4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 ******************************************************************************
13 ** Low level access to the FTS index stored in the database file. The
14 ** routines in this file file implement all read and write access to the
15 ** %_data table. Other parts of the system access this functionality via
16 ** the interface defined in fts5Int.h.
25 ** The %_data table contains all the FTS indexes for an FTS5 virtual table.
26 ** As well as the main term index, there may be up to 31 prefix indexes.
27 ** The format is similar to FTS3/4, except that:
29 ** * all segment b-tree leaf data is stored in fixed size page records
30 ** (e.g. 1000 bytes). A single doclist may span multiple pages. Care is
31 ** taken to ensure it is possible to iterate in either direction through
32 ** the entries in a doclist, or to seek to a specific entry within a
33 ** doclist, without loading it into memory.
35 ** * large doclists that span many pages have associated "doclist index"
36 ** records that contain a copy of the first rowid on each page spanned by
37 ** the doclist. This is used to speed up seek operations, and merges of
38 ** large doclists with very small doclists.
40 ** * extra fields in the "structure record" record the state of ongoing
41 ** incremental merge operations.
46 #define FTS5_OPT_WORK_UNIT 1000 /* Number of leaf pages per optimize step */
47 #define FTS5_WORK_UNIT 64 /* Number of leaf pages in unit of work */
49 #define FTS5_MIN_DLIDX_SIZE 4 /* Add dlidx if this many empty pages */
51 #define FTS5_MAIN_PREFIX '0'
53 #if FTS5_MAX_PREFIX_INDEXES > 31
54 # error "FTS5_MAX_PREFIX_INDEXES is too large"
60 ** The %_data table managed by this module,
62 ** CREATE TABLE %_data(id INTEGER PRIMARY KEY, block BLOB);
64 ** , contains the following 5 types of records. See the comments surrounding
65 ** the FTS5_*_ROWID macros below for a description of how %_data rowids are
66 ** assigned to each fo them.
68 ** 1. Structure Records:
70 ** The set of segments that make up an index - the index structure - are
71 ** recorded in a single record within the %_data table. The record consists
72 ** of a single 32-bit configuration cookie value followed by a list of
73 ** SQLite varints. If the FTS table features more than one index (because
74 ** there are one or more prefix indexes), it is guaranteed that all share
75 ** the same cookie value.
77 ** Immediately following the configuration cookie, the record begins with
80 ** + number of levels,
81 ** + total number of segments on all levels,
82 ** + value of write counter.
84 ** Then, for each level from 0 to nMax:
86 ** + number of input segments in ongoing merge.
87 ** + total number of segments in level.
88 ** + for each segment from oldest to newest:
89 ** + segment id (always > 0)
90 ** + first leaf page number (often 1, always greater than 0)
91 ** + final leaf page number
93 ** 2. The Averages Record:
95 ** A single record within the %_data table. The data is a list of varints.
96 ** The first value is the number of rows in the index. Then, for each column
97 ** from left to right, the total number of tokens in the column for all
100 ** 3. Segment leaves:
102 ** TERM/DOCLIST FORMAT:
104 ** Most of each segment leaf is taken up by term/doclist data. The
105 ** general format of term/doclist, starting with the first term
106 ** on the leaf page, is:
108 ** varint : size of first term
109 ** blob: first term data
110 ** doclist: first doclist
112 ** varint: number of bytes in common with previous term
113 ** varint: number of bytes of new term data (nNew)
114 ** blob: nNew bytes of new term data
115 ** doclist: next doclist
120 ** varint: first rowid
121 ** poslist: first poslist
123 ** varint: rowid delta (always > 0)
124 ** poslist: next poslist
129 ** varint: size of poslist in bytes multiplied by 2, not including
130 ** this field. Plus 1 if this entry carries the "delete" flag.
131 ** collist: collist for column 0
134 ** varint: column number (I)
135 ** collist: collist for column I
140 ** varint: first offset + 2
142 ** varint: offset delta + 2
147 ** Each leaf page begins with a 4-byte header containing 2 16-bit
148 ** unsigned integer fields in big-endian format. They are:
150 ** * The byte offset of the first rowid on the page, if it exists
151 ** and occurs before the first term (otherwise 0).
153 ** * The byte offset of the start of the page footer. If the page
154 ** footer is 0 bytes in size, then this field is the same as the
155 ** size of the leaf page in bytes.
157 ** The page footer consists of a single varint for each term located
158 ** on the page. Each varint is the byte offset of the current term
159 ** within the page, delta-compressed against the previous value. In
160 ** other words, the first varint in the footer is the byte offset of
161 ** the first term, the second is the byte offset of the second less that
162 ** of the first, and so on.
164 ** The term/doclist format described above is accurate if the entire
165 ** term/doclist data fits on a single leaf page. If this is not the case,
166 ** the format is changed in two ways:
168 ** + if the first rowid on a page occurs before the first term, it
169 ** is stored as a literal value:
171 ** varint: first rowid
173 ** + the first term on each page is stored in the same way as the
174 ** very first term of the segment:
176 ** varint : size of first term
177 ** blob: first term data
179 ** 5. Segment doclist indexes:
181 ** Doclist indexes are themselves b-trees, however they usually consist of
182 ** a single leaf record only. The format of each doclist index leaf page
185 ** * Flags byte. Bits are:
186 ** 0x01: Clear if leaf is also the root page, otherwise set.
188 ** * Page number of fts index leaf page. As a varint.
190 ** * First rowid on page indicated by previous field. As a varint.
192 ** * A list of varints, one for each subsequent termless page. A
193 ** positive delta if the termless page contains at least one rowid,
194 ** or an 0x00 byte otherwise.
196 ** Internal doclist index nodes are:
198 ** * Flags byte. Bits are:
199 ** 0x01: Clear for root page, otherwise set.
201 ** * Page number of first child page. As a varint.
203 ** * Copy of first rowid on page indicated by previous field. As a varint.
205 ** * A list of delta-encoded varints - the first rowid on each subsequent
211 ** Rowids for the averages and structure records in the %_data table.
213 #define FTS5_AVERAGES_ROWID 1 /* Rowid used for the averages record */
214 #define FTS5_STRUCTURE_ROWID 10 /* The structure record */
217 ** Macros determining the rowids used by segment leaves and dlidx leaves
218 ** and nodes. All nodes and leaves are stored in the %_data table with large
221 ** Each segment has a unique non-zero 16-bit id.
223 ** The rowid for each segment leaf is found by passing the segment id and
224 ** the leaf page number to the FTS5_SEGMENT_ROWID macro. Leaves are numbered
225 ** sequentially starting from 1.
227 #define FTS5_DATA_ID_B 16 /* Max seg id number 65535 */
228 #define FTS5_DATA_DLI_B 1 /* Doclist-index flag (1 bit) */
229 #define FTS5_DATA_HEIGHT_B 5 /* Max dlidx tree height of 32 */
230 #define FTS5_DATA_PAGE_B 31 /* Max page number of 2147483648 */
232 #define fts5_dri(segid, dlidx, height, pgno) ( \
233 ((i64)(segid) << (FTS5_DATA_PAGE_B+FTS5_DATA_HEIGHT_B+FTS5_DATA_DLI_B)) + \
234 ((i64)(dlidx) << (FTS5_DATA_PAGE_B + FTS5_DATA_HEIGHT_B)) + \
235 ((i64)(height) << (FTS5_DATA_PAGE_B)) + \
239 #define FTS5_SEGMENT_ROWID(segid, pgno) fts5_dri(segid, 0, 0, pgno)
240 #define FTS5_DLIDX_ROWID(segid, height, pgno) fts5_dri(segid, 1, height, pgno)
243 int sqlite3Fts5Corrupt() { return SQLITE_CORRUPT_VTAB
; }
248 ** Each time a blob is read from the %_data table, it is padded with this
249 ** many zero bytes. This makes it easier to decode the various record formats
250 ** without overreading if the records are corrupt.
252 #define FTS5_DATA_ZERO_PADDING 8
253 #define FTS5_DATA_PADDING 20
255 typedef struct Fts5Data Fts5Data
;
256 typedef struct Fts5DlidxIter Fts5DlidxIter
;
257 typedef struct Fts5DlidxLvl Fts5DlidxLvl
;
258 typedef struct Fts5DlidxWriter Fts5DlidxWriter
;
259 typedef struct Fts5Iter Fts5Iter
;
260 typedef struct Fts5PageWriter Fts5PageWriter
;
261 typedef struct Fts5SegIter Fts5SegIter
;
262 typedef struct Fts5DoclistIter Fts5DoclistIter
;
263 typedef struct Fts5SegWriter Fts5SegWriter
;
264 typedef struct Fts5Structure Fts5Structure
;
265 typedef struct Fts5StructureLevel Fts5StructureLevel
;
266 typedef struct Fts5StructureSegment Fts5StructureSegment
;
269 u8
*p
; /* Pointer to buffer containing record */
270 int nn
; /* Size of record in bytes */
271 int szLeaf
; /* Size of leaf without page-index */
275 ** One object per %_data table.
278 Fts5Config
*pConfig
; /* Virtual table configuration */
279 char *zDataTbl
; /* Name of %_data table */
280 int nWorkUnit
; /* Leaf pages in a "unit" of work */
283 ** Variables related to the accumulation of tokens and doclists within the
284 ** in-memory hash tables before they are flushed to disk.
286 Fts5Hash
*pHash
; /* Hash table for in-memory data */
287 int nPendingData
; /* Current bytes of pending data */
288 i64 iWriteRowid
; /* Rowid for current doc being written */
289 int bDelete
; /* Current write is a delete */
292 int rc
; /* Current error code */
294 /* State used by the fts5DataXXX() functions. */
295 sqlite3_blob
*pReader
; /* RO incr-blob open on %_data table */
296 sqlite3_stmt
*pWriter
; /* "INSERT ... %_data VALUES(?,?)" */
297 sqlite3_stmt
*pDeleter
; /* "DELETE FROM %_data ... id>=? AND id<=?" */
298 sqlite3_stmt
*pIdxWriter
; /* "INSERT ... %_idx VALUES(?,?,?,?)" */
299 sqlite3_stmt
*pIdxDeleter
; /* "DELETE FROM %_idx WHERE segid=?" */
300 sqlite3_stmt
*pIdxSelect
;
301 int nRead
; /* Total number of blocks read */
303 sqlite3_stmt
*pDataVersion
;
304 i64 iStructVersion
; /* data_version when pStruct read */
305 Fts5Structure
*pStruct
; /* Current db structure (or NULL) */
308 struct Fts5DoclistIter
{
309 u8
*aEof
; /* Pointer to 1 byte past end of doclist */
311 /* Output variables. aPoslist==0 at EOF */
319 ** The contents of the "structure" record for each index are represented
320 ** using an Fts5Structure record in memory. Which uses instances of the
321 ** other Fts5StructureXXX types as components.
323 struct Fts5StructureSegment
{
324 int iSegid
; /* Segment id */
325 int pgnoFirst
; /* First leaf page number in segment */
326 int pgnoLast
; /* Last leaf page number in segment */
328 struct Fts5StructureLevel
{
329 int nMerge
; /* Number of segments in incr-merge */
330 int nSeg
; /* Total number of segments on level */
331 Fts5StructureSegment
*aSeg
; /* Array of segments. aSeg[0] is oldest. */
333 struct Fts5Structure
{
334 int nRef
; /* Object reference count */
335 u64 nWriteCounter
; /* Total leaves written to level 0 */
336 int nSegment
; /* Total segments in this structure */
337 int nLevel
; /* Number of levels in this index */
338 Fts5StructureLevel aLevel
[1]; /* Array of nLevel level objects */
342 ** An object of type Fts5SegWriter is used to write to segments.
344 struct Fts5PageWriter
{
345 int pgno
; /* Page number for this page */
346 int iPrevPgidx
; /* Previous value written into pgidx */
347 Fts5Buffer buf
; /* Buffer containing leaf data */
348 Fts5Buffer pgidx
; /* Buffer containing page-index */
349 Fts5Buffer term
; /* Buffer containing previous term on page */
351 struct Fts5DlidxWriter
{
352 int pgno
; /* Page number for this page */
353 int bPrevValid
; /* True if iPrev is valid */
354 i64 iPrev
; /* Previous rowid value written to page */
355 Fts5Buffer buf
; /* Buffer containing page data */
357 struct Fts5SegWriter
{
358 int iSegid
; /* Segid to write to */
359 Fts5PageWriter writer
; /* PageWriter object */
360 i64 iPrevRowid
; /* Previous rowid written to current leaf */
361 u8 bFirstRowidInDoclist
; /* True if next rowid is first in doclist */
362 u8 bFirstRowidInPage
; /* True if next rowid is first in page */
363 /* TODO1: Can use (writer.pgidx.n==0) instead of bFirstTermInPage */
364 u8 bFirstTermInPage
; /* True if next term will be first in leaf */
365 int nLeafWritten
; /* Number of leaf pages written */
366 int nEmpty
; /* Number of contiguous term-less nodes */
368 int nDlidx
; /* Allocated size of aDlidx[] array */
369 Fts5DlidxWriter
*aDlidx
; /* Array of Fts5DlidxWriter objects */
371 /* Values to insert into the %_idx table */
372 Fts5Buffer btterm
; /* Next term to insert into %_idx table */
373 int iBtPage
; /* Page number corresponding to btterm */
376 typedef struct Fts5CResult Fts5CResult
;
378 u16 iFirst
; /* aSeg[] index of firstest iterator */
379 u8 bTermEq
; /* True if the terms are equal */
383 ** Object for iterating through a single segment, visiting each term/rowid
384 ** pair in the segment.
387 ** The segment to iterate through.
390 ** Current leaf page number within segment.
393 ** Byte offset within the current leaf that is the first byte of the
394 ** position list data (one byte passed the position-list size field).
395 ** rowid field of the current entry. Usually this is the size field of the
396 ** position list data. The exception is if the rowid for the current entry
397 ** is the last thing on the leaf page.
400 ** Buffer containing current leaf page data. Set to NULL at EOF.
402 ** iTermLeafPgno, iTermLeafOffset:
403 ** Leaf page number containing the last term read from the segment. And
404 ** the offset immediately following the term data.
407 ** Mask of FTS5_SEGITER_XXX values. Interpreted as follows:
409 ** FTS5_SEGITER_ONETERM:
410 ** If set, set the iterator to point to EOF after the current doclist
411 ** has been exhausted. Do not proceed to the next term in the segment.
413 ** FTS5_SEGITER_REVERSE:
414 ** This flag is only ever set if FTS5_SEGITER_ONETERM is also set. If
415 ** it is set, iterate through rowid in descending order instead of the
416 ** default ascending order.
418 ** iRowidOffset/nRowidOffset/aRowidOffset:
419 ** These are used if the FTS5_SEGITER_REVERSE flag is set.
421 ** For each rowid on the page corresponding to the current term, the
422 ** corresponding aRowidOffset[] entry is set to the byte offset of the
423 ** start of the "position-list-size" field within the page.
426 ** Index of current term on iTermLeafPgno.
429 Fts5StructureSegment
*pSeg
; /* Segment to iterate through */
430 int flags
; /* Mask of configuration flags */
431 int iLeafPgno
; /* Current leaf page number */
432 Fts5Data
*pLeaf
; /* Current leaf data */
433 Fts5Data
*pNextLeaf
; /* Leaf page (iLeafPgno+1) */
434 i64 iLeafOffset
; /* Byte offset within current leaf */
437 void (*xNext
)(Fts5Index
*, Fts5SegIter
*, int*);
439 /* The page and offset from which the current term was read. The offset
440 ** is the offset of the first rowid in the current doclist. */
444 int iPgidxOff
; /* Next offset in pgidx */
447 /* The following are only used if the FTS5_SEGITER_REVERSE flag is set. */
448 int iRowidOffset
; /* Current entry in aRowidOffset[] */
449 int nRowidOffset
; /* Allocated size of aRowidOffset[] array */
450 int *aRowidOffset
; /* Array of offset to rowid fields */
452 Fts5DlidxIter
*pDlidx
; /* If there is a doclist-index */
454 /* Variables populated based on current entry. */
455 Fts5Buffer term
; /* Current term */
456 i64 iRowid
; /* Current rowid */
457 int nPos
; /* Number of bytes in current position list */
458 u8 bDel
; /* True if the delete flag is set */
462 ** Argument is a pointer to an Fts5Data structure that contains a
465 #define ASSERT_SZLEAF_OK(x) assert( \
466 (x)->szLeaf==(x)->nn || (x)->szLeaf==fts5GetU16(&(x)->p[2]) \
469 #define FTS5_SEGITER_ONETERM 0x01
470 #define FTS5_SEGITER_REVERSE 0x02
473 ** Argument is a pointer to an Fts5Data structure that contains a leaf
474 ** page. This macro evaluates to true if the leaf contains no terms, or
475 ** false if it contains at least one term.
477 #define fts5LeafIsTermless(x) ((x)->szLeaf >= (x)->nn)
479 #define fts5LeafTermOff(x, i) (fts5GetU16(&(x)->p[(x)->szLeaf + (i)*2]))
481 #define fts5LeafFirstRowidOff(x) (fts5GetU16((x)->p))
484 ** Object for iterating through the merged results of one or more segments,
485 ** visiting each term/rowid pair in the merged data.
487 ** nSeg is always a power of two greater than or equal to the number of
488 ** segments that this object is merging data from. Both the aSeg[] and
489 ** aFirst[] arrays are sized at nSeg entries. The aSeg[] array is padded
490 ** with zeroed objects - these are handled as if they were iterators opened
491 ** on empty segments.
493 ** The results of comparing segments aSeg[N] and aSeg[N+1], where N is an
494 ** even number, is stored in aFirst[(nSeg+N)/2]. The "result" of the
495 ** comparison in this context is the index of the iterator that currently
496 ** points to the smaller term/rowid combination. Iterators at EOF are
497 ** considered to be greater than all other iterators.
499 ** aFirst[1] contains the index in aSeg[] of the iterator that points to
500 ** the smallest key overall. aFirst[0] is unused.
503 ** Used by sqlite3Fts5IterPoslist() when the poslist needs to be buffered.
504 ** There is no way to tell if this is populated or not.
507 Fts5IndexIter base
; /* Base class containing output vars */
509 Fts5Index
*pIndex
; /* Index that owns this iterator */
510 Fts5Buffer poslist
; /* Buffer containing current poslist */
511 Fts5Colset
*pColset
; /* Restrict matches to these columns */
513 /* Invoked to set output variables. */
514 void (*xSetOutputs
)(Fts5Iter
*, Fts5SegIter
*);
516 int nSeg
; /* Size of aSeg[] array */
517 int bRev
; /* True to iterate in reverse order */
518 u8 bSkipEmpty
; /* True to skip deleted entries */
520 i64 iSwitchRowid
; /* Firstest rowid of other than aFirst[1] */
521 Fts5CResult
*aFirst
; /* Current merge state (see above) */
522 Fts5SegIter aSeg
[1]; /* Array of segment iterators */
527 ** An instance of the following type is used to iterate through the contents
528 ** of a doclist-index record.
531 ** Record containing the doclist-index data.
534 ** Set to true once iterator has reached EOF.
537 ** Set to the current offset within record pData.
539 struct Fts5DlidxLvl
{
540 Fts5Data
*pData
; /* Data for current page of this level */
541 int iOff
; /* Current offset into pData */
542 int bEof
; /* At EOF already */
543 int iFirstOff
; /* Used by reverse iterators */
545 /* Output variables */
546 int iLeafPgno
; /* Page number of current leaf page */
547 i64 iRowid
; /* First rowid on leaf iLeafPgno */
549 struct Fts5DlidxIter
{
552 Fts5DlidxLvl aLvl
[1];
555 static void fts5PutU16(u8
*aOut
, u16 iVal
){
557 aOut
[1] = (iVal
&0xFF);
560 static u16
fts5GetU16(const u8
*aIn
){
561 return ((u16
)aIn
[0] << 8) + aIn
[1];
565 ** Allocate and return a buffer at least nByte bytes in size.
567 ** If an OOM error is encountered, return NULL and set the error code in
568 ** the Fts5Index handle passed as the first argument.
570 static void *fts5IdxMalloc(Fts5Index
*p
, sqlite3_int64 nByte
){
571 return sqlite3Fts5MallocZero(&p
->rc
, nByte
);
575 ** Compare the contents of the pLeft buffer with the pRight/nRight blob.
577 ** Return -ve if pLeft is smaller than pRight, 0 if they are equal or
578 ** +ve if pRight is smaller than pLeft. In other words:
580 ** res = *pLeft - *pRight
583 static int fts5BufferCompareBlob(
584 Fts5Buffer
*pLeft
, /* Left hand side of comparison */
585 const u8
*pRight
, int nRight
/* Right hand side of comparison */
587 int nCmp
= MIN(pLeft
->n
, nRight
);
588 int res
= memcmp(pLeft
->p
, pRight
, nCmp
);
589 return (res
==0 ? (pLeft
->n
- nRight
) : res
);
594 ** Compare the contents of the two buffers using memcmp(). If one buffer
595 ** is a prefix of the other, it is considered the lesser.
597 ** Return -ve if pLeft is smaller than pRight, 0 if they are equal or
598 ** +ve if pRight is smaller than pLeft. In other words:
600 ** res = *pLeft - *pRight
602 static int fts5BufferCompare(Fts5Buffer
*pLeft
, Fts5Buffer
*pRight
){
604 nCmp
= MIN(pLeft
->n
, pRight
->n
);
605 assert( nCmp
<=0 || pLeft
->p
!=0 );
606 assert( nCmp
<=0 || pRight
->p
!=0 );
607 res
= fts5Memcmp(pLeft
->p
, pRight
->p
, nCmp
);
608 return (res
==0 ? (pLeft
->n
- pRight
->n
) : res
);
611 static int fts5LeafFirstTermOff(Fts5Data
*pLeaf
){
613 fts5GetVarint32(&pLeaf
->p
[pLeaf
->szLeaf
], ret
);
618 ** Close the read-only blob handle, if it is open.
620 void sqlite3Fts5IndexCloseReader(Fts5Index
*p
){
622 sqlite3_blob
*pReader
= p
->pReader
;
624 sqlite3_blob_close(pReader
);
629 ** Retrieve a record from the %_data table.
631 ** If an error occurs, NULL is returned and an error left in the
634 static Fts5Data
*fts5DataRead(Fts5Index
*p
, i64 iRowid
){
636 if( p
->rc
==SQLITE_OK
){
640 /* This call may return SQLITE_ABORT if there has been a savepoint
641 ** rollback since it was last used. In this case a new blob handle
643 sqlite3_blob
*pBlob
= p
->pReader
;
645 rc
= sqlite3_blob_reopen(pBlob
, iRowid
);
646 assert( p
->pReader
==0 );
649 sqlite3Fts5IndexCloseReader(p
);
651 if( rc
==SQLITE_ABORT
) rc
= SQLITE_OK
;
654 /* If the blob handle is not open at this point, open it and seek
655 ** to the requested entry. */
656 if( p
->pReader
==0 && rc
==SQLITE_OK
){
657 Fts5Config
*pConfig
= p
->pConfig
;
658 rc
= sqlite3_blob_open(pConfig
->db
,
659 pConfig
->zDb
, p
->zDataTbl
, "block", iRowid
, 0, &p
->pReader
663 /* If either of the sqlite3_blob_open() or sqlite3_blob_reopen() calls
664 ** above returned SQLITE_ERROR, return SQLITE_CORRUPT_VTAB instead.
665 ** All the reasons those functions might return SQLITE_ERROR - missing
666 ** table, missing row, non-blob/text in block column - indicate
667 ** backing store corruption. */
668 if( rc
==SQLITE_ERROR
) rc
= FTS5_CORRUPT
;
671 u8
*aOut
= 0; /* Read blob data into this buffer */
672 int nByte
= sqlite3_blob_bytes(p
->pReader
);
673 sqlite3_int64 nAlloc
= sizeof(Fts5Data
) + nByte
+ FTS5_DATA_PADDING
;
674 pRet
= (Fts5Data
*)sqlite3_malloc64(nAlloc
);
677 aOut
= pRet
->p
= (u8
*)&pRet
[1];
683 rc
= sqlite3_blob_read(p
->pReader
, aOut
, nByte
, 0);
689 /* TODO1: Fix this */
690 pRet
->p
[nByte
] = 0x00;
691 pRet
->p
[nByte
+1] = 0x00;
692 pRet
->szLeaf
= fts5GetU16(&pRet
->p
[2]);
699 assert( (pRet
==0)==(p
->rc
!=SQLITE_OK
) );
705 ** Release a reference to data record returned by an earlier call to
708 static void fts5DataRelease(Fts5Data
*pData
){
712 static Fts5Data
*fts5LeafRead(Fts5Index
*p
, i64 iRowid
){
713 Fts5Data
*pRet
= fts5DataRead(p
, iRowid
);
715 if( pRet
->nn
<4 || pRet
->szLeaf
>pRet
->nn
){
716 p
->rc
= FTS5_CORRUPT
;
717 fts5DataRelease(pRet
);
724 static int fts5IndexPrepareStmt(
726 sqlite3_stmt
**ppStmt
,
729 if( p
->rc
==SQLITE_OK
){
731 p
->rc
= sqlite3_prepare_v3(p
->pConfig
->db
, zSql
, -1,
732 SQLITE_PREPARE_PERSISTENT
|SQLITE_PREPARE_NO_VTAB
,
735 p
->rc
= SQLITE_NOMEM
;
744 ** INSERT OR REPLACE a record into the %_data table.
746 static void fts5DataWrite(Fts5Index
*p
, i64 iRowid
, const u8
*pData
, int nData
){
747 if( p
->rc
!=SQLITE_OK
) return;
750 Fts5Config
*pConfig
= p
->pConfig
;
751 fts5IndexPrepareStmt(p
, &p
->pWriter
, sqlite3_mprintf(
752 "REPLACE INTO '%q'.'%q_data'(id, block) VALUES(?,?)",
753 pConfig
->zDb
, pConfig
->zName
758 sqlite3_bind_int64(p
->pWriter
, 1, iRowid
);
759 sqlite3_bind_blob(p
->pWriter
, 2, pData
, nData
, SQLITE_STATIC
);
760 sqlite3_step(p
->pWriter
);
761 p
->rc
= sqlite3_reset(p
->pWriter
);
762 sqlite3_bind_null(p
->pWriter
, 2);
766 ** Execute the following SQL:
768 ** DELETE FROM %_data WHERE id BETWEEN $iFirst AND $iLast
770 static void fts5DataDelete(Fts5Index
*p
, i64 iFirst
, i64 iLast
){
771 if( p
->rc
!=SQLITE_OK
) return;
773 if( p
->pDeleter
==0 ){
774 Fts5Config
*pConfig
= p
->pConfig
;
775 char *zSql
= sqlite3_mprintf(
776 "DELETE FROM '%q'.'%q_data' WHERE id>=? AND id<=?",
777 pConfig
->zDb
, pConfig
->zName
779 if( fts5IndexPrepareStmt(p
, &p
->pDeleter
, zSql
) ) return;
782 sqlite3_bind_int64(p
->pDeleter
, 1, iFirst
);
783 sqlite3_bind_int64(p
->pDeleter
, 2, iLast
);
784 sqlite3_step(p
->pDeleter
);
785 p
->rc
= sqlite3_reset(p
->pDeleter
);
789 ** Remove all records associated with segment iSegid.
791 static void fts5DataRemoveSegment(Fts5Index
*p
, int iSegid
){
792 i64 iFirst
= FTS5_SEGMENT_ROWID(iSegid
, 0);
793 i64 iLast
= FTS5_SEGMENT_ROWID(iSegid
+1, 0)-1;
794 fts5DataDelete(p
, iFirst
, iLast
);
795 if( p
->pIdxDeleter
==0 ){
796 Fts5Config
*pConfig
= p
->pConfig
;
797 fts5IndexPrepareStmt(p
, &p
->pIdxDeleter
, sqlite3_mprintf(
798 "DELETE FROM '%q'.'%q_idx' WHERE segid=?",
799 pConfig
->zDb
, pConfig
->zName
802 if( p
->rc
==SQLITE_OK
){
803 sqlite3_bind_int(p
->pIdxDeleter
, 1, iSegid
);
804 sqlite3_step(p
->pIdxDeleter
);
805 p
->rc
= sqlite3_reset(p
->pIdxDeleter
);
810 ** Release a reference to an Fts5Structure object returned by an earlier
811 ** call to fts5StructureRead() or fts5StructureDecode().
813 static void fts5StructureRelease(Fts5Structure
*pStruct
){
814 if( pStruct
&& 0>=(--pStruct
->nRef
) ){
816 assert( pStruct
->nRef
==0 );
817 for(i
=0; i
<pStruct
->nLevel
; i
++){
818 sqlite3_free(pStruct
->aLevel
[i
].aSeg
);
820 sqlite3_free(pStruct
);
824 static void fts5StructureRef(Fts5Structure
*pStruct
){
828 void *sqlite3Fts5StructureRef(Fts5Index
*p
){
829 fts5StructureRef(p
->pStruct
);
830 return (void*)p
->pStruct
;
832 void sqlite3Fts5StructureRelease(void *p
){
834 fts5StructureRelease((Fts5Structure
*)p
);
837 int sqlite3Fts5StructureTest(Fts5Index
*p
, void *pStruct
){
838 if( p
->pStruct
!=(Fts5Structure
*)pStruct
){
845 ** Ensure that structure object (*pp) is writable.
847 ** This function is a no-op if (*pRc) is not SQLITE_OK when it is called. If
848 ** an error occurs, (*pRc) is set to an SQLite error code before returning.
850 static void fts5StructureMakeWritable(int *pRc
, Fts5Structure
**pp
){
851 Fts5Structure
*p
= *pp
;
852 if( *pRc
==SQLITE_OK
&& p
->nRef
>1 ){
853 i64 nByte
= sizeof(Fts5Structure
)+(p
->nLevel
-1)*sizeof(Fts5StructureLevel
);
855 pNew
= (Fts5Structure
*)sqlite3Fts5MallocZero(pRc
, nByte
);
858 memcpy(pNew
, p
, nByte
);
859 for(i
=0; i
<p
->nLevel
; i
++) pNew
->aLevel
[i
].aSeg
= 0;
860 for(i
=0; i
<p
->nLevel
; i
++){
861 Fts5StructureLevel
*pLvl
= &pNew
->aLevel
[i
];
862 nByte
= sizeof(Fts5StructureSegment
) * pNew
->aLevel
[i
].nSeg
;
863 pLvl
->aSeg
= (Fts5StructureSegment
*)sqlite3Fts5MallocZero(pRc
, nByte
);
865 for(i
=0; i
<p
->nLevel
; i
++){
866 sqlite3_free(pNew
->aLevel
[i
].aSeg
);
871 memcpy(pLvl
->aSeg
, p
->aLevel
[i
].aSeg
, nByte
);
881 ** Deserialize and return the structure record currently stored in serialized
882 ** form within buffer pData/nData.
884 ** The Fts5Structure.aLevel[] and each Fts5StructureLevel.aSeg[] array
885 ** are over-allocated by one slot. This allows the structure contents
886 ** to be more easily edited.
888 ** If an error occurs, *ppOut is set to NULL and an SQLite error code
889 ** returned. Otherwise, *ppOut is set to point to the new object and
890 ** SQLITE_OK returned.
892 static int fts5StructureDecode(
893 const u8
*pData
, /* Buffer containing serialized structure */
894 int nData
, /* Size of buffer pData in bytes */
895 int *piCookie
, /* Configuration cookie value */
896 Fts5Structure
**ppOut
/* OUT: Deserialized object */
903 sqlite3_int64 nByte
; /* Bytes of space to allocate at pRet */
904 Fts5Structure
*pRet
= 0; /* Structure object to return */
906 /* Grab the cookie value */
907 if( piCookie
) *piCookie
= sqlite3Fts5Get32(pData
);
910 /* Read the total number of levels and segments from the start of the
911 ** structure record. */
912 i
+= fts5GetVarint32(&pData
[i
], nLevel
);
913 i
+= fts5GetVarint32(&pData
[i
], nSegment
);
914 if( nLevel
>FTS5_MAX_SEGMENT
|| nLevel
<0
915 || nSegment
>FTS5_MAX_SEGMENT
|| nSegment
<0
920 sizeof(Fts5Structure
) + /* Main structure */
921 sizeof(Fts5StructureLevel
) * (nLevel
-1) /* aLevel[] array */
923 pRet
= (Fts5Structure
*)sqlite3Fts5MallocZero(&rc
, nByte
);
927 pRet
->nLevel
= nLevel
;
928 pRet
->nSegment
= nSegment
;
929 i
+= sqlite3Fts5GetVarint(&pData
[i
], &pRet
->nWriteCounter
);
931 for(iLvl
=0; rc
==SQLITE_OK
&& iLvl
<nLevel
; iLvl
++){
932 Fts5StructureLevel
*pLvl
= &pRet
->aLevel
[iLvl
];
939 i
+= fts5GetVarint32(&pData
[i
], pLvl
->nMerge
);
940 i
+= fts5GetVarint32(&pData
[i
], nTotal
);
941 if( nTotal
<pLvl
->nMerge
) rc
= FTS5_CORRUPT
;
942 pLvl
->aSeg
= (Fts5StructureSegment
*)sqlite3Fts5MallocZero(&rc
,
943 nTotal
* sizeof(Fts5StructureSegment
)
950 for(iSeg
=0; iSeg
<nTotal
; iSeg
++){
951 Fts5StructureSegment
*pSeg
= &pLvl
->aSeg
[iSeg
];
956 i
+= fts5GetVarint32(&pData
[i
], pSeg
->iSegid
);
957 i
+= fts5GetVarint32(&pData
[i
], pSeg
->pgnoFirst
);
958 i
+= fts5GetVarint32(&pData
[i
], pSeg
->pgnoLast
);
959 if( pSeg
->pgnoLast
<pSeg
->pgnoFirst
){
964 if( iLvl
>0 && pLvl
[-1].nMerge
&& nTotal
==0 ) rc
= FTS5_CORRUPT
;
965 if( iLvl
==nLevel
-1 && pLvl
->nMerge
) rc
= FTS5_CORRUPT
;
968 if( nSegment
!=0 && rc
==SQLITE_OK
) rc
= FTS5_CORRUPT
;
971 fts5StructureRelease(pRet
);
981 ** Add a level to the Fts5Structure.aLevel[] array of structure object
984 static void fts5StructureAddLevel(int *pRc
, Fts5Structure
**ppStruct
){
985 fts5StructureMakeWritable(pRc
, ppStruct
);
986 if( *pRc
==SQLITE_OK
){
987 Fts5Structure
*pStruct
= *ppStruct
;
988 int nLevel
= pStruct
->nLevel
;
989 sqlite3_int64 nByte
= (
990 sizeof(Fts5Structure
) + /* Main structure */
991 sizeof(Fts5StructureLevel
) * (nLevel
+1) /* aLevel[] array */
994 pStruct
= sqlite3_realloc64(pStruct
, nByte
);
996 memset(&pStruct
->aLevel
[nLevel
], 0, sizeof(Fts5StructureLevel
));
1000 *pRc
= SQLITE_NOMEM
;
1006 ** Extend level iLvl so that there is room for at least nExtra more
1009 static void fts5StructureExtendLevel(
1011 Fts5Structure
*pStruct
,
1016 if( *pRc
==SQLITE_OK
){
1017 Fts5StructureLevel
*pLvl
= &pStruct
->aLevel
[iLvl
];
1018 Fts5StructureSegment
*aNew
;
1019 sqlite3_int64 nByte
;
1021 nByte
= (pLvl
->nSeg
+ nExtra
) * sizeof(Fts5StructureSegment
);
1022 aNew
= sqlite3_realloc64(pLvl
->aSeg
, nByte
);
1025 memset(&aNew
[pLvl
->nSeg
], 0, sizeof(Fts5StructureSegment
) * nExtra
);
1027 int nMove
= pLvl
->nSeg
* sizeof(Fts5StructureSegment
);
1028 memmove(&aNew
[nExtra
], aNew
, nMove
);
1029 memset(aNew
, 0, sizeof(Fts5StructureSegment
) * nExtra
);
1033 *pRc
= SQLITE_NOMEM
;
1038 static Fts5Structure
*fts5StructureReadUncached(Fts5Index
*p
){
1039 Fts5Structure
*pRet
= 0;
1040 Fts5Config
*pConfig
= p
->pConfig
;
1041 int iCookie
; /* Configuration cookie */
1044 pData
= fts5DataRead(p
, FTS5_STRUCTURE_ROWID
);
1045 if( p
->rc
==SQLITE_OK
){
1046 /* TODO: Do we need this if the leaf-index is appended? Probably... */
1047 memset(&pData
->p
[pData
->nn
], 0, FTS5_DATA_PADDING
);
1048 p
->rc
= fts5StructureDecode(pData
->p
, pData
->nn
, &iCookie
, &pRet
);
1049 if( p
->rc
==SQLITE_OK
&& (pConfig
->pgsz
==0 || pConfig
->iCookie
!=iCookie
) ){
1050 p
->rc
= sqlite3Fts5ConfigLoad(pConfig
, iCookie
);
1052 fts5DataRelease(pData
);
1053 if( p
->rc
!=SQLITE_OK
){
1054 fts5StructureRelease(pRet
);
1062 static i64
fts5IndexDataVersion(Fts5Index
*p
){
1065 if( p
->rc
==SQLITE_OK
){
1066 if( p
->pDataVersion
==0 ){
1067 p
->rc
= fts5IndexPrepareStmt(p
, &p
->pDataVersion
,
1068 sqlite3_mprintf("PRAGMA %Q.data_version", p
->pConfig
->zDb
)
1070 if( p
->rc
) return 0;
1073 if( SQLITE_ROW
==sqlite3_step(p
->pDataVersion
) ){
1074 iVersion
= sqlite3_column_int64(p
->pDataVersion
, 0);
1076 p
->rc
= sqlite3_reset(p
->pDataVersion
);
1083 ** Read, deserialize and return the structure record.
1085 ** The Fts5Structure.aLevel[] and each Fts5StructureLevel.aSeg[] array
1086 ** are over-allocated as described for function fts5StructureDecode()
1089 ** If an error occurs, NULL is returned and an error code left in the
1090 ** Fts5Index handle. If an error has already occurred when this function
1091 ** is called, it is a no-op.
1093 static Fts5Structure
*fts5StructureRead(Fts5Index
*p
){
1095 if( p
->pStruct
==0 ){
1096 p
->iStructVersion
= fts5IndexDataVersion(p
);
1097 if( p
->rc
==SQLITE_OK
){
1098 p
->pStruct
= fts5StructureReadUncached(p
);
1104 Fts5Structure
*pTest
= fts5StructureReadUncached(p
);
1107 assert_nc( p
->pStruct
->nSegment
==pTest
->nSegment
);
1108 assert_nc( p
->pStruct
->nLevel
==pTest
->nLevel
);
1109 for(i
=0; i
<pTest
->nLevel
; i
++){
1110 assert_nc( p
->pStruct
->aLevel
[i
].nMerge
==pTest
->aLevel
[i
].nMerge
);
1111 assert_nc( p
->pStruct
->aLevel
[i
].nSeg
==pTest
->aLevel
[i
].nSeg
);
1112 for(j
=0; j
<pTest
->aLevel
[i
].nSeg
; j
++){
1113 Fts5StructureSegment
*p1
= &pTest
->aLevel
[i
].aSeg
[j
];
1114 Fts5StructureSegment
*p2
= &p
->pStruct
->aLevel
[i
].aSeg
[j
];
1115 assert_nc( p1
->iSegid
==p2
->iSegid
);
1116 assert_nc( p1
->pgnoFirst
==p2
->pgnoFirst
);
1117 assert_nc( p1
->pgnoLast
==p2
->pgnoLast
);
1120 fts5StructureRelease(pTest
);
1125 if( p
->rc
!=SQLITE_OK
) return 0;
1126 assert( p
->iStructVersion
!=0 );
1127 assert( p
->pStruct
!=0 );
1128 fts5StructureRef(p
->pStruct
);
1132 static void fts5StructureInvalidate(Fts5Index
*p
){
1134 fts5StructureRelease(p
->pStruct
);
1140 ** Return the total number of segments in index structure pStruct. This
1141 ** function is only ever used as part of assert() conditions.
1144 static int fts5StructureCountSegments(Fts5Structure
*pStruct
){
1145 int nSegment
= 0; /* Total number of segments */
1147 int iLvl
; /* Used to iterate through levels */
1148 for(iLvl
=0; iLvl
<pStruct
->nLevel
; iLvl
++){
1149 nSegment
+= pStruct
->aLevel
[iLvl
].nSeg
;
1157 #define fts5BufferSafeAppendBlob(pBuf, pBlob, nBlob) { \
1158 assert( (pBuf)->nSpace>=((pBuf)->n+nBlob) ); \
1159 memcpy(&(pBuf)->p[(pBuf)->n], pBlob, nBlob); \
1160 (pBuf)->n += nBlob; \
1163 #define fts5BufferSafeAppendVarint(pBuf, iVal) { \
1164 (pBuf)->n += sqlite3Fts5PutVarint(&(pBuf)->p[(pBuf)->n], (iVal)); \
1165 assert( (pBuf)->nSpace>=(pBuf)->n ); \
1170 ** Serialize and store the "structure" record.
1172 ** If an error occurs, leave an error code in the Fts5Index object. If an
1173 ** error has already occurred, this function is a no-op.
1175 static void fts5StructureWrite(Fts5Index
*p
, Fts5Structure
*pStruct
){
1176 if( p
->rc
==SQLITE_OK
){
1177 Fts5Buffer buf
; /* Buffer to serialize record into */
1178 int iLvl
; /* Used to iterate through levels */
1179 int iCookie
; /* Cookie value to store */
1181 assert( pStruct
->nSegment
==fts5StructureCountSegments(pStruct
) );
1182 memset(&buf
, 0, sizeof(Fts5Buffer
));
1184 /* Append the current configuration cookie */
1185 iCookie
= p
->pConfig
->iCookie
;
1186 if( iCookie
<0 ) iCookie
= 0;
1188 if( 0==sqlite3Fts5BufferSize(&p
->rc
, &buf
, 4+9+9+9) ){
1189 sqlite3Fts5Put32(buf
.p
, iCookie
);
1191 fts5BufferSafeAppendVarint(&buf
, pStruct
->nLevel
);
1192 fts5BufferSafeAppendVarint(&buf
, pStruct
->nSegment
);
1193 fts5BufferSafeAppendVarint(&buf
, (i64
)pStruct
->nWriteCounter
);
1196 for(iLvl
=0; iLvl
<pStruct
->nLevel
; iLvl
++){
1197 int iSeg
; /* Used to iterate through segments */
1198 Fts5StructureLevel
*pLvl
= &pStruct
->aLevel
[iLvl
];
1199 fts5BufferAppendVarint(&p
->rc
, &buf
, pLvl
->nMerge
);
1200 fts5BufferAppendVarint(&p
->rc
, &buf
, pLvl
->nSeg
);
1201 assert( pLvl
->nMerge
<=pLvl
->nSeg
);
1203 for(iSeg
=0; iSeg
<pLvl
->nSeg
; iSeg
++){
1204 fts5BufferAppendVarint(&p
->rc
, &buf
, pLvl
->aSeg
[iSeg
].iSegid
);
1205 fts5BufferAppendVarint(&p
->rc
, &buf
, pLvl
->aSeg
[iSeg
].pgnoFirst
);
1206 fts5BufferAppendVarint(&p
->rc
, &buf
, pLvl
->aSeg
[iSeg
].pgnoLast
);
1210 fts5DataWrite(p
, FTS5_STRUCTURE_ROWID
, buf
.p
, buf
.n
);
1211 fts5BufferFree(&buf
);
1216 static void fts5DebugStructure(int*,Fts5Buffer
*,Fts5Structure
*);
1217 static void fts5PrintStructure(const char *zCaption
, Fts5Structure
*pStruct
){
1220 memset(&buf
, 0, sizeof(buf
));
1221 fts5DebugStructure(&rc
, &buf
, pStruct
);
1222 fprintf(stdout
, "%s: %s\n", zCaption
, buf
.p
);
1224 fts5BufferFree(&buf
);
1227 # define fts5PrintStructure(x,y)
1230 static int fts5SegmentSize(Fts5StructureSegment
*pSeg
){
1231 return 1 + pSeg
->pgnoLast
- pSeg
->pgnoFirst
;
1235 ** Return a copy of index structure pStruct. Except, promote as many
1236 ** segments as possible to level iPromote. If an OOM occurs, NULL is
1239 static void fts5StructurePromoteTo(
1243 Fts5Structure
*pStruct
1246 Fts5StructureLevel
*pOut
= &pStruct
->aLevel
[iPromote
];
1248 if( pOut
->nMerge
==0 ){
1249 for(il
=iPromote
+1; il
<pStruct
->nLevel
; il
++){
1250 Fts5StructureLevel
*pLvl
= &pStruct
->aLevel
[il
];
1251 if( pLvl
->nMerge
) return;
1252 for(is
=pLvl
->nSeg
-1; is
>=0; is
--){
1253 int sz
= fts5SegmentSize(&pLvl
->aSeg
[is
]);
1254 if( sz
>szPromote
) return;
1255 fts5StructureExtendLevel(&p
->rc
, pStruct
, iPromote
, 1, 1);
1257 memcpy(pOut
->aSeg
, &pLvl
->aSeg
[is
], sizeof(Fts5StructureSegment
));
1266 ** A new segment has just been written to level iLvl of index structure
1267 ** pStruct. This function determines if any segments should be promoted
1268 ** as a result. Segments are promoted in two scenarios:
1270 ** a) If the segment just written is smaller than one or more segments
1271 ** within the previous populated level, it is promoted to the previous
1274 ** b) If the segment just written is larger than the newest segment on
1275 ** the next populated level, then that segment, and any other adjacent
1276 ** segments that are also smaller than the one just written, are
1279 ** If one or more segments are promoted, the structure object is updated
1282 static void fts5StructurePromote(
1283 Fts5Index
*p
, /* FTS5 backend object */
1284 int iLvl
, /* Index level just updated */
1285 Fts5Structure
*pStruct
/* Index structure */
1287 if( p
->rc
==SQLITE_OK
){
1290 int szPromote
= 0; /* Promote anything this size or smaller */
1291 Fts5StructureSegment
*pSeg
; /* Segment just written */
1292 int szSeg
; /* Size of segment just written */
1293 int nSeg
= pStruct
->aLevel
[iLvl
].nSeg
;
1295 if( nSeg
==0 ) return;
1296 pSeg
= &pStruct
->aLevel
[iLvl
].aSeg
[pStruct
->aLevel
[iLvl
].nSeg
-1];
1297 szSeg
= (1 + pSeg
->pgnoLast
- pSeg
->pgnoFirst
);
1299 /* Check for condition (a) */
1300 for(iTst
=iLvl
-1; iTst
>=0 && pStruct
->aLevel
[iTst
].nSeg
==0; iTst
--);
1304 Fts5StructureLevel
*pTst
= &pStruct
->aLevel
[iTst
];
1305 assert( pTst
->nMerge
==0 );
1306 for(i
=0; i
<pTst
->nSeg
; i
++){
1307 int sz
= pTst
->aSeg
[i
].pgnoLast
- pTst
->aSeg
[i
].pgnoFirst
+ 1;
1308 if( sz
>szMax
) szMax
= sz
;
1311 /* Condition (a) is true. Promote the newest segment on level
1312 ** iLvl to level iTst. */
1318 /* If condition (a) is not met, assume (b) is true. StructurePromoteTo()
1319 ** is a no-op if it is not. */
1324 fts5StructurePromoteTo(p
, iPromote
, szPromote
, pStruct
);
1330 ** Advance the iterator passed as the only argument. If the end of the
1331 ** doclist-index page is reached, return non-zero.
1333 static int fts5DlidxLvlNext(Fts5DlidxLvl
*pLvl
){
1334 Fts5Data
*pData
= pLvl
->pData
;
1336 if( pLvl
->iOff
==0 ){
1337 assert( pLvl
->bEof
==0 );
1339 pLvl
->iOff
+= fts5GetVarint32(&pData
->p
[1], pLvl
->iLeafPgno
);
1340 pLvl
->iOff
+= fts5GetVarint(&pData
->p
[pLvl
->iOff
], (u64
*)&pLvl
->iRowid
);
1341 pLvl
->iFirstOff
= pLvl
->iOff
;
1344 for(iOff
=pLvl
->iOff
; iOff
<pData
->nn
; iOff
++){
1345 if( pData
->p
[iOff
] ) break;
1348 if( iOff
<pData
->nn
){
1350 pLvl
->iLeafPgno
+= (iOff
- pLvl
->iOff
) + 1;
1351 iOff
+= fts5GetVarint(&pData
->p
[iOff
], (u64
*)&iVal
);
1352 pLvl
->iRowid
+= iVal
;
1363 ** Advance the iterator passed as the only argument.
1365 static int fts5DlidxIterNextR(Fts5Index
*p
, Fts5DlidxIter
*pIter
, int iLvl
){
1366 Fts5DlidxLvl
*pLvl
= &pIter
->aLvl
[iLvl
];
1368 assert( iLvl
<pIter
->nLvl
);
1369 if( fts5DlidxLvlNext(pLvl
) ){
1370 if( (iLvl
+1) < pIter
->nLvl
){
1371 fts5DlidxIterNextR(p
, pIter
, iLvl
+1);
1372 if( pLvl
[1].bEof
==0 ){
1373 fts5DataRelease(pLvl
->pData
);
1374 memset(pLvl
, 0, sizeof(Fts5DlidxLvl
));
1375 pLvl
->pData
= fts5DataRead(p
,
1376 FTS5_DLIDX_ROWID(pIter
->iSegid
, iLvl
, pLvl
[1].iLeafPgno
)
1378 if( pLvl
->pData
) fts5DlidxLvlNext(pLvl
);
1383 return pIter
->aLvl
[0].bEof
;
1385 static int fts5DlidxIterNext(Fts5Index
*p
, Fts5DlidxIter
*pIter
){
1386 return fts5DlidxIterNextR(p
, pIter
, 0);
1390 ** The iterator passed as the first argument has the following fields set
1391 ** as follows. This function sets up the rest of the iterator so that it
1392 ** points to the first rowid in the doclist-index.
1395 ** pointer to doclist-index record,
1397 ** When this function is called pIter->iLeafPgno is the page number the
1398 ** doclist is associated with (the one featuring the term).
1400 static int fts5DlidxIterFirst(Fts5DlidxIter
*pIter
){
1402 for(i
=0; i
<pIter
->nLvl
; i
++){
1403 fts5DlidxLvlNext(&pIter
->aLvl
[i
]);
1405 return pIter
->aLvl
[0].bEof
;
1409 static int fts5DlidxIterEof(Fts5Index
*p
, Fts5DlidxIter
*pIter
){
1410 return p
->rc
!=SQLITE_OK
|| pIter
->aLvl
[0].bEof
;
1413 static void fts5DlidxIterLast(Fts5Index
*p
, Fts5DlidxIter
*pIter
){
1416 /* Advance each level to the last entry on the last page */
1417 for(i
=pIter
->nLvl
-1; p
->rc
==SQLITE_OK
&& i
>=0; i
--){
1418 Fts5DlidxLvl
*pLvl
= &pIter
->aLvl
[i
];
1419 while( fts5DlidxLvlNext(pLvl
)==0 );
1423 Fts5DlidxLvl
*pChild
= &pLvl
[-1];
1424 fts5DataRelease(pChild
->pData
);
1425 memset(pChild
, 0, sizeof(Fts5DlidxLvl
));
1426 pChild
->pData
= fts5DataRead(p
,
1427 FTS5_DLIDX_ROWID(pIter
->iSegid
, i
-1, pLvl
->iLeafPgno
)
1434 ** Move the iterator passed as the only argument to the previous entry.
1436 static int fts5DlidxLvlPrev(Fts5DlidxLvl
*pLvl
){
1437 int iOff
= pLvl
->iOff
;
1439 assert( pLvl
->bEof
==0 );
1440 if( iOff
<=pLvl
->iFirstOff
){
1443 u8
*a
= pLvl
->pData
->p
;
1449 /* Currently iOff points to the first byte of a varint. This block
1450 ** decrements iOff until it points to the first byte of the previous
1451 ** varint. Taking care not to read any memory locations that occur
1452 ** before the buffer in memory. */
1453 iLimit
= (iOff
>9 ? iOff
-9 : 0);
1454 for(iOff
--; iOff
>iLimit
; iOff
--){
1455 if( (a
[iOff
-1] & 0x80)==0 ) break;
1458 fts5GetVarint(&a
[iOff
], (u64
*)&iVal
);
1459 pLvl
->iRowid
-= iVal
;
1462 /* Skip backwards past any 0x00 varints. */
1463 for(ii
=iOff
-1; ii
>=pLvl
->iFirstOff
&& a
[ii
]==0x00; ii
--){
1466 if( ii
>=pLvl
->iFirstOff
&& (a
[ii
] & 0x80) ){
1467 /* The byte immediately before the last 0x00 byte has the 0x80 bit
1468 ** set. So the last 0x00 is only a varint 0 if there are 8 more 0x80
1469 ** bytes before a[ii]. */
1470 int bZero
= 0; /* True if last 0x00 counts */
1471 if( (ii
-8)>=pLvl
->iFirstOff
){
1473 for(j
=1; j
<=8 && (a
[ii
-j
] & 0x80); j
++);
1476 if( bZero
==0 ) nZero
--;
1478 pLvl
->iLeafPgno
-= nZero
;
1479 pLvl
->iOff
= iOff
- nZero
;
1485 static int fts5DlidxIterPrevR(Fts5Index
*p
, Fts5DlidxIter
*pIter
, int iLvl
){
1486 Fts5DlidxLvl
*pLvl
= &pIter
->aLvl
[iLvl
];
1488 assert( iLvl
<pIter
->nLvl
);
1489 if( fts5DlidxLvlPrev(pLvl
) ){
1490 if( (iLvl
+1) < pIter
->nLvl
){
1491 fts5DlidxIterPrevR(p
, pIter
, iLvl
+1);
1492 if( pLvl
[1].bEof
==0 ){
1493 fts5DataRelease(pLvl
->pData
);
1494 memset(pLvl
, 0, sizeof(Fts5DlidxLvl
));
1495 pLvl
->pData
= fts5DataRead(p
,
1496 FTS5_DLIDX_ROWID(pIter
->iSegid
, iLvl
, pLvl
[1].iLeafPgno
)
1499 while( fts5DlidxLvlNext(pLvl
)==0 );
1506 return pIter
->aLvl
[0].bEof
;
1508 static int fts5DlidxIterPrev(Fts5Index
*p
, Fts5DlidxIter
*pIter
){
1509 return fts5DlidxIterPrevR(p
, pIter
, 0);
1513 ** Free a doclist-index iterator object allocated by fts5DlidxIterInit().
1515 static void fts5DlidxIterFree(Fts5DlidxIter
*pIter
){
1518 for(i
=0; i
<pIter
->nLvl
; i
++){
1519 fts5DataRelease(pIter
->aLvl
[i
].pData
);
1521 sqlite3_free(pIter
);
1525 static Fts5DlidxIter
*fts5DlidxIterInit(
1526 Fts5Index
*p
, /* Fts5 Backend to iterate within */
1527 int bRev
, /* True for ORDER BY ASC */
1528 int iSegid
, /* Segment id */
1529 int iLeafPg
/* Leaf page number to load dlidx for */
1531 Fts5DlidxIter
*pIter
= 0;
1535 for(i
=0; p
->rc
==SQLITE_OK
&& bDone
==0; i
++){
1536 sqlite3_int64 nByte
= sizeof(Fts5DlidxIter
) + i
* sizeof(Fts5DlidxLvl
);
1537 Fts5DlidxIter
*pNew
;
1539 pNew
= (Fts5DlidxIter
*)sqlite3_realloc64(pIter
, nByte
);
1541 p
->rc
= SQLITE_NOMEM
;
1543 i64 iRowid
= FTS5_DLIDX_ROWID(iSegid
, i
, iLeafPg
);
1544 Fts5DlidxLvl
*pLvl
= &pNew
->aLvl
[i
];
1546 memset(pLvl
, 0, sizeof(Fts5DlidxLvl
));
1547 pLvl
->pData
= fts5DataRead(p
, iRowid
);
1548 if( pLvl
->pData
&& (pLvl
->pData
->p
[0] & 0x0001)==0 ){
1555 if( p
->rc
==SQLITE_OK
){
1556 pIter
->iSegid
= iSegid
;
1558 fts5DlidxIterFirst(pIter
);
1560 fts5DlidxIterLast(p
, pIter
);
1564 if( p
->rc
!=SQLITE_OK
){
1565 fts5DlidxIterFree(pIter
);
1572 static i64
fts5DlidxIterRowid(Fts5DlidxIter
*pIter
){
1573 return pIter
->aLvl
[0].iRowid
;
1575 static int fts5DlidxIterPgno(Fts5DlidxIter
*pIter
){
1576 return pIter
->aLvl
[0].iLeafPgno
;
1580 ** Load the next leaf page into the segment iterator.
1582 static void fts5SegIterNextPage(
1583 Fts5Index
*p
, /* FTS5 backend object */
1584 Fts5SegIter
*pIter
/* Iterator to advance to next page */
1587 Fts5StructureSegment
*pSeg
= pIter
->pSeg
;
1588 fts5DataRelease(pIter
->pLeaf
);
1590 if( pIter
->pNextLeaf
){
1591 pIter
->pLeaf
= pIter
->pNextLeaf
;
1592 pIter
->pNextLeaf
= 0;
1593 }else if( pIter
->iLeafPgno
<=pSeg
->pgnoLast
){
1594 pIter
->pLeaf
= fts5LeafRead(p
,
1595 FTS5_SEGMENT_ROWID(pSeg
->iSegid
, pIter
->iLeafPgno
)
1600 pLeaf
= pIter
->pLeaf
;
1603 pIter
->iPgidxOff
= pLeaf
->szLeaf
;
1604 if( fts5LeafIsTermless(pLeaf
) ){
1605 pIter
->iEndofDoclist
= pLeaf
->nn
+1;
1607 pIter
->iPgidxOff
+= fts5GetVarint32(&pLeaf
->p
[pIter
->iPgidxOff
],
1608 pIter
->iEndofDoclist
1615 ** Argument p points to a buffer containing a varint to be interpreted as a
1616 ** position list size field. Read the varint and return the number of bytes
1617 ** read. Before returning, set *pnSz to the number of bytes in the position
1618 ** list, and *pbDel to true if the delete flag is set, or false otherwise.
1620 static int fts5GetPoslistSize(const u8
*p
, int *pnSz
, int *pbDel
){
1623 fts5FastGetVarint32(p
, n
, nSz
);
1624 assert_nc( nSz
>=0 );
1626 *pbDel
= nSz
& 0x0001;
1631 ** Fts5SegIter.iLeafOffset currently points to the first byte of a
1632 ** position-list size field. Read the value of the field and store it
1633 ** in the following variables:
1638 ** Leave Fts5SegIter.iLeafOffset pointing to the first byte of the
1639 ** position list content (if any).
1641 static void fts5SegIterLoadNPos(Fts5Index
*p
, Fts5SegIter
*pIter
){
1642 if( p
->rc
==SQLITE_OK
){
1643 int iOff
= pIter
->iLeafOffset
; /* Offset to read at */
1644 ASSERT_SZLEAF_OK(pIter
->pLeaf
);
1645 if( p
->pConfig
->eDetail
==FTS5_DETAIL_NONE
){
1646 int iEod
= MIN(pIter
->iEndofDoclist
, pIter
->pLeaf
->szLeaf
);
1649 if( iOff
<iEod
&& pIter
->pLeaf
->p
[iOff
]==0 ){
1652 if( iOff
<iEod
&& pIter
->pLeaf
->p
[iOff
]==0 ){
1661 fts5FastGetVarint32(pIter
->pLeaf
->p
, iOff
, nSz
);
1662 pIter
->bDel
= (nSz
& 0x0001);
1663 pIter
->nPos
= nSz
>>1;
1664 assert_nc( pIter
->nPos
>=0 );
1666 pIter
->iLeafOffset
= iOff
;
1670 static void fts5SegIterLoadRowid(Fts5Index
*p
, Fts5SegIter
*pIter
){
1671 u8
*a
= pIter
->pLeaf
->p
; /* Buffer to read data from */
1672 i64 iOff
= pIter
->iLeafOffset
;
1674 ASSERT_SZLEAF_OK(pIter
->pLeaf
);
1675 if( iOff
>=pIter
->pLeaf
->szLeaf
){
1676 fts5SegIterNextPage(p
, pIter
);
1677 if( pIter
->pLeaf
==0 ){
1678 if( p
->rc
==SQLITE_OK
) p
->rc
= FTS5_CORRUPT
;
1682 a
= pIter
->pLeaf
->p
;
1684 iOff
+= sqlite3Fts5GetVarint(&a
[iOff
], (u64
*)&pIter
->iRowid
);
1685 pIter
->iLeafOffset
= iOff
;
1689 ** Fts5SegIter.iLeafOffset currently points to the first byte of the
1690 ** "nSuffix" field of a term. Function parameter nKeep contains the value
1691 ** of the "nPrefix" field (if there was one - it is passed 0 if this is
1692 ** the first term in the segment).
1694 ** This function populates:
1697 ** Fts5SegIter.rowid
1699 ** accordingly and leaves (Fts5SegIter.iLeafOffset) set to the content of
1700 ** the first position list. The position list belonging to document
1701 ** (Fts5SegIter.iRowid).
1703 static void fts5SegIterLoadTerm(Fts5Index
*p
, Fts5SegIter
*pIter
, int nKeep
){
1704 u8
*a
= pIter
->pLeaf
->p
; /* Buffer to read data from */
1705 i64 iOff
= pIter
->iLeafOffset
; /* Offset to read at */
1706 int nNew
; /* Bytes of new data */
1708 iOff
+= fts5GetVarint32(&a
[iOff
], nNew
);
1709 if( iOff
+nNew
>pIter
->pLeaf
->szLeaf
|| nKeep
>pIter
->term
.n
|| nNew
==0 ){
1710 p
->rc
= FTS5_CORRUPT
;
1713 pIter
->term
.n
= nKeep
;
1714 fts5BufferAppendBlob(&p
->rc
, &pIter
->term
, nNew
, &a
[iOff
]);
1715 assert( pIter
->term
.n
<=pIter
->term
.nSpace
);
1717 pIter
->iTermLeafOffset
= iOff
;
1718 pIter
->iTermLeafPgno
= pIter
->iLeafPgno
;
1719 pIter
->iLeafOffset
= iOff
;
1721 if( pIter
->iPgidxOff
>=pIter
->pLeaf
->nn
){
1722 pIter
->iEndofDoclist
= pIter
->pLeaf
->nn
+1;
1725 pIter
->iPgidxOff
+= fts5GetVarint32(&a
[pIter
->iPgidxOff
], nExtra
);
1726 pIter
->iEndofDoclist
+= nExtra
;
1729 fts5SegIterLoadRowid(p
, pIter
);
1732 static void fts5SegIterNext(Fts5Index
*, Fts5SegIter
*, int*);
1733 static void fts5SegIterNext_Reverse(Fts5Index
*, Fts5SegIter
*, int*);
1734 static void fts5SegIterNext_None(Fts5Index
*, Fts5SegIter
*, int*);
1736 static void fts5SegIterSetNext(Fts5Index
*p
, Fts5SegIter
*pIter
){
1737 if( pIter
->flags
& FTS5_SEGITER_REVERSE
){
1738 pIter
->xNext
= fts5SegIterNext_Reverse
;
1739 }else if( p
->pConfig
->eDetail
==FTS5_DETAIL_NONE
){
1740 pIter
->xNext
= fts5SegIterNext_None
;
1742 pIter
->xNext
= fts5SegIterNext
;
1747 ** Initialize the iterator object pIter to iterate through the entries in
1748 ** segment pSeg. The iterator is left pointing to the first entry when
1749 ** this function returns.
1751 ** If an error occurs, Fts5Index.rc is set to an appropriate error code. If
1752 ** an error has already occurred when this function is called, it is a no-op.
1754 static void fts5SegIterInit(
1755 Fts5Index
*p
, /* FTS index object */
1756 Fts5StructureSegment
*pSeg
, /* Description of segment */
1757 Fts5SegIter
*pIter
/* Object to populate */
1759 if( pSeg
->pgnoFirst
==0 ){
1760 /* This happens if the segment is being used as an input to an incremental
1761 ** merge and all data has already been "trimmed". See function
1762 ** fts5TrimSegments() for details. In this case leave the iterator empty.
1763 ** The caller will see the (pIter->pLeaf==0) and assume the iterator is
1764 ** at EOF already. */
1765 assert( pIter
->pLeaf
==0 );
1769 if( p
->rc
==SQLITE_OK
){
1770 memset(pIter
, 0, sizeof(*pIter
));
1771 fts5SegIterSetNext(p
, pIter
);
1773 pIter
->iLeafPgno
= pSeg
->pgnoFirst
-1;
1774 fts5SegIterNextPage(p
, pIter
);
1777 if( p
->rc
==SQLITE_OK
){
1778 pIter
->iLeafOffset
= 4;
1779 assert( pIter
->pLeaf
!=0 );
1780 assert_nc( pIter
->pLeaf
->nn
>4 );
1781 assert_nc( fts5LeafFirstTermOff(pIter
->pLeaf
)==4 );
1782 pIter
->iPgidxOff
= pIter
->pLeaf
->szLeaf
+1;
1783 fts5SegIterLoadTerm(p
, pIter
, 0);
1784 fts5SegIterLoadNPos(p
, pIter
);
1789 ** This function is only ever called on iterators created by calls to
1790 ** Fts5IndexQuery() with the FTS5INDEX_QUERY_DESC flag set.
1792 ** The iterator is in an unusual state when this function is called: the
1793 ** Fts5SegIter.iLeafOffset variable is set to the offset of the start of
1794 ** the position-list size field for the first relevant rowid on the page.
1795 ** Fts5SegIter.rowid is set, but nPos and bDel are not.
1797 ** This function advances the iterator so that it points to the last
1798 ** relevant rowid on the page and, if necessary, initializes the
1799 ** aRowidOffset[] and iRowidOffset variables. At this point the iterator
1800 ** is in its regular state - Fts5SegIter.iLeafOffset points to the first
1801 ** byte of the position list content associated with said rowid.
1803 static void fts5SegIterReverseInitPage(Fts5Index
*p
, Fts5SegIter
*pIter
){
1804 int eDetail
= p
->pConfig
->eDetail
;
1805 int n
= pIter
->pLeaf
->szLeaf
;
1806 int i
= pIter
->iLeafOffset
;
1807 u8
*a
= pIter
->pLeaf
->p
;
1808 int iRowidOffset
= 0;
1810 if( n
>pIter
->iEndofDoclist
){
1811 n
= pIter
->iEndofDoclist
;
1814 ASSERT_SZLEAF_OK(pIter
->pLeaf
);
1818 if( eDetail
==FTS5_DETAIL_NONE
){
1820 if( i
<n
&& a
[i
]==0 ){
1822 if( i
<n
&& a
[i
]==0 ) i
++;
1827 i
+= fts5GetPoslistSize(&a
[i
], &nPos
, &bDummy
);
1831 i
+= fts5GetVarint(&a
[i
], &iDelta
);
1832 pIter
->iRowid
+= iDelta
;
1834 /* If necessary, grow the pIter->aRowidOffset[] array. */
1835 if( iRowidOffset
>=pIter
->nRowidOffset
){
1836 int nNew
= pIter
->nRowidOffset
+ 8;
1837 int *aNew
= (int*)sqlite3_realloc64(pIter
->aRowidOffset
,nNew
*sizeof(int));
1839 p
->rc
= SQLITE_NOMEM
;
1842 pIter
->aRowidOffset
= aNew
;
1843 pIter
->nRowidOffset
= nNew
;
1846 pIter
->aRowidOffset
[iRowidOffset
++] = pIter
->iLeafOffset
;
1847 pIter
->iLeafOffset
= i
;
1849 pIter
->iRowidOffset
= iRowidOffset
;
1850 fts5SegIterLoadNPos(p
, pIter
);
1856 static void fts5SegIterReverseNewPage(Fts5Index
*p
, Fts5SegIter
*pIter
){
1857 assert( pIter
->flags
& FTS5_SEGITER_REVERSE
);
1858 assert( pIter
->flags
& FTS5_SEGITER_ONETERM
);
1860 fts5DataRelease(pIter
->pLeaf
);
1862 while( p
->rc
==SQLITE_OK
&& pIter
->iLeafPgno
>pIter
->iTermLeafPgno
){
1865 pNew
= fts5DataRead(p
, FTS5_SEGMENT_ROWID(
1866 pIter
->pSeg
->iSegid
, pIter
->iLeafPgno
1869 /* iTermLeafOffset may be equal to szLeaf if the term is the last
1870 ** thing on the page - i.e. the first rowid is on the following page.
1871 ** In this case leave pIter->pLeaf==0, this iterator is at EOF. */
1872 if( pIter
->iLeafPgno
==pIter
->iTermLeafPgno
){
1873 assert( pIter
->pLeaf
==0 );
1874 if( pIter
->iTermLeafOffset
<pNew
->szLeaf
){
1875 pIter
->pLeaf
= pNew
;
1876 pIter
->iLeafOffset
= pIter
->iTermLeafOffset
;
1880 iRowidOff
= fts5LeafFirstRowidOff(pNew
);
1882 if( iRowidOff
>=pNew
->szLeaf
){
1883 p
->rc
= FTS5_CORRUPT
;
1885 pIter
->pLeaf
= pNew
;
1886 pIter
->iLeafOffset
= iRowidOff
;
1892 u8
*a
= &pIter
->pLeaf
->p
[pIter
->iLeafOffset
];
1893 pIter
->iLeafOffset
+= fts5GetVarint(a
, (u64
*)&pIter
->iRowid
);
1896 fts5DataRelease(pNew
);
1902 pIter
->iEndofDoclist
= pIter
->pLeaf
->nn
+1;
1903 fts5SegIterReverseInitPage(p
, pIter
);
1908 ** Return true if the iterator passed as the second argument currently
1909 ** points to a delete marker. A delete marker is an entry with a 0 byte
1912 static int fts5MultiIterIsEmpty(Fts5Index
*p
, Fts5Iter
*pIter
){
1913 Fts5SegIter
*pSeg
= &pIter
->aSeg
[pIter
->aFirst
[1].iFirst
];
1914 return (p
->rc
==SQLITE_OK
&& pSeg
->pLeaf
&& pSeg
->nPos
==0);
1918 ** Advance iterator pIter to the next entry.
1920 ** This version of fts5SegIterNext() is only used by reverse iterators.
1922 static void fts5SegIterNext_Reverse(
1923 Fts5Index
*p
, /* FTS5 backend object */
1924 Fts5SegIter
*pIter
, /* Iterator to advance */
1925 int *pbUnused
/* Unused */
1927 assert( pIter
->flags
& FTS5_SEGITER_REVERSE
);
1928 assert( pIter
->pNextLeaf
==0 );
1929 UNUSED_PARAM(pbUnused
);
1931 if( pIter
->iRowidOffset
>0 ){
1932 u8
*a
= pIter
->pLeaf
->p
;
1936 pIter
->iRowidOffset
--;
1937 pIter
->iLeafOffset
= pIter
->aRowidOffset
[pIter
->iRowidOffset
];
1938 fts5SegIterLoadNPos(p
, pIter
);
1939 iOff
= pIter
->iLeafOffset
;
1940 if( p
->pConfig
->eDetail
!=FTS5_DETAIL_NONE
){
1941 iOff
+= pIter
->nPos
;
1943 fts5GetVarint(&a
[iOff
], &iDelta
);
1944 pIter
->iRowid
-= iDelta
;
1946 fts5SegIterReverseNewPage(p
, pIter
);
1951 ** Advance iterator pIter to the next entry.
1953 ** This version of fts5SegIterNext() is only used if detail=none and the
1954 ** iterator is not a reverse direction iterator.
1956 static void fts5SegIterNext_None(
1957 Fts5Index
*p
, /* FTS5 backend object */
1958 Fts5SegIter
*pIter
, /* Iterator to advance */
1959 int *pbNewTerm
/* OUT: Set for new term */
1963 assert( p
->rc
==SQLITE_OK
);
1964 assert( (pIter
->flags
& FTS5_SEGITER_REVERSE
)==0 );
1965 assert( p
->pConfig
->eDetail
==FTS5_DETAIL_NONE
);
1967 ASSERT_SZLEAF_OK(pIter
->pLeaf
);
1968 iOff
= pIter
->iLeafOffset
;
1970 /* Next entry is on the next page */
1971 if( pIter
->pSeg
&& iOff
>=pIter
->pLeaf
->szLeaf
){
1972 fts5SegIterNextPage(p
, pIter
);
1973 if( p
->rc
|| pIter
->pLeaf
==0 ) return;
1978 if( iOff
<pIter
->iEndofDoclist
){
1979 /* Next entry is on the current page */
1981 iOff
+= sqlite3Fts5GetVarint(&pIter
->pLeaf
->p
[iOff
], (u64
*)&iDelta
);
1982 pIter
->iLeafOffset
= iOff
;
1983 pIter
->iRowid
+= iDelta
;
1984 }else if( (pIter
->flags
& FTS5_SEGITER_ONETERM
)==0 ){
1987 if( iOff
!=fts5LeafFirstTermOff(pIter
->pLeaf
) ){
1988 iOff
+= fts5GetVarint32(&pIter
->pLeaf
->p
[iOff
], nKeep
);
1990 pIter
->iLeafOffset
= iOff
;
1991 fts5SegIterLoadTerm(p
, pIter
, nKeep
);
1993 const u8
*pList
= 0;
1994 const char *zTerm
= 0;
1996 sqlite3Fts5HashScanNext(p
->pHash
);
1997 sqlite3Fts5HashScanEntry(p
->pHash
, &zTerm
, &pList
, &nList
);
1998 if( pList
==0 ) goto next_none_eof
;
1999 pIter
->pLeaf
->p
= (u8
*)pList
;
2000 pIter
->pLeaf
->nn
= nList
;
2001 pIter
->pLeaf
->szLeaf
= nList
;
2002 pIter
->iEndofDoclist
= nList
;
2003 sqlite3Fts5BufferSet(&p
->rc
,&pIter
->term
, (int)strlen(zTerm
), (u8
*)zTerm
);
2004 pIter
->iLeafOffset
= fts5GetVarint(pList
, (u64
*)&pIter
->iRowid
);
2007 if( pbNewTerm
) *pbNewTerm
= 1;
2012 fts5SegIterLoadNPos(p
, pIter
);
2016 fts5DataRelease(pIter
->pLeaf
);
2022 ** Advance iterator pIter to the next entry.
2024 ** If an error occurs, Fts5Index.rc is set to an appropriate error code. It
2025 ** is not considered an error if the iterator reaches EOF. If an error has
2026 ** already occurred when this function is called, it is a no-op.
2028 static void fts5SegIterNext(
2029 Fts5Index
*p
, /* FTS5 backend object */
2030 Fts5SegIter
*pIter
, /* Iterator to advance */
2031 int *pbNewTerm
/* OUT: Set for new term */
2033 Fts5Data
*pLeaf
= pIter
->pLeaf
;
2040 assert( pbNewTerm
==0 || *pbNewTerm
==0 );
2041 assert( p
->pConfig
->eDetail
!=FTS5_DETAIL_NONE
);
2043 /* Search for the end of the position list within the current page. */
2047 ASSERT_SZLEAF_OK(pLeaf
);
2048 iOff
= pIter
->iLeafOffset
+ pIter
->nPos
;
2051 /* The next entry is on the current page. */
2052 assert_nc( iOff
<=pIter
->iEndofDoclist
);
2053 if( iOff
>=pIter
->iEndofDoclist
){
2055 if( iOff
!=fts5LeafFirstTermOff(pLeaf
) ){
2056 iOff
+= fts5GetVarint32(&a
[iOff
], nKeep
);
2060 iOff
+= sqlite3Fts5GetVarint(&a
[iOff
], &iDelta
);
2061 pIter
->iRowid
+= iDelta
;
2062 assert_nc( iDelta
>0 );
2064 pIter
->iLeafOffset
= iOff
;
2066 }else if( pIter
->pSeg
==0 ){
2067 const u8
*pList
= 0;
2068 const char *zTerm
= 0;
2070 assert( (pIter
->flags
& FTS5_SEGITER_ONETERM
) || pbNewTerm
);
2071 if( 0==(pIter
->flags
& FTS5_SEGITER_ONETERM
) ){
2072 sqlite3Fts5HashScanNext(p
->pHash
);
2073 sqlite3Fts5HashScanEntry(p
->pHash
, &zTerm
, &pList
, &nList
);
2076 fts5DataRelease(pIter
->pLeaf
);
2079 pIter
->pLeaf
->p
= (u8
*)pList
;
2080 pIter
->pLeaf
->nn
= nList
;
2081 pIter
->pLeaf
->szLeaf
= nList
;
2082 pIter
->iEndofDoclist
= nList
+1;
2083 sqlite3Fts5BufferSet(&p
->rc
, &pIter
->term
, (int)strlen(zTerm
),
2085 pIter
->iLeafOffset
= fts5GetVarint(pList
, (u64
*)&pIter
->iRowid
);
2090 /* Next entry is not on the current page */
2092 fts5SegIterNextPage(p
, pIter
);
2093 pLeaf
= pIter
->pLeaf
;
2094 if( pLeaf
==0 ) break;
2095 ASSERT_SZLEAF_OK(pLeaf
);
2096 if( (iOff
= fts5LeafFirstRowidOff(pLeaf
)) && iOff
<pLeaf
->szLeaf
){
2097 iOff
+= sqlite3Fts5GetVarint(&pLeaf
->p
[iOff
], (u64
*)&pIter
->iRowid
);
2098 pIter
->iLeafOffset
= iOff
;
2100 if( pLeaf
->nn
>pLeaf
->szLeaf
){
2101 pIter
->iPgidxOff
= pLeaf
->szLeaf
+ fts5GetVarint32(
2102 &pLeaf
->p
[pLeaf
->szLeaf
], pIter
->iEndofDoclist
2106 else if( pLeaf
->nn
>pLeaf
->szLeaf
){
2107 pIter
->iPgidxOff
= pLeaf
->szLeaf
+ fts5GetVarint32(
2108 &pLeaf
->p
[pLeaf
->szLeaf
], iOff
2110 pIter
->iLeafOffset
= iOff
;
2111 pIter
->iEndofDoclist
= iOff
;
2114 assert_nc( iOff
<pLeaf
->szLeaf
);
2115 if( iOff
>pLeaf
->szLeaf
){
2116 p
->rc
= FTS5_CORRUPT
;
2122 /* Check if the iterator is now at EOF. If so, return early. */
2125 if( pIter
->flags
& FTS5_SEGITER_ONETERM
){
2126 fts5DataRelease(pIter
->pLeaf
);
2129 fts5SegIterLoadTerm(p
, pIter
, nKeep
);
2130 fts5SegIterLoadNPos(p
, pIter
);
2131 if( pbNewTerm
) *pbNewTerm
= 1;
2134 /* The following could be done by calling fts5SegIterLoadNPos(). But
2135 ** this block is particularly performance critical, so equivalent
2136 ** code is inlined. */
2138 assert_nc( pIter
->iLeafOffset
<=pIter
->pLeaf
->nn
);
2139 fts5FastGetVarint32(pIter
->pLeaf
->p
, pIter
->iLeafOffset
, nSz
);
2140 pIter
->bDel
= (nSz
& 0x0001);
2141 pIter
->nPos
= nSz
>>1;
2142 assert_nc( pIter
->nPos
>=0 );
2147 #define SWAPVAL(T, a, b) { T tmp; tmp=a; a=b; b=tmp; }
2149 #define fts5IndexSkipVarint(a, iOff) { \
2150 int iEnd = iOff+9; \
2151 while( (a[iOff++] & 0x80) && iOff<iEnd ); \
2155 ** Iterator pIter currently points to the first rowid in a doclist. This
2156 ** function sets the iterator up so that iterates in reverse order through
2159 static void fts5SegIterReverse(Fts5Index
*p
, Fts5SegIter
*pIter
){
2160 Fts5DlidxIter
*pDlidx
= pIter
->pDlidx
;
2161 Fts5Data
*pLast
= 0;
2165 int iSegid
= pIter
->pSeg
->iSegid
;
2166 pgnoLast
= fts5DlidxIterPgno(pDlidx
);
2167 pLast
= fts5LeafRead(p
, FTS5_SEGMENT_ROWID(iSegid
, pgnoLast
));
2169 Fts5Data
*pLeaf
= pIter
->pLeaf
; /* Current leaf data */
2171 /* Currently, Fts5SegIter.iLeafOffset points to the first byte of
2172 ** position-list content for the current rowid. Back it up so that it
2173 ** points to the start of the position-list size field. */
2175 if( pIter
->iTermLeafPgno
==pIter
->iLeafPgno
){
2176 iPoslist
= pIter
->iTermLeafOffset
;
2180 fts5IndexSkipVarint(pLeaf
->p
, iPoslist
);
2181 pIter
->iLeafOffset
= iPoslist
;
2183 /* If this condition is true then the largest rowid for the current
2184 ** term may not be stored on the current page. So search forward to
2185 ** see where said rowid really is. */
2186 if( pIter
->iEndofDoclist
>=pLeaf
->szLeaf
){
2188 Fts5StructureSegment
*pSeg
= pIter
->pSeg
;
2190 /* The last rowid in the doclist may not be on the current page. Search
2191 ** forward to find the page containing the last rowid. */
2192 for(pgno
=pIter
->iLeafPgno
+1; !p
->rc
&& pgno
<=pSeg
->pgnoLast
; pgno
++){
2193 i64 iAbs
= FTS5_SEGMENT_ROWID(pSeg
->iSegid
, pgno
);
2194 Fts5Data
*pNew
= fts5LeafRead(p
, iAbs
);
2196 int iRowid
, bTermless
;
2197 iRowid
= fts5LeafFirstRowidOff(pNew
);
2198 bTermless
= fts5LeafIsTermless(pNew
);
2200 SWAPVAL(Fts5Data
*, pNew
, pLast
);
2203 fts5DataRelease(pNew
);
2204 if( bTermless
==0 ) break;
2210 /* If pLast is NULL at this point, then the last rowid for this doclist
2211 ** lies on the page currently indicated by the iterator. In this case
2212 ** pIter->iLeafOffset is already set to point to the position-list size
2213 ** field associated with the first relevant rowid on the page.
2215 ** Or, if pLast is non-NULL, then it is the page that contains the last
2216 ** rowid. In this case configure the iterator so that it points to the
2217 ** first rowid on this page.
2221 fts5DataRelease(pIter
->pLeaf
);
2222 pIter
->pLeaf
= pLast
;
2223 pIter
->iLeafPgno
= pgnoLast
;
2224 iOff
= fts5LeafFirstRowidOff(pLast
);
2225 if( iOff
>pLast
->szLeaf
){
2226 p
->rc
= FTS5_CORRUPT
;
2229 iOff
+= fts5GetVarint(&pLast
->p
[iOff
], (u64
*)&pIter
->iRowid
);
2230 pIter
->iLeafOffset
= iOff
;
2232 if( fts5LeafIsTermless(pLast
) ){
2233 pIter
->iEndofDoclist
= pLast
->nn
+1;
2235 pIter
->iEndofDoclist
= fts5LeafFirstTermOff(pLast
);
2239 fts5SegIterReverseInitPage(p
, pIter
);
2243 ** Iterator pIter currently points to the first rowid of a doclist.
2244 ** There is a doclist-index associated with the final term on the current
2245 ** page. If the current term is the last term on the page, load the
2246 ** doclist-index from disk and initialize an iterator at (pIter->pDlidx).
2248 static void fts5SegIterLoadDlidx(Fts5Index
*p
, Fts5SegIter
*pIter
){
2249 int iSeg
= pIter
->pSeg
->iSegid
;
2250 int bRev
= (pIter
->flags
& FTS5_SEGITER_REVERSE
);
2251 Fts5Data
*pLeaf
= pIter
->pLeaf
; /* Current leaf data */
2253 assert( pIter
->flags
& FTS5_SEGITER_ONETERM
);
2254 assert( pIter
->pDlidx
==0 );
2256 /* Check if the current doclist ends on this page. If it does, return
2257 ** early without loading the doclist-index (as it belongs to a different
2259 if( pIter
->iTermLeafPgno
==pIter
->iLeafPgno
2260 && pIter
->iEndofDoclist
<pLeaf
->szLeaf
2265 pIter
->pDlidx
= fts5DlidxIterInit(p
, bRev
, iSeg
, pIter
->iTermLeafPgno
);
2269 ** The iterator object passed as the second argument currently contains
2270 ** no valid values except for the Fts5SegIter.pLeaf member variable. This
2271 ** function searches the leaf page for a term matching (pTerm/nTerm).
2273 ** If the specified term is found on the page, then the iterator is left
2274 ** pointing to it. If argument bGe is zero and the term is not found,
2275 ** the iterator is left pointing at EOF.
2277 ** If bGe is non-zero and the specified term is not found, then the
2278 ** iterator is left pointing to the smallest term in the segment that
2279 ** is larger than the specified term, even if this term is not on the
2282 static void fts5LeafSeek(
2283 Fts5Index
*p
, /* Leave any error code here */
2284 int bGe
, /* True for a >= search */
2285 Fts5SegIter
*pIter
, /* Iterator to seek */
2286 const u8
*pTerm
, int nTerm
/* Term to search for */
2289 const u8
*a
= pIter
->pLeaf
->p
;
2290 u32 n
= (u32
)pIter
->pLeaf
->nn
;
2296 u32 iPgidx
; /* Current offset in pgidx */
2299 assert( p
->rc
==SQLITE_OK
);
2301 iPgidx
= (u32
)pIter
->pLeaf
->szLeaf
;
2302 iPgidx
+= fts5GetVarint32(&a
[iPgidx
], iTermOff
);
2305 p
->rc
= FTS5_CORRUPT
;
2311 /* Figure out how many new bytes are in this term */
2312 fts5FastGetVarint32(a
, iOff
, nNew
);
2317 assert( nKeep
>=nMatch
);
2318 if( nKeep
==nMatch
){
2321 nCmp
= (u32
)MIN(nNew
, nTerm
-nMatch
);
2322 for(i
=0; i
<nCmp
; i
++){
2323 if( a
[iOff
+i
]!=pTerm
[nMatch
+i
] ) break;
2327 if( (u32
)nTerm
==nMatch
){
2329 goto search_success
;
2333 }else if( i
<nNew
&& a
[iOff
+i
]>pTerm
[nMatch
] ){
2343 iPgidx
+= fts5GetVarint32(&a
[iPgidx
], nKeep
);
2348 p
->rc
= FTS5_CORRUPT
;
2352 /* Read the nKeep field of the next term. */
2353 fts5FastGetVarint32(a
, iOff
, nKeep
);
2358 fts5DataRelease(pIter
->pLeaf
);
2361 }else if( bEndOfPage
){
2363 fts5SegIterNextPage(p
, pIter
);
2364 if( pIter
->pLeaf
==0 ) return;
2365 a
= pIter
->pLeaf
->p
;
2366 if( fts5LeafIsTermless(pIter
->pLeaf
)==0 ){
2367 iPgidx
= (u32
)pIter
->pLeaf
->szLeaf
;
2368 iPgidx
+= fts5GetVarint32(&pIter
->pLeaf
->p
[iPgidx
], iOff
);
2369 if( iOff
<4 || (i64
)iOff
>=pIter
->pLeaf
->szLeaf
){
2370 p
->rc
= FTS5_CORRUPT
;
2375 n
= (u32
)pIter
->pLeaf
->nn
;
2376 iOff
+= fts5GetVarint32(&a
[iOff
], nNew
);
2384 if( (i64
)iOff
+nNew
>n
|| nNew
<1 ){
2385 p
->rc
= FTS5_CORRUPT
;
2388 pIter
->iLeafOffset
= iOff
+ nNew
;
2389 pIter
->iTermLeafOffset
= pIter
->iLeafOffset
;
2390 pIter
->iTermLeafPgno
= pIter
->iLeafPgno
;
2392 fts5BufferSet(&p
->rc
, &pIter
->term
, nKeep
, pTerm
);
2393 fts5BufferAppendBlob(&p
->rc
, &pIter
->term
, nNew
, &a
[iOff
]);
2396 pIter
->iEndofDoclist
= pIter
->pLeaf
->nn
+1;
2399 iPgidx
+= fts5GetVarint32(&a
[iPgidx
], nExtra
);
2400 pIter
->iEndofDoclist
= iTermOff
+ nExtra
;
2402 pIter
->iPgidxOff
= iPgidx
;
2404 fts5SegIterLoadRowid(p
, pIter
);
2405 fts5SegIterLoadNPos(p
, pIter
);
2408 static sqlite3_stmt
*fts5IdxSelectStmt(Fts5Index
*p
){
2409 if( p
->pIdxSelect
==0 ){
2410 Fts5Config
*pConfig
= p
->pConfig
;
2411 fts5IndexPrepareStmt(p
, &p
->pIdxSelect
, sqlite3_mprintf(
2412 "SELECT pgno FROM '%q'.'%q_idx' WHERE "
2413 "segid=? AND term<=? ORDER BY term DESC LIMIT 1",
2414 pConfig
->zDb
, pConfig
->zName
2417 return p
->pIdxSelect
;
2421 ** Initialize the object pIter to point to term pTerm/nTerm within segment
2422 ** pSeg. If there is no such term in the index, the iterator is set to EOF.
2424 ** If an error occurs, Fts5Index.rc is set to an appropriate error code. If
2425 ** an error has already occurred when this function is called, it is a no-op.
2427 static void fts5SegIterSeekInit(
2428 Fts5Index
*p
, /* FTS5 backend */
2429 const u8
*pTerm
, int nTerm
, /* Term to seek to */
2430 int flags
, /* Mask of FTS5INDEX_XXX flags */
2431 Fts5StructureSegment
*pSeg
, /* Description of segment */
2432 Fts5SegIter
*pIter
/* Object to populate */
2435 int bGe
= (flags
& FTS5INDEX_QUERY_SCAN
);
2436 int bDlidx
= 0; /* True if there is a doclist-index */
2437 sqlite3_stmt
*pIdxSelect
= 0;
2439 assert( bGe
==0 || (flags
& FTS5INDEX_QUERY_DESC
)==0 );
2440 assert( pTerm
&& nTerm
);
2441 memset(pIter
, 0, sizeof(*pIter
));
2444 /* This block sets stack variable iPg to the leaf page number that may
2445 ** contain term (pTerm/nTerm), if it is present in the segment. */
2446 pIdxSelect
= fts5IdxSelectStmt(p
);
2448 sqlite3_bind_int(pIdxSelect
, 1, pSeg
->iSegid
);
2449 sqlite3_bind_blob(pIdxSelect
, 2, pTerm
, nTerm
, SQLITE_STATIC
);
2450 if( SQLITE_ROW
==sqlite3_step(pIdxSelect
) ){
2451 i64 val
= sqlite3_column_int(pIdxSelect
, 0);
2452 iPg
= (int)(val
>>1);
2453 bDlidx
= (val
& 0x0001);
2455 p
->rc
= sqlite3_reset(pIdxSelect
);
2456 sqlite3_bind_null(pIdxSelect
, 2);
2458 if( iPg
<pSeg
->pgnoFirst
){
2459 iPg
= pSeg
->pgnoFirst
;
2463 pIter
->iLeafPgno
= iPg
- 1;
2464 fts5SegIterNextPage(p
, pIter
);
2467 fts5LeafSeek(p
, bGe
, pIter
, pTerm
, nTerm
);
2470 if( p
->rc
==SQLITE_OK
&& bGe
==0 ){
2471 pIter
->flags
|= FTS5_SEGITER_ONETERM
;
2473 if( flags
& FTS5INDEX_QUERY_DESC
){
2474 pIter
->flags
|= FTS5_SEGITER_REVERSE
;
2477 fts5SegIterLoadDlidx(p
, pIter
);
2479 if( flags
& FTS5INDEX_QUERY_DESC
){
2480 fts5SegIterReverse(p
, pIter
);
2485 fts5SegIterSetNext(p
, pIter
);
2489 ** 1) an error has occurred, or
2490 ** 2) the iterator points to EOF, or
2491 ** 3) the iterator points to an entry with term (pTerm/nTerm), or
2492 ** 4) the FTS5INDEX_QUERY_SCAN flag was set and the iterator points
2493 ** to an entry with a term greater than or equal to (pTerm/nTerm).
2495 assert_nc( p
->rc
!=SQLITE_OK
/* 1 */
2496 || pIter
->pLeaf
==0 /* 2 */
2497 || fts5BufferCompareBlob(&pIter
->term
, pTerm
, nTerm
)==0 /* 3 */
2498 || (bGe
&& fts5BufferCompareBlob(&pIter
->term
, pTerm
, nTerm
)>0) /* 4 */
2503 ** Initialize the object pIter to point to term pTerm/nTerm within the
2504 ** in-memory hash table. If there is no such term in the hash-table, the
2505 ** iterator is set to EOF.
2507 ** If an error occurs, Fts5Index.rc is set to an appropriate error code. If
2508 ** an error has already occurred when this function is called, it is a no-op.
2510 static void fts5SegIterHashInit(
2511 Fts5Index
*p
, /* FTS5 backend */
2512 const u8
*pTerm
, int nTerm
, /* Term to seek to */
2513 int flags
, /* Mask of FTS5INDEX_XXX flags */
2514 Fts5SegIter
*pIter
/* Object to populate */
2519 Fts5Data
*pLeaf
= 0;
2522 assert( p
->rc
==SQLITE_OK
);
2524 if( pTerm
==0 || (flags
& FTS5INDEX_QUERY_SCAN
) ){
2525 const u8
*pList
= 0;
2527 p
->rc
= sqlite3Fts5HashScanInit(p
->pHash
, (const char*)pTerm
, nTerm
);
2528 sqlite3Fts5HashScanEntry(p
->pHash
, (const char**)&z
, &pList
, &nList
);
2529 n
= (z
? (int)strlen((const char*)z
) : 0);
2531 pLeaf
= fts5IdxMalloc(p
, sizeof(Fts5Data
));
2533 pLeaf
->p
= (u8
*)pList
;
2537 p
->rc
= sqlite3Fts5HashQuery(p
->pHash
, sizeof(Fts5Data
),
2538 (const char*)pTerm
, nTerm
, (void**)&pLeaf
, &nList
2541 pLeaf
->p
= (u8
*)&pLeaf
[1];
2545 pIter
->flags
|= FTS5_SEGITER_ONETERM
;
2549 sqlite3Fts5BufferSet(&p
->rc
, &pIter
->term
, n
, z
);
2550 pLeaf
->nn
= pLeaf
->szLeaf
= nList
;
2551 pIter
->pLeaf
= pLeaf
;
2552 pIter
->iLeafOffset
= fts5GetVarint(pLeaf
->p
, (u64
*)&pIter
->iRowid
);
2553 pIter
->iEndofDoclist
= pLeaf
->nn
;
2555 if( flags
& FTS5INDEX_QUERY_DESC
){
2556 pIter
->flags
|= FTS5_SEGITER_REVERSE
;
2557 fts5SegIterReverseInitPage(p
, pIter
);
2559 fts5SegIterLoadNPos(p
, pIter
);
2563 fts5SegIterSetNext(p
, pIter
);
2567 ** Zero the iterator passed as the only argument.
2569 static void fts5SegIterClear(Fts5SegIter
*pIter
){
2570 fts5BufferFree(&pIter
->term
);
2571 fts5DataRelease(pIter
->pLeaf
);
2572 fts5DataRelease(pIter
->pNextLeaf
);
2573 fts5DlidxIterFree(pIter
->pDlidx
);
2574 sqlite3_free(pIter
->aRowidOffset
);
2575 memset(pIter
, 0, sizeof(Fts5SegIter
));
2581 ** This function is used as part of the big assert() procedure implemented by
2582 ** fts5AssertMultiIterSetup(). It ensures that the result currently stored
2583 ** in *pRes is the correct result of comparing the current positions of the
2586 static void fts5AssertComparisonResult(
2592 int i1
= p1
- pIter
->aSeg
;
2593 int i2
= p2
- pIter
->aSeg
;
2595 if( p1
->pLeaf
|| p2
->pLeaf
){
2597 assert( pRes
->iFirst
==i2
);
2598 }else if( p2
->pLeaf
==0 ){
2599 assert( pRes
->iFirst
==i1
);
2601 int nMin
= MIN(p1
->term
.n
, p2
->term
.n
);
2602 int res
= fts5Memcmp(p1
->term
.p
, p2
->term
.p
, nMin
);
2603 if( res
==0 ) res
= p1
->term
.n
- p2
->term
.n
;
2606 assert( pRes
->bTermEq
==1 );
2607 assert( p1
->iRowid
!=p2
->iRowid
);
2608 res
= ((p1
->iRowid
> p2
->iRowid
)==pIter
->bRev
) ? -1 : 1;
2610 assert( pRes
->bTermEq
==0 );
2614 assert( pRes
->iFirst
==i1
);
2616 assert( pRes
->iFirst
==i2
);
2623 ** This function is a no-op unless SQLITE_DEBUG is defined when this module
2624 ** is compiled. In that case, this function is essentially an assert()
2625 ** statement used to verify that the contents of the pIter->aFirst[] array
2628 static void fts5AssertMultiIterSetup(Fts5Index
*p
, Fts5Iter
*pIter
){
2629 if( p
->rc
==SQLITE_OK
){
2630 Fts5SegIter
*pFirst
= &pIter
->aSeg
[ pIter
->aFirst
[1].iFirst
];
2633 assert( (pFirst
->pLeaf
==0)==pIter
->base
.bEof
);
2635 /* Check that pIter->iSwitchRowid is set correctly. */
2636 for(i
=0; i
<pIter
->nSeg
; i
++){
2637 Fts5SegIter
*p1
= &pIter
->aSeg
[i
];
2640 || fts5BufferCompare(&pFirst
->term
, &p1
->term
)
2641 || p1
->iRowid
==pIter
->iSwitchRowid
2642 || (p1
->iRowid
<pIter
->iSwitchRowid
)==pIter
->bRev
2646 for(i
=0; i
<pIter
->nSeg
; i
+=2){
2647 Fts5SegIter
*p1
= &pIter
->aSeg
[i
];
2648 Fts5SegIter
*p2
= &pIter
->aSeg
[i
+1];
2649 Fts5CResult
*pRes
= &pIter
->aFirst
[(pIter
->nSeg
+ i
) / 2];
2650 fts5AssertComparisonResult(pIter
, p1
, p2
, pRes
);
2653 for(i
=1; i
<(pIter
->nSeg
/ 2); i
+=2){
2654 Fts5SegIter
*p1
= &pIter
->aSeg
[ pIter
->aFirst
[i
*2].iFirst
];
2655 Fts5SegIter
*p2
= &pIter
->aSeg
[ pIter
->aFirst
[i
*2+1].iFirst
];
2656 Fts5CResult
*pRes
= &pIter
->aFirst
[i
];
2657 fts5AssertComparisonResult(pIter
, p1
, p2
, pRes
);
2662 # define fts5AssertMultiIterSetup(x,y)
2666 ** Do the comparison necessary to populate pIter->aFirst[iOut].
2668 ** If the returned value is non-zero, then it is the index of an entry
2669 ** in the pIter->aSeg[] array that is (a) not at EOF, and (b) pointing
2670 ** to a key that is a duplicate of another, higher priority,
2671 ** segment-iterator in the pSeg->aSeg[] array.
2673 static int fts5MultiIterDoCompare(Fts5Iter
*pIter
, int iOut
){
2674 int i1
; /* Index of left-hand Fts5SegIter */
2675 int i2
; /* Index of right-hand Fts5SegIter */
2677 Fts5SegIter
*p1
; /* Left-hand Fts5SegIter */
2678 Fts5SegIter
*p2
; /* Right-hand Fts5SegIter */
2679 Fts5CResult
*pRes
= &pIter
->aFirst
[iOut
];
2681 assert( iOut
<pIter
->nSeg
&& iOut
>0 );
2682 assert( pIter
->bRev
==0 || pIter
->bRev
==1 );
2684 if( iOut
>=(pIter
->nSeg
/2) ){
2685 i1
= (iOut
- pIter
->nSeg
/2) * 2;
2688 i1
= pIter
->aFirst
[iOut
*2].iFirst
;
2689 i2
= pIter
->aFirst
[iOut
*2+1].iFirst
;
2691 p1
= &pIter
->aSeg
[i1
];
2692 p2
= &pIter
->aSeg
[i2
];
2695 if( p1
->pLeaf
==0 ){ /* If p1 is at EOF */
2697 }else if( p2
->pLeaf
==0 ){ /* If p2 is at EOF */
2700 int res
= fts5BufferCompare(&p1
->term
, &p2
->term
);
2705 if( p1
->iRowid
==p2
->iRowid
){
2706 p1
->bDel
= p2
->bDel
;
2709 res
= ((p1
->iRowid
> p2
->iRowid
)==pIter
->bRev
) ? -1 : +1;
2719 pRes
->iFirst
= (u16
)iRes
;
2724 ** Move the seg-iter so that it points to the first rowid on page iLeafPgno.
2725 ** It is an error if leaf iLeafPgno does not exist or contains no rowids.
2727 static void fts5SegIterGotoPage(
2728 Fts5Index
*p
, /* FTS5 backend object */
2729 Fts5SegIter
*pIter
, /* Iterator to advance */
2732 assert( iLeafPgno
>pIter
->iLeafPgno
);
2734 if( iLeafPgno
>pIter
->pSeg
->pgnoLast
){
2735 p
->rc
= FTS5_CORRUPT
;
2737 fts5DataRelease(pIter
->pNextLeaf
);
2738 pIter
->pNextLeaf
= 0;
2739 pIter
->iLeafPgno
= iLeafPgno
-1;
2740 fts5SegIterNextPage(p
, pIter
);
2741 assert( p
->rc
!=SQLITE_OK
|| pIter
->iLeafPgno
==iLeafPgno
);
2743 if( p
->rc
==SQLITE_OK
&& ALWAYS(pIter
->pLeaf
!=0) ){
2745 u8
*a
= pIter
->pLeaf
->p
;
2746 int n
= pIter
->pLeaf
->szLeaf
;
2748 iOff
= fts5LeafFirstRowidOff(pIter
->pLeaf
);
2749 if( iOff
<4 || iOff
>=n
){
2750 p
->rc
= FTS5_CORRUPT
;
2752 iOff
+= fts5GetVarint(&a
[iOff
], (u64
*)&pIter
->iRowid
);
2753 pIter
->iLeafOffset
= iOff
;
2754 fts5SegIterLoadNPos(p
, pIter
);
2761 ** Advance the iterator passed as the second argument until it is at or
2762 ** past rowid iFrom. Regardless of the value of iFrom, the iterator is
2763 ** always advanced at least once.
2765 static void fts5SegIterNextFrom(
2766 Fts5Index
*p
, /* FTS5 backend object */
2767 Fts5SegIter
*pIter
, /* Iterator to advance */
2768 i64 iMatch
/* Advance iterator at least this far */
2770 int bRev
= (pIter
->flags
& FTS5_SEGITER_REVERSE
);
2771 Fts5DlidxIter
*pDlidx
= pIter
->pDlidx
;
2772 int iLeafPgno
= pIter
->iLeafPgno
;
2775 assert( pIter
->flags
& FTS5_SEGITER_ONETERM
);
2776 assert( pIter
->pDlidx
);
2777 assert( pIter
->pLeaf
);
2780 while( !fts5DlidxIterEof(p
, pDlidx
) && iMatch
>fts5DlidxIterRowid(pDlidx
) ){
2781 iLeafPgno
= fts5DlidxIterPgno(pDlidx
);
2782 fts5DlidxIterNext(p
, pDlidx
);
2784 assert_nc( iLeafPgno
>=pIter
->iLeafPgno
|| p
->rc
);
2785 if( iLeafPgno
>pIter
->iLeafPgno
){
2786 fts5SegIterGotoPage(p
, pIter
, iLeafPgno
);
2790 assert( pIter
->pNextLeaf
==0 );
2791 assert( iMatch
<pIter
->iRowid
);
2792 while( !fts5DlidxIterEof(p
, pDlidx
) && iMatch
<fts5DlidxIterRowid(pDlidx
) ){
2793 fts5DlidxIterPrev(p
, pDlidx
);
2795 iLeafPgno
= fts5DlidxIterPgno(pDlidx
);
2797 assert( fts5DlidxIterEof(p
, pDlidx
) || iLeafPgno
<=pIter
->iLeafPgno
);
2799 if( iLeafPgno
<pIter
->iLeafPgno
){
2800 pIter
->iLeafPgno
= iLeafPgno
+1;
2801 fts5SegIterReverseNewPage(p
, pIter
);
2807 if( bMove
&& p
->rc
==SQLITE_OK
) pIter
->xNext(p
, pIter
, 0);
2808 if( pIter
->pLeaf
==0 ) break;
2809 if( bRev
==0 && pIter
->iRowid
>=iMatch
) break;
2810 if( bRev
!=0 && pIter
->iRowid
<=iMatch
) break;
2812 }while( p
->rc
==SQLITE_OK
);
2817 ** Free the iterator object passed as the second argument.
2819 static void fts5MultiIterFree(Fts5Iter
*pIter
){
2822 for(i
=0; i
<pIter
->nSeg
; i
++){
2823 fts5SegIterClear(&pIter
->aSeg
[i
]);
2825 fts5BufferFree(&pIter
->poslist
);
2826 sqlite3_free(pIter
);
2830 static void fts5MultiIterAdvanced(
2831 Fts5Index
*p
, /* FTS5 backend to iterate within */
2832 Fts5Iter
*pIter
, /* Iterator to update aFirst[] array for */
2833 int iChanged
, /* Index of sub-iterator just advanced */
2834 int iMinset
/* Minimum entry in aFirst[] to set */
2837 for(i
=(pIter
->nSeg
+iChanged
)/2; i
>=iMinset
&& p
->rc
==SQLITE_OK
; i
=i
/2){
2839 if( (iEq
= fts5MultiIterDoCompare(pIter
, i
)) ){
2840 Fts5SegIter
*pSeg
= &pIter
->aSeg
[iEq
];
2841 assert( p
->rc
==SQLITE_OK
);
2842 pSeg
->xNext(p
, pSeg
, 0);
2843 i
= pIter
->nSeg
+ iEq
;
2849 ** Sub-iterator iChanged of iterator pIter has just been advanced. It still
2850 ** points to the same term though - just a different rowid. This function
2851 ** attempts to update the contents of the pIter->aFirst[] accordingly.
2852 ** If it does so successfully, 0 is returned. Otherwise 1.
2854 ** If non-zero is returned, the caller should call fts5MultiIterAdvanced()
2855 ** on the iterator instead. That function does the same as this one, except
2856 ** that it deals with more complicated cases as well.
2858 static int fts5MultiIterAdvanceRowid(
2859 Fts5Iter
*pIter
, /* Iterator to update aFirst[] array for */
2860 int iChanged
, /* Index of sub-iterator just advanced */
2861 Fts5SegIter
**ppFirst
2863 Fts5SegIter
*pNew
= &pIter
->aSeg
[iChanged
];
2865 if( pNew
->iRowid
==pIter
->iSwitchRowid
2866 || (pNew
->iRowid
<pIter
->iSwitchRowid
)==pIter
->bRev
2869 Fts5SegIter
*pOther
= &pIter
->aSeg
[iChanged
^ 0x0001];
2870 pIter
->iSwitchRowid
= pIter
->bRev
? SMALLEST_INT64
: LARGEST_INT64
;
2871 for(i
=(pIter
->nSeg
+iChanged
)/2; 1; i
=i
/2){
2872 Fts5CResult
*pRes
= &pIter
->aFirst
[i
];
2874 assert( pNew
->pLeaf
);
2875 assert( pRes
->bTermEq
==0 || pOther
->pLeaf
);
2877 if( pRes
->bTermEq
){
2878 if( pNew
->iRowid
==pOther
->iRowid
){
2880 }else if( (pOther
->iRowid
>pNew
->iRowid
)==pIter
->bRev
){
2881 pIter
->iSwitchRowid
= pOther
->iRowid
;
2883 }else if( (pOther
->iRowid
>pIter
->iSwitchRowid
)==pIter
->bRev
){
2884 pIter
->iSwitchRowid
= pOther
->iRowid
;
2887 pRes
->iFirst
= (u16
)(pNew
- pIter
->aSeg
);
2890 pOther
= &pIter
->aSeg
[ pIter
->aFirst
[i
^ 0x0001].iFirst
];
2899 ** Set the pIter->bEof variable based on the state of the sub-iterators.
2901 static void fts5MultiIterSetEof(Fts5Iter
*pIter
){
2902 Fts5SegIter
*pSeg
= &pIter
->aSeg
[ pIter
->aFirst
[1].iFirst
];
2903 pIter
->base
.bEof
= pSeg
->pLeaf
==0;
2904 pIter
->iSwitchRowid
= pSeg
->iRowid
;
2908 ** Move the iterator to the next entry.
2910 ** If an error occurs, an error code is left in Fts5Index.rc. It is not
2911 ** considered an error if the iterator reaches EOF, or if it is already at
2912 ** EOF when this function is called.
2914 static void fts5MultiIterNext(
2917 int bFrom
, /* True if argument iFrom is valid */
2918 i64 iFrom
/* Advance at least as far as this */
2920 int bUseFrom
= bFrom
;
2921 assert( pIter
->base
.bEof
==0 );
2922 while( p
->rc
==SQLITE_OK
){
2923 int iFirst
= pIter
->aFirst
[1].iFirst
;
2925 Fts5SegIter
*pSeg
= &pIter
->aSeg
[iFirst
];
2926 assert( p
->rc
==SQLITE_OK
);
2927 if( bUseFrom
&& pSeg
->pDlidx
){
2928 fts5SegIterNextFrom(p
, pSeg
, iFrom
);
2930 pSeg
->xNext(p
, pSeg
, &bNewTerm
);
2933 if( pSeg
->pLeaf
==0 || bNewTerm
2934 || fts5MultiIterAdvanceRowid(pIter
, iFirst
, &pSeg
)
2936 fts5MultiIterAdvanced(p
, pIter
, iFirst
, 1);
2937 fts5MultiIterSetEof(pIter
);
2938 pSeg
= &pIter
->aSeg
[pIter
->aFirst
[1].iFirst
];
2939 if( pSeg
->pLeaf
==0 ) return;
2942 fts5AssertMultiIterSetup(p
, pIter
);
2943 assert( pSeg
==&pIter
->aSeg
[pIter
->aFirst
[1].iFirst
] && pSeg
->pLeaf
);
2944 if( pIter
->bSkipEmpty
==0 || pSeg
->nPos
){
2945 pIter
->xSetOutputs(pIter
, pSeg
);
2952 static void fts5MultiIterNext2(
2955 int *pbNewTerm
/* OUT: True if *might* be new term */
2957 assert( pIter
->bSkipEmpty
);
2958 if( p
->rc
==SQLITE_OK
){
2961 int iFirst
= pIter
->aFirst
[1].iFirst
;
2962 Fts5SegIter
*pSeg
= &pIter
->aSeg
[iFirst
];
2965 assert( p
->rc
==SQLITE_OK
);
2966 pSeg
->xNext(p
, pSeg
, &bNewTerm
);
2967 if( pSeg
->pLeaf
==0 || bNewTerm
2968 || fts5MultiIterAdvanceRowid(pIter
, iFirst
, &pSeg
)
2970 fts5MultiIterAdvanced(p
, pIter
, iFirst
, 1);
2971 fts5MultiIterSetEof(pIter
);
2974 fts5AssertMultiIterSetup(p
, pIter
);
2976 }while( fts5MultiIterIsEmpty(p
, pIter
) );
2980 static void fts5IterSetOutputs_Noop(Fts5Iter
*pUnused1
, Fts5SegIter
*pUnused2
){
2981 UNUSED_PARAM2(pUnused1
, pUnused2
);
2984 static Fts5Iter
*fts5MultiIterAlloc(
2985 Fts5Index
*p
, /* FTS5 backend to iterate within */
2989 int nSlot
; /* Power of two >= nSeg */
2991 for(nSlot
=2; nSlot
<nSeg
; nSlot
=nSlot
*2);
2992 pNew
= fts5IdxMalloc(p
,
2993 sizeof(Fts5Iter
) + /* pNew */
2994 sizeof(Fts5SegIter
) * (nSlot
-1) + /* pNew->aSeg[] */
2995 sizeof(Fts5CResult
) * nSlot
/* pNew->aFirst[] */
2999 pNew
->aFirst
= (Fts5CResult
*)&pNew
->aSeg
[nSlot
];
3001 pNew
->xSetOutputs
= fts5IterSetOutputs_Noop
;
3006 static void fts5PoslistCallback(
3009 const u8
*pChunk
, int nChunk
3011 UNUSED_PARAM(pUnused
);
3012 assert_nc( nChunk
>=0 );
3014 fts5BufferSafeAppendBlob((Fts5Buffer
*)pContext
, pChunk
, nChunk
);
3018 typedef struct PoslistCallbackCtx PoslistCallbackCtx
;
3019 struct PoslistCallbackCtx
{
3020 Fts5Buffer
*pBuf
; /* Append to this buffer */
3021 Fts5Colset
*pColset
; /* Restrict matches to this column */
3022 int eState
; /* See above */
3025 typedef struct PoslistOffsetsCtx PoslistOffsetsCtx
;
3026 struct PoslistOffsetsCtx
{
3027 Fts5Buffer
*pBuf
; /* Append to this buffer */
3028 Fts5Colset
*pColset
; /* Restrict matches to this column */
3034 ** TODO: Make this more efficient!
3036 static int fts5IndexColsetTest(Fts5Colset
*pColset
, int iCol
){
3038 for(i
=0; i
<pColset
->nCol
; i
++){
3039 if( pColset
->aiCol
[i
]==iCol
) return 1;
3044 static void fts5PoslistOffsetsCallback(
3047 const u8
*pChunk
, int nChunk
3049 PoslistOffsetsCtx
*pCtx
= (PoslistOffsetsCtx
*)pContext
;
3050 UNUSED_PARAM(pUnused
);
3051 assert_nc( nChunk
>=0 );
3056 i
+= fts5GetVarint32(&pChunk
[i
], iVal
);
3057 iVal
+= pCtx
->iRead
- 2;
3059 if( fts5IndexColsetTest(pCtx
->pColset
, iVal
) ){
3060 fts5BufferSafeAppendVarint(pCtx
->pBuf
, iVal
+ 2 - pCtx
->iWrite
);
3061 pCtx
->iWrite
= iVal
;
3067 static void fts5PoslistFilterCallback(
3070 const u8
*pChunk
, int nChunk
3072 PoslistCallbackCtx
*pCtx
= (PoslistCallbackCtx
*)pContext
;
3073 UNUSED_PARAM(pUnused
);
3074 assert_nc( nChunk
>=0 );
3076 /* Search through to find the first varint with value 1. This is the
3077 ** start of the next columns hits. */
3081 if( pCtx
->eState
==2 ){
3083 fts5FastGetVarint32(pChunk
, i
, iCol
);
3084 if( fts5IndexColsetTest(pCtx
->pColset
, iCol
) ){
3086 fts5BufferSafeAppendVarint(pCtx
->pBuf
, 1);
3093 while( i
<nChunk
&& pChunk
[i
]!=0x01 ){
3094 while( pChunk
[i
] & 0x80 ) i
++;
3098 fts5BufferSafeAppendBlob(pCtx
->pBuf
, &pChunk
[iStart
], i
-iStart
);
3107 fts5FastGetVarint32(pChunk
, i
, iCol
);
3108 pCtx
->eState
= fts5IndexColsetTest(pCtx
->pColset
, iCol
);
3110 fts5BufferSafeAppendBlob(pCtx
->pBuf
, &pChunk
[iStart
], i
-iStart
);
3119 static void fts5ChunkIterate(
3120 Fts5Index
*p
, /* Index object */
3121 Fts5SegIter
*pSeg
, /* Poslist of this iterator */
3122 void *pCtx
, /* Context pointer for xChunk callback */
3123 void (*xChunk
)(Fts5Index
*, void*, const u8
*, int)
3125 int nRem
= pSeg
->nPos
; /* Number of bytes still to come */
3126 Fts5Data
*pData
= 0;
3127 u8
*pChunk
= &pSeg
->pLeaf
->p
[pSeg
->iLeafOffset
];
3128 int nChunk
= MIN(nRem
, pSeg
->pLeaf
->szLeaf
- pSeg
->iLeafOffset
);
3129 int pgno
= pSeg
->iLeafPgno
;
3132 /* This function does not work with detail=none databases. */
3133 assert( p
->pConfig
->eDetail
!=FTS5_DETAIL_NONE
);
3135 if( (pSeg
->flags
& FTS5_SEGITER_REVERSE
)==0 ){
3140 xChunk(p
, pCtx
, pChunk
, nChunk
);
3142 fts5DataRelease(pData
);
3145 }else if( pSeg
->pSeg
==0 ){
3146 p
->rc
= FTS5_CORRUPT
;
3150 pData
= fts5LeafRead(p
, FTS5_SEGMENT_ROWID(pSeg
->pSeg
->iSegid
, pgno
));
3151 if( pData
==0 ) break;
3152 pChunk
= &pData
->p
[4];
3153 nChunk
= MIN(nRem
, pData
->szLeaf
- 4);
3154 if( pgno
==pgnoSave
){
3155 assert( pSeg
->pNextLeaf
==0 );
3156 pSeg
->pNextLeaf
= pData
;
3164 ** Iterator pIter currently points to a valid entry (not EOF). This
3165 ** function appends the position list data for the current entry to
3166 ** buffer pBuf. It does not make a copy of the position-list size
3169 static void fts5SegiterPoslist(
3172 Fts5Colset
*pColset
,
3177 if( 0==fts5BufferGrow(&p
->rc
, pBuf
, pSeg
->nPos
+FTS5_DATA_ZERO_PADDING
) ){
3178 assert( pBuf
->p
!=0 );
3179 assert( pBuf
->nSpace
>= pBuf
->n
+pSeg
->nPos
+FTS5_DATA_ZERO_PADDING
);
3180 memset(&pBuf
->p
[pBuf
->n
+pSeg
->nPos
], 0, FTS5_DATA_ZERO_PADDING
);
3182 fts5ChunkIterate(p
, pSeg
, (void*)pBuf
, fts5PoslistCallback
);
3184 if( p
->pConfig
->eDetail
==FTS5_DETAIL_FULL
){
3185 PoslistCallbackCtx sCtx
;
3187 sCtx
.pColset
= pColset
;
3188 sCtx
.eState
= fts5IndexColsetTest(pColset
, 0);
3189 assert( sCtx
.eState
==0 || sCtx
.eState
==1 );
3190 fts5ChunkIterate(p
, pSeg
, (void*)&sCtx
, fts5PoslistFilterCallback
);
3192 PoslistOffsetsCtx sCtx
;
3193 memset(&sCtx
, 0, sizeof(sCtx
));
3195 sCtx
.pColset
= pColset
;
3196 fts5ChunkIterate(p
, pSeg
, (void*)&sCtx
, fts5PoslistOffsetsCallback
);
3203 ** Parameter pPos points to a buffer containing a position list, size nPos.
3204 ** This function filters it according to pColset (which must be non-NULL)
3205 ** and sets pIter->base.pData/nData to point to the new position list.
3206 ** If memory is required for the new position list, use buffer pIter->poslist.
3207 ** Or, if the new position list is a contiguous subset of the input, set
3208 ** pIter->base.pData/nData to point directly to it.
3210 ** This function is a no-op if *pRc is other than SQLITE_OK when it is
3211 ** called. If an OOM error is encountered, *pRc is set to SQLITE_NOMEM
3212 ** before returning.
3214 static void fts5IndexExtractColset(
3216 Fts5Colset
*pColset
, /* Colset to filter on */
3217 const u8
*pPos
, int nPos
, /* Position list */
3220 if( *pRc
==SQLITE_OK
){
3222 const u8
*aCopy
= p
;
3223 const u8
*pEnd
= &p
[nPos
]; /* One byte past end of position list */
3227 if( pColset
->nCol
>1 && sqlite3Fts5BufferSize(pRc
, &pIter
->poslist
, nPos
) ){
3232 while( pColset
->aiCol
[i
]<iCurrent
){
3234 if( i
==pColset
->nCol
){
3235 pIter
->base
.pData
= pIter
->poslist
.p
;
3236 pIter
->base
.nData
= pIter
->poslist
.n
;
3241 /* Advance pointer p until it points to pEnd or an 0x01 byte that is
3242 ** not part of a varint */
3243 while( p
<pEnd
&& *p
!=0x01 ){
3244 while( *p
++ & 0x80 );
3247 if( pColset
->aiCol
[i
]==iCurrent
){
3248 if( pColset
->nCol
==1 ){
3249 pIter
->base
.pData
= aCopy
;
3250 pIter
->base
.nData
= p
-aCopy
;
3253 fts5BufferSafeAppendBlob(&pIter
->poslist
, aCopy
, p
-aCopy
);
3256 pIter
->base
.pData
= pIter
->poslist
.p
;
3257 pIter
->base
.nData
= pIter
->poslist
.n
;
3262 if( iCurrent
& 0x80 ){
3264 p
+= fts5GetVarint32(p
, iCurrent
);
3272 ** xSetOutputs callback used by detail=none tables.
3274 static void fts5IterSetOutputs_None(Fts5Iter
*pIter
, Fts5SegIter
*pSeg
){
3275 assert( pIter
->pIndex
->pConfig
->eDetail
==FTS5_DETAIL_NONE
);
3276 pIter
->base
.iRowid
= pSeg
->iRowid
;
3277 pIter
->base
.nData
= pSeg
->nPos
;
3281 ** xSetOutputs callback used by detail=full and detail=col tables when no
3282 ** column filters are specified.
3284 static void fts5IterSetOutputs_Nocolset(Fts5Iter
*pIter
, Fts5SegIter
*pSeg
){
3285 pIter
->base
.iRowid
= pSeg
->iRowid
;
3286 pIter
->base
.nData
= pSeg
->nPos
;
3288 assert( pIter
->pIndex
->pConfig
->eDetail
!=FTS5_DETAIL_NONE
);
3289 assert( pIter
->pColset
==0 );
3291 if( pSeg
->iLeafOffset
+pSeg
->nPos
<=pSeg
->pLeaf
->szLeaf
){
3292 /* All data is stored on the current page. Populate the output
3293 ** variables to point into the body of the page object. */
3294 pIter
->base
.pData
= &pSeg
->pLeaf
->p
[pSeg
->iLeafOffset
];
3296 /* The data is distributed over two or more pages. Copy it into the
3297 ** Fts5Iter.poslist buffer and then set the output pointer to point
3298 ** to this buffer. */
3299 fts5BufferZero(&pIter
->poslist
);
3300 fts5SegiterPoslist(pIter
->pIndex
, pSeg
, 0, &pIter
->poslist
);
3301 pIter
->base
.pData
= pIter
->poslist
.p
;
3306 ** xSetOutputs callback used when the Fts5Colset object has nCol==0 (match
3307 ** against no columns at all).
3309 static void fts5IterSetOutputs_ZeroColset(Fts5Iter
*pIter
, Fts5SegIter
*pSeg
){
3311 pIter
->base
.nData
= 0;
3315 ** xSetOutputs callback used by detail=col when there is a column filter
3316 ** and there are 100 or more columns. Also called as a fallback from
3317 ** fts5IterSetOutputs_Col100 if the column-list spans more than one page.
3319 static void fts5IterSetOutputs_Col(Fts5Iter
*pIter
, Fts5SegIter
*pSeg
){
3320 fts5BufferZero(&pIter
->poslist
);
3321 fts5SegiterPoslist(pIter
->pIndex
, pSeg
, pIter
->pColset
, &pIter
->poslist
);
3322 pIter
->base
.iRowid
= pSeg
->iRowid
;
3323 pIter
->base
.pData
= pIter
->poslist
.p
;
3324 pIter
->base
.nData
= pIter
->poslist
.n
;
3328 ** xSetOutputs callback used when:
3331 ** * there is a column filter, and
3332 ** * the table contains 100 or fewer columns.
3334 ** The last point is to ensure all column numbers are stored as
3335 ** single-byte varints.
3337 static void fts5IterSetOutputs_Col100(Fts5Iter
*pIter
, Fts5SegIter
*pSeg
){
3339 assert( pIter
->pIndex
->pConfig
->eDetail
==FTS5_DETAIL_COLUMNS
);
3340 assert( pIter
->pColset
);
3342 if( pSeg
->iLeafOffset
+pSeg
->nPos
>pSeg
->pLeaf
->szLeaf
){
3343 fts5IterSetOutputs_Col(pIter
, pSeg
);
3345 u8
*a
= (u8
*)&pSeg
->pLeaf
->p
[pSeg
->iLeafOffset
];
3346 u8
*pEnd
= (u8
*)&a
[pSeg
->nPos
];
3348 int *aiCol
= pIter
->pColset
->aiCol
;
3349 int *aiColEnd
= &aiCol
[pIter
->pColset
->nCol
];
3351 u8
*aOut
= pIter
->poslist
.p
;
3354 pIter
->base
.iRowid
= pSeg
->iRowid
;
3357 iPrev
+= (int)a
++[0] - 2;
3358 while( *aiCol
<iPrev
){
3360 if( aiCol
==aiColEnd
) goto setoutputs_col_out
;
3362 if( *aiCol
==iPrev
){
3363 *aOut
++ = (u8
)((iPrev
- iPrevOut
) + 2);
3369 pIter
->base
.pData
= pIter
->poslist
.p
;
3370 pIter
->base
.nData
= aOut
- pIter
->poslist
.p
;
3375 ** xSetOutputs callback used by detail=full when there is a column filter.
3377 static void fts5IterSetOutputs_Full(Fts5Iter
*pIter
, Fts5SegIter
*pSeg
){
3378 Fts5Colset
*pColset
= pIter
->pColset
;
3379 pIter
->base
.iRowid
= pSeg
->iRowid
;
3381 assert( pIter
->pIndex
->pConfig
->eDetail
==FTS5_DETAIL_FULL
);
3384 if( pSeg
->iLeafOffset
+pSeg
->nPos
<=pSeg
->pLeaf
->szLeaf
){
3385 /* All data is stored on the current page. Populate the output
3386 ** variables to point into the body of the page object. */
3387 const u8
*a
= &pSeg
->pLeaf
->p
[pSeg
->iLeafOffset
];
3388 int *pRc
= &pIter
->pIndex
->rc
;
3389 fts5BufferZero(&pIter
->poslist
);
3390 fts5IndexExtractColset(pRc
, pColset
, a
, pSeg
->nPos
, pIter
);
3392 /* The data is distributed over two or more pages. Copy it into the
3393 ** Fts5Iter.poslist buffer and then set the output pointer to point
3394 ** to this buffer. */
3395 fts5BufferZero(&pIter
->poslist
);
3396 fts5SegiterPoslist(pIter
->pIndex
, pSeg
, pColset
, &pIter
->poslist
);
3397 pIter
->base
.pData
= pIter
->poslist
.p
;
3398 pIter
->base
.nData
= pIter
->poslist
.n
;
3402 static void fts5IterSetOutputCb(int *pRc
, Fts5Iter
*pIter
){
3403 assert( pIter
!=0 || (*pRc
)!=SQLITE_OK
);
3404 if( *pRc
==SQLITE_OK
){
3405 Fts5Config
*pConfig
= pIter
->pIndex
->pConfig
;
3406 if( pConfig
->eDetail
==FTS5_DETAIL_NONE
){
3407 pIter
->xSetOutputs
= fts5IterSetOutputs_None
;
3410 else if( pIter
->pColset
==0 ){
3411 pIter
->xSetOutputs
= fts5IterSetOutputs_Nocolset
;
3414 else if( pIter
->pColset
->nCol
==0 ){
3415 pIter
->xSetOutputs
= fts5IterSetOutputs_ZeroColset
;
3418 else if( pConfig
->eDetail
==FTS5_DETAIL_FULL
){
3419 pIter
->xSetOutputs
= fts5IterSetOutputs_Full
;
3423 assert( pConfig
->eDetail
==FTS5_DETAIL_COLUMNS
);
3424 if( pConfig
->nCol
<=100 ){
3425 pIter
->xSetOutputs
= fts5IterSetOutputs_Col100
;
3426 sqlite3Fts5BufferSize(pRc
, &pIter
->poslist
, pConfig
->nCol
);
3428 pIter
->xSetOutputs
= fts5IterSetOutputs_Col
;
3436 ** Allocate a new Fts5Iter object.
3438 ** The new object will be used to iterate through data in structure pStruct.
3439 ** If iLevel is -ve, then all data in all segments is merged. Or, if iLevel
3440 ** is zero or greater, data from the first nSegment segments on level iLevel
3443 ** The iterator initially points to the first term/rowid entry in the
3446 static void fts5MultiIterNew(
3447 Fts5Index
*p
, /* FTS5 backend to iterate within */
3448 Fts5Structure
*pStruct
, /* Structure of specific index */
3449 int flags
, /* FTS5INDEX_QUERY_XXX flags */
3450 Fts5Colset
*pColset
, /* Colset to filter on (or NULL) */
3451 const u8
*pTerm
, int nTerm
, /* Term to seek to (or NULL/0) */
3452 int iLevel
, /* Level to iterate (-1 for all) */
3453 int nSegment
, /* Number of segments to merge (iLevel>=0) */
3454 Fts5Iter
**ppOut
/* New object */
3456 int nSeg
= 0; /* Number of segment-iters in use */
3457 int iIter
= 0; /* */
3458 int iSeg
; /* Used to iterate through segments */
3459 Fts5StructureLevel
*pLvl
;
3462 assert( (pTerm
==0 && nTerm
==0) || iLevel
<0 );
3464 /* Allocate space for the new multi-seg-iterator. */
3465 if( p
->rc
==SQLITE_OK
){
3467 assert( pStruct
->nSegment
==fts5StructureCountSegments(pStruct
) );
3468 nSeg
= pStruct
->nSegment
;
3469 nSeg
+= (p
->pHash
? 1 : 0);
3471 nSeg
= MIN(pStruct
->aLevel
[iLevel
].nSeg
, nSegment
);
3474 *ppOut
= pNew
= fts5MultiIterAlloc(p
, nSeg
);
3476 assert( p
->rc
!=SQLITE_OK
);
3477 goto fts5MultiIterNew_post_check
;
3479 pNew
->bRev
= (0!=(flags
& FTS5INDEX_QUERY_DESC
));
3480 pNew
->bSkipEmpty
= (0!=(flags
& FTS5INDEX_QUERY_SKIPEMPTY
));
3481 pNew
->pColset
= pColset
;
3482 if( (flags
& FTS5INDEX_QUERY_NOOUTPUT
)==0 ){
3483 fts5IterSetOutputCb(&p
->rc
, pNew
);
3486 /* Initialize each of the component segment iterators. */
3487 if( p
->rc
==SQLITE_OK
){
3489 Fts5StructureLevel
*pEnd
= &pStruct
->aLevel
[pStruct
->nLevel
];
3491 /* Add a segment iterator for the current contents of the hash table. */
3492 Fts5SegIter
*pIter
= &pNew
->aSeg
[iIter
++];
3493 fts5SegIterHashInit(p
, pTerm
, nTerm
, flags
, pIter
);
3495 for(pLvl
=&pStruct
->aLevel
[0]; pLvl
<pEnd
; pLvl
++){
3496 for(iSeg
=pLvl
->nSeg
-1; iSeg
>=0; iSeg
--){
3497 Fts5StructureSegment
*pSeg
= &pLvl
->aSeg
[iSeg
];
3498 Fts5SegIter
*pIter
= &pNew
->aSeg
[iIter
++];
3500 fts5SegIterInit(p
, pSeg
, pIter
);
3502 fts5SegIterSeekInit(p
, pTerm
, nTerm
, flags
, pSeg
, pIter
);
3507 pLvl
= &pStruct
->aLevel
[iLevel
];
3508 for(iSeg
=nSeg
-1; iSeg
>=0; iSeg
--){
3509 fts5SegIterInit(p
, &pLvl
->aSeg
[iSeg
], &pNew
->aSeg
[iIter
++]);
3512 assert( iIter
==nSeg
);
3515 /* If the above was successful, each component iterators now points
3516 ** to the first entry in its segment. In this case initialize the
3517 ** aFirst[] array. Or, if an error has occurred, free the iterator
3518 ** object and set the output variable to NULL. */
3519 if( p
->rc
==SQLITE_OK
){
3520 for(iIter
=pNew
->nSeg
-1; iIter
>0; iIter
--){
3522 if( (iEq
= fts5MultiIterDoCompare(pNew
, iIter
)) ){
3523 Fts5SegIter
*pSeg
= &pNew
->aSeg
[iEq
];
3524 if( p
->rc
==SQLITE_OK
) pSeg
->xNext(p
, pSeg
, 0);
3525 fts5MultiIterAdvanced(p
, pNew
, iEq
, iIter
);
3528 fts5MultiIterSetEof(pNew
);
3529 fts5AssertMultiIterSetup(p
, pNew
);
3531 if( pNew
->bSkipEmpty
&& fts5MultiIterIsEmpty(p
, pNew
) ){
3532 fts5MultiIterNext(p
, pNew
, 0, 0);
3533 }else if( pNew
->base
.bEof
==0 ){
3534 Fts5SegIter
*pSeg
= &pNew
->aSeg
[pNew
->aFirst
[1].iFirst
];
3535 pNew
->xSetOutputs(pNew
, pSeg
);
3539 fts5MultiIterFree(pNew
);
3543 fts5MultiIterNew_post_check
:
3544 assert( (*ppOut
)!=0 || p
->rc
!=SQLITE_OK
);
3549 ** Create an Fts5Iter that iterates through the doclist provided
3550 ** as the second argument.
3552 static void fts5MultiIterNew2(
3553 Fts5Index
*p
, /* FTS5 backend to iterate within */
3554 Fts5Data
*pData
, /* Doclist to iterate through */
3555 int bDesc
, /* True for descending rowid order */
3556 Fts5Iter
**ppOut
/* New object */
3559 pNew
= fts5MultiIterAlloc(p
, 2);
3561 Fts5SegIter
*pIter
= &pNew
->aSeg
[1];
3563 pIter
->flags
= FTS5_SEGITER_ONETERM
;
3564 if( pData
->szLeaf
>0 ){
3565 pIter
->pLeaf
= pData
;
3566 pIter
->iLeafOffset
= fts5GetVarint(pData
->p
, (u64
*)&pIter
->iRowid
);
3567 pIter
->iEndofDoclist
= pData
->nn
;
3568 pNew
->aFirst
[1].iFirst
= 1;
3571 pIter
->flags
|= FTS5_SEGITER_REVERSE
;
3572 fts5SegIterReverseInitPage(p
, pIter
);
3574 fts5SegIterLoadNPos(p
, pIter
);
3578 pNew
->base
.bEof
= 1;
3580 fts5SegIterSetNext(p
, pIter
);
3585 fts5DataRelease(pData
);
3589 ** Return true if the iterator is at EOF or if an error has occurred.
3592 static int fts5MultiIterEof(Fts5Index
*p
, Fts5Iter
*pIter
){
3593 assert( pIter
!=0 || p
->rc
!=SQLITE_OK
);
3594 assert( p
->rc
!=SQLITE_OK
3595 || (pIter
->aSeg
[ pIter
->aFirst
[1].iFirst
].pLeaf
==0)==pIter
->base
.bEof
3597 return (p
->rc
|| pIter
->base
.bEof
);
3601 ** Return the rowid of the entry that the iterator currently points
3602 ** to. If the iterator points to EOF when this function is called the
3603 ** results are undefined.
3605 static i64
fts5MultiIterRowid(Fts5Iter
*pIter
){
3606 assert( pIter
->aSeg
[ pIter
->aFirst
[1].iFirst
].pLeaf
);
3607 return pIter
->aSeg
[ pIter
->aFirst
[1].iFirst
].iRowid
;
3611 ** Move the iterator to the next entry at or following iMatch.
3613 static void fts5MultiIterNextFrom(
3620 fts5MultiIterNext(p
, pIter
, 1, iMatch
);
3621 if( fts5MultiIterEof(p
, pIter
) ) break;
3622 iRowid
= fts5MultiIterRowid(pIter
);
3623 if( pIter
->bRev
==0 && iRowid
>=iMatch
) break;
3624 if( pIter
->bRev
!=0 && iRowid
<=iMatch
) break;
3629 ** Return a pointer to a buffer containing the term associated with the
3630 ** entry that the iterator currently points to.
3632 static const u8
*fts5MultiIterTerm(Fts5Iter
*pIter
, int *pn
){
3633 Fts5SegIter
*p
= &pIter
->aSeg
[ pIter
->aFirst
[1].iFirst
];
3639 ** Allocate a new segment-id for the structure pStruct. The new segment
3640 ** id must be between 1 and 65335 inclusive, and must not be used by
3641 ** any currently existing segment. If a free segment id cannot be found,
3642 ** SQLITE_FULL is returned.
3644 ** If an error has already occurred, this function is a no-op. 0 is
3645 ** returned in this case.
3647 static int fts5AllocateSegid(Fts5Index
*p
, Fts5Structure
*pStruct
){
3650 if( p
->rc
==SQLITE_OK
){
3651 if( pStruct
->nSegment
>=FTS5_MAX_SEGMENT
){
3652 p
->rc
= SQLITE_FULL
;
3654 /* FTS5_MAX_SEGMENT is currently defined as 2000. So the following
3655 ** array is 63 elements, or 252 bytes, in size. */
3656 u32 aUsed
[(FTS5_MAX_SEGMENT
+31) / 32];
3660 memset(aUsed
, 0, sizeof(aUsed
));
3661 for(iLvl
=0; iLvl
<pStruct
->nLevel
; iLvl
++){
3662 for(iSeg
=0; iSeg
<pStruct
->aLevel
[iLvl
].nSeg
; iSeg
++){
3663 int iId
= pStruct
->aLevel
[iLvl
].aSeg
[iSeg
].iSegid
;
3664 if( iId
<=FTS5_MAX_SEGMENT
&& iId
>0 ){
3665 aUsed
[(iId
-1) / 32] |= (u32
)1 << ((iId
-1) % 32);
3670 for(i
=0; aUsed
[i
]==0xFFFFFFFF; i
++);
3672 for(iSegid
=0; mask
& ((u32
)1 << iSegid
); iSegid
++);
3676 for(iLvl
=0; iLvl
<pStruct
->nLevel
; iLvl
++){
3677 for(iSeg
=0; iSeg
<pStruct
->aLevel
[iLvl
].nSeg
; iSeg
++){
3678 assert_nc( iSegid
!=pStruct
->aLevel
[iLvl
].aSeg
[iSeg
].iSegid
);
3681 assert_nc( iSegid
>0 && iSegid
<=FTS5_MAX_SEGMENT
);
3684 sqlite3_stmt
*pIdxSelect
= fts5IdxSelectStmt(p
);
3685 if( p
->rc
==SQLITE_OK
){
3686 u8 aBlob
[2] = {0xff, 0xff};
3687 sqlite3_bind_int(pIdxSelect
, 1, iSegid
);
3688 sqlite3_bind_blob(pIdxSelect
, 2, aBlob
, 2, SQLITE_STATIC
);
3689 assert_nc( sqlite3_step(pIdxSelect
)!=SQLITE_ROW
);
3690 p
->rc
= sqlite3_reset(pIdxSelect
);
3691 sqlite3_bind_null(pIdxSelect
, 2);
3702 ** Discard all data currently cached in the hash-tables.
3704 static void fts5IndexDiscardData(Fts5Index
*p
){
3705 assert( p
->pHash
|| p
->nPendingData
==0 );
3707 sqlite3Fts5HashClear(p
->pHash
);
3708 p
->nPendingData
= 0;
3713 ** Return the size of the prefix, in bytes, that buffer
3714 ** (pNew/<length-unknown>) shares with buffer (pOld/nOld).
3716 ** Buffer (pNew/<length-unknown>) is guaranteed to be greater
3717 ** than buffer (pOld/nOld).
3719 static int fts5PrefixCompress(int nOld
, const u8
*pOld
, const u8
*pNew
){
3721 for(i
=0; i
<nOld
; i
++){
3722 if( pOld
[i
]!=pNew
[i
] ) break;
3727 static void fts5WriteDlidxClear(
3729 Fts5SegWriter
*pWriter
,
3730 int bFlush
/* If true, write dlidx to disk */
3733 assert( bFlush
==0 || (pWriter
->nDlidx
>0 && pWriter
->aDlidx
[0].buf
.n
>0) );
3734 for(i
=0; i
<pWriter
->nDlidx
; i
++){
3735 Fts5DlidxWriter
*pDlidx
= &pWriter
->aDlidx
[i
];
3736 if( pDlidx
->buf
.n
==0 ) break;
3738 assert( pDlidx
->pgno
!=0 );
3740 FTS5_DLIDX_ROWID(pWriter
->iSegid
, i
, pDlidx
->pgno
),
3741 pDlidx
->buf
.p
, pDlidx
->buf
.n
3744 sqlite3Fts5BufferZero(&pDlidx
->buf
);
3745 pDlidx
->bPrevValid
= 0;
3750 ** Grow the pWriter->aDlidx[] array to at least nLvl elements in size.
3751 ** Any new array elements are zeroed before returning.
3753 static int fts5WriteDlidxGrow(
3755 Fts5SegWriter
*pWriter
,
3758 if( p
->rc
==SQLITE_OK
&& nLvl
>=pWriter
->nDlidx
){
3759 Fts5DlidxWriter
*aDlidx
= (Fts5DlidxWriter
*)sqlite3_realloc64(
3760 pWriter
->aDlidx
, sizeof(Fts5DlidxWriter
) * nLvl
3763 p
->rc
= SQLITE_NOMEM
;
3765 size_t nByte
= sizeof(Fts5DlidxWriter
) * (nLvl
- pWriter
->nDlidx
);
3766 memset(&aDlidx
[pWriter
->nDlidx
], 0, nByte
);
3767 pWriter
->aDlidx
= aDlidx
;
3768 pWriter
->nDlidx
= nLvl
;
3775 ** If the current doclist-index accumulating in pWriter->aDlidx[] is large
3776 ** enough, flush it to disk and return 1. Otherwise discard it and return
3779 static int fts5WriteFlushDlidx(Fts5Index
*p
, Fts5SegWriter
*pWriter
){
3782 /* If there were FTS5_MIN_DLIDX_SIZE or more empty leaf pages written
3783 ** to the database, also write the doclist-index to disk. */
3784 if( pWriter
->aDlidx
[0].buf
.n
>0 && pWriter
->nEmpty
>=FTS5_MIN_DLIDX_SIZE
){
3787 fts5WriteDlidxClear(p
, pWriter
, bFlag
);
3788 pWriter
->nEmpty
= 0;
3793 ** This function is called whenever processing of the doclist for the
3794 ** last term on leaf page (pWriter->iBtPage) is completed.
3796 ** The doclist-index for that term is currently stored in-memory within the
3797 ** Fts5SegWriter.aDlidx[] array. If it is large enough, this function
3798 ** writes it out to disk. Or, if it is too small to bother with, discards
3801 ** Fts5SegWriter.btterm currently contains the first term on page iBtPage.
3803 static void fts5WriteFlushBtree(Fts5Index
*p
, Fts5SegWriter
*pWriter
){
3806 assert( pWriter
->iBtPage
|| pWriter
->nEmpty
==0 );
3807 if( pWriter
->iBtPage
==0 ) return;
3808 bFlag
= fts5WriteFlushDlidx(p
, pWriter
);
3810 if( p
->rc
==SQLITE_OK
){
3811 const char *z
= (pWriter
->btterm
.n
>0?(const char*)pWriter
->btterm
.p
:"");
3812 /* The following was already done in fts5WriteInit(): */
3813 /* sqlite3_bind_int(p->pIdxWriter, 1, pWriter->iSegid); */
3814 sqlite3_bind_blob(p
->pIdxWriter
, 2, z
, pWriter
->btterm
.n
, SQLITE_STATIC
);
3815 sqlite3_bind_int64(p
->pIdxWriter
, 3, bFlag
+ ((i64
)pWriter
->iBtPage
<<1));
3816 sqlite3_step(p
->pIdxWriter
);
3817 p
->rc
= sqlite3_reset(p
->pIdxWriter
);
3818 sqlite3_bind_null(p
->pIdxWriter
, 2);
3820 pWriter
->iBtPage
= 0;
3824 ** This is called once for each leaf page except the first that contains
3825 ** at least one term. Argument (nTerm/pTerm) is the split-key - a term that
3826 ** is larger than all terms written to earlier leaves, and equal to or
3827 ** smaller than the first term on the new leaf.
3829 ** If an error occurs, an error code is left in Fts5Index.rc. If an error
3830 ** has already occurred when this function is called, it is a no-op.
3832 static void fts5WriteBtreeTerm(
3833 Fts5Index
*p
, /* FTS5 backend object */
3834 Fts5SegWriter
*pWriter
, /* Writer object */
3835 int nTerm
, const u8
*pTerm
/* First term on new page */
3837 fts5WriteFlushBtree(p
, pWriter
);
3838 if( p
->rc
==SQLITE_OK
){
3839 fts5BufferSet(&p
->rc
, &pWriter
->btterm
, nTerm
, pTerm
);
3840 pWriter
->iBtPage
= pWriter
->writer
.pgno
;
3845 ** This function is called when flushing a leaf page that contains no
3846 ** terms at all to disk.
3848 static void fts5WriteBtreeNoTerm(
3849 Fts5Index
*p
, /* FTS5 backend object */
3850 Fts5SegWriter
*pWriter
/* Writer object */
3852 /* If there were no rowids on the leaf page either and the doclist-index
3853 ** has already been started, append an 0x00 byte to it. */
3854 if( pWriter
->bFirstRowidInPage
&& pWriter
->aDlidx
[0].buf
.n
>0 ){
3855 Fts5DlidxWriter
*pDlidx
= &pWriter
->aDlidx
[0];
3856 assert( pDlidx
->bPrevValid
);
3857 sqlite3Fts5BufferAppendVarint(&p
->rc
, &pDlidx
->buf
, 0);
3860 /* Increment the "number of sequential leaves without a term" counter. */
3864 static i64
fts5DlidxExtractFirstRowid(Fts5Buffer
*pBuf
){
3868 iOff
= 1 + fts5GetVarint(&pBuf
->p
[1], (u64
*)&iRowid
);
3869 fts5GetVarint(&pBuf
->p
[iOff
], (u64
*)&iRowid
);
3874 ** Rowid iRowid has just been appended to the current leaf page. It is the
3875 ** first on the page. This function appends an appropriate entry to the current
3878 static void fts5WriteDlidxAppend(
3880 Fts5SegWriter
*pWriter
,
3886 for(i
=0; p
->rc
==SQLITE_OK
&& bDone
==0; i
++){
3888 Fts5DlidxWriter
*pDlidx
= &pWriter
->aDlidx
[i
];
3890 if( pDlidx
->buf
.n
>=p
->pConfig
->pgsz
){
3891 /* The current doclist-index page is full. Write it to disk and push
3892 ** a copy of iRowid (which will become the first rowid on the next
3893 ** doclist-index leaf page) up into the next level of the b-tree
3894 ** hierarchy. If the node being flushed is currently the root node,
3895 ** also push its first rowid upwards. */
3896 pDlidx
->buf
.p
[0] = 0x01; /* Not the root node */
3898 FTS5_DLIDX_ROWID(pWriter
->iSegid
, i
, pDlidx
->pgno
),
3899 pDlidx
->buf
.p
, pDlidx
->buf
.n
3901 fts5WriteDlidxGrow(p
, pWriter
, i
+2);
3902 pDlidx
= &pWriter
->aDlidx
[i
];
3903 if( p
->rc
==SQLITE_OK
&& pDlidx
[1].buf
.n
==0 ){
3904 i64 iFirst
= fts5DlidxExtractFirstRowid(&pDlidx
->buf
);
3906 /* This was the root node. Push its first rowid up to the new root. */
3907 pDlidx
[1].pgno
= pDlidx
->pgno
;
3908 sqlite3Fts5BufferAppendVarint(&p
->rc
, &pDlidx
[1].buf
, 0);
3909 sqlite3Fts5BufferAppendVarint(&p
->rc
, &pDlidx
[1].buf
, pDlidx
->pgno
);
3910 sqlite3Fts5BufferAppendVarint(&p
->rc
, &pDlidx
[1].buf
, iFirst
);
3911 pDlidx
[1].bPrevValid
= 1;
3912 pDlidx
[1].iPrev
= iFirst
;
3915 sqlite3Fts5BufferZero(&pDlidx
->buf
);
3916 pDlidx
->bPrevValid
= 0;
3922 if( pDlidx
->bPrevValid
){
3923 iVal
= iRowid
- pDlidx
->iPrev
;
3925 i64 iPgno
= (i
==0 ? pWriter
->writer
.pgno
: pDlidx
[-1].pgno
);
3926 assert( pDlidx
->buf
.n
==0 );
3927 sqlite3Fts5BufferAppendVarint(&p
->rc
, &pDlidx
->buf
, !bDone
);
3928 sqlite3Fts5BufferAppendVarint(&p
->rc
, &pDlidx
->buf
, iPgno
);
3932 sqlite3Fts5BufferAppendVarint(&p
->rc
, &pDlidx
->buf
, iVal
);
3933 pDlidx
->bPrevValid
= 1;
3934 pDlidx
->iPrev
= iRowid
;
3938 static void fts5WriteFlushLeaf(Fts5Index
*p
, Fts5SegWriter
*pWriter
){
3939 static const u8 zero
[] = { 0x00, 0x00, 0x00, 0x00 };
3940 Fts5PageWriter
*pPage
= &pWriter
->writer
;
3943 assert( (pPage
->pgidx
.n
==0)==(pWriter
->bFirstTermInPage
) );
3945 /* Set the szLeaf header field. */
3946 assert( 0==fts5GetU16(&pPage
->buf
.p
[2]) );
3947 fts5PutU16(&pPage
->buf
.p
[2], (u16
)pPage
->buf
.n
);
3949 if( pWriter
->bFirstTermInPage
){
3950 /* No term was written to this page. */
3951 assert( pPage
->pgidx
.n
==0 );
3952 fts5WriteBtreeNoTerm(p
, pWriter
);
3954 /* Append the pgidx to the page buffer. Set the szLeaf header field. */
3955 fts5BufferAppendBlob(&p
->rc
, &pPage
->buf
, pPage
->pgidx
.n
, pPage
->pgidx
.p
);
3958 /* Write the page out to disk */
3959 iRowid
= FTS5_SEGMENT_ROWID(pWriter
->iSegid
, pPage
->pgno
);
3960 fts5DataWrite(p
, iRowid
, pPage
->buf
.p
, pPage
->buf
.n
);
3962 /* Initialize the next page. */
3963 fts5BufferZero(&pPage
->buf
);
3964 fts5BufferZero(&pPage
->pgidx
);
3965 fts5BufferAppendBlob(&p
->rc
, &pPage
->buf
, 4, zero
);
3966 pPage
->iPrevPgidx
= 0;
3969 /* Increase the leaves written counter */
3970 pWriter
->nLeafWritten
++;
3972 /* The new leaf holds no terms or rowids */
3973 pWriter
->bFirstTermInPage
= 1;
3974 pWriter
->bFirstRowidInPage
= 1;
3978 ** Append term pTerm/nTerm to the segment being written by the writer passed
3979 ** as the second argument.
3981 ** If an error occurs, set the Fts5Index.rc error code. If an error has
3982 ** already occurred, this function is a no-op.
3984 static void fts5WriteAppendTerm(
3986 Fts5SegWriter
*pWriter
,
3987 int nTerm
, const u8
*pTerm
3989 int nPrefix
; /* Bytes of prefix compression for term */
3990 Fts5PageWriter
*pPage
= &pWriter
->writer
;
3991 Fts5Buffer
*pPgidx
= &pWriter
->writer
.pgidx
;
3992 int nMin
= MIN(pPage
->term
.n
, nTerm
);
3994 assert( p
->rc
==SQLITE_OK
);
3995 assert( pPage
->buf
.n
>=4 );
3996 assert( pPage
->buf
.n
>4 || pWriter
->bFirstTermInPage
);
3998 /* If the current leaf page is full, flush it to disk. */
3999 if( (pPage
->buf
.n
+ pPgidx
->n
+ nTerm
+ 2)>=p
->pConfig
->pgsz
){
4000 if( pPage
->buf
.n
>4 ){
4001 fts5WriteFlushLeaf(p
, pWriter
);
4002 if( p
->rc
!=SQLITE_OK
) return;
4004 fts5BufferGrow(&p
->rc
, &pPage
->buf
, nTerm
+FTS5_DATA_PADDING
);
4007 /* TODO1: Updating pgidx here. */
4008 pPgidx
->n
+= sqlite3Fts5PutVarint(
4009 &pPgidx
->p
[pPgidx
->n
], pPage
->buf
.n
- pPage
->iPrevPgidx
4011 pPage
->iPrevPgidx
= pPage
->buf
.n
;
4013 fts5PutU16(&pPgidx
->p
[pPgidx
->n
], pPage
->buf
.n
);
4017 if( pWriter
->bFirstTermInPage
){
4019 if( pPage
->pgno
!=1 ){
4020 /* This is the first term on a leaf that is not the leftmost leaf in
4021 ** the segment b-tree. In this case it is necessary to add a term to
4022 ** the b-tree hierarchy that is (a) larger than the largest term
4023 ** already written to the segment and (b) smaller than or equal to
4024 ** this term. In other words, a prefix of (pTerm/nTerm) that is one
4025 ** byte longer than the longest prefix (pTerm/nTerm) shares with the
4028 ** Usually, the previous term is available in pPage->term. The exception
4029 ** is if this is the first term written in an incremental-merge step.
4030 ** In this case the previous term is not available, so just write a
4031 ** copy of (pTerm/nTerm) into the parent node. This is slightly
4032 ** inefficient, but still correct. */
4034 if( pPage
->term
.n
){
4035 n
= 1 + fts5PrefixCompress(nMin
, pPage
->term
.p
, pTerm
);
4037 fts5WriteBtreeTerm(p
, pWriter
, n
, pTerm
);
4038 if( p
->rc
!=SQLITE_OK
) return;
4039 pPage
= &pWriter
->writer
;
4042 nPrefix
= fts5PrefixCompress(nMin
, pPage
->term
.p
, pTerm
);
4043 fts5BufferAppendVarint(&p
->rc
, &pPage
->buf
, nPrefix
);
4046 /* Append the number of bytes of new data, then the term data itself
4048 fts5BufferAppendVarint(&p
->rc
, &pPage
->buf
, nTerm
- nPrefix
);
4049 fts5BufferAppendBlob(&p
->rc
, &pPage
->buf
, nTerm
- nPrefix
, &pTerm
[nPrefix
]);
4051 /* Update the Fts5PageWriter.term field. */
4052 fts5BufferSet(&p
->rc
, &pPage
->term
, nTerm
, pTerm
);
4053 pWriter
->bFirstTermInPage
= 0;
4055 pWriter
->bFirstRowidInPage
= 0;
4056 pWriter
->bFirstRowidInDoclist
= 1;
4058 assert( p
->rc
|| (pWriter
->nDlidx
>0 && pWriter
->aDlidx
[0].buf
.n
==0) );
4059 pWriter
->aDlidx
[0].pgno
= pPage
->pgno
;
4063 ** Append a rowid and position-list size field to the writers output.
4065 static void fts5WriteAppendRowid(
4067 Fts5SegWriter
*pWriter
,
4070 if( p
->rc
==SQLITE_OK
){
4071 Fts5PageWriter
*pPage
= &pWriter
->writer
;
4073 if( (pPage
->buf
.n
+ pPage
->pgidx
.n
)>=p
->pConfig
->pgsz
){
4074 fts5WriteFlushLeaf(p
, pWriter
);
4077 /* If this is to be the first rowid written to the page, set the
4078 ** rowid-pointer in the page-header. Also append a value to the dlidx
4079 ** buffer, in case a doclist-index is required. */
4080 if( pWriter
->bFirstRowidInPage
){
4081 fts5PutU16(pPage
->buf
.p
, (u16
)pPage
->buf
.n
);
4082 fts5WriteDlidxAppend(p
, pWriter
, iRowid
);
4085 /* Write the rowid. */
4086 if( pWriter
->bFirstRowidInDoclist
|| pWriter
->bFirstRowidInPage
){
4087 fts5BufferAppendVarint(&p
->rc
, &pPage
->buf
, iRowid
);
4089 assert_nc( p
->rc
|| iRowid
>pWriter
->iPrevRowid
);
4090 fts5BufferAppendVarint(&p
->rc
, &pPage
->buf
,
4091 (u64
)iRowid
- (u64
)pWriter
->iPrevRowid
4094 pWriter
->iPrevRowid
= iRowid
;
4095 pWriter
->bFirstRowidInDoclist
= 0;
4096 pWriter
->bFirstRowidInPage
= 0;
4100 static void fts5WriteAppendPoslistData(
4102 Fts5SegWriter
*pWriter
,
4106 Fts5PageWriter
*pPage
= &pWriter
->writer
;
4107 const u8
*a
= aData
;
4110 assert( p
->pConfig
->pgsz
>0 );
4111 while( p
->rc
==SQLITE_OK
4112 && (pPage
->buf
.n
+ pPage
->pgidx
.n
+ n
)>=p
->pConfig
->pgsz
4114 int nReq
= p
->pConfig
->pgsz
- pPage
->buf
.n
- pPage
->pgidx
.n
;
4116 while( nCopy
<nReq
){
4118 nCopy
+= fts5GetVarint(&a
[nCopy
], (u64
*)&dummy
);
4120 fts5BufferAppendBlob(&p
->rc
, &pPage
->buf
, nCopy
, a
);
4123 fts5WriteFlushLeaf(p
, pWriter
);
4126 fts5BufferAppendBlob(&p
->rc
, &pPage
->buf
, n
, a
);
4131 ** Flush any data cached by the writer object to the database. Free any
4132 ** allocations associated with the writer.
4134 static void fts5WriteFinish(
4136 Fts5SegWriter
*pWriter
, /* Writer object */
4137 int *pnLeaf
/* OUT: Number of leaf pages in b-tree */
4140 Fts5PageWriter
*pLeaf
= &pWriter
->writer
;
4141 if( p
->rc
==SQLITE_OK
){
4142 assert( pLeaf
->pgno
>=1 );
4143 if( pLeaf
->buf
.n
>4 ){
4144 fts5WriteFlushLeaf(p
, pWriter
);
4146 *pnLeaf
= pLeaf
->pgno
-1;
4147 if( pLeaf
->pgno
>1 ){
4148 fts5WriteFlushBtree(p
, pWriter
);
4151 fts5BufferFree(&pLeaf
->term
);
4152 fts5BufferFree(&pLeaf
->buf
);
4153 fts5BufferFree(&pLeaf
->pgidx
);
4154 fts5BufferFree(&pWriter
->btterm
);
4156 for(i
=0; i
<pWriter
->nDlidx
; i
++){
4157 sqlite3Fts5BufferFree(&pWriter
->aDlidx
[i
].buf
);
4159 sqlite3_free(pWriter
->aDlidx
);
4162 static void fts5WriteInit(
4164 Fts5SegWriter
*pWriter
,
4167 const int nBuffer
= p
->pConfig
->pgsz
+ FTS5_DATA_PADDING
;
4169 memset(pWriter
, 0, sizeof(Fts5SegWriter
));
4170 pWriter
->iSegid
= iSegid
;
4172 fts5WriteDlidxGrow(p
, pWriter
, 1);
4173 pWriter
->writer
.pgno
= 1;
4174 pWriter
->bFirstTermInPage
= 1;
4175 pWriter
->iBtPage
= 1;
4177 assert( pWriter
->writer
.buf
.n
==0 );
4178 assert( pWriter
->writer
.pgidx
.n
==0 );
4180 /* Grow the two buffers to pgsz + padding bytes in size. */
4181 sqlite3Fts5BufferSize(&p
->rc
, &pWriter
->writer
.pgidx
, nBuffer
);
4182 sqlite3Fts5BufferSize(&p
->rc
, &pWriter
->writer
.buf
, nBuffer
);
4184 if( p
->pIdxWriter
==0 ){
4185 Fts5Config
*pConfig
= p
->pConfig
;
4186 fts5IndexPrepareStmt(p
, &p
->pIdxWriter
, sqlite3_mprintf(
4187 "INSERT INTO '%q'.'%q_idx'(segid,term,pgno) VALUES(?,?,?)",
4188 pConfig
->zDb
, pConfig
->zName
4192 if( p
->rc
==SQLITE_OK
){
4193 /* Initialize the 4-byte leaf-page header to 0x00. */
4194 memset(pWriter
->writer
.buf
.p
, 0, 4);
4195 pWriter
->writer
.buf
.n
= 4;
4197 /* Bind the current output segment id to the index-writer. This is an
4198 ** optimization over binding the same value over and over as rows are
4199 ** inserted into %_idx by the current writer. */
4200 sqlite3_bind_int(p
->pIdxWriter
, 1, pWriter
->iSegid
);
4205 ** Iterator pIter was used to iterate through the input segments of on an
4206 ** incremental merge operation. This function is called if the incremental
4207 ** merge step has finished but the input has not been completely exhausted.
4209 static void fts5TrimSegments(Fts5Index
*p
, Fts5Iter
*pIter
){
4212 memset(&buf
, 0, sizeof(Fts5Buffer
));
4213 for(i
=0; i
<pIter
->nSeg
&& p
->rc
==SQLITE_OK
; i
++){
4214 Fts5SegIter
*pSeg
= &pIter
->aSeg
[i
];
4215 if( pSeg
->pSeg
==0 ){
4217 }else if( pSeg
->pLeaf
==0 ){
4218 /* All keys from this input segment have been transfered to the output.
4219 ** Set both the first and last page-numbers to 0 to indicate that the
4220 ** segment is now empty. */
4221 pSeg
->pSeg
->pgnoLast
= 0;
4222 pSeg
->pSeg
->pgnoFirst
= 0;
4224 int iOff
= pSeg
->iTermLeafOffset
; /* Offset on new first leaf page */
4227 int iId
= pSeg
->pSeg
->iSegid
;
4228 u8 aHdr
[4] = {0x00, 0x00, 0x00, 0x00};
4230 iLeafRowid
= FTS5_SEGMENT_ROWID(iId
, pSeg
->iTermLeafPgno
);
4231 pData
= fts5LeafRead(p
, iLeafRowid
);
4233 if( iOff
>pData
->szLeaf
){
4234 /* This can occur if the pages that the segments occupy overlap - if
4235 ** a single page has been assigned to more than one segment. In
4236 ** this case a prior iteration of this loop may have corrupted the
4237 ** segment currently being trimmed. */
4238 p
->rc
= FTS5_CORRUPT
;
4240 fts5BufferZero(&buf
);
4241 fts5BufferGrow(&p
->rc
, &buf
, pData
->nn
);
4242 fts5BufferAppendBlob(&p
->rc
, &buf
, sizeof(aHdr
), aHdr
);
4243 fts5BufferAppendVarint(&p
->rc
, &buf
, pSeg
->term
.n
);
4244 fts5BufferAppendBlob(&p
->rc
, &buf
, pSeg
->term
.n
, pSeg
->term
.p
);
4245 fts5BufferAppendBlob(&p
->rc
, &buf
, pData
->szLeaf
-iOff
,&pData
->p
[iOff
]);
4246 if( p
->rc
==SQLITE_OK
){
4247 /* Set the szLeaf field */
4248 fts5PutU16(&buf
.p
[2], (u16
)buf
.n
);
4251 /* Set up the new page-index array */
4252 fts5BufferAppendVarint(&p
->rc
, &buf
, 4);
4253 if( pSeg
->iLeafPgno
==pSeg
->iTermLeafPgno
4254 && pSeg
->iEndofDoclist
<pData
->szLeaf
4255 && pSeg
->iPgidxOff
<=pData
->nn
4257 int nDiff
= pData
->szLeaf
- pSeg
->iEndofDoclist
;
4258 fts5BufferAppendVarint(&p
->rc
, &buf
, buf
.n
- 1 - nDiff
- 4);
4259 fts5BufferAppendBlob(&p
->rc
, &buf
,
4260 pData
->nn
- pSeg
->iPgidxOff
, &pData
->p
[pSeg
->iPgidxOff
]
4264 pSeg
->pSeg
->pgnoFirst
= pSeg
->iTermLeafPgno
;
4265 fts5DataDelete(p
, FTS5_SEGMENT_ROWID(iId
, 1), iLeafRowid
);
4266 fts5DataWrite(p
, iLeafRowid
, buf
.p
, buf
.n
);
4268 fts5DataRelease(pData
);
4272 fts5BufferFree(&buf
);
4275 static void fts5MergeChunkCallback(
4278 const u8
*pChunk
, int nChunk
4280 Fts5SegWriter
*pWriter
= (Fts5SegWriter
*)pCtx
;
4281 fts5WriteAppendPoslistData(p
, pWriter
, pChunk
, nChunk
);
4287 static void fts5IndexMergeLevel(
4288 Fts5Index
*p
, /* FTS5 backend object */
4289 Fts5Structure
**ppStruct
, /* IN/OUT: Stucture of index */
4290 int iLvl
, /* Level to read input from */
4291 int *pnRem
/* Write up to this many output leaves */
4293 Fts5Structure
*pStruct
= *ppStruct
;
4294 Fts5StructureLevel
*pLvl
= &pStruct
->aLevel
[iLvl
];
4295 Fts5StructureLevel
*pLvlOut
;
4296 Fts5Iter
*pIter
= 0; /* Iterator to read input data */
4297 int nRem
= pnRem
? *pnRem
: 0; /* Output leaf pages left to write */
4298 int nInput
; /* Number of input segments */
4299 Fts5SegWriter writer
; /* Writer object */
4300 Fts5StructureSegment
*pSeg
; /* Output segment */
4302 int bOldest
; /* True if the output segment is the oldest */
4303 int eDetail
= p
->pConfig
->eDetail
;
4304 const int flags
= FTS5INDEX_QUERY_NOOUTPUT
;
4305 int bTermWritten
= 0; /* True if current term already output */
4307 assert( iLvl
<pStruct
->nLevel
);
4308 assert( pLvl
->nMerge
<=pLvl
->nSeg
);
4310 memset(&writer
, 0, sizeof(Fts5SegWriter
));
4311 memset(&term
, 0, sizeof(Fts5Buffer
));
4313 pLvlOut
= &pStruct
->aLevel
[iLvl
+1];
4314 assert( pLvlOut
->nSeg
>0 );
4315 nInput
= pLvl
->nMerge
;
4316 pSeg
= &pLvlOut
->aSeg
[pLvlOut
->nSeg
-1];
4318 fts5WriteInit(p
, &writer
, pSeg
->iSegid
);
4319 writer
.writer
.pgno
= pSeg
->pgnoLast
+1;
4322 int iSegid
= fts5AllocateSegid(p
, pStruct
);
4324 /* Extend the Fts5Structure object as required to ensure the output
4325 ** segment exists. */
4326 if( iLvl
==pStruct
->nLevel
-1 ){
4327 fts5StructureAddLevel(&p
->rc
, ppStruct
);
4328 pStruct
= *ppStruct
;
4330 fts5StructureExtendLevel(&p
->rc
, pStruct
, iLvl
+1, 1, 0);
4332 pLvl
= &pStruct
->aLevel
[iLvl
];
4333 pLvlOut
= &pStruct
->aLevel
[iLvl
+1];
4335 fts5WriteInit(p
, &writer
, iSegid
);
4337 /* Add the new segment to the output level */
4338 pSeg
= &pLvlOut
->aSeg
[pLvlOut
->nSeg
];
4340 pSeg
->pgnoFirst
= 1;
4341 pSeg
->iSegid
= iSegid
;
4342 pStruct
->nSegment
++;
4344 /* Read input from all segments in the input level */
4345 nInput
= pLvl
->nSeg
;
4347 bOldest
= (pLvlOut
->nSeg
==1 && pStruct
->nLevel
==iLvl
+2);
4350 for(fts5MultiIterNew(p
, pStruct
, flags
, 0, 0, 0, iLvl
, nInput
, &pIter
);
4351 fts5MultiIterEof(p
, pIter
)==0;
4352 fts5MultiIterNext(p
, pIter
, 0, 0)
4354 Fts5SegIter
*pSegIter
= &pIter
->aSeg
[ pIter
->aFirst
[1].iFirst
];
4355 int nPos
; /* position-list size field value */
4359 pTerm
= fts5MultiIterTerm(pIter
, &nTerm
);
4360 if( nTerm
!=term
.n
|| fts5Memcmp(pTerm
, term
.p
, nTerm
) ){
4361 if( pnRem
&& writer
.nLeafWritten
>nRem
){
4364 fts5BufferSet(&p
->rc
, &term
, nTerm
, pTerm
);
4368 /* Check for key annihilation. */
4369 if( pSegIter
->nPos
==0 && (bOldest
|| pSegIter
->bDel
==0) ) continue;
4371 if( p
->rc
==SQLITE_OK
&& bTermWritten
==0 ){
4372 /* This is a new term. Append a term to the output segment. */
4373 fts5WriteAppendTerm(p
, &writer
, nTerm
, pTerm
);
4377 /* Append the rowid to the output */
4378 /* WRITEPOSLISTSIZE */
4379 fts5WriteAppendRowid(p
, &writer
, fts5MultiIterRowid(pIter
));
4381 if( eDetail
==FTS5_DETAIL_NONE
){
4382 if( pSegIter
->bDel
){
4383 fts5BufferAppendVarint(&p
->rc
, &writer
.writer
.buf
, 0);
4384 if( pSegIter
->nPos
>0 ){
4385 fts5BufferAppendVarint(&p
->rc
, &writer
.writer
.buf
, 0);
4389 /* Append the position-list data to the output */
4390 nPos
= pSegIter
->nPos
*2 + pSegIter
->bDel
;
4391 fts5BufferAppendVarint(&p
->rc
, &writer
.writer
.buf
, nPos
);
4392 fts5ChunkIterate(p
, pSegIter
, (void*)&writer
, fts5MergeChunkCallback
);
4396 /* Flush the last leaf page to disk. Set the output segment b-tree height
4397 ** and last leaf page number at the same time. */
4398 fts5WriteFinish(p
, &writer
, &pSeg
->pgnoLast
);
4400 assert( pIter
!=0 || p
->rc
!=SQLITE_OK
);
4401 if( fts5MultiIterEof(p
, pIter
) ){
4404 /* Remove the redundant segments from the %_data table */
4405 for(i
=0; i
<nInput
; i
++){
4406 fts5DataRemoveSegment(p
, pLvl
->aSeg
[i
].iSegid
);
4409 /* Remove the redundant segments from the input level */
4410 if( pLvl
->nSeg
!=nInput
){
4411 int nMove
= (pLvl
->nSeg
- nInput
) * sizeof(Fts5StructureSegment
);
4412 memmove(pLvl
->aSeg
, &pLvl
->aSeg
[nInput
], nMove
);
4414 pStruct
->nSegment
-= nInput
;
4415 pLvl
->nSeg
-= nInput
;
4417 if( pSeg
->pgnoLast
==0 ){
4419 pStruct
->nSegment
--;
4422 assert( pSeg
->pgnoLast
>0 );
4423 fts5TrimSegments(p
, pIter
);
4424 pLvl
->nMerge
= nInput
;
4427 fts5MultiIterFree(pIter
);
4428 fts5BufferFree(&term
);
4429 if( pnRem
) *pnRem
-= writer
.nLeafWritten
;
4433 ** Do up to nPg pages of automerge work on the index.
4435 ** Return true if any changes were actually made, or false otherwise.
4437 static int fts5IndexMerge(
4438 Fts5Index
*p
, /* FTS5 backend object */
4439 Fts5Structure
**ppStruct
, /* IN/OUT: Current structure of index */
4440 int nPg
, /* Pages of work to do */
4441 int nMin
/* Minimum number of segments to merge */
4445 Fts5Structure
*pStruct
= *ppStruct
;
4446 while( nRem
>0 && p
->rc
==SQLITE_OK
){
4447 int iLvl
; /* To iterate through levels */
4448 int iBestLvl
= 0; /* Level offering the most input segments */
4449 int nBest
= 0; /* Number of input segments on best level */
4451 /* Set iBestLvl to the level to read input segments from. */
4452 assert( pStruct
->nLevel
>0 );
4453 for(iLvl
=0; iLvl
<pStruct
->nLevel
; iLvl
++){
4454 Fts5StructureLevel
*pLvl
= &pStruct
->aLevel
[iLvl
];
4456 if( pLvl
->nMerge
>nBest
){
4458 nBest
= pLvl
->nMerge
;
4462 if( pLvl
->nSeg
>nBest
){
4468 /* If nBest is still 0, then the index must be empty. */
4470 for(iLvl
=0; nBest
==0 && iLvl
<pStruct
->nLevel
; iLvl
++){
4471 assert( pStruct
->aLevel
[iLvl
].nSeg
==0 );
4475 if( nBest
<nMin
&& pStruct
->aLevel
[iBestLvl
].nMerge
==0 ){
4479 fts5IndexMergeLevel(p
, &pStruct
, iBestLvl
, &nRem
);
4480 if( p
->rc
==SQLITE_OK
&& pStruct
->aLevel
[iBestLvl
].nMerge
==0 ){
4481 fts5StructurePromote(p
, iBestLvl
+1, pStruct
);
4484 *ppStruct
= pStruct
;
4489 ** A total of nLeaf leaf pages of data has just been flushed to a level-0
4490 ** segment. This function updates the write-counter accordingly and, if
4491 ** necessary, performs incremental merge work.
4493 ** If an error occurs, set the Fts5Index.rc error code. If an error has
4494 ** already occurred, this function is a no-op.
4496 static void fts5IndexAutomerge(
4497 Fts5Index
*p
, /* FTS5 backend object */
4498 Fts5Structure
**ppStruct
, /* IN/OUT: Current structure of index */
4499 int nLeaf
/* Number of output leaves just written */
4501 if( p
->rc
==SQLITE_OK
&& p
->pConfig
->nAutomerge
>0 && ALWAYS((*ppStruct
)!=0) ){
4502 Fts5Structure
*pStruct
= *ppStruct
;
4503 u64 nWrite
; /* Initial value of write-counter */
4504 int nWork
; /* Number of work-quanta to perform */
4505 int nRem
; /* Number of leaf pages left to write */
4507 /* Update the write-counter. While doing so, set nWork. */
4508 nWrite
= pStruct
->nWriteCounter
;
4509 nWork
= (int)(((nWrite
+ nLeaf
) / p
->nWorkUnit
) - (nWrite
/ p
->nWorkUnit
));
4510 pStruct
->nWriteCounter
+= nLeaf
;
4511 nRem
= (int)(p
->nWorkUnit
* nWork
* pStruct
->nLevel
);
4513 fts5IndexMerge(p
, ppStruct
, nRem
, p
->pConfig
->nAutomerge
);
4517 static void fts5IndexCrisismerge(
4518 Fts5Index
*p
, /* FTS5 backend object */
4519 Fts5Structure
**ppStruct
/* IN/OUT: Current structure of index */
4521 const int nCrisis
= p
->pConfig
->nCrisisMerge
;
4522 Fts5Structure
*pStruct
= *ppStruct
;
4525 assert( p
->rc
!=SQLITE_OK
|| pStruct
->nLevel
>0 );
4526 while( p
->rc
==SQLITE_OK
&& pStruct
->aLevel
[iLvl
].nSeg
>=nCrisis
){
4527 fts5IndexMergeLevel(p
, &pStruct
, iLvl
, 0);
4528 assert( p
->rc
!=SQLITE_OK
|| pStruct
->nLevel
>(iLvl
+1) );
4529 fts5StructurePromote(p
, iLvl
+1, pStruct
);
4532 *ppStruct
= pStruct
;
4535 static int fts5IndexReturn(Fts5Index
*p
){
4541 typedef struct Fts5FlushCtx Fts5FlushCtx
;
4542 struct Fts5FlushCtx
{
4544 Fts5SegWriter writer
;
4548 ** Buffer aBuf[] contains a list of varints, all small enough to fit
4549 ** in a 32-bit integer. Return the size of the largest prefix of this
4550 ** list nMax bytes or less in size.
4552 static int fts5PoslistPrefix(const u8
*aBuf
, int nMax
){
4555 ret
= fts5GetVarint32(aBuf
, dummy
);
4558 int i
= fts5GetVarint32(&aBuf
[ret
], dummy
);
4559 if( (ret
+ i
) > nMax
) break;
4567 ** Flush the contents of in-memory hash table iHash to a new level-0
4568 ** segment on disk. Also update the corresponding structure record.
4570 ** If an error occurs, set the Fts5Index.rc error code. If an error has
4571 ** already occurred, this function is a no-op.
4573 static void fts5FlushOneHash(Fts5Index
*p
){
4574 Fts5Hash
*pHash
= p
->pHash
;
4575 Fts5Structure
*pStruct
;
4577 int pgnoLast
= 0; /* Last leaf page number in segment */
4579 /* Obtain a reference to the index structure and allocate a new segment-id
4580 ** for the new level-0 segment. */
4581 pStruct
= fts5StructureRead(p
);
4582 iSegid
= fts5AllocateSegid(p
, pStruct
);
4583 fts5StructureInvalidate(p
);
4586 const int pgsz
= p
->pConfig
->pgsz
;
4587 int eDetail
= p
->pConfig
->eDetail
;
4588 Fts5StructureSegment
*pSeg
; /* New segment within pStruct */
4589 Fts5Buffer
*pBuf
; /* Buffer in which to assemble leaf page */
4590 Fts5Buffer
*pPgidx
; /* Buffer in which to assemble pgidx */
4592 Fts5SegWriter writer
;
4593 fts5WriteInit(p
, &writer
, iSegid
);
4595 pBuf
= &writer
.writer
.buf
;
4596 pPgidx
= &writer
.writer
.pgidx
;
4598 /* fts5WriteInit() should have initialized the buffers to (most likely)
4599 ** the maximum space required. */
4600 assert( p
->rc
|| pBuf
->nSpace
>=(pgsz
+ FTS5_DATA_PADDING
) );
4601 assert( p
->rc
|| pPgidx
->nSpace
>=(pgsz
+ FTS5_DATA_PADDING
) );
4603 /* Begin scanning through hash table entries. This loop runs once for each
4604 ** term/doclist currently stored within the hash table. */
4605 if( p
->rc
==SQLITE_OK
){
4606 p
->rc
= sqlite3Fts5HashScanInit(pHash
, 0, 0);
4608 while( p
->rc
==SQLITE_OK
&& 0==sqlite3Fts5HashScanEof(pHash
) ){
4609 const char *zTerm
; /* Buffer containing term */
4610 const u8
*pDoclist
; /* Pointer to doclist for this term */
4611 int nDoclist
; /* Size of doclist in bytes */
4613 /* Write the term for this entry to disk. */
4614 sqlite3Fts5HashScanEntry(pHash
, &zTerm
, &pDoclist
, &nDoclist
);
4615 fts5WriteAppendTerm(p
, &writer
, (int)strlen(zTerm
), (const u8
*)zTerm
);
4616 if( p
->rc
!=SQLITE_OK
) break;
4618 assert( writer
.bFirstRowidInPage
==0 );
4619 if( pgsz
>=(pBuf
->n
+ pPgidx
->n
+ nDoclist
+ 1) ){
4620 /* The entire doclist will fit on the current leaf. */
4621 fts5BufferSafeAppendBlob(pBuf
, pDoclist
, nDoclist
);
4627 /* The entire doclist will not fit on this leaf. The following
4628 ** loop iterates through the poslists that make up the current
4630 while( p
->rc
==SQLITE_OK
&& iOff
<nDoclist
){
4631 iOff
+= fts5GetVarint(&pDoclist
[iOff
], &iDelta
);
4634 if( writer
.bFirstRowidInPage
){
4635 fts5PutU16(&pBuf
->p
[0], (u16
)pBuf
->n
); /* first rowid on page */
4636 pBuf
->n
+= sqlite3Fts5PutVarint(&pBuf
->p
[pBuf
->n
], iRowid
);
4637 writer
.bFirstRowidInPage
= 0;
4638 fts5WriteDlidxAppend(p
, &writer
, iRowid
);
4639 if( p
->rc
!=SQLITE_OK
) break;
4641 pBuf
->n
+= sqlite3Fts5PutVarint(&pBuf
->p
[pBuf
->n
], iDelta
);
4643 assert( pBuf
->n
<=pBuf
->nSpace
);
4645 if( eDetail
==FTS5_DETAIL_NONE
){
4646 if( iOff
<nDoclist
&& pDoclist
[iOff
]==0 ){
4647 pBuf
->p
[pBuf
->n
++] = 0;
4649 if( iOff
<nDoclist
&& pDoclist
[iOff
]==0 ){
4650 pBuf
->p
[pBuf
->n
++] = 0;
4654 if( (pBuf
->n
+ pPgidx
->n
)>=pgsz
){
4655 fts5WriteFlushLeaf(p
, &writer
);
4660 int nCopy
= fts5GetPoslistSize(&pDoclist
[iOff
], &nPos
, &bDummy
);
4662 if( (pBuf
->n
+ pPgidx
->n
+ nCopy
) <= pgsz
){
4663 /* The entire poslist will fit on the current leaf. So copy
4665 fts5BufferSafeAppendBlob(pBuf
, &pDoclist
[iOff
], nCopy
);
4667 /* The entire poslist will not fit on this leaf. So it needs
4668 ** to be broken into sections. The only qualification being
4669 ** that each varint must be stored contiguously. */
4670 const u8
*pPoslist
= &pDoclist
[iOff
];
4672 while( p
->rc
==SQLITE_OK
){
4673 int nSpace
= pgsz
- pBuf
->n
- pPgidx
->n
;
4675 if( (nCopy
- iPos
)<=nSpace
){
4678 n
= fts5PoslistPrefix(&pPoslist
[iPos
], nSpace
);
4681 fts5BufferSafeAppendBlob(pBuf
, &pPoslist
[iPos
], n
);
4683 if( (pBuf
->n
+ pPgidx
->n
)>=pgsz
){
4684 fts5WriteFlushLeaf(p
, &writer
);
4686 if( iPos
>=nCopy
) break;
4694 /* TODO2: Doclist terminator written here. */
4695 /* pBuf->p[pBuf->n++] = '\0'; */
4696 assert( pBuf
->n
<=pBuf
->nSpace
);
4697 if( p
->rc
==SQLITE_OK
) sqlite3Fts5HashScanNext(pHash
);
4699 sqlite3Fts5HashClear(pHash
);
4700 fts5WriteFinish(p
, &writer
, &pgnoLast
);
4702 /* Update the Fts5Structure. It is written back to the database by the
4703 ** fts5StructureRelease() call below. */
4704 if( pStruct
->nLevel
==0 ){
4705 fts5StructureAddLevel(&p
->rc
, &pStruct
);
4707 fts5StructureExtendLevel(&p
->rc
, pStruct
, 0, 1, 0);
4708 if( p
->rc
==SQLITE_OK
){
4709 pSeg
= &pStruct
->aLevel
[0].aSeg
[ pStruct
->aLevel
[0].nSeg
++ ];
4710 pSeg
->iSegid
= iSegid
;
4711 pSeg
->pgnoFirst
= 1;
4712 pSeg
->pgnoLast
= pgnoLast
;
4713 pStruct
->nSegment
++;
4715 fts5StructurePromote(p
, 0, pStruct
);
4718 fts5IndexAutomerge(p
, &pStruct
, pgnoLast
);
4719 fts5IndexCrisismerge(p
, &pStruct
);
4720 fts5StructureWrite(p
, pStruct
);
4721 fts5StructureRelease(pStruct
);
4725 ** Flush any data stored in the in-memory hash tables to the database.
4727 static void fts5IndexFlush(Fts5Index
*p
){
4728 /* Unless it is empty, flush the hash table to disk */
4729 if( p
->nPendingData
){
4731 p
->nPendingData
= 0;
4732 fts5FlushOneHash(p
);
4736 static Fts5Structure
*fts5IndexOptimizeStruct(
4738 Fts5Structure
*pStruct
4740 Fts5Structure
*pNew
= 0;
4741 sqlite3_int64 nByte
= sizeof(Fts5Structure
);
4742 int nSeg
= pStruct
->nSegment
;
4745 /* Figure out if this structure requires optimization. A structure does
4746 ** not require optimization if either:
4748 ** + it consists of fewer than two segments, or
4749 ** + all segments are on the same level, or
4750 ** + all segments except one are currently inputs to a merge operation.
4752 ** In the first case, return NULL. In the second, increment the ref-count
4753 ** on *pStruct and return a copy of the pointer to it.
4755 if( nSeg
<2 ) return 0;
4756 for(i
=0; i
<pStruct
->nLevel
; i
++){
4757 int nThis
= pStruct
->aLevel
[i
].nSeg
;
4758 if( nThis
==nSeg
|| (nThis
==nSeg
-1 && pStruct
->aLevel
[i
].nMerge
==nThis
) ){
4759 fts5StructureRef(pStruct
);
4762 assert( pStruct
->aLevel
[i
].nMerge
<=nThis
);
4765 nByte
+= (pStruct
->nLevel
+1) * sizeof(Fts5StructureLevel
);
4766 pNew
= (Fts5Structure
*)sqlite3Fts5MallocZero(&p
->rc
, nByte
);
4769 Fts5StructureLevel
*pLvl
;
4770 nByte
= nSeg
* sizeof(Fts5StructureSegment
);
4771 pNew
->nLevel
= pStruct
->nLevel
+1;
4773 pNew
->nWriteCounter
= pStruct
->nWriteCounter
;
4774 pLvl
= &pNew
->aLevel
[pStruct
->nLevel
];
4775 pLvl
->aSeg
= (Fts5StructureSegment
*)sqlite3Fts5MallocZero(&p
->rc
, nByte
);
4779 /* Iterate through all segments, from oldest to newest. Add them to
4780 ** the new Fts5Level object so that pLvl->aSeg[0] is the oldest
4781 ** segment in the data structure. */
4782 for(iLvl
=pStruct
->nLevel
-1; iLvl
>=0; iLvl
--){
4783 for(iSeg
=0; iSeg
<pStruct
->aLevel
[iLvl
].nSeg
; iSeg
++){
4784 pLvl
->aSeg
[iSegOut
] = pStruct
->aLevel
[iLvl
].aSeg
[iSeg
];
4788 pNew
->nSegment
= pLvl
->nSeg
= nSeg
;
4798 int sqlite3Fts5IndexOptimize(Fts5Index
*p
){
4799 Fts5Structure
*pStruct
;
4800 Fts5Structure
*pNew
= 0;
4802 assert( p
->rc
==SQLITE_OK
);
4804 pStruct
= fts5StructureRead(p
);
4805 fts5StructureInvalidate(p
);
4808 pNew
= fts5IndexOptimizeStruct(p
, pStruct
);
4810 fts5StructureRelease(pStruct
);
4812 assert( pNew
==0 || pNew
->nSegment
>0 );
4815 for(iLvl
=0; pNew
->aLevel
[iLvl
].nSeg
==0; iLvl
++){}
4816 while( p
->rc
==SQLITE_OK
&& pNew
->aLevel
[iLvl
].nSeg
>0 ){
4817 int nRem
= FTS5_OPT_WORK_UNIT
;
4818 fts5IndexMergeLevel(p
, &pNew
, iLvl
, &nRem
);
4821 fts5StructureWrite(p
, pNew
);
4822 fts5StructureRelease(pNew
);
4825 return fts5IndexReturn(p
);
4829 ** This is called to implement the special "VALUES('merge', $nMerge)"
4832 int sqlite3Fts5IndexMerge(Fts5Index
*p
, int nMerge
){
4833 Fts5Structure
*pStruct
= fts5StructureRead(p
);
4835 int nMin
= p
->pConfig
->nUsermerge
;
4836 fts5StructureInvalidate(p
);
4838 Fts5Structure
*pNew
= fts5IndexOptimizeStruct(p
, pStruct
);
4839 fts5StructureRelease(pStruct
);
4844 if( pStruct
&& pStruct
->nLevel
){
4845 if( fts5IndexMerge(p
, &pStruct
, nMerge
, nMin
) ){
4846 fts5StructureWrite(p
, pStruct
);
4849 fts5StructureRelease(pStruct
);
4851 return fts5IndexReturn(p
);
4854 static void fts5AppendRowid(
4860 UNUSED_PARAM(pUnused
);
4861 fts5BufferAppendVarint(&p
->rc
, pBuf
, iDelta
);
4864 static void fts5AppendPoslist(
4870 int nData
= pMulti
->base
.nData
;
4871 int nByte
= nData
+ 9 + 9 + FTS5_DATA_ZERO_PADDING
;
4873 if( p
->rc
==SQLITE_OK
&& 0==fts5BufferGrow(&p
->rc
, pBuf
, nByte
) ){
4874 fts5BufferSafeAppendVarint(pBuf
, iDelta
);
4875 fts5BufferSafeAppendVarint(pBuf
, nData
*2);
4876 fts5BufferSafeAppendBlob(pBuf
, pMulti
->base
.pData
, nData
);
4877 memset(&pBuf
->p
[pBuf
->n
], 0, FTS5_DATA_ZERO_PADDING
);
4882 static void fts5DoclistIterNext(Fts5DoclistIter
*pIter
){
4883 u8
*p
= pIter
->aPoslist
+ pIter
->nSize
+ pIter
->nPoslist
;
4885 assert( pIter
->aPoslist
|| (p
==0 && pIter
->aPoslist
==0) );
4886 if( p
>=pIter
->aEof
){
4887 pIter
->aPoslist
= 0;
4891 p
+= fts5GetVarint(p
, (u64
*)&iDelta
);
4892 pIter
->iRowid
+= iDelta
;
4894 /* Read position list size */
4897 pIter
->nSize
= fts5GetVarint32(p
, nPos
);
4898 pIter
->nPoslist
= (nPos
>>1);
4900 pIter
->nPoslist
= ((int)(p
[0])) >> 1;
4904 pIter
->aPoslist
= p
;
4905 if( &pIter
->aPoslist
[pIter
->nPoslist
]>pIter
->aEof
){
4906 pIter
->aPoslist
= 0;
4911 static void fts5DoclistIterInit(
4913 Fts5DoclistIter
*pIter
4915 memset(pIter
, 0, sizeof(*pIter
));
4917 pIter
->aPoslist
= pBuf
->p
;
4918 pIter
->aEof
= &pBuf
->p
[pBuf
->n
];
4919 fts5DoclistIterNext(pIter
);
4925 ** Append a doclist to buffer pBuf.
4927 ** This function assumes that space within the buffer has already been
4930 static void fts5MergeAppendDocid(
4931 Fts5Buffer
*pBuf
, /* Buffer to write to */
4932 i64
*piLastRowid
, /* IN/OUT: Previous rowid written (if any) */
4933 i64 iRowid
/* Rowid to append */
4935 assert( pBuf
->n
!=0 || (*piLastRowid
)==0 );
4936 fts5BufferSafeAppendVarint(pBuf
, iRowid
- *piLastRowid
);
4937 *piLastRowid
= iRowid
;
4941 #define fts5MergeAppendDocid(pBuf, iLastRowid, iRowid) { \
4942 assert( (pBuf)->n!=0 || (iLastRowid)==0 ); \
4943 fts5BufferSafeAppendVarint((pBuf), (u64)(iRowid) - (u64)(iLastRowid)); \
4944 (iLastRowid) = (iRowid); \
4948 ** Swap the contents of buffer *p1 with that of *p2.
4950 static void fts5BufferSwap(Fts5Buffer
*p1
, Fts5Buffer
*p2
){
4951 Fts5Buffer tmp
= *p1
;
4956 static void fts5NextRowid(Fts5Buffer
*pBuf
, int *piOff
, i64
*piRowid
){
4962 *piOff
= i
+ sqlite3Fts5GetVarint(&pBuf
->p
[i
], &iVal
);
4968 ** This is the equivalent of fts5MergePrefixLists() for detail=none mode.
4969 ** In this case the buffers consist of a delta-encoded list of rowids only.
4971 static void fts5MergeRowidLists(
4972 Fts5Index
*p
, /* FTS5 backend object */
4973 Fts5Buffer
*p1
, /* First list to merge */
4974 int nBuf
, /* Number of entries in apBuf[] */
4975 Fts5Buffer
*aBuf
/* Array of other lists to merge into p1 */
4982 Fts5Buffer
*p2
= &aBuf
[0];
4986 memset(&out
, 0, sizeof(out
));
4988 sqlite3Fts5BufferSize(&p
->rc
, &out
, p1
->n
+ p2
->n
);
4991 fts5NextRowid(p1
, &i1
, &iRowid1
);
4992 fts5NextRowid(p2
, &i2
, &iRowid2
);
4993 while( i1
>=0 || i2
>=0 ){
4994 if( i1
>=0 && (i2
<0 || iRowid1
<iRowid2
) ){
4995 assert( iOut
==0 || iRowid1
>iOut
);
4996 fts5BufferSafeAppendVarint(&out
, iRowid1
- iOut
);
4998 fts5NextRowid(p1
, &i1
, &iRowid1
);
5000 assert( iOut
==0 || iRowid2
>iOut
);
5001 fts5BufferSafeAppendVarint(&out
, iRowid2
- iOut
);
5003 if( i1
>=0 && iRowid1
==iRowid2
){
5004 fts5NextRowid(p1
, &i1
, &iRowid1
);
5006 fts5NextRowid(p2
, &i2
, &iRowid2
);
5010 fts5BufferSwap(&out
, p1
);
5011 fts5BufferFree(&out
);
5014 typedef struct PrefixMerger PrefixMerger
;
5015 struct PrefixMerger
{
5016 Fts5DoclistIter iter
; /* Doclist iterator */
5017 i64 iPos
; /* For iterating through a position list */
5020 PrefixMerger
*pNext
; /* Next in docid/poslist order */
5023 static void fts5PrefixMergerInsertByRowid(
5024 PrefixMerger
**ppHead
,
5027 if( p
->iter
.aPoslist
){
5028 PrefixMerger
**pp
= ppHead
;
5029 while( *pp
&& p
->iter
.iRowid
>(*pp
)->iter
.iRowid
){
5037 static void fts5PrefixMergerInsertByPosition(
5038 PrefixMerger
**ppHead
,
5042 PrefixMerger
**pp
= ppHead
;
5043 while( *pp
&& p
->iPos
>(*pp
)->iPos
){
5053 ** Array aBuf[] contains nBuf doclists. These are all merged in with the
5054 ** doclist in buffer p1.
5056 static void fts5MergePrefixLists(
5057 Fts5Index
*p
, /* FTS5 backend object */
5058 Fts5Buffer
*p1
, /* First list to merge */
5059 int nBuf
, /* Number of buffers in array aBuf[] */
5060 Fts5Buffer
*aBuf
/* Other lists to merge in */
5062 #define fts5PrefixMergerNextPosition(p) \
5063 sqlite3Fts5PoslistNext64((p)->aPos,(p)->iter.nPoslist,&(p)->iOff,&(p)->iPos)
5064 #define FTS5_MERGE_NLIST 16
5065 PrefixMerger aMerger
[FTS5_MERGE_NLIST
];
5066 PrefixMerger
*pHead
= 0;
5069 Fts5Buffer out
= {0, 0, 0};
5070 Fts5Buffer tmp
= {0, 0, 0};
5073 /* Initialize a doclist-iterator for each input buffer. Arrange them in
5074 ** a linked-list starting at pHead in ascending order of rowid. Avoid
5075 ** linking any iterators already at EOF into the linked list at all. */
5076 assert( nBuf
+1<=sizeof(aMerger
)/sizeof(aMerger
[0]) );
5077 memset(aMerger
, 0, sizeof(PrefixMerger
)*(nBuf
+1));
5078 pHead
= &aMerger
[nBuf
];
5079 fts5DoclistIterInit(p1
, &pHead
->iter
);
5080 for(i
=0; i
<nBuf
; i
++){
5081 fts5DoclistIterInit(&aBuf
[i
], &aMerger
[i
].iter
);
5082 fts5PrefixMergerInsertByRowid(&pHead
, &aMerger
[i
]);
5085 if( nOut
==0 ) return;
5086 nOut
+= p1
->n
+ 9 + 10*nBuf
;
5088 /* The maximum size of the output is equal to the sum of the
5089 ** input sizes + 1 varint (9 bytes). The extra varint is because if the
5090 ** first rowid in one input is a large negative number, and the first in
5091 ** the other a non-negative number, the delta for the non-negative
5092 ** number will be larger on disk than the literal integer value
5095 ** Or, if the input position-lists are corrupt, then the output might
5096 ** include up to (nBuf+1) extra 10-byte positions created by interpreting -1
5097 ** (the value PoslistNext64() uses for EOF) as a position and appending
5098 ** it to the output. This can happen at most once for each input
5099 ** position-list, hence (nBuf+1) 10 byte paddings. */
5100 if( sqlite3Fts5BufferSize(&p
->rc
, &out
, nOut
) ) return;
5103 fts5MergeAppendDocid(&out
, iLastRowid
, pHead
->iter
.iRowid
);
5105 if( pHead
->pNext
&& iLastRowid
==pHead
->pNext
->iter
.iRowid
){
5106 /* Merge data from two or more poslists */
5108 int nTmp
= FTS5_DATA_ZERO_PADDING
;
5110 PrefixMerger
*pSave
= pHead
;
5111 PrefixMerger
*pThis
= 0;
5115 while( pSave
&& pSave
->iter
.iRowid
==iLastRowid
){
5116 PrefixMerger
*pNext
= pSave
->pNext
;
5119 pSave
->aPos
= &pSave
->iter
.aPoslist
[pSave
->iter
.nSize
];
5120 fts5PrefixMergerNextPosition(pSave
);
5121 nTmp
+= pSave
->iter
.nPoslist
+ 10;
5123 fts5PrefixMergerInsertByPosition(&pHead
, pSave
);
5127 if( pHead
==0 || pHead
->pNext
==0 ){
5128 p
->rc
= FTS5_CORRUPT
;
5132 /* See the earlier comment in this function for an explanation of why
5133 ** corrupt input position lists might cause the output to consume
5134 ** at most nMerge*10 bytes of unexpected space. */
5135 if( sqlite3Fts5BufferSize(&p
->rc
, &tmp
, nTmp
+nMerge
*10) ){
5138 fts5BufferZero(&tmp
);
5141 pHead
= pThis
->pNext
;
5142 sqlite3Fts5PoslistSafeAppend(&tmp
, &iPrev
, pThis
->iPos
);
5143 fts5PrefixMergerNextPosition(pThis
);
5144 fts5PrefixMergerInsertByPosition(&pHead
, pThis
);
5146 while( pHead
->pNext
){
5148 if( pThis
->iPos
!=iPrev
){
5149 sqlite3Fts5PoslistSafeAppend(&tmp
, &iPrev
, pThis
->iPos
);
5151 fts5PrefixMergerNextPosition(pThis
);
5152 pHead
= pThis
->pNext
;
5153 fts5PrefixMergerInsertByPosition(&pHead
, pThis
);
5156 if( pHead
->iPos
!=iPrev
){
5157 sqlite3Fts5PoslistSafeAppend(&tmp
, &iPrev
, pHead
->iPos
);
5159 nTail
= pHead
->iter
.nPoslist
- pHead
->iOff
;
5161 /* WRITEPOSLISTSIZE */
5162 assert_nc( tmp
.n
+nTail
<=nTmp
);
5163 assert( tmp
.n
+nTail
<=nTmp
+nMerge
*10 );
5164 if( tmp
.n
+nTail
>nTmp
-FTS5_DATA_ZERO_PADDING
){
5165 if( p
->rc
==SQLITE_OK
) p
->rc
= FTS5_CORRUPT
;
5168 fts5BufferSafeAppendVarint(&out
, (tmp
.n
+nTail
) * 2);
5169 fts5BufferSafeAppendBlob(&out
, tmp
.p
, tmp
.n
);
5171 fts5BufferSafeAppendBlob(&out
, &pHead
->aPos
[pHead
->iOff
], nTail
);
5175 for(i
=0; i
<nBuf
+1; i
++){
5176 PrefixMerger
*pX
= &aMerger
[i
];
5177 if( pX
->iter
.aPoslist
&& pX
->iter
.iRowid
==iLastRowid
){
5178 fts5DoclistIterNext(&pX
->iter
);
5179 fts5PrefixMergerInsertByRowid(&pHead
, pX
);
5184 /* Copy poslist from pHead to output */
5185 PrefixMerger
*pThis
= pHead
;
5186 Fts5DoclistIter
*pI
= &pThis
->iter
;
5187 fts5BufferSafeAppendBlob(&out
, pI
->aPoslist
, pI
->nPoslist
+pI
->nSize
);
5188 fts5DoclistIterNext(pI
);
5189 pHead
= pThis
->pNext
;
5190 fts5PrefixMergerInsertByRowid(&pHead
, pThis
);
5195 fts5BufferFree(&tmp
);
5196 memset(&out
.p
[out
.n
], 0, FTS5_DATA_ZERO_PADDING
);
5200 static void fts5SetupPrefixIter(
5201 Fts5Index
*p
, /* Index to read from */
5202 int bDesc
, /* True for "ORDER BY rowid DESC" */
5203 int iIdx
, /* Index to scan for data */
5204 u8
*pToken
, /* Buffer containing prefix to match */
5205 int nToken
, /* Size of buffer pToken in bytes */
5206 Fts5Colset
*pColset
, /* Restrict matches to these columns */
5207 Fts5Iter
**ppIter
/* OUT: New iterator */
5209 Fts5Structure
*pStruct
;
5214 void (*xMerge
)(Fts5Index
*, Fts5Buffer
*, int, Fts5Buffer
*);
5215 void (*xAppend
)(Fts5Index
*, u64
, Fts5Iter
*, Fts5Buffer
*);
5216 if( p
->pConfig
->eDetail
==FTS5_DETAIL_NONE
){
5217 xMerge
= fts5MergeRowidLists
;
5218 xAppend
= fts5AppendRowid
;
5220 nMerge
= FTS5_MERGE_NLIST
-1;
5221 nBuf
= nMerge
*8; /* Sufficient to merge (16^8)==(2^32) lists */
5222 xMerge
= fts5MergePrefixLists
;
5223 xAppend
= fts5AppendPoslist
;
5226 aBuf
= (Fts5Buffer
*)fts5IdxMalloc(p
, sizeof(Fts5Buffer
)*nBuf
);
5227 pStruct
= fts5StructureRead(p
);
5229 if( aBuf
&& pStruct
){
5230 const int flags
= FTS5INDEX_QUERY_SCAN
5231 | FTS5INDEX_QUERY_SKIPEMPTY
5232 | FTS5INDEX_QUERY_NOOUTPUT
;
5235 Fts5Iter
*p1
= 0; /* Iterator used to gather data from index */
5240 memset(&doclist
, 0, sizeof(doclist
));
5243 const int f2
= FTS5INDEX_QUERY_SKIPEMPTY
|FTS5INDEX_QUERY_NOOUTPUT
;
5244 pToken
[0] = FTS5_MAIN_PREFIX
;
5245 fts5MultiIterNew(p
, pStruct
, f2
, pColset
, pToken
, nToken
, -1, 0, &p1
);
5246 fts5IterSetOutputCb(&p
->rc
, p1
);
5248 fts5MultiIterEof(p
, p1
)==0;
5249 fts5MultiIterNext2(p
, p1
, &dummy
)
5251 Fts5SegIter
*pSeg
= &p1
->aSeg
[ p1
->aFirst
[1].iFirst
];
5252 p1
->xSetOutputs(p1
, pSeg
);
5253 if( p1
->base
.nData
){
5254 xAppend(p
, (u64
)p1
->base
.iRowid
-(u64
)iLastRowid
, p1
, &doclist
);
5255 iLastRowid
= p1
->base
.iRowid
;
5258 fts5MultiIterFree(p1
);
5261 pToken
[0] = FTS5_MAIN_PREFIX
+ iIdx
;
5262 fts5MultiIterNew(p
, pStruct
, flags
, pColset
, pToken
, nToken
, -1, 0, &p1
);
5263 fts5IterSetOutputCb(&p
->rc
, p1
);
5265 fts5MultiIterEof(p
, p1
)==0;
5266 fts5MultiIterNext2(p
, p1
, &bNewTerm
)
5268 Fts5SegIter
*pSeg
= &p1
->aSeg
[ p1
->aFirst
[1].iFirst
];
5269 int nTerm
= pSeg
->term
.n
;
5270 const u8
*pTerm
= pSeg
->term
.p
;
5271 p1
->xSetOutputs(p1
, pSeg
);
5273 assert_nc( memcmp(pToken
, pTerm
, MIN(nToken
, nTerm
))<=0 );
5275 if( nTerm
<nToken
|| memcmp(pToken
, pTerm
, nToken
) ) break;
5278 if( p1
->base
.nData
==0 ) continue;
5280 if( p1
->base
.iRowid
<=iLastRowid
&& doclist
.n
>0 ){
5281 for(i
=0; p
->rc
==SQLITE_OK
&& doclist
.n
; i
++){
5284 assert( i1
+nMerge
<=nBuf
);
5285 for(iStore
=i1
; iStore
<i1
+nMerge
; iStore
++){
5286 if( aBuf
[iStore
].n
==0 ){
5287 fts5BufferSwap(&doclist
, &aBuf
[iStore
]);
5288 fts5BufferZero(&doclist
);
5292 if( iStore
==i1
+nMerge
){
5293 xMerge(p
, &doclist
, nMerge
, &aBuf
[i1
]);
5294 for(iStore
=i1
; iStore
<i1
+nMerge
; iStore
++){
5295 fts5BufferZero(&aBuf
[iStore
]);
5302 xAppend(p
, (u64
)p1
->base
.iRowid
-(u64
)iLastRowid
, p1
, &doclist
);
5303 iLastRowid
= p1
->base
.iRowid
;
5306 assert( (nBuf
%nMerge
)==0 );
5307 for(i
=0; i
<nBuf
; i
+=nMerge
){
5309 if( p
->rc
==SQLITE_OK
){
5310 xMerge(p
, &doclist
, nMerge
, &aBuf
[i
]);
5312 for(iFree
=i
; iFree
<i
+nMerge
; iFree
++){
5313 fts5BufferFree(&aBuf
[iFree
]);
5316 fts5MultiIterFree(p1
);
5318 pData
= fts5IdxMalloc(p
, sizeof(Fts5Data
)+doclist
.n
+FTS5_DATA_ZERO_PADDING
);
5320 pData
->p
= (u8
*)&pData
[1];
5321 pData
->nn
= pData
->szLeaf
= doclist
.n
;
5322 if( doclist
.n
) memcpy(pData
->p
, doclist
.p
, doclist
.n
);
5323 fts5MultiIterNew2(p
, pData
, bDesc
, ppIter
);
5325 fts5BufferFree(&doclist
);
5328 fts5StructureRelease(pStruct
);
5334 ** Indicate that all subsequent calls to sqlite3Fts5IndexWrite() pertain
5335 ** to the document with rowid iRowid.
5337 int sqlite3Fts5IndexBeginWrite(Fts5Index
*p
, int bDelete
, i64 iRowid
){
5338 assert( p
->rc
==SQLITE_OK
);
5340 /* Allocate the hash table if it has not already been allocated */
5342 p
->rc
= sqlite3Fts5HashNew(p
->pConfig
, &p
->pHash
, &p
->nPendingData
);
5345 /* Flush the hash table to disk if required */
5346 if( iRowid
<p
->iWriteRowid
5347 || (iRowid
==p
->iWriteRowid
&& p
->bDelete
==0)
5348 || (p
->nPendingData
> p
->pConfig
->nHashSize
)
5353 p
->iWriteRowid
= iRowid
;
5354 p
->bDelete
= bDelete
;
5355 return fts5IndexReturn(p
);
5359 ** Commit data to disk.
5361 int sqlite3Fts5IndexSync(Fts5Index
*p
){
5362 assert( p
->rc
==SQLITE_OK
);
5364 sqlite3Fts5IndexCloseReader(p
);
5365 return fts5IndexReturn(p
);
5369 ** Discard any data stored in the in-memory hash tables. Do not write it
5370 ** to the database. Additionally, assume that the contents of the %_data
5371 ** table may have changed on disk. So any in-memory caches of %_data
5372 ** records must be invalidated.
5374 int sqlite3Fts5IndexRollback(Fts5Index
*p
){
5375 sqlite3Fts5IndexCloseReader(p
);
5376 fts5IndexDiscardData(p
);
5377 fts5StructureInvalidate(p
);
5378 /* assert( p->rc==SQLITE_OK ); */
5383 ** The %_data table is completely empty when this function is called. This
5384 ** function populates it with the initial structure objects for each index,
5385 ** and the initial version of the "averages" record (a zero-byte blob).
5387 int sqlite3Fts5IndexReinit(Fts5Index
*p
){
5389 fts5StructureInvalidate(p
);
5390 fts5IndexDiscardData(p
);
5391 memset(&s
, 0, sizeof(Fts5Structure
));
5392 fts5DataWrite(p
, FTS5_AVERAGES_ROWID
, (const u8
*)"", 0);
5393 fts5StructureWrite(p
, &s
);
5394 return fts5IndexReturn(p
);
5398 ** Open a new Fts5Index handle. If the bCreate argument is true, create
5399 ** and initialize the underlying %_data table.
5401 ** If successful, set *pp to point to the new object and return SQLITE_OK.
5402 ** Otherwise, set *pp to NULL and return an SQLite error code.
5404 int sqlite3Fts5IndexOpen(
5405 Fts5Config
*pConfig
,
5411 Fts5Index
*p
; /* New object */
5413 *pp
= p
= (Fts5Index
*)sqlite3Fts5MallocZero(&rc
, sizeof(Fts5Index
));
5414 if( rc
==SQLITE_OK
){
5415 p
->pConfig
= pConfig
;
5416 p
->nWorkUnit
= FTS5_WORK_UNIT
;
5417 p
->zDataTbl
= sqlite3Fts5Mprintf(&rc
, "%s_data", pConfig
->zName
);
5418 if( p
->zDataTbl
&& bCreate
){
5419 rc
= sqlite3Fts5CreateTable(
5420 pConfig
, "data", "id INTEGER PRIMARY KEY, block BLOB", 0, pzErr
5422 if( rc
==SQLITE_OK
){
5423 rc
= sqlite3Fts5CreateTable(pConfig
, "idx",
5424 "segid, term, pgno, PRIMARY KEY(segid, term)",
5428 if( rc
==SQLITE_OK
){
5429 rc
= sqlite3Fts5IndexReinit(p
);
5434 assert( rc
!=SQLITE_OK
|| p
->rc
==SQLITE_OK
);
5436 sqlite3Fts5IndexClose(p
);
5443 ** Close a handle opened by an earlier call to sqlite3Fts5IndexOpen().
5445 int sqlite3Fts5IndexClose(Fts5Index
*p
){
5448 assert( p
->pReader
==0 );
5449 fts5StructureInvalidate(p
);
5450 sqlite3_finalize(p
->pWriter
);
5451 sqlite3_finalize(p
->pDeleter
);
5452 sqlite3_finalize(p
->pIdxWriter
);
5453 sqlite3_finalize(p
->pIdxDeleter
);
5454 sqlite3_finalize(p
->pIdxSelect
);
5455 sqlite3_finalize(p
->pDataVersion
);
5456 sqlite3Fts5HashFree(p
->pHash
);
5457 sqlite3_free(p
->zDataTbl
);
5464 ** Argument p points to a buffer containing utf-8 text that is n bytes in
5465 ** size. Return the number of bytes in the nChar character prefix of the
5466 ** buffer, or 0 if there are less than nChar characters in total.
5468 int sqlite3Fts5IndexCharlenToBytelen(
5475 for(i
=0; i
<nChar
; i
++){
5476 if( n
>=nByte
) return 0; /* Input contains fewer than nChar chars */
5477 if( (unsigned char)p
[n
++]>=0xc0 ){
5478 if( n
>=nByte
) return 0;
5479 while( (p
[n
] & 0xc0)==0x80 ){
5482 if( i
+1==nChar
) break;
5492 ** pIn is a UTF-8 encoded string, nIn bytes in size. Return the number of
5493 ** unicode characters in the string.
5495 static int fts5IndexCharlen(const char *pIn
, int nIn
){
5499 if( (unsigned char)pIn
[i
++]>=0xc0 ){
5500 while( i
<nIn
&& (pIn
[i
] & 0xc0)==0x80 ) i
++;
5508 ** Insert or remove data to or from the index. Each time a document is
5509 ** added to or removed from the index, this function is called one or more
5512 ** For an insert, it must be called once for each token in the new document.
5513 ** If the operation is a delete, it must be called (at least) once for each
5514 ** unique token in the document with an iCol value less than zero. The iPos
5515 ** argument is ignored for a delete.
5517 int sqlite3Fts5IndexWrite(
5518 Fts5Index
*p
, /* Index to write to */
5519 int iCol
, /* Column token appears in (-ve -> delete) */
5520 int iPos
, /* Position of token within column */
5521 const char *pToken
, int nToken
/* Token to add or remove to or from index */
5523 int i
; /* Used to iterate through indexes */
5524 int rc
= SQLITE_OK
; /* Return code */
5525 Fts5Config
*pConfig
= p
->pConfig
;
5527 assert( p
->rc
==SQLITE_OK
);
5528 assert( (iCol
<0)==p
->bDelete
);
5530 /* Add the entry to the main terms index. */
5531 rc
= sqlite3Fts5HashWrite(
5532 p
->pHash
, p
->iWriteRowid
, iCol
, iPos
, FTS5_MAIN_PREFIX
, pToken
, nToken
5535 for(i
=0; i
<pConfig
->nPrefix
&& rc
==SQLITE_OK
; i
++){
5536 const int nChar
= pConfig
->aPrefix
[i
];
5537 int nByte
= sqlite3Fts5IndexCharlenToBytelen(pToken
, nToken
, nChar
);
5539 rc
= sqlite3Fts5HashWrite(p
->pHash
,
5540 p
->iWriteRowid
, iCol
, iPos
, (char)(FTS5_MAIN_PREFIX
+i
+1), pToken
,
5550 ** Open a new iterator to iterate though all rowid that match the
5551 ** specified token or token prefix.
5553 int sqlite3Fts5IndexQuery(
5554 Fts5Index
*p
, /* FTS index to query */
5555 const char *pToken
, int nToken
, /* Token (or prefix) to query for */
5556 int flags
, /* Mask of FTS5INDEX_QUERY_X flags */
5557 Fts5Colset
*pColset
, /* Match these columns only */
5558 Fts5IndexIter
**ppIter
/* OUT: New iterator object */
5560 Fts5Config
*pConfig
= p
->pConfig
;
5562 Fts5Buffer buf
= {0, 0, 0};
5564 /* If the QUERY_SCAN flag is set, all other flags must be clear. */
5565 assert( (flags
& FTS5INDEX_QUERY_SCAN
)==0 || flags
==FTS5INDEX_QUERY_SCAN
);
5567 if( sqlite3Fts5BufferSize(&p
->rc
, &buf
, nToken
+1)==0 ){
5568 int iIdx
= 0; /* Index to search */
5569 int iPrefixIdx
= 0; /* +1 prefix index */
5570 if( nToken
>0 ) memcpy(&buf
.p
[1], pToken
, nToken
);
5572 /* Figure out which index to search and set iIdx accordingly. If this
5573 ** is a prefix query for which there is no prefix index, set iIdx to
5574 ** greater than pConfig->nPrefix to indicate that the query will be
5575 ** satisfied by scanning multiple terms in the main index.
5577 ** If the QUERY_TEST_NOIDX flag was specified, then this must be a
5578 ** prefix-query. Instead of using a prefix-index (if one exists),
5579 ** evaluate the prefix query using the main FTS index. This is used
5580 ** for internal sanity checking by the integrity-check in debug
5583 if( pConfig
->bPrefixIndex
==0 || (flags
& FTS5INDEX_QUERY_TEST_NOIDX
) ){
5584 assert( flags
& FTS5INDEX_QUERY_PREFIX
);
5585 iIdx
= 1+pConfig
->nPrefix
;
5588 if( flags
& FTS5INDEX_QUERY_PREFIX
){
5589 int nChar
= fts5IndexCharlen(pToken
, nToken
);
5590 for(iIdx
=1; iIdx
<=pConfig
->nPrefix
; iIdx
++){
5591 int nIdxChar
= pConfig
->aPrefix
[iIdx
-1];
5592 if( nIdxChar
==nChar
) break;
5593 if( nIdxChar
==nChar
+1 ) iPrefixIdx
= iIdx
;
5597 if( iIdx
<=pConfig
->nPrefix
){
5598 /* Straight index lookup */
5599 Fts5Structure
*pStruct
= fts5StructureRead(p
);
5600 buf
.p
[0] = (u8
)(FTS5_MAIN_PREFIX
+ iIdx
);
5602 fts5MultiIterNew(p
, pStruct
, flags
| FTS5INDEX_QUERY_SKIPEMPTY
,
5603 pColset
, buf
.p
, nToken
+1, -1, 0, &pRet
5605 fts5StructureRelease(pStruct
);
5608 /* Scan multiple terms in the main index */
5609 int bDesc
= (flags
& FTS5INDEX_QUERY_DESC
)!=0;
5610 fts5SetupPrefixIter(p
, bDesc
, iPrefixIdx
, buf
.p
, nToken
+1, pColset
,&pRet
);
5612 assert( p
->rc
!=SQLITE_OK
);
5614 assert( pRet
->pColset
==0 );
5615 fts5IterSetOutputCb(&p
->rc
, pRet
);
5616 if( p
->rc
==SQLITE_OK
){
5617 Fts5SegIter
*pSeg
= &pRet
->aSeg
[pRet
->aFirst
[1].iFirst
];
5618 if( pSeg
->pLeaf
) pRet
->xSetOutputs(pRet
, pSeg
);
5624 sqlite3Fts5IterClose((Fts5IndexIter
*)pRet
);
5626 sqlite3Fts5IndexCloseReader(p
);
5629 *ppIter
= (Fts5IndexIter
*)pRet
;
5630 sqlite3Fts5BufferFree(&buf
);
5632 return fts5IndexReturn(p
);
5636 ** Return true if the iterator passed as the only argument is at EOF.
5639 ** Move to the next matching rowid.
5641 int sqlite3Fts5IterNext(Fts5IndexIter
*pIndexIter
){
5642 Fts5Iter
*pIter
= (Fts5Iter
*)pIndexIter
;
5643 assert( pIter
->pIndex
->rc
==SQLITE_OK
);
5644 fts5MultiIterNext(pIter
->pIndex
, pIter
, 0, 0);
5645 return fts5IndexReturn(pIter
->pIndex
);
5649 ** Move to the next matching term/rowid. Used by the fts5vocab module.
5651 int sqlite3Fts5IterNextScan(Fts5IndexIter
*pIndexIter
){
5652 Fts5Iter
*pIter
= (Fts5Iter
*)pIndexIter
;
5653 Fts5Index
*p
= pIter
->pIndex
;
5655 assert( pIter
->pIndex
->rc
==SQLITE_OK
);
5657 fts5MultiIterNext(p
, pIter
, 0, 0);
5658 if( p
->rc
==SQLITE_OK
){
5659 Fts5SegIter
*pSeg
= &pIter
->aSeg
[ pIter
->aFirst
[1].iFirst
];
5660 if( pSeg
->pLeaf
&& pSeg
->term
.p
[0]!=FTS5_MAIN_PREFIX
){
5661 fts5DataRelease(pSeg
->pLeaf
);
5663 pIter
->base
.bEof
= 1;
5667 return fts5IndexReturn(pIter
->pIndex
);
5671 ** Move to the next matching rowid that occurs at or after iMatch. The
5672 ** definition of "at or after" depends on whether this iterator iterates
5673 ** in ascending or descending rowid order.
5675 int sqlite3Fts5IterNextFrom(Fts5IndexIter
*pIndexIter
, i64 iMatch
){
5676 Fts5Iter
*pIter
= (Fts5Iter
*)pIndexIter
;
5677 fts5MultiIterNextFrom(pIter
->pIndex
, pIter
, iMatch
);
5678 return fts5IndexReturn(pIter
->pIndex
);
5682 ** Return the current term.
5684 const char *sqlite3Fts5IterTerm(Fts5IndexIter
*pIndexIter
, int *pn
){
5686 const char *z
= (const char*)fts5MultiIterTerm((Fts5Iter
*)pIndexIter
, &n
);
5687 assert_nc( z
|| n
<=1 );
5689 return (z
? &z
[1] : 0);
5693 ** Close an iterator opened by an earlier call to sqlite3Fts5IndexQuery().
5695 void sqlite3Fts5IterClose(Fts5IndexIter
*pIndexIter
){
5697 Fts5Iter
*pIter
= (Fts5Iter
*)pIndexIter
;
5698 Fts5Index
*pIndex
= pIter
->pIndex
;
5699 fts5MultiIterFree(pIter
);
5700 sqlite3Fts5IndexCloseReader(pIndex
);
5705 ** Read and decode the "averages" record from the database.
5707 ** Parameter anSize must point to an array of size nCol, where nCol is
5708 ** the number of user defined columns in the FTS table.
5710 int sqlite3Fts5IndexGetAverages(Fts5Index
*p
, i64
*pnRow
, i64
*anSize
){
5711 int nCol
= p
->pConfig
->nCol
;
5715 memset(anSize
, 0, sizeof(i64
) * nCol
);
5716 pData
= fts5DataRead(p
, FTS5_AVERAGES_ROWID
);
5717 if( p
->rc
==SQLITE_OK
&& pData
->nn
){
5720 i
+= fts5GetVarint(&pData
->p
[i
], (u64
*)pnRow
);
5721 for(iCol
=0; i
<pData
->nn
&& iCol
<nCol
; iCol
++){
5722 i
+= fts5GetVarint(&pData
->p
[i
], (u64
*)&anSize
[iCol
]);
5726 fts5DataRelease(pData
);
5727 return fts5IndexReturn(p
);
5731 ** Replace the current "averages" record with the contents of the buffer
5732 ** supplied as the second argument.
5734 int sqlite3Fts5IndexSetAverages(Fts5Index
*p
, const u8
*pData
, int nData
){
5735 assert( p
->rc
==SQLITE_OK
);
5736 fts5DataWrite(p
, FTS5_AVERAGES_ROWID
, pData
, nData
);
5737 return fts5IndexReturn(p
);
5741 ** Return the total number of blocks this module has read from the %_data
5742 ** table since it was created.
5744 int sqlite3Fts5IndexReads(Fts5Index
*p
){
5749 ** Set the 32-bit cookie value stored at the start of all structure
5750 ** records to the value passed as the second argument.
5752 ** Return SQLITE_OK if successful, or an SQLite error code if an error
5755 int sqlite3Fts5IndexSetCookie(Fts5Index
*p
, int iNew
){
5756 int rc
; /* Return code */
5757 Fts5Config
*pConfig
= p
->pConfig
; /* Configuration object */
5758 u8 aCookie
[4]; /* Binary representation of iNew */
5759 sqlite3_blob
*pBlob
= 0;
5761 assert( p
->rc
==SQLITE_OK
);
5762 sqlite3Fts5Put32(aCookie
, iNew
);
5764 rc
= sqlite3_blob_open(pConfig
->db
, pConfig
->zDb
, p
->zDataTbl
,
5765 "block", FTS5_STRUCTURE_ROWID
, 1, &pBlob
5767 if( rc
==SQLITE_OK
){
5768 sqlite3_blob_write(pBlob
, aCookie
, 4, 0);
5769 rc
= sqlite3_blob_close(pBlob
);
5775 int sqlite3Fts5IndexLoadConfig(Fts5Index
*p
){
5776 Fts5Structure
*pStruct
;
5777 pStruct
= fts5StructureRead(p
);
5778 fts5StructureRelease(pStruct
);
5779 return fts5IndexReturn(p
);
5783 /*************************************************************************
5784 **************************************************************************
5785 ** Below this point is the implementation of the integrity-check
5790 ** Return a simple checksum value based on the arguments.
5792 u64
sqlite3Fts5IndexEntryCksum(
5802 ret
+= (ret
<<3) + iCol
;
5803 ret
+= (ret
<<3) + iPos
;
5804 if( iIdx
>=0 ) ret
+= (ret
<<3) + (FTS5_MAIN_PREFIX
+ iIdx
);
5805 for(i
=0; i
<nTerm
; i
++) ret
+= (ret
<<3) + pTerm
[i
];
5811 ** This function is purely an internal test. It does not contribute to
5812 ** FTS functionality, or even the integrity-check, in any way.
5814 ** Instead, it tests that the same set of pgno/rowid combinations are
5815 ** visited regardless of whether the doclist-index identified by parameters
5816 ** iSegid/iLeaf is iterated in forwards or reverse order.
5818 static void fts5TestDlidxReverse(
5820 int iSegid
, /* Segment id to load from */
5821 int iLeaf
/* Load doclist-index for this leaf */
5823 Fts5DlidxIter
*pDlidx
= 0;
5827 for(pDlidx
=fts5DlidxIterInit(p
, 0, iSegid
, iLeaf
);
5828 fts5DlidxIterEof(p
, pDlidx
)==0;
5829 fts5DlidxIterNext(p
, pDlidx
)
5831 i64 iRowid
= fts5DlidxIterRowid(pDlidx
);
5832 int pgno
= fts5DlidxIterPgno(pDlidx
);
5833 assert( pgno
>iLeaf
);
5834 cksum1
+= iRowid
+ ((i64
)pgno
<<32);
5836 fts5DlidxIterFree(pDlidx
);
5839 for(pDlidx
=fts5DlidxIterInit(p
, 1, iSegid
, iLeaf
);
5840 fts5DlidxIterEof(p
, pDlidx
)==0;
5841 fts5DlidxIterPrev(p
, pDlidx
)
5843 i64 iRowid
= fts5DlidxIterRowid(pDlidx
);
5844 int pgno
= fts5DlidxIterPgno(pDlidx
);
5845 assert( fts5DlidxIterPgno(pDlidx
)>iLeaf
);
5846 cksum2
+= iRowid
+ ((i64
)pgno
<<32);
5848 fts5DlidxIterFree(pDlidx
);
5851 if( p
->rc
==SQLITE_OK
&& cksum1
!=cksum2
) p
->rc
= FTS5_CORRUPT
;
5854 static int fts5QueryCksum(
5855 Fts5Index
*p
, /* Fts5 index object */
5857 const char *z
, /* Index key to query for */
5858 int n
, /* Size of index key in bytes */
5859 int flags
, /* Flags for Fts5IndexQuery */
5860 u64
*pCksum
/* IN/OUT: Checksum value */
5862 int eDetail
= p
->pConfig
->eDetail
;
5863 u64 cksum
= *pCksum
;
5864 Fts5IndexIter
*pIter
= 0;
5865 int rc
= sqlite3Fts5IndexQuery(p
, z
, n
, flags
, 0, &pIter
);
5867 while( rc
==SQLITE_OK
&& ALWAYS(pIter
!=0) && 0==sqlite3Fts5IterEof(pIter
) ){
5868 i64 rowid
= pIter
->iRowid
;
5870 if( eDetail
==FTS5_DETAIL_NONE
){
5871 cksum
^= sqlite3Fts5IndexEntryCksum(rowid
, 0, 0, iIdx
, z
, n
);
5873 Fts5PoslistReader sReader
;
5874 for(sqlite3Fts5PoslistReaderInit(pIter
->pData
, pIter
->nData
, &sReader
);
5876 sqlite3Fts5PoslistReaderNext(&sReader
)
5878 int iCol
= FTS5_POS2COLUMN(sReader
.iPos
);
5879 int iOff
= FTS5_POS2OFFSET(sReader
.iPos
);
5880 cksum
^= sqlite3Fts5IndexEntryCksum(rowid
, iCol
, iOff
, iIdx
, z
, n
);
5883 if( rc
==SQLITE_OK
){
5884 rc
= sqlite3Fts5IterNext(pIter
);
5887 sqlite3Fts5IterClose(pIter
);
5894 ** Check if buffer z[], size n bytes, contains as series of valid utf-8
5895 ** encoded codepoints. If so, return 0. Otherwise, if the buffer does not
5896 ** contain valid utf-8, return non-zero.
5898 static int fts5TestUtf8(const char *z
, int n
){
5902 if( (z
[i
] & 0x80)==0x00 ){
5905 if( (z
[i
] & 0xE0)==0xC0 ){
5906 if( i
+1>=n
|| (z
[i
+1] & 0xC0)!=0x80 ) return 1;
5909 if( (z
[i
] & 0xF0)==0xE0 ){
5910 if( i
+2>=n
|| (z
[i
+1] & 0xC0)!=0x80 || (z
[i
+2] & 0xC0)!=0x80 ) return 1;
5913 if( (z
[i
] & 0xF8)==0xF0 ){
5914 if( i
+3>=n
|| (z
[i
+1] & 0xC0)!=0x80 || (z
[i
+2] & 0xC0)!=0x80 ) return 1;
5915 if( (z
[i
+2] & 0xC0)!=0x80 ) return 1;
5926 ** This function is also purely an internal test. It does not contribute to
5927 ** FTS functionality, or even the integrity-check, in any way.
5929 static void fts5TestTerm(
5931 Fts5Buffer
*pPrev
, /* Previous term */
5932 const char *z
, int n
, /* Possibly new term to test */
5938 fts5BufferSet(&rc
, pPrev
, n
, (const u8
*)z
);
5940 if( rc
==SQLITE_OK
&& (pPrev
->n
!=n
|| memcmp(pPrev
->p
, z
, n
)) ){
5941 u64 cksum3
= *pCksum
;
5942 const char *zTerm
= (const char*)&pPrev
->p
[1]; /* term sans prefix-byte */
5943 int nTerm
= pPrev
->n
-1; /* Size of zTerm in bytes */
5944 int iIdx
= (pPrev
->p
[0] - FTS5_MAIN_PREFIX
);
5945 int flags
= (iIdx
==0 ? 0 : FTS5INDEX_QUERY_PREFIX
);
5949 /* Check that the results returned for ASC and DESC queries are
5950 ** the same. If not, call this corruption. */
5951 rc
= fts5QueryCksum(p
, iIdx
, zTerm
, nTerm
, flags
, &ck1
);
5952 if( rc
==SQLITE_OK
){
5953 int f
= flags
|FTS5INDEX_QUERY_DESC
;
5954 rc
= fts5QueryCksum(p
, iIdx
, zTerm
, nTerm
, f
, &ck2
);
5956 if( rc
==SQLITE_OK
&& ck1
!=ck2
) rc
= FTS5_CORRUPT
;
5958 /* If this is a prefix query, check that the results returned if the
5959 ** the index is disabled are the same. In both ASC and DESC order.
5961 ** This check may only be performed if the hash table is empty. This
5962 ** is because the hash table only supports a single scan query at
5963 ** a time, and the multi-iter loop from which this function is called
5964 ** is already performing such a scan.
5966 ** Also only do this if buffer zTerm contains nTerm bytes of valid
5967 ** utf-8. Otherwise, the last part of the buffer contents might contain
5968 ** a non-utf-8 sequence that happens to be a prefix of a valid utf-8
5969 ** character stored in the main fts index, which will cause the
5971 if( p
->nPendingData
==0 && 0==fts5TestUtf8(zTerm
, nTerm
) ){
5972 if( iIdx
>0 && rc
==SQLITE_OK
){
5973 int f
= flags
|FTS5INDEX_QUERY_TEST_NOIDX
;
5975 rc
= fts5QueryCksum(p
, iIdx
, zTerm
, nTerm
, f
, &ck2
);
5976 if( rc
==SQLITE_OK
&& ck1
!=ck2
) rc
= FTS5_CORRUPT
;
5978 if( iIdx
>0 && rc
==SQLITE_OK
){
5979 int f
= flags
|FTS5INDEX_QUERY_TEST_NOIDX
|FTS5INDEX_QUERY_DESC
;
5981 rc
= fts5QueryCksum(p
, iIdx
, zTerm
, nTerm
, f
, &ck2
);
5982 if( rc
==SQLITE_OK
&& ck1
!=ck2
) rc
= FTS5_CORRUPT
;
5987 fts5BufferSet(&rc
, pPrev
, n
, (const u8
*)z
);
5989 if( rc
==SQLITE_OK
&& cksum3
!=expected
){
5998 # define fts5TestDlidxReverse(x,y,z)
5999 # define fts5TestTerm(u,v,w,x,y,z)
6005 ** 1) All leaves of pSeg between iFirst and iLast (inclusive) exist and
6006 ** contain zero terms.
6007 ** 2) All leaves of pSeg between iNoRowid and iLast (inclusive) exist and
6008 ** contain zero rowids.
6010 static void fts5IndexIntegrityCheckEmpty(
6012 Fts5StructureSegment
*pSeg
, /* Segment to check internal consistency */
6019 /* Now check that the iter.nEmpty leaves following the current leaf
6020 ** (a) exist and (b) contain no terms. */
6021 for(i
=iFirst
; p
->rc
==SQLITE_OK
&& i
<=iLast
; i
++){
6022 Fts5Data
*pLeaf
= fts5DataRead(p
, FTS5_SEGMENT_ROWID(pSeg
->iSegid
, i
));
6024 if( !fts5LeafIsTermless(pLeaf
) ) p
->rc
= FTS5_CORRUPT
;
6025 if( i
>=iNoRowid
&& 0!=fts5LeafFirstRowidOff(pLeaf
) ) p
->rc
= FTS5_CORRUPT
;
6027 fts5DataRelease(pLeaf
);
6031 static void fts5IntegrityCheckPgidx(Fts5Index
*p
, Fts5Data
*pLeaf
){
6035 Fts5Buffer buf1
= {0,0,0};
6036 Fts5Buffer buf2
= {0,0,0};
6039 while( ii
<pLeaf
->nn
&& p
->rc
==SQLITE_OK
){
6044 ii
+= fts5GetVarint32(&pLeaf
->p
[ii
], nIncr
);
6048 if( iOff
>=pLeaf
->szLeaf
){
6049 p
->rc
= FTS5_CORRUPT
;
6050 }else if( iTermOff
==nIncr
){
6052 iOff
+= fts5GetVarint32(&pLeaf
->p
[iOff
], nByte
);
6053 if( (iOff
+nByte
)>pLeaf
->szLeaf
){
6054 p
->rc
= FTS5_CORRUPT
;
6056 fts5BufferSet(&p
->rc
, &buf1
, nByte
, &pLeaf
->p
[iOff
]);
6060 iOff
+= fts5GetVarint32(&pLeaf
->p
[iOff
], nKeep
);
6061 iOff
+= fts5GetVarint32(&pLeaf
->p
[iOff
], nByte
);
6062 if( nKeep
>buf1
.n
|| (iOff
+nByte
)>pLeaf
->szLeaf
){
6063 p
->rc
= FTS5_CORRUPT
;
6066 fts5BufferAppendBlob(&p
->rc
, &buf1
, nByte
, &pLeaf
->p
[iOff
]);
6069 if( p
->rc
==SQLITE_OK
){
6070 res
= fts5BufferCompare(&buf1
, &buf2
);
6071 if( res
<=0 ) p
->rc
= FTS5_CORRUPT
;
6074 fts5BufferSet(&p
->rc
, &buf2
, buf1
.n
, buf1
.p
);
6077 fts5BufferFree(&buf1
);
6078 fts5BufferFree(&buf2
);
6081 static void fts5IndexIntegrityCheckSegment(
6082 Fts5Index
*p
, /* FTS5 backend object */
6083 Fts5StructureSegment
*pSeg
/* Segment to check internal consistency */
6085 Fts5Config
*pConfig
= p
->pConfig
;
6086 sqlite3_stmt
*pStmt
= 0;
6088 int iIdxPrevLeaf
= pSeg
->pgnoFirst
-1;
6089 int iDlidxPrevLeaf
= pSeg
->pgnoLast
;
6091 if( pSeg
->pgnoFirst
==0 ) return;
6093 fts5IndexPrepareStmt(p
, &pStmt
, sqlite3_mprintf(
6094 "SELECT segid, term, (pgno>>1), (pgno&1) FROM %Q.'%q_idx' WHERE segid=%d "
6096 pConfig
->zDb
, pConfig
->zName
, pSeg
->iSegid
6099 /* Iterate through the b-tree hierarchy. */
6100 while( p
->rc
==SQLITE_OK
&& SQLITE_ROW
==sqlite3_step(pStmt
) ){
6101 i64 iRow
; /* Rowid for this leaf */
6102 Fts5Data
*pLeaf
; /* Data for this leaf */
6104 const char *zIdxTerm
= (const char*)sqlite3_column_blob(pStmt
, 1);
6105 int nIdxTerm
= sqlite3_column_bytes(pStmt
, 1);
6106 int iIdxLeaf
= sqlite3_column_int(pStmt
, 2);
6107 int bIdxDlidx
= sqlite3_column_int(pStmt
, 3);
6109 /* If the leaf in question has already been trimmed from the segment,
6110 ** ignore this b-tree entry. Otherwise, load it into memory. */
6111 if( iIdxLeaf
<pSeg
->pgnoFirst
) continue;
6112 iRow
= FTS5_SEGMENT_ROWID(pSeg
->iSegid
, iIdxLeaf
);
6113 pLeaf
= fts5LeafRead(p
, iRow
);
6114 if( pLeaf
==0 ) break;
6116 /* Check that the leaf contains at least one term, and that it is equal
6117 ** to or larger than the split-key in zIdxTerm. Also check that if there
6118 ** is also a rowid pointer within the leaf page header, it points to a
6119 ** location before the term. */
6120 if( pLeaf
->nn
<=pLeaf
->szLeaf
){
6121 p
->rc
= FTS5_CORRUPT
;
6123 int iOff
; /* Offset of first term on leaf */
6124 int iRowidOff
; /* Offset of first rowid on leaf */
6125 int nTerm
; /* Size of term on leaf in bytes */
6126 int res
; /* Comparison of term and split-key */
6128 iOff
= fts5LeafFirstTermOff(pLeaf
);
6129 iRowidOff
= fts5LeafFirstRowidOff(pLeaf
);
6130 if( iRowidOff
>=iOff
|| iOff
>=pLeaf
->szLeaf
){
6131 p
->rc
= FTS5_CORRUPT
;
6133 iOff
+= fts5GetVarint32(&pLeaf
->p
[iOff
], nTerm
);
6134 res
= fts5Memcmp(&pLeaf
->p
[iOff
], zIdxTerm
, MIN(nTerm
, nIdxTerm
));
6135 if( res
==0 ) res
= nTerm
- nIdxTerm
;
6136 if( res
<0 ) p
->rc
= FTS5_CORRUPT
;
6139 fts5IntegrityCheckPgidx(p
, pLeaf
);
6141 fts5DataRelease(pLeaf
);
6144 /* Now check that the iter.nEmpty leaves following the current leaf
6145 ** (a) exist and (b) contain no terms. */
6146 fts5IndexIntegrityCheckEmpty(
6147 p
, pSeg
, iIdxPrevLeaf
+1, iDlidxPrevLeaf
+1, iIdxLeaf
-1
6151 /* If there is a doclist-index, check that it looks right. */
6153 Fts5DlidxIter
*pDlidx
= 0; /* For iterating through doclist index */
6154 int iPrevLeaf
= iIdxLeaf
;
6155 int iSegid
= pSeg
->iSegid
;
6159 for(pDlidx
=fts5DlidxIterInit(p
, 0, iSegid
, iIdxLeaf
);
6160 fts5DlidxIterEof(p
, pDlidx
)==0;
6161 fts5DlidxIterNext(p
, pDlidx
)
6164 /* Check any rowid-less pages that occur before the current leaf. */
6165 for(iPg
=iPrevLeaf
+1; iPg
<fts5DlidxIterPgno(pDlidx
); iPg
++){
6166 iKey
= FTS5_SEGMENT_ROWID(iSegid
, iPg
);
6167 pLeaf
= fts5DataRead(p
, iKey
);
6169 if( fts5LeafFirstRowidOff(pLeaf
)!=0 ) p
->rc
= FTS5_CORRUPT
;
6170 fts5DataRelease(pLeaf
);
6173 iPrevLeaf
= fts5DlidxIterPgno(pDlidx
);
6175 /* Check that the leaf page indicated by the iterator really does
6176 ** contain the rowid suggested by the same. */
6177 iKey
= FTS5_SEGMENT_ROWID(iSegid
, iPrevLeaf
);
6178 pLeaf
= fts5DataRead(p
, iKey
);
6181 int iRowidOff
= fts5LeafFirstRowidOff(pLeaf
);
6182 ASSERT_SZLEAF_OK(pLeaf
);
6183 if( iRowidOff
>=pLeaf
->szLeaf
){
6184 p
->rc
= FTS5_CORRUPT
;
6186 fts5GetVarint(&pLeaf
->p
[iRowidOff
], (u64
*)&iRowid
);
6187 if( iRowid
!=fts5DlidxIterRowid(pDlidx
) ) p
->rc
= FTS5_CORRUPT
;
6189 fts5DataRelease(pLeaf
);
6193 iDlidxPrevLeaf
= iPg
;
6194 fts5DlidxIterFree(pDlidx
);
6195 fts5TestDlidxReverse(p
, iSegid
, iIdxLeaf
);
6197 iDlidxPrevLeaf
= pSeg
->pgnoLast
;
6198 /* TODO: Check there is no doclist index */
6201 iIdxPrevLeaf
= iIdxLeaf
;
6204 rc2
= sqlite3_finalize(pStmt
);
6205 if( p
->rc
==SQLITE_OK
) p
->rc
= rc2
;
6207 /* Page iter.iLeaf must now be the rightmost leaf-page in the segment */
6209 if( p
->rc
==SQLITE_OK
&& iter
.iLeaf
!=pSeg
->pgnoLast
){
6210 p
->rc
= FTS5_CORRUPT
;
6217 ** Run internal checks to ensure that the FTS index (a) is internally
6218 ** consistent and (b) contains entries for which the XOR of the checksums
6219 ** as calculated by sqlite3Fts5IndexEntryCksum() is cksum.
6221 ** Return SQLITE_CORRUPT if any of the internal checks fail, or if the
6222 ** checksum does not match. Return SQLITE_OK if all checks pass without
6223 ** error, or some other SQLite error code if another error (e.g. OOM)
6226 int sqlite3Fts5IndexIntegrityCheck(Fts5Index
*p
, u64 cksum
, int bUseCksum
){
6227 int eDetail
= p
->pConfig
->eDetail
;
6228 u64 cksum2
= 0; /* Checksum based on contents of indexes */
6229 Fts5Buffer poslist
= {0,0,0}; /* Buffer used to hold a poslist */
6230 Fts5Iter
*pIter
; /* Used to iterate through entire index */
6231 Fts5Structure
*pStruct
; /* Index structure */
6235 /* Used by extra internal tests only run if NDEBUG is not defined */
6236 u64 cksum3
= 0; /* Checksum based on contents of indexes */
6237 Fts5Buffer term
= {0,0,0}; /* Buffer used to hold most recent term */
6239 const int flags
= FTS5INDEX_QUERY_NOOUTPUT
;
6241 /* Load the FTS index structure */
6242 pStruct
= fts5StructureRead(p
);
6244 assert( p
->rc
!=SQLITE_OK
);
6245 return fts5IndexReturn(p
);
6248 /* Check that the internal nodes of each segment match the leaves */
6249 for(iLvl
=0; iLvl
<pStruct
->nLevel
; iLvl
++){
6250 for(iSeg
=0; iSeg
<pStruct
->aLevel
[iLvl
].nSeg
; iSeg
++){
6251 Fts5StructureSegment
*pSeg
= &pStruct
->aLevel
[iLvl
].aSeg
[iSeg
];
6252 fts5IndexIntegrityCheckSegment(p
, pSeg
);
6256 /* The cksum argument passed to this function is a checksum calculated
6257 ** based on all expected entries in the FTS index (including prefix index
6258 ** entries). This block checks that a checksum calculated based on the
6259 ** actual contents of FTS index is identical.
6261 ** Two versions of the same checksum are calculated. The first (stack
6262 ** variable cksum2) based on entries extracted from the full-text index
6263 ** while doing a linear scan of each individual index in turn.
6265 ** As each term visited by the linear scans, a separate query for the
6266 ** same term is performed. cksum3 is calculated based on the entries
6267 ** extracted by these queries.
6269 for(fts5MultiIterNew(p
, pStruct
, flags
, 0, 0, 0, -1, 0, &pIter
);
6270 fts5MultiIterEof(p
, pIter
)==0;
6271 fts5MultiIterNext(p
, pIter
, 0, 0)
6273 int n
; /* Size of term in bytes */
6274 i64 iPos
= 0; /* Position read from poslist */
6275 int iOff
= 0; /* Offset within poslist */
6276 i64 iRowid
= fts5MultiIterRowid(pIter
);
6277 char *z
= (char*)fts5MultiIterTerm(pIter
, &n
);
6279 /* If this is a new term, query for it. Update cksum3 with the results. */
6280 fts5TestTerm(p
, &term
, z
, n
, cksum2
, &cksum3
);
6283 if( eDetail
==FTS5_DETAIL_NONE
){
6284 if( 0==fts5MultiIterIsEmpty(p
, pIter
) ){
6285 cksum2
^= sqlite3Fts5IndexEntryCksum(iRowid
, 0, 0, -1, z
, n
);
6289 fts5SegiterPoslist(p
, &pIter
->aSeg
[pIter
->aFirst
[1].iFirst
], 0, &poslist
);
6290 fts5BufferAppendBlob(&p
->rc
, &poslist
, 4, (const u8
*)"\0\0\0\0");
6291 while( 0==sqlite3Fts5PoslistNext64(poslist
.p
, poslist
.n
, &iOff
, &iPos
) ){
6292 int iCol
= FTS5_POS2COLUMN(iPos
);
6293 int iTokOff
= FTS5_POS2OFFSET(iPos
);
6294 cksum2
^= sqlite3Fts5IndexEntryCksum(iRowid
, iCol
, iTokOff
, -1, z
, n
);
6298 fts5TestTerm(p
, &term
, 0, 0, cksum2
, &cksum3
);
6300 fts5MultiIterFree(pIter
);
6301 if( p
->rc
==SQLITE_OK
&& bUseCksum
&& cksum
!=cksum2
) p
->rc
= FTS5_CORRUPT
;
6303 fts5StructureRelease(pStruct
);
6305 fts5BufferFree(&term
);
6307 fts5BufferFree(&poslist
);
6308 return fts5IndexReturn(p
);
6311 /*************************************************************************
6312 **************************************************************************
6313 ** Below this point is the implementation of the fts5_decode() scalar
6319 ** Decode a segment-data rowid from the %_data table. This function is
6320 ** the opposite of macro FTS5_SEGMENT_ROWID().
6322 static void fts5DecodeRowid(
6323 i64 iRowid
, /* Rowid from %_data table */
6324 int *piSegid
, /* OUT: Segment id */
6325 int *pbDlidx
, /* OUT: Dlidx flag */
6326 int *piHeight
, /* OUT: Height */
6327 int *piPgno
/* OUT: Page number */
6329 *piPgno
= (int)(iRowid
& (((i64
)1 << FTS5_DATA_PAGE_B
) - 1));
6330 iRowid
>>= FTS5_DATA_PAGE_B
;
6332 *piHeight
= (int)(iRowid
& (((i64
)1 << FTS5_DATA_HEIGHT_B
) - 1));
6333 iRowid
>>= FTS5_DATA_HEIGHT_B
;
6335 *pbDlidx
= (int)(iRowid
& 0x0001);
6336 iRowid
>>= FTS5_DATA_DLI_B
;
6338 *piSegid
= (int)(iRowid
& (((i64
)1 << FTS5_DATA_ID_B
) - 1));
6340 #endif /* SQLITE_TEST */
6343 static void fts5DebugRowid(int *pRc
, Fts5Buffer
*pBuf
, i64 iKey
){
6344 int iSegid
, iHeight
, iPgno
, bDlidx
; /* Rowid compenents */
6345 fts5DecodeRowid(iKey
, &iSegid
, &bDlidx
, &iHeight
, &iPgno
);
6348 if( iKey
==FTS5_AVERAGES_ROWID
){
6349 sqlite3Fts5BufferAppendPrintf(pRc
, pBuf
, "{averages} ");
6351 sqlite3Fts5BufferAppendPrintf(pRc
, pBuf
, "{structure}");
6355 sqlite3Fts5BufferAppendPrintf(pRc
, pBuf
, "{%ssegid=%d h=%d pgno=%d}",
6356 bDlidx
? "dlidx " : "", iSegid
, iHeight
, iPgno
6360 #endif /* SQLITE_TEST */
6363 static void fts5DebugStructure(
6364 int *pRc
, /* IN/OUT: error code */
6368 int iLvl
, iSeg
; /* Iterate through levels, segments */
6370 for(iLvl
=0; iLvl
<p
->nLevel
; iLvl
++){
6371 Fts5StructureLevel
*pLvl
= &p
->aLevel
[iLvl
];
6372 sqlite3Fts5BufferAppendPrintf(pRc
, pBuf
,
6373 " {lvl=%d nMerge=%d nSeg=%d", iLvl
, pLvl
->nMerge
, pLvl
->nSeg
6375 for(iSeg
=0; iSeg
<pLvl
->nSeg
; iSeg
++){
6376 Fts5StructureSegment
*pSeg
= &pLvl
->aSeg
[iSeg
];
6377 sqlite3Fts5BufferAppendPrintf(pRc
, pBuf
, " {id=%d leaves=%d..%d}",
6378 pSeg
->iSegid
, pSeg
->pgnoFirst
, pSeg
->pgnoLast
6381 sqlite3Fts5BufferAppendPrintf(pRc
, pBuf
, "}");
6384 #endif /* SQLITE_TEST */
6388 ** This is part of the fts5_decode() debugging aid.
6390 ** Arguments pBlob/nBlob contain a serialized Fts5Structure object. This
6391 ** function appends a human-readable representation of the same object
6392 ** to the buffer passed as the second argument.
6394 static void fts5DecodeStructure(
6395 int *pRc
, /* IN/OUT: error code */
6397 const u8
*pBlob
, int nBlob
6399 int rc
; /* Return code */
6400 Fts5Structure
*p
= 0; /* Decoded structure object */
6402 rc
= fts5StructureDecode(pBlob
, nBlob
, 0, &p
);
6403 if( rc
!=SQLITE_OK
){
6408 fts5DebugStructure(pRc
, pBuf
, p
);
6409 fts5StructureRelease(p
);
6411 #endif /* SQLITE_TEST */
6415 ** This is part of the fts5_decode() debugging aid.
6417 ** Arguments pBlob/nBlob contain an "averages" record. This function
6418 ** appends a human-readable representation of record to the buffer passed
6419 ** as the second argument.
6421 static void fts5DecodeAverages(
6422 int *pRc
, /* IN/OUT: error code */
6424 const u8
*pBlob
, int nBlob
6427 const char *zSpace
= "";
6431 i
+= sqlite3Fts5GetVarint(&pBlob
[i
], &iVal
);
6432 sqlite3Fts5BufferAppendPrintf(pRc
, pBuf
, "%s%d", zSpace
, (int)iVal
);
6436 #endif /* SQLITE_TEST */
6440 ** Buffer (a/n) is assumed to contain a list of serialized varints. Read
6441 ** each varint and append its string representation to buffer pBuf. Return
6442 ** after either the input buffer is exhausted or a 0 value is read.
6444 ** The return value is the number of bytes read from the input buffer.
6446 static int fts5DecodePoslist(int *pRc
, Fts5Buffer
*pBuf
, const u8
*a
, int n
){
6450 iOff
+= fts5GetVarint32(&a
[iOff
], iVal
);
6451 sqlite3Fts5BufferAppendPrintf(pRc
, pBuf
, " %d", iVal
);
6455 #endif /* SQLITE_TEST */
6459 ** The start of buffer (a/n) contains the start of a doclist. The doclist
6460 ** may or may not finish within the buffer. This function appends a text
6461 ** representation of the part of the doclist that is present to buffer
6464 ** The return value is the number of bytes read from the input buffer.
6466 static int fts5DecodeDoclist(int *pRc
, Fts5Buffer
*pBuf
, const u8
*a
, int n
){
6471 iOff
= sqlite3Fts5GetVarint(a
, (u64
*)&iDocid
);
6472 sqlite3Fts5BufferAppendPrintf(pRc
, pBuf
, " id=%lld", iDocid
);
6477 iOff
+= fts5GetPoslistSize(&a
[iOff
], &nPos
, &bDel
);
6478 sqlite3Fts5BufferAppendPrintf(pRc
, pBuf
, " nPos=%d%s", nPos
, bDel
?"*":"");
6479 iOff
+= fts5DecodePoslist(pRc
, pBuf
, &a
[iOff
], MIN(n
-iOff
, nPos
));
6482 iOff
+= sqlite3Fts5GetVarint(&a
[iOff
], (u64
*)&iDelta
);
6484 sqlite3Fts5BufferAppendPrintf(pRc
, pBuf
, " id=%lld", iDocid
);
6490 #endif /* SQLITE_TEST */
6494 ** This function is part of the fts5_decode() debugging function. It is
6495 ** only ever used with detail=none tables.
6497 ** Buffer (pData/nData) contains a doclist in the format used by detail=none
6498 ** tables. This function appends a human-readable version of that list to
6501 ** If *pRc is other than SQLITE_OK when this function is called, it is a
6502 ** no-op. If an OOM or other error occurs within this function, *pRc is
6503 ** set to an SQLite error code before returning. The final state of buffer
6504 ** pBuf is undefined in this case.
6506 static void fts5DecodeRowidList(
6507 int *pRc
, /* IN/OUT: Error code */
6508 Fts5Buffer
*pBuf
, /* Buffer to append text to */
6509 const u8
*pData
, int nData
/* Data to decode list-of-rowids from */
6515 const char *zApp
= "";
6517 i
+= sqlite3Fts5GetVarint(&pData
[i
], &iVal
);
6520 if( i
<nData
&& pData
[i
]==0x00 ){
6522 if( i
<nData
&& pData
[i
]==0x00 ){
6530 sqlite3Fts5BufferAppendPrintf(pRc
, pBuf
, " %lld%s", iRowid
, zApp
);
6533 #endif /* SQLITE_TEST */
6537 ** The implementation of user-defined scalar function fts5_decode().
6539 static void fts5DecodeFunction(
6540 sqlite3_context
*pCtx
, /* Function call context */
6541 int nArg
, /* Number of args (always 2) */
6542 sqlite3_value
**apVal
/* Function arguments */
6544 i64 iRowid
; /* Rowid for record being decoded */
6545 int iSegid
,iHeight
,iPgno
,bDlidx
;/* Rowid components */
6546 const u8
*aBlob
; int n
; /* Record to decode */
6548 Fts5Buffer s
; /* Build up text to return here */
6549 int rc
= SQLITE_OK
; /* Return code */
6550 sqlite3_int64 nSpace
= 0;
6551 int eDetailNone
= (sqlite3_user_data(pCtx
)!=0);
6555 memset(&s
, 0, sizeof(Fts5Buffer
));
6556 iRowid
= sqlite3_value_int64(apVal
[0]);
6558 /* Make a copy of the second argument (a blob) in aBlob[]. The aBlob[]
6559 ** copy is followed by FTS5_DATA_ZERO_PADDING 0x00 bytes, which prevents
6560 ** buffer overreads even if the record is corrupt. */
6561 n
= sqlite3_value_bytes(apVal
[1]);
6562 aBlob
= sqlite3_value_blob(apVal
[1]);
6563 nSpace
= n
+ FTS5_DATA_ZERO_PADDING
;
6564 a
= (u8
*)sqlite3Fts5MallocZero(&rc
, nSpace
);
6565 if( a
==0 ) goto decode_out
;
6566 if( n
>0 ) memcpy(a
, aBlob
, n
);
6568 fts5DecodeRowid(iRowid
, &iSegid
, &bDlidx
, &iHeight
, &iPgno
);
6570 fts5DebugRowid(&rc
, &s
, iRowid
);
6578 memset(&lvl
, 0, sizeof(Fts5DlidxLvl
));
6580 lvl
.iLeafPgno
= iPgno
;
6582 for(fts5DlidxLvlNext(&lvl
); lvl
.bEof
==0; fts5DlidxLvlNext(&lvl
)){
6583 sqlite3Fts5BufferAppendPrintf(&rc
, &s
,
6584 " %d(%lld)", lvl
.iLeafPgno
, lvl
.iRowid
6587 }else if( iSegid
==0 ){
6588 if( iRowid
==FTS5_AVERAGES_ROWID
){
6589 fts5DecodeAverages(&rc
, &s
, a
, n
);
6591 fts5DecodeStructure(&rc
, &s
, a
, n
);
6593 }else if( eDetailNone
){
6594 Fts5Buffer term
; /* Current term read from page */
6596 int iPgidxOff
= szLeaf
= fts5GetU16(&a
[2]);
6601 memset(&term
, 0, sizeof(Fts5Buffer
));
6603 /* Decode any entries that occur before the first term. */
6605 iPgidxOff
+= fts5GetVarint32(&a
[iPgidxOff
], iTermOff
);
6609 fts5DecodeRowidList(&rc
, &s
, &a
[4], iTermOff
-4);
6612 while( iOff
<szLeaf
){
6615 /* Read the term data for the next term*/
6616 iOff
+= fts5GetVarint32(&a
[iOff
], nAppend
);
6618 fts5BufferAppendBlob(&rc
, &term
, nAppend
, &a
[iOff
]);
6619 sqlite3Fts5BufferAppendPrintf(
6620 &rc
, &s
, " term=%.*s", term
.n
, (const char*)term
.p
6624 /* Figure out where the doclist for this term ends */
6627 iPgidxOff
+= fts5GetVarint32(&a
[iPgidxOff
], nIncr
);
6633 fts5DecodeRowidList(&rc
, &s
, &a
[iOff
], iTermOff
-iOff
);
6636 iOff
+= fts5GetVarint32(&a
[iOff
], nKeep
);
6640 fts5BufferFree(&term
);
6642 Fts5Buffer term
; /* Current term read from page */
6643 int szLeaf
; /* Offset of pgidx in a[] */
6645 int iPgidxPrev
= 0; /* Previous value read from pgidx */
6651 memset(&term
, 0, sizeof(Fts5Buffer
));
6654 sqlite3Fts5BufferSet(&rc
, &s
, 7, (const u8
*)"corrupt");
6657 iRowidOff
= fts5GetU16(&a
[0]);
6658 iPgidxOff
= szLeaf
= fts5GetU16(&a
[2]);
6660 fts5GetVarint32(&a
[iPgidxOff
], iTermOff
);
6661 }else if( iPgidxOff
>n
){
6667 /* Decode the position list tail at the start of the page */
6670 }else if( iTermOff
!=0 ){
6679 fts5DecodePoslist(&rc
, &s
, &a
[4], iOff
-4);
6681 /* Decode any more doclist data that appears on the page before the
6683 nDoclist
= (iTermOff
? iTermOff
: szLeaf
) - iOff
;
6684 if( nDoclist
+iOff
>n
){
6688 fts5DecodeDoclist(&rc
, &s
, &a
[iOff
], nDoclist
);
6690 while( iPgidxOff
<n
&& rc
==SQLITE_OK
){
6691 int bFirst
= (iPgidxOff
==szLeaf
); /* True for first term on page */
6692 int nByte
; /* Bytes of data */
6695 iPgidxOff
+= fts5GetVarint32(&a
[iPgidxOff
], nByte
);
6696 iPgidxPrev
+= nByte
;
6700 fts5GetVarint32(&a
[iPgidxOff
], nByte
);
6701 iEnd
= iPgidxPrev
+ nByte
;
6711 iOff
+= fts5GetVarint32(&a
[iOff
], nByte
);
6718 iOff
+= fts5GetVarint32(&a
[iOff
], nByte
);
6723 fts5BufferAppendBlob(&rc
, &term
, nByte
, &a
[iOff
]);
6726 sqlite3Fts5BufferAppendPrintf(
6727 &rc
, &s
, " term=%.*s", term
.n
, (const char*)term
.p
6729 iOff
+= fts5DecodeDoclist(&rc
, &s
, &a
[iOff
], iEnd
-iOff
);
6732 fts5BufferFree(&term
);
6737 if( rc
==SQLITE_OK
){
6738 sqlite3_result_text(pCtx
, (const char*)s
.p
, s
.n
, SQLITE_TRANSIENT
);
6740 sqlite3_result_error_code(pCtx
, rc
);
6744 #endif /* SQLITE_TEST */
6748 ** The implementation of user-defined scalar function fts5_rowid().
6750 static void fts5RowidFunction(
6751 sqlite3_context
*pCtx
, /* Function call context */
6752 int nArg
, /* Number of args (always 2) */
6753 sqlite3_value
**apVal
/* Function arguments */
6757 sqlite3_result_error(pCtx
, "should be: fts5_rowid(subject, ....)", -1);
6759 zArg
= (const char*)sqlite3_value_text(apVal
[0]);
6760 if( 0==sqlite3_stricmp(zArg
, "segment") ){
6764 sqlite3_result_error(pCtx
,
6765 "should be: fts5_rowid('segment', segid, pgno))", -1
6768 segid
= sqlite3_value_int(apVal
[1]);
6769 pgno
= sqlite3_value_int(apVal
[2]);
6770 iRowid
= FTS5_SEGMENT_ROWID(segid
, pgno
);
6771 sqlite3_result_int64(pCtx
, iRowid
);
6774 sqlite3_result_error(pCtx
,
6775 "first arg to fts5_rowid() must be 'segment'" , -1
6780 #endif /* SQLITE_TEST */
6783 ** This is called as part of registering the FTS5 module with database
6784 ** connection db. It registers several user-defined scalar functions useful
6787 ** If successful, SQLITE_OK is returned. If an error occurs, some other
6788 ** SQLite error code is returned instead.
6790 int sqlite3Fts5IndexInit(sqlite3
*db
){
6792 int rc
= sqlite3_create_function(
6793 db
, "fts5_decode", 2, SQLITE_UTF8
, 0, fts5DecodeFunction
, 0, 0
6796 if( rc
==SQLITE_OK
){
6797 rc
= sqlite3_create_function(
6798 db
, "fts5_decode_none", 2,
6799 SQLITE_UTF8
, (void*)db
, fts5DecodeFunction
, 0, 0
6803 if( rc
==SQLITE_OK
){
6804 rc
= sqlite3_create_function(
6805 db
, "fts5_rowid", -1, SQLITE_UTF8
, 0, fts5RowidFunction
, 0, 0
6816 int sqlite3Fts5IndexReset(Fts5Index
*p
){
6817 assert( p
->pStruct
==0 || p
->iStructVersion
!=0 );
6818 if( fts5IndexDataVersion(p
)!=p
->iStructVersion
){
6819 fts5StructureInvalidate(p
);
6821 return fts5IndexReturn(p
);