changelog update
[sqlcipher.git] / src / vdbe.c
blobef9a23f64eb0253fd84c3c92dcf1715c9c385969
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** The code in this file implements the function that runs the
13 ** bytecode of a prepared statement.
15 ** Various scripts scan this source file in order to generate HTML
16 ** documentation, headers files, or other derived files. The formatting
17 ** of the code in this file is, therefore, important. See other comments
18 ** in this file for details. If in doubt, do not deviate from existing
19 ** commenting and indentation practices when changing or adding code.
21 #include "sqliteInt.h"
22 #include "vdbeInt.h"
25 ** Invoke this macro on memory cells just prior to changing the
26 ** value of the cell. This macro verifies that shallow copies are
27 ** not misused. A shallow copy of a string or blob just copies a
28 ** pointer to the string or blob, not the content. If the original
29 ** is changed while the copy is still in use, the string or blob might
30 ** be changed out from under the copy. This macro verifies that nothing
31 ** like that ever happens.
33 #ifdef SQLITE_DEBUG
34 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
35 #else
36 # define memAboutToChange(P,M)
37 #endif
40 ** The following global variable is incremented every time a cursor
41 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test
42 ** procedures use this information to make sure that indices are
43 ** working correctly. This variable has no function other than to
44 ** help verify the correct operation of the library.
46 #ifdef SQLITE_TEST
47 int sqlite3_search_count = 0;
48 #endif
51 ** When this global variable is positive, it gets decremented once before
52 ** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted
53 ** field of the sqlite3 structure is set in order to simulate an interrupt.
55 ** This facility is used for testing purposes only. It does not function
56 ** in an ordinary build.
58 #ifdef SQLITE_TEST
59 int sqlite3_interrupt_count = 0;
60 #endif
63 ** The next global variable is incremented each type the OP_Sort opcode
64 ** is executed. The test procedures use this information to make sure that
65 ** sorting is occurring or not occurring at appropriate times. This variable
66 ** has no function other than to help verify the correct operation of the
67 ** library.
69 #ifdef SQLITE_TEST
70 int sqlite3_sort_count = 0;
71 #endif
74 ** The next global variable records the size of the largest MEM_Blob
75 ** or MEM_Str that has been used by a VDBE opcode. The test procedures
76 ** use this information to make sure that the zero-blob functionality
77 ** is working correctly. This variable has no function other than to
78 ** help verify the correct operation of the library.
80 #ifdef SQLITE_TEST
81 int sqlite3_max_blobsize = 0;
82 static void updateMaxBlobsize(Mem *p){
83 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
84 sqlite3_max_blobsize = p->n;
87 #endif
90 ** This macro evaluates to true if either the update hook or the preupdate
91 ** hook are enabled for database connect DB.
93 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
94 # define HAS_UPDATE_HOOK(DB) ((DB)->xPreUpdateCallback||(DB)->xUpdateCallback)
95 #else
96 # define HAS_UPDATE_HOOK(DB) ((DB)->xUpdateCallback)
97 #endif
100 ** The next global variable is incremented each time the OP_Found opcode
101 ** is executed. This is used to test whether or not the foreign key
102 ** operation implemented using OP_FkIsZero is working. This variable
103 ** has no function other than to help verify the correct operation of the
104 ** library.
106 #ifdef SQLITE_TEST
107 int sqlite3_found_count = 0;
108 #endif
111 ** Test a register to see if it exceeds the current maximum blob size.
112 ** If it does, record the new maximum blob size.
114 #if defined(SQLITE_TEST) && !defined(SQLITE_UNTESTABLE)
115 # define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P)
116 #else
117 # define UPDATE_MAX_BLOBSIZE(P)
118 #endif
120 #ifdef SQLITE_DEBUG
121 /* This routine provides a convenient place to set a breakpoint during
122 ** tracing with PRAGMA vdbe_trace=on. The breakpoint fires right after
123 ** each opcode is printed. Variables "pc" (program counter) and pOp are
124 ** available to add conditionals to the breakpoint. GDB example:
126 ** break test_trace_breakpoint if pc=22
128 ** Other useful labels for breakpoints include:
129 ** test_addop_breakpoint(pc,pOp)
130 ** sqlite3CorruptError(lineno)
131 ** sqlite3MisuseError(lineno)
132 ** sqlite3CantopenError(lineno)
134 static void test_trace_breakpoint(int pc, Op *pOp, Vdbe *v){
135 static int n = 0;
136 n++;
138 #endif
141 ** Invoke the VDBE coverage callback, if that callback is defined. This
142 ** feature is used for test suite validation only and does not appear an
143 ** production builds.
145 ** M is the type of branch. I is the direction taken for this instance of
146 ** the branch.
148 ** M: 2 - two-way branch (I=0: fall-thru 1: jump )
149 ** 3 - two-way + NULL (I=0: fall-thru 1: jump 2: NULL )
150 ** 4 - OP_Jump (I=0: jump p1 1: jump p2 2: jump p3)
152 ** In other words, if M is 2, then I is either 0 (for fall-through) or
153 ** 1 (for when the branch is taken). If M is 3, the I is 0 for an
154 ** ordinary fall-through, I is 1 if the branch was taken, and I is 2
155 ** if the result of comparison is NULL. For M=3, I=2 the jump may or
156 ** may not be taken, depending on the SQLITE_JUMPIFNULL flags in p5.
157 ** When M is 4, that means that an OP_Jump is being run. I is 0, 1, or 2
158 ** depending on if the operands are less than, equal, or greater than.
160 ** iSrcLine is the source code line (from the __LINE__ macro) that
161 ** generated the VDBE instruction combined with flag bits. The source
162 ** code line number is in the lower 24 bits of iSrcLine and the upper
163 ** 8 bytes are flags. The lower three bits of the flags indicate
164 ** values for I that should never occur. For example, if the branch is
165 ** always taken, the flags should be 0x05 since the fall-through and
166 ** alternate branch are never taken. If a branch is never taken then
167 ** flags should be 0x06 since only the fall-through approach is allowed.
169 ** Bit 0x08 of the flags indicates an OP_Jump opcode that is only
170 ** interested in equal or not-equal. In other words, I==0 and I==2
171 ** should be treated as equivalent
173 ** Since only a line number is retained, not the filename, this macro
174 ** only works for amalgamation builds. But that is ok, since these macros
175 ** should be no-ops except for special builds used to measure test coverage.
177 #if !defined(SQLITE_VDBE_COVERAGE)
178 # define VdbeBranchTaken(I,M)
179 #else
180 # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M)
181 static void vdbeTakeBranch(u32 iSrcLine, u8 I, u8 M){
182 u8 mNever;
183 assert( I<=2 ); /* 0: fall through, 1: taken, 2: alternate taken */
184 assert( M<=4 ); /* 2: two-way branch, 3: three-way branch, 4: OP_Jump */
185 assert( I<M ); /* I can only be 2 if M is 3 or 4 */
186 /* Transform I from a integer [0,1,2] into a bitmask of [1,2,4] */
187 I = 1<<I;
188 /* The upper 8 bits of iSrcLine are flags. The lower three bits of
189 ** the flags indicate directions that the branch can never go. If
190 ** a branch really does go in one of those directions, assert right
191 ** away. */
192 mNever = iSrcLine >> 24;
193 assert( (I & mNever)==0 );
194 if( sqlite3GlobalConfig.xVdbeBranch==0 ) return; /*NO_TEST*/
195 /* Invoke the branch coverage callback with three arguments:
196 ** iSrcLine - the line number of the VdbeCoverage() macro, with
197 ** flags removed.
198 ** I - Mask of bits 0x07 indicating which cases are are
199 ** fulfilled by this instance of the jump. 0x01 means
200 ** fall-thru, 0x02 means taken, 0x04 means NULL. Any
201 ** impossible cases (ex: if the comparison is never NULL)
202 ** are filled in automatically so that the coverage
203 ** measurement logic does not flag those impossible cases
204 ** as missed coverage.
205 ** M - Type of jump. Same as M argument above
207 I |= mNever;
208 if( M==2 ) I |= 0x04;
209 if( M==4 ){
210 I |= 0x08;
211 if( (mNever&0x08)!=0 && (I&0x05)!=0) I |= 0x05; /*NO_TEST*/
213 sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg,
214 iSrcLine&0xffffff, I, M);
216 #endif
219 ** An ephemeral string value (signified by the MEM_Ephem flag) contains
220 ** a pointer to a dynamically allocated string where some other entity
221 ** is responsible for deallocating that string. Because the register
222 ** does not control the string, it might be deleted without the register
223 ** knowing it.
225 ** This routine converts an ephemeral string into a dynamically allocated
226 ** string that the register itself controls. In other words, it
227 ** converts an MEM_Ephem string into a string with P.z==P.zMalloc.
229 #define Deephemeralize(P) \
230 if( ((P)->flags&MEM_Ephem)!=0 \
231 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
233 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */
234 #define isSorter(x) ((x)->eCurType==CURTYPE_SORTER)
237 ** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL
238 ** if we run out of memory.
240 static VdbeCursor *allocateCursor(
241 Vdbe *p, /* The virtual machine */
242 int iCur, /* Index of the new VdbeCursor */
243 int nField, /* Number of fields in the table or index */
244 u8 eCurType /* Type of the new cursor */
246 /* Find the memory cell that will be used to store the blob of memory
247 ** required for this VdbeCursor structure. It is convenient to use a
248 ** vdbe memory cell to manage the memory allocation required for a
249 ** VdbeCursor structure for the following reasons:
251 ** * Sometimes cursor numbers are used for a couple of different
252 ** purposes in a vdbe program. The different uses might require
253 ** different sized allocations. Memory cells provide growable
254 ** allocations.
256 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
257 ** be freed lazily via the sqlite3_release_memory() API. This
258 ** minimizes the number of malloc calls made by the system.
260 ** The memory cell for cursor 0 is aMem[0]. The rest are allocated from
261 ** the top of the register space. Cursor 1 is at Mem[p->nMem-1].
262 ** Cursor 2 is at Mem[p->nMem-2]. And so forth.
264 Mem *pMem = iCur>0 ? &p->aMem[p->nMem-iCur] : p->aMem;
266 int nByte;
267 VdbeCursor *pCx = 0;
268 nByte =
269 ROUND8P(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField +
270 (eCurType==CURTYPE_BTREE?sqlite3BtreeCursorSize():0);
272 assert( iCur>=0 && iCur<p->nCursor );
273 if( p->apCsr[iCur] ){ /*OPTIMIZATION-IF-FALSE*/
274 sqlite3VdbeFreeCursorNN(p, p->apCsr[iCur]);
275 p->apCsr[iCur] = 0;
278 /* There used to be a call to sqlite3VdbeMemClearAndResize() to make sure
279 ** the pMem used to hold space for the cursor has enough storage available
280 ** in pMem->zMalloc. But for the special case of the aMem[] entries used
281 ** to hold cursors, it is faster to in-line the logic. */
282 assert( pMem->flags==MEM_Undefined );
283 assert( (pMem->flags & MEM_Dyn)==0 );
284 assert( pMem->szMalloc==0 || pMem->z==pMem->zMalloc );
285 if( pMem->szMalloc<nByte ){
286 if( pMem->szMalloc>0 ){
287 sqlite3DbFreeNN(pMem->db, pMem->zMalloc);
289 pMem->z = pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, nByte);
290 if( pMem->zMalloc==0 ){
291 pMem->szMalloc = 0;
292 return 0;
294 pMem->szMalloc = nByte;
297 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->zMalloc;
298 memset(pCx, 0, offsetof(VdbeCursor,pAltCursor));
299 pCx->eCurType = eCurType;
300 pCx->nField = nField;
301 pCx->aOffset = &pCx->aType[nField];
302 if( eCurType==CURTYPE_BTREE ){
303 pCx->uc.pCursor = (BtCursor*)
304 &pMem->z[ROUND8P(sizeof(VdbeCursor))+2*sizeof(u32)*nField];
305 sqlite3BtreeCursorZero(pCx->uc.pCursor);
307 return pCx;
311 ** The string in pRec is known to look like an integer and to have a
312 ** floating point value of rValue. Return true and set *piValue to the
313 ** integer value if the string is in range to be an integer. Otherwise,
314 ** return false.
316 static int alsoAnInt(Mem *pRec, double rValue, i64 *piValue){
317 i64 iValue = (double)rValue;
318 if( sqlite3RealSameAsInt(rValue,iValue) ){
319 *piValue = iValue;
320 return 1;
322 return 0==sqlite3Atoi64(pRec->z, piValue, pRec->n, pRec->enc);
326 ** Try to convert a value into a numeric representation if we can
327 ** do so without loss of information. In other words, if the string
328 ** looks like a number, convert it into a number. If it does not
329 ** look like a number, leave it alone.
331 ** If the bTryForInt flag is true, then extra effort is made to give
332 ** an integer representation. Strings that look like floating point
333 ** values but which have no fractional component (example: '48.00')
334 ** will have a MEM_Int representation when bTryForInt is true.
336 ** If bTryForInt is false, then if the input string contains a decimal
337 ** point or exponential notation, the result is only MEM_Real, even
338 ** if there is an exact integer representation of the quantity.
340 static void applyNumericAffinity(Mem *pRec, int bTryForInt){
341 double rValue;
342 u8 enc = pRec->enc;
343 int rc;
344 assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real|MEM_IntReal))==MEM_Str );
345 rc = sqlite3AtoF(pRec->z, &rValue, pRec->n, enc);
346 if( rc<=0 ) return;
347 if( rc==1 && alsoAnInt(pRec, rValue, &pRec->u.i) ){
348 pRec->flags |= MEM_Int;
349 }else{
350 pRec->u.r = rValue;
351 pRec->flags |= MEM_Real;
352 if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec);
354 /* TEXT->NUMERIC is many->one. Hence, it is important to invalidate the
355 ** string representation after computing a numeric equivalent, because the
356 ** string representation might not be the canonical representation for the
357 ** numeric value. Ticket [343634942dd54ab57b7024] 2018-01-31. */
358 pRec->flags &= ~MEM_Str;
362 ** Processing is determine by the affinity parameter:
364 ** SQLITE_AFF_INTEGER:
365 ** SQLITE_AFF_REAL:
366 ** SQLITE_AFF_NUMERIC:
367 ** Try to convert pRec to an integer representation or a
368 ** floating-point representation if an integer representation
369 ** is not possible. Note that the integer representation is
370 ** always preferred, even if the affinity is REAL, because
371 ** an integer representation is more space efficient on disk.
373 ** SQLITE_AFF_TEXT:
374 ** Convert pRec to a text representation.
376 ** SQLITE_AFF_BLOB:
377 ** SQLITE_AFF_NONE:
378 ** No-op. pRec is unchanged.
380 static void applyAffinity(
381 Mem *pRec, /* The value to apply affinity to */
382 char affinity, /* The affinity to be applied */
383 u8 enc /* Use this text encoding */
385 if( affinity>=SQLITE_AFF_NUMERIC ){
386 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
387 || affinity==SQLITE_AFF_NUMERIC );
388 if( (pRec->flags & MEM_Int)==0 ){ /*OPTIMIZATION-IF-FALSE*/
389 if( (pRec->flags & MEM_Real)==0 ){
390 if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1);
391 }else{
392 sqlite3VdbeIntegerAffinity(pRec);
395 }else if( affinity==SQLITE_AFF_TEXT ){
396 /* Only attempt the conversion to TEXT if there is an integer or real
397 ** representation (blob and NULL do not get converted) but no string
398 ** representation. It would be harmless to repeat the conversion if
399 ** there is already a string rep, but it is pointless to waste those
400 ** CPU cycles. */
401 if( 0==(pRec->flags&MEM_Str) ){ /*OPTIMIZATION-IF-FALSE*/
402 if( (pRec->flags&(MEM_Real|MEM_Int|MEM_IntReal)) ){
403 testcase( pRec->flags & MEM_Int );
404 testcase( pRec->flags & MEM_Real );
405 testcase( pRec->flags & MEM_IntReal );
406 sqlite3VdbeMemStringify(pRec, enc, 1);
409 pRec->flags &= ~(MEM_Real|MEM_Int|MEM_IntReal);
414 ** Try to convert the type of a function argument or a result column
415 ** into a numeric representation. Use either INTEGER or REAL whichever
416 ** is appropriate. But only do the conversion if it is possible without
417 ** loss of information and return the revised type of the argument.
419 int sqlite3_value_numeric_type(sqlite3_value *pVal){
420 int eType = sqlite3_value_type(pVal);
421 if( eType==SQLITE_TEXT ){
422 Mem *pMem = (Mem*)pVal;
423 applyNumericAffinity(pMem, 0);
424 eType = sqlite3_value_type(pVal);
426 return eType;
430 ** Exported version of applyAffinity(). This one works on sqlite3_value*,
431 ** not the internal Mem* type.
433 void sqlite3ValueApplyAffinity(
434 sqlite3_value *pVal,
435 u8 affinity,
436 u8 enc
438 applyAffinity((Mem *)pVal, affinity, enc);
442 ** pMem currently only holds a string type (or maybe a BLOB that we can
443 ** interpret as a string if we want to). Compute its corresponding
444 ** numeric type, if has one. Set the pMem->u.r and pMem->u.i fields
445 ** accordingly.
447 static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){
448 int rc;
449 sqlite3_int64 ix;
450 assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal))==0 );
451 assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 );
452 if( ExpandBlob(pMem) ){
453 pMem->u.i = 0;
454 return MEM_Int;
456 rc = sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc);
457 if( rc<=0 ){
458 if( rc==0 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)<=1 ){
459 pMem->u.i = ix;
460 return MEM_Int;
461 }else{
462 return MEM_Real;
464 }else if( rc==1 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)==0 ){
465 pMem->u.i = ix;
466 return MEM_Int;
468 return MEM_Real;
472 ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or
473 ** none.
475 ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags.
476 ** But it does set pMem->u.r and pMem->u.i appropriately.
478 static u16 numericType(Mem *pMem){
479 if( pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal) ){
480 testcase( pMem->flags & MEM_Int );
481 testcase( pMem->flags & MEM_Real );
482 testcase( pMem->flags & MEM_IntReal );
483 return pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal);
485 if( pMem->flags & (MEM_Str|MEM_Blob) ){
486 testcase( pMem->flags & MEM_Str );
487 testcase( pMem->flags & MEM_Blob );
488 return computeNumericType(pMem);
490 return 0;
493 #ifdef SQLITE_DEBUG
495 ** Write a nice string representation of the contents of cell pMem
496 ** into buffer zBuf, length nBuf.
498 void sqlite3VdbeMemPrettyPrint(Mem *pMem, StrAccum *pStr){
499 int f = pMem->flags;
500 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
501 if( f&MEM_Blob ){
502 int i;
503 char c;
504 if( f & MEM_Dyn ){
505 c = 'z';
506 assert( (f & (MEM_Static|MEM_Ephem))==0 );
507 }else if( f & MEM_Static ){
508 c = 't';
509 assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
510 }else if( f & MEM_Ephem ){
511 c = 'e';
512 assert( (f & (MEM_Static|MEM_Dyn))==0 );
513 }else{
514 c = 's';
516 sqlite3_str_appendf(pStr, "%cx[", c);
517 for(i=0; i<25 && i<pMem->n; i++){
518 sqlite3_str_appendf(pStr, "%02X", ((int)pMem->z[i] & 0xFF));
520 sqlite3_str_appendf(pStr, "|");
521 for(i=0; i<25 && i<pMem->n; i++){
522 char z = pMem->z[i];
523 sqlite3_str_appendchar(pStr, 1, (z<32||z>126)?'.':z);
525 sqlite3_str_appendf(pStr,"]");
526 if( f & MEM_Zero ){
527 sqlite3_str_appendf(pStr, "+%dz",pMem->u.nZero);
529 }else if( f & MEM_Str ){
530 int j;
531 u8 c;
532 if( f & MEM_Dyn ){
533 c = 'z';
534 assert( (f & (MEM_Static|MEM_Ephem))==0 );
535 }else if( f & MEM_Static ){
536 c = 't';
537 assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
538 }else if( f & MEM_Ephem ){
539 c = 'e';
540 assert( (f & (MEM_Static|MEM_Dyn))==0 );
541 }else{
542 c = 's';
544 sqlite3_str_appendf(pStr, " %c%d[", c, pMem->n);
545 for(j=0; j<25 && j<pMem->n; j++){
546 c = pMem->z[j];
547 sqlite3_str_appendchar(pStr, 1, (c>=0x20&&c<=0x7f) ? c : '.');
549 sqlite3_str_appendf(pStr, "]%s", encnames[pMem->enc]);
552 #endif
554 #ifdef SQLITE_DEBUG
556 ** Print the value of a register for tracing purposes:
558 static void memTracePrint(Mem *p){
559 if( p->flags & MEM_Undefined ){
560 printf(" undefined");
561 }else if( p->flags & MEM_Null ){
562 printf(p->flags & MEM_Zero ? " NULL-nochng" : " NULL");
563 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
564 printf(" si:%lld", p->u.i);
565 }else if( (p->flags & (MEM_IntReal))!=0 ){
566 printf(" ir:%lld", p->u.i);
567 }else if( p->flags & MEM_Int ){
568 printf(" i:%lld", p->u.i);
569 #ifndef SQLITE_OMIT_FLOATING_POINT
570 }else if( p->flags & MEM_Real ){
571 printf(" r:%.17g", p->u.r);
572 #endif
573 }else if( sqlite3VdbeMemIsRowSet(p) ){
574 printf(" (rowset)");
575 }else{
576 StrAccum acc;
577 char zBuf[1000];
578 sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0);
579 sqlite3VdbeMemPrettyPrint(p, &acc);
580 printf(" %s", sqlite3StrAccumFinish(&acc));
582 if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype);
584 static void registerTrace(int iReg, Mem *p){
585 printf("R[%d] = ", iReg);
586 memTracePrint(p);
587 if( p->pScopyFrom ){
588 printf(" <== R[%d]", (int)(p->pScopyFrom - &p[-iReg]));
590 printf("\n");
591 sqlite3VdbeCheckMemInvariants(p);
593 /**/ void sqlite3PrintMem(Mem *pMem){
594 memTracePrint(pMem);
595 printf("\n");
596 fflush(stdout);
598 #endif
600 #ifdef SQLITE_DEBUG
602 ** Show the values of all registers in the virtual machine. Used for
603 ** interactive debugging.
605 void sqlite3VdbeRegisterDump(Vdbe *v){
606 int i;
607 for(i=1; i<v->nMem; i++) registerTrace(i, v->aMem+i);
609 #endif /* SQLITE_DEBUG */
612 #ifdef SQLITE_DEBUG
613 # define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M)
614 #else
615 # define REGISTER_TRACE(R,M)
616 #endif
619 #ifdef VDBE_PROFILE
622 ** hwtime.h contains inline assembler code for implementing
623 ** high-performance timing routines.
625 #include "hwtime.h"
627 #endif
629 #ifndef NDEBUG
631 ** This function is only called from within an assert() expression. It
632 ** checks that the sqlite3.nTransaction variable is correctly set to
633 ** the number of non-transaction savepoints currently in the
634 ** linked list starting at sqlite3.pSavepoint.
636 ** Usage:
638 ** assert( checkSavepointCount(db) );
640 static int checkSavepointCount(sqlite3 *db){
641 int n = 0;
642 Savepoint *p;
643 for(p=db->pSavepoint; p; p=p->pNext) n++;
644 assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
645 return 1;
647 #endif
650 ** Return the register of pOp->p2 after first preparing it to be
651 ** overwritten with an integer value.
653 static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){
654 sqlite3VdbeMemSetNull(pOut);
655 pOut->flags = MEM_Int;
656 return pOut;
658 static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){
659 Mem *pOut;
660 assert( pOp->p2>0 );
661 assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
662 pOut = &p->aMem[pOp->p2];
663 memAboutToChange(p, pOut);
664 if( VdbeMemDynamic(pOut) ){ /*OPTIMIZATION-IF-FALSE*/
665 return out2PrereleaseWithClear(pOut);
666 }else{
667 pOut->flags = MEM_Int;
668 return pOut;
673 ** Compute a bloom filter hash using pOp->p4.i registers from aMem[] beginning
674 ** with pOp->p3. Return the hash.
676 static u64 filterHash(const Mem *aMem, const Op *pOp){
677 int i, mx;
678 u64 h = 0;
680 assert( pOp->p4type==P4_INT32 );
681 for(i=pOp->p3, mx=i+pOp->p4.i; i<mx; i++){
682 const Mem *p = &aMem[i];
683 if( p->flags & (MEM_Int|MEM_IntReal) ){
684 h += p->u.i;
685 }else if( p->flags & MEM_Real ){
686 h += sqlite3VdbeIntValue(p);
687 }else if( p->flags & (MEM_Str|MEM_Blob) ){
688 h += p->n;
689 if( p->flags & MEM_Zero ) h += p->u.nZero;
692 return h;
696 ** Return the symbolic name for the data type of a pMem
698 static const char *vdbeMemTypeName(Mem *pMem){
699 static const char *azTypes[] = {
700 /* SQLITE_INTEGER */ "INT",
701 /* SQLITE_FLOAT */ "REAL",
702 /* SQLITE_TEXT */ "TEXT",
703 /* SQLITE_BLOB */ "BLOB",
704 /* SQLITE_NULL */ "NULL"
706 return azTypes[sqlite3_value_type(pMem)-1];
710 ** Execute as much of a VDBE program as we can.
711 ** This is the core of sqlite3_step().
713 int sqlite3VdbeExec(
714 Vdbe *p /* The VDBE */
716 Op *aOp = p->aOp; /* Copy of p->aOp */
717 Op *pOp = aOp; /* Current operation */
718 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
719 Op *pOrigOp; /* Value of pOp at the top of the loop */
720 #endif
721 #ifdef SQLITE_DEBUG
722 int nExtraDelete = 0; /* Verifies FORDELETE and AUXDELETE flags */
723 #endif
724 int rc = SQLITE_OK; /* Value to return */
725 sqlite3 *db = p->db; /* The database */
726 u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
727 u8 encoding = ENC(db); /* The database encoding */
728 int iCompare = 0; /* Result of last comparison */
729 u64 nVmStep = 0; /* Number of virtual machine steps */
730 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
731 u64 nProgressLimit; /* Invoke xProgress() when nVmStep reaches this */
732 #endif
733 Mem *aMem = p->aMem; /* Copy of p->aMem */
734 Mem *pIn1 = 0; /* 1st input operand */
735 Mem *pIn2 = 0; /* 2nd input operand */
736 Mem *pIn3 = 0; /* 3rd input operand */
737 Mem *pOut = 0; /* Output operand */
738 #ifdef VDBE_PROFILE
739 u64 start; /* CPU clock count at start of opcode */
740 #endif
741 /*** INSERT STACK UNION HERE ***/
743 assert( p->eVdbeState==VDBE_RUN_STATE ); /* sqlite3_step() verifies this */
744 sqlite3VdbeEnter(p);
745 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
746 if( db->xProgress ){
747 u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP];
748 assert( 0 < db->nProgressOps );
749 nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps);
750 }else{
751 nProgressLimit = LARGEST_UINT64;
753 #endif
754 if( p->rc==SQLITE_NOMEM ){
755 /* This happens if a malloc() inside a call to sqlite3_column_text() or
756 ** sqlite3_column_text16() failed. */
757 goto no_mem;
759 assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY );
760 testcase( p->rc!=SQLITE_OK );
761 p->rc = SQLITE_OK;
762 assert( p->bIsReader || p->readOnly!=0 );
763 p->iCurrentTime = 0;
764 assert( p->explain==0 );
765 p->pResultSet = 0;
766 db->busyHandler.nBusy = 0;
767 if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt;
768 sqlite3VdbeIOTraceSql(p);
769 #ifdef SQLITE_DEBUG
770 sqlite3BeginBenignMalloc();
771 if( p->pc==0
772 && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0
774 int i;
775 int once = 1;
776 sqlite3VdbePrintSql(p);
777 if( p->db->flags & SQLITE_VdbeListing ){
778 printf("VDBE Program Listing:\n");
779 for(i=0; i<p->nOp; i++){
780 sqlite3VdbePrintOp(stdout, i, &aOp[i]);
783 if( p->db->flags & SQLITE_VdbeEQP ){
784 for(i=0; i<p->nOp; i++){
785 if( aOp[i].opcode==OP_Explain ){
786 if( once ) printf("VDBE Query Plan:\n");
787 printf("%s\n", aOp[i].p4.z);
788 once = 0;
792 if( p->db->flags & SQLITE_VdbeTrace ) printf("VDBE Trace:\n");
794 sqlite3EndBenignMalloc();
795 #endif
796 for(pOp=&aOp[p->pc]; 1; pOp++){
797 /* Errors are detected by individual opcodes, with an immediate
798 ** jumps to abort_due_to_error. */
799 assert( rc==SQLITE_OK );
801 assert( pOp>=aOp && pOp<&aOp[p->nOp]);
802 #ifdef VDBE_PROFILE
803 start = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime();
804 #endif
805 nVmStep++;
806 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
807 if( p->anExec ) p->anExec[(int)(pOp-aOp)]++;
808 #endif
810 /* Only allow tracing if SQLITE_DEBUG is defined.
812 #ifdef SQLITE_DEBUG
813 if( db->flags & SQLITE_VdbeTrace ){
814 sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp);
815 test_trace_breakpoint((int)(pOp - aOp),pOp,p);
817 #endif
820 /* Check to see if we need to simulate an interrupt. This only happens
821 ** if we have a special test build.
823 #ifdef SQLITE_TEST
824 if( sqlite3_interrupt_count>0 ){
825 sqlite3_interrupt_count--;
826 if( sqlite3_interrupt_count==0 ){
827 sqlite3_interrupt(db);
830 #endif
832 /* Sanity checking on other operands */
833 #ifdef SQLITE_DEBUG
835 u8 opProperty = sqlite3OpcodeProperty[pOp->opcode];
836 if( (opProperty & OPFLG_IN1)!=0 ){
837 assert( pOp->p1>0 );
838 assert( pOp->p1<=(p->nMem+1 - p->nCursor) );
839 assert( memIsValid(&aMem[pOp->p1]) );
840 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) );
841 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
843 if( (opProperty & OPFLG_IN2)!=0 ){
844 assert( pOp->p2>0 );
845 assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
846 assert( memIsValid(&aMem[pOp->p2]) );
847 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) );
848 REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
850 if( (opProperty & OPFLG_IN3)!=0 ){
851 assert( pOp->p3>0 );
852 assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
853 assert( memIsValid(&aMem[pOp->p3]) );
854 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) );
855 REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
857 if( (opProperty & OPFLG_OUT2)!=0 ){
858 assert( pOp->p2>0 );
859 assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
860 memAboutToChange(p, &aMem[pOp->p2]);
862 if( (opProperty & OPFLG_OUT3)!=0 ){
863 assert( pOp->p3>0 );
864 assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
865 memAboutToChange(p, &aMem[pOp->p3]);
868 #endif
869 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
870 pOrigOp = pOp;
871 #endif
873 switch( pOp->opcode ){
875 /*****************************************************************************
876 ** What follows is a massive switch statement where each case implements a
877 ** separate instruction in the virtual machine. If we follow the usual
878 ** indentation conventions, each case should be indented by 6 spaces. But
879 ** that is a lot of wasted space on the left margin. So the code within
880 ** the switch statement will break with convention and be flush-left. Another
881 ** big comment (similar to this one) will mark the point in the code where
882 ** we transition back to normal indentation.
884 ** The formatting of each case is important. The makefile for SQLite
885 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this
886 ** file looking for lines that begin with "case OP_". The opcodes.h files
887 ** will be filled with #defines that give unique integer values to each
888 ** opcode and the opcodes.c file is filled with an array of strings where
889 ** each string is the symbolic name for the corresponding opcode. If the
890 ** case statement is followed by a comment of the form "/# same as ... #/"
891 ** that comment is used to determine the particular value of the opcode.
893 ** Other keywords in the comment that follows each case are used to
894 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
895 ** Keywords include: in1, in2, in3, out2, out3. See
896 ** the mkopcodeh.awk script for additional information.
898 ** Documentation about VDBE opcodes is generated by scanning this file
899 ** for lines of that contain "Opcode:". That line and all subsequent
900 ** comment lines are used in the generation of the opcode.html documentation
901 ** file.
903 ** SUMMARY:
905 ** Formatting is important to scripts that scan this file.
906 ** Do not deviate from the formatting style currently in use.
908 *****************************************************************************/
910 /* Opcode: Goto * P2 * * *
912 ** An unconditional jump to address P2.
913 ** The next instruction executed will be
914 ** the one at index P2 from the beginning of
915 ** the program.
917 ** The P1 parameter is not actually used by this opcode. However, it
918 ** is sometimes set to 1 instead of 0 as a hint to the command-line shell
919 ** that this Goto is the bottom of a loop and that the lines from P2 down
920 ** to the current line should be indented for EXPLAIN output.
922 case OP_Goto: { /* jump */
924 #ifdef SQLITE_DEBUG
925 /* In debuggging mode, when the p5 flags is set on an OP_Goto, that
926 ** means we should really jump back to the preceeding OP_ReleaseReg
927 ** instruction. */
928 if( pOp->p5 ){
929 assert( pOp->p2 < (int)(pOp - aOp) );
930 assert( pOp->p2 > 1 );
931 pOp = &aOp[pOp->p2 - 2];
932 assert( pOp[1].opcode==OP_ReleaseReg );
933 goto check_for_interrupt;
935 #endif
937 jump_to_p2_and_check_for_interrupt:
938 pOp = &aOp[pOp->p2 - 1];
940 /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev,
941 ** OP_VNext, or OP_SorterNext) all jump here upon
942 ** completion. Check to see if sqlite3_interrupt() has been called
943 ** or if the progress callback needs to be invoked.
945 ** This code uses unstructured "goto" statements and does not look clean.
946 ** But that is not due to sloppy coding habits. The code is written this
947 ** way for performance, to avoid having to run the interrupt and progress
948 ** checks on every opcode. This helps sqlite3_step() to run about 1.5%
949 ** faster according to "valgrind --tool=cachegrind" */
950 check_for_interrupt:
951 if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt;
952 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
953 /* Call the progress callback if it is configured and the required number
954 ** of VDBE ops have been executed (either since this invocation of
955 ** sqlite3VdbeExec() or since last time the progress callback was called).
956 ** If the progress callback returns non-zero, exit the virtual machine with
957 ** a return code SQLITE_ABORT.
959 while( nVmStep>=nProgressLimit && db->xProgress!=0 ){
960 assert( db->nProgressOps!=0 );
961 nProgressLimit += db->nProgressOps;
962 if( db->xProgress(db->pProgressArg) ){
963 nProgressLimit = LARGEST_UINT64;
964 rc = SQLITE_INTERRUPT;
965 goto abort_due_to_error;
968 #endif
970 break;
973 /* Opcode: Gosub P1 P2 * * *
975 ** Write the current address onto register P1
976 ** and then jump to address P2.
978 case OP_Gosub: { /* jump */
979 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
980 pIn1 = &aMem[pOp->p1];
981 assert( VdbeMemDynamic(pIn1)==0 );
982 memAboutToChange(p, pIn1);
983 pIn1->flags = MEM_Int;
984 pIn1->u.i = (int)(pOp-aOp);
985 REGISTER_TRACE(pOp->p1, pIn1);
986 goto jump_to_p2_and_check_for_interrupt;
989 /* Opcode: Return P1 P2 P3 * *
991 ** Jump to the address stored in register P1. If P1 is a return address
992 ** register, then this accomplishes a return from a subroutine.
994 ** If P3 is 1, then the jump is only taken if register P1 holds an integer
995 ** values, otherwise execution falls through to the next opcode, and the
996 ** OP_Return becomes a no-op. If P3 is 0, then register P1 must hold an
997 ** integer or else an assert() is raised. P3 should be set to 1 when
998 ** this opcode is used in combination with OP_BeginSubrtn, and set to 0
999 ** otherwise.
1001 ** The value in register P1 is unchanged by this opcode.
1003 ** P2 is not used by the byte-code engine. However, if P2 is positive
1004 ** and also less than the current address, then the "EXPLAIN" output
1005 ** formatter in the CLI will indent all opcodes from the P2 opcode up
1006 ** to be not including the current Return. P2 should be the first opcode
1007 ** in the subroutine from which this opcode is returning. Thus the P2
1008 ** value is a byte-code indentation hint. See tag-20220407a in
1009 ** wherecode.c and shell.c.
1011 case OP_Return: { /* in1 */
1012 pIn1 = &aMem[pOp->p1];
1013 if( pIn1->flags & MEM_Int ){
1014 if( pOp->p3 ){ VdbeBranchTaken(1, 2); }
1015 pOp = &aOp[pIn1->u.i];
1016 }else if( ALWAYS(pOp->p3) ){
1017 VdbeBranchTaken(0, 2);
1019 break;
1022 /* Opcode: InitCoroutine P1 P2 P3 * *
1024 ** Set up register P1 so that it will Yield to the coroutine
1025 ** located at address P3.
1027 ** If P2!=0 then the coroutine implementation immediately follows
1028 ** this opcode. So jump over the coroutine implementation to
1029 ** address P2.
1031 ** See also: EndCoroutine
1033 case OP_InitCoroutine: { /* jump */
1034 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
1035 assert( pOp->p2>=0 && pOp->p2<p->nOp );
1036 assert( pOp->p3>=0 && pOp->p3<p->nOp );
1037 pOut = &aMem[pOp->p1];
1038 assert( !VdbeMemDynamic(pOut) );
1039 pOut->u.i = pOp->p3 - 1;
1040 pOut->flags = MEM_Int;
1041 if( pOp->p2==0 ) break;
1043 /* Most jump operations do a goto to this spot in order to update
1044 ** the pOp pointer. */
1045 jump_to_p2:
1046 assert( pOp->p2>0 ); /* There are never any jumps to instruction 0 */
1047 assert( pOp->p2<p->nOp ); /* Jumps must be in range */
1048 pOp = &aOp[pOp->p2 - 1];
1049 break;
1052 /* Opcode: EndCoroutine P1 * * * *
1054 ** The instruction at the address in register P1 is a Yield.
1055 ** Jump to the P2 parameter of that Yield.
1056 ** After the jump, register P1 becomes undefined.
1058 ** See also: InitCoroutine
1060 case OP_EndCoroutine: { /* in1 */
1061 VdbeOp *pCaller;
1062 pIn1 = &aMem[pOp->p1];
1063 assert( pIn1->flags==MEM_Int );
1064 assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp );
1065 pCaller = &aOp[pIn1->u.i];
1066 assert( pCaller->opcode==OP_Yield );
1067 assert( pCaller->p2>=0 && pCaller->p2<p->nOp );
1068 pOp = &aOp[pCaller->p2 - 1];
1069 pIn1->flags = MEM_Undefined;
1070 break;
1073 /* Opcode: Yield P1 P2 * * *
1075 ** Swap the program counter with the value in register P1. This
1076 ** has the effect of yielding to a coroutine.
1078 ** If the coroutine that is launched by this instruction ends with
1079 ** Yield or Return then continue to the next instruction. But if
1080 ** the coroutine launched by this instruction ends with
1081 ** EndCoroutine, then jump to P2 rather than continuing with the
1082 ** next instruction.
1084 ** See also: InitCoroutine
1086 case OP_Yield: { /* in1, jump */
1087 int pcDest;
1088 pIn1 = &aMem[pOp->p1];
1089 assert( VdbeMemDynamic(pIn1)==0 );
1090 pIn1->flags = MEM_Int;
1091 pcDest = (int)pIn1->u.i;
1092 pIn1->u.i = (int)(pOp - aOp);
1093 REGISTER_TRACE(pOp->p1, pIn1);
1094 pOp = &aOp[pcDest];
1095 break;
1098 /* Opcode: HaltIfNull P1 P2 P3 P4 P5
1099 ** Synopsis: if r[P3]=null halt
1101 ** Check the value in register P3. If it is NULL then Halt using
1102 ** parameter P1, P2, and P4 as if this were a Halt instruction. If the
1103 ** value in register P3 is not NULL, then this routine is a no-op.
1104 ** The P5 parameter should be 1.
1106 case OP_HaltIfNull: { /* in3 */
1107 pIn3 = &aMem[pOp->p3];
1108 #ifdef SQLITE_DEBUG
1109 if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); }
1110 #endif
1111 if( (pIn3->flags & MEM_Null)==0 ) break;
1112 /* Fall through into OP_Halt */
1113 /* no break */ deliberate_fall_through
1116 /* Opcode: Halt P1 P2 * P4 P5
1118 ** Exit immediately. All open cursors, etc are closed
1119 ** automatically.
1121 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
1122 ** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0).
1123 ** For errors, it can be some other value. If P1!=0 then P2 will determine
1124 ** whether or not to rollback the current transaction. Do not rollback
1125 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort,
1126 ** then back out all changes that have occurred during this execution of the
1127 ** VDBE, but do not rollback the transaction.
1129 ** If P4 is not null then it is an error message string.
1131 ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string.
1133 ** 0: (no change)
1134 ** 1: NOT NULL contraint failed: P4
1135 ** 2: UNIQUE constraint failed: P4
1136 ** 3: CHECK constraint failed: P4
1137 ** 4: FOREIGN KEY constraint failed: P4
1139 ** If P5 is not zero and P4 is NULL, then everything after the ":" is
1140 ** omitted.
1142 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of
1143 ** every program. So a jump past the last instruction of the program
1144 ** is the same as executing Halt.
1146 case OP_Halt: {
1147 VdbeFrame *pFrame;
1148 int pcx;
1150 #ifdef SQLITE_DEBUG
1151 if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); }
1152 #endif
1153 if( p->pFrame && pOp->p1==SQLITE_OK ){
1154 /* Halt the sub-program. Return control to the parent frame. */
1155 pFrame = p->pFrame;
1156 p->pFrame = pFrame->pParent;
1157 p->nFrame--;
1158 sqlite3VdbeSetChanges(db, p->nChange);
1159 pcx = sqlite3VdbeFrameRestore(pFrame);
1160 if( pOp->p2==OE_Ignore ){
1161 /* Instruction pcx is the OP_Program that invoked the sub-program
1162 ** currently being halted. If the p2 instruction of this OP_Halt
1163 ** instruction is set to OE_Ignore, then the sub-program is throwing
1164 ** an IGNORE exception. In this case jump to the address specified
1165 ** as the p2 of the calling OP_Program. */
1166 pcx = p->aOp[pcx].p2-1;
1168 aOp = p->aOp;
1169 aMem = p->aMem;
1170 pOp = &aOp[pcx];
1171 break;
1173 p->rc = pOp->p1;
1174 p->errorAction = (u8)pOp->p2;
1175 assert( pOp->p5<=4 );
1176 if( p->rc ){
1177 if( pOp->p5 ){
1178 static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK",
1179 "FOREIGN KEY" };
1180 testcase( pOp->p5==1 );
1181 testcase( pOp->p5==2 );
1182 testcase( pOp->p5==3 );
1183 testcase( pOp->p5==4 );
1184 sqlite3VdbeError(p, "%s constraint failed", azType[pOp->p5-1]);
1185 if( pOp->p4.z ){
1186 p->zErrMsg = sqlite3MPrintf(db, "%z: %s", p->zErrMsg, pOp->p4.z);
1188 }else{
1189 sqlite3VdbeError(p, "%s", pOp->p4.z);
1191 pcx = (int)(pOp - aOp);
1192 sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pcx, p->zSql, p->zErrMsg);
1194 rc = sqlite3VdbeHalt(p);
1195 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
1196 if( rc==SQLITE_BUSY ){
1197 p->rc = SQLITE_BUSY;
1198 }else{
1199 assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT );
1200 assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 );
1201 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
1203 goto vdbe_return;
1206 /* Opcode: Integer P1 P2 * * *
1207 ** Synopsis: r[P2]=P1
1209 ** The 32-bit integer value P1 is written into register P2.
1211 case OP_Integer: { /* out2 */
1212 pOut = out2Prerelease(p, pOp);
1213 pOut->u.i = pOp->p1;
1214 break;
1217 /* Opcode: Int64 * P2 * P4 *
1218 ** Synopsis: r[P2]=P4
1220 ** P4 is a pointer to a 64-bit integer value.
1221 ** Write that value into register P2.
1223 case OP_Int64: { /* out2 */
1224 pOut = out2Prerelease(p, pOp);
1225 assert( pOp->p4.pI64!=0 );
1226 pOut->u.i = *pOp->p4.pI64;
1227 break;
1230 #ifndef SQLITE_OMIT_FLOATING_POINT
1231 /* Opcode: Real * P2 * P4 *
1232 ** Synopsis: r[P2]=P4
1234 ** P4 is a pointer to a 64-bit floating point value.
1235 ** Write that value into register P2.
1237 case OP_Real: { /* same as TK_FLOAT, out2 */
1238 pOut = out2Prerelease(p, pOp);
1239 pOut->flags = MEM_Real;
1240 assert( !sqlite3IsNaN(*pOp->p4.pReal) );
1241 pOut->u.r = *pOp->p4.pReal;
1242 break;
1244 #endif
1246 /* Opcode: String8 * P2 * P4 *
1247 ** Synopsis: r[P2]='P4'
1249 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed
1250 ** into a String opcode before it is executed for the first time. During
1251 ** this transformation, the length of string P4 is computed and stored
1252 ** as the P1 parameter.
1254 case OP_String8: { /* same as TK_STRING, out2 */
1255 assert( pOp->p4.z!=0 );
1256 pOut = out2Prerelease(p, pOp);
1257 pOp->p1 = sqlite3Strlen30(pOp->p4.z);
1259 #ifndef SQLITE_OMIT_UTF16
1260 if( encoding!=SQLITE_UTF8 ){
1261 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
1262 assert( rc==SQLITE_OK || rc==SQLITE_TOOBIG );
1263 if( rc ) goto too_big;
1264 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
1265 assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z );
1266 assert( VdbeMemDynamic(pOut)==0 );
1267 pOut->szMalloc = 0;
1268 pOut->flags |= MEM_Static;
1269 if( pOp->p4type==P4_DYNAMIC ){
1270 sqlite3DbFree(db, pOp->p4.z);
1272 pOp->p4type = P4_DYNAMIC;
1273 pOp->p4.z = pOut->z;
1274 pOp->p1 = pOut->n;
1276 #endif
1277 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1278 goto too_big;
1280 pOp->opcode = OP_String;
1281 assert( rc==SQLITE_OK );
1282 /* Fall through to the next case, OP_String */
1283 /* no break */ deliberate_fall_through
1286 /* Opcode: String P1 P2 P3 P4 P5
1287 ** Synopsis: r[P2]='P4' (len=P1)
1289 ** The string value P4 of length P1 (bytes) is stored in register P2.
1291 ** If P3 is not zero and the content of register P3 is equal to P5, then
1292 ** the datatype of the register P2 is converted to BLOB. The content is
1293 ** the same sequence of bytes, it is merely interpreted as a BLOB instead
1294 ** of a string, as if it had been CAST. In other words:
1296 ** if( P3!=0 and reg[P3]==P5 ) reg[P2] := CAST(reg[P2] as BLOB)
1298 case OP_String: { /* out2 */
1299 assert( pOp->p4.z!=0 );
1300 pOut = out2Prerelease(p, pOp);
1301 pOut->flags = MEM_Str|MEM_Static|MEM_Term;
1302 pOut->z = pOp->p4.z;
1303 pOut->n = pOp->p1;
1304 pOut->enc = encoding;
1305 UPDATE_MAX_BLOBSIZE(pOut);
1306 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
1307 if( pOp->p3>0 ){
1308 assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
1309 pIn3 = &aMem[pOp->p3];
1310 assert( pIn3->flags & MEM_Int );
1311 if( pIn3->u.i==pOp->p5 ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term;
1313 #endif
1314 break;
1317 /* Opcode: BeginSubrtn * P2 * * *
1318 ** Synopsis: r[P2]=NULL
1320 ** Mark the beginning of a subroutine that can be entered in-line
1321 ** or that can be called using OP_Gosub. The subroutine should
1322 ** be terminated by an OP_Return instruction that has a P1 operand that
1323 ** is the same as the P2 operand to this opcode and that has P3 set to 1.
1324 ** If the subroutine is entered in-line, then the OP_Return will simply
1325 ** fall through. But if the subroutine is entered using OP_Gosub, then
1326 ** the OP_Return will jump back to the first instruction after the OP_Gosub.
1328 ** This routine works by loading a NULL into the P2 register. When the
1329 ** return address register contains a NULL, the OP_Return instruction is
1330 ** a no-op that simply falls through to the next instruction (assuming that
1331 ** the OP_Return opcode has a P3 value of 1). Thus if the subroutine is
1332 ** entered in-line, then the OP_Return will cause in-line execution to
1333 ** continue. But if the subroutine is entered via OP_Gosub, then the
1334 ** OP_Return will cause a return to the address following the OP_Gosub.
1336 ** This opcode is identical to OP_Null. It has a different name
1337 ** only to make the byte code easier to read and verify.
1339 /* Opcode: Null P1 P2 P3 * *
1340 ** Synopsis: r[P2..P3]=NULL
1342 ** Write a NULL into registers P2. If P3 greater than P2, then also write
1343 ** NULL into register P3 and every register in between P2 and P3. If P3
1344 ** is less than P2 (typically P3 is zero) then only register P2 is
1345 ** set to NULL.
1347 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that
1348 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on
1349 ** OP_Ne or OP_Eq.
1351 case OP_BeginSubrtn:
1352 case OP_Null: { /* out2 */
1353 int cnt;
1354 u16 nullFlag;
1355 pOut = out2Prerelease(p, pOp);
1356 cnt = pOp->p3-pOp->p2;
1357 assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
1358 pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null;
1359 pOut->n = 0;
1360 #ifdef SQLITE_DEBUG
1361 pOut->uTemp = 0;
1362 #endif
1363 while( cnt>0 ){
1364 pOut++;
1365 memAboutToChange(p, pOut);
1366 sqlite3VdbeMemSetNull(pOut);
1367 pOut->flags = nullFlag;
1368 pOut->n = 0;
1369 cnt--;
1371 break;
1374 /* Opcode: SoftNull P1 * * * *
1375 ** Synopsis: r[P1]=NULL
1377 ** Set register P1 to have the value NULL as seen by the OP_MakeRecord
1378 ** instruction, but do not free any string or blob memory associated with
1379 ** the register, so that if the value was a string or blob that was
1380 ** previously copied using OP_SCopy, the copies will continue to be valid.
1382 case OP_SoftNull: {
1383 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
1384 pOut = &aMem[pOp->p1];
1385 pOut->flags = (pOut->flags&~(MEM_Undefined|MEM_AffMask))|MEM_Null;
1386 break;
1389 /* Opcode: Blob P1 P2 * P4 *
1390 ** Synopsis: r[P2]=P4 (len=P1)
1392 ** P4 points to a blob of data P1 bytes long. Store this
1393 ** blob in register P2. If P4 is a NULL pointer, then construct
1394 ** a zero-filled blob that is P1 bytes long in P2.
1396 case OP_Blob: { /* out2 */
1397 assert( pOp->p1 <= SQLITE_MAX_LENGTH );
1398 pOut = out2Prerelease(p, pOp);
1399 if( pOp->p4.z==0 ){
1400 sqlite3VdbeMemSetZeroBlob(pOut, pOp->p1);
1401 if( sqlite3VdbeMemExpandBlob(pOut) ) goto no_mem;
1402 }else{
1403 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
1405 pOut->enc = encoding;
1406 UPDATE_MAX_BLOBSIZE(pOut);
1407 break;
1410 /* Opcode: Variable P1 P2 * P4 *
1411 ** Synopsis: r[P2]=parameter(P1,P4)
1413 ** Transfer the values of bound parameter P1 into register P2
1415 ** If the parameter is named, then its name appears in P4.
1416 ** The P4 value is used by sqlite3_bind_parameter_name().
1418 case OP_Variable: { /* out2 */
1419 Mem *pVar; /* Value being transferred */
1421 assert( pOp->p1>0 && pOp->p1<=p->nVar );
1422 assert( pOp->p4.z==0 || pOp->p4.z==sqlite3VListNumToName(p->pVList,pOp->p1) );
1423 pVar = &p->aVar[pOp->p1 - 1];
1424 if( sqlite3VdbeMemTooBig(pVar) ){
1425 goto too_big;
1427 pOut = &aMem[pOp->p2];
1428 if( VdbeMemDynamic(pOut) ) sqlite3VdbeMemSetNull(pOut);
1429 memcpy(pOut, pVar, MEMCELLSIZE);
1430 pOut->flags &= ~(MEM_Dyn|MEM_Ephem);
1431 pOut->flags |= MEM_Static|MEM_FromBind;
1432 UPDATE_MAX_BLOBSIZE(pOut);
1433 break;
1436 /* Opcode: Move P1 P2 P3 * *
1437 ** Synopsis: r[P2@P3]=r[P1@P3]
1439 ** Move the P3 values in register P1..P1+P3-1 over into
1440 ** registers P2..P2+P3-1. Registers P1..P1+P3-1 are
1441 ** left holding a NULL. It is an error for register ranges
1442 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap. It is an error
1443 ** for P3 to be less than 1.
1445 case OP_Move: {
1446 int n; /* Number of registers left to copy */
1447 int p1; /* Register to copy from */
1448 int p2; /* Register to copy to */
1450 n = pOp->p3;
1451 p1 = pOp->p1;
1452 p2 = pOp->p2;
1453 assert( n>0 && p1>0 && p2>0 );
1454 assert( p1+n<=p2 || p2+n<=p1 );
1456 pIn1 = &aMem[p1];
1457 pOut = &aMem[p2];
1459 assert( pOut<=&aMem[(p->nMem+1 - p->nCursor)] );
1460 assert( pIn1<=&aMem[(p->nMem+1 - p->nCursor)] );
1461 assert( memIsValid(pIn1) );
1462 memAboutToChange(p, pOut);
1463 sqlite3VdbeMemMove(pOut, pIn1);
1464 #ifdef SQLITE_DEBUG
1465 pIn1->pScopyFrom = 0;
1466 { int i;
1467 for(i=1; i<p->nMem; i++){
1468 if( aMem[i].pScopyFrom==pIn1 ){
1469 aMem[i].pScopyFrom = pOut;
1473 #endif
1474 Deephemeralize(pOut);
1475 REGISTER_TRACE(p2++, pOut);
1476 pIn1++;
1477 pOut++;
1478 }while( --n );
1479 break;
1482 /* Opcode: Copy P1 P2 P3 * P5
1483 ** Synopsis: r[P2@P3+1]=r[P1@P3+1]
1485 ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
1487 ** If the 0x0002 bit of P5 is set then also clear the MEM_Subtype flag in the
1488 ** destination. The 0x0001 bit of P5 indicates that this Copy opcode cannot
1489 ** be merged. The 0x0001 bit is used by the query planner and does not
1490 ** come into play during query execution.
1492 ** This instruction makes a deep copy of the value. A duplicate
1493 ** is made of any string or blob constant. See also OP_SCopy.
1495 case OP_Copy: {
1496 int n;
1498 n = pOp->p3;
1499 pIn1 = &aMem[pOp->p1];
1500 pOut = &aMem[pOp->p2];
1501 assert( pOut!=pIn1 );
1502 while( 1 ){
1503 memAboutToChange(p, pOut);
1504 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1505 Deephemeralize(pOut);
1506 if( (pOut->flags & MEM_Subtype)!=0 && (pOp->p5 & 0x0002)!=0 ){
1507 pOut->flags &= ~MEM_Subtype;
1509 #ifdef SQLITE_DEBUG
1510 pOut->pScopyFrom = 0;
1511 #endif
1512 REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut);
1513 if( (n--)==0 ) break;
1514 pOut++;
1515 pIn1++;
1517 break;
1520 /* Opcode: SCopy P1 P2 * * *
1521 ** Synopsis: r[P2]=r[P1]
1523 ** Make a shallow copy of register P1 into register P2.
1525 ** This instruction makes a shallow copy of the value. If the value
1526 ** is a string or blob, then the copy is only a pointer to the
1527 ** original and hence if the original changes so will the copy.
1528 ** Worse, if the original is deallocated, the copy becomes invalid.
1529 ** Thus the program must guarantee that the original will not change
1530 ** during the lifetime of the copy. Use OP_Copy to make a complete
1531 ** copy.
1533 case OP_SCopy: { /* out2 */
1534 pIn1 = &aMem[pOp->p1];
1535 pOut = &aMem[pOp->p2];
1536 assert( pOut!=pIn1 );
1537 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1538 #ifdef SQLITE_DEBUG
1539 pOut->pScopyFrom = pIn1;
1540 pOut->mScopyFlags = pIn1->flags;
1541 #endif
1542 break;
1545 /* Opcode: IntCopy P1 P2 * * *
1546 ** Synopsis: r[P2]=r[P1]
1548 ** Transfer the integer value held in register P1 into register P2.
1550 ** This is an optimized version of SCopy that works only for integer
1551 ** values.
1553 case OP_IntCopy: { /* out2 */
1554 pIn1 = &aMem[pOp->p1];
1555 assert( (pIn1->flags & MEM_Int)!=0 );
1556 pOut = &aMem[pOp->p2];
1557 sqlite3VdbeMemSetInt64(pOut, pIn1->u.i);
1558 break;
1561 /* Opcode: FkCheck * * * * *
1563 ** Halt with an SQLITE_CONSTRAINT error if there are any unresolved
1564 ** foreign key constraint violations. If there are no foreign key
1565 ** constraint violations, this is a no-op.
1567 ** FK constraint violations are also checked when the prepared statement
1568 ** exits. This opcode is used to raise foreign key constraint errors prior
1569 ** to returning results such as a row change count or the result of a
1570 ** RETURNING clause.
1572 case OP_FkCheck: {
1573 if( (rc = sqlite3VdbeCheckFk(p,0))!=SQLITE_OK ){
1574 goto abort_due_to_error;
1576 break;
1579 /* Opcode: ResultRow P1 P2 * * *
1580 ** Synopsis: output=r[P1@P2]
1582 ** The registers P1 through P1+P2-1 contain a single row of
1583 ** results. This opcode causes the sqlite3_step() call to terminate
1584 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
1585 ** structure to provide access to the r(P1)..r(P1+P2-1) values as
1586 ** the result row.
1588 case OP_ResultRow: {
1589 assert( p->nResColumn==pOp->p2 );
1590 assert( pOp->p1>0 || CORRUPT_DB );
1591 assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 );
1593 p->cacheCtr = (p->cacheCtr + 2)|1;
1594 p->pResultSet = &aMem[pOp->p1];
1595 #ifdef SQLITE_DEBUG
1597 Mem *pMem = p->pResultSet;
1598 int i;
1599 for(i=0; i<pOp->p2; i++){
1600 assert( memIsValid(&pMem[i]) );
1601 REGISTER_TRACE(pOp->p1+i, &pMem[i]);
1602 /* The registers in the result will not be used again when the
1603 ** prepared statement restarts. This is because sqlite3_column()
1604 ** APIs might have caused type conversions of made other changes to
1605 ** the register values. Therefore, we can go ahead and break any
1606 ** OP_SCopy dependencies. */
1607 pMem[i].pScopyFrom = 0;
1610 #endif
1611 if( db->mallocFailed ) goto no_mem;
1612 if( db->mTrace & SQLITE_TRACE_ROW ){
1613 db->trace.xV2(SQLITE_TRACE_ROW, db->pTraceArg, p, 0);
1615 p->pc = (int)(pOp - aOp) + 1;
1616 rc = SQLITE_ROW;
1617 goto vdbe_return;
1620 /* Opcode: Concat P1 P2 P3 * *
1621 ** Synopsis: r[P3]=r[P2]+r[P1]
1623 ** Add the text in register P1 onto the end of the text in
1624 ** register P2 and store the result in register P3.
1625 ** If either the P1 or P2 text are NULL then store NULL in P3.
1627 ** P3 = P2 || P1
1629 ** It is illegal for P1 and P3 to be the same register. Sometimes,
1630 ** if P3 is the same register as P2, the implementation is able
1631 ** to avoid a memcpy().
1633 case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */
1634 i64 nByte; /* Total size of the output string or blob */
1635 u16 flags1; /* Initial flags for P1 */
1636 u16 flags2; /* Initial flags for P2 */
1638 pIn1 = &aMem[pOp->p1];
1639 pIn2 = &aMem[pOp->p2];
1640 pOut = &aMem[pOp->p3];
1641 testcase( pOut==pIn2 );
1642 assert( pIn1!=pOut );
1643 flags1 = pIn1->flags;
1644 testcase( flags1 & MEM_Null );
1645 testcase( pIn2->flags & MEM_Null );
1646 if( (flags1 | pIn2->flags) & MEM_Null ){
1647 sqlite3VdbeMemSetNull(pOut);
1648 break;
1650 if( (flags1 & (MEM_Str|MEM_Blob))==0 ){
1651 if( sqlite3VdbeMemStringify(pIn1,encoding,0) ) goto no_mem;
1652 flags1 = pIn1->flags & ~MEM_Str;
1653 }else if( (flags1 & MEM_Zero)!=0 ){
1654 if( sqlite3VdbeMemExpandBlob(pIn1) ) goto no_mem;
1655 flags1 = pIn1->flags & ~MEM_Str;
1657 flags2 = pIn2->flags;
1658 if( (flags2 & (MEM_Str|MEM_Blob))==0 ){
1659 if( sqlite3VdbeMemStringify(pIn2,encoding,0) ) goto no_mem;
1660 flags2 = pIn2->flags & ~MEM_Str;
1661 }else if( (flags2 & MEM_Zero)!=0 ){
1662 if( sqlite3VdbeMemExpandBlob(pIn2) ) goto no_mem;
1663 flags2 = pIn2->flags & ~MEM_Str;
1665 nByte = pIn1->n + pIn2->n;
1666 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1667 goto too_big;
1669 if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){
1670 goto no_mem;
1672 MemSetTypeFlag(pOut, MEM_Str);
1673 if( pOut!=pIn2 ){
1674 memcpy(pOut->z, pIn2->z, pIn2->n);
1675 assert( (pIn2->flags & MEM_Dyn) == (flags2 & MEM_Dyn) );
1676 pIn2->flags = flags2;
1678 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
1679 assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
1680 pIn1->flags = flags1;
1681 if( encoding>SQLITE_UTF8 ) nByte &= ~1;
1682 pOut->z[nByte]=0;
1683 pOut->z[nByte+1] = 0;
1684 pOut->flags |= MEM_Term;
1685 pOut->n = (int)nByte;
1686 pOut->enc = encoding;
1687 UPDATE_MAX_BLOBSIZE(pOut);
1688 break;
1691 /* Opcode: Add P1 P2 P3 * *
1692 ** Synopsis: r[P3]=r[P1]+r[P2]
1694 ** Add the value in register P1 to the value in register P2
1695 ** and store the result in register P3.
1696 ** If either input is NULL, the result is NULL.
1698 /* Opcode: Multiply P1 P2 P3 * *
1699 ** Synopsis: r[P3]=r[P1]*r[P2]
1702 ** Multiply the value in register P1 by the value in register P2
1703 ** and store the result in register P3.
1704 ** If either input is NULL, the result is NULL.
1706 /* Opcode: Subtract P1 P2 P3 * *
1707 ** Synopsis: r[P3]=r[P2]-r[P1]
1709 ** Subtract the value in register P1 from the value in register P2
1710 ** and store the result in register P3.
1711 ** If either input is NULL, the result is NULL.
1713 /* Opcode: Divide P1 P2 P3 * *
1714 ** Synopsis: r[P3]=r[P2]/r[P1]
1716 ** Divide the value in register P1 by the value in register P2
1717 ** and store the result in register P3 (P3=P2/P1). If the value in
1718 ** register P1 is zero, then the result is NULL. If either input is
1719 ** NULL, the result is NULL.
1721 /* Opcode: Remainder P1 P2 P3 * *
1722 ** Synopsis: r[P3]=r[P2]%r[P1]
1724 ** Compute the remainder after integer register P2 is divided by
1725 ** register P1 and store the result in register P3.
1726 ** If the value in register P1 is zero the result is NULL.
1727 ** If either operand is NULL, the result is NULL.
1729 case OP_Add: /* same as TK_PLUS, in1, in2, out3 */
1730 case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */
1731 case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */
1732 case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */
1733 case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */
1734 u16 flags; /* Combined MEM_* flags from both inputs */
1735 u16 type1; /* Numeric type of left operand */
1736 u16 type2; /* Numeric type of right operand */
1737 i64 iA; /* Integer value of left operand */
1738 i64 iB; /* Integer value of right operand */
1739 double rA; /* Real value of left operand */
1740 double rB; /* Real value of right operand */
1742 pIn1 = &aMem[pOp->p1];
1743 type1 = numericType(pIn1);
1744 pIn2 = &aMem[pOp->p2];
1745 type2 = numericType(pIn2);
1746 pOut = &aMem[pOp->p3];
1747 flags = pIn1->flags | pIn2->flags;
1748 if( (type1 & type2 & MEM_Int)!=0 ){
1749 iA = pIn1->u.i;
1750 iB = pIn2->u.i;
1751 switch( pOp->opcode ){
1752 case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break;
1753 case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break;
1754 case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break;
1755 case OP_Divide: {
1756 if( iA==0 ) goto arithmetic_result_is_null;
1757 if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math;
1758 iB /= iA;
1759 break;
1761 default: {
1762 if( iA==0 ) goto arithmetic_result_is_null;
1763 if( iA==-1 ) iA = 1;
1764 iB %= iA;
1765 break;
1768 pOut->u.i = iB;
1769 MemSetTypeFlag(pOut, MEM_Int);
1770 }else if( (flags & MEM_Null)!=0 ){
1771 goto arithmetic_result_is_null;
1772 }else{
1773 fp_math:
1774 rA = sqlite3VdbeRealValue(pIn1);
1775 rB = sqlite3VdbeRealValue(pIn2);
1776 switch( pOp->opcode ){
1777 case OP_Add: rB += rA; break;
1778 case OP_Subtract: rB -= rA; break;
1779 case OP_Multiply: rB *= rA; break;
1780 case OP_Divide: {
1781 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
1782 if( rA==(double)0 ) goto arithmetic_result_is_null;
1783 rB /= rA;
1784 break;
1786 default: {
1787 iA = sqlite3VdbeIntValue(pIn1);
1788 iB = sqlite3VdbeIntValue(pIn2);
1789 if( iA==0 ) goto arithmetic_result_is_null;
1790 if( iA==-1 ) iA = 1;
1791 rB = (double)(iB % iA);
1792 break;
1795 #ifdef SQLITE_OMIT_FLOATING_POINT
1796 pOut->u.i = rB;
1797 MemSetTypeFlag(pOut, MEM_Int);
1798 #else
1799 if( sqlite3IsNaN(rB) ){
1800 goto arithmetic_result_is_null;
1802 pOut->u.r = rB;
1803 MemSetTypeFlag(pOut, MEM_Real);
1804 #endif
1806 break;
1808 arithmetic_result_is_null:
1809 sqlite3VdbeMemSetNull(pOut);
1810 break;
1813 /* Opcode: CollSeq P1 * * P4
1815 ** P4 is a pointer to a CollSeq object. If the next call to a user function
1816 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
1817 ** be returned. This is used by the built-in min(), max() and nullif()
1818 ** functions.
1820 ** If P1 is not zero, then it is a register that a subsequent min() or
1821 ** max() aggregate will set to 1 if the current row is not the minimum or
1822 ** maximum. The P1 register is initialized to 0 by this instruction.
1824 ** The interface used by the implementation of the aforementioned functions
1825 ** to retrieve the collation sequence set by this opcode is not available
1826 ** publicly. Only built-in functions have access to this feature.
1828 case OP_CollSeq: {
1829 assert( pOp->p4type==P4_COLLSEQ );
1830 if( pOp->p1 ){
1831 sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0);
1833 break;
1836 /* Opcode: BitAnd P1 P2 P3 * *
1837 ** Synopsis: r[P3]=r[P1]&r[P2]
1839 ** Take the bit-wise AND of the values in register P1 and P2 and
1840 ** store the result in register P3.
1841 ** If either input is NULL, the result is NULL.
1843 /* Opcode: BitOr P1 P2 P3 * *
1844 ** Synopsis: r[P3]=r[P1]|r[P2]
1846 ** Take the bit-wise OR of the values in register P1 and P2 and
1847 ** store the result in register P3.
1848 ** If either input is NULL, the result is NULL.
1850 /* Opcode: ShiftLeft P1 P2 P3 * *
1851 ** Synopsis: r[P3]=r[P2]<<r[P1]
1853 ** Shift the integer value in register P2 to the left by the
1854 ** number of bits specified by the integer in register P1.
1855 ** Store the result in register P3.
1856 ** If either input is NULL, the result is NULL.
1858 /* Opcode: ShiftRight P1 P2 P3 * *
1859 ** Synopsis: r[P3]=r[P2]>>r[P1]
1861 ** Shift the integer value in register P2 to the right by the
1862 ** number of bits specified by the integer in register P1.
1863 ** Store the result in register P3.
1864 ** If either input is NULL, the result is NULL.
1866 case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */
1867 case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */
1868 case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */
1869 case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */
1870 i64 iA;
1871 u64 uA;
1872 i64 iB;
1873 u8 op;
1875 pIn1 = &aMem[pOp->p1];
1876 pIn2 = &aMem[pOp->p2];
1877 pOut = &aMem[pOp->p3];
1878 if( (pIn1->flags | pIn2->flags) & MEM_Null ){
1879 sqlite3VdbeMemSetNull(pOut);
1880 break;
1882 iA = sqlite3VdbeIntValue(pIn2);
1883 iB = sqlite3VdbeIntValue(pIn1);
1884 op = pOp->opcode;
1885 if( op==OP_BitAnd ){
1886 iA &= iB;
1887 }else if( op==OP_BitOr ){
1888 iA |= iB;
1889 }else if( iB!=0 ){
1890 assert( op==OP_ShiftRight || op==OP_ShiftLeft );
1892 /* If shifting by a negative amount, shift in the other direction */
1893 if( iB<0 ){
1894 assert( OP_ShiftRight==OP_ShiftLeft+1 );
1895 op = 2*OP_ShiftLeft + 1 - op;
1896 iB = iB>(-64) ? -iB : 64;
1899 if( iB>=64 ){
1900 iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1;
1901 }else{
1902 memcpy(&uA, &iA, sizeof(uA));
1903 if( op==OP_ShiftLeft ){
1904 uA <<= iB;
1905 }else{
1906 uA >>= iB;
1907 /* Sign-extend on a right shift of a negative number */
1908 if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB);
1910 memcpy(&iA, &uA, sizeof(iA));
1913 pOut->u.i = iA;
1914 MemSetTypeFlag(pOut, MEM_Int);
1915 break;
1918 /* Opcode: AddImm P1 P2 * * *
1919 ** Synopsis: r[P1]=r[P1]+P2
1921 ** Add the constant P2 to the value in register P1.
1922 ** The result is always an integer.
1924 ** To force any register to be an integer, just add 0.
1926 case OP_AddImm: { /* in1 */
1927 pIn1 = &aMem[pOp->p1];
1928 memAboutToChange(p, pIn1);
1929 sqlite3VdbeMemIntegerify(pIn1);
1930 pIn1->u.i += pOp->p2;
1931 break;
1934 /* Opcode: MustBeInt P1 P2 * * *
1936 ** Force the value in register P1 to be an integer. If the value
1937 ** in P1 is not an integer and cannot be converted into an integer
1938 ** without data loss, then jump immediately to P2, or if P2==0
1939 ** raise an SQLITE_MISMATCH exception.
1941 case OP_MustBeInt: { /* jump, in1 */
1942 pIn1 = &aMem[pOp->p1];
1943 if( (pIn1->flags & MEM_Int)==0 ){
1944 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
1945 if( (pIn1->flags & MEM_Int)==0 ){
1946 VdbeBranchTaken(1, 2);
1947 if( pOp->p2==0 ){
1948 rc = SQLITE_MISMATCH;
1949 goto abort_due_to_error;
1950 }else{
1951 goto jump_to_p2;
1955 VdbeBranchTaken(0, 2);
1956 MemSetTypeFlag(pIn1, MEM_Int);
1957 break;
1960 #ifndef SQLITE_OMIT_FLOATING_POINT
1961 /* Opcode: RealAffinity P1 * * * *
1963 ** If register P1 holds an integer convert it to a real value.
1965 ** This opcode is used when extracting information from a column that
1966 ** has REAL affinity. Such column values may still be stored as
1967 ** integers, for space efficiency, but after extraction we want them
1968 ** to have only a real value.
1970 case OP_RealAffinity: { /* in1 */
1971 pIn1 = &aMem[pOp->p1];
1972 if( pIn1->flags & (MEM_Int|MEM_IntReal) ){
1973 testcase( pIn1->flags & MEM_Int );
1974 testcase( pIn1->flags & MEM_IntReal );
1975 sqlite3VdbeMemRealify(pIn1);
1976 REGISTER_TRACE(pOp->p1, pIn1);
1978 break;
1980 #endif
1982 #ifndef SQLITE_OMIT_CAST
1983 /* Opcode: Cast P1 P2 * * *
1984 ** Synopsis: affinity(r[P1])
1986 ** Force the value in register P1 to be the type defined by P2.
1988 ** <ul>
1989 ** <li> P2=='A' &rarr; BLOB
1990 ** <li> P2=='B' &rarr; TEXT
1991 ** <li> P2=='C' &rarr; NUMERIC
1992 ** <li> P2=='D' &rarr; INTEGER
1993 ** <li> P2=='E' &rarr; REAL
1994 ** </ul>
1996 ** A NULL value is not changed by this routine. It remains NULL.
1998 case OP_Cast: { /* in1 */
1999 assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL );
2000 testcase( pOp->p2==SQLITE_AFF_TEXT );
2001 testcase( pOp->p2==SQLITE_AFF_BLOB );
2002 testcase( pOp->p2==SQLITE_AFF_NUMERIC );
2003 testcase( pOp->p2==SQLITE_AFF_INTEGER );
2004 testcase( pOp->p2==SQLITE_AFF_REAL );
2005 pIn1 = &aMem[pOp->p1];
2006 memAboutToChange(p, pIn1);
2007 rc = ExpandBlob(pIn1);
2008 if( rc ) goto abort_due_to_error;
2009 rc = sqlite3VdbeMemCast(pIn1, pOp->p2, encoding);
2010 if( rc ) goto abort_due_to_error;
2011 UPDATE_MAX_BLOBSIZE(pIn1);
2012 REGISTER_TRACE(pOp->p1, pIn1);
2013 break;
2015 #endif /* SQLITE_OMIT_CAST */
2017 /* Opcode: Eq P1 P2 P3 P4 P5
2018 ** Synopsis: IF r[P3]==r[P1]
2020 ** Compare the values in register P1 and P3. If reg(P3)==reg(P1) then
2021 ** jump to address P2.
2023 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
2024 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
2025 ** to coerce both inputs according to this affinity before the
2026 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
2027 ** affinity is used. Note that the affinity conversions are stored
2028 ** back into the input registers P1 and P3. So this opcode can cause
2029 ** persistent changes to registers P1 and P3.
2031 ** Once any conversions have taken place, and neither value is NULL,
2032 ** the values are compared. If both values are blobs then memcmp() is
2033 ** used to determine the results of the comparison. If both values
2034 ** are text, then the appropriate collating function specified in
2035 ** P4 is used to do the comparison. If P4 is not specified then
2036 ** memcmp() is used to compare text string. If both values are
2037 ** numeric, then a numeric comparison is used. If the two values
2038 ** are of different types, then numbers are considered less than
2039 ** strings and strings are considered less than blobs.
2041 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
2042 ** true or false and is never NULL. If both operands are NULL then the result
2043 ** of comparison is true. If either operand is NULL then the result is false.
2044 ** If neither operand is NULL the result is the same as it would be if
2045 ** the SQLITE_NULLEQ flag were omitted from P5.
2047 ** This opcode saves the result of comparison for use by the new
2048 ** OP_Jump opcode.
2050 /* Opcode: Ne P1 P2 P3 P4 P5
2051 ** Synopsis: IF r[P3]!=r[P1]
2053 ** This works just like the Eq opcode except that the jump is taken if
2054 ** the operands in registers P1 and P3 are not equal. See the Eq opcode for
2055 ** additional information.
2057 /* Opcode: Lt P1 P2 P3 P4 P5
2058 ** Synopsis: IF r[P3]<r[P1]
2060 ** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then
2061 ** jump to address P2.
2063 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
2064 ** reg(P3) is NULL then the take the jump. If the SQLITE_JUMPIFNULL
2065 ** bit is clear then fall through if either operand is NULL.
2067 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
2068 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
2069 ** to coerce both inputs according to this affinity before the
2070 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
2071 ** affinity is used. Note that the affinity conversions are stored
2072 ** back into the input registers P1 and P3. So this opcode can cause
2073 ** persistent changes to registers P1 and P3.
2075 ** Once any conversions have taken place, and neither value is NULL,
2076 ** the values are compared. If both values are blobs then memcmp() is
2077 ** used to determine the results of the comparison. If both values
2078 ** are text, then the appropriate collating function specified in
2079 ** P4 is used to do the comparison. If P4 is not specified then
2080 ** memcmp() is used to compare text string. If both values are
2081 ** numeric, then a numeric comparison is used. If the two values
2082 ** are of different types, then numbers are considered less than
2083 ** strings and strings are considered less than blobs.
2085 ** This opcode saves the result of comparison for use by the new
2086 ** OP_Jump opcode.
2088 /* Opcode: Le P1 P2 P3 P4 P5
2089 ** Synopsis: IF r[P3]<=r[P1]
2091 ** This works just like the Lt opcode except that the jump is taken if
2092 ** the content of register P3 is less than or equal to the content of
2093 ** register P1. See the Lt opcode for additional information.
2095 /* Opcode: Gt P1 P2 P3 P4 P5
2096 ** Synopsis: IF r[P3]>r[P1]
2098 ** This works just like the Lt opcode except that the jump is taken if
2099 ** the content of register P3 is greater than the content of
2100 ** register P1. See the Lt opcode for additional information.
2102 /* Opcode: Ge P1 P2 P3 P4 P5
2103 ** Synopsis: IF r[P3]>=r[P1]
2105 ** This works just like the Lt opcode except that the jump is taken if
2106 ** the content of register P3 is greater than or equal to the content of
2107 ** register P1. See the Lt opcode for additional information.
2109 case OP_Eq: /* same as TK_EQ, jump, in1, in3 */
2110 case OP_Ne: /* same as TK_NE, jump, in1, in3 */
2111 case OP_Lt: /* same as TK_LT, jump, in1, in3 */
2112 case OP_Le: /* same as TK_LE, jump, in1, in3 */
2113 case OP_Gt: /* same as TK_GT, jump, in1, in3 */
2114 case OP_Ge: { /* same as TK_GE, jump, in1, in3 */
2115 int res, res2; /* Result of the comparison of pIn1 against pIn3 */
2116 char affinity; /* Affinity to use for comparison */
2117 u16 flags1; /* Copy of initial value of pIn1->flags */
2118 u16 flags3; /* Copy of initial value of pIn3->flags */
2120 pIn1 = &aMem[pOp->p1];
2121 pIn3 = &aMem[pOp->p3];
2122 flags1 = pIn1->flags;
2123 flags3 = pIn3->flags;
2124 if( (flags1 & flags3 & MEM_Int)!=0 ){
2125 assert( (pOp->p5 & SQLITE_AFF_MASK)!=SQLITE_AFF_TEXT || CORRUPT_DB );
2126 /* Common case of comparison of two integers */
2127 if( pIn3->u.i > pIn1->u.i ){
2128 if( sqlite3aGTb[pOp->opcode] ){
2129 VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3);
2130 goto jump_to_p2;
2132 iCompare = +1;
2133 }else if( pIn3->u.i < pIn1->u.i ){
2134 if( sqlite3aLTb[pOp->opcode] ){
2135 VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3);
2136 goto jump_to_p2;
2138 iCompare = -1;
2139 }else{
2140 if( sqlite3aEQb[pOp->opcode] ){
2141 VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3);
2142 goto jump_to_p2;
2144 iCompare = 0;
2146 VdbeBranchTaken(0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
2147 break;
2149 if( (flags1 | flags3)&MEM_Null ){
2150 /* One or both operands are NULL */
2151 if( pOp->p5 & SQLITE_NULLEQ ){
2152 /* If SQLITE_NULLEQ is set (which will only happen if the operator is
2153 ** OP_Eq or OP_Ne) then take the jump or not depending on whether
2154 ** or not both operands are null.
2156 assert( (flags1 & MEM_Cleared)==0 );
2157 assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 || CORRUPT_DB );
2158 testcase( (pOp->p5 & SQLITE_JUMPIFNULL)!=0 );
2159 if( (flags1&flags3&MEM_Null)!=0
2160 && (flags3&MEM_Cleared)==0
2162 res = 0; /* Operands are equal */
2163 }else{
2164 res = ((flags3 & MEM_Null) ? -1 : +1); /* Operands are not equal */
2166 }else{
2167 /* SQLITE_NULLEQ is clear and at least one operand is NULL,
2168 ** then the result is always NULL.
2169 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
2171 VdbeBranchTaken(2,3);
2172 if( pOp->p5 & SQLITE_JUMPIFNULL ){
2173 goto jump_to_p2;
2175 iCompare = 1; /* Operands are not equal */
2176 break;
2178 }else{
2179 /* Neither operand is NULL and we couldn't do the special high-speed
2180 ** integer comparison case. So do a general-case comparison. */
2181 affinity = pOp->p5 & SQLITE_AFF_MASK;
2182 if( affinity>=SQLITE_AFF_NUMERIC ){
2183 if( (flags1 | flags3)&MEM_Str ){
2184 if( (flags1 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){
2185 applyNumericAffinity(pIn1,0);
2186 testcase( flags3==pIn3->flags );
2187 flags3 = pIn3->flags;
2189 if( (flags3 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){
2190 applyNumericAffinity(pIn3,0);
2193 }else if( affinity==SQLITE_AFF_TEXT ){
2194 if( (flags1 & MEM_Str)==0 && (flags1&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){
2195 testcase( pIn1->flags & MEM_Int );
2196 testcase( pIn1->flags & MEM_Real );
2197 testcase( pIn1->flags & MEM_IntReal );
2198 sqlite3VdbeMemStringify(pIn1, encoding, 1);
2199 testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) );
2200 flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask);
2201 if( pIn1==pIn3 ) flags3 = flags1 | MEM_Str;
2203 if( (flags3 & MEM_Str)==0 && (flags3&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){
2204 testcase( pIn3->flags & MEM_Int );
2205 testcase( pIn3->flags & MEM_Real );
2206 testcase( pIn3->flags & MEM_IntReal );
2207 sqlite3VdbeMemStringify(pIn3, encoding, 1);
2208 testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) );
2209 flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask);
2212 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
2213 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
2216 /* At this point, res is negative, zero, or positive if reg[P1] is
2217 ** less than, equal to, or greater than reg[P3], respectively. Compute
2218 ** the answer to this operator in res2, depending on what the comparison
2219 ** operator actually is. The next block of code depends on the fact
2220 ** that the 6 comparison operators are consecutive integers in this
2221 ** order: NE, EQ, GT, LE, LT, GE */
2222 assert( OP_Eq==OP_Ne+1 ); assert( OP_Gt==OP_Ne+2 ); assert( OP_Le==OP_Ne+3 );
2223 assert( OP_Lt==OP_Ne+4 ); assert( OP_Ge==OP_Ne+5 );
2224 if( res<0 ){
2225 res2 = sqlite3aLTb[pOp->opcode];
2226 }else if( res==0 ){
2227 res2 = sqlite3aEQb[pOp->opcode];
2228 }else{
2229 res2 = sqlite3aGTb[pOp->opcode];
2231 iCompare = res;
2233 /* Undo any changes made by applyAffinity() to the input registers. */
2234 assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) );
2235 pIn3->flags = flags3;
2236 assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
2237 pIn1->flags = flags1;
2239 VdbeBranchTaken(res2!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
2240 if( res2 ){
2241 goto jump_to_p2;
2243 break;
2246 /* Opcode: ElseEq * P2 * * *
2248 ** This opcode must follow an OP_Lt or OP_Gt comparison operator. There
2249 ** can be zero or more OP_ReleaseReg opcodes intervening, but no other
2250 ** opcodes are allowed to occur between this instruction and the previous
2251 ** OP_Lt or OP_Gt.
2253 ** If result of an OP_Eq comparison on the same two operands as the
2254 ** prior OP_Lt or OP_Gt would have been true, then jump to P2.
2255 ** If the result of an OP_Eq comparison on the two previous
2256 ** operands would have been false or NULL, then fall through.
2258 case OP_ElseEq: { /* same as TK_ESCAPE, jump */
2260 #ifdef SQLITE_DEBUG
2261 /* Verify the preconditions of this opcode - that it follows an OP_Lt or
2262 ** OP_Gt with zero or more intervening OP_ReleaseReg opcodes */
2263 int iAddr;
2264 for(iAddr = (int)(pOp - aOp) - 1; ALWAYS(iAddr>=0); iAddr--){
2265 if( aOp[iAddr].opcode==OP_ReleaseReg ) continue;
2266 assert( aOp[iAddr].opcode==OP_Lt || aOp[iAddr].opcode==OP_Gt );
2267 break;
2269 #endif /* SQLITE_DEBUG */
2270 VdbeBranchTaken(iCompare==0, 2);
2271 if( iCompare==0 ) goto jump_to_p2;
2272 break;
2276 /* Opcode: Permutation * * * P4 *
2278 ** Set the permutation used by the OP_Compare operator in the next
2279 ** instruction. The permutation is stored in the P4 operand.
2281 ** The permutation is only valid for the next opcode which must be
2282 ** an OP_Compare that has the OPFLAG_PERMUTE bit set in P5.
2284 ** The first integer in the P4 integer array is the length of the array
2285 ** and does not become part of the permutation.
2287 case OP_Permutation: {
2288 assert( pOp->p4type==P4_INTARRAY );
2289 assert( pOp->p4.ai );
2290 assert( pOp[1].opcode==OP_Compare );
2291 assert( pOp[1].p5 & OPFLAG_PERMUTE );
2292 break;
2295 /* Opcode: Compare P1 P2 P3 P4 P5
2296 ** Synopsis: r[P1@P3] <-> r[P2@P3]
2298 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
2299 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of
2300 ** the comparison for use by the next OP_Jump instruct.
2302 ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is
2303 ** determined by the most recent OP_Permutation operator. If the
2304 ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential
2305 ** order.
2307 ** P4 is a KeyInfo structure that defines collating sequences and sort
2308 ** orders for the comparison. The permutation applies to registers
2309 ** only. The KeyInfo elements are used sequentially.
2311 ** The comparison is a sort comparison, so NULLs compare equal,
2312 ** NULLs are less than numbers, numbers are less than strings,
2313 ** and strings are less than blobs.
2315 ** This opcode must be immediately followed by an OP_Jump opcode.
2317 case OP_Compare: {
2318 int n;
2319 int i;
2320 int p1;
2321 int p2;
2322 const KeyInfo *pKeyInfo;
2323 u32 idx;
2324 CollSeq *pColl; /* Collating sequence to use on this term */
2325 int bRev; /* True for DESCENDING sort order */
2326 u32 *aPermute; /* The permutation */
2328 if( (pOp->p5 & OPFLAG_PERMUTE)==0 ){
2329 aPermute = 0;
2330 }else{
2331 assert( pOp>aOp );
2332 assert( pOp[-1].opcode==OP_Permutation );
2333 assert( pOp[-1].p4type==P4_INTARRAY );
2334 aPermute = pOp[-1].p4.ai + 1;
2335 assert( aPermute!=0 );
2337 n = pOp->p3;
2338 pKeyInfo = pOp->p4.pKeyInfo;
2339 assert( n>0 );
2340 assert( pKeyInfo!=0 );
2341 p1 = pOp->p1;
2342 p2 = pOp->p2;
2343 #ifdef SQLITE_DEBUG
2344 if( aPermute ){
2345 int k, mx = 0;
2346 for(k=0; k<n; k++) if( aPermute[k]>(u32)mx ) mx = aPermute[k];
2347 assert( p1>0 && p1+mx<=(p->nMem+1 - p->nCursor)+1 );
2348 assert( p2>0 && p2+mx<=(p->nMem+1 - p->nCursor)+1 );
2349 }else{
2350 assert( p1>0 && p1+n<=(p->nMem+1 - p->nCursor)+1 );
2351 assert( p2>0 && p2+n<=(p->nMem+1 - p->nCursor)+1 );
2353 #endif /* SQLITE_DEBUG */
2354 for(i=0; i<n; i++){
2355 idx = aPermute ? aPermute[i] : (u32)i;
2356 assert( memIsValid(&aMem[p1+idx]) );
2357 assert( memIsValid(&aMem[p2+idx]) );
2358 REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
2359 REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
2360 assert( i<pKeyInfo->nKeyField );
2361 pColl = pKeyInfo->aColl[i];
2362 bRev = (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC);
2363 iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
2364 if( iCompare ){
2365 if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL)
2366 && ((aMem[p1+idx].flags & MEM_Null) || (aMem[p2+idx].flags & MEM_Null))
2368 iCompare = -iCompare;
2370 if( bRev ) iCompare = -iCompare;
2371 break;
2374 assert( pOp[1].opcode==OP_Jump );
2375 break;
2378 /* Opcode: Jump P1 P2 P3 * *
2380 ** Jump to the instruction at address P1, P2, or P3 depending on whether
2381 ** in the most recent OP_Compare instruction the P1 vector was less than
2382 ** equal to, or greater than the P2 vector, respectively.
2384 ** This opcode must immediately follow an OP_Compare opcode.
2386 case OP_Jump: { /* jump */
2387 assert( pOp>aOp && pOp[-1].opcode==OP_Compare );
2388 if( iCompare<0 ){
2389 VdbeBranchTaken(0,4); pOp = &aOp[pOp->p1 - 1];
2390 }else if( iCompare==0 ){
2391 VdbeBranchTaken(1,4); pOp = &aOp[pOp->p2 - 1];
2392 }else{
2393 VdbeBranchTaken(2,4); pOp = &aOp[pOp->p3 - 1];
2395 break;
2398 /* Opcode: And P1 P2 P3 * *
2399 ** Synopsis: r[P3]=(r[P1] && r[P2])
2401 ** Take the logical AND of the values in registers P1 and P2 and
2402 ** write the result into register P3.
2404 ** If either P1 or P2 is 0 (false) then the result is 0 even if
2405 ** the other input is NULL. A NULL and true or two NULLs give
2406 ** a NULL output.
2408 /* Opcode: Or P1 P2 P3 * *
2409 ** Synopsis: r[P3]=(r[P1] || r[P2])
2411 ** Take the logical OR of the values in register P1 and P2 and
2412 ** store the answer in register P3.
2414 ** If either P1 or P2 is nonzero (true) then the result is 1 (true)
2415 ** even if the other input is NULL. A NULL and false or two NULLs
2416 ** give a NULL output.
2418 case OP_And: /* same as TK_AND, in1, in2, out3 */
2419 case OP_Or: { /* same as TK_OR, in1, in2, out3 */
2420 int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2421 int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2423 v1 = sqlite3VdbeBooleanValue(&aMem[pOp->p1], 2);
2424 v2 = sqlite3VdbeBooleanValue(&aMem[pOp->p2], 2);
2425 if( pOp->opcode==OP_And ){
2426 static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
2427 v1 = and_logic[v1*3+v2];
2428 }else{
2429 static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
2430 v1 = or_logic[v1*3+v2];
2432 pOut = &aMem[pOp->p3];
2433 if( v1==2 ){
2434 MemSetTypeFlag(pOut, MEM_Null);
2435 }else{
2436 pOut->u.i = v1;
2437 MemSetTypeFlag(pOut, MEM_Int);
2439 break;
2442 /* Opcode: IsTrue P1 P2 P3 P4 *
2443 ** Synopsis: r[P2] = coalesce(r[P1]==TRUE,P3) ^ P4
2445 ** This opcode implements the IS TRUE, IS FALSE, IS NOT TRUE, and
2446 ** IS NOT FALSE operators.
2448 ** Interpret the value in register P1 as a boolean value. Store that
2449 ** boolean (a 0 or 1) in register P2. Or if the value in register P1 is
2450 ** NULL, then the P3 is stored in register P2. Invert the answer if P4
2451 ** is 1.
2453 ** The logic is summarized like this:
2455 ** <ul>
2456 ** <li> If P3==0 and P4==0 then r[P2] := r[P1] IS TRUE
2457 ** <li> If P3==1 and P4==1 then r[P2] := r[P1] IS FALSE
2458 ** <li> If P3==0 and P4==1 then r[P2] := r[P1] IS NOT TRUE
2459 ** <li> If P3==1 and P4==0 then r[P2] := r[P1] IS NOT FALSE
2460 ** </ul>
2462 case OP_IsTrue: { /* in1, out2 */
2463 assert( pOp->p4type==P4_INT32 );
2464 assert( pOp->p4.i==0 || pOp->p4.i==1 );
2465 assert( pOp->p3==0 || pOp->p3==1 );
2466 sqlite3VdbeMemSetInt64(&aMem[pOp->p2],
2467 sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3) ^ pOp->p4.i);
2468 break;
2471 /* Opcode: Not P1 P2 * * *
2472 ** Synopsis: r[P2]= !r[P1]
2474 ** Interpret the value in register P1 as a boolean value. Store the
2475 ** boolean complement in register P2. If the value in register P1 is
2476 ** NULL, then a NULL is stored in P2.
2478 case OP_Not: { /* same as TK_NOT, in1, out2 */
2479 pIn1 = &aMem[pOp->p1];
2480 pOut = &aMem[pOp->p2];
2481 if( (pIn1->flags & MEM_Null)==0 ){
2482 sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeBooleanValue(pIn1,0));
2483 }else{
2484 sqlite3VdbeMemSetNull(pOut);
2486 break;
2489 /* Opcode: BitNot P1 P2 * * *
2490 ** Synopsis: r[P2]= ~r[P1]
2492 ** Interpret the content of register P1 as an integer. Store the
2493 ** ones-complement of the P1 value into register P2. If P1 holds
2494 ** a NULL then store a NULL in P2.
2496 case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */
2497 pIn1 = &aMem[pOp->p1];
2498 pOut = &aMem[pOp->p2];
2499 sqlite3VdbeMemSetNull(pOut);
2500 if( (pIn1->flags & MEM_Null)==0 ){
2501 pOut->flags = MEM_Int;
2502 pOut->u.i = ~sqlite3VdbeIntValue(pIn1);
2504 break;
2507 /* Opcode: Once P1 P2 * * *
2509 ** Fall through to the next instruction the first time this opcode is
2510 ** encountered on each invocation of the byte-code program. Jump to P2
2511 ** on the second and all subsequent encounters during the same invocation.
2513 ** Top-level programs determine first invocation by comparing the P1
2514 ** operand against the P1 operand on the OP_Init opcode at the beginning
2515 ** of the program. If the P1 values differ, then fall through and make
2516 ** the P1 of this opcode equal to the P1 of OP_Init. If P1 values are
2517 ** the same then take the jump.
2519 ** For subprograms, there is a bitmask in the VdbeFrame that determines
2520 ** whether or not the jump should be taken. The bitmask is necessary
2521 ** because the self-altering code trick does not work for recursive
2522 ** triggers.
2524 case OP_Once: { /* jump */
2525 u32 iAddr; /* Address of this instruction */
2526 assert( p->aOp[0].opcode==OP_Init );
2527 if( p->pFrame ){
2528 iAddr = (int)(pOp - p->aOp);
2529 if( (p->pFrame->aOnce[iAddr/8] & (1<<(iAddr & 7)))!=0 ){
2530 VdbeBranchTaken(1, 2);
2531 goto jump_to_p2;
2533 p->pFrame->aOnce[iAddr/8] |= 1<<(iAddr & 7);
2534 }else{
2535 if( p->aOp[0].p1==pOp->p1 ){
2536 VdbeBranchTaken(1, 2);
2537 goto jump_to_p2;
2540 VdbeBranchTaken(0, 2);
2541 pOp->p1 = p->aOp[0].p1;
2542 break;
2545 /* Opcode: If P1 P2 P3 * *
2547 ** Jump to P2 if the value in register P1 is true. The value
2548 ** is considered true if it is numeric and non-zero. If the value
2549 ** in P1 is NULL then take the jump if and only if P3 is non-zero.
2551 case OP_If: { /* jump, in1 */
2552 int c;
2553 c = sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3);
2554 VdbeBranchTaken(c!=0, 2);
2555 if( c ) goto jump_to_p2;
2556 break;
2559 /* Opcode: IfNot P1 P2 P3 * *
2561 ** Jump to P2 if the value in register P1 is False. The value
2562 ** is considered false if it has a numeric value of zero. If the value
2563 ** in P1 is NULL then take the jump if and only if P3 is non-zero.
2565 case OP_IfNot: { /* jump, in1 */
2566 int c;
2567 c = !sqlite3VdbeBooleanValue(&aMem[pOp->p1], !pOp->p3);
2568 VdbeBranchTaken(c!=0, 2);
2569 if( c ) goto jump_to_p2;
2570 break;
2573 /* Opcode: IsNull P1 P2 * * *
2574 ** Synopsis: if r[P1]==NULL goto P2
2576 ** Jump to P2 if the value in register P1 is NULL.
2578 case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */
2579 pIn1 = &aMem[pOp->p1];
2580 VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2);
2581 if( (pIn1->flags & MEM_Null)!=0 ){
2582 goto jump_to_p2;
2584 break;
2587 /* Opcode: IsNullOrType P1 P2 P3 * *
2588 ** Synopsis: if typeof(r[P1]) IN (P3,5) goto P2
2590 ** Jump to P2 if the value in register P1 is NULL or has a datatype P3.
2591 ** P3 is an integer which should be one of SQLITE_INTEGER, SQLITE_FLOAT,
2592 ** SQLITE_BLOB, SQLITE_NULL, or SQLITE_TEXT.
2594 case OP_IsNullOrType: { /* jump, in1 */
2595 int doTheJump;
2596 pIn1 = &aMem[pOp->p1];
2597 doTheJump = (pIn1->flags & MEM_Null)!=0 || sqlite3_value_type(pIn1)==pOp->p3;
2598 VdbeBranchTaken( doTheJump, 2);
2599 if( doTheJump ) goto jump_to_p2;
2600 break;
2603 /* Opcode: ZeroOrNull P1 P2 P3 * *
2604 ** Synopsis: r[P2] = 0 OR NULL
2606 ** If all both registers P1 and P3 are NOT NULL, then store a zero in
2607 ** register P2. If either registers P1 or P3 are NULL then put
2608 ** a NULL in register P2.
2610 case OP_ZeroOrNull: { /* in1, in2, out2, in3 */
2611 if( (aMem[pOp->p1].flags & MEM_Null)!=0
2612 || (aMem[pOp->p3].flags & MEM_Null)!=0
2614 sqlite3VdbeMemSetNull(aMem + pOp->p2);
2615 }else{
2616 sqlite3VdbeMemSetInt64(aMem + pOp->p2, 0);
2618 break;
2621 /* Opcode: NotNull P1 P2 * * *
2622 ** Synopsis: if r[P1]!=NULL goto P2
2624 ** Jump to P2 if the value in register P1 is not NULL.
2626 case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */
2627 pIn1 = &aMem[pOp->p1];
2628 VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2);
2629 if( (pIn1->flags & MEM_Null)==0 ){
2630 goto jump_to_p2;
2632 break;
2635 /* Opcode: IfNullRow P1 P2 P3 * *
2636 ** Synopsis: if P1.nullRow then r[P3]=NULL, goto P2
2638 ** Check the cursor P1 to see if it is currently pointing at a NULL row.
2639 ** If it is, then set register P3 to NULL and jump immediately to P2.
2640 ** If P1 is not on a NULL row, then fall through without making any
2641 ** changes.
2643 case OP_IfNullRow: { /* jump */
2644 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
2645 assert( p->apCsr[pOp->p1]!=0 );
2646 if( p->apCsr[pOp->p1]->nullRow ){
2647 sqlite3VdbeMemSetNull(aMem + pOp->p3);
2648 goto jump_to_p2;
2650 break;
2653 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
2654 /* Opcode: Offset P1 P2 P3 * *
2655 ** Synopsis: r[P3] = sqlite_offset(P1)
2657 ** Store in register r[P3] the byte offset into the database file that is the
2658 ** start of the payload for the record at which that cursor P1 is currently
2659 ** pointing.
2661 ** P2 is the column number for the argument to the sqlite_offset() function.
2662 ** This opcode does not use P2 itself, but the P2 value is used by the
2663 ** code generator. The P1, P2, and P3 operands to this opcode are the
2664 ** same as for OP_Column.
2666 ** This opcode is only available if SQLite is compiled with the
2667 ** -DSQLITE_ENABLE_OFFSET_SQL_FUNC option.
2669 case OP_Offset: { /* out3 */
2670 VdbeCursor *pC; /* The VDBE cursor */
2671 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
2672 pC = p->apCsr[pOp->p1];
2673 pOut = &p->aMem[pOp->p3];
2674 if( pC==0 || pC->eCurType!=CURTYPE_BTREE ){
2675 sqlite3VdbeMemSetNull(pOut);
2676 }else{
2677 if( pC->deferredMoveto ){
2678 rc = sqlite3VdbeFinishMoveto(pC);
2679 if( rc ) goto abort_due_to_error;
2681 if( sqlite3BtreeEof(pC->uc.pCursor) ){
2682 sqlite3VdbeMemSetNull(pOut);
2683 }else{
2684 sqlite3VdbeMemSetInt64(pOut, sqlite3BtreeOffset(pC->uc.pCursor));
2687 break;
2689 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */
2691 /* Opcode: Column P1 P2 P3 P4 P5
2692 ** Synopsis: r[P3]=PX cursor P1 column P2
2694 ** Interpret the data that cursor P1 points to as a structure built using
2695 ** the MakeRecord instruction. (See the MakeRecord opcode for additional
2696 ** information about the format of the data.) Extract the P2-th column
2697 ** from this record. If there are less that (P2+1)
2698 ** values in the record, extract a NULL.
2700 ** The value extracted is stored in register P3.
2702 ** If the record contains fewer than P2 fields, then extract a NULL. Or,
2703 ** if the P4 argument is a P4_MEM use the value of the P4 argument as
2704 ** the result.
2706 ** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 then
2707 ** the result is guaranteed to only be used as the argument of a length()
2708 ** or typeof() function, respectively. The loading of large blobs can be
2709 ** skipped for length() and all content loading can be skipped for typeof().
2711 case OP_Column: {
2712 u32 p2; /* column number to retrieve */
2713 VdbeCursor *pC; /* The VDBE cursor */
2714 BtCursor *pCrsr; /* The B-Tree cursor corresponding to pC */
2715 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */
2716 int len; /* The length of the serialized data for the column */
2717 int i; /* Loop counter */
2718 Mem *pDest; /* Where to write the extracted value */
2719 Mem sMem; /* For storing the record being decoded */
2720 const u8 *zData; /* Part of the record being decoded */
2721 const u8 *zHdr; /* Next unparsed byte of the header */
2722 const u8 *zEndHdr; /* Pointer to first byte after the header */
2723 u64 offset64; /* 64-bit offset */
2724 u32 t; /* A type code from the record header */
2725 Mem *pReg; /* PseudoTable input register */
2727 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
2728 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
2729 pC = p->apCsr[pOp->p1];
2730 p2 = (u32)pOp->p2;
2732 op_column_restart:
2733 assert( pC!=0 );
2734 assert( p2<(u32)pC->nField
2735 || (pC->eCurType==CURTYPE_PSEUDO && pC->seekResult==0) );
2736 aOffset = pC->aOffset;
2737 assert( aOffset==pC->aType+pC->nField );
2738 assert( pC->eCurType!=CURTYPE_VTAB );
2739 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
2740 assert( pC->eCurType!=CURTYPE_SORTER );
2742 if( pC->cacheStatus!=p->cacheCtr ){ /*OPTIMIZATION-IF-FALSE*/
2743 if( pC->nullRow ){
2744 if( pC->eCurType==CURTYPE_PSEUDO && pC->seekResult>0 ){
2745 /* For the special case of as pseudo-cursor, the seekResult field
2746 ** identifies the register that holds the record */
2747 pReg = &aMem[pC->seekResult];
2748 assert( pReg->flags & MEM_Blob );
2749 assert( memIsValid(pReg) );
2750 pC->payloadSize = pC->szRow = pReg->n;
2751 pC->aRow = (u8*)pReg->z;
2752 }else{
2753 pDest = &aMem[pOp->p3];
2754 memAboutToChange(p, pDest);
2755 sqlite3VdbeMemSetNull(pDest);
2756 goto op_column_out;
2758 }else{
2759 pCrsr = pC->uc.pCursor;
2760 if( pC->deferredMoveto ){
2761 u32 iMap;
2762 assert( !pC->isEphemeral );
2763 if( pC->ub.aAltMap && (iMap = pC->ub.aAltMap[1+p2])>0 ){
2764 pC = pC->pAltCursor;
2765 p2 = iMap - 1;
2766 goto op_column_restart;
2768 rc = sqlite3VdbeFinishMoveto(pC);
2769 if( rc ) goto abort_due_to_error;
2770 }else if( sqlite3BtreeCursorHasMoved(pCrsr) ){
2771 rc = sqlite3VdbeHandleMovedCursor(pC);
2772 if( rc ) goto abort_due_to_error;
2773 goto op_column_restart;
2775 assert( pC->eCurType==CURTYPE_BTREE );
2776 assert( pCrsr );
2777 assert( sqlite3BtreeCursorIsValid(pCrsr) );
2778 pC->payloadSize = sqlite3BtreePayloadSize(pCrsr);
2779 pC->aRow = sqlite3BtreePayloadFetch(pCrsr, &pC->szRow);
2780 assert( pC->szRow<=pC->payloadSize );
2781 assert( pC->szRow<=65536 ); /* Maximum page size is 64KiB */
2783 pC->cacheStatus = p->cacheCtr;
2784 if( (aOffset[0] = pC->aRow[0])<0x80 ){
2785 pC->iHdrOffset = 1;
2786 }else{
2787 pC->iHdrOffset = sqlite3GetVarint32(pC->aRow, aOffset);
2789 pC->nHdrParsed = 0;
2791 if( pC->szRow<aOffset[0] ){ /*OPTIMIZATION-IF-FALSE*/
2792 /* pC->aRow does not have to hold the entire row, but it does at least
2793 ** need to cover the header of the record. If pC->aRow does not contain
2794 ** the complete header, then set it to zero, forcing the header to be
2795 ** dynamically allocated. */
2796 pC->aRow = 0;
2797 pC->szRow = 0;
2799 /* Make sure a corrupt database has not given us an oversize header.
2800 ** Do this now to avoid an oversize memory allocation.
2802 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte
2803 ** types use so much data space that there can only be 4096 and 32 of
2804 ** them, respectively. So the maximum header length results from a
2805 ** 3-byte type for each of the maximum of 32768 columns plus three
2806 ** extra bytes for the header length itself. 32768*3 + 3 = 98307.
2808 if( aOffset[0] > 98307 || aOffset[0] > pC->payloadSize ){
2809 goto op_column_corrupt;
2811 }else{
2812 /* This is an optimization. By skipping over the first few tests
2813 ** (ex: pC->nHdrParsed<=p2) in the next section, we achieve a
2814 ** measurable performance gain.
2816 ** This branch is taken even if aOffset[0]==0. Such a record is never
2817 ** generated by SQLite, and could be considered corruption, but we
2818 ** accept it for historical reasons. When aOffset[0]==0, the code this
2819 ** branch jumps to reads past the end of the record, but never more
2820 ** than a few bytes. Even if the record occurs at the end of the page
2821 ** content area, the "page header" comes after the page content and so
2822 ** this overread is harmless. Similar overreads can occur for a corrupt
2823 ** database file.
2825 zData = pC->aRow;
2826 assert( pC->nHdrParsed<=p2 ); /* Conditional skipped */
2827 testcase( aOffset[0]==0 );
2828 goto op_column_read_header;
2830 }else if( sqlite3BtreeCursorHasMoved(pC->uc.pCursor) ){
2831 rc = sqlite3VdbeHandleMovedCursor(pC);
2832 if( rc ) goto abort_due_to_error;
2833 goto op_column_restart;
2836 /* Make sure at least the first p2+1 entries of the header have been
2837 ** parsed and valid information is in aOffset[] and pC->aType[].
2839 if( pC->nHdrParsed<=p2 ){
2840 /* If there is more header available for parsing in the record, try
2841 ** to extract additional fields up through the p2+1-th field
2843 if( pC->iHdrOffset<aOffset[0] ){
2844 /* Make sure zData points to enough of the record to cover the header. */
2845 if( pC->aRow==0 ){
2846 memset(&sMem, 0, sizeof(sMem));
2847 rc = sqlite3VdbeMemFromBtreeZeroOffset(pC->uc.pCursor,aOffset[0],&sMem);
2848 if( rc!=SQLITE_OK ) goto abort_due_to_error;
2849 zData = (u8*)sMem.z;
2850 }else{
2851 zData = pC->aRow;
2854 /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */
2855 op_column_read_header:
2856 i = pC->nHdrParsed;
2857 offset64 = aOffset[i];
2858 zHdr = zData + pC->iHdrOffset;
2859 zEndHdr = zData + aOffset[0];
2860 testcase( zHdr>=zEndHdr );
2862 if( (pC->aType[i] = t = zHdr[0])<0x80 ){
2863 zHdr++;
2864 offset64 += sqlite3VdbeOneByteSerialTypeLen(t);
2865 }else{
2866 zHdr += sqlite3GetVarint32(zHdr, &t);
2867 pC->aType[i] = t;
2868 offset64 += sqlite3VdbeSerialTypeLen(t);
2870 aOffset[++i] = (u32)(offset64 & 0xffffffff);
2871 }while( (u32)i<=p2 && zHdr<zEndHdr );
2873 /* The record is corrupt if any of the following are true:
2874 ** (1) the bytes of the header extend past the declared header size
2875 ** (2) the entire header was used but not all data was used
2876 ** (3) the end of the data extends beyond the end of the record.
2878 if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize))
2879 || (offset64 > pC->payloadSize)
2881 if( aOffset[0]==0 ){
2882 i = 0;
2883 zHdr = zEndHdr;
2884 }else{
2885 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
2886 goto op_column_corrupt;
2890 pC->nHdrParsed = i;
2891 pC->iHdrOffset = (u32)(zHdr - zData);
2892 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
2893 }else{
2894 t = 0;
2897 /* If after trying to extract new entries from the header, nHdrParsed is
2898 ** still not up to p2, that means that the record has fewer than p2
2899 ** columns. So the result will be either the default value or a NULL.
2901 if( pC->nHdrParsed<=p2 ){
2902 pDest = &aMem[pOp->p3];
2903 memAboutToChange(p, pDest);
2904 if( pOp->p4type==P4_MEM ){
2905 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
2906 }else{
2907 sqlite3VdbeMemSetNull(pDest);
2909 goto op_column_out;
2911 }else{
2912 t = pC->aType[p2];
2915 /* Extract the content for the p2+1-th column. Control can only
2916 ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are
2917 ** all valid.
2919 assert( p2<pC->nHdrParsed );
2920 assert( rc==SQLITE_OK );
2921 pDest = &aMem[pOp->p3];
2922 memAboutToChange(p, pDest);
2923 assert( sqlite3VdbeCheckMemInvariants(pDest) );
2924 if( VdbeMemDynamic(pDest) ){
2925 sqlite3VdbeMemSetNull(pDest);
2927 assert( t==pC->aType[p2] );
2928 if( pC->szRow>=aOffset[p2+1] ){
2929 /* This is the common case where the desired content fits on the original
2930 ** page - where the content is not on an overflow page */
2931 zData = pC->aRow + aOffset[p2];
2932 if( t<12 ){
2933 sqlite3VdbeSerialGet(zData, t, pDest);
2934 }else{
2935 /* If the column value is a string, we need a persistent value, not
2936 ** a MEM_Ephem value. This branch is a fast short-cut that is equivalent
2937 ** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize().
2939 static const u16 aFlag[] = { MEM_Blob, MEM_Str|MEM_Term };
2940 pDest->n = len = (t-12)/2;
2941 pDest->enc = encoding;
2942 if( pDest->szMalloc < len+2 ){
2943 if( len>db->aLimit[SQLITE_LIMIT_LENGTH] ) goto too_big;
2944 pDest->flags = MEM_Null;
2945 if( sqlite3VdbeMemGrow(pDest, len+2, 0) ) goto no_mem;
2946 }else{
2947 pDest->z = pDest->zMalloc;
2949 memcpy(pDest->z, zData, len);
2950 pDest->z[len] = 0;
2951 pDest->z[len+1] = 0;
2952 pDest->flags = aFlag[t&1];
2954 }else{
2955 pDest->enc = encoding;
2956 /* This branch happens only when content is on overflow pages */
2957 if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0
2958 && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0))
2959 || (len = sqlite3VdbeSerialTypeLen(t))==0
2961 /* Content is irrelevant for
2962 ** 1. the typeof() function,
2963 ** 2. the length(X) function if X is a blob, and
2964 ** 3. if the content length is zero.
2965 ** So we might as well use bogus content rather than reading
2966 ** content from disk.
2968 ** Although sqlite3VdbeSerialGet() may read at most 8 bytes from the
2969 ** buffer passed to it, debugging function VdbeMemPrettyPrint() may
2970 ** read more. Use the global constant sqlite3CtypeMap[] as the array,
2971 ** as that array is 256 bytes long (plenty for VdbeMemPrettyPrint())
2972 ** and it begins with a bunch of zeros.
2974 sqlite3VdbeSerialGet((u8*)sqlite3CtypeMap, t, pDest);
2975 }else{
2976 if( len>db->aLimit[SQLITE_LIMIT_LENGTH] ) goto too_big;
2977 rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, aOffset[p2], len, pDest);
2978 if( rc!=SQLITE_OK ) goto abort_due_to_error;
2979 sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest);
2980 pDest->flags &= ~MEM_Ephem;
2984 op_column_out:
2985 UPDATE_MAX_BLOBSIZE(pDest);
2986 REGISTER_TRACE(pOp->p3, pDest);
2987 break;
2989 op_column_corrupt:
2990 if( aOp[0].p3>0 ){
2991 pOp = &aOp[aOp[0].p3-1];
2992 break;
2993 }else{
2994 rc = SQLITE_CORRUPT_BKPT;
2995 goto abort_due_to_error;
2999 /* Opcode: TypeCheck P1 P2 P3 P4 *
3000 ** Synopsis: typecheck(r[P1@P2])
3002 ** Apply affinities to the range of P2 registers beginning with P1.
3003 ** Take the affinities from the Table object in P4. If any value
3004 ** cannot be coerced into the correct type, then raise an error.
3006 ** This opcode is similar to OP_Affinity except that this opcode
3007 ** forces the register type to the Table column type. This is used
3008 ** to implement "strict affinity".
3010 ** GENERATED ALWAYS AS ... STATIC columns are only checked if P3
3011 ** is zero. When P3 is non-zero, no type checking occurs for
3012 ** static generated columns. Virtual columns are computed at query time
3013 ** and so they are never checked.
3015 ** Preconditions:
3017 ** <ul>
3018 ** <li> P2 should be the number of non-virtual columns in the
3019 ** table of P4.
3020 ** <li> Table P4 should be a STRICT table.
3021 ** </ul>
3023 ** If any precondition is false, an assertion fault occurs.
3025 case OP_TypeCheck: {
3026 Table *pTab;
3027 Column *aCol;
3028 int i;
3030 assert( pOp->p4type==P4_TABLE );
3031 pTab = pOp->p4.pTab;
3032 assert( pTab->tabFlags & TF_Strict );
3033 assert( pTab->nNVCol==pOp->p2 );
3034 aCol = pTab->aCol;
3035 pIn1 = &aMem[pOp->p1];
3036 for(i=0; i<pTab->nCol; i++){
3037 if( aCol[i].colFlags & COLFLAG_GENERATED ){
3038 if( aCol[i].colFlags & COLFLAG_VIRTUAL ) continue;
3039 if( pOp->p3 ){ pIn1++; continue; }
3041 assert( pIn1 < &aMem[pOp->p1+pOp->p2] );
3042 applyAffinity(pIn1, aCol[i].affinity, encoding);
3043 if( (pIn1->flags & MEM_Null)==0 ){
3044 switch( aCol[i].eCType ){
3045 case COLTYPE_BLOB: {
3046 if( (pIn1->flags & MEM_Blob)==0 ) goto vdbe_type_error;
3047 break;
3049 case COLTYPE_INTEGER:
3050 case COLTYPE_INT: {
3051 if( (pIn1->flags & MEM_Int)==0 ) goto vdbe_type_error;
3052 break;
3054 case COLTYPE_TEXT: {
3055 if( (pIn1->flags & MEM_Str)==0 ) goto vdbe_type_error;
3056 break;
3058 case COLTYPE_REAL: {
3059 testcase( (pIn1->flags & (MEM_Real|MEM_IntReal))==MEM_Real );
3060 testcase( (pIn1->flags & (MEM_Real|MEM_IntReal))==MEM_IntReal );
3061 if( pIn1->flags & MEM_Int ){
3062 /* When applying REAL affinity, if the result is still an MEM_Int
3063 ** that will fit in 6 bytes, then change the type to MEM_IntReal
3064 ** so that we keep the high-resolution integer value but know that
3065 ** the type really wants to be REAL. */
3066 testcase( pIn1->u.i==140737488355328LL );
3067 testcase( pIn1->u.i==140737488355327LL );
3068 testcase( pIn1->u.i==-140737488355328LL );
3069 testcase( pIn1->u.i==-140737488355329LL );
3070 if( pIn1->u.i<=140737488355327LL && pIn1->u.i>=-140737488355328LL){
3071 pIn1->flags |= MEM_IntReal;
3072 pIn1->flags &= ~MEM_Int;
3073 }else{
3074 pIn1->u.r = (double)pIn1->u.i;
3075 pIn1->flags |= MEM_Real;
3076 pIn1->flags &= ~MEM_Int;
3078 }else if( (pIn1->flags & (MEM_Real|MEM_IntReal))==0 ){
3079 goto vdbe_type_error;
3081 break;
3083 default: {
3084 /* COLTYPE_ANY. Accept anything. */
3085 break;
3089 REGISTER_TRACE((int)(pIn1-aMem), pIn1);
3090 pIn1++;
3092 assert( pIn1 == &aMem[pOp->p1+pOp->p2] );
3093 break;
3095 vdbe_type_error:
3096 sqlite3VdbeError(p, "cannot store %s value in %s column %s.%s",
3097 vdbeMemTypeName(pIn1), sqlite3StdType[aCol[i].eCType-1],
3098 pTab->zName, aCol[i].zCnName);
3099 rc = SQLITE_CONSTRAINT_DATATYPE;
3100 goto abort_due_to_error;
3103 /* Opcode: Affinity P1 P2 * P4 *
3104 ** Synopsis: affinity(r[P1@P2])
3106 ** Apply affinities to a range of P2 registers starting with P1.
3108 ** P4 is a string that is P2 characters long. The N-th character of the
3109 ** string indicates the column affinity that should be used for the N-th
3110 ** memory cell in the range.
3112 case OP_Affinity: {
3113 const char *zAffinity; /* The affinity to be applied */
3115 zAffinity = pOp->p4.z;
3116 assert( zAffinity!=0 );
3117 assert( pOp->p2>0 );
3118 assert( zAffinity[pOp->p2]==0 );
3119 pIn1 = &aMem[pOp->p1];
3120 while( 1 /*exit-by-break*/ ){
3121 assert( pIn1 <= &p->aMem[(p->nMem+1 - p->nCursor)] );
3122 assert( zAffinity[0]==SQLITE_AFF_NONE || memIsValid(pIn1) );
3123 applyAffinity(pIn1, zAffinity[0], encoding);
3124 if( zAffinity[0]==SQLITE_AFF_REAL && (pIn1->flags & MEM_Int)!=0 ){
3125 /* When applying REAL affinity, if the result is still an MEM_Int
3126 ** that will fit in 6 bytes, then change the type to MEM_IntReal
3127 ** so that we keep the high-resolution integer value but know that
3128 ** the type really wants to be REAL. */
3129 testcase( pIn1->u.i==140737488355328LL );
3130 testcase( pIn1->u.i==140737488355327LL );
3131 testcase( pIn1->u.i==-140737488355328LL );
3132 testcase( pIn1->u.i==-140737488355329LL );
3133 if( pIn1->u.i<=140737488355327LL && pIn1->u.i>=-140737488355328LL ){
3134 pIn1->flags |= MEM_IntReal;
3135 pIn1->flags &= ~MEM_Int;
3136 }else{
3137 pIn1->u.r = (double)pIn1->u.i;
3138 pIn1->flags |= MEM_Real;
3139 pIn1->flags &= ~MEM_Int;
3142 REGISTER_TRACE((int)(pIn1-aMem), pIn1);
3143 zAffinity++;
3144 if( zAffinity[0]==0 ) break;
3145 pIn1++;
3147 break;
3150 /* Opcode: MakeRecord P1 P2 P3 P4 *
3151 ** Synopsis: r[P3]=mkrec(r[P1@P2])
3153 ** Convert P2 registers beginning with P1 into the [record format]
3154 ** use as a data record in a database table or as a key
3155 ** in an index. The OP_Column opcode can decode the record later.
3157 ** P4 may be a string that is P2 characters long. The N-th character of the
3158 ** string indicates the column affinity that should be used for the N-th
3159 ** field of the index key.
3161 ** The mapping from character to affinity is given by the SQLITE_AFF_
3162 ** macros defined in sqliteInt.h.
3164 ** If P4 is NULL then all index fields have the affinity BLOB.
3166 ** The meaning of P5 depends on whether or not the SQLITE_ENABLE_NULL_TRIM
3167 ** compile-time option is enabled:
3169 ** * If SQLITE_ENABLE_NULL_TRIM is enabled, then the P5 is the index
3170 ** of the right-most table that can be null-trimmed.
3172 ** * If SQLITE_ENABLE_NULL_TRIM is omitted, then P5 has the value
3173 ** OPFLAG_NOCHNG_MAGIC if the OP_MakeRecord opcode is allowed to
3174 ** accept no-change records with serial_type 10. This value is
3175 ** only used inside an assert() and does not affect the end result.
3177 case OP_MakeRecord: {
3178 Mem *pRec; /* The new record */
3179 u64 nData; /* Number of bytes of data space */
3180 int nHdr; /* Number of bytes of header space */
3181 i64 nByte; /* Data space required for this record */
3182 i64 nZero; /* Number of zero bytes at the end of the record */
3183 int nVarint; /* Number of bytes in a varint */
3184 u32 serial_type; /* Type field */
3185 Mem *pData0; /* First field to be combined into the record */
3186 Mem *pLast; /* Last field of the record */
3187 int nField; /* Number of fields in the record */
3188 char *zAffinity; /* The affinity string for the record */
3189 u32 len; /* Length of a field */
3190 u8 *zHdr; /* Where to write next byte of the header */
3191 u8 *zPayload; /* Where to write next byte of the payload */
3193 /* Assuming the record contains N fields, the record format looks
3194 ** like this:
3196 ** ------------------------------------------------------------------------
3197 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
3198 ** ------------------------------------------------------------------------
3200 ** Data(0) is taken from register P1. Data(1) comes from register P1+1
3201 ** and so forth.
3203 ** Each type field is a varint representing the serial type of the
3204 ** corresponding data element (see sqlite3VdbeSerialType()). The
3205 ** hdr-size field is also a varint which is the offset from the beginning
3206 ** of the record to data0.
3208 nData = 0; /* Number of bytes of data space */
3209 nHdr = 0; /* Number of bytes of header space */
3210 nZero = 0; /* Number of zero bytes at the end of the record */
3211 nField = pOp->p1;
3212 zAffinity = pOp->p4.z;
3213 assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem+1 - p->nCursor)+1 );
3214 pData0 = &aMem[nField];
3215 nField = pOp->p2;
3216 pLast = &pData0[nField-1];
3218 /* Identify the output register */
3219 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
3220 pOut = &aMem[pOp->p3];
3221 memAboutToChange(p, pOut);
3223 /* Apply the requested affinity to all inputs
3225 assert( pData0<=pLast );
3226 if( zAffinity ){
3227 pRec = pData0;
3229 applyAffinity(pRec, zAffinity[0], encoding);
3230 if( zAffinity[0]==SQLITE_AFF_REAL && (pRec->flags & MEM_Int) ){
3231 pRec->flags |= MEM_IntReal;
3232 pRec->flags &= ~(MEM_Int);
3234 REGISTER_TRACE((int)(pRec-aMem), pRec);
3235 zAffinity++;
3236 pRec++;
3237 assert( zAffinity[0]==0 || pRec<=pLast );
3238 }while( zAffinity[0] );
3241 #ifdef SQLITE_ENABLE_NULL_TRIM
3242 /* NULLs can be safely trimmed from the end of the record, as long as
3243 ** as the schema format is 2 or more and none of the omitted columns
3244 ** have a non-NULL default value. Also, the record must be left with
3245 ** at least one field. If P5>0 then it will be one more than the
3246 ** index of the right-most column with a non-NULL default value */
3247 if( pOp->p5 ){
3248 while( (pLast->flags & MEM_Null)!=0 && nField>pOp->p5 ){
3249 pLast--;
3250 nField--;
3253 #endif
3255 /* Loop through the elements that will make up the record to figure
3256 ** out how much space is required for the new record. After this loop,
3257 ** the Mem.uTemp field of each term should hold the serial-type that will
3258 ** be used for that term in the generated record:
3260 ** Mem.uTemp value type
3261 ** --------------- ---------------
3262 ** 0 NULL
3263 ** 1 1-byte signed integer
3264 ** 2 2-byte signed integer
3265 ** 3 3-byte signed integer
3266 ** 4 4-byte signed integer
3267 ** 5 6-byte signed integer
3268 ** 6 8-byte signed integer
3269 ** 7 IEEE float
3270 ** 8 Integer constant 0
3271 ** 9 Integer constant 1
3272 ** 10,11 reserved for expansion
3273 ** N>=12 and even BLOB
3274 ** N>=13 and odd text
3276 ** The following additional values are computed:
3277 ** nHdr Number of bytes needed for the record header
3278 ** nData Number of bytes of data space needed for the record
3279 ** nZero Zero bytes at the end of the record
3281 pRec = pLast;
3283 assert( memIsValid(pRec) );
3284 if( pRec->flags & MEM_Null ){
3285 if( pRec->flags & MEM_Zero ){
3286 /* Values with MEM_Null and MEM_Zero are created by xColumn virtual
3287 ** table methods that never invoke sqlite3_result_xxxxx() while
3288 ** computing an unchanging column value in an UPDATE statement.
3289 ** Give such values a special internal-use-only serial-type of 10
3290 ** so that they can be passed through to xUpdate and have
3291 ** a true sqlite3_value_nochange(). */
3292 #ifndef SQLITE_ENABLE_NULL_TRIM
3293 assert( pOp->p5==OPFLAG_NOCHNG_MAGIC || CORRUPT_DB );
3294 #endif
3295 pRec->uTemp = 10;
3296 }else{
3297 pRec->uTemp = 0;
3299 nHdr++;
3300 }else if( pRec->flags & (MEM_Int|MEM_IntReal) ){
3301 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
3302 i64 i = pRec->u.i;
3303 u64 uu;
3304 testcase( pRec->flags & MEM_Int );
3305 testcase( pRec->flags & MEM_IntReal );
3306 if( i<0 ){
3307 uu = ~i;
3308 }else{
3309 uu = i;
3311 nHdr++;
3312 testcase( uu==127 ); testcase( uu==128 );
3313 testcase( uu==32767 ); testcase( uu==32768 );
3314 testcase( uu==8388607 ); testcase( uu==8388608 );
3315 testcase( uu==2147483647 ); testcase( uu==2147483648LL );
3316 testcase( uu==140737488355327LL ); testcase( uu==140737488355328LL );
3317 if( uu<=127 ){
3318 if( (i&1)==i && p->minWriteFileFormat>=4 ){
3319 pRec->uTemp = 8+(u32)uu;
3320 }else{
3321 nData++;
3322 pRec->uTemp = 1;
3324 }else if( uu<=32767 ){
3325 nData += 2;
3326 pRec->uTemp = 2;
3327 }else if( uu<=8388607 ){
3328 nData += 3;
3329 pRec->uTemp = 3;
3330 }else if( uu<=2147483647 ){
3331 nData += 4;
3332 pRec->uTemp = 4;
3333 }else if( uu<=140737488355327LL ){
3334 nData += 6;
3335 pRec->uTemp = 5;
3336 }else{
3337 nData += 8;
3338 if( pRec->flags & MEM_IntReal ){
3339 /* If the value is IntReal and is going to take up 8 bytes to store
3340 ** as an integer, then we might as well make it an 8-byte floating
3341 ** point value */
3342 pRec->u.r = (double)pRec->u.i;
3343 pRec->flags &= ~MEM_IntReal;
3344 pRec->flags |= MEM_Real;
3345 pRec->uTemp = 7;
3346 }else{
3347 pRec->uTemp = 6;
3350 }else if( pRec->flags & MEM_Real ){
3351 nHdr++;
3352 nData += 8;
3353 pRec->uTemp = 7;
3354 }else{
3355 assert( db->mallocFailed || pRec->flags&(MEM_Str|MEM_Blob) );
3356 assert( pRec->n>=0 );
3357 len = (u32)pRec->n;
3358 serial_type = (len*2) + 12 + ((pRec->flags & MEM_Str)!=0);
3359 if( pRec->flags & MEM_Zero ){
3360 serial_type += pRec->u.nZero*2;
3361 if( nData ){
3362 if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem;
3363 len += pRec->u.nZero;
3364 }else{
3365 nZero += pRec->u.nZero;
3368 nData += len;
3369 nHdr += sqlite3VarintLen(serial_type);
3370 pRec->uTemp = serial_type;
3372 if( pRec==pData0 ) break;
3373 pRec--;
3374 }while(1);
3376 /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint
3377 ** which determines the total number of bytes in the header. The varint
3378 ** value is the size of the header in bytes including the size varint
3379 ** itself. */
3380 testcase( nHdr==126 );
3381 testcase( nHdr==127 );
3382 if( nHdr<=126 ){
3383 /* The common case */
3384 nHdr += 1;
3385 }else{
3386 /* Rare case of a really large header */
3387 nVarint = sqlite3VarintLen(nHdr);
3388 nHdr += nVarint;
3389 if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++;
3391 nByte = nHdr+nData;
3393 /* Make sure the output register has a buffer large enough to store
3394 ** the new record. The output register (pOp->p3) is not allowed to
3395 ** be one of the input registers (because the following call to
3396 ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used).
3398 if( nByte+nZero<=pOut->szMalloc ){
3399 /* The output register is already large enough to hold the record.
3400 ** No error checks or buffer enlargement is required */
3401 pOut->z = pOut->zMalloc;
3402 }else{
3403 /* Need to make sure that the output is not too big and then enlarge
3404 ** the output register to hold the full result */
3405 if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){
3406 goto too_big;
3408 if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){
3409 goto no_mem;
3412 pOut->n = (int)nByte;
3413 pOut->flags = MEM_Blob;
3414 if( nZero ){
3415 pOut->u.nZero = nZero;
3416 pOut->flags |= MEM_Zero;
3418 UPDATE_MAX_BLOBSIZE(pOut);
3419 zHdr = (u8 *)pOut->z;
3420 zPayload = zHdr + nHdr;
3422 /* Write the record */
3423 if( nHdr<0x80 ){
3424 *(zHdr++) = nHdr;
3425 }else{
3426 zHdr += sqlite3PutVarint(zHdr,nHdr);
3428 assert( pData0<=pLast );
3429 pRec = pData0;
3430 while( 1 /*exit-by-break*/ ){
3431 serial_type = pRec->uTemp;
3432 /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more
3433 ** additional varints, one per column.
3434 ** EVIDENCE-OF: R-64536-51728 The values for each column in the record
3435 ** immediately follow the header. */
3436 if( serial_type<=7 ){
3437 *(zHdr++) = serial_type;
3438 if( serial_type==0 ){
3439 /* NULL value. No change in zPayload */
3440 }else{
3441 u64 v;
3442 u32 i;
3443 if( serial_type==7 ){
3444 assert( sizeof(v)==sizeof(pRec->u.r) );
3445 memcpy(&v, &pRec->u.r, sizeof(v));
3446 swapMixedEndianFloat(v);
3447 }else{
3448 v = pRec->u.i;
3450 len = i = sqlite3SmallTypeSizes[serial_type];
3451 assert( i>0 );
3452 while( 1 /*exit-by-break*/ ){
3453 zPayload[--i] = (u8)(v&0xFF);
3454 if( i==0 ) break;
3455 v >>= 8;
3457 zPayload += len;
3459 }else if( serial_type<0x80 ){
3460 *(zHdr++) = serial_type;
3461 if( serial_type>=14 && pRec->n>0 ){
3462 assert( pRec->z!=0 );
3463 memcpy(zPayload, pRec->z, pRec->n);
3464 zPayload += pRec->n;
3466 }else{
3467 zHdr += sqlite3PutVarint(zHdr, serial_type);
3468 if( pRec->n ){
3469 assert( pRec->z!=0 );
3470 memcpy(zPayload, pRec->z, pRec->n);
3471 zPayload += pRec->n;
3474 if( pRec==pLast ) break;
3475 pRec++;
3477 assert( nHdr==(int)(zHdr - (u8*)pOut->z) );
3478 assert( nByte==(int)(zPayload - (u8*)pOut->z) );
3480 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
3481 REGISTER_TRACE(pOp->p3, pOut);
3482 break;
3485 /* Opcode: Count P1 P2 P3 * *
3486 ** Synopsis: r[P2]=count()
3488 ** Store the number of entries (an integer value) in the table or index
3489 ** opened by cursor P1 in register P2.
3491 ** If P3==0, then an exact count is obtained, which involves visiting
3492 ** every btree page of the table. But if P3 is non-zero, an estimate
3493 ** is returned based on the current cursor position.
3495 case OP_Count: { /* out2 */
3496 i64 nEntry;
3497 BtCursor *pCrsr;
3499 assert( p->apCsr[pOp->p1]->eCurType==CURTYPE_BTREE );
3500 pCrsr = p->apCsr[pOp->p1]->uc.pCursor;
3501 assert( pCrsr );
3502 if( pOp->p3 ){
3503 nEntry = sqlite3BtreeRowCountEst(pCrsr);
3504 }else{
3505 nEntry = 0; /* Not needed. Only used to silence a warning. */
3506 rc = sqlite3BtreeCount(db, pCrsr, &nEntry);
3507 if( rc ) goto abort_due_to_error;
3509 pOut = out2Prerelease(p, pOp);
3510 pOut->u.i = nEntry;
3511 goto check_for_interrupt;
3514 /* Opcode: Savepoint P1 * * P4 *
3516 ** Open, release or rollback the savepoint named by parameter P4, depending
3517 ** on the value of P1. To open a new savepoint set P1==0 (SAVEPOINT_BEGIN).
3518 ** To release (commit) an existing savepoint set P1==1 (SAVEPOINT_RELEASE).
3519 ** To rollback an existing savepoint set P1==2 (SAVEPOINT_ROLLBACK).
3521 case OP_Savepoint: {
3522 int p1; /* Value of P1 operand */
3523 char *zName; /* Name of savepoint */
3524 int nName;
3525 Savepoint *pNew;
3526 Savepoint *pSavepoint;
3527 Savepoint *pTmp;
3528 int iSavepoint;
3529 int ii;
3531 p1 = pOp->p1;
3532 zName = pOp->p4.z;
3534 /* Assert that the p1 parameter is valid. Also that if there is no open
3535 ** transaction, then there cannot be any savepoints.
3537 assert( db->pSavepoint==0 || db->autoCommit==0 );
3538 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
3539 assert( db->pSavepoint || db->isTransactionSavepoint==0 );
3540 assert( checkSavepointCount(db) );
3541 assert( p->bIsReader );
3543 if( p1==SAVEPOINT_BEGIN ){
3544 if( db->nVdbeWrite>0 ){
3545 /* A new savepoint cannot be created if there are active write
3546 ** statements (i.e. open read/write incremental blob handles).
3548 sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress");
3549 rc = SQLITE_BUSY;
3550 }else{
3551 nName = sqlite3Strlen30(zName);
3553 #ifndef SQLITE_OMIT_VIRTUALTABLE
3554 /* This call is Ok even if this savepoint is actually a transaction
3555 ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
3556 ** If this is a transaction savepoint being opened, it is guaranteed
3557 ** that the db->aVTrans[] array is empty. */
3558 assert( db->autoCommit==0 || db->nVTrans==0 );
3559 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
3560 db->nStatement+db->nSavepoint);
3561 if( rc!=SQLITE_OK ) goto abort_due_to_error;
3562 #endif
3564 /* Create a new savepoint structure. */
3565 pNew = sqlite3DbMallocRawNN(db, sizeof(Savepoint)+nName+1);
3566 if( pNew ){
3567 pNew->zName = (char *)&pNew[1];
3568 memcpy(pNew->zName, zName, nName+1);
3570 /* If there is no open transaction, then mark this as a special
3571 ** "transaction savepoint". */
3572 if( db->autoCommit ){
3573 db->autoCommit = 0;
3574 db->isTransactionSavepoint = 1;
3575 }else{
3576 db->nSavepoint++;
3579 /* Link the new savepoint into the database handle's list. */
3580 pNew->pNext = db->pSavepoint;
3581 db->pSavepoint = pNew;
3582 pNew->nDeferredCons = db->nDeferredCons;
3583 pNew->nDeferredImmCons = db->nDeferredImmCons;
3586 }else{
3587 assert( p1==SAVEPOINT_RELEASE || p1==SAVEPOINT_ROLLBACK );
3588 iSavepoint = 0;
3590 /* Find the named savepoint. If there is no such savepoint, then an
3591 ** an error is returned to the user. */
3592 for(
3593 pSavepoint = db->pSavepoint;
3594 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
3595 pSavepoint = pSavepoint->pNext
3597 iSavepoint++;
3599 if( !pSavepoint ){
3600 sqlite3VdbeError(p, "no such savepoint: %s", zName);
3601 rc = SQLITE_ERROR;
3602 }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){
3603 /* It is not possible to release (commit) a savepoint if there are
3604 ** active write statements.
3606 sqlite3VdbeError(p, "cannot release savepoint - "
3607 "SQL statements in progress");
3608 rc = SQLITE_BUSY;
3609 }else{
3611 /* Determine whether or not this is a transaction savepoint. If so,
3612 ** and this is a RELEASE command, then the current transaction
3613 ** is committed.
3615 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
3616 if( isTransaction && p1==SAVEPOINT_RELEASE ){
3617 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
3618 goto vdbe_return;
3620 db->autoCommit = 1;
3621 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
3622 p->pc = (int)(pOp - aOp);
3623 db->autoCommit = 0;
3624 p->rc = rc = SQLITE_BUSY;
3625 goto vdbe_return;
3627 rc = p->rc;
3628 if( rc ){
3629 db->autoCommit = 0;
3630 }else{
3631 db->isTransactionSavepoint = 0;
3633 }else{
3634 int isSchemaChange;
3635 iSavepoint = db->nSavepoint - iSavepoint - 1;
3636 if( p1==SAVEPOINT_ROLLBACK ){
3637 isSchemaChange = (db->mDbFlags & DBFLAG_SchemaChange)!=0;
3638 for(ii=0; ii<db->nDb; ii++){
3639 rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt,
3640 SQLITE_ABORT_ROLLBACK,
3641 isSchemaChange==0);
3642 if( rc!=SQLITE_OK ) goto abort_due_to_error;
3644 }else{
3645 assert( p1==SAVEPOINT_RELEASE );
3646 isSchemaChange = 0;
3648 for(ii=0; ii<db->nDb; ii++){
3649 rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
3650 if( rc!=SQLITE_OK ){
3651 goto abort_due_to_error;
3654 if( isSchemaChange ){
3655 sqlite3ExpirePreparedStatements(db, 0);
3656 sqlite3ResetAllSchemasOfConnection(db);
3657 db->mDbFlags |= DBFLAG_SchemaChange;
3660 if( rc ) goto abort_due_to_error;
3662 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
3663 ** savepoints nested inside of the savepoint being operated on. */
3664 while( db->pSavepoint!=pSavepoint ){
3665 pTmp = db->pSavepoint;
3666 db->pSavepoint = pTmp->pNext;
3667 sqlite3DbFree(db, pTmp);
3668 db->nSavepoint--;
3671 /* If it is a RELEASE, then destroy the savepoint being operated on
3672 ** too. If it is a ROLLBACK TO, then set the number of deferred
3673 ** constraint violations present in the database to the value stored
3674 ** when the savepoint was created. */
3675 if( p1==SAVEPOINT_RELEASE ){
3676 assert( pSavepoint==db->pSavepoint );
3677 db->pSavepoint = pSavepoint->pNext;
3678 sqlite3DbFree(db, pSavepoint);
3679 if( !isTransaction ){
3680 db->nSavepoint--;
3682 }else{
3683 assert( p1==SAVEPOINT_ROLLBACK );
3684 db->nDeferredCons = pSavepoint->nDeferredCons;
3685 db->nDeferredImmCons = pSavepoint->nDeferredImmCons;
3688 if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){
3689 rc = sqlite3VtabSavepoint(db, p1, iSavepoint);
3690 if( rc!=SQLITE_OK ) goto abort_due_to_error;
3694 if( rc ) goto abort_due_to_error;
3695 if( p->eVdbeState==VDBE_HALT_STATE ){
3696 rc = SQLITE_DONE;
3697 goto vdbe_return;
3699 break;
3702 /* Opcode: AutoCommit P1 P2 * * *
3704 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
3705 ** back any currently active btree transactions. If there are any active
3706 ** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if
3707 ** there are active writing VMs or active VMs that use shared cache.
3709 ** This instruction causes the VM to halt.
3711 case OP_AutoCommit: {
3712 int desiredAutoCommit;
3713 int iRollback;
3715 desiredAutoCommit = pOp->p1;
3716 iRollback = pOp->p2;
3717 assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
3718 assert( desiredAutoCommit==1 || iRollback==0 );
3719 assert( db->nVdbeActive>0 ); /* At least this one VM is active */
3720 assert( p->bIsReader );
3722 if( desiredAutoCommit!=db->autoCommit ){
3723 if( iRollback ){
3724 assert( desiredAutoCommit==1 );
3725 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3726 db->autoCommit = 1;
3727 }else if( desiredAutoCommit && db->nVdbeWrite>0 ){
3728 /* If this instruction implements a COMMIT and other VMs are writing
3729 ** return an error indicating that the other VMs must complete first.
3731 sqlite3VdbeError(p, "cannot commit transaction - "
3732 "SQL statements in progress");
3733 rc = SQLITE_BUSY;
3734 goto abort_due_to_error;
3735 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
3736 goto vdbe_return;
3737 }else{
3738 db->autoCommit = (u8)desiredAutoCommit;
3740 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
3741 p->pc = (int)(pOp - aOp);
3742 db->autoCommit = (u8)(1-desiredAutoCommit);
3743 p->rc = rc = SQLITE_BUSY;
3744 goto vdbe_return;
3746 sqlite3CloseSavepoints(db);
3747 if( p->rc==SQLITE_OK ){
3748 rc = SQLITE_DONE;
3749 }else{
3750 rc = SQLITE_ERROR;
3752 goto vdbe_return;
3753 }else{
3754 sqlite3VdbeError(p,
3755 (!desiredAutoCommit)?"cannot start a transaction within a transaction":(
3756 (iRollback)?"cannot rollback - no transaction is active":
3757 "cannot commit - no transaction is active"));
3759 rc = SQLITE_ERROR;
3760 goto abort_due_to_error;
3762 /*NOTREACHED*/ assert(0);
3765 /* Opcode: Transaction P1 P2 P3 P4 P5
3767 ** Begin a transaction on database P1 if a transaction is not already
3768 ** active.
3769 ** If P2 is non-zero, then a write-transaction is started, or if a
3770 ** read-transaction is already active, it is upgraded to a write-transaction.
3771 ** If P2 is zero, then a read-transaction is started. If P2 is 2 or more
3772 ** then an exclusive transaction is started.
3774 ** P1 is the index of the database file on which the transaction is
3775 ** started. Index 0 is the main database file and index 1 is the
3776 ** file used for temporary tables. Indices of 2 or more are used for
3777 ** attached databases.
3779 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
3780 ** true (this flag is set if the Vdbe may modify more than one row and may
3781 ** throw an ABORT exception), a statement transaction may also be opened.
3782 ** More specifically, a statement transaction is opened iff the database
3783 ** connection is currently not in autocommit mode, or if there are other
3784 ** active statements. A statement transaction allows the changes made by this
3785 ** VDBE to be rolled back after an error without having to roll back the
3786 ** entire transaction. If no error is encountered, the statement transaction
3787 ** will automatically commit when the VDBE halts.
3789 ** If P5!=0 then this opcode also checks the schema cookie against P3
3790 ** and the schema generation counter against P4.
3791 ** The cookie changes its value whenever the database schema changes.
3792 ** This operation is used to detect when that the cookie has changed
3793 ** and that the current process needs to reread the schema. If the schema
3794 ** cookie in P3 differs from the schema cookie in the database header or
3795 ** if the schema generation counter in P4 differs from the current
3796 ** generation counter, then an SQLITE_SCHEMA error is raised and execution
3797 ** halts. The sqlite3_step() wrapper function might then reprepare the
3798 ** statement and rerun it from the beginning.
3800 case OP_Transaction: {
3801 Btree *pBt;
3802 Db *pDb;
3803 int iMeta = 0;
3805 assert( p->bIsReader );
3806 assert( p->readOnly==0 || pOp->p2==0 );
3807 assert( pOp->p2>=0 && pOp->p2<=2 );
3808 assert( pOp->p1>=0 && pOp->p1<db->nDb );
3809 assert( DbMaskTest(p->btreeMask, pOp->p1) );
3810 assert( rc==SQLITE_OK );
3811 if( pOp->p2 && (db->flags & (SQLITE_QueryOnly|SQLITE_CorruptRdOnly))!=0 ){
3812 if( db->flags & SQLITE_QueryOnly ){
3813 /* Writes prohibited by the "PRAGMA query_only=TRUE" statement */
3814 rc = SQLITE_READONLY;
3815 }else{
3816 /* Writes prohibited due to a prior SQLITE_CORRUPT in the current
3817 ** transaction */
3818 rc = SQLITE_CORRUPT;
3820 goto abort_due_to_error;
3822 pDb = &db->aDb[pOp->p1];
3823 pBt = pDb->pBt;
3825 if( pBt ){
3826 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2, &iMeta);
3827 testcase( rc==SQLITE_BUSY_SNAPSHOT );
3828 testcase( rc==SQLITE_BUSY_RECOVERY );
3829 if( rc!=SQLITE_OK ){
3830 if( (rc&0xff)==SQLITE_BUSY ){
3831 p->pc = (int)(pOp - aOp);
3832 p->rc = rc;
3833 goto vdbe_return;
3835 goto abort_due_to_error;
3838 if( p->usesStmtJournal
3839 && pOp->p2
3840 && (db->autoCommit==0 || db->nVdbeRead>1)
3842 assert( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE );
3843 if( p->iStatement==0 ){
3844 assert( db->nStatement>=0 && db->nSavepoint>=0 );
3845 db->nStatement++;
3846 p->iStatement = db->nSavepoint + db->nStatement;
3849 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1);
3850 if( rc==SQLITE_OK ){
3851 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
3854 /* Store the current value of the database handles deferred constraint
3855 ** counter. If the statement transaction needs to be rolled back,
3856 ** the value of this counter needs to be restored too. */
3857 p->nStmtDefCons = db->nDeferredCons;
3858 p->nStmtDefImmCons = db->nDeferredImmCons;
3861 assert( pOp->p5==0 || pOp->p4type==P4_INT32 );
3862 if( rc==SQLITE_OK
3863 && pOp->p5
3864 && (iMeta!=pOp->p3 || pDb->pSchema->iGeneration!=pOp->p4.i)
3867 ** IMPLEMENTATION-OF: R-03189-51135 As each SQL statement runs, the schema
3868 ** version is checked to ensure that the schema has not changed since the
3869 ** SQL statement was prepared.
3871 sqlite3DbFree(db, p->zErrMsg);
3872 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
3873 /* If the schema-cookie from the database file matches the cookie
3874 ** stored with the in-memory representation of the schema, do
3875 ** not reload the schema from the database file.
3877 ** If virtual-tables are in use, this is not just an optimization.
3878 ** Often, v-tables store their data in other SQLite tables, which
3879 ** are queried from within xNext() and other v-table methods using
3880 ** prepared queries. If such a query is out-of-date, we do not want to
3881 ** discard the database schema, as the user code implementing the
3882 ** v-table would have to be ready for the sqlite3_vtab structure itself
3883 ** to be invalidated whenever sqlite3_step() is called from within
3884 ** a v-table method.
3886 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
3887 sqlite3ResetOneSchema(db, pOp->p1);
3889 p->expired = 1;
3890 rc = SQLITE_SCHEMA;
3892 /* Set changeCntOn to 0 to prevent the value returned by sqlite3_changes()
3893 ** from being modified in sqlite3VdbeHalt(). If this statement is
3894 ** reprepared, changeCntOn will be set again. */
3895 p->changeCntOn = 0;
3897 if( rc ) goto abort_due_to_error;
3898 break;
3901 /* Opcode: ReadCookie P1 P2 P3 * *
3903 ** Read cookie number P3 from database P1 and write it into register P2.
3904 ** P3==1 is the schema version. P3==2 is the database format.
3905 ** P3==3 is the recommended pager cache size, and so forth. P1==0 is
3906 ** the main database file and P1==1 is the database file used to store
3907 ** temporary tables.
3909 ** There must be a read-lock on the database (either a transaction
3910 ** must be started or there must be an open cursor) before
3911 ** executing this instruction.
3913 case OP_ReadCookie: { /* out2 */
3914 int iMeta;
3915 int iDb;
3916 int iCookie;
3918 assert( p->bIsReader );
3919 iDb = pOp->p1;
3920 iCookie = pOp->p3;
3921 assert( pOp->p3<SQLITE_N_BTREE_META );
3922 assert( iDb>=0 && iDb<db->nDb );
3923 assert( db->aDb[iDb].pBt!=0 );
3924 assert( DbMaskTest(p->btreeMask, iDb) );
3926 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
3927 pOut = out2Prerelease(p, pOp);
3928 pOut->u.i = iMeta;
3929 break;
3932 /* Opcode: SetCookie P1 P2 P3 * P5
3934 ** Write the integer value P3 into cookie number P2 of database P1.
3935 ** P2==1 is the schema version. P2==2 is the database format.
3936 ** P2==3 is the recommended pager cache
3937 ** size, and so forth. P1==0 is the main database file and P1==1 is the
3938 ** database file used to store temporary tables.
3940 ** A transaction must be started before executing this opcode.
3942 ** If P2 is the SCHEMA_VERSION cookie (cookie number 1) then the internal
3943 ** schema version is set to P3-P5. The "PRAGMA schema_version=N" statement
3944 ** has P5 set to 1, so that the internal schema version will be different
3945 ** from the database schema version, resulting in a schema reset.
3947 case OP_SetCookie: {
3948 Db *pDb;
3950 sqlite3VdbeIncrWriteCounter(p, 0);
3951 assert( pOp->p2<SQLITE_N_BTREE_META );
3952 assert( pOp->p1>=0 && pOp->p1<db->nDb );
3953 assert( DbMaskTest(p->btreeMask, pOp->p1) );
3954 assert( p->readOnly==0 );
3955 pDb = &db->aDb[pOp->p1];
3956 assert( pDb->pBt!=0 );
3957 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
3958 /* See note about index shifting on OP_ReadCookie */
3959 rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, pOp->p3);
3960 if( pOp->p2==BTREE_SCHEMA_VERSION ){
3961 /* When the schema cookie changes, record the new cookie internally */
3962 *(u32*)&pDb->pSchema->schema_cookie = *(u32*)&pOp->p3 - pOp->p5;
3963 db->mDbFlags |= DBFLAG_SchemaChange;
3964 sqlite3FkClearTriggerCache(db, pOp->p1);
3965 }else if( pOp->p2==BTREE_FILE_FORMAT ){
3966 /* Record changes in the file format */
3967 pDb->pSchema->file_format = pOp->p3;
3969 if( pOp->p1==1 ){
3970 /* Invalidate all prepared statements whenever the TEMP database
3971 ** schema is changed. Ticket #1644 */
3972 sqlite3ExpirePreparedStatements(db, 0);
3973 p->expired = 0;
3975 if( rc ) goto abort_due_to_error;
3976 break;
3979 /* Opcode: OpenRead P1 P2 P3 P4 P5
3980 ** Synopsis: root=P2 iDb=P3
3982 ** Open a read-only cursor for the database table whose root page is
3983 ** P2 in a database file. The database file is determined by P3.
3984 ** P3==0 means the main database, P3==1 means the database used for
3985 ** temporary tables, and P3>1 means used the corresponding attached
3986 ** database. Give the new cursor an identifier of P1. The P1
3987 ** values need not be contiguous but all P1 values should be small integers.
3988 ** It is an error for P1 to be negative.
3990 ** Allowed P5 bits:
3991 ** <ul>
3992 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
3993 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
3994 ** of OP_SeekLE/OP_IdxLT)
3995 ** </ul>
3997 ** The P4 value may be either an integer (P4_INT32) or a pointer to
3998 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3999 ** object, then table being opened must be an [index b-tree] where the
4000 ** KeyInfo object defines the content and collating
4001 ** sequence of that index b-tree. Otherwise, if P4 is an integer
4002 ** value, then the table being opened must be a [table b-tree] with a
4003 ** number of columns no less than the value of P4.
4005 ** See also: OpenWrite, ReopenIdx
4007 /* Opcode: ReopenIdx P1 P2 P3 P4 P5
4008 ** Synopsis: root=P2 iDb=P3
4010 ** The ReopenIdx opcode works like OP_OpenRead except that it first
4011 ** checks to see if the cursor on P1 is already open on the same
4012 ** b-tree and if it is this opcode becomes a no-op. In other words,
4013 ** if the cursor is already open, do not reopen it.
4015 ** The ReopenIdx opcode may only be used with P5==0 or P5==OPFLAG_SEEKEQ
4016 ** and with P4 being a P4_KEYINFO object. Furthermore, the P3 value must
4017 ** be the same as every other ReopenIdx or OpenRead for the same cursor
4018 ** number.
4020 ** Allowed P5 bits:
4021 ** <ul>
4022 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
4023 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
4024 ** of OP_SeekLE/OP_IdxLT)
4025 ** </ul>
4027 ** See also: OP_OpenRead, OP_OpenWrite
4029 /* Opcode: OpenWrite P1 P2 P3 P4 P5
4030 ** Synopsis: root=P2 iDb=P3
4032 ** Open a read/write cursor named P1 on the table or index whose root
4033 ** page is P2 (or whose root page is held in register P2 if the
4034 ** OPFLAG_P2ISREG bit is set in P5 - see below).
4036 ** The P4 value may be either an integer (P4_INT32) or a pointer to
4037 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
4038 ** object, then table being opened must be an [index b-tree] where the
4039 ** KeyInfo object defines the content and collating
4040 ** sequence of that index b-tree. Otherwise, if P4 is an integer
4041 ** value, then the table being opened must be a [table b-tree] with a
4042 ** number of columns no less than the value of P4.
4044 ** Allowed P5 bits:
4045 ** <ul>
4046 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
4047 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
4048 ** of OP_SeekLE/OP_IdxLT)
4049 ** <li> <b>0x08 OPFLAG_FORDELETE</b>: This cursor is used only to seek
4050 ** and subsequently delete entries in an index btree. This is a
4051 ** hint to the storage engine that the storage engine is allowed to
4052 ** ignore. The hint is not used by the official SQLite b*tree storage
4053 ** engine, but is used by COMDB2.
4054 ** <li> <b>0x10 OPFLAG_P2ISREG</b>: Use the content of register P2
4055 ** as the root page, not the value of P2 itself.
4056 ** </ul>
4058 ** This instruction works like OpenRead except that it opens the cursor
4059 ** in read/write mode.
4061 ** See also: OP_OpenRead, OP_ReopenIdx
4063 case OP_ReopenIdx: {
4064 int nField;
4065 KeyInfo *pKeyInfo;
4066 u32 p2;
4067 int iDb;
4068 int wrFlag;
4069 Btree *pX;
4070 VdbeCursor *pCur;
4071 Db *pDb;
4073 assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
4074 assert( pOp->p4type==P4_KEYINFO );
4075 pCur = p->apCsr[pOp->p1];
4076 if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){
4077 assert( pCur->iDb==pOp->p3 ); /* Guaranteed by the code generator */
4078 assert( pCur->eCurType==CURTYPE_BTREE );
4079 sqlite3BtreeClearCursor(pCur->uc.pCursor);
4080 goto open_cursor_set_hints;
4082 /* If the cursor is not currently open or is open on a different
4083 ** index, then fall through into OP_OpenRead to force a reopen */
4084 case OP_OpenRead:
4085 case OP_OpenWrite:
4087 assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
4088 assert( p->bIsReader );
4089 assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx
4090 || p->readOnly==0 );
4092 if( p->expired==1 ){
4093 rc = SQLITE_ABORT_ROLLBACK;
4094 goto abort_due_to_error;
4097 nField = 0;
4098 pKeyInfo = 0;
4099 p2 = (u32)pOp->p2;
4100 iDb = pOp->p3;
4101 assert( iDb>=0 && iDb<db->nDb );
4102 assert( DbMaskTest(p->btreeMask, iDb) );
4103 pDb = &db->aDb[iDb];
4104 pX = pDb->pBt;
4105 assert( pX!=0 );
4106 if( pOp->opcode==OP_OpenWrite ){
4107 assert( OPFLAG_FORDELETE==BTREE_FORDELETE );
4108 wrFlag = BTREE_WRCSR | (pOp->p5 & OPFLAG_FORDELETE);
4109 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
4110 if( pDb->pSchema->file_format < p->minWriteFileFormat ){
4111 p->minWriteFileFormat = pDb->pSchema->file_format;
4113 }else{
4114 wrFlag = 0;
4116 if( pOp->p5 & OPFLAG_P2ISREG ){
4117 assert( p2>0 );
4118 assert( p2<=(u32)(p->nMem+1 - p->nCursor) );
4119 assert( pOp->opcode==OP_OpenWrite );
4120 pIn2 = &aMem[p2];
4121 assert( memIsValid(pIn2) );
4122 assert( (pIn2->flags & MEM_Int)!=0 );
4123 sqlite3VdbeMemIntegerify(pIn2);
4124 p2 = (int)pIn2->u.i;
4125 /* The p2 value always comes from a prior OP_CreateBtree opcode and
4126 ** that opcode will always set the p2 value to 2 or more or else fail.
4127 ** If there were a failure, the prepared statement would have halted
4128 ** before reaching this instruction. */
4129 assert( p2>=2 );
4131 if( pOp->p4type==P4_KEYINFO ){
4132 pKeyInfo = pOp->p4.pKeyInfo;
4133 assert( pKeyInfo->enc==ENC(db) );
4134 assert( pKeyInfo->db==db );
4135 nField = pKeyInfo->nAllField;
4136 }else if( pOp->p4type==P4_INT32 ){
4137 nField = pOp->p4.i;
4139 assert( pOp->p1>=0 );
4140 assert( nField>=0 );
4141 testcase( nField==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */
4142 pCur = allocateCursor(p, pOp->p1, nField, CURTYPE_BTREE);
4143 if( pCur==0 ) goto no_mem;
4144 pCur->iDb = iDb;
4145 pCur->nullRow = 1;
4146 pCur->isOrdered = 1;
4147 pCur->pgnoRoot = p2;
4148 #ifdef SQLITE_DEBUG
4149 pCur->wrFlag = wrFlag;
4150 #endif
4151 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor);
4152 pCur->pKeyInfo = pKeyInfo;
4153 /* Set the VdbeCursor.isTable variable. Previous versions of
4154 ** SQLite used to check if the root-page flags were sane at this point
4155 ** and report database corruption if they were not, but this check has
4156 ** since moved into the btree layer. */
4157 pCur->isTable = pOp->p4type!=P4_KEYINFO;
4159 open_cursor_set_hints:
4160 assert( OPFLAG_BULKCSR==BTREE_BULKLOAD );
4161 assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ );
4162 testcase( pOp->p5 & OPFLAG_BULKCSR );
4163 testcase( pOp->p2 & OPFLAG_SEEKEQ );
4164 sqlite3BtreeCursorHintFlags(pCur->uc.pCursor,
4165 (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ)));
4166 if( rc ) goto abort_due_to_error;
4167 break;
4170 /* Opcode: OpenDup P1 P2 * * *
4172 ** Open a new cursor P1 that points to the same ephemeral table as
4173 ** cursor P2. The P2 cursor must have been opened by a prior OP_OpenEphemeral
4174 ** opcode. Only ephemeral cursors may be duplicated.
4176 ** Duplicate ephemeral cursors are used for self-joins of materialized views.
4178 case OP_OpenDup: {
4179 VdbeCursor *pOrig; /* The original cursor to be duplicated */
4180 VdbeCursor *pCx; /* The new cursor */
4182 pOrig = p->apCsr[pOp->p2];
4183 assert( pOrig );
4184 assert( pOrig->isEphemeral ); /* Only ephemeral cursors can be duplicated */
4186 pCx = allocateCursor(p, pOp->p1, pOrig->nField, CURTYPE_BTREE);
4187 if( pCx==0 ) goto no_mem;
4188 pCx->nullRow = 1;
4189 pCx->isEphemeral = 1;
4190 pCx->pKeyInfo = pOrig->pKeyInfo;
4191 pCx->isTable = pOrig->isTable;
4192 pCx->pgnoRoot = pOrig->pgnoRoot;
4193 pCx->isOrdered = pOrig->isOrdered;
4194 pCx->ub.pBtx = pOrig->ub.pBtx;
4195 pCx->noReuse = 1;
4196 pOrig->noReuse = 1;
4197 rc = sqlite3BtreeCursor(pCx->ub.pBtx, pCx->pgnoRoot, BTREE_WRCSR,
4198 pCx->pKeyInfo, pCx->uc.pCursor);
4199 /* The sqlite3BtreeCursor() routine can only fail for the first cursor
4200 ** opened for a database. Since there is already an open cursor when this
4201 ** opcode is run, the sqlite3BtreeCursor() cannot fail */
4202 assert( rc==SQLITE_OK );
4203 break;
4207 /* Opcode: OpenEphemeral P1 P2 P3 P4 P5
4208 ** Synopsis: nColumn=P2
4210 ** Open a new cursor P1 to a transient table.
4211 ** The cursor is always opened read/write even if
4212 ** the main database is read-only. The ephemeral
4213 ** table is deleted automatically when the cursor is closed.
4215 ** If the cursor P1 is already opened on an ephemeral table, the table
4216 ** is cleared (all content is erased).
4218 ** P2 is the number of columns in the ephemeral table.
4219 ** The cursor points to a BTree table if P4==0 and to a BTree index
4220 ** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure
4221 ** that defines the format of keys in the index.
4223 ** The P5 parameter can be a mask of the BTREE_* flags defined
4224 ** in btree.h. These flags control aspects of the operation of
4225 ** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
4226 ** added automatically.
4228 ** If P3 is positive, then reg[P3] is modified slightly so that it
4229 ** can be used as zero-length data for OP_Insert. This is an optimization
4230 ** that avoids an extra OP_Blob opcode to initialize that register.
4232 /* Opcode: OpenAutoindex P1 P2 * P4 *
4233 ** Synopsis: nColumn=P2
4235 ** This opcode works the same as OP_OpenEphemeral. It has a
4236 ** different name to distinguish its use. Tables created using
4237 ** by this opcode will be used for automatically created transient
4238 ** indices in joins.
4240 case OP_OpenAutoindex:
4241 case OP_OpenEphemeral: {
4242 VdbeCursor *pCx;
4243 KeyInfo *pKeyInfo;
4245 static const int vfsFlags =
4246 SQLITE_OPEN_READWRITE |
4247 SQLITE_OPEN_CREATE |
4248 SQLITE_OPEN_EXCLUSIVE |
4249 SQLITE_OPEN_DELETEONCLOSE |
4250 SQLITE_OPEN_TRANSIENT_DB;
4251 assert( pOp->p1>=0 );
4252 assert( pOp->p2>=0 );
4253 if( pOp->p3>0 ){
4254 /* Make register reg[P3] into a value that can be used as the data
4255 ** form sqlite3BtreeInsert() where the length of the data is zero. */
4256 assert( pOp->p2==0 ); /* Only used when number of columns is zero */
4257 assert( pOp->opcode==OP_OpenEphemeral );
4258 assert( aMem[pOp->p3].flags & MEM_Null );
4259 aMem[pOp->p3].n = 0;
4260 aMem[pOp->p3].z = "";
4262 pCx = p->apCsr[pOp->p1];
4263 if( pCx && !pCx->noReuse && ALWAYS(pOp->p2<=pCx->nField) ){
4264 /* If the ephermeral table is already open and has no duplicates from
4265 ** OP_OpenDup, then erase all existing content so that the table is
4266 ** empty again, rather than creating a new table. */
4267 assert( pCx->isEphemeral );
4268 pCx->seqCount = 0;
4269 pCx->cacheStatus = CACHE_STALE;
4270 rc = sqlite3BtreeClearTable(pCx->ub.pBtx, pCx->pgnoRoot, 0);
4271 }else{
4272 pCx = allocateCursor(p, pOp->p1, pOp->p2, CURTYPE_BTREE);
4273 if( pCx==0 ) goto no_mem;
4274 pCx->isEphemeral = 1;
4275 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->ub.pBtx,
4276 BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5,
4277 vfsFlags);
4278 if( rc==SQLITE_OK ){
4279 rc = sqlite3BtreeBeginTrans(pCx->ub.pBtx, 1, 0);
4280 if( rc==SQLITE_OK ){
4281 /* If a transient index is required, create it by calling
4282 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
4283 ** opening it. If a transient table is required, just use the
4284 ** automatically created table with root-page 1 (an BLOB_INTKEY table).
4286 if( (pCx->pKeyInfo = pKeyInfo = pOp->p4.pKeyInfo)!=0 ){
4287 assert( pOp->p4type==P4_KEYINFO );
4288 rc = sqlite3BtreeCreateTable(pCx->ub.pBtx, &pCx->pgnoRoot,
4289 BTREE_BLOBKEY | pOp->p5);
4290 if( rc==SQLITE_OK ){
4291 assert( pCx->pgnoRoot==SCHEMA_ROOT+1 );
4292 assert( pKeyInfo->db==db );
4293 assert( pKeyInfo->enc==ENC(db) );
4294 rc = sqlite3BtreeCursor(pCx->ub.pBtx, pCx->pgnoRoot, BTREE_WRCSR,
4295 pKeyInfo, pCx->uc.pCursor);
4297 pCx->isTable = 0;
4298 }else{
4299 pCx->pgnoRoot = SCHEMA_ROOT;
4300 rc = sqlite3BtreeCursor(pCx->ub.pBtx, SCHEMA_ROOT, BTREE_WRCSR,
4301 0, pCx->uc.pCursor);
4302 pCx->isTable = 1;
4305 pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
4306 if( rc ){
4307 sqlite3BtreeClose(pCx->ub.pBtx);
4311 if( rc ) goto abort_due_to_error;
4312 pCx->nullRow = 1;
4313 break;
4316 /* Opcode: SorterOpen P1 P2 P3 P4 *
4318 ** This opcode works like OP_OpenEphemeral except that it opens
4319 ** a transient index that is specifically designed to sort large
4320 ** tables using an external merge-sort algorithm.
4322 ** If argument P3 is non-zero, then it indicates that the sorter may
4323 ** assume that a stable sort considering the first P3 fields of each
4324 ** key is sufficient to produce the required results.
4326 case OP_SorterOpen: {
4327 VdbeCursor *pCx;
4329 assert( pOp->p1>=0 );
4330 assert( pOp->p2>=0 );
4331 pCx = allocateCursor(p, pOp->p1, pOp->p2, CURTYPE_SORTER);
4332 if( pCx==0 ) goto no_mem;
4333 pCx->pKeyInfo = pOp->p4.pKeyInfo;
4334 assert( pCx->pKeyInfo->db==db );
4335 assert( pCx->pKeyInfo->enc==ENC(db) );
4336 rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx);
4337 if( rc ) goto abort_due_to_error;
4338 break;
4341 /* Opcode: SequenceTest P1 P2 * * *
4342 ** Synopsis: if( cursor[P1].ctr++ ) pc = P2
4344 ** P1 is a sorter cursor. If the sequence counter is currently zero, jump
4345 ** to P2. Regardless of whether or not the jump is taken, increment the
4346 ** the sequence value.
4348 case OP_SequenceTest: {
4349 VdbeCursor *pC;
4350 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4351 pC = p->apCsr[pOp->p1];
4352 assert( isSorter(pC) );
4353 if( (pC->seqCount++)==0 ){
4354 goto jump_to_p2;
4356 break;
4359 /* Opcode: OpenPseudo P1 P2 P3 * *
4360 ** Synopsis: P3 columns in r[P2]
4362 ** Open a new cursor that points to a fake table that contains a single
4363 ** row of data. The content of that one row is the content of memory
4364 ** register P2. In other words, cursor P1 becomes an alias for the
4365 ** MEM_Blob content contained in register P2.
4367 ** A pseudo-table created by this opcode is used to hold a single
4368 ** row output from the sorter so that the row can be decomposed into
4369 ** individual columns using the OP_Column opcode. The OP_Column opcode
4370 ** is the only cursor opcode that works with a pseudo-table.
4372 ** P3 is the number of fields in the records that will be stored by
4373 ** the pseudo-table.
4375 case OP_OpenPseudo: {
4376 VdbeCursor *pCx;
4378 assert( pOp->p1>=0 );
4379 assert( pOp->p3>=0 );
4380 pCx = allocateCursor(p, pOp->p1, pOp->p3, CURTYPE_PSEUDO);
4381 if( pCx==0 ) goto no_mem;
4382 pCx->nullRow = 1;
4383 pCx->seekResult = pOp->p2;
4384 pCx->isTable = 1;
4385 /* Give this pseudo-cursor a fake BtCursor pointer so that pCx
4386 ** can be safely passed to sqlite3VdbeCursorMoveto(). This avoids a test
4387 ** for pCx->eCurType==CURTYPE_BTREE inside of sqlite3VdbeCursorMoveto()
4388 ** which is a performance optimization */
4389 pCx->uc.pCursor = sqlite3BtreeFakeValidCursor();
4390 assert( pOp->p5==0 );
4391 break;
4394 /* Opcode: Close P1 * * * *
4396 ** Close a cursor previously opened as P1. If P1 is not
4397 ** currently open, this instruction is a no-op.
4399 case OP_Close: {
4400 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4401 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
4402 p->apCsr[pOp->p1] = 0;
4403 break;
4406 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
4407 /* Opcode: ColumnsUsed P1 * * P4 *
4409 ** This opcode (which only exists if SQLite was compiled with
4410 ** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the
4411 ** table or index for cursor P1 are used. P4 is a 64-bit integer
4412 ** (P4_INT64) in which the first 63 bits are one for each of the
4413 ** first 63 columns of the table or index that are actually used
4414 ** by the cursor. The high-order bit is set if any column after
4415 ** the 64th is used.
4417 case OP_ColumnsUsed: {
4418 VdbeCursor *pC;
4419 pC = p->apCsr[pOp->p1];
4420 assert( pC->eCurType==CURTYPE_BTREE );
4421 pC->maskUsed = *(u64*)pOp->p4.pI64;
4422 break;
4424 #endif
4426 /* Opcode: SeekGE P1 P2 P3 P4 *
4427 ** Synopsis: key=r[P3@P4]
4429 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4430 ** use the value in register P3 as the key. If cursor P1 refers
4431 ** to an SQL index, then P3 is the first in an array of P4 registers
4432 ** that are used as an unpacked index key.
4434 ** Reposition cursor P1 so that it points to the smallest entry that
4435 ** is greater than or equal to the key value. If there are no records
4436 ** greater than or equal to the key and P2 is not zero, then jump to P2.
4438 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
4439 ** opcode will either land on a record that exactly matches the key, or
4440 ** else it will cause a jump to P2. When the cursor is OPFLAG_SEEKEQ,
4441 ** this opcode must be followed by an IdxLE opcode with the same arguments.
4442 ** The IdxGT opcode will be skipped if this opcode succeeds, but the
4443 ** IdxGT opcode will be used on subsequent loop iterations. The
4444 ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this
4445 ** is an equality search.
4447 ** This opcode leaves the cursor configured to move in forward order,
4448 ** from the beginning toward the end. In other words, the cursor is
4449 ** configured to use Next, not Prev.
4451 ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe
4453 /* Opcode: SeekGT P1 P2 P3 P4 *
4454 ** Synopsis: key=r[P3@P4]
4456 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4457 ** use the value in register P3 as a key. If cursor P1 refers
4458 ** to an SQL index, then P3 is the first in an array of P4 registers
4459 ** that are used as an unpacked index key.
4461 ** Reposition cursor P1 so that it points to the smallest entry that
4462 ** is greater than the key value. If there are no records greater than
4463 ** the key and P2 is not zero, then jump to P2.
4465 ** This opcode leaves the cursor configured to move in forward order,
4466 ** from the beginning toward the end. In other words, the cursor is
4467 ** configured to use Next, not Prev.
4469 ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe
4471 /* Opcode: SeekLT P1 P2 P3 P4 *
4472 ** Synopsis: key=r[P3@P4]
4474 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4475 ** use the value in register P3 as a key. If cursor P1 refers
4476 ** to an SQL index, then P3 is the first in an array of P4 registers
4477 ** that are used as an unpacked index key.
4479 ** Reposition cursor P1 so that it points to the largest entry that
4480 ** is less than the key value. If there are no records less than
4481 ** the key and P2 is not zero, then jump to P2.
4483 ** This opcode leaves the cursor configured to move in reverse order,
4484 ** from the end toward the beginning. In other words, the cursor is
4485 ** configured to use Prev, not Next.
4487 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe
4489 /* Opcode: SeekLE P1 P2 P3 P4 *
4490 ** Synopsis: key=r[P3@P4]
4492 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4493 ** use the value in register P3 as a key. If cursor P1 refers
4494 ** to an SQL index, then P3 is the first in an array of P4 registers
4495 ** that are used as an unpacked index key.
4497 ** Reposition cursor P1 so that it points to the largest entry that
4498 ** is less than or equal to the key value. If there are no records
4499 ** less than or equal to the key and P2 is not zero, then jump to P2.
4501 ** This opcode leaves the cursor configured to move in reverse order,
4502 ** from the end toward the beginning. In other words, the cursor is
4503 ** configured to use Prev, not Next.
4505 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
4506 ** opcode will either land on a record that exactly matches the key, or
4507 ** else it will cause a jump to P2. When the cursor is OPFLAG_SEEKEQ,
4508 ** this opcode must be followed by an IdxLE opcode with the same arguments.
4509 ** The IdxGE opcode will be skipped if this opcode succeeds, but the
4510 ** IdxGE opcode will be used on subsequent loop iterations. The
4511 ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this
4512 ** is an equality search.
4514 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt
4516 case OP_SeekLT: /* jump, in3, group */
4517 case OP_SeekLE: /* jump, in3, group */
4518 case OP_SeekGE: /* jump, in3, group */
4519 case OP_SeekGT: { /* jump, in3, group */
4520 int res; /* Comparison result */
4521 int oc; /* Opcode */
4522 VdbeCursor *pC; /* The cursor to seek */
4523 UnpackedRecord r; /* The key to seek for */
4524 int nField; /* Number of columns or fields in the key */
4525 i64 iKey; /* The rowid we are to seek to */
4526 int eqOnly; /* Only interested in == results */
4528 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4529 assert( pOp->p2!=0 );
4530 pC = p->apCsr[pOp->p1];
4531 assert( pC!=0 );
4532 assert( pC->eCurType==CURTYPE_BTREE );
4533 assert( OP_SeekLE == OP_SeekLT+1 );
4534 assert( OP_SeekGE == OP_SeekLT+2 );
4535 assert( OP_SeekGT == OP_SeekLT+3 );
4536 assert( pC->isOrdered );
4537 assert( pC->uc.pCursor!=0 );
4538 oc = pOp->opcode;
4539 eqOnly = 0;
4540 pC->nullRow = 0;
4541 #ifdef SQLITE_DEBUG
4542 pC->seekOp = pOp->opcode;
4543 #endif
4545 pC->deferredMoveto = 0;
4546 pC->cacheStatus = CACHE_STALE;
4547 if( pC->isTable ){
4548 u16 flags3, newType;
4549 /* The OPFLAG_SEEKEQ/BTREE_SEEK_EQ flag is only set on index cursors */
4550 assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0
4551 || CORRUPT_DB );
4553 /* The input value in P3 might be of any type: integer, real, string,
4554 ** blob, or NULL. But it needs to be an integer before we can do
4555 ** the seek, so convert it. */
4556 pIn3 = &aMem[pOp->p3];
4557 flags3 = pIn3->flags;
4558 if( (flags3 & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Str))==MEM_Str ){
4559 applyNumericAffinity(pIn3, 0);
4561 iKey = sqlite3VdbeIntValue(pIn3); /* Get the integer key value */
4562 newType = pIn3->flags; /* Record the type after applying numeric affinity */
4563 pIn3->flags = flags3; /* But convert the type back to its original */
4565 /* If the P3 value could not be converted into an integer without
4566 ** loss of information, then special processing is required... */
4567 if( (newType & (MEM_Int|MEM_IntReal))==0 ){
4568 int c;
4569 if( (newType & MEM_Real)==0 ){
4570 if( (newType & MEM_Null) || oc>=OP_SeekGE ){
4571 VdbeBranchTaken(1,2);
4572 goto jump_to_p2;
4573 }else{
4574 rc = sqlite3BtreeLast(pC->uc.pCursor, &res);
4575 if( rc!=SQLITE_OK ) goto abort_due_to_error;
4576 goto seek_not_found;
4579 c = sqlite3IntFloatCompare(iKey, pIn3->u.r);
4581 /* If the approximation iKey is larger than the actual real search
4582 ** term, substitute >= for > and < for <=. e.g. if the search term
4583 ** is 4.9 and the integer approximation 5:
4585 ** (x > 4.9) -> (x >= 5)
4586 ** (x <= 4.9) -> (x < 5)
4588 if( c>0 ){
4589 assert( OP_SeekGE==(OP_SeekGT-1) );
4590 assert( OP_SeekLT==(OP_SeekLE-1) );
4591 assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) );
4592 if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--;
4595 /* If the approximation iKey is smaller than the actual real search
4596 ** term, substitute <= for < and > for >=. */
4597 else if( c<0 ){
4598 assert( OP_SeekLE==(OP_SeekLT+1) );
4599 assert( OP_SeekGT==(OP_SeekGE+1) );
4600 assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) );
4601 if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++;
4604 rc = sqlite3BtreeTableMoveto(pC->uc.pCursor, (u64)iKey, 0, &res);
4605 pC->movetoTarget = iKey; /* Used by OP_Delete */
4606 if( rc!=SQLITE_OK ){
4607 goto abort_due_to_error;
4609 }else{
4610 /* For a cursor with the OPFLAG_SEEKEQ/BTREE_SEEK_EQ hint, only the
4611 ** OP_SeekGE and OP_SeekLE opcodes are allowed, and these must be
4612 ** immediately followed by an OP_IdxGT or OP_IdxLT opcode, respectively,
4613 ** with the same key.
4615 if( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ) ){
4616 eqOnly = 1;
4617 assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE );
4618 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
4619 assert( pOp->opcode==OP_SeekGE || pOp[1].opcode==OP_IdxLT );
4620 assert( pOp->opcode==OP_SeekLE || pOp[1].opcode==OP_IdxGT );
4621 assert( pOp[1].p1==pOp[0].p1 );
4622 assert( pOp[1].p2==pOp[0].p2 );
4623 assert( pOp[1].p3==pOp[0].p3 );
4624 assert( pOp[1].p4.i==pOp[0].p4.i );
4627 nField = pOp->p4.i;
4628 assert( pOp->p4type==P4_INT32 );
4629 assert( nField>0 );
4630 r.pKeyInfo = pC->pKeyInfo;
4631 r.nField = (u16)nField;
4633 /* The next line of code computes as follows, only faster:
4634 ** if( oc==OP_SeekGT || oc==OP_SeekLE ){
4635 ** r.default_rc = -1;
4636 ** }else{
4637 ** r.default_rc = +1;
4638 ** }
4640 r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1);
4641 assert( oc!=OP_SeekGT || r.default_rc==-1 );
4642 assert( oc!=OP_SeekLE || r.default_rc==-1 );
4643 assert( oc!=OP_SeekGE || r.default_rc==+1 );
4644 assert( oc!=OP_SeekLT || r.default_rc==+1 );
4646 r.aMem = &aMem[pOp->p3];
4647 #ifdef SQLITE_DEBUG
4648 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
4649 #endif
4650 r.eqSeen = 0;
4651 rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, &r, &res);
4652 if( rc!=SQLITE_OK ){
4653 goto abort_due_to_error;
4655 if( eqOnly && r.eqSeen==0 ){
4656 assert( res!=0 );
4657 goto seek_not_found;
4660 #ifdef SQLITE_TEST
4661 sqlite3_search_count++;
4662 #endif
4663 if( oc>=OP_SeekGE ){ assert( oc==OP_SeekGE || oc==OP_SeekGT );
4664 if( res<0 || (res==0 && oc==OP_SeekGT) ){
4665 res = 0;
4666 rc = sqlite3BtreeNext(pC->uc.pCursor, 0);
4667 if( rc!=SQLITE_OK ){
4668 if( rc==SQLITE_DONE ){
4669 rc = SQLITE_OK;
4670 res = 1;
4671 }else{
4672 goto abort_due_to_error;
4675 }else{
4676 res = 0;
4678 }else{
4679 assert( oc==OP_SeekLT || oc==OP_SeekLE );
4680 if( res>0 || (res==0 && oc==OP_SeekLT) ){
4681 res = 0;
4682 rc = sqlite3BtreePrevious(pC->uc.pCursor, 0);
4683 if( rc!=SQLITE_OK ){
4684 if( rc==SQLITE_DONE ){
4685 rc = SQLITE_OK;
4686 res = 1;
4687 }else{
4688 goto abort_due_to_error;
4691 }else{
4692 /* res might be negative because the table is empty. Check to
4693 ** see if this is the case.
4695 res = sqlite3BtreeEof(pC->uc.pCursor);
4698 seek_not_found:
4699 assert( pOp->p2>0 );
4700 VdbeBranchTaken(res!=0,2);
4701 if( res ){
4702 goto jump_to_p2;
4703 }else if( eqOnly ){
4704 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
4705 pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */
4707 break;
4711 /* Opcode: SeekScan P1 P2 * * *
4712 ** Synopsis: Scan-ahead up to P1 rows
4714 ** This opcode is a prefix opcode to OP_SeekGE. In other words, this
4715 ** opcode must be immediately followed by OP_SeekGE. This constraint is
4716 ** checked by assert() statements.
4718 ** This opcode uses the P1 through P4 operands of the subsequent
4719 ** OP_SeekGE. In the text that follows, the operands of the subsequent
4720 ** OP_SeekGE opcode are denoted as SeekOP.P1 through SeekOP.P4. Only
4721 ** the P1 and P2 operands of this opcode are also used, and are called
4722 ** This.P1 and This.P2.
4724 ** This opcode helps to optimize IN operators on a multi-column index
4725 ** where the IN operator is on the later terms of the index by avoiding
4726 ** unnecessary seeks on the btree, substituting steps to the next row
4727 ** of the b-tree instead. A correct answer is obtained if this opcode
4728 ** is omitted or is a no-op.
4730 ** The SeekGE.P3 and SeekGE.P4 operands identify an unpacked key which
4731 ** is the desired entry that we want the cursor SeekGE.P1 to be pointing
4732 ** to. Call this SeekGE.P4/P5 row the "target".
4734 ** If the SeekGE.P1 cursor is not currently pointing to a valid row,
4735 ** then this opcode is a no-op and control passes through into the OP_SeekGE.
4737 ** If the SeekGE.P1 cursor is pointing to a valid row, then that row
4738 ** might be the target row, or it might be near and slightly before the
4739 ** target row. This opcode attempts to position the cursor on the target
4740 ** row by, perhaps by invoking sqlite3BtreeStep() on the cursor
4741 ** between 0 and This.P1 times.
4743 ** There are three possible outcomes from this opcode:<ol>
4745 ** <li> If after This.P1 steps, the cursor is still pointing to a place that
4746 ** is earlier in the btree than the target row, then fall through
4747 ** into the subsquence OP_SeekGE opcode.
4749 ** <li> If the cursor is successfully moved to the target row by 0 or more
4750 ** sqlite3BtreeNext() calls, then jump to This.P2, which will land just
4751 ** past the OP_IdxGT or OP_IdxGE opcode that follows the OP_SeekGE.
4753 ** <li> If the cursor ends up past the target row (indicating the the target
4754 ** row does not exist in the btree) then jump to SeekOP.P2.
4755 ** </ol>
4757 case OP_SeekScan: {
4758 VdbeCursor *pC;
4759 int res;
4760 int nStep;
4761 UnpackedRecord r;
4763 assert( pOp[1].opcode==OP_SeekGE );
4765 /* pOp->p2 points to the first instruction past the OP_IdxGT that
4766 ** follows the OP_SeekGE. */
4767 assert( pOp->p2>=(int)(pOp-aOp)+2 );
4768 assert( aOp[pOp->p2-1].opcode==OP_IdxGT || aOp[pOp->p2-1].opcode==OP_IdxGE );
4769 testcase( aOp[pOp->p2-1].opcode==OP_IdxGE );
4770 assert( pOp[1].p1==aOp[pOp->p2-1].p1 );
4771 assert( pOp[1].p2==aOp[pOp->p2-1].p2 );
4772 assert( pOp[1].p3==aOp[pOp->p2-1].p3 );
4774 assert( pOp->p1>0 );
4775 pC = p->apCsr[pOp[1].p1];
4776 assert( pC!=0 );
4777 assert( pC->eCurType==CURTYPE_BTREE );
4778 assert( !pC->isTable );
4779 if( !sqlite3BtreeCursorIsValidNN(pC->uc.pCursor) ){
4780 #ifdef SQLITE_DEBUG
4781 if( db->flags&SQLITE_VdbeTrace ){
4782 printf("... cursor not valid - fall through\n");
4784 #endif
4785 break;
4787 nStep = pOp->p1;
4788 assert( nStep>=1 );
4789 r.pKeyInfo = pC->pKeyInfo;
4790 r.nField = (u16)pOp[1].p4.i;
4791 r.default_rc = 0;
4792 r.aMem = &aMem[pOp[1].p3];
4793 #ifdef SQLITE_DEBUG
4795 int i;
4796 for(i=0; i<r.nField; i++){
4797 assert( memIsValid(&r.aMem[i]) );
4798 REGISTER_TRACE(pOp[1].p3+i, &aMem[pOp[1].p3+i]);
4801 #endif
4802 res = 0; /* Not needed. Only used to silence a warning. */
4803 while(1){
4804 rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res);
4805 if( rc ) goto abort_due_to_error;
4806 if( res>0 ){
4807 seekscan_search_fail:
4808 #ifdef SQLITE_DEBUG
4809 if( db->flags&SQLITE_VdbeTrace ){
4810 printf("... %d steps and then skip\n", pOp->p1 - nStep);
4812 #endif
4813 VdbeBranchTaken(1,3);
4814 pOp++;
4815 goto jump_to_p2;
4817 if( res==0 ){
4818 #ifdef SQLITE_DEBUG
4819 if( db->flags&SQLITE_VdbeTrace ){
4820 printf("... %d steps and then success\n", pOp->p1 - nStep);
4822 #endif
4823 VdbeBranchTaken(2,3);
4824 goto jump_to_p2;
4825 break;
4827 if( nStep<=0 ){
4828 #ifdef SQLITE_DEBUG
4829 if( db->flags&SQLITE_VdbeTrace ){
4830 printf("... fall through after %d steps\n", pOp->p1);
4832 #endif
4833 VdbeBranchTaken(0,3);
4834 break;
4836 nStep--;
4837 rc = sqlite3BtreeNext(pC->uc.pCursor, 0);
4838 if( rc ){
4839 if( rc==SQLITE_DONE ){
4840 rc = SQLITE_OK;
4841 goto seekscan_search_fail;
4842 }else{
4843 goto abort_due_to_error;
4848 break;
4852 /* Opcode: SeekHit P1 P2 P3 * *
4853 ** Synopsis: set P2<=seekHit<=P3
4855 ** Increase or decrease the seekHit value for cursor P1, if necessary,
4856 ** so that it is no less than P2 and no greater than P3.
4858 ** The seekHit integer represents the maximum of terms in an index for which
4859 ** there is known to be at least one match. If the seekHit value is smaller
4860 ** than the total number of equality terms in an index lookup, then the
4861 ** OP_IfNoHope opcode might run to see if the IN loop can be abandoned
4862 ** early, thus saving work. This is part of the IN-early-out optimization.
4864 ** P1 must be a valid b-tree cursor.
4866 case OP_SeekHit: {
4867 VdbeCursor *pC;
4868 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4869 pC = p->apCsr[pOp->p1];
4870 assert( pC!=0 );
4871 assert( pOp->p3>=pOp->p2 );
4872 if( pC->seekHit<pOp->p2 ){
4873 #ifdef SQLITE_DEBUG
4874 if( db->flags&SQLITE_VdbeTrace ){
4875 printf("seekHit changes from %d to %d\n", pC->seekHit, pOp->p2);
4877 #endif
4878 pC->seekHit = pOp->p2;
4879 }else if( pC->seekHit>pOp->p3 ){
4880 #ifdef SQLITE_DEBUG
4881 if( db->flags&SQLITE_VdbeTrace ){
4882 printf("seekHit changes from %d to %d\n", pC->seekHit, pOp->p3);
4884 #endif
4885 pC->seekHit = pOp->p3;
4887 break;
4890 /* Opcode: IfNotOpen P1 P2 * * *
4891 ** Synopsis: if( !csr[P1] ) goto P2
4893 ** If cursor P1 is not open, jump to instruction P2. Otherwise, fall through.
4895 case OP_IfNotOpen: { /* jump */
4896 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4897 VdbeBranchTaken(p->apCsr[pOp->p1]==0, 2);
4898 if( !p->apCsr[pOp->p1] ){
4899 goto jump_to_p2_and_check_for_interrupt;
4901 break;
4904 /* Opcode: Found P1 P2 P3 P4 *
4905 ** Synopsis: key=r[P3@P4]
4907 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
4908 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
4909 ** record.
4911 ** Cursor P1 is on an index btree. If the record identified by P3 and P4
4912 ** is a prefix of any entry in P1 then a jump is made to P2 and
4913 ** P1 is left pointing at the matching entry.
4915 ** This operation leaves the cursor in a state where it can be
4916 ** advanced in the forward direction. The Next instruction will work,
4917 ** but not the Prev instruction.
4919 ** See also: NotFound, NoConflict, NotExists. SeekGe
4921 /* Opcode: NotFound P1 P2 P3 P4 *
4922 ** Synopsis: key=r[P3@P4]
4924 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
4925 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
4926 ** record.
4928 ** Cursor P1 is on an index btree. If the record identified by P3 and P4
4929 ** is not the prefix of any entry in P1 then a jump is made to P2. If P1
4930 ** does contain an entry whose prefix matches the P3/P4 record then control
4931 ** falls through to the next instruction and P1 is left pointing at the
4932 ** matching entry.
4934 ** This operation leaves the cursor in a state where it cannot be
4935 ** advanced in either direction. In other words, the Next and Prev
4936 ** opcodes do not work after this operation.
4938 ** See also: Found, NotExists, NoConflict, IfNoHope
4940 /* Opcode: IfNoHope P1 P2 P3 P4 *
4941 ** Synopsis: key=r[P3@P4]
4943 ** Register P3 is the first of P4 registers that form an unpacked
4944 ** record. Cursor P1 is an index btree. P2 is a jump destination.
4945 ** In other words, the operands to this opcode are the same as the
4946 ** operands to OP_NotFound and OP_IdxGT.
4948 ** This opcode is an optimization attempt only. If this opcode always
4949 ** falls through, the correct answer is still obtained, but extra works
4950 ** is performed.
4952 ** A value of N in the seekHit flag of cursor P1 means that there exists
4953 ** a key P3:N that will match some record in the index. We want to know
4954 ** if it is possible for a record P3:P4 to match some record in the
4955 ** index. If it is not possible, we can skips some work. So if seekHit
4956 ** is less than P4, attempt to find out if a match is possible by running
4957 ** OP_NotFound.
4959 ** This opcode is used in IN clause processing for a multi-column key.
4960 ** If an IN clause is attached to an element of the key other than the
4961 ** left-most element, and if there are no matches on the most recent
4962 ** seek over the whole key, then it might be that one of the key element
4963 ** to the left is prohibiting a match, and hence there is "no hope" of
4964 ** any match regardless of how many IN clause elements are checked.
4965 ** In such a case, we abandon the IN clause search early, using this
4966 ** opcode. The opcode name comes from the fact that the
4967 ** jump is taken if there is "no hope" of achieving a match.
4969 ** See also: NotFound, SeekHit
4971 /* Opcode: NoConflict P1 P2 P3 P4 *
4972 ** Synopsis: key=r[P3@P4]
4974 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
4975 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
4976 ** record.
4978 ** Cursor P1 is on an index btree. If the record identified by P3 and P4
4979 ** contains any NULL value, jump immediately to P2. If all terms of the
4980 ** record are not-NULL then a check is done to determine if any row in the
4981 ** P1 index btree has a matching key prefix. If there are no matches, jump
4982 ** immediately to P2. If there is a match, fall through and leave the P1
4983 ** cursor pointing to the matching row.
4985 ** This opcode is similar to OP_NotFound with the exceptions that the
4986 ** branch is always taken if any part of the search key input is NULL.
4988 ** This operation leaves the cursor in a state where it cannot be
4989 ** advanced in either direction. In other words, the Next and Prev
4990 ** opcodes do not work after this operation.
4992 ** See also: NotFound, Found, NotExists
4994 case OP_IfNoHope: { /* jump, in3 */
4995 VdbeCursor *pC;
4996 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4997 pC = p->apCsr[pOp->p1];
4998 assert( pC!=0 );
4999 #ifdef SQLITE_DEBUG
5000 if( db->flags&SQLITE_VdbeTrace ){
5001 printf("seekHit is %d\n", pC->seekHit);
5003 #endif
5004 if( pC->seekHit>=pOp->p4.i ) break;
5005 /* Fall through into OP_NotFound */
5006 /* no break */ deliberate_fall_through
5008 case OP_NoConflict: /* jump, in3 */
5009 case OP_NotFound: /* jump, in3 */
5010 case OP_Found: { /* jump, in3 */
5011 int alreadyExists;
5012 int ii;
5013 VdbeCursor *pC;
5014 UnpackedRecord *pIdxKey;
5015 UnpackedRecord r;
5017 #ifdef SQLITE_TEST
5018 if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++;
5019 #endif
5021 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5022 assert( pOp->p4type==P4_INT32 );
5023 pC = p->apCsr[pOp->p1];
5024 assert( pC!=0 );
5025 #ifdef SQLITE_DEBUG
5026 pC->seekOp = pOp->opcode;
5027 #endif
5028 r.aMem = &aMem[pOp->p3];
5029 assert( pC->eCurType==CURTYPE_BTREE );
5030 assert( pC->uc.pCursor!=0 );
5031 assert( pC->isTable==0 );
5032 r.nField = (u16)pOp->p4.i;
5033 if( r.nField>0 ){
5034 /* Key values in an array of registers */
5035 r.pKeyInfo = pC->pKeyInfo;
5036 r.default_rc = 0;
5037 #ifdef SQLITE_DEBUG
5038 for(ii=0; ii<r.nField; ii++){
5039 assert( memIsValid(&r.aMem[ii]) );
5040 assert( (r.aMem[ii].flags & MEM_Zero)==0 || r.aMem[ii].n==0 );
5041 if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]);
5043 #endif
5044 rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, &r, &pC->seekResult);
5045 }else{
5046 /* Composite key generated by OP_MakeRecord */
5047 assert( r.aMem->flags & MEM_Blob );
5048 assert( pOp->opcode!=OP_NoConflict );
5049 rc = ExpandBlob(r.aMem);
5050 assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
5051 if( rc ) goto no_mem;
5052 pIdxKey = sqlite3VdbeAllocUnpackedRecord(pC->pKeyInfo);
5053 if( pIdxKey==0 ) goto no_mem;
5054 sqlite3VdbeRecordUnpack(pC->pKeyInfo, r.aMem->n, r.aMem->z, pIdxKey);
5055 pIdxKey->default_rc = 0;
5056 rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, pIdxKey, &pC->seekResult);
5057 sqlite3DbFreeNN(db, pIdxKey);
5059 if( rc!=SQLITE_OK ){
5060 goto abort_due_to_error;
5062 alreadyExists = (pC->seekResult==0);
5063 pC->nullRow = 1-alreadyExists;
5064 pC->deferredMoveto = 0;
5065 pC->cacheStatus = CACHE_STALE;
5066 if( pOp->opcode==OP_Found ){
5067 VdbeBranchTaken(alreadyExists!=0,2);
5068 if( alreadyExists ) goto jump_to_p2;
5069 }else{
5070 if( !alreadyExists ){
5071 VdbeBranchTaken(1,2);
5072 goto jump_to_p2;
5074 if( pOp->opcode==OP_NoConflict ){
5075 /* For the OP_NoConflict opcode, take the jump if any of the
5076 ** input fields are NULL, since any key with a NULL will not
5077 ** conflict */
5078 for(ii=0; ii<r.nField; ii++){
5079 if( r.aMem[ii].flags & MEM_Null ){
5080 VdbeBranchTaken(1,2);
5081 goto jump_to_p2;
5085 VdbeBranchTaken(0,2);
5086 if( pOp->opcode==OP_IfNoHope ){
5087 pC->seekHit = pOp->p4.i;
5090 break;
5093 /* Opcode: SeekRowid P1 P2 P3 * *
5094 ** Synopsis: intkey=r[P3]
5096 ** P1 is the index of a cursor open on an SQL table btree (with integer
5097 ** keys). If register P3 does not contain an integer or if P1 does not
5098 ** contain a record with rowid P3 then jump immediately to P2.
5099 ** Or, if P2 is 0, raise an SQLITE_CORRUPT error. If P1 does contain
5100 ** a record with rowid P3 then
5101 ** leave the cursor pointing at that record and fall through to the next
5102 ** instruction.
5104 ** The OP_NotExists opcode performs the same operation, but with OP_NotExists
5105 ** the P3 register must be guaranteed to contain an integer value. With this
5106 ** opcode, register P3 might not contain an integer.
5108 ** The OP_NotFound opcode performs the same operation on index btrees
5109 ** (with arbitrary multi-value keys).
5111 ** This opcode leaves the cursor in a state where it cannot be advanced
5112 ** in either direction. In other words, the Next and Prev opcodes will
5113 ** not work following this opcode.
5115 ** See also: Found, NotFound, NoConflict, SeekRowid
5117 /* Opcode: NotExists P1 P2 P3 * *
5118 ** Synopsis: intkey=r[P3]
5120 ** P1 is the index of a cursor open on an SQL table btree (with integer
5121 ** keys). P3 is an integer rowid. If P1 does not contain a record with
5122 ** rowid P3 then jump immediately to P2. Or, if P2 is 0, raise an
5123 ** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then
5124 ** leave the cursor pointing at that record and fall through to the next
5125 ** instruction.
5127 ** The OP_SeekRowid opcode performs the same operation but also allows the
5128 ** P3 register to contain a non-integer value, in which case the jump is
5129 ** always taken. This opcode requires that P3 always contain an integer.
5131 ** The OP_NotFound opcode performs the same operation on index btrees
5132 ** (with arbitrary multi-value keys).
5134 ** This opcode leaves the cursor in a state where it cannot be advanced
5135 ** in either direction. In other words, the Next and Prev opcodes will
5136 ** not work following this opcode.
5138 ** See also: Found, NotFound, NoConflict, SeekRowid
5140 case OP_SeekRowid: { /* jump, in3 */
5141 VdbeCursor *pC;
5142 BtCursor *pCrsr;
5143 int res;
5144 u64 iKey;
5146 pIn3 = &aMem[pOp->p3];
5147 testcase( pIn3->flags & MEM_Int );
5148 testcase( pIn3->flags & MEM_IntReal );
5149 testcase( pIn3->flags & MEM_Real );
5150 testcase( (pIn3->flags & (MEM_Str|MEM_Int))==MEM_Str );
5151 if( (pIn3->flags & (MEM_Int|MEM_IntReal))==0 ){
5152 /* If pIn3->u.i does not contain an integer, compute iKey as the
5153 ** integer value of pIn3. Jump to P2 if pIn3 cannot be converted
5154 ** into an integer without loss of information. Take care to avoid
5155 ** changing the datatype of pIn3, however, as it is used by other
5156 ** parts of the prepared statement. */
5157 Mem x = pIn3[0];
5158 applyAffinity(&x, SQLITE_AFF_NUMERIC, encoding);
5159 if( (x.flags & MEM_Int)==0 ) goto jump_to_p2;
5160 iKey = x.u.i;
5161 goto notExistsWithKey;
5163 /* Fall through into OP_NotExists */
5164 /* no break */ deliberate_fall_through
5165 case OP_NotExists: /* jump, in3 */
5166 pIn3 = &aMem[pOp->p3];
5167 assert( (pIn3->flags & MEM_Int)!=0 || pOp->opcode==OP_SeekRowid );
5168 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5169 iKey = pIn3->u.i;
5170 notExistsWithKey:
5171 pC = p->apCsr[pOp->p1];
5172 assert( pC!=0 );
5173 #ifdef SQLITE_DEBUG
5174 if( pOp->opcode==OP_SeekRowid ) pC->seekOp = OP_SeekRowid;
5175 #endif
5176 assert( pC->isTable );
5177 assert( pC->eCurType==CURTYPE_BTREE );
5178 pCrsr = pC->uc.pCursor;
5179 assert( pCrsr!=0 );
5180 res = 0;
5181 rc = sqlite3BtreeTableMoveto(pCrsr, iKey, 0, &res);
5182 assert( rc==SQLITE_OK || res==0 );
5183 pC->movetoTarget = iKey; /* Used by OP_Delete */
5184 pC->nullRow = 0;
5185 pC->cacheStatus = CACHE_STALE;
5186 pC->deferredMoveto = 0;
5187 VdbeBranchTaken(res!=0,2);
5188 pC->seekResult = res;
5189 if( res!=0 ){
5190 assert( rc==SQLITE_OK );
5191 if( pOp->p2==0 ){
5192 rc = SQLITE_CORRUPT_BKPT;
5193 }else{
5194 goto jump_to_p2;
5197 if( rc ) goto abort_due_to_error;
5198 break;
5201 /* Opcode: Sequence P1 P2 * * *
5202 ** Synopsis: r[P2]=cursor[P1].ctr++
5204 ** Find the next available sequence number for cursor P1.
5205 ** Write the sequence number into register P2.
5206 ** The sequence number on the cursor is incremented after this
5207 ** instruction.
5209 case OP_Sequence: { /* out2 */
5210 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5211 assert( p->apCsr[pOp->p1]!=0 );
5212 assert( p->apCsr[pOp->p1]->eCurType!=CURTYPE_VTAB );
5213 pOut = out2Prerelease(p, pOp);
5214 pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
5215 break;
5219 /* Opcode: NewRowid P1 P2 P3 * *
5220 ** Synopsis: r[P2]=rowid
5222 ** Get a new integer record number (a.k.a "rowid") used as the key to a table.
5223 ** The record number is not previously used as a key in the database
5224 ** table that cursor P1 points to. The new record number is written
5225 ** written to register P2.
5227 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds
5228 ** the largest previously generated record number. No new record numbers are
5229 ** allowed to be less than this value. When this value reaches its maximum,
5230 ** an SQLITE_FULL error is generated. The P3 register is updated with the '
5231 ** generated record number. This P3 mechanism is used to help implement the
5232 ** AUTOINCREMENT feature.
5234 case OP_NewRowid: { /* out2 */
5235 i64 v; /* The new rowid */
5236 VdbeCursor *pC; /* Cursor of table to get the new rowid */
5237 int res; /* Result of an sqlite3BtreeLast() */
5238 int cnt; /* Counter to limit the number of searches */
5239 #ifndef SQLITE_OMIT_AUTOINCREMENT
5240 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */
5241 VdbeFrame *pFrame; /* Root frame of VDBE */
5242 #endif
5244 v = 0;
5245 res = 0;
5246 pOut = out2Prerelease(p, pOp);
5247 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5248 pC = p->apCsr[pOp->p1];
5249 assert( pC!=0 );
5250 assert( pC->isTable );
5251 assert( pC->eCurType==CURTYPE_BTREE );
5252 assert( pC->uc.pCursor!=0 );
5254 /* The next rowid or record number (different terms for the same
5255 ** thing) is obtained in a two-step algorithm.
5257 ** First we attempt to find the largest existing rowid and add one
5258 ** to that. But if the largest existing rowid is already the maximum
5259 ** positive integer, we have to fall through to the second
5260 ** probabilistic algorithm
5262 ** The second algorithm is to select a rowid at random and see if
5263 ** it already exists in the table. If it does not exist, we have
5264 ** succeeded. If the random rowid does exist, we select a new one
5265 ** and try again, up to 100 times.
5267 assert( pC->isTable );
5269 #ifdef SQLITE_32BIT_ROWID
5270 # define MAX_ROWID 0x7fffffff
5271 #else
5272 /* Some compilers complain about constants of the form 0x7fffffffffffffff.
5273 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems
5274 ** to provide the constant while making all compilers happy.
5276 # define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
5277 #endif
5279 if( !pC->useRandomRowid ){
5280 rc = sqlite3BtreeLast(pC->uc.pCursor, &res);
5281 if( rc!=SQLITE_OK ){
5282 goto abort_due_to_error;
5284 if( res ){
5285 v = 1; /* IMP: R-61914-48074 */
5286 }else{
5287 assert( sqlite3BtreeCursorIsValid(pC->uc.pCursor) );
5288 v = sqlite3BtreeIntegerKey(pC->uc.pCursor);
5289 if( v>=MAX_ROWID ){
5290 pC->useRandomRowid = 1;
5291 }else{
5292 v++; /* IMP: R-29538-34987 */
5297 #ifndef SQLITE_OMIT_AUTOINCREMENT
5298 if( pOp->p3 ){
5299 /* Assert that P3 is a valid memory cell. */
5300 assert( pOp->p3>0 );
5301 if( p->pFrame ){
5302 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
5303 /* Assert that P3 is a valid memory cell. */
5304 assert( pOp->p3<=pFrame->nMem );
5305 pMem = &pFrame->aMem[pOp->p3];
5306 }else{
5307 /* Assert that P3 is a valid memory cell. */
5308 assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
5309 pMem = &aMem[pOp->p3];
5310 memAboutToChange(p, pMem);
5312 assert( memIsValid(pMem) );
5314 REGISTER_TRACE(pOp->p3, pMem);
5315 sqlite3VdbeMemIntegerify(pMem);
5316 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */
5317 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
5318 rc = SQLITE_FULL; /* IMP: R-17817-00630 */
5319 goto abort_due_to_error;
5321 if( v<pMem->u.i+1 ){
5322 v = pMem->u.i + 1;
5324 pMem->u.i = v;
5326 #endif
5327 if( pC->useRandomRowid ){
5328 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
5329 ** largest possible integer (9223372036854775807) then the database
5330 ** engine starts picking positive candidate ROWIDs at random until
5331 ** it finds one that is not previously used. */
5332 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is
5333 ** an AUTOINCREMENT table. */
5334 cnt = 0;
5336 sqlite3_randomness(sizeof(v), &v);
5337 v &= (MAX_ROWID>>1); v++; /* Ensure that v is greater than zero */
5338 }while( ((rc = sqlite3BtreeTableMoveto(pC->uc.pCursor, (u64)v,
5339 0, &res))==SQLITE_OK)
5340 && (res==0)
5341 && (++cnt<100));
5342 if( rc ) goto abort_due_to_error;
5343 if( res==0 ){
5344 rc = SQLITE_FULL; /* IMP: R-38219-53002 */
5345 goto abort_due_to_error;
5347 assert( v>0 ); /* EV: R-40812-03570 */
5349 pC->deferredMoveto = 0;
5350 pC->cacheStatus = CACHE_STALE;
5352 pOut->u.i = v;
5353 break;
5356 /* Opcode: Insert P1 P2 P3 P4 P5
5357 ** Synopsis: intkey=r[P3] data=r[P2]
5359 ** Write an entry into the table of cursor P1. A new entry is
5360 ** created if it doesn't already exist or the data for an existing
5361 ** entry is overwritten. The data is the value MEM_Blob stored in register
5362 ** number P2. The key is stored in register P3. The key must
5363 ** be a MEM_Int.
5365 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
5366 ** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set,
5367 ** then rowid is stored for subsequent return by the
5368 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
5370 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
5371 ** run faster by avoiding an unnecessary seek on cursor P1. However,
5372 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
5373 ** seeks on the cursor or if the most recent seek used a key equal to P3.
5375 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
5376 ** UPDATE operation. Otherwise (if the flag is clear) then this opcode
5377 ** is part of an INSERT operation. The difference is only important to
5378 ** the update hook.
5380 ** Parameter P4 may point to a Table structure, or may be NULL. If it is
5381 ** not NULL, then the update-hook (sqlite3.xUpdateCallback) is invoked
5382 ** following a successful insert.
5384 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
5385 ** allocated, then ownership of P2 is transferred to the pseudo-cursor
5386 ** and register P2 becomes ephemeral. If the cursor is changed, the
5387 ** value of register P2 will then change. Make sure this does not
5388 ** cause any problems.)
5390 ** This instruction only works on tables. The equivalent instruction
5391 ** for indices is OP_IdxInsert.
5393 case OP_Insert: {
5394 Mem *pData; /* MEM cell holding data for the record to be inserted */
5395 Mem *pKey; /* MEM cell holding key for the record */
5396 VdbeCursor *pC; /* Cursor to table into which insert is written */
5397 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */
5398 const char *zDb; /* database name - used by the update hook */
5399 Table *pTab; /* Table structure - used by update and pre-update hooks */
5400 BtreePayload x; /* Payload to be inserted */
5402 pData = &aMem[pOp->p2];
5403 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5404 assert( memIsValid(pData) );
5405 pC = p->apCsr[pOp->p1];
5406 assert( pC!=0 );
5407 assert( pC->eCurType==CURTYPE_BTREE );
5408 assert( pC->deferredMoveto==0 );
5409 assert( pC->uc.pCursor!=0 );
5410 assert( (pOp->p5 & OPFLAG_ISNOOP) || pC->isTable );
5411 assert( pOp->p4type==P4_TABLE || pOp->p4type>=P4_STATIC );
5412 REGISTER_TRACE(pOp->p2, pData);
5413 sqlite3VdbeIncrWriteCounter(p, pC);
5415 pKey = &aMem[pOp->p3];
5416 assert( pKey->flags & MEM_Int );
5417 assert( memIsValid(pKey) );
5418 REGISTER_TRACE(pOp->p3, pKey);
5419 x.nKey = pKey->u.i;
5421 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
5422 assert( pC->iDb>=0 );
5423 zDb = db->aDb[pC->iDb].zDbSName;
5424 pTab = pOp->p4.pTab;
5425 assert( (pOp->p5 & OPFLAG_ISNOOP) || HasRowid(pTab) );
5426 }else{
5427 pTab = 0;
5428 zDb = 0;
5431 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5432 /* Invoke the pre-update hook, if any */
5433 if( pTab ){
5434 if( db->xPreUpdateCallback && !(pOp->p5 & OPFLAG_ISUPDATE) ){
5435 sqlite3VdbePreUpdateHook(p,pC,SQLITE_INSERT,zDb,pTab,x.nKey,pOp->p2,-1);
5437 if( db->xUpdateCallback==0 || pTab->aCol==0 ){
5438 /* Prevent post-update hook from running in cases when it should not */
5439 pTab = 0;
5442 if( pOp->p5 & OPFLAG_ISNOOP ) break;
5443 #endif
5445 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
5446 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = x.nKey;
5447 assert( (pData->flags & (MEM_Blob|MEM_Str))!=0 || pData->n==0 );
5448 x.pData = pData->z;
5449 x.nData = pData->n;
5450 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
5451 if( pData->flags & MEM_Zero ){
5452 x.nZero = pData->u.nZero;
5453 }else{
5454 x.nZero = 0;
5456 x.pKey = 0;
5457 rc = sqlite3BtreeInsert(pC->uc.pCursor, &x,
5458 (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION|OPFLAG_PREFORMAT)),
5459 seekResult
5461 pC->deferredMoveto = 0;
5462 pC->cacheStatus = CACHE_STALE;
5464 /* Invoke the update-hook if required. */
5465 if( rc ) goto abort_due_to_error;
5466 if( pTab ){
5467 assert( db->xUpdateCallback!=0 );
5468 assert( pTab->aCol!=0 );
5469 db->xUpdateCallback(db->pUpdateArg,
5470 (pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT,
5471 zDb, pTab->zName, x.nKey);
5473 break;
5476 /* Opcode: RowCell P1 P2 P3 * *
5478 ** P1 and P2 are both open cursors. Both must be opened on the same type
5479 ** of table - intkey or index. This opcode is used as part of copying
5480 ** the current row from P2 into P1. If the cursors are opened on intkey
5481 ** tables, register P3 contains the rowid to use with the new record in
5482 ** P1. If they are opened on index tables, P3 is not used.
5484 ** This opcode must be followed by either an Insert or InsertIdx opcode
5485 ** with the OPFLAG_PREFORMAT flag set to complete the insert operation.
5487 case OP_RowCell: {
5488 VdbeCursor *pDest; /* Cursor to write to */
5489 VdbeCursor *pSrc; /* Cursor to read from */
5490 i64 iKey; /* Rowid value to insert with */
5491 assert( pOp[1].opcode==OP_Insert || pOp[1].opcode==OP_IdxInsert );
5492 assert( pOp[1].opcode==OP_Insert || pOp->p3==0 );
5493 assert( pOp[1].opcode==OP_IdxInsert || pOp->p3>0 );
5494 assert( pOp[1].p5 & OPFLAG_PREFORMAT );
5495 pDest = p->apCsr[pOp->p1];
5496 pSrc = p->apCsr[pOp->p2];
5497 iKey = pOp->p3 ? aMem[pOp->p3].u.i : 0;
5498 rc = sqlite3BtreeTransferRow(pDest->uc.pCursor, pSrc->uc.pCursor, iKey);
5499 if( rc!=SQLITE_OK ) goto abort_due_to_error;
5500 break;
5503 /* Opcode: Delete P1 P2 P3 P4 P5
5505 ** Delete the record at which the P1 cursor is currently pointing.
5507 ** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then
5508 ** the cursor will be left pointing at either the next or the previous
5509 ** record in the table. If it is left pointing at the next record, then
5510 ** the next Next instruction will be a no-op. As a result, in this case
5511 ** it is ok to delete a record from within a Next loop. If
5512 ** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be
5513 ** left in an undefined state.
5515 ** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this
5516 ** delete one of several associated with deleting a table row and all its
5517 ** associated index entries. Exactly one of those deletes is the "primary"
5518 ** delete. The others are all on OPFLAG_FORDELETE cursors or else are
5519 ** marked with the AUXDELETE flag.
5521 ** If the OPFLAG_NCHANGE flag of P2 (NB: P2 not P5) is set, then the row
5522 ** change count is incremented (otherwise not).
5524 ** P1 must not be pseudo-table. It has to be a real table with
5525 ** multiple rows.
5527 ** If P4 is not NULL then it points to a Table object. In this case either
5528 ** the update or pre-update hook, or both, may be invoked. The P1 cursor must
5529 ** have been positioned using OP_NotFound prior to invoking this opcode in
5530 ** this case. Specifically, if one is configured, the pre-update hook is
5531 ** invoked if P4 is not NULL. The update-hook is invoked if one is configured,
5532 ** P4 is not NULL, and the OPFLAG_NCHANGE flag is set in P2.
5534 ** If the OPFLAG_ISUPDATE flag is set in P2, then P3 contains the address
5535 ** of the memory cell that contains the value that the rowid of the row will
5536 ** be set to by the update.
5538 case OP_Delete: {
5539 VdbeCursor *pC;
5540 const char *zDb;
5541 Table *pTab;
5542 int opflags;
5544 opflags = pOp->p2;
5545 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5546 pC = p->apCsr[pOp->p1];
5547 assert( pC!=0 );
5548 assert( pC->eCurType==CURTYPE_BTREE );
5549 assert( pC->uc.pCursor!=0 );
5550 assert( pC->deferredMoveto==0 );
5551 sqlite3VdbeIncrWriteCounter(p, pC);
5553 #ifdef SQLITE_DEBUG
5554 if( pOp->p4type==P4_TABLE
5555 && HasRowid(pOp->p4.pTab)
5556 && pOp->p5==0
5557 && sqlite3BtreeCursorIsValidNN(pC->uc.pCursor)
5559 /* If p5 is zero, the seek operation that positioned the cursor prior to
5560 ** OP_Delete will have also set the pC->movetoTarget field to the rowid of
5561 ** the row that is being deleted */
5562 i64 iKey = sqlite3BtreeIntegerKey(pC->uc.pCursor);
5563 assert( CORRUPT_DB || pC->movetoTarget==iKey );
5565 #endif
5567 /* If the update-hook or pre-update-hook will be invoked, set zDb to
5568 ** the name of the db to pass as to it. Also set local pTab to a copy
5569 ** of p4.pTab. Finally, if p5 is true, indicating that this cursor was
5570 ** last moved with OP_Next or OP_Prev, not Seek or NotFound, set
5571 ** VdbeCursor.movetoTarget to the current rowid. */
5572 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
5573 assert( pC->iDb>=0 );
5574 assert( pOp->p4.pTab!=0 );
5575 zDb = db->aDb[pC->iDb].zDbSName;
5576 pTab = pOp->p4.pTab;
5577 if( (pOp->p5 & OPFLAG_SAVEPOSITION)!=0 && pC->isTable ){
5578 pC->movetoTarget = sqlite3BtreeIntegerKey(pC->uc.pCursor);
5580 }else{
5581 zDb = 0;
5582 pTab = 0;
5585 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5586 /* Invoke the pre-update-hook if required. */
5587 assert( db->xPreUpdateCallback==0 || pTab==pOp->p4.pTab );
5588 if( db->xPreUpdateCallback && pTab ){
5589 assert( !(opflags & OPFLAG_ISUPDATE)
5590 || HasRowid(pTab)==0
5591 || (aMem[pOp->p3].flags & MEM_Int)
5593 sqlite3VdbePreUpdateHook(p, pC,
5594 (opflags & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_DELETE,
5595 zDb, pTab, pC->movetoTarget,
5596 pOp->p3, -1
5599 if( opflags & OPFLAG_ISNOOP ) break;
5600 #endif
5602 /* Only flags that can be set are SAVEPOISTION and AUXDELETE */
5603 assert( (pOp->p5 & ~(OPFLAG_SAVEPOSITION|OPFLAG_AUXDELETE))==0 );
5604 assert( OPFLAG_SAVEPOSITION==BTREE_SAVEPOSITION );
5605 assert( OPFLAG_AUXDELETE==BTREE_AUXDELETE );
5607 #ifdef SQLITE_DEBUG
5608 if( p->pFrame==0 ){
5609 if( pC->isEphemeral==0
5610 && (pOp->p5 & OPFLAG_AUXDELETE)==0
5611 && (pC->wrFlag & OPFLAG_FORDELETE)==0
5613 nExtraDelete++;
5615 if( pOp->p2 & OPFLAG_NCHANGE ){
5616 nExtraDelete--;
5619 #endif
5621 rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5);
5622 pC->cacheStatus = CACHE_STALE;
5623 pC->seekResult = 0;
5624 if( rc ) goto abort_due_to_error;
5626 /* Invoke the update-hook if required. */
5627 if( opflags & OPFLAG_NCHANGE ){
5628 p->nChange++;
5629 if( db->xUpdateCallback && ALWAYS(pTab!=0) && HasRowid(pTab) ){
5630 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, pTab->zName,
5631 pC->movetoTarget);
5632 assert( pC->iDb>=0 );
5636 break;
5638 /* Opcode: ResetCount * * * * *
5640 ** The value of the change counter is copied to the database handle
5641 ** change counter (returned by subsequent calls to sqlite3_changes()).
5642 ** Then the VMs internal change counter resets to 0.
5643 ** This is used by trigger programs.
5645 case OP_ResetCount: {
5646 sqlite3VdbeSetChanges(db, p->nChange);
5647 p->nChange = 0;
5648 break;
5651 /* Opcode: SorterCompare P1 P2 P3 P4
5652 ** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2
5654 ** P1 is a sorter cursor. This instruction compares a prefix of the
5655 ** record blob in register P3 against a prefix of the entry that
5656 ** the sorter cursor currently points to. Only the first P4 fields
5657 ** of r[P3] and the sorter record are compared.
5659 ** If either P3 or the sorter contains a NULL in one of their significant
5660 ** fields (not counting the P4 fields at the end which are ignored) then
5661 ** the comparison is assumed to be equal.
5663 ** Fall through to next instruction if the two records compare equal to
5664 ** each other. Jump to P2 if they are different.
5666 case OP_SorterCompare: {
5667 VdbeCursor *pC;
5668 int res;
5669 int nKeyCol;
5671 pC = p->apCsr[pOp->p1];
5672 assert( isSorter(pC) );
5673 assert( pOp->p4type==P4_INT32 );
5674 pIn3 = &aMem[pOp->p3];
5675 nKeyCol = pOp->p4.i;
5676 res = 0;
5677 rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res);
5678 VdbeBranchTaken(res!=0,2);
5679 if( rc ) goto abort_due_to_error;
5680 if( res ) goto jump_to_p2;
5681 break;
5684 /* Opcode: SorterData P1 P2 P3 * *
5685 ** Synopsis: r[P2]=data
5687 ** Write into register P2 the current sorter data for sorter cursor P1.
5688 ** Then clear the column header cache on cursor P3.
5690 ** This opcode is normally use to move a record out of the sorter and into
5691 ** a register that is the source for a pseudo-table cursor created using
5692 ** OpenPseudo. That pseudo-table cursor is the one that is identified by
5693 ** parameter P3. Clearing the P3 column cache as part of this opcode saves
5694 ** us from having to issue a separate NullRow instruction to clear that cache.
5696 case OP_SorterData: {
5697 VdbeCursor *pC;
5699 pOut = &aMem[pOp->p2];
5700 pC = p->apCsr[pOp->p1];
5701 assert( isSorter(pC) );
5702 rc = sqlite3VdbeSorterRowkey(pC, pOut);
5703 assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) );
5704 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5705 if( rc ) goto abort_due_to_error;
5706 p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE;
5707 break;
5710 /* Opcode: RowData P1 P2 P3 * *
5711 ** Synopsis: r[P2]=data
5713 ** Write into register P2 the complete row content for the row at
5714 ** which cursor P1 is currently pointing.
5715 ** There is no interpretation of the data.
5716 ** It is just copied onto the P2 register exactly as
5717 ** it is found in the database file.
5719 ** If cursor P1 is an index, then the content is the key of the row.
5720 ** If cursor P2 is a table, then the content extracted is the data.
5722 ** If the P1 cursor must be pointing to a valid row (not a NULL row)
5723 ** of a real table, not a pseudo-table.
5725 ** If P3!=0 then this opcode is allowed to make an ephemeral pointer
5726 ** into the database page. That means that the content of the output
5727 ** register will be invalidated as soon as the cursor moves - including
5728 ** moves caused by other cursors that "save" the current cursors
5729 ** position in order that they can write to the same table. If P3==0
5730 ** then a copy of the data is made into memory. P3!=0 is faster, but
5731 ** P3==0 is safer.
5733 ** If P3!=0 then the content of the P2 register is unsuitable for use
5734 ** in OP_Result and any OP_Result will invalidate the P2 register content.
5735 ** The P2 register content is invalidated by opcodes like OP_Function or
5736 ** by any use of another cursor pointing to the same table.
5738 case OP_RowData: {
5739 VdbeCursor *pC;
5740 BtCursor *pCrsr;
5741 u32 n;
5743 pOut = out2Prerelease(p, pOp);
5745 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5746 pC = p->apCsr[pOp->p1];
5747 assert( pC!=0 );
5748 assert( pC->eCurType==CURTYPE_BTREE );
5749 assert( isSorter(pC)==0 );
5750 assert( pC->nullRow==0 );
5751 assert( pC->uc.pCursor!=0 );
5752 pCrsr = pC->uc.pCursor;
5754 /* The OP_RowData opcodes always follow OP_NotExists or
5755 ** OP_SeekRowid or OP_Rewind/Op_Next with no intervening instructions
5756 ** that might invalidate the cursor.
5757 ** If this where not the case, on of the following assert()s
5758 ** would fail. Should this ever change (because of changes in the code
5759 ** generator) then the fix would be to insert a call to
5760 ** sqlite3VdbeCursorMoveto().
5762 assert( pC->deferredMoveto==0 );
5763 assert( sqlite3BtreeCursorIsValid(pCrsr) );
5765 n = sqlite3BtreePayloadSize(pCrsr);
5766 if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
5767 goto too_big;
5769 testcase( n==0 );
5770 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCrsr, n, pOut);
5771 if( rc ) goto abort_due_to_error;
5772 if( !pOp->p3 ) Deephemeralize(pOut);
5773 UPDATE_MAX_BLOBSIZE(pOut);
5774 REGISTER_TRACE(pOp->p2, pOut);
5775 break;
5778 /* Opcode: Rowid P1 P2 * * *
5779 ** Synopsis: r[P2]=PX rowid of P1
5781 ** Store in register P2 an integer which is the key of the table entry that
5782 ** P1 is currently point to.
5784 ** P1 can be either an ordinary table or a virtual table. There used to
5785 ** be a separate OP_VRowid opcode for use with virtual tables, but this
5786 ** one opcode now works for both table types.
5788 case OP_Rowid: { /* out2 */
5789 VdbeCursor *pC;
5790 i64 v;
5791 sqlite3_vtab *pVtab;
5792 const sqlite3_module *pModule;
5794 pOut = out2Prerelease(p, pOp);
5795 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5796 pC = p->apCsr[pOp->p1];
5797 assert( pC!=0 );
5798 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
5799 if( pC->nullRow ){
5800 pOut->flags = MEM_Null;
5801 break;
5802 }else if( pC->deferredMoveto ){
5803 v = pC->movetoTarget;
5804 #ifndef SQLITE_OMIT_VIRTUALTABLE
5805 }else if( pC->eCurType==CURTYPE_VTAB ){
5806 assert( pC->uc.pVCur!=0 );
5807 pVtab = pC->uc.pVCur->pVtab;
5808 pModule = pVtab->pModule;
5809 assert( pModule->xRowid );
5810 rc = pModule->xRowid(pC->uc.pVCur, &v);
5811 sqlite3VtabImportErrmsg(p, pVtab);
5812 if( rc ) goto abort_due_to_error;
5813 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5814 }else{
5815 assert( pC->eCurType==CURTYPE_BTREE );
5816 assert( pC->uc.pCursor!=0 );
5817 rc = sqlite3VdbeCursorRestore(pC);
5818 if( rc ) goto abort_due_to_error;
5819 if( pC->nullRow ){
5820 pOut->flags = MEM_Null;
5821 break;
5823 v = sqlite3BtreeIntegerKey(pC->uc.pCursor);
5825 pOut->u.i = v;
5826 break;
5829 /* Opcode: NullRow P1 * * * *
5831 ** Move the cursor P1 to a null row. Any OP_Column operations
5832 ** that occur while the cursor is on the null row will always
5833 ** write a NULL.
5835 ** If cursor P1 is not previously opened, open it now to a special
5836 ** pseudo-cursor that always returns NULL for every column.
5838 case OP_NullRow: {
5839 VdbeCursor *pC;
5841 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5842 pC = p->apCsr[pOp->p1];
5843 if( pC==0 ){
5844 /* If the cursor is not already open, create a special kind of
5845 ** pseudo-cursor that always gives null rows. */
5846 pC = allocateCursor(p, pOp->p1, 1, CURTYPE_PSEUDO);
5847 if( pC==0 ) goto no_mem;
5848 pC->seekResult = 0;
5849 pC->isTable = 1;
5850 pC->noReuse = 1;
5851 pC->uc.pCursor = sqlite3BtreeFakeValidCursor();
5853 pC->nullRow = 1;
5854 pC->cacheStatus = CACHE_STALE;
5855 if( pC->eCurType==CURTYPE_BTREE ){
5856 assert( pC->uc.pCursor!=0 );
5857 sqlite3BtreeClearCursor(pC->uc.pCursor);
5859 #ifdef SQLITE_DEBUG
5860 if( pC->seekOp==0 ) pC->seekOp = OP_NullRow;
5861 #endif
5862 break;
5865 /* Opcode: SeekEnd P1 * * * *
5867 ** Position cursor P1 at the end of the btree for the purpose of
5868 ** appending a new entry onto the btree.
5870 ** It is assumed that the cursor is used only for appending and so
5871 ** if the cursor is valid, then the cursor must already be pointing
5872 ** at the end of the btree and so no changes are made to
5873 ** the cursor.
5875 /* Opcode: Last P1 P2 * * *
5877 ** The next use of the Rowid or Column or Prev instruction for P1
5878 ** will refer to the last entry in the database table or index.
5879 ** If the table or index is empty and P2>0, then jump immediately to P2.
5880 ** If P2 is 0 or if the table or index is not empty, fall through
5881 ** to the following instruction.
5883 ** This opcode leaves the cursor configured to move in reverse order,
5884 ** from the end toward the beginning. In other words, the cursor is
5885 ** configured to use Prev, not Next.
5887 case OP_SeekEnd:
5888 case OP_Last: { /* jump */
5889 VdbeCursor *pC;
5890 BtCursor *pCrsr;
5891 int res;
5893 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5894 pC = p->apCsr[pOp->p1];
5895 assert( pC!=0 );
5896 assert( pC->eCurType==CURTYPE_BTREE );
5897 pCrsr = pC->uc.pCursor;
5898 res = 0;
5899 assert( pCrsr!=0 );
5900 #ifdef SQLITE_DEBUG
5901 pC->seekOp = pOp->opcode;
5902 #endif
5903 if( pOp->opcode==OP_SeekEnd ){
5904 assert( pOp->p2==0 );
5905 pC->seekResult = -1;
5906 if( sqlite3BtreeCursorIsValidNN(pCrsr) ){
5907 break;
5910 rc = sqlite3BtreeLast(pCrsr, &res);
5911 pC->nullRow = (u8)res;
5912 pC->deferredMoveto = 0;
5913 pC->cacheStatus = CACHE_STALE;
5914 if( rc ) goto abort_due_to_error;
5915 if( pOp->p2>0 ){
5916 VdbeBranchTaken(res!=0,2);
5917 if( res ) goto jump_to_p2;
5919 break;
5922 /* Opcode: IfSmaller P1 P2 P3 * *
5924 ** Estimate the number of rows in the table P1. Jump to P2 if that
5925 ** estimate is less than approximately 2**(0.1*P3).
5927 case OP_IfSmaller: { /* jump */
5928 VdbeCursor *pC;
5929 BtCursor *pCrsr;
5930 int res;
5931 i64 sz;
5933 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5934 pC = p->apCsr[pOp->p1];
5935 assert( pC!=0 );
5936 pCrsr = pC->uc.pCursor;
5937 assert( pCrsr );
5938 rc = sqlite3BtreeFirst(pCrsr, &res);
5939 if( rc ) goto abort_due_to_error;
5940 if( res==0 ){
5941 sz = sqlite3BtreeRowCountEst(pCrsr);
5942 if( ALWAYS(sz>=0) && sqlite3LogEst((u64)sz)<pOp->p3 ) res = 1;
5944 VdbeBranchTaken(res!=0,2);
5945 if( res ) goto jump_to_p2;
5946 break;
5950 /* Opcode: SorterSort P1 P2 * * *
5952 ** After all records have been inserted into the Sorter object
5953 ** identified by P1, invoke this opcode to actually do the sorting.
5954 ** Jump to P2 if there are no records to be sorted.
5956 ** This opcode is an alias for OP_Sort and OP_Rewind that is used
5957 ** for Sorter objects.
5959 /* Opcode: Sort P1 P2 * * *
5961 ** This opcode does exactly the same thing as OP_Rewind except that
5962 ** it increments an undocumented global variable used for testing.
5964 ** Sorting is accomplished by writing records into a sorting index,
5965 ** then rewinding that index and playing it back from beginning to
5966 ** end. We use the OP_Sort opcode instead of OP_Rewind to do the
5967 ** rewinding so that the global variable will be incremented and
5968 ** regression tests can determine whether or not the optimizer is
5969 ** correctly optimizing out sorts.
5971 case OP_SorterSort: /* jump */
5972 case OP_Sort: { /* jump */
5973 #ifdef SQLITE_TEST
5974 sqlite3_sort_count++;
5975 sqlite3_search_count--;
5976 #endif
5977 p->aCounter[SQLITE_STMTSTATUS_SORT]++;
5978 /* Fall through into OP_Rewind */
5979 /* no break */ deliberate_fall_through
5981 /* Opcode: Rewind P1 P2 * * *
5983 ** The next use of the Rowid or Column or Next instruction for P1
5984 ** will refer to the first entry in the database table or index.
5985 ** If the table or index is empty, jump immediately to P2.
5986 ** If the table or index is not empty, fall through to the following
5987 ** instruction.
5989 ** This opcode leaves the cursor configured to move in forward order,
5990 ** from the beginning toward the end. In other words, the cursor is
5991 ** configured to use Next, not Prev.
5993 case OP_Rewind: { /* jump */
5994 VdbeCursor *pC;
5995 BtCursor *pCrsr;
5996 int res;
5998 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5999 assert( pOp->p5==0 );
6000 pC = p->apCsr[pOp->p1];
6001 assert( pC!=0 );
6002 assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) );
6003 res = 1;
6004 #ifdef SQLITE_DEBUG
6005 pC->seekOp = OP_Rewind;
6006 #endif
6007 if( isSorter(pC) ){
6008 rc = sqlite3VdbeSorterRewind(pC, &res);
6009 }else{
6010 assert( pC->eCurType==CURTYPE_BTREE );
6011 pCrsr = pC->uc.pCursor;
6012 assert( pCrsr );
6013 rc = sqlite3BtreeFirst(pCrsr, &res);
6014 pC->deferredMoveto = 0;
6015 pC->cacheStatus = CACHE_STALE;
6017 if( rc ) goto abort_due_to_error;
6018 pC->nullRow = (u8)res;
6019 assert( pOp->p2>0 && pOp->p2<p->nOp );
6020 VdbeBranchTaken(res!=0,2);
6021 if( res ) goto jump_to_p2;
6022 break;
6025 /* Opcode: Next P1 P2 P3 * P5
6027 ** Advance cursor P1 so that it points to the next key/data pair in its
6028 ** table or index. If there are no more key/value pairs then fall through
6029 ** to the following instruction. But if the cursor advance was successful,
6030 ** jump immediately to P2.
6032 ** The Next opcode is only valid following an SeekGT, SeekGE, or
6033 ** OP_Rewind opcode used to position the cursor. Next is not allowed
6034 ** to follow SeekLT, SeekLE, or OP_Last.
6036 ** The P1 cursor must be for a real table, not a pseudo-table. P1 must have
6037 ** been opened prior to this opcode or the program will segfault.
6039 ** The P3 value is a hint to the btree implementation. If P3==1, that
6040 ** means P1 is an SQL index and that this instruction could have been
6041 ** omitted if that index had been unique. P3 is usually 0. P3 is
6042 ** always either 0 or 1.
6044 ** If P5 is positive and the jump is taken, then event counter
6045 ** number P5-1 in the prepared statement is incremented.
6047 ** See also: Prev
6049 /* Opcode: Prev P1 P2 P3 * P5
6051 ** Back up cursor P1 so that it points to the previous key/data pair in its
6052 ** table or index. If there is no previous key/value pairs then fall through
6053 ** to the following instruction. But if the cursor backup was successful,
6054 ** jump immediately to P2.
6057 ** The Prev opcode is only valid following an SeekLT, SeekLE, or
6058 ** OP_Last opcode used to position the cursor. Prev is not allowed
6059 ** to follow SeekGT, SeekGE, or OP_Rewind.
6061 ** The P1 cursor must be for a real table, not a pseudo-table. If P1 is
6062 ** not open then the behavior is undefined.
6064 ** The P3 value is a hint to the btree implementation. If P3==1, that
6065 ** means P1 is an SQL index and that this instruction could have been
6066 ** omitted if that index had been unique. P3 is usually 0. P3 is
6067 ** always either 0 or 1.
6069 ** If P5 is positive and the jump is taken, then event counter
6070 ** number P5-1 in the prepared statement is incremented.
6072 /* Opcode: SorterNext P1 P2 * * P5
6074 ** This opcode works just like OP_Next except that P1 must be a
6075 ** sorter object for which the OP_SorterSort opcode has been
6076 ** invoked. This opcode advances the cursor to the next sorted
6077 ** record, or jumps to P2 if there are no more sorted records.
6079 case OP_SorterNext: { /* jump */
6080 VdbeCursor *pC;
6082 pC = p->apCsr[pOp->p1];
6083 assert( isSorter(pC) );
6084 rc = sqlite3VdbeSorterNext(db, pC);
6085 goto next_tail;
6087 case OP_Prev: /* jump */
6088 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6089 assert( pOp->p5<ArraySize(p->aCounter) );
6090 pC = p->apCsr[pOp->p1];
6091 assert( pC!=0 );
6092 assert( pC->deferredMoveto==0 );
6093 assert( pC->eCurType==CURTYPE_BTREE );
6094 assert( pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE
6095 || pC->seekOp==OP_Last || pC->seekOp==OP_IfNoHope
6096 || pC->seekOp==OP_NullRow);
6097 rc = sqlite3BtreePrevious(pC->uc.pCursor, pOp->p3);
6098 goto next_tail;
6100 case OP_Next: /* jump */
6101 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6102 assert( pOp->p5<ArraySize(p->aCounter) );
6103 pC = p->apCsr[pOp->p1];
6104 assert( pC!=0 );
6105 assert( pC->deferredMoveto==0 );
6106 assert( pC->eCurType==CURTYPE_BTREE );
6107 assert( pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE
6108 || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found
6109 || pC->seekOp==OP_NullRow|| pC->seekOp==OP_SeekRowid
6110 || pC->seekOp==OP_IfNoHope);
6111 rc = sqlite3BtreeNext(pC->uc.pCursor, pOp->p3);
6113 next_tail:
6114 pC->cacheStatus = CACHE_STALE;
6115 VdbeBranchTaken(rc==SQLITE_OK,2);
6116 if( rc==SQLITE_OK ){
6117 pC->nullRow = 0;
6118 p->aCounter[pOp->p5]++;
6119 #ifdef SQLITE_TEST
6120 sqlite3_search_count++;
6121 #endif
6122 goto jump_to_p2_and_check_for_interrupt;
6124 if( rc!=SQLITE_DONE ) goto abort_due_to_error;
6125 rc = SQLITE_OK;
6126 pC->nullRow = 1;
6127 goto check_for_interrupt;
6130 /* Opcode: IdxInsert P1 P2 P3 P4 P5
6131 ** Synopsis: key=r[P2]
6133 ** Register P2 holds an SQL index key made using the
6134 ** MakeRecord instructions. This opcode writes that key
6135 ** into the index P1. Data for the entry is nil.
6137 ** If P4 is not zero, then it is the number of values in the unpacked
6138 ** key of reg(P2). In that case, P3 is the index of the first register
6139 ** for the unpacked key. The availability of the unpacked key can sometimes
6140 ** be an optimization.
6142 ** If P5 has the OPFLAG_APPEND bit set, that is a hint to the b-tree layer
6143 ** that this insert is likely to be an append.
6145 ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is
6146 ** incremented by this instruction. If the OPFLAG_NCHANGE bit is clear,
6147 ** then the change counter is unchanged.
6149 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
6150 ** run faster by avoiding an unnecessary seek on cursor P1. However,
6151 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
6152 ** seeks on the cursor or if the most recent seek used a key equivalent
6153 ** to P2.
6155 ** This instruction only works for indices. The equivalent instruction
6156 ** for tables is OP_Insert.
6158 case OP_IdxInsert: { /* in2 */
6159 VdbeCursor *pC;
6160 BtreePayload x;
6162 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6163 pC = p->apCsr[pOp->p1];
6164 sqlite3VdbeIncrWriteCounter(p, pC);
6165 assert( pC!=0 );
6166 assert( !isSorter(pC) );
6167 pIn2 = &aMem[pOp->p2];
6168 assert( (pIn2->flags & MEM_Blob) || (pOp->p5 & OPFLAG_PREFORMAT) );
6169 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
6170 assert( pC->eCurType==CURTYPE_BTREE );
6171 assert( pC->isTable==0 );
6172 rc = ExpandBlob(pIn2);
6173 if( rc ) goto abort_due_to_error;
6174 x.nKey = pIn2->n;
6175 x.pKey = pIn2->z;
6176 x.aMem = aMem + pOp->p3;
6177 x.nMem = (u16)pOp->p4.i;
6178 rc = sqlite3BtreeInsert(pC->uc.pCursor, &x,
6179 (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION|OPFLAG_PREFORMAT)),
6180 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
6182 assert( pC->deferredMoveto==0 );
6183 pC->cacheStatus = CACHE_STALE;
6184 if( rc) goto abort_due_to_error;
6185 break;
6188 /* Opcode: SorterInsert P1 P2 * * *
6189 ** Synopsis: key=r[P2]
6191 ** Register P2 holds an SQL index key made using the
6192 ** MakeRecord instructions. This opcode writes that key
6193 ** into the sorter P1. Data for the entry is nil.
6195 case OP_SorterInsert: { /* in2 */
6196 VdbeCursor *pC;
6198 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6199 pC = p->apCsr[pOp->p1];
6200 sqlite3VdbeIncrWriteCounter(p, pC);
6201 assert( pC!=0 );
6202 assert( isSorter(pC) );
6203 pIn2 = &aMem[pOp->p2];
6204 assert( pIn2->flags & MEM_Blob );
6205 assert( pC->isTable==0 );
6206 rc = ExpandBlob(pIn2);
6207 if( rc ) goto abort_due_to_error;
6208 rc = sqlite3VdbeSorterWrite(pC, pIn2);
6209 if( rc) goto abort_due_to_error;
6210 break;
6213 /* Opcode: IdxDelete P1 P2 P3 * P5
6214 ** Synopsis: key=r[P2@P3]
6216 ** The content of P3 registers starting at register P2 form
6217 ** an unpacked index key. This opcode removes that entry from the
6218 ** index opened by cursor P1.
6220 ** If P5 is not zero, then raise an SQLITE_CORRUPT_INDEX error
6221 ** if no matching index entry is found. This happens when running
6222 ** an UPDATE or DELETE statement and the index entry to be updated
6223 ** or deleted is not found. For some uses of IdxDelete
6224 ** (example: the EXCEPT operator) it does not matter that no matching
6225 ** entry is found. For those cases, P5 is zero. Also, do not raise
6226 ** this (self-correcting and non-critical) error if in writable_schema mode.
6228 case OP_IdxDelete: {
6229 VdbeCursor *pC;
6230 BtCursor *pCrsr;
6231 int res;
6232 UnpackedRecord r;
6234 assert( pOp->p3>0 );
6235 assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem+1 - p->nCursor)+1 );
6236 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6237 pC = p->apCsr[pOp->p1];
6238 assert( pC!=0 );
6239 assert( pC->eCurType==CURTYPE_BTREE );
6240 sqlite3VdbeIncrWriteCounter(p, pC);
6241 pCrsr = pC->uc.pCursor;
6242 assert( pCrsr!=0 );
6243 r.pKeyInfo = pC->pKeyInfo;
6244 r.nField = (u16)pOp->p3;
6245 r.default_rc = 0;
6246 r.aMem = &aMem[pOp->p2];
6247 rc = sqlite3BtreeIndexMoveto(pCrsr, &r, &res);
6248 if( rc ) goto abort_due_to_error;
6249 if( res==0 ){
6250 rc = sqlite3BtreeDelete(pCrsr, BTREE_AUXDELETE);
6251 if( rc ) goto abort_due_to_error;
6252 }else if( pOp->p5 && !sqlite3WritableSchema(db) ){
6253 rc = sqlite3ReportError(SQLITE_CORRUPT_INDEX, __LINE__, "index corruption");
6254 goto abort_due_to_error;
6256 assert( pC->deferredMoveto==0 );
6257 pC->cacheStatus = CACHE_STALE;
6258 pC->seekResult = 0;
6259 break;
6262 /* Opcode: DeferredSeek P1 * P3 P4 *
6263 ** Synopsis: Move P3 to P1.rowid if needed
6265 ** P1 is an open index cursor and P3 is a cursor on the corresponding
6266 ** table. This opcode does a deferred seek of the P3 table cursor
6267 ** to the row that corresponds to the current row of P1.
6269 ** This is a deferred seek. Nothing actually happens until
6270 ** the cursor is used to read a record. That way, if no reads
6271 ** occur, no unnecessary I/O happens.
6273 ** P4 may be an array of integers (type P4_INTARRAY) containing
6274 ** one entry for each column in the P3 table. If array entry a(i)
6275 ** is non-zero, then reading column a(i)-1 from cursor P3 is
6276 ** equivalent to performing the deferred seek and then reading column i
6277 ** from P1. This information is stored in P3 and used to redirect
6278 ** reads against P3 over to P1, thus possibly avoiding the need to
6279 ** seek and read cursor P3.
6281 /* Opcode: IdxRowid P1 P2 * * *
6282 ** Synopsis: r[P2]=rowid
6284 ** Write into register P2 an integer which is the last entry in the record at
6285 ** the end of the index key pointed to by cursor P1. This integer should be
6286 ** the rowid of the table entry to which this index entry points.
6288 ** See also: Rowid, MakeRecord.
6290 case OP_DeferredSeek:
6291 case OP_IdxRowid: { /* out2 */
6292 VdbeCursor *pC; /* The P1 index cursor */
6293 VdbeCursor *pTabCur; /* The P2 table cursor (OP_DeferredSeek only) */
6294 i64 rowid; /* Rowid that P1 current points to */
6296 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6297 pC = p->apCsr[pOp->p1];
6298 assert( pC!=0 );
6299 assert( pC->eCurType==CURTYPE_BTREE || IsNullCursor(pC) );
6300 assert( pC->uc.pCursor!=0 );
6301 assert( pC->isTable==0 || IsNullCursor(pC) );
6302 assert( pC->deferredMoveto==0 );
6303 assert( !pC->nullRow || pOp->opcode==OP_IdxRowid );
6305 /* The IdxRowid and Seek opcodes are combined because of the commonality
6306 ** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */
6307 rc = sqlite3VdbeCursorRestore(pC);
6309 /* sqlite3VbeCursorRestore() can only fail if the record has been deleted
6310 ** out from under the cursor. That will never happens for an IdxRowid
6311 ** or Seek opcode */
6312 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
6314 if( !pC->nullRow ){
6315 rowid = 0; /* Not needed. Only used to silence a warning. */
6316 rc = sqlite3VdbeIdxRowid(db, pC->uc.pCursor, &rowid);
6317 if( rc!=SQLITE_OK ){
6318 goto abort_due_to_error;
6320 if( pOp->opcode==OP_DeferredSeek ){
6321 assert( pOp->p3>=0 && pOp->p3<p->nCursor );
6322 pTabCur = p->apCsr[pOp->p3];
6323 assert( pTabCur!=0 );
6324 assert( pTabCur->eCurType==CURTYPE_BTREE );
6325 assert( pTabCur->uc.pCursor!=0 );
6326 assert( pTabCur->isTable );
6327 pTabCur->nullRow = 0;
6328 pTabCur->movetoTarget = rowid;
6329 pTabCur->deferredMoveto = 1;
6330 pTabCur->cacheStatus = CACHE_STALE;
6331 assert( pOp->p4type==P4_INTARRAY || pOp->p4.ai==0 );
6332 assert( !pTabCur->isEphemeral );
6333 pTabCur->ub.aAltMap = pOp->p4.ai;
6334 assert( !pC->isEphemeral );
6335 pTabCur->pAltCursor = pC;
6336 }else{
6337 pOut = out2Prerelease(p, pOp);
6338 pOut->u.i = rowid;
6340 }else{
6341 assert( pOp->opcode==OP_IdxRowid );
6342 sqlite3VdbeMemSetNull(&aMem[pOp->p2]);
6344 break;
6347 /* Opcode: FinishSeek P1 * * * *
6349 ** If cursor P1 was previously moved via OP_DeferredSeek, complete that
6350 ** seek operation now, without further delay. If the cursor seek has
6351 ** already occurred, this instruction is a no-op.
6353 case OP_FinishSeek: {
6354 VdbeCursor *pC; /* The P1 index cursor */
6356 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6357 pC = p->apCsr[pOp->p1];
6358 if( pC->deferredMoveto ){
6359 rc = sqlite3VdbeFinishMoveto(pC);
6360 if( rc ) goto abort_due_to_error;
6362 break;
6365 /* Opcode: IdxGE P1 P2 P3 P4 *
6366 ** Synopsis: key=r[P3@P4]
6368 ** The P4 register values beginning with P3 form an unpacked index
6369 ** key that omits the PRIMARY KEY. Compare this key value against the index
6370 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
6371 ** fields at the end.
6373 ** If the P1 index entry is greater than or equal to the key value
6374 ** then jump to P2. Otherwise fall through to the next instruction.
6376 /* Opcode: IdxGT P1 P2 P3 P4 *
6377 ** Synopsis: key=r[P3@P4]
6379 ** The P4 register values beginning with P3 form an unpacked index
6380 ** key that omits the PRIMARY KEY. Compare this key value against the index
6381 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
6382 ** fields at the end.
6384 ** If the P1 index entry is greater than the key value
6385 ** then jump to P2. Otherwise fall through to the next instruction.
6387 /* Opcode: IdxLT P1 P2 P3 P4 *
6388 ** Synopsis: key=r[P3@P4]
6390 ** The P4 register values beginning with P3 form an unpacked index
6391 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against
6392 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
6393 ** ROWID on the P1 index.
6395 ** If the P1 index entry is less than the key value then jump to P2.
6396 ** Otherwise fall through to the next instruction.
6398 /* Opcode: IdxLE P1 P2 P3 P4 *
6399 ** Synopsis: key=r[P3@P4]
6401 ** The P4 register values beginning with P3 form an unpacked index
6402 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against
6403 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
6404 ** ROWID on the P1 index.
6406 ** If the P1 index entry is less than or equal to the key value then jump
6407 ** to P2. Otherwise fall through to the next instruction.
6409 case OP_IdxLE: /* jump */
6410 case OP_IdxGT: /* jump */
6411 case OP_IdxLT: /* jump */
6412 case OP_IdxGE: { /* jump */
6413 VdbeCursor *pC;
6414 int res;
6415 UnpackedRecord r;
6417 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6418 pC = p->apCsr[pOp->p1];
6419 assert( pC!=0 );
6420 assert( pC->isOrdered );
6421 assert( pC->eCurType==CURTYPE_BTREE );
6422 assert( pC->uc.pCursor!=0);
6423 assert( pC->deferredMoveto==0 );
6424 assert( pOp->p4type==P4_INT32 );
6425 r.pKeyInfo = pC->pKeyInfo;
6426 r.nField = (u16)pOp->p4.i;
6427 if( pOp->opcode<OP_IdxLT ){
6428 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT );
6429 r.default_rc = -1;
6430 }else{
6431 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT );
6432 r.default_rc = 0;
6434 r.aMem = &aMem[pOp->p3];
6435 #ifdef SQLITE_DEBUG
6437 int i;
6438 for(i=0; i<r.nField; i++){
6439 assert( memIsValid(&r.aMem[i]) );
6440 REGISTER_TRACE(pOp->p3+i, &aMem[pOp->p3+i]);
6443 #endif
6445 /* Inlined version of sqlite3VdbeIdxKeyCompare() */
6447 i64 nCellKey = 0;
6448 BtCursor *pCur;
6449 Mem m;
6451 assert( pC->eCurType==CURTYPE_BTREE );
6452 pCur = pC->uc.pCursor;
6453 assert( sqlite3BtreeCursorIsValid(pCur) );
6454 nCellKey = sqlite3BtreePayloadSize(pCur);
6455 /* nCellKey will always be between 0 and 0xffffffff because of the way
6456 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
6457 if( nCellKey<=0 || nCellKey>0x7fffffff ){
6458 rc = SQLITE_CORRUPT_BKPT;
6459 goto abort_due_to_error;
6461 sqlite3VdbeMemInit(&m, db, 0);
6462 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m);
6463 if( rc ) goto abort_due_to_error;
6464 res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, &r, 0);
6465 sqlite3VdbeMemReleaseMalloc(&m);
6467 /* End of inlined sqlite3VdbeIdxKeyCompare() */
6469 assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) );
6470 if( (pOp->opcode&1)==(OP_IdxLT&1) ){
6471 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT );
6472 res = -res;
6473 }else{
6474 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT );
6475 res++;
6477 VdbeBranchTaken(res>0,2);
6478 assert( rc==SQLITE_OK );
6479 if( res>0 ) goto jump_to_p2;
6480 break;
6483 /* Opcode: Destroy P1 P2 P3 * *
6485 ** Delete an entire database table or index whose root page in the database
6486 ** file is given by P1.
6488 ** The table being destroyed is in the main database file if P3==0. If
6489 ** P3==1 then the table to be clear is in the auxiliary database file
6490 ** that is used to store tables create using CREATE TEMPORARY TABLE.
6492 ** If AUTOVACUUM is enabled then it is possible that another root page
6493 ** might be moved into the newly deleted root page in order to keep all
6494 ** root pages contiguous at the beginning of the database. The former
6495 ** value of the root page that moved - its value before the move occurred -
6496 ** is stored in register P2. If no page movement was required (because the
6497 ** table being dropped was already the last one in the database) then a
6498 ** zero is stored in register P2. If AUTOVACUUM is disabled then a zero
6499 ** is stored in register P2.
6501 ** This opcode throws an error if there are any active reader VMs when
6502 ** it is invoked. This is done to avoid the difficulty associated with
6503 ** updating existing cursors when a root page is moved in an AUTOVACUUM
6504 ** database. This error is thrown even if the database is not an AUTOVACUUM
6505 ** db in order to avoid introducing an incompatibility between autovacuum
6506 ** and non-autovacuum modes.
6508 ** See also: Clear
6510 case OP_Destroy: { /* out2 */
6511 int iMoved;
6512 int iDb;
6514 sqlite3VdbeIncrWriteCounter(p, 0);
6515 assert( p->readOnly==0 );
6516 assert( pOp->p1>1 );
6517 pOut = out2Prerelease(p, pOp);
6518 pOut->flags = MEM_Null;
6519 if( db->nVdbeRead > db->nVDestroy+1 ){
6520 rc = SQLITE_LOCKED;
6521 p->errorAction = OE_Abort;
6522 goto abort_due_to_error;
6523 }else{
6524 iDb = pOp->p3;
6525 assert( DbMaskTest(p->btreeMask, iDb) );
6526 iMoved = 0; /* Not needed. Only to silence a warning. */
6527 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
6528 pOut->flags = MEM_Int;
6529 pOut->u.i = iMoved;
6530 if( rc ) goto abort_due_to_error;
6531 #ifndef SQLITE_OMIT_AUTOVACUUM
6532 if( iMoved!=0 ){
6533 sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1);
6534 /* All OP_Destroy operations occur on the same btree */
6535 assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 );
6536 resetSchemaOnFault = iDb+1;
6538 #endif
6540 break;
6543 /* Opcode: Clear P1 P2 P3
6545 ** Delete all contents of the database table or index whose root page
6546 ** in the database file is given by P1. But, unlike Destroy, do not
6547 ** remove the table or index from the database file.
6549 ** The table being clear is in the main database file if P2==0. If
6550 ** P2==1 then the table to be clear is in the auxiliary database file
6551 ** that is used to store tables create using CREATE TEMPORARY TABLE.
6553 ** If the P3 value is non-zero, then the row change count is incremented
6554 ** by the number of rows in the table being cleared. If P3 is greater
6555 ** than zero, then the value stored in register P3 is also incremented
6556 ** by the number of rows in the table being cleared.
6558 ** See also: Destroy
6560 case OP_Clear: {
6561 i64 nChange;
6563 sqlite3VdbeIncrWriteCounter(p, 0);
6564 nChange = 0;
6565 assert( p->readOnly==0 );
6566 assert( DbMaskTest(p->btreeMask, pOp->p2) );
6567 rc = sqlite3BtreeClearTable(db->aDb[pOp->p2].pBt, (u32)pOp->p1, &nChange);
6568 if( pOp->p3 ){
6569 p->nChange += nChange;
6570 if( pOp->p3>0 ){
6571 assert( memIsValid(&aMem[pOp->p3]) );
6572 memAboutToChange(p, &aMem[pOp->p3]);
6573 aMem[pOp->p3].u.i += nChange;
6576 if( rc ) goto abort_due_to_error;
6577 break;
6580 /* Opcode: ResetSorter P1 * * * *
6582 ** Delete all contents from the ephemeral table or sorter
6583 ** that is open on cursor P1.
6585 ** This opcode only works for cursors used for sorting and
6586 ** opened with OP_OpenEphemeral or OP_SorterOpen.
6588 case OP_ResetSorter: {
6589 VdbeCursor *pC;
6591 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6592 pC = p->apCsr[pOp->p1];
6593 assert( pC!=0 );
6594 if( isSorter(pC) ){
6595 sqlite3VdbeSorterReset(db, pC->uc.pSorter);
6596 }else{
6597 assert( pC->eCurType==CURTYPE_BTREE );
6598 assert( pC->isEphemeral );
6599 rc = sqlite3BtreeClearTableOfCursor(pC->uc.pCursor);
6600 if( rc ) goto abort_due_to_error;
6602 break;
6605 /* Opcode: CreateBtree P1 P2 P3 * *
6606 ** Synopsis: r[P2]=root iDb=P1 flags=P3
6608 ** Allocate a new b-tree in the main database file if P1==0 or in the
6609 ** TEMP database file if P1==1 or in an attached database if
6610 ** P1>1. The P3 argument must be 1 (BTREE_INTKEY) for a rowid table
6611 ** it must be 2 (BTREE_BLOBKEY) for an index or WITHOUT ROWID table.
6612 ** The root page number of the new b-tree is stored in register P2.
6614 case OP_CreateBtree: { /* out2 */
6615 Pgno pgno;
6616 Db *pDb;
6618 sqlite3VdbeIncrWriteCounter(p, 0);
6619 pOut = out2Prerelease(p, pOp);
6620 pgno = 0;
6621 assert( pOp->p3==BTREE_INTKEY || pOp->p3==BTREE_BLOBKEY );
6622 assert( pOp->p1>=0 && pOp->p1<db->nDb );
6623 assert( DbMaskTest(p->btreeMask, pOp->p1) );
6624 assert( p->readOnly==0 );
6625 pDb = &db->aDb[pOp->p1];
6626 assert( pDb->pBt!=0 );
6627 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, pOp->p3);
6628 if( rc ) goto abort_due_to_error;
6629 pOut->u.i = pgno;
6630 break;
6633 /* Opcode: SqlExec * * * P4 *
6635 ** Run the SQL statement or statements specified in the P4 string.
6637 case OP_SqlExec: {
6638 sqlite3VdbeIncrWriteCounter(p, 0);
6639 db->nSqlExec++;
6640 rc = sqlite3_exec(db, pOp->p4.z, 0, 0, 0);
6641 db->nSqlExec--;
6642 if( rc ) goto abort_due_to_error;
6643 break;
6646 /* Opcode: ParseSchema P1 * * P4 *
6648 ** Read and parse all entries from the schema table of database P1
6649 ** that match the WHERE clause P4. If P4 is a NULL pointer, then the
6650 ** entire schema for P1 is reparsed.
6652 ** This opcode invokes the parser to create a new virtual machine,
6653 ** then runs the new virtual machine. It is thus a re-entrant opcode.
6655 case OP_ParseSchema: {
6656 int iDb;
6657 const char *zSchema;
6658 char *zSql;
6659 InitData initData;
6661 /* Any prepared statement that invokes this opcode will hold mutexes
6662 ** on every btree. This is a prerequisite for invoking
6663 ** sqlite3InitCallback().
6665 #ifdef SQLITE_DEBUG
6666 for(iDb=0; iDb<db->nDb; iDb++){
6667 assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
6669 #endif
6671 iDb = pOp->p1;
6672 assert( iDb>=0 && iDb<db->nDb );
6673 assert( DbHasProperty(db, iDb, DB_SchemaLoaded)
6674 || db->mallocFailed
6675 || (CORRUPT_DB && (db->flags & SQLITE_NoSchemaError)!=0) );
6677 #ifndef SQLITE_OMIT_ALTERTABLE
6678 if( pOp->p4.z==0 ){
6679 sqlite3SchemaClear(db->aDb[iDb].pSchema);
6680 db->mDbFlags &= ~DBFLAG_SchemaKnownOk;
6681 rc = sqlite3InitOne(db, iDb, &p->zErrMsg, pOp->p5);
6682 db->mDbFlags |= DBFLAG_SchemaChange;
6683 p->expired = 0;
6684 }else
6685 #endif
6687 zSchema = LEGACY_SCHEMA_TABLE;
6688 initData.db = db;
6689 initData.iDb = iDb;
6690 initData.pzErrMsg = &p->zErrMsg;
6691 initData.mInitFlags = 0;
6692 initData.mxPage = sqlite3BtreeLastPage(db->aDb[iDb].pBt);
6693 zSql = sqlite3MPrintf(db,
6694 "SELECT*FROM\"%w\".%s WHERE %s ORDER BY rowid",
6695 db->aDb[iDb].zDbSName, zSchema, pOp->p4.z);
6696 if( zSql==0 ){
6697 rc = SQLITE_NOMEM_BKPT;
6698 }else{
6699 assert( db->init.busy==0 );
6700 db->init.busy = 1;
6701 initData.rc = SQLITE_OK;
6702 initData.nInitRow = 0;
6703 assert( !db->mallocFailed );
6704 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
6705 if( rc==SQLITE_OK ) rc = initData.rc;
6706 if( rc==SQLITE_OK && initData.nInitRow==0 ){
6707 /* The OP_ParseSchema opcode with a non-NULL P4 argument should parse
6708 ** at least one SQL statement. Any less than that indicates that
6709 ** the sqlite_schema table is corrupt. */
6710 rc = SQLITE_CORRUPT_BKPT;
6712 sqlite3DbFreeNN(db, zSql);
6713 db->init.busy = 0;
6716 if( rc ){
6717 sqlite3ResetAllSchemasOfConnection(db);
6718 if( rc==SQLITE_NOMEM ){
6719 goto no_mem;
6721 goto abort_due_to_error;
6723 break;
6726 #if !defined(SQLITE_OMIT_ANALYZE)
6727 /* Opcode: LoadAnalysis P1 * * * *
6729 ** Read the sqlite_stat1 table for database P1 and load the content
6730 ** of that table into the internal index hash table. This will cause
6731 ** the analysis to be used when preparing all subsequent queries.
6733 case OP_LoadAnalysis: {
6734 assert( pOp->p1>=0 && pOp->p1<db->nDb );
6735 rc = sqlite3AnalysisLoad(db, pOp->p1);
6736 if( rc ) goto abort_due_to_error;
6737 break;
6739 #endif /* !defined(SQLITE_OMIT_ANALYZE) */
6741 /* Opcode: DropTable P1 * * P4 *
6743 ** Remove the internal (in-memory) data structures that describe
6744 ** the table named P4 in database P1. This is called after a table
6745 ** is dropped from disk (using the Destroy opcode) in order to keep
6746 ** the internal representation of the
6747 ** schema consistent with what is on disk.
6749 case OP_DropTable: {
6750 sqlite3VdbeIncrWriteCounter(p, 0);
6751 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
6752 break;
6755 /* Opcode: DropIndex P1 * * P4 *
6757 ** Remove the internal (in-memory) data structures that describe
6758 ** the index named P4 in database P1. This is called after an index
6759 ** is dropped from disk (using the Destroy opcode)
6760 ** in order to keep the internal representation of the
6761 ** schema consistent with what is on disk.
6763 case OP_DropIndex: {
6764 sqlite3VdbeIncrWriteCounter(p, 0);
6765 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
6766 break;
6769 /* Opcode: DropTrigger P1 * * P4 *
6771 ** Remove the internal (in-memory) data structures that describe
6772 ** the trigger named P4 in database P1. This is called after a trigger
6773 ** is dropped from disk (using the Destroy opcode) in order to keep
6774 ** the internal representation of the
6775 ** schema consistent with what is on disk.
6777 case OP_DropTrigger: {
6778 sqlite3VdbeIncrWriteCounter(p, 0);
6779 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
6780 break;
6784 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
6785 /* Opcode: IntegrityCk P1 P2 P3 P4 P5
6787 ** Do an analysis of the currently open database. Store in
6788 ** register P1 the text of an error message describing any problems.
6789 ** If no problems are found, store a NULL in register P1.
6791 ** The register P3 contains one less than the maximum number of allowed errors.
6792 ** At most reg(P3) errors will be reported.
6793 ** In other words, the analysis stops as soon as reg(P1) errors are
6794 ** seen. Reg(P1) is updated with the number of errors remaining.
6796 ** The root page numbers of all tables in the database are integers
6797 ** stored in P4_INTARRAY argument.
6799 ** If P5 is not zero, the check is done on the auxiliary database
6800 ** file, not the main database file.
6802 ** This opcode is used to implement the integrity_check pragma.
6804 case OP_IntegrityCk: {
6805 int nRoot; /* Number of tables to check. (Number of root pages.) */
6806 Pgno *aRoot; /* Array of rootpage numbers for tables to be checked */
6807 int nErr; /* Number of errors reported */
6808 char *z; /* Text of the error report */
6809 Mem *pnErr; /* Register keeping track of errors remaining */
6811 assert( p->bIsReader );
6812 nRoot = pOp->p2;
6813 aRoot = pOp->p4.ai;
6814 assert( nRoot>0 );
6815 assert( aRoot[0]==(Pgno)nRoot );
6816 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
6817 pnErr = &aMem[pOp->p3];
6818 assert( (pnErr->flags & MEM_Int)!=0 );
6819 assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
6820 pIn1 = &aMem[pOp->p1];
6821 assert( pOp->p5<db->nDb );
6822 assert( DbMaskTest(p->btreeMask, pOp->p5) );
6823 z = sqlite3BtreeIntegrityCheck(db, db->aDb[pOp->p5].pBt, &aRoot[1], nRoot,
6824 (int)pnErr->u.i+1, &nErr);
6825 sqlite3VdbeMemSetNull(pIn1);
6826 if( nErr==0 ){
6827 assert( z==0 );
6828 }else if( z==0 ){
6829 goto no_mem;
6830 }else{
6831 pnErr->u.i -= nErr-1;
6832 sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
6834 UPDATE_MAX_BLOBSIZE(pIn1);
6835 sqlite3VdbeChangeEncoding(pIn1, encoding);
6836 goto check_for_interrupt;
6838 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
6840 /* Opcode: RowSetAdd P1 P2 * * *
6841 ** Synopsis: rowset(P1)=r[P2]
6843 ** Insert the integer value held by register P2 into a RowSet object
6844 ** held in register P1.
6846 ** An assertion fails if P2 is not an integer.
6848 case OP_RowSetAdd: { /* in1, in2 */
6849 pIn1 = &aMem[pOp->p1];
6850 pIn2 = &aMem[pOp->p2];
6851 assert( (pIn2->flags & MEM_Int)!=0 );
6852 if( (pIn1->flags & MEM_Blob)==0 ){
6853 if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem;
6855 assert( sqlite3VdbeMemIsRowSet(pIn1) );
6856 sqlite3RowSetInsert((RowSet*)pIn1->z, pIn2->u.i);
6857 break;
6860 /* Opcode: RowSetRead P1 P2 P3 * *
6861 ** Synopsis: r[P3]=rowset(P1)
6863 ** Extract the smallest value from the RowSet object in P1
6864 ** and put that value into register P3.
6865 ** Or, if RowSet object P1 is initially empty, leave P3
6866 ** unchanged and jump to instruction P2.
6868 case OP_RowSetRead: { /* jump, in1, out3 */
6869 i64 val;
6871 pIn1 = &aMem[pOp->p1];
6872 assert( (pIn1->flags & MEM_Blob)==0 || sqlite3VdbeMemIsRowSet(pIn1) );
6873 if( (pIn1->flags & MEM_Blob)==0
6874 || sqlite3RowSetNext((RowSet*)pIn1->z, &val)==0
6876 /* The boolean index is empty */
6877 sqlite3VdbeMemSetNull(pIn1);
6878 VdbeBranchTaken(1,2);
6879 goto jump_to_p2_and_check_for_interrupt;
6880 }else{
6881 /* A value was pulled from the index */
6882 VdbeBranchTaken(0,2);
6883 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
6885 goto check_for_interrupt;
6888 /* Opcode: RowSetTest P1 P2 P3 P4
6889 ** Synopsis: if r[P3] in rowset(P1) goto P2
6891 ** Register P3 is assumed to hold a 64-bit integer value. If register P1
6892 ** contains a RowSet object and that RowSet object contains
6893 ** the value held in P3, jump to register P2. Otherwise, insert the
6894 ** integer in P3 into the RowSet and continue on to the
6895 ** next opcode.
6897 ** The RowSet object is optimized for the case where sets of integers
6898 ** are inserted in distinct phases, which each set contains no duplicates.
6899 ** Each set is identified by a unique P4 value. The first set
6900 ** must have P4==0, the final set must have P4==-1, and for all other sets
6901 ** must have P4>0.
6903 ** This allows optimizations: (a) when P4==0 there is no need to test
6904 ** the RowSet object for P3, as it is guaranteed not to contain it,
6905 ** (b) when P4==-1 there is no need to insert the value, as it will
6906 ** never be tested for, and (c) when a value that is part of set X is
6907 ** inserted, there is no need to search to see if the same value was
6908 ** previously inserted as part of set X (only if it was previously
6909 ** inserted as part of some other set).
6911 case OP_RowSetTest: { /* jump, in1, in3 */
6912 int iSet;
6913 int exists;
6915 pIn1 = &aMem[pOp->p1];
6916 pIn3 = &aMem[pOp->p3];
6917 iSet = pOp->p4.i;
6918 assert( pIn3->flags&MEM_Int );
6920 /* If there is anything other than a rowset object in memory cell P1,
6921 ** delete it now and initialize P1 with an empty rowset
6923 if( (pIn1->flags & MEM_Blob)==0 ){
6924 if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem;
6926 assert( sqlite3VdbeMemIsRowSet(pIn1) );
6927 assert( pOp->p4type==P4_INT32 );
6928 assert( iSet==-1 || iSet>=0 );
6929 if( iSet ){
6930 exists = sqlite3RowSetTest((RowSet*)pIn1->z, iSet, pIn3->u.i);
6931 VdbeBranchTaken(exists!=0,2);
6932 if( exists ) goto jump_to_p2;
6934 if( iSet>=0 ){
6935 sqlite3RowSetInsert((RowSet*)pIn1->z, pIn3->u.i);
6937 break;
6941 #ifndef SQLITE_OMIT_TRIGGER
6943 /* Opcode: Program P1 P2 P3 P4 P5
6945 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
6947 ** P1 contains the address of the memory cell that contains the first memory
6948 ** cell in an array of values used as arguments to the sub-program. P2
6949 ** contains the address to jump to if the sub-program throws an IGNORE
6950 ** exception using the RAISE() function. Register P3 contains the address
6951 ** of a memory cell in this (the parent) VM that is used to allocate the
6952 ** memory required by the sub-vdbe at runtime.
6954 ** P4 is a pointer to the VM containing the trigger program.
6956 ** If P5 is non-zero, then recursive program invocation is enabled.
6958 case OP_Program: { /* jump */
6959 int nMem; /* Number of memory registers for sub-program */
6960 int nByte; /* Bytes of runtime space required for sub-program */
6961 Mem *pRt; /* Register to allocate runtime space */
6962 Mem *pMem; /* Used to iterate through memory cells */
6963 Mem *pEnd; /* Last memory cell in new array */
6964 VdbeFrame *pFrame; /* New vdbe frame to execute in */
6965 SubProgram *pProgram; /* Sub-program to execute */
6966 void *t; /* Token identifying trigger */
6968 pProgram = pOp->p4.pProgram;
6969 pRt = &aMem[pOp->p3];
6970 assert( pProgram->nOp>0 );
6972 /* If the p5 flag is clear, then recursive invocation of triggers is
6973 ** disabled for backwards compatibility (p5 is set if this sub-program
6974 ** is really a trigger, not a foreign key action, and the flag set
6975 ** and cleared by the "PRAGMA recursive_triggers" command is clear).
6977 ** It is recursive invocation of triggers, at the SQL level, that is
6978 ** disabled. In some cases a single trigger may generate more than one
6979 ** SubProgram (if the trigger may be executed with more than one different
6980 ** ON CONFLICT algorithm). SubProgram structures associated with a
6981 ** single trigger all have the same value for the SubProgram.token
6982 ** variable. */
6983 if( pOp->p5 ){
6984 t = pProgram->token;
6985 for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
6986 if( pFrame ) break;
6989 if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
6990 rc = SQLITE_ERROR;
6991 sqlite3VdbeError(p, "too many levels of trigger recursion");
6992 goto abort_due_to_error;
6995 /* Register pRt is used to store the memory required to save the state
6996 ** of the current program, and the memory required at runtime to execute
6997 ** the trigger program. If this trigger has been fired before, then pRt
6998 ** is already allocated. Otherwise, it must be initialized. */
6999 if( (pRt->flags&MEM_Blob)==0 ){
7000 /* SubProgram.nMem is set to the number of memory cells used by the
7001 ** program stored in SubProgram.aOp. As well as these, one memory
7002 ** cell is required for each cursor used by the program. Set local
7003 ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
7005 nMem = pProgram->nMem + pProgram->nCsr;
7006 assert( nMem>0 );
7007 if( pProgram->nCsr==0 ) nMem++;
7008 nByte = ROUND8(sizeof(VdbeFrame))
7009 + nMem * sizeof(Mem)
7010 + pProgram->nCsr * sizeof(VdbeCursor*)
7011 + (pProgram->nOp + 7)/8;
7012 pFrame = sqlite3DbMallocZero(db, nByte);
7013 if( !pFrame ){
7014 goto no_mem;
7016 sqlite3VdbeMemRelease(pRt);
7017 pRt->flags = MEM_Blob|MEM_Dyn;
7018 pRt->z = (char*)pFrame;
7019 pRt->n = nByte;
7020 pRt->xDel = sqlite3VdbeFrameMemDel;
7022 pFrame->v = p;
7023 pFrame->nChildMem = nMem;
7024 pFrame->nChildCsr = pProgram->nCsr;
7025 pFrame->pc = (int)(pOp - aOp);
7026 pFrame->aMem = p->aMem;
7027 pFrame->nMem = p->nMem;
7028 pFrame->apCsr = p->apCsr;
7029 pFrame->nCursor = p->nCursor;
7030 pFrame->aOp = p->aOp;
7031 pFrame->nOp = p->nOp;
7032 pFrame->token = pProgram->token;
7033 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
7034 pFrame->anExec = p->anExec;
7035 #endif
7036 #ifdef SQLITE_DEBUG
7037 pFrame->iFrameMagic = SQLITE_FRAME_MAGIC;
7038 #endif
7040 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
7041 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
7042 pMem->flags = MEM_Undefined;
7043 pMem->db = db;
7045 }else{
7046 pFrame = (VdbeFrame*)pRt->z;
7047 assert( pRt->xDel==sqlite3VdbeFrameMemDel );
7048 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem
7049 || (pProgram->nCsr==0 && pProgram->nMem+1==pFrame->nChildMem) );
7050 assert( pProgram->nCsr==pFrame->nChildCsr );
7051 assert( (int)(pOp - aOp)==pFrame->pc );
7054 p->nFrame++;
7055 pFrame->pParent = p->pFrame;
7056 pFrame->lastRowid = db->lastRowid;
7057 pFrame->nChange = p->nChange;
7058 pFrame->nDbChange = p->db->nChange;
7059 assert( pFrame->pAuxData==0 );
7060 pFrame->pAuxData = p->pAuxData;
7061 p->pAuxData = 0;
7062 p->nChange = 0;
7063 p->pFrame = pFrame;
7064 p->aMem = aMem = VdbeFrameMem(pFrame);
7065 p->nMem = pFrame->nChildMem;
7066 p->nCursor = (u16)pFrame->nChildCsr;
7067 p->apCsr = (VdbeCursor **)&aMem[p->nMem];
7068 pFrame->aOnce = (u8*)&p->apCsr[pProgram->nCsr];
7069 memset(pFrame->aOnce, 0, (pProgram->nOp + 7)/8);
7070 p->aOp = aOp = pProgram->aOp;
7071 p->nOp = pProgram->nOp;
7072 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
7073 p->anExec = 0;
7074 #endif
7075 #ifdef SQLITE_DEBUG
7076 /* Verify that second and subsequent executions of the same trigger do not
7077 ** try to reuse register values from the first use. */
7079 int i;
7080 for(i=0; i<p->nMem; i++){
7081 aMem[i].pScopyFrom = 0; /* Prevent false-positive AboutToChange() errs */
7082 MemSetTypeFlag(&aMem[i], MEM_Undefined); /* Fault if this reg is reused */
7085 #endif
7086 pOp = &aOp[-1];
7087 goto check_for_interrupt;
7090 /* Opcode: Param P1 P2 * * *
7092 ** This opcode is only ever present in sub-programs called via the
7093 ** OP_Program instruction. Copy a value currently stored in a memory
7094 ** cell of the calling (parent) frame to cell P2 in the current frames
7095 ** address space. This is used by trigger programs to access the new.*
7096 ** and old.* values.
7098 ** The address of the cell in the parent frame is determined by adding
7099 ** the value of the P1 argument to the value of the P1 argument to the
7100 ** calling OP_Program instruction.
7102 case OP_Param: { /* out2 */
7103 VdbeFrame *pFrame;
7104 Mem *pIn;
7105 pOut = out2Prerelease(p, pOp);
7106 pFrame = p->pFrame;
7107 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];
7108 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
7109 break;
7112 #endif /* #ifndef SQLITE_OMIT_TRIGGER */
7114 #ifndef SQLITE_OMIT_FOREIGN_KEY
7115 /* Opcode: FkCounter P1 P2 * * *
7116 ** Synopsis: fkctr[P1]+=P2
7118 ** Increment a "constraint counter" by P2 (P2 may be negative or positive).
7119 ** If P1 is non-zero, the database constraint counter is incremented
7120 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the
7121 ** statement counter is incremented (immediate foreign key constraints).
7123 case OP_FkCounter: {
7124 if( db->flags & SQLITE_DeferFKs ){
7125 db->nDeferredImmCons += pOp->p2;
7126 }else if( pOp->p1 ){
7127 db->nDeferredCons += pOp->p2;
7128 }else{
7129 p->nFkConstraint += pOp->p2;
7131 break;
7134 /* Opcode: FkIfZero P1 P2 * * *
7135 ** Synopsis: if fkctr[P1]==0 goto P2
7137 ** This opcode tests if a foreign key constraint-counter is currently zero.
7138 ** If so, jump to instruction P2. Otherwise, fall through to the next
7139 ** instruction.
7141 ** If P1 is non-zero, then the jump is taken if the database constraint-counter
7142 ** is zero (the one that counts deferred constraint violations). If P1 is
7143 ** zero, the jump is taken if the statement constraint-counter is zero
7144 ** (immediate foreign key constraint violations).
7146 case OP_FkIfZero: { /* jump */
7147 if( pOp->p1 ){
7148 VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2);
7149 if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
7150 }else{
7151 VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2);
7152 if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
7154 break;
7156 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
7158 #ifndef SQLITE_OMIT_AUTOINCREMENT
7159 /* Opcode: MemMax P1 P2 * * *
7160 ** Synopsis: r[P1]=max(r[P1],r[P2])
7162 ** P1 is a register in the root frame of this VM (the root frame is
7163 ** different from the current frame if this instruction is being executed
7164 ** within a sub-program). Set the value of register P1 to the maximum of
7165 ** its current value and the value in register P2.
7167 ** This instruction throws an error if the memory cell is not initially
7168 ** an integer.
7170 case OP_MemMax: { /* in2 */
7171 VdbeFrame *pFrame;
7172 if( p->pFrame ){
7173 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
7174 pIn1 = &pFrame->aMem[pOp->p1];
7175 }else{
7176 pIn1 = &aMem[pOp->p1];
7178 assert( memIsValid(pIn1) );
7179 sqlite3VdbeMemIntegerify(pIn1);
7180 pIn2 = &aMem[pOp->p2];
7181 sqlite3VdbeMemIntegerify(pIn2);
7182 if( pIn1->u.i<pIn2->u.i){
7183 pIn1->u.i = pIn2->u.i;
7185 break;
7187 #endif /* SQLITE_OMIT_AUTOINCREMENT */
7189 /* Opcode: IfPos P1 P2 P3 * *
7190 ** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2
7192 ** Register P1 must contain an integer.
7193 ** If the value of register P1 is 1 or greater, subtract P3 from the
7194 ** value in P1 and jump to P2.
7196 ** If the initial value of register P1 is less than 1, then the
7197 ** value is unchanged and control passes through to the next instruction.
7199 case OP_IfPos: { /* jump, in1 */
7200 pIn1 = &aMem[pOp->p1];
7201 assert( pIn1->flags&MEM_Int );
7202 VdbeBranchTaken( pIn1->u.i>0, 2);
7203 if( pIn1->u.i>0 ){
7204 pIn1->u.i -= pOp->p3;
7205 goto jump_to_p2;
7207 break;
7210 /* Opcode: OffsetLimit P1 P2 P3 * *
7211 ** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1)
7213 ** This opcode performs a commonly used computation associated with
7214 ** LIMIT and OFFSET process. r[P1] holds the limit counter. r[P3]
7215 ** holds the offset counter. The opcode computes the combined value
7216 ** of the LIMIT and OFFSET and stores that value in r[P2]. The r[P2]
7217 ** value computed is the total number of rows that will need to be
7218 ** visited in order to complete the query.
7220 ** If r[P3] is zero or negative, that means there is no OFFSET
7221 ** and r[P2] is set to be the value of the LIMIT, r[P1].
7223 ** if r[P1] is zero or negative, that means there is no LIMIT
7224 ** and r[P2] is set to -1.
7226 ** Otherwise, r[P2] is set to the sum of r[P1] and r[P3].
7228 case OP_OffsetLimit: { /* in1, out2, in3 */
7229 i64 x;
7230 pIn1 = &aMem[pOp->p1];
7231 pIn3 = &aMem[pOp->p3];
7232 pOut = out2Prerelease(p, pOp);
7233 assert( pIn1->flags & MEM_Int );
7234 assert( pIn3->flags & MEM_Int );
7235 x = pIn1->u.i;
7236 if( x<=0 || sqlite3AddInt64(&x, pIn3->u.i>0?pIn3->u.i:0) ){
7237 /* If the LIMIT is less than or equal to zero, loop forever. This
7238 ** is documented. But also, if the LIMIT+OFFSET exceeds 2^63 then
7239 ** also loop forever. This is undocumented. In fact, one could argue
7240 ** that the loop should terminate. But assuming 1 billion iterations
7241 ** per second (far exceeding the capabilities of any current hardware)
7242 ** it would take nearly 300 years to actually reach the limit. So
7243 ** looping forever is a reasonable approximation. */
7244 pOut->u.i = -1;
7245 }else{
7246 pOut->u.i = x;
7248 break;
7251 /* Opcode: IfNotZero P1 P2 * * *
7252 ** Synopsis: if r[P1]!=0 then r[P1]--, goto P2
7254 ** Register P1 must contain an integer. If the content of register P1 is
7255 ** initially greater than zero, then decrement the value in register P1.
7256 ** If it is non-zero (negative or positive) and then also jump to P2.
7257 ** If register P1 is initially zero, leave it unchanged and fall through.
7259 case OP_IfNotZero: { /* jump, in1 */
7260 pIn1 = &aMem[pOp->p1];
7261 assert( pIn1->flags&MEM_Int );
7262 VdbeBranchTaken(pIn1->u.i<0, 2);
7263 if( pIn1->u.i ){
7264 if( pIn1->u.i>0 ) pIn1->u.i--;
7265 goto jump_to_p2;
7267 break;
7270 /* Opcode: DecrJumpZero P1 P2 * * *
7271 ** Synopsis: if (--r[P1])==0 goto P2
7273 ** Register P1 must hold an integer. Decrement the value in P1
7274 ** and jump to P2 if the new value is exactly zero.
7276 case OP_DecrJumpZero: { /* jump, in1 */
7277 pIn1 = &aMem[pOp->p1];
7278 assert( pIn1->flags&MEM_Int );
7279 if( pIn1->u.i>SMALLEST_INT64 ) pIn1->u.i--;
7280 VdbeBranchTaken(pIn1->u.i==0, 2);
7281 if( pIn1->u.i==0 ) goto jump_to_p2;
7282 break;
7286 /* Opcode: AggStep * P2 P3 P4 P5
7287 ** Synopsis: accum=r[P3] step(r[P2@P5])
7289 ** Execute the xStep function for an aggregate.
7290 ** The function has P5 arguments. P4 is a pointer to the
7291 ** FuncDef structure that specifies the function. Register P3 is the
7292 ** accumulator.
7294 ** The P5 arguments are taken from register P2 and its
7295 ** successors.
7297 /* Opcode: AggInverse * P2 P3 P4 P5
7298 ** Synopsis: accum=r[P3] inverse(r[P2@P5])
7300 ** Execute the xInverse function for an aggregate.
7301 ** The function has P5 arguments. P4 is a pointer to the
7302 ** FuncDef structure that specifies the function. Register P3 is the
7303 ** accumulator.
7305 ** The P5 arguments are taken from register P2 and its
7306 ** successors.
7308 /* Opcode: AggStep1 P1 P2 P3 P4 P5
7309 ** Synopsis: accum=r[P3] step(r[P2@P5])
7311 ** Execute the xStep (if P1==0) or xInverse (if P1!=0) function for an
7312 ** aggregate. The function has P5 arguments. P4 is a pointer to the
7313 ** FuncDef structure that specifies the function. Register P3 is the
7314 ** accumulator.
7316 ** The P5 arguments are taken from register P2 and its
7317 ** successors.
7319 ** This opcode is initially coded as OP_AggStep0. On first evaluation,
7320 ** the FuncDef stored in P4 is converted into an sqlite3_context and
7321 ** the opcode is changed. In this way, the initialization of the
7322 ** sqlite3_context only happens once, instead of on each call to the
7323 ** step function.
7325 case OP_AggInverse:
7326 case OP_AggStep: {
7327 int n;
7328 sqlite3_context *pCtx;
7330 assert( pOp->p4type==P4_FUNCDEF );
7331 n = pOp->p5;
7332 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
7333 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) );
7334 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
7335 pCtx = sqlite3DbMallocRawNN(db, n*sizeof(sqlite3_value*) +
7336 (sizeof(pCtx[0]) + sizeof(Mem) - sizeof(sqlite3_value*)));
7337 if( pCtx==0 ) goto no_mem;
7338 pCtx->pMem = 0;
7339 pCtx->pOut = (Mem*)&(pCtx->argv[n]);
7340 sqlite3VdbeMemInit(pCtx->pOut, db, MEM_Null);
7341 pCtx->pFunc = pOp->p4.pFunc;
7342 pCtx->iOp = (int)(pOp - aOp);
7343 pCtx->pVdbe = p;
7344 pCtx->skipFlag = 0;
7345 pCtx->isError = 0;
7346 pCtx->enc = encoding;
7347 pCtx->argc = n;
7348 pOp->p4type = P4_FUNCCTX;
7349 pOp->p4.pCtx = pCtx;
7351 /* OP_AggInverse must have P1==1 and OP_AggStep must have P1==0 */
7352 assert( pOp->p1==(pOp->opcode==OP_AggInverse) );
7354 pOp->opcode = OP_AggStep1;
7355 /* Fall through into OP_AggStep */
7356 /* no break */ deliberate_fall_through
7358 case OP_AggStep1: {
7359 int i;
7360 sqlite3_context *pCtx;
7361 Mem *pMem;
7363 assert( pOp->p4type==P4_FUNCCTX );
7364 pCtx = pOp->p4.pCtx;
7365 pMem = &aMem[pOp->p3];
7367 #ifdef SQLITE_DEBUG
7368 if( pOp->p1 ){
7369 /* This is an OP_AggInverse call. Verify that xStep has always
7370 ** been called at least once prior to any xInverse call. */
7371 assert( pMem->uTemp==0x1122e0e3 );
7372 }else{
7373 /* This is an OP_AggStep call. Mark it as such. */
7374 pMem->uTemp = 0x1122e0e3;
7376 #endif
7378 /* If this function is inside of a trigger, the register array in aMem[]
7379 ** might change from one evaluation to the next. The next block of code
7380 ** checks to see if the register array has changed, and if so it
7381 ** reinitializes the relavant parts of the sqlite3_context object */
7382 if( pCtx->pMem != pMem ){
7383 pCtx->pMem = pMem;
7384 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
7387 #ifdef SQLITE_DEBUG
7388 for(i=0; i<pCtx->argc; i++){
7389 assert( memIsValid(pCtx->argv[i]) );
7390 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
7392 #endif
7394 pMem->n++;
7395 assert( pCtx->pOut->flags==MEM_Null );
7396 assert( pCtx->isError==0 );
7397 assert( pCtx->skipFlag==0 );
7398 #ifndef SQLITE_OMIT_WINDOWFUNC
7399 if( pOp->p1 ){
7400 (pCtx->pFunc->xInverse)(pCtx,pCtx->argc,pCtx->argv);
7401 }else
7402 #endif
7403 (pCtx->pFunc->xSFunc)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */
7405 if( pCtx->isError ){
7406 if( pCtx->isError>0 ){
7407 sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut));
7408 rc = pCtx->isError;
7410 if( pCtx->skipFlag ){
7411 assert( pOp[-1].opcode==OP_CollSeq );
7412 i = pOp[-1].p1;
7413 if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1);
7414 pCtx->skipFlag = 0;
7416 sqlite3VdbeMemRelease(pCtx->pOut);
7417 pCtx->pOut->flags = MEM_Null;
7418 pCtx->isError = 0;
7419 if( rc ) goto abort_due_to_error;
7421 assert( pCtx->pOut->flags==MEM_Null );
7422 assert( pCtx->skipFlag==0 );
7423 break;
7426 /* Opcode: AggFinal P1 P2 * P4 *
7427 ** Synopsis: accum=r[P1] N=P2
7429 ** P1 is the memory location that is the accumulator for an aggregate
7430 ** or window function. Execute the finalizer function
7431 ** for an aggregate and store the result in P1.
7433 ** P2 is the number of arguments that the step function takes and
7434 ** P4 is a pointer to the FuncDef for this function. The P2
7435 ** argument is not used by this opcode. It is only there to disambiguate
7436 ** functions that can take varying numbers of arguments. The
7437 ** P4 argument is only needed for the case where
7438 ** the step function was not previously called.
7440 /* Opcode: AggValue * P2 P3 P4 *
7441 ** Synopsis: r[P3]=value N=P2
7443 ** Invoke the xValue() function and store the result in register P3.
7445 ** P2 is the number of arguments that the step function takes and
7446 ** P4 is a pointer to the FuncDef for this function. The P2
7447 ** argument is not used by this opcode. It is only there to disambiguate
7448 ** functions that can take varying numbers of arguments. The
7449 ** P4 argument is only needed for the case where
7450 ** the step function was not previously called.
7452 case OP_AggValue:
7453 case OP_AggFinal: {
7454 Mem *pMem;
7455 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
7456 assert( pOp->p3==0 || pOp->opcode==OP_AggValue );
7457 pMem = &aMem[pOp->p1];
7458 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
7459 #ifndef SQLITE_OMIT_WINDOWFUNC
7460 if( pOp->p3 ){
7461 memAboutToChange(p, &aMem[pOp->p3]);
7462 rc = sqlite3VdbeMemAggValue(pMem, &aMem[pOp->p3], pOp->p4.pFunc);
7463 pMem = &aMem[pOp->p3];
7464 }else
7465 #endif
7467 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
7470 if( rc ){
7471 sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem));
7472 goto abort_due_to_error;
7474 sqlite3VdbeChangeEncoding(pMem, encoding);
7475 UPDATE_MAX_BLOBSIZE(pMem);
7476 break;
7479 #ifndef SQLITE_OMIT_WAL
7480 /* Opcode: Checkpoint P1 P2 P3 * *
7482 ** Checkpoint database P1. This is a no-op if P1 is not currently in
7483 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL,
7484 ** RESTART, or TRUNCATE. Write 1 or 0 into mem[P3] if the checkpoint returns
7485 ** SQLITE_BUSY or not, respectively. Write the number of pages in the
7486 ** WAL after the checkpoint into mem[P3+1] and the number of pages
7487 ** in the WAL that have been checkpointed after the checkpoint
7488 ** completes into mem[P3+2]. However on an error, mem[P3+1] and
7489 ** mem[P3+2] are initialized to -1.
7491 case OP_Checkpoint: {
7492 int i; /* Loop counter */
7493 int aRes[3]; /* Results */
7494 Mem *pMem; /* Write results here */
7496 assert( p->readOnly==0 );
7497 aRes[0] = 0;
7498 aRes[1] = aRes[2] = -1;
7499 assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
7500 || pOp->p2==SQLITE_CHECKPOINT_FULL
7501 || pOp->p2==SQLITE_CHECKPOINT_RESTART
7502 || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE
7504 rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
7505 if( rc ){
7506 if( rc!=SQLITE_BUSY ) goto abort_due_to_error;
7507 rc = SQLITE_OK;
7508 aRes[0] = 1;
7510 for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){
7511 sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]);
7513 break;
7515 #endif
7517 #ifndef SQLITE_OMIT_PRAGMA
7518 /* Opcode: JournalMode P1 P2 P3 * *
7520 ** Change the journal mode of database P1 to P3. P3 must be one of the
7521 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
7522 ** modes (delete, truncate, persist, off and memory), this is a simple
7523 ** operation. No IO is required.
7525 ** If changing into or out of WAL mode the procedure is more complicated.
7527 ** Write a string containing the final journal-mode to register P2.
7529 case OP_JournalMode: { /* out2 */
7530 Btree *pBt; /* Btree to change journal mode of */
7531 Pager *pPager; /* Pager associated with pBt */
7532 int eNew; /* New journal mode */
7533 int eOld; /* The old journal mode */
7534 #ifndef SQLITE_OMIT_WAL
7535 const char *zFilename; /* Name of database file for pPager */
7536 #endif
7538 pOut = out2Prerelease(p, pOp);
7539 eNew = pOp->p3;
7540 assert( eNew==PAGER_JOURNALMODE_DELETE
7541 || eNew==PAGER_JOURNALMODE_TRUNCATE
7542 || eNew==PAGER_JOURNALMODE_PERSIST
7543 || eNew==PAGER_JOURNALMODE_OFF
7544 || eNew==PAGER_JOURNALMODE_MEMORY
7545 || eNew==PAGER_JOURNALMODE_WAL
7546 || eNew==PAGER_JOURNALMODE_QUERY
7548 assert( pOp->p1>=0 && pOp->p1<db->nDb );
7549 assert( p->readOnly==0 );
7551 pBt = db->aDb[pOp->p1].pBt;
7552 pPager = sqlite3BtreePager(pBt);
7553 eOld = sqlite3PagerGetJournalMode(pPager);
7554 if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
7555 assert( sqlite3BtreeHoldsMutex(pBt) );
7556 if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;
7558 #ifndef SQLITE_OMIT_WAL
7559 zFilename = sqlite3PagerFilename(pPager, 1);
7561 /* Do not allow a transition to journal_mode=WAL for a database
7562 ** in temporary storage or if the VFS does not support shared memory
7564 if( eNew==PAGER_JOURNALMODE_WAL
7565 && (sqlite3Strlen30(zFilename)==0 /* Temp file */
7566 || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */
7568 eNew = eOld;
7571 if( (eNew!=eOld)
7572 && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
7574 if( !db->autoCommit || db->nVdbeRead>1 ){
7575 rc = SQLITE_ERROR;
7576 sqlite3VdbeError(p,
7577 "cannot change %s wal mode from within a transaction",
7578 (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
7580 goto abort_due_to_error;
7581 }else{
7583 if( eOld==PAGER_JOURNALMODE_WAL ){
7584 /* If leaving WAL mode, close the log file. If successful, the call
7585 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
7586 ** file. An EXCLUSIVE lock may still be held on the database file
7587 ** after a successful return.
7589 rc = sqlite3PagerCloseWal(pPager, db);
7590 if( rc==SQLITE_OK ){
7591 sqlite3PagerSetJournalMode(pPager, eNew);
7593 }else if( eOld==PAGER_JOURNALMODE_MEMORY ){
7594 /* Cannot transition directly from MEMORY to WAL. Use mode OFF
7595 ** as an intermediate */
7596 sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF);
7599 /* Open a transaction on the database file. Regardless of the journal
7600 ** mode, this transaction always uses a rollback journal.
7602 assert( sqlite3BtreeTxnState(pBt)!=SQLITE_TXN_WRITE );
7603 if( rc==SQLITE_OK ){
7604 rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
7608 #endif /* ifndef SQLITE_OMIT_WAL */
7610 if( rc ) eNew = eOld;
7611 eNew = sqlite3PagerSetJournalMode(pPager, eNew);
7613 pOut->flags = MEM_Str|MEM_Static|MEM_Term;
7614 pOut->z = (char *)sqlite3JournalModename(eNew);
7615 pOut->n = sqlite3Strlen30(pOut->z);
7616 pOut->enc = SQLITE_UTF8;
7617 sqlite3VdbeChangeEncoding(pOut, encoding);
7618 if( rc ) goto abort_due_to_error;
7619 break;
7621 #endif /* SQLITE_OMIT_PRAGMA */
7623 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
7624 /* Opcode: Vacuum P1 P2 * * *
7626 ** Vacuum the entire database P1. P1 is 0 for "main", and 2 or more
7627 ** for an attached database. The "temp" database may not be vacuumed.
7629 ** If P2 is not zero, then it is a register holding a string which is
7630 ** the file into which the result of vacuum should be written. When
7631 ** P2 is zero, the vacuum overwrites the original database.
7633 case OP_Vacuum: {
7634 assert( p->readOnly==0 );
7635 rc = sqlite3RunVacuum(&p->zErrMsg, db, pOp->p1,
7636 pOp->p2 ? &aMem[pOp->p2] : 0);
7637 if( rc ) goto abort_due_to_error;
7638 break;
7640 #endif
7642 #if !defined(SQLITE_OMIT_AUTOVACUUM)
7643 /* Opcode: IncrVacuum P1 P2 * * *
7645 ** Perform a single step of the incremental vacuum procedure on
7646 ** the P1 database. If the vacuum has finished, jump to instruction
7647 ** P2. Otherwise, fall through to the next instruction.
7649 case OP_IncrVacuum: { /* jump */
7650 Btree *pBt;
7652 assert( pOp->p1>=0 && pOp->p1<db->nDb );
7653 assert( DbMaskTest(p->btreeMask, pOp->p1) );
7654 assert( p->readOnly==0 );
7655 pBt = db->aDb[pOp->p1].pBt;
7656 rc = sqlite3BtreeIncrVacuum(pBt);
7657 VdbeBranchTaken(rc==SQLITE_DONE,2);
7658 if( rc ){
7659 if( rc!=SQLITE_DONE ) goto abort_due_to_error;
7660 rc = SQLITE_OK;
7661 goto jump_to_p2;
7663 break;
7665 #endif
7667 /* Opcode: Expire P1 P2 * * *
7669 ** Cause precompiled statements to expire. When an expired statement
7670 ** is executed using sqlite3_step() it will either automatically
7671 ** reprepare itself (if it was originally created using sqlite3_prepare_v2())
7672 ** or it will fail with SQLITE_SCHEMA.
7674 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
7675 ** then only the currently executing statement is expired.
7677 ** If P2 is 0, then SQL statements are expired immediately. If P2 is 1,
7678 ** then running SQL statements are allowed to continue to run to completion.
7679 ** The P2==1 case occurs when a CREATE INDEX or similar schema change happens
7680 ** that might help the statement run faster but which does not affect the
7681 ** correctness of operation.
7683 case OP_Expire: {
7684 assert( pOp->p2==0 || pOp->p2==1 );
7685 if( !pOp->p1 ){
7686 sqlite3ExpirePreparedStatements(db, pOp->p2);
7687 }else{
7688 p->expired = pOp->p2+1;
7690 break;
7693 /* Opcode: CursorLock P1 * * * *
7695 ** Lock the btree to which cursor P1 is pointing so that the btree cannot be
7696 ** written by an other cursor.
7698 case OP_CursorLock: {
7699 VdbeCursor *pC;
7700 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
7701 pC = p->apCsr[pOp->p1];
7702 assert( pC!=0 );
7703 assert( pC->eCurType==CURTYPE_BTREE );
7704 sqlite3BtreeCursorPin(pC->uc.pCursor);
7705 break;
7708 /* Opcode: CursorUnlock P1 * * * *
7710 ** Unlock the btree to which cursor P1 is pointing so that it can be
7711 ** written by other cursors.
7713 case OP_CursorUnlock: {
7714 VdbeCursor *pC;
7715 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
7716 pC = p->apCsr[pOp->p1];
7717 assert( pC!=0 );
7718 assert( pC->eCurType==CURTYPE_BTREE );
7719 sqlite3BtreeCursorUnpin(pC->uc.pCursor);
7720 break;
7723 #ifndef SQLITE_OMIT_SHARED_CACHE
7724 /* Opcode: TableLock P1 P2 P3 P4 *
7725 ** Synopsis: iDb=P1 root=P2 write=P3
7727 ** Obtain a lock on a particular table. This instruction is only used when
7728 ** the shared-cache feature is enabled.
7730 ** P1 is the index of the database in sqlite3.aDb[] of the database
7731 ** on which the lock is acquired. A readlock is obtained if P3==0 or
7732 ** a write lock if P3==1.
7734 ** P2 contains the root-page of the table to lock.
7736 ** P4 contains a pointer to the name of the table being locked. This is only
7737 ** used to generate an error message if the lock cannot be obtained.
7739 case OP_TableLock: {
7740 u8 isWriteLock = (u8)pOp->p3;
7741 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommit) ){
7742 int p1 = pOp->p1;
7743 assert( p1>=0 && p1<db->nDb );
7744 assert( DbMaskTest(p->btreeMask, p1) );
7745 assert( isWriteLock==0 || isWriteLock==1 );
7746 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
7747 if( rc ){
7748 if( (rc&0xFF)==SQLITE_LOCKED ){
7749 const char *z = pOp->p4.z;
7750 sqlite3VdbeError(p, "database table is locked: %s", z);
7752 goto abort_due_to_error;
7755 break;
7757 #endif /* SQLITE_OMIT_SHARED_CACHE */
7759 #ifndef SQLITE_OMIT_VIRTUALTABLE
7760 /* Opcode: VBegin * * * P4 *
7762 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
7763 ** xBegin method for that table.
7765 ** Also, whether or not P4 is set, check that this is not being called from
7766 ** within a callback to a virtual table xSync() method. If it is, the error
7767 ** code will be set to SQLITE_LOCKED.
7769 case OP_VBegin: {
7770 VTable *pVTab;
7771 pVTab = pOp->p4.pVtab;
7772 rc = sqlite3VtabBegin(db, pVTab);
7773 if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab);
7774 if( rc ) goto abort_due_to_error;
7775 break;
7777 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7779 #ifndef SQLITE_OMIT_VIRTUALTABLE
7780 /* Opcode: VCreate P1 P2 * * *
7782 ** P2 is a register that holds the name of a virtual table in database
7783 ** P1. Call the xCreate method for that table.
7785 case OP_VCreate: {
7786 Mem sMem; /* For storing the record being decoded */
7787 const char *zTab; /* Name of the virtual table */
7789 memset(&sMem, 0, sizeof(sMem));
7790 sMem.db = db;
7791 /* Because P2 is always a static string, it is impossible for the
7792 ** sqlite3VdbeMemCopy() to fail */
7793 assert( (aMem[pOp->p2].flags & MEM_Str)!=0 );
7794 assert( (aMem[pOp->p2].flags & MEM_Static)!=0 );
7795 rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]);
7796 assert( rc==SQLITE_OK );
7797 zTab = (const char*)sqlite3_value_text(&sMem);
7798 assert( zTab || db->mallocFailed );
7799 if( zTab ){
7800 rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg);
7802 sqlite3VdbeMemRelease(&sMem);
7803 if( rc ) goto abort_due_to_error;
7804 break;
7806 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7808 #ifndef SQLITE_OMIT_VIRTUALTABLE
7809 /* Opcode: VDestroy P1 * * P4 *
7811 ** P4 is the name of a virtual table in database P1. Call the xDestroy method
7812 ** of that table.
7814 case OP_VDestroy: {
7815 db->nVDestroy++;
7816 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
7817 db->nVDestroy--;
7818 assert( p->errorAction==OE_Abort && p->usesStmtJournal );
7819 if( rc ) goto abort_due_to_error;
7820 break;
7822 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7824 #ifndef SQLITE_OMIT_VIRTUALTABLE
7825 /* Opcode: VOpen P1 * * P4 *
7827 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
7828 ** P1 is a cursor number. This opcode opens a cursor to the virtual
7829 ** table and stores that cursor in P1.
7831 case OP_VOpen: {
7832 VdbeCursor *pCur;
7833 sqlite3_vtab_cursor *pVCur;
7834 sqlite3_vtab *pVtab;
7835 const sqlite3_module *pModule;
7837 assert( p->bIsReader );
7838 pCur = 0;
7839 pVCur = 0;
7840 pVtab = pOp->p4.pVtab->pVtab;
7841 if( pVtab==0 || NEVER(pVtab->pModule==0) ){
7842 rc = SQLITE_LOCKED;
7843 goto abort_due_to_error;
7845 pModule = pVtab->pModule;
7846 rc = pModule->xOpen(pVtab, &pVCur);
7847 sqlite3VtabImportErrmsg(p, pVtab);
7848 if( rc ) goto abort_due_to_error;
7850 /* Initialize sqlite3_vtab_cursor base class */
7851 pVCur->pVtab = pVtab;
7853 /* Initialize vdbe cursor object */
7854 pCur = allocateCursor(p, pOp->p1, 0, CURTYPE_VTAB);
7855 if( pCur ){
7856 pCur->uc.pVCur = pVCur;
7857 pVtab->nRef++;
7858 }else{
7859 assert( db->mallocFailed );
7860 pModule->xClose(pVCur);
7861 goto no_mem;
7863 break;
7865 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7867 #ifndef SQLITE_OMIT_VIRTUALTABLE
7868 /* Opcode: VInitIn P1 P2 P3 * *
7869 ** Synopsis: r[P2]=ValueList(P1,P3)
7871 ** Set register P2 to be a pointer to a ValueList object for cursor P1
7872 ** with cache register P3 and output register P3+1. This ValueList object
7873 ** can be used as the first argument to sqlite3_vtab_in_first() and
7874 ** sqlite3_vtab_in_next() to extract all of the values stored in the P1
7875 ** cursor. Register P3 is used to hold the values returned by
7876 ** sqlite3_vtab_in_first() and sqlite3_vtab_in_next().
7878 case OP_VInitIn: { /* out2 */
7879 VdbeCursor *pC; /* The cursor containing the RHS values */
7880 ValueList *pRhs; /* New ValueList object to put in reg[P2] */
7882 pC = p->apCsr[pOp->p1];
7883 pRhs = sqlite3_malloc64( sizeof(*pRhs) );
7884 if( pRhs==0 ) goto no_mem;
7885 pRhs->pCsr = pC->uc.pCursor;
7886 pRhs->pOut = &aMem[pOp->p3];
7887 pOut = out2Prerelease(p, pOp);
7888 pOut->flags = MEM_Null;
7889 sqlite3VdbeMemSetPointer(pOut, pRhs, "ValueList", sqlite3_free);
7890 break;
7892 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7895 #ifndef SQLITE_OMIT_VIRTUALTABLE
7896 /* Opcode: VFilter P1 P2 P3 P4 *
7897 ** Synopsis: iplan=r[P3] zplan='P4'
7899 ** P1 is a cursor opened using VOpen. P2 is an address to jump to if
7900 ** the filtered result set is empty.
7902 ** P4 is either NULL or a string that was generated by the xBestIndex
7903 ** method of the module. The interpretation of the P4 string is left
7904 ** to the module implementation.
7906 ** This opcode invokes the xFilter method on the virtual table specified
7907 ** by P1. The integer query plan parameter to xFilter is stored in register
7908 ** P3. Register P3+1 stores the argc parameter to be passed to the
7909 ** xFilter method. Registers P3+2..P3+1+argc are the argc
7910 ** additional parameters which are passed to
7911 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
7913 ** A jump is made to P2 if the result set after filtering would be empty.
7915 case OP_VFilter: { /* jump */
7916 int nArg;
7917 int iQuery;
7918 const sqlite3_module *pModule;
7919 Mem *pQuery;
7920 Mem *pArgc;
7921 sqlite3_vtab_cursor *pVCur;
7922 sqlite3_vtab *pVtab;
7923 VdbeCursor *pCur;
7924 int res;
7925 int i;
7926 Mem **apArg;
7928 pQuery = &aMem[pOp->p3];
7929 pArgc = &pQuery[1];
7930 pCur = p->apCsr[pOp->p1];
7931 assert( memIsValid(pQuery) );
7932 REGISTER_TRACE(pOp->p3, pQuery);
7933 assert( pCur!=0 );
7934 assert( pCur->eCurType==CURTYPE_VTAB );
7935 pVCur = pCur->uc.pVCur;
7936 pVtab = pVCur->pVtab;
7937 pModule = pVtab->pModule;
7939 /* Grab the index number and argc parameters */
7940 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
7941 nArg = (int)pArgc->u.i;
7942 iQuery = (int)pQuery->u.i;
7944 /* Invoke the xFilter method */
7945 apArg = p->apArg;
7946 for(i = 0; i<nArg; i++){
7947 apArg[i] = &pArgc[i+1];
7949 rc = pModule->xFilter(pVCur, iQuery, pOp->p4.z, nArg, apArg);
7950 sqlite3VtabImportErrmsg(p, pVtab);
7951 if( rc ) goto abort_due_to_error;
7952 res = pModule->xEof(pVCur);
7953 pCur->nullRow = 0;
7954 VdbeBranchTaken(res!=0,2);
7955 if( res ) goto jump_to_p2;
7956 break;
7958 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7960 #ifndef SQLITE_OMIT_VIRTUALTABLE
7961 /* Opcode: VColumn P1 P2 P3 * P5
7962 ** Synopsis: r[P3]=vcolumn(P2)
7964 ** Store in register P3 the value of the P2-th column of
7965 ** the current row of the virtual-table of cursor P1.
7967 ** If the VColumn opcode is being used to fetch the value of
7968 ** an unchanging column during an UPDATE operation, then the P5
7969 ** value is OPFLAG_NOCHNG. This will cause the sqlite3_vtab_nochange()
7970 ** function to return true inside the xColumn method of the virtual
7971 ** table implementation. The P5 column might also contain other
7972 ** bits (OPFLAG_LENGTHARG or OPFLAG_TYPEOFARG) but those bits are
7973 ** unused by OP_VColumn.
7975 case OP_VColumn: {
7976 sqlite3_vtab *pVtab;
7977 const sqlite3_module *pModule;
7978 Mem *pDest;
7979 sqlite3_context sContext;
7981 VdbeCursor *pCur = p->apCsr[pOp->p1];
7982 assert( pCur!=0 );
7983 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
7984 pDest = &aMem[pOp->p3];
7985 memAboutToChange(p, pDest);
7986 if( pCur->nullRow ){
7987 sqlite3VdbeMemSetNull(pDest);
7988 break;
7990 assert( pCur->eCurType==CURTYPE_VTAB );
7991 pVtab = pCur->uc.pVCur->pVtab;
7992 pModule = pVtab->pModule;
7993 assert( pModule->xColumn );
7994 memset(&sContext, 0, sizeof(sContext));
7995 sContext.pOut = pDest;
7996 sContext.enc = encoding;
7997 assert( pOp->p5==OPFLAG_NOCHNG || pOp->p5==0 );
7998 if( pOp->p5 & OPFLAG_NOCHNG ){
7999 sqlite3VdbeMemSetNull(pDest);
8000 pDest->flags = MEM_Null|MEM_Zero;
8001 pDest->u.nZero = 0;
8002 }else{
8003 MemSetTypeFlag(pDest, MEM_Null);
8005 rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2);
8006 sqlite3VtabImportErrmsg(p, pVtab);
8007 if( sContext.isError>0 ){
8008 sqlite3VdbeError(p, "%s", sqlite3_value_text(pDest));
8009 rc = sContext.isError;
8011 sqlite3VdbeChangeEncoding(pDest, encoding);
8012 REGISTER_TRACE(pOp->p3, pDest);
8013 UPDATE_MAX_BLOBSIZE(pDest);
8015 if( rc ) goto abort_due_to_error;
8016 break;
8018 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8020 #ifndef SQLITE_OMIT_VIRTUALTABLE
8021 /* Opcode: VNext P1 P2 * * *
8023 ** Advance virtual table P1 to the next row in its result set and
8024 ** jump to instruction P2. Or, if the virtual table has reached
8025 ** the end of its result set, then fall through to the next instruction.
8027 case OP_VNext: { /* jump */
8028 sqlite3_vtab *pVtab;
8029 const sqlite3_module *pModule;
8030 int res;
8031 VdbeCursor *pCur;
8033 pCur = p->apCsr[pOp->p1];
8034 assert( pCur!=0 );
8035 assert( pCur->eCurType==CURTYPE_VTAB );
8036 if( pCur->nullRow ){
8037 break;
8039 pVtab = pCur->uc.pVCur->pVtab;
8040 pModule = pVtab->pModule;
8041 assert( pModule->xNext );
8043 /* Invoke the xNext() method of the module. There is no way for the
8044 ** underlying implementation to return an error if one occurs during
8045 ** xNext(). Instead, if an error occurs, true is returned (indicating that
8046 ** data is available) and the error code returned when xColumn or
8047 ** some other method is next invoked on the save virtual table cursor.
8049 rc = pModule->xNext(pCur->uc.pVCur);
8050 sqlite3VtabImportErrmsg(p, pVtab);
8051 if( rc ) goto abort_due_to_error;
8052 res = pModule->xEof(pCur->uc.pVCur);
8053 VdbeBranchTaken(!res,2);
8054 if( !res ){
8055 /* If there is data, jump to P2 */
8056 goto jump_to_p2_and_check_for_interrupt;
8058 goto check_for_interrupt;
8060 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8062 #ifndef SQLITE_OMIT_VIRTUALTABLE
8063 /* Opcode: VRename P1 * * P4 *
8065 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
8066 ** This opcode invokes the corresponding xRename method. The value
8067 ** in register P1 is passed as the zName argument to the xRename method.
8069 case OP_VRename: {
8070 sqlite3_vtab *pVtab;
8071 Mem *pName;
8072 int isLegacy;
8074 isLegacy = (db->flags & SQLITE_LegacyAlter);
8075 db->flags |= SQLITE_LegacyAlter;
8076 pVtab = pOp->p4.pVtab->pVtab;
8077 pName = &aMem[pOp->p1];
8078 assert( pVtab->pModule->xRename );
8079 assert( memIsValid(pName) );
8080 assert( p->readOnly==0 );
8081 REGISTER_TRACE(pOp->p1, pName);
8082 assert( pName->flags & MEM_Str );
8083 testcase( pName->enc==SQLITE_UTF8 );
8084 testcase( pName->enc==SQLITE_UTF16BE );
8085 testcase( pName->enc==SQLITE_UTF16LE );
8086 rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8);
8087 if( rc ) goto abort_due_to_error;
8088 rc = pVtab->pModule->xRename(pVtab, pName->z);
8089 if( isLegacy==0 ) db->flags &= ~(u64)SQLITE_LegacyAlter;
8090 sqlite3VtabImportErrmsg(p, pVtab);
8091 p->expired = 0;
8092 if( rc ) goto abort_due_to_error;
8093 break;
8095 #endif
8097 #ifndef SQLITE_OMIT_VIRTUALTABLE
8098 /* Opcode: VUpdate P1 P2 P3 P4 P5
8099 ** Synopsis: data=r[P3@P2]
8101 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
8102 ** This opcode invokes the corresponding xUpdate method. P2 values
8103 ** are contiguous memory cells starting at P3 to pass to the xUpdate
8104 ** invocation. The value in register (P3+P2-1) corresponds to the
8105 ** p2th element of the argv array passed to xUpdate.
8107 ** The xUpdate method will do a DELETE or an INSERT or both.
8108 ** The argv[0] element (which corresponds to memory cell P3)
8109 ** is the rowid of a row to delete. If argv[0] is NULL then no
8110 ** deletion occurs. The argv[1] element is the rowid of the new
8111 ** row. This can be NULL to have the virtual table select the new
8112 ** rowid for itself. The subsequent elements in the array are
8113 ** the values of columns in the new row.
8115 ** If P2==1 then no insert is performed. argv[0] is the rowid of
8116 ** a row to delete.
8118 ** P1 is a boolean flag. If it is set to true and the xUpdate call
8119 ** is successful, then the value returned by sqlite3_last_insert_rowid()
8120 ** is set to the value of the rowid for the row just inserted.
8122 ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to
8123 ** apply in the case of a constraint failure on an insert or update.
8125 case OP_VUpdate: {
8126 sqlite3_vtab *pVtab;
8127 const sqlite3_module *pModule;
8128 int nArg;
8129 int i;
8130 sqlite_int64 rowid = 0;
8131 Mem **apArg;
8132 Mem *pX;
8134 assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback
8135 || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
8137 assert( p->readOnly==0 );
8138 if( db->mallocFailed ) goto no_mem;
8139 sqlite3VdbeIncrWriteCounter(p, 0);
8140 pVtab = pOp->p4.pVtab->pVtab;
8141 if( pVtab==0 || NEVER(pVtab->pModule==0) ){
8142 rc = SQLITE_LOCKED;
8143 goto abort_due_to_error;
8145 pModule = pVtab->pModule;
8146 nArg = pOp->p2;
8147 assert( pOp->p4type==P4_VTAB );
8148 if( ALWAYS(pModule->xUpdate) ){
8149 u8 vtabOnConflict = db->vtabOnConflict;
8150 apArg = p->apArg;
8151 pX = &aMem[pOp->p3];
8152 for(i=0; i<nArg; i++){
8153 assert( memIsValid(pX) );
8154 memAboutToChange(p, pX);
8155 apArg[i] = pX;
8156 pX++;
8158 db->vtabOnConflict = pOp->p5;
8159 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
8160 db->vtabOnConflict = vtabOnConflict;
8161 sqlite3VtabImportErrmsg(p, pVtab);
8162 if( rc==SQLITE_OK && pOp->p1 ){
8163 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
8164 db->lastRowid = rowid;
8166 if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
8167 if( pOp->p5==OE_Ignore ){
8168 rc = SQLITE_OK;
8169 }else{
8170 p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5);
8172 }else{
8173 p->nChange++;
8175 if( rc ) goto abort_due_to_error;
8177 break;
8179 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8181 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
8182 /* Opcode: Pagecount P1 P2 * * *
8184 ** Write the current number of pages in database P1 to memory cell P2.
8186 case OP_Pagecount: { /* out2 */
8187 pOut = out2Prerelease(p, pOp);
8188 pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
8189 break;
8191 #endif
8194 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
8195 /* Opcode: MaxPgcnt P1 P2 P3 * *
8197 ** Try to set the maximum page count for database P1 to the value in P3.
8198 ** Do not let the maximum page count fall below the current page count and
8199 ** do not change the maximum page count value if P3==0.
8201 ** Store the maximum page count after the change in register P2.
8203 case OP_MaxPgcnt: { /* out2 */
8204 unsigned int newMax;
8205 Btree *pBt;
8207 pOut = out2Prerelease(p, pOp);
8208 pBt = db->aDb[pOp->p1].pBt;
8209 newMax = 0;
8210 if( pOp->p3 ){
8211 newMax = sqlite3BtreeLastPage(pBt);
8212 if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
8214 pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
8215 break;
8217 #endif
8219 /* Opcode: Function P1 P2 P3 P4 *
8220 ** Synopsis: r[P3]=func(r[P2@NP])
8222 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that
8223 ** contains a pointer to the function to be run) with arguments taken
8224 ** from register P2 and successors. The number of arguments is in
8225 ** the sqlite3_context object that P4 points to.
8226 ** The result of the function is stored
8227 ** in register P3. Register P3 must not be one of the function inputs.
8229 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
8230 ** function was determined to be constant at compile time. If the first
8231 ** argument was constant then bit 0 of P1 is set. This is used to determine
8232 ** whether meta data associated with a user function argument using the
8233 ** sqlite3_set_auxdata() API may be safely retained until the next
8234 ** invocation of this opcode.
8236 ** See also: AggStep, AggFinal, PureFunc
8238 /* Opcode: PureFunc P1 P2 P3 P4 *
8239 ** Synopsis: r[P3]=func(r[P2@NP])
8241 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that
8242 ** contains a pointer to the function to be run) with arguments taken
8243 ** from register P2 and successors. The number of arguments is in
8244 ** the sqlite3_context object that P4 points to.
8245 ** The result of the function is stored
8246 ** in register P3. Register P3 must not be one of the function inputs.
8248 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
8249 ** function was determined to be constant at compile time. If the first
8250 ** argument was constant then bit 0 of P1 is set. This is used to determine
8251 ** whether meta data associated with a user function argument using the
8252 ** sqlite3_set_auxdata() API may be safely retained until the next
8253 ** invocation of this opcode.
8255 ** This opcode works exactly like OP_Function. The only difference is in
8256 ** its name. This opcode is used in places where the function must be
8257 ** purely non-deterministic. Some built-in date/time functions can be
8258 ** either determinitic of non-deterministic, depending on their arguments.
8259 ** When those function are used in a non-deterministic way, they will check
8260 ** to see if they were called using OP_PureFunc instead of OP_Function, and
8261 ** if they were, they throw an error.
8263 ** See also: AggStep, AggFinal, Function
8265 case OP_PureFunc: /* group */
8266 case OP_Function: { /* group */
8267 int i;
8268 sqlite3_context *pCtx;
8270 assert( pOp->p4type==P4_FUNCCTX );
8271 pCtx = pOp->p4.pCtx;
8273 /* If this function is inside of a trigger, the register array in aMem[]
8274 ** might change from one evaluation to the next. The next block of code
8275 ** checks to see if the register array has changed, and if so it
8276 ** reinitializes the relavant parts of the sqlite3_context object */
8277 pOut = &aMem[pOp->p3];
8278 if( pCtx->pOut != pOut ){
8279 pCtx->pVdbe = p;
8280 pCtx->pOut = pOut;
8281 pCtx->enc = encoding;
8282 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
8284 assert( pCtx->pVdbe==p );
8286 memAboutToChange(p, pOut);
8287 #ifdef SQLITE_DEBUG
8288 for(i=0; i<pCtx->argc; i++){
8289 assert( memIsValid(pCtx->argv[i]) );
8290 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
8292 #endif
8293 MemSetTypeFlag(pOut, MEM_Null);
8294 assert( pCtx->isError==0 );
8295 (*pCtx->pFunc->xSFunc)(pCtx, pCtx->argc, pCtx->argv);/* IMP: R-24505-23230 */
8297 /* If the function returned an error, throw an exception */
8298 if( pCtx->isError ){
8299 if( pCtx->isError>0 ){
8300 sqlite3VdbeError(p, "%s", sqlite3_value_text(pOut));
8301 rc = pCtx->isError;
8303 sqlite3VdbeDeleteAuxData(db, &p->pAuxData, pCtx->iOp, pOp->p1);
8304 pCtx->isError = 0;
8305 if( rc ) goto abort_due_to_error;
8308 assert( (pOut->flags&MEM_Str)==0
8309 || pOut->enc==encoding
8310 || db->mallocFailed );
8311 assert( !sqlite3VdbeMemTooBig(pOut) );
8313 REGISTER_TRACE(pOp->p3, pOut);
8314 UPDATE_MAX_BLOBSIZE(pOut);
8315 break;
8318 /* Opcode: ClrSubtype P1 * * * *
8319 ** Synopsis: r[P1].subtype = 0
8321 ** Clear the subtype from register P1.
8323 case OP_ClrSubtype: { /* in1 */
8324 pIn1 = &aMem[pOp->p1];
8325 pIn1->flags &= ~MEM_Subtype;
8326 break;
8329 /* Opcode: FilterAdd P1 * P3 P4 *
8330 ** Synopsis: filter(P1) += key(P3@P4)
8332 ** Compute a hash on the P4 registers starting with r[P3] and
8333 ** add that hash to the bloom filter contained in r[P1].
8335 case OP_FilterAdd: {
8336 u64 h;
8338 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
8339 pIn1 = &aMem[pOp->p1];
8340 assert( pIn1->flags & MEM_Blob );
8341 assert( pIn1->n>0 );
8342 h = filterHash(aMem, pOp);
8343 #ifdef SQLITE_DEBUG
8344 if( db->flags&SQLITE_VdbeTrace ){
8345 int ii;
8346 for(ii=pOp->p3; ii<pOp->p3+pOp->p4.i; ii++){
8347 registerTrace(ii, &aMem[ii]);
8349 printf("hash: %llu modulo %d -> %u\n", h, pIn1->n, (int)(h%pIn1->n));
8351 #endif
8352 h %= pIn1->n;
8353 pIn1->z[h/8] |= 1<<(h&7);
8354 break;
8357 /* Opcode: Filter P1 P2 P3 P4 *
8358 ** Synopsis: if key(P3@P4) not in filter(P1) goto P2
8360 ** Compute a hash on the key contained in the P4 registers starting
8361 ** with r[P3]. Check to see if that hash is found in the
8362 ** bloom filter hosted by register P1. If it is not present then
8363 ** maybe jump to P2. Otherwise fall through.
8365 ** False negatives are harmless. It is always safe to fall through,
8366 ** even if the value is in the bloom filter. A false negative causes
8367 ** more CPU cycles to be used, but it should still yield the correct
8368 ** answer. However, an incorrect answer may well arise from a
8369 ** false positive - if the jump is taken when it should fall through.
8371 case OP_Filter: { /* jump */
8372 u64 h;
8374 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
8375 pIn1 = &aMem[pOp->p1];
8376 assert( (pIn1->flags & MEM_Blob)!=0 );
8377 assert( pIn1->n >= 1 );
8378 h = filterHash(aMem, pOp);
8379 #ifdef SQLITE_DEBUG
8380 if( db->flags&SQLITE_VdbeTrace ){
8381 int ii;
8382 for(ii=pOp->p3; ii<pOp->p3+pOp->p4.i; ii++){
8383 registerTrace(ii, &aMem[ii]);
8385 printf("hash: %llu modulo %d -> %u\n", h, pIn1->n, (int)(h%pIn1->n));
8387 #endif
8388 h %= pIn1->n;
8389 if( (pIn1->z[h/8] & (1<<(h&7)))==0 ){
8390 VdbeBranchTaken(1, 2);
8391 p->aCounter[SQLITE_STMTSTATUS_FILTER_HIT]++;
8392 goto jump_to_p2;
8393 }else{
8394 p->aCounter[SQLITE_STMTSTATUS_FILTER_MISS]++;
8395 VdbeBranchTaken(0, 2);
8397 break;
8400 /* Opcode: Trace P1 P2 * P4 *
8402 ** Write P4 on the statement trace output if statement tracing is
8403 ** enabled.
8405 ** Operand P1 must be 0x7fffffff and P2 must positive.
8407 /* Opcode: Init P1 P2 P3 P4 *
8408 ** Synopsis: Start at P2
8410 ** Programs contain a single instance of this opcode as the very first
8411 ** opcode.
8413 ** If tracing is enabled (by the sqlite3_trace()) interface, then
8414 ** the UTF-8 string contained in P4 is emitted on the trace callback.
8415 ** Or if P4 is blank, use the string returned by sqlite3_sql().
8417 ** If P2 is not zero, jump to instruction P2.
8419 ** Increment the value of P1 so that OP_Once opcodes will jump the
8420 ** first time they are evaluated for this run.
8422 ** If P3 is not zero, then it is an address to jump to if an SQLITE_CORRUPT
8423 ** error is encountered.
8425 case OP_Trace:
8426 case OP_Init: { /* jump */
8427 int i;
8428 #ifndef SQLITE_OMIT_TRACE
8429 char *zTrace;
8430 #endif
8432 /* If the P4 argument is not NULL, then it must be an SQL comment string.
8433 ** The "--" string is broken up to prevent false-positives with srcck1.c.
8435 ** This assert() provides evidence for:
8436 ** EVIDENCE-OF: R-50676-09860 The callback can compute the same text that
8437 ** would have been returned by the legacy sqlite3_trace() interface by
8438 ** using the X argument when X begins with "--" and invoking
8439 ** sqlite3_expanded_sql(P) otherwise.
8441 assert( pOp->p4.z==0 || strncmp(pOp->p4.z, "-" "- ", 3)==0 );
8443 /* OP_Init is always instruction 0 */
8444 assert( pOp==p->aOp || pOp->opcode==OP_Trace );
8446 #ifndef SQLITE_OMIT_TRACE
8447 if( (db->mTrace & (SQLITE_TRACE_STMT|SQLITE_TRACE_LEGACY))!=0
8448 && p->minWriteFileFormat!=254 /* tag-20220401a */
8449 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
8451 #ifndef SQLITE_OMIT_DEPRECATED
8452 if( db->mTrace & SQLITE_TRACE_LEGACY ){
8453 char *z = sqlite3VdbeExpandSql(p, zTrace);
8454 db->trace.xLegacy(db->pTraceArg, z);
8455 sqlite3_free(z);
8456 }else
8457 #endif
8458 if( db->nVdbeExec>1 ){
8459 char *z = sqlite3MPrintf(db, "-- %s", zTrace);
8460 (void)db->trace.xV2(SQLITE_TRACE_STMT, db->pTraceArg, p, z);
8461 sqlite3DbFree(db, z);
8462 }else{
8463 (void)db->trace.xV2(SQLITE_TRACE_STMT, db->pTraceArg, p, zTrace);
8466 #ifdef SQLITE_USE_FCNTL_TRACE
8467 zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql);
8468 if( zTrace ){
8469 int j;
8470 for(j=0; j<db->nDb; j++){
8471 if( DbMaskTest(p->btreeMask, j)==0 ) continue;
8472 sqlite3_file_control(db, db->aDb[j].zDbSName, SQLITE_FCNTL_TRACE, zTrace);
8475 #endif /* SQLITE_USE_FCNTL_TRACE */
8476 #ifdef SQLITE_DEBUG
8477 if( (db->flags & SQLITE_SqlTrace)!=0
8478 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
8480 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
8482 #endif /* SQLITE_DEBUG */
8483 #endif /* SQLITE_OMIT_TRACE */
8484 assert( pOp->p2>0 );
8485 if( pOp->p1>=sqlite3GlobalConfig.iOnceResetThreshold ){
8486 if( pOp->opcode==OP_Trace ) break;
8487 for(i=1; i<p->nOp; i++){
8488 if( p->aOp[i].opcode==OP_Once ) p->aOp[i].p1 = 0;
8490 pOp->p1 = 0;
8492 pOp->p1++;
8493 p->aCounter[SQLITE_STMTSTATUS_RUN]++;
8494 goto jump_to_p2;
8497 #ifdef SQLITE_ENABLE_CURSOR_HINTS
8498 /* Opcode: CursorHint P1 * * P4 *
8500 ** Provide a hint to cursor P1 that it only needs to return rows that
8501 ** satisfy the Expr in P4. TK_REGISTER terms in the P4 expression refer
8502 ** to values currently held in registers. TK_COLUMN terms in the P4
8503 ** expression refer to columns in the b-tree to which cursor P1 is pointing.
8505 case OP_CursorHint: {
8506 VdbeCursor *pC;
8508 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
8509 assert( pOp->p4type==P4_EXPR );
8510 pC = p->apCsr[pOp->p1];
8511 if( pC ){
8512 assert( pC->eCurType==CURTYPE_BTREE );
8513 sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE,
8514 pOp->p4.pExpr, aMem);
8516 break;
8518 #endif /* SQLITE_ENABLE_CURSOR_HINTS */
8520 #ifdef SQLITE_DEBUG
8521 /* Opcode: Abortable * * * * *
8523 ** Verify that an Abort can happen. Assert if an Abort at this point
8524 ** might cause database corruption. This opcode only appears in debugging
8525 ** builds.
8527 ** An Abort is safe if either there have been no writes, or if there is
8528 ** an active statement journal.
8530 case OP_Abortable: {
8531 sqlite3VdbeAssertAbortable(p);
8532 break;
8534 #endif
8536 #ifdef SQLITE_DEBUG
8537 /* Opcode: ReleaseReg P1 P2 P3 * P5
8538 ** Synopsis: release r[P1@P2] mask P3
8540 ** Release registers from service. Any content that was in the
8541 ** the registers is unreliable after this opcode completes.
8543 ** The registers released will be the P2 registers starting at P1,
8544 ** except if bit ii of P3 set, then do not release register P1+ii.
8545 ** In other words, P3 is a mask of registers to preserve.
8547 ** Releasing a register clears the Mem.pScopyFrom pointer. That means
8548 ** that if the content of the released register was set using OP_SCopy,
8549 ** a change to the value of the source register for the OP_SCopy will no longer
8550 ** generate an assertion fault in sqlite3VdbeMemAboutToChange().
8552 ** If P5 is set, then all released registers have their type set
8553 ** to MEM_Undefined so that any subsequent attempt to read the released
8554 ** register (before it is reinitialized) will generate an assertion fault.
8556 ** P5 ought to be set on every call to this opcode.
8557 ** However, there are places in the code generator will release registers
8558 ** before their are used, under the (valid) assumption that the registers
8559 ** will not be reallocated for some other purpose before they are used and
8560 ** hence are safe to release.
8562 ** This opcode is only available in testing and debugging builds. It is
8563 ** not generated for release builds. The purpose of this opcode is to help
8564 ** validate the generated bytecode. This opcode does not actually contribute
8565 ** to computing an answer.
8567 case OP_ReleaseReg: {
8568 Mem *pMem;
8569 int i;
8570 u32 constMask;
8571 assert( pOp->p1>0 );
8572 assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 );
8573 pMem = &aMem[pOp->p1];
8574 constMask = pOp->p3;
8575 for(i=0; i<pOp->p2; i++, pMem++){
8576 if( i>=32 || (constMask & MASKBIT32(i))==0 ){
8577 pMem->pScopyFrom = 0;
8578 if( i<32 && pOp->p5 ) MemSetTypeFlag(pMem, MEM_Undefined);
8581 break;
8583 #endif
8585 /* Opcode: Noop * * * * *
8587 ** Do nothing. This instruction is often useful as a jump
8588 ** destination.
8591 ** The magic Explain opcode are only inserted when explain==2 (which
8592 ** is to say when the EXPLAIN QUERY PLAN syntax is used.)
8593 ** This opcode records information from the optimizer. It is the
8594 ** the same as a no-op. This opcodesnever appears in a real VM program.
8596 default: { /* This is really OP_Noop, OP_Explain */
8597 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
8599 break;
8602 /*****************************************************************************
8603 ** The cases of the switch statement above this line should all be indented
8604 ** by 6 spaces. But the left-most 6 spaces have been removed to improve the
8605 ** readability. From this point on down, the normal indentation rules are
8606 ** restored.
8607 *****************************************************************************/
8610 #ifdef VDBE_PROFILE
8612 u64 endTime = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime();
8613 if( endTime>start ) pOrigOp->cycles += endTime - start;
8614 pOrigOp->cnt++;
8616 #endif
8618 /* The following code adds nothing to the actual functionality
8619 ** of the program. It is only here for testing and debugging.
8620 ** On the other hand, it does burn CPU cycles every time through
8621 ** the evaluator loop. So we can leave it out when NDEBUG is defined.
8623 #ifndef NDEBUG
8624 assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] );
8626 #ifdef SQLITE_DEBUG
8627 if( db->flags & SQLITE_VdbeTrace ){
8628 u8 opProperty = sqlite3OpcodeProperty[pOrigOp->opcode];
8629 if( rc!=0 ) printf("rc=%d\n",rc);
8630 if( opProperty & (OPFLG_OUT2) ){
8631 registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]);
8633 if( opProperty & OPFLG_OUT3 ){
8634 registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]);
8636 if( opProperty==0xff ){
8637 /* Never happens. This code exists to avoid a harmless linkage
8638 ** warning aboud sqlite3VdbeRegisterDump() being defined but not
8639 ** used. */
8640 sqlite3VdbeRegisterDump(p);
8643 #endif /* SQLITE_DEBUG */
8644 #endif /* NDEBUG */
8645 } /* The end of the for(;;) loop the loops through opcodes */
8647 /* If we reach this point, it means that execution is finished with
8648 ** an error of some kind.
8650 abort_due_to_error:
8651 if( db->mallocFailed ){
8652 rc = SQLITE_NOMEM_BKPT;
8653 }else if( rc==SQLITE_IOERR_CORRUPTFS ){
8654 rc = SQLITE_CORRUPT_BKPT;
8656 assert( rc );
8657 #ifdef SQLITE_DEBUG
8658 if( db->flags & SQLITE_VdbeTrace ){
8659 const char *zTrace = p->zSql;
8660 if( zTrace==0 ){
8661 if( aOp[0].opcode==OP_Trace ){
8662 zTrace = aOp[0].p4.z;
8664 if( zTrace==0 ) zTrace = "???";
8666 printf("ABORT-due-to-error (rc=%d): %s\n", rc, zTrace);
8668 #endif
8669 if( p->zErrMsg==0 && rc!=SQLITE_IOERR_NOMEM ){
8670 sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
8672 p->rc = rc;
8673 sqlite3SystemError(db, rc);
8674 testcase( sqlite3GlobalConfig.xLog!=0 );
8675 sqlite3_log(rc, "statement aborts at %d: [%s] %s",
8676 (int)(pOp - aOp), p->zSql, p->zErrMsg);
8677 if( p->eVdbeState==VDBE_RUN_STATE ) sqlite3VdbeHalt(p);
8678 if( rc==SQLITE_IOERR_NOMEM ) sqlite3OomFault(db);
8679 if( rc==SQLITE_CORRUPT && db->autoCommit==0 ){
8680 db->flags |= SQLITE_CorruptRdOnly;
8682 rc = SQLITE_ERROR;
8683 if( resetSchemaOnFault>0 ){
8684 sqlite3ResetOneSchema(db, resetSchemaOnFault-1);
8687 /* This is the only way out of this procedure. We have to
8688 ** release the mutexes on btrees that were acquired at the
8689 ** top. */
8690 vdbe_return:
8691 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
8692 while( nVmStep>=nProgressLimit && db->xProgress!=0 ){
8693 nProgressLimit += db->nProgressOps;
8694 if( db->xProgress(db->pProgressArg) ){
8695 nProgressLimit = LARGEST_UINT64;
8696 rc = SQLITE_INTERRUPT;
8697 goto abort_due_to_error;
8700 #endif
8701 p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep;
8702 sqlite3VdbeLeave(p);
8703 assert( rc!=SQLITE_OK || nExtraDelete==0
8704 || sqlite3_strlike("DELETE%",p->zSql,0)!=0
8706 return rc;
8708 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
8709 ** is encountered.
8711 too_big:
8712 sqlite3VdbeError(p, "string or blob too big");
8713 rc = SQLITE_TOOBIG;
8714 goto abort_due_to_error;
8716 /* Jump to here if a malloc() fails.
8718 no_mem:
8719 sqlite3OomFault(db);
8720 sqlite3VdbeError(p, "out of memory");
8721 rc = SQLITE_NOMEM_BKPT;
8722 goto abort_due_to_error;
8724 /* Jump to here if the sqlite3_interrupt() API sets the interrupt
8725 ** flag.
8727 abort_due_to_interrupt:
8728 assert( AtomicLoad(&db->u1.isInterrupted) );
8729 rc = SQLITE_INTERRUPT;
8730 goto abort_due_to_error;