4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains code used for creating, destroying, and populating
13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)
15 #include "sqliteInt.h"
18 /* Forward references */
19 static void freeEphemeralFunction(sqlite3
*db
, FuncDef
*pDef
);
20 static void vdbeFreeOpArray(sqlite3
*, Op
*, int);
23 ** Create a new virtual database engine.
25 Vdbe
*sqlite3VdbeCreate(Parse
*pParse
){
26 sqlite3
*db
= pParse
->db
;
28 p
= sqlite3DbMallocRawNN(db
, sizeof(Vdbe
) );
30 memset(&p
->aOp
, 0, sizeof(Vdbe
)-offsetof(Vdbe
,aOp
));
33 db
->pVdbe
->ppVPrev
= &p
->pVNext
;
35 p
->pVNext
= db
->pVdbe
;
36 p
->ppVPrev
= &db
->pVdbe
;
38 assert( p
->eVdbeState
==VDBE_INIT_STATE
);
41 assert( pParse
->aLabel
==0 );
42 assert( pParse
->nLabel
==0 );
43 assert( p
->nOpAlloc
==0 );
44 assert( pParse
->szOpAlloc
==0 );
45 sqlite3VdbeAddOp2(p
, OP_Init
, 0, 1);
50 ** Return the Parse object that owns a Vdbe object.
52 Parse
*sqlite3VdbeParser(Vdbe
*p
){
57 ** Change the error string stored in Vdbe.zErrMsg
59 void sqlite3VdbeError(Vdbe
*p
, const char *zFormat
, ...){
61 sqlite3DbFree(p
->db
, p
->zErrMsg
);
62 va_start(ap
, zFormat
);
63 p
->zErrMsg
= sqlite3VMPrintf(p
->db
, zFormat
, ap
);
68 ** Remember the SQL string for a prepared statement.
70 void sqlite3VdbeSetSql(Vdbe
*p
, const char *z
, int n
, u8 prepFlags
){
72 p
->prepFlags
= prepFlags
;
73 if( (prepFlags
& SQLITE_PREPARE_SAVESQL
)==0 ){
77 p
->zSql
= sqlite3DbStrNDup(p
->db
, z
, n
);
80 #ifdef SQLITE_ENABLE_NORMALIZE
82 ** Add a new element to the Vdbe->pDblStr list.
84 void sqlite3VdbeAddDblquoteStr(sqlite3
*db
, Vdbe
*p
, const char *z
){
86 int n
= sqlite3Strlen30(z
);
87 DblquoteStr
*pStr
= sqlite3DbMallocRawNN(db
,
88 sizeof(*pStr
)+n
+1-sizeof(pStr
->z
));
90 pStr
->pNextStr
= p
->pDblStr
;
92 memcpy(pStr
->z
, z
, n
+1);
98 #ifdef SQLITE_ENABLE_NORMALIZE
100 ** zId of length nId is a double-quoted identifier. Check to see if
101 ** that identifier is really used as a string literal.
103 int sqlite3VdbeUsesDoubleQuotedString(
104 Vdbe
*pVdbe
, /* The prepared statement */
105 const char *zId
/* The double-quoted identifier, already dequoted */
109 if( pVdbe
->pDblStr
==0 ) return 0;
110 for(pStr
=pVdbe
->pDblStr
; pStr
; pStr
=pStr
->pNextStr
){
111 if( strcmp(zId
, pStr
->z
)==0 ) return 1;
118 ** Swap byte-code between two VDBE structures.
120 ** This happens after pB was previously run and returned
121 ** SQLITE_SCHEMA. The statement was then reprepared in pA.
122 ** This routine transfers the new bytecode in pA over to pB
123 ** so that pB can be run again. The old pB byte code is
124 ** moved back to pA so that it will be cleaned up when pA is
127 void sqlite3VdbeSwap(Vdbe
*pA
, Vdbe
*pB
){
128 Vdbe tmp
, *pTmp
, **ppTmp
;
130 assert( pA
->db
==pB
->db
);
135 pA
->pVNext
= pB
->pVNext
;
138 pA
->ppVPrev
= pB
->ppVPrev
;
143 #ifdef SQLITE_ENABLE_NORMALIZE
145 pA
->zNormSql
= pB
->zNormSql
;
148 pB
->expmask
= pA
->expmask
;
149 pB
->prepFlags
= pA
->prepFlags
;
150 memcpy(pB
->aCounter
, pA
->aCounter
, sizeof(pB
->aCounter
));
151 pB
->aCounter
[SQLITE_STMTSTATUS_REPREPARE
]++;
155 ** Resize the Vdbe.aOp array so that it is at least nOp elements larger
156 ** than its current size. nOp is guaranteed to be less than or equal
157 ** to 1024/sizeof(Op).
159 ** If an out-of-memory error occurs while resizing the array, return
160 ** SQLITE_NOMEM. In this case Vdbe.aOp and Vdbe.nOpAlloc remain
161 ** unchanged (this is so that any opcodes already allocated can be
162 ** correctly deallocated along with the rest of the Vdbe).
164 static int growOpArray(Vdbe
*v
, int nOp
){
166 Parse
*p
= v
->pParse
;
168 /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force
169 ** more frequent reallocs and hence provide more opportunities for
170 ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used
171 ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array
172 ** by the minimum* amount required until the size reaches 512. Normal
173 ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current
174 ** size of the op array or add 1KB of space, whichever is smaller. */
175 #ifdef SQLITE_TEST_REALLOC_STRESS
176 sqlite3_int64 nNew
= (v
->nOpAlloc
>=512 ? 2*(sqlite3_int64
)v
->nOpAlloc
177 : (sqlite3_int64
)v
->nOpAlloc
+nOp
);
179 sqlite3_int64 nNew
= (v
->nOpAlloc
? 2*(sqlite3_int64
)v
->nOpAlloc
180 : (sqlite3_int64
)(1024/sizeof(Op
)));
181 UNUSED_PARAMETER(nOp
);
184 /* Ensure that the size of a VDBE does not grow too large */
185 if( nNew
> p
->db
->aLimit
[SQLITE_LIMIT_VDBE_OP
] ){
186 sqlite3OomFault(p
->db
);
190 assert( nOp
<=(int)(1024/sizeof(Op
)) );
191 assert( nNew
>=(v
->nOpAlloc
+nOp
) );
192 pNew
= sqlite3DbRealloc(p
->db
, v
->aOp
, nNew
*sizeof(Op
));
194 p
->szOpAlloc
= sqlite3DbMallocSize(p
->db
, pNew
);
195 v
->nOpAlloc
= p
->szOpAlloc
/sizeof(Op
);
198 return (pNew
? SQLITE_OK
: SQLITE_NOMEM_BKPT
);
202 /* This routine is just a convenient place to set a breakpoint that will
203 ** fire after each opcode is inserted and displayed using
204 ** "PRAGMA vdbe_addoptrace=on". Parameters "pc" (program counter) and
205 ** pOp are available to make the breakpoint conditional.
207 ** Other useful labels for breakpoints include:
208 ** test_trace_breakpoint(pc,pOp)
209 ** sqlite3CorruptError(lineno)
210 ** sqlite3MisuseError(lineno)
211 ** sqlite3CantopenError(lineno)
213 static void test_addop_breakpoint(int pc
, Op
*pOp
){
222 ** Add a new instruction to the list of instructions current in the
223 ** VDBE. Return the address of the new instruction.
227 ** p Pointer to the VDBE
229 ** op The opcode for this instruction
231 ** p1, p2, p3 Operands
233 ** Use the sqlite3VdbeResolveLabel() function to fix an address and
234 ** the sqlite3VdbeChangeP4() function to change the value of the P4
237 static SQLITE_NOINLINE
int growOp3(Vdbe
*p
, int op
, int p1
, int p2
, int p3
){
238 assert( p
->nOpAlloc
<=p
->nOp
);
239 if( growOpArray(p
, 1) ) return 1;
240 assert( p
->nOpAlloc
>p
->nOp
);
241 return sqlite3VdbeAddOp3(p
, op
, p1
, p2
, p3
);
243 int sqlite3VdbeAddOp3(Vdbe
*p
, int op
, int p1
, int p2
, int p3
){
248 assert( p
->eVdbeState
==VDBE_INIT_STATE
);
249 assert( op
>=0 && op
<0xff );
250 if( p
->nOpAlloc
<=i
){
251 return growOp3(p
, op
, p1
, p2
, p3
);
257 pOp
->opcode
= (u8
)op
;
263 pOp
->p4type
= P4_NOTUSED
;
264 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
267 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || defined(VDBE_PROFILE)
272 if( p
->db
->flags
& SQLITE_VdbeAddopTrace
){
273 sqlite3VdbePrintOp(0, i
, &p
->aOp
[i
]);
274 test_addop_breakpoint(i
, &p
->aOp
[i
]);
277 #ifdef SQLITE_VDBE_COVERAGE
282 int sqlite3VdbeAddOp0(Vdbe
*p
, int op
){
283 return sqlite3VdbeAddOp3(p
, op
, 0, 0, 0);
285 int sqlite3VdbeAddOp1(Vdbe
*p
, int op
, int p1
){
286 return sqlite3VdbeAddOp3(p
, op
, p1
, 0, 0);
288 int sqlite3VdbeAddOp2(Vdbe
*p
, int op
, int p1
, int p2
){
289 return sqlite3VdbeAddOp3(p
, op
, p1
, p2
, 0);
292 /* Generate code for an unconditional jump to instruction iDest
294 int sqlite3VdbeGoto(Vdbe
*p
, int iDest
){
295 return sqlite3VdbeAddOp3(p
, OP_Goto
, 0, iDest
, 0);
298 /* Generate code to cause the string zStr to be loaded into
301 int sqlite3VdbeLoadString(Vdbe
*p
, int iDest
, const char *zStr
){
302 return sqlite3VdbeAddOp4(p
, OP_String8
, 0, iDest
, 0, zStr
, 0);
306 ** Generate code that initializes multiple registers to string or integer
307 ** constants. The registers begin with iDest and increase consecutively.
308 ** One register is initialized for each characgter in zTypes[]. For each
309 ** "s" character in zTypes[], the register is a string if the argument is
310 ** not NULL, or OP_Null if the value is a null pointer. For each "i" character
311 ** in zTypes[], the register is initialized to an integer.
313 ** If the input string does not end with "X" then an OP_ResultRow instruction
314 ** is generated for the values inserted.
316 void sqlite3VdbeMultiLoad(Vdbe
*p
, int iDest
, const char *zTypes
, ...){
320 va_start(ap
, zTypes
);
321 for(i
=0; (c
= zTypes
[i
])!=0; i
++){
323 const char *z
= va_arg(ap
, const char*);
324 sqlite3VdbeAddOp4(p
, z
==0 ? OP_Null
: OP_String8
, 0, iDest
+i
, 0, z
, 0);
326 sqlite3VdbeAddOp2(p
, OP_Integer
, va_arg(ap
, int), iDest
+i
);
328 goto skip_op_resultrow
;
331 sqlite3VdbeAddOp2(p
, OP_ResultRow
, iDest
, i
);
337 ** Add an opcode that includes the p4 value as a pointer.
339 int sqlite3VdbeAddOp4(
340 Vdbe
*p
, /* Add the opcode to this VM */
341 int op
, /* The new opcode */
342 int p1
, /* The P1 operand */
343 int p2
, /* The P2 operand */
344 int p3
, /* The P3 operand */
345 const char *zP4
, /* The P4 operand */
346 int p4type
/* P4 operand type */
348 int addr
= sqlite3VdbeAddOp3(p
, op
, p1
, p2
, p3
);
349 sqlite3VdbeChangeP4(p
, addr
, zP4
, p4type
);
354 ** Add an OP_Function or OP_PureFunc opcode.
356 ** The eCallCtx argument is information (typically taken from Expr.op2)
357 ** that describes the calling context of the function. 0 means a general
358 ** function call. NC_IsCheck means called by a check constraint,
359 ** NC_IdxExpr means called as part of an index expression. NC_PartIdx
360 ** means in the WHERE clause of a partial index. NC_GenCol means called
361 ** while computing a generated column value. 0 is the usual case.
363 int sqlite3VdbeAddFunctionCall(
364 Parse
*pParse
, /* Parsing context */
365 int p1
, /* Constant argument mask */
366 int p2
, /* First argument register */
367 int p3
, /* Register into which results are written */
368 int nArg
, /* Number of argument */
369 const FuncDef
*pFunc
, /* The function to be invoked */
370 int eCallCtx
/* Calling context */
372 Vdbe
*v
= pParse
->pVdbe
;
375 sqlite3_context
*pCtx
;
377 nByte
= sizeof(*pCtx
) + (nArg
-1)*sizeof(sqlite3_value
*);
378 pCtx
= sqlite3DbMallocRawNN(pParse
->db
, nByte
);
380 assert( pParse
->db
->mallocFailed
);
381 freeEphemeralFunction(pParse
->db
, (FuncDef
*)pFunc
);
385 pCtx
->pFunc
= (FuncDef
*)pFunc
;
389 pCtx
->iOp
= sqlite3VdbeCurrentAddr(v
);
390 addr
= sqlite3VdbeAddOp4(v
, eCallCtx
? OP_PureFunc
: OP_Function
,
391 p1
, p2
, p3
, (char*)pCtx
, P4_FUNCCTX
);
392 sqlite3VdbeChangeP5(v
, eCallCtx
& NC_SelfRef
);
393 sqlite3MayAbort(pParse
);
398 ** Add an opcode that includes the p4 value with a P4_INT64 or
401 int sqlite3VdbeAddOp4Dup8(
402 Vdbe
*p
, /* Add the opcode to this VM */
403 int op
, /* The new opcode */
404 int p1
, /* The P1 operand */
405 int p2
, /* The P2 operand */
406 int p3
, /* The P3 operand */
407 const u8
*zP4
, /* The P4 operand */
408 int p4type
/* P4 operand type */
410 char *p4copy
= sqlite3DbMallocRawNN(sqlite3VdbeDb(p
), 8);
411 if( p4copy
) memcpy(p4copy
, zP4
, 8);
412 return sqlite3VdbeAddOp4(p
, op
, p1
, p2
, p3
, p4copy
, p4type
);
415 #ifndef SQLITE_OMIT_EXPLAIN
417 ** Return the address of the current EXPLAIN QUERY PLAN baseline.
420 int sqlite3VdbeExplainParent(Parse
*pParse
){
422 if( pParse
->addrExplain
==0 ) return 0;
423 pOp
= sqlite3VdbeGetOp(pParse
->pVdbe
, pParse
->addrExplain
);
428 ** Set a debugger breakpoint on the following routine in order to
429 ** monitor the EXPLAIN QUERY PLAN code generation.
431 #if defined(SQLITE_DEBUG)
432 void sqlite3ExplainBreakpoint(const char *z1
, const char *z2
){
439 ** Add a new OP_Explain opcode.
441 ** If the bPush flag is true, then make this opcode the parent for
442 ** subsequent Explains until sqlite3VdbeExplainPop() is called.
444 int sqlite3VdbeExplain(Parse
*pParse
, u8 bPush
, const char *zFmt
, ...){
446 #if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS)
447 /* Always include the OP_Explain opcodes if SQLITE_DEBUG is defined.
448 ** But omit them (for performance) during production builds */
449 if( pParse
->explain
==2 )
457 zMsg
= sqlite3VMPrintf(pParse
->db
, zFmt
, ap
);
461 addr
= sqlite3VdbeAddOp4(v
, OP_Explain
, iThis
, pParse
->addrExplain
, 0,
463 sqlite3ExplainBreakpoint(bPush
?"PUSH":"", sqlite3VdbeGetLastOp(v
)->p4
.z
);
465 pParse
->addrExplain
= iThis
;
467 sqlite3VdbeScanStatus(v
, iThis
, 0, 0, 0, 0);
473 ** Pop the EXPLAIN QUERY PLAN stack one level.
475 void sqlite3VdbeExplainPop(Parse
*pParse
){
476 sqlite3ExplainBreakpoint("POP", 0);
477 pParse
->addrExplain
= sqlite3VdbeExplainParent(pParse
);
479 #endif /* SQLITE_OMIT_EXPLAIN */
482 ** Add an OP_ParseSchema opcode. This routine is broken out from
483 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees
484 ** as having been used.
486 ** The zWhere string must have been obtained from sqlite3_malloc().
487 ** This routine will take ownership of the allocated memory.
489 void sqlite3VdbeAddParseSchemaOp(Vdbe
*p
, int iDb
, char *zWhere
, u16 p5
){
491 sqlite3VdbeAddOp4(p
, OP_ParseSchema
, iDb
, 0, 0, zWhere
, P4_DYNAMIC
);
492 sqlite3VdbeChangeP5(p
, p5
);
493 for(j
=0; j
<p
->db
->nDb
; j
++) sqlite3VdbeUsesBtree(p
, j
);
494 sqlite3MayAbort(p
->pParse
);
498 ** Add an opcode that includes the p4 value as an integer.
500 int sqlite3VdbeAddOp4Int(
501 Vdbe
*p
, /* Add the opcode to this VM */
502 int op
, /* The new opcode */
503 int p1
, /* The P1 operand */
504 int p2
, /* The P2 operand */
505 int p3
, /* The P3 operand */
506 int p4
/* The P4 operand as an integer */
508 int addr
= sqlite3VdbeAddOp3(p
, op
, p1
, p2
, p3
);
509 if( p
->db
->mallocFailed
==0 ){
510 VdbeOp
*pOp
= &p
->aOp
[addr
];
511 pOp
->p4type
= P4_INT32
;
517 /* Insert the end of a co-routine
519 void sqlite3VdbeEndCoroutine(Vdbe
*v
, int regYield
){
520 sqlite3VdbeAddOp1(v
, OP_EndCoroutine
, regYield
);
522 /* Clear the temporary register cache, thereby ensuring that each
523 ** co-routine has its own independent set of registers, because co-routines
524 ** might expect their registers to be preserved across an OP_Yield, and
525 ** that could cause problems if two or more co-routines are using the same
526 ** temporary register.
528 v
->pParse
->nTempReg
= 0;
529 v
->pParse
->nRangeReg
= 0;
533 ** Create a new symbolic label for an instruction that has yet to be
534 ** coded. The symbolic label is really just a negative number. The
535 ** label can be used as the P2 value of an operation. Later, when
536 ** the label is resolved to a specific address, the VDBE will scan
537 ** through its operation list and change all values of P2 which match
538 ** the label into the resolved address.
540 ** The VDBE knows that a P2 value is a label because labels are
541 ** always negative and P2 values are suppose to be non-negative.
542 ** Hence, a negative P2 value is a label that has yet to be resolved.
543 ** (Later:) This is only true for opcodes that have the OPFLG_JUMP
546 ** Variable usage notes:
548 ** Parse.aLabel[x] Stores the address that the x-th label resolves
549 ** into. For testing (SQLITE_DEBUG), unresolved
550 ** labels stores -1, but that is not required.
551 ** Parse.nLabelAlloc Number of slots allocated to Parse.aLabel[]
552 ** Parse.nLabel The *negative* of the number of labels that have
553 ** been issued. The negative is stored because
554 ** that gives a performance improvement over storing
555 ** the equivalent positive value.
557 int sqlite3VdbeMakeLabel(Parse
*pParse
){
558 return --pParse
->nLabel
;
562 ** Resolve label "x" to be the address of the next instruction to
563 ** be inserted. The parameter "x" must have been obtained from
564 ** a prior call to sqlite3VdbeMakeLabel().
566 static SQLITE_NOINLINE
void resizeResolveLabel(Parse
*p
, Vdbe
*v
, int j
){
567 int nNewSize
= 10 - p
->nLabel
;
568 p
->aLabel
= sqlite3DbReallocOrFree(p
->db
, p
->aLabel
,
569 nNewSize
*sizeof(p
->aLabel
[0]));
575 for(i
=p
->nLabelAlloc
; i
<nNewSize
; i
++) p
->aLabel
[i
] = -1;
577 if( nNewSize
>=100 && (nNewSize
/100)>(p
->nLabelAlloc
/100) ){
578 sqlite3ProgressCheck(p
);
580 p
->nLabelAlloc
= nNewSize
;
581 p
->aLabel
[j
] = v
->nOp
;
584 void sqlite3VdbeResolveLabel(Vdbe
*v
, int x
){
585 Parse
*p
= v
->pParse
;
587 assert( v
->eVdbeState
==VDBE_INIT_STATE
);
588 assert( j
<-p
->nLabel
);
591 if( p
->db
->flags
& SQLITE_VdbeAddopTrace
){
592 printf("RESOLVE LABEL %d to %d\n", x
, v
->nOp
);
595 if( p
->nLabelAlloc
+ p
->nLabel
< 0 ){
596 resizeResolveLabel(p
,v
,j
);
598 assert( p
->aLabel
[j
]==(-1) ); /* Labels may only be resolved once */
599 p
->aLabel
[j
] = v
->nOp
;
604 ** Mark the VDBE as one that can only be run one time.
606 void sqlite3VdbeRunOnlyOnce(Vdbe
*p
){
607 sqlite3VdbeAddOp2(p
, OP_Expire
, 1, 1);
611 ** Mark the VDBE as one that can be run multiple times.
613 void sqlite3VdbeReusable(Vdbe
*p
){
615 for(i
=1; ALWAYS(i
<p
->nOp
); i
++){
616 if( ALWAYS(p
->aOp
[i
].opcode
==OP_Expire
) ){
617 p
->aOp
[1].opcode
= OP_Noop
;
623 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */
626 ** The following type and function are used to iterate through all opcodes
627 ** in a Vdbe main program and each of the sub-programs (triggers) it may
628 ** invoke directly or indirectly. It should be used as follows:
633 ** memset(&sIter, 0, sizeof(sIter));
634 ** sIter.v = v; // v is of type Vdbe*
635 ** while( (pOp = opIterNext(&sIter)) ){
636 ** // Do something with pOp
638 ** sqlite3DbFree(v->db, sIter.apSub);
641 typedef struct VdbeOpIter VdbeOpIter
;
643 Vdbe
*v
; /* Vdbe to iterate through the opcodes of */
644 SubProgram
**apSub
; /* Array of subprograms */
645 int nSub
; /* Number of entries in apSub */
646 int iAddr
; /* Address of next instruction to return */
647 int iSub
; /* 0 = main program, 1 = first sub-program etc. */
649 static Op
*opIterNext(VdbeOpIter
*p
){
655 if( p
->iSub
<=p
->nSub
){
661 aOp
= p
->apSub
[p
->iSub
-1]->aOp
;
662 nOp
= p
->apSub
[p
->iSub
-1]->nOp
;
664 assert( p
->iAddr
<nOp
);
666 pRet
= &aOp
[p
->iAddr
];
673 if( pRet
->p4type
==P4_SUBPROGRAM
){
674 int nByte
= (p
->nSub
+1)*sizeof(SubProgram
*);
676 for(j
=0; j
<p
->nSub
; j
++){
677 if( p
->apSub
[j
]==pRet
->p4
.pProgram
) break;
680 p
->apSub
= sqlite3DbReallocOrFree(v
->db
, p
->apSub
, nByte
);
684 p
->apSub
[p
->nSub
++] = pRet
->p4
.pProgram
;
694 ** Check if the program stored in the VM associated with pParse may
695 ** throw an ABORT exception (causing the statement, but not entire transaction
696 ** to be rolled back). This condition is true if the main program or any
697 ** sub-programs contains any of the following:
699 ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
700 ** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
705 ** * OP_FkCounter with P2==0 (immediate foreign key constraint)
706 ** * OP_CreateBtree/BTREE_INTKEY and OP_InitCoroutine
707 ** (for CREATE TABLE AS SELECT ...)
709 ** Then check that the value of Parse.mayAbort is true if an
710 ** ABORT may be thrown, or false otherwise. Return true if it does
711 ** match, or false otherwise. This function is intended to be used as
712 ** part of an assert statement in the compiler. Similar to:
714 ** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) );
716 int sqlite3VdbeAssertMayAbort(Vdbe
*v
, int mayAbort
){
718 int hasFkCounter
= 0;
719 int hasCreateTable
= 0;
720 int hasCreateIndex
= 0;
721 int hasInitCoroutine
= 0;
726 memset(&sIter
, 0, sizeof(sIter
));
729 while( (pOp
= opIterNext(&sIter
))!=0 ){
730 int opcode
= pOp
->opcode
;
731 if( opcode
==OP_Destroy
|| opcode
==OP_VUpdate
|| opcode
==OP_VRename
732 || opcode
==OP_VDestroy
733 || opcode
==OP_VCreate
734 || opcode
==OP_ParseSchema
735 || opcode
==OP_Function
|| opcode
==OP_PureFunc
736 || ((opcode
==OP_Halt
|| opcode
==OP_HaltIfNull
)
737 && ((pOp
->p1
)!=SQLITE_OK
&& pOp
->p2
==OE_Abort
))
742 if( opcode
==OP_CreateBtree
&& pOp
->p3
==BTREE_INTKEY
) hasCreateTable
= 1;
744 /* hasCreateIndex may also be set for some DELETE statements that use
745 ** OP_Clear. So this routine may end up returning true in the case
746 ** where a "DELETE FROM tbl" has a statement-journal but does not
747 ** require one. This is not so bad - it is an inefficiency, not a bug. */
748 if( opcode
==OP_CreateBtree
&& pOp
->p3
==BTREE_BLOBKEY
) hasCreateIndex
= 1;
749 if( opcode
==OP_Clear
) hasCreateIndex
= 1;
751 if( opcode
==OP_InitCoroutine
) hasInitCoroutine
= 1;
752 #ifndef SQLITE_OMIT_FOREIGN_KEY
753 if( opcode
==OP_FkCounter
&& pOp
->p1
==0 && pOp
->p2
==1 ){
758 sqlite3DbFree(v
->db
, sIter
.apSub
);
760 /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred.
761 ** If malloc failed, then the while() loop above may not have iterated
762 ** through all opcodes and hasAbort may be set incorrectly. Return
763 ** true for this case to prevent the assert() in the callers frame
765 return ( v
->db
->mallocFailed
|| hasAbort
==mayAbort
|| hasFkCounter
766 || (hasCreateTable
&& hasInitCoroutine
) || hasCreateIndex
769 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */
773 ** Increment the nWrite counter in the VDBE if the cursor is not an
774 ** ephemeral cursor, or if the cursor argument is NULL.
776 void sqlite3VdbeIncrWriteCounter(Vdbe
*p
, VdbeCursor
*pC
){
778 || (pC
->eCurType
!=CURTYPE_SORTER
779 && pC
->eCurType
!=CURTYPE_PSEUDO
789 ** Assert if an Abort at this point in time might result in a corrupt
792 void sqlite3VdbeAssertAbortable(Vdbe
*p
){
793 assert( p
->nWrite
==0 || p
->usesStmtJournal
);
798 ** This routine is called after all opcodes have been inserted. It loops
799 ** through all the opcodes and fixes up some details.
801 ** (1) For each jump instruction with a negative P2 value (a label)
802 ** resolve the P2 value to an actual address.
804 ** (2) Compute the maximum number of arguments used by any SQL function
805 ** and store that value in *pMaxFuncArgs.
807 ** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately
808 ** indicate what the prepared statement actually does.
810 ** (4) (discontinued)
812 ** (5) Reclaim the memory allocated for storing labels.
814 ** This routine will only function correctly if the mkopcodeh.tcl generator
815 ** script numbers the opcodes correctly. Changes to this routine must be
816 ** coordinated with changes to mkopcodeh.tcl.
818 static void resolveP2Values(Vdbe
*p
, int *pMaxFuncArgs
){
819 int nMaxArgs
= *pMaxFuncArgs
;
821 Parse
*pParse
= p
->pParse
;
822 int *aLabel
= pParse
->aLabel
;
825 pOp
= &p
->aOp
[p
->nOp
-1];
826 assert( p
->aOp
[0].opcode
==OP_Init
);
827 while( 1 /* Loop termates when it reaches the OP_Init opcode */ ){
828 /* Only JUMP opcodes and the short list of special opcodes in the switch
829 ** below need to be considered. The mkopcodeh.tcl generator script groups
830 ** all these opcodes together near the front of the opcode list. Skip
831 ** any opcode that does not need processing by virtual of the fact that
832 ** it is larger than SQLITE_MX_JUMP_OPCODE, as a performance optimization.
834 if( pOp
->opcode
<=SQLITE_MX_JUMP_OPCODE
){
835 /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing
836 ** cases from this switch! */
837 switch( pOp
->opcode
){
838 case OP_Transaction
: {
839 if( pOp
->p2
!=0 ) p
->readOnly
= 0;
840 /* no break */ deliberate_fall_through
847 #ifndef SQLITE_OMIT_WAL
851 case OP_JournalMode
: {
857 assert( pOp
->p2
>=0 );
858 goto resolve_p2_values_loop_exit
;
860 #ifndef SQLITE_OMIT_VIRTUALTABLE
862 if( pOp
->p2
>nMaxArgs
) nMaxArgs
= pOp
->p2
;
867 assert( (pOp
- p
->aOp
) >= 3 );
868 assert( pOp
[-1].opcode
==OP_Integer
);
870 if( n
>nMaxArgs
) nMaxArgs
= n
;
871 /* Fall through into the default case */
872 /* no break */ deliberate_fall_through
877 /* The mkopcodeh.tcl script has so arranged things that the only
878 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to
879 ** have non-negative values for P2. */
880 assert( (sqlite3OpcodeProperty
[pOp
->opcode
] & OPFLG_JUMP
)!=0 );
881 assert( ADDR(pOp
->p2
)<-pParse
->nLabel
);
882 pOp
->p2
= aLabel
[ADDR(pOp
->p2
)];
887 /* The mkopcodeh.tcl script has so arranged things that the only
888 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to
889 ** have non-negative values for P2. */
890 assert( (sqlite3OpcodeProperty
[pOp
->opcode
]&OPFLG_JUMP
)==0 || pOp
->p2
>=0);
892 assert( pOp
>p
->aOp
);
895 resolve_p2_values_loop_exit
:
897 sqlite3DbNNFreeNN(p
->db
, pParse
->aLabel
);
901 *pMaxFuncArgs
= nMaxArgs
;
902 assert( p
->bIsReader
!=0 || DbMaskAllZero(p
->btreeMask
) );
907 ** Check to see if a subroutine contains a jump to a location outside of
908 ** the subroutine. If a jump outside the subroutine is detected, add code
909 ** that will cause the program to halt with an error message.
911 ** The subroutine consists of opcodes between iFirst and iLast. Jumps to
912 ** locations within the subroutine are acceptable. iRetReg is a register
913 ** that contains the return address. Jumps to outside the range of iFirst
914 ** through iLast are also acceptable as long as the jump destination is
915 ** an OP_Return to iReturnAddr.
917 ** A jump to an unresolved label means that the jump destination will be
918 ** beyond the current address. That is normally a jump to an early
919 ** termination and is consider acceptable.
921 ** This routine only runs during debug builds. The purpose is (of course)
922 ** to detect invalid escapes out of a subroutine. The OP_Halt opcode
923 ** is generated rather than an assert() or other error, so that ".eqp full"
924 ** will still work to show the original bytecode, to aid in debugging.
926 void sqlite3VdbeNoJumpsOutsideSubrtn(
927 Vdbe
*v
, /* The byte-code program under construction */
928 int iFirst
, /* First opcode of the subroutine */
929 int iLast
, /* Last opcode of the subroutine */
930 int iRetReg
/* Subroutine return address register */
935 sqlite3_str
*pErr
= 0;
939 if( pParse
->nErr
) return;
940 assert( iLast
>=iFirst
);
941 assert( iLast
<v
->nOp
);
942 pOp
= &v
->aOp
[iFirst
];
943 for(i
=iFirst
; i
<=iLast
; i
++, pOp
++){
944 if( (sqlite3OpcodeProperty
[pOp
->opcode
] & OPFLG_JUMP
)!=0 ){
945 int iDest
= pOp
->p2
; /* Jump destination */
946 if( iDest
==0 ) continue;
947 if( pOp
->opcode
==OP_Gosub
) continue;
951 if( j
>=-pParse
->nLabel
|| pParse
->aLabel
[j
]<0 ){
954 iDest
= pParse
->aLabel
[j
];
956 if( iDest
<iFirst
|| iDest
>iLast
){
958 for(; j
<v
->nOp
; j
++){
959 VdbeOp
*pX
= &v
->aOp
[j
];
960 if( pX
->opcode
==OP_Return
){
961 if( pX
->p1
==iRetReg
) break;
964 if( pX
->opcode
==OP_Noop
) continue;
965 if( pX
->opcode
==OP_Explain
) continue;
967 pErr
= sqlite3_str_new(0);
969 sqlite3_str_appendchar(pErr
, 1, '\n');
971 sqlite3_str_appendf(pErr
,
972 "Opcode at %d jumps to %d which is outside the "
973 "subroutine at %d..%d",
974 i
, iDest
, iFirst
, iLast
);
981 char *zErr
= sqlite3_str_finish(pErr
);
982 sqlite3VdbeAddOp4(v
, OP_Halt
, SQLITE_INTERNAL
, OE_Abort
, 0, zErr
, 0);
984 sqlite3MayAbort(pParse
);
987 #endif /* SQLITE_DEBUG */
990 ** Return the address of the next instruction to be inserted.
992 int sqlite3VdbeCurrentAddr(Vdbe
*p
){
993 assert( p
->eVdbeState
==VDBE_INIT_STATE
);
998 ** Verify that at least N opcode slots are available in p without
999 ** having to malloc for more space (except when compiled using
1000 ** SQLITE_TEST_REALLOC_STRESS). This interface is used during testing
1001 ** to verify that certain calls to sqlite3VdbeAddOpList() can never
1002 ** fail due to a OOM fault and hence that the return value from
1003 ** sqlite3VdbeAddOpList() will always be non-NULL.
1005 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
1006 void sqlite3VdbeVerifyNoMallocRequired(Vdbe
*p
, int N
){
1007 assert( p
->nOp
+ N
<= p
->nOpAlloc
);
1012 ** Verify that the VM passed as the only argument does not contain
1013 ** an OP_ResultRow opcode. Fail an assert() if it does. This is used
1014 ** by code in pragma.c to ensure that the implementation of certain
1015 ** pragmas comports with the flags specified in the mkpragmatab.tcl
1018 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
1019 void sqlite3VdbeVerifyNoResultRow(Vdbe
*p
){
1021 for(i
=0; i
<p
->nOp
; i
++){
1022 assert( p
->aOp
[i
].opcode
!=OP_ResultRow
);
1028 ** Generate code (a single OP_Abortable opcode) that will
1029 ** verify that the VDBE program can safely call Abort in the current
1032 #if defined(SQLITE_DEBUG)
1033 void sqlite3VdbeVerifyAbortable(Vdbe
*p
, int onError
){
1034 if( onError
==OE_Abort
) sqlite3VdbeAddOp0(p
, OP_Abortable
);
1039 ** This function returns a pointer to the array of opcodes associated with
1040 ** the Vdbe passed as the first argument. It is the callers responsibility
1041 ** to arrange for the returned array to be eventually freed using the
1042 ** vdbeFreeOpArray() function.
1044 ** Before returning, *pnOp is set to the number of entries in the returned
1045 ** array. Also, *pnMaxArg is set to the larger of its current value and
1046 ** the number of entries in the Vdbe.apArg[] array required to execute the
1047 ** returned program.
1049 VdbeOp
*sqlite3VdbeTakeOpArray(Vdbe
*p
, int *pnOp
, int *pnMaxArg
){
1050 VdbeOp
*aOp
= p
->aOp
;
1051 assert( aOp
&& !p
->db
->mallocFailed
);
1053 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */
1054 assert( DbMaskAllZero(p
->btreeMask
) );
1056 resolveP2Values(p
, pnMaxArg
);
1063 ** Add a whole list of operations to the operation stack. Return a
1064 ** pointer to the first operation inserted.
1066 ** Non-zero P2 arguments to jump instructions are automatically adjusted
1067 ** so that the jump target is relative to the first operation inserted.
1069 VdbeOp
*sqlite3VdbeAddOpList(
1070 Vdbe
*p
, /* Add opcodes to the prepared statement */
1071 int nOp
, /* Number of opcodes to add */
1072 VdbeOpList
const *aOp
, /* The opcodes to be added */
1073 int iLineno
/* Source-file line number of first opcode */
1076 VdbeOp
*pOut
, *pFirst
;
1078 assert( p
->eVdbeState
==VDBE_INIT_STATE
);
1079 if( p
->nOp
+ nOp
> p
->nOpAlloc
&& growOpArray(p
, nOp
) ){
1082 pFirst
= pOut
= &p
->aOp
[p
->nOp
];
1083 for(i
=0; i
<nOp
; i
++, aOp
++, pOut
++){
1084 pOut
->opcode
= aOp
->opcode
;
1087 assert( aOp
->p2
>=0 );
1088 if( (sqlite3OpcodeProperty
[aOp
->opcode
] & OPFLG_JUMP
)!=0 && aOp
->p2
>0 ){
1092 pOut
->p4type
= P4_NOTUSED
;
1095 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1098 #ifdef SQLITE_VDBE_COVERAGE
1099 pOut
->iSrcLine
= iLineno
+i
;
1104 if( p
->db
->flags
& SQLITE_VdbeAddopTrace
){
1105 sqlite3VdbePrintOp(0, i
+p
->nOp
, &p
->aOp
[i
+p
->nOp
]);
1113 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS)
1115 ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus().
1117 void sqlite3VdbeScanStatus(
1118 Vdbe
*p
, /* VM to add scanstatus() to */
1119 int addrExplain
, /* Address of OP_Explain (or 0) */
1120 int addrLoop
, /* Address of loop counter */
1121 int addrVisit
, /* Address of rows visited counter */
1122 LogEst nEst
, /* Estimated number of output rows */
1123 const char *zName
/* Name of table or index being scanned */
1125 sqlite3_int64 nByte
= (p
->nScan
+1) * sizeof(ScanStatus
);
1127 aNew
= (ScanStatus
*)sqlite3DbRealloc(p
->db
, p
->aScan
, nByte
);
1129 ScanStatus
*pNew
= &aNew
[p
->nScan
++];
1130 memset(pNew
, 0, sizeof(ScanStatus
));
1131 pNew
->addrExplain
= addrExplain
;
1132 pNew
->addrLoop
= addrLoop
;
1133 pNew
->addrVisit
= addrVisit
;
1135 pNew
->zName
= sqlite3DbStrDup(p
->db
, zName
);
1141 ** Add the range of instructions from addrStart to addrEnd (inclusive) to
1142 ** the set of those corresponding to the sqlite3_stmt_scanstatus() counters
1143 ** associated with the OP_Explain instruction at addrExplain. The
1144 ** sum of the sqlite3Hwtime() values for each of these instructions
1145 ** will be returned for SQLITE_SCANSTAT_NCYCLE requests.
1147 void sqlite3VdbeScanStatusRange(
1153 ScanStatus
*pScan
= 0;
1155 for(ii
=p
->nScan
-1; ii
>=0; ii
--){
1156 pScan
= &p
->aScan
[ii
];
1157 if( pScan
->addrExplain
==addrExplain
) break;
1161 if( addrEnd
<0 ) addrEnd
= sqlite3VdbeCurrentAddr(p
)-1;
1162 for(ii
=0; ii
<ArraySize(pScan
->aAddrRange
); ii
+=2){
1163 if( pScan
->aAddrRange
[ii
]==0 ){
1164 pScan
->aAddrRange
[ii
] = addrStart
;
1165 pScan
->aAddrRange
[ii
+1] = addrEnd
;
1173 ** Set the addresses for the SQLITE_SCANSTAT_NLOOP and SQLITE_SCANSTAT_NROW
1174 ** counters for the query element associated with the OP_Explain at
1177 void sqlite3VdbeScanStatusCounters(
1183 ScanStatus
*pScan
= 0;
1185 for(ii
=p
->nScan
-1; ii
>=0; ii
--){
1186 pScan
= &p
->aScan
[ii
];
1187 if( pScan
->addrExplain
==addrExplain
) break;
1191 pScan
->addrLoop
= addrLoop
;
1192 pScan
->addrVisit
= addrVisit
;
1199 ** Change the value of the opcode, or P1, P2, P3, or P5 operands
1200 ** for a specific instruction.
1202 void sqlite3VdbeChangeOpcode(Vdbe
*p
, int addr
, u8 iNewOpcode
){
1204 sqlite3VdbeGetOp(p
,addr
)->opcode
= iNewOpcode
;
1206 void sqlite3VdbeChangeP1(Vdbe
*p
, int addr
, int val
){
1208 sqlite3VdbeGetOp(p
,addr
)->p1
= val
;
1210 void sqlite3VdbeChangeP2(Vdbe
*p
, int addr
, int val
){
1211 assert( addr
>=0 || p
->db
->mallocFailed
);
1212 sqlite3VdbeGetOp(p
,addr
)->p2
= val
;
1214 void sqlite3VdbeChangeP3(Vdbe
*p
, int addr
, int val
){
1216 sqlite3VdbeGetOp(p
,addr
)->p3
= val
;
1218 void sqlite3VdbeChangeP5(Vdbe
*p
, u16 p5
){
1219 assert( p
->nOp
>0 || p
->db
->mallocFailed
);
1220 if( p
->nOp
>0 ) p
->aOp
[p
->nOp
-1].p5
= p5
;
1224 ** If the previous opcode is an OP_Column that delivers results
1225 ** into register iDest, then add the OPFLAG_TYPEOFARG flag to that
1228 void sqlite3VdbeTypeofColumn(Vdbe
*p
, int iDest
){
1229 VdbeOp
*pOp
= sqlite3VdbeGetLastOp(p
);
1230 if( pOp
->p3
==iDest
&& pOp
->opcode
==OP_Column
){
1231 pOp
->p5
|= OPFLAG_TYPEOFARG
;
1236 ** Change the P2 operand of instruction addr so that it points to
1237 ** the address of the next instruction to be coded.
1239 void sqlite3VdbeJumpHere(Vdbe
*p
, int addr
){
1240 sqlite3VdbeChangeP2(p
, addr
, p
->nOp
);
1244 ** Change the P2 operand of the jump instruction at addr so that
1245 ** the jump lands on the next opcode. Or if the jump instruction was
1246 ** the previous opcode (and is thus a no-op) then simply back up
1247 ** the next instruction counter by one slot so that the jump is
1248 ** overwritten by the next inserted opcode.
1250 ** This routine is an optimization of sqlite3VdbeJumpHere() that
1251 ** strives to omit useless byte-code like this:
1256 void sqlite3VdbeJumpHereOrPopInst(Vdbe
*p
, int addr
){
1257 if( addr
==p
->nOp
-1 ){
1258 assert( p
->aOp
[addr
].opcode
==OP_Once
1259 || p
->aOp
[addr
].opcode
==OP_If
1260 || p
->aOp
[addr
].opcode
==OP_FkIfZero
);
1261 assert( p
->aOp
[addr
].p4type
==0 );
1262 #ifdef SQLITE_VDBE_COVERAGE
1263 sqlite3VdbeGetLastOp(p
)->iSrcLine
= 0; /* Erase VdbeCoverage() macros */
1267 sqlite3VdbeChangeP2(p
, addr
, p
->nOp
);
1273 ** If the input FuncDef structure is ephemeral, then free it. If
1274 ** the FuncDef is not ephermal, then do nothing.
1276 static void freeEphemeralFunction(sqlite3
*db
, FuncDef
*pDef
){
1278 if( (pDef
->funcFlags
& SQLITE_FUNC_EPHEM
)!=0 ){
1279 sqlite3DbNNFreeNN(db
, pDef
);
1284 ** Delete a P4 value if necessary.
1286 static SQLITE_NOINLINE
void freeP4Mem(sqlite3
*db
, Mem
*p
){
1287 if( p
->szMalloc
) sqlite3DbFree(db
, p
->zMalloc
);
1288 sqlite3DbNNFreeNN(db
, p
);
1290 static SQLITE_NOINLINE
void freeP4FuncCtx(sqlite3
*db
, sqlite3_context
*p
){
1292 freeEphemeralFunction(db
, p
->pFunc
);
1293 sqlite3DbNNFreeNN(db
, p
);
1295 static void freeP4(sqlite3
*db
, int p4type
, void *p4
){
1299 freeP4FuncCtx(db
, (sqlite3_context
*)p4
);
1306 if( p4
) sqlite3DbNNFreeNN(db
, p4
);
1310 if( db
->pnBytesFreed
==0 ) sqlite3KeyInfoUnref((KeyInfo
*)p4
);
1313 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1315 sqlite3ExprDelete(db
, (Expr
*)p4
);
1320 freeEphemeralFunction(db
, (FuncDef
*)p4
);
1324 if( db
->pnBytesFreed
==0 ){
1325 sqlite3ValueFree((sqlite3_value
*)p4
);
1327 freeP4Mem(db
, (Mem
*)p4
);
1332 if( db
->pnBytesFreed
==0 ) sqlite3VtabUnlock((VTable
*)p4
);
1339 ** Free the space allocated for aOp and any p4 values allocated for the
1340 ** opcodes contained within. If aOp is not NULL it is assumed to contain
1343 static void vdbeFreeOpArray(sqlite3
*db
, Op
*aOp
, int nOp
){
1347 Op
*pOp
= &aOp
[nOp
-1];
1348 while(1){ /* Exit via break */
1349 if( pOp
->p4type
<= P4_FREE_IF_LE
) freeP4(db
, pOp
->p4type
, pOp
->p4
.p
);
1350 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1351 sqlite3DbFree(db
, pOp
->zComment
);
1353 if( pOp
==aOp
) break;
1356 sqlite3DbNNFreeNN(db
, aOp
);
1361 ** Link the SubProgram object passed as the second argument into the linked
1362 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program
1363 ** objects when the VM is no longer required.
1365 void sqlite3VdbeLinkSubProgram(Vdbe
*pVdbe
, SubProgram
*p
){
1366 p
->pNext
= pVdbe
->pProgram
;
1367 pVdbe
->pProgram
= p
;
1371 ** Return true if the given Vdbe has any SubPrograms.
1373 int sqlite3VdbeHasSubProgram(Vdbe
*pVdbe
){
1374 return pVdbe
->pProgram
!=0;
1378 ** Change the opcode at addr into OP_Noop
1380 int sqlite3VdbeChangeToNoop(Vdbe
*p
, int addr
){
1382 if( p
->db
->mallocFailed
) return 0;
1383 assert( addr
>=0 && addr
<p
->nOp
);
1384 pOp
= &p
->aOp
[addr
];
1385 freeP4(p
->db
, pOp
->p4type
, pOp
->p4
.p
);
1386 pOp
->p4type
= P4_NOTUSED
;
1388 pOp
->opcode
= OP_Noop
;
1393 ** If the last opcode is "op" and it is not a jump destination,
1394 ** then remove it. Return true if and only if an opcode was removed.
1396 int sqlite3VdbeDeletePriorOpcode(Vdbe
*p
, u8 op
){
1397 if( p
->nOp
>0 && p
->aOp
[p
->nOp
-1].opcode
==op
){
1398 return sqlite3VdbeChangeToNoop(p
, p
->nOp
-1);
1406 ** Generate an OP_ReleaseReg opcode to indicate that a range of
1407 ** registers, except any identified by mask, are no longer in use.
1409 void sqlite3VdbeReleaseRegisters(
1410 Parse
*pParse
, /* Parsing context */
1411 int iFirst
, /* Index of first register to be released */
1412 int N
, /* Number of registers to release */
1413 u32 mask
, /* Mask of registers to NOT release */
1414 int bUndefine
/* If true, mark registers as undefined */
1416 if( N
==0 || OptimizationDisabled(pParse
->db
, SQLITE_ReleaseReg
) ) return;
1417 assert( pParse
->pVdbe
);
1418 assert( iFirst
>=1 );
1419 assert( iFirst
+N
-1<=pParse
->nMem
);
1420 if( N
<=31 && mask
!=0 ){
1421 while( N
>0 && (mask
&1)!=0 ){
1426 while( N
>0 && N
<=32 && (mask
& MASKBIT32(N
-1))!=0 ){
1427 mask
&= ~MASKBIT32(N
-1);
1432 sqlite3VdbeAddOp3(pParse
->pVdbe
, OP_ReleaseReg
, iFirst
, N
, *(int*)&mask
);
1433 if( bUndefine
) sqlite3VdbeChangeP5(pParse
->pVdbe
, 1);
1436 #endif /* SQLITE_DEBUG */
1440 ** Change the value of the P4 operand for a specific instruction.
1441 ** This routine is useful when a large program is loaded from a
1442 ** static array using sqlite3VdbeAddOpList but we want to make a
1443 ** few minor changes to the program.
1445 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of
1446 ** the string is made into memory obtained from sqlite3_malloc().
1447 ** A value of n==0 means copy bytes of zP4 up to and including the
1448 ** first null byte. If n>0 then copy n+1 bytes of zP4.
1450 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
1451 ** to a string or structure that is guaranteed to exist for the lifetime of
1452 ** the Vdbe. In these cases we can just copy the pointer.
1454 ** If addr<0 then change P4 on the most recently inserted instruction.
1456 static void SQLITE_NOINLINE
vdbeChangeP4Full(
1463 freeP4(p
->db
, pOp
->p4type
, pOp
->p4
.p
);
1468 sqlite3VdbeChangeP4(p
, (int)(pOp
- p
->aOp
), zP4
, n
);
1470 if( n
==0 ) n
= sqlite3Strlen30(zP4
);
1471 pOp
->p4
.z
= sqlite3DbStrNDup(p
->db
, zP4
, n
);
1472 pOp
->p4type
= P4_DYNAMIC
;
1475 void sqlite3VdbeChangeP4(Vdbe
*p
, int addr
, const char *zP4
, int n
){
1480 assert( p
->eVdbeState
==VDBE_INIT_STATE
);
1481 assert( p
->aOp
!=0 || db
->mallocFailed
);
1482 if( db
->mallocFailed
){
1483 if( n
!=P4_VTAB
) freeP4(db
, n
, (void*)*(char**)&zP4
);
1487 assert( addr
<p
->nOp
);
1491 pOp
= &p
->aOp
[addr
];
1492 if( n
>=0 || pOp
->p4type
){
1493 vdbeChangeP4Full(p
, pOp
, zP4
, n
);
1497 /* Note: this cast is safe, because the origin data point was an int
1498 ** that was cast to a (const char *). */
1499 pOp
->p4
.i
= SQLITE_PTR_TO_INT(zP4
);
1500 pOp
->p4type
= P4_INT32
;
1503 pOp
->p4
.p
= (void*)zP4
;
1504 pOp
->p4type
= (signed char)n
;
1505 if( n
==P4_VTAB
) sqlite3VtabLock((VTable
*)zP4
);
1510 ** Change the P4 operand of the most recently coded instruction
1511 ** to the value defined by the arguments. This is a high-speed
1512 ** version of sqlite3VdbeChangeP4().
1514 ** The P4 operand must not have been previously defined. And the new
1515 ** P4 must not be P4_INT32. Use sqlite3VdbeChangeP4() in either of
1518 void sqlite3VdbeAppendP4(Vdbe
*p
, void *pP4
, int n
){
1520 assert( n
!=P4_INT32
&& n
!=P4_VTAB
);
1522 if( p
->db
->mallocFailed
){
1523 freeP4(p
->db
, n
, pP4
);
1525 assert( pP4
!=0 || n
==P4_DYNAMIC
);
1527 pOp
= &p
->aOp
[p
->nOp
-1];
1528 assert( pOp
->p4type
==P4_NOTUSED
);
1535 ** Set the P4 on the most recently added opcode to the KeyInfo for the
1538 void sqlite3VdbeSetP4KeyInfo(Parse
*pParse
, Index
*pIdx
){
1539 Vdbe
*v
= pParse
->pVdbe
;
1543 pKeyInfo
= sqlite3KeyInfoOfIndex(pParse
, pIdx
);
1544 if( pKeyInfo
) sqlite3VdbeAppendP4(v
, pKeyInfo
, P4_KEYINFO
);
1547 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1549 ** Change the comment on the most recently coded instruction. Or
1550 ** insert a No-op and add the comment to that new instruction. This
1551 ** makes the code easier to read during debugging. None of this happens
1552 ** in a production build.
1554 static void vdbeVComment(Vdbe
*p
, const char *zFormat
, va_list ap
){
1555 assert( p
->nOp
>0 || p
->aOp
==0 );
1556 assert( p
->aOp
==0 || p
->aOp
[p
->nOp
-1].zComment
==0 || p
->pParse
->nErr
>0 );
1559 sqlite3DbFree(p
->db
, p
->aOp
[p
->nOp
-1].zComment
);
1560 p
->aOp
[p
->nOp
-1].zComment
= sqlite3VMPrintf(p
->db
, zFormat
, ap
);
1563 void sqlite3VdbeComment(Vdbe
*p
, const char *zFormat
, ...){
1566 va_start(ap
, zFormat
);
1567 vdbeVComment(p
, zFormat
, ap
);
1571 void sqlite3VdbeNoopComment(Vdbe
*p
, const char *zFormat
, ...){
1574 sqlite3VdbeAddOp0(p
, OP_Noop
);
1575 va_start(ap
, zFormat
);
1576 vdbeVComment(p
, zFormat
, ap
);
1582 #ifdef SQLITE_VDBE_COVERAGE
1584 ** Set the value if the iSrcLine field for the previously coded instruction.
1586 void sqlite3VdbeSetLineNumber(Vdbe
*v
, int iLine
){
1587 sqlite3VdbeGetLastOp(v
)->iSrcLine
= iLine
;
1589 #endif /* SQLITE_VDBE_COVERAGE */
1592 ** Return the opcode for a given address. The address must be non-negative.
1593 ** See sqlite3VdbeGetLastOp() to get the most recently added opcode.
1595 ** If a memory allocation error has occurred prior to the calling of this
1596 ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode
1597 ** is readable but not writable, though it is cast to a writable value.
1598 ** The return of a dummy opcode allows the call to continue functioning
1599 ** after an OOM fault without having to check to see if the return from
1600 ** this routine is a valid pointer. But because the dummy.opcode is 0,
1601 ** dummy will never be written to. This is verified by code inspection and
1602 ** by running with Valgrind.
1604 VdbeOp
*sqlite3VdbeGetOp(Vdbe
*p
, int addr
){
1605 /* C89 specifies that the constant "dummy" will be initialized to all
1606 ** zeros, which is correct. MSVC generates a warning, nevertheless. */
1607 static VdbeOp dummy
; /* Ignore the MSVC warning about no initializer */
1608 assert( p
->eVdbeState
==VDBE_INIT_STATE
);
1609 assert( (addr
>=0 && addr
<p
->nOp
) || p
->db
->mallocFailed
);
1610 if( p
->db
->mallocFailed
){
1611 return (VdbeOp
*)&dummy
;
1613 return &p
->aOp
[addr
];
1617 /* Return the most recently added opcode
1619 VdbeOp
* sqlite3VdbeGetLastOp(Vdbe
*p
){
1620 return sqlite3VdbeGetOp(p
, p
->nOp
- 1);
1623 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS)
1625 ** Return an integer value for one of the parameters to the opcode pOp
1626 ** determined by character c.
1628 static int translateP(char c
, const Op
*pOp
){
1629 if( c
=='1' ) return pOp
->p1
;
1630 if( c
=='2' ) return pOp
->p2
;
1631 if( c
=='3' ) return pOp
->p3
;
1632 if( c
=='4' ) return pOp
->p4
.i
;
1637 ** Compute a string for the "comment" field of a VDBE opcode listing.
1639 ** The Synopsis: field in comments in the vdbe.c source file gets converted
1640 ** to an extra string that is appended to the sqlite3OpcodeName(). In the
1641 ** absence of other comments, this synopsis becomes the comment on the opcode.
1642 ** Some translation occurs:
1645 ** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1
1646 ** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0
1647 ** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x
1649 char *sqlite3VdbeDisplayComment(
1650 sqlite3
*db
, /* Optional - Oom error reporting only */
1651 const Op
*pOp
, /* The opcode to be commented */
1652 const char *zP4
/* Previously obtained value for P4 */
1654 const char *zOpName
;
1655 const char *zSynopsis
;
1661 sqlite3StrAccumInit(&x
, 0, 0, 0, SQLITE_MAX_LENGTH
);
1662 zOpName
= sqlite3OpcodeName(pOp
->opcode
);
1663 nOpName
= sqlite3Strlen30(zOpName
);
1664 if( zOpName
[nOpName
+1] ){
1667 zSynopsis
= zOpName
+ nOpName
+ 1;
1668 if( strncmp(zSynopsis
,"IF ",3)==0 ){
1669 sqlite3_snprintf(sizeof(zAlt
), zAlt
, "if %s goto P2", zSynopsis
+3);
1672 for(ii
=0; (c
= zSynopsis
[ii
])!=0; ii
++){
1674 c
= zSynopsis
[++ii
];
1676 sqlite3_str_appendall(&x
, zP4
);
1678 if( pOp
->zComment
&& pOp
->zComment
[0] ){
1679 sqlite3_str_appendall(&x
, pOp
->zComment
);
1684 int v1
= translateP(c
, pOp
);
1686 if( strncmp(zSynopsis
+ii
+1, "@P", 2)==0 ){
1688 v2
= translateP(zSynopsis
[ii
], pOp
);
1689 if( strncmp(zSynopsis
+ii
+1,"+1",2)==0 ){
1694 sqlite3_str_appendf(&x
, "%d", v1
);
1696 sqlite3_str_appendf(&x
, "%d..%d", v1
, v1
+v2
-1);
1698 }else if( strncmp(zSynopsis
+ii
+1, "@NP", 3)==0 ){
1699 sqlite3_context
*pCtx
= pOp
->p4
.pCtx
;
1700 if( pOp
->p4type
!=P4_FUNCCTX
|| pCtx
->argc
==1 ){
1701 sqlite3_str_appendf(&x
, "%d", v1
);
1702 }else if( pCtx
->argc
>1 ){
1703 sqlite3_str_appendf(&x
, "%d..%d", v1
, v1
+pCtx
->argc
-1);
1704 }else if( x
.accError
==0 ){
1705 assert( x
.nChar
>2 );
1711 sqlite3_str_appendf(&x
, "%d", v1
);
1712 if( strncmp(zSynopsis
+ii
+1, "..P3", 4)==0 && pOp
->p3
==0 ){
1718 sqlite3_str_appendchar(&x
, 1, c
);
1721 if( !seenCom
&& pOp
->zComment
){
1722 sqlite3_str_appendf(&x
, "; %s", pOp
->zComment
);
1724 }else if( pOp
->zComment
){
1725 sqlite3_str_appendall(&x
, pOp
->zComment
);
1727 if( (x
.accError
& SQLITE_NOMEM
)!=0 && db
!=0 ){
1728 sqlite3OomFault(db
);
1730 return sqlite3StrAccumFinish(&x
);
1732 #endif /* SQLITE_ENABLE_EXPLAIN_COMMENTS */
1734 #if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS)
1736 ** Translate the P4.pExpr value for an OP_CursorHint opcode into text
1737 ** that can be displayed in the P4 column of EXPLAIN output.
1739 static void displayP4Expr(StrAccum
*p
, Expr
*pExpr
){
1740 const char *zOp
= 0;
1741 switch( pExpr
->op
){
1743 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
1744 sqlite3_str_appendf(p
, "%Q", pExpr
->u
.zToken
);
1747 sqlite3_str_appendf(p
, "%d", pExpr
->u
.iValue
);
1750 sqlite3_str_appendf(p
, "NULL");
1753 sqlite3_str_appendf(p
, "r[%d]", pExpr
->iTable
);
1757 if( pExpr
->iColumn
<0 ){
1758 sqlite3_str_appendf(p
, "rowid");
1760 sqlite3_str_appendf(p
, "c%d", (int)pExpr
->iColumn
);
1764 case TK_LT
: zOp
= "LT"; break;
1765 case TK_LE
: zOp
= "LE"; break;
1766 case TK_GT
: zOp
= "GT"; break;
1767 case TK_GE
: zOp
= "GE"; break;
1768 case TK_NE
: zOp
= "NE"; break;
1769 case TK_EQ
: zOp
= "EQ"; break;
1770 case TK_IS
: zOp
= "IS"; break;
1771 case TK_ISNOT
: zOp
= "ISNOT"; break;
1772 case TK_AND
: zOp
= "AND"; break;
1773 case TK_OR
: zOp
= "OR"; break;
1774 case TK_PLUS
: zOp
= "ADD"; break;
1775 case TK_STAR
: zOp
= "MUL"; break;
1776 case TK_MINUS
: zOp
= "SUB"; break;
1777 case TK_REM
: zOp
= "REM"; break;
1778 case TK_BITAND
: zOp
= "BITAND"; break;
1779 case TK_BITOR
: zOp
= "BITOR"; break;
1780 case TK_SLASH
: zOp
= "DIV"; break;
1781 case TK_LSHIFT
: zOp
= "LSHIFT"; break;
1782 case TK_RSHIFT
: zOp
= "RSHIFT"; break;
1783 case TK_CONCAT
: zOp
= "CONCAT"; break;
1784 case TK_UMINUS
: zOp
= "MINUS"; break;
1785 case TK_UPLUS
: zOp
= "PLUS"; break;
1786 case TK_BITNOT
: zOp
= "BITNOT"; break;
1787 case TK_NOT
: zOp
= "NOT"; break;
1788 case TK_ISNULL
: zOp
= "ISNULL"; break;
1789 case TK_NOTNULL
: zOp
= "NOTNULL"; break;
1792 sqlite3_str_appendf(p
, "%s", "expr");
1797 sqlite3_str_appendf(p
, "%s(", zOp
);
1798 displayP4Expr(p
, pExpr
->pLeft
);
1799 if( pExpr
->pRight
){
1800 sqlite3_str_append(p
, ",", 1);
1801 displayP4Expr(p
, pExpr
->pRight
);
1803 sqlite3_str_append(p
, ")", 1);
1806 #endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */
1811 ** Compute a string that describes the P4 parameter for an opcode.
1812 ** Use zTemp for any required temporary buffer space.
1814 char *sqlite3VdbeDisplayP4(sqlite3
*db
, Op
*pOp
){
1818 sqlite3StrAccumInit(&x
, 0, 0, 0, SQLITE_MAX_LENGTH
);
1819 switch( pOp
->p4type
){
1822 KeyInfo
*pKeyInfo
= pOp
->p4
.pKeyInfo
;
1823 assert( pKeyInfo
->aSortFlags
!=0 );
1824 sqlite3_str_appendf(&x
, "k(%d", pKeyInfo
->nKeyField
);
1825 for(j
=0; j
<pKeyInfo
->nKeyField
; j
++){
1826 CollSeq
*pColl
= pKeyInfo
->aColl
[j
];
1827 const char *zColl
= pColl
? pColl
->zName
: "";
1828 if( strcmp(zColl
, "BINARY")==0 ) zColl
= "B";
1829 sqlite3_str_appendf(&x
, ",%s%s%s",
1830 (pKeyInfo
->aSortFlags
[j
] & KEYINFO_ORDER_DESC
) ? "-" : "",
1831 (pKeyInfo
->aSortFlags
[j
] & KEYINFO_ORDER_BIGNULL
)? "N." : "",
1834 sqlite3_str_append(&x
, ")", 1);
1837 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1839 displayP4Expr(&x
, pOp
->p4
.pExpr
);
1844 static const char *const encnames
[] = {"?", "8", "16LE", "16BE"};
1845 CollSeq
*pColl
= pOp
->p4
.pColl
;
1846 assert( pColl
->enc
<4 );
1847 sqlite3_str_appendf(&x
, "%.18s-%s", pColl
->zName
,
1848 encnames
[pColl
->enc
]);
1852 FuncDef
*pDef
= pOp
->p4
.pFunc
;
1853 sqlite3_str_appendf(&x
, "%s(%d)", pDef
->zName
, pDef
->nArg
);
1857 FuncDef
*pDef
= pOp
->p4
.pCtx
->pFunc
;
1858 sqlite3_str_appendf(&x
, "%s(%d)", pDef
->zName
, pDef
->nArg
);
1862 sqlite3_str_appendf(&x
, "%lld", *pOp
->p4
.pI64
);
1866 sqlite3_str_appendf(&x
, "%d", pOp
->p4
.i
);
1870 sqlite3_str_appendf(&x
, "%.16g", *pOp
->p4
.pReal
);
1874 Mem
*pMem
= pOp
->p4
.pMem
;
1875 if( pMem
->flags
& MEM_Str
){
1877 }else if( pMem
->flags
& (MEM_Int
|MEM_IntReal
) ){
1878 sqlite3_str_appendf(&x
, "%lld", pMem
->u
.i
);
1879 }else if( pMem
->flags
& MEM_Real
){
1880 sqlite3_str_appendf(&x
, "%.16g", pMem
->u
.r
);
1881 }else if( pMem
->flags
& MEM_Null
){
1884 assert( pMem
->flags
& MEM_Blob
);
1889 #ifndef SQLITE_OMIT_VIRTUALTABLE
1891 sqlite3_vtab
*pVtab
= pOp
->p4
.pVtab
->pVtab
;
1892 sqlite3_str_appendf(&x
, "vtab:%p", pVtab
);
1898 u32
*ai
= pOp
->p4
.ai
;
1899 u32 n
= ai
[0]; /* The first element of an INTARRAY is always the
1900 ** count of the number of elements to follow */
1901 for(i
=1; i
<=n
; i
++){
1902 sqlite3_str_appendf(&x
, "%c%u", (i
==1 ? '[' : ','), ai
[i
]);
1904 sqlite3_str_append(&x
, "]", 1);
1907 case P4_SUBPROGRAM
: {
1912 zP4
= pOp
->p4
.pTab
->zName
;
1919 if( zP4
) sqlite3_str_appendall(&x
, zP4
);
1920 if( (x
.accError
& SQLITE_NOMEM
)!=0 ){
1921 sqlite3OomFault(db
);
1923 return sqlite3StrAccumFinish(&x
);
1925 #endif /* VDBE_DISPLAY_P4 */
1928 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
1930 ** The prepared statements need to know in advance the complete set of
1931 ** attached databases that will be use. A mask of these databases
1932 ** is maintained in p->btreeMask. The p->lockMask value is the subset of
1933 ** p->btreeMask of databases that will require a lock.
1935 void sqlite3VdbeUsesBtree(Vdbe
*p
, int i
){
1936 assert( i
>=0 && i
<p
->db
->nDb
&& i
<(int)sizeof(yDbMask
)*8 );
1937 assert( i
<(int)sizeof(p
->btreeMask
)*8 );
1938 DbMaskSet(p
->btreeMask
, i
);
1939 if( i
!=1 && sqlite3BtreeSharable(p
->db
->aDb
[i
].pBt
) ){
1940 DbMaskSet(p
->lockMask
, i
);
1944 #if !defined(SQLITE_OMIT_SHARED_CACHE)
1946 ** If SQLite is compiled to support shared-cache mode and to be threadsafe,
1947 ** this routine obtains the mutex associated with each BtShared structure
1948 ** that may be accessed by the VM passed as an argument. In doing so it also
1949 ** sets the BtShared.db member of each of the BtShared structures, ensuring
1950 ** that the correct busy-handler callback is invoked if required.
1952 ** If SQLite is not threadsafe but does support shared-cache mode, then
1953 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables
1954 ** of all of BtShared structures accessible via the database handle
1955 ** associated with the VM.
1957 ** If SQLite is not threadsafe and does not support shared-cache mode, this
1958 ** function is a no-op.
1960 ** The p->btreeMask field is a bitmask of all btrees that the prepared
1961 ** statement p will ever use. Let N be the number of bits in p->btreeMask
1962 ** corresponding to btrees that use shared cache. Then the runtime of
1963 ** this routine is N*N. But as N is rarely more than 1, this should not
1966 void sqlite3VdbeEnter(Vdbe
*p
){
1971 if( DbMaskAllZero(p
->lockMask
) ) return; /* The common case */
1975 for(i
=0; i
<nDb
; i
++){
1976 if( i
!=1 && DbMaskTest(p
->lockMask
,i
) && ALWAYS(aDb
[i
].pBt
!=0) ){
1977 sqlite3BtreeEnter(aDb
[i
].pBt
);
1983 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
1985 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter().
1987 static SQLITE_NOINLINE
void vdbeLeave(Vdbe
*p
){
1995 for(i
=0; i
<nDb
; i
++){
1996 if( i
!=1 && DbMaskTest(p
->lockMask
,i
) && ALWAYS(aDb
[i
].pBt
!=0) ){
1997 sqlite3BtreeLeave(aDb
[i
].pBt
);
2001 void sqlite3VdbeLeave(Vdbe
*p
){
2002 if( DbMaskAllZero(p
->lockMask
) ) return; /* The common case */
2007 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
2009 ** Print a single opcode. This routine is used for debugging only.
2011 void sqlite3VdbePrintOp(FILE *pOut
, int pc
, VdbeOp
*pOp
){
2015 static const char *zFormat1
= "%4d %-13s %4d %4d %4d %-13s %.2X %s\n";
2016 if( pOut
==0 ) pOut
= stdout
;
2017 sqlite3BeginBenignMalloc();
2018 dummyDb
.mallocFailed
= 1;
2019 zP4
= sqlite3VdbeDisplayP4(&dummyDb
, pOp
);
2020 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
2021 zCom
= sqlite3VdbeDisplayComment(0, pOp
, zP4
);
2025 /* NB: The sqlite3OpcodeName() function is implemented by code created
2026 ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the
2027 ** information from the vdbe.c source text */
2028 fprintf(pOut
, zFormat1
, pc
,
2029 sqlite3OpcodeName(pOp
->opcode
), pOp
->p1
, pOp
->p2
, pOp
->p3
,
2030 zP4
? zP4
: "", pOp
->p5
,
2036 sqlite3EndBenignMalloc();
2041 ** Initialize an array of N Mem element.
2043 ** This is a high-runner, so only those fields that really do need to
2044 ** be initialized are set. The Mem structure is organized so that
2045 ** the fields that get initialized are nearby and hopefully on the same
2048 ** Mem.flags = flags
2052 ** All other fields of Mem can safely remain uninitialized for now. They
2053 ** will be initialized before use.
2055 static void initMemArray(Mem
*p
, int N
, sqlite3
*db
, u16 flags
){
2070 ** Release auxiliary memory held in an array of N Mem elements.
2072 ** After this routine returns, all Mem elements in the array will still
2073 ** be valid. Those Mem elements that were not holding auxiliary resources
2074 ** will be unchanged. Mem elements which had something freed will be
2075 ** set to MEM_Undefined.
2077 static void releaseMemArray(Mem
*p
, int N
){
2080 sqlite3
*db
= p
->db
;
2081 if( db
->pnBytesFreed
){
2083 if( p
->szMalloc
) sqlite3DbFree(db
, p
->zMalloc
);
2084 }while( (++p
)<pEnd
);
2088 assert( (&p
[1])==pEnd
|| p
[0].db
==p
[1].db
);
2089 assert( sqlite3VdbeCheckMemInvariants(p
) );
2091 /* This block is really an inlined version of sqlite3VdbeMemRelease()
2092 ** that takes advantage of the fact that the memory cell value is
2093 ** being set to NULL after releasing any dynamic resources.
2095 ** The justification for duplicating code is that according to
2096 ** callgrind, this causes a certain test case to hit the CPU 4.7
2097 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if
2098 ** sqlite3MemRelease() were called from here. With -O2, this jumps
2099 ** to 6.6 percent. The test case is inserting 1000 rows into a table
2100 ** with no indexes using a single prepared INSERT statement, bind()
2101 ** and reset(). Inserts are grouped into a transaction.
2103 testcase( p
->flags
& MEM_Agg
);
2104 testcase( p
->flags
& MEM_Dyn
);
2105 if( p
->flags
&(MEM_Agg
|MEM_Dyn
) ){
2106 testcase( (p
->flags
& MEM_Dyn
)!=0 && p
->xDel
==sqlite3VdbeFrameMemDel
);
2107 sqlite3VdbeMemRelease(p
);
2108 p
->flags
= MEM_Undefined
;
2109 }else if( p
->szMalloc
){
2110 sqlite3DbNNFreeNN(db
, p
->zMalloc
);
2112 p
->flags
= MEM_Undefined
;
2116 p
->flags
= MEM_Undefined
;
2119 }while( (++p
)<pEnd
);
2125 ** Verify that pFrame is a valid VdbeFrame pointer. Return true if it is
2126 ** and false if something is wrong.
2128 ** This routine is intended for use inside of assert() statements only.
2130 int sqlite3VdbeFrameIsValid(VdbeFrame
*pFrame
){
2131 if( pFrame
->iFrameMagic
!=SQLITE_FRAME_MAGIC
) return 0;
2138 ** This is a destructor on a Mem object (which is really an sqlite3_value)
2139 ** that deletes the Frame object that is attached to it as a blob.
2141 ** This routine does not delete the Frame right away. It merely adds the
2142 ** frame to a list of frames to be deleted when the Vdbe halts.
2144 void sqlite3VdbeFrameMemDel(void *pArg
){
2145 VdbeFrame
*pFrame
= (VdbeFrame
*)pArg
;
2146 assert( sqlite3VdbeFrameIsValid(pFrame
) );
2147 pFrame
->pParent
= pFrame
->v
->pDelFrame
;
2148 pFrame
->v
->pDelFrame
= pFrame
;
2151 #if defined(SQLITE_ENABLE_BYTECODE_VTAB) || !defined(SQLITE_OMIT_EXPLAIN)
2153 ** Locate the next opcode to be displayed in EXPLAIN or EXPLAIN
2154 ** QUERY PLAN output.
2156 ** Return SQLITE_ROW on success. Return SQLITE_DONE if there are no
2157 ** more opcodes to be displayed.
2159 int sqlite3VdbeNextOpcode(
2160 Vdbe
*p
, /* The statement being explained */
2161 Mem
*pSub
, /* Storage for keeping track of subprogram nesting */
2162 int eMode
, /* 0: normal. 1: EQP. 2: TablesUsed */
2163 int *piPc
, /* IN/OUT: Current rowid. Overwritten with next rowid */
2164 int *piAddr
, /* OUT: Write index into (*paOp)[] here */
2165 Op
**paOp
/* OUT: Write the opcode array here */
2167 int nRow
; /* Stop when row count reaches this */
2168 int nSub
= 0; /* Number of sub-vdbes seen so far */
2169 SubProgram
**apSub
= 0; /* Array of sub-vdbes */
2170 int i
; /* Next instruction address */
2171 int rc
= SQLITE_OK
; /* Result code */
2172 Op
*aOp
= 0; /* Opcode array */
2173 int iPc
; /* Rowid. Copy of value in *piPc */
2175 /* When the number of output rows reaches nRow, that means the
2176 ** listing has finished and sqlite3_step() should return SQLITE_DONE.
2177 ** nRow is the sum of the number of rows in the main program, plus
2178 ** the sum of the number of rows in all trigger subprograms encountered
2179 ** so far. The nRow value will increase as new trigger subprograms are
2180 ** encountered, but p->pc will eventually catch up to nRow.
2184 if( pSub
->flags
&MEM_Blob
){
2185 /* pSub is initiallly NULL. It is initialized to a BLOB by
2186 ** the P4_SUBPROGRAM processing logic below */
2187 nSub
= pSub
->n
/sizeof(Vdbe
*);
2188 apSub
= (SubProgram
**)pSub
->z
;
2190 for(i
=0; i
<nSub
; i
++){
2191 nRow
+= apSub
[i
]->nOp
;
2195 while(1){ /* Loop exits via break */
2203 /* The rowid is small enough that we are still in the
2207 /* We are currently listing subprograms. Figure out which one and
2208 ** pick up the appropriate opcode. */
2213 for(j
=0; i
>=apSub
[j
]->nOp
; j
++){
2215 assert( i
<apSub
[j
]->nOp
|| j
+1<nSub
);
2217 aOp
= apSub
[j
]->aOp
;
2220 /* When an OP_Program opcode is encounter (the only opcode that has
2221 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms
2222 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram
2223 ** has not already been seen.
2225 if( pSub
!=0 && aOp
[i
].p4type
==P4_SUBPROGRAM
){
2226 int nByte
= (nSub
+1)*sizeof(SubProgram
*);
2228 for(j
=0; j
<nSub
; j
++){
2229 if( apSub
[j
]==aOp
[i
].p4
.pProgram
) break;
2232 p
->rc
= sqlite3VdbeMemGrow(pSub
, nByte
, nSub
!=0);
2233 if( p
->rc
!=SQLITE_OK
){
2237 apSub
= (SubProgram
**)pSub
->z
;
2238 apSub
[nSub
++] = aOp
[i
].p4
.pProgram
;
2239 MemSetTypeFlag(pSub
, MEM_Blob
);
2240 pSub
->n
= nSub
*sizeof(SubProgram
*);
2241 nRow
+= aOp
[i
].p4
.pProgram
->nOp
;
2244 if( eMode
==0 ) break;
2245 #ifdef SQLITE_ENABLE_BYTECODE_VTAB
2248 if( pOp
->opcode
==OP_OpenRead
) break;
2249 if( pOp
->opcode
==OP_OpenWrite
&& (pOp
->p5
& OPFLAG_P2ISREG
)==0 ) break;
2250 if( pOp
->opcode
==OP_ReopenIdx
) break;
2255 if( aOp
[i
].opcode
==OP_Explain
) break;
2256 if( aOp
[i
].opcode
==OP_Init
&& iPc
>1 ) break;
2264 #endif /* SQLITE_ENABLE_BYTECODE_VTAB || !SQLITE_OMIT_EXPLAIN */
2268 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are
2269 ** allocated by the OP_Program opcode in sqlite3VdbeExec().
2271 void sqlite3VdbeFrameDelete(VdbeFrame
*p
){
2273 Mem
*aMem
= VdbeFrameMem(p
);
2274 VdbeCursor
**apCsr
= (VdbeCursor
**)&aMem
[p
->nChildMem
];
2275 assert( sqlite3VdbeFrameIsValid(p
) );
2276 for(i
=0; i
<p
->nChildCsr
; i
++){
2277 if( apCsr
[i
] ) sqlite3VdbeFreeCursorNN(p
->v
, apCsr
[i
]);
2279 releaseMemArray(aMem
, p
->nChildMem
);
2280 sqlite3VdbeDeleteAuxData(p
->v
->db
, &p
->pAuxData
, -1, 0);
2281 sqlite3DbFree(p
->v
->db
, p
);
2284 #ifndef SQLITE_OMIT_EXPLAIN
2286 ** Give a listing of the program in the virtual machine.
2288 ** The interface is the same as sqlite3VdbeExec(). But instead of
2289 ** running the code, it invokes the callback once for each instruction.
2290 ** This feature is used to implement "EXPLAIN".
2292 ** When p->explain==1, each instruction is listed. When
2293 ** p->explain==2, only OP_Explain instructions are listed and these
2294 ** are shown in a different format. p->explain==2 is used to implement
2295 ** EXPLAIN QUERY PLAN.
2296 ** 2018-04-24: In p->explain==2 mode, the OP_Init opcodes of triggers
2297 ** are also shown, so that the boundaries between the main program and
2298 ** each trigger are clear.
2300 ** When p->explain==1, first the main program is listed, then each of
2301 ** the trigger subprograms are listed one by one.
2303 int sqlite3VdbeList(
2304 Vdbe
*p
/* The VDBE */
2306 Mem
*pSub
= 0; /* Memory cell hold array of subprogs */
2307 sqlite3
*db
= p
->db
; /* The database connection */
2308 int i
; /* Loop counter */
2309 int rc
= SQLITE_OK
; /* Return code */
2310 Mem
*pMem
= &p
->aMem
[1]; /* First Mem of result set */
2311 int bListSubprogs
= (p
->explain
==1 || (db
->flags
& SQLITE_TriggerEQP
)!=0);
2312 Op
*aOp
; /* Array of opcodes */
2313 Op
*pOp
; /* Current opcode */
2315 assert( p
->explain
);
2316 assert( p
->eVdbeState
==VDBE_RUN_STATE
);
2317 assert( p
->rc
==SQLITE_OK
|| p
->rc
==SQLITE_BUSY
|| p
->rc
==SQLITE_NOMEM
);
2319 /* Even though this opcode does not use dynamic strings for
2320 ** the result, result columns may become dynamic if the user calls
2321 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
2323 releaseMemArray(pMem
, 8);
2325 if( p
->rc
==SQLITE_NOMEM
){
2326 /* This happens if a malloc() inside a call to sqlite3_column_text() or
2327 ** sqlite3_column_text16() failed. */
2328 sqlite3OomFault(db
);
2329 return SQLITE_ERROR
;
2332 if( bListSubprogs
){
2333 /* The first 8 memory cells are used for the result set. So we will
2334 ** commandeer the 9th cell to use as storage for an array of pointers
2335 ** to trigger subprograms. The VDBE is guaranteed to have at least 9
2337 assert( p
->nMem
>9 );
2343 /* Figure out which opcode is next to display */
2344 rc
= sqlite3VdbeNextOpcode(p
, pSub
, p
->explain
==2, &p
->pc
, &i
, &aOp
);
2346 if( rc
==SQLITE_OK
){
2348 if( AtomicLoad(&db
->u1
.isInterrupted
) ){
2349 p
->rc
= SQLITE_INTERRUPT
;
2351 sqlite3VdbeError(p
, sqlite3ErrStr(p
->rc
));
2353 char *zP4
= sqlite3VdbeDisplayP4(db
, pOp
);
2354 if( p
->explain
==2 ){
2355 sqlite3VdbeMemSetInt64(pMem
, pOp
->p1
);
2356 sqlite3VdbeMemSetInt64(pMem
+1, pOp
->p2
);
2357 sqlite3VdbeMemSetInt64(pMem
+2, pOp
->p3
);
2358 sqlite3VdbeMemSetStr(pMem
+3, zP4
, -1, SQLITE_UTF8
, sqlite3_free
);
2361 sqlite3VdbeMemSetInt64(pMem
+0, i
);
2362 sqlite3VdbeMemSetStr(pMem
+1, (char*)sqlite3OpcodeName(pOp
->opcode
),
2363 -1, SQLITE_UTF8
, SQLITE_STATIC
);
2364 sqlite3VdbeMemSetInt64(pMem
+2, pOp
->p1
);
2365 sqlite3VdbeMemSetInt64(pMem
+3, pOp
->p2
);
2366 sqlite3VdbeMemSetInt64(pMem
+4, pOp
->p3
);
2367 /* pMem+5 for p4 is done last */
2368 sqlite3VdbeMemSetInt64(pMem
+6, pOp
->p5
);
2369 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
2371 char *zCom
= sqlite3VdbeDisplayComment(db
, pOp
, zP4
);
2372 sqlite3VdbeMemSetStr(pMem
+7, zCom
, -1, SQLITE_UTF8
, sqlite3_free
);
2375 sqlite3VdbeMemSetNull(pMem
+7);
2377 sqlite3VdbeMemSetStr(pMem
+5, zP4
, -1, SQLITE_UTF8
, sqlite3_free
);
2380 p
->pResultRow
= pMem
;
2381 if( db
->mallocFailed
){
2382 p
->rc
= SQLITE_NOMEM
;
2392 #endif /* SQLITE_OMIT_EXPLAIN */
2396 ** Print the SQL that was used to generate a VDBE program.
2398 void sqlite3VdbePrintSql(Vdbe
*p
){
2402 }else if( p
->nOp
>=1 ){
2403 const VdbeOp
*pOp
= &p
->aOp
[0];
2404 if( pOp
->opcode
==OP_Init
&& pOp
->p4
.z
!=0 ){
2406 while( sqlite3Isspace(*z
) ) z
++;
2409 if( z
) printf("SQL: [%s]\n", z
);
2413 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
2415 ** Print an IOTRACE message showing SQL content.
2417 void sqlite3VdbeIOTraceSql(Vdbe
*p
){
2420 if( sqlite3IoTrace
==0 ) return;
2423 if( pOp
->opcode
==OP_Init
&& pOp
->p4
.z
!=0 ){
2426 sqlite3_snprintf(sizeof(z
), z
, "%s", pOp
->p4
.z
);
2427 for(i
=0; sqlite3Isspace(z
[i
]); i
++){}
2428 for(j
=0; z
[i
]; i
++){
2429 if( sqlite3Isspace(z
[i
]) ){
2438 sqlite3IoTrace("SQL %s\n", z
);
2441 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
2443 /* An instance of this object describes bulk memory available for use
2444 ** by subcomponents of a prepared statement. Space is allocated out
2445 ** of a ReusableSpace object by the allocSpace() routine below.
2447 struct ReusableSpace
{
2448 u8
*pSpace
; /* Available memory */
2449 sqlite3_int64 nFree
; /* Bytes of available memory */
2450 sqlite3_int64 nNeeded
; /* Total bytes that could not be allocated */
2453 /* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf
2454 ** from the ReusableSpace object. Return a pointer to the allocated
2455 ** memory on success. If insufficient memory is available in the
2456 ** ReusableSpace object, increase the ReusableSpace.nNeeded
2457 ** value by the amount needed and return NULL.
2459 ** If pBuf is not initially NULL, that means that the memory has already
2460 ** been allocated by a prior call to this routine, so just return a copy
2461 ** of pBuf and leave ReusableSpace unchanged.
2463 ** This allocator is employed to repurpose unused slots at the end of the
2464 ** opcode array of prepared state for other memory needs of the prepared
2467 static void *allocSpace(
2468 struct ReusableSpace
*p
, /* Bulk memory available for allocation */
2469 void *pBuf
, /* Pointer to a prior allocation */
2470 sqlite3_int64 nByte
/* Bytes of memory needed. */
2472 assert( EIGHT_BYTE_ALIGNMENT(p
->pSpace
) );
2474 nByte
= ROUND8P(nByte
);
2475 if( nByte
<= p
->nFree
){
2477 pBuf
= &p
->pSpace
[p
->nFree
];
2479 p
->nNeeded
+= nByte
;
2482 assert( EIGHT_BYTE_ALIGNMENT(pBuf
) );
2487 ** Rewind the VDBE back to the beginning in preparation for
2490 void sqlite3VdbeRewind(Vdbe
*p
){
2491 #if defined(SQLITE_DEBUG)
2495 assert( p
->eVdbeState
==VDBE_INIT_STATE
2496 || p
->eVdbeState
==VDBE_READY_STATE
2497 || p
->eVdbeState
==VDBE_HALT_STATE
);
2499 /* There should be at least one opcode.
2503 p
->eVdbeState
= VDBE_READY_STATE
;
2506 for(i
=0; i
<p
->nMem
; i
++){
2507 assert( p
->aMem
[i
].db
==p
->db
);
2512 p
->errorAction
= OE_Abort
;
2515 p
->minWriteFileFormat
= 255;
2517 p
->nFkConstraint
= 0;
2519 for(i
=0; i
<p
->nOp
; i
++){
2520 p
->aOp
[i
].nExec
= 0;
2521 p
->aOp
[i
].nCycle
= 0;
2527 ** Prepare a virtual machine for execution for the first time after
2528 ** creating the virtual machine. This involves things such
2529 ** as allocating registers and initializing the program counter.
2530 ** After the VDBE has be prepped, it can be executed by one or more
2531 ** calls to sqlite3VdbeExec().
2533 ** This function may be called exactly once on each virtual machine.
2534 ** After this routine is called the VM has been "packaged" and is ready
2535 ** to run. After this routine is called, further calls to
2536 ** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects
2537 ** the Vdbe from the Parse object that helped generate it so that the
2538 ** the Vdbe becomes an independent entity and the Parse object can be
2541 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back
2542 ** to its initial state after it has been run.
2544 void sqlite3VdbeMakeReady(
2545 Vdbe
*p
, /* The VDBE */
2546 Parse
*pParse
/* Parsing context */
2548 sqlite3
*db
; /* The database connection */
2549 int nVar
; /* Number of parameters */
2550 int nMem
; /* Number of VM memory registers */
2551 int nCursor
; /* Number of cursors required */
2552 int nArg
; /* Number of arguments in subprograms */
2553 int n
; /* Loop counter */
2554 struct ReusableSpace x
; /* Reusable bulk memory */
2558 assert( pParse
!=0 );
2559 assert( p
->eVdbeState
==VDBE_INIT_STATE
);
2560 assert( pParse
==p
->pParse
);
2561 p
->pVList
= pParse
->pVList
;
2564 assert( db
->mallocFailed
==0 );
2565 nVar
= pParse
->nVar
;
2566 nMem
= pParse
->nMem
;
2567 nCursor
= pParse
->nTab
;
2568 nArg
= pParse
->nMaxArg
;
2570 /* Each cursor uses a memory cell. The first cursor (cursor 0) can
2571 ** use aMem[0] which is not otherwise used by the VDBE program. Allocate
2572 ** space at the end of aMem[] for cursors 1 and greater.
2573 ** See also: allocateCursor().
2576 if( nCursor
==0 && nMem
>0 ) nMem
++; /* Space for aMem[0] even if not used */
2578 /* Figure out how much reusable memory is available at the end of the
2579 ** opcode array. This extra memory will be reallocated for other elements
2580 ** of the prepared statement.
2582 n
= ROUND8P(sizeof(Op
)*p
->nOp
); /* Bytes of opcode memory used */
2583 x
.pSpace
= &((u8
*)p
->aOp
)[n
]; /* Unused opcode memory */
2584 assert( EIGHT_BYTE_ALIGNMENT(x
.pSpace
) );
2585 x
.nFree
= ROUNDDOWN8(pParse
->szOpAlloc
- n
); /* Bytes of unused memory */
2586 assert( x
.nFree
>=0 );
2587 assert( EIGHT_BYTE_ALIGNMENT(&x
.pSpace
[x
.nFree
]) );
2589 resolveP2Values(p
, &nArg
);
2590 p
->usesStmtJournal
= (u8
)(pParse
->isMultiWrite
&& pParse
->mayAbort
);
2591 if( pParse
->explain
){
2592 static const char * const azColName
[] = {
2593 "addr", "opcode", "p1", "p2", "p3", "p4", "p5", "comment",
2594 "id", "parent", "notused", "detail"
2597 if( nMem
<10 ) nMem
= 10;
2598 p
->explain
= pParse
->explain
;
2599 if( pParse
->explain
==2 ){
2600 sqlite3VdbeSetNumCols(p
, 4);
2604 sqlite3VdbeSetNumCols(p
, 8);
2608 for(i
=iFirst
; i
<mx
; i
++){
2609 sqlite3VdbeSetColName(p
, i
-iFirst
, COLNAME_NAME
,
2610 azColName
[i
], SQLITE_STATIC
);
2615 /* Memory for registers, parameters, cursor, etc, is allocated in one or two
2616 ** passes. On the first pass, we try to reuse unused memory at the
2617 ** end of the opcode array. If we are unable to satisfy all memory
2618 ** requirements by reusing the opcode array tail, then the second
2619 ** pass will fill in the remainder using a fresh memory allocation.
2621 ** This two-pass approach that reuses as much memory as possible from
2622 ** the leftover memory at the end of the opcode array. This can significantly
2623 ** reduce the amount of memory held by a prepared statement.
2626 p
->aMem
= allocSpace(&x
, 0, nMem
*sizeof(Mem
));
2627 p
->aVar
= allocSpace(&x
, 0, nVar
*sizeof(Mem
));
2628 p
->apArg
= allocSpace(&x
, 0, nArg
*sizeof(Mem
*));
2629 p
->apCsr
= allocSpace(&x
, 0, nCursor
*sizeof(VdbeCursor
*));
2631 x
.pSpace
= p
->pFree
= sqlite3DbMallocRawNN(db
, x
.nNeeded
);
2632 x
.nFree
= x
.nNeeded
;
2633 if( !db
->mallocFailed
){
2634 p
->aMem
= allocSpace(&x
, p
->aMem
, nMem
*sizeof(Mem
));
2635 p
->aVar
= allocSpace(&x
, p
->aVar
, nVar
*sizeof(Mem
));
2636 p
->apArg
= allocSpace(&x
, p
->apArg
, nArg
*sizeof(Mem
*));
2637 p
->apCsr
= allocSpace(&x
, p
->apCsr
, nCursor
*sizeof(VdbeCursor
*));
2641 if( db
->mallocFailed
){
2646 p
->nCursor
= nCursor
;
2647 p
->nVar
= (ynVar
)nVar
;
2648 initMemArray(p
->aVar
, nVar
, db
, MEM_Null
);
2650 initMemArray(p
->aMem
, nMem
, db
, MEM_Undefined
);
2651 memset(p
->apCsr
, 0, nCursor
*sizeof(VdbeCursor
*));
2653 sqlite3VdbeRewind(p
);
2657 ** Close a VDBE cursor and release all the resources that cursor
2660 void sqlite3VdbeFreeCursor(Vdbe
*p
, VdbeCursor
*pCx
){
2661 if( pCx
) sqlite3VdbeFreeCursorNN(p
,pCx
);
2663 void sqlite3VdbeFreeCursorNN(Vdbe
*p
, VdbeCursor
*pCx
){
2664 switch( pCx
->eCurType
){
2665 case CURTYPE_SORTER
: {
2666 sqlite3VdbeSorterClose(p
->db
, pCx
);
2669 case CURTYPE_BTREE
: {
2670 assert( pCx
->uc
.pCursor
!=0 );
2671 sqlite3BtreeCloseCursor(pCx
->uc
.pCursor
);
2674 #ifndef SQLITE_OMIT_VIRTUALTABLE
2675 case CURTYPE_VTAB
: {
2676 sqlite3_vtab_cursor
*pVCur
= pCx
->uc
.pVCur
;
2677 const sqlite3_module
*pModule
= pVCur
->pVtab
->pModule
;
2678 assert( pVCur
->pVtab
->nRef
>0 );
2679 pVCur
->pVtab
->nRef
--;
2680 pModule
->xClose(pVCur
);
2688 ** Close all cursors in the current frame.
2690 static void closeCursorsInFrame(Vdbe
*p
){
2692 for(i
=0; i
<p
->nCursor
; i
++){
2693 VdbeCursor
*pC
= p
->apCsr
[i
];
2695 sqlite3VdbeFreeCursorNN(p
, pC
);
2702 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This
2703 ** is used, for example, when a trigger sub-program is halted to restore
2704 ** control to the main program.
2706 int sqlite3VdbeFrameRestore(VdbeFrame
*pFrame
){
2707 Vdbe
*v
= pFrame
->v
;
2708 closeCursorsInFrame(v
);
2709 v
->aOp
= pFrame
->aOp
;
2710 v
->nOp
= pFrame
->nOp
;
2711 v
->aMem
= pFrame
->aMem
;
2712 v
->nMem
= pFrame
->nMem
;
2713 v
->apCsr
= pFrame
->apCsr
;
2714 v
->nCursor
= pFrame
->nCursor
;
2715 v
->db
->lastRowid
= pFrame
->lastRowid
;
2716 v
->nChange
= pFrame
->nChange
;
2717 v
->db
->nChange
= pFrame
->nDbChange
;
2718 sqlite3VdbeDeleteAuxData(v
->db
, &v
->pAuxData
, -1, 0);
2719 v
->pAuxData
= pFrame
->pAuxData
;
2720 pFrame
->pAuxData
= 0;
2725 ** Close all cursors.
2727 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory
2728 ** cell array. This is necessary as the memory cell array may contain
2729 ** pointers to VdbeFrame objects, which may in turn contain pointers to
2732 static void closeAllCursors(Vdbe
*p
){
2735 for(pFrame
=p
->pFrame
; pFrame
->pParent
; pFrame
=pFrame
->pParent
);
2736 sqlite3VdbeFrameRestore(pFrame
);
2740 assert( p
->nFrame
==0 );
2741 closeCursorsInFrame(p
);
2742 releaseMemArray(p
->aMem
, p
->nMem
);
2743 while( p
->pDelFrame
){
2744 VdbeFrame
*pDel
= p
->pDelFrame
;
2745 p
->pDelFrame
= pDel
->pParent
;
2746 sqlite3VdbeFrameDelete(pDel
);
2749 /* Delete any auxdata allocations made by the VM */
2750 if( p
->pAuxData
) sqlite3VdbeDeleteAuxData(p
->db
, &p
->pAuxData
, -1, 0);
2751 assert( p
->pAuxData
==0 );
2755 ** Set the number of result columns that will be returned by this SQL
2756 ** statement. This is now set at compile time, rather than during
2757 ** execution of the vdbe program so that sqlite3_column_count() can
2758 ** be called on an SQL statement before sqlite3_step().
2760 void sqlite3VdbeSetNumCols(Vdbe
*p
, int nResColumn
){
2762 sqlite3
*db
= p
->db
;
2764 if( p
->nResColumn
){
2765 releaseMemArray(p
->aColName
, p
->nResColumn
*COLNAME_N
);
2766 sqlite3DbFree(db
, p
->aColName
);
2768 n
= nResColumn
*COLNAME_N
;
2769 p
->nResColumn
= (u16
)nResColumn
;
2770 p
->aColName
= (Mem
*)sqlite3DbMallocRawNN(db
, sizeof(Mem
)*n
);
2771 if( p
->aColName
==0 ) return;
2772 initMemArray(p
->aColName
, n
, db
, MEM_Null
);
2776 ** Set the name of the idx'th column to be returned by the SQL statement.
2777 ** zName must be a pointer to a nul terminated string.
2779 ** This call must be made after a call to sqlite3VdbeSetNumCols().
2781 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC
2782 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed
2783 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed.
2785 int sqlite3VdbeSetColName(
2786 Vdbe
*p
, /* Vdbe being configured */
2787 int idx
, /* Index of column zName applies to */
2788 int var
, /* One of the COLNAME_* constants */
2789 const char *zName
, /* Pointer to buffer containing name */
2790 void (*xDel
)(void*) /* Memory management strategy for zName */
2794 assert( idx
<p
->nResColumn
);
2795 assert( var
<COLNAME_N
);
2796 if( p
->db
->mallocFailed
){
2797 assert( !zName
|| xDel
!=SQLITE_DYNAMIC
);
2798 return SQLITE_NOMEM_BKPT
;
2800 assert( p
->aColName
!=0 );
2801 pColName
= &(p
->aColName
[idx
+var
*p
->nResColumn
]);
2802 rc
= sqlite3VdbeMemSetStr(pColName
, zName
, -1, SQLITE_UTF8
, xDel
);
2803 assert( rc
!=0 || !zName
|| (pColName
->flags
&MEM_Term
)!=0 );
2808 ** A read or write transaction may or may not be active on database handle
2809 ** db. If a transaction is active, commit it. If there is a
2810 ** write-transaction spanning more than one database file, this routine
2811 ** takes care of the super-journal trickery.
2813 static int vdbeCommit(sqlite3
*db
, Vdbe
*p
){
2815 int nTrans
= 0; /* Number of databases with an active write-transaction
2816 ** that are candidates for a two-phase commit using a
2819 int needXcommit
= 0;
2821 #ifdef SQLITE_OMIT_VIRTUALTABLE
2822 /* With this option, sqlite3VtabSync() is defined to be simply
2823 ** SQLITE_OK so p is not used.
2825 UNUSED_PARAMETER(p
);
2828 /* Before doing anything else, call the xSync() callback for any
2829 ** virtual module tables written in this transaction. This has to
2830 ** be done before determining whether a super-journal file is
2831 ** required, as an xSync() callback may add an attached database
2832 ** to the transaction.
2834 rc
= sqlite3VtabSync(db
, p
);
2836 /* This loop determines (a) if the commit hook should be invoked and
2837 ** (b) how many database files have open write transactions, not
2838 ** including the temp database. (b) is important because if more than
2839 ** one database file has an open write transaction, a super-journal
2840 ** file is required for an atomic commit.
2842 for(i
=0; rc
==SQLITE_OK
&& i
<db
->nDb
; i
++){
2843 Btree
*pBt
= db
->aDb
[i
].pBt
;
2844 if( sqlite3BtreeTxnState(pBt
)==SQLITE_TXN_WRITE
){
2845 /* Whether or not a database might need a super-journal depends upon
2846 ** its journal mode (among other things). This matrix determines which
2847 ** journal modes use a super-journal and which do not */
2848 static const u8 aMJNeeded
[] = {
2856 Pager
*pPager
; /* Pager associated with pBt */
2858 sqlite3BtreeEnter(pBt
);
2859 pPager
= sqlite3BtreePager(pBt
);
2860 if( db
->aDb
[i
].safety_level
!=PAGER_SYNCHRONOUS_OFF
2861 && aMJNeeded
[sqlite3PagerGetJournalMode(pPager
)]
2862 && sqlite3PagerIsMemdb(pPager
)==0
2867 rc
= sqlite3PagerExclusiveLock(pPager
);
2868 sqlite3BtreeLeave(pBt
);
2871 if( rc
!=SQLITE_OK
){
2875 /* If there are any write-transactions at all, invoke the commit hook */
2876 if( needXcommit
&& db
->xCommitCallback
){
2877 rc
= db
->xCommitCallback(db
->pCommitArg
);
2879 return SQLITE_CONSTRAINT_COMMITHOOK
;
2883 /* The simple case - no more than one database file (not counting the
2884 ** TEMP database) has a transaction active. There is no need for the
2887 ** If the return value of sqlite3BtreeGetFilename() is a zero length
2888 ** string, it means the main database is :memory: or a temp file. In
2889 ** that case we do not support atomic multi-file commits, so use the
2890 ** simple case then too.
2892 if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db
->aDb
[0].pBt
))
2895 for(i
=0; rc
==SQLITE_OK
&& i
<db
->nDb
; i
++){
2896 Btree
*pBt
= db
->aDb
[i
].pBt
;
2898 rc
= sqlite3BtreeCommitPhaseOne(pBt
, 0);
2902 /* Do the commit only if all databases successfully complete phase 1.
2903 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
2904 ** IO error while deleting or truncating a journal file. It is unlikely,
2905 ** but could happen. In this case abandon processing and return the error.
2907 for(i
=0; rc
==SQLITE_OK
&& i
<db
->nDb
; i
++){
2908 Btree
*pBt
= db
->aDb
[i
].pBt
;
2910 rc
= sqlite3BtreeCommitPhaseTwo(pBt
, 0);
2913 if( rc
==SQLITE_OK
){
2914 sqlite3VtabCommit(db
);
2918 /* The complex case - There is a multi-file write-transaction active.
2919 ** This requires a super-journal file to ensure the transaction is
2920 ** committed atomically.
2922 #ifndef SQLITE_OMIT_DISKIO
2924 sqlite3_vfs
*pVfs
= db
->pVfs
;
2925 char *zSuper
= 0; /* File-name for the super-journal */
2926 char const *zMainFile
= sqlite3BtreeGetFilename(db
->aDb
[0].pBt
);
2927 sqlite3_file
*pSuperJrnl
= 0;
2933 /* Select a super-journal file name */
2934 nMainFile
= sqlite3Strlen30(zMainFile
);
2935 zSuper
= sqlite3MPrintf(db
, "%.4c%s%.16c", 0,zMainFile
,0);
2936 if( zSuper
==0 ) return SQLITE_NOMEM_BKPT
;
2941 if( retryCount
>100 ){
2942 sqlite3_log(SQLITE_FULL
, "MJ delete: %s", zSuper
);
2943 sqlite3OsDelete(pVfs
, zSuper
, 0);
2945 }else if( retryCount
==1 ){
2946 sqlite3_log(SQLITE_FULL
, "MJ collide: %s", zSuper
);
2950 sqlite3_randomness(sizeof(iRandom
), &iRandom
);
2951 sqlite3_snprintf(13, &zSuper
[nMainFile
], "-mj%06X9%02X",
2952 (iRandom
>>8)&0xffffff, iRandom
&0xff);
2953 /* The antipenultimate character of the super-journal name must
2954 ** be "9" to avoid name collisions when using 8+3 filenames. */
2955 assert( zSuper
[sqlite3Strlen30(zSuper
)-3]=='9' );
2956 sqlite3FileSuffix3(zMainFile
, zSuper
);
2957 rc
= sqlite3OsAccess(pVfs
, zSuper
, SQLITE_ACCESS_EXISTS
, &res
);
2958 }while( rc
==SQLITE_OK
&& res
);
2959 if( rc
==SQLITE_OK
){
2960 /* Open the super-journal. */
2961 rc
= sqlite3OsOpenMalloc(pVfs
, zSuper
, &pSuperJrnl
,
2962 SQLITE_OPEN_READWRITE
|SQLITE_OPEN_CREATE
|
2963 SQLITE_OPEN_EXCLUSIVE
|SQLITE_OPEN_SUPER_JOURNAL
, 0
2966 if( rc
!=SQLITE_OK
){
2967 sqlite3DbFree(db
, zSuper
-4);
2971 /* Write the name of each database file in the transaction into the new
2972 ** super-journal file. If an error occurs at this point close
2973 ** and delete the super-journal file. All the individual journal files
2974 ** still have 'null' as the super-journal pointer, so they will roll
2975 ** back independently if a failure occurs.
2977 for(i
=0; i
<db
->nDb
; i
++){
2978 Btree
*pBt
= db
->aDb
[i
].pBt
;
2979 if( sqlite3BtreeTxnState(pBt
)==SQLITE_TXN_WRITE
){
2980 char const *zFile
= sqlite3BtreeGetJournalname(pBt
);
2982 continue; /* Ignore TEMP and :memory: databases */
2984 assert( zFile
[0]!=0 );
2985 rc
= sqlite3OsWrite(pSuperJrnl
, zFile
, sqlite3Strlen30(zFile
)+1,offset
);
2986 offset
+= sqlite3Strlen30(zFile
)+1;
2987 if( rc
!=SQLITE_OK
){
2988 sqlite3OsCloseFree(pSuperJrnl
);
2989 sqlite3OsDelete(pVfs
, zSuper
, 0);
2990 sqlite3DbFree(db
, zSuper
-4);
2996 /* Sync the super-journal file. If the IOCAP_SEQUENTIAL device
2997 ** flag is set this is not required.
2999 if( 0==(sqlite3OsDeviceCharacteristics(pSuperJrnl
)&SQLITE_IOCAP_SEQUENTIAL
)
3000 && SQLITE_OK
!=(rc
= sqlite3OsSync(pSuperJrnl
, SQLITE_SYNC_NORMAL
))
3002 sqlite3OsCloseFree(pSuperJrnl
);
3003 sqlite3OsDelete(pVfs
, zSuper
, 0);
3004 sqlite3DbFree(db
, zSuper
-4);
3008 /* Sync all the db files involved in the transaction. The same call
3009 ** sets the super-journal pointer in each individual journal. If
3010 ** an error occurs here, do not delete the super-journal file.
3012 ** If the error occurs during the first call to
3013 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
3014 ** super-journal file will be orphaned. But we cannot delete it,
3015 ** in case the super-journal file name was written into the journal
3016 ** file before the failure occurred.
3018 for(i
=0; rc
==SQLITE_OK
&& i
<db
->nDb
; i
++){
3019 Btree
*pBt
= db
->aDb
[i
].pBt
;
3021 rc
= sqlite3BtreeCommitPhaseOne(pBt
, zSuper
);
3024 sqlite3OsCloseFree(pSuperJrnl
);
3025 assert( rc
!=SQLITE_BUSY
);
3026 if( rc
!=SQLITE_OK
){
3027 sqlite3DbFree(db
, zSuper
-4);
3031 /* Delete the super-journal file. This commits the transaction. After
3032 ** doing this the directory is synced again before any individual
3033 ** transaction files are deleted.
3035 rc
= sqlite3OsDelete(pVfs
, zSuper
, 1);
3036 sqlite3DbFree(db
, zSuper
-4);
3042 /* All files and directories have already been synced, so the following
3043 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
3044 ** deleting or truncating journals. If something goes wrong while
3045 ** this is happening we don't really care. The integrity of the
3046 ** transaction is already guaranteed, but some stray 'cold' journals
3047 ** may be lying around. Returning an error code won't help matters.
3049 disable_simulated_io_errors();
3050 sqlite3BeginBenignMalloc();
3051 for(i
=0; i
<db
->nDb
; i
++){
3052 Btree
*pBt
= db
->aDb
[i
].pBt
;
3054 sqlite3BtreeCommitPhaseTwo(pBt
, 1);
3057 sqlite3EndBenignMalloc();
3058 enable_simulated_io_errors();
3060 sqlite3VtabCommit(db
);
3068 ** This routine checks that the sqlite3.nVdbeActive count variable
3069 ** matches the number of vdbe's in the list sqlite3.pVdbe that are
3070 ** currently active. An assertion fails if the two counts do not match.
3071 ** This is an internal self-check only - it is not an essential processing
3074 ** This is a no-op if NDEBUG is defined.
3077 static void checkActiveVdbeCnt(sqlite3
*db
){
3084 if( sqlite3_stmt_busy((sqlite3_stmt
*)p
) ){
3086 if( p
->readOnly
==0 ) nWrite
++;
3087 if( p
->bIsReader
) nRead
++;
3091 assert( cnt
==db
->nVdbeActive
);
3092 assert( nWrite
==db
->nVdbeWrite
);
3093 assert( nRead
==db
->nVdbeRead
);
3096 #define checkActiveVdbeCnt(x)
3100 ** If the Vdbe passed as the first argument opened a statement-transaction,
3101 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or
3102 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement
3103 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the
3104 ** statement transaction is committed.
3106 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned.
3107 ** Otherwise SQLITE_OK.
3109 static SQLITE_NOINLINE
int vdbeCloseStatement(Vdbe
*p
, int eOp
){
3110 sqlite3
*const db
= p
->db
;
3113 const int iSavepoint
= p
->iStatement
-1;
3115 assert( eOp
==SAVEPOINT_ROLLBACK
|| eOp
==SAVEPOINT_RELEASE
);
3116 assert( db
->nStatement
>0 );
3117 assert( p
->iStatement
==(db
->nStatement
+db
->nSavepoint
) );
3119 for(i
=0; i
<db
->nDb
; i
++){
3120 int rc2
= SQLITE_OK
;
3121 Btree
*pBt
= db
->aDb
[i
].pBt
;
3123 if( eOp
==SAVEPOINT_ROLLBACK
){
3124 rc2
= sqlite3BtreeSavepoint(pBt
, SAVEPOINT_ROLLBACK
, iSavepoint
);
3126 if( rc2
==SQLITE_OK
){
3127 rc2
= sqlite3BtreeSavepoint(pBt
, SAVEPOINT_RELEASE
, iSavepoint
);
3129 if( rc
==SQLITE_OK
){
3137 if( rc
==SQLITE_OK
){
3138 if( eOp
==SAVEPOINT_ROLLBACK
){
3139 rc
= sqlite3VtabSavepoint(db
, SAVEPOINT_ROLLBACK
, iSavepoint
);
3141 if( rc
==SQLITE_OK
){
3142 rc
= sqlite3VtabSavepoint(db
, SAVEPOINT_RELEASE
, iSavepoint
);
3146 /* If the statement transaction is being rolled back, also restore the
3147 ** database handles deferred constraint counter to the value it had when
3148 ** the statement transaction was opened. */
3149 if( eOp
==SAVEPOINT_ROLLBACK
){
3150 db
->nDeferredCons
= p
->nStmtDefCons
;
3151 db
->nDeferredImmCons
= p
->nStmtDefImmCons
;
3155 int sqlite3VdbeCloseStatement(Vdbe
*p
, int eOp
){
3156 if( p
->db
->nStatement
&& p
->iStatement
){
3157 return vdbeCloseStatement(p
, eOp
);
3164 ** This function is called when a transaction opened by the database
3165 ** handle associated with the VM passed as an argument is about to be
3166 ** committed. If there are outstanding deferred foreign key constraint
3167 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
3169 ** If there are outstanding FK violations and this function returns
3170 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY
3171 ** and write an error message to it. Then return SQLITE_ERROR.
3173 #ifndef SQLITE_OMIT_FOREIGN_KEY
3174 int sqlite3VdbeCheckFk(Vdbe
*p
, int deferred
){
3175 sqlite3
*db
= p
->db
;
3176 if( (deferred
&& (db
->nDeferredCons
+db
->nDeferredImmCons
)>0)
3177 || (!deferred
&& p
->nFkConstraint
>0)
3179 p
->rc
= SQLITE_CONSTRAINT_FOREIGNKEY
;
3180 p
->errorAction
= OE_Abort
;
3181 sqlite3VdbeError(p
, "FOREIGN KEY constraint failed");
3182 if( (p
->prepFlags
& SQLITE_PREPARE_SAVESQL
)==0 ) return SQLITE_ERROR
;
3183 return SQLITE_CONSTRAINT_FOREIGNKEY
;
3190 ** This routine is called the when a VDBE tries to halt. If the VDBE
3191 ** has made changes and is in autocommit mode, then commit those
3192 ** changes. If a rollback is needed, then do the rollback.
3194 ** This routine is the only way to move the sqlite3eOpenState of a VM from
3195 ** SQLITE_STATE_RUN to SQLITE_STATE_HALT. It is harmless to
3196 ** call this on a VM that is in the SQLITE_STATE_HALT state.
3198 ** Return an error code. If the commit could not complete because of
3199 ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it
3200 ** means the close did not happen and needs to be repeated.
3202 int sqlite3VdbeHalt(Vdbe
*p
){
3203 int rc
; /* Used to store transient return codes */
3204 sqlite3
*db
= p
->db
;
3206 /* This function contains the logic that determines if a statement or
3207 ** transaction will be committed or rolled back as a result of the
3208 ** execution of this virtual machine.
3210 ** If any of the following errors occur:
3217 ** Then the internal cache might have been left in an inconsistent
3218 ** state. We need to rollback the statement transaction, if there is
3219 ** one, or the complete transaction if there is no statement transaction.
3222 assert( p
->eVdbeState
==VDBE_RUN_STATE
);
3223 if( db
->mallocFailed
){
3224 p
->rc
= SQLITE_NOMEM_BKPT
;
3227 checkActiveVdbeCnt(db
);
3229 /* No commit or rollback needed if the program never started or if the
3230 ** SQL statement does not read or write a database file. */
3232 int mrc
; /* Primary error code from p->rc */
3233 int eStatementOp
= 0;
3234 int isSpecialError
; /* Set to true if a 'special' error */
3236 /* Lock all btrees used by the statement */
3237 sqlite3VdbeEnter(p
);
3239 /* Check for one of the special errors */
3242 isSpecialError
= mrc
==SQLITE_NOMEM
3243 || mrc
==SQLITE_IOERR
3244 || mrc
==SQLITE_INTERRUPT
3245 || mrc
==SQLITE_FULL
;
3247 mrc
= isSpecialError
= 0;
3249 if( isSpecialError
){
3250 /* If the query was read-only and the error code is SQLITE_INTERRUPT,
3251 ** no rollback is necessary. Otherwise, at least a savepoint
3252 ** transaction must be rolled back to restore the database to a
3253 ** consistent state.
3255 ** Even if the statement is read-only, it is important to perform
3256 ** a statement or transaction rollback operation. If the error
3257 ** occurred while writing to the journal, sub-journal or database
3258 ** file as part of an effort to free up cache space (see function
3259 ** pagerStress() in pager.c), the rollback is required to restore
3260 ** the pager to a consistent state.
3262 if( !p
->readOnly
|| mrc
!=SQLITE_INTERRUPT
){
3263 if( (mrc
==SQLITE_NOMEM
|| mrc
==SQLITE_FULL
) && p
->usesStmtJournal
){
3264 eStatementOp
= SAVEPOINT_ROLLBACK
;
3266 /* We are forced to roll back the active transaction. Before doing
3267 ** so, abort any other statements this handle currently has active.
3269 sqlite3RollbackAll(db
, SQLITE_ABORT_ROLLBACK
);
3270 sqlite3CloseSavepoints(db
);
3277 /* Check for immediate foreign key violations. */
3278 if( p
->rc
==SQLITE_OK
|| (p
->errorAction
==OE_Fail
&& !isSpecialError
) ){
3279 sqlite3VdbeCheckFk(p
, 0);
3282 /* If the auto-commit flag is set and this is the only active writer
3283 ** VM, then we do either a commit or rollback of the current transaction.
3285 ** Note: This block also runs if one of the special errors handled
3286 ** above has occurred.
3288 if( !sqlite3VtabInSync(db
)
3290 && db
->nVdbeWrite
==(p
->readOnly
==0)
3292 if( p
->rc
==SQLITE_OK
|| (p
->errorAction
==OE_Fail
&& !isSpecialError
) ){
3293 rc
= sqlite3VdbeCheckFk(p
, 1);
3294 if( rc
!=SQLITE_OK
){
3295 if( NEVER(p
->readOnly
) ){
3296 sqlite3VdbeLeave(p
);
3297 return SQLITE_ERROR
;
3299 rc
= SQLITE_CONSTRAINT_FOREIGNKEY
;
3300 }else if( db
->flags
& SQLITE_CorruptRdOnly
){
3301 rc
= SQLITE_CORRUPT
;
3302 db
->flags
&= ~SQLITE_CorruptRdOnly
;
3304 /* The auto-commit flag is true, the vdbe program was successful
3305 ** or hit an 'OR FAIL' constraint and there are no deferred foreign
3306 ** key constraints to hold up the transaction. This means a commit
3308 rc
= vdbeCommit(db
, p
);
3310 if( rc
==SQLITE_BUSY
&& p
->readOnly
){
3311 sqlite3VdbeLeave(p
);
3313 }else if( rc
!=SQLITE_OK
){
3315 sqlite3RollbackAll(db
, SQLITE_OK
);
3318 db
->nDeferredCons
= 0;
3319 db
->nDeferredImmCons
= 0;
3320 db
->flags
&= ~(u64
)SQLITE_DeferFKs
;
3321 sqlite3CommitInternalChanges(db
);
3324 sqlite3RollbackAll(db
, SQLITE_OK
);
3328 }else if( eStatementOp
==0 ){
3329 if( p
->rc
==SQLITE_OK
|| p
->errorAction
==OE_Fail
){
3330 eStatementOp
= SAVEPOINT_RELEASE
;
3331 }else if( p
->errorAction
==OE_Abort
){
3332 eStatementOp
= SAVEPOINT_ROLLBACK
;
3334 sqlite3RollbackAll(db
, SQLITE_ABORT_ROLLBACK
);
3335 sqlite3CloseSavepoints(db
);
3341 /* If eStatementOp is non-zero, then a statement transaction needs to
3342 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to
3343 ** do so. If this operation returns an error, and the current statement
3344 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the
3345 ** current statement error code.
3348 rc
= sqlite3VdbeCloseStatement(p
, eStatementOp
);
3350 if( p
->rc
==SQLITE_OK
|| (p
->rc
&0xff)==SQLITE_CONSTRAINT
){
3352 sqlite3DbFree(db
, p
->zErrMsg
);
3355 sqlite3RollbackAll(db
, SQLITE_ABORT_ROLLBACK
);
3356 sqlite3CloseSavepoints(db
);
3362 /* If this was an INSERT, UPDATE or DELETE and no statement transaction
3363 ** has been rolled back, update the database connection change-counter.
3365 if( p
->changeCntOn
){
3366 if( eStatementOp
!=SAVEPOINT_ROLLBACK
){
3367 sqlite3VdbeSetChanges(db
, p
->nChange
);
3369 sqlite3VdbeSetChanges(db
, 0);
3374 /* Release the locks */
3375 sqlite3VdbeLeave(p
);
3378 /* We have successfully halted and closed the VM. Record this fact. */
3380 if( !p
->readOnly
) db
->nVdbeWrite
--;
3381 if( p
->bIsReader
) db
->nVdbeRead
--;
3382 assert( db
->nVdbeActive
>=db
->nVdbeRead
);
3383 assert( db
->nVdbeRead
>=db
->nVdbeWrite
);
3384 assert( db
->nVdbeWrite
>=0 );
3385 p
->eVdbeState
= VDBE_HALT_STATE
;
3386 checkActiveVdbeCnt(db
);
3387 if( db
->mallocFailed
){
3388 p
->rc
= SQLITE_NOMEM_BKPT
;
3391 /* If the auto-commit flag is set to true, then any locks that were held
3392 ** by connection db have now been released. Call sqlite3ConnectionUnlocked()
3393 ** to invoke any required unlock-notify callbacks.
3395 if( db
->autoCommit
){
3396 sqlite3ConnectionUnlocked(db
);
3399 assert( db
->nVdbeActive
>0 || db
->autoCommit
==0 || db
->nStatement
==0 );
3400 return (p
->rc
==SQLITE_BUSY
? SQLITE_BUSY
: SQLITE_OK
);
3405 ** Each VDBE holds the result of the most recent sqlite3_step() call
3406 ** in p->rc. This routine sets that result back to SQLITE_OK.
3408 void sqlite3VdbeResetStepResult(Vdbe
*p
){
3413 ** Copy the error code and error message belonging to the VDBE passed
3414 ** as the first argument to its database handle (so that they will be
3415 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()).
3417 ** This function does not clear the VDBE error code or message, just
3418 ** copies them to the database handle.
3420 int sqlite3VdbeTransferError(Vdbe
*p
){
3421 sqlite3
*db
= p
->db
;
3424 db
->bBenignMalloc
++;
3425 sqlite3BeginBenignMalloc();
3426 if( db
->pErr
==0 ) db
->pErr
= sqlite3ValueNew(db
);
3427 sqlite3ValueSetStr(db
->pErr
, -1, p
->zErrMsg
, SQLITE_UTF8
, SQLITE_TRANSIENT
);
3428 sqlite3EndBenignMalloc();
3429 db
->bBenignMalloc
--;
3430 }else if( db
->pErr
){
3431 sqlite3ValueSetNull(db
->pErr
);
3434 db
->errByteOffset
= -1;
3438 #ifdef SQLITE_ENABLE_SQLLOG
3440 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run,
3443 static void vdbeInvokeSqllog(Vdbe
*v
){
3444 if( sqlite3GlobalConfig
.xSqllog
&& v
->rc
==SQLITE_OK
&& v
->zSql
&& v
->pc
>=0 ){
3445 char *zExpanded
= sqlite3VdbeExpandSql(v
, v
->zSql
);
3446 assert( v
->db
->init
.busy
==0 );
3448 sqlite3GlobalConfig
.xSqllog(
3449 sqlite3GlobalConfig
.pSqllogArg
, v
->db
, zExpanded
, 1
3451 sqlite3DbFree(v
->db
, zExpanded
);
3456 # define vdbeInvokeSqllog(x)
3460 ** Clean up a VDBE after execution but do not delete the VDBE just yet.
3461 ** Write any error messages into *pzErrMsg. Return the result code.
3463 ** After this routine is run, the VDBE should be ready to be executed
3466 ** To look at it another way, this routine resets the state of the
3467 ** virtual machine from VDBE_RUN_STATE or VDBE_HALT_STATE back to
3468 ** VDBE_READY_STATE.
3470 int sqlite3VdbeReset(Vdbe
*p
){
3471 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
3478 /* If the VM did not run to completion or if it encountered an
3479 ** error, then it might not have been halted properly. So halt
3482 if( p
->eVdbeState
==VDBE_RUN_STATE
) sqlite3VdbeHalt(p
);
3484 /* If the VDBE has been run even partially, then transfer the error code
3485 ** and error message from the VDBE into the main database structure. But
3486 ** if the VDBE has just been set to run but has not actually executed any
3487 ** instructions yet, leave the main database error information unchanged.
3490 vdbeInvokeSqllog(p
);
3491 if( db
->pErr
|| p
->zErrMsg
){
3492 sqlite3VdbeTransferError(p
);
3494 db
->errCode
= p
->rc
;
3498 /* Reset register contents and reclaim error message memory.
3501 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and
3502 ** Vdbe.aMem[] arrays have already been cleaned up. */
3503 if( p
->apCsr
) for(i
=0; i
<p
->nCursor
; i
++) assert( p
->apCsr
[i
]==0 );
3505 for(i
=0; i
<p
->nMem
; i
++) assert( p
->aMem
[i
].flags
==MEM_Undefined
);
3509 sqlite3DbFree(db
, p
->zErrMsg
);
3517 /* Save profiling information from this VDBE run.
3521 FILE *out
= fopen("vdbe_profile.out", "a");
3523 fprintf(out
, "---- ");
3524 for(i
=0; i
<p
->nOp
; i
++){
3525 fprintf(out
, "%02x", p
->aOp
[i
].opcode
);
3530 fprintf(out
, "-- ");
3531 for(i
=0; (c
= p
->zSql
[i
])!=0; i
++){
3532 if( pc
=='\n' ) fprintf(out
, "-- ");
3536 if( pc
!='\n' ) fprintf(out
, "\n");
3538 for(i
=0; i
<p
->nOp
; i
++){
3540 i64 cnt
= p
->aOp
[i
].nExec
;
3541 i64 cycles
= p
->aOp
[i
].nCycle
;
3542 sqlite3_snprintf(sizeof(zHdr
), zHdr
, "%6u %12llu %8llu ",
3545 cnt
>0 ? cycles
/cnt
: 0
3547 fprintf(out
, "%s", zHdr
);
3548 sqlite3VdbePrintOp(out
, i
, &p
->aOp
[i
]);
3554 return p
->rc
& db
->errMask
;
3558 ** Clean up and delete a VDBE after execution. Return an integer which is
3559 ** the result code. Write any error message text into *pzErrMsg.
3561 int sqlite3VdbeFinalize(Vdbe
*p
){
3563 assert( VDBE_RUN_STATE
>VDBE_READY_STATE
);
3564 assert( VDBE_HALT_STATE
>VDBE_READY_STATE
);
3565 assert( VDBE_INIT_STATE
<VDBE_READY_STATE
);
3566 if( p
->eVdbeState
>=VDBE_READY_STATE
){
3567 rc
= sqlite3VdbeReset(p
);
3568 assert( (rc
& p
->db
->errMask
)==rc
);
3570 sqlite3VdbeDelete(p
);
3575 ** If parameter iOp is less than zero, then invoke the destructor for
3576 ** all auxiliary data pointers currently cached by the VM passed as
3577 ** the first argument.
3579 ** Or, if iOp is greater than or equal to zero, then the destructor is
3580 ** only invoked for those auxiliary data pointers created by the user
3581 ** function invoked by the OP_Function opcode at instruction iOp of
3582 ** VM pVdbe, and only then if:
3584 ** * the associated function parameter is the 32nd or later (counting
3585 ** from left to right), or
3587 ** * the corresponding bit in argument mask is clear (where the first
3588 ** function parameter corresponds to bit 0 etc.).
3590 void sqlite3VdbeDeleteAuxData(sqlite3
*db
, AuxData
**pp
, int iOp
, int mask
){
3592 AuxData
*pAux
= *pp
;
3594 || (pAux
->iAuxOp
==iOp
3596 && (pAux
->iAuxArg
>31 || !(mask
& MASKBIT32(pAux
->iAuxArg
))))
3598 testcase( pAux
->iAuxArg
==31 );
3599 if( pAux
->xDeleteAux
){
3600 pAux
->xDeleteAux(pAux
->pAux
);
3602 *pp
= pAux
->pNextAux
;
3603 sqlite3DbFree(db
, pAux
);
3605 pp
= &pAux
->pNextAux
;
3611 ** Free all memory associated with the Vdbe passed as the second argument,
3612 ** except for object itself, which is preserved.
3614 ** The difference between this function and sqlite3VdbeDelete() is that
3615 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with
3616 ** the database connection and frees the object itself.
3618 static void sqlite3VdbeClearObject(sqlite3
*db
, Vdbe
*p
){
3619 SubProgram
*pSub
, *pNext
;
3621 assert( p
->db
==0 || p
->db
==db
);
3623 releaseMemArray(p
->aColName
, p
->nResColumn
*COLNAME_N
);
3624 sqlite3DbNNFreeNN(db
, p
->aColName
);
3626 for(pSub
=p
->pProgram
; pSub
; pSub
=pNext
){
3627 pNext
= pSub
->pNext
;
3628 vdbeFreeOpArray(db
, pSub
->aOp
, pSub
->nOp
);
3629 sqlite3DbFree(db
, pSub
);
3631 if( p
->eVdbeState
!=VDBE_INIT_STATE
){
3632 releaseMemArray(p
->aVar
, p
->nVar
);
3633 if( p
->pVList
) sqlite3DbNNFreeNN(db
, p
->pVList
);
3634 if( p
->pFree
) sqlite3DbNNFreeNN(db
, p
->pFree
);
3636 vdbeFreeOpArray(db
, p
->aOp
, p
->nOp
);
3637 if( p
->zSql
) sqlite3DbNNFreeNN(db
, p
->zSql
);
3638 #ifdef SQLITE_ENABLE_NORMALIZE
3639 sqlite3DbFree(db
, p
->zNormSql
);
3641 DblquoteStr
*pThis
, *pNext
;
3642 for(pThis
=p
->pDblStr
; pThis
; pThis
=pNext
){
3643 pNext
= pThis
->pNextStr
;
3644 sqlite3DbFree(db
, pThis
);
3648 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
3651 for(i
=0; i
<p
->nScan
; i
++){
3652 sqlite3DbFree(db
, p
->aScan
[i
].zName
);
3654 sqlite3DbFree(db
, p
->aScan
);
3660 ** Delete an entire VDBE.
3662 void sqlite3VdbeDelete(Vdbe
*p
){
3668 assert( sqlite3_mutex_held(db
->mutex
) );
3669 sqlite3VdbeClearObject(db
, p
);
3670 if( db
->pnBytesFreed
==0 ){
3671 assert( p
->ppVPrev
!=0 );
3672 *p
->ppVPrev
= p
->pVNext
;
3674 p
->pVNext
->ppVPrev
= p
->ppVPrev
;
3677 sqlite3DbNNFreeNN(db
, p
);
3681 ** The cursor "p" has a pending seek operation that has not yet been
3682 ** carried out. Seek the cursor now. If an error occurs, return
3683 ** the appropriate error code.
3685 int SQLITE_NOINLINE
sqlite3VdbeFinishMoveto(VdbeCursor
*p
){
3688 extern int sqlite3_search_count
;
3690 assert( p
->deferredMoveto
);
3691 assert( p
->isTable
);
3692 assert( p
->eCurType
==CURTYPE_BTREE
);
3693 rc
= sqlite3BtreeTableMoveto(p
->uc
.pCursor
, p
->movetoTarget
, 0, &res
);
3695 if( res
!=0 ) return SQLITE_CORRUPT_BKPT
;
3697 sqlite3_search_count
++;
3699 p
->deferredMoveto
= 0;
3700 p
->cacheStatus
= CACHE_STALE
;
3705 ** Something has moved cursor "p" out of place. Maybe the row it was
3706 ** pointed to was deleted out from under it. Or maybe the btree was
3707 ** rebalanced. Whatever the cause, try to restore "p" to the place it
3708 ** is supposed to be pointing. If the row was deleted out from under the
3709 ** cursor, set the cursor to point to a NULL row.
3711 int SQLITE_NOINLINE
sqlite3VdbeHandleMovedCursor(VdbeCursor
*p
){
3712 int isDifferentRow
, rc
;
3713 assert( p
->eCurType
==CURTYPE_BTREE
);
3714 assert( p
->uc
.pCursor
!=0 );
3715 assert( sqlite3BtreeCursorHasMoved(p
->uc
.pCursor
) );
3716 rc
= sqlite3BtreeCursorRestore(p
->uc
.pCursor
, &isDifferentRow
);
3717 p
->cacheStatus
= CACHE_STALE
;
3718 if( isDifferentRow
) p
->nullRow
= 1;
3723 ** Check to ensure that the cursor is valid. Restore the cursor
3724 ** if need be. Return any I/O error from the restore operation.
3726 int sqlite3VdbeCursorRestore(VdbeCursor
*p
){
3727 assert( p
->eCurType
==CURTYPE_BTREE
|| IsNullCursor(p
) );
3728 if( sqlite3BtreeCursorHasMoved(p
->uc
.pCursor
) ){
3729 return sqlite3VdbeHandleMovedCursor(p
);
3735 ** The following functions:
3737 ** sqlite3VdbeSerialType()
3738 ** sqlite3VdbeSerialTypeLen()
3739 ** sqlite3VdbeSerialLen()
3740 ** sqlite3VdbeSerialPut() <--- in-lined into OP_MakeRecord as of 2022-04-02
3741 ** sqlite3VdbeSerialGet()
3743 ** encapsulate the code that serializes values for storage in SQLite
3744 ** data and index records. Each serialized value consists of a
3745 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
3746 ** integer, stored as a varint.
3748 ** In an SQLite index record, the serial type is stored directly before
3749 ** the blob of data that it corresponds to. In a table record, all serial
3750 ** types are stored at the start of the record, and the blobs of data at
3751 ** the end. Hence these functions allow the caller to handle the
3752 ** serial-type and data blob separately.
3754 ** The following table describes the various storage classes for data:
3756 ** serial type bytes of data type
3757 ** -------------- --------------- ---------------
3759 ** 1 1 signed integer
3760 ** 2 2 signed integer
3761 ** 3 3 signed integer
3762 ** 4 4 signed integer
3763 ** 5 6 signed integer
3764 ** 6 8 signed integer
3766 ** 8 0 Integer constant 0
3767 ** 9 0 Integer constant 1
3768 ** 10,11 reserved for expansion
3769 ** N>=12 and even (N-12)/2 BLOB
3770 ** N>=13 and odd (N-13)/2 text
3772 ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions
3773 ** of SQLite will not understand those serial types.
3776 #if 0 /* Inlined into the OP_MakeRecord opcode */
3778 ** Return the serial-type for the value stored in pMem.
3780 ** This routine might convert a large MEM_IntReal value into MEM_Real.
3782 ** 2019-07-11: The primary user of this subroutine was the OP_MakeRecord
3783 ** opcode in the byte-code engine. But by moving this routine in-line, we
3784 ** can omit some redundant tests and make that opcode a lot faster. So
3785 ** this routine is now only used by the STAT3 logic and STAT3 support has
3786 ** ended. The code is kept here for historical reference only.
3788 u32
sqlite3VdbeSerialType(Mem
*pMem
, int file_format
, u32
*pLen
){
3789 int flags
= pMem
->flags
;
3793 if( flags
&MEM_Null
){
3797 if( flags
&(MEM_Int
|MEM_IntReal
) ){
3798 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
3799 # define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
3802 testcase( flags
& MEM_Int
);
3803 testcase( flags
& MEM_IntReal
);
3810 if( (i
&1)==i
&& file_format
>=4 ){
3818 if( u
<=32767 ){ *pLen
= 2; return 2; }
3819 if( u
<=8388607 ){ *pLen
= 3; return 3; }
3820 if( u
<=2147483647 ){ *pLen
= 4; return 4; }
3821 if( u
<=MAX_6BYTE
){ *pLen
= 6; return 5; }
3823 if( flags
&MEM_IntReal
){
3824 /* If the value is IntReal and is going to take up 8 bytes to store
3825 ** as an integer, then we might as well make it an 8-byte floating
3827 pMem
->u
.r
= (double)pMem
->u
.i
;
3828 pMem
->flags
&= ~MEM_IntReal
;
3829 pMem
->flags
|= MEM_Real
;
3834 if( flags
&MEM_Real
){
3838 assert( pMem
->db
->mallocFailed
|| flags
&(MEM_Str
|MEM_Blob
) );
3839 assert( pMem
->n
>=0 );
3841 if( flags
& MEM_Zero
){
3845 return ((n
*2) + 12 + ((flags
&MEM_Str
)!=0));
3847 #endif /* inlined into OP_MakeRecord */
3850 ** The sizes for serial types less than 128
3852 const u8 sqlite3SmallTypeSizes
[128] = {
3853 /* 0 1 2 3 4 5 6 7 8 9 */
3854 /* 0 */ 0, 1, 2, 3, 4, 6, 8, 8, 0, 0,
3855 /* 10 */ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3,
3856 /* 20 */ 4, 4, 5, 5, 6, 6, 7, 7, 8, 8,
3857 /* 30 */ 9, 9, 10, 10, 11, 11, 12, 12, 13, 13,
3858 /* 40 */ 14, 14, 15, 15, 16, 16, 17, 17, 18, 18,
3859 /* 50 */ 19, 19, 20, 20, 21, 21, 22, 22, 23, 23,
3860 /* 60 */ 24, 24, 25, 25, 26, 26, 27, 27, 28, 28,
3861 /* 70 */ 29, 29, 30, 30, 31, 31, 32, 32, 33, 33,
3862 /* 80 */ 34, 34, 35, 35, 36, 36, 37, 37, 38, 38,
3863 /* 90 */ 39, 39, 40, 40, 41, 41, 42, 42, 43, 43,
3864 /* 100 */ 44, 44, 45, 45, 46, 46, 47, 47, 48, 48,
3865 /* 110 */ 49, 49, 50, 50, 51, 51, 52, 52, 53, 53,
3866 /* 120 */ 54, 54, 55, 55, 56, 56, 57, 57
3870 ** Return the length of the data corresponding to the supplied serial-type.
3872 u32
sqlite3VdbeSerialTypeLen(u32 serial_type
){
3873 if( serial_type
>=128 ){
3874 return (serial_type
-12)/2;
3876 assert( serial_type
<12
3877 || sqlite3SmallTypeSizes
[serial_type
]==(serial_type
- 12)/2 );
3878 return sqlite3SmallTypeSizes
[serial_type
];
3881 u8
sqlite3VdbeOneByteSerialTypeLen(u8 serial_type
){
3882 assert( serial_type
<128 );
3883 return sqlite3SmallTypeSizes
[serial_type
];
3887 ** If we are on an architecture with mixed-endian floating
3888 ** points (ex: ARM7) then swap the lower 4 bytes with the
3889 ** upper 4 bytes. Return the result.
3891 ** For most architectures, this is a no-op.
3893 ** (later): It is reported to me that the mixed-endian problem
3894 ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems
3895 ** that early versions of GCC stored the two words of a 64-bit
3896 ** float in the wrong order. And that error has been propagated
3897 ** ever since. The blame is not necessarily with GCC, though.
3898 ** GCC might have just copying the problem from a prior compiler.
3899 ** I am also told that newer versions of GCC that follow a different
3900 ** ABI get the byte order right.
3902 ** Developers using SQLite on an ARM7 should compile and run their
3903 ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG
3904 ** enabled, some asserts below will ensure that the byte order of
3905 ** floating point values is correct.
3907 ** (2007-08-30) Frank van Vugt has studied this problem closely
3908 ** and has send his findings to the SQLite developers. Frank
3909 ** writes that some Linux kernels offer floating point hardware
3910 ** emulation that uses only 32-bit mantissas instead of a full
3911 ** 48-bits as required by the IEEE standard. (This is the
3912 ** CONFIG_FPE_FASTFPE option.) On such systems, floating point
3913 ** byte swapping becomes very complicated. To avoid problems,
3914 ** the necessary byte swapping is carried out using a 64-bit integer
3915 ** rather than a 64-bit float. Frank assures us that the code here
3916 ** works for him. We, the developers, have no way to independently
3917 ** verify this, but Frank seems to know what he is talking about
3920 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
3921 u64
sqlite3FloatSwap(u64 in
){
3934 #endif /* SQLITE_MIXED_ENDIAN_64BIT_FLOAT */
3937 /* Input "x" is a sequence of unsigned characters that represent a
3938 ** big-endian integer. Return the equivalent native integer
3940 #define ONE_BYTE_INT(x) ((i8)(x)[0])
3941 #define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1])
3942 #define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2])
3943 #define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
3944 #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
3947 ** Deserialize the data blob pointed to by buf as serial type serial_type
3948 ** and store the result in pMem.
3950 ** This function is implemented as two separate routines for performance.
3951 ** The few cases that require local variables are broken out into a separate
3952 ** routine so that in most cases the overhead of moving the stack pointer
3955 static void serialGet(
3956 const unsigned char *buf
, /* Buffer to deserialize from */
3957 u32 serial_type
, /* Serial type to deserialize */
3958 Mem
*pMem
/* Memory cell to write value into */
3960 u64 x
= FOUR_BYTE_UINT(buf
);
3961 u32 y
= FOUR_BYTE_UINT(buf
+4);
3963 if( serial_type
==6 ){
3964 /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit
3965 ** twos-complement integer. */
3966 pMem
->u
.i
= *(i64
*)&x
;
3967 pMem
->flags
= MEM_Int
;
3968 testcase( pMem
->u
.i
<0 );
3970 /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit
3971 ** floating point number. */
3972 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
3973 /* Verify that integers and floating point values use the same
3974 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
3975 ** defined that 64-bit floating point values really are mixed
3978 static const u64 t1
= ((u64
)0x3ff00000)<<32;
3979 static const double r1
= 1.0;
3981 swapMixedEndianFloat(t2
);
3982 assert( sizeof(r1
)==sizeof(t2
) && memcmp(&r1
, &t2
, sizeof(r1
))==0 );
3984 assert( sizeof(x
)==8 && sizeof(pMem
->u
.r
)==8 );
3985 swapMixedEndianFloat(x
);
3986 memcpy(&pMem
->u
.r
, &x
, sizeof(x
));
3987 pMem
->flags
= IsNaN(x
) ? MEM_Null
: MEM_Real
;
3990 void sqlite3VdbeSerialGet(
3991 const unsigned char *buf
, /* Buffer to deserialize from */
3992 u32 serial_type
, /* Serial type to deserialize */
3993 Mem
*pMem
/* Memory cell to write value into */
3995 switch( serial_type
){
3996 case 10: { /* Internal use only: NULL with virtual table
3997 ** UPDATE no-change flag set */
3998 pMem
->flags
= MEM_Null
|MEM_Zero
;
4003 case 11: /* Reserved for future use */
4004 case 0: { /* Null */
4005 /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */
4006 pMem
->flags
= MEM_Null
;
4010 /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement
4012 pMem
->u
.i
= ONE_BYTE_INT(buf
);
4013 pMem
->flags
= MEM_Int
;
4014 testcase( pMem
->u
.i
<0 );
4017 case 2: { /* 2-byte signed integer */
4018 /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit
4019 ** twos-complement integer. */
4020 pMem
->u
.i
= TWO_BYTE_INT(buf
);
4021 pMem
->flags
= MEM_Int
;
4022 testcase( pMem
->u
.i
<0 );
4025 case 3: { /* 3-byte signed integer */
4026 /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit
4027 ** twos-complement integer. */
4028 pMem
->u
.i
= THREE_BYTE_INT(buf
);
4029 pMem
->flags
= MEM_Int
;
4030 testcase( pMem
->u
.i
<0 );
4033 case 4: { /* 4-byte signed integer */
4034 /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit
4035 ** twos-complement integer. */
4036 pMem
->u
.i
= FOUR_BYTE_INT(buf
);
4038 /* Work around a sign-extension bug in the HP compiler for HP/UX */
4039 if( buf
[0]&0x80 ) pMem
->u
.i
|= 0xffffffff80000000LL
;
4041 pMem
->flags
= MEM_Int
;
4042 testcase( pMem
->u
.i
<0 );
4045 case 5: { /* 6-byte signed integer */
4046 /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit
4047 ** twos-complement integer. */
4048 pMem
->u
.i
= FOUR_BYTE_UINT(buf
+2) + (((i64
)1)<<32)*TWO_BYTE_INT(buf
);
4049 pMem
->flags
= MEM_Int
;
4050 testcase( pMem
->u
.i
<0 );
4053 case 6: /* 8-byte signed integer */
4054 case 7: { /* IEEE floating point */
4055 /* These use local variables, so do them in a separate routine
4056 ** to avoid having to move the frame pointer in the common case */
4057 serialGet(buf
,serial_type
,pMem
);
4060 case 8: /* Integer 0 */
4061 case 9: { /* Integer 1 */
4062 /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */
4063 /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */
4064 pMem
->u
.i
= serial_type
-8;
4065 pMem
->flags
= MEM_Int
;
4069 /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in
4071 ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and
4072 ** (N-13)/2 bytes in length. */
4073 static const u16 aFlag
[] = { MEM_Blob
|MEM_Ephem
, MEM_Str
|MEM_Ephem
};
4074 pMem
->z
= (char *)buf
;
4075 pMem
->n
= (serial_type
-12)/2;
4076 pMem
->flags
= aFlag
[serial_type
&1];
4083 ** This routine is used to allocate sufficient space for an UnpackedRecord
4084 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if
4085 ** the first argument is a pointer to KeyInfo structure pKeyInfo.
4087 ** The space is either allocated using sqlite3DbMallocRaw() or from within
4088 ** the unaligned buffer passed via the second and third arguments (presumably
4089 ** stack space). If the former, then *ppFree is set to a pointer that should
4090 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the
4091 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL
4092 ** before returning.
4094 ** If an OOM error occurs, NULL is returned.
4096 UnpackedRecord
*sqlite3VdbeAllocUnpackedRecord(
4097 KeyInfo
*pKeyInfo
/* Description of the record */
4099 UnpackedRecord
*p
; /* Unpacked record to return */
4100 int nByte
; /* Number of bytes required for *p */
4101 nByte
= ROUND8P(sizeof(UnpackedRecord
)) + sizeof(Mem
)*(pKeyInfo
->nKeyField
+1);
4102 p
= (UnpackedRecord
*)sqlite3DbMallocRaw(pKeyInfo
->db
, nByte
);
4104 p
->aMem
= (Mem
*)&((char*)p
)[ROUND8P(sizeof(UnpackedRecord
))];
4105 assert( pKeyInfo
->aSortFlags
!=0 );
4106 p
->pKeyInfo
= pKeyInfo
;
4107 p
->nField
= pKeyInfo
->nKeyField
+ 1;
4112 ** Given the nKey-byte encoding of a record in pKey[], populate the
4113 ** UnpackedRecord structure indicated by the fourth argument with the
4114 ** contents of the decoded record.
4116 void sqlite3VdbeRecordUnpack(
4117 KeyInfo
*pKeyInfo
, /* Information about the record format */
4118 int nKey
, /* Size of the binary record */
4119 const void *pKey
, /* The binary record */
4120 UnpackedRecord
*p
/* Populate this structure before returning. */
4122 const unsigned char *aKey
= (const unsigned char *)pKey
;
4124 u32 idx
; /* Offset in aKey[] to read from */
4125 u16 u
; /* Unsigned loop counter */
4127 Mem
*pMem
= p
->aMem
;
4130 assert( EIGHT_BYTE_ALIGNMENT(pMem
) );
4131 idx
= getVarint32(aKey
, szHdr
);
4134 while( idx
<szHdr
&& d
<=(u32
)nKey
){
4137 idx
+= getVarint32(&aKey
[idx
], serial_type
);
4138 pMem
->enc
= pKeyInfo
->enc
;
4139 pMem
->db
= pKeyInfo
->db
;
4140 /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
4143 sqlite3VdbeSerialGet(&aKey
[d
], serial_type
, pMem
);
4144 d
+= sqlite3VdbeSerialTypeLen(serial_type
);
4146 if( (++u
)>=p
->nField
) break;
4148 if( d
>(u32
)nKey
&& u
){
4149 assert( CORRUPT_DB
);
4150 /* In a corrupt record entry, the last pMem might have been set up using
4151 ** uninitialized memory. Overwrite its value with NULL, to prevent
4152 ** warnings from MSAN. */
4153 sqlite3VdbeMemSetNull(pMem
-1);
4155 assert( u
<=pKeyInfo
->nKeyField
+ 1 );
4161 ** This function compares two index or table record keys in the same way
4162 ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(),
4163 ** this function deserializes and compares values using the
4164 ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used
4165 ** in assert() statements to ensure that the optimized code in
4166 ** sqlite3VdbeRecordCompare() returns results with these two primitives.
4168 ** Return true if the result of comparison is equivalent to desiredResult.
4169 ** Return false if there is a disagreement.
4171 static int vdbeRecordCompareDebug(
4172 int nKey1
, const void *pKey1
, /* Left key */
4173 const UnpackedRecord
*pPKey2
, /* Right key */
4174 int desiredResult
/* Correct answer */
4176 u32 d1
; /* Offset into aKey[] of next data element */
4177 u32 idx1
; /* Offset into aKey[] of next header element */
4178 u32 szHdr1
; /* Number of bytes in header */
4181 const unsigned char *aKey1
= (const unsigned char *)pKey1
;
4185 pKeyInfo
= pPKey2
->pKeyInfo
;
4186 if( pKeyInfo
->db
==0 ) return 1;
4187 mem1
.enc
= pKeyInfo
->enc
;
4188 mem1
.db
= pKeyInfo
->db
;
4189 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */
4190 VVA_ONLY( mem1
.szMalloc
= 0; ) /* Only needed by assert() statements */
4192 /* Compilers may complain that mem1.u.i is potentially uninitialized.
4193 ** We could initialize it, as shown here, to silence those complaints.
4194 ** But in fact, mem1.u.i will never actually be used uninitialized, and doing
4195 ** the unnecessary initialization has a measurable negative performance
4196 ** impact, since this routine is a very high runner. And so, we choose
4197 ** to ignore the compiler warnings and leave this variable uninitialized.
4199 /* mem1.u.i = 0; // not needed, here to silence compiler warning */
4201 idx1
= getVarint32(aKey1
, szHdr1
);
4202 if( szHdr1
>98307 ) return SQLITE_CORRUPT
;
4204 assert( pKeyInfo
->nAllField
>=pPKey2
->nField
|| CORRUPT_DB
);
4205 assert( pKeyInfo
->aSortFlags
!=0 );
4206 assert( pKeyInfo
->nKeyField
>0 );
4207 assert( idx1
<=szHdr1
|| CORRUPT_DB
);
4211 /* Read the serial types for the next element in each key. */
4212 idx1
+= getVarint32( aKey1
+idx1
, serial_type1
);
4214 /* Verify that there is enough key space remaining to avoid
4215 ** a buffer overread. The "d1+serial_type1+2" subexpression will
4216 ** always be greater than or equal to the amount of required key space.
4217 ** Use that approximation to avoid the more expensive call to
4218 ** sqlite3VdbeSerialTypeLen() in the common case.
4220 if( d1
+(u64
)serial_type1
+2>(u64
)nKey1
4221 && d1
+(u64
)sqlite3VdbeSerialTypeLen(serial_type1
)>(u64
)nKey1
4226 /* Extract the values to be compared.
4228 sqlite3VdbeSerialGet(&aKey1
[d1
], serial_type1
, &mem1
);
4229 d1
+= sqlite3VdbeSerialTypeLen(serial_type1
);
4231 /* Do the comparison
4233 rc
= sqlite3MemCompare(&mem1
, &pPKey2
->aMem
[i
],
4234 pKeyInfo
->nAllField
>i
? pKeyInfo
->aColl
[i
] : 0);
4236 assert( mem1
.szMalloc
==0 ); /* See comment below */
4237 if( (pKeyInfo
->aSortFlags
[i
] & KEYINFO_ORDER_BIGNULL
)
4238 && ((mem1
.flags
& MEM_Null
) || (pPKey2
->aMem
[i
].flags
& MEM_Null
))
4242 if( pKeyInfo
->aSortFlags
[i
] & KEYINFO_ORDER_DESC
){
4243 rc
= -rc
; /* Invert the result for DESC sort order. */
4245 goto debugCompareEnd
;
4248 }while( idx1
<szHdr1
&& i
<pPKey2
->nField
);
4250 /* No memory allocation is ever used on mem1. Prove this using
4251 ** the following assert(). If the assert() fails, it indicates a
4252 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
4254 assert( mem1
.szMalloc
==0 );
4256 /* rc==0 here means that one of the keys ran out of fields and
4257 ** all the fields up to that point were equal. Return the default_rc
4259 rc
= pPKey2
->default_rc
;
4262 if( desiredResult
==0 && rc
==0 ) return 1;
4263 if( desiredResult
<0 && rc
<0 ) return 1;
4264 if( desiredResult
>0 && rc
>0 ) return 1;
4265 if( CORRUPT_DB
) return 1;
4266 if( pKeyInfo
->db
->mallocFailed
) return 1;
4273 ** Count the number of fields (a.k.a. columns) in the record given by
4274 ** pKey,nKey. The verify that this count is less than or equal to the
4275 ** limit given by pKeyInfo->nAllField.
4277 ** If this constraint is not satisfied, it means that the high-speed
4278 ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will
4279 ** not work correctly. If this assert() ever fires, it probably means
4280 ** that the KeyInfo.nKeyField or KeyInfo.nAllField values were computed
4283 static void vdbeAssertFieldCountWithinLimits(
4284 int nKey
, const void *pKey
, /* The record to verify */
4285 const KeyInfo
*pKeyInfo
/* Compare size with this KeyInfo */
4291 const unsigned char *aKey
= (const unsigned char*)pKey
;
4293 if( CORRUPT_DB
) return;
4294 idx
= getVarint32(aKey
, szHdr
);
4296 assert( szHdr
<=(u32
)nKey
);
4298 idx
+= getVarint32(aKey
+idx
, notUsed
);
4301 assert( nField
<= pKeyInfo
->nAllField
);
4304 # define vdbeAssertFieldCountWithinLimits(A,B,C)
4308 ** Both *pMem1 and *pMem2 contain string values. Compare the two values
4309 ** using the collation sequence pColl. As usual, return a negative , zero
4310 ** or positive value if *pMem1 is less than, equal to or greater than
4311 ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);".
4313 static int vdbeCompareMemString(
4316 const CollSeq
*pColl
,
4317 u8
*prcErr
/* If an OOM occurs, set to SQLITE_NOMEM */
4319 if( pMem1
->enc
==pColl
->enc
){
4320 /* The strings are already in the correct encoding. Call the
4321 ** comparison function directly */
4322 return pColl
->xCmp(pColl
->pUser
,pMem1
->n
,pMem1
->z
,pMem2
->n
,pMem2
->z
);
4325 const void *v1
, *v2
;
4328 sqlite3VdbeMemInit(&c1
, pMem1
->db
, MEM_Null
);
4329 sqlite3VdbeMemInit(&c2
, pMem1
->db
, MEM_Null
);
4330 sqlite3VdbeMemShallowCopy(&c1
, pMem1
, MEM_Ephem
);
4331 sqlite3VdbeMemShallowCopy(&c2
, pMem2
, MEM_Ephem
);
4332 v1
= sqlite3ValueText((sqlite3_value
*)&c1
, pColl
->enc
);
4333 v2
= sqlite3ValueText((sqlite3_value
*)&c2
, pColl
->enc
);
4334 if( (v1
==0 || v2
==0) ){
4335 if( prcErr
) *prcErr
= SQLITE_NOMEM_BKPT
;
4338 rc
= pColl
->xCmp(pColl
->pUser
, c1
.n
, v1
, c2
.n
, v2
);
4340 sqlite3VdbeMemReleaseMalloc(&c1
);
4341 sqlite3VdbeMemReleaseMalloc(&c2
);
4347 ** The input pBlob is guaranteed to be a Blob that is not marked
4348 ** with MEM_Zero. Return true if it could be a zero-blob.
4350 static int isAllZero(const char *z
, int n
){
4353 if( z
[i
] ) return 0;
4359 ** Compare two blobs. Return negative, zero, or positive if the first
4360 ** is less than, equal to, or greater than the second, respectively.
4361 ** If one blob is a prefix of the other, then the shorter is the lessor.
4363 SQLITE_NOINLINE
int sqlite3BlobCompare(const Mem
*pB1
, const Mem
*pB2
){
4368 /* It is possible to have a Blob value that has some non-zero content
4369 ** followed by zero content. But that only comes up for Blobs formed
4370 ** by the OP_MakeRecord opcode, and such Blobs never get passed into
4371 ** sqlite3MemCompare(). */
4372 assert( (pB1
->flags
& MEM_Zero
)==0 || n1
==0 );
4373 assert( (pB2
->flags
& MEM_Zero
)==0 || n2
==0 );
4375 if( (pB1
->flags
|pB2
->flags
) & MEM_Zero
){
4376 if( pB1
->flags
& pB2
->flags
& MEM_Zero
){
4377 return pB1
->u
.nZero
- pB2
->u
.nZero
;
4378 }else if( pB1
->flags
& MEM_Zero
){
4379 if( !isAllZero(pB2
->z
, pB2
->n
) ) return -1;
4380 return pB1
->u
.nZero
- n2
;
4382 if( !isAllZero(pB1
->z
, pB1
->n
) ) return +1;
4383 return n1
- pB2
->u
.nZero
;
4386 c
= memcmp(pB1
->z
, pB2
->z
, n1
>n2
? n2
: n1
);
4392 ** Do a comparison between a 64-bit signed integer and a 64-bit floating-point
4393 ** number. Return negative, zero, or positive if the first (i64) is less than,
4394 ** equal to, or greater than the second (double).
4396 int sqlite3IntFloatCompare(i64 i
, double r
){
4397 if( sizeof(LONGDOUBLE_TYPE
)>8 ){
4398 LONGDOUBLE_TYPE x
= (LONGDOUBLE_TYPE
)i
;
4402 if( x
<r
) return -1;
4403 if( x
>r
) return +1; /*NO_TEST*/ /* work around bugs in gcov */
4404 return 0; /*NO_TEST*/ /* work around bugs in gcov */
4408 if( r
<-9223372036854775808.0 ) return +1;
4409 if( r
>=9223372036854775808.0 ) return -1;
4411 if( i
<y
) return -1;
4412 if( i
>y
) return +1;
4414 if( s
<r
) return -1;
4415 if( s
>r
) return +1;
4421 ** Compare the values contained by the two memory cells, returning
4422 ** negative, zero or positive if pMem1 is less than, equal to, or greater
4423 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers
4424 ** and reals) sorted numerically, followed by text ordered by the collating
4425 ** sequence pColl and finally blob's ordered by memcmp().
4427 ** Two NULL values are considered equal by this function.
4429 int sqlite3MemCompare(const Mem
*pMem1
, const Mem
*pMem2
, const CollSeq
*pColl
){
4435 combined_flags
= f1
|f2
;
4436 assert( !sqlite3VdbeMemIsRowSet(pMem1
) && !sqlite3VdbeMemIsRowSet(pMem2
) );
4438 /* If one value is NULL, it is less than the other. If both values
4439 ** are NULL, return 0.
4441 if( combined_flags
&MEM_Null
){
4442 return (f2
&MEM_Null
) - (f1
&MEM_Null
);
4445 /* At least one of the two values is a number
4447 if( combined_flags
&(MEM_Int
|MEM_Real
|MEM_IntReal
) ){
4448 testcase( combined_flags
& MEM_Int
);
4449 testcase( combined_flags
& MEM_Real
);
4450 testcase( combined_flags
& MEM_IntReal
);
4451 if( (f1
& f2
& (MEM_Int
|MEM_IntReal
))!=0 ){
4452 testcase( f1
& f2
& MEM_Int
);
4453 testcase( f1
& f2
& MEM_IntReal
);
4454 if( pMem1
->u
.i
< pMem2
->u
.i
) return -1;
4455 if( pMem1
->u
.i
> pMem2
->u
.i
) return +1;
4458 if( (f1
& f2
& MEM_Real
)!=0 ){
4459 if( pMem1
->u
.r
< pMem2
->u
.r
) return -1;
4460 if( pMem1
->u
.r
> pMem2
->u
.r
) return +1;
4463 if( (f1
&(MEM_Int
|MEM_IntReal
))!=0 ){
4464 testcase( f1
& MEM_Int
);
4465 testcase( f1
& MEM_IntReal
);
4466 if( (f2
&MEM_Real
)!=0 ){
4467 return sqlite3IntFloatCompare(pMem1
->u
.i
, pMem2
->u
.r
);
4468 }else if( (f2
&(MEM_Int
|MEM_IntReal
))!=0 ){
4469 if( pMem1
->u
.i
< pMem2
->u
.i
) return -1;
4470 if( pMem1
->u
.i
> pMem2
->u
.i
) return +1;
4476 if( (f1
&MEM_Real
)!=0 ){
4477 if( (f2
&(MEM_Int
|MEM_IntReal
))!=0 ){
4478 testcase( f2
& MEM_Int
);
4479 testcase( f2
& MEM_IntReal
);
4480 return -sqlite3IntFloatCompare(pMem2
->u
.i
, pMem1
->u
.r
);
4488 /* If one value is a string and the other is a blob, the string is less.
4489 ** If both are strings, compare using the collating functions.
4491 if( combined_flags
&MEM_Str
){
4492 if( (f1
& MEM_Str
)==0 ){
4495 if( (f2
& MEM_Str
)==0 ){
4499 assert( pMem1
->enc
==pMem2
->enc
|| pMem1
->db
->mallocFailed
);
4500 assert( pMem1
->enc
==SQLITE_UTF8
||
4501 pMem1
->enc
==SQLITE_UTF16LE
|| pMem1
->enc
==SQLITE_UTF16BE
);
4503 /* The collation sequence must be defined at this point, even if
4504 ** the user deletes the collation sequence after the vdbe program is
4505 ** compiled (this was not always the case).
4507 assert( !pColl
|| pColl
->xCmp
);
4510 return vdbeCompareMemString(pMem1
, pMem2
, pColl
, 0);
4512 /* If a NULL pointer was passed as the collate function, fall through
4513 ** to the blob case and use memcmp(). */
4516 /* Both values must be blobs. Compare using memcmp(). */
4517 return sqlite3BlobCompare(pMem1
, pMem2
);
4522 ** The first argument passed to this function is a serial-type that
4523 ** corresponds to an integer - all values between 1 and 9 inclusive
4524 ** except 7. The second points to a buffer containing an integer value
4525 ** serialized according to serial_type. This function deserializes
4526 ** and returns the value.
4528 static i64
vdbeRecordDecodeInt(u32 serial_type
, const u8
*aKey
){
4530 assert( CORRUPT_DB
|| (serial_type
>=1 && serial_type
<=9 && serial_type
!=7) );
4531 switch( serial_type
){
4534 testcase( aKey
[0]&0x80 );
4535 return ONE_BYTE_INT(aKey
);
4537 testcase( aKey
[0]&0x80 );
4538 return TWO_BYTE_INT(aKey
);
4540 testcase( aKey
[0]&0x80 );
4541 return THREE_BYTE_INT(aKey
);
4543 testcase( aKey
[0]&0x80 );
4544 y
= FOUR_BYTE_UINT(aKey
);
4545 return (i64
)*(int*)&y
;
4548 testcase( aKey
[0]&0x80 );
4549 return FOUR_BYTE_UINT(aKey
+2) + (((i64
)1)<<32)*TWO_BYTE_INT(aKey
);
4552 u64 x
= FOUR_BYTE_UINT(aKey
);
4553 testcase( aKey
[0]&0x80 );
4554 x
= (x
<<32) | FOUR_BYTE_UINT(aKey
+4);
4555 return (i64
)*(i64
*)&x
;
4559 return (serial_type
- 8);
4563 ** This function compares the two table rows or index records
4564 ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero
4565 ** or positive integer if key1 is less than, equal to or
4566 ** greater than key2. The {nKey1, pKey1} key must be a blob
4567 ** created by the OP_MakeRecord opcode of the VDBE. The pPKey2
4568 ** key must be a parsed key such as obtained from
4569 ** sqlite3VdbeParseRecord.
4571 ** If argument bSkip is non-zero, it is assumed that the caller has already
4572 ** determined that the first fields of the keys are equal.
4574 ** Key1 and Key2 do not have to contain the same number of fields. If all
4575 ** fields that appear in both keys are equal, then pPKey2->default_rc is
4578 ** If database corruption is discovered, set pPKey2->errCode to
4579 ** SQLITE_CORRUPT and return 0. If an OOM error is encountered,
4580 ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the
4581 ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db).
4583 int sqlite3VdbeRecordCompareWithSkip(
4584 int nKey1
, const void *pKey1
, /* Left key */
4585 UnpackedRecord
*pPKey2
, /* Right key */
4586 int bSkip
/* If true, skip the first field */
4588 u32 d1
; /* Offset into aKey[] of next data element */
4589 int i
; /* Index of next field to compare */
4590 u32 szHdr1
; /* Size of record header in bytes */
4591 u32 idx1
; /* Offset of first type in header */
4592 int rc
= 0; /* Return value */
4593 Mem
*pRhs
= pPKey2
->aMem
; /* Next field of pPKey2 to compare */
4595 const unsigned char *aKey1
= (const unsigned char *)pKey1
;
4598 /* If bSkip is true, then the caller has already determined that the first
4599 ** two elements in the keys are equal. Fix the various stack variables so
4600 ** that this routine begins comparing at the second field. */
4606 idx1
= 1 + sqlite3GetVarint32(&aKey1
[1], &s1
);
4609 d1
= szHdr1
+ sqlite3VdbeSerialTypeLen(s1
);
4613 if( (szHdr1
= aKey1
[0])<0x80 ){
4616 idx1
= sqlite3GetVarint32(aKey1
, &szHdr1
);
4621 if( d1
>(unsigned)nKey1
){
4622 pPKey2
->errCode
= (u8
)SQLITE_CORRUPT_BKPT
;
4623 return 0; /* Corruption */
4626 VVA_ONLY( mem1
.szMalloc
= 0; ) /* Only needed by assert() statements */
4627 assert( pPKey2
->pKeyInfo
->nAllField
>=pPKey2
->nField
4629 assert( pPKey2
->pKeyInfo
->aSortFlags
!=0 );
4630 assert( pPKey2
->pKeyInfo
->nKeyField
>0 );
4631 assert( idx1
<=szHdr1
|| CORRUPT_DB
);
4632 while( 1 /*exit-by-break*/ ){
4635 /* RHS is an integer */
4636 if( pRhs
->flags
& (MEM_Int
|MEM_IntReal
) ){
4637 testcase( pRhs
->flags
& MEM_Int
);
4638 testcase( pRhs
->flags
& MEM_IntReal
);
4639 serial_type
= aKey1
[idx1
];
4640 testcase( serial_type
==12 );
4641 if( serial_type
>=10 ){
4642 rc
= serial_type
==10 ? -1 : +1;
4643 }else if( serial_type
==0 ){
4645 }else if( serial_type
==7 ){
4646 sqlite3VdbeSerialGet(&aKey1
[d1
], serial_type
, &mem1
);
4647 rc
= -sqlite3IntFloatCompare(pRhs
->u
.i
, mem1
.u
.r
);
4649 i64 lhs
= vdbeRecordDecodeInt(serial_type
, &aKey1
[d1
]);
4650 i64 rhs
= pRhs
->u
.i
;
4653 }else if( lhs
>rhs
){
4660 else if( pRhs
->flags
& MEM_Real
){
4661 serial_type
= aKey1
[idx1
];
4662 if( serial_type
>=10 ){
4663 /* Serial types 12 or greater are strings and blobs (greater than
4664 ** numbers). Types 10 and 11 are currently "reserved for future
4665 ** use", so it doesn't really matter what the results of comparing
4666 ** them to numberic values are. */
4667 rc
= serial_type
==10 ? -1 : +1;
4668 }else if( serial_type
==0 ){
4671 sqlite3VdbeSerialGet(&aKey1
[d1
], serial_type
, &mem1
);
4672 if( serial_type
==7 ){
4673 if( mem1
.u
.r
<pRhs
->u
.r
){
4675 }else if( mem1
.u
.r
>pRhs
->u
.r
){
4679 rc
= sqlite3IntFloatCompare(mem1
.u
.i
, pRhs
->u
.r
);
4684 /* RHS is a string */
4685 else if( pRhs
->flags
& MEM_Str
){
4686 getVarint32NR(&aKey1
[idx1
], serial_type
);
4687 testcase( serial_type
==12 );
4688 if( serial_type
<12 ){
4690 }else if( !(serial_type
& 0x01) ){
4693 mem1
.n
= (serial_type
- 12) / 2;
4694 testcase( (d1
+mem1
.n
)==(unsigned)nKey1
);
4695 testcase( (d1
+mem1
.n
+1)==(unsigned)nKey1
);
4696 if( (d1
+mem1
.n
) > (unsigned)nKey1
4697 || (pKeyInfo
= pPKey2
->pKeyInfo
)->nAllField
<=i
4699 pPKey2
->errCode
= (u8
)SQLITE_CORRUPT_BKPT
;
4700 return 0; /* Corruption */
4701 }else if( pKeyInfo
->aColl
[i
] ){
4702 mem1
.enc
= pKeyInfo
->enc
;
4703 mem1
.db
= pKeyInfo
->db
;
4704 mem1
.flags
= MEM_Str
;
4705 mem1
.z
= (char*)&aKey1
[d1
];
4706 rc
= vdbeCompareMemString(
4707 &mem1
, pRhs
, pKeyInfo
->aColl
[i
], &pPKey2
->errCode
4710 int nCmp
= MIN(mem1
.n
, pRhs
->n
);
4711 rc
= memcmp(&aKey1
[d1
], pRhs
->z
, nCmp
);
4712 if( rc
==0 ) rc
= mem1
.n
- pRhs
->n
;
4718 else if( pRhs
->flags
& MEM_Blob
){
4719 assert( (pRhs
->flags
& MEM_Zero
)==0 || pRhs
->n
==0 );
4720 getVarint32NR(&aKey1
[idx1
], serial_type
);
4721 testcase( serial_type
==12 );
4722 if( serial_type
<12 || (serial_type
& 0x01) ){
4725 int nStr
= (serial_type
- 12) / 2;
4726 testcase( (d1
+nStr
)==(unsigned)nKey1
);
4727 testcase( (d1
+nStr
+1)==(unsigned)nKey1
);
4728 if( (d1
+nStr
) > (unsigned)nKey1
){
4729 pPKey2
->errCode
= (u8
)SQLITE_CORRUPT_BKPT
;
4730 return 0; /* Corruption */
4731 }else if( pRhs
->flags
& MEM_Zero
){
4732 if( !isAllZero((const char*)&aKey1
[d1
],nStr
) ){
4735 rc
= nStr
- pRhs
->u
.nZero
;
4738 int nCmp
= MIN(nStr
, pRhs
->n
);
4739 rc
= memcmp(&aKey1
[d1
], pRhs
->z
, nCmp
);
4740 if( rc
==0 ) rc
= nStr
- pRhs
->n
;
4747 serial_type
= aKey1
[idx1
];
4748 rc
= (serial_type
!=0 && serial_type
!=10);
4752 int sortFlags
= pPKey2
->pKeyInfo
->aSortFlags
[i
];
4754 if( (sortFlags
& KEYINFO_ORDER_BIGNULL
)==0
4755 || ((sortFlags
& KEYINFO_ORDER_DESC
)
4756 !=(serial_type
==0 || (pRhs
->flags
&MEM_Null
)))
4761 assert( vdbeRecordCompareDebug(nKey1
, pKey1
, pPKey2
, rc
) );
4762 assert( mem1
.szMalloc
==0 ); /* See comment below */
4767 if( i
==pPKey2
->nField
) break;
4769 d1
+= sqlite3VdbeSerialTypeLen(serial_type
);
4770 if( d1
>(unsigned)nKey1
) break;
4771 idx1
+= sqlite3VarintLen(serial_type
);
4772 if( idx1
>=(unsigned)szHdr1
){
4773 pPKey2
->errCode
= (u8
)SQLITE_CORRUPT_BKPT
;
4774 return 0; /* Corrupt index */
4778 /* No memory allocation is ever used on mem1. Prove this using
4779 ** the following assert(). If the assert() fails, it indicates a
4780 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */
4781 assert( mem1
.szMalloc
==0 );
4783 /* rc==0 here means that one or both of the keys ran out of fields and
4784 ** all the fields up to that point were equal. Return the default_rc
4787 || vdbeRecordCompareDebug(nKey1
, pKey1
, pPKey2
, pPKey2
->default_rc
)
4788 || pPKey2
->pKeyInfo
->db
->mallocFailed
4791 return pPKey2
->default_rc
;
4793 int sqlite3VdbeRecordCompare(
4794 int nKey1
, const void *pKey1
, /* Left key */
4795 UnpackedRecord
*pPKey2
/* Right key */
4797 return sqlite3VdbeRecordCompareWithSkip(nKey1
, pKey1
, pPKey2
, 0);
4802 ** This function is an optimized version of sqlite3VdbeRecordCompare()
4803 ** that (a) the first field of pPKey2 is an integer, and (b) the
4804 ** size-of-header varint at the start of (pKey1/nKey1) fits in a single
4805 ** byte (i.e. is less than 128).
4807 ** To avoid concerns about buffer overreads, this routine is only used
4808 ** on schemas where the maximum valid header size is 63 bytes or less.
4810 static int vdbeRecordCompareInt(
4811 int nKey1
, const void *pKey1
, /* Left key */
4812 UnpackedRecord
*pPKey2
/* Right key */
4814 const u8
*aKey
= &((const u8
*)pKey1
)[*(const u8
*)pKey1
& 0x3F];
4815 int serial_type
= ((const u8
*)pKey1
)[1];
4822 vdbeAssertFieldCountWithinLimits(nKey1
, pKey1
, pPKey2
->pKeyInfo
);
4823 assert( (*(u8
*)pKey1
)<=0x3F || CORRUPT_DB
);
4824 switch( serial_type
){
4825 case 1: { /* 1-byte signed integer */
4826 lhs
= ONE_BYTE_INT(aKey
);
4830 case 2: { /* 2-byte signed integer */
4831 lhs
= TWO_BYTE_INT(aKey
);
4835 case 3: { /* 3-byte signed integer */
4836 lhs
= THREE_BYTE_INT(aKey
);
4840 case 4: { /* 4-byte signed integer */
4841 y
= FOUR_BYTE_UINT(aKey
);
4842 lhs
= (i64
)*(int*)&y
;
4846 case 5: { /* 6-byte signed integer */
4847 lhs
= FOUR_BYTE_UINT(aKey
+2) + (((i64
)1)<<32)*TWO_BYTE_INT(aKey
);
4851 case 6: { /* 8-byte signed integer */
4852 x
= FOUR_BYTE_UINT(aKey
);
4853 x
= (x
<<32) | FOUR_BYTE_UINT(aKey
+4);
4865 /* This case could be removed without changing the results of running
4866 ** this code. Including it causes gcc to generate a faster switch
4867 ** statement (since the range of switch targets now starts at zero and
4868 ** is contiguous) but does not cause any duplicate code to be generated
4869 ** (as gcc is clever enough to combine the two like cases). Other
4870 ** compilers might be similar. */
4872 return sqlite3VdbeRecordCompare(nKey1
, pKey1
, pPKey2
);
4875 return sqlite3VdbeRecordCompare(nKey1
, pKey1
, pPKey2
);
4878 assert( pPKey2
->u
.i
== pPKey2
->aMem
[0].u
.i
);
4884 }else if( pPKey2
->nField
>1 ){
4885 /* The first fields of the two keys are equal. Compare the trailing
4887 res
= sqlite3VdbeRecordCompareWithSkip(nKey1
, pKey1
, pPKey2
, 1);
4889 /* The first fields of the two keys are equal and there are no trailing
4890 ** fields. Return pPKey2->default_rc in this case. */
4891 res
= pPKey2
->default_rc
;
4895 assert( vdbeRecordCompareDebug(nKey1
, pKey1
, pPKey2
, res
) );
4900 ** This function is an optimized version of sqlite3VdbeRecordCompare()
4901 ** that (a) the first field of pPKey2 is a string, that (b) the first field
4902 ** uses the collation sequence BINARY and (c) that the size-of-header varint
4903 ** at the start of (pKey1/nKey1) fits in a single byte.
4905 static int vdbeRecordCompareString(
4906 int nKey1
, const void *pKey1
, /* Left key */
4907 UnpackedRecord
*pPKey2
/* Right key */
4909 const u8
*aKey1
= (const u8
*)pKey1
;
4913 assert( pPKey2
->aMem
[0].flags
& MEM_Str
);
4914 assert( pPKey2
->aMem
[0].n
== pPKey2
->n
);
4915 assert( pPKey2
->aMem
[0].z
== pPKey2
->u
.z
);
4916 vdbeAssertFieldCountWithinLimits(nKey1
, pKey1
, pPKey2
->pKeyInfo
);
4917 serial_type
= (signed char)(aKey1
[1]);
4920 if( serial_type
<12 ){
4921 if( serial_type
<0 ){
4922 sqlite3GetVarint32(&aKey1
[1], (u32
*)&serial_type
);
4923 if( serial_type
>=12 ) goto vrcs_restart
;
4924 assert( CORRUPT_DB
);
4926 res
= pPKey2
->r1
; /* (pKey1/nKey1) is a number or a null */
4927 }else if( !(serial_type
& 0x01) ){
4928 res
= pPKey2
->r2
; /* (pKey1/nKey1) is a blob */
4932 int szHdr
= aKey1
[0];
4934 nStr
= (serial_type
-12) / 2;
4935 if( (szHdr
+ nStr
) > nKey1
){
4936 pPKey2
->errCode
= (u8
)SQLITE_CORRUPT_BKPT
;
4937 return 0; /* Corruption */
4939 nCmp
= MIN( pPKey2
->n
, nStr
);
4940 res
= memcmp(&aKey1
[szHdr
], pPKey2
->u
.z
, nCmp
);
4947 res
= nStr
- pPKey2
->n
;
4949 if( pPKey2
->nField
>1 ){
4950 res
= sqlite3VdbeRecordCompareWithSkip(nKey1
, pKey1
, pPKey2
, 1);
4952 res
= pPKey2
->default_rc
;
4963 assert( vdbeRecordCompareDebug(nKey1
, pKey1
, pPKey2
, res
)
4965 || pPKey2
->pKeyInfo
->db
->mallocFailed
4971 ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function
4972 ** suitable for comparing serialized records to the unpacked record passed
4973 ** as the only argument.
4975 RecordCompare
sqlite3VdbeFindCompare(UnpackedRecord
*p
){
4976 /* varintRecordCompareInt() and varintRecordCompareString() both assume
4977 ** that the size-of-header varint that occurs at the start of each record
4978 ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt()
4979 ** also assumes that it is safe to overread a buffer by at least the
4980 ** maximum possible legal header size plus 8 bytes. Because there is
4981 ** guaranteed to be at least 74 (but not 136) bytes of padding following each
4982 ** buffer passed to varintRecordCompareInt() this makes it convenient to
4983 ** limit the size of the header to 64 bytes in cases where the first field
4986 ** The easiest way to enforce this limit is to consider only records with
4987 ** 13 fields or less. If the first field is an integer, the maximum legal
4988 ** header size is (12*5 + 1 + 1) bytes. */
4989 if( p
->pKeyInfo
->nAllField
<=13 ){
4990 int flags
= p
->aMem
[0].flags
;
4991 if( p
->pKeyInfo
->aSortFlags
[0] ){
4992 if( p
->pKeyInfo
->aSortFlags
[0] & KEYINFO_ORDER_BIGNULL
){
4993 return sqlite3VdbeRecordCompare
;
5001 if( (flags
& MEM_Int
) ){
5002 p
->u
.i
= p
->aMem
[0].u
.i
;
5003 return vdbeRecordCompareInt
;
5005 testcase( flags
& MEM_Real
);
5006 testcase( flags
& MEM_Null
);
5007 testcase( flags
& MEM_Blob
);
5008 if( (flags
& (MEM_Real
|MEM_IntReal
|MEM_Null
|MEM_Blob
))==0
5009 && p
->pKeyInfo
->aColl
[0]==0
5011 assert( flags
& MEM_Str
);
5012 p
->u
.z
= p
->aMem
[0].z
;
5013 p
->n
= p
->aMem
[0].n
;
5014 return vdbeRecordCompareString
;
5018 return sqlite3VdbeRecordCompare
;
5022 ** pCur points at an index entry created using the OP_MakeRecord opcode.
5023 ** Read the rowid (the last field in the record) and store it in *rowid.
5024 ** Return SQLITE_OK if everything works, or an error code otherwise.
5026 ** pCur might be pointing to text obtained from a corrupt database file.
5027 ** So the content cannot be trusted. Do appropriate checks on the content.
5029 int sqlite3VdbeIdxRowid(sqlite3
*db
, BtCursor
*pCur
, i64
*rowid
){
5032 u32 szHdr
; /* Size of the header */
5033 u32 typeRowid
; /* Serial type of the rowid */
5034 u32 lenRowid
; /* Size of the rowid */
5037 /* Get the size of the index entry. Only indices entries of less
5038 ** than 2GiB are support - anything large must be database corruption.
5039 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
5040 ** this code can safely assume that nCellKey is 32-bits
5042 assert( sqlite3BtreeCursorIsValid(pCur
) );
5043 nCellKey
= sqlite3BtreePayloadSize(pCur
);
5044 assert( (nCellKey
& SQLITE_MAX_U32
)==(u64
)nCellKey
);
5046 /* Read in the complete content of the index entry */
5047 sqlite3VdbeMemInit(&m
, db
, 0);
5048 rc
= sqlite3VdbeMemFromBtreeZeroOffset(pCur
, (u32
)nCellKey
, &m
);
5053 /* The index entry must begin with a header size */
5054 getVarint32NR((u8
*)m
.z
, szHdr
);
5055 testcase( szHdr
==3 );
5056 testcase( szHdr
==(u32
)m
.n
);
5057 testcase( szHdr
>0x7fffffff );
5059 if( unlikely(szHdr
<3 || szHdr
>(unsigned)m
.n
) ){
5060 goto idx_rowid_corruption
;
5063 /* The last field of the index should be an integer - the ROWID.
5064 ** Verify that the last entry really is an integer. */
5065 getVarint32NR((u8
*)&m
.z
[szHdr
-1], typeRowid
);
5066 testcase( typeRowid
==1 );
5067 testcase( typeRowid
==2 );
5068 testcase( typeRowid
==3 );
5069 testcase( typeRowid
==4 );
5070 testcase( typeRowid
==5 );
5071 testcase( typeRowid
==6 );
5072 testcase( typeRowid
==8 );
5073 testcase( typeRowid
==9 );
5074 if( unlikely(typeRowid
<1 || typeRowid
>9 || typeRowid
==7) ){
5075 goto idx_rowid_corruption
;
5077 lenRowid
= sqlite3SmallTypeSizes
[typeRowid
];
5078 testcase( (u32
)m
.n
==szHdr
+lenRowid
);
5079 if( unlikely((u32
)m
.n
<szHdr
+lenRowid
) ){
5080 goto idx_rowid_corruption
;
5083 /* Fetch the integer off the end of the index record */
5084 sqlite3VdbeSerialGet((u8
*)&m
.z
[m
.n
-lenRowid
], typeRowid
, &v
);
5086 sqlite3VdbeMemReleaseMalloc(&m
);
5089 /* Jump here if database corruption is detected after m has been
5090 ** allocated. Free the m object and return SQLITE_CORRUPT. */
5091 idx_rowid_corruption
:
5092 testcase( m
.szMalloc
!=0 );
5093 sqlite3VdbeMemReleaseMalloc(&m
);
5094 return SQLITE_CORRUPT_BKPT
;
5098 ** Compare the key of the index entry that cursor pC is pointing to against
5099 ** the key string in pUnpacked. Write into *pRes a number
5100 ** that is negative, zero, or positive if pC is less than, equal to,
5101 ** or greater than pUnpacked. Return SQLITE_OK on success.
5103 ** pUnpacked is either created without a rowid or is truncated so that it
5104 ** omits the rowid at the end. The rowid at the end of the index entry
5105 ** is ignored as well. Hence, this routine only compares the prefixes
5106 ** of the keys prior to the final rowid, not the entire key.
5108 int sqlite3VdbeIdxKeyCompare(
5109 sqlite3
*db
, /* Database connection */
5110 VdbeCursor
*pC
, /* The cursor to compare against */
5111 UnpackedRecord
*pUnpacked
, /* Unpacked version of key */
5112 int *res
/* Write the comparison result here */
5119 assert( pC
->eCurType
==CURTYPE_BTREE
);
5120 pCur
= pC
->uc
.pCursor
;
5121 assert( sqlite3BtreeCursorIsValid(pCur
) );
5122 nCellKey
= sqlite3BtreePayloadSize(pCur
);
5123 /* nCellKey will always be between 0 and 0xffffffff because of the way
5124 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
5125 if( nCellKey
<=0 || nCellKey
>0x7fffffff ){
5127 return SQLITE_CORRUPT_BKPT
;
5129 sqlite3VdbeMemInit(&m
, db
, 0);
5130 rc
= sqlite3VdbeMemFromBtreeZeroOffset(pCur
, (u32
)nCellKey
, &m
);
5134 *res
= sqlite3VdbeRecordCompareWithSkip(m
.n
, m
.z
, pUnpacked
, 0);
5135 sqlite3VdbeMemReleaseMalloc(&m
);
5140 ** This routine sets the value to be returned by subsequent calls to
5141 ** sqlite3_changes() on the database handle 'db'.
5143 void sqlite3VdbeSetChanges(sqlite3
*db
, i64 nChange
){
5144 assert( sqlite3_mutex_held(db
->mutex
) );
5145 db
->nChange
= nChange
;
5146 db
->nTotalChange
+= nChange
;
5150 ** Set a flag in the vdbe to update the change counter when it is finalised
5153 void sqlite3VdbeCountChanges(Vdbe
*v
){
5158 ** Mark every prepared statement associated with a database connection
5161 ** An expired statement means that recompilation of the statement is
5162 ** recommend. Statements expire when things happen that make their
5163 ** programs obsolete. Removing user-defined functions or collating
5164 ** sequences, or changing an authorization function are the types of
5165 ** things that make prepared statements obsolete.
5167 ** If iCode is 1, then expiration is advisory. The statement should
5168 ** be reprepared before being restarted, but if it is already running
5169 ** it is allowed to run to completion.
5171 ** Internally, this function just sets the Vdbe.expired flag on all
5172 ** prepared statements. The flag is set to 1 for an immediate expiration
5173 ** and set to 2 for an advisory expiration.
5175 void sqlite3ExpirePreparedStatements(sqlite3
*db
, int iCode
){
5177 for(p
= db
->pVdbe
; p
; p
=p
->pVNext
){
5178 p
->expired
= iCode
+1;
5183 ** Return the database associated with the Vdbe.
5185 sqlite3
*sqlite3VdbeDb(Vdbe
*v
){
5190 ** Return the SQLITE_PREPARE flags for a Vdbe.
5192 u8
sqlite3VdbePrepareFlags(Vdbe
*v
){
5193 return v
->prepFlags
;
5197 ** Return a pointer to an sqlite3_value structure containing the value bound
5198 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return
5199 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_*
5200 ** constants) to the value before returning it.
5202 ** The returned value must be freed by the caller using sqlite3ValueFree().
5204 sqlite3_value
*sqlite3VdbeGetBoundValue(Vdbe
*v
, int iVar
, u8 aff
){
5207 Mem
*pMem
= &v
->aVar
[iVar
-1];
5208 assert( (v
->db
->flags
& SQLITE_EnableQPSG
)==0 );
5209 if( 0==(pMem
->flags
& MEM_Null
) ){
5210 sqlite3_value
*pRet
= sqlite3ValueNew(v
->db
);
5212 sqlite3VdbeMemCopy((Mem
*)pRet
, pMem
);
5213 sqlite3ValueApplyAffinity(pRet
, aff
, SQLITE_UTF8
);
5222 ** Configure SQL variable iVar so that binding a new value to it signals
5223 ** to sqlite3_reoptimize() that re-preparing the statement may result
5224 ** in a better query plan.
5226 void sqlite3VdbeSetVarmask(Vdbe
*v
, int iVar
){
5228 assert( (v
->db
->flags
& SQLITE_EnableQPSG
)==0 );
5230 v
->expmask
|= 0x80000000;
5232 v
->expmask
|= ((u32
)1 << (iVar
-1));
5237 ** Cause a function to throw an error if it was call from OP_PureFunc
5238 ** rather than OP_Function.
5240 ** OP_PureFunc means that the function must be deterministic, and should
5241 ** throw an error if it is given inputs that would make it non-deterministic.
5242 ** This routine is invoked by date/time functions that use non-deterministic
5243 ** features such as 'now'.
5245 int sqlite3NotPureFunc(sqlite3_context
*pCtx
){
5247 #ifdef SQLITE_ENABLE_STAT4
5248 if( pCtx
->pVdbe
==0 ) return 1;
5250 pOp
= pCtx
->pVdbe
->aOp
+ pCtx
->iOp
;
5251 if( pOp
->opcode
==OP_PureFunc
){
5252 const char *zContext
;
5254 if( pOp
->p5
& NC_IsCheck
){
5255 zContext
= "a CHECK constraint";
5256 }else if( pOp
->p5
& NC_GenCol
){
5257 zContext
= "a generated column";
5259 zContext
= "an index";
5261 zMsg
= sqlite3_mprintf("non-deterministic use of %s() in %s",
5262 pCtx
->pFunc
->zName
, zContext
);
5263 sqlite3_result_error(pCtx
, zMsg
, -1);
5270 #ifndef SQLITE_OMIT_VIRTUALTABLE
5272 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
5273 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
5274 ** in memory obtained from sqlite3DbMalloc).
5276 void sqlite3VtabImportErrmsg(Vdbe
*p
, sqlite3_vtab
*pVtab
){
5277 if( pVtab
->zErrMsg
){
5278 sqlite3
*db
= p
->db
;
5279 sqlite3DbFree(db
, p
->zErrMsg
);
5280 p
->zErrMsg
= sqlite3DbStrDup(db
, pVtab
->zErrMsg
);
5281 sqlite3_free(pVtab
->zErrMsg
);
5285 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5287 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5290 ** If the second argument is not NULL, release any allocations associated
5291 ** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord
5292 ** structure itself, using sqlite3DbFree().
5294 ** This function is used to free UnpackedRecord structures allocated by
5295 ** the vdbeUnpackRecord() function found in vdbeapi.c.
5297 static void vdbeFreeUnpacked(sqlite3
*db
, int nField
, UnpackedRecord
*p
){
5301 for(i
=0; i
<nField
; i
++){
5302 Mem
*pMem
= &p
->aMem
[i
];
5303 if( pMem
->zMalloc
) sqlite3VdbeMemReleaseMalloc(pMem
);
5305 sqlite3DbNNFreeNN(db
, p
);
5308 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
5310 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5312 ** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call,
5313 ** then cursor passed as the second argument should point to the row about
5314 ** to be update or deleted. If the application calls sqlite3_preupdate_old(),
5315 ** the required value will be read from the row the cursor points to.
5317 void sqlite3VdbePreUpdateHook(
5318 Vdbe
*v
, /* Vdbe pre-update hook is invoked by */
5319 VdbeCursor
*pCsr
, /* Cursor to grab old.* values from */
5320 int op
, /* SQLITE_INSERT, UPDATE or DELETE */
5321 const char *zDb
, /* Database name */
5322 Table
*pTab
, /* Modified table */
5323 i64 iKey1
, /* Initial key value */
5324 int iReg
, /* Register for new.* record */
5327 sqlite3
*db
= v
->db
;
5329 PreUpdate preupdate
;
5330 const char *zTbl
= pTab
->zName
;
5331 static const u8 fakeSortOrder
= 0;
5333 assert( db
->pPreUpdate
==0 );
5334 memset(&preupdate
, 0, sizeof(PreUpdate
));
5335 if( HasRowid(pTab
)==0 ){
5337 preupdate
.pPk
= sqlite3PrimaryKeyIndex(pTab
);
5339 if( op
==SQLITE_UPDATE
){
5340 iKey2
= v
->aMem
[iReg
].u
.i
;
5347 assert( pCsr
->eCurType
==CURTYPE_BTREE
);
5348 assert( pCsr
->nField
==pTab
->nCol
5349 || (pCsr
->nField
==pTab
->nCol
+1 && op
==SQLITE_DELETE
&& iReg
==-1)
5353 preupdate
.pCsr
= pCsr
;
5355 preupdate
.iNewReg
= iReg
;
5356 preupdate
.keyinfo
.db
= db
;
5357 preupdate
.keyinfo
.enc
= ENC(db
);
5358 preupdate
.keyinfo
.nKeyField
= pTab
->nCol
;
5359 preupdate
.keyinfo
.aSortFlags
= (u8
*)&fakeSortOrder
;
5360 preupdate
.iKey1
= iKey1
;
5361 preupdate
.iKey2
= iKey2
;
5362 preupdate
.pTab
= pTab
;
5363 preupdate
.iBlobWrite
= iBlobWrite
;
5365 db
->pPreUpdate
= &preupdate
;
5366 db
->xPreUpdateCallback(db
->pPreUpdateArg
, db
, op
, zDb
, zTbl
, iKey1
, iKey2
);
5368 sqlite3DbFree(db
, preupdate
.aRecord
);
5369 vdbeFreeUnpacked(db
, preupdate
.keyinfo
.nKeyField
+1, preupdate
.pUnpacked
);
5370 vdbeFreeUnpacked(db
, preupdate
.keyinfo
.nKeyField
+1, preupdate
.pNewUnpacked
);
5371 if( preupdate
.aNew
){
5373 for(i
=0; i
<pCsr
->nField
; i
++){
5374 sqlite3VdbeMemRelease(&preupdate
.aNew
[i
]);
5376 sqlite3DbNNFreeNN(db
, preupdate
.aNew
);
5379 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */