4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** The code in this file implements the function that runs the
13 ** bytecode of a prepared statement.
15 ** Various scripts scan this source file in order to generate HTML
16 ** documentation, headers files, or other derived files. The formatting
17 ** of the code in this file is, therefore, important. See other comments
18 ** in this file for details. If in doubt, do not deviate from existing
19 ** commenting and indentation practices when changing or adding code.
21 #include "sqliteInt.h"
25 ** Invoke this macro on memory cells just prior to changing the
26 ** value of the cell. This macro verifies that shallow copies are
27 ** not misused. A shallow copy of a string or blob just copies a
28 ** pointer to the string or blob, not the content. If the original
29 ** is changed while the copy is still in use, the string or blob might
30 ** be changed out from under the copy. This macro verifies that nothing
31 ** like that ever happens.
34 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
36 # define memAboutToChange(P,M)
40 ** The following global variable is incremented every time a cursor
41 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test
42 ** procedures use this information to make sure that indices are
43 ** working correctly. This variable has no function other than to
44 ** help verify the correct operation of the library.
47 int sqlite3_search_count
= 0;
51 ** When this global variable is positive, it gets decremented once before
52 ** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted
53 ** field of the sqlite3 structure is set in order to simulate an interrupt.
55 ** This facility is used for testing purposes only. It does not function
56 ** in an ordinary build.
59 int sqlite3_interrupt_count
= 0;
63 ** The next global variable is incremented each type the OP_Sort opcode
64 ** is executed. The test procedures use this information to make sure that
65 ** sorting is occurring or not occurring at appropriate times. This variable
66 ** has no function other than to help verify the correct operation of the
70 int sqlite3_sort_count
= 0;
74 ** The next global variable records the size of the largest MEM_Blob
75 ** or MEM_Str that has been used by a VDBE opcode. The test procedures
76 ** use this information to make sure that the zero-blob functionality
77 ** is working correctly. This variable has no function other than to
78 ** help verify the correct operation of the library.
81 int sqlite3_max_blobsize
= 0;
82 static void updateMaxBlobsize(Mem
*p
){
83 if( (p
->flags
& (MEM_Str
|MEM_Blob
))!=0 && p
->n
>sqlite3_max_blobsize
){
84 sqlite3_max_blobsize
= p
->n
;
90 ** This macro evaluates to true if either the update hook or the preupdate
91 ** hook are enabled for database connect DB.
93 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
94 # define HAS_UPDATE_HOOK(DB) ((DB)->xPreUpdateCallback||(DB)->xUpdateCallback)
96 # define HAS_UPDATE_HOOK(DB) ((DB)->xUpdateCallback)
100 ** The next global variable is incremented each time the OP_Found opcode
101 ** is executed. This is used to test whether or not the foreign key
102 ** operation implemented using OP_FkIsZero is working. This variable
103 ** has no function other than to help verify the correct operation of the
107 int sqlite3_found_count
= 0;
111 ** Test a register to see if it exceeds the current maximum blob size.
112 ** If it does, record the new maximum blob size.
114 #if defined(SQLITE_TEST) && !defined(SQLITE_UNTESTABLE)
115 # define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P)
117 # define UPDATE_MAX_BLOBSIZE(P)
121 /* This routine provides a convenient place to set a breakpoint during
122 ** tracing with PRAGMA vdbe_trace=on. The breakpoint fires right after
123 ** each opcode is printed. Variables "pc" (program counter) and pOp are
124 ** available to add conditionals to the breakpoint. GDB example:
126 ** break test_trace_breakpoint if pc=22
128 ** Other useful labels for breakpoints include:
129 ** test_addop_breakpoint(pc,pOp)
130 ** sqlite3CorruptError(lineno)
131 ** sqlite3MisuseError(lineno)
132 ** sqlite3CantopenError(lineno)
134 static void test_trace_breakpoint(int pc
, Op
*pOp
, Vdbe
*v
){
141 ** Invoke the VDBE coverage callback, if that callback is defined. This
142 ** feature is used for test suite validation only and does not appear an
143 ** production builds.
145 ** M is the type of branch. I is the direction taken for this instance of
148 ** M: 2 - two-way branch (I=0: fall-thru 1: jump )
149 ** 3 - two-way + NULL (I=0: fall-thru 1: jump 2: NULL )
150 ** 4 - OP_Jump (I=0: jump p1 1: jump p2 2: jump p3)
152 ** In other words, if M is 2, then I is either 0 (for fall-through) or
153 ** 1 (for when the branch is taken). If M is 3, the I is 0 for an
154 ** ordinary fall-through, I is 1 if the branch was taken, and I is 2
155 ** if the result of comparison is NULL. For M=3, I=2 the jump may or
156 ** may not be taken, depending on the SQLITE_JUMPIFNULL flags in p5.
157 ** When M is 4, that means that an OP_Jump is being run. I is 0, 1, or 2
158 ** depending on if the operands are less than, equal, or greater than.
160 ** iSrcLine is the source code line (from the __LINE__ macro) that
161 ** generated the VDBE instruction combined with flag bits. The source
162 ** code line number is in the lower 24 bits of iSrcLine and the upper
163 ** 8 bytes are flags. The lower three bits of the flags indicate
164 ** values for I that should never occur. For example, if the branch is
165 ** always taken, the flags should be 0x05 since the fall-through and
166 ** alternate branch are never taken. If a branch is never taken then
167 ** flags should be 0x06 since only the fall-through approach is allowed.
169 ** Bit 0x08 of the flags indicates an OP_Jump opcode that is only
170 ** interested in equal or not-equal. In other words, I==0 and I==2
171 ** should be treated as equivalent
173 ** Since only a line number is retained, not the filename, this macro
174 ** only works for amalgamation builds. But that is ok, since these macros
175 ** should be no-ops except for special builds used to measure test coverage.
177 #if !defined(SQLITE_VDBE_COVERAGE)
178 # define VdbeBranchTaken(I,M)
180 # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M)
181 static void vdbeTakeBranch(u32 iSrcLine
, u8 I
, u8 M
){
183 assert( I
<=2 ); /* 0: fall through, 1: taken, 2: alternate taken */
184 assert( M
<=4 ); /* 2: two-way branch, 3: three-way branch, 4: OP_Jump */
185 assert( I
<M
); /* I can only be 2 if M is 3 or 4 */
186 /* Transform I from a integer [0,1,2] into a bitmask of [1,2,4] */
188 /* The upper 8 bits of iSrcLine are flags. The lower three bits of
189 ** the flags indicate directions that the branch can never go. If
190 ** a branch really does go in one of those directions, assert right
192 mNever
= iSrcLine
>> 24;
193 assert( (I
& mNever
)==0 );
194 if( sqlite3GlobalConfig
.xVdbeBranch
==0 ) return; /*NO_TEST*/
195 /* Invoke the branch coverage callback with three arguments:
196 ** iSrcLine - the line number of the VdbeCoverage() macro, with
198 ** I - Mask of bits 0x07 indicating which cases are are
199 ** fulfilled by this instance of the jump. 0x01 means
200 ** fall-thru, 0x02 means taken, 0x04 means NULL. Any
201 ** impossible cases (ex: if the comparison is never NULL)
202 ** are filled in automatically so that the coverage
203 ** measurement logic does not flag those impossible cases
204 ** as missed coverage.
205 ** M - Type of jump. Same as M argument above
208 if( M
==2 ) I
|= 0x04;
211 if( (mNever
&0x08)!=0 && (I
&0x05)!=0) I
|= 0x05; /*NO_TEST*/
213 sqlite3GlobalConfig
.xVdbeBranch(sqlite3GlobalConfig
.pVdbeBranchArg
,
214 iSrcLine
&0xffffff, I
, M
);
219 ** An ephemeral string value (signified by the MEM_Ephem flag) contains
220 ** a pointer to a dynamically allocated string where some other entity
221 ** is responsible for deallocating that string. Because the register
222 ** does not control the string, it might be deleted without the register
225 ** This routine converts an ephemeral string into a dynamically allocated
226 ** string that the register itself controls. In other words, it
227 ** converts an MEM_Ephem string into a string with P.z==P.zMalloc.
229 #define Deephemeralize(P) \
230 if( ((P)->flags&MEM_Ephem)!=0 \
231 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
233 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */
234 #define isSorter(x) ((x)->eCurType==CURTYPE_SORTER)
237 ** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL
238 ** if we run out of memory.
240 static VdbeCursor
*allocateCursor(
241 Vdbe
*p
, /* The virtual machine */
242 int iCur
, /* Index of the new VdbeCursor */
243 int nField
, /* Number of fields in the table or index */
244 u8 eCurType
/* Type of the new cursor */
246 /* Find the memory cell that will be used to store the blob of memory
247 ** required for this VdbeCursor structure. It is convenient to use a
248 ** vdbe memory cell to manage the memory allocation required for a
249 ** VdbeCursor structure for the following reasons:
251 ** * Sometimes cursor numbers are used for a couple of different
252 ** purposes in a vdbe program. The different uses might require
253 ** different sized allocations. Memory cells provide growable
256 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
257 ** be freed lazily via the sqlite3_release_memory() API. This
258 ** minimizes the number of malloc calls made by the system.
260 ** The memory cell for cursor 0 is aMem[0]. The rest are allocated from
261 ** the top of the register space. Cursor 1 is at Mem[p->nMem-1].
262 ** Cursor 2 is at Mem[p->nMem-2]. And so forth.
264 Mem
*pMem
= iCur
>0 ? &p
->aMem
[p
->nMem
-iCur
] : p
->aMem
;
269 ROUND8P(sizeof(VdbeCursor
)) + 2*sizeof(u32
)*nField
+
270 (eCurType
==CURTYPE_BTREE
?sqlite3BtreeCursorSize():0);
272 assert( iCur
>=0 && iCur
<p
->nCursor
);
273 if( p
->apCsr
[iCur
] ){ /*OPTIMIZATION-IF-FALSE*/
274 sqlite3VdbeFreeCursorNN(p
, p
->apCsr
[iCur
]);
278 /* There used to be a call to sqlite3VdbeMemClearAndResize() to make sure
279 ** the pMem used to hold space for the cursor has enough storage available
280 ** in pMem->zMalloc. But for the special case of the aMem[] entries used
281 ** to hold cursors, it is faster to in-line the logic. */
282 assert( pMem
->flags
==MEM_Undefined
);
283 assert( (pMem
->flags
& MEM_Dyn
)==0 );
284 assert( pMem
->szMalloc
==0 || pMem
->z
==pMem
->zMalloc
);
285 if( pMem
->szMalloc
<nByte
){
286 if( pMem
->szMalloc
>0 ){
287 sqlite3DbFreeNN(pMem
->db
, pMem
->zMalloc
);
289 pMem
->z
= pMem
->zMalloc
= sqlite3DbMallocRaw(pMem
->db
, nByte
);
290 if( pMem
->zMalloc
==0 ){
294 pMem
->szMalloc
= nByte
;
297 p
->apCsr
[iCur
] = pCx
= (VdbeCursor
*)pMem
->zMalloc
;
298 memset(pCx
, 0, offsetof(VdbeCursor
,pAltCursor
));
299 pCx
->eCurType
= eCurType
;
300 pCx
->nField
= nField
;
301 pCx
->aOffset
= &pCx
->aType
[nField
];
302 if( eCurType
==CURTYPE_BTREE
){
303 pCx
->uc
.pCursor
= (BtCursor
*)
304 &pMem
->z
[ROUND8P(sizeof(VdbeCursor
))+2*sizeof(u32
)*nField
];
305 sqlite3BtreeCursorZero(pCx
->uc
.pCursor
);
311 ** The string in pRec is known to look like an integer and to have a
312 ** floating point value of rValue. Return true and set *piValue to the
313 ** integer value if the string is in range to be an integer. Otherwise,
316 static int alsoAnInt(Mem
*pRec
, double rValue
, i64
*piValue
){
317 i64 iValue
= (double)rValue
;
318 if( sqlite3RealSameAsInt(rValue
,iValue
) ){
322 return 0==sqlite3Atoi64(pRec
->z
, piValue
, pRec
->n
, pRec
->enc
);
326 ** Try to convert a value into a numeric representation if we can
327 ** do so without loss of information. In other words, if the string
328 ** looks like a number, convert it into a number. If it does not
329 ** look like a number, leave it alone.
331 ** If the bTryForInt flag is true, then extra effort is made to give
332 ** an integer representation. Strings that look like floating point
333 ** values but which have no fractional component (example: '48.00')
334 ** will have a MEM_Int representation when bTryForInt is true.
336 ** If bTryForInt is false, then if the input string contains a decimal
337 ** point or exponential notation, the result is only MEM_Real, even
338 ** if there is an exact integer representation of the quantity.
340 static void applyNumericAffinity(Mem
*pRec
, int bTryForInt
){
344 assert( (pRec
->flags
& (MEM_Str
|MEM_Int
|MEM_Real
|MEM_IntReal
))==MEM_Str
);
345 rc
= sqlite3AtoF(pRec
->z
, &rValue
, pRec
->n
, enc
);
347 if( rc
==1 && alsoAnInt(pRec
, rValue
, &pRec
->u
.i
) ){
348 pRec
->flags
|= MEM_Int
;
351 pRec
->flags
|= MEM_Real
;
352 if( bTryForInt
) sqlite3VdbeIntegerAffinity(pRec
);
354 /* TEXT->NUMERIC is many->one. Hence, it is important to invalidate the
355 ** string representation after computing a numeric equivalent, because the
356 ** string representation might not be the canonical representation for the
357 ** numeric value. Ticket [343634942dd54ab57b7024] 2018-01-31. */
358 pRec
->flags
&= ~MEM_Str
;
362 ** Processing is determine by the affinity parameter:
364 ** SQLITE_AFF_INTEGER:
366 ** SQLITE_AFF_NUMERIC:
367 ** Try to convert pRec to an integer representation or a
368 ** floating-point representation if an integer representation
369 ** is not possible. Note that the integer representation is
370 ** always preferred, even if the affinity is REAL, because
371 ** an integer representation is more space efficient on disk.
374 ** Convert pRec to a text representation.
378 ** No-op. pRec is unchanged.
380 static void applyAffinity(
381 Mem
*pRec
, /* The value to apply affinity to */
382 char affinity
, /* The affinity to be applied */
383 u8 enc
/* Use this text encoding */
385 if( affinity
>=SQLITE_AFF_NUMERIC
){
386 assert( affinity
==SQLITE_AFF_INTEGER
|| affinity
==SQLITE_AFF_REAL
387 || affinity
==SQLITE_AFF_NUMERIC
);
388 if( (pRec
->flags
& MEM_Int
)==0 ){ /*OPTIMIZATION-IF-FALSE*/
389 if( (pRec
->flags
& MEM_Real
)==0 ){
390 if( pRec
->flags
& MEM_Str
) applyNumericAffinity(pRec
,1);
392 sqlite3VdbeIntegerAffinity(pRec
);
395 }else if( affinity
==SQLITE_AFF_TEXT
){
396 /* Only attempt the conversion to TEXT if there is an integer or real
397 ** representation (blob and NULL do not get converted) but no string
398 ** representation. It would be harmless to repeat the conversion if
399 ** there is already a string rep, but it is pointless to waste those
401 if( 0==(pRec
->flags
&MEM_Str
) ){ /*OPTIMIZATION-IF-FALSE*/
402 if( (pRec
->flags
&(MEM_Real
|MEM_Int
|MEM_IntReal
)) ){
403 testcase( pRec
->flags
& MEM_Int
);
404 testcase( pRec
->flags
& MEM_Real
);
405 testcase( pRec
->flags
& MEM_IntReal
);
406 sqlite3VdbeMemStringify(pRec
, enc
, 1);
409 pRec
->flags
&= ~(MEM_Real
|MEM_Int
|MEM_IntReal
);
414 ** Try to convert the type of a function argument or a result column
415 ** into a numeric representation. Use either INTEGER or REAL whichever
416 ** is appropriate. But only do the conversion if it is possible without
417 ** loss of information and return the revised type of the argument.
419 int sqlite3_value_numeric_type(sqlite3_value
*pVal
){
420 int eType
= sqlite3_value_type(pVal
);
421 if( eType
==SQLITE_TEXT
){
422 Mem
*pMem
= (Mem
*)pVal
;
423 applyNumericAffinity(pMem
, 0);
424 eType
= sqlite3_value_type(pVal
);
430 ** Exported version of applyAffinity(). This one works on sqlite3_value*,
431 ** not the internal Mem* type.
433 void sqlite3ValueApplyAffinity(
438 applyAffinity((Mem
*)pVal
, affinity
, enc
);
442 ** pMem currently only holds a string type (or maybe a BLOB that we can
443 ** interpret as a string if we want to). Compute its corresponding
444 ** numeric type, if has one. Set the pMem->u.r and pMem->u.i fields
447 static u16 SQLITE_NOINLINE
computeNumericType(Mem
*pMem
){
450 assert( (pMem
->flags
& (MEM_Int
|MEM_Real
|MEM_IntReal
))==0 );
451 assert( (pMem
->flags
& (MEM_Str
|MEM_Blob
))!=0 );
452 if( ExpandBlob(pMem
) ){
456 rc
= sqlite3AtoF(pMem
->z
, &pMem
->u
.r
, pMem
->n
, pMem
->enc
);
458 if( rc
==0 && sqlite3Atoi64(pMem
->z
, &ix
, pMem
->n
, pMem
->enc
)<=1 ){
464 }else if( rc
==1 && sqlite3Atoi64(pMem
->z
, &ix
, pMem
->n
, pMem
->enc
)==0 ){
472 ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or
475 ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags.
476 ** But it does set pMem->u.r and pMem->u.i appropriately.
478 static u16
numericType(Mem
*pMem
){
479 if( pMem
->flags
& (MEM_Int
|MEM_Real
|MEM_IntReal
) ){
480 testcase( pMem
->flags
& MEM_Int
);
481 testcase( pMem
->flags
& MEM_Real
);
482 testcase( pMem
->flags
& MEM_IntReal
);
483 return pMem
->flags
& (MEM_Int
|MEM_Real
|MEM_IntReal
);
485 if( pMem
->flags
& (MEM_Str
|MEM_Blob
) ){
486 testcase( pMem
->flags
& MEM_Str
);
487 testcase( pMem
->flags
& MEM_Blob
);
488 return computeNumericType(pMem
);
495 ** Write a nice string representation of the contents of cell pMem
496 ** into buffer zBuf, length nBuf.
498 void sqlite3VdbeMemPrettyPrint(Mem
*pMem
, StrAccum
*pStr
){
500 static const char *const encnames
[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
506 assert( (f
& (MEM_Static
|MEM_Ephem
))==0 );
507 }else if( f
& MEM_Static
){
509 assert( (f
& (MEM_Dyn
|MEM_Ephem
))==0 );
510 }else if( f
& MEM_Ephem
){
512 assert( (f
& (MEM_Static
|MEM_Dyn
))==0 );
516 sqlite3_str_appendf(pStr
, "%cx[", c
);
517 for(i
=0; i
<25 && i
<pMem
->n
; i
++){
518 sqlite3_str_appendf(pStr
, "%02X", ((int)pMem
->z
[i
] & 0xFF));
520 sqlite3_str_appendf(pStr
, "|");
521 for(i
=0; i
<25 && i
<pMem
->n
; i
++){
523 sqlite3_str_appendchar(pStr
, 1, (z
<32||z
>126)?'.':z
);
525 sqlite3_str_appendf(pStr
,"]");
527 sqlite3_str_appendf(pStr
, "+%dz",pMem
->u
.nZero
);
529 }else if( f
& MEM_Str
){
534 assert( (f
& (MEM_Static
|MEM_Ephem
))==0 );
535 }else if( f
& MEM_Static
){
537 assert( (f
& (MEM_Dyn
|MEM_Ephem
))==0 );
538 }else if( f
& MEM_Ephem
){
540 assert( (f
& (MEM_Static
|MEM_Dyn
))==0 );
544 sqlite3_str_appendf(pStr
, " %c%d[", c
, pMem
->n
);
545 for(j
=0; j
<25 && j
<pMem
->n
; j
++){
547 sqlite3_str_appendchar(pStr
, 1, (c
>=0x20&&c
<=0x7f) ? c
: '.');
549 sqlite3_str_appendf(pStr
, "]%s", encnames
[pMem
->enc
]);
556 ** Print the value of a register for tracing purposes:
558 static void memTracePrint(Mem
*p
){
559 if( p
->flags
& MEM_Undefined
){
560 printf(" undefined");
561 }else if( p
->flags
& MEM_Null
){
562 printf(p
->flags
& MEM_Zero
? " NULL-nochng" : " NULL");
563 }else if( (p
->flags
& (MEM_Int
|MEM_Str
))==(MEM_Int
|MEM_Str
) ){
564 printf(" si:%lld", p
->u
.i
);
565 }else if( (p
->flags
& (MEM_IntReal
))!=0 ){
566 printf(" ir:%lld", p
->u
.i
);
567 }else if( p
->flags
& MEM_Int
){
568 printf(" i:%lld", p
->u
.i
);
569 #ifndef SQLITE_OMIT_FLOATING_POINT
570 }else if( p
->flags
& MEM_Real
){
571 printf(" r:%.17g", p
->u
.r
);
573 }else if( sqlite3VdbeMemIsRowSet(p
) ){
578 sqlite3StrAccumInit(&acc
, 0, zBuf
, sizeof(zBuf
), 0);
579 sqlite3VdbeMemPrettyPrint(p
, &acc
);
580 printf(" %s", sqlite3StrAccumFinish(&acc
));
582 if( p
->flags
& MEM_Subtype
) printf(" subtype=0x%02x", p
->eSubtype
);
584 static void registerTrace(int iReg
, Mem
*p
){
585 printf("R[%d] = ", iReg
);
588 printf(" <== R[%d]", (int)(p
->pScopyFrom
- &p
[-iReg
]));
591 sqlite3VdbeCheckMemInvariants(p
);
593 /**/ void sqlite3PrintMem(Mem
*pMem
){
602 ** Show the values of all registers in the virtual machine. Used for
603 ** interactive debugging.
605 void sqlite3VdbeRegisterDump(Vdbe
*v
){
607 for(i
=1; i
<v
->nMem
; i
++) registerTrace(i
, v
->aMem
+i
);
609 #endif /* SQLITE_DEBUG */
613 # define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M)
615 # define REGISTER_TRACE(R,M)
622 ** hwtime.h contains inline assembler code for implementing
623 ** high-performance timing routines.
631 ** This function is only called from within an assert() expression. It
632 ** checks that the sqlite3.nTransaction variable is correctly set to
633 ** the number of non-transaction savepoints currently in the
634 ** linked list starting at sqlite3.pSavepoint.
638 ** assert( checkSavepointCount(db) );
640 static int checkSavepointCount(sqlite3
*db
){
643 for(p
=db
->pSavepoint
; p
; p
=p
->pNext
) n
++;
644 assert( n
==(db
->nSavepoint
+ db
->isTransactionSavepoint
) );
650 ** Return the register of pOp->p2 after first preparing it to be
651 ** overwritten with an integer value.
653 static SQLITE_NOINLINE Mem
*out2PrereleaseWithClear(Mem
*pOut
){
654 sqlite3VdbeMemSetNull(pOut
);
655 pOut
->flags
= MEM_Int
;
658 static Mem
*out2Prerelease(Vdbe
*p
, VdbeOp
*pOp
){
661 assert( pOp
->p2
<=(p
->nMem
+1 - p
->nCursor
) );
662 pOut
= &p
->aMem
[pOp
->p2
];
663 memAboutToChange(p
, pOut
);
664 if( VdbeMemDynamic(pOut
) ){ /*OPTIMIZATION-IF-FALSE*/
665 return out2PrereleaseWithClear(pOut
);
667 pOut
->flags
= MEM_Int
;
673 ** Compute a bloom filter hash using pOp->p4.i registers from aMem[] beginning
674 ** with pOp->p3. Return the hash.
676 static u64
filterHash(const Mem
*aMem
, const Op
*pOp
){
680 assert( pOp
->p4type
==P4_INT32
);
681 for(i
=pOp
->p3
, mx
=i
+pOp
->p4
.i
; i
<mx
; i
++){
682 const Mem
*p
= &aMem
[i
];
683 if( p
->flags
& (MEM_Int
|MEM_IntReal
) ){
685 }else if( p
->flags
& MEM_Real
){
686 h
+= sqlite3VdbeIntValue(p
);
687 }else if( p
->flags
& (MEM_Str
|MEM_Blob
) ){
689 if( p
->flags
& MEM_Zero
) h
+= p
->u
.nZero
;
696 ** Return the symbolic name for the data type of a pMem
698 static const char *vdbeMemTypeName(Mem
*pMem
){
699 static const char *azTypes
[] = {
700 /* SQLITE_INTEGER */ "INT",
701 /* SQLITE_FLOAT */ "REAL",
702 /* SQLITE_TEXT */ "TEXT",
703 /* SQLITE_BLOB */ "BLOB",
704 /* SQLITE_NULL */ "NULL"
706 return azTypes
[sqlite3_value_type(pMem
)-1];
710 ** Execute as much of a VDBE program as we can.
711 ** This is the core of sqlite3_step().
714 Vdbe
*p
/* The VDBE */
716 Op
*aOp
= p
->aOp
; /* Copy of p->aOp */
717 Op
*pOp
= aOp
; /* Current operation */
718 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
719 Op
*pOrigOp
; /* Value of pOp at the top of the loop */
722 int nExtraDelete
= 0; /* Verifies FORDELETE and AUXDELETE flags */
724 int rc
= SQLITE_OK
; /* Value to return */
725 sqlite3
*db
= p
->db
; /* The database */
726 u8 resetSchemaOnFault
= 0; /* Reset schema after an error if positive */
727 u8 encoding
= ENC(db
); /* The database encoding */
728 int iCompare
= 0; /* Result of last comparison */
729 u64 nVmStep
= 0; /* Number of virtual machine steps */
730 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
731 u64 nProgressLimit
; /* Invoke xProgress() when nVmStep reaches this */
733 Mem
*aMem
= p
->aMem
; /* Copy of p->aMem */
734 Mem
*pIn1
= 0; /* 1st input operand */
735 Mem
*pIn2
= 0; /* 2nd input operand */
736 Mem
*pIn3
= 0; /* 3rd input operand */
737 Mem
*pOut
= 0; /* Output operand */
739 u64 start
; /* CPU clock count at start of opcode */
741 /*** INSERT STACK UNION HERE ***/
743 assert( p
->eVdbeState
==VDBE_RUN_STATE
); /* sqlite3_step() verifies this */
745 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
747 u32 iPrior
= p
->aCounter
[SQLITE_STMTSTATUS_VM_STEP
];
748 assert( 0 < db
->nProgressOps
);
749 nProgressLimit
= db
->nProgressOps
- (iPrior
% db
->nProgressOps
);
751 nProgressLimit
= LARGEST_UINT64
;
754 if( p
->rc
==SQLITE_NOMEM
){
755 /* This happens if a malloc() inside a call to sqlite3_column_text() or
756 ** sqlite3_column_text16() failed. */
759 assert( p
->rc
==SQLITE_OK
|| (p
->rc
&0xff)==SQLITE_BUSY
);
760 testcase( p
->rc
!=SQLITE_OK
);
762 assert( p
->bIsReader
|| p
->readOnly
!=0 );
764 assert( p
->explain
==0 );
766 db
->busyHandler
.nBusy
= 0;
767 if( AtomicLoad(&db
->u1
.isInterrupted
) ) goto abort_due_to_interrupt
;
768 sqlite3VdbeIOTraceSql(p
);
770 sqlite3BeginBenignMalloc();
772 && (p
->db
->flags
& (SQLITE_VdbeListing
|SQLITE_VdbeEQP
|SQLITE_VdbeTrace
))!=0
776 sqlite3VdbePrintSql(p
);
777 if( p
->db
->flags
& SQLITE_VdbeListing
){
778 printf("VDBE Program Listing:\n");
779 for(i
=0; i
<p
->nOp
; i
++){
780 sqlite3VdbePrintOp(stdout
, i
, &aOp
[i
]);
783 if( p
->db
->flags
& SQLITE_VdbeEQP
){
784 for(i
=0; i
<p
->nOp
; i
++){
785 if( aOp
[i
].opcode
==OP_Explain
){
786 if( once
) printf("VDBE Query Plan:\n");
787 printf("%s\n", aOp
[i
].p4
.z
);
792 if( p
->db
->flags
& SQLITE_VdbeTrace
) printf("VDBE Trace:\n");
794 sqlite3EndBenignMalloc();
796 for(pOp
=&aOp
[p
->pc
]; 1; pOp
++){
797 /* Errors are detected by individual opcodes, with an immediate
798 ** jumps to abort_due_to_error. */
799 assert( rc
==SQLITE_OK
);
801 assert( pOp
>=aOp
&& pOp
<&aOp
[p
->nOp
]);
803 start
= sqlite3NProfileCnt
? sqlite3NProfileCnt
: sqlite3Hwtime();
806 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
807 if( p
->anExec
) p
->anExec
[(int)(pOp
-aOp
)]++;
810 /* Only allow tracing if SQLITE_DEBUG is defined.
813 if( db
->flags
& SQLITE_VdbeTrace
){
814 sqlite3VdbePrintOp(stdout
, (int)(pOp
- aOp
), pOp
);
815 test_trace_breakpoint((int)(pOp
- aOp
),pOp
,p
);
820 /* Check to see if we need to simulate an interrupt. This only happens
821 ** if we have a special test build.
824 if( sqlite3_interrupt_count
>0 ){
825 sqlite3_interrupt_count
--;
826 if( sqlite3_interrupt_count
==0 ){
827 sqlite3_interrupt(db
);
832 /* Sanity checking on other operands */
835 u8 opProperty
= sqlite3OpcodeProperty
[pOp
->opcode
];
836 if( (opProperty
& OPFLG_IN1
)!=0 ){
838 assert( pOp
->p1
<=(p
->nMem
+1 - p
->nCursor
) );
839 assert( memIsValid(&aMem
[pOp
->p1
]) );
840 assert( sqlite3VdbeCheckMemInvariants(&aMem
[pOp
->p1
]) );
841 REGISTER_TRACE(pOp
->p1
, &aMem
[pOp
->p1
]);
843 if( (opProperty
& OPFLG_IN2
)!=0 ){
845 assert( pOp
->p2
<=(p
->nMem
+1 - p
->nCursor
) );
846 assert( memIsValid(&aMem
[pOp
->p2
]) );
847 assert( sqlite3VdbeCheckMemInvariants(&aMem
[pOp
->p2
]) );
848 REGISTER_TRACE(pOp
->p2
, &aMem
[pOp
->p2
]);
850 if( (opProperty
& OPFLG_IN3
)!=0 ){
852 assert( pOp
->p3
<=(p
->nMem
+1 - p
->nCursor
) );
853 assert( memIsValid(&aMem
[pOp
->p3
]) );
854 assert( sqlite3VdbeCheckMemInvariants(&aMem
[pOp
->p3
]) );
855 REGISTER_TRACE(pOp
->p3
, &aMem
[pOp
->p3
]);
857 if( (opProperty
& OPFLG_OUT2
)!=0 ){
859 assert( pOp
->p2
<=(p
->nMem
+1 - p
->nCursor
) );
860 memAboutToChange(p
, &aMem
[pOp
->p2
]);
862 if( (opProperty
& OPFLG_OUT3
)!=0 ){
864 assert( pOp
->p3
<=(p
->nMem
+1 - p
->nCursor
) );
865 memAboutToChange(p
, &aMem
[pOp
->p3
]);
869 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
873 switch( pOp
->opcode
){
875 /*****************************************************************************
876 ** What follows is a massive switch statement where each case implements a
877 ** separate instruction in the virtual machine. If we follow the usual
878 ** indentation conventions, each case should be indented by 6 spaces. But
879 ** that is a lot of wasted space on the left margin. So the code within
880 ** the switch statement will break with convention and be flush-left. Another
881 ** big comment (similar to this one) will mark the point in the code where
882 ** we transition back to normal indentation.
884 ** The formatting of each case is important. The makefile for SQLite
885 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this
886 ** file looking for lines that begin with "case OP_". The opcodes.h files
887 ** will be filled with #defines that give unique integer values to each
888 ** opcode and the opcodes.c file is filled with an array of strings where
889 ** each string is the symbolic name for the corresponding opcode. If the
890 ** case statement is followed by a comment of the form "/# same as ... #/"
891 ** that comment is used to determine the particular value of the opcode.
893 ** Other keywords in the comment that follows each case are used to
894 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
895 ** Keywords include: in1, in2, in3, out2, out3. See
896 ** the mkopcodeh.awk script for additional information.
898 ** Documentation about VDBE opcodes is generated by scanning this file
899 ** for lines of that contain "Opcode:". That line and all subsequent
900 ** comment lines are used in the generation of the opcode.html documentation
905 ** Formatting is important to scripts that scan this file.
906 ** Do not deviate from the formatting style currently in use.
908 *****************************************************************************/
910 /* Opcode: Goto * P2 * * *
912 ** An unconditional jump to address P2.
913 ** The next instruction executed will be
914 ** the one at index P2 from the beginning of
917 ** The P1 parameter is not actually used by this opcode. However, it
918 ** is sometimes set to 1 instead of 0 as a hint to the command-line shell
919 ** that this Goto is the bottom of a loop and that the lines from P2 down
920 ** to the current line should be indented for EXPLAIN output.
922 case OP_Goto
: { /* jump */
925 /* In debuggging mode, when the p5 flags is set on an OP_Goto, that
926 ** means we should really jump back to the preceeding OP_ReleaseReg
929 assert( pOp
->p2
< (int)(pOp
- aOp
) );
930 assert( pOp
->p2
> 1 );
931 pOp
= &aOp
[pOp
->p2
- 2];
932 assert( pOp
[1].opcode
==OP_ReleaseReg
);
933 goto check_for_interrupt
;
937 jump_to_p2_and_check_for_interrupt
:
938 pOp
= &aOp
[pOp
->p2
- 1];
940 /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev,
941 ** OP_VNext, or OP_SorterNext) all jump here upon
942 ** completion. Check to see if sqlite3_interrupt() has been called
943 ** or if the progress callback needs to be invoked.
945 ** This code uses unstructured "goto" statements and does not look clean.
946 ** But that is not due to sloppy coding habits. The code is written this
947 ** way for performance, to avoid having to run the interrupt and progress
948 ** checks on every opcode. This helps sqlite3_step() to run about 1.5%
949 ** faster according to "valgrind --tool=cachegrind" */
951 if( AtomicLoad(&db
->u1
.isInterrupted
) ) goto abort_due_to_interrupt
;
952 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
953 /* Call the progress callback if it is configured and the required number
954 ** of VDBE ops have been executed (either since this invocation of
955 ** sqlite3VdbeExec() or since last time the progress callback was called).
956 ** If the progress callback returns non-zero, exit the virtual machine with
957 ** a return code SQLITE_ABORT.
959 while( nVmStep
>=nProgressLimit
&& db
->xProgress
!=0 ){
960 assert( db
->nProgressOps
!=0 );
961 nProgressLimit
+= db
->nProgressOps
;
962 if( db
->xProgress(db
->pProgressArg
) ){
963 nProgressLimit
= LARGEST_UINT64
;
964 rc
= SQLITE_INTERRUPT
;
965 goto abort_due_to_error
;
973 /* Opcode: Gosub P1 P2 * * *
975 ** Write the current address onto register P1
976 ** and then jump to address P2.
978 case OP_Gosub
: { /* jump */
979 assert( pOp
->p1
>0 && pOp
->p1
<=(p
->nMem
+1 - p
->nCursor
) );
980 pIn1
= &aMem
[pOp
->p1
];
981 assert( VdbeMemDynamic(pIn1
)==0 );
982 memAboutToChange(p
, pIn1
);
983 pIn1
->flags
= MEM_Int
;
984 pIn1
->u
.i
= (int)(pOp
-aOp
);
985 REGISTER_TRACE(pOp
->p1
, pIn1
);
986 goto jump_to_p2_and_check_for_interrupt
;
989 /* Opcode: Return P1 P2 P3 * *
991 ** Jump to the address stored in register P1. If P1 is a return address
992 ** register, then this accomplishes a return from a subroutine.
994 ** If P3 is 1, then the jump is only taken if register P1 holds an integer
995 ** values, otherwise execution falls through to the next opcode, and the
996 ** OP_Return becomes a no-op. If P3 is 0, then register P1 must hold an
997 ** integer or else an assert() is raised. P3 should be set to 1 when
998 ** this opcode is used in combination with OP_BeginSubrtn, and set to 0
1001 ** The value in register P1 is unchanged by this opcode.
1003 ** P2 is not used by the byte-code engine. However, if P2 is positive
1004 ** and also less than the current address, then the "EXPLAIN" output
1005 ** formatter in the CLI will indent all opcodes from the P2 opcode up
1006 ** to be not including the current Return. P2 should be the first opcode
1007 ** in the subroutine from which this opcode is returning. Thus the P2
1008 ** value is a byte-code indentation hint. See tag-20220407a in
1009 ** wherecode.c and shell.c.
1011 case OP_Return
: { /* in1 */
1012 pIn1
= &aMem
[pOp
->p1
];
1013 if( pIn1
->flags
& MEM_Int
){
1014 if( pOp
->p3
){ VdbeBranchTaken(1, 2); }
1015 pOp
= &aOp
[pIn1
->u
.i
];
1016 }else if( ALWAYS(pOp
->p3
) ){
1017 VdbeBranchTaken(0, 2);
1022 /* Opcode: InitCoroutine P1 P2 P3 * *
1024 ** Set up register P1 so that it will Yield to the coroutine
1025 ** located at address P3.
1027 ** If P2!=0 then the coroutine implementation immediately follows
1028 ** this opcode. So jump over the coroutine implementation to
1031 ** See also: EndCoroutine
1033 case OP_InitCoroutine
: { /* jump */
1034 assert( pOp
->p1
>0 && pOp
->p1
<=(p
->nMem
+1 - p
->nCursor
) );
1035 assert( pOp
->p2
>=0 && pOp
->p2
<p
->nOp
);
1036 assert( pOp
->p3
>=0 && pOp
->p3
<p
->nOp
);
1037 pOut
= &aMem
[pOp
->p1
];
1038 assert( !VdbeMemDynamic(pOut
) );
1039 pOut
->u
.i
= pOp
->p3
- 1;
1040 pOut
->flags
= MEM_Int
;
1041 if( pOp
->p2
==0 ) break;
1043 /* Most jump operations do a goto to this spot in order to update
1044 ** the pOp pointer. */
1046 assert( pOp
->p2
>0 ); /* There are never any jumps to instruction 0 */
1047 assert( pOp
->p2
<p
->nOp
); /* Jumps must be in range */
1048 pOp
= &aOp
[pOp
->p2
- 1];
1052 /* Opcode: EndCoroutine P1 * * * *
1054 ** The instruction at the address in register P1 is a Yield.
1055 ** Jump to the P2 parameter of that Yield.
1056 ** After the jump, register P1 becomes undefined.
1058 ** See also: InitCoroutine
1060 case OP_EndCoroutine
: { /* in1 */
1062 pIn1
= &aMem
[pOp
->p1
];
1063 assert( pIn1
->flags
==MEM_Int
);
1064 assert( pIn1
->u
.i
>=0 && pIn1
->u
.i
<p
->nOp
);
1065 pCaller
= &aOp
[pIn1
->u
.i
];
1066 assert( pCaller
->opcode
==OP_Yield
);
1067 assert( pCaller
->p2
>=0 && pCaller
->p2
<p
->nOp
);
1068 pOp
= &aOp
[pCaller
->p2
- 1];
1069 pIn1
->flags
= MEM_Undefined
;
1073 /* Opcode: Yield P1 P2 * * *
1075 ** Swap the program counter with the value in register P1. This
1076 ** has the effect of yielding to a coroutine.
1078 ** If the coroutine that is launched by this instruction ends with
1079 ** Yield or Return then continue to the next instruction. But if
1080 ** the coroutine launched by this instruction ends with
1081 ** EndCoroutine, then jump to P2 rather than continuing with the
1082 ** next instruction.
1084 ** See also: InitCoroutine
1086 case OP_Yield
: { /* in1, jump */
1088 pIn1
= &aMem
[pOp
->p1
];
1089 assert( VdbeMemDynamic(pIn1
)==0 );
1090 pIn1
->flags
= MEM_Int
;
1091 pcDest
= (int)pIn1
->u
.i
;
1092 pIn1
->u
.i
= (int)(pOp
- aOp
);
1093 REGISTER_TRACE(pOp
->p1
, pIn1
);
1098 /* Opcode: HaltIfNull P1 P2 P3 P4 P5
1099 ** Synopsis: if r[P3]=null halt
1101 ** Check the value in register P3. If it is NULL then Halt using
1102 ** parameter P1, P2, and P4 as if this were a Halt instruction. If the
1103 ** value in register P3 is not NULL, then this routine is a no-op.
1104 ** The P5 parameter should be 1.
1106 case OP_HaltIfNull
: { /* in3 */
1107 pIn3
= &aMem
[pOp
->p3
];
1109 if( pOp
->p2
==OE_Abort
){ sqlite3VdbeAssertAbortable(p
); }
1111 if( (pIn3
->flags
& MEM_Null
)==0 ) break;
1112 /* Fall through into OP_Halt */
1113 /* no break */ deliberate_fall_through
1116 /* Opcode: Halt P1 P2 * P4 P5
1118 ** Exit immediately. All open cursors, etc are closed
1121 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
1122 ** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0).
1123 ** For errors, it can be some other value. If P1!=0 then P2 will determine
1124 ** whether or not to rollback the current transaction. Do not rollback
1125 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort,
1126 ** then back out all changes that have occurred during this execution of the
1127 ** VDBE, but do not rollback the transaction.
1129 ** If P4 is not null then it is an error message string.
1131 ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string.
1134 ** 1: NOT NULL contraint failed: P4
1135 ** 2: UNIQUE constraint failed: P4
1136 ** 3: CHECK constraint failed: P4
1137 ** 4: FOREIGN KEY constraint failed: P4
1139 ** If P5 is not zero and P4 is NULL, then everything after the ":" is
1142 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of
1143 ** every program. So a jump past the last instruction of the program
1144 ** is the same as executing Halt.
1151 if( pOp
->p2
==OE_Abort
){ sqlite3VdbeAssertAbortable(p
); }
1153 if( p
->pFrame
&& pOp
->p1
==SQLITE_OK
){
1154 /* Halt the sub-program. Return control to the parent frame. */
1156 p
->pFrame
= pFrame
->pParent
;
1158 sqlite3VdbeSetChanges(db
, p
->nChange
);
1159 pcx
= sqlite3VdbeFrameRestore(pFrame
);
1160 if( pOp
->p2
==OE_Ignore
){
1161 /* Instruction pcx is the OP_Program that invoked the sub-program
1162 ** currently being halted. If the p2 instruction of this OP_Halt
1163 ** instruction is set to OE_Ignore, then the sub-program is throwing
1164 ** an IGNORE exception. In this case jump to the address specified
1165 ** as the p2 of the calling OP_Program. */
1166 pcx
= p
->aOp
[pcx
].p2
-1;
1174 p
->errorAction
= (u8
)pOp
->p2
;
1175 assert( pOp
->p5
<=4 );
1178 static const char * const azType
[] = { "NOT NULL", "UNIQUE", "CHECK",
1180 testcase( pOp
->p5
==1 );
1181 testcase( pOp
->p5
==2 );
1182 testcase( pOp
->p5
==3 );
1183 testcase( pOp
->p5
==4 );
1184 sqlite3VdbeError(p
, "%s constraint failed", azType
[pOp
->p5
-1]);
1186 p
->zErrMsg
= sqlite3MPrintf(db
, "%z: %s", p
->zErrMsg
, pOp
->p4
.z
);
1189 sqlite3VdbeError(p
, "%s", pOp
->p4
.z
);
1191 pcx
= (int)(pOp
- aOp
);
1192 sqlite3_log(pOp
->p1
, "abort at %d in [%s]: %s", pcx
, p
->zSql
, p
->zErrMsg
);
1194 rc
= sqlite3VdbeHalt(p
);
1195 assert( rc
==SQLITE_BUSY
|| rc
==SQLITE_OK
|| rc
==SQLITE_ERROR
);
1196 if( rc
==SQLITE_BUSY
){
1197 p
->rc
= SQLITE_BUSY
;
1199 assert( rc
==SQLITE_OK
|| (p
->rc
&0xff)==SQLITE_CONSTRAINT
);
1200 assert( rc
==SQLITE_OK
|| db
->nDeferredCons
>0 || db
->nDeferredImmCons
>0 );
1201 rc
= p
->rc
? SQLITE_ERROR
: SQLITE_DONE
;
1206 /* Opcode: Integer P1 P2 * * *
1207 ** Synopsis: r[P2]=P1
1209 ** The 32-bit integer value P1 is written into register P2.
1211 case OP_Integer
: { /* out2 */
1212 pOut
= out2Prerelease(p
, pOp
);
1213 pOut
->u
.i
= pOp
->p1
;
1217 /* Opcode: Int64 * P2 * P4 *
1218 ** Synopsis: r[P2]=P4
1220 ** P4 is a pointer to a 64-bit integer value.
1221 ** Write that value into register P2.
1223 case OP_Int64
: { /* out2 */
1224 pOut
= out2Prerelease(p
, pOp
);
1225 assert( pOp
->p4
.pI64
!=0 );
1226 pOut
->u
.i
= *pOp
->p4
.pI64
;
1230 #ifndef SQLITE_OMIT_FLOATING_POINT
1231 /* Opcode: Real * P2 * P4 *
1232 ** Synopsis: r[P2]=P4
1234 ** P4 is a pointer to a 64-bit floating point value.
1235 ** Write that value into register P2.
1237 case OP_Real
: { /* same as TK_FLOAT, out2 */
1238 pOut
= out2Prerelease(p
, pOp
);
1239 pOut
->flags
= MEM_Real
;
1240 assert( !sqlite3IsNaN(*pOp
->p4
.pReal
) );
1241 pOut
->u
.r
= *pOp
->p4
.pReal
;
1246 /* Opcode: String8 * P2 * P4 *
1247 ** Synopsis: r[P2]='P4'
1249 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed
1250 ** into a String opcode before it is executed for the first time. During
1251 ** this transformation, the length of string P4 is computed and stored
1252 ** as the P1 parameter.
1254 case OP_String8
: { /* same as TK_STRING, out2 */
1255 assert( pOp
->p4
.z
!=0 );
1256 pOut
= out2Prerelease(p
, pOp
);
1257 pOp
->p1
= sqlite3Strlen30(pOp
->p4
.z
);
1259 #ifndef SQLITE_OMIT_UTF16
1260 if( encoding
!=SQLITE_UTF8
){
1261 rc
= sqlite3VdbeMemSetStr(pOut
, pOp
->p4
.z
, -1, SQLITE_UTF8
, SQLITE_STATIC
);
1262 assert( rc
==SQLITE_OK
|| rc
==SQLITE_TOOBIG
);
1263 if( rc
) goto too_big
;
1264 if( SQLITE_OK
!=sqlite3VdbeChangeEncoding(pOut
, encoding
) ) goto no_mem
;
1265 assert( pOut
->szMalloc
>0 && pOut
->zMalloc
==pOut
->z
);
1266 assert( VdbeMemDynamic(pOut
)==0 );
1268 pOut
->flags
|= MEM_Static
;
1269 if( pOp
->p4type
==P4_DYNAMIC
){
1270 sqlite3DbFree(db
, pOp
->p4
.z
);
1272 pOp
->p4type
= P4_DYNAMIC
;
1273 pOp
->p4
.z
= pOut
->z
;
1277 if( pOp
->p1
>db
->aLimit
[SQLITE_LIMIT_LENGTH
] ){
1280 pOp
->opcode
= OP_String
;
1281 assert( rc
==SQLITE_OK
);
1282 /* Fall through to the next case, OP_String */
1283 /* no break */ deliberate_fall_through
1286 /* Opcode: String P1 P2 P3 P4 P5
1287 ** Synopsis: r[P2]='P4' (len=P1)
1289 ** The string value P4 of length P1 (bytes) is stored in register P2.
1291 ** If P3 is not zero and the content of register P3 is equal to P5, then
1292 ** the datatype of the register P2 is converted to BLOB. The content is
1293 ** the same sequence of bytes, it is merely interpreted as a BLOB instead
1294 ** of a string, as if it had been CAST. In other words:
1296 ** if( P3!=0 and reg[P3]==P5 ) reg[P2] := CAST(reg[P2] as BLOB)
1298 case OP_String
: { /* out2 */
1299 assert( pOp
->p4
.z
!=0 );
1300 pOut
= out2Prerelease(p
, pOp
);
1301 pOut
->flags
= MEM_Str
|MEM_Static
|MEM_Term
;
1302 pOut
->z
= pOp
->p4
.z
;
1304 pOut
->enc
= encoding
;
1305 UPDATE_MAX_BLOBSIZE(pOut
);
1306 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
1308 assert( pOp
->p3
<=(p
->nMem
+1 - p
->nCursor
) );
1309 pIn3
= &aMem
[pOp
->p3
];
1310 assert( pIn3
->flags
& MEM_Int
);
1311 if( pIn3
->u
.i
==pOp
->p5
) pOut
->flags
= MEM_Blob
|MEM_Static
|MEM_Term
;
1317 /* Opcode: BeginSubrtn * P2 * * *
1318 ** Synopsis: r[P2]=NULL
1320 ** Mark the beginning of a subroutine that can be entered in-line
1321 ** or that can be called using OP_Gosub. The subroutine should
1322 ** be terminated by an OP_Return instruction that has a P1 operand that
1323 ** is the same as the P2 operand to this opcode and that has P3 set to 1.
1324 ** If the subroutine is entered in-line, then the OP_Return will simply
1325 ** fall through. But if the subroutine is entered using OP_Gosub, then
1326 ** the OP_Return will jump back to the first instruction after the OP_Gosub.
1328 ** This routine works by loading a NULL into the P2 register. When the
1329 ** return address register contains a NULL, the OP_Return instruction is
1330 ** a no-op that simply falls through to the next instruction (assuming that
1331 ** the OP_Return opcode has a P3 value of 1). Thus if the subroutine is
1332 ** entered in-line, then the OP_Return will cause in-line execution to
1333 ** continue. But if the subroutine is entered via OP_Gosub, then the
1334 ** OP_Return will cause a return to the address following the OP_Gosub.
1336 ** This opcode is identical to OP_Null. It has a different name
1337 ** only to make the byte code easier to read and verify.
1339 /* Opcode: Null P1 P2 P3 * *
1340 ** Synopsis: r[P2..P3]=NULL
1342 ** Write a NULL into registers P2. If P3 greater than P2, then also write
1343 ** NULL into register P3 and every register in between P2 and P3. If P3
1344 ** is less than P2 (typically P3 is zero) then only register P2 is
1347 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that
1348 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on
1351 case OP_BeginSubrtn
:
1352 case OP_Null
: { /* out2 */
1355 pOut
= out2Prerelease(p
, pOp
);
1356 cnt
= pOp
->p3
-pOp
->p2
;
1357 assert( pOp
->p3
<=(p
->nMem
+1 - p
->nCursor
) );
1358 pOut
->flags
= nullFlag
= pOp
->p1
? (MEM_Null
|MEM_Cleared
) : MEM_Null
;
1365 memAboutToChange(p
, pOut
);
1366 sqlite3VdbeMemSetNull(pOut
);
1367 pOut
->flags
= nullFlag
;
1374 /* Opcode: SoftNull P1 * * * *
1375 ** Synopsis: r[P1]=NULL
1377 ** Set register P1 to have the value NULL as seen by the OP_MakeRecord
1378 ** instruction, but do not free any string or blob memory associated with
1379 ** the register, so that if the value was a string or blob that was
1380 ** previously copied using OP_SCopy, the copies will continue to be valid.
1383 assert( pOp
->p1
>0 && pOp
->p1
<=(p
->nMem
+1 - p
->nCursor
) );
1384 pOut
= &aMem
[pOp
->p1
];
1385 pOut
->flags
= (pOut
->flags
&~(MEM_Undefined
|MEM_AffMask
))|MEM_Null
;
1389 /* Opcode: Blob P1 P2 * P4 *
1390 ** Synopsis: r[P2]=P4 (len=P1)
1392 ** P4 points to a blob of data P1 bytes long. Store this
1393 ** blob in register P2. If P4 is a NULL pointer, then construct
1394 ** a zero-filled blob that is P1 bytes long in P2.
1396 case OP_Blob
: { /* out2 */
1397 assert( pOp
->p1
<= SQLITE_MAX_LENGTH
);
1398 pOut
= out2Prerelease(p
, pOp
);
1400 sqlite3VdbeMemSetZeroBlob(pOut
, pOp
->p1
);
1401 if( sqlite3VdbeMemExpandBlob(pOut
) ) goto no_mem
;
1403 sqlite3VdbeMemSetStr(pOut
, pOp
->p4
.z
, pOp
->p1
, 0, 0);
1405 pOut
->enc
= encoding
;
1406 UPDATE_MAX_BLOBSIZE(pOut
);
1410 /* Opcode: Variable P1 P2 * P4 *
1411 ** Synopsis: r[P2]=parameter(P1,P4)
1413 ** Transfer the values of bound parameter P1 into register P2
1415 ** If the parameter is named, then its name appears in P4.
1416 ** The P4 value is used by sqlite3_bind_parameter_name().
1418 case OP_Variable
: { /* out2 */
1419 Mem
*pVar
; /* Value being transferred */
1421 assert( pOp
->p1
>0 && pOp
->p1
<=p
->nVar
);
1422 assert( pOp
->p4
.z
==0 || pOp
->p4
.z
==sqlite3VListNumToName(p
->pVList
,pOp
->p1
) );
1423 pVar
= &p
->aVar
[pOp
->p1
- 1];
1424 if( sqlite3VdbeMemTooBig(pVar
) ){
1427 pOut
= &aMem
[pOp
->p2
];
1428 if( VdbeMemDynamic(pOut
) ) sqlite3VdbeMemSetNull(pOut
);
1429 memcpy(pOut
, pVar
, MEMCELLSIZE
);
1430 pOut
->flags
&= ~(MEM_Dyn
|MEM_Ephem
);
1431 pOut
->flags
|= MEM_Static
|MEM_FromBind
;
1432 UPDATE_MAX_BLOBSIZE(pOut
);
1436 /* Opcode: Move P1 P2 P3 * *
1437 ** Synopsis: r[P2@P3]=r[P1@P3]
1439 ** Move the P3 values in register P1..P1+P3-1 over into
1440 ** registers P2..P2+P3-1. Registers P1..P1+P3-1 are
1441 ** left holding a NULL. It is an error for register ranges
1442 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap. It is an error
1443 ** for P3 to be less than 1.
1446 int n
; /* Number of registers left to copy */
1447 int p1
; /* Register to copy from */
1448 int p2
; /* Register to copy to */
1453 assert( n
>0 && p1
>0 && p2
>0 );
1454 assert( p1
+n
<=p2
|| p2
+n
<=p1
);
1459 assert( pOut
<=&aMem
[(p
->nMem
+1 - p
->nCursor
)] );
1460 assert( pIn1
<=&aMem
[(p
->nMem
+1 - p
->nCursor
)] );
1461 assert( memIsValid(pIn1
) );
1462 memAboutToChange(p
, pOut
);
1463 sqlite3VdbeMemMove(pOut
, pIn1
);
1465 pIn1
->pScopyFrom
= 0;
1467 for(i
=1; i
<p
->nMem
; i
++){
1468 if( aMem
[i
].pScopyFrom
==pIn1
){
1469 aMem
[i
].pScopyFrom
= pOut
;
1474 Deephemeralize(pOut
);
1475 REGISTER_TRACE(p2
++, pOut
);
1482 /* Opcode: Copy P1 P2 P3 * P5
1483 ** Synopsis: r[P2@P3+1]=r[P1@P3+1]
1485 ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
1487 ** If the 0x0002 bit of P5 is set then also clear the MEM_Subtype flag in the
1488 ** destination. The 0x0001 bit of P5 indicates that this Copy opcode cannot
1489 ** be merged. The 0x0001 bit is used by the query planner and does not
1490 ** come into play during query execution.
1492 ** This instruction makes a deep copy of the value. A duplicate
1493 ** is made of any string or blob constant. See also OP_SCopy.
1499 pIn1
= &aMem
[pOp
->p1
];
1500 pOut
= &aMem
[pOp
->p2
];
1501 assert( pOut
!=pIn1
);
1503 memAboutToChange(p
, pOut
);
1504 sqlite3VdbeMemShallowCopy(pOut
, pIn1
, MEM_Ephem
);
1505 Deephemeralize(pOut
);
1506 if( (pOut
->flags
& MEM_Subtype
)!=0 && (pOp
->p5
& 0x0002)!=0 ){
1507 pOut
->flags
&= ~MEM_Subtype
;
1510 pOut
->pScopyFrom
= 0;
1512 REGISTER_TRACE(pOp
->p2
+pOp
->p3
-n
, pOut
);
1513 if( (n
--)==0 ) break;
1520 /* Opcode: SCopy P1 P2 * * *
1521 ** Synopsis: r[P2]=r[P1]
1523 ** Make a shallow copy of register P1 into register P2.
1525 ** This instruction makes a shallow copy of the value. If the value
1526 ** is a string or blob, then the copy is only a pointer to the
1527 ** original and hence if the original changes so will the copy.
1528 ** Worse, if the original is deallocated, the copy becomes invalid.
1529 ** Thus the program must guarantee that the original will not change
1530 ** during the lifetime of the copy. Use OP_Copy to make a complete
1533 case OP_SCopy
: { /* out2 */
1534 pIn1
= &aMem
[pOp
->p1
];
1535 pOut
= &aMem
[pOp
->p2
];
1536 assert( pOut
!=pIn1
);
1537 sqlite3VdbeMemShallowCopy(pOut
, pIn1
, MEM_Ephem
);
1539 pOut
->pScopyFrom
= pIn1
;
1540 pOut
->mScopyFlags
= pIn1
->flags
;
1545 /* Opcode: IntCopy P1 P2 * * *
1546 ** Synopsis: r[P2]=r[P1]
1548 ** Transfer the integer value held in register P1 into register P2.
1550 ** This is an optimized version of SCopy that works only for integer
1553 case OP_IntCopy
: { /* out2 */
1554 pIn1
= &aMem
[pOp
->p1
];
1555 assert( (pIn1
->flags
& MEM_Int
)!=0 );
1556 pOut
= &aMem
[pOp
->p2
];
1557 sqlite3VdbeMemSetInt64(pOut
, pIn1
->u
.i
);
1561 /* Opcode: FkCheck * * * * *
1563 ** Halt with an SQLITE_CONSTRAINT error if there are any unresolved
1564 ** foreign key constraint violations. If there are no foreign key
1565 ** constraint violations, this is a no-op.
1567 ** FK constraint violations are also checked when the prepared statement
1568 ** exits. This opcode is used to raise foreign key constraint errors prior
1569 ** to returning results such as a row change count or the result of a
1570 ** RETURNING clause.
1573 if( (rc
= sqlite3VdbeCheckFk(p
,0))!=SQLITE_OK
){
1574 goto abort_due_to_error
;
1579 /* Opcode: ResultRow P1 P2 * * *
1580 ** Synopsis: output=r[P1@P2]
1582 ** The registers P1 through P1+P2-1 contain a single row of
1583 ** results. This opcode causes the sqlite3_step() call to terminate
1584 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
1585 ** structure to provide access to the r(P1)..r(P1+P2-1) values as
1588 case OP_ResultRow
: {
1589 assert( p
->nResColumn
==pOp
->p2
);
1590 assert( pOp
->p1
>0 || CORRUPT_DB
);
1591 assert( pOp
->p1
+pOp
->p2
<=(p
->nMem
+1 - p
->nCursor
)+1 );
1593 p
->cacheCtr
= (p
->cacheCtr
+ 2)|1;
1594 p
->pResultSet
= &aMem
[pOp
->p1
];
1597 Mem
*pMem
= p
->pResultSet
;
1599 for(i
=0; i
<pOp
->p2
; i
++){
1600 assert( memIsValid(&pMem
[i
]) );
1601 REGISTER_TRACE(pOp
->p1
+i
, &pMem
[i
]);
1602 /* The registers in the result will not be used again when the
1603 ** prepared statement restarts. This is because sqlite3_column()
1604 ** APIs might have caused type conversions of made other changes to
1605 ** the register values. Therefore, we can go ahead and break any
1606 ** OP_SCopy dependencies. */
1607 pMem
[i
].pScopyFrom
= 0;
1611 if( db
->mallocFailed
) goto no_mem
;
1612 if( db
->mTrace
& SQLITE_TRACE_ROW
){
1613 db
->trace
.xV2(SQLITE_TRACE_ROW
, db
->pTraceArg
, p
, 0);
1615 p
->pc
= (int)(pOp
- aOp
) + 1;
1620 /* Opcode: Concat P1 P2 P3 * *
1621 ** Synopsis: r[P3]=r[P2]+r[P1]
1623 ** Add the text in register P1 onto the end of the text in
1624 ** register P2 and store the result in register P3.
1625 ** If either the P1 or P2 text are NULL then store NULL in P3.
1629 ** It is illegal for P1 and P3 to be the same register. Sometimes,
1630 ** if P3 is the same register as P2, the implementation is able
1631 ** to avoid a memcpy().
1633 case OP_Concat
: { /* same as TK_CONCAT, in1, in2, out3 */
1634 i64 nByte
; /* Total size of the output string or blob */
1635 u16 flags1
; /* Initial flags for P1 */
1636 u16 flags2
; /* Initial flags for P2 */
1638 pIn1
= &aMem
[pOp
->p1
];
1639 pIn2
= &aMem
[pOp
->p2
];
1640 pOut
= &aMem
[pOp
->p3
];
1641 testcase( pOut
==pIn2
);
1642 assert( pIn1
!=pOut
);
1643 flags1
= pIn1
->flags
;
1644 testcase( flags1
& MEM_Null
);
1645 testcase( pIn2
->flags
& MEM_Null
);
1646 if( (flags1
| pIn2
->flags
) & MEM_Null
){
1647 sqlite3VdbeMemSetNull(pOut
);
1650 if( (flags1
& (MEM_Str
|MEM_Blob
))==0 ){
1651 if( sqlite3VdbeMemStringify(pIn1
,encoding
,0) ) goto no_mem
;
1652 flags1
= pIn1
->flags
& ~MEM_Str
;
1653 }else if( (flags1
& MEM_Zero
)!=0 ){
1654 if( sqlite3VdbeMemExpandBlob(pIn1
) ) goto no_mem
;
1655 flags1
= pIn1
->flags
& ~MEM_Str
;
1657 flags2
= pIn2
->flags
;
1658 if( (flags2
& (MEM_Str
|MEM_Blob
))==0 ){
1659 if( sqlite3VdbeMemStringify(pIn2
,encoding
,0) ) goto no_mem
;
1660 flags2
= pIn2
->flags
& ~MEM_Str
;
1661 }else if( (flags2
& MEM_Zero
)!=0 ){
1662 if( sqlite3VdbeMemExpandBlob(pIn2
) ) goto no_mem
;
1663 flags2
= pIn2
->flags
& ~MEM_Str
;
1665 nByte
= pIn1
->n
+ pIn2
->n
;
1666 if( nByte
>db
->aLimit
[SQLITE_LIMIT_LENGTH
] ){
1669 if( sqlite3VdbeMemGrow(pOut
, (int)nByte
+2, pOut
==pIn2
) ){
1672 MemSetTypeFlag(pOut
, MEM_Str
);
1674 memcpy(pOut
->z
, pIn2
->z
, pIn2
->n
);
1675 assert( (pIn2
->flags
& MEM_Dyn
) == (flags2
& MEM_Dyn
) );
1676 pIn2
->flags
= flags2
;
1678 memcpy(&pOut
->z
[pIn2
->n
], pIn1
->z
, pIn1
->n
);
1679 assert( (pIn1
->flags
& MEM_Dyn
) == (flags1
& MEM_Dyn
) );
1680 pIn1
->flags
= flags1
;
1681 if( encoding
>SQLITE_UTF8
) nByte
&= ~1;
1683 pOut
->z
[nByte
+1] = 0;
1684 pOut
->flags
|= MEM_Term
;
1685 pOut
->n
= (int)nByte
;
1686 pOut
->enc
= encoding
;
1687 UPDATE_MAX_BLOBSIZE(pOut
);
1691 /* Opcode: Add P1 P2 P3 * *
1692 ** Synopsis: r[P3]=r[P1]+r[P2]
1694 ** Add the value in register P1 to the value in register P2
1695 ** and store the result in register P3.
1696 ** If either input is NULL, the result is NULL.
1698 /* Opcode: Multiply P1 P2 P3 * *
1699 ** Synopsis: r[P3]=r[P1]*r[P2]
1702 ** Multiply the value in register P1 by the value in register P2
1703 ** and store the result in register P3.
1704 ** If either input is NULL, the result is NULL.
1706 /* Opcode: Subtract P1 P2 P3 * *
1707 ** Synopsis: r[P3]=r[P2]-r[P1]
1709 ** Subtract the value in register P1 from the value in register P2
1710 ** and store the result in register P3.
1711 ** If either input is NULL, the result is NULL.
1713 /* Opcode: Divide P1 P2 P3 * *
1714 ** Synopsis: r[P3]=r[P2]/r[P1]
1716 ** Divide the value in register P1 by the value in register P2
1717 ** and store the result in register P3 (P3=P2/P1). If the value in
1718 ** register P1 is zero, then the result is NULL. If either input is
1719 ** NULL, the result is NULL.
1721 /* Opcode: Remainder P1 P2 P3 * *
1722 ** Synopsis: r[P3]=r[P2]%r[P1]
1724 ** Compute the remainder after integer register P2 is divided by
1725 ** register P1 and store the result in register P3.
1726 ** If the value in register P1 is zero the result is NULL.
1727 ** If either operand is NULL, the result is NULL.
1729 case OP_Add
: /* same as TK_PLUS, in1, in2, out3 */
1730 case OP_Subtract
: /* same as TK_MINUS, in1, in2, out3 */
1731 case OP_Multiply
: /* same as TK_STAR, in1, in2, out3 */
1732 case OP_Divide
: /* same as TK_SLASH, in1, in2, out3 */
1733 case OP_Remainder
: { /* same as TK_REM, in1, in2, out3 */
1734 u16 flags
; /* Combined MEM_* flags from both inputs */
1735 u16 type1
; /* Numeric type of left operand */
1736 u16 type2
; /* Numeric type of right operand */
1737 i64 iA
; /* Integer value of left operand */
1738 i64 iB
; /* Integer value of right operand */
1739 double rA
; /* Real value of left operand */
1740 double rB
; /* Real value of right operand */
1742 pIn1
= &aMem
[pOp
->p1
];
1743 type1
= numericType(pIn1
);
1744 pIn2
= &aMem
[pOp
->p2
];
1745 type2
= numericType(pIn2
);
1746 pOut
= &aMem
[pOp
->p3
];
1747 flags
= pIn1
->flags
| pIn2
->flags
;
1748 if( (type1
& type2
& MEM_Int
)!=0 ){
1751 switch( pOp
->opcode
){
1752 case OP_Add
: if( sqlite3AddInt64(&iB
,iA
) ) goto fp_math
; break;
1753 case OP_Subtract
: if( sqlite3SubInt64(&iB
,iA
) ) goto fp_math
; break;
1754 case OP_Multiply
: if( sqlite3MulInt64(&iB
,iA
) ) goto fp_math
; break;
1756 if( iA
==0 ) goto arithmetic_result_is_null
;
1757 if( iA
==-1 && iB
==SMALLEST_INT64
) goto fp_math
;
1762 if( iA
==0 ) goto arithmetic_result_is_null
;
1763 if( iA
==-1 ) iA
= 1;
1769 MemSetTypeFlag(pOut
, MEM_Int
);
1770 }else if( (flags
& MEM_Null
)!=0 ){
1771 goto arithmetic_result_is_null
;
1774 rA
= sqlite3VdbeRealValue(pIn1
);
1775 rB
= sqlite3VdbeRealValue(pIn2
);
1776 switch( pOp
->opcode
){
1777 case OP_Add
: rB
+= rA
; break;
1778 case OP_Subtract
: rB
-= rA
; break;
1779 case OP_Multiply
: rB
*= rA
; break;
1781 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
1782 if( rA
==(double)0 ) goto arithmetic_result_is_null
;
1787 iA
= sqlite3VdbeIntValue(pIn1
);
1788 iB
= sqlite3VdbeIntValue(pIn2
);
1789 if( iA
==0 ) goto arithmetic_result_is_null
;
1790 if( iA
==-1 ) iA
= 1;
1791 rB
= (double)(iB
% iA
);
1795 #ifdef SQLITE_OMIT_FLOATING_POINT
1797 MemSetTypeFlag(pOut
, MEM_Int
);
1799 if( sqlite3IsNaN(rB
) ){
1800 goto arithmetic_result_is_null
;
1803 MemSetTypeFlag(pOut
, MEM_Real
);
1808 arithmetic_result_is_null
:
1809 sqlite3VdbeMemSetNull(pOut
);
1813 /* Opcode: CollSeq P1 * * P4
1815 ** P4 is a pointer to a CollSeq object. If the next call to a user function
1816 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
1817 ** be returned. This is used by the built-in min(), max() and nullif()
1820 ** If P1 is not zero, then it is a register that a subsequent min() or
1821 ** max() aggregate will set to 1 if the current row is not the minimum or
1822 ** maximum. The P1 register is initialized to 0 by this instruction.
1824 ** The interface used by the implementation of the aforementioned functions
1825 ** to retrieve the collation sequence set by this opcode is not available
1826 ** publicly. Only built-in functions have access to this feature.
1829 assert( pOp
->p4type
==P4_COLLSEQ
);
1831 sqlite3VdbeMemSetInt64(&aMem
[pOp
->p1
], 0);
1836 /* Opcode: BitAnd P1 P2 P3 * *
1837 ** Synopsis: r[P3]=r[P1]&r[P2]
1839 ** Take the bit-wise AND of the values in register P1 and P2 and
1840 ** store the result in register P3.
1841 ** If either input is NULL, the result is NULL.
1843 /* Opcode: BitOr P1 P2 P3 * *
1844 ** Synopsis: r[P3]=r[P1]|r[P2]
1846 ** Take the bit-wise OR of the values in register P1 and P2 and
1847 ** store the result in register P3.
1848 ** If either input is NULL, the result is NULL.
1850 /* Opcode: ShiftLeft P1 P2 P3 * *
1851 ** Synopsis: r[P3]=r[P2]<<r[P1]
1853 ** Shift the integer value in register P2 to the left by the
1854 ** number of bits specified by the integer in register P1.
1855 ** Store the result in register P3.
1856 ** If either input is NULL, the result is NULL.
1858 /* Opcode: ShiftRight P1 P2 P3 * *
1859 ** Synopsis: r[P3]=r[P2]>>r[P1]
1861 ** Shift the integer value in register P2 to the right by the
1862 ** number of bits specified by the integer in register P1.
1863 ** Store the result in register P3.
1864 ** If either input is NULL, the result is NULL.
1866 case OP_BitAnd
: /* same as TK_BITAND, in1, in2, out3 */
1867 case OP_BitOr
: /* same as TK_BITOR, in1, in2, out3 */
1868 case OP_ShiftLeft
: /* same as TK_LSHIFT, in1, in2, out3 */
1869 case OP_ShiftRight
: { /* same as TK_RSHIFT, in1, in2, out3 */
1875 pIn1
= &aMem
[pOp
->p1
];
1876 pIn2
= &aMem
[pOp
->p2
];
1877 pOut
= &aMem
[pOp
->p3
];
1878 if( (pIn1
->flags
| pIn2
->flags
) & MEM_Null
){
1879 sqlite3VdbeMemSetNull(pOut
);
1882 iA
= sqlite3VdbeIntValue(pIn2
);
1883 iB
= sqlite3VdbeIntValue(pIn1
);
1885 if( op
==OP_BitAnd
){
1887 }else if( op
==OP_BitOr
){
1890 assert( op
==OP_ShiftRight
|| op
==OP_ShiftLeft
);
1892 /* If shifting by a negative amount, shift in the other direction */
1894 assert( OP_ShiftRight
==OP_ShiftLeft
+1 );
1895 op
= 2*OP_ShiftLeft
+ 1 - op
;
1896 iB
= iB
>(-64) ? -iB
: 64;
1900 iA
= (iA
>=0 || op
==OP_ShiftLeft
) ? 0 : -1;
1902 memcpy(&uA
, &iA
, sizeof(uA
));
1903 if( op
==OP_ShiftLeft
){
1907 /* Sign-extend on a right shift of a negative number */
1908 if( iA
<0 ) uA
|= ((((u64
)0xffffffff)<<32)|0xffffffff) << (64-iB
);
1910 memcpy(&iA
, &uA
, sizeof(iA
));
1914 MemSetTypeFlag(pOut
, MEM_Int
);
1918 /* Opcode: AddImm P1 P2 * * *
1919 ** Synopsis: r[P1]=r[P1]+P2
1921 ** Add the constant P2 to the value in register P1.
1922 ** The result is always an integer.
1924 ** To force any register to be an integer, just add 0.
1926 case OP_AddImm
: { /* in1 */
1927 pIn1
= &aMem
[pOp
->p1
];
1928 memAboutToChange(p
, pIn1
);
1929 sqlite3VdbeMemIntegerify(pIn1
);
1930 pIn1
->u
.i
+= pOp
->p2
;
1934 /* Opcode: MustBeInt P1 P2 * * *
1936 ** Force the value in register P1 to be an integer. If the value
1937 ** in P1 is not an integer and cannot be converted into an integer
1938 ** without data loss, then jump immediately to P2, or if P2==0
1939 ** raise an SQLITE_MISMATCH exception.
1941 case OP_MustBeInt
: { /* jump, in1 */
1942 pIn1
= &aMem
[pOp
->p1
];
1943 if( (pIn1
->flags
& MEM_Int
)==0 ){
1944 applyAffinity(pIn1
, SQLITE_AFF_NUMERIC
, encoding
);
1945 if( (pIn1
->flags
& MEM_Int
)==0 ){
1946 VdbeBranchTaken(1, 2);
1948 rc
= SQLITE_MISMATCH
;
1949 goto abort_due_to_error
;
1955 VdbeBranchTaken(0, 2);
1956 MemSetTypeFlag(pIn1
, MEM_Int
);
1960 #ifndef SQLITE_OMIT_FLOATING_POINT
1961 /* Opcode: RealAffinity P1 * * * *
1963 ** If register P1 holds an integer convert it to a real value.
1965 ** This opcode is used when extracting information from a column that
1966 ** has REAL affinity. Such column values may still be stored as
1967 ** integers, for space efficiency, but after extraction we want them
1968 ** to have only a real value.
1970 case OP_RealAffinity
: { /* in1 */
1971 pIn1
= &aMem
[pOp
->p1
];
1972 if( pIn1
->flags
& (MEM_Int
|MEM_IntReal
) ){
1973 testcase( pIn1
->flags
& MEM_Int
);
1974 testcase( pIn1
->flags
& MEM_IntReal
);
1975 sqlite3VdbeMemRealify(pIn1
);
1976 REGISTER_TRACE(pOp
->p1
, pIn1
);
1982 #ifndef SQLITE_OMIT_CAST
1983 /* Opcode: Cast P1 P2 * * *
1984 ** Synopsis: affinity(r[P1])
1986 ** Force the value in register P1 to be the type defined by P2.
1989 ** <li> P2=='A' → BLOB
1990 ** <li> P2=='B' → TEXT
1991 ** <li> P2=='C' → NUMERIC
1992 ** <li> P2=='D' → INTEGER
1993 ** <li> P2=='E' → REAL
1996 ** A NULL value is not changed by this routine. It remains NULL.
1998 case OP_Cast
: { /* in1 */
1999 assert( pOp
->p2
>=SQLITE_AFF_BLOB
&& pOp
->p2
<=SQLITE_AFF_REAL
);
2000 testcase( pOp
->p2
==SQLITE_AFF_TEXT
);
2001 testcase( pOp
->p2
==SQLITE_AFF_BLOB
);
2002 testcase( pOp
->p2
==SQLITE_AFF_NUMERIC
);
2003 testcase( pOp
->p2
==SQLITE_AFF_INTEGER
);
2004 testcase( pOp
->p2
==SQLITE_AFF_REAL
);
2005 pIn1
= &aMem
[pOp
->p1
];
2006 memAboutToChange(p
, pIn1
);
2007 rc
= ExpandBlob(pIn1
);
2008 if( rc
) goto abort_due_to_error
;
2009 rc
= sqlite3VdbeMemCast(pIn1
, pOp
->p2
, encoding
);
2010 if( rc
) goto abort_due_to_error
;
2011 UPDATE_MAX_BLOBSIZE(pIn1
);
2012 REGISTER_TRACE(pOp
->p1
, pIn1
);
2015 #endif /* SQLITE_OMIT_CAST */
2017 /* Opcode: Eq P1 P2 P3 P4 P5
2018 ** Synopsis: IF r[P3]==r[P1]
2020 ** Compare the values in register P1 and P3. If reg(P3)==reg(P1) then
2021 ** jump to address P2.
2023 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
2024 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
2025 ** to coerce both inputs according to this affinity before the
2026 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
2027 ** affinity is used. Note that the affinity conversions are stored
2028 ** back into the input registers P1 and P3. So this opcode can cause
2029 ** persistent changes to registers P1 and P3.
2031 ** Once any conversions have taken place, and neither value is NULL,
2032 ** the values are compared. If both values are blobs then memcmp() is
2033 ** used to determine the results of the comparison. If both values
2034 ** are text, then the appropriate collating function specified in
2035 ** P4 is used to do the comparison. If P4 is not specified then
2036 ** memcmp() is used to compare text string. If both values are
2037 ** numeric, then a numeric comparison is used. If the two values
2038 ** are of different types, then numbers are considered less than
2039 ** strings and strings are considered less than blobs.
2041 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
2042 ** true or false and is never NULL. If both operands are NULL then the result
2043 ** of comparison is true. If either operand is NULL then the result is false.
2044 ** If neither operand is NULL the result is the same as it would be if
2045 ** the SQLITE_NULLEQ flag were omitted from P5.
2047 ** This opcode saves the result of comparison for use by the new
2050 /* Opcode: Ne P1 P2 P3 P4 P5
2051 ** Synopsis: IF r[P3]!=r[P1]
2053 ** This works just like the Eq opcode except that the jump is taken if
2054 ** the operands in registers P1 and P3 are not equal. See the Eq opcode for
2055 ** additional information.
2057 /* Opcode: Lt P1 P2 P3 P4 P5
2058 ** Synopsis: IF r[P3]<r[P1]
2060 ** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then
2061 ** jump to address P2.
2063 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
2064 ** reg(P3) is NULL then the take the jump. If the SQLITE_JUMPIFNULL
2065 ** bit is clear then fall through if either operand is NULL.
2067 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
2068 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
2069 ** to coerce both inputs according to this affinity before the
2070 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
2071 ** affinity is used. Note that the affinity conversions are stored
2072 ** back into the input registers P1 and P3. So this opcode can cause
2073 ** persistent changes to registers P1 and P3.
2075 ** Once any conversions have taken place, and neither value is NULL,
2076 ** the values are compared. If both values are blobs then memcmp() is
2077 ** used to determine the results of the comparison. If both values
2078 ** are text, then the appropriate collating function specified in
2079 ** P4 is used to do the comparison. If P4 is not specified then
2080 ** memcmp() is used to compare text string. If both values are
2081 ** numeric, then a numeric comparison is used. If the two values
2082 ** are of different types, then numbers are considered less than
2083 ** strings and strings are considered less than blobs.
2085 ** This opcode saves the result of comparison for use by the new
2088 /* Opcode: Le P1 P2 P3 P4 P5
2089 ** Synopsis: IF r[P3]<=r[P1]
2091 ** This works just like the Lt opcode except that the jump is taken if
2092 ** the content of register P3 is less than or equal to the content of
2093 ** register P1. See the Lt opcode for additional information.
2095 /* Opcode: Gt P1 P2 P3 P4 P5
2096 ** Synopsis: IF r[P3]>r[P1]
2098 ** This works just like the Lt opcode except that the jump is taken if
2099 ** the content of register P3 is greater than the content of
2100 ** register P1. See the Lt opcode for additional information.
2102 /* Opcode: Ge P1 P2 P3 P4 P5
2103 ** Synopsis: IF r[P3]>=r[P1]
2105 ** This works just like the Lt opcode except that the jump is taken if
2106 ** the content of register P3 is greater than or equal to the content of
2107 ** register P1. See the Lt opcode for additional information.
2109 case OP_Eq
: /* same as TK_EQ, jump, in1, in3 */
2110 case OP_Ne
: /* same as TK_NE, jump, in1, in3 */
2111 case OP_Lt
: /* same as TK_LT, jump, in1, in3 */
2112 case OP_Le
: /* same as TK_LE, jump, in1, in3 */
2113 case OP_Gt
: /* same as TK_GT, jump, in1, in3 */
2114 case OP_Ge
: { /* same as TK_GE, jump, in1, in3 */
2115 int res
, res2
; /* Result of the comparison of pIn1 against pIn3 */
2116 char affinity
; /* Affinity to use for comparison */
2117 u16 flags1
; /* Copy of initial value of pIn1->flags */
2118 u16 flags3
; /* Copy of initial value of pIn3->flags */
2120 pIn1
= &aMem
[pOp
->p1
];
2121 pIn3
= &aMem
[pOp
->p3
];
2122 flags1
= pIn1
->flags
;
2123 flags3
= pIn3
->flags
;
2124 if( (flags1
& flags3
& MEM_Int
)!=0 ){
2125 assert( (pOp
->p5
& SQLITE_AFF_MASK
)!=SQLITE_AFF_TEXT
|| CORRUPT_DB
);
2126 /* Common case of comparison of two integers */
2127 if( pIn3
->u
.i
> pIn1
->u
.i
){
2128 if( sqlite3aGTb
[pOp
->opcode
] ){
2129 VdbeBranchTaken(1, (pOp
->p5
& SQLITE_NULLEQ
)?2:3);
2133 }else if( pIn3
->u
.i
< pIn1
->u
.i
){
2134 if( sqlite3aLTb
[pOp
->opcode
] ){
2135 VdbeBranchTaken(1, (pOp
->p5
& SQLITE_NULLEQ
)?2:3);
2140 if( sqlite3aEQb
[pOp
->opcode
] ){
2141 VdbeBranchTaken(1, (pOp
->p5
& SQLITE_NULLEQ
)?2:3);
2146 VdbeBranchTaken(0, (pOp
->p5
& SQLITE_NULLEQ
)?2:3);
2149 if( (flags1
| flags3
)&MEM_Null
){
2150 /* One or both operands are NULL */
2151 if( pOp
->p5
& SQLITE_NULLEQ
){
2152 /* If SQLITE_NULLEQ is set (which will only happen if the operator is
2153 ** OP_Eq or OP_Ne) then take the jump or not depending on whether
2154 ** or not both operands are null.
2156 assert( (flags1
& MEM_Cleared
)==0 );
2157 assert( (pOp
->p5
& SQLITE_JUMPIFNULL
)==0 || CORRUPT_DB
);
2158 testcase( (pOp
->p5
& SQLITE_JUMPIFNULL
)!=0 );
2159 if( (flags1
&flags3
&MEM_Null
)!=0
2160 && (flags3
&MEM_Cleared
)==0
2162 res
= 0; /* Operands are equal */
2164 res
= ((flags3
& MEM_Null
) ? -1 : +1); /* Operands are not equal */
2167 /* SQLITE_NULLEQ is clear and at least one operand is NULL,
2168 ** then the result is always NULL.
2169 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
2171 VdbeBranchTaken(2,3);
2172 if( pOp
->p5
& SQLITE_JUMPIFNULL
){
2175 iCompare
= 1; /* Operands are not equal */
2179 /* Neither operand is NULL and we couldn't do the special high-speed
2180 ** integer comparison case. So do a general-case comparison. */
2181 affinity
= pOp
->p5
& SQLITE_AFF_MASK
;
2182 if( affinity
>=SQLITE_AFF_NUMERIC
){
2183 if( (flags1
| flags3
)&MEM_Str
){
2184 if( (flags1
& (MEM_Int
|MEM_IntReal
|MEM_Real
|MEM_Str
))==MEM_Str
){
2185 applyNumericAffinity(pIn1
,0);
2186 testcase( flags3
==pIn3
->flags
);
2187 flags3
= pIn3
->flags
;
2189 if( (flags3
& (MEM_Int
|MEM_IntReal
|MEM_Real
|MEM_Str
))==MEM_Str
){
2190 applyNumericAffinity(pIn3
,0);
2193 }else if( affinity
==SQLITE_AFF_TEXT
){
2194 if( (flags1
& MEM_Str
)==0 && (flags1
&(MEM_Int
|MEM_Real
|MEM_IntReal
))!=0 ){
2195 testcase( pIn1
->flags
& MEM_Int
);
2196 testcase( pIn1
->flags
& MEM_Real
);
2197 testcase( pIn1
->flags
& MEM_IntReal
);
2198 sqlite3VdbeMemStringify(pIn1
, encoding
, 1);
2199 testcase( (flags1
&MEM_Dyn
) != (pIn1
->flags
&MEM_Dyn
) );
2200 flags1
= (pIn1
->flags
& ~MEM_TypeMask
) | (flags1
& MEM_TypeMask
);
2201 if( pIn1
==pIn3
) flags3
= flags1
| MEM_Str
;
2203 if( (flags3
& MEM_Str
)==0 && (flags3
&(MEM_Int
|MEM_Real
|MEM_IntReal
))!=0 ){
2204 testcase( pIn3
->flags
& MEM_Int
);
2205 testcase( pIn3
->flags
& MEM_Real
);
2206 testcase( pIn3
->flags
& MEM_IntReal
);
2207 sqlite3VdbeMemStringify(pIn3
, encoding
, 1);
2208 testcase( (flags3
&MEM_Dyn
) != (pIn3
->flags
&MEM_Dyn
) );
2209 flags3
= (pIn3
->flags
& ~MEM_TypeMask
) | (flags3
& MEM_TypeMask
);
2212 assert( pOp
->p4type
==P4_COLLSEQ
|| pOp
->p4
.pColl
==0 );
2213 res
= sqlite3MemCompare(pIn3
, pIn1
, pOp
->p4
.pColl
);
2216 /* At this point, res is negative, zero, or positive if reg[P1] is
2217 ** less than, equal to, or greater than reg[P3], respectively. Compute
2218 ** the answer to this operator in res2, depending on what the comparison
2219 ** operator actually is. The next block of code depends on the fact
2220 ** that the 6 comparison operators are consecutive integers in this
2221 ** order: NE, EQ, GT, LE, LT, GE */
2222 assert( OP_Eq
==OP_Ne
+1 ); assert( OP_Gt
==OP_Ne
+2 ); assert( OP_Le
==OP_Ne
+3 );
2223 assert( OP_Lt
==OP_Ne
+4 ); assert( OP_Ge
==OP_Ne
+5 );
2225 res2
= sqlite3aLTb
[pOp
->opcode
];
2227 res2
= sqlite3aEQb
[pOp
->opcode
];
2229 res2
= sqlite3aGTb
[pOp
->opcode
];
2233 /* Undo any changes made by applyAffinity() to the input registers. */
2234 assert( (pIn3
->flags
& MEM_Dyn
) == (flags3
& MEM_Dyn
) );
2235 pIn3
->flags
= flags3
;
2236 assert( (pIn1
->flags
& MEM_Dyn
) == (flags1
& MEM_Dyn
) );
2237 pIn1
->flags
= flags1
;
2239 VdbeBranchTaken(res2
!=0, (pOp
->p5
& SQLITE_NULLEQ
)?2:3);
2246 /* Opcode: ElseEq * P2 * * *
2248 ** This opcode must follow an OP_Lt or OP_Gt comparison operator. There
2249 ** can be zero or more OP_ReleaseReg opcodes intervening, but no other
2250 ** opcodes are allowed to occur between this instruction and the previous
2253 ** If result of an OP_Eq comparison on the same two operands as the
2254 ** prior OP_Lt or OP_Gt would have been true, then jump to P2.
2255 ** If the result of an OP_Eq comparison on the two previous
2256 ** operands would have been false or NULL, then fall through.
2258 case OP_ElseEq
: { /* same as TK_ESCAPE, jump */
2261 /* Verify the preconditions of this opcode - that it follows an OP_Lt or
2262 ** OP_Gt with zero or more intervening OP_ReleaseReg opcodes */
2264 for(iAddr
= (int)(pOp
- aOp
) - 1; ALWAYS(iAddr
>=0); iAddr
--){
2265 if( aOp
[iAddr
].opcode
==OP_ReleaseReg
) continue;
2266 assert( aOp
[iAddr
].opcode
==OP_Lt
|| aOp
[iAddr
].opcode
==OP_Gt
);
2269 #endif /* SQLITE_DEBUG */
2270 VdbeBranchTaken(iCompare
==0, 2);
2271 if( iCompare
==0 ) goto jump_to_p2
;
2276 /* Opcode: Permutation * * * P4 *
2278 ** Set the permutation used by the OP_Compare operator in the next
2279 ** instruction. The permutation is stored in the P4 operand.
2281 ** The permutation is only valid for the next opcode which must be
2282 ** an OP_Compare that has the OPFLAG_PERMUTE bit set in P5.
2284 ** The first integer in the P4 integer array is the length of the array
2285 ** and does not become part of the permutation.
2287 case OP_Permutation
: {
2288 assert( pOp
->p4type
==P4_INTARRAY
);
2289 assert( pOp
->p4
.ai
);
2290 assert( pOp
[1].opcode
==OP_Compare
);
2291 assert( pOp
[1].p5
& OPFLAG_PERMUTE
);
2295 /* Opcode: Compare P1 P2 P3 P4 P5
2296 ** Synopsis: r[P1@P3] <-> r[P2@P3]
2298 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
2299 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of
2300 ** the comparison for use by the next OP_Jump instruct.
2302 ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is
2303 ** determined by the most recent OP_Permutation operator. If the
2304 ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential
2307 ** P4 is a KeyInfo structure that defines collating sequences and sort
2308 ** orders for the comparison. The permutation applies to registers
2309 ** only. The KeyInfo elements are used sequentially.
2311 ** The comparison is a sort comparison, so NULLs compare equal,
2312 ** NULLs are less than numbers, numbers are less than strings,
2313 ** and strings are less than blobs.
2315 ** This opcode must be immediately followed by an OP_Jump opcode.
2322 const KeyInfo
*pKeyInfo
;
2324 CollSeq
*pColl
; /* Collating sequence to use on this term */
2325 int bRev
; /* True for DESCENDING sort order */
2326 u32
*aPermute
; /* The permutation */
2328 if( (pOp
->p5
& OPFLAG_PERMUTE
)==0 ){
2332 assert( pOp
[-1].opcode
==OP_Permutation
);
2333 assert( pOp
[-1].p4type
==P4_INTARRAY
);
2334 aPermute
= pOp
[-1].p4
.ai
+ 1;
2335 assert( aPermute
!=0 );
2338 pKeyInfo
= pOp
->p4
.pKeyInfo
;
2340 assert( pKeyInfo
!=0 );
2346 for(k
=0; k
<n
; k
++) if( aPermute
[k
]>(u32
)mx
) mx
= aPermute
[k
];
2347 assert( p1
>0 && p1
+mx
<=(p
->nMem
+1 - p
->nCursor
)+1 );
2348 assert( p2
>0 && p2
+mx
<=(p
->nMem
+1 - p
->nCursor
)+1 );
2350 assert( p1
>0 && p1
+n
<=(p
->nMem
+1 - p
->nCursor
)+1 );
2351 assert( p2
>0 && p2
+n
<=(p
->nMem
+1 - p
->nCursor
)+1 );
2353 #endif /* SQLITE_DEBUG */
2355 idx
= aPermute
? aPermute
[i
] : (u32
)i
;
2356 assert( memIsValid(&aMem
[p1
+idx
]) );
2357 assert( memIsValid(&aMem
[p2
+idx
]) );
2358 REGISTER_TRACE(p1
+idx
, &aMem
[p1
+idx
]);
2359 REGISTER_TRACE(p2
+idx
, &aMem
[p2
+idx
]);
2360 assert( i
<pKeyInfo
->nKeyField
);
2361 pColl
= pKeyInfo
->aColl
[i
];
2362 bRev
= (pKeyInfo
->aSortFlags
[i
] & KEYINFO_ORDER_DESC
);
2363 iCompare
= sqlite3MemCompare(&aMem
[p1
+idx
], &aMem
[p2
+idx
], pColl
);
2365 if( (pKeyInfo
->aSortFlags
[i
] & KEYINFO_ORDER_BIGNULL
)
2366 && ((aMem
[p1
+idx
].flags
& MEM_Null
) || (aMem
[p2
+idx
].flags
& MEM_Null
))
2368 iCompare
= -iCompare
;
2370 if( bRev
) iCompare
= -iCompare
;
2374 assert( pOp
[1].opcode
==OP_Jump
);
2378 /* Opcode: Jump P1 P2 P3 * *
2380 ** Jump to the instruction at address P1, P2, or P3 depending on whether
2381 ** in the most recent OP_Compare instruction the P1 vector was less than
2382 ** equal to, or greater than the P2 vector, respectively.
2384 ** This opcode must immediately follow an OP_Compare opcode.
2386 case OP_Jump
: { /* jump */
2387 assert( pOp
>aOp
&& pOp
[-1].opcode
==OP_Compare
);
2389 VdbeBranchTaken(0,4); pOp
= &aOp
[pOp
->p1
- 1];
2390 }else if( iCompare
==0 ){
2391 VdbeBranchTaken(1,4); pOp
= &aOp
[pOp
->p2
- 1];
2393 VdbeBranchTaken(2,4); pOp
= &aOp
[pOp
->p3
- 1];
2398 /* Opcode: And P1 P2 P3 * *
2399 ** Synopsis: r[P3]=(r[P1] && r[P2])
2401 ** Take the logical AND of the values in registers P1 and P2 and
2402 ** write the result into register P3.
2404 ** If either P1 or P2 is 0 (false) then the result is 0 even if
2405 ** the other input is NULL. A NULL and true or two NULLs give
2408 /* Opcode: Or P1 P2 P3 * *
2409 ** Synopsis: r[P3]=(r[P1] || r[P2])
2411 ** Take the logical OR of the values in register P1 and P2 and
2412 ** store the answer in register P3.
2414 ** If either P1 or P2 is nonzero (true) then the result is 1 (true)
2415 ** even if the other input is NULL. A NULL and false or two NULLs
2416 ** give a NULL output.
2418 case OP_And
: /* same as TK_AND, in1, in2, out3 */
2419 case OP_Or
: { /* same as TK_OR, in1, in2, out3 */
2420 int v1
; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2421 int v2
; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2423 v1
= sqlite3VdbeBooleanValue(&aMem
[pOp
->p1
], 2);
2424 v2
= sqlite3VdbeBooleanValue(&aMem
[pOp
->p2
], 2);
2425 if( pOp
->opcode
==OP_And
){
2426 static const unsigned char and_logic
[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
2427 v1
= and_logic
[v1
*3+v2
];
2429 static const unsigned char or_logic
[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
2430 v1
= or_logic
[v1
*3+v2
];
2432 pOut
= &aMem
[pOp
->p3
];
2434 MemSetTypeFlag(pOut
, MEM_Null
);
2437 MemSetTypeFlag(pOut
, MEM_Int
);
2442 /* Opcode: IsTrue P1 P2 P3 P4 *
2443 ** Synopsis: r[P2] = coalesce(r[P1]==TRUE,P3) ^ P4
2445 ** This opcode implements the IS TRUE, IS FALSE, IS NOT TRUE, and
2446 ** IS NOT FALSE operators.
2448 ** Interpret the value in register P1 as a boolean value. Store that
2449 ** boolean (a 0 or 1) in register P2. Or if the value in register P1 is
2450 ** NULL, then the P3 is stored in register P2. Invert the answer if P4
2453 ** The logic is summarized like this:
2456 ** <li> If P3==0 and P4==0 then r[P2] := r[P1] IS TRUE
2457 ** <li> If P3==1 and P4==1 then r[P2] := r[P1] IS FALSE
2458 ** <li> If P3==0 and P4==1 then r[P2] := r[P1] IS NOT TRUE
2459 ** <li> If P3==1 and P4==0 then r[P2] := r[P1] IS NOT FALSE
2462 case OP_IsTrue
: { /* in1, out2 */
2463 assert( pOp
->p4type
==P4_INT32
);
2464 assert( pOp
->p4
.i
==0 || pOp
->p4
.i
==1 );
2465 assert( pOp
->p3
==0 || pOp
->p3
==1 );
2466 sqlite3VdbeMemSetInt64(&aMem
[pOp
->p2
],
2467 sqlite3VdbeBooleanValue(&aMem
[pOp
->p1
], pOp
->p3
) ^ pOp
->p4
.i
);
2471 /* Opcode: Not P1 P2 * * *
2472 ** Synopsis: r[P2]= !r[P1]
2474 ** Interpret the value in register P1 as a boolean value. Store the
2475 ** boolean complement in register P2. If the value in register P1 is
2476 ** NULL, then a NULL is stored in P2.
2478 case OP_Not
: { /* same as TK_NOT, in1, out2 */
2479 pIn1
= &aMem
[pOp
->p1
];
2480 pOut
= &aMem
[pOp
->p2
];
2481 if( (pIn1
->flags
& MEM_Null
)==0 ){
2482 sqlite3VdbeMemSetInt64(pOut
, !sqlite3VdbeBooleanValue(pIn1
,0));
2484 sqlite3VdbeMemSetNull(pOut
);
2489 /* Opcode: BitNot P1 P2 * * *
2490 ** Synopsis: r[P2]= ~r[P1]
2492 ** Interpret the content of register P1 as an integer. Store the
2493 ** ones-complement of the P1 value into register P2. If P1 holds
2494 ** a NULL then store a NULL in P2.
2496 case OP_BitNot
: { /* same as TK_BITNOT, in1, out2 */
2497 pIn1
= &aMem
[pOp
->p1
];
2498 pOut
= &aMem
[pOp
->p2
];
2499 sqlite3VdbeMemSetNull(pOut
);
2500 if( (pIn1
->flags
& MEM_Null
)==0 ){
2501 pOut
->flags
= MEM_Int
;
2502 pOut
->u
.i
= ~sqlite3VdbeIntValue(pIn1
);
2507 /* Opcode: Once P1 P2 * * *
2509 ** Fall through to the next instruction the first time this opcode is
2510 ** encountered on each invocation of the byte-code program. Jump to P2
2511 ** on the second and all subsequent encounters during the same invocation.
2513 ** Top-level programs determine first invocation by comparing the P1
2514 ** operand against the P1 operand on the OP_Init opcode at the beginning
2515 ** of the program. If the P1 values differ, then fall through and make
2516 ** the P1 of this opcode equal to the P1 of OP_Init. If P1 values are
2517 ** the same then take the jump.
2519 ** For subprograms, there is a bitmask in the VdbeFrame that determines
2520 ** whether or not the jump should be taken. The bitmask is necessary
2521 ** because the self-altering code trick does not work for recursive
2524 case OP_Once
: { /* jump */
2525 u32 iAddr
; /* Address of this instruction */
2526 assert( p
->aOp
[0].opcode
==OP_Init
);
2528 iAddr
= (int)(pOp
- p
->aOp
);
2529 if( (p
->pFrame
->aOnce
[iAddr
/8] & (1<<(iAddr
& 7)))!=0 ){
2530 VdbeBranchTaken(1, 2);
2533 p
->pFrame
->aOnce
[iAddr
/8] |= 1<<(iAddr
& 7);
2535 if( p
->aOp
[0].p1
==pOp
->p1
){
2536 VdbeBranchTaken(1, 2);
2540 VdbeBranchTaken(0, 2);
2541 pOp
->p1
= p
->aOp
[0].p1
;
2545 /* Opcode: If P1 P2 P3 * *
2547 ** Jump to P2 if the value in register P1 is true. The value
2548 ** is considered true if it is numeric and non-zero. If the value
2549 ** in P1 is NULL then take the jump if and only if P3 is non-zero.
2551 case OP_If
: { /* jump, in1 */
2553 c
= sqlite3VdbeBooleanValue(&aMem
[pOp
->p1
], pOp
->p3
);
2554 VdbeBranchTaken(c
!=0, 2);
2555 if( c
) goto jump_to_p2
;
2559 /* Opcode: IfNot P1 P2 P3 * *
2561 ** Jump to P2 if the value in register P1 is False. The value
2562 ** is considered false if it has a numeric value of zero. If the value
2563 ** in P1 is NULL then take the jump if and only if P3 is non-zero.
2565 case OP_IfNot
: { /* jump, in1 */
2567 c
= !sqlite3VdbeBooleanValue(&aMem
[pOp
->p1
], !pOp
->p3
);
2568 VdbeBranchTaken(c
!=0, 2);
2569 if( c
) goto jump_to_p2
;
2573 /* Opcode: IsNull P1 P2 * * *
2574 ** Synopsis: if r[P1]==NULL goto P2
2576 ** Jump to P2 if the value in register P1 is NULL.
2578 case OP_IsNull
: { /* same as TK_ISNULL, jump, in1 */
2579 pIn1
= &aMem
[pOp
->p1
];
2580 VdbeBranchTaken( (pIn1
->flags
& MEM_Null
)!=0, 2);
2581 if( (pIn1
->flags
& MEM_Null
)!=0 ){
2587 /* Opcode: IsNullOrType P1 P2 P3 * *
2588 ** Synopsis: if typeof(r[P1]) IN (P3,5) goto P2
2590 ** Jump to P2 if the value in register P1 is NULL or has a datatype P3.
2591 ** P3 is an integer which should be one of SQLITE_INTEGER, SQLITE_FLOAT,
2592 ** SQLITE_BLOB, SQLITE_NULL, or SQLITE_TEXT.
2594 case OP_IsNullOrType
: { /* jump, in1 */
2596 pIn1
= &aMem
[pOp
->p1
];
2597 doTheJump
= (pIn1
->flags
& MEM_Null
)!=0 || sqlite3_value_type(pIn1
)==pOp
->p3
;
2598 VdbeBranchTaken( doTheJump
, 2);
2599 if( doTheJump
) goto jump_to_p2
;
2603 /* Opcode: ZeroOrNull P1 P2 P3 * *
2604 ** Synopsis: r[P2] = 0 OR NULL
2606 ** If all both registers P1 and P3 are NOT NULL, then store a zero in
2607 ** register P2. If either registers P1 or P3 are NULL then put
2608 ** a NULL in register P2.
2610 case OP_ZeroOrNull
: { /* in1, in2, out2, in3 */
2611 if( (aMem
[pOp
->p1
].flags
& MEM_Null
)!=0
2612 || (aMem
[pOp
->p3
].flags
& MEM_Null
)!=0
2614 sqlite3VdbeMemSetNull(aMem
+ pOp
->p2
);
2616 sqlite3VdbeMemSetInt64(aMem
+ pOp
->p2
, 0);
2621 /* Opcode: NotNull P1 P2 * * *
2622 ** Synopsis: if r[P1]!=NULL goto P2
2624 ** Jump to P2 if the value in register P1 is not NULL.
2626 case OP_NotNull
: { /* same as TK_NOTNULL, jump, in1 */
2627 pIn1
= &aMem
[pOp
->p1
];
2628 VdbeBranchTaken( (pIn1
->flags
& MEM_Null
)==0, 2);
2629 if( (pIn1
->flags
& MEM_Null
)==0 ){
2635 /* Opcode: IfNullRow P1 P2 P3 * *
2636 ** Synopsis: if P1.nullRow then r[P3]=NULL, goto P2
2638 ** Check the cursor P1 to see if it is currently pointing at a NULL row.
2639 ** If it is, then set register P3 to NULL and jump immediately to P2.
2640 ** If P1 is not on a NULL row, then fall through without making any
2643 case OP_IfNullRow
: { /* jump */
2644 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
2645 assert( p
->apCsr
[pOp
->p1
]!=0 );
2646 if( p
->apCsr
[pOp
->p1
]->nullRow
){
2647 sqlite3VdbeMemSetNull(aMem
+ pOp
->p3
);
2653 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
2654 /* Opcode: Offset P1 P2 P3 * *
2655 ** Synopsis: r[P3] = sqlite_offset(P1)
2657 ** Store in register r[P3] the byte offset into the database file that is the
2658 ** start of the payload for the record at which that cursor P1 is currently
2661 ** P2 is the column number for the argument to the sqlite_offset() function.
2662 ** This opcode does not use P2 itself, but the P2 value is used by the
2663 ** code generator. The P1, P2, and P3 operands to this opcode are the
2664 ** same as for OP_Column.
2666 ** This opcode is only available if SQLite is compiled with the
2667 ** -DSQLITE_ENABLE_OFFSET_SQL_FUNC option.
2669 case OP_Offset
: { /* out3 */
2670 VdbeCursor
*pC
; /* The VDBE cursor */
2671 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
2672 pC
= p
->apCsr
[pOp
->p1
];
2673 pOut
= &p
->aMem
[pOp
->p3
];
2674 if( pC
==0 || pC
->eCurType
!=CURTYPE_BTREE
){
2675 sqlite3VdbeMemSetNull(pOut
);
2677 if( pC
->deferredMoveto
){
2678 rc
= sqlite3VdbeFinishMoveto(pC
);
2679 if( rc
) goto abort_due_to_error
;
2681 if( sqlite3BtreeEof(pC
->uc
.pCursor
) ){
2682 sqlite3VdbeMemSetNull(pOut
);
2684 sqlite3VdbeMemSetInt64(pOut
, sqlite3BtreeOffset(pC
->uc
.pCursor
));
2689 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */
2691 /* Opcode: Column P1 P2 P3 P4 P5
2692 ** Synopsis: r[P3]=PX cursor P1 column P2
2694 ** Interpret the data that cursor P1 points to as a structure built using
2695 ** the MakeRecord instruction. (See the MakeRecord opcode for additional
2696 ** information about the format of the data.) Extract the P2-th column
2697 ** from this record. If there are less that (P2+1)
2698 ** values in the record, extract a NULL.
2700 ** The value extracted is stored in register P3.
2702 ** If the record contains fewer than P2 fields, then extract a NULL. Or,
2703 ** if the P4 argument is a P4_MEM use the value of the P4 argument as
2706 ** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 then
2707 ** the result is guaranteed to only be used as the argument of a length()
2708 ** or typeof() function, respectively. The loading of large blobs can be
2709 ** skipped for length() and all content loading can be skipped for typeof().
2712 u32 p2
; /* column number to retrieve */
2713 VdbeCursor
*pC
; /* The VDBE cursor */
2714 BtCursor
*pCrsr
; /* The B-Tree cursor corresponding to pC */
2715 u32
*aOffset
; /* aOffset[i] is offset to start of data for i-th column */
2716 int len
; /* The length of the serialized data for the column */
2717 int i
; /* Loop counter */
2718 Mem
*pDest
; /* Where to write the extracted value */
2719 Mem sMem
; /* For storing the record being decoded */
2720 const u8
*zData
; /* Part of the record being decoded */
2721 const u8
*zHdr
; /* Next unparsed byte of the header */
2722 const u8
*zEndHdr
; /* Pointer to first byte after the header */
2723 u64 offset64
; /* 64-bit offset */
2724 u32 t
; /* A type code from the record header */
2725 Mem
*pReg
; /* PseudoTable input register */
2727 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
2728 assert( pOp
->p3
>0 && pOp
->p3
<=(p
->nMem
+1 - p
->nCursor
) );
2729 pC
= p
->apCsr
[pOp
->p1
];
2734 assert( p2
<(u32
)pC
->nField
2735 || (pC
->eCurType
==CURTYPE_PSEUDO
&& pC
->seekResult
==0) );
2736 aOffset
= pC
->aOffset
;
2737 assert( aOffset
==pC
->aType
+pC
->nField
);
2738 assert( pC
->eCurType
!=CURTYPE_VTAB
);
2739 assert( pC
->eCurType
!=CURTYPE_PSEUDO
|| pC
->nullRow
);
2740 assert( pC
->eCurType
!=CURTYPE_SORTER
);
2742 if( pC
->cacheStatus
!=p
->cacheCtr
){ /*OPTIMIZATION-IF-FALSE*/
2744 if( pC
->eCurType
==CURTYPE_PSEUDO
&& pC
->seekResult
>0 ){
2745 /* For the special case of as pseudo-cursor, the seekResult field
2746 ** identifies the register that holds the record */
2747 pReg
= &aMem
[pC
->seekResult
];
2748 assert( pReg
->flags
& MEM_Blob
);
2749 assert( memIsValid(pReg
) );
2750 pC
->payloadSize
= pC
->szRow
= pReg
->n
;
2751 pC
->aRow
= (u8
*)pReg
->z
;
2753 pDest
= &aMem
[pOp
->p3
];
2754 memAboutToChange(p
, pDest
);
2755 sqlite3VdbeMemSetNull(pDest
);
2759 pCrsr
= pC
->uc
.pCursor
;
2760 if( pC
->deferredMoveto
){
2762 assert( !pC
->isEphemeral
);
2763 if( pC
->ub
.aAltMap
&& (iMap
= pC
->ub
.aAltMap
[1+p2
])>0 ){
2764 pC
= pC
->pAltCursor
;
2766 goto op_column_restart
;
2768 rc
= sqlite3VdbeFinishMoveto(pC
);
2769 if( rc
) goto abort_due_to_error
;
2770 }else if( sqlite3BtreeCursorHasMoved(pCrsr
) ){
2771 rc
= sqlite3VdbeHandleMovedCursor(pC
);
2772 if( rc
) goto abort_due_to_error
;
2773 goto op_column_restart
;
2775 assert( pC
->eCurType
==CURTYPE_BTREE
);
2777 assert( sqlite3BtreeCursorIsValid(pCrsr
) );
2778 pC
->payloadSize
= sqlite3BtreePayloadSize(pCrsr
);
2779 pC
->aRow
= sqlite3BtreePayloadFetch(pCrsr
, &pC
->szRow
);
2780 assert( pC
->szRow
<=pC
->payloadSize
);
2781 assert( pC
->szRow
<=65536 ); /* Maximum page size is 64KiB */
2783 pC
->cacheStatus
= p
->cacheCtr
;
2784 if( (aOffset
[0] = pC
->aRow
[0])<0x80 ){
2787 pC
->iHdrOffset
= sqlite3GetVarint32(pC
->aRow
, aOffset
);
2791 if( pC
->szRow
<aOffset
[0] ){ /*OPTIMIZATION-IF-FALSE*/
2792 /* pC->aRow does not have to hold the entire row, but it does at least
2793 ** need to cover the header of the record. If pC->aRow does not contain
2794 ** the complete header, then set it to zero, forcing the header to be
2795 ** dynamically allocated. */
2799 /* Make sure a corrupt database has not given us an oversize header.
2800 ** Do this now to avoid an oversize memory allocation.
2802 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte
2803 ** types use so much data space that there can only be 4096 and 32 of
2804 ** them, respectively. So the maximum header length results from a
2805 ** 3-byte type for each of the maximum of 32768 columns plus three
2806 ** extra bytes for the header length itself. 32768*3 + 3 = 98307.
2808 if( aOffset
[0] > 98307 || aOffset
[0] > pC
->payloadSize
){
2809 goto op_column_corrupt
;
2812 /* This is an optimization. By skipping over the first few tests
2813 ** (ex: pC->nHdrParsed<=p2) in the next section, we achieve a
2814 ** measurable performance gain.
2816 ** This branch is taken even if aOffset[0]==0. Such a record is never
2817 ** generated by SQLite, and could be considered corruption, but we
2818 ** accept it for historical reasons. When aOffset[0]==0, the code this
2819 ** branch jumps to reads past the end of the record, but never more
2820 ** than a few bytes. Even if the record occurs at the end of the page
2821 ** content area, the "page header" comes after the page content and so
2822 ** this overread is harmless. Similar overreads can occur for a corrupt
2826 assert( pC
->nHdrParsed
<=p2
); /* Conditional skipped */
2827 testcase( aOffset
[0]==0 );
2828 goto op_column_read_header
;
2830 }else if( sqlite3BtreeCursorHasMoved(pC
->uc
.pCursor
) ){
2831 rc
= sqlite3VdbeHandleMovedCursor(pC
);
2832 if( rc
) goto abort_due_to_error
;
2833 goto op_column_restart
;
2836 /* Make sure at least the first p2+1 entries of the header have been
2837 ** parsed and valid information is in aOffset[] and pC->aType[].
2839 if( pC
->nHdrParsed
<=p2
){
2840 /* If there is more header available for parsing in the record, try
2841 ** to extract additional fields up through the p2+1-th field
2843 if( pC
->iHdrOffset
<aOffset
[0] ){
2844 /* Make sure zData points to enough of the record to cover the header. */
2846 memset(&sMem
, 0, sizeof(sMem
));
2847 rc
= sqlite3VdbeMemFromBtreeZeroOffset(pC
->uc
.pCursor
,aOffset
[0],&sMem
);
2848 if( rc
!=SQLITE_OK
) goto abort_due_to_error
;
2849 zData
= (u8
*)sMem
.z
;
2854 /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */
2855 op_column_read_header
:
2857 offset64
= aOffset
[i
];
2858 zHdr
= zData
+ pC
->iHdrOffset
;
2859 zEndHdr
= zData
+ aOffset
[0];
2860 testcase( zHdr
>=zEndHdr
);
2862 if( (pC
->aType
[i
] = t
= zHdr
[0])<0x80 ){
2864 offset64
+= sqlite3VdbeOneByteSerialTypeLen(t
);
2866 zHdr
+= sqlite3GetVarint32(zHdr
, &t
);
2868 offset64
+= sqlite3VdbeSerialTypeLen(t
);
2870 aOffset
[++i
] = (u32
)(offset64
& 0xffffffff);
2871 }while( (u32
)i
<=p2
&& zHdr
<zEndHdr
);
2873 /* The record is corrupt if any of the following are true:
2874 ** (1) the bytes of the header extend past the declared header size
2875 ** (2) the entire header was used but not all data was used
2876 ** (3) the end of the data extends beyond the end of the record.
2878 if( (zHdr
>=zEndHdr
&& (zHdr
>zEndHdr
|| offset64
!=pC
->payloadSize
))
2879 || (offset64
> pC
->payloadSize
)
2881 if( aOffset
[0]==0 ){
2885 if( pC
->aRow
==0 ) sqlite3VdbeMemRelease(&sMem
);
2886 goto op_column_corrupt
;
2891 pC
->iHdrOffset
= (u32
)(zHdr
- zData
);
2892 if( pC
->aRow
==0 ) sqlite3VdbeMemRelease(&sMem
);
2897 /* If after trying to extract new entries from the header, nHdrParsed is
2898 ** still not up to p2, that means that the record has fewer than p2
2899 ** columns. So the result will be either the default value or a NULL.
2901 if( pC
->nHdrParsed
<=p2
){
2902 pDest
= &aMem
[pOp
->p3
];
2903 memAboutToChange(p
, pDest
);
2904 if( pOp
->p4type
==P4_MEM
){
2905 sqlite3VdbeMemShallowCopy(pDest
, pOp
->p4
.pMem
, MEM_Static
);
2907 sqlite3VdbeMemSetNull(pDest
);
2915 /* Extract the content for the p2+1-th column. Control can only
2916 ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are
2919 assert( p2
<pC
->nHdrParsed
);
2920 assert( rc
==SQLITE_OK
);
2921 pDest
= &aMem
[pOp
->p3
];
2922 memAboutToChange(p
, pDest
);
2923 assert( sqlite3VdbeCheckMemInvariants(pDest
) );
2924 if( VdbeMemDynamic(pDest
) ){
2925 sqlite3VdbeMemSetNull(pDest
);
2927 assert( t
==pC
->aType
[p2
] );
2928 if( pC
->szRow
>=aOffset
[p2
+1] ){
2929 /* This is the common case where the desired content fits on the original
2930 ** page - where the content is not on an overflow page */
2931 zData
= pC
->aRow
+ aOffset
[p2
];
2933 sqlite3VdbeSerialGet(zData
, t
, pDest
);
2935 /* If the column value is a string, we need a persistent value, not
2936 ** a MEM_Ephem value. This branch is a fast short-cut that is equivalent
2937 ** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize().
2939 static const u16 aFlag
[] = { MEM_Blob
, MEM_Str
|MEM_Term
};
2940 pDest
->n
= len
= (t
-12)/2;
2941 pDest
->enc
= encoding
;
2942 if( pDest
->szMalloc
< len
+2 ){
2943 if( len
>db
->aLimit
[SQLITE_LIMIT_LENGTH
] ) goto too_big
;
2944 pDest
->flags
= MEM_Null
;
2945 if( sqlite3VdbeMemGrow(pDest
, len
+2, 0) ) goto no_mem
;
2947 pDest
->z
= pDest
->zMalloc
;
2949 memcpy(pDest
->z
, zData
, len
);
2951 pDest
->z
[len
+1] = 0;
2952 pDest
->flags
= aFlag
[t
&1];
2955 pDest
->enc
= encoding
;
2956 /* This branch happens only when content is on overflow pages */
2957 if( ((pOp
->p5
& (OPFLAG_LENGTHARG
|OPFLAG_TYPEOFARG
))!=0
2958 && ((t
>=12 && (t
&1)==0) || (pOp
->p5
& OPFLAG_TYPEOFARG
)!=0))
2959 || (len
= sqlite3VdbeSerialTypeLen(t
))==0
2961 /* Content is irrelevant for
2962 ** 1. the typeof() function,
2963 ** 2. the length(X) function if X is a blob, and
2964 ** 3. if the content length is zero.
2965 ** So we might as well use bogus content rather than reading
2966 ** content from disk.
2968 ** Although sqlite3VdbeSerialGet() may read at most 8 bytes from the
2969 ** buffer passed to it, debugging function VdbeMemPrettyPrint() may
2970 ** read more. Use the global constant sqlite3CtypeMap[] as the array,
2971 ** as that array is 256 bytes long (plenty for VdbeMemPrettyPrint())
2972 ** and it begins with a bunch of zeros.
2974 sqlite3VdbeSerialGet((u8
*)sqlite3CtypeMap
, t
, pDest
);
2976 if( len
>db
->aLimit
[SQLITE_LIMIT_LENGTH
] ) goto too_big
;
2977 rc
= sqlite3VdbeMemFromBtree(pC
->uc
.pCursor
, aOffset
[p2
], len
, pDest
);
2978 if( rc
!=SQLITE_OK
) goto abort_due_to_error
;
2979 sqlite3VdbeSerialGet((const u8
*)pDest
->z
, t
, pDest
);
2980 pDest
->flags
&= ~MEM_Ephem
;
2985 UPDATE_MAX_BLOBSIZE(pDest
);
2986 REGISTER_TRACE(pOp
->p3
, pDest
);
2991 pOp
= &aOp
[aOp
[0].p3
-1];
2994 rc
= SQLITE_CORRUPT_BKPT
;
2995 goto abort_due_to_error
;
2999 /* Opcode: TypeCheck P1 P2 P3 P4 *
3000 ** Synopsis: typecheck(r[P1@P2])
3002 ** Apply affinities to the range of P2 registers beginning with P1.
3003 ** Take the affinities from the Table object in P4. If any value
3004 ** cannot be coerced into the correct type, then raise an error.
3006 ** This opcode is similar to OP_Affinity except that this opcode
3007 ** forces the register type to the Table column type. This is used
3008 ** to implement "strict affinity".
3010 ** GENERATED ALWAYS AS ... STATIC columns are only checked if P3
3011 ** is zero. When P3 is non-zero, no type checking occurs for
3012 ** static generated columns. Virtual columns are computed at query time
3013 ** and so they are never checked.
3018 ** <li> P2 should be the number of non-virtual columns in the
3020 ** <li> Table P4 should be a STRICT table.
3023 ** If any precondition is false, an assertion fault occurs.
3025 case OP_TypeCheck
: {
3030 assert( pOp
->p4type
==P4_TABLE
);
3031 pTab
= pOp
->p4
.pTab
;
3032 assert( pTab
->tabFlags
& TF_Strict
);
3033 assert( pTab
->nNVCol
==pOp
->p2
);
3035 pIn1
= &aMem
[pOp
->p1
];
3036 for(i
=0; i
<pTab
->nCol
; i
++){
3037 if( aCol
[i
].colFlags
& COLFLAG_GENERATED
){
3038 if( aCol
[i
].colFlags
& COLFLAG_VIRTUAL
) continue;
3039 if( pOp
->p3
){ pIn1
++; continue; }
3041 assert( pIn1
< &aMem
[pOp
->p1
+pOp
->p2
] );
3042 applyAffinity(pIn1
, aCol
[i
].affinity
, encoding
);
3043 if( (pIn1
->flags
& MEM_Null
)==0 ){
3044 switch( aCol
[i
].eCType
){
3045 case COLTYPE_BLOB
: {
3046 if( (pIn1
->flags
& MEM_Blob
)==0 ) goto vdbe_type_error
;
3049 case COLTYPE_INTEGER
:
3051 if( (pIn1
->flags
& MEM_Int
)==0 ) goto vdbe_type_error
;
3054 case COLTYPE_TEXT
: {
3055 if( (pIn1
->flags
& MEM_Str
)==0 ) goto vdbe_type_error
;
3058 case COLTYPE_REAL
: {
3059 testcase( (pIn1
->flags
& (MEM_Real
|MEM_IntReal
))==MEM_Real
);
3060 testcase( (pIn1
->flags
& (MEM_Real
|MEM_IntReal
))==MEM_IntReal
);
3061 if( pIn1
->flags
& MEM_Int
){
3062 /* When applying REAL affinity, if the result is still an MEM_Int
3063 ** that will fit in 6 bytes, then change the type to MEM_IntReal
3064 ** so that we keep the high-resolution integer value but know that
3065 ** the type really wants to be REAL. */
3066 testcase( pIn1
->u
.i
==140737488355328LL );
3067 testcase( pIn1
->u
.i
==140737488355327LL );
3068 testcase( pIn1
->u
.i
==-140737488355328LL );
3069 testcase( pIn1
->u
.i
==-140737488355329LL );
3070 if( pIn1
->u
.i
<=140737488355327LL && pIn1
->u
.i
>=-140737488355328LL){
3071 pIn1
->flags
|= MEM_IntReal
;
3072 pIn1
->flags
&= ~MEM_Int
;
3074 pIn1
->u
.r
= (double)pIn1
->u
.i
;
3075 pIn1
->flags
|= MEM_Real
;
3076 pIn1
->flags
&= ~MEM_Int
;
3078 }else if( (pIn1
->flags
& (MEM_Real
|MEM_IntReal
))==0 ){
3079 goto vdbe_type_error
;
3084 /* COLTYPE_ANY. Accept anything. */
3089 REGISTER_TRACE((int)(pIn1
-aMem
), pIn1
);
3092 assert( pIn1
== &aMem
[pOp
->p1
+pOp
->p2
] );
3096 sqlite3VdbeError(p
, "cannot store %s value in %s column %s.%s",
3097 vdbeMemTypeName(pIn1
), sqlite3StdType
[aCol
[i
].eCType
-1],
3098 pTab
->zName
, aCol
[i
].zCnName
);
3099 rc
= SQLITE_CONSTRAINT_DATATYPE
;
3100 goto abort_due_to_error
;
3103 /* Opcode: Affinity P1 P2 * P4 *
3104 ** Synopsis: affinity(r[P1@P2])
3106 ** Apply affinities to a range of P2 registers starting with P1.
3108 ** P4 is a string that is P2 characters long. The N-th character of the
3109 ** string indicates the column affinity that should be used for the N-th
3110 ** memory cell in the range.
3113 const char *zAffinity
; /* The affinity to be applied */
3115 zAffinity
= pOp
->p4
.z
;
3116 assert( zAffinity
!=0 );
3117 assert( pOp
->p2
>0 );
3118 assert( zAffinity
[pOp
->p2
]==0 );
3119 pIn1
= &aMem
[pOp
->p1
];
3120 while( 1 /*exit-by-break*/ ){
3121 assert( pIn1
<= &p
->aMem
[(p
->nMem
+1 - p
->nCursor
)] );
3122 assert( zAffinity
[0]==SQLITE_AFF_NONE
|| memIsValid(pIn1
) );
3123 applyAffinity(pIn1
, zAffinity
[0], encoding
);
3124 if( zAffinity
[0]==SQLITE_AFF_REAL
&& (pIn1
->flags
& MEM_Int
)!=0 ){
3125 /* When applying REAL affinity, if the result is still an MEM_Int
3126 ** that will fit in 6 bytes, then change the type to MEM_IntReal
3127 ** so that we keep the high-resolution integer value but know that
3128 ** the type really wants to be REAL. */
3129 testcase( pIn1
->u
.i
==140737488355328LL );
3130 testcase( pIn1
->u
.i
==140737488355327LL );
3131 testcase( pIn1
->u
.i
==-140737488355328LL );
3132 testcase( pIn1
->u
.i
==-140737488355329LL );
3133 if( pIn1
->u
.i
<=140737488355327LL && pIn1
->u
.i
>=-140737488355328LL ){
3134 pIn1
->flags
|= MEM_IntReal
;
3135 pIn1
->flags
&= ~MEM_Int
;
3137 pIn1
->u
.r
= (double)pIn1
->u
.i
;
3138 pIn1
->flags
|= MEM_Real
;
3139 pIn1
->flags
&= ~MEM_Int
;
3142 REGISTER_TRACE((int)(pIn1
-aMem
), pIn1
);
3144 if( zAffinity
[0]==0 ) break;
3150 /* Opcode: MakeRecord P1 P2 P3 P4 *
3151 ** Synopsis: r[P3]=mkrec(r[P1@P2])
3153 ** Convert P2 registers beginning with P1 into the [record format]
3154 ** use as a data record in a database table or as a key
3155 ** in an index. The OP_Column opcode can decode the record later.
3157 ** P4 may be a string that is P2 characters long. The N-th character of the
3158 ** string indicates the column affinity that should be used for the N-th
3159 ** field of the index key.
3161 ** The mapping from character to affinity is given by the SQLITE_AFF_
3162 ** macros defined in sqliteInt.h.
3164 ** If P4 is NULL then all index fields have the affinity BLOB.
3166 ** The meaning of P5 depends on whether or not the SQLITE_ENABLE_NULL_TRIM
3167 ** compile-time option is enabled:
3169 ** * If SQLITE_ENABLE_NULL_TRIM is enabled, then the P5 is the index
3170 ** of the right-most table that can be null-trimmed.
3172 ** * If SQLITE_ENABLE_NULL_TRIM is omitted, then P5 has the value
3173 ** OPFLAG_NOCHNG_MAGIC if the OP_MakeRecord opcode is allowed to
3174 ** accept no-change records with serial_type 10. This value is
3175 ** only used inside an assert() and does not affect the end result.
3177 case OP_MakeRecord
: {
3178 Mem
*pRec
; /* The new record */
3179 u64 nData
; /* Number of bytes of data space */
3180 int nHdr
; /* Number of bytes of header space */
3181 i64 nByte
; /* Data space required for this record */
3182 i64 nZero
; /* Number of zero bytes at the end of the record */
3183 int nVarint
; /* Number of bytes in a varint */
3184 u32 serial_type
; /* Type field */
3185 Mem
*pData0
; /* First field to be combined into the record */
3186 Mem
*pLast
; /* Last field of the record */
3187 int nField
; /* Number of fields in the record */
3188 char *zAffinity
; /* The affinity string for the record */
3189 u32 len
; /* Length of a field */
3190 u8
*zHdr
; /* Where to write next byte of the header */
3191 u8
*zPayload
; /* Where to write next byte of the payload */
3193 /* Assuming the record contains N fields, the record format looks
3196 ** ------------------------------------------------------------------------
3197 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
3198 ** ------------------------------------------------------------------------
3200 ** Data(0) is taken from register P1. Data(1) comes from register P1+1
3203 ** Each type field is a varint representing the serial type of the
3204 ** corresponding data element (see sqlite3VdbeSerialType()). The
3205 ** hdr-size field is also a varint which is the offset from the beginning
3206 ** of the record to data0.
3208 nData
= 0; /* Number of bytes of data space */
3209 nHdr
= 0; /* Number of bytes of header space */
3210 nZero
= 0; /* Number of zero bytes at the end of the record */
3212 zAffinity
= pOp
->p4
.z
;
3213 assert( nField
>0 && pOp
->p2
>0 && pOp
->p2
+nField
<=(p
->nMem
+1 - p
->nCursor
)+1 );
3214 pData0
= &aMem
[nField
];
3216 pLast
= &pData0
[nField
-1];
3218 /* Identify the output register */
3219 assert( pOp
->p3
<pOp
->p1
|| pOp
->p3
>=pOp
->p1
+pOp
->p2
);
3220 pOut
= &aMem
[pOp
->p3
];
3221 memAboutToChange(p
, pOut
);
3223 /* Apply the requested affinity to all inputs
3225 assert( pData0
<=pLast
);
3229 applyAffinity(pRec
, zAffinity
[0], encoding
);
3230 if( zAffinity
[0]==SQLITE_AFF_REAL
&& (pRec
->flags
& MEM_Int
) ){
3231 pRec
->flags
|= MEM_IntReal
;
3232 pRec
->flags
&= ~(MEM_Int
);
3234 REGISTER_TRACE((int)(pRec
-aMem
), pRec
);
3237 assert( zAffinity
[0]==0 || pRec
<=pLast
);
3238 }while( zAffinity
[0] );
3241 #ifdef SQLITE_ENABLE_NULL_TRIM
3242 /* NULLs can be safely trimmed from the end of the record, as long as
3243 ** as the schema format is 2 or more and none of the omitted columns
3244 ** have a non-NULL default value. Also, the record must be left with
3245 ** at least one field. If P5>0 then it will be one more than the
3246 ** index of the right-most column with a non-NULL default value */
3248 while( (pLast
->flags
& MEM_Null
)!=0 && nField
>pOp
->p5
){
3255 /* Loop through the elements that will make up the record to figure
3256 ** out how much space is required for the new record. After this loop,
3257 ** the Mem.uTemp field of each term should hold the serial-type that will
3258 ** be used for that term in the generated record:
3260 ** Mem.uTemp value type
3261 ** --------------- ---------------
3263 ** 1 1-byte signed integer
3264 ** 2 2-byte signed integer
3265 ** 3 3-byte signed integer
3266 ** 4 4-byte signed integer
3267 ** 5 6-byte signed integer
3268 ** 6 8-byte signed integer
3270 ** 8 Integer constant 0
3271 ** 9 Integer constant 1
3272 ** 10,11 reserved for expansion
3273 ** N>=12 and even BLOB
3274 ** N>=13 and odd text
3276 ** The following additional values are computed:
3277 ** nHdr Number of bytes needed for the record header
3278 ** nData Number of bytes of data space needed for the record
3279 ** nZero Zero bytes at the end of the record
3283 assert( memIsValid(pRec
) );
3284 if( pRec
->flags
& MEM_Null
){
3285 if( pRec
->flags
& MEM_Zero
){
3286 /* Values with MEM_Null and MEM_Zero are created by xColumn virtual
3287 ** table methods that never invoke sqlite3_result_xxxxx() while
3288 ** computing an unchanging column value in an UPDATE statement.
3289 ** Give such values a special internal-use-only serial-type of 10
3290 ** so that they can be passed through to xUpdate and have
3291 ** a true sqlite3_value_nochange(). */
3292 #ifndef SQLITE_ENABLE_NULL_TRIM
3293 assert( pOp
->p5
==OPFLAG_NOCHNG_MAGIC
|| CORRUPT_DB
);
3300 }else if( pRec
->flags
& (MEM_Int
|MEM_IntReal
) ){
3301 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
3304 testcase( pRec
->flags
& MEM_Int
);
3305 testcase( pRec
->flags
& MEM_IntReal
);
3312 testcase( uu
==127 ); testcase( uu
==128 );
3313 testcase( uu
==32767 ); testcase( uu
==32768 );
3314 testcase( uu
==8388607 ); testcase( uu
==8388608 );
3315 testcase( uu
==2147483647 ); testcase( uu
==2147483648LL );
3316 testcase( uu
==140737488355327LL ); testcase( uu
==140737488355328LL );
3318 if( (i
&1)==i
&& p
->minWriteFileFormat
>=4 ){
3319 pRec
->uTemp
= 8+(u32
)uu
;
3324 }else if( uu
<=32767 ){
3327 }else if( uu
<=8388607 ){
3330 }else if( uu
<=2147483647 ){
3333 }else if( uu
<=140737488355327LL ){
3338 if( pRec
->flags
& MEM_IntReal
){
3339 /* If the value is IntReal and is going to take up 8 bytes to store
3340 ** as an integer, then we might as well make it an 8-byte floating
3342 pRec
->u
.r
= (double)pRec
->u
.i
;
3343 pRec
->flags
&= ~MEM_IntReal
;
3344 pRec
->flags
|= MEM_Real
;
3350 }else if( pRec
->flags
& MEM_Real
){
3355 assert( db
->mallocFailed
|| pRec
->flags
&(MEM_Str
|MEM_Blob
) );
3356 assert( pRec
->n
>=0 );
3358 serial_type
= (len
*2) + 12 + ((pRec
->flags
& MEM_Str
)!=0);
3359 if( pRec
->flags
& MEM_Zero
){
3360 serial_type
+= pRec
->u
.nZero
*2;
3362 if( sqlite3VdbeMemExpandBlob(pRec
) ) goto no_mem
;
3363 len
+= pRec
->u
.nZero
;
3365 nZero
+= pRec
->u
.nZero
;
3369 nHdr
+= sqlite3VarintLen(serial_type
);
3370 pRec
->uTemp
= serial_type
;
3372 if( pRec
==pData0
) break;
3376 /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint
3377 ** which determines the total number of bytes in the header. The varint
3378 ** value is the size of the header in bytes including the size varint
3380 testcase( nHdr
==126 );
3381 testcase( nHdr
==127 );
3383 /* The common case */
3386 /* Rare case of a really large header */
3387 nVarint
= sqlite3VarintLen(nHdr
);
3389 if( nVarint
<sqlite3VarintLen(nHdr
) ) nHdr
++;
3393 /* Make sure the output register has a buffer large enough to store
3394 ** the new record. The output register (pOp->p3) is not allowed to
3395 ** be one of the input registers (because the following call to
3396 ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used).
3398 if( nByte
+nZero
<=pOut
->szMalloc
){
3399 /* The output register is already large enough to hold the record.
3400 ** No error checks or buffer enlargement is required */
3401 pOut
->z
= pOut
->zMalloc
;
3403 /* Need to make sure that the output is not too big and then enlarge
3404 ** the output register to hold the full result */
3405 if( nByte
+nZero
>db
->aLimit
[SQLITE_LIMIT_LENGTH
] ){
3408 if( sqlite3VdbeMemClearAndResize(pOut
, (int)nByte
) ){
3412 pOut
->n
= (int)nByte
;
3413 pOut
->flags
= MEM_Blob
;
3415 pOut
->u
.nZero
= nZero
;
3416 pOut
->flags
|= MEM_Zero
;
3418 UPDATE_MAX_BLOBSIZE(pOut
);
3419 zHdr
= (u8
*)pOut
->z
;
3420 zPayload
= zHdr
+ nHdr
;
3422 /* Write the record */
3426 zHdr
+= sqlite3PutVarint(zHdr
,nHdr
);
3428 assert( pData0
<=pLast
);
3430 while( 1 /*exit-by-break*/ ){
3431 serial_type
= pRec
->uTemp
;
3432 /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more
3433 ** additional varints, one per column.
3434 ** EVIDENCE-OF: R-64536-51728 The values for each column in the record
3435 ** immediately follow the header. */
3436 if( serial_type
<=7 ){
3437 *(zHdr
++) = serial_type
;
3438 if( serial_type
==0 ){
3439 /* NULL value. No change in zPayload */
3443 if( serial_type
==7 ){
3444 assert( sizeof(v
)==sizeof(pRec
->u
.r
) );
3445 memcpy(&v
, &pRec
->u
.r
, sizeof(v
));
3446 swapMixedEndianFloat(v
);
3450 len
= i
= sqlite3SmallTypeSizes
[serial_type
];
3452 while( 1 /*exit-by-break*/ ){
3453 zPayload
[--i
] = (u8
)(v
&0xFF);
3459 }else if( serial_type
<0x80 ){
3460 *(zHdr
++) = serial_type
;
3461 if( serial_type
>=14 && pRec
->n
>0 ){
3462 assert( pRec
->z
!=0 );
3463 memcpy(zPayload
, pRec
->z
, pRec
->n
);
3464 zPayload
+= pRec
->n
;
3467 zHdr
+= sqlite3PutVarint(zHdr
, serial_type
);
3469 assert( pRec
->z
!=0 );
3470 memcpy(zPayload
, pRec
->z
, pRec
->n
);
3471 zPayload
+= pRec
->n
;
3474 if( pRec
==pLast
) break;
3477 assert( nHdr
==(int)(zHdr
- (u8
*)pOut
->z
) );
3478 assert( nByte
==(int)(zPayload
- (u8
*)pOut
->z
) );
3480 assert( pOp
->p3
>0 && pOp
->p3
<=(p
->nMem
+1 - p
->nCursor
) );
3481 REGISTER_TRACE(pOp
->p3
, pOut
);
3485 /* Opcode: Count P1 P2 P3 * *
3486 ** Synopsis: r[P2]=count()
3488 ** Store the number of entries (an integer value) in the table or index
3489 ** opened by cursor P1 in register P2.
3491 ** If P3==0, then an exact count is obtained, which involves visiting
3492 ** every btree page of the table. But if P3 is non-zero, an estimate
3493 ** is returned based on the current cursor position.
3495 case OP_Count
: { /* out2 */
3499 assert( p
->apCsr
[pOp
->p1
]->eCurType
==CURTYPE_BTREE
);
3500 pCrsr
= p
->apCsr
[pOp
->p1
]->uc
.pCursor
;
3503 nEntry
= sqlite3BtreeRowCountEst(pCrsr
);
3505 nEntry
= 0; /* Not needed. Only used to silence a warning. */
3506 rc
= sqlite3BtreeCount(db
, pCrsr
, &nEntry
);
3507 if( rc
) goto abort_due_to_error
;
3509 pOut
= out2Prerelease(p
, pOp
);
3511 goto check_for_interrupt
;
3514 /* Opcode: Savepoint P1 * * P4 *
3516 ** Open, release or rollback the savepoint named by parameter P4, depending
3517 ** on the value of P1. To open a new savepoint set P1==0 (SAVEPOINT_BEGIN).
3518 ** To release (commit) an existing savepoint set P1==1 (SAVEPOINT_RELEASE).
3519 ** To rollback an existing savepoint set P1==2 (SAVEPOINT_ROLLBACK).
3521 case OP_Savepoint
: {
3522 int p1
; /* Value of P1 operand */
3523 char *zName
; /* Name of savepoint */
3526 Savepoint
*pSavepoint
;
3534 /* Assert that the p1 parameter is valid. Also that if there is no open
3535 ** transaction, then there cannot be any savepoints.
3537 assert( db
->pSavepoint
==0 || db
->autoCommit
==0 );
3538 assert( p1
==SAVEPOINT_BEGIN
||p1
==SAVEPOINT_RELEASE
||p1
==SAVEPOINT_ROLLBACK
);
3539 assert( db
->pSavepoint
|| db
->isTransactionSavepoint
==0 );
3540 assert( checkSavepointCount(db
) );
3541 assert( p
->bIsReader
);
3543 if( p1
==SAVEPOINT_BEGIN
){
3544 if( db
->nVdbeWrite
>0 ){
3545 /* A new savepoint cannot be created if there are active write
3546 ** statements (i.e. open read/write incremental blob handles).
3548 sqlite3VdbeError(p
, "cannot open savepoint - SQL statements in progress");
3551 nName
= sqlite3Strlen30(zName
);
3553 #ifndef SQLITE_OMIT_VIRTUALTABLE
3554 /* This call is Ok even if this savepoint is actually a transaction
3555 ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
3556 ** If this is a transaction savepoint being opened, it is guaranteed
3557 ** that the db->aVTrans[] array is empty. */
3558 assert( db
->autoCommit
==0 || db
->nVTrans
==0 );
3559 rc
= sqlite3VtabSavepoint(db
, SAVEPOINT_BEGIN
,
3560 db
->nStatement
+db
->nSavepoint
);
3561 if( rc
!=SQLITE_OK
) goto abort_due_to_error
;
3564 /* Create a new savepoint structure. */
3565 pNew
= sqlite3DbMallocRawNN(db
, sizeof(Savepoint
)+nName
+1);
3567 pNew
->zName
= (char *)&pNew
[1];
3568 memcpy(pNew
->zName
, zName
, nName
+1);
3570 /* If there is no open transaction, then mark this as a special
3571 ** "transaction savepoint". */
3572 if( db
->autoCommit
){
3574 db
->isTransactionSavepoint
= 1;
3579 /* Link the new savepoint into the database handle's list. */
3580 pNew
->pNext
= db
->pSavepoint
;
3581 db
->pSavepoint
= pNew
;
3582 pNew
->nDeferredCons
= db
->nDeferredCons
;
3583 pNew
->nDeferredImmCons
= db
->nDeferredImmCons
;
3587 assert( p1
==SAVEPOINT_RELEASE
|| p1
==SAVEPOINT_ROLLBACK
);
3590 /* Find the named savepoint. If there is no such savepoint, then an
3591 ** an error is returned to the user. */
3593 pSavepoint
= db
->pSavepoint
;
3594 pSavepoint
&& sqlite3StrICmp(pSavepoint
->zName
, zName
);
3595 pSavepoint
= pSavepoint
->pNext
3600 sqlite3VdbeError(p
, "no such savepoint: %s", zName
);
3602 }else if( db
->nVdbeWrite
>0 && p1
==SAVEPOINT_RELEASE
){
3603 /* It is not possible to release (commit) a savepoint if there are
3604 ** active write statements.
3606 sqlite3VdbeError(p
, "cannot release savepoint - "
3607 "SQL statements in progress");
3611 /* Determine whether or not this is a transaction savepoint. If so,
3612 ** and this is a RELEASE command, then the current transaction
3615 int isTransaction
= pSavepoint
->pNext
==0 && db
->isTransactionSavepoint
;
3616 if( isTransaction
&& p1
==SAVEPOINT_RELEASE
){
3617 if( (rc
= sqlite3VdbeCheckFk(p
, 1))!=SQLITE_OK
){
3621 if( sqlite3VdbeHalt(p
)==SQLITE_BUSY
){
3622 p
->pc
= (int)(pOp
- aOp
);
3624 p
->rc
= rc
= SQLITE_BUSY
;
3631 db
->isTransactionSavepoint
= 0;
3635 iSavepoint
= db
->nSavepoint
- iSavepoint
- 1;
3636 if( p1
==SAVEPOINT_ROLLBACK
){
3637 isSchemaChange
= (db
->mDbFlags
& DBFLAG_SchemaChange
)!=0;
3638 for(ii
=0; ii
<db
->nDb
; ii
++){
3639 rc
= sqlite3BtreeTripAllCursors(db
->aDb
[ii
].pBt
,
3640 SQLITE_ABORT_ROLLBACK
,
3642 if( rc
!=SQLITE_OK
) goto abort_due_to_error
;
3645 assert( p1
==SAVEPOINT_RELEASE
);
3648 for(ii
=0; ii
<db
->nDb
; ii
++){
3649 rc
= sqlite3BtreeSavepoint(db
->aDb
[ii
].pBt
, p1
, iSavepoint
);
3650 if( rc
!=SQLITE_OK
){
3651 goto abort_due_to_error
;
3654 if( isSchemaChange
){
3655 sqlite3ExpirePreparedStatements(db
, 0);
3656 sqlite3ResetAllSchemasOfConnection(db
);
3657 db
->mDbFlags
|= DBFLAG_SchemaChange
;
3660 if( rc
) goto abort_due_to_error
;
3662 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
3663 ** savepoints nested inside of the savepoint being operated on. */
3664 while( db
->pSavepoint
!=pSavepoint
){
3665 pTmp
= db
->pSavepoint
;
3666 db
->pSavepoint
= pTmp
->pNext
;
3667 sqlite3DbFree(db
, pTmp
);
3671 /* If it is a RELEASE, then destroy the savepoint being operated on
3672 ** too. If it is a ROLLBACK TO, then set the number of deferred
3673 ** constraint violations present in the database to the value stored
3674 ** when the savepoint was created. */
3675 if( p1
==SAVEPOINT_RELEASE
){
3676 assert( pSavepoint
==db
->pSavepoint
);
3677 db
->pSavepoint
= pSavepoint
->pNext
;
3678 sqlite3DbFree(db
, pSavepoint
);
3679 if( !isTransaction
){
3683 assert( p1
==SAVEPOINT_ROLLBACK
);
3684 db
->nDeferredCons
= pSavepoint
->nDeferredCons
;
3685 db
->nDeferredImmCons
= pSavepoint
->nDeferredImmCons
;
3688 if( !isTransaction
|| p1
==SAVEPOINT_ROLLBACK
){
3689 rc
= sqlite3VtabSavepoint(db
, p1
, iSavepoint
);
3690 if( rc
!=SQLITE_OK
) goto abort_due_to_error
;
3694 if( rc
) goto abort_due_to_error
;
3695 if( p
->eVdbeState
==VDBE_HALT_STATE
){
3702 /* Opcode: AutoCommit P1 P2 * * *
3704 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
3705 ** back any currently active btree transactions. If there are any active
3706 ** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if
3707 ** there are active writing VMs or active VMs that use shared cache.
3709 ** This instruction causes the VM to halt.
3711 case OP_AutoCommit
: {
3712 int desiredAutoCommit
;
3715 desiredAutoCommit
= pOp
->p1
;
3716 iRollback
= pOp
->p2
;
3717 assert( desiredAutoCommit
==1 || desiredAutoCommit
==0 );
3718 assert( desiredAutoCommit
==1 || iRollback
==0 );
3719 assert( db
->nVdbeActive
>0 ); /* At least this one VM is active */
3720 assert( p
->bIsReader
);
3722 if( desiredAutoCommit
!=db
->autoCommit
){
3724 assert( desiredAutoCommit
==1 );
3725 sqlite3RollbackAll(db
, SQLITE_ABORT_ROLLBACK
);
3727 }else if( desiredAutoCommit
&& db
->nVdbeWrite
>0 ){
3728 /* If this instruction implements a COMMIT and other VMs are writing
3729 ** return an error indicating that the other VMs must complete first.
3731 sqlite3VdbeError(p
, "cannot commit transaction - "
3732 "SQL statements in progress");
3734 goto abort_due_to_error
;
3735 }else if( (rc
= sqlite3VdbeCheckFk(p
, 1))!=SQLITE_OK
){
3738 db
->autoCommit
= (u8
)desiredAutoCommit
;
3740 if( sqlite3VdbeHalt(p
)==SQLITE_BUSY
){
3741 p
->pc
= (int)(pOp
- aOp
);
3742 db
->autoCommit
= (u8
)(1-desiredAutoCommit
);
3743 p
->rc
= rc
= SQLITE_BUSY
;
3746 sqlite3CloseSavepoints(db
);
3747 if( p
->rc
==SQLITE_OK
){
3755 (!desiredAutoCommit
)?"cannot start a transaction within a transaction":(
3756 (iRollback
)?"cannot rollback - no transaction is active":
3757 "cannot commit - no transaction is active"));
3760 goto abort_due_to_error
;
3762 /*NOTREACHED*/ assert(0);
3765 /* Opcode: Transaction P1 P2 P3 P4 P5
3767 ** Begin a transaction on database P1 if a transaction is not already
3769 ** If P2 is non-zero, then a write-transaction is started, or if a
3770 ** read-transaction is already active, it is upgraded to a write-transaction.
3771 ** If P2 is zero, then a read-transaction is started. If P2 is 2 or more
3772 ** then an exclusive transaction is started.
3774 ** P1 is the index of the database file on which the transaction is
3775 ** started. Index 0 is the main database file and index 1 is the
3776 ** file used for temporary tables. Indices of 2 or more are used for
3777 ** attached databases.
3779 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
3780 ** true (this flag is set if the Vdbe may modify more than one row and may
3781 ** throw an ABORT exception), a statement transaction may also be opened.
3782 ** More specifically, a statement transaction is opened iff the database
3783 ** connection is currently not in autocommit mode, or if there are other
3784 ** active statements. A statement transaction allows the changes made by this
3785 ** VDBE to be rolled back after an error without having to roll back the
3786 ** entire transaction. If no error is encountered, the statement transaction
3787 ** will automatically commit when the VDBE halts.
3789 ** If P5!=0 then this opcode also checks the schema cookie against P3
3790 ** and the schema generation counter against P4.
3791 ** The cookie changes its value whenever the database schema changes.
3792 ** This operation is used to detect when that the cookie has changed
3793 ** and that the current process needs to reread the schema. If the schema
3794 ** cookie in P3 differs from the schema cookie in the database header or
3795 ** if the schema generation counter in P4 differs from the current
3796 ** generation counter, then an SQLITE_SCHEMA error is raised and execution
3797 ** halts. The sqlite3_step() wrapper function might then reprepare the
3798 ** statement and rerun it from the beginning.
3800 case OP_Transaction
: {
3805 assert( p
->bIsReader
);
3806 assert( p
->readOnly
==0 || pOp
->p2
==0 );
3807 assert( pOp
->p2
>=0 && pOp
->p2
<=2 );
3808 assert( pOp
->p1
>=0 && pOp
->p1
<db
->nDb
);
3809 assert( DbMaskTest(p
->btreeMask
, pOp
->p1
) );
3810 assert( rc
==SQLITE_OK
);
3811 if( pOp
->p2
&& (db
->flags
& (SQLITE_QueryOnly
|SQLITE_CorruptRdOnly
))!=0 ){
3812 if( db
->flags
& SQLITE_QueryOnly
){
3813 /* Writes prohibited by the "PRAGMA query_only=TRUE" statement */
3814 rc
= SQLITE_READONLY
;
3816 /* Writes prohibited due to a prior SQLITE_CORRUPT in the current
3818 rc
= SQLITE_CORRUPT
;
3820 goto abort_due_to_error
;
3822 pDb
= &db
->aDb
[pOp
->p1
];
3826 rc
= sqlite3BtreeBeginTrans(pBt
, pOp
->p2
, &iMeta
);
3827 testcase( rc
==SQLITE_BUSY_SNAPSHOT
);
3828 testcase( rc
==SQLITE_BUSY_RECOVERY
);
3829 if( rc
!=SQLITE_OK
){
3830 if( (rc
&0xff)==SQLITE_BUSY
){
3831 p
->pc
= (int)(pOp
- aOp
);
3835 goto abort_due_to_error
;
3838 if( p
->usesStmtJournal
3840 && (db
->autoCommit
==0 || db
->nVdbeRead
>1)
3842 assert( sqlite3BtreeTxnState(pBt
)==SQLITE_TXN_WRITE
);
3843 if( p
->iStatement
==0 ){
3844 assert( db
->nStatement
>=0 && db
->nSavepoint
>=0 );
3846 p
->iStatement
= db
->nSavepoint
+ db
->nStatement
;
3849 rc
= sqlite3VtabSavepoint(db
, SAVEPOINT_BEGIN
, p
->iStatement
-1);
3850 if( rc
==SQLITE_OK
){
3851 rc
= sqlite3BtreeBeginStmt(pBt
, p
->iStatement
);
3854 /* Store the current value of the database handles deferred constraint
3855 ** counter. If the statement transaction needs to be rolled back,
3856 ** the value of this counter needs to be restored too. */
3857 p
->nStmtDefCons
= db
->nDeferredCons
;
3858 p
->nStmtDefImmCons
= db
->nDeferredImmCons
;
3861 assert( pOp
->p5
==0 || pOp
->p4type
==P4_INT32
);
3864 && (iMeta
!=pOp
->p3
|| pDb
->pSchema
->iGeneration
!=pOp
->p4
.i
)
3867 ** IMPLEMENTATION-OF: R-03189-51135 As each SQL statement runs, the schema
3868 ** version is checked to ensure that the schema has not changed since the
3869 ** SQL statement was prepared.
3871 sqlite3DbFree(db
, p
->zErrMsg
);
3872 p
->zErrMsg
= sqlite3DbStrDup(db
, "database schema has changed");
3873 /* If the schema-cookie from the database file matches the cookie
3874 ** stored with the in-memory representation of the schema, do
3875 ** not reload the schema from the database file.
3877 ** If virtual-tables are in use, this is not just an optimization.
3878 ** Often, v-tables store their data in other SQLite tables, which
3879 ** are queried from within xNext() and other v-table methods using
3880 ** prepared queries. If such a query is out-of-date, we do not want to
3881 ** discard the database schema, as the user code implementing the
3882 ** v-table would have to be ready for the sqlite3_vtab structure itself
3883 ** to be invalidated whenever sqlite3_step() is called from within
3884 ** a v-table method.
3886 if( db
->aDb
[pOp
->p1
].pSchema
->schema_cookie
!=iMeta
){
3887 sqlite3ResetOneSchema(db
, pOp
->p1
);
3892 /* Set changeCntOn to 0 to prevent the value returned by sqlite3_changes()
3893 ** from being modified in sqlite3VdbeHalt(). If this statement is
3894 ** reprepared, changeCntOn will be set again. */
3897 if( rc
) goto abort_due_to_error
;
3901 /* Opcode: ReadCookie P1 P2 P3 * *
3903 ** Read cookie number P3 from database P1 and write it into register P2.
3904 ** P3==1 is the schema version. P3==2 is the database format.
3905 ** P3==3 is the recommended pager cache size, and so forth. P1==0 is
3906 ** the main database file and P1==1 is the database file used to store
3907 ** temporary tables.
3909 ** There must be a read-lock on the database (either a transaction
3910 ** must be started or there must be an open cursor) before
3911 ** executing this instruction.
3913 case OP_ReadCookie
: { /* out2 */
3918 assert( p
->bIsReader
);
3921 assert( pOp
->p3
<SQLITE_N_BTREE_META
);
3922 assert( iDb
>=0 && iDb
<db
->nDb
);
3923 assert( db
->aDb
[iDb
].pBt
!=0 );
3924 assert( DbMaskTest(p
->btreeMask
, iDb
) );
3926 sqlite3BtreeGetMeta(db
->aDb
[iDb
].pBt
, iCookie
, (u32
*)&iMeta
);
3927 pOut
= out2Prerelease(p
, pOp
);
3932 /* Opcode: SetCookie P1 P2 P3 * P5
3934 ** Write the integer value P3 into cookie number P2 of database P1.
3935 ** P2==1 is the schema version. P2==2 is the database format.
3936 ** P2==3 is the recommended pager cache
3937 ** size, and so forth. P1==0 is the main database file and P1==1 is the
3938 ** database file used to store temporary tables.
3940 ** A transaction must be started before executing this opcode.
3942 ** If P2 is the SCHEMA_VERSION cookie (cookie number 1) then the internal
3943 ** schema version is set to P3-P5. The "PRAGMA schema_version=N" statement
3944 ** has P5 set to 1, so that the internal schema version will be different
3945 ** from the database schema version, resulting in a schema reset.
3947 case OP_SetCookie
: {
3950 sqlite3VdbeIncrWriteCounter(p
, 0);
3951 assert( pOp
->p2
<SQLITE_N_BTREE_META
);
3952 assert( pOp
->p1
>=0 && pOp
->p1
<db
->nDb
);
3953 assert( DbMaskTest(p
->btreeMask
, pOp
->p1
) );
3954 assert( p
->readOnly
==0 );
3955 pDb
= &db
->aDb
[pOp
->p1
];
3956 assert( pDb
->pBt
!=0 );
3957 assert( sqlite3SchemaMutexHeld(db
, pOp
->p1
, 0) );
3958 /* See note about index shifting on OP_ReadCookie */
3959 rc
= sqlite3BtreeUpdateMeta(pDb
->pBt
, pOp
->p2
, pOp
->p3
);
3960 if( pOp
->p2
==BTREE_SCHEMA_VERSION
){
3961 /* When the schema cookie changes, record the new cookie internally */
3962 *(u32
*)&pDb
->pSchema
->schema_cookie
= *(u32
*)&pOp
->p3
- pOp
->p5
;
3963 db
->mDbFlags
|= DBFLAG_SchemaChange
;
3964 sqlite3FkClearTriggerCache(db
, pOp
->p1
);
3965 }else if( pOp
->p2
==BTREE_FILE_FORMAT
){
3966 /* Record changes in the file format */
3967 pDb
->pSchema
->file_format
= pOp
->p3
;
3970 /* Invalidate all prepared statements whenever the TEMP database
3971 ** schema is changed. Ticket #1644 */
3972 sqlite3ExpirePreparedStatements(db
, 0);
3975 if( rc
) goto abort_due_to_error
;
3979 /* Opcode: OpenRead P1 P2 P3 P4 P5
3980 ** Synopsis: root=P2 iDb=P3
3982 ** Open a read-only cursor for the database table whose root page is
3983 ** P2 in a database file. The database file is determined by P3.
3984 ** P3==0 means the main database, P3==1 means the database used for
3985 ** temporary tables, and P3>1 means used the corresponding attached
3986 ** database. Give the new cursor an identifier of P1. The P1
3987 ** values need not be contiguous but all P1 values should be small integers.
3988 ** It is an error for P1 to be negative.
3992 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
3993 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
3994 ** of OP_SeekLE/OP_IdxLT)
3997 ** The P4 value may be either an integer (P4_INT32) or a pointer to
3998 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3999 ** object, then table being opened must be an [index b-tree] where the
4000 ** KeyInfo object defines the content and collating
4001 ** sequence of that index b-tree. Otherwise, if P4 is an integer
4002 ** value, then the table being opened must be a [table b-tree] with a
4003 ** number of columns no less than the value of P4.
4005 ** See also: OpenWrite, ReopenIdx
4007 /* Opcode: ReopenIdx P1 P2 P3 P4 P5
4008 ** Synopsis: root=P2 iDb=P3
4010 ** The ReopenIdx opcode works like OP_OpenRead except that it first
4011 ** checks to see if the cursor on P1 is already open on the same
4012 ** b-tree and if it is this opcode becomes a no-op. In other words,
4013 ** if the cursor is already open, do not reopen it.
4015 ** The ReopenIdx opcode may only be used with P5==0 or P5==OPFLAG_SEEKEQ
4016 ** and with P4 being a P4_KEYINFO object. Furthermore, the P3 value must
4017 ** be the same as every other ReopenIdx or OpenRead for the same cursor
4022 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
4023 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
4024 ** of OP_SeekLE/OP_IdxLT)
4027 ** See also: OP_OpenRead, OP_OpenWrite
4029 /* Opcode: OpenWrite P1 P2 P3 P4 P5
4030 ** Synopsis: root=P2 iDb=P3
4032 ** Open a read/write cursor named P1 on the table or index whose root
4033 ** page is P2 (or whose root page is held in register P2 if the
4034 ** OPFLAG_P2ISREG bit is set in P5 - see below).
4036 ** The P4 value may be either an integer (P4_INT32) or a pointer to
4037 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
4038 ** object, then table being opened must be an [index b-tree] where the
4039 ** KeyInfo object defines the content and collating
4040 ** sequence of that index b-tree. Otherwise, if P4 is an integer
4041 ** value, then the table being opened must be a [table b-tree] with a
4042 ** number of columns no less than the value of P4.
4046 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
4047 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
4048 ** of OP_SeekLE/OP_IdxLT)
4049 ** <li> <b>0x08 OPFLAG_FORDELETE</b>: This cursor is used only to seek
4050 ** and subsequently delete entries in an index btree. This is a
4051 ** hint to the storage engine that the storage engine is allowed to
4052 ** ignore. The hint is not used by the official SQLite b*tree storage
4053 ** engine, but is used by COMDB2.
4054 ** <li> <b>0x10 OPFLAG_P2ISREG</b>: Use the content of register P2
4055 ** as the root page, not the value of P2 itself.
4058 ** This instruction works like OpenRead except that it opens the cursor
4059 ** in read/write mode.
4061 ** See also: OP_OpenRead, OP_ReopenIdx
4063 case OP_ReopenIdx
: {
4073 assert( pOp
->p5
==0 || pOp
->p5
==OPFLAG_SEEKEQ
);
4074 assert( pOp
->p4type
==P4_KEYINFO
);
4075 pCur
= p
->apCsr
[pOp
->p1
];
4076 if( pCur
&& pCur
->pgnoRoot
==(u32
)pOp
->p2
){
4077 assert( pCur
->iDb
==pOp
->p3
); /* Guaranteed by the code generator */
4078 assert( pCur
->eCurType
==CURTYPE_BTREE
);
4079 sqlite3BtreeClearCursor(pCur
->uc
.pCursor
);
4080 goto open_cursor_set_hints
;
4082 /* If the cursor is not currently open or is open on a different
4083 ** index, then fall through into OP_OpenRead to force a reopen */
4087 assert( pOp
->opcode
==OP_OpenWrite
|| pOp
->p5
==0 || pOp
->p5
==OPFLAG_SEEKEQ
);
4088 assert( p
->bIsReader
);
4089 assert( pOp
->opcode
==OP_OpenRead
|| pOp
->opcode
==OP_ReopenIdx
4090 || p
->readOnly
==0 );
4092 if( p
->expired
==1 ){
4093 rc
= SQLITE_ABORT_ROLLBACK
;
4094 goto abort_due_to_error
;
4101 assert( iDb
>=0 && iDb
<db
->nDb
);
4102 assert( DbMaskTest(p
->btreeMask
, iDb
) );
4103 pDb
= &db
->aDb
[iDb
];
4106 if( pOp
->opcode
==OP_OpenWrite
){
4107 assert( OPFLAG_FORDELETE
==BTREE_FORDELETE
);
4108 wrFlag
= BTREE_WRCSR
| (pOp
->p5
& OPFLAG_FORDELETE
);
4109 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
4110 if( pDb
->pSchema
->file_format
< p
->minWriteFileFormat
){
4111 p
->minWriteFileFormat
= pDb
->pSchema
->file_format
;
4116 if( pOp
->p5
& OPFLAG_P2ISREG
){
4118 assert( p2
<=(u32
)(p
->nMem
+1 - p
->nCursor
) );
4119 assert( pOp
->opcode
==OP_OpenWrite
);
4121 assert( memIsValid(pIn2
) );
4122 assert( (pIn2
->flags
& MEM_Int
)!=0 );
4123 sqlite3VdbeMemIntegerify(pIn2
);
4124 p2
= (int)pIn2
->u
.i
;
4125 /* The p2 value always comes from a prior OP_CreateBtree opcode and
4126 ** that opcode will always set the p2 value to 2 or more or else fail.
4127 ** If there were a failure, the prepared statement would have halted
4128 ** before reaching this instruction. */
4131 if( pOp
->p4type
==P4_KEYINFO
){
4132 pKeyInfo
= pOp
->p4
.pKeyInfo
;
4133 assert( pKeyInfo
->enc
==ENC(db
) );
4134 assert( pKeyInfo
->db
==db
);
4135 nField
= pKeyInfo
->nAllField
;
4136 }else if( pOp
->p4type
==P4_INT32
){
4139 assert( pOp
->p1
>=0 );
4140 assert( nField
>=0 );
4141 testcase( nField
==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */
4142 pCur
= allocateCursor(p
, pOp
->p1
, nField
, CURTYPE_BTREE
);
4143 if( pCur
==0 ) goto no_mem
;
4146 pCur
->isOrdered
= 1;
4147 pCur
->pgnoRoot
= p2
;
4149 pCur
->wrFlag
= wrFlag
;
4151 rc
= sqlite3BtreeCursor(pX
, p2
, wrFlag
, pKeyInfo
, pCur
->uc
.pCursor
);
4152 pCur
->pKeyInfo
= pKeyInfo
;
4153 /* Set the VdbeCursor.isTable variable. Previous versions of
4154 ** SQLite used to check if the root-page flags were sane at this point
4155 ** and report database corruption if they were not, but this check has
4156 ** since moved into the btree layer. */
4157 pCur
->isTable
= pOp
->p4type
!=P4_KEYINFO
;
4159 open_cursor_set_hints
:
4160 assert( OPFLAG_BULKCSR
==BTREE_BULKLOAD
);
4161 assert( OPFLAG_SEEKEQ
==BTREE_SEEK_EQ
);
4162 testcase( pOp
->p5
& OPFLAG_BULKCSR
);
4163 testcase( pOp
->p2
& OPFLAG_SEEKEQ
);
4164 sqlite3BtreeCursorHintFlags(pCur
->uc
.pCursor
,
4165 (pOp
->p5
& (OPFLAG_BULKCSR
|OPFLAG_SEEKEQ
)));
4166 if( rc
) goto abort_due_to_error
;
4170 /* Opcode: OpenDup P1 P2 * * *
4172 ** Open a new cursor P1 that points to the same ephemeral table as
4173 ** cursor P2. The P2 cursor must have been opened by a prior OP_OpenEphemeral
4174 ** opcode. Only ephemeral cursors may be duplicated.
4176 ** Duplicate ephemeral cursors are used for self-joins of materialized views.
4179 VdbeCursor
*pOrig
; /* The original cursor to be duplicated */
4180 VdbeCursor
*pCx
; /* The new cursor */
4182 pOrig
= p
->apCsr
[pOp
->p2
];
4184 assert( pOrig
->isEphemeral
); /* Only ephemeral cursors can be duplicated */
4186 pCx
= allocateCursor(p
, pOp
->p1
, pOrig
->nField
, CURTYPE_BTREE
);
4187 if( pCx
==0 ) goto no_mem
;
4189 pCx
->isEphemeral
= 1;
4190 pCx
->pKeyInfo
= pOrig
->pKeyInfo
;
4191 pCx
->isTable
= pOrig
->isTable
;
4192 pCx
->pgnoRoot
= pOrig
->pgnoRoot
;
4193 pCx
->isOrdered
= pOrig
->isOrdered
;
4194 pCx
->ub
.pBtx
= pOrig
->ub
.pBtx
;
4197 rc
= sqlite3BtreeCursor(pCx
->ub
.pBtx
, pCx
->pgnoRoot
, BTREE_WRCSR
,
4198 pCx
->pKeyInfo
, pCx
->uc
.pCursor
);
4199 /* The sqlite3BtreeCursor() routine can only fail for the first cursor
4200 ** opened for a database. Since there is already an open cursor when this
4201 ** opcode is run, the sqlite3BtreeCursor() cannot fail */
4202 assert( rc
==SQLITE_OK
);
4207 /* Opcode: OpenEphemeral P1 P2 P3 P4 P5
4208 ** Synopsis: nColumn=P2
4210 ** Open a new cursor P1 to a transient table.
4211 ** The cursor is always opened read/write even if
4212 ** the main database is read-only. The ephemeral
4213 ** table is deleted automatically when the cursor is closed.
4215 ** If the cursor P1 is already opened on an ephemeral table, the table
4216 ** is cleared (all content is erased).
4218 ** P2 is the number of columns in the ephemeral table.
4219 ** The cursor points to a BTree table if P4==0 and to a BTree index
4220 ** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure
4221 ** that defines the format of keys in the index.
4223 ** The P5 parameter can be a mask of the BTREE_* flags defined
4224 ** in btree.h. These flags control aspects of the operation of
4225 ** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
4226 ** added automatically.
4228 ** If P3 is positive, then reg[P3] is modified slightly so that it
4229 ** can be used as zero-length data for OP_Insert. This is an optimization
4230 ** that avoids an extra OP_Blob opcode to initialize that register.
4232 /* Opcode: OpenAutoindex P1 P2 * P4 *
4233 ** Synopsis: nColumn=P2
4235 ** This opcode works the same as OP_OpenEphemeral. It has a
4236 ** different name to distinguish its use. Tables created using
4237 ** by this opcode will be used for automatically created transient
4238 ** indices in joins.
4240 case OP_OpenAutoindex
:
4241 case OP_OpenEphemeral
: {
4245 static const int vfsFlags
=
4246 SQLITE_OPEN_READWRITE
|
4247 SQLITE_OPEN_CREATE
|
4248 SQLITE_OPEN_EXCLUSIVE
|
4249 SQLITE_OPEN_DELETEONCLOSE
|
4250 SQLITE_OPEN_TRANSIENT_DB
;
4251 assert( pOp
->p1
>=0 );
4252 assert( pOp
->p2
>=0 );
4254 /* Make register reg[P3] into a value that can be used as the data
4255 ** form sqlite3BtreeInsert() where the length of the data is zero. */
4256 assert( pOp
->p2
==0 ); /* Only used when number of columns is zero */
4257 assert( pOp
->opcode
==OP_OpenEphemeral
);
4258 assert( aMem
[pOp
->p3
].flags
& MEM_Null
);
4259 aMem
[pOp
->p3
].n
= 0;
4260 aMem
[pOp
->p3
].z
= "";
4262 pCx
= p
->apCsr
[pOp
->p1
];
4263 if( pCx
&& !pCx
->noReuse
&& ALWAYS(pOp
->p2
<=pCx
->nField
) ){
4264 /* If the ephermeral table is already open and has no duplicates from
4265 ** OP_OpenDup, then erase all existing content so that the table is
4266 ** empty again, rather than creating a new table. */
4267 assert( pCx
->isEphemeral
);
4269 pCx
->cacheStatus
= CACHE_STALE
;
4270 rc
= sqlite3BtreeClearTable(pCx
->ub
.pBtx
, pCx
->pgnoRoot
, 0);
4272 pCx
= allocateCursor(p
, pOp
->p1
, pOp
->p2
, CURTYPE_BTREE
);
4273 if( pCx
==0 ) goto no_mem
;
4274 pCx
->isEphemeral
= 1;
4275 rc
= sqlite3BtreeOpen(db
->pVfs
, 0, db
, &pCx
->ub
.pBtx
,
4276 BTREE_OMIT_JOURNAL
| BTREE_SINGLE
| pOp
->p5
,
4278 if( rc
==SQLITE_OK
){
4279 rc
= sqlite3BtreeBeginTrans(pCx
->ub
.pBtx
, 1, 0);
4280 if( rc
==SQLITE_OK
){
4281 /* If a transient index is required, create it by calling
4282 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
4283 ** opening it. If a transient table is required, just use the
4284 ** automatically created table with root-page 1 (an BLOB_INTKEY table).
4286 if( (pCx
->pKeyInfo
= pKeyInfo
= pOp
->p4
.pKeyInfo
)!=0 ){
4287 assert( pOp
->p4type
==P4_KEYINFO
);
4288 rc
= sqlite3BtreeCreateTable(pCx
->ub
.pBtx
, &pCx
->pgnoRoot
,
4289 BTREE_BLOBKEY
| pOp
->p5
);
4290 if( rc
==SQLITE_OK
){
4291 assert( pCx
->pgnoRoot
==SCHEMA_ROOT
+1 );
4292 assert( pKeyInfo
->db
==db
);
4293 assert( pKeyInfo
->enc
==ENC(db
) );
4294 rc
= sqlite3BtreeCursor(pCx
->ub
.pBtx
, pCx
->pgnoRoot
, BTREE_WRCSR
,
4295 pKeyInfo
, pCx
->uc
.pCursor
);
4299 pCx
->pgnoRoot
= SCHEMA_ROOT
;
4300 rc
= sqlite3BtreeCursor(pCx
->ub
.pBtx
, SCHEMA_ROOT
, BTREE_WRCSR
,
4301 0, pCx
->uc
.pCursor
);
4305 pCx
->isOrdered
= (pOp
->p5
!=BTREE_UNORDERED
);
4307 sqlite3BtreeClose(pCx
->ub
.pBtx
);
4311 if( rc
) goto abort_due_to_error
;
4316 /* Opcode: SorterOpen P1 P2 P3 P4 *
4318 ** This opcode works like OP_OpenEphemeral except that it opens
4319 ** a transient index that is specifically designed to sort large
4320 ** tables using an external merge-sort algorithm.
4322 ** If argument P3 is non-zero, then it indicates that the sorter may
4323 ** assume that a stable sort considering the first P3 fields of each
4324 ** key is sufficient to produce the required results.
4326 case OP_SorterOpen
: {
4329 assert( pOp
->p1
>=0 );
4330 assert( pOp
->p2
>=0 );
4331 pCx
= allocateCursor(p
, pOp
->p1
, pOp
->p2
, CURTYPE_SORTER
);
4332 if( pCx
==0 ) goto no_mem
;
4333 pCx
->pKeyInfo
= pOp
->p4
.pKeyInfo
;
4334 assert( pCx
->pKeyInfo
->db
==db
);
4335 assert( pCx
->pKeyInfo
->enc
==ENC(db
) );
4336 rc
= sqlite3VdbeSorterInit(db
, pOp
->p3
, pCx
);
4337 if( rc
) goto abort_due_to_error
;
4341 /* Opcode: SequenceTest P1 P2 * * *
4342 ** Synopsis: if( cursor[P1].ctr++ ) pc = P2
4344 ** P1 is a sorter cursor. If the sequence counter is currently zero, jump
4345 ** to P2. Regardless of whether or not the jump is taken, increment the
4346 ** the sequence value.
4348 case OP_SequenceTest
: {
4350 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4351 pC
= p
->apCsr
[pOp
->p1
];
4352 assert( isSorter(pC
) );
4353 if( (pC
->seqCount
++)==0 ){
4359 /* Opcode: OpenPseudo P1 P2 P3 * *
4360 ** Synopsis: P3 columns in r[P2]
4362 ** Open a new cursor that points to a fake table that contains a single
4363 ** row of data. The content of that one row is the content of memory
4364 ** register P2. In other words, cursor P1 becomes an alias for the
4365 ** MEM_Blob content contained in register P2.
4367 ** A pseudo-table created by this opcode is used to hold a single
4368 ** row output from the sorter so that the row can be decomposed into
4369 ** individual columns using the OP_Column opcode. The OP_Column opcode
4370 ** is the only cursor opcode that works with a pseudo-table.
4372 ** P3 is the number of fields in the records that will be stored by
4373 ** the pseudo-table.
4375 case OP_OpenPseudo
: {
4378 assert( pOp
->p1
>=0 );
4379 assert( pOp
->p3
>=0 );
4380 pCx
= allocateCursor(p
, pOp
->p1
, pOp
->p3
, CURTYPE_PSEUDO
);
4381 if( pCx
==0 ) goto no_mem
;
4383 pCx
->seekResult
= pOp
->p2
;
4385 /* Give this pseudo-cursor a fake BtCursor pointer so that pCx
4386 ** can be safely passed to sqlite3VdbeCursorMoveto(). This avoids a test
4387 ** for pCx->eCurType==CURTYPE_BTREE inside of sqlite3VdbeCursorMoveto()
4388 ** which is a performance optimization */
4389 pCx
->uc
.pCursor
= sqlite3BtreeFakeValidCursor();
4390 assert( pOp
->p5
==0 );
4394 /* Opcode: Close P1 * * * *
4396 ** Close a cursor previously opened as P1. If P1 is not
4397 ** currently open, this instruction is a no-op.
4400 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4401 sqlite3VdbeFreeCursor(p
, p
->apCsr
[pOp
->p1
]);
4402 p
->apCsr
[pOp
->p1
] = 0;
4406 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
4407 /* Opcode: ColumnsUsed P1 * * P4 *
4409 ** This opcode (which only exists if SQLite was compiled with
4410 ** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the
4411 ** table or index for cursor P1 are used. P4 is a 64-bit integer
4412 ** (P4_INT64) in which the first 63 bits are one for each of the
4413 ** first 63 columns of the table or index that are actually used
4414 ** by the cursor. The high-order bit is set if any column after
4415 ** the 64th is used.
4417 case OP_ColumnsUsed
: {
4419 pC
= p
->apCsr
[pOp
->p1
];
4420 assert( pC
->eCurType
==CURTYPE_BTREE
);
4421 pC
->maskUsed
= *(u64
*)pOp
->p4
.pI64
;
4426 /* Opcode: SeekGE P1 P2 P3 P4 *
4427 ** Synopsis: key=r[P3@P4]
4429 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4430 ** use the value in register P3 as the key. If cursor P1 refers
4431 ** to an SQL index, then P3 is the first in an array of P4 registers
4432 ** that are used as an unpacked index key.
4434 ** Reposition cursor P1 so that it points to the smallest entry that
4435 ** is greater than or equal to the key value. If there are no records
4436 ** greater than or equal to the key and P2 is not zero, then jump to P2.
4438 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
4439 ** opcode will either land on a record that exactly matches the key, or
4440 ** else it will cause a jump to P2. When the cursor is OPFLAG_SEEKEQ,
4441 ** this opcode must be followed by an IdxLE opcode with the same arguments.
4442 ** The IdxGT opcode will be skipped if this opcode succeeds, but the
4443 ** IdxGT opcode will be used on subsequent loop iterations. The
4444 ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this
4445 ** is an equality search.
4447 ** This opcode leaves the cursor configured to move in forward order,
4448 ** from the beginning toward the end. In other words, the cursor is
4449 ** configured to use Next, not Prev.
4451 ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe
4453 /* Opcode: SeekGT P1 P2 P3 P4 *
4454 ** Synopsis: key=r[P3@P4]
4456 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4457 ** use the value in register P3 as a key. If cursor P1 refers
4458 ** to an SQL index, then P3 is the first in an array of P4 registers
4459 ** that are used as an unpacked index key.
4461 ** Reposition cursor P1 so that it points to the smallest entry that
4462 ** is greater than the key value. If there are no records greater than
4463 ** the key and P2 is not zero, then jump to P2.
4465 ** This opcode leaves the cursor configured to move in forward order,
4466 ** from the beginning toward the end. In other words, the cursor is
4467 ** configured to use Next, not Prev.
4469 ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe
4471 /* Opcode: SeekLT P1 P2 P3 P4 *
4472 ** Synopsis: key=r[P3@P4]
4474 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4475 ** use the value in register P3 as a key. If cursor P1 refers
4476 ** to an SQL index, then P3 is the first in an array of P4 registers
4477 ** that are used as an unpacked index key.
4479 ** Reposition cursor P1 so that it points to the largest entry that
4480 ** is less than the key value. If there are no records less than
4481 ** the key and P2 is not zero, then jump to P2.
4483 ** This opcode leaves the cursor configured to move in reverse order,
4484 ** from the end toward the beginning. In other words, the cursor is
4485 ** configured to use Prev, not Next.
4487 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe
4489 /* Opcode: SeekLE P1 P2 P3 P4 *
4490 ** Synopsis: key=r[P3@P4]
4492 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4493 ** use the value in register P3 as a key. If cursor P1 refers
4494 ** to an SQL index, then P3 is the first in an array of P4 registers
4495 ** that are used as an unpacked index key.
4497 ** Reposition cursor P1 so that it points to the largest entry that
4498 ** is less than or equal to the key value. If there are no records
4499 ** less than or equal to the key and P2 is not zero, then jump to P2.
4501 ** This opcode leaves the cursor configured to move in reverse order,
4502 ** from the end toward the beginning. In other words, the cursor is
4503 ** configured to use Prev, not Next.
4505 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
4506 ** opcode will either land on a record that exactly matches the key, or
4507 ** else it will cause a jump to P2. When the cursor is OPFLAG_SEEKEQ,
4508 ** this opcode must be followed by an IdxLE opcode with the same arguments.
4509 ** The IdxGE opcode will be skipped if this opcode succeeds, but the
4510 ** IdxGE opcode will be used on subsequent loop iterations. The
4511 ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this
4512 ** is an equality search.
4514 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt
4516 case OP_SeekLT
: /* jump, in3, group */
4517 case OP_SeekLE
: /* jump, in3, group */
4518 case OP_SeekGE
: /* jump, in3, group */
4519 case OP_SeekGT
: { /* jump, in3, group */
4520 int res
; /* Comparison result */
4521 int oc
; /* Opcode */
4522 VdbeCursor
*pC
; /* The cursor to seek */
4523 UnpackedRecord r
; /* The key to seek for */
4524 int nField
; /* Number of columns or fields in the key */
4525 i64 iKey
; /* The rowid we are to seek to */
4526 int eqOnly
; /* Only interested in == results */
4528 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4529 assert( pOp
->p2
!=0 );
4530 pC
= p
->apCsr
[pOp
->p1
];
4532 assert( pC
->eCurType
==CURTYPE_BTREE
);
4533 assert( OP_SeekLE
== OP_SeekLT
+1 );
4534 assert( OP_SeekGE
== OP_SeekLT
+2 );
4535 assert( OP_SeekGT
== OP_SeekLT
+3 );
4536 assert( pC
->isOrdered
);
4537 assert( pC
->uc
.pCursor
!=0 );
4542 pC
->seekOp
= pOp
->opcode
;
4545 pC
->deferredMoveto
= 0;
4546 pC
->cacheStatus
= CACHE_STALE
;
4548 u16 flags3
, newType
;
4549 /* The OPFLAG_SEEKEQ/BTREE_SEEK_EQ flag is only set on index cursors */
4550 assert( sqlite3BtreeCursorHasHint(pC
->uc
.pCursor
, BTREE_SEEK_EQ
)==0
4553 /* The input value in P3 might be of any type: integer, real, string,
4554 ** blob, or NULL. But it needs to be an integer before we can do
4555 ** the seek, so convert it. */
4556 pIn3
= &aMem
[pOp
->p3
];
4557 flags3
= pIn3
->flags
;
4558 if( (flags3
& (MEM_Int
|MEM_Real
|MEM_IntReal
|MEM_Str
))==MEM_Str
){
4559 applyNumericAffinity(pIn3
, 0);
4561 iKey
= sqlite3VdbeIntValue(pIn3
); /* Get the integer key value */
4562 newType
= pIn3
->flags
; /* Record the type after applying numeric affinity */
4563 pIn3
->flags
= flags3
; /* But convert the type back to its original */
4565 /* If the P3 value could not be converted into an integer without
4566 ** loss of information, then special processing is required... */
4567 if( (newType
& (MEM_Int
|MEM_IntReal
))==0 ){
4569 if( (newType
& MEM_Real
)==0 ){
4570 if( (newType
& MEM_Null
) || oc
>=OP_SeekGE
){
4571 VdbeBranchTaken(1,2);
4574 rc
= sqlite3BtreeLast(pC
->uc
.pCursor
, &res
);
4575 if( rc
!=SQLITE_OK
) goto abort_due_to_error
;
4576 goto seek_not_found
;
4579 c
= sqlite3IntFloatCompare(iKey
, pIn3
->u
.r
);
4581 /* If the approximation iKey is larger than the actual real search
4582 ** term, substitute >= for > and < for <=. e.g. if the search term
4583 ** is 4.9 and the integer approximation 5:
4585 ** (x > 4.9) -> (x >= 5)
4586 ** (x <= 4.9) -> (x < 5)
4589 assert( OP_SeekGE
==(OP_SeekGT
-1) );
4590 assert( OP_SeekLT
==(OP_SeekLE
-1) );
4591 assert( (OP_SeekLE
& 0x0001)==(OP_SeekGT
& 0x0001) );
4592 if( (oc
& 0x0001)==(OP_SeekGT
& 0x0001) ) oc
--;
4595 /* If the approximation iKey is smaller than the actual real search
4596 ** term, substitute <= for < and > for >=. */
4598 assert( OP_SeekLE
==(OP_SeekLT
+1) );
4599 assert( OP_SeekGT
==(OP_SeekGE
+1) );
4600 assert( (OP_SeekLT
& 0x0001)==(OP_SeekGE
& 0x0001) );
4601 if( (oc
& 0x0001)==(OP_SeekLT
& 0x0001) ) oc
++;
4604 rc
= sqlite3BtreeTableMoveto(pC
->uc
.pCursor
, (u64
)iKey
, 0, &res
);
4605 pC
->movetoTarget
= iKey
; /* Used by OP_Delete */
4606 if( rc
!=SQLITE_OK
){
4607 goto abort_due_to_error
;
4610 /* For a cursor with the OPFLAG_SEEKEQ/BTREE_SEEK_EQ hint, only the
4611 ** OP_SeekGE and OP_SeekLE opcodes are allowed, and these must be
4612 ** immediately followed by an OP_IdxGT or OP_IdxLT opcode, respectively,
4613 ** with the same key.
4615 if( sqlite3BtreeCursorHasHint(pC
->uc
.pCursor
, BTREE_SEEK_EQ
) ){
4617 assert( pOp
->opcode
==OP_SeekGE
|| pOp
->opcode
==OP_SeekLE
);
4618 assert( pOp
[1].opcode
==OP_IdxLT
|| pOp
[1].opcode
==OP_IdxGT
);
4619 assert( pOp
->opcode
==OP_SeekGE
|| pOp
[1].opcode
==OP_IdxLT
);
4620 assert( pOp
->opcode
==OP_SeekLE
|| pOp
[1].opcode
==OP_IdxGT
);
4621 assert( pOp
[1].p1
==pOp
[0].p1
);
4622 assert( pOp
[1].p2
==pOp
[0].p2
);
4623 assert( pOp
[1].p3
==pOp
[0].p3
);
4624 assert( pOp
[1].p4
.i
==pOp
[0].p4
.i
);
4628 assert( pOp
->p4type
==P4_INT32
);
4630 r
.pKeyInfo
= pC
->pKeyInfo
;
4631 r
.nField
= (u16
)nField
;
4633 /* The next line of code computes as follows, only faster:
4634 ** if( oc==OP_SeekGT || oc==OP_SeekLE ){
4635 ** r.default_rc = -1;
4637 ** r.default_rc = +1;
4640 r
.default_rc
= ((1 & (oc
- OP_SeekLT
)) ? -1 : +1);
4641 assert( oc
!=OP_SeekGT
|| r
.default_rc
==-1 );
4642 assert( oc
!=OP_SeekLE
|| r
.default_rc
==-1 );
4643 assert( oc
!=OP_SeekGE
|| r
.default_rc
==+1 );
4644 assert( oc
!=OP_SeekLT
|| r
.default_rc
==+1 );
4646 r
.aMem
= &aMem
[pOp
->p3
];
4648 { int i
; for(i
=0; i
<r
.nField
; i
++) assert( memIsValid(&r
.aMem
[i
]) ); }
4651 rc
= sqlite3BtreeIndexMoveto(pC
->uc
.pCursor
, &r
, &res
);
4652 if( rc
!=SQLITE_OK
){
4653 goto abort_due_to_error
;
4655 if( eqOnly
&& r
.eqSeen
==0 ){
4657 goto seek_not_found
;
4661 sqlite3_search_count
++;
4663 if( oc
>=OP_SeekGE
){ assert( oc
==OP_SeekGE
|| oc
==OP_SeekGT
);
4664 if( res
<0 || (res
==0 && oc
==OP_SeekGT
) ){
4666 rc
= sqlite3BtreeNext(pC
->uc
.pCursor
, 0);
4667 if( rc
!=SQLITE_OK
){
4668 if( rc
==SQLITE_DONE
){
4672 goto abort_due_to_error
;
4679 assert( oc
==OP_SeekLT
|| oc
==OP_SeekLE
);
4680 if( res
>0 || (res
==0 && oc
==OP_SeekLT
) ){
4682 rc
= sqlite3BtreePrevious(pC
->uc
.pCursor
, 0);
4683 if( rc
!=SQLITE_OK
){
4684 if( rc
==SQLITE_DONE
){
4688 goto abort_due_to_error
;
4692 /* res might be negative because the table is empty. Check to
4693 ** see if this is the case.
4695 res
= sqlite3BtreeEof(pC
->uc
.pCursor
);
4699 assert( pOp
->p2
>0 );
4700 VdbeBranchTaken(res
!=0,2);
4704 assert( pOp
[1].opcode
==OP_IdxLT
|| pOp
[1].opcode
==OP_IdxGT
);
4705 pOp
++; /* Skip the OP_IdxLt or OP_IdxGT that follows */
4711 /* Opcode: SeekScan P1 P2 * * *
4712 ** Synopsis: Scan-ahead up to P1 rows
4714 ** This opcode is a prefix opcode to OP_SeekGE. In other words, this
4715 ** opcode must be immediately followed by OP_SeekGE. This constraint is
4716 ** checked by assert() statements.
4718 ** This opcode uses the P1 through P4 operands of the subsequent
4719 ** OP_SeekGE. In the text that follows, the operands of the subsequent
4720 ** OP_SeekGE opcode are denoted as SeekOP.P1 through SeekOP.P4. Only
4721 ** the P1 and P2 operands of this opcode are also used, and are called
4722 ** This.P1 and This.P2.
4724 ** This opcode helps to optimize IN operators on a multi-column index
4725 ** where the IN operator is on the later terms of the index by avoiding
4726 ** unnecessary seeks on the btree, substituting steps to the next row
4727 ** of the b-tree instead. A correct answer is obtained if this opcode
4728 ** is omitted or is a no-op.
4730 ** The SeekGE.P3 and SeekGE.P4 operands identify an unpacked key which
4731 ** is the desired entry that we want the cursor SeekGE.P1 to be pointing
4732 ** to. Call this SeekGE.P4/P5 row the "target".
4734 ** If the SeekGE.P1 cursor is not currently pointing to a valid row,
4735 ** then this opcode is a no-op and control passes through into the OP_SeekGE.
4737 ** If the SeekGE.P1 cursor is pointing to a valid row, then that row
4738 ** might be the target row, or it might be near and slightly before the
4739 ** target row. This opcode attempts to position the cursor on the target
4740 ** row by, perhaps by invoking sqlite3BtreeStep() on the cursor
4741 ** between 0 and This.P1 times.
4743 ** There are three possible outcomes from this opcode:<ol>
4745 ** <li> If after This.P1 steps, the cursor is still pointing to a place that
4746 ** is earlier in the btree than the target row, then fall through
4747 ** into the subsquence OP_SeekGE opcode.
4749 ** <li> If the cursor is successfully moved to the target row by 0 or more
4750 ** sqlite3BtreeNext() calls, then jump to This.P2, which will land just
4751 ** past the OP_IdxGT or OP_IdxGE opcode that follows the OP_SeekGE.
4753 ** <li> If the cursor ends up past the target row (indicating the the target
4754 ** row does not exist in the btree) then jump to SeekOP.P2.
4763 assert( pOp
[1].opcode
==OP_SeekGE
);
4765 /* pOp->p2 points to the first instruction past the OP_IdxGT that
4766 ** follows the OP_SeekGE. */
4767 assert( pOp
->p2
>=(int)(pOp
-aOp
)+2 );
4768 assert( aOp
[pOp
->p2
-1].opcode
==OP_IdxGT
|| aOp
[pOp
->p2
-1].opcode
==OP_IdxGE
);
4769 testcase( aOp
[pOp
->p2
-1].opcode
==OP_IdxGE
);
4770 assert( pOp
[1].p1
==aOp
[pOp
->p2
-1].p1
);
4771 assert( pOp
[1].p2
==aOp
[pOp
->p2
-1].p2
);
4772 assert( pOp
[1].p3
==aOp
[pOp
->p2
-1].p3
);
4774 assert( pOp
->p1
>0 );
4775 pC
= p
->apCsr
[pOp
[1].p1
];
4777 assert( pC
->eCurType
==CURTYPE_BTREE
);
4778 assert( !pC
->isTable
);
4779 if( !sqlite3BtreeCursorIsValidNN(pC
->uc
.pCursor
) ){
4781 if( db
->flags
&SQLITE_VdbeTrace
){
4782 printf("... cursor not valid - fall through\n");
4789 r
.pKeyInfo
= pC
->pKeyInfo
;
4790 r
.nField
= (u16
)pOp
[1].p4
.i
;
4792 r
.aMem
= &aMem
[pOp
[1].p3
];
4796 for(i
=0; i
<r
.nField
; i
++){
4797 assert( memIsValid(&r
.aMem
[i
]) );
4798 REGISTER_TRACE(pOp
[1].p3
+i
, &aMem
[pOp
[1].p3
+i
]);
4802 res
= 0; /* Not needed. Only used to silence a warning. */
4804 rc
= sqlite3VdbeIdxKeyCompare(db
, pC
, &r
, &res
);
4805 if( rc
) goto abort_due_to_error
;
4807 seekscan_search_fail
:
4809 if( db
->flags
&SQLITE_VdbeTrace
){
4810 printf("... %d steps and then skip\n", pOp
->p1
- nStep
);
4813 VdbeBranchTaken(1,3);
4819 if( db
->flags
&SQLITE_VdbeTrace
){
4820 printf("... %d steps and then success\n", pOp
->p1
- nStep
);
4823 VdbeBranchTaken(2,3);
4829 if( db
->flags
&SQLITE_VdbeTrace
){
4830 printf("... fall through after %d steps\n", pOp
->p1
);
4833 VdbeBranchTaken(0,3);
4837 rc
= sqlite3BtreeNext(pC
->uc
.pCursor
, 0);
4839 if( rc
==SQLITE_DONE
){
4841 goto seekscan_search_fail
;
4843 goto abort_due_to_error
;
4852 /* Opcode: SeekHit P1 P2 P3 * *
4853 ** Synopsis: set P2<=seekHit<=P3
4855 ** Increase or decrease the seekHit value for cursor P1, if necessary,
4856 ** so that it is no less than P2 and no greater than P3.
4858 ** The seekHit integer represents the maximum of terms in an index for which
4859 ** there is known to be at least one match. If the seekHit value is smaller
4860 ** than the total number of equality terms in an index lookup, then the
4861 ** OP_IfNoHope opcode might run to see if the IN loop can be abandoned
4862 ** early, thus saving work. This is part of the IN-early-out optimization.
4864 ** P1 must be a valid b-tree cursor.
4868 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4869 pC
= p
->apCsr
[pOp
->p1
];
4871 assert( pOp
->p3
>=pOp
->p2
);
4872 if( pC
->seekHit
<pOp
->p2
){
4874 if( db
->flags
&SQLITE_VdbeTrace
){
4875 printf("seekHit changes from %d to %d\n", pC
->seekHit
, pOp
->p2
);
4878 pC
->seekHit
= pOp
->p2
;
4879 }else if( pC
->seekHit
>pOp
->p3
){
4881 if( db
->flags
&SQLITE_VdbeTrace
){
4882 printf("seekHit changes from %d to %d\n", pC
->seekHit
, pOp
->p3
);
4885 pC
->seekHit
= pOp
->p3
;
4890 /* Opcode: IfNotOpen P1 P2 * * *
4891 ** Synopsis: if( !csr[P1] ) goto P2
4893 ** If cursor P1 is not open, jump to instruction P2. Otherwise, fall through.
4895 case OP_IfNotOpen
: { /* jump */
4896 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4897 VdbeBranchTaken(p
->apCsr
[pOp
->p1
]==0, 2);
4898 if( !p
->apCsr
[pOp
->p1
] ){
4899 goto jump_to_p2_and_check_for_interrupt
;
4904 /* Opcode: Found P1 P2 P3 P4 *
4905 ** Synopsis: key=r[P3@P4]
4907 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
4908 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
4911 ** Cursor P1 is on an index btree. If the record identified by P3 and P4
4912 ** is a prefix of any entry in P1 then a jump is made to P2 and
4913 ** P1 is left pointing at the matching entry.
4915 ** This operation leaves the cursor in a state where it can be
4916 ** advanced in the forward direction. The Next instruction will work,
4917 ** but not the Prev instruction.
4919 ** See also: NotFound, NoConflict, NotExists. SeekGe
4921 /* Opcode: NotFound P1 P2 P3 P4 *
4922 ** Synopsis: key=r[P3@P4]
4924 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
4925 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
4928 ** Cursor P1 is on an index btree. If the record identified by P3 and P4
4929 ** is not the prefix of any entry in P1 then a jump is made to P2. If P1
4930 ** does contain an entry whose prefix matches the P3/P4 record then control
4931 ** falls through to the next instruction and P1 is left pointing at the
4934 ** This operation leaves the cursor in a state where it cannot be
4935 ** advanced in either direction. In other words, the Next and Prev
4936 ** opcodes do not work after this operation.
4938 ** See also: Found, NotExists, NoConflict, IfNoHope
4940 /* Opcode: IfNoHope P1 P2 P3 P4 *
4941 ** Synopsis: key=r[P3@P4]
4943 ** Register P3 is the first of P4 registers that form an unpacked
4944 ** record. Cursor P1 is an index btree. P2 is a jump destination.
4945 ** In other words, the operands to this opcode are the same as the
4946 ** operands to OP_NotFound and OP_IdxGT.
4948 ** This opcode is an optimization attempt only. If this opcode always
4949 ** falls through, the correct answer is still obtained, but extra works
4952 ** A value of N in the seekHit flag of cursor P1 means that there exists
4953 ** a key P3:N that will match some record in the index. We want to know
4954 ** if it is possible for a record P3:P4 to match some record in the
4955 ** index. If it is not possible, we can skips some work. So if seekHit
4956 ** is less than P4, attempt to find out if a match is possible by running
4959 ** This opcode is used in IN clause processing for a multi-column key.
4960 ** If an IN clause is attached to an element of the key other than the
4961 ** left-most element, and if there are no matches on the most recent
4962 ** seek over the whole key, then it might be that one of the key element
4963 ** to the left is prohibiting a match, and hence there is "no hope" of
4964 ** any match regardless of how many IN clause elements are checked.
4965 ** In such a case, we abandon the IN clause search early, using this
4966 ** opcode. The opcode name comes from the fact that the
4967 ** jump is taken if there is "no hope" of achieving a match.
4969 ** See also: NotFound, SeekHit
4971 /* Opcode: NoConflict P1 P2 P3 P4 *
4972 ** Synopsis: key=r[P3@P4]
4974 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
4975 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
4978 ** Cursor P1 is on an index btree. If the record identified by P3 and P4
4979 ** contains any NULL value, jump immediately to P2. If all terms of the
4980 ** record are not-NULL then a check is done to determine if any row in the
4981 ** P1 index btree has a matching key prefix. If there are no matches, jump
4982 ** immediately to P2. If there is a match, fall through and leave the P1
4983 ** cursor pointing to the matching row.
4985 ** This opcode is similar to OP_NotFound with the exceptions that the
4986 ** branch is always taken if any part of the search key input is NULL.
4988 ** This operation leaves the cursor in a state where it cannot be
4989 ** advanced in either direction. In other words, the Next and Prev
4990 ** opcodes do not work after this operation.
4992 ** See also: NotFound, Found, NotExists
4994 case OP_IfNoHope
: { /* jump, in3 */
4996 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4997 pC
= p
->apCsr
[pOp
->p1
];
5000 if( db
->flags
&SQLITE_VdbeTrace
){
5001 printf("seekHit is %d\n", pC
->seekHit
);
5004 if( pC
->seekHit
>=pOp
->p4
.i
) break;
5005 /* Fall through into OP_NotFound */
5006 /* no break */ deliberate_fall_through
5008 case OP_NoConflict
: /* jump, in3 */
5009 case OP_NotFound
: /* jump, in3 */
5010 case OP_Found
: { /* jump, in3 */
5014 UnpackedRecord
*pIdxKey
;
5018 if( pOp
->opcode
!=OP_NoConflict
) sqlite3_found_count
++;
5021 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
5022 assert( pOp
->p4type
==P4_INT32
);
5023 pC
= p
->apCsr
[pOp
->p1
];
5026 pC
->seekOp
= pOp
->opcode
;
5028 r
.aMem
= &aMem
[pOp
->p3
];
5029 assert( pC
->eCurType
==CURTYPE_BTREE
);
5030 assert( pC
->uc
.pCursor
!=0 );
5031 assert( pC
->isTable
==0 );
5032 r
.nField
= (u16
)pOp
->p4
.i
;
5034 /* Key values in an array of registers */
5035 r
.pKeyInfo
= pC
->pKeyInfo
;
5038 for(ii
=0; ii
<r
.nField
; ii
++){
5039 assert( memIsValid(&r
.aMem
[ii
]) );
5040 assert( (r
.aMem
[ii
].flags
& MEM_Zero
)==0 || r
.aMem
[ii
].n
==0 );
5041 if( ii
) REGISTER_TRACE(pOp
->p3
+ii
, &r
.aMem
[ii
]);
5044 rc
= sqlite3BtreeIndexMoveto(pC
->uc
.pCursor
, &r
, &pC
->seekResult
);
5046 /* Composite key generated by OP_MakeRecord */
5047 assert( r
.aMem
->flags
& MEM_Blob
);
5048 assert( pOp
->opcode
!=OP_NoConflict
);
5049 rc
= ExpandBlob(r
.aMem
);
5050 assert( rc
==SQLITE_OK
|| rc
==SQLITE_NOMEM
);
5051 if( rc
) goto no_mem
;
5052 pIdxKey
= sqlite3VdbeAllocUnpackedRecord(pC
->pKeyInfo
);
5053 if( pIdxKey
==0 ) goto no_mem
;
5054 sqlite3VdbeRecordUnpack(pC
->pKeyInfo
, r
.aMem
->n
, r
.aMem
->z
, pIdxKey
);
5055 pIdxKey
->default_rc
= 0;
5056 rc
= sqlite3BtreeIndexMoveto(pC
->uc
.pCursor
, pIdxKey
, &pC
->seekResult
);
5057 sqlite3DbFreeNN(db
, pIdxKey
);
5059 if( rc
!=SQLITE_OK
){
5060 goto abort_due_to_error
;
5062 alreadyExists
= (pC
->seekResult
==0);
5063 pC
->nullRow
= 1-alreadyExists
;
5064 pC
->deferredMoveto
= 0;
5065 pC
->cacheStatus
= CACHE_STALE
;
5066 if( pOp
->opcode
==OP_Found
){
5067 VdbeBranchTaken(alreadyExists
!=0,2);
5068 if( alreadyExists
) goto jump_to_p2
;
5070 if( !alreadyExists
){
5071 VdbeBranchTaken(1,2);
5074 if( pOp
->opcode
==OP_NoConflict
){
5075 /* For the OP_NoConflict opcode, take the jump if any of the
5076 ** input fields are NULL, since any key with a NULL will not
5078 for(ii
=0; ii
<r
.nField
; ii
++){
5079 if( r
.aMem
[ii
].flags
& MEM_Null
){
5080 VdbeBranchTaken(1,2);
5085 VdbeBranchTaken(0,2);
5086 if( pOp
->opcode
==OP_IfNoHope
){
5087 pC
->seekHit
= pOp
->p4
.i
;
5093 /* Opcode: SeekRowid P1 P2 P3 * *
5094 ** Synopsis: intkey=r[P3]
5096 ** P1 is the index of a cursor open on an SQL table btree (with integer
5097 ** keys). If register P3 does not contain an integer or if P1 does not
5098 ** contain a record with rowid P3 then jump immediately to P2.
5099 ** Or, if P2 is 0, raise an SQLITE_CORRUPT error. If P1 does contain
5100 ** a record with rowid P3 then
5101 ** leave the cursor pointing at that record and fall through to the next
5104 ** The OP_NotExists opcode performs the same operation, but with OP_NotExists
5105 ** the P3 register must be guaranteed to contain an integer value. With this
5106 ** opcode, register P3 might not contain an integer.
5108 ** The OP_NotFound opcode performs the same operation on index btrees
5109 ** (with arbitrary multi-value keys).
5111 ** This opcode leaves the cursor in a state where it cannot be advanced
5112 ** in either direction. In other words, the Next and Prev opcodes will
5113 ** not work following this opcode.
5115 ** See also: Found, NotFound, NoConflict, SeekRowid
5117 /* Opcode: NotExists P1 P2 P3 * *
5118 ** Synopsis: intkey=r[P3]
5120 ** P1 is the index of a cursor open on an SQL table btree (with integer
5121 ** keys). P3 is an integer rowid. If P1 does not contain a record with
5122 ** rowid P3 then jump immediately to P2. Or, if P2 is 0, raise an
5123 ** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then
5124 ** leave the cursor pointing at that record and fall through to the next
5127 ** The OP_SeekRowid opcode performs the same operation but also allows the
5128 ** P3 register to contain a non-integer value, in which case the jump is
5129 ** always taken. This opcode requires that P3 always contain an integer.
5131 ** The OP_NotFound opcode performs the same operation on index btrees
5132 ** (with arbitrary multi-value keys).
5134 ** This opcode leaves the cursor in a state where it cannot be advanced
5135 ** in either direction. In other words, the Next and Prev opcodes will
5136 ** not work following this opcode.
5138 ** See also: Found, NotFound, NoConflict, SeekRowid
5140 case OP_SeekRowid
: { /* jump, in3 */
5146 pIn3
= &aMem
[pOp
->p3
];
5147 testcase( pIn3
->flags
& MEM_Int
);
5148 testcase( pIn3
->flags
& MEM_IntReal
);
5149 testcase( pIn3
->flags
& MEM_Real
);
5150 testcase( (pIn3
->flags
& (MEM_Str
|MEM_Int
))==MEM_Str
);
5151 if( (pIn3
->flags
& (MEM_Int
|MEM_IntReal
))==0 ){
5152 /* If pIn3->u.i does not contain an integer, compute iKey as the
5153 ** integer value of pIn3. Jump to P2 if pIn3 cannot be converted
5154 ** into an integer without loss of information. Take care to avoid
5155 ** changing the datatype of pIn3, however, as it is used by other
5156 ** parts of the prepared statement. */
5158 applyAffinity(&x
, SQLITE_AFF_NUMERIC
, encoding
);
5159 if( (x
.flags
& MEM_Int
)==0 ) goto jump_to_p2
;
5161 goto notExistsWithKey
;
5163 /* Fall through into OP_NotExists */
5164 /* no break */ deliberate_fall_through
5165 case OP_NotExists
: /* jump, in3 */
5166 pIn3
= &aMem
[pOp
->p3
];
5167 assert( (pIn3
->flags
& MEM_Int
)!=0 || pOp
->opcode
==OP_SeekRowid
);
5168 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
5171 pC
= p
->apCsr
[pOp
->p1
];
5174 if( pOp
->opcode
==OP_SeekRowid
) pC
->seekOp
= OP_SeekRowid
;
5176 assert( pC
->isTable
);
5177 assert( pC
->eCurType
==CURTYPE_BTREE
);
5178 pCrsr
= pC
->uc
.pCursor
;
5181 rc
= sqlite3BtreeTableMoveto(pCrsr
, iKey
, 0, &res
);
5182 assert( rc
==SQLITE_OK
|| res
==0 );
5183 pC
->movetoTarget
= iKey
; /* Used by OP_Delete */
5185 pC
->cacheStatus
= CACHE_STALE
;
5186 pC
->deferredMoveto
= 0;
5187 VdbeBranchTaken(res
!=0,2);
5188 pC
->seekResult
= res
;
5190 assert( rc
==SQLITE_OK
);
5192 rc
= SQLITE_CORRUPT_BKPT
;
5197 if( rc
) goto abort_due_to_error
;
5201 /* Opcode: Sequence P1 P2 * * *
5202 ** Synopsis: r[P2]=cursor[P1].ctr++
5204 ** Find the next available sequence number for cursor P1.
5205 ** Write the sequence number into register P2.
5206 ** The sequence number on the cursor is incremented after this
5209 case OP_Sequence
: { /* out2 */
5210 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
5211 assert( p
->apCsr
[pOp
->p1
]!=0 );
5212 assert( p
->apCsr
[pOp
->p1
]->eCurType
!=CURTYPE_VTAB
);
5213 pOut
= out2Prerelease(p
, pOp
);
5214 pOut
->u
.i
= p
->apCsr
[pOp
->p1
]->seqCount
++;
5219 /* Opcode: NewRowid P1 P2 P3 * *
5220 ** Synopsis: r[P2]=rowid
5222 ** Get a new integer record number (a.k.a "rowid") used as the key to a table.
5223 ** The record number is not previously used as a key in the database
5224 ** table that cursor P1 points to. The new record number is written
5225 ** written to register P2.
5227 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds
5228 ** the largest previously generated record number. No new record numbers are
5229 ** allowed to be less than this value. When this value reaches its maximum,
5230 ** an SQLITE_FULL error is generated. The P3 register is updated with the '
5231 ** generated record number. This P3 mechanism is used to help implement the
5232 ** AUTOINCREMENT feature.
5234 case OP_NewRowid
: { /* out2 */
5235 i64 v
; /* The new rowid */
5236 VdbeCursor
*pC
; /* Cursor of table to get the new rowid */
5237 int res
; /* Result of an sqlite3BtreeLast() */
5238 int cnt
; /* Counter to limit the number of searches */
5239 #ifndef SQLITE_OMIT_AUTOINCREMENT
5240 Mem
*pMem
; /* Register holding largest rowid for AUTOINCREMENT */
5241 VdbeFrame
*pFrame
; /* Root frame of VDBE */
5246 pOut
= out2Prerelease(p
, pOp
);
5247 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
5248 pC
= p
->apCsr
[pOp
->p1
];
5250 assert( pC
->isTable
);
5251 assert( pC
->eCurType
==CURTYPE_BTREE
);
5252 assert( pC
->uc
.pCursor
!=0 );
5254 /* The next rowid or record number (different terms for the same
5255 ** thing) is obtained in a two-step algorithm.
5257 ** First we attempt to find the largest existing rowid and add one
5258 ** to that. But if the largest existing rowid is already the maximum
5259 ** positive integer, we have to fall through to the second
5260 ** probabilistic algorithm
5262 ** The second algorithm is to select a rowid at random and see if
5263 ** it already exists in the table. If it does not exist, we have
5264 ** succeeded. If the random rowid does exist, we select a new one
5265 ** and try again, up to 100 times.
5267 assert( pC
->isTable
);
5269 #ifdef SQLITE_32BIT_ROWID
5270 # define MAX_ROWID 0x7fffffff
5272 /* Some compilers complain about constants of the form 0x7fffffffffffffff.
5273 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems
5274 ** to provide the constant while making all compilers happy.
5276 # define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
5279 if( !pC
->useRandomRowid
){
5280 rc
= sqlite3BtreeLast(pC
->uc
.pCursor
, &res
);
5281 if( rc
!=SQLITE_OK
){
5282 goto abort_due_to_error
;
5285 v
= 1; /* IMP: R-61914-48074 */
5287 assert( sqlite3BtreeCursorIsValid(pC
->uc
.pCursor
) );
5288 v
= sqlite3BtreeIntegerKey(pC
->uc
.pCursor
);
5290 pC
->useRandomRowid
= 1;
5292 v
++; /* IMP: R-29538-34987 */
5297 #ifndef SQLITE_OMIT_AUTOINCREMENT
5299 /* Assert that P3 is a valid memory cell. */
5300 assert( pOp
->p3
>0 );
5302 for(pFrame
=p
->pFrame
; pFrame
->pParent
; pFrame
=pFrame
->pParent
);
5303 /* Assert that P3 is a valid memory cell. */
5304 assert( pOp
->p3
<=pFrame
->nMem
);
5305 pMem
= &pFrame
->aMem
[pOp
->p3
];
5307 /* Assert that P3 is a valid memory cell. */
5308 assert( pOp
->p3
<=(p
->nMem
+1 - p
->nCursor
) );
5309 pMem
= &aMem
[pOp
->p3
];
5310 memAboutToChange(p
, pMem
);
5312 assert( memIsValid(pMem
) );
5314 REGISTER_TRACE(pOp
->p3
, pMem
);
5315 sqlite3VdbeMemIntegerify(pMem
);
5316 assert( (pMem
->flags
& MEM_Int
)!=0 ); /* mem(P3) holds an integer */
5317 if( pMem
->u
.i
==MAX_ROWID
|| pC
->useRandomRowid
){
5318 rc
= SQLITE_FULL
; /* IMP: R-17817-00630 */
5319 goto abort_due_to_error
;
5321 if( v
<pMem
->u
.i
+1 ){
5327 if( pC
->useRandomRowid
){
5328 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
5329 ** largest possible integer (9223372036854775807) then the database
5330 ** engine starts picking positive candidate ROWIDs at random until
5331 ** it finds one that is not previously used. */
5332 assert( pOp
->p3
==0 ); /* We cannot be in random rowid mode if this is
5333 ** an AUTOINCREMENT table. */
5336 sqlite3_randomness(sizeof(v
), &v
);
5337 v
&= (MAX_ROWID
>>1); v
++; /* Ensure that v is greater than zero */
5338 }while( ((rc
= sqlite3BtreeTableMoveto(pC
->uc
.pCursor
, (u64
)v
,
5339 0, &res
))==SQLITE_OK
)
5342 if( rc
) goto abort_due_to_error
;
5344 rc
= SQLITE_FULL
; /* IMP: R-38219-53002 */
5345 goto abort_due_to_error
;
5347 assert( v
>0 ); /* EV: R-40812-03570 */
5349 pC
->deferredMoveto
= 0;
5350 pC
->cacheStatus
= CACHE_STALE
;
5356 /* Opcode: Insert P1 P2 P3 P4 P5
5357 ** Synopsis: intkey=r[P3] data=r[P2]
5359 ** Write an entry into the table of cursor P1. A new entry is
5360 ** created if it doesn't already exist or the data for an existing
5361 ** entry is overwritten. The data is the value MEM_Blob stored in register
5362 ** number P2. The key is stored in register P3. The key must
5365 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
5366 ** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set,
5367 ** then rowid is stored for subsequent return by the
5368 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
5370 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
5371 ** run faster by avoiding an unnecessary seek on cursor P1. However,
5372 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
5373 ** seeks on the cursor or if the most recent seek used a key equal to P3.
5375 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
5376 ** UPDATE operation. Otherwise (if the flag is clear) then this opcode
5377 ** is part of an INSERT operation. The difference is only important to
5380 ** Parameter P4 may point to a Table structure, or may be NULL. If it is
5381 ** not NULL, then the update-hook (sqlite3.xUpdateCallback) is invoked
5382 ** following a successful insert.
5384 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
5385 ** allocated, then ownership of P2 is transferred to the pseudo-cursor
5386 ** and register P2 becomes ephemeral. If the cursor is changed, the
5387 ** value of register P2 will then change. Make sure this does not
5388 ** cause any problems.)
5390 ** This instruction only works on tables. The equivalent instruction
5391 ** for indices is OP_IdxInsert.
5394 Mem
*pData
; /* MEM cell holding data for the record to be inserted */
5395 Mem
*pKey
; /* MEM cell holding key for the record */
5396 VdbeCursor
*pC
; /* Cursor to table into which insert is written */
5397 int seekResult
; /* Result of prior seek or 0 if no USESEEKRESULT flag */
5398 const char *zDb
; /* database name - used by the update hook */
5399 Table
*pTab
; /* Table structure - used by update and pre-update hooks */
5400 BtreePayload x
; /* Payload to be inserted */
5402 pData
= &aMem
[pOp
->p2
];
5403 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
5404 assert( memIsValid(pData
) );
5405 pC
= p
->apCsr
[pOp
->p1
];
5407 assert( pC
->eCurType
==CURTYPE_BTREE
);
5408 assert( pC
->deferredMoveto
==0 );
5409 assert( pC
->uc
.pCursor
!=0 );
5410 assert( (pOp
->p5
& OPFLAG_ISNOOP
) || pC
->isTable
);
5411 assert( pOp
->p4type
==P4_TABLE
|| pOp
->p4type
>=P4_STATIC
);
5412 REGISTER_TRACE(pOp
->p2
, pData
);
5413 sqlite3VdbeIncrWriteCounter(p
, pC
);
5415 pKey
= &aMem
[pOp
->p3
];
5416 assert( pKey
->flags
& MEM_Int
);
5417 assert( memIsValid(pKey
) );
5418 REGISTER_TRACE(pOp
->p3
, pKey
);
5421 if( pOp
->p4type
==P4_TABLE
&& HAS_UPDATE_HOOK(db
) ){
5422 assert( pC
->iDb
>=0 );
5423 zDb
= db
->aDb
[pC
->iDb
].zDbSName
;
5424 pTab
= pOp
->p4
.pTab
;
5425 assert( (pOp
->p5
& OPFLAG_ISNOOP
) || HasRowid(pTab
) );
5431 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5432 /* Invoke the pre-update hook, if any */
5434 if( db
->xPreUpdateCallback
&& !(pOp
->p5
& OPFLAG_ISUPDATE
) ){
5435 sqlite3VdbePreUpdateHook(p
,pC
,SQLITE_INSERT
,zDb
,pTab
,x
.nKey
,pOp
->p2
,-1);
5437 if( db
->xUpdateCallback
==0 || pTab
->aCol
==0 ){
5438 /* Prevent post-update hook from running in cases when it should not */
5442 if( pOp
->p5
& OPFLAG_ISNOOP
) break;
5445 if( pOp
->p5
& OPFLAG_NCHANGE
) p
->nChange
++;
5446 if( pOp
->p5
& OPFLAG_LASTROWID
) db
->lastRowid
= x
.nKey
;
5447 assert( (pData
->flags
& (MEM_Blob
|MEM_Str
))!=0 || pData
->n
==0 );
5450 seekResult
= ((pOp
->p5
& OPFLAG_USESEEKRESULT
) ? pC
->seekResult
: 0);
5451 if( pData
->flags
& MEM_Zero
){
5452 x
.nZero
= pData
->u
.nZero
;
5457 rc
= sqlite3BtreeInsert(pC
->uc
.pCursor
, &x
,
5458 (pOp
->p5
& (OPFLAG_APPEND
|OPFLAG_SAVEPOSITION
|OPFLAG_PREFORMAT
)),
5461 pC
->deferredMoveto
= 0;
5462 pC
->cacheStatus
= CACHE_STALE
;
5464 /* Invoke the update-hook if required. */
5465 if( rc
) goto abort_due_to_error
;
5467 assert( db
->xUpdateCallback
!=0 );
5468 assert( pTab
->aCol
!=0 );
5469 db
->xUpdateCallback(db
->pUpdateArg
,
5470 (pOp
->p5
& OPFLAG_ISUPDATE
) ? SQLITE_UPDATE
: SQLITE_INSERT
,
5471 zDb
, pTab
->zName
, x
.nKey
);
5476 /* Opcode: RowCell P1 P2 P3 * *
5478 ** P1 and P2 are both open cursors. Both must be opened on the same type
5479 ** of table - intkey or index. This opcode is used as part of copying
5480 ** the current row from P2 into P1. If the cursors are opened on intkey
5481 ** tables, register P3 contains the rowid to use with the new record in
5482 ** P1. If they are opened on index tables, P3 is not used.
5484 ** This opcode must be followed by either an Insert or InsertIdx opcode
5485 ** with the OPFLAG_PREFORMAT flag set to complete the insert operation.
5488 VdbeCursor
*pDest
; /* Cursor to write to */
5489 VdbeCursor
*pSrc
; /* Cursor to read from */
5490 i64 iKey
; /* Rowid value to insert with */
5491 assert( pOp
[1].opcode
==OP_Insert
|| pOp
[1].opcode
==OP_IdxInsert
);
5492 assert( pOp
[1].opcode
==OP_Insert
|| pOp
->p3
==0 );
5493 assert( pOp
[1].opcode
==OP_IdxInsert
|| pOp
->p3
>0 );
5494 assert( pOp
[1].p5
& OPFLAG_PREFORMAT
);
5495 pDest
= p
->apCsr
[pOp
->p1
];
5496 pSrc
= p
->apCsr
[pOp
->p2
];
5497 iKey
= pOp
->p3
? aMem
[pOp
->p3
].u
.i
: 0;
5498 rc
= sqlite3BtreeTransferRow(pDest
->uc
.pCursor
, pSrc
->uc
.pCursor
, iKey
);
5499 if( rc
!=SQLITE_OK
) goto abort_due_to_error
;
5503 /* Opcode: Delete P1 P2 P3 P4 P5
5505 ** Delete the record at which the P1 cursor is currently pointing.
5507 ** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then
5508 ** the cursor will be left pointing at either the next or the previous
5509 ** record in the table. If it is left pointing at the next record, then
5510 ** the next Next instruction will be a no-op. As a result, in this case
5511 ** it is ok to delete a record from within a Next loop. If
5512 ** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be
5513 ** left in an undefined state.
5515 ** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this
5516 ** delete one of several associated with deleting a table row and all its
5517 ** associated index entries. Exactly one of those deletes is the "primary"
5518 ** delete. The others are all on OPFLAG_FORDELETE cursors or else are
5519 ** marked with the AUXDELETE flag.
5521 ** If the OPFLAG_NCHANGE flag of P2 (NB: P2 not P5) is set, then the row
5522 ** change count is incremented (otherwise not).
5524 ** P1 must not be pseudo-table. It has to be a real table with
5527 ** If P4 is not NULL then it points to a Table object. In this case either
5528 ** the update or pre-update hook, or both, may be invoked. The P1 cursor must
5529 ** have been positioned using OP_NotFound prior to invoking this opcode in
5530 ** this case. Specifically, if one is configured, the pre-update hook is
5531 ** invoked if P4 is not NULL. The update-hook is invoked if one is configured,
5532 ** P4 is not NULL, and the OPFLAG_NCHANGE flag is set in P2.
5534 ** If the OPFLAG_ISUPDATE flag is set in P2, then P3 contains the address
5535 ** of the memory cell that contains the value that the rowid of the row will
5536 ** be set to by the update.
5545 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
5546 pC
= p
->apCsr
[pOp
->p1
];
5548 assert( pC
->eCurType
==CURTYPE_BTREE
);
5549 assert( pC
->uc
.pCursor
!=0 );
5550 assert( pC
->deferredMoveto
==0 );
5551 sqlite3VdbeIncrWriteCounter(p
, pC
);
5554 if( pOp
->p4type
==P4_TABLE
5555 && HasRowid(pOp
->p4
.pTab
)
5557 && sqlite3BtreeCursorIsValidNN(pC
->uc
.pCursor
)
5559 /* If p5 is zero, the seek operation that positioned the cursor prior to
5560 ** OP_Delete will have also set the pC->movetoTarget field to the rowid of
5561 ** the row that is being deleted */
5562 i64 iKey
= sqlite3BtreeIntegerKey(pC
->uc
.pCursor
);
5563 assert( CORRUPT_DB
|| pC
->movetoTarget
==iKey
);
5567 /* If the update-hook or pre-update-hook will be invoked, set zDb to
5568 ** the name of the db to pass as to it. Also set local pTab to a copy
5569 ** of p4.pTab. Finally, if p5 is true, indicating that this cursor was
5570 ** last moved with OP_Next or OP_Prev, not Seek or NotFound, set
5571 ** VdbeCursor.movetoTarget to the current rowid. */
5572 if( pOp
->p4type
==P4_TABLE
&& HAS_UPDATE_HOOK(db
) ){
5573 assert( pC
->iDb
>=0 );
5574 assert( pOp
->p4
.pTab
!=0 );
5575 zDb
= db
->aDb
[pC
->iDb
].zDbSName
;
5576 pTab
= pOp
->p4
.pTab
;
5577 if( (pOp
->p5
& OPFLAG_SAVEPOSITION
)!=0 && pC
->isTable
){
5578 pC
->movetoTarget
= sqlite3BtreeIntegerKey(pC
->uc
.pCursor
);
5585 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5586 /* Invoke the pre-update-hook if required. */
5587 assert( db
->xPreUpdateCallback
==0 || pTab
==pOp
->p4
.pTab
);
5588 if( db
->xPreUpdateCallback
&& pTab
){
5589 assert( !(opflags
& OPFLAG_ISUPDATE
)
5590 || HasRowid(pTab
)==0
5591 || (aMem
[pOp
->p3
].flags
& MEM_Int
)
5593 sqlite3VdbePreUpdateHook(p
, pC
,
5594 (opflags
& OPFLAG_ISUPDATE
) ? SQLITE_UPDATE
: SQLITE_DELETE
,
5595 zDb
, pTab
, pC
->movetoTarget
,
5599 if( opflags
& OPFLAG_ISNOOP
) break;
5602 /* Only flags that can be set are SAVEPOISTION and AUXDELETE */
5603 assert( (pOp
->p5
& ~(OPFLAG_SAVEPOSITION
|OPFLAG_AUXDELETE
))==0 );
5604 assert( OPFLAG_SAVEPOSITION
==BTREE_SAVEPOSITION
);
5605 assert( OPFLAG_AUXDELETE
==BTREE_AUXDELETE
);
5609 if( pC
->isEphemeral
==0
5610 && (pOp
->p5
& OPFLAG_AUXDELETE
)==0
5611 && (pC
->wrFlag
& OPFLAG_FORDELETE
)==0
5615 if( pOp
->p2
& OPFLAG_NCHANGE
){
5621 rc
= sqlite3BtreeDelete(pC
->uc
.pCursor
, pOp
->p5
);
5622 pC
->cacheStatus
= CACHE_STALE
;
5624 if( rc
) goto abort_due_to_error
;
5626 /* Invoke the update-hook if required. */
5627 if( opflags
& OPFLAG_NCHANGE
){
5629 if( db
->xUpdateCallback
&& ALWAYS(pTab
!=0) && HasRowid(pTab
) ){
5630 db
->xUpdateCallback(db
->pUpdateArg
, SQLITE_DELETE
, zDb
, pTab
->zName
,
5632 assert( pC
->iDb
>=0 );
5638 /* Opcode: ResetCount * * * * *
5640 ** The value of the change counter is copied to the database handle
5641 ** change counter (returned by subsequent calls to sqlite3_changes()).
5642 ** Then the VMs internal change counter resets to 0.
5643 ** This is used by trigger programs.
5645 case OP_ResetCount
: {
5646 sqlite3VdbeSetChanges(db
, p
->nChange
);
5651 /* Opcode: SorterCompare P1 P2 P3 P4
5652 ** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2
5654 ** P1 is a sorter cursor. This instruction compares a prefix of the
5655 ** record blob in register P3 against a prefix of the entry that
5656 ** the sorter cursor currently points to. Only the first P4 fields
5657 ** of r[P3] and the sorter record are compared.
5659 ** If either P3 or the sorter contains a NULL in one of their significant
5660 ** fields (not counting the P4 fields at the end which are ignored) then
5661 ** the comparison is assumed to be equal.
5663 ** Fall through to next instruction if the two records compare equal to
5664 ** each other. Jump to P2 if they are different.
5666 case OP_SorterCompare
: {
5671 pC
= p
->apCsr
[pOp
->p1
];
5672 assert( isSorter(pC
) );
5673 assert( pOp
->p4type
==P4_INT32
);
5674 pIn3
= &aMem
[pOp
->p3
];
5675 nKeyCol
= pOp
->p4
.i
;
5677 rc
= sqlite3VdbeSorterCompare(pC
, pIn3
, nKeyCol
, &res
);
5678 VdbeBranchTaken(res
!=0,2);
5679 if( rc
) goto abort_due_to_error
;
5680 if( res
) goto jump_to_p2
;
5684 /* Opcode: SorterData P1 P2 P3 * *
5685 ** Synopsis: r[P2]=data
5687 ** Write into register P2 the current sorter data for sorter cursor P1.
5688 ** Then clear the column header cache on cursor P3.
5690 ** This opcode is normally use to move a record out of the sorter and into
5691 ** a register that is the source for a pseudo-table cursor created using
5692 ** OpenPseudo. That pseudo-table cursor is the one that is identified by
5693 ** parameter P3. Clearing the P3 column cache as part of this opcode saves
5694 ** us from having to issue a separate NullRow instruction to clear that cache.
5696 case OP_SorterData
: {
5699 pOut
= &aMem
[pOp
->p2
];
5700 pC
= p
->apCsr
[pOp
->p1
];
5701 assert( isSorter(pC
) );
5702 rc
= sqlite3VdbeSorterRowkey(pC
, pOut
);
5703 assert( rc
!=SQLITE_OK
|| (pOut
->flags
& MEM_Blob
) );
5704 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
5705 if( rc
) goto abort_due_to_error
;
5706 p
->apCsr
[pOp
->p3
]->cacheStatus
= CACHE_STALE
;
5710 /* Opcode: RowData P1 P2 P3 * *
5711 ** Synopsis: r[P2]=data
5713 ** Write into register P2 the complete row content for the row at
5714 ** which cursor P1 is currently pointing.
5715 ** There is no interpretation of the data.
5716 ** It is just copied onto the P2 register exactly as
5717 ** it is found in the database file.
5719 ** If cursor P1 is an index, then the content is the key of the row.
5720 ** If cursor P2 is a table, then the content extracted is the data.
5722 ** If the P1 cursor must be pointing to a valid row (not a NULL row)
5723 ** of a real table, not a pseudo-table.
5725 ** If P3!=0 then this opcode is allowed to make an ephemeral pointer
5726 ** into the database page. That means that the content of the output
5727 ** register will be invalidated as soon as the cursor moves - including
5728 ** moves caused by other cursors that "save" the current cursors
5729 ** position in order that they can write to the same table. If P3==0
5730 ** then a copy of the data is made into memory. P3!=0 is faster, but
5733 ** If P3!=0 then the content of the P2 register is unsuitable for use
5734 ** in OP_Result and any OP_Result will invalidate the P2 register content.
5735 ** The P2 register content is invalidated by opcodes like OP_Function or
5736 ** by any use of another cursor pointing to the same table.
5743 pOut
= out2Prerelease(p
, pOp
);
5745 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
5746 pC
= p
->apCsr
[pOp
->p1
];
5748 assert( pC
->eCurType
==CURTYPE_BTREE
);
5749 assert( isSorter(pC
)==0 );
5750 assert( pC
->nullRow
==0 );
5751 assert( pC
->uc
.pCursor
!=0 );
5752 pCrsr
= pC
->uc
.pCursor
;
5754 /* The OP_RowData opcodes always follow OP_NotExists or
5755 ** OP_SeekRowid or OP_Rewind/Op_Next with no intervening instructions
5756 ** that might invalidate the cursor.
5757 ** If this where not the case, on of the following assert()s
5758 ** would fail. Should this ever change (because of changes in the code
5759 ** generator) then the fix would be to insert a call to
5760 ** sqlite3VdbeCursorMoveto().
5762 assert( pC
->deferredMoveto
==0 );
5763 assert( sqlite3BtreeCursorIsValid(pCrsr
) );
5765 n
= sqlite3BtreePayloadSize(pCrsr
);
5766 if( n
>(u32
)db
->aLimit
[SQLITE_LIMIT_LENGTH
] ){
5770 rc
= sqlite3VdbeMemFromBtreeZeroOffset(pCrsr
, n
, pOut
);
5771 if( rc
) goto abort_due_to_error
;
5772 if( !pOp
->p3
) Deephemeralize(pOut
);
5773 UPDATE_MAX_BLOBSIZE(pOut
);
5774 REGISTER_TRACE(pOp
->p2
, pOut
);
5778 /* Opcode: Rowid P1 P2 * * *
5779 ** Synopsis: r[P2]=PX rowid of P1
5781 ** Store in register P2 an integer which is the key of the table entry that
5782 ** P1 is currently point to.
5784 ** P1 can be either an ordinary table or a virtual table. There used to
5785 ** be a separate OP_VRowid opcode for use with virtual tables, but this
5786 ** one opcode now works for both table types.
5788 case OP_Rowid
: { /* out2 */
5791 sqlite3_vtab
*pVtab
;
5792 const sqlite3_module
*pModule
;
5794 pOut
= out2Prerelease(p
, pOp
);
5795 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
5796 pC
= p
->apCsr
[pOp
->p1
];
5798 assert( pC
->eCurType
!=CURTYPE_PSEUDO
|| pC
->nullRow
);
5800 pOut
->flags
= MEM_Null
;
5802 }else if( pC
->deferredMoveto
){
5803 v
= pC
->movetoTarget
;
5804 #ifndef SQLITE_OMIT_VIRTUALTABLE
5805 }else if( pC
->eCurType
==CURTYPE_VTAB
){
5806 assert( pC
->uc
.pVCur
!=0 );
5807 pVtab
= pC
->uc
.pVCur
->pVtab
;
5808 pModule
= pVtab
->pModule
;
5809 assert( pModule
->xRowid
);
5810 rc
= pModule
->xRowid(pC
->uc
.pVCur
, &v
);
5811 sqlite3VtabImportErrmsg(p
, pVtab
);
5812 if( rc
) goto abort_due_to_error
;
5813 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5815 assert( pC
->eCurType
==CURTYPE_BTREE
);
5816 assert( pC
->uc
.pCursor
!=0 );
5817 rc
= sqlite3VdbeCursorRestore(pC
);
5818 if( rc
) goto abort_due_to_error
;
5820 pOut
->flags
= MEM_Null
;
5823 v
= sqlite3BtreeIntegerKey(pC
->uc
.pCursor
);
5829 /* Opcode: NullRow P1 * * * *
5831 ** Move the cursor P1 to a null row. Any OP_Column operations
5832 ** that occur while the cursor is on the null row will always
5835 ** If cursor P1 is not previously opened, open it now to a special
5836 ** pseudo-cursor that always returns NULL for every column.
5841 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
5842 pC
= p
->apCsr
[pOp
->p1
];
5844 /* If the cursor is not already open, create a special kind of
5845 ** pseudo-cursor that always gives null rows. */
5846 pC
= allocateCursor(p
, pOp
->p1
, 1, CURTYPE_PSEUDO
);
5847 if( pC
==0 ) goto no_mem
;
5851 pC
->uc
.pCursor
= sqlite3BtreeFakeValidCursor();
5854 pC
->cacheStatus
= CACHE_STALE
;
5855 if( pC
->eCurType
==CURTYPE_BTREE
){
5856 assert( pC
->uc
.pCursor
!=0 );
5857 sqlite3BtreeClearCursor(pC
->uc
.pCursor
);
5860 if( pC
->seekOp
==0 ) pC
->seekOp
= OP_NullRow
;
5865 /* Opcode: SeekEnd P1 * * * *
5867 ** Position cursor P1 at the end of the btree for the purpose of
5868 ** appending a new entry onto the btree.
5870 ** It is assumed that the cursor is used only for appending and so
5871 ** if the cursor is valid, then the cursor must already be pointing
5872 ** at the end of the btree and so no changes are made to
5875 /* Opcode: Last P1 P2 * * *
5877 ** The next use of the Rowid or Column or Prev instruction for P1
5878 ** will refer to the last entry in the database table or index.
5879 ** If the table or index is empty and P2>0, then jump immediately to P2.
5880 ** If P2 is 0 or if the table or index is not empty, fall through
5881 ** to the following instruction.
5883 ** This opcode leaves the cursor configured to move in reverse order,
5884 ** from the end toward the beginning. In other words, the cursor is
5885 ** configured to use Prev, not Next.
5888 case OP_Last
: { /* jump */
5893 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
5894 pC
= p
->apCsr
[pOp
->p1
];
5896 assert( pC
->eCurType
==CURTYPE_BTREE
);
5897 pCrsr
= pC
->uc
.pCursor
;
5901 pC
->seekOp
= pOp
->opcode
;
5903 if( pOp
->opcode
==OP_SeekEnd
){
5904 assert( pOp
->p2
==0 );
5905 pC
->seekResult
= -1;
5906 if( sqlite3BtreeCursorIsValidNN(pCrsr
) ){
5910 rc
= sqlite3BtreeLast(pCrsr
, &res
);
5911 pC
->nullRow
= (u8
)res
;
5912 pC
->deferredMoveto
= 0;
5913 pC
->cacheStatus
= CACHE_STALE
;
5914 if( rc
) goto abort_due_to_error
;
5916 VdbeBranchTaken(res
!=0,2);
5917 if( res
) goto jump_to_p2
;
5922 /* Opcode: IfSmaller P1 P2 P3 * *
5924 ** Estimate the number of rows in the table P1. Jump to P2 if that
5925 ** estimate is less than approximately 2**(0.1*P3).
5927 case OP_IfSmaller
: { /* jump */
5933 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
5934 pC
= p
->apCsr
[pOp
->p1
];
5936 pCrsr
= pC
->uc
.pCursor
;
5938 rc
= sqlite3BtreeFirst(pCrsr
, &res
);
5939 if( rc
) goto abort_due_to_error
;
5941 sz
= sqlite3BtreeRowCountEst(pCrsr
);
5942 if( ALWAYS(sz
>=0) && sqlite3LogEst((u64
)sz
)<pOp
->p3
) res
= 1;
5944 VdbeBranchTaken(res
!=0,2);
5945 if( res
) goto jump_to_p2
;
5950 /* Opcode: SorterSort P1 P2 * * *
5952 ** After all records have been inserted into the Sorter object
5953 ** identified by P1, invoke this opcode to actually do the sorting.
5954 ** Jump to P2 if there are no records to be sorted.
5956 ** This opcode is an alias for OP_Sort and OP_Rewind that is used
5957 ** for Sorter objects.
5959 /* Opcode: Sort P1 P2 * * *
5961 ** This opcode does exactly the same thing as OP_Rewind except that
5962 ** it increments an undocumented global variable used for testing.
5964 ** Sorting is accomplished by writing records into a sorting index,
5965 ** then rewinding that index and playing it back from beginning to
5966 ** end. We use the OP_Sort opcode instead of OP_Rewind to do the
5967 ** rewinding so that the global variable will be incremented and
5968 ** regression tests can determine whether or not the optimizer is
5969 ** correctly optimizing out sorts.
5971 case OP_SorterSort
: /* jump */
5972 case OP_Sort
: { /* jump */
5974 sqlite3_sort_count
++;
5975 sqlite3_search_count
--;
5977 p
->aCounter
[SQLITE_STMTSTATUS_SORT
]++;
5978 /* Fall through into OP_Rewind */
5979 /* no break */ deliberate_fall_through
5981 /* Opcode: Rewind P1 P2 * * *
5983 ** The next use of the Rowid or Column or Next instruction for P1
5984 ** will refer to the first entry in the database table or index.
5985 ** If the table or index is empty, jump immediately to P2.
5986 ** If the table or index is not empty, fall through to the following
5989 ** This opcode leaves the cursor configured to move in forward order,
5990 ** from the beginning toward the end. In other words, the cursor is
5991 ** configured to use Next, not Prev.
5993 case OP_Rewind
: { /* jump */
5998 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
5999 assert( pOp
->p5
==0 );
6000 pC
= p
->apCsr
[pOp
->p1
];
6002 assert( isSorter(pC
)==(pOp
->opcode
==OP_SorterSort
) );
6005 pC
->seekOp
= OP_Rewind
;
6008 rc
= sqlite3VdbeSorterRewind(pC
, &res
);
6010 assert( pC
->eCurType
==CURTYPE_BTREE
);
6011 pCrsr
= pC
->uc
.pCursor
;
6013 rc
= sqlite3BtreeFirst(pCrsr
, &res
);
6014 pC
->deferredMoveto
= 0;
6015 pC
->cacheStatus
= CACHE_STALE
;
6017 if( rc
) goto abort_due_to_error
;
6018 pC
->nullRow
= (u8
)res
;
6019 assert( pOp
->p2
>0 && pOp
->p2
<p
->nOp
);
6020 VdbeBranchTaken(res
!=0,2);
6021 if( res
) goto jump_to_p2
;
6025 /* Opcode: Next P1 P2 P3 * P5
6027 ** Advance cursor P1 so that it points to the next key/data pair in its
6028 ** table or index. If there are no more key/value pairs then fall through
6029 ** to the following instruction. But if the cursor advance was successful,
6030 ** jump immediately to P2.
6032 ** The Next opcode is only valid following an SeekGT, SeekGE, or
6033 ** OP_Rewind opcode used to position the cursor. Next is not allowed
6034 ** to follow SeekLT, SeekLE, or OP_Last.
6036 ** The P1 cursor must be for a real table, not a pseudo-table. P1 must have
6037 ** been opened prior to this opcode or the program will segfault.
6039 ** The P3 value is a hint to the btree implementation. If P3==1, that
6040 ** means P1 is an SQL index and that this instruction could have been
6041 ** omitted if that index had been unique. P3 is usually 0. P3 is
6042 ** always either 0 or 1.
6044 ** If P5 is positive and the jump is taken, then event counter
6045 ** number P5-1 in the prepared statement is incremented.
6049 /* Opcode: Prev P1 P2 P3 * P5
6051 ** Back up cursor P1 so that it points to the previous key/data pair in its
6052 ** table or index. If there is no previous key/value pairs then fall through
6053 ** to the following instruction. But if the cursor backup was successful,
6054 ** jump immediately to P2.
6057 ** The Prev opcode is only valid following an SeekLT, SeekLE, or
6058 ** OP_Last opcode used to position the cursor. Prev is not allowed
6059 ** to follow SeekGT, SeekGE, or OP_Rewind.
6061 ** The P1 cursor must be for a real table, not a pseudo-table. If P1 is
6062 ** not open then the behavior is undefined.
6064 ** The P3 value is a hint to the btree implementation. If P3==1, that
6065 ** means P1 is an SQL index and that this instruction could have been
6066 ** omitted if that index had been unique. P3 is usually 0. P3 is
6067 ** always either 0 or 1.
6069 ** If P5 is positive and the jump is taken, then event counter
6070 ** number P5-1 in the prepared statement is incremented.
6072 /* Opcode: SorterNext P1 P2 * * P5
6074 ** This opcode works just like OP_Next except that P1 must be a
6075 ** sorter object for which the OP_SorterSort opcode has been
6076 ** invoked. This opcode advances the cursor to the next sorted
6077 ** record, or jumps to P2 if there are no more sorted records.
6079 case OP_SorterNext
: { /* jump */
6082 pC
= p
->apCsr
[pOp
->p1
];
6083 assert( isSorter(pC
) );
6084 rc
= sqlite3VdbeSorterNext(db
, pC
);
6087 case OP_Prev
: /* jump */
6088 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
6089 assert( pOp
->p5
<ArraySize(p
->aCounter
) );
6090 pC
= p
->apCsr
[pOp
->p1
];
6092 assert( pC
->deferredMoveto
==0 );
6093 assert( pC
->eCurType
==CURTYPE_BTREE
);
6094 assert( pC
->seekOp
==OP_SeekLT
|| pC
->seekOp
==OP_SeekLE
6095 || pC
->seekOp
==OP_Last
|| pC
->seekOp
==OP_IfNoHope
6096 || pC
->seekOp
==OP_NullRow
);
6097 rc
= sqlite3BtreePrevious(pC
->uc
.pCursor
, pOp
->p3
);
6100 case OP_Next
: /* jump */
6101 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
6102 assert( pOp
->p5
<ArraySize(p
->aCounter
) );
6103 pC
= p
->apCsr
[pOp
->p1
];
6105 assert( pC
->deferredMoveto
==0 );
6106 assert( pC
->eCurType
==CURTYPE_BTREE
);
6107 assert( pC
->seekOp
==OP_SeekGT
|| pC
->seekOp
==OP_SeekGE
6108 || pC
->seekOp
==OP_Rewind
|| pC
->seekOp
==OP_Found
6109 || pC
->seekOp
==OP_NullRow
|| pC
->seekOp
==OP_SeekRowid
6110 || pC
->seekOp
==OP_IfNoHope
);
6111 rc
= sqlite3BtreeNext(pC
->uc
.pCursor
, pOp
->p3
);
6114 pC
->cacheStatus
= CACHE_STALE
;
6115 VdbeBranchTaken(rc
==SQLITE_OK
,2);
6116 if( rc
==SQLITE_OK
){
6118 p
->aCounter
[pOp
->p5
]++;
6120 sqlite3_search_count
++;
6122 goto jump_to_p2_and_check_for_interrupt
;
6124 if( rc
!=SQLITE_DONE
) goto abort_due_to_error
;
6127 goto check_for_interrupt
;
6130 /* Opcode: IdxInsert P1 P2 P3 P4 P5
6131 ** Synopsis: key=r[P2]
6133 ** Register P2 holds an SQL index key made using the
6134 ** MakeRecord instructions. This opcode writes that key
6135 ** into the index P1. Data for the entry is nil.
6137 ** If P4 is not zero, then it is the number of values in the unpacked
6138 ** key of reg(P2). In that case, P3 is the index of the first register
6139 ** for the unpacked key. The availability of the unpacked key can sometimes
6140 ** be an optimization.
6142 ** If P5 has the OPFLAG_APPEND bit set, that is a hint to the b-tree layer
6143 ** that this insert is likely to be an append.
6145 ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is
6146 ** incremented by this instruction. If the OPFLAG_NCHANGE bit is clear,
6147 ** then the change counter is unchanged.
6149 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
6150 ** run faster by avoiding an unnecessary seek on cursor P1. However,
6151 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
6152 ** seeks on the cursor or if the most recent seek used a key equivalent
6155 ** This instruction only works for indices. The equivalent instruction
6156 ** for tables is OP_Insert.
6158 case OP_IdxInsert
: { /* in2 */
6162 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
6163 pC
= p
->apCsr
[pOp
->p1
];
6164 sqlite3VdbeIncrWriteCounter(p
, pC
);
6166 assert( !isSorter(pC
) );
6167 pIn2
= &aMem
[pOp
->p2
];
6168 assert( (pIn2
->flags
& MEM_Blob
) || (pOp
->p5
& OPFLAG_PREFORMAT
) );
6169 if( pOp
->p5
& OPFLAG_NCHANGE
) p
->nChange
++;
6170 assert( pC
->eCurType
==CURTYPE_BTREE
);
6171 assert( pC
->isTable
==0 );
6172 rc
= ExpandBlob(pIn2
);
6173 if( rc
) goto abort_due_to_error
;
6176 x
.aMem
= aMem
+ pOp
->p3
;
6177 x
.nMem
= (u16
)pOp
->p4
.i
;
6178 rc
= sqlite3BtreeInsert(pC
->uc
.pCursor
, &x
,
6179 (pOp
->p5
& (OPFLAG_APPEND
|OPFLAG_SAVEPOSITION
|OPFLAG_PREFORMAT
)),
6180 ((pOp
->p5
& OPFLAG_USESEEKRESULT
) ? pC
->seekResult
: 0)
6182 assert( pC
->deferredMoveto
==0 );
6183 pC
->cacheStatus
= CACHE_STALE
;
6184 if( rc
) goto abort_due_to_error
;
6188 /* Opcode: SorterInsert P1 P2 * * *
6189 ** Synopsis: key=r[P2]
6191 ** Register P2 holds an SQL index key made using the
6192 ** MakeRecord instructions. This opcode writes that key
6193 ** into the sorter P1. Data for the entry is nil.
6195 case OP_SorterInsert
: { /* in2 */
6198 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
6199 pC
= p
->apCsr
[pOp
->p1
];
6200 sqlite3VdbeIncrWriteCounter(p
, pC
);
6202 assert( isSorter(pC
) );
6203 pIn2
= &aMem
[pOp
->p2
];
6204 assert( pIn2
->flags
& MEM_Blob
);
6205 assert( pC
->isTable
==0 );
6206 rc
= ExpandBlob(pIn2
);
6207 if( rc
) goto abort_due_to_error
;
6208 rc
= sqlite3VdbeSorterWrite(pC
, pIn2
);
6209 if( rc
) goto abort_due_to_error
;
6213 /* Opcode: IdxDelete P1 P2 P3 * P5
6214 ** Synopsis: key=r[P2@P3]
6216 ** The content of P3 registers starting at register P2 form
6217 ** an unpacked index key. This opcode removes that entry from the
6218 ** index opened by cursor P1.
6220 ** If P5 is not zero, then raise an SQLITE_CORRUPT_INDEX error
6221 ** if no matching index entry is found. This happens when running
6222 ** an UPDATE or DELETE statement and the index entry to be updated
6223 ** or deleted is not found. For some uses of IdxDelete
6224 ** (example: the EXCEPT operator) it does not matter that no matching
6225 ** entry is found. For those cases, P5 is zero. Also, do not raise
6226 ** this (self-correcting and non-critical) error if in writable_schema mode.
6228 case OP_IdxDelete
: {
6234 assert( pOp
->p3
>0 );
6235 assert( pOp
->p2
>0 && pOp
->p2
+pOp
->p3
<=(p
->nMem
+1 - p
->nCursor
)+1 );
6236 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
6237 pC
= p
->apCsr
[pOp
->p1
];
6239 assert( pC
->eCurType
==CURTYPE_BTREE
);
6240 sqlite3VdbeIncrWriteCounter(p
, pC
);
6241 pCrsr
= pC
->uc
.pCursor
;
6243 r
.pKeyInfo
= pC
->pKeyInfo
;
6244 r
.nField
= (u16
)pOp
->p3
;
6246 r
.aMem
= &aMem
[pOp
->p2
];
6247 rc
= sqlite3BtreeIndexMoveto(pCrsr
, &r
, &res
);
6248 if( rc
) goto abort_due_to_error
;
6250 rc
= sqlite3BtreeDelete(pCrsr
, BTREE_AUXDELETE
);
6251 if( rc
) goto abort_due_to_error
;
6252 }else if( pOp
->p5
&& !sqlite3WritableSchema(db
) ){
6253 rc
= sqlite3ReportError(SQLITE_CORRUPT_INDEX
, __LINE__
, "index corruption");
6254 goto abort_due_to_error
;
6256 assert( pC
->deferredMoveto
==0 );
6257 pC
->cacheStatus
= CACHE_STALE
;
6262 /* Opcode: DeferredSeek P1 * P3 P4 *
6263 ** Synopsis: Move P3 to P1.rowid if needed
6265 ** P1 is an open index cursor and P3 is a cursor on the corresponding
6266 ** table. This opcode does a deferred seek of the P3 table cursor
6267 ** to the row that corresponds to the current row of P1.
6269 ** This is a deferred seek. Nothing actually happens until
6270 ** the cursor is used to read a record. That way, if no reads
6271 ** occur, no unnecessary I/O happens.
6273 ** P4 may be an array of integers (type P4_INTARRAY) containing
6274 ** one entry for each column in the P3 table. If array entry a(i)
6275 ** is non-zero, then reading column a(i)-1 from cursor P3 is
6276 ** equivalent to performing the deferred seek and then reading column i
6277 ** from P1. This information is stored in P3 and used to redirect
6278 ** reads against P3 over to P1, thus possibly avoiding the need to
6279 ** seek and read cursor P3.
6281 /* Opcode: IdxRowid P1 P2 * * *
6282 ** Synopsis: r[P2]=rowid
6284 ** Write into register P2 an integer which is the last entry in the record at
6285 ** the end of the index key pointed to by cursor P1. This integer should be
6286 ** the rowid of the table entry to which this index entry points.
6288 ** See also: Rowid, MakeRecord.
6290 case OP_DeferredSeek
:
6291 case OP_IdxRowid
: { /* out2 */
6292 VdbeCursor
*pC
; /* The P1 index cursor */
6293 VdbeCursor
*pTabCur
; /* The P2 table cursor (OP_DeferredSeek only) */
6294 i64 rowid
; /* Rowid that P1 current points to */
6296 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
6297 pC
= p
->apCsr
[pOp
->p1
];
6299 assert( pC
->eCurType
==CURTYPE_BTREE
|| IsNullCursor(pC
) );
6300 assert( pC
->uc
.pCursor
!=0 );
6301 assert( pC
->isTable
==0 || IsNullCursor(pC
) );
6302 assert( pC
->deferredMoveto
==0 );
6303 assert( !pC
->nullRow
|| pOp
->opcode
==OP_IdxRowid
);
6305 /* The IdxRowid and Seek opcodes are combined because of the commonality
6306 ** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */
6307 rc
= sqlite3VdbeCursorRestore(pC
);
6309 /* sqlite3VbeCursorRestore() can only fail if the record has been deleted
6310 ** out from under the cursor. That will never happens for an IdxRowid
6311 ** or Seek opcode */
6312 if( NEVER(rc
!=SQLITE_OK
) ) goto abort_due_to_error
;
6315 rowid
= 0; /* Not needed. Only used to silence a warning. */
6316 rc
= sqlite3VdbeIdxRowid(db
, pC
->uc
.pCursor
, &rowid
);
6317 if( rc
!=SQLITE_OK
){
6318 goto abort_due_to_error
;
6320 if( pOp
->opcode
==OP_DeferredSeek
){
6321 assert( pOp
->p3
>=0 && pOp
->p3
<p
->nCursor
);
6322 pTabCur
= p
->apCsr
[pOp
->p3
];
6323 assert( pTabCur
!=0 );
6324 assert( pTabCur
->eCurType
==CURTYPE_BTREE
);
6325 assert( pTabCur
->uc
.pCursor
!=0 );
6326 assert( pTabCur
->isTable
);
6327 pTabCur
->nullRow
= 0;
6328 pTabCur
->movetoTarget
= rowid
;
6329 pTabCur
->deferredMoveto
= 1;
6330 pTabCur
->cacheStatus
= CACHE_STALE
;
6331 assert( pOp
->p4type
==P4_INTARRAY
|| pOp
->p4
.ai
==0 );
6332 assert( !pTabCur
->isEphemeral
);
6333 pTabCur
->ub
.aAltMap
= pOp
->p4
.ai
;
6334 assert( !pC
->isEphemeral
);
6335 pTabCur
->pAltCursor
= pC
;
6337 pOut
= out2Prerelease(p
, pOp
);
6341 assert( pOp
->opcode
==OP_IdxRowid
);
6342 sqlite3VdbeMemSetNull(&aMem
[pOp
->p2
]);
6347 /* Opcode: FinishSeek P1 * * * *
6349 ** If cursor P1 was previously moved via OP_DeferredSeek, complete that
6350 ** seek operation now, without further delay. If the cursor seek has
6351 ** already occurred, this instruction is a no-op.
6353 case OP_FinishSeek
: {
6354 VdbeCursor
*pC
; /* The P1 index cursor */
6356 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
6357 pC
= p
->apCsr
[pOp
->p1
];
6358 if( pC
->deferredMoveto
){
6359 rc
= sqlite3VdbeFinishMoveto(pC
);
6360 if( rc
) goto abort_due_to_error
;
6365 /* Opcode: IdxGE P1 P2 P3 P4 *
6366 ** Synopsis: key=r[P3@P4]
6368 ** The P4 register values beginning with P3 form an unpacked index
6369 ** key that omits the PRIMARY KEY. Compare this key value against the index
6370 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
6371 ** fields at the end.
6373 ** If the P1 index entry is greater than or equal to the key value
6374 ** then jump to P2. Otherwise fall through to the next instruction.
6376 /* Opcode: IdxGT P1 P2 P3 P4 *
6377 ** Synopsis: key=r[P3@P4]
6379 ** The P4 register values beginning with P3 form an unpacked index
6380 ** key that omits the PRIMARY KEY. Compare this key value against the index
6381 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
6382 ** fields at the end.
6384 ** If the P1 index entry is greater than the key value
6385 ** then jump to P2. Otherwise fall through to the next instruction.
6387 /* Opcode: IdxLT P1 P2 P3 P4 *
6388 ** Synopsis: key=r[P3@P4]
6390 ** The P4 register values beginning with P3 form an unpacked index
6391 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against
6392 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
6393 ** ROWID on the P1 index.
6395 ** If the P1 index entry is less than the key value then jump to P2.
6396 ** Otherwise fall through to the next instruction.
6398 /* Opcode: IdxLE P1 P2 P3 P4 *
6399 ** Synopsis: key=r[P3@P4]
6401 ** The P4 register values beginning with P3 form an unpacked index
6402 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against
6403 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
6404 ** ROWID on the P1 index.
6406 ** If the P1 index entry is less than or equal to the key value then jump
6407 ** to P2. Otherwise fall through to the next instruction.
6409 case OP_IdxLE
: /* jump */
6410 case OP_IdxGT
: /* jump */
6411 case OP_IdxLT
: /* jump */
6412 case OP_IdxGE
: { /* jump */
6417 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
6418 pC
= p
->apCsr
[pOp
->p1
];
6420 assert( pC
->isOrdered
);
6421 assert( pC
->eCurType
==CURTYPE_BTREE
);
6422 assert( pC
->uc
.pCursor
!=0);
6423 assert( pC
->deferredMoveto
==0 );
6424 assert( pOp
->p4type
==P4_INT32
);
6425 r
.pKeyInfo
= pC
->pKeyInfo
;
6426 r
.nField
= (u16
)pOp
->p4
.i
;
6427 if( pOp
->opcode
<OP_IdxLT
){
6428 assert( pOp
->opcode
==OP_IdxLE
|| pOp
->opcode
==OP_IdxGT
);
6431 assert( pOp
->opcode
==OP_IdxGE
|| pOp
->opcode
==OP_IdxLT
);
6434 r
.aMem
= &aMem
[pOp
->p3
];
6438 for(i
=0; i
<r
.nField
; i
++){
6439 assert( memIsValid(&r
.aMem
[i
]) );
6440 REGISTER_TRACE(pOp
->p3
+i
, &aMem
[pOp
->p3
+i
]);
6445 /* Inlined version of sqlite3VdbeIdxKeyCompare() */
6451 assert( pC
->eCurType
==CURTYPE_BTREE
);
6452 pCur
= pC
->uc
.pCursor
;
6453 assert( sqlite3BtreeCursorIsValid(pCur
) );
6454 nCellKey
= sqlite3BtreePayloadSize(pCur
);
6455 /* nCellKey will always be between 0 and 0xffffffff because of the way
6456 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
6457 if( nCellKey
<=0 || nCellKey
>0x7fffffff ){
6458 rc
= SQLITE_CORRUPT_BKPT
;
6459 goto abort_due_to_error
;
6461 sqlite3VdbeMemInit(&m
, db
, 0);
6462 rc
= sqlite3VdbeMemFromBtreeZeroOffset(pCur
, (u32
)nCellKey
, &m
);
6463 if( rc
) goto abort_due_to_error
;
6464 res
= sqlite3VdbeRecordCompareWithSkip(m
.n
, m
.z
, &r
, 0);
6465 sqlite3VdbeMemReleaseMalloc(&m
);
6467 /* End of inlined sqlite3VdbeIdxKeyCompare() */
6469 assert( (OP_IdxLE
&1)==(OP_IdxLT
&1) && (OP_IdxGE
&1)==(OP_IdxGT
&1) );
6470 if( (pOp
->opcode
&1)==(OP_IdxLT
&1) ){
6471 assert( pOp
->opcode
==OP_IdxLE
|| pOp
->opcode
==OP_IdxLT
);
6474 assert( pOp
->opcode
==OP_IdxGE
|| pOp
->opcode
==OP_IdxGT
);
6477 VdbeBranchTaken(res
>0,2);
6478 assert( rc
==SQLITE_OK
);
6479 if( res
>0 ) goto jump_to_p2
;
6483 /* Opcode: Destroy P1 P2 P3 * *
6485 ** Delete an entire database table or index whose root page in the database
6486 ** file is given by P1.
6488 ** The table being destroyed is in the main database file if P3==0. If
6489 ** P3==1 then the table to be clear is in the auxiliary database file
6490 ** that is used to store tables create using CREATE TEMPORARY TABLE.
6492 ** If AUTOVACUUM is enabled then it is possible that another root page
6493 ** might be moved into the newly deleted root page in order to keep all
6494 ** root pages contiguous at the beginning of the database. The former
6495 ** value of the root page that moved - its value before the move occurred -
6496 ** is stored in register P2. If no page movement was required (because the
6497 ** table being dropped was already the last one in the database) then a
6498 ** zero is stored in register P2. If AUTOVACUUM is disabled then a zero
6499 ** is stored in register P2.
6501 ** This opcode throws an error if there are any active reader VMs when
6502 ** it is invoked. This is done to avoid the difficulty associated with
6503 ** updating existing cursors when a root page is moved in an AUTOVACUUM
6504 ** database. This error is thrown even if the database is not an AUTOVACUUM
6505 ** db in order to avoid introducing an incompatibility between autovacuum
6506 ** and non-autovacuum modes.
6510 case OP_Destroy
: { /* out2 */
6514 sqlite3VdbeIncrWriteCounter(p
, 0);
6515 assert( p
->readOnly
==0 );
6516 assert( pOp
->p1
>1 );
6517 pOut
= out2Prerelease(p
, pOp
);
6518 pOut
->flags
= MEM_Null
;
6519 if( db
->nVdbeRead
> db
->nVDestroy
+1 ){
6521 p
->errorAction
= OE_Abort
;
6522 goto abort_due_to_error
;
6525 assert( DbMaskTest(p
->btreeMask
, iDb
) );
6526 iMoved
= 0; /* Not needed. Only to silence a warning. */
6527 rc
= sqlite3BtreeDropTable(db
->aDb
[iDb
].pBt
, pOp
->p1
, &iMoved
);
6528 pOut
->flags
= MEM_Int
;
6530 if( rc
) goto abort_due_to_error
;
6531 #ifndef SQLITE_OMIT_AUTOVACUUM
6533 sqlite3RootPageMoved(db
, iDb
, iMoved
, pOp
->p1
);
6534 /* All OP_Destroy operations occur on the same btree */
6535 assert( resetSchemaOnFault
==0 || resetSchemaOnFault
==iDb
+1 );
6536 resetSchemaOnFault
= iDb
+1;
6543 /* Opcode: Clear P1 P2 P3
6545 ** Delete all contents of the database table or index whose root page
6546 ** in the database file is given by P1. But, unlike Destroy, do not
6547 ** remove the table or index from the database file.
6549 ** The table being clear is in the main database file if P2==0. If
6550 ** P2==1 then the table to be clear is in the auxiliary database file
6551 ** that is used to store tables create using CREATE TEMPORARY TABLE.
6553 ** If the P3 value is non-zero, then the row change count is incremented
6554 ** by the number of rows in the table being cleared. If P3 is greater
6555 ** than zero, then the value stored in register P3 is also incremented
6556 ** by the number of rows in the table being cleared.
6558 ** See also: Destroy
6563 sqlite3VdbeIncrWriteCounter(p
, 0);
6565 assert( p
->readOnly
==0 );
6566 assert( DbMaskTest(p
->btreeMask
, pOp
->p2
) );
6567 rc
= sqlite3BtreeClearTable(db
->aDb
[pOp
->p2
].pBt
, (u32
)pOp
->p1
, &nChange
);
6569 p
->nChange
+= nChange
;
6571 assert( memIsValid(&aMem
[pOp
->p3
]) );
6572 memAboutToChange(p
, &aMem
[pOp
->p3
]);
6573 aMem
[pOp
->p3
].u
.i
+= nChange
;
6576 if( rc
) goto abort_due_to_error
;
6580 /* Opcode: ResetSorter P1 * * * *
6582 ** Delete all contents from the ephemeral table or sorter
6583 ** that is open on cursor P1.
6585 ** This opcode only works for cursors used for sorting and
6586 ** opened with OP_OpenEphemeral or OP_SorterOpen.
6588 case OP_ResetSorter
: {
6591 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
6592 pC
= p
->apCsr
[pOp
->p1
];
6595 sqlite3VdbeSorterReset(db
, pC
->uc
.pSorter
);
6597 assert( pC
->eCurType
==CURTYPE_BTREE
);
6598 assert( pC
->isEphemeral
);
6599 rc
= sqlite3BtreeClearTableOfCursor(pC
->uc
.pCursor
);
6600 if( rc
) goto abort_due_to_error
;
6605 /* Opcode: CreateBtree P1 P2 P3 * *
6606 ** Synopsis: r[P2]=root iDb=P1 flags=P3
6608 ** Allocate a new b-tree in the main database file if P1==0 or in the
6609 ** TEMP database file if P1==1 or in an attached database if
6610 ** P1>1. The P3 argument must be 1 (BTREE_INTKEY) for a rowid table
6611 ** it must be 2 (BTREE_BLOBKEY) for an index or WITHOUT ROWID table.
6612 ** The root page number of the new b-tree is stored in register P2.
6614 case OP_CreateBtree
: { /* out2 */
6618 sqlite3VdbeIncrWriteCounter(p
, 0);
6619 pOut
= out2Prerelease(p
, pOp
);
6621 assert( pOp
->p3
==BTREE_INTKEY
|| pOp
->p3
==BTREE_BLOBKEY
);
6622 assert( pOp
->p1
>=0 && pOp
->p1
<db
->nDb
);
6623 assert( DbMaskTest(p
->btreeMask
, pOp
->p1
) );
6624 assert( p
->readOnly
==0 );
6625 pDb
= &db
->aDb
[pOp
->p1
];
6626 assert( pDb
->pBt
!=0 );
6627 rc
= sqlite3BtreeCreateTable(pDb
->pBt
, &pgno
, pOp
->p3
);
6628 if( rc
) goto abort_due_to_error
;
6633 /* Opcode: SqlExec * * * P4 *
6635 ** Run the SQL statement or statements specified in the P4 string.
6638 sqlite3VdbeIncrWriteCounter(p
, 0);
6640 rc
= sqlite3_exec(db
, pOp
->p4
.z
, 0, 0, 0);
6642 if( rc
) goto abort_due_to_error
;
6646 /* Opcode: ParseSchema P1 * * P4 *
6648 ** Read and parse all entries from the schema table of database P1
6649 ** that match the WHERE clause P4. If P4 is a NULL pointer, then the
6650 ** entire schema for P1 is reparsed.
6652 ** This opcode invokes the parser to create a new virtual machine,
6653 ** then runs the new virtual machine. It is thus a re-entrant opcode.
6655 case OP_ParseSchema
: {
6657 const char *zSchema
;
6661 /* Any prepared statement that invokes this opcode will hold mutexes
6662 ** on every btree. This is a prerequisite for invoking
6663 ** sqlite3InitCallback().
6666 for(iDb
=0; iDb
<db
->nDb
; iDb
++){
6667 assert( iDb
==1 || sqlite3BtreeHoldsMutex(db
->aDb
[iDb
].pBt
) );
6672 assert( iDb
>=0 && iDb
<db
->nDb
);
6673 assert( DbHasProperty(db
, iDb
, DB_SchemaLoaded
)
6675 || (CORRUPT_DB
&& (db
->flags
& SQLITE_NoSchemaError
)!=0) );
6677 #ifndef SQLITE_OMIT_ALTERTABLE
6679 sqlite3SchemaClear(db
->aDb
[iDb
].pSchema
);
6680 db
->mDbFlags
&= ~DBFLAG_SchemaKnownOk
;
6681 rc
= sqlite3InitOne(db
, iDb
, &p
->zErrMsg
, pOp
->p5
);
6682 db
->mDbFlags
|= DBFLAG_SchemaChange
;
6687 zSchema
= LEGACY_SCHEMA_TABLE
;
6690 initData
.pzErrMsg
= &p
->zErrMsg
;
6691 initData
.mInitFlags
= 0;
6692 initData
.mxPage
= sqlite3BtreeLastPage(db
->aDb
[iDb
].pBt
);
6693 zSql
= sqlite3MPrintf(db
,
6694 "SELECT*FROM\"%w\".%s WHERE %s ORDER BY rowid",
6695 db
->aDb
[iDb
].zDbSName
, zSchema
, pOp
->p4
.z
);
6697 rc
= SQLITE_NOMEM_BKPT
;
6699 assert( db
->init
.busy
==0 );
6701 initData
.rc
= SQLITE_OK
;
6702 initData
.nInitRow
= 0;
6703 assert( !db
->mallocFailed
);
6704 rc
= sqlite3_exec(db
, zSql
, sqlite3InitCallback
, &initData
, 0);
6705 if( rc
==SQLITE_OK
) rc
= initData
.rc
;
6706 if( rc
==SQLITE_OK
&& initData
.nInitRow
==0 ){
6707 /* The OP_ParseSchema opcode with a non-NULL P4 argument should parse
6708 ** at least one SQL statement. Any less than that indicates that
6709 ** the sqlite_schema table is corrupt. */
6710 rc
= SQLITE_CORRUPT_BKPT
;
6712 sqlite3DbFreeNN(db
, zSql
);
6717 sqlite3ResetAllSchemasOfConnection(db
);
6718 if( rc
==SQLITE_NOMEM
){
6721 goto abort_due_to_error
;
6726 #if !defined(SQLITE_OMIT_ANALYZE)
6727 /* Opcode: LoadAnalysis P1 * * * *
6729 ** Read the sqlite_stat1 table for database P1 and load the content
6730 ** of that table into the internal index hash table. This will cause
6731 ** the analysis to be used when preparing all subsequent queries.
6733 case OP_LoadAnalysis
: {
6734 assert( pOp
->p1
>=0 && pOp
->p1
<db
->nDb
);
6735 rc
= sqlite3AnalysisLoad(db
, pOp
->p1
);
6736 if( rc
) goto abort_due_to_error
;
6739 #endif /* !defined(SQLITE_OMIT_ANALYZE) */
6741 /* Opcode: DropTable P1 * * P4 *
6743 ** Remove the internal (in-memory) data structures that describe
6744 ** the table named P4 in database P1. This is called after a table
6745 ** is dropped from disk (using the Destroy opcode) in order to keep
6746 ** the internal representation of the
6747 ** schema consistent with what is on disk.
6749 case OP_DropTable
: {
6750 sqlite3VdbeIncrWriteCounter(p
, 0);
6751 sqlite3UnlinkAndDeleteTable(db
, pOp
->p1
, pOp
->p4
.z
);
6755 /* Opcode: DropIndex P1 * * P4 *
6757 ** Remove the internal (in-memory) data structures that describe
6758 ** the index named P4 in database P1. This is called after an index
6759 ** is dropped from disk (using the Destroy opcode)
6760 ** in order to keep the internal representation of the
6761 ** schema consistent with what is on disk.
6763 case OP_DropIndex
: {
6764 sqlite3VdbeIncrWriteCounter(p
, 0);
6765 sqlite3UnlinkAndDeleteIndex(db
, pOp
->p1
, pOp
->p4
.z
);
6769 /* Opcode: DropTrigger P1 * * P4 *
6771 ** Remove the internal (in-memory) data structures that describe
6772 ** the trigger named P4 in database P1. This is called after a trigger
6773 ** is dropped from disk (using the Destroy opcode) in order to keep
6774 ** the internal representation of the
6775 ** schema consistent with what is on disk.
6777 case OP_DropTrigger
: {
6778 sqlite3VdbeIncrWriteCounter(p
, 0);
6779 sqlite3UnlinkAndDeleteTrigger(db
, pOp
->p1
, pOp
->p4
.z
);
6784 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
6785 /* Opcode: IntegrityCk P1 P2 P3 P4 P5
6787 ** Do an analysis of the currently open database. Store in
6788 ** register P1 the text of an error message describing any problems.
6789 ** If no problems are found, store a NULL in register P1.
6791 ** The register P3 contains one less than the maximum number of allowed errors.
6792 ** At most reg(P3) errors will be reported.
6793 ** In other words, the analysis stops as soon as reg(P1) errors are
6794 ** seen. Reg(P1) is updated with the number of errors remaining.
6796 ** The root page numbers of all tables in the database are integers
6797 ** stored in P4_INTARRAY argument.
6799 ** If P5 is not zero, the check is done on the auxiliary database
6800 ** file, not the main database file.
6802 ** This opcode is used to implement the integrity_check pragma.
6804 case OP_IntegrityCk
: {
6805 int nRoot
; /* Number of tables to check. (Number of root pages.) */
6806 Pgno
*aRoot
; /* Array of rootpage numbers for tables to be checked */
6807 int nErr
; /* Number of errors reported */
6808 char *z
; /* Text of the error report */
6809 Mem
*pnErr
; /* Register keeping track of errors remaining */
6811 assert( p
->bIsReader
);
6815 assert( aRoot
[0]==(Pgno
)nRoot
);
6816 assert( pOp
->p3
>0 && pOp
->p3
<=(p
->nMem
+1 - p
->nCursor
) );
6817 pnErr
= &aMem
[pOp
->p3
];
6818 assert( (pnErr
->flags
& MEM_Int
)!=0 );
6819 assert( (pnErr
->flags
& (MEM_Str
|MEM_Blob
))==0 );
6820 pIn1
= &aMem
[pOp
->p1
];
6821 assert( pOp
->p5
<db
->nDb
);
6822 assert( DbMaskTest(p
->btreeMask
, pOp
->p5
) );
6823 z
= sqlite3BtreeIntegrityCheck(db
, db
->aDb
[pOp
->p5
].pBt
, &aRoot
[1], nRoot
,
6824 (int)pnErr
->u
.i
+1, &nErr
);
6825 sqlite3VdbeMemSetNull(pIn1
);
6831 pnErr
->u
.i
-= nErr
-1;
6832 sqlite3VdbeMemSetStr(pIn1
, z
, -1, SQLITE_UTF8
, sqlite3_free
);
6834 UPDATE_MAX_BLOBSIZE(pIn1
);
6835 sqlite3VdbeChangeEncoding(pIn1
, encoding
);
6836 goto check_for_interrupt
;
6838 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
6840 /* Opcode: RowSetAdd P1 P2 * * *
6841 ** Synopsis: rowset(P1)=r[P2]
6843 ** Insert the integer value held by register P2 into a RowSet object
6844 ** held in register P1.
6846 ** An assertion fails if P2 is not an integer.
6848 case OP_RowSetAdd
: { /* in1, in2 */
6849 pIn1
= &aMem
[pOp
->p1
];
6850 pIn2
= &aMem
[pOp
->p2
];
6851 assert( (pIn2
->flags
& MEM_Int
)!=0 );
6852 if( (pIn1
->flags
& MEM_Blob
)==0 ){
6853 if( sqlite3VdbeMemSetRowSet(pIn1
) ) goto no_mem
;
6855 assert( sqlite3VdbeMemIsRowSet(pIn1
) );
6856 sqlite3RowSetInsert((RowSet
*)pIn1
->z
, pIn2
->u
.i
);
6860 /* Opcode: RowSetRead P1 P2 P3 * *
6861 ** Synopsis: r[P3]=rowset(P1)
6863 ** Extract the smallest value from the RowSet object in P1
6864 ** and put that value into register P3.
6865 ** Or, if RowSet object P1 is initially empty, leave P3
6866 ** unchanged and jump to instruction P2.
6868 case OP_RowSetRead
: { /* jump, in1, out3 */
6871 pIn1
= &aMem
[pOp
->p1
];
6872 assert( (pIn1
->flags
& MEM_Blob
)==0 || sqlite3VdbeMemIsRowSet(pIn1
) );
6873 if( (pIn1
->flags
& MEM_Blob
)==0
6874 || sqlite3RowSetNext((RowSet
*)pIn1
->z
, &val
)==0
6876 /* The boolean index is empty */
6877 sqlite3VdbeMemSetNull(pIn1
);
6878 VdbeBranchTaken(1,2);
6879 goto jump_to_p2_and_check_for_interrupt
;
6881 /* A value was pulled from the index */
6882 VdbeBranchTaken(0,2);
6883 sqlite3VdbeMemSetInt64(&aMem
[pOp
->p3
], val
);
6885 goto check_for_interrupt
;
6888 /* Opcode: RowSetTest P1 P2 P3 P4
6889 ** Synopsis: if r[P3] in rowset(P1) goto P2
6891 ** Register P3 is assumed to hold a 64-bit integer value. If register P1
6892 ** contains a RowSet object and that RowSet object contains
6893 ** the value held in P3, jump to register P2. Otherwise, insert the
6894 ** integer in P3 into the RowSet and continue on to the
6897 ** The RowSet object is optimized for the case where sets of integers
6898 ** are inserted in distinct phases, which each set contains no duplicates.
6899 ** Each set is identified by a unique P4 value. The first set
6900 ** must have P4==0, the final set must have P4==-1, and for all other sets
6903 ** This allows optimizations: (a) when P4==0 there is no need to test
6904 ** the RowSet object for P3, as it is guaranteed not to contain it,
6905 ** (b) when P4==-1 there is no need to insert the value, as it will
6906 ** never be tested for, and (c) when a value that is part of set X is
6907 ** inserted, there is no need to search to see if the same value was
6908 ** previously inserted as part of set X (only if it was previously
6909 ** inserted as part of some other set).
6911 case OP_RowSetTest
: { /* jump, in1, in3 */
6915 pIn1
= &aMem
[pOp
->p1
];
6916 pIn3
= &aMem
[pOp
->p3
];
6918 assert( pIn3
->flags
&MEM_Int
);
6920 /* If there is anything other than a rowset object in memory cell P1,
6921 ** delete it now and initialize P1 with an empty rowset
6923 if( (pIn1
->flags
& MEM_Blob
)==0 ){
6924 if( sqlite3VdbeMemSetRowSet(pIn1
) ) goto no_mem
;
6926 assert( sqlite3VdbeMemIsRowSet(pIn1
) );
6927 assert( pOp
->p4type
==P4_INT32
);
6928 assert( iSet
==-1 || iSet
>=0 );
6930 exists
= sqlite3RowSetTest((RowSet
*)pIn1
->z
, iSet
, pIn3
->u
.i
);
6931 VdbeBranchTaken(exists
!=0,2);
6932 if( exists
) goto jump_to_p2
;
6935 sqlite3RowSetInsert((RowSet
*)pIn1
->z
, pIn3
->u
.i
);
6941 #ifndef SQLITE_OMIT_TRIGGER
6943 /* Opcode: Program P1 P2 P3 P4 P5
6945 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
6947 ** P1 contains the address of the memory cell that contains the first memory
6948 ** cell in an array of values used as arguments to the sub-program. P2
6949 ** contains the address to jump to if the sub-program throws an IGNORE
6950 ** exception using the RAISE() function. Register P3 contains the address
6951 ** of a memory cell in this (the parent) VM that is used to allocate the
6952 ** memory required by the sub-vdbe at runtime.
6954 ** P4 is a pointer to the VM containing the trigger program.
6956 ** If P5 is non-zero, then recursive program invocation is enabled.
6958 case OP_Program
: { /* jump */
6959 int nMem
; /* Number of memory registers for sub-program */
6960 int nByte
; /* Bytes of runtime space required for sub-program */
6961 Mem
*pRt
; /* Register to allocate runtime space */
6962 Mem
*pMem
; /* Used to iterate through memory cells */
6963 Mem
*pEnd
; /* Last memory cell in new array */
6964 VdbeFrame
*pFrame
; /* New vdbe frame to execute in */
6965 SubProgram
*pProgram
; /* Sub-program to execute */
6966 void *t
; /* Token identifying trigger */
6968 pProgram
= pOp
->p4
.pProgram
;
6969 pRt
= &aMem
[pOp
->p3
];
6970 assert( pProgram
->nOp
>0 );
6972 /* If the p5 flag is clear, then recursive invocation of triggers is
6973 ** disabled for backwards compatibility (p5 is set if this sub-program
6974 ** is really a trigger, not a foreign key action, and the flag set
6975 ** and cleared by the "PRAGMA recursive_triggers" command is clear).
6977 ** It is recursive invocation of triggers, at the SQL level, that is
6978 ** disabled. In some cases a single trigger may generate more than one
6979 ** SubProgram (if the trigger may be executed with more than one different
6980 ** ON CONFLICT algorithm). SubProgram structures associated with a
6981 ** single trigger all have the same value for the SubProgram.token
6984 t
= pProgram
->token
;
6985 for(pFrame
=p
->pFrame
; pFrame
&& pFrame
->token
!=t
; pFrame
=pFrame
->pParent
);
6989 if( p
->nFrame
>=db
->aLimit
[SQLITE_LIMIT_TRIGGER_DEPTH
] ){
6991 sqlite3VdbeError(p
, "too many levels of trigger recursion");
6992 goto abort_due_to_error
;
6995 /* Register pRt is used to store the memory required to save the state
6996 ** of the current program, and the memory required at runtime to execute
6997 ** the trigger program. If this trigger has been fired before, then pRt
6998 ** is already allocated. Otherwise, it must be initialized. */
6999 if( (pRt
->flags
&MEM_Blob
)==0 ){
7000 /* SubProgram.nMem is set to the number of memory cells used by the
7001 ** program stored in SubProgram.aOp. As well as these, one memory
7002 ** cell is required for each cursor used by the program. Set local
7003 ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
7005 nMem
= pProgram
->nMem
+ pProgram
->nCsr
;
7007 if( pProgram
->nCsr
==0 ) nMem
++;
7008 nByte
= ROUND8(sizeof(VdbeFrame
))
7009 + nMem
* sizeof(Mem
)
7010 + pProgram
->nCsr
* sizeof(VdbeCursor
*)
7011 + (pProgram
->nOp
+ 7)/8;
7012 pFrame
= sqlite3DbMallocZero(db
, nByte
);
7016 sqlite3VdbeMemRelease(pRt
);
7017 pRt
->flags
= MEM_Blob
|MEM_Dyn
;
7018 pRt
->z
= (char*)pFrame
;
7020 pRt
->xDel
= sqlite3VdbeFrameMemDel
;
7023 pFrame
->nChildMem
= nMem
;
7024 pFrame
->nChildCsr
= pProgram
->nCsr
;
7025 pFrame
->pc
= (int)(pOp
- aOp
);
7026 pFrame
->aMem
= p
->aMem
;
7027 pFrame
->nMem
= p
->nMem
;
7028 pFrame
->apCsr
= p
->apCsr
;
7029 pFrame
->nCursor
= p
->nCursor
;
7030 pFrame
->aOp
= p
->aOp
;
7031 pFrame
->nOp
= p
->nOp
;
7032 pFrame
->token
= pProgram
->token
;
7033 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
7034 pFrame
->anExec
= p
->anExec
;
7037 pFrame
->iFrameMagic
= SQLITE_FRAME_MAGIC
;
7040 pEnd
= &VdbeFrameMem(pFrame
)[pFrame
->nChildMem
];
7041 for(pMem
=VdbeFrameMem(pFrame
); pMem
!=pEnd
; pMem
++){
7042 pMem
->flags
= MEM_Undefined
;
7046 pFrame
= (VdbeFrame
*)pRt
->z
;
7047 assert( pRt
->xDel
==sqlite3VdbeFrameMemDel
);
7048 assert( pProgram
->nMem
+pProgram
->nCsr
==pFrame
->nChildMem
7049 || (pProgram
->nCsr
==0 && pProgram
->nMem
+1==pFrame
->nChildMem
) );
7050 assert( pProgram
->nCsr
==pFrame
->nChildCsr
);
7051 assert( (int)(pOp
- aOp
)==pFrame
->pc
);
7055 pFrame
->pParent
= p
->pFrame
;
7056 pFrame
->lastRowid
= db
->lastRowid
;
7057 pFrame
->nChange
= p
->nChange
;
7058 pFrame
->nDbChange
= p
->db
->nChange
;
7059 assert( pFrame
->pAuxData
==0 );
7060 pFrame
->pAuxData
= p
->pAuxData
;
7064 p
->aMem
= aMem
= VdbeFrameMem(pFrame
);
7065 p
->nMem
= pFrame
->nChildMem
;
7066 p
->nCursor
= (u16
)pFrame
->nChildCsr
;
7067 p
->apCsr
= (VdbeCursor
**)&aMem
[p
->nMem
];
7068 pFrame
->aOnce
= (u8
*)&p
->apCsr
[pProgram
->nCsr
];
7069 memset(pFrame
->aOnce
, 0, (pProgram
->nOp
+ 7)/8);
7070 p
->aOp
= aOp
= pProgram
->aOp
;
7071 p
->nOp
= pProgram
->nOp
;
7072 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
7076 /* Verify that second and subsequent executions of the same trigger do not
7077 ** try to reuse register values from the first use. */
7080 for(i
=0; i
<p
->nMem
; i
++){
7081 aMem
[i
].pScopyFrom
= 0; /* Prevent false-positive AboutToChange() errs */
7082 MemSetTypeFlag(&aMem
[i
], MEM_Undefined
); /* Fault if this reg is reused */
7087 goto check_for_interrupt
;
7090 /* Opcode: Param P1 P2 * * *
7092 ** This opcode is only ever present in sub-programs called via the
7093 ** OP_Program instruction. Copy a value currently stored in a memory
7094 ** cell of the calling (parent) frame to cell P2 in the current frames
7095 ** address space. This is used by trigger programs to access the new.*
7096 ** and old.* values.
7098 ** The address of the cell in the parent frame is determined by adding
7099 ** the value of the P1 argument to the value of the P1 argument to the
7100 ** calling OP_Program instruction.
7102 case OP_Param
: { /* out2 */
7105 pOut
= out2Prerelease(p
, pOp
);
7107 pIn
= &pFrame
->aMem
[pOp
->p1
+ pFrame
->aOp
[pFrame
->pc
].p1
];
7108 sqlite3VdbeMemShallowCopy(pOut
, pIn
, MEM_Ephem
);
7112 #endif /* #ifndef SQLITE_OMIT_TRIGGER */
7114 #ifndef SQLITE_OMIT_FOREIGN_KEY
7115 /* Opcode: FkCounter P1 P2 * * *
7116 ** Synopsis: fkctr[P1]+=P2
7118 ** Increment a "constraint counter" by P2 (P2 may be negative or positive).
7119 ** If P1 is non-zero, the database constraint counter is incremented
7120 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the
7121 ** statement counter is incremented (immediate foreign key constraints).
7123 case OP_FkCounter
: {
7124 if( db
->flags
& SQLITE_DeferFKs
){
7125 db
->nDeferredImmCons
+= pOp
->p2
;
7126 }else if( pOp
->p1
){
7127 db
->nDeferredCons
+= pOp
->p2
;
7129 p
->nFkConstraint
+= pOp
->p2
;
7134 /* Opcode: FkIfZero P1 P2 * * *
7135 ** Synopsis: if fkctr[P1]==0 goto P2
7137 ** This opcode tests if a foreign key constraint-counter is currently zero.
7138 ** If so, jump to instruction P2. Otherwise, fall through to the next
7141 ** If P1 is non-zero, then the jump is taken if the database constraint-counter
7142 ** is zero (the one that counts deferred constraint violations). If P1 is
7143 ** zero, the jump is taken if the statement constraint-counter is zero
7144 ** (immediate foreign key constraint violations).
7146 case OP_FkIfZero
: { /* jump */
7148 VdbeBranchTaken(db
->nDeferredCons
==0 && db
->nDeferredImmCons
==0, 2);
7149 if( db
->nDeferredCons
==0 && db
->nDeferredImmCons
==0 ) goto jump_to_p2
;
7151 VdbeBranchTaken(p
->nFkConstraint
==0 && db
->nDeferredImmCons
==0, 2);
7152 if( p
->nFkConstraint
==0 && db
->nDeferredImmCons
==0 ) goto jump_to_p2
;
7156 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
7158 #ifndef SQLITE_OMIT_AUTOINCREMENT
7159 /* Opcode: MemMax P1 P2 * * *
7160 ** Synopsis: r[P1]=max(r[P1],r[P2])
7162 ** P1 is a register in the root frame of this VM (the root frame is
7163 ** different from the current frame if this instruction is being executed
7164 ** within a sub-program). Set the value of register P1 to the maximum of
7165 ** its current value and the value in register P2.
7167 ** This instruction throws an error if the memory cell is not initially
7170 case OP_MemMax
: { /* in2 */
7173 for(pFrame
=p
->pFrame
; pFrame
->pParent
; pFrame
=pFrame
->pParent
);
7174 pIn1
= &pFrame
->aMem
[pOp
->p1
];
7176 pIn1
= &aMem
[pOp
->p1
];
7178 assert( memIsValid(pIn1
) );
7179 sqlite3VdbeMemIntegerify(pIn1
);
7180 pIn2
= &aMem
[pOp
->p2
];
7181 sqlite3VdbeMemIntegerify(pIn2
);
7182 if( pIn1
->u
.i
<pIn2
->u
.i
){
7183 pIn1
->u
.i
= pIn2
->u
.i
;
7187 #endif /* SQLITE_OMIT_AUTOINCREMENT */
7189 /* Opcode: IfPos P1 P2 P3 * *
7190 ** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2
7192 ** Register P1 must contain an integer.
7193 ** If the value of register P1 is 1 or greater, subtract P3 from the
7194 ** value in P1 and jump to P2.
7196 ** If the initial value of register P1 is less than 1, then the
7197 ** value is unchanged and control passes through to the next instruction.
7199 case OP_IfPos
: { /* jump, in1 */
7200 pIn1
= &aMem
[pOp
->p1
];
7201 assert( pIn1
->flags
&MEM_Int
);
7202 VdbeBranchTaken( pIn1
->u
.i
>0, 2);
7204 pIn1
->u
.i
-= pOp
->p3
;
7210 /* Opcode: OffsetLimit P1 P2 P3 * *
7211 ** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1)
7213 ** This opcode performs a commonly used computation associated with
7214 ** LIMIT and OFFSET process. r[P1] holds the limit counter. r[P3]
7215 ** holds the offset counter. The opcode computes the combined value
7216 ** of the LIMIT and OFFSET and stores that value in r[P2]. The r[P2]
7217 ** value computed is the total number of rows that will need to be
7218 ** visited in order to complete the query.
7220 ** If r[P3] is zero or negative, that means there is no OFFSET
7221 ** and r[P2] is set to be the value of the LIMIT, r[P1].
7223 ** if r[P1] is zero or negative, that means there is no LIMIT
7224 ** and r[P2] is set to -1.
7226 ** Otherwise, r[P2] is set to the sum of r[P1] and r[P3].
7228 case OP_OffsetLimit
: { /* in1, out2, in3 */
7230 pIn1
= &aMem
[pOp
->p1
];
7231 pIn3
= &aMem
[pOp
->p3
];
7232 pOut
= out2Prerelease(p
, pOp
);
7233 assert( pIn1
->flags
& MEM_Int
);
7234 assert( pIn3
->flags
& MEM_Int
);
7236 if( x
<=0 || sqlite3AddInt64(&x
, pIn3
->u
.i
>0?pIn3
->u
.i
:0) ){
7237 /* If the LIMIT is less than or equal to zero, loop forever. This
7238 ** is documented. But also, if the LIMIT+OFFSET exceeds 2^63 then
7239 ** also loop forever. This is undocumented. In fact, one could argue
7240 ** that the loop should terminate. But assuming 1 billion iterations
7241 ** per second (far exceeding the capabilities of any current hardware)
7242 ** it would take nearly 300 years to actually reach the limit. So
7243 ** looping forever is a reasonable approximation. */
7251 /* Opcode: IfNotZero P1 P2 * * *
7252 ** Synopsis: if r[P1]!=0 then r[P1]--, goto P2
7254 ** Register P1 must contain an integer. If the content of register P1 is
7255 ** initially greater than zero, then decrement the value in register P1.
7256 ** If it is non-zero (negative or positive) and then also jump to P2.
7257 ** If register P1 is initially zero, leave it unchanged and fall through.
7259 case OP_IfNotZero
: { /* jump, in1 */
7260 pIn1
= &aMem
[pOp
->p1
];
7261 assert( pIn1
->flags
&MEM_Int
);
7262 VdbeBranchTaken(pIn1
->u
.i
<0, 2);
7264 if( pIn1
->u
.i
>0 ) pIn1
->u
.i
--;
7270 /* Opcode: DecrJumpZero P1 P2 * * *
7271 ** Synopsis: if (--r[P1])==0 goto P2
7273 ** Register P1 must hold an integer. Decrement the value in P1
7274 ** and jump to P2 if the new value is exactly zero.
7276 case OP_DecrJumpZero
: { /* jump, in1 */
7277 pIn1
= &aMem
[pOp
->p1
];
7278 assert( pIn1
->flags
&MEM_Int
);
7279 if( pIn1
->u
.i
>SMALLEST_INT64
) pIn1
->u
.i
--;
7280 VdbeBranchTaken(pIn1
->u
.i
==0, 2);
7281 if( pIn1
->u
.i
==0 ) goto jump_to_p2
;
7286 /* Opcode: AggStep * P2 P3 P4 P5
7287 ** Synopsis: accum=r[P3] step(r[P2@P5])
7289 ** Execute the xStep function for an aggregate.
7290 ** The function has P5 arguments. P4 is a pointer to the
7291 ** FuncDef structure that specifies the function. Register P3 is the
7294 ** The P5 arguments are taken from register P2 and its
7297 /* Opcode: AggInverse * P2 P3 P4 P5
7298 ** Synopsis: accum=r[P3] inverse(r[P2@P5])
7300 ** Execute the xInverse function for an aggregate.
7301 ** The function has P5 arguments. P4 is a pointer to the
7302 ** FuncDef structure that specifies the function. Register P3 is the
7305 ** The P5 arguments are taken from register P2 and its
7308 /* Opcode: AggStep1 P1 P2 P3 P4 P5
7309 ** Synopsis: accum=r[P3] step(r[P2@P5])
7311 ** Execute the xStep (if P1==0) or xInverse (if P1!=0) function for an
7312 ** aggregate. The function has P5 arguments. P4 is a pointer to the
7313 ** FuncDef structure that specifies the function. Register P3 is the
7316 ** The P5 arguments are taken from register P2 and its
7319 ** This opcode is initially coded as OP_AggStep0. On first evaluation,
7320 ** the FuncDef stored in P4 is converted into an sqlite3_context and
7321 ** the opcode is changed. In this way, the initialization of the
7322 ** sqlite3_context only happens once, instead of on each call to the
7328 sqlite3_context
*pCtx
;
7330 assert( pOp
->p4type
==P4_FUNCDEF
);
7332 assert( pOp
->p3
>0 && pOp
->p3
<=(p
->nMem
+1 - p
->nCursor
) );
7333 assert( n
==0 || (pOp
->p2
>0 && pOp
->p2
+n
<=(p
->nMem
+1 - p
->nCursor
)+1) );
7334 assert( pOp
->p3
<pOp
->p2
|| pOp
->p3
>=pOp
->p2
+n
);
7335 pCtx
= sqlite3DbMallocRawNN(db
, n
*sizeof(sqlite3_value
*) +
7336 (sizeof(pCtx
[0]) + sizeof(Mem
) - sizeof(sqlite3_value
*)));
7337 if( pCtx
==0 ) goto no_mem
;
7339 pCtx
->pOut
= (Mem
*)&(pCtx
->argv
[n
]);
7340 sqlite3VdbeMemInit(pCtx
->pOut
, db
, MEM_Null
);
7341 pCtx
->pFunc
= pOp
->p4
.pFunc
;
7342 pCtx
->iOp
= (int)(pOp
- aOp
);
7346 pCtx
->enc
= encoding
;
7348 pOp
->p4type
= P4_FUNCCTX
;
7349 pOp
->p4
.pCtx
= pCtx
;
7351 /* OP_AggInverse must have P1==1 and OP_AggStep must have P1==0 */
7352 assert( pOp
->p1
==(pOp
->opcode
==OP_AggInverse
) );
7354 pOp
->opcode
= OP_AggStep1
;
7355 /* Fall through into OP_AggStep */
7356 /* no break */ deliberate_fall_through
7360 sqlite3_context
*pCtx
;
7363 assert( pOp
->p4type
==P4_FUNCCTX
);
7364 pCtx
= pOp
->p4
.pCtx
;
7365 pMem
= &aMem
[pOp
->p3
];
7369 /* This is an OP_AggInverse call. Verify that xStep has always
7370 ** been called at least once prior to any xInverse call. */
7371 assert( pMem
->uTemp
==0x1122e0e3 );
7373 /* This is an OP_AggStep call. Mark it as such. */
7374 pMem
->uTemp
= 0x1122e0e3;
7378 /* If this function is inside of a trigger, the register array in aMem[]
7379 ** might change from one evaluation to the next. The next block of code
7380 ** checks to see if the register array has changed, and if so it
7381 ** reinitializes the relavant parts of the sqlite3_context object */
7382 if( pCtx
->pMem
!= pMem
){
7384 for(i
=pCtx
->argc
-1; i
>=0; i
--) pCtx
->argv
[i
] = &aMem
[pOp
->p2
+i
];
7388 for(i
=0; i
<pCtx
->argc
; i
++){
7389 assert( memIsValid(pCtx
->argv
[i
]) );
7390 REGISTER_TRACE(pOp
->p2
+i
, pCtx
->argv
[i
]);
7395 assert( pCtx
->pOut
->flags
==MEM_Null
);
7396 assert( pCtx
->isError
==0 );
7397 assert( pCtx
->skipFlag
==0 );
7398 #ifndef SQLITE_OMIT_WINDOWFUNC
7400 (pCtx
->pFunc
->xInverse
)(pCtx
,pCtx
->argc
,pCtx
->argv
);
7403 (pCtx
->pFunc
->xSFunc
)(pCtx
,pCtx
->argc
,pCtx
->argv
); /* IMP: R-24505-23230 */
7405 if( pCtx
->isError
){
7406 if( pCtx
->isError
>0 ){
7407 sqlite3VdbeError(p
, "%s", sqlite3_value_text(pCtx
->pOut
));
7410 if( pCtx
->skipFlag
){
7411 assert( pOp
[-1].opcode
==OP_CollSeq
);
7413 if( i
) sqlite3VdbeMemSetInt64(&aMem
[i
], 1);
7416 sqlite3VdbeMemRelease(pCtx
->pOut
);
7417 pCtx
->pOut
->flags
= MEM_Null
;
7419 if( rc
) goto abort_due_to_error
;
7421 assert( pCtx
->pOut
->flags
==MEM_Null
);
7422 assert( pCtx
->skipFlag
==0 );
7426 /* Opcode: AggFinal P1 P2 * P4 *
7427 ** Synopsis: accum=r[P1] N=P2
7429 ** P1 is the memory location that is the accumulator for an aggregate
7430 ** or window function. Execute the finalizer function
7431 ** for an aggregate and store the result in P1.
7433 ** P2 is the number of arguments that the step function takes and
7434 ** P4 is a pointer to the FuncDef for this function. The P2
7435 ** argument is not used by this opcode. It is only there to disambiguate
7436 ** functions that can take varying numbers of arguments. The
7437 ** P4 argument is only needed for the case where
7438 ** the step function was not previously called.
7440 /* Opcode: AggValue * P2 P3 P4 *
7441 ** Synopsis: r[P3]=value N=P2
7443 ** Invoke the xValue() function and store the result in register P3.
7445 ** P2 is the number of arguments that the step function takes and
7446 ** P4 is a pointer to the FuncDef for this function. The P2
7447 ** argument is not used by this opcode. It is only there to disambiguate
7448 ** functions that can take varying numbers of arguments. The
7449 ** P4 argument is only needed for the case where
7450 ** the step function was not previously called.
7455 assert( pOp
->p1
>0 && pOp
->p1
<=(p
->nMem
+1 - p
->nCursor
) );
7456 assert( pOp
->p3
==0 || pOp
->opcode
==OP_AggValue
);
7457 pMem
= &aMem
[pOp
->p1
];
7458 assert( (pMem
->flags
& ~(MEM_Null
|MEM_Agg
))==0 );
7459 #ifndef SQLITE_OMIT_WINDOWFUNC
7461 memAboutToChange(p
, &aMem
[pOp
->p3
]);
7462 rc
= sqlite3VdbeMemAggValue(pMem
, &aMem
[pOp
->p3
], pOp
->p4
.pFunc
);
7463 pMem
= &aMem
[pOp
->p3
];
7467 rc
= sqlite3VdbeMemFinalize(pMem
, pOp
->p4
.pFunc
);
7471 sqlite3VdbeError(p
, "%s", sqlite3_value_text(pMem
));
7472 goto abort_due_to_error
;
7474 sqlite3VdbeChangeEncoding(pMem
, encoding
);
7475 UPDATE_MAX_BLOBSIZE(pMem
);
7479 #ifndef SQLITE_OMIT_WAL
7480 /* Opcode: Checkpoint P1 P2 P3 * *
7482 ** Checkpoint database P1. This is a no-op if P1 is not currently in
7483 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL,
7484 ** RESTART, or TRUNCATE. Write 1 or 0 into mem[P3] if the checkpoint returns
7485 ** SQLITE_BUSY or not, respectively. Write the number of pages in the
7486 ** WAL after the checkpoint into mem[P3+1] and the number of pages
7487 ** in the WAL that have been checkpointed after the checkpoint
7488 ** completes into mem[P3+2]. However on an error, mem[P3+1] and
7489 ** mem[P3+2] are initialized to -1.
7491 case OP_Checkpoint
: {
7492 int i
; /* Loop counter */
7493 int aRes
[3]; /* Results */
7494 Mem
*pMem
; /* Write results here */
7496 assert( p
->readOnly
==0 );
7498 aRes
[1] = aRes
[2] = -1;
7499 assert( pOp
->p2
==SQLITE_CHECKPOINT_PASSIVE
7500 || pOp
->p2
==SQLITE_CHECKPOINT_FULL
7501 || pOp
->p2
==SQLITE_CHECKPOINT_RESTART
7502 || pOp
->p2
==SQLITE_CHECKPOINT_TRUNCATE
7504 rc
= sqlite3Checkpoint(db
, pOp
->p1
, pOp
->p2
, &aRes
[1], &aRes
[2]);
7506 if( rc
!=SQLITE_BUSY
) goto abort_due_to_error
;
7510 for(i
=0, pMem
= &aMem
[pOp
->p3
]; i
<3; i
++, pMem
++){
7511 sqlite3VdbeMemSetInt64(pMem
, (i64
)aRes
[i
]);
7517 #ifndef SQLITE_OMIT_PRAGMA
7518 /* Opcode: JournalMode P1 P2 P3 * *
7520 ** Change the journal mode of database P1 to P3. P3 must be one of the
7521 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
7522 ** modes (delete, truncate, persist, off and memory), this is a simple
7523 ** operation. No IO is required.
7525 ** If changing into or out of WAL mode the procedure is more complicated.
7527 ** Write a string containing the final journal-mode to register P2.
7529 case OP_JournalMode
: { /* out2 */
7530 Btree
*pBt
; /* Btree to change journal mode of */
7531 Pager
*pPager
; /* Pager associated with pBt */
7532 int eNew
; /* New journal mode */
7533 int eOld
; /* The old journal mode */
7534 #ifndef SQLITE_OMIT_WAL
7535 const char *zFilename
; /* Name of database file for pPager */
7538 pOut
= out2Prerelease(p
, pOp
);
7540 assert( eNew
==PAGER_JOURNALMODE_DELETE
7541 || eNew
==PAGER_JOURNALMODE_TRUNCATE
7542 || eNew
==PAGER_JOURNALMODE_PERSIST
7543 || eNew
==PAGER_JOURNALMODE_OFF
7544 || eNew
==PAGER_JOURNALMODE_MEMORY
7545 || eNew
==PAGER_JOURNALMODE_WAL
7546 || eNew
==PAGER_JOURNALMODE_QUERY
7548 assert( pOp
->p1
>=0 && pOp
->p1
<db
->nDb
);
7549 assert( p
->readOnly
==0 );
7551 pBt
= db
->aDb
[pOp
->p1
].pBt
;
7552 pPager
= sqlite3BtreePager(pBt
);
7553 eOld
= sqlite3PagerGetJournalMode(pPager
);
7554 if( eNew
==PAGER_JOURNALMODE_QUERY
) eNew
= eOld
;
7555 assert( sqlite3BtreeHoldsMutex(pBt
) );
7556 if( !sqlite3PagerOkToChangeJournalMode(pPager
) ) eNew
= eOld
;
7558 #ifndef SQLITE_OMIT_WAL
7559 zFilename
= sqlite3PagerFilename(pPager
, 1);
7561 /* Do not allow a transition to journal_mode=WAL for a database
7562 ** in temporary storage or if the VFS does not support shared memory
7564 if( eNew
==PAGER_JOURNALMODE_WAL
7565 && (sqlite3Strlen30(zFilename
)==0 /* Temp file */
7566 || !sqlite3PagerWalSupported(pPager
)) /* No shared-memory support */
7572 && (eOld
==PAGER_JOURNALMODE_WAL
|| eNew
==PAGER_JOURNALMODE_WAL
)
7574 if( !db
->autoCommit
|| db
->nVdbeRead
>1 ){
7577 "cannot change %s wal mode from within a transaction",
7578 (eNew
==PAGER_JOURNALMODE_WAL
? "into" : "out of")
7580 goto abort_due_to_error
;
7583 if( eOld
==PAGER_JOURNALMODE_WAL
){
7584 /* If leaving WAL mode, close the log file. If successful, the call
7585 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
7586 ** file. An EXCLUSIVE lock may still be held on the database file
7587 ** after a successful return.
7589 rc
= sqlite3PagerCloseWal(pPager
, db
);
7590 if( rc
==SQLITE_OK
){
7591 sqlite3PagerSetJournalMode(pPager
, eNew
);
7593 }else if( eOld
==PAGER_JOURNALMODE_MEMORY
){
7594 /* Cannot transition directly from MEMORY to WAL. Use mode OFF
7595 ** as an intermediate */
7596 sqlite3PagerSetJournalMode(pPager
, PAGER_JOURNALMODE_OFF
);
7599 /* Open a transaction on the database file. Regardless of the journal
7600 ** mode, this transaction always uses a rollback journal.
7602 assert( sqlite3BtreeTxnState(pBt
)!=SQLITE_TXN_WRITE
);
7603 if( rc
==SQLITE_OK
){
7604 rc
= sqlite3BtreeSetVersion(pBt
, (eNew
==PAGER_JOURNALMODE_WAL
? 2 : 1));
7608 #endif /* ifndef SQLITE_OMIT_WAL */
7610 if( rc
) eNew
= eOld
;
7611 eNew
= sqlite3PagerSetJournalMode(pPager
, eNew
);
7613 pOut
->flags
= MEM_Str
|MEM_Static
|MEM_Term
;
7614 pOut
->z
= (char *)sqlite3JournalModename(eNew
);
7615 pOut
->n
= sqlite3Strlen30(pOut
->z
);
7616 pOut
->enc
= SQLITE_UTF8
;
7617 sqlite3VdbeChangeEncoding(pOut
, encoding
);
7618 if( rc
) goto abort_due_to_error
;
7621 #endif /* SQLITE_OMIT_PRAGMA */
7623 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
7624 /* Opcode: Vacuum P1 P2 * * *
7626 ** Vacuum the entire database P1. P1 is 0 for "main", and 2 or more
7627 ** for an attached database. The "temp" database may not be vacuumed.
7629 ** If P2 is not zero, then it is a register holding a string which is
7630 ** the file into which the result of vacuum should be written. When
7631 ** P2 is zero, the vacuum overwrites the original database.
7634 assert( p
->readOnly
==0 );
7635 rc
= sqlite3RunVacuum(&p
->zErrMsg
, db
, pOp
->p1
,
7636 pOp
->p2
? &aMem
[pOp
->p2
] : 0);
7637 if( rc
) goto abort_due_to_error
;
7642 #if !defined(SQLITE_OMIT_AUTOVACUUM)
7643 /* Opcode: IncrVacuum P1 P2 * * *
7645 ** Perform a single step of the incremental vacuum procedure on
7646 ** the P1 database. If the vacuum has finished, jump to instruction
7647 ** P2. Otherwise, fall through to the next instruction.
7649 case OP_IncrVacuum
: { /* jump */
7652 assert( pOp
->p1
>=0 && pOp
->p1
<db
->nDb
);
7653 assert( DbMaskTest(p
->btreeMask
, pOp
->p1
) );
7654 assert( p
->readOnly
==0 );
7655 pBt
= db
->aDb
[pOp
->p1
].pBt
;
7656 rc
= sqlite3BtreeIncrVacuum(pBt
);
7657 VdbeBranchTaken(rc
==SQLITE_DONE
,2);
7659 if( rc
!=SQLITE_DONE
) goto abort_due_to_error
;
7667 /* Opcode: Expire P1 P2 * * *
7669 ** Cause precompiled statements to expire. When an expired statement
7670 ** is executed using sqlite3_step() it will either automatically
7671 ** reprepare itself (if it was originally created using sqlite3_prepare_v2())
7672 ** or it will fail with SQLITE_SCHEMA.
7674 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
7675 ** then only the currently executing statement is expired.
7677 ** If P2 is 0, then SQL statements are expired immediately. If P2 is 1,
7678 ** then running SQL statements are allowed to continue to run to completion.
7679 ** The P2==1 case occurs when a CREATE INDEX or similar schema change happens
7680 ** that might help the statement run faster but which does not affect the
7681 ** correctness of operation.
7684 assert( pOp
->p2
==0 || pOp
->p2
==1 );
7686 sqlite3ExpirePreparedStatements(db
, pOp
->p2
);
7688 p
->expired
= pOp
->p2
+1;
7693 /* Opcode: CursorLock P1 * * * *
7695 ** Lock the btree to which cursor P1 is pointing so that the btree cannot be
7696 ** written by an other cursor.
7698 case OP_CursorLock
: {
7700 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
7701 pC
= p
->apCsr
[pOp
->p1
];
7703 assert( pC
->eCurType
==CURTYPE_BTREE
);
7704 sqlite3BtreeCursorPin(pC
->uc
.pCursor
);
7708 /* Opcode: CursorUnlock P1 * * * *
7710 ** Unlock the btree to which cursor P1 is pointing so that it can be
7711 ** written by other cursors.
7713 case OP_CursorUnlock
: {
7715 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
7716 pC
= p
->apCsr
[pOp
->p1
];
7718 assert( pC
->eCurType
==CURTYPE_BTREE
);
7719 sqlite3BtreeCursorUnpin(pC
->uc
.pCursor
);
7723 #ifndef SQLITE_OMIT_SHARED_CACHE
7724 /* Opcode: TableLock P1 P2 P3 P4 *
7725 ** Synopsis: iDb=P1 root=P2 write=P3
7727 ** Obtain a lock on a particular table. This instruction is only used when
7728 ** the shared-cache feature is enabled.
7730 ** P1 is the index of the database in sqlite3.aDb[] of the database
7731 ** on which the lock is acquired. A readlock is obtained if P3==0 or
7732 ** a write lock if P3==1.
7734 ** P2 contains the root-page of the table to lock.
7736 ** P4 contains a pointer to the name of the table being locked. This is only
7737 ** used to generate an error message if the lock cannot be obtained.
7739 case OP_TableLock
: {
7740 u8 isWriteLock
= (u8
)pOp
->p3
;
7741 if( isWriteLock
|| 0==(db
->flags
&SQLITE_ReadUncommit
) ){
7743 assert( p1
>=0 && p1
<db
->nDb
);
7744 assert( DbMaskTest(p
->btreeMask
, p1
) );
7745 assert( isWriteLock
==0 || isWriteLock
==1 );
7746 rc
= sqlite3BtreeLockTable(db
->aDb
[p1
].pBt
, pOp
->p2
, isWriteLock
);
7748 if( (rc
&0xFF)==SQLITE_LOCKED
){
7749 const char *z
= pOp
->p4
.z
;
7750 sqlite3VdbeError(p
, "database table is locked: %s", z
);
7752 goto abort_due_to_error
;
7757 #endif /* SQLITE_OMIT_SHARED_CACHE */
7759 #ifndef SQLITE_OMIT_VIRTUALTABLE
7760 /* Opcode: VBegin * * * P4 *
7762 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
7763 ** xBegin method for that table.
7765 ** Also, whether or not P4 is set, check that this is not being called from
7766 ** within a callback to a virtual table xSync() method. If it is, the error
7767 ** code will be set to SQLITE_LOCKED.
7771 pVTab
= pOp
->p4
.pVtab
;
7772 rc
= sqlite3VtabBegin(db
, pVTab
);
7773 if( pVTab
) sqlite3VtabImportErrmsg(p
, pVTab
->pVtab
);
7774 if( rc
) goto abort_due_to_error
;
7777 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7779 #ifndef SQLITE_OMIT_VIRTUALTABLE
7780 /* Opcode: VCreate P1 P2 * * *
7782 ** P2 is a register that holds the name of a virtual table in database
7783 ** P1. Call the xCreate method for that table.
7786 Mem sMem
; /* For storing the record being decoded */
7787 const char *zTab
; /* Name of the virtual table */
7789 memset(&sMem
, 0, sizeof(sMem
));
7791 /* Because P2 is always a static string, it is impossible for the
7792 ** sqlite3VdbeMemCopy() to fail */
7793 assert( (aMem
[pOp
->p2
].flags
& MEM_Str
)!=0 );
7794 assert( (aMem
[pOp
->p2
].flags
& MEM_Static
)!=0 );
7795 rc
= sqlite3VdbeMemCopy(&sMem
, &aMem
[pOp
->p2
]);
7796 assert( rc
==SQLITE_OK
);
7797 zTab
= (const char*)sqlite3_value_text(&sMem
);
7798 assert( zTab
|| db
->mallocFailed
);
7800 rc
= sqlite3VtabCallCreate(db
, pOp
->p1
, zTab
, &p
->zErrMsg
);
7802 sqlite3VdbeMemRelease(&sMem
);
7803 if( rc
) goto abort_due_to_error
;
7806 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7808 #ifndef SQLITE_OMIT_VIRTUALTABLE
7809 /* Opcode: VDestroy P1 * * P4 *
7811 ** P4 is the name of a virtual table in database P1. Call the xDestroy method
7816 rc
= sqlite3VtabCallDestroy(db
, pOp
->p1
, pOp
->p4
.z
);
7818 assert( p
->errorAction
==OE_Abort
&& p
->usesStmtJournal
);
7819 if( rc
) goto abort_due_to_error
;
7822 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7824 #ifndef SQLITE_OMIT_VIRTUALTABLE
7825 /* Opcode: VOpen P1 * * P4 *
7827 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
7828 ** P1 is a cursor number. This opcode opens a cursor to the virtual
7829 ** table and stores that cursor in P1.
7833 sqlite3_vtab_cursor
*pVCur
;
7834 sqlite3_vtab
*pVtab
;
7835 const sqlite3_module
*pModule
;
7837 assert( p
->bIsReader
);
7840 pVtab
= pOp
->p4
.pVtab
->pVtab
;
7841 if( pVtab
==0 || NEVER(pVtab
->pModule
==0) ){
7843 goto abort_due_to_error
;
7845 pModule
= pVtab
->pModule
;
7846 rc
= pModule
->xOpen(pVtab
, &pVCur
);
7847 sqlite3VtabImportErrmsg(p
, pVtab
);
7848 if( rc
) goto abort_due_to_error
;
7850 /* Initialize sqlite3_vtab_cursor base class */
7851 pVCur
->pVtab
= pVtab
;
7853 /* Initialize vdbe cursor object */
7854 pCur
= allocateCursor(p
, pOp
->p1
, 0, CURTYPE_VTAB
);
7856 pCur
->uc
.pVCur
= pVCur
;
7859 assert( db
->mallocFailed
);
7860 pModule
->xClose(pVCur
);
7865 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7867 #ifndef SQLITE_OMIT_VIRTUALTABLE
7868 /* Opcode: VInitIn P1 P2 P3 * *
7869 ** Synopsis: r[P2]=ValueList(P1,P3)
7871 ** Set register P2 to be a pointer to a ValueList object for cursor P1
7872 ** with cache register P3 and output register P3+1. This ValueList object
7873 ** can be used as the first argument to sqlite3_vtab_in_first() and
7874 ** sqlite3_vtab_in_next() to extract all of the values stored in the P1
7875 ** cursor. Register P3 is used to hold the values returned by
7876 ** sqlite3_vtab_in_first() and sqlite3_vtab_in_next().
7878 case OP_VInitIn
: { /* out2 */
7879 VdbeCursor
*pC
; /* The cursor containing the RHS values */
7880 ValueList
*pRhs
; /* New ValueList object to put in reg[P2] */
7882 pC
= p
->apCsr
[pOp
->p1
];
7883 pRhs
= sqlite3_malloc64( sizeof(*pRhs
) );
7884 if( pRhs
==0 ) goto no_mem
;
7885 pRhs
->pCsr
= pC
->uc
.pCursor
;
7886 pRhs
->pOut
= &aMem
[pOp
->p3
];
7887 pOut
= out2Prerelease(p
, pOp
);
7888 pOut
->flags
= MEM_Null
;
7889 sqlite3VdbeMemSetPointer(pOut
, pRhs
, "ValueList", sqlite3_free
);
7892 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7895 #ifndef SQLITE_OMIT_VIRTUALTABLE
7896 /* Opcode: VFilter P1 P2 P3 P4 *
7897 ** Synopsis: iplan=r[P3] zplan='P4'
7899 ** P1 is a cursor opened using VOpen. P2 is an address to jump to if
7900 ** the filtered result set is empty.
7902 ** P4 is either NULL or a string that was generated by the xBestIndex
7903 ** method of the module. The interpretation of the P4 string is left
7904 ** to the module implementation.
7906 ** This opcode invokes the xFilter method on the virtual table specified
7907 ** by P1. The integer query plan parameter to xFilter is stored in register
7908 ** P3. Register P3+1 stores the argc parameter to be passed to the
7909 ** xFilter method. Registers P3+2..P3+1+argc are the argc
7910 ** additional parameters which are passed to
7911 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
7913 ** A jump is made to P2 if the result set after filtering would be empty.
7915 case OP_VFilter
: { /* jump */
7918 const sqlite3_module
*pModule
;
7921 sqlite3_vtab_cursor
*pVCur
;
7922 sqlite3_vtab
*pVtab
;
7928 pQuery
= &aMem
[pOp
->p3
];
7930 pCur
= p
->apCsr
[pOp
->p1
];
7931 assert( memIsValid(pQuery
) );
7932 REGISTER_TRACE(pOp
->p3
, pQuery
);
7934 assert( pCur
->eCurType
==CURTYPE_VTAB
);
7935 pVCur
= pCur
->uc
.pVCur
;
7936 pVtab
= pVCur
->pVtab
;
7937 pModule
= pVtab
->pModule
;
7939 /* Grab the index number and argc parameters */
7940 assert( (pQuery
->flags
&MEM_Int
)!=0 && pArgc
->flags
==MEM_Int
);
7941 nArg
= (int)pArgc
->u
.i
;
7942 iQuery
= (int)pQuery
->u
.i
;
7944 /* Invoke the xFilter method */
7946 for(i
= 0; i
<nArg
; i
++){
7947 apArg
[i
] = &pArgc
[i
+1];
7949 rc
= pModule
->xFilter(pVCur
, iQuery
, pOp
->p4
.z
, nArg
, apArg
);
7950 sqlite3VtabImportErrmsg(p
, pVtab
);
7951 if( rc
) goto abort_due_to_error
;
7952 res
= pModule
->xEof(pVCur
);
7954 VdbeBranchTaken(res
!=0,2);
7955 if( res
) goto jump_to_p2
;
7958 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7960 #ifndef SQLITE_OMIT_VIRTUALTABLE
7961 /* Opcode: VColumn P1 P2 P3 * P5
7962 ** Synopsis: r[P3]=vcolumn(P2)
7964 ** Store in register P3 the value of the P2-th column of
7965 ** the current row of the virtual-table of cursor P1.
7967 ** If the VColumn opcode is being used to fetch the value of
7968 ** an unchanging column during an UPDATE operation, then the P5
7969 ** value is OPFLAG_NOCHNG. This will cause the sqlite3_vtab_nochange()
7970 ** function to return true inside the xColumn method of the virtual
7971 ** table implementation. The P5 column might also contain other
7972 ** bits (OPFLAG_LENGTHARG or OPFLAG_TYPEOFARG) but those bits are
7973 ** unused by OP_VColumn.
7976 sqlite3_vtab
*pVtab
;
7977 const sqlite3_module
*pModule
;
7979 sqlite3_context sContext
;
7981 VdbeCursor
*pCur
= p
->apCsr
[pOp
->p1
];
7983 assert( pOp
->p3
>0 && pOp
->p3
<=(p
->nMem
+1 - p
->nCursor
) );
7984 pDest
= &aMem
[pOp
->p3
];
7985 memAboutToChange(p
, pDest
);
7986 if( pCur
->nullRow
){
7987 sqlite3VdbeMemSetNull(pDest
);
7990 assert( pCur
->eCurType
==CURTYPE_VTAB
);
7991 pVtab
= pCur
->uc
.pVCur
->pVtab
;
7992 pModule
= pVtab
->pModule
;
7993 assert( pModule
->xColumn
);
7994 memset(&sContext
, 0, sizeof(sContext
));
7995 sContext
.pOut
= pDest
;
7996 sContext
.enc
= encoding
;
7997 assert( pOp
->p5
==OPFLAG_NOCHNG
|| pOp
->p5
==0 );
7998 if( pOp
->p5
& OPFLAG_NOCHNG
){
7999 sqlite3VdbeMemSetNull(pDest
);
8000 pDest
->flags
= MEM_Null
|MEM_Zero
;
8003 MemSetTypeFlag(pDest
, MEM_Null
);
8005 rc
= pModule
->xColumn(pCur
->uc
.pVCur
, &sContext
, pOp
->p2
);
8006 sqlite3VtabImportErrmsg(p
, pVtab
);
8007 if( sContext
.isError
>0 ){
8008 sqlite3VdbeError(p
, "%s", sqlite3_value_text(pDest
));
8009 rc
= sContext
.isError
;
8011 sqlite3VdbeChangeEncoding(pDest
, encoding
);
8012 REGISTER_TRACE(pOp
->p3
, pDest
);
8013 UPDATE_MAX_BLOBSIZE(pDest
);
8015 if( rc
) goto abort_due_to_error
;
8018 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8020 #ifndef SQLITE_OMIT_VIRTUALTABLE
8021 /* Opcode: VNext P1 P2 * * *
8023 ** Advance virtual table P1 to the next row in its result set and
8024 ** jump to instruction P2. Or, if the virtual table has reached
8025 ** the end of its result set, then fall through to the next instruction.
8027 case OP_VNext
: { /* jump */
8028 sqlite3_vtab
*pVtab
;
8029 const sqlite3_module
*pModule
;
8033 pCur
= p
->apCsr
[pOp
->p1
];
8035 assert( pCur
->eCurType
==CURTYPE_VTAB
);
8036 if( pCur
->nullRow
){
8039 pVtab
= pCur
->uc
.pVCur
->pVtab
;
8040 pModule
= pVtab
->pModule
;
8041 assert( pModule
->xNext
);
8043 /* Invoke the xNext() method of the module. There is no way for the
8044 ** underlying implementation to return an error if one occurs during
8045 ** xNext(). Instead, if an error occurs, true is returned (indicating that
8046 ** data is available) and the error code returned when xColumn or
8047 ** some other method is next invoked on the save virtual table cursor.
8049 rc
= pModule
->xNext(pCur
->uc
.pVCur
);
8050 sqlite3VtabImportErrmsg(p
, pVtab
);
8051 if( rc
) goto abort_due_to_error
;
8052 res
= pModule
->xEof(pCur
->uc
.pVCur
);
8053 VdbeBranchTaken(!res
,2);
8055 /* If there is data, jump to P2 */
8056 goto jump_to_p2_and_check_for_interrupt
;
8058 goto check_for_interrupt
;
8060 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8062 #ifndef SQLITE_OMIT_VIRTUALTABLE
8063 /* Opcode: VRename P1 * * P4 *
8065 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
8066 ** This opcode invokes the corresponding xRename method. The value
8067 ** in register P1 is passed as the zName argument to the xRename method.
8070 sqlite3_vtab
*pVtab
;
8074 isLegacy
= (db
->flags
& SQLITE_LegacyAlter
);
8075 db
->flags
|= SQLITE_LegacyAlter
;
8076 pVtab
= pOp
->p4
.pVtab
->pVtab
;
8077 pName
= &aMem
[pOp
->p1
];
8078 assert( pVtab
->pModule
->xRename
);
8079 assert( memIsValid(pName
) );
8080 assert( p
->readOnly
==0 );
8081 REGISTER_TRACE(pOp
->p1
, pName
);
8082 assert( pName
->flags
& MEM_Str
);
8083 testcase( pName
->enc
==SQLITE_UTF8
);
8084 testcase( pName
->enc
==SQLITE_UTF16BE
);
8085 testcase( pName
->enc
==SQLITE_UTF16LE
);
8086 rc
= sqlite3VdbeChangeEncoding(pName
, SQLITE_UTF8
);
8087 if( rc
) goto abort_due_to_error
;
8088 rc
= pVtab
->pModule
->xRename(pVtab
, pName
->z
);
8089 if( isLegacy
==0 ) db
->flags
&= ~(u64
)SQLITE_LegacyAlter
;
8090 sqlite3VtabImportErrmsg(p
, pVtab
);
8092 if( rc
) goto abort_due_to_error
;
8097 #ifndef SQLITE_OMIT_VIRTUALTABLE
8098 /* Opcode: VUpdate P1 P2 P3 P4 P5
8099 ** Synopsis: data=r[P3@P2]
8101 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
8102 ** This opcode invokes the corresponding xUpdate method. P2 values
8103 ** are contiguous memory cells starting at P3 to pass to the xUpdate
8104 ** invocation. The value in register (P3+P2-1) corresponds to the
8105 ** p2th element of the argv array passed to xUpdate.
8107 ** The xUpdate method will do a DELETE or an INSERT or both.
8108 ** The argv[0] element (which corresponds to memory cell P3)
8109 ** is the rowid of a row to delete. If argv[0] is NULL then no
8110 ** deletion occurs. The argv[1] element is the rowid of the new
8111 ** row. This can be NULL to have the virtual table select the new
8112 ** rowid for itself. The subsequent elements in the array are
8113 ** the values of columns in the new row.
8115 ** If P2==1 then no insert is performed. argv[0] is the rowid of
8118 ** P1 is a boolean flag. If it is set to true and the xUpdate call
8119 ** is successful, then the value returned by sqlite3_last_insert_rowid()
8120 ** is set to the value of the rowid for the row just inserted.
8122 ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to
8123 ** apply in the case of a constraint failure on an insert or update.
8126 sqlite3_vtab
*pVtab
;
8127 const sqlite3_module
*pModule
;
8130 sqlite_int64 rowid
= 0;
8134 assert( pOp
->p2
==1 || pOp
->p5
==OE_Fail
|| pOp
->p5
==OE_Rollback
8135 || pOp
->p5
==OE_Abort
|| pOp
->p5
==OE_Ignore
|| pOp
->p5
==OE_Replace
8137 assert( p
->readOnly
==0 );
8138 if( db
->mallocFailed
) goto no_mem
;
8139 sqlite3VdbeIncrWriteCounter(p
, 0);
8140 pVtab
= pOp
->p4
.pVtab
->pVtab
;
8141 if( pVtab
==0 || NEVER(pVtab
->pModule
==0) ){
8143 goto abort_due_to_error
;
8145 pModule
= pVtab
->pModule
;
8147 assert( pOp
->p4type
==P4_VTAB
);
8148 if( ALWAYS(pModule
->xUpdate
) ){
8149 u8 vtabOnConflict
= db
->vtabOnConflict
;
8151 pX
= &aMem
[pOp
->p3
];
8152 for(i
=0; i
<nArg
; i
++){
8153 assert( memIsValid(pX
) );
8154 memAboutToChange(p
, pX
);
8158 db
->vtabOnConflict
= pOp
->p5
;
8159 rc
= pModule
->xUpdate(pVtab
, nArg
, apArg
, &rowid
);
8160 db
->vtabOnConflict
= vtabOnConflict
;
8161 sqlite3VtabImportErrmsg(p
, pVtab
);
8162 if( rc
==SQLITE_OK
&& pOp
->p1
){
8163 assert( nArg
>1 && apArg
[0] && (apArg
[0]->flags
&MEM_Null
) );
8164 db
->lastRowid
= rowid
;
8166 if( (rc
&0xff)==SQLITE_CONSTRAINT
&& pOp
->p4
.pVtab
->bConstraint
){
8167 if( pOp
->p5
==OE_Ignore
){
8170 p
->errorAction
= ((pOp
->p5
==OE_Replace
) ? OE_Abort
: pOp
->p5
);
8175 if( rc
) goto abort_due_to_error
;
8179 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8181 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
8182 /* Opcode: Pagecount P1 P2 * * *
8184 ** Write the current number of pages in database P1 to memory cell P2.
8186 case OP_Pagecount
: { /* out2 */
8187 pOut
= out2Prerelease(p
, pOp
);
8188 pOut
->u
.i
= sqlite3BtreeLastPage(db
->aDb
[pOp
->p1
].pBt
);
8194 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
8195 /* Opcode: MaxPgcnt P1 P2 P3 * *
8197 ** Try to set the maximum page count for database P1 to the value in P3.
8198 ** Do not let the maximum page count fall below the current page count and
8199 ** do not change the maximum page count value if P3==0.
8201 ** Store the maximum page count after the change in register P2.
8203 case OP_MaxPgcnt
: { /* out2 */
8204 unsigned int newMax
;
8207 pOut
= out2Prerelease(p
, pOp
);
8208 pBt
= db
->aDb
[pOp
->p1
].pBt
;
8211 newMax
= sqlite3BtreeLastPage(pBt
);
8212 if( newMax
< (unsigned)pOp
->p3
) newMax
= (unsigned)pOp
->p3
;
8214 pOut
->u
.i
= sqlite3BtreeMaxPageCount(pBt
, newMax
);
8219 /* Opcode: Function P1 P2 P3 P4 *
8220 ** Synopsis: r[P3]=func(r[P2@NP])
8222 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that
8223 ** contains a pointer to the function to be run) with arguments taken
8224 ** from register P2 and successors. The number of arguments is in
8225 ** the sqlite3_context object that P4 points to.
8226 ** The result of the function is stored
8227 ** in register P3. Register P3 must not be one of the function inputs.
8229 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
8230 ** function was determined to be constant at compile time. If the first
8231 ** argument was constant then bit 0 of P1 is set. This is used to determine
8232 ** whether meta data associated with a user function argument using the
8233 ** sqlite3_set_auxdata() API may be safely retained until the next
8234 ** invocation of this opcode.
8236 ** See also: AggStep, AggFinal, PureFunc
8238 /* Opcode: PureFunc P1 P2 P3 P4 *
8239 ** Synopsis: r[P3]=func(r[P2@NP])
8241 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that
8242 ** contains a pointer to the function to be run) with arguments taken
8243 ** from register P2 and successors. The number of arguments is in
8244 ** the sqlite3_context object that P4 points to.
8245 ** The result of the function is stored
8246 ** in register P3. Register P3 must not be one of the function inputs.
8248 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
8249 ** function was determined to be constant at compile time. If the first
8250 ** argument was constant then bit 0 of P1 is set. This is used to determine
8251 ** whether meta data associated with a user function argument using the
8252 ** sqlite3_set_auxdata() API may be safely retained until the next
8253 ** invocation of this opcode.
8255 ** This opcode works exactly like OP_Function. The only difference is in
8256 ** its name. This opcode is used in places where the function must be
8257 ** purely non-deterministic. Some built-in date/time functions can be
8258 ** either determinitic of non-deterministic, depending on their arguments.
8259 ** When those function are used in a non-deterministic way, they will check
8260 ** to see if they were called using OP_PureFunc instead of OP_Function, and
8261 ** if they were, they throw an error.
8263 ** See also: AggStep, AggFinal, Function
8265 case OP_PureFunc
: /* group */
8266 case OP_Function
: { /* group */
8268 sqlite3_context
*pCtx
;
8270 assert( pOp
->p4type
==P4_FUNCCTX
);
8271 pCtx
= pOp
->p4
.pCtx
;
8273 /* If this function is inside of a trigger, the register array in aMem[]
8274 ** might change from one evaluation to the next. The next block of code
8275 ** checks to see if the register array has changed, and if so it
8276 ** reinitializes the relavant parts of the sqlite3_context object */
8277 pOut
= &aMem
[pOp
->p3
];
8278 if( pCtx
->pOut
!= pOut
){
8281 pCtx
->enc
= encoding
;
8282 for(i
=pCtx
->argc
-1; i
>=0; i
--) pCtx
->argv
[i
] = &aMem
[pOp
->p2
+i
];
8284 assert( pCtx
->pVdbe
==p
);
8286 memAboutToChange(p
, pOut
);
8288 for(i
=0; i
<pCtx
->argc
; i
++){
8289 assert( memIsValid(pCtx
->argv
[i
]) );
8290 REGISTER_TRACE(pOp
->p2
+i
, pCtx
->argv
[i
]);
8293 MemSetTypeFlag(pOut
, MEM_Null
);
8294 assert( pCtx
->isError
==0 );
8295 (*pCtx
->pFunc
->xSFunc
)(pCtx
, pCtx
->argc
, pCtx
->argv
);/* IMP: R-24505-23230 */
8297 /* If the function returned an error, throw an exception */
8298 if( pCtx
->isError
){
8299 if( pCtx
->isError
>0 ){
8300 sqlite3VdbeError(p
, "%s", sqlite3_value_text(pOut
));
8303 sqlite3VdbeDeleteAuxData(db
, &p
->pAuxData
, pCtx
->iOp
, pOp
->p1
);
8305 if( rc
) goto abort_due_to_error
;
8308 assert( (pOut
->flags
&MEM_Str
)==0
8309 || pOut
->enc
==encoding
8310 || db
->mallocFailed
);
8311 assert( !sqlite3VdbeMemTooBig(pOut
) );
8313 REGISTER_TRACE(pOp
->p3
, pOut
);
8314 UPDATE_MAX_BLOBSIZE(pOut
);
8318 /* Opcode: ClrSubtype P1 * * * *
8319 ** Synopsis: r[P1].subtype = 0
8321 ** Clear the subtype from register P1.
8323 case OP_ClrSubtype
: { /* in1 */
8324 pIn1
= &aMem
[pOp
->p1
];
8325 pIn1
->flags
&= ~MEM_Subtype
;
8329 /* Opcode: FilterAdd P1 * P3 P4 *
8330 ** Synopsis: filter(P1) += key(P3@P4)
8332 ** Compute a hash on the P4 registers starting with r[P3] and
8333 ** add that hash to the bloom filter contained in r[P1].
8335 case OP_FilterAdd
: {
8338 assert( pOp
->p1
>0 && pOp
->p1
<=(p
->nMem
+1 - p
->nCursor
) );
8339 pIn1
= &aMem
[pOp
->p1
];
8340 assert( pIn1
->flags
& MEM_Blob
);
8341 assert( pIn1
->n
>0 );
8342 h
= filterHash(aMem
, pOp
);
8344 if( db
->flags
&SQLITE_VdbeTrace
){
8346 for(ii
=pOp
->p3
; ii
<pOp
->p3
+pOp
->p4
.i
; ii
++){
8347 registerTrace(ii
, &aMem
[ii
]);
8349 printf("hash: %llu modulo %d -> %u\n", h
, pIn1
->n
, (int)(h
%pIn1
->n
));
8353 pIn1
->z
[h
/8] |= 1<<(h
&7);
8357 /* Opcode: Filter P1 P2 P3 P4 *
8358 ** Synopsis: if key(P3@P4) not in filter(P1) goto P2
8360 ** Compute a hash on the key contained in the P4 registers starting
8361 ** with r[P3]. Check to see if that hash is found in the
8362 ** bloom filter hosted by register P1. If it is not present then
8363 ** maybe jump to P2. Otherwise fall through.
8365 ** False negatives are harmless. It is always safe to fall through,
8366 ** even if the value is in the bloom filter. A false negative causes
8367 ** more CPU cycles to be used, but it should still yield the correct
8368 ** answer. However, an incorrect answer may well arise from a
8369 ** false positive - if the jump is taken when it should fall through.
8371 case OP_Filter
: { /* jump */
8374 assert( pOp
->p1
>0 && pOp
->p1
<=(p
->nMem
+1 - p
->nCursor
) );
8375 pIn1
= &aMem
[pOp
->p1
];
8376 assert( (pIn1
->flags
& MEM_Blob
)!=0 );
8377 assert( pIn1
->n
>= 1 );
8378 h
= filterHash(aMem
, pOp
);
8380 if( db
->flags
&SQLITE_VdbeTrace
){
8382 for(ii
=pOp
->p3
; ii
<pOp
->p3
+pOp
->p4
.i
; ii
++){
8383 registerTrace(ii
, &aMem
[ii
]);
8385 printf("hash: %llu modulo %d -> %u\n", h
, pIn1
->n
, (int)(h
%pIn1
->n
));
8389 if( (pIn1
->z
[h
/8] & (1<<(h
&7)))==0 ){
8390 VdbeBranchTaken(1, 2);
8391 p
->aCounter
[SQLITE_STMTSTATUS_FILTER_HIT
]++;
8394 p
->aCounter
[SQLITE_STMTSTATUS_FILTER_MISS
]++;
8395 VdbeBranchTaken(0, 2);
8400 /* Opcode: Trace P1 P2 * P4 *
8402 ** Write P4 on the statement trace output if statement tracing is
8405 ** Operand P1 must be 0x7fffffff and P2 must positive.
8407 /* Opcode: Init P1 P2 P3 P4 *
8408 ** Synopsis: Start at P2
8410 ** Programs contain a single instance of this opcode as the very first
8413 ** If tracing is enabled (by the sqlite3_trace()) interface, then
8414 ** the UTF-8 string contained in P4 is emitted on the trace callback.
8415 ** Or if P4 is blank, use the string returned by sqlite3_sql().
8417 ** If P2 is not zero, jump to instruction P2.
8419 ** Increment the value of P1 so that OP_Once opcodes will jump the
8420 ** first time they are evaluated for this run.
8422 ** If P3 is not zero, then it is an address to jump to if an SQLITE_CORRUPT
8423 ** error is encountered.
8426 case OP_Init
: { /* jump */
8428 #ifndef SQLITE_OMIT_TRACE
8432 /* If the P4 argument is not NULL, then it must be an SQL comment string.
8433 ** The "--" string is broken up to prevent false-positives with srcck1.c.
8435 ** This assert() provides evidence for:
8436 ** EVIDENCE-OF: R-50676-09860 The callback can compute the same text that
8437 ** would have been returned by the legacy sqlite3_trace() interface by
8438 ** using the X argument when X begins with "--" and invoking
8439 ** sqlite3_expanded_sql(P) otherwise.
8441 assert( pOp
->p4
.z
==0 || strncmp(pOp
->p4
.z
, "-" "- ", 3)==0 );
8443 /* OP_Init is always instruction 0 */
8444 assert( pOp
==p
->aOp
|| pOp
->opcode
==OP_Trace
);
8446 #ifndef SQLITE_OMIT_TRACE
8447 if( (db
->mTrace
& (SQLITE_TRACE_STMT
|SQLITE_TRACE_LEGACY
))!=0
8448 && p
->minWriteFileFormat
!=254 /* tag-20220401a */
8449 && (zTrace
= (pOp
->p4
.z
? pOp
->p4
.z
: p
->zSql
))!=0
8451 #ifndef SQLITE_OMIT_DEPRECATED
8452 if( db
->mTrace
& SQLITE_TRACE_LEGACY
){
8453 char *z
= sqlite3VdbeExpandSql(p
, zTrace
);
8454 db
->trace
.xLegacy(db
->pTraceArg
, z
);
8458 if( db
->nVdbeExec
>1 ){
8459 char *z
= sqlite3MPrintf(db
, "-- %s", zTrace
);
8460 (void)db
->trace
.xV2(SQLITE_TRACE_STMT
, db
->pTraceArg
, p
, z
);
8461 sqlite3DbFree(db
, z
);
8463 (void)db
->trace
.xV2(SQLITE_TRACE_STMT
, db
->pTraceArg
, p
, zTrace
);
8466 #ifdef SQLITE_USE_FCNTL_TRACE
8467 zTrace
= (pOp
->p4
.z
? pOp
->p4
.z
: p
->zSql
);
8470 for(j
=0; j
<db
->nDb
; j
++){
8471 if( DbMaskTest(p
->btreeMask
, j
)==0 ) continue;
8472 sqlite3_file_control(db
, db
->aDb
[j
].zDbSName
, SQLITE_FCNTL_TRACE
, zTrace
);
8475 #endif /* SQLITE_USE_FCNTL_TRACE */
8477 if( (db
->flags
& SQLITE_SqlTrace
)!=0
8478 && (zTrace
= (pOp
->p4
.z
? pOp
->p4
.z
: p
->zSql
))!=0
8480 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace
);
8482 #endif /* SQLITE_DEBUG */
8483 #endif /* SQLITE_OMIT_TRACE */
8484 assert( pOp
->p2
>0 );
8485 if( pOp
->p1
>=sqlite3GlobalConfig
.iOnceResetThreshold
){
8486 if( pOp
->opcode
==OP_Trace
) break;
8487 for(i
=1; i
<p
->nOp
; i
++){
8488 if( p
->aOp
[i
].opcode
==OP_Once
) p
->aOp
[i
].p1
= 0;
8493 p
->aCounter
[SQLITE_STMTSTATUS_RUN
]++;
8497 #ifdef SQLITE_ENABLE_CURSOR_HINTS
8498 /* Opcode: CursorHint P1 * * P4 *
8500 ** Provide a hint to cursor P1 that it only needs to return rows that
8501 ** satisfy the Expr in P4. TK_REGISTER terms in the P4 expression refer
8502 ** to values currently held in registers. TK_COLUMN terms in the P4
8503 ** expression refer to columns in the b-tree to which cursor P1 is pointing.
8505 case OP_CursorHint
: {
8508 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
8509 assert( pOp
->p4type
==P4_EXPR
);
8510 pC
= p
->apCsr
[pOp
->p1
];
8512 assert( pC
->eCurType
==CURTYPE_BTREE
);
8513 sqlite3BtreeCursorHint(pC
->uc
.pCursor
, BTREE_HINT_RANGE
,
8514 pOp
->p4
.pExpr
, aMem
);
8518 #endif /* SQLITE_ENABLE_CURSOR_HINTS */
8521 /* Opcode: Abortable * * * * *
8523 ** Verify that an Abort can happen. Assert if an Abort at this point
8524 ** might cause database corruption. This opcode only appears in debugging
8527 ** An Abort is safe if either there have been no writes, or if there is
8528 ** an active statement journal.
8530 case OP_Abortable
: {
8531 sqlite3VdbeAssertAbortable(p
);
8537 /* Opcode: ReleaseReg P1 P2 P3 * P5
8538 ** Synopsis: release r[P1@P2] mask P3
8540 ** Release registers from service. Any content that was in the
8541 ** the registers is unreliable after this opcode completes.
8543 ** The registers released will be the P2 registers starting at P1,
8544 ** except if bit ii of P3 set, then do not release register P1+ii.
8545 ** In other words, P3 is a mask of registers to preserve.
8547 ** Releasing a register clears the Mem.pScopyFrom pointer. That means
8548 ** that if the content of the released register was set using OP_SCopy,
8549 ** a change to the value of the source register for the OP_SCopy will no longer
8550 ** generate an assertion fault in sqlite3VdbeMemAboutToChange().
8552 ** If P5 is set, then all released registers have their type set
8553 ** to MEM_Undefined so that any subsequent attempt to read the released
8554 ** register (before it is reinitialized) will generate an assertion fault.
8556 ** P5 ought to be set on every call to this opcode.
8557 ** However, there are places in the code generator will release registers
8558 ** before their are used, under the (valid) assumption that the registers
8559 ** will not be reallocated for some other purpose before they are used and
8560 ** hence are safe to release.
8562 ** This opcode is only available in testing and debugging builds. It is
8563 ** not generated for release builds. The purpose of this opcode is to help
8564 ** validate the generated bytecode. This opcode does not actually contribute
8565 ** to computing an answer.
8567 case OP_ReleaseReg
: {
8571 assert( pOp
->p1
>0 );
8572 assert( pOp
->p1
+pOp
->p2
<=(p
->nMem
+1 - p
->nCursor
)+1 );
8573 pMem
= &aMem
[pOp
->p1
];
8574 constMask
= pOp
->p3
;
8575 for(i
=0; i
<pOp
->p2
; i
++, pMem
++){
8576 if( i
>=32 || (constMask
& MASKBIT32(i
))==0 ){
8577 pMem
->pScopyFrom
= 0;
8578 if( i
<32 && pOp
->p5
) MemSetTypeFlag(pMem
, MEM_Undefined
);
8585 /* Opcode: Noop * * * * *
8587 ** Do nothing. This instruction is often useful as a jump
8591 ** The magic Explain opcode are only inserted when explain==2 (which
8592 ** is to say when the EXPLAIN QUERY PLAN syntax is used.)
8593 ** This opcode records information from the optimizer. It is the
8594 ** the same as a no-op. This opcodesnever appears in a real VM program.
8596 default: { /* This is really OP_Noop, OP_Explain */
8597 assert( pOp
->opcode
==OP_Noop
|| pOp
->opcode
==OP_Explain
);
8602 /*****************************************************************************
8603 ** The cases of the switch statement above this line should all be indented
8604 ** by 6 spaces. But the left-most 6 spaces have been removed to improve the
8605 ** readability. From this point on down, the normal indentation rules are
8607 *****************************************************************************/
8612 u64 endTime
= sqlite3NProfileCnt
? sqlite3NProfileCnt
: sqlite3Hwtime();
8613 if( endTime
>start
) pOrigOp
->cycles
+= endTime
- start
;
8618 /* The following code adds nothing to the actual functionality
8619 ** of the program. It is only here for testing and debugging.
8620 ** On the other hand, it does burn CPU cycles every time through
8621 ** the evaluator loop. So we can leave it out when NDEBUG is defined.
8624 assert( pOp
>=&aOp
[-1] && pOp
<&aOp
[p
->nOp
-1] );
8627 if( db
->flags
& SQLITE_VdbeTrace
){
8628 u8 opProperty
= sqlite3OpcodeProperty
[pOrigOp
->opcode
];
8629 if( rc
!=0 ) printf("rc=%d\n",rc
);
8630 if( opProperty
& (OPFLG_OUT2
) ){
8631 registerTrace(pOrigOp
->p2
, &aMem
[pOrigOp
->p2
]);
8633 if( opProperty
& OPFLG_OUT3
){
8634 registerTrace(pOrigOp
->p3
, &aMem
[pOrigOp
->p3
]);
8636 if( opProperty
==0xff ){
8637 /* Never happens. This code exists to avoid a harmless linkage
8638 ** warning aboud sqlite3VdbeRegisterDump() being defined but not
8640 sqlite3VdbeRegisterDump(p
);
8643 #endif /* SQLITE_DEBUG */
8645 } /* The end of the for(;;) loop the loops through opcodes */
8647 /* If we reach this point, it means that execution is finished with
8648 ** an error of some kind.
8651 if( db
->mallocFailed
){
8652 rc
= SQLITE_NOMEM_BKPT
;
8653 }else if( rc
==SQLITE_IOERR_CORRUPTFS
){
8654 rc
= SQLITE_CORRUPT_BKPT
;
8658 if( db
->flags
& SQLITE_VdbeTrace
){
8659 const char *zTrace
= p
->zSql
;
8661 if( aOp
[0].opcode
==OP_Trace
){
8662 zTrace
= aOp
[0].p4
.z
;
8664 if( zTrace
==0 ) zTrace
= "???";
8666 printf("ABORT-due-to-error (rc=%d): %s\n", rc
, zTrace
);
8669 if( p
->zErrMsg
==0 && rc
!=SQLITE_IOERR_NOMEM
){
8670 sqlite3VdbeError(p
, "%s", sqlite3ErrStr(rc
));
8673 sqlite3SystemError(db
, rc
);
8674 testcase( sqlite3GlobalConfig
.xLog
!=0 );
8675 sqlite3_log(rc
, "statement aborts at %d: [%s] %s",
8676 (int)(pOp
- aOp
), p
->zSql
, p
->zErrMsg
);
8677 if( p
->eVdbeState
==VDBE_RUN_STATE
) sqlite3VdbeHalt(p
);
8678 if( rc
==SQLITE_IOERR_NOMEM
) sqlite3OomFault(db
);
8679 if( rc
==SQLITE_CORRUPT
&& db
->autoCommit
==0 ){
8680 db
->flags
|= SQLITE_CorruptRdOnly
;
8683 if( resetSchemaOnFault
>0 ){
8684 sqlite3ResetOneSchema(db
, resetSchemaOnFault
-1);
8687 /* This is the only way out of this procedure. We have to
8688 ** release the mutexes on btrees that were acquired at the
8691 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
8692 while( nVmStep
>=nProgressLimit
&& db
->xProgress
!=0 ){
8693 nProgressLimit
+= db
->nProgressOps
;
8694 if( db
->xProgress(db
->pProgressArg
) ){
8695 nProgressLimit
= LARGEST_UINT64
;
8696 rc
= SQLITE_INTERRUPT
;
8697 goto abort_due_to_error
;
8701 p
->aCounter
[SQLITE_STMTSTATUS_VM_STEP
] += (int)nVmStep
;
8702 sqlite3VdbeLeave(p
);
8703 assert( rc
!=SQLITE_OK
|| nExtraDelete
==0
8704 || sqlite3_strlike("DELETE%",p
->zSql
,0)!=0
8708 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
8712 sqlite3VdbeError(p
, "string or blob too big");
8714 goto abort_due_to_error
;
8716 /* Jump to here if a malloc() fails.
8719 sqlite3OomFault(db
);
8720 sqlite3VdbeError(p
, "out of memory");
8721 rc
= SQLITE_NOMEM_BKPT
;
8722 goto abort_due_to_error
;
8724 /* Jump to here if the sqlite3_interrupt() API sets the interrupt
8727 abort_due_to_interrupt
:
8728 assert( AtomicLoad(&db
->u1
.isInterrupted
) );
8729 rc
= SQLITE_INTERRUPT
;
8730 goto abort_due_to_error
;