4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file implements that page cache.
14 #include "sqliteInt.h"
17 ** A complete page cache is an instance of this structure. Every
18 ** entry in the cache holds a single page of the database file. The
19 ** btree layer only operates on the cached copy of the database pages.
21 ** A page cache entry is "clean" if it exactly matches what is currently
22 ** on disk. A page is "dirty" if it has been modified and needs to be
25 ** pDirty, pDirtyTail, pSynced:
26 ** All dirty pages are linked into the doubly linked list using
27 ** PgHdr.pDirtyNext and pDirtyPrev. The list is maintained in LRU order
28 ** such that p was added to the list more recently than p->pDirtyNext.
29 ** PCache.pDirty points to the first (newest) element in the list and
30 ** pDirtyTail to the last (oldest).
32 ** The PCache.pSynced variable is used to optimize searching for a dirty
33 ** page to eject from the cache mid-transaction. It is better to eject
34 ** a page that does not require a journal sync than one that does.
35 ** Therefore, pSynced is maintained so that it *almost* always points
36 ** to either the oldest page in the pDirty/pDirtyTail list that has a
37 ** clear PGHDR_NEED_SYNC flag or to a page that is older than this one
38 ** (so that the right page to eject can be found by following pDirtyPrev
42 PgHdr
*pDirty
, *pDirtyTail
; /* List of dirty pages in LRU order */
43 PgHdr
*pSynced
; /* Last synced page in dirty page list */
44 int nRefSum
; /* Sum of ref counts over all pages */
45 int szCache
; /* Configured cache size */
46 int szSpill
; /* Size before spilling occurs */
47 int szPage
; /* Size of every page in this cache */
48 int szExtra
; /* Size of extra space for each page */
49 u8 bPurgeable
; /* True if pages are on backing store */
50 u8 eCreate
; /* eCreate value for for xFetch() */
51 int (*xStress
)(void*,PgHdr
*); /* Call to try make a page clean */
52 void *pStress
; /* Argument to xStress */
53 sqlite3_pcache
*pCache
; /* Pluggable cache module */
56 /********************************** Test and Debug Logic **********************/
58 ** Debug tracing macros. Enable by by changing the "0" to "1" and
61 ** When sqlite3PcacheTrace is 1, single line trace messages are issued.
62 ** When sqlite3PcacheTrace is 2, a dump of the pcache showing all cache entries
63 ** is displayed for many operations, resulting in a lot of output.
65 #if defined(SQLITE_DEBUG) && 0
66 int sqlite3PcacheTrace
= 2; /* 0: off 1: simple 2: cache dumps */
67 int sqlite3PcacheMxDump
= 9999; /* Max cache entries for pcacheDump() */
68 # define pcacheTrace(X) if(sqlite3PcacheTrace){sqlite3DebugPrintf X;}
69 static void pcachePageTrace(int i
, sqlite3_pcache_page
*pLower
){
73 pPg
= (PgHdr
*)pLower
->pExtra
;
74 printf("%3d: nRef %2d flgs %02x data ", i
, pPg
->nRef
, pPg
->flags
);
75 a
= (unsigned char *)pLower
->pBuf
;
76 for(j
=0; j
<12; j
++) printf("%02x", a
[j
]);
77 printf(" ptr %p\n", pPg
);
79 static void pcacheDump(PCache
*pCache
){
82 sqlite3_pcache_page
*pLower
;
84 if( sqlite3PcacheTrace
<2 ) return;
85 if( pCache
->pCache
==0 ) return;
86 N
= sqlite3PcachePagecount(pCache
);
87 if( N
>sqlite3PcacheMxDump
) N
= sqlite3PcacheMxDump
;
89 pLower
= sqlite3GlobalConfig
.pcache2
.xFetch(pCache
->pCache
, i
, 0);
90 if( pLower
==0 ) continue;
91 pcachePageTrace(i
, pLower
);
92 if( ((PgHdr
*)pLower
)->pPage
==0 ){
93 sqlite3GlobalConfig
.pcache2
.xUnpin(pCache
->pCache
, pLower
, 0);
98 # define pcacheTrace(X)
99 # define pcachePageTrace(PGNO, X)
100 # define pcacheDump(X)
104 ** Return 1 if pPg is on the dirty list for pCache. Return 0 if not.
105 ** This routine runs inside of assert() statements only.
108 static int pageOnDirtyList(PCache
*pCache
, PgHdr
*pPg
){
110 for(p
=pCache
->pDirty
; p
; p
=p
->pDirtyNext
){
111 if( p
==pPg
) return 1;
118 ** Check invariants on a PgHdr entry. Return true if everything is OK.
119 ** Return false if any invariant is violated.
121 ** This routine is for use inside of assert() statements only. For
124 ** assert( sqlite3PcachePageSanity(pPg) );
127 int sqlite3PcachePageSanity(PgHdr
*pPg
){
130 assert( pPg
->pgno
>0 || pPg
->pPager
==0 ); /* Page number is 1 or more */
131 pCache
= pPg
->pCache
;
132 assert( pCache
!=0 ); /* Every page has an associated PCache */
133 if( pPg
->flags
& PGHDR_CLEAN
){
134 assert( (pPg
->flags
& PGHDR_DIRTY
)==0 );/* Cannot be both CLEAN and DIRTY */
135 assert( !pageOnDirtyList(pCache
, pPg
) );/* CLEAN pages not on dirty list */
137 assert( (pPg
->flags
& PGHDR_DIRTY
)!=0 );/* If not CLEAN must be DIRTY */
138 assert( pPg
->pDirtyNext
==0 || pPg
->pDirtyNext
->pDirtyPrev
==pPg
);
139 assert( pPg
->pDirtyPrev
==0 || pPg
->pDirtyPrev
->pDirtyNext
==pPg
);
140 assert( pPg
->pDirtyPrev
!=0 || pCache
->pDirty
==pPg
);
141 assert( pageOnDirtyList(pCache
, pPg
) );
143 /* WRITEABLE pages must also be DIRTY */
144 if( pPg
->flags
& PGHDR_WRITEABLE
){
145 assert( pPg
->flags
& PGHDR_DIRTY
); /* WRITEABLE implies DIRTY */
147 /* NEED_SYNC can be set independently of WRITEABLE. This can happen,
148 ** for example, when using the sqlite3PagerDontWrite() optimization:
149 ** (1) Page X is journalled, and gets WRITEABLE and NEED_SEEK.
150 ** (2) Page X moved to freelist, WRITEABLE is cleared
151 ** (3) Page X reused, WRITEABLE is set again
152 ** If NEED_SYNC had been cleared in step 2, then it would not be reset
153 ** in step 3, and page might be written into the database without first
154 ** syncing the rollback journal, which might cause corruption on a power
157 ** Another example is when the database page size is smaller than the
158 ** disk sector size. When any page of a sector is journalled, all pages
159 ** in that sector are marked NEED_SYNC even if they are still CLEAN, just
160 ** in case they are later modified, since all pages in the same sector
161 ** must be journalled and synced before any of those pages can be safely
166 #endif /* SQLITE_DEBUG */
169 /********************************** Linked List Management ********************/
171 /* Allowed values for second argument to pcacheManageDirtyList() */
172 #define PCACHE_DIRTYLIST_REMOVE 1 /* Remove pPage from dirty list */
173 #define PCACHE_DIRTYLIST_ADD 2 /* Add pPage to the dirty list */
174 #define PCACHE_DIRTYLIST_FRONT 3 /* Move pPage to the front of the list */
177 ** Manage pPage's participation on the dirty list. Bits of the addRemove
178 ** argument determines what operation to do. The 0x01 bit means first
179 ** remove pPage from the dirty list. The 0x02 means add pPage back to
180 ** the dirty list. Doing both moves pPage to the front of the dirty list.
182 static void pcacheManageDirtyList(PgHdr
*pPage
, u8 addRemove
){
183 PCache
*p
= pPage
->pCache
;
185 pcacheTrace(("%p.DIRTYLIST.%s %d\n", p
,
186 addRemove
==1 ? "REMOVE" : addRemove
==2 ? "ADD" : "FRONT",
188 if( addRemove
& PCACHE_DIRTYLIST_REMOVE
){
189 assert( pPage
->pDirtyNext
|| pPage
==p
->pDirtyTail
);
190 assert( pPage
->pDirtyPrev
|| pPage
==p
->pDirty
);
192 /* Update the PCache1.pSynced variable if necessary. */
193 if( p
->pSynced
==pPage
){
194 p
->pSynced
= pPage
->pDirtyPrev
;
197 if( pPage
->pDirtyNext
){
198 pPage
->pDirtyNext
->pDirtyPrev
= pPage
->pDirtyPrev
;
200 assert( pPage
==p
->pDirtyTail
);
201 p
->pDirtyTail
= pPage
->pDirtyPrev
;
203 if( pPage
->pDirtyPrev
){
204 pPage
->pDirtyPrev
->pDirtyNext
= pPage
->pDirtyNext
;
206 /* If there are now no dirty pages in the cache, set eCreate to 2.
207 ** This is an optimization that allows sqlite3PcacheFetch() to skip
208 ** searching for a dirty page to eject from the cache when it might
209 ** otherwise have to. */
210 assert( pPage
==p
->pDirty
);
211 p
->pDirty
= pPage
->pDirtyNext
;
212 assert( p
->bPurgeable
|| p
->eCreate
==2 );
213 if( p
->pDirty
==0 ){ /*OPTIMIZATION-IF-TRUE*/
214 assert( p
->bPurgeable
==0 || p
->eCreate
==1 );
219 if( addRemove
& PCACHE_DIRTYLIST_ADD
){
220 pPage
->pDirtyPrev
= 0;
221 pPage
->pDirtyNext
= p
->pDirty
;
222 if( pPage
->pDirtyNext
){
223 assert( pPage
->pDirtyNext
->pDirtyPrev
==0 );
224 pPage
->pDirtyNext
->pDirtyPrev
= pPage
;
226 p
->pDirtyTail
= pPage
;
228 assert( p
->eCreate
==2 );
234 /* If pSynced is NULL and this page has a clear NEED_SYNC flag, set
235 ** pSynced to point to it. Checking the NEED_SYNC flag is an
236 ** optimization, as if pSynced points to a page with the NEED_SYNC
237 ** flag set sqlite3PcacheFetchStress() searches through all newer
238 ** entries of the dirty-list for a page with NEED_SYNC clear anyway. */
240 && 0==(pPage
->flags
&PGHDR_NEED_SYNC
) /*OPTIMIZATION-IF-FALSE*/
249 ** Wrapper around the pluggable caches xUnpin method. If the cache is
250 ** being used for an in-memory database, this function is a no-op.
252 static void pcacheUnpin(PgHdr
*p
){
253 if( p
->pCache
->bPurgeable
){
254 pcacheTrace(("%p.UNPIN %d\n", p
->pCache
, p
->pgno
));
255 sqlite3GlobalConfig
.pcache2
.xUnpin(p
->pCache
->pCache
, p
->pPage
, 0);
256 pcacheDump(p
->pCache
);
261 ** Compute the number of pages of cache requested. p->szCache is the
262 ** cache size requested by the "PRAGMA cache_size" statement.
264 static int numberOfCachePages(PCache
*p
){
266 /* IMPLEMENTATION-OF: R-42059-47211 If the argument N is positive then the
267 ** suggested cache size is set to N. */
271 /* IMPLEMANTATION-OF: R-59858-46238 If the argument N is negative, then the
272 ** number of cache pages is adjusted to be a number of pages that would
273 ** use approximately abs(N*1024) bytes of memory based on the current
275 n
= ((-1024*(i64
)p
->szCache
)/(p
->szPage
+p
->szExtra
));
276 if( n
>1000000000 ) n
= 1000000000;
281 /*************************************************** General Interfaces ******
283 ** Initialize and shutdown the page cache subsystem. Neither of these
284 ** functions are threadsafe.
286 int sqlite3PcacheInitialize(void){
287 if( sqlite3GlobalConfig
.pcache2
.xInit
==0 ){
288 /* IMPLEMENTATION-OF: R-26801-64137 If the xInit() method is NULL, then the
289 ** built-in default page cache is used instead of the application defined
291 sqlite3PCacheSetDefault();
292 assert( sqlite3GlobalConfig
.pcache2
.xInit
!=0 );
294 return sqlite3GlobalConfig
.pcache2
.xInit(sqlite3GlobalConfig
.pcache2
.pArg
);
296 void sqlite3PcacheShutdown(void){
297 if( sqlite3GlobalConfig
.pcache2
.xShutdown
){
298 /* IMPLEMENTATION-OF: R-26000-56589 The xShutdown() method may be NULL. */
299 sqlite3GlobalConfig
.pcache2
.xShutdown(sqlite3GlobalConfig
.pcache2
.pArg
);
304 ** Return the size in bytes of a PCache object.
306 int sqlite3PcacheSize(void){ return sizeof(PCache
); }
309 ** Create a new PCache object. Storage space to hold the object
310 ** has already been allocated and is passed in as the p pointer.
311 ** The caller discovers how much space needs to be allocated by
312 ** calling sqlite3PcacheSize().
314 ** szExtra is some extra space allocated for each page. The first
315 ** 8 bytes of the extra space will be zeroed as the page is allocated,
316 ** but remaining content will be uninitialized. Though it is opaque
317 ** to this module, the extra space really ends up being the MemPage
318 ** structure in the pager.
320 int sqlite3PcacheOpen(
321 int szPage
, /* Size of every page */
322 int szExtra
, /* Extra space associated with each page */
323 int bPurgeable
, /* True if pages are on backing store */
324 int (*xStress
)(void*,PgHdr
*),/* Call to try to make pages clean */
325 void *pStress
, /* Argument to xStress */
326 PCache
*p
/* Preallocated space for the PCache */
328 memset(p
, 0, sizeof(PCache
));
330 p
->szExtra
= szExtra
;
331 assert( szExtra
>=8 ); /* First 8 bytes will be zeroed */
332 p
->bPurgeable
= bPurgeable
;
334 p
->xStress
= xStress
;
335 p
->pStress
= pStress
;
338 pcacheTrace(("%p.OPEN szPage %d bPurgeable %d\n",p
,szPage
,bPurgeable
));
339 return sqlite3PcacheSetPageSize(p
, szPage
);
343 ** Change the page size for PCache object. The caller must ensure that there
344 ** are no outstanding page references when this function is called.
346 int sqlite3PcacheSetPageSize(PCache
*pCache
, int szPage
){
347 assert( pCache
->nRefSum
==0 && pCache
->pDirty
==0 );
348 if( pCache
->szPage
){
349 sqlite3_pcache
*pNew
;
350 pNew
= sqlite3GlobalConfig
.pcache2
.xCreate(
351 szPage
, pCache
->szExtra
+ ROUND8(sizeof(PgHdr
)),
354 if( pNew
==0 ) return SQLITE_NOMEM_BKPT
;
355 sqlite3GlobalConfig
.pcache2
.xCachesize(pNew
, numberOfCachePages(pCache
));
356 if( pCache
->pCache
){
357 sqlite3GlobalConfig
.pcache2
.xDestroy(pCache
->pCache
);
359 pCache
->pCache
= pNew
;
360 pCache
->szPage
= szPage
;
361 pcacheTrace(("%p.PAGESIZE %d\n",pCache
,szPage
));
367 ** Try to obtain a page from the cache.
369 ** This routine returns a pointer to an sqlite3_pcache_page object if
370 ** such an object is already in cache, or if a new one is created.
371 ** This routine returns a NULL pointer if the object was not in cache
372 ** and could not be created.
374 ** The createFlags should be 0 to check for existing pages and should
375 ** be 3 (not 1, but 3) to try to create a new page.
377 ** If the createFlag is 0, then NULL is always returned if the page
378 ** is not already in the cache. If createFlag is 1, then a new page
379 ** is created only if that can be done without spilling dirty pages
380 ** and without exceeding the cache size limit.
382 ** The caller needs to invoke sqlite3PcacheFetchFinish() to properly
383 ** initialize the sqlite3_pcache_page object and convert it into a
384 ** PgHdr object. The sqlite3PcacheFetch() and sqlite3PcacheFetchFinish()
385 ** routines are split this way for performance reasons. When separated
386 ** they can both (usually) operate without having to push values to
387 ** the stack on entry and pop them back off on exit, which saves a
388 ** lot of pushing and popping.
390 sqlite3_pcache_page
*sqlite3PcacheFetch(
391 PCache
*pCache
, /* Obtain the page from this cache */
392 Pgno pgno
, /* Page number to obtain */
393 int createFlag
/* If true, create page if it does not exist already */
396 sqlite3_pcache_page
*pRes
;
399 assert( pCache
->pCache
!=0 );
400 assert( createFlag
==3 || createFlag
==0 );
401 assert( pCache
->eCreate
==((pCache
->bPurgeable
&& pCache
->pDirty
) ? 1 : 2) );
403 /* eCreate defines what to do if the page does not exist.
404 ** 0 Do not allocate a new page. (createFlag==0)
405 ** 1 Allocate a new page if doing so is inexpensive.
406 ** (createFlag==1 AND bPurgeable AND pDirty)
407 ** 2 Allocate a new page even it doing so is difficult.
408 ** (createFlag==1 AND !(bPurgeable AND pDirty)
410 eCreate
= createFlag
& pCache
->eCreate
;
411 assert( eCreate
==0 || eCreate
==1 || eCreate
==2 );
412 assert( createFlag
==0 || pCache
->eCreate
==eCreate
);
413 assert( createFlag
==0 || eCreate
==1+(!pCache
->bPurgeable
||!pCache
->pDirty
) );
414 pRes
= sqlite3GlobalConfig
.pcache2
.xFetch(pCache
->pCache
, pgno
, eCreate
);
415 pcacheTrace(("%p.FETCH %d%s (result: %p) ",pCache
,pgno
,
416 createFlag
?" create":"",pRes
));
417 pcachePageTrace(pgno
, pRes
);
422 ** If the sqlite3PcacheFetch() routine is unable to allocate a new
423 ** page because no clean pages are available for reuse and the cache
424 ** size limit has been reached, then this routine can be invoked to
425 ** try harder to allocate a page. This routine might invoke the stress
426 ** callback to spill dirty pages to the journal. It will then try to
427 ** allocate the new page and will only fail to allocate a new page on
430 ** This routine should be invoked only after sqlite3PcacheFetch() fails.
432 int sqlite3PcacheFetchStress(
433 PCache
*pCache
, /* Obtain the page from this cache */
434 Pgno pgno
, /* Page number to obtain */
435 sqlite3_pcache_page
**ppPage
/* Write result here */
438 if( pCache
->eCreate
==2 ) return 0;
440 if( sqlite3PcachePagecount(pCache
)>pCache
->szSpill
){
441 /* Find a dirty page to write-out and recycle. First try to find a
442 ** page that does not require a journal-sync (one with PGHDR_NEED_SYNC
443 ** cleared), but if that is not possible settle for any other
444 ** unreferenced dirty page.
446 ** If the LRU page in the dirty list that has a clear PGHDR_NEED_SYNC
447 ** flag is currently referenced, then the following may leave pSynced
448 ** set incorrectly (pointing to other than the LRU page with NEED_SYNC
449 ** cleared). This is Ok, as pSynced is just an optimization. */
450 for(pPg
=pCache
->pSynced
;
451 pPg
&& (pPg
->nRef
|| (pPg
->flags
&PGHDR_NEED_SYNC
));
454 pCache
->pSynced
= pPg
;
456 for(pPg
=pCache
->pDirtyTail
; pPg
&& pPg
->nRef
; pPg
=pPg
->pDirtyPrev
);
460 #ifdef SQLITE_LOG_CACHE_SPILL
461 sqlite3_log(SQLITE_FULL
,
462 "spill page %d making room for %d - cache used: %d/%d",
464 sqlite3GlobalConfig
.pcache2
.xPagecount(pCache
->pCache
),
465 numberOfCachePages(pCache
));
467 pcacheTrace(("%p.SPILL %d\n",pCache
,pPg
->pgno
));
468 rc
= pCache
->xStress(pCache
->pStress
, pPg
);
470 if( rc
!=SQLITE_OK
&& rc
!=SQLITE_BUSY
){
475 *ppPage
= sqlite3GlobalConfig
.pcache2
.xFetch(pCache
->pCache
, pgno
, 2);
476 return *ppPage
==0 ? SQLITE_NOMEM_BKPT
: SQLITE_OK
;
480 ** This is a helper routine for sqlite3PcacheFetchFinish()
482 ** In the uncommon case where the page being fetched has not been
483 ** initialized, this routine is invoked to do the initialization.
484 ** This routine is broken out into a separate function since it
485 ** requires extra stack manipulation that can be avoided in the common
488 static SQLITE_NOINLINE PgHdr
*pcacheFetchFinishWithInit(
489 PCache
*pCache
, /* Obtain the page from this cache */
490 Pgno pgno
, /* Page number obtained */
491 sqlite3_pcache_page
*pPage
/* Page obtained by prior PcacheFetch() call */
495 pPgHdr
= (PgHdr
*)pPage
->pExtra
;
496 assert( pPgHdr
->pPage
==0 );
497 memset(&pPgHdr
->pDirty
, 0, sizeof(PgHdr
) - offsetof(PgHdr
,pDirty
));
498 pPgHdr
->pPage
= pPage
;
499 pPgHdr
->pData
= pPage
->pBuf
;
500 pPgHdr
->pExtra
= (void *)&pPgHdr
[1];
501 memset(pPgHdr
->pExtra
, 0, 8);
502 pPgHdr
->pCache
= pCache
;
504 pPgHdr
->flags
= PGHDR_CLEAN
;
505 return sqlite3PcacheFetchFinish(pCache
,pgno
,pPage
);
509 ** This routine converts the sqlite3_pcache_page object returned by
510 ** sqlite3PcacheFetch() into an initialized PgHdr object. This routine
511 ** must be called after sqlite3PcacheFetch() in order to get a usable
514 PgHdr
*sqlite3PcacheFetchFinish(
515 PCache
*pCache
, /* Obtain the page from this cache */
516 Pgno pgno
, /* Page number obtained */
517 sqlite3_pcache_page
*pPage
/* Page obtained by prior PcacheFetch() call */
522 pPgHdr
= (PgHdr
*)pPage
->pExtra
;
524 if( !pPgHdr
->pPage
){
525 return pcacheFetchFinishWithInit(pCache
, pgno
, pPage
);
529 assert( sqlite3PcachePageSanity(pPgHdr
) );
534 ** Decrement the reference count on a page. If the page is clean and the
535 ** reference count drops to 0, then it is made eligible for recycling.
537 void SQLITE_NOINLINE
sqlite3PcacheRelease(PgHdr
*p
){
539 p
->pCache
->nRefSum
--;
540 if( (--p
->nRef
)==0 ){
541 if( p
->flags
&PGHDR_CLEAN
){
544 pcacheManageDirtyList(p
, PCACHE_DIRTYLIST_FRONT
);
545 assert( sqlite3PcachePageSanity(p
) );
551 ** Increase the reference count of a supplied page by 1.
553 void sqlite3PcacheRef(PgHdr
*p
){
555 assert( sqlite3PcachePageSanity(p
) );
557 p
->pCache
->nRefSum
++;
561 ** Drop a page from the cache. There must be exactly one reference to the
562 ** page. This function deletes that reference, so after it returns the
563 ** page pointed to by p is invalid.
565 void sqlite3PcacheDrop(PgHdr
*p
){
566 assert( p
->nRef
==1 );
567 assert( sqlite3PcachePageSanity(p
) );
568 if( p
->flags
&PGHDR_DIRTY
){
569 pcacheManageDirtyList(p
, PCACHE_DIRTYLIST_REMOVE
);
571 p
->pCache
->nRefSum
--;
572 sqlite3GlobalConfig
.pcache2
.xUnpin(p
->pCache
->pCache
, p
->pPage
, 1);
576 ** Make sure the page is marked as dirty. If it isn't dirty already,
579 void sqlite3PcacheMakeDirty(PgHdr
*p
){
581 assert( sqlite3PcachePageSanity(p
) );
582 if( p
->flags
& (PGHDR_CLEAN
|PGHDR_DONT_WRITE
) ){ /*OPTIMIZATION-IF-FALSE*/
583 p
->flags
&= ~PGHDR_DONT_WRITE
;
584 if( p
->flags
& PGHDR_CLEAN
){
585 p
->flags
^= (PGHDR_DIRTY
|PGHDR_CLEAN
);
586 pcacheTrace(("%p.DIRTY %d\n",p
->pCache
,p
->pgno
));
587 assert( (p
->flags
& (PGHDR_DIRTY
|PGHDR_CLEAN
))==PGHDR_DIRTY
);
588 pcacheManageDirtyList(p
, PCACHE_DIRTYLIST_ADD
);
589 assert( sqlite3PcachePageSanity(p
) );
591 assert( sqlite3PcachePageSanity(p
) );
596 ** Make sure the page is marked as clean. If it isn't clean already,
599 void sqlite3PcacheMakeClean(PgHdr
*p
){
600 assert( sqlite3PcachePageSanity(p
) );
601 assert( (p
->flags
& PGHDR_DIRTY
)!=0 );
602 assert( (p
->flags
& PGHDR_CLEAN
)==0 );
603 pcacheManageDirtyList(p
, PCACHE_DIRTYLIST_REMOVE
);
604 p
->flags
&= ~(PGHDR_DIRTY
|PGHDR_NEED_SYNC
|PGHDR_WRITEABLE
);
605 p
->flags
|= PGHDR_CLEAN
;
606 pcacheTrace(("%p.CLEAN %d\n",p
->pCache
,p
->pgno
));
607 assert( sqlite3PcachePageSanity(p
) );
614 ** Make every page in the cache clean.
616 void sqlite3PcacheCleanAll(PCache
*pCache
){
618 pcacheTrace(("%p.CLEAN-ALL\n",pCache
));
619 while( (p
= pCache
->pDirty
)!=0 ){
620 sqlite3PcacheMakeClean(p
);
625 ** Clear the PGHDR_NEED_SYNC and PGHDR_WRITEABLE flag from all dirty pages.
627 void sqlite3PcacheClearWritable(PCache
*pCache
){
629 pcacheTrace(("%p.CLEAR-WRITEABLE\n",pCache
));
630 for(p
=pCache
->pDirty
; p
; p
=p
->pDirtyNext
){
631 p
->flags
&= ~(PGHDR_NEED_SYNC
|PGHDR_WRITEABLE
);
633 pCache
->pSynced
= pCache
->pDirtyTail
;
637 ** Clear the PGHDR_NEED_SYNC flag from all dirty pages.
639 void sqlite3PcacheClearSyncFlags(PCache
*pCache
){
641 for(p
=pCache
->pDirty
; p
; p
=p
->pDirtyNext
){
642 p
->flags
&= ~PGHDR_NEED_SYNC
;
644 pCache
->pSynced
= pCache
->pDirtyTail
;
648 ** Change the page number of page p to newPgno.
650 void sqlite3PcacheMove(PgHdr
*p
, Pgno newPgno
){
651 PCache
*pCache
= p
->pCache
;
652 sqlite3_pcache_page
*pOther
;
655 assert( sqlite3PcachePageSanity(p
) );
656 pcacheTrace(("%p.MOVE %d -> %d\n",pCache
,p
->pgno
,newPgno
));
657 pOther
= sqlite3GlobalConfig
.pcache2
.xFetch(pCache
->pCache
, newPgno
, 0);
659 PgHdr
*pXPage
= (PgHdr
*)pOther
->pExtra
;
660 assert( pXPage
->nRef
==0 );
663 sqlite3PcacheDrop(pXPage
);
665 sqlite3GlobalConfig
.pcache2
.xRekey(pCache
->pCache
, p
->pPage
, p
->pgno
,newPgno
);
667 if( (p
->flags
&PGHDR_DIRTY
) && (p
->flags
&PGHDR_NEED_SYNC
) ){
668 pcacheManageDirtyList(p
, PCACHE_DIRTYLIST_FRONT
);
669 assert( sqlite3PcachePageSanity(p
) );
674 ** Drop every cache entry whose page number is greater than "pgno". The
675 ** caller must ensure that there are no outstanding references to any pages
676 ** other than page 1 with a page number greater than pgno.
678 ** If there is a reference to page 1 and the pgno parameter passed to this
679 ** function is 0, then the data area associated with page 1 is zeroed, but
680 ** the page object is not dropped.
682 void sqlite3PcacheTruncate(PCache
*pCache
, Pgno pgno
){
683 if( pCache
->pCache
){
686 pcacheTrace(("%p.TRUNCATE %d\n",pCache
,pgno
));
687 for(p
=pCache
->pDirty
; p
; p
=pNext
){
688 pNext
= p
->pDirtyNext
;
689 /* This routine never gets call with a positive pgno except right
690 ** after sqlite3PcacheCleanAll(). So if there are dirty pages,
691 ** it must be that pgno==0.
695 assert( p
->flags
&PGHDR_DIRTY
);
696 sqlite3PcacheMakeClean(p
);
699 if( pgno
==0 && pCache
->nRefSum
){
700 sqlite3_pcache_page
*pPage1
;
701 pPage1
= sqlite3GlobalConfig
.pcache2
.xFetch(pCache
->pCache
,1,0);
702 if( ALWAYS(pPage1
) ){ /* Page 1 is always available in cache, because
703 ** pCache->nRefSum>0 */
704 memset(pPage1
->pBuf
, 0, pCache
->szPage
);
708 sqlite3GlobalConfig
.pcache2
.xTruncate(pCache
->pCache
, pgno
+1);
715 void sqlite3PcacheClose(PCache
*pCache
){
716 assert( pCache
->pCache
!=0 );
717 pcacheTrace(("%p.CLOSE\n",pCache
));
718 sqlite3GlobalConfig
.pcache2
.xDestroy(pCache
->pCache
);
722 ** Discard the contents of the cache.
724 void sqlite3PcacheClear(PCache
*pCache
){
725 sqlite3PcacheTruncate(pCache
, 0);
729 ** Merge two lists of pages connected by pDirty and in pgno order.
730 ** Do not bother fixing the pDirtyPrev pointers.
732 static PgHdr
*pcacheMergeDirtyList(PgHdr
*pA
, PgHdr
*pB
){
733 PgHdr result
, *pTail
;
735 assert( pA
!=0 && pB
!=0 );
737 if( pA
->pgno
<pB
->pgno
){
755 return result
.pDirty
;
759 ** Sort the list of pages in accending order by pgno. Pages are
760 ** connected by pDirty pointers. The pDirtyPrev pointers are
761 ** corrupted by this sort.
763 ** Since there cannot be more than 2^31 distinct pages in a database,
764 ** there cannot be more than 31 buckets required by the merge sorter.
765 ** One extra bucket is added to catch overflow in case something
766 ** ever changes to make the previous sentence incorrect.
768 #define N_SORT_BUCKET 32
769 static PgHdr
*pcacheSortDirtyList(PgHdr
*pIn
){
770 PgHdr
*a
[N_SORT_BUCKET
], *p
;
772 memset(a
, 0, sizeof(a
));
777 for(i
=0; ALWAYS(i
<N_SORT_BUCKET
-1); i
++){
782 p
= pcacheMergeDirtyList(a
[i
], p
);
786 if( NEVER(i
==N_SORT_BUCKET
-1) ){
787 /* To get here, there need to be 2^(N_SORT_BUCKET) elements in
788 ** the input list. But that is impossible.
790 a
[i
] = pcacheMergeDirtyList(a
[i
], p
);
794 for(i
=1; i
<N_SORT_BUCKET
; i
++){
795 if( a
[i
]==0 ) continue;
796 p
= p
? pcacheMergeDirtyList(p
, a
[i
]) : a
[i
];
802 ** Return a list of all dirty pages in the cache, sorted by page number.
804 PgHdr
*sqlite3PcacheDirtyList(PCache
*pCache
){
806 for(p
=pCache
->pDirty
; p
; p
=p
->pDirtyNext
){
807 p
->pDirty
= p
->pDirtyNext
;
809 return pcacheSortDirtyList(pCache
->pDirty
);
813 ** Return the total number of references to all pages held by the cache.
815 ** This is not the total number of pages referenced, but the sum of the
816 ** reference count for all pages.
818 int sqlite3PcacheRefCount(PCache
*pCache
){
819 return pCache
->nRefSum
;
823 ** Return the number of references to the page supplied as an argument.
825 int sqlite3PcachePageRefcount(PgHdr
*p
){
830 ** Return the total number of pages in the cache.
832 int sqlite3PcachePagecount(PCache
*pCache
){
833 assert( pCache
->pCache
!=0 );
834 return sqlite3GlobalConfig
.pcache2
.xPagecount(pCache
->pCache
);
839 ** Get the suggested cache-size value.
841 int sqlite3PcacheGetCachesize(PCache
*pCache
){
842 return numberOfCachePages(pCache
);
847 ** Set the suggested cache-size value.
849 void sqlite3PcacheSetCachesize(PCache
*pCache
, int mxPage
){
850 assert( pCache
->pCache
!=0 );
851 pCache
->szCache
= mxPage
;
852 sqlite3GlobalConfig
.pcache2
.xCachesize(pCache
->pCache
,
853 numberOfCachePages(pCache
));
857 ** Set the suggested cache-spill value. Make no changes if if the
858 ** argument is zero. Return the effective cache-spill size, which will
859 ** be the larger of the szSpill and szCache.
861 int sqlite3PcacheSetSpillsize(PCache
*p
, int mxPage
){
863 assert( p
->pCache
!=0 );
866 mxPage
= (int)((-1024*(i64
)mxPage
)/(p
->szPage
+p
->szExtra
));
870 res
= numberOfCachePages(p
);
871 if( res
<p
->szSpill
) res
= p
->szSpill
;
876 ** Free up as much memory as possible from the page cache.
878 void sqlite3PcacheShrink(PCache
*pCache
){
879 assert( pCache
->pCache
!=0 );
880 sqlite3GlobalConfig
.pcache2
.xShrink(pCache
->pCache
);
884 ** Return the size of the header added by this middleware layer
885 ** in the page-cache hierarchy.
887 int sqlite3HeaderSizePcache(void){ return ROUND8(sizeof(PgHdr
)); }
890 ** Return the number of dirty pages currently in the cache, as a percentage
891 ** of the configured cache size.
893 int sqlite3PCachePercentDirty(PCache
*pCache
){
896 int nCache
= numberOfCachePages(pCache
);
897 for(pDirty
=pCache
->pDirty
; pDirty
; pDirty
=pDirty
->pDirtyNext
) nDirty
++;
898 return nCache
? (int)(((i64
)nDirty
* 100) / nCache
) : 0;
901 #ifdef SQLITE_DIRECT_OVERFLOW_READ
903 ** Return true if there are one or more dirty pages in the cache. Else false.
905 int sqlite3PCacheIsDirty(PCache
*pCache
){
906 return (pCache
->pDirty
!=0);
910 #if defined(SQLITE_CHECK_PAGES) || defined(SQLITE_DEBUG)
912 ** For all dirty pages currently in the cache, invoke the specified
913 ** callback. This is only used if the SQLITE_CHECK_PAGES macro is
916 void sqlite3PcacheIterateDirty(PCache
*pCache
, void (*xIter
)(PgHdr
*)){
918 for(pDirty
=pCache
->pDirty
; pDirty
; pDirty
=pDirty
->pDirtyNext
){