
|| sqlite3PagerPageRefcount((*ppPage
)->pDbPage
)<=1 );
6550 assert( rc
!=SQLITE_OK
|| (*ppPage
)->isInit
==0 );
6555 ** This function is used to add page iPage to the database file free-list.
6556 ** It is assumed that the page is not already a part of the free-list.
6558 ** The value passed as the second argument to this function is optional.
6559 ** If the caller happens to have a pointer to the MemPage object
6560 ** corresponding to page iPage handy, it may pass it as the second value.
6561 ** Otherwise, it may pass NULL.
6563 ** If a pointer to a MemPage object is passed as the second argument,
6564 ** its reference count is not altered by this function.
6566 static int freePage2(BtShared
*pBt
, MemPage
*pMemPage
, Pgno iPage
){
6567 MemPage
*pTrunk
= 0; /* Free-list trunk page */
6568 Pgno iTrunk
= 0; /* Page number of free-list trunk page */
6569 MemPage
*pPage1
= pBt
->pPage1
; /* Local reference to page 1 */
6570 MemPage
*pPage
; /* Page being freed. May be NULL. */
6571 int rc
; /* Return Code */
6572 u32 nFree
; /* Initial number of pages on free-list */
6574 assert( sqlite3_mutex_held(pBt
->mutex
) );
6575 assert( CORRUPT_DB
|| iPage
>1 );
6576 assert( !pMemPage
|| pMemPage
->pgno
==iPage
);
6578 if( iPage
<2 || iPage
>pBt
->nPage
){
6579 return SQLITE_CORRUPT_BKPT
;
6583 sqlite3PagerRef(pPage
->pDbPage
);
6585 pPage
= btreePageLookup(pBt
, iPage
);
6588 /* Increment the free page count on pPage1 */
6589 rc
= sqlite3PagerWrite(pPage1
->pDbPage
);
6590 if( rc
) goto freepage_out
;
6591 nFree
= get4byte(&pPage1
->aData
[36]);
6592 put4byte(&pPage1
->aData
[36], nFree
+1);
6594 if( pBt
->btsFlags
& BTS_SECURE_DELETE
){
6595 /* If the secure_delete option is enabled, then
6596 ** always fully overwrite deleted information with zeros.
6598 if( (!pPage
&& ((rc
= btreeGetPage(pBt
, iPage
, &pPage
, 0))!=0) )
6599 || ((rc
= sqlite3PagerWrite(pPage
->pDbPage
))!=0)
6603 memset(pPage
->aData
, 0, pPage
->pBt
->pageSize
);
6606 /* If the database supports auto-vacuum, write an entry in the pointer-map
6607 ** to indicate that the page is free.
6609 if( ISAUTOVACUUM(pBt
) ){
6610 ptrmapPut(pBt
, iPage
, PTRMAP_FREEPAGE
, 0, &rc
);
6611 if( rc
) goto freepage_out
;
6614 /* Now manipulate the actual database free-list structure. There are two
6615 ** possibilities. If the free-list is currently empty, or if the first
6616 ** trunk page in the free-list is full, then this page will become a
6617 ** new free-list trunk page. Otherwise, it will become a leaf of the
6618 ** first trunk page in the current free-list. This block tests if it
6619 ** is possible to add the page as a new free-list leaf.
6622 u32 nLeaf
; /* Initial number of leaf cells on trunk page */
6624 iTrunk
= get4byte(&pPage1
->aData
[32]);
6625 if( iTrunk
>btreePagecount(pBt
) ){
6626 rc
= SQLITE_CORRUPT_BKPT
;
6629 rc
= btreeGetPage(pBt
, iTrunk
, &pTrunk
, 0);
6630 if( rc
!=SQLITE_OK
){
6634 nLeaf
= get4byte(&pTrunk
->aData
[4]);
6635 assert( pBt
->usableSize
>32 );
6636 if( nLeaf
> (u32
)pBt
->usableSize
/4 - 2 ){
6637 rc
= SQLITE_CORRUPT_BKPT
;
6640 if( nLeaf
< (u32
)pBt
->usableSize
/4 - 8 ){
6641 /* In this case there is room on the trunk page to insert the page
6642 ** being freed as a new leaf.
6644 ** Note that the trunk page is not really full until it contains
6645 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
6646 ** coded. But due to a coding error in versions of SQLite prior to
6647 ** 3.6.0, databases with freelist trunk pages holding more than
6648 ** usableSize/4 - 8 entries will be reported as corrupt. In order
6649 ** to maintain backwards compatibility with older versions of SQLite,
6650 ** we will continue to restrict the number of entries to usableSize/4 - 8
6651 ** for now. At some point in the future (once everyone has upgraded
6652 ** to 3.6.0 or later) we should consider fixing the conditional above
6653 ** to read "usableSize/4-2" instead of "usableSize/4-8".
6655 ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
6656 ** avoid using the last six entries in the freelist trunk page array in
6657 ** order that database files created by newer versions of SQLite can be
6658 ** read by older versions of SQLite.
6660 rc
= sqlite3PagerWrite(pTrunk
->pDbPage
);
6661 if( rc
==SQLITE_OK
){
6662 put4byte(&pTrunk
->aData
[4], nLeaf
+1);
6663 put4byte(&pTrunk
->aData
[8+nLeaf
*4], iPage
);
6664 if( pPage
&& (pBt
->btsFlags
& BTS_SECURE_DELETE
)==0 ){
6665 sqlite3PagerDontWrite(pPage
->pDbPage
);
6667 rc
= btreeSetHasContent(pBt
, iPage
);
6669 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage
->pgno
,pTrunk
->pgno
));
6674 /* If control flows to this point, then it was not possible to add the
6675 ** the page being freed as a leaf page of the first trunk in the free-list.
6676 ** Possibly because the free-list is empty, or possibly because the
6677 ** first trunk in the free-list is full. Either way, the page being freed
6678 ** will become the new first trunk page in the free-list.
6680 if( pPage
==0 && SQLITE_OK
!=(rc
= btreeGetPage(pBt
, iPage
, &pPage
, 0)) ){
6683 rc
= sqlite3PagerWrite(pPage
->pDbPage
);
6684 if( rc
!=SQLITE_OK
){
6687 put4byte(pPage
->aData
, iTrunk
);
6688 put4byte(&pPage
->aData
[4], 0);
6689 put4byte(&pPage1
->aData
[32], iPage
);
6690 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage
->pgno
, iTrunk
));
6697 releasePage(pTrunk
);
6700 static void freePage(MemPage
*pPage
, int *pRC
){
6701 if( (*pRC
)==SQLITE_OK
){
6702 *pRC
= freePage2(pPage
->pBt
, pPage
, pPage
->pgno
);
6707 ** Free the overflow pages associated with the given Cell.
6709 static SQLITE_NOINLINE
int clearCellOverflow(
6710 MemPage
*pPage
, /* The page that contains the Cell */
6711 unsigned char *pCell
, /* First byte of the Cell */
6712 CellInfo
*pInfo
/* Size information about the cell */
6720 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
6721 assert( pInfo
->nLocal
!=pInfo
->nPayload
);
6722 testcase( pCell
+ pInfo
->nSize
== pPage
->aDataEnd
);
6723 testcase( pCell
+ (pInfo
->nSize
-1) == pPage
->aDataEnd
);
6724 if( pCell
+ pInfo
->nSize
> pPage
->aDataEnd
){
6725 /* Cell extends past end of page */
6726 return SQLITE_CORRUPT_PAGE(pPage
);
6728 ovflPgno
= get4byte(pCell
+ pInfo
->nSize
- 4);
6730 assert( pBt
->usableSize
> 4 );
6731 ovflPageSize
= pBt
->usableSize
- 4;
6732 nOvfl
= (pInfo
->nPayload
- pInfo
->nLocal
+ ovflPageSize
- 1)/ovflPageSize
;
6734 (CORRUPT_DB
&& (pInfo
->nPayload
+ ovflPageSize
)<ovflPageSize
)
6739 if( ovflPgno
<2 || ovflPgno
>btreePagecount(pBt
) ){
6740 /* 0 is not a legal page number and page 1 cannot be an
6741 ** overflow page. Therefore if ovflPgno<2 or past the end of the
6742 ** file the database must be corrupt. */
6743 return SQLITE_CORRUPT_BKPT
;
6746 rc
= getOverflowPage(pBt
, ovflPgno
, &pOvfl
, &iNext
);
6750 if( ( pOvfl
|| ((pOvfl
= btreePageLookup(pBt
, ovflPgno
))!=0) )
6751 && sqlite3PagerPageRefcount(pOvfl
->pDbPage
)!=1
6753 /* There is no reason any cursor should have an outstanding reference
6754 ** to an overflow page belonging to a cell that is being deleted/updated.
6755 ** So if there exists more than one reference to this page, then it
6756 ** must not really be an overflow page and the database must be corrupt.
6757 ** It is helpful to detect this before calling freePage2(), as
6758 ** freePage2() may zero the page contents if secure-delete mode is
6759 ** enabled. If this 'overflow' page happens to be a page that the
6760 ** caller is iterating through or using in some other way, this
6761 ** can be problematic.
6763 rc
= SQLITE_CORRUPT_BKPT
;
6765 rc
= freePage2(pBt
, pOvfl
, ovflPgno
);
6769 sqlite3PagerUnref(pOvfl
->pDbPage
);
6777 /* Call xParseCell to compute the size of a cell. If the cell contains
6778 ** overflow, then invoke cellClearOverflow to clear out that overflow.
6779 ** STore the result code (SQLITE_OK or some error code) in rc.
6781 ** Implemented as macro to force inlining for performance.
6783 #define BTREE_CLEAR_CELL(rc, pPage, pCell, sInfo) \
6784 pPage->xParseCell(pPage, pCell, &sInfo); \
6785 if( sInfo.nLocal!=sInfo.nPayload ){ \
6786 rc = clearCellOverflow(pPage, pCell, &sInfo); \
6793 ** Create the byte sequence used to represent a cell on page pPage
6794 ** and write that byte sequence into pCell[]. Overflow pages are
6795 ** allocated and filled in as necessary. The calling procedure
6796 ** is responsible for making sure sufficient space has been allocated
6799 ** Note that pCell does not necessary need to point to the pPage->aData
6800 ** area. pCell might point to some temporary storage. The cell will
6801 ** be constructed in this temporary area then copied into pPage->aData
6804 static int fillInCell(
6805 MemPage
*pPage
, /* The page that contains the cell */
6806 unsigned char *pCell
, /* Complete text of the cell */
6807 const BtreePayload
*pX
, /* Payload with which to construct the cell */
6808 int *pnSize
/* Write cell size here */
6812 int nSrc
, n
, rc
, mn
;
6814 MemPage
*pToRelease
;
6815 unsigned char *pPrior
;
6816 unsigned char *pPayload
;
6821 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
6823 /* pPage is not necessarily writeable since pCell might be auxiliary
6824 ** buffer space that is separate from the pPage buffer area */
6825 assert( pCell
<pPage
->aData
|| pCell
>=&pPage
->aData
[pPage
->pBt
->pageSize
]
6826 || sqlite3PagerIswriteable(pPage
->pDbPage
) );
6828 /* Fill in the header. */
6829 nHeader
= pPage
->childPtrSize
;
6830 if( pPage
->intKey
){
6831 nPayload
= pX
->nData
+ pX
->nZero
;
6834 assert( pPage
->intKeyLeaf
); /* fillInCell() only called for leaves */
6835 nHeader
+= putVarint32(&pCell
[nHeader
], nPayload
);
6836 nHeader
+= putVarint(&pCell
[nHeader
], *(u64
*)&pX
->nKey
);
6838 assert( pX
->nKey
<=0x7fffffff && pX
->pKey
!=0 );
6839 nSrc
= nPayload
= (int)pX
->nKey
;
6841 nHeader
+= putVarint32(&pCell
[nHeader
], nPayload
);
6844 /* Fill in the payload */
6845 pPayload
= &pCell
[nHeader
];
6846 if( nPayload
<=pPage
->maxLocal
){
6847 /* This is the common case where everything fits on the btree page
6848 ** and no overflow pages are required. */
6849 n
= nHeader
+ nPayload
;
6854 assert( nSrc
<=nPayload
);
6855 testcase( nSrc
<nPayload
);
6856 memcpy(pPayload
, pSrc
, nSrc
);
6857 memset(pPayload
+nSrc
, 0, nPayload
-nSrc
);
6861 /* If we reach this point, it means that some of the content will need
6862 ** to spill onto overflow pages.
6864 mn
= pPage
->minLocal
;
6865 n
= mn
+ (nPayload
- mn
) % (pPage
->pBt
->usableSize
- 4);
6866 testcase( n
==pPage
->maxLocal
);
6867 testcase( n
==pPage
->maxLocal
+1 );
6868 if( n
> pPage
->maxLocal
) n
= mn
;
6870 *pnSize
= n
+ nHeader
+ 4;
6871 pPrior
= &pCell
[nHeader
+n
];
6876 /* At this point variables should be set as follows:
6878 ** nPayload Total payload size in bytes
6879 ** pPayload Begin writing payload here
6880 ** spaceLeft Space available at pPayload. If nPayload>spaceLeft,
6881 ** that means content must spill into overflow pages.
6882 ** *pnSize Size of the local cell (not counting overflow pages)
6883 ** pPrior Where to write the pgno of the first overflow page
6885 ** Use a call to btreeParseCellPtr() to verify that the values above
6886 ** were computed correctly.
6891 pPage
->xParseCell(pPage
, pCell
, &info
);
6892 assert( nHeader
==(int)(info
.pPayload
- pCell
) );
6893 assert( info
.nKey
==pX
->nKey
);
6894 assert( *pnSize
== info
.nSize
);
6895 assert( spaceLeft
== info
.nLocal
);
6899 /* Write the payload into the local Cell and any extra into overflow pages */
6902 if( n
>spaceLeft
) n
= spaceLeft
;
6904 /* If pToRelease is not zero than pPayload points into the data area
6905 ** of pToRelease. Make sure pToRelease is still writeable. */
6906 assert( pToRelease
==0 || sqlite3PagerIswriteable(pToRelease
->pDbPage
) );
6908 /* If pPayload is part of the data area of pPage, then make sure pPage
6909 ** is still writeable */
6910 assert( pPayload
<pPage
->aData
|| pPayload
>=&pPage
->aData
[pBt
->pageSize
]
6911 || sqlite3PagerIswriteable(pPage
->pDbPage
) );
6914 memcpy(pPayload
, pSrc
, n
);
6917 memcpy(pPayload
, pSrc
, n
);
6919 memset(pPayload
, 0, n
);
6922 if( nPayload
<=0 ) break;
6929 #ifndef SQLITE_OMIT_AUTOVACUUM
6930 Pgno pgnoPtrmap
= pgnoOvfl
; /* Overflow page pointer-map entry page */
6931 if( pBt
->autoVacuum
){
6935 PTRMAP_ISPAGE(pBt
, pgnoOvfl
) || pgnoOvfl
==PENDING_BYTE_PAGE(pBt
)
6939 rc
= allocateBtreePage(pBt
, &pOvfl
, &pgnoOvfl
, pgnoOvfl
, 0);
6940 #ifndef SQLITE_OMIT_AUTOVACUUM
6941 /* If the database supports auto-vacuum, and the second or subsequent
6942 ** overflow page is being allocated, add an entry to the pointer-map
6943 ** for that page now.
6945 ** If this is the first overflow page, then write a partial entry
6946 ** to the pointer-map. If we write nothing to this pointer-map slot,
6947 ** then the optimistic overflow chain processing in clearCell()
6948 ** may misinterpret the uninitialized values and delete the
6949 ** wrong pages from the database.
6951 if( pBt
->autoVacuum
&& rc
==SQLITE_OK
){
6952 u8 eType
= (pgnoPtrmap
?PTRMAP_OVERFLOW2
:PTRMAP_OVERFLOW1
);
6953 ptrmapPut(pBt
, pgnoOvfl
, eType
, pgnoPtrmap
, &rc
);
6960 releasePage(pToRelease
);
6964 /* If pToRelease is not zero than pPrior points into the data area
6965 ** of pToRelease. Make sure pToRelease is still writeable. */
6966 assert( pToRelease
==0 || sqlite3PagerIswriteable(pToRelease
->pDbPage
) );
6968 /* If pPrior is part of the data area of pPage, then make sure pPage
6969 ** is still writeable */
6970 assert( pPrior
<pPage
->aData
|| pPrior
>=&pPage
->aData
[pBt
->pageSize
]
6971 || sqlite3PagerIswriteable(pPage
->pDbPage
) );
6973 put4byte(pPrior
, pgnoOvfl
);
6974 releasePage(pToRelease
);
6976 pPrior
= pOvfl
->aData
;
6977 put4byte(pPrior
, 0);
6978 pPayload
= &pOvfl
->aData
[4];
6979 spaceLeft
= pBt
->usableSize
- 4;
6982 releasePage(pToRelease
);
6987 ** Remove the i-th cell from pPage. This routine effects pPage only.
6988 ** The cell content is not freed or deallocated. It is assumed that
6989 ** the cell content has been copied someplace else. This routine just
6990 ** removes the reference to the cell from pPage.
6992 ** "sz" must be the number of bytes in the cell.
6994 static void dropCell(MemPage
*pPage
, int idx
, int sz
, int *pRC
){
6995 u32 pc
; /* Offset to cell content of cell being deleted */
6996 u8
*data
; /* pPage->aData */
6997 u8
*ptr
; /* Used to move bytes around within data[] */
6998 int rc
; /* The return code */
6999 int hdr
; /* Beginning of the header. 0 most pages. 100 page 1 */
7003 assert( idx
<pPage
->nCell
);
7004 assert( CORRUPT_DB
|| sz
==cellSize(pPage
, idx
) );
7005 assert( sqlite3PagerIswriteable(pPage
->pDbPage
) );
7006 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
7007 assert( pPage
->nFree
>=0 );
7008 data
= pPage
->aData
;
7009 ptr
= &pPage
->aCellIdx
[2*idx
];
7010 assert( pPage
->pBt
->usableSize
> (u32
)(ptr
-data
) );
7012 hdr
= pPage
->hdrOffset
;
7013 testcase( pc
==(u32
)get2byte(&data
[hdr
+5]) );
7014 testcase( pc
+sz
==pPage
->pBt
->usableSize
);
7015 if( pc
+sz
> pPage
->pBt
->usableSize
){
7016 *pRC
= SQLITE_CORRUPT_BKPT
;
7019 rc
= freeSpace(pPage
, pc
, sz
);
7025 if( pPage
->nCell
==0 ){
7026 memset(&data
[hdr
+1], 0, 4);
7028 put2byte(&data
[hdr
+5], pPage
->pBt
->usableSize
);
7029 pPage
->nFree
= pPage
->pBt
->usableSize
- pPage
->hdrOffset
7030 - pPage
->childPtrSize
- 8;
7032 memmove(ptr
, ptr
+2, 2*(pPage
->nCell
- idx
));
7033 put2byte(&data
[hdr
+3], pPage
->nCell
);
7039 ** Insert a new cell on pPage at cell index "i". pCell points to the
7040 ** content of the cell.
7042 ** If the cell content will fit on the page, then put it there. If it
7043 ** will not fit, then make a copy of the cell content into pTemp if
7044 ** pTemp is not null. Regardless of pTemp, allocate a new entry
7045 ** in pPage->apOvfl[] and make it point to the cell content (either
7046 ** in pTemp or the original pCell) and also record its index.
7047 ** Allocating a new entry in pPage->aCell[] implies that
7048 ** pPage->nOverflow is incremented.
7050 static int insertCell(
7051 MemPage
*pPage
, /* Page into which we are copying */
7052 int i
, /* New cell becomes the i-th cell of the page */
7053 u8
*pCell
, /* Content of the new cell */
7054 int sz
, /* Bytes of content in pCell */
7055 u8
*pTemp
, /* Temp storage space for pCell, if needed */
7056 Pgno iChild
/* If non-zero, replace first 4 bytes with this value */
7058 int idx
= 0; /* Where to write new cell content in data[] */
7059 int j
; /* Loop counter */
7060 u8
*data
; /* The content of the whole page */
7061 u8
*pIns
; /* The point in pPage->aCellIdx[] where no cell inserted */
7063 assert( i
>=0 && i
<=pPage
->nCell
+pPage
->nOverflow
);
7064 assert( MX_CELL(pPage
->pBt
)<=10921 );
7065 assert( pPage
->nCell
<=MX_CELL(pPage
->pBt
) || CORRUPT_DB
);
7066 assert( pPage
->nOverflow
<=ArraySize(pPage
->apOvfl
) );
7067 assert( ArraySize(pPage
->apOvfl
)==ArraySize(pPage
->aiOvfl
) );
7068 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
7069 assert( sz
==pPage
->xCellSize(pPage
, pCell
) || CORRUPT_DB
);
7070 assert( pPage
->nFree
>=0 );
7071 if( pPage
->nOverflow
|| sz
+2>pPage
->nFree
){
7073 memcpy(pTemp
, pCell
, sz
);
7077 put4byte(pCell
, iChild
);
7079 j
= pPage
->nOverflow
++;
7080 /* Comparison against ArraySize-1 since we hold back one extra slot
7081 ** as a contingency. In other words, never need more than 3 overflow
7082 ** slots but 4 are allocated, just to be safe. */
7083 assert( j
< ArraySize(pPage
->apOvfl
)-1 );
7084 pPage
->apOvfl
[j
] = pCell
;
7085 pPage
->aiOvfl
[j
] = (u16
)i
;
7087 /* When multiple overflows occur, they are always sequential and in
7088 ** sorted order. This invariants arise because multiple overflows can
7089 ** only occur when inserting divider cells into the parent page during
7090 ** balancing, and the dividers are adjacent and sorted.
7092 assert( j
==0 || pPage
->aiOvfl
[j
-1]<(u16
)i
); /* Overflows in sorted order */
7093 assert( j
==0 || i
==pPage
->aiOvfl
[j
-1]+1 ); /* Overflows are sequential */
7095 int rc
= sqlite3PagerWrite(pPage
->pDbPage
);
7096 if( rc
!=SQLITE_OK
){
7099 assert( sqlite3PagerIswriteable(pPage
->pDbPage
) );
7100 data
= pPage
->aData
;
7101 assert( &data
[pPage
->cellOffset
]==pPage
->aCellIdx
);
7102 rc
= allocateSpace(pPage
, sz
, &idx
);
7103 if( rc
){ return rc
; }
7104 /* The allocateSpace() routine guarantees the following properties
7105 ** if it returns successfully */
7107 assert( idx
>= pPage
->cellOffset
+2*pPage
->nCell
+2 || CORRUPT_DB
);
7108 assert( idx
+sz
<= (int)pPage
->pBt
->usableSize
);
7109 pPage
->nFree
-= (u16
)(2 + sz
);
7111 /* In a corrupt database where an entry in the cell index section of
7112 ** a btree page has a value of 3 or less, the pCell value might point
7113 ** as many as 4 bytes in front of the start of the aData buffer for
7114 ** the source page. Make sure this does not cause problems by not
7115 ** reading the first 4 bytes */
7116 memcpy(&data
[idx
+4], pCell
+4, sz
-4);
7117 put4byte(&data
[idx
], iChild
);
7119 memcpy(&data
[idx
], pCell
, sz
);
7121 pIns
= pPage
->aCellIdx
+ i
*2;
7122 memmove(pIns
+2, pIns
, 2*(pPage
->nCell
- i
));
7123 put2byte(pIns
, idx
);
7125 /* increment the cell count */
7126 if( (++data
[pPage
->hdrOffset
+4])==0 ) data
[pPage
->hdrOffset
+3]++;
7127 assert( get2byte(&data
[pPage
->hdrOffset
+3])==pPage
->nCell
|| CORRUPT_DB
);
7128 #ifndef SQLITE_OMIT_AUTOVACUUM
7129 if( pPage
->pBt
->autoVacuum
){
7130 int rc2
= SQLITE_OK
;
7131 /* The cell may contain a pointer to an overflow page. If so, write
7132 ** the entry for the overflow page into the pointer map.
7134 ptrmapPutOvflPtr(pPage
, pPage
, pCell
, &rc2
);
7135 if( rc2
) return rc2
;
7143 ** The following parameters determine how many adjacent pages get involved
7144 ** in a balancing operation. NN is the number of neighbors on either side
7145 ** of the page that participate in the balancing operation. NB is the
7146 ** total number of pages that participate, including the target page and
7147 ** NN neighbors on either side.
7149 ** The minimum value of NN is 1 (of course). Increasing NN above 1
7150 ** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
7151 ** in exchange for a larger degradation in INSERT and UPDATE performance.
7152 ** The value of NN appears to give the best results overall.
7154 ** (Later:) The description above makes it seem as if these values are
7155 ** tunable - as if you could change them and recompile and it would all work.
7156 ** But that is unlikely. NB has been 3 since the inception of SQLite and
7157 ** we have never tested any other value.
7159 #define NN 1 /* Number of neighbors on either side of pPage */
7160 #define NB 3 /* (NN*2+1): Total pages involved in the balance */
7163 ** A CellArray object contains a cache of pointers and sizes for a
7164 ** consecutive sequence of cells that might be held on multiple pages.
7166 ** The cells in this array are the divider cell or cells from the pParent
7167 ** page plus up to three child pages. There are a total of nCell cells.
7169 ** pRef is a pointer to one of the pages that contributes cells. This is
7170 ** used to access information such as MemPage.intKey and MemPage.pBt->pageSize
7171 ** which should be common to all pages that contribute cells to this array.
7173 ** apCell[] and szCell[] hold, respectively, pointers to the start of each
7174 ** cell and the size of each cell. Some of the apCell[] pointers might refer
7175 ** to overflow cells. In other words, some apCel[] pointers might not point
7176 ** to content area of the pages.
7178 ** A szCell[] of zero means the size of that cell has not yet been computed.
7180 ** The cells come from as many as four different pages:
7187 ** --------- --------- ---------
7188 ** |Child-1| |Child-2| |Child-3|
7189 ** --------- --------- ---------
7191 ** The order of cells is in the array is for an index btree is:
7193 ** 1. All cells from Child-1 in order
7194 ** 2. The first divider cell from Parent
7195 ** 3. All cells from Child-2 in order
7196 ** 4. The second divider cell from Parent
7197 ** 5. All cells from Child-3 in order
7199 ** For a table-btree (with rowids) the items 2 and 4 are empty because
7200 ** content exists only in leaves and there are no divider cells.
7202 ** For an index btree, the apEnd[] array holds pointer to the end of page
7203 ** for Child-1, the Parent, Child-2, the Parent (again), and Child-3,
7204 ** respectively. The ixNx[] array holds the number of cells contained in
7205 ** each of these 5 stages, and all stages to the left. Hence:
7207 ** ixNx[0] = Number of cells in Child-1.
7208 ** ixNx[1] = Number of cells in Child-1 plus 1 for first divider.
7209 ** ixNx[2] = Number of cells in Child-1 and Child-2 + 1 for 1st divider.
7210 ** ixNx[3] = Number of cells in Child-1 and Child-2 + both divider cells
7211 ** ixNx[4] = Total number of cells.
7213 ** For a table-btree, the concept is similar, except only apEnd[0]..apEnd[2]
7214 ** are used and they point to the leaf pages only, and the ixNx value are:
7216 ** ixNx[0] = Number of cells in Child-1.
7217 ** ixNx[1] = Number of cells in Child-1 and Child-2.
7218 ** ixNx[2] = Total number of cells.
7220 ** Sometimes when deleting, a child page can have zero cells. In those
7221 ** cases, ixNx[] entries with higher indexes, and the corresponding apEnd[]
7222 ** entries, shift down. The end result is that each ixNx[] entry should
7223 ** be larger than the previous
7225 typedef struct CellArray CellArray
;
7227 int nCell
; /* Number of cells in apCell[] */
7228 MemPage
*pRef
; /* Reference page */
7229 u8
**apCell
; /* All cells begin balanced */
7230 u16
*szCell
; /* Local size of all cells in apCell[] */
7231 u8
*apEnd
[NB
*2]; /* MemPage.aDataEnd values */
7232 int ixNx
[NB
*2]; /* Index of at which we move to the next apEnd[] */
7236 ** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been
7239 static void populateCellCache(CellArray
*p
, int idx
, int N
){
7240 MemPage
*pRef
= p
->pRef
;
7241 u16
*szCell
= p
->szCell
;
7242 assert( idx
>=0 && idx
+N
<=p
->nCell
);
7244 assert( p
->apCell
[idx
]!=0 );
7245 if( szCell
[idx
]==0 ){
7246 szCell
[idx
] = pRef
->xCellSize(pRef
, p
->apCell
[idx
]);
7248 assert( CORRUPT_DB
||
7249 szCell
[idx
]==pRef
->xCellSize(pRef
, p
->apCell
[idx
]) );
7257 ** Return the size of the Nth element of the cell array
7259 static SQLITE_NOINLINE u16
computeCellSize(CellArray
*p
, int N
){
7260 assert( N
>=0 && N
<p
->nCell
);
7261 assert( p
->szCell
[N
]==0 );
7262 p
->szCell
[N
] = p
->pRef
->xCellSize(p
->pRef
, p
->apCell
[N
]);
7263 return p
->szCell
[N
];
7265 static u16
cachedCellSize(CellArray
*p
, int N
){
7266 assert( N
>=0 && N
<p
->nCell
);
7267 if( p
->szCell
[N
] ) return p
->szCell
[N
];
7268 return computeCellSize(p
, N
);
7272 ** Array apCell[] contains pointers to nCell b-tree page cells. The
7273 ** szCell[] array contains the size in bytes of each cell. This function
7274 ** replaces the current contents of page pPg with the contents of the cell
7277 ** Some of the cells in apCell[] may currently be stored in pPg. This
7278 ** function works around problems caused by this by making a copy of any
7279 ** such cells before overwriting the page data.
7281 ** The MemPage.nFree field is invalidated by this function. It is the
7282 ** responsibility of the caller to set it correctly.
7284 static int rebuildPage(
7285 CellArray
*pCArray
, /* Content to be added to page pPg */
7286 int iFirst
, /* First cell in pCArray to use */
7287 int nCell
, /* Final number of cells on page */
7288 MemPage
*pPg
/* The page to be reconstructed */
7290 const int hdr
= pPg
->hdrOffset
; /* Offset of header on pPg */
7291 u8
* const aData
= pPg
->aData
; /* Pointer to data for pPg */
7292 const int usableSize
= pPg
->pBt
->usableSize
;
7293 u8
* const pEnd
= &aData
[usableSize
];
7294 int i
= iFirst
; /* Which cell to copy from pCArray*/
7295 u32 j
; /* Start of cell content area */
7296 int iEnd
= i
+nCell
; /* Loop terminator */
7297 u8
*pCellptr
= pPg
->aCellIdx
;
7298 u8
*pTmp
= sqlite3PagerTempSpace(pPg
->pBt
->pPager
);
7300 int k
; /* Current slot in pCArray->apEnd[] */
7301 u8
*pSrcEnd
; /* Current pCArray->apEnd[k] value */
7304 j
= get2byte(&aData
[hdr
+5]);
7305 if( j
>(u32
)usableSize
){ j
= 0; }
7306 memcpy(&pTmp
[j
], &aData
[j
], usableSize
- j
);
7308 for(k
=0; pCArray
->ixNx
[k
]<=i
&& ALWAYS(k
<NB
*2); k
++){}
7309 pSrcEnd
= pCArray
->apEnd
[k
];
7312 while( 1/*exit by break*/ ){
7313 u8
*pCell
= pCArray
->apCell
[i
];
7314 u16 sz
= pCArray
->szCell
[i
];
7316 if( SQLITE_WITHIN(pCell
,aData
+j
,pEnd
) ){
7317 if( ((uptr
)(pCell
+sz
))>(uptr
)pEnd
) return SQLITE_CORRUPT_BKPT
;
7318 pCell
= &pTmp
[pCell
- aData
];
7319 }else if( (uptr
)(pCell
+sz
)>(uptr
)pSrcEnd
7320 && (uptr
)(pCell
)<(uptr
)pSrcEnd
7322 return SQLITE_CORRUPT_BKPT
;
7326 put2byte(pCellptr
, (pData
- aData
));
7328 if( pData
< pCellptr
) return SQLITE_CORRUPT_BKPT
;
7329 memmove(pData
, pCell
, sz
);
7330 assert( sz
==pPg
->xCellSize(pPg
, pCell
) || CORRUPT_DB
);
7332 if( i
>=iEnd
) break;
7333 if( pCArray
->ixNx
[k
]<=i
){
7335 pSrcEnd
= pCArray
->apEnd
[k
];
7339 /* The pPg->nFree field is now set incorrectly. The caller will fix it. */
7343 put2byte(&aData
[hdr
+1], 0);
7344 put2byte(&aData
[hdr
+3], pPg
->nCell
);
7345 put2byte(&aData
[hdr
+5], pData
- aData
);
7346 aData
[hdr
+7] = 0x00;
7351 ** The pCArray objects contains pointers to b-tree cells and the cell sizes.
7352 ** This function attempts to add the cells stored in the array to page pPg.
7353 ** If it cannot (because the page needs to be defragmented before the cells
7354 ** will fit), non-zero is returned. Otherwise, if the cells are added
7355 ** successfully, zero is returned.
7357 ** Argument pCellptr points to the first entry in the cell-pointer array
7358 ** (part of page pPg) to populate. After cell apCell[0] is written to the
7359 ** page body, a 16-bit offset is written to pCellptr. And so on, for each
7360 ** cell in the array. It is the responsibility of the caller to ensure
7361 ** that it is safe to overwrite this part of the cell-pointer array.
7363 ** When this function is called, *ppData points to the start of the
7364 ** content area on page pPg. If the size of the content area is extended,
7365 ** *ppData is updated to point to the new start of the content area
7366 ** before returning.
7368 ** Finally, argument pBegin points to the byte immediately following the
7369 ** end of the space required by this page for the cell-pointer area (for
7370 ** all cells - not just those inserted by the current call). If the content
7371 ** area must be extended to before this point in order to accomodate all
7372 ** cells in apCell[], then the cells do not fit and non-zero is returned.
7374 static int pageInsertArray(
7375 MemPage
*pPg
, /* Page to add cells to */
7376 u8
*pBegin
, /* End of cell-pointer array */
7377 u8
**ppData
, /* IN/OUT: Page content-area pointer */
7378 u8
*pCellptr
, /* Pointer to cell-pointer area */
7379 int iFirst
, /* Index of first cell to add */
7380 int nCell
, /* Number of cells to add to pPg */
7381 CellArray
*pCArray
/* Array of cells */
7383 int i
= iFirst
; /* Loop counter - cell index to insert */
7384 u8
*aData
= pPg
->aData
; /* Complete page */
7385 u8
*pData
= *ppData
; /* Content area. A subset of aData[] */
7386 int iEnd
= iFirst
+ nCell
; /* End of loop. One past last cell to ins */
7387 int k
; /* Current slot in pCArray->apEnd[] */
7388 u8
*pEnd
; /* Maximum extent of cell data */
7389 assert( CORRUPT_DB
|| pPg
->hdrOffset
==0 ); /* Never called on page 1 */
7390 if( iEnd
<=iFirst
) return 0;
7391 for(k
=0; pCArray
->ixNx
[k
]<=i
&& ALWAYS(k
<NB
*2); k
++){}
7392 pEnd
= pCArray
->apEnd
[k
];
7393 while( 1 /*Exit by break*/ ){
7396 assert( pCArray
->szCell
[i
]!=0 );
7397 sz
= pCArray
->szCell
[i
];
7398 if( (aData
[1]==0 && aData
[2]==0) || (pSlot
= pageFindSlot(pPg
,sz
,&rc
))==0 ){
7399 if( (pData
- pBegin
)<sz
) return 1;
7403 /* pSlot and pCArray->apCell[i] will never overlap on a well-formed
7404 ** database. But they might for a corrupt database. Hence use memmove()
7405 ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */
7406 assert( (pSlot
+sz
)<=pCArray
->apCell
[i
]
7407 || pSlot
>=(pCArray
->apCell
[i
]+sz
)
7409 if( (uptr
)(pCArray
->apCell
[i
]+sz
)>(uptr
)pEnd
7410 && (uptr
)(pCArray
->apCell
[i
])<(uptr
)pEnd
7412 assert( CORRUPT_DB
);
7413 (void)SQLITE_CORRUPT_BKPT
;
7416 memmove(pSlot
, pCArray
->apCell
[i
], sz
);
7417 put2byte(pCellptr
, (pSlot
- aData
));
7420 if( i
>=iEnd
) break;
7421 if( pCArray
->ixNx
[k
]<=i
){
7423 pEnd
= pCArray
->apEnd
[k
];
7431 ** The pCArray object contains pointers to b-tree cells and their sizes.
7433 ** This function adds the space associated with each cell in the array
7434 ** that is currently stored within the body of pPg to the pPg free-list.
7435 ** The cell-pointers and other fields of the page are not updated.
7437 ** This function returns the total number of cells added to the free-list.
7439 static int pageFreeArray(
7440 MemPage
*pPg
, /* Page to edit */
7441 int iFirst
, /* First cell to delete */
7442 int nCell
, /* Cells to delete */
7443 CellArray
*pCArray
/* Array of cells */
7445 u8
* const aData
= pPg
->aData
;
7446 u8
* const pEnd
= &aData
[pPg
->pBt
->usableSize
];
7447 u8
* const pStart
= &aData
[pPg
->hdrOffset
+ 8 + pPg
->childPtrSize
];
7450 int iEnd
= iFirst
+ nCell
;
7451 u8
*pFree
= 0; /* \__ Parameters for pending call to */
7452 int szFree
= 0; /* / freeSpace() */
7454 for(i
=iFirst
; i
<iEnd
; i
++){
7455 u8
*pCell
= pCArray
->apCell
[i
];
7456 if( SQLITE_WITHIN(pCell
, pStart
, pEnd
) ){
7458 /* No need to use cachedCellSize() here. The sizes of all cells that
7459 ** are to be freed have already been computing while deciding which
7460 ** cells need freeing */
7461 sz
= pCArray
->szCell
[i
]; assert( sz
>0 );
7462 if( pFree
!=(pCell
+ sz
) ){
7464 assert( pFree
>aData
&& (pFree
- aData
)<65536 );
7465 freeSpace(pPg
, (u16
)(pFree
- aData
), szFree
);
7469 if( pFree
+sz
>pEnd
){
7473 /* The current cell is adjacent to and before the pFree cell.
7474 ** Combine the two regions into one to reduce the number of calls
7475 ** to freeSpace(). */
7483 assert( pFree
>aData
&& (pFree
- aData
)<65536 );
7484 freeSpace(pPg
, (u16
)(pFree
- aData
), szFree
);
7490 ** pCArray contains pointers to and sizes of all cells in the page being
7491 ** balanced. The current page, pPg, has pPg->nCell cells starting with
7492 ** pCArray->apCell[iOld]. After balancing, this page should hold nNew cells
7493 ** starting at apCell[iNew].
7495 ** This routine makes the necessary adjustments to pPg so that it contains
7496 ** the correct cells after being balanced.
7498 ** The pPg->nFree field is invalid when this function returns. It is the
7499 ** responsibility of the caller to set it correctly.
7501 static int editPage(
7502 MemPage
*pPg
, /* Edit this page */
7503 int iOld
, /* Index of first cell currently on page */
7504 int iNew
, /* Index of new first cell on page */
7505 int nNew
, /* Final number of cells on page */
7506 CellArray
*pCArray
/* Array of cells and sizes */
7508 u8
* const aData
= pPg
->aData
;
7509 const int hdr
= pPg
->hdrOffset
;
7510 u8
*pBegin
= &pPg
->aCellIdx
[nNew
* 2];
7511 int nCell
= pPg
->nCell
; /* Cells stored on pPg */
7515 int iOldEnd
= iOld
+ pPg
->nCell
+ pPg
->nOverflow
;
7516 int iNewEnd
= iNew
+ nNew
;
7519 u8
*pTmp
= sqlite3PagerTempSpace(pPg
->pBt
->pPager
);
7520 memcpy(pTmp
, aData
, pPg
->pBt
->usableSize
);
7523 /* Remove cells from the start and end of the page */
7526 int nShift
= pageFreeArray(pPg
, iOld
, iNew
-iOld
, pCArray
);
7527 if( NEVER(nShift
>nCell
) ) return SQLITE_CORRUPT_BKPT
;
7528 memmove(pPg
->aCellIdx
, &pPg
->aCellIdx
[nShift
*2], nCell
*2);
7531 if( iNewEnd
< iOldEnd
){
7532 int nTail
= pageFreeArray(pPg
, iNewEnd
, iOldEnd
- iNewEnd
, pCArray
);
7533 assert( nCell
>=nTail
);
7537 pData
= &aData
[get2byteNotZero(&aData
[hdr
+5])];
7538 if( pData
<pBegin
) goto editpage_fail
;
7539 if( pData
>pPg
->aDataEnd
) goto editpage_fail
;
7541 /* Add cells to the start of the page */
7543 int nAdd
= MIN(nNew
,iOld
-iNew
);
7544 assert( (iOld
-iNew
)<nNew
|| nCell
==0 || CORRUPT_DB
);
7546 pCellptr
= pPg
->aCellIdx
;
7547 memmove(&pCellptr
[nAdd
*2], pCellptr
, nCell
*2);
7548 if( pageInsertArray(
7549 pPg
, pBegin
, &pData
, pCellptr
,
7551 ) ) goto editpage_fail
;
7555 /* Add any overflow cells */
7556 for(i
=0; i
<pPg
->nOverflow
; i
++){
7557 int iCell
= (iOld
+ pPg
->aiOvfl
[i
]) - iNew
;
7558 if( iCell
>=0 && iCell
<nNew
){
7559 pCellptr
= &pPg
->aCellIdx
[iCell
* 2];
7561 memmove(&pCellptr
[2], pCellptr
, (nCell
- iCell
) * 2);
7564 cachedCellSize(pCArray
, iCell
+iNew
);
7565 if( pageInsertArray(
7566 pPg
, pBegin
, &pData
, pCellptr
,
7567 iCell
+iNew
, 1, pCArray
7568 ) ) goto editpage_fail
;
7572 /* Append cells to the end of the page */
7574 pCellptr
= &pPg
->aCellIdx
[nCell
*2];
7575 if( pageInsertArray(
7576 pPg
, pBegin
, &pData
, pCellptr
,
7577 iNew
+nCell
, nNew
-nCell
, pCArray
7578 ) ) goto editpage_fail
;
7583 put2byte(&aData
[hdr
+3], pPg
->nCell
);
7584 put2byte(&aData
[hdr
+5], pData
- aData
);
7587 for(i
=0; i
<nNew
&& !CORRUPT_DB
; i
++){
7588 u8
*pCell
= pCArray
->apCell
[i
+iNew
];
7589 int iOff
= get2byteAligned(&pPg
->aCellIdx
[i
*2]);
7590 if( SQLITE_WITHIN(pCell
, aData
, &aData
[pPg
->pBt
->usableSize
]) ){
7591 pCell
= &pTmp
[pCell
- aData
];
7593 assert( 0==memcmp(pCell
, &aData
[iOff
],
7594 pCArray
->pRef
->xCellSize(pCArray
->pRef
, pCArray
->apCell
[i
+iNew
])) );
7600 /* Unable to edit this page. Rebuild it from scratch instead. */
7601 populateCellCache(pCArray
, iNew
, nNew
);
7602 return rebuildPage(pCArray
, iNew
, nNew
, pPg
);
7606 #ifndef SQLITE_OMIT_QUICKBALANCE
7608 ** This version of balance() handles the common special case where
7609 ** a new entry is being inserted on the extreme right-end of the
7610 ** tree, in other words, when the new entry will become the largest
7611 ** entry in the tree.
7613 ** Instead of trying to balance the 3 right-most leaf pages, just add
7614 ** a new page to the right-hand side and put the one new entry in
7615 ** that page. This leaves the right side of the tree somewhat
7616 ** unbalanced. But odds are that we will be inserting new entries
7617 ** at the end soon afterwards so the nearly empty page will quickly
7618 ** fill up. On average.
7620 ** pPage is the leaf page which is the right-most page in the tree.
7621 ** pParent is its parent. pPage must have a single overflow entry
7622 ** which is also the right-most entry on the page.
7624 ** The pSpace buffer is used to store a temporary copy of the divider
7625 ** cell that will be inserted into pParent. Such a cell consists of a 4
7626 ** byte page number followed by a variable length integer. In other
7627 ** words, at most 13 bytes. Hence the pSpace buffer must be at
7628 ** least 13 bytes in size.
7630 static int balance_quick(MemPage
*pParent
, MemPage
*pPage
, u8
*pSpace
){
7631 BtShared
*const pBt
= pPage
->pBt
; /* B-Tree Database */
7632 MemPage
*pNew
; /* Newly allocated page */
7633 int rc
; /* Return Code */
7634 Pgno pgnoNew
; /* Page number of pNew */
7636 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
7637 assert( sqlite3PagerIswriteable(pParent
->pDbPage
) );
7638 assert( pPage
->nOverflow
==1 );
7640 if( pPage
->nCell
==0 ) return SQLITE_CORRUPT_BKPT
; /* dbfuzz001.test */
7641 assert( pPage
->nFree
>=0 );
7642 assert( pParent
->nFree
>=0 );
7644 /* Allocate a new page. This page will become the right-sibling of
7645 ** pPage. Make the parent page writable, so that the new divider cell
7646 ** may be inserted. If both these operations are successful, proceed.
7648 rc
= allocateBtreePage(pBt
, &pNew
, &pgnoNew
, 0, 0);
7650 if( rc
==SQLITE_OK
){
7652 u8
*pOut
= &pSpace
[4];
7653 u8
*pCell
= pPage
->apOvfl
[0];
7654 u16 szCell
= pPage
->xCellSize(pPage
, pCell
);
7658 assert( sqlite3PagerIswriteable(pNew
->pDbPage
) );
7659 assert( CORRUPT_DB
|| pPage
->aData
[0]==(PTF_INTKEY
|PTF_LEAFDATA
|PTF_LEAF
) );
7660 zeroPage(pNew
, PTF_INTKEY
|PTF_LEAFDATA
|PTF_LEAF
);
7665 b
.apEnd
[0] = pPage
->aDataEnd
;
7667 rc
= rebuildPage(&b
, 0, 1, pNew
);
7672 pNew
->nFree
= pBt
->usableSize
- pNew
->cellOffset
- 2 - szCell
;
7674 /* If this is an auto-vacuum database, update the pointer map
7675 ** with entries for the new page, and any pointer from the
7676 ** cell on the page to an overflow page. If either of these
7677 ** operations fails, the return code is set, but the contents
7678 ** of the parent page are still manipulated by thh code below.
7679 ** That is Ok, at this point the parent page is guaranteed to
7680 ** be marked as dirty. Returning an error code will cause a
7681 ** rollback, undoing any changes made to the parent page.
7683 if( ISAUTOVACUUM(pBt
) ){
7684 ptrmapPut(pBt
, pgnoNew
, PTRMAP_BTREE
, pParent
->pgno
, &rc
);
7685 if( szCell
>pNew
->minLocal
){
7686 ptrmapPutOvflPtr(pNew
, pNew
, pCell
, &rc
);
7690 /* Create a divider cell to insert into pParent. The divider cell
7691 ** consists of a 4-byte page number (the page number of pPage) and
7692 ** a variable length key value (which must be the same value as the
7693 ** largest key on pPage).
7695 ** To find the largest key value on pPage, first find the right-most
7696 ** cell on pPage. The first two fields of this cell are the
7697 ** record-length (a variable length integer at most 32-bits in size)
7698 ** and the key value (a variable length integer, may have any value).
7699 ** The first of the while(...) loops below skips over the record-length
7700 ** field. The second while(...) loop copies the key value from the
7701 ** cell on pPage into the pSpace buffer.
7703 pCell
= findCell(pPage
, pPage
->nCell
-1);
7705 while( (*(pCell
++)&0x80) && pCell
<pStop
);
7707 while( ((*(pOut
++) = *(pCell
++))&0x80) && pCell
<pStop
);
7709 /* Insert the new divider cell into pParent. */
7710 if( rc
==SQLITE_OK
){
7711 rc
= insertCell(pParent
, pParent
->nCell
, pSpace
, (int)(pOut
-pSpace
),
7715 /* Set the right-child pointer of pParent to point to the new page. */
7716 put4byte(&pParent
->aData
[pParent
->hdrOffset
+8], pgnoNew
);
7718 /* Release the reference to the new page. */
7724 #endif /* SQLITE_OMIT_QUICKBALANCE */
7728 ** This function does not contribute anything to the operation of SQLite.
7729 ** it is sometimes activated temporarily while debugging code responsible
7730 ** for setting pointer-map entries.
7732 static int ptrmapCheckPages(MemPage
**apPage
, int nPage
){
7734 for(i
=0; i
<nPage
; i
++){
7737 MemPage
*pPage
= apPage
[i
];
7738 BtShared
*pBt
= pPage
->pBt
;
7739 assert( pPage
->isInit
);
7741 for(j
=0; j
<pPage
->nCell
; j
++){
7745 z
= findCell(pPage
, j
);
7746 pPage
->xParseCell(pPage
, z
, &info
);
7747 if( info
.nLocal
<info
.nPayload
){
7748 Pgno ovfl
= get4byte(&z
[info
.nSize
-4]);
7749 ptrmapGet(pBt
, ovfl
, &e
, &n
);
7750 assert( n
==pPage
->pgno
&& e
==PTRMAP_OVERFLOW1
);
7753 Pgno child
= get4byte(z
);
7754 ptrmapGet(pBt
, child
, &e
, &n
);
7755 assert( n
==pPage
->pgno
&& e
==PTRMAP_BTREE
);
7759 Pgno child
= get4byte(&pPage
->aData
[pPage
->hdrOffset
+8]);
7760 ptrmapGet(pBt
, child
, &e
, &n
);
7761 assert( n
==pPage
->pgno
&& e
==PTRMAP_BTREE
);
7769 ** This function is used to copy the contents of the b-tree node stored
7770 ** on page pFrom to page pTo. If page pFrom was not a leaf page, then
7771 ** the pointer-map entries for each child page are updated so that the
7772 ** parent page stored in the pointer map is page pTo. If pFrom contained
7773 ** any cells with overflow page pointers, then the corresponding pointer
7774 ** map entries are also updated so that the parent page is page pTo.
7776 ** If pFrom is currently carrying any overflow cells (entries in the
7777 ** MemPage.apOvfl[] array), they are not copied to pTo.
7779 ** Before returning, page pTo is reinitialized using btreeInitPage().
7781 ** The performance of this function is not critical. It is only used by
7782 ** the balance_shallower() and balance_deeper() procedures, neither of
7783 ** which are called often under normal circumstances.
7785 static void copyNodeContent(MemPage
*pFrom
, MemPage
*pTo
, int *pRC
){
7786 if( (*pRC
)==SQLITE_OK
){
7787 BtShared
* const pBt
= pFrom
->pBt
;
7788 u8
* const aFrom
= pFrom
->aData
;
7789 u8
* const aTo
= pTo
->aData
;
7790 int const iFromHdr
= pFrom
->hdrOffset
;
7791 int const iToHdr
= ((pTo
->pgno
==1) ? 100 : 0);
7796 assert( pFrom
->isInit
);
7797 assert( pFrom
->nFree
>=iToHdr
);
7798 assert( get2byte(&aFrom
[iFromHdr
+5]) <= (int)pBt
->usableSize
);
7800 /* Copy the b-tree node content from page pFrom to page pTo. */
7801 iData
= get2byte(&aFrom
[iFromHdr
+5]);
7802 memcpy(&aTo
[iData
], &aFrom
[iData
], pBt
->usableSize
-iData
);
7803 memcpy(&aTo
[iToHdr
], &aFrom
[iFromHdr
], pFrom
->cellOffset
+ 2*pFrom
->nCell
);
7805 /* Reinitialize page pTo so that the contents of the MemPage structure
7806 ** match the new data. The initialization of pTo can actually fail under
7807 ** fairly obscure circumstances, even though it is a copy of initialized
7811 rc
= btreeInitPage(pTo
);
7812 if( rc
==SQLITE_OK
) rc
= btreeComputeFreeSpace(pTo
);
7813 if( rc
!=SQLITE_OK
){
7818 /* If this is an auto-vacuum database, update the pointer-map entries
7819 ** for any b-tree or overflow pages that pTo now contains the pointers to.
7821 if( ISAUTOVACUUM(pBt
) ){
7822 *pRC
= setChildPtrmaps(pTo
);
7828 ** This routine redistributes cells on the iParentIdx'th child of pParent
7829 ** (hereafter "the page") and up to 2 siblings so that all pages have about the
7830 ** same amount of free space. Usually a single sibling on either side of the
7831 ** page are used in the balancing, though both siblings might come from one
7832 ** side if the page is the first or last child of its parent. If the page
7833 ** has fewer than 2 siblings (something which can only happen if the page
7834 ** is a root page or a child of a root page) then all available siblings
7835 ** participate in the balancing.
7837 ** The number of siblings of the page might be increased or decreased by
7838 ** one or two in an effort to keep pages nearly full but not over full.
7840 ** Note that when this routine is called, some of the cells on the page
7841 ** might not actually be stored in MemPage.aData[]. This can happen
7842 ** if the page is overfull. This routine ensures that all cells allocated
7843 ** to the page and its siblings fit into MemPage.aData[] before returning.
7845 ** In the course of balancing the page and its siblings, cells may be
7846 ** inserted into or removed from the parent page (pParent). Doing so
7847 ** may cause the parent page to become overfull or underfull. If this
7848 ** happens, it is the responsibility of the caller to invoke the correct
7849 ** balancing routine to fix this problem (see the balance() routine).
7851 ** If this routine fails for any reason, it might leave the database
7852 ** in a corrupted state. So if this routine fails, the database should
7855 ** The third argument to this function, aOvflSpace, is a pointer to a
7856 ** buffer big enough to hold one page. If while inserting cells into the parent
7857 ** page (pParent) the parent page becomes overfull, this buffer is
7858 ** used to store the parent's overflow cells. Because this function inserts
7859 ** a maximum of four divider cells into the parent page, and the maximum
7860 ** size of a cell stored within an internal node is always less than 1/4
7861 ** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
7862 ** enough for all overflow cells.
7864 ** If aOvflSpace is set to a null pointer, this function returns
7867 static int balance_nonroot(
7868 MemPage
*pParent
, /* Parent page of siblings being balanced */
7869 int iParentIdx
, /* Index of "the page" in pParent */
7870 u8
*aOvflSpace
, /* page-size bytes of space for parent ovfl */
7871 int isRoot
, /* True if pParent is a root-page */
7872 int bBulk
/* True if this call is part of a bulk load */
7874 BtShared
*pBt
; /* The whole database */
7875 int nMaxCells
= 0; /* Allocated size of apCell, szCell, aFrom. */
7876 int nNew
= 0; /* Number of pages in apNew[] */
7877 int nOld
; /* Number of pages in apOld[] */
7878 int i
, j
, k
; /* Loop counters */
7879 int nxDiv
; /* Next divider slot in pParent->aCell[] */
7880 int rc
= SQLITE_OK
; /* The return code */
7881 u16 leafCorrection
; /* 4 if pPage is a leaf. 0 if not */
7882 int leafData
; /* True if pPage is a leaf of a LEAFDATA tree */
7883 int usableSpace
; /* Bytes in pPage beyond the header */
7884 int pageFlags
; /* Value of pPage->aData[0] */
7885 int iSpace1
= 0; /* First unused byte of aSpace1[] */
7886 int iOvflSpace
= 0; /* First unused byte of aOvflSpace[] */
7887 int szScratch
; /* Size of scratch memory requested */
7888 MemPage
*apOld
[NB
]; /* pPage and up to two siblings */
7889 MemPage
*apNew
[NB
+2]; /* pPage and up to NB siblings after balancing */
7890 u8
*pRight
; /* Location in parent of right-sibling pointer */
7891 u8
*apDiv
[NB
-1]; /* Divider cells in pParent */
7892 int cntNew
[NB
+2]; /* Index in b.paCell[] of cell after i-th page */
7893 int cntOld
[NB
+2]; /* Old index in b.apCell[] */
7894 int szNew
[NB
+2]; /* Combined size of cells placed on i-th page */
7895 u8
*aSpace1
; /* Space for copies of dividers cells */
7896 Pgno pgno
; /* Temp var to store a page number in */
7897 u8 abDone
[NB
+2]; /* True after i'th new page is populated */
7898 Pgno aPgno
[NB
+2]; /* Page numbers of new pages before shuffling */
7899 CellArray b
; /* Parsed information on cells being balanced */
7901 memset(abDone
, 0, sizeof(abDone
));
7902 memset(&b
, 0, sizeof(b
));
7904 assert( sqlite3_mutex_held(pBt
->mutex
) );
7905 assert( sqlite3PagerIswriteable(pParent
->pDbPage
) );
7907 /* At this point pParent may have at most one overflow cell. And if
7908 ** this overflow cell is present, it must be the cell with
7909 ** index iParentIdx. This scenario comes about when this function
7910 ** is called (indirectly) from sqlite3BtreeDelete().
7912 assert( pParent
->nOverflow
==0 || pParent
->nOverflow
==1 );
7913 assert( pParent
->nOverflow
==0 || pParent
->aiOvfl
[0]==iParentIdx
);
7916 return SQLITE_NOMEM_BKPT
;
7918 assert( pParent
->nFree
>=0 );
7920 /* Find the sibling pages to balance. Also locate the cells in pParent
7921 ** that divide the siblings. An attempt is made to find NN siblings on
7922 ** either side of pPage. More siblings are taken from one side, however,
7923 ** if there are fewer than NN siblings on the other side. If pParent
7924 ** has NB or fewer children then all children of pParent are taken.
7926 ** This loop also drops the divider cells from the parent page. This
7927 ** way, the remainder of the function does not have to deal with any
7928 ** overflow cells in the parent page, since if any existed they will
7929 ** have already been removed.
7931 i
= pParent
->nOverflow
+ pParent
->nCell
;
7935 assert( bBulk
==0 || bBulk
==1 );
7936 if( iParentIdx
==0 ){
7938 }else if( iParentIdx
==i
){
7941 nxDiv
= iParentIdx
-1;
7946 if( (i
+nxDiv
-pParent
->nOverflow
)==pParent
->nCell
){
7947 pRight
= &pParent
->aData
[pParent
->hdrOffset
+8];
7949 pRight
= findCell(pParent
, i
+nxDiv
-pParent
->nOverflow
);
7951 pgno
= get4byte(pRight
);
7953 if( rc
==SQLITE_OK
){
7954 rc
= getAndInitPage(pBt
, pgno
, &apOld
[i
], 0, 0);
7957 memset(apOld
, 0, (i
+1)*sizeof(MemPage
*));
7958 goto balance_cleanup
;
7960 if( apOld
[i
]->nFree
<0 ){
7961 rc
= btreeComputeFreeSpace(apOld
[i
]);
7963 memset(apOld
, 0, (i
)*sizeof(MemPage
*));
7964 goto balance_cleanup
;
7967 nMaxCells
+= apOld
[i
]->nCell
+ ArraySize(pParent
->apOvfl
);
7968 if( (i
--)==0 ) break;
7970 if( pParent
->nOverflow
&& i
+nxDiv
==pParent
->aiOvfl
[0] ){
7971 apDiv
[i
] = pParent
->apOvfl
[0];
7972 pgno
= get4byte(apDiv
[i
]);
7973 szNew
[i
] = pParent
->xCellSize(pParent
, apDiv
[i
]);
7974 pParent
->nOverflow
= 0;
7976 apDiv
[i
] = findCell(pParent
, i
+nxDiv
-pParent
->nOverflow
);
7977 pgno
= get4byte(apDiv
[i
]);
7978 szNew
[i
] = pParent
->xCellSize(pParent
, apDiv
[i
]);
7980 /* Drop the cell from the parent page. apDiv[i] still points to
7981 ** the cell within the parent, even though it has been dropped.
7982 ** This is safe because dropping a cell only overwrites the first
7983 ** four bytes of it, and this function does not need the first
7984 ** four bytes of the divider cell. So the pointer is safe to use
7987 ** But not if we are in secure-delete mode. In secure-delete mode,
7988 ** the dropCell() routine will overwrite the entire cell with zeroes.
7989 ** In this case, temporarily copy the cell into the aOvflSpace[]
7990 ** buffer. It will be copied out again as soon as the aSpace[] buffer
7992 if( pBt
->btsFlags
& BTS_FAST_SECURE
){
7995 /* If the following if() condition is not true, the db is corrupted.
7996 ** The call to dropCell() below will detect this. */
7997 iOff
= SQLITE_PTR_TO_INT(apDiv
[i
]) - SQLITE_PTR_TO_INT(pParent
->aData
);
7998 if( (iOff
+szNew
[i
])<=(int)pBt
->usableSize
){
7999 memcpy(&aOvflSpace
[iOff
], apDiv
[i
], szNew
[i
]);
8000 apDiv
[i
] = &aOvflSpace
[apDiv
[i
]-pParent
->aData
];
8003 dropCell(pParent
, i
+nxDiv
-pParent
->nOverflow
, szNew
[i
], &rc
);
8007 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
8009 nMaxCells
= (nMaxCells
+ 3)&~3;
8012 ** Allocate space for memory structures
8015 nMaxCells
*sizeof(u8
*) /* b.apCell */
8016 + nMaxCells
*sizeof(u16
) /* b.szCell */
8017 + pBt
->pageSize
; /* aSpace1 */
8019 assert( szScratch
<=7*(int)pBt
->pageSize
);
8020 b
.apCell
= sqlite3StackAllocRaw(0, szScratch
);
8022 rc
= SQLITE_NOMEM_BKPT
;
8023 goto balance_cleanup
;
8025 b
.szCell
= (u16
*)&b
.apCell
[nMaxCells
];
8026 aSpace1
= (u8
*)&b
.szCell
[nMaxCells
];
8027 assert( EIGHT_BYTE_ALIGNMENT(aSpace1
) );
8030 ** Load pointers to all cells on sibling pages and the divider cells
8031 ** into the local b.apCell[] array. Make copies of the divider cells
8032 ** into space obtained from aSpace1[]. The divider cells have already
8033 ** been removed from pParent.
8035 ** If the siblings are on leaf pages, then the child pointers of the
8036 ** divider cells are stripped from the cells before they are copied
8037 ** into aSpace1[]. In this way, all cells in b.apCell[] are without
8038 ** child pointers. If siblings are not leaves, then all cell in
8039 ** b.apCell[] include child pointers. Either way, all cells in b.apCell[]
8042 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
8043 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
8046 leafCorrection
= b
.pRef
->leaf
*4;
8047 leafData
= b
.pRef
->intKeyLeaf
;
8048 for(i
=0; i
<nOld
; i
++){
8049 MemPage
*pOld
= apOld
[i
];
8050 int limit
= pOld
->nCell
;
8051 u8
*aData
= pOld
->aData
;
8052 u16 maskPage
= pOld
->maskPage
;
8053 u8
*piCell
= aData
+ pOld
->cellOffset
;
8055 VVA_ONLY( int nCellAtStart
= b
.nCell
; )
8057 /* Verify that all sibling pages are of the same "type" (table-leaf,
8058 ** table-interior, index-leaf, or index-interior).
8060 if( pOld
->aData
[0]!=apOld
[0]->aData
[0] ){
8061 rc
= SQLITE_CORRUPT_BKPT
;
8062 goto balance_cleanup
;
8065 /* Load b.apCell[] with pointers to all cells in pOld. If pOld
8066 ** contains overflow cells, include them in the b.apCell[] array
8067 ** in the correct spot.
8069 ** Note that when there are multiple overflow cells, it is always the
8070 ** case that they are sequential and adjacent. This invariant arises
8071 ** because multiple overflows can only occurs when inserting divider
8072 ** cells into a parent on a prior balance, and divider cells are always
8073 ** adjacent and are inserted in order. There is an assert() tagged
8074 ** with "NOTE 1" in the overflow cell insertion loop to prove this
8077 ** This must be done in advance. Once the balance starts, the cell
8078 ** offset section of the btree page will be overwritten and we will no
8079 ** long be able to find the cells if a pointer to each cell is not saved
8082 memset(&b
.szCell
[b
.nCell
], 0, sizeof(b
.szCell
[0])*(limit
+pOld
->nOverflow
));
8083 if( pOld
->nOverflow
>0 ){
8084 if( NEVER(limit
<pOld
->aiOvfl
[0]) ){
8085 rc
= SQLITE_CORRUPT_BKPT
;
8086 goto balance_cleanup
;
8088 limit
= pOld
->aiOvfl
[0];
8089 for(j
=0; j
<limit
; j
++){
8090 b
.apCell
[b
.nCell
] = aData
+ (maskPage
& get2byteAligned(piCell
));
8094 for(k
=0; k
<pOld
->nOverflow
; k
++){
8095 assert( k
==0 || pOld
->aiOvfl
[k
-1]+1==pOld
->aiOvfl
[k
] );/* NOTE 1 */
8096 b
.apCell
[b
.nCell
] = pOld
->apOvfl
[k
];
8100 piEnd
= aData
+ pOld
->cellOffset
+ 2*pOld
->nCell
;
8101 while( piCell
<piEnd
){
8102 assert( b
.nCell
<nMaxCells
);
8103 b
.apCell
[b
.nCell
] = aData
+ (maskPage
& get2byteAligned(piCell
));
8107 assert( (b
.nCell
-nCellAtStart
)==(pOld
->nCell
+pOld
->nOverflow
) );
8109 cntOld
[i
] = b
.nCell
;
8110 if( i
<nOld
-1 && !leafData
){
8111 u16 sz
= (u16
)szNew
[i
];
8113 assert( b
.nCell
<nMaxCells
);
8114 b
.szCell
[b
.nCell
] = sz
;
8115 pTemp
= &aSpace1
[iSpace1
];
8117 assert( sz
<=pBt
->maxLocal
+23 );
8118 assert( iSpace1
<= (int)pBt
->pageSize
);
8119 memcpy(pTemp
, apDiv
[i
], sz
);
8120 b
.apCell
[b
.nCell
] = pTemp
+leafCorrection
;
8121 assert( leafCorrection
==0 || leafCorrection
==4 );
8122 b
.szCell
[b
.nCell
] = b
.szCell
[b
.nCell
] - leafCorrection
;
8124 assert( leafCorrection
==0 );
8125 assert( pOld
->hdrOffset
==0 || CORRUPT_DB
);
8126 /* The right pointer of the child page pOld becomes the left
8127 ** pointer of the divider cell */
8128 memcpy(b
.apCell
[b
.nCell
], &pOld
->aData
[8], 4);
8130 assert( leafCorrection
==4 );
8131 while( b
.szCell
[b
.nCell
]<4 ){
8132 /* Do not allow any cells smaller than 4 bytes. If a smaller cell
8133 ** does exist, pad it with 0x00 bytes. */
8134 assert( b
.szCell
[b
.nCell
]==3 || CORRUPT_DB
);
8135 assert( b
.apCell
[b
.nCell
]==&aSpace1
[iSpace1
-3] || CORRUPT_DB
);
8136 aSpace1
[iSpace1
++] = 0x00;
8137 b
.szCell
[b
.nCell
]++;
8145 ** Figure out the number of pages needed to hold all b.nCell cells.
8146 ** Store this number in "k". Also compute szNew[] which is the total
8147 ** size of all cells on the i-th page and cntNew[] which is the index
8148 ** in b.apCell[] of the cell that divides page i from page i+1.
8149 ** cntNew[k] should equal b.nCell.
8151 ** Values computed by this block:
8153 ** k: The total number of sibling pages
8154 ** szNew[i]: Spaced used on the i-th sibling page.
8155 ** cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to
8156 ** the right of the i-th sibling page.
8157 ** usableSpace: Number of bytes of space available on each sibling.
8160 usableSpace
= pBt
->usableSize
- 12 + leafCorrection
;
8161 for(i
=k
=0; i
<nOld
; i
++, k
++){
8162 MemPage
*p
= apOld
[i
];
8163 b
.apEnd
[k
] = p
->aDataEnd
;
8164 b
.ixNx
[k
] = cntOld
[i
];
8165 if( k
&& b
.ixNx
[k
]==b
.ixNx
[k
-1] ){
8166 k
--; /* Omit b.ixNx[] entry for child pages with no cells */
8170 b
.apEnd
[k
] = pParent
->aDataEnd
;
8171 b
.ixNx
[k
] = cntOld
[i
]+1;
8173 assert( p
->nFree
>=0 );
8174 szNew
[i
] = usableSpace
- p
->nFree
;
8175 for(j
=0; j
<p
->nOverflow
; j
++){
8176 szNew
[i
] += 2 + p
->xCellSize(p
, p
->apOvfl
[j
]);
8178 cntNew
[i
] = cntOld
[i
];
8183 while( szNew
[i
]>usableSpace
){
8186 if( k
>NB
+2 ){ rc
= SQLITE_CORRUPT_BKPT
; goto balance_cleanup
; }
8188 cntNew
[k
-1] = b
.nCell
;
8190 sz
= 2 + cachedCellSize(&b
, cntNew
[i
]-1);
8193 if( cntNew
[i
]<b
.nCell
){
8194 sz
= 2 + cachedCellSize(&b
, cntNew
[i
]);
8202 while( cntNew
[i
]<b
.nCell
){
8203 sz
= 2 + cachedCellSize(&b
, cntNew
[i
]);
8204 if( szNew
[i
]+sz
>usableSpace
) break;
8208 if( cntNew
[i
]<b
.nCell
){
8209 sz
= 2 + cachedCellSize(&b
, cntNew
[i
]);
8216 if( cntNew
[i
]>=b
.nCell
){
8218 }else if( cntNew
[i
] <= (i
>0 ? cntNew
[i
-1] : 0) ){
8219 rc
= SQLITE_CORRUPT_BKPT
;
8220 goto balance_cleanup
;
8225 ** The packing computed by the previous block is biased toward the siblings
8226 ** on the left side (siblings with smaller keys). The left siblings are
8227 ** always nearly full, while the right-most sibling might be nearly empty.
8228 ** The next block of code attempts to adjust the packing of siblings to
8229 ** get a better balance.
8231 ** This adjustment is more than an optimization. The packing above might
8232 ** be so out of balance as to be illegal. For example, the right-most
8233 ** sibling might be completely empty. This adjustment is not optional.
8235 for(i
=k
-1; i
>0; i
--){
8236 int szRight
= szNew
[i
]; /* Size of sibling on the right */
8237 int szLeft
= szNew
[i
-1]; /* Size of sibling on the left */
8238 int r
; /* Index of right-most cell in left sibling */
8239 int d
; /* Index of first cell to the left of right sibling */
8241 r
= cntNew
[i
-1] - 1;
8242 d
= r
+ 1 - leafData
;
8243 (void)cachedCellSize(&b
, d
);
8246 assert( d
<nMaxCells
);
8247 assert( r
<nMaxCells
);
8248 szR
= cachedCellSize(&b
, r
);
8251 && (bBulk
|| szRight
+szD
+2 > szLeft
-(szR
+(i
==k
-1?0:2)))){
8261 szNew
[i
-1] = szLeft
;
8262 if( cntNew
[i
-1] <= (i
>1 ? cntNew
[i
-2] : 0) ){
8263 rc
= SQLITE_CORRUPT_BKPT
;
8264 goto balance_cleanup
;
8268 /* Sanity check: For a non-corrupt database file one of the follwing
8270 ** (1) We found one or more cells (cntNew[0])>0), or
8271 ** (2) pPage is a virtual root page. A virtual root page is when
8272 ** the real root page is page 1 and we are the only child of
8275 assert( cntNew
[0]>0 || (pParent
->pgno
==1 && pParent
->nCell
==0) || CORRUPT_DB
);
8276 TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n",
8277 apOld
[0]->pgno
, apOld
[0]->nCell
,
8278 nOld
>=2 ? apOld
[1]->pgno
: 0, nOld
>=2 ? apOld
[1]->nCell
: 0,
8279 nOld
>=3 ? apOld
[2]->pgno
: 0, nOld
>=3 ? apOld
[2]->nCell
: 0
8283 ** Allocate k new pages. Reuse old pages where possible.
8285 pageFlags
= apOld
[0]->aData
[0];
8289 pNew
= apNew
[i
] = apOld
[i
];
8291 rc
= sqlite3PagerWrite(pNew
->pDbPage
);
8293 if( sqlite3PagerPageRefcount(pNew
->pDbPage
)!=1+(i
==(iParentIdx
-nxDiv
))
8296 rc
= SQLITE_CORRUPT_BKPT
;
8298 if( rc
) goto balance_cleanup
;
8301 rc
= allocateBtreePage(pBt
, &pNew
, &pgno
, (bBulk
? 1 : pgno
), 0);
8302 if( rc
) goto balance_cleanup
;
8303 zeroPage(pNew
, pageFlags
);
8306 cntOld
[i
] = b
.nCell
;
8308 /* Set the pointer-map entry for the new sibling page. */
8309 if( ISAUTOVACUUM(pBt
) ){
8310 ptrmapPut(pBt
, pNew
->pgno
, PTRMAP_BTREE
, pParent
->pgno
, &rc
);
8311 if( rc
!=SQLITE_OK
){
8312 goto balance_cleanup
;
8319 ** Reassign page numbers so that the new pages are in ascending order.
8320 ** This helps to keep entries in the disk file in order so that a scan
8321 ** of the table is closer to a linear scan through the file. That in turn
8322 ** helps the operating system to deliver pages from the disk more rapidly.
8324 ** An O(N*N) sort algorithm is used, but since N is never more than NB+2
8325 ** (5), that is not a performance concern.
8327 ** When NB==3, this one optimization makes the database about 25% faster
8328 ** for large insertions and deletions.
8330 for(i
=0; i
<nNew
; i
++){
8331 aPgno
[i
] = apNew
[i
]->pgno
;
8332 assert( apNew
[i
]->pDbPage
->flags
& PGHDR_WRITEABLE
);
8333 assert( apNew
[i
]->pDbPage
->flags
& PGHDR_DIRTY
);
8335 for(i
=0; i
<nNew
-1; i
++){
8337 for(j
=i
+1; j
<nNew
; j
++){
8338 if( apNew
[j
]->pgno
< apNew
[iB
]->pgno
) iB
= j
;
8341 /* If apNew[i] has a page number that is bigger than any of the
8342 ** subsequence apNew[i] entries, then swap apNew[i] with the subsequent
8343 ** entry that has the smallest page number (which we know to be
8344 ** entry apNew[iB]).
8347 Pgno pgnoA
= apNew
[i
]->pgno
;
8348 Pgno pgnoB
= apNew
[iB
]->pgno
;
8349 Pgno pgnoTemp
= (PENDING_BYTE
/pBt
->pageSize
)+1;
8350 u16 fgA
= apNew
[i
]->pDbPage
->flags
;
8351 u16 fgB
= apNew
[iB
]->pDbPage
->flags
;
8352 sqlite3PagerRekey(apNew
[i
]->pDbPage
, pgnoTemp
, fgB
);
8353 sqlite3PagerRekey(apNew
[iB
]->pDbPage
, pgnoA
, fgA
);
8354 sqlite3PagerRekey(apNew
[i
]->pDbPage
, pgnoB
, fgB
);
8355 apNew
[i
]->pgno
= pgnoB
;
8356 apNew
[iB
]->pgno
= pgnoA
;
8360 TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) "
8361 "%d(%d nc=%d) %d(%d nc=%d)\n",
8362 apNew
[0]->pgno
, szNew
[0], cntNew
[0],
8363 nNew
>=2 ? apNew
[1]->pgno
: 0, nNew
>=2 ? szNew
[1] : 0,
8364 nNew
>=2 ? cntNew
[1] - cntNew
[0] - !leafData
: 0,
8365 nNew
>=3 ? apNew
[2]->pgno
: 0, nNew
>=3 ? szNew
[2] : 0,
8366 nNew
>=3 ? cntNew
[2] - cntNew
[1] - !leafData
: 0,
8367 nNew
>=4 ? apNew
[3]->pgno
: 0, nNew
>=4 ? szNew
[3] : 0,
8368 nNew
>=4 ? cntNew
[3] - cntNew
[2] - !leafData
: 0,
8369 nNew
>=5 ? apNew
[4]->pgno
: 0, nNew
>=5 ? szNew
[4] : 0,
8370 nNew
>=5 ? cntNew
[4] - cntNew
[3] - !leafData
: 0
8373 assert( sqlite3PagerIswriteable(pParent
->pDbPage
) );
8374 assert( nNew
>=1 && nNew
<=ArraySize(apNew
) );
8375 assert( apNew
[nNew
-1]!=0 );
8376 put4byte(pRight
, apNew
[nNew
-1]->pgno
);
8378 /* If the sibling pages are not leaves, ensure that the right-child pointer
8379 ** of the right-most new sibling page is set to the value that was
8380 ** originally in the same field of the right-most old sibling page. */
8381 if( (pageFlags
& PTF_LEAF
)==0 && nOld
!=nNew
){
8382 MemPage
*pOld
= (nNew
>nOld
? apNew
: apOld
)[nOld
-1];
8383 memcpy(&apNew
[nNew
-1]->aData
[8], &pOld
->aData
[8], 4);
8386 /* Make any required updates to pointer map entries associated with
8387 ** cells stored on sibling pages following the balance operation. Pointer
8388 ** map entries associated with divider cells are set by the insertCell()
8389 ** routine. The associated pointer map entries are:
8391 ** a) if the cell contains a reference to an overflow chain, the
8392 ** entry associated with the first page in the overflow chain, and
8394 ** b) if the sibling pages are not leaves, the child page associated
8397 ** If the sibling pages are not leaves, then the pointer map entry
8398 ** associated with the right-child of each sibling may also need to be
8399 ** updated. This happens below, after the sibling pages have been
8400 ** populated, not here.
8402 if( ISAUTOVACUUM(pBt
) ){
8404 MemPage
*pNew
= pOld
= apNew
[0];
8405 int cntOldNext
= pNew
->nCell
+ pNew
->nOverflow
;
8409 for(i
=0; i
<b
.nCell
; i
++){
8410 u8
*pCell
= b
.apCell
[i
];
8411 while( i
==cntOldNext
){
8413 assert( iOld
<nNew
|| iOld
<nOld
);
8414 assert( iOld
>=0 && iOld
<NB
);
8415 pOld
= iOld
<nNew
? apNew
[iOld
] : apOld
[iOld
];
8416 cntOldNext
+= pOld
->nCell
+ pOld
->nOverflow
+ !leafData
;
8418 if( i
==cntNew
[iNew
] ){
8419 pNew
= apNew
[++iNew
];
8420 if( !leafData
) continue;
8423 /* Cell pCell is destined for new sibling page pNew. Originally, it
8424 ** was either part of sibling page iOld (possibly an overflow cell),
8425 ** or else the divider cell to the left of sibling page iOld. So,
8426 ** if sibling page iOld had the same page number as pNew, and if
8427 ** pCell really was a part of sibling page iOld (not a divider or
8428 ** overflow cell), we can skip updating the pointer map entries. */
8430 || pNew
->pgno
!=aPgno
[iOld
]
8431 || !SQLITE_WITHIN(pCell
,pOld
->aData
,pOld
->aDataEnd
)
8433 if( !leafCorrection
){
8434 ptrmapPut(pBt
, get4byte(pCell
), PTRMAP_BTREE
, pNew
->pgno
, &rc
);
8436 if( cachedCellSize(&b
,i
)>pNew
->minLocal
){
8437 ptrmapPutOvflPtr(pNew
, pOld
, pCell
, &rc
);
8439 if( rc
) goto balance_cleanup
;
8444 /* Insert new divider cells into pParent. */
8445 for(i
=0; i
<nNew
-1; i
++){
8450 MemPage
*pNew
= apNew
[i
];
8453 assert( j
<nMaxCells
);
8454 assert( b
.apCell
[j
]!=0 );
8455 pCell
= b
.apCell
[j
];
8456 sz
= b
.szCell
[j
] + leafCorrection
;
8457 pTemp
= &aOvflSpace
[iOvflSpace
];
8459 memcpy(&pNew
->aData
[8], pCell
, 4);
8460 }else if( leafData
){
8461 /* If the tree is a leaf-data tree, and the siblings are leaves,
8462 ** then there is no divider cell in b.apCell[]. Instead, the divider
8463 ** cell consists of the integer key for the right-most cell of
8464 ** the sibling-page assembled above only.
8468 pNew
->xParseCell(pNew
, b
.apCell
[j
], &info
);
8470 sz
= 4 + putVarint(&pCell
[4], info
.nKey
);
8474 /* Obscure case for non-leaf-data trees: If the cell at pCell was
8475 ** previously stored on a leaf node, and its reported size was 4
8476 ** bytes, then it may actually be smaller than this
8477 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
8478 ** any cell). But it is important to pass the correct size to
8479 ** insertCell(), so reparse the cell now.
8481 ** This can only happen for b-trees used to evaluate "IN (SELECT ...)"
8482 ** and WITHOUT ROWID tables with exactly one column which is the
8485 if( b
.szCell
[j
]==4 ){
8486 assert(leafCorrection
==4);
8487 sz
= pParent
->xCellSize(pParent
, pCell
);
8491 assert( sz
<=pBt
->maxLocal
+23 );
8492 assert( iOvflSpace
<= (int)pBt
->pageSize
);
8493 for(k
=0; b
.ixNx
[k
]<=j
&& ALWAYS(k
<NB
*2); k
++){}
8494 pSrcEnd
= b
.apEnd
[k
];
8495 if( SQLITE_WITHIN(pSrcEnd
, pCell
, pCell
+sz
) ){
8496 rc
= SQLITE_CORRUPT_BKPT
;
8497 goto balance_cleanup
;
8499 rc
= insertCell(pParent
, nxDiv
+i
, pCell
, sz
, pTemp
, pNew
->pgno
);
8500 if( rc
!=SQLITE_OK
) goto balance_cleanup
;
8501 assert( sqlite3PagerIswriteable(pParent
->pDbPage
) );
8504 /* Now update the actual sibling pages. The order in which they are updated
8505 ** is important, as this code needs to avoid disrupting any page from which
8506 ** cells may still to be read. In practice, this means:
8508 ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1])
8509 ** then it is not safe to update page apNew[iPg] until after
8510 ** the left-hand sibling apNew[iPg-1] has been updated.
8512 ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1])
8513 ** then it is not safe to update page apNew[iPg] until after
8514 ** the right-hand sibling apNew[iPg+1] has been updated.
8516 ** If neither of the above apply, the page is safe to update.
8518 ** The iPg value in the following loop starts at nNew-1 goes down
8519 ** to 0, then back up to nNew-1 again, thus making two passes over
8520 ** the pages. On the initial downward pass, only condition (1) above
8521 ** needs to be tested because (2) will always be true from the previous
8522 ** step. On the upward pass, both conditions are always true, so the
8523 ** upwards pass simply processes pages that were missed on the downward
8526 for(i
=1-nNew
; i
<nNew
; i
++){
8527 int iPg
= i
<0 ? -i
: i
;
8528 assert( iPg
>=0 && iPg
<nNew
);
8529 if( abDone
[iPg
] ) continue; /* Skip pages already processed */
8530 if( i
>=0 /* On the upwards pass, or... */
8531 || cntOld
[iPg
-1]>=cntNew
[iPg
-1] /* Condition (1) is true */
8537 /* Verify condition (1): If cells are moving left, update iPg
8538 ** only after iPg-1 has already been updated. */
8539 assert( iPg
==0 || cntOld
[iPg
-1]>=cntNew
[iPg
-1] || abDone
[iPg
-1] );
8541 /* Verify condition (2): If cells are moving right, update iPg
8542 ** only after iPg+1 has already been updated. */
8543 assert( cntNew
[iPg
]>=cntOld
[iPg
] || abDone
[iPg
+1] );
8547 nNewCell
= cntNew
[0];
8549 iOld
= iPg
<nOld
? (cntOld
[iPg
-1] + !leafData
) : b
.nCell
;
8550 iNew
= cntNew
[iPg
-1] + !leafData
;
8551 nNewCell
= cntNew
[iPg
] - iNew
;
8554 rc
= editPage(apNew
[iPg
], iOld
, iNew
, nNewCell
, &b
);
8555 if( rc
) goto balance_cleanup
;
8557 apNew
[iPg
]->nFree
= usableSpace
-szNew
[iPg
];
8558 assert( apNew
[iPg
]->nOverflow
==0 );
8559 assert( apNew
[iPg
]->nCell
==nNewCell
);
8563 /* All pages have been processed exactly once */
8564 assert( memcmp(abDone
, "\01\01\01\01\01", nNew
)==0 );
8569 if( isRoot
&& pParent
->nCell
==0 && pParent
->hdrOffset
<=apNew
[0]->nFree
){
8570 /* The root page of the b-tree now contains no cells. The only sibling
8571 ** page is the right-child of the parent. Copy the contents of the
8572 ** child page into the parent, decreasing the overall height of the
8573 ** b-tree structure by one. This is described as the "balance-shallower"
8574 ** sub-algorithm in some documentation.
8576 ** If this is an auto-vacuum database, the call to copyNodeContent()
8577 ** sets all pointer-map entries corresponding to database image pages
8578 ** for which the pointer is stored within the content being copied.
8580 ** It is critical that the child page be defragmented before being
8581 ** copied into the parent, because if the parent is page 1 then it will
8582 ** by smaller than the child due to the database header, and so all the
8583 ** free space needs to be up front.
8585 assert( nNew
==1 || CORRUPT_DB
);
8586 rc
= defragmentPage(apNew
[0], -1);
8587 testcase( rc
!=SQLITE_OK
);
8588 assert( apNew
[0]->nFree
==
8589 (get2byteNotZero(&apNew
[0]->aData
[5]) - apNew
[0]->cellOffset
8590 - apNew
[0]->nCell
*2)
8593 copyNodeContent(apNew
[0], pParent
, &rc
);
8594 freePage(apNew
[0], &rc
);
8595 }else if( ISAUTOVACUUM(pBt
) && !leafCorrection
){
8596 /* Fix the pointer map entries associated with the right-child of each
8597 ** sibling page. All other pointer map entries have already been taken
8599 for(i
=0; i
<nNew
; i
++){
8600 u32 key
= get4byte(&apNew
[i
]->aData
[8]);
8601 ptrmapPut(pBt
, key
, PTRMAP_BTREE
, apNew
[i
]->pgno
, &rc
);
8605 assert( pParent
->isInit
);
8606 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
8607 nOld
, nNew
, b
.nCell
));
8609 /* Free any old pages that were not reused as new pages.
8611 for(i
=nNew
; i
<nOld
; i
++){
8612 freePage(apOld
[i
], &rc
);
8616 if( ISAUTOVACUUM(pBt
) && rc
==SQLITE_OK
&& apNew
[0]->isInit
){
8617 /* The ptrmapCheckPages() contains assert() statements that verify that
8618 ** all pointer map pages are set correctly. This is helpful while
8619 ** debugging. This is usually disabled because a corrupt database may
8620 ** cause an assert() statement to fail. */
8621 ptrmapCheckPages(apNew
, nNew
);
8622 ptrmapCheckPages(&pParent
, 1);
8627 ** Cleanup before returning.
8630 sqlite3StackFree(0, b
.apCell
);
8631 for(i
=0; i
<nOld
; i
++){
8632 releasePage(apOld
[i
]);
8634 for(i
=0; i
<nNew
; i
++){
8635 releasePage(apNew
[i
]);
8643 ** This function is called when the root page of a b-tree structure is
8644 ** overfull (has one or more overflow pages).
8646 ** A new child page is allocated and the contents of the current root
8647 ** page, including overflow cells, are copied into the child. The root
8648 ** page is then overwritten to make it an empty page with the right-child
8649 ** pointer pointing to the new page.
8651 ** Before returning, all pointer-map entries corresponding to pages
8652 ** that the new child-page now contains pointers to are updated. The
8653 ** entry corresponding to the new right-child pointer of the root
8654 ** page is also updated.
8656 ** If successful, *ppChild is set to contain a reference to the child
8657 ** page and SQLITE_OK is returned. In this case the caller is required
8658 ** to call releasePage() on *ppChild exactly once. If an error occurs,
8659 ** an error code is returned and *ppChild is set to 0.
8661 static int balance_deeper(MemPage
*pRoot
, MemPage
**ppChild
){
8662 int rc
; /* Return value from subprocedures */
8663 MemPage
*pChild
= 0; /* Pointer to a new child page */
8664 Pgno pgnoChild
= 0; /* Page number of the new child page */
8665 BtShared
*pBt
= pRoot
->pBt
; /* The BTree */
8667 assert( pRoot
->nOverflow
>0 );
8668 assert( sqlite3_mutex_held(pBt
->mutex
) );
8670 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
8671 ** page that will become the new right-child of pPage. Copy the contents
8672 ** of the node stored on pRoot into the new child page.
8674 rc
= sqlite3PagerWrite(pRoot
->pDbPage
);
8675 if( rc
==SQLITE_OK
){
8676 rc
= allocateBtreePage(pBt
,&pChild
,&pgnoChild
,pRoot
->pgno
,0);
8677 copyNodeContent(pRoot
, pChild
, &rc
);
8678 if( ISAUTOVACUUM(pBt
) ){
8679 ptrmapPut(pBt
, pgnoChild
, PTRMAP_BTREE
, pRoot
->pgno
, &rc
);
8684 releasePage(pChild
);
8687 assert( sqlite3PagerIswriteable(pChild
->pDbPage
) );
8688 assert( sqlite3PagerIswriteable(pRoot
->pDbPage
) );
8689 assert( pChild
->nCell
==pRoot
->nCell
|| CORRUPT_DB
);
8691 TRACE(("BALANCE: copy root %d into %d\n", pRoot
->pgno
, pChild
->pgno
));
8693 /* Copy the overflow cells from pRoot to pChild */
8694 memcpy(pChild
->aiOvfl
, pRoot
->aiOvfl
,
8695 pRoot
->nOverflow
*sizeof(pRoot
->aiOvfl
[0]));
8696 memcpy(pChild
->apOvfl
, pRoot
->apOvfl
,
8697 pRoot
->nOverflow
*sizeof(pRoot
->apOvfl
[0]));
8698 pChild
->nOverflow
= pRoot
->nOverflow
;
8700 /* Zero the contents of pRoot. Then install pChild as the right-child. */
8701 zeroPage(pRoot
, pChild
->aData
[0] & ~PTF_LEAF
);
8702 put4byte(&pRoot
->aData
[pRoot
->hdrOffset
+8], pgnoChild
);
8709 ** Return SQLITE_CORRUPT if any cursor other than pCur is currently valid
8710 ** on the same B-tree as pCur.
8712 ** This can occur if a database is corrupt with two or more SQL tables
8713 ** pointing to the same b-tree. If an insert occurs on one SQL table
8714 ** and causes a BEFORE TRIGGER to do a secondary insert on the other SQL
8715 ** table linked to the same b-tree. If the secondary insert causes a
8716 ** rebalance, that can change content out from under the cursor on the
8717 ** first SQL table, violating invariants on the first insert.
8719 static int anotherValidCursor(BtCursor
*pCur
){
8721 for(pOther
=pCur
->pBt
->pCursor
; pOther
; pOther
=pOther
->pNext
){
8723 && pOther
->eState
==CURSOR_VALID
8724 && pOther
->pPage
==pCur
->pPage
8726 return SQLITE_CORRUPT_BKPT
;
8733 ** The page that pCur currently points to has just been modified in
8734 ** some way. This function figures out if this modification means the
8735 ** tree needs to be balanced, and if so calls the appropriate balancing
8736 ** routine. Balancing routines are:
8740 ** balance_nonroot()
8742 static int balance(BtCursor
*pCur
){
8744 u8 aBalanceQuickSpace
[13];
8747 VVA_ONLY( int balance_quick_called
= 0 );
8748 VVA_ONLY( int balance_deeper_called
= 0 );
8752 MemPage
*pPage
= pCur
->pPage
;
8754 if( NEVER(pPage
->nFree
<0) && btreeComputeFreeSpace(pPage
) ) break;
8755 if( pPage
->nOverflow
==0 && pPage
->nFree
*3<=(int)pCur
->pBt
->usableSize
*2 ){
8756 /* No rebalance required as long as:
8757 ** (1) There are no overflow cells
8758 ** (2) The amount of free space on the page is less than 2/3rds of
8759 ** the total usable space on the page. */
8761 }else if( (iPage
= pCur
->iPage
)==0 ){
8762 if( pPage
->nOverflow
&& (rc
= anotherValidCursor(pCur
))==SQLITE_OK
){
8763 /* The root page of the b-tree is overfull. In this case call the
8764 ** balance_deeper() function to create a new child for the root-page
8765 ** and copy the current contents of the root-page to it. The
8766 ** next iteration of the do-loop will balance the child page.
8768 assert( balance_deeper_called
==0 );
8769 VVA_ONLY( balance_deeper_called
++ );
8770 rc
= balance_deeper(pPage
, &pCur
->apPage
[1]);
8771 if( rc
==SQLITE_OK
){
8775 pCur
->apPage
[0] = pPage
;
8776 pCur
->pPage
= pCur
->apPage
[1];
8777 assert( pCur
->pPage
->nOverflow
);
8782 }else if( sqlite3PagerPageRefcount(pPage
->pDbPage
)>1 ){
8783 /* The page being written is not a root page, and there is currently
8784 ** more than one reference to it. This only happens if the page is one
8785 ** of its own ancestor pages. Corruption. */
8786 rc
= SQLITE_CORRUPT_BKPT
;
8788 MemPage
* const pParent
= pCur
->apPage
[iPage
-1];
8789 int const iIdx
= pCur
->aiIdx
[iPage
-1];
8791 rc
= sqlite3PagerWrite(pParent
->pDbPage
);
8792 if( rc
==SQLITE_OK
&& pParent
->nFree
<0 ){
8793 rc
= btreeComputeFreeSpace(pParent
);
8795 if( rc
==SQLITE_OK
){
8796 #ifndef SQLITE_OMIT_QUICKBALANCE
8797 if( pPage
->intKeyLeaf
8798 && pPage
->nOverflow
==1
8799 && pPage
->aiOvfl
[0]==pPage
->nCell
8801 && pParent
->nCell
==iIdx
8803 /* Call balance_quick() to create a new sibling of pPage on which
8804 ** to store the overflow cell. balance_quick() inserts a new cell
8805 ** into pParent, which may cause pParent overflow. If this
8806 ** happens, the next iteration of the do-loop will balance pParent
8807 ** use either balance_nonroot() or balance_deeper(). Until this
8808 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
8811 ** The purpose of the following assert() is to check that only a
8812 ** single call to balance_quick() is made for each call to this
8813 ** function. If this were not verified, a subtle bug involving reuse
8814 ** of the aBalanceQuickSpace[] might sneak in.
8816 assert( balance_quick_called
==0 );
8817 VVA_ONLY( balance_quick_called
++ );
8818 rc
= balance_quick(pParent
, pPage
, aBalanceQuickSpace
);
8822 /* In this case, call balance_nonroot() to redistribute cells
8823 ** between pPage and up to 2 of its sibling pages. This involves
8824 ** modifying the contents of pParent, which may cause pParent to
8825 ** become overfull or underfull. The next iteration of the do-loop
8826 ** will balance the parent page to correct this.
8828 ** If the parent page becomes overfull, the overflow cell or cells
8829 ** are stored in the pSpace buffer allocated immediately below.
8830 ** A subsequent iteration of the do-loop will deal with this by
8831 ** calling balance_nonroot() (balance_deeper() may be called first,
8832 ** but it doesn't deal with overflow cells - just moves them to a
8833 ** different page). Once this subsequent call to balance_nonroot()
8834 ** has completed, it is safe to release the pSpace buffer used by
8835 ** the previous call, as the overflow cell data will have been
8836 ** copied either into the body of a database page or into the new
8837 ** pSpace buffer passed to the latter call to balance_nonroot().
8839 u8
*pSpace
= sqlite3PageMalloc(pCur
->pBt
->pageSize
);
8840 rc
= balance_nonroot(pParent
, iIdx
, pSpace
, iPage
==1,
8841 pCur
->hints
&BTREE_BULKLOAD
);
8843 /* If pFree is not NULL, it points to the pSpace buffer used
8844 ** by a previous call to balance_nonroot(). Its contents are
8845 ** now stored either on real database pages or within the
8846 ** new pSpace buffer, so it may be safely freed here. */
8847 sqlite3PageFree(pFree
);
8850 /* The pSpace buffer will be freed after the next call to
8851 ** balance_nonroot(), or just before this function returns, whichever
8857 pPage
->nOverflow
= 0;
8859 /* The next iteration of the do-loop balances the parent page. */
8862 assert( pCur
->iPage
>=0 );
8863 pCur
->pPage
= pCur
->apPage
[pCur
->iPage
];
8865 }while( rc
==SQLITE_OK
);
8868 sqlite3PageFree(pFree
);
8873 /* Overwrite content from pX into pDest. Only do the write if the
8874 ** content is different from what is already there.
8876 static int btreeOverwriteContent(
8877 MemPage
*pPage
, /* MemPage on which writing will occur */
8878 u8
*pDest
, /* Pointer to the place to start writing */
8879 const BtreePayload
*pX
, /* Source of data to write */
8880 int iOffset
, /* Offset of first byte to write */
8881 int iAmt
/* Number of bytes to be written */
8883 int nData
= pX
->nData
- iOffset
;
8885 /* Overwritting with zeros */
8887 for(i
=0; i
<iAmt
&& pDest
[i
]==0; i
++){}
8889 int rc
= sqlite3PagerWrite(pPage
->pDbPage
);
8891 memset(pDest
+ i
, 0, iAmt
- i
);
8895 /* Mixed read data and zeros at the end. Make a recursive call
8896 ** to write the zeros then fall through to write the real data */
8897 int rc
= btreeOverwriteContent(pPage
, pDest
+nData
, pX
, iOffset
+nData
,
8902 if( memcmp(pDest
, ((u8
*)pX
->pData
) + iOffset
, iAmt
)!=0 ){
8903 int rc
= sqlite3PagerWrite(pPage
->pDbPage
);
8905 /* In a corrupt database, it is possible for the source and destination
8906 ** buffers to overlap. This is harmless since the database is already
8907 ** corrupt but it does cause valgrind and ASAN warnings. So use
8909 memmove(pDest
, ((u8
*)pX
->pData
) + iOffset
, iAmt
);
8916 ** Overwrite the cell that cursor pCur is pointing to with fresh content
8917 ** contained in pX. In this variant, pCur is pointing to an overflow
8920 static SQLITE_NOINLINE
int btreeOverwriteOverflowCell(
8921 BtCursor
*pCur
, /* Cursor pointing to cell to ovewrite */
8922 const BtreePayload
*pX
/* Content to write into the cell */
8924 int iOffset
; /* Next byte of pX->pData to write */
8925 int nTotal
= pX
->nData
+ pX
->nZero
; /* Total bytes of to write */
8926 int rc
; /* Return code */
8927 MemPage
*pPage
= pCur
->pPage
; /* Page being written */
8928 BtShared
*pBt
; /* Btree */
8929 Pgno ovflPgno
; /* Next overflow page to write */
8930 u32 ovflPageSize
; /* Size to write on overflow page */
8932 assert( pCur
->info
.nLocal
<nTotal
); /* pCur is an overflow cell */
8934 /* Overwrite the local portion first */
8935 rc
= btreeOverwriteContent(pPage
, pCur
->info
.pPayload
, pX
,
8936 0, pCur
->info
.nLocal
);
8939 /* Now overwrite the overflow pages */
8940 iOffset
= pCur
->info
.nLocal
;
8941 assert( nTotal
>=0 );
8942 assert( iOffset
>=0 );
8943 ovflPgno
= get4byte(pCur
->info
.pPayload
+ iOffset
);
8945 ovflPageSize
= pBt
->usableSize
- 4;
8947 rc
= btreeGetPage(pBt
, ovflPgno
, &pPage
, 0);
8949 if( sqlite3PagerPageRefcount(pPage
->pDbPage
)!=1 || pPage
->isInit
){
8950 rc
= SQLITE_CORRUPT_BKPT
;
8952 if( iOffset
+ovflPageSize
<(u32
)nTotal
){
8953 ovflPgno
= get4byte(pPage
->aData
);
8955 ovflPageSize
= nTotal
- iOffset
;
8957 rc
= btreeOverwriteContent(pPage
, pPage
->aData
+4, pX
,
8958 iOffset
, ovflPageSize
);
8960 sqlite3PagerUnref(pPage
->pDbPage
);
8962 iOffset
+= ovflPageSize
;
8963 }while( iOffset
<nTotal
);
8968 ** Overwrite the cell that cursor pCur is pointing to with fresh content
8971 static int btreeOverwriteCell(BtCursor
*pCur
, const BtreePayload
*pX
){
8972 int nTotal
= pX
->nData
+ pX
->nZero
; /* Total bytes of to write */
8973 MemPage
*pPage
= pCur
->pPage
; /* Page being written */
8975 if( pCur
->info
.pPayload
+ pCur
->info
.nLocal
> pPage
->aDataEnd
8976 || pCur
->info
.pPayload
< pPage
->aData
+ pPage
->cellOffset
8978 return SQLITE_CORRUPT_BKPT
;
8980 if( pCur
->info
.nLocal
==nTotal
){
8981 /* The entire cell is local */
8982 return btreeOverwriteContent(pPage
, pCur
->info
.pPayload
, pX
,
8983 0, pCur
->info
.nLocal
);
8985 /* The cell contains overflow content */
8986 return btreeOverwriteOverflowCell(pCur
, pX
);
8992 ** Insert a new record into the BTree. The content of the new record
8993 ** is described by the pX object. The pCur cursor is used only to
8994 ** define what table the record should be inserted into, and is left
8995 ** pointing at a random location.
8997 ** For a table btree (used for rowid tables), only the pX.nKey value of
8998 ** the key is used. The pX.pKey value must be NULL. The pX.nKey is the
8999 ** rowid or INTEGER PRIMARY KEY of the row. The pX.nData,pData,nZero fields
9000 ** hold the content of the row.
9002 ** For an index btree (used for indexes and WITHOUT ROWID tables), the
9003 ** key is an arbitrary byte sequence stored in pX.pKey,nKey. The
9004 ** pX.pData,nData,nZero fields must be zero.
9006 ** If the seekResult parameter is non-zero, then a successful call to
9007 ** sqlite3BtreeIndexMoveto() to seek cursor pCur to (pKey,nKey) has already
9008 ** been performed. In other words, if seekResult!=0 then the cursor
9009 ** is currently pointing to a cell that will be adjacent to the cell
9010 ** to be inserted. If seekResult<0 then pCur points to a cell that is
9011 ** smaller then (pKey,nKey). If seekResult>0 then pCur points to a cell
9012 ** that is larger than (pKey,nKey).
9014 ** If seekResult==0, that means pCur is pointing at some unknown location.
9015 ** In that case, this routine must seek the cursor to the correct insertion
9016 ** point for (pKey,nKey) before doing the insertion. For index btrees,
9017 ** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked
9018 ** key values and pX->aMem can be used instead of pX->pKey to avoid having
9019 ** to decode the key.
9021 int sqlite3BtreeInsert(
9022 BtCursor
*pCur
, /* Insert data into the table of this cursor */
9023 const BtreePayload
*pX
, /* Content of the row to be inserted */
9024 int flags
, /* True if this is likely an append */
9025 int seekResult
/* Result of prior IndexMoveto() call */
9028 int loc
= seekResult
; /* -1: before desired location +1: after */
9032 Btree
*p
= pCur
->pBtree
;
9033 unsigned char *oldCell
;
9034 unsigned char *newCell
= 0;
9036 assert( (flags
& (BTREE_SAVEPOSITION
|BTREE_APPEND
|BTREE_PREFORMAT
))==flags
);
9037 assert( (flags
& BTREE_PREFORMAT
)==0 || seekResult
|| pCur
->pKeyInfo
==0 );
9039 /* Save the positions of any other cursors open on this table.
9041 ** In some cases, the call to btreeMoveto() below is a no-op. For
9042 ** example, when inserting data into a table with auto-generated integer
9043 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
9044 ** integer key to use. It then calls this function to actually insert the
9045 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
9046 ** that the cursor is already where it needs to be and returns without
9047 ** doing any work. To avoid thwarting these optimizations, it is important
9048 ** not to clear the cursor here.
9050 if( pCur
->curFlags
& BTCF_Multiple
){
9051 rc
= saveAllCursors(p
->pBt
, pCur
->pgnoRoot
, pCur
);
9053 if( loc
&& pCur
->iPage
<0 ){
9054 /* This can only happen if the schema is corrupt such that there is more
9055 ** than one table or index with the same root page as used by the cursor.
9056 ** Which can only happen if the SQLITE_NoSchemaError flag was set when
9057 ** the schema was loaded. This cannot be asserted though, as a user might
9058 ** set the flag, load the schema, and then unset the flag. */
9059 return SQLITE_CORRUPT_BKPT
;
9063 /* Ensure that the cursor is not in the CURSOR_FAULT state and that it
9064 ** points to a valid cell.
9066 if( pCur
->eState
>=CURSOR_REQUIRESEEK
){
9067 testcase( pCur
->eState
==CURSOR_REQUIRESEEK
);
9068 testcase( pCur
->eState
==CURSOR_FAULT
);
9069 rc
= moveToRoot(pCur
);
9070 if( rc
&& rc
!=SQLITE_EMPTY
) return rc
;
9073 assert( cursorOwnsBtShared(pCur
) );
9074 assert( (pCur
->curFlags
& BTCF_WriteFlag
)!=0
9075 && p
->pBt
->inTransaction
==TRANS_WRITE
9076 && (p
->pBt
->btsFlags
& BTS_READ_ONLY
)==0 );
9077 assert( hasSharedCacheTableLock(p
, pCur
->pgnoRoot
, pCur
->pKeyInfo
!=0, 2) );
9079 /* Assert that the caller has been consistent. If this cursor was opened
9080 ** expecting an index b-tree, then the caller should be inserting blob
9081 ** keys with no associated data. If the cursor was opened expecting an
9082 ** intkey table, the caller should be inserting integer keys with a
9083 ** blob of associated data. */
9084 assert( (flags
& BTREE_PREFORMAT
) || (pX
->pKey
==0)==(pCur
->pKeyInfo
==0) );
9086 if( pCur
->pKeyInfo
==0 ){
9087 assert( pX
->pKey
==0 );
9088 /* If this is an insert into a table b-tree, invalidate any incrblob
9089 ** cursors open on the row being replaced */
9090 if( p
->hasIncrblobCur
){
9091 invalidateIncrblobCursors(p
, pCur
->pgnoRoot
, pX
->nKey
, 0);
9094 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
9095 ** to a row with the same key as the new entry being inserted.
9098 if( flags
& BTREE_SAVEPOSITION
){
9099 assert( pCur
->curFlags
& BTCF_ValidNKey
);
9100 assert( pX
->nKey
==pCur
->info
.nKey
);
9105 /* On the other hand, BTREE_SAVEPOSITION==0 does not imply
9106 ** that the cursor is not pointing to a row to be overwritten.
9107 ** So do a complete check.
9109 if( (pCur
->curFlags
&BTCF_ValidNKey
)!=0 && pX
->nKey
==pCur
->info
.nKey
){
9110 /* The cursor is pointing to the entry that is to be
9112 assert( pX
->nData
>=0 && pX
->nZero
>=0 );
9113 if( pCur
->info
.nSize
!=0
9114 && pCur
->info
.nPayload
==(u32
)pX
->nData
+pX
->nZero
9116 /* New entry is the same size as the old. Do an overwrite */
9117 return btreeOverwriteCell(pCur
, pX
);
9121 /* The cursor is *not* pointing to the cell to be overwritten, nor
9122 ** to an adjacent cell. Move the cursor so that it is pointing either
9123 ** to the cell to be overwritten or an adjacent cell.
9125 rc
= sqlite3BtreeTableMoveto(pCur
, pX
->nKey
,
9126 (flags
& BTREE_APPEND
)!=0, &loc
);
9130 /* This is an index or a WITHOUT ROWID table */
9132 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
9133 ** to a row with the same key as the new entry being inserted.
9135 assert( (flags
& BTREE_SAVEPOSITION
)==0 || loc
==0 );
9137 /* If the cursor is not already pointing either to the cell to be
9138 ** overwritten, or if a new cell is being inserted, if the cursor is
9139 ** not pointing to an immediately adjacent cell, then move the cursor
9142 if( loc
==0 && (flags
& BTREE_SAVEPOSITION
)==0 ){
9145 r
.pKeyInfo
= pCur
->pKeyInfo
;
9147 r
.nField
= pX
->nMem
;
9150 rc
= sqlite3BtreeIndexMoveto(pCur
, &r
, &loc
);
9152 rc
= btreeMoveto(pCur
, pX
->pKey
, pX
->nKey
,
9153 (flags
& BTREE_APPEND
)!=0, &loc
);
9158 /* If the cursor is currently pointing to an entry to be overwritten
9159 ** and the new content is the same as as the old, then use the
9160 ** overwrite optimization.
9164 if( pCur
->info
.nKey
==pX
->nKey
){
9166 x2
.pData
= pX
->pKey
;
9167 x2
.nData
= pX
->nKey
;
9169 return btreeOverwriteCell(pCur
, &x2
);
9173 assert( pCur
->eState
==CURSOR_VALID
9174 || (pCur
->eState
==CURSOR_INVALID
&& loc
) );
9176 pPage
= pCur
->pPage
;
9177 assert( pPage
->intKey
|| pX
->nKey
>=0 || (flags
& BTREE_PREFORMAT
) );
9178 assert( pPage
->leaf
|| !pPage
->intKey
);
9179 if( pPage
->nFree
<0 ){
9180 if( NEVER(pCur
->eState
>CURSOR_INVALID
) ){
9181 /* ^^^^^--- due to the moveToRoot() call above */
9182 rc
= SQLITE_CORRUPT_BKPT
;
9184 rc
= btreeComputeFreeSpace(pPage
);
9189 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
9190 pCur
->pgnoRoot
, pX
->nKey
, pX
->nData
, pPage
->pgno
,
9191 loc
==0 ? "overwrite" : "new entry"));
9192 assert( pPage
->isInit
|| CORRUPT_DB
);
9193 newCell
= p
->pBt
->pTmpSpace
;
9194 assert( newCell
!=0 );
9195 assert( BTREE_PREFORMAT
==OPFLAG_PREFORMAT
);
9196 if( flags
& BTREE_PREFORMAT
){
9198 szNew
= p
->pBt
->nPreformatSize
;
9199 if( szNew
<4 ) szNew
= 4;
9200 if( ISAUTOVACUUM(p
->pBt
) && szNew
>pPage
->maxLocal
){
9202 pPage
->xParseCell(pPage
, newCell
, &info
);
9203 if( info
.nPayload
!=info
.nLocal
){
9204 Pgno ovfl
= get4byte(&newCell
[szNew
-4]);
9205 ptrmapPut(p
->pBt
, ovfl
, PTRMAP_OVERFLOW1
, pPage
->pgno
, &rc
);
9206 if( NEVER(rc
) ) goto end_insert
;
9210 rc
= fillInCell(pPage
, newCell
, pX
, &szNew
);
9211 if( rc
) goto end_insert
;
9213 assert( szNew
==pPage
->xCellSize(pPage
, newCell
) );
9214 assert( szNew
<= MX_CELL_SIZE(p
->pBt
) );
9219 if( idx
>=pPage
->nCell
){
9220 return SQLITE_CORRUPT_BKPT
;
9222 rc
= sqlite3PagerWrite(pPage
->pDbPage
);
9226 oldCell
= findCell(pPage
, idx
);
9228 memcpy(newCell
, oldCell
, 4);
9230 BTREE_CLEAR_CELL(rc
, pPage
, oldCell
, info
);
9231 testcase( pCur
->curFlags
& BTCF_ValidOvfl
);
9232 invalidateOverflowCache(pCur
);
9233 if( info
.nSize
==szNew
&& info
.nLocal
==info
.nPayload
9234 && (!ISAUTOVACUUM(p
->pBt
) || szNew
<pPage
->minLocal
)
9236 /* Overwrite the old cell with the new if they are the same size.
9237 ** We could also try to do this if the old cell is smaller, then add
9238 ** the leftover space to the free list. But experiments show that
9239 ** doing that is no faster then skipping this optimization and just
9240 ** calling dropCell() and insertCell().
9242 ** This optimization cannot be used on an autovacuum database if the
9243 ** new entry uses overflow pages, as the insertCell() call below is
9244 ** necessary to add the PTRMAP_OVERFLOW1 pointer-map entry. */
9245 assert( rc
==SQLITE_OK
); /* clearCell never fails when nLocal==nPayload */
9246 if( oldCell
< pPage
->aData
+pPage
->hdrOffset
+10 ){
9247 return SQLITE_CORRUPT_BKPT
;
9249 if( oldCell
+szNew
> pPage
->aDataEnd
){
9250 return SQLITE_CORRUPT_BKPT
;
9252 memcpy(oldCell
, newCell
, szNew
);
9255 dropCell(pPage
, idx
, info
.nSize
, &rc
);
9256 if( rc
) goto end_insert
;
9257 }else if( loc
<0 && pPage
->nCell
>0 ){
9258 assert( pPage
->leaf
);
9260 pCur
->curFlags
&= ~BTCF_ValidNKey
;
9262 assert( pPage
->leaf
);
9264 rc
= insertCell(pPage
, idx
, newCell
, szNew
, 0, 0);
9265 assert( pPage
->nOverflow
==0 || rc
==SQLITE_OK
);
9266 assert( rc
!=SQLITE_OK
|| pPage
->nCell
>0 || pPage
->nOverflow
>0 );
9268 /* If no error has occurred and pPage has an overflow cell, call balance()
9269 ** to redistribute the cells within the tree. Since balance() may move
9270 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
9273 ** Previous versions of SQLite called moveToRoot() to move the cursor
9274 ** back to the root page as balance() used to invalidate the contents
9275 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
9276 ** set the cursor state to "invalid". This makes common insert operations
9279 ** There is a subtle but important optimization here too. When inserting
9280 ** multiple records into an intkey b-tree using a single cursor (as can
9281 ** happen while processing an "INSERT INTO ... SELECT" statement), it
9282 ** is advantageous to leave the cursor pointing to the last entry in
9283 ** the b-tree if possible. If the cursor is left pointing to the last
9284 ** entry in the table, and the next row inserted has an integer key
9285 ** larger than the largest existing key, it is possible to insert the
9286 ** row without seeking the cursor. This can be a big performance boost.
9288 pCur
->info
.nSize
= 0;
9289 if( pPage
->nOverflow
){
9290 assert( rc
==SQLITE_OK
);
9291 pCur
->curFlags
&= ~(BTCF_ValidNKey
);
9294 /* Must make sure nOverflow is reset to zero even if the balance()
9295 ** fails. Internal data structure corruption will result otherwise.
9296 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
9297 ** from trying to save the current position of the cursor. */
9298 pCur
->pPage
->nOverflow
= 0;
9299 pCur
->eState
= CURSOR_INVALID
;
9300 if( (flags
& BTREE_SAVEPOSITION
) && rc
==SQLITE_OK
){
9301 btreeReleaseAllCursorPages(pCur
);
9302 if( pCur
->pKeyInfo
){
9303 assert( pCur
->pKey
==0 );
9304 pCur
->pKey
= sqlite3Malloc( pX
->nKey
);
9305 if( pCur
->pKey
==0 ){
9308 memcpy(pCur
->pKey
, pX
->pKey
, pX
->nKey
);
9311 pCur
->eState
= CURSOR_REQUIRESEEK
;
9312 pCur
->nKey
= pX
->nKey
;
9315 assert( pCur
->iPage
<0 || pCur
->pPage
->nOverflow
==0 );
9322 ** This function is used as part of copying the current row from cursor
9323 ** pSrc into cursor pDest. If the cursors are open on intkey tables, then
9324 ** parameter iKey is used as the rowid value when the record is copied
9325 ** into pDest. Otherwise, the record is copied verbatim.
9327 ** This function does not actually write the new value to cursor pDest.
9328 ** Instead, it creates and populates any required overflow pages and
9329 ** writes the data for the new cell into the BtShared.pTmpSpace buffer
9330 ** for the destination database. The size of the cell, in bytes, is left
9331 ** in BtShared.nPreformatSize. The caller completes the insertion by
9332 ** calling sqlite3BtreeInsert() with the BTREE_PREFORMAT flag specified.
9334 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
9336 int sqlite3BtreeTransferRow(BtCursor
*pDest
, BtCursor
*pSrc
, i64 iKey
){
9337 BtShared
*pBt
= pDest
->pBt
;
9338 u8
*aOut
= pBt
->pTmpSpace
; /* Pointer to next output buffer */
9339 const u8
*aIn
; /* Pointer to next input buffer */
9340 u32 nIn
; /* Size of input buffer aIn[] */
9341 u32 nRem
; /* Bytes of data still to copy */
9344 if( pSrc
->info
.nPayload
<0x80 ){
9345 *(aOut
++) = pSrc
->info
.nPayload
;
9347 aOut
+= sqlite3PutVarint(aOut
, pSrc
->info
.nPayload
);
9349 if( pDest
->pKeyInfo
==0 ) aOut
+= putVarint(aOut
, iKey
);
9350 nIn
= pSrc
->info
.nLocal
;
9351 aIn
= pSrc
->info
.pPayload
;
9352 if( aIn
+nIn
>pSrc
->pPage
->aDataEnd
){
9353 return SQLITE_CORRUPT_BKPT
;
9355 nRem
= pSrc
->info
.nPayload
;
9356 if( nIn
==nRem
&& nIn
<pDest
->pPage
->maxLocal
){
9357 memcpy(aOut
, aIn
, nIn
);
9358 pBt
->nPreformatSize
= nIn
+ (aOut
- pBt
->pTmpSpace
);
9362 Pager
*pSrcPager
= pSrc
->pBt
->pPager
;
9365 DbPage
*pPageIn
= 0;
9366 MemPage
*pPageOut
= 0;
9367 u32 nOut
; /* Size of output buffer aOut[] */
9369 nOut
= btreePayloadToLocal(pDest
->pPage
, pSrc
->info
.nPayload
);
9370 pBt
->nPreformatSize
= nOut
+ (aOut
- pBt
->pTmpSpace
);
9371 if( nOut
<pSrc
->info
.nPayload
){
9372 pPgnoOut
= &aOut
[nOut
];
9373 pBt
->nPreformatSize
+= 4;
9377 if( aIn
+nIn
+4>pSrc
->pPage
->aDataEnd
){
9378 return SQLITE_CORRUPT_BKPT
;
9380 ovflIn
= get4byte(&pSrc
->info
.pPayload
[nIn
]);
9388 int nCopy
= MIN(nOut
, nIn
);
9389 memcpy(aOut
, aIn
, nCopy
);
9396 sqlite3PagerUnref(pPageIn
);
9398 rc
= sqlite3PagerGet(pSrcPager
, ovflIn
, &pPageIn
, PAGER_GET_READONLY
);
9399 if( rc
==SQLITE_OK
){
9400 aIn
= (const u8
*)sqlite3PagerGetData(pPageIn
);
9401 ovflIn
= get4byte(aIn
);
9403 nIn
= pSrc
->pBt
->usableSize
- 4;
9406 }while( rc
==SQLITE_OK
&& nOut
>0 );
9408 if( rc
==SQLITE_OK
&& nRem
>0 && ALWAYS(pPgnoOut
) ){
9411 rc
= allocateBtreePage(pBt
, &pNew
, &pgnoNew
, 0, 0);
9412 put4byte(pPgnoOut
, pgnoNew
);
9413 if( ISAUTOVACUUM(pBt
) && pPageOut
){
9414 ptrmapPut(pBt
, pgnoNew
, PTRMAP_OVERFLOW2
, pPageOut
->pgno
, &rc
);
9416 releasePage(pPageOut
);
9419 pPgnoOut
= pPageOut
->aData
;
9420 put4byte(pPgnoOut
, 0);
9421 aOut
= &pPgnoOut
[4];
9422 nOut
= MIN(pBt
->usableSize
- 4, nRem
);
9425 }while( nRem
>0 && rc
==SQLITE_OK
);
9427 releasePage(pPageOut
);
9428 sqlite3PagerUnref(pPageIn
);
9434 ** Delete the entry that the cursor is pointing to.
9436 ** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then
9437 ** the cursor is left pointing at an arbitrary location after the delete.
9438 ** But if that bit is set, then the cursor is left in a state such that
9439 ** the next call to BtreeNext() or BtreePrev() moves it to the same row
9440 ** as it would have been on if the call to BtreeDelete() had been omitted.
9442 ** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes
9443 ** associated with a single table entry and its indexes. Only one of those
9444 ** deletes is considered the "primary" delete. The primary delete occurs
9445 ** on a cursor that is not a BTREE_FORDELETE cursor. All but one delete
9446 ** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag.
9447 ** The BTREE_AUXDELETE bit is a hint that is not used by this implementation,
9448 ** but which might be used by alternative storage engines.
9450 int sqlite3BtreeDelete(BtCursor
*pCur
, u8 flags
){
9451 Btree
*p
= pCur
->pBtree
;
9452 BtShared
*pBt
= p
->pBt
;
9453 int rc
; /* Return code */
9454 MemPage
*pPage
; /* Page to delete cell from */
9455 unsigned char *pCell
; /* Pointer to cell to delete */
9456 int iCellIdx
; /* Index of cell to delete */
9457 int iCellDepth
; /* Depth of node containing pCell */
9458 CellInfo info
; /* Size of the cell being deleted */
9459 u8 bPreserve
; /* Keep cursor valid. 2 for CURSOR_SKIPNEXT */
9461 assert( cursorOwnsBtShared(pCur
) );
9462 assert( pBt
->inTransaction
==TRANS_WRITE
);
9463 assert( (pBt
->btsFlags
& BTS_READ_ONLY
)==0 );
9464 assert( pCur
->curFlags
& BTCF_WriteFlag
);
9465 assert( hasSharedCacheTableLock(p
, pCur
->pgnoRoot
, pCur
->pKeyInfo
!=0, 2) );
9466 assert( !hasReadConflicts(p
, pCur
->pgnoRoot
) );
9467 assert( (flags
& ~(BTREE_SAVEPOSITION
| BTREE_AUXDELETE
))==0 );
9468 if( pCur
->eState
!=CURSOR_VALID
){
9469 if( pCur
->eState
>=CURSOR_REQUIRESEEK
){
9470 rc
= btreeRestoreCursorPosition(pCur
);
9471 assert( rc
!=SQLITE_OK
|| CORRUPT_DB
|| pCur
->eState
==CURSOR_VALID
);
9472 if( rc
|| pCur
->eState
!=CURSOR_VALID
) return rc
;
9474 return SQLITE_CORRUPT_BKPT
;
9477 assert( pCur
->eState
==CURSOR_VALID
);
9479 iCellDepth
= pCur
->iPage
;
9480 iCellIdx
= pCur
->ix
;
9481 pPage
= pCur
->pPage
;
9482 if( pPage
->nCell
<=iCellIdx
){
9483 return SQLITE_CORRUPT_BKPT
;
9485 pCell
= findCell(pPage
, iCellIdx
);
9486 if( pPage
->nFree
<0 && btreeComputeFreeSpace(pPage
) ){
9487 return SQLITE_CORRUPT_BKPT
;
9490 /* If the BTREE_SAVEPOSITION bit is on, then the cursor position must
9491 ** be preserved following this delete operation. If the current delete
9492 ** will cause a b-tree rebalance, then this is done by saving the cursor
9493 ** key and leaving the cursor in CURSOR_REQUIRESEEK state before
9496 ** If the current delete will not cause a rebalance, then the cursor
9497 ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately
9498 ** before or after the deleted entry.
9500 ** The bPreserve value records which path is required:
9502 ** bPreserve==0 Not necessary to save the cursor position
9503 ** bPreserve==1 Use CURSOR_REQUIRESEEK to save the cursor position
9504 ** bPreserve==2 Cursor won't move. Set CURSOR_SKIPNEXT.
9506 bPreserve
= (flags
& BTREE_SAVEPOSITION
)!=0;
9509 || (pPage
->nFree
+pPage
->xCellSize(pPage
,pCell
)+2) >
9510 (int)(pBt
->usableSize
*2/3)
9511 || pPage
->nCell
==1 /* See dbfuzz001.test for a test case */
9513 /* A b-tree rebalance will be required after deleting this entry.
9514 ** Save the cursor key. */
9515 rc
= saveCursorKey(pCur
);
9522 /* If the page containing the entry to delete is not a leaf page, move
9523 ** the cursor to the largest entry in the tree that is smaller than
9524 ** the entry being deleted. This cell will replace the cell being deleted
9525 ** from the internal node. The 'previous' entry is used for this instead
9526 ** of the 'next' entry, as the previous entry is always a part of the
9527 ** sub-tree headed by the child page of the cell being deleted. This makes
9528 ** balancing the tree following the delete operation easier. */
9530 rc
= sqlite3BtreePrevious(pCur
, 0);
9531 assert( rc
!=SQLITE_DONE
);
9535 /* Save the positions of any other cursors open on this table before
9536 ** making any modifications. */
9537 if( pCur
->curFlags
& BTCF_Multiple
){
9538 rc
= saveAllCursors(pBt
, pCur
->pgnoRoot
, pCur
);
9542 /* If this is a delete operation to remove a row from a table b-tree,
9543 ** invalidate any incrblob cursors open on the row being deleted. */
9544 if( pCur
->pKeyInfo
==0 && p
->hasIncrblobCur
){
9545 invalidateIncrblobCursors(p
, pCur
->pgnoRoot
, pCur
->info
.nKey
, 0);
9548 /* Make the page containing the entry to be deleted writable. Then free any
9549 ** overflow pages associated with the entry and finally remove the cell
9550 ** itself from within the page. */
9551 rc
= sqlite3PagerWrite(pPage
->pDbPage
);
9553 BTREE_CLEAR_CELL(rc
, pPage
, pCell
, info
);
9554 dropCell(pPage
, iCellIdx
, info
.nSize
, &rc
);
9557 /* If the cell deleted was not located on a leaf page, then the cursor
9558 ** is currently pointing to the largest entry in the sub-tree headed
9559 ** by the child-page of the cell that was just deleted from an internal
9560 ** node. The cell from the leaf node needs to be moved to the internal
9561 ** node to replace the deleted cell. */
9563 MemPage
*pLeaf
= pCur
->pPage
;
9566 unsigned char *pTmp
;
9568 if( pLeaf
->nFree
<0 ){
9569 rc
= btreeComputeFreeSpace(pLeaf
);
9572 if( iCellDepth
<pCur
->iPage
-1 ){
9573 n
= pCur
->apPage
[iCellDepth
+1]->pgno
;
9575 n
= pCur
->pPage
->pgno
;
9577 pCell
= findCell(pLeaf
, pLeaf
->nCell
-1);
9578 if( pCell
<&pLeaf
->aData
[4] ) return SQLITE_CORRUPT_BKPT
;
9579 nCell
= pLeaf
->xCellSize(pLeaf
, pCell
);
9580 assert( MX_CELL_SIZE(pBt
) >= nCell
);
9581 pTmp
= pBt
->pTmpSpace
;
9583 rc
= sqlite3PagerWrite(pLeaf
->pDbPage
);
9584 if( rc
==SQLITE_OK
){
9585 rc
= insertCell(pPage
, iCellIdx
, pCell
-4, nCell
+4, pTmp
, n
);
9587 dropCell(pLeaf
, pLeaf
->nCell
-1, nCell
, &rc
);
9591 /* Balance the tree. If the entry deleted was located on a leaf page,
9592 ** then the cursor still points to that page. In this case the first
9593 ** call to balance() repairs the tree, and the if(...) condition is
9596 ** Otherwise, if the entry deleted was on an internal node page, then
9597 ** pCur is pointing to the leaf page from which a cell was removed to
9598 ** replace the cell deleted from the internal node. This is slightly
9599 ** tricky as the leaf node may be underfull, and the internal node may
9600 ** be either under or overfull. In this case run the balancing algorithm
9601 ** on the leaf node first. If the balance proceeds far enough up the
9602 ** tree that we can be sure that any problem in the internal node has
9603 ** been corrected, so be it. Otherwise, after balancing the leaf node,
9604 ** walk the cursor up the tree to the internal node and balance it as
9606 assert( pCur
->pPage
->nOverflow
==0 );
9607 assert( pCur
->pPage
->nFree
>=0 );
9608 if( pCur
->pPage
->nFree
*3<=(int)pCur
->pBt
->usableSize
*2 ){
9609 /* Optimization: If the free space is less than 2/3rds of the page,
9610 ** then balance() will always be a no-op. No need to invoke it. */
9615 if( rc
==SQLITE_OK
&& pCur
->iPage
>iCellDepth
){
9616 releasePageNotNull(pCur
->pPage
);
9618 while( pCur
->iPage
>iCellDepth
){
9619 releasePage(pCur
->apPage
[pCur
->iPage
--]);
9621 pCur
->pPage
= pCur
->apPage
[pCur
->iPage
];
9625 if( rc
==SQLITE_OK
){
9627 assert( (pCur
->iPage
==iCellDepth
|| CORRUPT_DB
) );
9628 assert( pPage
==pCur
->pPage
|| CORRUPT_DB
);
9629 assert( (pPage
->nCell
>0 || CORRUPT_DB
) && iCellIdx
<=pPage
->nCell
);
9630 pCur
->eState
= CURSOR_SKIPNEXT
;
9631 if( iCellIdx
>=pPage
->nCell
){
9632 pCur
->skipNext
= -1;
9633 pCur
->ix
= pPage
->nCell
-1;
9638 rc
= moveToRoot(pCur
);
9640 btreeReleaseAllCursorPages(pCur
);
9641 pCur
->eState
= CURSOR_REQUIRESEEK
;
9643 if( rc
==SQLITE_EMPTY
) rc
= SQLITE_OK
;
9650 ** Create a new BTree table. Write into *piTable the page
9651 ** number for the root page of the new table.
9653 ** The type of type is determined by the flags parameter. Only the
9654 ** following values of flags are currently in use. Other values for
9655 ** flags might not work:
9657 ** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
9658 ** BTREE_ZERODATA Used for SQL indices
9660 static int btreeCreateTable(Btree
*p
, Pgno
*piTable
, int createTabFlags
){
9661 BtShared
*pBt
= p
->pBt
;
9665 int ptfFlags
; /* Page-type flage for the root page of new table */
9667 assert( sqlite3BtreeHoldsMutex(p
) );
9668 assert( pBt
->inTransaction
==TRANS_WRITE
);
9669 assert( (pBt
->btsFlags
& BTS_READ_ONLY
)==0 );
9671 #ifdef SQLITE_OMIT_AUTOVACUUM
9672 rc
= allocateBtreePage(pBt
, &pRoot
, &pgnoRoot
, 1, 0);
9677 if( pBt
->autoVacuum
){
9678 Pgno pgnoMove
; /* Move a page here to make room for the root-page */
9679 MemPage
*pPageMove
; /* The page to move to. */
9681 /* Creating a new table may probably require moving an existing database
9682 ** to make room for the new tables root page. In case this page turns
9683 ** out to be an overflow page, delete all overflow page-map caches
9684 ** held by open cursors.
9686 invalidateAllOverflowCache(pBt
);
9688 /* Read the value of meta[3] from the database to determine where the
9689 ** root page of the new table should go. meta[3] is the largest root-page
9690 ** created so far, so the new root-page is (meta[3]+1).
9692 sqlite3BtreeGetMeta(p
, BTREE_LARGEST_ROOT_PAGE
, &pgnoRoot
);
9693 if( pgnoRoot
>btreePagecount(pBt
) ){
9694 return SQLITE_CORRUPT_BKPT
;
9698 /* The new root-page may not be allocated on a pointer-map page, or the
9699 ** PENDING_BYTE page.
9701 while( pgnoRoot
==PTRMAP_PAGENO(pBt
, pgnoRoot
) ||
9702 pgnoRoot
==PENDING_BYTE_PAGE(pBt
) ){
9705 assert( pgnoRoot
>=3 );
9707 /* Allocate a page. The page that currently resides at pgnoRoot will
9708 ** be moved to the allocated page (unless the allocated page happens
9709 ** to reside at pgnoRoot).
9711 rc
= allocateBtreePage(pBt
, &pPageMove
, &pgnoMove
, pgnoRoot
, BTALLOC_EXACT
);
9712 if( rc
!=SQLITE_OK
){
9716 if( pgnoMove
!=pgnoRoot
){
9717 /* pgnoRoot is the page that will be used for the root-page of
9718 ** the new table (assuming an error did not occur). But we were
9719 ** allocated pgnoMove. If required (i.e. if it was not allocated
9720 ** by extending the file), the current page at position pgnoMove
9721 ** is already journaled.
9726 /* Save the positions of any open cursors. This is required in
9727 ** case they are holding a reference to an xFetch reference
9728 ** corresponding to page pgnoRoot. */
9729 rc
= saveAllCursors(pBt
, 0, 0);
9730 releasePage(pPageMove
);
9731 if( rc
!=SQLITE_OK
){
9735 /* Move the page currently at pgnoRoot to pgnoMove. */
9736 rc
= btreeGetPage(pBt
, pgnoRoot
, &pRoot
, 0);
9737 if( rc
!=SQLITE_OK
){
9740 rc
= ptrmapGet(pBt
, pgnoRoot
, &eType
, &iPtrPage
);
9741 if( eType
==PTRMAP_ROOTPAGE
|| eType
==PTRMAP_FREEPAGE
){
9742 rc
= SQLITE_CORRUPT_BKPT
;
9744 if( rc
!=SQLITE_OK
){
9748 assert( eType
!=PTRMAP_ROOTPAGE
);
9749 assert( eType
!=PTRMAP_FREEPAGE
);
9750 rc
= relocatePage(pBt
, pRoot
, eType
, iPtrPage
, pgnoMove
, 0);
9753 /* Obtain the page at pgnoRoot */
9754 if( rc
!=SQLITE_OK
){
9757 rc
= btreeGetPage(pBt
, pgnoRoot
, &pRoot
, 0);
9758 if( rc
!=SQLITE_OK
){
9761 rc
= sqlite3PagerWrite(pRoot
->pDbPage
);
9762 if( rc
!=SQLITE_OK
){
9770 /* Update the pointer-map and meta-data with the new root-page number. */
9771 ptrmapPut(pBt
, pgnoRoot
, PTRMAP_ROOTPAGE
, 0, &rc
);
9777 /* When the new root page was allocated, page 1 was made writable in
9778 ** order either to increase the database filesize, or to decrement the
9779 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
9781 assert( sqlite3PagerIswriteable(pBt
->pPage1
->pDbPage
) );
9782 rc
= sqlite3BtreeUpdateMeta(p
, 4, pgnoRoot
);
9789 rc
= allocateBtreePage(pBt
, &pRoot
, &pgnoRoot
, 1, 0);
9793 assert( sqlite3PagerIswriteable(pRoot
->pDbPage
) );
9794 if( createTabFlags
& BTREE_INTKEY
){
9795 ptfFlags
= PTF_INTKEY
| PTF_LEAFDATA
| PTF_LEAF
;
9797 ptfFlags
= PTF_ZERODATA
| PTF_LEAF
;
9799 zeroPage(pRoot
, ptfFlags
);
9800 sqlite3PagerUnref(pRoot
->pDbPage
);
9801 assert( (pBt
->openFlags
& BTREE_SINGLE
)==0 || pgnoRoot
==2 );
9802 *piTable
= pgnoRoot
;
9805 int sqlite3BtreeCreateTable(Btree
*p
, Pgno
*piTable
, int flags
){
9807 sqlite3BtreeEnter(p
);
9808 rc
= btreeCreateTable(p
, piTable
, flags
);
9809 sqlite3BtreeLeave(p
);
9814 ** Erase the given database page and all its children. Return
9815 ** the page to the freelist.
9817 static int clearDatabasePage(
9818 BtShared
*pBt
, /* The BTree that contains the table */
9819 Pgno pgno
, /* Page number to clear */
9820 int freePageFlag
, /* Deallocate page if true */
9821 i64
*pnChange
/* Add number of Cells freed to this counter */
9825 unsigned char *pCell
;
9830 assert( sqlite3_mutex_held(pBt
->mutex
) );
9831 if( pgno
>btreePagecount(pBt
) ){
9832 return SQLITE_CORRUPT_BKPT
;
9834 rc
= getAndInitPage(pBt
, pgno
, &pPage
, 0, 0);
9836 if( (pBt
->openFlags
& BTREE_SINGLE
)==0
9837 && sqlite3PagerPageRefcount(pPage
->pDbPage
) != (1 + (pgno
==1))
9839 rc
= SQLITE_CORRUPT_BKPT
;
9840 goto cleardatabasepage_out
;
9842 hdr
= pPage
->hdrOffset
;
9843 for(i
=0; i
<pPage
->nCell
; i
++){
9844 pCell
= findCell(pPage
, i
);
9846 rc
= clearDatabasePage(pBt
, get4byte(pCell
), 1, pnChange
);
9847 if( rc
) goto cleardatabasepage_out
;
9849 BTREE_CLEAR_CELL(rc
, pPage
, pCell
, info
);
9850 if( rc
) goto cleardatabasepage_out
;
9853 rc
= clearDatabasePage(pBt
, get4byte(&pPage
->aData
[hdr
+8]), 1, pnChange
);
9854 if( rc
) goto cleardatabasepage_out
;
9855 if( pPage
->intKey
) pnChange
= 0;
9858 testcase( !pPage
->intKey
);
9859 *pnChange
+= pPage
->nCell
;
9862 freePage(pPage
, &rc
);
9863 }else if( (rc
= sqlite3PagerWrite(pPage
->pDbPage
))==0 ){
9864 zeroPage(pPage
, pPage
->aData
[hdr
] | PTF_LEAF
);
9867 cleardatabasepage_out
:
9873 ** Delete all information from a single table in the database. iTable is
9874 ** the page number of the root of the table. After this routine returns,
9875 ** the root page is empty, but still exists.
9877 ** This routine will fail with SQLITE_LOCKED if there are any open
9878 ** read cursors on the table. Open write cursors are moved to the
9879 ** root of the table.
9881 ** If pnChange is not NULL, then the integer value pointed to by pnChange
9882 ** is incremented by the number of entries in the table.
9884 int sqlite3BtreeClearTable(Btree
*p
, int iTable
, i64
*pnChange
){
9886 BtShared
*pBt
= p
->pBt
;
9887 sqlite3BtreeEnter(p
);
9888 assert( p
->inTrans
==TRANS_WRITE
);
9890 rc
= saveAllCursors(pBt
, (Pgno
)iTable
, 0);
9892 if( SQLITE_OK
==rc
){
9893 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
9894 ** is the root of a table b-tree - if it is not, the following call is
9896 if( p
->hasIncrblobCur
){
9897 invalidateIncrblobCursors(p
, (Pgno
)iTable
, 0, 1);
9899 rc
= clearDatabasePage(pBt
, (Pgno
)iTable
, 0, pnChange
);
9901 sqlite3BtreeLeave(p
);
9906 ** Delete all information from the single table that pCur is open on.
9908 ** This routine only work for pCur on an ephemeral table.
9910 int sqlite3BtreeClearTableOfCursor(BtCursor
*pCur
){
9911 return sqlite3BtreeClearTable(pCur
->pBtree
, pCur
->pgnoRoot
, 0);
9915 ** Erase all information in a table and add the root of the table to
9916 ** the freelist. Except, the root of the principle table (the one on
9917 ** page 1) is never added to the freelist.
9919 ** This routine will fail with SQLITE_LOCKED if there are any open
9920 ** cursors on the table.
9922 ** If AUTOVACUUM is enabled and the page at iTable is not the last
9923 ** root page in the database file, then the last root page
9924 ** in the database file is moved into the slot formerly occupied by
9925 ** iTable and that last slot formerly occupied by the last root page
9926 ** is added to the freelist instead of iTable. In this say, all
9927 ** root pages are kept at the beginning of the database file, which
9928 ** is necessary for AUTOVACUUM to work right. *piMoved is set to the
9929 ** page number that used to be the last root page in the file before
9930 ** the move. If no page gets moved, *piMoved is set to 0.
9931 ** The last root page is recorded in meta[3] and the value of
9932 ** meta[3] is updated by this procedure.
9934 static int btreeDropTable(Btree
*p
, Pgno iTable
, int *piMoved
){
9937 BtShared
*pBt
= p
->pBt
;
9939 assert( sqlite3BtreeHoldsMutex(p
) );
9940 assert( p
->inTrans
==TRANS_WRITE
);
9941 assert( iTable
>=2 );
9942 if( iTable
>btreePagecount(pBt
) ){
9943 return SQLITE_CORRUPT_BKPT
;
9946 rc
= sqlite3BtreeClearTable(p
, iTable
, 0);
9948 rc
= btreeGetPage(pBt
, (Pgno
)iTable
, &pPage
, 0);
9956 #ifdef SQLITE_OMIT_AUTOVACUUM
9957 freePage(pPage
, &rc
);
9960 if( pBt
->autoVacuum
){
9962 sqlite3BtreeGetMeta(p
, BTREE_LARGEST_ROOT_PAGE
, &maxRootPgno
);
9964 if( iTable
==maxRootPgno
){
9965 /* If the table being dropped is the table with the largest root-page
9966 ** number in the database, put the root page on the free list.
9968 freePage(pPage
, &rc
);
9970 if( rc
!=SQLITE_OK
){
9974 /* The table being dropped does not have the largest root-page
9975 ** number in the database. So move the page that does into the
9976 ** gap left by the deleted root-page.
9980 rc
= btreeGetPage(pBt
, maxRootPgno
, &pMove
, 0);
9981 if( rc
!=SQLITE_OK
){
9984 rc
= relocatePage(pBt
, pMove
, PTRMAP_ROOTPAGE
, 0, iTable
, 0);
9986 if( rc
!=SQLITE_OK
){
9990 rc
= btreeGetPage(pBt
, maxRootPgno
, &pMove
, 0);
9991 freePage(pMove
, &rc
);
9993 if( rc
!=SQLITE_OK
){
9996 *piMoved
= maxRootPgno
;
9999 /* Set the new 'max-root-page' value in the database header. This
10000 ** is the old value less one, less one more if that happens to
10001 ** be a root-page number, less one again if that is the
10002 ** PENDING_BYTE_PAGE.
10005 while( maxRootPgno
==PENDING_BYTE_PAGE(pBt
)
10006 || PTRMAP_ISPAGE(pBt
, maxRootPgno
) ){
10009 assert( maxRootPgno
!=PENDING_BYTE_PAGE(pBt
) );
10011 rc
= sqlite3BtreeUpdateMeta(p
, 4, maxRootPgno
);
10013 freePage(pPage
, &rc
);
10014 releasePage(pPage
);
10019 int sqlite3BtreeDropTable(Btree
*p
, int iTable
, int *piMoved
){
10021 sqlite3BtreeEnter(p
);
10022 rc
= btreeDropTable(p
, iTable
, piMoved
);
10023 sqlite3BtreeLeave(p
);
10029 ** This function may only be called if the b-tree connection already
10030 ** has a read or write transaction open on the database.
10032 ** Read the meta-information out of a database file. Meta[0]
10033 ** is the number of free pages currently in the database. Meta[1]
10034 ** through meta[15] are available for use by higher layers. Meta[0]
10035 ** is read-only, the others are read/write.
10037 ** The schema layer numbers meta values differently. At the schema
10038 ** layer (and the SetCookie and ReadCookie opcodes) the number of
10039 ** free pages is not visible. So Cookie[0] is the same as Meta[1].
10041 ** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead
10042 ** of reading the value out of the header, it instead loads the "DataVersion"
10043 ** from the pager. The BTREE_DATA_VERSION value is not actually stored in the
10044 ** database file. It is a number computed by the pager. But its access
10045 ** pattern is the same as header meta values, and so it is convenient to
10046 ** read it from this routine.
10048 void sqlite3BtreeGetMeta(Btree
*p
, int idx
, u32
*pMeta
){
10049 BtShared
*pBt
= p
->pBt
;
10051 sqlite3BtreeEnter(p
);
10052 assert( p
->inTrans
>TRANS_NONE
);
10053 assert( SQLITE_OK
==querySharedCacheTableLock(p
, SCHEMA_ROOT
, READ_LOCK
) );
10054 assert( pBt
->pPage1
);
10055 assert( idx
>=0 && idx
<=15 );
10057 if( idx
==BTREE_DATA_VERSION
){
10058 *pMeta
= sqlite3PagerDataVersion(pBt
->pPager
) + p
->iBDataVersion
;
10060 *pMeta
= get4byte(&pBt
->pPage1
->aData
[36 + idx
*4]);
10063 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
10064 ** database, mark the database as read-only. */
10065 #ifdef SQLITE_OMIT_AUTOVACUUM
10066 if( idx
==BTREE_LARGEST_ROOT_PAGE
&& *pMeta
>0 ){
10067 pBt
->btsFlags
|= BTS_READ_ONLY
;
10071 sqlite3BtreeLeave(p
);
10075 ** Write meta-information back into the database. Meta[0] is
10076 ** read-only and may not be written.
10078 int sqlite3BtreeUpdateMeta(Btree
*p
, int idx
, u32 iMeta
){
10079 BtShared
*pBt
= p
->pBt
;
10080 unsigned char *pP1
;
10082 assert( idx
>=1 && idx
<=15 );
10083 sqlite3BtreeEnter(p
);
10084 assert( p
->inTrans
==TRANS_WRITE
);
10085 assert( pBt
->pPage1
!=0 );
10086 pP1
= pBt
->pPage1
->aData
;
10087 rc
= sqlite3PagerWrite(pBt
->pPage1
->pDbPage
);
10088 if( rc
==SQLITE_OK
){
10089 put4byte(&pP1
[36 + idx
*4], iMeta
);
10090 #ifndef SQLITE_OMIT_AUTOVACUUM
10091 if( idx
==BTREE_INCR_VACUUM
){
10092 assert( pBt
->autoVacuum
|| iMeta
==0 );
10093 assert( iMeta
==0 || iMeta
==1 );
10094 pBt
->incrVacuum
= (u8
)iMeta
;
10098 sqlite3BtreeLeave(p
);
10103 ** The first argument, pCur, is a cursor opened on some b-tree. Count the
10104 ** number of entries in the b-tree and write the result to *pnEntry.
10106 ** SQLITE_OK is returned if the operation is successfully executed.
10107 ** Otherwise, if an error is encountered (i.e. an IO error or database
10108 ** corruption) an SQLite error code is returned.
10110 int sqlite3BtreeCount(sqlite3
*db
, BtCursor
*pCur
, i64
*pnEntry
){
10111 i64 nEntry
= 0; /* Value to return in *pnEntry */
10112 int rc
; /* Return code */
10114 rc
= moveToRoot(pCur
);
10115 if( rc
==SQLITE_EMPTY
){
10120 /* Unless an error occurs, the following loop runs one iteration for each
10121 ** page in the B-Tree structure (not including overflow pages).
10123 while( rc
==SQLITE_OK
&& !AtomicLoad(&db
->u1
.isInterrupted
) ){
10124 int iIdx
; /* Index of child node in parent */
10125 MemPage
*pPage
; /* Current page of the b-tree */
10127 /* If this is a leaf page or the tree is not an int-key tree, then
10128 ** this page contains countable entries. Increment the entry counter
10131 pPage
= pCur
->pPage
;
10132 if( pPage
->leaf
|| !pPage
->intKey
){
10133 nEntry
+= pPage
->nCell
;
10136 /* pPage is a leaf node. This loop navigates the cursor so that it
10137 ** points to the first interior cell that it points to the parent of
10138 ** the next page in the tree that has not yet been visited. The
10139 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
10140 ** of the page, or to the number of cells in the page if the next page
10141 ** to visit is the right-child of its parent.
10143 ** If all pages in the tree have been visited, return SQLITE_OK to the
10148 if( pCur
->iPage
==0 ){
10149 /* All pages of the b-tree have been visited. Return successfully. */
10151 return moveToRoot(pCur
);
10153 moveToParent(pCur
);
10154 }while ( pCur
->ix
>=pCur
->pPage
->nCell
);
10157 pPage
= pCur
->pPage
;
10160 /* Descend to the child node of the cell that the cursor currently
10161 ** points at. This is the right-child if (iIdx==pPage->nCell).
10164 if( iIdx
==pPage
->nCell
){
10165 rc
= moveToChild(pCur
, get4byte(&pPage
->aData
[pPage
->hdrOffset
+8]));
10167 rc
= moveToChild(pCur
, get4byte(findCell(pPage
, iIdx
)));
10171 /* An error has occurred. Return an error code. */
10176 ** Return the pager associated with a BTree. This routine is used for
10177 ** testing and debugging only.
10179 Pager
*sqlite3BtreePager(Btree
*p
){
10180 return p
->pBt
->pPager
;
10183 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
10185 ** Record an OOM error during integrity_check
10187 static void checkOom(IntegrityCk
*pCheck
){
10188 pCheck
->rc
= SQLITE_NOMEM
;
10189 pCheck
->mxErr
= 0; /* Causes integrity_check processing to stop */
10190 if( pCheck
->nErr
==0 ) pCheck
->nErr
++;
10194 ** Invoke the progress handler, if appropriate. Also check for an
10197 static void checkProgress(IntegrityCk
*pCheck
){
10198 sqlite3
*db
= pCheck
->db
;
10199 if( AtomicLoad(&db
->u1
.isInterrupted
) ){
10200 pCheck
->rc
= SQLITE_INTERRUPT
;
10204 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
10205 if( db
->xProgress
){
10206 assert( db
->nProgressOps
>0 );
10208 if( (pCheck
->nStep
% db
->nProgressOps
)==0
10209 && db
->xProgress(db
->pProgressArg
)
10211 pCheck
->rc
= SQLITE_INTERRUPT
;
10220 ** Append a message to the error message string.
10222 static void checkAppendMsg(
10223 IntegrityCk
*pCheck
,
10224 const char *zFormat
,
10228 checkProgress(pCheck
);
10229 if( !pCheck
->mxErr
) return;
10232 va_start(ap
, zFormat
);
10233 if( pCheck
->errMsg
.nChar
){
10234 sqlite3_str_append(&pCheck
->errMsg
, "\n", 1);
10236 if( pCheck
->zPfx
){
10237 sqlite3_str_appendf(&pCheck
->errMsg
, pCheck
->zPfx
, pCheck
->v1
, pCheck
->v2
);
10239 sqlite3_str_vappendf(&pCheck
->errMsg
, zFormat
, ap
);
10241 if( pCheck
->errMsg
.accError
==SQLITE_NOMEM
){
10245 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
10247 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
10250 ** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
10251 ** corresponds to page iPg is already set.
10253 static int getPageReferenced(IntegrityCk
*pCheck
, Pgno iPg
){
10254 assert( iPg
<=pCheck
->nPage
&& sizeof(pCheck
->aPgRef
[0])==1 );
10255 return (pCheck
->aPgRef
[iPg
/8] & (1 << (iPg
& 0x07)));
10259 ** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
10261 static void setPageReferenced(IntegrityCk
*pCheck
, Pgno iPg
){
10262 assert( iPg
<=pCheck
->nPage
&& sizeof(pCheck
->aPgRef
[0])==1 );
10263 pCheck
->aPgRef
[iPg
/8] |= (1 << (iPg
& 0x07));
10268 ** Add 1 to the reference count for page iPage. If this is the second
10269 ** reference to the page, add an error message to pCheck->zErrMsg.
10270 ** Return 1 if there are 2 or more references to the page and 0 if
10271 ** if this is the first reference to the page.
10273 ** Also check that the page number is in bounds.
10275 static int checkRef(IntegrityCk
*pCheck
, Pgno iPage
){
10276 if( iPage
>pCheck
->nPage
|| iPage
==0 ){
10277 checkAppendMsg(pCheck
, "invalid page number %d", iPage
);
10280 if( getPageReferenced(pCheck
, iPage
) ){
10281 checkAppendMsg(pCheck
, "2nd reference to page %d", iPage
);
10284 setPageReferenced(pCheck
, iPage
);
10288 #ifndef SQLITE_OMIT_AUTOVACUUM
10290 ** Check that the entry in the pointer-map for page iChild maps to
10291 ** page iParent, pointer type ptrType. If not, append an error message
10294 static void checkPtrmap(
10295 IntegrityCk
*pCheck
, /* Integrity check context */
10296 Pgno iChild
, /* Child page number */
10297 u8 eType
, /* Expected pointer map type */
10298 Pgno iParent
/* Expected pointer map parent page number */
10302 Pgno iPtrmapParent
;
10304 rc
= ptrmapGet(pCheck
->pBt
, iChild
, &ePtrmapType
, &iPtrmapParent
);
10305 if( rc
!=SQLITE_OK
){
10306 if( rc
==SQLITE_NOMEM
|| rc
==SQLITE_IOERR_NOMEM
) checkOom(pCheck
);
10307 checkAppendMsg(pCheck
, "Failed to read ptrmap key=%d", iChild
);
10311 if( ePtrmapType
!=eType
|| iPtrmapParent
!=iParent
){
10312 checkAppendMsg(pCheck
,
10313 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
10314 iChild
, eType
, iParent
, ePtrmapType
, iPtrmapParent
);
10320 ** Check the integrity of the freelist or of an overflow page list.
10321 ** Verify that the number of pages on the list is N.
10323 static void checkList(
10324 IntegrityCk
*pCheck
, /* Integrity checking context */
10325 int isFreeList
, /* True for a freelist. False for overflow page list */
10326 Pgno iPage
, /* Page number for first page in the list */
10327 u32 N
/* Expected number of pages in the list */
10331 int nErrAtStart
= pCheck
->nErr
;
10332 while( iPage
!=0 && pCheck
->mxErr
){
10334 unsigned char *pOvflData
;
10335 if( checkRef(pCheck
, iPage
) ) break;
10337 if( sqlite3PagerGet(pCheck
->pPager
, (Pgno
)iPage
, &pOvflPage
, 0) ){
10338 checkAppendMsg(pCheck
, "failed to get page %d", iPage
);
10341 pOvflData
= (unsigned char *)sqlite3PagerGetData(pOvflPage
);
10343 u32 n
= (u32
)get4byte(&pOvflData
[4]);
10344 #ifndef SQLITE_OMIT_AUTOVACUUM
10345 if( pCheck
->pBt
->autoVacuum
){
10346 checkPtrmap(pCheck
, iPage
, PTRMAP_FREEPAGE
, 0);
10349 if( n
>pCheck
->pBt
->usableSize
/4-2 ){
10350 checkAppendMsg(pCheck
,
10351 "freelist leaf count too big on page %d", iPage
);
10354 for(i
=0; i
<(int)n
; i
++){
10355 Pgno iFreePage
= get4byte(&pOvflData
[8+i
*4]);
10356 #ifndef SQLITE_OMIT_AUTOVACUUM
10357 if( pCheck
->pBt
->autoVacuum
){
10358 checkPtrmap(pCheck
, iFreePage
, PTRMAP_FREEPAGE
, 0);
10361 checkRef(pCheck
, iFreePage
);
10366 #ifndef SQLITE_OMIT_AUTOVACUUM
10368 /* If this database supports auto-vacuum and iPage is not the last
10369 ** page in this overflow list, check that the pointer-map entry for
10370 ** the following page matches iPage.
10372 if( pCheck
->pBt
->autoVacuum
&& N
>0 ){
10373 i
= get4byte(pOvflData
);
10374 checkPtrmap(pCheck
, i
, PTRMAP_OVERFLOW2
, iPage
);
10378 iPage
= get4byte(pOvflData
);
10379 sqlite3PagerUnref(pOvflPage
);
10381 if( N
&& nErrAtStart
==pCheck
->nErr
){
10382 checkAppendMsg(pCheck
,
10383 "%s is %d but should be %d",
10384 isFreeList
? "size" : "overflow list length",
10385 expected
-N
, expected
);
10388 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
10391 ** An implementation of a min-heap.
10393 ** aHeap[0] is the number of elements on the heap. aHeap[1] is the
10394 ** root element. The daughter nodes of aHeap[N] are aHeap[N*2]
10395 ** and aHeap[N*2+1].
10397 ** The heap property is this: Every node is less than or equal to both
10398 ** of its daughter nodes. A consequence of the heap property is that the
10399 ** root node aHeap[1] is always the minimum value currently in the heap.
10401 ** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto
10402 ** the heap, preserving the heap property. The btreeHeapPull() routine
10403 ** removes the root element from the heap (the minimum value in the heap)
10404 ** and then moves other nodes around as necessary to preserve the heap
10407 ** This heap is used for cell overlap and coverage testing. Each u32
10408 ** entry represents the span of a cell or freeblock on a btree page.
10409 ** The upper 16 bits are the index of the first byte of a range and the
10410 ** lower 16 bits are the index of the last byte of that range.
10412 static void btreeHeapInsert(u32
*aHeap
, u32 x
){
10414 assert( aHeap
!=0 );
10417 while( (j
= i
/2)>0 && aHeap
[j
]>aHeap
[i
] ){
10419 aHeap
[j
] = aHeap
[i
];
10424 static int btreeHeapPull(u32
*aHeap
, u32
*pOut
){
10426 if( (x
= aHeap
[0])==0 ) return 0;
10428 aHeap
[1] = aHeap
[x
];
10429 aHeap
[x
] = 0xffffffff;
10432 while( (j
= i
*2)<=aHeap
[0] ){
10433 if( aHeap
[j
]>aHeap
[j
+1] ) j
++;
10434 if( aHeap
[i
]<aHeap
[j
] ) break;
10436 aHeap
[i
] = aHeap
[j
];
10443 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
10445 ** Do various sanity checks on a single page of a tree. Return
10446 ** the tree depth. Root pages return 0. Parents of root pages
10447 ** return 1, and so forth.
10449 ** These checks are done:
10451 ** 1. Make sure that cells and freeblocks do not overlap
10452 ** but combine to completely cover the page.
10453 ** 2. Make sure integer cell keys are in order.
10454 ** 3. Check the integrity of overflow pages.
10455 ** 4. Recursively call checkTreePage on all children.
10456 ** 5. Verify that the depth of all children is the same.
10458 static int checkTreePage(
10459 IntegrityCk
*pCheck
, /* Context for the sanity check */
10460 Pgno iPage
, /* Page number of the page to check */
10461 i64
*piMinKey
, /* Write minimum integer primary key here */
10462 i64 maxKey
/* Error if integer primary key greater than this */
10464 MemPage
*pPage
= 0; /* The page being analyzed */
10465 int i
; /* Loop counter */
10466 int rc
; /* Result code from subroutine call */
10467 int depth
= -1, d2
; /* Depth of a subtree */
10468 int pgno
; /* Page number */
10469 int nFrag
; /* Number of fragmented bytes on the page */
10470 int hdr
; /* Offset to the page header */
10471 int cellStart
; /* Offset to the start of the cell pointer array */
10472 int nCell
; /* Number of cells */
10473 int doCoverageCheck
= 1; /* True if cell coverage checking should be done */
10474 int keyCanBeEqual
= 1; /* True if IPK can be equal to maxKey
10475 ** False if IPK must be strictly less than maxKey */
10476 u8
*data
; /* Page content */
10477 u8
*pCell
; /* Cell content */
10478 u8
*pCellIdx
; /* Next element of the cell pointer array */
10479 BtShared
*pBt
; /* The BtShared object that owns pPage */
10480 u32 pc
; /* Address of a cell */
10481 u32 usableSize
; /* Usable size of the page */
10482 u32 contentOffset
; /* Offset to the start of the cell content area */
10483 u32
*heap
= 0; /* Min-heap used for checking cell coverage */
10484 u32 x
, prev
= 0; /* Next and previous entry on the min-heap */
10485 const char *saved_zPfx
= pCheck
->zPfx
;
10486 int saved_v1
= pCheck
->v1
;
10487 int saved_v2
= pCheck
->v2
;
10488 u8 savedIsInit
= 0;
10490 /* Check that the page exists
10492 checkProgress(pCheck
);
10493 if( pCheck
->mxErr
==0 ) goto end_of_check
;
10495 usableSize
= pBt
->usableSize
;
10496 if( iPage
==0 ) return 0;
10497 if( checkRef(pCheck
, iPage
) ) return 0;
10498 pCheck
->zPfx
= "Page %u: ";
10499 pCheck
->v1
= iPage
;
10500 if( (rc
= btreeGetPage(pBt
, iPage
, &pPage
, 0))!=0 ){
10501 checkAppendMsg(pCheck
,
10502 "unable to get the page. error code=%d", rc
);
10506 /* Clear MemPage.isInit to make sure the corruption detection code in
10507 ** btreeInitPage() is executed. */
10508 savedIsInit
= pPage
->isInit
;
10510 if( (rc
= btreeInitPage(pPage
))!=0 ){
10511 assert( rc
==SQLITE_CORRUPT
); /* The only possible error from InitPage */
10512 checkAppendMsg(pCheck
,
10513 "btreeInitPage() returns error code %d", rc
);
10516 if( (rc
= btreeComputeFreeSpace(pPage
))!=0 ){
10517 assert( rc
==SQLITE_CORRUPT
);
10518 checkAppendMsg(pCheck
, "free space corruption", rc
);
10521 data
= pPage
->aData
;
10522 hdr
= pPage
->hdrOffset
;
10524 /* Set up for cell analysis */
10525 pCheck
->zPfx
= "On tree page %u cell %d: ";
10526 contentOffset
= get2byteNotZero(&data
[hdr
+5]);
10527 assert( contentOffset
<=usableSize
); /* Enforced by btreeInitPage() */
10529 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
10530 ** number of cells on the page. */
10531 nCell
= get2byte(&data
[hdr
+3]);
10532 assert( pPage
->nCell
==nCell
);
10534 /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
10535 ** immediately follows the b-tree page header. */
10536 cellStart
= hdr
+ 12 - 4*pPage
->leaf
;
10537 assert( pPage
->aCellIdx
==&data
[cellStart
] );
10538 pCellIdx
= &data
[cellStart
+ 2*(nCell
-1)];
10540 if( !pPage
->leaf
){
10541 /* Analyze the right-child page of internal pages */
10542 pgno
= get4byte(&data
[hdr
+8]);
10543 #ifndef SQLITE_OMIT_AUTOVACUUM
10544 if( pBt
->autoVacuum
){
10545 pCheck
->zPfx
= "On page %u at right child: ";
10546 checkPtrmap(pCheck
, pgno
, PTRMAP_BTREE
, iPage
);
10549 depth
= checkTreePage(pCheck
, pgno
, &maxKey
, maxKey
);
10552 /* For leaf pages, the coverage check will occur in the same loop
10553 ** as the other cell checks, so initialize the heap. */
10554 heap
= pCheck
->heap
;
10558 /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
10559 ** integer offsets to the cell contents. */
10560 for(i
=nCell
-1; i
>=0 && pCheck
->mxErr
; i
--){
10563 /* Check cell size */
10565 assert( pCellIdx
==&data
[cellStart
+ i
*2] );
10566 pc
= get2byteAligned(pCellIdx
);
10568 if( pc
<contentOffset
|| pc
>usableSize
-4 ){
10569 checkAppendMsg(pCheck
, "Offset %d out of range %d..%d",
10570 pc
, contentOffset
, usableSize
-4);
10571 doCoverageCheck
= 0;
10575 pPage
->xParseCell(pPage
, pCell
, &info
);
10576 if( pc
+info
.nSize
>usableSize
){
10577 checkAppendMsg(pCheck
, "Extends off end of page");
10578 doCoverageCheck
= 0;
10582 /* Check for integer primary key out of range */
10583 if( pPage
->intKey
){
10584 if( keyCanBeEqual
? (info
.nKey
> maxKey
) : (info
.nKey
>= maxKey
) ){
10585 checkAppendMsg(pCheck
, "Rowid %lld out of order", info
.nKey
);
10587 maxKey
= info
.nKey
;
10588 keyCanBeEqual
= 0; /* Only the first key on the page may ==maxKey */
10591 /* Check the content overflow list */
10592 if( info
.nPayload
>info
.nLocal
){
10593 u32 nPage
; /* Number of pages on the overflow chain */
10594 Pgno pgnoOvfl
; /* First page of the overflow chain */
10595 assert( pc
+ info
.nSize
- 4 <= usableSize
);
10596 nPage
= (info
.nPayload
- info
.nLocal
+ usableSize
- 5)/(usableSize
- 4);
10597 pgnoOvfl
= get4byte(&pCell
[info
.nSize
- 4]);
10598 #ifndef SQLITE_OMIT_AUTOVACUUM
10599 if( pBt
->autoVacuum
){
10600 checkPtrmap(pCheck
, pgnoOvfl
, PTRMAP_OVERFLOW1
, iPage
);
10603 checkList(pCheck
, 0, pgnoOvfl
, nPage
);
10606 if( !pPage
->leaf
){
10607 /* Check sanity of left child page for internal pages */
10608 pgno
= get4byte(pCell
);
10609 #ifndef SQLITE_OMIT_AUTOVACUUM
10610 if( pBt
->autoVacuum
){
10611 checkPtrmap(pCheck
, pgno
, PTRMAP_BTREE
, iPage
);
10614 d2
= checkTreePage(pCheck
, pgno
, &maxKey
, maxKey
);
10617 checkAppendMsg(pCheck
, "Child page depth differs");
10621 /* Populate the coverage-checking heap for leaf pages */
10622 btreeHeapInsert(heap
, (pc
<<16)|(pc
+info
.nSize
-1));
10625 *piMinKey
= maxKey
;
10627 /* Check for complete coverage of the page
10630 if( doCoverageCheck
&& pCheck
->mxErr
>0 ){
10631 /* For leaf pages, the min-heap has already been initialized and the
10632 ** cells have already been inserted. But for internal pages, that has
10633 ** not yet been done, so do it now */
10634 if( !pPage
->leaf
){
10635 heap
= pCheck
->heap
;
10637 for(i
=nCell
-1; i
>=0; i
--){
10639 pc
= get2byteAligned(&data
[cellStart
+i
*2]);
10640 size
= pPage
->xCellSize(pPage
, &data
[pc
]);
10641 btreeHeapInsert(heap
, (pc
<<16)|(pc
+size
-1));
10644 /* Add the freeblocks to the min-heap
10646 ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
10647 ** is the offset of the first freeblock, or zero if there are no
10648 ** freeblocks on the page.
10650 i
= get2byte(&data
[hdr
+1]);
10653 assert( (u32
)i
<=usableSize
-4 ); /* Enforced by btreeComputeFreeSpace() */
10654 size
= get2byte(&data
[i
+2]);
10655 assert( (u32
)(i
+size
)<=usableSize
); /* due to btreeComputeFreeSpace() */
10656 btreeHeapInsert(heap
, (((u32
)i
)<<16)|(i
+size
-1));
10657 /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
10658 ** big-endian integer which is the offset in the b-tree page of the next
10659 ** freeblock in the chain, or zero if the freeblock is the last on the
10661 j
= get2byte(&data
[i
]);
10662 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
10663 ** increasing offset. */
10664 assert( j
==0 || j
>i
+size
); /* Enforced by btreeComputeFreeSpace() */
10665 assert( (u32
)j
<=usableSize
-4 ); /* Enforced by btreeComputeFreeSpace() */
10668 /* Analyze the min-heap looking for overlap between cells and/or
10669 ** freeblocks, and counting the number of untracked bytes in nFrag.
10671 ** Each min-heap entry is of the form: (start_address<<16)|end_address.
10672 ** There is an implied first entry the covers the page header, the cell
10673 ** pointer index, and the gap between the cell pointer index and the start
10674 ** of cell content.
10676 ** The loop below pulls entries from the min-heap in order and compares
10677 ** the start_address against the previous end_address. If there is an
10678 ** overlap, that means bytes are used multiple times. If there is a gap,
10679 ** that gap is added to the fragmentation count.
10682 prev
= contentOffset
- 1; /* Implied first min-heap entry */
10683 while( btreeHeapPull(heap
,&x
) ){
10684 if( (prev
&0xffff)>=(x
>>16) ){
10685 checkAppendMsg(pCheck
,
10686 "Multiple uses for byte %u of page %u", x
>>16, iPage
);
10689 nFrag
+= (x
>>16) - (prev
&0xffff) - 1;
10693 nFrag
+= usableSize
- (prev
&0xffff) - 1;
10694 /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
10695 ** is stored in the fifth field of the b-tree page header.
10696 ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
10697 ** number of fragmented free bytes within the cell content area.
10699 if( heap
[0]==0 && nFrag
!=data
[hdr
+7] ){
10700 checkAppendMsg(pCheck
,
10701 "Fragmentation of %d bytes reported as %d on page %u",
10702 nFrag
, data
[hdr
+7], iPage
);
10707 if( !doCoverageCheck
) pPage
->isInit
= savedIsInit
;
10708 releasePage(pPage
);
10709 pCheck
->zPfx
= saved_zPfx
;
10710 pCheck
->v1
= saved_v1
;
10711 pCheck
->v2
= saved_v2
;
10714 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
10716 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
10718 ** This routine does a complete check of the given BTree file. aRoot[] is
10719 ** an array of pages numbers were each page number is the root page of
10720 ** a table. nRoot is the number of entries in aRoot.
10722 ** A read-only or read-write transaction must be opened before calling
10725 ** Write the number of error seen in *pnErr. Except for some memory
10726 ** allocation errors, an error message held in memory obtained from
10727 ** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
10728 ** returned. If a memory allocation error occurs, NULL is returned.
10730 ** If the first entry in aRoot[] is 0, that indicates that the list of
10731 ** root pages is incomplete. This is a "partial integrity-check". This
10732 ** happens when performing an integrity check on a single table. The
10733 ** zero is skipped, of course. But in addition, the freelist checks
10734 ** and the checks to make sure every page is referenced are also skipped,
10735 ** since obviously it is not possible to know which pages are covered by
10736 ** the unverified btrees. Except, if aRoot[1] is 1, then the freelist
10737 ** checks are still performed.
10739 int sqlite3BtreeIntegrityCheck(
10740 sqlite3
*db
, /* Database connection that is running the check */
10741 Btree
*p
, /* The btree to be checked */
10742 Pgno
*aRoot
, /* An array of root pages numbers for individual trees */
10743 int nRoot
, /* Number of entries in aRoot[] */
10744 int mxErr
, /* Stop reporting errors after this many */
10745 int *pnErr
, /* OUT: Write number of errors seen to this variable */
10746 char **pzOut
/* OUT: Write the error message string here */
10749 IntegrityCk sCheck
;
10750 BtShared
*pBt
= p
->pBt
;
10751 u64 savedDbFlags
= pBt
->db
->flags
;
10753 int bPartial
= 0; /* True if not checking all btrees */
10754 int bCkFreelist
= 1; /* True to scan the freelist */
10755 VVA_ONLY( int nRef
);
10758 /* aRoot[0]==0 means this is a partial check */
10762 if( aRoot
[1]!=1 ) bCkFreelist
= 0;
10765 sqlite3BtreeEnter(p
);
10766 assert( p
->inTrans
>TRANS_NONE
&& pBt
->inTransaction
>TRANS_NONE
);
10767 VVA_ONLY( nRef
= sqlite3PagerRefcount(pBt
->pPager
) );
10769 memset(&sCheck
, 0, sizeof(sCheck
));
10772 sCheck
.pPager
= pBt
->pPager
;
10773 sCheck
.nPage
= btreePagecount(sCheck
.pBt
);
10774 sCheck
.mxErr
= mxErr
;
10775 sqlite3StrAccumInit(&sCheck
.errMsg
, 0, zErr
, sizeof(zErr
), SQLITE_MAX_LENGTH
);
10776 sCheck
.errMsg
.printfFlags
= SQLITE_PRINTF_INTERNAL
;
10777 if( sCheck
.nPage
==0 ){
10778 goto integrity_ck_cleanup
;
10781 sCheck
.aPgRef
= sqlite3MallocZero((sCheck
.nPage
/ 8)+ 1);
10782 if( !sCheck
.aPgRef
){
10784 goto integrity_ck_cleanup
;
10786 sCheck
.heap
= (u32
*)sqlite3PageMalloc( pBt
->pageSize
);
10787 if( sCheck
.heap
==0 ){
10789 goto integrity_ck_cleanup
;
10792 i
= PENDING_BYTE_PAGE(pBt
);
10793 if( i
<=sCheck
.nPage
) setPageReferenced(&sCheck
, i
);
10795 /* Check the integrity of the freelist
10798 sCheck
.zPfx
= "Main freelist: ";
10799 checkList(&sCheck
, 1, get4byte(&pBt
->pPage1
->aData
[32]),
10800 get4byte(&pBt
->pPage1
->aData
[36]));
10804 /* Check all the tables.
10806 #ifndef SQLITE_OMIT_AUTOVACUUM
10808 if( pBt
->autoVacuum
){
10811 for(i
=0; (int)i
<nRoot
; i
++) if( mx
<aRoot
[i
] ) mx
= aRoot
[i
];
10812 mxInHdr
= get4byte(&pBt
->pPage1
->aData
[52]);
10814 checkAppendMsg(&sCheck
,
10815 "max rootpage (%d) disagrees with header (%d)",
10819 }else if( get4byte(&pBt
->pPage1
->aData
[64])!=0 ){
10820 checkAppendMsg(&sCheck
,
10821 "incremental_vacuum enabled with a max rootpage of zero"
10826 testcase( pBt
->db
->flags
& SQLITE_CellSizeCk
);
10827 pBt
->db
->flags
&= ~(u64
)SQLITE_CellSizeCk
;
10828 for(i
=0; (int)i
<nRoot
&& sCheck
.mxErr
; i
++){
10830 if( aRoot
[i
]==0 ) continue;
10831 #ifndef SQLITE_OMIT_AUTOVACUUM
10832 if( pBt
->autoVacuum
&& aRoot
[i
]>1 && !bPartial
){
10833 checkPtrmap(&sCheck
, aRoot
[i
], PTRMAP_ROOTPAGE
, 0);
10836 checkTreePage(&sCheck
, aRoot
[i
], ¬Used
, LARGEST_INT64
);
10838 pBt
->db
->flags
= savedDbFlags
;
10840 /* Make sure every page in the file is referenced
10843 for(i
=1; i
<=sCheck
.nPage
&& sCheck
.mxErr
; i
++){
10844 #ifdef SQLITE_OMIT_AUTOVACUUM
10845 if( getPageReferenced(&sCheck
, i
)==0 ){
10846 checkAppendMsg(&sCheck
, "Page %d is never used", i
);
10849 /* If the database supports auto-vacuum, make sure no tables contain
10850 ** references to pointer-map pages.
10852 if( getPageReferenced(&sCheck
, i
)==0 &&
10853 (PTRMAP_PAGENO(pBt
, i
)!=i
|| !pBt
->autoVacuum
) ){
10854 checkAppendMsg(&sCheck
, "Page %d is never used", i
);
10856 if( getPageReferenced(&sCheck
, i
)!=0 &&
10857 (PTRMAP_PAGENO(pBt
, i
)==i
&& pBt
->autoVacuum
) ){
10858 checkAppendMsg(&sCheck
, "Pointer map page %d is referenced", i
);
10864 /* Clean up and report errors.
10866 integrity_ck_cleanup
:
10867 sqlite3PageFree(sCheck
.heap
);
10868 sqlite3_free(sCheck
.aPgRef
);
10869 *pnErr
= sCheck
.nErr
;
10870 if( sCheck
.nErr
==0 ){
10871 sqlite3_str_reset(&sCheck
.errMsg
);
10874 *pzOut
= sqlite3StrAccumFinish(&sCheck
.errMsg
);
10876 /* Make sure this analysis did not leave any unref() pages. */
10877 assert( nRef
==sqlite3PagerRefcount(pBt
->pPager
) );
10878 sqlite3BtreeLeave(p
);
10881 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
10884 ** Return the full pathname of the underlying database file. Return
10885 ** an empty string if the database is in-memory or a TEMP database.
10887 ** The pager filename is invariant as long as the pager is
10888 ** open so it is safe to access without the BtShared mutex.
10890 const char *sqlite3BtreeGetFilename(Btree
*p
){
10891 assert( p
->pBt
->pPager
!=0 );
10892 return sqlite3PagerFilename(p
->pBt
->pPager
, 1);
10896 ** Return the pathname of the journal file for this database. The return
10897 ** value of this routine is the same regardless of whether the journal file
10898 ** has been created or not.
10900 ** The pager journal filename is invariant as long as the pager is
10901 ** open so it is safe to access without the BtShared mutex.
10903 const char *sqlite3BtreeGetJournalname(Btree
*p
){
10904 assert( p
->pBt
->pPager
!=0 );
10905 return sqlite3PagerJournalname(p
->pBt
->pPager
);
10909 ** Return one of SQLITE_TXN_NONE, SQLITE_TXN_READ, or SQLITE_TXN_WRITE
10910 ** to describe the current transaction state of Btree p.
10912 int sqlite3BtreeTxnState(Btree
*p
){
10913 assert( p
==0 || sqlite3_mutex_held(p
->db
->mutex
) );
10914 return p
? p
->inTrans
: 0;
10917 #ifndef SQLITE_OMIT_WAL
10919 ** Run a checkpoint on the Btree passed as the first argument.
10921 ** Return SQLITE_LOCKED if this or any other connection has an open
10922 ** transaction on the shared-cache the argument Btree is connected to.
10924 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
10926 int sqlite3BtreeCheckpoint(Btree
*p
, int eMode
, int *pnLog
, int *pnCkpt
){
10927 int rc
= SQLITE_OK
;
10929 BtShared
*pBt
= p
->pBt
;
10930 sqlite3BtreeEnter(p
);
10931 if( pBt
->inTransaction
!=TRANS_NONE
){
10932 rc
= SQLITE_LOCKED
;
10934 rc
= sqlite3PagerCheckpoint(pBt
->pPager
, p
->db
, eMode
, pnLog
, pnCkpt
);
10936 sqlite3BtreeLeave(p
);
10943 ** Return true if there is currently a backup running on Btree p.
10945 int sqlite3BtreeIsInBackup(Btree
*p
){
10947 assert( sqlite3_mutex_held(p
->db
->mutex
) );
10948 return p
->nBackup
!=0;
10952 ** This function returns a pointer to a blob of memory associated with
10953 ** a single shared-btree. The memory is used by client code for its own
10954 ** purposes (for example, to store a high-level schema associated with
10955 ** the shared-btree). The btree layer manages reference counting issues.
10957 ** The first time this is called on a shared-btree, nBytes bytes of memory
10958 ** are allocated, zeroed, and returned to the caller. For each subsequent
10959 ** call the nBytes parameter is ignored and a pointer to the same blob
10960 ** of memory returned.
10962 ** If the nBytes parameter is 0 and the blob of memory has not yet been
10963 ** allocated, a null pointer is returned. If the blob has already been
10964 ** allocated, it is returned as normal.
10966 ** Just before the shared-btree is closed, the function passed as the
10967 ** xFree argument when the memory allocation was made is invoked on the
10968 ** blob of allocated memory. The xFree function should not call sqlite3_free()
10969 ** on the memory, the btree layer does that.
10971 void *sqlite3BtreeSchema(Btree
*p
, int nBytes
, void(*xFree
)(void *)){
10972 BtShared
*pBt
= p
->pBt
;
10973 sqlite3BtreeEnter(p
);
10974 if( !pBt
->pSchema
&& nBytes
){
10975 pBt
->pSchema
= sqlite3DbMallocZero(0, nBytes
);
10976 pBt
->xFreeSchema
= xFree
;
10978 sqlite3BtreeLeave(p
);
10979 return pBt
->pSchema
;
10983 ** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
10984 ** btree as the argument handle holds an exclusive lock on the
10985 ** sqlite_schema table. Otherwise SQLITE_OK.
10987 int sqlite3BtreeSchemaLocked(Btree
*p
){
10989 assert( sqlite3_mutex_held(p
->db
->mutex
) );
10990 sqlite3BtreeEnter(p
);
10991 rc
= querySharedCacheTableLock(p
, SCHEMA_ROOT
, READ_LOCK
);
10992 assert( rc
==SQLITE_OK
|| rc
==SQLITE_LOCKED_SHAREDCACHE
);
10993 sqlite3BtreeLeave(p
);
10998 #ifndef SQLITE_OMIT_SHARED_CACHE
11000 ** Obtain a lock on the table whose root page is iTab. The
11001 ** lock is a write lock if isWritelock is true or a read lock
11004 int sqlite3BtreeLockTable(Btree
*p
, int iTab
, u8 isWriteLock
){
11005 int rc
= SQLITE_OK
;
11006 assert( p
->inTrans
!=TRANS_NONE
);
11008 u8 lockType
= READ_LOCK
+ isWriteLock
;
11009 assert( READ_LOCK
+1==WRITE_LOCK
);
11010 assert( isWriteLock
==0 || isWriteLock
==1 );
11012 sqlite3BtreeEnter(p
);
11013 rc
= querySharedCacheTableLock(p
, iTab
, lockType
);
11014 if( rc
==SQLITE_OK
){
11015 rc
= setSharedCacheTableLock(p
, iTab
, lockType
);
11017 sqlite3BtreeLeave(p
);
11023 #ifndef SQLITE_OMIT_INCRBLOB
11025 ** Argument pCsr must be a cursor opened for writing on an
11026 ** INTKEY table currently pointing at a valid table entry.
11027 ** This function modifies the data stored as part of that entry.
11029 ** Only the data content may only be modified, it is not possible to
11030 ** change the length of the data stored. If this function is called with
11031 ** parameters that attempt to write past the end of the existing data,
11032 ** no modifications are made and SQLITE_CORRUPT is returned.
11034 int sqlite3BtreePutData(BtCursor
*pCsr
, u32 offset
, u32 amt
, void *z
){
11036 assert( cursorOwnsBtShared(pCsr
) );
11037 assert( sqlite3_mutex_held(pCsr
->pBtree
->db
->mutex
) );
11038 assert( pCsr
->curFlags
& BTCF_Incrblob
);
11040 rc
= restoreCursorPosition(pCsr
);
11041 if( rc
!=SQLITE_OK
){
11044 assert( pCsr
->eState
!=CURSOR_REQUIRESEEK
);
11045 if( pCsr
->eState
!=CURSOR_VALID
){
11046 return SQLITE_ABORT
;
11049 /* Save the positions of all other cursors open on this table. This is
11050 ** required in case any of them are holding references to an xFetch
11051 ** version of the b-tree page modified by the accessPayload call below.
11053 ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
11054 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
11055 ** saveAllCursors can only return SQLITE_OK.
11057 VVA_ONLY(rc
=) saveAllCursors(pCsr
->pBt
, pCsr
->pgnoRoot
, pCsr
);
11058 assert( rc
==SQLITE_OK
);
11060 /* Check some assumptions:
11061 ** (a) the cursor is open for writing,
11062 ** (b) there is a read/write transaction open,
11063 ** (c) the connection holds a write-lock on the table (if required),
11064 ** (d) there are no conflicting read-locks, and
11065 ** (e) the cursor points at a valid row of an intKey table.
11067 if( (pCsr
->curFlags
& BTCF_WriteFlag
)==0 ){
11068 return SQLITE_READONLY
;
11070 assert( (pCsr
->pBt
->btsFlags
& BTS_READ_ONLY
)==0
11071 && pCsr
->pBt
->inTransaction
==TRANS_WRITE
);
11072 assert( hasSharedCacheTableLock(pCsr
->pBtree
, pCsr
->pgnoRoot
, 0, 2) );
11073 assert( !hasReadConflicts(pCsr
->pBtree
, pCsr
->pgnoRoot
) );
11074 assert( pCsr
->pPage
->intKey
);
11076 return accessPayload(pCsr
, offset
, amt
, (unsigned char *)z
, 1);
11080 ** Mark this cursor as an incremental blob cursor.
11082 void sqlite3BtreeIncrblobCursor(BtCursor
*pCur
){
11083 pCur
->curFlags
|= BTCF_Incrblob
;
11084 pCur
->pBtree
->hasIncrblobCur
= 1;
11089 ** Set both the "read version" (single byte at byte offset 18) and
11090 ** "write version" (single byte at byte offset 19) fields in the database
11091 ** header to iVersion.
11093 int sqlite3BtreeSetVersion(Btree
*pBtree
, int iVersion
){
11094 BtShared
*pBt
= pBtree
->pBt
;
11095 int rc
; /* Return code */
11097 assert( iVersion
==1 || iVersion
==2 );
11099 /* If setting the version fields to 1, do not automatically open the
11100 ** WAL connection, even if the version fields are currently set to 2.
11102 pBt
->btsFlags
&= ~BTS_NO_WAL
;
11103 if( iVersion
==1 ) pBt
->btsFlags
|= BTS_NO_WAL
;
11105 rc
= sqlite3BtreeBeginTrans(pBtree
, 0, 0);
11106 if( rc
==SQLITE_OK
){
11107 u8
*aData
= pBt
->pPage1
->aData
;
11108 if( aData
[18]!=(u8
)iVersion
|| aData
[19]!=(u8
)iVersion
){
11109 rc
= sqlite3BtreeBeginTrans(pBtree
, 2, 0);
11110 if( rc
==SQLITE_OK
){
11111 rc
= sqlite3PagerWrite(pBt
->pPage1
->pDbPage
);
11112 if( rc
==SQLITE_OK
){
11113 aData
[18] = (u8
)iVersion
;
11114 aData
[19] = (u8
)iVersion
;
11120 pBt
->btsFlags
&= ~BTS_NO_WAL
;
11125 ** Return true if the cursor has a hint specified. This routine is
11126 ** only used from within assert() statements
11128 int sqlite3BtreeCursorHasHint(BtCursor
*pCsr
, unsigned int mask
){
11129 return (pCsr
->hints
& mask
)!=0;
11133 ** Return true if the given Btree is read-only.
11135 int sqlite3BtreeIsReadonly(Btree
*p
){
11136 return (p
->pBt
->btsFlags
& BTS_READ_ONLY
)!=0;
11140 ** Return the size of the header added to each page by this module.
11142 int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage
)); }
11145 ** If no transaction is active and the database is not a temp-db, clear
11146 ** the in-memory pager cache.
11148 void sqlite3BtreeClearCache(Btree
*p
){
11149 BtShared
*pBt
= p
->pBt
;
11150 if( pBt
->inTransaction
==TRANS_NONE
){
11151 sqlite3PagerClearCache(pBt
->pPager
);
11155 #if !defined(SQLITE_OMIT_SHARED_CACHE)
11157 ** Return true if the Btree passed as the only argument is sharable.
11159 int sqlite3BtreeSharable(Btree
*p
){
11160 return p
->sharable
;
11164 ** Return the number of connections to the BtShared object accessed by
11165 ** the Btree handle passed as the only argument. For private caches
11166 ** this is always 1. For shared caches it may be 1 or greater.
11168 int sqlite3BtreeConnectionCount(Btree
*p
){
11169 testcase( p
->sharable
);
11170 return p
->pBt
->nRef
;