Snapshot of upstream SQLite 3.41.0
[sqlcipher.git] / src / vdbemem.c
blobbe52062d5511a3b95f481ba131a8628195f7ad72
1 /*
2 ** 2004 May 26
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
13 ** This file contains code use to manipulate "Mem" structure. A "Mem"
14 ** stores a single value in the VDBE. Mem is an opaque structure visible
15 ** only within the VDBE. Interface routines refer to a Mem using the
16 ** name sqlite_value
18 #include "sqliteInt.h"
19 #include "vdbeInt.h"
21 /* True if X is a power of two. 0 is considered a power of two here.
22 ** In other words, return true if X has at most one bit set.
24 #define ISPOWEROF2(X) (((X)&((X)-1))==0)
26 #ifdef SQLITE_DEBUG
28 ** Check invariants on a Mem object.
30 ** This routine is intended for use inside of assert() statements, like
31 ** this: assert( sqlite3VdbeCheckMemInvariants(pMem) );
33 int sqlite3VdbeCheckMemInvariants(Mem *p){
34 /* If MEM_Dyn is set then Mem.xDel!=0.
35 ** Mem.xDel might not be initialized if MEM_Dyn is clear.
37 assert( (p->flags & MEM_Dyn)==0 || p->xDel!=0 );
39 /* MEM_Dyn may only be set if Mem.szMalloc==0. In this way we
40 ** ensure that if Mem.szMalloc>0 then it is safe to do
41 ** Mem.z = Mem.zMalloc without having to check Mem.flags&MEM_Dyn.
42 ** That saves a few cycles in inner loops. */
43 assert( (p->flags & MEM_Dyn)==0 || p->szMalloc==0 );
45 /* Cannot have more than one of MEM_Int, MEM_Real, or MEM_IntReal */
46 assert( ISPOWEROF2(p->flags & (MEM_Int|MEM_Real|MEM_IntReal)) );
48 if( p->flags & MEM_Null ){
49 /* Cannot be both MEM_Null and some other type */
50 assert( (p->flags & (MEM_Int|MEM_Real|MEM_Str|MEM_Blob|MEM_Agg))==0 );
52 /* If MEM_Null is set, then either the value is a pure NULL (the usual
53 ** case) or it is a pointer set using sqlite3_bind_pointer() or
54 ** sqlite3_result_pointer(). If a pointer, then MEM_Term must also be
55 ** set.
57 if( (p->flags & (MEM_Term|MEM_Subtype))==(MEM_Term|MEM_Subtype) ){
58 /* This is a pointer type. There may be a flag to indicate what to
59 ** do with the pointer. */
60 assert( ((p->flags&MEM_Dyn)!=0 ? 1 : 0) +
61 ((p->flags&MEM_Ephem)!=0 ? 1 : 0) +
62 ((p->flags&MEM_Static)!=0 ? 1 : 0) <= 1 );
64 /* No other bits set */
65 assert( (p->flags & ~(MEM_Null|MEM_Term|MEM_Subtype|MEM_FromBind
66 |MEM_Dyn|MEM_Ephem|MEM_Static))==0 );
67 }else{
68 /* A pure NULL might have other flags, such as MEM_Static, MEM_Dyn,
69 ** MEM_Ephem, MEM_Cleared, or MEM_Subtype */
71 }else{
72 /* The MEM_Cleared bit is only allowed on NULLs */
73 assert( (p->flags & MEM_Cleared)==0 );
76 /* The szMalloc field holds the correct memory allocation size */
77 assert( p->szMalloc==0
78 || (p->flags==MEM_Undefined
79 && p->szMalloc<=sqlite3DbMallocSize(p->db,p->zMalloc))
80 || p->szMalloc==sqlite3DbMallocSize(p->db,p->zMalloc));
82 /* If p holds a string or blob, the Mem.z must point to exactly
83 ** one of the following:
85 ** (1) Memory in Mem.zMalloc and managed by the Mem object
86 ** (2) Memory to be freed using Mem.xDel
87 ** (3) An ephemeral string or blob
88 ** (4) A static string or blob
90 if( (p->flags & (MEM_Str|MEM_Blob)) && p->n>0 ){
91 assert(
92 ((p->szMalloc>0 && p->z==p->zMalloc)? 1 : 0) +
93 ((p->flags&MEM_Dyn)!=0 ? 1 : 0) +
94 ((p->flags&MEM_Ephem)!=0 ? 1 : 0) +
95 ((p->flags&MEM_Static)!=0 ? 1 : 0) == 1
98 return 1;
100 #endif
103 ** Render a Mem object which is one of MEM_Int, MEM_Real, or MEM_IntReal
104 ** into a buffer.
106 static void vdbeMemRenderNum(int sz, char *zBuf, Mem *p){
107 StrAccum acc;
108 assert( p->flags & (MEM_Int|MEM_Real|MEM_IntReal) );
109 assert( sz>22 );
110 if( p->flags & MEM_Int ){
111 #if GCC_VERSION>=7000000
112 /* Work-around for GCC bug
113 ** https://gcc.gnu.org/bugzilla/show_bug.cgi?id=96270 */
114 i64 x;
115 assert( (p->flags&MEM_Int)*2==sizeof(x) );
116 memcpy(&x, (char*)&p->u, (p->flags&MEM_Int)*2);
117 p->n = sqlite3Int64ToText(x, zBuf);
118 #else
119 p->n = sqlite3Int64ToText(p->u.i, zBuf);
120 #endif
121 }else{
122 sqlite3StrAccumInit(&acc, 0, zBuf, sz, 0);
123 sqlite3_str_appendf(&acc, "%!.15g",
124 (p->flags & MEM_IntReal)!=0 ? (double)p->u.i : p->u.r);
125 assert( acc.zText==zBuf && acc.mxAlloc<=0 );
126 zBuf[acc.nChar] = 0; /* Fast version of sqlite3StrAccumFinish(&acc) */
127 p->n = acc.nChar;
131 #ifdef SQLITE_DEBUG
133 ** Validity checks on pMem. pMem holds a string.
135 ** (1) Check that string value of pMem agrees with its integer or real value.
136 ** (2) Check that the string is correctly zero terminated
138 ** A single int or real value always converts to the same strings. But
139 ** many different strings can be converted into the same int or real.
140 ** If a table contains a numeric value and an index is based on the
141 ** corresponding string value, then it is important that the string be
142 ** derived from the numeric value, not the other way around, to ensure
143 ** that the index and table are consistent. See ticket
144 ** https://www.sqlite.org/src/info/343634942dd54ab (2018-01-31) for
145 ** an example.
147 ** This routine looks at pMem to verify that if it has both a numeric
148 ** representation and a string representation then the string rep has
149 ** been derived from the numeric and not the other way around. It returns
150 ** true if everything is ok and false if there is a problem.
152 ** This routine is for use inside of assert() statements only.
154 int sqlite3VdbeMemValidStrRep(Mem *p){
155 Mem tmp;
156 char zBuf[100];
157 char *z;
158 int i, j, incr;
159 if( (p->flags & MEM_Str)==0 ) return 1;
160 if( p->flags & MEM_Term ){
161 /* Insure that the string is properly zero-terminated. Pay particular
162 ** attention to the case where p->n is odd */
163 if( p->szMalloc>0 && p->z==p->zMalloc ){
164 assert( p->enc==SQLITE_UTF8 || p->szMalloc >= ((p->n+1)&~1)+2 );
165 assert( p->enc!=SQLITE_UTF8 || p->szMalloc >= p->n+1 );
167 assert( p->z[p->n]==0 );
168 assert( p->enc==SQLITE_UTF8 || p->z[(p->n+1)&~1]==0 );
169 assert( p->enc==SQLITE_UTF8 || p->z[((p->n+1)&~1)+1]==0 );
171 if( (p->flags & (MEM_Int|MEM_Real|MEM_IntReal))==0 ) return 1;
172 memcpy(&tmp, p, sizeof(tmp));
173 vdbeMemRenderNum(sizeof(zBuf), zBuf, &tmp);
174 z = p->z;
175 i = j = 0;
176 incr = 1;
177 if( p->enc!=SQLITE_UTF8 ){
178 incr = 2;
179 if( p->enc==SQLITE_UTF16BE ) z++;
181 while( zBuf[j] ){
182 if( zBuf[j++]!=z[i] ) return 0;
183 i += incr;
185 return 1;
187 #endif /* SQLITE_DEBUG */
190 ** If pMem is an object with a valid string representation, this routine
191 ** ensures the internal encoding for the string representation is
192 ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE.
194 ** If pMem is not a string object, or the encoding of the string
195 ** representation is already stored using the requested encoding, then this
196 ** routine is a no-op.
198 ** SQLITE_OK is returned if the conversion is successful (or not required).
199 ** SQLITE_NOMEM may be returned if a malloc() fails during conversion
200 ** between formats.
202 int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){
203 #ifndef SQLITE_OMIT_UTF16
204 int rc;
205 #endif
206 assert( pMem!=0 );
207 assert( !sqlite3VdbeMemIsRowSet(pMem) );
208 assert( desiredEnc==SQLITE_UTF8 || desiredEnc==SQLITE_UTF16LE
209 || desiredEnc==SQLITE_UTF16BE );
210 if( !(pMem->flags&MEM_Str) ){
211 pMem->enc = desiredEnc;
212 return SQLITE_OK;
214 if( pMem->enc==desiredEnc ){
215 return SQLITE_OK;
217 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
218 #ifdef SQLITE_OMIT_UTF16
219 return SQLITE_ERROR;
220 #else
222 /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned,
223 ** then the encoding of the value may not have changed.
225 rc = sqlite3VdbeMemTranslate(pMem, (u8)desiredEnc);
226 assert(rc==SQLITE_OK || rc==SQLITE_NOMEM);
227 assert(rc==SQLITE_OK || pMem->enc!=desiredEnc);
228 assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc);
229 return rc;
230 #endif
234 ** Make sure pMem->z points to a writable allocation of at least n bytes.
236 ** If the bPreserve argument is true, then copy of the content of
237 ** pMem->z into the new allocation. pMem must be either a string or
238 ** blob if bPreserve is true. If bPreserve is false, any prior content
239 ** in pMem->z is discarded.
241 SQLITE_NOINLINE int sqlite3VdbeMemGrow(Mem *pMem, int n, int bPreserve){
242 assert( sqlite3VdbeCheckMemInvariants(pMem) );
243 assert( !sqlite3VdbeMemIsRowSet(pMem) );
244 testcase( pMem->db==0 );
246 /* If the bPreserve flag is set to true, then the memory cell must already
247 ** contain a valid string or blob value. */
248 assert( bPreserve==0 || pMem->flags&(MEM_Blob|MEM_Str) );
249 testcase( bPreserve && pMem->z==0 );
251 assert( pMem->szMalloc==0
252 || (pMem->flags==MEM_Undefined
253 && pMem->szMalloc<=sqlite3DbMallocSize(pMem->db,pMem->zMalloc))
254 || pMem->szMalloc==sqlite3DbMallocSize(pMem->db,pMem->zMalloc));
255 if( pMem->szMalloc>0 && bPreserve && pMem->z==pMem->zMalloc ){
256 if( pMem->db ){
257 pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n);
258 }else{
259 pMem->zMalloc = sqlite3Realloc(pMem->z, n);
260 if( pMem->zMalloc==0 ) sqlite3_free(pMem->z);
261 pMem->z = pMem->zMalloc;
263 bPreserve = 0;
264 }else{
265 if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc);
266 pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n);
268 if( pMem->zMalloc==0 ){
269 sqlite3VdbeMemSetNull(pMem);
270 pMem->z = 0;
271 pMem->szMalloc = 0;
272 return SQLITE_NOMEM_BKPT;
273 }else{
274 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc);
277 if( bPreserve && pMem->z ){
278 assert( pMem->z!=pMem->zMalloc );
279 memcpy(pMem->zMalloc, pMem->z, pMem->n);
281 if( (pMem->flags&MEM_Dyn)!=0 ){
282 assert( pMem->xDel!=0 && pMem->xDel!=SQLITE_DYNAMIC );
283 pMem->xDel((void *)(pMem->z));
286 pMem->z = pMem->zMalloc;
287 pMem->flags &= ~(MEM_Dyn|MEM_Ephem|MEM_Static);
288 return SQLITE_OK;
292 ** Change the pMem->zMalloc allocation to be at least szNew bytes.
293 ** If pMem->zMalloc already meets or exceeds the requested size, this
294 ** routine is a no-op.
296 ** Any prior string or blob content in the pMem object may be discarded.
297 ** The pMem->xDel destructor is called, if it exists. Though MEM_Str
298 ** and MEM_Blob values may be discarded, MEM_Int, MEM_Real, MEM_IntReal,
299 ** and MEM_Null values are preserved.
301 ** Return SQLITE_OK on success or an error code (probably SQLITE_NOMEM)
302 ** if unable to complete the resizing.
304 int sqlite3VdbeMemClearAndResize(Mem *pMem, int szNew){
305 assert( CORRUPT_DB || szNew>0 );
306 assert( (pMem->flags & MEM_Dyn)==0 || pMem->szMalloc==0 );
307 if( pMem->szMalloc<szNew ){
308 return sqlite3VdbeMemGrow(pMem, szNew, 0);
310 assert( (pMem->flags & MEM_Dyn)==0 );
311 pMem->z = pMem->zMalloc;
312 pMem->flags &= (MEM_Null|MEM_Int|MEM_Real|MEM_IntReal);
313 return SQLITE_OK;
317 ** It is already known that pMem contains an unterminated string.
318 ** Add the zero terminator.
320 ** Three bytes of zero are added. In this way, there is guaranteed
321 ** to be a double-zero byte at an even byte boundary in order to
322 ** terminate a UTF16 string, even if the initial size of the buffer
323 ** is an odd number of bytes.
325 static SQLITE_NOINLINE int vdbeMemAddTerminator(Mem *pMem){
326 if( sqlite3VdbeMemGrow(pMem, pMem->n+3, 1) ){
327 return SQLITE_NOMEM_BKPT;
329 pMem->z[pMem->n] = 0;
330 pMem->z[pMem->n+1] = 0;
331 pMem->z[pMem->n+2] = 0;
332 pMem->flags |= MEM_Term;
333 return SQLITE_OK;
337 ** Change pMem so that its MEM_Str or MEM_Blob value is stored in
338 ** MEM.zMalloc, where it can be safely written.
340 ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
342 int sqlite3VdbeMemMakeWriteable(Mem *pMem){
343 assert( pMem!=0 );
344 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
345 assert( !sqlite3VdbeMemIsRowSet(pMem) );
346 if( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ){
347 if( ExpandBlob(pMem) ) return SQLITE_NOMEM;
348 if( pMem->szMalloc==0 || pMem->z!=pMem->zMalloc ){
349 int rc = vdbeMemAddTerminator(pMem);
350 if( rc ) return rc;
353 pMem->flags &= ~MEM_Ephem;
354 #ifdef SQLITE_DEBUG
355 pMem->pScopyFrom = 0;
356 #endif
358 return SQLITE_OK;
362 ** If the given Mem* has a zero-filled tail, turn it into an ordinary
363 ** blob stored in dynamically allocated space.
365 #ifndef SQLITE_OMIT_INCRBLOB
366 int sqlite3VdbeMemExpandBlob(Mem *pMem){
367 int nByte;
368 assert( pMem!=0 );
369 assert( pMem->flags & MEM_Zero );
370 assert( (pMem->flags&MEM_Blob)!=0 || MemNullNochng(pMem) );
371 testcase( sqlite3_value_nochange(pMem) );
372 assert( !sqlite3VdbeMemIsRowSet(pMem) );
373 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
375 /* Set nByte to the number of bytes required to store the expanded blob. */
376 nByte = pMem->n + pMem->u.nZero;
377 if( nByte<=0 ){
378 if( (pMem->flags & MEM_Blob)==0 ) return SQLITE_OK;
379 nByte = 1;
381 if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){
382 return SQLITE_NOMEM_BKPT;
384 assert( pMem->z!=0 );
385 assert( sqlite3DbMallocSize(pMem->db,pMem->z) >= nByte );
387 memset(&pMem->z[pMem->n], 0, pMem->u.nZero);
388 pMem->n += pMem->u.nZero;
389 pMem->flags &= ~(MEM_Zero|MEM_Term);
390 return SQLITE_OK;
392 #endif
395 ** Make sure the given Mem is \u0000 terminated.
397 int sqlite3VdbeMemNulTerminate(Mem *pMem){
398 assert( pMem!=0 );
399 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
400 testcase( (pMem->flags & (MEM_Term|MEM_Str))==(MEM_Term|MEM_Str) );
401 testcase( (pMem->flags & (MEM_Term|MEM_Str))==0 );
402 if( (pMem->flags & (MEM_Term|MEM_Str))!=MEM_Str ){
403 return SQLITE_OK; /* Nothing to do */
404 }else{
405 return vdbeMemAddTerminator(pMem);
410 ** Add MEM_Str to the set of representations for the given Mem. This
411 ** routine is only called if pMem is a number of some kind, not a NULL
412 ** or a BLOB.
414 ** Existing representations MEM_Int, MEM_Real, or MEM_IntReal are invalidated
415 ** if bForce is true but are retained if bForce is false.
417 ** A MEM_Null value will never be passed to this function. This function is
418 ** used for converting values to text for returning to the user (i.e. via
419 ** sqlite3_value_text()), or for ensuring that values to be used as btree
420 ** keys are strings. In the former case a NULL pointer is returned the
421 ** user and the latter is an internal programming error.
423 int sqlite3VdbeMemStringify(Mem *pMem, u8 enc, u8 bForce){
424 const int nByte = 32;
426 assert( pMem!=0 );
427 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
428 assert( !(pMem->flags&MEM_Zero) );
429 assert( !(pMem->flags&(MEM_Str|MEM_Blob)) );
430 assert( pMem->flags&(MEM_Int|MEM_Real|MEM_IntReal) );
431 assert( !sqlite3VdbeMemIsRowSet(pMem) );
432 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
435 if( sqlite3VdbeMemClearAndResize(pMem, nByte) ){
436 pMem->enc = 0;
437 return SQLITE_NOMEM_BKPT;
440 vdbeMemRenderNum(nByte, pMem->z, pMem);
441 assert( pMem->z!=0 );
442 assert( pMem->n==sqlite3Strlen30NN(pMem->z) );
443 pMem->enc = SQLITE_UTF8;
444 pMem->flags |= MEM_Str|MEM_Term;
445 if( bForce ) pMem->flags &= ~(MEM_Int|MEM_Real|MEM_IntReal);
446 sqlite3VdbeChangeEncoding(pMem, enc);
447 return SQLITE_OK;
451 ** Memory cell pMem contains the context of an aggregate function.
452 ** This routine calls the finalize method for that function. The
453 ** result of the aggregate is stored back into pMem.
455 ** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK
456 ** otherwise.
458 int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){
459 sqlite3_context ctx;
460 Mem t;
461 assert( pFunc!=0 );
462 assert( pMem!=0 );
463 assert( pMem->db!=0 );
464 assert( pFunc->xFinalize!=0 );
465 assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef );
466 assert( sqlite3_mutex_held(pMem->db->mutex) );
467 memset(&ctx, 0, sizeof(ctx));
468 memset(&t, 0, sizeof(t));
469 t.flags = MEM_Null;
470 t.db = pMem->db;
471 ctx.pOut = &t;
472 ctx.pMem = pMem;
473 ctx.pFunc = pFunc;
474 ctx.enc = ENC(t.db);
475 pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */
476 assert( (pMem->flags & MEM_Dyn)==0 );
477 if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc);
478 memcpy(pMem, &t, sizeof(t));
479 return ctx.isError;
483 ** Memory cell pAccum contains the context of an aggregate function.
484 ** This routine calls the xValue method for that function and stores
485 ** the results in memory cell pMem.
487 ** SQLITE_ERROR is returned if xValue() reports an error. SQLITE_OK
488 ** otherwise.
490 #ifndef SQLITE_OMIT_WINDOWFUNC
491 int sqlite3VdbeMemAggValue(Mem *pAccum, Mem *pOut, FuncDef *pFunc){
492 sqlite3_context ctx;
493 assert( pFunc!=0 );
494 assert( pFunc->xValue!=0 );
495 assert( (pAccum->flags & MEM_Null)!=0 || pFunc==pAccum->u.pDef );
496 assert( pAccum->db!=0 );
497 assert( sqlite3_mutex_held(pAccum->db->mutex) );
498 memset(&ctx, 0, sizeof(ctx));
499 sqlite3VdbeMemSetNull(pOut);
500 ctx.pOut = pOut;
501 ctx.pMem = pAccum;
502 ctx.pFunc = pFunc;
503 ctx.enc = ENC(pAccum->db);
504 pFunc->xValue(&ctx);
505 return ctx.isError;
507 #endif /* SQLITE_OMIT_WINDOWFUNC */
510 ** If the memory cell contains a value that must be freed by
511 ** invoking the external callback in Mem.xDel, then this routine
512 ** will free that value. It also sets Mem.flags to MEM_Null.
514 ** This is a helper routine for sqlite3VdbeMemSetNull() and
515 ** for sqlite3VdbeMemRelease(). Use those other routines as the
516 ** entry point for releasing Mem resources.
518 static SQLITE_NOINLINE void vdbeMemClearExternAndSetNull(Mem *p){
519 assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) );
520 assert( VdbeMemDynamic(p) );
521 if( p->flags&MEM_Agg ){
522 sqlite3VdbeMemFinalize(p, p->u.pDef);
523 assert( (p->flags & MEM_Agg)==0 );
524 testcase( p->flags & MEM_Dyn );
526 if( p->flags&MEM_Dyn ){
527 assert( p->xDel!=SQLITE_DYNAMIC && p->xDel!=0 );
528 p->xDel((void *)p->z);
530 p->flags = MEM_Null;
534 ** Release memory held by the Mem p, both external memory cleared
535 ** by p->xDel and memory in p->zMalloc.
537 ** This is a helper routine invoked by sqlite3VdbeMemRelease() in
538 ** the unusual case where there really is memory in p that needs
539 ** to be freed.
541 static SQLITE_NOINLINE void vdbeMemClear(Mem *p){
542 if( VdbeMemDynamic(p) ){
543 vdbeMemClearExternAndSetNull(p);
545 if( p->szMalloc ){
546 sqlite3DbFreeNN(p->db, p->zMalloc);
547 p->szMalloc = 0;
549 p->z = 0;
553 ** Release any memory resources held by the Mem. Both the memory that is
554 ** free by Mem.xDel and the Mem.zMalloc allocation are freed.
556 ** Use this routine prior to clean up prior to abandoning a Mem, or to
557 ** reset a Mem back to its minimum memory utilization.
559 ** Use sqlite3VdbeMemSetNull() to release just the Mem.xDel space
560 ** prior to inserting new content into the Mem.
562 void sqlite3VdbeMemRelease(Mem *p){
563 assert( sqlite3VdbeCheckMemInvariants(p) );
564 if( VdbeMemDynamic(p) || p->szMalloc ){
565 vdbeMemClear(p);
569 /* Like sqlite3VdbeMemRelease() but faster for cases where we
570 ** know in advance that the Mem is not MEM_Dyn or MEM_Agg.
572 void sqlite3VdbeMemReleaseMalloc(Mem *p){
573 assert( !VdbeMemDynamic(p) );
574 if( p->szMalloc ) vdbeMemClear(p);
578 ** Convert a 64-bit IEEE double into a 64-bit signed integer.
579 ** If the double is out of range of a 64-bit signed integer then
580 ** return the closest available 64-bit signed integer.
582 static SQLITE_NOINLINE i64 doubleToInt64(double r){
583 #ifdef SQLITE_OMIT_FLOATING_POINT
584 /* When floating-point is omitted, double and int64 are the same thing */
585 return r;
586 #else
588 ** Many compilers we encounter do not define constants for the
589 ** minimum and maximum 64-bit integers, or they define them
590 ** inconsistently. And many do not understand the "LL" notation.
591 ** So we define our own static constants here using nothing
592 ** larger than a 32-bit integer constant.
594 static const i64 maxInt = LARGEST_INT64;
595 static const i64 minInt = SMALLEST_INT64;
597 if( r<=(double)minInt ){
598 return minInt;
599 }else if( r>=(double)maxInt ){
600 return maxInt;
601 }else{
602 return (i64)r;
604 #endif
608 ** Return some kind of integer value which is the best we can do
609 ** at representing the value that *pMem describes as an integer.
610 ** If pMem is an integer, then the value is exact. If pMem is
611 ** a floating-point then the value returned is the integer part.
612 ** If pMem is a string or blob, then we make an attempt to convert
613 ** it into an integer and return that. If pMem represents an
614 ** an SQL-NULL value, return 0.
616 ** If pMem represents a string value, its encoding might be changed.
618 static SQLITE_NOINLINE i64 memIntValue(const Mem *pMem){
619 i64 value = 0;
620 sqlite3Atoi64(pMem->z, &value, pMem->n, pMem->enc);
621 return value;
623 i64 sqlite3VdbeIntValue(const Mem *pMem){
624 int flags;
625 assert( pMem!=0 );
626 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
627 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
628 flags = pMem->flags;
629 if( flags & (MEM_Int|MEM_IntReal) ){
630 testcase( flags & MEM_IntReal );
631 return pMem->u.i;
632 }else if( flags & MEM_Real ){
633 return doubleToInt64(pMem->u.r);
634 }else if( (flags & (MEM_Str|MEM_Blob))!=0 && pMem->z!=0 ){
635 return memIntValue(pMem);
636 }else{
637 return 0;
642 ** Return the best representation of pMem that we can get into a
643 ** double. If pMem is already a double or an integer, return its
644 ** value. If it is a string or blob, try to convert it to a double.
645 ** If it is a NULL, return 0.0.
647 static SQLITE_NOINLINE double memRealValue(Mem *pMem){
648 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
649 double val = (double)0;
650 sqlite3AtoF(pMem->z, &val, pMem->n, pMem->enc);
651 return val;
653 double sqlite3VdbeRealValue(Mem *pMem){
654 assert( pMem!=0 );
655 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
656 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
657 if( pMem->flags & MEM_Real ){
658 return pMem->u.r;
659 }else if( pMem->flags & (MEM_Int|MEM_IntReal) ){
660 testcase( pMem->flags & MEM_IntReal );
661 return (double)pMem->u.i;
662 }else if( pMem->flags & (MEM_Str|MEM_Blob) ){
663 return memRealValue(pMem);
664 }else{
665 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
666 return (double)0;
671 ** Return 1 if pMem represents true, and return 0 if pMem represents false.
672 ** Return the value ifNull if pMem is NULL.
674 int sqlite3VdbeBooleanValue(Mem *pMem, int ifNull){
675 testcase( pMem->flags & MEM_IntReal );
676 if( pMem->flags & (MEM_Int|MEM_IntReal) ) return pMem->u.i!=0;
677 if( pMem->flags & MEM_Null ) return ifNull;
678 return sqlite3VdbeRealValue(pMem)!=0.0;
682 ** The MEM structure is already a MEM_Real or MEM_IntReal. Try to
683 ** make it a MEM_Int if we can.
685 void sqlite3VdbeIntegerAffinity(Mem *pMem){
686 assert( pMem!=0 );
687 assert( pMem->flags & (MEM_Real|MEM_IntReal) );
688 assert( !sqlite3VdbeMemIsRowSet(pMem) );
689 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
690 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
692 if( pMem->flags & MEM_IntReal ){
693 MemSetTypeFlag(pMem, MEM_Int);
694 }else{
695 i64 ix = doubleToInt64(pMem->u.r);
697 /* Only mark the value as an integer if
699 ** (1) the round-trip conversion real->int->real is a no-op, and
700 ** (2) The integer is neither the largest nor the smallest
701 ** possible integer (ticket #3922)
703 ** The second and third terms in the following conditional enforces
704 ** the second condition under the assumption that addition overflow causes
705 ** values to wrap around.
707 if( pMem->u.r==ix && ix>SMALLEST_INT64 && ix<LARGEST_INT64 ){
708 pMem->u.i = ix;
709 MemSetTypeFlag(pMem, MEM_Int);
715 ** Convert pMem to type integer. Invalidate any prior representations.
717 int sqlite3VdbeMemIntegerify(Mem *pMem){
718 assert( pMem!=0 );
719 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
720 assert( !sqlite3VdbeMemIsRowSet(pMem) );
721 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
723 pMem->u.i = sqlite3VdbeIntValue(pMem);
724 MemSetTypeFlag(pMem, MEM_Int);
725 return SQLITE_OK;
729 ** Convert pMem so that it is of type MEM_Real.
730 ** Invalidate any prior representations.
732 int sqlite3VdbeMemRealify(Mem *pMem){
733 assert( pMem!=0 );
734 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
735 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
737 pMem->u.r = sqlite3VdbeRealValue(pMem);
738 MemSetTypeFlag(pMem, MEM_Real);
739 return SQLITE_OK;
742 /* Compare a floating point value to an integer. Return true if the two
743 ** values are the same within the precision of the floating point value.
745 ** This function assumes that i was obtained by assignment from r1.
747 ** For some versions of GCC on 32-bit machines, if you do the more obvious
748 ** comparison of "r1==(double)i" you sometimes get an answer of false even
749 ** though the r1 and (double)i values are bit-for-bit the same.
751 int sqlite3RealSameAsInt(double r1, sqlite3_int64 i){
752 double r2 = (double)i;
753 return r1==0.0
754 || (memcmp(&r1, &r2, sizeof(r1))==0
755 && i >= -2251799813685248LL && i < 2251799813685248LL);
758 /* Convert a floating point value to its closest integer. Do so in
759 ** a way that avoids 'outside the range of representable values' warnings
760 ** from UBSAN.
762 i64 sqlite3RealToI64(double r){
763 if( r<=(double)SMALLEST_INT64 ) return SMALLEST_INT64;
764 if( r>=(double)LARGEST_INT64) return LARGEST_INT64;
765 return (i64)r;
769 ** Convert pMem so that it has type MEM_Real or MEM_Int.
770 ** Invalidate any prior representations.
772 ** Every effort is made to force the conversion, even if the input
773 ** is a string that does not look completely like a number. Convert
774 ** as much of the string as we can and ignore the rest.
776 int sqlite3VdbeMemNumerify(Mem *pMem){
777 assert( pMem!=0 );
778 testcase( pMem->flags & MEM_Int );
779 testcase( pMem->flags & MEM_Real );
780 testcase( pMem->flags & MEM_IntReal );
781 testcase( pMem->flags & MEM_Null );
782 if( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null))==0 ){
783 int rc;
784 sqlite3_int64 ix;
785 assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 );
786 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
787 rc = sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc);
788 if( ((rc==0 || rc==1) && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)<=1)
789 || sqlite3RealSameAsInt(pMem->u.r, (ix = sqlite3RealToI64(pMem->u.r)))
791 pMem->u.i = ix;
792 MemSetTypeFlag(pMem, MEM_Int);
793 }else{
794 MemSetTypeFlag(pMem, MEM_Real);
797 assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null))!=0 );
798 pMem->flags &= ~(MEM_Str|MEM_Blob|MEM_Zero);
799 return SQLITE_OK;
803 ** Cast the datatype of the value in pMem according to the affinity
804 ** "aff". Casting is different from applying affinity in that a cast
805 ** is forced. In other words, the value is converted into the desired
806 ** affinity even if that results in loss of data. This routine is
807 ** used (for example) to implement the SQL "cast()" operator.
809 int sqlite3VdbeMemCast(Mem *pMem, u8 aff, u8 encoding){
810 if( pMem->flags & MEM_Null ) return SQLITE_OK;
811 switch( aff ){
812 case SQLITE_AFF_BLOB: { /* Really a cast to BLOB */
813 if( (pMem->flags & MEM_Blob)==0 ){
814 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding);
815 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed );
816 if( pMem->flags & MEM_Str ) MemSetTypeFlag(pMem, MEM_Blob);
817 }else{
818 pMem->flags &= ~(MEM_TypeMask&~MEM_Blob);
820 break;
822 case SQLITE_AFF_NUMERIC: {
823 sqlite3VdbeMemNumerify(pMem);
824 break;
826 case SQLITE_AFF_INTEGER: {
827 sqlite3VdbeMemIntegerify(pMem);
828 break;
830 case SQLITE_AFF_REAL: {
831 sqlite3VdbeMemRealify(pMem);
832 break;
834 default: {
835 assert( aff==SQLITE_AFF_TEXT );
836 assert( MEM_Str==(MEM_Blob>>3) );
837 pMem->flags |= (pMem->flags&MEM_Blob)>>3;
838 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding);
839 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed );
840 pMem->flags &= ~(MEM_Int|MEM_Real|MEM_IntReal|MEM_Blob|MEM_Zero);
841 if( encoding!=SQLITE_UTF8 ) pMem->n &= ~1;
842 return sqlite3VdbeChangeEncoding(pMem, encoding);
845 return SQLITE_OK;
849 ** Initialize bulk memory to be a consistent Mem object.
851 ** The minimum amount of initialization feasible is performed.
853 void sqlite3VdbeMemInit(Mem *pMem, sqlite3 *db, u16 flags){
854 assert( (flags & ~MEM_TypeMask)==0 );
855 pMem->flags = flags;
856 pMem->db = db;
857 pMem->szMalloc = 0;
862 ** Delete any previous value and set the value stored in *pMem to NULL.
864 ** This routine calls the Mem.xDel destructor to dispose of values that
865 ** require the destructor. But it preserves the Mem.zMalloc memory allocation.
866 ** To free all resources, use sqlite3VdbeMemRelease(), which both calls this
867 ** routine to invoke the destructor and deallocates Mem.zMalloc.
869 ** Use this routine to reset the Mem prior to insert a new value.
871 ** Use sqlite3VdbeMemRelease() to complete erase the Mem prior to abandoning it.
873 void sqlite3VdbeMemSetNull(Mem *pMem){
874 if( VdbeMemDynamic(pMem) ){
875 vdbeMemClearExternAndSetNull(pMem);
876 }else{
877 pMem->flags = MEM_Null;
880 void sqlite3ValueSetNull(sqlite3_value *p){
881 sqlite3VdbeMemSetNull((Mem*)p);
885 ** Delete any previous value and set the value to be a BLOB of length
886 ** n containing all zeros.
888 #ifndef SQLITE_OMIT_INCRBLOB
889 void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){
890 sqlite3VdbeMemRelease(pMem);
891 pMem->flags = MEM_Blob|MEM_Zero;
892 pMem->n = 0;
893 if( n<0 ) n = 0;
894 pMem->u.nZero = n;
895 pMem->enc = SQLITE_UTF8;
896 pMem->z = 0;
898 #else
899 int sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){
900 int nByte = n>0?n:1;
901 if( sqlite3VdbeMemGrow(pMem, nByte, 0) ){
902 return SQLITE_NOMEM_BKPT;
904 assert( pMem->z!=0 );
905 assert( sqlite3DbMallocSize(pMem->db, pMem->z)>=nByte );
906 memset(pMem->z, 0, nByte);
907 pMem->n = n>0?n:0;
908 pMem->flags = MEM_Blob;
909 pMem->enc = SQLITE_UTF8;
910 return SQLITE_OK;
912 #endif
915 ** The pMem is known to contain content that needs to be destroyed prior
916 ** to a value change. So invoke the destructor, then set the value to
917 ** a 64-bit integer.
919 static SQLITE_NOINLINE void vdbeReleaseAndSetInt64(Mem *pMem, i64 val){
920 sqlite3VdbeMemSetNull(pMem);
921 pMem->u.i = val;
922 pMem->flags = MEM_Int;
926 ** Delete any previous value and set the value stored in *pMem to val,
927 ** manifest type INTEGER.
929 void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){
930 if( VdbeMemDynamic(pMem) ){
931 vdbeReleaseAndSetInt64(pMem, val);
932 }else{
933 pMem->u.i = val;
934 pMem->flags = MEM_Int;
938 /* A no-op destructor */
939 void sqlite3NoopDestructor(void *p){ UNUSED_PARAMETER(p); }
942 ** Set the value stored in *pMem should already be a NULL.
943 ** Also store a pointer to go with it.
945 void sqlite3VdbeMemSetPointer(
946 Mem *pMem,
947 void *pPtr,
948 const char *zPType,
949 void (*xDestructor)(void*)
951 assert( pMem->flags==MEM_Null );
952 vdbeMemClear(pMem);
953 pMem->u.zPType = zPType ? zPType : "";
954 pMem->z = pPtr;
955 pMem->flags = MEM_Null|MEM_Dyn|MEM_Subtype|MEM_Term;
956 pMem->eSubtype = 'p';
957 pMem->xDel = xDestructor ? xDestructor : sqlite3NoopDestructor;
960 #ifndef SQLITE_OMIT_FLOATING_POINT
962 ** Delete any previous value and set the value stored in *pMem to val,
963 ** manifest type REAL.
965 void sqlite3VdbeMemSetDouble(Mem *pMem, double val){
966 sqlite3VdbeMemSetNull(pMem);
967 if( !sqlite3IsNaN(val) ){
968 pMem->u.r = val;
969 pMem->flags = MEM_Real;
972 #endif
974 #ifdef SQLITE_DEBUG
976 ** Return true if the Mem holds a RowSet object. This routine is intended
977 ** for use inside of assert() statements.
979 int sqlite3VdbeMemIsRowSet(const Mem *pMem){
980 return (pMem->flags&(MEM_Blob|MEM_Dyn))==(MEM_Blob|MEM_Dyn)
981 && pMem->xDel==sqlite3RowSetDelete;
983 #endif
986 ** Delete any previous value and set the value of pMem to be an
987 ** empty boolean index.
989 ** Return SQLITE_OK on success and SQLITE_NOMEM if a memory allocation
990 ** error occurs.
992 int sqlite3VdbeMemSetRowSet(Mem *pMem){
993 sqlite3 *db = pMem->db;
994 RowSet *p;
995 assert( db!=0 );
996 assert( !sqlite3VdbeMemIsRowSet(pMem) );
997 sqlite3VdbeMemRelease(pMem);
998 p = sqlite3RowSetInit(db);
999 if( p==0 ) return SQLITE_NOMEM;
1000 pMem->z = (char*)p;
1001 pMem->flags = MEM_Blob|MEM_Dyn;
1002 pMem->xDel = sqlite3RowSetDelete;
1003 return SQLITE_OK;
1007 ** Return true if the Mem object contains a TEXT or BLOB that is
1008 ** too large - whose size exceeds SQLITE_MAX_LENGTH.
1010 int sqlite3VdbeMemTooBig(Mem *p){
1011 assert( p->db!=0 );
1012 if( p->flags & (MEM_Str|MEM_Blob) ){
1013 int n = p->n;
1014 if( p->flags & MEM_Zero ){
1015 n += p->u.nZero;
1017 return n>p->db->aLimit[SQLITE_LIMIT_LENGTH];
1019 return 0;
1022 #ifdef SQLITE_DEBUG
1024 ** This routine prepares a memory cell for modification by breaking
1025 ** its link to a shallow copy and by marking any current shallow
1026 ** copies of this cell as invalid.
1028 ** This is used for testing and debugging only - to help ensure that shallow
1029 ** copies (created by OP_SCopy) are not misused.
1031 void sqlite3VdbeMemAboutToChange(Vdbe *pVdbe, Mem *pMem){
1032 int i;
1033 Mem *pX;
1034 for(i=1, pX=pVdbe->aMem+1; i<pVdbe->nMem; i++, pX++){
1035 if( pX->pScopyFrom==pMem ){
1036 u16 mFlags;
1037 if( pVdbe->db->flags & SQLITE_VdbeTrace ){
1038 sqlite3DebugPrintf("Invalidate R[%d] due to change in R[%d]\n",
1039 (int)(pX - pVdbe->aMem), (int)(pMem - pVdbe->aMem));
1041 /* If pX is marked as a shallow copy of pMem, then try to verify that
1042 ** no significant changes have been made to pX since the OP_SCopy.
1043 ** A significant change would indicated a missed call to this
1044 ** function for pX. Minor changes, such as adding or removing a
1045 ** dual type, are allowed, as long as the underlying value is the
1046 ** same. */
1047 mFlags = pMem->flags & pX->flags & pX->mScopyFlags;
1048 assert( (mFlags&(MEM_Int|MEM_IntReal))==0 || pMem->u.i==pX->u.i );
1050 /* pMem is the register that is changing. But also mark pX as
1051 ** undefined so that we can quickly detect the shallow-copy error */
1052 pX->flags = MEM_Undefined;
1053 pX->pScopyFrom = 0;
1056 pMem->pScopyFrom = 0;
1058 #endif /* SQLITE_DEBUG */
1061 ** Make an shallow copy of pFrom into pTo. Prior contents of
1062 ** pTo are freed. The pFrom->z field is not duplicated. If
1063 ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z
1064 ** and flags gets srcType (either MEM_Ephem or MEM_Static).
1066 static SQLITE_NOINLINE void vdbeClrCopy(Mem *pTo, const Mem *pFrom, int eType){
1067 vdbeMemClearExternAndSetNull(pTo);
1068 assert( !VdbeMemDynamic(pTo) );
1069 sqlite3VdbeMemShallowCopy(pTo, pFrom, eType);
1071 void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){
1072 assert( !sqlite3VdbeMemIsRowSet(pFrom) );
1073 assert( pTo->db==pFrom->db );
1074 if( VdbeMemDynamic(pTo) ){ vdbeClrCopy(pTo,pFrom,srcType); return; }
1075 memcpy(pTo, pFrom, MEMCELLSIZE);
1076 if( (pFrom->flags&MEM_Static)==0 ){
1077 pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem);
1078 assert( srcType==MEM_Ephem || srcType==MEM_Static );
1079 pTo->flags |= srcType;
1084 ** Make a full copy of pFrom into pTo. Prior contents of pTo are
1085 ** freed before the copy is made.
1087 int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){
1088 int rc = SQLITE_OK;
1090 assert( !sqlite3VdbeMemIsRowSet(pFrom) );
1091 if( VdbeMemDynamic(pTo) ) vdbeMemClearExternAndSetNull(pTo);
1092 memcpy(pTo, pFrom, MEMCELLSIZE);
1093 pTo->flags &= ~MEM_Dyn;
1094 if( pTo->flags&(MEM_Str|MEM_Blob) ){
1095 if( 0==(pFrom->flags&MEM_Static) ){
1096 pTo->flags |= MEM_Ephem;
1097 rc = sqlite3VdbeMemMakeWriteable(pTo);
1101 return rc;
1105 ** Transfer the contents of pFrom to pTo. Any existing value in pTo is
1106 ** freed. If pFrom contains ephemeral data, a copy is made.
1108 ** pFrom contains an SQL NULL when this routine returns.
1110 void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){
1111 assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) );
1112 assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) );
1113 assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db );
1115 sqlite3VdbeMemRelease(pTo);
1116 memcpy(pTo, pFrom, sizeof(Mem));
1117 pFrom->flags = MEM_Null;
1118 pFrom->szMalloc = 0;
1122 ** Change the value of a Mem to be a string or a BLOB.
1124 ** The memory management strategy depends on the value of the xDel
1125 ** parameter. If the value passed is SQLITE_TRANSIENT, then the
1126 ** string is copied into a (possibly existing) buffer managed by the
1127 ** Mem structure. Otherwise, any existing buffer is freed and the
1128 ** pointer copied.
1130 ** If the string is too large (if it exceeds the SQLITE_LIMIT_LENGTH
1131 ** size limit) then no memory allocation occurs. If the string can be
1132 ** stored without allocating memory, then it is. If a memory allocation
1133 ** is required to store the string, then value of pMem is unchanged. In
1134 ** either case, SQLITE_TOOBIG is returned.
1136 ** The "enc" parameter is the text encoding for the string, or zero
1137 ** to store a blob.
1139 ** If n is negative, then the string consists of all bytes up to but
1140 ** excluding the first zero character. The n parameter must be
1141 ** non-negative for blobs.
1143 int sqlite3VdbeMemSetStr(
1144 Mem *pMem, /* Memory cell to set to string value */
1145 const char *z, /* String pointer */
1146 i64 n, /* Bytes in string, or negative */
1147 u8 enc, /* Encoding of z. 0 for BLOBs */
1148 void (*xDel)(void*) /* Destructor function */
1150 i64 nByte = n; /* New value for pMem->n */
1151 int iLimit; /* Maximum allowed string or blob size */
1152 u16 flags; /* New value for pMem->flags */
1154 assert( pMem!=0 );
1155 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
1156 assert( !sqlite3VdbeMemIsRowSet(pMem) );
1157 assert( enc!=0 || n>=0 );
1159 /* If z is a NULL pointer, set pMem to contain an SQL NULL. */
1160 if( !z ){
1161 sqlite3VdbeMemSetNull(pMem);
1162 return SQLITE_OK;
1165 if( pMem->db ){
1166 iLimit = pMem->db->aLimit[SQLITE_LIMIT_LENGTH];
1167 }else{
1168 iLimit = SQLITE_MAX_LENGTH;
1170 if( nByte<0 ){
1171 assert( enc!=0 );
1172 if( enc==SQLITE_UTF8 ){
1173 nByte = strlen(z);
1174 }else{
1175 for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){}
1177 flags= MEM_Str|MEM_Term;
1178 }else if( enc==0 ){
1179 flags = MEM_Blob;
1180 enc = SQLITE_UTF8;
1181 }else{
1182 flags = MEM_Str;
1184 if( nByte>iLimit ){
1185 if( xDel && xDel!=SQLITE_TRANSIENT ){
1186 if( xDel==SQLITE_DYNAMIC ){
1187 sqlite3DbFree(pMem->db, (void*)z);
1188 }else{
1189 xDel((void*)z);
1192 sqlite3VdbeMemSetNull(pMem);
1193 return sqlite3ErrorToParser(pMem->db, SQLITE_TOOBIG);
1196 /* The following block sets the new values of Mem.z and Mem.xDel. It
1197 ** also sets a flag in local variable "flags" to indicate the memory
1198 ** management (one of MEM_Dyn or MEM_Static).
1200 if( xDel==SQLITE_TRANSIENT ){
1201 i64 nAlloc = nByte;
1202 if( flags&MEM_Term ){
1203 nAlloc += (enc==SQLITE_UTF8?1:2);
1205 testcase( nAlloc==0 );
1206 testcase( nAlloc==31 );
1207 testcase( nAlloc==32 );
1208 if( sqlite3VdbeMemClearAndResize(pMem, (int)MAX(nAlloc,32)) ){
1209 return SQLITE_NOMEM_BKPT;
1211 memcpy(pMem->z, z, nAlloc);
1212 }else{
1213 sqlite3VdbeMemRelease(pMem);
1214 pMem->z = (char *)z;
1215 if( xDel==SQLITE_DYNAMIC ){
1216 pMem->zMalloc = pMem->z;
1217 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc);
1218 }else{
1219 pMem->xDel = xDel;
1220 flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn);
1224 pMem->n = (int)(nByte & 0x7fffffff);
1225 pMem->flags = flags;
1226 pMem->enc = enc;
1228 #ifndef SQLITE_OMIT_UTF16
1229 if( enc>SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){
1230 return SQLITE_NOMEM_BKPT;
1232 #endif
1235 return SQLITE_OK;
1239 ** Move data out of a btree key or data field and into a Mem structure.
1240 ** The data is payload from the entry that pCur is currently pointing
1241 ** to. offset and amt determine what portion of the data or key to retrieve.
1242 ** The result is written into the pMem element.
1244 ** The pMem object must have been initialized. This routine will use
1245 ** pMem->zMalloc to hold the content from the btree, if possible. New
1246 ** pMem->zMalloc space will be allocated if necessary. The calling routine
1247 ** is responsible for making sure that the pMem object is eventually
1248 ** destroyed.
1250 ** If this routine fails for any reason (malloc returns NULL or unable
1251 ** to read from the disk) then the pMem is left in an inconsistent state.
1253 int sqlite3VdbeMemFromBtree(
1254 BtCursor *pCur, /* Cursor pointing at record to retrieve. */
1255 u32 offset, /* Offset from the start of data to return bytes from. */
1256 u32 amt, /* Number of bytes to return. */
1257 Mem *pMem /* OUT: Return data in this Mem structure. */
1259 int rc;
1260 pMem->flags = MEM_Null;
1261 if( sqlite3BtreeMaxRecordSize(pCur)<offset+amt ){
1262 return SQLITE_CORRUPT_BKPT;
1264 if( SQLITE_OK==(rc = sqlite3VdbeMemClearAndResize(pMem, amt+1)) ){
1265 rc = sqlite3BtreePayload(pCur, offset, amt, pMem->z);
1266 if( rc==SQLITE_OK ){
1267 pMem->z[amt] = 0; /* Overrun area used when reading malformed records */
1268 pMem->flags = MEM_Blob;
1269 pMem->n = (int)amt;
1270 }else{
1271 sqlite3VdbeMemRelease(pMem);
1274 return rc;
1276 int sqlite3VdbeMemFromBtreeZeroOffset(
1277 BtCursor *pCur, /* Cursor pointing at record to retrieve. */
1278 u32 amt, /* Number of bytes to return. */
1279 Mem *pMem /* OUT: Return data in this Mem structure. */
1281 u32 available = 0; /* Number of bytes available on the local btree page */
1282 int rc = SQLITE_OK; /* Return code */
1284 assert( sqlite3BtreeCursorIsValid(pCur) );
1285 assert( !VdbeMemDynamic(pMem) );
1287 /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert()
1288 ** that both the BtShared and database handle mutexes are held. */
1289 assert( !sqlite3VdbeMemIsRowSet(pMem) );
1290 pMem->z = (char *)sqlite3BtreePayloadFetch(pCur, &available);
1291 assert( pMem->z!=0 );
1293 if( amt<=available ){
1294 pMem->flags = MEM_Blob|MEM_Ephem;
1295 pMem->n = (int)amt;
1296 }else{
1297 rc = sqlite3VdbeMemFromBtree(pCur, 0, amt, pMem);
1300 return rc;
1304 ** The pVal argument is known to be a value other than NULL.
1305 ** Convert it into a string with encoding enc and return a pointer
1306 ** to a zero-terminated version of that string.
1308 static SQLITE_NOINLINE const void *valueToText(sqlite3_value* pVal, u8 enc){
1309 assert( pVal!=0 );
1310 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
1311 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
1312 assert( !sqlite3VdbeMemIsRowSet(pVal) );
1313 assert( (pVal->flags & (MEM_Null))==0 );
1314 if( pVal->flags & (MEM_Blob|MEM_Str) ){
1315 if( ExpandBlob(pVal) ) return 0;
1316 pVal->flags |= MEM_Str;
1317 if( pVal->enc != (enc & ~SQLITE_UTF16_ALIGNED) ){
1318 sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED);
1320 if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){
1321 assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 );
1322 if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){
1323 return 0;
1326 sqlite3VdbeMemNulTerminate(pVal); /* IMP: R-31275-44060 */
1327 }else{
1328 sqlite3VdbeMemStringify(pVal, enc, 0);
1329 assert( 0==(1&SQLITE_PTR_TO_INT(pVal->z)) );
1331 assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0
1332 || pVal->db->mallocFailed );
1333 if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){
1334 assert( sqlite3VdbeMemValidStrRep(pVal) );
1335 return pVal->z;
1336 }else{
1337 return 0;
1341 /* This function is only available internally, it is not part of the
1342 ** external API. It works in a similar way to sqlite3_value_text(),
1343 ** except the data returned is in the encoding specified by the second
1344 ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or
1345 ** SQLITE_UTF8.
1347 ** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED.
1348 ** If that is the case, then the result must be aligned on an even byte
1349 ** boundary.
1351 const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){
1352 if( !pVal ) return 0;
1353 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
1354 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
1355 assert( !sqlite3VdbeMemIsRowSet(pVal) );
1356 if( (pVal->flags&(MEM_Str|MEM_Term))==(MEM_Str|MEM_Term) && pVal->enc==enc ){
1357 assert( sqlite3VdbeMemValidStrRep(pVal) );
1358 return pVal->z;
1360 if( pVal->flags&MEM_Null ){
1361 return 0;
1363 return valueToText(pVal, enc);
1367 ** Create a new sqlite3_value object.
1369 sqlite3_value *sqlite3ValueNew(sqlite3 *db){
1370 Mem *p = sqlite3DbMallocZero(db, sizeof(*p));
1371 if( p ){
1372 p->flags = MEM_Null;
1373 p->db = db;
1375 return p;
1379 ** Context object passed by sqlite3Stat4ProbeSetValue() through to
1380 ** valueNew(). See comments above valueNew() for details.
1382 struct ValueNewStat4Ctx {
1383 Parse *pParse;
1384 Index *pIdx;
1385 UnpackedRecord **ppRec;
1386 int iVal;
1390 ** Allocate and return a pointer to a new sqlite3_value object. If
1391 ** the second argument to this function is NULL, the object is allocated
1392 ** by calling sqlite3ValueNew().
1394 ** Otherwise, if the second argument is non-zero, then this function is
1395 ** being called indirectly by sqlite3Stat4ProbeSetValue(). If it has not
1396 ** already been allocated, allocate the UnpackedRecord structure that
1397 ** that function will return to its caller here. Then return a pointer to
1398 ** an sqlite3_value within the UnpackedRecord.a[] array.
1400 static sqlite3_value *valueNew(sqlite3 *db, struct ValueNewStat4Ctx *p){
1401 #ifdef SQLITE_ENABLE_STAT4
1402 if( p ){
1403 UnpackedRecord *pRec = p->ppRec[0];
1405 if( pRec==0 ){
1406 Index *pIdx = p->pIdx; /* Index being probed */
1407 int nByte; /* Bytes of space to allocate */
1408 int i; /* Counter variable */
1409 int nCol = pIdx->nColumn; /* Number of index columns including rowid */
1411 nByte = sizeof(Mem) * nCol + ROUND8(sizeof(UnpackedRecord));
1412 pRec = (UnpackedRecord*)sqlite3DbMallocZero(db, nByte);
1413 if( pRec ){
1414 pRec->pKeyInfo = sqlite3KeyInfoOfIndex(p->pParse, pIdx);
1415 if( pRec->pKeyInfo ){
1416 assert( pRec->pKeyInfo->nAllField==nCol );
1417 assert( pRec->pKeyInfo->enc==ENC(db) );
1418 pRec->aMem = (Mem *)((u8*)pRec + ROUND8(sizeof(UnpackedRecord)));
1419 for(i=0; i<nCol; i++){
1420 pRec->aMem[i].flags = MEM_Null;
1421 pRec->aMem[i].db = db;
1423 }else{
1424 sqlite3DbFreeNN(db, pRec);
1425 pRec = 0;
1428 if( pRec==0 ) return 0;
1429 p->ppRec[0] = pRec;
1432 pRec->nField = p->iVal+1;
1433 return &pRec->aMem[p->iVal];
1435 #else
1436 UNUSED_PARAMETER(p);
1437 #endif /* defined(SQLITE_ENABLE_STAT4) */
1438 return sqlite3ValueNew(db);
1442 ** The expression object indicated by the second argument is guaranteed
1443 ** to be a scalar SQL function. If
1445 ** * all function arguments are SQL literals,
1446 ** * one of the SQLITE_FUNC_CONSTANT or _SLOCHNG function flags is set, and
1447 ** * the SQLITE_FUNC_NEEDCOLL function flag is not set,
1449 ** then this routine attempts to invoke the SQL function. Assuming no
1450 ** error occurs, output parameter (*ppVal) is set to point to a value
1451 ** object containing the result before returning SQLITE_OK.
1453 ** Affinity aff is applied to the result of the function before returning.
1454 ** If the result is a text value, the sqlite3_value object uses encoding
1455 ** enc.
1457 ** If the conditions above are not met, this function returns SQLITE_OK
1458 ** and sets (*ppVal) to NULL. Or, if an error occurs, (*ppVal) is set to
1459 ** NULL and an SQLite error code returned.
1461 #ifdef SQLITE_ENABLE_STAT4
1462 static int valueFromFunction(
1463 sqlite3 *db, /* The database connection */
1464 const Expr *p, /* The expression to evaluate */
1465 u8 enc, /* Encoding to use */
1466 u8 aff, /* Affinity to use */
1467 sqlite3_value **ppVal, /* Write the new value here */
1468 struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */
1470 sqlite3_context ctx; /* Context object for function invocation */
1471 sqlite3_value **apVal = 0; /* Function arguments */
1472 int nVal = 0; /* Size of apVal[] array */
1473 FuncDef *pFunc = 0; /* Function definition */
1474 sqlite3_value *pVal = 0; /* New value */
1475 int rc = SQLITE_OK; /* Return code */
1476 ExprList *pList = 0; /* Function arguments */
1477 int i; /* Iterator variable */
1479 assert( pCtx!=0 );
1480 assert( (p->flags & EP_TokenOnly)==0 );
1481 assert( ExprUseXList(p) );
1482 pList = p->x.pList;
1483 if( pList ) nVal = pList->nExpr;
1484 assert( !ExprHasProperty(p, EP_IntValue) );
1485 pFunc = sqlite3FindFunction(db, p->u.zToken, nVal, enc, 0);
1486 assert( pFunc );
1487 if( (pFunc->funcFlags & (SQLITE_FUNC_CONSTANT|SQLITE_FUNC_SLOCHNG))==0
1488 || (pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL)
1490 return SQLITE_OK;
1493 if( pList ){
1494 apVal = (sqlite3_value**)sqlite3DbMallocZero(db, sizeof(apVal[0]) * nVal);
1495 if( apVal==0 ){
1496 rc = SQLITE_NOMEM_BKPT;
1497 goto value_from_function_out;
1499 for(i=0; i<nVal; i++){
1500 rc = sqlite3ValueFromExpr(db, pList->a[i].pExpr, enc, aff, &apVal[i]);
1501 if( apVal[i]==0 || rc!=SQLITE_OK ) goto value_from_function_out;
1505 pVal = valueNew(db, pCtx);
1506 if( pVal==0 ){
1507 rc = SQLITE_NOMEM_BKPT;
1508 goto value_from_function_out;
1511 memset(&ctx, 0, sizeof(ctx));
1512 ctx.pOut = pVal;
1513 ctx.pFunc = pFunc;
1514 ctx.enc = ENC(db);
1515 pFunc->xSFunc(&ctx, nVal, apVal);
1516 if( ctx.isError ){
1517 rc = ctx.isError;
1518 sqlite3ErrorMsg(pCtx->pParse, "%s", sqlite3_value_text(pVal));
1519 }else{
1520 sqlite3ValueApplyAffinity(pVal, aff, SQLITE_UTF8);
1521 assert( rc==SQLITE_OK );
1522 assert( enc==pVal->enc
1523 || (pVal->flags & MEM_Str)==0
1524 || db->mallocFailed );
1525 #if 0 /* Not reachable except after a prior failure */
1526 rc = sqlite3VdbeChangeEncoding(pVal, enc);
1527 if( rc==SQLITE_OK && sqlite3VdbeMemTooBig(pVal) ){
1528 rc = SQLITE_TOOBIG;
1529 pCtx->pParse->nErr++;
1531 #endif
1534 value_from_function_out:
1535 if( rc!=SQLITE_OK ){
1536 pVal = 0;
1537 pCtx->pParse->rc = rc;
1539 if( apVal ){
1540 for(i=0; i<nVal; i++){
1541 sqlite3ValueFree(apVal[i]);
1543 sqlite3DbFreeNN(db, apVal);
1546 *ppVal = pVal;
1547 return rc;
1549 #else
1550 # define valueFromFunction(a,b,c,d,e,f) SQLITE_OK
1551 #endif /* defined(SQLITE_ENABLE_STAT4) */
1554 ** Extract a value from the supplied expression in the manner described
1555 ** above sqlite3ValueFromExpr(). Allocate the sqlite3_value object
1556 ** using valueNew().
1558 ** If pCtx is NULL and an error occurs after the sqlite3_value object
1559 ** has been allocated, it is freed before returning. Or, if pCtx is not
1560 ** NULL, it is assumed that the caller will free any allocated object
1561 ** in all cases.
1563 static int valueFromExpr(
1564 sqlite3 *db, /* The database connection */
1565 const Expr *pExpr, /* The expression to evaluate */
1566 u8 enc, /* Encoding to use */
1567 u8 affinity, /* Affinity to use */
1568 sqlite3_value **ppVal, /* Write the new value here */
1569 struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */
1571 int op;
1572 char *zVal = 0;
1573 sqlite3_value *pVal = 0;
1574 int negInt = 1;
1575 const char *zNeg = "";
1576 int rc = SQLITE_OK;
1578 assert( pExpr!=0 );
1579 while( (op = pExpr->op)==TK_UPLUS || op==TK_SPAN ) pExpr = pExpr->pLeft;
1580 if( op==TK_REGISTER ) op = pExpr->op2;
1582 /* Compressed expressions only appear when parsing the DEFAULT clause
1583 ** on a table column definition, and hence only when pCtx==0. This
1584 ** check ensures that an EP_TokenOnly expression is never passed down
1585 ** into valueFromFunction(). */
1586 assert( (pExpr->flags & EP_TokenOnly)==0 || pCtx==0 );
1588 if( op==TK_CAST ){
1589 u8 aff;
1590 assert( !ExprHasProperty(pExpr, EP_IntValue) );
1591 aff = sqlite3AffinityType(pExpr->u.zToken,0);
1592 rc = valueFromExpr(db, pExpr->pLeft, enc, aff, ppVal, pCtx);
1593 testcase( rc!=SQLITE_OK );
1594 if( *ppVal ){
1595 sqlite3VdbeMemCast(*ppVal, aff, enc);
1596 sqlite3ValueApplyAffinity(*ppVal, affinity, enc);
1598 return rc;
1601 /* Handle negative integers in a single step. This is needed in the
1602 ** case when the value is -9223372036854775808.
1604 if( op==TK_UMINUS
1605 && (pExpr->pLeft->op==TK_INTEGER || pExpr->pLeft->op==TK_FLOAT) ){
1606 pExpr = pExpr->pLeft;
1607 op = pExpr->op;
1608 negInt = -1;
1609 zNeg = "-";
1612 if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){
1613 pVal = valueNew(db, pCtx);
1614 if( pVal==0 ) goto no_mem;
1615 if( ExprHasProperty(pExpr, EP_IntValue) ){
1616 sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt);
1617 }else{
1618 zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken);
1619 if( zVal==0 ) goto no_mem;
1620 sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC);
1622 if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_BLOB ){
1623 sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8);
1624 }else{
1625 sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8);
1627 assert( (pVal->flags & MEM_IntReal)==0 );
1628 if( pVal->flags & (MEM_Int|MEM_IntReal|MEM_Real) ){
1629 testcase( pVal->flags & MEM_Int );
1630 testcase( pVal->flags & MEM_Real );
1631 pVal->flags &= ~MEM_Str;
1633 if( enc!=SQLITE_UTF8 ){
1634 rc = sqlite3VdbeChangeEncoding(pVal, enc);
1636 }else if( op==TK_UMINUS ) {
1637 /* This branch happens for multiple negative signs. Ex: -(-5) */
1638 if( SQLITE_OK==valueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal,pCtx)
1639 && pVal!=0
1641 sqlite3VdbeMemNumerify(pVal);
1642 if( pVal->flags & MEM_Real ){
1643 pVal->u.r = -pVal->u.r;
1644 }else if( pVal->u.i==SMALLEST_INT64 ){
1645 #ifndef SQLITE_OMIT_FLOATING_POINT
1646 pVal->u.r = -(double)SMALLEST_INT64;
1647 #else
1648 pVal->u.r = LARGEST_INT64;
1649 #endif
1650 MemSetTypeFlag(pVal, MEM_Real);
1651 }else{
1652 pVal->u.i = -pVal->u.i;
1654 sqlite3ValueApplyAffinity(pVal, affinity, enc);
1656 }else if( op==TK_NULL ){
1657 pVal = valueNew(db, pCtx);
1658 if( pVal==0 ) goto no_mem;
1659 sqlite3VdbeMemSetNull(pVal);
1661 #ifndef SQLITE_OMIT_BLOB_LITERAL
1662 else if( op==TK_BLOB ){
1663 int nVal;
1664 assert( !ExprHasProperty(pExpr, EP_IntValue) );
1665 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
1666 assert( pExpr->u.zToken[1]=='\'' );
1667 pVal = valueNew(db, pCtx);
1668 if( !pVal ) goto no_mem;
1669 zVal = &pExpr->u.zToken[2];
1670 nVal = sqlite3Strlen30(zVal)-1;
1671 assert( zVal[nVal]=='\'' );
1672 sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2,
1673 0, SQLITE_DYNAMIC);
1675 #endif
1676 #ifdef SQLITE_ENABLE_STAT4
1677 else if( op==TK_FUNCTION && pCtx!=0 ){
1678 rc = valueFromFunction(db, pExpr, enc, affinity, &pVal, pCtx);
1680 #endif
1681 else if( op==TK_TRUEFALSE ){
1682 assert( !ExprHasProperty(pExpr, EP_IntValue) );
1683 pVal = valueNew(db, pCtx);
1684 if( pVal ){
1685 pVal->flags = MEM_Int;
1686 pVal->u.i = pExpr->u.zToken[4]==0;
1690 *ppVal = pVal;
1691 return rc;
1693 no_mem:
1694 #ifdef SQLITE_ENABLE_STAT4
1695 if( pCtx==0 || NEVER(pCtx->pParse->nErr==0) )
1696 #endif
1697 sqlite3OomFault(db);
1698 sqlite3DbFree(db, zVal);
1699 assert( *ppVal==0 );
1700 #ifdef SQLITE_ENABLE_STAT4
1701 if( pCtx==0 ) sqlite3ValueFree(pVal);
1702 #else
1703 assert( pCtx==0 ); sqlite3ValueFree(pVal);
1704 #endif
1705 return SQLITE_NOMEM_BKPT;
1709 ** Create a new sqlite3_value object, containing the value of pExpr.
1711 ** This only works for very simple expressions that consist of one constant
1712 ** token (i.e. "5", "5.1", "'a string'"). If the expression can
1713 ** be converted directly into a value, then the value is allocated and
1714 ** a pointer written to *ppVal. The caller is responsible for deallocating
1715 ** the value by passing it to sqlite3ValueFree() later on. If the expression
1716 ** cannot be converted to a value, then *ppVal is set to NULL.
1718 int sqlite3ValueFromExpr(
1719 sqlite3 *db, /* The database connection */
1720 const Expr *pExpr, /* The expression to evaluate */
1721 u8 enc, /* Encoding to use */
1722 u8 affinity, /* Affinity to use */
1723 sqlite3_value **ppVal /* Write the new value here */
1725 return pExpr ? valueFromExpr(db, pExpr, enc, affinity, ppVal, 0) : 0;
1728 #ifdef SQLITE_ENABLE_STAT4
1730 ** Attempt to extract a value from pExpr and use it to construct *ppVal.
1732 ** If pAlloc is not NULL, then an UnpackedRecord object is created for
1733 ** pAlloc if one does not exist and the new value is added to the
1734 ** UnpackedRecord object.
1736 ** A value is extracted in the following cases:
1738 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL,
1740 ** * The expression is a bound variable, and this is a reprepare, or
1742 ** * The expression is a literal value.
1744 ** On success, *ppVal is made to point to the extracted value. The caller
1745 ** is responsible for ensuring that the value is eventually freed.
1747 static int stat4ValueFromExpr(
1748 Parse *pParse, /* Parse context */
1749 Expr *pExpr, /* The expression to extract a value from */
1750 u8 affinity, /* Affinity to use */
1751 struct ValueNewStat4Ctx *pAlloc,/* How to allocate space. Or NULL */
1752 sqlite3_value **ppVal /* OUT: New value object (or NULL) */
1754 int rc = SQLITE_OK;
1755 sqlite3_value *pVal = 0;
1756 sqlite3 *db = pParse->db;
1758 /* Skip over any TK_COLLATE nodes */
1759 pExpr = sqlite3ExprSkipCollate(pExpr);
1761 assert( pExpr==0 || pExpr->op!=TK_REGISTER || pExpr->op2!=TK_VARIABLE );
1762 if( !pExpr ){
1763 pVal = valueNew(db, pAlloc);
1764 if( pVal ){
1765 sqlite3VdbeMemSetNull((Mem*)pVal);
1767 }else if( pExpr->op==TK_VARIABLE && (db->flags & SQLITE_EnableQPSG)==0 ){
1768 Vdbe *v;
1769 int iBindVar = pExpr->iColumn;
1770 sqlite3VdbeSetVarmask(pParse->pVdbe, iBindVar);
1771 if( (v = pParse->pReprepare)!=0 ){
1772 pVal = valueNew(db, pAlloc);
1773 if( pVal ){
1774 rc = sqlite3VdbeMemCopy((Mem*)pVal, &v->aVar[iBindVar-1]);
1775 sqlite3ValueApplyAffinity(pVal, affinity, ENC(db));
1776 pVal->db = pParse->db;
1779 }else{
1780 rc = valueFromExpr(db, pExpr, ENC(db), affinity, &pVal, pAlloc);
1783 assert( pVal==0 || pVal->db==db );
1784 *ppVal = pVal;
1785 return rc;
1789 ** This function is used to allocate and populate UnpackedRecord
1790 ** structures intended to be compared against sample index keys stored
1791 ** in the sqlite_stat4 table.
1793 ** A single call to this function populates zero or more fields of the
1794 ** record starting with field iVal (fields are numbered from left to
1795 ** right starting with 0). A single field is populated if:
1797 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL,
1799 ** * The expression is a bound variable, and this is a reprepare, or
1801 ** * The sqlite3ValueFromExpr() function is able to extract a value
1802 ** from the expression (i.e. the expression is a literal value).
1804 ** Or, if pExpr is a TK_VECTOR, one field is populated for each of the
1805 ** vector components that match either of the two latter criteria listed
1806 ** above.
1808 ** Before any value is appended to the record, the affinity of the
1809 ** corresponding column within index pIdx is applied to it. Before
1810 ** this function returns, output parameter *pnExtract is set to the
1811 ** number of values appended to the record.
1813 ** When this function is called, *ppRec must either point to an object
1814 ** allocated by an earlier call to this function, or must be NULL. If it
1815 ** is NULL and a value can be successfully extracted, a new UnpackedRecord
1816 ** is allocated (and *ppRec set to point to it) before returning.
1818 ** Unless an error is encountered, SQLITE_OK is returned. It is not an
1819 ** error if a value cannot be extracted from pExpr. If an error does
1820 ** occur, an SQLite error code is returned.
1822 int sqlite3Stat4ProbeSetValue(
1823 Parse *pParse, /* Parse context */
1824 Index *pIdx, /* Index being probed */
1825 UnpackedRecord **ppRec, /* IN/OUT: Probe record */
1826 Expr *pExpr, /* The expression to extract a value from */
1827 int nElem, /* Maximum number of values to append */
1828 int iVal, /* Array element to populate */
1829 int *pnExtract /* OUT: Values appended to the record */
1831 int rc = SQLITE_OK;
1832 int nExtract = 0;
1834 if( pExpr==0 || pExpr->op!=TK_SELECT ){
1835 int i;
1836 struct ValueNewStat4Ctx alloc;
1838 alloc.pParse = pParse;
1839 alloc.pIdx = pIdx;
1840 alloc.ppRec = ppRec;
1842 for(i=0; i<nElem; i++){
1843 sqlite3_value *pVal = 0;
1844 Expr *pElem = (pExpr ? sqlite3VectorFieldSubexpr(pExpr, i) : 0);
1845 u8 aff = sqlite3IndexColumnAffinity(pParse->db, pIdx, iVal+i);
1846 alloc.iVal = iVal+i;
1847 rc = stat4ValueFromExpr(pParse, pElem, aff, &alloc, &pVal);
1848 if( !pVal ) break;
1849 nExtract++;
1853 *pnExtract = nExtract;
1854 return rc;
1858 ** Attempt to extract a value from expression pExpr using the methods
1859 ** as described for sqlite3Stat4ProbeSetValue() above.
1861 ** If successful, set *ppVal to point to a new value object and return
1862 ** SQLITE_OK. If no value can be extracted, but no other error occurs
1863 ** (e.g. OOM), return SQLITE_OK and set *ppVal to NULL. Or, if an error
1864 ** does occur, return an SQLite error code. The final value of *ppVal
1865 ** is undefined in this case.
1867 int sqlite3Stat4ValueFromExpr(
1868 Parse *pParse, /* Parse context */
1869 Expr *pExpr, /* The expression to extract a value from */
1870 u8 affinity, /* Affinity to use */
1871 sqlite3_value **ppVal /* OUT: New value object (or NULL) */
1873 return stat4ValueFromExpr(pParse, pExpr, affinity, 0, ppVal);
1877 ** Extract the iCol-th column from the nRec-byte record in pRec. Write
1878 ** the column value into *ppVal. If *ppVal is initially NULL then a new
1879 ** sqlite3_value object is allocated.
1881 ** If *ppVal is initially NULL then the caller is responsible for
1882 ** ensuring that the value written into *ppVal is eventually freed.
1884 int sqlite3Stat4Column(
1885 sqlite3 *db, /* Database handle */
1886 const void *pRec, /* Pointer to buffer containing record */
1887 int nRec, /* Size of buffer pRec in bytes */
1888 int iCol, /* Column to extract */
1889 sqlite3_value **ppVal /* OUT: Extracted value */
1891 u32 t = 0; /* a column type code */
1892 int nHdr; /* Size of the header in the record */
1893 int iHdr; /* Next unread header byte */
1894 int iField; /* Next unread data byte */
1895 int szField = 0; /* Size of the current data field */
1896 int i; /* Column index */
1897 u8 *a = (u8*)pRec; /* Typecast byte array */
1898 Mem *pMem = *ppVal; /* Write result into this Mem object */
1900 assert( iCol>0 );
1901 iHdr = getVarint32(a, nHdr);
1902 if( nHdr>nRec || iHdr>=nHdr ) return SQLITE_CORRUPT_BKPT;
1903 iField = nHdr;
1904 for(i=0; i<=iCol; i++){
1905 iHdr += getVarint32(&a[iHdr], t);
1906 testcase( iHdr==nHdr );
1907 testcase( iHdr==nHdr+1 );
1908 if( iHdr>nHdr ) return SQLITE_CORRUPT_BKPT;
1909 szField = sqlite3VdbeSerialTypeLen(t);
1910 iField += szField;
1912 testcase( iField==nRec );
1913 testcase( iField==nRec+1 );
1914 if( iField>nRec ) return SQLITE_CORRUPT_BKPT;
1915 if( pMem==0 ){
1916 pMem = *ppVal = sqlite3ValueNew(db);
1917 if( pMem==0 ) return SQLITE_NOMEM_BKPT;
1919 sqlite3VdbeSerialGet(&a[iField-szField], t, pMem);
1920 pMem->enc = ENC(db);
1921 return SQLITE_OK;
1925 ** Unless it is NULL, the argument must be an UnpackedRecord object returned
1926 ** by an earlier call to sqlite3Stat4ProbeSetValue(). This call deletes
1927 ** the object.
1929 void sqlite3Stat4ProbeFree(UnpackedRecord *pRec){
1930 if( pRec ){
1931 int i;
1932 int nCol = pRec->pKeyInfo->nAllField;
1933 Mem *aMem = pRec->aMem;
1934 sqlite3 *db = aMem[0].db;
1935 for(i=0; i<nCol; i++){
1936 sqlite3VdbeMemRelease(&aMem[i]);
1938 sqlite3KeyInfoUnref(pRec->pKeyInfo);
1939 sqlite3DbFreeNN(db, pRec);
1942 #endif /* ifdef SQLITE_ENABLE_STAT4 */
1945 ** Change the string value of an sqlite3_value object
1947 void sqlite3ValueSetStr(
1948 sqlite3_value *v, /* Value to be set */
1949 int n, /* Length of string z */
1950 const void *z, /* Text of the new string */
1951 u8 enc, /* Encoding to use */
1952 void (*xDel)(void*) /* Destructor for the string */
1954 if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel);
1958 ** Free an sqlite3_value object
1960 void sqlite3ValueFree(sqlite3_value *v){
1961 if( !v ) return;
1962 sqlite3VdbeMemRelease((Mem *)v);
1963 sqlite3DbFreeNN(((Mem*)v)->db, v);
1967 ** The sqlite3ValueBytes() routine returns the number of bytes in the
1968 ** sqlite3_value object assuming that it uses the encoding "enc".
1969 ** The valueBytes() routine is a helper function.
1971 static SQLITE_NOINLINE int valueBytes(sqlite3_value *pVal, u8 enc){
1972 return valueToText(pVal, enc)!=0 ? pVal->n : 0;
1974 int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){
1975 Mem *p = (Mem*)pVal;
1976 assert( (p->flags & MEM_Null)==0 || (p->flags & (MEM_Str|MEM_Blob))==0 );
1977 if( (p->flags & MEM_Str)!=0 && pVal->enc==enc ){
1978 return p->n;
1980 if( (p->flags & MEM_Str)!=0 && enc!=SQLITE_UTF8 && pVal->enc!=SQLITE_UTF8 ){
1981 return p->n;
1983 if( (p->flags & MEM_Blob)!=0 ){
1984 if( p->flags & MEM_Zero ){
1985 return p->n + p->u.nZero;
1986 }else{
1987 return p->n;
1990 if( p->flags & MEM_Null ) return 0;
1991 return valueBytes(pVal, enc);