4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains C code routines that are called by the SQLite parser
13 ** when syntax rules are reduced. The routines in this file handle the
14 ** following kinds of SQL syntax:
25 #include "sqliteInt.h"
27 #ifndef SQLITE_OMIT_SHARED_CACHE
29 ** The TableLock structure is only used by the sqlite3TableLock() and
30 ** codeTableLocks() functions.
33 int iDb
; /* The database containing the table to be locked */
34 Pgno iTab
; /* The root page of the table to be locked */
35 u8 isWriteLock
; /* True for write lock. False for a read lock */
36 const char *zLockName
; /* Name of the table */
40 ** Record the fact that we want to lock a table at run-time.
42 ** The table to be locked has root page iTab and is found in database iDb.
43 ** A read or a write lock can be taken depending on isWritelock.
45 ** This routine just records the fact that the lock is desired. The
46 ** code to make the lock occur is generated by a later call to
47 ** codeTableLocks() which occurs during sqlite3FinishCoding().
49 static SQLITE_NOINLINE
void lockTable(
50 Parse
*pParse
, /* Parsing context */
51 int iDb
, /* Index of the database containing the table to lock */
52 Pgno iTab
, /* Root page number of the table to be locked */
53 u8 isWriteLock
, /* True for a write lock */
54 const char *zName
/* Name of the table to be locked */
62 pToplevel
= sqlite3ParseToplevel(pParse
);
63 for(i
=0; i
<pToplevel
->nTableLock
; i
++){
64 p
= &pToplevel
->aTableLock
[i
];
65 if( p
->iDb
==iDb
&& p
->iTab
==iTab
){
66 p
->isWriteLock
= (p
->isWriteLock
|| isWriteLock
);
71 nBytes
= sizeof(TableLock
) * (pToplevel
->nTableLock
+1);
72 pToplevel
->aTableLock
=
73 sqlite3DbReallocOrFree(pToplevel
->db
, pToplevel
->aTableLock
, nBytes
);
74 if( pToplevel
->aTableLock
){
75 p
= &pToplevel
->aTableLock
[pToplevel
->nTableLock
++];
78 p
->isWriteLock
= isWriteLock
;
81 pToplevel
->nTableLock
= 0;
82 sqlite3OomFault(pToplevel
->db
);
85 void sqlite3TableLock(
86 Parse
*pParse
, /* Parsing context */
87 int iDb
, /* Index of the database containing the table to lock */
88 Pgno iTab
, /* Root page number of the table to be locked */
89 u8 isWriteLock
, /* True for a write lock */
90 const char *zName
/* Name of the table to be locked */
93 if( !sqlite3BtreeSharable(pParse
->db
->aDb
[iDb
].pBt
) ) return;
94 lockTable(pParse
, iDb
, iTab
, isWriteLock
, zName
);
98 ** Code an OP_TableLock instruction for each table locked by the
99 ** statement (configured by calls to sqlite3TableLock()).
101 static void codeTableLocks(Parse
*pParse
){
103 Vdbe
*pVdbe
= pParse
->pVdbe
;
106 for(i
=0; i
<pParse
->nTableLock
; i
++){
107 TableLock
*p
= &pParse
->aTableLock
[i
];
109 sqlite3VdbeAddOp4(pVdbe
, OP_TableLock
, p1
, p
->iTab
, p
->isWriteLock
,
110 p
->zLockName
, P4_STATIC
);
114 #define codeTableLocks(x)
118 ** Return TRUE if the given yDbMask object is empty - if it contains no
119 ** 1 bits. This routine is used by the DbMaskAllZero() and DbMaskNotZero()
120 ** macros when SQLITE_MAX_ATTACHED is greater than 30.
122 #if SQLITE_MAX_ATTACHED>30
123 int sqlite3DbMaskAllZero(yDbMask m
){
125 for(i
=0; i
<sizeof(yDbMask
); i
++) if( m
[i
] ) return 0;
131 ** This routine is called after a single SQL statement has been
132 ** parsed and a VDBE program to execute that statement has been
133 ** prepared. This routine puts the finishing touches on the
134 ** VDBE program and resets the pParse structure for the next
137 ** Note that if an error occurred, it might be the case that
138 ** no VDBE code was generated.
140 void sqlite3FinishCoding(Parse
*pParse
){
144 assert( pParse
->pToplevel
==0 );
146 assert( db
->pParse
==pParse
);
147 if( pParse
->nested
) return;
149 if( db
->mallocFailed
) pParse
->rc
= SQLITE_NOMEM
;
152 assert( db
->mallocFailed
==0 );
154 /* Begin by generating some termination code at the end of the
160 pParse
->rc
= SQLITE_DONE
;
163 v
= sqlite3GetVdbe(pParse
);
164 if( v
==0 ) pParse
->rc
= SQLITE_ERROR
;
166 assert( !pParse
->isMultiWrite
167 || sqlite3VdbeAssertMayAbort(v
, pParse
->mayAbort
));
169 if( pParse
->bReturning
){
170 Returning
*pReturning
= pParse
->u1
.pReturning
;
175 if( pReturning
->nRetCol
){
176 sqlite3VdbeAddOp0(v
, OP_FkCheck
);
178 sqlite3VdbeAddOp1(v
, OP_Rewind
, pReturning
->iRetCur
);
180 reg
= pReturning
->iRetReg
;
181 for(i
=0; i
<pReturning
->nRetCol
; i
++){
182 sqlite3VdbeAddOp3(v
, OP_Column
, pReturning
->iRetCur
, i
, reg
+i
);
184 sqlite3VdbeAddOp2(v
, OP_ResultRow
, reg
, i
);
185 sqlite3VdbeAddOp2(v
, OP_Next
, pReturning
->iRetCur
, addrRewind
+1);
187 sqlite3VdbeJumpHere(v
, addrRewind
);
190 sqlite3VdbeAddOp0(v
, OP_Halt
);
192 #if SQLITE_USER_AUTHENTICATION
193 if( pParse
->nTableLock
>0 && db
->init
.busy
==0 ){
194 sqlite3UserAuthInit(db
);
195 if( db
->auth
.authLevel
<UAUTH_User
){
196 sqlite3ErrorMsg(pParse
, "user not authenticated");
197 pParse
->rc
= SQLITE_AUTH_USER
;
203 /* The cookie mask contains one bit for each database file open.
204 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are
205 ** set for each database that is used. Generate code to start a
206 ** transaction on each used database and to verify the schema cookie
207 ** on each used database.
209 if( db
->mallocFailed
==0
210 && (DbMaskNonZero(pParse
->cookieMask
) || pParse
->pConstExpr
)
213 assert( sqlite3VdbeGetOp(v
, 0)->opcode
==OP_Init
);
214 sqlite3VdbeJumpHere(v
, 0);
219 if( DbMaskTest(pParse
->cookieMask
, iDb
)==0 ) continue;
220 sqlite3VdbeUsesBtree(v
, iDb
);
221 pSchema
= db
->aDb
[iDb
].pSchema
;
222 sqlite3VdbeAddOp4Int(v
,
223 OP_Transaction
, /* Opcode */
225 DbMaskTest(pParse
->writeMask
,iDb
), /* P2 */
226 pSchema
->schema_cookie
, /* P3 */
227 pSchema
->iGeneration
/* P4 */
229 if( db
->init
.busy
==0 ) sqlite3VdbeChangeP5(v
, 1);
231 "usesStmtJournal=%d", pParse
->mayAbort
&& pParse
->isMultiWrite
));
232 }while( ++iDb
<db
->nDb
);
233 #ifndef SQLITE_OMIT_VIRTUALTABLE
234 for(i
=0; i
<pParse
->nVtabLock
; i
++){
235 char *vtab
= (char *)sqlite3GetVTable(db
, pParse
->apVtabLock
[i
]);
236 sqlite3VdbeAddOp4(v
, OP_VBegin
, 0, 0, 0, vtab
, P4_VTAB
);
238 pParse
->nVtabLock
= 0;
241 /* Once all the cookies have been verified and transactions opened,
242 ** obtain the required table-locks. This is a no-op unless the
243 ** shared-cache feature is enabled.
245 codeTableLocks(pParse
);
247 /* Initialize any AUTOINCREMENT data structures required.
249 sqlite3AutoincrementBegin(pParse
);
251 /* Code constant expressions that where factored out of inner loops.
253 ** The pConstExpr list might also contain expressions that we simply
254 ** want to keep around until the Parse object is deleted. Such
255 ** expressions have iConstExprReg==0. Do not generate code for
256 ** those expressions, of course.
258 if( pParse
->pConstExpr
){
259 ExprList
*pEL
= pParse
->pConstExpr
;
260 pParse
->okConstFactor
= 0;
261 for(i
=0; i
<pEL
->nExpr
; i
++){
262 int iReg
= pEL
->a
[i
].u
.iConstExprReg
;
264 sqlite3ExprCode(pParse
, pEL
->a
[i
].pExpr
, iReg
);
269 if( pParse
->bReturning
){
270 Returning
*pRet
= pParse
->u1
.pReturning
;
272 sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, pRet
->iRetCur
, pRet
->nRetCol
);
276 /* Finally, jump back to the beginning of the executable code. */
277 sqlite3VdbeGoto(v
, 1);
281 /* Get the VDBE program ready for execution
283 assert( v
!=0 || pParse
->nErr
);
284 assert( db
->mallocFailed
==0 || pParse
->nErr
);
285 if( pParse
->nErr
==0 ){
286 /* A minimum of one cursor is required if autoincrement is used
287 * See ticket [a696379c1f08866] */
288 assert( pParse
->pAinc
==0 || pParse
->nTab
>0 );
289 sqlite3VdbeMakeReady(v
, pParse
);
290 pParse
->rc
= SQLITE_DONE
;
292 pParse
->rc
= SQLITE_ERROR
;
297 ** Run the parser and code generator recursively in order to generate
298 ** code for the SQL statement given onto the end of the pParse context
299 ** currently under construction. Notes:
301 ** * The final OP_Halt is not appended and other initialization
302 ** and finalization steps are omitted because those are handling by the
305 ** * Built-in SQL functions always take precedence over application-defined
306 ** SQL functions. In other words, it is not possible to override a
307 ** built-in function.
309 void sqlite3NestedParse(Parse
*pParse
, const char *zFormat
, ...){
312 sqlite3
*db
= pParse
->db
;
313 u32 savedDbFlags
= db
->mDbFlags
;
314 char saveBuf
[PARSE_TAIL_SZ
];
316 if( pParse
->nErr
) return;
317 assert( pParse
->nested
<10 ); /* Nesting should only be of limited depth */
318 va_start(ap
, zFormat
);
319 zSql
= sqlite3VMPrintf(db
, zFormat
, ap
);
322 /* This can result either from an OOM or because the formatted string
323 ** exceeds SQLITE_LIMIT_LENGTH. In the latter case, we need to set
325 if( !db
->mallocFailed
) pParse
->rc
= SQLITE_TOOBIG
;
330 memcpy(saveBuf
, PARSE_TAIL(pParse
), PARSE_TAIL_SZ
);
331 memset(PARSE_TAIL(pParse
), 0, PARSE_TAIL_SZ
);
332 db
->mDbFlags
|= DBFLAG_PreferBuiltin
;
333 sqlite3RunParser(pParse
, zSql
);
334 db
->mDbFlags
= savedDbFlags
;
335 sqlite3DbFree(db
, zSql
);
336 memcpy(PARSE_TAIL(pParse
), saveBuf
, PARSE_TAIL_SZ
);
340 #if SQLITE_USER_AUTHENTICATION
342 ** Return TRUE if zTable is the name of the system table that stores the
343 ** list of users and their access credentials.
345 int sqlite3UserAuthTable(const char *zTable
){
346 return sqlite3_stricmp(zTable
, "sqlite_user")==0;
351 ** Locate the in-memory structure that describes a particular database
352 ** table given the name of that table and (optionally) the name of the
353 ** database containing the table. Return NULL if not found.
355 ** If zDatabase is 0, all databases are searched for the table and the
356 ** first matching table is returned. (No checking for duplicate table
357 ** names is done.) The search order is TEMP first, then MAIN, then any
358 ** auxiliary databases added using the ATTACH command.
360 ** See also sqlite3LocateTable().
362 Table
*sqlite3FindTable(sqlite3
*db
, const char *zName
, const char *zDatabase
){
366 /* All mutexes are required for schema access. Make sure we hold them. */
367 assert( zDatabase
!=0 || sqlite3BtreeHoldsAllMutexes(db
) );
368 #if SQLITE_USER_AUTHENTICATION
369 /* Only the admin user is allowed to know that the sqlite_user table
371 if( db
->auth
.authLevel
<UAUTH_Admin
&& sqlite3UserAuthTable(zName
)!=0 ){
376 for(i
=0; i
<db
->nDb
; i
++){
377 if( sqlite3StrICmp(zDatabase
, db
->aDb
[i
].zDbSName
)==0 ) break;
380 /* No match against the official names. But always match "main"
381 ** to schema 0 as a legacy fallback. */
382 if( sqlite3StrICmp(zDatabase
,"main")==0 ){
388 p
= sqlite3HashFind(&db
->aDb
[i
].pSchema
->tblHash
, zName
);
389 if( p
==0 && sqlite3StrNICmp(zName
, "sqlite_", 7)==0 ){
391 if( sqlite3StrICmp(zName
+7, &PREFERRED_TEMP_SCHEMA_TABLE
[7])==0
392 || sqlite3StrICmp(zName
+7, &PREFERRED_SCHEMA_TABLE
[7])==0
393 || sqlite3StrICmp(zName
+7, &LEGACY_SCHEMA_TABLE
[7])==0
395 p
= sqlite3HashFind(&db
->aDb
[1].pSchema
->tblHash
,
396 LEGACY_TEMP_SCHEMA_TABLE
);
399 if( sqlite3StrICmp(zName
+7, &PREFERRED_SCHEMA_TABLE
[7])==0 ){
400 p
= sqlite3HashFind(&db
->aDb
[i
].pSchema
->tblHash
,
401 LEGACY_SCHEMA_TABLE
);
406 /* Match against TEMP first */
407 p
= sqlite3HashFind(&db
->aDb
[1].pSchema
->tblHash
, zName
);
409 /* The main database is second */
410 p
= sqlite3HashFind(&db
->aDb
[0].pSchema
->tblHash
, zName
);
412 /* Attached databases are in order of attachment */
413 for(i
=2; i
<db
->nDb
; i
++){
414 assert( sqlite3SchemaMutexHeld(db
, i
, 0) );
415 p
= sqlite3HashFind(&db
->aDb
[i
].pSchema
->tblHash
, zName
);
418 if( p
==0 && sqlite3StrNICmp(zName
, "sqlite_", 7)==0 ){
419 if( sqlite3StrICmp(zName
+7, &PREFERRED_SCHEMA_TABLE
[7])==0 ){
420 p
= sqlite3HashFind(&db
->aDb
[0].pSchema
->tblHash
, LEGACY_SCHEMA_TABLE
);
421 }else if( sqlite3StrICmp(zName
+7, &PREFERRED_TEMP_SCHEMA_TABLE
[7])==0 ){
422 p
= sqlite3HashFind(&db
->aDb
[1].pSchema
->tblHash
,
423 LEGACY_TEMP_SCHEMA_TABLE
);
431 ** Locate the in-memory structure that describes a particular database
432 ** table given the name of that table and (optionally) the name of the
433 ** database containing the table. Return NULL if not found. Also leave an
434 ** error message in pParse->zErrMsg.
436 ** The difference between this routine and sqlite3FindTable() is that this
437 ** routine leaves an error message in pParse->zErrMsg where
438 ** sqlite3FindTable() does not.
440 Table
*sqlite3LocateTable(
441 Parse
*pParse
, /* context in which to report errors */
442 u32 flags
, /* LOCATE_VIEW or LOCATE_NOERR */
443 const char *zName
, /* Name of the table we are looking for */
444 const char *zDbase
/* Name of the database. Might be NULL */
447 sqlite3
*db
= pParse
->db
;
449 /* Read the database schema. If an error occurs, leave an error message
450 ** and code in pParse and return NULL. */
451 if( (db
->mDbFlags
& DBFLAG_SchemaKnownOk
)==0
452 && SQLITE_OK
!=sqlite3ReadSchema(pParse
)
457 p
= sqlite3FindTable(db
, zName
, zDbase
);
459 #ifndef SQLITE_OMIT_VIRTUALTABLE
460 /* If zName is the not the name of a table in the schema created using
461 ** CREATE, then check to see if it is the name of an virtual table that
462 ** can be an eponymous virtual table. */
463 if( pParse
->disableVtab
==0 && db
->init
.busy
==0 ){
464 Module
*pMod
= (Module
*)sqlite3HashFind(&db
->aModule
, zName
);
465 if( pMod
==0 && sqlite3_strnicmp(zName
, "pragma_", 7)==0 ){
466 pMod
= sqlite3PragmaVtabRegister(db
, zName
);
468 if( pMod
&& sqlite3VtabEponymousTableInit(pParse
, pMod
) ){
469 testcase( pMod
->pEpoTab
==0 );
470 return pMod
->pEpoTab
;
474 if( flags
& LOCATE_NOERR
) return 0;
475 pParse
->checkSchema
= 1;
476 }else if( IsVirtual(p
) && pParse
->disableVtab
){
481 const char *zMsg
= flags
& LOCATE_VIEW
? "no such view" : "no such table";
483 sqlite3ErrorMsg(pParse
, "%s: %s.%s", zMsg
, zDbase
, zName
);
485 sqlite3ErrorMsg(pParse
, "%s: %s", zMsg
, zName
);
488 assert( HasRowid(p
) || p
->iPKey
<0 );
495 ** Locate the table identified by *p.
497 ** This is a wrapper around sqlite3LocateTable(). The difference between
498 ** sqlite3LocateTable() and this function is that this function restricts
499 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be
500 ** non-NULL if it is part of a view or trigger program definition. See
501 ** sqlite3FixSrcList() for details.
503 Table
*sqlite3LocateTableItem(
509 assert( p
->pSchema
==0 || p
->zDatabase
==0 );
511 int iDb
= sqlite3SchemaToIndex(pParse
->db
, p
->pSchema
);
512 zDb
= pParse
->db
->aDb
[iDb
].zDbSName
;
516 return sqlite3LocateTable(pParse
, flags
, p
->zName
, zDb
);
520 ** Return the preferred table name for system tables. Translate legacy
521 ** names into the new preferred names, as appropriate.
523 const char *sqlite3PreferredTableName(const char *zName
){
524 if( sqlite3StrNICmp(zName
, "sqlite_", 7)==0 ){
525 if( sqlite3StrICmp(zName
+7, &LEGACY_SCHEMA_TABLE
[7])==0 ){
526 return PREFERRED_SCHEMA_TABLE
;
528 if( sqlite3StrICmp(zName
+7, &LEGACY_TEMP_SCHEMA_TABLE
[7])==0 ){
529 return PREFERRED_TEMP_SCHEMA_TABLE
;
536 ** Locate the in-memory structure that describes
537 ** a particular index given the name of that index
538 ** and the name of the database that contains the index.
539 ** Return NULL if not found.
541 ** If zDatabase is 0, all databases are searched for the
542 ** table and the first matching index is returned. (No checking
543 ** for duplicate index names is done.) The search order is
544 ** TEMP first, then MAIN, then any auxiliary databases added
545 ** using the ATTACH command.
547 Index
*sqlite3FindIndex(sqlite3
*db
, const char *zName
, const char *zDb
){
550 /* All mutexes are required for schema access. Make sure we hold them. */
551 assert( zDb
!=0 || sqlite3BtreeHoldsAllMutexes(db
) );
552 for(i
=OMIT_TEMPDB
; i
<db
->nDb
; i
++){
553 int j
= (i
<2) ? i
^1 : i
; /* Search TEMP before MAIN */
554 Schema
*pSchema
= db
->aDb
[j
].pSchema
;
556 if( zDb
&& sqlite3DbIsNamed(db
, j
, zDb
)==0 ) continue;
557 assert( sqlite3SchemaMutexHeld(db
, j
, 0) );
558 p
= sqlite3HashFind(&pSchema
->idxHash
, zName
);
565 ** Reclaim the memory used by an index
567 void sqlite3FreeIndex(sqlite3
*db
, Index
*p
){
568 #ifndef SQLITE_OMIT_ANALYZE
569 sqlite3DeleteIndexSamples(db
, p
);
571 sqlite3ExprDelete(db
, p
->pPartIdxWhere
);
572 sqlite3ExprListDelete(db
, p
->aColExpr
);
573 sqlite3DbFree(db
, p
->zColAff
);
574 if( p
->isResized
) sqlite3DbFree(db
, (void *)p
->azColl
);
575 #ifdef SQLITE_ENABLE_STAT4
576 sqlite3_free(p
->aiRowEst
);
578 sqlite3DbFree(db
, p
);
582 ** For the index called zIdxName which is found in the database iDb,
583 ** unlike that index from its Table then remove the index from
584 ** the index hash table and free all memory structures associated
587 void sqlite3UnlinkAndDeleteIndex(sqlite3
*db
, int iDb
, const char *zIdxName
){
591 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
592 pHash
= &db
->aDb
[iDb
].pSchema
->idxHash
;
593 pIndex
= sqlite3HashInsert(pHash
, zIdxName
, 0);
594 if( ALWAYS(pIndex
) ){
595 if( pIndex
->pTable
->pIndex
==pIndex
){
596 pIndex
->pTable
->pIndex
= pIndex
->pNext
;
599 /* Justification of ALWAYS(); The index must be on the list of
601 p
= pIndex
->pTable
->pIndex
;
602 while( ALWAYS(p
) && p
->pNext
!=pIndex
){ p
= p
->pNext
; }
603 if( ALWAYS(p
&& p
->pNext
==pIndex
) ){
604 p
->pNext
= pIndex
->pNext
;
607 sqlite3FreeIndex(db
, pIndex
);
609 db
->mDbFlags
|= DBFLAG_SchemaChange
;
613 ** Look through the list of open database files in db->aDb[] and if
614 ** any have been closed, remove them from the list. Reallocate the
615 ** db->aDb[] structure to a smaller size, if possible.
617 ** Entry 0 (the "main" database) and entry 1 (the "temp" database)
618 ** are never candidates for being collapsed.
620 void sqlite3CollapseDatabaseArray(sqlite3
*db
){
622 for(i
=j
=2; i
<db
->nDb
; i
++){
623 struct Db
*pDb
= &db
->aDb
[i
];
625 sqlite3DbFree(db
, pDb
->zDbSName
);
630 db
->aDb
[j
] = db
->aDb
[i
];
635 if( db
->nDb
<=2 && db
->aDb
!=db
->aDbStatic
){
636 memcpy(db
->aDbStatic
, db
->aDb
, 2*sizeof(db
->aDb
[0]));
637 sqlite3DbFree(db
, db
->aDb
);
638 db
->aDb
= db
->aDbStatic
;
643 ** Reset the schema for the database at index iDb. Also reset the
644 ** TEMP schema. The reset is deferred if db->nSchemaLock is not zero.
645 ** Deferred resets may be run by calling with iDb<0.
647 void sqlite3ResetOneSchema(sqlite3
*db
, int iDb
){
649 assert( iDb
<db
->nDb
);
652 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
653 DbSetProperty(db
, iDb
, DB_ResetWanted
);
654 DbSetProperty(db
, 1, DB_ResetWanted
);
655 db
->mDbFlags
&= ~DBFLAG_SchemaKnownOk
;
658 if( db
->nSchemaLock
==0 ){
659 for(i
=0; i
<db
->nDb
; i
++){
660 if( DbHasProperty(db
, i
, DB_ResetWanted
) ){
661 sqlite3SchemaClear(db
->aDb
[i
].pSchema
);
668 ** Erase all schema information from all attached databases (including
669 ** "main" and "temp") for a single database connection.
671 void sqlite3ResetAllSchemasOfConnection(sqlite3
*db
){
673 sqlite3BtreeEnterAll(db
);
674 for(i
=0; i
<db
->nDb
; i
++){
675 Db
*pDb
= &db
->aDb
[i
];
677 if( db
->nSchemaLock
==0 ){
678 sqlite3SchemaClear(pDb
->pSchema
);
680 DbSetProperty(db
, i
, DB_ResetWanted
);
684 db
->mDbFlags
&= ~(DBFLAG_SchemaChange
|DBFLAG_SchemaKnownOk
);
685 sqlite3VtabUnlockList(db
);
686 sqlite3BtreeLeaveAll(db
);
687 if( db
->nSchemaLock
==0 ){
688 sqlite3CollapseDatabaseArray(db
);
693 ** This routine is called when a commit occurs.
695 void sqlite3CommitInternalChanges(sqlite3
*db
){
696 db
->mDbFlags
&= ~DBFLAG_SchemaChange
;
700 ** Set the expression associated with a column. This is usually
701 ** the DEFAULT value, but might also be the expression that computes
702 ** the value for a generated column.
704 void sqlite3ColumnSetExpr(
705 Parse
*pParse
, /* Parsing context */
706 Table
*pTab
, /* The table containing the column */
707 Column
*pCol
, /* The column to receive the new DEFAULT expression */
708 Expr
*pExpr
/* The new default expression */
711 assert( IsOrdinaryTable(pTab
) );
712 pList
= pTab
->u
.tab
.pDfltList
;
715 || NEVER(pList
->nExpr
<pCol
->iDflt
)
717 pCol
->iDflt
= pList
==0 ? 1 : pList
->nExpr
+1;
718 pTab
->u
.tab
.pDfltList
= sqlite3ExprListAppend(pParse
, pList
, pExpr
);
720 sqlite3ExprDelete(pParse
->db
, pList
->a
[pCol
->iDflt
-1].pExpr
);
721 pList
->a
[pCol
->iDflt
-1].pExpr
= pExpr
;
726 ** Return the expression associated with a column. The expression might be
727 ** the DEFAULT clause or the AS clause of a generated column.
728 ** Return NULL if the column has no associated expression.
730 Expr
*sqlite3ColumnExpr(Table
*pTab
, Column
*pCol
){
731 if( pCol
->iDflt
==0 ) return 0;
732 if( NEVER(!IsOrdinaryTable(pTab
)) ) return 0;
733 if( NEVER(pTab
->u
.tab
.pDfltList
==0) ) return 0;
734 if( NEVER(pTab
->u
.tab
.pDfltList
->nExpr
<pCol
->iDflt
) ) return 0;
735 return pTab
->u
.tab
.pDfltList
->a
[pCol
->iDflt
-1].pExpr
;
739 ** Set the collating sequence name for a column.
741 void sqlite3ColumnSetColl(
750 n
= sqlite3Strlen30(pCol
->zCnName
) + 1;
751 if( pCol
->colFlags
& COLFLAG_HASTYPE
){
752 n
+= sqlite3Strlen30(pCol
->zCnName
+n
) + 1;
754 nColl
= sqlite3Strlen30(zColl
) + 1;
755 zNew
= sqlite3DbRealloc(db
, pCol
->zCnName
, nColl
+n
);
757 pCol
->zCnName
= zNew
;
758 memcpy(pCol
->zCnName
+ n
, zColl
, nColl
);
759 pCol
->colFlags
|= COLFLAG_HASCOLL
;
764 ** Return the collating squence name for a column
766 const char *sqlite3ColumnColl(Column
*pCol
){
768 if( (pCol
->colFlags
& COLFLAG_HASCOLL
)==0 ) return 0;
771 if( pCol
->colFlags
& COLFLAG_HASTYPE
){
772 do{ z
++; }while( *z
);
778 ** Delete memory allocated for the column names of a table or view (the
779 ** Table.aCol[] array).
781 void sqlite3DeleteColumnNames(sqlite3
*db
, Table
*pTable
){
785 if( (pCol
= pTable
->aCol
)!=0 ){
786 for(i
=0; i
<pTable
->nCol
; i
++, pCol
++){
787 assert( pCol
->zCnName
==0 || pCol
->hName
==sqlite3StrIHash(pCol
->zCnName
) );
788 sqlite3DbFree(db
, pCol
->zCnName
);
790 sqlite3DbFree(db
, pTable
->aCol
);
791 if( IsOrdinaryTable(pTable
) ){
792 sqlite3ExprListDelete(db
, pTable
->u
.tab
.pDfltList
);
794 if( db
==0 || db
->pnBytesFreed
==0 ){
797 if( IsOrdinaryTable(pTable
) ){
798 pTable
->u
.tab
.pDfltList
= 0;
805 ** Remove the memory data structures associated with the given
806 ** Table. No changes are made to disk by this routine.
808 ** This routine just deletes the data structure. It does not unlink
809 ** the table data structure from the hash table. But it does destroy
810 ** memory structures of the indices and foreign keys associated with
813 ** The db parameter is optional. It is needed if the Table object
814 ** contains lookaside memory. (Table objects in the schema do not use
815 ** lookaside memory, but some ephemeral Table objects do.) Or the
816 ** db parameter can be used with db->pnBytesFreed to measure the memory
817 ** used by the Table object.
819 static void SQLITE_NOINLINE
deleteTable(sqlite3
*db
, Table
*pTable
){
820 Index
*pIndex
, *pNext
;
823 /* Record the number of outstanding lookaside allocations in schema Tables
824 ** prior to doing any free() operations. Since schema Tables do not use
825 ** lookaside, this number should not change.
827 ** If malloc has already failed, it may be that it failed while allocating
828 ** a Table object that was going to be marked ephemeral. So do not check
829 ** that no lookaside memory is used in this case either. */
831 if( db
&& !db
->mallocFailed
&& (pTable
->tabFlags
& TF_Ephemeral
)==0 ){
832 nLookaside
= sqlite3LookasideUsed(db
, 0);
836 /* Delete all indices associated with this table. */
837 for(pIndex
= pTable
->pIndex
; pIndex
; pIndex
=pNext
){
838 pNext
= pIndex
->pNext
;
839 assert( pIndex
->pSchema
==pTable
->pSchema
840 || (IsVirtual(pTable
) && pIndex
->idxType
!=SQLITE_IDXTYPE_APPDEF
) );
841 if( (db
==0 || db
->pnBytesFreed
==0) && !IsVirtual(pTable
) ){
842 char *zName
= pIndex
->zName
;
843 TESTONLY ( Index
*pOld
= ) sqlite3HashInsert(
844 &pIndex
->pSchema
->idxHash
, zName
, 0
846 assert( db
==0 || sqlite3SchemaMutexHeld(db
, 0, pIndex
->pSchema
) );
847 assert( pOld
==pIndex
|| pOld
==0 );
849 sqlite3FreeIndex(db
, pIndex
);
852 if( IsOrdinaryTable(pTable
) ){
853 sqlite3FkDelete(db
, pTable
);
855 #ifndef SQLITE_OMIT_VIRTUAL_TABLE
856 else if( IsVirtual(pTable
) ){
857 sqlite3VtabClear(db
, pTable
);
861 assert( IsView(pTable
) );
862 sqlite3SelectDelete(db
, pTable
->u
.view
.pSelect
);
865 /* Delete the Table structure itself.
867 sqlite3DeleteColumnNames(db
, pTable
);
868 sqlite3DbFree(db
, pTable
->zName
);
869 sqlite3DbFree(db
, pTable
->zColAff
);
870 sqlite3ExprListDelete(db
, pTable
->pCheck
);
871 sqlite3DbFree(db
, pTable
);
873 /* Verify that no lookaside memory was used by schema tables */
874 assert( nLookaside
==0 || nLookaside
==sqlite3LookasideUsed(db
,0) );
876 void sqlite3DeleteTable(sqlite3
*db
, Table
*pTable
){
877 /* Do not delete the table until the reference count reaches zero. */
878 if( !pTable
) return;
879 if( ((!db
|| db
->pnBytesFreed
==0) && (--pTable
->nTabRef
)>0) ) return;
880 deleteTable(db
, pTable
);
885 ** Unlink the given table from the hash tables and the delete the
886 ** table structure with all its indices and foreign keys.
888 void sqlite3UnlinkAndDeleteTable(sqlite3
*db
, int iDb
, const char *zTabName
){
893 assert( iDb
>=0 && iDb
<db
->nDb
);
895 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
896 testcase( zTabName
[0]==0 ); /* Zero-length table names are allowed */
898 p
= sqlite3HashInsert(&pDb
->pSchema
->tblHash
, zTabName
, 0);
899 sqlite3DeleteTable(db
, p
);
900 db
->mDbFlags
|= DBFLAG_SchemaChange
;
904 ** Given a token, return a string that consists of the text of that
905 ** token. Space to hold the returned string
906 ** is obtained from sqliteMalloc() and must be freed by the calling
909 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that
910 ** surround the body of the token are removed.
912 ** Tokens are often just pointers into the original SQL text and so
913 ** are not \000 terminated and are not persistent. The returned string
914 ** is \000 terminated and is persistent.
916 char *sqlite3NameFromToken(sqlite3
*db
, const Token
*pName
){
919 zName
= sqlite3DbStrNDup(db
, (const char*)pName
->z
, pName
->n
);
920 sqlite3Dequote(zName
);
928 ** Open the sqlite_schema table stored in database number iDb for
929 ** writing. The table is opened using cursor 0.
931 void sqlite3OpenSchemaTable(Parse
*p
, int iDb
){
932 Vdbe
*v
= sqlite3GetVdbe(p
);
933 sqlite3TableLock(p
, iDb
, SCHEMA_ROOT
, 1, LEGACY_SCHEMA_TABLE
);
934 sqlite3VdbeAddOp4Int(v
, OP_OpenWrite
, 0, SCHEMA_ROOT
, iDb
, 5);
941 ** Parameter zName points to a nul-terminated buffer containing the name
942 ** of a database ("main", "temp" or the name of an attached db). This
943 ** function returns the index of the named database in db->aDb[], or
944 ** -1 if the named db cannot be found.
946 int sqlite3FindDbName(sqlite3
*db
, const char *zName
){
947 int i
= -1; /* Database number */
950 for(i
=(db
->nDb
-1), pDb
=&db
->aDb
[i
]; i
>=0; i
--, pDb
--){
951 if( 0==sqlite3_stricmp(pDb
->zDbSName
, zName
) ) break;
952 /* "main" is always an acceptable alias for the primary database
953 ** even if it has been renamed using SQLITE_DBCONFIG_MAINDBNAME. */
954 if( i
==0 && 0==sqlite3_stricmp("main", zName
) ) break;
961 ** The token *pName contains the name of a database (either "main" or
962 ** "temp" or the name of an attached db). This routine returns the
963 ** index of the named database in db->aDb[], or -1 if the named db
966 int sqlite3FindDb(sqlite3
*db
, Token
*pName
){
967 int i
; /* Database number */
968 char *zName
; /* Name we are searching for */
969 zName
= sqlite3NameFromToken(db
, pName
);
970 i
= sqlite3FindDbName(db
, zName
);
971 sqlite3DbFree(db
, zName
);
975 /* The table or view or trigger name is passed to this routine via tokens
976 ** pName1 and pName2. If the table name was fully qualified, for example:
978 ** CREATE TABLE xxx.yyy (...);
980 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
981 ** the table name is not fully qualified, i.e.:
983 ** CREATE TABLE yyy(...);
985 ** Then pName1 is set to "yyy" and pName2 is "".
987 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or
988 ** pName2) that stores the unqualified table name. The index of the
989 ** database "xxx" is returned.
991 int sqlite3TwoPartName(
992 Parse
*pParse
, /* Parsing and code generating context */
993 Token
*pName1
, /* The "xxx" in the name "xxx.yyy" or "xxx" */
994 Token
*pName2
, /* The "yyy" in the name "xxx.yyy" */
995 Token
**pUnqual
/* Write the unqualified object name here */
997 int iDb
; /* Database holding the object */
998 sqlite3
*db
= pParse
->db
;
1000 assert( pName2
!=0 );
1002 if( db
->init
.busy
) {
1003 sqlite3ErrorMsg(pParse
, "corrupt database");
1007 iDb
= sqlite3FindDb(db
, pName1
);
1009 sqlite3ErrorMsg(pParse
, "unknown database %T", pName1
);
1013 assert( db
->init
.iDb
==0 || db
->init
.busy
|| IN_SPECIAL_PARSE
1014 || (db
->mDbFlags
& DBFLAG_Vacuum
)!=0);
1022 ** True if PRAGMA writable_schema is ON
1024 int sqlite3WritableSchema(sqlite3
*db
){
1025 testcase( (db
->flags
&(SQLITE_WriteSchema
|SQLITE_Defensive
))==0 );
1026 testcase( (db
->flags
&(SQLITE_WriteSchema
|SQLITE_Defensive
))==
1027 SQLITE_WriteSchema
);
1028 testcase( (db
->flags
&(SQLITE_WriteSchema
|SQLITE_Defensive
))==
1030 testcase( (db
->flags
&(SQLITE_WriteSchema
|SQLITE_Defensive
))==
1031 (SQLITE_WriteSchema
|SQLITE_Defensive
) );
1032 return (db
->flags
&(SQLITE_WriteSchema
|SQLITE_Defensive
))==SQLITE_WriteSchema
;
1036 ** This routine is used to check if the UTF-8 string zName is a legal
1037 ** unqualified name for a new schema object (table, index, view or
1038 ** trigger). All names are legal except those that begin with the string
1039 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
1040 ** is reserved for internal use.
1042 ** When parsing the sqlite_schema table, this routine also checks to
1043 ** make sure the "type", "name", and "tbl_name" columns are consistent
1046 int sqlite3CheckObjectName(
1047 Parse
*pParse
, /* Parsing context */
1048 const char *zName
, /* Name of the object to check */
1049 const char *zType
, /* Type of this object */
1050 const char *zTblName
/* Parent table name for triggers and indexes */
1052 sqlite3
*db
= pParse
->db
;
1053 if( sqlite3WritableSchema(db
)
1054 || db
->init
.imposterTable
1055 || !sqlite3Config
.bExtraSchemaChecks
1057 /* Skip these error checks for writable_schema=ON */
1060 if( db
->init
.busy
){
1061 if( sqlite3_stricmp(zType
, db
->init
.azInit
[0])
1062 || sqlite3_stricmp(zName
, db
->init
.azInit
[1])
1063 || sqlite3_stricmp(zTblName
, db
->init
.azInit
[2])
1065 sqlite3ErrorMsg(pParse
, ""); /* corruptSchema() will supply the error */
1066 return SQLITE_ERROR
;
1069 if( (pParse
->nested
==0 && 0==sqlite3StrNICmp(zName
, "sqlite_", 7))
1070 || (sqlite3ReadOnlyShadowTables(db
) && sqlite3ShadowTableName(db
, zName
))
1072 sqlite3ErrorMsg(pParse
, "object name reserved for internal use: %s",
1074 return SQLITE_ERROR
;
1082 ** Return the PRIMARY KEY index of a table
1084 Index
*sqlite3PrimaryKeyIndex(Table
*pTab
){
1086 for(p
=pTab
->pIndex
; p
&& !IsPrimaryKeyIndex(p
); p
=p
->pNext
){}
1091 ** Convert an table column number into a index column number. That is,
1092 ** for the column iCol in the table (as defined by the CREATE TABLE statement)
1093 ** find the (first) offset of that column in index pIdx. Or return -1
1094 ** if column iCol is not used in index pIdx.
1096 i16
sqlite3TableColumnToIndex(Index
*pIdx
, i16 iCol
){
1098 for(i
=0; i
<pIdx
->nColumn
; i
++){
1099 if( iCol
==pIdx
->aiColumn
[i
] ) return i
;
1104 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1105 /* Convert a storage column number into a table column number.
1107 ** The storage column number (0,1,2,....) is the index of the value
1108 ** as it appears in the record on disk. The true column number
1109 ** is the index (0,1,2,...) of the column in the CREATE TABLE statement.
1111 ** The storage column number is less than the table column number if
1112 ** and only there are VIRTUAL columns to the left.
1114 ** If SQLITE_OMIT_GENERATED_COLUMNS, this routine is a no-op macro.
1116 i16
sqlite3StorageColumnToTable(Table
*pTab
, i16 iCol
){
1117 if( pTab
->tabFlags
& TF_HasVirtual
){
1119 for(i
=0; i
<=iCol
; i
++){
1120 if( pTab
->aCol
[i
].colFlags
& COLFLAG_VIRTUAL
) iCol
++;
1127 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1128 /* Convert a table column number into a storage column number.
1130 ** The storage column number (0,1,2,....) is the index of the value
1131 ** as it appears in the record on disk. Or, if the input column is
1132 ** the N-th virtual column (zero-based) then the storage number is
1133 ** the number of non-virtual columns in the table plus N.
1135 ** The true column number is the index (0,1,2,...) of the column in
1136 ** the CREATE TABLE statement.
1138 ** If the input column is a VIRTUAL column, then it should not appear
1139 ** in storage. But the value sometimes is cached in registers that
1140 ** follow the range of registers used to construct storage. This
1141 ** avoids computing the same VIRTUAL column multiple times, and provides
1142 ** values for use by OP_Param opcodes in triggers. Hence, if the
1143 ** input column is a VIRTUAL table, put it after all the other columns.
1145 ** In the following, N means "normal column", S means STORED, and
1146 ** V means VIRTUAL. Suppose the CREATE TABLE has columns like this:
1148 ** CREATE TABLE ex(N,S,V,N,S,V,N,S,V);
1149 ** -- 0 1 2 3 4 5 6 7 8
1151 ** Then the mapping from this function is as follows:
1153 ** INPUTS: 0 1 2 3 4 5 6 7 8
1154 ** OUTPUTS: 0 1 6 2 3 7 4 5 8
1156 ** So, in other words, this routine shifts all the virtual columns to
1159 ** If SQLITE_OMIT_GENERATED_COLUMNS then there are no virtual columns and
1160 ** this routine is a no-op macro. If the pTab does not have any virtual
1161 ** columns, then this routine is no-op that always return iCol. If iCol
1162 ** is negative (indicating the ROWID column) then this routine return iCol.
1164 i16
sqlite3TableColumnToStorage(Table
*pTab
, i16 iCol
){
1167 assert( iCol
<pTab
->nCol
);
1168 if( (pTab
->tabFlags
& TF_HasVirtual
)==0 || iCol
<0 ) return iCol
;
1169 for(i
=0, n
=0; i
<iCol
; i
++){
1170 if( (pTab
->aCol
[i
].colFlags
& COLFLAG_VIRTUAL
)==0 ) n
++;
1172 if( pTab
->aCol
[i
].colFlags
& COLFLAG_VIRTUAL
){
1173 /* iCol is a virtual column itself */
1174 return pTab
->nNVCol
+ i
- n
;
1176 /* iCol is a normal or stored column */
1183 ** Insert a single OP_JournalMode query opcode in order to force the
1184 ** prepared statement to return false for sqlite3_stmt_readonly(). This
1185 ** is used by CREATE TABLE IF NOT EXISTS and similar if the table already
1186 ** exists, so that the prepared statement for CREATE TABLE IF NOT EXISTS
1187 ** will return false for sqlite3_stmt_readonly() even if that statement
1188 ** is a read-only no-op.
1190 static void sqlite3ForceNotReadOnly(Parse
*pParse
){
1191 int iReg
= ++pParse
->nMem
;
1192 Vdbe
*v
= sqlite3GetVdbe(pParse
);
1194 sqlite3VdbeAddOp3(v
, OP_JournalMode
, 0, iReg
, PAGER_JOURNALMODE_QUERY
);
1195 sqlite3VdbeUsesBtree(v
, 0);
1200 ** Begin constructing a new table representation in memory. This is
1201 ** the first of several action routines that get called in response
1202 ** to a CREATE TABLE statement. In particular, this routine is called
1203 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
1204 ** flag is true if the table should be stored in the auxiliary database
1205 ** file instead of in the main database file. This is normally the case
1206 ** when the "TEMP" or "TEMPORARY" keyword occurs in between
1207 ** CREATE and TABLE.
1209 ** The new table record is initialized and put in pParse->pNewTable.
1210 ** As more of the CREATE TABLE statement is parsed, additional action
1211 ** routines will be called to add more information to this record.
1212 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
1213 ** is called to complete the construction of the new table record.
1215 void sqlite3StartTable(
1216 Parse
*pParse
, /* Parser context */
1217 Token
*pName1
, /* First part of the name of the table or view */
1218 Token
*pName2
, /* Second part of the name of the table or view */
1219 int isTemp
, /* True if this is a TEMP table */
1220 int isView
, /* True if this is a VIEW */
1221 int isVirtual
, /* True if this is a VIRTUAL table */
1222 int noErr
/* Do nothing if table already exists */
1225 char *zName
= 0; /* The name of the new table */
1226 sqlite3
*db
= pParse
->db
;
1228 int iDb
; /* Database number to create the table in */
1229 Token
*pName
; /* Unqualified name of the table to create */
1231 if( db
->init
.busy
&& db
->init
.newTnum
==1 ){
1232 /* Special case: Parsing the sqlite_schema or sqlite_temp_schema schema */
1234 zName
= sqlite3DbStrDup(db
, SCHEMA_TABLE(iDb
));
1237 /* The common case */
1238 iDb
= sqlite3TwoPartName(pParse
, pName1
, pName2
, &pName
);
1240 if( !OMIT_TEMPDB
&& isTemp
&& pName2
->n
>0 && iDb
!=1 ){
1241 /* If creating a temp table, the name may not be qualified. Unless
1242 ** the database name is "temp" anyway. */
1243 sqlite3ErrorMsg(pParse
, "temporary table name must be unqualified");
1246 if( !OMIT_TEMPDB
&& isTemp
) iDb
= 1;
1247 zName
= sqlite3NameFromToken(db
, pName
);
1248 if( IN_RENAME_OBJECT
){
1249 sqlite3RenameTokenMap(pParse
, (void*)zName
, pName
);
1252 pParse
->sNameToken
= *pName
;
1253 if( zName
==0 ) return;
1254 if( sqlite3CheckObjectName(pParse
, zName
, isView
?"view":"table", zName
) ){
1255 goto begin_table_error
;
1257 if( db
->init
.iDb
==1 ) isTemp
= 1;
1258 #ifndef SQLITE_OMIT_AUTHORIZATION
1259 assert( isTemp
==0 || isTemp
==1 );
1260 assert( isView
==0 || isView
==1 );
1262 static const u8 aCode
[] = {
1263 SQLITE_CREATE_TABLE
,
1264 SQLITE_CREATE_TEMP_TABLE
,
1266 SQLITE_CREATE_TEMP_VIEW
1268 char *zDb
= db
->aDb
[iDb
].zDbSName
;
1269 if( sqlite3AuthCheck(pParse
, SQLITE_INSERT
, SCHEMA_TABLE(isTemp
), 0, zDb
) ){
1270 goto begin_table_error
;
1272 if( !isVirtual
&& sqlite3AuthCheck(pParse
, (int)aCode
[isTemp
+2*isView
],
1274 goto begin_table_error
;
1279 /* Make sure the new table name does not collide with an existing
1280 ** index or table name in the same database. Issue an error message if
1281 ** it does. The exception is if the statement being parsed was passed
1282 ** to an sqlite3_declare_vtab() call. In that case only the column names
1283 ** and types will be used, so there is no need to test for namespace
1286 if( !IN_SPECIAL_PARSE
){
1287 char *zDb
= db
->aDb
[iDb
].zDbSName
;
1288 if( SQLITE_OK
!=sqlite3ReadSchema(pParse
) ){
1289 goto begin_table_error
;
1291 pTable
= sqlite3FindTable(db
, zName
, zDb
);
1294 sqlite3ErrorMsg(pParse
, "%s %T already exists",
1295 (IsView(pTable
)? "view" : "table"), pName
);
1297 assert( !db
->init
.busy
|| CORRUPT_DB
);
1298 sqlite3CodeVerifySchema(pParse
, iDb
);
1299 sqlite3ForceNotReadOnly(pParse
);
1301 goto begin_table_error
;
1303 if( sqlite3FindIndex(db
, zName
, zDb
)!=0 ){
1304 sqlite3ErrorMsg(pParse
, "there is already an index named %s", zName
);
1305 goto begin_table_error
;
1309 pTable
= sqlite3DbMallocZero(db
, sizeof(Table
));
1311 assert( db
->mallocFailed
);
1312 pParse
->rc
= SQLITE_NOMEM_BKPT
;
1314 goto begin_table_error
;
1316 pTable
->zName
= zName
;
1318 pTable
->pSchema
= db
->aDb
[iDb
].pSchema
;
1319 pTable
->nTabRef
= 1;
1320 #ifdef SQLITE_DEFAULT_ROWEST
1321 pTable
->nRowLogEst
= sqlite3LogEst(SQLITE_DEFAULT_ROWEST
);
1323 pTable
->nRowLogEst
= 200; assert( 200==sqlite3LogEst(1048576) );
1325 assert( pParse
->pNewTable
==0 );
1326 pParse
->pNewTable
= pTable
;
1328 /* Begin generating the code that will insert the table record into
1329 ** the schema table. Note in particular that we must go ahead
1330 ** and allocate the record number for the table entry now. Before any
1331 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause
1332 ** indices to be created and the table record must come before the
1333 ** indices. Hence, the record number for the table must be allocated
1336 if( !db
->init
.busy
&& (v
= sqlite3GetVdbe(pParse
))!=0 ){
1339 int reg1
, reg2
, reg3
;
1340 /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */
1341 static const char nullRow
[] = { 6, 0, 0, 0, 0, 0 };
1342 sqlite3BeginWriteOperation(pParse
, 1, iDb
);
1344 #ifndef SQLITE_OMIT_VIRTUALTABLE
1346 sqlite3VdbeAddOp0(v
, OP_VBegin
);
1350 /* If the file format and encoding in the database have not been set,
1353 reg1
= pParse
->regRowid
= ++pParse
->nMem
;
1354 reg2
= pParse
->regRoot
= ++pParse
->nMem
;
1355 reg3
= ++pParse
->nMem
;
1356 sqlite3VdbeAddOp3(v
, OP_ReadCookie
, iDb
, reg3
, BTREE_FILE_FORMAT
);
1357 sqlite3VdbeUsesBtree(v
, iDb
);
1358 addr1
= sqlite3VdbeAddOp1(v
, OP_If
, reg3
); VdbeCoverage(v
);
1359 fileFormat
= (db
->flags
& SQLITE_LegacyFileFmt
)!=0 ?
1360 1 : SQLITE_MAX_FILE_FORMAT
;
1361 sqlite3VdbeAddOp3(v
, OP_SetCookie
, iDb
, BTREE_FILE_FORMAT
, fileFormat
);
1362 sqlite3VdbeAddOp3(v
, OP_SetCookie
, iDb
, BTREE_TEXT_ENCODING
, ENC(db
));
1363 sqlite3VdbeJumpHere(v
, addr1
);
1365 /* This just creates a place-holder record in the sqlite_schema table.
1366 ** The record created does not contain anything yet. It will be replaced
1367 ** by the real entry in code generated at sqlite3EndTable().
1369 ** The rowid for the new entry is left in register pParse->regRowid.
1370 ** The root page number of the new table is left in reg pParse->regRoot.
1371 ** The rowid and root page number values are needed by the code that
1372 ** sqlite3EndTable will generate.
1374 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
1375 if( isView
|| isVirtual
){
1376 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, reg2
);
1380 assert( !pParse
->bReturning
);
1381 pParse
->u1
.addrCrTab
=
1382 sqlite3VdbeAddOp3(v
, OP_CreateBtree
, iDb
, reg2
, BTREE_INTKEY
);
1384 sqlite3OpenSchemaTable(pParse
, iDb
);
1385 sqlite3VdbeAddOp2(v
, OP_NewRowid
, 0, reg1
);
1386 sqlite3VdbeAddOp4(v
, OP_Blob
, 6, reg3
, 0, nullRow
, P4_STATIC
);
1387 sqlite3VdbeAddOp3(v
, OP_Insert
, 0, reg3
, reg1
);
1388 sqlite3VdbeChangeP5(v
, OPFLAG_APPEND
);
1389 sqlite3VdbeAddOp0(v
, OP_Close
);
1392 /* Normal (non-error) return. */
1395 /* If an error occurs, we jump here */
1397 pParse
->checkSchema
= 1;
1398 sqlite3DbFree(db
, zName
);
1402 /* Set properties of a table column based on the (magical)
1403 ** name of the column.
1405 #if SQLITE_ENABLE_HIDDEN_COLUMNS
1406 void sqlite3ColumnPropertiesFromName(Table
*pTab
, Column
*pCol
){
1407 if( sqlite3_strnicmp(pCol
->zCnName
, "__hidden__", 10)==0 ){
1408 pCol
->colFlags
|= COLFLAG_HIDDEN
;
1409 if( pTab
) pTab
->tabFlags
|= TF_HasHidden
;
1410 }else if( pTab
&& pCol
!=pTab
->aCol
&& (pCol
[-1].colFlags
& COLFLAG_HIDDEN
) ){
1411 pTab
->tabFlags
|= TF_OOOHidden
;
1417 ** Name of the special TEMP trigger used to implement RETURNING. The
1418 ** name begins with "sqlite_" so that it is guaranteed not to collide
1419 ** with any application-generated triggers.
1421 #define RETURNING_TRIGGER_NAME "sqlite_returning"
1424 ** Clean up the data structures associated with the RETURNING clause.
1426 static void sqlite3DeleteReturning(sqlite3
*db
, Returning
*pRet
){
1428 pHash
= &(db
->aDb
[1].pSchema
->trigHash
);
1429 sqlite3HashInsert(pHash
, RETURNING_TRIGGER_NAME
, 0);
1430 sqlite3ExprListDelete(db
, pRet
->pReturnEL
);
1431 sqlite3DbFree(db
, pRet
);
1435 ** Add the RETURNING clause to the parse currently underway.
1437 ** This routine creates a special TEMP trigger that will fire for each row
1438 ** of the DML statement. That TEMP trigger contains a single SELECT
1439 ** statement with a result set that is the argument of the RETURNING clause.
1440 ** The trigger has the Trigger.bReturning flag and an opcode of
1441 ** TK_RETURNING instead of TK_SELECT, so that the trigger code generator
1442 ** knows to handle it specially. The TEMP trigger is automatically
1443 ** removed at the end of the parse.
1445 ** When this routine is called, we do not yet know if the RETURNING clause
1446 ** is attached to a DELETE, INSERT, or UPDATE, so construct it as a
1447 ** RETURNING trigger instead. It will then be converted into the appropriate
1448 ** type on the first call to sqlite3TriggersExist().
1450 void sqlite3AddReturning(Parse
*pParse
, ExprList
*pList
){
1453 sqlite3
*db
= pParse
->db
;
1454 if( pParse
->pNewTrigger
){
1455 sqlite3ErrorMsg(pParse
, "cannot use RETURNING in a trigger");
1457 assert( pParse
->bReturning
==0 );
1459 pParse
->bReturning
= 1;
1460 pRet
= sqlite3DbMallocZero(db
, sizeof(*pRet
));
1462 sqlite3ExprListDelete(db
, pList
);
1465 pParse
->u1
.pReturning
= pRet
;
1466 pRet
->pParse
= pParse
;
1467 pRet
->pReturnEL
= pList
;
1468 sqlite3ParserAddCleanup(pParse
,
1469 (void(*)(sqlite3
*,void*))sqlite3DeleteReturning
, pRet
);
1470 testcase( pParse
->earlyCleanup
);
1471 if( db
->mallocFailed
) return;
1472 pRet
->retTrig
.zName
= RETURNING_TRIGGER_NAME
;
1473 pRet
->retTrig
.op
= TK_RETURNING
;
1474 pRet
->retTrig
.tr_tm
= TRIGGER_AFTER
;
1475 pRet
->retTrig
.bReturning
= 1;
1476 pRet
->retTrig
.pSchema
= db
->aDb
[1].pSchema
;
1477 pRet
->retTrig
.pTabSchema
= db
->aDb
[1].pSchema
;
1478 pRet
->retTrig
.step_list
= &pRet
->retTStep
;
1479 pRet
->retTStep
.op
= TK_RETURNING
;
1480 pRet
->retTStep
.pTrig
= &pRet
->retTrig
;
1481 pRet
->retTStep
.pExprList
= pList
;
1482 pHash
= &(db
->aDb
[1].pSchema
->trigHash
);
1483 assert( sqlite3HashFind(pHash
, RETURNING_TRIGGER_NAME
)==0 || pParse
->nErr
);
1484 if( sqlite3HashInsert(pHash
, RETURNING_TRIGGER_NAME
, &pRet
->retTrig
)
1486 sqlite3OomFault(db
);
1491 ** Add a new column to the table currently being constructed.
1493 ** The parser calls this routine once for each column declaration
1494 ** in a CREATE TABLE statement. sqlite3StartTable() gets called
1495 ** first to get things going. Then this routine is called for each
1498 void sqlite3AddColumn(Parse
*pParse
, Token sName
, Token sType
){
1504 sqlite3
*db
= pParse
->db
;
1507 u8 eType
= COLTYPE_CUSTOM
;
1509 char affinity
= SQLITE_AFF_BLOB
;
1511 if( (p
= pParse
->pNewTable
)==0 ) return;
1512 if( p
->nCol
+1>db
->aLimit
[SQLITE_LIMIT_COLUMN
] ){
1513 sqlite3ErrorMsg(pParse
, "too many columns on %s", p
->zName
);
1516 if( !IN_RENAME_OBJECT
) sqlite3DequoteToken(&sName
);
1518 /* Because keywords GENERATE ALWAYS can be converted into indentifiers
1519 ** by the parser, we can sometimes end up with a typename that ends
1520 ** with "generated always". Check for this case and omit the surplus
1523 && sqlite3_strnicmp(sType
.z
+(sType
.n
-6),"always",6)==0
1526 while( ALWAYS(sType
.n
>0) && sqlite3Isspace(sType
.z
[sType
.n
-1]) ) sType
.n
--;
1528 && sqlite3_strnicmp(sType
.z
+(sType
.n
-9),"generated",9)==0
1531 while( sType
.n
>0 && sqlite3Isspace(sType
.z
[sType
.n
-1]) ) sType
.n
--;
1535 /* Check for standard typenames. For standard typenames we will
1536 ** set the Column.eType field rather than storing the typename after
1537 ** the column name, in order to save space. */
1539 sqlite3DequoteToken(&sType
);
1540 for(i
=0; i
<SQLITE_N_STDTYPE
; i
++){
1541 if( sType
.n
==sqlite3StdTypeLen
[i
]
1542 && sqlite3_strnicmp(sType
.z
, sqlite3StdType
[i
], sType
.n
)==0
1546 affinity
= sqlite3StdTypeAffinity
[i
];
1547 if( affinity
<=SQLITE_AFF_TEXT
) szEst
= 5;
1553 z
= sqlite3DbMallocRaw(db
, (i64
)sName
.n
+ 1 + (i64
)sType
.n
+ (sType
.n
>0) );
1555 if( IN_RENAME_OBJECT
) sqlite3RenameTokenMap(pParse
, (void*)z
, &sName
);
1556 memcpy(z
, sName
.z
, sName
.n
);
1559 hName
= sqlite3StrIHash(z
);
1560 for(i
=0; i
<p
->nCol
; i
++){
1561 if( p
->aCol
[i
].hName
==hName
&& sqlite3StrICmp(z
, p
->aCol
[i
].zCnName
)==0 ){
1562 sqlite3ErrorMsg(pParse
, "duplicate column name: %s", z
);
1563 sqlite3DbFree(db
, z
);
1567 aNew
= sqlite3DbRealloc(db
,p
->aCol
,((i64
)p
->nCol
+1)*sizeof(p
->aCol
[0]));
1569 sqlite3DbFree(db
, z
);
1573 pCol
= &p
->aCol
[p
->nCol
];
1574 memset(pCol
, 0, sizeof(p
->aCol
[0]));
1576 pCol
->hName
= hName
;
1577 sqlite3ColumnPropertiesFromName(p
, pCol
);
1580 /* If there is no type specified, columns have the default affinity
1581 ** 'BLOB' with a default size of 4 bytes. */
1582 pCol
->affinity
= affinity
;
1583 pCol
->eCType
= eType
;
1584 pCol
->szEst
= szEst
;
1585 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1586 if( affinity
==SQLITE_AFF_BLOB
){
1587 if( 4>=sqlite3GlobalConfig
.szSorterRef
){
1588 pCol
->colFlags
|= COLFLAG_SORTERREF
;
1593 zType
= z
+ sqlite3Strlen30(z
) + 1;
1594 memcpy(zType
, sType
.z
, sType
.n
);
1596 sqlite3Dequote(zType
);
1597 pCol
->affinity
= sqlite3AffinityType(zType
, pCol
);
1598 pCol
->colFlags
|= COLFLAG_HASTYPE
;
1602 pParse
->constraintName
.n
= 0;
1606 ** This routine is called by the parser while in the middle of
1607 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has
1608 ** been seen on a column. This routine sets the notNull flag on
1609 ** the column currently under construction.
1611 void sqlite3AddNotNull(Parse
*pParse
, int onError
){
1614 p
= pParse
->pNewTable
;
1615 if( p
==0 || NEVER(p
->nCol
<1) ) return;
1616 pCol
= &p
->aCol
[p
->nCol
-1];
1617 pCol
->notNull
= (u8
)onError
;
1618 p
->tabFlags
|= TF_HasNotNull
;
1620 /* Set the uniqNotNull flag on any UNIQUE or PK indexes already created
1621 ** on this column. */
1622 if( pCol
->colFlags
& COLFLAG_UNIQUE
){
1624 for(pIdx
=p
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
){
1625 assert( pIdx
->nKeyCol
==1 && pIdx
->onError
!=OE_None
);
1626 if( pIdx
->aiColumn
[0]==p
->nCol
-1 ){
1627 pIdx
->uniqNotNull
= 1;
1634 ** Scan the column type name zType (length nType) and return the
1635 ** associated affinity type.
1637 ** This routine does a case-independent search of zType for the
1638 ** substrings in the following table. If one of the substrings is
1639 ** found, the corresponding affinity is returned. If zType contains
1640 ** more than one of the substrings, entries toward the top of
1641 ** the table take priority. For example, if zType is 'BLOBINT',
1642 ** SQLITE_AFF_INTEGER is returned.
1644 ** Substring | Affinity
1645 ** --------------------------------
1646 ** 'INT' | SQLITE_AFF_INTEGER
1647 ** 'CHAR' | SQLITE_AFF_TEXT
1648 ** 'CLOB' | SQLITE_AFF_TEXT
1649 ** 'TEXT' | SQLITE_AFF_TEXT
1650 ** 'BLOB' | SQLITE_AFF_BLOB
1651 ** 'REAL' | SQLITE_AFF_REAL
1652 ** 'FLOA' | SQLITE_AFF_REAL
1653 ** 'DOUB' | SQLITE_AFF_REAL
1655 ** If none of the substrings in the above table are found,
1656 ** SQLITE_AFF_NUMERIC is returned.
1658 char sqlite3AffinityType(const char *zIn
, Column
*pCol
){
1660 char aff
= SQLITE_AFF_NUMERIC
;
1661 const char *zChar
= 0;
1665 h
= (h
<<8) + sqlite3UpperToLower
[(*zIn
)&0xff];
1667 if( h
==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */
1668 aff
= SQLITE_AFF_TEXT
;
1670 }else if( h
==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */
1671 aff
= SQLITE_AFF_TEXT
;
1672 }else if( h
==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */
1673 aff
= SQLITE_AFF_TEXT
;
1674 }else if( h
==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */
1675 && (aff
==SQLITE_AFF_NUMERIC
|| aff
==SQLITE_AFF_REAL
) ){
1676 aff
= SQLITE_AFF_BLOB
;
1677 if( zIn
[0]=='(' ) zChar
= zIn
;
1678 #ifndef SQLITE_OMIT_FLOATING_POINT
1679 }else if( h
==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */
1680 && aff
==SQLITE_AFF_NUMERIC
){
1681 aff
= SQLITE_AFF_REAL
;
1682 }else if( h
==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */
1683 && aff
==SQLITE_AFF_NUMERIC
){
1684 aff
= SQLITE_AFF_REAL
;
1685 }else if( h
==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */
1686 && aff
==SQLITE_AFF_NUMERIC
){
1687 aff
= SQLITE_AFF_REAL
;
1689 }else if( (h
&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */
1690 aff
= SQLITE_AFF_INTEGER
;
1695 /* If pCol is not NULL, store an estimate of the field size. The
1696 ** estimate is scaled so that the size of an integer is 1. */
1698 int v
= 0; /* default size is approx 4 bytes */
1699 if( aff
<SQLITE_AFF_NUMERIC
){
1702 if( sqlite3Isdigit(zChar
[0]) ){
1703 /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */
1704 sqlite3GetInt32(zChar
, &v
);
1710 v
= 16; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/
1713 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1714 if( v
>=sqlite3GlobalConfig
.szSorterRef
){
1715 pCol
->colFlags
|= COLFLAG_SORTERREF
;
1719 if( v
>255 ) v
= 255;
1726 ** The expression is the default value for the most recently added column
1727 ** of the table currently under construction.
1729 ** Default value expressions must be constant. Raise an exception if this
1732 ** This routine is called by the parser while in the middle of
1733 ** parsing a CREATE TABLE statement.
1735 void sqlite3AddDefaultValue(
1736 Parse
*pParse
, /* Parsing context */
1737 Expr
*pExpr
, /* The parsed expression of the default value */
1738 const char *zStart
, /* Start of the default value text */
1739 const char *zEnd
/* First character past end of defaut value text */
1743 sqlite3
*db
= pParse
->db
;
1744 p
= pParse
->pNewTable
;
1746 int isInit
= db
->init
.busy
&& db
->init
.iDb
!=1;
1747 pCol
= &(p
->aCol
[p
->nCol
-1]);
1748 if( !sqlite3ExprIsConstantOrFunction(pExpr
, isInit
) ){
1749 sqlite3ErrorMsg(pParse
, "default value of column [%s] is not constant",
1751 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1752 }else if( pCol
->colFlags
& COLFLAG_GENERATED
){
1753 testcase( pCol
->colFlags
& COLFLAG_VIRTUAL
);
1754 testcase( pCol
->colFlags
& COLFLAG_STORED
);
1755 sqlite3ErrorMsg(pParse
, "cannot use DEFAULT on a generated column");
1758 /* A copy of pExpr is used instead of the original, as pExpr contains
1759 ** tokens that point to volatile memory.
1762 memset(&x
, 0, sizeof(x
));
1764 x
.u
.zToken
= sqlite3DbSpanDup(db
, zStart
, zEnd
);
1767 pDfltExpr
= sqlite3ExprDup(db
, &x
, EXPRDUP_REDUCE
);
1768 sqlite3DbFree(db
, x
.u
.zToken
);
1769 sqlite3ColumnSetExpr(pParse
, p
, pCol
, pDfltExpr
);
1772 if( IN_RENAME_OBJECT
){
1773 sqlite3RenameExprUnmap(pParse
, pExpr
);
1775 sqlite3ExprDelete(db
, pExpr
);
1779 ** Backwards Compatibility Hack:
1781 ** Historical versions of SQLite accepted strings as column names in
1782 ** indexes and PRIMARY KEY constraints and in UNIQUE constraints. Example:
1784 ** CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim)
1785 ** CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC);
1787 ** This is goofy. But to preserve backwards compatibility we continue to
1788 ** accept it. This routine does the necessary conversion. It converts
1789 ** the expression given in its argument from a TK_STRING into a TK_ID
1790 ** if the expression is just a TK_STRING with an optional COLLATE clause.
1791 ** If the expression is anything other than TK_STRING, the expression is
1794 static void sqlite3StringToId(Expr
*p
){
1795 if( p
->op
==TK_STRING
){
1797 }else if( p
->op
==TK_COLLATE
&& p
->pLeft
->op
==TK_STRING
){
1798 p
->pLeft
->op
= TK_ID
;
1803 ** Tag the given column as being part of the PRIMARY KEY
1805 static void makeColumnPartOfPrimaryKey(Parse
*pParse
, Column
*pCol
){
1806 pCol
->colFlags
|= COLFLAG_PRIMKEY
;
1807 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1808 if( pCol
->colFlags
& COLFLAG_GENERATED
){
1809 testcase( pCol
->colFlags
& COLFLAG_VIRTUAL
);
1810 testcase( pCol
->colFlags
& COLFLAG_STORED
);
1811 sqlite3ErrorMsg(pParse
,
1812 "generated columns cannot be part of the PRIMARY KEY");
1818 ** Designate the PRIMARY KEY for the table. pList is a list of names
1819 ** of columns that form the primary key. If pList is NULL, then the
1820 ** most recently added column of the table is the primary key.
1822 ** A table can have at most one primary key. If the table already has
1823 ** a primary key (and this is the second primary key) then create an
1826 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
1827 ** then we will try to use that column as the rowid. Set the Table.iPKey
1828 ** field of the table under construction to be the index of the
1829 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is
1830 ** no INTEGER PRIMARY KEY.
1832 ** If the key is not an INTEGER PRIMARY KEY, then create a unique
1833 ** index for the key. No index is created for INTEGER PRIMARY KEYs.
1835 void sqlite3AddPrimaryKey(
1836 Parse
*pParse
, /* Parsing context */
1837 ExprList
*pList
, /* List of field names to be indexed */
1838 int onError
, /* What to do with a uniqueness conflict */
1839 int autoInc
, /* True if the AUTOINCREMENT keyword is present */
1840 int sortOrder
/* SQLITE_SO_ASC or SQLITE_SO_DESC */
1842 Table
*pTab
= pParse
->pNewTable
;
1846 if( pTab
==0 ) goto primary_key_exit
;
1847 if( pTab
->tabFlags
& TF_HasPrimaryKey
){
1848 sqlite3ErrorMsg(pParse
,
1849 "table \"%s\" has more than one primary key", pTab
->zName
);
1850 goto primary_key_exit
;
1852 pTab
->tabFlags
|= TF_HasPrimaryKey
;
1854 iCol
= pTab
->nCol
- 1;
1855 pCol
= &pTab
->aCol
[iCol
];
1856 makeColumnPartOfPrimaryKey(pParse
, pCol
);
1859 nTerm
= pList
->nExpr
;
1860 for(i
=0; i
<nTerm
; i
++){
1861 Expr
*pCExpr
= sqlite3ExprSkipCollate(pList
->a
[i
].pExpr
);
1862 assert( pCExpr
!=0 );
1863 sqlite3StringToId(pCExpr
);
1864 if( pCExpr
->op
==TK_ID
){
1866 assert( !ExprHasProperty(pCExpr
, EP_IntValue
) );
1867 zCName
= pCExpr
->u
.zToken
;
1868 for(iCol
=0; iCol
<pTab
->nCol
; iCol
++){
1869 if( sqlite3StrICmp(zCName
, pTab
->aCol
[iCol
].zCnName
)==0 ){
1870 pCol
= &pTab
->aCol
[iCol
];
1871 makeColumnPartOfPrimaryKey(pParse
, pCol
);
1880 && pCol
->eCType
==COLTYPE_INTEGER
1881 && sortOrder
!=SQLITE_SO_DESC
1883 if( IN_RENAME_OBJECT
&& pList
){
1884 Expr
*pCExpr
= sqlite3ExprSkipCollate(pList
->a
[0].pExpr
);
1885 sqlite3RenameTokenRemap(pParse
, &pTab
->iPKey
, pCExpr
);
1888 pTab
->keyConf
= (u8
)onError
;
1889 assert( autoInc
==0 || autoInc
==1 );
1890 pTab
->tabFlags
|= autoInc
*TF_Autoincrement
;
1891 if( pList
) pParse
->iPkSortOrder
= pList
->a
[0].fg
.sortFlags
;
1892 (void)sqlite3HasExplicitNulls(pParse
, pList
);
1893 }else if( autoInc
){
1894 #ifndef SQLITE_OMIT_AUTOINCREMENT
1895 sqlite3ErrorMsg(pParse
, "AUTOINCREMENT is only allowed on an "
1896 "INTEGER PRIMARY KEY");
1899 sqlite3CreateIndex(pParse
, 0, 0, 0, pList
, onError
, 0,
1900 0, sortOrder
, 0, SQLITE_IDXTYPE_PRIMARYKEY
);
1905 sqlite3ExprListDelete(pParse
->db
, pList
);
1910 ** Add a new CHECK constraint to the table currently under construction.
1912 void sqlite3AddCheckConstraint(
1913 Parse
*pParse
, /* Parsing context */
1914 Expr
*pCheckExpr
, /* The check expression */
1915 const char *zStart
, /* Opening "(" */
1916 const char *zEnd
/* Closing ")" */
1918 #ifndef SQLITE_OMIT_CHECK
1919 Table
*pTab
= pParse
->pNewTable
;
1920 sqlite3
*db
= pParse
->db
;
1921 if( pTab
&& !IN_DECLARE_VTAB
1922 && !sqlite3BtreeIsReadonly(db
->aDb
[db
->init
.iDb
].pBt
)
1924 pTab
->pCheck
= sqlite3ExprListAppend(pParse
, pTab
->pCheck
, pCheckExpr
);
1925 if( pParse
->constraintName
.n
){
1926 sqlite3ExprListSetName(pParse
, pTab
->pCheck
, &pParse
->constraintName
, 1);
1929 for(zStart
++; sqlite3Isspace(zStart
[0]); zStart
++){}
1930 while( sqlite3Isspace(zEnd
[-1]) ){ zEnd
--; }
1932 t
.n
= (int)(zEnd
- t
.z
);
1933 sqlite3ExprListSetName(pParse
, pTab
->pCheck
, &t
, 1);
1938 sqlite3ExprDelete(pParse
->db
, pCheckExpr
);
1943 ** Set the collation function of the most recently parsed table column
1944 ** to the CollSeq given.
1946 void sqlite3AddCollateType(Parse
*pParse
, Token
*pToken
){
1949 char *zColl
; /* Dequoted name of collation sequence */
1952 if( (p
= pParse
->pNewTable
)==0 || IN_RENAME_OBJECT
) return;
1955 zColl
= sqlite3NameFromToken(db
, pToken
);
1956 if( !zColl
) return;
1958 if( sqlite3LocateCollSeq(pParse
, zColl
) ){
1960 sqlite3ColumnSetColl(db
, &p
->aCol
[i
], zColl
);
1962 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
1963 ** then an index may have been created on this column before the
1964 ** collation type was added. Correct this if it is the case.
1966 for(pIdx
=p
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
){
1967 assert( pIdx
->nKeyCol
==1 );
1968 if( pIdx
->aiColumn
[0]==i
){
1969 pIdx
->azColl
[0] = sqlite3ColumnColl(&p
->aCol
[i
]);
1973 sqlite3DbFree(db
, zColl
);
1976 /* Change the most recently parsed column to be a GENERATED ALWAYS AS
1979 void sqlite3AddGenerated(Parse
*pParse
, Expr
*pExpr
, Token
*pType
){
1980 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1981 u8 eType
= COLFLAG_VIRTUAL
;
1982 Table
*pTab
= pParse
->pNewTable
;
1985 /* generated column in an CREATE TABLE IF NOT EXISTS that already exists */
1986 goto generated_done
;
1988 pCol
= &(pTab
->aCol
[pTab
->nCol
-1]);
1989 if( IN_DECLARE_VTAB
){
1990 sqlite3ErrorMsg(pParse
, "virtual tables cannot use computed columns");
1991 goto generated_done
;
1993 if( pCol
->iDflt
>0 ) goto generated_error
;
1995 if( pType
->n
==7 && sqlite3StrNICmp("virtual",pType
->z
,7)==0 ){
1997 }else if( pType
->n
==6 && sqlite3StrNICmp("stored",pType
->z
,6)==0 ){
1998 eType
= COLFLAG_STORED
;
2000 goto generated_error
;
2003 if( eType
==COLFLAG_VIRTUAL
) pTab
->nNVCol
--;
2004 pCol
->colFlags
|= eType
;
2005 assert( TF_HasVirtual
==COLFLAG_VIRTUAL
);
2006 assert( TF_HasStored
==COLFLAG_STORED
);
2007 pTab
->tabFlags
|= eType
;
2008 if( pCol
->colFlags
& COLFLAG_PRIMKEY
){
2009 makeColumnPartOfPrimaryKey(pParse
, pCol
); /* For the error message */
2011 sqlite3ColumnSetExpr(pParse
, pTab
, pCol
, pExpr
);
2013 goto generated_done
;
2016 sqlite3ErrorMsg(pParse
, "error in generated column \"%s\"",
2019 sqlite3ExprDelete(pParse
->db
, pExpr
);
2021 /* Throw and error for the GENERATED ALWAYS AS clause if the
2022 ** SQLITE_OMIT_GENERATED_COLUMNS compile-time option is used. */
2023 sqlite3ErrorMsg(pParse
, "generated columns not supported");
2024 sqlite3ExprDelete(pParse
->db
, pExpr
);
2029 ** Generate code that will increment the schema cookie.
2031 ** The schema cookie is used to determine when the schema for the
2032 ** database changes. After each schema change, the cookie value
2033 ** changes. When a process first reads the schema it records the
2034 ** cookie. Thereafter, whenever it goes to access the database,
2035 ** it checks the cookie to make sure the schema has not changed
2036 ** since it was last read.
2038 ** This plan is not completely bullet-proof. It is possible for
2039 ** the schema to change multiple times and for the cookie to be
2040 ** set back to prior value. But schema changes are infrequent
2041 ** and the probability of hitting the same cookie value is only
2042 ** 1 chance in 2^32. So we're safe enough.
2044 ** IMPLEMENTATION-OF: R-34230-56049 SQLite automatically increments
2045 ** the schema-version whenever the schema changes.
2047 void sqlite3ChangeCookie(Parse
*pParse
, int iDb
){
2048 sqlite3
*db
= pParse
->db
;
2049 Vdbe
*v
= pParse
->pVdbe
;
2050 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
2051 sqlite3VdbeAddOp3(v
, OP_SetCookie
, iDb
, BTREE_SCHEMA_VERSION
,
2052 (int)(1+(unsigned)db
->aDb
[iDb
].pSchema
->schema_cookie
));
2056 ** Measure the number of characters needed to output the given
2057 ** identifier. The number returned includes any quotes used
2058 ** but does not include the null terminator.
2060 ** The estimate is conservative. It might be larger that what is
2063 static int identLength(const char *z
){
2065 for(n
=0; *z
; n
++, z
++){
2066 if( *z
=='"' ){ n
++; }
2072 ** The first parameter is a pointer to an output buffer. The second
2073 ** parameter is a pointer to an integer that contains the offset at
2074 ** which to write into the output buffer. This function copies the
2075 ** nul-terminated string pointed to by the third parameter, zSignedIdent,
2076 ** to the specified offset in the buffer and updates *pIdx to refer
2077 ** to the first byte after the last byte written before returning.
2079 ** If the string zSignedIdent consists entirely of alpha-numeric
2080 ** characters, does not begin with a digit and is not an SQL keyword,
2081 ** then it is copied to the output buffer exactly as it is. Otherwise,
2082 ** it is quoted using double-quotes.
2084 static void identPut(char *z
, int *pIdx
, char *zSignedIdent
){
2085 unsigned char *zIdent
= (unsigned char*)zSignedIdent
;
2086 int i
, j
, needQuote
;
2089 for(j
=0; zIdent
[j
]; j
++){
2090 if( !sqlite3Isalnum(zIdent
[j
]) && zIdent
[j
]!='_' ) break;
2092 needQuote
= sqlite3Isdigit(zIdent
[0])
2093 || sqlite3KeywordCode(zIdent
, j
)!=TK_ID
2097 if( needQuote
) z
[i
++] = '"';
2098 for(j
=0; zIdent
[j
]; j
++){
2100 if( zIdent
[j
]=='"' ) z
[i
++] = '"';
2102 if( needQuote
) z
[i
++] = '"';
2108 ** Generate a CREATE TABLE statement appropriate for the given
2109 ** table. Memory to hold the text of the statement is obtained
2110 ** from sqliteMalloc() and must be freed by the calling function.
2112 static char *createTableStmt(sqlite3
*db
, Table
*p
){
2115 char *zSep
, *zSep2
, *zEnd
;
2118 for(pCol
= p
->aCol
, i
=0; i
<p
->nCol
; i
++, pCol
++){
2119 n
+= identLength(pCol
->zCnName
) + 5;
2121 n
+= identLength(p
->zName
);
2131 n
+= 35 + 6*p
->nCol
;
2132 zStmt
= sqlite3DbMallocRaw(0, n
);
2134 sqlite3OomFault(db
);
2137 sqlite3_snprintf(n
, zStmt
, "CREATE TABLE ");
2138 k
= sqlite3Strlen30(zStmt
);
2139 identPut(zStmt
, &k
, p
->zName
);
2141 for(pCol
=p
->aCol
, i
=0; i
<p
->nCol
; i
++, pCol
++){
2142 static const char * const azType
[] = {
2143 /* SQLITE_AFF_BLOB */ "",
2144 /* SQLITE_AFF_TEXT */ " TEXT",
2145 /* SQLITE_AFF_NUMERIC */ " NUM",
2146 /* SQLITE_AFF_INTEGER */ " INT",
2147 /* SQLITE_AFF_REAL */ " REAL"
2152 sqlite3_snprintf(n
-k
, &zStmt
[k
], zSep
);
2153 k
+= sqlite3Strlen30(&zStmt
[k
]);
2155 identPut(zStmt
, &k
, pCol
->zCnName
);
2156 assert( pCol
->affinity
-SQLITE_AFF_BLOB
>= 0 );
2157 assert( pCol
->affinity
-SQLITE_AFF_BLOB
< ArraySize(azType
) );
2158 testcase( pCol
->affinity
==SQLITE_AFF_BLOB
);
2159 testcase( pCol
->affinity
==SQLITE_AFF_TEXT
);
2160 testcase( pCol
->affinity
==SQLITE_AFF_NUMERIC
);
2161 testcase( pCol
->affinity
==SQLITE_AFF_INTEGER
);
2162 testcase( pCol
->affinity
==SQLITE_AFF_REAL
);
2164 zType
= azType
[pCol
->affinity
- SQLITE_AFF_BLOB
];
2165 len
= sqlite3Strlen30(zType
);
2166 assert( pCol
->affinity
==SQLITE_AFF_BLOB
2167 || pCol
->affinity
==sqlite3AffinityType(zType
, 0) );
2168 memcpy(&zStmt
[k
], zType
, len
);
2172 sqlite3_snprintf(n
-k
, &zStmt
[k
], "%s", zEnd
);
2177 ** Resize an Index object to hold N columns total. Return SQLITE_OK
2178 ** on success and SQLITE_NOMEM on an OOM error.
2180 static int resizeIndexObject(sqlite3
*db
, Index
*pIdx
, int N
){
2183 if( pIdx
->nColumn
>=N
) return SQLITE_OK
;
2184 assert( pIdx
->isResized
==0 );
2185 nByte
= (sizeof(char*) + sizeof(LogEst
) + sizeof(i16
) + 1)*N
;
2186 zExtra
= sqlite3DbMallocZero(db
, nByte
);
2187 if( zExtra
==0 ) return SQLITE_NOMEM_BKPT
;
2188 memcpy(zExtra
, pIdx
->azColl
, sizeof(char*)*pIdx
->nColumn
);
2189 pIdx
->azColl
= (const char**)zExtra
;
2190 zExtra
+= sizeof(char*)*N
;
2191 memcpy(zExtra
, pIdx
->aiRowLogEst
, sizeof(LogEst
)*(pIdx
->nKeyCol
+1));
2192 pIdx
->aiRowLogEst
= (LogEst
*)zExtra
;
2193 zExtra
+= sizeof(LogEst
)*N
;
2194 memcpy(zExtra
, pIdx
->aiColumn
, sizeof(i16
)*pIdx
->nColumn
);
2195 pIdx
->aiColumn
= (i16
*)zExtra
;
2196 zExtra
+= sizeof(i16
)*N
;
2197 memcpy(zExtra
, pIdx
->aSortOrder
, pIdx
->nColumn
);
2198 pIdx
->aSortOrder
= (u8
*)zExtra
;
2200 pIdx
->isResized
= 1;
2205 ** Estimate the total row width for a table.
2207 static void estimateTableWidth(Table
*pTab
){
2208 unsigned wTable
= 0;
2209 const Column
*pTabCol
;
2211 for(i
=pTab
->nCol
, pTabCol
=pTab
->aCol
; i
>0; i
--, pTabCol
++){
2212 wTable
+= pTabCol
->szEst
;
2214 if( pTab
->iPKey
<0 ) wTable
++;
2215 pTab
->szTabRow
= sqlite3LogEst(wTable
*4);
2219 ** Estimate the average size of a row for an index.
2221 static void estimateIndexWidth(Index
*pIdx
){
2222 unsigned wIndex
= 0;
2224 const Column
*aCol
= pIdx
->pTable
->aCol
;
2225 for(i
=0; i
<pIdx
->nColumn
; i
++){
2226 i16 x
= pIdx
->aiColumn
[i
];
2227 assert( x
<pIdx
->pTable
->nCol
);
2228 wIndex
+= x
<0 ? 1 : aCol
[pIdx
->aiColumn
[i
]].szEst
;
2230 pIdx
->szIdxRow
= sqlite3LogEst(wIndex
*4);
2233 /* Return true if column number x is any of the first nCol entries of aiCol[].
2234 ** This is used to determine if the column number x appears in any of the
2235 ** first nCol entries of an index.
2237 static int hasColumn(const i16
*aiCol
, int nCol
, int x
){
2238 while( nCol
-- > 0 ){
2239 if( x
==*(aiCol
++) ){
2247 ** Return true if any of the first nKey entries of index pIdx exactly
2248 ** match the iCol-th entry of pPk. pPk is always a WITHOUT ROWID
2249 ** PRIMARY KEY index. pIdx is an index on the same table. pIdx may
2250 ** or may not be the same index as pPk.
2252 ** The first nKey entries of pIdx are guaranteed to be ordinary columns,
2253 ** not a rowid or expression.
2255 ** This routine differs from hasColumn() in that both the column and the
2256 ** collating sequence must match for this routine, but for hasColumn() only
2257 ** the column name must match.
2259 static int isDupColumn(Index
*pIdx
, int nKey
, Index
*pPk
, int iCol
){
2261 assert( nKey
<=pIdx
->nColumn
);
2262 assert( iCol
<MAX(pPk
->nColumn
,pPk
->nKeyCol
) );
2263 assert( pPk
->idxType
==SQLITE_IDXTYPE_PRIMARYKEY
);
2264 assert( pPk
->pTable
->tabFlags
& TF_WithoutRowid
);
2265 assert( pPk
->pTable
==pIdx
->pTable
);
2266 testcase( pPk
==pIdx
);
2267 j
= pPk
->aiColumn
[iCol
];
2268 assert( j
!=XN_ROWID
&& j
!=XN_EXPR
);
2269 for(i
=0; i
<nKey
; i
++){
2270 assert( pIdx
->aiColumn
[i
]>=0 || j
>=0 );
2271 if( pIdx
->aiColumn
[i
]==j
2272 && sqlite3StrICmp(pIdx
->azColl
[i
], pPk
->azColl
[iCol
])==0
2280 /* Recompute the colNotIdxed field of the Index.
2282 ** colNotIdxed is a bitmask that has a 0 bit representing each indexed
2283 ** columns that are within the first 63 columns of the table. The
2284 ** high-order bit of colNotIdxed is always 1. All unindexed columns
2285 ** of the table have a 1.
2287 ** 2019-10-24: For the purpose of this computation, virtual columns are
2288 ** not considered to be covered by the index, even if they are in the
2289 ** index, because we do not trust the logic in whereIndexExprTrans() to be
2290 ** able to find all instances of a reference to the indexed table column
2291 ** and convert them into references to the index. Hence we always want
2292 ** the actual table at hand in order to recompute the virtual column, if
2295 ** The colNotIdxed mask is AND-ed with the SrcList.a[].colUsed mask
2296 ** to determine if the index is covering index.
2298 static void recomputeColumnsNotIndexed(Index
*pIdx
){
2301 Table
*pTab
= pIdx
->pTable
;
2302 for(j
=pIdx
->nColumn
-1; j
>=0; j
--){
2303 int x
= pIdx
->aiColumn
[j
];
2304 if( x
>=0 && (pTab
->aCol
[x
].colFlags
& COLFLAG_VIRTUAL
)==0 ){
2305 testcase( x
==BMS
-1 );
2306 testcase( x
==BMS
-2 );
2307 if( x
<BMS
-1 ) m
|= MASKBIT(x
);
2310 pIdx
->colNotIdxed
= ~m
;
2311 assert( (pIdx
->colNotIdxed
>>63)==1 );
2315 ** This routine runs at the end of parsing a CREATE TABLE statement that
2316 ** has a WITHOUT ROWID clause. The job of this routine is to convert both
2317 ** internal schema data structures and the generated VDBE code so that they
2318 ** are appropriate for a WITHOUT ROWID table instead of a rowid table.
2321 ** (1) Set all columns of the PRIMARY KEY schema object to be NOT NULL.
2322 ** (2) Convert P3 parameter of the OP_CreateBtree from BTREE_INTKEY
2323 ** into BTREE_BLOBKEY.
2324 ** (3) Bypass the creation of the sqlite_schema table entry
2325 ** for the PRIMARY KEY as the primary key index is now
2326 ** identified by the sqlite_schema table entry of the table itself.
2327 ** (4) Set the Index.tnum of the PRIMARY KEY Index object in the
2328 ** schema to the rootpage from the main table.
2329 ** (5) Add all table columns to the PRIMARY KEY Index object
2330 ** so that the PRIMARY KEY is a covering index. The surplus
2331 ** columns are part of KeyInfo.nAllField and are not used for
2332 ** sorting or lookup or uniqueness checks.
2333 ** (6) Replace the rowid tail on all automatically generated UNIQUE
2334 ** indices with the PRIMARY KEY columns.
2336 ** For virtual tables, only (1) is performed.
2338 static void convertToWithoutRowidTable(Parse
*pParse
, Table
*pTab
){
2344 sqlite3
*db
= pParse
->db
;
2345 Vdbe
*v
= pParse
->pVdbe
;
2347 /* Mark every PRIMARY KEY column as NOT NULL (except for imposter tables)
2349 if( !db
->init
.imposterTable
){
2350 for(i
=0; i
<pTab
->nCol
; i
++){
2351 if( (pTab
->aCol
[i
].colFlags
& COLFLAG_PRIMKEY
)!=0
2352 && (pTab
->aCol
[i
].notNull
==OE_None
)
2354 pTab
->aCol
[i
].notNull
= OE_Abort
;
2357 pTab
->tabFlags
|= TF_HasNotNull
;
2360 /* Convert the P3 operand of the OP_CreateBtree opcode from BTREE_INTKEY
2361 ** into BTREE_BLOBKEY.
2363 assert( !pParse
->bReturning
);
2364 if( pParse
->u1
.addrCrTab
){
2366 sqlite3VdbeChangeP3(v
, pParse
->u1
.addrCrTab
, BTREE_BLOBKEY
);
2369 /* Locate the PRIMARY KEY index. Or, if this table was originally
2370 ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index.
2372 if( pTab
->iPKey
>=0 ){
2375 sqlite3TokenInit(&ipkToken
, pTab
->aCol
[pTab
->iPKey
].zCnName
);
2376 pList
= sqlite3ExprListAppend(pParse
, 0,
2377 sqlite3ExprAlloc(db
, TK_ID
, &ipkToken
, 0));
2379 pTab
->tabFlags
&= ~TF_WithoutRowid
;
2382 if( IN_RENAME_OBJECT
){
2383 sqlite3RenameTokenRemap(pParse
, pList
->a
[0].pExpr
, &pTab
->iPKey
);
2385 pList
->a
[0].fg
.sortFlags
= pParse
->iPkSortOrder
;
2386 assert( pParse
->pNewTable
==pTab
);
2388 sqlite3CreateIndex(pParse
, 0, 0, 0, pList
, pTab
->keyConf
, 0, 0, 0, 0,
2389 SQLITE_IDXTYPE_PRIMARYKEY
);
2391 pTab
->tabFlags
&= ~TF_WithoutRowid
;
2394 assert( db
->mallocFailed
==0 );
2395 pPk
= sqlite3PrimaryKeyIndex(pTab
);
2396 assert( pPk
->nKeyCol
==1 );
2398 pPk
= sqlite3PrimaryKeyIndex(pTab
);
2402 ** Remove all redundant columns from the PRIMARY KEY. For example, change
2403 ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)". Later
2404 ** code assumes the PRIMARY KEY contains no repeated columns.
2406 for(i
=j
=1; i
<pPk
->nKeyCol
; i
++){
2407 if( isDupColumn(pPk
, j
, pPk
, i
) ){
2410 testcase( hasColumn(pPk
->aiColumn
, j
, pPk
->aiColumn
[i
]) );
2411 pPk
->azColl
[j
] = pPk
->azColl
[i
];
2412 pPk
->aSortOrder
[j
] = pPk
->aSortOrder
[i
];
2413 pPk
->aiColumn
[j
++] = pPk
->aiColumn
[i
];
2419 pPk
->isCovering
= 1;
2420 if( !db
->init
.imposterTable
) pPk
->uniqNotNull
= 1;
2421 nPk
= pPk
->nColumn
= pPk
->nKeyCol
;
2423 /* Bypass the creation of the PRIMARY KEY btree and the sqlite_schema
2424 ** table entry. This is only required if currently generating VDBE
2425 ** code for a CREATE TABLE (not when parsing one as part of reading
2426 ** a database schema). */
2427 if( v
&& pPk
->tnum
>0 ){
2428 assert( db
->init
.busy
==0 );
2429 sqlite3VdbeChangeOpcode(v
, (int)pPk
->tnum
, OP_Goto
);
2432 /* The root page of the PRIMARY KEY is the table root page */
2433 pPk
->tnum
= pTab
->tnum
;
2435 /* Update the in-memory representation of all UNIQUE indices by converting
2436 ** the final rowid column into one or more columns of the PRIMARY KEY.
2438 for(pIdx
=pTab
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
){
2440 if( IsPrimaryKeyIndex(pIdx
) ) continue;
2441 for(i
=n
=0; i
<nPk
; i
++){
2442 if( !isDupColumn(pIdx
, pIdx
->nKeyCol
, pPk
, i
) ){
2443 testcase( hasColumn(pIdx
->aiColumn
, pIdx
->nKeyCol
, pPk
->aiColumn
[i
]) );
2448 /* This index is a superset of the primary key */
2449 pIdx
->nColumn
= pIdx
->nKeyCol
;
2452 if( resizeIndexObject(db
, pIdx
, pIdx
->nKeyCol
+n
) ) return;
2453 for(i
=0, j
=pIdx
->nKeyCol
; i
<nPk
; i
++){
2454 if( !isDupColumn(pIdx
, pIdx
->nKeyCol
, pPk
, i
) ){
2455 testcase( hasColumn(pIdx
->aiColumn
, pIdx
->nKeyCol
, pPk
->aiColumn
[i
]) );
2456 pIdx
->aiColumn
[j
] = pPk
->aiColumn
[i
];
2457 pIdx
->azColl
[j
] = pPk
->azColl
[i
];
2458 if( pPk
->aSortOrder
[i
] ){
2459 /* See ticket https://www.sqlite.org/src/info/bba7b69f9849b5bf */
2460 pIdx
->bAscKeyBug
= 1;
2465 assert( pIdx
->nColumn
>=pIdx
->nKeyCol
+n
);
2466 assert( pIdx
->nColumn
>=j
);
2469 /* Add all table columns to the PRIMARY KEY index
2472 for(i
=0; i
<pTab
->nCol
; i
++){
2473 if( !hasColumn(pPk
->aiColumn
, nPk
, i
)
2474 && (pTab
->aCol
[i
].colFlags
& COLFLAG_VIRTUAL
)==0 ) nExtra
++;
2476 if( resizeIndexObject(db
, pPk
, nPk
+nExtra
) ) return;
2477 for(i
=0, j
=nPk
; i
<pTab
->nCol
; i
++){
2478 if( !hasColumn(pPk
->aiColumn
, j
, i
)
2479 && (pTab
->aCol
[i
].colFlags
& COLFLAG_VIRTUAL
)==0
2481 assert( j
<pPk
->nColumn
);
2482 pPk
->aiColumn
[j
] = i
;
2483 pPk
->azColl
[j
] = sqlite3StrBINARY
;
2487 assert( pPk
->nColumn
==j
);
2488 assert( pTab
->nNVCol
<=j
);
2489 recomputeColumnsNotIndexed(pPk
);
2493 #ifndef SQLITE_OMIT_VIRTUALTABLE
2495 ** Return true if pTab is a virtual table and zName is a shadow table name
2496 ** for that virtual table.
2498 int sqlite3IsShadowTableOf(sqlite3
*db
, Table
*pTab
, const char *zName
){
2499 int nName
; /* Length of zName */
2500 Module
*pMod
; /* Module for the virtual table */
2502 if( !IsVirtual(pTab
) ) return 0;
2503 nName
= sqlite3Strlen30(pTab
->zName
);
2504 if( sqlite3_strnicmp(zName
, pTab
->zName
, nName
)!=0 ) return 0;
2505 if( zName
[nName
]!='_' ) return 0;
2506 pMod
= (Module
*)sqlite3HashFind(&db
->aModule
, pTab
->u
.vtab
.azArg
[0]);
2507 if( pMod
==0 ) return 0;
2508 if( pMod
->pModule
->iVersion
<3 ) return 0;
2509 if( pMod
->pModule
->xShadowName
==0 ) return 0;
2510 return pMod
->pModule
->xShadowName(zName
+nName
+1);
2512 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */
2514 #ifndef SQLITE_OMIT_VIRTUALTABLE
2516 ** Table pTab is a virtual table. If it the virtual table implementation
2517 ** exists and has an xShadowName method, then loop over all other ordinary
2518 ** tables within the same schema looking for shadow tables of pTab, and mark
2519 ** any shadow tables seen using the TF_Shadow flag.
2521 void sqlite3MarkAllShadowTablesOf(sqlite3
*db
, Table
*pTab
){
2522 int nName
; /* Length of pTab->zName */
2523 Module
*pMod
; /* Module for the virtual table */
2524 HashElem
*k
; /* For looping through the symbol table */
2526 assert( IsVirtual(pTab
) );
2527 pMod
= (Module
*)sqlite3HashFind(&db
->aModule
, pTab
->u
.vtab
.azArg
[0]);
2528 if( pMod
==0 ) return;
2529 if( NEVER(pMod
->pModule
==0) ) return;
2530 if( pMod
->pModule
->iVersion
<3 ) return;
2531 if( pMod
->pModule
->xShadowName
==0 ) return;
2532 assert( pTab
->zName
!=0 );
2533 nName
= sqlite3Strlen30(pTab
->zName
);
2534 for(k
=sqliteHashFirst(&pTab
->pSchema
->tblHash
); k
; k
=sqliteHashNext(k
)){
2535 Table
*pOther
= sqliteHashData(k
);
2536 assert( pOther
->zName
!=0 );
2537 if( !IsOrdinaryTable(pOther
) ) continue;
2538 if( pOther
->tabFlags
& TF_Shadow
) continue;
2539 if( sqlite3StrNICmp(pOther
->zName
, pTab
->zName
, nName
)==0
2540 && pOther
->zName
[nName
]=='_'
2541 && pMod
->pModule
->xShadowName(pOther
->zName
+nName
+1)
2543 pOther
->tabFlags
|= TF_Shadow
;
2547 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */
2549 #ifndef SQLITE_OMIT_VIRTUALTABLE
2551 ** Return true if zName is a shadow table name in the current database
2554 ** zName is temporarily modified while this routine is running, but is
2555 ** restored to its original value prior to this routine returning.
2557 int sqlite3ShadowTableName(sqlite3
*db
, const char *zName
){
2558 char *zTail
; /* Pointer to the last "_" in zName */
2559 Table
*pTab
; /* Table that zName is a shadow of */
2560 zTail
= strrchr(zName
, '_');
2561 if( zTail
==0 ) return 0;
2563 pTab
= sqlite3FindTable(db
, zName
, 0);
2565 if( pTab
==0 ) return 0;
2566 if( !IsVirtual(pTab
) ) return 0;
2567 return sqlite3IsShadowTableOf(db
, pTab
, zName
);
2569 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */
2574 ** Mark all nodes of an expression as EP_Immutable, indicating that
2575 ** they should not be changed. Expressions attached to a table or
2576 ** index definition are tagged this way to help ensure that we do
2577 ** not pass them into code generator routines by mistake.
2579 static int markImmutableExprStep(Walker
*pWalker
, Expr
*pExpr
){
2580 ExprSetVVAProperty(pExpr
, EP_Immutable
);
2581 return WRC_Continue
;
2583 static void markExprListImmutable(ExprList
*pList
){
2586 memset(&w
, 0, sizeof(w
));
2587 w
.xExprCallback
= markImmutableExprStep
;
2588 w
.xSelectCallback
= sqlite3SelectWalkNoop
;
2589 w
.xSelectCallback2
= 0;
2590 sqlite3WalkExprList(&w
, pList
);
2594 #define markExprListImmutable(X) /* no-op */
2595 #endif /* SQLITE_DEBUG */
2599 ** This routine is called to report the final ")" that terminates
2600 ** a CREATE TABLE statement.
2602 ** The table structure that other action routines have been building
2603 ** is added to the internal hash tables, assuming no errors have
2606 ** An entry for the table is made in the schema table on disk, unless
2607 ** this is a temporary table or db->init.busy==1. When db->init.busy==1
2608 ** it means we are reading the sqlite_schema table because we just
2609 ** connected to the database or because the sqlite_schema table has
2610 ** recently changed, so the entry for this table already exists in
2611 ** the sqlite_schema table. We do not want to create it again.
2613 ** If the pSelect argument is not NULL, it means that this routine
2614 ** was called to create a table generated from a
2615 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of
2616 ** the new table will match the result set of the SELECT.
2618 void sqlite3EndTable(
2619 Parse
*pParse
, /* Parse context */
2620 Token
*pCons
, /* The ',' token after the last column defn. */
2621 Token
*pEnd
, /* The ')' before options in the CREATE TABLE */
2622 u32 tabOpts
, /* Extra table options. Usually 0. */
2623 Select
*pSelect
/* Select from a "CREATE ... AS SELECT" */
2625 Table
*p
; /* The new table */
2626 sqlite3
*db
= pParse
->db
; /* The database connection */
2627 int iDb
; /* Database in which the table lives */
2628 Index
*pIdx
; /* An implied index of the table */
2630 if( pEnd
==0 && pSelect
==0 ){
2633 p
= pParse
->pNewTable
;
2636 if( pSelect
==0 && sqlite3ShadowTableName(db
, p
->zName
) ){
2637 p
->tabFlags
|= TF_Shadow
;
2640 /* If the db->init.busy is 1 it means we are reading the SQL off the
2641 ** "sqlite_schema" or "sqlite_temp_schema" table on the disk.
2642 ** So do not write to the disk again. Extract the root page number
2643 ** for the table from the db->init.newTnum field. (The page number
2644 ** should have been put there by the sqliteOpenCb routine.)
2646 ** If the root page number is 1, that means this is the sqlite_schema
2647 ** table itself. So mark it read-only.
2649 if( db
->init
.busy
){
2650 if( pSelect
|| (!IsOrdinaryTable(p
) && db
->init
.newTnum
) ){
2651 sqlite3ErrorMsg(pParse
, "");
2654 p
->tnum
= db
->init
.newTnum
;
2655 if( p
->tnum
==1 ) p
->tabFlags
|= TF_Readonly
;
2658 /* Special processing for tables that include the STRICT keyword:
2660 ** * Do not allow custom column datatypes. Every column must have
2661 ** a datatype that is one of INT, INTEGER, REAL, TEXT, or BLOB.
2663 ** * If a PRIMARY KEY is defined, other than the INTEGER PRIMARY KEY,
2664 ** then all columns of the PRIMARY KEY must have a NOT NULL
2667 if( tabOpts
& TF_Strict
){
2669 p
->tabFlags
|= TF_Strict
;
2670 for(ii
=0; ii
<p
->nCol
; ii
++){
2671 Column
*pCol
= &p
->aCol
[ii
];
2672 if( pCol
->eCType
==COLTYPE_CUSTOM
){
2673 if( pCol
->colFlags
& COLFLAG_HASTYPE
){
2674 sqlite3ErrorMsg(pParse
,
2675 "unknown datatype for %s.%s: \"%s\"",
2676 p
->zName
, pCol
->zCnName
, sqlite3ColumnType(pCol
, "")
2679 sqlite3ErrorMsg(pParse
, "missing datatype for %s.%s",
2680 p
->zName
, pCol
->zCnName
);
2683 }else if( pCol
->eCType
==COLTYPE_ANY
){
2684 pCol
->affinity
= SQLITE_AFF_BLOB
;
2686 if( (pCol
->colFlags
& COLFLAG_PRIMKEY
)!=0
2688 && pCol
->notNull
== OE_None
2690 pCol
->notNull
= OE_Abort
;
2691 p
->tabFlags
|= TF_HasNotNull
;
2696 assert( (p
->tabFlags
& TF_HasPrimaryKey
)==0
2697 || p
->iPKey
>=0 || sqlite3PrimaryKeyIndex(p
)!=0 );
2698 assert( (p
->tabFlags
& TF_HasPrimaryKey
)!=0
2699 || (p
->iPKey
<0 && sqlite3PrimaryKeyIndex(p
)==0) );
2701 /* Special processing for WITHOUT ROWID Tables */
2702 if( tabOpts
& TF_WithoutRowid
){
2703 if( (p
->tabFlags
& TF_Autoincrement
) ){
2704 sqlite3ErrorMsg(pParse
,
2705 "AUTOINCREMENT not allowed on WITHOUT ROWID tables");
2708 if( (p
->tabFlags
& TF_HasPrimaryKey
)==0 ){
2709 sqlite3ErrorMsg(pParse
, "PRIMARY KEY missing on table %s", p
->zName
);
2712 p
->tabFlags
|= TF_WithoutRowid
| TF_NoVisibleRowid
;
2713 convertToWithoutRowidTable(pParse
, p
);
2715 iDb
= sqlite3SchemaToIndex(db
, p
->pSchema
);
2717 #ifndef SQLITE_OMIT_CHECK
2718 /* Resolve names in all CHECK constraint expressions.
2721 sqlite3ResolveSelfReference(pParse
, p
, NC_IsCheck
, 0, p
->pCheck
);
2723 /* If errors are seen, delete the CHECK constraints now, else they might
2724 ** actually be used if PRAGMA writable_schema=ON is set. */
2725 sqlite3ExprListDelete(db
, p
->pCheck
);
2728 markExprListImmutable(p
->pCheck
);
2731 #endif /* !defined(SQLITE_OMIT_CHECK) */
2732 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
2733 if( p
->tabFlags
& TF_HasGenerated
){
2735 testcase( p
->tabFlags
& TF_HasVirtual
);
2736 testcase( p
->tabFlags
& TF_HasStored
);
2737 for(ii
=0; ii
<p
->nCol
; ii
++){
2738 u32 colFlags
= p
->aCol
[ii
].colFlags
;
2739 if( (colFlags
& COLFLAG_GENERATED
)!=0 ){
2740 Expr
*pX
= sqlite3ColumnExpr(p
, &p
->aCol
[ii
]);
2741 testcase( colFlags
& COLFLAG_VIRTUAL
);
2742 testcase( colFlags
& COLFLAG_STORED
);
2743 if( sqlite3ResolveSelfReference(pParse
, p
, NC_GenCol
, pX
, 0) ){
2744 /* If there are errors in resolving the expression, change the
2745 ** expression to a NULL. This prevents code generators that operate
2746 ** on the expression from inserting extra parts into the expression
2747 ** tree that have been allocated from lookaside memory, which is
2748 ** illegal in a schema and will lead to errors or heap corruption
2749 ** when the database connection closes. */
2750 sqlite3ColumnSetExpr(pParse
, p
, &p
->aCol
[ii
],
2751 sqlite3ExprAlloc(db
, TK_NULL
, 0, 0));
2758 sqlite3ErrorMsg(pParse
, "must have at least one non-generated column");
2764 /* Estimate the average row size for the table and for all implied indices */
2765 estimateTableWidth(p
);
2766 for(pIdx
=p
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
){
2767 estimateIndexWidth(pIdx
);
2770 /* If not initializing, then create a record for the new table
2771 ** in the schema table of the database.
2773 ** If this is a TEMPORARY table, write the entry into the auxiliary
2774 ** file instead of into the main database file.
2776 if( !db
->init
.busy
){
2779 char *zType
; /* "view" or "table" */
2780 char *zType2
; /* "VIEW" or "TABLE" */
2781 char *zStmt
; /* Text of the CREATE TABLE or CREATE VIEW statement */
2783 v
= sqlite3GetVdbe(pParse
);
2784 if( NEVER(v
==0) ) return;
2786 sqlite3VdbeAddOp1(v
, OP_Close
, 0);
2789 ** Initialize zType for the new view or table.
2791 if( IsOrdinaryTable(p
) ){
2792 /* A regular table */
2795 #ifndef SQLITE_OMIT_VIEW
2803 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
2804 ** statement to populate the new table. The root-page number for the
2805 ** new table is in register pParse->regRoot.
2807 ** Once the SELECT has been coded by sqlite3Select(), it is in a
2808 ** suitable state to query for the column names and types to be used
2809 ** by the new table.
2811 ** A shared-cache write-lock is not required to write to the new table,
2812 ** as a schema-lock must have already been obtained to create it. Since
2813 ** a schema-lock excludes all other database users, the write-lock would
2817 SelectDest dest
; /* Where the SELECT should store results */
2818 int regYield
; /* Register holding co-routine entry-point */
2819 int addrTop
; /* Top of the co-routine */
2820 int regRec
; /* A record to be insert into the new table */
2821 int regRowid
; /* Rowid of the next row to insert */
2822 int addrInsLoop
; /* Top of the loop for inserting rows */
2823 Table
*pSelTab
; /* A table that describes the SELECT results */
2825 if( IN_SPECIAL_PARSE
){
2826 pParse
->rc
= SQLITE_ERROR
;
2830 regYield
= ++pParse
->nMem
;
2831 regRec
= ++pParse
->nMem
;
2832 regRowid
= ++pParse
->nMem
;
2833 assert(pParse
->nTab
==1);
2834 sqlite3MayAbort(pParse
);
2835 sqlite3VdbeAddOp3(v
, OP_OpenWrite
, 1, pParse
->regRoot
, iDb
);
2836 sqlite3VdbeChangeP5(v
, OPFLAG_P2ISREG
);
2838 addrTop
= sqlite3VdbeCurrentAddr(v
) + 1;
2839 sqlite3VdbeAddOp3(v
, OP_InitCoroutine
, regYield
, 0, addrTop
);
2840 if( pParse
->nErr
) return;
2841 pSelTab
= sqlite3ResultSetOfSelect(pParse
, pSelect
, SQLITE_AFF_BLOB
);
2842 if( pSelTab
==0 ) return;
2843 assert( p
->aCol
==0 );
2844 p
->nCol
= p
->nNVCol
= pSelTab
->nCol
;
2845 p
->aCol
= pSelTab
->aCol
;
2848 sqlite3DeleteTable(db
, pSelTab
);
2849 sqlite3SelectDestInit(&dest
, SRT_Coroutine
, regYield
);
2850 sqlite3Select(pParse
, pSelect
, &dest
);
2851 if( pParse
->nErr
) return;
2852 sqlite3VdbeEndCoroutine(v
, regYield
);
2853 sqlite3VdbeJumpHere(v
, addrTop
- 1);
2854 addrInsLoop
= sqlite3VdbeAddOp1(v
, OP_Yield
, dest
.iSDParm
);
2856 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, dest
.iSdst
, dest
.nSdst
, regRec
);
2857 sqlite3TableAffinity(v
, p
, 0);
2858 sqlite3VdbeAddOp2(v
, OP_NewRowid
, 1, regRowid
);
2859 sqlite3VdbeAddOp3(v
, OP_Insert
, 1, regRec
, regRowid
);
2860 sqlite3VdbeGoto(v
, addrInsLoop
);
2861 sqlite3VdbeJumpHere(v
, addrInsLoop
);
2862 sqlite3VdbeAddOp1(v
, OP_Close
, 1);
2865 /* Compute the complete text of the CREATE statement */
2867 zStmt
= createTableStmt(db
, p
);
2869 Token
*pEnd2
= tabOpts
? &pParse
->sLastToken
: pEnd
;
2870 n
= (int)(pEnd2
->z
- pParse
->sNameToken
.z
);
2871 if( pEnd2
->z
[0]!=';' ) n
+= pEnd2
->n
;
2872 zStmt
= sqlite3MPrintf(db
,
2873 "CREATE %s %.*s", zType2
, n
, pParse
->sNameToken
.z
2877 /* A slot for the record has already been allocated in the
2878 ** schema table. We just need to update that slot with all
2879 ** the information we've collected.
2881 sqlite3NestedParse(pParse
,
2882 "UPDATE %Q." LEGACY_SCHEMA_TABLE
2883 " SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q"
2885 db
->aDb
[iDb
].zDbSName
,
2893 sqlite3DbFree(db
, zStmt
);
2894 sqlite3ChangeCookie(pParse
, iDb
);
2896 #ifndef SQLITE_OMIT_AUTOINCREMENT
2897 /* Check to see if we need to create an sqlite_sequence table for
2898 ** keeping track of autoincrement keys.
2900 if( (p
->tabFlags
& TF_Autoincrement
)!=0 && !IN_SPECIAL_PARSE
){
2901 Db
*pDb
= &db
->aDb
[iDb
];
2902 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
2903 if( pDb
->pSchema
->pSeqTab
==0 ){
2904 sqlite3NestedParse(pParse
,
2905 "CREATE TABLE %Q.sqlite_sequence(name,seq)",
2912 /* Reparse everything to update our internal data structures */
2913 sqlite3VdbeAddParseSchemaOp(v
, iDb
,
2914 sqlite3MPrintf(db
, "tbl_name='%q' AND type!='trigger'", p
->zName
),0);
2917 /* Add the table to the in-memory representation of the database.
2919 if( db
->init
.busy
){
2921 Schema
*pSchema
= p
->pSchema
;
2922 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
2923 assert( HasRowid(p
) || p
->iPKey
<0 );
2924 pOld
= sqlite3HashInsert(&pSchema
->tblHash
, p
->zName
, p
);
2926 assert( p
==pOld
); /* Malloc must have failed inside HashInsert() */
2927 sqlite3OomFault(db
);
2930 pParse
->pNewTable
= 0;
2931 db
->mDbFlags
|= DBFLAG_SchemaChange
;
2933 /* If this is the magic sqlite_sequence table used by autoincrement,
2934 ** then record a pointer to this table in the main database structure
2935 ** so that INSERT can find the table easily. */
2936 assert( !pParse
->nested
);
2937 #ifndef SQLITE_OMIT_AUTOINCREMENT
2938 if( strcmp(p
->zName
, "sqlite_sequence")==0 ){
2939 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
2940 p
->pSchema
->pSeqTab
= p
;
2945 #ifndef SQLITE_OMIT_ALTERTABLE
2946 if( !pSelect
&& IsOrdinaryTable(p
) ){
2947 assert( pCons
&& pEnd
);
2951 p
->u
.tab
.addColOffset
= 13 + (int)(pCons
->z
- pParse
->sNameToken
.z
);
2956 #ifndef SQLITE_OMIT_VIEW
2958 ** The parser calls this routine in order to create a new VIEW
2960 void sqlite3CreateView(
2961 Parse
*pParse
, /* The parsing context */
2962 Token
*pBegin
, /* The CREATE token that begins the statement */
2963 Token
*pName1
, /* The token that holds the name of the view */
2964 Token
*pName2
, /* The token that holds the name of the view */
2965 ExprList
*pCNames
, /* Optional list of view column names */
2966 Select
*pSelect
, /* A SELECT statement that will become the new view */
2967 int isTemp
, /* TRUE for a TEMPORARY view */
2968 int noErr
/* Suppress error messages if VIEW already exists */
2977 sqlite3
*db
= pParse
->db
;
2979 if( pParse
->nVar
>0 ){
2980 sqlite3ErrorMsg(pParse
, "parameters are not allowed in views");
2981 goto create_view_fail
;
2983 sqlite3StartTable(pParse
, pName1
, pName2
, isTemp
, 1, 0, noErr
);
2984 p
= pParse
->pNewTable
;
2985 if( p
==0 || pParse
->nErr
) goto create_view_fail
;
2987 /* Legacy versions of SQLite allowed the use of the magic "rowid" column
2988 ** on a view, even though views do not have rowids. The following flag
2989 ** setting fixes this problem. But the fix can be disabled by compiling
2990 ** with -DSQLITE_ALLOW_ROWID_IN_VIEW in case there are legacy apps that
2991 ** depend upon the old buggy behavior. */
2992 #ifndef SQLITE_ALLOW_ROWID_IN_VIEW
2993 p
->tabFlags
|= TF_NoVisibleRowid
;
2996 sqlite3TwoPartName(pParse
, pName1
, pName2
, &pName
);
2997 iDb
= sqlite3SchemaToIndex(db
, p
->pSchema
);
2998 sqlite3FixInit(&sFix
, pParse
, iDb
, "view", pName
);
2999 if( sqlite3FixSelect(&sFix
, pSelect
) ) goto create_view_fail
;
3001 /* Make a copy of the entire SELECT statement that defines the view.
3002 ** This will force all the Expr.token.z values to be dynamically
3003 ** allocated rather than point to the input string - which means that
3004 ** they will persist after the current sqlite3_exec() call returns.
3006 pSelect
->selFlags
|= SF_View
;
3007 if( IN_RENAME_OBJECT
){
3008 p
->u
.view
.pSelect
= pSelect
;
3011 p
->u
.view
.pSelect
= sqlite3SelectDup(db
, pSelect
, EXPRDUP_REDUCE
);
3013 p
->pCheck
= sqlite3ExprListDup(db
, pCNames
, EXPRDUP_REDUCE
);
3014 p
->eTabType
= TABTYP_VIEW
;
3015 if( db
->mallocFailed
) goto create_view_fail
;
3017 /* Locate the end of the CREATE VIEW statement. Make sEnd point to
3020 sEnd
= pParse
->sLastToken
;
3021 assert( sEnd
.z
[0]!=0 || sEnd
.n
==0 );
3022 if( sEnd
.z
[0]!=';' ){
3026 n
= (int)(sEnd
.z
- pBegin
->z
);
3029 while( sqlite3Isspace(z
[n
-1]) ){ n
--; }
3033 /* Use sqlite3EndTable() to add the view to the schema table */
3034 sqlite3EndTable(pParse
, 0, &sEnd
, 0, 0);
3037 sqlite3SelectDelete(db
, pSelect
);
3038 if( IN_RENAME_OBJECT
){
3039 sqlite3RenameExprlistUnmap(pParse
, pCNames
);
3041 sqlite3ExprListDelete(db
, pCNames
);
3044 #endif /* SQLITE_OMIT_VIEW */
3046 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
3048 ** The Table structure pTable is really a VIEW. Fill in the names of
3049 ** the columns of the view in the pTable structure. Return the number
3050 ** of errors. If an error is seen leave an error message in pParse->zErrMsg.
3052 int sqlite3ViewGetColumnNames(Parse
*pParse
, Table
*pTable
){
3053 Table
*pSelTab
; /* A fake table from which we get the result set */
3054 Select
*pSel
; /* Copy of the SELECT that implements the view */
3055 int nErr
= 0; /* Number of errors encountered */
3056 sqlite3
*db
= pParse
->db
; /* Database connection for malloc errors */
3057 #ifndef SQLITE_OMIT_VIRTUALTABLE
3060 #ifndef SQLITE_OMIT_AUTHORIZATION
3061 sqlite3_xauth xAuth
; /* Saved xAuth pointer */
3066 #ifndef SQLITE_OMIT_VIRTUALTABLE
3067 if( IsVirtual(pTable
) ){
3069 rc
= sqlite3VtabCallConnect(pParse
, pTable
);
3075 #ifndef SQLITE_OMIT_VIEW
3076 /* A positive nCol means the columns names for this view are
3079 if( pTable
->nCol
>0 ) return 0;
3081 /* A negative nCol is a special marker meaning that we are currently
3082 ** trying to compute the column names. If we enter this routine with
3083 ** a negative nCol, it means two or more views form a loop, like this:
3085 ** CREATE VIEW one AS SELECT * FROM two;
3086 ** CREATE VIEW two AS SELECT * FROM one;
3088 ** Actually, the error above is now caught prior to reaching this point.
3089 ** But the following test is still important as it does come up
3090 ** in the following:
3092 ** CREATE TABLE main.ex1(a);
3093 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1;
3094 ** SELECT * FROM temp.ex1;
3096 if( pTable
->nCol
<0 ){
3097 sqlite3ErrorMsg(pParse
, "view %s is circularly defined", pTable
->zName
);
3100 assert( pTable
->nCol
>=0 );
3102 /* If we get this far, it means we need to compute the table names.
3103 ** Note that the call to sqlite3ResultSetOfSelect() will expand any
3104 ** "*" elements in the results set of the view and will assign cursors
3105 ** to the elements of the FROM clause. But we do not want these changes
3106 ** to be permanent. So the computation is done on a copy of the SELECT
3107 ** statement that defines the view.
3109 assert( IsView(pTable
) );
3110 pSel
= sqlite3SelectDup(db
, pTable
->u
.view
.pSelect
, 0);
3112 u8 eParseMode
= pParse
->eParseMode
;
3113 int nTab
= pParse
->nTab
;
3114 int nSelect
= pParse
->nSelect
;
3115 pParse
->eParseMode
= PARSE_MODE_NORMAL
;
3116 sqlite3SrcListAssignCursors(pParse
, pSel
->pSrc
);
3119 #ifndef SQLITE_OMIT_AUTHORIZATION
3122 pSelTab
= sqlite3ResultSetOfSelect(pParse
, pSel
, SQLITE_AFF_NONE
);
3125 pSelTab
= sqlite3ResultSetOfSelect(pParse
, pSel
, SQLITE_AFF_NONE
);
3127 pParse
->nTab
= nTab
;
3128 pParse
->nSelect
= nSelect
;
3132 }else if( pTable
->pCheck
){
3133 /* CREATE VIEW name(arglist) AS ...
3134 ** The names of the columns in the table are taken from
3135 ** arglist which is stored in pTable->pCheck. The pCheck field
3136 ** normally holds CHECK constraints on an ordinary table, but for
3137 ** a VIEW it holds the list of column names.
3139 sqlite3ColumnsFromExprList(pParse
, pTable
->pCheck
,
3140 &pTable
->nCol
, &pTable
->aCol
);
3142 && pTable
->nCol
==pSel
->pEList
->nExpr
3144 assert( db
->mallocFailed
==0 );
3145 sqlite3SelectAddColumnTypeAndCollation(pParse
, pTable
, pSel
,
3149 /* CREATE VIEW name AS... without an argument list. Construct
3150 ** the column names from the SELECT statement that defines the view.
3152 assert( pTable
->aCol
==0 );
3153 pTable
->nCol
= pSelTab
->nCol
;
3154 pTable
->aCol
= pSelTab
->aCol
;
3155 pTable
->tabFlags
|= (pSelTab
->tabFlags
& COLFLAG_NOINSERT
);
3158 assert( sqlite3SchemaMutexHeld(db
, 0, pTable
->pSchema
) );
3160 pTable
->nNVCol
= pTable
->nCol
;
3161 sqlite3DeleteTable(db
, pSelTab
);
3162 sqlite3SelectDelete(db
, pSel
);
3164 pParse
->eParseMode
= eParseMode
;
3168 pTable
->pSchema
->schemaFlags
|= DB_UnresetViews
;
3169 if( db
->mallocFailed
){
3170 sqlite3DeleteColumnNames(db
, pTable
);
3172 #endif /* SQLITE_OMIT_VIEW */
3175 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
3177 #ifndef SQLITE_OMIT_VIEW
3179 ** Clear the column names from every VIEW in database idx.
3181 static void sqliteViewResetAll(sqlite3
*db
, int idx
){
3183 assert( sqlite3SchemaMutexHeld(db
, idx
, 0) );
3184 if( !DbHasProperty(db
, idx
, DB_UnresetViews
) ) return;
3185 for(i
=sqliteHashFirst(&db
->aDb
[idx
].pSchema
->tblHash
); i
;i
=sqliteHashNext(i
)){
3186 Table
*pTab
= sqliteHashData(i
);
3188 sqlite3DeleteColumnNames(db
, pTab
);
3191 DbClearProperty(db
, idx
, DB_UnresetViews
);
3194 # define sqliteViewResetAll(A,B)
3195 #endif /* SQLITE_OMIT_VIEW */
3198 ** This function is called by the VDBE to adjust the internal schema
3199 ** used by SQLite when the btree layer moves a table root page. The
3200 ** root-page of a table or index in database iDb has changed from iFrom
3203 ** Ticket #1728: The symbol table might still contain information
3204 ** on tables and/or indices that are the process of being deleted.
3205 ** If you are unlucky, one of those deleted indices or tables might
3206 ** have the same rootpage number as the real table or index that is
3207 ** being moved. So we cannot stop searching after the first match
3208 ** because the first match might be for one of the deleted indices
3209 ** or tables and not the table/index that is actually being moved.
3210 ** We must continue looping until all tables and indices with
3211 ** rootpage==iFrom have been converted to have a rootpage of iTo
3212 ** in order to be certain that we got the right one.
3214 #ifndef SQLITE_OMIT_AUTOVACUUM
3215 void sqlite3RootPageMoved(sqlite3
*db
, int iDb
, Pgno iFrom
, Pgno iTo
){
3220 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
3221 pDb
= &db
->aDb
[iDb
];
3222 pHash
= &pDb
->pSchema
->tblHash
;
3223 for(pElem
=sqliteHashFirst(pHash
); pElem
; pElem
=sqliteHashNext(pElem
)){
3224 Table
*pTab
= sqliteHashData(pElem
);
3225 if( pTab
->tnum
==iFrom
){
3229 pHash
= &pDb
->pSchema
->idxHash
;
3230 for(pElem
=sqliteHashFirst(pHash
); pElem
; pElem
=sqliteHashNext(pElem
)){
3231 Index
*pIdx
= sqliteHashData(pElem
);
3232 if( pIdx
->tnum
==iFrom
){
3240 ** Write code to erase the table with root-page iTable from database iDb.
3241 ** Also write code to modify the sqlite_schema table and internal schema
3242 ** if a root-page of another table is moved by the btree-layer whilst
3243 ** erasing iTable (this can happen with an auto-vacuum database).
3245 static void destroyRootPage(Parse
*pParse
, int iTable
, int iDb
){
3246 Vdbe
*v
= sqlite3GetVdbe(pParse
);
3247 int r1
= sqlite3GetTempReg(pParse
);
3248 if( iTable
<2 ) sqlite3ErrorMsg(pParse
, "corrupt schema");
3249 sqlite3VdbeAddOp3(v
, OP_Destroy
, iTable
, r1
, iDb
);
3250 sqlite3MayAbort(pParse
);
3251 #ifndef SQLITE_OMIT_AUTOVACUUM
3252 /* OP_Destroy stores an in integer r1. If this integer
3253 ** is non-zero, then it is the root page number of a table moved to
3254 ** location iTable. The following code modifies the sqlite_schema table to
3257 ** The "#NNN" in the SQL is a special constant that means whatever value
3258 ** is in register NNN. See grammar rules associated with the TK_REGISTER
3259 ** token for additional information.
3261 sqlite3NestedParse(pParse
,
3262 "UPDATE %Q." LEGACY_SCHEMA_TABLE
3263 " SET rootpage=%d WHERE #%d AND rootpage=#%d",
3264 pParse
->db
->aDb
[iDb
].zDbSName
, iTable
, r1
, r1
);
3266 sqlite3ReleaseTempReg(pParse
, r1
);
3270 ** Write VDBE code to erase table pTab and all associated indices on disk.
3271 ** Code to update the sqlite_schema tables and internal schema definitions
3272 ** in case a root-page belonging to another table is moved by the btree layer
3273 ** is also added (this can happen with an auto-vacuum database).
3275 static void destroyTable(Parse
*pParse
, Table
*pTab
){
3276 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
3277 ** is not defined), then it is important to call OP_Destroy on the
3278 ** table and index root-pages in order, starting with the numerically
3279 ** largest root-page number. This guarantees that none of the root-pages
3280 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
3281 ** following were coded:
3287 ** and root page 5 happened to be the largest root-page number in the
3288 ** database, then root page 5 would be moved to page 4 by the
3289 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
3290 ** a free-list page.
3292 Pgno iTab
= pTab
->tnum
;
3293 Pgno iDestroyed
= 0;
3299 if( iDestroyed
==0 || iTab
<iDestroyed
){
3302 for(pIdx
=pTab
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
){
3303 Pgno iIdx
= pIdx
->tnum
;
3304 assert( pIdx
->pSchema
==pTab
->pSchema
);
3305 if( (iDestroyed
==0 || (iIdx
<iDestroyed
)) && iIdx
>iLargest
){
3312 int iDb
= sqlite3SchemaToIndex(pParse
->db
, pTab
->pSchema
);
3313 assert( iDb
>=0 && iDb
<pParse
->db
->nDb
);
3314 destroyRootPage(pParse
, iLargest
, iDb
);
3315 iDestroyed
= iLargest
;
3321 ** Remove entries from the sqlite_statN tables (for N in (1,2,3))
3322 ** after a DROP INDEX or DROP TABLE command.
3324 static void sqlite3ClearStatTables(
3325 Parse
*pParse
, /* The parsing context */
3326 int iDb
, /* The database number */
3327 const char *zType
, /* "idx" or "tbl" */
3328 const char *zName
/* Name of index or table */
3331 const char *zDbName
= pParse
->db
->aDb
[iDb
].zDbSName
;
3332 for(i
=1; i
<=4; i
++){
3334 sqlite3_snprintf(sizeof(zTab
),zTab
,"sqlite_stat%d",i
);
3335 if( sqlite3FindTable(pParse
->db
, zTab
, zDbName
) ){
3336 sqlite3NestedParse(pParse
,
3337 "DELETE FROM %Q.%s WHERE %s=%Q",
3338 zDbName
, zTab
, zType
, zName
3345 ** Generate code to drop a table.
3347 void sqlite3CodeDropTable(Parse
*pParse
, Table
*pTab
, int iDb
, int isView
){
3349 sqlite3
*db
= pParse
->db
;
3351 Db
*pDb
= &db
->aDb
[iDb
];
3353 v
= sqlite3GetVdbe(pParse
);
3355 sqlite3BeginWriteOperation(pParse
, 1, iDb
);
3357 #ifndef SQLITE_OMIT_VIRTUALTABLE
3358 if( IsVirtual(pTab
) ){
3359 sqlite3VdbeAddOp0(v
, OP_VBegin
);
3363 /* Drop all triggers associated with the table being dropped. Code
3364 ** is generated to remove entries from sqlite_schema and/or
3365 ** sqlite_temp_schema if required.
3367 pTrigger
= sqlite3TriggerList(pParse
, pTab
);
3369 assert( pTrigger
->pSchema
==pTab
->pSchema
||
3370 pTrigger
->pSchema
==db
->aDb
[1].pSchema
);
3371 sqlite3DropTriggerPtr(pParse
, pTrigger
);
3372 pTrigger
= pTrigger
->pNext
;
3375 #ifndef SQLITE_OMIT_AUTOINCREMENT
3376 /* Remove any entries of the sqlite_sequence table associated with
3377 ** the table being dropped. This is done before the table is dropped
3378 ** at the btree level, in case the sqlite_sequence table needs to
3379 ** move as a result of the drop (can happen in auto-vacuum mode).
3381 if( pTab
->tabFlags
& TF_Autoincrement
){
3382 sqlite3NestedParse(pParse
,
3383 "DELETE FROM %Q.sqlite_sequence WHERE name=%Q",
3384 pDb
->zDbSName
, pTab
->zName
3389 /* Drop all entries in the schema table that refer to the
3390 ** table. The program name loops through the schema table and deletes
3391 ** every row that refers to a table of the same name as the one being
3392 ** dropped. Triggers are handled separately because a trigger can be
3393 ** created in the temp database that refers to a table in another
3396 sqlite3NestedParse(pParse
,
3397 "DELETE FROM %Q." LEGACY_SCHEMA_TABLE
3398 " WHERE tbl_name=%Q and type!='trigger'",
3399 pDb
->zDbSName
, pTab
->zName
);
3400 if( !isView
&& !IsVirtual(pTab
) ){
3401 destroyTable(pParse
, pTab
);
3404 /* Remove the table entry from SQLite's internal schema and modify
3405 ** the schema cookie.
3407 if( IsVirtual(pTab
) ){
3408 sqlite3VdbeAddOp4(v
, OP_VDestroy
, iDb
, 0, 0, pTab
->zName
, 0);
3409 sqlite3MayAbort(pParse
);
3411 sqlite3VdbeAddOp4(v
, OP_DropTable
, iDb
, 0, 0, pTab
->zName
, 0);
3412 sqlite3ChangeCookie(pParse
, iDb
);
3413 sqliteViewResetAll(db
, iDb
);
3417 ** Return TRUE if shadow tables should be read-only in the current
3420 int sqlite3ReadOnlyShadowTables(sqlite3
*db
){
3421 #ifndef SQLITE_OMIT_VIRTUALTABLE
3422 if( (db
->flags
& SQLITE_Defensive
)!=0
3425 && !sqlite3VtabInSync(db
)
3434 ** Return true if it is not allowed to drop the given table
3436 static int tableMayNotBeDropped(sqlite3
*db
, Table
*pTab
){
3437 if( sqlite3StrNICmp(pTab
->zName
, "sqlite_", 7)==0 ){
3438 if( sqlite3StrNICmp(pTab
->zName
+7, "stat", 4)==0 ) return 0;
3439 if( sqlite3StrNICmp(pTab
->zName
+7, "parameters", 10)==0 ) return 0;
3442 if( (pTab
->tabFlags
& TF_Shadow
)!=0 && sqlite3ReadOnlyShadowTables(db
) ){
3445 if( pTab
->tabFlags
& TF_Eponymous
){
3452 ** This routine is called to do the work of a DROP TABLE statement.
3453 ** pName is the name of the table to be dropped.
3455 void sqlite3DropTable(Parse
*pParse
, SrcList
*pName
, int isView
, int noErr
){
3458 sqlite3
*db
= pParse
->db
;
3461 if( db
->mallocFailed
){
3462 goto exit_drop_table
;
3464 assert( pParse
->nErr
==0 );
3465 assert( pName
->nSrc
==1 );
3466 if( sqlite3ReadSchema(pParse
) ) goto exit_drop_table
;
3467 if( noErr
) db
->suppressErr
++;
3468 assert( isView
==0 || isView
==LOCATE_VIEW
);
3469 pTab
= sqlite3LocateTableItem(pParse
, isView
, &pName
->a
[0]);
3470 if( noErr
) db
->suppressErr
--;
3474 sqlite3CodeVerifyNamedSchema(pParse
, pName
->a
[0].zDatabase
);
3475 sqlite3ForceNotReadOnly(pParse
);
3477 goto exit_drop_table
;
3479 iDb
= sqlite3SchemaToIndex(db
, pTab
->pSchema
);
3480 assert( iDb
>=0 && iDb
<db
->nDb
);
3482 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure
3483 ** it is initialized.
3485 if( IsVirtual(pTab
) && sqlite3ViewGetColumnNames(pParse
, pTab
) ){
3486 goto exit_drop_table
;
3488 #ifndef SQLITE_OMIT_AUTHORIZATION
3491 const char *zTab
= SCHEMA_TABLE(iDb
);
3492 const char *zDb
= db
->aDb
[iDb
].zDbSName
;
3493 const char *zArg2
= 0;
3494 if( sqlite3AuthCheck(pParse
, SQLITE_DELETE
, zTab
, 0, zDb
)){
3495 goto exit_drop_table
;
3498 if( !OMIT_TEMPDB
&& iDb
==1 ){
3499 code
= SQLITE_DROP_TEMP_VIEW
;
3501 code
= SQLITE_DROP_VIEW
;
3503 #ifndef SQLITE_OMIT_VIRTUALTABLE
3504 }else if( IsVirtual(pTab
) ){
3505 code
= SQLITE_DROP_VTABLE
;
3506 zArg2
= sqlite3GetVTable(db
, pTab
)->pMod
->zName
;
3509 if( !OMIT_TEMPDB
&& iDb
==1 ){
3510 code
= SQLITE_DROP_TEMP_TABLE
;
3512 code
= SQLITE_DROP_TABLE
;
3515 if( sqlite3AuthCheck(pParse
, code
, pTab
->zName
, zArg2
, zDb
) ){
3516 goto exit_drop_table
;
3518 if( sqlite3AuthCheck(pParse
, SQLITE_DELETE
, pTab
->zName
, 0, zDb
) ){
3519 goto exit_drop_table
;
3523 if( tableMayNotBeDropped(db
, pTab
) ){
3524 sqlite3ErrorMsg(pParse
, "table %s may not be dropped", pTab
->zName
);
3525 goto exit_drop_table
;
3528 #ifndef SQLITE_OMIT_VIEW
3529 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
3532 if( isView
&& !IsView(pTab
) ){
3533 sqlite3ErrorMsg(pParse
, "use DROP TABLE to delete table %s", pTab
->zName
);
3534 goto exit_drop_table
;
3536 if( !isView
&& IsView(pTab
) ){
3537 sqlite3ErrorMsg(pParse
, "use DROP VIEW to delete view %s", pTab
->zName
);
3538 goto exit_drop_table
;
3542 /* Generate code to remove the table from the schema table
3545 v
= sqlite3GetVdbe(pParse
);
3547 sqlite3BeginWriteOperation(pParse
, 1, iDb
);
3549 sqlite3ClearStatTables(pParse
, iDb
, "tbl", pTab
->zName
);
3550 sqlite3FkDropTable(pParse
, pName
, pTab
);
3552 sqlite3CodeDropTable(pParse
, pTab
, iDb
, isView
);
3556 sqlite3SrcListDelete(db
, pName
);
3560 ** This routine is called to create a new foreign key on the table
3561 ** currently under construction. pFromCol determines which columns
3562 ** in the current table point to the foreign key. If pFromCol==0 then
3563 ** connect the key to the last column inserted. pTo is the name of
3564 ** the table referred to (a.k.a the "parent" table). pToCol is a list
3565 ** of tables in the parent pTo table. flags contains all
3566 ** information about the conflict resolution algorithms specified
3567 ** in the ON DELETE, ON UPDATE and ON INSERT clauses.
3569 ** An FKey structure is created and added to the table currently
3570 ** under construction in the pParse->pNewTable field.
3572 ** The foreign key is set for IMMEDIATE processing. A subsequent call
3573 ** to sqlite3DeferForeignKey() might change this to DEFERRED.
3575 void sqlite3CreateForeignKey(
3576 Parse
*pParse
, /* Parsing context */
3577 ExprList
*pFromCol
, /* Columns in this table that point to other table */
3578 Token
*pTo
, /* Name of the other table */
3579 ExprList
*pToCol
, /* Columns in the other table */
3580 int flags
/* Conflict resolution algorithms. */
3582 sqlite3
*db
= pParse
->db
;
3583 #ifndef SQLITE_OMIT_FOREIGN_KEY
3586 Table
*p
= pParse
->pNewTable
;
3593 if( p
==0 || IN_DECLARE_VTAB
) goto fk_end
;
3595 int iCol
= p
->nCol
-1;
3596 if( NEVER(iCol
<0) ) goto fk_end
;
3597 if( pToCol
&& pToCol
->nExpr
!=1 ){
3598 sqlite3ErrorMsg(pParse
, "foreign key on %s"
3599 " should reference only one column of table %T",
3600 p
->aCol
[iCol
].zCnName
, pTo
);
3604 }else if( pToCol
&& pToCol
->nExpr
!=pFromCol
->nExpr
){
3605 sqlite3ErrorMsg(pParse
,
3606 "number of columns in foreign key does not match the number of "
3607 "columns in the referenced table");
3610 nCol
= pFromCol
->nExpr
;
3612 nByte
= sizeof(*pFKey
) + (nCol
-1)*sizeof(pFKey
->aCol
[0]) + pTo
->n
+ 1;
3614 for(i
=0; i
<pToCol
->nExpr
; i
++){
3615 nByte
+= sqlite3Strlen30(pToCol
->a
[i
].zEName
) + 1;
3618 pFKey
= sqlite3DbMallocZero(db
, nByte
);
3623 assert( IsOrdinaryTable(p
) );
3624 pFKey
->pNextFrom
= p
->u
.tab
.pFKey
;
3625 z
= (char*)&pFKey
->aCol
[nCol
];
3627 if( IN_RENAME_OBJECT
){
3628 sqlite3RenameTokenMap(pParse
, (void*)z
, pTo
);
3630 memcpy(z
, pTo
->z
, pTo
->n
);
3636 pFKey
->aCol
[0].iFrom
= p
->nCol
-1;
3638 for(i
=0; i
<nCol
; i
++){
3640 for(j
=0; j
<p
->nCol
; j
++){
3641 if( sqlite3StrICmp(p
->aCol
[j
].zCnName
, pFromCol
->a
[i
].zEName
)==0 ){
3642 pFKey
->aCol
[i
].iFrom
= j
;
3647 sqlite3ErrorMsg(pParse
,
3648 "unknown column \"%s\" in foreign key definition",
3649 pFromCol
->a
[i
].zEName
);
3652 if( IN_RENAME_OBJECT
){
3653 sqlite3RenameTokenRemap(pParse
, &pFKey
->aCol
[i
], pFromCol
->a
[i
].zEName
);
3658 for(i
=0; i
<nCol
; i
++){
3659 int n
= sqlite3Strlen30(pToCol
->a
[i
].zEName
);
3660 pFKey
->aCol
[i
].zCol
= z
;
3661 if( IN_RENAME_OBJECT
){
3662 sqlite3RenameTokenRemap(pParse
, z
, pToCol
->a
[i
].zEName
);
3664 memcpy(z
, pToCol
->a
[i
].zEName
, n
);
3669 pFKey
->isDeferred
= 0;
3670 pFKey
->aAction
[0] = (u8
)(flags
& 0xff); /* ON DELETE action */
3671 pFKey
->aAction
[1] = (u8
)((flags
>> 8 ) & 0xff); /* ON UPDATE action */
3673 assert( sqlite3SchemaMutexHeld(db
, 0, p
->pSchema
) );
3674 pNextTo
= (FKey
*)sqlite3HashInsert(&p
->pSchema
->fkeyHash
,
3675 pFKey
->zTo
, (void *)pFKey
3677 if( pNextTo
==pFKey
){
3678 sqlite3OomFault(db
);
3682 assert( pNextTo
->pPrevTo
==0 );
3683 pFKey
->pNextTo
= pNextTo
;
3684 pNextTo
->pPrevTo
= pFKey
;
3687 /* Link the foreign key to the table as the last step.
3689 assert( IsOrdinaryTable(p
) );
3690 p
->u
.tab
.pFKey
= pFKey
;
3694 sqlite3DbFree(db
, pFKey
);
3695 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
3696 sqlite3ExprListDelete(db
, pFromCol
);
3697 sqlite3ExprListDelete(db
, pToCol
);
3701 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
3702 ** clause is seen as part of a foreign key definition. The isDeferred
3703 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
3704 ** The behavior of the most recently created foreign key is adjusted
3707 void sqlite3DeferForeignKey(Parse
*pParse
, int isDeferred
){
3708 #ifndef SQLITE_OMIT_FOREIGN_KEY
3711 if( (pTab
= pParse
->pNewTable
)==0 ) return;
3712 if( NEVER(!IsOrdinaryTable(pTab
)) ) return;
3713 if( (pFKey
= pTab
->u
.tab
.pFKey
)==0 ) return;
3714 assert( isDeferred
==0 || isDeferred
==1 ); /* EV: R-30323-21917 */
3715 pFKey
->isDeferred
= (u8
)isDeferred
;
3720 ** Generate code that will erase and refill index *pIdx. This is
3721 ** used to initialize a newly created index or to recompute the
3722 ** content of an index in response to a REINDEX command.
3724 ** if memRootPage is not negative, it means that the index is newly
3725 ** created. The register specified by memRootPage contains the
3726 ** root page number of the index. If memRootPage is negative, then
3727 ** the index already exists and must be cleared before being refilled and
3728 ** the root page number of the index is taken from pIndex->tnum.
3730 static void sqlite3RefillIndex(Parse
*pParse
, Index
*pIndex
, int memRootPage
){
3731 Table
*pTab
= pIndex
->pTable
; /* The table that is indexed */
3732 int iTab
= pParse
->nTab
++; /* Btree cursor used for pTab */
3733 int iIdx
= pParse
->nTab
++; /* Btree cursor used for pIndex */
3734 int iSorter
; /* Cursor opened by OpenSorter (if in use) */
3735 int addr1
; /* Address of top of loop */
3736 int addr2
; /* Address to jump to for next iteration */
3737 Pgno tnum
; /* Root page of index */
3738 int iPartIdxLabel
; /* Jump to this label to skip a row */
3739 Vdbe
*v
; /* Generate code into this virtual machine */
3740 KeyInfo
*pKey
; /* KeyInfo for index */
3741 int regRecord
; /* Register holding assembled index record */
3742 sqlite3
*db
= pParse
->db
; /* The database connection */
3743 int iDb
= sqlite3SchemaToIndex(db
, pIndex
->pSchema
);
3745 #ifndef SQLITE_OMIT_AUTHORIZATION
3746 if( sqlite3AuthCheck(pParse
, SQLITE_REINDEX
, pIndex
->zName
, 0,
3747 db
->aDb
[iDb
].zDbSName
) ){
3752 /* Require a write-lock on the table to perform this operation */
3753 sqlite3TableLock(pParse
, iDb
, pTab
->tnum
, 1, pTab
->zName
);
3755 v
= sqlite3GetVdbe(pParse
);
3757 if( memRootPage
>=0 ){
3758 tnum
= (Pgno
)memRootPage
;
3760 tnum
= pIndex
->tnum
;
3762 pKey
= sqlite3KeyInfoOfIndex(pParse
, pIndex
);
3763 assert( pKey
!=0 || pParse
->nErr
);
3765 /* Open the sorter cursor if we are to use one. */
3766 iSorter
= pParse
->nTab
++;
3767 sqlite3VdbeAddOp4(v
, OP_SorterOpen
, iSorter
, 0, pIndex
->nKeyCol
, (char*)
3768 sqlite3KeyInfoRef(pKey
), P4_KEYINFO
);
3770 /* Open the table. Loop through all rows of the table, inserting index
3771 ** records into the sorter. */
3772 sqlite3OpenTable(pParse
, iTab
, iDb
, pTab
, OP_OpenRead
);
3773 addr1
= sqlite3VdbeAddOp2(v
, OP_Rewind
, iTab
, 0); VdbeCoverage(v
);
3774 regRecord
= sqlite3GetTempReg(pParse
);
3775 sqlite3MultiWrite(pParse
);
3777 sqlite3GenerateIndexKey(pParse
,pIndex
,iTab
,regRecord
,0,&iPartIdxLabel
,0,0);
3778 sqlite3VdbeAddOp2(v
, OP_SorterInsert
, iSorter
, regRecord
);
3779 sqlite3ResolvePartIdxLabel(pParse
, iPartIdxLabel
);
3780 sqlite3VdbeAddOp2(v
, OP_Next
, iTab
, addr1
+1); VdbeCoverage(v
);
3781 sqlite3VdbeJumpHere(v
, addr1
);
3782 if( memRootPage
<0 ) sqlite3VdbeAddOp2(v
, OP_Clear
, tnum
, iDb
);
3783 sqlite3VdbeAddOp4(v
, OP_OpenWrite
, iIdx
, (int)tnum
, iDb
,
3784 (char *)pKey
, P4_KEYINFO
);
3785 sqlite3VdbeChangeP5(v
, OPFLAG_BULKCSR
|((memRootPage
>=0)?OPFLAG_P2ISREG
:0));
3787 addr1
= sqlite3VdbeAddOp2(v
, OP_SorterSort
, iSorter
, 0); VdbeCoverage(v
);
3788 if( IsUniqueIndex(pIndex
) ){
3789 int j2
= sqlite3VdbeGoto(v
, 1);
3790 addr2
= sqlite3VdbeCurrentAddr(v
);
3791 sqlite3VdbeVerifyAbortable(v
, OE_Abort
);
3792 sqlite3VdbeAddOp4Int(v
, OP_SorterCompare
, iSorter
, j2
, regRecord
,
3793 pIndex
->nKeyCol
); VdbeCoverage(v
);
3794 sqlite3UniqueConstraint(pParse
, OE_Abort
, pIndex
);
3795 sqlite3VdbeJumpHere(v
, j2
);
3797 /* Most CREATE INDEX and REINDEX statements that are not UNIQUE can not
3798 ** abort. The exception is if one of the indexed expressions contains a
3799 ** user function that throws an exception when it is evaluated. But the
3800 ** overhead of adding a statement journal to a CREATE INDEX statement is
3801 ** very small (since most of the pages written do not contain content that
3802 ** needs to be restored if the statement aborts), so we call
3803 ** sqlite3MayAbort() for all CREATE INDEX statements. */
3804 sqlite3MayAbort(pParse
);
3805 addr2
= sqlite3VdbeCurrentAddr(v
);
3807 sqlite3VdbeAddOp3(v
, OP_SorterData
, iSorter
, regRecord
, iIdx
);
3808 if( !pIndex
->bAscKeyBug
){
3809 /* This OP_SeekEnd opcode makes index insert for a REINDEX go much
3810 ** faster by avoiding unnecessary seeks. But the optimization does
3811 ** not work for UNIQUE constraint indexes on WITHOUT ROWID tables
3812 ** with DESC primary keys, since those indexes have there keys in
3813 ** a different order from the main table.
3814 ** See ticket: https://www.sqlite.org/src/info/bba7b69f9849b5bf
3816 sqlite3VdbeAddOp1(v
, OP_SeekEnd
, iIdx
);
3818 sqlite3VdbeAddOp2(v
, OP_IdxInsert
, iIdx
, regRecord
);
3819 sqlite3VdbeChangeP5(v
, OPFLAG_USESEEKRESULT
);
3820 sqlite3ReleaseTempReg(pParse
, regRecord
);
3821 sqlite3VdbeAddOp2(v
, OP_SorterNext
, iSorter
, addr2
); VdbeCoverage(v
);
3822 sqlite3VdbeJumpHere(v
, addr1
);
3824 sqlite3VdbeAddOp1(v
, OP_Close
, iTab
);
3825 sqlite3VdbeAddOp1(v
, OP_Close
, iIdx
);
3826 sqlite3VdbeAddOp1(v
, OP_Close
, iSorter
);
3830 ** Allocate heap space to hold an Index object with nCol columns.
3832 ** Increase the allocation size to provide an extra nExtra bytes
3833 ** of 8-byte aligned space after the Index object and return a
3834 ** pointer to this extra space in *ppExtra.
3836 Index
*sqlite3AllocateIndexObject(
3837 sqlite3
*db
, /* Database connection */
3838 i16 nCol
, /* Total number of columns in the index */
3839 int nExtra
, /* Number of bytes of extra space to alloc */
3840 char **ppExtra
/* Pointer to the "extra" space */
3842 Index
*p
; /* Allocated index object */
3843 int nByte
; /* Bytes of space for Index object + arrays */
3845 nByte
= ROUND8(sizeof(Index
)) + /* Index structure */
3846 ROUND8(sizeof(char*)*nCol
) + /* Index.azColl */
3847 ROUND8(sizeof(LogEst
)*(nCol
+1) + /* Index.aiRowLogEst */
3848 sizeof(i16
)*nCol
+ /* Index.aiColumn */
3849 sizeof(u8
)*nCol
); /* Index.aSortOrder */
3850 p
= sqlite3DbMallocZero(db
, nByte
+ nExtra
);
3852 char *pExtra
= ((char*)p
)+ROUND8(sizeof(Index
));
3853 p
->azColl
= (const char**)pExtra
; pExtra
+= ROUND8(sizeof(char*)*nCol
);
3854 p
->aiRowLogEst
= (LogEst
*)pExtra
; pExtra
+= sizeof(LogEst
)*(nCol
+1);
3855 p
->aiColumn
= (i16
*)pExtra
; pExtra
+= sizeof(i16
)*nCol
;
3856 p
->aSortOrder
= (u8
*)pExtra
;
3858 p
->nKeyCol
= nCol
- 1;
3859 *ppExtra
= ((char*)p
) + nByte
;
3865 ** If expression list pList contains an expression that was parsed with
3866 ** an explicit "NULLS FIRST" or "NULLS LAST" clause, leave an error in
3867 ** pParse and return non-zero. Otherwise, return zero.
3869 int sqlite3HasExplicitNulls(Parse
*pParse
, ExprList
*pList
){
3872 for(i
=0; i
<pList
->nExpr
; i
++){
3873 if( pList
->a
[i
].fg
.bNulls
){
3874 u8 sf
= pList
->a
[i
].fg
.sortFlags
;
3875 sqlite3ErrorMsg(pParse
, "unsupported use of NULLS %s",
3876 (sf
==0 || sf
==3) ? "FIRST" : "LAST"
3886 ** Create a new index for an SQL table. pName1.pName2 is the name of the index
3887 ** and pTblList is the name of the table that is to be indexed. Both will
3888 ** be NULL for a primary key or an index that is created to satisfy a
3889 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable
3890 ** as the table to be indexed. pParse->pNewTable is a table that is
3891 ** currently being constructed by a CREATE TABLE statement.
3893 ** pList is a list of columns to be indexed. pList will be NULL if this
3894 ** is a primary key or unique-constraint on the most recent column added
3895 ** to the table currently under construction.
3897 void sqlite3CreateIndex(
3898 Parse
*pParse
, /* All information about this parse */
3899 Token
*pName1
, /* First part of index name. May be NULL */
3900 Token
*pName2
, /* Second part of index name. May be NULL */
3901 SrcList
*pTblName
, /* Table to index. Use pParse->pNewTable if 0 */
3902 ExprList
*pList
, /* A list of columns to be indexed */
3903 int onError
, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
3904 Token
*pStart
, /* The CREATE token that begins this statement */
3905 Expr
*pPIWhere
, /* WHERE clause for partial indices */
3906 int sortOrder
, /* Sort order of primary key when pList==NULL */
3907 int ifNotExist
, /* Omit error if index already exists */
3908 u8 idxType
/* The index type */
3910 Table
*pTab
= 0; /* Table to be indexed */
3911 Index
*pIndex
= 0; /* The index to be created */
3912 char *zName
= 0; /* Name of the index */
3913 int nName
; /* Number of characters in zName */
3915 DbFixer sFix
; /* For assigning database names to pTable */
3916 int sortOrderMask
; /* 1 to honor DESC in index. 0 to ignore. */
3917 sqlite3
*db
= pParse
->db
;
3918 Db
*pDb
; /* The specific table containing the indexed database */
3919 int iDb
; /* Index of the database that is being written */
3920 Token
*pName
= 0; /* Unqualified name of the index to create */
3921 struct ExprList_item
*pListItem
; /* For looping over pList */
3922 int nExtra
= 0; /* Space allocated for zExtra[] */
3923 int nExtraCol
; /* Number of extra columns needed */
3924 char *zExtra
= 0; /* Extra space after the Index object */
3925 Index
*pPk
= 0; /* PRIMARY KEY index for WITHOUT ROWID tables */
3927 assert( db
->pParse
==pParse
);
3929 goto exit_create_index
;
3931 assert( db
->mallocFailed
==0 );
3932 if( IN_DECLARE_VTAB
&& idxType
!=SQLITE_IDXTYPE_PRIMARYKEY
){
3933 goto exit_create_index
;
3935 if( SQLITE_OK
!=sqlite3ReadSchema(pParse
) ){
3936 goto exit_create_index
;
3938 if( sqlite3HasExplicitNulls(pParse
, pList
) ){
3939 goto exit_create_index
;
3943 ** Find the table that is to be indexed. Return early if not found.
3947 /* Use the two-part index name to determine the database
3948 ** to search for the table. 'Fix' the table name to this db
3949 ** before looking up the table.
3951 assert( pName1
&& pName2
);
3952 iDb
= sqlite3TwoPartName(pParse
, pName1
, pName2
, &pName
);
3953 if( iDb
<0 ) goto exit_create_index
;
3954 assert( pName
&& pName
->z
);
3956 #ifndef SQLITE_OMIT_TEMPDB
3957 /* If the index name was unqualified, check if the table
3958 ** is a temp table. If so, set the database to 1. Do not do this
3959 ** if initialising a database schema.
3961 if( !db
->init
.busy
){
3962 pTab
= sqlite3SrcListLookup(pParse
, pTblName
);
3963 if( pName2
->n
==0 && pTab
&& pTab
->pSchema
==db
->aDb
[1].pSchema
){
3969 sqlite3FixInit(&sFix
, pParse
, iDb
, "index", pName
);
3970 if( sqlite3FixSrcList(&sFix
, pTblName
) ){
3971 /* Because the parser constructs pTblName from a single identifier,
3972 ** sqlite3FixSrcList can never fail. */
3975 pTab
= sqlite3LocateTableItem(pParse
, 0, &pTblName
->a
[0]);
3976 assert( db
->mallocFailed
==0 || pTab
==0 );
3977 if( pTab
==0 ) goto exit_create_index
;
3978 if( iDb
==1 && db
->aDb
[iDb
].pSchema
!=pTab
->pSchema
){
3979 sqlite3ErrorMsg(pParse
,
3980 "cannot create a TEMP index on non-TEMP table \"%s\"",
3982 goto exit_create_index
;
3984 if( !HasRowid(pTab
) ) pPk
= sqlite3PrimaryKeyIndex(pTab
);
3987 assert( pStart
==0 );
3988 pTab
= pParse
->pNewTable
;
3989 if( !pTab
) goto exit_create_index
;
3990 iDb
= sqlite3SchemaToIndex(db
, pTab
->pSchema
);
3992 pDb
= &db
->aDb
[iDb
];
3995 if( sqlite3StrNICmp(pTab
->zName
, "sqlite_", 7)==0
3998 #if SQLITE_USER_AUTHENTICATION
3999 && sqlite3UserAuthTable(pTab
->zName
)==0
4002 sqlite3ErrorMsg(pParse
, "table %s may not be indexed", pTab
->zName
);
4003 goto exit_create_index
;
4005 #ifndef SQLITE_OMIT_VIEW
4007 sqlite3ErrorMsg(pParse
, "views may not be indexed");
4008 goto exit_create_index
;
4011 #ifndef SQLITE_OMIT_VIRTUALTABLE
4012 if( IsVirtual(pTab
) ){
4013 sqlite3ErrorMsg(pParse
, "virtual tables may not be indexed");
4014 goto exit_create_index
;
4019 ** Find the name of the index. Make sure there is not already another
4020 ** index or table with the same name.
4022 ** Exception: If we are reading the names of permanent indices from the
4023 ** sqlite_schema table (because some other process changed the schema) and
4024 ** one of the index names collides with the name of a temporary table or
4025 ** index, then we will continue to process this index.
4027 ** If pName==0 it means that we are
4028 ** dealing with a primary key or UNIQUE constraint. We have to invent our
4032 zName
= sqlite3NameFromToken(db
, pName
);
4033 if( zName
==0 ) goto exit_create_index
;
4034 assert( pName
->z
!=0 );
4035 if( SQLITE_OK
!=sqlite3CheckObjectName(pParse
, zName
,"index",pTab
->zName
) ){
4036 goto exit_create_index
;
4038 if( !IN_RENAME_OBJECT
){
4039 if( !db
->init
.busy
){
4040 if( sqlite3FindTable(db
, zName
, 0)!=0 ){
4041 sqlite3ErrorMsg(pParse
, "there is already a table named %s", zName
);
4042 goto exit_create_index
;
4045 if( sqlite3FindIndex(db
, zName
, pDb
->zDbSName
)!=0 ){
4047 sqlite3ErrorMsg(pParse
, "index %s already exists", zName
);
4049 assert( !db
->init
.busy
);
4050 sqlite3CodeVerifySchema(pParse
, iDb
);
4051 sqlite3ForceNotReadOnly(pParse
);
4053 goto exit_create_index
;
4059 for(pLoop
=pTab
->pIndex
, n
=1; pLoop
; pLoop
=pLoop
->pNext
, n
++){}
4060 zName
= sqlite3MPrintf(db
, "sqlite_autoindex_%s_%d", pTab
->zName
, n
);
4062 goto exit_create_index
;
4065 /* Automatic index names generated from within sqlite3_declare_vtab()
4066 ** must have names that are distinct from normal automatic index names.
4067 ** The following statement converts "sqlite3_autoindex..." into
4068 ** "sqlite3_butoindex..." in order to make the names distinct.
4069 ** The "vtab_err.test" test demonstrates the need of this statement. */
4070 if( IN_SPECIAL_PARSE
) zName
[7]++;
4073 /* Check for authorization to create an index.
4075 #ifndef SQLITE_OMIT_AUTHORIZATION
4076 if( !IN_RENAME_OBJECT
){
4077 const char *zDb
= pDb
->zDbSName
;
4078 if( sqlite3AuthCheck(pParse
, SQLITE_INSERT
, SCHEMA_TABLE(iDb
), 0, zDb
) ){
4079 goto exit_create_index
;
4081 i
= SQLITE_CREATE_INDEX
;
4082 if( !OMIT_TEMPDB
&& iDb
==1 ) i
= SQLITE_CREATE_TEMP_INDEX
;
4083 if( sqlite3AuthCheck(pParse
, i
, zName
, pTab
->zName
, zDb
) ){
4084 goto exit_create_index
;
4089 /* If pList==0, it means this routine was called to make a primary
4090 ** key out of the last column added to the table under construction.
4091 ** So create a fake list to simulate this.
4095 Column
*pCol
= &pTab
->aCol
[pTab
->nCol
-1];
4096 pCol
->colFlags
|= COLFLAG_UNIQUE
;
4097 sqlite3TokenInit(&prevCol
, pCol
->zCnName
);
4098 pList
= sqlite3ExprListAppend(pParse
, 0,
4099 sqlite3ExprAlloc(db
, TK_ID
, &prevCol
, 0));
4100 if( pList
==0 ) goto exit_create_index
;
4101 assert( pList
->nExpr
==1 );
4102 sqlite3ExprListSetSortOrder(pList
, sortOrder
, SQLITE_SO_UNDEFINED
);
4104 sqlite3ExprListCheckLength(pParse
, pList
, "index");
4105 if( pParse
->nErr
) goto exit_create_index
;
4108 /* Figure out how many bytes of space are required to store explicitly
4109 ** specified collation sequence names.
4111 for(i
=0; i
<pList
->nExpr
; i
++){
4112 Expr
*pExpr
= pList
->a
[i
].pExpr
;
4114 if( pExpr
->op
==TK_COLLATE
){
4115 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
4116 nExtra
+= (1 + sqlite3Strlen30(pExpr
->u
.zToken
));
4121 ** Allocate the index structure.
4123 nName
= sqlite3Strlen30(zName
);
4124 nExtraCol
= pPk
? pPk
->nKeyCol
: 1;
4125 assert( pList
->nExpr
+ nExtraCol
<= 32767 /* Fits in i16 */ );
4126 pIndex
= sqlite3AllocateIndexObject(db
, pList
->nExpr
+ nExtraCol
,
4127 nName
+ nExtra
+ 1, &zExtra
);
4128 if( db
->mallocFailed
){
4129 goto exit_create_index
;
4131 assert( EIGHT_BYTE_ALIGNMENT(pIndex
->aiRowLogEst
) );
4132 assert( EIGHT_BYTE_ALIGNMENT(pIndex
->azColl
) );
4133 pIndex
->zName
= zExtra
;
4134 zExtra
+= nName
+ 1;
4135 memcpy(pIndex
->zName
, zName
, nName
+1);
4136 pIndex
->pTable
= pTab
;
4137 pIndex
->onError
= (u8
)onError
;
4138 pIndex
->uniqNotNull
= onError
!=OE_None
;
4139 pIndex
->idxType
= idxType
;
4140 pIndex
->pSchema
= db
->aDb
[iDb
].pSchema
;
4141 pIndex
->nKeyCol
= pList
->nExpr
;
4143 sqlite3ResolveSelfReference(pParse
, pTab
, NC_PartIdx
, pPIWhere
, 0);
4144 pIndex
->pPartIdxWhere
= pPIWhere
;
4147 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
4149 /* Check to see if we should honor DESC requests on index columns
4151 if( pDb
->pSchema
->file_format
>=4 ){
4152 sortOrderMask
= -1; /* Honor DESC */
4154 sortOrderMask
= 0; /* Ignore DESC */
4157 /* Analyze the list of expressions that form the terms of the index and
4158 ** report any errors. In the common case where the expression is exactly
4159 ** a table column, store that column in aiColumn[]. For general expressions,
4160 ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[].
4162 ** TODO: Issue a warning if two or more columns of the index are identical.
4163 ** TODO: Issue a warning if the table primary key is used as part of the
4166 pListItem
= pList
->a
;
4167 if( IN_RENAME_OBJECT
){
4168 pIndex
->aColExpr
= pList
;
4171 for(i
=0; i
<pIndex
->nKeyCol
; i
++, pListItem
++){
4172 Expr
*pCExpr
; /* The i-th index expression */
4173 int requestedSortOrder
; /* ASC or DESC on the i-th expression */
4174 const char *zColl
; /* Collation sequence name */
4176 sqlite3StringToId(pListItem
->pExpr
);
4177 sqlite3ResolveSelfReference(pParse
, pTab
, NC_IdxExpr
, pListItem
->pExpr
, 0);
4178 if( pParse
->nErr
) goto exit_create_index
;
4179 pCExpr
= sqlite3ExprSkipCollate(pListItem
->pExpr
);
4180 if( pCExpr
->op
!=TK_COLUMN
){
4181 if( pTab
==pParse
->pNewTable
){
4182 sqlite3ErrorMsg(pParse
, "expressions prohibited in PRIMARY KEY and "
4183 "UNIQUE constraints");
4184 goto exit_create_index
;
4186 if( pIndex
->aColExpr
==0 ){
4187 pIndex
->aColExpr
= pList
;
4191 pIndex
->aiColumn
[i
] = XN_EXPR
;
4192 pIndex
->uniqNotNull
= 0;
4194 j
= pCExpr
->iColumn
;
4195 assert( j
<=0x7fff );
4199 if( pTab
->aCol
[j
].notNull
==0 ){
4200 pIndex
->uniqNotNull
= 0;
4202 if( pTab
->aCol
[j
].colFlags
& COLFLAG_VIRTUAL
){
4203 pIndex
->bHasVCol
= 1;
4206 pIndex
->aiColumn
[i
] = (i16
)j
;
4209 if( pListItem
->pExpr
->op
==TK_COLLATE
){
4211 assert( !ExprHasProperty(pListItem
->pExpr
, EP_IntValue
) );
4212 zColl
= pListItem
->pExpr
->u
.zToken
;
4213 nColl
= sqlite3Strlen30(zColl
) + 1;
4214 assert( nExtra
>=nColl
);
4215 memcpy(zExtra
, zColl
, nColl
);
4220 zColl
= sqlite3ColumnColl(&pTab
->aCol
[j
]);
4222 if( !zColl
) zColl
= sqlite3StrBINARY
;
4223 if( !db
->init
.busy
&& !sqlite3LocateCollSeq(pParse
, zColl
) ){
4224 goto exit_create_index
;
4226 pIndex
->azColl
[i
] = zColl
;
4227 requestedSortOrder
= pListItem
->fg
.sortFlags
& sortOrderMask
;
4228 pIndex
->aSortOrder
[i
] = (u8
)requestedSortOrder
;
4231 /* Append the table key to the end of the index. For WITHOUT ROWID
4232 ** tables (when pPk!=0) this will be the declared PRIMARY KEY. For
4233 ** normal tables (when pPk==0) this will be the rowid.
4236 for(j
=0; j
<pPk
->nKeyCol
; j
++){
4237 int x
= pPk
->aiColumn
[j
];
4239 if( isDupColumn(pIndex
, pIndex
->nKeyCol
, pPk
, j
) ){
4242 testcase( hasColumn(pIndex
->aiColumn
,pIndex
->nKeyCol
,x
) );
4243 pIndex
->aiColumn
[i
] = x
;
4244 pIndex
->azColl
[i
] = pPk
->azColl
[j
];
4245 pIndex
->aSortOrder
[i
] = pPk
->aSortOrder
[j
];
4249 assert( i
==pIndex
->nColumn
);
4251 pIndex
->aiColumn
[i
] = XN_ROWID
;
4252 pIndex
->azColl
[i
] = sqlite3StrBINARY
;
4254 sqlite3DefaultRowEst(pIndex
);
4255 if( pParse
->pNewTable
==0 ) estimateIndexWidth(pIndex
);
4257 /* If this index contains every column of its table, then mark
4258 ** it as a covering index */
4259 assert( HasRowid(pTab
)
4260 || pTab
->iPKey
<0 || sqlite3TableColumnToIndex(pIndex
, pTab
->iPKey
)>=0 );
4261 recomputeColumnsNotIndexed(pIndex
);
4262 if( pTblName
!=0 && pIndex
->nColumn
>=pTab
->nCol
){
4263 pIndex
->isCovering
= 1;
4264 for(j
=0; j
<pTab
->nCol
; j
++){
4265 if( j
==pTab
->iPKey
) continue;
4266 if( sqlite3TableColumnToIndex(pIndex
,j
)>=0 ) continue;
4267 pIndex
->isCovering
= 0;
4272 if( pTab
==pParse
->pNewTable
){
4273 /* This routine has been called to create an automatic index as a
4274 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
4275 ** a PRIMARY KEY or UNIQUE clause following the column definitions.
4278 ** CREATE TABLE t(x PRIMARY KEY, y);
4279 ** CREATE TABLE t(x, y, UNIQUE(x, y));
4281 ** Either way, check to see if the table already has such an index. If
4282 ** so, don't bother creating this one. This only applies to
4283 ** automatically created indices. Users can do as they wish with
4284 ** explicit indices.
4286 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent
4287 ** (and thus suppressing the second one) even if they have different
4290 ** If there are different collating sequences or if the columns of
4291 ** the constraint occur in different orders, then the constraints are
4292 ** considered distinct and both result in separate indices.
4295 for(pIdx
=pTab
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
){
4297 assert( IsUniqueIndex(pIdx
) );
4298 assert( pIdx
->idxType
!=SQLITE_IDXTYPE_APPDEF
);
4299 assert( IsUniqueIndex(pIndex
) );
4301 if( pIdx
->nKeyCol
!=pIndex
->nKeyCol
) continue;
4302 for(k
=0; k
<pIdx
->nKeyCol
; k
++){
4305 assert( pIdx
->aiColumn
[k
]>=0 );
4306 if( pIdx
->aiColumn
[k
]!=pIndex
->aiColumn
[k
] ) break;
4307 z1
= pIdx
->azColl
[k
];
4308 z2
= pIndex
->azColl
[k
];
4309 if( sqlite3StrICmp(z1
, z2
) ) break;
4311 if( k
==pIdx
->nKeyCol
){
4312 if( pIdx
->onError
!=pIndex
->onError
){
4313 /* This constraint creates the same index as a previous
4314 ** constraint specified somewhere in the CREATE TABLE statement.
4315 ** However the ON CONFLICT clauses are different. If both this
4316 ** constraint and the previous equivalent constraint have explicit
4317 ** ON CONFLICT clauses this is an error. Otherwise, use the
4318 ** explicitly specified behavior for the index.
4320 if( !(pIdx
->onError
==OE_Default
|| pIndex
->onError
==OE_Default
) ){
4321 sqlite3ErrorMsg(pParse
,
4322 "conflicting ON CONFLICT clauses specified", 0);
4324 if( pIdx
->onError
==OE_Default
){
4325 pIdx
->onError
= pIndex
->onError
;
4328 if( idxType
==SQLITE_IDXTYPE_PRIMARYKEY
) pIdx
->idxType
= idxType
;
4329 if( IN_RENAME_OBJECT
){
4330 pIndex
->pNext
= pParse
->pNewIndex
;
4331 pParse
->pNewIndex
= pIndex
;
4334 goto exit_create_index
;
4339 if( !IN_RENAME_OBJECT
){
4341 /* Link the new Index structure to its table and to the other
4342 ** in-memory database structures.
4344 assert( pParse
->nErr
==0 );
4345 if( db
->init
.busy
){
4347 assert( !IN_SPECIAL_PARSE
);
4348 assert( sqlite3SchemaMutexHeld(db
, 0, pIndex
->pSchema
) );
4350 pIndex
->tnum
= db
->init
.newTnum
;
4351 if( sqlite3IndexHasDuplicateRootPage(pIndex
) ){
4352 sqlite3ErrorMsg(pParse
, "invalid rootpage");
4353 pParse
->rc
= SQLITE_CORRUPT_BKPT
;
4354 goto exit_create_index
;
4357 p
= sqlite3HashInsert(&pIndex
->pSchema
->idxHash
,
4358 pIndex
->zName
, pIndex
);
4360 assert( p
==pIndex
); /* Malloc must have failed */
4361 sqlite3OomFault(db
);
4362 goto exit_create_index
;
4364 db
->mDbFlags
|= DBFLAG_SchemaChange
;
4367 /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the
4368 ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then
4369 ** emit code to allocate the index rootpage on disk and make an entry for
4370 ** the index in the sqlite_schema table and populate the index with
4371 ** content. But, do not do this if we are simply reading the sqlite_schema
4372 ** table to parse the schema, or if this index is the PRIMARY KEY index
4373 ** of a WITHOUT ROWID table.
4375 ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY
4376 ** or UNIQUE index in a CREATE TABLE statement. Since the table
4377 ** has just been created, it contains no data and the index initialization
4378 ** step can be skipped.
4380 else if( HasRowid(pTab
) || pTblName
!=0 ){
4383 int iMem
= ++pParse
->nMem
;
4385 v
= sqlite3GetVdbe(pParse
);
4386 if( v
==0 ) goto exit_create_index
;
4388 sqlite3BeginWriteOperation(pParse
, 1, iDb
);
4390 /* Create the rootpage for the index using CreateIndex. But before
4391 ** doing so, code a Noop instruction and store its address in
4392 ** Index.tnum. This is required in case this index is actually a
4393 ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In
4394 ** that case the convertToWithoutRowidTable() routine will replace
4395 ** the Noop with a Goto to jump over the VDBE code generated below. */
4396 pIndex
->tnum
= (Pgno
)sqlite3VdbeAddOp0(v
, OP_Noop
);
4397 sqlite3VdbeAddOp3(v
, OP_CreateBtree
, iDb
, iMem
, BTREE_BLOBKEY
);
4399 /* Gather the complete text of the CREATE INDEX statement into
4400 ** the zStmt variable
4402 assert( pName
!=0 || pStart
==0 );
4404 int n
= (int)(pParse
->sLastToken
.z
- pName
->z
) + pParse
->sLastToken
.n
;
4405 if( pName
->z
[n
-1]==';' ) n
--;
4406 /* A named index with an explicit CREATE INDEX statement */
4407 zStmt
= sqlite3MPrintf(db
, "CREATE%s INDEX %.*s",
4408 onError
==OE_None
? "" : " UNIQUE", n
, pName
->z
);
4410 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
4411 /* zStmt = sqlite3MPrintf(""); */
4415 /* Add an entry in sqlite_schema for this index
4417 sqlite3NestedParse(pParse
,
4418 "INSERT INTO %Q." LEGACY_SCHEMA_TABLE
" VALUES('index',%Q,%Q,#%d,%Q);",
4419 db
->aDb
[iDb
].zDbSName
,
4425 sqlite3DbFree(db
, zStmt
);
4427 /* Fill the index with data and reparse the schema. Code an OP_Expire
4428 ** to invalidate all pre-compiled statements.
4431 sqlite3RefillIndex(pParse
, pIndex
, iMem
);
4432 sqlite3ChangeCookie(pParse
, iDb
);
4433 sqlite3VdbeAddParseSchemaOp(v
, iDb
,
4434 sqlite3MPrintf(db
, "name='%q' AND type='index'", pIndex
->zName
), 0);
4435 sqlite3VdbeAddOp2(v
, OP_Expire
, 0, 1);
4438 sqlite3VdbeJumpHere(v
, (int)pIndex
->tnum
);
4441 if( db
->init
.busy
|| pTblName
==0 ){
4442 pIndex
->pNext
= pTab
->pIndex
;
4443 pTab
->pIndex
= pIndex
;
4446 else if( IN_RENAME_OBJECT
){
4447 assert( pParse
->pNewIndex
==0 );
4448 pParse
->pNewIndex
= pIndex
;
4452 /* Clean up before exiting */
4454 if( pIndex
) sqlite3FreeIndex(db
, pIndex
);
4456 /* Ensure all REPLACE indexes on pTab are at the end of the pIndex list.
4457 ** The list was already ordered when this routine was entered, so at this
4458 ** point at most a single index (the newly added index) will be out of
4459 ** order. So we have to reorder at most one index. */
4462 for(ppFrom
=&pTab
->pIndex
; (pThis
= *ppFrom
)!=0; ppFrom
=&pThis
->pNext
){
4464 if( pThis
->onError
!=OE_Replace
) continue;
4465 while( (pNext
= pThis
->pNext
)!=0 && pNext
->onError
!=OE_Replace
){
4467 pThis
->pNext
= pNext
->pNext
;
4468 pNext
->pNext
= pThis
;
4469 ppFrom
= &pNext
->pNext
;
4474 /* Verify that all REPLACE indexes really are now at the end
4475 ** of the index list. In other words, no other index type ever
4476 ** comes after a REPLACE index on the list. */
4477 for(pThis
= pTab
->pIndex
; pThis
; pThis
=pThis
->pNext
){
4478 assert( pThis
->onError
!=OE_Replace
4480 || pThis
->pNext
->onError
==OE_Replace
);
4484 sqlite3ExprDelete(db
, pPIWhere
);
4485 sqlite3ExprListDelete(db
, pList
);
4486 sqlite3SrcListDelete(db
, pTblName
);
4487 sqlite3DbFree(db
, zName
);
4491 ** Fill the Index.aiRowEst[] array with default information - information
4492 ** to be used when we have not run the ANALYZE command.
4494 ** aiRowEst[0] is supposed to contain the number of elements in the index.
4495 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the
4496 ** number of rows in the table that match any particular value of the
4497 ** first column of the index. aiRowEst[2] is an estimate of the number
4498 ** of rows that match any particular combination of the first 2 columns
4499 ** of the index. And so forth. It must always be the case that
4501 ** aiRowEst[N]<=aiRowEst[N-1]
4504 ** Apart from that, we have little to go on besides intuition as to
4505 ** how aiRowEst[] should be initialized. The numbers generated here
4506 ** are based on typical values found in actual indices.
4508 void sqlite3DefaultRowEst(Index
*pIdx
){
4509 /* 10, 9, 8, 7, 6 */
4510 static const LogEst aVal
[] = { 33, 32, 30, 28, 26 };
4511 LogEst
*a
= pIdx
->aiRowLogEst
;
4513 int nCopy
= MIN(ArraySize(aVal
), pIdx
->nKeyCol
);
4516 /* Indexes with default row estimates should not have stat1 data */
4517 assert( !pIdx
->hasStat1
);
4519 /* Set the first entry (number of rows in the index) to the estimated
4520 ** number of rows in the table, or half the number of rows in the table
4521 ** for a partial index.
4523 ** 2020-05-27: If some of the stat data is coming from the sqlite_stat1
4524 ** table but other parts we are having to guess at, then do not let the
4525 ** estimated number of rows in the table be less than 1000 (LogEst 99).
4526 ** Failure to do this can cause the indexes for which we do not have
4527 ** stat1 data to be ignored by the query planner.
4529 x
= pIdx
->pTable
->nRowLogEst
;
4530 assert( 99==sqlite3LogEst(1000) );
4532 pIdx
->pTable
->nRowLogEst
= x
= 99;
4534 if( pIdx
->pPartIdxWhere
!=0 ){ x
-= 10; assert( 10==sqlite3LogEst(2) ); }
4537 /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is
4538 ** 6 and each subsequent value (if any) is 5. */
4539 memcpy(&a
[1], aVal
, nCopy
*sizeof(LogEst
));
4540 for(i
=nCopy
+1; i
<=pIdx
->nKeyCol
; i
++){
4541 a
[i
] = 23; assert( 23==sqlite3LogEst(5) );
4544 assert( 0==sqlite3LogEst(1) );
4545 if( IsUniqueIndex(pIdx
) ) a
[pIdx
->nKeyCol
] = 0;
4549 ** This routine will drop an existing named index. This routine
4550 ** implements the DROP INDEX statement.
4552 void sqlite3DropIndex(Parse
*pParse
, SrcList
*pName
, int ifExists
){
4555 sqlite3
*db
= pParse
->db
;
4558 if( db
->mallocFailed
){
4559 goto exit_drop_index
;
4561 assert( pParse
->nErr
==0 ); /* Never called with prior non-OOM errors */
4562 assert( pName
->nSrc
==1 );
4563 if( SQLITE_OK
!=sqlite3ReadSchema(pParse
) ){
4564 goto exit_drop_index
;
4566 pIndex
= sqlite3FindIndex(db
, pName
->a
[0].zName
, pName
->a
[0].zDatabase
);
4569 sqlite3ErrorMsg(pParse
, "no such index: %S", pName
->a
);
4571 sqlite3CodeVerifyNamedSchema(pParse
, pName
->a
[0].zDatabase
);
4572 sqlite3ForceNotReadOnly(pParse
);
4574 pParse
->checkSchema
= 1;
4575 goto exit_drop_index
;
4577 if( pIndex
->idxType
!=SQLITE_IDXTYPE_APPDEF
){
4578 sqlite3ErrorMsg(pParse
, "index associated with UNIQUE "
4579 "or PRIMARY KEY constraint cannot be dropped", 0);
4580 goto exit_drop_index
;
4582 iDb
= sqlite3SchemaToIndex(db
, pIndex
->pSchema
);
4583 #ifndef SQLITE_OMIT_AUTHORIZATION
4585 int code
= SQLITE_DROP_INDEX
;
4586 Table
*pTab
= pIndex
->pTable
;
4587 const char *zDb
= db
->aDb
[iDb
].zDbSName
;
4588 const char *zTab
= SCHEMA_TABLE(iDb
);
4589 if( sqlite3AuthCheck(pParse
, SQLITE_DELETE
, zTab
, 0, zDb
) ){
4590 goto exit_drop_index
;
4592 if( !OMIT_TEMPDB
&& iDb
==1 ) code
= SQLITE_DROP_TEMP_INDEX
;
4593 if( sqlite3AuthCheck(pParse
, code
, pIndex
->zName
, pTab
->zName
, zDb
) ){
4594 goto exit_drop_index
;
4599 /* Generate code to remove the index and from the schema table */
4600 v
= sqlite3GetVdbe(pParse
);
4602 sqlite3BeginWriteOperation(pParse
, 1, iDb
);
4603 sqlite3NestedParse(pParse
,
4604 "DELETE FROM %Q." LEGACY_SCHEMA_TABLE
" WHERE name=%Q AND type='index'",
4605 db
->aDb
[iDb
].zDbSName
, pIndex
->zName
4607 sqlite3ClearStatTables(pParse
, iDb
, "idx", pIndex
->zName
);
4608 sqlite3ChangeCookie(pParse
, iDb
);
4609 destroyRootPage(pParse
, pIndex
->tnum
, iDb
);
4610 sqlite3VdbeAddOp4(v
, OP_DropIndex
, iDb
, 0, 0, pIndex
->zName
, 0);
4614 sqlite3SrcListDelete(db
, pName
);
4618 ** pArray is a pointer to an array of objects. Each object in the
4619 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc()
4620 ** to extend the array so that there is space for a new object at the end.
4622 ** When this function is called, *pnEntry contains the current size of
4623 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes
4626 ** If the realloc() is successful (i.e. if no OOM condition occurs), the
4627 ** space allocated for the new object is zeroed, *pnEntry updated to
4628 ** reflect the new size of the array and a pointer to the new allocation
4629 ** returned. *pIdx is set to the index of the new array entry in this case.
4631 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains
4632 ** unchanged and a copy of pArray returned.
4634 void *sqlite3ArrayAllocate(
4635 sqlite3
*db
, /* Connection to notify of malloc failures */
4636 void *pArray
, /* Array of objects. Might be reallocated */
4637 int szEntry
, /* Size of each object in the array */
4638 int *pnEntry
, /* Number of objects currently in use */
4639 int *pIdx
/* Write the index of a new slot here */
4642 sqlite3_int64 n
= *pIdx
= *pnEntry
;
4643 if( (n
& (n
-1))==0 ){
4644 sqlite3_int64 sz
= (n
==0) ? 1 : 2*n
;
4645 void *pNew
= sqlite3DbRealloc(db
, pArray
, sz
*szEntry
);
4653 memset(&z
[n
* szEntry
], 0, szEntry
);
4659 ** Append a new element to the given IdList. Create a new IdList if
4662 ** A new IdList is returned, or NULL if malloc() fails.
4664 IdList
*sqlite3IdListAppend(Parse
*pParse
, IdList
*pList
, Token
*pToken
){
4665 sqlite3
*db
= pParse
->db
;
4668 pList
= sqlite3DbMallocZero(db
, sizeof(IdList
) );
4669 if( pList
==0 ) return 0;
4672 pNew
= sqlite3DbRealloc(db
, pList
,
4673 sizeof(IdList
) + pList
->nId
*sizeof(pList
->a
));
4675 sqlite3IdListDelete(db
, pList
);
4681 pList
->a
[i
].zName
= sqlite3NameFromToken(db
, pToken
);
4682 if( IN_RENAME_OBJECT
&& pList
->a
[i
].zName
){
4683 sqlite3RenameTokenMap(pParse
, (void*)pList
->a
[i
].zName
, pToken
);
4689 ** Delete an IdList.
4691 void sqlite3IdListDelete(sqlite3
*db
, IdList
*pList
){
4693 if( pList
==0 ) return;
4694 assert( pList
->eU4
!=EU4_EXPR
); /* EU4_EXPR mode is not currently used */
4695 for(i
=0; i
<pList
->nId
; i
++){
4696 sqlite3DbFree(db
, pList
->a
[i
].zName
);
4698 sqlite3DbFreeNN(db
, pList
);
4702 ** Return the index in pList of the identifier named zId. Return -1
4705 int sqlite3IdListIndex(IdList
*pList
, const char *zName
){
4708 for(i
=0; i
<pList
->nId
; i
++){
4709 if( sqlite3StrICmp(pList
->a
[i
].zName
, zName
)==0 ) return i
;
4715 ** Maximum size of a SrcList object.
4716 ** The SrcList object is used to represent the FROM clause of a
4717 ** SELECT statement, and the query planner cannot deal with more
4718 ** than 64 tables in a join. So any value larger than 64 here
4719 ** is sufficient for most uses. Smaller values, like say 10, are
4720 ** appropriate for small and memory-limited applications.
4722 #ifndef SQLITE_MAX_SRCLIST
4723 # define SQLITE_MAX_SRCLIST 200
4727 ** Expand the space allocated for the given SrcList object by
4728 ** creating nExtra new slots beginning at iStart. iStart is zero based.
4729 ** New slots are zeroed.
4731 ** For example, suppose a SrcList initially contains two entries: A,B.
4732 ** To append 3 new entries onto the end, do this:
4734 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2);
4736 ** After the call above it would contain: A, B, nil, nil, nil.
4737 ** If the iStart argument had been 1 instead of 2, then the result
4738 ** would have been: A, nil, nil, nil, B. To prepend the new slots,
4739 ** the iStart value would be 0. The result then would
4740 ** be: nil, nil, nil, A, B.
4742 ** If a memory allocation fails or the SrcList becomes too large, leave
4743 ** the original SrcList unchanged, return NULL, and leave an error message
4746 SrcList
*sqlite3SrcListEnlarge(
4747 Parse
*pParse
, /* Parsing context into which errors are reported */
4748 SrcList
*pSrc
, /* The SrcList to be enlarged */
4749 int nExtra
, /* Number of new slots to add to pSrc->a[] */
4750 int iStart
/* Index in pSrc->a[] of first new slot */
4754 /* Sanity checking on calling parameters */
4755 assert( iStart
>=0 );
4756 assert( nExtra
>=1 );
4758 assert( iStart
<=pSrc
->nSrc
);
4760 /* Allocate additional space if needed */
4761 if( (u32
)pSrc
->nSrc
+nExtra
>pSrc
->nAlloc
){
4763 sqlite3_int64 nAlloc
= 2*(sqlite3_int64
)pSrc
->nSrc
+nExtra
;
4764 sqlite3
*db
= pParse
->db
;
4766 if( pSrc
->nSrc
+nExtra
>=SQLITE_MAX_SRCLIST
){
4767 sqlite3ErrorMsg(pParse
, "too many FROM clause terms, max: %d",
4768 SQLITE_MAX_SRCLIST
);
4771 if( nAlloc
>SQLITE_MAX_SRCLIST
) nAlloc
= SQLITE_MAX_SRCLIST
;
4772 pNew
= sqlite3DbRealloc(db
, pSrc
,
4773 sizeof(*pSrc
) + (nAlloc
-1)*sizeof(pSrc
->a
[0]) );
4775 assert( db
->mallocFailed
);
4779 pSrc
->nAlloc
= nAlloc
;
4782 /* Move existing slots that come after the newly inserted slots
4783 ** out of the way */
4784 for(i
=pSrc
->nSrc
-1; i
>=iStart
; i
--){
4785 pSrc
->a
[i
+nExtra
] = pSrc
->a
[i
];
4787 pSrc
->nSrc
+= nExtra
;
4789 /* Zero the newly allocated slots */
4790 memset(&pSrc
->a
[iStart
], 0, sizeof(pSrc
->a
[0])*nExtra
);
4791 for(i
=iStart
; i
<iStart
+nExtra
; i
++){
4792 pSrc
->a
[i
].iCursor
= -1;
4795 /* Return a pointer to the enlarged SrcList */
4801 ** Append a new table name to the given SrcList. Create a new SrcList if
4802 ** need be. A new entry is created in the SrcList even if pTable is NULL.
4804 ** A SrcList is returned, or NULL if there is an OOM error or if the
4805 ** SrcList grows to large. The returned
4806 ** SrcList might be the same as the SrcList that was input or it might be
4807 ** a new one. If an OOM error does occurs, then the prior value of pList
4808 ** that is input to this routine is automatically freed.
4810 ** If pDatabase is not null, it means that the table has an optional
4811 ** database name prefix. Like this: "database.table". The pDatabase
4812 ** points to the table name and the pTable points to the database name.
4813 ** The SrcList.a[].zName field is filled with the table name which might
4814 ** come from pTable (if pDatabase is NULL) or from pDatabase.
4815 ** SrcList.a[].zDatabase is filled with the database name from pTable,
4816 ** or with NULL if no database is specified.
4818 ** In other words, if call like this:
4820 ** sqlite3SrcListAppend(D,A,B,0);
4822 ** Then B is a table name and the database name is unspecified. If called
4825 ** sqlite3SrcListAppend(D,A,B,C);
4827 ** Then C is the table name and B is the database name. If C is defined
4828 ** then so is B. In other words, we never have a case where:
4830 ** sqlite3SrcListAppend(D,A,0,C);
4832 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted
4833 ** before being added to the SrcList.
4835 SrcList
*sqlite3SrcListAppend(
4836 Parse
*pParse
, /* Parsing context, in which errors are reported */
4837 SrcList
*pList
, /* Append to this SrcList. NULL creates a new SrcList */
4838 Token
*pTable
, /* Table to append */
4839 Token
*pDatabase
/* Database of the table */
4843 assert( pDatabase
==0 || pTable
!=0 ); /* Cannot have C without B */
4844 assert( pParse
!=0 );
4845 assert( pParse
->db
!=0 );
4848 pList
= sqlite3DbMallocRawNN(pParse
->db
, sizeof(SrcList
) );
4849 if( pList
==0 ) return 0;
4852 memset(&pList
->a
[0], 0, sizeof(pList
->a
[0]));
4853 pList
->a
[0].iCursor
= -1;
4855 SrcList
*pNew
= sqlite3SrcListEnlarge(pParse
, pList
, 1, pList
->nSrc
);
4857 sqlite3SrcListDelete(db
, pList
);
4863 pItem
= &pList
->a
[pList
->nSrc
-1];
4864 if( pDatabase
&& pDatabase
->z
==0 ){
4868 pItem
->zName
= sqlite3NameFromToken(db
, pDatabase
);
4869 pItem
->zDatabase
= sqlite3NameFromToken(db
, pTable
);
4871 pItem
->zName
= sqlite3NameFromToken(db
, pTable
);
4872 pItem
->zDatabase
= 0;
4878 ** Assign VdbeCursor index numbers to all tables in a SrcList
4880 void sqlite3SrcListAssignCursors(Parse
*pParse
, SrcList
*pList
){
4883 assert( pList
|| pParse
->db
->mallocFailed
);
4884 if( ALWAYS(pList
) ){
4885 for(i
=0, pItem
=pList
->a
; i
<pList
->nSrc
; i
++, pItem
++){
4886 if( pItem
->iCursor
>=0 ) continue;
4887 pItem
->iCursor
= pParse
->nTab
++;
4888 if( pItem
->pSelect
){
4889 sqlite3SrcListAssignCursors(pParse
, pItem
->pSelect
->pSrc
);
4896 ** Delete an entire SrcList including all its substructure.
4898 void sqlite3SrcListDelete(sqlite3
*db
, SrcList
*pList
){
4901 if( pList
==0 ) return;
4902 for(pItem
=pList
->a
, i
=0; i
<pList
->nSrc
; i
++, pItem
++){
4903 if( pItem
->zDatabase
) sqlite3DbFreeNN(db
, pItem
->zDatabase
);
4904 sqlite3DbFree(db
, pItem
->zName
);
4905 if( pItem
->zAlias
) sqlite3DbFreeNN(db
, pItem
->zAlias
);
4906 if( pItem
->fg
.isIndexedBy
) sqlite3DbFree(db
, pItem
->u1
.zIndexedBy
);
4907 if( pItem
->fg
.isTabFunc
) sqlite3ExprListDelete(db
, pItem
->u1
.pFuncArg
);
4908 sqlite3DeleteTable(db
, pItem
->pTab
);
4909 if( pItem
->pSelect
) sqlite3SelectDelete(db
, pItem
->pSelect
);
4910 if( pItem
->fg
.isUsing
){
4911 sqlite3IdListDelete(db
, pItem
->u3
.pUsing
);
4912 }else if( pItem
->u3
.pOn
){
4913 sqlite3ExprDelete(db
, pItem
->u3
.pOn
);
4916 sqlite3DbFreeNN(db
, pList
);
4920 ** This routine is called by the parser to add a new term to the
4921 ** end of a growing FROM clause. The "p" parameter is the part of
4922 ** the FROM clause that has already been constructed. "p" is NULL
4923 ** if this is the first term of the FROM clause. pTable and pDatabase
4924 ** are the name of the table and database named in the FROM clause term.
4925 ** pDatabase is NULL if the database name qualifier is missing - the
4926 ** usual case. If the term has an alias, then pAlias points to the
4927 ** alias token. If the term is a subquery, then pSubquery is the
4928 ** SELECT statement that the subquery encodes. The pTable and
4929 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing
4930 ** parameters are the content of the ON and USING clauses.
4932 ** Return a new SrcList which encodes is the FROM with the new
4935 SrcList
*sqlite3SrcListAppendFromTerm(
4936 Parse
*pParse
, /* Parsing context */
4937 SrcList
*p
, /* The left part of the FROM clause already seen */
4938 Token
*pTable
, /* Name of the table to add to the FROM clause */
4939 Token
*pDatabase
, /* Name of the database containing pTable */
4940 Token
*pAlias
, /* The right-hand side of the AS subexpression */
4941 Select
*pSubquery
, /* A subquery used in place of a table name */
4942 OnOrUsing
*pOnUsing
/* Either the ON clause or the USING clause */
4945 sqlite3
*db
= pParse
->db
;
4946 if( !p
&& pOnUsing
!=0 && (pOnUsing
->pOn
|| pOnUsing
->pUsing
) ){
4947 sqlite3ErrorMsg(pParse
, "a JOIN clause is required before %s",
4948 (pOnUsing
->pOn
? "ON" : "USING")
4950 goto append_from_error
;
4952 p
= sqlite3SrcListAppend(pParse
, p
, pTable
, pDatabase
);
4954 goto append_from_error
;
4956 assert( p
->nSrc
>0 );
4957 pItem
= &p
->a
[p
->nSrc
-1];
4958 assert( (pTable
==0)==(pDatabase
==0) );
4959 assert( pItem
->zName
==0 || pDatabase
!=0 );
4960 if( IN_RENAME_OBJECT
&& pItem
->zName
){
4961 Token
*pToken
= (ALWAYS(pDatabase
) && pDatabase
->z
) ? pDatabase
: pTable
;
4962 sqlite3RenameTokenMap(pParse
, pItem
->zName
, pToken
);
4964 assert( pAlias
!=0 );
4966 pItem
->zAlias
= sqlite3NameFromToken(db
, pAlias
);
4969 pItem
->pSelect
= pSubquery
;
4970 if( pSubquery
->selFlags
& SF_NestedFrom
){
4971 pItem
->fg
.isNestedFrom
= 1;
4974 assert( pOnUsing
==0 || pOnUsing
->pOn
==0 || pOnUsing
->pUsing
==0 );
4975 assert( pItem
->fg
.isUsing
==0 );
4978 }else if( pOnUsing
->pUsing
){
4979 pItem
->fg
.isUsing
= 1;
4980 pItem
->u3
.pUsing
= pOnUsing
->pUsing
;
4982 pItem
->u3
.pOn
= pOnUsing
->pOn
;
4988 sqlite3ClearOnOrUsing(db
, pOnUsing
);
4989 sqlite3SelectDelete(db
, pSubquery
);
4994 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added
4995 ** element of the source-list passed as the second argument.
4997 void sqlite3SrcListIndexedBy(Parse
*pParse
, SrcList
*p
, Token
*pIndexedBy
){
4998 assert( pIndexedBy
!=0 );
4999 if( p
&& pIndexedBy
->n
>0 ){
5001 assert( p
->nSrc
>0 );
5002 pItem
= &p
->a
[p
->nSrc
-1];
5003 assert( pItem
->fg
.notIndexed
==0 );
5004 assert( pItem
->fg
.isIndexedBy
==0 );
5005 assert( pItem
->fg
.isTabFunc
==0 );
5006 if( pIndexedBy
->n
==1 && !pIndexedBy
->z
){
5007 /* A "NOT INDEXED" clause was supplied. See parse.y
5008 ** construct "indexed_opt" for details. */
5009 pItem
->fg
.notIndexed
= 1;
5011 pItem
->u1
.zIndexedBy
= sqlite3NameFromToken(pParse
->db
, pIndexedBy
);
5012 pItem
->fg
.isIndexedBy
= 1;
5013 assert( pItem
->fg
.isCte
==0 ); /* No collision on union u2 */
5019 ** Append the contents of SrcList p2 to SrcList p1 and return the resulting
5020 ** SrcList. Or, if an error occurs, return NULL. In all cases, p1 and p2
5021 ** are deleted by this function.
5023 SrcList
*sqlite3SrcListAppendList(Parse
*pParse
, SrcList
*p1
, SrcList
*p2
){
5024 assert( p1
&& p1
->nSrc
==1 );
5026 SrcList
*pNew
= sqlite3SrcListEnlarge(pParse
, p1
, p2
->nSrc
, 1);
5028 sqlite3SrcListDelete(pParse
->db
, p2
);
5031 memcpy(&p1
->a
[1], p2
->a
, p2
->nSrc
*sizeof(SrcItem
));
5032 sqlite3DbFree(pParse
->db
, p2
);
5033 p1
->a
[0].fg
.jointype
|= (JT_LTORJ
& p1
->a
[1].fg
.jointype
);
5040 ** Add the list of function arguments to the SrcList entry for a
5041 ** table-valued-function.
5043 void sqlite3SrcListFuncArgs(Parse
*pParse
, SrcList
*p
, ExprList
*pList
){
5045 SrcItem
*pItem
= &p
->a
[p
->nSrc
-1];
5046 assert( pItem
->fg
.notIndexed
==0 );
5047 assert( pItem
->fg
.isIndexedBy
==0 );
5048 assert( pItem
->fg
.isTabFunc
==0 );
5049 pItem
->u1
.pFuncArg
= pList
;
5050 pItem
->fg
.isTabFunc
= 1;
5052 sqlite3ExprListDelete(pParse
->db
, pList
);
5057 ** When building up a FROM clause in the parser, the join operator
5058 ** is initially attached to the left operand. But the code generator
5059 ** expects the join operator to be on the right operand. This routine
5060 ** Shifts all join operators from left to right for an entire FROM
5063 ** Example: Suppose the join is like this:
5065 ** A natural cross join B
5067 ** The operator is "natural cross join". The A and B operands are stored
5068 ** in p->a[0] and p->a[1], respectively. The parser initially stores the
5069 ** operator with A. This routine shifts that operator over to B.
5071 ** Additional changes:
5073 ** * All tables to the left of the right-most RIGHT JOIN are tagged with
5074 ** JT_LTORJ (mnemonic: Left Table Of Right Join) so that the
5075 ** code generator can easily tell that the table is part of
5076 ** the left operand of at least one RIGHT JOIN.
5078 void sqlite3SrcListShiftJoinType(Parse
*pParse
, SrcList
*p
){
5080 if( p
&& p
->nSrc
>1 ){
5084 allFlags
|= p
->a
[i
].fg
.jointype
= p
->a
[i
-1].fg
.jointype
;
5086 p
->a
[0].fg
.jointype
= 0;
5088 /* All terms to the left of a RIGHT JOIN should be tagged with the
5089 ** JT_LTORJ flags */
5090 if( allFlags
& JT_RIGHT
){
5091 for(i
=p
->nSrc
-1; ALWAYS(i
>0) && (p
->a
[i
].fg
.jointype
&JT_RIGHT
)==0; i
--){}
5095 p
->a
[i
].fg
.jointype
|= JT_LTORJ
;
5102 ** Generate VDBE code for a BEGIN statement.
5104 void sqlite3BeginTransaction(Parse
*pParse
, int type
){
5109 assert( pParse
!=0 );
5112 if( sqlite3AuthCheck(pParse
, SQLITE_TRANSACTION
, "BEGIN", 0, 0) ){
5115 v
= sqlite3GetVdbe(pParse
);
5117 if( type
!=TK_DEFERRED
){
5118 for(i
=0; i
<db
->nDb
; i
++){
5120 Btree
*pBt
= db
->aDb
[i
].pBt
;
5121 if( pBt
&& sqlite3BtreeIsReadonly(pBt
) ){
5122 eTxnType
= 0; /* Read txn */
5123 }else if( type
==TK_EXCLUSIVE
){
5124 eTxnType
= 2; /* Exclusive txn */
5126 eTxnType
= 1; /* Write txn */
5128 sqlite3VdbeAddOp2(v
, OP_Transaction
, i
, eTxnType
);
5129 sqlite3VdbeUsesBtree(v
, i
);
5132 sqlite3VdbeAddOp0(v
, OP_AutoCommit
);
5136 ** Generate VDBE code for a COMMIT or ROLLBACK statement.
5137 ** Code for ROLLBACK is generated if eType==TK_ROLLBACK. Otherwise
5138 ** code is generated for a COMMIT.
5140 void sqlite3EndTransaction(Parse
*pParse
, int eType
){
5144 assert( pParse
!=0 );
5145 assert( pParse
->db
!=0 );
5146 assert( eType
==TK_COMMIT
|| eType
==TK_END
|| eType
==TK_ROLLBACK
);
5147 isRollback
= eType
==TK_ROLLBACK
;
5148 if( sqlite3AuthCheck(pParse
, SQLITE_TRANSACTION
,
5149 isRollback
? "ROLLBACK" : "COMMIT", 0, 0) ){
5152 v
= sqlite3GetVdbe(pParse
);
5154 sqlite3VdbeAddOp2(v
, OP_AutoCommit
, 1, isRollback
);
5159 ** This function is called by the parser when it parses a command to create,
5160 ** release or rollback an SQL savepoint.
5162 void sqlite3Savepoint(Parse
*pParse
, int op
, Token
*pName
){
5163 char *zName
= sqlite3NameFromToken(pParse
->db
, pName
);
5165 Vdbe
*v
= sqlite3GetVdbe(pParse
);
5166 #ifndef SQLITE_OMIT_AUTHORIZATION
5167 static const char * const az
[] = { "BEGIN", "RELEASE", "ROLLBACK" };
5168 assert( !SAVEPOINT_BEGIN
&& SAVEPOINT_RELEASE
==1 && SAVEPOINT_ROLLBACK
==2 );
5170 if( !v
|| sqlite3AuthCheck(pParse
, SQLITE_SAVEPOINT
, az
[op
], zName
, 0) ){
5171 sqlite3DbFree(pParse
->db
, zName
);
5174 sqlite3VdbeAddOp4(v
, OP_Savepoint
, op
, 0, 0, zName
, P4_DYNAMIC
);
5179 ** Make sure the TEMP database is open and available for use. Return
5180 ** the number of errors. Leave any error messages in the pParse structure.
5182 int sqlite3OpenTempDatabase(Parse
*pParse
){
5183 sqlite3
*db
= pParse
->db
;
5184 if( db
->aDb
[1].pBt
==0 && !pParse
->explain
){
5187 static const int flags
=
5188 SQLITE_OPEN_READWRITE
|
5189 SQLITE_OPEN_CREATE
|
5190 SQLITE_OPEN_EXCLUSIVE
|
5191 SQLITE_OPEN_DELETEONCLOSE
|
5192 SQLITE_OPEN_TEMP_DB
;
5194 rc
= sqlite3BtreeOpen(db
->pVfs
, 0, db
, &pBt
, 0, flags
);
5195 if( rc
!=SQLITE_OK
){
5196 sqlite3ErrorMsg(pParse
, "unable to open a temporary database "
5197 "file for storing temporary tables");
5201 db
->aDb
[1].pBt
= pBt
;
5202 assert( db
->aDb
[1].pSchema
);
5203 if( SQLITE_NOMEM
==sqlite3BtreeSetPageSize(pBt
, db
->nextPagesize
, 0, 0) ){
5204 sqlite3OomFault(db
);
5212 ** Record the fact that the schema cookie will need to be verified
5213 ** for database iDb. The code to actually verify the schema cookie
5214 ** will occur at the end of the top-level VDBE and will be generated
5215 ** later, by sqlite3FinishCoding().
5217 static void sqlite3CodeVerifySchemaAtToplevel(Parse
*pToplevel
, int iDb
){
5218 assert( iDb
>=0 && iDb
<pToplevel
->db
->nDb
);
5219 assert( pToplevel
->db
->aDb
[iDb
].pBt
!=0 || iDb
==1 );
5220 assert( iDb
<SQLITE_MAX_DB
);
5221 assert( sqlite3SchemaMutexHeld(pToplevel
->db
, iDb
, 0) );
5222 if( DbMaskTest(pToplevel
->cookieMask
, iDb
)==0 ){
5223 DbMaskSet(pToplevel
->cookieMask
, iDb
);
5224 if( !OMIT_TEMPDB
&& iDb
==1 ){
5225 sqlite3OpenTempDatabase(pToplevel
);
5229 void sqlite3CodeVerifySchema(Parse
*pParse
, int iDb
){
5230 sqlite3CodeVerifySchemaAtToplevel(sqlite3ParseToplevel(pParse
), iDb
);
5235 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each
5236 ** attached database. Otherwise, invoke it for the database named zDb only.
5238 void sqlite3CodeVerifyNamedSchema(Parse
*pParse
, const char *zDb
){
5239 sqlite3
*db
= pParse
->db
;
5241 for(i
=0; i
<db
->nDb
; i
++){
5242 Db
*pDb
= &db
->aDb
[i
];
5243 if( pDb
->pBt
&& (!zDb
|| 0==sqlite3StrICmp(zDb
, pDb
->zDbSName
)) ){
5244 sqlite3CodeVerifySchema(pParse
, i
);
5250 ** Generate VDBE code that prepares for doing an operation that
5251 ** might change the database.
5253 ** This routine starts a new transaction if we are not already within
5254 ** a transaction. If we are already within a transaction, then a checkpoint
5255 ** is set if the setStatement parameter is true. A checkpoint should
5256 ** be set for operations that might fail (due to a constraint) part of
5257 ** the way through and which will need to undo some writes without having to
5258 ** rollback the whole transaction. For operations where all constraints
5259 ** can be checked before any changes are made to the database, it is never
5260 ** necessary to undo a write and the checkpoint should not be set.
5262 void sqlite3BeginWriteOperation(Parse
*pParse
, int setStatement
, int iDb
){
5263 Parse
*pToplevel
= sqlite3ParseToplevel(pParse
);
5264 sqlite3CodeVerifySchemaAtToplevel(pToplevel
, iDb
);
5265 DbMaskSet(pToplevel
->writeMask
, iDb
);
5266 pToplevel
->isMultiWrite
|= setStatement
;
5270 ** Indicate that the statement currently under construction might write
5271 ** more than one entry (example: deleting one row then inserting another,
5272 ** inserting multiple rows in a table, or inserting a row and index entries.)
5273 ** If an abort occurs after some of these writes have completed, then it will
5274 ** be necessary to undo the completed writes.
5276 void sqlite3MultiWrite(Parse
*pParse
){
5277 Parse
*pToplevel
= sqlite3ParseToplevel(pParse
);
5278 pToplevel
->isMultiWrite
= 1;
5282 ** The code generator calls this routine if is discovers that it is
5283 ** possible to abort a statement prior to completion. In order to
5284 ** perform this abort without corrupting the database, we need to make
5285 ** sure that the statement is protected by a statement transaction.
5287 ** Technically, we only need to set the mayAbort flag if the
5288 ** isMultiWrite flag was previously set. There is a time dependency
5289 ** such that the abort must occur after the multiwrite. This makes
5290 ** some statements involving the REPLACE conflict resolution algorithm
5291 ** go a little faster. But taking advantage of this time dependency
5292 ** makes it more difficult to prove that the code is correct (in
5293 ** particular, it prevents us from writing an effective
5294 ** implementation of sqlite3AssertMayAbort()) and so we have chosen
5295 ** to take the safe route and skip the optimization.
5297 void sqlite3MayAbort(Parse
*pParse
){
5298 Parse
*pToplevel
= sqlite3ParseToplevel(pParse
);
5299 pToplevel
->mayAbort
= 1;
5303 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT
5304 ** error. The onError parameter determines which (if any) of the statement
5305 ** and/or current transaction is rolled back.
5307 void sqlite3HaltConstraint(
5308 Parse
*pParse
, /* Parsing context */
5309 int errCode
, /* extended error code */
5310 int onError
, /* Constraint type */
5311 char *p4
, /* Error message */
5312 i8 p4type
, /* P4_STATIC or P4_TRANSIENT */
5313 u8 p5Errmsg
/* P5_ErrMsg type */
5316 assert( pParse
->pVdbe
!=0 );
5317 v
= sqlite3GetVdbe(pParse
);
5318 assert( (errCode
&0xff)==SQLITE_CONSTRAINT
|| pParse
->nested
);
5319 if( onError
==OE_Abort
){
5320 sqlite3MayAbort(pParse
);
5322 sqlite3VdbeAddOp4(v
, OP_Halt
, errCode
, onError
, 0, p4
, p4type
);
5323 sqlite3VdbeChangeP5(v
, p5Errmsg
);
5327 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation.
5329 void sqlite3UniqueConstraint(
5330 Parse
*pParse
, /* Parsing context */
5331 int onError
, /* Constraint type */
5332 Index
*pIdx
/* The index that triggers the constraint */
5337 Table
*pTab
= pIdx
->pTable
;
5339 sqlite3StrAccumInit(&errMsg
, pParse
->db
, 0, 0,
5340 pParse
->db
->aLimit
[SQLITE_LIMIT_LENGTH
]);
5341 if( pIdx
->aColExpr
){
5342 sqlite3_str_appendf(&errMsg
, "index '%q'", pIdx
->zName
);
5344 for(j
=0; j
<pIdx
->nKeyCol
; j
++){
5346 assert( pIdx
->aiColumn
[j
]>=0 );
5347 zCol
= pTab
->aCol
[pIdx
->aiColumn
[j
]].zCnName
;
5348 if( j
) sqlite3_str_append(&errMsg
, ", ", 2);
5349 sqlite3_str_appendall(&errMsg
, pTab
->zName
);
5350 sqlite3_str_append(&errMsg
, ".", 1);
5351 sqlite3_str_appendall(&errMsg
, zCol
);
5354 zErr
= sqlite3StrAccumFinish(&errMsg
);
5355 sqlite3HaltConstraint(pParse
,
5356 IsPrimaryKeyIndex(pIdx
) ? SQLITE_CONSTRAINT_PRIMARYKEY
5357 : SQLITE_CONSTRAINT_UNIQUE
,
5358 onError
, zErr
, P4_DYNAMIC
, P5_ConstraintUnique
);
5363 ** Code an OP_Halt due to non-unique rowid.
5365 void sqlite3RowidConstraint(
5366 Parse
*pParse
, /* Parsing context */
5367 int onError
, /* Conflict resolution algorithm */
5368 Table
*pTab
/* The table with the non-unique rowid */
5372 if( pTab
->iPKey
>=0 ){
5373 zMsg
= sqlite3MPrintf(pParse
->db
, "%s.%s", pTab
->zName
,
5374 pTab
->aCol
[pTab
->iPKey
].zCnName
);
5375 rc
= SQLITE_CONSTRAINT_PRIMARYKEY
;
5377 zMsg
= sqlite3MPrintf(pParse
->db
, "%s.rowid", pTab
->zName
);
5378 rc
= SQLITE_CONSTRAINT_ROWID
;
5380 sqlite3HaltConstraint(pParse
, rc
, onError
, zMsg
, P4_DYNAMIC
,
5381 P5_ConstraintUnique
);
5385 ** Check to see if pIndex uses the collating sequence pColl. Return
5386 ** true if it does and false if it does not.
5388 #ifndef SQLITE_OMIT_REINDEX
5389 static int collationMatch(const char *zColl
, Index
*pIndex
){
5392 for(i
=0; i
<pIndex
->nColumn
; i
++){
5393 const char *z
= pIndex
->azColl
[i
];
5394 assert( z
!=0 || pIndex
->aiColumn
[i
]<0 );
5395 if( pIndex
->aiColumn
[i
]>=0 && 0==sqlite3StrICmp(z
, zColl
) ){
5404 ** Recompute all indices of pTab that use the collating sequence pColl.
5405 ** If pColl==0 then recompute all indices of pTab.
5407 #ifndef SQLITE_OMIT_REINDEX
5408 static void reindexTable(Parse
*pParse
, Table
*pTab
, char const *zColl
){
5409 if( !IsVirtual(pTab
) ){
5410 Index
*pIndex
; /* An index associated with pTab */
5412 for(pIndex
=pTab
->pIndex
; pIndex
; pIndex
=pIndex
->pNext
){
5413 if( zColl
==0 || collationMatch(zColl
, pIndex
) ){
5414 int iDb
= sqlite3SchemaToIndex(pParse
->db
, pTab
->pSchema
);
5415 sqlite3BeginWriteOperation(pParse
, 0, iDb
);
5416 sqlite3RefillIndex(pParse
, pIndex
, -1);
5424 ** Recompute all indices of all tables in all databases where the
5425 ** indices use the collating sequence pColl. If pColl==0 then recompute
5426 ** all indices everywhere.
5428 #ifndef SQLITE_OMIT_REINDEX
5429 static void reindexDatabases(Parse
*pParse
, char const *zColl
){
5430 Db
*pDb
; /* A single database */
5431 int iDb
; /* The database index number */
5432 sqlite3
*db
= pParse
->db
; /* The database connection */
5433 HashElem
*k
; /* For looping over tables in pDb */
5434 Table
*pTab
; /* A table in the database */
5436 assert( sqlite3BtreeHoldsAllMutexes(db
) ); /* Needed for schema access */
5437 for(iDb
=0, pDb
=db
->aDb
; iDb
<db
->nDb
; iDb
++, pDb
++){
5439 for(k
=sqliteHashFirst(&pDb
->pSchema
->tblHash
); k
; k
=sqliteHashNext(k
)){
5440 pTab
= (Table
*)sqliteHashData(k
);
5441 reindexTable(pParse
, pTab
, zColl
);
5448 ** Generate code for the REINDEX command.
5451 ** REINDEX <collation> -- 2
5452 ** REINDEX ?<database>.?<tablename> -- 3
5453 ** REINDEX ?<database>.?<indexname> -- 4
5455 ** Form 1 causes all indices in all attached databases to be rebuilt.
5456 ** Form 2 rebuilds all indices in all databases that use the named
5457 ** collating function. Forms 3 and 4 rebuild the named index or all
5458 ** indices associated with the named table.
5460 #ifndef SQLITE_OMIT_REINDEX
5461 void sqlite3Reindex(Parse
*pParse
, Token
*pName1
, Token
*pName2
){
5462 CollSeq
*pColl
; /* Collating sequence to be reindexed, or NULL */
5463 char *z
; /* Name of a table or index */
5464 const char *zDb
; /* Name of the database */
5465 Table
*pTab
; /* A table in the database */
5466 Index
*pIndex
; /* An index associated with pTab */
5467 int iDb
; /* The database index number */
5468 sqlite3
*db
= pParse
->db
; /* The database connection */
5469 Token
*pObjName
; /* Name of the table or index to be reindexed */
5471 /* Read the database schema. If an error occurs, leave an error message
5472 ** and code in pParse and return NULL. */
5473 if( SQLITE_OK
!=sqlite3ReadSchema(pParse
) ){
5478 reindexDatabases(pParse
, 0);
5480 }else if( NEVER(pName2
==0) || pName2
->z
==0 ){
5482 assert( pName1
->z
);
5483 zColl
= sqlite3NameFromToken(pParse
->db
, pName1
);
5484 if( !zColl
) return;
5485 pColl
= sqlite3FindCollSeq(db
, ENC(db
), zColl
, 0);
5487 reindexDatabases(pParse
, zColl
);
5488 sqlite3DbFree(db
, zColl
);
5491 sqlite3DbFree(db
, zColl
);
5493 iDb
= sqlite3TwoPartName(pParse
, pName1
, pName2
, &pObjName
);
5495 z
= sqlite3NameFromToken(db
, pObjName
);
5497 zDb
= db
->aDb
[iDb
].zDbSName
;
5498 pTab
= sqlite3FindTable(db
, z
, zDb
);
5500 reindexTable(pParse
, pTab
, 0);
5501 sqlite3DbFree(db
, z
);
5504 pIndex
= sqlite3FindIndex(db
, z
, zDb
);
5505 sqlite3DbFree(db
, z
);
5507 sqlite3BeginWriteOperation(pParse
, 0, iDb
);
5508 sqlite3RefillIndex(pParse
, pIndex
, -1);
5511 sqlite3ErrorMsg(pParse
, "unable to identify the object to be reindexed");
5516 ** Return a KeyInfo structure that is appropriate for the given Index.
5518 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object
5519 ** when it has finished using it.
5521 KeyInfo
*sqlite3KeyInfoOfIndex(Parse
*pParse
, Index
*pIdx
){
5523 int nCol
= pIdx
->nColumn
;
5524 int nKey
= pIdx
->nKeyCol
;
5526 if( pParse
->nErr
) return 0;
5527 if( pIdx
->uniqNotNull
){
5528 pKey
= sqlite3KeyInfoAlloc(pParse
->db
, nKey
, nCol
-nKey
);
5530 pKey
= sqlite3KeyInfoAlloc(pParse
->db
, nCol
, 0);
5533 assert( sqlite3KeyInfoIsWriteable(pKey
) );
5534 for(i
=0; i
<nCol
; i
++){
5535 const char *zColl
= pIdx
->azColl
[i
];
5536 pKey
->aColl
[i
] = zColl
==sqlite3StrBINARY
? 0 :
5537 sqlite3LocateCollSeq(pParse
, zColl
);
5538 pKey
->aSortFlags
[i
] = pIdx
->aSortOrder
[i
];
5539 assert( 0==(pKey
->aSortFlags
[i
] & KEYINFO_ORDER_BIGNULL
) );
5542 assert( pParse
->rc
==SQLITE_ERROR_MISSING_COLLSEQ
);
5543 if( pIdx
->bNoQuery
==0 ){
5544 /* Deactivate the index because it contains an unknown collating
5545 ** sequence. The only way to reactive the index is to reload the
5546 ** schema. Adding the missing collating sequence later does not
5547 ** reactive the index. The application had the chance to register
5548 ** the missing index using the collation-needed callback. For
5549 ** simplicity, SQLite will not give the application a second chance.
5552 pParse
->rc
= SQLITE_ERROR_RETRY
;
5554 sqlite3KeyInfoUnref(pKey
);
5561 #ifndef SQLITE_OMIT_CTE
5563 ** Create a new CTE object
5566 Parse
*pParse
, /* Parsing context */
5567 Token
*pName
, /* Name of the common-table */
5568 ExprList
*pArglist
, /* Optional column name list for the table */
5569 Select
*pQuery
, /* Query used to initialize the table */
5570 u8 eM10d
/* The MATERIALIZED flag */
5573 sqlite3
*db
= pParse
->db
;
5575 pNew
= sqlite3DbMallocZero(db
, sizeof(*pNew
));
5576 assert( pNew
!=0 || db
->mallocFailed
);
5578 if( db
->mallocFailed
){
5579 sqlite3ExprListDelete(db
, pArglist
);
5580 sqlite3SelectDelete(db
, pQuery
);
5582 pNew
->pSelect
= pQuery
;
5583 pNew
->pCols
= pArglist
;
5584 pNew
->zName
= sqlite3NameFromToken(pParse
->db
, pName
);
5585 pNew
->eM10d
= eM10d
;
5591 ** Clear information from a Cte object, but do not deallocate storage
5592 ** for the object itself.
5594 static void cteClear(sqlite3
*db
, Cte
*pCte
){
5596 sqlite3ExprListDelete(db
, pCte
->pCols
);
5597 sqlite3SelectDelete(db
, pCte
->pSelect
);
5598 sqlite3DbFree(db
, pCte
->zName
);
5602 ** Free the contents of the CTE object passed as the second argument.
5604 void sqlite3CteDelete(sqlite3
*db
, Cte
*pCte
){
5607 sqlite3DbFree(db
, pCte
);
5611 ** This routine is invoked once per CTE by the parser while parsing a
5612 ** WITH clause. The CTE described by teh third argument is added to
5613 ** the WITH clause of the second argument. If the second argument is
5614 ** NULL, then a new WITH argument is created.
5616 With
*sqlite3WithAdd(
5617 Parse
*pParse
, /* Parsing context */
5618 With
*pWith
, /* Existing WITH clause, or NULL */
5619 Cte
*pCte
/* CTE to add to the WITH clause */
5621 sqlite3
*db
= pParse
->db
;
5629 /* Check that the CTE name is unique within this WITH clause. If
5630 ** not, store an error in the Parse structure. */
5631 zName
= pCte
->zName
;
5632 if( zName
&& pWith
){
5634 for(i
=0; i
<pWith
->nCte
; i
++){
5635 if( sqlite3StrICmp(zName
, pWith
->a
[i
].zName
)==0 ){
5636 sqlite3ErrorMsg(pParse
, "duplicate WITH table name: %s", zName
);
5642 sqlite3_int64 nByte
= sizeof(*pWith
) + (sizeof(pWith
->a
[1]) * pWith
->nCte
);
5643 pNew
= sqlite3DbRealloc(db
, pWith
, nByte
);
5645 pNew
= sqlite3DbMallocZero(db
, sizeof(*pWith
));
5647 assert( (pNew
!=0 && zName
!=0) || db
->mallocFailed
);
5649 if( db
->mallocFailed
){
5650 sqlite3CteDelete(db
, pCte
);
5653 pNew
->a
[pNew
->nCte
++] = *pCte
;
5654 sqlite3DbFree(db
, pCte
);
5661 ** Free the contents of the With object passed as the second argument.
5663 void sqlite3WithDelete(sqlite3
*db
, With
*pWith
){
5666 for(i
=0; i
<pWith
->nCte
; i
++){
5667 cteClear(db
, &pWith
->a
[i
]);
5669 sqlite3DbFree(db
, pWith
);
5672 #endif /* !defined(SQLITE_OMIT_CTE) */