Snapshot of upstream SQLite 3.41.0
[sqlcipher.git] / src / vdbe.c
blobf3853e7fd2f8ac02e55c814ab7660afa3a23b010
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** The code in this file implements the function that runs the
13 ** bytecode of a prepared statement.
15 ** Various scripts scan this source file in order to generate HTML
16 ** documentation, headers files, or other derived files. The formatting
17 ** of the code in this file is, therefore, important. See other comments
18 ** in this file for details. If in doubt, do not deviate from existing
19 ** commenting and indentation practices when changing or adding code.
21 #include "sqliteInt.h"
22 #include "vdbeInt.h"
25 ** Invoke this macro on memory cells just prior to changing the
26 ** value of the cell. This macro verifies that shallow copies are
27 ** not misused. A shallow copy of a string or blob just copies a
28 ** pointer to the string or blob, not the content. If the original
29 ** is changed while the copy is still in use, the string or blob might
30 ** be changed out from under the copy. This macro verifies that nothing
31 ** like that ever happens.
33 #ifdef SQLITE_DEBUG
34 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
35 #else
36 # define memAboutToChange(P,M)
37 #endif
40 ** The following global variable is incremented every time a cursor
41 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test
42 ** procedures use this information to make sure that indices are
43 ** working correctly. This variable has no function other than to
44 ** help verify the correct operation of the library.
46 #ifdef SQLITE_TEST
47 int sqlite3_search_count = 0;
48 #endif
51 ** When this global variable is positive, it gets decremented once before
52 ** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted
53 ** field of the sqlite3 structure is set in order to simulate an interrupt.
55 ** This facility is used for testing purposes only. It does not function
56 ** in an ordinary build.
58 #ifdef SQLITE_TEST
59 int sqlite3_interrupt_count = 0;
60 #endif
63 ** The next global variable is incremented each type the OP_Sort opcode
64 ** is executed. The test procedures use this information to make sure that
65 ** sorting is occurring or not occurring at appropriate times. This variable
66 ** has no function other than to help verify the correct operation of the
67 ** library.
69 #ifdef SQLITE_TEST
70 int sqlite3_sort_count = 0;
71 #endif
74 ** The next global variable records the size of the largest MEM_Blob
75 ** or MEM_Str that has been used by a VDBE opcode. The test procedures
76 ** use this information to make sure that the zero-blob functionality
77 ** is working correctly. This variable has no function other than to
78 ** help verify the correct operation of the library.
80 #ifdef SQLITE_TEST
81 int sqlite3_max_blobsize = 0;
82 static void updateMaxBlobsize(Mem *p){
83 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
84 sqlite3_max_blobsize = p->n;
87 #endif
90 ** This macro evaluates to true if either the update hook or the preupdate
91 ** hook are enabled for database connect DB.
93 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
94 # define HAS_UPDATE_HOOK(DB) ((DB)->xPreUpdateCallback||(DB)->xUpdateCallback)
95 #else
96 # define HAS_UPDATE_HOOK(DB) ((DB)->xUpdateCallback)
97 #endif
100 ** The next global variable is incremented each time the OP_Found opcode
101 ** is executed. This is used to test whether or not the foreign key
102 ** operation implemented using OP_FkIsZero is working. This variable
103 ** has no function other than to help verify the correct operation of the
104 ** library.
106 #ifdef SQLITE_TEST
107 int sqlite3_found_count = 0;
108 #endif
111 ** Test a register to see if it exceeds the current maximum blob size.
112 ** If it does, record the new maximum blob size.
114 #if defined(SQLITE_TEST) && !defined(SQLITE_UNTESTABLE)
115 # define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P)
116 #else
117 # define UPDATE_MAX_BLOBSIZE(P)
118 #endif
120 #ifdef SQLITE_DEBUG
121 /* This routine provides a convenient place to set a breakpoint during
122 ** tracing with PRAGMA vdbe_trace=on. The breakpoint fires right after
123 ** each opcode is printed. Variables "pc" (program counter) and pOp are
124 ** available to add conditionals to the breakpoint. GDB example:
126 ** break test_trace_breakpoint if pc=22
128 ** Other useful labels for breakpoints include:
129 ** test_addop_breakpoint(pc,pOp)
130 ** sqlite3CorruptError(lineno)
131 ** sqlite3MisuseError(lineno)
132 ** sqlite3CantopenError(lineno)
134 static void test_trace_breakpoint(int pc, Op *pOp, Vdbe *v){
135 static int n = 0;
136 (void)pc;
137 (void)pOp;
138 (void)v;
139 n++;
141 #endif
144 ** Invoke the VDBE coverage callback, if that callback is defined. This
145 ** feature is used for test suite validation only and does not appear an
146 ** production builds.
148 ** M is the type of branch. I is the direction taken for this instance of
149 ** the branch.
151 ** M: 2 - two-way branch (I=0: fall-thru 1: jump )
152 ** 3 - two-way + NULL (I=0: fall-thru 1: jump 2: NULL )
153 ** 4 - OP_Jump (I=0: jump p1 1: jump p2 2: jump p3)
155 ** In other words, if M is 2, then I is either 0 (for fall-through) or
156 ** 1 (for when the branch is taken). If M is 3, the I is 0 for an
157 ** ordinary fall-through, I is 1 if the branch was taken, and I is 2
158 ** if the result of comparison is NULL. For M=3, I=2 the jump may or
159 ** may not be taken, depending on the SQLITE_JUMPIFNULL flags in p5.
160 ** When M is 4, that means that an OP_Jump is being run. I is 0, 1, or 2
161 ** depending on if the operands are less than, equal, or greater than.
163 ** iSrcLine is the source code line (from the __LINE__ macro) that
164 ** generated the VDBE instruction combined with flag bits. The source
165 ** code line number is in the lower 24 bits of iSrcLine and the upper
166 ** 8 bytes are flags. The lower three bits of the flags indicate
167 ** values for I that should never occur. For example, if the branch is
168 ** always taken, the flags should be 0x05 since the fall-through and
169 ** alternate branch are never taken. If a branch is never taken then
170 ** flags should be 0x06 since only the fall-through approach is allowed.
172 ** Bit 0x08 of the flags indicates an OP_Jump opcode that is only
173 ** interested in equal or not-equal. In other words, I==0 and I==2
174 ** should be treated as equivalent
176 ** Since only a line number is retained, not the filename, this macro
177 ** only works for amalgamation builds. But that is ok, since these macros
178 ** should be no-ops except for special builds used to measure test coverage.
180 #if !defined(SQLITE_VDBE_COVERAGE)
181 # define VdbeBranchTaken(I,M)
182 #else
183 # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M)
184 static void vdbeTakeBranch(u32 iSrcLine, u8 I, u8 M){
185 u8 mNever;
186 assert( I<=2 ); /* 0: fall through, 1: taken, 2: alternate taken */
187 assert( M<=4 ); /* 2: two-way branch, 3: three-way branch, 4: OP_Jump */
188 assert( I<M ); /* I can only be 2 if M is 3 or 4 */
189 /* Transform I from a integer [0,1,2] into a bitmask of [1,2,4] */
190 I = 1<<I;
191 /* The upper 8 bits of iSrcLine are flags. The lower three bits of
192 ** the flags indicate directions that the branch can never go. If
193 ** a branch really does go in one of those directions, assert right
194 ** away. */
195 mNever = iSrcLine >> 24;
196 assert( (I & mNever)==0 );
197 if( sqlite3GlobalConfig.xVdbeBranch==0 ) return; /*NO_TEST*/
198 /* Invoke the branch coverage callback with three arguments:
199 ** iSrcLine - the line number of the VdbeCoverage() macro, with
200 ** flags removed.
201 ** I - Mask of bits 0x07 indicating which cases are are
202 ** fulfilled by this instance of the jump. 0x01 means
203 ** fall-thru, 0x02 means taken, 0x04 means NULL. Any
204 ** impossible cases (ex: if the comparison is never NULL)
205 ** are filled in automatically so that the coverage
206 ** measurement logic does not flag those impossible cases
207 ** as missed coverage.
208 ** M - Type of jump. Same as M argument above
210 I |= mNever;
211 if( M==2 ) I |= 0x04;
212 if( M==4 ){
213 I |= 0x08;
214 if( (mNever&0x08)!=0 && (I&0x05)!=0) I |= 0x05; /*NO_TEST*/
216 sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg,
217 iSrcLine&0xffffff, I, M);
219 #endif
222 ** An ephemeral string value (signified by the MEM_Ephem flag) contains
223 ** a pointer to a dynamically allocated string where some other entity
224 ** is responsible for deallocating that string. Because the register
225 ** does not control the string, it might be deleted without the register
226 ** knowing it.
228 ** This routine converts an ephemeral string into a dynamically allocated
229 ** string that the register itself controls. In other words, it
230 ** converts an MEM_Ephem string into a string with P.z==P.zMalloc.
232 #define Deephemeralize(P) \
233 if( ((P)->flags&MEM_Ephem)!=0 \
234 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
236 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */
237 #define isSorter(x) ((x)->eCurType==CURTYPE_SORTER)
240 ** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL
241 ** if we run out of memory.
243 static VdbeCursor *allocateCursor(
244 Vdbe *p, /* The virtual machine */
245 int iCur, /* Index of the new VdbeCursor */
246 int nField, /* Number of fields in the table or index */
247 u8 eCurType /* Type of the new cursor */
249 /* Find the memory cell that will be used to store the blob of memory
250 ** required for this VdbeCursor structure. It is convenient to use a
251 ** vdbe memory cell to manage the memory allocation required for a
252 ** VdbeCursor structure for the following reasons:
254 ** * Sometimes cursor numbers are used for a couple of different
255 ** purposes in a vdbe program. The different uses might require
256 ** different sized allocations. Memory cells provide growable
257 ** allocations.
259 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
260 ** be freed lazily via the sqlite3_release_memory() API. This
261 ** minimizes the number of malloc calls made by the system.
263 ** The memory cell for cursor 0 is aMem[0]. The rest are allocated from
264 ** the top of the register space. Cursor 1 is at Mem[p->nMem-1].
265 ** Cursor 2 is at Mem[p->nMem-2]. And so forth.
267 Mem *pMem = iCur>0 ? &p->aMem[p->nMem-iCur] : p->aMem;
269 int nByte;
270 VdbeCursor *pCx = 0;
271 nByte =
272 ROUND8P(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField +
273 (eCurType==CURTYPE_BTREE?sqlite3BtreeCursorSize():0);
275 assert( iCur>=0 && iCur<p->nCursor );
276 if( p->apCsr[iCur] ){ /*OPTIMIZATION-IF-FALSE*/
277 sqlite3VdbeFreeCursorNN(p, p->apCsr[iCur]);
278 p->apCsr[iCur] = 0;
281 /* There used to be a call to sqlite3VdbeMemClearAndResize() to make sure
282 ** the pMem used to hold space for the cursor has enough storage available
283 ** in pMem->zMalloc. But for the special case of the aMem[] entries used
284 ** to hold cursors, it is faster to in-line the logic. */
285 assert( pMem->flags==MEM_Undefined );
286 assert( (pMem->flags & MEM_Dyn)==0 );
287 assert( pMem->szMalloc==0 || pMem->z==pMem->zMalloc );
288 if( pMem->szMalloc<nByte ){
289 if( pMem->szMalloc>0 ){
290 sqlite3DbFreeNN(pMem->db, pMem->zMalloc);
292 pMem->z = pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, nByte);
293 if( pMem->zMalloc==0 ){
294 pMem->szMalloc = 0;
295 return 0;
297 pMem->szMalloc = nByte;
300 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->zMalloc;
301 memset(pCx, 0, offsetof(VdbeCursor,pAltCursor));
302 pCx->eCurType = eCurType;
303 pCx->nField = nField;
304 pCx->aOffset = &pCx->aType[nField];
305 if( eCurType==CURTYPE_BTREE ){
306 pCx->uc.pCursor = (BtCursor*)
307 &pMem->z[ROUND8P(sizeof(VdbeCursor))+2*sizeof(u32)*nField];
308 sqlite3BtreeCursorZero(pCx->uc.pCursor);
310 return pCx;
314 ** The string in pRec is known to look like an integer and to have a
315 ** floating point value of rValue. Return true and set *piValue to the
316 ** integer value if the string is in range to be an integer. Otherwise,
317 ** return false.
319 static int alsoAnInt(Mem *pRec, double rValue, i64 *piValue){
320 i64 iValue;
321 iValue = sqlite3RealToI64(rValue);
322 if( sqlite3RealSameAsInt(rValue,iValue) ){
323 *piValue = iValue;
324 return 1;
326 return 0==sqlite3Atoi64(pRec->z, piValue, pRec->n, pRec->enc);
330 ** Try to convert a value into a numeric representation if we can
331 ** do so without loss of information. In other words, if the string
332 ** looks like a number, convert it into a number. If it does not
333 ** look like a number, leave it alone.
335 ** If the bTryForInt flag is true, then extra effort is made to give
336 ** an integer representation. Strings that look like floating point
337 ** values but which have no fractional component (example: '48.00')
338 ** will have a MEM_Int representation when bTryForInt is true.
340 ** If bTryForInt is false, then if the input string contains a decimal
341 ** point or exponential notation, the result is only MEM_Real, even
342 ** if there is an exact integer representation of the quantity.
344 static void applyNumericAffinity(Mem *pRec, int bTryForInt){
345 double rValue;
346 u8 enc = pRec->enc;
347 int rc;
348 assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real|MEM_IntReal))==MEM_Str );
349 rc = sqlite3AtoF(pRec->z, &rValue, pRec->n, enc);
350 if( rc<=0 ) return;
351 if( rc==1 && alsoAnInt(pRec, rValue, &pRec->u.i) ){
352 pRec->flags |= MEM_Int;
353 }else{
354 pRec->u.r = rValue;
355 pRec->flags |= MEM_Real;
356 if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec);
358 /* TEXT->NUMERIC is many->one. Hence, it is important to invalidate the
359 ** string representation after computing a numeric equivalent, because the
360 ** string representation might not be the canonical representation for the
361 ** numeric value. Ticket [343634942dd54ab57b7024] 2018-01-31. */
362 pRec->flags &= ~MEM_Str;
366 ** Processing is determine by the affinity parameter:
368 ** SQLITE_AFF_INTEGER:
369 ** SQLITE_AFF_REAL:
370 ** SQLITE_AFF_NUMERIC:
371 ** Try to convert pRec to an integer representation or a
372 ** floating-point representation if an integer representation
373 ** is not possible. Note that the integer representation is
374 ** always preferred, even if the affinity is REAL, because
375 ** an integer representation is more space efficient on disk.
377 ** SQLITE_AFF_FLEXNUM:
378 ** If the value is text, then try to convert it into a number of
379 ** some kind (integer or real) but do not make any other changes.
381 ** SQLITE_AFF_TEXT:
382 ** Convert pRec to a text representation.
384 ** SQLITE_AFF_BLOB:
385 ** SQLITE_AFF_NONE:
386 ** No-op. pRec is unchanged.
388 static void applyAffinity(
389 Mem *pRec, /* The value to apply affinity to */
390 char affinity, /* The affinity to be applied */
391 u8 enc /* Use this text encoding */
393 if( affinity>=SQLITE_AFF_NUMERIC ){
394 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
395 || affinity==SQLITE_AFF_NUMERIC || affinity==SQLITE_AFF_FLEXNUM );
396 if( (pRec->flags & MEM_Int)==0 ){ /*OPTIMIZATION-IF-FALSE*/
397 if( (pRec->flags & (MEM_Real|MEM_IntReal))==0 ){
398 if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1);
399 }else if( affinity<=SQLITE_AFF_REAL ){
400 sqlite3VdbeIntegerAffinity(pRec);
403 }else if( affinity==SQLITE_AFF_TEXT ){
404 /* Only attempt the conversion to TEXT if there is an integer or real
405 ** representation (blob and NULL do not get converted) but no string
406 ** representation. It would be harmless to repeat the conversion if
407 ** there is already a string rep, but it is pointless to waste those
408 ** CPU cycles. */
409 if( 0==(pRec->flags&MEM_Str) ){ /*OPTIMIZATION-IF-FALSE*/
410 if( (pRec->flags&(MEM_Real|MEM_Int|MEM_IntReal)) ){
411 testcase( pRec->flags & MEM_Int );
412 testcase( pRec->flags & MEM_Real );
413 testcase( pRec->flags & MEM_IntReal );
414 sqlite3VdbeMemStringify(pRec, enc, 1);
417 pRec->flags &= ~(MEM_Real|MEM_Int|MEM_IntReal);
422 ** Try to convert the type of a function argument or a result column
423 ** into a numeric representation. Use either INTEGER or REAL whichever
424 ** is appropriate. But only do the conversion if it is possible without
425 ** loss of information and return the revised type of the argument.
427 int sqlite3_value_numeric_type(sqlite3_value *pVal){
428 int eType = sqlite3_value_type(pVal);
429 if( eType==SQLITE_TEXT ){
430 Mem *pMem = (Mem*)pVal;
431 applyNumericAffinity(pMem, 0);
432 eType = sqlite3_value_type(pVal);
434 return eType;
438 ** Exported version of applyAffinity(). This one works on sqlite3_value*,
439 ** not the internal Mem* type.
441 void sqlite3ValueApplyAffinity(
442 sqlite3_value *pVal,
443 u8 affinity,
444 u8 enc
446 applyAffinity((Mem *)pVal, affinity, enc);
450 ** pMem currently only holds a string type (or maybe a BLOB that we can
451 ** interpret as a string if we want to). Compute its corresponding
452 ** numeric type, if has one. Set the pMem->u.r and pMem->u.i fields
453 ** accordingly.
455 static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){
456 int rc;
457 sqlite3_int64 ix;
458 assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal))==0 );
459 assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 );
460 if( ExpandBlob(pMem) ){
461 pMem->u.i = 0;
462 return MEM_Int;
464 rc = sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc);
465 if( rc<=0 ){
466 if( rc==0 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)<=1 ){
467 pMem->u.i = ix;
468 return MEM_Int;
469 }else{
470 return MEM_Real;
472 }else if( rc==1 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)==0 ){
473 pMem->u.i = ix;
474 return MEM_Int;
476 return MEM_Real;
480 ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or
481 ** none.
483 ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags.
484 ** But it does set pMem->u.r and pMem->u.i appropriately.
486 static u16 numericType(Mem *pMem){
487 assert( (pMem->flags & MEM_Null)==0
488 || pMem->db==0 || pMem->db->mallocFailed );
489 if( pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null) ){
490 testcase( pMem->flags & MEM_Int );
491 testcase( pMem->flags & MEM_Real );
492 testcase( pMem->flags & MEM_IntReal );
493 return pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null);
495 assert( pMem->flags & (MEM_Str|MEM_Blob) );
496 testcase( pMem->flags & MEM_Str );
497 testcase( pMem->flags & MEM_Blob );
498 return computeNumericType(pMem);
499 return 0;
502 #ifdef SQLITE_DEBUG
504 ** Write a nice string representation of the contents of cell pMem
505 ** into buffer zBuf, length nBuf.
507 void sqlite3VdbeMemPrettyPrint(Mem *pMem, StrAccum *pStr){
508 int f = pMem->flags;
509 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
510 if( f&MEM_Blob ){
511 int i;
512 char c;
513 if( f & MEM_Dyn ){
514 c = 'z';
515 assert( (f & (MEM_Static|MEM_Ephem))==0 );
516 }else if( f & MEM_Static ){
517 c = 't';
518 assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
519 }else if( f & MEM_Ephem ){
520 c = 'e';
521 assert( (f & (MEM_Static|MEM_Dyn))==0 );
522 }else{
523 c = 's';
525 sqlite3_str_appendf(pStr, "%cx[", c);
526 for(i=0; i<25 && i<pMem->n; i++){
527 sqlite3_str_appendf(pStr, "%02X", ((int)pMem->z[i] & 0xFF));
529 sqlite3_str_appendf(pStr, "|");
530 for(i=0; i<25 && i<pMem->n; i++){
531 char z = pMem->z[i];
532 sqlite3_str_appendchar(pStr, 1, (z<32||z>126)?'.':z);
534 sqlite3_str_appendf(pStr,"]");
535 if( f & MEM_Zero ){
536 sqlite3_str_appendf(pStr, "+%dz",pMem->u.nZero);
538 }else if( f & MEM_Str ){
539 int j;
540 u8 c;
541 if( f & MEM_Dyn ){
542 c = 'z';
543 assert( (f & (MEM_Static|MEM_Ephem))==0 );
544 }else if( f & MEM_Static ){
545 c = 't';
546 assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
547 }else if( f & MEM_Ephem ){
548 c = 'e';
549 assert( (f & (MEM_Static|MEM_Dyn))==0 );
550 }else{
551 c = 's';
553 sqlite3_str_appendf(pStr, " %c%d[", c, pMem->n);
554 for(j=0; j<25 && j<pMem->n; j++){
555 c = pMem->z[j];
556 sqlite3_str_appendchar(pStr, 1, (c>=0x20&&c<=0x7f) ? c : '.');
558 sqlite3_str_appendf(pStr, "]%s", encnames[pMem->enc]);
561 #endif
563 #ifdef SQLITE_DEBUG
565 ** Print the value of a register for tracing purposes:
567 static void memTracePrint(Mem *p){
568 if( p->flags & MEM_Undefined ){
569 printf(" undefined");
570 }else if( p->flags & MEM_Null ){
571 printf(p->flags & MEM_Zero ? " NULL-nochng" : " NULL");
572 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
573 printf(" si:%lld", p->u.i);
574 }else if( (p->flags & (MEM_IntReal))!=0 ){
575 printf(" ir:%lld", p->u.i);
576 }else if( p->flags & MEM_Int ){
577 printf(" i:%lld", p->u.i);
578 #ifndef SQLITE_OMIT_FLOATING_POINT
579 }else if( p->flags & MEM_Real ){
580 printf(" r:%.17g", p->u.r);
581 #endif
582 }else if( sqlite3VdbeMemIsRowSet(p) ){
583 printf(" (rowset)");
584 }else{
585 StrAccum acc;
586 char zBuf[1000];
587 sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0);
588 sqlite3VdbeMemPrettyPrint(p, &acc);
589 printf(" %s", sqlite3StrAccumFinish(&acc));
591 if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype);
593 static void registerTrace(int iReg, Mem *p){
594 printf("R[%d] = ", iReg);
595 memTracePrint(p);
596 if( p->pScopyFrom ){
597 printf(" <== R[%d]", (int)(p->pScopyFrom - &p[-iReg]));
599 printf("\n");
600 sqlite3VdbeCheckMemInvariants(p);
602 /**/ void sqlite3PrintMem(Mem *pMem){
603 memTracePrint(pMem);
604 printf("\n");
605 fflush(stdout);
607 #endif
609 #ifdef SQLITE_DEBUG
611 ** Show the values of all registers in the virtual machine. Used for
612 ** interactive debugging.
614 void sqlite3VdbeRegisterDump(Vdbe *v){
615 int i;
616 for(i=1; i<v->nMem; i++) registerTrace(i, v->aMem+i);
618 #endif /* SQLITE_DEBUG */
621 #ifdef SQLITE_DEBUG
622 # define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M)
623 #else
624 # define REGISTER_TRACE(R,M)
625 #endif
627 #ifndef NDEBUG
629 ** This function is only called from within an assert() expression. It
630 ** checks that the sqlite3.nTransaction variable is correctly set to
631 ** the number of non-transaction savepoints currently in the
632 ** linked list starting at sqlite3.pSavepoint.
634 ** Usage:
636 ** assert( checkSavepointCount(db) );
638 static int checkSavepointCount(sqlite3 *db){
639 int n = 0;
640 Savepoint *p;
641 for(p=db->pSavepoint; p; p=p->pNext) n++;
642 assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
643 return 1;
645 #endif
648 ** Return the register of pOp->p2 after first preparing it to be
649 ** overwritten with an integer value.
651 static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){
652 sqlite3VdbeMemSetNull(pOut);
653 pOut->flags = MEM_Int;
654 return pOut;
656 static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){
657 Mem *pOut;
658 assert( pOp->p2>0 );
659 assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
660 pOut = &p->aMem[pOp->p2];
661 memAboutToChange(p, pOut);
662 if( VdbeMemDynamic(pOut) ){ /*OPTIMIZATION-IF-FALSE*/
663 return out2PrereleaseWithClear(pOut);
664 }else{
665 pOut->flags = MEM_Int;
666 return pOut;
671 ** Compute a bloom filter hash using pOp->p4.i registers from aMem[] beginning
672 ** with pOp->p3. Return the hash.
674 static u64 filterHash(const Mem *aMem, const Op *pOp){
675 int i, mx;
676 u64 h = 0;
678 assert( pOp->p4type==P4_INT32 );
679 for(i=pOp->p3, mx=i+pOp->p4.i; i<mx; i++){
680 const Mem *p = &aMem[i];
681 if( p->flags & (MEM_Int|MEM_IntReal) ){
682 h += p->u.i;
683 }else if( p->flags & MEM_Real ){
684 h += sqlite3VdbeIntValue(p);
685 }else if( p->flags & (MEM_Str|MEM_Blob) ){
686 h += p->n;
687 if( p->flags & MEM_Zero ) h += p->u.nZero;
690 return h;
694 ** Return the symbolic name for the data type of a pMem
696 static const char *vdbeMemTypeName(Mem *pMem){
697 static const char *azTypes[] = {
698 /* SQLITE_INTEGER */ "INT",
699 /* SQLITE_FLOAT */ "REAL",
700 /* SQLITE_TEXT */ "TEXT",
701 /* SQLITE_BLOB */ "BLOB",
702 /* SQLITE_NULL */ "NULL"
704 return azTypes[sqlite3_value_type(pMem)-1];
708 ** Execute as much of a VDBE program as we can.
709 ** This is the core of sqlite3_step().
711 int sqlite3VdbeExec(
712 Vdbe *p /* The VDBE */
714 Op *aOp = p->aOp; /* Copy of p->aOp */
715 Op *pOp = aOp; /* Current operation */
716 #ifdef SQLITE_DEBUG
717 Op *pOrigOp; /* Value of pOp at the top of the loop */
718 int nExtraDelete = 0; /* Verifies FORDELETE and AUXDELETE flags */
719 u8 iCompareIsInit = 0; /* iCompare is initialized */
720 #endif
721 int rc = SQLITE_OK; /* Value to return */
722 sqlite3 *db = p->db; /* The database */
723 u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
724 u8 encoding = ENC(db); /* The database encoding */
725 int iCompare = 0; /* Result of last comparison */
726 u64 nVmStep = 0; /* Number of virtual machine steps */
727 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
728 u64 nProgressLimit; /* Invoke xProgress() when nVmStep reaches this */
729 #endif
730 Mem *aMem = p->aMem; /* Copy of p->aMem */
731 Mem *pIn1 = 0; /* 1st input operand */
732 Mem *pIn2 = 0; /* 2nd input operand */
733 Mem *pIn3 = 0; /* 3rd input operand */
734 Mem *pOut = 0; /* Output operand */
735 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || defined(VDBE_PROFILE)
736 u64 *pnCycle = 0;
737 #endif
738 /*** INSERT STACK UNION HERE ***/
740 assert( p->eVdbeState==VDBE_RUN_STATE ); /* sqlite3_step() verifies this */
741 if( DbMaskNonZero(p->lockMask) ){
742 sqlite3VdbeEnter(p);
744 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
745 if( db->xProgress ){
746 u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP];
747 assert( 0 < db->nProgressOps );
748 nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps);
749 }else{
750 nProgressLimit = LARGEST_UINT64;
752 #endif
753 if( p->rc==SQLITE_NOMEM ){
754 /* This happens if a malloc() inside a call to sqlite3_column_text() or
755 ** sqlite3_column_text16() failed. */
756 goto no_mem;
758 assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY );
759 testcase( p->rc!=SQLITE_OK );
760 p->rc = SQLITE_OK;
761 assert( p->bIsReader || p->readOnly!=0 );
762 p->iCurrentTime = 0;
763 assert( p->explain==0 );
764 db->busyHandler.nBusy = 0;
765 if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt;
766 sqlite3VdbeIOTraceSql(p);
767 #ifdef SQLITE_DEBUG
768 sqlite3BeginBenignMalloc();
769 if( p->pc==0
770 && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0
772 int i;
773 int once = 1;
774 sqlite3VdbePrintSql(p);
775 if( p->db->flags & SQLITE_VdbeListing ){
776 printf("VDBE Program Listing:\n");
777 for(i=0; i<p->nOp; i++){
778 sqlite3VdbePrintOp(stdout, i, &aOp[i]);
781 if( p->db->flags & SQLITE_VdbeEQP ){
782 for(i=0; i<p->nOp; i++){
783 if( aOp[i].opcode==OP_Explain ){
784 if( once ) printf("VDBE Query Plan:\n");
785 printf("%s\n", aOp[i].p4.z);
786 once = 0;
790 if( p->db->flags & SQLITE_VdbeTrace ) printf("VDBE Trace:\n");
792 sqlite3EndBenignMalloc();
793 #endif
794 for(pOp=&aOp[p->pc]; 1; pOp++){
795 /* Errors are detected by individual opcodes, with an immediate
796 ** jumps to abort_due_to_error. */
797 assert( rc==SQLITE_OK );
799 assert( pOp>=aOp && pOp<&aOp[p->nOp]);
800 nVmStep++;
801 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || defined(VDBE_PROFILE)
802 pOp->nExec++;
803 pnCycle = &pOp->nCycle;
804 # ifdef VDBE_PROFILE
805 if( sqlite3NProfileCnt==0 )
806 # endif
807 *pnCycle -= sqlite3Hwtime();
808 #endif
810 /* Only allow tracing if SQLITE_DEBUG is defined.
812 #ifdef SQLITE_DEBUG
813 if( db->flags & SQLITE_VdbeTrace ){
814 sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp);
815 test_trace_breakpoint((int)(pOp - aOp),pOp,p);
817 #endif
820 /* Check to see if we need to simulate an interrupt. This only happens
821 ** if we have a special test build.
823 #ifdef SQLITE_TEST
824 if( sqlite3_interrupt_count>0 ){
825 sqlite3_interrupt_count--;
826 if( sqlite3_interrupt_count==0 ){
827 sqlite3_interrupt(db);
830 #endif
832 /* Sanity checking on other operands */
833 #ifdef SQLITE_DEBUG
835 u8 opProperty = sqlite3OpcodeProperty[pOp->opcode];
836 if( (opProperty & OPFLG_IN1)!=0 ){
837 assert( pOp->p1>0 );
838 assert( pOp->p1<=(p->nMem+1 - p->nCursor) );
839 assert( memIsValid(&aMem[pOp->p1]) );
840 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) );
841 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
843 if( (opProperty & OPFLG_IN2)!=0 ){
844 assert( pOp->p2>0 );
845 assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
846 assert( memIsValid(&aMem[pOp->p2]) );
847 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) );
848 REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
850 if( (opProperty & OPFLG_IN3)!=0 ){
851 assert( pOp->p3>0 );
852 assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
853 assert( memIsValid(&aMem[pOp->p3]) );
854 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) );
855 REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
857 if( (opProperty & OPFLG_OUT2)!=0 ){
858 assert( pOp->p2>0 );
859 assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
860 memAboutToChange(p, &aMem[pOp->p2]);
862 if( (opProperty & OPFLG_OUT3)!=0 ){
863 assert( pOp->p3>0 );
864 assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
865 memAboutToChange(p, &aMem[pOp->p3]);
868 #endif
869 #ifdef SQLITE_DEBUG
870 pOrigOp = pOp;
871 #endif
873 switch( pOp->opcode ){
875 /*****************************************************************************
876 ** What follows is a massive switch statement where each case implements a
877 ** separate instruction in the virtual machine. If we follow the usual
878 ** indentation conventions, each case should be indented by 6 spaces. But
879 ** that is a lot of wasted space on the left margin. So the code within
880 ** the switch statement will break with convention and be flush-left. Another
881 ** big comment (similar to this one) will mark the point in the code where
882 ** we transition back to normal indentation.
884 ** The formatting of each case is important. The makefile for SQLite
885 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this
886 ** file looking for lines that begin with "case OP_". The opcodes.h files
887 ** will be filled with #defines that give unique integer values to each
888 ** opcode and the opcodes.c file is filled with an array of strings where
889 ** each string is the symbolic name for the corresponding opcode. If the
890 ** case statement is followed by a comment of the form "/# same as ... #/"
891 ** that comment is used to determine the particular value of the opcode.
893 ** Other keywords in the comment that follows each case are used to
894 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
895 ** Keywords include: in1, in2, in3, out2, out3. See
896 ** the mkopcodeh.awk script for additional information.
898 ** Documentation about VDBE opcodes is generated by scanning this file
899 ** for lines of that contain "Opcode:". That line and all subsequent
900 ** comment lines are used in the generation of the opcode.html documentation
901 ** file.
903 ** SUMMARY:
905 ** Formatting is important to scripts that scan this file.
906 ** Do not deviate from the formatting style currently in use.
908 *****************************************************************************/
910 /* Opcode: Goto * P2 * * *
912 ** An unconditional jump to address P2.
913 ** The next instruction executed will be
914 ** the one at index P2 from the beginning of
915 ** the program.
917 ** The P1 parameter is not actually used by this opcode. However, it
918 ** is sometimes set to 1 instead of 0 as a hint to the command-line shell
919 ** that this Goto is the bottom of a loop and that the lines from P2 down
920 ** to the current line should be indented for EXPLAIN output.
922 case OP_Goto: { /* jump */
924 #ifdef SQLITE_DEBUG
925 /* In debuggging mode, when the p5 flags is set on an OP_Goto, that
926 ** means we should really jump back to the preceeding OP_ReleaseReg
927 ** instruction. */
928 if( pOp->p5 ){
929 assert( pOp->p2 < (int)(pOp - aOp) );
930 assert( pOp->p2 > 1 );
931 pOp = &aOp[pOp->p2 - 2];
932 assert( pOp[1].opcode==OP_ReleaseReg );
933 goto check_for_interrupt;
935 #endif
937 jump_to_p2_and_check_for_interrupt:
938 pOp = &aOp[pOp->p2 - 1];
940 /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev,
941 ** OP_VNext, or OP_SorterNext) all jump here upon
942 ** completion. Check to see if sqlite3_interrupt() has been called
943 ** or if the progress callback needs to be invoked.
945 ** This code uses unstructured "goto" statements and does not look clean.
946 ** But that is not due to sloppy coding habits. The code is written this
947 ** way for performance, to avoid having to run the interrupt and progress
948 ** checks on every opcode. This helps sqlite3_step() to run about 1.5%
949 ** faster according to "valgrind --tool=cachegrind" */
950 check_for_interrupt:
951 if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt;
952 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
953 /* Call the progress callback if it is configured and the required number
954 ** of VDBE ops have been executed (either since this invocation of
955 ** sqlite3VdbeExec() or since last time the progress callback was called).
956 ** If the progress callback returns non-zero, exit the virtual machine with
957 ** a return code SQLITE_ABORT.
959 while( nVmStep>=nProgressLimit && db->xProgress!=0 ){
960 assert( db->nProgressOps!=0 );
961 nProgressLimit += db->nProgressOps;
962 if( db->xProgress(db->pProgressArg) ){
963 nProgressLimit = LARGEST_UINT64;
964 rc = SQLITE_INTERRUPT;
965 goto abort_due_to_error;
968 #endif
970 break;
973 /* Opcode: Gosub P1 P2 * * *
975 ** Write the current address onto register P1
976 ** and then jump to address P2.
978 case OP_Gosub: { /* jump */
979 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
980 pIn1 = &aMem[pOp->p1];
981 assert( VdbeMemDynamic(pIn1)==0 );
982 memAboutToChange(p, pIn1);
983 pIn1->flags = MEM_Int;
984 pIn1->u.i = (int)(pOp-aOp);
985 REGISTER_TRACE(pOp->p1, pIn1);
986 goto jump_to_p2_and_check_for_interrupt;
989 /* Opcode: Return P1 P2 P3 * *
991 ** Jump to the address stored in register P1. If P1 is a return address
992 ** register, then this accomplishes a return from a subroutine.
994 ** If P3 is 1, then the jump is only taken if register P1 holds an integer
995 ** values, otherwise execution falls through to the next opcode, and the
996 ** OP_Return becomes a no-op. If P3 is 0, then register P1 must hold an
997 ** integer or else an assert() is raised. P3 should be set to 1 when
998 ** this opcode is used in combination with OP_BeginSubrtn, and set to 0
999 ** otherwise.
1001 ** The value in register P1 is unchanged by this opcode.
1003 ** P2 is not used by the byte-code engine. However, if P2 is positive
1004 ** and also less than the current address, then the "EXPLAIN" output
1005 ** formatter in the CLI will indent all opcodes from the P2 opcode up
1006 ** to be not including the current Return. P2 should be the first opcode
1007 ** in the subroutine from which this opcode is returning. Thus the P2
1008 ** value is a byte-code indentation hint. See tag-20220407a in
1009 ** wherecode.c and shell.c.
1011 case OP_Return: { /* in1 */
1012 pIn1 = &aMem[pOp->p1];
1013 if( pIn1->flags & MEM_Int ){
1014 if( pOp->p3 ){ VdbeBranchTaken(1, 2); }
1015 pOp = &aOp[pIn1->u.i];
1016 }else if( ALWAYS(pOp->p3) ){
1017 VdbeBranchTaken(0, 2);
1019 break;
1022 /* Opcode: InitCoroutine P1 P2 P3 * *
1024 ** Set up register P1 so that it will Yield to the coroutine
1025 ** located at address P3.
1027 ** If P2!=0 then the coroutine implementation immediately follows
1028 ** this opcode. So jump over the coroutine implementation to
1029 ** address P2.
1031 ** See also: EndCoroutine
1033 case OP_InitCoroutine: { /* jump */
1034 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
1035 assert( pOp->p2>=0 && pOp->p2<p->nOp );
1036 assert( pOp->p3>=0 && pOp->p3<p->nOp );
1037 pOut = &aMem[pOp->p1];
1038 assert( !VdbeMemDynamic(pOut) );
1039 pOut->u.i = pOp->p3 - 1;
1040 pOut->flags = MEM_Int;
1041 if( pOp->p2==0 ) break;
1043 /* Most jump operations do a goto to this spot in order to update
1044 ** the pOp pointer. */
1045 jump_to_p2:
1046 assert( pOp->p2>0 ); /* There are never any jumps to instruction 0 */
1047 assert( pOp->p2<p->nOp ); /* Jumps must be in range */
1048 pOp = &aOp[pOp->p2 - 1];
1049 break;
1052 /* Opcode: EndCoroutine P1 * * * *
1054 ** The instruction at the address in register P1 is a Yield.
1055 ** Jump to the P2 parameter of that Yield.
1056 ** After the jump, register P1 becomes undefined.
1058 ** See also: InitCoroutine
1060 case OP_EndCoroutine: { /* in1 */
1061 VdbeOp *pCaller;
1062 pIn1 = &aMem[pOp->p1];
1063 assert( pIn1->flags==MEM_Int );
1064 assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp );
1065 pCaller = &aOp[pIn1->u.i];
1066 assert( pCaller->opcode==OP_Yield );
1067 assert( pCaller->p2>=0 && pCaller->p2<p->nOp );
1068 pOp = &aOp[pCaller->p2 - 1];
1069 pIn1->flags = MEM_Undefined;
1070 break;
1073 /* Opcode: Yield P1 P2 * * *
1075 ** Swap the program counter with the value in register P1. This
1076 ** has the effect of yielding to a coroutine.
1078 ** If the coroutine that is launched by this instruction ends with
1079 ** Yield or Return then continue to the next instruction. But if
1080 ** the coroutine launched by this instruction ends with
1081 ** EndCoroutine, then jump to P2 rather than continuing with the
1082 ** next instruction.
1084 ** See also: InitCoroutine
1086 case OP_Yield: { /* in1, jump */
1087 int pcDest;
1088 pIn1 = &aMem[pOp->p1];
1089 assert( VdbeMemDynamic(pIn1)==0 );
1090 pIn1->flags = MEM_Int;
1091 pcDest = (int)pIn1->u.i;
1092 pIn1->u.i = (int)(pOp - aOp);
1093 REGISTER_TRACE(pOp->p1, pIn1);
1094 pOp = &aOp[pcDest];
1095 break;
1098 /* Opcode: HaltIfNull P1 P2 P3 P4 P5
1099 ** Synopsis: if r[P3]=null halt
1101 ** Check the value in register P3. If it is NULL then Halt using
1102 ** parameter P1, P2, and P4 as if this were a Halt instruction. If the
1103 ** value in register P3 is not NULL, then this routine is a no-op.
1104 ** The P5 parameter should be 1.
1106 case OP_HaltIfNull: { /* in3 */
1107 pIn3 = &aMem[pOp->p3];
1108 #ifdef SQLITE_DEBUG
1109 if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); }
1110 #endif
1111 if( (pIn3->flags & MEM_Null)==0 ) break;
1112 /* Fall through into OP_Halt */
1113 /* no break */ deliberate_fall_through
1116 /* Opcode: Halt P1 P2 * P4 P5
1118 ** Exit immediately. All open cursors, etc are closed
1119 ** automatically.
1121 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
1122 ** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0).
1123 ** For errors, it can be some other value. If P1!=0 then P2 will determine
1124 ** whether or not to rollback the current transaction. Do not rollback
1125 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort,
1126 ** then back out all changes that have occurred during this execution of the
1127 ** VDBE, but do not rollback the transaction.
1129 ** If P4 is not null then it is an error message string.
1131 ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string.
1133 ** 0: (no change)
1134 ** 1: NOT NULL contraint failed: P4
1135 ** 2: UNIQUE constraint failed: P4
1136 ** 3: CHECK constraint failed: P4
1137 ** 4: FOREIGN KEY constraint failed: P4
1139 ** If P5 is not zero and P4 is NULL, then everything after the ":" is
1140 ** omitted.
1142 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of
1143 ** every program. So a jump past the last instruction of the program
1144 ** is the same as executing Halt.
1146 case OP_Halt: {
1147 VdbeFrame *pFrame;
1148 int pcx;
1150 #ifdef SQLITE_DEBUG
1151 if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); }
1152 #endif
1154 /* A deliberately coded "OP_Halt SQLITE_INTERNAL * * * *" opcode indicates
1155 ** something is wrong with the code generator. Raise an assertion in order
1156 ** to bring this to the attention of fuzzers and other testing tools. */
1157 assert( pOp->p1!=SQLITE_INTERNAL );
1159 if( p->pFrame && pOp->p1==SQLITE_OK ){
1160 /* Halt the sub-program. Return control to the parent frame. */
1161 pFrame = p->pFrame;
1162 p->pFrame = pFrame->pParent;
1163 p->nFrame--;
1164 sqlite3VdbeSetChanges(db, p->nChange);
1165 pcx = sqlite3VdbeFrameRestore(pFrame);
1166 if( pOp->p2==OE_Ignore ){
1167 /* Instruction pcx is the OP_Program that invoked the sub-program
1168 ** currently being halted. If the p2 instruction of this OP_Halt
1169 ** instruction is set to OE_Ignore, then the sub-program is throwing
1170 ** an IGNORE exception. In this case jump to the address specified
1171 ** as the p2 of the calling OP_Program. */
1172 pcx = p->aOp[pcx].p2-1;
1174 aOp = p->aOp;
1175 aMem = p->aMem;
1176 pOp = &aOp[pcx];
1177 break;
1179 p->rc = pOp->p1;
1180 p->errorAction = (u8)pOp->p2;
1181 assert( pOp->p5<=4 );
1182 if( p->rc ){
1183 if( pOp->p5 ){
1184 static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK",
1185 "FOREIGN KEY" };
1186 testcase( pOp->p5==1 );
1187 testcase( pOp->p5==2 );
1188 testcase( pOp->p5==3 );
1189 testcase( pOp->p5==4 );
1190 sqlite3VdbeError(p, "%s constraint failed", azType[pOp->p5-1]);
1191 if( pOp->p4.z ){
1192 p->zErrMsg = sqlite3MPrintf(db, "%z: %s", p->zErrMsg, pOp->p4.z);
1194 }else{
1195 sqlite3VdbeError(p, "%s", pOp->p4.z);
1197 pcx = (int)(pOp - aOp);
1198 sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pcx, p->zSql, p->zErrMsg);
1200 rc = sqlite3VdbeHalt(p);
1201 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
1202 if( rc==SQLITE_BUSY ){
1203 p->rc = SQLITE_BUSY;
1204 }else{
1205 assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT );
1206 assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 );
1207 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
1209 goto vdbe_return;
1212 /* Opcode: Integer P1 P2 * * *
1213 ** Synopsis: r[P2]=P1
1215 ** The 32-bit integer value P1 is written into register P2.
1217 case OP_Integer: { /* out2 */
1218 pOut = out2Prerelease(p, pOp);
1219 pOut->u.i = pOp->p1;
1220 break;
1223 /* Opcode: Int64 * P2 * P4 *
1224 ** Synopsis: r[P2]=P4
1226 ** P4 is a pointer to a 64-bit integer value.
1227 ** Write that value into register P2.
1229 case OP_Int64: { /* out2 */
1230 pOut = out2Prerelease(p, pOp);
1231 assert( pOp->p4.pI64!=0 );
1232 pOut->u.i = *pOp->p4.pI64;
1233 break;
1236 #ifndef SQLITE_OMIT_FLOATING_POINT
1237 /* Opcode: Real * P2 * P4 *
1238 ** Synopsis: r[P2]=P4
1240 ** P4 is a pointer to a 64-bit floating point value.
1241 ** Write that value into register P2.
1243 case OP_Real: { /* same as TK_FLOAT, out2 */
1244 pOut = out2Prerelease(p, pOp);
1245 pOut->flags = MEM_Real;
1246 assert( !sqlite3IsNaN(*pOp->p4.pReal) );
1247 pOut->u.r = *pOp->p4.pReal;
1248 break;
1250 #endif
1252 /* Opcode: String8 * P2 * P4 *
1253 ** Synopsis: r[P2]='P4'
1255 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed
1256 ** into a String opcode before it is executed for the first time. During
1257 ** this transformation, the length of string P4 is computed and stored
1258 ** as the P1 parameter.
1260 case OP_String8: { /* same as TK_STRING, out2 */
1261 assert( pOp->p4.z!=0 );
1262 pOut = out2Prerelease(p, pOp);
1263 pOp->p1 = sqlite3Strlen30(pOp->p4.z);
1265 #ifndef SQLITE_OMIT_UTF16
1266 if( encoding!=SQLITE_UTF8 ){
1267 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
1268 assert( rc==SQLITE_OK || rc==SQLITE_TOOBIG );
1269 if( rc ) goto too_big;
1270 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
1271 assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z );
1272 assert( VdbeMemDynamic(pOut)==0 );
1273 pOut->szMalloc = 0;
1274 pOut->flags |= MEM_Static;
1275 if( pOp->p4type==P4_DYNAMIC ){
1276 sqlite3DbFree(db, pOp->p4.z);
1278 pOp->p4type = P4_DYNAMIC;
1279 pOp->p4.z = pOut->z;
1280 pOp->p1 = pOut->n;
1282 #endif
1283 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1284 goto too_big;
1286 pOp->opcode = OP_String;
1287 assert( rc==SQLITE_OK );
1288 /* Fall through to the next case, OP_String */
1289 /* no break */ deliberate_fall_through
1292 /* Opcode: String P1 P2 P3 P4 P5
1293 ** Synopsis: r[P2]='P4' (len=P1)
1295 ** The string value P4 of length P1 (bytes) is stored in register P2.
1297 ** If P3 is not zero and the content of register P3 is equal to P5, then
1298 ** the datatype of the register P2 is converted to BLOB. The content is
1299 ** the same sequence of bytes, it is merely interpreted as a BLOB instead
1300 ** of a string, as if it had been CAST. In other words:
1302 ** if( P3!=0 and reg[P3]==P5 ) reg[P2] := CAST(reg[P2] as BLOB)
1304 case OP_String: { /* out2 */
1305 assert( pOp->p4.z!=0 );
1306 pOut = out2Prerelease(p, pOp);
1307 pOut->flags = MEM_Str|MEM_Static|MEM_Term;
1308 pOut->z = pOp->p4.z;
1309 pOut->n = pOp->p1;
1310 pOut->enc = encoding;
1311 UPDATE_MAX_BLOBSIZE(pOut);
1312 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
1313 if( pOp->p3>0 ){
1314 assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
1315 pIn3 = &aMem[pOp->p3];
1316 assert( pIn3->flags & MEM_Int );
1317 if( pIn3->u.i==pOp->p5 ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term;
1319 #endif
1320 break;
1323 /* Opcode: BeginSubrtn * P2 * * *
1324 ** Synopsis: r[P2]=NULL
1326 ** Mark the beginning of a subroutine that can be entered in-line
1327 ** or that can be called using OP_Gosub. The subroutine should
1328 ** be terminated by an OP_Return instruction that has a P1 operand that
1329 ** is the same as the P2 operand to this opcode and that has P3 set to 1.
1330 ** If the subroutine is entered in-line, then the OP_Return will simply
1331 ** fall through. But if the subroutine is entered using OP_Gosub, then
1332 ** the OP_Return will jump back to the first instruction after the OP_Gosub.
1334 ** This routine works by loading a NULL into the P2 register. When the
1335 ** return address register contains a NULL, the OP_Return instruction is
1336 ** a no-op that simply falls through to the next instruction (assuming that
1337 ** the OP_Return opcode has a P3 value of 1). Thus if the subroutine is
1338 ** entered in-line, then the OP_Return will cause in-line execution to
1339 ** continue. But if the subroutine is entered via OP_Gosub, then the
1340 ** OP_Return will cause a return to the address following the OP_Gosub.
1342 ** This opcode is identical to OP_Null. It has a different name
1343 ** only to make the byte code easier to read and verify.
1345 /* Opcode: Null P1 P2 P3 * *
1346 ** Synopsis: r[P2..P3]=NULL
1348 ** Write a NULL into registers P2. If P3 greater than P2, then also write
1349 ** NULL into register P3 and every register in between P2 and P3. If P3
1350 ** is less than P2 (typically P3 is zero) then only register P2 is
1351 ** set to NULL.
1353 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that
1354 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on
1355 ** OP_Ne or OP_Eq.
1357 case OP_BeginSubrtn:
1358 case OP_Null: { /* out2 */
1359 int cnt;
1360 u16 nullFlag;
1361 pOut = out2Prerelease(p, pOp);
1362 cnt = pOp->p3-pOp->p2;
1363 assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
1364 pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null;
1365 pOut->n = 0;
1366 #ifdef SQLITE_DEBUG
1367 pOut->uTemp = 0;
1368 #endif
1369 while( cnt>0 ){
1370 pOut++;
1371 memAboutToChange(p, pOut);
1372 sqlite3VdbeMemSetNull(pOut);
1373 pOut->flags = nullFlag;
1374 pOut->n = 0;
1375 cnt--;
1377 break;
1380 /* Opcode: SoftNull P1 * * * *
1381 ** Synopsis: r[P1]=NULL
1383 ** Set register P1 to have the value NULL as seen by the OP_MakeRecord
1384 ** instruction, but do not free any string or blob memory associated with
1385 ** the register, so that if the value was a string or blob that was
1386 ** previously copied using OP_SCopy, the copies will continue to be valid.
1388 case OP_SoftNull: {
1389 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
1390 pOut = &aMem[pOp->p1];
1391 pOut->flags = (pOut->flags&~(MEM_Undefined|MEM_AffMask))|MEM_Null;
1392 break;
1395 /* Opcode: Blob P1 P2 * P4 *
1396 ** Synopsis: r[P2]=P4 (len=P1)
1398 ** P4 points to a blob of data P1 bytes long. Store this
1399 ** blob in register P2. If P4 is a NULL pointer, then construct
1400 ** a zero-filled blob that is P1 bytes long in P2.
1402 case OP_Blob: { /* out2 */
1403 assert( pOp->p1 <= SQLITE_MAX_LENGTH );
1404 pOut = out2Prerelease(p, pOp);
1405 if( pOp->p4.z==0 ){
1406 sqlite3VdbeMemSetZeroBlob(pOut, pOp->p1);
1407 if( sqlite3VdbeMemExpandBlob(pOut) ) goto no_mem;
1408 }else{
1409 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
1411 pOut->enc = encoding;
1412 UPDATE_MAX_BLOBSIZE(pOut);
1413 break;
1416 /* Opcode: Variable P1 P2 * P4 *
1417 ** Synopsis: r[P2]=parameter(P1,P4)
1419 ** Transfer the values of bound parameter P1 into register P2
1421 ** If the parameter is named, then its name appears in P4.
1422 ** The P4 value is used by sqlite3_bind_parameter_name().
1424 case OP_Variable: { /* out2 */
1425 Mem *pVar; /* Value being transferred */
1427 assert( pOp->p1>0 && pOp->p1<=p->nVar );
1428 assert( pOp->p4.z==0 || pOp->p4.z==sqlite3VListNumToName(p->pVList,pOp->p1) );
1429 pVar = &p->aVar[pOp->p1 - 1];
1430 if( sqlite3VdbeMemTooBig(pVar) ){
1431 goto too_big;
1433 pOut = &aMem[pOp->p2];
1434 if( VdbeMemDynamic(pOut) ) sqlite3VdbeMemSetNull(pOut);
1435 memcpy(pOut, pVar, MEMCELLSIZE);
1436 pOut->flags &= ~(MEM_Dyn|MEM_Ephem);
1437 pOut->flags |= MEM_Static|MEM_FromBind;
1438 UPDATE_MAX_BLOBSIZE(pOut);
1439 break;
1442 /* Opcode: Move P1 P2 P3 * *
1443 ** Synopsis: r[P2@P3]=r[P1@P3]
1445 ** Move the P3 values in register P1..P1+P3-1 over into
1446 ** registers P2..P2+P3-1. Registers P1..P1+P3-1 are
1447 ** left holding a NULL. It is an error for register ranges
1448 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap. It is an error
1449 ** for P3 to be less than 1.
1451 case OP_Move: {
1452 int n; /* Number of registers left to copy */
1453 int p1; /* Register to copy from */
1454 int p2; /* Register to copy to */
1456 n = pOp->p3;
1457 p1 = pOp->p1;
1458 p2 = pOp->p2;
1459 assert( n>0 && p1>0 && p2>0 );
1460 assert( p1+n<=p2 || p2+n<=p1 );
1462 pIn1 = &aMem[p1];
1463 pOut = &aMem[p2];
1465 assert( pOut<=&aMem[(p->nMem+1 - p->nCursor)] );
1466 assert( pIn1<=&aMem[(p->nMem+1 - p->nCursor)] );
1467 assert( memIsValid(pIn1) );
1468 memAboutToChange(p, pOut);
1469 sqlite3VdbeMemMove(pOut, pIn1);
1470 #ifdef SQLITE_DEBUG
1471 pIn1->pScopyFrom = 0;
1472 { int i;
1473 for(i=1; i<p->nMem; i++){
1474 if( aMem[i].pScopyFrom==pIn1 ){
1475 aMem[i].pScopyFrom = pOut;
1479 #endif
1480 Deephemeralize(pOut);
1481 REGISTER_TRACE(p2++, pOut);
1482 pIn1++;
1483 pOut++;
1484 }while( --n );
1485 break;
1488 /* Opcode: Copy P1 P2 P3 * P5
1489 ** Synopsis: r[P2@P3+1]=r[P1@P3+1]
1491 ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
1493 ** If the 0x0002 bit of P5 is set then also clear the MEM_Subtype flag in the
1494 ** destination. The 0x0001 bit of P5 indicates that this Copy opcode cannot
1495 ** be merged. The 0x0001 bit is used by the query planner and does not
1496 ** come into play during query execution.
1498 ** This instruction makes a deep copy of the value. A duplicate
1499 ** is made of any string or blob constant. See also OP_SCopy.
1501 case OP_Copy: {
1502 int n;
1504 n = pOp->p3;
1505 pIn1 = &aMem[pOp->p1];
1506 pOut = &aMem[pOp->p2];
1507 assert( pOut!=pIn1 );
1508 while( 1 ){
1509 memAboutToChange(p, pOut);
1510 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1511 Deephemeralize(pOut);
1512 if( (pOut->flags & MEM_Subtype)!=0 && (pOp->p5 & 0x0002)!=0 ){
1513 pOut->flags &= ~MEM_Subtype;
1515 #ifdef SQLITE_DEBUG
1516 pOut->pScopyFrom = 0;
1517 #endif
1518 REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut);
1519 if( (n--)==0 ) break;
1520 pOut++;
1521 pIn1++;
1523 break;
1526 /* Opcode: SCopy P1 P2 * * *
1527 ** Synopsis: r[P2]=r[P1]
1529 ** Make a shallow copy of register P1 into register P2.
1531 ** This instruction makes a shallow copy of the value. If the value
1532 ** is a string or blob, then the copy is only a pointer to the
1533 ** original and hence if the original changes so will the copy.
1534 ** Worse, if the original is deallocated, the copy becomes invalid.
1535 ** Thus the program must guarantee that the original will not change
1536 ** during the lifetime of the copy. Use OP_Copy to make a complete
1537 ** copy.
1539 case OP_SCopy: { /* out2 */
1540 pIn1 = &aMem[pOp->p1];
1541 pOut = &aMem[pOp->p2];
1542 assert( pOut!=pIn1 );
1543 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1544 #ifdef SQLITE_DEBUG
1545 pOut->pScopyFrom = pIn1;
1546 pOut->mScopyFlags = pIn1->flags;
1547 #endif
1548 break;
1551 /* Opcode: IntCopy P1 P2 * * *
1552 ** Synopsis: r[P2]=r[P1]
1554 ** Transfer the integer value held in register P1 into register P2.
1556 ** This is an optimized version of SCopy that works only for integer
1557 ** values.
1559 case OP_IntCopy: { /* out2 */
1560 pIn1 = &aMem[pOp->p1];
1561 assert( (pIn1->flags & MEM_Int)!=0 );
1562 pOut = &aMem[pOp->p2];
1563 sqlite3VdbeMemSetInt64(pOut, pIn1->u.i);
1564 break;
1567 /* Opcode: FkCheck * * * * *
1569 ** Halt with an SQLITE_CONSTRAINT error if there are any unresolved
1570 ** foreign key constraint violations. If there are no foreign key
1571 ** constraint violations, this is a no-op.
1573 ** FK constraint violations are also checked when the prepared statement
1574 ** exits. This opcode is used to raise foreign key constraint errors prior
1575 ** to returning results such as a row change count or the result of a
1576 ** RETURNING clause.
1578 case OP_FkCheck: {
1579 if( (rc = sqlite3VdbeCheckFk(p,0))!=SQLITE_OK ){
1580 goto abort_due_to_error;
1582 break;
1585 /* Opcode: ResultRow P1 P2 * * *
1586 ** Synopsis: output=r[P1@P2]
1588 ** The registers P1 through P1+P2-1 contain a single row of
1589 ** results. This opcode causes the sqlite3_step() call to terminate
1590 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
1591 ** structure to provide access to the r(P1)..r(P1+P2-1) values as
1592 ** the result row.
1594 case OP_ResultRow: {
1595 assert( p->nResColumn==pOp->p2 );
1596 assert( pOp->p1>0 || CORRUPT_DB );
1597 assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 );
1599 p->cacheCtr = (p->cacheCtr + 2)|1;
1600 p->pResultRow = &aMem[pOp->p1];
1601 #ifdef SQLITE_DEBUG
1603 Mem *pMem = p->pResultRow;
1604 int i;
1605 for(i=0; i<pOp->p2; i++){
1606 assert( memIsValid(&pMem[i]) );
1607 REGISTER_TRACE(pOp->p1+i, &pMem[i]);
1608 /* The registers in the result will not be used again when the
1609 ** prepared statement restarts. This is because sqlite3_column()
1610 ** APIs might have caused type conversions of made other changes to
1611 ** the register values. Therefore, we can go ahead and break any
1612 ** OP_SCopy dependencies. */
1613 pMem[i].pScopyFrom = 0;
1616 #endif
1617 if( db->mallocFailed ) goto no_mem;
1618 if( db->mTrace & SQLITE_TRACE_ROW ){
1619 db->trace.xV2(SQLITE_TRACE_ROW, db->pTraceArg, p, 0);
1621 p->pc = (int)(pOp - aOp) + 1;
1622 rc = SQLITE_ROW;
1623 goto vdbe_return;
1626 /* Opcode: Concat P1 P2 P3 * *
1627 ** Synopsis: r[P3]=r[P2]+r[P1]
1629 ** Add the text in register P1 onto the end of the text in
1630 ** register P2 and store the result in register P3.
1631 ** If either the P1 or P2 text are NULL then store NULL in P3.
1633 ** P3 = P2 || P1
1635 ** It is illegal for P1 and P3 to be the same register. Sometimes,
1636 ** if P3 is the same register as P2, the implementation is able
1637 ** to avoid a memcpy().
1639 case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */
1640 i64 nByte; /* Total size of the output string or blob */
1641 u16 flags1; /* Initial flags for P1 */
1642 u16 flags2; /* Initial flags for P2 */
1644 pIn1 = &aMem[pOp->p1];
1645 pIn2 = &aMem[pOp->p2];
1646 pOut = &aMem[pOp->p3];
1647 testcase( pOut==pIn2 );
1648 assert( pIn1!=pOut );
1649 flags1 = pIn1->flags;
1650 testcase( flags1 & MEM_Null );
1651 testcase( pIn2->flags & MEM_Null );
1652 if( (flags1 | pIn2->flags) & MEM_Null ){
1653 sqlite3VdbeMemSetNull(pOut);
1654 break;
1656 if( (flags1 & (MEM_Str|MEM_Blob))==0 ){
1657 if( sqlite3VdbeMemStringify(pIn1,encoding,0) ) goto no_mem;
1658 flags1 = pIn1->flags & ~MEM_Str;
1659 }else if( (flags1 & MEM_Zero)!=0 ){
1660 if( sqlite3VdbeMemExpandBlob(pIn1) ) goto no_mem;
1661 flags1 = pIn1->flags & ~MEM_Str;
1663 flags2 = pIn2->flags;
1664 if( (flags2 & (MEM_Str|MEM_Blob))==0 ){
1665 if( sqlite3VdbeMemStringify(pIn2,encoding,0) ) goto no_mem;
1666 flags2 = pIn2->flags & ~MEM_Str;
1667 }else if( (flags2 & MEM_Zero)!=0 ){
1668 if( sqlite3VdbeMemExpandBlob(pIn2) ) goto no_mem;
1669 flags2 = pIn2->flags & ~MEM_Str;
1671 nByte = pIn1->n + pIn2->n;
1672 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1673 goto too_big;
1675 if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){
1676 goto no_mem;
1678 MemSetTypeFlag(pOut, MEM_Str);
1679 if( pOut!=pIn2 ){
1680 memcpy(pOut->z, pIn2->z, pIn2->n);
1681 assert( (pIn2->flags & MEM_Dyn) == (flags2 & MEM_Dyn) );
1682 pIn2->flags = flags2;
1684 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
1685 assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
1686 pIn1->flags = flags1;
1687 if( encoding>SQLITE_UTF8 ) nByte &= ~1;
1688 pOut->z[nByte]=0;
1689 pOut->z[nByte+1] = 0;
1690 pOut->flags |= MEM_Term;
1691 pOut->n = (int)nByte;
1692 pOut->enc = encoding;
1693 UPDATE_MAX_BLOBSIZE(pOut);
1694 break;
1697 /* Opcode: Add P1 P2 P3 * *
1698 ** Synopsis: r[P3]=r[P1]+r[P2]
1700 ** Add the value in register P1 to the value in register P2
1701 ** and store the result in register P3.
1702 ** If either input is NULL, the result is NULL.
1704 /* Opcode: Multiply P1 P2 P3 * *
1705 ** Synopsis: r[P3]=r[P1]*r[P2]
1708 ** Multiply the value in register P1 by the value in register P2
1709 ** and store the result in register P3.
1710 ** If either input is NULL, the result is NULL.
1712 /* Opcode: Subtract P1 P2 P3 * *
1713 ** Synopsis: r[P3]=r[P2]-r[P1]
1715 ** Subtract the value in register P1 from the value in register P2
1716 ** and store the result in register P3.
1717 ** If either input is NULL, the result is NULL.
1719 /* Opcode: Divide P1 P2 P3 * *
1720 ** Synopsis: r[P3]=r[P2]/r[P1]
1722 ** Divide the value in register P1 by the value in register P2
1723 ** and store the result in register P3 (P3=P2/P1). If the value in
1724 ** register P1 is zero, then the result is NULL. If either input is
1725 ** NULL, the result is NULL.
1727 /* Opcode: Remainder P1 P2 P3 * *
1728 ** Synopsis: r[P3]=r[P2]%r[P1]
1730 ** Compute the remainder after integer register P2 is divided by
1731 ** register P1 and store the result in register P3.
1732 ** If the value in register P1 is zero the result is NULL.
1733 ** If either operand is NULL, the result is NULL.
1735 case OP_Add: /* same as TK_PLUS, in1, in2, out3 */
1736 case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */
1737 case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */
1738 case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */
1739 case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */
1740 u16 type1; /* Numeric type of left operand */
1741 u16 type2; /* Numeric type of right operand */
1742 i64 iA; /* Integer value of left operand */
1743 i64 iB; /* Integer value of right operand */
1744 double rA; /* Real value of left operand */
1745 double rB; /* Real value of right operand */
1747 pIn1 = &aMem[pOp->p1];
1748 type1 = pIn1->flags;
1749 pIn2 = &aMem[pOp->p2];
1750 type2 = pIn2->flags;
1751 pOut = &aMem[pOp->p3];
1752 if( (type1 & type2 & MEM_Int)!=0 ){
1753 int_math:
1754 iA = pIn1->u.i;
1755 iB = pIn2->u.i;
1756 switch( pOp->opcode ){
1757 case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break;
1758 case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break;
1759 case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break;
1760 case OP_Divide: {
1761 if( iA==0 ) goto arithmetic_result_is_null;
1762 if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math;
1763 iB /= iA;
1764 break;
1766 default: {
1767 if( iA==0 ) goto arithmetic_result_is_null;
1768 if( iA==-1 ) iA = 1;
1769 iB %= iA;
1770 break;
1773 pOut->u.i = iB;
1774 MemSetTypeFlag(pOut, MEM_Int);
1775 }else if( ((type1 | type2) & MEM_Null)!=0 ){
1776 goto arithmetic_result_is_null;
1777 }else{
1778 type1 = numericType(pIn1);
1779 type2 = numericType(pIn2);
1780 if( (type1 & type2 & MEM_Int)!=0 ) goto int_math;
1781 fp_math:
1782 rA = sqlite3VdbeRealValue(pIn1);
1783 rB = sqlite3VdbeRealValue(pIn2);
1784 switch( pOp->opcode ){
1785 case OP_Add: rB += rA; break;
1786 case OP_Subtract: rB -= rA; break;
1787 case OP_Multiply: rB *= rA; break;
1788 case OP_Divide: {
1789 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
1790 if( rA==(double)0 ) goto arithmetic_result_is_null;
1791 rB /= rA;
1792 break;
1794 default: {
1795 iA = sqlite3VdbeIntValue(pIn1);
1796 iB = sqlite3VdbeIntValue(pIn2);
1797 if( iA==0 ) goto arithmetic_result_is_null;
1798 if( iA==-1 ) iA = 1;
1799 rB = (double)(iB % iA);
1800 break;
1803 #ifdef SQLITE_OMIT_FLOATING_POINT
1804 pOut->u.i = rB;
1805 MemSetTypeFlag(pOut, MEM_Int);
1806 #else
1807 if( sqlite3IsNaN(rB) ){
1808 goto arithmetic_result_is_null;
1810 pOut->u.r = rB;
1811 MemSetTypeFlag(pOut, MEM_Real);
1812 #endif
1814 break;
1816 arithmetic_result_is_null:
1817 sqlite3VdbeMemSetNull(pOut);
1818 break;
1821 /* Opcode: CollSeq P1 * * P4
1823 ** P4 is a pointer to a CollSeq object. If the next call to a user function
1824 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
1825 ** be returned. This is used by the built-in min(), max() and nullif()
1826 ** functions.
1828 ** If P1 is not zero, then it is a register that a subsequent min() or
1829 ** max() aggregate will set to 1 if the current row is not the minimum or
1830 ** maximum. The P1 register is initialized to 0 by this instruction.
1832 ** The interface used by the implementation of the aforementioned functions
1833 ** to retrieve the collation sequence set by this opcode is not available
1834 ** publicly. Only built-in functions have access to this feature.
1836 case OP_CollSeq: {
1837 assert( pOp->p4type==P4_COLLSEQ );
1838 if( pOp->p1 ){
1839 sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0);
1841 break;
1844 /* Opcode: BitAnd P1 P2 P3 * *
1845 ** Synopsis: r[P3]=r[P1]&r[P2]
1847 ** Take the bit-wise AND of the values in register P1 and P2 and
1848 ** store the result in register P3.
1849 ** If either input is NULL, the result is NULL.
1851 /* Opcode: BitOr P1 P2 P3 * *
1852 ** Synopsis: r[P3]=r[P1]|r[P2]
1854 ** Take the bit-wise OR of the values in register P1 and P2 and
1855 ** store the result in register P3.
1856 ** If either input is NULL, the result is NULL.
1858 /* Opcode: ShiftLeft P1 P2 P3 * *
1859 ** Synopsis: r[P3]=r[P2]<<r[P1]
1861 ** Shift the integer value in register P2 to the left by the
1862 ** number of bits specified by the integer in register P1.
1863 ** Store the result in register P3.
1864 ** If either input is NULL, the result is NULL.
1866 /* Opcode: ShiftRight P1 P2 P3 * *
1867 ** Synopsis: r[P3]=r[P2]>>r[P1]
1869 ** Shift the integer value in register P2 to the right by the
1870 ** number of bits specified by the integer in register P1.
1871 ** Store the result in register P3.
1872 ** If either input is NULL, the result is NULL.
1874 case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */
1875 case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */
1876 case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */
1877 case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */
1878 i64 iA;
1879 u64 uA;
1880 i64 iB;
1881 u8 op;
1883 pIn1 = &aMem[pOp->p1];
1884 pIn2 = &aMem[pOp->p2];
1885 pOut = &aMem[pOp->p3];
1886 if( (pIn1->flags | pIn2->flags) & MEM_Null ){
1887 sqlite3VdbeMemSetNull(pOut);
1888 break;
1890 iA = sqlite3VdbeIntValue(pIn2);
1891 iB = sqlite3VdbeIntValue(pIn1);
1892 op = pOp->opcode;
1893 if( op==OP_BitAnd ){
1894 iA &= iB;
1895 }else if( op==OP_BitOr ){
1896 iA |= iB;
1897 }else if( iB!=0 ){
1898 assert( op==OP_ShiftRight || op==OP_ShiftLeft );
1900 /* If shifting by a negative amount, shift in the other direction */
1901 if( iB<0 ){
1902 assert( OP_ShiftRight==OP_ShiftLeft+1 );
1903 op = 2*OP_ShiftLeft + 1 - op;
1904 iB = iB>(-64) ? -iB : 64;
1907 if( iB>=64 ){
1908 iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1;
1909 }else{
1910 memcpy(&uA, &iA, sizeof(uA));
1911 if( op==OP_ShiftLeft ){
1912 uA <<= iB;
1913 }else{
1914 uA >>= iB;
1915 /* Sign-extend on a right shift of a negative number */
1916 if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB);
1918 memcpy(&iA, &uA, sizeof(iA));
1921 pOut->u.i = iA;
1922 MemSetTypeFlag(pOut, MEM_Int);
1923 break;
1926 /* Opcode: AddImm P1 P2 * * *
1927 ** Synopsis: r[P1]=r[P1]+P2
1929 ** Add the constant P2 to the value in register P1.
1930 ** The result is always an integer.
1932 ** To force any register to be an integer, just add 0.
1934 case OP_AddImm: { /* in1 */
1935 pIn1 = &aMem[pOp->p1];
1936 memAboutToChange(p, pIn1);
1937 sqlite3VdbeMemIntegerify(pIn1);
1938 pIn1->u.i += pOp->p2;
1939 break;
1942 /* Opcode: MustBeInt P1 P2 * * *
1944 ** Force the value in register P1 to be an integer. If the value
1945 ** in P1 is not an integer and cannot be converted into an integer
1946 ** without data loss, then jump immediately to P2, or if P2==0
1947 ** raise an SQLITE_MISMATCH exception.
1949 case OP_MustBeInt: { /* jump, in1 */
1950 pIn1 = &aMem[pOp->p1];
1951 if( (pIn1->flags & MEM_Int)==0 ){
1952 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
1953 if( (pIn1->flags & MEM_Int)==0 ){
1954 VdbeBranchTaken(1, 2);
1955 if( pOp->p2==0 ){
1956 rc = SQLITE_MISMATCH;
1957 goto abort_due_to_error;
1958 }else{
1959 goto jump_to_p2;
1963 VdbeBranchTaken(0, 2);
1964 MemSetTypeFlag(pIn1, MEM_Int);
1965 break;
1968 #ifndef SQLITE_OMIT_FLOATING_POINT
1969 /* Opcode: RealAffinity P1 * * * *
1971 ** If register P1 holds an integer convert it to a real value.
1973 ** This opcode is used when extracting information from a column that
1974 ** has REAL affinity. Such column values may still be stored as
1975 ** integers, for space efficiency, but after extraction we want them
1976 ** to have only a real value.
1978 case OP_RealAffinity: { /* in1 */
1979 pIn1 = &aMem[pOp->p1];
1980 if( pIn1->flags & (MEM_Int|MEM_IntReal) ){
1981 testcase( pIn1->flags & MEM_Int );
1982 testcase( pIn1->flags & MEM_IntReal );
1983 sqlite3VdbeMemRealify(pIn1);
1984 REGISTER_TRACE(pOp->p1, pIn1);
1986 break;
1988 #endif
1990 #ifndef SQLITE_OMIT_CAST
1991 /* Opcode: Cast P1 P2 * * *
1992 ** Synopsis: affinity(r[P1])
1994 ** Force the value in register P1 to be the type defined by P2.
1996 ** <ul>
1997 ** <li> P2=='A' &rarr; BLOB
1998 ** <li> P2=='B' &rarr; TEXT
1999 ** <li> P2=='C' &rarr; NUMERIC
2000 ** <li> P2=='D' &rarr; INTEGER
2001 ** <li> P2=='E' &rarr; REAL
2002 ** </ul>
2004 ** A NULL value is not changed by this routine. It remains NULL.
2006 case OP_Cast: { /* in1 */
2007 assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL );
2008 testcase( pOp->p2==SQLITE_AFF_TEXT );
2009 testcase( pOp->p2==SQLITE_AFF_BLOB );
2010 testcase( pOp->p2==SQLITE_AFF_NUMERIC );
2011 testcase( pOp->p2==SQLITE_AFF_INTEGER );
2012 testcase( pOp->p2==SQLITE_AFF_REAL );
2013 pIn1 = &aMem[pOp->p1];
2014 memAboutToChange(p, pIn1);
2015 rc = ExpandBlob(pIn1);
2016 if( rc ) goto abort_due_to_error;
2017 rc = sqlite3VdbeMemCast(pIn1, pOp->p2, encoding);
2018 if( rc ) goto abort_due_to_error;
2019 UPDATE_MAX_BLOBSIZE(pIn1);
2020 REGISTER_TRACE(pOp->p1, pIn1);
2021 break;
2023 #endif /* SQLITE_OMIT_CAST */
2025 /* Opcode: Eq P1 P2 P3 P4 P5
2026 ** Synopsis: IF r[P3]==r[P1]
2028 ** Compare the values in register P1 and P3. If reg(P3)==reg(P1) then
2029 ** jump to address P2.
2031 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
2032 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
2033 ** to coerce both inputs according to this affinity before the
2034 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
2035 ** affinity is used. Note that the affinity conversions are stored
2036 ** back into the input registers P1 and P3. So this opcode can cause
2037 ** persistent changes to registers P1 and P3.
2039 ** Once any conversions have taken place, and neither value is NULL,
2040 ** the values are compared. If both values are blobs then memcmp() is
2041 ** used to determine the results of the comparison. If both values
2042 ** are text, then the appropriate collating function specified in
2043 ** P4 is used to do the comparison. If P4 is not specified then
2044 ** memcmp() is used to compare text string. If both values are
2045 ** numeric, then a numeric comparison is used. If the two values
2046 ** are of different types, then numbers are considered less than
2047 ** strings and strings are considered less than blobs.
2049 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
2050 ** true or false and is never NULL. If both operands are NULL then the result
2051 ** of comparison is true. If either operand is NULL then the result is false.
2052 ** If neither operand is NULL the result is the same as it would be if
2053 ** the SQLITE_NULLEQ flag were omitted from P5.
2055 ** This opcode saves the result of comparison for use by the new
2056 ** OP_Jump opcode.
2058 /* Opcode: Ne P1 P2 P3 P4 P5
2059 ** Synopsis: IF r[P3]!=r[P1]
2061 ** This works just like the Eq opcode except that the jump is taken if
2062 ** the operands in registers P1 and P3 are not equal. See the Eq opcode for
2063 ** additional information.
2065 /* Opcode: Lt P1 P2 P3 P4 P5
2066 ** Synopsis: IF r[P3]<r[P1]
2068 ** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then
2069 ** jump to address P2.
2071 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
2072 ** reg(P3) is NULL then the take the jump. If the SQLITE_JUMPIFNULL
2073 ** bit is clear then fall through if either operand is NULL.
2075 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
2076 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
2077 ** to coerce both inputs according to this affinity before the
2078 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
2079 ** affinity is used. Note that the affinity conversions are stored
2080 ** back into the input registers P1 and P3. So this opcode can cause
2081 ** persistent changes to registers P1 and P3.
2083 ** Once any conversions have taken place, and neither value is NULL,
2084 ** the values are compared. If both values are blobs then memcmp() is
2085 ** used to determine the results of the comparison. If both values
2086 ** are text, then the appropriate collating function specified in
2087 ** P4 is used to do the comparison. If P4 is not specified then
2088 ** memcmp() is used to compare text string. If both values are
2089 ** numeric, then a numeric comparison is used. If the two values
2090 ** are of different types, then numbers are considered less than
2091 ** strings and strings are considered less than blobs.
2093 ** This opcode saves the result of comparison for use by the new
2094 ** OP_Jump opcode.
2096 /* Opcode: Le P1 P2 P3 P4 P5
2097 ** Synopsis: IF r[P3]<=r[P1]
2099 ** This works just like the Lt opcode except that the jump is taken if
2100 ** the content of register P3 is less than or equal to the content of
2101 ** register P1. See the Lt opcode for additional information.
2103 /* Opcode: Gt P1 P2 P3 P4 P5
2104 ** Synopsis: IF r[P3]>r[P1]
2106 ** This works just like the Lt opcode except that the jump is taken if
2107 ** the content of register P3 is greater than the content of
2108 ** register P1. See the Lt opcode for additional information.
2110 /* Opcode: Ge P1 P2 P3 P4 P5
2111 ** Synopsis: IF r[P3]>=r[P1]
2113 ** This works just like the Lt opcode except that the jump is taken if
2114 ** the content of register P3 is greater than or equal to the content of
2115 ** register P1. See the Lt opcode for additional information.
2117 case OP_Eq: /* same as TK_EQ, jump, in1, in3 */
2118 case OP_Ne: /* same as TK_NE, jump, in1, in3 */
2119 case OP_Lt: /* same as TK_LT, jump, in1, in3 */
2120 case OP_Le: /* same as TK_LE, jump, in1, in3 */
2121 case OP_Gt: /* same as TK_GT, jump, in1, in3 */
2122 case OP_Ge: { /* same as TK_GE, jump, in1, in3 */
2123 int res, res2; /* Result of the comparison of pIn1 against pIn3 */
2124 char affinity; /* Affinity to use for comparison */
2125 u16 flags1; /* Copy of initial value of pIn1->flags */
2126 u16 flags3; /* Copy of initial value of pIn3->flags */
2128 pIn1 = &aMem[pOp->p1];
2129 pIn3 = &aMem[pOp->p3];
2130 flags1 = pIn1->flags;
2131 flags3 = pIn3->flags;
2132 if( (flags1 & flags3 & MEM_Int)!=0 ){
2133 /* Common case of comparison of two integers */
2134 if( pIn3->u.i > pIn1->u.i ){
2135 if( sqlite3aGTb[pOp->opcode] ){
2136 VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3);
2137 goto jump_to_p2;
2139 iCompare = +1;
2140 VVA_ONLY( iCompareIsInit = 1; )
2141 }else if( pIn3->u.i < pIn1->u.i ){
2142 if( sqlite3aLTb[pOp->opcode] ){
2143 VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3);
2144 goto jump_to_p2;
2146 iCompare = -1;
2147 VVA_ONLY( iCompareIsInit = 1; )
2148 }else{
2149 if( sqlite3aEQb[pOp->opcode] ){
2150 VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3);
2151 goto jump_to_p2;
2153 iCompare = 0;
2154 VVA_ONLY( iCompareIsInit = 1; )
2156 VdbeBranchTaken(0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
2157 break;
2159 if( (flags1 | flags3)&MEM_Null ){
2160 /* One or both operands are NULL */
2161 if( pOp->p5 & SQLITE_NULLEQ ){
2162 /* If SQLITE_NULLEQ is set (which will only happen if the operator is
2163 ** OP_Eq or OP_Ne) then take the jump or not depending on whether
2164 ** or not both operands are null.
2166 assert( (flags1 & MEM_Cleared)==0 );
2167 assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 || CORRUPT_DB );
2168 testcase( (pOp->p5 & SQLITE_JUMPIFNULL)!=0 );
2169 if( (flags1&flags3&MEM_Null)!=0
2170 && (flags3&MEM_Cleared)==0
2172 res = 0; /* Operands are equal */
2173 }else{
2174 res = ((flags3 & MEM_Null) ? -1 : +1); /* Operands are not equal */
2176 }else{
2177 /* SQLITE_NULLEQ is clear and at least one operand is NULL,
2178 ** then the result is always NULL.
2179 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
2181 VdbeBranchTaken(2,3);
2182 if( pOp->p5 & SQLITE_JUMPIFNULL ){
2183 goto jump_to_p2;
2185 iCompare = 1; /* Operands are not equal */
2186 VVA_ONLY( iCompareIsInit = 1; )
2187 break;
2189 }else{
2190 /* Neither operand is NULL and we couldn't do the special high-speed
2191 ** integer comparison case. So do a general-case comparison. */
2192 affinity = pOp->p5 & SQLITE_AFF_MASK;
2193 if( affinity>=SQLITE_AFF_NUMERIC ){
2194 if( (flags1 | flags3)&MEM_Str ){
2195 if( (flags1 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){
2196 applyNumericAffinity(pIn1,0);
2197 assert( flags3==pIn3->flags || CORRUPT_DB );
2198 flags3 = pIn3->flags;
2200 if( (flags3 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){
2201 applyNumericAffinity(pIn3,0);
2204 }else if( affinity==SQLITE_AFF_TEXT && ((flags1 | flags3) & MEM_Str)!=0 ){
2205 if( (flags1 & MEM_Str)==0 && (flags1&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){
2206 testcase( pIn1->flags & MEM_Int );
2207 testcase( pIn1->flags & MEM_Real );
2208 testcase( pIn1->flags & MEM_IntReal );
2209 sqlite3VdbeMemStringify(pIn1, encoding, 1);
2210 testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) );
2211 flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask);
2212 if( NEVER(pIn1==pIn3) ) flags3 = flags1 | MEM_Str;
2214 if( (flags3 & MEM_Str)==0 && (flags3&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){
2215 testcase( pIn3->flags & MEM_Int );
2216 testcase( pIn3->flags & MEM_Real );
2217 testcase( pIn3->flags & MEM_IntReal );
2218 sqlite3VdbeMemStringify(pIn3, encoding, 1);
2219 testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) );
2220 flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask);
2223 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
2224 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
2227 /* At this point, res is negative, zero, or positive if reg[P1] is
2228 ** less than, equal to, or greater than reg[P3], respectively. Compute
2229 ** the answer to this operator in res2, depending on what the comparison
2230 ** operator actually is. The next block of code depends on the fact
2231 ** that the 6 comparison operators are consecutive integers in this
2232 ** order: NE, EQ, GT, LE, LT, GE */
2233 assert( OP_Eq==OP_Ne+1 ); assert( OP_Gt==OP_Ne+2 ); assert( OP_Le==OP_Ne+3 );
2234 assert( OP_Lt==OP_Ne+4 ); assert( OP_Ge==OP_Ne+5 );
2235 if( res<0 ){
2236 res2 = sqlite3aLTb[pOp->opcode];
2237 }else if( res==0 ){
2238 res2 = sqlite3aEQb[pOp->opcode];
2239 }else{
2240 res2 = sqlite3aGTb[pOp->opcode];
2242 iCompare = res;
2243 VVA_ONLY( iCompareIsInit = 1; )
2245 /* Undo any changes made by applyAffinity() to the input registers. */
2246 assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) );
2247 pIn3->flags = flags3;
2248 assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
2249 pIn1->flags = flags1;
2251 VdbeBranchTaken(res2!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
2252 if( res2 ){
2253 goto jump_to_p2;
2255 break;
2258 /* Opcode: ElseEq * P2 * * *
2260 ** This opcode must follow an OP_Lt or OP_Gt comparison operator. There
2261 ** can be zero or more OP_ReleaseReg opcodes intervening, but no other
2262 ** opcodes are allowed to occur between this instruction and the previous
2263 ** OP_Lt or OP_Gt.
2265 ** If result of an OP_Eq comparison on the same two operands as the
2266 ** prior OP_Lt or OP_Gt would have been true, then jump to P2.
2267 ** If the result of an OP_Eq comparison on the two previous
2268 ** operands would have been false or NULL, then fall through.
2270 case OP_ElseEq: { /* same as TK_ESCAPE, jump */
2272 #ifdef SQLITE_DEBUG
2273 /* Verify the preconditions of this opcode - that it follows an OP_Lt or
2274 ** OP_Gt with zero or more intervening OP_ReleaseReg opcodes */
2275 int iAddr;
2276 for(iAddr = (int)(pOp - aOp) - 1; ALWAYS(iAddr>=0); iAddr--){
2277 if( aOp[iAddr].opcode==OP_ReleaseReg ) continue;
2278 assert( aOp[iAddr].opcode==OP_Lt || aOp[iAddr].opcode==OP_Gt );
2279 break;
2281 #endif /* SQLITE_DEBUG */
2282 assert( iCompareIsInit );
2283 VdbeBranchTaken(iCompare==0, 2);
2284 if( iCompare==0 ) goto jump_to_p2;
2285 break;
2289 /* Opcode: Permutation * * * P4 *
2291 ** Set the permutation used by the OP_Compare operator in the next
2292 ** instruction. The permutation is stored in the P4 operand.
2294 ** The permutation is only valid for the next opcode which must be
2295 ** an OP_Compare that has the OPFLAG_PERMUTE bit set in P5.
2297 ** The first integer in the P4 integer array is the length of the array
2298 ** and does not become part of the permutation.
2300 case OP_Permutation: {
2301 assert( pOp->p4type==P4_INTARRAY );
2302 assert( pOp->p4.ai );
2303 assert( pOp[1].opcode==OP_Compare );
2304 assert( pOp[1].p5 & OPFLAG_PERMUTE );
2305 break;
2308 /* Opcode: Compare P1 P2 P3 P4 P5
2309 ** Synopsis: r[P1@P3] <-> r[P2@P3]
2311 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
2312 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of
2313 ** the comparison for use by the next OP_Jump instruct.
2315 ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is
2316 ** determined by the most recent OP_Permutation operator. If the
2317 ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential
2318 ** order.
2320 ** P4 is a KeyInfo structure that defines collating sequences and sort
2321 ** orders for the comparison. The permutation applies to registers
2322 ** only. The KeyInfo elements are used sequentially.
2324 ** The comparison is a sort comparison, so NULLs compare equal,
2325 ** NULLs are less than numbers, numbers are less than strings,
2326 ** and strings are less than blobs.
2328 ** This opcode must be immediately followed by an OP_Jump opcode.
2330 case OP_Compare: {
2331 int n;
2332 int i;
2333 int p1;
2334 int p2;
2335 const KeyInfo *pKeyInfo;
2336 u32 idx;
2337 CollSeq *pColl; /* Collating sequence to use on this term */
2338 int bRev; /* True for DESCENDING sort order */
2339 u32 *aPermute; /* The permutation */
2341 if( (pOp->p5 & OPFLAG_PERMUTE)==0 ){
2342 aPermute = 0;
2343 }else{
2344 assert( pOp>aOp );
2345 assert( pOp[-1].opcode==OP_Permutation );
2346 assert( pOp[-1].p4type==P4_INTARRAY );
2347 aPermute = pOp[-1].p4.ai + 1;
2348 assert( aPermute!=0 );
2350 n = pOp->p3;
2351 pKeyInfo = pOp->p4.pKeyInfo;
2352 assert( n>0 );
2353 assert( pKeyInfo!=0 );
2354 p1 = pOp->p1;
2355 p2 = pOp->p2;
2356 #ifdef SQLITE_DEBUG
2357 if( aPermute ){
2358 int k, mx = 0;
2359 for(k=0; k<n; k++) if( aPermute[k]>(u32)mx ) mx = aPermute[k];
2360 assert( p1>0 && p1+mx<=(p->nMem+1 - p->nCursor)+1 );
2361 assert( p2>0 && p2+mx<=(p->nMem+1 - p->nCursor)+1 );
2362 }else{
2363 assert( p1>0 && p1+n<=(p->nMem+1 - p->nCursor)+1 );
2364 assert( p2>0 && p2+n<=(p->nMem+1 - p->nCursor)+1 );
2366 #endif /* SQLITE_DEBUG */
2367 for(i=0; i<n; i++){
2368 idx = aPermute ? aPermute[i] : (u32)i;
2369 assert( memIsValid(&aMem[p1+idx]) );
2370 assert( memIsValid(&aMem[p2+idx]) );
2371 REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
2372 REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
2373 assert( i<pKeyInfo->nKeyField );
2374 pColl = pKeyInfo->aColl[i];
2375 bRev = (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC);
2376 iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
2377 VVA_ONLY( iCompareIsInit = 1; )
2378 if( iCompare ){
2379 if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL)
2380 && ((aMem[p1+idx].flags & MEM_Null) || (aMem[p2+idx].flags & MEM_Null))
2382 iCompare = -iCompare;
2384 if( bRev ) iCompare = -iCompare;
2385 break;
2388 assert( pOp[1].opcode==OP_Jump );
2389 break;
2392 /* Opcode: Jump P1 P2 P3 * *
2394 ** Jump to the instruction at address P1, P2, or P3 depending on whether
2395 ** in the most recent OP_Compare instruction the P1 vector was less than
2396 ** equal to, or greater than the P2 vector, respectively.
2398 ** This opcode must immediately follow an OP_Compare opcode.
2400 case OP_Jump: { /* jump */
2401 assert( pOp>aOp && pOp[-1].opcode==OP_Compare );
2402 assert( iCompareIsInit );
2403 if( iCompare<0 ){
2404 VdbeBranchTaken(0,4); pOp = &aOp[pOp->p1 - 1];
2405 }else if( iCompare==0 ){
2406 VdbeBranchTaken(1,4); pOp = &aOp[pOp->p2 - 1];
2407 }else{
2408 VdbeBranchTaken(2,4); pOp = &aOp[pOp->p3 - 1];
2410 break;
2413 /* Opcode: And P1 P2 P3 * *
2414 ** Synopsis: r[P3]=(r[P1] && r[P2])
2416 ** Take the logical AND of the values in registers P1 and P2 and
2417 ** write the result into register P3.
2419 ** If either P1 or P2 is 0 (false) then the result is 0 even if
2420 ** the other input is NULL. A NULL and true or two NULLs give
2421 ** a NULL output.
2423 /* Opcode: Or P1 P2 P3 * *
2424 ** Synopsis: r[P3]=(r[P1] || r[P2])
2426 ** Take the logical OR of the values in register P1 and P2 and
2427 ** store the answer in register P3.
2429 ** If either P1 or P2 is nonzero (true) then the result is 1 (true)
2430 ** even if the other input is NULL. A NULL and false or two NULLs
2431 ** give a NULL output.
2433 case OP_And: /* same as TK_AND, in1, in2, out3 */
2434 case OP_Or: { /* same as TK_OR, in1, in2, out3 */
2435 int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2436 int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2438 v1 = sqlite3VdbeBooleanValue(&aMem[pOp->p1], 2);
2439 v2 = sqlite3VdbeBooleanValue(&aMem[pOp->p2], 2);
2440 if( pOp->opcode==OP_And ){
2441 static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
2442 v1 = and_logic[v1*3+v2];
2443 }else{
2444 static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
2445 v1 = or_logic[v1*3+v2];
2447 pOut = &aMem[pOp->p3];
2448 if( v1==2 ){
2449 MemSetTypeFlag(pOut, MEM_Null);
2450 }else{
2451 pOut->u.i = v1;
2452 MemSetTypeFlag(pOut, MEM_Int);
2454 break;
2457 /* Opcode: IsTrue P1 P2 P3 P4 *
2458 ** Synopsis: r[P2] = coalesce(r[P1]==TRUE,P3) ^ P4
2460 ** This opcode implements the IS TRUE, IS FALSE, IS NOT TRUE, and
2461 ** IS NOT FALSE operators.
2463 ** Interpret the value in register P1 as a boolean value. Store that
2464 ** boolean (a 0 or 1) in register P2. Or if the value in register P1 is
2465 ** NULL, then the P3 is stored in register P2. Invert the answer if P4
2466 ** is 1.
2468 ** The logic is summarized like this:
2470 ** <ul>
2471 ** <li> If P3==0 and P4==0 then r[P2] := r[P1] IS TRUE
2472 ** <li> If P3==1 and P4==1 then r[P2] := r[P1] IS FALSE
2473 ** <li> If P3==0 and P4==1 then r[P2] := r[P1] IS NOT TRUE
2474 ** <li> If P3==1 and P4==0 then r[P2] := r[P1] IS NOT FALSE
2475 ** </ul>
2477 case OP_IsTrue: { /* in1, out2 */
2478 assert( pOp->p4type==P4_INT32 );
2479 assert( pOp->p4.i==0 || pOp->p4.i==1 );
2480 assert( pOp->p3==0 || pOp->p3==1 );
2481 sqlite3VdbeMemSetInt64(&aMem[pOp->p2],
2482 sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3) ^ pOp->p4.i);
2483 break;
2486 /* Opcode: Not P1 P2 * * *
2487 ** Synopsis: r[P2]= !r[P1]
2489 ** Interpret the value in register P1 as a boolean value. Store the
2490 ** boolean complement in register P2. If the value in register P1 is
2491 ** NULL, then a NULL is stored in P2.
2493 case OP_Not: { /* same as TK_NOT, in1, out2 */
2494 pIn1 = &aMem[pOp->p1];
2495 pOut = &aMem[pOp->p2];
2496 if( (pIn1->flags & MEM_Null)==0 ){
2497 sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeBooleanValue(pIn1,0));
2498 }else{
2499 sqlite3VdbeMemSetNull(pOut);
2501 break;
2504 /* Opcode: BitNot P1 P2 * * *
2505 ** Synopsis: r[P2]= ~r[P1]
2507 ** Interpret the content of register P1 as an integer. Store the
2508 ** ones-complement of the P1 value into register P2. If P1 holds
2509 ** a NULL then store a NULL in P2.
2511 case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */
2512 pIn1 = &aMem[pOp->p1];
2513 pOut = &aMem[pOp->p2];
2514 sqlite3VdbeMemSetNull(pOut);
2515 if( (pIn1->flags & MEM_Null)==0 ){
2516 pOut->flags = MEM_Int;
2517 pOut->u.i = ~sqlite3VdbeIntValue(pIn1);
2519 break;
2522 /* Opcode: Once P1 P2 * * *
2524 ** Fall through to the next instruction the first time this opcode is
2525 ** encountered on each invocation of the byte-code program. Jump to P2
2526 ** on the second and all subsequent encounters during the same invocation.
2528 ** Top-level programs determine first invocation by comparing the P1
2529 ** operand against the P1 operand on the OP_Init opcode at the beginning
2530 ** of the program. If the P1 values differ, then fall through and make
2531 ** the P1 of this opcode equal to the P1 of OP_Init. If P1 values are
2532 ** the same then take the jump.
2534 ** For subprograms, there is a bitmask in the VdbeFrame that determines
2535 ** whether or not the jump should be taken. The bitmask is necessary
2536 ** because the self-altering code trick does not work for recursive
2537 ** triggers.
2539 case OP_Once: { /* jump */
2540 u32 iAddr; /* Address of this instruction */
2541 assert( p->aOp[0].opcode==OP_Init );
2542 if( p->pFrame ){
2543 iAddr = (int)(pOp - p->aOp);
2544 if( (p->pFrame->aOnce[iAddr/8] & (1<<(iAddr & 7)))!=0 ){
2545 VdbeBranchTaken(1, 2);
2546 goto jump_to_p2;
2548 p->pFrame->aOnce[iAddr/8] |= 1<<(iAddr & 7);
2549 }else{
2550 if( p->aOp[0].p1==pOp->p1 ){
2551 VdbeBranchTaken(1, 2);
2552 goto jump_to_p2;
2555 VdbeBranchTaken(0, 2);
2556 pOp->p1 = p->aOp[0].p1;
2557 break;
2560 /* Opcode: If P1 P2 P3 * *
2562 ** Jump to P2 if the value in register P1 is true. The value
2563 ** is considered true if it is numeric and non-zero. If the value
2564 ** in P1 is NULL then take the jump if and only if P3 is non-zero.
2566 case OP_If: { /* jump, in1 */
2567 int c;
2568 c = sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3);
2569 VdbeBranchTaken(c!=0, 2);
2570 if( c ) goto jump_to_p2;
2571 break;
2574 /* Opcode: IfNot P1 P2 P3 * *
2576 ** Jump to P2 if the value in register P1 is False. The value
2577 ** is considered false if it has a numeric value of zero. If the value
2578 ** in P1 is NULL then take the jump if and only if P3 is non-zero.
2580 case OP_IfNot: { /* jump, in1 */
2581 int c;
2582 c = !sqlite3VdbeBooleanValue(&aMem[pOp->p1], !pOp->p3);
2583 VdbeBranchTaken(c!=0, 2);
2584 if( c ) goto jump_to_p2;
2585 break;
2588 /* Opcode: IsNull P1 P2 * * *
2589 ** Synopsis: if r[P1]==NULL goto P2
2591 ** Jump to P2 if the value in register P1 is NULL.
2593 case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */
2594 pIn1 = &aMem[pOp->p1];
2595 VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2);
2596 if( (pIn1->flags & MEM_Null)!=0 ){
2597 goto jump_to_p2;
2599 break;
2602 /* Opcode: IsType P1 P2 P3 P4 P5
2603 ** Synopsis: if typeof(P1.P3) in P5 goto P2
2605 ** Jump to P2 if the type of a column in a btree is one of the types specified
2606 ** by the P5 bitmask.
2608 ** P1 is normally a cursor on a btree for which the row decode cache is
2609 ** valid through at least column P3. In other words, there should have been
2610 ** a prior OP_Column for column P3 or greater. If the cursor is not valid,
2611 ** then this opcode might give spurious results.
2612 ** The the btree row has fewer than P3 columns, then use P4 as the
2613 ** datatype.
2615 ** If P1 is -1, then P3 is a register number and the datatype is taken
2616 ** from the value in that register.
2618 ** P5 is a bitmask of data types. SQLITE_INTEGER is the least significant
2619 ** (0x01) bit. SQLITE_FLOAT is the 0x02 bit. SQLITE_TEXT is 0x04.
2620 ** SQLITE_BLOB is 0x08. SQLITE_NULL is 0x10.
2622 ** Take the jump to address P2 if and only if the datatype of the
2623 ** value determined by P1 and P3 corresponds to one of the bits in the
2624 ** P5 bitmask.
2627 case OP_IsType: { /* jump */
2628 VdbeCursor *pC;
2629 u16 typeMask;
2630 u32 serialType;
2632 assert( pOp->p1>=(-1) && pOp->p1<p->nCursor );
2633 assert( pOp->p1>=0 || (pOp->p3>=0 && pOp->p3<=(p->nMem+1 - p->nCursor)) );
2634 if( pOp->p1>=0 ){
2635 pC = p->apCsr[pOp->p1];
2636 assert( pC!=0 );
2637 assert( pOp->p3>=0 );
2638 if( pOp->p3<pC->nHdrParsed ){
2639 serialType = pC->aType[pOp->p3];
2640 if( serialType>=12 ){
2641 if( serialType&1 ){
2642 typeMask = 0x04; /* SQLITE_TEXT */
2643 }else{
2644 typeMask = 0x08; /* SQLITE_BLOB */
2646 }else{
2647 static const unsigned char aMask[] = {
2648 0x10, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x2,
2649 0x01, 0x01, 0x10, 0x10
2651 testcase( serialType==0 );
2652 testcase( serialType==1 );
2653 testcase( serialType==2 );
2654 testcase( serialType==3 );
2655 testcase( serialType==4 );
2656 testcase( serialType==5 );
2657 testcase( serialType==6 );
2658 testcase( serialType==7 );
2659 testcase( serialType==8 );
2660 testcase( serialType==9 );
2661 testcase( serialType==10 );
2662 testcase( serialType==11 );
2663 typeMask = aMask[serialType];
2665 }else{
2666 typeMask = 1 << (pOp->p4.i - 1);
2667 testcase( typeMask==0x01 );
2668 testcase( typeMask==0x02 );
2669 testcase( typeMask==0x04 );
2670 testcase( typeMask==0x08 );
2671 testcase( typeMask==0x10 );
2673 }else{
2674 assert( memIsValid(&aMem[pOp->p3]) );
2675 typeMask = 1 << (sqlite3_value_type((sqlite3_value*)&aMem[pOp->p3])-1);
2676 testcase( typeMask==0x01 );
2677 testcase( typeMask==0x02 );
2678 testcase( typeMask==0x04 );
2679 testcase( typeMask==0x08 );
2680 testcase( typeMask==0x10 );
2682 VdbeBranchTaken( (typeMask & pOp->p5)!=0, 2);
2683 if( typeMask & pOp->p5 ){
2684 goto jump_to_p2;
2686 break;
2689 /* Opcode: ZeroOrNull P1 P2 P3 * *
2690 ** Synopsis: r[P2] = 0 OR NULL
2692 ** If all both registers P1 and P3 are NOT NULL, then store a zero in
2693 ** register P2. If either registers P1 or P3 are NULL then put
2694 ** a NULL in register P2.
2696 case OP_ZeroOrNull: { /* in1, in2, out2, in3 */
2697 if( (aMem[pOp->p1].flags & MEM_Null)!=0
2698 || (aMem[pOp->p3].flags & MEM_Null)!=0
2700 sqlite3VdbeMemSetNull(aMem + pOp->p2);
2701 }else{
2702 sqlite3VdbeMemSetInt64(aMem + pOp->p2, 0);
2704 break;
2707 /* Opcode: NotNull P1 P2 * * *
2708 ** Synopsis: if r[P1]!=NULL goto P2
2710 ** Jump to P2 if the value in register P1 is not NULL.
2712 case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */
2713 pIn1 = &aMem[pOp->p1];
2714 VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2);
2715 if( (pIn1->flags & MEM_Null)==0 ){
2716 goto jump_to_p2;
2718 break;
2721 /* Opcode: IfNullRow P1 P2 P3 * *
2722 ** Synopsis: if P1.nullRow then r[P3]=NULL, goto P2
2724 ** Check the cursor P1 to see if it is currently pointing at a NULL row.
2725 ** If it is, then set register P3 to NULL and jump immediately to P2.
2726 ** If P1 is not on a NULL row, then fall through without making any
2727 ** changes.
2729 ** If P1 is not an open cursor, then this opcode is a no-op.
2731 case OP_IfNullRow: { /* jump */
2732 VdbeCursor *pC;
2733 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
2734 pC = p->apCsr[pOp->p1];
2735 if( ALWAYS(pC) && pC->nullRow ){
2736 sqlite3VdbeMemSetNull(aMem + pOp->p3);
2737 goto jump_to_p2;
2739 break;
2742 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
2743 /* Opcode: Offset P1 P2 P3 * *
2744 ** Synopsis: r[P3] = sqlite_offset(P1)
2746 ** Store in register r[P3] the byte offset into the database file that is the
2747 ** start of the payload for the record at which that cursor P1 is currently
2748 ** pointing.
2750 ** P2 is the column number for the argument to the sqlite_offset() function.
2751 ** This opcode does not use P2 itself, but the P2 value is used by the
2752 ** code generator. The P1, P2, and P3 operands to this opcode are the
2753 ** same as for OP_Column.
2755 ** This opcode is only available if SQLite is compiled with the
2756 ** -DSQLITE_ENABLE_OFFSET_SQL_FUNC option.
2758 case OP_Offset: { /* out3 */
2759 VdbeCursor *pC; /* The VDBE cursor */
2760 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
2761 pC = p->apCsr[pOp->p1];
2762 pOut = &p->aMem[pOp->p3];
2763 if( pC==0 || pC->eCurType!=CURTYPE_BTREE ){
2764 sqlite3VdbeMemSetNull(pOut);
2765 }else{
2766 if( pC->deferredMoveto ){
2767 rc = sqlite3VdbeFinishMoveto(pC);
2768 if( rc ) goto abort_due_to_error;
2770 if( sqlite3BtreeEof(pC->uc.pCursor) ){
2771 sqlite3VdbeMemSetNull(pOut);
2772 }else{
2773 sqlite3VdbeMemSetInt64(pOut, sqlite3BtreeOffset(pC->uc.pCursor));
2776 break;
2778 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */
2780 /* Opcode: Column P1 P2 P3 P4 P5
2781 ** Synopsis: r[P3]=PX cursor P1 column P2
2783 ** Interpret the data that cursor P1 points to as a structure built using
2784 ** the MakeRecord instruction. (See the MakeRecord opcode for additional
2785 ** information about the format of the data.) Extract the P2-th column
2786 ** from this record. If there are less than (P2+1)
2787 ** values in the record, extract a NULL.
2789 ** The value extracted is stored in register P3.
2791 ** If the record contains fewer than P2 fields, then extract a NULL. Or,
2792 ** if the P4 argument is a P4_MEM use the value of the P4 argument as
2793 ** the result.
2795 ** If the OPFLAG_LENGTHARG bit is set in P5 then the result is guaranteed
2796 ** to only be used by the length() function or the equivalent. The content
2797 ** of large blobs is not loaded, thus saving CPU cycles. If the
2798 ** OPFLAG_TYPEOFARG bit is set then the result will only be used by the
2799 ** typeof() function or the IS NULL or IS NOT NULL operators or the
2800 ** equivalent. In this case, all content loading can be omitted.
2802 case OP_Column: { /* ncycle */
2803 u32 p2; /* column number to retrieve */
2804 VdbeCursor *pC; /* The VDBE cursor */
2805 BtCursor *pCrsr; /* The B-Tree cursor corresponding to pC */
2806 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */
2807 int len; /* The length of the serialized data for the column */
2808 int i; /* Loop counter */
2809 Mem *pDest; /* Where to write the extracted value */
2810 Mem sMem; /* For storing the record being decoded */
2811 const u8 *zData; /* Part of the record being decoded */
2812 const u8 *zHdr; /* Next unparsed byte of the header */
2813 const u8 *zEndHdr; /* Pointer to first byte after the header */
2814 u64 offset64; /* 64-bit offset */
2815 u32 t; /* A type code from the record header */
2816 Mem *pReg; /* PseudoTable input register */
2818 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
2819 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
2820 pC = p->apCsr[pOp->p1];
2821 p2 = (u32)pOp->p2;
2823 op_column_restart:
2824 assert( pC!=0 );
2825 assert( p2<(u32)pC->nField
2826 || (pC->eCurType==CURTYPE_PSEUDO && pC->seekResult==0) );
2827 aOffset = pC->aOffset;
2828 assert( aOffset==pC->aType+pC->nField );
2829 assert( pC->eCurType!=CURTYPE_VTAB );
2830 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
2831 assert( pC->eCurType!=CURTYPE_SORTER );
2833 if( pC->cacheStatus!=p->cacheCtr ){ /*OPTIMIZATION-IF-FALSE*/
2834 if( pC->nullRow ){
2835 if( pC->eCurType==CURTYPE_PSEUDO && pC->seekResult>0 ){
2836 /* For the special case of as pseudo-cursor, the seekResult field
2837 ** identifies the register that holds the record */
2838 pReg = &aMem[pC->seekResult];
2839 assert( pReg->flags & MEM_Blob );
2840 assert( memIsValid(pReg) );
2841 pC->payloadSize = pC->szRow = pReg->n;
2842 pC->aRow = (u8*)pReg->z;
2843 }else{
2844 pDest = &aMem[pOp->p3];
2845 memAboutToChange(p, pDest);
2846 sqlite3VdbeMemSetNull(pDest);
2847 goto op_column_out;
2849 }else{
2850 pCrsr = pC->uc.pCursor;
2851 if( pC->deferredMoveto ){
2852 u32 iMap;
2853 assert( !pC->isEphemeral );
2854 if( pC->ub.aAltMap && (iMap = pC->ub.aAltMap[1+p2])>0 ){
2855 pC = pC->pAltCursor;
2856 p2 = iMap - 1;
2857 goto op_column_restart;
2859 rc = sqlite3VdbeFinishMoveto(pC);
2860 if( rc ) goto abort_due_to_error;
2861 }else if( sqlite3BtreeCursorHasMoved(pCrsr) ){
2862 rc = sqlite3VdbeHandleMovedCursor(pC);
2863 if( rc ) goto abort_due_to_error;
2864 goto op_column_restart;
2866 assert( pC->eCurType==CURTYPE_BTREE );
2867 assert( pCrsr );
2868 assert( sqlite3BtreeCursorIsValid(pCrsr) );
2869 pC->payloadSize = sqlite3BtreePayloadSize(pCrsr);
2870 pC->aRow = sqlite3BtreePayloadFetch(pCrsr, &pC->szRow);
2871 assert( pC->szRow<=pC->payloadSize );
2872 assert( pC->szRow<=65536 ); /* Maximum page size is 64KiB */
2874 pC->cacheStatus = p->cacheCtr;
2875 if( (aOffset[0] = pC->aRow[0])<0x80 ){
2876 pC->iHdrOffset = 1;
2877 }else{
2878 pC->iHdrOffset = sqlite3GetVarint32(pC->aRow, aOffset);
2880 pC->nHdrParsed = 0;
2882 if( pC->szRow<aOffset[0] ){ /*OPTIMIZATION-IF-FALSE*/
2883 /* pC->aRow does not have to hold the entire row, but it does at least
2884 ** need to cover the header of the record. If pC->aRow does not contain
2885 ** the complete header, then set it to zero, forcing the header to be
2886 ** dynamically allocated. */
2887 pC->aRow = 0;
2888 pC->szRow = 0;
2890 /* Make sure a corrupt database has not given us an oversize header.
2891 ** Do this now to avoid an oversize memory allocation.
2893 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte
2894 ** types use so much data space that there can only be 4096 and 32 of
2895 ** them, respectively. So the maximum header length results from a
2896 ** 3-byte type for each of the maximum of 32768 columns plus three
2897 ** extra bytes for the header length itself. 32768*3 + 3 = 98307.
2899 if( aOffset[0] > 98307 || aOffset[0] > pC->payloadSize ){
2900 goto op_column_corrupt;
2902 }else{
2903 /* This is an optimization. By skipping over the first few tests
2904 ** (ex: pC->nHdrParsed<=p2) in the next section, we achieve a
2905 ** measurable performance gain.
2907 ** This branch is taken even if aOffset[0]==0. Such a record is never
2908 ** generated by SQLite, and could be considered corruption, but we
2909 ** accept it for historical reasons. When aOffset[0]==0, the code this
2910 ** branch jumps to reads past the end of the record, but never more
2911 ** than a few bytes. Even if the record occurs at the end of the page
2912 ** content area, the "page header" comes after the page content and so
2913 ** this overread is harmless. Similar overreads can occur for a corrupt
2914 ** database file.
2916 zData = pC->aRow;
2917 assert( pC->nHdrParsed<=p2 ); /* Conditional skipped */
2918 testcase( aOffset[0]==0 );
2919 goto op_column_read_header;
2921 }else if( sqlite3BtreeCursorHasMoved(pC->uc.pCursor) ){
2922 rc = sqlite3VdbeHandleMovedCursor(pC);
2923 if( rc ) goto abort_due_to_error;
2924 goto op_column_restart;
2927 /* Make sure at least the first p2+1 entries of the header have been
2928 ** parsed and valid information is in aOffset[] and pC->aType[].
2930 if( pC->nHdrParsed<=p2 ){
2931 /* If there is more header available for parsing in the record, try
2932 ** to extract additional fields up through the p2+1-th field
2934 if( pC->iHdrOffset<aOffset[0] ){
2935 /* Make sure zData points to enough of the record to cover the header. */
2936 if( pC->aRow==0 ){
2937 memset(&sMem, 0, sizeof(sMem));
2938 rc = sqlite3VdbeMemFromBtreeZeroOffset(pC->uc.pCursor,aOffset[0],&sMem);
2939 if( rc!=SQLITE_OK ) goto abort_due_to_error;
2940 zData = (u8*)sMem.z;
2941 }else{
2942 zData = pC->aRow;
2945 /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */
2946 op_column_read_header:
2947 i = pC->nHdrParsed;
2948 offset64 = aOffset[i];
2949 zHdr = zData + pC->iHdrOffset;
2950 zEndHdr = zData + aOffset[0];
2951 testcase( zHdr>=zEndHdr );
2953 if( (pC->aType[i] = t = zHdr[0])<0x80 ){
2954 zHdr++;
2955 offset64 += sqlite3VdbeOneByteSerialTypeLen(t);
2956 }else{
2957 zHdr += sqlite3GetVarint32(zHdr, &t);
2958 pC->aType[i] = t;
2959 offset64 += sqlite3VdbeSerialTypeLen(t);
2961 aOffset[++i] = (u32)(offset64 & 0xffffffff);
2962 }while( (u32)i<=p2 && zHdr<zEndHdr );
2964 /* The record is corrupt if any of the following are true:
2965 ** (1) the bytes of the header extend past the declared header size
2966 ** (2) the entire header was used but not all data was used
2967 ** (3) the end of the data extends beyond the end of the record.
2969 if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize))
2970 || (offset64 > pC->payloadSize)
2972 if( aOffset[0]==0 ){
2973 i = 0;
2974 zHdr = zEndHdr;
2975 }else{
2976 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
2977 goto op_column_corrupt;
2981 pC->nHdrParsed = i;
2982 pC->iHdrOffset = (u32)(zHdr - zData);
2983 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
2984 }else{
2985 t = 0;
2988 /* If after trying to extract new entries from the header, nHdrParsed is
2989 ** still not up to p2, that means that the record has fewer than p2
2990 ** columns. So the result will be either the default value or a NULL.
2992 if( pC->nHdrParsed<=p2 ){
2993 pDest = &aMem[pOp->p3];
2994 memAboutToChange(p, pDest);
2995 if( pOp->p4type==P4_MEM ){
2996 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
2997 }else{
2998 sqlite3VdbeMemSetNull(pDest);
3000 goto op_column_out;
3002 }else{
3003 t = pC->aType[p2];
3006 /* Extract the content for the p2+1-th column. Control can only
3007 ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are
3008 ** all valid.
3010 assert( p2<pC->nHdrParsed );
3011 assert( rc==SQLITE_OK );
3012 pDest = &aMem[pOp->p3];
3013 memAboutToChange(p, pDest);
3014 assert( sqlite3VdbeCheckMemInvariants(pDest) );
3015 if( VdbeMemDynamic(pDest) ){
3016 sqlite3VdbeMemSetNull(pDest);
3018 assert( t==pC->aType[p2] );
3019 if( pC->szRow>=aOffset[p2+1] ){
3020 /* This is the common case where the desired content fits on the original
3021 ** page - where the content is not on an overflow page */
3022 zData = pC->aRow + aOffset[p2];
3023 if( t<12 ){
3024 sqlite3VdbeSerialGet(zData, t, pDest);
3025 }else{
3026 /* If the column value is a string, we need a persistent value, not
3027 ** a MEM_Ephem value. This branch is a fast short-cut that is equivalent
3028 ** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize().
3030 static const u16 aFlag[] = { MEM_Blob, MEM_Str|MEM_Term };
3031 pDest->n = len = (t-12)/2;
3032 pDest->enc = encoding;
3033 if( pDest->szMalloc < len+2 ){
3034 if( len>db->aLimit[SQLITE_LIMIT_LENGTH] ) goto too_big;
3035 pDest->flags = MEM_Null;
3036 if( sqlite3VdbeMemGrow(pDest, len+2, 0) ) goto no_mem;
3037 }else{
3038 pDest->z = pDest->zMalloc;
3040 memcpy(pDest->z, zData, len);
3041 pDest->z[len] = 0;
3042 pDest->z[len+1] = 0;
3043 pDest->flags = aFlag[t&1];
3045 }else{
3046 pDest->enc = encoding;
3047 /* This branch happens only when content is on overflow pages */
3048 if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0
3049 && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0))
3050 || (len = sqlite3VdbeSerialTypeLen(t))==0
3052 /* Content is irrelevant for
3053 ** 1. the typeof() function,
3054 ** 2. the length(X) function if X is a blob, and
3055 ** 3. if the content length is zero.
3056 ** So we might as well use bogus content rather than reading
3057 ** content from disk.
3059 ** Although sqlite3VdbeSerialGet() may read at most 8 bytes from the
3060 ** buffer passed to it, debugging function VdbeMemPrettyPrint() may
3061 ** read more. Use the global constant sqlite3CtypeMap[] as the array,
3062 ** as that array is 256 bytes long (plenty for VdbeMemPrettyPrint())
3063 ** and it begins with a bunch of zeros.
3065 sqlite3VdbeSerialGet((u8*)sqlite3CtypeMap, t, pDest);
3066 }else{
3067 if( len>db->aLimit[SQLITE_LIMIT_LENGTH] ) goto too_big;
3068 rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, aOffset[p2], len, pDest);
3069 if( rc!=SQLITE_OK ) goto abort_due_to_error;
3070 sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest);
3071 pDest->flags &= ~MEM_Ephem;
3075 op_column_out:
3076 UPDATE_MAX_BLOBSIZE(pDest);
3077 REGISTER_TRACE(pOp->p3, pDest);
3078 break;
3080 op_column_corrupt:
3081 if( aOp[0].p3>0 ){
3082 pOp = &aOp[aOp[0].p3-1];
3083 break;
3084 }else{
3085 rc = SQLITE_CORRUPT_BKPT;
3086 goto abort_due_to_error;
3090 /* Opcode: TypeCheck P1 P2 P3 P4 *
3091 ** Synopsis: typecheck(r[P1@P2])
3093 ** Apply affinities to the range of P2 registers beginning with P1.
3094 ** Take the affinities from the Table object in P4. If any value
3095 ** cannot be coerced into the correct type, then raise an error.
3097 ** This opcode is similar to OP_Affinity except that this opcode
3098 ** forces the register type to the Table column type. This is used
3099 ** to implement "strict affinity".
3101 ** GENERATED ALWAYS AS ... STATIC columns are only checked if P3
3102 ** is zero. When P3 is non-zero, no type checking occurs for
3103 ** static generated columns. Virtual columns are computed at query time
3104 ** and so they are never checked.
3106 ** Preconditions:
3108 ** <ul>
3109 ** <li> P2 should be the number of non-virtual columns in the
3110 ** table of P4.
3111 ** <li> Table P4 should be a STRICT table.
3112 ** </ul>
3114 ** If any precondition is false, an assertion fault occurs.
3116 case OP_TypeCheck: {
3117 Table *pTab;
3118 Column *aCol;
3119 int i;
3121 assert( pOp->p4type==P4_TABLE );
3122 pTab = pOp->p4.pTab;
3123 assert( pTab->tabFlags & TF_Strict );
3124 assert( pTab->nNVCol==pOp->p2 );
3125 aCol = pTab->aCol;
3126 pIn1 = &aMem[pOp->p1];
3127 for(i=0; i<pTab->nCol; i++){
3128 if( aCol[i].colFlags & COLFLAG_GENERATED ){
3129 if( aCol[i].colFlags & COLFLAG_VIRTUAL ) continue;
3130 if( pOp->p3 ){ pIn1++; continue; }
3132 assert( pIn1 < &aMem[pOp->p1+pOp->p2] );
3133 applyAffinity(pIn1, aCol[i].affinity, encoding);
3134 if( (pIn1->flags & MEM_Null)==0 ){
3135 switch( aCol[i].eCType ){
3136 case COLTYPE_BLOB: {
3137 if( (pIn1->flags & MEM_Blob)==0 ) goto vdbe_type_error;
3138 break;
3140 case COLTYPE_INTEGER:
3141 case COLTYPE_INT: {
3142 if( (pIn1->flags & MEM_Int)==0 ) goto vdbe_type_error;
3143 break;
3145 case COLTYPE_TEXT: {
3146 if( (pIn1->flags & MEM_Str)==0 ) goto vdbe_type_error;
3147 break;
3149 case COLTYPE_REAL: {
3150 testcase( (pIn1->flags & (MEM_Real|MEM_IntReal))==MEM_Real );
3151 assert( (pIn1->flags & MEM_IntReal)==0 );
3152 if( pIn1->flags & MEM_Int ){
3153 /* When applying REAL affinity, if the result is still an MEM_Int
3154 ** that will fit in 6 bytes, then change the type to MEM_IntReal
3155 ** so that we keep the high-resolution integer value but know that
3156 ** the type really wants to be REAL. */
3157 testcase( pIn1->u.i==140737488355328LL );
3158 testcase( pIn1->u.i==140737488355327LL );
3159 testcase( pIn1->u.i==-140737488355328LL );
3160 testcase( pIn1->u.i==-140737488355329LL );
3161 if( pIn1->u.i<=140737488355327LL && pIn1->u.i>=-140737488355328LL){
3162 pIn1->flags |= MEM_IntReal;
3163 pIn1->flags &= ~MEM_Int;
3164 }else{
3165 pIn1->u.r = (double)pIn1->u.i;
3166 pIn1->flags |= MEM_Real;
3167 pIn1->flags &= ~MEM_Int;
3169 }else if( (pIn1->flags & (MEM_Real|MEM_IntReal))==0 ){
3170 goto vdbe_type_error;
3172 break;
3174 default: {
3175 /* COLTYPE_ANY. Accept anything. */
3176 break;
3180 REGISTER_TRACE((int)(pIn1-aMem), pIn1);
3181 pIn1++;
3183 assert( pIn1 == &aMem[pOp->p1+pOp->p2] );
3184 break;
3186 vdbe_type_error:
3187 sqlite3VdbeError(p, "cannot store %s value in %s column %s.%s",
3188 vdbeMemTypeName(pIn1), sqlite3StdType[aCol[i].eCType-1],
3189 pTab->zName, aCol[i].zCnName);
3190 rc = SQLITE_CONSTRAINT_DATATYPE;
3191 goto abort_due_to_error;
3194 /* Opcode: Affinity P1 P2 * P4 *
3195 ** Synopsis: affinity(r[P1@P2])
3197 ** Apply affinities to a range of P2 registers starting with P1.
3199 ** P4 is a string that is P2 characters long. The N-th character of the
3200 ** string indicates the column affinity that should be used for the N-th
3201 ** memory cell in the range.
3203 case OP_Affinity: {
3204 const char *zAffinity; /* The affinity to be applied */
3206 zAffinity = pOp->p4.z;
3207 assert( zAffinity!=0 );
3208 assert( pOp->p2>0 );
3209 assert( zAffinity[pOp->p2]==0 );
3210 pIn1 = &aMem[pOp->p1];
3211 while( 1 /*exit-by-break*/ ){
3212 assert( pIn1 <= &p->aMem[(p->nMem+1 - p->nCursor)] );
3213 assert( zAffinity[0]==SQLITE_AFF_NONE || memIsValid(pIn1) );
3214 applyAffinity(pIn1, zAffinity[0], encoding);
3215 if( zAffinity[0]==SQLITE_AFF_REAL && (pIn1->flags & MEM_Int)!=0 ){
3216 /* When applying REAL affinity, if the result is still an MEM_Int
3217 ** that will fit in 6 bytes, then change the type to MEM_IntReal
3218 ** so that we keep the high-resolution integer value but know that
3219 ** the type really wants to be REAL. */
3220 testcase( pIn1->u.i==140737488355328LL );
3221 testcase( pIn1->u.i==140737488355327LL );
3222 testcase( pIn1->u.i==-140737488355328LL );
3223 testcase( pIn1->u.i==-140737488355329LL );
3224 if( pIn1->u.i<=140737488355327LL && pIn1->u.i>=-140737488355328LL ){
3225 pIn1->flags |= MEM_IntReal;
3226 pIn1->flags &= ~MEM_Int;
3227 }else{
3228 pIn1->u.r = (double)pIn1->u.i;
3229 pIn1->flags |= MEM_Real;
3230 pIn1->flags &= ~MEM_Int;
3233 REGISTER_TRACE((int)(pIn1-aMem), pIn1);
3234 zAffinity++;
3235 if( zAffinity[0]==0 ) break;
3236 pIn1++;
3238 break;
3241 /* Opcode: MakeRecord P1 P2 P3 P4 *
3242 ** Synopsis: r[P3]=mkrec(r[P1@P2])
3244 ** Convert P2 registers beginning with P1 into the [record format]
3245 ** use as a data record in a database table or as a key
3246 ** in an index. The OP_Column opcode can decode the record later.
3248 ** P4 may be a string that is P2 characters long. The N-th character of the
3249 ** string indicates the column affinity that should be used for the N-th
3250 ** field of the index key.
3252 ** The mapping from character to affinity is given by the SQLITE_AFF_
3253 ** macros defined in sqliteInt.h.
3255 ** If P4 is NULL then all index fields have the affinity BLOB.
3257 ** The meaning of P5 depends on whether or not the SQLITE_ENABLE_NULL_TRIM
3258 ** compile-time option is enabled:
3260 ** * If SQLITE_ENABLE_NULL_TRIM is enabled, then the P5 is the index
3261 ** of the right-most table that can be null-trimmed.
3263 ** * If SQLITE_ENABLE_NULL_TRIM is omitted, then P5 has the value
3264 ** OPFLAG_NOCHNG_MAGIC if the OP_MakeRecord opcode is allowed to
3265 ** accept no-change records with serial_type 10. This value is
3266 ** only used inside an assert() and does not affect the end result.
3268 case OP_MakeRecord: {
3269 Mem *pRec; /* The new record */
3270 u64 nData; /* Number of bytes of data space */
3271 int nHdr; /* Number of bytes of header space */
3272 i64 nByte; /* Data space required for this record */
3273 i64 nZero; /* Number of zero bytes at the end of the record */
3274 int nVarint; /* Number of bytes in a varint */
3275 u32 serial_type; /* Type field */
3276 Mem *pData0; /* First field to be combined into the record */
3277 Mem *pLast; /* Last field of the record */
3278 int nField; /* Number of fields in the record */
3279 char *zAffinity; /* The affinity string for the record */
3280 u32 len; /* Length of a field */
3281 u8 *zHdr; /* Where to write next byte of the header */
3282 u8 *zPayload; /* Where to write next byte of the payload */
3284 /* Assuming the record contains N fields, the record format looks
3285 ** like this:
3287 ** ------------------------------------------------------------------------
3288 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
3289 ** ------------------------------------------------------------------------
3291 ** Data(0) is taken from register P1. Data(1) comes from register P1+1
3292 ** and so forth.
3294 ** Each type field is a varint representing the serial type of the
3295 ** corresponding data element (see sqlite3VdbeSerialType()). The
3296 ** hdr-size field is also a varint which is the offset from the beginning
3297 ** of the record to data0.
3299 nData = 0; /* Number of bytes of data space */
3300 nHdr = 0; /* Number of bytes of header space */
3301 nZero = 0; /* Number of zero bytes at the end of the record */
3302 nField = pOp->p1;
3303 zAffinity = pOp->p4.z;
3304 assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem+1 - p->nCursor)+1 );
3305 pData0 = &aMem[nField];
3306 nField = pOp->p2;
3307 pLast = &pData0[nField-1];
3309 /* Identify the output register */
3310 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
3311 pOut = &aMem[pOp->p3];
3312 memAboutToChange(p, pOut);
3314 /* Apply the requested affinity to all inputs
3316 assert( pData0<=pLast );
3317 if( zAffinity ){
3318 pRec = pData0;
3320 applyAffinity(pRec, zAffinity[0], encoding);
3321 if( zAffinity[0]==SQLITE_AFF_REAL && (pRec->flags & MEM_Int) ){
3322 pRec->flags |= MEM_IntReal;
3323 pRec->flags &= ~(MEM_Int);
3325 REGISTER_TRACE((int)(pRec-aMem), pRec);
3326 zAffinity++;
3327 pRec++;
3328 assert( zAffinity[0]==0 || pRec<=pLast );
3329 }while( zAffinity[0] );
3332 #ifdef SQLITE_ENABLE_NULL_TRIM
3333 /* NULLs can be safely trimmed from the end of the record, as long as
3334 ** as the schema format is 2 or more and none of the omitted columns
3335 ** have a non-NULL default value. Also, the record must be left with
3336 ** at least one field. If P5>0 then it will be one more than the
3337 ** index of the right-most column with a non-NULL default value */
3338 if( pOp->p5 ){
3339 while( (pLast->flags & MEM_Null)!=0 && nField>pOp->p5 ){
3340 pLast--;
3341 nField--;
3344 #endif
3346 /* Loop through the elements that will make up the record to figure
3347 ** out how much space is required for the new record. After this loop,
3348 ** the Mem.uTemp field of each term should hold the serial-type that will
3349 ** be used for that term in the generated record:
3351 ** Mem.uTemp value type
3352 ** --------------- ---------------
3353 ** 0 NULL
3354 ** 1 1-byte signed integer
3355 ** 2 2-byte signed integer
3356 ** 3 3-byte signed integer
3357 ** 4 4-byte signed integer
3358 ** 5 6-byte signed integer
3359 ** 6 8-byte signed integer
3360 ** 7 IEEE float
3361 ** 8 Integer constant 0
3362 ** 9 Integer constant 1
3363 ** 10,11 reserved for expansion
3364 ** N>=12 and even BLOB
3365 ** N>=13 and odd text
3367 ** The following additional values are computed:
3368 ** nHdr Number of bytes needed for the record header
3369 ** nData Number of bytes of data space needed for the record
3370 ** nZero Zero bytes at the end of the record
3372 pRec = pLast;
3374 assert( memIsValid(pRec) );
3375 if( pRec->flags & MEM_Null ){
3376 if( pRec->flags & MEM_Zero ){
3377 /* Values with MEM_Null and MEM_Zero are created by xColumn virtual
3378 ** table methods that never invoke sqlite3_result_xxxxx() while
3379 ** computing an unchanging column value in an UPDATE statement.
3380 ** Give such values a special internal-use-only serial-type of 10
3381 ** so that they can be passed through to xUpdate and have
3382 ** a true sqlite3_value_nochange(). */
3383 #ifndef SQLITE_ENABLE_NULL_TRIM
3384 assert( pOp->p5==OPFLAG_NOCHNG_MAGIC || CORRUPT_DB );
3385 #endif
3386 pRec->uTemp = 10;
3387 }else{
3388 pRec->uTemp = 0;
3390 nHdr++;
3391 }else if( pRec->flags & (MEM_Int|MEM_IntReal) ){
3392 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
3393 i64 i = pRec->u.i;
3394 u64 uu;
3395 testcase( pRec->flags & MEM_Int );
3396 testcase( pRec->flags & MEM_IntReal );
3397 if( i<0 ){
3398 uu = ~i;
3399 }else{
3400 uu = i;
3402 nHdr++;
3403 testcase( uu==127 ); testcase( uu==128 );
3404 testcase( uu==32767 ); testcase( uu==32768 );
3405 testcase( uu==8388607 ); testcase( uu==8388608 );
3406 testcase( uu==2147483647 ); testcase( uu==2147483648LL );
3407 testcase( uu==140737488355327LL ); testcase( uu==140737488355328LL );
3408 if( uu<=127 ){
3409 if( (i&1)==i && p->minWriteFileFormat>=4 ){
3410 pRec->uTemp = 8+(u32)uu;
3411 }else{
3412 nData++;
3413 pRec->uTemp = 1;
3415 }else if( uu<=32767 ){
3416 nData += 2;
3417 pRec->uTemp = 2;
3418 }else if( uu<=8388607 ){
3419 nData += 3;
3420 pRec->uTemp = 3;
3421 }else if( uu<=2147483647 ){
3422 nData += 4;
3423 pRec->uTemp = 4;
3424 }else if( uu<=140737488355327LL ){
3425 nData += 6;
3426 pRec->uTemp = 5;
3427 }else{
3428 nData += 8;
3429 if( pRec->flags & MEM_IntReal ){
3430 /* If the value is IntReal and is going to take up 8 bytes to store
3431 ** as an integer, then we might as well make it an 8-byte floating
3432 ** point value */
3433 pRec->u.r = (double)pRec->u.i;
3434 pRec->flags &= ~MEM_IntReal;
3435 pRec->flags |= MEM_Real;
3436 pRec->uTemp = 7;
3437 }else{
3438 pRec->uTemp = 6;
3441 }else if( pRec->flags & MEM_Real ){
3442 nHdr++;
3443 nData += 8;
3444 pRec->uTemp = 7;
3445 }else{
3446 assert( db->mallocFailed || pRec->flags&(MEM_Str|MEM_Blob) );
3447 assert( pRec->n>=0 );
3448 len = (u32)pRec->n;
3449 serial_type = (len*2) + 12 + ((pRec->flags & MEM_Str)!=0);
3450 if( pRec->flags & MEM_Zero ){
3451 serial_type += pRec->u.nZero*2;
3452 if( nData ){
3453 if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem;
3454 len += pRec->u.nZero;
3455 }else{
3456 nZero += pRec->u.nZero;
3459 nData += len;
3460 nHdr += sqlite3VarintLen(serial_type);
3461 pRec->uTemp = serial_type;
3463 if( pRec==pData0 ) break;
3464 pRec--;
3465 }while(1);
3467 /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint
3468 ** which determines the total number of bytes in the header. The varint
3469 ** value is the size of the header in bytes including the size varint
3470 ** itself. */
3471 testcase( nHdr==126 );
3472 testcase( nHdr==127 );
3473 if( nHdr<=126 ){
3474 /* The common case */
3475 nHdr += 1;
3476 }else{
3477 /* Rare case of a really large header */
3478 nVarint = sqlite3VarintLen(nHdr);
3479 nHdr += nVarint;
3480 if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++;
3482 nByte = nHdr+nData;
3484 /* Make sure the output register has a buffer large enough to store
3485 ** the new record. The output register (pOp->p3) is not allowed to
3486 ** be one of the input registers (because the following call to
3487 ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used).
3489 if( nByte+nZero<=pOut->szMalloc ){
3490 /* The output register is already large enough to hold the record.
3491 ** No error checks or buffer enlargement is required */
3492 pOut->z = pOut->zMalloc;
3493 }else{
3494 /* Need to make sure that the output is not too big and then enlarge
3495 ** the output register to hold the full result */
3496 if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){
3497 goto too_big;
3499 if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){
3500 goto no_mem;
3503 pOut->n = (int)nByte;
3504 pOut->flags = MEM_Blob;
3505 if( nZero ){
3506 pOut->u.nZero = nZero;
3507 pOut->flags |= MEM_Zero;
3509 UPDATE_MAX_BLOBSIZE(pOut);
3510 zHdr = (u8 *)pOut->z;
3511 zPayload = zHdr + nHdr;
3513 /* Write the record */
3514 if( nHdr<0x80 ){
3515 *(zHdr++) = nHdr;
3516 }else{
3517 zHdr += sqlite3PutVarint(zHdr,nHdr);
3519 assert( pData0<=pLast );
3520 pRec = pData0;
3521 while( 1 /*exit-by-break*/ ){
3522 serial_type = pRec->uTemp;
3523 /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more
3524 ** additional varints, one per column.
3525 ** EVIDENCE-OF: R-64536-51728 The values for each column in the record
3526 ** immediately follow the header. */
3527 if( serial_type<=7 ){
3528 *(zHdr++) = serial_type;
3529 if( serial_type==0 ){
3530 /* NULL value. No change in zPayload */
3531 }else{
3532 u64 v;
3533 u32 i;
3534 if( serial_type==7 ){
3535 assert( sizeof(v)==sizeof(pRec->u.r) );
3536 memcpy(&v, &pRec->u.r, sizeof(v));
3537 swapMixedEndianFloat(v);
3538 }else{
3539 v = pRec->u.i;
3541 len = i = sqlite3SmallTypeSizes[serial_type];
3542 assert( i>0 );
3543 while( 1 /*exit-by-break*/ ){
3544 zPayload[--i] = (u8)(v&0xFF);
3545 if( i==0 ) break;
3546 v >>= 8;
3548 zPayload += len;
3550 }else if( serial_type<0x80 ){
3551 *(zHdr++) = serial_type;
3552 if( serial_type>=14 && pRec->n>0 ){
3553 assert( pRec->z!=0 );
3554 memcpy(zPayload, pRec->z, pRec->n);
3555 zPayload += pRec->n;
3557 }else{
3558 zHdr += sqlite3PutVarint(zHdr, serial_type);
3559 if( pRec->n ){
3560 assert( pRec->z!=0 );
3561 memcpy(zPayload, pRec->z, pRec->n);
3562 zPayload += pRec->n;
3565 if( pRec==pLast ) break;
3566 pRec++;
3568 assert( nHdr==(int)(zHdr - (u8*)pOut->z) );
3569 assert( nByte==(int)(zPayload - (u8*)pOut->z) );
3571 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
3572 REGISTER_TRACE(pOp->p3, pOut);
3573 break;
3576 /* Opcode: Count P1 P2 P3 * *
3577 ** Synopsis: r[P2]=count()
3579 ** Store the number of entries (an integer value) in the table or index
3580 ** opened by cursor P1 in register P2.
3582 ** If P3==0, then an exact count is obtained, which involves visiting
3583 ** every btree page of the table. But if P3 is non-zero, an estimate
3584 ** is returned based on the current cursor position.
3586 case OP_Count: { /* out2 */
3587 i64 nEntry;
3588 BtCursor *pCrsr;
3590 assert( p->apCsr[pOp->p1]->eCurType==CURTYPE_BTREE );
3591 pCrsr = p->apCsr[pOp->p1]->uc.pCursor;
3592 assert( pCrsr );
3593 if( pOp->p3 ){
3594 nEntry = sqlite3BtreeRowCountEst(pCrsr);
3595 }else{
3596 nEntry = 0; /* Not needed. Only used to silence a warning. */
3597 rc = sqlite3BtreeCount(db, pCrsr, &nEntry);
3598 if( rc ) goto abort_due_to_error;
3600 pOut = out2Prerelease(p, pOp);
3601 pOut->u.i = nEntry;
3602 goto check_for_interrupt;
3605 /* Opcode: Savepoint P1 * * P4 *
3607 ** Open, release or rollback the savepoint named by parameter P4, depending
3608 ** on the value of P1. To open a new savepoint set P1==0 (SAVEPOINT_BEGIN).
3609 ** To release (commit) an existing savepoint set P1==1 (SAVEPOINT_RELEASE).
3610 ** To rollback an existing savepoint set P1==2 (SAVEPOINT_ROLLBACK).
3612 case OP_Savepoint: {
3613 int p1; /* Value of P1 operand */
3614 char *zName; /* Name of savepoint */
3615 int nName;
3616 Savepoint *pNew;
3617 Savepoint *pSavepoint;
3618 Savepoint *pTmp;
3619 int iSavepoint;
3620 int ii;
3622 p1 = pOp->p1;
3623 zName = pOp->p4.z;
3625 /* Assert that the p1 parameter is valid. Also that if there is no open
3626 ** transaction, then there cannot be any savepoints.
3628 assert( db->pSavepoint==0 || db->autoCommit==0 );
3629 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
3630 assert( db->pSavepoint || db->isTransactionSavepoint==0 );
3631 assert( checkSavepointCount(db) );
3632 assert( p->bIsReader );
3634 if( p1==SAVEPOINT_BEGIN ){
3635 if( db->nVdbeWrite>0 ){
3636 /* A new savepoint cannot be created if there are active write
3637 ** statements (i.e. open read/write incremental blob handles).
3639 sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress");
3640 rc = SQLITE_BUSY;
3641 }else{
3642 nName = sqlite3Strlen30(zName);
3644 #ifndef SQLITE_OMIT_VIRTUALTABLE
3645 /* This call is Ok even if this savepoint is actually a transaction
3646 ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
3647 ** If this is a transaction savepoint being opened, it is guaranteed
3648 ** that the db->aVTrans[] array is empty. */
3649 assert( db->autoCommit==0 || db->nVTrans==0 );
3650 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
3651 db->nStatement+db->nSavepoint);
3652 if( rc!=SQLITE_OK ) goto abort_due_to_error;
3653 #endif
3655 /* Create a new savepoint structure. */
3656 pNew = sqlite3DbMallocRawNN(db, sizeof(Savepoint)+nName+1);
3657 if( pNew ){
3658 pNew->zName = (char *)&pNew[1];
3659 memcpy(pNew->zName, zName, nName+1);
3661 /* If there is no open transaction, then mark this as a special
3662 ** "transaction savepoint". */
3663 if( db->autoCommit ){
3664 db->autoCommit = 0;
3665 db->isTransactionSavepoint = 1;
3666 }else{
3667 db->nSavepoint++;
3670 /* Link the new savepoint into the database handle's list. */
3671 pNew->pNext = db->pSavepoint;
3672 db->pSavepoint = pNew;
3673 pNew->nDeferredCons = db->nDeferredCons;
3674 pNew->nDeferredImmCons = db->nDeferredImmCons;
3677 }else{
3678 assert( p1==SAVEPOINT_RELEASE || p1==SAVEPOINT_ROLLBACK );
3679 iSavepoint = 0;
3681 /* Find the named savepoint. If there is no such savepoint, then an
3682 ** an error is returned to the user. */
3683 for(
3684 pSavepoint = db->pSavepoint;
3685 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
3686 pSavepoint = pSavepoint->pNext
3688 iSavepoint++;
3690 if( !pSavepoint ){
3691 sqlite3VdbeError(p, "no such savepoint: %s", zName);
3692 rc = SQLITE_ERROR;
3693 }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){
3694 /* It is not possible to release (commit) a savepoint if there are
3695 ** active write statements.
3697 sqlite3VdbeError(p, "cannot release savepoint - "
3698 "SQL statements in progress");
3699 rc = SQLITE_BUSY;
3700 }else{
3702 /* Determine whether or not this is a transaction savepoint. If so,
3703 ** and this is a RELEASE command, then the current transaction
3704 ** is committed.
3706 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
3707 if( isTransaction && p1==SAVEPOINT_RELEASE ){
3708 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
3709 goto vdbe_return;
3711 db->autoCommit = 1;
3712 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
3713 p->pc = (int)(pOp - aOp);
3714 db->autoCommit = 0;
3715 p->rc = rc = SQLITE_BUSY;
3716 goto vdbe_return;
3718 rc = p->rc;
3719 if( rc ){
3720 db->autoCommit = 0;
3721 }else{
3722 db->isTransactionSavepoint = 0;
3724 }else{
3725 int isSchemaChange;
3726 iSavepoint = db->nSavepoint - iSavepoint - 1;
3727 if( p1==SAVEPOINT_ROLLBACK ){
3728 isSchemaChange = (db->mDbFlags & DBFLAG_SchemaChange)!=0;
3729 for(ii=0; ii<db->nDb; ii++){
3730 rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt,
3731 SQLITE_ABORT_ROLLBACK,
3732 isSchemaChange==0);
3733 if( rc!=SQLITE_OK ) goto abort_due_to_error;
3735 }else{
3736 assert( p1==SAVEPOINT_RELEASE );
3737 isSchemaChange = 0;
3739 for(ii=0; ii<db->nDb; ii++){
3740 rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
3741 if( rc!=SQLITE_OK ){
3742 goto abort_due_to_error;
3745 if( isSchemaChange ){
3746 sqlite3ExpirePreparedStatements(db, 0);
3747 sqlite3ResetAllSchemasOfConnection(db);
3748 db->mDbFlags |= DBFLAG_SchemaChange;
3751 if( rc ) goto abort_due_to_error;
3753 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
3754 ** savepoints nested inside of the savepoint being operated on. */
3755 while( db->pSavepoint!=pSavepoint ){
3756 pTmp = db->pSavepoint;
3757 db->pSavepoint = pTmp->pNext;
3758 sqlite3DbFree(db, pTmp);
3759 db->nSavepoint--;
3762 /* If it is a RELEASE, then destroy the savepoint being operated on
3763 ** too. If it is a ROLLBACK TO, then set the number of deferred
3764 ** constraint violations present in the database to the value stored
3765 ** when the savepoint was created. */
3766 if( p1==SAVEPOINT_RELEASE ){
3767 assert( pSavepoint==db->pSavepoint );
3768 db->pSavepoint = pSavepoint->pNext;
3769 sqlite3DbFree(db, pSavepoint);
3770 if( !isTransaction ){
3771 db->nSavepoint--;
3773 }else{
3774 assert( p1==SAVEPOINT_ROLLBACK );
3775 db->nDeferredCons = pSavepoint->nDeferredCons;
3776 db->nDeferredImmCons = pSavepoint->nDeferredImmCons;
3779 if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){
3780 rc = sqlite3VtabSavepoint(db, p1, iSavepoint);
3781 if( rc!=SQLITE_OK ) goto abort_due_to_error;
3785 if( rc ) goto abort_due_to_error;
3786 if( p->eVdbeState==VDBE_HALT_STATE ){
3787 rc = SQLITE_DONE;
3788 goto vdbe_return;
3790 break;
3793 /* Opcode: AutoCommit P1 P2 * * *
3795 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
3796 ** back any currently active btree transactions. If there are any active
3797 ** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if
3798 ** there are active writing VMs or active VMs that use shared cache.
3800 ** This instruction causes the VM to halt.
3802 case OP_AutoCommit: {
3803 int desiredAutoCommit;
3804 int iRollback;
3806 desiredAutoCommit = pOp->p1;
3807 iRollback = pOp->p2;
3808 assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
3809 assert( desiredAutoCommit==1 || iRollback==0 );
3810 assert( db->nVdbeActive>0 ); /* At least this one VM is active */
3811 assert( p->bIsReader );
3813 if( desiredAutoCommit!=db->autoCommit ){
3814 if( iRollback ){
3815 assert( desiredAutoCommit==1 );
3816 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3817 db->autoCommit = 1;
3818 }else if( desiredAutoCommit && db->nVdbeWrite>0 ){
3819 /* If this instruction implements a COMMIT and other VMs are writing
3820 ** return an error indicating that the other VMs must complete first.
3822 sqlite3VdbeError(p, "cannot commit transaction - "
3823 "SQL statements in progress");
3824 rc = SQLITE_BUSY;
3825 goto abort_due_to_error;
3826 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
3827 goto vdbe_return;
3828 }else{
3829 db->autoCommit = (u8)desiredAutoCommit;
3831 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
3832 p->pc = (int)(pOp - aOp);
3833 db->autoCommit = (u8)(1-desiredAutoCommit);
3834 p->rc = rc = SQLITE_BUSY;
3835 goto vdbe_return;
3837 sqlite3CloseSavepoints(db);
3838 if( p->rc==SQLITE_OK ){
3839 rc = SQLITE_DONE;
3840 }else{
3841 rc = SQLITE_ERROR;
3843 goto vdbe_return;
3844 }else{
3845 sqlite3VdbeError(p,
3846 (!desiredAutoCommit)?"cannot start a transaction within a transaction":(
3847 (iRollback)?"cannot rollback - no transaction is active":
3848 "cannot commit - no transaction is active"));
3850 rc = SQLITE_ERROR;
3851 goto abort_due_to_error;
3853 /*NOTREACHED*/ assert(0);
3856 /* Opcode: Transaction P1 P2 P3 P4 P5
3858 ** Begin a transaction on database P1 if a transaction is not already
3859 ** active.
3860 ** If P2 is non-zero, then a write-transaction is started, or if a
3861 ** read-transaction is already active, it is upgraded to a write-transaction.
3862 ** If P2 is zero, then a read-transaction is started. If P2 is 2 or more
3863 ** then an exclusive transaction is started.
3865 ** P1 is the index of the database file on which the transaction is
3866 ** started. Index 0 is the main database file and index 1 is the
3867 ** file used for temporary tables. Indices of 2 or more are used for
3868 ** attached databases.
3870 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
3871 ** true (this flag is set if the Vdbe may modify more than one row and may
3872 ** throw an ABORT exception), a statement transaction may also be opened.
3873 ** More specifically, a statement transaction is opened iff the database
3874 ** connection is currently not in autocommit mode, or if there are other
3875 ** active statements. A statement transaction allows the changes made by this
3876 ** VDBE to be rolled back after an error without having to roll back the
3877 ** entire transaction. If no error is encountered, the statement transaction
3878 ** will automatically commit when the VDBE halts.
3880 ** If P5!=0 then this opcode also checks the schema cookie against P3
3881 ** and the schema generation counter against P4.
3882 ** The cookie changes its value whenever the database schema changes.
3883 ** This operation is used to detect when that the cookie has changed
3884 ** and that the current process needs to reread the schema. If the schema
3885 ** cookie in P3 differs from the schema cookie in the database header or
3886 ** if the schema generation counter in P4 differs from the current
3887 ** generation counter, then an SQLITE_SCHEMA error is raised and execution
3888 ** halts. The sqlite3_step() wrapper function might then reprepare the
3889 ** statement and rerun it from the beginning.
3891 case OP_Transaction: {
3892 Btree *pBt;
3893 Db *pDb;
3894 int iMeta = 0;
3896 assert( p->bIsReader );
3897 assert( p->readOnly==0 || pOp->p2==0 );
3898 assert( pOp->p2>=0 && pOp->p2<=2 );
3899 assert( pOp->p1>=0 && pOp->p1<db->nDb );
3900 assert( DbMaskTest(p->btreeMask, pOp->p1) );
3901 assert( rc==SQLITE_OK );
3902 if( pOp->p2 && (db->flags & (SQLITE_QueryOnly|SQLITE_CorruptRdOnly))!=0 ){
3903 if( db->flags & SQLITE_QueryOnly ){
3904 /* Writes prohibited by the "PRAGMA query_only=TRUE" statement */
3905 rc = SQLITE_READONLY;
3906 }else{
3907 /* Writes prohibited due to a prior SQLITE_CORRUPT in the current
3908 ** transaction */
3909 rc = SQLITE_CORRUPT;
3911 goto abort_due_to_error;
3913 pDb = &db->aDb[pOp->p1];
3914 pBt = pDb->pBt;
3916 if( pBt ){
3917 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2, &iMeta);
3918 testcase( rc==SQLITE_BUSY_SNAPSHOT );
3919 testcase( rc==SQLITE_BUSY_RECOVERY );
3920 if( rc!=SQLITE_OK ){
3921 if( (rc&0xff)==SQLITE_BUSY ){
3922 p->pc = (int)(pOp - aOp);
3923 p->rc = rc;
3924 goto vdbe_return;
3926 goto abort_due_to_error;
3929 if( p->usesStmtJournal
3930 && pOp->p2
3931 && (db->autoCommit==0 || db->nVdbeRead>1)
3933 assert( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE );
3934 if( p->iStatement==0 ){
3935 assert( db->nStatement>=0 && db->nSavepoint>=0 );
3936 db->nStatement++;
3937 p->iStatement = db->nSavepoint + db->nStatement;
3940 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1);
3941 if( rc==SQLITE_OK ){
3942 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
3945 /* Store the current value of the database handles deferred constraint
3946 ** counter. If the statement transaction needs to be rolled back,
3947 ** the value of this counter needs to be restored too. */
3948 p->nStmtDefCons = db->nDeferredCons;
3949 p->nStmtDefImmCons = db->nDeferredImmCons;
3952 assert( pOp->p5==0 || pOp->p4type==P4_INT32 );
3953 if( rc==SQLITE_OK
3954 && pOp->p5
3955 && (iMeta!=pOp->p3 || pDb->pSchema->iGeneration!=pOp->p4.i)
3958 ** IMPLEMENTATION-OF: R-03189-51135 As each SQL statement runs, the schema
3959 ** version is checked to ensure that the schema has not changed since the
3960 ** SQL statement was prepared.
3962 sqlite3DbFree(db, p->zErrMsg);
3963 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
3964 /* If the schema-cookie from the database file matches the cookie
3965 ** stored with the in-memory representation of the schema, do
3966 ** not reload the schema from the database file.
3968 ** If virtual-tables are in use, this is not just an optimization.
3969 ** Often, v-tables store their data in other SQLite tables, which
3970 ** are queried from within xNext() and other v-table methods using
3971 ** prepared queries. If such a query is out-of-date, we do not want to
3972 ** discard the database schema, as the user code implementing the
3973 ** v-table would have to be ready for the sqlite3_vtab structure itself
3974 ** to be invalidated whenever sqlite3_step() is called from within
3975 ** a v-table method.
3977 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
3978 sqlite3ResetOneSchema(db, pOp->p1);
3980 p->expired = 1;
3981 rc = SQLITE_SCHEMA;
3983 /* Set changeCntOn to 0 to prevent the value returned by sqlite3_changes()
3984 ** from being modified in sqlite3VdbeHalt(). If this statement is
3985 ** reprepared, changeCntOn will be set again. */
3986 p->changeCntOn = 0;
3988 if( rc ) goto abort_due_to_error;
3989 break;
3992 /* Opcode: ReadCookie P1 P2 P3 * *
3994 ** Read cookie number P3 from database P1 and write it into register P2.
3995 ** P3==1 is the schema version. P3==2 is the database format.
3996 ** P3==3 is the recommended pager cache size, and so forth. P1==0 is
3997 ** the main database file and P1==1 is the database file used to store
3998 ** temporary tables.
4000 ** There must be a read-lock on the database (either a transaction
4001 ** must be started or there must be an open cursor) before
4002 ** executing this instruction.
4004 case OP_ReadCookie: { /* out2 */
4005 int iMeta;
4006 int iDb;
4007 int iCookie;
4009 assert( p->bIsReader );
4010 iDb = pOp->p1;
4011 iCookie = pOp->p3;
4012 assert( pOp->p3<SQLITE_N_BTREE_META );
4013 assert( iDb>=0 && iDb<db->nDb );
4014 assert( db->aDb[iDb].pBt!=0 );
4015 assert( DbMaskTest(p->btreeMask, iDb) );
4017 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
4018 pOut = out2Prerelease(p, pOp);
4019 pOut->u.i = iMeta;
4020 break;
4023 /* Opcode: SetCookie P1 P2 P3 * P5
4025 ** Write the integer value P3 into cookie number P2 of database P1.
4026 ** P2==1 is the schema version. P2==2 is the database format.
4027 ** P2==3 is the recommended pager cache
4028 ** size, and so forth. P1==0 is the main database file and P1==1 is the
4029 ** database file used to store temporary tables.
4031 ** A transaction must be started before executing this opcode.
4033 ** If P2 is the SCHEMA_VERSION cookie (cookie number 1) then the internal
4034 ** schema version is set to P3-P5. The "PRAGMA schema_version=N" statement
4035 ** has P5 set to 1, so that the internal schema version will be different
4036 ** from the database schema version, resulting in a schema reset.
4038 case OP_SetCookie: {
4039 Db *pDb;
4041 sqlite3VdbeIncrWriteCounter(p, 0);
4042 assert( pOp->p2<SQLITE_N_BTREE_META );
4043 assert( pOp->p1>=0 && pOp->p1<db->nDb );
4044 assert( DbMaskTest(p->btreeMask, pOp->p1) );
4045 assert( p->readOnly==0 );
4046 pDb = &db->aDb[pOp->p1];
4047 assert( pDb->pBt!=0 );
4048 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
4049 /* See note about index shifting on OP_ReadCookie */
4050 rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, pOp->p3);
4051 if( pOp->p2==BTREE_SCHEMA_VERSION ){
4052 /* When the schema cookie changes, record the new cookie internally */
4053 *(u32*)&pDb->pSchema->schema_cookie = *(u32*)&pOp->p3 - pOp->p5;
4054 db->mDbFlags |= DBFLAG_SchemaChange;
4055 sqlite3FkClearTriggerCache(db, pOp->p1);
4056 }else if( pOp->p2==BTREE_FILE_FORMAT ){
4057 /* Record changes in the file format */
4058 pDb->pSchema->file_format = pOp->p3;
4060 if( pOp->p1==1 ){
4061 /* Invalidate all prepared statements whenever the TEMP database
4062 ** schema is changed. Ticket #1644 */
4063 sqlite3ExpirePreparedStatements(db, 0);
4064 p->expired = 0;
4066 if( rc ) goto abort_due_to_error;
4067 break;
4070 /* Opcode: OpenRead P1 P2 P3 P4 P5
4071 ** Synopsis: root=P2 iDb=P3
4073 ** Open a read-only cursor for the database table whose root page is
4074 ** P2 in a database file. The database file is determined by P3.
4075 ** P3==0 means the main database, P3==1 means the database used for
4076 ** temporary tables, and P3>1 means used the corresponding attached
4077 ** database. Give the new cursor an identifier of P1. The P1
4078 ** values need not be contiguous but all P1 values should be small integers.
4079 ** It is an error for P1 to be negative.
4081 ** Allowed P5 bits:
4082 ** <ul>
4083 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
4084 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
4085 ** of OP_SeekLE/OP_IdxLT)
4086 ** </ul>
4088 ** The P4 value may be either an integer (P4_INT32) or a pointer to
4089 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
4090 ** object, then table being opened must be an [index b-tree] where the
4091 ** KeyInfo object defines the content and collating
4092 ** sequence of that index b-tree. Otherwise, if P4 is an integer
4093 ** value, then the table being opened must be a [table b-tree] with a
4094 ** number of columns no less than the value of P4.
4096 ** See also: OpenWrite, ReopenIdx
4098 /* Opcode: ReopenIdx P1 P2 P3 P4 P5
4099 ** Synopsis: root=P2 iDb=P3
4101 ** The ReopenIdx opcode works like OP_OpenRead except that it first
4102 ** checks to see if the cursor on P1 is already open on the same
4103 ** b-tree and if it is this opcode becomes a no-op. In other words,
4104 ** if the cursor is already open, do not reopen it.
4106 ** The ReopenIdx opcode may only be used with P5==0 or P5==OPFLAG_SEEKEQ
4107 ** and with P4 being a P4_KEYINFO object. Furthermore, the P3 value must
4108 ** be the same as every other ReopenIdx or OpenRead for the same cursor
4109 ** number.
4111 ** Allowed P5 bits:
4112 ** <ul>
4113 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
4114 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
4115 ** of OP_SeekLE/OP_IdxLT)
4116 ** </ul>
4118 ** See also: OP_OpenRead, OP_OpenWrite
4120 /* Opcode: OpenWrite P1 P2 P3 P4 P5
4121 ** Synopsis: root=P2 iDb=P3
4123 ** Open a read/write cursor named P1 on the table or index whose root
4124 ** page is P2 (or whose root page is held in register P2 if the
4125 ** OPFLAG_P2ISREG bit is set in P5 - see below).
4127 ** The P4 value may be either an integer (P4_INT32) or a pointer to
4128 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
4129 ** object, then table being opened must be an [index b-tree] where the
4130 ** KeyInfo object defines the content and collating
4131 ** sequence of that index b-tree. Otherwise, if P4 is an integer
4132 ** value, then the table being opened must be a [table b-tree] with a
4133 ** number of columns no less than the value of P4.
4135 ** Allowed P5 bits:
4136 ** <ul>
4137 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
4138 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
4139 ** of OP_SeekLE/OP_IdxLT)
4140 ** <li> <b>0x08 OPFLAG_FORDELETE</b>: This cursor is used only to seek
4141 ** and subsequently delete entries in an index btree. This is a
4142 ** hint to the storage engine that the storage engine is allowed to
4143 ** ignore. The hint is not used by the official SQLite b*tree storage
4144 ** engine, but is used by COMDB2.
4145 ** <li> <b>0x10 OPFLAG_P2ISREG</b>: Use the content of register P2
4146 ** as the root page, not the value of P2 itself.
4147 ** </ul>
4149 ** This instruction works like OpenRead except that it opens the cursor
4150 ** in read/write mode.
4152 ** See also: OP_OpenRead, OP_ReopenIdx
4154 case OP_ReopenIdx: { /* ncycle */
4155 int nField;
4156 KeyInfo *pKeyInfo;
4157 u32 p2;
4158 int iDb;
4159 int wrFlag;
4160 Btree *pX;
4161 VdbeCursor *pCur;
4162 Db *pDb;
4164 assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
4165 assert( pOp->p4type==P4_KEYINFO );
4166 pCur = p->apCsr[pOp->p1];
4167 if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){
4168 assert( pCur->iDb==pOp->p3 ); /* Guaranteed by the code generator */
4169 assert( pCur->eCurType==CURTYPE_BTREE );
4170 sqlite3BtreeClearCursor(pCur->uc.pCursor);
4171 goto open_cursor_set_hints;
4173 /* If the cursor is not currently open or is open on a different
4174 ** index, then fall through into OP_OpenRead to force a reopen */
4175 case OP_OpenRead: /* ncycle */
4176 case OP_OpenWrite:
4178 assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
4179 assert( p->bIsReader );
4180 assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx
4181 || p->readOnly==0 );
4183 if( p->expired==1 ){
4184 rc = SQLITE_ABORT_ROLLBACK;
4185 goto abort_due_to_error;
4188 nField = 0;
4189 pKeyInfo = 0;
4190 p2 = (u32)pOp->p2;
4191 iDb = pOp->p3;
4192 assert( iDb>=0 && iDb<db->nDb );
4193 assert( DbMaskTest(p->btreeMask, iDb) );
4194 pDb = &db->aDb[iDb];
4195 pX = pDb->pBt;
4196 assert( pX!=0 );
4197 if( pOp->opcode==OP_OpenWrite ){
4198 assert( OPFLAG_FORDELETE==BTREE_FORDELETE );
4199 wrFlag = BTREE_WRCSR | (pOp->p5 & OPFLAG_FORDELETE);
4200 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
4201 if( pDb->pSchema->file_format < p->minWriteFileFormat ){
4202 p->minWriteFileFormat = pDb->pSchema->file_format;
4204 }else{
4205 wrFlag = 0;
4207 if( pOp->p5 & OPFLAG_P2ISREG ){
4208 assert( p2>0 );
4209 assert( p2<=(u32)(p->nMem+1 - p->nCursor) );
4210 assert( pOp->opcode==OP_OpenWrite );
4211 pIn2 = &aMem[p2];
4212 assert( memIsValid(pIn2) );
4213 assert( (pIn2->flags & MEM_Int)!=0 );
4214 sqlite3VdbeMemIntegerify(pIn2);
4215 p2 = (int)pIn2->u.i;
4216 /* The p2 value always comes from a prior OP_CreateBtree opcode and
4217 ** that opcode will always set the p2 value to 2 or more or else fail.
4218 ** If there were a failure, the prepared statement would have halted
4219 ** before reaching this instruction. */
4220 assert( p2>=2 );
4222 if( pOp->p4type==P4_KEYINFO ){
4223 pKeyInfo = pOp->p4.pKeyInfo;
4224 assert( pKeyInfo->enc==ENC(db) );
4225 assert( pKeyInfo->db==db );
4226 nField = pKeyInfo->nAllField;
4227 }else if( pOp->p4type==P4_INT32 ){
4228 nField = pOp->p4.i;
4230 assert( pOp->p1>=0 );
4231 assert( nField>=0 );
4232 testcase( nField==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */
4233 pCur = allocateCursor(p, pOp->p1, nField, CURTYPE_BTREE);
4234 if( pCur==0 ) goto no_mem;
4235 pCur->iDb = iDb;
4236 pCur->nullRow = 1;
4237 pCur->isOrdered = 1;
4238 pCur->pgnoRoot = p2;
4239 #ifdef SQLITE_DEBUG
4240 pCur->wrFlag = wrFlag;
4241 #endif
4242 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor);
4243 pCur->pKeyInfo = pKeyInfo;
4244 /* Set the VdbeCursor.isTable variable. Previous versions of
4245 ** SQLite used to check if the root-page flags were sane at this point
4246 ** and report database corruption if they were not, but this check has
4247 ** since moved into the btree layer. */
4248 pCur->isTable = pOp->p4type!=P4_KEYINFO;
4250 open_cursor_set_hints:
4251 assert( OPFLAG_BULKCSR==BTREE_BULKLOAD );
4252 assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ );
4253 testcase( pOp->p5 & OPFLAG_BULKCSR );
4254 testcase( pOp->p2 & OPFLAG_SEEKEQ );
4255 sqlite3BtreeCursorHintFlags(pCur->uc.pCursor,
4256 (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ)));
4257 if( rc ) goto abort_due_to_error;
4258 break;
4261 /* Opcode: OpenDup P1 P2 * * *
4263 ** Open a new cursor P1 that points to the same ephemeral table as
4264 ** cursor P2. The P2 cursor must have been opened by a prior OP_OpenEphemeral
4265 ** opcode. Only ephemeral cursors may be duplicated.
4267 ** Duplicate ephemeral cursors are used for self-joins of materialized views.
4269 case OP_OpenDup: { /* ncycle */
4270 VdbeCursor *pOrig; /* The original cursor to be duplicated */
4271 VdbeCursor *pCx; /* The new cursor */
4273 pOrig = p->apCsr[pOp->p2];
4274 assert( pOrig );
4275 assert( pOrig->isEphemeral ); /* Only ephemeral cursors can be duplicated */
4277 pCx = allocateCursor(p, pOp->p1, pOrig->nField, CURTYPE_BTREE);
4278 if( pCx==0 ) goto no_mem;
4279 pCx->nullRow = 1;
4280 pCx->isEphemeral = 1;
4281 pCx->pKeyInfo = pOrig->pKeyInfo;
4282 pCx->isTable = pOrig->isTable;
4283 pCx->pgnoRoot = pOrig->pgnoRoot;
4284 pCx->isOrdered = pOrig->isOrdered;
4285 pCx->ub.pBtx = pOrig->ub.pBtx;
4286 pCx->noReuse = 1;
4287 pOrig->noReuse = 1;
4288 rc = sqlite3BtreeCursor(pCx->ub.pBtx, pCx->pgnoRoot, BTREE_WRCSR,
4289 pCx->pKeyInfo, pCx->uc.pCursor);
4290 /* The sqlite3BtreeCursor() routine can only fail for the first cursor
4291 ** opened for a database. Since there is already an open cursor when this
4292 ** opcode is run, the sqlite3BtreeCursor() cannot fail */
4293 assert( rc==SQLITE_OK );
4294 break;
4298 /* Opcode: OpenEphemeral P1 P2 P3 P4 P5
4299 ** Synopsis: nColumn=P2
4301 ** Open a new cursor P1 to a transient table.
4302 ** The cursor is always opened read/write even if
4303 ** the main database is read-only. The ephemeral
4304 ** table is deleted automatically when the cursor is closed.
4306 ** If the cursor P1 is already opened on an ephemeral table, the table
4307 ** is cleared (all content is erased).
4309 ** P2 is the number of columns in the ephemeral table.
4310 ** The cursor points to a BTree table if P4==0 and to a BTree index
4311 ** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure
4312 ** that defines the format of keys in the index.
4314 ** The P5 parameter can be a mask of the BTREE_* flags defined
4315 ** in btree.h. These flags control aspects of the operation of
4316 ** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
4317 ** added automatically.
4319 ** If P3 is positive, then reg[P3] is modified slightly so that it
4320 ** can be used as zero-length data for OP_Insert. This is an optimization
4321 ** that avoids an extra OP_Blob opcode to initialize that register.
4323 /* Opcode: OpenAutoindex P1 P2 * P4 *
4324 ** Synopsis: nColumn=P2
4326 ** This opcode works the same as OP_OpenEphemeral. It has a
4327 ** different name to distinguish its use. Tables created using
4328 ** by this opcode will be used for automatically created transient
4329 ** indices in joins.
4331 case OP_OpenAutoindex: /* ncycle */
4332 case OP_OpenEphemeral: { /* ncycle */
4333 VdbeCursor *pCx;
4334 KeyInfo *pKeyInfo;
4336 static const int vfsFlags =
4337 SQLITE_OPEN_READWRITE |
4338 SQLITE_OPEN_CREATE |
4339 SQLITE_OPEN_EXCLUSIVE |
4340 SQLITE_OPEN_DELETEONCLOSE |
4341 SQLITE_OPEN_TRANSIENT_DB;
4342 assert( pOp->p1>=0 );
4343 assert( pOp->p2>=0 );
4344 if( pOp->p3>0 ){
4345 /* Make register reg[P3] into a value that can be used as the data
4346 ** form sqlite3BtreeInsert() where the length of the data is zero. */
4347 assert( pOp->p2==0 ); /* Only used when number of columns is zero */
4348 assert( pOp->opcode==OP_OpenEphemeral );
4349 assert( aMem[pOp->p3].flags & MEM_Null );
4350 aMem[pOp->p3].n = 0;
4351 aMem[pOp->p3].z = "";
4353 pCx = p->apCsr[pOp->p1];
4354 if( pCx && !pCx->noReuse && ALWAYS(pOp->p2<=pCx->nField) ){
4355 /* If the ephermeral table is already open and has no duplicates from
4356 ** OP_OpenDup, then erase all existing content so that the table is
4357 ** empty again, rather than creating a new table. */
4358 assert( pCx->isEphemeral );
4359 pCx->seqCount = 0;
4360 pCx->cacheStatus = CACHE_STALE;
4361 rc = sqlite3BtreeClearTable(pCx->ub.pBtx, pCx->pgnoRoot, 0);
4362 }else{
4363 pCx = allocateCursor(p, pOp->p1, pOp->p2, CURTYPE_BTREE);
4364 if( pCx==0 ) goto no_mem;
4365 pCx->isEphemeral = 1;
4366 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->ub.pBtx,
4367 BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5,
4368 vfsFlags);
4369 if( rc==SQLITE_OK ){
4370 rc = sqlite3BtreeBeginTrans(pCx->ub.pBtx, 1, 0);
4371 if( rc==SQLITE_OK ){
4372 /* If a transient index is required, create it by calling
4373 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
4374 ** opening it. If a transient table is required, just use the
4375 ** automatically created table with root-page 1 (an BLOB_INTKEY table).
4377 if( (pCx->pKeyInfo = pKeyInfo = pOp->p4.pKeyInfo)!=0 ){
4378 assert( pOp->p4type==P4_KEYINFO );
4379 rc = sqlite3BtreeCreateTable(pCx->ub.pBtx, &pCx->pgnoRoot,
4380 BTREE_BLOBKEY | pOp->p5);
4381 if( rc==SQLITE_OK ){
4382 assert( pCx->pgnoRoot==SCHEMA_ROOT+1 );
4383 assert( pKeyInfo->db==db );
4384 assert( pKeyInfo->enc==ENC(db) );
4385 rc = sqlite3BtreeCursor(pCx->ub.pBtx, pCx->pgnoRoot, BTREE_WRCSR,
4386 pKeyInfo, pCx->uc.pCursor);
4388 pCx->isTable = 0;
4389 }else{
4390 pCx->pgnoRoot = SCHEMA_ROOT;
4391 rc = sqlite3BtreeCursor(pCx->ub.pBtx, SCHEMA_ROOT, BTREE_WRCSR,
4392 0, pCx->uc.pCursor);
4393 pCx->isTable = 1;
4396 pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
4397 if( rc ){
4398 sqlite3BtreeClose(pCx->ub.pBtx);
4402 if( rc ) goto abort_due_to_error;
4403 pCx->nullRow = 1;
4404 break;
4407 /* Opcode: SorterOpen P1 P2 P3 P4 *
4409 ** This opcode works like OP_OpenEphemeral except that it opens
4410 ** a transient index that is specifically designed to sort large
4411 ** tables using an external merge-sort algorithm.
4413 ** If argument P3 is non-zero, then it indicates that the sorter may
4414 ** assume that a stable sort considering the first P3 fields of each
4415 ** key is sufficient to produce the required results.
4417 case OP_SorterOpen: {
4418 VdbeCursor *pCx;
4420 assert( pOp->p1>=0 );
4421 assert( pOp->p2>=0 );
4422 pCx = allocateCursor(p, pOp->p1, pOp->p2, CURTYPE_SORTER);
4423 if( pCx==0 ) goto no_mem;
4424 pCx->pKeyInfo = pOp->p4.pKeyInfo;
4425 assert( pCx->pKeyInfo->db==db );
4426 assert( pCx->pKeyInfo->enc==ENC(db) );
4427 rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx);
4428 if( rc ) goto abort_due_to_error;
4429 break;
4432 /* Opcode: SequenceTest P1 P2 * * *
4433 ** Synopsis: if( cursor[P1].ctr++ ) pc = P2
4435 ** P1 is a sorter cursor. If the sequence counter is currently zero, jump
4436 ** to P2. Regardless of whether or not the jump is taken, increment the
4437 ** the sequence value.
4439 case OP_SequenceTest: {
4440 VdbeCursor *pC;
4441 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4442 pC = p->apCsr[pOp->p1];
4443 assert( isSorter(pC) );
4444 if( (pC->seqCount++)==0 ){
4445 goto jump_to_p2;
4447 break;
4450 /* Opcode: OpenPseudo P1 P2 P3 * *
4451 ** Synopsis: P3 columns in r[P2]
4453 ** Open a new cursor that points to a fake table that contains a single
4454 ** row of data. The content of that one row is the content of memory
4455 ** register P2. In other words, cursor P1 becomes an alias for the
4456 ** MEM_Blob content contained in register P2.
4458 ** A pseudo-table created by this opcode is used to hold a single
4459 ** row output from the sorter so that the row can be decomposed into
4460 ** individual columns using the OP_Column opcode. The OP_Column opcode
4461 ** is the only cursor opcode that works with a pseudo-table.
4463 ** P3 is the number of fields in the records that will be stored by
4464 ** the pseudo-table.
4466 case OP_OpenPseudo: {
4467 VdbeCursor *pCx;
4469 assert( pOp->p1>=0 );
4470 assert( pOp->p3>=0 );
4471 pCx = allocateCursor(p, pOp->p1, pOp->p3, CURTYPE_PSEUDO);
4472 if( pCx==0 ) goto no_mem;
4473 pCx->nullRow = 1;
4474 pCx->seekResult = pOp->p2;
4475 pCx->isTable = 1;
4476 /* Give this pseudo-cursor a fake BtCursor pointer so that pCx
4477 ** can be safely passed to sqlite3VdbeCursorMoveto(). This avoids a test
4478 ** for pCx->eCurType==CURTYPE_BTREE inside of sqlite3VdbeCursorMoveto()
4479 ** which is a performance optimization */
4480 pCx->uc.pCursor = sqlite3BtreeFakeValidCursor();
4481 assert( pOp->p5==0 );
4482 break;
4485 /* Opcode: Close P1 * * * *
4487 ** Close a cursor previously opened as P1. If P1 is not
4488 ** currently open, this instruction is a no-op.
4490 case OP_Close: { /* ncycle */
4491 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4492 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
4493 p->apCsr[pOp->p1] = 0;
4494 break;
4497 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
4498 /* Opcode: ColumnsUsed P1 * * P4 *
4500 ** This opcode (which only exists if SQLite was compiled with
4501 ** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the
4502 ** table or index for cursor P1 are used. P4 is a 64-bit integer
4503 ** (P4_INT64) in which the first 63 bits are one for each of the
4504 ** first 63 columns of the table or index that are actually used
4505 ** by the cursor. The high-order bit is set if any column after
4506 ** the 64th is used.
4508 case OP_ColumnsUsed: {
4509 VdbeCursor *pC;
4510 pC = p->apCsr[pOp->p1];
4511 assert( pC->eCurType==CURTYPE_BTREE );
4512 pC->maskUsed = *(u64*)pOp->p4.pI64;
4513 break;
4515 #endif
4517 /* Opcode: SeekGE P1 P2 P3 P4 *
4518 ** Synopsis: key=r[P3@P4]
4520 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4521 ** use the value in register P3 as the key. If cursor P1 refers
4522 ** to an SQL index, then P3 is the first in an array of P4 registers
4523 ** that are used as an unpacked index key.
4525 ** Reposition cursor P1 so that it points to the smallest entry that
4526 ** is greater than or equal to the key value. If there are no records
4527 ** greater than or equal to the key and P2 is not zero, then jump to P2.
4529 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
4530 ** opcode will either land on a record that exactly matches the key, or
4531 ** else it will cause a jump to P2. When the cursor is OPFLAG_SEEKEQ,
4532 ** this opcode must be followed by an IdxLE opcode with the same arguments.
4533 ** The IdxGT opcode will be skipped if this opcode succeeds, but the
4534 ** IdxGT opcode will be used on subsequent loop iterations. The
4535 ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this
4536 ** is an equality search.
4538 ** This opcode leaves the cursor configured to move in forward order,
4539 ** from the beginning toward the end. In other words, the cursor is
4540 ** configured to use Next, not Prev.
4542 ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe
4544 /* Opcode: SeekGT P1 P2 P3 P4 *
4545 ** Synopsis: key=r[P3@P4]
4547 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4548 ** use the value in register P3 as a key. If cursor P1 refers
4549 ** to an SQL index, then P3 is the first in an array of P4 registers
4550 ** that are used as an unpacked index key.
4552 ** Reposition cursor P1 so that it points to the smallest entry that
4553 ** is greater than the key value. If there are no records greater than
4554 ** the key and P2 is not zero, then jump to P2.
4556 ** This opcode leaves the cursor configured to move in forward order,
4557 ** from the beginning toward the end. In other words, the cursor is
4558 ** configured to use Next, not Prev.
4560 ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe
4562 /* Opcode: SeekLT P1 P2 P3 P4 *
4563 ** Synopsis: key=r[P3@P4]
4565 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4566 ** use the value in register P3 as a key. If cursor P1 refers
4567 ** to an SQL index, then P3 is the first in an array of P4 registers
4568 ** that are used as an unpacked index key.
4570 ** Reposition cursor P1 so that it points to the largest entry that
4571 ** is less than the key value. If there are no records less than
4572 ** the key and P2 is not zero, then jump to P2.
4574 ** This opcode leaves the cursor configured to move in reverse order,
4575 ** from the end toward the beginning. In other words, the cursor is
4576 ** configured to use Prev, not Next.
4578 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe
4580 /* Opcode: SeekLE P1 P2 P3 P4 *
4581 ** Synopsis: key=r[P3@P4]
4583 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4584 ** use the value in register P3 as a key. If cursor P1 refers
4585 ** to an SQL index, then P3 is the first in an array of P4 registers
4586 ** that are used as an unpacked index key.
4588 ** Reposition cursor P1 so that it points to the largest entry that
4589 ** is less than or equal to the key value. If there are no records
4590 ** less than or equal to the key and P2 is not zero, then jump to P2.
4592 ** This opcode leaves the cursor configured to move in reverse order,
4593 ** from the end toward the beginning. In other words, the cursor is
4594 ** configured to use Prev, not Next.
4596 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
4597 ** opcode will either land on a record that exactly matches the key, or
4598 ** else it will cause a jump to P2. When the cursor is OPFLAG_SEEKEQ,
4599 ** this opcode must be followed by an IdxLE opcode with the same arguments.
4600 ** The IdxGE opcode will be skipped if this opcode succeeds, but the
4601 ** IdxGE opcode will be used on subsequent loop iterations. The
4602 ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this
4603 ** is an equality search.
4605 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt
4607 case OP_SeekLT: /* jump, in3, group, ncycle */
4608 case OP_SeekLE: /* jump, in3, group, ncycle */
4609 case OP_SeekGE: /* jump, in3, group, ncycle */
4610 case OP_SeekGT: { /* jump, in3, group, ncycle */
4611 int res; /* Comparison result */
4612 int oc; /* Opcode */
4613 VdbeCursor *pC; /* The cursor to seek */
4614 UnpackedRecord r; /* The key to seek for */
4615 int nField; /* Number of columns or fields in the key */
4616 i64 iKey; /* The rowid we are to seek to */
4617 int eqOnly; /* Only interested in == results */
4619 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4620 assert( pOp->p2!=0 );
4621 pC = p->apCsr[pOp->p1];
4622 assert( pC!=0 );
4623 assert( pC->eCurType==CURTYPE_BTREE );
4624 assert( OP_SeekLE == OP_SeekLT+1 );
4625 assert( OP_SeekGE == OP_SeekLT+2 );
4626 assert( OP_SeekGT == OP_SeekLT+3 );
4627 assert( pC->isOrdered );
4628 assert( pC->uc.pCursor!=0 );
4629 oc = pOp->opcode;
4630 eqOnly = 0;
4631 pC->nullRow = 0;
4632 #ifdef SQLITE_DEBUG
4633 pC->seekOp = pOp->opcode;
4634 #endif
4636 pC->deferredMoveto = 0;
4637 pC->cacheStatus = CACHE_STALE;
4638 if( pC->isTable ){
4639 u16 flags3, newType;
4640 /* The OPFLAG_SEEKEQ/BTREE_SEEK_EQ flag is only set on index cursors */
4641 assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0
4642 || CORRUPT_DB );
4644 /* The input value in P3 might be of any type: integer, real, string,
4645 ** blob, or NULL. But it needs to be an integer before we can do
4646 ** the seek, so convert it. */
4647 pIn3 = &aMem[pOp->p3];
4648 flags3 = pIn3->flags;
4649 if( (flags3 & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Str))==MEM_Str ){
4650 applyNumericAffinity(pIn3, 0);
4652 iKey = sqlite3VdbeIntValue(pIn3); /* Get the integer key value */
4653 newType = pIn3->flags; /* Record the type after applying numeric affinity */
4654 pIn3->flags = flags3; /* But convert the type back to its original */
4656 /* If the P3 value could not be converted into an integer without
4657 ** loss of information, then special processing is required... */
4658 if( (newType & (MEM_Int|MEM_IntReal))==0 ){
4659 int c;
4660 if( (newType & MEM_Real)==0 ){
4661 if( (newType & MEM_Null) || oc>=OP_SeekGE ){
4662 VdbeBranchTaken(1,2);
4663 goto jump_to_p2;
4664 }else{
4665 rc = sqlite3BtreeLast(pC->uc.pCursor, &res);
4666 if( rc!=SQLITE_OK ) goto abort_due_to_error;
4667 goto seek_not_found;
4670 c = sqlite3IntFloatCompare(iKey, pIn3->u.r);
4672 /* If the approximation iKey is larger than the actual real search
4673 ** term, substitute >= for > and < for <=. e.g. if the search term
4674 ** is 4.9 and the integer approximation 5:
4676 ** (x > 4.9) -> (x >= 5)
4677 ** (x <= 4.9) -> (x < 5)
4679 if( c>0 ){
4680 assert( OP_SeekGE==(OP_SeekGT-1) );
4681 assert( OP_SeekLT==(OP_SeekLE-1) );
4682 assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) );
4683 if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--;
4686 /* If the approximation iKey is smaller than the actual real search
4687 ** term, substitute <= for < and > for >=. */
4688 else if( c<0 ){
4689 assert( OP_SeekLE==(OP_SeekLT+1) );
4690 assert( OP_SeekGT==(OP_SeekGE+1) );
4691 assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) );
4692 if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++;
4695 rc = sqlite3BtreeTableMoveto(pC->uc.pCursor, (u64)iKey, 0, &res);
4696 pC->movetoTarget = iKey; /* Used by OP_Delete */
4697 if( rc!=SQLITE_OK ){
4698 goto abort_due_to_error;
4700 }else{
4701 /* For a cursor with the OPFLAG_SEEKEQ/BTREE_SEEK_EQ hint, only the
4702 ** OP_SeekGE and OP_SeekLE opcodes are allowed, and these must be
4703 ** immediately followed by an OP_IdxGT or OP_IdxLT opcode, respectively,
4704 ** with the same key.
4706 if( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ) ){
4707 eqOnly = 1;
4708 assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE );
4709 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
4710 assert( pOp->opcode==OP_SeekGE || pOp[1].opcode==OP_IdxLT );
4711 assert( pOp->opcode==OP_SeekLE || pOp[1].opcode==OP_IdxGT );
4712 assert( pOp[1].p1==pOp[0].p1 );
4713 assert( pOp[1].p2==pOp[0].p2 );
4714 assert( pOp[1].p3==pOp[0].p3 );
4715 assert( pOp[1].p4.i==pOp[0].p4.i );
4718 nField = pOp->p4.i;
4719 assert( pOp->p4type==P4_INT32 );
4720 assert( nField>0 );
4721 r.pKeyInfo = pC->pKeyInfo;
4722 r.nField = (u16)nField;
4724 /* The next line of code computes as follows, only faster:
4725 ** if( oc==OP_SeekGT || oc==OP_SeekLE ){
4726 ** r.default_rc = -1;
4727 ** }else{
4728 ** r.default_rc = +1;
4729 ** }
4731 r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1);
4732 assert( oc!=OP_SeekGT || r.default_rc==-1 );
4733 assert( oc!=OP_SeekLE || r.default_rc==-1 );
4734 assert( oc!=OP_SeekGE || r.default_rc==+1 );
4735 assert( oc!=OP_SeekLT || r.default_rc==+1 );
4737 r.aMem = &aMem[pOp->p3];
4738 #ifdef SQLITE_DEBUG
4740 int i;
4741 for(i=0; i<r.nField; i++){
4742 assert( memIsValid(&r.aMem[i]) );
4743 if( i>0 ) REGISTER_TRACE(pOp->p3+i, &r.aMem[i]);
4746 #endif
4747 r.eqSeen = 0;
4748 rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, &r, &res);
4749 if( rc!=SQLITE_OK ){
4750 goto abort_due_to_error;
4752 if( eqOnly && r.eqSeen==0 ){
4753 assert( res!=0 );
4754 goto seek_not_found;
4757 #ifdef SQLITE_TEST
4758 sqlite3_search_count++;
4759 #endif
4760 if( oc>=OP_SeekGE ){ assert( oc==OP_SeekGE || oc==OP_SeekGT );
4761 if( res<0 || (res==0 && oc==OP_SeekGT) ){
4762 res = 0;
4763 rc = sqlite3BtreeNext(pC->uc.pCursor, 0);
4764 if( rc!=SQLITE_OK ){
4765 if( rc==SQLITE_DONE ){
4766 rc = SQLITE_OK;
4767 res = 1;
4768 }else{
4769 goto abort_due_to_error;
4772 }else{
4773 res = 0;
4775 }else{
4776 assert( oc==OP_SeekLT || oc==OP_SeekLE );
4777 if( res>0 || (res==0 && oc==OP_SeekLT) ){
4778 res = 0;
4779 rc = sqlite3BtreePrevious(pC->uc.pCursor, 0);
4780 if( rc!=SQLITE_OK ){
4781 if( rc==SQLITE_DONE ){
4782 rc = SQLITE_OK;
4783 res = 1;
4784 }else{
4785 goto abort_due_to_error;
4788 }else{
4789 /* res might be negative because the table is empty. Check to
4790 ** see if this is the case.
4792 res = sqlite3BtreeEof(pC->uc.pCursor);
4795 seek_not_found:
4796 assert( pOp->p2>0 );
4797 VdbeBranchTaken(res!=0,2);
4798 if( res ){
4799 goto jump_to_p2;
4800 }else if( eqOnly ){
4801 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
4802 pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */
4804 break;
4808 /* Opcode: SeekScan P1 P2 * * P5
4809 ** Synopsis: Scan-ahead up to P1 rows
4811 ** This opcode is a prefix opcode to OP_SeekGE. In other words, this
4812 ** opcode must be immediately followed by OP_SeekGE. This constraint is
4813 ** checked by assert() statements.
4815 ** This opcode uses the P1 through P4 operands of the subsequent
4816 ** OP_SeekGE. In the text that follows, the operands of the subsequent
4817 ** OP_SeekGE opcode are denoted as SeekOP.P1 through SeekOP.P4. Only
4818 ** the P1, P2 and P5 operands of this opcode are also used, and are called
4819 ** This.P1, This.P2 and This.P5.
4821 ** This opcode helps to optimize IN operators on a multi-column index
4822 ** where the IN operator is on the later terms of the index by avoiding
4823 ** unnecessary seeks on the btree, substituting steps to the next row
4824 ** of the b-tree instead. A correct answer is obtained if this opcode
4825 ** is omitted or is a no-op.
4827 ** The SeekGE.P3 and SeekGE.P4 operands identify an unpacked key which
4828 ** is the desired entry that we want the cursor SeekGE.P1 to be pointing
4829 ** to. Call this SeekGE.P3/P4 row the "target".
4831 ** If the SeekGE.P1 cursor is not currently pointing to a valid row,
4832 ** then this opcode is a no-op and control passes through into the OP_SeekGE.
4834 ** If the SeekGE.P1 cursor is pointing to a valid row, then that row
4835 ** might be the target row, or it might be near and slightly before the
4836 ** target row, or it might be after the target row. If the cursor is
4837 ** currently before the target row, then this opcode attempts to position
4838 ** the cursor on or after the target row by invoking sqlite3BtreeStep()
4839 ** on the cursor between 1 and This.P1 times.
4841 ** The This.P5 parameter is a flag that indicates what to do if the
4842 ** cursor ends up pointing at a valid row that is past the target
4843 ** row. If This.P5 is false (0) then a jump is made to SeekGE.P2. If
4844 ** This.P5 is true (non-zero) then a jump is made to This.P2. The P5==0
4845 ** case occurs when there are no inequality constraints to the right of
4846 ** the IN constraing. The jump to SeekGE.P2 ends the loop. The P5!=0 case
4847 ** occurs when there are inequality constraints to the right of the IN
4848 ** operator. In that case, the This.P2 will point either directly to or
4849 ** to setup code prior to the OP_IdxGT or OP_IdxGE opcode that checks for
4850 ** loop terminate.
4852 ** Possible outcomes from this opcode:<ol>
4854 ** <li> If the cursor is initally not pointed to any valid row, then
4855 ** fall through into the subsequent OP_SeekGE opcode.
4857 ** <li> If the cursor is left pointing to a row that is before the target
4858 ** row, even after making as many as This.P1 calls to
4859 ** sqlite3BtreeNext(), then also fall through into OP_SeekGE.
4861 ** <li> If the cursor is left pointing at the target row, either because it
4862 ** was at the target row to begin with or because one or more
4863 ** sqlite3BtreeNext() calls moved the cursor to the target row,
4864 ** then jump to This.P2..,
4866 ** <li> If the cursor started out before the target row and a call to
4867 ** to sqlite3BtreeNext() moved the cursor off the end of the index
4868 ** (indicating that the target row definitely does not exist in the
4869 ** btree) then jump to SeekGE.P2, ending the loop.
4871 ** <li> If the cursor ends up on a valid row that is past the target row
4872 ** (indicating that the target row does not exist in the btree) then
4873 ** jump to SeekOP.P2 if This.P5==0 or to This.P2 if This.P5>0.
4874 ** </ol>
4876 case OP_SeekScan: { /* ncycle */
4877 VdbeCursor *pC;
4878 int res;
4879 int nStep;
4880 UnpackedRecord r;
4882 assert( pOp[1].opcode==OP_SeekGE );
4884 /* If pOp->p5 is clear, then pOp->p2 points to the first instruction past the
4885 ** OP_IdxGT that follows the OP_SeekGE. Otherwise, it points to the first
4886 ** opcode past the OP_SeekGE itself. */
4887 assert( pOp->p2>=(int)(pOp-aOp)+2 );
4888 #ifdef SQLITE_DEBUG
4889 if( pOp->p5==0 ){
4890 /* There are no inequality constraints following the IN constraint. */
4891 assert( pOp[1].p1==aOp[pOp->p2-1].p1 );
4892 assert( pOp[1].p2==aOp[pOp->p2-1].p2 );
4893 assert( pOp[1].p3==aOp[pOp->p2-1].p3 );
4894 assert( aOp[pOp->p2-1].opcode==OP_IdxGT
4895 || aOp[pOp->p2-1].opcode==OP_IdxGE );
4896 testcase( aOp[pOp->p2-1].opcode==OP_IdxGE );
4897 }else{
4898 /* There are inequality constraints. */
4899 assert( pOp->p2==(int)(pOp-aOp)+2 );
4900 assert( aOp[pOp->p2-1].opcode==OP_SeekGE );
4902 #endif
4904 assert( pOp->p1>0 );
4905 pC = p->apCsr[pOp[1].p1];
4906 assert( pC!=0 );
4907 assert( pC->eCurType==CURTYPE_BTREE );
4908 assert( !pC->isTable );
4909 if( !sqlite3BtreeCursorIsValidNN(pC->uc.pCursor) ){
4910 #ifdef SQLITE_DEBUG
4911 if( db->flags&SQLITE_VdbeTrace ){
4912 printf("... cursor not valid - fall through\n");
4914 #endif
4915 break;
4917 nStep = pOp->p1;
4918 assert( nStep>=1 );
4919 r.pKeyInfo = pC->pKeyInfo;
4920 r.nField = (u16)pOp[1].p4.i;
4921 r.default_rc = 0;
4922 r.aMem = &aMem[pOp[1].p3];
4923 #ifdef SQLITE_DEBUG
4925 int i;
4926 for(i=0; i<r.nField; i++){
4927 assert( memIsValid(&r.aMem[i]) );
4928 REGISTER_TRACE(pOp[1].p3+i, &aMem[pOp[1].p3+i]);
4931 #endif
4932 res = 0; /* Not needed. Only used to silence a warning. */
4933 while(1){
4934 rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res);
4935 if( rc ) goto abort_due_to_error;
4936 if( res>0 && pOp->p5==0 ){
4937 seekscan_search_fail:
4938 /* Jump to SeekGE.P2, ending the loop */
4939 #ifdef SQLITE_DEBUG
4940 if( db->flags&SQLITE_VdbeTrace ){
4941 printf("... %d steps and then skip\n", pOp->p1 - nStep);
4943 #endif
4944 VdbeBranchTaken(1,3);
4945 pOp++;
4946 goto jump_to_p2;
4948 if( res>=0 ){
4949 /* Jump to This.P2, bypassing the OP_SeekGE opcode */
4950 #ifdef SQLITE_DEBUG
4951 if( db->flags&SQLITE_VdbeTrace ){
4952 printf("... %d steps and then success\n", pOp->p1 - nStep);
4954 #endif
4955 VdbeBranchTaken(2,3);
4956 goto jump_to_p2;
4957 break;
4959 if( nStep<=0 ){
4960 #ifdef SQLITE_DEBUG
4961 if( db->flags&SQLITE_VdbeTrace ){
4962 printf("... fall through after %d steps\n", pOp->p1);
4964 #endif
4965 VdbeBranchTaken(0,3);
4966 break;
4968 nStep--;
4969 rc = sqlite3BtreeNext(pC->uc.pCursor, 0);
4970 if( rc ){
4971 if( rc==SQLITE_DONE ){
4972 rc = SQLITE_OK;
4973 goto seekscan_search_fail;
4974 }else{
4975 goto abort_due_to_error;
4980 break;
4984 /* Opcode: SeekHit P1 P2 P3 * *
4985 ** Synopsis: set P2<=seekHit<=P3
4987 ** Increase or decrease the seekHit value for cursor P1, if necessary,
4988 ** so that it is no less than P2 and no greater than P3.
4990 ** The seekHit integer represents the maximum of terms in an index for which
4991 ** there is known to be at least one match. If the seekHit value is smaller
4992 ** than the total number of equality terms in an index lookup, then the
4993 ** OP_IfNoHope opcode might run to see if the IN loop can be abandoned
4994 ** early, thus saving work. This is part of the IN-early-out optimization.
4996 ** P1 must be a valid b-tree cursor.
4998 case OP_SeekHit: { /* ncycle */
4999 VdbeCursor *pC;
5000 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5001 pC = p->apCsr[pOp->p1];
5002 assert( pC!=0 );
5003 assert( pOp->p3>=pOp->p2 );
5004 if( pC->seekHit<pOp->p2 ){
5005 #ifdef SQLITE_DEBUG
5006 if( db->flags&SQLITE_VdbeTrace ){
5007 printf("seekHit changes from %d to %d\n", pC->seekHit, pOp->p2);
5009 #endif
5010 pC->seekHit = pOp->p2;
5011 }else if( pC->seekHit>pOp->p3 ){
5012 #ifdef SQLITE_DEBUG
5013 if( db->flags&SQLITE_VdbeTrace ){
5014 printf("seekHit changes from %d to %d\n", pC->seekHit, pOp->p3);
5016 #endif
5017 pC->seekHit = pOp->p3;
5019 break;
5022 /* Opcode: IfNotOpen P1 P2 * * *
5023 ** Synopsis: if( !csr[P1] ) goto P2
5025 ** If cursor P1 is not open or if P1 is set to a NULL row using the
5026 ** OP_NullRow opcode, then jump to instruction P2. Otherwise, fall through.
5028 case OP_IfNotOpen: { /* jump */
5029 VdbeCursor *pCur;
5031 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5032 pCur = p->apCsr[pOp->p1];
5033 VdbeBranchTaken(pCur==0 || pCur->nullRow, 2);
5034 if( pCur==0 || pCur->nullRow ){
5035 goto jump_to_p2_and_check_for_interrupt;
5037 break;
5040 /* Opcode: Found P1 P2 P3 P4 *
5041 ** Synopsis: key=r[P3@P4]
5043 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
5044 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
5045 ** record.
5047 ** Cursor P1 is on an index btree. If the record identified by P3 and P4
5048 ** is a prefix of any entry in P1 then a jump is made to P2 and
5049 ** P1 is left pointing at the matching entry.
5051 ** This operation leaves the cursor in a state where it can be
5052 ** advanced in the forward direction. The Next instruction will work,
5053 ** but not the Prev instruction.
5055 ** See also: NotFound, NoConflict, NotExists. SeekGe
5057 /* Opcode: NotFound P1 P2 P3 P4 *
5058 ** Synopsis: key=r[P3@P4]
5060 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
5061 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
5062 ** record.
5064 ** Cursor P1 is on an index btree. If the record identified by P3 and P4
5065 ** is not the prefix of any entry in P1 then a jump is made to P2. If P1
5066 ** does contain an entry whose prefix matches the P3/P4 record then control
5067 ** falls through to the next instruction and P1 is left pointing at the
5068 ** matching entry.
5070 ** This operation leaves the cursor in a state where it cannot be
5071 ** advanced in either direction. In other words, the Next and Prev
5072 ** opcodes do not work after this operation.
5074 ** See also: Found, NotExists, NoConflict, IfNoHope
5076 /* Opcode: IfNoHope P1 P2 P3 P4 *
5077 ** Synopsis: key=r[P3@P4]
5079 ** Register P3 is the first of P4 registers that form an unpacked
5080 ** record. Cursor P1 is an index btree. P2 is a jump destination.
5081 ** In other words, the operands to this opcode are the same as the
5082 ** operands to OP_NotFound and OP_IdxGT.
5084 ** This opcode is an optimization attempt only. If this opcode always
5085 ** falls through, the correct answer is still obtained, but extra works
5086 ** is performed.
5088 ** A value of N in the seekHit flag of cursor P1 means that there exists
5089 ** a key P3:N that will match some record in the index. We want to know
5090 ** if it is possible for a record P3:P4 to match some record in the
5091 ** index. If it is not possible, we can skips some work. So if seekHit
5092 ** is less than P4, attempt to find out if a match is possible by running
5093 ** OP_NotFound.
5095 ** This opcode is used in IN clause processing for a multi-column key.
5096 ** If an IN clause is attached to an element of the key other than the
5097 ** left-most element, and if there are no matches on the most recent
5098 ** seek over the whole key, then it might be that one of the key element
5099 ** to the left is prohibiting a match, and hence there is "no hope" of
5100 ** any match regardless of how many IN clause elements are checked.
5101 ** In such a case, we abandon the IN clause search early, using this
5102 ** opcode. The opcode name comes from the fact that the
5103 ** jump is taken if there is "no hope" of achieving a match.
5105 ** See also: NotFound, SeekHit
5107 /* Opcode: NoConflict P1 P2 P3 P4 *
5108 ** Synopsis: key=r[P3@P4]
5110 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
5111 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
5112 ** record.
5114 ** Cursor P1 is on an index btree. If the record identified by P3 and P4
5115 ** contains any NULL value, jump immediately to P2. If all terms of the
5116 ** record are not-NULL then a check is done to determine if any row in the
5117 ** P1 index btree has a matching key prefix. If there are no matches, jump
5118 ** immediately to P2. If there is a match, fall through and leave the P1
5119 ** cursor pointing to the matching row.
5121 ** This opcode is similar to OP_NotFound with the exceptions that the
5122 ** branch is always taken if any part of the search key input is NULL.
5124 ** This operation leaves the cursor in a state where it cannot be
5125 ** advanced in either direction. In other words, the Next and Prev
5126 ** opcodes do not work after this operation.
5128 ** See also: NotFound, Found, NotExists
5130 case OP_IfNoHope: { /* jump, in3, ncycle */
5131 VdbeCursor *pC;
5132 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5133 pC = p->apCsr[pOp->p1];
5134 assert( pC!=0 );
5135 #ifdef SQLITE_DEBUG
5136 if( db->flags&SQLITE_VdbeTrace ){
5137 printf("seekHit is %d\n", pC->seekHit);
5139 #endif
5140 if( pC->seekHit>=pOp->p4.i ) break;
5141 /* Fall through into OP_NotFound */
5142 /* no break */ deliberate_fall_through
5144 case OP_NoConflict: /* jump, in3, ncycle */
5145 case OP_NotFound: /* jump, in3, ncycle */
5146 case OP_Found: { /* jump, in3, ncycle */
5147 int alreadyExists;
5148 int ii;
5149 VdbeCursor *pC;
5150 UnpackedRecord *pIdxKey;
5151 UnpackedRecord r;
5153 #ifdef SQLITE_TEST
5154 if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++;
5155 #endif
5157 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5158 assert( pOp->p4type==P4_INT32 );
5159 pC = p->apCsr[pOp->p1];
5160 assert( pC!=0 );
5161 #ifdef SQLITE_DEBUG
5162 pC->seekOp = pOp->opcode;
5163 #endif
5164 r.aMem = &aMem[pOp->p3];
5165 assert( pC->eCurType==CURTYPE_BTREE );
5166 assert( pC->uc.pCursor!=0 );
5167 assert( pC->isTable==0 );
5168 r.nField = (u16)pOp->p4.i;
5169 if( r.nField>0 ){
5170 /* Key values in an array of registers */
5171 r.pKeyInfo = pC->pKeyInfo;
5172 r.default_rc = 0;
5173 #ifdef SQLITE_DEBUG
5174 for(ii=0; ii<r.nField; ii++){
5175 assert( memIsValid(&r.aMem[ii]) );
5176 assert( (r.aMem[ii].flags & MEM_Zero)==0 || r.aMem[ii].n==0 );
5177 if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]);
5179 #endif
5180 rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, &r, &pC->seekResult);
5181 }else{
5182 /* Composite key generated by OP_MakeRecord */
5183 assert( r.aMem->flags & MEM_Blob );
5184 assert( pOp->opcode!=OP_NoConflict );
5185 rc = ExpandBlob(r.aMem);
5186 assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
5187 if( rc ) goto no_mem;
5188 pIdxKey = sqlite3VdbeAllocUnpackedRecord(pC->pKeyInfo);
5189 if( pIdxKey==0 ) goto no_mem;
5190 sqlite3VdbeRecordUnpack(pC->pKeyInfo, r.aMem->n, r.aMem->z, pIdxKey);
5191 pIdxKey->default_rc = 0;
5192 rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, pIdxKey, &pC->seekResult);
5193 sqlite3DbFreeNN(db, pIdxKey);
5195 if( rc!=SQLITE_OK ){
5196 goto abort_due_to_error;
5198 alreadyExists = (pC->seekResult==0);
5199 pC->nullRow = 1-alreadyExists;
5200 pC->deferredMoveto = 0;
5201 pC->cacheStatus = CACHE_STALE;
5202 if( pOp->opcode==OP_Found ){
5203 VdbeBranchTaken(alreadyExists!=0,2);
5204 if( alreadyExists ) goto jump_to_p2;
5205 }else{
5206 if( !alreadyExists ){
5207 VdbeBranchTaken(1,2);
5208 goto jump_to_p2;
5210 if( pOp->opcode==OP_NoConflict ){
5211 /* For the OP_NoConflict opcode, take the jump if any of the
5212 ** input fields are NULL, since any key with a NULL will not
5213 ** conflict */
5214 for(ii=0; ii<r.nField; ii++){
5215 if( r.aMem[ii].flags & MEM_Null ){
5216 VdbeBranchTaken(1,2);
5217 goto jump_to_p2;
5221 VdbeBranchTaken(0,2);
5222 if( pOp->opcode==OP_IfNoHope ){
5223 pC->seekHit = pOp->p4.i;
5226 break;
5229 /* Opcode: SeekRowid P1 P2 P3 * *
5230 ** Synopsis: intkey=r[P3]
5232 ** P1 is the index of a cursor open on an SQL table btree (with integer
5233 ** keys). If register P3 does not contain an integer or if P1 does not
5234 ** contain a record with rowid P3 then jump immediately to P2.
5235 ** Or, if P2 is 0, raise an SQLITE_CORRUPT error. If P1 does contain
5236 ** a record with rowid P3 then
5237 ** leave the cursor pointing at that record and fall through to the next
5238 ** instruction.
5240 ** The OP_NotExists opcode performs the same operation, but with OP_NotExists
5241 ** the P3 register must be guaranteed to contain an integer value. With this
5242 ** opcode, register P3 might not contain an integer.
5244 ** The OP_NotFound opcode performs the same operation on index btrees
5245 ** (with arbitrary multi-value keys).
5247 ** This opcode leaves the cursor in a state where it cannot be advanced
5248 ** in either direction. In other words, the Next and Prev opcodes will
5249 ** not work following this opcode.
5251 ** See also: Found, NotFound, NoConflict, SeekRowid
5253 /* Opcode: NotExists P1 P2 P3 * *
5254 ** Synopsis: intkey=r[P3]
5256 ** P1 is the index of a cursor open on an SQL table btree (with integer
5257 ** keys). P3 is an integer rowid. If P1 does not contain a record with
5258 ** rowid P3 then jump immediately to P2. Or, if P2 is 0, raise an
5259 ** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then
5260 ** leave the cursor pointing at that record and fall through to the next
5261 ** instruction.
5263 ** The OP_SeekRowid opcode performs the same operation but also allows the
5264 ** P3 register to contain a non-integer value, in which case the jump is
5265 ** always taken. This opcode requires that P3 always contain an integer.
5267 ** The OP_NotFound opcode performs the same operation on index btrees
5268 ** (with arbitrary multi-value keys).
5270 ** This opcode leaves the cursor in a state where it cannot be advanced
5271 ** in either direction. In other words, the Next and Prev opcodes will
5272 ** not work following this opcode.
5274 ** See also: Found, NotFound, NoConflict, SeekRowid
5276 case OP_SeekRowid: { /* jump, in3, ncycle */
5277 VdbeCursor *pC;
5278 BtCursor *pCrsr;
5279 int res;
5280 u64 iKey;
5282 pIn3 = &aMem[pOp->p3];
5283 testcase( pIn3->flags & MEM_Int );
5284 testcase( pIn3->flags & MEM_IntReal );
5285 testcase( pIn3->flags & MEM_Real );
5286 testcase( (pIn3->flags & (MEM_Str|MEM_Int))==MEM_Str );
5287 if( (pIn3->flags & (MEM_Int|MEM_IntReal))==0 ){
5288 /* If pIn3->u.i does not contain an integer, compute iKey as the
5289 ** integer value of pIn3. Jump to P2 if pIn3 cannot be converted
5290 ** into an integer without loss of information. Take care to avoid
5291 ** changing the datatype of pIn3, however, as it is used by other
5292 ** parts of the prepared statement. */
5293 Mem x = pIn3[0];
5294 applyAffinity(&x, SQLITE_AFF_NUMERIC, encoding);
5295 if( (x.flags & MEM_Int)==0 ) goto jump_to_p2;
5296 iKey = x.u.i;
5297 goto notExistsWithKey;
5299 /* Fall through into OP_NotExists */
5300 /* no break */ deliberate_fall_through
5301 case OP_NotExists: /* jump, in3, ncycle */
5302 pIn3 = &aMem[pOp->p3];
5303 assert( (pIn3->flags & MEM_Int)!=0 || pOp->opcode==OP_SeekRowid );
5304 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5305 iKey = pIn3->u.i;
5306 notExistsWithKey:
5307 pC = p->apCsr[pOp->p1];
5308 assert( pC!=0 );
5309 #ifdef SQLITE_DEBUG
5310 if( pOp->opcode==OP_SeekRowid ) pC->seekOp = OP_SeekRowid;
5311 #endif
5312 assert( pC->isTable );
5313 assert( pC->eCurType==CURTYPE_BTREE );
5314 pCrsr = pC->uc.pCursor;
5315 assert( pCrsr!=0 );
5316 res = 0;
5317 rc = sqlite3BtreeTableMoveto(pCrsr, iKey, 0, &res);
5318 assert( rc==SQLITE_OK || res==0 );
5319 pC->movetoTarget = iKey; /* Used by OP_Delete */
5320 pC->nullRow = 0;
5321 pC->cacheStatus = CACHE_STALE;
5322 pC->deferredMoveto = 0;
5323 VdbeBranchTaken(res!=0,2);
5324 pC->seekResult = res;
5325 if( res!=0 ){
5326 assert( rc==SQLITE_OK );
5327 if( pOp->p2==0 ){
5328 rc = SQLITE_CORRUPT_BKPT;
5329 }else{
5330 goto jump_to_p2;
5333 if( rc ) goto abort_due_to_error;
5334 break;
5337 /* Opcode: Sequence P1 P2 * * *
5338 ** Synopsis: r[P2]=cursor[P1].ctr++
5340 ** Find the next available sequence number for cursor P1.
5341 ** Write the sequence number into register P2.
5342 ** The sequence number on the cursor is incremented after this
5343 ** instruction.
5345 case OP_Sequence: { /* out2 */
5346 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5347 assert( p->apCsr[pOp->p1]!=0 );
5348 assert( p->apCsr[pOp->p1]->eCurType!=CURTYPE_VTAB );
5349 pOut = out2Prerelease(p, pOp);
5350 pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
5351 break;
5355 /* Opcode: NewRowid P1 P2 P3 * *
5356 ** Synopsis: r[P2]=rowid
5358 ** Get a new integer record number (a.k.a "rowid") used as the key to a table.
5359 ** The record number is not previously used as a key in the database
5360 ** table that cursor P1 points to. The new record number is written
5361 ** written to register P2.
5363 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds
5364 ** the largest previously generated record number. No new record numbers are
5365 ** allowed to be less than this value. When this value reaches its maximum,
5366 ** an SQLITE_FULL error is generated. The P3 register is updated with the '
5367 ** generated record number. This P3 mechanism is used to help implement the
5368 ** AUTOINCREMENT feature.
5370 case OP_NewRowid: { /* out2 */
5371 i64 v; /* The new rowid */
5372 VdbeCursor *pC; /* Cursor of table to get the new rowid */
5373 int res; /* Result of an sqlite3BtreeLast() */
5374 int cnt; /* Counter to limit the number of searches */
5375 #ifndef SQLITE_OMIT_AUTOINCREMENT
5376 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */
5377 VdbeFrame *pFrame; /* Root frame of VDBE */
5378 #endif
5380 v = 0;
5381 res = 0;
5382 pOut = out2Prerelease(p, pOp);
5383 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5384 pC = p->apCsr[pOp->p1];
5385 assert( pC!=0 );
5386 assert( pC->isTable );
5387 assert( pC->eCurType==CURTYPE_BTREE );
5388 assert( pC->uc.pCursor!=0 );
5390 /* The next rowid or record number (different terms for the same
5391 ** thing) is obtained in a two-step algorithm.
5393 ** First we attempt to find the largest existing rowid and add one
5394 ** to that. But if the largest existing rowid is already the maximum
5395 ** positive integer, we have to fall through to the second
5396 ** probabilistic algorithm
5398 ** The second algorithm is to select a rowid at random and see if
5399 ** it already exists in the table. If it does not exist, we have
5400 ** succeeded. If the random rowid does exist, we select a new one
5401 ** and try again, up to 100 times.
5403 assert( pC->isTable );
5405 #ifdef SQLITE_32BIT_ROWID
5406 # define MAX_ROWID 0x7fffffff
5407 #else
5408 /* Some compilers complain about constants of the form 0x7fffffffffffffff.
5409 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems
5410 ** to provide the constant while making all compilers happy.
5412 # define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
5413 #endif
5415 if( !pC->useRandomRowid ){
5416 rc = sqlite3BtreeLast(pC->uc.pCursor, &res);
5417 if( rc!=SQLITE_OK ){
5418 goto abort_due_to_error;
5420 if( res ){
5421 v = 1; /* IMP: R-61914-48074 */
5422 }else{
5423 assert( sqlite3BtreeCursorIsValid(pC->uc.pCursor) );
5424 v = sqlite3BtreeIntegerKey(pC->uc.pCursor);
5425 if( v>=MAX_ROWID ){
5426 pC->useRandomRowid = 1;
5427 }else{
5428 v++; /* IMP: R-29538-34987 */
5433 #ifndef SQLITE_OMIT_AUTOINCREMENT
5434 if( pOp->p3 ){
5435 /* Assert that P3 is a valid memory cell. */
5436 assert( pOp->p3>0 );
5437 if( p->pFrame ){
5438 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
5439 /* Assert that P3 is a valid memory cell. */
5440 assert( pOp->p3<=pFrame->nMem );
5441 pMem = &pFrame->aMem[pOp->p3];
5442 }else{
5443 /* Assert that P3 is a valid memory cell. */
5444 assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
5445 pMem = &aMem[pOp->p3];
5446 memAboutToChange(p, pMem);
5448 assert( memIsValid(pMem) );
5450 REGISTER_TRACE(pOp->p3, pMem);
5451 sqlite3VdbeMemIntegerify(pMem);
5452 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */
5453 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
5454 rc = SQLITE_FULL; /* IMP: R-17817-00630 */
5455 goto abort_due_to_error;
5457 if( v<pMem->u.i+1 ){
5458 v = pMem->u.i + 1;
5460 pMem->u.i = v;
5462 #endif
5463 if( pC->useRandomRowid ){
5464 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
5465 ** largest possible integer (9223372036854775807) then the database
5466 ** engine starts picking positive candidate ROWIDs at random until
5467 ** it finds one that is not previously used. */
5468 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is
5469 ** an AUTOINCREMENT table. */
5470 cnt = 0;
5472 sqlite3_randomness(sizeof(v), &v);
5473 v &= (MAX_ROWID>>1); v++; /* Ensure that v is greater than zero */
5474 }while( ((rc = sqlite3BtreeTableMoveto(pC->uc.pCursor, (u64)v,
5475 0, &res))==SQLITE_OK)
5476 && (res==0)
5477 && (++cnt<100));
5478 if( rc ) goto abort_due_to_error;
5479 if( res==0 ){
5480 rc = SQLITE_FULL; /* IMP: R-38219-53002 */
5481 goto abort_due_to_error;
5483 assert( v>0 ); /* EV: R-40812-03570 */
5485 pC->deferredMoveto = 0;
5486 pC->cacheStatus = CACHE_STALE;
5488 pOut->u.i = v;
5489 break;
5492 /* Opcode: Insert P1 P2 P3 P4 P5
5493 ** Synopsis: intkey=r[P3] data=r[P2]
5495 ** Write an entry into the table of cursor P1. A new entry is
5496 ** created if it doesn't already exist or the data for an existing
5497 ** entry is overwritten. The data is the value MEM_Blob stored in register
5498 ** number P2. The key is stored in register P3. The key must
5499 ** be a MEM_Int.
5501 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
5502 ** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set,
5503 ** then rowid is stored for subsequent return by the
5504 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
5506 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
5507 ** run faster by avoiding an unnecessary seek on cursor P1. However,
5508 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
5509 ** seeks on the cursor or if the most recent seek used a key equal to P3.
5511 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
5512 ** UPDATE operation. Otherwise (if the flag is clear) then this opcode
5513 ** is part of an INSERT operation. The difference is only important to
5514 ** the update hook.
5516 ** Parameter P4 may point to a Table structure, or may be NULL. If it is
5517 ** not NULL, then the update-hook (sqlite3.xUpdateCallback) is invoked
5518 ** following a successful insert.
5520 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
5521 ** allocated, then ownership of P2 is transferred to the pseudo-cursor
5522 ** and register P2 becomes ephemeral. If the cursor is changed, the
5523 ** value of register P2 will then change. Make sure this does not
5524 ** cause any problems.)
5526 ** This instruction only works on tables. The equivalent instruction
5527 ** for indices is OP_IdxInsert.
5529 case OP_Insert: {
5530 Mem *pData; /* MEM cell holding data for the record to be inserted */
5531 Mem *pKey; /* MEM cell holding key for the record */
5532 VdbeCursor *pC; /* Cursor to table into which insert is written */
5533 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */
5534 const char *zDb; /* database name - used by the update hook */
5535 Table *pTab; /* Table structure - used by update and pre-update hooks */
5536 BtreePayload x; /* Payload to be inserted */
5538 pData = &aMem[pOp->p2];
5539 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5540 assert( memIsValid(pData) );
5541 pC = p->apCsr[pOp->p1];
5542 assert( pC!=0 );
5543 assert( pC->eCurType==CURTYPE_BTREE );
5544 assert( pC->deferredMoveto==0 );
5545 assert( pC->uc.pCursor!=0 );
5546 assert( (pOp->p5 & OPFLAG_ISNOOP) || pC->isTable );
5547 assert( pOp->p4type==P4_TABLE || pOp->p4type>=P4_STATIC );
5548 REGISTER_TRACE(pOp->p2, pData);
5549 sqlite3VdbeIncrWriteCounter(p, pC);
5551 pKey = &aMem[pOp->p3];
5552 assert( pKey->flags & MEM_Int );
5553 assert( memIsValid(pKey) );
5554 REGISTER_TRACE(pOp->p3, pKey);
5555 x.nKey = pKey->u.i;
5557 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
5558 assert( pC->iDb>=0 );
5559 zDb = db->aDb[pC->iDb].zDbSName;
5560 pTab = pOp->p4.pTab;
5561 assert( (pOp->p5 & OPFLAG_ISNOOP) || HasRowid(pTab) );
5562 }else{
5563 pTab = 0;
5564 zDb = 0;
5567 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5568 /* Invoke the pre-update hook, if any */
5569 if( pTab ){
5570 if( db->xPreUpdateCallback && !(pOp->p5 & OPFLAG_ISUPDATE) ){
5571 sqlite3VdbePreUpdateHook(p,pC,SQLITE_INSERT,zDb,pTab,x.nKey,pOp->p2,-1);
5573 if( db->xUpdateCallback==0 || pTab->aCol==0 ){
5574 /* Prevent post-update hook from running in cases when it should not */
5575 pTab = 0;
5578 if( pOp->p5 & OPFLAG_ISNOOP ) break;
5579 #endif
5581 assert( (pOp->p5 & OPFLAG_LASTROWID)==0 || (pOp->p5 & OPFLAG_NCHANGE)!=0 );
5582 if( pOp->p5 & OPFLAG_NCHANGE ){
5583 p->nChange++;
5584 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = x.nKey;
5586 assert( (pData->flags & (MEM_Blob|MEM_Str))!=0 || pData->n==0 );
5587 x.pData = pData->z;
5588 x.nData = pData->n;
5589 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
5590 if( pData->flags & MEM_Zero ){
5591 x.nZero = pData->u.nZero;
5592 }else{
5593 x.nZero = 0;
5595 x.pKey = 0;
5596 assert( BTREE_PREFORMAT==OPFLAG_PREFORMAT );
5597 rc = sqlite3BtreeInsert(pC->uc.pCursor, &x,
5598 (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION|OPFLAG_PREFORMAT)),
5599 seekResult
5601 pC->deferredMoveto = 0;
5602 pC->cacheStatus = CACHE_STALE;
5604 /* Invoke the update-hook if required. */
5605 if( rc ) goto abort_due_to_error;
5606 if( pTab ){
5607 assert( db->xUpdateCallback!=0 );
5608 assert( pTab->aCol!=0 );
5609 db->xUpdateCallback(db->pUpdateArg,
5610 (pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT,
5611 zDb, pTab->zName, x.nKey);
5613 break;
5616 /* Opcode: RowCell P1 P2 P3 * *
5618 ** P1 and P2 are both open cursors. Both must be opened on the same type
5619 ** of table - intkey or index. This opcode is used as part of copying
5620 ** the current row from P2 into P1. If the cursors are opened on intkey
5621 ** tables, register P3 contains the rowid to use with the new record in
5622 ** P1. If they are opened on index tables, P3 is not used.
5624 ** This opcode must be followed by either an Insert or InsertIdx opcode
5625 ** with the OPFLAG_PREFORMAT flag set to complete the insert operation.
5627 case OP_RowCell: {
5628 VdbeCursor *pDest; /* Cursor to write to */
5629 VdbeCursor *pSrc; /* Cursor to read from */
5630 i64 iKey; /* Rowid value to insert with */
5631 assert( pOp[1].opcode==OP_Insert || pOp[1].opcode==OP_IdxInsert );
5632 assert( pOp[1].opcode==OP_Insert || pOp->p3==0 );
5633 assert( pOp[1].opcode==OP_IdxInsert || pOp->p3>0 );
5634 assert( pOp[1].p5 & OPFLAG_PREFORMAT );
5635 pDest = p->apCsr[pOp->p1];
5636 pSrc = p->apCsr[pOp->p2];
5637 iKey = pOp->p3 ? aMem[pOp->p3].u.i : 0;
5638 rc = sqlite3BtreeTransferRow(pDest->uc.pCursor, pSrc->uc.pCursor, iKey);
5639 if( rc!=SQLITE_OK ) goto abort_due_to_error;
5640 break;
5643 /* Opcode: Delete P1 P2 P3 P4 P5
5645 ** Delete the record at which the P1 cursor is currently pointing.
5647 ** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then
5648 ** the cursor will be left pointing at either the next or the previous
5649 ** record in the table. If it is left pointing at the next record, then
5650 ** the next Next instruction will be a no-op. As a result, in this case
5651 ** it is ok to delete a record from within a Next loop. If
5652 ** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be
5653 ** left in an undefined state.
5655 ** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this
5656 ** delete one of several associated with deleting a table row and all its
5657 ** associated index entries. Exactly one of those deletes is the "primary"
5658 ** delete. The others are all on OPFLAG_FORDELETE cursors or else are
5659 ** marked with the AUXDELETE flag.
5661 ** If the OPFLAG_NCHANGE flag of P2 (NB: P2 not P5) is set, then the row
5662 ** change count is incremented (otherwise not).
5664 ** P1 must not be pseudo-table. It has to be a real table with
5665 ** multiple rows.
5667 ** If P4 is not NULL then it points to a Table object. In this case either
5668 ** the update or pre-update hook, or both, may be invoked. The P1 cursor must
5669 ** have been positioned using OP_NotFound prior to invoking this opcode in
5670 ** this case. Specifically, if one is configured, the pre-update hook is
5671 ** invoked if P4 is not NULL. The update-hook is invoked if one is configured,
5672 ** P4 is not NULL, and the OPFLAG_NCHANGE flag is set in P2.
5674 ** If the OPFLAG_ISUPDATE flag is set in P2, then P3 contains the address
5675 ** of the memory cell that contains the value that the rowid of the row will
5676 ** be set to by the update.
5678 case OP_Delete: {
5679 VdbeCursor *pC;
5680 const char *zDb;
5681 Table *pTab;
5682 int opflags;
5684 opflags = pOp->p2;
5685 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5686 pC = p->apCsr[pOp->p1];
5687 assert( pC!=0 );
5688 assert( pC->eCurType==CURTYPE_BTREE );
5689 assert( pC->uc.pCursor!=0 );
5690 assert( pC->deferredMoveto==0 );
5691 sqlite3VdbeIncrWriteCounter(p, pC);
5693 #ifdef SQLITE_DEBUG
5694 if( pOp->p4type==P4_TABLE
5695 && HasRowid(pOp->p4.pTab)
5696 && pOp->p5==0
5697 && sqlite3BtreeCursorIsValidNN(pC->uc.pCursor)
5699 /* If p5 is zero, the seek operation that positioned the cursor prior to
5700 ** OP_Delete will have also set the pC->movetoTarget field to the rowid of
5701 ** the row that is being deleted */
5702 i64 iKey = sqlite3BtreeIntegerKey(pC->uc.pCursor);
5703 assert( CORRUPT_DB || pC->movetoTarget==iKey );
5705 #endif
5707 /* If the update-hook or pre-update-hook will be invoked, set zDb to
5708 ** the name of the db to pass as to it. Also set local pTab to a copy
5709 ** of p4.pTab. Finally, if p5 is true, indicating that this cursor was
5710 ** last moved with OP_Next or OP_Prev, not Seek or NotFound, set
5711 ** VdbeCursor.movetoTarget to the current rowid. */
5712 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
5713 assert( pC->iDb>=0 );
5714 assert( pOp->p4.pTab!=0 );
5715 zDb = db->aDb[pC->iDb].zDbSName;
5716 pTab = pOp->p4.pTab;
5717 if( (pOp->p5 & OPFLAG_SAVEPOSITION)!=0 && pC->isTable ){
5718 pC->movetoTarget = sqlite3BtreeIntegerKey(pC->uc.pCursor);
5720 }else{
5721 zDb = 0;
5722 pTab = 0;
5725 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5726 /* Invoke the pre-update-hook if required. */
5727 assert( db->xPreUpdateCallback==0 || pTab==pOp->p4.pTab );
5728 if( db->xPreUpdateCallback && pTab ){
5729 assert( !(opflags & OPFLAG_ISUPDATE)
5730 || HasRowid(pTab)==0
5731 || (aMem[pOp->p3].flags & MEM_Int)
5733 sqlite3VdbePreUpdateHook(p, pC,
5734 (opflags & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_DELETE,
5735 zDb, pTab, pC->movetoTarget,
5736 pOp->p3, -1
5739 if( opflags & OPFLAG_ISNOOP ) break;
5740 #endif
5742 /* Only flags that can be set are SAVEPOISTION and AUXDELETE */
5743 assert( (pOp->p5 & ~(OPFLAG_SAVEPOSITION|OPFLAG_AUXDELETE))==0 );
5744 assert( OPFLAG_SAVEPOSITION==BTREE_SAVEPOSITION );
5745 assert( OPFLAG_AUXDELETE==BTREE_AUXDELETE );
5747 #ifdef SQLITE_DEBUG
5748 if( p->pFrame==0 ){
5749 if( pC->isEphemeral==0
5750 && (pOp->p5 & OPFLAG_AUXDELETE)==0
5751 && (pC->wrFlag & OPFLAG_FORDELETE)==0
5753 nExtraDelete++;
5755 if( pOp->p2 & OPFLAG_NCHANGE ){
5756 nExtraDelete--;
5759 #endif
5761 rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5);
5762 pC->cacheStatus = CACHE_STALE;
5763 pC->seekResult = 0;
5764 if( rc ) goto abort_due_to_error;
5766 /* Invoke the update-hook if required. */
5767 if( opflags & OPFLAG_NCHANGE ){
5768 p->nChange++;
5769 if( db->xUpdateCallback && ALWAYS(pTab!=0) && HasRowid(pTab) ){
5770 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, pTab->zName,
5771 pC->movetoTarget);
5772 assert( pC->iDb>=0 );
5776 break;
5778 /* Opcode: ResetCount * * * * *
5780 ** The value of the change counter is copied to the database handle
5781 ** change counter (returned by subsequent calls to sqlite3_changes()).
5782 ** Then the VMs internal change counter resets to 0.
5783 ** This is used by trigger programs.
5785 case OP_ResetCount: {
5786 sqlite3VdbeSetChanges(db, p->nChange);
5787 p->nChange = 0;
5788 break;
5791 /* Opcode: SorterCompare P1 P2 P3 P4
5792 ** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2
5794 ** P1 is a sorter cursor. This instruction compares a prefix of the
5795 ** record blob in register P3 against a prefix of the entry that
5796 ** the sorter cursor currently points to. Only the first P4 fields
5797 ** of r[P3] and the sorter record are compared.
5799 ** If either P3 or the sorter contains a NULL in one of their significant
5800 ** fields (not counting the P4 fields at the end which are ignored) then
5801 ** the comparison is assumed to be equal.
5803 ** Fall through to next instruction if the two records compare equal to
5804 ** each other. Jump to P2 if they are different.
5806 case OP_SorterCompare: {
5807 VdbeCursor *pC;
5808 int res;
5809 int nKeyCol;
5811 pC = p->apCsr[pOp->p1];
5812 assert( isSorter(pC) );
5813 assert( pOp->p4type==P4_INT32 );
5814 pIn3 = &aMem[pOp->p3];
5815 nKeyCol = pOp->p4.i;
5816 res = 0;
5817 rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res);
5818 VdbeBranchTaken(res!=0,2);
5819 if( rc ) goto abort_due_to_error;
5820 if( res ) goto jump_to_p2;
5821 break;
5824 /* Opcode: SorterData P1 P2 P3 * *
5825 ** Synopsis: r[P2]=data
5827 ** Write into register P2 the current sorter data for sorter cursor P1.
5828 ** Then clear the column header cache on cursor P3.
5830 ** This opcode is normally use to move a record out of the sorter and into
5831 ** a register that is the source for a pseudo-table cursor created using
5832 ** OpenPseudo. That pseudo-table cursor is the one that is identified by
5833 ** parameter P3. Clearing the P3 column cache as part of this opcode saves
5834 ** us from having to issue a separate NullRow instruction to clear that cache.
5836 case OP_SorterData: {
5837 VdbeCursor *pC;
5839 pOut = &aMem[pOp->p2];
5840 pC = p->apCsr[pOp->p1];
5841 assert( isSorter(pC) );
5842 rc = sqlite3VdbeSorterRowkey(pC, pOut);
5843 assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) );
5844 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5845 if( rc ) goto abort_due_to_error;
5846 p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE;
5847 break;
5850 /* Opcode: RowData P1 P2 P3 * *
5851 ** Synopsis: r[P2]=data
5853 ** Write into register P2 the complete row content for the row at
5854 ** which cursor P1 is currently pointing.
5855 ** There is no interpretation of the data.
5856 ** It is just copied onto the P2 register exactly as
5857 ** it is found in the database file.
5859 ** If cursor P1 is an index, then the content is the key of the row.
5860 ** If cursor P2 is a table, then the content extracted is the data.
5862 ** If the P1 cursor must be pointing to a valid row (not a NULL row)
5863 ** of a real table, not a pseudo-table.
5865 ** If P3!=0 then this opcode is allowed to make an ephemeral pointer
5866 ** into the database page. That means that the content of the output
5867 ** register will be invalidated as soon as the cursor moves - including
5868 ** moves caused by other cursors that "save" the current cursors
5869 ** position in order that they can write to the same table. If P3==0
5870 ** then a copy of the data is made into memory. P3!=0 is faster, but
5871 ** P3==0 is safer.
5873 ** If P3!=0 then the content of the P2 register is unsuitable for use
5874 ** in OP_Result and any OP_Result will invalidate the P2 register content.
5875 ** The P2 register content is invalidated by opcodes like OP_Function or
5876 ** by any use of another cursor pointing to the same table.
5878 case OP_RowData: {
5879 VdbeCursor *pC;
5880 BtCursor *pCrsr;
5881 u32 n;
5883 pOut = out2Prerelease(p, pOp);
5885 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5886 pC = p->apCsr[pOp->p1];
5887 assert( pC!=0 );
5888 assert( pC->eCurType==CURTYPE_BTREE );
5889 assert( isSorter(pC)==0 );
5890 assert( pC->nullRow==0 );
5891 assert( pC->uc.pCursor!=0 );
5892 pCrsr = pC->uc.pCursor;
5894 /* The OP_RowData opcodes always follow OP_NotExists or
5895 ** OP_SeekRowid or OP_Rewind/Op_Next with no intervening instructions
5896 ** that might invalidate the cursor.
5897 ** If this where not the case, on of the following assert()s
5898 ** would fail. Should this ever change (because of changes in the code
5899 ** generator) then the fix would be to insert a call to
5900 ** sqlite3VdbeCursorMoveto().
5902 assert( pC->deferredMoveto==0 );
5903 assert( sqlite3BtreeCursorIsValid(pCrsr) );
5905 n = sqlite3BtreePayloadSize(pCrsr);
5906 if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
5907 goto too_big;
5909 testcase( n==0 );
5910 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCrsr, n, pOut);
5911 if( rc ) goto abort_due_to_error;
5912 if( !pOp->p3 ) Deephemeralize(pOut);
5913 UPDATE_MAX_BLOBSIZE(pOut);
5914 REGISTER_TRACE(pOp->p2, pOut);
5915 break;
5918 /* Opcode: Rowid P1 P2 * * *
5919 ** Synopsis: r[P2]=PX rowid of P1
5921 ** Store in register P2 an integer which is the key of the table entry that
5922 ** P1 is currently point to.
5924 ** P1 can be either an ordinary table or a virtual table. There used to
5925 ** be a separate OP_VRowid opcode for use with virtual tables, but this
5926 ** one opcode now works for both table types.
5928 case OP_Rowid: { /* out2, ncycle */
5929 VdbeCursor *pC;
5930 i64 v;
5931 sqlite3_vtab *pVtab;
5932 const sqlite3_module *pModule;
5934 pOut = out2Prerelease(p, pOp);
5935 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5936 pC = p->apCsr[pOp->p1];
5937 assert( pC!=0 );
5938 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
5939 if( pC->nullRow ){
5940 pOut->flags = MEM_Null;
5941 break;
5942 }else if( pC->deferredMoveto ){
5943 v = pC->movetoTarget;
5944 #ifndef SQLITE_OMIT_VIRTUALTABLE
5945 }else if( pC->eCurType==CURTYPE_VTAB ){
5946 assert( pC->uc.pVCur!=0 );
5947 pVtab = pC->uc.pVCur->pVtab;
5948 pModule = pVtab->pModule;
5949 assert( pModule->xRowid );
5950 rc = pModule->xRowid(pC->uc.pVCur, &v);
5951 sqlite3VtabImportErrmsg(p, pVtab);
5952 if( rc ) goto abort_due_to_error;
5953 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5954 }else{
5955 assert( pC->eCurType==CURTYPE_BTREE );
5956 assert( pC->uc.pCursor!=0 );
5957 rc = sqlite3VdbeCursorRestore(pC);
5958 if( rc ) goto abort_due_to_error;
5959 if( pC->nullRow ){
5960 pOut->flags = MEM_Null;
5961 break;
5963 v = sqlite3BtreeIntegerKey(pC->uc.pCursor);
5965 pOut->u.i = v;
5966 break;
5969 /* Opcode: NullRow P1 * * * *
5971 ** Move the cursor P1 to a null row. Any OP_Column operations
5972 ** that occur while the cursor is on the null row will always
5973 ** write a NULL.
5975 ** If cursor P1 is not previously opened, open it now to a special
5976 ** pseudo-cursor that always returns NULL for every column.
5978 case OP_NullRow: {
5979 VdbeCursor *pC;
5981 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5982 pC = p->apCsr[pOp->p1];
5983 if( pC==0 ){
5984 /* If the cursor is not already open, create a special kind of
5985 ** pseudo-cursor that always gives null rows. */
5986 pC = allocateCursor(p, pOp->p1, 1, CURTYPE_PSEUDO);
5987 if( pC==0 ) goto no_mem;
5988 pC->seekResult = 0;
5989 pC->isTable = 1;
5990 pC->noReuse = 1;
5991 pC->uc.pCursor = sqlite3BtreeFakeValidCursor();
5993 pC->nullRow = 1;
5994 pC->cacheStatus = CACHE_STALE;
5995 if( pC->eCurType==CURTYPE_BTREE ){
5996 assert( pC->uc.pCursor!=0 );
5997 sqlite3BtreeClearCursor(pC->uc.pCursor);
5999 #ifdef SQLITE_DEBUG
6000 if( pC->seekOp==0 ) pC->seekOp = OP_NullRow;
6001 #endif
6002 break;
6005 /* Opcode: SeekEnd P1 * * * *
6007 ** Position cursor P1 at the end of the btree for the purpose of
6008 ** appending a new entry onto the btree.
6010 ** It is assumed that the cursor is used only for appending and so
6011 ** if the cursor is valid, then the cursor must already be pointing
6012 ** at the end of the btree and so no changes are made to
6013 ** the cursor.
6015 /* Opcode: Last P1 P2 * * *
6017 ** The next use of the Rowid or Column or Prev instruction for P1
6018 ** will refer to the last entry in the database table or index.
6019 ** If the table or index is empty and P2>0, then jump immediately to P2.
6020 ** If P2 is 0 or if the table or index is not empty, fall through
6021 ** to the following instruction.
6023 ** This opcode leaves the cursor configured to move in reverse order,
6024 ** from the end toward the beginning. In other words, the cursor is
6025 ** configured to use Prev, not Next.
6027 case OP_SeekEnd: /* ncycle */
6028 case OP_Last: { /* jump, ncycle */
6029 VdbeCursor *pC;
6030 BtCursor *pCrsr;
6031 int res;
6033 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6034 pC = p->apCsr[pOp->p1];
6035 assert( pC!=0 );
6036 assert( pC->eCurType==CURTYPE_BTREE );
6037 pCrsr = pC->uc.pCursor;
6038 res = 0;
6039 assert( pCrsr!=0 );
6040 #ifdef SQLITE_DEBUG
6041 pC->seekOp = pOp->opcode;
6042 #endif
6043 if( pOp->opcode==OP_SeekEnd ){
6044 assert( pOp->p2==0 );
6045 pC->seekResult = -1;
6046 if( sqlite3BtreeCursorIsValidNN(pCrsr) ){
6047 break;
6050 rc = sqlite3BtreeLast(pCrsr, &res);
6051 pC->nullRow = (u8)res;
6052 pC->deferredMoveto = 0;
6053 pC->cacheStatus = CACHE_STALE;
6054 if( rc ) goto abort_due_to_error;
6055 if( pOp->p2>0 ){
6056 VdbeBranchTaken(res!=0,2);
6057 if( res ) goto jump_to_p2;
6059 break;
6062 /* Opcode: IfSmaller P1 P2 P3 * *
6064 ** Estimate the number of rows in the table P1. Jump to P2 if that
6065 ** estimate is less than approximately 2**(0.1*P3).
6067 case OP_IfSmaller: { /* jump */
6068 VdbeCursor *pC;
6069 BtCursor *pCrsr;
6070 int res;
6071 i64 sz;
6073 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6074 pC = p->apCsr[pOp->p1];
6075 assert( pC!=0 );
6076 pCrsr = pC->uc.pCursor;
6077 assert( pCrsr );
6078 rc = sqlite3BtreeFirst(pCrsr, &res);
6079 if( rc ) goto abort_due_to_error;
6080 if( res==0 ){
6081 sz = sqlite3BtreeRowCountEst(pCrsr);
6082 if( ALWAYS(sz>=0) && sqlite3LogEst((u64)sz)<pOp->p3 ) res = 1;
6084 VdbeBranchTaken(res!=0,2);
6085 if( res ) goto jump_to_p2;
6086 break;
6090 /* Opcode: SorterSort P1 P2 * * *
6092 ** After all records have been inserted into the Sorter object
6093 ** identified by P1, invoke this opcode to actually do the sorting.
6094 ** Jump to P2 if there are no records to be sorted.
6096 ** This opcode is an alias for OP_Sort and OP_Rewind that is used
6097 ** for Sorter objects.
6099 /* Opcode: Sort P1 P2 * * *
6101 ** This opcode does exactly the same thing as OP_Rewind except that
6102 ** it increments an undocumented global variable used for testing.
6104 ** Sorting is accomplished by writing records into a sorting index,
6105 ** then rewinding that index and playing it back from beginning to
6106 ** end. We use the OP_Sort opcode instead of OP_Rewind to do the
6107 ** rewinding so that the global variable will be incremented and
6108 ** regression tests can determine whether or not the optimizer is
6109 ** correctly optimizing out sorts.
6111 case OP_SorterSort: /* jump */
6112 case OP_Sort: { /* jump */
6113 #ifdef SQLITE_TEST
6114 sqlite3_sort_count++;
6115 sqlite3_search_count--;
6116 #endif
6117 p->aCounter[SQLITE_STMTSTATUS_SORT]++;
6118 /* Fall through into OP_Rewind */
6119 /* no break */ deliberate_fall_through
6121 /* Opcode: Rewind P1 P2 * * *
6123 ** The next use of the Rowid or Column or Next instruction for P1
6124 ** will refer to the first entry in the database table or index.
6125 ** If the table or index is empty, jump immediately to P2.
6126 ** If the table or index is not empty, fall through to the following
6127 ** instruction.
6129 ** If P2 is zero, that is an assertion that the P1 table is never
6130 ** empty and hence the jump will never be taken.
6132 ** This opcode leaves the cursor configured to move in forward order,
6133 ** from the beginning toward the end. In other words, the cursor is
6134 ** configured to use Next, not Prev.
6136 case OP_Rewind: { /* jump, ncycle */
6137 VdbeCursor *pC;
6138 BtCursor *pCrsr;
6139 int res;
6141 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6142 assert( pOp->p5==0 );
6143 assert( pOp->p2>=0 && pOp->p2<p->nOp );
6145 pC = p->apCsr[pOp->p1];
6146 assert( pC!=0 );
6147 assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) );
6148 res = 1;
6149 #ifdef SQLITE_DEBUG
6150 pC->seekOp = OP_Rewind;
6151 #endif
6152 if( isSorter(pC) ){
6153 rc = sqlite3VdbeSorterRewind(pC, &res);
6154 }else{
6155 assert( pC->eCurType==CURTYPE_BTREE );
6156 pCrsr = pC->uc.pCursor;
6157 assert( pCrsr );
6158 rc = sqlite3BtreeFirst(pCrsr, &res);
6159 pC->deferredMoveto = 0;
6160 pC->cacheStatus = CACHE_STALE;
6162 if( rc ) goto abort_due_to_error;
6163 pC->nullRow = (u8)res;
6164 if( pOp->p2>0 ){
6165 VdbeBranchTaken(res!=0,2);
6166 if( res ) goto jump_to_p2;
6168 break;
6171 /* Opcode: Next P1 P2 P3 * P5
6173 ** Advance cursor P1 so that it points to the next key/data pair in its
6174 ** table or index. If there are no more key/value pairs then fall through
6175 ** to the following instruction. But if the cursor advance was successful,
6176 ** jump immediately to P2.
6178 ** The Next opcode is only valid following an SeekGT, SeekGE, or
6179 ** OP_Rewind opcode used to position the cursor. Next is not allowed
6180 ** to follow SeekLT, SeekLE, or OP_Last.
6182 ** The P1 cursor must be for a real table, not a pseudo-table. P1 must have
6183 ** been opened prior to this opcode or the program will segfault.
6185 ** The P3 value is a hint to the btree implementation. If P3==1, that
6186 ** means P1 is an SQL index and that this instruction could have been
6187 ** omitted if that index had been unique. P3 is usually 0. P3 is
6188 ** always either 0 or 1.
6190 ** If P5 is positive and the jump is taken, then event counter
6191 ** number P5-1 in the prepared statement is incremented.
6193 ** See also: Prev
6195 /* Opcode: Prev P1 P2 P3 * P5
6197 ** Back up cursor P1 so that it points to the previous key/data pair in its
6198 ** table or index. If there is no previous key/value pairs then fall through
6199 ** to the following instruction. But if the cursor backup was successful,
6200 ** jump immediately to P2.
6203 ** The Prev opcode is only valid following an SeekLT, SeekLE, or
6204 ** OP_Last opcode used to position the cursor. Prev is not allowed
6205 ** to follow SeekGT, SeekGE, or OP_Rewind.
6207 ** The P1 cursor must be for a real table, not a pseudo-table. If P1 is
6208 ** not open then the behavior is undefined.
6210 ** The P3 value is a hint to the btree implementation. If P3==1, that
6211 ** means P1 is an SQL index and that this instruction could have been
6212 ** omitted if that index had been unique. P3 is usually 0. P3 is
6213 ** always either 0 or 1.
6215 ** If P5 is positive and the jump is taken, then event counter
6216 ** number P5-1 in the prepared statement is incremented.
6218 /* Opcode: SorterNext P1 P2 * * P5
6220 ** This opcode works just like OP_Next except that P1 must be a
6221 ** sorter object for which the OP_SorterSort opcode has been
6222 ** invoked. This opcode advances the cursor to the next sorted
6223 ** record, or jumps to P2 if there are no more sorted records.
6225 case OP_SorterNext: { /* jump */
6226 VdbeCursor *pC;
6228 pC = p->apCsr[pOp->p1];
6229 assert( isSorter(pC) );
6230 rc = sqlite3VdbeSorterNext(db, pC);
6231 goto next_tail;
6233 case OP_Prev: /* jump, ncycle */
6234 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6235 assert( pOp->p5==0
6236 || pOp->p5==SQLITE_STMTSTATUS_FULLSCAN_STEP
6237 || pOp->p5==SQLITE_STMTSTATUS_AUTOINDEX);
6238 pC = p->apCsr[pOp->p1];
6239 assert( pC!=0 );
6240 assert( pC->deferredMoveto==0 );
6241 assert( pC->eCurType==CURTYPE_BTREE );
6242 assert( pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE
6243 || pC->seekOp==OP_Last || pC->seekOp==OP_IfNoHope
6244 || pC->seekOp==OP_NullRow);
6245 rc = sqlite3BtreePrevious(pC->uc.pCursor, pOp->p3);
6246 goto next_tail;
6248 case OP_Next: /* jump, ncycle */
6249 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6250 assert( pOp->p5==0
6251 || pOp->p5==SQLITE_STMTSTATUS_FULLSCAN_STEP
6252 || pOp->p5==SQLITE_STMTSTATUS_AUTOINDEX);
6253 pC = p->apCsr[pOp->p1];
6254 assert( pC!=0 );
6255 assert( pC->deferredMoveto==0 );
6256 assert( pC->eCurType==CURTYPE_BTREE );
6257 assert( pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE
6258 || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found
6259 || pC->seekOp==OP_NullRow|| pC->seekOp==OP_SeekRowid
6260 || pC->seekOp==OP_IfNoHope);
6261 rc = sqlite3BtreeNext(pC->uc.pCursor, pOp->p3);
6263 next_tail:
6264 pC->cacheStatus = CACHE_STALE;
6265 VdbeBranchTaken(rc==SQLITE_OK,2);
6266 if( rc==SQLITE_OK ){
6267 pC->nullRow = 0;
6268 p->aCounter[pOp->p5]++;
6269 #ifdef SQLITE_TEST
6270 sqlite3_search_count++;
6271 #endif
6272 goto jump_to_p2_and_check_for_interrupt;
6274 if( rc!=SQLITE_DONE ) goto abort_due_to_error;
6275 rc = SQLITE_OK;
6276 pC->nullRow = 1;
6277 goto check_for_interrupt;
6280 /* Opcode: IdxInsert P1 P2 P3 P4 P5
6281 ** Synopsis: key=r[P2]
6283 ** Register P2 holds an SQL index key made using the
6284 ** MakeRecord instructions. This opcode writes that key
6285 ** into the index P1. Data for the entry is nil.
6287 ** If P4 is not zero, then it is the number of values in the unpacked
6288 ** key of reg(P2). In that case, P3 is the index of the first register
6289 ** for the unpacked key. The availability of the unpacked key can sometimes
6290 ** be an optimization.
6292 ** If P5 has the OPFLAG_APPEND bit set, that is a hint to the b-tree layer
6293 ** that this insert is likely to be an append.
6295 ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is
6296 ** incremented by this instruction. If the OPFLAG_NCHANGE bit is clear,
6297 ** then the change counter is unchanged.
6299 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
6300 ** run faster by avoiding an unnecessary seek on cursor P1. However,
6301 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
6302 ** seeks on the cursor or if the most recent seek used a key equivalent
6303 ** to P2.
6305 ** This instruction only works for indices. The equivalent instruction
6306 ** for tables is OP_Insert.
6308 case OP_IdxInsert: { /* in2 */
6309 VdbeCursor *pC;
6310 BtreePayload x;
6312 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6313 pC = p->apCsr[pOp->p1];
6314 sqlite3VdbeIncrWriteCounter(p, pC);
6315 assert( pC!=0 );
6316 assert( !isSorter(pC) );
6317 pIn2 = &aMem[pOp->p2];
6318 assert( (pIn2->flags & MEM_Blob) || (pOp->p5 & OPFLAG_PREFORMAT) );
6319 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
6320 assert( pC->eCurType==CURTYPE_BTREE );
6321 assert( pC->isTable==0 );
6322 rc = ExpandBlob(pIn2);
6323 if( rc ) goto abort_due_to_error;
6324 x.nKey = pIn2->n;
6325 x.pKey = pIn2->z;
6326 x.aMem = aMem + pOp->p3;
6327 x.nMem = (u16)pOp->p4.i;
6328 rc = sqlite3BtreeInsert(pC->uc.pCursor, &x,
6329 (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION|OPFLAG_PREFORMAT)),
6330 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
6332 assert( pC->deferredMoveto==0 );
6333 pC->cacheStatus = CACHE_STALE;
6334 if( rc) goto abort_due_to_error;
6335 break;
6338 /* Opcode: SorterInsert P1 P2 * * *
6339 ** Synopsis: key=r[P2]
6341 ** Register P2 holds an SQL index key made using the
6342 ** MakeRecord instructions. This opcode writes that key
6343 ** into the sorter P1. Data for the entry is nil.
6345 case OP_SorterInsert: { /* in2 */
6346 VdbeCursor *pC;
6348 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6349 pC = p->apCsr[pOp->p1];
6350 sqlite3VdbeIncrWriteCounter(p, pC);
6351 assert( pC!=0 );
6352 assert( isSorter(pC) );
6353 pIn2 = &aMem[pOp->p2];
6354 assert( pIn2->flags & MEM_Blob );
6355 assert( pC->isTable==0 );
6356 rc = ExpandBlob(pIn2);
6357 if( rc ) goto abort_due_to_error;
6358 rc = sqlite3VdbeSorterWrite(pC, pIn2);
6359 if( rc) goto abort_due_to_error;
6360 break;
6363 /* Opcode: IdxDelete P1 P2 P3 * P5
6364 ** Synopsis: key=r[P2@P3]
6366 ** The content of P3 registers starting at register P2 form
6367 ** an unpacked index key. This opcode removes that entry from the
6368 ** index opened by cursor P1.
6370 ** If P5 is not zero, then raise an SQLITE_CORRUPT_INDEX error
6371 ** if no matching index entry is found. This happens when running
6372 ** an UPDATE or DELETE statement and the index entry to be updated
6373 ** or deleted is not found. For some uses of IdxDelete
6374 ** (example: the EXCEPT operator) it does not matter that no matching
6375 ** entry is found. For those cases, P5 is zero. Also, do not raise
6376 ** this (self-correcting and non-critical) error if in writable_schema mode.
6378 case OP_IdxDelete: {
6379 VdbeCursor *pC;
6380 BtCursor *pCrsr;
6381 int res;
6382 UnpackedRecord r;
6384 assert( pOp->p3>0 );
6385 assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem+1 - p->nCursor)+1 );
6386 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6387 pC = p->apCsr[pOp->p1];
6388 assert( pC!=0 );
6389 assert( pC->eCurType==CURTYPE_BTREE );
6390 sqlite3VdbeIncrWriteCounter(p, pC);
6391 pCrsr = pC->uc.pCursor;
6392 assert( pCrsr!=0 );
6393 r.pKeyInfo = pC->pKeyInfo;
6394 r.nField = (u16)pOp->p3;
6395 r.default_rc = 0;
6396 r.aMem = &aMem[pOp->p2];
6397 rc = sqlite3BtreeIndexMoveto(pCrsr, &r, &res);
6398 if( rc ) goto abort_due_to_error;
6399 if( res==0 ){
6400 rc = sqlite3BtreeDelete(pCrsr, BTREE_AUXDELETE);
6401 if( rc ) goto abort_due_to_error;
6402 }else if( pOp->p5 && !sqlite3WritableSchema(db) ){
6403 rc = sqlite3ReportError(SQLITE_CORRUPT_INDEX, __LINE__, "index corruption");
6404 goto abort_due_to_error;
6406 assert( pC->deferredMoveto==0 );
6407 pC->cacheStatus = CACHE_STALE;
6408 pC->seekResult = 0;
6409 break;
6412 /* Opcode: DeferredSeek P1 * P3 P4 *
6413 ** Synopsis: Move P3 to P1.rowid if needed
6415 ** P1 is an open index cursor and P3 is a cursor on the corresponding
6416 ** table. This opcode does a deferred seek of the P3 table cursor
6417 ** to the row that corresponds to the current row of P1.
6419 ** This is a deferred seek. Nothing actually happens until
6420 ** the cursor is used to read a record. That way, if no reads
6421 ** occur, no unnecessary I/O happens.
6423 ** P4 may be an array of integers (type P4_INTARRAY) containing
6424 ** one entry for each column in the P3 table. If array entry a(i)
6425 ** is non-zero, then reading column a(i)-1 from cursor P3 is
6426 ** equivalent to performing the deferred seek and then reading column i
6427 ** from P1. This information is stored in P3 and used to redirect
6428 ** reads against P3 over to P1, thus possibly avoiding the need to
6429 ** seek and read cursor P3.
6431 /* Opcode: IdxRowid P1 P2 * * *
6432 ** Synopsis: r[P2]=rowid
6434 ** Write into register P2 an integer which is the last entry in the record at
6435 ** the end of the index key pointed to by cursor P1. This integer should be
6436 ** the rowid of the table entry to which this index entry points.
6438 ** See also: Rowid, MakeRecord.
6440 case OP_DeferredSeek: /* ncycle */
6441 case OP_IdxRowid: { /* out2, ncycle */
6442 VdbeCursor *pC; /* The P1 index cursor */
6443 VdbeCursor *pTabCur; /* The P2 table cursor (OP_DeferredSeek only) */
6444 i64 rowid; /* Rowid that P1 current points to */
6446 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6447 pC = p->apCsr[pOp->p1];
6448 assert( pC!=0 );
6449 assert( pC->eCurType==CURTYPE_BTREE || IsNullCursor(pC) );
6450 assert( pC->uc.pCursor!=0 );
6451 assert( pC->isTable==0 || IsNullCursor(pC) );
6452 assert( pC->deferredMoveto==0 );
6453 assert( !pC->nullRow || pOp->opcode==OP_IdxRowid );
6455 /* The IdxRowid and Seek opcodes are combined because of the commonality
6456 ** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */
6457 rc = sqlite3VdbeCursorRestore(pC);
6459 /* sqlite3VdbeCursorRestore() may fail if the cursor has been disturbed
6460 ** since it was last positioned and an error (e.g. OOM or an IO error)
6461 ** occurs while trying to reposition it. */
6462 if( rc!=SQLITE_OK ) goto abort_due_to_error;
6464 if( !pC->nullRow ){
6465 rowid = 0; /* Not needed. Only used to silence a warning. */
6466 rc = sqlite3VdbeIdxRowid(db, pC->uc.pCursor, &rowid);
6467 if( rc!=SQLITE_OK ){
6468 goto abort_due_to_error;
6470 if( pOp->opcode==OP_DeferredSeek ){
6471 assert( pOp->p3>=0 && pOp->p3<p->nCursor );
6472 pTabCur = p->apCsr[pOp->p3];
6473 assert( pTabCur!=0 );
6474 assert( pTabCur->eCurType==CURTYPE_BTREE );
6475 assert( pTabCur->uc.pCursor!=0 );
6476 assert( pTabCur->isTable );
6477 pTabCur->nullRow = 0;
6478 pTabCur->movetoTarget = rowid;
6479 pTabCur->deferredMoveto = 1;
6480 pTabCur->cacheStatus = CACHE_STALE;
6481 assert( pOp->p4type==P4_INTARRAY || pOp->p4.ai==0 );
6482 assert( !pTabCur->isEphemeral );
6483 pTabCur->ub.aAltMap = pOp->p4.ai;
6484 assert( !pC->isEphemeral );
6485 pTabCur->pAltCursor = pC;
6486 }else{
6487 pOut = out2Prerelease(p, pOp);
6488 pOut->u.i = rowid;
6490 }else{
6491 assert( pOp->opcode==OP_IdxRowid );
6492 sqlite3VdbeMemSetNull(&aMem[pOp->p2]);
6494 break;
6497 /* Opcode: FinishSeek P1 * * * *
6499 ** If cursor P1 was previously moved via OP_DeferredSeek, complete that
6500 ** seek operation now, without further delay. If the cursor seek has
6501 ** already occurred, this instruction is a no-op.
6503 case OP_FinishSeek: { /* ncycle */
6504 VdbeCursor *pC; /* The P1 index cursor */
6506 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6507 pC = p->apCsr[pOp->p1];
6508 if( pC->deferredMoveto ){
6509 rc = sqlite3VdbeFinishMoveto(pC);
6510 if( rc ) goto abort_due_to_error;
6512 break;
6515 /* Opcode: IdxGE P1 P2 P3 P4 *
6516 ** Synopsis: key=r[P3@P4]
6518 ** The P4 register values beginning with P3 form an unpacked index
6519 ** key that omits the PRIMARY KEY. Compare this key value against the index
6520 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
6521 ** fields at the end.
6523 ** If the P1 index entry is greater than or equal to the key value
6524 ** then jump to P2. Otherwise fall through to the next instruction.
6526 /* Opcode: IdxGT P1 P2 P3 P4 *
6527 ** Synopsis: key=r[P3@P4]
6529 ** The P4 register values beginning with P3 form an unpacked index
6530 ** key that omits the PRIMARY KEY. Compare this key value against the index
6531 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
6532 ** fields at the end.
6534 ** If the P1 index entry is greater than the key value
6535 ** then jump to P2. Otherwise fall through to the next instruction.
6537 /* Opcode: IdxLT P1 P2 P3 P4 *
6538 ** Synopsis: key=r[P3@P4]
6540 ** The P4 register values beginning with P3 form an unpacked index
6541 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against
6542 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
6543 ** ROWID on the P1 index.
6545 ** If the P1 index entry is less than the key value then jump to P2.
6546 ** Otherwise fall through to the next instruction.
6548 /* Opcode: IdxLE P1 P2 P3 P4 *
6549 ** Synopsis: key=r[P3@P4]
6551 ** The P4 register values beginning with P3 form an unpacked index
6552 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against
6553 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
6554 ** ROWID on the P1 index.
6556 ** If the P1 index entry is less than or equal to the key value then jump
6557 ** to P2. Otherwise fall through to the next instruction.
6559 case OP_IdxLE: /* jump, ncycle */
6560 case OP_IdxGT: /* jump, ncycle */
6561 case OP_IdxLT: /* jump, ncycle */
6562 case OP_IdxGE: { /* jump, ncycle */
6563 VdbeCursor *pC;
6564 int res;
6565 UnpackedRecord r;
6567 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6568 pC = p->apCsr[pOp->p1];
6569 assert( pC!=0 );
6570 assert( pC->isOrdered );
6571 assert( pC->eCurType==CURTYPE_BTREE );
6572 assert( pC->uc.pCursor!=0);
6573 assert( pC->deferredMoveto==0 );
6574 assert( pOp->p4type==P4_INT32 );
6575 r.pKeyInfo = pC->pKeyInfo;
6576 r.nField = (u16)pOp->p4.i;
6577 if( pOp->opcode<OP_IdxLT ){
6578 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT );
6579 r.default_rc = -1;
6580 }else{
6581 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT );
6582 r.default_rc = 0;
6584 r.aMem = &aMem[pOp->p3];
6585 #ifdef SQLITE_DEBUG
6587 int i;
6588 for(i=0; i<r.nField; i++){
6589 assert( memIsValid(&r.aMem[i]) );
6590 REGISTER_TRACE(pOp->p3+i, &aMem[pOp->p3+i]);
6593 #endif
6595 /* Inlined version of sqlite3VdbeIdxKeyCompare() */
6597 i64 nCellKey = 0;
6598 BtCursor *pCur;
6599 Mem m;
6601 assert( pC->eCurType==CURTYPE_BTREE );
6602 pCur = pC->uc.pCursor;
6603 assert( sqlite3BtreeCursorIsValid(pCur) );
6604 nCellKey = sqlite3BtreePayloadSize(pCur);
6605 /* nCellKey will always be between 0 and 0xffffffff because of the way
6606 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
6607 if( nCellKey<=0 || nCellKey>0x7fffffff ){
6608 rc = SQLITE_CORRUPT_BKPT;
6609 goto abort_due_to_error;
6611 sqlite3VdbeMemInit(&m, db, 0);
6612 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m);
6613 if( rc ) goto abort_due_to_error;
6614 res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, &r, 0);
6615 sqlite3VdbeMemReleaseMalloc(&m);
6617 /* End of inlined sqlite3VdbeIdxKeyCompare() */
6619 assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) );
6620 if( (pOp->opcode&1)==(OP_IdxLT&1) ){
6621 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT );
6622 res = -res;
6623 }else{
6624 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT );
6625 res++;
6627 VdbeBranchTaken(res>0,2);
6628 assert( rc==SQLITE_OK );
6629 if( res>0 ) goto jump_to_p2;
6630 break;
6633 /* Opcode: Destroy P1 P2 P3 * *
6635 ** Delete an entire database table or index whose root page in the database
6636 ** file is given by P1.
6638 ** The table being destroyed is in the main database file if P3==0. If
6639 ** P3==1 then the table to be clear is in the auxiliary database file
6640 ** that is used to store tables create using CREATE TEMPORARY TABLE.
6642 ** If AUTOVACUUM is enabled then it is possible that another root page
6643 ** might be moved into the newly deleted root page in order to keep all
6644 ** root pages contiguous at the beginning of the database. The former
6645 ** value of the root page that moved - its value before the move occurred -
6646 ** is stored in register P2. If no page movement was required (because the
6647 ** table being dropped was already the last one in the database) then a
6648 ** zero is stored in register P2. If AUTOVACUUM is disabled then a zero
6649 ** is stored in register P2.
6651 ** This opcode throws an error if there are any active reader VMs when
6652 ** it is invoked. This is done to avoid the difficulty associated with
6653 ** updating existing cursors when a root page is moved in an AUTOVACUUM
6654 ** database. This error is thrown even if the database is not an AUTOVACUUM
6655 ** db in order to avoid introducing an incompatibility between autovacuum
6656 ** and non-autovacuum modes.
6658 ** See also: Clear
6660 case OP_Destroy: { /* out2 */
6661 int iMoved;
6662 int iDb;
6664 sqlite3VdbeIncrWriteCounter(p, 0);
6665 assert( p->readOnly==0 );
6666 assert( pOp->p1>1 );
6667 pOut = out2Prerelease(p, pOp);
6668 pOut->flags = MEM_Null;
6669 if( db->nVdbeRead > db->nVDestroy+1 ){
6670 rc = SQLITE_LOCKED;
6671 p->errorAction = OE_Abort;
6672 goto abort_due_to_error;
6673 }else{
6674 iDb = pOp->p3;
6675 assert( DbMaskTest(p->btreeMask, iDb) );
6676 iMoved = 0; /* Not needed. Only to silence a warning. */
6677 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
6678 pOut->flags = MEM_Int;
6679 pOut->u.i = iMoved;
6680 if( rc ) goto abort_due_to_error;
6681 #ifndef SQLITE_OMIT_AUTOVACUUM
6682 if( iMoved!=0 ){
6683 sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1);
6684 /* All OP_Destroy operations occur on the same btree */
6685 assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 );
6686 resetSchemaOnFault = iDb+1;
6688 #endif
6690 break;
6693 /* Opcode: Clear P1 P2 P3
6695 ** Delete all contents of the database table or index whose root page
6696 ** in the database file is given by P1. But, unlike Destroy, do not
6697 ** remove the table or index from the database file.
6699 ** The table being clear is in the main database file if P2==0. If
6700 ** P2==1 then the table to be clear is in the auxiliary database file
6701 ** that is used to store tables create using CREATE TEMPORARY TABLE.
6703 ** If the P3 value is non-zero, then the row change count is incremented
6704 ** by the number of rows in the table being cleared. If P3 is greater
6705 ** than zero, then the value stored in register P3 is also incremented
6706 ** by the number of rows in the table being cleared.
6708 ** See also: Destroy
6710 case OP_Clear: {
6711 i64 nChange;
6713 sqlite3VdbeIncrWriteCounter(p, 0);
6714 nChange = 0;
6715 assert( p->readOnly==0 );
6716 assert( DbMaskTest(p->btreeMask, pOp->p2) );
6717 rc = sqlite3BtreeClearTable(db->aDb[pOp->p2].pBt, (u32)pOp->p1, &nChange);
6718 if( pOp->p3 ){
6719 p->nChange += nChange;
6720 if( pOp->p3>0 ){
6721 assert( memIsValid(&aMem[pOp->p3]) );
6722 memAboutToChange(p, &aMem[pOp->p3]);
6723 aMem[pOp->p3].u.i += nChange;
6726 if( rc ) goto abort_due_to_error;
6727 break;
6730 /* Opcode: ResetSorter P1 * * * *
6732 ** Delete all contents from the ephemeral table or sorter
6733 ** that is open on cursor P1.
6735 ** This opcode only works for cursors used for sorting and
6736 ** opened with OP_OpenEphemeral or OP_SorterOpen.
6738 case OP_ResetSorter: {
6739 VdbeCursor *pC;
6741 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6742 pC = p->apCsr[pOp->p1];
6743 assert( pC!=0 );
6744 if( isSorter(pC) ){
6745 sqlite3VdbeSorterReset(db, pC->uc.pSorter);
6746 }else{
6747 assert( pC->eCurType==CURTYPE_BTREE );
6748 assert( pC->isEphemeral );
6749 rc = sqlite3BtreeClearTableOfCursor(pC->uc.pCursor);
6750 if( rc ) goto abort_due_to_error;
6752 break;
6755 /* Opcode: CreateBtree P1 P2 P3 * *
6756 ** Synopsis: r[P2]=root iDb=P1 flags=P3
6758 ** Allocate a new b-tree in the main database file if P1==0 or in the
6759 ** TEMP database file if P1==1 or in an attached database if
6760 ** P1>1. The P3 argument must be 1 (BTREE_INTKEY) for a rowid table
6761 ** it must be 2 (BTREE_BLOBKEY) for an index or WITHOUT ROWID table.
6762 ** The root page number of the new b-tree is stored in register P2.
6764 case OP_CreateBtree: { /* out2 */
6765 Pgno pgno;
6766 Db *pDb;
6768 sqlite3VdbeIncrWriteCounter(p, 0);
6769 pOut = out2Prerelease(p, pOp);
6770 pgno = 0;
6771 assert( pOp->p3==BTREE_INTKEY || pOp->p3==BTREE_BLOBKEY );
6772 assert( pOp->p1>=0 && pOp->p1<db->nDb );
6773 assert( DbMaskTest(p->btreeMask, pOp->p1) );
6774 assert( p->readOnly==0 );
6775 pDb = &db->aDb[pOp->p1];
6776 assert( pDb->pBt!=0 );
6777 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, pOp->p3);
6778 if( rc ) goto abort_due_to_error;
6779 pOut->u.i = pgno;
6780 break;
6783 /* Opcode: SqlExec * * * P4 *
6785 ** Run the SQL statement or statements specified in the P4 string.
6787 case OP_SqlExec: {
6788 sqlite3VdbeIncrWriteCounter(p, 0);
6789 db->nSqlExec++;
6790 rc = sqlite3_exec(db, pOp->p4.z, 0, 0, 0);
6791 db->nSqlExec--;
6792 if( rc ) goto abort_due_to_error;
6793 break;
6796 /* Opcode: ParseSchema P1 * * P4 *
6798 ** Read and parse all entries from the schema table of database P1
6799 ** that match the WHERE clause P4. If P4 is a NULL pointer, then the
6800 ** entire schema for P1 is reparsed.
6802 ** This opcode invokes the parser to create a new virtual machine,
6803 ** then runs the new virtual machine. It is thus a re-entrant opcode.
6805 case OP_ParseSchema: {
6806 int iDb;
6807 const char *zSchema;
6808 char *zSql;
6809 InitData initData;
6811 /* Any prepared statement that invokes this opcode will hold mutexes
6812 ** on every btree. This is a prerequisite for invoking
6813 ** sqlite3InitCallback().
6815 #ifdef SQLITE_DEBUG
6816 for(iDb=0; iDb<db->nDb; iDb++){
6817 assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
6819 #endif
6821 iDb = pOp->p1;
6822 assert( iDb>=0 && iDb<db->nDb );
6823 assert( DbHasProperty(db, iDb, DB_SchemaLoaded)
6824 || db->mallocFailed
6825 || (CORRUPT_DB && (db->flags & SQLITE_NoSchemaError)!=0) );
6827 #ifndef SQLITE_OMIT_ALTERTABLE
6828 if( pOp->p4.z==0 ){
6829 sqlite3SchemaClear(db->aDb[iDb].pSchema);
6830 db->mDbFlags &= ~DBFLAG_SchemaKnownOk;
6831 rc = sqlite3InitOne(db, iDb, &p->zErrMsg, pOp->p5);
6832 db->mDbFlags |= DBFLAG_SchemaChange;
6833 p->expired = 0;
6834 }else
6835 #endif
6837 zSchema = LEGACY_SCHEMA_TABLE;
6838 initData.db = db;
6839 initData.iDb = iDb;
6840 initData.pzErrMsg = &p->zErrMsg;
6841 initData.mInitFlags = 0;
6842 initData.mxPage = sqlite3BtreeLastPage(db->aDb[iDb].pBt);
6843 zSql = sqlite3MPrintf(db,
6844 "SELECT*FROM\"%w\".%s WHERE %s ORDER BY rowid",
6845 db->aDb[iDb].zDbSName, zSchema, pOp->p4.z);
6846 if( zSql==0 ){
6847 rc = SQLITE_NOMEM_BKPT;
6848 }else{
6849 assert( db->init.busy==0 );
6850 db->init.busy = 1;
6851 initData.rc = SQLITE_OK;
6852 initData.nInitRow = 0;
6853 assert( !db->mallocFailed );
6854 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
6855 if( rc==SQLITE_OK ) rc = initData.rc;
6856 if( rc==SQLITE_OK && initData.nInitRow==0 ){
6857 /* The OP_ParseSchema opcode with a non-NULL P4 argument should parse
6858 ** at least one SQL statement. Any less than that indicates that
6859 ** the sqlite_schema table is corrupt. */
6860 rc = SQLITE_CORRUPT_BKPT;
6862 sqlite3DbFreeNN(db, zSql);
6863 db->init.busy = 0;
6866 if( rc ){
6867 sqlite3ResetAllSchemasOfConnection(db);
6868 if( rc==SQLITE_NOMEM ){
6869 goto no_mem;
6871 goto abort_due_to_error;
6873 break;
6876 #if !defined(SQLITE_OMIT_ANALYZE)
6877 /* Opcode: LoadAnalysis P1 * * * *
6879 ** Read the sqlite_stat1 table for database P1 and load the content
6880 ** of that table into the internal index hash table. This will cause
6881 ** the analysis to be used when preparing all subsequent queries.
6883 case OP_LoadAnalysis: {
6884 assert( pOp->p1>=0 && pOp->p1<db->nDb );
6885 rc = sqlite3AnalysisLoad(db, pOp->p1);
6886 if( rc ) goto abort_due_to_error;
6887 break;
6889 #endif /* !defined(SQLITE_OMIT_ANALYZE) */
6891 /* Opcode: DropTable P1 * * P4 *
6893 ** Remove the internal (in-memory) data structures that describe
6894 ** the table named P4 in database P1. This is called after a table
6895 ** is dropped from disk (using the Destroy opcode) in order to keep
6896 ** the internal representation of the
6897 ** schema consistent with what is on disk.
6899 case OP_DropTable: {
6900 sqlite3VdbeIncrWriteCounter(p, 0);
6901 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
6902 break;
6905 /* Opcode: DropIndex P1 * * P4 *
6907 ** Remove the internal (in-memory) data structures that describe
6908 ** the index named P4 in database P1. This is called after an index
6909 ** is dropped from disk (using the Destroy opcode)
6910 ** in order to keep the internal representation of the
6911 ** schema consistent with what is on disk.
6913 case OP_DropIndex: {
6914 sqlite3VdbeIncrWriteCounter(p, 0);
6915 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
6916 break;
6919 /* Opcode: DropTrigger P1 * * P4 *
6921 ** Remove the internal (in-memory) data structures that describe
6922 ** the trigger named P4 in database P1. This is called after a trigger
6923 ** is dropped from disk (using the Destroy opcode) in order to keep
6924 ** the internal representation of the
6925 ** schema consistent with what is on disk.
6927 case OP_DropTrigger: {
6928 sqlite3VdbeIncrWriteCounter(p, 0);
6929 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
6930 break;
6934 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
6935 /* Opcode: IntegrityCk P1 P2 P3 P4 P5
6937 ** Do an analysis of the currently open database. Store in
6938 ** register P1 the text of an error message describing any problems.
6939 ** If no problems are found, store a NULL in register P1.
6941 ** The register P3 contains one less than the maximum number of allowed errors.
6942 ** At most reg(P3) errors will be reported.
6943 ** In other words, the analysis stops as soon as reg(P1) errors are
6944 ** seen. Reg(P1) is updated with the number of errors remaining.
6946 ** The root page numbers of all tables in the database are integers
6947 ** stored in P4_INTARRAY argument.
6949 ** If P5 is not zero, the check is done on the auxiliary database
6950 ** file, not the main database file.
6952 ** This opcode is used to implement the integrity_check pragma.
6954 case OP_IntegrityCk: {
6955 int nRoot; /* Number of tables to check. (Number of root pages.) */
6956 Pgno *aRoot; /* Array of rootpage numbers for tables to be checked */
6957 int nErr; /* Number of errors reported */
6958 char *z; /* Text of the error report */
6959 Mem *pnErr; /* Register keeping track of errors remaining */
6961 assert( p->bIsReader );
6962 nRoot = pOp->p2;
6963 aRoot = pOp->p4.ai;
6964 assert( nRoot>0 );
6965 assert( aRoot[0]==(Pgno)nRoot );
6966 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
6967 pnErr = &aMem[pOp->p3];
6968 assert( (pnErr->flags & MEM_Int)!=0 );
6969 assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
6970 pIn1 = &aMem[pOp->p1];
6971 assert( pOp->p5<db->nDb );
6972 assert( DbMaskTest(p->btreeMask, pOp->p5) );
6973 rc = sqlite3BtreeIntegrityCheck(db, db->aDb[pOp->p5].pBt, &aRoot[1], nRoot,
6974 (int)pnErr->u.i+1, &nErr, &z);
6975 sqlite3VdbeMemSetNull(pIn1);
6976 if( nErr==0 ){
6977 assert( z==0 );
6978 }else if( rc ){
6979 sqlite3_free(z);
6980 goto abort_due_to_error;
6981 }else{
6982 pnErr->u.i -= nErr-1;
6983 sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
6985 UPDATE_MAX_BLOBSIZE(pIn1);
6986 sqlite3VdbeChangeEncoding(pIn1, encoding);
6987 goto check_for_interrupt;
6989 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
6991 /* Opcode: RowSetAdd P1 P2 * * *
6992 ** Synopsis: rowset(P1)=r[P2]
6994 ** Insert the integer value held by register P2 into a RowSet object
6995 ** held in register P1.
6997 ** An assertion fails if P2 is not an integer.
6999 case OP_RowSetAdd: { /* in1, in2 */
7000 pIn1 = &aMem[pOp->p1];
7001 pIn2 = &aMem[pOp->p2];
7002 assert( (pIn2->flags & MEM_Int)!=0 );
7003 if( (pIn1->flags & MEM_Blob)==0 ){
7004 if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem;
7006 assert( sqlite3VdbeMemIsRowSet(pIn1) );
7007 sqlite3RowSetInsert((RowSet*)pIn1->z, pIn2->u.i);
7008 break;
7011 /* Opcode: RowSetRead P1 P2 P3 * *
7012 ** Synopsis: r[P3]=rowset(P1)
7014 ** Extract the smallest value from the RowSet object in P1
7015 ** and put that value into register P3.
7016 ** Or, if RowSet object P1 is initially empty, leave P3
7017 ** unchanged and jump to instruction P2.
7019 case OP_RowSetRead: { /* jump, in1, out3 */
7020 i64 val;
7022 pIn1 = &aMem[pOp->p1];
7023 assert( (pIn1->flags & MEM_Blob)==0 || sqlite3VdbeMemIsRowSet(pIn1) );
7024 if( (pIn1->flags & MEM_Blob)==0
7025 || sqlite3RowSetNext((RowSet*)pIn1->z, &val)==0
7027 /* The boolean index is empty */
7028 sqlite3VdbeMemSetNull(pIn1);
7029 VdbeBranchTaken(1,2);
7030 goto jump_to_p2_and_check_for_interrupt;
7031 }else{
7032 /* A value was pulled from the index */
7033 VdbeBranchTaken(0,2);
7034 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
7036 goto check_for_interrupt;
7039 /* Opcode: RowSetTest P1 P2 P3 P4
7040 ** Synopsis: if r[P3] in rowset(P1) goto P2
7042 ** Register P3 is assumed to hold a 64-bit integer value. If register P1
7043 ** contains a RowSet object and that RowSet object contains
7044 ** the value held in P3, jump to register P2. Otherwise, insert the
7045 ** integer in P3 into the RowSet and continue on to the
7046 ** next opcode.
7048 ** The RowSet object is optimized for the case where sets of integers
7049 ** are inserted in distinct phases, which each set contains no duplicates.
7050 ** Each set is identified by a unique P4 value. The first set
7051 ** must have P4==0, the final set must have P4==-1, and for all other sets
7052 ** must have P4>0.
7054 ** This allows optimizations: (a) when P4==0 there is no need to test
7055 ** the RowSet object for P3, as it is guaranteed not to contain it,
7056 ** (b) when P4==-1 there is no need to insert the value, as it will
7057 ** never be tested for, and (c) when a value that is part of set X is
7058 ** inserted, there is no need to search to see if the same value was
7059 ** previously inserted as part of set X (only if it was previously
7060 ** inserted as part of some other set).
7062 case OP_RowSetTest: { /* jump, in1, in3 */
7063 int iSet;
7064 int exists;
7066 pIn1 = &aMem[pOp->p1];
7067 pIn3 = &aMem[pOp->p3];
7068 iSet = pOp->p4.i;
7069 assert( pIn3->flags&MEM_Int );
7071 /* If there is anything other than a rowset object in memory cell P1,
7072 ** delete it now and initialize P1 with an empty rowset
7074 if( (pIn1->flags & MEM_Blob)==0 ){
7075 if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem;
7077 assert( sqlite3VdbeMemIsRowSet(pIn1) );
7078 assert( pOp->p4type==P4_INT32 );
7079 assert( iSet==-1 || iSet>=0 );
7080 if( iSet ){
7081 exists = sqlite3RowSetTest((RowSet*)pIn1->z, iSet, pIn3->u.i);
7082 VdbeBranchTaken(exists!=0,2);
7083 if( exists ) goto jump_to_p2;
7085 if( iSet>=0 ){
7086 sqlite3RowSetInsert((RowSet*)pIn1->z, pIn3->u.i);
7088 break;
7092 #ifndef SQLITE_OMIT_TRIGGER
7094 /* Opcode: Program P1 P2 P3 P4 P5
7096 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
7098 ** P1 contains the address of the memory cell that contains the first memory
7099 ** cell in an array of values used as arguments to the sub-program. P2
7100 ** contains the address to jump to if the sub-program throws an IGNORE
7101 ** exception using the RAISE() function. Register P3 contains the address
7102 ** of a memory cell in this (the parent) VM that is used to allocate the
7103 ** memory required by the sub-vdbe at runtime.
7105 ** P4 is a pointer to the VM containing the trigger program.
7107 ** If P5 is non-zero, then recursive program invocation is enabled.
7109 case OP_Program: { /* jump */
7110 int nMem; /* Number of memory registers for sub-program */
7111 int nByte; /* Bytes of runtime space required for sub-program */
7112 Mem *pRt; /* Register to allocate runtime space */
7113 Mem *pMem; /* Used to iterate through memory cells */
7114 Mem *pEnd; /* Last memory cell in new array */
7115 VdbeFrame *pFrame; /* New vdbe frame to execute in */
7116 SubProgram *pProgram; /* Sub-program to execute */
7117 void *t; /* Token identifying trigger */
7119 pProgram = pOp->p4.pProgram;
7120 pRt = &aMem[pOp->p3];
7121 assert( pProgram->nOp>0 );
7123 /* If the p5 flag is clear, then recursive invocation of triggers is
7124 ** disabled for backwards compatibility (p5 is set if this sub-program
7125 ** is really a trigger, not a foreign key action, and the flag set
7126 ** and cleared by the "PRAGMA recursive_triggers" command is clear).
7128 ** It is recursive invocation of triggers, at the SQL level, that is
7129 ** disabled. In some cases a single trigger may generate more than one
7130 ** SubProgram (if the trigger may be executed with more than one different
7131 ** ON CONFLICT algorithm). SubProgram structures associated with a
7132 ** single trigger all have the same value for the SubProgram.token
7133 ** variable. */
7134 if( pOp->p5 ){
7135 t = pProgram->token;
7136 for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
7137 if( pFrame ) break;
7140 if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
7141 rc = SQLITE_ERROR;
7142 sqlite3VdbeError(p, "too many levels of trigger recursion");
7143 goto abort_due_to_error;
7146 /* Register pRt is used to store the memory required to save the state
7147 ** of the current program, and the memory required at runtime to execute
7148 ** the trigger program. If this trigger has been fired before, then pRt
7149 ** is already allocated. Otherwise, it must be initialized. */
7150 if( (pRt->flags&MEM_Blob)==0 ){
7151 /* SubProgram.nMem is set to the number of memory cells used by the
7152 ** program stored in SubProgram.aOp. As well as these, one memory
7153 ** cell is required for each cursor used by the program. Set local
7154 ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
7156 nMem = pProgram->nMem + pProgram->nCsr;
7157 assert( nMem>0 );
7158 if( pProgram->nCsr==0 ) nMem++;
7159 nByte = ROUND8(sizeof(VdbeFrame))
7160 + nMem * sizeof(Mem)
7161 + pProgram->nCsr * sizeof(VdbeCursor*)
7162 + (pProgram->nOp + 7)/8;
7163 pFrame = sqlite3DbMallocZero(db, nByte);
7164 if( !pFrame ){
7165 goto no_mem;
7167 sqlite3VdbeMemRelease(pRt);
7168 pRt->flags = MEM_Blob|MEM_Dyn;
7169 pRt->z = (char*)pFrame;
7170 pRt->n = nByte;
7171 pRt->xDel = sqlite3VdbeFrameMemDel;
7173 pFrame->v = p;
7174 pFrame->nChildMem = nMem;
7175 pFrame->nChildCsr = pProgram->nCsr;
7176 pFrame->pc = (int)(pOp - aOp);
7177 pFrame->aMem = p->aMem;
7178 pFrame->nMem = p->nMem;
7179 pFrame->apCsr = p->apCsr;
7180 pFrame->nCursor = p->nCursor;
7181 pFrame->aOp = p->aOp;
7182 pFrame->nOp = p->nOp;
7183 pFrame->token = pProgram->token;
7184 #ifdef SQLITE_DEBUG
7185 pFrame->iFrameMagic = SQLITE_FRAME_MAGIC;
7186 #endif
7188 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
7189 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
7190 pMem->flags = MEM_Undefined;
7191 pMem->db = db;
7193 }else{
7194 pFrame = (VdbeFrame*)pRt->z;
7195 assert( pRt->xDel==sqlite3VdbeFrameMemDel );
7196 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem
7197 || (pProgram->nCsr==0 && pProgram->nMem+1==pFrame->nChildMem) );
7198 assert( pProgram->nCsr==pFrame->nChildCsr );
7199 assert( (int)(pOp - aOp)==pFrame->pc );
7202 p->nFrame++;
7203 pFrame->pParent = p->pFrame;
7204 pFrame->lastRowid = db->lastRowid;
7205 pFrame->nChange = p->nChange;
7206 pFrame->nDbChange = p->db->nChange;
7207 assert( pFrame->pAuxData==0 );
7208 pFrame->pAuxData = p->pAuxData;
7209 p->pAuxData = 0;
7210 p->nChange = 0;
7211 p->pFrame = pFrame;
7212 p->aMem = aMem = VdbeFrameMem(pFrame);
7213 p->nMem = pFrame->nChildMem;
7214 p->nCursor = (u16)pFrame->nChildCsr;
7215 p->apCsr = (VdbeCursor **)&aMem[p->nMem];
7216 pFrame->aOnce = (u8*)&p->apCsr[pProgram->nCsr];
7217 memset(pFrame->aOnce, 0, (pProgram->nOp + 7)/8);
7218 p->aOp = aOp = pProgram->aOp;
7219 p->nOp = pProgram->nOp;
7220 #ifdef SQLITE_DEBUG
7221 /* Verify that second and subsequent executions of the same trigger do not
7222 ** try to reuse register values from the first use. */
7224 int i;
7225 for(i=0; i<p->nMem; i++){
7226 aMem[i].pScopyFrom = 0; /* Prevent false-positive AboutToChange() errs */
7227 MemSetTypeFlag(&aMem[i], MEM_Undefined); /* Fault if this reg is reused */
7230 #endif
7231 pOp = &aOp[-1];
7232 goto check_for_interrupt;
7235 /* Opcode: Param P1 P2 * * *
7237 ** This opcode is only ever present in sub-programs called via the
7238 ** OP_Program instruction. Copy a value currently stored in a memory
7239 ** cell of the calling (parent) frame to cell P2 in the current frames
7240 ** address space. This is used by trigger programs to access the new.*
7241 ** and old.* values.
7243 ** The address of the cell in the parent frame is determined by adding
7244 ** the value of the P1 argument to the value of the P1 argument to the
7245 ** calling OP_Program instruction.
7247 case OP_Param: { /* out2 */
7248 VdbeFrame *pFrame;
7249 Mem *pIn;
7250 pOut = out2Prerelease(p, pOp);
7251 pFrame = p->pFrame;
7252 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];
7253 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
7254 break;
7257 #endif /* #ifndef SQLITE_OMIT_TRIGGER */
7259 #ifndef SQLITE_OMIT_FOREIGN_KEY
7260 /* Opcode: FkCounter P1 P2 * * *
7261 ** Synopsis: fkctr[P1]+=P2
7263 ** Increment a "constraint counter" by P2 (P2 may be negative or positive).
7264 ** If P1 is non-zero, the database constraint counter is incremented
7265 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the
7266 ** statement counter is incremented (immediate foreign key constraints).
7268 case OP_FkCounter: {
7269 if( db->flags & SQLITE_DeferFKs ){
7270 db->nDeferredImmCons += pOp->p2;
7271 }else if( pOp->p1 ){
7272 db->nDeferredCons += pOp->p2;
7273 }else{
7274 p->nFkConstraint += pOp->p2;
7276 break;
7279 /* Opcode: FkIfZero P1 P2 * * *
7280 ** Synopsis: if fkctr[P1]==0 goto P2
7282 ** This opcode tests if a foreign key constraint-counter is currently zero.
7283 ** If so, jump to instruction P2. Otherwise, fall through to the next
7284 ** instruction.
7286 ** If P1 is non-zero, then the jump is taken if the database constraint-counter
7287 ** is zero (the one that counts deferred constraint violations). If P1 is
7288 ** zero, the jump is taken if the statement constraint-counter is zero
7289 ** (immediate foreign key constraint violations).
7291 case OP_FkIfZero: { /* jump */
7292 if( pOp->p1 ){
7293 VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2);
7294 if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
7295 }else{
7296 VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2);
7297 if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
7299 break;
7301 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
7303 #ifndef SQLITE_OMIT_AUTOINCREMENT
7304 /* Opcode: MemMax P1 P2 * * *
7305 ** Synopsis: r[P1]=max(r[P1],r[P2])
7307 ** P1 is a register in the root frame of this VM (the root frame is
7308 ** different from the current frame if this instruction is being executed
7309 ** within a sub-program). Set the value of register P1 to the maximum of
7310 ** its current value and the value in register P2.
7312 ** This instruction throws an error if the memory cell is not initially
7313 ** an integer.
7315 case OP_MemMax: { /* in2 */
7316 VdbeFrame *pFrame;
7317 if( p->pFrame ){
7318 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
7319 pIn1 = &pFrame->aMem[pOp->p1];
7320 }else{
7321 pIn1 = &aMem[pOp->p1];
7323 assert( memIsValid(pIn1) );
7324 sqlite3VdbeMemIntegerify(pIn1);
7325 pIn2 = &aMem[pOp->p2];
7326 sqlite3VdbeMemIntegerify(pIn2);
7327 if( pIn1->u.i<pIn2->u.i){
7328 pIn1->u.i = pIn2->u.i;
7330 break;
7332 #endif /* SQLITE_OMIT_AUTOINCREMENT */
7334 /* Opcode: IfPos P1 P2 P3 * *
7335 ** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2
7337 ** Register P1 must contain an integer.
7338 ** If the value of register P1 is 1 or greater, subtract P3 from the
7339 ** value in P1 and jump to P2.
7341 ** If the initial value of register P1 is less than 1, then the
7342 ** value is unchanged and control passes through to the next instruction.
7344 case OP_IfPos: { /* jump, in1 */
7345 pIn1 = &aMem[pOp->p1];
7346 assert( pIn1->flags&MEM_Int );
7347 VdbeBranchTaken( pIn1->u.i>0, 2);
7348 if( pIn1->u.i>0 ){
7349 pIn1->u.i -= pOp->p3;
7350 goto jump_to_p2;
7352 break;
7355 /* Opcode: OffsetLimit P1 P2 P3 * *
7356 ** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1)
7358 ** This opcode performs a commonly used computation associated with
7359 ** LIMIT and OFFSET processing. r[P1] holds the limit counter. r[P3]
7360 ** holds the offset counter. The opcode computes the combined value
7361 ** of the LIMIT and OFFSET and stores that value in r[P2]. The r[P2]
7362 ** value computed is the total number of rows that will need to be
7363 ** visited in order to complete the query.
7365 ** If r[P3] is zero or negative, that means there is no OFFSET
7366 ** and r[P2] is set to be the value of the LIMIT, r[P1].
7368 ** if r[P1] is zero or negative, that means there is no LIMIT
7369 ** and r[P2] is set to -1.
7371 ** Otherwise, r[P2] is set to the sum of r[P1] and r[P3].
7373 case OP_OffsetLimit: { /* in1, out2, in3 */
7374 i64 x;
7375 pIn1 = &aMem[pOp->p1];
7376 pIn3 = &aMem[pOp->p3];
7377 pOut = out2Prerelease(p, pOp);
7378 assert( pIn1->flags & MEM_Int );
7379 assert( pIn3->flags & MEM_Int );
7380 x = pIn1->u.i;
7381 if( x<=0 || sqlite3AddInt64(&x, pIn3->u.i>0?pIn3->u.i:0) ){
7382 /* If the LIMIT is less than or equal to zero, loop forever. This
7383 ** is documented. But also, if the LIMIT+OFFSET exceeds 2^63 then
7384 ** also loop forever. This is undocumented. In fact, one could argue
7385 ** that the loop should terminate. But assuming 1 billion iterations
7386 ** per second (far exceeding the capabilities of any current hardware)
7387 ** it would take nearly 300 years to actually reach the limit. So
7388 ** looping forever is a reasonable approximation. */
7389 pOut->u.i = -1;
7390 }else{
7391 pOut->u.i = x;
7393 break;
7396 /* Opcode: IfNotZero P1 P2 * * *
7397 ** Synopsis: if r[P1]!=0 then r[P1]--, goto P2
7399 ** Register P1 must contain an integer. If the content of register P1 is
7400 ** initially greater than zero, then decrement the value in register P1.
7401 ** If it is non-zero (negative or positive) and then also jump to P2.
7402 ** If register P1 is initially zero, leave it unchanged and fall through.
7404 case OP_IfNotZero: { /* jump, in1 */
7405 pIn1 = &aMem[pOp->p1];
7406 assert( pIn1->flags&MEM_Int );
7407 VdbeBranchTaken(pIn1->u.i<0, 2);
7408 if( pIn1->u.i ){
7409 if( pIn1->u.i>0 ) pIn1->u.i--;
7410 goto jump_to_p2;
7412 break;
7415 /* Opcode: DecrJumpZero P1 P2 * * *
7416 ** Synopsis: if (--r[P1])==0 goto P2
7418 ** Register P1 must hold an integer. Decrement the value in P1
7419 ** and jump to P2 if the new value is exactly zero.
7421 case OP_DecrJumpZero: { /* jump, in1 */
7422 pIn1 = &aMem[pOp->p1];
7423 assert( pIn1->flags&MEM_Int );
7424 if( pIn1->u.i>SMALLEST_INT64 ) pIn1->u.i--;
7425 VdbeBranchTaken(pIn1->u.i==0, 2);
7426 if( pIn1->u.i==0 ) goto jump_to_p2;
7427 break;
7431 /* Opcode: AggStep * P2 P3 P4 P5
7432 ** Synopsis: accum=r[P3] step(r[P2@P5])
7434 ** Execute the xStep function for an aggregate.
7435 ** The function has P5 arguments. P4 is a pointer to the
7436 ** FuncDef structure that specifies the function. Register P3 is the
7437 ** accumulator.
7439 ** The P5 arguments are taken from register P2 and its
7440 ** successors.
7442 /* Opcode: AggInverse * P2 P3 P4 P5
7443 ** Synopsis: accum=r[P3] inverse(r[P2@P5])
7445 ** Execute the xInverse function for an aggregate.
7446 ** The function has P5 arguments. P4 is a pointer to the
7447 ** FuncDef structure that specifies the function. Register P3 is the
7448 ** accumulator.
7450 ** The P5 arguments are taken from register P2 and its
7451 ** successors.
7453 /* Opcode: AggStep1 P1 P2 P3 P4 P5
7454 ** Synopsis: accum=r[P3] step(r[P2@P5])
7456 ** Execute the xStep (if P1==0) or xInverse (if P1!=0) function for an
7457 ** aggregate. The function has P5 arguments. P4 is a pointer to the
7458 ** FuncDef structure that specifies the function. Register P3 is the
7459 ** accumulator.
7461 ** The P5 arguments are taken from register P2 and its
7462 ** successors.
7464 ** This opcode is initially coded as OP_AggStep0. On first evaluation,
7465 ** the FuncDef stored in P4 is converted into an sqlite3_context and
7466 ** the opcode is changed. In this way, the initialization of the
7467 ** sqlite3_context only happens once, instead of on each call to the
7468 ** step function.
7470 case OP_AggInverse:
7471 case OP_AggStep: {
7472 int n;
7473 sqlite3_context *pCtx;
7475 assert( pOp->p4type==P4_FUNCDEF );
7476 n = pOp->p5;
7477 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
7478 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) );
7479 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
7480 pCtx = sqlite3DbMallocRawNN(db, n*sizeof(sqlite3_value*) +
7481 (sizeof(pCtx[0]) + sizeof(Mem) - sizeof(sqlite3_value*)));
7482 if( pCtx==0 ) goto no_mem;
7483 pCtx->pMem = 0;
7484 pCtx->pOut = (Mem*)&(pCtx->argv[n]);
7485 sqlite3VdbeMemInit(pCtx->pOut, db, MEM_Null);
7486 pCtx->pFunc = pOp->p4.pFunc;
7487 pCtx->iOp = (int)(pOp - aOp);
7488 pCtx->pVdbe = p;
7489 pCtx->skipFlag = 0;
7490 pCtx->isError = 0;
7491 pCtx->enc = encoding;
7492 pCtx->argc = n;
7493 pOp->p4type = P4_FUNCCTX;
7494 pOp->p4.pCtx = pCtx;
7496 /* OP_AggInverse must have P1==1 and OP_AggStep must have P1==0 */
7497 assert( pOp->p1==(pOp->opcode==OP_AggInverse) );
7499 pOp->opcode = OP_AggStep1;
7500 /* Fall through into OP_AggStep */
7501 /* no break */ deliberate_fall_through
7503 case OP_AggStep1: {
7504 int i;
7505 sqlite3_context *pCtx;
7506 Mem *pMem;
7508 assert( pOp->p4type==P4_FUNCCTX );
7509 pCtx = pOp->p4.pCtx;
7510 pMem = &aMem[pOp->p3];
7512 #ifdef SQLITE_DEBUG
7513 if( pOp->p1 ){
7514 /* This is an OP_AggInverse call. Verify that xStep has always
7515 ** been called at least once prior to any xInverse call. */
7516 assert( pMem->uTemp==0x1122e0e3 );
7517 }else{
7518 /* This is an OP_AggStep call. Mark it as such. */
7519 pMem->uTemp = 0x1122e0e3;
7521 #endif
7523 /* If this function is inside of a trigger, the register array in aMem[]
7524 ** might change from one evaluation to the next. The next block of code
7525 ** checks to see if the register array has changed, and if so it
7526 ** reinitializes the relavant parts of the sqlite3_context object */
7527 if( pCtx->pMem != pMem ){
7528 pCtx->pMem = pMem;
7529 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
7532 #ifdef SQLITE_DEBUG
7533 for(i=0; i<pCtx->argc; i++){
7534 assert( memIsValid(pCtx->argv[i]) );
7535 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
7537 #endif
7539 pMem->n++;
7540 assert( pCtx->pOut->flags==MEM_Null );
7541 assert( pCtx->isError==0 );
7542 assert( pCtx->skipFlag==0 );
7543 #ifndef SQLITE_OMIT_WINDOWFUNC
7544 if( pOp->p1 ){
7545 (pCtx->pFunc->xInverse)(pCtx,pCtx->argc,pCtx->argv);
7546 }else
7547 #endif
7548 (pCtx->pFunc->xSFunc)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */
7550 if( pCtx->isError ){
7551 if( pCtx->isError>0 ){
7552 sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut));
7553 rc = pCtx->isError;
7555 if( pCtx->skipFlag ){
7556 assert( pOp[-1].opcode==OP_CollSeq );
7557 i = pOp[-1].p1;
7558 if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1);
7559 pCtx->skipFlag = 0;
7561 sqlite3VdbeMemRelease(pCtx->pOut);
7562 pCtx->pOut->flags = MEM_Null;
7563 pCtx->isError = 0;
7564 if( rc ) goto abort_due_to_error;
7566 assert( pCtx->pOut->flags==MEM_Null );
7567 assert( pCtx->skipFlag==0 );
7568 break;
7571 /* Opcode: AggFinal P1 P2 * P4 *
7572 ** Synopsis: accum=r[P1] N=P2
7574 ** P1 is the memory location that is the accumulator for an aggregate
7575 ** or window function. Execute the finalizer function
7576 ** for an aggregate and store the result in P1.
7578 ** P2 is the number of arguments that the step function takes and
7579 ** P4 is a pointer to the FuncDef for this function. The P2
7580 ** argument is not used by this opcode. It is only there to disambiguate
7581 ** functions that can take varying numbers of arguments. The
7582 ** P4 argument is only needed for the case where
7583 ** the step function was not previously called.
7585 /* Opcode: AggValue * P2 P3 P4 *
7586 ** Synopsis: r[P3]=value N=P2
7588 ** Invoke the xValue() function and store the result in register P3.
7590 ** P2 is the number of arguments that the step function takes and
7591 ** P4 is a pointer to the FuncDef for this function. The P2
7592 ** argument is not used by this opcode. It is only there to disambiguate
7593 ** functions that can take varying numbers of arguments. The
7594 ** P4 argument is only needed for the case where
7595 ** the step function was not previously called.
7597 case OP_AggValue:
7598 case OP_AggFinal: {
7599 Mem *pMem;
7600 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
7601 assert( pOp->p3==0 || pOp->opcode==OP_AggValue );
7602 pMem = &aMem[pOp->p1];
7603 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
7604 #ifndef SQLITE_OMIT_WINDOWFUNC
7605 if( pOp->p3 ){
7606 memAboutToChange(p, &aMem[pOp->p3]);
7607 rc = sqlite3VdbeMemAggValue(pMem, &aMem[pOp->p3], pOp->p4.pFunc);
7608 pMem = &aMem[pOp->p3];
7609 }else
7610 #endif
7612 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
7615 if( rc ){
7616 sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem));
7617 goto abort_due_to_error;
7619 sqlite3VdbeChangeEncoding(pMem, encoding);
7620 UPDATE_MAX_BLOBSIZE(pMem);
7621 break;
7624 #ifndef SQLITE_OMIT_WAL
7625 /* Opcode: Checkpoint P1 P2 P3 * *
7627 ** Checkpoint database P1. This is a no-op if P1 is not currently in
7628 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL,
7629 ** RESTART, or TRUNCATE. Write 1 or 0 into mem[P3] if the checkpoint returns
7630 ** SQLITE_BUSY or not, respectively. Write the number of pages in the
7631 ** WAL after the checkpoint into mem[P3+1] and the number of pages
7632 ** in the WAL that have been checkpointed after the checkpoint
7633 ** completes into mem[P3+2]. However on an error, mem[P3+1] and
7634 ** mem[P3+2] are initialized to -1.
7636 case OP_Checkpoint: {
7637 int i; /* Loop counter */
7638 int aRes[3]; /* Results */
7639 Mem *pMem; /* Write results here */
7641 assert( p->readOnly==0 );
7642 aRes[0] = 0;
7643 aRes[1] = aRes[2] = -1;
7644 assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
7645 || pOp->p2==SQLITE_CHECKPOINT_FULL
7646 || pOp->p2==SQLITE_CHECKPOINT_RESTART
7647 || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE
7649 rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
7650 if( rc ){
7651 if( rc!=SQLITE_BUSY ) goto abort_due_to_error;
7652 rc = SQLITE_OK;
7653 aRes[0] = 1;
7655 for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){
7656 sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]);
7658 break;
7660 #endif
7662 #ifndef SQLITE_OMIT_PRAGMA
7663 /* Opcode: JournalMode P1 P2 P3 * *
7665 ** Change the journal mode of database P1 to P3. P3 must be one of the
7666 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
7667 ** modes (delete, truncate, persist, off and memory), this is a simple
7668 ** operation. No IO is required.
7670 ** If changing into or out of WAL mode the procedure is more complicated.
7672 ** Write a string containing the final journal-mode to register P2.
7674 case OP_JournalMode: { /* out2 */
7675 Btree *pBt; /* Btree to change journal mode of */
7676 Pager *pPager; /* Pager associated with pBt */
7677 int eNew; /* New journal mode */
7678 int eOld; /* The old journal mode */
7679 #ifndef SQLITE_OMIT_WAL
7680 const char *zFilename; /* Name of database file for pPager */
7681 #endif
7683 pOut = out2Prerelease(p, pOp);
7684 eNew = pOp->p3;
7685 assert( eNew==PAGER_JOURNALMODE_DELETE
7686 || eNew==PAGER_JOURNALMODE_TRUNCATE
7687 || eNew==PAGER_JOURNALMODE_PERSIST
7688 || eNew==PAGER_JOURNALMODE_OFF
7689 || eNew==PAGER_JOURNALMODE_MEMORY
7690 || eNew==PAGER_JOURNALMODE_WAL
7691 || eNew==PAGER_JOURNALMODE_QUERY
7693 assert( pOp->p1>=0 && pOp->p1<db->nDb );
7694 assert( p->readOnly==0 );
7696 pBt = db->aDb[pOp->p1].pBt;
7697 pPager = sqlite3BtreePager(pBt);
7698 eOld = sqlite3PagerGetJournalMode(pPager);
7699 if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
7700 assert( sqlite3BtreeHoldsMutex(pBt) );
7701 if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;
7703 #ifndef SQLITE_OMIT_WAL
7704 zFilename = sqlite3PagerFilename(pPager, 1);
7706 /* Do not allow a transition to journal_mode=WAL for a database
7707 ** in temporary storage or if the VFS does not support shared memory
7709 if( eNew==PAGER_JOURNALMODE_WAL
7710 && (sqlite3Strlen30(zFilename)==0 /* Temp file */
7711 || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */
7713 eNew = eOld;
7716 if( (eNew!=eOld)
7717 && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
7719 if( !db->autoCommit || db->nVdbeRead>1 ){
7720 rc = SQLITE_ERROR;
7721 sqlite3VdbeError(p,
7722 "cannot change %s wal mode from within a transaction",
7723 (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
7725 goto abort_due_to_error;
7726 }else{
7728 if( eOld==PAGER_JOURNALMODE_WAL ){
7729 /* If leaving WAL mode, close the log file. If successful, the call
7730 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
7731 ** file. An EXCLUSIVE lock may still be held on the database file
7732 ** after a successful return.
7734 rc = sqlite3PagerCloseWal(pPager, db);
7735 if( rc==SQLITE_OK ){
7736 sqlite3PagerSetJournalMode(pPager, eNew);
7738 }else if( eOld==PAGER_JOURNALMODE_MEMORY ){
7739 /* Cannot transition directly from MEMORY to WAL. Use mode OFF
7740 ** as an intermediate */
7741 sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF);
7744 /* Open a transaction on the database file. Regardless of the journal
7745 ** mode, this transaction always uses a rollback journal.
7747 assert( sqlite3BtreeTxnState(pBt)!=SQLITE_TXN_WRITE );
7748 if( rc==SQLITE_OK ){
7749 rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
7753 #endif /* ifndef SQLITE_OMIT_WAL */
7755 if( rc ) eNew = eOld;
7756 eNew = sqlite3PagerSetJournalMode(pPager, eNew);
7758 pOut->flags = MEM_Str|MEM_Static|MEM_Term;
7759 pOut->z = (char *)sqlite3JournalModename(eNew);
7760 pOut->n = sqlite3Strlen30(pOut->z);
7761 pOut->enc = SQLITE_UTF8;
7762 sqlite3VdbeChangeEncoding(pOut, encoding);
7763 if( rc ) goto abort_due_to_error;
7764 break;
7766 #endif /* SQLITE_OMIT_PRAGMA */
7768 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
7769 /* Opcode: Vacuum P1 P2 * * *
7771 ** Vacuum the entire database P1. P1 is 0 for "main", and 2 or more
7772 ** for an attached database. The "temp" database may not be vacuumed.
7774 ** If P2 is not zero, then it is a register holding a string which is
7775 ** the file into which the result of vacuum should be written. When
7776 ** P2 is zero, the vacuum overwrites the original database.
7778 case OP_Vacuum: {
7779 assert( p->readOnly==0 );
7780 rc = sqlite3RunVacuum(&p->zErrMsg, db, pOp->p1,
7781 pOp->p2 ? &aMem[pOp->p2] : 0);
7782 if( rc ) goto abort_due_to_error;
7783 break;
7785 #endif
7787 #if !defined(SQLITE_OMIT_AUTOVACUUM)
7788 /* Opcode: IncrVacuum P1 P2 * * *
7790 ** Perform a single step of the incremental vacuum procedure on
7791 ** the P1 database. If the vacuum has finished, jump to instruction
7792 ** P2. Otherwise, fall through to the next instruction.
7794 case OP_IncrVacuum: { /* jump */
7795 Btree *pBt;
7797 assert( pOp->p1>=0 && pOp->p1<db->nDb );
7798 assert( DbMaskTest(p->btreeMask, pOp->p1) );
7799 assert( p->readOnly==0 );
7800 pBt = db->aDb[pOp->p1].pBt;
7801 rc = sqlite3BtreeIncrVacuum(pBt);
7802 VdbeBranchTaken(rc==SQLITE_DONE,2);
7803 if( rc ){
7804 if( rc!=SQLITE_DONE ) goto abort_due_to_error;
7805 rc = SQLITE_OK;
7806 goto jump_to_p2;
7808 break;
7810 #endif
7812 /* Opcode: Expire P1 P2 * * *
7814 ** Cause precompiled statements to expire. When an expired statement
7815 ** is executed using sqlite3_step() it will either automatically
7816 ** reprepare itself (if it was originally created using sqlite3_prepare_v2())
7817 ** or it will fail with SQLITE_SCHEMA.
7819 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
7820 ** then only the currently executing statement is expired.
7822 ** If P2 is 0, then SQL statements are expired immediately. If P2 is 1,
7823 ** then running SQL statements are allowed to continue to run to completion.
7824 ** The P2==1 case occurs when a CREATE INDEX or similar schema change happens
7825 ** that might help the statement run faster but which does not affect the
7826 ** correctness of operation.
7828 case OP_Expire: {
7829 assert( pOp->p2==0 || pOp->p2==1 );
7830 if( !pOp->p1 ){
7831 sqlite3ExpirePreparedStatements(db, pOp->p2);
7832 }else{
7833 p->expired = pOp->p2+1;
7835 break;
7838 /* Opcode: CursorLock P1 * * * *
7840 ** Lock the btree to which cursor P1 is pointing so that the btree cannot be
7841 ** written by an other cursor.
7843 case OP_CursorLock: {
7844 VdbeCursor *pC;
7845 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
7846 pC = p->apCsr[pOp->p1];
7847 assert( pC!=0 );
7848 assert( pC->eCurType==CURTYPE_BTREE );
7849 sqlite3BtreeCursorPin(pC->uc.pCursor);
7850 break;
7853 /* Opcode: CursorUnlock P1 * * * *
7855 ** Unlock the btree to which cursor P1 is pointing so that it can be
7856 ** written by other cursors.
7858 case OP_CursorUnlock: {
7859 VdbeCursor *pC;
7860 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
7861 pC = p->apCsr[pOp->p1];
7862 assert( pC!=0 );
7863 assert( pC->eCurType==CURTYPE_BTREE );
7864 sqlite3BtreeCursorUnpin(pC->uc.pCursor);
7865 break;
7868 #ifndef SQLITE_OMIT_SHARED_CACHE
7869 /* Opcode: TableLock P1 P2 P3 P4 *
7870 ** Synopsis: iDb=P1 root=P2 write=P3
7872 ** Obtain a lock on a particular table. This instruction is only used when
7873 ** the shared-cache feature is enabled.
7875 ** P1 is the index of the database in sqlite3.aDb[] of the database
7876 ** on which the lock is acquired. A readlock is obtained if P3==0 or
7877 ** a write lock if P3==1.
7879 ** P2 contains the root-page of the table to lock.
7881 ** P4 contains a pointer to the name of the table being locked. This is only
7882 ** used to generate an error message if the lock cannot be obtained.
7884 case OP_TableLock: {
7885 u8 isWriteLock = (u8)pOp->p3;
7886 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommit) ){
7887 int p1 = pOp->p1;
7888 assert( p1>=0 && p1<db->nDb );
7889 assert( DbMaskTest(p->btreeMask, p1) );
7890 assert( isWriteLock==0 || isWriteLock==1 );
7891 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
7892 if( rc ){
7893 if( (rc&0xFF)==SQLITE_LOCKED ){
7894 const char *z = pOp->p4.z;
7895 sqlite3VdbeError(p, "database table is locked: %s", z);
7897 goto abort_due_to_error;
7900 break;
7902 #endif /* SQLITE_OMIT_SHARED_CACHE */
7904 #ifndef SQLITE_OMIT_VIRTUALTABLE
7905 /* Opcode: VBegin * * * P4 *
7907 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
7908 ** xBegin method for that table.
7910 ** Also, whether or not P4 is set, check that this is not being called from
7911 ** within a callback to a virtual table xSync() method. If it is, the error
7912 ** code will be set to SQLITE_LOCKED.
7914 case OP_VBegin: {
7915 VTable *pVTab;
7916 pVTab = pOp->p4.pVtab;
7917 rc = sqlite3VtabBegin(db, pVTab);
7918 if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab);
7919 if( rc ) goto abort_due_to_error;
7920 break;
7922 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7924 #ifndef SQLITE_OMIT_VIRTUALTABLE
7925 /* Opcode: VCreate P1 P2 * * *
7927 ** P2 is a register that holds the name of a virtual table in database
7928 ** P1. Call the xCreate method for that table.
7930 case OP_VCreate: {
7931 Mem sMem; /* For storing the record being decoded */
7932 const char *zTab; /* Name of the virtual table */
7934 memset(&sMem, 0, sizeof(sMem));
7935 sMem.db = db;
7936 /* Because P2 is always a static string, it is impossible for the
7937 ** sqlite3VdbeMemCopy() to fail */
7938 assert( (aMem[pOp->p2].flags & MEM_Str)!=0 );
7939 assert( (aMem[pOp->p2].flags & MEM_Static)!=0 );
7940 rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]);
7941 assert( rc==SQLITE_OK );
7942 zTab = (const char*)sqlite3_value_text(&sMem);
7943 assert( zTab || db->mallocFailed );
7944 if( zTab ){
7945 rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg);
7947 sqlite3VdbeMemRelease(&sMem);
7948 if( rc ) goto abort_due_to_error;
7949 break;
7951 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7953 #ifndef SQLITE_OMIT_VIRTUALTABLE
7954 /* Opcode: VDestroy P1 * * P4 *
7956 ** P4 is the name of a virtual table in database P1. Call the xDestroy method
7957 ** of that table.
7959 case OP_VDestroy: {
7960 db->nVDestroy++;
7961 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
7962 db->nVDestroy--;
7963 assert( p->errorAction==OE_Abort && p->usesStmtJournal );
7964 if( rc ) goto abort_due_to_error;
7965 break;
7967 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7969 #ifndef SQLITE_OMIT_VIRTUALTABLE
7970 /* Opcode: VOpen P1 * * P4 *
7972 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
7973 ** P1 is a cursor number. This opcode opens a cursor to the virtual
7974 ** table and stores that cursor in P1.
7976 case OP_VOpen: { /* ncycle */
7977 VdbeCursor *pCur;
7978 sqlite3_vtab_cursor *pVCur;
7979 sqlite3_vtab *pVtab;
7980 const sqlite3_module *pModule;
7982 assert( p->bIsReader );
7983 pCur = 0;
7984 pVCur = 0;
7985 pVtab = pOp->p4.pVtab->pVtab;
7986 if( pVtab==0 || NEVER(pVtab->pModule==0) ){
7987 rc = SQLITE_LOCKED;
7988 goto abort_due_to_error;
7990 pModule = pVtab->pModule;
7991 rc = pModule->xOpen(pVtab, &pVCur);
7992 sqlite3VtabImportErrmsg(p, pVtab);
7993 if( rc ) goto abort_due_to_error;
7995 /* Initialize sqlite3_vtab_cursor base class */
7996 pVCur->pVtab = pVtab;
7998 /* Initialize vdbe cursor object */
7999 pCur = allocateCursor(p, pOp->p1, 0, CURTYPE_VTAB);
8000 if( pCur ){
8001 pCur->uc.pVCur = pVCur;
8002 pVtab->nRef++;
8003 }else{
8004 assert( db->mallocFailed );
8005 pModule->xClose(pVCur);
8006 goto no_mem;
8008 break;
8010 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8012 #ifndef SQLITE_OMIT_VIRTUALTABLE
8013 /* Opcode: VInitIn P1 P2 P3 * *
8014 ** Synopsis: r[P2]=ValueList(P1,P3)
8016 ** Set register P2 to be a pointer to a ValueList object for cursor P1
8017 ** with cache register P3 and output register P3+1. This ValueList object
8018 ** can be used as the first argument to sqlite3_vtab_in_first() and
8019 ** sqlite3_vtab_in_next() to extract all of the values stored in the P1
8020 ** cursor. Register P3 is used to hold the values returned by
8021 ** sqlite3_vtab_in_first() and sqlite3_vtab_in_next().
8023 case OP_VInitIn: { /* out2, ncycle */
8024 VdbeCursor *pC; /* The cursor containing the RHS values */
8025 ValueList *pRhs; /* New ValueList object to put in reg[P2] */
8027 pC = p->apCsr[pOp->p1];
8028 pRhs = sqlite3_malloc64( sizeof(*pRhs) );
8029 if( pRhs==0 ) goto no_mem;
8030 pRhs->pCsr = pC->uc.pCursor;
8031 pRhs->pOut = &aMem[pOp->p3];
8032 pOut = out2Prerelease(p, pOp);
8033 pOut->flags = MEM_Null;
8034 sqlite3VdbeMemSetPointer(pOut, pRhs, "ValueList", sqlite3VdbeValueListFree);
8035 break;
8037 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8040 #ifndef SQLITE_OMIT_VIRTUALTABLE
8041 /* Opcode: VFilter P1 P2 P3 P4 *
8042 ** Synopsis: iplan=r[P3] zplan='P4'
8044 ** P1 is a cursor opened using VOpen. P2 is an address to jump to if
8045 ** the filtered result set is empty.
8047 ** P4 is either NULL or a string that was generated by the xBestIndex
8048 ** method of the module. The interpretation of the P4 string is left
8049 ** to the module implementation.
8051 ** This opcode invokes the xFilter method on the virtual table specified
8052 ** by P1. The integer query plan parameter to xFilter is stored in register
8053 ** P3. Register P3+1 stores the argc parameter to be passed to the
8054 ** xFilter method. Registers P3+2..P3+1+argc are the argc
8055 ** additional parameters which are passed to
8056 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
8058 ** A jump is made to P2 if the result set after filtering would be empty.
8060 case OP_VFilter: { /* jump, ncycle */
8061 int nArg;
8062 int iQuery;
8063 const sqlite3_module *pModule;
8064 Mem *pQuery;
8065 Mem *pArgc;
8066 sqlite3_vtab_cursor *pVCur;
8067 sqlite3_vtab *pVtab;
8068 VdbeCursor *pCur;
8069 int res;
8070 int i;
8071 Mem **apArg;
8073 pQuery = &aMem[pOp->p3];
8074 pArgc = &pQuery[1];
8075 pCur = p->apCsr[pOp->p1];
8076 assert( memIsValid(pQuery) );
8077 REGISTER_TRACE(pOp->p3, pQuery);
8078 assert( pCur!=0 );
8079 assert( pCur->eCurType==CURTYPE_VTAB );
8080 pVCur = pCur->uc.pVCur;
8081 pVtab = pVCur->pVtab;
8082 pModule = pVtab->pModule;
8084 /* Grab the index number and argc parameters */
8085 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
8086 nArg = (int)pArgc->u.i;
8087 iQuery = (int)pQuery->u.i;
8089 /* Invoke the xFilter method */
8090 apArg = p->apArg;
8091 for(i = 0; i<nArg; i++){
8092 apArg[i] = &pArgc[i+1];
8094 rc = pModule->xFilter(pVCur, iQuery, pOp->p4.z, nArg, apArg);
8095 sqlite3VtabImportErrmsg(p, pVtab);
8096 if( rc ) goto abort_due_to_error;
8097 res = pModule->xEof(pVCur);
8098 pCur->nullRow = 0;
8099 VdbeBranchTaken(res!=0,2);
8100 if( res ) goto jump_to_p2;
8101 break;
8103 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8105 #ifndef SQLITE_OMIT_VIRTUALTABLE
8106 /* Opcode: VColumn P1 P2 P3 * P5
8107 ** Synopsis: r[P3]=vcolumn(P2)
8109 ** Store in register P3 the value of the P2-th column of
8110 ** the current row of the virtual-table of cursor P1.
8112 ** If the VColumn opcode is being used to fetch the value of
8113 ** an unchanging column during an UPDATE operation, then the P5
8114 ** value is OPFLAG_NOCHNG. This will cause the sqlite3_vtab_nochange()
8115 ** function to return true inside the xColumn method of the virtual
8116 ** table implementation. The P5 column might also contain other
8117 ** bits (OPFLAG_LENGTHARG or OPFLAG_TYPEOFARG) but those bits are
8118 ** unused by OP_VColumn.
8120 case OP_VColumn: { /* ncycle */
8121 sqlite3_vtab *pVtab;
8122 const sqlite3_module *pModule;
8123 Mem *pDest;
8124 sqlite3_context sContext;
8126 VdbeCursor *pCur = p->apCsr[pOp->p1];
8127 assert( pCur!=0 );
8128 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
8129 pDest = &aMem[pOp->p3];
8130 memAboutToChange(p, pDest);
8131 if( pCur->nullRow ){
8132 sqlite3VdbeMemSetNull(pDest);
8133 break;
8135 assert( pCur->eCurType==CURTYPE_VTAB );
8136 pVtab = pCur->uc.pVCur->pVtab;
8137 pModule = pVtab->pModule;
8138 assert( pModule->xColumn );
8139 memset(&sContext, 0, sizeof(sContext));
8140 sContext.pOut = pDest;
8141 sContext.enc = encoding;
8142 assert( pOp->p5==OPFLAG_NOCHNG || pOp->p5==0 );
8143 if( pOp->p5 & OPFLAG_NOCHNG ){
8144 sqlite3VdbeMemSetNull(pDest);
8145 pDest->flags = MEM_Null|MEM_Zero;
8146 pDest->u.nZero = 0;
8147 }else{
8148 MemSetTypeFlag(pDest, MEM_Null);
8150 rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2);
8151 sqlite3VtabImportErrmsg(p, pVtab);
8152 if( sContext.isError>0 ){
8153 sqlite3VdbeError(p, "%s", sqlite3_value_text(pDest));
8154 rc = sContext.isError;
8156 sqlite3VdbeChangeEncoding(pDest, encoding);
8157 REGISTER_TRACE(pOp->p3, pDest);
8158 UPDATE_MAX_BLOBSIZE(pDest);
8160 if( rc ) goto abort_due_to_error;
8161 break;
8163 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8165 #ifndef SQLITE_OMIT_VIRTUALTABLE
8166 /* Opcode: VNext P1 P2 * * *
8168 ** Advance virtual table P1 to the next row in its result set and
8169 ** jump to instruction P2. Or, if the virtual table has reached
8170 ** the end of its result set, then fall through to the next instruction.
8172 case OP_VNext: { /* jump, ncycle */
8173 sqlite3_vtab *pVtab;
8174 const sqlite3_module *pModule;
8175 int res;
8176 VdbeCursor *pCur;
8178 pCur = p->apCsr[pOp->p1];
8179 assert( pCur!=0 );
8180 assert( pCur->eCurType==CURTYPE_VTAB );
8181 if( pCur->nullRow ){
8182 break;
8184 pVtab = pCur->uc.pVCur->pVtab;
8185 pModule = pVtab->pModule;
8186 assert( pModule->xNext );
8188 /* Invoke the xNext() method of the module. There is no way for the
8189 ** underlying implementation to return an error if one occurs during
8190 ** xNext(). Instead, if an error occurs, true is returned (indicating that
8191 ** data is available) and the error code returned when xColumn or
8192 ** some other method is next invoked on the save virtual table cursor.
8194 rc = pModule->xNext(pCur->uc.pVCur);
8195 sqlite3VtabImportErrmsg(p, pVtab);
8196 if( rc ) goto abort_due_to_error;
8197 res = pModule->xEof(pCur->uc.pVCur);
8198 VdbeBranchTaken(!res,2);
8199 if( !res ){
8200 /* If there is data, jump to P2 */
8201 goto jump_to_p2_and_check_for_interrupt;
8203 goto check_for_interrupt;
8205 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8207 #ifndef SQLITE_OMIT_VIRTUALTABLE
8208 /* Opcode: VRename P1 * * P4 *
8210 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
8211 ** This opcode invokes the corresponding xRename method. The value
8212 ** in register P1 is passed as the zName argument to the xRename method.
8214 case OP_VRename: {
8215 sqlite3_vtab *pVtab;
8216 Mem *pName;
8217 int isLegacy;
8219 isLegacy = (db->flags & SQLITE_LegacyAlter);
8220 db->flags |= SQLITE_LegacyAlter;
8221 pVtab = pOp->p4.pVtab->pVtab;
8222 pName = &aMem[pOp->p1];
8223 assert( pVtab->pModule->xRename );
8224 assert( memIsValid(pName) );
8225 assert( p->readOnly==0 );
8226 REGISTER_TRACE(pOp->p1, pName);
8227 assert( pName->flags & MEM_Str );
8228 testcase( pName->enc==SQLITE_UTF8 );
8229 testcase( pName->enc==SQLITE_UTF16BE );
8230 testcase( pName->enc==SQLITE_UTF16LE );
8231 rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8);
8232 if( rc ) goto abort_due_to_error;
8233 rc = pVtab->pModule->xRename(pVtab, pName->z);
8234 if( isLegacy==0 ) db->flags &= ~(u64)SQLITE_LegacyAlter;
8235 sqlite3VtabImportErrmsg(p, pVtab);
8236 p->expired = 0;
8237 if( rc ) goto abort_due_to_error;
8238 break;
8240 #endif
8242 #ifndef SQLITE_OMIT_VIRTUALTABLE
8243 /* Opcode: VUpdate P1 P2 P3 P4 P5
8244 ** Synopsis: data=r[P3@P2]
8246 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
8247 ** This opcode invokes the corresponding xUpdate method. P2 values
8248 ** are contiguous memory cells starting at P3 to pass to the xUpdate
8249 ** invocation. The value in register (P3+P2-1) corresponds to the
8250 ** p2th element of the argv array passed to xUpdate.
8252 ** The xUpdate method will do a DELETE or an INSERT or both.
8253 ** The argv[0] element (which corresponds to memory cell P3)
8254 ** is the rowid of a row to delete. If argv[0] is NULL then no
8255 ** deletion occurs. The argv[1] element is the rowid of the new
8256 ** row. This can be NULL to have the virtual table select the new
8257 ** rowid for itself. The subsequent elements in the array are
8258 ** the values of columns in the new row.
8260 ** If P2==1 then no insert is performed. argv[0] is the rowid of
8261 ** a row to delete.
8263 ** P1 is a boolean flag. If it is set to true and the xUpdate call
8264 ** is successful, then the value returned by sqlite3_last_insert_rowid()
8265 ** is set to the value of the rowid for the row just inserted.
8267 ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to
8268 ** apply in the case of a constraint failure on an insert or update.
8270 case OP_VUpdate: {
8271 sqlite3_vtab *pVtab;
8272 const sqlite3_module *pModule;
8273 int nArg;
8274 int i;
8275 sqlite_int64 rowid = 0;
8276 Mem **apArg;
8277 Mem *pX;
8279 assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback
8280 || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
8282 assert( p->readOnly==0 );
8283 if( db->mallocFailed ) goto no_mem;
8284 sqlite3VdbeIncrWriteCounter(p, 0);
8285 pVtab = pOp->p4.pVtab->pVtab;
8286 if( pVtab==0 || NEVER(pVtab->pModule==0) ){
8287 rc = SQLITE_LOCKED;
8288 goto abort_due_to_error;
8290 pModule = pVtab->pModule;
8291 nArg = pOp->p2;
8292 assert( pOp->p4type==P4_VTAB );
8293 if( ALWAYS(pModule->xUpdate) ){
8294 u8 vtabOnConflict = db->vtabOnConflict;
8295 apArg = p->apArg;
8296 pX = &aMem[pOp->p3];
8297 for(i=0; i<nArg; i++){
8298 assert( memIsValid(pX) );
8299 memAboutToChange(p, pX);
8300 apArg[i] = pX;
8301 pX++;
8303 db->vtabOnConflict = pOp->p5;
8304 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
8305 db->vtabOnConflict = vtabOnConflict;
8306 sqlite3VtabImportErrmsg(p, pVtab);
8307 if( rc==SQLITE_OK && pOp->p1 ){
8308 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
8309 db->lastRowid = rowid;
8311 if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
8312 if( pOp->p5==OE_Ignore ){
8313 rc = SQLITE_OK;
8314 }else{
8315 p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5);
8317 }else{
8318 p->nChange++;
8320 if( rc ) goto abort_due_to_error;
8322 break;
8324 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8326 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
8327 /* Opcode: Pagecount P1 P2 * * *
8329 ** Write the current number of pages in database P1 to memory cell P2.
8331 case OP_Pagecount: { /* out2 */
8332 pOut = out2Prerelease(p, pOp);
8333 pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
8334 break;
8336 #endif
8339 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
8340 /* Opcode: MaxPgcnt P1 P2 P3 * *
8342 ** Try to set the maximum page count for database P1 to the value in P3.
8343 ** Do not let the maximum page count fall below the current page count and
8344 ** do not change the maximum page count value if P3==0.
8346 ** Store the maximum page count after the change in register P2.
8348 case OP_MaxPgcnt: { /* out2 */
8349 unsigned int newMax;
8350 Btree *pBt;
8352 pOut = out2Prerelease(p, pOp);
8353 pBt = db->aDb[pOp->p1].pBt;
8354 newMax = 0;
8355 if( pOp->p3 ){
8356 newMax = sqlite3BtreeLastPage(pBt);
8357 if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
8359 pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
8360 break;
8362 #endif
8364 /* Opcode: Function P1 P2 P3 P4 *
8365 ** Synopsis: r[P3]=func(r[P2@NP])
8367 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that
8368 ** contains a pointer to the function to be run) with arguments taken
8369 ** from register P2 and successors. The number of arguments is in
8370 ** the sqlite3_context object that P4 points to.
8371 ** The result of the function is stored
8372 ** in register P3. Register P3 must not be one of the function inputs.
8374 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
8375 ** function was determined to be constant at compile time. If the first
8376 ** argument was constant then bit 0 of P1 is set. This is used to determine
8377 ** whether meta data associated with a user function argument using the
8378 ** sqlite3_set_auxdata() API may be safely retained until the next
8379 ** invocation of this opcode.
8381 ** See also: AggStep, AggFinal, PureFunc
8383 /* Opcode: PureFunc P1 P2 P3 P4 *
8384 ** Synopsis: r[P3]=func(r[P2@NP])
8386 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that
8387 ** contains a pointer to the function to be run) with arguments taken
8388 ** from register P2 and successors. The number of arguments is in
8389 ** the sqlite3_context object that P4 points to.
8390 ** The result of the function is stored
8391 ** in register P3. Register P3 must not be one of the function inputs.
8393 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
8394 ** function was determined to be constant at compile time. If the first
8395 ** argument was constant then bit 0 of P1 is set. This is used to determine
8396 ** whether meta data associated with a user function argument using the
8397 ** sqlite3_set_auxdata() API may be safely retained until the next
8398 ** invocation of this opcode.
8400 ** This opcode works exactly like OP_Function. The only difference is in
8401 ** its name. This opcode is used in places where the function must be
8402 ** purely non-deterministic. Some built-in date/time functions can be
8403 ** either determinitic of non-deterministic, depending on their arguments.
8404 ** When those function are used in a non-deterministic way, they will check
8405 ** to see if they were called using OP_PureFunc instead of OP_Function, and
8406 ** if they were, they throw an error.
8408 ** See also: AggStep, AggFinal, Function
8410 case OP_PureFunc: /* group */
8411 case OP_Function: { /* group */
8412 int i;
8413 sqlite3_context *pCtx;
8415 assert( pOp->p4type==P4_FUNCCTX );
8416 pCtx = pOp->p4.pCtx;
8418 /* If this function is inside of a trigger, the register array in aMem[]
8419 ** might change from one evaluation to the next. The next block of code
8420 ** checks to see if the register array has changed, and if so it
8421 ** reinitializes the relavant parts of the sqlite3_context object */
8422 pOut = &aMem[pOp->p3];
8423 if( pCtx->pOut != pOut ){
8424 pCtx->pVdbe = p;
8425 pCtx->pOut = pOut;
8426 pCtx->enc = encoding;
8427 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
8429 assert( pCtx->pVdbe==p );
8431 memAboutToChange(p, pOut);
8432 #ifdef SQLITE_DEBUG
8433 for(i=0; i<pCtx->argc; i++){
8434 assert( memIsValid(pCtx->argv[i]) );
8435 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
8437 #endif
8438 MemSetTypeFlag(pOut, MEM_Null);
8439 assert( pCtx->isError==0 );
8440 (*pCtx->pFunc->xSFunc)(pCtx, pCtx->argc, pCtx->argv);/* IMP: R-24505-23230 */
8442 /* If the function returned an error, throw an exception */
8443 if( pCtx->isError ){
8444 if( pCtx->isError>0 ){
8445 sqlite3VdbeError(p, "%s", sqlite3_value_text(pOut));
8446 rc = pCtx->isError;
8448 sqlite3VdbeDeleteAuxData(db, &p->pAuxData, pCtx->iOp, pOp->p1);
8449 pCtx->isError = 0;
8450 if( rc ) goto abort_due_to_error;
8453 assert( (pOut->flags&MEM_Str)==0
8454 || pOut->enc==encoding
8455 || db->mallocFailed );
8456 assert( !sqlite3VdbeMemTooBig(pOut) );
8458 REGISTER_TRACE(pOp->p3, pOut);
8459 UPDATE_MAX_BLOBSIZE(pOut);
8460 break;
8463 /* Opcode: ClrSubtype P1 * * * *
8464 ** Synopsis: r[P1].subtype = 0
8466 ** Clear the subtype from register P1.
8468 case OP_ClrSubtype: { /* in1 */
8469 pIn1 = &aMem[pOp->p1];
8470 pIn1->flags &= ~MEM_Subtype;
8471 break;
8474 /* Opcode: FilterAdd P1 * P3 P4 *
8475 ** Synopsis: filter(P1) += key(P3@P4)
8477 ** Compute a hash on the P4 registers starting with r[P3] and
8478 ** add that hash to the bloom filter contained in r[P1].
8480 case OP_FilterAdd: {
8481 u64 h;
8483 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
8484 pIn1 = &aMem[pOp->p1];
8485 assert( pIn1->flags & MEM_Blob );
8486 assert( pIn1->n>0 );
8487 h = filterHash(aMem, pOp);
8488 #ifdef SQLITE_DEBUG
8489 if( db->flags&SQLITE_VdbeTrace ){
8490 int ii;
8491 for(ii=pOp->p3; ii<pOp->p3+pOp->p4.i; ii++){
8492 registerTrace(ii, &aMem[ii]);
8494 printf("hash: %llu modulo %d -> %u\n", h, pIn1->n, (int)(h%pIn1->n));
8496 #endif
8497 h %= pIn1->n;
8498 pIn1->z[h/8] |= 1<<(h&7);
8499 break;
8502 /* Opcode: Filter P1 P2 P3 P4 *
8503 ** Synopsis: if key(P3@P4) not in filter(P1) goto P2
8505 ** Compute a hash on the key contained in the P4 registers starting
8506 ** with r[P3]. Check to see if that hash is found in the
8507 ** bloom filter hosted by register P1. If it is not present then
8508 ** maybe jump to P2. Otherwise fall through.
8510 ** False negatives are harmless. It is always safe to fall through,
8511 ** even if the value is in the bloom filter. A false negative causes
8512 ** more CPU cycles to be used, but it should still yield the correct
8513 ** answer. However, an incorrect answer may well arise from a
8514 ** false positive - if the jump is taken when it should fall through.
8516 case OP_Filter: { /* jump */
8517 u64 h;
8519 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
8520 pIn1 = &aMem[pOp->p1];
8521 assert( (pIn1->flags & MEM_Blob)!=0 );
8522 assert( pIn1->n >= 1 );
8523 h = filterHash(aMem, pOp);
8524 #ifdef SQLITE_DEBUG
8525 if( db->flags&SQLITE_VdbeTrace ){
8526 int ii;
8527 for(ii=pOp->p3; ii<pOp->p3+pOp->p4.i; ii++){
8528 registerTrace(ii, &aMem[ii]);
8530 printf("hash: %llu modulo %d -> %u\n", h, pIn1->n, (int)(h%pIn1->n));
8532 #endif
8533 h %= pIn1->n;
8534 if( (pIn1->z[h/8] & (1<<(h&7)))==0 ){
8535 VdbeBranchTaken(1, 2);
8536 p->aCounter[SQLITE_STMTSTATUS_FILTER_HIT]++;
8537 goto jump_to_p2;
8538 }else{
8539 p->aCounter[SQLITE_STMTSTATUS_FILTER_MISS]++;
8540 VdbeBranchTaken(0, 2);
8542 break;
8545 /* Opcode: Trace P1 P2 * P4 *
8547 ** Write P4 on the statement trace output if statement tracing is
8548 ** enabled.
8550 ** Operand P1 must be 0x7fffffff and P2 must positive.
8552 /* Opcode: Init P1 P2 P3 P4 *
8553 ** Synopsis: Start at P2
8555 ** Programs contain a single instance of this opcode as the very first
8556 ** opcode.
8558 ** If tracing is enabled (by the sqlite3_trace()) interface, then
8559 ** the UTF-8 string contained in P4 is emitted on the trace callback.
8560 ** Or if P4 is blank, use the string returned by sqlite3_sql().
8562 ** If P2 is not zero, jump to instruction P2.
8564 ** Increment the value of P1 so that OP_Once opcodes will jump the
8565 ** first time they are evaluated for this run.
8567 ** If P3 is not zero, then it is an address to jump to if an SQLITE_CORRUPT
8568 ** error is encountered.
8570 case OP_Trace:
8571 case OP_Init: { /* jump */
8572 int i;
8573 #ifndef SQLITE_OMIT_TRACE
8574 char *zTrace;
8575 #endif
8577 /* If the P4 argument is not NULL, then it must be an SQL comment string.
8578 ** The "--" string is broken up to prevent false-positives with srcck1.c.
8580 ** This assert() provides evidence for:
8581 ** EVIDENCE-OF: R-50676-09860 The callback can compute the same text that
8582 ** would have been returned by the legacy sqlite3_trace() interface by
8583 ** using the X argument when X begins with "--" and invoking
8584 ** sqlite3_expanded_sql(P) otherwise.
8586 assert( pOp->p4.z==0 || strncmp(pOp->p4.z, "-" "- ", 3)==0 );
8588 /* OP_Init is always instruction 0 */
8589 assert( pOp==p->aOp || pOp->opcode==OP_Trace );
8591 #ifndef SQLITE_OMIT_TRACE
8592 if( (db->mTrace & (SQLITE_TRACE_STMT|SQLITE_TRACE_LEGACY))!=0
8593 && p->minWriteFileFormat!=254 /* tag-20220401a */
8594 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
8596 #ifndef SQLITE_OMIT_DEPRECATED
8597 if( db->mTrace & SQLITE_TRACE_LEGACY ){
8598 char *z = sqlite3VdbeExpandSql(p, zTrace);
8599 db->trace.xLegacy(db->pTraceArg, z);
8600 sqlite3_free(z);
8601 }else
8602 #endif
8603 if( db->nVdbeExec>1 ){
8604 char *z = sqlite3MPrintf(db, "-- %s", zTrace);
8605 (void)db->trace.xV2(SQLITE_TRACE_STMT, db->pTraceArg, p, z);
8606 sqlite3DbFree(db, z);
8607 }else{
8608 (void)db->trace.xV2(SQLITE_TRACE_STMT, db->pTraceArg, p, zTrace);
8611 #ifdef SQLITE_USE_FCNTL_TRACE
8612 zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql);
8613 if( zTrace ){
8614 int j;
8615 for(j=0; j<db->nDb; j++){
8616 if( DbMaskTest(p->btreeMask, j)==0 ) continue;
8617 sqlite3_file_control(db, db->aDb[j].zDbSName, SQLITE_FCNTL_TRACE, zTrace);
8620 #endif /* SQLITE_USE_FCNTL_TRACE */
8621 #ifdef SQLITE_DEBUG
8622 if( (db->flags & SQLITE_SqlTrace)!=0
8623 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
8625 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
8627 #endif /* SQLITE_DEBUG */
8628 #endif /* SQLITE_OMIT_TRACE */
8629 assert( pOp->p2>0 );
8630 if( pOp->p1>=sqlite3GlobalConfig.iOnceResetThreshold ){
8631 if( pOp->opcode==OP_Trace ) break;
8632 for(i=1; i<p->nOp; i++){
8633 if( p->aOp[i].opcode==OP_Once ) p->aOp[i].p1 = 0;
8635 pOp->p1 = 0;
8637 pOp->p1++;
8638 p->aCounter[SQLITE_STMTSTATUS_RUN]++;
8639 goto jump_to_p2;
8642 #ifdef SQLITE_ENABLE_CURSOR_HINTS
8643 /* Opcode: CursorHint P1 * * P4 *
8645 ** Provide a hint to cursor P1 that it only needs to return rows that
8646 ** satisfy the Expr in P4. TK_REGISTER terms in the P4 expression refer
8647 ** to values currently held in registers. TK_COLUMN terms in the P4
8648 ** expression refer to columns in the b-tree to which cursor P1 is pointing.
8650 case OP_CursorHint: {
8651 VdbeCursor *pC;
8653 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
8654 assert( pOp->p4type==P4_EXPR );
8655 pC = p->apCsr[pOp->p1];
8656 if( pC ){
8657 assert( pC->eCurType==CURTYPE_BTREE );
8658 sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE,
8659 pOp->p4.pExpr, aMem);
8661 break;
8663 #endif /* SQLITE_ENABLE_CURSOR_HINTS */
8665 #ifdef SQLITE_DEBUG
8666 /* Opcode: Abortable * * * * *
8668 ** Verify that an Abort can happen. Assert if an Abort at this point
8669 ** might cause database corruption. This opcode only appears in debugging
8670 ** builds.
8672 ** An Abort is safe if either there have been no writes, or if there is
8673 ** an active statement journal.
8675 case OP_Abortable: {
8676 sqlite3VdbeAssertAbortable(p);
8677 break;
8679 #endif
8681 #ifdef SQLITE_DEBUG
8682 /* Opcode: ReleaseReg P1 P2 P3 * P5
8683 ** Synopsis: release r[P1@P2] mask P3
8685 ** Release registers from service. Any content that was in the
8686 ** the registers is unreliable after this opcode completes.
8688 ** The registers released will be the P2 registers starting at P1,
8689 ** except if bit ii of P3 set, then do not release register P1+ii.
8690 ** In other words, P3 is a mask of registers to preserve.
8692 ** Releasing a register clears the Mem.pScopyFrom pointer. That means
8693 ** that if the content of the released register was set using OP_SCopy,
8694 ** a change to the value of the source register for the OP_SCopy will no longer
8695 ** generate an assertion fault in sqlite3VdbeMemAboutToChange().
8697 ** If P5 is set, then all released registers have their type set
8698 ** to MEM_Undefined so that any subsequent attempt to read the released
8699 ** register (before it is reinitialized) will generate an assertion fault.
8701 ** P5 ought to be set on every call to this opcode.
8702 ** However, there are places in the code generator will release registers
8703 ** before their are used, under the (valid) assumption that the registers
8704 ** will not be reallocated for some other purpose before they are used and
8705 ** hence are safe to release.
8707 ** This opcode is only available in testing and debugging builds. It is
8708 ** not generated for release builds. The purpose of this opcode is to help
8709 ** validate the generated bytecode. This opcode does not actually contribute
8710 ** to computing an answer.
8712 case OP_ReleaseReg: {
8713 Mem *pMem;
8714 int i;
8715 u32 constMask;
8716 assert( pOp->p1>0 );
8717 assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 );
8718 pMem = &aMem[pOp->p1];
8719 constMask = pOp->p3;
8720 for(i=0; i<pOp->p2; i++, pMem++){
8721 if( i>=32 || (constMask & MASKBIT32(i))==0 ){
8722 pMem->pScopyFrom = 0;
8723 if( i<32 && pOp->p5 ) MemSetTypeFlag(pMem, MEM_Undefined);
8726 break;
8728 #endif
8730 /* Opcode: Noop * * * * *
8732 ** Do nothing. This instruction is often useful as a jump
8733 ** destination.
8736 ** The magic Explain opcode are only inserted when explain==2 (which
8737 ** is to say when the EXPLAIN QUERY PLAN syntax is used.)
8738 ** This opcode records information from the optimizer. It is the
8739 ** the same as a no-op. This opcodesnever appears in a real VM program.
8741 default: { /* This is really OP_Noop, OP_Explain */
8742 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
8744 break;
8747 /*****************************************************************************
8748 ** The cases of the switch statement above this line should all be indented
8749 ** by 6 spaces. But the left-most 6 spaces have been removed to improve the
8750 ** readability. From this point on down, the normal indentation rules are
8751 ** restored.
8752 *****************************************************************************/
8755 #if defined(VDBE_PROFILE)
8756 *pnCycle += sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime();
8757 pnCycle = 0;
8758 #elif defined(SQLITE_ENABLE_STMT_SCANSTATUS)
8759 *pnCycle += sqlite3Hwtime();
8760 pnCycle = 0;
8761 #endif
8763 /* The following code adds nothing to the actual functionality
8764 ** of the program. It is only here for testing and debugging.
8765 ** On the other hand, it does burn CPU cycles every time through
8766 ** the evaluator loop. So we can leave it out when NDEBUG is defined.
8768 #ifndef NDEBUG
8769 assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] );
8771 #ifdef SQLITE_DEBUG
8772 if( db->flags & SQLITE_VdbeTrace ){
8773 u8 opProperty = sqlite3OpcodeProperty[pOrigOp->opcode];
8774 if( rc!=0 ) printf("rc=%d\n",rc);
8775 if( opProperty & (OPFLG_OUT2) ){
8776 registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]);
8778 if( opProperty & OPFLG_OUT3 ){
8779 registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]);
8781 if( opProperty==0xff ){
8782 /* Never happens. This code exists to avoid a harmless linkage
8783 ** warning aboud sqlite3VdbeRegisterDump() being defined but not
8784 ** used. */
8785 sqlite3VdbeRegisterDump(p);
8788 #endif /* SQLITE_DEBUG */
8789 #endif /* NDEBUG */
8790 } /* The end of the for(;;) loop the loops through opcodes */
8792 /* If we reach this point, it means that execution is finished with
8793 ** an error of some kind.
8795 abort_due_to_error:
8796 if( db->mallocFailed ){
8797 rc = SQLITE_NOMEM_BKPT;
8798 }else if( rc==SQLITE_IOERR_CORRUPTFS ){
8799 rc = SQLITE_CORRUPT_BKPT;
8801 assert( rc );
8802 #ifdef SQLITE_DEBUG
8803 if( db->flags & SQLITE_VdbeTrace ){
8804 const char *zTrace = p->zSql;
8805 if( zTrace==0 ){
8806 if( aOp[0].opcode==OP_Trace ){
8807 zTrace = aOp[0].p4.z;
8809 if( zTrace==0 ) zTrace = "???";
8811 printf("ABORT-due-to-error (rc=%d): %s\n", rc, zTrace);
8813 #endif
8814 if( p->zErrMsg==0 && rc!=SQLITE_IOERR_NOMEM ){
8815 sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
8817 p->rc = rc;
8818 sqlite3SystemError(db, rc);
8819 testcase( sqlite3GlobalConfig.xLog!=0 );
8820 sqlite3_log(rc, "statement aborts at %d: [%s] %s",
8821 (int)(pOp - aOp), p->zSql, p->zErrMsg);
8822 if( p->eVdbeState==VDBE_RUN_STATE ) sqlite3VdbeHalt(p);
8823 if( rc==SQLITE_IOERR_NOMEM ) sqlite3OomFault(db);
8824 if( rc==SQLITE_CORRUPT && db->autoCommit==0 ){
8825 db->flags |= SQLITE_CorruptRdOnly;
8827 rc = SQLITE_ERROR;
8828 if( resetSchemaOnFault>0 ){
8829 sqlite3ResetOneSchema(db, resetSchemaOnFault-1);
8832 /* This is the only way out of this procedure. We have to
8833 ** release the mutexes on btrees that were acquired at the
8834 ** top. */
8835 vdbe_return:
8836 #if defined(VDBE_PROFILE)
8837 if( pnCycle ){
8838 *pnCycle += sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime();
8839 pnCycle = 0;
8841 #elif defined(SQLITE_ENABLE_STMT_SCANSTATUS)
8842 if( pnCycle ){
8843 *pnCycle += sqlite3Hwtime();
8844 pnCycle = 0;
8846 #endif
8848 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
8849 while( nVmStep>=nProgressLimit && db->xProgress!=0 ){
8850 nProgressLimit += db->nProgressOps;
8851 if( db->xProgress(db->pProgressArg) ){
8852 nProgressLimit = LARGEST_UINT64;
8853 rc = SQLITE_INTERRUPT;
8854 goto abort_due_to_error;
8857 #endif
8858 p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep;
8859 if( DbMaskNonZero(p->lockMask) ){
8860 sqlite3VdbeLeave(p);
8862 assert( rc!=SQLITE_OK || nExtraDelete==0
8863 || sqlite3_strlike("DELETE%",p->zSql,0)!=0
8865 return rc;
8867 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
8868 ** is encountered.
8870 too_big:
8871 sqlite3VdbeError(p, "string or blob too big");
8872 rc = SQLITE_TOOBIG;
8873 goto abort_due_to_error;
8875 /* Jump to here if a malloc() fails.
8877 no_mem:
8878 sqlite3OomFault(db);
8879 sqlite3VdbeError(p, "out of memory");
8880 rc = SQLITE_NOMEM_BKPT;
8881 goto abort_due_to_error;
8883 /* Jump to here if the sqlite3_interrupt() API sets the interrupt
8884 ** flag.
8886 abort_due_to_interrupt:
8887 assert( AtomicLoad(&db->u1.isInterrupted) );
8888 rc = SQLITE_INTERRUPT;
8889 goto abort_due_to_error;