Snapshot of upstream SQLite 3.41.0
[sqlcipher.git] / src / vdbeaux.c
blobd04d8f1e176e22dba143bc90e491d5d6e1cb6695
1 /*
2 ** 2003 September 6
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains code used for creating, destroying, and populating
13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)
15 #include "sqliteInt.h"
16 #include "vdbeInt.h"
18 /* Forward references */
19 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef);
20 static void vdbeFreeOpArray(sqlite3 *, Op *, int);
23 ** Create a new virtual database engine.
25 Vdbe *sqlite3VdbeCreate(Parse *pParse){
26 sqlite3 *db = pParse->db;
27 Vdbe *p;
28 p = sqlite3DbMallocRawNN(db, sizeof(Vdbe) );
29 if( p==0 ) return 0;
30 memset(&p->aOp, 0, sizeof(Vdbe)-offsetof(Vdbe,aOp));
31 p->db = db;
32 if( db->pVdbe ){
33 db->pVdbe->ppVPrev = &p->pVNext;
35 p->pVNext = db->pVdbe;
36 p->ppVPrev = &db->pVdbe;
37 db->pVdbe = p;
38 assert( p->eVdbeState==VDBE_INIT_STATE );
39 p->pParse = pParse;
40 pParse->pVdbe = p;
41 assert( pParse->aLabel==0 );
42 assert( pParse->nLabel==0 );
43 assert( p->nOpAlloc==0 );
44 assert( pParse->szOpAlloc==0 );
45 sqlite3VdbeAddOp2(p, OP_Init, 0, 1);
46 return p;
50 ** Return the Parse object that owns a Vdbe object.
52 Parse *sqlite3VdbeParser(Vdbe *p){
53 return p->pParse;
57 ** Change the error string stored in Vdbe.zErrMsg
59 void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){
60 va_list ap;
61 sqlite3DbFree(p->db, p->zErrMsg);
62 va_start(ap, zFormat);
63 p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap);
64 va_end(ap);
68 ** Remember the SQL string for a prepared statement.
70 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, u8 prepFlags){
71 if( p==0 ) return;
72 p->prepFlags = prepFlags;
73 if( (prepFlags & SQLITE_PREPARE_SAVESQL)==0 ){
74 p->expmask = 0;
76 assert( p->zSql==0 );
77 p->zSql = sqlite3DbStrNDup(p->db, z, n);
80 #ifdef SQLITE_ENABLE_NORMALIZE
82 ** Add a new element to the Vdbe->pDblStr list.
84 void sqlite3VdbeAddDblquoteStr(sqlite3 *db, Vdbe *p, const char *z){
85 if( p ){
86 int n = sqlite3Strlen30(z);
87 DblquoteStr *pStr = sqlite3DbMallocRawNN(db,
88 sizeof(*pStr)+n+1-sizeof(pStr->z));
89 if( pStr ){
90 pStr->pNextStr = p->pDblStr;
91 p->pDblStr = pStr;
92 memcpy(pStr->z, z, n+1);
96 #endif
98 #ifdef SQLITE_ENABLE_NORMALIZE
100 ** zId of length nId is a double-quoted identifier. Check to see if
101 ** that identifier is really used as a string literal.
103 int sqlite3VdbeUsesDoubleQuotedString(
104 Vdbe *pVdbe, /* The prepared statement */
105 const char *zId /* The double-quoted identifier, already dequoted */
107 DblquoteStr *pStr;
108 assert( zId!=0 );
109 if( pVdbe->pDblStr==0 ) return 0;
110 for(pStr=pVdbe->pDblStr; pStr; pStr=pStr->pNextStr){
111 if( strcmp(zId, pStr->z)==0 ) return 1;
113 return 0;
115 #endif
118 ** Swap byte-code between two VDBE structures.
120 ** This happens after pB was previously run and returned
121 ** SQLITE_SCHEMA. The statement was then reprepared in pA.
122 ** This routine transfers the new bytecode in pA over to pB
123 ** so that pB can be run again. The old pB byte code is
124 ** moved back to pA so that it will be cleaned up when pA is
125 ** finalized.
127 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
128 Vdbe tmp, *pTmp, **ppTmp;
129 char *zTmp;
130 assert( pA->db==pB->db );
131 tmp = *pA;
132 *pA = *pB;
133 *pB = tmp;
134 pTmp = pA->pVNext;
135 pA->pVNext = pB->pVNext;
136 pB->pVNext = pTmp;
137 ppTmp = pA->ppVPrev;
138 pA->ppVPrev = pB->ppVPrev;
139 pB->ppVPrev = ppTmp;
140 zTmp = pA->zSql;
141 pA->zSql = pB->zSql;
142 pB->zSql = zTmp;
143 #ifdef SQLITE_ENABLE_NORMALIZE
144 zTmp = pA->zNormSql;
145 pA->zNormSql = pB->zNormSql;
146 pB->zNormSql = zTmp;
147 #endif
148 pB->expmask = pA->expmask;
149 pB->prepFlags = pA->prepFlags;
150 memcpy(pB->aCounter, pA->aCounter, sizeof(pB->aCounter));
151 pB->aCounter[SQLITE_STMTSTATUS_REPREPARE]++;
155 ** Resize the Vdbe.aOp array so that it is at least nOp elements larger
156 ** than its current size. nOp is guaranteed to be less than or equal
157 ** to 1024/sizeof(Op).
159 ** If an out-of-memory error occurs while resizing the array, return
160 ** SQLITE_NOMEM. In this case Vdbe.aOp and Vdbe.nOpAlloc remain
161 ** unchanged (this is so that any opcodes already allocated can be
162 ** correctly deallocated along with the rest of the Vdbe).
164 static int growOpArray(Vdbe *v, int nOp){
165 VdbeOp *pNew;
166 Parse *p = v->pParse;
168 /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force
169 ** more frequent reallocs and hence provide more opportunities for
170 ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used
171 ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array
172 ** by the minimum* amount required until the size reaches 512. Normal
173 ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current
174 ** size of the op array or add 1KB of space, whichever is smaller. */
175 #ifdef SQLITE_TEST_REALLOC_STRESS
176 sqlite3_int64 nNew = (v->nOpAlloc>=512 ? 2*(sqlite3_int64)v->nOpAlloc
177 : (sqlite3_int64)v->nOpAlloc+nOp);
178 #else
179 sqlite3_int64 nNew = (v->nOpAlloc ? 2*(sqlite3_int64)v->nOpAlloc
180 : (sqlite3_int64)(1024/sizeof(Op)));
181 UNUSED_PARAMETER(nOp);
182 #endif
184 /* Ensure that the size of a VDBE does not grow too large */
185 if( nNew > p->db->aLimit[SQLITE_LIMIT_VDBE_OP] ){
186 sqlite3OomFault(p->db);
187 return SQLITE_NOMEM;
190 assert( nOp<=(int)(1024/sizeof(Op)) );
191 assert( nNew>=(v->nOpAlloc+nOp) );
192 pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op));
193 if( pNew ){
194 p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew);
195 v->nOpAlloc = p->szOpAlloc/sizeof(Op);
196 v->aOp = pNew;
198 return (pNew ? SQLITE_OK : SQLITE_NOMEM_BKPT);
201 #ifdef SQLITE_DEBUG
202 /* This routine is just a convenient place to set a breakpoint that will
203 ** fire after each opcode is inserted and displayed using
204 ** "PRAGMA vdbe_addoptrace=on". Parameters "pc" (program counter) and
205 ** pOp are available to make the breakpoint conditional.
207 ** Other useful labels for breakpoints include:
208 ** test_trace_breakpoint(pc,pOp)
209 ** sqlite3CorruptError(lineno)
210 ** sqlite3MisuseError(lineno)
211 ** sqlite3CantopenError(lineno)
213 static void test_addop_breakpoint(int pc, Op *pOp){
214 static int n = 0;
215 (void)pc;
216 (void)pOp;
217 n++;
219 #endif
222 ** Add a new instruction to the list of instructions current in the
223 ** VDBE. Return the address of the new instruction.
225 ** Parameters:
227 ** p Pointer to the VDBE
229 ** op The opcode for this instruction
231 ** p1, p2, p3 Operands
233 ** Use the sqlite3VdbeResolveLabel() function to fix an address and
234 ** the sqlite3VdbeChangeP4() function to change the value of the P4
235 ** operand.
237 static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){
238 assert( p->nOpAlloc<=p->nOp );
239 if( growOpArray(p, 1) ) return 1;
240 assert( p->nOpAlloc>p->nOp );
241 return sqlite3VdbeAddOp3(p, op, p1, p2, p3);
243 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
244 int i;
245 VdbeOp *pOp;
247 i = p->nOp;
248 assert( p->eVdbeState==VDBE_INIT_STATE );
249 assert( op>=0 && op<0xff );
250 if( p->nOpAlloc<=i ){
251 return growOp3(p, op, p1, p2, p3);
253 assert( p->aOp!=0 );
254 p->nOp++;
255 pOp = &p->aOp[i];
256 assert( pOp!=0 );
257 pOp->opcode = (u8)op;
258 pOp->p5 = 0;
259 pOp->p1 = p1;
260 pOp->p2 = p2;
261 pOp->p3 = p3;
262 pOp->p4.p = 0;
263 pOp->p4type = P4_NOTUSED;
264 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
265 pOp->zComment = 0;
266 #endif
267 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || defined(VDBE_PROFILE)
268 pOp->nExec = 0;
269 pOp->nCycle = 0;
270 #endif
271 #ifdef SQLITE_DEBUG
272 if( p->db->flags & SQLITE_VdbeAddopTrace ){
273 sqlite3VdbePrintOp(0, i, &p->aOp[i]);
274 test_addop_breakpoint(i, &p->aOp[i]);
276 #endif
277 #ifdef SQLITE_VDBE_COVERAGE
278 pOp->iSrcLine = 0;
279 #endif
280 return i;
282 int sqlite3VdbeAddOp0(Vdbe *p, int op){
283 return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
285 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
286 return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
288 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
289 return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
292 /* Generate code for an unconditional jump to instruction iDest
294 int sqlite3VdbeGoto(Vdbe *p, int iDest){
295 return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0);
298 /* Generate code to cause the string zStr to be loaded into
299 ** register iDest
301 int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){
302 return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0);
306 ** Generate code that initializes multiple registers to string or integer
307 ** constants. The registers begin with iDest and increase consecutively.
308 ** One register is initialized for each characgter in zTypes[]. For each
309 ** "s" character in zTypes[], the register is a string if the argument is
310 ** not NULL, or OP_Null if the value is a null pointer. For each "i" character
311 ** in zTypes[], the register is initialized to an integer.
313 ** If the input string does not end with "X" then an OP_ResultRow instruction
314 ** is generated for the values inserted.
316 void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){
317 va_list ap;
318 int i;
319 char c;
320 va_start(ap, zTypes);
321 for(i=0; (c = zTypes[i])!=0; i++){
322 if( c=='s' ){
323 const char *z = va_arg(ap, const char*);
324 sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest+i, 0, z, 0);
325 }else if( c=='i' ){
326 sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest+i);
327 }else{
328 goto skip_op_resultrow;
331 sqlite3VdbeAddOp2(p, OP_ResultRow, iDest, i);
332 skip_op_resultrow:
333 va_end(ap);
337 ** Add an opcode that includes the p4 value as a pointer.
339 int sqlite3VdbeAddOp4(
340 Vdbe *p, /* Add the opcode to this VM */
341 int op, /* The new opcode */
342 int p1, /* The P1 operand */
343 int p2, /* The P2 operand */
344 int p3, /* The P3 operand */
345 const char *zP4, /* The P4 operand */
346 int p4type /* P4 operand type */
348 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
349 sqlite3VdbeChangeP4(p, addr, zP4, p4type);
350 return addr;
354 ** Add an OP_Function or OP_PureFunc opcode.
356 ** The eCallCtx argument is information (typically taken from Expr.op2)
357 ** that describes the calling context of the function. 0 means a general
358 ** function call. NC_IsCheck means called by a check constraint,
359 ** NC_IdxExpr means called as part of an index expression. NC_PartIdx
360 ** means in the WHERE clause of a partial index. NC_GenCol means called
361 ** while computing a generated column value. 0 is the usual case.
363 int sqlite3VdbeAddFunctionCall(
364 Parse *pParse, /* Parsing context */
365 int p1, /* Constant argument mask */
366 int p2, /* First argument register */
367 int p3, /* Register into which results are written */
368 int nArg, /* Number of argument */
369 const FuncDef *pFunc, /* The function to be invoked */
370 int eCallCtx /* Calling context */
372 Vdbe *v = pParse->pVdbe;
373 int nByte;
374 int addr;
375 sqlite3_context *pCtx;
376 assert( v );
377 nByte = sizeof(*pCtx) + (nArg-1)*sizeof(sqlite3_value*);
378 pCtx = sqlite3DbMallocRawNN(pParse->db, nByte);
379 if( pCtx==0 ){
380 assert( pParse->db->mallocFailed );
381 freeEphemeralFunction(pParse->db, (FuncDef*)pFunc);
382 return 0;
384 pCtx->pOut = 0;
385 pCtx->pFunc = (FuncDef*)pFunc;
386 pCtx->pVdbe = 0;
387 pCtx->isError = 0;
388 pCtx->argc = nArg;
389 pCtx->iOp = sqlite3VdbeCurrentAddr(v);
390 addr = sqlite3VdbeAddOp4(v, eCallCtx ? OP_PureFunc : OP_Function,
391 p1, p2, p3, (char*)pCtx, P4_FUNCCTX);
392 sqlite3VdbeChangeP5(v, eCallCtx & NC_SelfRef);
393 sqlite3MayAbort(pParse);
394 return addr;
398 ** Add an opcode that includes the p4 value with a P4_INT64 or
399 ** P4_REAL type.
401 int sqlite3VdbeAddOp4Dup8(
402 Vdbe *p, /* Add the opcode to this VM */
403 int op, /* The new opcode */
404 int p1, /* The P1 operand */
405 int p2, /* The P2 operand */
406 int p3, /* The P3 operand */
407 const u8 *zP4, /* The P4 operand */
408 int p4type /* P4 operand type */
410 char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8);
411 if( p4copy ) memcpy(p4copy, zP4, 8);
412 return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type);
415 #ifndef SQLITE_OMIT_EXPLAIN
417 ** Return the address of the current EXPLAIN QUERY PLAN baseline.
418 ** 0 means "none".
420 int sqlite3VdbeExplainParent(Parse *pParse){
421 VdbeOp *pOp;
422 if( pParse->addrExplain==0 ) return 0;
423 pOp = sqlite3VdbeGetOp(pParse->pVdbe, pParse->addrExplain);
424 return pOp->p2;
428 ** Set a debugger breakpoint on the following routine in order to
429 ** monitor the EXPLAIN QUERY PLAN code generation.
431 #if defined(SQLITE_DEBUG)
432 void sqlite3ExplainBreakpoint(const char *z1, const char *z2){
433 (void)z1;
434 (void)z2;
436 #endif
439 ** Add a new OP_Explain opcode.
441 ** If the bPush flag is true, then make this opcode the parent for
442 ** subsequent Explains until sqlite3VdbeExplainPop() is called.
444 int sqlite3VdbeExplain(Parse *pParse, u8 bPush, const char *zFmt, ...){
445 int addr = 0;
446 #if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS)
447 /* Always include the OP_Explain opcodes if SQLITE_DEBUG is defined.
448 ** But omit them (for performance) during production builds */
449 if( pParse->explain==2 )
450 #endif
452 char *zMsg;
453 Vdbe *v;
454 va_list ap;
455 int iThis;
456 va_start(ap, zFmt);
457 zMsg = sqlite3VMPrintf(pParse->db, zFmt, ap);
458 va_end(ap);
459 v = pParse->pVdbe;
460 iThis = v->nOp;
461 addr = sqlite3VdbeAddOp4(v, OP_Explain, iThis, pParse->addrExplain, 0,
462 zMsg, P4_DYNAMIC);
463 sqlite3ExplainBreakpoint(bPush?"PUSH":"", sqlite3VdbeGetLastOp(v)->p4.z);
464 if( bPush){
465 pParse->addrExplain = iThis;
467 sqlite3VdbeScanStatus(v, iThis, 0, 0, 0, 0);
469 return addr;
473 ** Pop the EXPLAIN QUERY PLAN stack one level.
475 void sqlite3VdbeExplainPop(Parse *pParse){
476 sqlite3ExplainBreakpoint("POP", 0);
477 pParse->addrExplain = sqlite3VdbeExplainParent(pParse);
479 #endif /* SQLITE_OMIT_EXPLAIN */
482 ** Add an OP_ParseSchema opcode. This routine is broken out from
483 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees
484 ** as having been used.
486 ** The zWhere string must have been obtained from sqlite3_malloc().
487 ** This routine will take ownership of the allocated memory.
489 void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere, u16 p5){
490 int j;
491 sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC);
492 sqlite3VdbeChangeP5(p, p5);
493 for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j);
494 sqlite3MayAbort(p->pParse);
498 ** Add an opcode that includes the p4 value as an integer.
500 int sqlite3VdbeAddOp4Int(
501 Vdbe *p, /* Add the opcode to this VM */
502 int op, /* The new opcode */
503 int p1, /* The P1 operand */
504 int p2, /* The P2 operand */
505 int p3, /* The P3 operand */
506 int p4 /* The P4 operand as an integer */
508 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
509 if( p->db->mallocFailed==0 ){
510 VdbeOp *pOp = &p->aOp[addr];
511 pOp->p4type = P4_INT32;
512 pOp->p4.i = p4;
514 return addr;
517 /* Insert the end of a co-routine
519 void sqlite3VdbeEndCoroutine(Vdbe *v, int regYield){
520 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield);
522 /* Clear the temporary register cache, thereby ensuring that each
523 ** co-routine has its own independent set of registers, because co-routines
524 ** might expect their registers to be preserved across an OP_Yield, and
525 ** that could cause problems if two or more co-routines are using the same
526 ** temporary register.
528 v->pParse->nTempReg = 0;
529 v->pParse->nRangeReg = 0;
533 ** Create a new symbolic label for an instruction that has yet to be
534 ** coded. The symbolic label is really just a negative number. The
535 ** label can be used as the P2 value of an operation. Later, when
536 ** the label is resolved to a specific address, the VDBE will scan
537 ** through its operation list and change all values of P2 which match
538 ** the label into the resolved address.
540 ** The VDBE knows that a P2 value is a label because labels are
541 ** always negative and P2 values are suppose to be non-negative.
542 ** Hence, a negative P2 value is a label that has yet to be resolved.
543 ** (Later:) This is only true for opcodes that have the OPFLG_JUMP
544 ** property.
546 ** Variable usage notes:
548 ** Parse.aLabel[x] Stores the address that the x-th label resolves
549 ** into. For testing (SQLITE_DEBUG), unresolved
550 ** labels stores -1, but that is not required.
551 ** Parse.nLabelAlloc Number of slots allocated to Parse.aLabel[]
552 ** Parse.nLabel The *negative* of the number of labels that have
553 ** been issued. The negative is stored because
554 ** that gives a performance improvement over storing
555 ** the equivalent positive value.
557 int sqlite3VdbeMakeLabel(Parse *pParse){
558 return --pParse->nLabel;
562 ** Resolve label "x" to be the address of the next instruction to
563 ** be inserted. The parameter "x" must have been obtained from
564 ** a prior call to sqlite3VdbeMakeLabel().
566 static SQLITE_NOINLINE void resizeResolveLabel(Parse *p, Vdbe *v, int j){
567 int nNewSize = 10 - p->nLabel;
568 p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
569 nNewSize*sizeof(p->aLabel[0]));
570 if( p->aLabel==0 ){
571 p->nLabelAlloc = 0;
572 }else{
573 #ifdef SQLITE_DEBUG
574 int i;
575 for(i=p->nLabelAlloc; i<nNewSize; i++) p->aLabel[i] = -1;
576 #endif
577 if( nNewSize>=100 && (nNewSize/100)>(p->nLabelAlloc/100) ){
578 sqlite3ProgressCheck(p);
580 p->nLabelAlloc = nNewSize;
581 p->aLabel[j] = v->nOp;
584 void sqlite3VdbeResolveLabel(Vdbe *v, int x){
585 Parse *p = v->pParse;
586 int j = ADDR(x);
587 assert( v->eVdbeState==VDBE_INIT_STATE );
588 assert( j<-p->nLabel );
589 assert( j>=0 );
590 #ifdef SQLITE_DEBUG
591 if( p->db->flags & SQLITE_VdbeAddopTrace ){
592 printf("RESOLVE LABEL %d to %d\n", x, v->nOp);
594 #endif
595 if( p->nLabelAlloc + p->nLabel < 0 ){
596 resizeResolveLabel(p,v,j);
597 }else{
598 assert( p->aLabel[j]==(-1) ); /* Labels may only be resolved once */
599 p->aLabel[j] = v->nOp;
604 ** Mark the VDBE as one that can only be run one time.
606 void sqlite3VdbeRunOnlyOnce(Vdbe *p){
607 sqlite3VdbeAddOp2(p, OP_Expire, 1, 1);
611 ** Mark the VDBE as one that can be run multiple times.
613 void sqlite3VdbeReusable(Vdbe *p){
614 int i;
615 for(i=1; ALWAYS(i<p->nOp); i++){
616 if( ALWAYS(p->aOp[i].opcode==OP_Expire) ){
617 p->aOp[1].opcode = OP_Noop;
618 break;
623 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */
626 ** The following type and function are used to iterate through all opcodes
627 ** in a Vdbe main program and each of the sub-programs (triggers) it may
628 ** invoke directly or indirectly. It should be used as follows:
630 ** Op *pOp;
631 ** VdbeOpIter sIter;
633 ** memset(&sIter, 0, sizeof(sIter));
634 ** sIter.v = v; // v is of type Vdbe*
635 ** while( (pOp = opIterNext(&sIter)) ){
636 ** // Do something with pOp
637 ** }
638 ** sqlite3DbFree(v->db, sIter.apSub);
641 typedef struct VdbeOpIter VdbeOpIter;
642 struct VdbeOpIter {
643 Vdbe *v; /* Vdbe to iterate through the opcodes of */
644 SubProgram **apSub; /* Array of subprograms */
645 int nSub; /* Number of entries in apSub */
646 int iAddr; /* Address of next instruction to return */
647 int iSub; /* 0 = main program, 1 = first sub-program etc. */
649 static Op *opIterNext(VdbeOpIter *p){
650 Vdbe *v = p->v;
651 Op *pRet = 0;
652 Op *aOp;
653 int nOp;
655 if( p->iSub<=p->nSub ){
657 if( p->iSub==0 ){
658 aOp = v->aOp;
659 nOp = v->nOp;
660 }else{
661 aOp = p->apSub[p->iSub-1]->aOp;
662 nOp = p->apSub[p->iSub-1]->nOp;
664 assert( p->iAddr<nOp );
666 pRet = &aOp[p->iAddr];
667 p->iAddr++;
668 if( p->iAddr==nOp ){
669 p->iSub++;
670 p->iAddr = 0;
673 if( pRet->p4type==P4_SUBPROGRAM ){
674 int nByte = (p->nSub+1)*sizeof(SubProgram*);
675 int j;
676 for(j=0; j<p->nSub; j++){
677 if( p->apSub[j]==pRet->p4.pProgram ) break;
679 if( j==p->nSub ){
680 p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte);
681 if( !p->apSub ){
682 pRet = 0;
683 }else{
684 p->apSub[p->nSub++] = pRet->p4.pProgram;
690 return pRet;
694 ** Check if the program stored in the VM associated with pParse may
695 ** throw an ABORT exception (causing the statement, but not entire transaction
696 ** to be rolled back). This condition is true if the main program or any
697 ** sub-programs contains any of the following:
699 ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
700 ** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
701 ** * OP_Destroy
702 ** * OP_VUpdate
703 ** * OP_VCreate
704 ** * OP_VRename
705 ** * OP_FkCounter with P2==0 (immediate foreign key constraint)
706 ** * OP_CreateBtree/BTREE_INTKEY and OP_InitCoroutine
707 ** (for CREATE TABLE AS SELECT ...)
709 ** Then check that the value of Parse.mayAbort is true if an
710 ** ABORT may be thrown, or false otherwise. Return true if it does
711 ** match, or false otherwise. This function is intended to be used as
712 ** part of an assert statement in the compiler. Similar to:
714 ** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) );
716 int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){
717 int hasAbort = 0;
718 int hasFkCounter = 0;
719 int hasCreateTable = 0;
720 int hasCreateIndex = 0;
721 int hasInitCoroutine = 0;
722 Op *pOp;
723 VdbeOpIter sIter;
725 if( v==0 ) return 0;
726 memset(&sIter, 0, sizeof(sIter));
727 sIter.v = v;
729 while( (pOp = opIterNext(&sIter))!=0 ){
730 int opcode = pOp->opcode;
731 if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename
732 || opcode==OP_VDestroy
733 || opcode==OP_VCreate
734 || opcode==OP_ParseSchema
735 || opcode==OP_Function || opcode==OP_PureFunc
736 || ((opcode==OP_Halt || opcode==OP_HaltIfNull)
737 && ((pOp->p1)!=SQLITE_OK && pOp->p2==OE_Abort))
739 hasAbort = 1;
740 break;
742 if( opcode==OP_CreateBtree && pOp->p3==BTREE_INTKEY ) hasCreateTable = 1;
743 if( mayAbort ){
744 /* hasCreateIndex may also be set for some DELETE statements that use
745 ** OP_Clear. So this routine may end up returning true in the case
746 ** where a "DELETE FROM tbl" has a statement-journal but does not
747 ** require one. This is not so bad - it is an inefficiency, not a bug. */
748 if( opcode==OP_CreateBtree && pOp->p3==BTREE_BLOBKEY ) hasCreateIndex = 1;
749 if( opcode==OP_Clear ) hasCreateIndex = 1;
751 if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1;
752 #ifndef SQLITE_OMIT_FOREIGN_KEY
753 if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){
754 hasFkCounter = 1;
756 #endif
758 sqlite3DbFree(v->db, sIter.apSub);
760 /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred.
761 ** If malloc failed, then the while() loop above may not have iterated
762 ** through all opcodes and hasAbort may be set incorrectly. Return
763 ** true for this case to prevent the assert() in the callers frame
764 ** from failing. */
765 return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter
766 || (hasCreateTable && hasInitCoroutine) || hasCreateIndex
769 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */
771 #ifdef SQLITE_DEBUG
773 ** Increment the nWrite counter in the VDBE if the cursor is not an
774 ** ephemeral cursor, or if the cursor argument is NULL.
776 void sqlite3VdbeIncrWriteCounter(Vdbe *p, VdbeCursor *pC){
777 if( pC==0
778 || (pC->eCurType!=CURTYPE_SORTER
779 && pC->eCurType!=CURTYPE_PSEUDO
780 && !pC->isEphemeral)
782 p->nWrite++;
785 #endif
787 #ifdef SQLITE_DEBUG
789 ** Assert if an Abort at this point in time might result in a corrupt
790 ** database.
792 void sqlite3VdbeAssertAbortable(Vdbe *p){
793 assert( p->nWrite==0 || p->usesStmtJournal );
795 #endif
798 ** This routine is called after all opcodes have been inserted. It loops
799 ** through all the opcodes and fixes up some details.
801 ** (1) For each jump instruction with a negative P2 value (a label)
802 ** resolve the P2 value to an actual address.
804 ** (2) Compute the maximum number of arguments used by any SQL function
805 ** and store that value in *pMaxFuncArgs.
807 ** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately
808 ** indicate what the prepared statement actually does.
810 ** (4) (discontinued)
812 ** (5) Reclaim the memory allocated for storing labels.
814 ** This routine will only function correctly if the mkopcodeh.tcl generator
815 ** script numbers the opcodes correctly. Changes to this routine must be
816 ** coordinated with changes to mkopcodeh.tcl.
818 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
819 int nMaxArgs = *pMaxFuncArgs;
820 Op *pOp;
821 Parse *pParse = p->pParse;
822 int *aLabel = pParse->aLabel;
823 p->readOnly = 1;
824 p->bIsReader = 0;
825 pOp = &p->aOp[p->nOp-1];
826 assert( p->aOp[0].opcode==OP_Init );
827 while( 1 /* Loop termates when it reaches the OP_Init opcode */ ){
828 /* Only JUMP opcodes and the short list of special opcodes in the switch
829 ** below need to be considered. The mkopcodeh.tcl generator script groups
830 ** all these opcodes together near the front of the opcode list. Skip
831 ** any opcode that does not need processing by virtual of the fact that
832 ** it is larger than SQLITE_MX_JUMP_OPCODE, as a performance optimization.
834 if( pOp->opcode<=SQLITE_MX_JUMP_OPCODE ){
835 /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing
836 ** cases from this switch! */
837 switch( pOp->opcode ){
838 case OP_Transaction: {
839 if( pOp->p2!=0 ) p->readOnly = 0;
840 /* no break */ deliberate_fall_through
842 case OP_AutoCommit:
843 case OP_Savepoint: {
844 p->bIsReader = 1;
845 break;
847 #ifndef SQLITE_OMIT_WAL
848 case OP_Checkpoint:
849 #endif
850 case OP_Vacuum:
851 case OP_JournalMode: {
852 p->readOnly = 0;
853 p->bIsReader = 1;
854 break;
856 case OP_Init: {
857 assert( pOp->p2>=0 );
858 goto resolve_p2_values_loop_exit;
860 #ifndef SQLITE_OMIT_VIRTUALTABLE
861 case OP_VUpdate: {
862 if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
863 break;
865 case OP_VFilter: {
866 int n;
867 assert( (pOp - p->aOp) >= 3 );
868 assert( pOp[-1].opcode==OP_Integer );
869 n = pOp[-1].p1;
870 if( n>nMaxArgs ) nMaxArgs = n;
871 /* Fall through into the default case */
872 /* no break */ deliberate_fall_through
874 #endif
875 default: {
876 if( pOp->p2<0 ){
877 /* The mkopcodeh.tcl script has so arranged things that the only
878 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to
879 ** have non-negative values for P2. */
880 assert( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 );
881 assert( ADDR(pOp->p2)<-pParse->nLabel );
882 pOp->p2 = aLabel[ADDR(pOp->p2)];
884 break;
887 /* The mkopcodeh.tcl script has so arranged things that the only
888 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to
889 ** have non-negative values for P2. */
890 assert( (sqlite3OpcodeProperty[pOp->opcode]&OPFLG_JUMP)==0 || pOp->p2>=0);
892 assert( pOp>p->aOp );
893 pOp--;
895 resolve_p2_values_loop_exit:
896 if( aLabel ){
897 sqlite3DbNNFreeNN(p->db, pParse->aLabel);
898 pParse->aLabel = 0;
900 pParse->nLabel = 0;
901 *pMaxFuncArgs = nMaxArgs;
902 assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) );
905 #ifdef SQLITE_DEBUG
907 ** Check to see if a subroutine contains a jump to a location outside of
908 ** the subroutine. If a jump outside the subroutine is detected, add code
909 ** that will cause the program to halt with an error message.
911 ** The subroutine consists of opcodes between iFirst and iLast. Jumps to
912 ** locations within the subroutine are acceptable. iRetReg is a register
913 ** that contains the return address. Jumps to outside the range of iFirst
914 ** through iLast are also acceptable as long as the jump destination is
915 ** an OP_Return to iReturnAddr.
917 ** A jump to an unresolved label means that the jump destination will be
918 ** beyond the current address. That is normally a jump to an early
919 ** termination and is consider acceptable.
921 ** This routine only runs during debug builds. The purpose is (of course)
922 ** to detect invalid escapes out of a subroutine. The OP_Halt opcode
923 ** is generated rather than an assert() or other error, so that ".eqp full"
924 ** will still work to show the original bytecode, to aid in debugging.
926 void sqlite3VdbeNoJumpsOutsideSubrtn(
927 Vdbe *v, /* The byte-code program under construction */
928 int iFirst, /* First opcode of the subroutine */
929 int iLast, /* Last opcode of the subroutine */
930 int iRetReg /* Subroutine return address register */
932 VdbeOp *pOp;
933 Parse *pParse;
934 int i;
935 sqlite3_str *pErr = 0;
936 assert( v!=0 );
937 pParse = v->pParse;
938 assert( pParse!=0 );
939 if( pParse->nErr ) return;
940 assert( iLast>=iFirst );
941 assert( iLast<v->nOp );
942 pOp = &v->aOp[iFirst];
943 for(i=iFirst; i<=iLast; i++, pOp++){
944 if( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 ){
945 int iDest = pOp->p2; /* Jump destination */
946 if( iDest==0 ) continue;
947 if( pOp->opcode==OP_Gosub ) continue;
948 if( iDest<0 ){
949 int j = ADDR(iDest);
950 assert( j>=0 );
951 if( j>=-pParse->nLabel || pParse->aLabel[j]<0 ){
952 continue;
954 iDest = pParse->aLabel[j];
956 if( iDest<iFirst || iDest>iLast ){
957 int j = iDest;
958 for(; j<v->nOp; j++){
959 VdbeOp *pX = &v->aOp[j];
960 if( pX->opcode==OP_Return ){
961 if( pX->p1==iRetReg ) break;
962 continue;
964 if( pX->opcode==OP_Noop ) continue;
965 if( pX->opcode==OP_Explain ) continue;
966 if( pErr==0 ){
967 pErr = sqlite3_str_new(0);
968 }else{
969 sqlite3_str_appendchar(pErr, 1, '\n');
971 sqlite3_str_appendf(pErr,
972 "Opcode at %d jumps to %d which is outside the "
973 "subroutine at %d..%d",
974 i, iDest, iFirst, iLast);
975 break;
980 if( pErr ){
981 char *zErr = sqlite3_str_finish(pErr);
982 sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_INTERNAL, OE_Abort, 0, zErr, 0);
983 sqlite3_free(zErr);
984 sqlite3MayAbort(pParse);
987 #endif /* SQLITE_DEBUG */
990 ** Return the address of the next instruction to be inserted.
992 int sqlite3VdbeCurrentAddr(Vdbe *p){
993 assert( p->eVdbeState==VDBE_INIT_STATE );
994 return p->nOp;
998 ** Verify that at least N opcode slots are available in p without
999 ** having to malloc for more space (except when compiled using
1000 ** SQLITE_TEST_REALLOC_STRESS). This interface is used during testing
1001 ** to verify that certain calls to sqlite3VdbeAddOpList() can never
1002 ** fail due to a OOM fault and hence that the return value from
1003 ** sqlite3VdbeAddOpList() will always be non-NULL.
1005 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
1006 void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){
1007 assert( p->nOp + N <= p->nOpAlloc );
1009 #endif
1012 ** Verify that the VM passed as the only argument does not contain
1013 ** an OP_ResultRow opcode. Fail an assert() if it does. This is used
1014 ** by code in pragma.c to ensure that the implementation of certain
1015 ** pragmas comports with the flags specified in the mkpragmatab.tcl
1016 ** script.
1018 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
1019 void sqlite3VdbeVerifyNoResultRow(Vdbe *p){
1020 int i;
1021 for(i=0; i<p->nOp; i++){
1022 assert( p->aOp[i].opcode!=OP_ResultRow );
1025 #endif
1028 ** Generate code (a single OP_Abortable opcode) that will
1029 ** verify that the VDBE program can safely call Abort in the current
1030 ** context.
1032 #if defined(SQLITE_DEBUG)
1033 void sqlite3VdbeVerifyAbortable(Vdbe *p, int onError){
1034 if( onError==OE_Abort ) sqlite3VdbeAddOp0(p, OP_Abortable);
1036 #endif
1039 ** This function returns a pointer to the array of opcodes associated with
1040 ** the Vdbe passed as the first argument. It is the callers responsibility
1041 ** to arrange for the returned array to be eventually freed using the
1042 ** vdbeFreeOpArray() function.
1044 ** Before returning, *pnOp is set to the number of entries in the returned
1045 ** array. Also, *pnMaxArg is set to the larger of its current value and
1046 ** the number of entries in the Vdbe.apArg[] array required to execute the
1047 ** returned program.
1049 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){
1050 VdbeOp *aOp = p->aOp;
1051 assert( aOp && !p->db->mallocFailed );
1053 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */
1054 assert( DbMaskAllZero(p->btreeMask) );
1056 resolveP2Values(p, pnMaxArg);
1057 *pnOp = p->nOp;
1058 p->aOp = 0;
1059 return aOp;
1063 ** Add a whole list of operations to the operation stack. Return a
1064 ** pointer to the first operation inserted.
1066 ** Non-zero P2 arguments to jump instructions are automatically adjusted
1067 ** so that the jump target is relative to the first operation inserted.
1069 VdbeOp *sqlite3VdbeAddOpList(
1070 Vdbe *p, /* Add opcodes to the prepared statement */
1071 int nOp, /* Number of opcodes to add */
1072 VdbeOpList const *aOp, /* The opcodes to be added */
1073 int iLineno /* Source-file line number of first opcode */
1075 int i;
1076 VdbeOp *pOut, *pFirst;
1077 assert( nOp>0 );
1078 assert( p->eVdbeState==VDBE_INIT_STATE );
1079 if( p->nOp + nOp > p->nOpAlloc && growOpArray(p, nOp) ){
1080 return 0;
1082 pFirst = pOut = &p->aOp[p->nOp];
1083 for(i=0; i<nOp; i++, aOp++, pOut++){
1084 pOut->opcode = aOp->opcode;
1085 pOut->p1 = aOp->p1;
1086 pOut->p2 = aOp->p2;
1087 assert( aOp->p2>=0 );
1088 if( (sqlite3OpcodeProperty[aOp->opcode] & OPFLG_JUMP)!=0 && aOp->p2>0 ){
1089 pOut->p2 += p->nOp;
1091 pOut->p3 = aOp->p3;
1092 pOut->p4type = P4_NOTUSED;
1093 pOut->p4.p = 0;
1094 pOut->p5 = 0;
1095 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1096 pOut->zComment = 0;
1097 #endif
1098 #ifdef SQLITE_VDBE_COVERAGE
1099 pOut->iSrcLine = iLineno+i;
1100 #else
1101 (void)iLineno;
1102 #endif
1103 #ifdef SQLITE_DEBUG
1104 if( p->db->flags & SQLITE_VdbeAddopTrace ){
1105 sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]);
1107 #endif
1109 p->nOp += nOp;
1110 return pFirst;
1113 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS)
1115 ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus().
1117 void sqlite3VdbeScanStatus(
1118 Vdbe *p, /* VM to add scanstatus() to */
1119 int addrExplain, /* Address of OP_Explain (or 0) */
1120 int addrLoop, /* Address of loop counter */
1121 int addrVisit, /* Address of rows visited counter */
1122 LogEst nEst, /* Estimated number of output rows */
1123 const char *zName /* Name of table or index being scanned */
1125 sqlite3_int64 nByte = (p->nScan+1) * sizeof(ScanStatus);
1126 ScanStatus *aNew;
1127 aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte);
1128 if( aNew ){
1129 ScanStatus *pNew = &aNew[p->nScan++];
1130 memset(pNew, 0, sizeof(ScanStatus));
1131 pNew->addrExplain = addrExplain;
1132 pNew->addrLoop = addrLoop;
1133 pNew->addrVisit = addrVisit;
1134 pNew->nEst = nEst;
1135 pNew->zName = sqlite3DbStrDup(p->db, zName);
1136 p->aScan = aNew;
1141 ** Add the range of instructions from addrStart to addrEnd (inclusive) to
1142 ** the set of those corresponding to the sqlite3_stmt_scanstatus() counters
1143 ** associated with the OP_Explain instruction at addrExplain. The
1144 ** sum of the sqlite3Hwtime() values for each of these instructions
1145 ** will be returned for SQLITE_SCANSTAT_NCYCLE requests.
1147 void sqlite3VdbeScanStatusRange(
1148 Vdbe *p,
1149 int addrExplain,
1150 int addrStart,
1151 int addrEnd
1153 ScanStatus *pScan = 0;
1154 int ii;
1155 for(ii=p->nScan-1; ii>=0; ii--){
1156 pScan = &p->aScan[ii];
1157 if( pScan->addrExplain==addrExplain ) break;
1158 pScan = 0;
1160 if( pScan ){
1161 if( addrEnd<0 ) addrEnd = sqlite3VdbeCurrentAddr(p)-1;
1162 for(ii=0; ii<ArraySize(pScan->aAddrRange); ii+=2){
1163 if( pScan->aAddrRange[ii]==0 ){
1164 pScan->aAddrRange[ii] = addrStart;
1165 pScan->aAddrRange[ii+1] = addrEnd;
1166 break;
1173 ** Set the addresses for the SQLITE_SCANSTAT_NLOOP and SQLITE_SCANSTAT_NROW
1174 ** counters for the query element associated with the OP_Explain at
1175 ** addrExplain.
1177 void sqlite3VdbeScanStatusCounters(
1178 Vdbe *p,
1179 int addrExplain,
1180 int addrLoop,
1181 int addrVisit
1183 ScanStatus *pScan = 0;
1184 int ii;
1185 for(ii=p->nScan-1; ii>=0; ii--){
1186 pScan = &p->aScan[ii];
1187 if( pScan->addrExplain==addrExplain ) break;
1188 pScan = 0;
1190 if( pScan ){
1191 pScan->addrLoop = addrLoop;
1192 pScan->addrVisit = addrVisit;
1195 #endif
1199 ** Change the value of the opcode, or P1, P2, P3, or P5 operands
1200 ** for a specific instruction.
1202 void sqlite3VdbeChangeOpcode(Vdbe *p, int addr, u8 iNewOpcode){
1203 assert( addr>=0 );
1204 sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode;
1206 void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){
1207 assert( addr>=0 );
1208 sqlite3VdbeGetOp(p,addr)->p1 = val;
1210 void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){
1211 assert( addr>=0 || p->db->mallocFailed );
1212 sqlite3VdbeGetOp(p,addr)->p2 = val;
1214 void sqlite3VdbeChangeP3(Vdbe *p, int addr, int val){
1215 assert( addr>=0 );
1216 sqlite3VdbeGetOp(p,addr)->p3 = val;
1218 void sqlite3VdbeChangeP5(Vdbe *p, u16 p5){
1219 assert( p->nOp>0 || p->db->mallocFailed );
1220 if( p->nOp>0 ) p->aOp[p->nOp-1].p5 = p5;
1224 ** If the previous opcode is an OP_Column that delivers results
1225 ** into register iDest, then add the OPFLAG_TYPEOFARG flag to that
1226 ** opcode.
1228 void sqlite3VdbeTypeofColumn(Vdbe *p, int iDest){
1229 VdbeOp *pOp = sqlite3VdbeGetLastOp(p);
1230 if( pOp->p3==iDest && pOp->opcode==OP_Column ){
1231 pOp->p5 |= OPFLAG_TYPEOFARG;
1236 ** Change the P2 operand of instruction addr so that it points to
1237 ** the address of the next instruction to be coded.
1239 void sqlite3VdbeJumpHere(Vdbe *p, int addr){
1240 sqlite3VdbeChangeP2(p, addr, p->nOp);
1244 ** Change the P2 operand of the jump instruction at addr so that
1245 ** the jump lands on the next opcode. Or if the jump instruction was
1246 ** the previous opcode (and is thus a no-op) then simply back up
1247 ** the next instruction counter by one slot so that the jump is
1248 ** overwritten by the next inserted opcode.
1250 ** This routine is an optimization of sqlite3VdbeJumpHere() that
1251 ** strives to omit useless byte-code like this:
1253 ** 7 Once 0 8 0
1254 ** 8 ...
1256 void sqlite3VdbeJumpHereOrPopInst(Vdbe *p, int addr){
1257 if( addr==p->nOp-1 ){
1258 assert( p->aOp[addr].opcode==OP_Once
1259 || p->aOp[addr].opcode==OP_If
1260 || p->aOp[addr].opcode==OP_FkIfZero );
1261 assert( p->aOp[addr].p4type==0 );
1262 #ifdef SQLITE_VDBE_COVERAGE
1263 sqlite3VdbeGetLastOp(p)->iSrcLine = 0; /* Erase VdbeCoverage() macros */
1264 #endif
1265 p->nOp--;
1266 }else{
1267 sqlite3VdbeChangeP2(p, addr, p->nOp);
1273 ** If the input FuncDef structure is ephemeral, then free it. If
1274 ** the FuncDef is not ephermal, then do nothing.
1276 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
1277 assert( db!=0 );
1278 if( (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){
1279 sqlite3DbNNFreeNN(db, pDef);
1284 ** Delete a P4 value if necessary.
1286 static SQLITE_NOINLINE void freeP4Mem(sqlite3 *db, Mem *p){
1287 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
1288 sqlite3DbNNFreeNN(db, p);
1290 static SQLITE_NOINLINE void freeP4FuncCtx(sqlite3 *db, sqlite3_context *p){
1291 assert( db!=0 );
1292 freeEphemeralFunction(db, p->pFunc);
1293 sqlite3DbNNFreeNN(db, p);
1295 static void freeP4(sqlite3 *db, int p4type, void *p4){
1296 assert( db );
1297 switch( p4type ){
1298 case P4_FUNCCTX: {
1299 freeP4FuncCtx(db, (sqlite3_context*)p4);
1300 break;
1302 case P4_REAL:
1303 case P4_INT64:
1304 case P4_DYNAMIC:
1305 case P4_INTARRAY: {
1306 if( p4 ) sqlite3DbNNFreeNN(db, p4);
1307 break;
1309 case P4_KEYINFO: {
1310 if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4);
1311 break;
1313 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1314 case P4_EXPR: {
1315 sqlite3ExprDelete(db, (Expr*)p4);
1316 break;
1318 #endif
1319 case P4_FUNCDEF: {
1320 freeEphemeralFunction(db, (FuncDef*)p4);
1321 break;
1323 case P4_MEM: {
1324 if( db->pnBytesFreed==0 ){
1325 sqlite3ValueFree((sqlite3_value*)p4);
1326 }else{
1327 freeP4Mem(db, (Mem*)p4);
1329 break;
1331 case P4_VTAB : {
1332 if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4);
1333 break;
1339 ** Free the space allocated for aOp and any p4 values allocated for the
1340 ** opcodes contained within. If aOp is not NULL it is assumed to contain
1341 ** nOp entries.
1343 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){
1344 assert( nOp>=0 );
1345 assert( db!=0 );
1346 if( aOp ){
1347 Op *pOp = &aOp[nOp-1];
1348 while(1){ /* Exit via break */
1349 if( pOp->p4type <= P4_FREE_IF_LE ) freeP4(db, pOp->p4type, pOp->p4.p);
1350 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1351 sqlite3DbFree(db, pOp->zComment);
1352 #endif
1353 if( pOp==aOp ) break;
1354 pOp--;
1356 sqlite3DbNNFreeNN(db, aOp);
1361 ** Link the SubProgram object passed as the second argument into the linked
1362 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program
1363 ** objects when the VM is no longer required.
1365 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){
1366 p->pNext = pVdbe->pProgram;
1367 pVdbe->pProgram = p;
1371 ** Return true if the given Vdbe has any SubPrograms.
1373 int sqlite3VdbeHasSubProgram(Vdbe *pVdbe){
1374 return pVdbe->pProgram!=0;
1378 ** Change the opcode at addr into OP_Noop
1380 int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){
1381 VdbeOp *pOp;
1382 if( p->db->mallocFailed ) return 0;
1383 assert( addr>=0 && addr<p->nOp );
1384 pOp = &p->aOp[addr];
1385 freeP4(p->db, pOp->p4type, pOp->p4.p);
1386 pOp->p4type = P4_NOTUSED;
1387 pOp->p4.z = 0;
1388 pOp->opcode = OP_Noop;
1389 return 1;
1393 ** If the last opcode is "op" and it is not a jump destination,
1394 ** then remove it. Return true if and only if an opcode was removed.
1396 int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){
1397 if( p->nOp>0 && p->aOp[p->nOp-1].opcode==op ){
1398 return sqlite3VdbeChangeToNoop(p, p->nOp-1);
1399 }else{
1400 return 0;
1404 #ifdef SQLITE_DEBUG
1406 ** Generate an OP_ReleaseReg opcode to indicate that a range of
1407 ** registers, except any identified by mask, are no longer in use.
1409 void sqlite3VdbeReleaseRegisters(
1410 Parse *pParse, /* Parsing context */
1411 int iFirst, /* Index of first register to be released */
1412 int N, /* Number of registers to release */
1413 u32 mask, /* Mask of registers to NOT release */
1414 int bUndefine /* If true, mark registers as undefined */
1416 if( N==0 || OptimizationDisabled(pParse->db, SQLITE_ReleaseReg) ) return;
1417 assert( pParse->pVdbe );
1418 assert( iFirst>=1 );
1419 assert( iFirst+N-1<=pParse->nMem );
1420 if( N<=31 && mask!=0 ){
1421 while( N>0 && (mask&1)!=0 ){
1422 mask >>= 1;
1423 iFirst++;
1424 N--;
1426 while( N>0 && N<=32 && (mask & MASKBIT32(N-1))!=0 ){
1427 mask &= ~MASKBIT32(N-1);
1428 N--;
1431 if( N>0 ){
1432 sqlite3VdbeAddOp3(pParse->pVdbe, OP_ReleaseReg, iFirst, N, *(int*)&mask);
1433 if( bUndefine ) sqlite3VdbeChangeP5(pParse->pVdbe, 1);
1436 #endif /* SQLITE_DEBUG */
1440 ** Change the value of the P4 operand for a specific instruction.
1441 ** This routine is useful when a large program is loaded from a
1442 ** static array using sqlite3VdbeAddOpList but we want to make a
1443 ** few minor changes to the program.
1445 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of
1446 ** the string is made into memory obtained from sqlite3_malloc().
1447 ** A value of n==0 means copy bytes of zP4 up to and including the
1448 ** first null byte. If n>0 then copy n+1 bytes of zP4.
1450 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
1451 ** to a string or structure that is guaranteed to exist for the lifetime of
1452 ** the Vdbe. In these cases we can just copy the pointer.
1454 ** If addr<0 then change P4 on the most recently inserted instruction.
1456 static void SQLITE_NOINLINE vdbeChangeP4Full(
1457 Vdbe *p,
1458 Op *pOp,
1459 const char *zP4,
1460 int n
1462 if( pOp->p4type ){
1463 freeP4(p->db, pOp->p4type, pOp->p4.p);
1464 pOp->p4type = 0;
1465 pOp->p4.p = 0;
1467 if( n<0 ){
1468 sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n);
1469 }else{
1470 if( n==0 ) n = sqlite3Strlen30(zP4);
1471 pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
1472 pOp->p4type = P4_DYNAMIC;
1475 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
1476 Op *pOp;
1477 sqlite3 *db;
1478 assert( p!=0 );
1479 db = p->db;
1480 assert( p->eVdbeState==VDBE_INIT_STATE );
1481 assert( p->aOp!=0 || db->mallocFailed );
1482 if( db->mallocFailed ){
1483 if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4);
1484 return;
1486 assert( p->nOp>0 );
1487 assert( addr<p->nOp );
1488 if( addr<0 ){
1489 addr = p->nOp - 1;
1491 pOp = &p->aOp[addr];
1492 if( n>=0 || pOp->p4type ){
1493 vdbeChangeP4Full(p, pOp, zP4, n);
1494 return;
1496 if( n==P4_INT32 ){
1497 /* Note: this cast is safe, because the origin data point was an int
1498 ** that was cast to a (const char *). */
1499 pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
1500 pOp->p4type = P4_INT32;
1501 }else if( zP4!=0 ){
1502 assert( n<0 );
1503 pOp->p4.p = (void*)zP4;
1504 pOp->p4type = (signed char)n;
1505 if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4);
1510 ** Change the P4 operand of the most recently coded instruction
1511 ** to the value defined by the arguments. This is a high-speed
1512 ** version of sqlite3VdbeChangeP4().
1514 ** The P4 operand must not have been previously defined. And the new
1515 ** P4 must not be P4_INT32. Use sqlite3VdbeChangeP4() in either of
1516 ** those cases.
1518 void sqlite3VdbeAppendP4(Vdbe *p, void *pP4, int n){
1519 VdbeOp *pOp;
1520 assert( n!=P4_INT32 && n!=P4_VTAB );
1521 assert( n<=0 );
1522 if( p->db->mallocFailed ){
1523 freeP4(p->db, n, pP4);
1524 }else{
1525 assert( pP4!=0 || n==P4_DYNAMIC );
1526 assert( p->nOp>0 );
1527 pOp = &p->aOp[p->nOp-1];
1528 assert( pOp->p4type==P4_NOTUSED );
1529 pOp->p4type = n;
1530 pOp->p4.p = pP4;
1535 ** Set the P4 on the most recently added opcode to the KeyInfo for the
1536 ** index given.
1538 void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){
1539 Vdbe *v = pParse->pVdbe;
1540 KeyInfo *pKeyInfo;
1541 assert( v!=0 );
1542 assert( pIdx!=0 );
1543 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pIdx);
1544 if( pKeyInfo ) sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO);
1547 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1549 ** Change the comment on the most recently coded instruction. Or
1550 ** insert a No-op and add the comment to that new instruction. This
1551 ** makes the code easier to read during debugging. None of this happens
1552 ** in a production build.
1554 static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){
1555 assert( p->nOp>0 || p->aOp==0 );
1556 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->pParse->nErr>0 );
1557 if( p->nOp ){
1558 assert( p->aOp );
1559 sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment);
1560 p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap);
1563 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
1564 va_list ap;
1565 if( p ){
1566 va_start(ap, zFormat);
1567 vdbeVComment(p, zFormat, ap);
1568 va_end(ap);
1571 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
1572 va_list ap;
1573 if( p ){
1574 sqlite3VdbeAddOp0(p, OP_Noop);
1575 va_start(ap, zFormat);
1576 vdbeVComment(p, zFormat, ap);
1577 va_end(ap);
1580 #endif /* NDEBUG */
1582 #ifdef SQLITE_VDBE_COVERAGE
1584 ** Set the value if the iSrcLine field for the previously coded instruction.
1586 void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){
1587 sqlite3VdbeGetLastOp(v)->iSrcLine = iLine;
1589 #endif /* SQLITE_VDBE_COVERAGE */
1592 ** Return the opcode for a given address. The address must be non-negative.
1593 ** See sqlite3VdbeGetLastOp() to get the most recently added opcode.
1595 ** If a memory allocation error has occurred prior to the calling of this
1596 ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode
1597 ** is readable but not writable, though it is cast to a writable value.
1598 ** The return of a dummy opcode allows the call to continue functioning
1599 ** after an OOM fault without having to check to see if the return from
1600 ** this routine is a valid pointer. But because the dummy.opcode is 0,
1601 ** dummy will never be written to. This is verified by code inspection and
1602 ** by running with Valgrind.
1604 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
1605 /* C89 specifies that the constant "dummy" will be initialized to all
1606 ** zeros, which is correct. MSVC generates a warning, nevertheless. */
1607 static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */
1608 assert( p->eVdbeState==VDBE_INIT_STATE );
1609 assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
1610 if( p->db->mallocFailed ){
1611 return (VdbeOp*)&dummy;
1612 }else{
1613 return &p->aOp[addr];
1617 /* Return the most recently added opcode
1619 VdbeOp * sqlite3VdbeGetLastOp(Vdbe *p){
1620 return sqlite3VdbeGetOp(p, p->nOp - 1);
1623 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS)
1625 ** Return an integer value for one of the parameters to the opcode pOp
1626 ** determined by character c.
1628 static int translateP(char c, const Op *pOp){
1629 if( c=='1' ) return pOp->p1;
1630 if( c=='2' ) return pOp->p2;
1631 if( c=='3' ) return pOp->p3;
1632 if( c=='4' ) return pOp->p4.i;
1633 return pOp->p5;
1637 ** Compute a string for the "comment" field of a VDBE opcode listing.
1639 ** The Synopsis: field in comments in the vdbe.c source file gets converted
1640 ** to an extra string that is appended to the sqlite3OpcodeName(). In the
1641 ** absence of other comments, this synopsis becomes the comment on the opcode.
1642 ** Some translation occurs:
1644 ** "PX" -> "r[X]"
1645 ** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1
1646 ** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0
1647 ** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x
1649 char *sqlite3VdbeDisplayComment(
1650 sqlite3 *db, /* Optional - Oom error reporting only */
1651 const Op *pOp, /* The opcode to be commented */
1652 const char *zP4 /* Previously obtained value for P4 */
1654 const char *zOpName;
1655 const char *zSynopsis;
1656 int nOpName;
1657 int ii;
1658 char zAlt[50];
1659 StrAccum x;
1661 sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH);
1662 zOpName = sqlite3OpcodeName(pOp->opcode);
1663 nOpName = sqlite3Strlen30(zOpName);
1664 if( zOpName[nOpName+1] ){
1665 int seenCom = 0;
1666 char c;
1667 zSynopsis = zOpName + nOpName + 1;
1668 if( strncmp(zSynopsis,"IF ",3)==0 ){
1669 sqlite3_snprintf(sizeof(zAlt), zAlt, "if %s goto P2", zSynopsis+3);
1670 zSynopsis = zAlt;
1672 for(ii=0; (c = zSynopsis[ii])!=0; ii++){
1673 if( c=='P' ){
1674 c = zSynopsis[++ii];
1675 if( c=='4' ){
1676 sqlite3_str_appendall(&x, zP4);
1677 }else if( c=='X' ){
1678 if( pOp->zComment && pOp->zComment[0] ){
1679 sqlite3_str_appendall(&x, pOp->zComment);
1680 seenCom = 1;
1681 break;
1683 }else{
1684 int v1 = translateP(c, pOp);
1685 int v2;
1686 if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){
1687 ii += 3;
1688 v2 = translateP(zSynopsis[ii], pOp);
1689 if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){
1690 ii += 2;
1691 v2++;
1693 if( v2<2 ){
1694 sqlite3_str_appendf(&x, "%d", v1);
1695 }else{
1696 sqlite3_str_appendf(&x, "%d..%d", v1, v1+v2-1);
1698 }else if( strncmp(zSynopsis+ii+1, "@NP", 3)==0 ){
1699 sqlite3_context *pCtx = pOp->p4.pCtx;
1700 if( pOp->p4type!=P4_FUNCCTX || pCtx->argc==1 ){
1701 sqlite3_str_appendf(&x, "%d", v1);
1702 }else if( pCtx->argc>1 ){
1703 sqlite3_str_appendf(&x, "%d..%d", v1, v1+pCtx->argc-1);
1704 }else if( x.accError==0 ){
1705 assert( x.nChar>2 );
1706 x.nChar -= 2;
1707 ii++;
1709 ii += 3;
1710 }else{
1711 sqlite3_str_appendf(&x, "%d", v1);
1712 if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){
1713 ii += 4;
1717 }else{
1718 sqlite3_str_appendchar(&x, 1, c);
1721 if( !seenCom && pOp->zComment ){
1722 sqlite3_str_appendf(&x, "; %s", pOp->zComment);
1724 }else if( pOp->zComment ){
1725 sqlite3_str_appendall(&x, pOp->zComment);
1727 if( (x.accError & SQLITE_NOMEM)!=0 && db!=0 ){
1728 sqlite3OomFault(db);
1730 return sqlite3StrAccumFinish(&x);
1732 #endif /* SQLITE_ENABLE_EXPLAIN_COMMENTS */
1734 #if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS)
1736 ** Translate the P4.pExpr value for an OP_CursorHint opcode into text
1737 ** that can be displayed in the P4 column of EXPLAIN output.
1739 static void displayP4Expr(StrAccum *p, Expr *pExpr){
1740 const char *zOp = 0;
1741 switch( pExpr->op ){
1742 case TK_STRING:
1743 assert( !ExprHasProperty(pExpr, EP_IntValue) );
1744 sqlite3_str_appendf(p, "%Q", pExpr->u.zToken);
1745 break;
1746 case TK_INTEGER:
1747 sqlite3_str_appendf(p, "%d", pExpr->u.iValue);
1748 break;
1749 case TK_NULL:
1750 sqlite3_str_appendf(p, "NULL");
1751 break;
1752 case TK_REGISTER: {
1753 sqlite3_str_appendf(p, "r[%d]", pExpr->iTable);
1754 break;
1756 case TK_COLUMN: {
1757 if( pExpr->iColumn<0 ){
1758 sqlite3_str_appendf(p, "rowid");
1759 }else{
1760 sqlite3_str_appendf(p, "c%d", (int)pExpr->iColumn);
1762 break;
1764 case TK_LT: zOp = "LT"; break;
1765 case TK_LE: zOp = "LE"; break;
1766 case TK_GT: zOp = "GT"; break;
1767 case TK_GE: zOp = "GE"; break;
1768 case TK_NE: zOp = "NE"; break;
1769 case TK_EQ: zOp = "EQ"; break;
1770 case TK_IS: zOp = "IS"; break;
1771 case TK_ISNOT: zOp = "ISNOT"; break;
1772 case TK_AND: zOp = "AND"; break;
1773 case TK_OR: zOp = "OR"; break;
1774 case TK_PLUS: zOp = "ADD"; break;
1775 case TK_STAR: zOp = "MUL"; break;
1776 case TK_MINUS: zOp = "SUB"; break;
1777 case TK_REM: zOp = "REM"; break;
1778 case TK_BITAND: zOp = "BITAND"; break;
1779 case TK_BITOR: zOp = "BITOR"; break;
1780 case TK_SLASH: zOp = "DIV"; break;
1781 case TK_LSHIFT: zOp = "LSHIFT"; break;
1782 case TK_RSHIFT: zOp = "RSHIFT"; break;
1783 case TK_CONCAT: zOp = "CONCAT"; break;
1784 case TK_UMINUS: zOp = "MINUS"; break;
1785 case TK_UPLUS: zOp = "PLUS"; break;
1786 case TK_BITNOT: zOp = "BITNOT"; break;
1787 case TK_NOT: zOp = "NOT"; break;
1788 case TK_ISNULL: zOp = "ISNULL"; break;
1789 case TK_NOTNULL: zOp = "NOTNULL"; break;
1791 default:
1792 sqlite3_str_appendf(p, "%s", "expr");
1793 break;
1796 if( zOp ){
1797 sqlite3_str_appendf(p, "%s(", zOp);
1798 displayP4Expr(p, pExpr->pLeft);
1799 if( pExpr->pRight ){
1800 sqlite3_str_append(p, ",", 1);
1801 displayP4Expr(p, pExpr->pRight);
1803 sqlite3_str_append(p, ")", 1);
1806 #endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */
1809 #if VDBE_DISPLAY_P4
1811 ** Compute a string that describes the P4 parameter for an opcode.
1812 ** Use zTemp for any required temporary buffer space.
1814 char *sqlite3VdbeDisplayP4(sqlite3 *db, Op *pOp){
1815 char *zP4 = 0;
1816 StrAccum x;
1818 sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH);
1819 switch( pOp->p4type ){
1820 case P4_KEYINFO: {
1821 int j;
1822 KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
1823 assert( pKeyInfo->aSortFlags!=0 );
1824 sqlite3_str_appendf(&x, "k(%d", pKeyInfo->nKeyField);
1825 for(j=0; j<pKeyInfo->nKeyField; j++){
1826 CollSeq *pColl = pKeyInfo->aColl[j];
1827 const char *zColl = pColl ? pColl->zName : "";
1828 if( strcmp(zColl, "BINARY")==0 ) zColl = "B";
1829 sqlite3_str_appendf(&x, ",%s%s%s",
1830 (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_DESC) ? "-" : "",
1831 (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_BIGNULL)? "N." : "",
1832 zColl);
1834 sqlite3_str_append(&x, ")", 1);
1835 break;
1837 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1838 case P4_EXPR: {
1839 displayP4Expr(&x, pOp->p4.pExpr);
1840 break;
1842 #endif
1843 case P4_COLLSEQ: {
1844 static const char *const encnames[] = {"?", "8", "16LE", "16BE"};
1845 CollSeq *pColl = pOp->p4.pColl;
1846 assert( pColl->enc<4 );
1847 sqlite3_str_appendf(&x, "%.18s-%s", pColl->zName,
1848 encnames[pColl->enc]);
1849 break;
1851 case P4_FUNCDEF: {
1852 FuncDef *pDef = pOp->p4.pFunc;
1853 sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg);
1854 break;
1856 case P4_FUNCCTX: {
1857 FuncDef *pDef = pOp->p4.pCtx->pFunc;
1858 sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg);
1859 break;
1861 case P4_INT64: {
1862 sqlite3_str_appendf(&x, "%lld", *pOp->p4.pI64);
1863 break;
1865 case P4_INT32: {
1866 sqlite3_str_appendf(&x, "%d", pOp->p4.i);
1867 break;
1869 case P4_REAL: {
1870 sqlite3_str_appendf(&x, "%.16g", *pOp->p4.pReal);
1871 break;
1873 case P4_MEM: {
1874 Mem *pMem = pOp->p4.pMem;
1875 if( pMem->flags & MEM_Str ){
1876 zP4 = pMem->z;
1877 }else if( pMem->flags & (MEM_Int|MEM_IntReal) ){
1878 sqlite3_str_appendf(&x, "%lld", pMem->u.i);
1879 }else if( pMem->flags & MEM_Real ){
1880 sqlite3_str_appendf(&x, "%.16g", pMem->u.r);
1881 }else if( pMem->flags & MEM_Null ){
1882 zP4 = "NULL";
1883 }else{
1884 assert( pMem->flags & MEM_Blob );
1885 zP4 = "(blob)";
1887 break;
1889 #ifndef SQLITE_OMIT_VIRTUALTABLE
1890 case P4_VTAB: {
1891 sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab;
1892 sqlite3_str_appendf(&x, "vtab:%p", pVtab);
1893 break;
1895 #endif
1896 case P4_INTARRAY: {
1897 u32 i;
1898 u32 *ai = pOp->p4.ai;
1899 u32 n = ai[0]; /* The first element of an INTARRAY is always the
1900 ** count of the number of elements to follow */
1901 for(i=1; i<=n; i++){
1902 sqlite3_str_appendf(&x, "%c%u", (i==1 ? '[' : ','), ai[i]);
1904 sqlite3_str_append(&x, "]", 1);
1905 break;
1907 case P4_SUBPROGRAM: {
1908 zP4 = "program";
1909 break;
1911 case P4_TABLE: {
1912 zP4 = pOp->p4.pTab->zName;
1913 break;
1915 default: {
1916 zP4 = pOp->p4.z;
1919 if( zP4 ) sqlite3_str_appendall(&x, zP4);
1920 if( (x.accError & SQLITE_NOMEM)!=0 ){
1921 sqlite3OomFault(db);
1923 return sqlite3StrAccumFinish(&x);
1925 #endif /* VDBE_DISPLAY_P4 */
1928 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
1930 ** The prepared statements need to know in advance the complete set of
1931 ** attached databases that will be use. A mask of these databases
1932 ** is maintained in p->btreeMask. The p->lockMask value is the subset of
1933 ** p->btreeMask of databases that will require a lock.
1935 void sqlite3VdbeUsesBtree(Vdbe *p, int i){
1936 assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 );
1937 assert( i<(int)sizeof(p->btreeMask)*8 );
1938 DbMaskSet(p->btreeMask, i);
1939 if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){
1940 DbMaskSet(p->lockMask, i);
1944 #if !defined(SQLITE_OMIT_SHARED_CACHE)
1946 ** If SQLite is compiled to support shared-cache mode and to be threadsafe,
1947 ** this routine obtains the mutex associated with each BtShared structure
1948 ** that may be accessed by the VM passed as an argument. In doing so it also
1949 ** sets the BtShared.db member of each of the BtShared structures, ensuring
1950 ** that the correct busy-handler callback is invoked if required.
1952 ** If SQLite is not threadsafe but does support shared-cache mode, then
1953 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables
1954 ** of all of BtShared structures accessible via the database handle
1955 ** associated with the VM.
1957 ** If SQLite is not threadsafe and does not support shared-cache mode, this
1958 ** function is a no-op.
1960 ** The p->btreeMask field is a bitmask of all btrees that the prepared
1961 ** statement p will ever use. Let N be the number of bits in p->btreeMask
1962 ** corresponding to btrees that use shared cache. Then the runtime of
1963 ** this routine is N*N. But as N is rarely more than 1, this should not
1964 ** be a problem.
1966 void sqlite3VdbeEnter(Vdbe *p){
1967 int i;
1968 sqlite3 *db;
1969 Db *aDb;
1970 int nDb;
1971 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */
1972 db = p->db;
1973 aDb = db->aDb;
1974 nDb = db->nDb;
1975 for(i=0; i<nDb; i++){
1976 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
1977 sqlite3BtreeEnter(aDb[i].pBt);
1981 #endif
1983 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
1985 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter().
1987 static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){
1988 int i;
1989 sqlite3 *db;
1990 Db *aDb;
1991 int nDb;
1992 db = p->db;
1993 aDb = db->aDb;
1994 nDb = db->nDb;
1995 for(i=0; i<nDb; i++){
1996 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
1997 sqlite3BtreeLeave(aDb[i].pBt);
2001 void sqlite3VdbeLeave(Vdbe *p){
2002 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */
2003 vdbeLeave(p);
2005 #endif
2007 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
2009 ** Print a single opcode. This routine is used for debugging only.
2011 void sqlite3VdbePrintOp(FILE *pOut, int pc, VdbeOp *pOp){
2012 char *zP4;
2013 char *zCom;
2014 sqlite3 dummyDb;
2015 static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n";
2016 if( pOut==0 ) pOut = stdout;
2017 sqlite3BeginBenignMalloc();
2018 dummyDb.mallocFailed = 1;
2019 zP4 = sqlite3VdbeDisplayP4(&dummyDb, pOp);
2020 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
2021 zCom = sqlite3VdbeDisplayComment(0, pOp, zP4);
2022 #else
2023 zCom = 0;
2024 #endif
2025 /* NB: The sqlite3OpcodeName() function is implemented by code created
2026 ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the
2027 ** information from the vdbe.c source text */
2028 fprintf(pOut, zFormat1, pc,
2029 sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3,
2030 zP4 ? zP4 : "", pOp->p5,
2031 zCom ? zCom : ""
2033 fflush(pOut);
2034 sqlite3_free(zP4);
2035 sqlite3_free(zCom);
2036 sqlite3EndBenignMalloc();
2038 #endif
2041 ** Initialize an array of N Mem element.
2043 ** This is a high-runner, so only those fields that really do need to
2044 ** be initialized are set. The Mem structure is organized so that
2045 ** the fields that get initialized are nearby and hopefully on the same
2046 ** cache line.
2048 ** Mem.flags = flags
2049 ** Mem.db = db
2050 ** Mem.szMalloc = 0
2052 ** All other fields of Mem can safely remain uninitialized for now. They
2053 ** will be initialized before use.
2055 static void initMemArray(Mem *p, int N, sqlite3 *db, u16 flags){
2056 if( N>0 ){
2058 p->flags = flags;
2059 p->db = db;
2060 p->szMalloc = 0;
2061 #ifdef SQLITE_DEBUG
2062 p->pScopyFrom = 0;
2063 #endif
2064 p++;
2065 }while( (--N)>0 );
2070 ** Release auxiliary memory held in an array of N Mem elements.
2072 ** After this routine returns, all Mem elements in the array will still
2073 ** be valid. Those Mem elements that were not holding auxiliary resources
2074 ** will be unchanged. Mem elements which had something freed will be
2075 ** set to MEM_Undefined.
2077 static void releaseMemArray(Mem *p, int N){
2078 if( p && N ){
2079 Mem *pEnd = &p[N];
2080 sqlite3 *db = p->db;
2081 if( db->pnBytesFreed ){
2083 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
2084 }while( (++p)<pEnd );
2085 return;
2088 assert( (&p[1])==pEnd || p[0].db==p[1].db );
2089 assert( sqlite3VdbeCheckMemInvariants(p) );
2091 /* This block is really an inlined version of sqlite3VdbeMemRelease()
2092 ** that takes advantage of the fact that the memory cell value is
2093 ** being set to NULL after releasing any dynamic resources.
2095 ** The justification for duplicating code is that according to
2096 ** callgrind, this causes a certain test case to hit the CPU 4.7
2097 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if
2098 ** sqlite3MemRelease() were called from here. With -O2, this jumps
2099 ** to 6.6 percent. The test case is inserting 1000 rows into a table
2100 ** with no indexes using a single prepared INSERT statement, bind()
2101 ** and reset(). Inserts are grouped into a transaction.
2103 testcase( p->flags & MEM_Agg );
2104 testcase( p->flags & MEM_Dyn );
2105 if( p->flags&(MEM_Agg|MEM_Dyn) ){
2106 testcase( (p->flags & MEM_Dyn)!=0 && p->xDel==sqlite3VdbeFrameMemDel );
2107 sqlite3VdbeMemRelease(p);
2108 p->flags = MEM_Undefined;
2109 }else if( p->szMalloc ){
2110 sqlite3DbNNFreeNN(db, p->zMalloc);
2111 p->szMalloc = 0;
2112 p->flags = MEM_Undefined;
2114 #ifdef SQLITE_DEBUG
2115 else{
2116 p->flags = MEM_Undefined;
2118 #endif
2119 }while( (++p)<pEnd );
2123 #ifdef SQLITE_DEBUG
2125 ** Verify that pFrame is a valid VdbeFrame pointer. Return true if it is
2126 ** and false if something is wrong.
2128 ** This routine is intended for use inside of assert() statements only.
2130 int sqlite3VdbeFrameIsValid(VdbeFrame *pFrame){
2131 if( pFrame->iFrameMagic!=SQLITE_FRAME_MAGIC ) return 0;
2132 return 1;
2134 #endif
2138 ** This is a destructor on a Mem object (which is really an sqlite3_value)
2139 ** that deletes the Frame object that is attached to it as a blob.
2141 ** This routine does not delete the Frame right away. It merely adds the
2142 ** frame to a list of frames to be deleted when the Vdbe halts.
2144 void sqlite3VdbeFrameMemDel(void *pArg){
2145 VdbeFrame *pFrame = (VdbeFrame*)pArg;
2146 assert( sqlite3VdbeFrameIsValid(pFrame) );
2147 pFrame->pParent = pFrame->v->pDelFrame;
2148 pFrame->v->pDelFrame = pFrame;
2151 #if defined(SQLITE_ENABLE_BYTECODE_VTAB) || !defined(SQLITE_OMIT_EXPLAIN)
2153 ** Locate the next opcode to be displayed in EXPLAIN or EXPLAIN
2154 ** QUERY PLAN output.
2156 ** Return SQLITE_ROW on success. Return SQLITE_DONE if there are no
2157 ** more opcodes to be displayed.
2159 int sqlite3VdbeNextOpcode(
2160 Vdbe *p, /* The statement being explained */
2161 Mem *pSub, /* Storage for keeping track of subprogram nesting */
2162 int eMode, /* 0: normal. 1: EQP. 2: TablesUsed */
2163 int *piPc, /* IN/OUT: Current rowid. Overwritten with next rowid */
2164 int *piAddr, /* OUT: Write index into (*paOp)[] here */
2165 Op **paOp /* OUT: Write the opcode array here */
2167 int nRow; /* Stop when row count reaches this */
2168 int nSub = 0; /* Number of sub-vdbes seen so far */
2169 SubProgram **apSub = 0; /* Array of sub-vdbes */
2170 int i; /* Next instruction address */
2171 int rc = SQLITE_OK; /* Result code */
2172 Op *aOp = 0; /* Opcode array */
2173 int iPc; /* Rowid. Copy of value in *piPc */
2175 /* When the number of output rows reaches nRow, that means the
2176 ** listing has finished and sqlite3_step() should return SQLITE_DONE.
2177 ** nRow is the sum of the number of rows in the main program, plus
2178 ** the sum of the number of rows in all trigger subprograms encountered
2179 ** so far. The nRow value will increase as new trigger subprograms are
2180 ** encountered, but p->pc will eventually catch up to nRow.
2182 nRow = p->nOp;
2183 if( pSub!=0 ){
2184 if( pSub->flags&MEM_Blob ){
2185 /* pSub is initiallly NULL. It is initialized to a BLOB by
2186 ** the P4_SUBPROGRAM processing logic below */
2187 nSub = pSub->n/sizeof(Vdbe*);
2188 apSub = (SubProgram **)pSub->z;
2190 for(i=0; i<nSub; i++){
2191 nRow += apSub[i]->nOp;
2194 iPc = *piPc;
2195 while(1){ /* Loop exits via break */
2196 i = iPc++;
2197 if( i>=nRow ){
2198 p->rc = SQLITE_OK;
2199 rc = SQLITE_DONE;
2200 break;
2202 if( i<p->nOp ){
2203 /* The rowid is small enough that we are still in the
2204 ** main program. */
2205 aOp = p->aOp;
2206 }else{
2207 /* We are currently listing subprograms. Figure out which one and
2208 ** pick up the appropriate opcode. */
2209 int j;
2210 i -= p->nOp;
2211 assert( apSub!=0 );
2212 assert( nSub>0 );
2213 for(j=0; i>=apSub[j]->nOp; j++){
2214 i -= apSub[j]->nOp;
2215 assert( i<apSub[j]->nOp || j+1<nSub );
2217 aOp = apSub[j]->aOp;
2220 /* When an OP_Program opcode is encounter (the only opcode that has
2221 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms
2222 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram
2223 ** has not already been seen.
2225 if( pSub!=0 && aOp[i].p4type==P4_SUBPROGRAM ){
2226 int nByte = (nSub+1)*sizeof(SubProgram*);
2227 int j;
2228 for(j=0; j<nSub; j++){
2229 if( apSub[j]==aOp[i].p4.pProgram ) break;
2231 if( j==nSub ){
2232 p->rc = sqlite3VdbeMemGrow(pSub, nByte, nSub!=0);
2233 if( p->rc!=SQLITE_OK ){
2234 rc = SQLITE_ERROR;
2235 break;
2237 apSub = (SubProgram **)pSub->z;
2238 apSub[nSub++] = aOp[i].p4.pProgram;
2239 MemSetTypeFlag(pSub, MEM_Blob);
2240 pSub->n = nSub*sizeof(SubProgram*);
2241 nRow += aOp[i].p4.pProgram->nOp;
2244 if( eMode==0 ) break;
2245 #ifdef SQLITE_ENABLE_BYTECODE_VTAB
2246 if( eMode==2 ){
2247 Op *pOp = aOp + i;
2248 if( pOp->opcode==OP_OpenRead ) break;
2249 if( pOp->opcode==OP_OpenWrite && (pOp->p5 & OPFLAG_P2ISREG)==0 ) break;
2250 if( pOp->opcode==OP_ReopenIdx ) break;
2251 }else
2252 #endif
2254 assert( eMode==1 );
2255 if( aOp[i].opcode==OP_Explain ) break;
2256 if( aOp[i].opcode==OP_Init && iPc>1 ) break;
2259 *piPc = iPc;
2260 *piAddr = i;
2261 *paOp = aOp;
2262 return rc;
2264 #endif /* SQLITE_ENABLE_BYTECODE_VTAB || !SQLITE_OMIT_EXPLAIN */
2268 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are
2269 ** allocated by the OP_Program opcode in sqlite3VdbeExec().
2271 void sqlite3VdbeFrameDelete(VdbeFrame *p){
2272 int i;
2273 Mem *aMem = VdbeFrameMem(p);
2274 VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem];
2275 assert( sqlite3VdbeFrameIsValid(p) );
2276 for(i=0; i<p->nChildCsr; i++){
2277 if( apCsr[i] ) sqlite3VdbeFreeCursorNN(p->v, apCsr[i]);
2279 releaseMemArray(aMem, p->nChildMem);
2280 sqlite3VdbeDeleteAuxData(p->v->db, &p->pAuxData, -1, 0);
2281 sqlite3DbFree(p->v->db, p);
2284 #ifndef SQLITE_OMIT_EXPLAIN
2286 ** Give a listing of the program in the virtual machine.
2288 ** The interface is the same as sqlite3VdbeExec(). But instead of
2289 ** running the code, it invokes the callback once for each instruction.
2290 ** This feature is used to implement "EXPLAIN".
2292 ** When p->explain==1, each instruction is listed. When
2293 ** p->explain==2, only OP_Explain instructions are listed and these
2294 ** are shown in a different format. p->explain==2 is used to implement
2295 ** EXPLAIN QUERY PLAN.
2296 ** 2018-04-24: In p->explain==2 mode, the OP_Init opcodes of triggers
2297 ** are also shown, so that the boundaries between the main program and
2298 ** each trigger are clear.
2300 ** When p->explain==1, first the main program is listed, then each of
2301 ** the trigger subprograms are listed one by one.
2303 int sqlite3VdbeList(
2304 Vdbe *p /* The VDBE */
2306 Mem *pSub = 0; /* Memory cell hold array of subprogs */
2307 sqlite3 *db = p->db; /* The database connection */
2308 int i; /* Loop counter */
2309 int rc = SQLITE_OK; /* Return code */
2310 Mem *pMem = &p->aMem[1]; /* First Mem of result set */
2311 int bListSubprogs = (p->explain==1 || (db->flags & SQLITE_TriggerEQP)!=0);
2312 Op *aOp; /* Array of opcodes */
2313 Op *pOp; /* Current opcode */
2315 assert( p->explain );
2316 assert( p->eVdbeState==VDBE_RUN_STATE );
2317 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM );
2319 /* Even though this opcode does not use dynamic strings for
2320 ** the result, result columns may become dynamic if the user calls
2321 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
2323 releaseMemArray(pMem, 8);
2325 if( p->rc==SQLITE_NOMEM ){
2326 /* This happens if a malloc() inside a call to sqlite3_column_text() or
2327 ** sqlite3_column_text16() failed. */
2328 sqlite3OomFault(db);
2329 return SQLITE_ERROR;
2332 if( bListSubprogs ){
2333 /* The first 8 memory cells are used for the result set. So we will
2334 ** commandeer the 9th cell to use as storage for an array of pointers
2335 ** to trigger subprograms. The VDBE is guaranteed to have at least 9
2336 ** cells. */
2337 assert( p->nMem>9 );
2338 pSub = &p->aMem[9];
2339 }else{
2340 pSub = 0;
2343 /* Figure out which opcode is next to display */
2344 rc = sqlite3VdbeNextOpcode(p, pSub, p->explain==2, &p->pc, &i, &aOp);
2346 if( rc==SQLITE_OK ){
2347 pOp = aOp + i;
2348 if( AtomicLoad(&db->u1.isInterrupted) ){
2349 p->rc = SQLITE_INTERRUPT;
2350 rc = SQLITE_ERROR;
2351 sqlite3VdbeError(p, sqlite3ErrStr(p->rc));
2352 }else{
2353 char *zP4 = sqlite3VdbeDisplayP4(db, pOp);
2354 if( p->explain==2 ){
2355 sqlite3VdbeMemSetInt64(pMem, pOp->p1);
2356 sqlite3VdbeMemSetInt64(pMem+1, pOp->p2);
2357 sqlite3VdbeMemSetInt64(pMem+2, pOp->p3);
2358 sqlite3VdbeMemSetStr(pMem+3, zP4, -1, SQLITE_UTF8, sqlite3_free);
2359 p->nResColumn = 4;
2360 }else{
2361 sqlite3VdbeMemSetInt64(pMem+0, i);
2362 sqlite3VdbeMemSetStr(pMem+1, (char*)sqlite3OpcodeName(pOp->opcode),
2363 -1, SQLITE_UTF8, SQLITE_STATIC);
2364 sqlite3VdbeMemSetInt64(pMem+2, pOp->p1);
2365 sqlite3VdbeMemSetInt64(pMem+3, pOp->p2);
2366 sqlite3VdbeMemSetInt64(pMem+4, pOp->p3);
2367 /* pMem+5 for p4 is done last */
2368 sqlite3VdbeMemSetInt64(pMem+6, pOp->p5);
2369 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
2371 char *zCom = sqlite3VdbeDisplayComment(db, pOp, zP4);
2372 sqlite3VdbeMemSetStr(pMem+7, zCom, -1, SQLITE_UTF8, sqlite3_free);
2374 #else
2375 sqlite3VdbeMemSetNull(pMem+7);
2376 #endif
2377 sqlite3VdbeMemSetStr(pMem+5, zP4, -1, SQLITE_UTF8, sqlite3_free);
2378 p->nResColumn = 8;
2380 p->pResultRow = pMem;
2381 if( db->mallocFailed ){
2382 p->rc = SQLITE_NOMEM;
2383 rc = SQLITE_ERROR;
2384 }else{
2385 p->rc = SQLITE_OK;
2386 rc = SQLITE_ROW;
2390 return rc;
2392 #endif /* SQLITE_OMIT_EXPLAIN */
2394 #ifdef SQLITE_DEBUG
2396 ** Print the SQL that was used to generate a VDBE program.
2398 void sqlite3VdbePrintSql(Vdbe *p){
2399 const char *z = 0;
2400 if( p->zSql ){
2401 z = p->zSql;
2402 }else if( p->nOp>=1 ){
2403 const VdbeOp *pOp = &p->aOp[0];
2404 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
2405 z = pOp->p4.z;
2406 while( sqlite3Isspace(*z) ) z++;
2409 if( z ) printf("SQL: [%s]\n", z);
2411 #endif
2413 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
2415 ** Print an IOTRACE message showing SQL content.
2417 void sqlite3VdbeIOTraceSql(Vdbe *p){
2418 int nOp = p->nOp;
2419 VdbeOp *pOp;
2420 if( sqlite3IoTrace==0 ) return;
2421 if( nOp<1 ) return;
2422 pOp = &p->aOp[0];
2423 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
2424 int i, j;
2425 char z[1000];
2426 sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
2427 for(i=0; sqlite3Isspace(z[i]); i++){}
2428 for(j=0; z[i]; i++){
2429 if( sqlite3Isspace(z[i]) ){
2430 if( z[i-1]!=' ' ){
2431 z[j++] = ' ';
2433 }else{
2434 z[j++] = z[i];
2437 z[j] = 0;
2438 sqlite3IoTrace("SQL %s\n", z);
2441 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
2443 /* An instance of this object describes bulk memory available for use
2444 ** by subcomponents of a prepared statement. Space is allocated out
2445 ** of a ReusableSpace object by the allocSpace() routine below.
2447 struct ReusableSpace {
2448 u8 *pSpace; /* Available memory */
2449 sqlite3_int64 nFree; /* Bytes of available memory */
2450 sqlite3_int64 nNeeded; /* Total bytes that could not be allocated */
2453 /* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf
2454 ** from the ReusableSpace object. Return a pointer to the allocated
2455 ** memory on success. If insufficient memory is available in the
2456 ** ReusableSpace object, increase the ReusableSpace.nNeeded
2457 ** value by the amount needed and return NULL.
2459 ** If pBuf is not initially NULL, that means that the memory has already
2460 ** been allocated by a prior call to this routine, so just return a copy
2461 ** of pBuf and leave ReusableSpace unchanged.
2463 ** This allocator is employed to repurpose unused slots at the end of the
2464 ** opcode array of prepared state for other memory needs of the prepared
2465 ** statement.
2467 static void *allocSpace(
2468 struct ReusableSpace *p, /* Bulk memory available for allocation */
2469 void *pBuf, /* Pointer to a prior allocation */
2470 sqlite3_int64 nByte /* Bytes of memory needed. */
2472 assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) );
2473 if( pBuf==0 ){
2474 nByte = ROUND8P(nByte);
2475 if( nByte <= p->nFree ){
2476 p->nFree -= nByte;
2477 pBuf = &p->pSpace[p->nFree];
2478 }else{
2479 p->nNeeded += nByte;
2482 assert( EIGHT_BYTE_ALIGNMENT(pBuf) );
2483 return pBuf;
2487 ** Rewind the VDBE back to the beginning in preparation for
2488 ** running it.
2490 void sqlite3VdbeRewind(Vdbe *p){
2491 #if defined(SQLITE_DEBUG)
2492 int i;
2493 #endif
2494 assert( p!=0 );
2495 assert( p->eVdbeState==VDBE_INIT_STATE
2496 || p->eVdbeState==VDBE_READY_STATE
2497 || p->eVdbeState==VDBE_HALT_STATE );
2499 /* There should be at least one opcode.
2501 assert( p->nOp>0 );
2503 p->eVdbeState = VDBE_READY_STATE;
2505 #ifdef SQLITE_DEBUG
2506 for(i=0; i<p->nMem; i++){
2507 assert( p->aMem[i].db==p->db );
2509 #endif
2510 p->pc = -1;
2511 p->rc = SQLITE_OK;
2512 p->errorAction = OE_Abort;
2513 p->nChange = 0;
2514 p->cacheCtr = 1;
2515 p->minWriteFileFormat = 255;
2516 p->iStatement = 0;
2517 p->nFkConstraint = 0;
2518 #ifdef VDBE_PROFILE
2519 for(i=0; i<p->nOp; i++){
2520 p->aOp[i].nExec = 0;
2521 p->aOp[i].nCycle = 0;
2523 #endif
2527 ** Prepare a virtual machine for execution for the first time after
2528 ** creating the virtual machine. This involves things such
2529 ** as allocating registers and initializing the program counter.
2530 ** After the VDBE has be prepped, it can be executed by one or more
2531 ** calls to sqlite3VdbeExec().
2533 ** This function may be called exactly once on each virtual machine.
2534 ** After this routine is called the VM has been "packaged" and is ready
2535 ** to run. After this routine is called, further calls to
2536 ** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects
2537 ** the Vdbe from the Parse object that helped generate it so that the
2538 ** the Vdbe becomes an independent entity and the Parse object can be
2539 ** destroyed.
2541 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back
2542 ** to its initial state after it has been run.
2544 void sqlite3VdbeMakeReady(
2545 Vdbe *p, /* The VDBE */
2546 Parse *pParse /* Parsing context */
2548 sqlite3 *db; /* The database connection */
2549 int nVar; /* Number of parameters */
2550 int nMem; /* Number of VM memory registers */
2551 int nCursor; /* Number of cursors required */
2552 int nArg; /* Number of arguments in subprograms */
2553 int n; /* Loop counter */
2554 struct ReusableSpace x; /* Reusable bulk memory */
2556 assert( p!=0 );
2557 assert( p->nOp>0 );
2558 assert( pParse!=0 );
2559 assert( p->eVdbeState==VDBE_INIT_STATE );
2560 assert( pParse==p->pParse );
2561 p->pVList = pParse->pVList;
2562 pParse->pVList = 0;
2563 db = p->db;
2564 assert( db->mallocFailed==0 );
2565 nVar = pParse->nVar;
2566 nMem = pParse->nMem;
2567 nCursor = pParse->nTab;
2568 nArg = pParse->nMaxArg;
2570 /* Each cursor uses a memory cell. The first cursor (cursor 0) can
2571 ** use aMem[0] which is not otherwise used by the VDBE program. Allocate
2572 ** space at the end of aMem[] for cursors 1 and greater.
2573 ** See also: allocateCursor().
2575 nMem += nCursor;
2576 if( nCursor==0 && nMem>0 ) nMem++; /* Space for aMem[0] even if not used */
2578 /* Figure out how much reusable memory is available at the end of the
2579 ** opcode array. This extra memory will be reallocated for other elements
2580 ** of the prepared statement.
2582 n = ROUND8P(sizeof(Op)*p->nOp); /* Bytes of opcode memory used */
2583 x.pSpace = &((u8*)p->aOp)[n]; /* Unused opcode memory */
2584 assert( EIGHT_BYTE_ALIGNMENT(x.pSpace) );
2585 x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n); /* Bytes of unused memory */
2586 assert( x.nFree>=0 );
2587 assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) );
2589 resolveP2Values(p, &nArg);
2590 p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort);
2591 if( pParse->explain ){
2592 static const char * const azColName[] = {
2593 "addr", "opcode", "p1", "p2", "p3", "p4", "p5", "comment",
2594 "id", "parent", "notused", "detail"
2596 int iFirst, mx, i;
2597 if( nMem<10 ) nMem = 10;
2598 p->explain = pParse->explain;
2599 if( pParse->explain==2 ){
2600 sqlite3VdbeSetNumCols(p, 4);
2601 iFirst = 8;
2602 mx = 12;
2603 }else{
2604 sqlite3VdbeSetNumCols(p, 8);
2605 iFirst = 0;
2606 mx = 8;
2608 for(i=iFirst; i<mx; i++){
2609 sqlite3VdbeSetColName(p, i-iFirst, COLNAME_NAME,
2610 azColName[i], SQLITE_STATIC);
2613 p->expired = 0;
2615 /* Memory for registers, parameters, cursor, etc, is allocated in one or two
2616 ** passes. On the first pass, we try to reuse unused memory at the
2617 ** end of the opcode array. If we are unable to satisfy all memory
2618 ** requirements by reusing the opcode array tail, then the second
2619 ** pass will fill in the remainder using a fresh memory allocation.
2621 ** This two-pass approach that reuses as much memory as possible from
2622 ** the leftover memory at the end of the opcode array. This can significantly
2623 ** reduce the amount of memory held by a prepared statement.
2625 x.nNeeded = 0;
2626 p->aMem = allocSpace(&x, 0, nMem*sizeof(Mem));
2627 p->aVar = allocSpace(&x, 0, nVar*sizeof(Mem));
2628 p->apArg = allocSpace(&x, 0, nArg*sizeof(Mem*));
2629 p->apCsr = allocSpace(&x, 0, nCursor*sizeof(VdbeCursor*));
2630 if( x.nNeeded ){
2631 x.pSpace = p->pFree = sqlite3DbMallocRawNN(db, x.nNeeded);
2632 x.nFree = x.nNeeded;
2633 if( !db->mallocFailed ){
2634 p->aMem = allocSpace(&x, p->aMem, nMem*sizeof(Mem));
2635 p->aVar = allocSpace(&x, p->aVar, nVar*sizeof(Mem));
2636 p->apArg = allocSpace(&x, p->apArg, nArg*sizeof(Mem*));
2637 p->apCsr = allocSpace(&x, p->apCsr, nCursor*sizeof(VdbeCursor*));
2641 if( db->mallocFailed ){
2642 p->nVar = 0;
2643 p->nCursor = 0;
2644 p->nMem = 0;
2645 }else{
2646 p->nCursor = nCursor;
2647 p->nVar = (ynVar)nVar;
2648 initMemArray(p->aVar, nVar, db, MEM_Null);
2649 p->nMem = nMem;
2650 initMemArray(p->aMem, nMem, db, MEM_Undefined);
2651 memset(p->apCsr, 0, nCursor*sizeof(VdbeCursor*));
2653 sqlite3VdbeRewind(p);
2657 ** Close a VDBE cursor and release all the resources that cursor
2658 ** happens to hold.
2660 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
2661 if( pCx ) sqlite3VdbeFreeCursorNN(p,pCx);
2663 void sqlite3VdbeFreeCursorNN(Vdbe *p, VdbeCursor *pCx){
2664 switch( pCx->eCurType ){
2665 case CURTYPE_SORTER: {
2666 sqlite3VdbeSorterClose(p->db, pCx);
2667 break;
2669 case CURTYPE_BTREE: {
2670 assert( pCx->uc.pCursor!=0 );
2671 sqlite3BtreeCloseCursor(pCx->uc.pCursor);
2672 break;
2674 #ifndef SQLITE_OMIT_VIRTUALTABLE
2675 case CURTYPE_VTAB: {
2676 sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur;
2677 const sqlite3_module *pModule = pVCur->pVtab->pModule;
2678 assert( pVCur->pVtab->nRef>0 );
2679 pVCur->pVtab->nRef--;
2680 pModule->xClose(pVCur);
2681 break;
2683 #endif
2688 ** Close all cursors in the current frame.
2690 static void closeCursorsInFrame(Vdbe *p){
2691 int i;
2692 for(i=0; i<p->nCursor; i++){
2693 VdbeCursor *pC = p->apCsr[i];
2694 if( pC ){
2695 sqlite3VdbeFreeCursorNN(p, pC);
2696 p->apCsr[i] = 0;
2702 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This
2703 ** is used, for example, when a trigger sub-program is halted to restore
2704 ** control to the main program.
2706 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){
2707 Vdbe *v = pFrame->v;
2708 closeCursorsInFrame(v);
2709 v->aOp = pFrame->aOp;
2710 v->nOp = pFrame->nOp;
2711 v->aMem = pFrame->aMem;
2712 v->nMem = pFrame->nMem;
2713 v->apCsr = pFrame->apCsr;
2714 v->nCursor = pFrame->nCursor;
2715 v->db->lastRowid = pFrame->lastRowid;
2716 v->nChange = pFrame->nChange;
2717 v->db->nChange = pFrame->nDbChange;
2718 sqlite3VdbeDeleteAuxData(v->db, &v->pAuxData, -1, 0);
2719 v->pAuxData = pFrame->pAuxData;
2720 pFrame->pAuxData = 0;
2721 return pFrame->pc;
2725 ** Close all cursors.
2727 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory
2728 ** cell array. This is necessary as the memory cell array may contain
2729 ** pointers to VdbeFrame objects, which may in turn contain pointers to
2730 ** open cursors.
2732 static void closeAllCursors(Vdbe *p){
2733 if( p->pFrame ){
2734 VdbeFrame *pFrame;
2735 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
2736 sqlite3VdbeFrameRestore(pFrame);
2737 p->pFrame = 0;
2738 p->nFrame = 0;
2740 assert( p->nFrame==0 );
2741 closeCursorsInFrame(p);
2742 releaseMemArray(p->aMem, p->nMem);
2743 while( p->pDelFrame ){
2744 VdbeFrame *pDel = p->pDelFrame;
2745 p->pDelFrame = pDel->pParent;
2746 sqlite3VdbeFrameDelete(pDel);
2749 /* Delete any auxdata allocations made by the VM */
2750 if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p->db, &p->pAuxData, -1, 0);
2751 assert( p->pAuxData==0 );
2755 ** Set the number of result columns that will be returned by this SQL
2756 ** statement. This is now set at compile time, rather than during
2757 ** execution of the vdbe program so that sqlite3_column_count() can
2758 ** be called on an SQL statement before sqlite3_step().
2760 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
2761 int n;
2762 sqlite3 *db = p->db;
2764 if( p->nResColumn ){
2765 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
2766 sqlite3DbFree(db, p->aColName);
2768 n = nResColumn*COLNAME_N;
2769 p->nResColumn = (u16)nResColumn;
2770 p->aColName = (Mem*)sqlite3DbMallocRawNN(db, sizeof(Mem)*n );
2771 if( p->aColName==0 ) return;
2772 initMemArray(p->aColName, n, db, MEM_Null);
2776 ** Set the name of the idx'th column to be returned by the SQL statement.
2777 ** zName must be a pointer to a nul terminated string.
2779 ** This call must be made after a call to sqlite3VdbeSetNumCols().
2781 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC
2782 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed
2783 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed.
2785 int sqlite3VdbeSetColName(
2786 Vdbe *p, /* Vdbe being configured */
2787 int idx, /* Index of column zName applies to */
2788 int var, /* One of the COLNAME_* constants */
2789 const char *zName, /* Pointer to buffer containing name */
2790 void (*xDel)(void*) /* Memory management strategy for zName */
2792 int rc;
2793 Mem *pColName;
2794 assert( idx<p->nResColumn );
2795 assert( var<COLNAME_N );
2796 if( p->db->mallocFailed ){
2797 assert( !zName || xDel!=SQLITE_DYNAMIC );
2798 return SQLITE_NOMEM_BKPT;
2800 assert( p->aColName!=0 );
2801 pColName = &(p->aColName[idx+var*p->nResColumn]);
2802 rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel);
2803 assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 );
2804 return rc;
2808 ** A read or write transaction may or may not be active on database handle
2809 ** db. If a transaction is active, commit it. If there is a
2810 ** write-transaction spanning more than one database file, this routine
2811 ** takes care of the super-journal trickery.
2813 static int vdbeCommit(sqlite3 *db, Vdbe *p){
2814 int i;
2815 int nTrans = 0; /* Number of databases with an active write-transaction
2816 ** that are candidates for a two-phase commit using a
2817 ** super-journal */
2818 int rc = SQLITE_OK;
2819 int needXcommit = 0;
2821 #ifdef SQLITE_OMIT_VIRTUALTABLE
2822 /* With this option, sqlite3VtabSync() is defined to be simply
2823 ** SQLITE_OK so p is not used.
2825 UNUSED_PARAMETER(p);
2826 #endif
2828 /* Before doing anything else, call the xSync() callback for any
2829 ** virtual module tables written in this transaction. This has to
2830 ** be done before determining whether a super-journal file is
2831 ** required, as an xSync() callback may add an attached database
2832 ** to the transaction.
2834 rc = sqlite3VtabSync(db, p);
2836 /* This loop determines (a) if the commit hook should be invoked and
2837 ** (b) how many database files have open write transactions, not
2838 ** including the temp database. (b) is important because if more than
2839 ** one database file has an open write transaction, a super-journal
2840 ** file is required for an atomic commit.
2842 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2843 Btree *pBt = db->aDb[i].pBt;
2844 if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){
2845 /* Whether or not a database might need a super-journal depends upon
2846 ** its journal mode (among other things). This matrix determines which
2847 ** journal modes use a super-journal and which do not */
2848 static const u8 aMJNeeded[] = {
2849 /* DELETE */ 1,
2850 /* PERSIST */ 1,
2851 /* OFF */ 0,
2852 /* TRUNCATE */ 1,
2853 /* MEMORY */ 0,
2854 /* WAL */ 0
2856 Pager *pPager; /* Pager associated with pBt */
2857 needXcommit = 1;
2858 sqlite3BtreeEnter(pBt);
2859 pPager = sqlite3BtreePager(pBt);
2860 if( db->aDb[i].safety_level!=PAGER_SYNCHRONOUS_OFF
2861 && aMJNeeded[sqlite3PagerGetJournalMode(pPager)]
2862 && sqlite3PagerIsMemdb(pPager)==0
2864 assert( i!=1 );
2865 nTrans++;
2867 rc = sqlite3PagerExclusiveLock(pPager);
2868 sqlite3BtreeLeave(pBt);
2871 if( rc!=SQLITE_OK ){
2872 return rc;
2875 /* If there are any write-transactions at all, invoke the commit hook */
2876 if( needXcommit && db->xCommitCallback ){
2877 rc = db->xCommitCallback(db->pCommitArg);
2878 if( rc ){
2879 return SQLITE_CONSTRAINT_COMMITHOOK;
2883 /* The simple case - no more than one database file (not counting the
2884 ** TEMP database) has a transaction active. There is no need for the
2885 ** super-journal.
2887 ** If the return value of sqlite3BtreeGetFilename() is a zero length
2888 ** string, it means the main database is :memory: or a temp file. In
2889 ** that case we do not support atomic multi-file commits, so use the
2890 ** simple case then too.
2892 if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt))
2893 || nTrans<=1
2895 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2896 Btree *pBt = db->aDb[i].pBt;
2897 if( pBt ){
2898 rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
2902 /* Do the commit only if all databases successfully complete phase 1.
2903 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
2904 ** IO error while deleting or truncating a journal file. It is unlikely,
2905 ** but could happen. In this case abandon processing and return the error.
2907 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2908 Btree *pBt = db->aDb[i].pBt;
2909 if( pBt ){
2910 rc = sqlite3BtreeCommitPhaseTwo(pBt, 0);
2913 if( rc==SQLITE_OK ){
2914 sqlite3VtabCommit(db);
2918 /* The complex case - There is a multi-file write-transaction active.
2919 ** This requires a super-journal file to ensure the transaction is
2920 ** committed atomically.
2922 #ifndef SQLITE_OMIT_DISKIO
2923 else{
2924 sqlite3_vfs *pVfs = db->pVfs;
2925 char *zSuper = 0; /* File-name for the super-journal */
2926 char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
2927 sqlite3_file *pSuperJrnl = 0;
2928 i64 offset = 0;
2929 int res;
2930 int retryCount = 0;
2931 int nMainFile;
2933 /* Select a super-journal file name */
2934 nMainFile = sqlite3Strlen30(zMainFile);
2935 zSuper = sqlite3MPrintf(db, "%.4c%s%.16c", 0,zMainFile,0);
2936 if( zSuper==0 ) return SQLITE_NOMEM_BKPT;
2937 zSuper += 4;
2938 do {
2939 u32 iRandom;
2940 if( retryCount ){
2941 if( retryCount>100 ){
2942 sqlite3_log(SQLITE_FULL, "MJ delete: %s", zSuper);
2943 sqlite3OsDelete(pVfs, zSuper, 0);
2944 break;
2945 }else if( retryCount==1 ){
2946 sqlite3_log(SQLITE_FULL, "MJ collide: %s", zSuper);
2949 retryCount++;
2950 sqlite3_randomness(sizeof(iRandom), &iRandom);
2951 sqlite3_snprintf(13, &zSuper[nMainFile], "-mj%06X9%02X",
2952 (iRandom>>8)&0xffffff, iRandom&0xff);
2953 /* The antipenultimate character of the super-journal name must
2954 ** be "9" to avoid name collisions when using 8+3 filenames. */
2955 assert( zSuper[sqlite3Strlen30(zSuper)-3]=='9' );
2956 sqlite3FileSuffix3(zMainFile, zSuper);
2957 rc = sqlite3OsAccess(pVfs, zSuper, SQLITE_ACCESS_EXISTS, &res);
2958 }while( rc==SQLITE_OK && res );
2959 if( rc==SQLITE_OK ){
2960 /* Open the super-journal. */
2961 rc = sqlite3OsOpenMalloc(pVfs, zSuper, &pSuperJrnl,
2962 SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
2963 SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_SUPER_JOURNAL, 0
2966 if( rc!=SQLITE_OK ){
2967 sqlite3DbFree(db, zSuper-4);
2968 return rc;
2971 /* Write the name of each database file in the transaction into the new
2972 ** super-journal file. If an error occurs at this point close
2973 ** and delete the super-journal file. All the individual journal files
2974 ** still have 'null' as the super-journal pointer, so they will roll
2975 ** back independently if a failure occurs.
2977 for(i=0; i<db->nDb; i++){
2978 Btree *pBt = db->aDb[i].pBt;
2979 if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){
2980 char const *zFile = sqlite3BtreeGetJournalname(pBt);
2981 if( zFile==0 ){
2982 continue; /* Ignore TEMP and :memory: databases */
2984 assert( zFile[0]!=0 );
2985 rc = sqlite3OsWrite(pSuperJrnl, zFile, sqlite3Strlen30(zFile)+1,offset);
2986 offset += sqlite3Strlen30(zFile)+1;
2987 if( rc!=SQLITE_OK ){
2988 sqlite3OsCloseFree(pSuperJrnl);
2989 sqlite3OsDelete(pVfs, zSuper, 0);
2990 sqlite3DbFree(db, zSuper-4);
2991 return rc;
2996 /* Sync the super-journal file. If the IOCAP_SEQUENTIAL device
2997 ** flag is set this is not required.
2999 if( 0==(sqlite3OsDeviceCharacteristics(pSuperJrnl)&SQLITE_IOCAP_SEQUENTIAL)
3000 && SQLITE_OK!=(rc = sqlite3OsSync(pSuperJrnl, SQLITE_SYNC_NORMAL))
3002 sqlite3OsCloseFree(pSuperJrnl);
3003 sqlite3OsDelete(pVfs, zSuper, 0);
3004 sqlite3DbFree(db, zSuper-4);
3005 return rc;
3008 /* Sync all the db files involved in the transaction. The same call
3009 ** sets the super-journal pointer in each individual journal. If
3010 ** an error occurs here, do not delete the super-journal file.
3012 ** If the error occurs during the first call to
3013 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
3014 ** super-journal file will be orphaned. But we cannot delete it,
3015 ** in case the super-journal file name was written into the journal
3016 ** file before the failure occurred.
3018 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
3019 Btree *pBt = db->aDb[i].pBt;
3020 if( pBt ){
3021 rc = sqlite3BtreeCommitPhaseOne(pBt, zSuper);
3024 sqlite3OsCloseFree(pSuperJrnl);
3025 assert( rc!=SQLITE_BUSY );
3026 if( rc!=SQLITE_OK ){
3027 sqlite3DbFree(db, zSuper-4);
3028 return rc;
3031 /* Delete the super-journal file. This commits the transaction. After
3032 ** doing this the directory is synced again before any individual
3033 ** transaction files are deleted.
3035 rc = sqlite3OsDelete(pVfs, zSuper, 1);
3036 sqlite3DbFree(db, zSuper-4);
3037 zSuper = 0;
3038 if( rc ){
3039 return rc;
3042 /* All files and directories have already been synced, so the following
3043 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
3044 ** deleting or truncating journals. If something goes wrong while
3045 ** this is happening we don't really care. The integrity of the
3046 ** transaction is already guaranteed, but some stray 'cold' journals
3047 ** may be lying around. Returning an error code won't help matters.
3049 disable_simulated_io_errors();
3050 sqlite3BeginBenignMalloc();
3051 for(i=0; i<db->nDb; i++){
3052 Btree *pBt = db->aDb[i].pBt;
3053 if( pBt ){
3054 sqlite3BtreeCommitPhaseTwo(pBt, 1);
3057 sqlite3EndBenignMalloc();
3058 enable_simulated_io_errors();
3060 sqlite3VtabCommit(db);
3062 #endif
3064 return rc;
3068 ** This routine checks that the sqlite3.nVdbeActive count variable
3069 ** matches the number of vdbe's in the list sqlite3.pVdbe that are
3070 ** currently active. An assertion fails if the two counts do not match.
3071 ** This is an internal self-check only - it is not an essential processing
3072 ** step.
3074 ** This is a no-op if NDEBUG is defined.
3076 #ifndef NDEBUG
3077 static void checkActiveVdbeCnt(sqlite3 *db){
3078 Vdbe *p;
3079 int cnt = 0;
3080 int nWrite = 0;
3081 int nRead = 0;
3082 p = db->pVdbe;
3083 while( p ){
3084 if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){
3085 cnt++;
3086 if( p->readOnly==0 ) nWrite++;
3087 if( p->bIsReader ) nRead++;
3089 p = p->pVNext;
3091 assert( cnt==db->nVdbeActive );
3092 assert( nWrite==db->nVdbeWrite );
3093 assert( nRead==db->nVdbeRead );
3095 #else
3096 #define checkActiveVdbeCnt(x)
3097 #endif
3100 ** If the Vdbe passed as the first argument opened a statement-transaction,
3101 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or
3102 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement
3103 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the
3104 ** statement transaction is committed.
3106 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned.
3107 ** Otherwise SQLITE_OK.
3109 static SQLITE_NOINLINE int vdbeCloseStatement(Vdbe *p, int eOp){
3110 sqlite3 *const db = p->db;
3111 int rc = SQLITE_OK;
3112 int i;
3113 const int iSavepoint = p->iStatement-1;
3115 assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE);
3116 assert( db->nStatement>0 );
3117 assert( p->iStatement==(db->nStatement+db->nSavepoint) );
3119 for(i=0; i<db->nDb; i++){
3120 int rc2 = SQLITE_OK;
3121 Btree *pBt = db->aDb[i].pBt;
3122 if( pBt ){
3123 if( eOp==SAVEPOINT_ROLLBACK ){
3124 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint);
3126 if( rc2==SQLITE_OK ){
3127 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint);
3129 if( rc==SQLITE_OK ){
3130 rc = rc2;
3134 db->nStatement--;
3135 p->iStatement = 0;
3137 if( rc==SQLITE_OK ){
3138 if( eOp==SAVEPOINT_ROLLBACK ){
3139 rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint);
3141 if( rc==SQLITE_OK ){
3142 rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint);
3146 /* If the statement transaction is being rolled back, also restore the
3147 ** database handles deferred constraint counter to the value it had when
3148 ** the statement transaction was opened. */
3149 if( eOp==SAVEPOINT_ROLLBACK ){
3150 db->nDeferredCons = p->nStmtDefCons;
3151 db->nDeferredImmCons = p->nStmtDefImmCons;
3153 return rc;
3155 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){
3156 if( p->db->nStatement && p->iStatement ){
3157 return vdbeCloseStatement(p, eOp);
3159 return SQLITE_OK;
3164 ** This function is called when a transaction opened by the database
3165 ** handle associated with the VM passed as an argument is about to be
3166 ** committed. If there are outstanding deferred foreign key constraint
3167 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
3169 ** If there are outstanding FK violations and this function returns
3170 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY
3171 ** and write an error message to it. Then return SQLITE_ERROR.
3173 #ifndef SQLITE_OMIT_FOREIGN_KEY
3174 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){
3175 sqlite3 *db = p->db;
3176 if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0)
3177 || (!deferred && p->nFkConstraint>0)
3179 p->rc = SQLITE_CONSTRAINT_FOREIGNKEY;
3180 p->errorAction = OE_Abort;
3181 sqlite3VdbeError(p, "FOREIGN KEY constraint failed");
3182 if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)==0 ) return SQLITE_ERROR;
3183 return SQLITE_CONSTRAINT_FOREIGNKEY;
3185 return SQLITE_OK;
3187 #endif
3190 ** This routine is called the when a VDBE tries to halt. If the VDBE
3191 ** has made changes and is in autocommit mode, then commit those
3192 ** changes. If a rollback is needed, then do the rollback.
3194 ** This routine is the only way to move the sqlite3eOpenState of a VM from
3195 ** SQLITE_STATE_RUN to SQLITE_STATE_HALT. It is harmless to
3196 ** call this on a VM that is in the SQLITE_STATE_HALT state.
3198 ** Return an error code. If the commit could not complete because of
3199 ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it
3200 ** means the close did not happen and needs to be repeated.
3202 int sqlite3VdbeHalt(Vdbe *p){
3203 int rc; /* Used to store transient return codes */
3204 sqlite3 *db = p->db;
3206 /* This function contains the logic that determines if a statement or
3207 ** transaction will be committed or rolled back as a result of the
3208 ** execution of this virtual machine.
3210 ** If any of the following errors occur:
3212 ** SQLITE_NOMEM
3213 ** SQLITE_IOERR
3214 ** SQLITE_FULL
3215 ** SQLITE_INTERRUPT
3217 ** Then the internal cache might have been left in an inconsistent
3218 ** state. We need to rollback the statement transaction, if there is
3219 ** one, or the complete transaction if there is no statement transaction.
3222 assert( p->eVdbeState==VDBE_RUN_STATE );
3223 if( db->mallocFailed ){
3224 p->rc = SQLITE_NOMEM_BKPT;
3226 closeAllCursors(p);
3227 checkActiveVdbeCnt(db);
3229 /* No commit or rollback needed if the program never started or if the
3230 ** SQL statement does not read or write a database file. */
3231 if( p->bIsReader ){
3232 int mrc; /* Primary error code from p->rc */
3233 int eStatementOp = 0;
3234 int isSpecialError; /* Set to true if a 'special' error */
3236 /* Lock all btrees used by the statement */
3237 sqlite3VdbeEnter(p);
3239 /* Check for one of the special errors */
3240 if( p->rc ){
3241 mrc = p->rc & 0xff;
3242 isSpecialError = mrc==SQLITE_NOMEM
3243 || mrc==SQLITE_IOERR
3244 || mrc==SQLITE_INTERRUPT
3245 || mrc==SQLITE_FULL;
3246 }else{
3247 mrc = isSpecialError = 0;
3249 if( isSpecialError ){
3250 /* If the query was read-only and the error code is SQLITE_INTERRUPT,
3251 ** no rollback is necessary. Otherwise, at least a savepoint
3252 ** transaction must be rolled back to restore the database to a
3253 ** consistent state.
3255 ** Even if the statement is read-only, it is important to perform
3256 ** a statement or transaction rollback operation. If the error
3257 ** occurred while writing to the journal, sub-journal or database
3258 ** file as part of an effort to free up cache space (see function
3259 ** pagerStress() in pager.c), the rollback is required to restore
3260 ** the pager to a consistent state.
3262 if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){
3263 if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){
3264 eStatementOp = SAVEPOINT_ROLLBACK;
3265 }else{
3266 /* We are forced to roll back the active transaction. Before doing
3267 ** so, abort any other statements this handle currently has active.
3269 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3270 sqlite3CloseSavepoints(db);
3271 db->autoCommit = 1;
3272 p->nChange = 0;
3277 /* Check for immediate foreign key violations. */
3278 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
3279 sqlite3VdbeCheckFk(p, 0);
3282 /* If the auto-commit flag is set and this is the only active writer
3283 ** VM, then we do either a commit or rollback of the current transaction.
3285 ** Note: This block also runs if one of the special errors handled
3286 ** above has occurred.
3288 if( !sqlite3VtabInSync(db)
3289 && db->autoCommit
3290 && db->nVdbeWrite==(p->readOnly==0)
3292 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
3293 rc = sqlite3VdbeCheckFk(p, 1);
3294 if( rc!=SQLITE_OK ){
3295 if( NEVER(p->readOnly) ){
3296 sqlite3VdbeLeave(p);
3297 return SQLITE_ERROR;
3299 rc = SQLITE_CONSTRAINT_FOREIGNKEY;
3300 }else if( db->flags & SQLITE_CorruptRdOnly ){
3301 rc = SQLITE_CORRUPT;
3302 db->flags &= ~SQLITE_CorruptRdOnly;
3303 }else{
3304 /* The auto-commit flag is true, the vdbe program was successful
3305 ** or hit an 'OR FAIL' constraint and there are no deferred foreign
3306 ** key constraints to hold up the transaction. This means a commit
3307 ** is required. */
3308 rc = vdbeCommit(db, p);
3310 if( rc==SQLITE_BUSY && p->readOnly ){
3311 sqlite3VdbeLeave(p);
3312 return SQLITE_BUSY;
3313 }else if( rc!=SQLITE_OK ){
3314 p->rc = rc;
3315 sqlite3RollbackAll(db, SQLITE_OK);
3316 p->nChange = 0;
3317 }else{
3318 db->nDeferredCons = 0;
3319 db->nDeferredImmCons = 0;
3320 db->flags &= ~(u64)SQLITE_DeferFKs;
3321 sqlite3CommitInternalChanges(db);
3323 }else{
3324 sqlite3RollbackAll(db, SQLITE_OK);
3325 p->nChange = 0;
3327 db->nStatement = 0;
3328 }else if( eStatementOp==0 ){
3329 if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
3330 eStatementOp = SAVEPOINT_RELEASE;
3331 }else if( p->errorAction==OE_Abort ){
3332 eStatementOp = SAVEPOINT_ROLLBACK;
3333 }else{
3334 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3335 sqlite3CloseSavepoints(db);
3336 db->autoCommit = 1;
3337 p->nChange = 0;
3341 /* If eStatementOp is non-zero, then a statement transaction needs to
3342 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to
3343 ** do so. If this operation returns an error, and the current statement
3344 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the
3345 ** current statement error code.
3347 if( eStatementOp ){
3348 rc = sqlite3VdbeCloseStatement(p, eStatementOp);
3349 if( rc ){
3350 if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){
3351 p->rc = rc;
3352 sqlite3DbFree(db, p->zErrMsg);
3353 p->zErrMsg = 0;
3355 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3356 sqlite3CloseSavepoints(db);
3357 db->autoCommit = 1;
3358 p->nChange = 0;
3362 /* If this was an INSERT, UPDATE or DELETE and no statement transaction
3363 ** has been rolled back, update the database connection change-counter.
3365 if( p->changeCntOn ){
3366 if( eStatementOp!=SAVEPOINT_ROLLBACK ){
3367 sqlite3VdbeSetChanges(db, p->nChange);
3368 }else{
3369 sqlite3VdbeSetChanges(db, 0);
3371 p->nChange = 0;
3374 /* Release the locks */
3375 sqlite3VdbeLeave(p);
3378 /* We have successfully halted and closed the VM. Record this fact. */
3379 db->nVdbeActive--;
3380 if( !p->readOnly ) db->nVdbeWrite--;
3381 if( p->bIsReader ) db->nVdbeRead--;
3382 assert( db->nVdbeActive>=db->nVdbeRead );
3383 assert( db->nVdbeRead>=db->nVdbeWrite );
3384 assert( db->nVdbeWrite>=0 );
3385 p->eVdbeState = VDBE_HALT_STATE;
3386 checkActiveVdbeCnt(db);
3387 if( db->mallocFailed ){
3388 p->rc = SQLITE_NOMEM_BKPT;
3391 /* If the auto-commit flag is set to true, then any locks that were held
3392 ** by connection db have now been released. Call sqlite3ConnectionUnlocked()
3393 ** to invoke any required unlock-notify callbacks.
3395 if( db->autoCommit ){
3396 sqlite3ConnectionUnlocked(db);
3399 assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 );
3400 return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK);
3405 ** Each VDBE holds the result of the most recent sqlite3_step() call
3406 ** in p->rc. This routine sets that result back to SQLITE_OK.
3408 void sqlite3VdbeResetStepResult(Vdbe *p){
3409 p->rc = SQLITE_OK;
3413 ** Copy the error code and error message belonging to the VDBE passed
3414 ** as the first argument to its database handle (so that they will be
3415 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()).
3417 ** This function does not clear the VDBE error code or message, just
3418 ** copies them to the database handle.
3420 int sqlite3VdbeTransferError(Vdbe *p){
3421 sqlite3 *db = p->db;
3422 int rc = p->rc;
3423 if( p->zErrMsg ){
3424 db->bBenignMalloc++;
3425 sqlite3BeginBenignMalloc();
3426 if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db);
3427 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
3428 sqlite3EndBenignMalloc();
3429 db->bBenignMalloc--;
3430 }else if( db->pErr ){
3431 sqlite3ValueSetNull(db->pErr);
3433 db->errCode = rc;
3434 db->errByteOffset = -1;
3435 return rc;
3438 #ifdef SQLITE_ENABLE_SQLLOG
3440 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run,
3441 ** invoke it.
3443 static void vdbeInvokeSqllog(Vdbe *v){
3444 if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){
3445 char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql);
3446 assert( v->db->init.busy==0 );
3447 if( zExpanded ){
3448 sqlite3GlobalConfig.xSqllog(
3449 sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1
3451 sqlite3DbFree(v->db, zExpanded);
3455 #else
3456 # define vdbeInvokeSqllog(x)
3457 #endif
3460 ** Clean up a VDBE after execution but do not delete the VDBE just yet.
3461 ** Write any error messages into *pzErrMsg. Return the result code.
3463 ** After this routine is run, the VDBE should be ready to be executed
3464 ** again.
3466 ** To look at it another way, this routine resets the state of the
3467 ** virtual machine from VDBE_RUN_STATE or VDBE_HALT_STATE back to
3468 ** VDBE_READY_STATE.
3470 int sqlite3VdbeReset(Vdbe *p){
3471 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
3472 int i;
3473 #endif
3475 sqlite3 *db;
3476 db = p->db;
3478 /* If the VM did not run to completion or if it encountered an
3479 ** error, then it might not have been halted properly. So halt
3480 ** it now.
3482 if( p->eVdbeState==VDBE_RUN_STATE ) sqlite3VdbeHalt(p);
3484 /* If the VDBE has been run even partially, then transfer the error code
3485 ** and error message from the VDBE into the main database structure. But
3486 ** if the VDBE has just been set to run but has not actually executed any
3487 ** instructions yet, leave the main database error information unchanged.
3489 if( p->pc>=0 ){
3490 vdbeInvokeSqllog(p);
3491 if( db->pErr || p->zErrMsg ){
3492 sqlite3VdbeTransferError(p);
3493 }else{
3494 db->errCode = p->rc;
3498 /* Reset register contents and reclaim error message memory.
3500 #ifdef SQLITE_DEBUG
3501 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and
3502 ** Vdbe.aMem[] arrays have already been cleaned up. */
3503 if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 );
3504 if( p->aMem ){
3505 for(i=0; i<p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined );
3507 #endif
3508 if( p->zErrMsg ){
3509 sqlite3DbFree(db, p->zErrMsg);
3510 p->zErrMsg = 0;
3512 p->pResultRow = 0;
3513 #ifdef SQLITE_DEBUG
3514 p->nWrite = 0;
3515 #endif
3517 /* Save profiling information from this VDBE run.
3519 #ifdef VDBE_PROFILE
3521 FILE *out = fopen("vdbe_profile.out", "a");
3522 if( out ){
3523 fprintf(out, "---- ");
3524 for(i=0; i<p->nOp; i++){
3525 fprintf(out, "%02x", p->aOp[i].opcode);
3527 fprintf(out, "\n");
3528 if( p->zSql ){
3529 char c, pc = 0;
3530 fprintf(out, "-- ");
3531 for(i=0; (c = p->zSql[i])!=0; i++){
3532 if( pc=='\n' ) fprintf(out, "-- ");
3533 putc(c, out);
3534 pc = c;
3536 if( pc!='\n' ) fprintf(out, "\n");
3538 for(i=0; i<p->nOp; i++){
3539 char zHdr[100];
3540 i64 cnt = p->aOp[i].nExec;
3541 i64 cycles = p->aOp[i].nCycle;
3542 sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ",
3543 cnt,
3544 cycles,
3545 cnt>0 ? cycles/cnt : 0
3547 fprintf(out, "%s", zHdr);
3548 sqlite3VdbePrintOp(out, i, &p->aOp[i]);
3550 fclose(out);
3553 #endif
3554 return p->rc & db->errMask;
3558 ** Clean up and delete a VDBE after execution. Return an integer which is
3559 ** the result code. Write any error message text into *pzErrMsg.
3561 int sqlite3VdbeFinalize(Vdbe *p){
3562 int rc = SQLITE_OK;
3563 assert( VDBE_RUN_STATE>VDBE_READY_STATE );
3564 assert( VDBE_HALT_STATE>VDBE_READY_STATE );
3565 assert( VDBE_INIT_STATE<VDBE_READY_STATE );
3566 if( p->eVdbeState>=VDBE_READY_STATE ){
3567 rc = sqlite3VdbeReset(p);
3568 assert( (rc & p->db->errMask)==rc );
3570 sqlite3VdbeDelete(p);
3571 return rc;
3575 ** If parameter iOp is less than zero, then invoke the destructor for
3576 ** all auxiliary data pointers currently cached by the VM passed as
3577 ** the first argument.
3579 ** Or, if iOp is greater than or equal to zero, then the destructor is
3580 ** only invoked for those auxiliary data pointers created by the user
3581 ** function invoked by the OP_Function opcode at instruction iOp of
3582 ** VM pVdbe, and only then if:
3584 ** * the associated function parameter is the 32nd or later (counting
3585 ** from left to right), or
3587 ** * the corresponding bit in argument mask is clear (where the first
3588 ** function parameter corresponds to bit 0 etc.).
3590 void sqlite3VdbeDeleteAuxData(sqlite3 *db, AuxData **pp, int iOp, int mask){
3591 while( *pp ){
3592 AuxData *pAux = *pp;
3593 if( (iOp<0)
3594 || (pAux->iAuxOp==iOp
3595 && pAux->iAuxArg>=0
3596 && (pAux->iAuxArg>31 || !(mask & MASKBIT32(pAux->iAuxArg))))
3598 testcase( pAux->iAuxArg==31 );
3599 if( pAux->xDeleteAux ){
3600 pAux->xDeleteAux(pAux->pAux);
3602 *pp = pAux->pNextAux;
3603 sqlite3DbFree(db, pAux);
3604 }else{
3605 pp= &pAux->pNextAux;
3611 ** Free all memory associated with the Vdbe passed as the second argument,
3612 ** except for object itself, which is preserved.
3614 ** The difference between this function and sqlite3VdbeDelete() is that
3615 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with
3616 ** the database connection and frees the object itself.
3618 static void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){
3619 SubProgram *pSub, *pNext;
3620 assert( db!=0 );
3621 assert( p->db==0 || p->db==db );
3622 if( p->aColName ){
3623 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
3624 sqlite3DbNNFreeNN(db, p->aColName);
3626 for(pSub=p->pProgram; pSub; pSub=pNext){
3627 pNext = pSub->pNext;
3628 vdbeFreeOpArray(db, pSub->aOp, pSub->nOp);
3629 sqlite3DbFree(db, pSub);
3631 if( p->eVdbeState!=VDBE_INIT_STATE ){
3632 releaseMemArray(p->aVar, p->nVar);
3633 if( p->pVList ) sqlite3DbNNFreeNN(db, p->pVList);
3634 if( p->pFree ) sqlite3DbNNFreeNN(db, p->pFree);
3636 vdbeFreeOpArray(db, p->aOp, p->nOp);
3637 if( p->zSql ) sqlite3DbNNFreeNN(db, p->zSql);
3638 #ifdef SQLITE_ENABLE_NORMALIZE
3639 sqlite3DbFree(db, p->zNormSql);
3641 DblquoteStr *pThis, *pNext;
3642 for(pThis=p->pDblStr; pThis; pThis=pNext){
3643 pNext = pThis->pNextStr;
3644 sqlite3DbFree(db, pThis);
3647 #endif
3648 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
3650 int i;
3651 for(i=0; i<p->nScan; i++){
3652 sqlite3DbFree(db, p->aScan[i].zName);
3654 sqlite3DbFree(db, p->aScan);
3656 #endif
3660 ** Delete an entire VDBE.
3662 void sqlite3VdbeDelete(Vdbe *p){
3663 sqlite3 *db;
3665 assert( p!=0 );
3666 db = p->db;
3667 assert( db!=0 );
3668 assert( sqlite3_mutex_held(db->mutex) );
3669 sqlite3VdbeClearObject(db, p);
3670 if( db->pnBytesFreed==0 ){
3671 assert( p->ppVPrev!=0 );
3672 *p->ppVPrev = p->pVNext;
3673 if( p->pVNext ){
3674 p->pVNext->ppVPrev = p->ppVPrev;
3677 sqlite3DbNNFreeNN(db, p);
3681 ** The cursor "p" has a pending seek operation that has not yet been
3682 ** carried out. Seek the cursor now. If an error occurs, return
3683 ** the appropriate error code.
3685 int SQLITE_NOINLINE sqlite3VdbeFinishMoveto(VdbeCursor *p){
3686 int res, rc;
3687 #ifdef SQLITE_TEST
3688 extern int sqlite3_search_count;
3689 #endif
3690 assert( p->deferredMoveto );
3691 assert( p->isTable );
3692 assert( p->eCurType==CURTYPE_BTREE );
3693 rc = sqlite3BtreeTableMoveto(p->uc.pCursor, p->movetoTarget, 0, &res);
3694 if( rc ) return rc;
3695 if( res!=0 ) return SQLITE_CORRUPT_BKPT;
3696 #ifdef SQLITE_TEST
3697 sqlite3_search_count++;
3698 #endif
3699 p->deferredMoveto = 0;
3700 p->cacheStatus = CACHE_STALE;
3701 return SQLITE_OK;
3705 ** Something has moved cursor "p" out of place. Maybe the row it was
3706 ** pointed to was deleted out from under it. Or maybe the btree was
3707 ** rebalanced. Whatever the cause, try to restore "p" to the place it
3708 ** is supposed to be pointing. If the row was deleted out from under the
3709 ** cursor, set the cursor to point to a NULL row.
3711 int SQLITE_NOINLINE sqlite3VdbeHandleMovedCursor(VdbeCursor *p){
3712 int isDifferentRow, rc;
3713 assert( p->eCurType==CURTYPE_BTREE );
3714 assert( p->uc.pCursor!=0 );
3715 assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) );
3716 rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow);
3717 p->cacheStatus = CACHE_STALE;
3718 if( isDifferentRow ) p->nullRow = 1;
3719 return rc;
3723 ** Check to ensure that the cursor is valid. Restore the cursor
3724 ** if need be. Return any I/O error from the restore operation.
3726 int sqlite3VdbeCursorRestore(VdbeCursor *p){
3727 assert( p->eCurType==CURTYPE_BTREE || IsNullCursor(p) );
3728 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){
3729 return sqlite3VdbeHandleMovedCursor(p);
3731 return SQLITE_OK;
3735 ** The following functions:
3737 ** sqlite3VdbeSerialType()
3738 ** sqlite3VdbeSerialTypeLen()
3739 ** sqlite3VdbeSerialLen()
3740 ** sqlite3VdbeSerialPut() <--- in-lined into OP_MakeRecord as of 2022-04-02
3741 ** sqlite3VdbeSerialGet()
3743 ** encapsulate the code that serializes values for storage in SQLite
3744 ** data and index records. Each serialized value consists of a
3745 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
3746 ** integer, stored as a varint.
3748 ** In an SQLite index record, the serial type is stored directly before
3749 ** the blob of data that it corresponds to. In a table record, all serial
3750 ** types are stored at the start of the record, and the blobs of data at
3751 ** the end. Hence these functions allow the caller to handle the
3752 ** serial-type and data blob separately.
3754 ** The following table describes the various storage classes for data:
3756 ** serial type bytes of data type
3757 ** -------------- --------------- ---------------
3758 ** 0 0 NULL
3759 ** 1 1 signed integer
3760 ** 2 2 signed integer
3761 ** 3 3 signed integer
3762 ** 4 4 signed integer
3763 ** 5 6 signed integer
3764 ** 6 8 signed integer
3765 ** 7 8 IEEE float
3766 ** 8 0 Integer constant 0
3767 ** 9 0 Integer constant 1
3768 ** 10,11 reserved for expansion
3769 ** N>=12 and even (N-12)/2 BLOB
3770 ** N>=13 and odd (N-13)/2 text
3772 ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions
3773 ** of SQLite will not understand those serial types.
3776 #if 0 /* Inlined into the OP_MakeRecord opcode */
3778 ** Return the serial-type for the value stored in pMem.
3780 ** This routine might convert a large MEM_IntReal value into MEM_Real.
3782 ** 2019-07-11: The primary user of this subroutine was the OP_MakeRecord
3783 ** opcode in the byte-code engine. But by moving this routine in-line, we
3784 ** can omit some redundant tests and make that opcode a lot faster. So
3785 ** this routine is now only used by the STAT3 logic and STAT3 support has
3786 ** ended. The code is kept here for historical reference only.
3788 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){
3789 int flags = pMem->flags;
3790 u32 n;
3792 assert( pLen!=0 );
3793 if( flags&MEM_Null ){
3794 *pLen = 0;
3795 return 0;
3797 if( flags&(MEM_Int|MEM_IntReal) ){
3798 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
3799 # define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
3800 i64 i = pMem->u.i;
3801 u64 u;
3802 testcase( flags & MEM_Int );
3803 testcase( flags & MEM_IntReal );
3804 if( i<0 ){
3805 u = ~i;
3806 }else{
3807 u = i;
3809 if( u<=127 ){
3810 if( (i&1)==i && file_format>=4 ){
3811 *pLen = 0;
3812 return 8+(u32)u;
3813 }else{
3814 *pLen = 1;
3815 return 1;
3818 if( u<=32767 ){ *pLen = 2; return 2; }
3819 if( u<=8388607 ){ *pLen = 3; return 3; }
3820 if( u<=2147483647 ){ *pLen = 4; return 4; }
3821 if( u<=MAX_6BYTE ){ *pLen = 6; return 5; }
3822 *pLen = 8;
3823 if( flags&MEM_IntReal ){
3824 /* If the value is IntReal and is going to take up 8 bytes to store
3825 ** as an integer, then we might as well make it an 8-byte floating
3826 ** point value */
3827 pMem->u.r = (double)pMem->u.i;
3828 pMem->flags &= ~MEM_IntReal;
3829 pMem->flags |= MEM_Real;
3830 return 7;
3832 return 6;
3834 if( flags&MEM_Real ){
3835 *pLen = 8;
3836 return 7;
3838 assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) );
3839 assert( pMem->n>=0 );
3840 n = (u32)pMem->n;
3841 if( flags & MEM_Zero ){
3842 n += pMem->u.nZero;
3844 *pLen = n;
3845 return ((n*2) + 12 + ((flags&MEM_Str)!=0));
3847 #endif /* inlined into OP_MakeRecord */
3850 ** The sizes for serial types less than 128
3852 const u8 sqlite3SmallTypeSizes[128] = {
3853 /* 0 1 2 3 4 5 6 7 8 9 */
3854 /* 0 */ 0, 1, 2, 3, 4, 6, 8, 8, 0, 0,
3855 /* 10 */ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3,
3856 /* 20 */ 4, 4, 5, 5, 6, 6, 7, 7, 8, 8,
3857 /* 30 */ 9, 9, 10, 10, 11, 11, 12, 12, 13, 13,
3858 /* 40 */ 14, 14, 15, 15, 16, 16, 17, 17, 18, 18,
3859 /* 50 */ 19, 19, 20, 20, 21, 21, 22, 22, 23, 23,
3860 /* 60 */ 24, 24, 25, 25, 26, 26, 27, 27, 28, 28,
3861 /* 70 */ 29, 29, 30, 30, 31, 31, 32, 32, 33, 33,
3862 /* 80 */ 34, 34, 35, 35, 36, 36, 37, 37, 38, 38,
3863 /* 90 */ 39, 39, 40, 40, 41, 41, 42, 42, 43, 43,
3864 /* 100 */ 44, 44, 45, 45, 46, 46, 47, 47, 48, 48,
3865 /* 110 */ 49, 49, 50, 50, 51, 51, 52, 52, 53, 53,
3866 /* 120 */ 54, 54, 55, 55, 56, 56, 57, 57
3870 ** Return the length of the data corresponding to the supplied serial-type.
3872 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){
3873 if( serial_type>=128 ){
3874 return (serial_type-12)/2;
3875 }else{
3876 assert( serial_type<12
3877 || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 );
3878 return sqlite3SmallTypeSizes[serial_type];
3881 u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){
3882 assert( serial_type<128 );
3883 return sqlite3SmallTypeSizes[serial_type];
3887 ** If we are on an architecture with mixed-endian floating
3888 ** points (ex: ARM7) then swap the lower 4 bytes with the
3889 ** upper 4 bytes. Return the result.
3891 ** For most architectures, this is a no-op.
3893 ** (later): It is reported to me that the mixed-endian problem
3894 ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems
3895 ** that early versions of GCC stored the two words of a 64-bit
3896 ** float in the wrong order. And that error has been propagated
3897 ** ever since. The blame is not necessarily with GCC, though.
3898 ** GCC might have just copying the problem from a prior compiler.
3899 ** I am also told that newer versions of GCC that follow a different
3900 ** ABI get the byte order right.
3902 ** Developers using SQLite on an ARM7 should compile and run their
3903 ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG
3904 ** enabled, some asserts below will ensure that the byte order of
3905 ** floating point values is correct.
3907 ** (2007-08-30) Frank van Vugt has studied this problem closely
3908 ** and has send his findings to the SQLite developers. Frank
3909 ** writes that some Linux kernels offer floating point hardware
3910 ** emulation that uses only 32-bit mantissas instead of a full
3911 ** 48-bits as required by the IEEE standard. (This is the
3912 ** CONFIG_FPE_FASTFPE option.) On such systems, floating point
3913 ** byte swapping becomes very complicated. To avoid problems,
3914 ** the necessary byte swapping is carried out using a 64-bit integer
3915 ** rather than a 64-bit float. Frank assures us that the code here
3916 ** works for him. We, the developers, have no way to independently
3917 ** verify this, but Frank seems to know what he is talking about
3918 ** so we trust him.
3920 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
3921 u64 sqlite3FloatSwap(u64 in){
3922 union {
3923 u64 r;
3924 u32 i[2];
3925 } u;
3926 u32 t;
3928 u.r = in;
3929 t = u.i[0];
3930 u.i[0] = u.i[1];
3931 u.i[1] = t;
3932 return u.r;
3934 #endif /* SQLITE_MIXED_ENDIAN_64BIT_FLOAT */
3937 /* Input "x" is a sequence of unsigned characters that represent a
3938 ** big-endian integer. Return the equivalent native integer
3940 #define ONE_BYTE_INT(x) ((i8)(x)[0])
3941 #define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1])
3942 #define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2])
3943 #define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
3944 #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
3947 ** Deserialize the data blob pointed to by buf as serial type serial_type
3948 ** and store the result in pMem.
3950 ** This function is implemented as two separate routines for performance.
3951 ** The few cases that require local variables are broken out into a separate
3952 ** routine so that in most cases the overhead of moving the stack pointer
3953 ** is avoided.
3955 static void serialGet(
3956 const unsigned char *buf, /* Buffer to deserialize from */
3957 u32 serial_type, /* Serial type to deserialize */
3958 Mem *pMem /* Memory cell to write value into */
3960 u64 x = FOUR_BYTE_UINT(buf);
3961 u32 y = FOUR_BYTE_UINT(buf+4);
3962 x = (x<<32) + y;
3963 if( serial_type==6 ){
3964 /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit
3965 ** twos-complement integer. */
3966 pMem->u.i = *(i64*)&x;
3967 pMem->flags = MEM_Int;
3968 testcase( pMem->u.i<0 );
3969 }else{
3970 /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit
3971 ** floating point number. */
3972 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
3973 /* Verify that integers and floating point values use the same
3974 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
3975 ** defined that 64-bit floating point values really are mixed
3976 ** endian.
3978 static const u64 t1 = ((u64)0x3ff00000)<<32;
3979 static const double r1 = 1.0;
3980 u64 t2 = t1;
3981 swapMixedEndianFloat(t2);
3982 assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
3983 #endif
3984 assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 );
3985 swapMixedEndianFloat(x);
3986 memcpy(&pMem->u.r, &x, sizeof(x));
3987 pMem->flags = IsNaN(x) ? MEM_Null : MEM_Real;
3990 void sqlite3VdbeSerialGet(
3991 const unsigned char *buf, /* Buffer to deserialize from */
3992 u32 serial_type, /* Serial type to deserialize */
3993 Mem *pMem /* Memory cell to write value into */
3995 switch( serial_type ){
3996 case 10: { /* Internal use only: NULL with virtual table
3997 ** UPDATE no-change flag set */
3998 pMem->flags = MEM_Null|MEM_Zero;
3999 pMem->n = 0;
4000 pMem->u.nZero = 0;
4001 return;
4003 case 11: /* Reserved for future use */
4004 case 0: { /* Null */
4005 /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */
4006 pMem->flags = MEM_Null;
4007 return;
4009 case 1: {
4010 /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement
4011 ** integer. */
4012 pMem->u.i = ONE_BYTE_INT(buf);
4013 pMem->flags = MEM_Int;
4014 testcase( pMem->u.i<0 );
4015 return;
4017 case 2: { /* 2-byte signed integer */
4018 /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit
4019 ** twos-complement integer. */
4020 pMem->u.i = TWO_BYTE_INT(buf);
4021 pMem->flags = MEM_Int;
4022 testcase( pMem->u.i<0 );
4023 return;
4025 case 3: { /* 3-byte signed integer */
4026 /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit
4027 ** twos-complement integer. */
4028 pMem->u.i = THREE_BYTE_INT(buf);
4029 pMem->flags = MEM_Int;
4030 testcase( pMem->u.i<0 );
4031 return;
4033 case 4: { /* 4-byte signed integer */
4034 /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit
4035 ** twos-complement integer. */
4036 pMem->u.i = FOUR_BYTE_INT(buf);
4037 #ifdef __HP_cc
4038 /* Work around a sign-extension bug in the HP compiler for HP/UX */
4039 if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL;
4040 #endif
4041 pMem->flags = MEM_Int;
4042 testcase( pMem->u.i<0 );
4043 return;
4045 case 5: { /* 6-byte signed integer */
4046 /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit
4047 ** twos-complement integer. */
4048 pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf);
4049 pMem->flags = MEM_Int;
4050 testcase( pMem->u.i<0 );
4051 return;
4053 case 6: /* 8-byte signed integer */
4054 case 7: { /* IEEE floating point */
4055 /* These use local variables, so do them in a separate routine
4056 ** to avoid having to move the frame pointer in the common case */
4057 serialGet(buf,serial_type,pMem);
4058 return;
4060 case 8: /* Integer 0 */
4061 case 9: { /* Integer 1 */
4062 /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */
4063 /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */
4064 pMem->u.i = serial_type-8;
4065 pMem->flags = MEM_Int;
4066 return;
4068 default: {
4069 /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in
4070 ** length.
4071 ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and
4072 ** (N-13)/2 bytes in length. */
4073 static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem };
4074 pMem->z = (char *)buf;
4075 pMem->n = (serial_type-12)/2;
4076 pMem->flags = aFlag[serial_type&1];
4077 return;
4080 return;
4083 ** This routine is used to allocate sufficient space for an UnpackedRecord
4084 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if
4085 ** the first argument is a pointer to KeyInfo structure pKeyInfo.
4087 ** The space is either allocated using sqlite3DbMallocRaw() or from within
4088 ** the unaligned buffer passed via the second and third arguments (presumably
4089 ** stack space). If the former, then *ppFree is set to a pointer that should
4090 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the
4091 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL
4092 ** before returning.
4094 ** If an OOM error occurs, NULL is returned.
4096 UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(
4097 KeyInfo *pKeyInfo /* Description of the record */
4099 UnpackedRecord *p; /* Unpacked record to return */
4100 int nByte; /* Number of bytes required for *p */
4101 nByte = ROUND8P(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nKeyField+1);
4102 p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte);
4103 if( !p ) return 0;
4104 p->aMem = (Mem*)&((char*)p)[ROUND8P(sizeof(UnpackedRecord))];
4105 assert( pKeyInfo->aSortFlags!=0 );
4106 p->pKeyInfo = pKeyInfo;
4107 p->nField = pKeyInfo->nKeyField + 1;
4108 return p;
4112 ** Given the nKey-byte encoding of a record in pKey[], populate the
4113 ** UnpackedRecord structure indicated by the fourth argument with the
4114 ** contents of the decoded record.
4116 void sqlite3VdbeRecordUnpack(
4117 KeyInfo *pKeyInfo, /* Information about the record format */
4118 int nKey, /* Size of the binary record */
4119 const void *pKey, /* The binary record */
4120 UnpackedRecord *p /* Populate this structure before returning. */
4122 const unsigned char *aKey = (const unsigned char *)pKey;
4123 u32 d;
4124 u32 idx; /* Offset in aKey[] to read from */
4125 u16 u; /* Unsigned loop counter */
4126 u32 szHdr;
4127 Mem *pMem = p->aMem;
4129 p->default_rc = 0;
4130 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
4131 idx = getVarint32(aKey, szHdr);
4132 d = szHdr;
4133 u = 0;
4134 while( idx<szHdr && d<=(u32)nKey ){
4135 u32 serial_type;
4137 idx += getVarint32(&aKey[idx], serial_type);
4138 pMem->enc = pKeyInfo->enc;
4139 pMem->db = pKeyInfo->db;
4140 /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
4141 pMem->szMalloc = 0;
4142 pMem->z = 0;
4143 sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
4144 d += sqlite3VdbeSerialTypeLen(serial_type);
4145 pMem++;
4146 if( (++u)>=p->nField ) break;
4148 if( d>(u32)nKey && u ){
4149 assert( CORRUPT_DB );
4150 /* In a corrupt record entry, the last pMem might have been set up using
4151 ** uninitialized memory. Overwrite its value with NULL, to prevent
4152 ** warnings from MSAN. */
4153 sqlite3VdbeMemSetNull(pMem-1);
4155 assert( u<=pKeyInfo->nKeyField + 1 );
4156 p->nField = u;
4159 #ifdef SQLITE_DEBUG
4161 ** This function compares two index or table record keys in the same way
4162 ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(),
4163 ** this function deserializes and compares values using the
4164 ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used
4165 ** in assert() statements to ensure that the optimized code in
4166 ** sqlite3VdbeRecordCompare() returns results with these two primitives.
4168 ** Return true if the result of comparison is equivalent to desiredResult.
4169 ** Return false if there is a disagreement.
4171 static int vdbeRecordCompareDebug(
4172 int nKey1, const void *pKey1, /* Left key */
4173 const UnpackedRecord *pPKey2, /* Right key */
4174 int desiredResult /* Correct answer */
4176 u32 d1; /* Offset into aKey[] of next data element */
4177 u32 idx1; /* Offset into aKey[] of next header element */
4178 u32 szHdr1; /* Number of bytes in header */
4179 int i = 0;
4180 int rc = 0;
4181 const unsigned char *aKey1 = (const unsigned char *)pKey1;
4182 KeyInfo *pKeyInfo;
4183 Mem mem1;
4185 pKeyInfo = pPKey2->pKeyInfo;
4186 if( pKeyInfo->db==0 ) return 1;
4187 mem1.enc = pKeyInfo->enc;
4188 mem1.db = pKeyInfo->db;
4189 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */
4190 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
4192 /* Compilers may complain that mem1.u.i is potentially uninitialized.
4193 ** We could initialize it, as shown here, to silence those complaints.
4194 ** But in fact, mem1.u.i will never actually be used uninitialized, and doing
4195 ** the unnecessary initialization has a measurable negative performance
4196 ** impact, since this routine is a very high runner. And so, we choose
4197 ** to ignore the compiler warnings and leave this variable uninitialized.
4199 /* mem1.u.i = 0; // not needed, here to silence compiler warning */
4201 idx1 = getVarint32(aKey1, szHdr1);
4202 if( szHdr1>98307 ) return SQLITE_CORRUPT;
4203 d1 = szHdr1;
4204 assert( pKeyInfo->nAllField>=pPKey2->nField || CORRUPT_DB );
4205 assert( pKeyInfo->aSortFlags!=0 );
4206 assert( pKeyInfo->nKeyField>0 );
4207 assert( idx1<=szHdr1 || CORRUPT_DB );
4209 u32 serial_type1;
4211 /* Read the serial types for the next element in each key. */
4212 idx1 += getVarint32( aKey1+idx1, serial_type1 );
4214 /* Verify that there is enough key space remaining to avoid
4215 ** a buffer overread. The "d1+serial_type1+2" subexpression will
4216 ** always be greater than or equal to the amount of required key space.
4217 ** Use that approximation to avoid the more expensive call to
4218 ** sqlite3VdbeSerialTypeLen() in the common case.
4220 if( d1+(u64)serial_type1+2>(u64)nKey1
4221 && d1+(u64)sqlite3VdbeSerialTypeLen(serial_type1)>(u64)nKey1
4223 break;
4226 /* Extract the values to be compared.
4228 sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
4229 d1 += sqlite3VdbeSerialTypeLen(serial_type1);
4231 /* Do the comparison
4233 rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i],
4234 pKeyInfo->nAllField>i ? pKeyInfo->aColl[i] : 0);
4235 if( rc!=0 ){
4236 assert( mem1.szMalloc==0 ); /* See comment below */
4237 if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL)
4238 && ((mem1.flags & MEM_Null) || (pPKey2->aMem[i].flags & MEM_Null))
4240 rc = -rc;
4242 if( pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC ){
4243 rc = -rc; /* Invert the result for DESC sort order. */
4245 goto debugCompareEnd;
4247 i++;
4248 }while( idx1<szHdr1 && i<pPKey2->nField );
4250 /* No memory allocation is ever used on mem1. Prove this using
4251 ** the following assert(). If the assert() fails, it indicates a
4252 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
4254 assert( mem1.szMalloc==0 );
4256 /* rc==0 here means that one of the keys ran out of fields and
4257 ** all the fields up to that point were equal. Return the default_rc
4258 ** value. */
4259 rc = pPKey2->default_rc;
4261 debugCompareEnd:
4262 if( desiredResult==0 && rc==0 ) return 1;
4263 if( desiredResult<0 && rc<0 ) return 1;
4264 if( desiredResult>0 && rc>0 ) return 1;
4265 if( CORRUPT_DB ) return 1;
4266 if( pKeyInfo->db->mallocFailed ) return 1;
4267 return 0;
4269 #endif
4271 #ifdef SQLITE_DEBUG
4273 ** Count the number of fields (a.k.a. columns) in the record given by
4274 ** pKey,nKey. The verify that this count is less than or equal to the
4275 ** limit given by pKeyInfo->nAllField.
4277 ** If this constraint is not satisfied, it means that the high-speed
4278 ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will
4279 ** not work correctly. If this assert() ever fires, it probably means
4280 ** that the KeyInfo.nKeyField or KeyInfo.nAllField values were computed
4281 ** incorrectly.
4283 static void vdbeAssertFieldCountWithinLimits(
4284 int nKey, const void *pKey, /* The record to verify */
4285 const KeyInfo *pKeyInfo /* Compare size with this KeyInfo */
4287 int nField = 0;
4288 u32 szHdr;
4289 u32 idx;
4290 u32 notUsed;
4291 const unsigned char *aKey = (const unsigned char*)pKey;
4293 if( CORRUPT_DB ) return;
4294 idx = getVarint32(aKey, szHdr);
4295 assert( nKey>=0 );
4296 assert( szHdr<=(u32)nKey );
4297 while( idx<szHdr ){
4298 idx += getVarint32(aKey+idx, notUsed);
4299 nField++;
4301 assert( nField <= pKeyInfo->nAllField );
4303 #else
4304 # define vdbeAssertFieldCountWithinLimits(A,B,C)
4305 #endif
4308 ** Both *pMem1 and *pMem2 contain string values. Compare the two values
4309 ** using the collation sequence pColl. As usual, return a negative , zero
4310 ** or positive value if *pMem1 is less than, equal to or greater than
4311 ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);".
4313 static int vdbeCompareMemString(
4314 const Mem *pMem1,
4315 const Mem *pMem2,
4316 const CollSeq *pColl,
4317 u8 *prcErr /* If an OOM occurs, set to SQLITE_NOMEM */
4319 if( pMem1->enc==pColl->enc ){
4320 /* The strings are already in the correct encoding. Call the
4321 ** comparison function directly */
4322 return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
4323 }else{
4324 int rc;
4325 const void *v1, *v2;
4326 Mem c1;
4327 Mem c2;
4328 sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null);
4329 sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null);
4330 sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
4331 sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
4332 v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
4333 v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
4334 if( (v1==0 || v2==0) ){
4335 if( prcErr ) *prcErr = SQLITE_NOMEM_BKPT;
4336 rc = 0;
4337 }else{
4338 rc = pColl->xCmp(pColl->pUser, c1.n, v1, c2.n, v2);
4340 sqlite3VdbeMemReleaseMalloc(&c1);
4341 sqlite3VdbeMemReleaseMalloc(&c2);
4342 return rc;
4347 ** The input pBlob is guaranteed to be a Blob that is not marked
4348 ** with MEM_Zero. Return true if it could be a zero-blob.
4350 static int isAllZero(const char *z, int n){
4351 int i;
4352 for(i=0; i<n; i++){
4353 if( z[i] ) return 0;
4355 return 1;
4359 ** Compare two blobs. Return negative, zero, or positive if the first
4360 ** is less than, equal to, or greater than the second, respectively.
4361 ** If one blob is a prefix of the other, then the shorter is the lessor.
4363 SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){
4364 int c;
4365 int n1 = pB1->n;
4366 int n2 = pB2->n;
4368 /* It is possible to have a Blob value that has some non-zero content
4369 ** followed by zero content. But that only comes up for Blobs formed
4370 ** by the OP_MakeRecord opcode, and such Blobs never get passed into
4371 ** sqlite3MemCompare(). */
4372 assert( (pB1->flags & MEM_Zero)==0 || n1==0 );
4373 assert( (pB2->flags & MEM_Zero)==0 || n2==0 );
4375 if( (pB1->flags|pB2->flags) & MEM_Zero ){
4376 if( pB1->flags & pB2->flags & MEM_Zero ){
4377 return pB1->u.nZero - pB2->u.nZero;
4378 }else if( pB1->flags & MEM_Zero ){
4379 if( !isAllZero(pB2->z, pB2->n) ) return -1;
4380 return pB1->u.nZero - n2;
4381 }else{
4382 if( !isAllZero(pB1->z, pB1->n) ) return +1;
4383 return n1 - pB2->u.nZero;
4386 c = memcmp(pB1->z, pB2->z, n1>n2 ? n2 : n1);
4387 if( c ) return c;
4388 return n1 - n2;
4392 ** Do a comparison between a 64-bit signed integer and a 64-bit floating-point
4393 ** number. Return negative, zero, or positive if the first (i64) is less than,
4394 ** equal to, or greater than the second (double).
4396 int sqlite3IntFloatCompare(i64 i, double r){
4397 if( sizeof(LONGDOUBLE_TYPE)>8 ){
4398 LONGDOUBLE_TYPE x = (LONGDOUBLE_TYPE)i;
4399 testcase( x<r );
4400 testcase( x>r );
4401 testcase( x==r );
4402 if( x<r ) return -1;
4403 if( x>r ) return +1; /*NO_TEST*/ /* work around bugs in gcov */
4404 return 0; /*NO_TEST*/ /* work around bugs in gcov */
4405 }else{
4406 i64 y;
4407 double s;
4408 if( r<-9223372036854775808.0 ) return +1;
4409 if( r>=9223372036854775808.0 ) return -1;
4410 y = (i64)r;
4411 if( i<y ) return -1;
4412 if( i>y ) return +1;
4413 s = (double)i;
4414 if( s<r ) return -1;
4415 if( s>r ) return +1;
4416 return 0;
4421 ** Compare the values contained by the two memory cells, returning
4422 ** negative, zero or positive if pMem1 is less than, equal to, or greater
4423 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers
4424 ** and reals) sorted numerically, followed by text ordered by the collating
4425 ** sequence pColl and finally blob's ordered by memcmp().
4427 ** Two NULL values are considered equal by this function.
4429 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
4430 int f1, f2;
4431 int combined_flags;
4433 f1 = pMem1->flags;
4434 f2 = pMem2->flags;
4435 combined_flags = f1|f2;
4436 assert( !sqlite3VdbeMemIsRowSet(pMem1) && !sqlite3VdbeMemIsRowSet(pMem2) );
4438 /* If one value is NULL, it is less than the other. If both values
4439 ** are NULL, return 0.
4441 if( combined_flags&MEM_Null ){
4442 return (f2&MEM_Null) - (f1&MEM_Null);
4445 /* At least one of the two values is a number
4447 if( combined_flags&(MEM_Int|MEM_Real|MEM_IntReal) ){
4448 testcase( combined_flags & MEM_Int );
4449 testcase( combined_flags & MEM_Real );
4450 testcase( combined_flags & MEM_IntReal );
4451 if( (f1 & f2 & (MEM_Int|MEM_IntReal))!=0 ){
4452 testcase( f1 & f2 & MEM_Int );
4453 testcase( f1 & f2 & MEM_IntReal );
4454 if( pMem1->u.i < pMem2->u.i ) return -1;
4455 if( pMem1->u.i > pMem2->u.i ) return +1;
4456 return 0;
4458 if( (f1 & f2 & MEM_Real)!=0 ){
4459 if( pMem1->u.r < pMem2->u.r ) return -1;
4460 if( pMem1->u.r > pMem2->u.r ) return +1;
4461 return 0;
4463 if( (f1&(MEM_Int|MEM_IntReal))!=0 ){
4464 testcase( f1 & MEM_Int );
4465 testcase( f1 & MEM_IntReal );
4466 if( (f2&MEM_Real)!=0 ){
4467 return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r);
4468 }else if( (f2&(MEM_Int|MEM_IntReal))!=0 ){
4469 if( pMem1->u.i < pMem2->u.i ) return -1;
4470 if( pMem1->u.i > pMem2->u.i ) return +1;
4471 return 0;
4472 }else{
4473 return -1;
4476 if( (f1&MEM_Real)!=0 ){
4477 if( (f2&(MEM_Int|MEM_IntReal))!=0 ){
4478 testcase( f2 & MEM_Int );
4479 testcase( f2 & MEM_IntReal );
4480 return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r);
4481 }else{
4482 return -1;
4485 return +1;
4488 /* If one value is a string and the other is a blob, the string is less.
4489 ** If both are strings, compare using the collating functions.
4491 if( combined_flags&MEM_Str ){
4492 if( (f1 & MEM_Str)==0 ){
4493 return 1;
4495 if( (f2 & MEM_Str)==0 ){
4496 return -1;
4499 assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed );
4500 assert( pMem1->enc==SQLITE_UTF8 ||
4501 pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );
4503 /* The collation sequence must be defined at this point, even if
4504 ** the user deletes the collation sequence after the vdbe program is
4505 ** compiled (this was not always the case).
4507 assert( !pColl || pColl->xCmp );
4509 if( pColl ){
4510 return vdbeCompareMemString(pMem1, pMem2, pColl, 0);
4512 /* If a NULL pointer was passed as the collate function, fall through
4513 ** to the blob case and use memcmp(). */
4516 /* Both values must be blobs. Compare using memcmp(). */
4517 return sqlite3BlobCompare(pMem1, pMem2);
4522 ** The first argument passed to this function is a serial-type that
4523 ** corresponds to an integer - all values between 1 and 9 inclusive
4524 ** except 7. The second points to a buffer containing an integer value
4525 ** serialized according to serial_type. This function deserializes
4526 ** and returns the value.
4528 static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){
4529 u32 y;
4530 assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) );
4531 switch( serial_type ){
4532 case 0:
4533 case 1:
4534 testcase( aKey[0]&0x80 );
4535 return ONE_BYTE_INT(aKey);
4536 case 2:
4537 testcase( aKey[0]&0x80 );
4538 return TWO_BYTE_INT(aKey);
4539 case 3:
4540 testcase( aKey[0]&0x80 );
4541 return THREE_BYTE_INT(aKey);
4542 case 4: {
4543 testcase( aKey[0]&0x80 );
4544 y = FOUR_BYTE_UINT(aKey);
4545 return (i64)*(int*)&y;
4547 case 5: {
4548 testcase( aKey[0]&0x80 );
4549 return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
4551 case 6: {
4552 u64 x = FOUR_BYTE_UINT(aKey);
4553 testcase( aKey[0]&0x80 );
4554 x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
4555 return (i64)*(i64*)&x;
4559 return (serial_type - 8);
4563 ** This function compares the two table rows or index records
4564 ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero
4565 ** or positive integer if key1 is less than, equal to or
4566 ** greater than key2. The {nKey1, pKey1} key must be a blob
4567 ** created by the OP_MakeRecord opcode of the VDBE. The pPKey2
4568 ** key must be a parsed key such as obtained from
4569 ** sqlite3VdbeParseRecord.
4571 ** If argument bSkip is non-zero, it is assumed that the caller has already
4572 ** determined that the first fields of the keys are equal.
4574 ** Key1 and Key2 do not have to contain the same number of fields. If all
4575 ** fields that appear in both keys are equal, then pPKey2->default_rc is
4576 ** returned.
4578 ** If database corruption is discovered, set pPKey2->errCode to
4579 ** SQLITE_CORRUPT and return 0. If an OOM error is encountered,
4580 ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the
4581 ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db).
4583 int sqlite3VdbeRecordCompareWithSkip(
4584 int nKey1, const void *pKey1, /* Left key */
4585 UnpackedRecord *pPKey2, /* Right key */
4586 int bSkip /* If true, skip the first field */
4588 u32 d1; /* Offset into aKey[] of next data element */
4589 int i; /* Index of next field to compare */
4590 u32 szHdr1; /* Size of record header in bytes */
4591 u32 idx1; /* Offset of first type in header */
4592 int rc = 0; /* Return value */
4593 Mem *pRhs = pPKey2->aMem; /* Next field of pPKey2 to compare */
4594 KeyInfo *pKeyInfo;
4595 const unsigned char *aKey1 = (const unsigned char *)pKey1;
4596 Mem mem1;
4598 /* If bSkip is true, then the caller has already determined that the first
4599 ** two elements in the keys are equal. Fix the various stack variables so
4600 ** that this routine begins comparing at the second field. */
4601 if( bSkip ){
4602 u32 s1 = aKey1[1];
4603 if( s1<0x80 ){
4604 idx1 = 2;
4605 }else{
4606 idx1 = 1 + sqlite3GetVarint32(&aKey1[1], &s1);
4608 szHdr1 = aKey1[0];
4609 d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1);
4610 i = 1;
4611 pRhs++;
4612 }else{
4613 if( (szHdr1 = aKey1[0])<0x80 ){
4614 idx1 = 1;
4615 }else{
4616 idx1 = sqlite3GetVarint32(aKey1, &szHdr1);
4618 d1 = szHdr1;
4619 i = 0;
4621 if( d1>(unsigned)nKey1 ){
4622 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4623 return 0; /* Corruption */
4626 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
4627 assert( pPKey2->pKeyInfo->nAllField>=pPKey2->nField
4628 || CORRUPT_DB );
4629 assert( pPKey2->pKeyInfo->aSortFlags!=0 );
4630 assert( pPKey2->pKeyInfo->nKeyField>0 );
4631 assert( idx1<=szHdr1 || CORRUPT_DB );
4632 while( 1 /*exit-by-break*/ ){
4633 u32 serial_type;
4635 /* RHS is an integer */
4636 if( pRhs->flags & (MEM_Int|MEM_IntReal) ){
4637 testcase( pRhs->flags & MEM_Int );
4638 testcase( pRhs->flags & MEM_IntReal );
4639 serial_type = aKey1[idx1];
4640 testcase( serial_type==12 );
4641 if( serial_type>=10 ){
4642 rc = serial_type==10 ? -1 : +1;
4643 }else if( serial_type==0 ){
4644 rc = -1;
4645 }else if( serial_type==7 ){
4646 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
4647 rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r);
4648 }else{
4649 i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]);
4650 i64 rhs = pRhs->u.i;
4651 if( lhs<rhs ){
4652 rc = -1;
4653 }else if( lhs>rhs ){
4654 rc = +1;
4659 /* RHS is real */
4660 else if( pRhs->flags & MEM_Real ){
4661 serial_type = aKey1[idx1];
4662 if( serial_type>=10 ){
4663 /* Serial types 12 or greater are strings and blobs (greater than
4664 ** numbers). Types 10 and 11 are currently "reserved for future
4665 ** use", so it doesn't really matter what the results of comparing
4666 ** them to numberic values are. */
4667 rc = serial_type==10 ? -1 : +1;
4668 }else if( serial_type==0 ){
4669 rc = -1;
4670 }else{
4671 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
4672 if( serial_type==7 ){
4673 if( mem1.u.r<pRhs->u.r ){
4674 rc = -1;
4675 }else if( mem1.u.r>pRhs->u.r ){
4676 rc = +1;
4678 }else{
4679 rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r);
4684 /* RHS is a string */
4685 else if( pRhs->flags & MEM_Str ){
4686 getVarint32NR(&aKey1[idx1], serial_type);
4687 testcase( serial_type==12 );
4688 if( serial_type<12 ){
4689 rc = -1;
4690 }else if( !(serial_type & 0x01) ){
4691 rc = +1;
4692 }else{
4693 mem1.n = (serial_type - 12) / 2;
4694 testcase( (d1+mem1.n)==(unsigned)nKey1 );
4695 testcase( (d1+mem1.n+1)==(unsigned)nKey1 );
4696 if( (d1+mem1.n) > (unsigned)nKey1
4697 || (pKeyInfo = pPKey2->pKeyInfo)->nAllField<=i
4699 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4700 return 0; /* Corruption */
4701 }else if( pKeyInfo->aColl[i] ){
4702 mem1.enc = pKeyInfo->enc;
4703 mem1.db = pKeyInfo->db;
4704 mem1.flags = MEM_Str;
4705 mem1.z = (char*)&aKey1[d1];
4706 rc = vdbeCompareMemString(
4707 &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode
4709 }else{
4710 int nCmp = MIN(mem1.n, pRhs->n);
4711 rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
4712 if( rc==0 ) rc = mem1.n - pRhs->n;
4717 /* RHS is a blob */
4718 else if( pRhs->flags & MEM_Blob ){
4719 assert( (pRhs->flags & MEM_Zero)==0 || pRhs->n==0 );
4720 getVarint32NR(&aKey1[idx1], serial_type);
4721 testcase( serial_type==12 );
4722 if( serial_type<12 || (serial_type & 0x01) ){
4723 rc = -1;
4724 }else{
4725 int nStr = (serial_type - 12) / 2;
4726 testcase( (d1+nStr)==(unsigned)nKey1 );
4727 testcase( (d1+nStr+1)==(unsigned)nKey1 );
4728 if( (d1+nStr) > (unsigned)nKey1 ){
4729 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4730 return 0; /* Corruption */
4731 }else if( pRhs->flags & MEM_Zero ){
4732 if( !isAllZero((const char*)&aKey1[d1],nStr) ){
4733 rc = 1;
4734 }else{
4735 rc = nStr - pRhs->u.nZero;
4737 }else{
4738 int nCmp = MIN(nStr, pRhs->n);
4739 rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
4740 if( rc==0 ) rc = nStr - pRhs->n;
4745 /* RHS is null */
4746 else{
4747 serial_type = aKey1[idx1];
4748 rc = (serial_type!=0 && serial_type!=10);
4751 if( rc!=0 ){
4752 int sortFlags = pPKey2->pKeyInfo->aSortFlags[i];
4753 if( sortFlags ){
4754 if( (sortFlags & KEYINFO_ORDER_BIGNULL)==0
4755 || ((sortFlags & KEYINFO_ORDER_DESC)
4756 !=(serial_type==0 || (pRhs->flags&MEM_Null)))
4758 rc = -rc;
4761 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) );
4762 assert( mem1.szMalloc==0 ); /* See comment below */
4763 return rc;
4766 i++;
4767 if( i==pPKey2->nField ) break;
4768 pRhs++;
4769 d1 += sqlite3VdbeSerialTypeLen(serial_type);
4770 if( d1>(unsigned)nKey1 ) break;
4771 idx1 += sqlite3VarintLen(serial_type);
4772 if( idx1>=(unsigned)szHdr1 ){
4773 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4774 return 0; /* Corrupt index */
4778 /* No memory allocation is ever used on mem1. Prove this using
4779 ** the following assert(). If the assert() fails, it indicates a
4780 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */
4781 assert( mem1.szMalloc==0 );
4783 /* rc==0 here means that one or both of the keys ran out of fields and
4784 ** all the fields up to that point were equal. Return the default_rc
4785 ** value. */
4786 assert( CORRUPT_DB
4787 || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc)
4788 || pPKey2->pKeyInfo->db->mallocFailed
4790 pPKey2->eqSeen = 1;
4791 return pPKey2->default_rc;
4793 int sqlite3VdbeRecordCompare(
4794 int nKey1, const void *pKey1, /* Left key */
4795 UnpackedRecord *pPKey2 /* Right key */
4797 return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0);
4802 ** This function is an optimized version of sqlite3VdbeRecordCompare()
4803 ** that (a) the first field of pPKey2 is an integer, and (b) the
4804 ** size-of-header varint at the start of (pKey1/nKey1) fits in a single
4805 ** byte (i.e. is less than 128).
4807 ** To avoid concerns about buffer overreads, this routine is only used
4808 ** on schemas where the maximum valid header size is 63 bytes or less.
4810 static int vdbeRecordCompareInt(
4811 int nKey1, const void *pKey1, /* Left key */
4812 UnpackedRecord *pPKey2 /* Right key */
4814 const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F];
4815 int serial_type = ((const u8*)pKey1)[1];
4816 int res;
4817 u32 y;
4818 u64 x;
4819 i64 v;
4820 i64 lhs;
4822 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
4823 assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB );
4824 switch( serial_type ){
4825 case 1: { /* 1-byte signed integer */
4826 lhs = ONE_BYTE_INT(aKey);
4827 testcase( lhs<0 );
4828 break;
4830 case 2: { /* 2-byte signed integer */
4831 lhs = TWO_BYTE_INT(aKey);
4832 testcase( lhs<0 );
4833 break;
4835 case 3: { /* 3-byte signed integer */
4836 lhs = THREE_BYTE_INT(aKey);
4837 testcase( lhs<0 );
4838 break;
4840 case 4: { /* 4-byte signed integer */
4841 y = FOUR_BYTE_UINT(aKey);
4842 lhs = (i64)*(int*)&y;
4843 testcase( lhs<0 );
4844 break;
4846 case 5: { /* 6-byte signed integer */
4847 lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
4848 testcase( lhs<0 );
4849 break;
4851 case 6: { /* 8-byte signed integer */
4852 x = FOUR_BYTE_UINT(aKey);
4853 x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
4854 lhs = *(i64*)&x;
4855 testcase( lhs<0 );
4856 break;
4858 case 8:
4859 lhs = 0;
4860 break;
4861 case 9:
4862 lhs = 1;
4863 break;
4865 /* This case could be removed without changing the results of running
4866 ** this code. Including it causes gcc to generate a faster switch
4867 ** statement (since the range of switch targets now starts at zero and
4868 ** is contiguous) but does not cause any duplicate code to be generated
4869 ** (as gcc is clever enough to combine the two like cases). Other
4870 ** compilers might be similar. */
4871 case 0: case 7:
4872 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
4874 default:
4875 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
4878 assert( pPKey2->u.i == pPKey2->aMem[0].u.i );
4879 v = pPKey2->u.i;
4880 if( v>lhs ){
4881 res = pPKey2->r1;
4882 }else if( v<lhs ){
4883 res = pPKey2->r2;
4884 }else if( pPKey2->nField>1 ){
4885 /* The first fields of the two keys are equal. Compare the trailing
4886 ** fields. */
4887 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
4888 }else{
4889 /* The first fields of the two keys are equal and there are no trailing
4890 ** fields. Return pPKey2->default_rc in this case. */
4891 res = pPKey2->default_rc;
4892 pPKey2->eqSeen = 1;
4895 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) );
4896 return res;
4900 ** This function is an optimized version of sqlite3VdbeRecordCompare()
4901 ** that (a) the first field of pPKey2 is a string, that (b) the first field
4902 ** uses the collation sequence BINARY and (c) that the size-of-header varint
4903 ** at the start of (pKey1/nKey1) fits in a single byte.
4905 static int vdbeRecordCompareString(
4906 int nKey1, const void *pKey1, /* Left key */
4907 UnpackedRecord *pPKey2 /* Right key */
4909 const u8 *aKey1 = (const u8*)pKey1;
4910 int serial_type;
4911 int res;
4913 assert( pPKey2->aMem[0].flags & MEM_Str );
4914 assert( pPKey2->aMem[0].n == pPKey2->n );
4915 assert( pPKey2->aMem[0].z == pPKey2->u.z );
4916 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
4917 serial_type = (signed char)(aKey1[1]);
4919 vrcs_restart:
4920 if( serial_type<12 ){
4921 if( serial_type<0 ){
4922 sqlite3GetVarint32(&aKey1[1], (u32*)&serial_type);
4923 if( serial_type>=12 ) goto vrcs_restart;
4924 assert( CORRUPT_DB );
4926 res = pPKey2->r1; /* (pKey1/nKey1) is a number or a null */
4927 }else if( !(serial_type & 0x01) ){
4928 res = pPKey2->r2; /* (pKey1/nKey1) is a blob */
4929 }else{
4930 int nCmp;
4931 int nStr;
4932 int szHdr = aKey1[0];
4934 nStr = (serial_type-12) / 2;
4935 if( (szHdr + nStr) > nKey1 ){
4936 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4937 return 0; /* Corruption */
4939 nCmp = MIN( pPKey2->n, nStr );
4940 res = memcmp(&aKey1[szHdr], pPKey2->u.z, nCmp);
4942 if( res>0 ){
4943 res = pPKey2->r2;
4944 }else if( res<0 ){
4945 res = pPKey2->r1;
4946 }else{
4947 res = nStr - pPKey2->n;
4948 if( res==0 ){
4949 if( pPKey2->nField>1 ){
4950 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
4951 }else{
4952 res = pPKey2->default_rc;
4953 pPKey2->eqSeen = 1;
4955 }else if( res>0 ){
4956 res = pPKey2->r2;
4957 }else{
4958 res = pPKey2->r1;
4963 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res)
4964 || CORRUPT_DB
4965 || pPKey2->pKeyInfo->db->mallocFailed
4967 return res;
4971 ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function
4972 ** suitable for comparing serialized records to the unpacked record passed
4973 ** as the only argument.
4975 RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){
4976 /* varintRecordCompareInt() and varintRecordCompareString() both assume
4977 ** that the size-of-header varint that occurs at the start of each record
4978 ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt()
4979 ** also assumes that it is safe to overread a buffer by at least the
4980 ** maximum possible legal header size plus 8 bytes. Because there is
4981 ** guaranteed to be at least 74 (but not 136) bytes of padding following each
4982 ** buffer passed to varintRecordCompareInt() this makes it convenient to
4983 ** limit the size of the header to 64 bytes in cases where the first field
4984 ** is an integer.
4986 ** The easiest way to enforce this limit is to consider only records with
4987 ** 13 fields or less. If the first field is an integer, the maximum legal
4988 ** header size is (12*5 + 1 + 1) bytes. */
4989 if( p->pKeyInfo->nAllField<=13 ){
4990 int flags = p->aMem[0].flags;
4991 if( p->pKeyInfo->aSortFlags[0] ){
4992 if( p->pKeyInfo->aSortFlags[0] & KEYINFO_ORDER_BIGNULL ){
4993 return sqlite3VdbeRecordCompare;
4995 p->r1 = 1;
4996 p->r2 = -1;
4997 }else{
4998 p->r1 = -1;
4999 p->r2 = 1;
5001 if( (flags & MEM_Int) ){
5002 p->u.i = p->aMem[0].u.i;
5003 return vdbeRecordCompareInt;
5005 testcase( flags & MEM_Real );
5006 testcase( flags & MEM_Null );
5007 testcase( flags & MEM_Blob );
5008 if( (flags & (MEM_Real|MEM_IntReal|MEM_Null|MEM_Blob))==0
5009 && p->pKeyInfo->aColl[0]==0
5011 assert( flags & MEM_Str );
5012 p->u.z = p->aMem[0].z;
5013 p->n = p->aMem[0].n;
5014 return vdbeRecordCompareString;
5018 return sqlite3VdbeRecordCompare;
5022 ** pCur points at an index entry created using the OP_MakeRecord opcode.
5023 ** Read the rowid (the last field in the record) and store it in *rowid.
5024 ** Return SQLITE_OK if everything works, or an error code otherwise.
5026 ** pCur might be pointing to text obtained from a corrupt database file.
5027 ** So the content cannot be trusted. Do appropriate checks on the content.
5029 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){
5030 i64 nCellKey = 0;
5031 int rc;
5032 u32 szHdr; /* Size of the header */
5033 u32 typeRowid; /* Serial type of the rowid */
5034 u32 lenRowid; /* Size of the rowid */
5035 Mem m, v;
5037 /* Get the size of the index entry. Only indices entries of less
5038 ** than 2GiB are support - anything large must be database corruption.
5039 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
5040 ** this code can safely assume that nCellKey is 32-bits
5042 assert( sqlite3BtreeCursorIsValid(pCur) );
5043 nCellKey = sqlite3BtreePayloadSize(pCur);
5044 assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey );
5046 /* Read in the complete content of the index entry */
5047 sqlite3VdbeMemInit(&m, db, 0);
5048 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m);
5049 if( rc ){
5050 return rc;
5053 /* The index entry must begin with a header size */
5054 getVarint32NR((u8*)m.z, szHdr);
5055 testcase( szHdr==3 );
5056 testcase( szHdr==(u32)m.n );
5057 testcase( szHdr>0x7fffffff );
5058 assert( m.n>=0 );
5059 if( unlikely(szHdr<3 || szHdr>(unsigned)m.n) ){
5060 goto idx_rowid_corruption;
5063 /* The last field of the index should be an integer - the ROWID.
5064 ** Verify that the last entry really is an integer. */
5065 getVarint32NR((u8*)&m.z[szHdr-1], typeRowid);
5066 testcase( typeRowid==1 );
5067 testcase( typeRowid==2 );
5068 testcase( typeRowid==3 );
5069 testcase( typeRowid==4 );
5070 testcase( typeRowid==5 );
5071 testcase( typeRowid==6 );
5072 testcase( typeRowid==8 );
5073 testcase( typeRowid==9 );
5074 if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){
5075 goto idx_rowid_corruption;
5077 lenRowid = sqlite3SmallTypeSizes[typeRowid];
5078 testcase( (u32)m.n==szHdr+lenRowid );
5079 if( unlikely((u32)m.n<szHdr+lenRowid) ){
5080 goto idx_rowid_corruption;
5083 /* Fetch the integer off the end of the index record */
5084 sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
5085 *rowid = v.u.i;
5086 sqlite3VdbeMemReleaseMalloc(&m);
5087 return SQLITE_OK;
5089 /* Jump here if database corruption is detected after m has been
5090 ** allocated. Free the m object and return SQLITE_CORRUPT. */
5091 idx_rowid_corruption:
5092 testcase( m.szMalloc!=0 );
5093 sqlite3VdbeMemReleaseMalloc(&m);
5094 return SQLITE_CORRUPT_BKPT;
5098 ** Compare the key of the index entry that cursor pC is pointing to against
5099 ** the key string in pUnpacked. Write into *pRes a number
5100 ** that is negative, zero, or positive if pC is less than, equal to,
5101 ** or greater than pUnpacked. Return SQLITE_OK on success.
5103 ** pUnpacked is either created without a rowid or is truncated so that it
5104 ** omits the rowid at the end. The rowid at the end of the index entry
5105 ** is ignored as well. Hence, this routine only compares the prefixes
5106 ** of the keys prior to the final rowid, not the entire key.
5108 int sqlite3VdbeIdxKeyCompare(
5109 sqlite3 *db, /* Database connection */
5110 VdbeCursor *pC, /* The cursor to compare against */
5111 UnpackedRecord *pUnpacked, /* Unpacked version of key */
5112 int *res /* Write the comparison result here */
5114 i64 nCellKey = 0;
5115 int rc;
5116 BtCursor *pCur;
5117 Mem m;
5119 assert( pC->eCurType==CURTYPE_BTREE );
5120 pCur = pC->uc.pCursor;
5121 assert( sqlite3BtreeCursorIsValid(pCur) );
5122 nCellKey = sqlite3BtreePayloadSize(pCur);
5123 /* nCellKey will always be between 0 and 0xffffffff because of the way
5124 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
5125 if( nCellKey<=0 || nCellKey>0x7fffffff ){
5126 *res = 0;
5127 return SQLITE_CORRUPT_BKPT;
5129 sqlite3VdbeMemInit(&m, db, 0);
5130 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m);
5131 if( rc ){
5132 return rc;
5134 *res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, pUnpacked, 0);
5135 sqlite3VdbeMemReleaseMalloc(&m);
5136 return SQLITE_OK;
5140 ** This routine sets the value to be returned by subsequent calls to
5141 ** sqlite3_changes() on the database handle 'db'.
5143 void sqlite3VdbeSetChanges(sqlite3 *db, i64 nChange){
5144 assert( sqlite3_mutex_held(db->mutex) );
5145 db->nChange = nChange;
5146 db->nTotalChange += nChange;
5150 ** Set a flag in the vdbe to update the change counter when it is finalised
5151 ** or reset.
5153 void sqlite3VdbeCountChanges(Vdbe *v){
5154 v->changeCntOn = 1;
5158 ** Mark every prepared statement associated with a database connection
5159 ** as expired.
5161 ** An expired statement means that recompilation of the statement is
5162 ** recommend. Statements expire when things happen that make their
5163 ** programs obsolete. Removing user-defined functions or collating
5164 ** sequences, or changing an authorization function are the types of
5165 ** things that make prepared statements obsolete.
5167 ** If iCode is 1, then expiration is advisory. The statement should
5168 ** be reprepared before being restarted, but if it is already running
5169 ** it is allowed to run to completion.
5171 ** Internally, this function just sets the Vdbe.expired flag on all
5172 ** prepared statements. The flag is set to 1 for an immediate expiration
5173 ** and set to 2 for an advisory expiration.
5175 void sqlite3ExpirePreparedStatements(sqlite3 *db, int iCode){
5176 Vdbe *p;
5177 for(p = db->pVdbe; p; p=p->pVNext){
5178 p->expired = iCode+1;
5183 ** Return the database associated with the Vdbe.
5185 sqlite3 *sqlite3VdbeDb(Vdbe *v){
5186 return v->db;
5190 ** Return the SQLITE_PREPARE flags for a Vdbe.
5192 u8 sqlite3VdbePrepareFlags(Vdbe *v){
5193 return v->prepFlags;
5197 ** Return a pointer to an sqlite3_value structure containing the value bound
5198 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return
5199 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_*
5200 ** constants) to the value before returning it.
5202 ** The returned value must be freed by the caller using sqlite3ValueFree().
5204 sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){
5205 assert( iVar>0 );
5206 if( v ){
5207 Mem *pMem = &v->aVar[iVar-1];
5208 assert( (v->db->flags & SQLITE_EnableQPSG)==0 );
5209 if( 0==(pMem->flags & MEM_Null) ){
5210 sqlite3_value *pRet = sqlite3ValueNew(v->db);
5211 if( pRet ){
5212 sqlite3VdbeMemCopy((Mem *)pRet, pMem);
5213 sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8);
5215 return pRet;
5218 return 0;
5222 ** Configure SQL variable iVar so that binding a new value to it signals
5223 ** to sqlite3_reoptimize() that re-preparing the statement may result
5224 ** in a better query plan.
5226 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){
5227 assert( iVar>0 );
5228 assert( (v->db->flags & SQLITE_EnableQPSG)==0 );
5229 if( iVar>=32 ){
5230 v->expmask |= 0x80000000;
5231 }else{
5232 v->expmask |= ((u32)1 << (iVar-1));
5237 ** Cause a function to throw an error if it was call from OP_PureFunc
5238 ** rather than OP_Function.
5240 ** OP_PureFunc means that the function must be deterministic, and should
5241 ** throw an error if it is given inputs that would make it non-deterministic.
5242 ** This routine is invoked by date/time functions that use non-deterministic
5243 ** features such as 'now'.
5245 int sqlite3NotPureFunc(sqlite3_context *pCtx){
5246 const VdbeOp *pOp;
5247 #ifdef SQLITE_ENABLE_STAT4
5248 if( pCtx->pVdbe==0 ) return 1;
5249 #endif
5250 pOp = pCtx->pVdbe->aOp + pCtx->iOp;
5251 if( pOp->opcode==OP_PureFunc ){
5252 const char *zContext;
5253 char *zMsg;
5254 if( pOp->p5 & NC_IsCheck ){
5255 zContext = "a CHECK constraint";
5256 }else if( pOp->p5 & NC_GenCol ){
5257 zContext = "a generated column";
5258 }else{
5259 zContext = "an index";
5261 zMsg = sqlite3_mprintf("non-deterministic use of %s() in %s",
5262 pCtx->pFunc->zName, zContext);
5263 sqlite3_result_error(pCtx, zMsg, -1);
5264 sqlite3_free(zMsg);
5265 return 0;
5267 return 1;
5270 #ifndef SQLITE_OMIT_VIRTUALTABLE
5272 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
5273 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
5274 ** in memory obtained from sqlite3DbMalloc).
5276 void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){
5277 if( pVtab->zErrMsg ){
5278 sqlite3 *db = p->db;
5279 sqlite3DbFree(db, p->zErrMsg);
5280 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
5281 sqlite3_free(pVtab->zErrMsg);
5282 pVtab->zErrMsg = 0;
5285 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5287 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5290 ** If the second argument is not NULL, release any allocations associated
5291 ** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord
5292 ** structure itself, using sqlite3DbFree().
5294 ** This function is used to free UnpackedRecord structures allocated by
5295 ** the vdbeUnpackRecord() function found in vdbeapi.c.
5297 static void vdbeFreeUnpacked(sqlite3 *db, int nField, UnpackedRecord *p){
5298 assert( db!=0 );
5299 if( p ){
5300 int i;
5301 for(i=0; i<nField; i++){
5302 Mem *pMem = &p->aMem[i];
5303 if( pMem->zMalloc ) sqlite3VdbeMemReleaseMalloc(pMem);
5305 sqlite3DbNNFreeNN(db, p);
5308 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
5310 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5312 ** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call,
5313 ** then cursor passed as the second argument should point to the row about
5314 ** to be update or deleted. If the application calls sqlite3_preupdate_old(),
5315 ** the required value will be read from the row the cursor points to.
5317 void sqlite3VdbePreUpdateHook(
5318 Vdbe *v, /* Vdbe pre-update hook is invoked by */
5319 VdbeCursor *pCsr, /* Cursor to grab old.* values from */
5320 int op, /* SQLITE_INSERT, UPDATE or DELETE */
5321 const char *zDb, /* Database name */
5322 Table *pTab, /* Modified table */
5323 i64 iKey1, /* Initial key value */
5324 int iReg, /* Register for new.* record */
5325 int iBlobWrite
5327 sqlite3 *db = v->db;
5328 i64 iKey2;
5329 PreUpdate preupdate;
5330 const char *zTbl = pTab->zName;
5331 static const u8 fakeSortOrder = 0;
5333 assert( db->pPreUpdate==0 );
5334 memset(&preupdate, 0, sizeof(PreUpdate));
5335 if( HasRowid(pTab)==0 ){
5336 iKey1 = iKey2 = 0;
5337 preupdate.pPk = sqlite3PrimaryKeyIndex(pTab);
5338 }else{
5339 if( op==SQLITE_UPDATE ){
5340 iKey2 = v->aMem[iReg].u.i;
5341 }else{
5342 iKey2 = iKey1;
5346 assert( pCsr!=0 );
5347 assert( pCsr->eCurType==CURTYPE_BTREE );
5348 assert( pCsr->nField==pTab->nCol
5349 || (pCsr->nField==pTab->nCol+1 && op==SQLITE_DELETE && iReg==-1)
5352 preupdate.v = v;
5353 preupdate.pCsr = pCsr;
5354 preupdate.op = op;
5355 preupdate.iNewReg = iReg;
5356 preupdate.keyinfo.db = db;
5357 preupdate.keyinfo.enc = ENC(db);
5358 preupdate.keyinfo.nKeyField = pTab->nCol;
5359 preupdate.keyinfo.aSortFlags = (u8*)&fakeSortOrder;
5360 preupdate.iKey1 = iKey1;
5361 preupdate.iKey2 = iKey2;
5362 preupdate.pTab = pTab;
5363 preupdate.iBlobWrite = iBlobWrite;
5365 db->pPreUpdate = &preupdate;
5366 db->xPreUpdateCallback(db->pPreUpdateArg, db, op, zDb, zTbl, iKey1, iKey2);
5367 db->pPreUpdate = 0;
5368 sqlite3DbFree(db, preupdate.aRecord);
5369 vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pUnpacked);
5370 vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pNewUnpacked);
5371 if( preupdate.aNew ){
5372 int i;
5373 for(i=0; i<pCsr->nField; i++){
5374 sqlite3VdbeMemRelease(&preupdate.aNew[i]);
5376 sqlite3DbNNFreeNN(db, preupdate.aNew);
5379 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */