Snapshot of upstream SQLite 3.41.0
[sqlcipher.git] / src / btree.c
blob4fbe0b3dbcbeea8b0c43355ecd9c913f8c5dc4d1
1 /*
2 ** 2004 April 6
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file implements an external (disk-based) database using BTrees.
13 ** See the header comment on "btreeInt.h" for additional information.
14 ** Including a description of file format and an overview of operation.
16 #include "btreeInt.h"
19 ** The header string that appears at the beginning of every
20 ** SQLite database.
22 static const char zMagicHeader[] = SQLITE_FILE_HEADER;
25 ** Set this global variable to 1 to enable tracing using the TRACE
26 ** macro.
28 #if 0
29 int sqlite3BtreeTrace=1; /* True to enable tracing */
30 # define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31 #else
32 # define TRACE(X)
33 #endif
36 ** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37 ** But if the value is zero, make it 65536.
39 ** This routine is used to extract the "offset to cell content area" value
40 ** from the header of a btree page. If the page size is 65536 and the page
41 ** is empty, the offset should be 65536, but the 2-byte value stores zero.
42 ** This routine makes the necessary adjustment to 65536.
44 #define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
47 ** Values passed as the 5th argument to allocateBtreePage()
49 #define BTALLOC_ANY 0 /* Allocate any page */
50 #define BTALLOC_EXACT 1 /* Allocate exact page if possible */
51 #define BTALLOC_LE 2 /* Allocate any page <= the parameter */
54 ** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55 ** defined, or 0 if it is. For example:
57 ** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
59 #ifndef SQLITE_OMIT_AUTOVACUUM
60 #define IfNotOmitAV(expr) (expr)
61 #else
62 #define IfNotOmitAV(expr) 0
63 #endif
65 #ifndef SQLITE_OMIT_SHARED_CACHE
67 ** A list of BtShared objects that are eligible for participation
68 ** in shared cache. This variable has file scope during normal builds,
69 ** but the test harness needs to access it so we make it global for
70 ** test builds.
72 ** Access to this variable is protected by SQLITE_MUTEX_STATIC_MAIN.
74 #ifdef SQLITE_TEST
75 BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
76 #else
77 static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
78 #endif
79 #endif /* SQLITE_OMIT_SHARED_CACHE */
81 #ifndef SQLITE_OMIT_SHARED_CACHE
83 ** Enable or disable the shared pager and schema features.
85 ** This routine has no effect on existing database connections.
86 ** The shared cache setting effects only future calls to
87 ** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
89 int sqlite3_enable_shared_cache(int enable){
90 sqlite3GlobalConfig.sharedCacheEnabled = enable;
91 return SQLITE_OK;
93 #endif
97 #ifdef SQLITE_OMIT_SHARED_CACHE
99 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100 ** and clearAllSharedCacheTableLocks()
101 ** manipulate entries in the BtShared.pLock linked list used to store
102 ** shared-cache table level locks. If the library is compiled with the
103 ** shared-cache feature disabled, then there is only ever one user
104 ** of each BtShared structure and so this locking is not necessary.
105 ** So define the lock related functions as no-ops.
107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109 #define clearAllSharedCacheTableLocks(a)
110 #define downgradeAllSharedCacheTableLocks(a)
111 #define hasSharedCacheTableLock(a,b,c,d) 1
112 #define hasReadConflicts(a, b) 0
113 #endif
115 #ifdef SQLITE_DEBUG
117 ** Return and reset the seek counter for a Btree object.
119 sqlite3_uint64 sqlite3BtreeSeekCount(Btree *pBt){
120 u64 n = pBt->nSeek;
121 pBt->nSeek = 0;
122 return n;
124 #endif
127 ** Implementation of the SQLITE_CORRUPT_PAGE() macro. Takes a single
128 ** (MemPage*) as an argument. The (MemPage*) must not be NULL.
130 ** If SQLITE_DEBUG is not defined, then this macro is equivalent to
131 ** SQLITE_CORRUPT_BKPT. Or, if SQLITE_DEBUG is set, then the log message
132 ** normally produced as a side-effect of SQLITE_CORRUPT_BKPT is augmented
133 ** with the page number and filename associated with the (MemPage*).
135 #ifdef SQLITE_DEBUG
136 int corruptPageError(int lineno, MemPage *p){
137 char *zMsg;
138 sqlite3BeginBenignMalloc();
139 zMsg = sqlite3_mprintf("database corruption page %d of %s",
140 (int)p->pgno, sqlite3PagerFilename(p->pBt->pPager, 0)
142 sqlite3EndBenignMalloc();
143 if( zMsg ){
144 sqlite3ReportError(SQLITE_CORRUPT, lineno, zMsg);
146 sqlite3_free(zMsg);
147 return SQLITE_CORRUPT_BKPT;
149 # define SQLITE_CORRUPT_PAGE(pMemPage) corruptPageError(__LINE__, pMemPage)
150 #else
151 # define SQLITE_CORRUPT_PAGE(pMemPage) SQLITE_CORRUPT_PGNO(pMemPage->pgno)
152 #endif
154 #ifndef SQLITE_OMIT_SHARED_CACHE
156 #ifdef SQLITE_DEBUG
158 **** This function is only used as part of an assert() statement. ***
160 ** Check to see if pBtree holds the required locks to read or write to the
161 ** table with root page iRoot. Return 1 if it does and 0 if not.
163 ** For example, when writing to a table with root-page iRoot via
164 ** Btree connection pBtree:
166 ** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
168 ** When writing to an index that resides in a sharable database, the
169 ** caller should have first obtained a lock specifying the root page of
170 ** the corresponding table. This makes things a bit more complicated,
171 ** as this module treats each table as a separate structure. To determine
172 ** the table corresponding to the index being written, this
173 ** function has to search through the database schema.
175 ** Instead of a lock on the table/index rooted at page iRoot, the caller may
176 ** hold a write-lock on the schema table (root page 1). This is also
177 ** acceptable.
179 static int hasSharedCacheTableLock(
180 Btree *pBtree, /* Handle that must hold lock */
181 Pgno iRoot, /* Root page of b-tree */
182 int isIndex, /* True if iRoot is the root of an index b-tree */
183 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
185 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
186 Pgno iTab = 0;
187 BtLock *pLock;
189 /* If this database is not shareable, or if the client is reading
190 ** and has the read-uncommitted flag set, then no lock is required.
191 ** Return true immediately.
193 if( (pBtree->sharable==0)
194 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommit))
196 return 1;
199 /* If the client is reading or writing an index and the schema is
200 ** not loaded, then it is too difficult to actually check to see if
201 ** the correct locks are held. So do not bother - just return true.
202 ** This case does not come up very often anyhow.
204 if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){
205 return 1;
208 /* Figure out the root-page that the lock should be held on. For table
209 ** b-trees, this is just the root page of the b-tree being read or
210 ** written. For index b-trees, it is the root page of the associated
211 ** table. */
212 if( isIndex ){
213 HashElem *p;
214 int bSeen = 0;
215 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
216 Index *pIdx = (Index *)sqliteHashData(p);
217 if( pIdx->tnum==iRoot ){
218 if( bSeen ){
219 /* Two or more indexes share the same root page. There must
220 ** be imposter tables. So just return true. The assert is not
221 ** useful in that case. */
222 return 1;
224 iTab = pIdx->pTable->tnum;
225 bSeen = 1;
228 }else{
229 iTab = iRoot;
232 /* Search for the required lock. Either a write-lock on root-page iTab, a
233 ** write-lock on the schema table, or (if the client is reading) a
234 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
235 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
236 if( pLock->pBtree==pBtree
237 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
238 && pLock->eLock>=eLockType
240 return 1;
244 /* Failed to find the required lock. */
245 return 0;
247 #endif /* SQLITE_DEBUG */
249 #ifdef SQLITE_DEBUG
251 **** This function may be used as part of assert() statements only. ****
253 ** Return true if it would be illegal for pBtree to write into the
254 ** table or index rooted at iRoot because other shared connections are
255 ** simultaneously reading that same table or index.
257 ** It is illegal for pBtree to write if some other Btree object that
258 ** shares the same BtShared object is currently reading or writing
259 ** the iRoot table. Except, if the other Btree object has the
260 ** read-uncommitted flag set, then it is OK for the other object to
261 ** have a read cursor.
263 ** For example, before writing to any part of the table or index
264 ** rooted at page iRoot, one should call:
266 ** assert( !hasReadConflicts(pBtree, iRoot) );
268 static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
269 BtCursor *p;
270 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
271 if( p->pgnoRoot==iRoot
272 && p->pBtree!=pBtree
273 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommit)
275 return 1;
278 return 0;
280 #endif /* #ifdef SQLITE_DEBUG */
283 ** Query to see if Btree handle p may obtain a lock of type eLock
284 ** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
285 ** SQLITE_OK if the lock may be obtained (by calling
286 ** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
288 static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
289 BtShared *pBt = p->pBt;
290 BtLock *pIter;
292 assert( sqlite3BtreeHoldsMutex(p) );
293 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
294 assert( p->db!=0 );
295 assert( !(p->db->flags&SQLITE_ReadUncommit)||eLock==WRITE_LOCK||iTab==1 );
297 /* If requesting a write-lock, then the Btree must have an open write
298 ** transaction on this file. And, obviously, for this to be so there
299 ** must be an open write transaction on the file itself.
301 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
302 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
304 /* This routine is a no-op if the shared-cache is not enabled */
305 if( !p->sharable ){
306 return SQLITE_OK;
309 /* If some other connection is holding an exclusive lock, the
310 ** requested lock may not be obtained.
312 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
313 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
314 return SQLITE_LOCKED_SHAREDCACHE;
317 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
318 /* The condition (pIter->eLock!=eLock) in the following if(...)
319 ** statement is a simplification of:
321 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
323 ** since we know that if eLock==WRITE_LOCK, then no other connection
324 ** may hold a WRITE_LOCK on any table in this file (since there can
325 ** only be a single writer).
327 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
328 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
329 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
330 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
331 if( eLock==WRITE_LOCK ){
332 assert( p==pBt->pWriter );
333 pBt->btsFlags |= BTS_PENDING;
335 return SQLITE_LOCKED_SHAREDCACHE;
338 return SQLITE_OK;
340 #endif /* !SQLITE_OMIT_SHARED_CACHE */
342 #ifndef SQLITE_OMIT_SHARED_CACHE
344 ** Add a lock on the table with root-page iTable to the shared-btree used
345 ** by Btree handle p. Parameter eLock must be either READ_LOCK or
346 ** WRITE_LOCK.
348 ** This function assumes the following:
350 ** (a) The specified Btree object p is connected to a sharable
351 ** database (one with the BtShared.sharable flag set), and
353 ** (b) No other Btree objects hold a lock that conflicts
354 ** with the requested lock (i.e. querySharedCacheTableLock() has
355 ** already been called and returned SQLITE_OK).
357 ** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
358 ** is returned if a malloc attempt fails.
360 static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
361 BtShared *pBt = p->pBt;
362 BtLock *pLock = 0;
363 BtLock *pIter;
365 assert( sqlite3BtreeHoldsMutex(p) );
366 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
367 assert( p->db!=0 );
369 /* A connection with the read-uncommitted flag set will never try to
370 ** obtain a read-lock using this function. The only read-lock obtained
371 ** by a connection in read-uncommitted mode is on the sqlite_schema
372 ** table, and that lock is obtained in BtreeBeginTrans(). */
373 assert( 0==(p->db->flags&SQLITE_ReadUncommit) || eLock==WRITE_LOCK );
375 /* This function should only be called on a sharable b-tree after it
376 ** has been determined that no other b-tree holds a conflicting lock. */
377 assert( p->sharable );
378 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
380 /* First search the list for an existing lock on this table. */
381 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
382 if( pIter->iTable==iTable && pIter->pBtree==p ){
383 pLock = pIter;
384 break;
388 /* If the above search did not find a BtLock struct associating Btree p
389 ** with table iTable, allocate one and link it into the list.
391 if( !pLock ){
392 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
393 if( !pLock ){
394 return SQLITE_NOMEM_BKPT;
396 pLock->iTable = iTable;
397 pLock->pBtree = p;
398 pLock->pNext = pBt->pLock;
399 pBt->pLock = pLock;
402 /* Set the BtLock.eLock variable to the maximum of the current lock
403 ** and the requested lock. This means if a write-lock was already held
404 ** and a read-lock requested, we don't incorrectly downgrade the lock.
406 assert( WRITE_LOCK>READ_LOCK );
407 if( eLock>pLock->eLock ){
408 pLock->eLock = eLock;
411 return SQLITE_OK;
413 #endif /* !SQLITE_OMIT_SHARED_CACHE */
415 #ifndef SQLITE_OMIT_SHARED_CACHE
417 ** Release all the table locks (locks obtained via calls to
418 ** the setSharedCacheTableLock() procedure) held by Btree object p.
420 ** This function assumes that Btree p has an open read or write
421 ** transaction. If it does not, then the BTS_PENDING flag
422 ** may be incorrectly cleared.
424 static void clearAllSharedCacheTableLocks(Btree *p){
425 BtShared *pBt = p->pBt;
426 BtLock **ppIter = &pBt->pLock;
428 assert( sqlite3BtreeHoldsMutex(p) );
429 assert( p->sharable || 0==*ppIter );
430 assert( p->inTrans>0 );
432 while( *ppIter ){
433 BtLock *pLock = *ppIter;
434 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
435 assert( pLock->pBtree->inTrans>=pLock->eLock );
436 if( pLock->pBtree==p ){
437 *ppIter = pLock->pNext;
438 assert( pLock->iTable!=1 || pLock==&p->lock );
439 if( pLock->iTable!=1 ){
440 sqlite3_free(pLock);
442 }else{
443 ppIter = &pLock->pNext;
447 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
448 if( pBt->pWriter==p ){
449 pBt->pWriter = 0;
450 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
451 }else if( pBt->nTransaction==2 ){
452 /* This function is called when Btree p is concluding its
453 ** transaction. If there currently exists a writer, and p is not
454 ** that writer, then the number of locks held by connections other
455 ** than the writer must be about to drop to zero. In this case
456 ** set the BTS_PENDING flag to 0.
458 ** If there is not currently a writer, then BTS_PENDING must
459 ** be zero already. So this next line is harmless in that case.
461 pBt->btsFlags &= ~BTS_PENDING;
466 ** This function changes all write-locks held by Btree p into read-locks.
468 static void downgradeAllSharedCacheTableLocks(Btree *p){
469 BtShared *pBt = p->pBt;
470 if( pBt->pWriter==p ){
471 BtLock *pLock;
472 pBt->pWriter = 0;
473 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
474 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
475 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
476 pLock->eLock = READ_LOCK;
481 #endif /* SQLITE_OMIT_SHARED_CACHE */
483 static void releasePage(MemPage *pPage); /* Forward reference */
484 static void releasePageOne(MemPage *pPage); /* Forward reference */
485 static void releasePageNotNull(MemPage *pPage); /* Forward reference */
488 ***** This routine is used inside of assert() only ****
490 ** Verify that the cursor holds the mutex on its BtShared
492 #ifdef SQLITE_DEBUG
493 static int cursorHoldsMutex(BtCursor *p){
494 return sqlite3_mutex_held(p->pBt->mutex);
497 /* Verify that the cursor and the BtShared agree about what is the current
498 ** database connetion. This is important in shared-cache mode. If the database
499 ** connection pointers get out-of-sync, it is possible for routines like
500 ** btreeInitPage() to reference an stale connection pointer that references a
501 ** a connection that has already closed. This routine is used inside assert()
502 ** statements only and for the purpose of double-checking that the btree code
503 ** does keep the database connection pointers up-to-date.
505 static int cursorOwnsBtShared(BtCursor *p){
506 assert( cursorHoldsMutex(p) );
507 return (p->pBtree->db==p->pBt->db);
509 #endif
512 ** Invalidate the overflow cache of the cursor passed as the first argument.
513 ** on the shared btree structure pBt.
515 #define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
518 ** Invalidate the overflow page-list cache for all cursors opened
519 ** on the shared btree structure pBt.
521 static void invalidateAllOverflowCache(BtShared *pBt){
522 BtCursor *p;
523 assert( sqlite3_mutex_held(pBt->mutex) );
524 for(p=pBt->pCursor; p; p=p->pNext){
525 invalidateOverflowCache(p);
529 #ifndef SQLITE_OMIT_INCRBLOB
531 ** This function is called before modifying the contents of a table
532 ** to invalidate any incrblob cursors that are open on the
533 ** row or one of the rows being modified.
535 ** If argument isClearTable is true, then the entire contents of the
536 ** table is about to be deleted. In this case invalidate all incrblob
537 ** cursors open on any row within the table with root-page pgnoRoot.
539 ** Otherwise, if argument isClearTable is false, then the row with
540 ** rowid iRow is being replaced or deleted. In this case invalidate
541 ** only those incrblob cursors open on that specific row.
543 static void invalidateIncrblobCursors(
544 Btree *pBtree, /* The database file to check */
545 Pgno pgnoRoot, /* The table that might be changing */
546 i64 iRow, /* The rowid that might be changing */
547 int isClearTable /* True if all rows are being deleted */
549 BtCursor *p;
550 assert( pBtree->hasIncrblobCur );
551 assert( sqlite3BtreeHoldsMutex(pBtree) );
552 pBtree->hasIncrblobCur = 0;
553 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
554 if( (p->curFlags & BTCF_Incrblob)!=0 ){
555 pBtree->hasIncrblobCur = 1;
556 if( p->pgnoRoot==pgnoRoot && (isClearTable || p->info.nKey==iRow) ){
557 p->eState = CURSOR_INVALID;
563 #else
564 /* Stub function when INCRBLOB is omitted */
565 #define invalidateIncrblobCursors(w,x,y,z)
566 #endif /* SQLITE_OMIT_INCRBLOB */
569 ** Set bit pgno of the BtShared.pHasContent bitvec. This is called
570 ** when a page that previously contained data becomes a free-list leaf
571 ** page.
573 ** The BtShared.pHasContent bitvec exists to work around an obscure
574 ** bug caused by the interaction of two useful IO optimizations surrounding
575 ** free-list leaf pages:
577 ** 1) When all data is deleted from a page and the page becomes
578 ** a free-list leaf page, the page is not written to the database
579 ** (as free-list leaf pages contain no meaningful data). Sometimes
580 ** such a page is not even journalled (as it will not be modified,
581 ** why bother journalling it?).
583 ** 2) When a free-list leaf page is reused, its content is not read
584 ** from the database or written to the journal file (why should it
585 ** be, if it is not at all meaningful?).
587 ** By themselves, these optimizations work fine and provide a handy
588 ** performance boost to bulk delete or insert operations. However, if
589 ** a page is moved to the free-list and then reused within the same
590 ** transaction, a problem comes up. If the page is not journalled when
591 ** it is moved to the free-list and it is also not journalled when it
592 ** is extracted from the free-list and reused, then the original data
593 ** may be lost. In the event of a rollback, it may not be possible
594 ** to restore the database to its original configuration.
596 ** The solution is the BtShared.pHasContent bitvec. Whenever a page is
597 ** moved to become a free-list leaf page, the corresponding bit is
598 ** set in the bitvec. Whenever a leaf page is extracted from the free-list,
599 ** optimization 2 above is omitted if the corresponding bit is already
600 ** set in BtShared.pHasContent. The contents of the bitvec are cleared
601 ** at the end of every transaction.
603 static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
604 int rc = SQLITE_OK;
605 if( !pBt->pHasContent ){
606 assert( pgno<=pBt->nPage );
607 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
608 if( !pBt->pHasContent ){
609 rc = SQLITE_NOMEM_BKPT;
612 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
613 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
615 return rc;
619 ** Query the BtShared.pHasContent vector.
621 ** This function is called when a free-list leaf page is removed from the
622 ** free-list for reuse. It returns false if it is safe to retrieve the
623 ** page from the pager layer with the 'no-content' flag set. True otherwise.
625 static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
626 Bitvec *p = pBt->pHasContent;
627 return p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTestNotNull(p, pgno));
631 ** Clear (destroy) the BtShared.pHasContent bitvec. This should be
632 ** invoked at the conclusion of each write-transaction.
634 static void btreeClearHasContent(BtShared *pBt){
635 sqlite3BitvecDestroy(pBt->pHasContent);
636 pBt->pHasContent = 0;
640 ** Release all of the apPage[] pages for a cursor.
642 static void btreeReleaseAllCursorPages(BtCursor *pCur){
643 int i;
644 if( pCur->iPage>=0 ){
645 for(i=0; i<pCur->iPage; i++){
646 releasePageNotNull(pCur->apPage[i]);
648 releasePageNotNull(pCur->pPage);
649 pCur->iPage = -1;
654 ** The cursor passed as the only argument must point to a valid entry
655 ** when this function is called (i.e. have eState==CURSOR_VALID). This
656 ** function saves the current cursor key in variables pCur->nKey and
657 ** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error
658 ** code otherwise.
660 ** If the cursor is open on an intkey table, then the integer key
661 ** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to
662 ** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is
663 ** set to point to a malloced buffer pCur->nKey bytes in size containing
664 ** the key.
666 static int saveCursorKey(BtCursor *pCur){
667 int rc = SQLITE_OK;
668 assert( CURSOR_VALID==pCur->eState );
669 assert( 0==pCur->pKey );
670 assert( cursorHoldsMutex(pCur) );
672 if( pCur->curIntKey ){
673 /* Only the rowid is required for a table btree */
674 pCur->nKey = sqlite3BtreeIntegerKey(pCur);
675 }else{
676 /* For an index btree, save the complete key content. It is possible
677 ** that the current key is corrupt. In that case, it is possible that
678 ** the sqlite3VdbeRecordUnpack() function may overread the buffer by
679 ** up to the size of 1 varint plus 1 8-byte value when the cursor
680 ** position is restored. Hence the 17 bytes of padding allocated
681 ** below. */
682 void *pKey;
683 pCur->nKey = sqlite3BtreePayloadSize(pCur);
684 pKey = sqlite3Malloc( pCur->nKey + 9 + 8 );
685 if( pKey ){
686 rc = sqlite3BtreePayload(pCur, 0, (int)pCur->nKey, pKey);
687 if( rc==SQLITE_OK ){
688 memset(((u8*)pKey)+pCur->nKey, 0, 9+8);
689 pCur->pKey = pKey;
690 }else{
691 sqlite3_free(pKey);
693 }else{
694 rc = SQLITE_NOMEM_BKPT;
697 assert( !pCur->curIntKey || !pCur->pKey );
698 return rc;
702 ** Save the current cursor position in the variables BtCursor.nKey
703 ** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
705 ** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
706 ** prior to calling this routine.
708 static int saveCursorPosition(BtCursor *pCur){
709 int rc;
711 assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState );
712 assert( 0==pCur->pKey );
713 assert( cursorHoldsMutex(pCur) );
715 if( pCur->curFlags & BTCF_Pinned ){
716 return SQLITE_CONSTRAINT_PINNED;
718 if( pCur->eState==CURSOR_SKIPNEXT ){
719 pCur->eState = CURSOR_VALID;
720 }else{
721 pCur->skipNext = 0;
724 rc = saveCursorKey(pCur);
725 if( rc==SQLITE_OK ){
726 btreeReleaseAllCursorPages(pCur);
727 pCur->eState = CURSOR_REQUIRESEEK;
730 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast);
731 return rc;
734 /* Forward reference */
735 static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*);
738 ** Save the positions of all cursors (except pExcept) that are open on
739 ** the table with root-page iRoot. "Saving the cursor position" means that
740 ** the location in the btree is remembered in such a way that it can be
741 ** moved back to the same spot after the btree has been modified. This
742 ** routine is called just before cursor pExcept is used to modify the
743 ** table, for example in BtreeDelete() or BtreeInsert().
745 ** If there are two or more cursors on the same btree, then all such
746 ** cursors should have their BTCF_Multiple flag set. The btreeCursor()
747 ** routine enforces that rule. This routine only needs to be called in
748 ** the uncommon case when pExpect has the BTCF_Multiple flag set.
750 ** If pExpect!=NULL and if no other cursors are found on the same root-page,
751 ** then the BTCF_Multiple flag on pExpect is cleared, to avoid another
752 ** pointless call to this routine.
754 ** Implementation note: This routine merely checks to see if any cursors
755 ** need to be saved. It calls out to saveCursorsOnList() in the (unusual)
756 ** event that cursors are in need to being saved.
758 static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
759 BtCursor *p;
760 assert( sqlite3_mutex_held(pBt->mutex) );
761 assert( pExcept==0 || pExcept->pBt==pBt );
762 for(p=pBt->pCursor; p; p=p->pNext){
763 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break;
765 if( p ) return saveCursorsOnList(p, iRoot, pExcept);
766 if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple;
767 return SQLITE_OK;
770 /* This helper routine to saveAllCursors does the actual work of saving
771 ** the cursors if and when a cursor is found that actually requires saving.
772 ** The common case is that no cursors need to be saved, so this routine is
773 ** broken out from its caller to avoid unnecessary stack pointer movement.
775 static int SQLITE_NOINLINE saveCursorsOnList(
776 BtCursor *p, /* The first cursor that needs saving */
777 Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */
778 BtCursor *pExcept /* Do not save this cursor */
781 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
782 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
783 int rc = saveCursorPosition(p);
784 if( SQLITE_OK!=rc ){
785 return rc;
787 }else{
788 testcase( p->iPage>=0 );
789 btreeReleaseAllCursorPages(p);
792 p = p->pNext;
793 }while( p );
794 return SQLITE_OK;
798 ** Clear the current cursor position.
800 void sqlite3BtreeClearCursor(BtCursor *pCur){
801 assert( cursorHoldsMutex(pCur) );
802 sqlite3_free(pCur->pKey);
803 pCur->pKey = 0;
804 pCur->eState = CURSOR_INVALID;
808 ** In this version of BtreeMoveto, pKey is a packed index record
809 ** such as is generated by the OP_MakeRecord opcode. Unpack the
810 ** record and then call sqlite3BtreeIndexMoveto() to do the work.
812 static int btreeMoveto(
813 BtCursor *pCur, /* Cursor open on the btree to be searched */
814 const void *pKey, /* Packed key if the btree is an index */
815 i64 nKey, /* Integer key for tables. Size of pKey for indices */
816 int bias, /* Bias search to the high end */
817 int *pRes /* Write search results here */
819 int rc; /* Status code */
820 UnpackedRecord *pIdxKey; /* Unpacked index key */
822 if( pKey ){
823 KeyInfo *pKeyInfo = pCur->pKeyInfo;
824 assert( nKey==(i64)(int)nKey );
825 pIdxKey = sqlite3VdbeAllocUnpackedRecord(pKeyInfo);
826 if( pIdxKey==0 ) return SQLITE_NOMEM_BKPT;
827 sqlite3VdbeRecordUnpack(pKeyInfo, (int)nKey, pKey, pIdxKey);
828 if( pIdxKey->nField==0 || pIdxKey->nField>pKeyInfo->nAllField ){
829 rc = SQLITE_CORRUPT_BKPT;
830 }else{
831 rc = sqlite3BtreeIndexMoveto(pCur, pIdxKey, pRes);
833 sqlite3DbFree(pCur->pKeyInfo->db, pIdxKey);
834 }else{
835 pIdxKey = 0;
836 rc = sqlite3BtreeTableMoveto(pCur, nKey, bias, pRes);
838 return rc;
842 ** Restore the cursor to the position it was in (or as close to as possible)
843 ** when saveCursorPosition() was called. Note that this call deletes the
844 ** saved position info stored by saveCursorPosition(), so there can be
845 ** at most one effective restoreCursorPosition() call after each
846 ** saveCursorPosition().
848 static int btreeRestoreCursorPosition(BtCursor *pCur){
849 int rc;
850 int skipNext = 0;
851 assert( cursorOwnsBtShared(pCur) );
852 assert( pCur->eState>=CURSOR_REQUIRESEEK );
853 if( pCur->eState==CURSOR_FAULT ){
854 return pCur->skipNext;
856 pCur->eState = CURSOR_INVALID;
857 if( sqlite3FaultSim(410) ){
858 rc = SQLITE_IOERR;
859 }else{
860 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext);
862 if( rc==SQLITE_OK ){
863 sqlite3_free(pCur->pKey);
864 pCur->pKey = 0;
865 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
866 if( skipNext ) pCur->skipNext = skipNext;
867 if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
868 pCur->eState = CURSOR_SKIPNEXT;
871 return rc;
874 #define restoreCursorPosition(p) \
875 (p->eState>=CURSOR_REQUIRESEEK ? \
876 btreeRestoreCursorPosition(p) : \
877 SQLITE_OK)
880 ** Determine whether or not a cursor has moved from the position where
881 ** it was last placed, or has been invalidated for any other reason.
882 ** Cursors can move when the row they are pointing at is deleted out
883 ** from under them, for example. Cursor might also move if a btree
884 ** is rebalanced.
886 ** Calling this routine with a NULL cursor pointer returns false.
888 ** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
889 ** back to where it ought to be if this routine returns true.
891 int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
892 assert( EIGHT_BYTE_ALIGNMENT(pCur)
893 || pCur==sqlite3BtreeFakeValidCursor() );
894 assert( offsetof(BtCursor, eState)==0 );
895 assert( sizeof(pCur->eState)==1 );
896 return CURSOR_VALID != *(u8*)pCur;
900 ** Return a pointer to a fake BtCursor object that will always answer
901 ** false to the sqlite3BtreeCursorHasMoved() routine above. The fake
902 ** cursor returned must not be used with any other Btree interface.
904 BtCursor *sqlite3BtreeFakeValidCursor(void){
905 static u8 fakeCursor = CURSOR_VALID;
906 assert( offsetof(BtCursor, eState)==0 );
907 return (BtCursor*)&fakeCursor;
911 ** This routine restores a cursor back to its original position after it
912 ** has been moved by some outside activity (such as a btree rebalance or
913 ** a row having been deleted out from under the cursor).
915 ** On success, the *pDifferentRow parameter is false if the cursor is left
916 ** pointing at exactly the same row. *pDifferntRow is the row the cursor
917 ** was pointing to has been deleted, forcing the cursor to point to some
918 ** nearby row.
920 ** This routine should only be called for a cursor that just returned
921 ** TRUE from sqlite3BtreeCursorHasMoved().
923 int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){
924 int rc;
926 assert( pCur!=0 );
927 assert( pCur->eState!=CURSOR_VALID );
928 rc = restoreCursorPosition(pCur);
929 if( rc ){
930 *pDifferentRow = 1;
931 return rc;
933 if( pCur->eState!=CURSOR_VALID ){
934 *pDifferentRow = 1;
935 }else{
936 *pDifferentRow = 0;
938 return SQLITE_OK;
941 #ifdef SQLITE_ENABLE_CURSOR_HINTS
943 ** Provide hints to the cursor. The particular hint given (and the type
944 ** and number of the varargs parameters) is determined by the eHintType
945 ** parameter. See the definitions of the BTREE_HINT_* macros for details.
947 void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){
948 /* Used only by system that substitute their own storage engine */
950 #endif
953 ** Provide flag hints to the cursor.
955 void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){
956 assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 );
957 pCur->hints = x;
961 #ifndef SQLITE_OMIT_AUTOVACUUM
963 ** Given a page number of a regular database page, return the page
964 ** number for the pointer-map page that contains the entry for the
965 ** input page number.
967 ** Return 0 (not a valid page) for pgno==1 since there is
968 ** no pointer map associated with page 1. The integrity_check logic
969 ** requires that ptrmapPageno(*,1)!=1.
971 static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
972 int nPagesPerMapPage;
973 Pgno iPtrMap, ret;
974 assert( sqlite3_mutex_held(pBt->mutex) );
975 if( pgno<2 ) return 0;
976 nPagesPerMapPage = (pBt->usableSize/5)+1;
977 iPtrMap = (pgno-2)/nPagesPerMapPage;
978 ret = (iPtrMap*nPagesPerMapPage) + 2;
979 if( ret==PENDING_BYTE_PAGE(pBt) ){
980 ret++;
982 return ret;
986 ** Write an entry into the pointer map.
988 ** This routine updates the pointer map entry for page number 'key'
989 ** so that it maps to type 'eType' and parent page number 'pgno'.
991 ** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
992 ** a no-op. If an error occurs, the appropriate error code is written
993 ** into *pRC.
995 static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
996 DbPage *pDbPage; /* The pointer map page */
997 u8 *pPtrmap; /* The pointer map data */
998 Pgno iPtrmap; /* The pointer map page number */
999 int offset; /* Offset in pointer map page */
1000 int rc; /* Return code from subfunctions */
1002 if( *pRC ) return;
1004 assert( sqlite3_mutex_held(pBt->mutex) );
1005 /* The super-journal page number must never be used as a pointer map page */
1006 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
1008 assert( pBt->autoVacuum );
1009 if( key==0 ){
1010 *pRC = SQLITE_CORRUPT_BKPT;
1011 return;
1013 iPtrmap = PTRMAP_PAGENO(pBt, key);
1014 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
1015 if( rc!=SQLITE_OK ){
1016 *pRC = rc;
1017 return;
1019 if( ((char*)sqlite3PagerGetExtra(pDbPage))[0]!=0 ){
1020 /* The first byte of the extra data is the MemPage.isInit byte.
1021 ** If that byte is set, it means this page is also being used
1022 ** as a btree page. */
1023 *pRC = SQLITE_CORRUPT_BKPT;
1024 goto ptrmap_exit;
1026 offset = PTRMAP_PTROFFSET(iPtrmap, key);
1027 if( offset<0 ){
1028 *pRC = SQLITE_CORRUPT_BKPT;
1029 goto ptrmap_exit;
1031 assert( offset <= (int)pBt->usableSize-5 );
1032 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
1034 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
1035 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
1036 *pRC= rc = sqlite3PagerWrite(pDbPage);
1037 if( rc==SQLITE_OK ){
1038 pPtrmap[offset] = eType;
1039 put4byte(&pPtrmap[offset+1], parent);
1043 ptrmap_exit:
1044 sqlite3PagerUnref(pDbPage);
1048 ** Read an entry from the pointer map.
1050 ** This routine retrieves the pointer map entry for page 'key', writing
1051 ** the type and parent page number to *pEType and *pPgno respectively.
1052 ** An error code is returned if something goes wrong, otherwise SQLITE_OK.
1054 static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
1055 DbPage *pDbPage; /* The pointer map page */
1056 int iPtrmap; /* Pointer map page index */
1057 u8 *pPtrmap; /* Pointer map page data */
1058 int offset; /* Offset of entry in pointer map */
1059 int rc;
1061 assert( sqlite3_mutex_held(pBt->mutex) );
1063 iPtrmap = PTRMAP_PAGENO(pBt, key);
1064 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
1065 if( rc!=0 ){
1066 return rc;
1068 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
1070 offset = PTRMAP_PTROFFSET(iPtrmap, key);
1071 if( offset<0 ){
1072 sqlite3PagerUnref(pDbPage);
1073 return SQLITE_CORRUPT_BKPT;
1075 assert( offset <= (int)pBt->usableSize-5 );
1076 assert( pEType!=0 );
1077 *pEType = pPtrmap[offset];
1078 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
1080 sqlite3PagerUnref(pDbPage);
1081 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_PGNO(iPtrmap);
1082 return SQLITE_OK;
1085 #else /* if defined SQLITE_OMIT_AUTOVACUUM */
1086 #define ptrmapPut(w,x,y,z,rc)
1087 #define ptrmapGet(w,x,y,z) SQLITE_OK
1088 #define ptrmapPutOvflPtr(x, y, z, rc)
1089 #endif
1092 ** Given a btree page and a cell index (0 means the first cell on
1093 ** the page, 1 means the second cell, and so forth) return a pointer
1094 ** to the cell content.
1096 ** findCellPastPtr() does the same except it skips past the initial
1097 ** 4-byte child pointer found on interior pages, if there is one.
1099 ** This routine works only for pages that do not contain overflow cells.
1101 #define findCell(P,I) \
1102 ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
1103 #define findCellPastPtr(P,I) \
1104 ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
1108 ** This is common tail processing for btreeParseCellPtr() and
1109 ** btreeParseCellPtrIndex() for the case when the cell does not fit entirely
1110 ** on a single B-tree page. Make necessary adjustments to the CellInfo
1111 ** structure.
1113 static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow(
1114 MemPage *pPage, /* Page containing the cell */
1115 u8 *pCell, /* Pointer to the cell text. */
1116 CellInfo *pInfo /* Fill in this structure */
1118 /* If the payload will not fit completely on the local page, we have
1119 ** to decide how much to store locally and how much to spill onto
1120 ** overflow pages. The strategy is to minimize the amount of unused
1121 ** space on overflow pages while keeping the amount of local storage
1122 ** in between minLocal and maxLocal.
1124 ** Warning: changing the way overflow payload is distributed in any
1125 ** way will result in an incompatible file format.
1127 int minLocal; /* Minimum amount of payload held locally */
1128 int maxLocal; /* Maximum amount of payload held locally */
1129 int surplus; /* Overflow payload available for local storage */
1131 minLocal = pPage->minLocal;
1132 maxLocal = pPage->maxLocal;
1133 surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4);
1134 testcase( surplus==maxLocal );
1135 testcase( surplus==maxLocal+1 );
1136 if( surplus <= maxLocal ){
1137 pInfo->nLocal = (u16)surplus;
1138 }else{
1139 pInfo->nLocal = (u16)minLocal;
1141 pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4;
1145 ** Given a record with nPayload bytes of payload stored within btree
1146 ** page pPage, return the number of bytes of payload stored locally.
1148 static int btreePayloadToLocal(MemPage *pPage, i64 nPayload){
1149 int maxLocal; /* Maximum amount of payload held locally */
1150 maxLocal = pPage->maxLocal;
1151 if( nPayload<=maxLocal ){
1152 return nPayload;
1153 }else{
1154 int minLocal; /* Minimum amount of payload held locally */
1155 int surplus; /* Overflow payload available for local storage */
1156 minLocal = pPage->minLocal;
1157 surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize-4);
1158 return ( surplus <= maxLocal ) ? surplus : minLocal;
1163 ** The following routines are implementations of the MemPage.xParseCell()
1164 ** method.
1166 ** Parse a cell content block and fill in the CellInfo structure.
1168 ** btreeParseCellPtr() => table btree leaf nodes
1169 ** btreeParseCellNoPayload() => table btree internal nodes
1170 ** btreeParseCellPtrIndex() => index btree nodes
1172 ** There is also a wrapper function btreeParseCell() that works for
1173 ** all MemPage types and that references the cell by index rather than
1174 ** by pointer.
1176 static void btreeParseCellPtrNoPayload(
1177 MemPage *pPage, /* Page containing the cell */
1178 u8 *pCell, /* Pointer to the cell text. */
1179 CellInfo *pInfo /* Fill in this structure */
1181 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1182 assert( pPage->leaf==0 );
1183 assert( pPage->childPtrSize==4 );
1184 #ifndef SQLITE_DEBUG
1185 UNUSED_PARAMETER(pPage);
1186 #endif
1187 pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
1188 pInfo->nPayload = 0;
1189 pInfo->nLocal = 0;
1190 pInfo->pPayload = 0;
1191 return;
1193 static void btreeParseCellPtr(
1194 MemPage *pPage, /* Page containing the cell */
1195 u8 *pCell, /* Pointer to the cell text. */
1196 CellInfo *pInfo /* Fill in this structure */
1198 u8 *pIter; /* For scanning through pCell */
1199 u32 nPayload; /* Number of bytes of cell payload */
1200 u64 iKey; /* Extracted Key value */
1202 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1203 assert( pPage->leaf==0 || pPage->leaf==1 );
1204 assert( pPage->intKeyLeaf );
1205 assert( pPage->childPtrSize==0 );
1206 pIter = pCell;
1208 /* The next block of code is equivalent to:
1210 ** pIter += getVarint32(pIter, nPayload);
1212 ** The code is inlined to avoid a function call.
1214 nPayload = *pIter;
1215 if( nPayload>=0x80 ){
1216 u8 *pEnd = &pIter[8];
1217 nPayload &= 0x7f;
1219 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1220 }while( (*pIter)>=0x80 && pIter<pEnd );
1222 pIter++;
1224 /* The next block of code is equivalent to:
1226 ** pIter += getVarint(pIter, (u64*)&pInfo->nKey);
1228 ** The code is inlined and the loop is unrolled for performance.
1229 ** This routine is a high-runner.
1231 iKey = *pIter;
1232 if( iKey>=0x80 ){
1233 u8 x;
1234 iKey = ((iKey&0x7f)<<7) | ((x = *++pIter) & 0x7f);
1235 if( x>=0x80 ){
1236 iKey = (iKey<<7) | ((x =*++pIter) & 0x7f);
1237 if( x>=0x80 ){
1238 iKey = (iKey<<7) | ((x = *++pIter) & 0x7f);
1239 if( x>=0x80 ){
1240 iKey = (iKey<<7) | ((x = *++pIter) & 0x7f);
1241 if( x>=0x80 ){
1242 iKey = (iKey<<7) | ((x = *++pIter) & 0x7f);
1243 if( x>=0x80 ){
1244 iKey = (iKey<<7) | ((x = *++pIter) & 0x7f);
1245 if( x>=0x80 ){
1246 iKey = (iKey<<7) | ((x = *++pIter) & 0x7f);
1247 if( x>=0x80 ){
1248 iKey = (iKey<<8) | (*++pIter);
1257 pIter++;
1259 pInfo->nKey = *(i64*)&iKey;
1260 pInfo->nPayload = nPayload;
1261 pInfo->pPayload = pIter;
1262 testcase( nPayload==pPage->maxLocal );
1263 testcase( nPayload==(u32)pPage->maxLocal+1 );
1264 if( nPayload<=pPage->maxLocal ){
1265 /* This is the (easy) common case where the entire payload fits
1266 ** on the local page. No overflow is required.
1268 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1269 if( pInfo->nSize<4 ) pInfo->nSize = 4;
1270 pInfo->nLocal = (u16)nPayload;
1271 }else{
1272 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
1275 static void btreeParseCellPtrIndex(
1276 MemPage *pPage, /* Page containing the cell */
1277 u8 *pCell, /* Pointer to the cell text. */
1278 CellInfo *pInfo /* Fill in this structure */
1280 u8 *pIter; /* For scanning through pCell */
1281 u32 nPayload; /* Number of bytes of cell payload */
1283 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1284 assert( pPage->leaf==0 || pPage->leaf==1 );
1285 assert( pPage->intKeyLeaf==0 );
1286 pIter = pCell + pPage->childPtrSize;
1287 nPayload = *pIter;
1288 if( nPayload>=0x80 ){
1289 u8 *pEnd = &pIter[8];
1290 nPayload &= 0x7f;
1292 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1293 }while( *(pIter)>=0x80 && pIter<pEnd );
1295 pIter++;
1296 pInfo->nKey = nPayload;
1297 pInfo->nPayload = nPayload;
1298 pInfo->pPayload = pIter;
1299 testcase( nPayload==pPage->maxLocal );
1300 testcase( nPayload==(u32)pPage->maxLocal+1 );
1301 if( nPayload<=pPage->maxLocal ){
1302 /* This is the (easy) common case where the entire payload fits
1303 ** on the local page. No overflow is required.
1305 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1306 if( pInfo->nSize<4 ) pInfo->nSize = 4;
1307 pInfo->nLocal = (u16)nPayload;
1308 }else{
1309 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
1312 static void btreeParseCell(
1313 MemPage *pPage, /* Page containing the cell */
1314 int iCell, /* The cell index. First cell is 0 */
1315 CellInfo *pInfo /* Fill in this structure */
1317 pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo);
1321 ** The following routines are implementations of the MemPage.xCellSize
1322 ** method.
1324 ** Compute the total number of bytes that a Cell needs in the cell
1325 ** data area of the btree-page. The return number includes the cell
1326 ** data header and the local payload, but not any overflow page or
1327 ** the space used by the cell pointer.
1329 ** cellSizePtrNoPayload() => table internal nodes
1330 ** cellSizePtrTableLeaf() => table leaf nodes
1331 ** cellSizePtr() => all index nodes & table leaf nodes
1333 static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
1334 u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */
1335 u8 *pEnd; /* End mark for a varint */
1336 u32 nSize; /* Size value to return */
1338 #ifdef SQLITE_DEBUG
1339 /* The value returned by this function should always be the same as
1340 ** the (CellInfo.nSize) value found by doing a full parse of the
1341 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1342 ** this function verifies that this invariant is not violated. */
1343 CellInfo debuginfo;
1344 pPage->xParseCell(pPage, pCell, &debuginfo);
1345 #endif
1347 nSize = *pIter;
1348 if( nSize>=0x80 ){
1349 pEnd = &pIter[8];
1350 nSize &= 0x7f;
1352 nSize = (nSize<<7) | (*++pIter & 0x7f);
1353 }while( *(pIter)>=0x80 && pIter<pEnd );
1355 pIter++;
1356 testcase( nSize==pPage->maxLocal );
1357 testcase( nSize==(u32)pPage->maxLocal+1 );
1358 if( nSize<=pPage->maxLocal ){
1359 nSize += (u32)(pIter - pCell);
1360 if( nSize<4 ) nSize = 4;
1361 }else{
1362 int minLocal = pPage->minLocal;
1363 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
1364 testcase( nSize==pPage->maxLocal );
1365 testcase( nSize==(u32)pPage->maxLocal+1 );
1366 if( nSize>pPage->maxLocal ){
1367 nSize = minLocal;
1369 nSize += 4 + (u16)(pIter - pCell);
1371 assert( nSize==debuginfo.nSize || CORRUPT_DB );
1372 return (u16)nSize;
1374 static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){
1375 u8 *pIter = pCell + 4; /* For looping over bytes of pCell */
1376 u8 *pEnd; /* End mark for a varint */
1378 #ifdef SQLITE_DEBUG
1379 /* The value returned by this function should always be the same as
1380 ** the (CellInfo.nSize) value found by doing a full parse of the
1381 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1382 ** this function verifies that this invariant is not violated. */
1383 CellInfo debuginfo;
1384 pPage->xParseCell(pPage, pCell, &debuginfo);
1385 #else
1386 UNUSED_PARAMETER(pPage);
1387 #endif
1389 assert( pPage->childPtrSize==4 );
1390 pEnd = pIter + 9;
1391 while( (*pIter++)&0x80 && pIter<pEnd );
1392 assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB );
1393 return (u16)(pIter - pCell);
1395 static u16 cellSizePtrTableLeaf(MemPage *pPage, u8 *pCell){
1396 u8 *pIter = pCell; /* For looping over bytes of pCell */
1397 u8 *pEnd; /* End mark for a varint */
1398 u32 nSize; /* Size value to return */
1400 #ifdef SQLITE_DEBUG
1401 /* The value returned by this function should always be the same as
1402 ** the (CellInfo.nSize) value found by doing a full parse of the
1403 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1404 ** this function verifies that this invariant is not violated. */
1405 CellInfo debuginfo;
1406 pPage->xParseCell(pPage, pCell, &debuginfo);
1407 #endif
1409 nSize = *pIter;
1410 if( nSize>=0x80 ){
1411 pEnd = &pIter[8];
1412 nSize &= 0x7f;
1414 nSize = (nSize<<7) | (*++pIter & 0x7f);
1415 }while( *(pIter)>=0x80 && pIter<pEnd );
1417 pIter++;
1418 /* pIter now points at the 64-bit integer key value, a variable length
1419 ** integer. The following block moves pIter to point at the first byte
1420 ** past the end of the key value. */
1421 if( (*pIter++)&0x80
1422 && (*pIter++)&0x80
1423 && (*pIter++)&0x80
1424 && (*pIter++)&0x80
1425 && (*pIter++)&0x80
1426 && (*pIter++)&0x80
1427 && (*pIter++)&0x80
1428 && (*pIter++)&0x80 ){ pIter++; }
1429 testcase( nSize==pPage->maxLocal );
1430 testcase( nSize==(u32)pPage->maxLocal+1 );
1431 if( nSize<=pPage->maxLocal ){
1432 nSize += (u32)(pIter - pCell);
1433 if( nSize<4 ) nSize = 4;
1434 }else{
1435 int minLocal = pPage->minLocal;
1436 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
1437 testcase( nSize==pPage->maxLocal );
1438 testcase( nSize==(u32)pPage->maxLocal+1 );
1439 if( nSize>pPage->maxLocal ){
1440 nSize = minLocal;
1442 nSize += 4 + (u16)(pIter - pCell);
1444 assert( nSize==debuginfo.nSize || CORRUPT_DB );
1445 return (u16)nSize;
1449 #ifdef SQLITE_DEBUG
1450 /* This variation on cellSizePtr() is used inside of assert() statements
1451 ** only. */
1452 static u16 cellSize(MemPage *pPage, int iCell){
1453 return pPage->xCellSize(pPage, findCell(pPage, iCell));
1455 #endif
1457 #ifndef SQLITE_OMIT_AUTOVACUUM
1459 ** The cell pCell is currently part of page pSrc but will ultimately be part
1460 ** of pPage. (pSrc and pPage are often the same.) If pCell contains a
1461 ** pointer to an overflow page, insert an entry into the pointer-map for
1462 ** the overflow page that will be valid after pCell has been moved to pPage.
1464 static void ptrmapPutOvflPtr(MemPage *pPage, MemPage *pSrc, u8 *pCell,int *pRC){
1465 CellInfo info;
1466 if( *pRC ) return;
1467 assert( pCell!=0 );
1468 pPage->xParseCell(pPage, pCell, &info);
1469 if( info.nLocal<info.nPayload ){
1470 Pgno ovfl;
1471 if( SQLITE_WITHIN(pSrc->aDataEnd, pCell, pCell+info.nLocal) ){
1472 testcase( pSrc!=pPage );
1473 *pRC = SQLITE_CORRUPT_BKPT;
1474 return;
1476 ovfl = get4byte(&pCell[info.nSize-4]);
1477 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
1480 #endif
1484 ** Defragment the page given. This routine reorganizes cells within the
1485 ** page so that there are no free-blocks on the free-block list.
1487 ** Parameter nMaxFrag is the maximum amount of fragmented space that may be
1488 ** present in the page after this routine returns.
1490 ** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
1491 ** b-tree page so that there are no freeblocks or fragment bytes, all
1492 ** unused bytes are contained in the unallocated space region, and all
1493 ** cells are packed tightly at the end of the page.
1495 static int defragmentPage(MemPage *pPage, int nMaxFrag){
1496 int i; /* Loop counter */
1497 int pc; /* Address of the i-th cell */
1498 int hdr; /* Offset to the page header */
1499 int size; /* Size of a cell */
1500 int usableSize; /* Number of usable bytes on a page */
1501 int cellOffset; /* Offset to the cell pointer array */
1502 int cbrk; /* Offset to the cell content area */
1503 int nCell; /* Number of cells on the page */
1504 unsigned char *data; /* The page data */
1505 unsigned char *temp; /* Temp area for cell content */
1506 unsigned char *src; /* Source of content */
1507 int iCellFirst; /* First allowable cell index */
1508 int iCellLast; /* Last possible cell index */
1509 int iCellStart; /* First cell offset in input */
1511 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1512 assert( pPage->pBt!=0 );
1513 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
1514 assert( pPage->nOverflow==0 );
1515 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1516 data = pPage->aData;
1517 hdr = pPage->hdrOffset;
1518 cellOffset = pPage->cellOffset;
1519 nCell = pPage->nCell;
1520 assert( nCell==get2byte(&data[hdr+3]) || CORRUPT_DB );
1521 iCellFirst = cellOffset + 2*nCell;
1522 usableSize = pPage->pBt->usableSize;
1524 /* This block handles pages with two or fewer free blocks and nMaxFrag
1525 ** or fewer fragmented bytes. In this case it is faster to move the
1526 ** two (or one) blocks of cells using memmove() and add the required
1527 ** offsets to each pointer in the cell-pointer array than it is to
1528 ** reconstruct the entire page. */
1529 if( (int)data[hdr+7]<=nMaxFrag ){
1530 int iFree = get2byte(&data[hdr+1]);
1531 if( iFree>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage);
1532 if( iFree ){
1533 int iFree2 = get2byte(&data[iFree]);
1534 if( iFree2>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage);
1535 if( 0==iFree2 || (data[iFree2]==0 && data[iFree2+1]==0) ){
1536 u8 *pEnd = &data[cellOffset + nCell*2];
1537 u8 *pAddr;
1538 int sz2 = 0;
1539 int sz = get2byte(&data[iFree+2]);
1540 int top = get2byte(&data[hdr+5]);
1541 if( top>=iFree ){
1542 return SQLITE_CORRUPT_PAGE(pPage);
1544 if( iFree2 ){
1545 if( iFree+sz>iFree2 ) return SQLITE_CORRUPT_PAGE(pPage);
1546 sz2 = get2byte(&data[iFree2+2]);
1547 if( iFree2+sz2 > usableSize ) return SQLITE_CORRUPT_PAGE(pPage);
1548 memmove(&data[iFree+sz+sz2], &data[iFree+sz], iFree2-(iFree+sz));
1549 sz += sz2;
1550 }else if( iFree+sz>usableSize ){
1551 return SQLITE_CORRUPT_PAGE(pPage);
1554 cbrk = top+sz;
1555 assert( cbrk+(iFree-top) <= usableSize );
1556 memmove(&data[cbrk], &data[top], iFree-top);
1557 for(pAddr=&data[cellOffset]; pAddr<pEnd; pAddr+=2){
1558 pc = get2byte(pAddr);
1559 if( pc<iFree ){ put2byte(pAddr, pc+sz); }
1560 else if( pc<iFree2 ){ put2byte(pAddr, pc+sz2); }
1562 goto defragment_out;
1567 cbrk = usableSize;
1568 iCellLast = usableSize - 4;
1569 iCellStart = get2byte(&data[hdr+5]);
1570 if( nCell>0 ){
1571 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
1572 memcpy(&temp[iCellStart], &data[iCellStart], usableSize - iCellStart);
1573 src = temp;
1574 for(i=0; i<nCell; i++){
1575 u8 *pAddr; /* The i-th cell pointer */
1576 pAddr = &data[cellOffset + i*2];
1577 pc = get2byte(pAddr);
1578 testcase( pc==iCellFirst );
1579 testcase( pc==iCellLast );
1580 /* These conditions have already been verified in btreeInitPage()
1581 ** if PRAGMA cell_size_check=ON.
1583 if( pc<iCellStart || pc>iCellLast ){
1584 return SQLITE_CORRUPT_PAGE(pPage);
1586 assert( pc>=iCellStart && pc<=iCellLast );
1587 size = pPage->xCellSize(pPage, &src[pc]);
1588 cbrk -= size;
1589 if( cbrk<iCellStart || pc+size>usableSize ){
1590 return SQLITE_CORRUPT_PAGE(pPage);
1592 assert( cbrk+size<=usableSize && cbrk>=iCellStart );
1593 testcase( cbrk+size==usableSize );
1594 testcase( pc+size==usableSize );
1595 put2byte(pAddr, cbrk);
1596 memcpy(&data[cbrk], &src[pc], size);
1599 data[hdr+7] = 0;
1601 defragment_out:
1602 assert( pPage->nFree>=0 );
1603 if( data[hdr+7]+cbrk-iCellFirst!=pPage->nFree ){
1604 return SQLITE_CORRUPT_PAGE(pPage);
1606 assert( cbrk>=iCellFirst );
1607 put2byte(&data[hdr+5], cbrk);
1608 data[hdr+1] = 0;
1609 data[hdr+2] = 0;
1610 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
1611 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1612 return SQLITE_OK;
1616 ** Search the free-list on page pPg for space to store a cell nByte bytes in
1617 ** size. If one can be found, return a pointer to the space and remove it
1618 ** from the free-list.
1620 ** If no suitable space can be found on the free-list, return NULL.
1622 ** This function may detect corruption within pPg. If corruption is
1623 ** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned.
1625 ** Slots on the free list that are between 1 and 3 bytes larger than nByte
1626 ** will be ignored if adding the extra space to the fragmentation count
1627 ** causes the fragmentation count to exceed 60.
1629 static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){
1630 const int hdr = pPg->hdrOffset; /* Offset to page header */
1631 u8 * const aData = pPg->aData; /* Page data */
1632 int iAddr = hdr + 1; /* Address of ptr to pc */
1633 u8 *pTmp = &aData[iAddr]; /* Temporary ptr into aData[] */
1634 int pc = get2byte(pTmp); /* Address of a free slot */
1635 int x; /* Excess size of the slot */
1636 int maxPC = pPg->pBt->usableSize - nByte; /* Max address for a usable slot */
1637 int size; /* Size of the free slot */
1639 assert( pc>0 );
1640 while( pc<=maxPC ){
1641 /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
1642 ** freeblock form a big-endian integer which is the size of the freeblock
1643 ** in bytes, including the 4-byte header. */
1644 pTmp = &aData[pc+2];
1645 size = get2byte(pTmp);
1646 if( (x = size - nByte)>=0 ){
1647 testcase( x==4 );
1648 testcase( x==3 );
1649 if( x<4 ){
1650 /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
1651 ** number of bytes in fragments may not exceed 60. */
1652 if( aData[hdr+7]>57 ) return 0;
1654 /* Remove the slot from the free-list. Update the number of
1655 ** fragmented bytes within the page. */
1656 memcpy(&aData[iAddr], &aData[pc], 2);
1657 aData[hdr+7] += (u8)x;
1658 return &aData[pc];
1659 }else if( x+pc > maxPC ){
1660 /* This slot extends off the end of the usable part of the page */
1661 *pRc = SQLITE_CORRUPT_PAGE(pPg);
1662 return 0;
1663 }else{
1664 /* The slot remains on the free-list. Reduce its size to account
1665 ** for the portion used by the new allocation. */
1666 put2byte(&aData[pc+2], x);
1668 return &aData[pc + x];
1670 iAddr = pc;
1671 pTmp = &aData[pc];
1672 pc = get2byte(pTmp);
1673 if( pc<=iAddr ){
1674 if( pc ){
1675 /* The next slot in the chain comes before the current slot */
1676 *pRc = SQLITE_CORRUPT_PAGE(pPg);
1678 return 0;
1681 if( pc>maxPC+nByte-4 ){
1682 /* The free slot chain extends off the end of the page */
1683 *pRc = SQLITE_CORRUPT_PAGE(pPg);
1685 return 0;
1689 ** Allocate nByte bytes of space from within the B-Tree page passed
1690 ** as the first argument. Write into *pIdx the index into pPage->aData[]
1691 ** of the first byte of allocated space. Return either SQLITE_OK or
1692 ** an error code (usually SQLITE_CORRUPT).
1694 ** The caller guarantees that there is sufficient space to make the
1695 ** allocation. This routine might need to defragment in order to bring
1696 ** all the space together, however. This routine will avoid using
1697 ** the first two bytes past the cell pointer area since presumably this
1698 ** allocation is being made in order to insert a new cell, so we will
1699 ** also end up needing a new cell pointer.
1701 static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
1702 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1703 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
1704 int top; /* First byte of cell content area */
1705 int rc = SQLITE_OK; /* Integer return code */
1706 u8 *pTmp; /* Temp ptr into data[] */
1707 int gap; /* First byte of gap between cell pointers and cell content */
1709 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1710 assert( pPage->pBt );
1711 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1712 assert( nByte>=0 ); /* Minimum cell size is 4 */
1713 assert( pPage->nFree>=nByte );
1714 assert( pPage->nOverflow==0 );
1715 assert( nByte < (int)(pPage->pBt->usableSize-8) );
1717 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1718 gap = pPage->cellOffset + 2*pPage->nCell;
1719 assert( gap<=65536 );
1720 /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
1721 ** and the reserved space is zero (the usual value for reserved space)
1722 ** then the cell content offset of an empty page wants to be 65536.
1723 ** However, that integer is too large to be stored in a 2-byte unsigned
1724 ** integer, so a value of 0 is used in its place. */
1725 pTmp = &data[hdr+5];
1726 top = get2byte(pTmp);
1727 assert( top<=(int)pPage->pBt->usableSize ); /* by btreeComputeFreeSpace() */
1728 if( gap>top ){
1729 if( top==0 && pPage->pBt->usableSize==65536 ){
1730 top = 65536;
1731 }else{
1732 return SQLITE_CORRUPT_PAGE(pPage);
1736 /* If there is enough space between gap and top for one more cell pointer,
1737 ** and if the freelist is not empty, then search the
1738 ** freelist looking for a slot big enough to satisfy the request.
1740 testcase( gap+2==top );
1741 testcase( gap+1==top );
1742 testcase( gap==top );
1743 if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){
1744 u8 *pSpace = pageFindSlot(pPage, nByte, &rc);
1745 if( pSpace ){
1746 int g2;
1747 assert( pSpace+nByte<=data+pPage->pBt->usableSize );
1748 *pIdx = g2 = (int)(pSpace-data);
1749 if( g2<=gap ){
1750 return SQLITE_CORRUPT_PAGE(pPage);
1751 }else{
1752 return SQLITE_OK;
1754 }else if( rc ){
1755 return rc;
1759 /* The request could not be fulfilled using a freelist slot. Check
1760 ** to see if defragmentation is necessary.
1762 testcase( gap+2+nByte==top );
1763 if( gap+2+nByte>top ){
1764 assert( pPage->nCell>0 || CORRUPT_DB );
1765 assert( pPage->nFree>=0 );
1766 rc = defragmentPage(pPage, MIN(4, pPage->nFree - (2+nByte)));
1767 if( rc ) return rc;
1768 top = get2byteNotZero(&data[hdr+5]);
1769 assert( gap+2+nByte<=top );
1773 /* Allocate memory from the gap in between the cell pointer array
1774 ** and the cell content area. The btreeComputeFreeSpace() call has already
1775 ** validated the freelist. Given that the freelist is valid, there
1776 ** is no way that the allocation can extend off the end of the page.
1777 ** The assert() below verifies the previous sentence.
1779 top -= nByte;
1780 put2byte(&data[hdr+5], top);
1781 assert( top+nByte <= (int)pPage->pBt->usableSize );
1782 *pIdx = top;
1783 return SQLITE_OK;
1787 ** Return a section of the pPage->aData to the freelist.
1788 ** The first byte of the new free block is pPage->aData[iStart]
1789 ** and the size of the block is iSize bytes.
1791 ** Adjacent freeblocks are coalesced.
1793 ** Even though the freeblock list was checked by btreeComputeFreeSpace(),
1794 ** that routine will not detect overlap between cells or freeblocks. Nor
1795 ** does it detect cells or freeblocks that encrouch into the reserved bytes
1796 ** at the end of the page. So do additional corruption checks inside this
1797 ** routine and return SQLITE_CORRUPT if any problems are found.
1799 static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){
1800 u16 iPtr; /* Address of ptr to next freeblock */
1801 u16 iFreeBlk; /* Address of the next freeblock */
1802 u8 hdr; /* Page header size. 0 or 100 */
1803 u8 nFrag = 0; /* Reduction in fragmentation */
1804 u16 iOrigSize = iSize; /* Original value of iSize */
1805 u16 x; /* Offset to cell content area */
1806 u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */
1807 unsigned char *data = pPage->aData; /* Page content */
1808 u8 *pTmp; /* Temporary ptr into data[] */
1810 assert( pPage->pBt!=0 );
1811 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1812 assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
1813 assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize );
1814 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1815 assert( iSize>=4 ); /* Minimum cell size is 4 */
1816 assert( iStart<=pPage->pBt->usableSize-4 );
1818 /* The list of freeblocks must be in ascending order. Find the
1819 ** spot on the list where iStart should be inserted.
1821 hdr = pPage->hdrOffset;
1822 iPtr = hdr + 1;
1823 if( data[iPtr+1]==0 && data[iPtr]==0 ){
1824 iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */
1825 }else{
1826 while( (iFreeBlk = get2byte(&data[iPtr]))<iStart ){
1827 if( iFreeBlk<=iPtr ){
1828 if( iFreeBlk==0 ) break; /* TH3: corrupt082.100 */
1829 return SQLITE_CORRUPT_PAGE(pPage);
1831 iPtr = iFreeBlk;
1833 if( iFreeBlk>pPage->pBt->usableSize-4 ){ /* TH3: corrupt081.100 */
1834 return SQLITE_CORRUPT_PAGE(pPage);
1836 assert( iFreeBlk>iPtr || iFreeBlk==0 || CORRUPT_DB );
1838 /* At this point:
1839 ** iFreeBlk: First freeblock after iStart, or zero if none
1840 ** iPtr: The address of a pointer to iFreeBlk
1842 ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
1844 if( iFreeBlk && iEnd+3>=iFreeBlk ){
1845 nFrag = iFreeBlk - iEnd;
1846 if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_PAGE(pPage);
1847 iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
1848 if( iEnd > pPage->pBt->usableSize ){
1849 return SQLITE_CORRUPT_PAGE(pPage);
1851 iSize = iEnd - iStart;
1852 iFreeBlk = get2byte(&data[iFreeBlk]);
1855 /* If iPtr is another freeblock (that is, if iPtr is not the freelist
1856 ** pointer in the page header) then check to see if iStart should be
1857 ** coalesced onto the end of iPtr.
1859 if( iPtr>hdr+1 ){
1860 int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
1861 if( iPtrEnd+3>=iStart ){
1862 if( iPtrEnd>iStart ) return SQLITE_CORRUPT_PAGE(pPage);
1863 nFrag += iStart - iPtrEnd;
1864 iSize = iEnd - iPtr;
1865 iStart = iPtr;
1868 if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_PAGE(pPage);
1869 data[hdr+7] -= nFrag;
1871 pTmp = &data[hdr+5];
1872 x = get2byte(pTmp);
1873 if( iStart<=x ){
1874 /* The new freeblock is at the beginning of the cell content area,
1875 ** so just extend the cell content area rather than create another
1876 ** freelist entry */
1877 if( iStart<x ) return SQLITE_CORRUPT_PAGE(pPage);
1878 if( iPtr!=hdr+1 ) return SQLITE_CORRUPT_PAGE(pPage);
1879 put2byte(&data[hdr+1], iFreeBlk);
1880 put2byte(&data[hdr+5], iEnd);
1881 }else{
1882 /* Insert the new freeblock into the freelist */
1883 put2byte(&data[iPtr], iStart);
1885 if( pPage->pBt->btsFlags & BTS_FAST_SECURE ){
1886 /* Overwrite deleted information with zeros when the secure_delete
1887 ** option is enabled */
1888 memset(&data[iStart], 0, iSize);
1890 put2byte(&data[iStart], iFreeBlk);
1891 put2byte(&data[iStart+2], iSize);
1892 pPage->nFree += iOrigSize;
1893 return SQLITE_OK;
1897 ** Decode the flags byte (the first byte of the header) for a page
1898 ** and initialize fields of the MemPage structure accordingly.
1900 ** Only the following combinations are supported. Anything different
1901 ** indicates a corrupt database files:
1903 ** PTF_ZERODATA (0x02, 2)
1904 ** PTF_LEAFDATA | PTF_INTKEY (0x05, 5)
1905 ** PTF_ZERODATA | PTF_LEAF (0x0a, 10)
1906 ** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF (0x0d, 13)
1908 static int decodeFlags(MemPage *pPage, int flagByte){
1909 BtShared *pBt; /* A copy of pPage->pBt */
1911 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
1912 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1913 pBt = pPage->pBt;
1914 pPage->max1bytePayload = pBt->max1bytePayload;
1915 if( flagByte>=(PTF_ZERODATA | PTF_LEAF) ){
1916 pPage->childPtrSize = 0;
1917 pPage->leaf = 1;
1918 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF) ){
1919 pPage->intKeyLeaf = 1;
1920 pPage->xCellSize = cellSizePtrTableLeaf;
1921 pPage->xParseCell = btreeParseCellPtr;
1922 pPage->intKey = 1;
1923 pPage->maxLocal = pBt->maxLeaf;
1924 pPage->minLocal = pBt->minLeaf;
1925 }else if( flagByte==(PTF_ZERODATA | PTF_LEAF) ){
1926 pPage->intKey = 0;
1927 pPage->intKeyLeaf = 0;
1928 pPage->xCellSize = cellSizePtr;
1929 pPage->xParseCell = btreeParseCellPtrIndex;
1930 pPage->maxLocal = pBt->maxLocal;
1931 pPage->minLocal = pBt->minLocal;
1932 }else{
1933 pPage->intKey = 0;
1934 pPage->intKeyLeaf = 0;
1935 pPage->xCellSize = cellSizePtr;
1936 pPage->xParseCell = btreeParseCellPtrIndex;
1937 return SQLITE_CORRUPT_PAGE(pPage);
1939 }else{
1940 pPage->childPtrSize = 4;
1941 pPage->leaf = 0;
1942 if( flagByte==(PTF_ZERODATA) ){
1943 pPage->intKey = 0;
1944 pPage->intKeyLeaf = 0;
1945 pPage->xCellSize = cellSizePtr;
1946 pPage->xParseCell = btreeParseCellPtrIndex;
1947 pPage->maxLocal = pBt->maxLocal;
1948 pPage->minLocal = pBt->minLocal;
1949 }else if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
1950 pPage->intKeyLeaf = 0;
1951 pPage->xCellSize = cellSizePtrNoPayload;
1952 pPage->xParseCell = btreeParseCellPtrNoPayload;
1953 pPage->intKey = 1;
1954 pPage->maxLocal = pBt->maxLeaf;
1955 pPage->minLocal = pBt->minLeaf;
1956 }else{
1957 pPage->intKey = 0;
1958 pPage->intKeyLeaf = 0;
1959 pPage->xCellSize = cellSizePtr;
1960 pPage->xParseCell = btreeParseCellPtrIndex;
1961 return SQLITE_CORRUPT_PAGE(pPage);
1964 return SQLITE_OK;
1968 ** Compute the amount of freespace on the page. In other words, fill
1969 ** in the pPage->nFree field.
1971 static int btreeComputeFreeSpace(MemPage *pPage){
1972 int pc; /* Address of a freeblock within pPage->aData[] */
1973 u8 hdr; /* Offset to beginning of page header */
1974 u8 *data; /* Equal to pPage->aData */
1975 int usableSize; /* Amount of usable space on each page */
1976 int nFree; /* Number of unused bytes on the page */
1977 int top; /* First byte of the cell content area */
1978 int iCellFirst; /* First allowable cell or freeblock offset */
1979 int iCellLast; /* Last possible cell or freeblock offset */
1981 assert( pPage->pBt!=0 );
1982 assert( pPage->pBt->db!=0 );
1983 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1984 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
1985 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1986 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
1987 assert( pPage->isInit==1 );
1988 assert( pPage->nFree<0 );
1990 usableSize = pPage->pBt->usableSize;
1991 hdr = pPage->hdrOffset;
1992 data = pPage->aData;
1993 /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
1994 ** the start of the cell content area. A zero value for this integer is
1995 ** interpreted as 65536. */
1996 top = get2byteNotZero(&data[hdr+5]);
1997 iCellFirst = hdr + 8 + pPage->childPtrSize + 2*pPage->nCell;
1998 iCellLast = usableSize - 4;
2000 /* Compute the total free space on the page
2001 ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
2002 ** start of the first freeblock on the page, or is zero if there are no
2003 ** freeblocks. */
2004 pc = get2byte(&data[hdr+1]);
2005 nFree = data[hdr+7] + top; /* Init nFree to non-freeblock free space */
2006 if( pc>0 ){
2007 u32 next, size;
2008 if( pc<top ){
2009 /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
2010 ** always be at least one cell before the first freeblock.
2012 return SQLITE_CORRUPT_PAGE(pPage);
2014 while( 1 ){
2015 if( pc>iCellLast ){
2016 /* Freeblock off the end of the page */
2017 return SQLITE_CORRUPT_PAGE(pPage);
2019 next = get2byte(&data[pc]);
2020 size = get2byte(&data[pc+2]);
2021 nFree = nFree + size;
2022 if( next<=pc+size+3 ) break;
2023 pc = next;
2025 if( next>0 ){
2026 /* Freeblock not in ascending order */
2027 return SQLITE_CORRUPT_PAGE(pPage);
2029 if( pc+size>(unsigned int)usableSize ){
2030 /* Last freeblock extends past page end */
2031 return SQLITE_CORRUPT_PAGE(pPage);
2035 /* At this point, nFree contains the sum of the offset to the start
2036 ** of the cell-content area plus the number of free bytes within
2037 ** the cell-content area. If this is greater than the usable-size
2038 ** of the page, then the page must be corrupted. This check also
2039 ** serves to verify that the offset to the start of the cell-content
2040 ** area, according to the page header, lies within the page.
2042 if( nFree>usableSize || nFree<iCellFirst ){
2043 return SQLITE_CORRUPT_PAGE(pPage);
2045 pPage->nFree = (u16)(nFree - iCellFirst);
2046 return SQLITE_OK;
2050 ** Do additional sanity check after btreeInitPage() if
2051 ** PRAGMA cell_size_check=ON
2053 static SQLITE_NOINLINE int btreeCellSizeCheck(MemPage *pPage){
2054 int iCellFirst; /* First allowable cell or freeblock offset */
2055 int iCellLast; /* Last possible cell or freeblock offset */
2056 int i; /* Index into the cell pointer array */
2057 int sz; /* Size of a cell */
2058 int pc; /* Address of a freeblock within pPage->aData[] */
2059 u8 *data; /* Equal to pPage->aData */
2060 int usableSize; /* Maximum usable space on the page */
2061 int cellOffset; /* Start of cell content area */
2063 iCellFirst = pPage->cellOffset + 2*pPage->nCell;
2064 usableSize = pPage->pBt->usableSize;
2065 iCellLast = usableSize - 4;
2066 data = pPage->aData;
2067 cellOffset = pPage->cellOffset;
2068 if( !pPage->leaf ) iCellLast--;
2069 for(i=0; i<pPage->nCell; i++){
2070 pc = get2byteAligned(&data[cellOffset+i*2]);
2071 testcase( pc==iCellFirst );
2072 testcase( pc==iCellLast );
2073 if( pc<iCellFirst || pc>iCellLast ){
2074 return SQLITE_CORRUPT_PAGE(pPage);
2076 sz = pPage->xCellSize(pPage, &data[pc]);
2077 testcase( pc+sz==usableSize );
2078 if( pc+sz>usableSize ){
2079 return SQLITE_CORRUPT_PAGE(pPage);
2082 return SQLITE_OK;
2086 ** Initialize the auxiliary information for a disk block.
2088 ** Return SQLITE_OK on success. If we see that the page does
2089 ** not contain a well-formed database page, then return
2090 ** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
2091 ** guarantee that the page is well-formed. It only shows that
2092 ** we failed to detect any corruption.
2094 static int btreeInitPage(MemPage *pPage){
2095 u8 *data; /* Equal to pPage->aData */
2096 BtShared *pBt; /* The main btree structure */
2098 assert( pPage->pBt!=0 );
2099 assert( pPage->pBt->db!=0 );
2100 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2101 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
2102 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
2103 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
2104 assert( pPage->isInit==0 );
2106 pBt = pPage->pBt;
2107 data = pPage->aData + pPage->hdrOffset;
2108 /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
2109 ** the b-tree page type. */
2110 if( decodeFlags(pPage, data[0]) ){
2111 return SQLITE_CORRUPT_PAGE(pPage);
2113 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
2114 pPage->maskPage = (u16)(pBt->pageSize - 1);
2115 pPage->nOverflow = 0;
2116 pPage->cellOffset = pPage->hdrOffset + 8 + pPage->childPtrSize;
2117 pPage->aCellIdx = data + pPage->childPtrSize + 8;
2118 pPage->aDataEnd = pPage->aData + pBt->pageSize;
2119 pPage->aDataOfst = pPage->aData + pPage->childPtrSize;
2120 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
2121 ** number of cells on the page. */
2122 pPage->nCell = get2byte(&data[3]);
2123 if( pPage->nCell>MX_CELL(pBt) ){
2124 /* To many cells for a single page. The page must be corrupt */
2125 return SQLITE_CORRUPT_PAGE(pPage);
2127 testcase( pPage->nCell==MX_CELL(pBt) );
2128 /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
2129 ** possible for a root page of a table that contains no rows) then the
2130 ** offset to the cell content area will equal the page size minus the
2131 ** bytes of reserved space. */
2132 assert( pPage->nCell>0
2133 || get2byteNotZero(&data[5])==(int)pBt->usableSize
2134 || CORRUPT_DB );
2135 pPage->nFree = -1; /* Indicate that this value is yet uncomputed */
2136 pPage->isInit = 1;
2137 if( pBt->db->flags & SQLITE_CellSizeCk ){
2138 return btreeCellSizeCheck(pPage);
2140 return SQLITE_OK;
2144 ** Set up a raw page so that it looks like a database page holding
2145 ** no entries.
2147 static void zeroPage(MemPage *pPage, int flags){
2148 unsigned char *data = pPage->aData;
2149 BtShared *pBt = pPage->pBt;
2150 u8 hdr = pPage->hdrOffset;
2151 u16 first;
2153 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno || CORRUPT_DB );
2154 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2155 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
2156 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
2157 assert( sqlite3_mutex_held(pBt->mutex) );
2158 if( pBt->btsFlags & BTS_FAST_SECURE ){
2159 memset(&data[hdr], 0, pBt->usableSize - hdr);
2161 data[hdr] = (char)flags;
2162 first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
2163 memset(&data[hdr+1], 0, 4);
2164 data[hdr+7] = 0;
2165 put2byte(&data[hdr+5], pBt->usableSize);
2166 pPage->nFree = (u16)(pBt->usableSize - first);
2167 decodeFlags(pPage, flags);
2168 pPage->cellOffset = first;
2169 pPage->aDataEnd = &data[pBt->pageSize];
2170 pPage->aCellIdx = &data[first];
2171 pPage->aDataOfst = &data[pPage->childPtrSize];
2172 pPage->nOverflow = 0;
2173 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
2174 pPage->maskPage = (u16)(pBt->pageSize - 1);
2175 pPage->nCell = 0;
2176 pPage->isInit = 1;
2181 ** Convert a DbPage obtained from the pager into a MemPage used by
2182 ** the btree layer.
2184 static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
2185 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
2186 if( pgno!=pPage->pgno ){
2187 pPage->aData = sqlite3PagerGetData(pDbPage);
2188 pPage->pDbPage = pDbPage;
2189 pPage->pBt = pBt;
2190 pPage->pgno = pgno;
2191 pPage->hdrOffset = pgno==1 ? 100 : 0;
2193 assert( pPage->aData==sqlite3PagerGetData(pDbPage) );
2194 return pPage;
2198 ** Get a page from the pager. Initialize the MemPage.pBt and
2199 ** MemPage.aData elements if needed. See also: btreeGetUnusedPage().
2201 ** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care
2202 ** about the content of the page at this time. So do not go to the disk
2203 ** to fetch the content. Just fill in the content with zeros for now.
2204 ** If in the future we call sqlite3PagerWrite() on this page, that
2205 ** means we have started to be concerned about content and the disk
2206 ** read should occur at that point.
2208 static int btreeGetPage(
2209 BtShared *pBt, /* The btree */
2210 Pgno pgno, /* Number of the page to fetch */
2211 MemPage **ppPage, /* Return the page in this parameter */
2212 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2214 int rc;
2215 DbPage *pDbPage;
2217 assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
2218 assert( sqlite3_mutex_held(pBt->mutex) );
2219 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
2220 if( rc ) return rc;
2221 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
2222 return SQLITE_OK;
2226 ** Retrieve a page from the pager cache. If the requested page is not
2227 ** already in the pager cache return NULL. Initialize the MemPage.pBt and
2228 ** MemPage.aData elements if needed.
2230 static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
2231 DbPage *pDbPage;
2232 assert( sqlite3_mutex_held(pBt->mutex) );
2233 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
2234 if( pDbPage ){
2235 return btreePageFromDbPage(pDbPage, pgno, pBt);
2237 return 0;
2241 ** Return the size of the database file in pages. If there is any kind of
2242 ** error, return ((unsigned int)-1).
2244 static Pgno btreePagecount(BtShared *pBt){
2245 return pBt->nPage;
2247 Pgno sqlite3BtreeLastPage(Btree *p){
2248 assert( sqlite3BtreeHoldsMutex(p) );
2249 return btreePagecount(p->pBt);
2253 ** Get a page from the pager and initialize it.
2255 ** If pCur!=0 then the page is being fetched as part of a moveToChild()
2256 ** call. Do additional sanity checking on the page in this case.
2257 ** And if the fetch fails, this routine must decrement pCur->iPage.
2259 ** The page is fetched as read-write unless pCur is not NULL and is
2260 ** a read-only cursor.
2262 ** If an error occurs, then *ppPage is undefined. It
2263 ** may remain unchanged, or it may be set to an invalid value.
2265 static int getAndInitPage(
2266 BtShared *pBt, /* The database file */
2267 Pgno pgno, /* Number of the page to get */
2268 MemPage **ppPage, /* Write the page pointer here */
2269 BtCursor *pCur, /* Cursor to receive the page, or NULL */
2270 int bReadOnly /* True for a read-only page */
2272 int rc;
2273 DbPage *pDbPage;
2274 assert( sqlite3_mutex_held(pBt->mutex) );
2275 assert( pCur==0 || ppPage==&pCur->pPage );
2276 assert( pCur==0 || bReadOnly==pCur->curPagerFlags );
2277 assert( pCur==0 || pCur->iPage>0 );
2279 if( pgno>btreePagecount(pBt) ){
2280 rc = SQLITE_CORRUPT_BKPT;
2281 goto getAndInitPage_error1;
2283 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly);
2284 if( rc ){
2285 goto getAndInitPage_error1;
2287 *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
2288 if( (*ppPage)->isInit==0 ){
2289 btreePageFromDbPage(pDbPage, pgno, pBt);
2290 rc = btreeInitPage(*ppPage);
2291 if( rc!=SQLITE_OK ){
2292 goto getAndInitPage_error2;
2295 assert( (*ppPage)->pgno==pgno || CORRUPT_DB );
2296 assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) );
2298 /* If obtaining a child page for a cursor, we must verify that the page is
2299 ** compatible with the root page. */
2300 if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){
2301 rc = SQLITE_CORRUPT_PGNO(pgno);
2302 goto getAndInitPage_error2;
2304 return SQLITE_OK;
2306 getAndInitPage_error2:
2307 releasePage(*ppPage);
2308 getAndInitPage_error1:
2309 if( pCur ){
2310 pCur->iPage--;
2311 pCur->pPage = pCur->apPage[pCur->iPage];
2313 testcase( pgno==0 );
2314 assert( pgno!=0 || rc!=SQLITE_OK );
2315 return rc;
2319 ** Release a MemPage. This should be called once for each prior
2320 ** call to btreeGetPage.
2322 ** Page1 is a special case and must be released using releasePageOne().
2324 static void releasePageNotNull(MemPage *pPage){
2325 assert( pPage->aData );
2326 assert( pPage->pBt );
2327 assert( pPage->pDbPage!=0 );
2328 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2329 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2330 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2331 sqlite3PagerUnrefNotNull(pPage->pDbPage);
2333 static void releasePage(MemPage *pPage){
2334 if( pPage ) releasePageNotNull(pPage);
2336 static void releasePageOne(MemPage *pPage){
2337 assert( pPage!=0 );
2338 assert( pPage->aData );
2339 assert( pPage->pBt );
2340 assert( pPage->pDbPage!=0 );
2341 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2342 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2343 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2344 sqlite3PagerUnrefPageOne(pPage->pDbPage);
2348 ** Get an unused page.
2350 ** This works just like btreeGetPage() with the addition:
2352 ** * If the page is already in use for some other purpose, immediately
2353 ** release it and return an SQLITE_CURRUPT error.
2354 ** * Make sure the isInit flag is clear
2356 static int btreeGetUnusedPage(
2357 BtShared *pBt, /* The btree */
2358 Pgno pgno, /* Number of the page to fetch */
2359 MemPage **ppPage, /* Return the page in this parameter */
2360 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2362 int rc = btreeGetPage(pBt, pgno, ppPage, flags);
2363 if( rc==SQLITE_OK ){
2364 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
2365 releasePage(*ppPage);
2366 *ppPage = 0;
2367 return SQLITE_CORRUPT_BKPT;
2369 (*ppPage)->isInit = 0;
2370 }else{
2371 *ppPage = 0;
2373 return rc;
2378 ** During a rollback, when the pager reloads information into the cache
2379 ** so that the cache is restored to its original state at the start of
2380 ** the transaction, for each page restored this routine is called.
2382 ** This routine needs to reset the extra data section at the end of the
2383 ** page to agree with the restored data.
2385 static void pageReinit(DbPage *pData){
2386 MemPage *pPage;
2387 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
2388 assert( sqlite3PagerPageRefcount(pData)>0 );
2389 if( pPage->isInit ){
2390 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2391 pPage->isInit = 0;
2392 if( sqlite3PagerPageRefcount(pData)>1 ){
2393 /* pPage might not be a btree page; it might be an overflow page
2394 ** or ptrmap page or a free page. In those cases, the following
2395 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
2396 ** But no harm is done by this. And it is very important that
2397 ** btreeInitPage() be called on every btree page so we make
2398 ** the call for every page that comes in for re-initing. */
2399 btreeInitPage(pPage);
2405 ** Invoke the busy handler for a btree.
2407 static int btreeInvokeBusyHandler(void *pArg){
2408 BtShared *pBt = (BtShared*)pArg;
2409 assert( pBt->db );
2410 assert( sqlite3_mutex_held(pBt->db->mutex) );
2411 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
2415 ** Open a database file.
2417 ** zFilename is the name of the database file. If zFilename is NULL
2418 ** then an ephemeral database is created. The ephemeral database might
2419 ** be exclusively in memory, or it might use a disk-based memory cache.
2420 ** Either way, the ephemeral database will be automatically deleted
2421 ** when sqlite3BtreeClose() is called.
2423 ** If zFilename is ":memory:" then an in-memory database is created
2424 ** that is automatically destroyed when it is closed.
2426 ** The "flags" parameter is a bitmask that might contain bits like
2427 ** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
2429 ** If the database is already opened in the same database connection
2430 ** and we are in shared cache mode, then the open will fail with an
2431 ** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
2432 ** objects in the same database connection since doing so will lead
2433 ** to problems with locking.
2435 int sqlite3BtreeOpen(
2436 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */
2437 const char *zFilename, /* Name of the file containing the BTree database */
2438 sqlite3 *db, /* Associated database handle */
2439 Btree **ppBtree, /* Pointer to new Btree object written here */
2440 int flags, /* Options */
2441 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
2443 BtShared *pBt = 0; /* Shared part of btree structure */
2444 Btree *p; /* Handle to return */
2445 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
2446 int rc = SQLITE_OK; /* Result code from this function */
2447 u8 nReserve; /* Byte of unused space on each page */
2448 unsigned char zDbHeader[100]; /* Database header content */
2450 /* True if opening an ephemeral, temporary database */
2451 const int isTempDb = zFilename==0 || zFilename[0]==0;
2453 /* Set the variable isMemdb to true for an in-memory database, or
2454 ** false for a file-based database.
2456 #ifdef SQLITE_OMIT_MEMORYDB
2457 const int isMemdb = 0;
2458 #else
2459 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
2460 || (isTempDb && sqlite3TempInMemory(db))
2461 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
2462 #endif
2464 assert( db!=0 );
2465 assert( pVfs!=0 );
2466 assert( sqlite3_mutex_held(db->mutex) );
2467 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */
2469 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
2470 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
2472 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
2473 assert( (flags & BTREE_SINGLE)==0 || isTempDb );
2475 if( isMemdb ){
2476 flags |= BTREE_MEMORY;
2478 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
2479 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
2481 p = sqlite3MallocZero(sizeof(Btree));
2482 if( !p ){
2483 return SQLITE_NOMEM_BKPT;
2485 p->inTrans = TRANS_NONE;
2486 p->db = db;
2487 #ifndef SQLITE_OMIT_SHARED_CACHE
2488 p->lock.pBtree = p;
2489 p->lock.iTable = 1;
2490 #endif
2492 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2494 ** If this Btree is a candidate for shared cache, try to find an
2495 ** existing BtShared object that we can share with
2497 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
2498 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
2499 int nFilename = sqlite3Strlen30(zFilename)+1;
2500 int nFullPathname = pVfs->mxPathname+1;
2501 char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename));
2502 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
2504 p->sharable = 1;
2505 if( !zFullPathname ){
2506 sqlite3_free(p);
2507 return SQLITE_NOMEM_BKPT;
2509 if( isMemdb ){
2510 memcpy(zFullPathname, zFilename, nFilename);
2511 }else{
2512 rc = sqlite3OsFullPathname(pVfs, zFilename,
2513 nFullPathname, zFullPathname);
2514 if( rc ){
2515 if( rc==SQLITE_OK_SYMLINK ){
2516 rc = SQLITE_OK;
2517 }else{
2518 sqlite3_free(zFullPathname);
2519 sqlite3_free(p);
2520 return rc;
2524 #if SQLITE_THREADSAFE
2525 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
2526 sqlite3_mutex_enter(mutexOpen);
2527 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN);
2528 sqlite3_mutex_enter(mutexShared);
2529 #endif
2530 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
2531 assert( pBt->nRef>0 );
2532 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
2533 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
2534 int iDb;
2535 for(iDb=db->nDb-1; iDb>=0; iDb--){
2536 Btree *pExisting = db->aDb[iDb].pBt;
2537 if( pExisting && pExisting->pBt==pBt ){
2538 sqlite3_mutex_leave(mutexShared);
2539 sqlite3_mutex_leave(mutexOpen);
2540 sqlite3_free(zFullPathname);
2541 sqlite3_free(p);
2542 return SQLITE_CONSTRAINT;
2545 p->pBt = pBt;
2546 pBt->nRef++;
2547 break;
2550 sqlite3_mutex_leave(mutexShared);
2551 sqlite3_free(zFullPathname);
2553 #ifdef SQLITE_DEBUG
2554 else{
2555 /* In debug mode, we mark all persistent databases as sharable
2556 ** even when they are not. This exercises the locking code and
2557 ** gives more opportunity for asserts(sqlite3_mutex_held())
2558 ** statements to find locking problems.
2560 p->sharable = 1;
2562 #endif
2564 #endif
2565 if( pBt==0 ){
2567 ** The following asserts make sure that structures used by the btree are
2568 ** the right size. This is to guard against size changes that result
2569 ** when compiling on a different architecture.
2571 assert( sizeof(i64)==8 );
2572 assert( sizeof(u64)==8 );
2573 assert( sizeof(u32)==4 );
2574 assert( sizeof(u16)==2 );
2575 assert( sizeof(Pgno)==4 );
2577 pBt = sqlite3MallocZero( sizeof(*pBt) );
2578 if( pBt==0 ){
2579 rc = SQLITE_NOMEM_BKPT;
2580 goto btree_open_out;
2582 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
2583 sizeof(MemPage), flags, vfsFlags, pageReinit);
2584 if( rc==SQLITE_OK ){
2585 sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
2586 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
2588 if( rc!=SQLITE_OK ){
2589 goto btree_open_out;
2591 pBt->openFlags = (u8)flags;
2592 pBt->db = db;
2593 sqlite3PagerSetBusyHandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
2594 p->pBt = pBt;
2596 pBt->pCursor = 0;
2597 pBt->pPage1 = 0;
2598 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
2599 #if defined(SQLITE_SECURE_DELETE)
2600 pBt->btsFlags |= BTS_SECURE_DELETE;
2601 #elif defined(SQLITE_FAST_SECURE_DELETE)
2602 pBt->btsFlags |= BTS_OVERWRITE;
2603 #endif
2604 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2605 ** determined by the 2-byte integer located at an offset of 16 bytes from
2606 ** the beginning of the database file. */
2607 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
2608 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
2609 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
2610 pBt->pageSize = 0;
2611 #ifndef SQLITE_OMIT_AUTOVACUUM
2612 /* If the magic name ":memory:" will create an in-memory database, then
2613 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
2614 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
2615 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
2616 ** regular file-name. In this case the auto-vacuum applies as per normal.
2618 if( zFilename && !isMemdb ){
2619 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
2620 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
2622 #endif
2623 nReserve = 0;
2624 }else{
2625 /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2626 ** determined by the one-byte unsigned integer found at an offset of 20
2627 ** into the database file header. */
2628 nReserve = zDbHeader[20];
2629 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
2630 #ifndef SQLITE_OMIT_AUTOVACUUM
2631 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
2632 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
2633 #endif
2635 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
2636 if( rc ) goto btree_open_out;
2637 pBt->usableSize = pBt->pageSize - nReserve;
2638 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
2640 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2641 /* Add the new BtShared object to the linked list sharable BtShareds.
2643 pBt->nRef = 1;
2644 if( p->sharable ){
2645 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
2646 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN);)
2647 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
2648 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
2649 if( pBt->mutex==0 ){
2650 rc = SQLITE_NOMEM_BKPT;
2651 goto btree_open_out;
2654 sqlite3_mutex_enter(mutexShared);
2655 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
2656 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
2657 sqlite3_mutex_leave(mutexShared);
2659 #endif
2662 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2663 /* If the new Btree uses a sharable pBtShared, then link the new
2664 ** Btree into the list of all sharable Btrees for the same connection.
2665 ** The list is kept in ascending order by pBt address.
2667 if( p->sharable ){
2668 int i;
2669 Btree *pSib;
2670 for(i=0; i<db->nDb; i++){
2671 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
2672 while( pSib->pPrev ){ pSib = pSib->pPrev; }
2673 if( (uptr)p->pBt<(uptr)pSib->pBt ){
2674 p->pNext = pSib;
2675 p->pPrev = 0;
2676 pSib->pPrev = p;
2677 }else{
2678 while( pSib->pNext && (uptr)pSib->pNext->pBt<(uptr)p->pBt ){
2679 pSib = pSib->pNext;
2681 p->pNext = pSib->pNext;
2682 p->pPrev = pSib;
2683 if( p->pNext ){
2684 p->pNext->pPrev = p;
2686 pSib->pNext = p;
2688 break;
2692 #endif
2693 *ppBtree = p;
2695 btree_open_out:
2696 if( rc!=SQLITE_OK ){
2697 if( pBt && pBt->pPager ){
2698 sqlite3PagerClose(pBt->pPager, 0);
2700 sqlite3_free(pBt);
2701 sqlite3_free(p);
2702 *ppBtree = 0;
2703 }else{
2704 sqlite3_file *pFile;
2706 /* If the B-Tree was successfully opened, set the pager-cache size to the
2707 ** default value. Except, when opening on an existing shared pager-cache,
2708 ** do not change the pager-cache size.
2710 if( sqlite3BtreeSchema(p, 0, 0)==0 ){
2711 sqlite3BtreeSetCacheSize(p, SQLITE_DEFAULT_CACHE_SIZE);
2714 pFile = sqlite3PagerFile(pBt->pPager);
2715 if( pFile->pMethods ){
2716 sqlite3OsFileControlHint(pFile, SQLITE_FCNTL_PDB, (void*)&pBt->db);
2719 if( mutexOpen ){
2720 assert( sqlite3_mutex_held(mutexOpen) );
2721 sqlite3_mutex_leave(mutexOpen);
2723 assert( rc!=SQLITE_OK || sqlite3BtreeConnectionCount(*ppBtree)>0 );
2724 return rc;
2728 ** Decrement the BtShared.nRef counter. When it reaches zero,
2729 ** remove the BtShared structure from the sharing list. Return
2730 ** true if the BtShared.nRef counter reaches zero and return
2731 ** false if it is still positive.
2733 static int removeFromSharingList(BtShared *pBt){
2734 #ifndef SQLITE_OMIT_SHARED_CACHE
2735 MUTEX_LOGIC( sqlite3_mutex *pMainMtx; )
2736 BtShared *pList;
2737 int removed = 0;
2739 assert( sqlite3_mutex_notheld(pBt->mutex) );
2740 MUTEX_LOGIC( pMainMtx = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); )
2741 sqlite3_mutex_enter(pMainMtx);
2742 pBt->nRef--;
2743 if( pBt->nRef<=0 ){
2744 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
2745 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
2746 }else{
2747 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
2748 while( ALWAYS(pList) && pList->pNext!=pBt ){
2749 pList=pList->pNext;
2751 if( ALWAYS(pList) ){
2752 pList->pNext = pBt->pNext;
2755 if( SQLITE_THREADSAFE ){
2756 sqlite3_mutex_free(pBt->mutex);
2758 removed = 1;
2760 sqlite3_mutex_leave(pMainMtx);
2761 return removed;
2762 #else
2763 return 1;
2764 #endif
2768 ** Make sure pBt->pTmpSpace points to an allocation of
2769 ** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
2770 ** pointer.
2772 static SQLITE_NOINLINE int allocateTempSpace(BtShared *pBt){
2773 assert( pBt!=0 );
2774 assert( pBt->pTmpSpace==0 );
2775 /* This routine is called only by btreeCursor() when allocating the
2776 ** first write cursor for the BtShared object */
2777 assert( pBt->pCursor!=0 && (pBt->pCursor->curFlags & BTCF_WriteFlag)!=0 );
2778 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
2779 if( pBt->pTmpSpace==0 ){
2780 BtCursor *pCur = pBt->pCursor;
2781 pBt->pCursor = pCur->pNext; /* Unlink the cursor */
2782 memset(pCur, 0, sizeof(*pCur));
2783 return SQLITE_NOMEM_BKPT;
2786 /* One of the uses of pBt->pTmpSpace is to format cells before
2787 ** inserting them into a leaf page (function fillInCell()). If
2788 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2789 ** by the various routines that manipulate binary cells. Which
2790 ** can mean that fillInCell() only initializes the first 2 or 3
2791 ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2792 ** it into a database page. This is not actually a problem, but it
2793 ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2794 ** data is passed to system call write(). So to avoid this error,
2795 ** zero the first 4 bytes of temp space here.
2797 ** Also: Provide four bytes of initialized space before the
2798 ** beginning of pTmpSpace as an area available to prepend the
2799 ** left-child pointer to the beginning of a cell.
2801 memset(pBt->pTmpSpace, 0, 8);
2802 pBt->pTmpSpace += 4;
2803 return SQLITE_OK;
2807 ** Free the pBt->pTmpSpace allocation
2809 static void freeTempSpace(BtShared *pBt){
2810 if( pBt->pTmpSpace ){
2811 pBt->pTmpSpace -= 4;
2812 sqlite3PageFree(pBt->pTmpSpace);
2813 pBt->pTmpSpace = 0;
2818 ** Close an open database and invalidate all cursors.
2820 int sqlite3BtreeClose(Btree *p){
2821 BtShared *pBt = p->pBt;
2823 /* Close all cursors opened via this handle. */
2824 assert( sqlite3_mutex_held(p->db->mutex) );
2825 sqlite3BtreeEnter(p);
2827 /* Verify that no other cursors have this Btree open */
2828 #ifdef SQLITE_DEBUG
2830 BtCursor *pCur = pBt->pCursor;
2831 while( pCur ){
2832 BtCursor *pTmp = pCur;
2833 pCur = pCur->pNext;
2834 assert( pTmp->pBtree!=p );
2838 #endif
2840 /* Rollback any active transaction and free the handle structure.
2841 ** The call to sqlite3BtreeRollback() drops any table-locks held by
2842 ** this handle.
2844 sqlite3BtreeRollback(p, SQLITE_OK, 0);
2845 sqlite3BtreeLeave(p);
2847 /* If there are still other outstanding references to the shared-btree
2848 ** structure, return now. The remainder of this procedure cleans
2849 ** up the shared-btree.
2851 assert( p->wantToLock==0 && p->locked==0 );
2852 if( !p->sharable || removeFromSharingList(pBt) ){
2853 /* The pBt is no longer on the sharing list, so we can access
2854 ** it without having to hold the mutex.
2856 ** Clean out and delete the BtShared object.
2858 assert( !pBt->pCursor );
2859 sqlite3PagerClose(pBt->pPager, p->db);
2860 if( pBt->xFreeSchema && pBt->pSchema ){
2861 pBt->xFreeSchema(pBt->pSchema);
2863 sqlite3DbFree(0, pBt->pSchema);
2864 freeTempSpace(pBt);
2865 sqlite3_free(pBt);
2868 #ifndef SQLITE_OMIT_SHARED_CACHE
2869 assert( p->wantToLock==0 );
2870 assert( p->locked==0 );
2871 if( p->pPrev ) p->pPrev->pNext = p->pNext;
2872 if( p->pNext ) p->pNext->pPrev = p->pPrev;
2873 #endif
2875 sqlite3_free(p);
2876 return SQLITE_OK;
2880 ** Change the "soft" limit on the number of pages in the cache.
2881 ** Unused and unmodified pages will be recycled when the number of
2882 ** pages in the cache exceeds this soft limit. But the size of the
2883 ** cache is allowed to grow larger than this limit if it contains
2884 ** dirty pages or pages still in active use.
2886 int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2887 BtShared *pBt = p->pBt;
2888 assert( sqlite3_mutex_held(p->db->mutex) );
2889 sqlite3BtreeEnter(p);
2890 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
2891 sqlite3BtreeLeave(p);
2892 return SQLITE_OK;
2896 ** Change the "spill" limit on the number of pages in the cache.
2897 ** If the number of pages exceeds this limit during a write transaction,
2898 ** the pager might attempt to "spill" pages to the journal early in
2899 ** order to free up memory.
2901 ** The value returned is the current spill size. If zero is passed
2902 ** as an argument, no changes are made to the spill size setting, so
2903 ** using mxPage of 0 is a way to query the current spill size.
2905 int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){
2906 BtShared *pBt = p->pBt;
2907 int res;
2908 assert( sqlite3_mutex_held(p->db->mutex) );
2909 sqlite3BtreeEnter(p);
2910 res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage);
2911 sqlite3BtreeLeave(p);
2912 return res;
2915 #if SQLITE_MAX_MMAP_SIZE>0
2917 ** Change the limit on the amount of the database file that may be
2918 ** memory mapped.
2920 int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
2921 BtShared *pBt = p->pBt;
2922 assert( sqlite3_mutex_held(p->db->mutex) );
2923 sqlite3BtreeEnter(p);
2924 sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
2925 sqlite3BtreeLeave(p);
2926 return SQLITE_OK;
2928 #endif /* SQLITE_MAX_MMAP_SIZE>0 */
2931 ** Change the way data is synced to disk in order to increase or decrease
2932 ** how well the database resists damage due to OS crashes and power
2933 ** failures. Level 1 is the same as asynchronous (no syncs() occur and
2934 ** there is a high probability of damage) Level 2 is the default. There
2935 ** is a very low but non-zero probability of damage. Level 3 reduces the
2936 ** probability of damage to near zero but with a write performance reduction.
2938 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
2939 int sqlite3BtreeSetPagerFlags(
2940 Btree *p, /* The btree to set the safety level on */
2941 unsigned pgFlags /* Various PAGER_* flags */
2943 BtShared *pBt = p->pBt;
2944 assert( sqlite3_mutex_held(p->db->mutex) );
2945 sqlite3BtreeEnter(p);
2946 sqlite3PagerSetFlags(pBt->pPager, pgFlags);
2947 sqlite3BtreeLeave(p);
2948 return SQLITE_OK;
2950 #endif
2953 ** Change the default pages size and the number of reserved bytes per page.
2954 ** Or, if the page size has already been fixed, return SQLITE_READONLY
2955 ** without changing anything.
2957 ** The page size must be a power of 2 between 512 and 65536. If the page
2958 ** size supplied does not meet this constraint then the page size is not
2959 ** changed.
2961 ** Page sizes are constrained to be a power of two so that the region
2962 ** of the database file used for locking (beginning at PENDING_BYTE,
2963 ** the first byte past the 1GB boundary, 0x40000000) needs to occur
2964 ** at the beginning of a page.
2966 ** If parameter nReserve is less than zero, then the number of reserved
2967 ** bytes per page is left unchanged.
2969 ** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
2970 ** and autovacuum mode can no longer be changed.
2972 int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
2973 int rc = SQLITE_OK;
2974 int x;
2975 BtShared *pBt = p->pBt;
2976 assert( nReserve>=0 && nReserve<=255 );
2977 sqlite3BtreeEnter(p);
2978 pBt->nReserveWanted = nReserve;
2979 x = pBt->pageSize - pBt->usableSize;
2980 if( nReserve<x ) nReserve = x;
2981 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
2982 sqlite3BtreeLeave(p);
2983 return SQLITE_READONLY;
2985 assert( nReserve>=0 && nReserve<=255 );
2986 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2987 ((pageSize-1)&pageSize)==0 ){
2988 assert( (pageSize & 7)==0 );
2989 assert( !pBt->pCursor );
2990 if( nReserve>32 && pageSize==512 ) pageSize = 1024;
2991 pBt->pageSize = (u32)pageSize;
2992 freeTempSpace(pBt);
2994 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
2995 pBt->usableSize = pBt->pageSize - (u16)nReserve;
2996 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
2997 sqlite3BtreeLeave(p);
2998 return rc;
3002 ** Return the currently defined page size
3004 int sqlite3BtreeGetPageSize(Btree *p){
3005 return p->pBt->pageSize;
3009 ** This function is similar to sqlite3BtreeGetReserve(), except that it
3010 ** may only be called if it is guaranteed that the b-tree mutex is already
3011 ** held.
3013 ** This is useful in one special case in the backup API code where it is
3014 ** known that the shared b-tree mutex is held, but the mutex on the
3015 ** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
3016 ** were to be called, it might collide with some other operation on the
3017 ** database handle that owns *p, causing undefined behavior.
3019 int sqlite3BtreeGetReserveNoMutex(Btree *p){
3020 int n;
3021 assert( sqlite3_mutex_held(p->pBt->mutex) );
3022 n = p->pBt->pageSize - p->pBt->usableSize;
3023 return n;
3027 ** Return the number of bytes of space at the end of every page that
3028 ** are intentually left unused. This is the "reserved" space that is
3029 ** sometimes used by extensions.
3031 ** The value returned is the larger of the current reserve size and
3032 ** the latest reserve size requested by SQLITE_FILECTRL_RESERVE_BYTES.
3033 ** The amount of reserve can only grow - never shrink.
3035 int sqlite3BtreeGetRequestedReserve(Btree *p){
3036 int n1, n2;
3037 sqlite3BtreeEnter(p);
3038 n1 = (int)p->pBt->nReserveWanted;
3039 n2 = sqlite3BtreeGetReserveNoMutex(p);
3040 sqlite3BtreeLeave(p);
3041 return n1>n2 ? n1 : n2;
3046 ** Set the maximum page count for a database if mxPage is positive.
3047 ** No changes are made if mxPage is 0 or negative.
3048 ** Regardless of the value of mxPage, return the maximum page count.
3050 Pgno sqlite3BtreeMaxPageCount(Btree *p, Pgno mxPage){
3051 Pgno n;
3052 sqlite3BtreeEnter(p);
3053 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
3054 sqlite3BtreeLeave(p);
3055 return n;
3059 ** Change the values for the BTS_SECURE_DELETE and BTS_OVERWRITE flags:
3061 ** newFlag==0 Both BTS_SECURE_DELETE and BTS_OVERWRITE are cleared
3062 ** newFlag==1 BTS_SECURE_DELETE set and BTS_OVERWRITE is cleared
3063 ** newFlag==2 BTS_SECURE_DELETE cleared and BTS_OVERWRITE is set
3064 ** newFlag==(-1) No changes
3066 ** This routine acts as a query if newFlag is less than zero
3068 ** With BTS_OVERWRITE set, deleted content is overwritten by zeros, but
3069 ** freelist leaf pages are not written back to the database. Thus in-page
3070 ** deleted content is cleared, but freelist deleted content is not.
3072 ** With BTS_SECURE_DELETE, operation is like BTS_OVERWRITE with the addition
3073 ** that freelist leaf pages are written back into the database, increasing
3074 ** the amount of disk I/O.
3076 int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
3077 int b;
3078 if( p==0 ) return 0;
3079 sqlite3BtreeEnter(p);
3080 assert( BTS_OVERWRITE==BTS_SECURE_DELETE*2 );
3081 assert( BTS_FAST_SECURE==(BTS_OVERWRITE|BTS_SECURE_DELETE) );
3082 if( newFlag>=0 ){
3083 p->pBt->btsFlags &= ~BTS_FAST_SECURE;
3084 p->pBt->btsFlags |= BTS_SECURE_DELETE*newFlag;
3086 b = (p->pBt->btsFlags & BTS_FAST_SECURE)/BTS_SECURE_DELETE;
3087 sqlite3BtreeLeave(p);
3088 return b;
3092 ** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
3093 ** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
3094 ** is disabled. The default value for the auto-vacuum property is
3095 ** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
3097 int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
3098 #ifdef SQLITE_OMIT_AUTOVACUUM
3099 return SQLITE_READONLY;
3100 #else
3101 BtShared *pBt = p->pBt;
3102 int rc = SQLITE_OK;
3103 u8 av = (u8)autoVacuum;
3105 sqlite3BtreeEnter(p);
3106 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
3107 rc = SQLITE_READONLY;
3108 }else{
3109 pBt->autoVacuum = av ?1:0;
3110 pBt->incrVacuum = av==2 ?1:0;
3112 sqlite3BtreeLeave(p);
3113 return rc;
3114 #endif
3118 ** Return the value of the 'auto-vacuum' property. If auto-vacuum is
3119 ** enabled 1 is returned. Otherwise 0.
3121 int sqlite3BtreeGetAutoVacuum(Btree *p){
3122 #ifdef SQLITE_OMIT_AUTOVACUUM
3123 return BTREE_AUTOVACUUM_NONE;
3124 #else
3125 int rc;
3126 sqlite3BtreeEnter(p);
3127 rc = (
3128 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
3129 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
3130 BTREE_AUTOVACUUM_INCR
3132 sqlite3BtreeLeave(p);
3133 return rc;
3134 #endif
3138 ** If the user has not set the safety-level for this database connection
3139 ** using "PRAGMA synchronous", and if the safety-level is not already
3140 ** set to the value passed to this function as the second parameter,
3141 ** set it so.
3143 #if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS \
3144 && !defined(SQLITE_OMIT_WAL)
3145 static void setDefaultSyncFlag(BtShared *pBt, u8 safety_level){
3146 sqlite3 *db;
3147 Db *pDb;
3148 if( (db=pBt->db)!=0 && (pDb=db->aDb)!=0 ){
3149 while( pDb->pBt==0 || pDb->pBt->pBt!=pBt ){ pDb++; }
3150 if( pDb->bSyncSet==0
3151 && pDb->safety_level!=safety_level
3152 && pDb!=&db->aDb[1]
3154 pDb->safety_level = safety_level;
3155 sqlite3PagerSetFlags(pBt->pPager,
3156 pDb->safety_level | (db->flags & PAGER_FLAGS_MASK));
3160 #else
3161 # define setDefaultSyncFlag(pBt,safety_level)
3162 #endif
3164 /* Forward declaration */
3165 static int newDatabase(BtShared*);
3169 ** Get a reference to pPage1 of the database file. This will
3170 ** also acquire a readlock on that file.
3172 ** SQLITE_OK is returned on success. If the file is not a
3173 ** well-formed database file, then SQLITE_CORRUPT is returned.
3174 ** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
3175 ** is returned if we run out of memory.
3177 static int lockBtree(BtShared *pBt){
3178 int rc; /* Result code from subfunctions */
3179 MemPage *pPage1; /* Page 1 of the database file */
3180 u32 nPage; /* Number of pages in the database */
3181 u32 nPageFile = 0; /* Number of pages in the database file */
3183 assert( sqlite3_mutex_held(pBt->mutex) );
3184 assert( pBt->pPage1==0 );
3185 rc = sqlite3PagerSharedLock(pBt->pPager);
3186 if( rc!=SQLITE_OK ) return rc;
3187 rc = btreeGetPage(pBt, 1, &pPage1, 0);
3188 if( rc!=SQLITE_OK ) return rc;
3190 /* Do some checking to help insure the file we opened really is
3191 ** a valid database file.
3193 nPage = get4byte(28+(u8*)pPage1->aData);
3194 sqlite3PagerPagecount(pBt->pPager, (int*)&nPageFile);
3195 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
3196 nPage = nPageFile;
3198 if( (pBt->db->flags & SQLITE_ResetDatabase)!=0 ){
3199 nPage = 0;
3201 if( nPage>0 ){
3202 u32 pageSize;
3203 u32 usableSize;
3204 u8 *page1 = pPage1->aData;
3205 rc = SQLITE_NOTADB;
3206 /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
3207 ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
3208 ** 61 74 20 33 00. */
3209 if( memcmp(page1, zMagicHeader, 16)!=0 ){
3210 goto page1_init_failed;
3213 #ifdef SQLITE_OMIT_WAL
3214 if( page1[18]>1 ){
3215 pBt->btsFlags |= BTS_READ_ONLY;
3217 if( page1[19]>1 ){
3218 goto page1_init_failed;
3220 #else
3221 if( page1[18]>2 ){
3222 pBt->btsFlags |= BTS_READ_ONLY;
3224 if( page1[19]>2 ){
3225 goto page1_init_failed;
3228 /* If the read version is set to 2, this database should be accessed
3229 ** in WAL mode. If the log is not already open, open it now. Then
3230 ** return SQLITE_OK and return without populating BtShared.pPage1.
3231 ** The caller detects this and calls this function again. This is
3232 ** required as the version of page 1 currently in the page1 buffer
3233 ** may not be the latest version - there may be a newer one in the log
3234 ** file.
3236 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
3237 int isOpen = 0;
3238 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
3239 if( rc!=SQLITE_OK ){
3240 goto page1_init_failed;
3241 }else{
3242 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_WAL_SYNCHRONOUS+1);
3243 if( isOpen==0 ){
3244 releasePageOne(pPage1);
3245 return SQLITE_OK;
3248 rc = SQLITE_NOTADB;
3249 }else{
3250 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_SYNCHRONOUS+1);
3252 #endif
3254 /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
3255 ** fractions and the leaf payload fraction values must be 64, 32, and 32.
3257 ** The original design allowed these amounts to vary, but as of
3258 ** version 3.6.0, we require them to be fixed.
3260 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
3261 goto page1_init_failed;
3263 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
3264 ** determined by the 2-byte integer located at an offset of 16 bytes from
3265 ** the beginning of the database file. */
3266 pageSize = (page1[16]<<8) | (page1[17]<<16);
3267 /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
3268 ** between 512 and 65536 inclusive. */
3269 if( ((pageSize-1)&pageSize)!=0
3270 || pageSize>SQLITE_MAX_PAGE_SIZE
3271 || pageSize<=256
3273 goto page1_init_failed;
3275 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
3276 assert( (pageSize & 7)==0 );
3277 /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
3278 ** integer at offset 20 is the number of bytes of space at the end of
3279 ** each page to reserve for extensions.
3281 ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
3282 ** determined by the one-byte unsigned integer found at an offset of 20
3283 ** into the database file header. */
3284 usableSize = pageSize - page1[20];
3285 if( (u32)pageSize!=pBt->pageSize ){
3286 /* After reading the first page of the database assuming a page size
3287 ** of BtShared.pageSize, we have discovered that the page-size is
3288 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
3289 ** zero and return SQLITE_OK. The caller will call this function
3290 ** again with the correct page-size.
3292 releasePageOne(pPage1);
3293 pBt->usableSize = usableSize;
3294 pBt->pageSize = pageSize;
3295 freeTempSpace(pBt);
3296 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
3297 pageSize-usableSize);
3298 return rc;
3300 if( nPage>nPageFile ){
3301 if( sqlite3WritableSchema(pBt->db)==0 ){
3302 rc = SQLITE_CORRUPT_BKPT;
3303 goto page1_init_failed;
3304 }else{
3305 nPage = nPageFile;
3308 /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
3309 ** be less than 480. In other words, if the page size is 512, then the
3310 ** reserved space size cannot exceed 32. */
3311 if( usableSize<480 ){
3312 goto page1_init_failed;
3314 pBt->pageSize = pageSize;
3315 pBt->usableSize = usableSize;
3316 #ifndef SQLITE_OMIT_AUTOVACUUM
3317 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
3318 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
3319 #endif
3322 /* maxLocal is the maximum amount of payload to store locally for
3323 ** a cell. Make sure it is small enough so that at least minFanout
3324 ** cells can will fit on one page. We assume a 10-byte page header.
3325 ** Besides the payload, the cell must store:
3326 ** 2-byte pointer to the cell
3327 ** 4-byte child pointer
3328 ** 9-byte nKey value
3329 ** 4-byte nData value
3330 ** 4-byte overflow page pointer
3331 ** So a cell consists of a 2-byte pointer, a header which is as much as
3332 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
3333 ** page pointer.
3335 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
3336 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
3337 pBt->maxLeaf = (u16)(pBt->usableSize - 35);
3338 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
3339 if( pBt->maxLocal>127 ){
3340 pBt->max1bytePayload = 127;
3341 }else{
3342 pBt->max1bytePayload = (u8)pBt->maxLocal;
3344 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
3345 pBt->pPage1 = pPage1;
3346 pBt->nPage = nPage;
3347 return SQLITE_OK;
3349 page1_init_failed:
3350 releasePageOne(pPage1);
3351 pBt->pPage1 = 0;
3352 return rc;
3355 #ifndef NDEBUG
3357 ** Return the number of cursors open on pBt. This is for use
3358 ** in assert() expressions, so it is only compiled if NDEBUG is not
3359 ** defined.
3361 ** Only write cursors are counted if wrOnly is true. If wrOnly is
3362 ** false then all cursors are counted.
3364 ** For the purposes of this routine, a cursor is any cursor that
3365 ** is capable of reading or writing to the database. Cursors that
3366 ** have been tripped into the CURSOR_FAULT state are not counted.
3368 static int countValidCursors(BtShared *pBt, int wrOnly){
3369 BtCursor *pCur;
3370 int r = 0;
3371 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
3372 if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
3373 && pCur->eState!=CURSOR_FAULT ) r++;
3375 return r;
3377 #endif
3380 ** If there are no outstanding cursors and we are not in the middle
3381 ** of a transaction but there is a read lock on the database, then
3382 ** this routine unrefs the first page of the database file which
3383 ** has the effect of releasing the read lock.
3385 ** If there is a transaction in progress, this routine is a no-op.
3387 static void unlockBtreeIfUnused(BtShared *pBt){
3388 assert( sqlite3_mutex_held(pBt->mutex) );
3389 assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
3390 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
3391 MemPage *pPage1 = pBt->pPage1;
3392 assert( pPage1->aData );
3393 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
3394 pBt->pPage1 = 0;
3395 releasePageOne(pPage1);
3400 ** If pBt points to an empty file then convert that empty file
3401 ** into a new empty database by initializing the first page of
3402 ** the database.
3404 static int newDatabase(BtShared *pBt){
3405 MemPage *pP1;
3406 unsigned char *data;
3407 int rc;
3409 assert( sqlite3_mutex_held(pBt->mutex) );
3410 if( pBt->nPage>0 ){
3411 return SQLITE_OK;
3413 pP1 = pBt->pPage1;
3414 assert( pP1!=0 );
3415 data = pP1->aData;
3416 rc = sqlite3PagerWrite(pP1->pDbPage);
3417 if( rc ) return rc;
3418 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
3419 assert( sizeof(zMagicHeader)==16 );
3420 data[16] = (u8)((pBt->pageSize>>8)&0xff);
3421 data[17] = (u8)((pBt->pageSize>>16)&0xff);
3422 data[18] = 1;
3423 data[19] = 1;
3424 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
3425 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
3426 data[21] = 64;
3427 data[22] = 32;
3428 data[23] = 32;
3429 memset(&data[24], 0, 100-24);
3430 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
3431 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
3432 #ifndef SQLITE_OMIT_AUTOVACUUM
3433 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
3434 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
3435 put4byte(&data[36 + 4*4], pBt->autoVacuum);
3436 put4byte(&data[36 + 7*4], pBt->incrVacuum);
3437 #endif
3438 pBt->nPage = 1;
3439 data[31] = 1;
3440 return SQLITE_OK;
3444 ** Initialize the first page of the database file (creating a database
3445 ** consisting of a single page and no schema objects). Return SQLITE_OK
3446 ** if successful, or an SQLite error code otherwise.
3448 int sqlite3BtreeNewDb(Btree *p){
3449 int rc;
3450 sqlite3BtreeEnter(p);
3451 p->pBt->nPage = 0;
3452 rc = newDatabase(p->pBt);
3453 sqlite3BtreeLeave(p);
3454 return rc;
3458 ** Attempt to start a new transaction. A write-transaction
3459 ** is started if the second argument is nonzero, otherwise a read-
3460 ** transaction. If the second argument is 2 or more and exclusive
3461 ** transaction is started, meaning that no other process is allowed
3462 ** to access the database. A preexisting transaction may not be
3463 ** upgraded to exclusive by calling this routine a second time - the
3464 ** exclusivity flag only works for a new transaction.
3466 ** A write-transaction must be started before attempting any
3467 ** changes to the database. None of the following routines
3468 ** will work unless a transaction is started first:
3470 ** sqlite3BtreeCreateTable()
3471 ** sqlite3BtreeCreateIndex()
3472 ** sqlite3BtreeClearTable()
3473 ** sqlite3BtreeDropTable()
3474 ** sqlite3BtreeInsert()
3475 ** sqlite3BtreeDelete()
3476 ** sqlite3BtreeUpdateMeta()
3478 ** If an initial attempt to acquire the lock fails because of lock contention
3479 ** and the database was previously unlocked, then invoke the busy handler
3480 ** if there is one. But if there was previously a read-lock, do not
3481 ** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
3482 ** returned when there is already a read-lock in order to avoid a deadlock.
3484 ** Suppose there are two processes A and B. A has a read lock and B has
3485 ** a reserved lock. B tries to promote to exclusive but is blocked because
3486 ** of A's read lock. A tries to promote to reserved but is blocked by B.
3487 ** One or the other of the two processes must give way or there can be
3488 ** no progress. By returning SQLITE_BUSY and not invoking the busy callback
3489 ** when A already has a read lock, we encourage A to give up and let B
3490 ** proceed.
3492 int sqlite3BtreeBeginTrans(Btree *p, int wrflag, int *pSchemaVersion){
3493 BtShared *pBt = p->pBt;
3494 Pager *pPager = pBt->pPager;
3495 int rc = SQLITE_OK;
3497 sqlite3BtreeEnter(p);
3498 btreeIntegrity(p);
3500 /* If the btree is already in a write-transaction, or it
3501 ** is already in a read-transaction and a read-transaction
3502 ** is requested, this is a no-op.
3504 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
3505 goto trans_begun;
3507 assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
3509 if( (p->db->flags & SQLITE_ResetDatabase)
3510 && sqlite3PagerIsreadonly(pPager)==0
3512 pBt->btsFlags &= ~BTS_READ_ONLY;
3515 /* Write transactions are not possible on a read-only database */
3516 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
3517 rc = SQLITE_READONLY;
3518 goto trans_begun;
3521 #ifndef SQLITE_OMIT_SHARED_CACHE
3523 sqlite3 *pBlock = 0;
3524 /* If another database handle has already opened a write transaction
3525 ** on this shared-btree structure and a second write transaction is
3526 ** requested, return SQLITE_LOCKED.
3528 if( (wrflag && pBt->inTransaction==TRANS_WRITE)
3529 || (pBt->btsFlags & BTS_PENDING)!=0
3531 pBlock = pBt->pWriter->db;
3532 }else if( wrflag>1 ){
3533 BtLock *pIter;
3534 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
3535 if( pIter->pBtree!=p ){
3536 pBlock = pIter->pBtree->db;
3537 break;
3541 if( pBlock ){
3542 sqlite3ConnectionBlocked(p->db, pBlock);
3543 rc = SQLITE_LOCKED_SHAREDCACHE;
3544 goto trans_begun;
3547 #endif
3549 /* Any read-only or read-write transaction implies a read-lock on
3550 ** page 1. So if some other shared-cache client already has a write-lock
3551 ** on page 1, the transaction cannot be opened. */
3552 rc = querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK);
3553 if( SQLITE_OK!=rc ) goto trans_begun;
3555 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
3556 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
3557 do {
3558 sqlite3PagerWalDb(pPager, p->db);
3560 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
3561 /* If transitioning from no transaction directly to a write transaction,
3562 ** block for the WRITER lock first if possible. */
3563 if( pBt->pPage1==0 && wrflag ){
3564 assert( pBt->inTransaction==TRANS_NONE );
3565 rc = sqlite3PagerWalWriteLock(pPager, 1);
3566 if( rc!=SQLITE_BUSY && rc!=SQLITE_OK ) break;
3568 #endif
3570 /* Call lockBtree() until either pBt->pPage1 is populated or
3571 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
3572 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
3573 ** reading page 1 it discovers that the page-size of the database
3574 ** file is not pBt->pageSize. In this case lockBtree() will update
3575 ** pBt->pageSize to the page-size of the file on disk.
3577 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
3579 if( rc==SQLITE_OK && wrflag ){
3580 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
3581 rc = SQLITE_READONLY;
3582 }else{
3583 rc = sqlite3PagerBegin(pPager, wrflag>1, sqlite3TempInMemory(p->db));
3584 if( rc==SQLITE_OK ){
3585 rc = newDatabase(pBt);
3586 }else if( rc==SQLITE_BUSY_SNAPSHOT && pBt->inTransaction==TRANS_NONE ){
3587 /* if there was no transaction opened when this function was
3588 ** called and SQLITE_BUSY_SNAPSHOT is returned, change the error
3589 ** code to SQLITE_BUSY. */
3590 rc = SQLITE_BUSY;
3595 if( rc!=SQLITE_OK ){
3596 (void)sqlite3PagerWalWriteLock(pPager, 0);
3597 unlockBtreeIfUnused(pBt);
3599 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
3600 btreeInvokeBusyHandler(pBt) );
3601 sqlite3PagerWalDb(pPager, 0);
3602 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
3603 if( rc==SQLITE_BUSY_TIMEOUT ) rc = SQLITE_BUSY;
3604 #endif
3606 if( rc==SQLITE_OK ){
3607 if( p->inTrans==TRANS_NONE ){
3608 pBt->nTransaction++;
3609 #ifndef SQLITE_OMIT_SHARED_CACHE
3610 if( p->sharable ){
3611 assert( p->lock.pBtree==p && p->lock.iTable==1 );
3612 p->lock.eLock = READ_LOCK;
3613 p->lock.pNext = pBt->pLock;
3614 pBt->pLock = &p->lock;
3616 #endif
3618 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
3619 if( p->inTrans>pBt->inTransaction ){
3620 pBt->inTransaction = p->inTrans;
3622 if( wrflag ){
3623 MemPage *pPage1 = pBt->pPage1;
3624 #ifndef SQLITE_OMIT_SHARED_CACHE
3625 assert( !pBt->pWriter );
3626 pBt->pWriter = p;
3627 pBt->btsFlags &= ~BTS_EXCLUSIVE;
3628 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
3629 #endif
3631 /* If the db-size header field is incorrect (as it may be if an old
3632 ** client has been writing the database file), update it now. Doing
3633 ** this sooner rather than later means the database size can safely
3634 ** re-read the database size from page 1 if a savepoint or transaction
3635 ** rollback occurs within the transaction.
3637 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
3638 rc = sqlite3PagerWrite(pPage1->pDbPage);
3639 if( rc==SQLITE_OK ){
3640 put4byte(&pPage1->aData[28], pBt->nPage);
3646 trans_begun:
3647 if( rc==SQLITE_OK ){
3648 if( pSchemaVersion ){
3649 *pSchemaVersion = get4byte(&pBt->pPage1->aData[40]);
3651 if( wrflag ){
3652 /* This call makes sure that the pager has the correct number of
3653 ** open savepoints. If the second parameter is greater than 0 and
3654 ** the sub-journal is not already open, then it will be opened here.
3656 rc = sqlite3PagerOpenSavepoint(pPager, p->db->nSavepoint);
3660 btreeIntegrity(p);
3661 sqlite3BtreeLeave(p);
3662 return rc;
3665 #ifndef SQLITE_OMIT_AUTOVACUUM
3668 ** Set the pointer-map entries for all children of page pPage. Also, if
3669 ** pPage contains cells that point to overflow pages, set the pointer
3670 ** map entries for the overflow pages as well.
3672 static int setChildPtrmaps(MemPage *pPage){
3673 int i; /* Counter variable */
3674 int nCell; /* Number of cells in page pPage */
3675 int rc; /* Return code */
3676 BtShared *pBt = pPage->pBt;
3677 Pgno pgno = pPage->pgno;
3679 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
3680 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
3681 if( rc!=SQLITE_OK ) return rc;
3682 nCell = pPage->nCell;
3684 for(i=0; i<nCell; i++){
3685 u8 *pCell = findCell(pPage, i);
3687 ptrmapPutOvflPtr(pPage, pPage, pCell, &rc);
3689 if( !pPage->leaf ){
3690 Pgno childPgno = get4byte(pCell);
3691 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
3695 if( !pPage->leaf ){
3696 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
3697 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
3700 return rc;
3704 ** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
3705 ** that it points to iTo. Parameter eType describes the type of pointer to
3706 ** be modified, as follows:
3708 ** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
3709 ** page of pPage.
3711 ** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
3712 ** page pointed to by one of the cells on pPage.
3714 ** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
3715 ** overflow page in the list.
3717 static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
3718 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
3719 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
3720 if( eType==PTRMAP_OVERFLOW2 ){
3721 /* The pointer is always the first 4 bytes of the page in this case. */
3722 if( get4byte(pPage->aData)!=iFrom ){
3723 return SQLITE_CORRUPT_PAGE(pPage);
3725 put4byte(pPage->aData, iTo);
3726 }else{
3727 int i;
3728 int nCell;
3729 int rc;
3731 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
3732 if( rc ) return rc;
3733 nCell = pPage->nCell;
3735 for(i=0; i<nCell; i++){
3736 u8 *pCell = findCell(pPage, i);
3737 if( eType==PTRMAP_OVERFLOW1 ){
3738 CellInfo info;
3739 pPage->xParseCell(pPage, pCell, &info);
3740 if( info.nLocal<info.nPayload ){
3741 if( pCell+info.nSize > pPage->aData+pPage->pBt->usableSize ){
3742 return SQLITE_CORRUPT_PAGE(pPage);
3744 if( iFrom==get4byte(pCell+info.nSize-4) ){
3745 put4byte(pCell+info.nSize-4, iTo);
3746 break;
3749 }else{
3750 if( pCell+4 > pPage->aData+pPage->pBt->usableSize ){
3751 return SQLITE_CORRUPT_PAGE(pPage);
3753 if( get4byte(pCell)==iFrom ){
3754 put4byte(pCell, iTo);
3755 break;
3760 if( i==nCell ){
3761 if( eType!=PTRMAP_BTREE ||
3762 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
3763 return SQLITE_CORRUPT_PAGE(pPage);
3765 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
3768 return SQLITE_OK;
3773 ** Move the open database page pDbPage to location iFreePage in the
3774 ** database. The pDbPage reference remains valid.
3776 ** The isCommit flag indicates that there is no need to remember that
3777 ** the journal needs to be sync()ed before database page pDbPage->pgno
3778 ** can be written to. The caller has already promised not to write to that
3779 ** page.
3781 static int relocatePage(
3782 BtShared *pBt, /* Btree */
3783 MemPage *pDbPage, /* Open page to move */
3784 u8 eType, /* Pointer map 'type' entry for pDbPage */
3785 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
3786 Pgno iFreePage, /* The location to move pDbPage to */
3787 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
3789 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
3790 Pgno iDbPage = pDbPage->pgno;
3791 Pager *pPager = pBt->pPager;
3792 int rc;
3794 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
3795 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
3796 assert( sqlite3_mutex_held(pBt->mutex) );
3797 assert( pDbPage->pBt==pBt );
3798 if( iDbPage<3 ) return SQLITE_CORRUPT_BKPT;
3800 /* Move page iDbPage from its current location to page number iFreePage */
3801 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
3802 iDbPage, iFreePage, iPtrPage, eType));
3803 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
3804 if( rc!=SQLITE_OK ){
3805 return rc;
3807 pDbPage->pgno = iFreePage;
3809 /* If pDbPage was a btree-page, then it may have child pages and/or cells
3810 ** that point to overflow pages. The pointer map entries for all these
3811 ** pages need to be changed.
3813 ** If pDbPage is an overflow page, then the first 4 bytes may store a
3814 ** pointer to a subsequent overflow page. If this is the case, then
3815 ** the pointer map needs to be updated for the subsequent overflow page.
3817 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
3818 rc = setChildPtrmaps(pDbPage);
3819 if( rc!=SQLITE_OK ){
3820 return rc;
3822 }else{
3823 Pgno nextOvfl = get4byte(pDbPage->aData);
3824 if( nextOvfl!=0 ){
3825 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
3826 if( rc!=SQLITE_OK ){
3827 return rc;
3832 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
3833 ** that it points at iFreePage. Also fix the pointer map entry for
3834 ** iPtrPage.
3836 if( eType!=PTRMAP_ROOTPAGE ){
3837 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
3838 if( rc!=SQLITE_OK ){
3839 return rc;
3841 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
3842 if( rc!=SQLITE_OK ){
3843 releasePage(pPtrPage);
3844 return rc;
3846 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
3847 releasePage(pPtrPage);
3848 if( rc==SQLITE_OK ){
3849 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
3852 return rc;
3855 /* Forward declaration required by incrVacuumStep(). */
3856 static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
3859 ** Perform a single step of an incremental-vacuum. If successful, return
3860 ** SQLITE_OK. If there is no work to do (and therefore no point in
3861 ** calling this function again), return SQLITE_DONE. Or, if an error
3862 ** occurs, return some other error code.
3864 ** More specifically, this function attempts to re-organize the database so
3865 ** that the last page of the file currently in use is no longer in use.
3867 ** Parameter nFin is the number of pages that this database would contain
3868 ** were this function called until it returns SQLITE_DONE.
3870 ** If the bCommit parameter is non-zero, this function assumes that the
3871 ** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
3872 ** or an error. bCommit is passed true for an auto-vacuum-on-commit
3873 ** operation, or false for an incremental vacuum.
3875 static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
3876 Pgno nFreeList; /* Number of pages still on the free-list */
3877 int rc;
3879 assert( sqlite3_mutex_held(pBt->mutex) );
3880 assert( iLastPg>nFin );
3882 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
3883 u8 eType;
3884 Pgno iPtrPage;
3886 nFreeList = get4byte(&pBt->pPage1->aData[36]);
3887 if( nFreeList==0 ){
3888 return SQLITE_DONE;
3891 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
3892 if( rc!=SQLITE_OK ){
3893 return rc;
3895 if( eType==PTRMAP_ROOTPAGE ){
3896 return SQLITE_CORRUPT_BKPT;
3899 if( eType==PTRMAP_FREEPAGE ){
3900 if( bCommit==0 ){
3901 /* Remove the page from the files free-list. This is not required
3902 ** if bCommit is non-zero. In that case, the free-list will be
3903 ** truncated to zero after this function returns, so it doesn't
3904 ** matter if it still contains some garbage entries.
3906 Pgno iFreePg;
3907 MemPage *pFreePg;
3908 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
3909 if( rc!=SQLITE_OK ){
3910 return rc;
3912 assert( iFreePg==iLastPg );
3913 releasePage(pFreePg);
3915 } else {
3916 Pgno iFreePg; /* Index of free page to move pLastPg to */
3917 MemPage *pLastPg;
3918 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */
3919 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */
3921 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
3922 if( rc!=SQLITE_OK ){
3923 return rc;
3926 /* If bCommit is zero, this loop runs exactly once and page pLastPg
3927 ** is swapped with the first free page pulled off the free list.
3929 ** On the other hand, if bCommit is greater than zero, then keep
3930 ** looping until a free-page located within the first nFin pages
3931 ** of the file is found.
3933 if( bCommit==0 ){
3934 eMode = BTALLOC_LE;
3935 iNear = nFin;
3937 do {
3938 MemPage *pFreePg;
3939 Pgno dbSize = btreePagecount(pBt);
3940 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
3941 if( rc!=SQLITE_OK ){
3942 releasePage(pLastPg);
3943 return rc;
3945 releasePage(pFreePg);
3946 if( iFreePg>dbSize ){
3947 releasePage(pLastPg);
3948 return SQLITE_CORRUPT_BKPT;
3950 }while( bCommit && iFreePg>nFin );
3951 assert( iFreePg<iLastPg );
3953 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
3954 releasePage(pLastPg);
3955 if( rc!=SQLITE_OK ){
3956 return rc;
3961 if( bCommit==0 ){
3962 do {
3963 iLastPg--;
3964 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
3965 pBt->bDoTruncate = 1;
3966 pBt->nPage = iLastPg;
3968 return SQLITE_OK;
3972 ** The database opened by the first argument is an auto-vacuum database
3973 ** nOrig pages in size containing nFree free pages. Return the expected
3974 ** size of the database in pages following an auto-vacuum operation.
3976 static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3977 int nEntry; /* Number of entries on one ptrmap page */
3978 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
3979 Pgno nFin; /* Return value */
3981 nEntry = pBt->usableSize/5;
3982 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3983 nFin = nOrig - nFree - nPtrmap;
3984 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3985 nFin--;
3987 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3988 nFin--;
3991 return nFin;
3995 ** A write-transaction must be opened before calling this function.
3996 ** It performs a single unit of work towards an incremental vacuum.
3998 ** If the incremental vacuum is finished after this function has run,
3999 ** SQLITE_DONE is returned. If it is not finished, but no error occurred,
4000 ** SQLITE_OK is returned. Otherwise an SQLite error code.
4002 int sqlite3BtreeIncrVacuum(Btree *p){
4003 int rc;
4004 BtShared *pBt = p->pBt;
4006 sqlite3BtreeEnter(p);
4007 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
4008 if( !pBt->autoVacuum ){
4009 rc = SQLITE_DONE;
4010 }else{
4011 Pgno nOrig = btreePagecount(pBt);
4012 Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
4013 Pgno nFin = finalDbSize(pBt, nOrig, nFree);
4015 if( nOrig<nFin || nFree>=nOrig ){
4016 rc = SQLITE_CORRUPT_BKPT;
4017 }else if( nFree>0 ){
4018 rc = saveAllCursors(pBt, 0, 0);
4019 if( rc==SQLITE_OK ){
4020 invalidateAllOverflowCache(pBt);
4021 rc = incrVacuumStep(pBt, nFin, nOrig, 0);
4023 if( rc==SQLITE_OK ){
4024 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
4025 put4byte(&pBt->pPage1->aData[28], pBt->nPage);
4027 }else{
4028 rc = SQLITE_DONE;
4031 sqlite3BtreeLeave(p);
4032 return rc;
4036 ** This routine is called prior to sqlite3PagerCommit when a transaction
4037 ** is committed for an auto-vacuum database.
4039 static int autoVacuumCommit(Btree *p){
4040 int rc = SQLITE_OK;
4041 Pager *pPager;
4042 BtShared *pBt;
4043 sqlite3 *db;
4044 VVA_ONLY( int nRef );
4046 assert( p!=0 );
4047 pBt = p->pBt;
4048 pPager = pBt->pPager;
4049 VVA_ONLY( nRef = sqlite3PagerRefcount(pPager); )
4051 assert( sqlite3_mutex_held(pBt->mutex) );
4052 invalidateAllOverflowCache(pBt);
4053 assert(pBt->autoVacuum);
4054 if( !pBt->incrVacuum ){
4055 Pgno nFin; /* Number of pages in database after autovacuuming */
4056 Pgno nFree; /* Number of pages on the freelist initially */
4057 Pgno nVac; /* Number of pages to vacuum */
4058 Pgno iFree; /* The next page to be freed */
4059 Pgno nOrig; /* Database size before freeing */
4061 nOrig = btreePagecount(pBt);
4062 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
4063 /* It is not possible to create a database for which the final page
4064 ** is either a pointer-map page or the pending-byte page. If one
4065 ** is encountered, this indicates corruption.
4067 return SQLITE_CORRUPT_BKPT;
4070 nFree = get4byte(&pBt->pPage1->aData[36]);
4071 db = p->db;
4072 if( db->xAutovacPages ){
4073 int iDb;
4074 for(iDb=0; ALWAYS(iDb<db->nDb); iDb++){
4075 if( db->aDb[iDb].pBt==p ) break;
4077 nVac = db->xAutovacPages(
4078 db->pAutovacPagesArg,
4079 db->aDb[iDb].zDbSName,
4080 nOrig,
4081 nFree,
4082 pBt->pageSize
4084 if( nVac>nFree ){
4085 nVac = nFree;
4087 if( nVac==0 ){
4088 return SQLITE_OK;
4090 }else{
4091 nVac = nFree;
4093 nFin = finalDbSize(pBt, nOrig, nVac);
4094 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
4095 if( nFin<nOrig ){
4096 rc = saveAllCursors(pBt, 0, 0);
4098 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
4099 rc = incrVacuumStep(pBt, nFin, iFree, nVac==nFree);
4101 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
4102 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
4103 if( nVac==nFree ){
4104 put4byte(&pBt->pPage1->aData[32], 0);
4105 put4byte(&pBt->pPage1->aData[36], 0);
4107 put4byte(&pBt->pPage1->aData[28], nFin);
4108 pBt->bDoTruncate = 1;
4109 pBt->nPage = nFin;
4111 if( rc!=SQLITE_OK ){
4112 sqlite3PagerRollback(pPager);
4116 assert( nRef>=sqlite3PagerRefcount(pPager) );
4117 return rc;
4120 #else /* ifndef SQLITE_OMIT_AUTOVACUUM */
4121 # define setChildPtrmaps(x) SQLITE_OK
4122 #endif
4125 ** This routine does the first phase of a two-phase commit. This routine
4126 ** causes a rollback journal to be created (if it does not already exist)
4127 ** and populated with enough information so that if a power loss occurs
4128 ** the database can be restored to its original state by playing back
4129 ** the journal. Then the contents of the journal are flushed out to
4130 ** the disk. After the journal is safely on oxide, the changes to the
4131 ** database are written into the database file and flushed to oxide.
4132 ** At the end of this call, the rollback journal still exists on the
4133 ** disk and we are still holding all locks, so the transaction has not
4134 ** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
4135 ** commit process.
4137 ** This call is a no-op if no write-transaction is currently active on pBt.
4139 ** Otherwise, sync the database file for the btree pBt. zSuperJrnl points to
4140 ** the name of a super-journal file that should be written into the
4141 ** individual journal file, or is NULL, indicating no super-journal file
4142 ** (single database transaction).
4144 ** When this is called, the super-journal should already have been
4145 ** created, populated with this journal pointer and synced to disk.
4147 ** Once this is routine has returned, the only thing required to commit
4148 ** the write-transaction for this database file is to delete the journal.
4150 int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zSuperJrnl){
4151 int rc = SQLITE_OK;
4152 if( p->inTrans==TRANS_WRITE ){
4153 BtShared *pBt = p->pBt;
4154 sqlite3BtreeEnter(p);
4155 #ifndef SQLITE_OMIT_AUTOVACUUM
4156 if( pBt->autoVacuum ){
4157 rc = autoVacuumCommit(p);
4158 if( rc!=SQLITE_OK ){
4159 sqlite3BtreeLeave(p);
4160 return rc;
4163 if( pBt->bDoTruncate ){
4164 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
4166 #endif
4167 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zSuperJrnl, 0);
4168 sqlite3BtreeLeave(p);
4170 return rc;
4174 ** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
4175 ** at the conclusion of a transaction.
4177 static void btreeEndTransaction(Btree *p){
4178 BtShared *pBt = p->pBt;
4179 sqlite3 *db = p->db;
4180 assert( sqlite3BtreeHoldsMutex(p) );
4182 #ifndef SQLITE_OMIT_AUTOVACUUM
4183 pBt->bDoTruncate = 0;
4184 #endif
4185 if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
4186 /* If there are other active statements that belong to this database
4187 ** handle, downgrade to a read-only transaction. The other statements
4188 ** may still be reading from the database. */
4189 downgradeAllSharedCacheTableLocks(p);
4190 p->inTrans = TRANS_READ;
4191 }else{
4192 /* If the handle had any kind of transaction open, decrement the
4193 ** transaction count of the shared btree. If the transaction count
4194 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
4195 ** call below will unlock the pager. */
4196 if( p->inTrans!=TRANS_NONE ){
4197 clearAllSharedCacheTableLocks(p);
4198 pBt->nTransaction--;
4199 if( 0==pBt->nTransaction ){
4200 pBt->inTransaction = TRANS_NONE;
4204 /* Set the current transaction state to TRANS_NONE and unlock the
4205 ** pager if this call closed the only read or write transaction. */
4206 p->inTrans = TRANS_NONE;
4207 unlockBtreeIfUnused(pBt);
4210 btreeIntegrity(p);
4214 ** Commit the transaction currently in progress.
4216 ** This routine implements the second phase of a 2-phase commit. The
4217 ** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
4218 ** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
4219 ** routine did all the work of writing information out to disk and flushing the
4220 ** contents so that they are written onto the disk platter. All this
4221 ** routine has to do is delete or truncate or zero the header in the
4222 ** the rollback journal (which causes the transaction to commit) and
4223 ** drop locks.
4225 ** Normally, if an error occurs while the pager layer is attempting to
4226 ** finalize the underlying journal file, this function returns an error and
4227 ** the upper layer will attempt a rollback. However, if the second argument
4228 ** is non-zero then this b-tree transaction is part of a multi-file
4229 ** transaction. In this case, the transaction has already been committed
4230 ** (by deleting a super-journal file) and the caller will ignore this
4231 ** functions return code. So, even if an error occurs in the pager layer,
4232 ** reset the b-tree objects internal state to indicate that the write
4233 ** transaction has been closed. This is quite safe, as the pager will have
4234 ** transitioned to the error state.
4236 ** This will release the write lock on the database file. If there
4237 ** are no active cursors, it also releases the read lock.
4239 int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
4241 if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
4242 sqlite3BtreeEnter(p);
4243 btreeIntegrity(p);
4245 /* If the handle has a write-transaction open, commit the shared-btrees
4246 ** transaction and set the shared state to TRANS_READ.
4248 if( p->inTrans==TRANS_WRITE ){
4249 int rc;
4250 BtShared *pBt = p->pBt;
4251 assert( pBt->inTransaction==TRANS_WRITE );
4252 assert( pBt->nTransaction>0 );
4253 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
4254 if( rc!=SQLITE_OK && bCleanup==0 ){
4255 sqlite3BtreeLeave(p);
4256 return rc;
4258 p->iBDataVersion--; /* Compensate for pPager->iDataVersion++; */
4259 pBt->inTransaction = TRANS_READ;
4260 btreeClearHasContent(pBt);
4263 btreeEndTransaction(p);
4264 sqlite3BtreeLeave(p);
4265 return SQLITE_OK;
4269 ** Do both phases of a commit.
4271 int sqlite3BtreeCommit(Btree *p){
4272 int rc;
4273 sqlite3BtreeEnter(p);
4274 rc = sqlite3BtreeCommitPhaseOne(p, 0);
4275 if( rc==SQLITE_OK ){
4276 rc = sqlite3BtreeCommitPhaseTwo(p, 0);
4278 sqlite3BtreeLeave(p);
4279 return rc;
4283 ** This routine sets the state to CURSOR_FAULT and the error
4284 ** code to errCode for every cursor on any BtShared that pBtree
4285 ** references. Or if the writeOnly flag is set to 1, then only
4286 ** trip write cursors and leave read cursors unchanged.
4288 ** Every cursor is a candidate to be tripped, including cursors
4289 ** that belong to other database connections that happen to be
4290 ** sharing the cache with pBtree.
4292 ** This routine gets called when a rollback occurs. If the writeOnly
4293 ** flag is true, then only write-cursors need be tripped - read-only
4294 ** cursors save their current positions so that they may continue
4295 ** following the rollback. Or, if writeOnly is false, all cursors are
4296 ** tripped. In general, writeOnly is false if the transaction being
4297 ** rolled back modified the database schema. In this case b-tree root
4298 ** pages may be moved or deleted from the database altogether, making
4299 ** it unsafe for read cursors to continue.
4301 ** If the writeOnly flag is true and an error is encountered while
4302 ** saving the current position of a read-only cursor, all cursors,
4303 ** including all read-cursors are tripped.
4305 ** SQLITE_OK is returned if successful, or if an error occurs while
4306 ** saving a cursor position, an SQLite error code.
4308 int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){
4309 BtCursor *p;
4310 int rc = SQLITE_OK;
4312 assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 );
4313 if( pBtree ){
4314 sqlite3BtreeEnter(pBtree);
4315 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
4316 if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){
4317 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
4318 rc = saveCursorPosition(p);
4319 if( rc!=SQLITE_OK ){
4320 (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0);
4321 break;
4324 }else{
4325 sqlite3BtreeClearCursor(p);
4326 p->eState = CURSOR_FAULT;
4327 p->skipNext = errCode;
4329 btreeReleaseAllCursorPages(p);
4331 sqlite3BtreeLeave(pBtree);
4333 return rc;
4337 ** Set the pBt->nPage field correctly, according to the current
4338 ** state of the database. Assume pBt->pPage1 is valid.
4340 static void btreeSetNPage(BtShared *pBt, MemPage *pPage1){
4341 int nPage = get4byte(&pPage1->aData[28]);
4342 testcase( nPage==0 );
4343 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
4344 testcase( pBt->nPage!=(u32)nPage );
4345 pBt->nPage = nPage;
4349 ** Rollback the transaction in progress.
4351 ** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
4352 ** Only write cursors are tripped if writeOnly is true but all cursors are
4353 ** tripped if writeOnly is false. Any attempt to use
4354 ** a tripped cursor will result in an error.
4356 ** This will release the write lock on the database file. If there
4357 ** are no active cursors, it also releases the read lock.
4359 int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){
4360 int rc;
4361 BtShared *pBt = p->pBt;
4362 MemPage *pPage1;
4364 assert( writeOnly==1 || writeOnly==0 );
4365 assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK );
4366 sqlite3BtreeEnter(p);
4367 if( tripCode==SQLITE_OK ){
4368 rc = tripCode = saveAllCursors(pBt, 0, 0);
4369 if( rc ) writeOnly = 0;
4370 }else{
4371 rc = SQLITE_OK;
4373 if( tripCode ){
4374 int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly);
4375 assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) );
4376 if( rc2!=SQLITE_OK ) rc = rc2;
4378 btreeIntegrity(p);
4380 if( p->inTrans==TRANS_WRITE ){
4381 int rc2;
4383 assert( TRANS_WRITE==pBt->inTransaction );
4384 rc2 = sqlite3PagerRollback(pBt->pPager);
4385 if( rc2!=SQLITE_OK ){
4386 rc = rc2;
4389 /* The rollback may have destroyed the pPage1->aData value. So
4390 ** call btreeGetPage() on page 1 again to make
4391 ** sure pPage1->aData is set correctly. */
4392 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
4393 btreeSetNPage(pBt, pPage1);
4394 releasePageOne(pPage1);
4396 assert( countValidCursors(pBt, 1)==0 );
4397 pBt->inTransaction = TRANS_READ;
4398 btreeClearHasContent(pBt);
4401 btreeEndTransaction(p);
4402 sqlite3BtreeLeave(p);
4403 return rc;
4407 ** Start a statement subtransaction. The subtransaction can be rolled
4408 ** back independently of the main transaction. You must start a transaction
4409 ** before starting a subtransaction. The subtransaction is ended automatically
4410 ** if the main transaction commits or rolls back.
4412 ** Statement subtransactions are used around individual SQL statements
4413 ** that are contained within a BEGIN...COMMIT block. If a constraint
4414 ** error occurs within the statement, the effect of that one statement
4415 ** can be rolled back without having to rollback the entire transaction.
4417 ** A statement sub-transaction is implemented as an anonymous savepoint. The
4418 ** value passed as the second parameter is the total number of savepoints,
4419 ** including the new anonymous savepoint, open on the B-Tree. i.e. if there
4420 ** are no active savepoints and no other statement-transactions open,
4421 ** iStatement is 1. This anonymous savepoint can be released or rolled back
4422 ** using the sqlite3BtreeSavepoint() function.
4424 int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
4425 int rc;
4426 BtShared *pBt = p->pBt;
4427 sqlite3BtreeEnter(p);
4428 assert( p->inTrans==TRANS_WRITE );
4429 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
4430 assert( iStatement>0 );
4431 assert( iStatement>p->db->nSavepoint );
4432 assert( pBt->inTransaction==TRANS_WRITE );
4433 /* At the pager level, a statement transaction is a savepoint with
4434 ** an index greater than all savepoints created explicitly using
4435 ** SQL statements. It is illegal to open, release or rollback any
4436 ** such savepoints while the statement transaction savepoint is active.
4438 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
4439 sqlite3BtreeLeave(p);
4440 return rc;
4444 ** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
4445 ** or SAVEPOINT_RELEASE. This function either releases or rolls back the
4446 ** savepoint identified by parameter iSavepoint, depending on the value
4447 ** of op.
4449 ** Normally, iSavepoint is greater than or equal to zero. However, if op is
4450 ** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
4451 ** contents of the entire transaction are rolled back. This is different
4452 ** from a normal transaction rollback, as no locks are released and the
4453 ** transaction remains open.
4455 int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
4456 int rc = SQLITE_OK;
4457 if( p && p->inTrans==TRANS_WRITE ){
4458 BtShared *pBt = p->pBt;
4459 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
4460 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
4461 sqlite3BtreeEnter(p);
4462 if( op==SAVEPOINT_ROLLBACK ){
4463 rc = saveAllCursors(pBt, 0, 0);
4465 if( rc==SQLITE_OK ){
4466 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
4468 if( rc==SQLITE_OK ){
4469 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
4470 pBt->nPage = 0;
4472 rc = newDatabase(pBt);
4473 btreeSetNPage(pBt, pBt->pPage1);
4475 /* pBt->nPage might be zero if the database was corrupt when
4476 ** the transaction was started. Otherwise, it must be at least 1. */
4477 assert( CORRUPT_DB || pBt->nPage>0 );
4479 sqlite3BtreeLeave(p);
4481 return rc;
4485 ** Create a new cursor for the BTree whose root is on the page
4486 ** iTable. If a read-only cursor is requested, it is assumed that
4487 ** the caller already has at least a read-only transaction open
4488 ** on the database already. If a write-cursor is requested, then
4489 ** the caller is assumed to have an open write transaction.
4491 ** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only
4492 ** be used for reading. If the BTREE_WRCSR bit is set, then the cursor
4493 ** can be used for reading or for writing if other conditions for writing
4494 ** are also met. These are the conditions that must be met in order
4495 ** for writing to be allowed:
4497 ** 1: The cursor must have been opened with wrFlag containing BTREE_WRCSR
4499 ** 2: Other database connections that share the same pager cache
4500 ** but which are not in the READ_UNCOMMITTED state may not have
4501 ** cursors open with wrFlag==0 on the same table. Otherwise
4502 ** the changes made by this write cursor would be visible to
4503 ** the read cursors in the other database connection.
4505 ** 3: The database must be writable (not on read-only media)
4507 ** 4: There must be an active transaction.
4509 ** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR
4510 ** is set. If FORDELETE is set, that is a hint to the implementation that
4511 ** this cursor will only be used to seek to and delete entries of an index
4512 ** as part of a larger DELETE statement. The FORDELETE hint is not used by
4513 ** this implementation. But in a hypothetical alternative storage engine
4514 ** in which index entries are automatically deleted when corresponding table
4515 ** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE
4516 ** operations on this cursor can be no-ops and all READ operations can
4517 ** return a null row (2-bytes: 0x01 0x00).
4519 ** No checking is done to make sure that page iTable really is the
4520 ** root page of a b-tree. If it is not, then the cursor acquired
4521 ** will not work correctly.
4523 ** It is assumed that the sqlite3BtreeCursorZero() has been called
4524 ** on pCur to initialize the memory space prior to invoking this routine.
4526 static int btreeCursor(
4527 Btree *p, /* The btree */
4528 Pgno iTable, /* Root page of table to open */
4529 int wrFlag, /* 1 to write. 0 read-only */
4530 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
4531 BtCursor *pCur /* Space for new cursor */
4533 BtShared *pBt = p->pBt; /* Shared b-tree handle */
4534 BtCursor *pX; /* Looping over other all cursors */
4536 assert( sqlite3BtreeHoldsMutex(p) );
4537 assert( wrFlag==0
4538 || wrFlag==BTREE_WRCSR
4539 || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE)
4542 /* The following assert statements verify that if this is a sharable
4543 ** b-tree database, the connection is holding the required table locks,
4544 ** and that no other connection has any open cursor that conflicts with
4545 ** this lock. The iTable<1 term disables the check for corrupt schemas. */
4546 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1))
4547 || iTable<1 );
4548 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
4550 /* Assert that the caller has opened the required transaction. */
4551 assert( p->inTrans>TRANS_NONE );
4552 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
4553 assert( pBt->pPage1 && pBt->pPage1->aData );
4554 assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 );
4556 if( iTable<=1 ){
4557 if( iTable<1 ){
4558 return SQLITE_CORRUPT_BKPT;
4559 }else if( btreePagecount(pBt)==0 ){
4560 assert( wrFlag==0 );
4561 iTable = 0;
4565 /* Now that no other errors can occur, finish filling in the BtCursor
4566 ** variables and link the cursor into the BtShared list. */
4567 pCur->pgnoRoot = iTable;
4568 pCur->iPage = -1;
4569 pCur->pKeyInfo = pKeyInfo;
4570 pCur->pBtree = p;
4571 pCur->pBt = pBt;
4572 pCur->curFlags = 0;
4573 /* If there are two or more cursors on the same btree, then all such
4574 ** cursors *must* have the BTCF_Multiple flag set. */
4575 for(pX=pBt->pCursor; pX; pX=pX->pNext){
4576 if( pX->pgnoRoot==iTable ){
4577 pX->curFlags |= BTCF_Multiple;
4578 pCur->curFlags = BTCF_Multiple;
4581 pCur->eState = CURSOR_INVALID;
4582 pCur->pNext = pBt->pCursor;
4583 pBt->pCursor = pCur;
4584 if( wrFlag ){
4585 pCur->curFlags |= BTCF_WriteFlag;
4586 pCur->curPagerFlags = 0;
4587 if( pBt->pTmpSpace==0 ) return allocateTempSpace(pBt);
4588 }else{
4589 pCur->curPagerFlags = PAGER_GET_READONLY;
4591 return SQLITE_OK;
4593 static int btreeCursorWithLock(
4594 Btree *p, /* The btree */
4595 Pgno iTable, /* Root page of table to open */
4596 int wrFlag, /* 1 to write. 0 read-only */
4597 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
4598 BtCursor *pCur /* Space for new cursor */
4600 int rc;
4601 sqlite3BtreeEnter(p);
4602 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
4603 sqlite3BtreeLeave(p);
4604 return rc;
4606 int sqlite3BtreeCursor(
4607 Btree *p, /* The btree */
4608 Pgno iTable, /* Root page of table to open */
4609 int wrFlag, /* 1 to write. 0 read-only */
4610 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
4611 BtCursor *pCur /* Write new cursor here */
4613 if( p->sharable ){
4614 return btreeCursorWithLock(p, iTable, wrFlag, pKeyInfo, pCur);
4615 }else{
4616 return btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
4621 ** Return the size of a BtCursor object in bytes.
4623 ** This interfaces is needed so that users of cursors can preallocate
4624 ** sufficient storage to hold a cursor. The BtCursor object is opaque
4625 ** to users so they cannot do the sizeof() themselves - they must call
4626 ** this routine.
4628 int sqlite3BtreeCursorSize(void){
4629 return ROUND8(sizeof(BtCursor));
4633 ** Initialize memory that will be converted into a BtCursor object.
4635 ** The simple approach here would be to memset() the entire object
4636 ** to zero. But it turns out that the apPage[] and aiIdx[] arrays
4637 ** do not need to be zeroed and they are large, so we can save a lot
4638 ** of run-time by skipping the initialization of those elements.
4640 void sqlite3BtreeCursorZero(BtCursor *p){
4641 memset(p, 0, offsetof(BtCursor, BTCURSOR_FIRST_UNINIT));
4645 ** Close a cursor. The read lock on the database file is released
4646 ** when the last cursor is closed.
4648 int sqlite3BtreeCloseCursor(BtCursor *pCur){
4649 Btree *pBtree = pCur->pBtree;
4650 if( pBtree ){
4651 BtShared *pBt = pCur->pBt;
4652 sqlite3BtreeEnter(pBtree);
4653 assert( pBt->pCursor!=0 );
4654 if( pBt->pCursor==pCur ){
4655 pBt->pCursor = pCur->pNext;
4656 }else{
4657 BtCursor *pPrev = pBt->pCursor;
4659 if( pPrev->pNext==pCur ){
4660 pPrev->pNext = pCur->pNext;
4661 break;
4663 pPrev = pPrev->pNext;
4664 }while( ALWAYS(pPrev) );
4666 btreeReleaseAllCursorPages(pCur);
4667 unlockBtreeIfUnused(pBt);
4668 sqlite3_free(pCur->aOverflow);
4669 sqlite3_free(pCur->pKey);
4670 if( (pBt->openFlags & BTREE_SINGLE) && pBt->pCursor==0 ){
4671 /* Since the BtShared is not sharable, there is no need to
4672 ** worry about the missing sqlite3BtreeLeave() call here. */
4673 assert( pBtree->sharable==0 );
4674 sqlite3BtreeClose(pBtree);
4675 }else{
4676 sqlite3BtreeLeave(pBtree);
4678 pCur->pBtree = 0;
4680 return SQLITE_OK;
4684 ** Make sure the BtCursor* given in the argument has a valid
4685 ** BtCursor.info structure. If it is not already valid, call
4686 ** btreeParseCell() to fill it in.
4688 ** BtCursor.info is a cache of the information in the current cell.
4689 ** Using this cache reduces the number of calls to btreeParseCell().
4691 #ifndef NDEBUG
4692 static int cellInfoEqual(CellInfo *a, CellInfo *b){
4693 if( a->nKey!=b->nKey ) return 0;
4694 if( a->pPayload!=b->pPayload ) return 0;
4695 if( a->nPayload!=b->nPayload ) return 0;
4696 if( a->nLocal!=b->nLocal ) return 0;
4697 if( a->nSize!=b->nSize ) return 0;
4698 return 1;
4700 static void assertCellInfo(BtCursor *pCur){
4701 CellInfo info;
4702 memset(&info, 0, sizeof(info));
4703 btreeParseCell(pCur->pPage, pCur->ix, &info);
4704 assert( CORRUPT_DB || cellInfoEqual(&info, &pCur->info) );
4706 #else
4707 #define assertCellInfo(x)
4708 #endif
4709 static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){
4710 if( pCur->info.nSize==0 ){
4711 pCur->curFlags |= BTCF_ValidNKey;
4712 btreeParseCell(pCur->pPage,pCur->ix,&pCur->info);
4713 }else{
4714 assertCellInfo(pCur);
4718 #ifndef NDEBUG /* The next routine used only within assert() statements */
4720 ** Return true if the given BtCursor is valid. A valid cursor is one
4721 ** that is currently pointing to a row in a (non-empty) table.
4722 ** This is a verification routine is used only within assert() statements.
4724 int sqlite3BtreeCursorIsValid(BtCursor *pCur){
4725 return pCur && pCur->eState==CURSOR_VALID;
4727 #endif /* NDEBUG */
4728 int sqlite3BtreeCursorIsValidNN(BtCursor *pCur){
4729 assert( pCur!=0 );
4730 return pCur->eState==CURSOR_VALID;
4734 ** Return the value of the integer key or "rowid" for a table btree.
4735 ** This routine is only valid for a cursor that is pointing into a
4736 ** ordinary table btree. If the cursor points to an index btree or
4737 ** is invalid, the result of this routine is undefined.
4739 i64 sqlite3BtreeIntegerKey(BtCursor *pCur){
4740 assert( cursorHoldsMutex(pCur) );
4741 assert( pCur->eState==CURSOR_VALID );
4742 assert( pCur->curIntKey );
4743 getCellInfo(pCur);
4744 return pCur->info.nKey;
4748 ** Pin or unpin a cursor.
4750 void sqlite3BtreeCursorPin(BtCursor *pCur){
4751 assert( (pCur->curFlags & BTCF_Pinned)==0 );
4752 pCur->curFlags |= BTCF_Pinned;
4754 void sqlite3BtreeCursorUnpin(BtCursor *pCur){
4755 assert( (pCur->curFlags & BTCF_Pinned)!=0 );
4756 pCur->curFlags &= ~BTCF_Pinned;
4759 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
4761 ** Return the offset into the database file for the start of the
4762 ** payload to which the cursor is pointing.
4764 i64 sqlite3BtreeOffset(BtCursor *pCur){
4765 assert( cursorHoldsMutex(pCur) );
4766 assert( pCur->eState==CURSOR_VALID );
4767 getCellInfo(pCur);
4768 return (i64)pCur->pBt->pageSize*((i64)pCur->pPage->pgno - 1) +
4769 (i64)(pCur->info.pPayload - pCur->pPage->aData);
4771 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */
4774 ** Return the number of bytes of payload for the entry that pCur is
4775 ** currently pointing to. For table btrees, this will be the amount
4776 ** of data. For index btrees, this will be the size of the key.
4778 ** The caller must guarantee that the cursor is pointing to a non-NULL
4779 ** valid entry. In other words, the calling procedure must guarantee
4780 ** that the cursor has Cursor.eState==CURSOR_VALID.
4782 u32 sqlite3BtreePayloadSize(BtCursor *pCur){
4783 assert( cursorHoldsMutex(pCur) );
4784 assert( pCur->eState==CURSOR_VALID );
4785 getCellInfo(pCur);
4786 return pCur->info.nPayload;
4790 ** Return an upper bound on the size of any record for the table
4791 ** that the cursor is pointing into.
4793 ** This is an optimization. Everything will still work if this
4794 ** routine always returns 2147483647 (which is the largest record
4795 ** that SQLite can handle) or more. But returning a smaller value might
4796 ** prevent large memory allocations when trying to interpret a
4797 ** corrupt datrabase.
4799 ** The current implementation merely returns the size of the underlying
4800 ** database file.
4802 sqlite3_int64 sqlite3BtreeMaxRecordSize(BtCursor *pCur){
4803 assert( cursorHoldsMutex(pCur) );
4804 assert( pCur->eState==CURSOR_VALID );
4805 return pCur->pBt->pageSize * (sqlite3_int64)pCur->pBt->nPage;
4809 ** Given the page number of an overflow page in the database (parameter
4810 ** ovfl), this function finds the page number of the next page in the
4811 ** linked list of overflow pages. If possible, it uses the auto-vacuum
4812 ** pointer-map data instead of reading the content of page ovfl to do so.
4814 ** If an error occurs an SQLite error code is returned. Otherwise:
4816 ** The page number of the next overflow page in the linked list is
4817 ** written to *pPgnoNext. If page ovfl is the last page in its linked
4818 ** list, *pPgnoNext is set to zero.
4820 ** If ppPage is not NULL, and a reference to the MemPage object corresponding
4821 ** to page number pOvfl was obtained, then *ppPage is set to point to that
4822 ** reference. It is the responsibility of the caller to call releasePage()
4823 ** on *ppPage to free the reference. In no reference was obtained (because
4824 ** the pointer-map was used to obtain the value for *pPgnoNext), then
4825 ** *ppPage is set to zero.
4827 static int getOverflowPage(
4828 BtShared *pBt, /* The database file */
4829 Pgno ovfl, /* Current overflow page number */
4830 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
4831 Pgno *pPgnoNext /* OUT: Next overflow page number */
4833 Pgno next = 0;
4834 MemPage *pPage = 0;
4835 int rc = SQLITE_OK;
4837 assert( sqlite3_mutex_held(pBt->mutex) );
4838 assert(pPgnoNext);
4840 #ifndef SQLITE_OMIT_AUTOVACUUM
4841 /* Try to find the next page in the overflow list using the
4842 ** autovacuum pointer-map pages. Guess that the next page in
4843 ** the overflow list is page number (ovfl+1). If that guess turns
4844 ** out to be wrong, fall back to loading the data of page
4845 ** number ovfl to determine the next page number.
4847 if( pBt->autoVacuum ){
4848 Pgno pgno;
4849 Pgno iGuess = ovfl+1;
4850 u8 eType;
4852 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
4853 iGuess++;
4856 if( iGuess<=btreePagecount(pBt) ){
4857 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
4858 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
4859 next = iGuess;
4860 rc = SQLITE_DONE;
4864 #endif
4866 assert( next==0 || rc==SQLITE_DONE );
4867 if( rc==SQLITE_OK ){
4868 rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
4869 assert( rc==SQLITE_OK || pPage==0 );
4870 if( rc==SQLITE_OK ){
4871 next = get4byte(pPage->aData);
4875 *pPgnoNext = next;
4876 if( ppPage ){
4877 *ppPage = pPage;
4878 }else{
4879 releasePage(pPage);
4881 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
4885 ** Copy data from a buffer to a page, or from a page to a buffer.
4887 ** pPayload is a pointer to data stored on database page pDbPage.
4888 ** If argument eOp is false, then nByte bytes of data are copied
4889 ** from pPayload to the buffer pointed at by pBuf. If eOp is true,
4890 ** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
4891 ** of data are copied from the buffer pBuf to pPayload.
4893 ** SQLITE_OK is returned on success, otherwise an error code.
4895 static int copyPayload(
4896 void *pPayload, /* Pointer to page data */
4897 void *pBuf, /* Pointer to buffer */
4898 int nByte, /* Number of bytes to copy */
4899 int eOp, /* 0 -> copy from page, 1 -> copy to page */
4900 DbPage *pDbPage /* Page containing pPayload */
4902 if( eOp ){
4903 /* Copy data from buffer to page (a write operation) */
4904 int rc = sqlite3PagerWrite(pDbPage);
4905 if( rc!=SQLITE_OK ){
4906 return rc;
4908 memcpy(pPayload, pBuf, nByte);
4909 }else{
4910 /* Copy data from page to buffer (a read operation) */
4911 memcpy(pBuf, pPayload, nByte);
4913 return SQLITE_OK;
4917 ** This function is used to read or overwrite payload information
4918 ** for the entry that the pCur cursor is pointing to. The eOp
4919 ** argument is interpreted as follows:
4921 ** 0: The operation is a read. Populate the overflow cache.
4922 ** 1: The operation is a write. Populate the overflow cache.
4924 ** A total of "amt" bytes are read or written beginning at "offset".
4925 ** Data is read to or from the buffer pBuf.
4927 ** The content being read or written might appear on the main page
4928 ** or be scattered out on multiple overflow pages.
4930 ** If the current cursor entry uses one or more overflow pages
4931 ** this function may allocate space for and lazily populate
4932 ** the overflow page-list cache array (BtCursor.aOverflow).
4933 ** Subsequent calls use this cache to make seeking to the supplied offset
4934 ** more efficient.
4936 ** Once an overflow page-list cache has been allocated, it must be
4937 ** invalidated if some other cursor writes to the same table, or if
4938 ** the cursor is moved to a different row. Additionally, in auto-vacuum
4939 ** mode, the following events may invalidate an overflow page-list cache.
4941 ** * An incremental vacuum,
4942 ** * A commit in auto_vacuum="full" mode,
4943 ** * Creating a table (may require moving an overflow page).
4945 static int accessPayload(
4946 BtCursor *pCur, /* Cursor pointing to entry to read from */
4947 u32 offset, /* Begin reading this far into payload */
4948 u32 amt, /* Read this many bytes */
4949 unsigned char *pBuf, /* Write the bytes into this buffer */
4950 int eOp /* zero to read. non-zero to write. */
4952 unsigned char *aPayload;
4953 int rc = SQLITE_OK;
4954 int iIdx = 0;
4955 MemPage *pPage = pCur->pPage; /* Btree page of current entry */
4956 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
4957 #ifdef SQLITE_DIRECT_OVERFLOW_READ
4958 unsigned char * const pBufStart = pBuf; /* Start of original out buffer */
4959 #endif
4961 assert( pPage );
4962 assert( eOp==0 || eOp==1 );
4963 assert( pCur->eState==CURSOR_VALID );
4964 if( pCur->ix>=pPage->nCell ){
4965 return SQLITE_CORRUPT_PAGE(pPage);
4967 assert( cursorHoldsMutex(pCur) );
4969 getCellInfo(pCur);
4970 aPayload = pCur->info.pPayload;
4971 assert( offset+amt <= pCur->info.nPayload );
4973 assert( aPayload > pPage->aData );
4974 if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){
4975 /* Trying to read or write past the end of the data is an error. The
4976 ** conditional above is really:
4977 ** &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
4978 ** but is recast into its current form to avoid integer overflow problems
4980 return SQLITE_CORRUPT_PAGE(pPage);
4983 /* Check if data must be read/written to/from the btree page itself. */
4984 if( offset<pCur->info.nLocal ){
4985 int a = amt;
4986 if( a+offset>pCur->info.nLocal ){
4987 a = pCur->info.nLocal - offset;
4989 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
4990 offset = 0;
4991 pBuf += a;
4992 amt -= a;
4993 }else{
4994 offset -= pCur->info.nLocal;
4998 if( rc==SQLITE_OK && amt>0 ){
4999 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
5000 Pgno nextPage;
5002 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
5004 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
5006 ** The aOverflow[] array is sized at one entry for each overflow page
5007 ** in the overflow chain. The page number of the first overflow page is
5008 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
5009 ** means "not yet known" (the cache is lazily populated).
5011 if( (pCur->curFlags & BTCF_ValidOvfl)==0 ){
5012 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
5013 if( pCur->aOverflow==0
5014 || nOvfl*(int)sizeof(Pgno) > sqlite3MallocSize(pCur->aOverflow)
5016 Pgno *aNew = (Pgno*)sqlite3Realloc(
5017 pCur->aOverflow, nOvfl*2*sizeof(Pgno)
5019 if( aNew==0 ){
5020 return SQLITE_NOMEM_BKPT;
5021 }else{
5022 pCur->aOverflow = aNew;
5025 memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
5026 pCur->curFlags |= BTCF_ValidOvfl;
5027 }else{
5028 /* If the overflow page-list cache has been allocated and the
5029 ** entry for the first required overflow page is valid, skip
5030 ** directly to it.
5032 if( pCur->aOverflow[offset/ovflSize] ){
5033 iIdx = (offset/ovflSize);
5034 nextPage = pCur->aOverflow[iIdx];
5035 offset = (offset%ovflSize);
5039 assert( rc==SQLITE_OK && amt>0 );
5040 while( nextPage ){
5041 /* If required, populate the overflow page-list cache. */
5042 if( nextPage > pBt->nPage ) return SQLITE_CORRUPT_BKPT;
5043 assert( pCur->aOverflow[iIdx]==0
5044 || pCur->aOverflow[iIdx]==nextPage
5045 || CORRUPT_DB );
5046 pCur->aOverflow[iIdx] = nextPage;
5048 if( offset>=ovflSize ){
5049 /* The only reason to read this page is to obtain the page
5050 ** number for the next page in the overflow chain. The page
5051 ** data is not required. So first try to lookup the overflow
5052 ** page-list cache, if any, then fall back to the getOverflowPage()
5053 ** function.
5055 assert( pCur->curFlags & BTCF_ValidOvfl );
5056 assert( pCur->pBtree->db==pBt->db );
5057 if( pCur->aOverflow[iIdx+1] ){
5058 nextPage = pCur->aOverflow[iIdx+1];
5059 }else{
5060 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
5062 offset -= ovflSize;
5063 }else{
5064 /* Need to read this page properly. It contains some of the
5065 ** range of data that is being read (eOp==0) or written (eOp!=0).
5067 int a = amt;
5068 if( a + offset > ovflSize ){
5069 a = ovflSize - offset;
5072 #ifdef SQLITE_DIRECT_OVERFLOW_READ
5073 /* If all the following are true:
5075 ** 1) this is a read operation, and
5076 ** 2) data is required from the start of this overflow page, and
5077 ** 3) there are no dirty pages in the page-cache
5078 ** 4) the database is file-backed, and
5079 ** 5) the page is not in the WAL file
5080 ** 6) at least 4 bytes have already been read into the output buffer
5082 ** then data can be read directly from the database file into the
5083 ** output buffer, bypassing the page-cache altogether. This speeds
5084 ** up loading large records that span many overflow pages.
5086 if( eOp==0 /* (1) */
5087 && offset==0 /* (2) */
5088 && sqlite3PagerDirectReadOk(pBt->pPager, nextPage) /* (3,4,5) */
5089 && &pBuf[-4]>=pBufStart /* (6) */
5091 sqlite3_file *fd = sqlite3PagerFile(pBt->pPager);
5092 u8 aSave[4];
5093 u8 *aWrite = &pBuf[-4];
5094 assert( aWrite>=pBufStart ); /* due to (6) */
5095 memcpy(aSave, aWrite, 4);
5096 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
5097 if( rc && nextPage>pBt->nPage ) rc = SQLITE_CORRUPT_BKPT;
5098 nextPage = get4byte(aWrite);
5099 memcpy(aWrite, aSave, 4);
5100 }else
5101 #endif
5104 DbPage *pDbPage;
5105 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage,
5106 (eOp==0 ? PAGER_GET_READONLY : 0)
5108 if( rc==SQLITE_OK ){
5109 aPayload = sqlite3PagerGetData(pDbPage);
5110 nextPage = get4byte(aPayload);
5111 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
5112 sqlite3PagerUnref(pDbPage);
5113 offset = 0;
5116 amt -= a;
5117 if( amt==0 ) return rc;
5118 pBuf += a;
5120 if( rc ) break;
5121 iIdx++;
5125 if( rc==SQLITE_OK && amt>0 ){
5126 /* Overflow chain ends prematurely */
5127 return SQLITE_CORRUPT_PAGE(pPage);
5129 return rc;
5133 ** Read part of the payload for the row at which that cursor pCur is currently
5134 ** pointing. "amt" bytes will be transferred into pBuf[]. The transfer
5135 ** begins at "offset".
5137 ** pCur can be pointing to either a table or an index b-tree.
5138 ** If pointing to a table btree, then the content section is read. If
5139 ** pCur is pointing to an index b-tree then the key section is read.
5141 ** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing
5142 ** to a valid row in the table. For sqlite3BtreePayloadChecked(), the
5143 ** cursor might be invalid or might need to be restored before being read.
5145 ** Return SQLITE_OK on success or an error code if anything goes
5146 ** wrong. An error is returned if "offset+amt" is larger than
5147 ** the available payload.
5149 int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
5150 assert( cursorHoldsMutex(pCur) );
5151 assert( pCur->eState==CURSOR_VALID );
5152 assert( pCur->iPage>=0 && pCur->pPage );
5153 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
5157 ** This variant of sqlite3BtreePayload() works even if the cursor has not
5158 ** in the CURSOR_VALID state. It is only used by the sqlite3_blob_read()
5159 ** interface.
5161 #ifndef SQLITE_OMIT_INCRBLOB
5162 static SQLITE_NOINLINE int accessPayloadChecked(
5163 BtCursor *pCur,
5164 u32 offset,
5165 u32 amt,
5166 void *pBuf
5168 int rc;
5169 if ( pCur->eState==CURSOR_INVALID ){
5170 return SQLITE_ABORT;
5172 assert( cursorOwnsBtShared(pCur) );
5173 rc = btreeRestoreCursorPosition(pCur);
5174 return rc ? rc : accessPayload(pCur, offset, amt, pBuf, 0);
5176 int sqlite3BtreePayloadChecked(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
5177 if( pCur->eState==CURSOR_VALID ){
5178 assert( cursorOwnsBtShared(pCur) );
5179 return accessPayload(pCur, offset, amt, pBuf, 0);
5180 }else{
5181 return accessPayloadChecked(pCur, offset, amt, pBuf);
5184 #endif /* SQLITE_OMIT_INCRBLOB */
5187 ** Return a pointer to payload information from the entry that the
5188 ** pCur cursor is pointing to. The pointer is to the beginning of
5189 ** the key if index btrees (pPage->intKey==0) and is the data for
5190 ** table btrees (pPage->intKey==1). The number of bytes of available
5191 ** key/data is written into *pAmt. If *pAmt==0, then the value
5192 ** returned will not be a valid pointer.
5194 ** This routine is an optimization. It is common for the entire key
5195 ** and data to fit on the local page and for there to be no overflow
5196 ** pages. When that is so, this routine can be used to access the
5197 ** key and data without making a copy. If the key and/or data spills
5198 ** onto overflow pages, then accessPayload() must be used to reassemble
5199 ** the key/data and copy it into a preallocated buffer.
5201 ** The pointer returned by this routine looks directly into the cached
5202 ** page of the database. The data might change or move the next time
5203 ** any btree routine is called.
5205 static const void *fetchPayload(
5206 BtCursor *pCur, /* Cursor pointing to entry to read from */
5207 u32 *pAmt /* Write the number of available bytes here */
5209 int amt;
5210 assert( pCur!=0 && pCur->iPage>=0 && pCur->pPage);
5211 assert( pCur->eState==CURSOR_VALID );
5212 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5213 assert( cursorOwnsBtShared(pCur) );
5214 assert( pCur->ix<pCur->pPage->nCell || CORRUPT_DB );
5215 assert( pCur->info.nSize>0 );
5216 assert( pCur->info.pPayload>pCur->pPage->aData || CORRUPT_DB );
5217 assert( pCur->info.pPayload<pCur->pPage->aDataEnd ||CORRUPT_DB);
5218 amt = pCur->info.nLocal;
5219 if( amt>(int)(pCur->pPage->aDataEnd - pCur->info.pPayload) ){
5220 /* There is too little space on the page for the expected amount
5221 ** of local content. Database must be corrupt. */
5222 assert( CORRUPT_DB );
5223 amt = MAX(0, (int)(pCur->pPage->aDataEnd - pCur->info.pPayload));
5225 *pAmt = (u32)amt;
5226 return (void*)pCur->info.pPayload;
5231 ** For the entry that cursor pCur is point to, return as
5232 ** many bytes of the key or data as are available on the local
5233 ** b-tree page. Write the number of available bytes into *pAmt.
5235 ** The pointer returned is ephemeral. The key/data may move
5236 ** or be destroyed on the next call to any Btree routine,
5237 ** including calls from other threads against the same cache.
5238 ** Hence, a mutex on the BtShared should be held prior to calling
5239 ** this routine.
5241 ** These routines is used to get quick access to key and data
5242 ** in the common case where no overflow pages are used.
5244 const void *sqlite3BtreePayloadFetch(BtCursor *pCur, u32 *pAmt){
5245 return fetchPayload(pCur, pAmt);
5250 ** Move the cursor down to a new child page. The newPgno argument is the
5251 ** page number of the child page to move to.
5253 ** This function returns SQLITE_CORRUPT if the page-header flags field of
5254 ** the new child page does not match the flags field of the parent (i.e.
5255 ** if an intkey page appears to be the parent of a non-intkey page, or
5256 ** vice-versa).
5258 static int moveToChild(BtCursor *pCur, u32 newPgno){
5259 assert( cursorOwnsBtShared(pCur) );
5260 assert( pCur->eState==CURSOR_VALID );
5261 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
5262 assert( pCur->iPage>=0 );
5263 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
5264 return SQLITE_CORRUPT_BKPT;
5266 pCur->info.nSize = 0;
5267 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
5268 pCur->aiIdx[pCur->iPage] = pCur->ix;
5269 pCur->apPage[pCur->iPage] = pCur->pPage;
5270 pCur->ix = 0;
5271 pCur->iPage++;
5272 return getAndInitPage(pCur->pBt, newPgno, &pCur->pPage, pCur,
5273 pCur->curPagerFlags);
5276 #ifdef SQLITE_DEBUG
5278 ** Page pParent is an internal (non-leaf) tree page. This function
5279 ** asserts that page number iChild is the left-child if the iIdx'th
5280 ** cell in page pParent. Or, if iIdx is equal to the total number of
5281 ** cells in pParent, that page number iChild is the right-child of
5282 ** the page.
5284 static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
5285 if( CORRUPT_DB ) return; /* The conditions tested below might not be true
5286 ** in a corrupt database */
5287 assert( iIdx<=pParent->nCell );
5288 if( iIdx==pParent->nCell ){
5289 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
5290 }else{
5291 assert( get4byte(findCell(pParent, iIdx))==iChild );
5294 #else
5295 # define assertParentIndex(x,y,z)
5296 #endif
5299 ** Move the cursor up to the parent page.
5301 ** pCur->idx is set to the cell index that contains the pointer
5302 ** to the page we are coming from. If we are coming from the
5303 ** right-most child page then pCur->idx is set to one more than
5304 ** the largest cell index.
5306 static void moveToParent(BtCursor *pCur){
5307 MemPage *pLeaf;
5308 assert( cursorOwnsBtShared(pCur) );
5309 assert( pCur->eState==CURSOR_VALID );
5310 assert( pCur->iPage>0 );
5311 assert( pCur->pPage );
5312 assertParentIndex(
5313 pCur->apPage[pCur->iPage-1],
5314 pCur->aiIdx[pCur->iPage-1],
5315 pCur->pPage->pgno
5317 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
5318 pCur->info.nSize = 0;
5319 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
5320 pCur->ix = pCur->aiIdx[pCur->iPage-1];
5321 pLeaf = pCur->pPage;
5322 pCur->pPage = pCur->apPage[--pCur->iPage];
5323 releasePageNotNull(pLeaf);
5327 ** Move the cursor to point to the root page of its b-tree structure.
5329 ** If the table has a virtual root page, then the cursor is moved to point
5330 ** to the virtual root page instead of the actual root page. A table has a
5331 ** virtual root page when the actual root page contains no cells and a
5332 ** single child page. This can only happen with the table rooted at page 1.
5334 ** If the b-tree structure is empty, the cursor state is set to
5335 ** CURSOR_INVALID and this routine returns SQLITE_EMPTY. Otherwise,
5336 ** the cursor is set to point to the first cell located on the root
5337 ** (or virtual root) page and the cursor state is set to CURSOR_VALID.
5339 ** If this function returns successfully, it may be assumed that the
5340 ** page-header flags indicate that the [virtual] root-page is the expected
5341 ** kind of b-tree page (i.e. if when opening the cursor the caller did not
5342 ** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
5343 ** indicating a table b-tree, or if the caller did specify a KeyInfo
5344 ** structure the flags byte is set to 0x02 or 0x0A, indicating an index
5345 ** b-tree).
5347 static int moveToRoot(BtCursor *pCur){
5348 MemPage *pRoot;
5349 int rc = SQLITE_OK;
5351 assert( cursorOwnsBtShared(pCur) );
5352 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
5353 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
5354 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
5355 assert( pCur->eState < CURSOR_REQUIRESEEK || pCur->iPage<0 );
5356 assert( pCur->pgnoRoot>0 || pCur->iPage<0 );
5358 if( pCur->iPage>=0 ){
5359 if( pCur->iPage ){
5360 releasePageNotNull(pCur->pPage);
5361 while( --pCur->iPage ){
5362 releasePageNotNull(pCur->apPage[pCur->iPage]);
5364 pRoot = pCur->pPage = pCur->apPage[0];
5365 goto skip_init;
5367 }else if( pCur->pgnoRoot==0 ){
5368 pCur->eState = CURSOR_INVALID;
5369 return SQLITE_EMPTY;
5370 }else{
5371 assert( pCur->iPage==(-1) );
5372 if( pCur->eState>=CURSOR_REQUIRESEEK ){
5373 if( pCur->eState==CURSOR_FAULT ){
5374 assert( pCur->skipNext!=SQLITE_OK );
5375 return pCur->skipNext;
5377 sqlite3BtreeClearCursor(pCur);
5379 rc = getAndInitPage(pCur->pBt, pCur->pgnoRoot, &pCur->pPage,
5380 0, pCur->curPagerFlags);
5381 if( rc!=SQLITE_OK ){
5382 pCur->eState = CURSOR_INVALID;
5383 return rc;
5385 pCur->iPage = 0;
5386 pCur->curIntKey = pCur->pPage->intKey;
5388 pRoot = pCur->pPage;
5389 assert( pRoot->pgno==pCur->pgnoRoot || CORRUPT_DB );
5391 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
5392 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
5393 ** NULL, the caller expects a table b-tree. If this is not the case,
5394 ** return an SQLITE_CORRUPT error.
5396 ** Earlier versions of SQLite assumed that this test could not fail
5397 ** if the root page was already loaded when this function was called (i.e.
5398 ** if pCur->iPage>=0). But this is not so if the database is corrupted
5399 ** in such a way that page pRoot is linked into a second b-tree table
5400 ** (or the freelist). */
5401 assert( pRoot->intKey==1 || pRoot->intKey==0 );
5402 if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
5403 return SQLITE_CORRUPT_PAGE(pCur->pPage);
5406 skip_init:
5407 pCur->ix = 0;
5408 pCur->info.nSize = 0;
5409 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);
5411 if( pRoot->nCell>0 ){
5412 pCur->eState = CURSOR_VALID;
5413 }else if( !pRoot->leaf ){
5414 Pgno subpage;
5415 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
5416 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
5417 pCur->eState = CURSOR_VALID;
5418 rc = moveToChild(pCur, subpage);
5419 }else{
5420 pCur->eState = CURSOR_INVALID;
5421 rc = SQLITE_EMPTY;
5423 return rc;
5427 ** Move the cursor down to the left-most leaf entry beneath the
5428 ** entry to which it is currently pointing.
5430 ** The left-most leaf is the one with the smallest key - the first
5431 ** in ascending order.
5433 static int moveToLeftmost(BtCursor *pCur){
5434 Pgno pgno;
5435 int rc = SQLITE_OK;
5436 MemPage *pPage;
5438 assert( cursorOwnsBtShared(pCur) );
5439 assert( pCur->eState==CURSOR_VALID );
5440 while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){
5441 assert( pCur->ix<pPage->nCell );
5442 pgno = get4byte(findCell(pPage, pCur->ix));
5443 rc = moveToChild(pCur, pgno);
5445 return rc;
5449 ** Move the cursor down to the right-most leaf entry beneath the
5450 ** page to which it is currently pointing. Notice the difference
5451 ** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
5452 ** finds the left-most entry beneath the *entry* whereas moveToRightmost()
5453 ** finds the right-most entry beneath the *page*.
5455 ** The right-most entry is the one with the largest key - the last
5456 ** key in ascending order.
5458 static int moveToRightmost(BtCursor *pCur){
5459 Pgno pgno;
5460 int rc = SQLITE_OK;
5461 MemPage *pPage = 0;
5463 assert( cursorOwnsBtShared(pCur) );
5464 assert( pCur->eState==CURSOR_VALID );
5465 while( !(pPage = pCur->pPage)->leaf ){
5466 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5467 pCur->ix = pPage->nCell;
5468 rc = moveToChild(pCur, pgno);
5469 if( rc ) return rc;
5471 pCur->ix = pPage->nCell-1;
5472 assert( pCur->info.nSize==0 );
5473 assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
5474 return SQLITE_OK;
5477 /* Move the cursor to the first entry in the table. Return SQLITE_OK
5478 ** on success. Set *pRes to 0 if the cursor actually points to something
5479 ** or set *pRes to 1 if the table is empty.
5481 int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
5482 int rc;
5484 assert( cursorOwnsBtShared(pCur) );
5485 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5486 rc = moveToRoot(pCur);
5487 if( rc==SQLITE_OK ){
5488 assert( pCur->pPage->nCell>0 );
5489 *pRes = 0;
5490 rc = moveToLeftmost(pCur);
5491 }else if( rc==SQLITE_EMPTY ){
5492 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
5493 *pRes = 1;
5494 rc = SQLITE_OK;
5496 return rc;
5499 /* Move the cursor to the last entry in the table. Return SQLITE_OK
5500 ** on success. Set *pRes to 0 if the cursor actually points to something
5501 ** or set *pRes to 1 if the table is empty.
5503 static SQLITE_NOINLINE int btreeLast(BtCursor *pCur, int *pRes){
5504 int rc = moveToRoot(pCur);
5505 if( rc==SQLITE_OK ){
5506 assert( pCur->eState==CURSOR_VALID );
5507 *pRes = 0;
5508 rc = moveToRightmost(pCur);
5509 if( rc==SQLITE_OK ){
5510 pCur->curFlags |= BTCF_AtLast;
5511 }else{
5512 pCur->curFlags &= ~BTCF_AtLast;
5514 }else if( rc==SQLITE_EMPTY ){
5515 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
5516 *pRes = 1;
5517 rc = SQLITE_OK;
5519 return rc;
5521 int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
5522 assert( cursorOwnsBtShared(pCur) );
5523 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5525 /* If the cursor already points to the last entry, this is a no-op. */
5526 if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
5527 #ifdef SQLITE_DEBUG
5528 /* This block serves to assert() that the cursor really does point
5529 ** to the last entry in the b-tree. */
5530 int ii;
5531 for(ii=0; ii<pCur->iPage; ii++){
5532 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
5534 assert( pCur->ix==pCur->pPage->nCell-1 || CORRUPT_DB );
5535 testcase( pCur->ix!=pCur->pPage->nCell-1 );
5536 /* ^-- dbsqlfuzz b92b72e4de80b5140c30ab71372ca719b8feb618 */
5537 assert( pCur->pPage->leaf );
5538 #endif
5539 *pRes = 0;
5540 return SQLITE_OK;
5542 return btreeLast(pCur, pRes);
5545 /* Move the cursor so that it points to an entry in a table (a.k.a INTKEY)
5546 ** table near the key intKey. Return a success code.
5548 ** If an exact match is not found, then the cursor is always
5549 ** left pointing at a leaf page which would hold the entry if it
5550 ** were present. The cursor might point to an entry that comes
5551 ** before or after the key.
5553 ** An integer is written into *pRes which is the result of
5554 ** comparing the key with the entry to which the cursor is
5555 ** pointing. The meaning of the integer written into
5556 ** *pRes is as follows:
5558 ** *pRes<0 The cursor is left pointing at an entry that
5559 ** is smaller than intKey or if the table is empty
5560 ** and the cursor is therefore left point to nothing.
5562 ** *pRes==0 The cursor is left pointing at an entry that
5563 ** exactly matches intKey.
5565 ** *pRes>0 The cursor is left pointing at an entry that
5566 ** is larger than intKey.
5568 int sqlite3BtreeTableMoveto(
5569 BtCursor *pCur, /* The cursor to be moved */
5570 i64 intKey, /* The table key */
5571 int biasRight, /* If true, bias the search to the high end */
5572 int *pRes /* Write search results here */
5574 int rc;
5576 assert( cursorOwnsBtShared(pCur) );
5577 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5578 assert( pRes );
5579 assert( pCur->pKeyInfo==0 );
5580 assert( pCur->eState!=CURSOR_VALID || pCur->curIntKey!=0 );
5582 /* If the cursor is already positioned at the point we are trying
5583 ** to move to, then just return without doing any work */
5584 if( pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0 ){
5585 if( pCur->info.nKey==intKey ){
5586 *pRes = 0;
5587 return SQLITE_OK;
5589 if( pCur->info.nKey<intKey ){
5590 if( (pCur->curFlags & BTCF_AtLast)!=0 ){
5591 *pRes = -1;
5592 return SQLITE_OK;
5594 /* If the requested key is one more than the previous key, then
5595 ** try to get there using sqlite3BtreeNext() rather than a full
5596 ** binary search. This is an optimization only. The correct answer
5597 ** is still obtained without this case, only a little more slowely */
5598 if( pCur->info.nKey+1==intKey ){
5599 *pRes = 0;
5600 rc = sqlite3BtreeNext(pCur, 0);
5601 if( rc==SQLITE_OK ){
5602 getCellInfo(pCur);
5603 if( pCur->info.nKey==intKey ){
5604 return SQLITE_OK;
5606 }else if( rc!=SQLITE_DONE ){
5607 return rc;
5613 #ifdef SQLITE_DEBUG
5614 pCur->pBtree->nSeek++; /* Performance measurement during testing */
5615 #endif
5617 rc = moveToRoot(pCur);
5618 if( rc ){
5619 if( rc==SQLITE_EMPTY ){
5620 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
5621 *pRes = -1;
5622 return SQLITE_OK;
5624 return rc;
5626 assert( pCur->pPage );
5627 assert( pCur->pPage->isInit );
5628 assert( pCur->eState==CURSOR_VALID );
5629 assert( pCur->pPage->nCell > 0 );
5630 assert( pCur->iPage==0 || pCur->apPage[0]->intKey==pCur->curIntKey );
5631 assert( pCur->curIntKey );
5633 for(;;){
5634 int lwr, upr, idx, c;
5635 Pgno chldPg;
5636 MemPage *pPage = pCur->pPage;
5637 u8 *pCell; /* Pointer to current cell in pPage */
5639 /* pPage->nCell must be greater than zero. If this is the root-page
5640 ** the cursor would have been INVALID above and this for(;;) loop
5641 ** not run. If this is not the root-page, then the moveToChild() routine
5642 ** would have already detected db corruption. Similarly, pPage must
5643 ** be the right kind (index or table) of b-tree page. Otherwise
5644 ** a moveToChild() or moveToRoot() call would have detected corruption. */
5645 assert( pPage->nCell>0 );
5646 assert( pPage->intKey );
5647 lwr = 0;
5648 upr = pPage->nCell-1;
5649 assert( biasRight==0 || biasRight==1 );
5650 idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
5651 for(;;){
5652 i64 nCellKey;
5653 pCell = findCellPastPtr(pPage, idx);
5654 if( pPage->intKeyLeaf ){
5655 while( 0x80 <= *(pCell++) ){
5656 if( pCell>=pPage->aDataEnd ){
5657 return SQLITE_CORRUPT_PAGE(pPage);
5661 getVarint(pCell, (u64*)&nCellKey);
5662 if( nCellKey<intKey ){
5663 lwr = idx+1;
5664 if( lwr>upr ){ c = -1; break; }
5665 }else if( nCellKey>intKey ){
5666 upr = idx-1;
5667 if( lwr>upr ){ c = +1; break; }
5668 }else{
5669 assert( nCellKey==intKey );
5670 pCur->ix = (u16)idx;
5671 if( !pPage->leaf ){
5672 lwr = idx;
5673 goto moveto_table_next_layer;
5674 }else{
5675 pCur->curFlags |= BTCF_ValidNKey;
5676 pCur->info.nKey = nCellKey;
5677 pCur->info.nSize = 0;
5678 *pRes = 0;
5679 return SQLITE_OK;
5682 assert( lwr+upr>=0 );
5683 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */
5685 assert( lwr==upr+1 || !pPage->leaf );
5686 assert( pPage->isInit );
5687 if( pPage->leaf ){
5688 assert( pCur->ix<pCur->pPage->nCell );
5689 pCur->ix = (u16)idx;
5690 *pRes = c;
5691 rc = SQLITE_OK;
5692 goto moveto_table_finish;
5694 moveto_table_next_layer:
5695 if( lwr>=pPage->nCell ){
5696 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5697 }else{
5698 chldPg = get4byte(findCell(pPage, lwr));
5700 pCur->ix = (u16)lwr;
5701 rc = moveToChild(pCur, chldPg);
5702 if( rc ) break;
5704 moveto_table_finish:
5705 pCur->info.nSize = 0;
5706 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
5707 return rc;
5711 ** Compare the "idx"-th cell on the page the cursor pCur is currently
5712 ** pointing to to pIdxKey using xRecordCompare. Return negative or
5713 ** zero if the cell is less than or equal pIdxKey. Return positive
5714 ** if unknown.
5716 ** Return value negative: Cell at pCur[idx] less than pIdxKey
5718 ** Return value is zero: Cell at pCur[idx] equals pIdxKey
5720 ** Return value positive: Nothing is known about the relationship
5721 ** of the cell at pCur[idx] and pIdxKey.
5723 ** This routine is part of an optimization. It is always safe to return
5724 ** a positive value as that will cause the optimization to be skipped.
5726 static int indexCellCompare(
5727 BtCursor *pCur,
5728 int idx,
5729 UnpackedRecord *pIdxKey,
5730 RecordCompare xRecordCompare
5732 MemPage *pPage = pCur->pPage;
5733 int c;
5734 int nCell; /* Size of the pCell cell in bytes */
5735 u8 *pCell = findCellPastPtr(pPage, idx);
5737 nCell = pCell[0];
5738 if( nCell<=pPage->max1bytePayload ){
5739 /* This branch runs if the record-size field of the cell is a
5740 ** single byte varint and the record fits entirely on the main
5741 ** b-tree page. */
5742 testcase( pCell+nCell+1==pPage->aDataEnd );
5743 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
5744 }else if( !(pCell[1] & 0x80)
5745 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
5747 /* The record-size field is a 2 byte varint and the record
5748 ** fits entirely on the main b-tree page. */
5749 testcase( pCell+nCell+2==pPage->aDataEnd );
5750 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
5751 }else{
5752 /* If the record extends into overflow pages, do not attempt
5753 ** the optimization. */
5754 c = 99;
5756 return c;
5760 ** Return true (non-zero) if pCur is current pointing to the last
5761 ** page of a table.
5763 static int cursorOnLastPage(BtCursor *pCur){
5764 int i;
5765 assert( pCur->eState==CURSOR_VALID );
5766 for(i=0; i<pCur->iPage; i++){
5767 MemPage *pPage = pCur->apPage[i];
5768 if( pCur->aiIdx[i]<pPage->nCell ) return 0;
5770 return 1;
5773 /* Move the cursor so that it points to an entry in an index table
5774 ** near the key pIdxKey. Return a success code.
5776 ** If an exact match is not found, then the cursor is always
5777 ** left pointing at a leaf page which would hold the entry if it
5778 ** were present. The cursor might point to an entry that comes
5779 ** before or after the key.
5781 ** An integer is written into *pRes which is the result of
5782 ** comparing the key with the entry to which the cursor is
5783 ** pointing. The meaning of the integer written into
5784 ** *pRes is as follows:
5786 ** *pRes<0 The cursor is left pointing at an entry that
5787 ** is smaller than pIdxKey or if the table is empty
5788 ** and the cursor is therefore left point to nothing.
5790 ** *pRes==0 The cursor is left pointing at an entry that
5791 ** exactly matches pIdxKey.
5793 ** *pRes>0 The cursor is left pointing at an entry that
5794 ** is larger than pIdxKey.
5796 ** The pIdxKey->eqSeen field is set to 1 if there
5797 ** exists an entry in the table that exactly matches pIdxKey.
5799 int sqlite3BtreeIndexMoveto(
5800 BtCursor *pCur, /* The cursor to be moved */
5801 UnpackedRecord *pIdxKey, /* Unpacked index key */
5802 int *pRes /* Write search results here */
5804 int rc;
5805 RecordCompare xRecordCompare;
5807 assert( cursorOwnsBtShared(pCur) );
5808 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5809 assert( pRes );
5810 assert( pCur->pKeyInfo!=0 );
5812 #ifdef SQLITE_DEBUG
5813 pCur->pBtree->nSeek++; /* Performance measurement during testing */
5814 #endif
5816 xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
5817 pIdxKey->errCode = 0;
5818 assert( pIdxKey->default_rc==1
5819 || pIdxKey->default_rc==0
5820 || pIdxKey->default_rc==-1
5824 /* Check to see if we can skip a lot of work. Two cases:
5826 ** (1) If the cursor is already pointing to the very last cell
5827 ** in the table and the pIdxKey search key is greater than or
5828 ** equal to that last cell, then no movement is required.
5830 ** (2) If the cursor is on the last page of the table and the first
5831 ** cell on that last page is less than or equal to the pIdxKey
5832 ** search key, then we can start the search on the current page
5833 ** without needing to go back to root.
5835 if( pCur->eState==CURSOR_VALID
5836 && pCur->pPage->leaf
5837 && cursorOnLastPage(pCur)
5839 int c;
5840 if( pCur->ix==pCur->pPage->nCell-1
5841 && (c = indexCellCompare(pCur, pCur->ix, pIdxKey, xRecordCompare))<=0
5842 && pIdxKey->errCode==SQLITE_OK
5844 *pRes = c;
5845 return SQLITE_OK; /* Cursor already pointing at the correct spot */
5847 if( pCur->iPage>0
5848 && indexCellCompare(pCur, 0, pIdxKey, xRecordCompare)<=0
5849 && pIdxKey->errCode==SQLITE_OK
5851 pCur->curFlags &= ~BTCF_ValidOvfl;
5852 if( !pCur->pPage->isInit ){
5853 return SQLITE_CORRUPT_BKPT;
5855 goto bypass_moveto_root; /* Start search on the current page */
5857 pIdxKey->errCode = SQLITE_OK;
5860 rc = moveToRoot(pCur);
5861 if( rc ){
5862 if( rc==SQLITE_EMPTY ){
5863 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
5864 *pRes = -1;
5865 return SQLITE_OK;
5867 return rc;
5870 bypass_moveto_root:
5871 assert( pCur->pPage );
5872 assert( pCur->pPage->isInit );
5873 assert( pCur->eState==CURSOR_VALID );
5874 assert( pCur->pPage->nCell > 0 );
5875 assert( pCur->curIntKey==0 );
5876 assert( pIdxKey!=0 );
5877 for(;;){
5878 int lwr, upr, idx, c;
5879 Pgno chldPg;
5880 MemPage *pPage = pCur->pPage;
5881 u8 *pCell; /* Pointer to current cell in pPage */
5883 /* pPage->nCell must be greater than zero. If this is the root-page
5884 ** the cursor would have been INVALID above and this for(;;) loop
5885 ** not run. If this is not the root-page, then the moveToChild() routine
5886 ** would have already detected db corruption. Similarly, pPage must
5887 ** be the right kind (index or table) of b-tree page. Otherwise
5888 ** a moveToChild() or moveToRoot() call would have detected corruption. */
5889 assert( pPage->nCell>0 );
5890 assert( pPage->intKey==0 );
5891 lwr = 0;
5892 upr = pPage->nCell-1;
5893 idx = upr>>1; /* idx = (lwr+upr)/2; */
5894 for(;;){
5895 int nCell; /* Size of the pCell cell in bytes */
5896 pCell = findCellPastPtr(pPage, idx);
5898 /* The maximum supported page-size is 65536 bytes. This means that
5899 ** the maximum number of record bytes stored on an index B-Tree
5900 ** page is less than 16384 bytes and may be stored as a 2-byte
5901 ** varint. This information is used to attempt to avoid parsing
5902 ** the entire cell by checking for the cases where the record is
5903 ** stored entirely within the b-tree page by inspecting the first
5904 ** 2 bytes of the cell.
5906 nCell = pCell[0];
5907 if( nCell<=pPage->max1bytePayload ){
5908 /* This branch runs if the record-size field of the cell is a
5909 ** single byte varint and the record fits entirely on the main
5910 ** b-tree page. */
5911 testcase( pCell+nCell+1==pPage->aDataEnd );
5912 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
5913 }else if( !(pCell[1] & 0x80)
5914 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
5916 /* The record-size field is a 2 byte varint and the record
5917 ** fits entirely on the main b-tree page. */
5918 testcase( pCell+nCell+2==pPage->aDataEnd );
5919 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
5920 }else{
5921 /* The record flows over onto one or more overflow pages. In
5922 ** this case the whole cell needs to be parsed, a buffer allocated
5923 ** and accessPayload() used to retrieve the record into the
5924 ** buffer before VdbeRecordCompare() can be called.
5926 ** If the record is corrupt, the xRecordCompare routine may read
5927 ** up to two varints past the end of the buffer. An extra 18
5928 ** bytes of padding is allocated at the end of the buffer in
5929 ** case this happens. */
5930 void *pCellKey;
5931 u8 * const pCellBody = pCell - pPage->childPtrSize;
5932 const int nOverrun = 18; /* Size of the overrun padding */
5933 pPage->xParseCell(pPage, pCellBody, &pCur->info);
5934 nCell = (int)pCur->info.nKey;
5935 testcase( nCell<0 ); /* True if key size is 2^32 or more */
5936 testcase( nCell==0 ); /* Invalid key size: 0x80 0x80 0x00 */
5937 testcase( nCell==1 ); /* Invalid key size: 0x80 0x80 0x01 */
5938 testcase( nCell==2 ); /* Minimum legal index key size */
5939 if( nCell<2 || nCell/pCur->pBt->usableSize>pCur->pBt->nPage ){
5940 rc = SQLITE_CORRUPT_PAGE(pPage);
5941 goto moveto_index_finish;
5943 pCellKey = sqlite3Malloc( nCell+nOverrun );
5944 if( pCellKey==0 ){
5945 rc = SQLITE_NOMEM_BKPT;
5946 goto moveto_index_finish;
5948 pCur->ix = (u16)idx;
5949 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
5950 memset(((u8*)pCellKey)+nCell,0,nOverrun); /* Fix uninit warnings */
5951 pCur->curFlags &= ~BTCF_ValidOvfl;
5952 if( rc ){
5953 sqlite3_free(pCellKey);
5954 goto moveto_index_finish;
5956 c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey);
5957 sqlite3_free(pCellKey);
5959 assert(
5960 (pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
5961 && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
5963 if( c<0 ){
5964 lwr = idx+1;
5965 }else if( c>0 ){
5966 upr = idx-1;
5967 }else{
5968 assert( c==0 );
5969 *pRes = 0;
5970 rc = SQLITE_OK;
5971 pCur->ix = (u16)idx;
5972 if( pIdxKey->errCode ) rc = SQLITE_CORRUPT_BKPT;
5973 goto moveto_index_finish;
5975 if( lwr>upr ) break;
5976 assert( lwr+upr>=0 );
5977 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */
5979 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
5980 assert( pPage->isInit );
5981 if( pPage->leaf ){
5982 assert( pCur->ix<pCur->pPage->nCell || CORRUPT_DB );
5983 pCur->ix = (u16)idx;
5984 *pRes = c;
5985 rc = SQLITE_OK;
5986 goto moveto_index_finish;
5988 if( lwr>=pPage->nCell ){
5989 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5990 }else{
5991 chldPg = get4byte(findCell(pPage, lwr));
5993 pCur->ix = (u16)lwr;
5994 rc = moveToChild(pCur, chldPg);
5995 if( rc ) break;
5997 moveto_index_finish:
5998 pCur->info.nSize = 0;
5999 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
6000 return rc;
6005 ** Return TRUE if the cursor is not pointing at an entry of the table.
6007 ** TRUE will be returned after a call to sqlite3BtreeNext() moves
6008 ** past the last entry in the table or sqlite3BtreePrev() moves past
6009 ** the first entry. TRUE is also returned if the table is empty.
6011 int sqlite3BtreeEof(BtCursor *pCur){
6012 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
6013 ** have been deleted? This API will need to change to return an error code
6014 ** as well as the boolean result value.
6016 return (CURSOR_VALID!=pCur->eState);
6020 ** Return an estimate for the number of rows in the table that pCur is
6021 ** pointing to. Return a negative number if no estimate is currently
6022 ** available.
6024 i64 sqlite3BtreeRowCountEst(BtCursor *pCur){
6025 i64 n;
6026 u8 i;
6028 assert( cursorOwnsBtShared(pCur) );
6029 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
6031 /* Currently this interface is only called by the OP_IfSmaller
6032 ** opcode, and it that case the cursor will always be valid and
6033 ** will always point to a leaf node. */
6034 if( NEVER(pCur->eState!=CURSOR_VALID) ) return -1;
6035 if( NEVER(pCur->pPage->leaf==0) ) return -1;
6037 n = pCur->pPage->nCell;
6038 for(i=0; i<pCur->iPage; i++){
6039 n *= pCur->apPage[i]->nCell;
6041 return n;
6045 ** Advance the cursor to the next entry in the database.
6046 ** Return value:
6048 ** SQLITE_OK success
6049 ** SQLITE_DONE cursor is already pointing at the last element
6050 ** otherwise some kind of error occurred
6052 ** The main entry point is sqlite3BtreeNext(). That routine is optimized
6053 ** for the common case of merely incrementing the cell counter BtCursor.aiIdx
6054 ** to the next cell on the current page. The (slower) btreeNext() helper
6055 ** routine is called when it is necessary to move to a different page or
6056 ** to restore the cursor.
6058 ** If bit 0x01 of the F argument in sqlite3BtreeNext(C,F) is 1, then the
6059 ** cursor corresponds to an SQL index and this routine could have been
6060 ** skipped if the SQL index had been a unique index. The F argument
6061 ** is a hint to the implement. SQLite btree implementation does not use
6062 ** this hint, but COMDB2 does.
6064 static SQLITE_NOINLINE int btreeNext(BtCursor *pCur){
6065 int rc;
6066 int idx;
6067 MemPage *pPage;
6069 assert( cursorOwnsBtShared(pCur) );
6070 if( pCur->eState!=CURSOR_VALID ){
6071 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
6072 rc = restoreCursorPosition(pCur);
6073 if( rc!=SQLITE_OK ){
6074 return rc;
6076 if( CURSOR_INVALID==pCur->eState ){
6077 return SQLITE_DONE;
6079 if( pCur->eState==CURSOR_SKIPNEXT ){
6080 pCur->eState = CURSOR_VALID;
6081 if( pCur->skipNext>0 ) return SQLITE_OK;
6085 pPage = pCur->pPage;
6086 idx = ++pCur->ix;
6087 if( NEVER(!pPage->isInit) || sqlite3FaultSim(412) ){
6088 return SQLITE_CORRUPT_BKPT;
6091 if( idx>=pPage->nCell ){
6092 if( !pPage->leaf ){
6093 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
6094 if( rc ) return rc;
6095 return moveToLeftmost(pCur);
6098 if( pCur->iPage==0 ){
6099 pCur->eState = CURSOR_INVALID;
6100 return SQLITE_DONE;
6102 moveToParent(pCur);
6103 pPage = pCur->pPage;
6104 }while( pCur->ix>=pPage->nCell );
6105 if( pPage->intKey ){
6106 return sqlite3BtreeNext(pCur, 0);
6107 }else{
6108 return SQLITE_OK;
6111 if( pPage->leaf ){
6112 return SQLITE_OK;
6113 }else{
6114 return moveToLeftmost(pCur);
6117 int sqlite3BtreeNext(BtCursor *pCur, int flags){
6118 MemPage *pPage;
6119 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */
6120 assert( cursorOwnsBtShared(pCur) );
6121 assert( flags==0 || flags==1 );
6122 pCur->info.nSize = 0;
6123 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
6124 if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur);
6125 pPage = pCur->pPage;
6126 if( (++pCur->ix)>=pPage->nCell ){
6127 pCur->ix--;
6128 return btreeNext(pCur);
6130 if( pPage->leaf ){
6131 return SQLITE_OK;
6132 }else{
6133 return moveToLeftmost(pCur);
6138 ** Step the cursor to the back to the previous entry in the database.
6139 ** Return values:
6141 ** SQLITE_OK success
6142 ** SQLITE_DONE the cursor is already on the first element of the table
6143 ** otherwise some kind of error occurred
6145 ** The main entry point is sqlite3BtreePrevious(). That routine is optimized
6146 ** for the common case of merely decrementing the cell counter BtCursor.aiIdx
6147 ** to the previous cell on the current page. The (slower) btreePrevious()
6148 ** helper routine is called when it is necessary to move to a different page
6149 ** or to restore the cursor.
6151 ** If bit 0x01 of the F argument to sqlite3BtreePrevious(C,F) is 1, then
6152 ** the cursor corresponds to an SQL index and this routine could have been
6153 ** skipped if the SQL index had been a unique index. The F argument is a
6154 ** hint to the implement. The native SQLite btree implementation does not
6155 ** use this hint, but COMDB2 does.
6157 static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur){
6158 int rc;
6159 MemPage *pPage;
6161 assert( cursorOwnsBtShared(pCur) );
6162 assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
6163 assert( pCur->info.nSize==0 );
6164 if( pCur->eState!=CURSOR_VALID ){
6165 rc = restoreCursorPosition(pCur);
6166 if( rc!=SQLITE_OK ){
6167 return rc;
6169 if( CURSOR_INVALID==pCur->eState ){
6170 return SQLITE_DONE;
6172 if( CURSOR_SKIPNEXT==pCur->eState ){
6173 pCur->eState = CURSOR_VALID;
6174 if( pCur->skipNext<0 ) return SQLITE_OK;
6178 pPage = pCur->pPage;
6179 assert( pPage->isInit );
6180 if( !pPage->leaf ){
6181 int idx = pCur->ix;
6182 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
6183 if( rc ) return rc;
6184 rc = moveToRightmost(pCur);
6185 }else{
6186 while( pCur->ix==0 ){
6187 if( pCur->iPage==0 ){
6188 pCur->eState = CURSOR_INVALID;
6189 return SQLITE_DONE;
6191 moveToParent(pCur);
6193 assert( pCur->info.nSize==0 );
6194 assert( (pCur->curFlags & (BTCF_ValidOvfl))==0 );
6196 pCur->ix--;
6197 pPage = pCur->pPage;
6198 if( pPage->intKey && !pPage->leaf ){
6199 rc = sqlite3BtreePrevious(pCur, 0);
6200 }else{
6201 rc = SQLITE_OK;
6204 return rc;
6206 int sqlite3BtreePrevious(BtCursor *pCur, int flags){
6207 assert( cursorOwnsBtShared(pCur) );
6208 assert( flags==0 || flags==1 );
6209 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */
6210 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
6211 pCur->info.nSize = 0;
6212 if( pCur->eState!=CURSOR_VALID
6213 || pCur->ix==0
6214 || pCur->pPage->leaf==0
6216 return btreePrevious(pCur);
6218 pCur->ix--;
6219 return SQLITE_OK;
6223 ** Allocate a new page from the database file.
6225 ** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
6226 ** has already been called on the new page.) The new page has also
6227 ** been referenced and the calling routine is responsible for calling
6228 ** sqlite3PagerUnref() on the new page when it is done.
6230 ** SQLITE_OK is returned on success. Any other return value indicates
6231 ** an error. *ppPage is set to NULL in the event of an error.
6233 ** If the "nearby" parameter is not 0, then an effort is made to
6234 ** locate a page close to the page number "nearby". This can be used in an
6235 ** attempt to keep related pages close to each other in the database file,
6236 ** which in turn can make database access faster.
6238 ** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
6239 ** anywhere on the free-list, then it is guaranteed to be returned. If
6240 ** eMode is BTALLOC_LT then the page returned will be less than or equal
6241 ** to nearby if any such page exists. If eMode is BTALLOC_ANY then there
6242 ** are no restrictions on which page is returned.
6244 static int allocateBtreePage(
6245 BtShared *pBt, /* The btree */
6246 MemPage **ppPage, /* Store pointer to the allocated page here */
6247 Pgno *pPgno, /* Store the page number here */
6248 Pgno nearby, /* Search for a page near this one */
6249 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
6251 MemPage *pPage1;
6252 int rc;
6253 u32 n; /* Number of pages on the freelist */
6254 u32 k; /* Number of leaves on the trunk of the freelist */
6255 MemPage *pTrunk = 0;
6256 MemPage *pPrevTrunk = 0;
6257 Pgno mxPage; /* Total size of the database file */
6259 assert( sqlite3_mutex_held(pBt->mutex) );
6260 assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
6261 pPage1 = pBt->pPage1;
6262 mxPage = btreePagecount(pBt);
6263 /* EVIDENCE-OF: R-21003-45125 The 4-byte big-endian integer at offset 36
6264 ** stores the total number of pages on the freelist. */
6265 n = get4byte(&pPage1->aData[36]);
6266 testcase( n==mxPage-1 );
6267 if( n>=mxPage ){
6268 return SQLITE_CORRUPT_BKPT;
6270 if( n>0 ){
6271 /* There are pages on the freelist. Reuse one of those pages. */
6272 Pgno iTrunk;
6273 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
6274 u32 nSearch = 0; /* Count of the number of search attempts */
6276 /* If eMode==BTALLOC_EXACT and a query of the pointer-map
6277 ** shows that the page 'nearby' is somewhere on the free-list, then
6278 ** the entire-list will be searched for that page.
6280 #ifndef SQLITE_OMIT_AUTOVACUUM
6281 if( eMode==BTALLOC_EXACT ){
6282 if( nearby<=mxPage ){
6283 u8 eType;
6284 assert( nearby>0 );
6285 assert( pBt->autoVacuum );
6286 rc = ptrmapGet(pBt, nearby, &eType, 0);
6287 if( rc ) return rc;
6288 if( eType==PTRMAP_FREEPAGE ){
6289 searchList = 1;
6292 }else if( eMode==BTALLOC_LE ){
6293 searchList = 1;
6295 #endif
6297 /* Decrement the free-list count by 1. Set iTrunk to the index of the
6298 ** first free-list trunk page. iPrevTrunk is initially 1.
6300 rc = sqlite3PagerWrite(pPage1->pDbPage);
6301 if( rc ) return rc;
6302 put4byte(&pPage1->aData[36], n-1);
6304 /* The code within this loop is run only once if the 'searchList' variable
6305 ** is not true. Otherwise, it runs once for each trunk-page on the
6306 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
6307 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
6309 do {
6310 pPrevTrunk = pTrunk;
6311 if( pPrevTrunk ){
6312 /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
6313 ** is the page number of the next freelist trunk page in the list or
6314 ** zero if this is the last freelist trunk page. */
6315 iTrunk = get4byte(&pPrevTrunk->aData[0]);
6316 }else{
6317 /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
6318 ** stores the page number of the first page of the freelist, or zero if
6319 ** the freelist is empty. */
6320 iTrunk = get4byte(&pPage1->aData[32]);
6322 testcase( iTrunk==mxPage );
6323 if( iTrunk>mxPage || nSearch++ > n ){
6324 rc = SQLITE_CORRUPT_PGNO(pPrevTrunk ? pPrevTrunk->pgno : 1);
6325 }else{
6326 rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0);
6328 if( rc ){
6329 pTrunk = 0;
6330 goto end_allocate_page;
6332 assert( pTrunk!=0 );
6333 assert( pTrunk->aData!=0 );
6334 /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
6335 ** is the number of leaf page pointers to follow. */
6336 k = get4byte(&pTrunk->aData[4]);
6337 if( k==0 && !searchList ){
6338 /* The trunk has no leaves and the list is not being searched.
6339 ** So extract the trunk page itself and use it as the newly
6340 ** allocated page */
6341 assert( pPrevTrunk==0 );
6342 rc = sqlite3PagerWrite(pTrunk->pDbPage);
6343 if( rc ){
6344 goto end_allocate_page;
6346 *pPgno = iTrunk;
6347 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
6348 *ppPage = pTrunk;
6349 pTrunk = 0;
6350 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
6351 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
6352 /* Value of k is out of range. Database corruption */
6353 rc = SQLITE_CORRUPT_PGNO(iTrunk);
6354 goto end_allocate_page;
6355 #ifndef SQLITE_OMIT_AUTOVACUUM
6356 }else if( searchList
6357 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
6359 /* The list is being searched and this trunk page is the page
6360 ** to allocate, regardless of whether it has leaves.
6362 *pPgno = iTrunk;
6363 *ppPage = pTrunk;
6364 searchList = 0;
6365 rc = sqlite3PagerWrite(pTrunk->pDbPage);
6366 if( rc ){
6367 goto end_allocate_page;
6369 if( k==0 ){
6370 if( !pPrevTrunk ){
6371 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
6372 }else{
6373 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
6374 if( rc!=SQLITE_OK ){
6375 goto end_allocate_page;
6377 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
6379 }else{
6380 /* The trunk page is required by the caller but it contains
6381 ** pointers to free-list leaves. The first leaf becomes a trunk
6382 ** page in this case.
6384 MemPage *pNewTrunk;
6385 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
6386 if( iNewTrunk>mxPage ){
6387 rc = SQLITE_CORRUPT_PGNO(iTrunk);
6388 goto end_allocate_page;
6390 testcase( iNewTrunk==mxPage );
6391 rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0);
6392 if( rc!=SQLITE_OK ){
6393 goto end_allocate_page;
6395 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
6396 if( rc!=SQLITE_OK ){
6397 releasePage(pNewTrunk);
6398 goto end_allocate_page;
6400 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
6401 put4byte(&pNewTrunk->aData[4], k-1);
6402 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
6403 releasePage(pNewTrunk);
6404 if( !pPrevTrunk ){
6405 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
6406 put4byte(&pPage1->aData[32], iNewTrunk);
6407 }else{
6408 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
6409 if( rc ){
6410 goto end_allocate_page;
6412 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
6415 pTrunk = 0;
6416 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
6417 #endif
6418 }else if( k>0 ){
6419 /* Extract a leaf from the trunk */
6420 u32 closest;
6421 Pgno iPage;
6422 unsigned char *aData = pTrunk->aData;
6423 if( nearby>0 ){
6424 u32 i;
6425 closest = 0;
6426 if( eMode==BTALLOC_LE ){
6427 for(i=0; i<k; i++){
6428 iPage = get4byte(&aData[8+i*4]);
6429 if( iPage<=nearby ){
6430 closest = i;
6431 break;
6434 }else{
6435 int dist;
6436 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
6437 for(i=1; i<k; i++){
6438 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
6439 if( d2<dist ){
6440 closest = i;
6441 dist = d2;
6445 }else{
6446 closest = 0;
6449 iPage = get4byte(&aData[8+closest*4]);
6450 testcase( iPage==mxPage );
6451 if( iPage>mxPage || iPage<2 ){
6452 rc = SQLITE_CORRUPT_PGNO(iTrunk);
6453 goto end_allocate_page;
6455 testcase( iPage==mxPage );
6456 if( !searchList
6457 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
6459 int noContent;
6460 *pPgno = iPage;
6461 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
6462 ": %d more free pages\n",
6463 *pPgno, closest+1, k, pTrunk->pgno, n-1));
6464 rc = sqlite3PagerWrite(pTrunk->pDbPage);
6465 if( rc ) goto end_allocate_page;
6466 if( closest<k-1 ){
6467 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
6469 put4byte(&aData[4], k-1);
6470 noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0;
6471 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent);
6472 if( rc==SQLITE_OK ){
6473 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
6474 if( rc!=SQLITE_OK ){
6475 releasePage(*ppPage);
6476 *ppPage = 0;
6479 searchList = 0;
6482 releasePage(pPrevTrunk);
6483 pPrevTrunk = 0;
6484 }while( searchList );
6485 }else{
6486 /* There are no pages on the freelist, so append a new page to the
6487 ** database image.
6489 ** Normally, new pages allocated by this block can be requested from the
6490 ** pager layer with the 'no-content' flag set. This prevents the pager
6491 ** from trying to read the pages content from disk. However, if the
6492 ** current transaction has already run one or more incremental-vacuum
6493 ** steps, then the page we are about to allocate may contain content
6494 ** that is required in the event of a rollback. In this case, do
6495 ** not set the no-content flag. This causes the pager to load and journal
6496 ** the current page content before overwriting it.
6498 ** Note that the pager will not actually attempt to load or journal
6499 ** content for any page that really does lie past the end of the database
6500 ** file on disk. So the effects of disabling the no-content optimization
6501 ** here are confined to those pages that lie between the end of the
6502 ** database image and the end of the database file.
6504 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0;
6506 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
6507 if( rc ) return rc;
6508 pBt->nPage++;
6509 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
6511 #ifndef SQLITE_OMIT_AUTOVACUUM
6512 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
6513 /* If *pPgno refers to a pointer-map page, allocate two new pages
6514 ** at the end of the file instead of one. The first allocated page
6515 ** becomes a new pointer-map page, the second is used by the caller.
6517 MemPage *pPg = 0;
6518 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
6519 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
6520 rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent);
6521 if( rc==SQLITE_OK ){
6522 rc = sqlite3PagerWrite(pPg->pDbPage);
6523 releasePage(pPg);
6525 if( rc ) return rc;
6526 pBt->nPage++;
6527 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
6529 #endif
6530 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
6531 *pPgno = pBt->nPage;
6533 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
6534 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent);
6535 if( rc ) return rc;
6536 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
6537 if( rc!=SQLITE_OK ){
6538 releasePage(*ppPage);
6539 *ppPage = 0;
6541 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
6544 assert( CORRUPT_DB || *pPgno!=PENDING_BYTE_PAGE(pBt) );
6546 end_allocate_page:
6547 releasePage(pTrunk);
6548 releasePage(pPrevTrunk);
6549 assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 );
6550 assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 );
6551 return rc;
6555 ** This function is used to add page iPage to the database file free-list.
6556 ** It is assumed that the page is not already a part of the free-list.
6558 ** The value passed as the second argument to this function is optional.
6559 ** If the caller happens to have a pointer to the MemPage object
6560 ** corresponding to page iPage handy, it may pass it as the second value.
6561 ** Otherwise, it may pass NULL.
6563 ** If a pointer to a MemPage object is passed as the second argument,
6564 ** its reference count is not altered by this function.
6566 static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
6567 MemPage *pTrunk = 0; /* Free-list trunk page */
6568 Pgno iTrunk = 0; /* Page number of free-list trunk page */
6569 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
6570 MemPage *pPage; /* Page being freed. May be NULL. */
6571 int rc; /* Return Code */
6572 u32 nFree; /* Initial number of pages on free-list */
6574 assert( sqlite3_mutex_held(pBt->mutex) );
6575 assert( CORRUPT_DB || iPage>1 );
6576 assert( !pMemPage || pMemPage->pgno==iPage );
6578 if( iPage<2 || iPage>pBt->nPage ){
6579 return SQLITE_CORRUPT_BKPT;
6581 if( pMemPage ){
6582 pPage = pMemPage;
6583 sqlite3PagerRef(pPage->pDbPage);
6584 }else{
6585 pPage = btreePageLookup(pBt, iPage);
6588 /* Increment the free page count on pPage1 */
6589 rc = sqlite3PagerWrite(pPage1->pDbPage);
6590 if( rc ) goto freepage_out;
6591 nFree = get4byte(&pPage1->aData[36]);
6592 put4byte(&pPage1->aData[36], nFree+1);
6594 if( pBt->btsFlags & BTS_SECURE_DELETE ){
6595 /* If the secure_delete option is enabled, then
6596 ** always fully overwrite deleted information with zeros.
6598 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
6599 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
6601 goto freepage_out;
6603 memset(pPage->aData, 0, pPage->pBt->pageSize);
6606 /* If the database supports auto-vacuum, write an entry in the pointer-map
6607 ** to indicate that the page is free.
6609 if( ISAUTOVACUUM(pBt) ){
6610 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
6611 if( rc ) goto freepage_out;
6614 /* Now manipulate the actual database free-list structure. There are two
6615 ** possibilities. If the free-list is currently empty, or if the first
6616 ** trunk page in the free-list is full, then this page will become a
6617 ** new free-list trunk page. Otherwise, it will become a leaf of the
6618 ** first trunk page in the current free-list. This block tests if it
6619 ** is possible to add the page as a new free-list leaf.
6621 if( nFree!=0 ){
6622 u32 nLeaf; /* Initial number of leaf cells on trunk page */
6624 iTrunk = get4byte(&pPage1->aData[32]);
6625 if( iTrunk>btreePagecount(pBt) ){
6626 rc = SQLITE_CORRUPT_BKPT;
6627 goto freepage_out;
6629 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
6630 if( rc!=SQLITE_OK ){
6631 goto freepage_out;
6634 nLeaf = get4byte(&pTrunk->aData[4]);
6635 assert( pBt->usableSize>32 );
6636 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
6637 rc = SQLITE_CORRUPT_BKPT;
6638 goto freepage_out;
6640 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
6641 /* In this case there is room on the trunk page to insert the page
6642 ** being freed as a new leaf.
6644 ** Note that the trunk page is not really full until it contains
6645 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
6646 ** coded. But due to a coding error in versions of SQLite prior to
6647 ** 3.6.0, databases with freelist trunk pages holding more than
6648 ** usableSize/4 - 8 entries will be reported as corrupt. In order
6649 ** to maintain backwards compatibility with older versions of SQLite,
6650 ** we will continue to restrict the number of entries to usableSize/4 - 8
6651 ** for now. At some point in the future (once everyone has upgraded
6652 ** to 3.6.0 or later) we should consider fixing the conditional above
6653 ** to read "usableSize/4-2" instead of "usableSize/4-8".
6655 ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
6656 ** avoid using the last six entries in the freelist trunk page array in
6657 ** order that database files created by newer versions of SQLite can be
6658 ** read by older versions of SQLite.
6660 rc = sqlite3PagerWrite(pTrunk->pDbPage);
6661 if( rc==SQLITE_OK ){
6662 put4byte(&pTrunk->aData[4], nLeaf+1);
6663 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
6664 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
6665 sqlite3PagerDontWrite(pPage->pDbPage);
6667 rc = btreeSetHasContent(pBt, iPage);
6669 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
6670 goto freepage_out;
6674 /* If control flows to this point, then it was not possible to add the
6675 ** the page being freed as a leaf page of the first trunk in the free-list.
6676 ** Possibly because the free-list is empty, or possibly because the
6677 ** first trunk in the free-list is full. Either way, the page being freed
6678 ** will become the new first trunk page in the free-list.
6680 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
6681 goto freepage_out;
6683 rc = sqlite3PagerWrite(pPage->pDbPage);
6684 if( rc!=SQLITE_OK ){
6685 goto freepage_out;
6687 put4byte(pPage->aData, iTrunk);
6688 put4byte(&pPage->aData[4], 0);
6689 put4byte(&pPage1->aData[32], iPage);
6690 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
6692 freepage_out:
6693 if( pPage ){
6694 pPage->isInit = 0;
6696 releasePage(pPage);
6697 releasePage(pTrunk);
6698 return rc;
6700 static void freePage(MemPage *pPage, int *pRC){
6701 if( (*pRC)==SQLITE_OK ){
6702 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
6707 ** Free the overflow pages associated with the given Cell.
6709 static SQLITE_NOINLINE int clearCellOverflow(
6710 MemPage *pPage, /* The page that contains the Cell */
6711 unsigned char *pCell, /* First byte of the Cell */
6712 CellInfo *pInfo /* Size information about the cell */
6714 BtShared *pBt;
6715 Pgno ovflPgno;
6716 int rc;
6717 int nOvfl;
6718 u32 ovflPageSize;
6720 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6721 assert( pInfo->nLocal!=pInfo->nPayload );
6722 testcase( pCell + pInfo->nSize == pPage->aDataEnd );
6723 testcase( pCell + (pInfo->nSize-1) == pPage->aDataEnd );
6724 if( pCell + pInfo->nSize > pPage->aDataEnd ){
6725 /* Cell extends past end of page */
6726 return SQLITE_CORRUPT_PAGE(pPage);
6728 ovflPgno = get4byte(pCell + pInfo->nSize - 4);
6729 pBt = pPage->pBt;
6730 assert( pBt->usableSize > 4 );
6731 ovflPageSize = pBt->usableSize - 4;
6732 nOvfl = (pInfo->nPayload - pInfo->nLocal + ovflPageSize - 1)/ovflPageSize;
6733 assert( nOvfl>0 ||
6734 (CORRUPT_DB && (pInfo->nPayload + ovflPageSize)<ovflPageSize)
6736 while( nOvfl-- ){
6737 Pgno iNext = 0;
6738 MemPage *pOvfl = 0;
6739 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
6740 /* 0 is not a legal page number and page 1 cannot be an
6741 ** overflow page. Therefore if ovflPgno<2 or past the end of the
6742 ** file the database must be corrupt. */
6743 return SQLITE_CORRUPT_BKPT;
6745 if( nOvfl ){
6746 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
6747 if( rc ) return rc;
6750 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
6751 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
6753 /* There is no reason any cursor should have an outstanding reference
6754 ** to an overflow page belonging to a cell that is being deleted/updated.
6755 ** So if there exists more than one reference to this page, then it
6756 ** must not really be an overflow page and the database must be corrupt.
6757 ** It is helpful to detect this before calling freePage2(), as
6758 ** freePage2() may zero the page contents if secure-delete mode is
6759 ** enabled. If this 'overflow' page happens to be a page that the
6760 ** caller is iterating through or using in some other way, this
6761 ** can be problematic.
6763 rc = SQLITE_CORRUPT_BKPT;
6764 }else{
6765 rc = freePage2(pBt, pOvfl, ovflPgno);
6768 if( pOvfl ){
6769 sqlite3PagerUnref(pOvfl->pDbPage);
6771 if( rc ) return rc;
6772 ovflPgno = iNext;
6774 return SQLITE_OK;
6777 /* Call xParseCell to compute the size of a cell. If the cell contains
6778 ** overflow, then invoke cellClearOverflow to clear out that overflow.
6779 ** STore the result code (SQLITE_OK or some error code) in rc.
6781 ** Implemented as macro to force inlining for performance.
6783 #define BTREE_CLEAR_CELL(rc, pPage, pCell, sInfo) \
6784 pPage->xParseCell(pPage, pCell, &sInfo); \
6785 if( sInfo.nLocal!=sInfo.nPayload ){ \
6786 rc = clearCellOverflow(pPage, pCell, &sInfo); \
6787 }else{ \
6788 rc = SQLITE_OK; \
6793 ** Create the byte sequence used to represent a cell on page pPage
6794 ** and write that byte sequence into pCell[]. Overflow pages are
6795 ** allocated and filled in as necessary. The calling procedure
6796 ** is responsible for making sure sufficient space has been allocated
6797 ** for pCell[].
6799 ** Note that pCell does not necessary need to point to the pPage->aData
6800 ** area. pCell might point to some temporary storage. The cell will
6801 ** be constructed in this temporary area then copied into pPage->aData
6802 ** later.
6804 static int fillInCell(
6805 MemPage *pPage, /* The page that contains the cell */
6806 unsigned char *pCell, /* Complete text of the cell */
6807 const BtreePayload *pX, /* Payload with which to construct the cell */
6808 int *pnSize /* Write cell size here */
6810 int nPayload;
6811 const u8 *pSrc;
6812 int nSrc, n, rc, mn;
6813 int spaceLeft;
6814 MemPage *pToRelease;
6815 unsigned char *pPrior;
6816 unsigned char *pPayload;
6817 BtShared *pBt;
6818 Pgno pgnoOvfl;
6819 int nHeader;
6821 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6823 /* pPage is not necessarily writeable since pCell might be auxiliary
6824 ** buffer space that is separate from the pPage buffer area */
6825 assert( pCell<pPage->aData || pCell>=&pPage->aData[pPage->pBt->pageSize]
6826 || sqlite3PagerIswriteable(pPage->pDbPage) );
6828 /* Fill in the header. */
6829 nHeader = pPage->childPtrSize;
6830 if( pPage->intKey ){
6831 nPayload = pX->nData + pX->nZero;
6832 pSrc = pX->pData;
6833 nSrc = pX->nData;
6834 assert( pPage->intKeyLeaf ); /* fillInCell() only called for leaves */
6835 nHeader += putVarint32(&pCell[nHeader], nPayload);
6836 nHeader += putVarint(&pCell[nHeader], *(u64*)&pX->nKey);
6837 }else{
6838 assert( pX->nKey<=0x7fffffff && pX->pKey!=0 );
6839 nSrc = nPayload = (int)pX->nKey;
6840 pSrc = pX->pKey;
6841 nHeader += putVarint32(&pCell[nHeader], nPayload);
6844 /* Fill in the payload */
6845 pPayload = &pCell[nHeader];
6846 if( nPayload<=pPage->maxLocal ){
6847 /* This is the common case where everything fits on the btree page
6848 ** and no overflow pages are required. */
6849 n = nHeader + nPayload;
6850 testcase( n==3 );
6851 testcase( n==4 );
6852 if( n<4 ) n = 4;
6853 *pnSize = n;
6854 assert( nSrc<=nPayload );
6855 testcase( nSrc<nPayload );
6856 memcpy(pPayload, pSrc, nSrc);
6857 memset(pPayload+nSrc, 0, nPayload-nSrc);
6858 return SQLITE_OK;
6861 /* If we reach this point, it means that some of the content will need
6862 ** to spill onto overflow pages.
6864 mn = pPage->minLocal;
6865 n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4);
6866 testcase( n==pPage->maxLocal );
6867 testcase( n==pPage->maxLocal+1 );
6868 if( n > pPage->maxLocal ) n = mn;
6869 spaceLeft = n;
6870 *pnSize = n + nHeader + 4;
6871 pPrior = &pCell[nHeader+n];
6872 pToRelease = 0;
6873 pgnoOvfl = 0;
6874 pBt = pPage->pBt;
6876 /* At this point variables should be set as follows:
6878 ** nPayload Total payload size in bytes
6879 ** pPayload Begin writing payload here
6880 ** spaceLeft Space available at pPayload. If nPayload>spaceLeft,
6881 ** that means content must spill into overflow pages.
6882 ** *pnSize Size of the local cell (not counting overflow pages)
6883 ** pPrior Where to write the pgno of the first overflow page
6885 ** Use a call to btreeParseCellPtr() to verify that the values above
6886 ** were computed correctly.
6888 #ifdef SQLITE_DEBUG
6890 CellInfo info;
6891 pPage->xParseCell(pPage, pCell, &info);
6892 assert( nHeader==(int)(info.pPayload - pCell) );
6893 assert( info.nKey==pX->nKey );
6894 assert( *pnSize == info.nSize );
6895 assert( spaceLeft == info.nLocal );
6897 #endif
6899 /* Write the payload into the local Cell and any extra into overflow pages */
6900 while( 1 ){
6901 n = nPayload;
6902 if( n>spaceLeft ) n = spaceLeft;
6904 /* If pToRelease is not zero than pPayload points into the data area
6905 ** of pToRelease. Make sure pToRelease is still writeable. */
6906 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6908 /* If pPayload is part of the data area of pPage, then make sure pPage
6909 ** is still writeable */
6910 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
6911 || sqlite3PagerIswriteable(pPage->pDbPage) );
6913 if( nSrc>=n ){
6914 memcpy(pPayload, pSrc, n);
6915 }else if( nSrc>0 ){
6916 n = nSrc;
6917 memcpy(pPayload, pSrc, n);
6918 }else{
6919 memset(pPayload, 0, n);
6921 nPayload -= n;
6922 if( nPayload<=0 ) break;
6923 pPayload += n;
6924 pSrc += n;
6925 nSrc -= n;
6926 spaceLeft -= n;
6927 if( spaceLeft==0 ){
6928 MemPage *pOvfl = 0;
6929 #ifndef SQLITE_OMIT_AUTOVACUUM
6930 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
6931 if( pBt->autoVacuum ){
6933 pgnoOvfl++;
6934 } while(
6935 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
6938 #endif
6939 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
6940 #ifndef SQLITE_OMIT_AUTOVACUUM
6941 /* If the database supports auto-vacuum, and the second or subsequent
6942 ** overflow page is being allocated, add an entry to the pointer-map
6943 ** for that page now.
6945 ** If this is the first overflow page, then write a partial entry
6946 ** to the pointer-map. If we write nothing to this pointer-map slot,
6947 ** then the optimistic overflow chain processing in clearCell()
6948 ** may misinterpret the uninitialized values and delete the
6949 ** wrong pages from the database.
6951 if( pBt->autoVacuum && rc==SQLITE_OK ){
6952 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
6953 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
6954 if( rc ){
6955 releasePage(pOvfl);
6958 #endif
6959 if( rc ){
6960 releasePage(pToRelease);
6961 return rc;
6964 /* If pToRelease is not zero than pPrior points into the data area
6965 ** of pToRelease. Make sure pToRelease is still writeable. */
6966 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6968 /* If pPrior is part of the data area of pPage, then make sure pPage
6969 ** is still writeable */
6970 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
6971 || sqlite3PagerIswriteable(pPage->pDbPage) );
6973 put4byte(pPrior, pgnoOvfl);
6974 releasePage(pToRelease);
6975 pToRelease = pOvfl;
6976 pPrior = pOvfl->aData;
6977 put4byte(pPrior, 0);
6978 pPayload = &pOvfl->aData[4];
6979 spaceLeft = pBt->usableSize - 4;
6982 releasePage(pToRelease);
6983 return SQLITE_OK;
6987 ** Remove the i-th cell from pPage. This routine effects pPage only.
6988 ** The cell content is not freed or deallocated. It is assumed that
6989 ** the cell content has been copied someplace else. This routine just
6990 ** removes the reference to the cell from pPage.
6992 ** "sz" must be the number of bytes in the cell.
6994 static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
6995 u32 pc; /* Offset to cell content of cell being deleted */
6996 u8 *data; /* pPage->aData */
6997 u8 *ptr; /* Used to move bytes around within data[] */
6998 int rc; /* The return code */
6999 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
7001 if( *pRC ) return;
7002 assert( idx>=0 );
7003 assert( idx<pPage->nCell );
7004 assert( CORRUPT_DB || sz==cellSize(pPage, idx) );
7005 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
7006 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
7007 assert( pPage->nFree>=0 );
7008 data = pPage->aData;
7009 ptr = &pPage->aCellIdx[2*idx];
7010 assert( pPage->pBt->usableSize > (u32)(ptr-data) );
7011 pc = get2byte(ptr);
7012 hdr = pPage->hdrOffset;
7013 testcase( pc==(u32)get2byte(&data[hdr+5]) );
7014 testcase( pc+sz==pPage->pBt->usableSize );
7015 if( pc+sz > pPage->pBt->usableSize ){
7016 *pRC = SQLITE_CORRUPT_BKPT;
7017 return;
7019 rc = freeSpace(pPage, pc, sz);
7020 if( rc ){
7021 *pRC = rc;
7022 return;
7024 pPage->nCell--;
7025 if( pPage->nCell==0 ){
7026 memset(&data[hdr+1], 0, 4);
7027 data[hdr+7] = 0;
7028 put2byte(&data[hdr+5], pPage->pBt->usableSize);
7029 pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset
7030 - pPage->childPtrSize - 8;
7031 }else{
7032 memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
7033 put2byte(&data[hdr+3], pPage->nCell);
7034 pPage->nFree += 2;
7039 ** Insert a new cell on pPage at cell index "i". pCell points to the
7040 ** content of the cell.
7042 ** If the cell content will fit on the page, then put it there. If it
7043 ** will not fit, then make a copy of the cell content into pTemp if
7044 ** pTemp is not null. Regardless of pTemp, allocate a new entry
7045 ** in pPage->apOvfl[] and make it point to the cell content (either
7046 ** in pTemp or the original pCell) and also record its index.
7047 ** Allocating a new entry in pPage->aCell[] implies that
7048 ** pPage->nOverflow is incremented.
7050 static int insertCell(
7051 MemPage *pPage, /* Page into which we are copying */
7052 int i, /* New cell becomes the i-th cell of the page */
7053 u8 *pCell, /* Content of the new cell */
7054 int sz, /* Bytes of content in pCell */
7055 u8 *pTemp, /* Temp storage space for pCell, if needed */
7056 Pgno iChild /* If non-zero, replace first 4 bytes with this value */
7058 int idx = 0; /* Where to write new cell content in data[] */
7059 int j; /* Loop counter */
7060 u8 *data; /* The content of the whole page */
7061 u8 *pIns; /* The point in pPage->aCellIdx[] where no cell inserted */
7063 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
7064 assert( MX_CELL(pPage->pBt)<=10921 );
7065 assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
7066 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
7067 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
7068 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
7069 assert( sz==pPage->xCellSize(pPage, pCell) || CORRUPT_DB );
7070 assert( pPage->nFree>=0 );
7071 if( pPage->nOverflow || sz+2>pPage->nFree ){
7072 if( pTemp ){
7073 memcpy(pTemp, pCell, sz);
7074 pCell = pTemp;
7076 if( iChild ){
7077 put4byte(pCell, iChild);
7079 j = pPage->nOverflow++;
7080 /* Comparison against ArraySize-1 since we hold back one extra slot
7081 ** as a contingency. In other words, never need more than 3 overflow
7082 ** slots but 4 are allocated, just to be safe. */
7083 assert( j < ArraySize(pPage->apOvfl)-1 );
7084 pPage->apOvfl[j] = pCell;
7085 pPage->aiOvfl[j] = (u16)i;
7087 /* When multiple overflows occur, they are always sequential and in
7088 ** sorted order. This invariants arise because multiple overflows can
7089 ** only occur when inserting divider cells into the parent page during
7090 ** balancing, and the dividers are adjacent and sorted.
7092 assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */
7093 assert( j==0 || i==pPage->aiOvfl[j-1]+1 ); /* Overflows are sequential */
7094 }else{
7095 int rc = sqlite3PagerWrite(pPage->pDbPage);
7096 if( rc!=SQLITE_OK ){
7097 return rc;
7099 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
7100 data = pPage->aData;
7101 assert( &data[pPage->cellOffset]==pPage->aCellIdx );
7102 rc = allocateSpace(pPage, sz, &idx);
7103 if( rc ){ return rc; }
7104 /* The allocateSpace() routine guarantees the following properties
7105 ** if it returns successfully */
7106 assert( idx >= 0 );
7107 assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB );
7108 assert( idx+sz <= (int)pPage->pBt->usableSize );
7109 pPage->nFree -= (u16)(2 + sz);
7110 if( iChild ){
7111 /* In a corrupt database where an entry in the cell index section of
7112 ** a btree page has a value of 3 or less, the pCell value might point
7113 ** as many as 4 bytes in front of the start of the aData buffer for
7114 ** the source page. Make sure this does not cause problems by not
7115 ** reading the first 4 bytes */
7116 memcpy(&data[idx+4], pCell+4, sz-4);
7117 put4byte(&data[idx], iChild);
7118 }else{
7119 memcpy(&data[idx], pCell, sz);
7121 pIns = pPage->aCellIdx + i*2;
7122 memmove(pIns+2, pIns, 2*(pPage->nCell - i));
7123 put2byte(pIns, idx);
7124 pPage->nCell++;
7125 /* increment the cell count */
7126 if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++;
7127 assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell || CORRUPT_DB );
7128 #ifndef SQLITE_OMIT_AUTOVACUUM
7129 if( pPage->pBt->autoVacuum ){
7130 int rc2 = SQLITE_OK;
7131 /* The cell may contain a pointer to an overflow page. If so, write
7132 ** the entry for the overflow page into the pointer map.
7134 ptrmapPutOvflPtr(pPage, pPage, pCell, &rc2);
7135 if( rc2 ) return rc2;
7137 #endif
7139 return SQLITE_OK;
7143 ** The following parameters determine how many adjacent pages get involved
7144 ** in a balancing operation. NN is the number of neighbors on either side
7145 ** of the page that participate in the balancing operation. NB is the
7146 ** total number of pages that participate, including the target page and
7147 ** NN neighbors on either side.
7149 ** The minimum value of NN is 1 (of course). Increasing NN above 1
7150 ** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
7151 ** in exchange for a larger degradation in INSERT and UPDATE performance.
7152 ** The value of NN appears to give the best results overall.
7154 ** (Later:) The description above makes it seem as if these values are
7155 ** tunable - as if you could change them and recompile and it would all work.
7156 ** But that is unlikely. NB has been 3 since the inception of SQLite and
7157 ** we have never tested any other value.
7159 #define NN 1 /* Number of neighbors on either side of pPage */
7160 #define NB 3 /* (NN*2+1): Total pages involved in the balance */
7163 ** A CellArray object contains a cache of pointers and sizes for a
7164 ** consecutive sequence of cells that might be held on multiple pages.
7166 ** The cells in this array are the divider cell or cells from the pParent
7167 ** page plus up to three child pages. There are a total of nCell cells.
7169 ** pRef is a pointer to one of the pages that contributes cells. This is
7170 ** used to access information such as MemPage.intKey and MemPage.pBt->pageSize
7171 ** which should be common to all pages that contribute cells to this array.
7173 ** apCell[] and szCell[] hold, respectively, pointers to the start of each
7174 ** cell and the size of each cell. Some of the apCell[] pointers might refer
7175 ** to overflow cells. In other words, some apCel[] pointers might not point
7176 ** to content area of the pages.
7178 ** A szCell[] of zero means the size of that cell has not yet been computed.
7180 ** The cells come from as many as four different pages:
7182 ** -----------
7183 ** | Parent |
7184 ** -----------
7185 ** / | \
7186 ** / | \
7187 ** --------- --------- ---------
7188 ** |Child-1| |Child-2| |Child-3|
7189 ** --------- --------- ---------
7191 ** The order of cells is in the array is for an index btree is:
7193 ** 1. All cells from Child-1 in order
7194 ** 2. The first divider cell from Parent
7195 ** 3. All cells from Child-2 in order
7196 ** 4. The second divider cell from Parent
7197 ** 5. All cells from Child-3 in order
7199 ** For a table-btree (with rowids) the items 2 and 4 are empty because
7200 ** content exists only in leaves and there are no divider cells.
7202 ** For an index btree, the apEnd[] array holds pointer to the end of page
7203 ** for Child-1, the Parent, Child-2, the Parent (again), and Child-3,
7204 ** respectively. The ixNx[] array holds the number of cells contained in
7205 ** each of these 5 stages, and all stages to the left. Hence:
7207 ** ixNx[0] = Number of cells in Child-1.
7208 ** ixNx[1] = Number of cells in Child-1 plus 1 for first divider.
7209 ** ixNx[2] = Number of cells in Child-1 and Child-2 + 1 for 1st divider.
7210 ** ixNx[3] = Number of cells in Child-1 and Child-2 + both divider cells
7211 ** ixNx[4] = Total number of cells.
7213 ** For a table-btree, the concept is similar, except only apEnd[0]..apEnd[2]
7214 ** are used and they point to the leaf pages only, and the ixNx value are:
7216 ** ixNx[0] = Number of cells in Child-1.
7217 ** ixNx[1] = Number of cells in Child-1 and Child-2.
7218 ** ixNx[2] = Total number of cells.
7220 ** Sometimes when deleting, a child page can have zero cells. In those
7221 ** cases, ixNx[] entries with higher indexes, and the corresponding apEnd[]
7222 ** entries, shift down. The end result is that each ixNx[] entry should
7223 ** be larger than the previous
7225 typedef struct CellArray CellArray;
7226 struct CellArray {
7227 int nCell; /* Number of cells in apCell[] */
7228 MemPage *pRef; /* Reference page */
7229 u8 **apCell; /* All cells begin balanced */
7230 u16 *szCell; /* Local size of all cells in apCell[] */
7231 u8 *apEnd[NB*2]; /* MemPage.aDataEnd values */
7232 int ixNx[NB*2]; /* Index of at which we move to the next apEnd[] */
7236 ** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been
7237 ** computed.
7239 static void populateCellCache(CellArray *p, int idx, int N){
7240 MemPage *pRef = p->pRef;
7241 u16 *szCell = p->szCell;
7242 assert( idx>=0 && idx+N<=p->nCell );
7243 while( N>0 ){
7244 assert( p->apCell[idx]!=0 );
7245 if( szCell[idx]==0 ){
7246 szCell[idx] = pRef->xCellSize(pRef, p->apCell[idx]);
7247 }else{
7248 assert( CORRUPT_DB ||
7249 szCell[idx]==pRef->xCellSize(pRef, p->apCell[idx]) );
7251 idx++;
7252 N--;
7257 ** Return the size of the Nth element of the cell array
7259 static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){
7260 assert( N>=0 && N<p->nCell );
7261 assert( p->szCell[N]==0 );
7262 p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]);
7263 return p->szCell[N];
7265 static u16 cachedCellSize(CellArray *p, int N){
7266 assert( N>=0 && N<p->nCell );
7267 if( p->szCell[N] ) return p->szCell[N];
7268 return computeCellSize(p, N);
7272 ** Array apCell[] contains pointers to nCell b-tree page cells. The
7273 ** szCell[] array contains the size in bytes of each cell. This function
7274 ** replaces the current contents of page pPg with the contents of the cell
7275 ** array.
7277 ** Some of the cells in apCell[] may currently be stored in pPg. This
7278 ** function works around problems caused by this by making a copy of any
7279 ** such cells before overwriting the page data.
7281 ** The MemPage.nFree field is invalidated by this function. It is the
7282 ** responsibility of the caller to set it correctly.
7284 static int rebuildPage(
7285 CellArray *pCArray, /* Content to be added to page pPg */
7286 int iFirst, /* First cell in pCArray to use */
7287 int nCell, /* Final number of cells on page */
7288 MemPage *pPg /* The page to be reconstructed */
7290 const int hdr = pPg->hdrOffset; /* Offset of header on pPg */
7291 u8 * const aData = pPg->aData; /* Pointer to data for pPg */
7292 const int usableSize = pPg->pBt->usableSize;
7293 u8 * const pEnd = &aData[usableSize];
7294 int i = iFirst; /* Which cell to copy from pCArray*/
7295 u32 j; /* Start of cell content area */
7296 int iEnd = i+nCell; /* Loop terminator */
7297 u8 *pCellptr = pPg->aCellIdx;
7298 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
7299 u8 *pData;
7300 int k; /* Current slot in pCArray->apEnd[] */
7301 u8 *pSrcEnd; /* Current pCArray->apEnd[k] value */
7303 assert( i<iEnd );
7304 j = get2byte(&aData[hdr+5]);
7305 if( j>(u32)usableSize ){ j = 0; }
7306 memcpy(&pTmp[j], &aData[j], usableSize - j);
7308 for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){}
7309 pSrcEnd = pCArray->apEnd[k];
7311 pData = pEnd;
7312 while( 1/*exit by break*/ ){
7313 u8 *pCell = pCArray->apCell[i];
7314 u16 sz = pCArray->szCell[i];
7315 assert( sz>0 );
7316 if( SQLITE_WITHIN(pCell,aData+j,pEnd) ){
7317 if( ((uptr)(pCell+sz))>(uptr)pEnd ) return SQLITE_CORRUPT_BKPT;
7318 pCell = &pTmp[pCell - aData];
7319 }else if( (uptr)(pCell+sz)>(uptr)pSrcEnd
7320 && (uptr)(pCell)<(uptr)pSrcEnd
7322 return SQLITE_CORRUPT_BKPT;
7325 pData -= sz;
7326 put2byte(pCellptr, (pData - aData));
7327 pCellptr += 2;
7328 if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT;
7329 memmove(pData, pCell, sz);
7330 assert( sz==pPg->xCellSize(pPg, pCell) || CORRUPT_DB );
7331 i++;
7332 if( i>=iEnd ) break;
7333 if( pCArray->ixNx[k]<=i ){
7334 k++;
7335 pSrcEnd = pCArray->apEnd[k];
7339 /* The pPg->nFree field is now set incorrectly. The caller will fix it. */
7340 pPg->nCell = nCell;
7341 pPg->nOverflow = 0;
7343 put2byte(&aData[hdr+1], 0);
7344 put2byte(&aData[hdr+3], pPg->nCell);
7345 put2byte(&aData[hdr+5], pData - aData);
7346 aData[hdr+7] = 0x00;
7347 return SQLITE_OK;
7351 ** The pCArray objects contains pointers to b-tree cells and the cell sizes.
7352 ** This function attempts to add the cells stored in the array to page pPg.
7353 ** If it cannot (because the page needs to be defragmented before the cells
7354 ** will fit), non-zero is returned. Otherwise, if the cells are added
7355 ** successfully, zero is returned.
7357 ** Argument pCellptr points to the first entry in the cell-pointer array
7358 ** (part of page pPg) to populate. After cell apCell[0] is written to the
7359 ** page body, a 16-bit offset is written to pCellptr. And so on, for each
7360 ** cell in the array. It is the responsibility of the caller to ensure
7361 ** that it is safe to overwrite this part of the cell-pointer array.
7363 ** When this function is called, *ppData points to the start of the
7364 ** content area on page pPg. If the size of the content area is extended,
7365 ** *ppData is updated to point to the new start of the content area
7366 ** before returning.
7368 ** Finally, argument pBegin points to the byte immediately following the
7369 ** end of the space required by this page for the cell-pointer area (for
7370 ** all cells - not just those inserted by the current call). If the content
7371 ** area must be extended to before this point in order to accomodate all
7372 ** cells in apCell[], then the cells do not fit and non-zero is returned.
7374 static int pageInsertArray(
7375 MemPage *pPg, /* Page to add cells to */
7376 u8 *pBegin, /* End of cell-pointer array */
7377 u8 **ppData, /* IN/OUT: Page content-area pointer */
7378 u8 *pCellptr, /* Pointer to cell-pointer area */
7379 int iFirst, /* Index of first cell to add */
7380 int nCell, /* Number of cells to add to pPg */
7381 CellArray *pCArray /* Array of cells */
7383 int i = iFirst; /* Loop counter - cell index to insert */
7384 u8 *aData = pPg->aData; /* Complete page */
7385 u8 *pData = *ppData; /* Content area. A subset of aData[] */
7386 int iEnd = iFirst + nCell; /* End of loop. One past last cell to ins */
7387 int k; /* Current slot in pCArray->apEnd[] */
7388 u8 *pEnd; /* Maximum extent of cell data */
7389 assert( CORRUPT_DB || pPg->hdrOffset==0 ); /* Never called on page 1 */
7390 if( iEnd<=iFirst ) return 0;
7391 for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){}
7392 pEnd = pCArray->apEnd[k];
7393 while( 1 /*Exit by break*/ ){
7394 int sz, rc;
7395 u8 *pSlot;
7396 assert( pCArray->szCell[i]!=0 );
7397 sz = pCArray->szCell[i];
7398 if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){
7399 if( (pData - pBegin)<sz ) return 1;
7400 pData -= sz;
7401 pSlot = pData;
7403 /* pSlot and pCArray->apCell[i] will never overlap on a well-formed
7404 ** database. But they might for a corrupt database. Hence use memmove()
7405 ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */
7406 assert( (pSlot+sz)<=pCArray->apCell[i]
7407 || pSlot>=(pCArray->apCell[i]+sz)
7408 || CORRUPT_DB );
7409 if( (uptr)(pCArray->apCell[i]+sz)>(uptr)pEnd
7410 && (uptr)(pCArray->apCell[i])<(uptr)pEnd
7412 assert( CORRUPT_DB );
7413 (void)SQLITE_CORRUPT_BKPT;
7414 return 1;
7416 memmove(pSlot, pCArray->apCell[i], sz);
7417 put2byte(pCellptr, (pSlot - aData));
7418 pCellptr += 2;
7419 i++;
7420 if( i>=iEnd ) break;
7421 if( pCArray->ixNx[k]<=i ){
7422 k++;
7423 pEnd = pCArray->apEnd[k];
7426 *ppData = pData;
7427 return 0;
7431 ** The pCArray object contains pointers to b-tree cells and their sizes.
7433 ** This function adds the space associated with each cell in the array
7434 ** that is currently stored within the body of pPg to the pPg free-list.
7435 ** The cell-pointers and other fields of the page are not updated.
7437 ** This function returns the total number of cells added to the free-list.
7439 static int pageFreeArray(
7440 MemPage *pPg, /* Page to edit */
7441 int iFirst, /* First cell to delete */
7442 int nCell, /* Cells to delete */
7443 CellArray *pCArray /* Array of cells */
7445 u8 * const aData = pPg->aData;
7446 u8 * const pEnd = &aData[pPg->pBt->usableSize];
7447 u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize];
7448 int nRet = 0;
7449 int i;
7450 int iEnd = iFirst + nCell;
7451 u8 *pFree = 0; /* \__ Parameters for pending call to */
7452 int szFree = 0; /* / freeSpace() */
7454 for(i=iFirst; i<iEnd; i++){
7455 u8 *pCell = pCArray->apCell[i];
7456 if( SQLITE_WITHIN(pCell, pStart, pEnd) ){
7457 int sz;
7458 /* No need to use cachedCellSize() here. The sizes of all cells that
7459 ** are to be freed have already been computing while deciding which
7460 ** cells need freeing */
7461 sz = pCArray->szCell[i]; assert( sz>0 );
7462 if( pFree!=(pCell + sz) ){
7463 if( pFree ){
7464 assert( pFree>aData && (pFree - aData)<65536 );
7465 freeSpace(pPg, (u16)(pFree - aData), szFree);
7467 pFree = pCell;
7468 szFree = sz;
7469 if( pFree+sz>pEnd ){
7470 return 0;
7472 }else{
7473 /* The current cell is adjacent to and before the pFree cell.
7474 ** Combine the two regions into one to reduce the number of calls
7475 ** to freeSpace(). */
7476 pFree = pCell;
7477 szFree += sz;
7479 nRet++;
7482 if( pFree ){
7483 assert( pFree>aData && (pFree - aData)<65536 );
7484 freeSpace(pPg, (u16)(pFree - aData), szFree);
7486 return nRet;
7490 ** pCArray contains pointers to and sizes of all cells in the page being
7491 ** balanced. The current page, pPg, has pPg->nCell cells starting with
7492 ** pCArray->apCell[iOld]. After balancing, this page should hold nNew cells
7493 ** starting at apCell[iNew].
7495 ** This routine makes the necessary adjustments to pPg so that it contains
7496 ** the correct cells after being balanced.
7498 ** The pPg->nFree field is invalid when this function returns. It is the
7499 ** responsibility of the caller to set it correctly.
7501 static int editPage(
7502 MemPage *pPg, /* Edit this page */
7503 int iOld, /* Index of first cell currently on page */
7504 int iNew, /* Index of new first cell on page */
7505 int nNew, /* Final number of cells on page */
7506 CellArray *pCArray /* Array of cells and sizes */
7508 u8 * const aData = pPg->aData;
7509 const int hdr = pPg->hdrOffset;
7510 u8 *pBegin = &pPg->aCellIdx[nNew * 2];
7511 int nCell = pPg->nCell; /* Cells stored on pPg */
7512 u8 *pData;
7513 u8 *pCellptr;
7514 int i;
7515 int iOldEnd = iOld + pPg->nCell + pPg->nOverflow;
7516 int iNewEnd = iNew + nNew;
7518 #ifdef SQLITE_DEBUG
7519 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
7520 memcpy(pTmp, aData, pPg->pBt->usableSize);
7521 #endif
7523 /* Remove cells from the start and end of the page */
7524 assert( nCell>=0 );
7525 if( iOld<iNew ){
7526 int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray);
7527 if( NEVER(nShift>nCell) ) return SQLITE_CORRUPT_BKPT;
7528 memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2);
7529 nCell -= nShift;
7531 if( iNewEnd < iOldEnd ){
7532 int nTail = pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray);
7533 assert( nCell>=nTail );
7534 nCell -= nTail;
7537 pData = &aData[get2byteNotZero(&aData[hdr+5])];
7538 if( pData<pBegin ) goto editpage_fail;
7539 if( pData>pPg->aDataEnd ) goto editpage_fail;
7541 /* Add cells to the start of the page */
7542 if( iNew<iOld ){
7543 int nAdd = MIN(nNew,iOld-iNew);
7544 assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB );
7545 assert( nAdd>=0 );
7546 pCellptr = pPg->aCellIdx;
7547 memmove(&pCellptr[nAdd*2], pCellptr, nCell*2);
7548 if( pageInsertArray(
7549 pPg, pBegin, &pData, pCellptr,
7550 iNew, nAdd, pCArray
7551 ) ) goto editpage_fail;
7552 nCell += nAdd;
7555 /* Add any overflow cells */
7556 for(i=0; i<pPg->nOverflow; i++){
7557 int iCell = (iOld + pPg->aiOvfl[i]) - iNew;
7558 if( iCell>=0 && iCell<nNew ){
7559 pCellptr = &pPg->aCellIdx[iCell * 2];
7560 if( nCell>iCell ){
7561 memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2);
7563 nCell++;
7564 cachedCellSize(pCArray, iCell+iNew);
7565 if( pageInsertArray(
7566 pPg, pBegin, &pData, pCellptr,
7567 iCell+iNew, 1, pCArray
7568 ) ) goto editpage_fail;
7572 /* Append cells to the end of the page */
7573 assert( nCell>=0 );
7574 pCellptr = &pPg->aCellIdx[nCell*2];
7575 if( pageInsertArray(
7576 pPg, pBegin, &pData, pCellptr,
7577 iNew+nCell, nNew-nCell, pCArray
7578 ) ) goto editpage_fail;
7580 pPg->nCell = nNew;
7581 pPg->nOverflow = 0;
7583 put2byte(&aData[hdr+3], pPg->nCell);
7584 put2byte(&aData[hdr+5], pData - aData);
7586 #ifdef SQLITE_DEBUG
7587 for(i=0; i<nNew && !CORRUPT_DB; i++){
7588 u8 *pCell = pCArray->apCell[i+iNew];
7589 int iOff = get2byteAligned(&pPg->aCellIdx[i*2]);
7590 if( SQLITE_WITHIN(pCell, aData, &aData[pPg->pBt->usableSize]) ){
7591 pCell = &pTmp[pCell - aData];
7593 assert( 0==memcmp(pCell, &aData[iOff],
7594 pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) );
7596 #endif
7598 return SQLITE_OK;
7599 editpage_fail:
7600 /* Unable to edit this page. Rebuild it from scratch instead. */
7601 populateCellCache(pCArray, iNew, nNew);
7602 return rebuildPage(pCArray, iNew, nNew, pPg);
7606 #ifndef SQLITE_OMIT_QUICKBALANCE
7608 ** This version of balance() handles the common special case where
7609 ** a new entry is being inserted on the extreme right-end of the
7610 ** tree, in other words, when the new entry will become the largest
7611 ** entry in the tree.
7613 ** Instead of trying to balance the 3 right-most leaf pages, just add
7614 ** a new page to the right-hand side and put the one new entry in
7615 ** that page. This leaves the right side of the tree somewhat
7616 ** unbalanced. But odds are that we will be inserting new entries
7617 ** at the end soon afterwards so the nearly empty page will quickly
7618 ** fill up. On average.
7620 ** pPage is the leaf page which is the right-most page in the tree.
7621 ** pParent is its parent. pPage must have a single overflow entry
7622 ** which is also the right-most entry on the page.
7624 ** The pSpace buffer is used to store a temporary copy of the divider
7625 ** cell that will be inserted into pParent. Such a cell consists of a 4
7626 ** byte page number followed by a variable length integer. In other
7627 ** words, at most 13 bytes. Hence the pSpace buffer must be at
7628 ** least 13 bytes in size.
7630 static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
7631 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
7632 MemPage *pNew; /* Newly allocated page */
7633 int rc; /* Return Code */
7634 Pgno pgnoNew; /* Page number of pNew */
7636 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
7637 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7638 assert( pPage->nOverflow==1 );
7640 if( pPage->nCell==0 ) return SQLITE_CORRUPT_BKPT; /* dbfuzz001.test */
7641 assert( pPage->nFree>=0 );
7642 assert( pParent->nFree>=0 );
7644 /* Allocate a new page. This page will become the right-sibling of
7645 ** pPage. Make the parent page writable, so that the new divider cell
7646 ** may be inserted. If both these operations are successful, proceed.
7648 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
7650 if( rc==SQLITE_OK ){
7652 u8 *pOut = &pSpace[4];
7653 u8 *pCell = pPage->apOvfl[0];
7654 u16 szCell = pPage->xCellSize(pPage, pCell);
7655 u8 *pStop;
7656 CellArray b;
7658 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
7659 assert( CORRUPT_DB || pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
7660 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
7661 b.nCell = 1;
7662 b.pRef = pPage;
7663 b.apCell = &pCell;
7664 b.szCell = &szCell;
7665 b.apEnd[0] = pPage->aDataEnd;
7666 b.ixNx[0] = 2;
7667 rc = rebuildPage(&b, 0, 1, pNew);
7668 if( NEVER(rc) ){
7669 releasePage(pNew);
7670 return rc;
7672 pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell;
7674 /* If this is an auto-vacuum database, update the pointer map
7675 ** with entries for the new page, and any pointer from the
7676 ** cell on the page to an overflow page. If either of these
7677 ** operations fails, the return code is set, but the contents
7678 ** of the parent page are still manipulated by thh code below.
7679 ** That is Ok, at this point the parent page is guaranteed to
7680 ** be marked as dirty. Returning an error code will cause a
7681 ** rollback, undoing any changes made to the parent page.
7683 if( ISAUTOVACUUM(pBt) ){
7684 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
7685 if( szCell>pNew->minLocal ){
7686 ptrmapPutOvflPtr(pNew, pNew, pCell, &rc);
7690 /* Create a divider cell to insert into pParent. The divider cell
7691 ** consists of a 4-byte page number (the page number of pPage) and
7692 ** a variable length key value (which must be the same value as the
7693 ** largest key on pPage).
7695 ** To find the largest key value on pPage, first find the right-most
7696 ** cell on pPage. The first two fields of this cell are the
7697 ** record-length (a variable length integer at most 32-bits in size)
7698 ** and the key value (a variable length integer, may have any value).
7699 ** The first of the while(...) loops below skips over the record-length
7700 ** field. The second while(...) loop copies the key value from the
7701 ** cell on pPage into the pSpace buffer.
7703 pCell = findCell(pPage, pPage->nCell-1);
7704 pStop = &pCell[9];
7705 while( (*(pCell++)&0x80) && pCell<pStop );
7706 pStop = &pCell[9];
7707 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
7709 /* Insert the new divider cell into pParent. */
7710 if( rc==SQLITE_OK ){
7711 rc = insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
7712 0, pPage->pgno);
7715 /* Set the right-child pointer of pParent to point to the new page. */
7716 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
7718 /* Release the reference to the new page. */
7719 releasePage(pNew);
7722 return rc;
7724 #endif /* SQLITE_OMIT_QUICKBALANCE */
7726 #if 0
7728 ** This function does not contribute anything to the operation of SQLite.
7729 ** it is sometimes activated temporarily while debugging code responsible
7730 ** for setting pointer-map entries.
7732 static int ptrmapCheckPages(MemPage **apPage, int nPage){
7733 int i, j;
7734 for(i=0; i<nPage; i++){
7735 Pgno n;
7736 u8 e;
7737 MemPage *pPage = apPage[i];
7738 BtShared *pBt = pPage->pBt;
7739 assert( pPage->isInit );
7741 for(j=0; j<pPage->nCell; j++){
7742 CellInfo info;
7743 u8 *z;
7745 z = findCell(pPage, j);
7746 pPage->xParseCell(pPage, z, &info);
7747 if( info.nLocal<info.nPayload ){
7748 Pgno ovfl = get4byte(&z[info.nSize-4]);
7749 ptrmapGet(pBt, ovfl, &e, &n);
7750 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
7752 if( !pPage->leaf ){
7753 Pgno child = get4byte(z);
7754 ptrmapGet(pBt, child, &e, &n);
7755 assert( n==pPage->pgno && e==PTRMAP_BTREE );
7758 if( !pPage->leaf ){
7759 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
7760 ptrmapGet(pBt, child, &e, &n);
7761 assert( n==pPage->pgno && e==PTRMAP_BTREE );
7764 return 1;
7766 #endif
7769 ** This function is used to copy the contents of the b-tree node stored
7770 ** on page pFrom to page pTo. If page pFrom was not a leaf page, then
7771 ** the pointer-map entries for each child page are updated so that the
7772 ** parent page stored in the pointer map is page pTo. If pFrom contained
7773 ** any cells with overflow page pointers, then the corresponding pointer
7774 ** map entries are also updated so that the parent page is page pTo.
7776 ** If pFrom is currently carrying any overflow cells (entries in the
7777 ** MemPage.apOvfl[] array), they are not copied to pTo.
7779 ** Before returning, page pTo is reinitialized using btreeInitPage().
7781 ** The performance of this function is not critical. It is only used by
7782 ** the balance_shallower() and balance_deeper() procedures, neither of
7783 ** which are called often under normal circumstances.
7785 static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
7786 if( (*pRC)==SQLITE_OK ){
7787 BtShared * const pBt = pFrom->pBt;
7788 u8 * const aFrom = pFrom->aData;
7789 u8 * const aTo = pTo->aData;
7790 int const iFromHdr = pFrom->hdrOffset;
7791 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
7792 int rc;
7793 int iData;
7796 assert( pFrom->isInit );
7797 assert( pFrom->nFree>=iToHdr );
7798 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
7800 /* Copy the b-tree node content from page pFrom to page pTo. */
7801 iData = get2byte(&aFrom[iFromHdr+5]);
7802 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
7803 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
7805 /* Reinitialize page pTo so that the contents of the MemPage structure
7806 ** match the new data. The initialization of pTo can actually fail under
7807 ** fairly obscure circumstances, even though it is a copy of initialized
7808 ** page pFrom.
7810 pTo->isInit = 0;
7811 rc = btreeInitPage(pTo);
7812 if( rc==SQLITE_OK ) rc = btreeComputeFreeSpace(pTo);
7813 if( rc!=SQLITE_OK ){
7814 *pRC = rc;
7815 return;
7818 /* If this is an auto-vacuum database, update the pointer-map entries
7819 ** for any b-tree or overflow pages that pTo now contains the pointers to.
7821 if( ISAUTOVACUUM(pBt) ){
7822 *pRC = setChildPtrmaps(pTo);
7828 ** This routine redistributes cells on the iParentIdx'th child of pParent
7829 ** (hereafter "the page") and up to 2 siblings so that all pages have about the
7830 ** same amount of free space. Usually a single sibling on either side of the
7831 ** page are used in the balancing, though both siblings might come from one
7832 ** side if the page is the first or last child of its parent. If the page
7833 ** has fewer than 2 siblings (something which can only happen if the page
7834 ** is a root page or a child of a root page) then all available siblings
7835 ** participate in the balancing.
7837 ** The number of siblings of the page might be increased or decreased by
7838 ** one or two in an effort to keep pages nearly full but not over full.
7840 ** Note that when this routine is called, some of the cells on the page
7841 ** might not actually be stored in MemPage.aData[]. This can happen
7842 ** if the page is overfull. This routine ensures that all cells allocated
7843 ** to the page and its siblings fit into MemPage.aData[] before returning.
7845 ** In the course of balancing the page and its siblings, cells may be
7846 ** inserted into or removed from the parent page (pParent). Doing so
7847 ** may cause the parent page to become overfull or underfull. If this
7848 ** happens, it is the responsibility of the caller to invoke the correct
7849 ** balancing routine to fix this problem (see the balance() routine).
7851 ** If this routine fails for any reason, it might leave the database
7852 ** in a corrupted state. So if this routine fails, the database should
7853 ** be rolled back.
7855 ** The third argument to this function, aOvflSpace, is a pointer to a
7856 ** buffer big enough to hold one page. If while inserting cells into the parent
7857 ** page (pParent) the parent page becomes overfull, this buffer is
7858 ** used to store the parent's overflow cells. Because this function inserts
7859 ** a maximum of four divider cells into the parent page, and the maximum
7860 ** size of a cell stored within an internal node is always less than 1/4
7861 ** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
7862 ** enough for all overflow cells.
7864 ** If aOvflSpace is set to a null pointer, this function returns
7865 ** SQLITE_NOMEM.
7867 static int balance_nonroot(
7868 MemPage *pParent, /* Parent page of siblings being balanced */
7869 int iParentIdx, /* Index of "the page" in pParent */
7870 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
7871 int isRoot, /* True if pParent is a root-page */
7872 int bBulk /* True if this call is part of a bulk load */
7874 BtShared *pBt; /* The whole database */
7875 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
7876 int nNew = 0; /* Number of pages in apNew[] */
7877 int nOld; /* Number of pages in apOld[] */
7878 int i, j, k; /* Loop counters */
7879 int nxDiv; /* Next divider slot in pParent->aCell[] */
7880 int rc = SQLITE_OK; /* The return code */
7881 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
7882 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
7883 int usableSpace; /* Bytes in pPage beyond the header */
7884 int pageFlags; /* Value of pPage->aData[0] */
7885 int iSpace1 = 0; /* First unused byte of aSpace1[] */
7886 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
7887 int szScratch; /* Size of scratch memory requested */
7888 MemPage *apOld[NB]; /* pPage and up to two siblings */
7889 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
7890 u8 *pRight; /* Location in parent of right-sibling pointer */
7891 u8 *apDiv[NB-1]; /* Divider cells in pParent */
7892 int cntNew[NB+2]; /* Index in b.paCell[] of cell after i-th page */
7893 int cntOld[NB+2]; /* Old index in b.apCell[] */
7894 int szNew[NB+2]; /* Combined size of cells placed on i-th page */
7895 u8 *aSpace1; /* Space for copies of dividers cells */
7896 Pgno pgno; /* Temp var to store a page number in */
7897 u8 abDone[NB+2]; /* True after i'th new page is populated */
7898 Pgno aPgno[NB+2]; /* Page numbers of new pages before shuffling */
7899 CellArray b; /* Parsed information on cells being balanced */
7901 memset(abDone, 0, sizeof(abDone));
7902 memset(&b, 0, sizeof(b));
7903 pBt = pParent->pBt;
7904 assert( sqlite3_mutex_held(pBt->mutex) );
7905 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7907 /* At this point pParent may have at most one overflow cell. And if
7908 ** this overflow cell is present, it must be the cell with
7909 ** index iParentIdx. This scenario comes about when this function
7910 ** is called (indirectly) from sqlite3BtreeDelete().
7912 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
7913 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
7915 if( !aOvflSpace ){
7916 return SQLITE_NOMEM_BKPT;
7918 assert( pParent->nFree>=0 );
7920 /* Find the sibling pages to balance. Also locate the cells in pParent
7921 ** that divide the siblings. An attempt is made to find NN siblings on
7922 ** either side of pPage. More siblings are taken from one side, however,
7923 ** if there are fewer than NN siblings on the other side. If pParent
7924 ** has NB or fewer children then all children of pParent are taken.
7926 ** This loop also drops the divider cells from the parent page. This
7927 ** way, the remainder of the function does not have to deal with any
7928 ** overflow cells in the parent page, since if any existed they will
7929 ** have already been removed.
7931 i = pParent->nOverflow + pParent->nCell;
7932 if( i<2 ){
7933 nxDiv = 0;
7934 }else{
7935 assert( bBulk==0 || bBulk==1 );
7936 if( iParentIdx==0 ){
7937 nxDiv = 0;
7938 }else if( iParentIdx==i ){
7939 nxDiv = i-2+bBulk;
7940 }else{
7941 nxDiv = iParentIdx-1;
7943 i = 2-bBulk;
7945 nOld = i+1;
7946 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
7947 pRight = &pParent->aData[pParent->hdrOffset+8];
7948 }else{
7949 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
7951 pgno = get4byte(pRight);
7952 while( 1 ){
7953 if( rc==SQLITE_OK ){
7954 rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0);
7956 if( rc ){
7957 memset(apOld, 0, (i+1)*sizeof(MemPage*));
7958 goto balance_cleanup;
7960 if( apOld[i]->nFree<0 ){
7961 rc = btreeComputeFreeSpace(apOld[i]);
7962 if( rc ){
7963 memset(apOld, 0, (i)*sizeof(MemPage*));
7964 goto balance_cleanup;
7967 nMaxCells += apOld[i]->nCell + ArraySize(pParent->apOvfl);
7968 if( (i--)==0 ) break;
7970 if( pParent->nOverflow && i+nxDiv==pParent->aiOvfl[0] ){
7971 apDiv[i] = pParent->apOvfl[0];
7972 pgno = get4byte(apDiv[i]);
7973 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
7974 pParent->nOverflow = 0;
7975 }else{
7976 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
7977 pgno = get4byte(apDiv[i]);
7978 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
7980 /* Drop the cell from the parent page. apDiv[i] still points to
7981 ** the cell within the parent, even though it has been dropped.
7982 ** This is safe because dropping a cell only overwrites the first
7983 ** four bytes of it, and this function does not need the first
7984 ** four bytes of the divider cell. So the pointer is safe to use
7985 ** later on.
7987 ** But not if we are in secure-delete mode. In secure-delete mode,
7988 ** the dropCell() routine will overwrite the entire cell with zeroes.
7989 ** In this case, temporarily copy the cell into the aOvflSpace[]
7990 ** buffer. It will be copied out again as soon as the aSpace[] buffer
7991 ** is allocated. */
7992 if( pBt->btsFlags & BTS_FAST_SECURE ){
7993 int iOff;
7995 /* If the following if() condition is not true, the db is corrupted.
7996 ** The call to dropCell() below will detect this. */
7997 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
7998 if( (iOff+szNew[i])<=(int)pBt->usableSize ){
7999 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
8000 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
8003 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
8007 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
8008 ** alignment */
8009 nMaxCells = (nMaxCells + 3)&~3;
8012 ** Allocate space for memory structures
8014 szScratch =
8015 nMaxCells*sizeof(u8*) /* b.apCell */
8016 + nMaxCells*sizeof(u16) /* b.szCell */
8017 + pBt->pageSize; /* aSpace1 */
8019 assert( szScratch<=7*(int)pBt->pageSize );
8020 b.apCell = sqlite3StackAllocRaw(0, szScratch );
8021 if( b.apCell==0 ){
8022 rc = SQLITE_NOMEM_BKPT;
8023 goto balance_cleanup;
8025 b.szCell = (u16*)&b.apCell[nMaxCells];
8026 aSpace1 = (u8*)&b.szCell[nMaxCells];
8027 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
8030 ** Load pointers to all cells on sibling pages and the divider cells
8031 ** into the local b.apCell[] array. Make copies of the divider cells
8032 ** into space obtained from aSpace1[]. The divider cells have already
8033 ** been removed from pParent.
8035 ** If the siblings are on leaf pages, then the child pointers of the
8036 ** divider cells are stripped from the cells before they are copied
8037 ** into aSpace1[]. In this way, all cells in b.apCell[] are without
8038 ** child pointers. If siblings are not leaves, then all cell in
8039 ** b.apCell[] include child pointers. Either way, all cells in b.apCell[]
8040 ** are alike.
8042 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
8043 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
8045 b.pRef = apOld[0];
8046 leafCorrection = b.pRef->leaf*4;
8047 leafData = b.pRef->intKeyLeaf;
8048 for(i=0; i<nOld; i++){
8049 MemPage *pOld = apOld[i];
8050 int limit = pOld->nCell;
8051 u8 *aData = pOld->aData;
8052 u16 maskPage = pOld->maskPage;
8053 u8 *piCell = aData + pOld->cellOffset;
8054 u8 *piEnd;
8055 VVA_ONLY( int nCellAtStart = b.nCell; )
8057 /* Verify that all sibling pages are of the same "type" (table-leaf,
8058 ** table-interior, index-leaf, or index-interior).
8060 if( pOld->aData[0]!=apOld[0]->aData[0] ){
8061 rc = SQLITE_CORRUPT_BKPT;
8062 goto balance_cleanup;
8065 /* Load b.apCell[] with pointers to all cells in pOld. If pOld
8066 ** contains overflow cells, include them in the b.apCell[] array
8067 ** in the correct spot.
8069 ** Note that when there are multiple overflow cells, it is always the
8070 ** case that they are sequential and adjacent. This invariant arises
8071 ** because multiple overflows can only occurs when inserting divider
8072 ** cells into a parent on a prior balance, and divider cells are always
8073 ** adjacent and are inserted in order. There is an assert() tagged
8074 ** with "NOTE 1" in the overflow cell insertion loop to prove this
8075 ** invariant.
8077 ** This must be done in advance. Once the balance starts, the cell
8078 ** offset section of the btree page will be overwritten and we will no
8079 ** long be able to find the cells if a pointer to each cell is not saved
8080 ** first.
8082 memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow));
8083 if( pOld->nOverflow>0 ){
8084 if( NEVER(limit<pOld->aiOvfl[0]) ){
8085 rc = SQLITE_CORRUPT_BKPT;
8086 goto balance_cleanup;
8088 limit = pOld->aiOvfl[0];
8089 for(j=0; j<limit; j++){
8090 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
8091 piCell += 2;
8092 b.nCell++;
8094 for(k=0; k<pOld->nOverflow; k++){
8095 assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */
8096 b.apCell[b.nCell] = pOld->apOvfl[k];
8097 b.nCell++;
8100 piEnd = aData + pOld->cellOffset + 2*pOld->nCell;
8101 while( piCell<piEnd ){
8102 assert( b.nCell<nMaxCells );
8103 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
8104 piCell += 2;
8105 b.nCell++;
8107 assert( (b.nCell-nCellAtStart)==(pOld->nCell+pOld->nOverflow) );
8109 cntOld[i] = b.nCell;
8110 if( i<nOld-1 && !leafData){
8111 u16 sz = (u16)szNew[i];
8112 u8 *pTemp;
8113 assert( b.nCell<nMaxCells );
8114 b.szCell[b.nCell] = sz;
8115 pTemp = &aSpace1[iSpace1];
8116 iSpace1 += sz;
8117 assert( sz<=pBt->maxLocal+23 );
8118 assert( iSpace1 <= (int)pBt->pageSize );
8119 memcpy(pTemp, apDiv[i], sz);
8120 b.apCell[b.nCell] = pTemp+leafCorrection;
8121 assert( leafCorrection==0 || leafCorrection==4 );
8122 b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection;
8123 if( !pOld->leaf ){
8124 assert( leafCorrection==0 );
8125 assert( pOld->hdrOffset==0 || CORRUPT_DB );
8126 /* The right pointer of the child page pOld becomes the left
8127 ** pointer of the divider cell */
8128 memcpy(b.apCell[b.nCell], &pOld->aData[8], 4);
8129 }else{
8130 assert( leafCorrection==4 );
8131 while( b.szCell[b.nCell]<4 ){
8132 /* Do not allow any cells smaller than 4 bytes. If a smaller cell
8133 ** does exist, pad it with 0x00 bytes. */
8134 assert( b.szCell[b.nCell]==3 || CORRUPT_DB );
8135 assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB );
8136 aSpace1[iSpace1++] = 0x00;
8137 b.szCell[b.nCell]++;
8140 b.nCell++;
8145 ** Figure out the number of pages needed to hold all b.nCell cells.
8146 ** Store this number in "k". Also compute szNew[] which is the total
8147 ** size of all cells on the i-th page and cntNew[] which is the index
8148 ** in b.apCell[] of the cell that divides page i from page i+1.
8149 ** cntNew[k] should equal b.nCell.
8151 ** Values computed by this block:
8153 ** k: The total number of sibling pages
8154 ** szNew[i]: Spaced used on the i-th sibling page.
8155 ** cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to
8156 ** the right of the i-th sibling page.
8157 ** usableSpace: Number of bytes of space available on each sibling.
8160 usableSpace = pBt->usableSize - 12 + leafCorrection;
8161 for(i=k=0; i<nOld; i++, k++){
8162 MemPage *p = apOld[i];
8163 b.apEnd[k] = p->aDataEnd;
8164 b.ixNx[k] = cntOld[i];
8165 if( k && b.ixNx[k]==b.ixNx[k-1] ){
8166 k--; /* Omit b.ixNx[] entry for child pages with no cells */
8168 if( !leafData ){
8169 k++;
8170 b.apEnd[k] = pParent->aDataEnd;
8171 b.ixNx[k] = cntOld[i]+1;
8173 assert( p->nFree>=0 );
8174 szNew[i] = usableSpace - p->nFree;
8175 for(j=0; j<p->nOverflow; j++){
8176 szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]);
8178 cntNew[i] = cntOld[i];
8180 k = nOld;
8181 for(i=0; i<k; i++){
8182 int sz;
8183 while( szNew[i]>usableSpace ){
8184 if( i+1>=k ){
8185 k = i+2;
8186 if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
8187 szNew[k-1] = 0;
8188 cntNew[k-1] = b.nCell;
8190 sz = 2 + cachedCellSize(&b, cntNew[i]-1);
8191 szNew[i] -= sz;
8192 if( !leafData ){
8193 if( cntNew[i]<b.nCell ){
8194 sz = 2 + cachedCellSize(&b, cntNew[i]);
8195 }else{
8196 sz = 0;
8199 szNew[i+1] += sz;
8200 cntNew[i]--;
8202 while( cntNew[i]<b.nCell ){
8203 sz = 2 + cachedCellSize(&b, cntNew[i]);
8204 if( szNew[i]+sz>usableSpace ) break;
8205 szNew[i] += sz;
8206 cntNew[i]++;
8207 if( !leafData ){
8208 if( cntNew[i]<b.nCell ){
8209 sz = 2 + cachedCellSize(&b, cntNew[i]);
8210 }else{
8211 sz = 0;
8214 szNew[i+1] -= sz;
8216 if( cntNew[i]>=b.nCell ){
8217 k = i+1;
8218 }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){
8219 rc = SQLITE_CORRUPT_BKPT;
8220 goto balance_cleanup;
8225 ** The packing computed by the previous block is biased toward the siblings
8226 ** on the left side (siblings with smaller keys). The left siblings are
8227 ** always nearly full, while the right-most sibling might be nearly empty.
8228 ** The next block of code attempts to adjust the packing of siblings to
8229 ** get a better balance.
8231 ** This adjustment is more than an optimization. The packing above might
8232 ** be so out of balance as to be illegal. For example, the right-most
8233 ** sibling might be completely empty. This adjustment is not optional.
8235 for(i=k-1; i>0; i--){
8236 int szRight = szNew[i]; /* Size of sibling on the right */
8237 int szLeft = szNew[i-1]; /* Size of sibling on the left */
8238 int r; /* Index of right-most cell in left sibling */
8239 int d; /* Index of first cell to the left of right sibling */
8241 r = cntNew[i-1] - 1;
8242 d = r + 1 - leafData;
8243 (void)cachedCellSize(&b, d);
8245 int szR, szD;
8246 assert( d<nMaxCells );
8247 assert( r<nMaxCells );
8248 szR = cachedCellSize(&b, r);
8249 szD = b.szCell[d];
8250 if( szRight!=0
8251 && (bBulk || szRight+szD+2 > szLeft-(szR+(i==k-1?0:2)))){
8252 break;
8254 szRight += szD + 2;
8255 szLeft -= szR + 2;
8256 cntNew[i-1] = r;
8257 r--;
8258 d--;
8259 }while( r>=0 );
8260 szNew[i] = szRight;
8261 szNew[i-1] = szLeft;
8262 if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){
8263 rc = SQLITE_CORRUPT_BKPT;
8264 goto balance_cleanup;
8268 /* Sanity check: For a non-corrupt database file one of the follwing
8269 ** must be true:
8270 ** (1) We found one or more cells (cntNew[0])>0), or
8271 ** (2) pPage is a virtual root page. A virtual root page is when
8272 ** the real root page is page 1 and we are the only child of
8273 ** that page.
8275 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB);
8276 TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n",
8277 apOld[0]->pgno, apOld[0]->nCell,
8278 nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0,
8279 nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0
8283 ** Allocate k new pages. Reuse old pages where possible.
8285 pageFlags = apOld[0]->aData[0];
8286 for(i=0; i<k; i++){
8287 MemPage *pNew;
8288 if( i<nOld ){
8289 pNew = apNew[i] = apOld[i];
8290 apOld[i] = 0;
8291 rc = sqlite3PagerWrite(pNew->pDbPage);
8292 nNew++;
8293 if( sqlite3PagerPageRefcount(pNew->pDbPage)!=1+(i==(iParentIdx-nxDiv))
8294 && rc==SQLITE_OK
8296 rc = SQLITE_CORRUPT_BKPT;
8298 if( rc ) goto balance_cleanup;
8299 }else{
8300 assert( i>0 );
8301 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
8302 if( rc ) goto balance_cleanup;
8303 zeroPage(pNew, pageFlags);
8304 apNew[i] = pNew;
8305 nNew++;
8306 cntOld[i] = b.nCell;
8308 /* Set the pointer-map entry for the new sibling page. */
8309 if( ISAUTOVACUUM(pBt) ){
8310 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
8311 if( rc!=SQLITE_OK ){
8312 goto balance_cleanup;
8319 ** Reassign page numbers so that the new pages are in ascending order.
8320 ** This helps to keep entries in the disk file in order so that a scan
8321 ** of the table is closer to a linear scan through the file. That in turn
8322 ** helps the operating system to deliver pages from the disk more rapidly.
8324 ** An O(N*N) sort algorithm is used, but since N is never more than NB+2
8325 ** (5), that is not a performance concern.
8327 ** When NB==3, this one optimization makes the database about 25% faster
8328 ** for large insertions and deletions.
8330 for(i=0; i<nNew; i++){
8331 aPgno[i] = apNew[i]->pgno;
8332 assert( apNew[i]->pDbPage->flags & PGHDR_WRITEABLE );
8333 assert( apNew[i]->pDbPage->flags & PGHDR_DIRTY );
8335 for(i=0; i<nNew-1; i++){
8336 int iB = i;
8337 for(j=i+1; j<nNew; j++){
8338 if( apNew[j]->pgno < apNew[iB]->pgno ) iB = j;
8341 /* If apNew[i] has a page number that is bigger than any of the
8342 ** subsequence apNew[i] entries, then swap apNew[i] with the subsequent
8343 ** entry that has the smallest page number (which we know to be
8344 ** entry apNew[iB]).
8346 if( iB!=i ){
8347 Pgno pgnoA = apNew[i]->pgno;
8348 Pgno pgnoB = apNew[iB]->pgno;
8349 Pgno pgnoTemp = (PENDING_BYTE/pBt->pageSize)+1;
8350 u16 fgA = apNew[i]->pDbPage->flags;
8351 u16 fgB = apNew[iB]->pDbPage->flags;
8352 sqlite3PagerRekey(apNew[i]->pDbPage, pgnoTemp, fgB);
8353 sqlite3PagerRekey(apNew[iB]->pDbPage, pgnoA, fgA);
8354 sqlite3PagerRekey(apNew[i]->pDbPage, pgnoB, fgB);
8355 apNew[i]->pgno = pgnoB;
8356 apNew[iB]->pgno = pgnoA;
8360 TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) "
8361 "%d(%d nc=%d) %d(%d nc=%d)\n",
8362 apNew[0]->pgno, szNew[0], cntNew[0],
8363 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
8364 nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0,
8365 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
8366 nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0,
8367 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
8368 nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0,
8369 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0,
8370 nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0
8373 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
8374 assert( nNew>=1 && nNew<=ArraySize(apNew) );
8375 assert( apNew[nNew-1]!=0 );
8376 put4byte(pRight, apNew[nNew-1]->pgno);
8378 /* If the sibling pages are not leaves, ensure that the right-child pointer
8379 ** of the right-most new sibling page is set to the value that was
8380 ** originally in the same field of the right-most old sibling page. */
8381 if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){
8382 MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1];
8383 memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4);
8386 /* Make any required updates to pointer map entries associated with
8387 ** cells stored on sibling pages following the balance operation. Pointer
8388 ** map entries associated with divider cells are set by the insertCell()
8389 ** routine. The associated pointer map entries are:
8391 ** a) if the cell contains a reference to an overflow chain, the
8392 ** entry associated with the first page in the overflow chain, and
8394 ** b) if the sibling pages are not leaves, the child page associated
8395 ** with the cell.
8397 ** If the sibling pages are not leaves, then the pointer map entry
8398 ** associated with the right-child of each sibling may also need to be
8399 ** updated. This happens below, after the sibling pages have been
8400 ** populated, not here.
8402 if( ISAUTOVACUUM(pBt) ){
8403 MemPage *pOld;
8404 MemPage *pNew = pOld = apNew[0];
8405 int cntOldNext = pNew->nCell + pNew->nOverflow;
8406 int iNew = 0;
8407 int iOld = 0;
8409 for(i=0; i<b.nCell; i++){
8410 u8 *pCell = b.apCell[i];
8411 while( i==cntOldNext ){
8412 iOld++;
8413 assert( iOld<nNew || iOld<nOld );
8414 assert( iOld>=0 && iOld<NB );
8415 pOld = iOld<nNew ? apNew[iOld] : apOld[iOld];
8416 cntOldNext += pOld->nCell + pOld->nOverflow + !leafData;
8418 if( i==cntNew[iNew] ){
8419 pNew = apNew[++iNew];
8420 if( !leafData ) continue;
8423 /* Cell pCell is destined for new sibling page pNew. Originally, it
8424 ** was either part of sibling page iOld (possibly an overflow cell),
8425 ** or else the divider cell to the left of sibling page iOld. So,
8426 ** if sibling page iOld had the same page number as pNew, and if
8427 ** pCell really was a part of sibling page iOld (not a divider or
8428 ** overflow cell), we can skip updating the pointer map entries. */
8429 if( iOld>=nNew
8430 || pNew->pgno!=aPgno[iOld]
8431 || !SQLITE_WITHIN(pCell,pOld->aData,pOld->aDataEnd)
8433 if( !leafCorrection ){
8434 ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc);
8436 if( cachedCellSize(&b,i)>pNew->minLocal ){
8437 ptrmapPutOvflPtr(pNew, pOld, pCell, &rc);
8439 if( rc ) goto balance_cleanup;
8444 /* Insert new divider cells into pParent. */
8445 for(i=0; i<nNew-1; i++){
8446 u8 *pCell;
8447 u8 *pTemp;
8448 int sz;
8449 u8 *pSrcEnd;
8450 MemPage *pNew = apNew[i];
8451 j = cntNew[i];
8453 assert( j<nMaxCells );
8454 assert( b.apCell[j]!=0 );
8455 pCell = b.apCell[j];
8456 sz = b.szCell[j] + leafCorrection;
8457 pTemp = &aOvflSpace[iOvflSpace];
8458 if( !pNew->leaf ){
8459 memcpy(&pNew->aData[8], pCell, 4);
8460 }else if( leafData ){
8461 /* If the tree is a leaf-data tree, and the siblings are leaves,
8462 ** then there is no divider cell in b.apCell[]. Instead, the divider
8463 ** cell consists of the integer key for the right-most cell of
8464 ** the sibling-page assembled above only.
8466 CellInfo info;
8467 j--;
8468 pNew->xParseCell(pNew, b.apCell[j], &info);
8469 pCell = pTemp;
8470 sz = 4 + putVarint(&pCell[4], info.nKey);
8471 pTemp = 0;
8472 }else{
8473 pCell -= 4;
8474 /* Obscure case for non-leaf-data trees: If the cell at pCell was
8475 ** previously stored on a leaf node, and its reported size was 4
8476 ** bytes, then it may actually be smaller than this
8477 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
8478 ** any cell). But it is important to pass the correct size to
8479 ** insertCell(), so reparse the cell now.
8481 ** This can only happen for b-trees used to evaluate "IN (SELECT ...)"
8482 ** and WITHOUT ROWID tables with exactly one column which is the
8483 ** primary key.
8485 if( b.szCell[j]==4 ){
8486 assert(leafCorrection==4);
8487 sz = pParent->xCellSize(pParent, pCell);
8490 iOvflSpace += sz;
8491 assert( sz<=pBt->maxLocal+23 );
8492 assert( iOvflSpace <= (int)pBt->pageSize );
8493 for(k=0; b.ixNx[k]<=j && ALWAYS(k<NB*2); k++){}
8494 pSrcEnd = b.apEnd[k];
8495 if( SQLITE_WITHIN(pSrcEnd, pCell, pCell+sz) ){
8496 rc = SQLITE_CORRUPT_BKPT;
8497 goto balance_cleanup;
8499 rc = insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno);
8500 if( rc!=SQLITE_OK ) goto balance_cleanup;
8501 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
8504 /* Now update the actual sibling pages. The order in which they are updated
8505 ** is important, as this code needs to avoid disrupting any page from which
8506 ** cells may still to be read. In practice, this means:
8508 ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1])
8509 ** then it is not safe to update page apNew[iPg] until after
8510 ** the left-hand sibling apNew[iPg-1] has been updated.
8512 ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1])
8513 ** then it is not safe to update page apNew[iPg] until after
8514 ** the right-hand sibling apNew[iPg+1] has been updated.
8516 ** If neither of the above apply, the page is safe to update.
8518 ** The iPg value in the following loop starts at nNew-1 goes down
8519 ** to 0, then back up to nNew-1 again, thus making two passes over
8520 ** the pages. On the initial downward pass, only condition (1) above
8521 ** needs to be tested because (2) will always be true from the previous
8522 ** step. On the upward pass, both conditions are always true, so the
8523 ** upwards pass simply processes pages that were missed on the downward
8524 ** pass.
8526 for(i=1-nNew; i<nNew; i++){
8527 int iPg = i<0 ? -i : i;
8528 assert( iPg>=0 && iPg<nNew );
8529 if( abDone[iPg] ) continue; /* Skip pages already processed */
8530 if( i>=0 /* On the upwards pass, or... */
8531 || cntOld[iPg-1]>=cntNew[iPg-1] /* Condition (1) is true */
8533 int iNew;
8534 int iOld;
8535 int nNewCell;
8537 /* Verify condition (1): If cells are moving left, update iPg
8538 ** only after iPg-1 has already been updated. */
8539 assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] );
8541 /* Verify condition (2): If cells are moving right, update iPg
8542 ** only after iPg+1 has already been updated. */
8543 assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] );
8545 if( iPg==0 ){
8546 iNew = iOld = 0;
8547 nNewCell = cntNew[0];
8548 }else{
8549 iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell;
8550 iNew = cntNew[iPg-1] + !leafData;
8551 nNewCell = cntNew[iPg] - iNew;
8554 rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b);
8555 if( rc ) goto balance_cleanup;
8556 abDone[iPg]++;
8557 apNew[iPg]->nFree = usableSpace-szNew[iPg];
8558 assert( apNew[iPg]->nOverflow==0 );
8559 assert( apNew[iPg]->nCell==nNewCell );
8563 /* All pages have been processed exactly once */
8564 assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 );
8566 assert( nOld>0 );
8567 assert( nNew>0 );
8569 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
8570 /* The root page of the b-tree now contains no cells. The only sibling
8571 ** page is the right-child of the parent. Copy the contents of the
8572 ** child page into the parent, decreasing the overall height of the
8573 ** b-tree structure by one. This is described as the "balance-shallower"
8574 ** sub-algorithm in some documentation.
8576 ** If this is an auto-vacuum database, the call to copyNodeContent()
8577 ** sets all pointer-map entries corresponding to database image pages
8578 ** for which the pointer is stored within the content being copied.
8580 ** It is critical that the child page be defragmented before being
8581 ** copied into the parent, because if the parent is page 1 then it will
8582 ** by smaller than the child due to the database header, and so all the
8583 ** free space needs to be up front.
8585 assert( nNew==1 || CORRUPT_DB );
8586 rc = defragmentPage(apNew[0], -1);
8587 testcase( rc!=SQLITE_OK );
8588 assert( apNew[0]->nFree ==
8589 (get2byteNotZero(&apNew[0]->aData[5]) - apNew[0]->cellOffset
8590 - apNew[0]->nCell*2)
8591 || rc!=SQLITE_OK
8593 copyNodeContent(apNew[0], pParent, &rc);
8594 freePage(apNew[0], &rc);
8595 }else if( ISAUTOVACUUM(pBt) && !leafCorrection ){
8596 /* Fix the pointer map entries associated with the right-child of each
8597 ** sibling page. All other pointer map entries have already been taken
8598 ** care of. */
8599 for(i=0; i<nNew; i++){
8600 u32 key = get4byte(&apNew[i]->aData[8]);
8601 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
8605 assert( pParent->isInit );
8606 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
8607 nOld, nNew, b.nCell));
8609 /* Free any old pages that were not reused as new pages.
8611 for(i=nNew; i<nOld; i++){
8612 freePage(apOld[i], &rc);
8615 #if 0
8616 if( ISAUTOVACUUM(pBt) && rc==SQLITE_OK && apNew[0]->isInit ){
8617 /* The ptrmapCheckPages() contains assert() statements that verify that
8618 ** all pointer map pages are set correctly. This is helpful while
8619 ** debugging. This is usually disabled because a corrupt database may
8620 ** cause an assert() statement to fail. */
8621 ptrmapCheckPages(apNew, nNew);
8622 ptrmapCheckPages(&pParent, 1);
8624 #endif
8627 ** Cleanup before returning.
8629 balance_cleanup:
8630 sqlite3StackFree(0, b.apCell);
8631 for(i=0; i<nOld; i++){
8632 releasePage(apOld[i]);
8634 for(i=0; i<nNew; i++){
8635 releasePage(apNew[i]);
8638 return rc;
8643 ** This function is called when the root page of a b-tree structure is
8644 ** overfull (has one or more overflow pages).
8646 ** A new child page is allocated and the contents of the current root
8647 ** page, including overflow cells, are copied into the child. The root
8648 ** page is then overwritten to make it an empty page with the right-child
8649 ** pointer pointing to the new page.
8651 ** Before returning, all pointer-map entries corresponding to pages
8652 ** that the new child-page now contains pointers to are updated. The
8653 ** entry corresponding to the new right-child pointer of the root
8654 ** page is also updated.
8656 ** If successful, *ppChild is set to contain a reference to the child
8657 ** page and SQLITE_OK is returned. In this case the caller is required
8658 ** to call releasePage() on *ppChild exactly once. If an error occurs,
8659 ** an error code is returned and *ppChild is set to 0.
8661 static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
8662 int rc; /* Return value from subprocedures */
8663 MemPage *pChild = 0; /* Pointer to a new child page */
8664 Pgno pgnoChild = 0; /* Page number of the new child page */
8665 BtShared *pBt = pRoot->pBt; /* The BTree */
8667 assert( pRoot->nOverflow>0 );
8668 assert( sqlite3_mutex_held(pBt->mutex) );
8670 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
8671 ** page that will become the new right-child of pPage. Copy the contents
8672 ** of the node stored on pRoot into the new child page.
8674 rc = sqlite3PagerWrite(pRoot->pDbPage);
8675 if( rc==SQLITE_OK ){
8676 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
8677 copyNodeContent(pRoot, pChild, &rc);
8678 if( ISAUTOVACUUM(pBt) ){
8679 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
8682 if( rc ){
8683 *ppChild = 0;
8684 releasePage(pChild);
8685 return rc;
8687 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
8688 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
8689 assert( pChild->nCell==pRoot->nCell || CORRUPT_DB );
8691 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
8693 /* Copy the overflow cells from pRoot to pChild */
8694 memcpy(pChild->aiOvfl, pRoot->aiOvfl,
8695 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
8696 memcpy(pChild->apOvfl, pRoot->apOvfl,
8697 pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
8698 pChild->nOverflow = pRoot->nOverflow;
8700 /* Zero the contents of pRoot. Then install pChild as the right-child. */
8701 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
8702 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
8704 *ppChild = pChild;
8705 return SQLITE_OK;
8709 ** Return SQLITE_CORRUPT if any cursor other than pCur is currently valid
8710 ** on the same B-tree as pCur.
8712 ** This can occur if a database is corrupt with two or more SQL tables
8713 ** pointing to the same b-tree. If an insert occurs on one SQL table
8714 ** and causes a BEFORE TRIGGER to do a secondary insert on the other SQL
8715 ** table linked to the same b-tree. If the secondary insert causes a
8716 ** rebalance, that can change content out from under the cursor on the
8717 ** first SQL table, violating invariants on the first insert.
8719 static int anotherValidCursor(BtCursor *pCur){
8720 BtCursor *pOther;
8721 for(pOther=pCur->pBt->pCursor; pOther; pOther=pOther->pNext){
8722 if( pOther!=pCur
8723 && pOther->eState==CURSOR_VALID
8724 && pOther->pPage==pCur->pPage
8726 return SQLITE_CORRUPT_BKPT;
8729 return SQLITE_OK;
8733 ** The page that pCur currently points to has just been modified in
8734 ** some way. This function figures out if this modification means the
8735 ** tree needs to be balanced, and if so calls the appropriate balancing
8736 ** routine. Balancing routines are:
8738 ** balance_quick()
8739 ** balance_deeper()
8740 ** balance_nonroot()
8742 static int balance(BtCursor *pCur){
8743 int rc = SQLITE_OK;
8744 u8 aBalanceQuickSpace[13];
8745 u8 *pFree = 0;
8747 VVA_ONLY( int balance_quick_called = 0 );
8748 VVA_ONLY( int balance_deeper_called = 0 );
8750 do {
8751 int iPage;
8752 MemPage *pPage = pCur->pPage;
8754 if( NEVER(pPage->nFree<0) && btreeComputeFreeSpace(pPage) ) break;
8755 if( pPage->nOverflow==0 && pPage->nFree*3<=(int)pCur->pBt->usableSize*2 ){
8756 /* No rebalance required as long as:
8757 ** (1) There are no overflow cells
8758 ** (2) The amount of free space on the page is less than 2/3rds of
8759 ** the total usable space on the page. */
8760 break;
8761 }else if( (iPage = pCur->iPage)==0 ){
8762 if( pPage->nOverflow && (rc = anotherValidCursor(pCur))==SQLITE_OK ){
8763 /* The root page of the b-tree is overfull. In this case call the
8764 ** balance_deeper() function to create a new child for the root-page
8765 ** and copy the current contents of the root-page to it. The
8766 ** next iteration of the do-loop will balance the child page.
8768 assert( balance_deeper_called==0 );
8769 VVA_ONLY( balance_deeper_called++ );
8770 rc = balance_deeper(pPage, &pCur->apPage[1]);
8771 if( rc==SQLITE_OK ){
8772 pCur->iPage = 1;
8773 pCur->ix = 0;
8774 pCur->aiIdx[0] = 0;
8775 pCur->apPage[0] = pPage;
8776 pCur->pPage = pCur->apPage[1];
8777 assert( pCur->pPage->nOverflow );
8779 }else{
8780 break;
8782 }else if( sqlite3PagerPageRefcount(pPage->pDbPage)>1 ){
8783 /* The page being written is not a root page, and there is currently
8784 ** more than one reference to it. This only happens if the page is one
8785 ** of its own ancestor pages. Corruption. */
8786 rc = SQLITE_CORRUPT_BKPT;
8787 }else{
8788 MemPage * const pParent = pCur->apPage[iPage-1];
8789 int const iIdx = pCur->aiIdx[iPage-1];
8791 rc = sqlite3PagerWrite(pParent->pDbPage);
8792 if( rc==SQLITE_OK && pParent->nFree<0 ){
8793 rc = btreeComputeFreeSpace(pParent);
8795 if( rc==SQLITE_OK ){
8796 #ifndef SQLITE_OMIT_QUICKBALANCE
8797 if( pPage->intKeyLeaf
8798 && pPage->nOverflow==1
8799 && pPage->aiOvfl[0]==pPage->nCell
8800 && pParent->pgno!=1
8801 && pParent->nCell==iIdx
8803 /* Call balance_quick() to create a new sibling of pPage on which
8804 ** to store the overflow cell. balance_quick() inserts a new cell
8805 ** into pParent, which may cause pParent overflow. If this
8806 ** happens, the next iteration of the do-loop will balance pParent
8807 ** use either balance_nonroot() or balance_deeper(). Until this
8808 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
8809 ** buffer.
8811 ** The purpose of the following assert() is to check that only a
8812 ** single call to balance_quick() is made for each call to this
8813 ** function. If this were not verified, a subtle bug involving reuse
8814 ** of the aBalanceQuickSpace[] might sneak in.
8816 assert( balance_quick_called==0 );
8817 VVA_ONLY( balance_quick_called++ );
8818 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
8819 }else
8820 #endif
8822 /* In this case, call balance_nonroot() to redistribute cells
8823 ** between pPage and up to 2 of its sibling pages. This involves
8824 ** modifying the contents of pParent, which may cause pParent to
8825 ** become overfull or underfull. The next iteration of the do-loop
8826 ** will balance the parent page to correct this.
8828 ** If the parent page becomes overfull, the overflow cell or cells
8829 ** are stored in the pSpace buffer allocated immediately below.
8830 ** A subsequent iteration of the do-loop will deal with this by
8831 ** calling balance_nonroot() (balance_deeper() may be called first,
8832 ** but it doesn't deal with overflow cells - just moves them to a
8833 ** different page). Once this subsequent call to balance_nonroot()
8834 ** has completed, it is safe to release the pSpace buffer used by
8835 ** the previous call, as the overflow cell data will have been
8836 ** copied either into the body of a database page or into the new
8837 ** pSpace buffer passed to the latter call to balance_nonroot().
8839 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
8840 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1,
8841 pCur->hints&BTREE_BULKLOAD);
8842 if( pFree ){
8843 /* If pFree is not NULL, it points to the pSpace buffer used
8844 ** by a previous call to balance_nonroot(). Its contents are
8845 ** now stored either on real database pages or within the
8846 ** new pSpace buffer, so it may be safely freed here. */
8847 sqlite3PageFree(pFree);
8850 /* The pSpace buffer will be freed after the next call to
8851 ** balance_nonroot(), or just before this function returns, whichever
8852 ** comes first. */
8853 pFree = pSpace;
8857 pPage->nOverflow = 0;
8859 /* The next iteration of the do-loop balances the parent page. */
8860 releasePage(pPage);
8861 pCur->iPage--;
8862 assert( pCur->iPage>=0 );
8863 pCur->pPage = pCur->apPage[pCur->iPage];
8865 }while( rc==SQLITE_OK );
8867 if( pFree ){
8868 sqlite3PageFree(pFree);
8870 return rc;
8873 /* Overwrite content from pX into pDest. Only do the write if the
8874 ** content is different from what is already there.
8876 static int btreeOverwriteContent(
8877 MemPage *pPage, /* MemPage on which writing will occur */
8878 u8 *pDest, /* Pointer to the place to start writing */
8879 const BtreePayload *pX, /* Source of data to write */
8880 int iOffset, /* Offset of first byte to write */
8881 int iAmt /* Number of bytes to be written */
8883 int nData = pX->nData - iOffset;
8884 if( nData<=0 ){
8885 /* Overwritting with zeros */
8886 int i;
8887 for(i=0; i<iAmt && pDest[i]==0; i++){}
8888 if( i<iAmt ){
8889 int rc = sqlite3PagerWrite(pPage->pDbPage);
8890 if( rc ) return rc;
8891 memset(pDest + i, 0, iAmt - i);
8893 }else{
8894 if( nData<iAmt ){
8895 /* Mixed read data and zeros at the end. Make a recursive call
8896 ** to write the zeros then fall through to write the real data */
8897 int rc = btreeOverwriteContent(pPage, pDest+nData, pX, iOffset+nData,
8898 iAmt-nData);
8899 if( rc ) return rc;
8900 iAmt = nData;
8902 if( memcmp(pDest, ((u8*)pX->pData) + iOffset, iAmt)!=0 ){
8903 int rc = sqlite3PagerWrite(pPage->pDbPage);
8904 if( rc ) return rc;
8905 /* In a corrupt database, it is possible for the source and destination
8906 ** buffers to overlap. This is harmless since the database is already
8907 ** corrupt but it does cause valgrind and ASAN warnings. So use
8908 ** memmove(). */
8909 memmove(pDest, ((u8*)pX->pData) + iOffset, iAmt);
8912 return SQLITE_OK;
8916 ** Overwrite the cell that cursor pCur is pointing to with fresh content
8917 ** contained in pX. In this variant, pCur is pointing to an overflow
8918 ** cell.
8920 static SQLITE_NOINLINE int btreeOverwriteOverflowCell(
8921 BtCursor *pCur, /* Cursor pointing to cell to ovewrite */
8922 const BtreePayload *pX /* Content to write into the cell */
8924 int iOffset; /* Next byte of pX->pData to write */
8925 int nTotal = pX->nData + pX->nZero; /* Total bytes of to write */
8926 int rc; /* Return code */
8927 MemPage *pPage = pCur->pPage; /* Page being written */
8928 BtShared *pBt; /* Btree */
8929 Pgno ovflPgno; /* Next overflow page to write */
8930 u32 ovflPageSize; /* Size to write on overflow page */
8932 assert( pCur->info.nLocal<nTotal ); /* pCur is an overflow cell */
8934 /* Overwrite the local portion first */
8935 rc = btreeOverwriteContent(pPage, pCur->info.pPayload, pX,
8936 0, pCur->info.nLocal);
8937 if( rc ) return rc;
8939 /* Now overwrite the overflow pages */
8940 iOffset = pCur->info.nLocal;
8941 assert( nTotal>=0 );
8942 assert( iOffset>=0 );
8943 ovflPgno = get4byte(pCur->info.pPayload + iOffset);
8944 pBt = pPage->pBt;
8945 ovflPageSize = pBt->usableSize - 4;
8947 rc = btreeGetPage(pBt, ovflPgno, &pPage, 0);
8948 if( rc ) return rc;
8949 if( sqlite3PagerPageRefcount(pPage->pDbPage)!=1 || pPage->isInit ){
8950 rc = SQLITE_CORRUPT_BKPT;
8951 }else{
8952 if( iOffset+ovflPageSize<(u32)nTotal ){
8953 ovflPgno = get4byte(pPage->aData);
8954 }else{
8955 ovflPageSize = nTotal - iOffset;
8957 rc = btreeOverwriteContent(pPage, pPage->aData+4, pX,
8958 iOffset, ovflPageSize);
8960 sqlite3PagerUnref(pPage->pDbPage);
8961 if( rc ) return rc;
8962 iOffset += ovflPageSize;
8963 }while( iOffset<nTotal );
8964 return SQLITE_OK;
8968 ** Overwrite the cell that cursor pCur is pointing to with fresh content
8969 ** contained in pX.
8971 static int btreeOverwriteCell(BtCursor *pCur, const BtreePayload *pX){
8972 int nTotal = pX->nData + pX->nZero; /* Total bytes of to write */
8973 MemPage *pPage = pCur->pPage; /* Page being written */
8975 if( pCur->info.pPayload + pCur->info.nLocal > pPage->aDataEnd
8976 || pCur->info.pPayload < pPage->aData + pPage->cellOffset
8978 return SQLITE_CORRUPT_BKPT;
8980 if( pCur->info.nLocal==nTotal ){
8981 /* The entire cell is local */
8982 return btreeOverwriteContent(pPage, pCur->info.pPayload, pX,
8983 0, pCur->info.nLocal);
8984 }else{
8985 /* The cell contains overflow content */
8986 return btreeOverwriteOverflowCell(pCur, pX);
8992 ** Insert a new record into the BTree. The content of the new record
8993 ** is described by the pX object. The pCur cursor is used only to
8994 ** define what table the record should be inserted into, and is left
8995 ** pointing at a random location.
8997 ** For a table btree (used for rowid tables), only the pX.nKey value of
8998 ** the key is used. The pX.pKey value must be NULL. The pX.nKey is the
8999 ** rowid or INTEGER PRIMARY KEY of the row. The pX.nData,pData,nZero fields
9000 ** hold the content of the row.
9002 ** For an index btree (used for indexes and WITHOUT ROWID tables), the
9003 ** key is an arbitrary byte sequence stored in pX.pKey,nKey. The
9004 ** pX.pData,nData,nZero fields must be zero.
9006 ** If the seekResult parameter is non-zero, then a successful call to
9007 ** sqlite3BtreeIndexMoveto() to seek cursor pCur to (pKey,nKey) has already
9008 ** been performed. In other words, if seekResult!=0 then the cursor
9009 ** is currently pointing to a cell that will be adjacent to the cell
9010 ** to be inserted. If seekResult<0 then pCur points to a cell that is
9011 ** smaller then (pKey,nKey). If seekResult>0 then pCur points to a cell
9012 ** that is larger than (pKey,nKey).
9014 ** If seekResult==0, that means pCur is pointing at some unknown location.
9015 ** In that case, this routine must seek the cursor to the correct insertion
9016 ** point for (pKey,nKey) before doing the insertion. For index btrees,
9017 ** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked
9018 ** key values and pX->aMem can be used instead of pX->pKey to avoid having
9019 ** to decode the key.
9021 int sqlite3BtreeInsert(
9022 BtCursor *pCur, /* Insert data into the table of this cursor */
9023 const BtreePayload *pX, /* Content of the row to be inserted */
9024 int flags, /* True if this is likely an append */
9025 int seekResult /* Result of prior IndexMoveto() call */
9027 int rc;
9028 int loc = seekResult; /* -1: before desired location +1: after */
9029 int szNew = 0;
9030 int idx;
9031 MemPage *pPage;
9032 Btree *p = pCur->pBtree;
9033 unsigned char *oldCell;
9034 unsigned char *newCell = 0;
9036 assert( (flags & (BTREE_SAVEPOSITION|BTREE_APPEND|BTREE_PREFORMAT))==flags );
9037 assert( (flags & BTREE_PREFORMAT)==0 || seekResult || pCur->pKeyInfo==0 );
9039 /* Save the positions of any other cursors open on this table.
9041 ** In some cases, the call to btreeMoveto() below is a no-op. For
9042 ** example, when inserting data into a table with auto-generated integer
9043 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
9044 ** integer key to use. It then calls this function to actually insert the
9045 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
9046 ** that the cursor is already where it needs to be and returns without
9047 ** doing any work. To avoid thwarting these optimizations, it is important
9048 ** not to clear the cursor here.
9050 if( pCur->curFlags & BTCF_Multiple ){
9051 rc = saveAllCursors(p->pBt, pCur->pgnoRoot, pCur);
9052 if( rc ) return rc;
9053 if( loc && pCur->iPage<0 ){
9054 /* This can only happen if the schema is corrupt such that there is more
9055 ** than one table or index with the same root page as used by the cursor.
9056 ** Which can only happen if the SQLITE_NoSchemaError flag was set when
9057 ** the schema was loaded. This cannot be asserted though, as a user might
9058 ** set the flag, load the schema, and then unset the flag. */
9059 return SQLITE_CORRUPT_BKPT;
9063 /* Ensure that the cursor is not in the CURSOR_FAULT state and that it
9064 ** points to a valid cell.
9066 if( pCur->eState>=CURSOR_REQUIRESEEK ){
9067 testcase( pCur->eState==CURSOR_REQUIRESEEK );
9068 testcase( pCur->eState==CURSOR_FAULT );
9069 rc = moveToRoot(pCur);
9070 if( rc && rc!=SQLITE_EMPTY ) return rc;
9073 assert( cursorOwnsBtShared(pCur) );
9074 assert( (pCur->curFlags & BTCF_WriteFlag)!=0
9075 && p->pBt->inTransaction==TRANS_WRITE
9076 && (p->pBt->btsFlags & BTS_READ_ONLY)==0 );
9077 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
9079 /* Assert that the caller has been consistent. If this cursor was opened
9080 ** expecting an index b-tree, then the caller should be inserting blob
9081 ** keys with no associated data. If the cursor was opened expecting an
9082 ** intkey table, the caller should be inserting integer keys with a
9083 ** blob of associated data. */
9084 assert( (flags & BTREE_PREFORMAT) || (pX->pKey==0)==(pCur->pKeyInfo==0) );
9086 if( pCur->pKeyInfo==0 ){
9087 assert( pX->pKey==0 );
9088 /* If this is an insert into a table b-tree, invalidate any incrblob
9089 ** cursors open on the row being replaced */
9090 if( p->hasIncrblobCur ){
9091 invalidateIncrblobCursors(p, pCur->pgnoRoot, pX->nKey, 0);
9094 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
9095 ** to a row with the same key as the new entry being inserted.
9097 #ifdef SQLITE_DEBUG
9098 if( flags & BTREE_SAVEPOSITION ){
9099 assert( pCur->curFlags & BTCF_ValidNKey );
9100 assert( pX->nKey==pCur->info.nKey );
9101 assert( loc==0 );
9103 #endif
9105 /* On the other hand, BTREE_SAVEPOSITION==0 does not imply
9106 ** that the cursor is not pointing to a row to be overwritten.
9107 ** So do a complete check.
9109 if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){
9110 /* The cursor is pointing to the entry that is to be
9111 ** overwritten */
9112 assert( pX->nData>=0 && pX->nZero>=0 );
9113 if( pCur->info.nSize!=0
9114 && pCur->info.nPayload==(u32)pX->nData+pX->nZero
9116 /* New entry is the same size as the old. Do an overwrite */
9117 return btreeOverwriteCell(pCur, pX);
9119 assert( loc==0 );
9120 }else if( loc==0 ){
9121 /* The cursor is *not* pointing to the cell to be overwritten, nor
9122 ** to an adjacent cell. Move the cursor so that it is pointing either
9123 ** to the cell to be overwritten or an adjacent cell.
9125 rc = sqlite3BtreeTableMoveto(pCur, pX->nKey,
9126 (flags & BTREE_APPEND)!=0, &loc);
9127 if( rc ) return rc;
9129 }else{
9130 /* This is an index or a WITHOUT ROWID table */
9132 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
9133 ** to a row with the same key as the new entry being inserted.
9135 assert( (flags & BTREE_SAVEPOSITION)==0 || loc==0 );
9137 /* If the cursor is not already pointing either to the cell to be
9138 ** overwritten, or if a new cell is being inserted, if the cursor is
9139 ** not pointing to an immediately adjacent cell, then move the cursor
9140 ** so that it does.
9142 if( loc==0 && (flags & BTREE_SAVEPOSITION)==0 ){
9143 if( pX->nMem ){
9144 UnpackedRecord r;
9145 r.pKeyInfo = pCur->pKeyInfo;
9146 r.aMem = pX->aMem;
9147 r.nField = pX->nMem;
9148 r.default_rc = 0;
9149 r.eqSeen = 0;
9150 rc = sqlite3BtreeIndexMoveto(pCur, &r, &loc);
9151 }else{
9152 rc = btreeMoveto(pCur, pX->pKey, pX->nKey,
9153 (flags & BTREE_APPEND)!=0, &loc);
9155 if( rc ) return rc;
9158 /* If the cursor is currently pointing to an entry to be overwritten
9159 ** and the new content is the same as as the old, then use the
9160 ** overwrite optimization.
9162 if( loc==0 ){
9163 getCellInfo(pCur);
9164 if( pCur->info.nKey==pX->nKey ){
9165 BtreePayload x2;
9166 x2.pData = pX->pKey;
9167 x2.nData = pX->nKey;
9168 x2.nZero = 0;
9169 return btreeOverwriteCell(pCur, &x2);
9173 assert( pCur->eState==CURSOR_VALID
9174 || (pCur->eState==CURSOR_INVALID && loc) );
9176 pPage = pCur->pPage;
9177 assert( pPage->intKey || pX->nKey>=0 || (flags & BTREE_PREFORMAT) );
9178 assert( pPage->leaf || !pPage->intKey );
9179 if( pPage->nFree<0 ){
9180 if( NEVER(pCur->eState>CURSOR_INVALID) ){
9181 /* ^^^^^--- due to the moveToRoot() call above */
9182 rc = SQLITE_CORRUPT_BKPT;
9183 }else{
9184 rc = btreeComputeFreeSpace(pPage);
9186 if( rc ) return rc;
9189 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
9190 pCur->pgnoRoot, pX->nKey, pX->nData, pPage->pgno,
9191 loc==0 ? "overwrite" : "new entry"));
9192 assert( pPage->isInit || CORRUPT_DB );
9193 newCell = p->pBt->pTmpSpace;
9194 assert( newCell!=0 );
9195 assert( BTREE_PREFORMAT==OPFLAG_PREFORMAT );
9196 if( flags & BTREE_PREFORMAT ){
9197 rc = SQLITE_OK;
9198 szNew = p->pBt->nPreformatSize;
9199 if( szNew<4 ) szNew = 4;
9200 if( ISAUTOVACUUM(p->pBt) && szNew>pPage->maxLocal ){
9201 CellInfo info;
9202 pPage->xParseCell(pPage, newCell, &info);
9203 if( info.nPayload!=info.nLocal ){
9204 Pgno ovfl = get4byte(&newCell[szNew-4]);
9205 ptrmapPut(p->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, &rc);
9206 if( NEVER(rc) ) goto end_insert;
9209 }else{
9210 rc = fillInCell(pPage, newCell, pX, &szNew);
9211 if( rc ) goto end_insert;
9213 assert( szNew==pPage->xCellSize(pPage, newCell) );
9214 assert( szNew <= MX_CELL_SIZE(p->pBt) );
9215 idx = pCur->ix;
9216 if( loc==0 ){
9217 CellInfo info;
9218 assert( idx>=0 );
9219 if( idx>=pPage->nCell ){
9220 return SQLITE_CORRUPT_BKPT;
9222 rc = sqlite3PagerWrite(pPage->pDbPage);
9223 if( rc ){
9224 goto end_insert;
9226 oldCell = findCell(pPage, idx);
9227 if( !pPage->leaf ){
9228 memcpy(newCell, oldCell, 4);
9230 BTREE_CLEAR_CELL(rc, pPage, oldCell, info);
9231 testcase( pCur->curFlags & BTCF_ValidOvfl );
9232 invalidateOverflowCache(pCur);
9233 if( info.nSize==szNew && info.nLocal==info.nPayload
9234 && (!ISAUTOVACUUM(p->pBt) || szNew<pPage->minLocal)
9236 /* Overwrite the old cell with the new if they are the same size.
9237 ** We could also try to do this if the old cell is smaller, then add
9238 ** the leftover space to the free list. But experiments show that
9239 ** doing that is no faster then skipping this optimization and just
9240 ** calling dropCell() and insertCell().
9242 ** This optimization cannot be used on an autovacuum database if the
9243 ** new entry uses overflow pages, as the insertCell() call below is
9244 ** necessary to add the PTRMAP_OVERFLOW1 pointer-map entry. */
9245 assert( rc==SQLITE_OK ); /* clearCell never fails when nLocal==nPayload */
9246 if( oldCell < pPage->aData+pPage->hdrOffset+10 ){
9247 return SQLITE_CORRUPT_BKPT;
9249 if( oldCell+szNew > pPage->aDataEnd ){
9250 return SQLITE_CORRUPT_BKPT;
9252 memcpy(oldCell, newCell, szNew);
9253 return SQLITE_OK;
9255 dropCell(pPage, idx, info.nSize, &rc);
9256 if( rc ) goto end_insert;
9257 }else if( loc<0 && pPage->nCell>0 ){
9258 assert( pPage->leaf );
9259 idx = ++pCur->ix;
9260 pCur->curFlags &= ~BTCF_ValidNKey;
9261 }else{
9262 assert( pPage->leaf );
9264 rc = insertCell(pPage, idx, newCell, szNew, 0, 0);
9265 assert( pPage->nOverflow==0 || rc==SQLITE_OK );
9266 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
9268 /* If no error has occurred and pPage has an overflow cell, call balance()
9269 ** to redistribute the cells within the tree. Since balance() may move
9270 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
9271 ** variables.
9273 ** Previous versions of SQLite called moveToRoot() to move the cursor
9274 ** back to the root page as balance() used to invalidate the contents
9275 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
9276 ** set the cursor state to "invalid". This makes common insert operations
9277 ** slightly faster.
9279 ** There is a subtle but important optimization here too. When inserting
9280 ** multiple records into an intkey b-tree using a single cursor (as can
9281 ** happen while processing an "INSERT INTO ... SELECT" statement), it
9282 ** is advantageous to leave the cursor pointing to the last entry in
9283 ** the b-tree if possible. If the cursor is left pointing to the last
9284 ** entry in the table, and the next row inserted has an integer key
9285 ** larger than the largest existing key, it is possible to insert the
9286 ** row without seeking the cursor. This can be a big performance boost.
9288 pCur->info.nSize = 0;
9289 if( pPage->nOverflow ){
9290 assert( rc==SQLITE_OK );
9291 pCur->curFlags &= ~(BTCF_ValidNKey);
9292 rc = balance(pCur);
9294 /* Must make sure nOverflow is reset to zero even if the balance()
9295 ** fails. Internal data structure corruption will result otherwise.
9296 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
9297 ** from trying to save the current position of the cursor. */
9298 pCur->pPage->nOverflow = 0;
9299 pCur->eState = CURSOR_INVALID;
9300 if( (flags & BTREE_SAVEPOSITION) && rc==SQLITE_OK ){
9301 btreeReleaseAllCursorPages(pCur);
9302 if( pCur->pKeyInfo ){
9303 assert( pCur->pKey==0 );
9304 pCur->pKey = sqlite3Malloc( pX->nKey );
9305 if( pCur->pKey==0 ){
9306 rc = SQLITE_NOMEM;
9307 }else{
9308 memcpy(pCur->pKey, pX->pKey, pX->nKey);
9311 pCur->eState = CURSOR_REQUIRESEEK;
9312 pCur->nKey = pX->nKey;
9315 assert( pCur->iPage<0 || pCur->pPage->nOverflow==0 );
9317 end_insert:
9318 return rc;
9322 ** This function is used as part of copying the current row from cursor
9323 ** pSrc into cursor pDest. If the cursors are open on intkey tables, then
9324 ** parameter iKey is used as the rowid value when the record is copied
9325 ** into pDest. Otherwise, the record is copied verbatim.
9327 ** This function does not actually write the new value to cursor pDest.
9328 ** Instead, it creates and populates any required overflow pages and
9329 ** writes the data for the new cell into the BtShared.pTmpSpace buffer
9330 ** for the destination database. The size of the cell, in bytes, is left
9331 ** in BtShared.nPreformatSize. The caller completes the insertion by
9332 ** calling sqlite3BtreeInsert() with the BTREE_PREFORMAT flag specified.
9334 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
9336 int sqlite3BtreeTransferRow(BtCursor *pDest, BtCursor *pSrc, i64 iKey){
9337 BtShared *pBt = pDest->pBt;
9338 u8 *aOut = pBt->pTmpSpace; /* Pointer to next output buffer */
9339 const u8 *aIn; /* Pointer to next input buffer */
9340 u32 nIn; /* Size of input buffer aIn[] */
9341 u32 nRem; /* Bytes of data still to copy */
9343 getCellInfo(pSrc);
9344 if( pSrc->info.nPayload<0x80 ){
9345 *(aOut++) = pSrc->info.nPayload;
9346 }else{
9347 aOut += sqlite3PutVarint(aOut, pSrc->info.nPayload);
9349 if( pDest->pKeyInfo==0 ) aOut += putVarint(aOut, iKey);
9350 nIn = pSrc->info.nLocal;
9351 aIn = pSrc->info.pPayload;
9352 if( aIn+nIn>pSrc->pPage->aDataEnd ){
9353 return SQLITE_CORRUPT_BKPT;
9355 nRem = pSrc->info.nPayload;
9356 if( nIn==nRem && nIn<pDest->pPage->maxLocal ){
9357 memcpy(aOut, aIn, nIn);
9358 pBt->nPreformatSize = nIn + (aOut - pBt->pTmpSpace);
9359 return SQLITE_OK;
9360 }else{
9361 int rc = SQLITE_OK;
9362 Pager *pSrcPager = pSrc->pBt->pPager;
9363 u8 *pPgnoOut = 0;
9364 Pgno ovflIn = 0;
9365 DbPage *pPageIn = 0;
9366 MemPage *pPageOut = 0;
9367 u32 nOut; /* Size of output buffer aOut[] */
9369 nOut = btreePayloadToLocal(pDest->pPage, pSrc->info.nPayload);
9370 pBt->nPreformatSize = nOut + (aOut - pBt->pTmpSpace);
9371 if( nOut<pSrc->info.nPayload ){
9372 pPgnoOut = &aOut[nOut];
9373 pBt->nPreformatSize += 4;
9376 if( nRem>nIn ){
9377 if( aIn+nIn+4>pSrc->pPage->aDataEnd ){
9378 return SQLITE_CORRUPT_BKPT;
9380 ovflIn = get4byte(&pSrc->info.pPayload[nIn]);
9383 do {
9384 nRem -= nOut;
9386 assert( nOut>0 );
9387 if( nIn>0 ){
9388 int nCopy = MIN(nOut, nIn);
9389 memcpy(aOut, aIn, nCopy);
9390 nOut -= nCopy;
9391 nIn -= nCopy;
9392 aOut += nCopy;
9393 aIn += nCopy;
9395 if( nOut>0 ){
9396 sqlite3PagerUnref(pPageIn);
9397 pPageIn = 0;
9398 rc = sqlite3PagerGet(pSrcPager, ovflIn, &pPageIn, PAGER_GET_READONLY);
9399 if( rc==SQLITE_OK ){
9400 aIn = (const u8*)sqlite3PagerGetData(pPageIn);
9401 ovflIn = get4byte(aIn);
9402 aIn += 4;
9403 nIn = pSrc->pBt->usableSize - 4;
9406 }while( rc==SQLITE_OK && nOut>0 );
9408 if( rc==SQLITE_OK && nRem>0 && ALWAYS(pPgnoOut) ){
9409 Pgno pgnoNew;
9410 MemPage *pNew = 0;
9411 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
9412 put4byte(pPgnoOut, pgnoNew);
9413 if( ISAUTOVACUUM(pBt) && pPageOut ){
9414 ptrmapPut(pBt, pgnoNew, PTRMAP_OVERFLOW2, pPageOut->pgno, &rc);
9416 releasePage(pPageOut);
9417 pPageOut = pNew;
9418 if( pPageOut ){
9419 pPgnoOut = pPageOut->aData;
9420 put4byte(pPgnoOut, 0);
9421 aOut = &pPgnoOut[4];
9422 nOut = MIN(pBt->usableSize - 4, nRem);
9425 }while( nRem>0 && rc==SQLITE_OK );
9427 releasePage(pPageOut);
9428 sqlite3PagerUnref(pPageIn);
9429 return rc;
9434 ** Delete the entry that the cursor is pointing to.
9436 ** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then
9437 ** the cursor is left pointing at an arbitrary location after the delete.
9438 ** But if that bit is set, then the cursor is left in a state such that
9439 ** the next call to BtreeNext() or BtreePrev() moves it to the same row
9440 ** as it would have been on if the call to BtreeDelete() had been omitted.
9442 ** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes
9443 ** associated with a single table entry and its indexes. Only one of those
9444 ** deletes is considered the "primary" delete. The primary delete occurs
9445 ** on a cursor that is not a BTREE_FORDELETE cursor. All but one delete
9446 ** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag.
9447 ** The BTREE_AUXDELETE bit is a hint that is not used by this implementation,
9448 ** but which might be used by alternative storage engines.
9450 int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){
9451 Btree *p = pCur->pBtree;
9452 BtShared *pBt = p->pBt;
9453 int rc; /* Return code */
9454 MemPage *pPage; /* Page to delete cell from */
9455 unsigned char *pCell; /* Pointer to cell to delete */
9456 int iCellIdx; /* Index of cell to delete */
9457 int iCellDepth; /* Depth of node containing pCell */
9458 CellInfo info; /* Size of the cell being deleted */
9459 u8 bPreserve; /* Keep cursor valid. 2 for CURSOR_SKIPNEXT */
9461 assert( cursorOwnsBtShared(pCur) );
9462 assert( pBt->inTransaction==TRANS_WRITE );
9463 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
9464 assert( pCur->curFlags & BTCF_WriteFlag );
9465 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
9466 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
9467 assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 );
9468 if( pCur->eState!=CURSOR_VALID ){
9469 if( pCur->eState>=CURSOR_REQUIRESEEK ){
9470 rc = btreeRestoreCursorPosition(pCur);
9471 assert( rc!=SQLITE_OK || CORRUPT_DB || pCur->eState==CURSOR_VALID );
9472 if( rc || pCur->eState!=CURSOR_VALID ) return rc;
9473 }else{
9474 return SQLITE_CORRUPT_BKPT;
9477 assert( pCur->eState==CURSOR_VALID );
9479 iCellDepth = pCur->iPage;
9480 iCellIdx = pCur->ix;
9481 pPage = pCur->pPage;
9482 if( pPage->nCell<=iCellIdx ){
9483 return SQLITE_CORRUPT_BKPT;
9485 pCell = findCell(pPage, iCellIdx);
9486 if( pPage->nFree<0 && btreeComputeFreeSpace(pPage) ){
9487 return SQLITE_CORRUPT_BKPT;
9490 /* If the BTREE_SAVEPOSITION bit is on, then the cursor position must
9491 ** be preserved following this delete operation. If the current delete
9492 ** will cause a b-tree rebalance, then this is done by saving the cursor
9493 ** key and leaving the cursor in CURSOR_REQUIRESEEK state before
9494 ** returning.
9496 ** If the current delete will not cause a rebalance, then the cursor
9497 ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately
9498 ** before or after the deleted entry.
9500 ** The bPreserve value records which path is required:
9502 ** bPreserve==0 Not necessary to save the cursor position
9503 ** bPreserve==1 Use CURSOR_REQUIRESEEK to save the cursor position
9504 ** bPreserve==2 Cursor won't move. Set CURSOR_SKIPNEXT.
9506 bPreserve = (flags & BTREE_SAVEPOSITION)!=0;
9507 if( bPreserve ){
9508 if( !pPage->leaf
9509 || (pPage->nFree+pPage->xCellSize(pPage,pCell)+2) >
9510 (int)(pBt->usableSize*2/3)
9511 || pPage->nCell==1 /* See dbfuzz001.test for a test case */
9513 /* A b-tree rebalance will be required after deleting this entry.
9514 ** Save the cursor key. */
9515 rc = saveCursorKey(pCur);
9516 if( rc ) return rc;
9517 }else{
9518 bPreserve = 2;
9522 /* If the page containing the entry to delete is not a leaf page, move
9523 ** the cursor to the largest entry in the tree that is smaller than
9524 ** the entry being deleted. This cell will replace the cell being deleted
9525 ** from the internal node. The 'previous' entry is used for this instead
9526 ** of the 'next' entry, as the previous entry is always a part of the
9527 ** sub-tree headed by the child page of the cell being deleted. This makes
9528 ** balancing the tree following the delete operation easier. */
9529 if( !pPage->leaf ){
9530 rc = sqlite3BtreePrevious(pCur, 0);
9531 assert( rc!=SQLITE_DONE );
9532 if( rc ) return rc;
9535 /* Save the positions of any other cursors open on this table before
9536 ** making any modifications. */
9537 if( pCur->curFlags & BTCF_Multiple ){
9538 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
9539 if( rc ) return rc;
9542 /* If this is a delete operation to remove a row from a table b-tree,
9543 ** invalidate any incrblob cursors open on the row being deleted. */
9544 if( pCur->pKeyInfo==0 && p->hasIncrblobCur ){
9545 invalidateIncrblobCursors(p, pCur->pgnoRoot, pCur->info.nKey, 0);
9548 /* Make the page containing the entry to be deleted writable. Then free any
9549 ** overflow pages associated with the entry and finally remove the cell
9550 ** itself from within the page. */
9551 rc = sqlite3PagerWrite(pPage->pDbPage);
9552 if( rc ) return rc;
9553 BTREE_CLEAR_CELL(rc, pPage, pCell, info);
9554 dropCell(pPage, iCellIdx, info.nSize, &rc);
9555 if( rc ) return rc;
9557 /* If the cell deleted was not located on a leaf page, then the cursor
9558 ** is currently pointing to the largest entry in the sub-tree headed
9559 ** by the child-page of the cell that was just deleted from an internal
9560 ** node. The cell from the leaf node needs to be moved to the internal
9561 ** node to replace the deleted cell. */
9562 if( !pPage->leaf ){
9563 MemPage *pLeaf = pCur->pPage;
9564 int nCell;
9565 Pgno n;
9566 unsigned char *pTmp;
9568 if( pLeaf->nFree<0 ){
9569 rc = btreeComputeFreeSpace(pLeaf);
9570 if( rc ) return rc;
9572 if( iCellDepth<pCur->iPage-1 ){
9573 n = pCur->apPage[iCellDepth+1]->pgno;
9574 }else{
9575 n = pCur->pPage->pgno;
9577 pCell = findCell(pLeaf, pLeaf->nCell-1);
9578 if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT;
9579 nCell = pLeaf->xCellSize(pLeaf, pCell);
9580 assert( MX_CELL_SIZE(pBt) >= nCell );
9581 pTmp = pBt->pTmpSpace;
9582 assert( pTmp!=0 );
9583 rc = sqlite3PagerWrite(pLeaf->pDbPage);
9584 if( rc==SQLITE_OK ){
9585 rc = insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n);
9587 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
9588 if( rc ) return rc;
9591 /* Balance the tree. If the entry deleted was located on a leaf page,
9592 ** then the cursor still points to that page. In this case the first
9593 ** call to balance() repairs the tree, and the if(...) condition is
9594 ** never true.
9596 ** Otherwise, if the entry deleted was on an internal node page, then
9597 ** pCur is pointing to the leaf page from which a cell was removed to
9598 ** replace the cell deleted from the internal node. This is slightly
9599 ** tricky as the leaf node may be underfull, and the internal node may
9600 ** be either under or overfull. In this case run the balancing algorithm
9601 ** on the leaf node first. If the balance proceeds far enough up the
9602 ** tree that we can be sure that any problem in the internal node has
9603 ** been corrected, so be it. Otherwise, after balancing the leaf node,
9604 ** walk the cursor up the tree to the internal node and balance it as
9605 ** well. */
9606 assert( pCur->pPage->nOverflow==0 );
9607 assert( pCur->pPage->nFree>=0 );
9608 if( pCur->pPage->nFree*3<=(int)pCur->pBt->usableSize*2 ){
9609 /* Optimization: If the free space is less than 2/3rds of the page,
9610 ** then balance() will always be a no-op. No need to invoke it. */
9611 rc = SQLITE_OK;
9612 }else{
9613 rc = balance(pCur);
9615 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
9616 releasePageNotNull(pCur->pPage);
9617 pCur->iPage--;
9618 while( pCur->iPage>iCellDepth ){
9619 releasePage(pCur->apPage[pCur->iPage--]);
9621 pCur->pPage = pCur->apPage[pCur->iPage];
9622 rc = balance(pCur);
9625 if( rc==SQLITE_OK ){
9626 if( bPreserve>1 ){
9627 assert( (pCur->iPage==iCellDepth || CORRUPT_DB) );
9628 assert( pPage==pCur->pPage || CORRUPT_DB );
9629 assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell );
9630 pCur->eState = CURSOR_SKIPNEXT;
9631 if( iCellIdx>=pPage->nCell ){
9632 pCur->skipNext = -1;
9633 pCur->ix = pPage->nCell-1;
9634 }else{
9635 pCur->skipNext = 1;
9637 }else{
9638 rc = moveToRoot(pCur);
9639 if( bPreserve ){
9640 btreeReleaseAllCursorPages(pCur);
9641 pCur->eState = CURSOR_REQUIRESEEK;
9643 if( rc==SQLITE_EMPTY ) rc = SQLITE_OK;
9646 return rc;
9650 ** Create a new BTree table. Write into *piTable the page
9651 ** number for the root page of the new table.
9653 ** The type of type is determined by the flags parameter. Only the
9654 ** following values of flags are currently in use. Other values for
9655 ** flags might not work:
9657 ** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
9658 ** BTREE_ZERODATA Used for SQL indices
9660 static int btreeCreateTable(Btree *p, Pgno *piTable, int createTabFlags){
9661 BtShared *pBt = p->pBt;
9662 MemPage *pRoot;
9663 Pgno pgnoRoot;
9664 int rc;
9665 int ptfFlags; /* Page-type flage for the root page of new table */
9667 assert( sqlite3BtreeHoldsMutex(p) );
9668 assert( pBt->inTransaction==TRANS_WRITE );
9669 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
9671 #ifdef SQLITE_OMIT_AUTOVACUUM
9672 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
9673 if( rc ){
9674 return rc;
9676 #else
9677 if( pBt->autoVacuum ){
9678 Pgno pgnoMove; /* Move a page here to make room for the root-page */
9679 MemPage *pPageMove; /* The page to move to. */
9681 /* Creating a new table may probably require moving an existing database
9682 ** to make room for the new tables root page. In case this page turns
9683 ** out to be an overflow page, delete all overflow page-map caches
9684 ** held by open cursors.
9686 invalidateAllOverflowCache(pBt);
9688 /* Read the value of meta[3] from the database to determine where the
9689 ** root page of the new table should go. meta[3] is the largest root-page
9690 ** created so far, so the new root-page is (meta[3]+1).
9692 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
9693 if( pgnoRoot>btreePagecount(pBt) ){
9694 return SQLITE_CORRUPT_BKPT;
9696 pgnoRoot++;
9698 /* The new root-page may not be allocated on a pointer-map page, or the
9699 ** PENDING_BYTE page.
9701 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
9702 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
9703 pgnoRoot++;
9705 assert( pgnoRoot>=3 );
9707 /* Allocate a page. The page that currently resides at pgnoRoot will
9708 ** be moved to the allocated page (unless the allocated page happens
9709 ** to reside at pgnoRoot).
9711 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
9712 if( rc!=SQLITE_OK ){
9713 return rc;
9716 if( pgnoMove!=pgnoRoot ){
9717 /* pgnoRoot is the page that will be used for the root-page of
9718 ** the new table (assuming an error did not occur). But we were
9719 ** allocated pgnoMove. If required (i.e. if it was not allocated
9720 ** by extending the file), the current page at position pgnoMove
9721 ** is already journaled.
9723 u8 eType = 0;
9724 Pgno iPtrPage = 0;
9726 /* Save the positions of any open cursors. This is required in
9727 ** case they are holding a reference to an xFetch reference
9728 ** corresponding to page pgnoRoot. */
9729 rc = saveAllCursors(pBt, 0, 0);
9730 releasePage(pPageMove);
9731 if( rc!=SQLITE_OK ){
9732 return rc;
9735 /* Move the page currently at pgnoRoot to pgnoMove. */
9736 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
9737 if( rc!=SQLITE_OK ){
9738 return rc;
9740 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
9741 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
9742 rc = SQLITE_CORRUPT_BKPT;
9744 if( rc!=SQLITE_OK ){
9745 releasePage(pRoot);
9746 return rc;
9748 assert( eType!=PTRMAP_ROOTPAGE );
9749 assert( eType!=PTRMAP_FREEPAGE );
9750 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
9751 releasePage(pRoot);
9753 /* Obtain the page at pgnoRoot */
9754 if( rc!=SQLITE_OK ){
9755 return rc;
9757 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
9758 if( rc!=SQLITE_OK ){
9759 return rc;
9761 rc = sqlite3PagerWrite(pRoot->pDbPage);
9762 if( rc!=SQLITE_OK ){
9763 releasePage(pRoot);
9764 return rc;
9766 }else{
9767 pRoot = pPageMove;
9770 /* Update the pointer-map and meta-data with the new root-page number. */
9771 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
9772 if( rc ){
9773 releasePage(pRoot);
9774 return rc;
9777 /* When the new root page was allocated, page 1 was made writable in
9778 ** order either to increase the database filesize, or to decrement the
9779 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
9781 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
9782 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
9783 if( NEVER(rc) ){
9784 releasePage(pRoot);
9785 return rc;
9788 }else{
9789 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
9790 if( rc ) return rc;
9792 #endif
9793 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
9794 if( createTabFlags & BTREE_INTKEY ){
9795 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
9796 }else{
9797 ptfFlags = PTF_ZERODATA | PTF_LEAF;
9799 zeroPage(pRoot, ptfFlags);
9800 sqlite3PagerUnref(pRoot->pDbPage);
9801 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
9802 *piTable = pgnoRoot;
9803 return SQLITE_OK;
9805 int sqlite3BtreeCreateTable(Btree *p, Pgno *piTable, int flags){
9806 int rc;
9807 sqlite3BtreeEnter(p);
9808 rc = btreeCreateTable(p, piTable, flags);
9809 sqlite3BtreeLeave(p);
9810 return rc;
9814 ** Erase the given database page and all its children. Return
9815 ** the page to the freelist.
9817 static int clearDatabasePage(
9818 BtShared *pBt, /* The BTree that contains the table */
9819 Pgno pgno, /* Page number to clear */
9820 int freePageFlag, /* Deallocate page if true */
9821 i64 *pnChange /* Add number of Cells freed to this counter */
9823 MemPage *pPage;
9824 int rc;
9825 unsigned char *pCell;
9826 int i;
9827 int hdr;
9828 CellInfo info;
9830 assert( sqlite3_mutex_held(pBt->mutex) );
9831 if( pgno>btreePagecount(pBt) ){
9832 return SQLITE_CORRUPT_BKPT;
9834 rc = getAndInitPage(pBt, pgno, &pPage, 0, 0);
9835 if( rc ) return rc;
9836 if( (pBt->openFlags & BTREE_SINGLE)==0
9837 && sqlite3PagerPageRefcount(pPage->pDbPage) != (1 + (pgno==1))
9839 rc = SQLITE_CORRUPT_BKPT;
9840 goto cleardatabasepage_out;
9842 hdr = pPage->hdrOffset;
9843 for(i=0; i<pPage->nCell; i++){
9844 pCell = findCell(pPage, i);
9845 if( !pPage->leaf ){
9846 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
9847 if( rc ) goto cleardatabasepage_out;
9849 BTREE_CLEAR_CELL(rc, pPage, pCell, info);
9850 if( rc ) goto cleardatabasepage_out;
9852 if( !pPage->leaf ){
9853 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
9854 if( rc ) goto cleardatabasepage_out;
9855 if( pPage->intKey ) pnChange = 0;
9857 if( pnChange ){
9858 testcase( !pPage->intKey );
9859 *pnChange += pPage->nCell;
9861 if( freePageFlag ){
9862 freePage(pPage, &rc);
9863 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
9864 zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
9867 cleardatabasepage_out:
9868 releasePage(pPage);
9869 return rc;
9873 ** Delete all information from a single table in the database. iTable is
9874 ** the page number of the root of the table. After this routine returns,
9875 ** the root page is empty, but still exists.
9877 ** This routine will fail with SQLITE_LOCKED if there are any open
9878 ** read cursors on the table. Open write cursors are moved to the
9879 ** root of the table.
9881 ** If pnChange is not NULL, then the integer value pointed to by pnChange
9882 ** is incremented by the number of entries in the table.
9884 int sqlite3BtreeClearTable(Btree *p, int iTable, i64 *pnChange){
9885 int rc;
9886 BtShared *pBt = p->pBt;
9887 sqlite3BtreeEnter(p);
9888 assert( p->inTrans==TRANS_WRITE );
9890 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
9892 if( SQLITE_OK==rc ){
9893 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
9894 ** is the root of a table b-tree - if it is not, the following call is
9895 ** a no-op). */
9896 if( p->hasIncrblobCur ){
9897 invalidateIncrblobCursors(p, (Pgno)iTable, 0, 1);
9899 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
9901 sqlite3BtreeLeave(p);
9902 return rc;
9906 ** Delete all information from the single table that pCur is open on.
9908 ** This routine only work for pCur on an ephemeral table.
9910 int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
9911 return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
9915 ** Erase all information in a table and add the root of the table to
9916 ** the freelist. Except, the root of the principle table (the one on
9917 ** page 1) is never added to the freelist.
9919 ** This routine will fail with SQLITE_LOCKED if there are any open
9920 ** cursors on the table.
9922 ** If AUTOVACUUM is enabled and the page at iTable is not the last
9923 ** root page in the database file, then the last root page
9924 ** in the database file is moved into the slot formerly occupied by
9925 ** iTable and that last slot formerly occupied by the last root page
9926 ** is added to the freelist instead of iTable. In this say, all
9927 ** root pages are kept at the beginning of the database file, which
9928 ** is necessary for AUTOVACUUM to work right. *piMoved is set to the
9929 ** page number that used to be the last root page in the file before
9930 ** the move. If no page gets moved, *piMoved is set to 0.
9931 ** The last root page is recorded in meta[3] and the value of
9932 ** meta[3] is updated by this procedure.
9934 static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
9935 int rc;
9936 MemPage *pPage = 0;
9937 BtShared *pBt = p->pBt;
9939 assert( sqlite3BtreeHoldsMutex(p) );
9940 assert( p->inTrans==TRANS_WRITE );
9941 assert( iTable>=2 );
9942 if( iTable>btreePagecount(pBt) ){
9943 return SQLITE_CORRUPT_BKPT;
9946 rc = sqlite3BtreeClearTable(p, iTable, 0);
9947 if( rc ) return rc;
9948 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
9949 if( NEVER(rc) ){
9950 releasePage(pPage);
9951 return rc;
9954 *piMoved = 0;
9956 #ifdef SQLITE_OMIT_AUTOVACUUM
9957 freePage(pPage, &rc);
9958 releasePage(pPage);
9959 #else
9960 if( pBt->autoVacuum ){
9961 Pgno maxRootPgno;
9962 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
9964 if( iTable==maxRootPgno ){
9965 /* If the table being dropped is the table with the largest root-page
9966 ** number in the database, put the root page on the free list.
9968 freePage(pPage, &rc);
9969 releasePage(pPage);
9970 if( rc!=SQLITE_OK ){
9971 return rc;
9973 }else{
9974 /* The table being dropped does not have the largest root-page
9975 ** number in the database. So move the page that does into the
9976 ** gap left by the deleted root-page.
9978 MemPage *pMove;
9979 releasePage(pPage);
9980 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
9981 if( rc!=SQLITE_OK ){
9982 return rc;
9984 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
9985 releasePage(pMove);
9986 if( rc!=SQLITE_OK ){
9987 return rc;
9989 pMove = 0;
9990 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
9991 freePage(pMove, &rc);
9992 releasePage(pMove);
9993 if( rc!=SQLITE_OK ){
9994 return rc;
9996 *piMoved = maxRootPgno;
9999 /* Set the new 'max-root-page' value in the database header. This
10000 ** is the old value less one, less one more if that happens to
10001 ** be a root-page number, less one again if that is the
10002 ** PENDING_BYTE_PAGE.
10004 maxRootPgno--;
10005 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
10006 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
10007 maxRootPgno--;
10009 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
10011 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
10012 }else{
10013 freePage(pPage, &rc);
10014 releasePage(pPage);
10016 #endif
10017 return rc;
10019 int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
10020 int rc;
10021 sqlite3BtreeEnter(p);
10022 rc = btreeDropTable(p, iTable, piMoved);
10023 sqlite3BtreeLeave(p);
10024 return rc;
10029 ** This function may only be called if the b-tree connection already
10030 ** has a read or write transaction open on the database.
10032 ** Read the meta-information out of a database file. Meta[0]
10033 ** is the number of free pages currently in the database. Meta[1]
10034 ** through meta[15] are available for use by higher layers. Meta[0]
10035 ** is read-only, the others are read/write.
10037 ** The schema layer numbers meta values differently. At the schema
10038 ** layer (and the SetCookie and ReadCookie opcodes) the number of
10039 ** free pages is not visible. So Cookie[0] is the same as Meta[1].
10041 ** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead
10042 ** of reading the value out of the header, it instead loads the "DataVersion"
10043 ** from the pager. The BTREE_DATA_VERSION value is not actually stored in the
10044 ** database file. It is a number computed by the pager. But its access
10045 ** pattern is the same as header meta values, and so it is convenient to
10046 ** read it from this routine.
10048 void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
10049 BtShared *pBt = p->pBt;
10051 sqlite3BtreeEnter(p);
10052 assert( p->inTrans>TRANS_NONE );
10053 assert( SQLITE_OK==querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK) );
10054 assert( pBt->pPage1 );
10055 assert( idx>=0 && idx<=15 );
10057 if( idx==BTREE_DATA_VERSION ){
10058 *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iBDataVersion;
10059 }else{
10060 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
10063 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
10064 ** database, mark the database as read-only. */
10065 #ifdef SQLITE_OMIT_AUTOVACUUM
10066 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
10067 pBt->btsFlags |= BTS_READ_ONLY;
10069 #endif
10071 sqlite3BtreeLeave(p);
10075 ** Write meta-information back into the database. Meta[0] is
10076 ** read-only and may not be written.
10078 int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
10079 BtShared *pBt = p->pBt;
10080 unsigned char *pP1;
10081 int rc;
10082 assert( idx>=1 && idx<=15 );
10083 sqlite3BtreeEnter(p);
10084 assert( p->inTrans==TRANS_WRITE );
10085 assert( pBt->pPage1!=0 );
10086 pP1 = pBt->pPage1->aData;
10087 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
10088 if( rc==SQLITE_OK ){
10089 put4byte(&pP1[36 + idx*4], iMeta);
10090 #ifndef SQLITE_OMIT_AUTOVACUUM
10091 if( idx==BTREE_INCR_VACUUM ){
10092 assert( pBt->autoVacuum || iMeta==0 );
10093 assert( iMeta==0 || iMeta==1 );
10094 pBt->incrVacuum = (u8)iMeta;
10096 #endif
10098 sqlite3BtreeLeave(p);
10099 return rc;
10103 ** The first argument, pCur, is a cursor opened on some b-tree. Count the
10104 ** number of entries in the b-tree and write the result to *pnEntry.
10106 ** SQLITE_OK is returned if the operation is successfully executed.
10107 ** Otherwise, if an error is encountered (i.e. an IO error or database
10108 ** corruption) an SQLite error code is returned.
10110 int sqlite3BtreeCount(sqlite3 *db, BtCursor *pCur, i64 *pnEntry){
10111 i64 nEntry = 0; /* Value to return in *pnEntry */
10112 int rc; /* Return code */
10114 rc = moveToRoot(pCur);
10115 if( rc==SQLITE_EMPTY ){
10116 *pnEntry = 0;
10117 return SQLITE_OK;
10120 /* Unless an error occurs, the following loop runs one iteration for each
10121 ** page in the B-Tree structure (not including overflow pages).
10123 while( rc==SQLITE_OK && !AtomicLoad(&db->u1.isInterrupted) ){
10124 int iIdx; /* Index of child node in parent */
10125 MemPage *pPage; /* Current page of the b-tree */
10127 /* If this is a leaf page or the tree is not an int-key tree, then
10128 ** this page contains countable entries. Increment the entry counter
10129 ** accordingly.
10131 pPage = pCur->pPage;
10132 if( pPage->leaf || !pPage->intKey ){
10133 nEntry += pPage->nCell;
10136 /* pPage is a leaf node. This loop navigates the cursor so that it
10137 ** points to the first interior cell that it points to the parent of
10138 ** the next page in the tree that has not yet been visited. The
10139 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
10140 ** of the page, or to the number of cells in the page if the next page
10141 ** to visit is the right-child of its parent.
10143 ** If all pages in the tree have been visited, return SQLITE_OK to the
10144 ** caller.
10146 if( pPage->leaf ){
10147 do {
10148 if( pCur->iPage==0 ){
10149 /* All pages of the b-tree have been visited. Return successfully. */
10150 *pnEntry = nEntry;
10151 return moveToRoot(pCur);
10153 moveToParent(pCur);
10154 }while ( pCur->ix>=pCur->pPage->nCell );
10156 pCur->ix++;
10157 pPage = pCur->pPage;
10160 /* Descend to the child node of the cell that the cursor currently
10161 ** points at. This is the right-child if (iIdx==pPage->nCell).
10163 iIdx = pCur->ix;
10164 if( iIdx==pPage->nCell ){
10165 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
10166 }else{
10167 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
10171 /* An error has occurred. Return an error code. */
10172 return rc;
10176 ** Return the pager associated with a BTree. This routine is used for
10177 ** testing and debugging only.
10179 Pager *sqlite3BtreePager(Btree *p){
10180 return p->pBt->pPager;
10183 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
10185 ** Record an OOM error during integrity_check
10187 static void checkOom(IntegrityCk *pCheck){
10188 pCheck->rc = SQLITE_NOMEM;
10189 pCheck->mxErr = 0; /* Causes integrity_check processing to stop */
10190 if( pCheck->nErr==0 ) pCheck->nErr++;
10194 ** Invoke the progress handler, if appropriate. Also check for an
10195 ** interrupt.
10197 static void checkProgress(IntegrityCk *pCheck){
10198 sqlite3 *db = pCheck->db;
10199 if( AtomicLoad(&db->u1.isInterrupted) ){
10200 pCheck->rc = SQLITE_INTERRUPT;
10201 pCheck->nErr++;
10202 pCheck->mxErr = 0;
10204 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
10205 if( db->xProgress ){
10206 assert( db->nProgressOps>0 );
10207 pCheck->nStep++;
10208 if( (pCheck->nStep % db->nProgressOps)==0
10209 && db->xProgress(db->pProgressArg)
10211 pCheck->rc = SQLITE_INTERRUPT;
10212 pCheck->nErr++;
10213 pCheck->mxErr = 0;
10216 #endif
10220 ** Append a message to the error message string.
10222 static void checkAppendMsg(
10223 IntegrityCk *pCheck,
10224 const char *zFormat,
10227 va_list ap;
10228 checkProgress(pCheck);
10229 if( !pCheck->mxErr ) return;
10230 pCheck->mxErr--;
10231 pCheck->nErr++;
10232 va_start(ap, zFormat);
10233 if( pCheck->errMsg.nChar ){
10234 sqlite3_str_append(&pCheck->errMsg, "\n", 1);
10236 if( pCheck->zPfx ){
10237 sqlite3_str_appendf(&pCheck->errMsg, pCheck->zPfx, pCheck->v1, pCheck->v2);
10239 sqlite3_str_vappendf(&pCheck->errMsg, zFormat, ap);
10240 va_end(ap);
10241 if( pCheck->errMsg.accError==SQLITE_NOMEM ){
10242 checkOom(pCheck);
10245 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
10247 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
10250 ** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
10251 ** corresponds to page iPg is already set.
10253 static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
10254 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
10255 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
10259 ** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
10261 static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
10262 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
10263 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
10268 ** Add 1 to the reference count for page iPage. If this is the second
10269 ** reference to the page, add an error message to pCheck->zErrMsg.
10270 ** Return 1 if there are 2 or more references to the page and 0 if
10271 ** if this is the first reference to the page.
10273 ** Also check that the page number is in bounds.
10275 static int checkRef(IntegrityCk *pCheck, Pgno iPage){
10276 if( iPage>pCheck->nPage || iPage==0 ){
10277 checkAppendMsg(pCheck, "invalid page number %d", iPage);
10278 return 1;
10280 if( getPageReferenced(pCheck, iPage) ){
10281 checkAppendMsg(pCheck, "2nd reference to page %d", iPage);
10282 return 1;
10284 setPageReferenced(pCheck, iPage);
10285 return 0;
10288 #ifndef SQLITE_OMIT_AUTOVACUUM
10290 ** Check that the entry in the pointer-map for page iChild maps to
10291 ** page iParent, pointer type ptrType. If not, append an error message
10292 ** to pCheck.
10294 static void checkPtrmap(
10295 IntegrityCk *pCheck, /* Integrity check context */
10296 Pgno iChild, /* Child page number */
10297 u8 eType, /* Expected pointer map type */
10298 Pgno iParent /* Expected pointer map parent page number */
10300 int rc;
10301 u8 ePtrmapType;
10302 Pgno iPtrmapParent;
10304 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
10305 if( rc!=SQLITE_OK ){
10306 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) checkOom(pCheck);
10307 checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild);
10308 return;
10311 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
10312 checkAppendMsg(pCheck,
10313 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
10314 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
10317 #endif
10320 ** Check the integrity of the freelist or of an overflow page list.
10321 ** Verify that the number of pages on the list is N.
10323 static void checkList(
10324 IntegrityCk *pCheck, /* Integrity checking context */
10325 int isFreeList, /* True for a freelist. False for overflow page list */
10326 Pgno iPage, /* Page number for first page in the list */
10327 u32 N /* Expected number of pages in the list */
10329 int i;
10330 u32 expected = N;
10331 int nErrAtStart = pCheck->nErr;
10332 while( iPage!=0 && pCheck->mxErr ){
10333 DbPage *pOvflPage;
10334 unsigned char *pOvflData;
10335 if( checkRef(pCheck, iPage) ) break;
10336 N--;
10337 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){
10338 checkAppendMsg(pCheck, "failed to get page %d", iPage);
10339 break;
10341 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
10342 if( isFreeList ){
10343 u32 n = (u32)get4byte(&pOvflData[4]);
10344 #ifndef SQLITE_OMIT_AUTOVACUUM
10345 if( pCheck->pBt->autoVacuum ){
10346 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0);
10348 #endif
10349 if( n>pCheck->pBt->usableSize/4-2 ){
10350 checkAppendMsg(pCheck,
10351 "freelist leaf count too big on page %d", iPage);
10352 N--;
10353 }else{
10354 for(i=0; i<(int)n; i++){
10355 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
10356 #ifndef SQLITE_OMIT_AUTOVACUUM
10357 if( pCheck->pBt->autoVacuum ){
10358 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0);
10360 #endif
10361 checkRef(pCheck, iFreePage);
10363 N -= n;
10366 #ifndef SQLITE_OMIT_AUTOVACUUM
10367 else{
10368 /* If this database supports auto-vacuum and iPage is not the last
10369 ** page in this overflow list, check that the pointer-map entry for
10370 ** the following page matches iPage.
10372 if( pCheck->pBt->autoVacuum && N>0 ){
10373 i = get4byte(pOvflData);
10374 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage);
10377 #endif
10378 iPage = get4byte(pOvflData);
10379 sqlite3PagerUnref(pOvflPage);
10381 if( N && nErrAtStart==pCheck->nErr ){
10382 checkAppendMsg(pCheck,
10383 "%s is %d but should be %d",
10384 isFreeList ? "size" : "overflow list length",
10385 expected-N, expected);
10388 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
10391 ** An implementation of a min-heap.
10393 ** aHeap[0] is the number of elements on the heap. aHeap[1] is the
10394 ** root element. The daughter nodes of aHeap[N] are aHeap[N*2]
10395 ** and aHeap[N*2+1].
10397 ** The heap property is this: Every node is less than or equal to both
10398 ** of its daughter nodes. A consequence of the heap property is that the
10399 ** root node aHeap[1] is always the minimum value currently in the heap.
10401 ** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto
10402 ** the heap, preserving the heap property. The btreeHeapPull() routine
10403 ** removes the root element from the heap (the minimum value in the heap)
10404 ** and then moves other nodes around as necessary to preserve the heap
10405 ** property.
10407 ** This heap is used for cell overlap and coverage testing. Each u32
10408 ** entry represents the span of a cell or freeblock on a btree page.
10409 ** The upper 16 bits are the index of the first byte of a range and the
10410 ** lower 16 bits are the index of the last byte of that range.
10412 static void btreeHeapInsert(u32 *aHeap, u32 x){
10413 u32 j, i;
10414 assert( aHeap!=0 );
10415 i = ++aHeap[0];
10416 aHeap[i] = x;
10417 while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){
10418 x = aHeap[j];
10419 aHeap[j] = aHeap[i];
10420 aHeap[i] = x;
10421 i = j;
10424 static int btreeHeapPull(u32 *aHeap, u32 *pOut){
10425 u32 j, i, x;
10426 if( (x = aHeap[0])==0 ) return 0;
10427 *pOut = aHeap[1];
10428 aHeap[1] = aHeap[x];
10429 aHeap[x] = 0xffffffff;
10430 aHeap[0]--;
10431 i = 1;
10432 while( (j = i*2)<=aHeap[0] ){
10433 if( aHeap[j]>aHeap[j+1] ) j++;
10434 if( aHeap[i]<aHeap[j] ) break;
10435 x = aHeap[i];
10436 aHeap[i] = aHeap[j];
10437 aHeap[j] = x;
10438 i = j;
10440 return 1;
10443 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
10445 ** Do various sanity checks on a single page of a tree. Return
10446 ** the tree depth. Root pages return 0. Parents of root pages
10447 ** return 1, and so forth.
10449 ** These checks are done:
10451 ** 1. Make sure that cells and freeblocks do not overlap
10452 ** but combine to completely cover the page.
10453 ** 2. Make sure integer cell keys are in order.
10454 ** 3. Check the integrity of overflow pages.
10455 ** 4. Recursively call checkTreePage on all children.
10456 ** 5. Verify that the depth of all children is the same.
10458 static int checkTreePage(
10459 IntegrityCk *pCheck, /* Context for the sanity check */
10460 Pgno iPage, /* Page number of the page to check */
10461 i64 *piMinKey, /* Write minimum integer primary key here */
10462 i64 maxKey /* Error if integer primary key greater than this */
10464 MemPage *pPage = 0; /* The page being analyzed */
10465 int i; /* Loop counter */
10466 int rc; /* Result code from subroutine call */
10467 int depth = -1, d2; /* Depth of a subtree */
10468 int pgno; /* Page number */
10469 int nFrag; /* Number of fragmented bytes on the page */
10470 int hdr; /* Offset to the page header */
10471 int cellStart; /* Offset to the start of the cell pointer array */
10472 int nCell; /* Number of cells */
10473 int doCoverageCheck = 1; /* True if cell coverage checking should be done */
10474 int keyCanBeEqual = 1; /* True if IPK can be equal to maxKey
10475 ** False if IPK must be strictly less than maxKey */
10476 u8 *data; /* Page content */
10477 u8 *pCell; /* Cell content */
10478 u8 *pCellIdx; /* Next element of the cell pointer array */
10479 BtShared *pBt; /* The BtShared object that owns pPage */
10480 u32 pc; /* Address of a cell */
10481 u32 usableSize; /* Usable size of the page */
10482 u32 contentOffset; /* Offset to the start of the cell content area */
10483 u32 *heap = 0; /* Min-heap used for checking cell coverage */
10484 u32 x, prev = 0; /* Next and previous entry on the min-heap */
10485 const char *saved_zPfx = pCheck->zPfx;
10486 int saved_v1 = pCheck->v1;
10487 int saved_v2 = pCheck->v2;
10488 u8 savedIsInit = 0;
10490 /* Check that the page exists
10492 checkProgress(pCheck);
10493 if( pCheck->mxErr==0 ) goto end_of_check;
10494 pBt = pCheck->pBt;
10495 usableSize = pBt->usableSize;
10496 if( iPage==0 ) return 0;
10497 if( checkRef(pCheck, iPage) ) return 0;
10498 pCheck->zPfx = "Page %u: ";
10499 pCheck->v1 = iPage;
10500 if( (rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0 ){
10501 checkAppendMsg(pCheck,
10502 "unable to get the page. error code=%d", rc);
10503 goto end_of_check;
10506 /* Clear MemPage.isInit to make sure the corruption detection code in
10507 ** btreeInitPage() is executed. */
10508 savedIsInit = pPage->isInit;
10509 pPage->isInit = 0;
10510 if( (rc = btreeInitPage(pPage))!=0 ){
10511 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
10512 checkAppendMsg(pCheck,
10513 "btreeInitPage() returns error code %d", rc);
10514 goto end_of_check;
10516 if( (rc = btreeComputeFreeSpace(pPage))!=0 ){
10517 assert( rc==SQLITE_CORRUPT );
10518 checkAppendMsg(pCheck, "free space corruption", rc);
10519 goto end_of_check;
10521 data = pPage->aData;
10522 hdr = pPage->hdrOffset;
10524 /* Set up for cell analysis */
10525 pCheck->zPfx = "On tree page %u cell %d: ";
10526 contentOffset = get2byteNotZero(&data[hdr+5]);
10527 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
10529 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
10530 ** number of cells on the page. */
10531 nCell = get2byte(&data[hdr+3]);
10532 assert( pPage->nCell==nCell );
10534 /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
10535 ** immediately follows the b-tree page header. */
10536 cellStart = hdr + 12 - 4*pPage->leaf;
10537 assert( pPage->aCellIdx==&data[cellStart] );
10538 pCellIdx = &data[cellStart + 2*(nCell-1)];
10540 if( !pPage->leaf ){
10541 /* Analyze the right-child page of internal pages */
10542 pgno = get4byte(&data[hdr+8]);
10543 #ifndef SQLITE_OMIT_AUTOVACUUM
10544 if( pBt->autoVacuum ){
10545 pCheck->zPfx = "On page %u at right child: ";
10546 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
10548 #endif
10549 depth = checkTreePage(pCheck, pgno, &maxKey, maxKey);
10550 keyCanBeEqual = 0;
10551 }else{
10552 /* For leaf pages, the coverage check will occur in the same loop
10553 ** as the other cell checks, so initialize the heap. */
10554 heap = pCheck->heap;
10555 heap[0] = 0;
10558 /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
10559 ** integer offsets to the cell contents. */
10560 for(i=nCell-1; i>=0 && pCheck->mxErr; i--){
10561 CellInfo info;
10563 /* Check cell size */
10564 pCheck->v2 = i;
10565 assert( pCellIdx==&data[cellStart + i*2] );
10566 pc = get2byteAligned(pCellIdx);
10567 pCellIdx -= 2;
10568 if( pc<contentOffset || pc>usableSize-4 ){
10569 checkAppendMsg(pCheck, "Offset %d out of range %d..%d",
10570 pc, contentOffset, usableSize-4);
10571 doCoverageCheck = 0;
10572 continue;
10574 pCell = &data[pc];
10575 pPage->xParseCell(pPage, pCell, &info);
10576 if( pc+info.nSize>usableSize ){
10577 checkAppendMsg(pCheck, "Extends off end of page");
10578 doCoverageCheck = 0;
10579 continue;
10582 /* Check for integer primary key out of range */
10583 if( pPage->intKey ){
10584 if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){
10585 checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey);
10587 maxKey = info.nKey;
10588 keyCanBeEqual = 0; /* Only the first key on the page may ==maxKey */
10591 /* Check the content overflow list */
10592 if( info.nPayload>info.nLocal ){
10593 u32 nPage; /* Number of pages on the overflow chain */
10594 Pgno pgnoOvfl; /* First page of the overflow chain */
10595 assert( pc + info.nSize - 4 <= usableSize );
10596 nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4);
10597 pgnoOvfl = get4byte(&pCell[info.nSize - 4]);
10598 #ifndef SQLITE_OMIT_AUTOVACUUM
10599 if( pBt->autoVacuum ){
10600 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage);
10602 #endif
10603 checkList(pCheck, 0, pgnoOvfl, nPage);
10606 if( !pPage->leaf ){
10607 /* Check sanity of left child page for internal pages */
10608 pgno = get4byte(pCell);
10609 #ifndef SQLITE_OMIT_AUTOVACUUM
10610 if( pBt->autoVacuum ){
10611 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
10613 #endif
10614 d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey);
10615 keyCanBeEqual = 0;
10616 if( d2!=depth ){
10617 checkAppendMsg(pCheck, "Child page depth differs");
10618 depth = d2;
10620 }else{
10621 /* Populate the coverage-checking heap for leaf pages */
10622 btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1));
10625 *piMinKey = maxKey;
10627 /* Check for complete coverage of the page
10629 pCheck->zPfx = 0;
10630 if( doCoverageCheck && pCheck->mxErr>0 ){
10631 /* For leaf pages, the min-heap has already been initialized and the
10632 ** cells have already been inserted. But for internal pages, that has
10633 ** not yet been done, so do it now */
10634 if( !pPage->leaf ){
10635 heap = pCheck->heap;
10636 heap[0] = 0;
10637 for(i=nCell-1; i>=0; i--){
10638 u32 size;
10639 pc = get2byteAligned(&data[cellStart+i*2]);
10640 size = pPage->xCellSize(pPage, &data[pc]);
10641 btreeHeapInsert(heap, (pc<<16)|(pc+size-1));
10644 /* Add the freeblocks to the min-heap
10646 ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
10647 ** is the offset of the first freeblock, or zero if there are no
10648 ** freeblocks on the page.
10650 i = get2byte(&data[hdr+1]);
10651 while( i>0 ){
10652 int size, j;
10653 assert( (u32)i<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */
10654 size = get2byte(&data[i+2]);
10655 assert( (u32)(i+size)<=usableSize ); /* due to btreeComputeFreeSpace() */
10656 btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1));
10657 /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
10658 ** big-endian integer which is the offset in the b-tree page of the next
10659 ** freeblock in the chain, or zero if the freeblock is the last on the
10660 ** chain. */
10661 j = get2byte(&data[i]);
10662 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
10663 ** increasing offset. */
10664 assert( j==0 || j>i+size ); /* Enforced by btreeComputeFreeSpace() */
10665 assert( (u32)j<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */
10666 i = j;
10668 /* Analyze the min-heap looking for overlap between cells and/or
10669 ** freeblocks, and counting the number of untracked bytes in nFrag.
10671 ** Each min-heap entry is of the form: (start_address<<16)|end_address.
10672 ** There is an implied first entry the covers the page header, the cell
10673 ** pointer index, and the gap between the cell pointer index and the start
10674 ** of cell content.
10676 ** The loop below pulls entries from the min-heap in order and compares
10677 ** the start_address against the previous end_address. If there is an
10678 ** overlap, that means bytes are used multiple times. If there is a gap,
10679 ** that gap is added to the fragmentation count.
10681 nFrag = 0;
10682 prev = contentOffset - 1; /* Implied first min-heap entry */
10683 while( btreeHeapPull(heap,&x) ){
10684 if( (prev&0xffff)>=(x>>16) ){
10685 checkAppendMsg(pCheck,
10686 "Multiple uses for byte %u of page %u", x>>16, iPage);
10687 break;
10688 }else{
10689 nFrag += (x>>16) - (prev&0xffff) - 1;
10690 prev = x;
10693 nFrag += usableSize - (prev&0xffff) - 1;
10694 /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
10695 ** is stored in the fifth field of the b-tree page header.
10696 ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
10697 ** number of fragmented free bytes within the cell content area.
10699 if( heap[0]==0 && nFrag!=data[hdr+7] ){
10700 checkAppendMsg(pCheck,
10701 "Fragmentation of %d bytes reported as %d on page %u",
10702 nFrag, data[hdr+7], iPage);
10706 end_of_check:
10707 if( !doCoverageCheck ) pPage->isInit = savedIsInit;
10708 releasePage(pPage);
10709 pCheck->zPfx = saved_zPfx;
10710 pCheck->v1 = saved_v1;
10711 pCheck->v2 = saved_v2;
10712 return depth+1;
10714 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
10716 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
10718 ** This routine does a complete check of the given BTree file. aRoot[] is
10719 ** an array of pages numbers were each page number is the root page of
10720 ** a table. nRoot is the number of entries in aRoot.
10722 ** A read-only or read-write transaction must be opened before calling
10723 ** this function.
10725 ** Write the number of error seen in *pnErr. Except for some memory
10726 ** allocation errors, an error message held in memory obtained from
10727 ** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
10728 ** returned. If a memory allocation error occurs, NULL is returned.
10730 ** If the first entry in aRoot[] is 0, that indicates that the list of
10731 ** root pages is incomplete. This is a "partial integrity-check". This
10732 ** happens when performing an integrity check on a single table. The
10733 ** zero is skipped, of course. But in addition, the freelist checks
10734 ** and the checks to make sure every page is referenced are also skipped,
10735 ** since obviously it is not possible to know which pages are covered by
10736 ** the unverified btrees. Except, if aRoot[1] is 1, then the freelist
10737 ** checks are still performed.
10739 int sqlite3BtreeIntegrityCheck(
10740 sqlite3 *db, /* Database connection that is running the check */
10741 Btree *p, /* The btree to be checked */
10742 Pgno *aRoot, /* An array of root pages numbers for individual trees */
10743 int nRoot, /* Number of entries in aRoot[] */
10744 int mxErr, /* Stop reporting errors after this many */
10745 int *pnErr, /* OUT: Write number of errors seen to this variable */
10746 char **pzOut /* OUT: Write the error message string here */
10748 Pgno i;
10749 IntegrityCk sCheck;
10750 BtShared *pBt = p->pBt;
10751 u64 savedDbFlags = pBt->db->flags;
10752 char zErr[100];
10753 int bPartial = 0; /* True if not checking all btrees */
10754 int bCkFreelist = 1; /* True to scan the freelist */
10755 VVA_ONLY( int nRef );
10756 assert( nRoot>0 );
10758 /* aRoot[0]==0 means this is a partial check */
10759 if( aRoot[0]==0 ){
10760 assert( nRoot>1 );
10761 bPartial = 1;
10762 if( aRoot[1]!=1 ) bCkFreelist = 0;
10765 sqlite3BtreeEnter(p);
10766 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
10767 VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) );
10768 assert( nRef>=0 );
10769 memset(&sCheck, 0, sizeof(sCheck));
10770 sCheck.db = db;
10771 sCheck.pBt = pBt;
10772 sCheck.pPager = pBt->pPager;
10773 sCheck.nPage = btreePagecount(sCheck.pBt);
10774 sCheck.mxErr = mxErr;
10775 sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
10776 sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL;
10777 if( sCheck.nPage==0 ){
10778 goto integrity_ck_cleanup;
10781 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
10782 if( !sCheck.aPgRef ){
10783 checkOom(&sCheck);
10784 goto integrity_ck_cleanup;
10786 sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize );
10787 if( sCheck.heap==0 ){
10788 checkOom(&sCheck);
10789 goto integrity_ck_cleanup;
10792 i = PENDING_BYTE_PAGE(pBt);
10793 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
10795 /* Check the integrity of the freelist
10797 if( bCkFreelist ){
10798 sCheck.zPfx = "Main freelist: ";
10799 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
10800 get4byte(&pBt->pPage1->aData[36]));
10801 sCheck.zPfx = 0;
10804 /* Check all the tables.
10806 #ifndef SQLITE_OMIT_AUTOVACUUM
10807 if( !bPartial ){
10808 if( pBt->autoVacuum ){
10809 Pgno mx = 0;
10810 Pgno mxInHdr;
10811 for(i=0; (int)i<nRoot; i++) if( mx<aRoot[i] ) mx = aRoot[i];
10812 mxInHdr = get4byte(&pBt->pPage1->aData[52]);
10813 if( mx!=mxInHdr ){
10814 checkAppendMsg(&sCheck,
10815 "max rootpage (%d) disagrees with header (%d)",
10816 mx, mxInHdr
10819 }else if( get4byte(&pBt->pPage1->aData[64])!=0 ){
10820 checkAppendMsg(&sCheck,
10821 "incremental_vacuum enabled with a max rootpage of zero"
10825 #endif
10826 testcase( pBt->db->flags & SQLITE_CellSizeCk );
10827 pBt->db->flags &= ~(u64)SQLITE_CellSizeCk;
10828 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
10829 i64 notUsed;
10830 if( aRoot[i]==0 ) continue;
10831 #ifndef SQLITE_OMIT_AUTOVACUUM
10832 if( pBt->autoVacuum && aRoot[i]>1 && !bPartial ){
10833 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
10835 #endif
10836 checkTreePage(&sCheck, aRoot[i], &notUsed, LARGEST_INT64);
10838 pBt->db->flags = savedDbFlags;
10840 /* Make sure every page in the file is referenced
10842 if( !bPartial ){
10843 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
10844 #ifdef SQLITE_OMIT_AUTOVACUUM
10845 if( getPageReferenced(&sCheck, i)==0 ){
10846 checkAppendMsg(&sCheck, "Page %d is never used", i);
10848 #else
10849 /* If the database supports auto-vacuum, make sure no tables contain
10850 ** references to pointer-map pages.
10852 if( getPageReferenced(&sCheck, i)==0 &&
10853 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
10854 checkAppendMsg(&sCheck, "Page %d is never used", i);
10856 if( getPageReferenced(&sCheck, i)!=0 &&
10857 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
10858 checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i);
10860 #endif
10864 /* Clean up and report errors.
10866 integrity_ck_cleanup:
10867 sqlite3PageFree(sCheck.heap);
10868 sqlite3_free(sCheck.aPgRef);
10869 *pnErr = sCheck.nErr;
10870 if( sCheck.nErr==0 ){
10871 sqlite3_str_reset(&sCheck.errMsg);
10872 *pzOut = 0;
10873 }else{
10874 *pzOut = sqlite3StrAccumFinish(&sCheck.errMsg);
10876 /* Make sure this analysis did not leave any unref() pages. */
10877 assert( nRef==sqlite3PagerRefcount(pBt->pPager) );
10878 sqlite3BtreeLeave(p);
10879 return sCheck.rc;
10881 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
10884 ** Return the full pathname of the underlying database file. Return
10885 ** an empty string if the database is in-memory or a TEMP database.
10887 ** The pager filename is invariant as long as the pager is
10888 ** open so it is safe to access without the BtShared mutex.
10890 const char *sqlite3BtreeGetFilename(Btree *p){
10891 assert( p->pBt->pPager!=0 );
10892 return sqlite3PagerFilename(p->pBt->pPager, 1);
10896 ** Return the pathname of the journal file for this database. The return
10897 ** value of this routine is the same regardless of whether the journal file
10898 ** has been created or not.
10900 ** The pager journal filename is invariant as long as the pager is
10901 ** open so it is safe to access without the BtShared mutex.
10903 const char *sqlite3BtreeGetJournalname(Btree *p){
10904 assert( p->pBt->pPager!=0 );
10905 return sqlite3PagerJournalname(p->pBt->pPager);
10909 ** Return one of SQLITE_TXN_NONE, SQLITE_TXN_READ, or SQLITE_TXN_WRITE
10910 ** to describe the current transaction state of Btree p.
10912 int sqlite3BtreeTxnState(Btree *p){
10913 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
10914 return p ? p->inTrans : 0;
10917 #ifndef SQLITE_OMIT_WAL
10919 ** Run a checkpoint on the Btree passed as the first argument.
10921 ** Return SQLITE_LOCKED if this or any other connection has an open
10922 ** transaction on the shared-cache the argument Btree is connected to.
10924 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
10926 int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
10927 int rc = SQLITE_OK;
10928 if( p ){
10929 BtShared *pBt = p->pBt;
10930 sqlite3BtreeEnter(p);
10931 if( pBt->inTransaction!=TRANS_NONE ){
10932 rc = SQLITE_LOCKED;
10933 }else{
10934 rc = sqlite3PagerCheckpoint(pBt->pPager, p->db, eMode, pnLog, pnCkpt);
10936 sqlite3BtreeLeave(p);
10938 return rc;
10940 #endif
10943 ** Return true if there is currently a backup running on Btree p.
10945 int sqlite3BtreeIsInBackup(Btree *p){
10946 assert( p );
10947 assert( sqlite3_mutex_held(p->db->mutex) );
10948 return p->nBackup!=0;
10952 ** This function returns a pointer to a blob of memory associated with
10953 ** a single shared-btree. The memory is used by client code for its own
10954 ** purposes (for example, to store a high-level schema associated with
10955 ** the shared-btree). The btree layer manages reference counting issues.
10957 ** The first time this is called on a shared-btree, nBytes bytes of memory
10958 ** are allocated, zeroed, and returned to the caller. For each subsequent
10959 ** call the nBytes parameter is ignored and a pointer to the same blob
10960 ** of memory returned.
10962 ** If the nBytes parameter is 0 and the blob of memory has not yet been
10963 ** allocated, a null pointer is returned. If the blob has already been
10964 ** allocated, it is returned as normal.
10966 ** Just before the shared-btree is closed, the function passed as the
10967 ** xFree argument when the memory allocation was made is invoked on the
10968 ** blob of allocated memory. The xFree function should not call sqlite3_free()
10969 ** on the memory, the btree layer does that.
10971 void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
10972 BtShared *pBt = p->pBt;
10973 sqlite3BtreeEnter(p);
10974 if( !pBt->pSchema && nBytes ){
10975 pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
10976 pBt->xFreeSchema = xFree;
10978 sqlite3BtreeLeave(p);
10979 return pBt->pSchema;
10983 ** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
10984 ** btree as the argument handle holds an exclusive lock on the
10985 ** sqlite_schema table. Otherwise SQLITE_OK.
10987 int sqlite3BtreeSchemaLocked(Btree *p){
10988 int rc;
10989 assert( sqlite3_mutex_held(p->db->mutex) );
10990 sqlite3BtreeEnter(p);
10991 rc = querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK);
10992 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
10993 sqlite3BtreeLeave(p);
10994 return rc;
10998 #ifndef SQLITE_OMIT_SHARED_CACHE
11000 ** Obtain a lock on the table whose root page is iTab. The
11001 ** lock is a write lock if isWritelock is true or a read lock
11002 ** if it is false.
11004 int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
11005 int rc = SQLITE_OK;
11006 assert( p->inTrans!=TRANS_NONE );
11007 if( p->sharable ){
11008 u8 lockType = READ_LOCK + isWriteLock;
11009 assert( READ_LOCK+1==WRITE_LOCK );
11010 assert( isWriteLock==0 || isWriteLock==1 );
11012 sqlite3BtreeEnter(p);
11013 rc = querySharedCacheTableLock(p, iTab, lockType);
11014 if( rc==SQLITE_OK ){
11015 rc = setSharedCacheTableLock(p, iTab, lockType);
11017 sqlite3BtreeLeave(p);
11019 return rc;
11021 #endif
11023 #ifndef SQLITE_OMIT_INCRBLOB
11025 ** Argument pCsr must be a cursor opened for writing on an
11026 ** INTKEY table currently pointing at a valid table entry.
11027 ** This function modifies the data stored as part of that entry.
11029 ** Only the data content may only be modified, it is not possible to
11030 ** change the length of the data stored. If this function is called with
11031 ** parameters that attempt to write past the end of the existing data,
11032 ** no modifications are made and SQLITE_CORRUPT is returned.
11034 int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
11035 int rc;
11036 assert( cursorOwnsBtShared(pCsr) );
11037 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
11038 assert( pCsr->curFlags & BTCF_Incrblob );
11040 rc = restoreCursorPosition(pCsr);
11041 if( rc!=SQLITE_OK ){
11042 return rc;
11044 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
11045 if( pCsr->eState!=CURSOR_VALID ){
11046 return SQLITE_ABORT;
11049 /* Save the positions of all other cursors open on this table. This is
11050 ** required in case any of them are holding references to an xFetch
11051 ** version of the b-tree page modified by the accessPayload call below.
11053 ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
11054 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
11055 ** saveAllCursors can only return SQLITE_OK.
11057 VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
11058 assert( rc==SQLITE_OK );
11060 /* Check some assumptions:
11061 ** (a) the cursor is open for writing,
11062 ** (b) there is a read/write transaction open,
11063 ** (c) the connection holds a write-lock on the table (if required),
11064 ** (d) there are no conflicting read-locks, and
11065 ** (e) the cursor points at a valid row of an intKey table.
11067 if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
11068 return SQLITE_READONLY;
11070 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
11071 && pCsr->pBt->inTransaction==TRANS_WRITE );
11072 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
11073 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
11074 assert( pCsr->pPage->intKey );
11076 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
11080 ** Mark this cursor as an incremental blob cursor.
11082 void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
11083 pCur->curFlags |= BTCF_Incrblob;
11084 pCur->pBtree->hasIncrblobCur = 1;
11086 #endif
11089 ** Set both the "read version" (single byte at byte offset 18) and
11090 ** "write version" (single byte at byte offset 19) fields in the database
11091 ** header to iVersion.
11093 int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
11094 BtShared *pBt = pBtree->pBt;
11095 int rc; /* Return code */
11097 assert( iVersion==1 || iVersion==2 );
11099 /* If setting the version fields to 1, do not automatically open the
11100 ** WAL connection, even if the version fields are currently set to 2.
11102 pBt->btsFlags &= ~BTS_NO_WAL;
11103 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
11105 rc = sqlite3BtreeBeginTrans(pBtree, 0, 0);
11106 if( rc==SQLITE_OK ){
11107 u8 *aData = pBt->pPage1->aData;
11108 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
11109 rc = sqlite3BtreeBeginTrans(pBtree, 2, 0);
11110 if( rc==SQLITE_OK ){
11111 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
11112 if( rc==SQLITE_OK ){
11113 aData[18] = (u8)iVersion;
11114 aData[19] = (u8)iVersion;
11120 pBt->btsFlags &= ~BTS_NO_WAL;
11121 return rc;
11125 ** Return true if the cursor has a hint specified. This routine is
11126 ** only used from within assert() statements
11128 int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){
11129 return (pCsr->hints & mask)!=0;
11133 ** Return true if the given Btree is read-only.
11135 int sqlite3BtreeIsReadonly(Btree *p){
11136 return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
11140 ** Return the size of the header added to each page by this module.
11142 int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); }
11145 ** If no transaction is active and the database is not a temp-db, clear
11146 ** the in-memory pager cache.
11148 void sqlite3BtreeClearCache(Btree *p){
11149 BtShared *pBt = p->pBt;
11150 if( pBt->inTransaction==TRANS_NONE ){
11151 sqlite3PagerClearCache(pBt->pPager);
11155 #if !defined(SQLITE_OMIT_SHARED_CACHE)
11157 ** Return true if the Btree passed as the only argument is sharable.
11159 int sqlite3BtreeSharable(Btree *p){
11160 return p->sharable;
11164 ** Return the number of connections to the BtShared object accessed by
11165 ** the Btree handle passed as the only argument. For private caches
11166 ** this is always 1. For shared caches it may be 1 or greater.
11168 int sqlite3BtreeConnectionCount(Btree *p){
11169 testcase( p->sharable );
11170 return p->pBt->nRef;
11172 #endif