Snapshot of upstream SQLite 3.40.1
[sqlcipher.git] / src / vdbeapi.c
blob04295342b9ba2d375146568ab746a480e12f5a35
1 /*
2 ** 2004 May 26
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
13 ** This file contains code use to implement APIs that are part of the
14 ** VDBE.
16 #include "sqliteInt.h"
17 #include "vdbeInt.h"
19 #ifndef SQLITE_OMIT_DEPRECATED
21 ** Return TRUE (non-zero) of the statement supplied as an argument needs
22 ** to be recompiled. A statement needs to be recompiled whenever the
23 ** execution environment changes in a way that would alter the program
24 ** that sqlite3_prepare() generates. For example, if new functions or
25 ** collating sequences are registered or if an authorizer function is
26 ** added or changed.
28 int sqlite3_expired(sqlite3_stmt *pStmt){
29 Vdbe *p = (Vdbe*)pStmt;
30 return p==0 || p->expired;
32 #endif
35 ** Check on a Vdbe to make sure it has not been finalized. Log
36 ** an error and return true if it has been finalized (or is otherwise
37 ** invalid). Return false if it is ok.
39 static int vdbeSafety(Vdbe *p){
40 if( p->db==0 ){
41 sqlite3_log(SQLITE_MISUSE, "API called with finalized prepared statement");
42 return 1;
43 }else{
44 return 0;
47 static int vdbeSafetyNotNull(Vdbe *p){
48 if( p==0 ){
49 sqlite3_log(SQLITE_MISUSE, "API called with NULL prepared statement");
50 return 1;
51 }else{
52 return vdbeSafety(p);
56 #ifndef SQLITE_OMIT_TRACE
58 ** Invoke the profile callback. This routine is only called if we already
59 ** know that the profile callback is defined and needs to be invoked.
61 static SQLITE_NOINLINE void invokeProfileCallback(sqlite3 *db, Vdbe *p){
62 sqlite3_int64 iNow;
63 sqlite3_int64 iElapse;
64 assert( p->startTime>0 );
65 assert( (db->mTrace & (SQLITE_TRACE_PROFILE|SQLITE_TRACE_XPROFILE))!=0 );
66 assert( db->init.busy==0 );
67 assert( p->zSql!=0 );
68 sqlite3OsCurrentTimeInt64(db->pVfs, &iNow);
69 iElapse = (iNow - p->startTime)*1000000;
70 #ifndef SQLITE_OMIT_DEPRECATED
71 if( db->xProfile ){
72 db->xProfile(db->pProfileArg, p->zSql, iElapse);
74 #endif
75 if( db->mTrace & SQLITE_TRACE_PROFILE ){
76 db->trace.xV2(SQLITE_TRACE_PROFILE, db->pTraceArg, p, (void*)&iElapse);
78 p->startTime = 0;
81 ** The checkProfileCallback(DB,P) macro checks to see if a profile callback
82 ** is needed, and it invokes the callback if it is needed.
84 # define checkProfileCallback(DB,P) \
85 if( ((P)->startTime)>0 ){ invokeProfileCallback(DB,P); }
86 #else
87 # define checkProfileCallback(DB,P) /*no-op*/
88 #endif
91 ** The following routine destroys a virtual machine that is created by
92 ** the sqlite3_compile() routine. The integer returned is an SQLITE_
93 ** success/failure code that describes the result of executing the virtual
94 ** machine.
96 ** This routine sets the error code and string returned by
97 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
99 int sqlite3_finalize(sqlite3_stmt *pStmt){
100 int rc;
101 if( pStmt==0 ){
102 /* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL
103 ** pointer is a harmless no-op. */
104 rc = SQLITE_OK;
105 }else{
106 Vdbe *v = (Vdbe*)pStmt;
107 sqlite3 *db = v->db;
108 if( vdbeSafety(v) ) return SQLITE_MISUSE_BKPT;
109 sqlite3_mutex_enter(db->mutex);
110 checkProfileCallback(db, v);
111 assert( v->eVdbeState>=VDBE_READY_STATE );
112 rc = sqlite3VdbeReset(v);
113 sqlite3VdbeDelete(v);
114 rc = sqlite3ApiExit(db, rc);
115 sqlite3LeaveMutexAndCloseZombie(db);
117 return rc;
121 ** Terminate the current execution of an SQL statement and reset it
122 ** back to its starting state so that it can be reused. A success code from
123 ** the prior execution is returned.
125 ** This routine sets the error code and string returned by
126 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
128 int sqlite3_reset(sqlite3_stmt *pStmt){
129 int rc;
130 if( pStmt==0 ){
131 rc = SQLITE_OK;
132 }else{
133 Vdbe *v = (Vdbe*)pStmt;
134 sqlite3 *db = v->db;
135 sqlite3_mutex_enter(db->mutex);
136 checkProfileCallback(db, v);
137 rc = sqlite3VdbeReset(v);
138 sqlite3VdbeRewind(v);
139 assert( (rc & (db->errMask))==rc );
140 rc = sqlite3ApiExit(db, rc);
141 sqlite3_mutex_leave(db->mutex);
143 return rc;
147 ** Set all the parameters in the compiled SQL statement to NULL.
149 int sqlite3_clear_bindings(sqlite3_stmt *pStmt){
150 int i;
151 int rc = SQLITE_OK;
152 Vdbe *p = (Vdbe*)pStmt;
153 #if SQLITE_THREADSAFE
154 sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex;
155 #endif
156 sqlite3_mutex_enter(mutex);
157 for(i=0; i<p->nVar; i++){
158 sqlite3VdbeMemRelease(&p->aVar[i]);
159 p->aVar[i].flags = MEM_Null;
161 assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || p->expmask==0 );
162 if( p->expmask ){
163 p->expired = 1;
165 sqlite3_mutex_leave(mutex);
166 return rc;
170 /**************************** sqlite3_value_ *******************************
171 ** The following routines extract information from a Mem or sqlite3_value
172 ** structure.
174 const void *sqlite3_value_blob(sqlite3_value *pVal){
175 Mem *p = (Mem*)pVal;
176 if( p->flags & (MEM_Blob|MEM_Str) ){
177 if( ExpandBlob(p)!=SQLITE_OK ){
178 assert( p->flags==MEM_Null && p->z==0 );
179 return 0;
181 p->flags |= MEM_Blob;
182 return p->n ? p->z : 0;
183 }else{
184 return sqlite3_value_text(pVal);
187 int sqlite3_value_bytes(sqlite3_value *pVal){
188 return sqlite3ValueBytes(pVal, SQLITE_UTF8);
190 int sqlite3_value_bytes16(sqlite3_value *pVal){
191 return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE);
193 double sqlite3_value_double(sqlite3_value *pVal){
194 return sqlite3VdbeRealValue((Mem*)pVal);
196 int sqlite3_value_int(sqlite3_value *pVal){
197 return (int)sqlite3VdbeIntValue((Mem*)pVal);
199 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){
200 return sqlite3VdbeIntValue((Mem*)pVal);
202 unsigned int sqlite3_value_subtype(sqlite3_value *pVal){
203 Mem *pMem = (Mem*)pVal;
204 return ((pMem->flags & MEM_Subtype) ? pMem->eSubtype : 0);
206 void *sqlite3_value_pointer(sqlite3_value *pVal, const char *zPType){
207 Mem *p = (Mem*)pVal;
208 if( (p->flags&(MEM_TypeMask|MEM_Term|MEM_Subtype)) ==
209 (MEM_Null|MEM_Term|MEM_Subtype)
210 && zPType!=0
211 && p->eSubtype=='p'
212 && strcmp(p->u.zPType, zPType)==0
214 return (void*)p->z;
215 }else{
216 return 0;
219 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){
220 return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8);
222 #ifndef SQLITE_OMIT_UTF16
223 const void *sqlite3_value_text16(sqlite3_value* pVal){
224 return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE);
226 const void *sqlite3_value_text16be(sqlite3_value *pVal){
227 return sqlite3ValueText(pVal, SQLITE_UTF16BE);
229 const void *sqlite3_value_text16le(sqlite3_value *pVal){
230 return sqlite3ValueText(pVal, SQLITE_UTF16LE);
232 #endif /* SQLITE_OMIT_UTF16 */
233 /* EVIDENCE-OF: R-12793-43283 Every value in SQLite has one of five
234 ** fundamental datatypes: 64-bit signed integer 64-bit IEEE floating
235 ** point number string BLOB NULL
237 int sqlite3_value_type(sqlite3_value* pVal){
238 static const u8 aType[] = {
239 SQLITE_BLOB, /* 0x00 (not possible) */
240 SQLITE_NULL, /* 0x01 NULL */
241 SQLITE_TEXT, /* 0x02 TEXT */
242 SQLITE_NULL, /* 0x03 (not possible) */
243 SQLITE_INTEGER, /* 0x04 INTEGER */
244 SQLITE_NULL, /* 0x05 (not possible) */
245 SQLITE_INTEGER, /* 0x06 INTEGER + TEXT */
246 SQLITE_NULL, /* 0x07 (not possible) */
247 SQLITE_FLOAT, /* 0x08 FLOAT */
248 SQLITE_NULL, /* 0x09 (not possible) */
249 SQLITE_FLOAT, /* 0x0a FLOAT + TEXT */
250 SQLITE_NULL, /* 0x0b (not possible) */
251 SQLITE_INTEGER, /* 0x0c (not possible) */
252 SQLITE_NULL, /* 0x0d (not possible) */
253 SQLITE_INTEGER, /* 0x0e (not possible) */
254 SQLITE_NULL, /* 0x0f (not possible) */
255 SQLITE_BLOB, /* 0x10 BLOB */
256 SQLITE_NULL, /* 0x11 (not possible) */
257 SQLITE_TEXT, /* 0x12 (not possible) */
258 SQLITE_NULL, /* 0x13 (not possible) */
259 SQLITE_INTEGER, /* 0x14 INTEGER + BLOB */
260 SQLITE_NULL, /* 0x15 (not possible) */
261 SQLITE_INTEGER, /* 0x16 (not possible) */
262 SQLITE_NULL, /* 0x17 (not possible) */
263 SQLITE_FLOAT, /* 0x18 FLOAT + BLOB */
264 SQLITE_NULL, /* 0x19 (not possible) */
265 SQLITE_FLOAT, /* 0x1a (not possible) */
266 SQLITE_NULL, /* 0x1b (not possible) */
267 SQLITE_INTEGER, /* 0x1c (not possible) */
268 SQLITE_NULL, /* 0x1d (not possible) */
269 SQLITE_INTEGER, /* 0x1e (not possible) */
270 SQLITE_NULL, /* 0x1f (not possible) */
271 SQLITE_FLOAT, /* 0x20 INTREAL */
272 SQLITE_NULL, /* 0x21 (not possible) */
273 SQLITE_TEXT, /* 0x22 INTREAL + TEXT */
274 SQLITE_NULL, /* 0x23 (not possible) */
275 SQLITE_FLOAT, /* 0x24 (not possible) */
276 SQLITE_NULL, /* 0x25 (not possible) */
277 SQLITE_FLOAT, /* 0x26 (not possible) */
278 SQLITE_NULL, /* 0x27 (not possible) */
279 SQLITE_FLOAT, /* 0x28 (not possible) */
280 SQLITE_NULL, /* 0x29 (not possible) */
281 SQLITE_FLOAT, /* 0x2a (not possible) */
282 SQLITE_NULL, /* 0x2b (not possible) */
283 SQLITE_FLOAT, /* 0x2c (not possible) */
284 SQLITE_NULL, /* 0x2d (not possible) */
285 SQLITE_FLOAT, /* 0x2e (not possible) */
286 SQLITE_NULL, /* 0x2f (not possible) */
287 SQLITE_BLOB, /* 0x30 (not possible) */
288 SQLITE_NULL, /* 0x31 (not possible) */
289 SQLITE_TEXT, /* 0x32 (not possible) */
290 SQLITE_NULL, /* 0x33 (not possible) */
291 SQLITE_FLOAT, /* 0x34 (not possible) */
292 SQLITE_NULL, /* 0x35 (not possible) */
293 SQLITE_FLOAT, /* 0x36 (not possible) */
294 SQLITE_NULL, /* 0x37 (not possible) */
295 SQLITE_FLOAT, /* 0x38 (not possible) */
296 SQLITE_NULL, /* 0x39 (not possible) */
297 SQLITE_FLOAT, /* 0x3a (not possible) */
298 SQLITE_NULL, /* 0x3b (not possible) */
299 SQLITE_FLOAT, /* 0x3c (not possible) */
300 SQLITE_NULL, /* 0x3d (not possible) */
301 SQLITE_FLOAT, /* 0x3e (not possible) */
302 SQLITE_NULL, /* 0x3f (not possible) */
304 #ifdef SQLITE_DEBUG
306 int eType = SQLITE_BLOB;
307 if( pVal->flags & MEM_Null ){
308 eType = SQLITE_NULL;
309 }else if( pVal->flags & (MEM_Real|MEM_IntReal) ){
310 eType = SQLITE_FLOAT;
311 }else if( pVal->flags & MEM_Int ){
312 eType = SQLITE_INTEGER;
313 }else if( pVal->flags & MEM_Str ){
314 eType = SQLITE_TEXT;
316 assert( eType == aType[pVal->flags&MEM_AffMask] );
318 #endif
319 return aType[pVal->flags&MEM_AffMask];
321 int sqlite3_value_encoding(sqlite3_value *pVal){
322 return pVal->enc;
325 /* Return true if a parameter to xUpdate represents an unchanged column */
326 int sqlite3_value_nochange(sqlite3_value *pVal){
327 return (pVal->flags&(MEM_Null|MEM_Zero))==(MEM_Null|MEM_Zero);
330 /* Return true if a parameter value originated from an sqlite3_bind() */
331 int sqlite3_value_frombind(sqlite3_value *pVal){
332 return (pVal->flags&MEM_FromBind)!=0;
335 /* Make a copy of an sqlite3_value object
337 sqlite3_value *sqlite3_value_dup(const sqlite3_value *pOrig){
338 sqlite3_value *pNew;
339 if( pOrig==0 ) return 0;
340 pNew = sqlite3_malloc( sizeof(*pNew) );
341 if( pNew==0 ) return 0;
342 memset(pNew, 0, sizeof(*pNew));
343 memcpy(pNew, pOrig, MEMCELLSIZE);
344 pNew->flags &= ~MEM_Dyn;
345 pNew->db = 0;
346 if( pNew->flags&(MEM_Str|MEM_Blob) ){
347 pNew->flags &= ~(MEM_Static|MEM_Dyn);
348 pNew->flags |= MEM_Ephem;
349 if( sqlite3VdbeMemMakeWriteable(pNew)!=SQLITE_OK ){
350 sqlite3ValueFree(pNew);
351 pNew = 0;
353 }else if( pNew->flags & MEM_Null ){
354 /* Do not duplicate pointer values */
355 pNew->flags &= ~(MEM_Term|MEM_Subtype);
357 return pNew;
360 /* Destroy an sqlite3_value object previously obtained from
361 ** sqlite3_value_dup().
363 void sqlite3_value_free(sqlite3_value *pOld){
364 sqlite3ValueFree(pOld);
368 /**************************** sqlite3_result_ *******************************
369 ** The following routines are used by user-defined functions to specify
370 ** the function result.
372 ** The setStrOrError() function calls sqlite3VdbeMemSetStr() to store the
373 ** result as a string or blob. Appropriate errors are set if the string/blob
374 ** is too big or if an OOM occurs.
376 ** The invokeValueDestructor(P,X) routine invokes destructor function X()
377 ** on value P is not going to be used and need to be destroyed.
379 static void setResultStrOrError(
380 sqlite3_context *pCtx, /* Function context */
381 const char *z, /* String pointer */
382 int n, /* Bytes in string, or negative */
383 u8 enc, /* Encoding of z. 0 for BLOBs */
384 void (*xDel)(void*) /* Destructor function */
386 Mem *pOut = pCtx->pOut;
387 int rc = sqlite3VdbeMemSetStr(pOut, z, n, enc, xDel);
388 if( rc ){
389 if( rc==SQLITE_TOOBIG ){
390 sqlite3_result_error_toobig(pCtx);
391 }else{
392 /* The only errors possible from sqlite3VdbeMemSetStr are
393 ** SQLITE_TOOBIG and SQLITE_NOMEM */
394 assert( rc==SQLITE_NOMEM );
395 sqlite3_result_error_nomem(pCtx);
397 return;
399 sqlite3VdbeChangeEncoding(pOut, pCtx->enc);
400 if( sqlite3VdbeMemTooBig(pOut) ){
401 sqlite3_result_error_toobig(pCtx);
404 static int invokeValueDestructor(
405 const void *p, /* Value to destroy */
406 void (*xDel)(void*), /* The destructor */
407 sqlite3_context *pCtx /* Set a SQLITE_TOOBIG error if no NULL */
409 assert( xDel!=SQLITE_DYNAMIC );
410 if( xDel==0 ){
411 /* noop */
412 }else if( xDel==SQLITE_TRANSIENT ){
413 /* noop */
414 }else{
415 xDel((void*)p);
417 sqlite3_result_error_toobig(pCtx);
418 return SQLITE_TOOBIG;
420 void sqlite3_result_blob(
421 sqlite3_context *pCtx,
422 const void *z,
423 int n,
424 void (*xDel)(void *)
426 assert( n>=0 );
427 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
428 setResultStrOrError(pCtx, z, n, 0, xDel);
430 void sqlite3_result_blob64(
431 sqlite3_context *pCtx,
432 const void *z,
433 sqlite3_uint64 n,
434 void (*xDel)(void *)
436 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
437 assert( xDel!=SQLITE_DYNAMIC );
438 if( n>0x7fffffff ){
439 (void)invokeValueDestructor(z, xDel, pCtx);
440 }else{
441 setResultStrOrError(pCtx, z, (int)n, 0, xDel);
444 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){
445 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
446 sqlite3VdbeMemSetDouble(pCtx->pOut, rVal);
448 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){
449 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
450 pCtx->isError = SQLITE_ERROR;
451 sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF8, SQLITE_TRANSIENT);
453 #ifndef SQLITE_OMIT_UTF16
454 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){
455 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
456 pCtx->isError = SQLITE_ERROR;
457 sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT);
459 #endif
460 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){
461 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
462 sqlite3VdbeMemSetInt64(pCtx->pOut, (i64)iVal);
464 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){
465 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
466 sqlite3VdbeMemSetInt64(pCtx->pOut, iVal);
468 void sqlite3_result_null(sqlite3_context *pCtx){
469 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
470 sqlite3VdbeMemSetNull(pCtx->pOut);
472 void sqlite3_result_pointer(
473 sqlite3_context *pCtx,
474 void *pPtr,
475 const char *zPType,
476 void (*xDestructor)(void*)
478 Mem *pOut = pCtx->pOut;
479 assert( sqlite3_mutex_held(pOut->db->mutex) );
480 sqlite3VdbeMemRelease(pOut);
481 pOut->flags = MEM_Null;
482 sqlite3VdbeMemSetPointer(pOut, pPtr, zPType, xDestructor);
484 void sqlite3_result_subtype(sqlite3_context *pCtx, unsigned int eSubtype){
485 Mem *pOut = pCtx->pOut;
486 assert( sqlite3_mutex_held(pOut->db->mutex) );
487 pOut->eSubtype = eSubtype & 0xff;
488 pOut->flags |= MEM_Subtype;
490 void sqlite3_result_text(
491 sqlite3_context *pCtx,
492 const char *z,
493 int n,
494 void (*xDel)(void *)
496 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
497 setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel);
499 void sqlite3_result_text64(
500 sqlite3_context *pCtx,
501 const char *z,
502 sqlite3_uint64 n,
503 void (*xDel)(void *),
504 unsigned char enc
506 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
507 assert( xDel!=SQLITE_DYNAMIC );
508 if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE;
509 if( n>0x7fffffff ){
510 (void)invokeValueDestructor(z, xDel, pCtx);
511 }else{
512 setResultStrOrError(pCtx, z, (int)n, enc, xDel);
515 #ifndef SQLITE_OMIT_UTF16
516 void sqlite3_result_text16(
517 sqlite3_context *pCtx,
518 const void *z,
519 int n,
520 void (*xDel)(void *)
522 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
523 setResultStrOrError(pCtx, z, n, SQLITE_UTF16NATIVE, xDel);
525 void sqlite3_result_text16be(
526 sqlite3_context *pCtx,
527 const void *z,
528 int n,
529 void (*xDel)(void *)
531 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
532 setResultStrOrError(pCtx, z, n, SQLITE_UTF16BE, xDel);
534 void sqlite3_result_text16le(
535 sqlite3_context *pCtx,
536 const void *z,
537 int n,
538 void (*xDel)(void *)
540 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
541 setResultStrOrError(pCtx, z, n, SQLITE_UTF16LE, xDel);
543 #endif /* SQLITE_OMIT_UTF16 */
544 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){
545 Mem *pOut = pCtx->pOut;
546 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
547 sqlite3VdbeMemCopy(pOut, pValue);
548 sqlite3VdbeChangeEncoding(pOut, pCtx->enc);
549 if( sqlite3VdbeMemTooBig(pOut) ){
550 sqlite3_result_error_toobig(pCtx);
553 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){
554 sqlite3_result_zeroblob64(pCtx, n>0 ? n : 0);
556 int sqlite3_result_zeroblob64(sqlite3_context *pCtx, u64 n){
557 Mem *pOut = pCtx->pOut;
558 assert( sqlite3_mutex_held(pOut->db->mutex) );
559 if( n>(u64)pOut->db->aLimit[SQLITE_LIMIT_LENGTH] ){
560 sqlite3_result_error_toobig(pCtx);
561 return SQLITE_TOOBIG;
563 #ifndef SQLITE_OMIT_INCRBLOB
564 sqlite3VdbeMemSetZeroBlob(pCtx->pOut, (int)n);
565 return SQLITE_OK;
566 #else
567 return sqlite3VdbeMemSetZeroBlob(pCtx->pOut, (int)n);
568 #endif
570 void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){
571 pCtx->isError = errCode ? errCode : -1;
572 #ifdef SQLITE_DEBUG
573 if( pCtx->pVdbe ) pCtx->pVdbe->rcApp = errCode;
574 #endif
575 if( pCtx->pOut->flags & MEM_Null ){
576 setResultStrOrError(pCtx, sqlite3ErrStr(errCode), -1, SQLITE_UTF8,
577 SQLITE_STATIC);
581 /* Force an SQLITE_TOOBIG error. */
582 void sqlite3_result_error_toobig(sqlite3_context *pCtx){
583 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
584 pCtx->isError = SQLITE_TOOBIG;
585 sqlite3VdbeMemSetStr(pCtx->pOut, "string or blob too big", -1,
586 SQLITE_UTF8, SQLITE_STATIC);
589 /* An SQLITE_NOMEM error. */
590 void sqlite3_result_error_nomem(sqlite3_context *pCtx){
591 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
592 sqlite3VdbeMemSetNull(pCtx->pOut);
593 pCtx->isError = SQLITE_NOMEM_BKPT;
594 sqlite3OomFault(pCtx->pOut->db);
597 #ifndef SQLITE_UNTESTABLE
598 /* Force the INT64 value currently stored as the result to be
599 ** a MEM_IntReal value. See the SQLITE_TESTCTRL_RESULT_INTREAL
600 ** test-control.
602 void sqlite3ResultIntReal(sqlite3_context *pCtx){
603 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
604 if( pCtx->pOut->flags & MEM_Int ){
605 pCtx->pOut->flags &= ~MEM_Int;
606 pCtx->pOut->flags |= MEM_IntReal;
609 #endif
613 ** This function is called after a transaction has been committed. It
614 ** invokes callbacks registered with sqlite3_wal_hook() as required.
616 static int doWalCallbacks(sqlite3 *db){
617 int rc = SQLITE_OK;
618 #ifndef SQLITE_OMIT_WAL
619 int i;
620 for(i=0; i<db->nDb; i++){
621 Btree *pBt = db->aDb[i].pBt;
622 if( pBt ){
623 int nEntry;
624 sqlite3BtreeEnter(pBt);
625 nEntry = sqlite3PagerWalCallback(sqlite3BtreePager(pBt));
626 sqlite3BtreeLeave(pBt);
627 if( nEntry>0 && db->xWalCallback && rc==SQLITE_OK ){
628 rc = db->xWalCallback(db->pWalArg, db, db->aDb[i].zDbSName, nEntry);
632 #endif
633 return rc;
638 ** Execute the statement pStmt, either until a row of data is ready, the
639 ** statement is completely executed or an error occurs.
641 ** This routine implements the bulk of the logic behind the sqlite_step()
642 ** API. The only thing omitted is the automatic recompile if a
643 ** schema change has occurred. That detail is handled by the
644 ** outer sqlite3_step() wrapper procedure.
646 static int sqlite3Step(Vdbe *p){
647 sqlite3 *db;
648 int rc;
650 assert(p);
651 db = p->db;
652 if( p->eVdbeState!=VDBE_RUN_STATE ){
653 restart_step:
654 if( p->eVdbeState==VDBE_READY_STATE ){
655 if( p->expired ){
656 p->rc = SQLITE_SCHEMA;
657 rc = SQLITE_ERROR;
658 if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 ){
659 /* If this statement was prepared using saved SQL and an
660 ** error has occurred, then return the error code in p->rc to the
661 ** caller. Set the error code in the database handle to the same
662 ** value.
664 rc = sqlite3VdbeTransferError(p);
666 goto end_of_step;
669 /* If there are no other statements currently running, then
670 ** reset the interrupt flag. This prevents a call to sqlite3_interrupt
671 ** from interrupting a statement that has not yet started.
673 if( db->nVdbeActive==0 ){
674 AtomicStore(&db->u1.isInterrupted, 0);
677 assert( db->nVdbeWrite>0 || db->autoCommit==0
678 || (db->nDeferredCons==0 && db->nDeferredImmCons==0)
681 #ifndef SQLITE_OMIT_TRACE
682 if( (db->mTrace & (SQLITE_TRACE_PROFILE|SQLITE_TRACE_XPROFILE))!=0
683 && !db->init.busy && p->zSql ){
684 sqlite3OsCurrentTimeInt64(db->pVfs, &p->startTime);
685 }else{
686 assert( p->startTime==0 );
688 #endif
690 db->nVdbeActive++;
691 if( p->readOnly==0 ) db->nVdbeWrite++;
692 if( p->bIsReader ) db->nVdbeRead++;
693 p->pc = 0;
694 p->eVdbeState = VDBE_RUN_STATE;
695 }else
697 if( ALWAYS(p->eVdbeState==VDBE_HALT_STATE) ){
698 /* We used to require that sqlite3_reset() be called before retrying
699 ** sqlite3_step() after any error or after SQLITE_DONE. But beginning
700 ** with version 3.7.0, we changed this so that sqlite3_reset() would
701 ** be called automatically instead of throwing the SQLITE_MISUSE error.
702 ** This "automatic-reset" change is not technically an incompatibility,
703 ** since any application that receives an SQLITE_MISUSE is broken by
704 ** definition.
706 ** Nevertheless, some published applications that were originally written
707 ** for version 3.6.23 or earlier do in fact depend on SQLITE_MISUSE
708 ** returns, and those were broken by the automatic-reset change. As a
709 ** a work-around, the SQLITE_OMIT_AUTORESET compile-time restores the
710 ** legacy behavior of returning SQLITE_MISUSE for cases where the
711 ** previous sqlite3_step() returned something other than a SQLITE_LOCKED
712 ** or SQLITE_BUSY error.
714 #ifdef SQLITE_OMIT_AUTORESET
715 if( (rc = p->rc&0xff)==SQLITE_BUSY || rc==SQLITE_LOCKED ){
716 sqlite3_reset((sqlite3_stmt*)p);
717 }else{
718 return SQLITE_MISUSE_BKPT;
720 #else
721 sqlite3_reset((sqlite3_stmt*)p);
722 #endif
723 assert( p->eVdbeState==VDBE_READY_STATE );
724 goto restart_step;
728 #ifdef SQLITE_DEBUG
729 p->rcApp = SQLITE_OK;
730 #endif
731 #ifndef SQLITE_OMIT_EXPLAIN
732 if( p->explain ){
733 rc = sqlite3VdbeList(p);
734 }else
735 #endif /* SQLITE_OMIT_EXPLAIN */
737 db->nVdbeExec++;
738 rc = sqlite3VdbeExec(p);
739 db->nVdbeExec--;
742 if( rc==SQLITE_ROW ){
743 assert( p->rc==SQLITE_OK );
744 assert( db->mallocFailed==0 );
745 db->errCode = SQLITE_ROW;
746 return SQLITE_ROW;
747 }else{
748 #ifndef SQLITE_OMIT_TRACE
749 /* If the statement completed successfully, invoke the profile callback */
750 checkProfileCallback(db, p);
751 #endif
753 if( rc==SQLITE_DONE && db->autoCommit ){
754 assert( p->rc==SQLITE_OK );
755 p->rc = doWalCallbacks(db);
756 if( p->rc!=SQLITE_OK ){
757 rc = SQLITE_ERROR;
759 }else if( rc!=SQLITE_DONE && (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 ){
760 /* If this statement was prepared using saved SQL and an
761 ** error has occurred, then return the error code in p->rc to the
762 ** caller. Set the error code in the database handle to the same value.
764 rc = sqlite3VdbeTransferError(p);
768 db->errCode = rc;
769 if( SQLITE_NOMEM==sqlite3ApiExit(p->db, p->rc) ){
770 p->rc = SQLITE_NOMEM_BKPT;
771 if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 ) rc = p->rc;
773 end_of_step:
774 /* There are only a limited number of result codes allowed from the
775 ** statements prepared using the legacy sqlite3_prepare() interface */
776 assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0
777 || rc==SQLITE_ROW || rc==SQLITE_DONE || rc==SQLITE_ERROR
778 || (rc&0xff)==SQLITE_BUSY || rc==SQLITE_MISUSE
780 return (rc&db->errMask);
784 ** This is the top-level implementation of sqlite3_step(). Call
785 ** sqlite3Step() to do most of the work. If a schema error occurs,
786 ** call sqlite3Reprepare() and try again.
788 int sqlite3_step(sqlite3_stmt *pStmt){
789 int rc = SQLITE_OK; /* Result from sqlite3Step() */
790 Vdbe *v = (Vdbe*)pStmt; /* the prepared statement */
791 int cnt = 0; /* Counter to prevent infinite loop of reprepares */
792 sqlite3 *db; /* The database connection */
794 if( vdbeSafetyNotNull(v) ){
795 return SQLITE_MISUSE_BKPT;
797 db = v->db;
798 sqlite3_mutex_enter(db->mutex);
799 while( (rc = sqlite3Step(v))==SQLITE_SCHEMA
800 && cnt++ < SQLITE_MAX_SCHEMA_RETRY ){
801 int savedPc = v->pc;
802 rc = sqlite3Reprepare(v);
803 if( rc!=SQLITE_OK ){
804 /* This case occurs after failing to recompile an sql statement.
805 ** The error message from the SQL compiler has already been loaded
806 ** into the database handle. This block copies the error message
807 ** from the database handle into the statement and sets the statement
808 ** program counter to 0 to ensure that when the statement is
809 ** finalized or reset the parser error message is available via
810 ** sqlite3_errmsg() and sqlite3_errcode().
812 const char *zErr = (const char *)sqlite3_value_text(db->pErr);
813 sqlite3DbFree(db, v->zErrMsg);
814 if( !db->mallocFailed ){
815 v->zErrMsg = sqlite3DbStrDup(db, zErr);
816 v->rc = rc = sqlite3ApiExit(db, rc);
817 } else {
818 v->zErrMsg = 0;
819 v->rc = rc = SQLITE_NOMEM_BKPT;
821 break;
823 sqlite3_reset(pStmt);
824 if( savedPc>=0 ){
825 /* Setting minWriteFileFormat to 254 is a signal to the OP_Init and
826 ** OP_Trace opcodes to *not* perform SQLITE_TRACE_STMT because it has
827 ** already been done once on a prior invocation that failed due to
828 ** SQLITE_SCHEMA. tag-20220401a */
829 v->minWriteFileFormat = 254;
831 assert( v->expired==0 );
833 sqlite3_mutex_leave(db->mutex);
834 return rc;
839 ** Extract the user data from a sqlite3_context structure and return a
840 ** pointer to it.
842 void *sqlite3_user_data(sqlite3_context *p){
843 assert( p && p->pFunc );
844 return p->pFunc->pUserData;
848 ** Extract the user data from a sqlite3_context structure and return a
849 ** pointer to it.
851 ** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface
852 ** returns a copy of the pointer to the database connection (the 1st
853 ** parameter) of the sqlite3_create_function() and
854 ** sqlite3_create_function16() routines that originally registered the
855 ** application defined function.
857 sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){
858 assert( p && p->pOut );
859 return p->pOut->db;
863 ** If this routine is invoked from within an xColumn method of a virtual
864 ** table, then it returns true if and only if the the call is during an
865 ** UPDATE operation and the value of the column will not be modified
866 ** by the UPDATE.
868 ** If this routine is called from any context other than within the
869 ** xColumn method of a virtual table, then the return value is meaningless
870 ** and arbitrary.
872 ** Virtual table implements might use this routine to optimize their
873 ** performance by substituting a NULL result, or some other light-weight
874 ** value, as a signal to the xUpdate routine that the column is unchanged.
876 int sqlite3_vtab_nochange(sqlite3_context *p){
877 assert( p );
878 return sqlite3_value_nochange(p->pOut);
882 ** Implementation of sqlite3_vtab_in_first() (if bNext==0) and
883 ** sqlite3_vtab_in_next() (if bNext!=0).
885 static int valueFromValueList(
886 sqlite3_value *pVal, /* Pointer to the ValueList object */
887 sqlite3_value **ppOut, /* Store the next value from the list here */
888 int bNext /* 1 for _next(). 0 for _first() */
890 int rc;
891 ValueList *pRhs;
893 *ppOut = 0;
894 if( pVal==0 ) return SQLITE_MISUSE;
895 pRhs = (ValueList*)sqlite3_value_pointer(pVal, "ValueList");
896 if( pRhs==0 ) return SQLITE_MISUSE;
897 if( bNext ){
898 rc = sqlite3BtreeNext(pRhs->pCsr, 0);
899 }else{
900 int dummy = 0;
901 rc = sqlite3BtreeFirst(pRhs->pCsr, &dummy);
902 assert( rc==SQLITE_OK || sqlite3BtreeEof(pRhs->pCsr) );
903 if( sqlite3BtreeEof(pRhs->pCsr) ) rc = SQLITE_DONE;
905 if( rc==SQLITE_OK ){
906 u32 sz; /* Size of current row in bytes */
907 Mem sMem; /* Raw content of current row */
908 memset(&sMem, 0, sizeof(sMem));
909 sz = sqlite3BtreePayloadSize(pRhs->pCsr);
910 rc = sqlite3VdbeMemFromBtreeZeroOffset(pRhs->pCsr,(int)sz,&sMem);
911 if( rc==SQLITE_OK ){
912 u8 *zBuf = (u8*)sMem.z;
913 u32 iSerial;
914 sqlite3_value *pOut = pRhs->pOut;
915 int iOff = 1 + getVarint32(&zBuf[1], iSerial);
916 sqlite3VdbeSerialGet(&zBuf[iOff], iSerial, pOut);
917 pOut->enc = ENC(pOut->db);
918 if( (pOut->flags & MEM_Ephem)!=0 && sqlite3VdbeMemMakeWriteable(pOut) ){
919 rc = SQLITE_NOMEM;
920 }else{
921 *ppOut = pOut;
924 sqlite3VdbeMemRelease(&sMem);
926 return rc;
930 ** Set the iterator value pVal to point to the first value in the set.
931 ** Set (*ppOut) to point to this value before returning.
933 int sqlite3_vtab_in_first(sqlite3_value *pVal, sqlite3_value **ppOut){
934 return valueFromValueList(pVal, ppOut, 0);
938 ** Set the iterator value pVal to point to the next value in the set.
939 ** Set (*ppOut) to point to this value before returning.
941 int sqlite3_vtab_in_next(sqlite3_value *pVal, sqlite3_value **ppOut){
942 return valueFromValueList(pVal, ppOut, 1);
946 ** Return the current time for a statement. If the current time
947 ** is requested more than once within the same run of a single prepared
948 ** statement, the exact same time is returned for each invocation regardless
949 ** of the amount of time that elapses between invocations. In other words,
950 ** the time returned is always the time of the first call.
952 sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context *p){
953 int rc;
954 #ifndef SQLITE_ENABLE_STAT4
955 sqlite3_int64 *piTime = &p->pVdbe->iCurrentTime;
956 assert( p->pVdbe!=0 );
957 #else
958 sqlite3_int64 iTime = 0;
959 sqlite3_int64 *piTime = p->pVdbe!=0 ? &p->pVdbe->iCurrentTime : &iTime;
960 #endif
961 if( *piTime==0 ){
962 rc = sqlite3OsCurrentTimeInt64(p->pOut->db->pVfs, piTime);
963 if( rc ) *piTime = 0;
965 return *piTime;
969 ** Create a new aggregate context for p and return a pointer to
970 ** its pMem->z element.
972 static SQLITE_NOINLINE void *createAggContext(sqlite3_context *p, int nByte){
973 Mem *pMem = p->pMem;
974 assert( (pMem->flags & MEM_Agg)==0 );
975 if( nByte<=0 ){
976 sqlite3VdbeMemSetNull(pMem);
977 pMem->z = 0;
978 }else{
979 sqlite3VdbeMemClearAndResize(pMem, nByte);
980 pMem->flags = MEM_Agg;
981 pMem->u.pDef = p->pFunc;
982 if( pMem->z ){
983 memset(pMem->z, 0, nByte);
986 return (void*)pMem->z;
990 ** Allocate or return the aggregate context for a user function. A new
991 ** context is allocated on the first call. Subsequent calls return the
992 ** same context that was returned on prior calls.
994 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){
995 assert( p && p->pFunc && p->pFunc->xFinalize );
996 assert( sqlite3_mutex_held(p->pOut->db->mutex) );
997 testcase( nByte<0 );
998 if( (p->pMem->flags & MEM_Agg)==0 ){
999 return createAggContext(p, nByte);
1000 }else{
1001 return (void*)p->pMem->z;
1006 ** Return the auxiliary data pointer, if any, for the iArg'th argument to
1007 ** the user-function defined by pCtx.
1009 ** The left-most argument is 0.
1011 ** Undocumented behavior: If iArg is negative then access a cache of
1012 ** auxiliary data pointers that is available to all functions within a
1013 ** single prepared statement. The iArg values must match.
1015 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){
1016 AuxData *pAuxData;
1018 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
1019 #if SQLITE_ENABLE_STAT4
1020 if( pCtx->pVdbe==0 ) return 0;
1021 #else
1022 assert( pCtx->pVdbe!=0 );
1023 #endif
1024 for(pAuxData=pCtx->pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){
1025 if( pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){
1026 return pAuxData->pAux;
1029 return 0;
1033 ** Set the auxiliary data pointer and delete function, for the iArg'th
1034 ** argument to the user-function defined by pCtx. Any previous value is
1035 ** deleted by calling the delete function specified when it was set.
1037 ** The left-most argument is 0.
1039 ** Undocumented behavior: If iArg is negative then make the data available
1040 ** to all functions within the current prepared statement using iArg as an
1041 ** access code.
1043 void sqlite3_set_auxdata(
1044 sqlite3_context *pCtx,
1045 int iArg,
1046 void *pAux,
1047 void (*xDelete)(void*)
1049 AuxData *pAuxData;
1050 Vdbe *pVdbe = pCtx->pVdbe;
1052 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
1053 #ifdef SQLITE_ENABLE_STAT4
1054 if( pVdbe==0 ) goto failed;
1055 #else
1056 assert( pVdbe!=0 );
1057 #endif
1059 for(pAuxData=pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){
1060 if( pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){
1061 break;
1064 if( pAuxData==0 ){
1065 pAuxData = sqlite3DbMallocZero(pVdbe->db, sizeof(AuxData));
1066 if( !pAuxData ) goto failed;
1067 pAuxData->iAuxOp = pCtx->iOp;
1068 pAuxData->iAuxArg = iArg;
1069 pAuxData->pNextAux = pVdbe->pAuxData;
1070 pVdbe->pAuxData = pAuxData;
1071 if( pCtx->isError==0 ) pCtx->isError = -1;
1072 }else if( pAuxData->xDeleteAux ){
1073 pAuxData->xDeleteAux(pAuxData->pAux);
1076 pAuxData->pAux = pAux;
1077 pAuxData->xDeleteAux = xDelete;
1078 return;
1080 failed:
1081 if( xDelete ){
1082 xDelete(pAux);
1086 #ifndef SQLITE_OMIT_DEPRECATED
1088 ** Return the number of times the Step function of an aggregate has been
1089 ** called.
1091 ** This function is deprecated. Do not use it for new code. It is
1092 ** provide only to avoid breaking legacy code. New aggregate function
1093 ** implementations should keep their own counts within their aggregate
1094 ** context.
1096 int sqlite3_aggregate_count(sqlite3_context *p){
1097 assert( p && p->pMem && p->pFunc && p->pFunc->xFinalize );
1098 return p->pMem->n;
1100 #endif
1103 ** Return the number of columns in the result set for the statement pStmt.
1105 int sqlite3_column_count(sqlite3_stmt *pStmt){
1106 Vdbe *pVm = (Vdbe *)pStmt;
1107 return pVm ? pVm->nResColumn : 0;
1111 ** Return the number of values available from the current row of the
1112 ** currently executing statement pStmt.
1114 int sqlite3_data_count(sqlite3_stmt *pStmt){
1115 Vdbe *pVm = (Vdbe *)pStmt;
1116 if( pVm==0 || pVm->pResultSet==0 ) return 0;
1117 return pVm->nResColumn;
1121 ** Return a pointer to static memory containing an SQL NULL value.
1123 static const Mem *columnNullValue(void){
1124 /* Even though the Mem structure contains an element
1125 ** of type i64, on certain architectures (x86) with certain compiler
1126 ** switches (-Os), gcc may align this Mem object on a 4-byte boundary
1127 ** instead of an 8-byte one. This all works fine, except that when
1128 ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s
1129 ** that a Mem structure is located on an 8-byte boundary. To prevent
1130 ** these assert()s from failing, when building with SQLITE_DEBUG defined
1131 ** using gcc, we force nullMem to be 8-byte aligned using the magical
1132 ** __attribute__((aligned(8))) macro. */
1133 static const Mem nullMem
1134 #if defined(SQLITE_DEBUG) && defined(__GNUC__)
1135 __attribute__((aligned(8)))
1136 #endif
1138 /* .u = */ {0},
1139 /* .z = */ (char*)0,
1140 /* .n = */ (int)0,
1141 /* .flags = */ (u16)MEM_Null,
1142 /* .enc = */ (u8)0,
1143 /* .eSubtype = */ (u8)0,
1144 /* .db = */ (sqlite3*)0,
1145 /* .szMalloc = */ (int)0,
1146 /* .uTemp = */ (u32)0,
1147 /* .zMalloc = */ (char*)0,
1148 /* .xDel = */ (void(*)(void*))0,
1149 #ifdef SQLITE_DEBUG
1150 /* .pScopyFrom = */ (Mem*)0,
1151 /* .mScopyFlags= */ 0,
1152 #endif
1154 return &nullMem;
1158 ** Check to see if column iCol of the given statement is valid. If
1159 ** it is, return a pointer to the Mem for the value of that column.
1160 ** If iCol is not valid, return a pointer to a Mem which has a value
1161 ** of NULL.
1163 static Mem *columnMem(sqlite3_stmt *pStmt, int i){
1164 Vdbe *pVm;
1165 Mem *pOut;
1167 pVm = (Vdbe *)pStmt;
1168 if( pVm==0 ) return (Mem*)columnNullValue();
1169 assert( pVm->db );
1170 sqlite3_mutex_enter(pVm->db->mutex);
1171 if( pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){
1172 pOut = &pVm->pResultSet[i];
1173 }else{
1174 sqlite3Error(pVm->db, SQLITE_RANGE);
1175 pOut = (Mem*)columnNullValue();
1177 return pOut;
1181 ** This function is called after invoking an sqlite3_value_XXX function on a
1182 ** column value (i.e. a value returned by evaluating an SQL expression in the
1183 ** select list of a SELECT statement) that may cause a malloc() failure. If
1184 ** malloc() has failed, the threads mallocFailed flag is cleared and the result
1185 ** code of statement pStmt set to SQLITE_NOMEM.
1187 ** Specifically, this is called from within:
1189 ** sqlite3_column_int()
1190 ** sqlite3_column_int64()
1191 ** sqlite3_column_text()
1192 ** sqlite3_column_text16()
1193 ** sqlite3_column_real()
1194 ** sqlite3_column_bytes()
1195 ** sqlite3_column_bytes16()
1196 ** sqiite3_column_blob()
1198 static void columnMallocFailure(sqlite3_stmt *pStmt)
1200 /* If malloc() failed during an encoding conversion within an
1201 ** sqlite3_column_XXX API, then set the return code of the statement to
1202 ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR
1203 ** and _finalize() will return NOMEM.
1205 Vdbe *p = (Vdbe *)pStmt;
1206 if( p ){
1207 assert( p->db!=0 );
1208 assert( sqlite3_mutex_held(p->db->mutex) );
1209 p->rc = sqlite3ApiExit(p->db, p->rc);
1210 sqlite3_mutex_leave(p->db->mutex);
1214 /**************************** sqlite3_column_ *******************************
1215 ** The following routines are used to access elements of the current row
1216 ** in the result set.
1218 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){
1219 const void *val;
1220 val = sqlite3_value_blob( columnMem(pStmt,i) );
1221 /* Even though there is no encoding conversion, value_blob() might
1222 ** need to call malloc() to expand the result of a zeroblob()
1223 ** expression.
1225 columnMallocFailure(pStmt);
1226 return val;
1228 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){
1229 int val = sqlite3_value_bytes( columnMem(pStmt,i) );
1230 columnMallocFailure(pStmt);
1231 return val;
1233 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){
1234 int val = sqlite3_value_bytes16( columnMem(pStmt,i) );
1235 columnMallocFailure(pStmt);
1236 return val;
1238 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){
1239 double val = sqlite3_value_double( columnMem(pStmt,i) );
1240 columnMallocFailure(pStmt);
1241 return val;
1243 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){
1244 int val = sqlite3_value_int( columnMem(pStmt,i) );
1245 columnMallocFailure(pStmt);
1246 return val;
1248 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){
1249 sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) );
1250 columnMallocFailure(pStmt);
1251 return val;
1253 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){
1254 const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) );
1255 columnMallocFailure(pStmt);
1256 return val;
1258 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){
1259 Mem *pOut = columnMem(pStmt, i);
1260 if( pOut->flags&MEM_Static ){
1261 pOut->flags &= ~MEM_Static;
1262 pOut->flags |= MEM_Ephem;
1264 columnMallocFailure(pStmt);
1265 return (sqlite3_value *)pOut;
1267 #ifndef SQLITE_OMIT_UTF16
1268 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){
1269 const void *val = sqlite3_value_text16( columnMem(pStmt,i) );
1270 columnMallocFailure(pStmt);
1271 return val;
1273 #endif /* SQLITE_OMIT_UTF16 */
1274 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){
1275 int iType = sqlite3_value_type( columnMem(pStmt,i) );
1276 columnMallocFailure(pStmt);
1277 return iType;
1281 ** Convert the N-th element of pStmt->pColName[] into a string using
1282 ** xFunc() then return that string. If N is out of range, return 0.
1284 ** There are up to 5 names for each column. useType determines which
1285 ** name is returned. Here are the names:
1287 ** 0 The column name as it should be displayed for output
1288 ** 1 The datatype name for the column
1289 ** 2 The name of the database that the column derives from
1290 ** 3 The name of the table that the column derives from
1291 ** 4 The name of the table column that the result column derives from
1293 ** If the result is not a simple column reference (if it is an expression
1294 ** or a constant) then useTypes 2, 3, and 4 return NULL.
1296 static const void *columnName(
1297 sqlite3_stmt *pStmt, /* The statement */
1298 int N, /* Which column to get the name for */
1299 int useUtf16, /* True to return the name as UTF16 */
1300 int useType /* What type of name */
1302 const void *ret;
1303 Vdbe *p;
1304 int n;
1305 sqlite3 *db;
1306 #ifdef SQLITE_ENABLE_API_ARMOR
1307 if( pStmt==0 ){
1308 (void)SQLITE_MISUSE_BKPT;
1309 return 0;
1311 #endif
1312 ret = 0;
1313 p = (Vdbe *)pStmt;
1314 db = p->db;
1315 assert( db!=0 );
1316 n = sqlite3_column_count(pStmt);
1317 if( N<n && N>=0 ){
1318 N += useType*n;
1319 sqlite3_mutex_enter(db->mutex);
1320 assert( db->mallocFailed==0 );
1321 #ifndef SQLITE_OMIT_UTF16
1322 if( useUtf16 ){
1323 ret = sqlite3_value_text16((sqlite3_value*)&p->aColName[N]);
1324 }else
1325 #endif
1327 ret = sqlite3_value_text((sqlite3_value*)&p->aColName[N]);
1329 /* A malloc may have failed inside of the _text() call. If this
1330 ** is the case, clear the mallocFailed flag and return NULL.
1332 if( db->mallocFailed ){
1333 sqlite3OomClear(db);
1334 ret = 0;
1336 sqlite3_mutex_leave(db->mutex);
1338 return ret;
1342 ** Return the name of the Nth column of the result set returned by SQL
1343 ** statement pStmt.
1345 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){
1346 return columnName(pStmt, N, 0, COLNAME_NAME);
1348 #ifndef SQLITE_OMIT_UTF16
1349 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){
1350 return columnName(pStmt, N, 1, COLNAME_NAME);
1352 #endif
1355 ** Constraint: If you have ENABLE_COLUMN_METADATA then you must
1356 ** not define OMIT_DECLTYPE.
1358 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA)
1359 # error "Must not define both SQLITE_OMIT_DECLTYPE \
1360 and SQLITE_ENABLE_COLUMN_METADATA"
1361 #endif
1363 #ifndef SQLITE_OMIT_DECLTYPE
1365 ** Return the column declaration type (if applicable) of the 'i'th column
1366 ** of the result set of SQL statement pStmt.
1368 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){
1369 return columnName(pStmt, N, 0, COLNAME_DECLTYPE);
1371 #ifndef SQLITE_OMIT_UTF16
1372 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){
1373 return columnName(pStmt, N, 1, COLNAME_DECLTYPE);
1375 #endif /* SQLITE_OMIT_UTF16 */
1376 #endif /* SQLITE_OMIT_DECLTYPE */
1378 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1380 ** Return the name of the database from which a result column derives.
1381 ** NULL is returned if the result column is an expression or constant or
1382 ** anything else which is not an unambiguous reference to a database column.
1384 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){
1385 return columnName(pStmt, N, 0, COLNAME_DATABASE);
1387 #ifndef SQLITE_OMIT_UTF16
1388 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){
1389 return columnName(pStmt, N, 1, COLNAME_DATABASE);
1391 #endif /* SQLITE_OMIT_UTF16 */
1394 ** Return the name of the table from which a result column derives.
1395 ** NULL is returned if the result column is an expression or constant or
1396 ** anything else which is not an unambiguous reference to a database column.
1398 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){
1399 return columnName(pStmt, N, 0, COLNAME_TABLE);
1401 #ifndef SQLITE_OMIT_UTF16
1402 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){
1403 return columnName(pStmt, N, 1, COLNAME_TABLE);
1405 #endif /* SQLITE_OMIT_UTF16 */
1408 ** Return the name of the table column from which a result column derives.
1409 ** NULL is returned if the result column is an expression or constant or
1410 ** anything else which is not an unambiguous reference to a database column.
1412 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){
1413 return columnName(pStmt, N, 0, COLNAME_COLUMN);
1415 #ifndef SQLITE_OMIT_UTF16
1416 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){
1417 return columnName(pStmt, N, 1, COLNAME_COLUMN);
1419 #endif /* SQLITE_OMIT_UTF16 */
1420 #endif /* SQLITE_ENABLE_COLUMN_METADATA */
1423 /******************************* sqlite3_bind_ ***************************
1425 ** Routines used to attach values to wildcards in a compiled SQL statement.
1428 ** Unbind the value bound to variable i in virtual machine p. This is the
1429 ** the same as binding a NULL value to the column. If the "i" parameter is
1430 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK.
1432 ** A successful evaluation of this routine acquires the mutex on p.
1433 ** the mutex is released if any kind of error occurs.
1435 ** The error code stored in database p->db is overwritten with the return
1436 ** value in any case.
1438 static int vdbeUnbind(Vdbe *p, unsigned int i){
1439 Mem *pVar;
1440 if( vdbeSafetyNotNull(p) ){
1441 return SQLITE_MISUSE_BKPT;
1443 sqlite3_mutex_enter(p->db->mutex);
1444 if( p->eVdbeState!=VDBE_READY_STATE ){
1445 sqlite3Error(p->db, SQLITE_MISUSE);
1446 sqlite3_mutex_leave(p->db->mutex);
1447 sqlite3_log(SQLITE_MISUSE,
1448 "bind on a busy prepared statement: [%s]", p->zSql);
1449 return SQLITE_MISUSE_BKPT;
1451 if( i>=(unsigned int)p->nVar ){
1452 sqlite3Error(p->db, SQLITE_RANGE);
1453 sqlite3_mutex_leave(p->db->mutex);
1454 return SQLITE_RANGE;
1456 pVar = &p->aVar[i];
1457 sqlite3VdbeMemRelease(pVar);
1458 pVar->flags = MEM_Null;
1459 p->db->errCode = SQLITE_OK;
1461 /* If the bit corresponding to this variable in Vdbe.expmask is set, then
1462 ** binding a new value to this variable invalidates the current query plan.
1464 ** IMPLEMENTATION-OF: R-57496-20354 If the specific value bound to a host
1465 ** parameter in the WHERE clause might influence the choice of query plan
1466 ** for a statement, then the statement will be automatically recompiled,
1467 ** as if there had been a schema change, on the first sqlite3_step() call
1468 ** following any change to the bindings of that parameter.
1470 assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || p->expmask==0 );
1471 if( p->expmask!=0 && (p->expmask & (i>=31 ? 0x80000000 : (u32)1<<i))!=0 ){
1472 p->expired = 1;
1474 return SQLITE_OK;
1478 ** Bind a text or BLOB value.
1480 static int bindText(
1481 sqlite3_stmt *pStmt, /* The statement to bind against */
1482 int i, /* Index of the parameter to bind */
1483 const void *zData, /* Pointer to the data to be bound */
1484 i64 nData, /* Number of bytes of data to be bound */
1485 void (*xDel)(void*), /* Destructor for the data */
1486 u8 encoding /* Encoding for the data */
1488 Vdbe *p = (Vdbe *)pStmt;
1489 Mem *pVar;
1490 int rc;
1492 rc = vdbeUnbind(p, (u32)(i-1));
1493 if( rc==SQLITE_OK ){
1494 if( zData!=0 ){
1495 pVar = &p->aVar[i-1];
1496 rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel);
1497 if( rc==SQLITE_OK && encoding!=0 ){
1498 rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db));
1500 if( rc ){
1501 sqlite3Error(p->db, rc);
1502 rc = sqlite3ApiExit(p->db, rc);
1505 sqlite3_mutex_leave(p->db->mutex);
1506 }else if( xDel!=SQLITE_STATIC && xDel!=SQLITE_TRANSIENT ){
1507 xDel((void*)zData);
1509 return rc;
1514 ** Bind a blob value to an SQL statement variable.
1516 int sqlite3_bind_blob(
1517 sqlite3_stmt *pStmt,
1518 int i,
1519 const void *zData,
1520 int nData,
1521 void (*xDel)(void*)
1523 #ifdef SQLITE_ENABLE_API_ARMOR
1524 if( nData<0 ) return SQLITE_MISUSE_BKPT;
1525 #endif
1526 return bindText(pStmt, i, zData, nData, xDel, 0);
1528 int sqlite3_bind_blob64(
1529 sqlite3_stmt *pStmt,
1530 int i,
1531 const void *zData,
1532 sqlite3_uint64 nData,
1533 void (*xDel)(void*)
1535 assert( xDel!=SQLITE_DYNAMIC );
1536 return bindText(pStmt, i, zData, nData, xDel, 0);
1538 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){
1539 int rc;
1540 Vdbe *p = (Vdbe *)pStmt;
1541 rc = vdbeUnbind(p, (u32)(i-1));
1542 if( rc==SQLITE_OK ){
1543 sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue);
1544 sqlite3_mutex_leave(p->db->mutex);
1546 return rc;
1548 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){
1549 return sqlite3_bind_int64(p, i, (i64)iValue);
1551 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){
1552 int rc;
1553 Vdbe *p = (Vdbe *)pStmt;
1554 rc = vdbeUnbind(p, (u32)(i-1));
1555 if( rc==SQLITE_OK ){
1556 sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue);
1557 sqlite3_mutex_leave(p->db->mutex);
1559 return rc;
1561 int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){
1562 int rc;
1563 Vdbe *p = (Vdbe*)pStmt;
1564 rc = vdbeUnbind(p, (u32)(i-1));
1565 if( rc==SQLITE_OK ){
1566 sqlite3_mutex_leave(p->db->mutex);
1568 return rc;
1570 int sqlite3_bind_pointer(
1571 sqlite3_stmt *pStmt,
1572 int i,
1573 void *pPtr,
1574 const char *zPTtype,
1575 void (*xDestructor)(void*)
1577 int rc;
1578 Vdbe *p = (Vdbe*)pStmt;
1579 rc = vdbeUnbind(p, (u32)(i-1));
1580 if( rc==SQLITE_OK ){
1581 sqlite3VdbeMemSetPointer(&p->aVar[i-1], pPtr, zPTtype, xDestructor);
1582 sqlite3_mutex_leave(p->db->mutex);
1583 }else if( xDestructor ){
1584 xDestructor(pPtr);
1586 return rc;
1588 int sqlite3_bind_text(
1589 sqlite3_stmt *pStmt,
1590 int i,
1591 const char *zData,
1592 int nData,
1593 void (*xDel)(void*)
1595 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8);
1597 int sqlite3_bind_text64(
1598 sqlite3_stmt *pStmt,
1599 int i,
1600 const char *zData,
1601 sqlite3_uint64 nData,
1602 void (*xDel)(void*),
1603 unsigned char enc
1605 assert( xDel!=SQLITE_DYNAMIC );
1606 if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE;
1607 return bindText(pStmt, i, zData, nData, xDel, enc);
1609 #ifndef SQLITE_OMIT_UTF16
1610 int sqlite3_bind_text16(
1611 sqlite3_stmt *pStmt,
1612 int i,
1613 const void *zData,
1614 int nData,
1615 void (*xDel)(void*)
1617 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE);
1619 #endif /* SQLITE_OMIT_UTF16 */
1620 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){
1621 int rc;
1622 switch( sqlite3_value_type((sqlite3_value*)pValue) ){
1623 case SQLITE_INTEGER: {
1624 rc = sqlite3_bind_int64(pStmt, i, pValue->u.i);
1625 break;
1627 case SQLITE_FLOAT: {
1628 assert( pValue->flags & (MEM_Real|MEM_IntReal) );
1629 rc = sqlite3_bind_double(pStmt, i,
1630 (pValue->flags & MEM_Real) ? pValue->u.r : (double)pValue->u.i
1632 break;
1634 case SQLITE_BLOB: {
1635 if( pValue->flags & MEM_Zero ){
1636 rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero);
1637 }else{
1638 rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT);
1640 break;
1642 case SQLITE_TEXT: {
1643 rc = bindText(pStmt,i, pValue->z, pValue->n, SQLITE_TRANSIENT,
1644 pValue->enc);
1645 break;
1647 default: {
1648 rc = sqlite3_bind_null(pStmt, i);
1649 break;
1652 return rc;
1654 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){
1655 int rc;
1656 Vdbe *p = (Vdbe *)pStmt;
1657 rc = vdbeUnbind(p, (u32)(i-1));
1658 if( rc==SQLITE_OK ){
1659 #ifndef SQLITE_OMIT_INCRBLOB
1660 sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n);
1661 #else
1662 rc = sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n);
1663 #endif
1664 sqlite3_mutex_leave(p->db->mutex);
1666 return rc;
1668 int sqlite3_bind_zeroblob64(sqlite3_stmt *pStmt, int i, sqlite3_uint64 n){
1669 int rc;
1670 Vdbe *p = (Vdbe *)pStmt;
1671 sqlite3_mutex_enter(p->db->mutex);
1672 if( n>(u64)p->db->aLimit[SQLITE_LIMIT_LENGTH] ){
1673 rc = SQLITE_TOOBIG;
1674 }else{
1675 assert( (n & 0x7FFFFFFF)==n );
1676 rc = sqlite3_bind_zeroblob(pStmt, i, n);
1678 rc = sqlite3ApiExit(p->db, rc);
1679 sqlite3_mutex_leave(p->db->mutex);
1680 return rc;
1684 ** Return the number of wildcards that can be potentially bound to.
1685 ** This routine is added to support DBD::SQLite.
1687 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){
1688 Vdbe *p = (Vdbe*)pStmt;
1689 return p ? p->nVar : 0;
1693 ** Return the name of a wildcard parameter. Return NULL if the index
1694 ** is out of range or if the wildcard is unnamed.
1696 ** The result is always UTF-8.
1698 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){
1699 Vdbe *p = (Vdbe*)pStmt;
1700 if( p==0 ) return 0;
1701 return sqlite3VListNumToName(p->pVList, i);
1705 ** Given a wildcard parameter name, return the index of the variable
1706 ** with that name. If there is no variable with the given name,
1707 ** return 0.
1709 int sqlite3VdbeParameterIndex(Vdbe *p, const char *zName, int nName){
1710 if( p==0 || zName==0 ) return 0;
1711 return sqlite3VListNameToNum(p->pVList, zName, nName);
1713 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){
1714 return sqlite3VdbeParameterIndex((Vdbe*)pStmt, zName, sqlite3Strlen30(zName));
1718 ** Transfer all bindings from the first statement over to the second.
1720 int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
1721 Vdbe *pFrom = (Vdbe*)pFromStmt;
1722 Vdbe *pTo = (Vdbe*)pToStmt;
1723 int i;
1724 assert( pTo->db==pFrom->db );
1725 assert( pTo->nVar==pFrom->nVar );
1726 sqlite3_mutex_enter(pTo->db->mutex);
1727 for(i=0; i<pFrom->nVar; i++){
1728 sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]);
1730 sqlite3_mutex_leave(pTo->db->mutex);
1731 return SQLITE_OK;
1734 #ifndef SQLITE_OMIT_DEPRECATED
1736 ** Deprecated external interface. Internal/core SQLite code
1737 ** should call sqlite3TransferBindings.
1739 ** It is misuse to call this routine with statements from different
1740 ** database connections. But as this is a deprecated interface, we
1741 ** will not bother to check for that condition.
1743 ** If the two statements contain a different number of bindings, then
1744 ** an SQLITE_ERROR is returned. Nothing else can go wrong, so otherwise
1745 ** SQLITE_OK is returned.
1747 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
1748 Vdbe *pFrom = (Vdbe*)pFromStmt;
1749 Vdbe *pTo = (Vdbe*)pToStmt;
1750 if( pFrom->nVar!=pTo->nVar ){
1751 return SQLITE_ERROR;
1753 assert( (pTo->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || pTo->expmask==0 );
1754 if( pTo->expmask ){
1755 pTo->expired = 1;
1757 assert( (pFrom->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || pFrom->expmask==0 );
1758 if( pFrom->expmask ){
1759 pFrom->expired = 1;
1761 return sqlite3TransferBindings(pFromStmt, pToStmt);
1763 #endif
1766 ** Return the sqlite3* database handle to which the prepared statement given
1767 ** in the argument belongs. This is the same database handle that was
1768 ** the first argument to the sqlite3_prepare() that was used to create
1769 ** the statement in the first place.
1771 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){
1772 return pStmt ? ((Vdbe*)pStmt)->db : 0;
1776 ** Return true if the prepared statement is guaranteed to not modify the
1777 ** database.
1779 int sqlite3_stmt_readonly(sqlite3_stmt *pStmt){
1780 return pStmt ? ((Vdbe*)pStmt)->readOnly : 1;
1784 ** Return 1 if the statement is an EXPLAIN and return 2 if the
1785 ** statement is an EXPLAIN QUERY PLAN
1787 int sqlite3_stmt_isexplain(sqlite3_stmt *pStmt){
1788 return pStmt ? ((Vdbe*)pStmt)->explain : 0;
1792 ** Return true if the prepared statement is in need of being reset.
1794 int sqlite3_stmt_busy(sqlite3_stmt *pStmt){
1795 Vdbe *v = (Vdbe*)pStmt;
1796 return v!=0 && v->eVdbeState==VDBE_RUN_STATE;
1800 ** Return a pointer to the next prepared statement after pStmt associated
1801 ** with database connection pDb. If pStmt is NULL, return the first
1802 ** prepared statement for the database connection. Return NULL if there
1803 ** are no more.
1805 sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){
1806 sqlite3_stmt *pNext;
1807 #ifdef SQLITE_ENABLE_API_ARMOR
1808 if( !sqlite3SafetyCheckOk(pDb) ){
1809 (void)SQLITE_MISUSE_BKPT;
1810 return 0;
1812 #endif
1813 sqlite3_mutex_enter(pDb->mutex);
1814 if( pStmt==0 ){
1815 pNext = (sqlite3_stmt*)pDb->pVdbe;
1816 }else{
1817 pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pVNext;
1819 sqlite3_mutex_leave(pDb->mutex);
1820 return pNext;
1824 ** Return the value of a status counter for a prepared statement
1826 int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){
1827 Vdbe *pVdbe = (Vdbe*)pStmt;
1828 u32 v;
1829 #ifdef SQLITE_ENABLE_API_ARMOR
1830 if( !pStmt
1831 || (op!=SQLITE_STMTSTATUS_MEMUSED && (op<0||op>=ArraySize(pVdbe->aCounter)))
1833 (void)SQLITE_MISUSE_BKPT;
1834 return 0;
1836 #endif
1837 if( op==SQLITE_STMTSTATUS_MEMUSED ){
1838 sqlite3 *db = pVdbe->db;
1839 sqlite3_mutex_enter(db->mutex);
1840 v = 0;
1841 db->pnBytesFreed = (int*)&v;
1842 assert( db->lookaside.pEnd==db->lookaside.pTrueEnd );
1843 db->lookaside.pEnd = db->lookaside.pStart;
1844 sqlite3VdbeDelete(pVdbe);
1845 db->pnBytesFreed = 0;
1846 db->lookaside.pEnd = db->lookaside.pTrueEnd;
1847 sqlite3_mutex_leave(db->mutex);
1848 }else{
1849 v = pVdbe->aCounter[op];
1850 if( resetFlag ) pVdbe->aCounter[op] = 0;
1852 return (int)v;
1856 ** Return the SQL associated with a prepared statement
1858 const char *sqlite3_sql(sqlite3_stmt *pStmt){
1859 Vdbe *p = (Vdbe *)pStmt;
1860 return p ? p->zSql : 0;
1864 ** Return the SQL associated with a prepared statement with
1865 ** bound parameters expanded. Space to hold the returned string is
1866 ** obtained from sqlite3_malloc(). The caller is responsible for
1867 ** freeing the returned string by passing it to sqlite3_free().
1869 ** The SQLITE_TRACE_SIZE_LIMIT puts an upper bound on the size of
1870 ** expanded bound parameters.
1872 char *sqlite3_expanded_sql(sqlite3_stmt *pStmt){
1873 #ifdef SQLITE_OMIT_TRACE
1874 return 0;
1875 #else
1876 char *z = 0;
1877 const char *zSql = sqlite3_sql(pStmt);
1878 if( zSql ){
1879 Vdbe *p = (Vdbe *)pStmt;
1880 sqlite3_mutex_enter(p->db->mutex);
1881 z = sqlite3VdbeExpandSql(p, zSql);
1882 sqlite3_mutex_leave(p->db->mutex);
1884 return z;
1885 #endif
1888 #ifdef SQLITE_ENABLE_NORMALIZE
1890 ** Return the normalized SQL associated with a prepared statement.
1892 const char *sqlite3_normalized_sql(sqlite3_stmt *pStmt){
1893 Vdbe *p = (Vdbe *)pStmt;
1894 if( p==0 ) return 0;
1895 if( p->zNormSql==0 && ALWAYS(p->zSql!=0) ){
1896 sqlite3_mutex_enter(p->db->mutex);
1897 p->zNormSql = sqlite3Normalize(p, p->zSql);
1898 sqlite3_mutex_leave(p->db->mutex);
1900 return p->zNormSql;
1902 #endif /* SQLITE_ENABLE_NORMALIZE */
1904 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1906 ** Allocate and populate an UnpackedRecord structure based on the serialized
1907 ** record in nKey/pKey. Return a pointer to the new UnpackedRecord structure
1908 ** if successful, or a NULL pointer if an OOM error is encountered.
1910 static UnpackedRecord *vdbeUnpackRecord(
1911 KeyInfo *pKeyInfo,
1912 int nKey,
1913 const void *pKey
1915 UnpackedRecord *pRet; /* Return value */
1917 pRet = sqlite3VdbeAllocUnpackedRecord(pKeyInfo);
1918 if( pRet ){
1919 memset(pRet->aMem, 0, sizeof(Mem)*(pKeyInfo->nKeyField+1));
1920 sqlite3VdbeRecordUnpack(pKeyInfo, nKey, pKey, pRet);
1922 return pRet;
1926 ** This function is called from within a pre-update callback to retrieve
1927 ** a field of the row currently being updated or deleted.
1929 int sqlite3_preupdate_old(sqlite3 *db, int iIdx, sqlite3_value **ppValue){
1930 PreUpdate *p = db->pPreUpdate;
1931 Mem *pMem;
1932 int rc = SQLITE_OK;
1934 /* Test that this call is being made from within an SQLITE_DELETE or
1935 ** SQLITE_UPDATE pre-update callback, and that iIdx is within range. */
1936 if( !p || p->op==SQLITE_INSERT ){
1937 rc = SQLITE_MISUSE_BKPT;
1938 goto preupdate_old_out;
1940 if( p->pPk ){
1941 iIdx = sqlite3TableColumnToIndex(p->pPk, iIdx);
1943 if( iIdx>=p->pCsr->nField || iIdx<0 ){
1944 rc = SQLITE_RANGE;
1945 goto preupdate_old_out;
1948 /* If the old.* record has not yet been loaded into memory, do so now. */
1949 if( p->pUnpacked==0 ){
1950 u32 nRec;
1951 u8 *aRec;
1953 assert( p->pCsr->eCurType==CURTYPE_BTREE );
1954 nRec = sqlite3BtreePayloadSize(p->pCsr->uc.pCursor);
1955 aRec = sqlite3DbMallocRaw(db, nRec);
1956 if( !aRec ) goto preupdate_old_out;
1957 rc = sqlite3BtreePayload(p->pCsr->uc.pCursor, 0, nRec, aRec);
1958 if( rc==SQLITE_OK ){
1959 p->pUnpacked = vdbeUnpackRecord(&p->keyinfo, nRec, aRec);
1960 if( !p->pUnpacked ) rc = SQLITE_NOMEM;
1962 if( rc!=SQLITE_OK ){
1963 sqlite3DbFree(db, aRec);
1964 goto preupdate_old_out;
1966 p->aRecord = aRec;
1969 pMem = *ppValue = &p->pUnpacked->aMem[iIdx];
1970 if( iIdx==p->pTab->iPKey ){
1971 sqlite3VdbeMemSetInt64(pMem, p->iKey1);
1972 }else if( iIdx>=p->pUnpacked->nField ){
1973 *ppValue = (sqlite3_value *)columnNullValue();
1974 }else if( p->pTab->aCol[iIdx].affinity==SQLITE_AFF_REAL ){
1975 if( pMem->flags & (MEM_Int|MEM_IntReal) ){
1976 testcase( pMem->flags & MEM_Int );
1977 testcase( pMem->flags & MEM_IntReal );
1978 sqlite3VdbeMemRealify(pMem);
1982 preupdate_old_out:
1983 sqlite3Error(db, rc);
1984 return sqlite3ApiExit(db, rc);
1986 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1988 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1990 ** This function is called from within a pre-update callback to retrieve
1991 ** the number of columns in the row being updated, deleted or inserted.
1993 int sqlite3_preupdate_count(sqlite3 *db){
1994 PreUpdate *p = db->pPreUpdate;
1995 return (p ? p->keyinfo.nKeyField : 0);
1997 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1999 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
2001 ** This function is designed to be called from within a pre-update callback
2002 ** only. It returns zero if the change that caused the callback was made
2003 ** immediately by a user SQL statement. Or, if the change was made by a
2004 ** trigger program, it returns the number of trigger programs currently
2005 ** on the stack (1 for a top-level trigger, 2 for a trigger fired by a
2006 ** top-level trigger etc.).
2008 ** For the purposes of the previous paragraph, a foreign key CASCADE, SET NULL
2009 ** or SET DEFAULT action is considered a trigger.
2011 int sqlite3_preupdate_depth(sqlite3 *db){
2012 PreUpdate *p = db->pPreUpdate;
2013 return (p ? p->v->nFrame : 0);
2015 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
2017 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
2019 ** This function is designed to be called from within a pre-update callback
2020 ** only.
2022 int sqlite3_preupdate_blobwrite(sqlite3 *db){
2023 PreUpdate *p = db->pPreUpdate;
2024 return (p ? p->iBlobWrite : -1);
2026 #endif
2028 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
2030 ** This function is called from within a pre-update callback to retrieve
2031 ** a field of the row currently being updated or inserted.
2033 int sqlite3_preupdate_new(sqlite3 *db, int iIdx, sqlite3_value **ppValue){
2034 PreUpdate *p = db->pPreUpdate;
2035 int rc = SQLITE_OK;
2036 Mem *pMem;
2038 if( !p || p->op==SQLITE_DELETE ){
2039 rc = SQLITE_MISUSE_BKPT;
2040 goto preupdate_new_out;
2042 if( p->pPk && p->op!=SQLITE_UPDATE ){
2043 iIdx = sqlite3TableColumnToIndex(p->pPk, iIdx);
2045 if( iIdx>=p->pCsr->nField || iIdx<0 ){
2046 rc = SQLITE_RANGE;
2047 goto preupdate_new_out;
2050 if( p->op==SQLITE_INSERT ){
2051 /* For an INSERT, memory cell p->iNewReg contains the serialized record
2052 ** that is being inserted. Deserialize it. */
2053 UnpackedRecord *pUnpack = p->pNewUnpacked;
2054 if( !pUnpack ){
2055 Mem *pData = &p->v->aMem[p->iNewReg];
2056 rc = ExpandBlob(pData);
2057 if( rc!=SQLITE_OK ) goto preupdate_new_out;
2058 pUnpack = vdbeUnpackRecord(&p->keyinfo, pData->n, pData->z);
2059 if( !pUnpack ){
2060 rc = SQLITE_NOMEM;
2061 goto preupdate_new_out;
2063 p->pNewUnpacked = pUnpack;
2065 pMem = &pUnpack->aMem[iIdx];
2066 if( iIdx==p->pTab->iPKey ){
2067 sqlite3VdbeMemSetInt64(pMem, p->iKey2);
2068 }else if( iIdx>=pUnpack->nField ){
2069 pMem = (sqlite3_value *)columnNullValue();
2071 }else{
2072 /* For an UPDATE, memory cell (p->iNewReg+1+iIdx) contains the required
2073 ** value. Make a copy of the cell contents and return a pointer to it.
2074 ** It is not safe to return a pointer to the memory cell itself as the
2075 ** caller may modify the value text encoding.
2077 assert( p->op==SQLITE_UPDATE );
2078 if( !p->aNew ){
2079 p->aNew = (Mem *)sqlite3DbMallocZero(db, sizeof(Mem) * p->pCsr->nField);
2080 if( !p->aNew ){
2081 rc = SQLITE_NOMEM;
2082 goto preupdate_new_out;
2085 assert( iIdx>=0 && iIdx<p->pCsr->nField );
2086 pMem = &p->aNew[iIdx];
2087 if( pMem->flags==0 ){
2088 if( iIdx==p->pTab->iPKey ){
2089 sqlite3VdbeMemSetInt64(pMem, p->iKey2);
2090 }else{
2091 rc = sqlite3VdbeMemCopy(pMem, &p->v->aMem[p->iNewReg+1+iIdx]);
2092 if( rc!=SQLITE_OK ) goto preupdate_new_out;
2096 *ppValue = pMem;
2098 preupdate_new_out:
2099 sqlite3Error(db, rc);
2100 return sqlite3ApiExit(db, rc);
2102 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
2104 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2106 ** Return status data for a single loop within query pStmt.
2108 int sqlite3_stmt_scanstatus(
2109 sqlite3_stmt *pStmt, /* Prepared statement being queried */
2110 int idx, /* Index of loop to report on */
2111 int iScanStatusOp, /* Which metric to return */
2112 void *pOut /* OUT: Write the answer here */
2114 Vdbe *p = (Vdbe*)pStmt;
2115 ScanStatus *pScan;
2116 if( idx<0 || idx>=p->nScan ) return 1;
2117 pScan = &p->aScan[idx];
2118 switch( iScanStatusOp ){
2119 case SQLITE_SCANSTAT_NLOOP: {
2120 *(sqlite3_int64*)pOut = p->anExec[pScan->addrLoop];
2121 break;
2123 case SQLITE_SCANSTAT_NVISIT: {
2124 *(sqlite3_int64*)pOut = p->anExec[pScan->addrVisit];
2125 break;
2127 case SQLITE_SCANSTAT_EST: {
2128 double r = 1.0;
2129 LogEst x = pScan->nEst;
2130 while( x<100 ){
2131 x += 10;
2132 r *= 0.5;
2134 *(double*)pOut = r*sqlite3LogEstToInt(x);
2135 break;
2137 case SQLITE_SCANSTAT_NAME: {
2138 *(const char**)pOut = pScan->zName;
2139 break;
2141 case SQLITE_SCANSTAT_EXPLAIN: {
2142 if( pScan->addrExplain ){
2143 *(const char**)pOut = p->aOp[ pScan->addrExplain ].p4.z;
2144 }else{
2145 *(const char**)pOut = 0;
2147 break;
2149 case SQLITE_SCANSTAT_SELECTID: {
2150 if( pScan->addrExplain ){
2151 *(int*)pOut = p->aOp[ pScan->addrExplain ].p1;
2152 }else{
2153 *(int*)pOut = -1;
2155 break;
2157 default: {
2158 return 1;
2161 return 0;
2165 ** Zero all counters associated with the sqlite3_stmt_scanstatus() data.
2167 void sqlite3_stmt_scanstatus_reset(sqlite3_stmt *pStmt){
2168 Vdbe *p = (Vdbe*)pStmt;
2169 memset(p->anExec, 0, p->nOp * sizeof(i64));
2171 #endif /* SQLITE_ENABLE_STMT_SCANSTATUS */