4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
13 ** This file contains code use to manipulate "Mem" structure. A "Mem"
14 ** stores a single value in the VDBE. Mem is an opaque structure visible
15 ** only within the VDBE. Interface routines refer to a Mem using the
18 #include "sqliteInt.h"
21 /* True if X is a power of two. 0 is considered a power of two here.
22 ** In other words, return true if X has at most one bit set.
24 #define ISPOWEROF2(X) (((X)&((X)-1))==0)
28 ** Check invariants on a Mem object.
30 ** This routine is intended for use inside of assert() statements, like
31 ** this: assert( sqlite3VdbeCheckMemInvariants(pMem) );
33 int sqlite3VdbeCheckMemInvariants(Mem
*p
){
34 /* If MEM_Dyn is set then Mem.xDel!=0.
35 ** Mem.xDel might not be initialized if MEM_Dyn is clear.
37 assert( (p
->flags
& MEM_Dyn
)==0 || p
->xDel
!=0 );
39 /* MEM_Dyn may only be set if Mem.szMalloc==0. In this way we
40 ** ensure that if Mem.szMalloc>0 then it is safe to do
41 ** Mem.z = Mem.zMalloc without having to check Mem.flags&MEM_Dyn.
42 ** That saves a few cycles in inner loops. */
43 assert( (p
->flags
& MEM_Dyn
)==0 || p
->szMalloc
==0 );
45 /* Cannot have more than one of MEM_Int, MEM_Real, or MEM_IntReal */
46 assert( ISPOWEROF2(p
->flags
& (MEM_Int
|MEM_Real
|MEM_IntReal
)) );
48 if( p
->flags
& MEM_Null
){
49 /* Cannot be both MEM_Null and some other type */
50 assert( (p
->flags
& (MEM_Int
|MEM_Real
|MEM_Str
|MEM_Blob
|MEM_Agg
))==0 );
52 /* If MEM_Null is set, then either the value is a pure NULL (the usual
53 ** case) or it is a pointer set using sqlite3_bind_pointer() or
54 ** sqlite3_result_pointer(). If a pointer, then MEM_Term must also be
57 if( (p
->flags
& (MEM_Term
|MEM_Subtype
))==(MEM_Term
|MEM_Subtype
) ){
58 /* This is a pointer type. There may be a flag to indicate what to
59 ** do with the pointer. */
60 assert( ((p
->flags
&MEM_Dyn
)!=0 ? 1 : 0) +
61 ((p
->flags
&MEM_Ephem
)!=0 ? 1 : 0) +
62 ((p
->flags
&MEM_Static
)!=0 ? 1 : 0) <= 1 );
64 /* No other bits set */
65 assert( (p
->flags
& ~(MEM_Null
|MEM_Term
|MEM_Subtype
|MEM_FromBind
66 |MEM_Dyn
|MEM_Ephem
|MEM_Static
))==0 );
68 /* A pure NULL might have other flags, such as MEM_Static, MEM_Dyn,
69 ** MEM_Ephem, MEM_Cleared, or MEM_Subtype */
72 /* The MEM_Cleared bit is only allowed on NULLs */
73 assert( (p
->flags
& MEM_Cleared
)==0 );
76 /* The szMalloc field holds the correct memory allocation size */
77 assert( p
->szMalloc
==0
78 || (p
->flags
==MEM_Undefined
79 && p
->szMalloc
<=sqlite3DbMallocSize(p
->db
,p
->zMalloc
))
80 || p
->szMalloc
==sqlite3DbMallocSize(p
->db
,p
->zMalloc
));
82 /* If p holds a string or blob, the Mem.z must point to exactly
83 ** one of the following:
85 ** (1) Memory in Mem.zMalloc and managed by the Mem object
86 ** (2) Memory to be freed using Mem.xDel
87 ** (3) An ephemeral string or blob
88 ** (4) A static string or blob
90 if( (p
->flags
& (MEM_Str
|MEM_Blob
)) && p
->n
>0 ){
92 ((p
->szMalloc
>0 && p
->z
==p
->zMalloc
)? 1 : 0) +
93 ((p
->flags
&MEM_Dyn
)!=0 ? 1 : 0) +
94 ((p
->flags
&MEM_Ephem
)!=0 ? 1 : 0) +
95 ((p
->flags
&MEM_Static
)!=0 ? 1 : 0) == 1
103 ** Render a Mem object which is one of MEM_Int, MEM_Real, or MEM_IntReal
106 static void vdbeMemRenderNum(int sz
, char *zBuf
, Mem
*p
){
108 assert( p
->flags
& (MEM_Int
|MEM_Real
|MEM_IntReal
) );
110 if( p
->flags
& MEM_Int
){
111 #if GCC_VERSION>=7000000
112 /* Work-around for GCC bug
113 ** https://gcc.gnu.org/bugzilla/show_bug.cgi?id=96270 */
115 assert( (p
->flags
&MEM_Int
)*2==sizeof(x
) );
116 memcpy(&x
, (char*)&p
->u
, (p
->flags
&MEM_Int
)*2);
117 p
->n
= sqlite3Int64ToText(x
, zBuf
);
119 p
->n
= sqlite3Int64ToText(p
->u
.i
, zBuf
);
122 sqlite3StrAccumInit(&acc
, 0, zBuf
, sz
, 0);
123 sqlite3_str_appendf(&acc
, "%!.15g",
124 (p
->flags
& MEM_IntReal
)!=0 ? (double)p
->u
.i
: p
->u
.r
);
125 assert( acc
.zText
==zBuf
&& acc
.mxAlloc
<=0 );
126 zBuf
[acc
.nChar
] = 0; /* Fast version of sqlite3StrAccumFinish(&acc) */
133 ** Validity checks on pMem. pMem holds a string.
135 ** (1) Check that string value of pMem agrees with its integer or real value.
136 ** (2) Check that the string is correctly zero terminated
138 ** A single int or real value always converts to the same strings. But
139 ** many different strings can be converted into the same int or real.
140 ** If a table contains a numeric value and an index is based on the
141 ** corresponding string value, then it is important that the string be
142 ** derived from the numeric value, not the other way around, to ensure
143 ** that the index and table are consistent. See ticket
144 ** https://www.sqlite.org/src/info/343634942dd54ab (2018-01-31) for
147 ** This routine looks at pMem to verify that if it has both a numeric
148 ** representation and a string representation then the string rep has
149 ** been derived from the numeric and not the other way around. It returns
150 ** true if everything is ok and false if there is a problem.
152 ** This routine is for use inside of assert() statements only.
154 int sqlite3VdbeMemValidStrRep(Mem
*p
){
159 if( (p
->flags
& MEM_Str
)==0 ) return 1;
160 if( p
->flags
& MEM_Term
){
161 /* Insure that the string is properly zero-terminated. Pay particular
162 ** attention to the case where p->n is odd */
163 if( p
->szMalloc
>0 && p
->z
==p
->zMalloc
){
164 assert( p
->enc
==SQLITE_UTF8
|| p
->szMalloc
>= ((p
->n
+1)&~1)+2 );
165 assert( p
->enc
!=SQLITE_UTF8
|| p
->szMalloc
>= p
->n
+1 );
167 assert( p
->z
[p
->n
]==0 );
168 assert( p
->enc
==SQLITE_UTF8
|| p
->z
[(p
->n
+1)&~1]==0 );
169 assert( p
->enc
==SQLITE_UTF8
|| p
->z
[((p
->n
+1)&~1)+1]==0 );
171 if( (p
->flags
& (MEM_Int
|MEM_Real
|MEM_IntReal
))==0 ) return 1;
172 memcpy(&tmp
, p
, sizeof(tmp
));
173 vdbeMemRenderNum(sizeof(zBuf
), zBuf
, &tmp
);
177 if( p
->enc
!=SQLITE_UTF8
){
179 if( p
->enc
==SQLITE_UTF16BE
) z
++;
182 if( zBuf
[j
++]!=z
[i
] ) return 0;
187 #endif /* SQLITE_DEBUG */
190 ** If pMem is an object with a valid string representation, this routine
191 ** ensures the internal encoding for the string representation is
192 ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE.
194 ** If pMem is not a string object, or the encoding of the string
195 ** representation is already stored using the requested encoding, then this
196 ** routine is a no-op.
198 ** SQLITE_OK is returned if the conversion is successful (or not required).
199 ** SQLITE_NOMEM may be returned if a malloc() fails during conversion
202 int sqlite3VdbeChangeEncoding(Mem
*pMem
, int desiredEnc
){
203 #ifndef SQLITE_OMIT_UTF16
207 assert( !sqlite3VdbeMemIsRowSet(pMem
) );
208 assert( desiredEnc
==SQLITE_UTF8
|| desiredEnc
==SQLITE_UTF16LE
209 || desiredEnc
==SQLITE_UTF16BE
);
210 if( !(pMem
->flags
&MEM_Str
) ){
211 pMem
->enc
= desiredEnc
;
214 if( pMem
->enc
==desiredEnc
){
217 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
218 #ifdef SQLITE_OMIT_UTF16
222 /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned,
223 ** then the encoding of the value may not have changed.
225 rc
= sqlite3VdbeMemTranslate(pMem
, (u8
)desiredEnc
);
226 assert(rc
==SQLITE_OK
|| rc
==SQLITE_NOMEM
);
227 assert(rc
==SQLITE_OK
|| pMem
->enc
!=desiredEnc
);
228 assert(rc
==SQLITE_NOMEM
|| pMem
->enc
==desiredEnc
);
234 ** Make sure pMem->z points to a writable allocation of at least n bytes.
236 ** If the bPreserve argument is true, then copy of the content of
237 ** pMem->z into the new allocation. pMem must be either a string or
238 ** blob if bPreserve is true. If bPreserve is false, any prior content
239 ** in pMem->z is discarded.
241 SQLITE_NOINLINE
int sqlite3VdbeMemGrow(Mem
*pMem
, int n
, int bPreserve
){
242 assert( sqlite3VdbeCheckMemInvariants(pMem
) );
243 assert( !sqlite3VdbeMemIsRowSet(pMem
) );
244 testcase( pMem
->db
==0 );
246 /* If the bPreserve flag is set to true, then the memory cell must already
247 ** contain a valid string or blob value. */
248 assert( bPreserve
==0 || pMem
->flags
&(MEM_Blob
|MEM_Str
) );
249 testcase( bPreserve
&& pMem
->z
==0 );
251 assert( pMem
->szMalloc
==0
252 || (pMem
->flags
==MEM_Undefined
253 && pMem
->szMalloc
<=sqlite3DbMallocSize(pMem
->db
,pMem
->zMalloc
))
254 || pMem
->szMalloc
==sqlite3DbMallocSize(pMem
->db
,pMem
->zMalloc
));
255 if( pMem
->szMalloc
>0 && bPreserve
&& pMem
->z
==pMem
->zMalloc
){
257 pMem
->z
= pMem
->zMalloc
= sqlite3DbReallocOrFree(pMem
->db
, pMem
->z
, n
);
259 pMem
->zMalloc
= sqlite3Realloc(pMem
->z
, n
);
260 if( pMem
->zMalloc
==0 ) sqlite3_free(pMem
->z
);
261 pMem
->z
= pMem
->zMalloc
;
265 if( pMem
->szMalloc
>0 ) sqlite3DbFreeNN(pMem
->db
, pMem
->zMalloc
);
266 pMem
->zMalloc
= sqlite3DbMallocRaw(pMem
->db
, n
);
268 if( pMem
->zMalloc
==0 ){
269 sqlite3VdbeMemSetNull(pMem
);
272 return SQLITE_NOMEM_BKPT
;
274 pMem
->szMalloc
= sqlite3DbMallocSize(pMem
->db
, pMem
->zMalloc
);
277 if( bPreserve
&& pMem
->z
){
278 assert( pMem
->z
!=pMem
->zMalloc
);
279 memcpy(pMem
->zMalloc
, pMem
->z
, pMem
->n
);
281 if( (pMem
->flags
&MEM_Dyn
)!=0 ){
282 assert( pMem
->xDel
!=0 && pMem
->xDel
!=SQLITE_DYNAMIC
);
283 pMem
->xDel((void *)(pMem
->z
));
286 pMem
->z
= pMem
->zMalloc
;
287 pMem
->flags
&= ~(MEM_Dyn
|MEM_Ephem
|MEM_Static
);
292 ** Change the pMem->zMalloc allocation to be at least szNew bytes.
293 ** If pMem->zMalloc already meets or exceeds the requested size, this
294 ** routine is a no-op.
296 ** Any prior string or blob content in the pMem object may be discarded.
297 ** The pMem->xDel destructor is called, if it exists. Though MEM_Str
298 ** and MEM_Blob values may be discarded, MEM_Int, MEM_Real, MEM_IntReal,
299 ** and MEM_Null values are preserved.
301 ** Return SQLITE_OK on success or an error code (probably SQLITE_NOMEM)
302 ** if unable to complete the resizing.
304 int sqlite3VdbeMemClearAndResize(Mem
*pMem
, int szNew
){
305 assert( CORRUPT_DB
|| szNew
>0 );
306 assert( (pMem
->flags
& MEM_Dyn
)==0 || pMem
->szMalloc
==0 );
307 if( pMem
->szMalloc
<szNew
){
308 return sqlite3VdbeMemGrow(pMem
, szNew
, 0);
310 assert( (pMem
->flags
& MEM_Dyn
)==0 );
311 pMem
->z
= pMem
->zMalloc
;
312 pMem
->flags
&= (MEM_Null
|MEM_Int
|MEM_Real
|MEM_IntReal
);
317 ** It is already known that pMem contains an unterminated string.
318 ** Add the zero terminator.
320 ** Three bytes of zero are added. In this way, there is guaranteed
321 ** to be a double-zero byte at an even byte boundary in order to
322 ** terminate a UTF16 string, even if the initial size of the buffer
323 ** is an odd number of bytes.
325 static SQLITE_NOINLINE
int vdbeMemAddTerminator(Mem
*pMem
){
326 if( sqlite3VdbeMemGrow(pMem
, pMem
->n
+3, 1) ){
327 return SQLITE_NOMEM_BKPT
;
329 pMem
->z
[pMem
->n
] = 0;
330 pMem
->z
[pMem
->n
+1] = 0;
331 pMem
->z
[pMem
->n
+2] = 0;
332 pMem
->flags
|= MEM_Term
;
337 ** Change pMem so that its MEM_Str or MEM_Blob value is stored in
338 ** MEM.zMalloc, where it can be safely written.
340 ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
342 int sqlite3VdbeMemMakeWriteable(Mem
*pMem
){
344 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
345 assert( !sqlite3VdbeMemIsRowSet(pMem
) );
346 if( (pMem
->flags
& (MEM_Str
|MEM_Blob
))!=0 ){
347 if( ExpandBlob(pMem
) ) return SQLITE_NOMEM
;
348 if( pMem
->szMalloc
==0 || pMem
->z
!=pMem
->zMalloc
){
349 int rc
= vdbeMemAddTerminator(pMem
);
353 pMem
->flags
&= ~MEM_Ephem
;
355 pMem
->pScopyFrom
= 0;
362 ** If the given Mem* has a zero-filled tail, turn it into an ordinary
363 ** blob stored in dynamically allocated space.
365 #ifndef SQLITE_OMIT_INCRBLOB
366 int sqlite3VdbeMemExpandBlob(Mem
*pMem
){
369 assert( pMem
->flags
& MEM_Zero
);
370 assert( (pMem
->flags
&MEM_Blob
)!=0 || MemNullNochng(pMem
) );
371 testcase( sqlite3_value_nochange(pMem
) );
372 assert( !sqlite3VdbeMemIsRowSet(pMem
) );
373 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
375 /* Set nByte to the number of bytes required to store the expanded blob. */
376 nByte
= pMem
->n
+ pMem
->u
.nZero
;
378 if( (pMem
->flags
& MEM_Blob
)==0 ) return SQLITE_OK
;
381 if( sqlite3VdbeMemGrow(pMem
, nByte
, 1) ){
382 return SQLITE_NOMEM_BKPT
;
384 assert( pMem
->z
!=0 );
385 assert( sqlite3DbMallocSize(pMem
->db
,pMem
->z
) >= nByte
);
387 memset(&pMem
->z
[pMem
->n
], 0, pMem
->u
.nZero
);
388 pMem
->n
+= pMem
->u
.nZero
;
389 pMem
->flags
&= ~(MEM_Zero
|MEM_Term
);
395 ** Make sure the given Mem is \u0000 terminated.
397 int sqlite3VdbeMemNulTerminate(Mem
*pMem
){
399 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
400 testcase( (pMem
->flags
& (MEM_Term
|MEM_Str
))==(MEM_Term
|MEM_Str
) );
401 testcase( (pMem
->flags
& (MEM_Term
|MEM_Str
))==0 );
402 if( (pMem
->flags
& (MEM_Term
|MEM_Str
))!=MEM_Str
){
403 return SQLITE_OK
; /* Nothing to do */
405 return vdbeMemAddTerminator(pMem
);
410 ** Add MEM_Str to the set of representations for the given Mem. This
411 ** routine is only called if pMem is a number of some kind, not a NULL
414 ** Existing representations MEM_Int, MEM_Real, or MEM_IntReal are invalidated
415 ** if bForce is true but are retained if bForce is false.
417 ** A MEM_Null value will never be passed to this function. This function is
418 ** used for converting values to text for returning to the user (i.e. via
419 ** sqlite3_value_text()), or for ensuring that values to be used as btree
420 ** keys are strings. In the former case a NULL pointer is returned the
421 ** user and the latter is an internal programming error.
423 int sqlite3VdbeMemStringify(Mem
*pMem
, u8 enc
, u8 bForce
){
424 const int nByte
= 32;
427 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
428 assert( !(pMem
->flags
&MEM_Zero
) );
429 assert( !(pMem
->flags
&(MEM_Str
|MEM_Blob
)) );
430 assert( pMem
->flags
&(MEM_Int
|MEM_Real
|MEM_IntReal
) );
431 assert( !sqlite3VdbeMemIsRowSet(pMem
) );
432 assert( EIGHT_BYTE_ALIGNMENT(pMem
) );
435 if( sqlite3VdbeMemClearAndResize(pMem
, nByte
) ){
437 return SQLITE_NOMEM_BKPT
;
440 vdbeMemRenderNum(nByte
, pMem
->z
, pMem
);
441 assert( pMem
->z
!=0 );
442 assert( pMem
->n
==sqlite3Strlen30NN(pMem
->z
) );
443 pMem
->enc
= SQLITE_UTF8
;
444 pMem
->flags
|= MEM_Str
|MEM_Term
;
445 if( bForce
) pMem
->flags
&= ~(MEM_Int
|MEM_Real
|MEM_IntReal
);
446 sqlite3VdbeChangeEncoding(pMem
, enc
);
451 ** Memory cell pMem contains the context of an aggregate function.
452 ** This routine calls the finalize method for that function. The
453 ** result of the aggregate is stored back into pMem.
455 ** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK
458 int sqlite3VdbeMemFinalize(Mem
*pMem
, FuncDef
*pFunc
){
463 assert( pMem
->db
!=0 );
464 assert( pFunc
->xFinalize
!=0 );
465 assert( (pMem
->flags
& MEM_Null
)!=0 || pFunc
==pMem
->u
.pDef
);
466 assert( sqlite3_mutex_held(pMem
->db
->mutex
) );
467 memset(&ctx
, 0, sizeof(ctx
));
468 memset(&t
, 0, sizeof(t
));
475 pFunc
->xFinalize(&ctx
); /* IMP: R-24505-23230 */
476 assert( (pMem
->flags
& MEM_Dyn
)==0 );
477 if( pMem
->szMalloc
>0 ) sqlite3DbFreeNN(pMem
->db
, pMem
->zMalloc
);
478 memcpy(pMem
, &t
, sizeof(t
));
483 ** Memory cell pAccum contains the context of an aggregate function.
484 ** This routine calls the xValue method for that function and stores
485 ** the results in memory cell pMem.
487 ** SQLITE_ERROR is returned if xValue() reports an error. SQLITE_OK
490 #ifndef SQLITE_OMIT_WINDOWFUNC
491 int sqlite3VdbeMemAggValue(Mem
*pAccum
, Mem
*pOut
, FuncDef
*pFunc
){
494 assert( pFunc
->xValue
!=0 );
495 assert( (pAccum
->flags
& MEM_Null
)!=0 || pFunc
==pAccum
->u
.pDef
);
496 assert( pAccum
->db
!=0 );
497 assert( sqlite3_mutex_held(pAccum
->db
->mutex
) );
498 memset(&ctx
, 0, sizeof(ctx
));
499 sqlite3VdbeMemSetNull(pOut
);
503 ctx
.enc
= ENC(pAccum
->db
);
507 #endif /* SQLITE_OMIT_WINDOWFUNC */
510 ** If the memory cell contains a value that must be freed by
511 ** invoking the external callback in Mem.xDel, then this routine
512 ** will free that value. It also sets Mem.flags to MEM_Null.
514 ** This is a helper routine for sqlite3VdbeMemSetNull() and
515 ** for sqlite3VdbeMemRelease(). Use those other routines as the
516 ** entry point for releasing Mem resources.
518 static SQLITE_NOINLINE
void vdbeMemClearExternAndSetNull(Mem
*p
){
519 assert( p
->db
==0 || sqlite3_mutex_held(p
->db
->mutex
) );
520 assert( VdbeMemDynamic(p
) );
521 if( p
->flags
&MEM_Agg
){
522 sqlite3VdbeMemFinalize(p
, p
->u
.pDef
);
523 assert( (p
->flags
& MEM_Agg
)==0 );
524 testcase( p
->flags
& MEM_Dyn
);
526 if( p
->flags
&MEM_Dyn
){
527 assert( p
->xDel
!=SQLITE_DYNAMIC
&& p
->xDel
!=0 );
528 p
->xDel((void *)p
->z
);
534 ** Release memory held by the Mem p, both external memory cleared
535 ** by p->xDel and memory in p->zMalloc.
537 ** This is a helper routine invoked by sqlite3VdbeMemRelease() in
538 ** the unusual case where there really is memory in p that needs
541 static SQLITE_NOINLINE
void vdbeMemClear(Mem
*p
){
542 if( VdbeMemDynamic(p
) ){
543 vdbeMemClearExternAndSetNull(p
);
546 sqlite3DbFreeNN(p
->db
, p
->zMalloc
);
553 ** Release any memory resources held by the Mem. Both the memory that is
554 ** free by Mem.xDel and the Mem.zMalloc allocation are freed.
556 ** Use this routine prior to clean up prior to abandoning a Mem, or to
557 ** reset a Mem back to its minimum memory utilization.
559 ** Use sqlite3VdbeMemSetNull() to release just the Mem.xDel space
560 ** prior to inserting new content into the Mem.
562 void sqlite3VdbeMemRelease(Mem
*p
){
563 assert( sqlite3VdbeCheckMemInvariants(p
) );
564 if( VdbeMemDynamic(p
) || p
->szMalloc
){
569 /* Like sqlite3VdbeMemRelease() but faster for cases where we
570 ** know in advance that the Mem is not MEM_Dyn or MEM_Agg.
572 void sqlite3VdbeMemReleaseMalloc(Mem
*p
){
573 assert( !VdbeMemDynamic(p
) );
574 if( p
->szMalloc
) vdbeMemClear(p
);
578 ** Convert a 64-bit IEEE double into a 64-bit signed integer.
579 ** If the double is out of range of a 64-bit signed integer then
580 ** return the closest available 64-bit signed integer.
582 static SQLITE_NOINLINE i64
doubleToInt64(double r
){
583 #ifdef SQLITE_OMIT_FLOATING_POINT
584 /* When floating-point is omitted, double and int64 are the same thing */
588 ** Many compilers we encounter do not define constants for the
589 ** minimum and maximum 64-bit integers, or they define them
590 ** inconsistently. And many do not understand the "LL" notation.
591 ** So we define our own static constants here using nothing
592 ** larger than a 32-bit integer constant.
594 static const i64 maxInt
= LARGEST_INT64
;
595 static const i64 minInt
= SMALLEST_INT64
;
597 if( r
<=(double)minInt
){
599 }else if( r
>=(double)maxInt
){
608 ** Return some kind of integer value which is the best we can do
609 ** at representing the value that *pMem describes as an integer.
610 ** If pMem is an integer, then the value is exact. If pMem is
611 ** a floating-point then the value returned is the integer part.
612 ** If pMem is a string or blob, then we make an attempt to convert
613 ** it into an integer and return that. If pMem represents an
614 ** an SQL-NULL value, return 0.
616 ** If pMem represents a string value, its encoding might be changed.
618 static SQLITE_NOINLINE i64
memIntValue(const Mem
*pMem
){
620 sqlite3Atoi64(pMem
->z
, &value
, pMem
->n
, pMem
->enc
);
623 i64
sqlite3VdbeIntValue(const Mem
*pMem
){
626 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
627 assert( EIGHT_BYTE_ALIGNMENT(pMem
) );
629 if( flags
& (MEM_Int
|MEM_IntReal
) ){
630 testcase( flags
& MEM_IntReal
);
632 }else if( flags
& MEM_Real
){
633 return doubleToInt64(pMem
->u
.r
);
634 }else if( (flags
& (MEM_Str
|MEM_Blob
))!=0 && pMem
->z
!=0 ){
635 return memIntValue(pMem
);
642 ** Return the best representation of pMem that we can get into a
643 ** double. If pMem is already a double or an integer, return its
644 ** value. If it is a string or blob, try to convert it to a double.
645 ** If it is a NULL, return 0.0.
647 static SQLITE_NOINLINE
double memRealValue(Mem
*pMem
){
648 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
649 double val
= (double)0;
650 sqlite3AtoF(pMem
->z
, &val
, pMem
->n
, pMem
->enc
);
653 double sqlite3VdbeRealValue(Mem
*pMem
){
655 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
656 assert( EIGHT_BYTE_ALIGNMENT(pMem
) );
657 if( pMem
->flags
& MEM_Real
){
659 }else if( pMem
->flags
& (MEM_Int
|MEM_IntReal
) ){
660 testcase( pMem
->flags
& MEM_IntReal
);
661 return (double)pMem
->u
.i
;
662 }else if( pMem
->flags
& (MEM_Str
|MEM_Blob
) ){
663 return memRealValue(pMem
);
665 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
671 ** Return 1 if pMem represents true, and return 0 if pMem represents false.
672 ** Return the value ifNull if pMem is NULL.
674 int sqlite3VdbeBooleanValue(Mem
*pMem
, int ifNull
){
675 testcase( pMem
->flags
& MEM_IntReal
);
676 if( pMem
->flags
& (MEM_Int
|MEM_IntReal
) ) return pMem
->u
.i
!=0;
677 if( pMem
->flags
& MEM_Null
) return ifNull
;
678 return sqlite3VdbeRealValue(pMem
)!=0.0;
682 ** The MEM structure is already a MEM_Real or MEM_IntReal. Try to
683 ** make it a MEM_Int if we can.
685 void sqlite3VdbeIntegerAffinity(Mem
*pMem
){
687 assert( pMem
->flags
& (MEM_Real
|MEM_IntReal
) );
688 assert( !sqlite3VdbeMemIsRowSet(pMem
) );
689 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
690 assert( EIGHT_BYTE_ALIGNMENT(pMem
) );
692 if( pMem
->flags
& MEM_IntReal
){
693 MemSetTypeFlag(pMem
, MEM_Int
);
695 i64 ix
= doubleToInt64(pMem
->u
.r
);
697 /* Only mark the value as an integer if
699 ** (1) the round-trip conversion real->int->real is a no-op, and
700 ** (2) The integer is neither the largest nor the smallest
701 ** possible integer (ticket #3922)
703 ** The second and third terms in the following conditional enforces
704 ** the second condition under the assumption that addition overflow causes
705 ** values to wrap around.
707 if( pMem
->u
.r
==ix
&& ix
>SMALLEST_INT64
&& ix
<LARGEST_INT64
){
709 MemSetTypeFlag(pMem
, MEM_Int
);
715 ** Convert pMem to type integer. Invalidate any prior representations.
717 int sqlite3VdbeMemIntegerify(Mem
*pMem
){
719 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
720 assert( !sqlite3VdbeMemIsRowSet(pMem
) );
721 assert( EIGHT_BYTE_ALIGNMENT(pMem
) );
723 pMem
->u
.i
= sqlite3VdbeIntValue(pMem
);
724 MemSetTypeFlag(pMem
, MEM_Int
);
729 ** Convert pMem so that it is of type MEM_Real.
730 ** Invalidate any prior representations.
732 int sqlite3VdbeMemRealify(Mem
*pMem
){
734 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
735 assert( EIGHT_BYTE_ALIGNMENT(pMem
) );
737 pMem
->u
.r
= sqlite3VdbeRealValue(pMem
);
738 MemSetTypeFlag(pMem
, MEM_Real
);
742 /* Compare a floating point value to an integer. Return true if the two
743 ** values are the same within the precision of the floating point value.
745 ** This function assumes that i was obtained by assignment from r1.
747 ** For some versions of GCC on 32-bit machines, if you do the more obvious
748 ** comparison of "r1==(double)i" you sometimes get an answer of false even
749 ** though the r1 and (double)i values are bit-for-bit the same.
751 int sqlite3RealSameAsInt(double r1
, sqlite3_int64 i
){
752 double r2
= (double)i
;
754 || (memcmp(&r1
, &r2
, sizeof(r1
))==0
755 && i
>= -2251799813685248LL && i
< 2251799813685248LL);
758 /* Convert a floating point value to its closest integer. Do so in
759 ** a way that avoids 'outside the range of representable values' warnings
762 i64
sqlite3RealToI64(double r
){
763 if( r
<=(double)SMALLEST_INT64
) return SMALLEST_INT64
;
764 if( r
>=(double)LARGEST_INT64
) return LARGEST_INT64
;
769 ** Convert pMem so that it has type MEM_Real or MEM_Int.
770 ** Invalidate any prior representations.
772 ** Every effort is made to force the conversion, even if the input
773 ** is a string that does not look completely like a number. Convert
774 ** as much of the string as we can and ignore the rest.
776 int sqlite3VdbeMemNumerify(Mem
*pMem
){
778 testcase( pMem
->flags
& MEM_Int
);
779 testcase( pMem
->flags
& MEM_Real
);
780 testcase( pMem
->flags
& MEM_IntReal
);
781 testcase( pMem
->flags
& MEM_Null
);
782 if( (pMem
->flags
& (MEM_Int
|MEM_Real
|MEM_IntReal
|MEM_Null
))==0 ){
785 assert( (pMem
->flags
& (MEM_Blob
|MEM_Str
))!=0 );
786 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
787 rc
= sqlite3AtoF(pMem
->z
, &pMem
->u
.r
, pMem
->n
, pMem
->enc
);
788 if( ((rc
==0 || rc
==1) && sqlite3Atoi64(pMem
->z
, &ix
, pMem
->n
, pMem
->enc
)<=1)
789 || sqlite3RealSameAsInt(pMem
->u
.r
, (ix
= sqlite3RealToI64(pMem
->u
.r
)))
792 MemSetTypeFlag(pMem
, MEM_Int
);
794 MemSetTypeFlag(pMem
, MEM_Real
);
797 assert( (pMem
->flags
& (MEM_Int
|MEM_Real
|MEM_IntReal
|MEM_Null
))!=0 );
798 pMem
->flags
&= ~(MEM_Str
|MEM_Blob
|MEM_Zero
);
803 ** Cast the datatype of the value in pMem according to the affinity
804 ** "aff". Casting is different from applying affinity in that a cast
805 ** is forced. In other words, the value is converted into the desired
806 ** affinity even if that results in loss of data. This routine is
807 ** used (for example) to implement the SQL "cast()" operator.
809 int sqlite3VdbeMemCast(Mem
*pMem
, u8 aff
, u8 encoding
){
810 if( pMem
->flags
& MEM_Null
) return SQLITE_OK
;
812 case SQLITE_AFF_BLOB
: { /* Really a cast to BLOB */
813 if( (pMem
->flags
& MEM_Blob
)==0 ){
814 sqlite3ValueApplyAffinity(pMem
, SQLITE_AFF_TEXT
, encoding
);
815 assert( pMem
->flags
& MEM_Str
|| pMem
->db
->mallocFailed
);
816 if( pMem
->flags
& MEM_Str
) MemSetTypeFlag(pMem
, MEM_Blob
);
818 pMem
->flags
&= ~(MEM_TypeMask
&~MEM_Blob
);
822 case SQLITE_AFF_NUMERIC
: {
823 sqlite3VdbeMemNumerify(pMem
);
826 case SQLITE_AFF_INTEGER
: {
827 sqlite3VdbeMemIntegerify(pMem
);
830 case SQLITE_AFF_REAL
: {
831 sqlite3VdbeMemRealify(pMem
);
835 assert( aff
==SQLITE_AFF_TEXT
);
836 assert( MEM_Str
==(MEM_Blob
>>3) );
837 pMem
->flags
|= (pMem
->flags
&MEM_Blob
)>>3;
838 sqlite3ValueApplyAffinity(pMem
, SQLITE_AFF_TEXT
, encoding
);
839 assert( pMem
->flags
& MEM_Str
|| pMem
->db
->mallocFailed
);
840 pMem
->flags
&= ~(MEM_Int
|MEM_Real
|MEM_IntReal
|MEM_Blob
|MEM_Zero
);
841 if( encoding
!=SQLITE_UTF8
) pMem
->n
&= ~1;
842 return sqlite3VdbeChangeEncoding(pMem
, encoding
);
849 ** Initialize bulk memory to be a consistent Mem object.
851 ** The minimum amount of initialization feasible is performed.
853 void sqlite3VdbeMemInit(Mem
*pMem
, sqlite3
*db
, u16 flags
){
854 assert( (flags
& ~MEM_TypeMask
)==0 );
862 ** Delete any previous value and set the value stored in *pMem to NULL.
864 ** This routine calls the Mem.xDel destructor to dispose of values that
865 ** require the destructor. But it preserves the Mem.zMalloc memory allocation.
866 ** To free all resources, use sqlite3VdbeMemRelease(), which both calls this
867 ** routine to invoke the destructor and deallocates Mem.zMalloc.
869 ** Use this routine to reset the Mem prior to insert a new value.
871 ** Use sqlite3VdbeMemRelease() to complete erase the Mem prior to abandoning it.
873 void sqlite3VdbeMemSetNull(Mem
*pMem
){
874 if( VdbeMemDynamic(pMem
) ){
875 vdbeMemClearExternAndSetNull(pMem
);
877 pMem
->flags
= MEM_Null
;
880 void sqlite3ValueSetNull(sqlite3_value
*p
){
881 sqlite3VdbeMemSetNull((Mem
*)p
);
885 ** Delete any previous value and set the value to be a BLOB of length
886 ** n containing all zeros.
888 #ifndef SQLITE_OMIT_INCRBLOB
889 void sqlite3VdbeMemSetZeroBlob(Mem
*pMem
, int n
){
890 sqlite3VdbeMemRelease(pMem
);
891 pMem
->flags
= MEM_Blob
|MEM_Zero
;
895 pMem
->enc
= SQLITE_UTF8
;
899 int sqlite3VdbeMemSetZeroBlob(Mem
*pMem
, int n
){
901 if( sqlite3VdbeMemGrow(pMem
, nByte
, 0) ){
902 return SQLITE_NOMEM_BKPT
;
904 assert( pMem
->z
!=0 );
905 assert( sqlite3DbMallocSize(pMem
->db
, pMem
->z
)>=nByte
);
906 memset(pMem
->z
, 0, nByte
);
908 pMem
->flags
= MEM_Blob
;
909 pMem
->enc
= SQLITE_UTF8
;
915 ** The pMem is known to contain content that needs to be destroyed prior
916 ** to a value change. So invoke the destructor, then set the value to
919 static SQLITE_NOINLINE
void vdbeReleaseAndSetInt64(Mem
*pMem
, i64 val
){
920 sqlite3VdbeMemSetNull(pMem
);
922 pMem
->flags
= MEM_Int
;
926 ** Delete any previous value and set the value stored in *pMem to val,
927 ** manifest type INTEGER.
929 void sqlite3VdbeMemSetInt64(Mem
*pMem
, i64 val
){
930 if( VdbeMemDynamic(pMem
) ){
931 vdbeReleaseAndSetInt64(pMem
, val
);
934 pMem
->flags
= MEM_Int
;
938 /* A no-op destructor */
939 void sqlite3NoopDestructor(void *p
){ UNUSED_PARAMETER(p
); }
942 ** Set the value stored in *pMem should already be a NULL.
943 ** Also store a pointer to go with it.
945 void sqlite3VdbeMemSetPointer(
949 void (*xDestructor
)(void*)
951 assert( pMem
->flags
==MEM_Null
);
953 pMem
->u
.zPType
= zPType
? zPType
: "";
955 pMem
->flags
= MEM_Null
|MEM_Dyn
|MEM_Subtype
|MEM_Term
;
956 pMem
->eSubtype
= 'p';
957 pMem
->xDel
= xDestructor
? xDestructor
: sqlite3NoopDestructor
;
960 #ifndef SQLITE_OMIT_FLOATING_POINT
962 ** Delete any previous value and set the value stored in *pMem to val,
963 ** manifest type REAL.
965 void sqlite3VdbeMemSetDouble(Mem
*pMem
, double val
){
966 sqlite3VdbeMemSetNull(pMem
);
967 if( !sqlite3IsNaN(val
) ){
969 pMem
->flags
= MEM_Real
;
976 ** Return true if the Mem holds a RowSet object. This routine is intended
977 ** for use inside of assert() statements.
979 int sqlite3VdbeMemIsRowSet(const Mem
*pMem
){
980 return (pMem
->flags
&(MEM_Blob
|MEM_Dyn
))==(MEM_Blob
|MEM_Dyn
)
981 && pMem
->xDel
==sqlite3RowSetDelete
;
986 ** Delete any previous value and set the value of pMem to be an
987 ** empty boolean index.
989 ** Return SQLITE_OK on success and SQLITE_NOMEM if a memory allocation
992 int sqlite3VdbeMemSetRowSet(Mem
*pMem
){
993 sqlite3
*db
= pMem
->db
;
996 assert( !sqlite3VdbeMemIsRowSet(pMem
) );
997 sqlite3VdbeMemRelease(pMem
);
998 p
= sqlite3RowSetInit(db
);
999 if( p
==0 ) return SQLITE_NOMEM
;
1001 pMem
->flags
= MEM_Blob
|MEM_Dyn
;
1002 pMem
->xDel
= sqlite3RowSetDelete
;
1007 ** Return true if the Mem object contains a TEXT or BLOB that is
1008 ** too large - whose size exceeds SQLITE_MAX_LENGTH.
1010 int sqlite3VdbeMemTooBig(Mem
*p
){
1012 if( p
->flags
& (MEM_Str
|MEM_Blob
) ){
1014 if( p
->flags
& MEM_Zero
){
1017 return n
>p
->db
->aLimit
[SQLITE_LIMIT_LENGTH
];
1024 ** This routine prepares a memory cell for modification by breaking
1025 ** its link to a shallow copy and by marking any current shallow
1026 ** copies of this cell as invalid.
1028 ** This is used for testing and debugging only - to help ensure that shallow
1029 ** copies (created by OP_SCopy) are not misused.
1031 void sqlite3VdbeMemAboutToChange(Vdbe
*pVdbe
, Mem
*pMem
){
1034 for(i
=1, pX
=pVdbe
->aMem
+1; i
<pVdbe
->nMem
; i
++, pX
++){
1035 if( pX
->pScopyFrom
==pMem
){
1037 if( pVdbe
->db
->flags
& SQLITE_VdbeTrace
){
1038 sqlite3DebugPrintf("Invalidate R[%d] due to change in R[%d]\n",
1039 (int)(pX
- pVdbe
->aMem
), (int)(pMem
- pVdbe
->aMem
));
1041 /* If pX is marked as a shallow copy of pMem, then try to verify that
1042 ** no significant changes have been made to pX since the OP_SCopy.
1043 ** A significant change would indicated a missed call to this
1044 ** function for pX. Minor changes, such as adding or removing a
1045 ** dual type, are allowed, as long as the underlying value is the
1047 mFlags
= pMem
->flags
& pX
->flags
& pX
->mScopyFlags
;
1048 assert( (mFlags
&(MEM_Int
|MEM_IntReal
))==0 || pMem
->u
.i
==pX
->u
.i
);
1050 /* pMem is the register that is changing. But also mark pX as
1051 ** undefined so that we can quickly detect the shallow-copy error */
1052 pX
->flags
= MEM_Undefined
;
1056 pMem
->pScopyFrom
= 0;
1058 #endif /* SQLITE_DEBUG */
1061 ** Make an shallow copy of pFrom into pTo. Prior contents of
1062 ** pTo are freed. The pFrom->z field is not duplicated. If
1063 ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z
1064 ** and flags gets srcType (either MEM_Ephem or MEM_Static).
1066 static SQLITE_NOINLINE
void vdbeClrCopy(Mem
*pTo
, const Mem
*pFrom
, int eType
){
1067 vdbeMemClearExternAndSetNull(pTo
);
1068 assert( !VdbeMemDynamic(pTo
) );
1069 sqlite3VdbeMemShallowCopy(pTo
, pFrom
, eType
);
1071 void sqlite3VdbeMemShallowCopy(Mem
*pTo
, const Mem
*pFrom
, int srcType
){
1072 assert( !sqlite3VdbeMemIsRowSet(pFrom
) );
1073 assert( pTo
->db
==pFrom
->db
);
1074 if( VdbeMemDynamic(pTo
) ){ vdbeClrCopy(pTo
,pFrom
,srcType
); return; }
1075 memcpy(pTo
, pFrom
, MEMCELLSIZE
);
1076 if( (pFrom
->flags
&MEM_Static
)==0 ){
1077 pTo
->flags
&= ~(MEM_Dyn
|MEM_Static
|MEM_Ephem
);
1078 assert( srcType
==MEM_Ephem
|| srcType
==MEM_Static
);
1079 pTo
->flags
|= srcType
;
1084 ** Make a full copy of pFrom into pTo. Prior contents of pTo are
1085 ** freed before the copy is made.
1087 int sqlite3VdbeMemCopy(Mem
*pTo
, const Mem
*pFrom
){
1090 assert( !sqlite3VdbeMemIsRowSet(pFrom
) );
1091 if( VdbeMemDynamic(pTo
) ) vdbeMemClearExternAndSetNull(pTo
);
1092 memcpy(pTo
, pFrom
, MEMCELLSIZE
);
1093 pTo
->flags
&= ~MEM_Dyn
;
1094 if( pTo
->flags
&(MEM_Str
|MEM_Blob
) ){
1095 if( 0==(pFrom
->flags
&MEM_Static
) ){
1096 pTo
->flags
|= MEM_Ephem
;
1097 rc
= sqlite3VdbeMemMakeWriteable(pTo
);
1105 ** Transfer the contents of pFrom to pTo. Any existing value in pTo is
1106 ** freed. If pFrom contains ephemeral data, a copy is made.
1108 ** pFrom contains an SQL NULL when this routine returns.
1110 void sqlite3VdbeMemMove(Mem
*pTo
, Mem
*pFrom
){
1111 assert( pFrom
->db
==0 || sqlite3_mutex_held(pFrom
->db
->mutex
) );
1112 assert( pTo
->db
==0 || sqlite3_mutex_held(pTo
->db
->mutex
) );
1113 assert( pFrom
->db
==0 || pTo
->db
==0 || pFrom
->db
==pTo
->db
);
1115 sqlite3VdbeMemRelease(pTo
);
1116 memcpy(pTo
, pFrom
, sizeof(Mem
));
1117 pFrom
->flags
= MEM_Null
;
1118 pFrom
->szMalloc
= 0;
1122 ** Change the value of a Mem to be a string or a BLOB.
1124 ** The memory management strategy depends on the value of the xDel
1125 ** parameter. If the value passed is SQLITE_TRANSIENT, then the
1126 ** string is copied into a (possibly existing) buffer managed by the
1127 ** Mem structure. Otherwise, any existing buffer is freed and the
1130 ** If the string is too large (if it exceeds the SQLITE_LIMIT_LENGTH
1131 ** size limit) then no memory allocation occurs. If the string can be
1132 ** stored without allocating memory, then it is. If a memory allocation
1133 ** is required to store the string, then value of pMem is unchanged. In
1134 ** either case, SQLITE_TOOBIG is returned.
1136 ** The "enc" parameter is the text encoding for the string, or zero
1139 ** If n is negative, then the string consists of all bytes up to but
1140 ** excluding the first zero character. The n parameter must be
1141 ** non-negative for blobs.
1143 int sqlite3VdbeMemSetStr(
1144 Mem
*pMem
, /* Memory cell to set to string value */
1145 const char *z
, /* String pointer */
1146 i64 n
, /* Bytes in string, or negative */
1147 u8 enc
, /* Encoding of z. 0 for BLOBs */
1148 void (*xDel
)(void*) /* Destructor function */
1150 i64 nByte
= n
; /* New value for pMem->n */
1151 int iLimit
; /* Maximum allowed string or blob size */
1152 u16 flags
; /* New value for pMem->flags */
1155 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
1156 assert( !sqlite3VdbeMemIsRowSet(pMem
) );
1157 assert( enc
!=0 || n
>=0 );
1159 /* If z is a NULL pointer, set pMem to contain an SQL NULL. */
1161 sqlite3VdbeMemSetNull(pMem
);
1166 iLimit
= pMem
->db
->aLimit
[SQLITE_LIMIT_LENGTH
];
1168 iLimit
= SQLITE_MAX_LENGTH
;
1172 if( enc
==SQLITE_UTF8
){
1175 for(nByte
=0; nByte
<=iLimit
&& (z
[nByte
] | z
[nByte
+1]); nByte
+=2){}
1177 flags
= MEM_Str
|MEM_Term
;
1185 if( xDel
&& xDel
!=SQLITE_TRANSIENT
){
1186 if( xDel
==SQLITE_DYNAMIC
){
1187 sqlite3DbFree(pMem
->db
, (void*)z
);
1192 sqlite3VdbeMemSetNull(pMem
);
1193 return sqlite3ErrorToParser(pMem
->db
, SQLITE_TOOBIG
);
1196 /* The following block sets the new values of Mem.z and Mem.xDel. It
1197 ** also sets a flag in local variable "flags" to indicate the memory
1198 ** management (one of MEM_Dyn or MEM_Static).
1200 if( xDel
==SQLITE_TRANSIENT
){
1202 if( flags
&MEM_Term
){
1203 nAlloc
+= (enc
==SQLITE_UTF8
?1:2);
1205 testcase( nAlloc
==0 );
1206 testcase( nAlloc
==31 );
1207 testcase( nAlloc
==32 );
1208 if( sqlite3VdbeMemClearAndResize(pMem
, (int)MAX(nAlloc
,32)) ){
1209 return SQLITE_NOMEM_BKPT
;
1211 memcpy(pMem
->z
, z
, nAlloc
);
1213 sqlite3VdbeMemRelease(pMem
);
1214 pMem
->z
= (char *)z
;
1215 if( xDel
==SQLITE_DYNAMIC
){
1216 pMem
->zMalloc
= pMem
->z
;
1217 pMem
->szMalloc
= sqlite3DbMallocSize(pMem
->db
, pMem
->zMalloc
);
1220 flags
|= ((xDel
==SQLITE_STATIC
)?MEM_Static
:MEM_Dyn
);
1224 pMem
->n
= (int)(nByte
& 0x7fffffff);
1225 pMem
->flags
= flags
;
1228 #ifndef SQLITE_OMIT_UTF16
1229 if( enc
>SQLITE_UTF8
&& sqlite3VdbeMemHandleBom(pMem
) ){
1230 return SQLITE_NOMEM_BKPT
;
1239 ** Move data out of a btree key or data field and into a Mem structure.
1240 ** The data is payload from the entry that pCur is currently pointing
1241 ** to. offset and amt determine what portion of the data or key to retrieve.
1242 ** The result is written into the pMem element.
1244 ** The pMem object must have been initialized. This routine will use
1245 ** pMem->zMalloc to hold the content from the btree, if possible. New
1246 ** pMem->zMalloc space will be allocated if necessary. The calling routine
1247 ** is responsible for making sure that the pMem object is eventually
1250 ** If this routine fails for any reason (malloc returns NULL or unable
1251 ** to read from the disk) then the pMem is left in an inconsistent state.
1253 int sqlite3VdbeMemFromBtree(
1254 BtCursor
*pCur
, /* Cursor pointing at record to retrieve. */
1255 u32 offset
, /* Offset from the start of data to return bytes from. */
1256 u32 amt
, /* Number of bytes to return. */
1257 Mem
*pMem
/* OUT: Return data in this Mem structure. */
1260 pMem
->flags
= MEM_Null
;
1261 if( sqlite3BtreeMaxRecordSize(pCur
)<offset
+amt
){
1262 return SQLITE_CORRUPT_BKPT
;
1264 if( SQLITE_OK
==(rc
= sqlite3VdbeMemClearAndResize(pMem
, amt
+1)) ){
1265 rc
= sqlite3BtreePayload(pCur
, offset
, amt
, pMem
->z
);
1266 if( rc
==SQLITE_OK
){
1267 pMem
->z
[amt
] = 0; /* Overrun area used when reading malformed records */
1268 pMem
->flags
= MEM_Blob
;
1271 sqlite3VdbeMemRelease(pMem
);
1276 int sqlite3VdbeMemFromBtreeZeroOffset(
1277 BtCursor
*pCur
, /* Cursor pointing at record to retrieve. */
1278 u32 amt
, /* Number of bytes to return. */
1279 Mem
*pMem
/* OUT: Return data in this Mem structure. */
1281 u32 available
= 0; /* Number of bytes available on the local btree page */
1282 int rc
= SQLITE_OK
; /* Return code */
1284 assert( sqlite3BtreeCursorIsValid(pCur
) );
1285 assert( !VdbeMemDynamic(pMem
) );
1287 /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert()
1288 ** that both the BtShared and database handle mutexes are held. */
1289 assert( !sqlite3VdbeMemIsRowSet(pMem
) );
1290 pMem
->z
= (char *)sqlite3BtreePayloadFetch(pCur
, &available
);
1291 assert( pMem
->z
!=0 );
1293 if( amt
<=available
){
1294 pMem
->flags
= MEM_Blob
|MEM_Ephem
;
1297 rc
= sqlite3VdbeMemFromBtree(pCur
, 0, amt
, pMem
);
1304 ** The pVal argument is known to be a value other than NULL.
1305 ** Convert it into a string with encoding enc and return a pointer
1306 ** to a zero-terminated version of that string.
1308 static SQLITE_NOINLINE
const void *valueToText(sqlite3_value
* pVal
, u8 enc
){
1310 assert( pVal
->db
==0 || sqlite3_mutex_held(pVal
->db
->mutex
) );
1311 assert( (enc
&3)==(enc
&~SQLITE_UTF16_ALIGNED
) );
1312 assert( !sqlite3VdbeMemIsRowSet(pVal
) );
1313 assert( (pVal
->flags
& (MEM_Null
))==0 );
1314 if( pVal
->flags
& (MEM_Blob
|MEM_Str
) ){
1315 if( ExpandBlob(pVal
) ) return 0;
1316 pVal
->flags
|= MEM_Str
;
1317 if( pVal
->enc
!= (enc
& ~SQLITE_UTF16_ALIGNED
) ){
1318 sqlite3VdbeChangeEncoding(pVal
, enc
& ~SQLITE_UTF16_ALIGNED
);
1320 if( (enc
& SQLITE_UTF16_ALIGNED
)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal
->z
)) ){
1321 assert( (pVal
->flags
& (MEM_Ephem
|MEM_Static
))!=0 );
1322 if( sqlite3VdbeMemMakeWriteable(pVal
)!=SQLITE_OK
){
1326 sqlite3VdbeMemNulTerminate(pVal
); /* IMP: R-31275-44060 */
1328 sqlite3VdbeMemStringify(pVal
, enc
, 0);
1329 assert( 0==(1&SQLITE_PTR_TO_INT(pVal
->z
)) );
1331 assert(pVal
->enc
==(enc
& ~SQLITE_UTF16_ALIGNED
) || pVal
->db
==0
1332 || pVal
->db
->mallocFailed
);
1333 if( pVal
->enc
==(enc
& ~SQLITE_UTF16_ALIGNED
) ){
1334 assert( sqlite3VdbeMemValidStrRep(pVal
) );
1341 /* This function is only available internally, it is not part of the
1342 ** external API. It works in a similar way to sqlite3_value_text(),
1343 ** except the data returned is in the encoding specified by the second
1344 ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or
1347 ** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED.
1348 ** If that is the case, then the result must be aligned on an even byte
1351 const void *sqlite3ValueText(sqlite3_value
* pVal
, u8 enc
){
1352 if( !pVal
) return 0;
1353 assert( pVal
->db
==0 || sqlite3_mutex_held(pVal
->db
->mutex
) );
1354 assert( (enc
&3)==(enc
&~SQLITE_UTF16_ALIGNED
) );
1355 assert( !sqlite3VdbeMemIsRowSet(pVal
) );
1356 if( (pVal
->flags
&(MEM_Str
|MEM_Term
))==(MEM_Str
|MEM_Term
) && pVal
->enc
==enc
){
1357 assert( sqlite3VdbeMemValidStrRep(pVal
) );
1360 if( pVal
->flags
&MEM_Null
){
1363 return valueToText(pVal
, enc
);
1367 ** Create a new sqlite3_value object.
1369 sqlite3_value
*sqlite3ValueNew(sqlite3
*db
){
1370 Mem
*p
= sqlite3DbMallocZero(db
, sizeof(*p
));
1372 p
->flags
= MEM_Null
;
1379 ** Context object passed by sqlite3Stat4ProbeSetValue() through to
1380 ** valueNew(). See comments above valueNew() for details.
1382 struct ValueNewStat4Ctx
{
1385 UnpackedRecord
**ppRec
;
1390 ** Allocate and return a pointer to a new sqlite3_value object. If
1391 ** the second argument to this function is NULL, the object is allocated
1392 ** by calling sqlite3ValueNew().
1394 ** Otherwise, if the second argument is non-zero, then this function is
1395 ** being called indirectly by sqlite3Stat4ProbeSetValue(). If it has not
1396 ** already been allocated, allocate the UnpackedRecord structure that
1397 ** that function will return to its caller here. Then return a pointer to
1398 ** an sqlite3_value within the UnpackedRecord.a[] array.
1400 static sqlite3_value
*valueNew(sqlite3
*db
, struct ValueNewStat4Ctx
*p
){
1401 #ifdef SQLITE_ENABLE_STAT4
1403 UnpackedRecord
*pRec
= p
->ppRec
[0];
1406 Index
*pIdx
= p
->pIdx
; /* Index being probed */
1407 int nByte
; /* Bytes of space to allocate */
1408 int i
; /* Counter variable */
1409 int nCol
= pIdx
->nColumn
; /* Number of index columns including rowid */
1411 nByte
= sizeof(Mem
) * nCol
+ ROUND8(sizeof(UnpackedRecord
));
1412 pRec
= (UnpackedRecord
*)sqlite3DbMallocZero(db
, nByte
);
1414 pRec
->pKeyInfo
= sqlite3KeyInfoOfIndex(p
->pParse
, pIdx
);
1415 if( pRec
->pKeyInfo
){
1416 assert( pRec
->pKeyInfo
->nAllField
==nCol
);
1417 assert( pRec
->pKeyInfo
->enc
==ENC(db
) );
1418 pRec
->aMem
= (Mem
*)((u8
*)pRec
+ ROUND8(sizeof(UnpackedRecord
)));
1419 for(i
=0; i
<nCol
; i
++){
1420 pRec
->aMem
[i
].flags
= MEM_Null
;
1421 pRec
->aMem
[i
].db
= db
;
1424 sqlite3DbFreeNN(db
, pRec
);
1428 if( pRec
==0 ) return 0;
1432 pRec
->nField
= p
->iVal
+1;
1433 return &pRec
->aMem
[p
->iVal
];
1436 UNUSED_PARAMETER(p
);
1437 #endif /* defined(SQLITE_ENABLE_STAT4) */
1438 return sqlite3ValueNew(db
);
1442 ** The expression object indicated by the second argument is guaranteed
1443 ** to be a scalar SQL function. If
1445 ** * all function arguments are SQL literals,
1446 ** * one of the SQLITE_FUNC_CONSTANT or _SLOCHNG function flags is set, and
1447 ** * the SQLITE_FUNC_NEEDCOLL function flag is not set,
1449 ** then this routine attempts to invoke the SQL function. Assuming no
1450 ** error occurs, output parameter (*ppVal) is set to point to a value
1451 ** object containing the result before returning SQLITE_OK.
1453 ** Affinity aff is applied to the result of the function before returning.
1454 ** If the result is a text value, the sqlite3_value object uses encoding
1457 ** If the conditions above are not met, this function returns SQLITE_OK
1458 ** and sets (*ppVal) to NULL. Or, if an error occurs, (*ppVal) is set to
1459 ** NULL and an SQLite error code returned.
1461 #ifdef SQLITE_ENABLE_STAT4
1462 static int valueFromFunction(
1463 sqlite3
*db
, /* The database connection */
1464 const Expr
*p
, /* The expression to evaluate */
1465 u8 enc
, /* Encoding to use */
1466 u8 aff
, /* Affinity to use */
1467 sqlite3_value
**ppVal
, /* Write the new value here */
1468 struct ValueNewStat4Ctx
*pCtx
/* Second argument for valueNew() */
1470 sqlite3_context ctx
; /* Context object for function invocation */
1471 sqlite3_value
**apVal
= 0; /* Function arguments */
1472 int nVal
= 0; /* Size of apVal[] array */
1473 FuncDef
*pFunc
= 0; /* Function definition */
1474 sqlite3_value
*pVal
= 0; /* New value */
1475 int rc
= SQLITE_OK
; /* Return code */
1476 ExprList
*pList
= 0; /* Function arguments */
1477 int i
; /* Iterator variable */
1480 assert( (p
->flags
& EP_TokenOnly
)==0 );
1481 assert( ExprUseXList(p
) );
1483 if( pList
) nVal
= pList
->nExpr
;
1484 assert( !ExprHasProperty(p
, EP_IntValue
) );
1485 pFunc
= sqlite3FindFunction(db
, p
->u
.zToken
, nVal
, enc
, 0);
1487 if( (pFunc
->funcFlags
& (SQLITE_FUNC_CONSTANT
|SQLITE_FUNC_SLOCHNG
))==0
1488 || (pFunc
->funcFlags
& SQLITE_FUNC_NEEDCOLL
)
1494 apVal
= (sqlite3_value
**)sqlite3DbMallocZero(db
, sizeof(apVal
[0]) * nVal
);
1496 rc
= SQLITE_NOMEM_BKPT
;
1497 goto value_from_function_out
;
1499 for(i
=0; i
<nVal
; i
++){
1500 rc
= sqlite3ValueFromExpr(db
, pList
->a
[i
].pExpr
, enc
, aff
, &apVal
[i
]);
1501 if( apVal
[i
]==0 || rc
!=SQLITE_OK
) goto value_from_function_out
;
1505 pVal
= valueNew(db
, pCtx
);
1507 rc
= SQLITE_NOMEM_BKPT
;
1508 goto value_from_function_out
;
1511 memset(&ctx
, 0, sizeof(ctx
));
1515 pFunc
->xSFunc(&ctx
, nVal
, apVal
);
1518 sqlite3ErrorMsg(pCtx
->pParse
, "%s", sqlite3_value_text(pVal
));
1520 sqlite3ValueApplyAffinity(pVal
, aff
, SQLITE_UTF8
);
1521 assert( rc
==SQLITE_OK
);
1522 assert( enc
==pVal
->enc
1523 || (pVal
->flags
& MEM_Str
)==0
1524 || db
->mallocFailed
);
1525 #if 0 /* Not reachable except after a prior failure */
1526 rc
= sqlite3VdbeChangeEncoding(pVal
, enc
);
1527 if( rc
==SQLITE_OK
&& sqlite3VdbeMemTooBig(pVal
) ){
1529 pCtx
->pParse
->nErr
++;
1534 value_from_function_out
:
1535 if( rc
!=SQLITE_OK
){
1537 pCtx
->pParse
->rc
= rc
;
1540 for(i
=0; i
<nVal
; i
++){
1541 sqlite3ValueFree(apVal
[i
]);
1543 sqlite3DbFreeNN(db
, apVal
);
1550 # define valueFromFunction(a,b,c,d,e,f) SQLITE_OK
1551 #endif /* defined(SQLITE_ENABLE_STAT4) */
1554 ** Extract a value from the supplied expression in the manner described
1555 ** above sqlite3ValueFromExpr(). Allocate the sqlite3_value object
1556 ** using valueNew().
1558 ** If pCtx is NULL and an error occurs after the sqlite3_value object
1559 ** has been allocated, it is freed before returning. Or, if pCtx is not
1560 ** NULL, it is assumed that the caller will free any allocated object
1563 static int valueFromExpr(
1564 sqlite3
*db
, /* The database connection */
1565 const Expr
*pExpr
, /* The expression to evaluate */
1566 u8 enc
, /* Encoding to use */
1567 u8 affinity
, /* Affinity to use */
1568 sqlite3_value
**ppVal
, /* Write the new value here */
1569 struct ValueNewStat4Ctx
*pCtx
/* Second argument for valueNew() */
1573 sqlite3_value
*pVal
= 0;
1575 const char *zNeg
= "";
1579 while( (op
= pExpr
->op
)==TK_UPLUS
|| op
==TK_SPAN
) pExpr
= pExpr
->pLeft
;
1580 if( op
==TK_REGISTER
) op
= pExpr
->op2
;
1582 /* Compressed expressions only appear when parsing the DEFAULT clause
1583 ** on a table column definition, and hence only when pCtx==0. This
1584 ** check ensures that an EP_TokenOnly expression is never passed down
1585 ** into valueFromFunction(). */
1586 assert( (pExpr
->flags
& EP_TokenOnly
)==0 || pCtx
==0 );
1590 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
1591 aff
= sqlite3AffinityType(pExpr
->u
.zToken
,0);
1592 rc
= valueFromExpr(db
, pExpr
->pLeft
, enc
, aff
, ppVal
, pCtx
);
1593 testcase( rc
!=SQLITE_OK
);
1595 sqlite3VdbeMemCast(*ppVal
, aff
, enc
);
1596 sqlite3ValueApplyAffinity(*ppVal
, affinity
, enc
);
1601 /* Handle negative integers in a single step. This is needed in the
1602 ** case when the value is -9223372036854775808.
1605 && (pExpr
->pLeft
->op
==TK_INTEGER
|| pExpr
->pLeft
->op
==TK_FLOAT
) ){
1606 pExpr
= pExpr
->pLeft
;
1612 if( op
==TK_STRING
|| op
==TK_FLOAT
|| op
==TK_INTEGER
){
1613 pVal
= valueNew(db
, pCtx
);
1614 if( pVal
==0 ) goto no_mem
;
1615 if( ExprHasProperty(pExpr
, EP_IntValue
) ){
1616 sqlite3VdbeMemSetInt64(pVal
, (i64
)pExpr
->u
.iValue
*negInt
);
1618 zVal
= sqlite3MPrintf(db
, "%s%s", zNeg
, pExpr
->u
.zToken
);
1619 if( zVal
==0 ) goto no_mem
;
1620 sqlite3ValueSetStr(pVal
, -1, zVal
, SQLITE_UTF8
, SQLITE_DYNAMIC
);
1622 if( (op
==TK_INTEGER
|| op
==TK_FLOAT
) && affinity
==SQLITE_AFF_BLOB
){
1623 sqlite3ValueApplyAffinity(pVal
, SQLITE_AFF_NUMERIC
, SQLITE_UTF8
);
1625 sqlite3ValueApplyAffinity(pVal
, affinity
, SQLITE_UTF8
);
1627 assert( (pVal
->flags
& MEM_IntReal
)==0 );
1628 if( pVal
->flags
& (MEM_Int
|MEM_IntReal
|MEM_Real
) ){
1629 testcase( pVal
->flags
& MEM_Int
);
1630 testcase( pVal
->flags
& MEM_Real
);
1631 pVal
->flags
&= ~MEM_Str
;
1633 if( enc
!=SQLITE_UTF8
){
1634 rc
= sqlite3VdbeChangeEncoding(pVal
, enc
);
1636 }else if( op
==TK_UMINUS
) {
1637 /* This branch happens for multiple negative signs. Ex: -(-5) */
1638 if( SQLITE_OK
==valueFromExpr(db
,pExpr
->pLeft
,enc
,affinity
,&pVal
,pCtx
)
1641 sqlite3VdbeMemNumerify(pVal
);
1642 if( pVal
->flags
& MEM_Real
){
1643 pVal
->u
.r
= -pVal
->u
.r
;
1644 }else if( pVal
->u
.i
==SMALLEST_INT64
){
1645 #ifndef SQLITE_OMIT_FLOATING_POINT
1646 pVal
->u
.r
= -(double)SMALLEST_INT64
;
1648 pVal
->u
.r
= LARGEST_INT64
;
1650 MemSetTypeFlag(pVal
, MEM_Real
);
1652 pVal
->u
.i
= -pVal
->u
.i
;
1654 sqlite3ValueApplyAffinity(pVal
, affinity
, enc
);
1656 }else if( op
==TK_NULL
){
1657 pVal
= valueNew(db
, pCtx
);
1658 if( pVal
==0 ) goto no_mem
;
1659 sqlite3VdbeMemSetNull(pVal
);
1661 #ifndef SQLITE_OMIT_BLOB_LITERAL
1662 else if( op
==TK_BLOB
){
1664 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
1665 assert( pExpr
->u
.zToken
[0]=='x' || pExpr
->u
.zToken
[0]=='X' );
1666 assert( pExpr
->u
.zToken
[1]=='\'' );
1667 pVal
= valueNew(db
, pCtx
);
1668 if( !pVal
) goto no_mem
;
1669 zVal
= &pExpr
->u
.zToken
[2];
1670 nVal
= sqlite3Strlen30(zVal
)-1;
1671 assert( zVal
[nVal
]=='\'' );
1672 sqlite3VdbeMemSetStr(pVal
, sqlite3HexToBlob(db
, zVal
, nVal
), nVal
/2,
1676 #ifdef SQLITE_ENABLE_STAT4
1677 else if( op
==TK_FUNCTION
&& pCtx
!=0 ){
1678 rc
= valueFromFunction(db
, pExpr
, enc
, affinity
, &pVal
, pCtx
);
1681 else if( op
==TK_TRUEFALSE
){
1682 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
1683 pVal
= valueNew(db
, pCtx
);
1685 pVal
->flags
= MEM_Int
;
1686 pVal
->u
.i
= pExpr
->u
.zToken
[4]==0;
1694 #ifdef SQLITE_ENABLE_STAT4
1695 if( pCtx
==0 || NEVER(pCtx
->pParse
->nErr
==0) )
1697 sqlite3OomFault(db
);
1698 sqlite3DbFree(db
, zVal
);
1699 assert( *ppVal
==0 );
1700 #ifdef SQLITE_ENABLE_STAT4
1701 if( pCtx
==0 ) sqlite3ValueFree(pVal
);
1703 assert( pCtx
==0 ); sqlite3ValueFree(pVal
);
1705 return SQLITE_NOMEM_BKPT
;
1709 ** Create a new sqlite3_value object, containing the value of pExpr.
1711 ** This only works for very simple expressions that consist of one constant
1712 ** token (i.e. "5", "5.1", "'a string'"). If the expression can
1713 ** be converted directly into a value, then the value is allocated and
1714 ** a pointer written to *ppVal. The caller is responsible for deallocating
1715 ** the value by passing it to sqlite3ValueFree() later on. If the expression
1716 ** cannot be converted to a value, then *ppVal is set to NULL.
1718 int sqlite3ValueFromExpr(
1719 sqlite3
*db
, /* The database connection */
1720 const Expr
*pExpr
, /* The expression to evaluate */
1721 u8 enc
, /* Encoding to use */
1722 u8 affinity
, /* Affinity to use */
1723 sqlite3_value
**ppVal
/* Write the new value here */
1725 return pExpr
? valueFromExpr(db
, pExpr
, enc
, affinity
, ppVal
, 0) : 0;
1728 #ifdef SQLITE_ENABLE_STAT4
1730 ** Attempt to extract a value from pExpr and use it to construct *ppVal.
1732 ** If pAlloc is not NULL, then an UnpackedRecord object is created for
1733 ** pAlloc if one does not exist and the new value is added to the
1734 ** UnpackedRecord object.
1736 ** A value is extracted in the following cases:
1738 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL,
1740 ** * The expression is a bound variable, and this is a reprepare, or
1742 ** * The expression is a literal value.
1744 ** On success, *ppVal is made to point to the extracted value. The caller
1745 ** is responsible for ensuring that the value is eventually freed.
1747 static int stat4ValueFromExpr(
1748 Parse
*pParse
, /* Parse context */
1749 Expr
*pExpr
, /* The expression to extract a value from */
1750 u8 affinity
, /* Affinity to use */
1751 struct ValueNewStat4Ctx
*pAlloc
,/* How to allocate space. Or NULL */
1752 sqlite3_value
**ppVal
/* OUT: New value object (or NULL) */
1755 sqlite3_value
*pVal
= 0;
1756 sqlite3
*db
= pParse
->db
;
1758 /* Skip over any TK_COLLATE nodes */
1759 pExpr
= sqlite3ExprSkipCollate(pExpr
);
1761 assert( pExpr
==0 || pExpr
->op
!=TK_REGISTER
|| pExpr
->op2
!=TK_VARIABLE
);
1763 pVal
= valueNew(db
, pAlloc
);
1765 sqlite3VdbeMemSetNull((Mem
*)pVal
);
1767 }else if( pExpr
->op
==TK_VARIABLE
&& (db
->flags
& SQLITE_EnableQPSG
)==0 ){
1769 int iBindVar
= pExpr
->iColumn
;
1770 sqlite3VdbeSetVarmask(pParse
->pVdbe
, iBindVar
);
1771 if( (v
= pParse
->pReprepare
)!=0 ){
1772 pVal
= valueNew(db
, pAlloc
);
1774 rc
= sqlite3VdbeMemCopy((Mem
*)pVal
, &v
->aVar
[iBindVar
-1]);
1775 sqlite3ValueApplyAffinity(pVal
, affinity
, ENC(db
));
1776 pVal
->db
= pParse
->db
;
1780 rc
= valueFromExpr(db
, pExpr
, ENC(db
), affinity
, &pVal
, pAlloc
);
1783 assert( pVal
==0 || pVal
->db
==db
);
1789 ** This function is used to allocate and populate UnpackedRecord
1790 ** structures intended to be compared against sample index keys stored
1791 ** in the sqlite_stat4 table.
1793 ** A single call to this function populates zero or more fields of the
1794 ** record starting with field iVal (fields are numbered from left to
1795 ** right starting with 0). A single field is populated if:
1797 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL,
1799 ** * The expression is a bound variable, and this is a reprepare, or
1801 ** * The sqlite3ValueFromExpr() function is able to extract a value
1802 ** from the expression (i.e. the expression is a literal value).
1804 ** Or, if pExpr is a TK_VECTOR, one field is populated for each of the
1805 ** vector components that match either of the two latter criteria listed
1808 ** Before any value is appended to the record, the affinity of the
1809 ** corresponding column within index pIdx is applied to it. Before
1810 ** this function returns, output parameter *pnExtract is set to the
1811 ** number of values appended to the record.
1813 ** When this function is called, *ppRec must either point to an object
1814 ** allocated by an earlier call to this function, or must be NULL. If it
1815 ** is NULL and a value can be successfully extracted, a new UnpackedRecord
1816 ** is allocated (and *ppRec set to point to it) before returning.
1818 ** Unless an error is encountered, SQLITE_OK is returned. It is not an
1819 ** error if a value cannot be extracted from pExpr. If an error does
1820 ** occur, an SQLite error code is returned.
1822 int sqlite3Stat4ProbeSetValue(
1823 Parse
*pParse
, /* Parse context */
1824 Index
*pIdx
, /* Index being probed */
1825 UnpackedRecord
**ppRec
, /* IN/OUT: Probe record */
1826 Expr
*pExpr
, /* The expression to extract a value from */
1827 int nElem
, /* Maximum number of values to append */
1828 int iVal
, /* Array element to populate */
1829 int *pnExtract
/* OUT: Values appended to the record */
1834 if( pExpr
==0 || pExpr
->op
!=TK_SELECT
){
1836 struct ValueNewStat4Ctx alloc
;
1838 alloc
.pParse
= pParse
;
1840 alloc
.ppRec
= ppRec
;
1842 for(i
=0; i
<nElem
; i
++){
1843 sqlite3_value
*pVal
= 0;
1844 Expr
*pElem
= (pExpr
? sqlite3VectorFieldSubexpr(pExpr
, i
) : 0);
1845 u8 aff
= sqlite3IndexColumnAffinity(pParse
->db
, pIdx
, iVal
+i
);
1846 alloc
.iVal
= iVal
+i
;
1847 rc
= stat4ValueFromExpr(pParse
, pElem
, aff
, &alloc
, &pVal
);
1853 *pnExtract
= nExtract
;
1858 ** Attempt to extract a value from expression pExpr using the methods
1859 ** as described for sqlite3Stat4ProbeSetValue() above.
1861 ** If successful, set *ppVal to point to a new value object and return
1862 ** SQLITE_OK. If no value can be extracted, but no other error occurs
1863 ** (e.g. OOM), return SQLITE_OK and set *ppVal to NULL. Or, if an error
1864 ** does occur, return an SQLite error code. The final value of *ppVal
1865 ** is undefined in this case.
1867 int sqlite3Stat4ValueFromExpr(
1868 Parse
*pParse
, /* Parse context */
1869 Expr
*pExpr
, /* The expression to extract a value from */
1870 u8 affinity
, /* Affinity to use */
1871 sqlite3_value
**ppVal
/* OUT: New value object (or NULL) */
1873 return stat4ValueFromExpr(pParse
, pExpr
, affinity
, 0, ppVal
);
1877 ** Extract the iCol-th column from the nRec-byte record in pRec. Write
1878 ** the column value into *ppVal. If *ppVal is initially NULL then a new
1879 ** sqlite3_value object is allocated.
1881 ** If *ppVal is initially NULL then the caller is responsible for
1882 ** ensuring that the value written into *ppVal is eventually freed.
1884 int sqlite3Stat4Column(
1885 sqlite3
*db
, /* Database handle */
1886 const void *pRec
, /* Pointer to buffer containing record */
1887 int nRec
, /* Size of buffer pRec in bytes */
1888 int iCol
, /* Column to extract */
1889 sqlite3_value
**ppVal
/* OUT: Extracted value */
1891 u32 t
= 0; /* a column type code */
1892 int nHdr
; /* Size of the header in the record */
1893 int iHdr
; /* Next unread header byte */
1894 int iField
; /* Next unread data byte */
1895 int szField
= 0; /* Size of the current data field */
1896 int i
; /* Column index */
1897 u8
*a
= (u8
*)pRec
; /* Typecast byte array */
1898 Mem
*pMem
= *ppVal
; /* Write result into this Mem object */
1901 iHdr
= getVarint32(a
, nHdr
);
1902 if( nHdr
>nRec
|| iHdr
>=nHdr
) return SQLITE_CORRUPT_BKPT
;
1904 for(i
=0; i
<=iCol
; i
++){
1905 iHdr
+= getVarint32(&a
[iHdr
], t
);
1906 testcase( iHdr
==nHdr
);
1907 testcase( iHdr
==nHdr
+1 );
1908 if( iHdr
>nHdr
) return SQLITE_CORRUPT_BKPT
;
1909 szField
= sqlite3VdbeSerialTypeLen(t
);
1912 testcase( iField
==nRec
);
1913 testcase( iField
==nRec
+1 );
1914 if( iField
>nRec
) return SQLITE_CORRUPT_BKPT
;
1916 pMem
= *ppVal
= sqlite3ValueNew(db
);
1917 if( pMem
==0 ) return SQLITE_NOMEM_BKPT
;
1919 sqlite3VdbeSerialGet(&a
[iField
-szField
], t
, pMem
);
1920 pMem
->enc
= ENC(db
);
1925 ** Unless it is NULL, the argument must be an UnpackedRecord object returned
1926 ** by an earlier call to sqlite3Stat4ProbeSetValue(). This call deletes
1929 void sqlite3Stat4ProbeFree(UnpackedRecord
*pRec
){
1932 int nCol
= pRec
->pKeyInfo
->nAllField
;
1933 Mem
*aMem
= pRec
->aMem
;
1934 sqlite3
*db
= aMem
[0].db
;
1935 for(i
=0; i
<nCol
; i
++){
1936 sqlite3VdbeMemRelease(&aMem
[i
]);
1938 sqlite3KeyInfoUnref(pRec
->pKeyInfo
);
1939 sqlite3DbFreeNN(db
, pRec
);
1942 #endif /* ifdef SQLITE_ENABLE_STAT4 */
1945 ** Change the string value of an sqlite3_value object
1947 void sqlite3ValueSetStr(
1948 sqlite3_value
*v
, /* Value to be set */
1949 int n
, /* Length of string z */
1950 const void *z
, /* Text of the new string */
1951 u8 enc
, /* Encoding to use */
1952 void (*xDel
)(void*) /* Destructor for the string */
1954 if( v
) sqlite3VdbeMemSetStr((Mem
*)v
, z
, n
, enc
, xDel
);
1958 ** Free an sqlite3_value object
1960 void sqlite3ValueFree(sqlite3_value
*v
){
1962 sqlite3VdbeMemRelease((Mem
*)v
);
1963 sqlite3DbFreeNN(((Mem
*)v
)->db
, v
);
1967 ** The sqlite3ValueBytes() routine returns the number of bytes in the
1968 ** sqlite3_value object assuming that it uses the encoding "enc".
1969 ** The valueBytes() routine is a helper function.
1971 static SQLITE_NOINLINE
int valueBytes(sqlite3_value
*pVal
, u8 enc
){
1972 return valueToText(pVal
, enc
)!=0 ? pVal
->n
: 0;
1974 int sqlite3ValueBytes(sqlite3_value
*pVal
, u8 enc
){
1975 Mem
*p
= (Mem
*)pVal
;
1976 assert( (p
->flags
& MEM_Null
)==0 || (p
->flags
& (MEM_Str
|MEM_Blob
))==0 );
1977 if( (p
->flags
& MEM_Str
)!=0 && pVal
->enc
==enc
){
1980 if( (p
->flags
& MEM_Str
)!=0 && enc
!=SQLITE_UTF8
&& pVal
->enc
!=SQLITE_UTF8
){
1983 if( (p
->flags
& MEM_Blob
)!=0 ){
1984 if( p
->flags
& MEM_Zero
){
1985 return p
->n
+ p
->u
.nZero
;
1990 if( p
->flags
& MEM_Null
) return 0;
1991 return valueBytes(pVal
, enc
);