changelog update
[sqlcipher.git] / src / build.c
blob31ab81b09bc99d844d3989a8970f6b7aba3990a2
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains C code routines that are called by the SQLite parser
13 ** when syntax rules are reduced. The routines in this file handle the
14 ** following kinds of SQL syntax:
16 ** CREATE TABLE
17 ** DROP TABLE
18 ** CREATE INDEX
19 ** DROP INDEX
20 ** creating ID lists
21 ** BEGIN TRANSACTION
22 ** COMMIT
23 ** ROLLBACK
25 #include "sqliteInt.h"
27 #ifndef SQLITE_OMIT_SHARED_CACHE
29 ** The TableLock structure is only used by the sqlite3TableLock() and
30 ** codeTableLocks() functions.
32 struct TableLock {
33 int iDb; /* The database containing the table to be locked */
34 Pgno iTab; /* The root page of the table to be locked */
35 u8 isWriteLock; /* True for write lock. False for a read lock */
36 const char *zLockName; /* Name of the table */
40 ** Record the fact that we want to lock a table at run-time.
42 ** The table to be locked has root page iTab and is found in database iDb.
43 ** A read or a write lock can be taken depending on isWritelock.
45 ** This routine just records the fact that the lock is desired. The
46 ** code to make the lock occur is generated by a later call to
47 ** codeTableLocks() which occurs during sqlite3FinishCoding().
49 static SQLITE_NOINLINE void lockTable(
50 Parse *pParse, /* Parsing context */
51 int iDb, /* Index of the database containing the table to lock */
52 Pgno iTab, /* Root page number of the table to be locked */
53 u8 isWriteLock, /* True for a write lock */
54 const char *zName /* Name of the table to be locked */
56 Parse *pToplevel;
57 int i;
58 int nBytes;
59 TableLock *p;
60 assert( iDb>=0 );
62 pToplevel = sqlite3ParseToplevel(pParse);
63 for(i=0; i<pToplevel->nTableLock; i++){
64 p = &pToplevel->aTableLock[i];
65 if( p->iDb==iDb && p->iTab==iTab ){
66 p->isWriteLock = (p->isWriteLock || isWriteLock);
67 return;
71 nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1);
72 pToplevel->aTableLock =
73 sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes);
74 if( pToplevel->aTableLock ){
75 p = &pToplevel->aTableLock[pToplevel->nTableLock++];
76 p->iDb = iDb;
77 p->iTab = iTab;
78 p->isWriteLock = isWriteLock;
79 p->zLockName = zName;
80 }else{
81 pToplevel->nTableLock = 0;
82 sqlite3OomFault(pToplevel->db);
85 void sqlite3TableLock(
86 Parse *pParse, /* Parsing context */
87 int iDb, /* Index of the database containing the table to lock */
88 Pgno iTab, /* Root page number of the table to be locked */
89 u8 isWriteLock, /* True for a write lock */
90 const char *zName /* Name of the table to be locked */
92 if( iDb==1 ) return;
93 if( !sqlite3BtreeSharable(pParse->db->aDb[iDb].pBt) ) return;
94 lockTable(pParse, iDb, iTab, isWriteLock, zName);
98 ** Code an OP_TableLock instruction for each table locked by the
99 ** statement (configured by calls to sqlite3TableLock()).
101 static void codeTableLocks(Parse *pParse){
102 int i;
103 Vdbe *pVdbe = pParse->pVdbe;
104 assert( pVdbe!=0 );
106 for(i=0; i<pParse->nTableLock; i++){
107 TableLock *p = &pParse->aTableLock[i];
108 int p1 = p->iDb;
109 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock,
110 p->zLockName, P4_STATIC);
113 #else
114 #define codeTableLocks(x)
115 #endif
118 ** Return TRUE if the given yDbMask object is empty - if it contains no
119 ** 1 bits. This routine is used by the DbMaskAllZero() and DbMaskNotZero()
120 ** macros when SQLITE_MAX_ATTACHED is greater than 30.
122 #if SQLITE_MAX_ATTACHED>30
123 int sqlite3DbMaskAllZero(yDbMask m){
124 int i;
125 for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0;
126 return 1;
128 #endif
131 ** This routine is called after a single SQL statement has been
132 ** parsed and a VDBE program to execute that statement has been
133 ** prepared. This routine puts the finishing touches on the
134 ** VDBE program and resets the pParse structure for the next
135 ** parse.
137 ** Note that if an error occurred, it might be the case that
138 ** no VDBE code was generated.
140 void sqlite3FinishCoding(Parse *pParse){
141 sqlite3 *db;
142 Vdbe *v;
144 assert( pParse->pToplevel==0 );
145 db = pParse->db;
146 assert( db->pParse==pParse );
147 if( pParse->nested ) return;
148 if( pParse->nErr ){
149 if( db->mallocFailed ) pParse->rc = SQLITE_NOMEM;
150 return;
152 assert( db->mallocFailed==0 );
154 /* Begin by generating some termination code at the end of the
155 ** vdbe program
157 v = pParse->pVdbe;
158 if( v==0 ){
159 if( db->init.busy ){
160 pParse->rc = SQLITE_DONE;
161 return;
163 v = sqlite3GetVdbe(pParse);
164 if( v==0 ) pParse->rc = SQLITE_ERROR;
166 assert( !pParse->isMultiWrite
167 || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort));
168 if( v ){
169 if( pParse->bReturning ){
170 Returning *pReturning = pParse->u1.pReturning;
171 int addrRewind;
172 int i;
173 int reg;
175 if( pReturning->nRetCol ){
176 sqlite3VdbeAddOp0(v, OP_FkCheck);
177 addrRewind =
178 sqlite3VdbeAddOp1(v, OP_Rewind, pReturning->iRetCur);
179 VdbeCoverage(v);
180 reg = pReturning->iRetReg;
181 for(i=0; i<pReturning->nRetCol; i++){
182 sqlite3VdbeAddOp3(v, OP_Column, pReturning->iRetCur, i, reg+i);
184 sqlite3VdbeAddOp2(v, OP_ResultRow, reg, i);
185 sqlite3VdbeAddOp2(v, OP_Next, pReturning->iRetCur, addrRewind+1);
186 VdbeCoverage(v);
187 sqlite3VdbeJumpHere(v, addrRewind);
190 sqlite3VdbeAddOp0(v, OP_Halt);
192 #if SQLITE_USER_AUTHENTICATION
193 if( pParse->nTableLock>0 && db->init.busy==0 ){
194 sqlite3UserAuthInit(db);
195 if( db->auth.authLevel<UAUTH_User ){
196 sqlite3ErrorMsg(pParse, "user not authenticated");
197 pParse->rc = SQLITE_AUTH_USER;
198 return;
201 #endif
203 /* The cookie mask contains one bit for each database file open.
204 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are
205 ** set for each database that is used. Generate code to start a
206 ** transaction on each used database and to verify the schema cookie
207 ** on each used database.
209 if( db->mallocFailed==0
210 && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr)
212 int iDb, i;
213 assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init );
214 sqlite3VdbeJumpHere(v, 0);
215 assert( db->nDb>0 );
216 iDb = 0;
218 Schema *pSchema;
219 if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue;
220 sqlite3VdbeUsesBtree(v, iDb);
221 pSchema = db->aDb[iDb].pSchema;
222 sqlite3VdbeAddOp4Int(v,
223 OP_Transaction, /* Opcode */
224 iDb, /* P1 */
225 DbMaskTest(pParse->writeMask,iDb), /* P2 */
226 pSchema->schema_cookie, /* P3 */
227 pSchema->iGeneration /* P4 */
229 if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1);
230 VdbeComment((v,
231 "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite));
232 }while( ++iDb<db->nDb );
233 #ifndef SQLITE_OMIT_VIRTUALTABLE
234 for(i=0; i<pParse->nVtabLock; i++){
235 char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]);
236 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB);
238 pParse->nVtabLock = 0;
239 #endif
241 /* Once all the cookies have been verified and transactions opened,
242 ** obtain the required table-locks. This is a no-op unless the
243 ** shared-cache feature is enabled.
245 codeTableLocks(pParse);
247 /* Initialize any AUTOINCREMENT data structures required.
249 sqlite3AutoincrementBegin(pParse);
251 /* Code constant expressions that where factored out of inner loops.
253 ** The pConstExpr list might also contain expressions that we simply
254 ** want to keep around until the Parse object is deleted. Such
255 ** expressions have iConstExprReg==0. Do not generate code for
256 ** those expressions, of course.
258 if( pParse->pConstExpr ){
259 ExprList *pEL = pParse->pConstExpr;
260 pParse->okConstFactor = 0;
261 for(i=0; i<pEL->nExpr; i++){
262 int iReg = pEL->a[i].u.iConstExprReg;
263 if( iReg>0 ){
264 sqlite3ExprCode(pParse, pEL->a[i].pExpr, iReg);
269 if( pParse->bReturning ){
270 Returning *pRet = pParse->u1.pReturning;
271 if( pRet->nRetCol ){
272 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pRet->iRetCur, pRet->nRetCol);
276 /* Finally, jump back to the beginning of the executable code. */
277 sqlite3VdbeGoto(v, 1);
281 /* Get the VDBE program ready for execution
283 assert( v!=0 || pParse->nErr );
284 assert( db->mallocFailed==0 || pParse->nErr );
285 if( pParse->nErr==0 ){
286 /* A minimum of one cursor is required if autoincrement is used
287 * See ticket [a696379c1f08866] */
288 assert( pParse->pAinc==0 || pParse->nTab>0 );
289 sqlite3VdbeMakeReady(v, pParse);
290 pParse->rc = SQLITE_DONE;
291 }else{
292 pParse->rc = SQLITE_ERROR;
297 ** Run the parser and code generator recursively in order to generate
298 ** code for the SQL statement given onto the end of the pParse context
299 ** currently under construction. Notes:
301 ** * The final OP_Halt is not appended and other initialization
302 ** and finalization steps are omitted because those are handling by the
303 ** outermost parser.
305 ** * Built-in SQL functions always take precedence over application-defined
306 ** SQL functions. In other words, it is not possible to override a
307 ** built-in function.
309 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
310 va_list ap;
311 char *zSql;
312 sqlite3 *db = pParse->db;
313 u32 savedDbFlags = db->mDbFlags;
314 char saveBuf[PARSE_TAIL_SZ];
316 if( pParse->nErr ) return;
317 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */
318 va_start(ap, zFormat);
319 zSql = sqlite3VMPrintf(db, zFormat, ap);
320 va_end(ap);
321 if( zSql==0 ){
322 /* This can result either from an OOM or because the formatted string
323 ** exceeds SQLITE_LIMIT_LENGTH. In the latter case, we need to set
324 ** an error */
325 if( !db->mallocFailed ) pParse->rc = SQLITE_TOOBIG;
326 pParse->nErr++;
327 return;
329 pParse->nested++;
330 memcpy(saveBuf, PARSE_TAIL(pParse), PARSE_TAIL_SZ);
331 memset(PARSE_TAIL(pParse), 0, PARSE_TAIL_SZ);
332 db->mDbFlags |= DBFLAG_PreferBuiltin;
333 sqlite3RunParser(pParse, zSql);
334 db->mDbFlags = savedDbFlags;
335 sqlite3DbFree(db, zSql);
336 memcpy(PARSE_TAIL(pParse), saveBuf, PARSE_TAIL_SZ);
337 pParse->nested--;
340 #if SQLITE_USER_AUTHENTICATION
342 ** Return TRUE if zTable is the name of the system table that stores the
343 ** list of users and their access credentials.
345 int sqlite3UserAuthTable(const char *zTable){
346 return sqlite3_stricmp(zTable, "sqlite_user")==0;
348 #endif
351 ** Locate the in-memory structure that describes a particular database
352 ** table given the name of that table and (optionally) the name of the
353 ** database containing the table. Return NULL if not found.
355 ** If zDatabase is 0, all databases are searched for the table and the
356 ** first matching table is returned. (No checking for duplicate table
357 ** names is done.) The search order is TEMP first, then MAIN, then any
358 ** auxiliary databases added using the ATTACH command.
360 ** See also sqlite3LocateTable().
362 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
363 Table *p = 0;
364 int i;
366 /* All mutexes are required for schema access. Make sure we hold them. */
367 assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) );
368 #if SQLITE_USER_AUTHENTICATION
369 /* Only the admin user is allowed to know that the sqlite_user table
370 ** exists */
371 if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){
372 return 0;
374 #endif
375 if( zDatabase ){
376 for(i=0; i<db->nDb; i++){
377 if( sqlite3StrICmp(zDatabase, db->aDb[i].zDbSName)==0 ) break;
379 if( i>=db->nDb ){
380 /* No match against the official names. But always match "main"
381 ** to schema 0 as a legacy fallback. */
382 if( sqlite3StrICmp(zDatabase,"main")==0 ){
383 i = 0;
384 }else{
385 return 0;
388 p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, zName);
389 if( p==0 && sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){
390 if( i==1 ){
391 if( sqlite3StrICmp(zName+7, &PREFERRED_TEMP_SCHEMA_TABLE[7])==0
392 || sqlite3StrICmp(zName+7, &PREFERRED_SCHEMA_TABLE[7])==0
393 || sqlite3StrICmp(zName+7, &LEGACY_SCHEMA_TABLE[7])==0
395 p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash,
396 LEGACY_TEMP_SCHEMA_TABLE);
398 }else{
399 if( sqlite3StrICmp(zName+7, &PREFERRED_SCHEMA_TABLE[7])==0 ){
400 p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash,
401 LEGACY_SCHEMA_TABLE);
405 }else{
406 /* Match against TEMP first */
407 p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash, zName);
408 if( p ) return p;
409 /* The main database is second */
410 p = sqlite3HashFind(&db->aDb[0].pSchema->tblHash, zName);
411 if( p ) return p;
412 /* Attached databases are in order of attachment */
413 for(i=2; i<db->nDb; i++){
414 assert( sqlite3SchemaMutexHeld(db, i, 0) );
415 p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, zName);
416 if( p ) break;
418 if( p==0 && sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){
419 if( sqlite3StrICmp(zName+7, &PREFERRED_SCHEMA_TABLE[7])==0 ){
420 p = sqlite3HashFind(&db->aDb[0].pSchema->tblHash, LEGACY_SCHEMA_TABLE);
421 }else if( sqlite3StrICmp(zName+7, &PREFERRED_TEMP_SCHEMA_TABLE[7])==0 ){
422 p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash,
423 LEGACY_TEMP_SCHEMA_TABLE);
427 return p;
431 ** Locate the in-memory structure that describes a particular database
432 ** table given the name of that table and (optionally) the name of the
433 ** database containing the table. Return NULL if not found. Also leave an
434 ** error message in pParse->zErrMsg.
436 ** The difference between this routine and sqlite3FindTable() is that this
437 ** routine leaves an error message in pParse->zErrMsg where
438 ** sqlite3FindTable() does not.
440 Table *sqlite3LocateTable(
441 Parse *pParse, /* context in which to report errors */
442 u32 flags, /* LOCATE_VIEW or LOCATE_NOERR */
443 const char *zName, /* Name of the table we are looking for */
444 const char *zDbase /* Name of the database. Might be NULL */
446 Table *p;
447 sqlite3 *db = pParse->db;
449 /* Read the database schema. If an error occurs, leave an error message
450 ** and code in pParse and return NULL. */
451 if( (db->mDbFlags & DBFLAG_SchemaKnownOk)==0
452 && SQLITE_OK!=sqlite3ReadSchema(pParse)
454 return 0;
457 p = sqlite3FindTable(db, zName, zDbase);
458 if( p==0 ){
459 #ifndef SQLITE_OMIT_VIRTUALTABLE
460 /* If zName is the not the name of a table in the schema created using
461 ** CREATE, then check to see if it is the name of an virtual table that
462 ** can be an eponymous virtual table. */
463 if( pParse->disableVtab==0 && db->init.busy==0 ){
464 Module *pMod = (Module*)sqlite3HashFind(&db->aModule, zName);
465 if( pMod==0 && sqlite3_strnicmp(zName, "pragma_", 7)==0 ){
466 pMod = sqlite3PragmaVtabRegister(db, zName);
468 if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){
469 testcase( pMod->pEpoTab==0 );
470 return pMod->pEpoTab;
473 #endif
474 if( flags & LOCATE_NOERR ) return 0;
475 pParse->checkSchema = 1;
476 }else if( IsVirtual(p) && pParse->disableVtab ){
477 p = 0;
480 if( p==0 ){
481 const char *zMsg = flags & LOCATE_VIEW ? "no such view" : "no such table";
482 if( zDbase ){
483 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName);
484 }else{
485 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName);
487 }else{
488 assert( HasRowid(p) || p->iPKey<0 );
491 return p;
495 ** Locate the table identified by *p.
497 ** This is a wrapper around sqlite3LocateTable(). The difference between
498 ** sqlite3LocateTable() and this function is that this function restricts
499 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be
500 ** non-NULL if it is part of a view or trigger program definition. See
501 ** sqlite3FixSrcList() for details.
503 Table *sqlite3LocateTableItem(
504 Parse *pParse,
505 u32 flags,
506 SrcItem *p
508 const char *zDb;
509 assert( p->pSchema==0 || p->zDatabase==0 );
510 if( p->pSchema ){
511 int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema);
512 zDb = pParse->db->aDb[iDb].zDbSName;
513 }else{
514 zDb = p->zDatabase;
516 return sqlite3LocateTable(pParse, flags, p->zName, zDb);
520 ** Return the preferred table name for system tables. Translate legacy
521 ** names into the new preferred names, as appropriate.
523 const char *sqlite3PreferredTableName(const char *zName){
524 if( sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){
525 if( sqlite3StrICmp(zName+7, &LEGACY_SCHEMA_TABLE[7])==0 ){
526 return PREFERRED_SCHEMA_TABLE;
528 if( sqlite3StrICmp(zName+7, &LEGACY_TEMP_SCHEMA_TABLE[7])==0 ){
529 return PREFERRED_TEMP_SCHEMA_TABLE;
532 return zName;
536 ** Locate the in-memory structure that describes
537 ** a particular index given the name of that index
538 ** and the name of the database that contains the index.
539 ** Return NULL if not found.
541 ** If zDatabase is 0, all databases are searched for the
542 ** table and the first matching index is returned. (No checking
543 ** for duplicate index names is done.) The search order is
544 ** TEMP first, then MAIN, then any auxiliary databases added
545 ** using the ATTACH command.
547 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
548 Index *p = 0;
549 int i;
550 /* All mutexes are required for schema access. Make sure we hold them. */
551 assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) );
552 for(i=OMIT_TEMPDB; i<db->nDb; i++){
553 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
554 Schema *pSchema = db->aDb[j].pSchema;
555 assert( pSchema );
556 if( zDb && sqlite3DbIsNamed(db, j, zDb)==0 ) continue;
557 assert( sqlite3SchemaMutexHeld(db, j, 0) );
558 p = sqlite3HashFind(&pSchema->idxHash, zName);
559 if( p ) break;
561 return p;
565 ** Reclaim the memory used by an index
567 void sqlite3FreeIndex(sqlite3 *db, Index *p){
568 #ifndef SQLITE_OMIT_ANALYZE
569 sqlite3DeleteIndexSamples(db, p);
570 #endif
571 sqlite3ExprDelete(db, p->pPartIdxWhere);
572 sqlite3ExprListDelete(db, p->aColExpr);
573 sqlite3DbFree(db, p->zColAff);
574 if( p->isResized ) sqlite3DbFree(db, (void *)p->azColl);
575 #ifdef SQLITE_ENABLE_STAT4
576 sqlite3_free(p->aiRowEst);
577 #endif
578 sqlite3DbFree(db, p);
582 ** For the index called zIdxName which is found in the database iDb,
583 ** unlike that index from its Table then remove the index from
584 ** the index hash table and free all memory structures associated
585 ** with the index.
587 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){
588 Index *pIndex;
589 Hash *pHash;
591 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
592 pHash = &db->aDb[iDb].pSchema->idxHash;
593 pIndex = sqlite3HashInsert(pHash, zIdxName, 0);
594 if( ALWAYS(pIndex) ){
595 if( pIndex->pTable->pIndex==pIndex ){
596 pIndex->pTable->pIndex = pIndex->pNext;
597 }else{
598 Index *p;
599 /* Justification of ALWAYS(); The index must be on the list of
600 ** indices. */
601 p = pIndex->pTable->pIndex;
602 while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; }
603 if( ALWAYS(p && p->pNext==pIndex) ){
604 p->pNext = pIndex->pNext;
607 sqlite3FreeIndex(db, pIndex);
609 db->mDbFlags |= DBFLAG_SchemaChange;
613 ** Look through the list of open database files in db->aDb[] and if
614 ** any have been closed, remove them from the list. Reallocate the
615 ** db->aDb[] structure to a smaller size, if possible.
617 ** Entry 0 (the "main" database) and entry 1 (the "temp" database)
618 ** are never candidates for being collapsed.
620 void sqlite3CollapseDatabaseArray(sqlite3 *db){
621 int i, j;
622 for(i=j=2; i<db->nDb; i++){
623 struct Db *pDb = &db->aDb[i];
624 if( pDb->pBt==0 ){
625 sqlite3DbFree(db, pDb->zDbSName);
626 pDb->zDbSName = 0;
627 continue;
629 if( j<i ){
630 db->aDb[j] = db->aDb[i];
632 j++;
634 db->nDb = j;
635 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
636 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
637 sqlite3DbFree(db, db->aDb);
638 db->aDb = db->aDbStatic;
643 ** Reset the schema for the database at index iDb. Also reset the
644 ** TEMP schema. The reset is deferred if db->nSchemaLock is not zero.
645 ** Deferred resets may be run by calling with iDb<0.
647 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){
648 int i;
649 assert( iDb<db->nDb );
651 if( iDb>=0 ){
652 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
653 DbSetProperty(db, iDb, DB_ResetWanted);
654 DbSetProperty(db, 1, DB_ResetWanted);
655 db->mDbFlags &= ~DBFLAG_SchemaKnownOk;
658 if( db->nSchemaLock==0 ){
659 for(i=0; i<db->nDb; i++){
660 if( DbHasProperty(db, i, DB_ResetWanted) ){
661 sqlite3SchemaClear(db->aDb[i].pSchema);
668 ** Erase all schema information from all attached databases (including
669 ** "main" and "temp") for a single database connection.
671 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){
672 int i;
673 sqlite3BtreeEnterAll(db);
674 for(i=0; i<db->nDb; i++){
675 Db *pDb = &db->aDb[i];
676 if( pDb->pSchema ){
677 if( db->nSchemaLock==0 ){
678 sqlite3SchemaClear(pDb->pSchema);
679 }else{
680 DbSetProperty(db, i, DB_ResetWanted);
684 db->mDbFlags &= ~(DBFLAG_SchemaChange|DBFLAG_SchemaKnownOk);
685 sqlite3VtabUnlockList(db);
686 sqlite3BtreeLeaveAll(db);
687 if( db->nSchemaLock==0 ){
688 sqlite3CollapseDatabaseArray(db);
693 ** This routine is called when a commit occurs.
695 void sqlite3CommitInternalChanges(sqlite3 *db){
696 db->mDbFlags &= ~DBFLAG_SchemaChange;
700 ** Set the expression associated with a column. This is usually
701 ** the DEFAULT value, but might also be the expression that computes
702 ** the value for a generated column.
704 void sqlite3ColumnSetExpr(
705 Parse *pParse, /* Parsing context */
706 Table *pTab, /* The table containing the column */
707 Column *pCol, /* The column to receive the new DEFAULT expression */
708 Expr *pExpr /* The new default expression */
710 ExprList *pList;
711 assert( IsOrdinaryTable(pTab) );
712 pList = pTab->u.tab.pDfltList;
713 if( pCol->iDflt==0
714 || NEVER(pList==0)
715 || NEVER(pList->nExpr<pCol->iDflt)
717 pCol->iDflt = pList==0 ? 1 : pList->nExpr+1;
718 pTab->u.tab.pDfltList = sqlite3ExprListAppend(pParse, pList, pExpr);
719 }else{
720 sqlite3ExprDelete(pParse->db, pList->a[pCol->iDflt-1].pExpr);
721 pList->a[pCol->iDflt-1].pExpr = pExpr;
726 ** Return the expression associated with a column. The expression might be
727 ** the DEFAULT clause or the AS clause of a generated column.
728 ** Return NULL if the column has no associated expression.
730 Expr *sqlite3ColumnExpr(Table *pTab, Column *pCol){
731 if( pCol->iDflt==0 ) return 0;
732 if( NEVER(!IsOrdinaryTable(pTab)) ) return 0;
733 if( NEVER(pTab->u.tab.pDfltList==0) ) return 0;
734 if( NEVER(pTab->u.tab.pDfltList->nExpr<pCol->iDflt) ) return 0;
735 return pTab->u.tab.pDfltList->a[pCol->iDflt-1].pExpr;
739 ** Set the collating sequence name for a column.
741 void sqlite3ColumnSetColl(
742 sqlite3 *db,
743 Column *pCol,
744 const char *zColl
746 i64 nColl;
747 i64 n;
748 char *zNew;
749 assert( zColl!=0 );
750 n = sqlite3Strlen30(pCol->zCnName) + 1;
751 if( pCol->colFlags & COLFLAG_HASTYPE ){
752 n += sqlite3Strlen30(pCol->zCnName+n) + 1;
754 nColl = sqlite3Strlen30(zColl) + 1;
755 zNew = sqlite3DbRealloc(db, pCol->zCnName, nColl+n);
756 if( zNew ){
757 pCol->zCnName = zNew;
758 memcpy(pCol->zCnName + n, zColl, nColl);
759 pCol->colFlags |= COLFLAG_HASCOLL;
764 ** Return the collating squence name for a column
766 const char *sqlite3ColumnColl(Column *pCol){
767 const char *z;
768 if( (pCol->colFlags & COLFLAG_HASCOLL)==0 ) return 0;
769 z = pCol->zCnName;
770 while( *z ){ z++; }
771 if( pCol->colFlags & COLFLAG_HASTYPE ){
772 do{ z++; }while( *z );
774 return z+1;
778 ** Delete memory allocated for the column names of a table or view (the
779 ** Table.aCol[] array).
781 void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){
782 int i;
783 Column *pCol;
784 assert( pTable!=0 );
785 if( (pCol = pTable->aCol)!=0 ){
786 for(i=0; i<pTable->nCol; i++, pCol++){
787 assert( pCol->zCnName==0 || pCol->hName==sqlite3StrIHash(pCol->zCnName) );
788 sqlite3DbFree(db, pCol->zCnName);
790 sqlite3DbFree(db, pTable->aCol);
791 if( IsOrdinaryTable(pTable) ){
792 sqlite3ExprListDelete(db, pTable->u.tab.pDfltList);
794 if( db==0 || db->pnBytesFreed==0 ){
795 pTable->aCol = 0;
796 pTable->nCol = 0;
797 if( IsOrdinaryTable(pTable) ){
798 pTable->u.tab.pDfltList = 0;
805 ** Remove the memory data structures associated with the given
806 ** Table. No changes are made to disk by this routine.
808 ** This routine just deletes the data structure. It does not unlink
809 ** the table data structure from the hash table. But it does destroy
810 ** memory structures of the indices and foreign keys associated with
811 ** the table.
813 ** The db parameter is optional. It is needed if the Table object
814 ** contains lookaside memory. (Table objects in the schema do not use
815 ** lookaside memory, but some ephemeral Table objects do.) Or the
816 ** db parameter can be used with db->pnBytesFreed to measure the memory
817 ** used by the Table object.
819 static void SQLITE_NOINLINE deleteTable(sqlite3 *db, Table *pTable){
820 Index *pIndex, *pNext;
822 #ifdef SQLITE_DEBUG
823 /* Record the number of outstanding lookaside allocations in schema Tables
824 ** prior to doing any free() operations. Since schema Tables do not use
825 ** lookaside, this number should not change.
827 ** If malloc has already failed, it may be that it failed while allocating
828 ** a Table object that was going to be marked ephemeral. So do not check
829 ** that no lookaside memory is used in this case either. */
830 int nLookaside = 0;
831 if( db && !db->mallocFailed && (pTable->tabFlags & TF_Ephemeral)==0 ){
832 nLookaside = sqlite3LookasideUsed(db, 0);
834 #endif
836 /* Delete all indices associated with this table. */
837 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
838 pNext = pIndex->pNext;
839 assert( pIndex->pSchema==pTable->pSchema
840 || (IsVirtual(pTable) && pIndex->idxType!=SQLITE_IDXTYPE_APPDEF) );
841 if( (db==0 || db->pnBytesFreed==0) && !IsVirtual(pTable) ){
842 char *zName = pIndex->zName;
843 TESTONLY ( Index *pOld = ) sqlite3HashInsert(
844 &pIndex->pSchema->idxHash, zName, 0
846 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
847 assert( pOld==pIndex || pOld==0 );
849 sqlite3FreeIndex(db, pIndex);
852 if( IsOrdinaryTable(pTable) ){
853 sqlite3FkDelete(db, pTable);
855 #ifndef SQLITE_OMIT_VIRTUAL_TABLE
856 else if( IsVirtual(pTable) ){
857 sqlite3VtabClear(db, pTable);
859 #endif
860 else{
861 assert( IsView(pTable) );
862 sqlite3SelectDelete(db, pTable->u.view.pSelect);
865 /* Delete the Table structure itself.
867 sqlite3DeleteColumnNames(db, pTable);
868 sqlite3DbFree(db, pTable->zName);
869 sqlite3DbFree(db, pTable->zColAff);
870 sqlite3ExprListDelete(db, pTable->pCheck);
871 sqlite3DbFree(db, pTable);
873 /* Verify that no lookaside memory was used by schema tables */
874 assert( nLookaside==0 || nLookaside==sqlite3LookasideUsed(db,0) );
876 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){
877 /* Do not delete the table until the reference count reaches zero. */
878 if( !pTable ) return;
879 if( ((!db || db->pnBytesFreed==0) && (--pTable->nTabRef)>0) ) return;
880 deleteTable(db, pTable);
885 ** Unlink the given table from the hash tables and the delete the
886 ** table structure with all its indices and foreign keys.
888 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){
889 Table *p;
890 Db *pDb;
892 assert( db!=0 );
893 assert( iDb>=0 && iDb<db->nDb );
894 assert( zTabName );
895 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
896 testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */
897 pDb = &db->aDb[iDb];
898 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0);
899 sqlite3DeleteTable(db, p);
900 db->mDbFlags |= DBFLAG_SchemaChange;
904 ** Given a token, return a string that consists of the text of that
905 ** token. Space to hold the returned string
906 ** is obtained from sqliteMalloc() and must be freed by the calling
907 ** function.
909 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that
910 ** surround the body of the token are removed.
912 ** Tokens are often just pointers into the original SQL text and so
913 ** are not \000 terminated and are not persistent. The returned string
914 ** is \000 terminated and is persistent.
916 char *sqlite3NameFromToken(sqlite3 *db, const Token *pName){
917 char *zName;
918 if( pName ){
919 zName = sqlite3DbStrNDup(db, (const char*)pName->z, pName->n);
920 sqlite3Dequote(zName);
921 }else{
922 zName = 0;
924 return zName;
928 ** Open the sqlite_schema table stored in database number iDb for
929 ** writing. The table is opened using cursor 0.
931 void sqlite3OpenSchemaTable(Parse *p, int iDb){
932 Vdbe *v = sqlite3GetVdbe(p);
933 sqlite3TableLock(p, iDb, SCHEMA_ROOT, 1, LEGACY_SCHEMA_TABLE);
934 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, SCHEMA_ROOT, iDb, 5);
935 if( p->nTab==0 ){
936 p->nTab = 1;
941 ** Parameter zName points to a nul-terminated buffer containing the name
942 ** of a database ("main", "temp" or the name of an attached db). This
943 ** function returns the index of the named database in db->aDb[], or
944 ** -1 if the named db cannot be found.
946 int sqlite3FindDbName(sqlite3 *db, const char *zName){
947 int i = -1; /* Database number */
948 if( zName ){
949 Db *pDb;
950 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){
951 if( 0==sqlite3_stricmp(pDb->zDbSName, zName) ) break;
952 /* "main" is always an acceptable alias for the primary database
953 ** even if it has been renamed using SQLITE_DBCONFIG_MAINDBNAME. */
954 if( i==0 && 0==sqlite3_stricmp("main", zName) ) break;
957 return i;
961 ** The token *pName contains the name of a database (either "main" or
962 ** "temp" or the name of an attached db). This routine returns the
963 ** index of the named database in db->aDb[], or -1 if the named db
964 ** does not exist.
966 int sqlite3FindDb(sqlite3 *db, Token *pName){
967 int i; /* Database number */
968 char *zName; /* Name we are searching for */
969 zName = sqlite3NameFromToken(db, pName);
970 i = sqlite3FindDbName(db, zName);
971 sqlite3DbFree(db, zName);
972 return i;
975 /* The table or view or trigger name is passed to this routine via tokens
976 ** pName1 and pName2. If the table name was fully qualified, for example:
978 ** CREATE TABLE xxx.yyy (...);
980 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
981 ** the table name is not fully qualified, i.e.:
983 ** CREATE TABLE yyy(...);
985 ** Then pName1 is set to "yyy" and pName2 is "".
987 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or
988 ** pName2) that stores the unqualified table name. The index of the
989 ** database "xxx" is returned.
991 int sqlite3TwoPartName(
992 Parse *pParse, /* Parsing and code generating context */
993 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */
994 Token *pName2, /* The "yyy" in the name "xxx.yyy" */
995 Token **pUnqual /* Write the unqualified object name here */
997 int iDb; /* Database holding the object */
998 sqlite3 *db = pParse->db;
1000 assert( pName2!=0 );
1001 if( pName2->n>0 ){
1002 if( db->init.busy ) {
1003 sqlite3ErrorMsg(pParse, "corrupt database");
1004 return -1;
1006 *pUnqual = pName2;
1007 iDb = sqlite3FindDb(db, pName1);
1008 if( iDb<0 ){
1009 sqlite3ErrorMsg(pParse, "unknown database %T", pName1);
1010 return -1;
1012 }else{
1013 assert( db->init.iDb==0 || db->init.busy || IN_SPECIAL_PARSE
1014 || (db->mDbFlags & DBFLAG_Vacuum)!=0);
1015 iDb = db->init.iDb;
1016 *pUnqual = pName1;
1018 return iDb;
1022 ** True if PRAGMA writable_schema is ON
1024 int sqlite3WritableSchema(sqlite3 *db){
1025 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==0 );
1026 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==
1027 SQLITE_WriteSchema );
1028 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==
1029 SQLITE_Defensive );
1030 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==
1031 (SQLITE_WriteSchema|SQLITE_Defensive) );
1032 return (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==SQLITE_WriteSchema;
1036 ** This routine is used to check if the UTF-8 string zName is a legal
1037 ** unqualified name for a new schema object (table, index, view or
1038 ** trigger). All names are legal except those that begin with the string
1039 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
1040 ** is reserved for internal use.
1042 ** When parsing the sqlite_schema table, this routine also checks to
1043 ** make sure the "type", "name", and "tbl_name" columns are consistent
1044 ** with the SQL.
1046 int sqlite3CheckObjectName(
1047 Parse *pParse, /* Parsing context */
1048 const char *zName, /* Name of the object to check */
1049 const char *zType, /* Type of this object */
1050 const char *zTblName /* Parent table name for triggers and indexes */
1052 sqlite3 *db = pParse->db;
1053 if( sqlite3WritableSchema(db)
1054 || db->init.imposterTable
1055 || !sqlite3Config.bExtraSchemaChecks
1057 /* Skip these error checks for writable_schema=ON */
1058 return SQLITE_OK;
1060 if( db->init.busy ){
1061 if( sqlite3_stricmp(zType, db->init.azInit[0])
1062 || sqlite3_stricmp(zName, db->init.azInit[1])
1063 || sqlite3_stricmp(zTblName, db->init.azInit[2])
1065 sqlite3ErrorMsg(pParse, ""); /* corruptSchema() will supply the error */
1066 return SQLITE_ERROR;
1068 }else{
1069 if( (pParse->nested==0 && 0==sqlite3StrNICmp(zName, "sqlite_", 7))
1070 || (sqlite3ReadOnlyShadowTables(db) && sqlite3ShadowTableName(db, zName))
1072 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s",
1073 zName);
1074 return SQLITE_ERROR;
1078 return SQLITE_OK;
1082 ** Return the PRIMARY KEY index of a table
1084 Index *sqlite3PrimaryKeyIndex(Table *pTab){
1085 Index *p;
1086 for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){}
1087 return p;
1091 ** Convert an table column number into a index column number. That is,
1092 ** for the column iCol in the table (as defined by the CREATE TABLE statement)
1093 ** find the (first) offset of that column in index pIdx. Or return -1
1094 ** if column iCol is not used in index pIdx.
1096 i16 sqlite3TableColumnToIndex(Index *pIdx, i16 iCol){
1097 int i;
1098 for(i=0; i<pIdx->nColumn; i++){
1099 if( iCol==pIdx->aiColumn[i] ) return i;
1101 return -1;
1104 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1105 /* Convert a storage column number into a table column number.
1107 ** The storage column number (0,1,2,....) is the index of the value
1108 ** as it appears in the record on disk. The true column number
1109 ** is the index (0,1,2,...) of the column in the CREATE TABLE statement.
1111 ** The storage column number is less than the table column number if
1112 ** and only there are VIRTUAL columns to the left.
1114 ** If SQLITE_OMIT_GENERATED_COLUMNS, this routine is a no-op macro.
1116 i16 sqlite3StorageColumnToTable(Table *pTab, i16 iCol){
1117 if( pTab->tabFlags & TF_HasVirtual ){
1118 int i;
1119 for(i=0; i<=iCol; i++){
1120 if( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ) iCol++;
1123 return iCol;
1125 #endif
1127 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1128 /* Convert a table column number into a storage column number.
1130 ** The storage column number (0,1,2,....) is the index of the value
1131 ** as it appears in the record on disk. Or, if the input column is
1132 ** the N-th virtual column (zero-based) then the storage number is
1133 ** the number of non-virtual columns in the table plus N.
1135 ** The true column number is the index (0,1,2,...) of the column in
1136 ** the CREATE TABLE statement.
1138 ** If the input column is a VIRTUAL column, then it should not appear
1139 ** in storage. But the value sometimes is cached in registers that
1140 ** follow the range of registers used to construct storage. This
1141 ** avoids computing the same VIRTUAL column multiple times, and provides
1142 ** values for use by OP_Param opcodes in triggers. Hence, if the
1143 ** input column is a VIRTUAL table, put it after all the other columns.
1145 ** In the following, N means "normal column", S means STORED, and
1146 ** V means VIRTUAL. Suppose the CREATE TABLE has columns like this:
1148 ** CREATE TABLE ex(N,S,V,N,S,V,N,S,V);
1149 ** -- 0 1 2 3 4 5 6 7 8
1151 ** Then the mapping from this function is as follows:
1153 ** INPUTS: 0 1 2 3 4 5 6 7 8
1154 ** OUTPUTS: 0 1 6 2 3 7 4 5 8
1156 ** So, in other words, this routine shifts all the virtual columns to
1157 ** the end.
1159 ** If SQLITE_OMIT_GENERATED_COLUMNS then there are no virtual columns and
1160 ** this routine is a no-op macro. If the pTab does not have any virtual
1161 ** columns, then this routine is no-op that always return iCol. If iCol
1162 ** is negative (indicating the ROWID column) then this routine return iCol.
1164 i16 sqlite3TableColumnToStorage(Table *pTab, i16 iCol){
1165 int i;
1166 i16 n;
1167 assert( iCol<pTab->nCol );
1168 if( (pTab->tabFlags & TF_HasVirtual)==0 || iCol<0 ) return iCol;
1169 for(i=0, n=0; i<iCol; i++){
1170 if( (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ) n++;
1172 if( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ){
1173 /* iCol is a virtual column itself */
1174 return pTab->nNVCol + i - n;
1175 }else{
1176 /* iCol is a normal or stored column */
1177 return n;
1180 #endif
1183 ** Insert a single OP_JournalMode query opcode in order to force the
1184 ** prepared statement to return false for sqlite3_stmt_readonly(). This
1185 ** is used by CREATE TABLE IF NOT EXISTS and similar if the table already
1186 ** exists, so that the prepared statement for CREATE TABLE IF NOT EXISTS
1187 ** will return false for sqlite3_stmt_readonly() even if that statement
1188 ** is a read-only no-op.
1190 static void sqlite3ForceNotReadOnly(Parse *pParse){
1191 int iReg = ++pParse->nMem;
1192 Vdbe *v = sqlite3GetVdbe(pParse);
1193 if( v ){
1194 sqlite3VdbeAddOp3(v, OP_JournalMode, 0, iReg, PAGER_JOURNALMODE_QUERY);
1195 sqlite3VdbeUsesBtree(v, 0);
1200 ** Begin constructing a new table representation in memory. This is
1201 ** the first of several action routines that get called in response
1202 ** to a CREATE TABLE statement. In particular, this routine is called
1203 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
1204 ** flag is true if the table should be stored in the auxiliary database
1205 ** file instead of in the main database file. This is normally the case
1206 ** when the "TEMP" or "TEMPORARY" keyword occurs in between
1207 ** CREATE and TABLE.
1209 ** The new table record is initialized and put in pParse->pNewTable.
1210 ** As more of the CREATE TABLE statement is parsed, additional action
1211 ** routines will be called to add more information to this record.
1212 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
1213 ** is called to complete the construction of the new table record.
1215 void sqlite3StartTable(
1216 Parse *pParse, /* Parser context */
1217 Token *pName1, /* First part of the name of the table or view */
1218 Token *pName2, /* Second part of the name of the table or view */
1219 int isTemp, /* True if this is a TEMP table */
1220 int isView, /* True if this is a VIEW */
1221 int isVirtual, /* True if this is a VIRTUAL table */
1222 int noErr /* Do nothing if table already exists */
1224 Table *pTable;
1225 char *zName = 0; /* The name of the new table */
1226 sqlite3 *db = pParse->db;
1227 Vdbe *v;
1228 int iDb; /* Database number to create the table in */
1229 Token *pName; /* Unqualified name of the table to create */
1231 if( db->init.busy && db->init.newTnum==1 ){
1232 /* Special case: Parsing the sqlite_schema or sqlite_temp_schema schema */
1233 iDb = db->init.iDb;
1234 zName = sqlite3DbStrDup(db, SCHEMA_TABLE(iDb));
1235 pName = pName1;
1236 }else{
1237 /* The common case */
1238 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
1239 if( iDb<0 ) return;
1240 if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){
1241 /* If creating a temp table, the name may not be qualified. Unless
1242 ** the database name is "temp" anyway. */
1243 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
1244 return;
1246 if( !OMIT_TEMPDB && isTemp ) iDb = 1;
1247 zName = sqlite3NameFromToken(db, pName);
1248 if( IN_RENAME_OBJECT ){
1249 sqlite3RenameTokenMap(pParse, (void*)zName, pName);
1252 pParse->sNameToken = *pName;
1253 if( zName==0 ) return;
1254 if( sqlite3CheckObjectName(pParse, zName, isView?"view":"table", zName) ){
1255 goto begin_table_error;
1257 if( db->init.iDb==1 ) isTemp = 1;
1258 #ifndef SQLITE_OMIT_AUTHORIZATION
1259 assert( isTemp==0 || isTemp==1 );
1260 assert( isView==0 || isView==1 );
1262 static const u8 aCode[] = {
1263 SQLITE_CREATE_TABLE,
1264 SQLITE_CREATE_TEMP_TABLE,
1265 SQLITE_CREATE_VIEW,
1266 SQLITE_CREATE_TEMP_VIEW
1268 char *zDb = db->aDb[iDb].zDbSName;
1269 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
1270 goto begin_table_error;
1272 if( !isVirtual && sqlite3AuthCheck(pParse, (int)aCode[isTemp+2*isView],
1273 zName, 0, zDb) ){
1274 goto begin_table_error;
1277 #endif
1279 /* Make sure the new table name does not collide with an existing
1280 ** index or table name in the same database. Issue an error message if
1281 ** it does. The exception is if the statement being parsed was passed
1282 ** to an sqlite3_declare_vtab() call. In that case only the column names
1283 ** and types will be used, so there is no need to test for namespace
1284 ** collisions.
1286 if( !IN_SPECIAL_PARSE ){
1287 char *zDb = db->aDb[iDb].zDbSName;
1288 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
1289 goto begin_table_error;
1291 pTable = sqlite3FindTable(db, zName, zDb);
1292 if( pTable ){
1293 if( !noErr ){
1294 sqlite3ErrorMsg(pParse, "%s %T already exists",
1295 (IsView(pTable)? "view" : "table"), pName);
1296 }else{
1297 assert( !db->init.busy || CORRUPT_DB );
1298 sqlite3CodeVerifySchema(pParse, iDb);
1299 sqlite3ForceNotReadOnly(pParse);
1301 goto begin_table_error;
1303 if( sqlite3FindIndex(db, zName, zDb)!=0 ){
1304 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
1305 goto begin_table_error;
1309 pTable = sqlite3DbMallocZero(db, sizeof(Table));
1310 if( pTable==0 ){
1311 assert( db->mallocFailed );
1312 pParse->rc = SQLITE_NOMEM_BKPT;
1313 pParse->nErr++;
1314 goto begin_table_error;
1316 pTable->zName = zName;
1317 pTable->iPKey = -1;
1318 pTable->pSchema = db->aDb[iDb].pSchema;
1319 pTable->nTabRef = 1;
1320 #ifdef SQLITE_DEFAULT_ROWEST
1321 pTable->nRowLogEst = sqlite3LogEst(SQLITE_DEFAULT_ROWEST);
1322 #else
1323 pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
1324 #endif
1325 assert( pParse->pNewTable==0 );
1326 pParse->pNewTable = pTable;
1328 /* Begin generating the code that will insert the table record into
1329 ** the schema table. Note in particular that we must go ahead
1330 ** and allocate the record number for the table entry now. Before any
1331 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause
1332 ** indices to be created and the table record must come before the
1333 ** indices. Hence, the record number for the table must be allocated
1334 ** now.
1336 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
1337 int addr1;
1338 int fileFormat;
1339 int reg1, reg2, reg3;
1340 /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */
1341 static const char nullRow[] = { 6, 0, 0, 0, 0, 0 };
1342 sqlite3BeginWriteOperation(pParse, 1, iDb);
1344 #ifndef SQLITE_OMIT_VIRTUALTABLE
1345 if( isVirtual ){
1346 sqlite3VdbeAddOp0(v, OP_VBegin);
1348 #endif
1350 /* If the file format and encoding in the database have not been set,
1351 ** set them now.
1353 reg1 = pParse->regRowid = ++pParse->nMem;
1354 reg2 = pParse->regRoot = ++pParse->nMem;
1355 reg3 = ++pParse->nMem;
1356 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT);
1357 sqlite3VdbeUsesBtree(v, iDb);
1358 addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v);
1359 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
1360 1 : SQLITE_MAX_FILE_FORMAT;
1361 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, fileFormat);
1362 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, ENC(db));
1363 sqlite3VdbeJumpHere(v, addr1);
1365 /* This just creates a place-holder record in the sqlite_schema table.
1366 ** The record created does not contain anything yet. It will be replaced
1367 ** by the real entry in code generated at sqlite3EndTable().
1369 ** The rowid for the new entry is left in register pParse->regRowid.
1370 ** The root page number of the new table is left in reg pParse->regRoot.
1371 ** The rowid and root page number values are needed by the code that
1372 ** sqlite3EndTable will generate.
1374 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
1375 if( isView || isVirtual ){
1376 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2);
1377 }else
1378 #endif
1380 assert( !pParse->bReturning );
1381 pParse->u1.addrCrTab =
1382 sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, reg2, BTREE_INTKEY);
1384 sqlite3OpenSchemaTable(pParse, iDb);
1385 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1);
1386 sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC);
1387 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1);
1388 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1389 sqlite3VdbeAddOp0(v, OP_Close);
1392 /* Normal (non-error) return. */
1393 return;
1395 /* If an error occurs, we jump here */
1396 begin_table_error:
1397 pParse->checkSchema = 1;
1398 sqlite3DbFree(db, zName);
1399 return;
1402 /* Set properties of a table column based on the (magical)
1403 ** name of the column.
1405 #if SQLITE_ENABLE_HIDDEN_COLUMNS
1406 void sqlite3ColumnPropertiesFromName(Table *pTab, Column *pCol){
1407 if( sqlite3_strnicmp(pCol->zCnName, "__hidden__", 10)==0 ){
1408 pCol->colFlags |= COLFLAG_HIDDEN;
1409 if( pTab ) pTab->tabFlags |= TF_HasHidden;
1410 }else if( pTab && pCol!=pTab->aCol && (pCol[-1].colFlags & COLFLAG_HIDDEN) ){
1411 pTab->tabFlags |= TF_OOOHidden;
1414 #endif
1417 ** Name of the special TEMP trigger used to implement RETURNING. The
1418 ** name begins with "sqlite_" so that it is guaranteed not to collide
1419 ** with any application-generated triggers.
1421 #define RETURNING_TRIGGER_NAME "sqlite_returning"
1424 ** Clean up the data structures associated with the RETURNING clause.
1426 static void sqlite3DeleteReturning(sqlite3 *db, Returning *pRet){
1427 Hash *pHash;
1428 pHash = &(db->aDb[1].pSchema->trigHash);
1429 sqlite3HashInsert(pHash, RETURNING_TRIGGER_NAME, 0);
1430 sqlite3ExprListDelete(db, pRet->pReturnEL);
1431 sqlite3DbFree(db, pRet);
1435 ** Add the RETURNING clause to the parse currently underway.
1437 ** This routine creates a special TEMP trigger that will fire for each row
1438 ** of the DML statement. That TEMP trigger contains a single SELECT
1439 ** statement with a result set that is the argument of the RETURNING clause.
1440 ** The trigger has the Trigger.bReturning flag and an opcode of
1441 ** TK_RETURNING instead of TK_SELECT, so that the trigger code generator
1442 ** knows to handle it specially. The TEMP trigger is automatically
1443 ** removed at the end of the parse.
1445 ** When this routine is called, we do not yet know if the RETURNING clause
1446 ** is attached to a DELETE, INSERT, or UPDATE, so construct it as a
1447 ** RETURNING trigger instead. It will then be converted into the appropriate
1448 ** type on the first call to sqlite3TriggersExist().
1450 void sqlite3AddReturning(Parse *pParse, ExprList *pList){
1451 Returning *pRet;
1452 Hash *pHash;
1453 sqlite3 *db = pParse->db;
1454 if( pParse->pNewTrigger ){
1455 sqlite3ErrorMsg(pParse, "cannot use RETURNING in a trigger");
1456 }else{
1457 assert( pParse->bReturning==0 );
1459 pParse->bReturning = 1;
1460 pRet = sqlite3DbMallocZero(db, sizeof(*pRet));
1461 if( pRet==0 ){
1462 sqlite3ExprListDelete(db, pList);
1463 return;
1465 pParse->u1.pReturning = pRet;
1466 pRet->pParse = pParse;
1467 pRet->pReturnEL = pList;
1468 sqlite3ParserAddCleanup(pParse,
1469 (void(*)(sqlite3*,void*))sqlite3DeleteReturning, pRet);
1470 testcase( pParse->earlyCleanup );
1471 if( db->mallocFailed ) return;
1472 pRet->retTrig.zName = RETURNING_TRIGGER_NAME;
1473 pRet->retTrig.op = TK_RETURNING;
1474 pRet->retTrig.tr_tm = TRIGGER_AFTER;
1475 pRet->retTrig.bReturning = 1;
1476 pRet->retTrig.pSchema = db->aDb[1].pSchema;
1477 pRet->retTrig.pTabSchema = db->aDb[1].pSchema;
1478 pRet->retTrig.step_list = &pRet->retTStep;
1479 pRet->retTStep.op = TK_RETURNING;
1480 pRet->retTStep.pTrig = &pRet->retTrig;
1481 pRet->retTStep.pExprList = pList;
1482 pHash = &(db->aDb[1].pSchema->trigHash);
1483 assert( sqlite3HashFind(pHash, RETURNING_TRIGGER_NAME)==0 || pParse->nErr );
1484 if( sqlite3HashInsert(pHash, RETURNING_TRIGGER_NAME, &pRet->retTrig)
1485 ==&pRet->retTrig ){
1486 sqlite3OomFault(db);
1491 ** Add a new column to the table currently being constructed.
1493 ** The parser calls this routine once for each column declaration
1494 ** in a CREATE TABLE statement. sqlite3StartTable() gets called
1495 ** first to get things going. Then this routine is called for each
1496 ** column.
1498 void sqlite3AddColumn(Parse *pParse, Token sName, Token sType){
1499 Table *p;
1500 int i;
1501 char *z;
1502 char *zType;
1503 Column *pCol;
1504 sqlite3 *db = pParse->db;
1505 u8 hName;
1506 Column *aNew;
1507 u8 eType = COLTYPE_CUSTOM;
1508 u8 szEst = 1;
1509 char affinity = SQLITE_AFF_BLOB;
1511 if( (p = pParse->pNewTable)==0 ) return;
1512 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){
1513 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName);
1514 return;
1516 if( !IN_RENAME_OBJECT ) sqlite3DequoteToken(&sName);
1518 /* Because keywords GENERATE ALWAYS can be converted into indentifiers
1519 ** by the parser, we can sometimes end up with a typename that ends
1520 ** with "generated always". Check for this case and omit the surplus
1521 ** text. */
1522 if( sType.n>=16
1523 && sqlite3_strnicmp(sType.z+(sType.n-6),"always",6)==0
1525 sType.n -= 6;
1526 while( ALWAYS(sType.n>0) && sqlite3Isspace(sType.z[sType.n-1]) ) sType.n--;
1527 if( sType.n>=9
1528 && sqlite3_strnicmp(sType.z+(sType.n-9),"generated",9)==0
1530 sType.n -= 9;
1531 while( sType.n>0 && sqlite3Isspace(sType.z[sType.n-1]) ) sType.n--;
1535 /* Check for standard typenames. For standard typenames we will
1536 ** set the Column.eType field rather than storing the typename after
1537 ** the column name, in order to save space. */
1538 if( sType.n>=3 ){
1539 sqlite3DequoteToken(&sType);
1540 for(i=0; i<SQLITE_N_STDTYPE; i++){
1541 if( sType.n==sqlite3StdTypeLen[i]
1542 && sqlite3_strnicmp(sType.z, sqlite3StdType[i], sType.n)==0
1544 sType.n = 0;
1545 eType = i+1;
1546 affinity = sqlite3StdTypeAffinity[i];
1547 if( affinity<=SQLITE_AFF_TEXT ) szEst = 5;
1548 break;
1553 z = sqlite3DbMallocRaw(db, (i64)sName.n + 1 + (i64)sType.n + (sType.n>0) );
1554 if( z==0 ) return;
1555 if( IN_RENAME_OBJECT ) sqlite3RenameTokenMap(pParse, (void*)z, &sName);
1556 memcpy(z, sName.z, sName.n);
1557 z[sName.n] = 0;
1558 sqlite3Dequote(z);
1559 hName = sqlite3StrIHash(z);
1560 for(i=0; i<p->nCol; i++){
1561 if( p->aCol[i].hName==hName && sqlite3StrICmp(z, p->aCol[i].zCnName)==0 ){
1562 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
1563 sqlite3DbFree(db, z);
1564 return;
1567 aNew = sqlite3DbRealloc(db,p->aCol,((i64)p->nCol+1)*sizeof(p->aCol[0]));
1568 if( aNew==0 ){
1569 sqlite3DbFree(db, z);
1570 return;
1572 p->aCol = aNew;
1573 pCol = &p->aCol[p->nCol];
1574 memset(pCol, 0, sizeof(p->aCol[0]));
1575 pCol->zCnName = z;
1576 pCol->hName = hName;
1577 sqlite3ColumnPropertiesFromName(p, pCol);
1579 if( sType.n==0 ){
1580 /* If there is no type specified, columns have the default affinity
1581 ** 'BLOB' with a default size of 4 bytes. */
1582 pCol->affinity = affinity;
1583 pCol->eCType = eType;
1584 pCol->szEst = szEst;
1585 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1586 if( affinity==SQLITE_AFF_BLOB ){
1587 if( 4>=sqlite3GlobalConfig.szSorterRef ){
1588 pCol->colFlags |= COLFLAG_SORTERREF;
1591 #endif
1592 }else{
1593 zType = z + sqlite3Strlen30(z) + 1;
1594 memcpy(zType, sType.z, sType.n);
1595 zType[sType.n] = 0;
1596 sqlite3Dequote(zType);
1597 pCol->affinity = sqlite3AffinityType(zType, pCol);
1598 pCol->colFlags |= COLFLAG_HASTYPE;
1600 p->nCol++;
1601 p->nNVCol++;
1602 pParse->constraintName.n = 0;
1606 ** This routine is called by the parser while in the middle of
1607 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has
1608 ** been seen on a column. This routine sets the notNull flag on
1609 ** the column currently under construction.
1611 void sqlite3AddNotNull(Parse *pParse, int onError){
1612 Table *p;
1613 Column *pCol;
1614 p = pParse->pNewTable;
1615 if( p==0 || NEVER(p->nCol<1) ) return;
1616 pCol = &p->aCol[p->nCol-1];
1617 pCol->notNull = (u8)onError;
1618 p->tabFlags |= TF_HasNotNull;
1620 /* Set the uniqNotNull flag on any UNIQUE or PK indexes already created
1621 ** on this column. */
1622 if( pCol->colFlags & COLFLAG_UNIQUE ){
1623 Index *pIdx;
1624 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1625 assert( pIdx->nKeyCol==1 && pIdx->onError!=OE_None );
1626 if( pIdx->aiColumn[0]==p->nCol-1 ){
1627 pIdx->uniqNotNull = 1;
1634 ** Scan the column type name zType (length nType) and return the
1635 ** associated affinity type.
1637 ** This routine does a case-independent search of zType for the
1638 ** substrings in the following table. If one of the substrings is
1639 ** found, the corresponding affinity is returned. If zType contains
1640 ** more than one of the substrings, entries toward the top of
1641 ** the table take priority. For example, if zType is 'BLOBINT',
1642 ** SQLITE_AFF_INTEGER is returned.
1644 ** Substring | Affinity
1645 ** --------------------------------
1646 ** 'INT' | SQLITE_AFF_INTEGER
1647 ** 'CHAR' | SQLITE_AFF_TEXT
1648 ** 'CLOB' | SQLITE_AFF_TEXT
1649 ** 'TEXT' | SQLITE_AFF_TEXT
1650 ** 'BLOB' | SQLITE_AFF_BLOB
1651 ** 'REAL' | SQLITE_AFF_REAL
1652 ** 'FLOA' | SQLITE_AFF_REAL
1653 ** 'DOUB' | SQLITE_AFF_REAL
1655 ** If none of the substrings in the above table are found,
1656 ** SQLITE_AFF_NUMERIC is returned.
1658 char sqlite3AffinityType(const char *zIn, Column *pCol){
1659 u32 h = 0;
1660 char aff = SQLITE_AFF_NUMERIC;
1661 const char *zChar = 0;
1663 assert( zIn!=0 );
1664 while( zIn[0] ){
1665 h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff];
1666 zIn++;
1667 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */
1668 aff = SQLITE_AFF_TEXT;
1669 zChar = zIn;
1670 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */
1671 aff = SQLITE_AFF_TEXT;
1672 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */
1673 aff = SQLITE_AFF_TEXT;
1674 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */
1675 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){
1676 aff = SQLITE_AFF_BLOB;
1677 if( zIn[0]=='(' ) zChar = zIn;
1678 #ifndef SQLITE_OMIT_FLOATING_POINT
1679 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */
1680 && aff==SQLITE_AFF_NUMERIC ){
1681 aff = SQLITE_AFF_REAL;
1682 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */
1683 && aff==SQLITE_AFF_NUMERIC ){
1684 aff = SQLITE_AFF_REAL;
1685 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */
1686 && aff==SQLITE_AFF_NUMERIC ){
1687 aff = SQLITE_AFF_REAL;
1688 #endif
1689 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */
1690 aff = SQLITE_AFF_INTEGER;
1691 break;
1695 /* If pCol is not NULL, store an estimate of the field size. The
1696 ** estimate is scaled so that the size of an integer is 1. */
1697 if( pCol ){
1698 int v = 0; /* default size is approx 4 bytes */
1699 if( aff<SQLITE_AFF_NUMERIC ){
1700 if( zChar ){
1701 while( zChar[0] ){
1702 if( sqlite3Isdigit(zChar[0]) ){
1703 /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */
1704 sqlite3GetInt32(zChar, &v);
1705 break;
1707 zChar++;
1709 }else{
1710 v = 16; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/
1713 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1714 if( v>=sqlite3GlobalConfig.szSorterRef ){
1715 pCol->colFlags |= COLFLAG_SORTERREF;
1717 #endif
1718 v = v/4 + 1;
1719 if( v>255 ) v = 255;
1720 pCol->szEst = v;
1722 return aff;
1726 ** The expression is the default value for the most recently added column
1727 ** of the table currently under construction.
1729 ** Default value expressions must be constant. Raise an exception if this
1730 ** is not the case.
1732 ** This routine is called by the parser while in the middle of
1733 ** parsing a CREATE TABLE statement.
1735 void sqlite3AddDefaultValue(
1736 Parse *pParse, /* Parsing context */
1737 Expr *pExpr, /* The parsed expression of the default value */
1738 const char *zStart, /* Start of the default value text */
1739 const char *zEnd /* First character past end of defaut value text */
1741 Table *p;
1742 Column *pCol;
1743 sqlite3 *db = pParse->db;
1744 p = pParse->pNewTable;
1745 if( p!=0 ){
1746 int isInit = db->init.busy && db->init.iDb!=1;
1747 pCol = &(p->aCol[p->nCol-1]);
1748 if( !sqlite3ExprIsConstantOrFunction(pExpr, isInit) ){
1749 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
1750 pCol->zCnName);
1751 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1752 }else if( pCol->colFlags & COLFLAG_GENERATED ){
1753 testcase( pCol->colFlags & COLFLAG_VIRTUAL );
1754 testcase( pCol->colFlags & COLFLAG_STORED );
1755 sqlite3ErrorMsg(pParse, "cannot use DEFAULT on a generated column");
1756 #endif
1757 }else{
1758 /* A copy of pExpr is used instead of the original, as pExpr contains
1759 ** tokens that point to volatile memory.
1761 Expr x, *pDfltExpr;
1762 memset(&x, 0, sizeof(x));
1763 x.op = TK_SPAN;
1764 x.u.zToken = sqlite3DbSpanDup(db, zStart, zEnd);
1765 x.pLeft = pExpr;
1766 x.flags = EP_Skip;
1767 pDfltExpr = sqlite3ExprDup(db, &x, EXPRDUP_REDUCE);
1768 sqlite3DbFree(db, x.u.zToken);
1769 sqlite3ColumnSetExpr(pParse, p, pCol, pDfltExpr);
1772 if( IN_RENAME_OBJECT ){
1773 sqlite3RenameExprUnmap(pParse, pExpr);
1775 sqlite3ExprDelete(db, pExpr);
1779 ** Backwards Compatibility Hack:
1781 ** Historical versions of SQLite accepted strings as column names in
1782 ** indexes and PRIMARY KEY constraints and in UNIQUE constraints. Example:
1784 ** CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim)
1785 ** CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC);
1787 ** This is goofy. But to preserve backwards compatibility we continue to
1788 ** accept it. This routine does the necessary conversion. It converts
1789 ** the expression given in its argument from a TK_STRING into a TK_ID
1790 ** if the expression is just a TK_STRING with an optional COLLATE clause.
1791 ** If the expression is anything other than TK_STRING, the expression is
1792 ** unchanged.
1794 static void sqlite3StringToId(Expr *p){
1795 if( p->op==TK_STRING ){
1796 p->op = TK_ID;
1797 }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){
1798 p->pLeft->op = TK_ID;
1803 ** Tag the given column as being part of the PRIMARY KEY
1805 static void makeColumnPartOfPrimaryKey(Parse *pParse, Column *pCol){
1806 pCol->colFlags |= COLFLAG_PRIMKEY;
1807 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1808 if( pCol->colFlags & COLFLAG_GENERATED ){
1809 testcase( pCol->colFlags & COLFLAG_VIRTUAL );
1810 testcase( pCol->colFlags & COLFLAG_STORED );
1811 sqlite3ErrorMsg(pParse,
1812 "generated columns cannot be part of the PRIMARY KEY");
1814 #endif
1818 ** Designate the PRIMARY KEY for the table. pList is a list of names
1819 ** of columns that form the primary key. If pList is NULL, then the
1820 ** most recently added column of the table is the primary key.
1822 ** A table can have at most one primary key. If the table already has
1823 ** a primary key (and this is the second primary key) then create an
1824 ** error.
1826 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
1827 ** then we will try to use that column as the rowid. Set the Table.iPKey
1828 ** field of the table under construction to be the index of the
1829 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is
1830 ** no INTEGER PRIMARY KEY.
1832 ** If the key is not an INTEGER PRIMARY KEY, then create a unique
1833 ** index for the key. No index is created for INTEGER PRIMARY KEYs.
1835 void sqlite3AddPrimaryKey(
1836 Parse *pParse, /* Parsing context */
1837 ExprList *pList, /* List of field names to be indexed */
1838 int onError, /* What to do with a uniqueness conflict */
1839 int autoInc, /* True if the AUTOINCREMENT keyword is present */
1840 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */
1842 Table *pTab = pParse->pNewTable;
1843 Column *pCol = 0;
1844 int iCol = -1, i;
1845 int nTerm;
1846 if( pTab==0 ) goto primary_key_exit;
1847 if( pTab->tabFlags & TF_HasPrimaryKey ){
1848 sqlite3ErrorMsg(pParse,
1849 "table \"%s\" has more than one primary key", pTab->zName);
1850 goto primary_key_exit;
1852 pTab->tabFlags |= TF_HasPrimaryKey;
1853 if( pList==0 ){
1854 iCol = pTab->nCol - 1;
1855 pCol = &pTab->aCol[iCol];
1856 makeColumnPartOfPrimaryKey(pParse, pCol);
1857 nTerm = 1;
1858 }else{
1859 nTerm = pList->nExpr;
1860 for(i=0; i<nTerm; i++){
1861 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr);
1862 assert( pCExpr!=0 );
1863 sqlite3StringToId(pCExpr);
1864 if( pCExpr->op==TK_ID ){
1865 const char *zCName;
1866 assert( !ExprHasProperty(pCExpr, EP_IntValue) );
1867 zCName = pCExpr->u.zToken;
1868 for(iCol=0; iCol<pTab->nCol; iCol++){
1869 if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zCnName)==0 ){
1870 pCol = &pTab->aCol[iCol];
1871 makeColumnPartOfPrimaryKey(pParse, pCol);
1872 break;
1878 if( nTerm==1
1879 && pCol
1880 && pCol->eCType==COLTYPE_INTEGER
1881 && sortOrder!=SQLITE_SO_DESC
1883 if( IN_RENAME_OBJECT && pList ){
1884 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[0].pExpr);
1885 sqlite3RenameTokenRemap(pParse, &pTab->iPKey, pCExpr);
1887 pTab->iPKey = iCol;
1888 pTab->keyConf = (u8)onError;
1889 assert( autoInc==0 || autoInc==1 );
1890 pTab->tabFlags |= autoInc*TF_Autoincrement;
1891 if( pList ) pParse->iPkSortOrder = pList->a[0].fg.sortFlags;
1892 (void)sqlite3HasExplicitNulls(pParse, pList);
1893 }else if( autoInc ){
1894 #ifndef SQLITE_OMIT_AUTOINCREMENT
1895 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
1896 "INTEGER PRIMARY KEY");
1897 #endif
1898 }else{
1899 sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0,
1900 0, sortOrder, 0, SQLITE_IDXTYPE_PRIMARYKEY);
1901 pList = 0;
1904 primary_key_exit:
1905 sqlite3ExprListDelete(pParse->db, pList);
1906 return;
1910 ** Add a new CHECK constraint to the table currently under construction.
1912 void sqlite3AddCheckConstraint(
1913 Parse *pParse, /* Parsing context */
1914 Expr *pCheckExpr, /* The check expression */
1915 const char *zStart, /* Opening "(" */
1916 const char *zEnd /* Closing ")" */
1918 #ifndef SQLITE_OMIT_CHECK
1919 Table *pTab = pParse->pNewTable;
1920 sqlite3 *db = pParse->db;
1921 if( pTab && !IN_DECLARE_VTAB
1922 && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt)
1924 pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr);
1925 if( pParse->constraintName.n ){
1926 sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1);
1927 }else{
1928 Token t;
1929 for(zStart++; sqlite3Isspace(zStart[0]); zStart++){}
1930 while( sqlite3Isspace(zEnd[-1]) ){ zEnd--; }
1931 t.z = zStart;
1932 t.n = (int)(zEnd - t.z);
1933 sqlite3ExprListSetName(pParse, pTab->pCheck, &t, 1);
1935 }else
1936 #endif
1938 sqlite3ExprDelete(pParse->db, pCheckExpr);
1943 ** Set the collation function of the most recently parsed table column
1944 ** to the CollSeq given.
1946 void sqlite3AddCollateType(Parse *pParse, Token *pToken){
1947 Table *p;
1948 int i;
1949 char *zColl; /* Dequoted name of collation sequence */
1950 sqlite3 *db;
1952 if( (p = pParse->pNewTable)==0 || IN_RENAME_OBJECT ) return;
1953 i = p->nCol-1;
1954 db = pParse->db;
1955 zColl = sqlite3NameFromToken(db, pToken);
1956 if( !zColl ) return;
1958 if( sqlite3LocateCollSeq(pParse, zColl) ){
1959 Index *pIdx;
1960 sqlite3ColumnSetColl(db, &p->aCol[i], zColl);
1962 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
1963 ** then an index may have been created on this column before the
1964 ** collation type was added. Correct this if it is the case.
1966 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1967 assert( pIdx->nKeyCol==1 );
1968 if( pIdx->aiColumn[0]==i ){
1969 pIdx->azColl[0] = sqlite3ColumnColl(&p->aCol[i]);
1973 sqlite3DbFree(db, zColl);
1976 /* Change the most recently parsed column to be a GENERATED ALWAYS AS
1977 ** column.
1979 void sqlite3AddGenerated(Parse *pParse, Expr *pExpr, Token *pType){
1980 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1981 u8 eType = COLFLAG_VIRTUAL;
1982 Table *pTab = pParse->pNewTable;
1983 Column *pCol;
1984 if( pTab==0 ){
1985 /* generated column in an CREATE TABLE IF NOT EXISTS that already exists */
1986 goto generated_done;
1988 pCol = &(pTab->aCol[pTab->nCol-1]);
1989 if( IN_DECLARE_VTAB ){
1990 sqlite3ErrorMsg(pParse, "virtual tables cannot use computed columns");
1991 goto generated_done;
1993 if( pCol->iDflt>0 ) goto generated_error;
1994 if( pType ){
1995 if( pType->n==7 && sqlite3StrNICmp("virtual",pType->z,7)==0 ){
1996 /* no-op */
1997 }else if( pType->n==6 && sqlite3StrNICmp("stored",pType->z,6)==0 ){
1998 eType = COLFLAG_STORED;
1999 }else{
2000 goto generated_error;
2003 if( eType==COLFLAG_VIRTUAL ) pTab->nNVCol--;
2004 pCol->colFlags |= eType;
2005 assert( TF_HasVirtual==COLFLAG_VIRTUAL );
2006 assert( TF_HasStored==COLFLAG_STORED );
2007 pTab->tabFlags |= eType;
2008 if( pCol->colFlags & COLFLAG_PRIMKEY ){
2009 makeColumnPartOfPrimaryKey(pParse, pCol); /* For the error message */
2011 sqlite3ColumnSetExpr(pParse, pTab, pCol, pExpr);
2012 pExpr = 0;
2013 goto generated_done;
2015 generated_error:
2016 sqlite3ErrorMsg(pParse, "error in generated column \"%s\"",
2017 pCol->zCnName);
2018 generated_done:
2019 sqlite3ExprDelete(pParse->db, pExpr);
2020 #else
2021 /* Throw and error for the GENERATED ALWAYS AS clause if the
2022 ** SQLITE_OMIT_GENERATED_COLUMNS compile-time option is used. */
2023 sqlite3ErrorMsg(pParse, "generated columns not supported");
2024 sqlite3ExprDelete(pParse->db, pExpr);
2025 #endif
2029 ** Generate code that will increment the schema cookie.
2031 ** The schema cookie is used to determine when the schema for the
2032 ** database changes. After each schema change, the cookie value
2033 ** changes. When a process first reads the schema it records the
2034 ** cookie. Thereafter, whenever it goes to access the database,
2035 ** it checks the cookie to make sure the schema has not changed
2036 ** since it was last read.
2038 ** This plan is not completely bullet-proof. It is possible for
2039 ** the schema to change multiple times and for the cookie to be
2040 ** set back to prior value. But schema changes are infrequent
2041 ** and the probability of hitting the same cookie value is only
2042 ** 1 chance in 2^32. So we're safe enough.
2044 ** IMPLEMENTATION-OF: R-34230-56049 SQLite automatically increments
2045 ** the schema-version whenever the schema changes.
2047 void sqlite3ChangeCookie(Parse *pParse, int iDb){
2048 sqlite3 *db = pParse->db;
2049 Vdbe *v = pParse->pVdbe;
2050 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2051 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION,
2052 (int)(1+(unsigned)db->aDb[iDb].pSchema->schema_cookie));
2056 ** Measure the number of characters needed to output the given
2057 ** identifier. The number returned includes any quotes used
2058 ** but does not include the null terminator.
2060 ** The estimate is conservative. It might be larger that what is
2061 ** really needed.
2063 static int identLength(const char *z){
2064 int n;
2065 for(n=0; *z; n++, z++){
2066 if( *z=='"' ){ n++; }
2068 return n + 2;
2072 ** The first parameter is a pointer to an output buffer. The second
2073 ** parameter is a pointer to an integer that contains the offset at
2074 ** which to write into the output buffer. This function copies the
2075 ** nul-terminated string pointed to by the third parameter, zSignedIdent,
2076 ** to the specified offset in the buffer and updates *pIdx to refer
2077 ** to the first byte after the last byte written before returning.
2079 ** If the string zSignedIdent consists entirely of alpha-numeric
2080 ** characters, does not begin with a digit and is not an SQL keyword,
2081 ** then it is copied to the output buffer exactly as it is. Otherwise,
2082 ** it is quoted using double-quotes.
2084 static void identPut(char *z, int *pIdx, char *zSignedIdent){
2085 unsigned char *zIdent = (unsigned char*)zSignedIdent;
2086 int i, j, needQuote;
2087 i = *pIdx;
2089 for(j=0; zIdent[j]; j++){
2090 if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
2092 needQuote = sqlite3Isdigit(zIdent[0])
2093 || sqlite3KeywordCode(zIdent, j)!=TK_ID
2094 || zIdent[j]!=0
2095 || j==0;
2097 if( needQuote ) z[i++] = '"';
2098 for(j=0; zIdent[j]; j++){
2099 z[i++] = zIdent[j];
2100 if( zIdent[j]=='"' ) z[i++] = '"';
2102 if( needQuote ) z[i++] = '"';
2103 z[i] = 0;
2104 *pIdx = i;
2108 ** Generate a CREATE TABLE statement appropriate for the given
2109 ** table. Memory to hold the text of the statement is obtained
2110 ** from sqliteMalloc() and must be freed by the calling function.
2112 static char *createTableStmt(sqlite3 *db, Table *p){
2113 int i, k, n;
2114 char *zStmt;
2115 char *zSep, *zSep2, *zEnd;
2116 Column *pCol;
2117 n = 0;
2118 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){
2119 n += identLength(pCol->zCnName) + 5;
2121 n += identLength(p->zName);
2122 if( n<50 ){
2123 zSep = "";
2124 zSep2 = ",";
2125 zEnd = ")";
2126 }else{
2127 zSep = "\n ";
2128 zSep2 = ",\n ";
2129 zEnd = "\n)";
2131 n += 35 + 6*p->nCol;
2132 zStmt = sqlite3DbMallocRaw(0, n);
2133 if( zStmt==0 ){
2134 sqlite3OomFault(db);
2135 return 0;
2137 sqlite3_snprintf(n, zStmt, "CREATE TABLE ");
2138 k = sqlite3Strlen30(zStmt);
2139 identPut(zStmt, &k, p->zName);
2140 zStmt[k++] = '(';
2141 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
2142 static const char * const azType[] = {
2143 /* SQLITE_AFF_BLOB */ "",
2144 /* SQLITE_AFF_TEXT */ " TEXT",
2145 /* SQLITE_AFF_NUMERIC */ " NUM",
2146 /* SQLITE_AFF_INTEGER */ " INT",
2147 /* SQLITE_AFF_REAL */ " REAL"
2149 int len;
2150 const char *zType;
2152 sqlite3_snprintf(n-k, &zStmt[k], zSep);
2153 k += sqlite3Strlen30(&zStmt[k]);
2154 zSep = zSep2;
2155 identPut(zStmt, &k, pCol->zCnName);
2156 assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 );
2157 assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) );
2158 testcase( pCol->affinity==SQLITE_AFF_BLOB );
2159 testcase( pCol->affinity==SQLITE_AFF_TEXT );
2160 testcase( pCol->affinity==SQLITE_AFF_NUMERIC );
2161 testcase( pCol->affinity==SQLITE_AFF_INTEGER );
2162 testcase( pCol->affinity==SQLITE_AFF_REAL );
2164 zType = azType[pCol->affinity - SQLITE_AFF_BLOB];
2165 len = sqlite3Strlen30(zType);
2166 assert( pCol->affinity==SQLITE_AFF_BLOB
2167 || pCol->affinity==sqlite3AffinityType(zType, 0) );
2168 memcpy(&zStmt[k], zType, len);
2169 k += len;
2170 assert( k<=n );
2172 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd);
2173 return zStmt;
2177 ** Resize an Index object to hold N columns total. Return SQLITE_OK
2178 ** on success and SQLITE_NOMEM on an OOM error.
2180 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){
2181 char *zExtra;
2182 int nByte;
2183 if( pIdx->nColumn>=N ) return SQLITE_OK;
2184 assert( pIdx->isResized==0 );
2185 nByte = (sizeof(char*) + sizeof(LogEst) + sizeof(i16) + 1)*N;
2186 zExtra = sqlite3DbMallocZero(db, nByte);
2187 if( zExtra==0 ) return SQLITE_NOMEM_BKPT;
2188 memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn);
2189 pIdx->azColl = (const char**)zExtra;
2190 zExtra += sizeof(char*)*N;
2191 memcpy(zExtra, pIdx->aiRowLogEst, sizeof(LogEst)*(pIdx->nKeyCol+1));
2192 pIdx->aiRowLogEst = (LogEst*)zExtra;
2193 zExtra += sizeof(LogEst)*N;
2194 memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn);
2195 pIdx->aiColumn = (i16*)zExtra;
2196 zExtra += sizeof(i16)*N;
2197 memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn);
2198 pIdx->aSortOrder = (u8*)zExtra;
2199 pIdx->nColumn = N;
2200 pIdx->isResized = 1;
2201 return SQLITE_OK;
2205 ** Estimate the total row width for a table.
2207 static void estimateTableWidth(Table *pTab){
2208 unsigned wTable = 0;
2209 const Column *pTabCol;
2210 int i;
2211 for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){
2212 wTable += pTabCol->szEst;
2214 if( pTab->iPKey<0 ) wTable++;
2215 pTab->szTabRow = sqlite3LogEst(wTable*4);
2219 ** Estimate the average size of a row for an index.
2221 static void estimateIndexWidth(Index *pIdx){
2222 unsigned wIndex = 0;
2223 int i;
2224 const Column *aCol = pIdx->pTable->aCol;
2225 for(i=0; i<pIdx->nColumn; i++){
2226 i16 x = pIdx->aiColumn[i];
2227 assert( x<pIdx->pTable->nCol );
2228 wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst;
2230 pIdx->szIdxRow = sqlite3LogEst(wIndex*4);
2233 /* Return true if column number x is any of the first nCol entries of aiCol[].
2234 ** This is used to determine if the column number x appears in any of the
2235 ** first nCol entries of an index.
2237 static int hasColumn(const i16 *aiCol, int nCol, int x){
2238 while( nCol-- > 0 ){
2239 if( x==*(aiCol++) ){
2240 return 1;
2243 return 0;
2247 ** Return true if any of the first nKey entries of index pIdx exactly
2248 ** match the iCol-th entry of pPk. pPk is always a WITHOUT ROWID
2249 ** PRIMARY KEY index. pIdx is an index on the same table. pIdx may
2250 ** or may not be the same index as pPk.
2252 ** The first nKey entries of pIdx are guaranteed to be ordinary columns,
2253 ** not a rowid or expression.
2255 ** This routine differs from hasColumn() in that both the column and the
2256 ** collating sequence must match for this routine, but for hasColumn() only
2257 ** the column name must match.
2259 static int isDupColumn(Index *pIdx, int nKey, Index *pPk, int iCol){
2260 int i, j;
2261 assert( nKey<=pIdx->nColumn );
2262 assert( iCol<MAX(pPk->nColumn,pPk->nKeyCol) );
2263 assert( pPk->idxType==SQLITE_IDXTYPE_PRIMARYKEY );
2264 assert( pPk->pTable->tabFlags & TF_WithoutRowid );
2265 assert( pPk->pTable==pIdx->pTable );
2266 testcase( pPk==pIdx );
2267 j = pPk->aiColumn[iCol];
2268 assert( j!=XN_ROWID && j!=XN_EXPR );
2269 for(i=0; i<nKey; i++){
2270 assert( pIdx->aiColumn[i]>=0 || j>=0 );
2271 if( pIdx->aiColumn[i]==j
2272 && sqlite3StrICmp(pIdx->azColl[i], pPk->azColl[iCol])==0
2274 return 1;
2277 return 0;
2280 /* Recompute the colNotIdxed field of the Index.
2282 ** colNotIdxed is a bitmask that has a 0 bit representing each indexed
2283 ** columns that are within the first 63 columns of the table. The
2284 ** high-order bit of colNotIdxed is always 1. All unindexed columns
2285 ** of the table have a 1.
2287 ** 2019-10-24: For the purpose of this computation, virtual columns are
2288 ** not considered to be covered by the index, even if they are in the
2289 ** index, because we do not trust the logic in whereIndexExprTrans() to be
2290 ** able to find all instances of a reference to the indexed table column
2291 ** and convert them into references to the index. Hence we always want
2292 ** the actual table at hand in order to recompute the virtual column, if
2293 ** necessary.
2295 ** The colNotIdxed mask is AND-ed with the SrcList.a[].colUsed mask
2296 ** to determine if the index is covering index.
2298 static void recomputeColumnsNotIndexed(Index *pIdx){
2299 Bitmask m = 0;
2300 int j;
2301 Table *pTab = pIdx->pTable;
2302 for(j=pIdx->nColumn-1; j>=0; j--){
2303 int x = pIdx->aiColumn[j];
2304 if( x>=0 && (pTab->aCol[x].colFlags & COLFLAG_VIRTUAL)==0 ){
2305 testcase( x==BMS-1 );
2306 testcase( x==BMS-2 );
2307 if( x<BMS-1 ) m |= MASKBIT(x);
2310 pIdx->colNotIdxed = ~m;
2311 assert( (pIdx->colNotIdxed>>63)==1 );
2315 ** This routine runs at the end of parsing a CREATE TABLE statement that
2316 ** has a WITHOUT ROWID clause. The job of this routine is to convert both
2317 ** internal schema data structures and the generated VDBE code so that they
2318 ** are appropriate for a WITHOUT ROWID table instead of a rowid table.
2319 ** Changes include:
2321 ** (1) Set all columns of the PRIMARY KEY schema object to be NOT NULL.
2322 ** (2) Convert P3 parameter of the OP_CreateBtree from BTREE_INTKEY
2323 ** into BTREE_BLOBKEY.
2324 ** (3) Bypass the creation of the sqlite_schema table entry
2325 ** for the PRIMARY KEY as the primary key index is now
2326 ** identified by the sqlite_schema table entry of the table itself.
2327 ** (4) Set the Index.tnum of the PRIMARY KEY Index object in the
2328 ** schema to the rootpage from the main table.
2329 ** (5) Add all table columns to the PRIMARY KEY Index object
2330 ** so that the PRIMARY KEY is a covering index. The surplus
2331 ** columns are part of KeyInfo.nAllField and are not used for
2332 ** sorting or lookup or uniqueness checks.
2333 ** (6) Replace the rowid tail on all automatically generated UNIQUE
2334 ** indices with the PRIMARY KEY columns.
2336 ** For virtual tables, only (1) is performed.
2338 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){
2339 Index *pIdx;
2340 Index *pPk;
2341 int nPk;
2342 int nExtra;
2343 int i, j;
2344 sqlite3 *db = pParse->db;
2345 Vdbe *v = pParse->pVdbe;
2347 /* Mark every PRIMARY KEY column as NOT NULL (except for imposter tables)
2349 if( !db->init.imposterTable ){
2350 for(i=0; i<pTab->nCol; i++){
2351 if( (pTab->aCol[i].colFlags & COLFLAG_PRIMKEY)!=0
2352 && (pTab->aCol[i].notNull==OE_None)
2354 pTab->aCol[i].notNull = OE_Abort;
2357 pTab->tabFlags |= TF_HasNotNull;
2360 /* Convert the P3 operand of the OP_CreateBtree opcode from BTREE_INTKEY
2361 ** into BTREE_BLOBKEY.
2363 assert( !pParse->bReturning );
2364 if( pParse->u1.addrCrTab ){
2365 assert( v );
2366 sqlite3VdbeChangeP3(v, pParse->u1.addrCrTab, BTREE_BLOBKEY);
2369 /* Locate the PRIMARY KEY index. Or, if this table was originally
2370 ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index.
2372 if( pTab->iPKey>=0 ){
2373 ExprList *pList;
2374 Token ipkToken;
2375 sqlite3TokenInit(&ipkToken, pTab->aCol[pTab->iPKey].zCnName);
2376 pList = sqlite3ExprListAppend(pParse, 0,
2377 sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0));
2378 if( pList==0 ){
2379 pTab->tabFlags &= ~TF_WithoutRowid;
2380 return;
2382 if( IN_RENAME_OBJECT ){
2383 sqlite3RenameTokenRemap(pParse, pList->a[0].pExpr, &pTab->iPKey);
2385 pList->a[0].fg.sortFlags = pParse->iPkSortOrder;
2386 assert( pParse->pNewTable==pTab );
2387 pTab->iPKey = -1;
2388 sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0,
2389 SQLITE_IDXTYPE_PRIMARYKEY);
2390 if( pParse->nErr ){
2391 pTab->tabFlags &= ~TF_WithoutRowid;
2392 return;
2394 assert( db->mallocFailed==0 );
2395 pPk = sqlite3PrimaryKeyIndex(pTab);
2396 assert( pPk->nKeyCol==1 );
2397 }else{
2398 pPk = sqlite3PrimaryKeyIndex(pTab);
2399 assert( pPk!=0 );
2402 ** Remove all redundant columns from the PRIMARY KEY. For example, change
2403 ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)". Later
2404 ** code assumes the PRIMARY KEY contains no repeated columns.
2406 for(i=j=1; i<pPk->nKeyCol; i++){
2407 if( isDupColumn(pPk, j, pPk, i) ){
2408 pPk->nColumn--;
2409 }else{
2410 testcase( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) );
2411 pPk->azColl[j] = pPk->azColl[i];
2412 pPk->aSortOrder[j] = pPk->aSortOrder[i];
2413 pPk->aiColumn[j++] = pPk->aiColumn[i];
2416 pPk->nKeyCol = j;
2418 assert( pPk!=0 );
2419 pPk->isCovering = 1;
2420 if( !db->init.imposterTable ) pPk->uniqNotNull = 1;
2421 nPk = pPk->nColumn = pPk->nKeyCol;
2423 /* Bypass the creation of the PRIMARY KEY btree and the sqlite_schema
2424 ** table entry. This is only required if currently generating VDBE
2425 ** code for a CREATE TABLE (not when parsing one as part of reading
2426 ** a database schema). */
2427 if( v && pPk->tnum>0 ){
2428 assert( db->init.busy==0 );
2429 sqlite3VdbeChangeOpcode(v, (int)pPk->tnum, OP_Goto);
2432 /* The root page of the PRIMARY KEY is the table root page */
2433 pPk->tnum = pTab->tnum;
2435 /* Update the in-memory representation of all UNIQUE indices by converting
2436 ** the final rowid column into one or more columns of the PRIMARY KEY.
2438 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2439 int n;
2440 if( IsPrimaryKeyIndex(pIdx) ) continue;
2441 for(i=n=0; i<nPk; i++){
2442 if( !isDupColumn(pIdx, pIdx->nKeyCol, pPk, i) ){
2443 testcase( hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) );
2444 n++;
2447 if( n==0 ){
2448 /* This index is a superset of the primary key */
2449 pIdx->nColumn = pIdx->nKeyCol;
2450 continue;
2452 if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return;
2453 for(i=0, j=pIdx->nKeyCol; i<nPk; i++){
2454 if( !isDupColumn(pIdx, pIdx->nKeyCol, pPk, i) ){
2455 testcase( hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) );
2456 pIdx->aiColumn[j] = pPk->aiColumn[i];
2457 pIdx->azColl[j] = pPk->azColl[i];
2458 if( pPk->aSortOrder[i] ){
2459 /* See ticket https://www.sqlite.org/src/info/bba7b69f9849b5bf */
2460 pIdx->bAscKeyBug = 1;
2462 j++;
2465 assert( pIdx->nColumn>=pIdx->nKeyCol+n );
2466 assert( pIdx->nColumn>=j );
2469 /* Add all table columns to the PRIMARY KEY index
2471 nExtra = 0;
2472 for(i=0; i<pTab->nCol; i++){
2473 if( !hasColumn(pPk->aiColumn, nPk, i)
2474 && (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ) nExtra++;
2476 if( resizeIndexObject(db, pPk, nPk+nExtra) ) return;
2477 for(i=0, j=nPk; i<pTab->nCol; i++){
2478 if( !hasColumn(pPk->aiColumn, j, i)
2479 && (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0
2481 assert( j<pPk->nColumn );
2482 pPk->aiColumn[j] = i;
2483 pPk->azColl[j] = sqlite3StrBINARY;
2484 j++;
2487 assert( pPk->nColumn==j );
2488 assert( pTab->nNVCol<=j );
2489 recomputeColumnsNotIndexed(pPk);
2493 #ifndef SQLITE_OMIT_VIRTUALTABLE
2495 ** Return true if pTab is a virtual table and zName is a shadow table name
2496 ** for that virtual table.
2498 int sqlite3IsShadowTableOf(sqlite3 *db, Table *pTab, const char *zName){
2499 int nName; /* Length of zName */
2500 Module *pMod; /* Module for the virtual table */
2502 if( !IsVirtual(pTab) ) return 0;
2503 nName = sqlite3Strlen30(pTab->zName);
2504 if( sqlite3_strnicmp(zName, pTab->zName, nName)!=0 ) return 0;
2505 if( zName[nName]!='_' ) return 0;
2506 pMod = (Module*)sqlite3HashFind(&db->aModule, pTab->u.vtab.azArg[0]);
2507 if( pMod==0 ) return 0;
2508 if( pMod->pModule->iVersion<3 ) return 0;
2509 if( pMod->pModule->xShadowName==0 ) return 0;
2510 return pMod->pModule->xShadowName(zName+nName+1);
2512 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */
2514 #ifndef SQLITE_OMIT_VIRTUALTABLE
2516 ** Table pTab is a virtual table. If it the virtual table implementation
2517 ** exists and has an xShadowName method, then loop over all other ordinary
2518 ** tables within the same schema looking for shadow tables of pTab, and mark
2519 ** any shadow tables seen using the TF_Shadow flag.
2521 void sqlite3MarkAllShadowTablesOf(sqlite3 *db, Table *pTab){
2522 int nName; /* Length of pTab->zName */
2523 Module *pMod; /* Module for the virtual table */
2524 HashElem *k; /* For looping through the symbol table */
2526 assert( IsVirtual(pTab) );
2527 pMod = (Module*)sqlite3HashFind(&db->aModule, pTab->u.vtab.azArg[0]);
2528 if( pMod==0 ) return;
2529 if( NEVER(pMod->pModule==0) ) return;
2530 if( pMod->pModule->iVersion<3 ) return;
2531 if( pMod->pModule->xShadowName==0 ) return;
2532 assert( pTab->zName!=0 );
2533 nName = sqlite3Strlen30(pTab->zName);
2534 for(k=sqliteHashFirst(&pTab->pSchema->tblHash); k; k=sqliteHashNext(k)){
2535 Table *pOther = sqliteHashData(k);
2536 assert( pOther->zName!=0 );
2537 if( !IsOrdinaryTable(pOther) ) continue;
2538 if( pOther->tabFlags & TF_Shadow ) continue;
2539 if( sqlite3StrNICmp(pOther->zName, pTab->zName, nName)==0
2540 && pOther->zName[nName]=='_'
2541 && pMod->pModule->xShadowName(pOther->zName+nName+1)
2543 pOther->tabFlags |= TF_Shadow;
2547 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */
2549 #ifndef SQLITE_OMIT_VIRTUALTABLE
2551 ** Return true if zName is a shadow table name in the current database
2552 ** connection.
2554 ** zName is temporarily modified while this routine is running, but is
2555 ** restored to its original value prior to this routine returning.
2557 int sqlite3ShadowTableName(sqlite3 *db, const char *zName){
2558 char *zTail; /* Pointer to the last "_" in zName */
2559 Table *pTab; /* Table that zName is a shadow of */
2560 zTail = strrchr(zName, '_');
2561 if( zTail==0 ) return 0;
2562 *zTail = 0;
2563 pTab = sqlite3FindTable(db, zName, 0);
2564 *zTail = '_';
2565 if( pTab==0 ) return 0;
2566 if( !IsVirtual(pTab) ) return 0;
2567 return sqlite3IsShadowTableOf(db, pTab, zName);
2569 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */
2572 #ifdef SQLITE_DEBUG
2574 ** Mark all nodes of an expression as EP_Immutable, indicating that
2575 ** they should not be changed. Expressions attached to a table or
2576 ** index definition are tagged this way to help ensure that we do
2577 ** not pass them into code generator routines by mistake.
2579 static int markImmutableExprStep(Walker *pWalker, Expr *pExpr){
2580 ExprSetVVAProperty(pExpr, EP_Immutable);
2581 return WRC_Continue;
2583 static void markExprListImmutable(ExprList *pList){
2584 if( pList ){
2585 Walker w;
2586 memset(&w, 0, sizeof(w));
2587 w.xExprCallback = markImmutableExprStep;
2588 w.xSelectCallback = sqlite3SelectWalkNoop;
2589 w.xSelectCallback2 = 0;
2590 sqlite3WalkExprList(&w, pList);
2593 #else
2594 #define markExprListImmutable(X) /* no-op */
2595 #endif /* SQLITE_DEBUG */
2599 ** This routine is called to report the final ")" that terminates
2600 ** a CREATE TABLE statement.
2602 ** The table structure that other action routines have been building
2603 ** is added to the internal hash tables, assuming no errors have
2604 ** occurred.
2606 ** An entry for the table is made in the schema table on disk, unless
2607 ** this is a temporary table or db->init.busy==1. When db->init.busy==1
2608 ** it means we are reading the sqlite_schema table because we just
2609 ** connected to the database or because the sqlite_schema table has
2610 ** recently changed, so the entry for this table already exists in
2611 ** the sqlite_schema table. We do not want to create it again.
2613 ** If the pSelect argument is not NULL, it means that this routine
2614 ** was called to create a table generated from a
2615 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of
2616 ** the new table will match the result set of the SELECT.
2618 void sqlite3EndTable(
2619 Parse *pParse, /* Parse context */
2620 Token *pCons, /* The ',' token after the last column defn. */
2621 Token *pEnd, /* The ')' before options in the CREATE TABLE */
2622 u32 tabOpts, /* Extra table options. Usually 0. */
2623 Select *pSelect /* Select from a "CREATE ... AS SELECT" */
2625 Table *p; /* The new table */
2626 sqlite3 *db = pParse->db; /* The database connection */
2627 int iDb; /* Database in which the table lives */
2628 Index *pIdx; /* An implied index of the table */
2630 if( pEnd==0 && pSelect==0 ){
2631 return;
2633 p = pParse->pNewTable;
2634 if( p==0 ) return;
2636 if( pSelect==0 && sqlite3ShadowTableName(db, p->zName) ){
2637 p->tabFlags |= TF_Shadow;
2640 /* If the db->init.busy is 1 it means we are reading the SQL off the
2641 ** "sqlite_schema" or "sqlite_temp_schema" table on the disk.
2642 ** So do not write to the disk again. Extract the root page number
2643 ** for the table from the db->init.newTnum field. (The page number
2644 ** should have been put there by the sqliteOpenCb routine.)
2646 ** If the root page number is 1, that means this is the sqlite_schema
2647 ** table itself. So mark it read-only.
2649 if( db->init.busy ){
2650 if( pSelect || (!IsOrdinaryTable(p) && db->init.newTnum) ){
2651 sqlite3ErrorMsg(pParse, "");
2652 return;
2654 p->tnum = db->init.newTnum;
2655 if( p->tnum==1 ) p->tabFlags |= TF_Readonly;
2658 /* Special processing for tables that include the STRICT keyword:
2660 ** * Do not allow custom column datatypes. Every column must have
2661 ** a datatype that is one of INT, INTEGER, REAL, TEXT, or BLOB.
2663 ** * If a PRIMARY KEY is defined, other than the INTEGER PRIMARY KEY,
2664 ** then all columns of the PRIMARY KEY must have a NOT NULL
2665 ** constraint.
2667 if( tabOpts & TF_Strict ){
2668 int ii;
2669 p->tabFlags |= TF_Strict;
2670 for(ii=0; ii<p->nCol; ii++){
2671 Column *pCol = &p->aCol[ii];
2672 if( pCol->eCType==COLTYPE_CUSTOM ){
2673 if( pCol->colFlags & COLFLAG_HASTYPE ){
2674 sqlite3ErrorMsg(pParse,
2675 "unknown datatype for %s.%s: \"%s\"",
2676 p->zName, pCol->zCnName, sqlite3ColumnType(pCol, "")
2678 }else{
2679 sqlite3ErrorMsg(pParse, "missing datatype for %s.%s",
2680 p->zName, pCol->zCnName);
2682 return;
2683 }else if( pCol->eCType==COLTYPE_ANY ){
2684 pCol->affinity = SQLITE_AFF_BLOB;
2686 if( (pCol->colFlags & COLFLAG_PRIMKEY)!=0
2687 && p->iPKey!=ii
2688 && pCol->notNull == OE_None
2690 pCol->notNull = OE_Abort;
2691 p->tabFlags |= TF_HasNotNull;
2696 assert( (p->tabFlags & TF_HasPrimaryKey)==0
2697 || p->iPKey>=0 || sqlite3PrimaryKeyIndex(p)!=0 );
2698 assert( (p->tabFlags & TF_HasPrimaryKey)!=0
2699 || (p->iPKey<0 && sqlite3PrimaryKeyIndex(p)==0) );
2701 /* Special processing for WITHOUT ROWID Tables */
2702 if( tabOpts & TF_WithoutRowid ){
2703 if( (p->tabFlags & TF_Autoincrement) ){
2704 sqlite3ErrorMsg(pParse,
2705 "AUTOINCREMENT not allowed on WITHOUT ROWID tables");
2706 return;
2708 if( (p->tabFlags & TF_HasPrimaryKey)==0 ){
2709 sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName);
2710 return;
2712 p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid;
2713 convertToWithoutRowidTable(pParse, p);
2715 iDb = sqlite3SchemaToIndex(db, p->pSchema);
2717 #ifndef SQLITE_OMIT_CHECK
2718 /* Resolve names in all CHECK constraint expressions.
2720 if( p->pCheck ){
2721 sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck);
2722 if( pParse->nErr ){
2723 /* If errors are seen, delete the CHECK constraints now, else they might
2724 ** actually be used if PRAGMA writable_schema=ON is set. */
2725 sqlite3ExprListDelete(db, p->pCheck);
2726 p->pCheck = 0;
2727 }else{
2728 markExprListImmutable(p->pCheck);
2731 #endif /* !defined(SQLITE_OMIT_CHECK) */
2732 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
2733 if( p->tabFlags & TF_HasGenerated ){
2734 int ii, nNG = 0;
2735 testcase( p->tabFlags & TF_HasVirtual );
2736 testcase( p->tabFlags & TF_HasStored );
2737 for(ii=0; ii<p->nCol; ii++){
2738 u32 colFlags = p->aCol[ii].colFlags;
2739 if( (colFlags & COLFLAG_GENERATED)!=0 ){
2740 Expr *pX = sqlite3ColumnExpr(p, &p->aCol[ii]);
2741 testcase( colFlags & COLFLAG_VIRTUAL );
2742 testcase( colFlags & COLFLAG_STORED );
2743 if( sqlite3ResolveSelfReference(pParse, p, NC_GenCol, pX, 0) ){
2744 /* If there are errors in resolving the expression, change the
2745 ** expression to a NULL. This prevents code generators that operate
2746 ** on the expression from inserting extra parts into the expression
2747 ** tree that have been allocated from lookaside memory, which is
2748 ** illegal in a schema and will lead to errors or heap corruption
2749 ** when the database connection closes. */
2750 sqlite3ColumnSetExpr(pParse, p, &p->aCol[ii],
2751 sqlite3ExprAlloc(db, TK_NULL, 0, 0));
2753 }else{
2754 nNG++;
2757 if( nNG==0 ){
2758 sqlite3ErrorMsg(pParse, "must have at least one non-generated column");
2759 return;
2762 #endif
2764 /* Estimate the average row size for the table and for all implied indices */
2765 estimateTableWidth(p);
2766 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
2767 estimateIndexWidth(pIdx);
2770 /* If not initializing, then create a record for the new table
2771 ** in the schema table of the database.
2773 ** If this is a TEMPORARY table, write the entry into the auxiliary
2774 ** file instead of into the main database file.
2776 if( !db->init.busy ){
2777 int n;
2778 Vdbe *v;
2779 char *zType; /* "view" or "table" */
2780 char *zType2; /* "VIEW" or "TABLE" */
2781 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */
2783 v = sqlite3GetVdbe(pParse);
2784 if( NEVER(v==0) ) return;
2786 sqlite3VdbeAddOp1(v, OP_Close, 0);
2789 ** Initialize zType for the new view or table.
2791 if( IsOrdinaryTable(p) ){
2792 /* A regular table */
2793 zType = "table";
2794 zType2 = "TABLE";
2795 #ifndef SQLITE_OMIT_VIEW
2796 }else{
2797 /* A view */
2798 zType = "view";
2799 zType2 = "VIEW";
2800 #endif
2803 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
2804 ** statement to populate the new table. The root-page number for the
2805 ** new table is in register pParse->regRoot.
2807 ** Once the SELECT has been coded by sqlite3Select(), it is in a
2808 ** suitable state to query for the column names and types to be used
2809 ** by the new table.
2811 ** A shared-cache write-lock is not required to write to the new table,
2812 ** as a schema-lock must have already been obtained to create it. Since
2813 ** a schema-lock excludes all other database users, the write-lock would
2814 ** be redundant.
2816 if( pSelect ){
2817 SelectDest dest; /* Where the SELECT should store results */
2818 int regYield; /* Register holding co-routine entry-point */
2819 int addrTop; /* Top of the co-routine */
2820 int regRec; /* A record to be insert into the new table */
2821 int regRowid; /* Rowid of the next row to insert */
2822 int addrInsLoop; /* Top of the loop for inserting rows */
2823 Table *pSelTab; /* A table that describes the SELECT results */
2825 if( IN_SPECIAL_PARSE ){
2826 pParse->rc = SQLITE_ERROR;
2827 pParse->nErr++;
2828 return;
2830 regYield = ++pParse->nMem;
2831 regRec = ++pParse->nMem;
2832 regRowid = ++pParse->nMem;
2833 assert(pParse->nTab==1);
2834 sqlite3MayAbort(pParse);
2835 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
2836 sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG);
2837 pParse->nTab = 2;
2838 addrTop = sqlite3VdbeCurrentAddr(v) + 1;
2839 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop);
2840 if( pParse->nErr ) return;
2841 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect, SQLITE_AFF_BLOB);
2842 if( pSelTab==0 ) return;
2843 assert( p->aCol==0 );
2844 p->nCol = p->nNVCol = pSelTab->nCol;
2845 p->aCol = pSelTab->aCol;
2846 pSelTab->nCol = 0;
2847 pSelTab->aCol = 0;
2848 sqlite3DeleteTable(db, pSelTab);
2849 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield);
2850 sqlite3Select(pParse, pSelect, &dest);
2851 if( pParse->nErr ) return;
2852 sqlite3VdbeEndCoroutine(v, regYield);
2853 sqlite3VdbeJumpHere(v, addrTop - 1);
2854 addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
2855 VdbeCoverage(v);
2856 sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec);
2857 sqlite3TableAffinity(v, p, 0);
2858 sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid);
2859 sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid);
2860 sqlite3VdbeGoto(v, addrInsLoop);
2861 sqlite3VdbeJumpHere(v, addrInsLoop);
2862 sqlite3VdbeAddOp1(v, OP_Close, 1);
2865 /* Compute the complete text of the CREATE statement */
2866 if( pSelect ){
2867 zStmt = createTableStmt(db, p);
2868 }else{
2869 Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd;
2870 n = (int)(pEnd2->z - pParse->sNameToken.z);
2871 if( pEnd2->z[0]!=';' ) n += pEnd2->n;
2872 zStmt = sqlite3MPrintf(db,
2873 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z
2877 /* A slot for the record has already been allocated in the
2878 ** schema table. We just need to update that slot with all
2879 ** the information we've collected.
2881 sqlite3NestedParse(pParse,
2882 "UPDATE %Q." LEGACY_SCHEMA_TABLE
2883 " SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q"
2884 " WHERE rowid=#%d",
2885 db->aDb[iDb].zDbSName,
2886 zType,
2887 p->zName,
2888 p->zName,
2889 pParse->regRoot,
2890 zStmt,
2891 pParse->regRowid
2893 sqlite3DbFree(db, zStmt);
2894 sqlite3ChangeCookie(pParse, iDb);
2896 #ifndef SQLITE_OMIT_AUTOINCREMENT
2897 /* Check to see if we need to create an sqlite_sequence table for
2898 ** keeping track of autoincrement keys.
2900 if( (p->tabFlags & TF_Autoincrement)!=0 && !IN_SPECIAL_PARSE ){
2901 Db *pDb = &db->aDb[iDb];
2902 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2903 if( pDb->pSchema->pSeqTab==0 ){
2904 sqlite3NestedParse(pParse,
2905 "CREATE TABLE %Q.sqlite_sequence(name,seq)",
2906 pDb->zDbSName
2910 #endif
2912 /* Reparse everything to update our internal data structures */
2913 sqlite3VdbeAddParseSchemaOp(v, iDb,
2914 sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName),0);
2917 /* Add the table to the in-memory representation of the database.
2919 if( db->init.busy ){
2920 Table *pOld;
2921 Schema *pSchema = p->pSchema;
2922 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2923 assert( HasRowid(p) || p->iPKey<0 );
2924 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p);
2925 if( pOld ){
2926 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */
2927 sqlite3OomFault(db);
2928 return;
2930 pParse->pNewTable = 0;
2931 db->mDbFlags |= DBFLAG_SchemaChange;
2933 /* If this is the magic sqlite_sequence table used by autoincrement,
2934 ** then record a pointer to this table in the main database structure
2935 ** so that INSERT can find the table easily. */
2936 assert( !pParse->nested );
2937 #ifndef SQLITE_OMIT_AUTOINCREMENT
2938 if( strcmp(p->zName, "sqlite_sequence")==0 ){
2939 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2940 p->pSchema->pSeqTab = p;
2942 #endif
2945 #ifndef SQLITE_OMIT_ALTERTABLE
2946 if( !pSelect && IsOrdinaryTable(p) ){
2947 assert( pCons && pEnd );
2948 if( pCons->z==0 ){
2949 pCons = pEnd;
2951 p->u.tab.addColOffset = 13 + (int)(pCons->z - pParse->sNameToken.z);
2953 #endif
2956 #ifndef SQLITE_OMIT_VIEW
2958 ** The parser calls this routine in order to create a new VIEW
2960 void sqlite3CreateView(
2961 Parse *pParse, /* The parsing context */
2962 Token *pBegin, /* The CREATE token that begins the statement */
2963 Token *pName1, /* The token that holds the name of the view */
2964 Token *pName2, /* The token that holds the name of the view */
2965 ExprList *pCNames, /* Optional list of view column names */
2966 Select *pSelect, /* A SELECT statement that will become the new view */
2967 int isTemp, /* TRUE for a TEMPORARY view */
2968 int noErr /* Suppress error messages if VIEW already exists */
2970 Table *p;
2971 int n;
2972 const char *z;
2973 Token sEnd;
2974 DbFixer sFix;
2975 Token *pName = 0;
2976 int iDb;
2977 sqlite3 *db = pParse->db;
2979 if( pParse->nVar>0 ){
2980 sqlite3ErrorMsg(pParse, "parameters are not allowed in views");
2981 goto create_view_fail;
2983 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr);
2984 p = pParse->pNewTable;
2985 if( p==0 || pParse->nErr ) goto create_view_fail;
2987 /* Legacy versions of SQLite allowed the use of the magic "rowid" column
2988 ** on a view, even though views do not have rowids. The following flag
2989 ** setting fixes this problem. But the fix can be disabled by compiling
2990 ** with -DSQLITE_ALLOW_ROWID_IN_VIEW in case there are legacy apps that
2991 ** depend upon the old buggy behavior. */
2992 #ifndef SQLITE_ALLOW_ROWID_IN_VIEW
2993 p->tabFlags |= TF_NoVisibleRowid;
2994 #endif
2996 sqlite3TwoPartName(pParse, pName1, pName2, &pName);
2997 iDb = sqlite3SchemaToIndex(db, p->pSchema);
2998 sqlite3FixInit(&sFix, pParse, iDb, "view", pName);
2999 if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail;
3001 /* Make a copy of the entire SELECT statement that defines the view.
3002 ** This will force all the Expr.token.z values to be dynamically
3003 ** allocated rather than point to the input string - which means that
3004 ** they will persist after the current sqlite3_exec() call returns.
3006 pSelect->selFlags |= SF_View;
3007 if( IN_RENAME_OBJECT ){
3008 p->u.view.pSelect = pSelect;
3009 pSelect = 0;
3010 }else{
3011 p->u.view.pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
3013 p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE);
3014 p->eTabType = TABTYP_VIEW;
3015 if( db->mallocFailed ) goto create_view_fail;
3017 /* Locate the end of the CREATE VIEW statement. Make sEnd point to
3018 ** the end.
3020 sEnd = pParse->sLastToken;
3021 assert( sEnd.z[0]!=0 || sEnd.n==0 );
3022 if( sEnd.z[0]!=';' ){
3023 sEnd.z += sEnd.n;
3025 sEnd.n = 0;
3026 n = (int)(sEnd.z - pBegin->z);
3027 assert( n>0 );
3028 z = pBegin->z;
3029 while( sqlite3Isspace(z[n-1]) ){ n--; }
3030 sEnd.z = &z[n-1];
3031 sEnd.n = 1;
3033 /* Use sqlite3EndTable() to add the view to the schema table */
3034 sqlite3EndTable(pParse, 0, &sEnd, 0, 0);
3036 create_view_fail:
3037 sqlite3SelectDelete(db, pSelect);
3038 if( IN_RENAME_OBJECT ){
3039 sqlite3RenameExprlistUnmap(pParse, pCNames);
3041 sqlite3ExprListDelete(db, pCNames);
3042 return;
3044 #endif /* SQLITE_OMIT_VIEW */
3046 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
3048 ** The Table structure pTable is really a VIEW. Fill in the names of
3049 ** the columns of the view in the pTable structure. Return the number
3050 ** of errors. If an error is seen leave an error message in pParse->zErrMsg.
3052 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
3053 Table *pSelTab; /* A fake table from which we get the result set */
3054 Select *pSel; /* Copy of the SELECT that implements the view */
3055 int nErr = 0; /* Number of errors encountered */
3056 sqlite3 *db = pParse->db; /* Database connection for malloc errors */
3057 #ifndef SQLITE_OMIT_VIRTUALTABLE
3058 int rc;
3059 #endif
3060 #ifndef SQLITE_OMIT_AUTHORIZATION
3061 sqlite3_xauth xAuth; /* Saved xAuth pointer */
3062 #endif
3064 assert( pTable );
3066 #ifndef SQLITE_OMIT_VIRTUALTABLE
3067 if( IsVirtual(pTable) ){
3068 db->nSchemaLock++;
3069 rc = sqlite3VtabCallConnect(pParse, pTable);
3070 db->nSchemaLock--;
3071 return rc;
3073 #endif
3075 #ifndef SQLITE_OMIT_VIEW
3076 /* A positive nCol means the columns names for this view are
3077 ** already known.
3079 if( pTable->nCol>0 ) return 0;
3081 /* A negative nCol is a special marker meaning that we are currently
3082 ** trying to compute the column names. If we enter this routine with
3083 ** a negative nCol, it means two or more views form a loop, like this:
3085 ** CREATE VIEW one AS SELECT * FROM two;
3086 ** CREATE VIEW two AS SELECT * FROM one;
3088 ** Actually, the error above is now caught prior to reaching this point.
3089 ** But the following test is still important as it does come up
3090 ** in the following:
3092 ** CREATE TABLE main.ex1(a);
3093 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1;
3094 ** SELECT * FROM temp.ex1;
3096 if( pTable->nCol<0 ){
3097 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
3098 return 1;
3100 assert( pTable->nCol>=0 );
3102 /* If we get this far, it means we need to compute the table names.
3103 ** Note that the call to sqlite3ResultSetOfSelect() will expand any
3104 ** "*" elements in the results set of the view and will assign cursors
3105 ** to the elements of the FROM clause. But we do not want these changes
3106 ** to be permanent. So the computation is done on a copy of the SELECT
3107 ** statement that defines the view.
3109 assert( IsView(pTable) );
3110 pSel = sqlite3SelectDup(db, pTable->u.view.pSelect, 0);
3111 if( pSel ){
3112 u8 eParseMode = pParse->eParseMode;
3113 int nTab = pParse->nTab;
3114 int nSelect = pParse->nSelect;
3115 pParse->eParseMode = PARSE_MODE_NORMAL;
3116 sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
3117 pTable->nCol = -1;
3118 DisableLookaside;
3119 #ifndef SQLITE_OMIT_AUTHORIZATION
3120 xAuth = db->xAuth;
3121 db->xAuth = 0;
3122 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel, SQLITE_AFF_NONE);
3123 db->xAuth = xAuth;
3124 #else
3125 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel, SQLITE_AFF_NONE);
3126 #endif
3127 pParse->nTab = nTab;
3128 pParse->nSelect = nSelect;
3129 if( pSelTab==0 ){
3130 pTable->nCol = 0;
3131 nErr++;
3132 }else if( pTable->pCheck ){
3133 /* CREATE VIEW name(arglist) AS ...
3134 ** The names of the columns in the table are taken from
3135 ** arglist which is stored in pTable->pCheck. The pCheck field
3136 ** normally holds CHECK constraints on an ordinary table, but for
3137 ** a VIEW it holds the list of column names.
3139 sqlite3ColumnsFromExprList(pParse, pTable->pCheck,
3140 &pTable->nCol, &pTable->aCol);
3141 if( pParse->nErr==0
3142 && pTable->nCol==pSel->pEList->nExpr
3144 assert( db->mallocFailed==0 );
3145 sqlite3SelectAddColumnTypeAndCollation(pParse, pTable, pSel,
3146 SQLITE_AFF_NONE);
3148 }else{
3149 /* CREATE VIEW name AS... without an argument list. Construct
3150 ** the column names from the SELECT statement that defines the view.
3152 assert( pTable->aCol==0 );
3153 pTable->nCol = pSelTab->nCol;
3154 pTable->aCol = pSelTab->aCol;
3155 pTable->tabFlags |= (pSelTab->tabFlags & COLFLAG_NOINSERT);
3156 pSelTab->nCol = 0;
3157 pSelTab->aCol = 0;
3158 assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) );
3160 pTable->nNVCol = pTable->nCol;
3161 sqlite3DeleteTable(db, pSelTab);
3162 sqlite3SelectDelete(db, pSel);
3163 EnableLookaside;
3164 pParse->eParseMode = eParseMode;
3165 } else {
3166 nErr++;
3168 pTable->pSchema->schemaFlags |= DB_UnresetViews;
3169 if( db->mallocFailed ){
3170 sqlite3DeleteColumnNames(db, pTable);
3172 #endif /* SQLITE_OMIT_VIEW */
3173 return nErr;
3175 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
3177 #ifndef SQLITE_OMIT_VIEW
3179 ** Clear the column names from every VIEW in database idx.
3181 static void sqliteViewResetAll(sqlite3 *db, int idx){
3182 HashElem *i;
3183 assert( sqlite3SchemaMutexHeld(db, idx, 0) );
3184 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
3185 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){
3186 Table *pTab = sqliteHashData(i);
3187 if( IsView(pTab) ){
3188 sqlite3DeleteColumnNames(db, pTab);
3191 DbClearProperty(db, idx, DB_UnresetViews);
3193 #else
3194 # define sqliteViewResetAll(A,B)
3195 #endif /* SQLITE_OMIT_VIEW */
3198 ** This function is called by the VDBE to adjust the internal schema
3199 ** used by SQLite when the btree layer moves a table root page. The
3200 ** root-page of a table or index in database iDb has changed from iFrom
3201 ** to iTo.
3203 ** Ticket #1728: The symbol table might still contain information
3204 ** on tables and/or indices that are the process of being deleted.
3205 ** If you are unlucky, one of those deleted indices or tables might
3206 ** have the same rootpage number as the real table or index that is
3207 ** being moved. So we cannot stop searching after the first match
3208 ** because the first match might be for one of the deleted indices
3209 ** or tables and not the table/index that is actually being moved.
3210 ** We must continue looping until all tables and indices with
3211 ** rootpage==iFrom have been converted to have a rootpage of iTo
3212 ** in order to be certain that we got the right one.
3214 #ifndef SQLITE_OMIT_AUTOVACUUM
3215 void sqlite3RootPageMoved(sqlite3 *db, int iDb, Pgno iFrom, Pgno iTo){
3216 HashElem *pElem;
3217 Hash *pHash;
3218 Db *pDb;
3220 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
3221 pDb = &db->aDb[iDb];
3222 pHash = &pDb->pSchema->tblHash;
3223 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
3224 Table *pTab = sqliteHashData(pElem);
3225 if( pTab->tnum==iFrom ){
3226 pTab->tnum = iTo;
3229 pHash = &pDb->pSchema->idxHash;
3230 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
3231 Index *pIdx = sqliteHashData(pElem);
3232 if( pIdx->tnum==iFrom ){
3233 pIdx->tnum = iTo;
3237 #endif
3240 ** Write code to erase the table with root-page iTable from database iDb.
3241 ** Also write code to modify the sqlite_schema table and internal schema
3242 ** if a root-page of another table is moved by the btree-layer whilst
3243 ** erasing iTable (this can happen with an auto-vacuum database).
3245 static void destroyRootPage(Parse *pParse, int iTable, int iDb){
3246 Vdbe *v = sqlite3GetVdbe(pParse);
3247 int r1 = sqlite3GetTempReg(pParse);
3248 if( iTable<2 ) sqlite3ErrorMsg(pParse, "corrupt schema");
3249 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb);
3250 sqlite3MayAbort(pParse);
3251 #ifndef SQLITE_OMIT_AUTOVACUUM
3252 /* OP_Destroy stores an in integer r1. If this integer
3253 ** is non-zero, then it is the root page number of a table moved to
3254 ** location iTable. The following code modifies the sqlite_schema table to
3255 ** reflect this.
3257 ** The "#NNN" in the SQL is a special constant that means whatever value
3258 ** is in register NNN. See grammar rules associated with the TK_REGISTER
3259 ** token for additional information.
3261 sqlite3NestedParse(pParse,
3262 "UPDATE %Q." LEGACY_SCHEMA_TABLE
3263 " SET rootpage=%d WHERE #%d AND rootpage=#%d",
3264 pParse->db->aDb[iDb].zDbSName, iTable, r1, r1);
3265 #endif
3266 sqlite3ReleaseTempReg(pParse, r1);
3270 ** Write VDBE code to erase table pTab and all associated indices on disk.
3271 ** Code to update the sqlite_schema tables and internal schema definitions
3272 ** in case a root-page belonging to another table is moved by the btree layer
3273 ** is also added (this can happen with an auto-vacuum database).
3275 static void destroyTable(Parse *pParse, Table *pTab){
3276 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
3277 ** is not defined), then it is important to call OP_Destroy on the
3278 ** table and index root-pages in order, starting with the numerically
3279 ** largest root-page number. This guarantees that none of the root-pages
3280 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
3281 ** following were coded:
3283 ** OP_Destroy 4 0
3284 ** ...
3285 ** OP_Destroy 5 0
3287 ** and root page 5 happened to be the largest root-page number in the
3288 ** database, then root page 5 would be moved to page 4 by the
3289 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
3290 ** a free-list page.
3292 Pgno iTab = pTab->tnum;
3293 Pgno iDestroyed = 0;
3295 while( 1 ){
3296 Index *pIdx;
3297 Pgno iLargest = 0;
3299 if( iDestroyed==0 || iTab<iDestroyed ){
3300 iLargest = iTab;
3302 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
3303 Pgno iIdx = pIdx->tnum;
3304 assert( pIdx->pSchema==pTab->pSchema );
3305 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){
3306 iLargest = iIdx;
3309 if( iLargest==0 ){
3310 return;
3311 }else{
3312 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
3313 assert( iDb>=0 && iDb<pParse->db->nDb );
3314 destroyRootPage(pParse, iLargest, iDb);
3315 iDestroyed = iLargest;
3321 ** Remove entries from the sqlite_statN tables (for N in (1,2,3))
3322 ** after a DROP INDEX or DROP TABLE command.
3324 static void sqlite3ClearStatTables(
3325 Parse *pParse, /* The parsing context */
3326 int iDb, /* The database number */
3327 const char *zType, /* "idx" or "tbl" */
3328 const char *zName /* Name of index or table */
3330 int i;
3331 const char *zDbName = pParse->db->aDb[iDb].zDbSName;
3332 for(i=1; i<=4; i++){
3333 char zTab[24];
3334 sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i);
3335 if( sqlite3FindTable(pParse->db, zTab, zDbName) ){
3336 sqlite3NestedParse(pParse,
3337 "DELETE FROM %Q.%s WHERE %s=%Q",
3338 zDbName, zTab, zType, zName
3345 ** Generate code to drop a table.
3347 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){
3348 Vdbe *v;
3349 sqlite3 *db = pParse->db;
3350 Trigger *pTrigger;
3351 Db *pDb = &db->aDb[iDb];
3353 v = sqlite3GetVdbe(pParse);
3354 assert( v!=0 );
3355 sqlite3BeginWriteOperation(pParse, 1, iDb);
3357 #ifndef SQLITE_OMIT_VIRTUALTABLE
3358 if( IsVirtual(pTab) ){
3359 sqlite3VdbeAddOp0(v, OP_VBegin);
3361 #endif
3363 /* Drop all triggers associated with the table being dropped. Code
3364 ** is generated to remove entries from sqlite_schema and/or
3365 ** sqlite_temp_schema if required.
3367 pTrigger = sqlite3TriggerList(pParse, pTab);
3368 while( pTrigger ){
3369 assert( pTrigger->pSchema==pTab->pSchema ||
3370 pTrigger->pSchema==db->aDb[1].pSchema );
3371 sqlite3DropTriggerPtr(pParse, pTrigger);
3372 pTrigger = pTrigger->pNext;
3375 #ifndef SQLITE_OMIT_AUTOINCREMENT
3376 /* Remove any entries of the sqlite_sequence table associated with
3377 ** the table being dropped. This is done before the table is dropped
3378 ** at the btree level, in case the sqlite_sequence table needs to
3379 ** move as a result of the drop (can happen in auto-vacuum mode).
3381 if( pTab->tabFlags & TF_Autoincrement ){
3382 sqlite3NestedParse(pParse,
3383 "DELETE FROM %Q.sqlite_sequence WHERE name=%Q",
3384 pDb->zDbSName, pTab->zName
3387 #endif
3389 /* Drop all entries in the schema table that refer to the
3390 ** table. The program name loops through the schema table and deletes
3391 ** every row that refers to a table of the same name as the one being
3392 ** dropped. Triggers are handled separately because a trigger can be
3393 ** created in the temp database that refers to a table in another
3394 ** database.
3396 sqlite3NestedParse(pParse,
3397 "DELETE FROM %Q." LEGACY_SCHEMA_TABLE
3398 " WHERE tbl_name=%Q and type!='trigger'",
3399 pDb->zDbSName, pTab->zName);
3400 if( !isView && !IsVirtual(pTab) ){
3401 destroyTable(pParse, pTab);
3404 /* Remove the table entry from SQLite's internal schema and modify
3405 ** the schema cookie.
3407 if( IsVirtual(pTab) ){
3408 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0);
3409 sqlite3MayAbort(pParse);
3411 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
3412 sqlite3ChangeCookie(pParse, iDb);
3413 sqliteViewResetAll(db, iDb);
3417 ** Return TRUE if shadow tables should be read-only in the current
3418 ** context.
3420 int sqlite3ReadOnlyShadowTables(sqlite3 *db){
3421 #ifndef SQLITE_OMIT_VIRTUALTABLE
3422 if( (db->flags & SQLITE_Defensive)!=0
3423 && db->pVtabCtx==0
3424 && db->nVdbeExec==0
3425 && !sqlite3VtabInSync(db)
3427 return 1;
3429 #endif
3430 return 0;
3434 ** Return true if it is not allowed to drop the given table
3436 static int tableMayNotBeDropped(sqlite3 *db, Table *pTab){
3437 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){
3438 if( sqlite3StrNICmp(pTab->zName+7, "stat", 4)==0 ) return 0;
3439 if( sqlite3StrNICmp(pTab->zName+7, "parameters", 10)==0 ) return 0;
3440 return 1;
3442 if( (pTab->tabFlags & TF_Shadow)!=0 && sqlite3ReadOnlyShadowTables(db) ){
3443 return 1;
3445 if( pTab->tabFlags & TF_Eponymous ){
3446 return 1;
3448 return 0;
3452 ** This routine is called to do the work of a DROP TABLE statement.
3453 ** pName is the name of the table to be dropped.
3455 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
3456 Table *pTab;
3457 Vdbe *v;
3458 sqlite3 *db = pParse->db;
3459 int iDb;
3461 if( db->mallocFailed ){
3462 goto exit_drop_table;
3464 assert( pParse->nErr==0 );
3465 assert( pName->nSrc==1 );
3466 if( sqlite3ReadSchema(pParse) ) goto exit_drop_table;
3467 if( noErr ) db->suppressErr++;
3468 assert( isView==0 || isView==LOCATE_VIEW );
3469 pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]);
3470 if( noErr ) db->suppressErr--;
3472 if( pTab==0 ){
3473 if( noErr ){
3474 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
3475 sqlite3ForceNotReadOnly(pParse);
3477 goto exit_drop_table;
3479 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
3480 assert( iDb>=0 && iDb<db->nDb );
3482 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure
3483 ** it is initialized.
3485 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){
3486 goto exit_drop_table;
3488 #ifndef SQLITE_OMIT_AUTHORIZATION
3490 int code;
3491 const char *zTab = SCHEMA_TABLE(iDb);
3492 const char *zDb = db->aDb[iDb].zDbSName;
3493 const char *zArg2 = 0;
3494 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
3495 goto exit_drop_table;
3497 if( isView ){
3498 if( !OMIT_TEMPDB && iDb==1 ){
3499 code = SQLITE_DROP_TEMP_VIEW;
3500 }else{
3501 code = SQLITE_DROP_VIEW;
3503 #ifndef SQLITE_OMIT_VIRTUALTABLE
3504 }else if( IsVirtual(pTab) ){
3505 code = SQLITE_DROP_VTABLE;
3506 zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName;
3507 #endif
3508 }else{
3509 if( !OMIT_TEMPDB && iDb==1 ){
3510 code = SQLITE_DROP_TEMP_TABLE;
3511 }else{
3512 code = SQLITE_DROP_TABLE;
3515 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){
3516 goto exit_drop_table;
3518 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
3519 goto exit_drop_table;
3522 #endif
3523 if( tableMayNotBeDropped(db, pTab) ){
3524 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
3525 goto exit_drop_table;
3528 #ifndef SQLITE_OMIT_VIEW
3529 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
3530 ** on a table.
3532 if( isView && !IsView(pTab) ){
3533 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName);
3534 goto exit_drop_table;
3536 if( !isView && IsView(pTab) ){
3537 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName);
3538 goto exit_drop_table;
3540 #endif
3542 /* Generate code to remove the table from the schema table
3543 ** on disk.
3545 v = sqlite3GetVdbe(pParse);
3546 if( v ){
3547 sqlite3BeginWriteOperation(pParse, 1, iDb);
3548 if( !isView ){
3549 sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName);
3550 sqlite3FkDropTable(pParse, pName, pTab);
3552 sqlite3CodeDropTable(pParse, pTab, iDb, isView);
3555 exit_drop_table:
3556 sqlite3SrcListDelete(db, pName);
3560 ** This routine is called to create a new foreign key on the table
3561 ** currently under construction. pFromCol determines which columns
3562 ** in the current table point to the foreign key. If pFromCol==0 then
3563 ** connect the key to the last column inserted. pTo is the name of
3564 ** the table referred to (a.k.a the "parent" table). pToCol is a list
3565 ** of tables in the parent pTo table. flags contains all
3566 ** information about the conflict resolution algorithms specified
3567 ** in the ON DELETE, ON UPDATE and ON INSERT clauses.
3569 ** An FKey structure is created and added to the table currently
3570 ** under construction in the pParse->pNewTable field.
3572 ** The foreign key is set for IMMEDIATE processing. A subsequent call
3573 ** to sqlite3DeferForeignKey() might change this to DEFERRED.
3575 void sqlite3CreateForeignKey(
3576 Parse *pParse, /* Parsing context */
3577 ExprList *pFromCol, /* Columns in this table that point to other table */
3578 Token *pTo, /* Name of the other table */
3579 ExprList *pToCol, /* Columns in the other table */
3580 int flags /* Conflict resolution algorithms. */
3582 sqlite3 *db = pParse->db;
3583 #ifndef SQLITE_OMIT_FOREIGN_KEY
3584 FKey *pFKey = 0;
3585 FKey *pNextTo;
3586 Table *p = pParse->pNewTable;
3587 i64 nByte;
3588 int i;
3589 int nCol;
3590 char *z;
3592 assert( pTo!=0 );
3593 if( p==0 || IN_DECLARE_VTAB ) goto fk_end;
3594 if( pFromCol==0 ){
3595 int iCol = p->nCol-1;
3596 if( NEVER(iCol<0) ) goto fk_end;
3597 if( pToCol && pToCol->nExpr!=1 ){
3598 sqlite3ErrorMsg(pParse, "foreign key on %s"
3599 " should reference only one column of table %T",
3600 p->aCol[iCol].zCnName, pTo);
3601 goto fk_end;
3603 nCol = 1;
3604 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){
3605 sqlite3ErrorMsg(pParse,
3606 "number of columns in foreign key does not match the number of "
3607 "columns in the referenced table");
3608 goto fk_end;
3609 }else{
3610 nCol = pFromCol->nExpr;
3612 nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1;
3613 if( pToCol ){
3614 for(i=0; i<pToCol->nExpr; i++){
3615 nByte += sqlite3Strlen30(pToCol->a[i].zEName) + 1;
3618 pFKey = sqlite3DbMallocZero(db, nByte );
3619 if( pFKey==0 ){
3620 goto fk_end;
3622 pFKey->pFrom = p;
3623 assert( IsOrdinaryTable(p) );
3624 pFKey->pNextFrom = p->u.tab.pFKey;
3625 z = (char*)&pFKey->aCol[nCol];
3626 pFKey->zTo = z;
3627 if( IN_RENAME_OBJECT ){
3628 sqlite3RenameTokenMap(pParse, (void*)z, pTo);
3630 memcpy(z, pTo->z, pTo->n);
3631 z[pTo->n] = 0;
3632 sqlite3Dequote(z);
3633 z += pTo->n+1;
3634 pFKey->nCol = nCol;
3635 if( pFromCol==0 ){
3636 pFKey->aCol[0].iFrom = p->nCol-1;
3637 }else{
3638 for(i=0; i<nCol; i++){
3639 int j;
3640 for(j=0; j<p->nCol; j++){
3641 if( sqlite3StrICmp(p->aCol[j].zCnName, pFromCol->a[i].zEName)==0 ){
3642 pFKey->aCol[i].iFrom = j;
3643 break;
3646 if( j>=p->nCol ){
3647 sqlite3ErrorMsg(pParse,
3648 "unknown column \"%s\" in foreign key definition",
3649 pFromCol->a[i].zEName);
3650 goto fk_end;
3652 if( IN_RENAME_OBJECT ){
3653 sqlite3RenameTokenRemap(pParse, &pFKey->aCol[i], pFromCol->a[i].zEName);
3657 if( pToCol ){
3658 for(i=0; i<nCol; i++){
3659 int n = sqlite3Strlen30(pToCol->a[i].zEName);
3660 pFKey->aCol[i].zCol = z;
3661 if( IN_RENAME_OBJECT ){
3662 sqlite3RenameTokenRemap(pParse, z, pToCol->a[i].zEName);
3664 memcpy(z, pToCol->a[i].zEName, n);
3665 z[n] = 0;
3666 z += n+1;
3669 pFKey->isDeferred = 0;
3670 pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */
3671 pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */
3673 assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) );
3674 pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash,
3675 pFKey->zTo, (void *)pFKey
3677 if( pNextTo==pFKey ){
3678 sqlite3OomFault(db);
3679 goto fk_end;
3681 if( pNextTo ){
3682 assert( pNextTo->pPrevTo==0 );
3683 pFKey->pNextTo = pNextTo;
3684 pNextTo->pPrevTo = pFKey;
3687 /* Link the foreign key to the table as the last step.
3689 assert( IsOrdinaryTable(p) );
3690 p->u.tab.pFKey = pFKey;
3691 pFKey = 0;
3693 fk_end:
3694 sqlite3DbFree(db, pFKey);
3695 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
3696 sqlite3ExprListDelete(db, pFromCol);
3697 sqlite3ExprListDelete(db, pToCol);
3701 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
3702 ** clause is seen as part of a foreign key definition. The isDeferred
3703 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
3704 ** The behavior of the most recently created foreign key is adjusted
3705 ** accordingly.
3707 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){
3708 #ifndef SQLITE_OMIT_FOREIGN_KEY
3709 Table *pTab;
3710 FKey *pFKey;
3711 if( (pTab = pParse->pNewTable)==0 ) return;
3712 if( NEVER(!IsOrdinaryTable(pTab)) ) return;
3713 if( (pFKey = pTab->u.tab.pFKey)==0 ) return;
3714 assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */
3715 pFKey->isDeferred = (u8)isDeferred;
3716 #endif
3720 ** Generate code that will erase and refill index *pIdx. This is
3721 ** used to initialize a newly created index or to recompute the
3722 ** content of an index in response to a REINDEX command.
3724 ** if memRootPage is not negative, it means that the index is newly
3725 ** created. The register specified by memRootPage contains the
3726 ** root page number of the index. If memRootPage is negative, then
3727 ** the index already exists and must be cleared before being refilled and
3728 ** the root page number of the index is taken from pIndex->tnum.
3730 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
3731 Table *pTab = pIndex->pTable; /* The table that is indexed */
3732 int iTab = pParse->nTab++; /* Btree cursor used for pTab */
3733 int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */
3734 int iSorter; /* Cursor opened by OpenSorter (if in use) */
3735 int addr1; /* Address of top of loop */
3736 int addr2; /* Address to jump to for next iteration */
3737 Pgno tnum; /* Root page of index */
3738 int iPartIdxLabel; /* Jump to this label to skip a row */
3739 Vdbe *v; /* Generate code into this virtual machine */
3740 KeyInfo *pKey; /* KeyInfo for index */
3741 int regRecord; /* Register holding assembled index record */
3742 sqlite3 *db = pParse->db; /* The database connection */
3743 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
3745 #ifndef SQLITE_OMIT_AUTHORIZATION
3746 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
3747 db->aDb[iDb].zDbSName ) ){
3748 return;
3750 #endif
3752 /* Require a write-lock on the table to perform this operation */
3753 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
3755 v = sqlite3GetVdbe(pParse);
3756 if( v==0 ) return;
3757 if( memRootPage>=0 ){
3758 tnum = (Pgno)memRootPage;
3759 }else{
3760 tnum = pIndex->tnum;
3762 pKey = sqlite3KeyInfoOfIndex(pParse, pIndex);
3763 assert( pKey!=0 || pParse->nErr );
3765 /* Open the sorter cursor if we are to use one. */
3766 iSorter = pParse->nTab++;
3767 sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*)
3768 sqlite3KeyInfoRef(pKey), P4_KEYINFO);
3770 /* Open the table. Loop through all rows of the table, inserting index
3771 ** records into the sorter. */
3772 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
3773 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v);
3774 regRecord = sqlite3GetTempReg(pParse);
3775 sqlite3MultiWrite(pParse);
3777 sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0);
3778 sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord);
3779 sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel);
3780 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v);
3781 sqlite3VdbeJumpHere(v, addr1);
3782 if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb);
3783 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, (int)tnum, iDb,
3784 (char *)pKey, P4_KEYINFO);
3785 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0));
3787 addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v);
3788 if( IsUniqueIndex(pIndex) ){
3789 int j2 = sqlite3VdbeGoto(v, 1);
3790 addr2 = sqlite3VdbeCurrentAddr(v);
3791 sqlite3VdbeVerifyAbortable(v, OE_Abort);
3792 sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord,
3793 pIndex->nKeyCol); VdbeCoverage(v);
3794 sqlite3UniqueConstraint(pParse, OE_Abort, pIndex);
3795 sqlite3VdbeJumpHere(v, j2);
3796 }else{
3797 /* Most CREATE INDEX and REINDEX statements that are not UNIQUE can not
3798 ** abort. The exception is if one of the indexed expressions contains a
3799 ** user function that throws an exception when it is evaluated. But the
3800 ** overhead of adding a statement journal to a CREATE INDEX statement is
3801 ** very small (since most of the pages written do not contain content that
3802 ** needs to be restored if the statement aborts), so we call
3803 ** sqlite3MayAbort() for all CREATE INDEX statements. */
3804 sqlite3MayAbort(pParse);
3805 addr2 = sqlite3VdbeCurrentAddr(v);
3807 sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx);
3808 if( !pIndex->bAscKeyBug ){
3809 /* This OP_SeekEnd opcode makes index insert for a REINDEX go much
3810 ** faster by avoiding unnecessary seeks. But the optimization does
3811 ** not work for UNIQUE constraint indexes on WITHOUT ROWID tables
3812 ** with DESC primary keys, since those indexes have there keys in
3813 ** a different order from the main table.
3814 ** See ticket: https://www.sqlite.org/src/info/bba7b69f9849b5bf
3816 sqlite3VdbeAddOp1(v, OP_SeekEnd, iIdx);
3818 sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord);
3819 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
3820 sqlite3ReleaseTempReg(pParse, regRecord);
3821 sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v);
3822 sqlite3VdbeJumpHere(v, addr1);
3824 sqlite3VdbeAddOp1(v, OP_Close, iTab);
3825 sqlite3VdbeAddOp1(v, OP_Close, iIdx);
3826 sqlite3VdbeAddOp1(v, OP_Close, iSorter);
3830 ** Allocate heap space to hold an Index object with nCol columns.
3832 ** Increase the allocation size to provide an extra nExtra bytes
3833 ** of 8-byte aligned space after the Index object and return a
3834 ** pointer to this extra space in *ppExtra.
3836 Index *sqlite3AllocateIndexObject(
3837 sqlite3 *db, /* Database connection */
3838 i16 nCol, /* Total number of columns in the index */
3839 int nExtra, /* Number of bytes of extra space to alloc */
3840 char **ppExtra /* Pointer to the "extra" space */
3842 Index *p; /* Allocated index object */
3843 int nByte; /* Bytes of space for Index object + arrays */
3845 nByte = ROUND8(sizeof(Index)) + /* Index structure */
3846 ROUND8(sizeof(char*)*nCol) + /* Index.azColl */
3847 ROUND8(sizeof(LogEst)*(nCol+1) + /* Index.aiRowLogEst */
3848 sizeof(i16)*nCol + /* Index.aiColumn */
3849 sizeof(u8)*nCol); /* Index.aSortOrder */
3850 p = sqlite3DbMallocZero(db, nByte + nExtra);
3851 if( p ){
3852 char *pExtra = ((char*)p)+ROUND8(sizeof(Index));
3853 p->azColl = (const char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol);
3854 p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1);
3855 p->aiColumn = (i16*)pExtra; pExtra += sizeof(i16)*nCol;
3856 p->aSortOrder = (u8*)pExtra;
3857 p->nColumn = nCol;
3858 p->nKeyCol = nCol - 1;
3859 *ppExtra = ((char*)p) + nByte;
3861 return p;
3865 ** If expression list pList contains an expression that was parsed with
3866 ** an explicit "NULLS FIRST" or "NULLS LAST" clause, leave an error in
3867 ** pParse and return non-zero. Otherwise, return zero.
3869 int sqlite3HasExplicitNulls(Parse *pParse, ExprList *pList){
3870 if( pList ){
3871 int i;
3872 for(i=0; i<pList->nExpr; i++){
3873 if( pList->a[i].fg.bNulls ){
3874 u8 sf = pList->a[i].fg.sortFlags;
3875 sqlite3ErrorMsg(pParse, "unsupported use of NULLS %s",
3876 (sf==0 || sf==3) ? "FIRST" : "LAST"
3878 return 1;
3882 return 0;
3886 ** Create a new index for an SQL table. pName1.pName2 is the name of the index
3887 ** and pTblList is the name of the table that is to be indexed. Both will
3888 ** be NULL for a primary key or an index that is created to satisfy a
3889 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable
3890 ** as the table to be indexed. pParse->pNewTable is a table that is
3891 ** currently being constructed by a CREATE TABLE statement.
3893 ** pList is a list of columns to be indexed. pList will be NULL if this
3894 ** is a primary key or unique-constraint on the most recent column added
3895 ** to the table currently under construction.
3897 void sqlite3CreateIndex(
3898 Parse *pParse, /* All information about this parse */
3899 Token *pName1, /* First part of index name. May be NULL */
3900 Token *pName2, /* Second part of index name. May be NULL */
3901 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */
3902 ExprList *pList, /* A list of columns to be indexed */
3903 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
3904 Token *pStart, /* The CREATE token that begins this statement */
3905 Expr *pPIWhere, /* WHERE clause for partial indices */
3906 int sortOrder, /* Sort order of primary key when pList==NULL */
3907 int ifNotExist, /* Omit error if index already exists */
3908 u8 idxType /* The index type */
3910 Table *pTab = 0; /* Table to be indexed */
3911 Index *pIndex = 0; /* The index to be created */
3912 char *zName = 0; /* Name of the index */
3913 int nName; /* Number of characters in zName */
3914 int i, j;
3915 DbFixer sFix; /* For assigning database names to pTable */
3916 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */
3917 sqlite3 *db = pParse->db;
3918 Db *pDb; /* The specific table containing the indexed database */
3919 int iDb; /* Index of the database that is being written */
3920 Token *pName = 0; /* Unqualified name of the index to create */
3921 struct ExprList_item *pListItem; /* For looping over pList */
3922 int nExtra = 0; /* Space allocated for zExtra[] */
3923 int nExtraCol; /* Number of extra columns needed */
3924 char *zExtra = 0; /* Extra space after the Index object */
3925 Index *pPk = 0; /* PRIMARY KEY index for WITHOUT ROWID tables */
3927 assert( db->pParse==pParse );
3928 if( pParse->nErr ){
3929 goto exit_create_index;
3931 assert( db->mallocFailed==0 );
3932 if( IN_DECLARE_VTAB && idxType!=SQLITE_IDXTYPE_PRIMARYKEY ){
3933 goto exit_create_index;
3935 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
3936 goto exit_create_index;
3938 if( sqlite3HasExplicitNulls(pParse, pList) ){
3939 goto exit_create_index;
3943 ** Find the table that is to be indexed. Return early if not found.
3945 if( pTblName!=0 ){
3947 /* Use the two-part index name to determine the database
3948 ** to search for the table. 'Fix' the table name to this db
3949 ** before looking up the table.
3951 assert( pName1 && pName2 );
3952 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
3953 if( iDb<0 ) goto exit_create_index;
3954 assert( pName && pName->z );
3956 #ifndef SQLITE_OMIT_TEMPDB
3957 /* If the index name was unqualified, check if the table
3958 ** is a temp table. If so, set the database to 1. Do not do this
3959 ** if initialising a database schema.
3961 if( !db->init.busy ){
3962 pTab = sqlite3SrcListLookup(pParse, pTblName);
3963 if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
3964 iDb = 1;
3967 #endif
3969 sqlite3FixInit(&sFix, pParse, iDb, "index", pName);
3970 if( sqlite3FixSrcList(&sFix, pTblName) ){
3971 /* Because the parser constructs pTblName from a single identifier,
3972 ** sqlite3FixSrcList can never fail. */
3973 assert(0);
3975 pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]);
3976 assert( db->mallocFailed==0 || pTab==0 );
3977 if( pTab==0 ) goto exit_create_index;
3978 if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){
3979 sqlite3ErrorMsg(pParse,
3980 "cannot create a TEMP index on non-TEMP table \"%s\"",
3981 pTab->zName);
3982 goto exit_create_index;
3984 if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab);
3985 }else{
3986 assert( pName==0 );
3987 assert( pStart==0 );
3988 pTab = pParse->pNewTable;
3989 if( !pTab ) goto exit_create_index;
3990 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
3992 pDb = &db->aDb[iDb];
3994 assert( pTab!=0 );
3995 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
3996 && db->init.busy==0
3997 && pTblName!=0
3998 #if SQLITE_USER_AUTHENTICATION
3999 && sqlite3UserAuthTable(pTab->zName)==0
4000 #endif
4002 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
4003 goto exit_create_index;
4005 #ifndef SQLITE_OMIT_VIEW
4006 if( IsView(pTab) ){
4007 sqlite3ErrorMsg(pParse, "views may not be indexed");
4008 goto exit_create_index;
4010 #endif
4011 #ifndef SQLITE_OMIT_VIRTUALTABLE
4012 if( IsVirtual(pTab) ){
4013 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed");
4014 goto exit_create_index;
4016 #endif
4019 ** Find the name of the index. Make sure there is not already another
4020 ** index or table with the same name.
4022 ** Exception: If we are reading the names of permanent indices from the
4023 ** sqlite_schema table (because some other process changed the schema) and
4024 ** one of the index names collides with the name of a temporary table or
4025 ** index, then we will continue to process this index.
4027 ** If pName==0 it means that we are
4028 ** dealing with a primary key or UNIQUE constraint. We have to invent our
4029 ** own name.
4031 if( pName ){
4032 zName = sqlite3NameFromToken(db, pName);
4033 if( zName==0 ) goto exit_create_index;
4034 assert( pName->z!=0 );
4035 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName,"index",pTab->zName) ){
4036 goto exit_create_index;
4038 if( !IN_RENAME_OBJECT ){
4039 if( !db->init.busy ){
4040 if( sqlite3FindTable(db, zName, 0)!=0 ){
4041 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName);
4042 goto exit_create_index;
4045 if( sqlite3FindIndex(db, zName, pDb->zDbSName)!=0 ){
4046 if( !ifNotExist ){
4047 sqlite3ErrorMsg(pParse, "index %s already exists", zName);
4048 }else{
4049 assert( !db->init.busy );
4050 sqlite3CodeVerifySchema(pParse, iDb);
4051 sqlite3ForceNotReadOnly(pParse);
4053 goto exit_create_index;
4056 }else{
4057 int n;
4058 Index *pLoop;
4059 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
4060 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n);
4061 if( zName==0 ){
4062 goto exit_create_index;
4065 /* Automatic index names generated from within sqlite3_declare_vtab()
4066 ** must have names that are distinct from normal automatic index names.
4067 ** The following statement converts "sqlite3_autoindex..." into
4068 ** "sqlite3_butoindex..." in order to make the names distinct.
4069 ** The "vtab_err.test" test demonstrates the need of this statement. */
4070 if( IN_SPECIAL_PARSE ) zName[7]++;
4073 /* Check for authorization to create an index.
4075 #ifndef SQLITE_OMIT_AUTHORIZATION
4076 if( !IN_RENAME_OBJECT ){
4077 const char *zDb = pDb->zDbSName;
4078 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){
4079 goto exit_create_index;
4081 i = SQLITE_CREATE_INDEX;
4082 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX;
4083 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){
4084 goto exit_create_index;
4087 #endif
4089 /* If pList==0, it means this routine was called to make a primary
4090 ** key out of the last column added to the table under construction.
4091 ** So create a fake list to simulate this.
4093 if( pList==0 ){
4094 Token prevCol;
4095 Column *pCol = &pTab->aCol[pTab->nCol-1];
4096 pCol->colFlags |= COLFLAG_UNIQUE;
4097 sqlite3TokenInit(&prevCol, pCol->zCnName);
4098 pList = sqlite3ExprListAppend(pParse, 0,
4099 sqlite3ExprAlloc(db, TK_ID, &prevCol, 0));
4100 if( pList==0 ) goto exit_create_index;
4101 assert( pList->nExpr==1 );
4102 sqlite3ExprListSetSortOrder(pList, sortOrder, SQLITE_SO_UNDEFINED);
4103 }else{
4104 sqlite3ExprListCheckLength(pParse, pList, "index");
4105 if( pParse->nErr ) goto exit_create_index;
4108 /* Figure out how many bytes of space are required to store explicitly
4109 ** specified collation sequence names.
4111 for(i=0; i<pList->nExpr; i++){
4112 Expr *pExpr = pList->a[i].pExpr;
4113 assert( pExpr!=0 );
4114 if( pExpr->op==TK_COLLATE ){
4115 assert( !ExprHasProperty(pExpr, EP_IntValue) );
4116 nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken));
4121 ** Allocate the index structure.
4123 nName = sqlite3Strlen30(zName);
4124 nExtraCol = pPk ? pPk->nKeyCol : 1;
4125 assert( pList->nExpr + nExtraCol <= 32767 /* Fits in i16 */ );
4126 pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol,
4127 nName + nExtra + 1, &zExtra);
4128 if( db->mallocFailed ){
4129 goto exit_create_index;
4131 assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) );
4132 assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) );
4133 pIndex->zName = zExtra;
4134 zExtra += nName + 1;
4135 memcpy(pIndex->zName, zName, nName+1);
4136 pIndex->pTable = pTab;
4137 pIndex->onError = (u8)onError;
4138 pIndex->uniqNotNull = onError!=OE_None;
4139 pIndex->idxType = idxType;
4140 pIndex->pSchema = db->aDb[iDb].pSchema;
4141 pIndex->nKeyCol = pList->nExpr;
4142 if( pPIWhere ){
4143 sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0);
4144 pIndex->pPartIdxWhere = pPIWhere;
4145 pPIWhere = 0;
4147 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
4149 /* Check to see if we should honor DESC requests on index columns
4151 if( pDb->pSchema->file_format>=4 ){
4152 sortOrderMask = -1; /* Honor DESC */
4153 }else{
4154 sortOrderMask = 0; /* Ignore DESC */
4157 /* Analyze the list of expressions that form the terms of the index and
4158 ** report any errors. In the common case where the expression is exactly
4159 ** a table column, store that column in aiColumn[]. For general expressions,
4160 ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[].
4162 ** TODO: Issue a warning if two or more columns of the index are identical.
4163 ** TODO: Issue a warning if the table primary key is used as part of the
4164 ** index key.
4166 pListItem = pList->a;
4167 if( IN_RENAME_OBJECT ){
4168 pIndex->aColExpr = pList;
4169 pList = 0;
4171 for(i=0; i<pIndex->nKeyCol; i++, pListItem++){
4172 Expr *pCExpr; /* The i-th index expression */
4173 int requestedSortOrder; /* ASC or DESC on the i-th expression */
4174 const char *zColl; /* Collation sequence name */
4176 sqlite3StringToId(pListItem->pExpr);
4177 sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0);
4178 if( pParse->nErr ) goto exit_create_index;
4179 pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr);
4180 if( pCExpr->op!=TK_COLUMN ){
4181 if( pTab==pParse->pNewTable ){
4182 sqlite3ErrorMsg(pParse, "expressions prohibited in PRIMARY KEY and "
4183 "UNIQUE constraints");
4184 goto exit_create_index;
4186 if( pIndex->aColExpr==0 ){
4187 pIndex->aColExpr = pList;
4188 pList = 0;
4190 j = XN_EXPR;
4191 pIndex->aiColumn[i] = XN_EXPR;
4192 pIndex->uniqNotNull = 0;
4193 }else{
4194 j = pCExpr->iColumn;
4195 assert( j<=0x7fff );
4196 if( j<0 ){
4197 j = pTab->iPKey;
4198 }else{
4199 if( pTab->aCol[j].notNull==0 ){
4200 pIndex->uniqNotNull = 0;
4202 if( pTab->aCol[j].colFlags & COLFLAG_VIRTUAL ){
4203 pIndex->bHasVCol = 1;
4206 pIndex->aiColumn[i] = (i16)j;
4208 zColl = 0;
4209 if( pListItem->pExpr->op==TK_COLLATE ){
4210 int nColl;
4211 assert( !ExprHasProperty(pListItem->pExpr, EP_IntValue) );
4212 zColl = pListItem->pExpr->u.zToken;
4213 nColl = sqlite3Strlen30(zColl) + 1;
4214 assert( nExtra>=nColl );
4215 memcpy(zExtra, zColl, nColl);
4216 zColl = zExtra;
4217 zExtra += nColl;
4218 nExtra -= nColl;
4219 }else if( j>=0 ){
4220 zColl = sqlite3ColumnColl(&pTab->aCol[j]);
4222 if( !zColl ) zColl = sqlite3StrBINARY;
4223 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){
4224 goto exit_create_index;
4226 pIndex->azColl[i] = zColl;
4227 requestedSortOrder = pListItem->fg.sortFlags & sortOrderMask;
4228 pIndex->aSortOrder[i] = (u8)requestedSortOrder;
4231 /* Append the table key to the end of the index. For WITHOUT ROWID
4232 ** tables (when pPk!=0) this will be the declared PRIMARY KEY. For
4233 ** normal tables (when pPk==0) this will be the rowid.
4235 if( pPk ){
4236 for(j=0; j<pPk->nKeyCol; j++){
4237 int x = pPk->aiColumn[j];
4238 assert( x>=0 );
4239 if( isDupColumn(pIndex, pIndex->nKeyCol, pPk, j) ){
4240 pIndex->nColumn--;
4241 }else{
4242 testcase( hasColumn(pIndex->aiColumn,pIndex->nKeyCol,x) );
4243 pIndex->aiColumn[i] = x;
4244 pIndex->azColl[i] = pPk->azColl[j];
4245 pIndex->aSortOrder[i] = pPk->aSortOrder[j];
4246 i++;
4249 assert( i==pIndex->nColumn );
4250 }else{
4251 pIndex->aiColumn[i] = XN_ROWID;
4252 pIndex->azColl[i] = sqlite3StrBINARY;
4254 sqlite3DefaultRowEst(pIndex);
4255 if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex);
4257 /* If this index contains every column of its table, then mark
4258 ** it as a covering index */
4259 assert( HasRowid(pTab)
4260 || pTab->iPKey<0 || sqlite3TableColumnToIndex(pIndex, pTab->iPKey)>=0 );
4261 recomputeColumnsNotIndexed(pIndex);
4262 if( pTblName!=0 && pIndex->nColumn>=pTab->nCol ){
4263 pIndex->isCovering = 1;
4264 for(j=0; j<pTab->nCol; j++){
4265 if( j==pTab->iPKey ) continue;
4266 if( sqlite3TableColumnToIndex(pIndex,j)>=0 ) continue;
4267 pIndex->isCovering = 0;
4268 break;
4272 if( pTab==pParse->pNewTable ){
4273 /* This routine has been called to create an automatic index as a
4274 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
4275 ** a PRIMARY KEY or UNIQUE clause following the column definitions.
4276 ** i.e. one of:
4278 ** CREATE TABLE t(x PRIMARY KEY, y);
4279 ** CREATE TABLE t(x, y, UNIQUE(x, y));
4281 ** Either way, check to see if the table already has such an index. If
4282 ** so, don't bother creating this one. This only applies to
4283 ** automatically created indices. Users can do as they wish with
4284 ** explicit indices.
4286 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent
4287 ** (and thus suppressing the second one) even if they have different
4288 ** sort orders.
4290 ** If there are different collating sequences or if the columns of
4291 ** the constraint occur in different orders, then the constraints are
4292 ** considered distinct and both result in separate indices.
4294 Index *pIdx;
4295 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
4296 int k;
4297 assert( IsUniqueIndex(pIdx) );
4298 assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF );
4299 assert( IsUniqueIndex(pIndex) );
4301 if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue;
4302 for(k=0; k<pIdx->nKeyCol; k++){
4303 const char *z1;
4304 const char *z2;
4305 assert( pIdx->aiColumn[k]>=0 );
4306 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break;
4307 z1 = pIdx->azColl[k];
4308 z2 = pIndex->azColl[k];
4309 if( sqlite3StrICmp(z1, z2) ) break;
4311 if( k==pIdx->nKeyCol ){
4312 if( pIdx->onError!=pIndex->onError ){
4313 /* This constraint creates the same index as a previous
4314 ** constraint specified somewhere in the CREATE TABLE statement.
4315 ** However the ON CONFLICT clauses are different. If both this
4316 ** constraint and the previous equivalent constraint have explicit
4317 ** ON CONFLICT clauses this is an error. Otherwise, use the
4318 ** explicitly specified behavior for the index.
4320 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){
4321 sqlite3ErrorMsg(pParse,
4322 "conflicting ON CONFLICT clauses specified", 0);
4324 if( pIdx->onError==OE_Default ){
4325 pIdx->onError = pIndex->onError;
4328 if( idxType==SQLITE_IDXTYPE_PRIMARYKEY ) pIdx->idxType = idxType;
4329 if( IN_RENAME_OBJECT ){
4330 pIndex->pNext = pParse->pNewIndex;
4331 pParse->pNewIndex = pIndex;
4332 pIndex = 0;
4334 goto exit_create_index;
4339 if( !IN_RENAME_OBJECT ){
4341 /* Link the new Index structure to its table and to the other
4342 ** in-memory database structures.
4344 assert( pParse->nErr==0 );
4345 if( db->init.busy ){
4346 Index *p;
4347 assert( !IN_SPECIAL_PARSE );
4348 assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
4349 if( pTblName!=0 ){
4350 pIndex->tnum = db->init.newTnum;
4351 if( sqlite3IndexHasDuplicateRootPage(pIndex) ){
4352 sqlite3ErrorMsg(pParse, "invalid rootpage");
4353 pParse->rc = SQLITE_CORRUPT_BKPT;
4354 goto exit_create_index;
4357 p = sqlite3HashInsert(&pIndex->pSchema->idxHash,
4358 pIndex->zName, pIndex);
4359 if( p ){
4360 assert( p==pIndex ); /* Malloc must have failed */
4361 sqlite3OomFault(db);
4362 goto exit_create_index;
4364 db->mDbFlags |= DBFLAG_SchemaChange;
4367 /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the
4368 ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then
4369 ** emit code to allocate the index rootpage on disk and make an entry for
4370 ** the index in the sqlite_schema table and populate the index with
4371 ** content. But, do not do this if we are simply reading the sqlite_schema
4372 ** table to parse the schema, or if this index is the PRIMARY KEY index
4373 ** of a WITHOUT ROWID table.
4375 ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY
4376 ** or UNIQUE index in a CREATE TABLE statement. Since the table
4377 ** has just been created, it contains no data and the index initialization
4378 ** step can be skipped.
4380 else if( HasRowid(pTab) || pTblName!=0 ){
4381 Vdbe *v;
4382 char *zStmt;
4383 int iMem = ++pParse->nMem;
4385 v = sqlite3GetVdbe(pParse);
4386 if( v==0 ) goto exit_create_index;
4388 sqlite3BeginWriteOperation(pParse, 1, iDb);
4390 /* Create the rootpage for the index using CreateIndex. But before
4391 ** doing so, code a Noop instruction and store its address in
4392 ** Index.tnum. This is required in case this index is actually a
4393 ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In
4394 ** that case the convertToWithoutRowidTable() routine will replace
4395 ** the Noop with a Goto to jump over the VDBE code generated below. */
4396 pIndex->tnum = (Pgno)sqlite3VdbeAddOp0(v, OP_Noop);
4397 sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, iMem, BTREE_BLOBKEY);
4399 /* Gather the complete text of the CREATE INDEX statement into
4400 ** the zStmt variable
4402 assert( pName!=0 || pStart==0 );
4403 if( pStart ){
4404 int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n;
4405 if( pName->z[n-1]==';' ) n--;
4406 /* A named index with an explicit CREATE INDEX statement */
4407 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s",
4408 onError==OE_None ? "" : " UNIQUE", n, pName->z);
4409 }else{
4410 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
4411 /* zStmt = sqlite3MPrintf(""); */
4412 zStmt = 0;
4415 /* Add an entry in sqlite_schema for this index
4417 sqlite3NestedParse(pParse,
4418 "INSERT INTO %Q." LEGACY_SCHEMA_TABLE " VALUES('index',%Q,%Q,#%d,%Q);",
4419 db->aDb[iDb].zDbSName,
4420 pIndex->zName,
4421 pTab->zName,
4422 iMem,
4423 zStmt
4425 sqlite3DbFree(db, zStmt);
4427 /* Fill the index with data and reparse the schema. Code an OP_Expire
4428 ** to invalidate all pre-compiled statements.
4430 if( pTblName ){
4431 sqlite3RefillIndex(pParse, pIndex, iMem);
4432 sqlite3ChangeCookie(pParse, iDb);
4433 sqlite3VdbeAddParseSchemaOp(v, iDb,
4434 sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName), 0);
4435 sqlite3VdbeAddOp2(v, OP_Expire, 0, 1);
4438 sqlite3VdbeJumpHere(v, (int)pIndex->tnum);
4441 if( db->init.busy || pTblName==0 ){
4442 pIndex->pNext = pTab->pIndex;
4443 pTab->pIndex = pIndex;
4444 pIndex = 0;
4446 else if( IN_RENAME_OBJECT ){
4447 assert( pParse->pNewIndex==0 );
4448 pParse->pNewIndex = pIndex;
4449 pIndex = 0;
4452 /* Clean up before exiting */
4453 exit_create_index:
4454 if( pIndex ) sqlite3FreeIndex(db, pIndex);
4455 if( pTab ){
4456 /* Ensure all REPLACE indexes on pTab are at the end of the pIndex list.
4457 ** The list was already ordered when this routine was entered, so at this
4458 ** point at most a single index (the newly added index) will be out of
4459 ** order. So we have to reorder at most one index. */
4460 Index **ppFrom;
4461 Index *pThis;
4462 for(ppFrom=&pTab->pIndex; (pThis = *ppFrom)!=0; ppFrom=&pThis->pNext){
4463 Index *pNext;
4464 if( pThis->onError!=OE_Replace ) continue;
4465 while( (pNext = pThis->pNext)!=0 && pNext->onError!=OE_Replace ){
4466 *ppFrom = pNext;
4467 pThis->pNext = pNext->pNext;
4468 pNext->pNext = pThis;
4469 ppFrom = &pNext->pNext;
4471 break;
4473 #ifdef SQLITE_DEBUG
4474 /* Verify that all REPLACE indexes really are now at the end
4475 ** of the index list. In other words, no other index type ever
4476 ** comes after a REPLACE index on the list. */
4477 for(pThis = pTab->pIndex; pThis; pThis=pThis->pNext){
4478 assert( pThis->onError!=OE_Replace
4479 || pThis->pNext==0
4480 || pThis->pNext->onError==OE_Replace );
4482 #endif
4484 sqlite3ExprDelete(db, pPIWhere);
4485 sqlite3ExprListDelete(db, pList);
4486 sqlite3SrcListDelete(db, pTblName);
4487 sqlite3DbFree(db, zName);
4491 ** Fill the Index.aiRowEst[] array with default information - information
4492 ** to be used when we have not run the ANALYZE command.
4494 ** aiRowEst[0] is supposed to contain the number of elements in the index.
4495 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the
4496 ** number of rows in the table that match any particular value of the
4497 ** first column of the index. aiRowEst[2] is an estimate of the number
4498 ** of rows that match any particular combination of the first 2 columns
4499 ** of the index. And so forth. It must always be the case that
4501 ** aiRowEst[N]<=aiRowEst[N-1]
4502 ** aiRowEst[N]>=1
4504 ** Apart from that, we have little to go on besides intuition as to
4505 ** how aiRowEst[] should be initialized. The numbers generated here
4506 ** are based on typical values found in actual indices.
4508 void sqlite3DefaultRowEst(Index *pIdx){
4509 /* 10, 9, 8, 7, 6 */
4510 static const LogEst aVal[] = { 33, 32, 30, 28, 26 };
4511 LogEst *a = pIdx->aiRowLogEst;
4512 LogEst x;
4513 int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol);
4514 int i;
4516 /* Indexes with default row estimates should not have stat1 data */
4517 assert( !pIdx->hasStat1 );
4519 /* Set the first entry (number of rows in the index) to the estimated
4520 ** number of rows in the table, or half the number of rows in the table
4521 ** for a partial index.
4523 ** 2020-05-27: If some of the stat data is coming from the sqlite_stat1
4524 ** table but other parts we are having to guess at, then do not let the
4525 ** estimated number of rows in the table be less than 1000 (LogEst 99).
4526 ** Failure to do this can cause the indexes for which we do not have
4527 ** stat1 data to be ignored by the query planner.
4529 x = pIdx->pTable->nRowLogEst;
4530 assert( 99==sqlite3LogEst(1000) );
4531 if( x<99 ){
4532 pIdx->pTable->nRowLogEst = x = 99;
4534 if( pIdx->pPartIdxWhere!=0 ){ x -= 10; assert( 10==sqlite3LogEst(2) ); }
4535 a[0] = x;
4537 /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is
4538 ** 6 and each subsequent value (if any) is 5. */
4539 memcpy(&a[1], aVal, nCopy*sizeof(LogEst));
4540 for(i=nCopy+1; i<=pIdx->nKeyCol; i++){
4541 a[i] = 23; assert( 23==sqlite3LogEst(5) );
4544 assert( 0==sqlite3LogEst(1) );
4545 if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0;
4549 ** This routine will drop an existing named index. This routine
4550 ** implements the DROP INDEX statement.
4552 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){
4553 Index *pIndex;
4554 Vdbe *v;
4555 sqlite3 *db = pParse->db;
4556 int iDb;
4558 if( db->mallocFailed ){
4559 goto exit_drop_index;
4561 assert( pParse->nErr==0 ); /* Never called with prior non-OOM errors */
4562 assert( pName->nSrc==1 );
4563 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
4564 goto exit_drop_index;
4566 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
4567 if( pIndex==0 ){
4568 if( !ifExists ){
4569 sqlite3ErrorMsg(pParse, "no such index: %S", pName->a);
4570 }else{
4571 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
4572 sqlite3ForceNotReadOnly(pParse);
4574 pParse->checkSchema = 1;
4575 goto exit_drop_index;
4577 if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){
4578 sqlite3ErrorMsg(pParse, "index associated with UNIQUE "
4579 "or PRIMARY KEY constraint cannot be dropped", 0);
4580 goto exit_drop_index;
4582 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
4583 #ifndef SQLITE_OMIT_AUTHORIZATION
4585 int code = SQLITE_DROP_INDEX;
4586 Table *pTab = pIndex->pTable;
4587 const char *zDb = db->aDb[iDb].zDbSName;
4588 const char *zTab = SCHEMA_TABLE(iDb);
4589 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
4590 goto exit_drop_index;
4592 if( !OMIT_TEMPDB && iDb==1 ) code = SQLITE_DROP_TEMP_INDEX;
4593 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
4594 goto exit_drop_index;
4597 #endif
4599 /* Generate code to remove the index and from the schema table */
4600 v = sqlite3GetVdbe(pParse);
4601 if( v ){
4602 sqlite3BeginWriteOperation(pParse, 1, iDb);
4603 sqlite3NestedParse(pParse,
4604 "DELETE FROM %Q." LEGACY_SCHEMA_TABLE " WHERE name=%Q AND type='index'",
4605 db->aDb[iDb].zDbSName, pIndex->zName
4607 sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName);
4608 sqlite3ChangeCookie(pParse, iDb);
4609 destroyRootPage(pParse, pIndex->tnum, iDb);
4610 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0);
4613 exit_drop_index:
4614 sqlite3SrcListDelete(db, pName);
4618 ** pArray is a pointer to an array of objects. Each object in the
4619 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc()
4620 ** to extend the array so that there is space for a new object at the end.
4622 ** When this function is called, *pnEntry contains the current size of
4623 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes
4624 ** in total).
4626 ** If the realloc() is successful (i.e. if no OOM condition occurs), the
4627 ** space allocated for the new object is zeroed, *pnEntry updated to
4628 ** reflect the new size of the array and a pointer to the new allocation
4629 ** returned. *pIdx is set to the index of the new array entry in this case.
4631 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains
4632 ** unchanged and a copy of pArray returned.
4634 void *sqlite3ArrayAllocate(
4635 sqlite3 *db, /* Connection to notify of malloc failures */
4636 void *pArray, /* Array of objects. Might be reallocated */
4637 int szEntry, /* Size of each object in the array */
4638 int *pnEntry, /* Number of objects currently in use */
4639 int *pIdx /* Write the index of a new slot here */
4641 char *z;
4642 sqlite3_int64 n = *pIdx = *pnEntry;
4643 if( (n & (n-1))==0 ){
4644 sqlite3_int64 sz = (n==0) ? 1 : 2*n;
4645 void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry);
4646 if( pNew==0 ){
4647 *pIdx = -1;
4648 return pArray;
4650 pArray = pNew;
4652 z = (char*)pArray;
4653 memset(&z[n * szEntry], 0, szEntry);
4654 ++*pnEntry;
4655 return pArray;
4659 ** Append a new element to the given IdList. Create a new IdList if
4660 ** need be.
4662 ** A new IdList is returned, or NULL if malloc() fails.
4664 IdList *sqlite3IdListAppend(Parse *pParse, IdList *pList, Token *pToken){
4665 sqlite3 *db = pParse->db;
4666 int i;
4667 if( pList==0 ){
4668 pList = sqlite3DbMallocZero(db, sizeof(IdList) );
4669 if( pList==0 ) return 0;
4670 }else{
4671 IdList *pNew;
4672 pNew = sqlite3DbRealloc(db, pList,
4673 sizeof(IdList) + pList->nId*sizeof(pList->a));
4674 if( pNew==0 ){
4675 sqlite3IdListDelete(db, pList);
4676 return 0;
4678 pList = pNew;
4680 i = pList->nId++;
4681 pList->a[i].zName = sqlite3NameFromToken(db, pToken);
4682 if( IN_RENAME_OBJECT && pList->a[i].zName ){
4683 sqlite3RenameTokenMap(pParse, (void*)pList->a[i].zName, pToken);
4685 return pList;
4689 ** Delete an IdList.
4691 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){
4692 int i;
4693 if( pList==0 ) return;
4694 assert( pList->eU4!=EU4_EXPR ); /* EU4_EXPR mode is not currently used */
4695 for(i=0; i<pList->nId; i++){
4696 sqlite3DbFree(db, pList->a[i].zName);
4698 sqlite3DbFreeNN(db, pList);
4702 ** Return the index in pList of the identifier named zId. Return -1
4703 ** if not found.
4705 int sqlite3IdListIndex(IdList *pList, const char *zName){
4706 int i;
4707 assert( pList!=0 );
4708 for(i=0; i<pList->nId; i++){
4709 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i;
4711 return -1;
4715 ** Maximum size of a SrcList object.
4716 ** The SrcList object is used to represent the FROM clause of a
4717 ** SELECT statement, and the query planner cannot deal with more
4718 ** than 64 tables in a join. So any value larger than 64 here
4719 ** is sufficient for most uses. Smaller values, like say 10, are
4720 ** appropriate for small and memory-limited applications.
4722 #ifndef SQLITE_MAX_SRCLIST
4723 # define SQLITE_MAX_SRCLIST 200
4724 #endif
4727 ** Expand the space allocated for the given SrcList object by
4728 ** creating nExtra new slots beginning at iStart. iStart is zero based.
4729 ** New slots are zeroed.
4731 ** For example, suppose a SrcList initially contains two entries: A,B.
4732 ** To append 3 new entries onto the end, do this:
4734 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2);
4736 ** After the call above it would contain: A, B, nil, nil, nil.
4737 ** If the iStart argument had been 1 instead of 2, then the result
4738 ** would have been: A, nil, nil, nil, B. To prepend the new slots,
4739 ** the iStart value would be 0. The result then would
4740 ** be: nil, nil, nil, A, B.
4742 ** If a memory allocation fails or the SrcList becomes too large, leave
4743 ** the original SrcList unchanged, return NULL, and leave an error message
4744 ** in pParse.
4746 SrcList *sqlite3SrcListEnlarge(
4747 Parse *pParse, /* Parsing context into which errors are reported */
4748 SrcList *pSrc, /* The SrcList to be enlarged */
4749 int nExtra, /* Number of new slots to add to pSrc->a[] */
4750 int iStart /* Index in pSrc->a[] of first new slot */
4752 int i;
4754 /* Sanity checking on calling parameters */
4755 assert( iStart>=0 );
4756 assert( nExtra>=1 );
4757 assert( pSrc!=0 );
4758 assert( iStart<=pSrc->nSrc );
4760 /* Allocate additional space if needed */
4761 if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){
4762 SrcList *pNew;
4763 sqlite3_int64 nAlloc = 2*(sqlite3_int64)pSrc->nSrc+nExtra;
4764 sqlite3 *db = pParse->db;
4766 if( pSrc->nSrc+nExtra>=SQLITE_MAX_SRCLIST ){
4767 sqlite3ErrorMsg(pParse, "too many FROM clause terms, max: %d",
4768 SQLITE_MAX_SRCLIST);
4769 return 0;
4771 if( nAlloc>SQLITE_MAX_SRCLIST ) nAlloc = SQLITE_MAX_SRCLIST;
4772 pNew = sqlite3DbRealloc(db, pSrc,
4773 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) );
4774 if( pNew==0 ){
4775 assert( db->mallocFailed );
4776 return 0;
4778 pSrc = pNew;
4779 pSrc->nAlloc = nAlloc;
4782 /* Move existing slots that come after the newly inserted slots
4783 ** out of the way */
4784 for(i=pSrc->nSrc-1; i>=iStart; i--){
4785 pSrc->a[i+nExtra] = pSrc->a[i];
4787 pSrc->nSrc += nExtra;
4789 /* Zero the newly allocated slots */
4790 memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra);
4791 for(i=iStart; i<iStart+nExtra; i++){
4792 pSrc->a[i].iCursor = -1;
4795 /* Return a pointer to the enlarged SrcList */
4796 return pSrc;
4801 ** Append a new table name to the given SrcList. Create a new SrcList if
4802 ** need be. A new entry is created in the SrcList even if pTable is NULL.
4804 ** A SrcList is returned, or NULL if there is an OOM error or if the
4805 ** SrcList grows to large. The returned
4806 ** SrcList might be the same as the SrcList that was input or it might be
4807 ** a new one. If an OOM error does occurs, then the prior value of pList
4808 ** that is input to this routine is automatically freed.
4810 ** If pDatabase is not null, it means that the table has an optional
4811 ** database name prefix. Like this: "database.table". The pDatabase
4812 ** points to the table name and the pTable points to the database name.
4813 ** The SrcList.a[].zName field is filled with the table name which might
4814 ** come from pTable (if pDatabase is NULL) or from pDatabase.
4815 ** SrcList.a[].zDatabase is filled with the database name from pTable,
4816 ** or with NULL if no database is specified.
4818 ** In other words, if call like this:
4820 ** sqlite3SrcListAppend(D,A,B,0);
4822 ** Then B is a table name and the database name is unspecified. If called
4823 ** like this:
4825 ** sqlite3SrcListAppend(D,A,B,C);
4827 ** Then C is the table name and B is the database name. If C is defined
4828 ** then so is B. In other words, we never have a case where:
4830 ** sqlite3SrcListAppend(D,A,0,C);
4832 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted
4833 ** before being added to the SrcList.
4835 SrcList *sqlite3SrcListAppend(
4836 Parse *pParse, /* Parsing context, in which errors are reported */
4837 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */
4838 Token *pTable, /* Table to append */
4839 Token *pDatabase /* Database of the table */
4841 SrcItem *pItem;
4842 sqlite3 *db;
4843 assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */
4844 assert( pParse!=0 );
4845 assert( pParse->db!=0 );
4846 db = pParse->db;
4847 if( pList==0 ){
4848 pList = sqlite3DbMallocRawNN(pParse->db, sizeof(SrcList) );
4849 if( pList==0 ) return 0;
4850 pList->nAlloc = 1;
4851 pList->nSrc = 1;
4852 memset(&pList->a[0], 0, sizeof(pList->a[0]));
4853 pList->a[0].iCursor = -1;
4854 }else{
4855 SrcList *pNew = sqlite3SrcListEnlarge(pParse, pList, 1, pList->nSrc);
4856 if( pNew==0 ){
4857 sqlite3SrcListDelete(db, pList);
4858 return 0;
4859 }else{
4860 pList = pNew;
4863 pItem = &pList->a[pList->nSrc-1];
4864 if( pDatabase && pDatabase->z==0 ){
4865 pDatabase = 0;
4867 if( pDatabase ){
4868 pItem->zName = sqlite3NameFromToken(db, pDatabase);
4869 pItem->zDatabase = sqlite3NameFromToken(db, pTable);
4870 }else{
4871 pItem->zName = sqlite3NameFromToken(db, pTable);
4872 pItem->zDatabase = 0;
4874 return pList;
4878 ** Assign VdbeCursor index numbers to all tables in a SrcList
4880 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
4881 int i;
4882 SrcItem *pItem;
4883 assert( pList || pParse->db->mallocFailed );
4884 if( ALWAYS(pList) ){
4885 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
4886 if( pItem->iCursor>=0 ) continue;
4887 pItem->iCursor = pParse->nTab++;
4888 if( pItem->pSelect ){
4889 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc);
4896 ** Delete an entire SrcList including all its substructure.
4898 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){
4899 int i;
4900 SrcItem *pItem;
4901 if( pList==0 ) return;
4902 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){
4903 if( pItem->zDatabase ) sqlite3DbFreeNN(db, pItem->zDatabase);
4904 sqlite3DbFree(db, pItem->zName);
4905 if( pItem->zAlias ) sqlite3DbFreeNN(db, pItem->zAlias);
4906 if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy);
4907 if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg);
4908 sqlite3DeleteTable(db, pItem->pTab);
4909 if( pItem->pSelect ) sqlite3SelectDelete(db, pItem->pSelect);
4910 if( pItem->fg.isUsing ){
4911 sqlite3IdListDelete(db, pItem->u3.pUsing);
4912 }else if( pItem->u3.pOn ){
4913 sqlite3ExprDelete(db, pItem->u3.pOn);
4916 sqlite3DbFreeNN(db, pList);
4920 ** This routine is called by the parser to add a new term to the
4921 ** end of a growing FROM clause. The "p" parameter is the part of
4922 ** the FROM clause that has already been constructed. "p" is NULL
4923 ** if this is the first term of the FROM clause. pTable and pDatabase
4924 ** are the name of the table and database named in the FROM clause term.
4925 ** pDatabase is NULL if the database name qualifier is missing - the
4926 ** usual case. If the term has an alias, then pAlias points to the
4927 ** alias token. If the term is a subquery, then pSubquery is the
4928 ** SELECT statement that the subquery encodes. The pTable and
4929 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing
4930 ** parameters are the content of the ON and USING clauses.
4932 ** Return a new SrcList which encodes is the FROM with the new
4933 ** term added.
4935 SrcList *sqlite3SrcListAppendFromTerm(
4936 Parse *pParse, /* Parsing context */
4937 SrcList *p, /* The left part of the FROM clause already seen */
4938 Token *pTable, /* Name of the table to add to the FROM clause */
4939 Token *pDatabase, /* Name of the database containing pTable */
4940 Token *pAlias, /* The right-hand side of the AS subexpression */
4941 Select *pSubquery, /* A subquery used in place of a table name */
4942 OnOrUsing *pOnUsing /* Either the ON clause or the USING clause */
4944 SrcItem *pItem;
4945 sqlite3 *db = pParse->db;
4946 if( !p && pOnUsing!=0 && (pOnUsing->pOn || pOnUsing->pUsing) ){
4947 sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s",
4948 (pOnUsing->pOn ? "ON" : "USING")
4950 goto append_from_error;
4952 p = sqlite3SrcListAppend(pParse, p, pTable, pDatabase);
4953 if( p==0 ){
4954 goto append_from_error;
4956 assert( p->nSrc>0 );
4957 pItem = &p->a[p->nSrc-1];
4958 assert( (pTable==0)==(pDatabase==0) );
4959 assert( pItem->zName==0 || pDatabase!=0 );
4960 if( IN_RENAME_OBJECT && pItem->zName ){
4961 Token *pToken = (ALWAYS(pDatabase) && pDatabase->z) ? pDatabase : pTable;
4962 sqlite3RenameTokenMap(pParse, pItem->zName, pToken);
4964 assert( pAlias!=0 );
4965 if( pAlias->n ){
4966 pItem->zAlias = sqlite3NameFromToken(db, pAlias);
4968 if( pSubquery ){
4969 pItem->pSelect = pSubquery;
4970 if( pSubquery->selFlags & SF_NestedFrom ){
4971 pItem->fg.isNestedFrom = 1;
4974 assert( pOnUsing==0 || pOnUsing->pOn==0 || pOnUsing->pUsing==0 );
4975 assert( pItem->fg.isUsing==0 );
4976 if( pOnUsing==0 ){
4977 pItem->u3.pOn = 0;
4978 }else if( pOnUsing->pUsing ){
4979 pItem->fg.isUsing = 1;
4980 pItem->u3.pUsing = pOnUsing->pUsing;
4981 }else{
4982 pItem->u3.pOn = pOnUsing->pOn;
4984 return p;
4986 append_from_error:
4987 assert( p==0 );
4988 sqlite3ClearOnOrUsing(db, pOnUsing);
4989 sqlite3SelectDelete(db, pSubquery);
4990 return 0;
4994 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added
4995 ** element of the source-list passed as the second argument.
4997 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){
4998 assert( pIndexedBy!=0 );
4999 if( p && pIndexedBy->n>0 ){
5000 SrcItem *pItem;
5001 assert( p->nSrc>0 );
5002 pItem = &p->a[p->nSrc-1];
5003 assert( pItem->fg.notIndexed==0 );
5004 assert( pItem->fg.isIndexedBy==0 );
5005 assert( pItem->fg.isTabFunc==0 );
5006 if( pIndexedBy->n==1 && !pIndexedBy->z ){
5007 /* A "NOT INDEXED" clause was supplied. See parse.y
5008 ** construct "indexed_opt" for details. */
5009 pItem->fg.notIndexed = 1;
5010 }else{
5011 pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy);
5012 pItem->fg.isIndexedBy = 1;
5013 assert( pItem->fg.isCte==0 ); /* No collision on union u2 */
5019 ** Append the contents of SrcList p2 to SrcList p1 and return the resulting
5020 ** SrcList. Or, if an error occurs, return NULL. In all cases, p1 and p2
5021 ** are deleted by this function.
5023 SrcList *sqlite3SrcListAppendList(Parse *pParse, SrcList *p1, SrcList *p2){
5024 assert( p1 && p1->nSrc==1 );
5025 if( p2 ){
5026 SrcList *pNew = sqlite3SrcListEnlarge(pParse, p1, p2->nSrc, 1);
5027 if( pNew==0 ){
5028 sqlite3SrcListDelete(pParse->db, p2);
5029 }else{
5030 p1 = pNew;
5031 memcpy(&p1->a[1], p2->a, p2->nSrc*sizeof(SrcItem));
5032 sqlite3DbFree(pParse->db, p2);
5033 p1->a[0].fg.jointype |= (JT_LTORJ & p1->a[1].fg.jointype);
5036 return p1;
5040 ** Add the list of function arguments to the SrcList entry for a
5041 ** table-valued-function.
5043 void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){
5044 if( p ){
5045 SrcItem *pItem = &p->a[p->nSrc-1];
5046 assert( pItem->fg.notIndexed==0 );
5047 assert( pItem->fg.isIndexedBy==0 );
5048 assert( pItem->fg.isTabFunc==0 );
5049 pItem->u1.pFuncArg = pList;
5050 pItem->fg.isTabFunc = 1;
5051 }else{
5052 sqlite3ExprListDelete(pParse->db, pList);
5057 ** When building up a FROM clause in the parser, the join operator
5058 ** is initially attached to the left operand. But the code generator
5059 ** expects the join operator to be on the right operand. This routine
5060 ** Shifts all join operators from left to right for an entire FROM
5061 ** clause.
5063 ** Example: Suppose the join is like this:
5065 ** A natural cross join B
5067 ** The operator is "natural cross join". The A and B operands are stored
5068 ** in p->a[0] and p->a[1], respectively. The parser initially stores the
5069 ** operator with A. This routine shifts that operator over to B.
5071 ** Additional changes:
5073 ** * All tables to the left of the right-most RIGHT JOIN are tagged with
5074 ** JT_LTORJ (mnemonic: Left Table Of Right Join) so that the
5075 ** code generator can easily tell that the table is part of
5076 ** the left operand of at least one RIGHT JOIN.
5078 void sqlite3SrcListShiftJoinType(Parse *pParse, SrcList *p){
5079 (void)pParse;
5080 if( p && p->nSrc>1 ){
5081 int i = p->nSrc-1;
5082 u8 allFlags = 0;
5084 allFlags |= p->a[i].fg.jointype = p->a[i-1].fg.jointype;
5085 }while( (--i)>0 );
5086 p->a[0].fg.jointype = 0;
5088 /* All terms to the left of a RIGHT JOIN should be tagged with the
5089 ** JT_LTORJ flags */
5090 if( allFlags & JT_RIGHT ){
5091 for(i=p->nSrc-1; ALWAYS(i>0) && (p->a[i].fg.jointype&JT_RIGHT)==0; i--){}
5092 i--;
5093 assert( i>=0 );
5095 p->a[i].fg.jointype |= JT_LTORJ;
5096 }while( (--i)>=0 );
5102 ** Generate VDBE code for a BEGIN statement.
5104 void sqlite3BeginTransaction(Parse *pParse, int type){
5105 sqlite3 *db;
5106 Vdbe *v;
5107 int i;
5109 assert( pParse!=0 );
5110 db = pParse->db;
5111 assert( db!=0 );
5112 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){
5113 return;
5115 v = sqlite3GetVdbe(pParse);
5116 if( !v ) return;
5117 if( type!=TK_DEFERRED ){
5118 for(i=0; i<db->nDb; i++){
5119 int eTxnType;
5120 Btree *pBt = db->aDb[i].pBt;
5121 if( pBt && sqlite3BtreeIsReadonly(pBt) ){
5122 eTxnType = 0; /* Read txn */
5123 }else if( type==TK_EXCLUSIVE ){
5124 eTxnType = 2; /* Exclusive txn */
5125 }else{
5126 eTxnType = 1; /* Write txn */
5128 sqlite3VdbeAddOp2(v, OP_Transaction, i, eTxnType);
5129 sqlite3VdbeUsesBtree(v, i);
5132 sqlite3VdbeAddOp0(v, OP_AutoCommit);
5136 ** Generate VDBE code for a COMMIT or ROLLBACK statement.
5137 ** Code for ROLLBACK is generated if eType==TK_ROLLBACK. Otherwise
5138 ** code is generated for a COMMIT.
5140 void sqlite3EndTransaction(Parse *pParse, int eType){
5141 Vdbe *v;
5142 int isRollback;
5144 assert( pParse!=0 );
5145 assert( pParse->db!=0 );
5146 assert( eType==TK_COMMIT || eType==TK_END || eType==TK_ROLLBACK );
5147 isRollback = eType==TK_ROLLBACK;
5148 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION,
5149 isRollback ? "ROLLBACK" : "COMMIT", 0, 0) ){
5150 return;
5152 v = sqlite3GetVdbe(pParse);
5153 if( v ){
5154 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, isRollback);
5159 ** This function is called by the parser when it parses a command to create,
5160 ** release or rollback an SQL savepoint.
5162 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){
5163 char *zName = sqlite3NameFromToken(pParse->db, pName);
5164 if( zName ){
5165 Vdbe *v = sqlite3GetVdbe(pParse);
5166 #ifndef SQLITE_OMIT_AUTHORIZATION
5167 static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" };
5168 assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 );
5169 #endif
5170 if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){
5171 sqlite3DbFree(pParse->db, zName);
5172 return;
5174 sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC);
5179 ** Make sure the TEMP database is open and available for use. Return
5180 ** the number of errors. Leave any error messages in the pParse structure.
5182 int sqlite3OpenTempDatabase(Parse *pParse){
5183 sqlite3 *db = pParse->db;
5184 if( db->aDb[1].pBt==0 && !pParse->explain ){
5185 int rc;
5186 Btree *pBt;
5187 static const int flags =
5188 SQLITE_OPEN_READWRITE |
5189 SQLITE_OPEN_CREATE |
5190 SQLITE_OPEN_EXCLUSIVE |
5191 SQLITE_OPEN_DELETEONCLOSE |
5192 SQLITE_OPEN_TEMP_DB;
5194 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags);
5195 if( rc!=SQLITE_OK ){
5196 sqlite3ErrorMsg(pParse, "unable to open a temporary database "
5197 "file for storing temporary tables");
5198 pParse->rc = rc;
5199 return 1;
5201 db->aDb[1].pBt = pBt;
5202 assert( db->aDb[1].pSchema );
5203 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, 0, 0) ){
5204 sqlite3OomFault(db);
5205 return 1;
5208 return 0;
5212 ** Record the fact that the schema cookie will need to be verified
5213 ** for database iDb. The code to actually verify the schema cookie
5214 ** will occur at the end of the top-level VDBE and will be generated
5215 ** later, by sqlite3FinishCoding().
5217 static void sqlite3CodeVerifySchemaAtToplevel(Parse *pToplevel, int iDb){
5218 assert( iDb>=0 && iDb<pToplevel->db->nDb );
5219 assert( pToplevel->db->aDb[iDb].pBt!=0 || iDb==1 );
5220 assert( iDb<SQLITE_MAX_DB );
5221 assert( sqlite3SchemaMutexHeld(pToplevel->db, iDb, 0) );
5222 if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){
5223 DbMaskSet(pToplevel->cookieMask, iDb);
5224 if( !OMIT_TEMPDB && iDb==1 ){
5225 sqlite3OpenTempDatabase(pToplevel);
5229 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
5230 sqlite3CodeVerifySchemaAtToplevel(sqlite3ParseToplevel(pParse), iDb);
5235 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each
5236 ** attached database. Otherwise, invoke it for the database named zDb only.
5238 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){
5239 sqlite3 *db = pParse->db;
5240 int i;
5241 for(i=0; i<db->nDb; i++){
5242 Db *pDb = &db->aDb[i];
5243 if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zDbSName)) ){
5244 sqlite3CodeVerifySchema(pParse, i);
5250 ** Generate VDBE code that prepares for doing an operation that
5251 ** might change the database.
5253 ** This routine starts a new transaction if we are not already within
5254 ** a transaction. If we are already within a transaction, then a checkpoint
5255 ** is set if the setStatement parameter is true. A checkpoint should
5256 ** be set for operations that might fail (due to a constraint) part of
5257 ** the way through and which will need to undo some writes without having to
5258 ** rollback the whole transaction. For operations where all constraints
5259 ** can be checked before any changes are made to the database, it is never
5260 ** necessary to undo a write and the checkpoint should not be set.
5262 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
5263 Parse *pToplevel = sqlite3ParseToplevel(pParse);
5264 sqlite3CodeVerifySchemaAtToplevel(pToplevel, iDb);
5265 DbMaskSet(pToplevel->writeMask, iDb);
5266 pToplevel->isMultiWrite |= setStatement;
5270 ** Indicate that the statement currently under construction might write
5271 ** more than one entry (example: deleting one row then inserting another,
5272 ** inserting multiple rows in a table, or inserting a row and index entries.)
5273 ** If an abort occurs after some of these writes have completed, then it will
5274 ** be necessary to undo the completed writes.
5276 void sqlite3MultiWrite(Parse *pParse){
5277 Parse *pToplevel = sqlite3ParseToplevel(pParse);
5278 pToplevel->isMultiWrite = 1;
5282 ** The code generator calls this routine if is discovers that it is
5283 ** possible to abort a statement prior to completion. In order to
5284 ** perform this abort without corrupting the database, we need to make
5285 ** sure that the statement is protected by a statement transaction.
5287 ** Technically, we only need to set the mayAbort flag if the
5288 ** isMultiWrite flag was previously set. There is a time dependency
5289 ** such that the abort must occur after the multiwrite. This makes
5290 ** some statements involving the REPLACE conflict resolution algorithm
5291 ** go a little faster. But taking advantage of this time dependency
5292 ** makes it more difficult to prove that the code is correct (in
5293 ** particular, it prevents us from writing an effective
5294 ** implementation of sqlite3AssertMayAbort()) and so we have chosen
5295 ** to take the safe route and skip the optimization.
5297 void sqlite3MayAbort(Parse *pParse){
5298 Parse *pToplevel = sqlite3ParseToplevel(pParse);
5299 pToplevel->mayAbort = 1;
5303 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT
5304 ** error. The onError parameter determines which (if any) of the statement
5305 ** and/or current transaction is rolled back.
5307 void sqlite3HaltConstraint(
5308 Parse *pParse, /* Parsing context */
5309 int errCode, /* extended error code */
5310 int onError, /* Constraint type */
5311 char *p4, /* Error message */
5312 i8 p4type, /* P4_STATIC or P4_TRANSIENT */
5313 u8 p5Errmsg /* P5_ErrMsg type */
5315 Vdbe *v;
5316 assert( pParse->pVdbe!=0 );
5317 v = sqlite3GetVdbe(pParse);
5318 assert( (errCode&0xff)==SQLITE_CONSTRAINT || pParse->nested );
5319 if( onError==OE_Abort ){
5320 sqlite3MayAbort(pParse);
5322 sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type);
5323 sqlite3VdbeChangeP5(v, p5Errmsg);
5327 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation.
5329 void sqlite3UniqueConstraint(
5330 Parse *pParse, /* Parsing context */
5331 int onError, /* Constraint type */
5332 Index *pIdx /* The index that triggers the constraint */
5334 char *zErr;
5335 int j;
5336 StrAccum errMsg;
5337 Table *pTab = pIdx->pTable;
5339 sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0,
5340 pParse->db->aLimit[SQLITE_LIMIT_LENGTH]);
5341 if( pIdx->aColExpr ){
5342 sqlite3_str_appendf(&errMsg, "index '%q'", pIdx->zName);
5343 }else{
5344 for(j=0; j<pIdx->nKeyCol; j++){
5345 char *zCol;
5346 assert( pIdx->aiColumn[j]>=0 );
5347 zCol = pTab->aCol[pIdx->aiColumn[j]].zCnName;
5348 if( j ) sqlite3_str_append(&errMsg, ", ", 2);
5349 sqlite3_str_appendall(&errMsg, pTab->zName);
5350 sqlite3_str_append(&errMsg, ".", 1);
5351 sqlite3_str_appendall(&errMsg, zCol);
5354 zErr = sqlite3StrAccumFinish(&errMsg);
5355 sqlite3HaltConstraint(pParse,
5356 IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY
5357 : SQLITE_CONSTRAINT_UNIQUE,
5358 onError, zErr, P4_DYNAMIC, P5_ConstraintUnique);
5363 ** Code an OP_Halt due to non-unique rowid.
5365 void sqlite3RowidConstraint(
5366 Parse *pParse, /* Parsing context */
5367 int onError, /* Conflict resolution algorithm */
5368 Table *pTab /* The table with the non-unique rowid */
5370 char *zMsg;
5371 int rc;
5372 if( pTab->iPKey>=0 ){
5373 zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName,
5374 pTab->aCol[pTab->iPKey].zCnName);
5375 rc = SQLITE_CONSTRAINT_PRIMARYKEY;
5376 }else{
5377 zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName);
5378 rc = SQLITE_CONSTRAINT_ROWID;
5380 sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC,
5381 P5_ConstraintUnique);
5385 ** Check to see if pIndex uses the collating sequence pColl. Return
5386 ** true if it does and false if it does not.
5388 #ifndef SQLITE_OMIT_REINDEX
5389 static int collationMatch(const char *zColl, Index *pIndex){
5390 int i;
5391 assert( zColl!=0 );
5392 for(i=0; i<pIndex->nColumn; i++){
5393 const char *z = pIndex->azColl[i];
5394 assert( z!=0 || pIndex->aiColumn[i]<0 );
5395 if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){
5396 return 1;
5399 return 0;
5401 #endif
5404 ** Recompute all indices of pTab that use the collating sequence pColl.
5405 ** If pColl==0 then recompute all indices of pTab.
5407 #ifndef SQLITE_OMIT_REINDEX
5408 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){
5409 if( !IsVirtual(pTab) ){
5410 Index *pIndex; /* An index associated with pTab */
5412 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
5413 if( zColl==0 || collationMatch(zColl, pIndex) ){
5414 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
5415 sqlite3BeginWriteOperation(pParse, 0, iDb);
5416 sqlite3RefillIndex(pParse, pIndex, -1);
5421 #endif
5424 ** Recompute all indices of all tables in all databases where the
5425 ** indices use the collating sequence pColl. If pColl==0 then recompute
5426 ** all indices everywhere.
5428 #ifndef SQLITE_OMIT_REINDEX
5429 static void reindexDatabases(Parse *pParse, char const *zColl){
5430 Db *pDb; /* A single database */
5431 int iDb; /* The database index number */
5432 sqlite3 *db = pParse->db; /* The database connection */
5433 HashElem *k; /* For looping over tables in pDb */
5434 Table *pTab; /* A table in the database */
5436 assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */
5437 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
5438 assert( pDb!=0 );
5439 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){
5440 pTab = (Table*)sqliteHashData(k);
5441 reindexTable(pParse, pTab, zColl);
5445 #endif
5448 ** Generate code for the REINDEX command.
5450 ** REINDEX -- 1
5451 ** REINDEX <collation> -- 2
5452 ** REINDEX ?<database>.?<tablename> -- 3
5453 ** REINDEX ?<database>.?<indexname> -- 4
5455 ** Form 1 causes all indices in all attached databases to be rebuilt.
5456 ** Form 2 rebuilds all indices in all databases that use the named
5457 ** collating function. Forms 3 and 4 rebuild the named index or all
5458 ** indices associated with the named table.
5460 #ifndef SQLITE_OMIT_REINDEX
5461 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){
5462 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */
5463 char *z; /* Name of a table or index */
5464 const char *zDb; /* Name of the database */
5465 Table *pTab; /* A table in the database */
5466 Index *pIndex; /* An index associated with pTab */
5467 int iDb; /* The database index number */
5468 sqlite3 *db = pParse->db; /* The database connection */
5469 Token *pObjName; /* Name of the table or index to be reindexed */
5471 /* Read the database schema. If an error occurs, leave an error message
5472 ** and code in pParse and return NULL. */
5473 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
5474 return;
5477 if( pName1==0 ){
5478 reindexDatabases(pParse, 0);
5479 return;
5480 }else if( NEVER(pName2==0) || pName2->z==0 ){
5481 char *zColl;
5482 assert( pName1->z );
5483 zColl = sqlite3NameFromToken(pParse->db, pName1);
5484 if( !zColl ) return;
5485 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
5486 if( pColl ){
5487 reindexDatabases(pParse, zColl);
5488 sqlite3DbFree(db, zColl);
5489 return;
5491 sqlite3DbFree(db, zColl);
5493 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName);
5494 if( iDb<0 ) return;
5495 z = sqlite3NameFromToken(db, pObjName);
5496 if( z==0 ) return;
5497 zDb = db->aDb[iDb].zDbSName;
5498 pTab = sqlite3FindTable(db, z, zDb);
5499 if( pTab ){
5500 reindexTable(pParse, pTab, 0);
5501 sqlite3DbFree(db, z);
5502 return;
5504 pIndex = sqlite3FindIndex(db, z, zDb);
5505 sqlite3DbFree(db, z);
5506 if( pIndex ){
5507 sqlite3BeginWriteOperation(pParse, 0, iDb);
5508 sqlite3RefillIndex(pParse, pIndex, -1);
5509 return;
5511 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed");
5513 #endif
5516 ** Return a KeyInfo structure that is appropriate for the given Index.
5518 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object
5519 ** when it has finished using it.
5521 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){
5522 int i;
5523 int nCol = pIdx->nColumn;
5524 int nKey = pIdx->nKeyCol;
5525 KeyInfo *pKey;
5526 if( pParse->nErr ) return 0;
5527 if( pIdx->uniqNotNull ){
5528 pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey);
5529 }else{
5530 pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0);
5532 if( pKey ){
5533 assert( sqlite3KeyInfoIsWriteable(pKey) );
5534 for(i=0; i<nCol; i++){
5535 const char *zColl = pIdx->azColl[i];
5536 pKey->aColl[i] = zColl==sqlite3StrBINARY ? 0 :
5537 sqlite3LocateCollSeq(pParse, zColl);
5538 pKey->aSortFlags[i] = pIdx->aSortOrder[i];
5539 assert( 0==(pKey->aSortFlags[i] & KEYINFO_ORDER_BIGNULL) );
5541 if( pParse->nErr ){
5542 assert( pParse->rc==SQLITE_ERROR_MISSING_COLLSEQ );
5543 if( pIdx->bNoQuery==0 ){
5544 /* Deactivate the index because it contains an unknown collating
5545 ** sequence. The only way to reactive the index is to reload the
5546 ** schema. Adding the missing collating sequence later does not
5547 ** reactive the index. The application had the chance to register
5548 ** the missing index using the collation-needed callback. For
5549 ** simplicity, SQLite will not give the application a second chance.
5551 pIdx->bNoQuery = 1;
5552 pParse->rc = SQLITE_ERROR_RETRY;
5554 sqlite3KeyInfoUnref(pKey);
5555 pKey = 0;
5558 return pKey;
5561 #ifndef SQLITE_OMIT_CTE
5563 ** Create a new CTE object
5565 Cte *sqlite3CteNew(
5566 Parse *pParse, /* Parsing context */
5567 Token *pName, /* Name of the common-table */
5568 ExprList *pArglist, /* Optional column name list for the table */
5569 Select *pQuery, /* Query used to initialize the table */
5570 u8 eM10d /* The MATERIALIZED flag */
5572 Cte *pNew;
5573 sqlite3 *db = pParse->db;
5575 pNew = sqlite3DbMallocZero(db, sizeof(*pNew));
5576 assert( pNew!=0 || db->mallocFailed );
5578 if( db->mallocFailed ){
5579 sqlite3ExprListDelete(db, pArglist);
5580 sqlite3SelectDelete(db, pQuery);
5581 }else{
5582 pNew->pSelect = pQuery;
5583 pNew->pCols = pArglist;
5584 pNew->zName = sqlite3NameFromToken(pParse->db, pName);
5585 pNew->eM10d = eM10d;
5587 return pNew;
5591 ** Clear information from a Cte object, but do not deallocate storage
5592 ** for the object itself.
5594 static void cteClear(sqlite3 *db, Cte *pCte){
5595 assert( pCte!=0 );
5596 sqlite3ExprListDelete(db, pCte->pCols);
5597 sqlite3SelectDelete(db, pCte->pSelect);
5598 sqlite3DbFree(db, pCte->zName);
5602 ** Free the contents of the CTE object passed as the second argument.
5604 void sqlite3CteDelete(sqlite3 *db, Cte *pCte){
5605 assert( pCte!=0 );
5606 cteClear(db, pCte);
5607 sqlite3DbFree(db, pCte);
5611 ** This routine is invoked once per CTE by the parser while parsing a
5612 ** WITH clause. The CTE described by teh third argument is added to
5613 ** the WITH clause of the second argument. If the second argument is
5614 ** NULL, then a new WITH argument is created.
5616 With *sqlite3WithAdd(
5617 Parse *pParse, /* Parsing context */
5618 With *pWith, /* Existing WITH clause, or NULL */
5619 Cte *pCte /* CTE to add to the WITH clause */
5621 sqlite3 *db = pParse->db;
5622 With *pNew;
5623 char *zName;
5625 if( pCte==0 ){
5626 return pWith;
5629 /* Check that the CTE name is unique within this WITH clause. If
5630 ** not, store an error in the Parse structure. */
5631 zName = pCte->zName;
5632 if( zName && pWith ){
5633 int i;
5634 for(i=0; i<pWith->nCte; i++){
5635 if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){
5636 sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName);
5641 if( pWith ){
5642 sqlite3_int64 nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte);
5643 pNew = sqlite3DbRealloc(db, pWith, nByte);
5644 }else{
5645 pNew = sqlite3DbMallocZero(db, sizeof(*pWith));
5647 assert( (pNew!=0 && zName!=0) || db->mallocFailed );
5649 if( db->mallocFailed ){
5650 sqlite3CteDelete(db, pCte);
5651 pNew = pWith;
5652 }else{
5653 pNew->a[pNew->nCte++] = *pCte;
5654 sqlite3DbFree(db, pCte);
5657 return pNew;
5661 ** Free the contents of the With object passed as the second argument.
5663 void sqlite3WithDelete(sqlite3 *db, With *pWith){
5664 if( pWith ){
5665 int i;
5666 for(i=0; i<pWith->nCte; i++){
5667 cteClear(db, &pWith->a[i]);
5669 sqlite3DbFree(db, pWith);
5672 #endif /* !defined(SQLITE_OMIT_CTE) */