4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
13 ** This file contains code use to implement APIs that are part of the
16 #include "sqliteInt.h"
19 #ifndef SQLITE_OMIT_DEPRECATED
21 ** Return TRUE (non-zero) of the statement supplied as an argument needs
22 ** to be recompiled. A statement needs to be recompiled whenever the
23 ** execution environment changes in a way that would alter the program
24 ** that sqlite3_prepare() generates. For example, if new functions or
25 ** collating sequences are registered or if an authorizer function is
28 int sqlite3_expired(sqlite3_stmt
*pStmt
){
29 Vdbe
*p
= (Vdbe
*)pStmt
;
30 return p
==0 || p
->expired
;
35 ** Check on a Vdbe to make sure it has not been finalized. Log
36 ** an error and return true if it has been finalized (or is otherwise
37 ** invalid). Return false if it is ok.
39 static int vdbeSafety(Vdbe
*p
){
41 sqlite3_log(SQLITE_MISUSE
, "API called with finalized prepared statement");
47 static int vdbeSafetyNotNull(Vdbe
*p
){
49 sqlite3_log(SQLITE_MISUSE
, "API called with NULL prepared statement");
56 #ifndef SQLITE_OMIT_TRACE
58 ** Invoke the profile callback. This routine is only called if we already
59 ** know that the profile callback is defined and needs to be invoked.
61 static SQLITE_NOINLINE
void invokeProfileCallback(sqlite3
*db
, Vdbe
*p
){
63 sqlite3_int64 iElapse
;
64 assert( p
->startTime
>0 );
65 assert( (db
->mTrace
& (SQLITE_TRACE_PROFILE
|SQLITE_TRACE_XPROFILE
))!=0 );
66 assert( db
->init
.busy
==0 );
68 sqlite3OsCurrentTimeInt64(db
->pVfs
, &iNow
);
69 iElapse
= (iNow
- p
->startTime
)*1000000;
70 #ifndef SQLITE_OMIT_DEPRECATED
72 db
->xProfile(db
->pProfileArg
, p
->zSql
, iElapse
);
75 if( db
->mTrace
& SQLITE_TRACE_PROFILE
){
76 db
->trace
.xV2(SQLITE_TRACE_PROFILE
, db
->pTraceArg
, p
, (void*)&iElapse
);
81 ** The checkProfileCallback(DB,P) macro checks to see if a profile callback
82 ** is needed, and it invokes the callback if it is needed.
84 # define checkProfileCallback(DB,P) \
85 if( ((P)->startTime)>0 ){ invokeProfileCallback(DB,P); }
87 # define checkProfileCallback(DB,P) /*no-op*/
91 ** The following routine destroys a virtual machine that is created by
92 ** the sqlite3_compile() routine. The integer returned is an SQLITE_
93 ** success/failure code that describes the result of executing the virtual
96 ** This routine sets the error code and string returned by
97 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
99 int sqlite3_finalize(sqlite3_stmt
*pStmt
){
102 /* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL
103 ** pointer is a harmless no-op. */
106 Vdbe
*v
= (Vdbe
*)pStmt
;
108 if( vdbeSafety(v
) ) return SQLITE_MISUSE_BKPT
;
109 sqlite3_mutex_enter(db
->mutex
);
110 checkProfileCallback(db
, v
);
111 assert( v
->eVdbeState
>=VDBE_READY_STATE
);
112 rc
= sqlite3VdbeReset(v
);
113 sqlite3VdbeDelete(v
);
114 rc
= sqlite3ApiExit(db
, rc
);
115 sqlite3LeaveMutexAndCloseZombie(db
);
121 ** Terminate the current execution of an SQL statement and reset it
122 ** back to its starting state so that it can be reused. A success code from
123 ** the prior execution is returned.
125 ** This routine sets the error code and string returned by
126 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
128 int sqlite3_reset(sqlite3_stmt
*pStmt
){
133 Vdbe
*v
= (Vdbe
*)pStmt
;
135 sqlite3_mutex_enter(db
->mutex
);
136 checkProfileCallback(db
, v
);
137 rc
= sqlite3VdbeReset(v
);
138 sqlite3VdbeRewind(v
);
139 assert( (rc
& (db
->errMask
))==rc
);
140 rc
= sqlite3ApiExit(db
, rc
);
141 sqlite3_mutex_leave(db
->mutex
);
147 ** Set all the parameters in the compiled SQL statement to NULL.
149 int sqlite3_clear_bindings(sqlite3_stmt
*pStmt
){
152 Vdbe
*p
= (Vdbe
*)pStmt
;
153 #if SQLITE_THREADSAFE
154 sqlite3_mutex
*mutex
= ((Vdbe
*)pStmt
)->db
->mutex
;
156 sqlite3_mutex_enter(mutex
);
157 for(i
=0; i
<p
->nVar
; i
++){
158 sqlite3VdbeMemRelease(&p
->aVar
[i
]);
159 p
->aVar
[i
].flags
= MEM_Null
;
161 assert( (p
->prepFlags
& SQLITE_PREPARE_SAVESQL
)!=0 || p
->expmask
==0 );
165 sqlite3_mutex_leave(mutex
);
170 /**************************** sqlite3_value_ *******************************
171 ** The following routines extract information from a Mem or sqlite3_value
174 const void *sqlite3_value_blob(sqlite3_value
*pVal
){
176 if( p
->flags
& (MEM_Blob
|MEM_Str
) ){
177 if( ExpandBlob(p
)!=SQLITE_OK
){
178 assert( p
->flags
==MEM_Null
&& p
->z
==0 );
181 p
->flags
|= MEM_Blob
;
182 return p
->n
? p
->z
: 0;
184 return sqlite3_value_text(pVal
);
187 int sqlite3_value_bytes(sqlite3_value
*pVal
){
188 return sqlite3ValueBytes(pVal
, SQLITE_UTF8
);
190 int sqlite3_value_bytes16(sqlite3_value
*pVal
){
191 return sqlite3ValueBytes(pVal
, SQLITE_UTF16NATIVE
);
193 double sqlite3_value_double(sqlite3_value
*pVal
){
194 return sqlite3VdbeRealValue((Mem
*)pVal
);
196 int sqlite3_value_int(sqlite3_value
*pVal
){
197 return (int)sqlite3VdbeIntValue((Mem
*)pVal
);
199 sqlite_int64
sqlite3_value_int64(sqlite3_value
*pVal
){
200 return sqlite3VdbeIntValue((Mem
*)pVal
);
202 unsigned int sqlite3_value_subtype(sqlite3_value
*pVal
){
203 Mem
*pMem
= (Mem
*)pVal
;
204 return ((pMem
->flags
& MEM_Subtype
) ? pMem
->eSubtype
: 0);
206 void *sqlite3_value_pointer(sqlite3_value
*pVal
, const char *zPType
){
208 if( (p
->flags
&(MEM_TypeMask
|MEM_Term
|MEM_Subtype
)) ==
209 (MEM_Null
|MEM_Term
|MEM_Subtype
)
212 && strcmp(p
->u
.zPType
, zPType
)==0
219 const unsigned char *sqlite3_value_text(sqlite3_value
*pVal
){
220 return (const unsigned char *)sqlite3ValueText(pVal
, SQLITE_UTF8
);
222 #ifndef SQLITE_OMIT_UTF16
223 const void *sqlite3_value_text16(sqlite3_value
* pVal
){
224 return sqlite3ValueText(pVal
, SQLITE_UTF16NATIVE
);
226 const void *sqlite3_value_text16be(sqlite3_value
*pVal
){
227 return sqlite3ValueText(pVal
, SQLITE_UTF16BE
);
229 const void *sqlite3_value_text16le(sqlite3_value
*pVal
){
230 return sqlite3ValueText(pVal
, SQLITE_UTF16LE
);
232 #endif /* SQLITE_OMIT_UTF16 */
233 /* EVIDENCE-OF: R-12793-43283 Every value in SQLite has one of five
234 ** fundamental datatypes: 64-bit signed integer 64-bit IEEE floating
235 ** point number string BLOB NULL
237 int sqlite3_value_type(sqlite3_value
* pVal
){
238 static const u8 aType
[] = {
239 SQLITE_BLOB
, /* 0x00 (not possible) */
240 SQLITE_NULL
, /* 0x01 NULL */
241 SQLITE_TEXT
, /* 0x02 TEXT */
242 SQLITE_NULL
, /* 0x03 (not possible) */
243 SQLITE_INTEGER
, /* 0x04 INTEGER */
244 SQLITE_NULL
, /* 0x05 (not possible) */
245 SQLITE_INTEGER
, /* 0x06 INTEGER + TEXT */
246 SQLITE_NULL
, /* 0x07 (not possible) */
247 SQLITE_FLOAT
, /* 0x08 FLOAT */
248 SQLITE_NULL
, /* 0x09 (not possible) */
249 SQLITE_FLOAT
, /* 0x0a FLOAT + TEXT */
250 SQLITE_NULL
, /* 0x0b (not possible) */
251 SQLITE_INTEGER
, /* 0x0c (not possible) */
252 SQLITE_NULL
, /* 0x0d (not possible) */
253 SQLITE_INTEGER
, /* 0x0e (not possible) */
254 SQLITE_NULL
, /* 0x0f (not possible) */
255 SQLITE_BLOB
, /* 0x10 BLOB */
256 SQLITE_NULL
, /* 0x11 (not possible) */
257 SQLITE_TEXT
, /* 0x12 (not possible) */
258 SQLITE_NULL
, /* 0x13 (not possible) */
259 SQLITE_INTEGER
, /* 0x14 INTEGER + BLOB */
260 SQLITE_NULL
, /* 0x15 (not possible) */
261 SQLITE_INTEGER
, /* 0x16 (not possible) */
262 SQLITE_NULL
, /* 0x17 (not possible) */
263 SQLITE_FLOAT
, /* 0x18 FLOAT + BLOB */
264 SQLITE_NULL
, /* 0x19 (not possible) */
265 SQLITE_FLOAT
, /* 0x1a (not possible) */
266 SQLITE_NULL
, /* 0x1b (not possible) */
267 SQLITE_INTEGER
, /* 0x1c (not possible) */
268 SQLITE_NULL
, /* 0x1d (not possible) */
269 SQLITE_INTEGER
, /* 0x1e (not possible) */
270 SQLITE_NULL
, /* 0x1f (not possible) */
271 SQLITE_FLOAT
, /* 0x20 INTREAL */
272 SQLITE_NULL
, /* 0x21 (not possible) */
273 SQLITE_TEXT
, /* 0x22 INTREAL + TEXT */
274 SQLITE_NULL
, /* 0x23 (not possible) */
275 SQLITE_FLOAT
, /* 0x24 (not possible) */
276 SQLITE_NULL
, /* 0x25 (not possible) */
277 SQLITE_FLOAT
, /* 0x26 (not possible) */
278 SQLITE_NULL
, /* 0x27 (not possible) */
279 SQLITE_FLOAT
, /* 0x28 (not possible) */
280 SQLITE_NULL
, /* 0x29 (not possible) */
281 SQLITE_FLOAT
, /* 0x2a (not possible) */
282 SQLITE_NULL
, /* 0x2b (not possible) */
283 SQLITE_FLOAT
, /* 0x2c (not possible) */
284 SQLITE_NULL
, /* 0x2d (not possible) */
285 SQLITE_FLOAT
, /* 0x2e (not possible) */
286 SQLITE_NULL
, /* 0x2f (not possible) */
287 SQLITE_BLOB
, /* 0x30 (not possible) */
288 SQLITE_NULL
, /* 0x31 (not possible) */
289 SQLITE_TEXT
, /* 0x32 (not possible) */
290 SQLITE_NULL
, /* 0x33 (not possible) */
291 SQLITE_FLOAT
, /* 0x34 (not possible) */
292 SQLITE_NULL
, /* 0x35 (not possible) */
293 SQLITE_FLOAT
, /* 0x36 (not possible) */
294 SQLITE_NULL
, /* 0x37 (not possible) */
295 SQLITE_FLOAT
, /* 0x38 (not possible) */
296 SQLITE_NULL
, /* 0x39 (not possible) */
297 SQLITE_FLOAT
, /* 0x3a (not possible) */
298 SQLITE_NULL
, /* 0x3b (not possible) */
299 SQLITE_FLOAT
, /* 0x3c (not possible) */
300 SQLITE_NULL
, /* 0x3d (not possible) */
301 SQLITE_FLOAT
, /* 0x3e (not possible) */
302 SQLITE_NULL
, /* 0x3f (not possible) */
306 int eType
= SQLITE_BLOB
;
307 if( pVal
->flags
& MEM_Null
){
309 }else if( pVal
->flags
& (MEM_Real
|MEM_IntReal
) ){
310 eType
= SQLITE_FLOAT
;
311 }else if( pVal
->flags
& MEM_Int
){
312 eType
= SQLITE_INTEGER
;
313 }else if( pVal
->flags
& MEM_Str
){
316 assert( eType
== aType
[pVal
->flags
&MEM_AffMask
] );
319 return aType
[pVal
->flags
&MEM_AffMask
];
321 int sqlite3_value_encoding(sqlite3_value
*pVal
){
325 /* Return true if a parameter to xUpdate represents an unchanged column */
326 int sqlite3_value_nochange(sqlite3_value
*pVal
){
327 return (pVal
->flags
&(MEM_Null
|MEM_Zero
))==(MEM_Null
|MEM_Zero
);
330 /* Return true if a parameter value originated from an sqlite3_bind() */
331 int sqlite3_value_frombind(sqlite3_value
*pVal
){
332 return (pVal
->flags
&MEM_FromBind
)!=0;
335 /* Make a copy of an sqlite3_value object
337 sqlite3_value
*sqlite3_value_dup(const sqlite3_value
*pOrig
){
339 if( pOrig
==0 ) return 0;
340 pNew
= sqlite3_malloc( sizeof(*pNew
) );
341 if( pNew
==0 ) return 0;
342 memset(pNew
, 0, sizeof(*pNew
));
343 memcpy(pNew
, pOrig
, MEMCELLSIZE
);
344 pNew
->flags
&= ~MEM_Dyn
;
346 if( pNew
->flags
&(MEM_Str
|MEM_Blob
) ){
347 pNew
->flags
&= ~(MEM_Static
|MEM_Dyn
);
348 pNew
->flags
|= MEM_Ephem
;
349 if( sqlite3VdbeMemMakeWriteable(pNew
)!=SQLITE_OK
){
350 sqlite3ValueFree(pNew
);
353 }else if( pNew
->flags
& MEM_Null
){
354 /* Do not duplicate pointer values */
355 pNew
->flags
&= ~(MEM_Term
|MEM_Subtype
);
360 /* Destroy an sqlite3_value object previously obtained from
361 ** sqlite3_value_dup().
363 void sqlite3_value_free(sqlite3_value
*pOld
){
364 sqlite3ValueFree(pOld
);
368 /**************************** sqlite3_result_ *******************************
369 ** The following routines are used by user-defined functions to specify
370 ** the function result.
372 ** The setStrOrError() function calls sqlite3VdbeMemSetStr() to store the
373 ** result as a string or blob. Appropriate errors are set if the string/blob
374 ** is too big or if an OOM occurs.
376 ** The invokeValueDestructor(P,X) routine invokes destructor function X()
377 ** on value P is not going to be used and need to be destroyed.
379 static void setResultStrOrError(
380 sqlite3_context
*pCtx
, /* Function context */
381 const char *z
, /* String pointer */
382 int n
, /* Bytes in string, or negative */
383 u8 enc
, /* Encoding of z. 0 for BLOBs */
384 void (*xDel
)(void*) /* Destructor function */
386 Mem
*pOut
= pCtx
->pOut
;
387 int rc
= sqlite3VdbeMemSetStr(pOut
, z
, n
, enc
, xDel
);
389 if( rc
==SQLITE_TOOBIG
){
390 sqlite3_result_error_toobig(pCtx
);
392 /* The only errors possible from sqlite3VdbeMemSetStr are
393 ** SQLITE_TOOBIG and SQLITE_NOMEM */
394 assert( rc
==SQLITE_NOMEM
);
395 sqlite3_result_error_nomem(pCtx
);
399 sqlite3VdbeChangeEncoding(pOut
, pCtx
->enc
);
400 if( sqlite3VdbeMemTooBig(pOut
) ){
401 sqlite3_result_error_toobig(pCtx
);
404 static int invokeValueDestructor(
405 const void *p
, /* Value to destroy */
406 void (*xDel
)(void*), /* The destructor */
407 sqlite3_context
*pCtx
/* Set a SQLITE_TOOBIG error if no NULL */
409 assert( xDel
!=SQLITE_DYNAMIC
);
412 }else if( xDel
==SQLITE_TRANSIENT
){
417 sqlite3_result_error_toobig(pCtx
);
418 return SQLITE_TOOBIG
;
420 void sqlite3_result_blob(
421 sqlite3_context
*pCtx
,
427 assert( sqlite3_mutex_held(pCtx
->pOut
->db
->mutex
) );
428 setResultStrOrError(pCtx
, z
, n
, 0, xDel
);
430 void sqlite3_result_blob64(
431 sqlite3_context
*pCtx
,
436 assert( sqlite3_mutex_held(pCtx
->pOut
->db
->mutex
) );
437 assert( xDel
!=SQLITE_DYNAMIC
);
439 (void)invokeValueDestructor(z
, xDel
, pCtx
);
441 setResultStrOrError(pCtx
, z
, (int)n
, 0, xDel
);
444 void sqlite3_result_double(sqlite3_context
*pCtx
, double rVal
){
445 assert( sqlite3_mutex_held(pCtx
->pOut
->db
->mutex
) );
446 sqlite3VdbeMemSetDouble(pCtx
->pOut
, rVal
);
448 void sqlite3_result_error(sqlite3_context
*pCtx
, const char *z
, int n
){
449 assert( sqlite3_mutex_held(pCtx
->pOut
->db
->mutex
) );
450 pCtx
->isError
= SQLITE_ERROR
;
451 sqlite3VdbeMemSetStr(pCtx
->pOut
, z
, n
, SQLITE_UTF8
, SQLITE_TRANSIENT
);
453 #ifndef SQLITE_OMIT_UTF16
454 void sqlite3_result_error16(sqlite3_context
*pCtx
, const void *z
, int n
){
455 assert( sqlite3_mutex_held(pCtx
->pOut
->db
->mutex
) );
456 pCtx
->isError
= SQLITE_ERROR
;
457 sqlite3VdbeMemSetStr(pCtx
->pOut
, z
, n
, SQLITE_UTF16NATIVE
, SQLITE_TRANSIENT
);
460 void sqlite3_result_int(sqlite3_context
*pCtx
, int iVal
){
461 assert( sqlite3_mutex_held(pCtx
->pOut
->db
->mutex
) );
462 sqlite3VdbeMemSetInt64(pCtx
->pOut
, (i64
)iVal
);
464 void sqlite3_result_int64(sqlite3_context
*pCtx
, i64 iVal
){
465 assert( sqlite3_mutex_held(pCtx
->pOut
->db
->mutex
) );
466 sqlite3VdbeMemSetInt64(pCtx
->pOut
, iVal
);
468 void sqlite3_result_null(sqlite3_context
*pCtx
){
469 assert( sqlite3_mutex_held(pCtx
->pOut
->db
->mutex
) );
470 sqlite3VdbeMemSetNull(pCtx
->pOut
);
472 void sqlite3_result_pointer(
473 sqlite3_context
*pCtx
,
476 void (*xDestructor
)(void*)
478 Mem
*pOut
= pCtx
->pOut
;
479 assert( sqlite3_mutex_held(pOut
->db
->mutex
) );
480 sqlite3VdbeMemRelease(pOut
);
481 pOut
->flags
= MEM_Null
;
482 sqlite3VdbeMemSetPointer(pOut
, pPtr
, zPType
, xDestructor
);
484 void sqlite3_result_subtype(sqlite3_context
*pCtx
, unsigned int eSubtype
){
485 Mem
*pOut
= pCtx
->pOut
;
486 assert( sqlite3_mutex_held(pOut
->db
->mutex
) );
487 pOut
->eSubtype
= eSubtype
& 0xff;
488 pOut
->flags
|= MEM_Subtype
;
490 void sqlite3_result_text(
491 sqlite3_context
*pCtx
,
496 assert( sqlite3_mutex_held(pCtx
->pOut
->db
->mutex
) );
497 setResultStrOrError(pCtx
, z
, n
, SQLITE_UTF8
, xDel
);
499 void sqlite3_result_text64(
500 sqlite3_context
*pCtx
,
503 void (*xDel
)(void *),
506 assert( sqlite3_mutex_held(pCtx
->pOut
->db
->mutex
) );
507 assert( xDel
!=SQLITE_DYNAMIC
);
508 if( enc
==SQLITE_UTF16
) enc
= SQLITE_UTF16NATIVE
;
510 (void)invokeValueDestructor(z
, xDel
, pCtx
);
512 setResultStrOrError(pCtx
, z
, (int)n
, enc
, xDel
);
515 #ifndef SQLITE_OMIT_UTF16
516 void sqlite3_result_text16(
517 sqlite3_context
*pCtx
,
522 assert( sqlite3_mutex_held(pCtx
->pOut
->db
->mutex
) );
523 setResultStrOrError(pCtx
, z
, n
, SQLITE_UTF16NATIVE
, xDel
);
525 void sqlite3_result_text16be(
526 sqlite3_context
*pCtx
,
531 assert( sqlite3_mutex_held(pCtx
->pOut
->db
->mutex
) );
532 setResultStrOrError(pCtx
, z
, n
, SQLITE_UTF16BE
, xDel
);
534 void sqlite3_result_text16le(
535 sqlite3_context
*pCtx
,
540 assert( sqlite3_mutex_held(pCtx
->pOut
->db
->mutex
) );
541 setResultStrOrError(pCtx
, z
, n
, SQLITE_UTF16LE
, xDel
);
543 #endif /* SQLITE_OMIT_UTF16 */
544 void sqlite3_result_value(sqlite3_context
*pCtx
, sqlite3_value
*pValue
){
545 Mem
*pOut
= pCtx
->pOut
;
546 assert( sqlite3_mutex_held(pCtx
->pOut
->db
->mutex
) );
547 sqlite3VdbeMemCopy(pOut
, pValue
);
548 sqlite3VdbeChangeEncoding(pOut
, pCtx
->enc
);
549 if( sqlite3VdbeMemTooBig(pOut
) ){
550 sqlite3_result_error_toobig(pCtx
);
553 void sqlite3_result_zeroblob(sqlite3_context
*pCtx
, int n
){
554 sqlite3_result_zeroblob64(pCtx
, n
>0 ? n
: 0);
556 int sqlite3_result_zeroblob64(sqlite3_context
*pCtx
, u64 n
){
557 Mem
*pOut
= pCtx
->pOut
;
558 assert( sqlite3_mutex_held(pOut
->db
->mutex
) );
559 if( n
>(u64
)pOut
->db
->aLimit
[SQLITE_LIMIT_LENGTH
] ){
560 sqlite3_result_error_toobig(pCtx
);
561 return SQLITE_TOOBIG
;
563 #ifndef SQLITE_OMIT_INCRBLOB
564 sqlite3VdbeMemSetZeroBlob(pCtx
->pOut
, (int)n
);
567 return sqlite3VdbeMemSetZeroBlob(pCtx
->pOut
, (int)n
);
570 void sqlite3_result_error_code(sqlite3_context
*pCtx
, int errCode
){
571 pCtx
->isError
= errCode
? errCode
: -1;
573 if( pCtx
->pVdbe
) pCtx
->pVdbe
->rcApp
= errCode
;
575 if( pCtx
->pOut
->flags
& MEM_Null
){
576 setResultStrOrError(pCtx
, sqlite3ErrStr(errCode
), -1, SQLITE_UTF8
,
581 /* Force an SQLITE_TOOBIG error. */
582 void sqlite3_result_error_toobig(sqlite3_context
*pCtx
){
583 assert( sqlite3_mutex_held(pCtx
->pOut
->db
->mutex
) );
584 pCtx
->isError
= SQLITE_TOOBIG
;
585 sqlite3VdbeMemSetStr(pCtx
->pOut
, "string or blob too big", -1,
586 SQLITE_UTF8
, SQLITE_STATIC
);
589 /* An SQLITE_NOMEM error. */
590 void sqlite3_result_error_nomem(sqlite3_context
*pCtx
){
591 assert( sqlite3_mutex_held(pCtx
->pOut
->db
->mutex
) );
592 sqlite3VdbeMemSetNull(pCtx
->pOut
);
593 pCtx
->isError
= SQLITE_NOMEM_BKPT
;
594 sqlite3OomFault(pCtx
->pOut
->db
);
597 #ifndef SQLITE_UNTESTABLE
598 /* Force the INT64 value currently stored as the result to be
599 ** a MEM_IntReal value. See the SQLITE_TESTCTRL_RESULT_INTREAL
602 void sqlite3ResultIntReal(sqlite3_context
*pCtx
){
603 assert( sqlite3_mutex_held(pCtx
->pOut
->db
->mutex
) );
604 if( pCtx
->pOut
->flags
& MEM_Int
){
605 pCtx
->pOut
->flags
&= ~MEM_Int
;
606 pCtx
->pOut
->flags
|= MEM_IntReal
;
613 ** This function is called after a transaction has been committed. It
614 ** invokes callbacks registered with sqlite3_wal_hook() as required.
616 static int doWalCallbacks(sqlite3
*db
){
618 #ifndef SQLITE_OMIT_WAL
620 for(i
=0; i
<db
->nDb
; i
++){
621 Btree
*pBt
= db
->aDb
[i
].pBt
;
624 sqlite3BtreeEnter(pBt
);
625 nEntry
= sqlite3PagerWalCallback(sqlite3BtreePager(pBt
));
626 sqlite3BtreeLeave(pBt
);
627 if( nEntry
>0 && db
->xWalCallback
&& rc
==SQLITE_OK
){
628 rc
= db
->xWalCallback(db
->pWalArg
, db
, db
->aDb
[i
].zDbSName
, nEntry
);
638 ** Execute the statement pStmt, either until a row of data is ready, the
639 ** statement is completely executed or an error occurs.
641 ** This routine implements the bulk of the logic behind the sqlite_step()
642 ** API. The only thing omitted is the automatic recompile if a
643 ** schema change has occurred. That detail is handled by the
644 ** outer sqlite3_step() wrapper procedure.
646 static int sqlite3Step(Vdbe
*p
){
652 if( p
->eVdbeState
!=VDBE_RUN_STATE
){
654 if( p
->eVdbeState
==VDBE_READY_STATE
){
656 p
->rc
= SQLITE_SCHEMA
;
658 if( (p
->prepFlags
& SQLITE_PREPARE_SAVESQL
)!=0 ){
659 /* If this statement was prepared using saved SQL and an
660 ** error has occurred, then return the error code in p->rc to the
661 ** caller. Set the error code in the database handle to the same
664 rc
= sqlite3VdbeTransferError(p
);
669 /* If there are no other statements currently running, then
670 ** reset the interrupt flag. This prevents a call to sqlite3_interrupt
671 ** from interrupting a statement that has not yet started.
673 if( db
->nVdbeActive
==0 ){
674 AtomicStore(&db
->u1
.isInterrupted
, 0);
677 assert( db
->nVdbeWrite
>0 || db
->autoCommit
==0
678 || (db
->nDeferredCons
==0 && db
->nDeferredImmCons
==0)
681 #ifndef SQLITE_OMIT_TRACE
682 if( (db
->mTrace
& (SQLITE_TRACE_PROFILE
|SQLITE_TRACE_XPROFILE
))!=0
683 && !db
->init
.busy
&& p
->zSql
){
684 sqlite3OsCurrentTimeInt64(db
->pVfs
, &p
->startTime
);
686 assert( p
->startTime
==0 );
691 if( p
->readOnly
==0 ) db
->nVdbeWrite
++;
692 if( p
->bIsReader
) db
->nVdbeRead
++;
694 p
->eVdbeState
= VDBE_RUN_STATE
;
697 if( ALWAYS(p
->eVdbeState
==VDBE_HALT_STATE
) ){
698 /* We used to require that sqlite3_reset() be called before retrying
699 ** sqlite3_step() after any error or after SQLITE_DONE. But beginning
700 ** with version 3.7.0, we changed this so that sqlite3_reset() would
701 ** be called automatically instead of throwing the SQLITE_MISUSE error.
702 ** This "automatic-reset" change is not technically an incompatibility,
703 ** since any application that receives an SQLITE_MISUSE is broken by
706 ** Nevertheless, some published applications that were originally written
707 ** for version 3.6.23 or earlier do in fact depend on SQLITE_MISUSE
708 ** returns, and those were broken by the automatic-reset change. As a
709 ** a work-around, the SQLITE_OMIT_AUTORESET compile-time restores the
710 ** legacy behavior of returning SQLITE_MISUSE for cases where the
711 ** previous sqlite3_step() returned something other than a SQLITE_LOCKED
712 ** or SQLITE_BUSY error.
714 #ifdef SQLITE_OMIT_AUTORESET
715 if( (rc
= p
->rc
&0xff)==SQLITE_BUSY
|| rc
==SQLITE_LOCKED
){
716 sqlite3_reset((sqlite3_stmt
*)p
);
718 return SQLITE_MISUSE_BKPT
;
721 sqlite3_reset((sqlite3_stmt
*)p
);
723 assert( p
->eVdbeState
==VDBE_READY_STATE
);
729 p
->rcApp
= SQLITE_OK
;
731 #ifndef SQLITE_OMIT_EXPLAIN
733 rc
= sqlite3VdbeList(p
);
735 #endif /* SQLITE_OMIT_EXPLAIN */
738 rc
= sqlite3VdbeExec(p
);
742 if( rc
==SQLITE_ROW
){
743 assert( p
->rc
==SQLITE_OK
);
744 assert( db
->mallocFailed
==0 );
745 db
->errCode
= SQLITE_ROW
;
748 #ifndef SQLITE_OMIT_TRACE
749 /* If the statement completed successfully, invoke the profile callback */
750 checkProfileCallback(db
, p
);
753 if( rc
==SQLITE_DONE
&& db
->autoCommit
){
754 assert( p
->rc
==SQLITE_OK
);
755 p
->rc
= doWalCallbacks(db
);
756 if( p
->rc
!=SQLITE_OK
){
759 }else if( rc
!=SQLITE_DONE
&& (p
->prepFlags
& SQLITE_PREPARE_SAVESQL
)!=0 ){
760 /* If this statement was prepared using saved SQL and an
761 ** error has occurred, then return the error code in p->rc to the
762 ** caller. Set the error code in the database handle to the same value.
764 rc
= sqlite3VdbeTransferError(p
);
769 if( SQLITE_NOMEM
==sqlite3ApiExit(p
->db
, p
->rc
) ){
770 p
->rc
= SQLITE_NOMEM_BKPT
;
771 if( (p
->prepFlags
& SQLITE_PREPARE_SAVESQL
)!=0 ) rc
= p
->rc
;
774 /* There are only a limited number of result codes allowed from the
775 ** statements prepared using the legacy sqlite3_prepare() interface */
776 assert( (p
->prepFlags
& SQLITE_PREPARE_SAVESQL
)!=0
777 || rc
==SQLITE_ROW
|| rc
==SQLITE_DONE
|| rc
==SQLITE_ERROR
778 || (rc
&0xff)==SQLITE_BUSY
|| rc
==SQLITE_MISUSE
780 return (rc
&db
->errMask
);
784 ** This is the top-level implementation of sqlite3_step(). Call
785 ** sqlite3Step() to do most of the work. If a schema error occurs,
786 ** call sqlite3Reprepare() and try again.
788 int sqlite3_step(sqlite3_stmt
*pStmt
){
789 int rc
= SQLITE_OK
; /* Result from sqlite3Step() */
790 Vdbe
*v
= (Vdbe
*)pStmt
; /* the prepared statement */
791 int cnt
= 0; /* Counter to prevent infinite loop of reprepares */
792 sqlite3
*db
; /* The database connection */
794 if( vdbeSafetyNotNull(v
) ){
795 return SQLITE_MISUSE_BKPT
;
798 sqlite3_mutex_enter(db
->mutex
);
799 while( (rc
= sqlite3Step(v
))==SQLITE_SCHEMA
800 && cnt
++ < SQLITE_MAX_SCHEMA_RETRY
){
802 rc
= sqlite3Reprepare(v
);
804 /* This case occurs after failing to recompile an sql statement.
805 ** The error message from the SQL compiler has already been loaded
806 ** into the database handle. This block copies the error message
807 ** from the database handle into the statement and sets the statement
808 ** program counter to 0 to ensure that when the statement is
809 ** finalized or reset the parser error message is available via
810 ** sqlite3_errmsg() and sqlite3_errcode().
812 const char *zErr
= (const char *)sqlite3_value_text(db
->pErr
);
813 sqlite3DbFree(db
, v
->zErrMsg
);
814 if( !db
->mallocFailed
){
815 v
->zErrMsg
= sqlite3DbStrDup(db
, zErr
);
816 v
->rc
= rc
= sqlite3ApiExit(db
, rc
);
819 v
->rc
= rc
= SQLITE_NOMEM_BKPT
;
823 sqlite3_reset(pStmt
);
825 /* Setting minWriteFileFormat to 254 is a signal to the OP_Init and
826 ** OP_Trace opcodes to *not* perform SQLITE_TRACE_STMT because it has
827 ** already been done once on a prior invocation that failed due to
828 ** SQLITE_SCHEMA. tag-20220401a */
829 v
->minWriteFileFormat
= 254;
831 assert( v
->expired
==0 );
833 sqlite3_mutex_leave(db
->mutex
);
839 ** Extract the user data from a sqlite3_context structure and return a
842 void *sqlite3_user_data(sqlite3_context
*p
){
843 assert( p
&& p
->pFunc
);
844 return p
->pFunc
->pUserData
;
848 ** Extract the user data from a sqlite3_context structure and return a
851 ** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface
852 ** returns a copy of the pointer to the database connection (the 1st
853 ** parameter) of the sqlite3_create_function() and
854 ** sqlite3_create_function16() routines that originally registered the
855 ** application defined function.
857 sqlite3
*sqlite3_context_db_handle(sqlite3_context
*p
){
858 assert( p
&& p
->pOut
);
863 ** If this routine is invoked from within an xColumn method of a virtual
864 ** table, then it returns true if and only if the the call is during an
865 ** UPDATE operation and the value of the column will not be modified
868 ** If this routine is called from any context other than within the
869 ** xColumn method of a virtual table, then the return value is meaningless
872 ** Virtual table implements might use this routine to optimize their
873 ** performance by substituting a NULL result, or some other light-weight
874 ** value, as a signal to the xUpdate routine that the column is unchanged.
876 int sqlite3_vtab_nochange(sqlite3_context
*p
){
878 return sqlite3_value_nochange(p
->pOut
);
882 ** Implementation of sqlite3_vtab_in_first() (if bNext==0) and
883 ** sqlite3_vtab_in_next() (if bNext!=0).
885 static int valueFromValueList(
886 sqlite3_value
*pVal
, /* Pointer to the ValueList object */
887 sqlite3_value
**ppOut
, /* Store the next value from the list here */
888 int bNext
/* 1 for _next(). 0 for _first() */
894 if( pVal
==0 ) return SQLITE_MISUSE
;
895 pRhs
= (ValueList
*)sqlite3_value_pointer(pVal
, "ValueList");
896 if( pRhs
==0 ) return SQLITE_MISUSE
;
898 rc
= sqlite3BtreeNext(pRhs
->pCsr
, 0);
901 rc
= sqlite3BtreeFirst(pRhs
->pCsr
, &dummy
);
902 assert( rc
==SQLITE_OK
|| sqlite3BtreeEof(pRhs
->pCsr
) );
903 if( sqlite3BtreeEof(pRhs
->pCsr
) ) rc
= SQLITE_DONE
;
906 u32 sz
; /* Size of current row in bytes */
907 Mem sMem
; /* Raw content of current row */
908 memset(&sMem
, 0, sizeof(sMem
));
909 sz
= sqlite3BtreePayloadSize(pRhs
->pCsr
);
910 rc
= sqlite3VdbeMemFromBtreeZeroOffset(pRhs
->pCsr
,(int)sz
,&sMem
);
912 u8
*zBuf
= (u8
*)sMem
.z
;
914 sqlite3_value
*pOut
= pRhs
->pOut
;
915 int iOff
= 1 + getVarint32(&zBuf
[1], iSerial
);
916 sqlite3VdbeSerialGet(&zBuf
[iOff
], iSerial
, pOut
);
917 pOut
->enc
= ENC(pOut
->db
);
918 if( (pOut
->flags
& MEM_Ephem
)!=0 && sqlite3VdbeMemMakeWriteable(pOut
) ){
924 sqlite3VdbeMemRelease(&sMem
);
930 ** Set the iterator value pVal to point to the first value in the set.
931 ** Set (*ppOut) to point to this value before returning.
933 int sqlite3_vtab_in_first(sqlite3_value
*pVal
, sqlite3_value
**ppOut
){
934 return valueFromValueList(pVal
, ppOut
, 0);
938 ** Set the iterator value pVal to point to the next value in the set.
939 ** Set (*ppOut) to point to this value before returning.
941 int sqlite3_vtab_in_next(sqlite3_value
*pVal
, sqlite3_value
**ppOut
){
942 return valueFromValueList(pVal
, ppOut
, 1);
946 ** Return the current time for a statement. If the current time
947 ** is requested more than once within the same run of a single prepared
948 ** statement, the exact same time is returned for each invocation regardless
949 ** of the amount of time that elapses between invocations. In other words,
950 ** the time returned is always the time of the first call.
952 sqlite3_int64
sqlite3StmtCurrentTime(sqlite3_context
*p
){
954 #ifndef SQLITE_ENABLE_STAT4
955 sqlite3_int64
*piTime
= &p
->pVdbe
->iCurrentTime
;
956 assert( p
->pVdbe
!=0 );
958 sqlite3_int64 iTime
= 0;
959 sqlite3_int64
*piTime
= p
->pVdbe
!=0 ? &p
->pVdbe
->iCurrentTime
: &iTime
;
962 rc
= sqlite3OsCurrentTimeInt64(p
->pOut
->db
->pVfs
, piTime
);
963 if( rc
) *piTime
= 0;
969 ** Create a new aggregate context for p and return a pointer to
970 ** its pMem->z element.
972 static SQLITE_NOINLINE
void *createAggContext(sqlite3_context
*p
, int nByte
){
974 assert( (pMem
->flags
& MEM_Agg
)==0 );
976 sqlite3VdbeMemSetNull(pMem
);
979 sqlite3VdbeMemClearAndResize(pMem
, nByte
);
980 pMem
->flags
= MEM_Agg
;
981 pMem
->u
.pDef
= p
->pFunc
;
983 memset(pMem
->z
, 0, nByte
);
986 return (void*)pMem
->z
;
990 ** Allocate or return the aggregate context for a user function. A new
991 ** context is allocated on the first call. Subsequent calls return the
992 ** same context that was returned on prior calls.
994 void *sqlite3_aggregate_context(sqlite3_context
*p
, int nByte
){
995 assert( p
&& p
->pFunc
&& p
->pFunc
->xFinalize
);
996 assert( sqlite3_mutex_held(p
->pOut
->db
->mutex
) );
998 if( (p
->pMem
->flags
& MEM_Agg
)==0 ){
999 return createAggContext(p
, nByte
);
1001 return (void*)p
->pMem
->z
;
1006 ** Return the auxiliary data pointer, if any, for the iArg'th argument to
1007 ** the user-function defined by pCtx.
1009 ** The left-most argument is 0.
1011 ** Undocumented behavior: If iArg is negative then access a cache of
1012 ** auxiliary data pointers that is available to all functions within a
1013 ** single prepared statement. The iArg values must match.
1015 void *sqlite3_get_auxdata(sqlite3_context
*pCtx
, int iArg
){
1018 assert( sqlite3_mutex_held(pCtx
->pOut
->db
->mutex
) );
1019 #if SQLITE_ENABLE_STAT4
1020 if( pCtx
->pVdbe
==0 ) return 0;
1022 assert( pCtx
->pVdbe
!=0 );
1024 for(pAuxData
=pCtx
->pVdbe
->pAuxData
; pAuxData
; pAuxData
=pAuxData
->pNextAux
){
1025 if( pAuxData
->iAuxArg
==iArg
&& (pAuxData
->iAuxOp
==pCtx
->iOp
|| iArg
<0) ){
1026 return pAuxData
->pAux
;
1033 ** Set the auxiliary data pointer and delete function, for the iArg'th
1034 ** argument to the user-function defined by pCtx. Any previous value is
1035 ** deleted by calling the delete function specified when it was set.
1037 ** The left-most argument is 0.
1039 ** Undocumented behavior: If iArg is negative then make the data available
1040 ** to all functions within the current prepared statement using iArg as an
1043 void sqlite3_set_auxdata(
1044 sqlite3_context
*pCtx
,
1047 void (*xDelete
)(void*)
1050 Vdbe
*pVdbe
= pCtx
->pVdbe
;
1052 assert( sqlite3_mutex_held(pCtx
->pOut
->db
->mutex
) );
1053 #ifdef SQLITE_ENABLE_STAT4
1054 if( pVdbe
==0 ) goto failed
;
1059 for(pAuxData
=pVdbe
->pAuxData
; pAuxData
; pAuxData
=pAuxData
->pNextAux
){
1060 if( pAuxData
->iAuxArg
==iArg
&& (pAuxData
->iAuxOp
==pCtx
->iOp
|| iArg
<0) ){
1065 pAuxData
= sqlite3DbMallocZero(pVdbe
->db
, sizeof(AuxData
));
1066 if( !pAuxData
) goto failed
;
1067 pAuxData
->iAuxOp
= pCtx
->iOp
;
1068 pAuxData
->iAuxArg
= iArg
;
1069 pAuxData
->pNextAux
= pVdbe
->pAuxData
;
1070 pVdbe
->pAuxData
= pAuxData
;
1071 if( pCtx
->isError
==0 ) pCtx
->isError
= -1;
1072 }else if( pAuxData
->xDeleteAux
){
1073 pAuxData
->xDeleteAux(pAuxData
->pAux
);
1076 pAuxData
->pAux
= pAux
;
1077 pAuxData
->xDeleteAux
= xDelete
;
1086 #ifndef SQLITE_OMIT_DEPRECATED
1088 ** Return the number of times the Step function of an aggregate has been
1091 ** This function is deprecated. Do not use it for new code. It is
1092 ** provide only to avoid breaking legacy code. New aggregate function
1093 ** implementations should keep their own counts within their aggregate
1096 int sqlite3_aggregate_count(sqlite3_context
*p
){
1097 assert( p
&& p
->pMem
&& p
->pFunc
&& p
->pFunc
->xFinalize
);
1103 ** Return the number of columns in the result set for the statement pStmt.
1105 int sqlite3_column_count(sqlite3_stmt
*pStmt
){
1106 Vdbe
*pVm
= (Vdbe
*)pStmt
;
1107 return pVm
? pVm
->nResColumn
: 0;
1111 ** Return the number of values available from the current row of the
1112 ** currently executing statement pStmt.
1114 int sqlite3_data_count(sqlite3_stmt
*pStmt
){
1115 Vdbe
*pVm
= (Vdbe
*)pStmt
;
1116 if( pVm
==0 || pVm
->pResultSet
==0 ) return 0;
1117 return pVm
->nResColumn
;
1121 ** Return a pointer to static memory containing an SQL NULL value.
1123 static const Mem
*columnNullValue(void){
1124 /* Even though the Mem structure contains an element
1125 ** of type i64, on certain architectures (x86) with certain compiler
1126 ** switches (-Os), gcc may align this Mem object on a 4-byte boundary
1127 ** instead of an 8-byte one. This all works fine, except that when
1128 ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s
1129 ** that a Mem structure is located on an 8-byte boundary. To prevent
1130 ** these assert()s from failing, when building with SQLITE_DEBUG defined
1131 ** using gcc, we force nullMem to be 8-byte aligned using the magical
1132 ** __attribute__((aligned(8))) macro. */
1133 static const Mem nullMem
1134 #if defined(SQLITE_DEBUG) && defined(__GNUC__)
1135 __attribute__((aligned(8)))
1139 /* .z = */ (char*)0,
1141 /* .flags = */ (u16
)MEM_Null
,
1143 /* .eSubtype = */ (u8
)0,
1144 /* .db = */ (sqlite3
*)0,
1145 /* .szMalloc = */ (int)0,
1146 /* .uTemp = */ (u32
)0,
1147 /* .zMalloc = */ (char*)0,
1148 /* .xDel = */ (void(*)(void*))0,
1150 /* .pScopyFrom = */ (Mem
*)0,
1151 /* .mScopyFlags= */ 0,
1158 ** Check to see if column iCol of the given statement is valid. If
1159 ** it is, return a pointer to the Mem for the value of that column.
1160 ** If iCol is not valid, return a pointer to a Mem which has a value
1163 static Mem
*columnMem(sqlite3_stmt
*pStmt
, int i
){
1167 pVm
= (Vdbe
*)pStmt
;
1168 if( pVm
==0 ) return (Mem
*)columnNullValue();
1170 sqlite3_mutex_enter(pVm
->db
->mutex
);
1171 if( pVm
->pResultSet
!=0 && i
<pVm
->nResColumn
&& i
>=0 ){
1172 pOut
= &pVm
->pResultSet
[i
];
1174 sqlite3Error(pVm
->db
, SQLITE_RANGE
);
1175 pOut
= (Mem
*)columnNullValue();
1181 ** This function is called after invoking an sqlite3_value_XXX function on a
1182 ** column value (i.e. a value returned by evaluating an SQL expression in the
1183 ** select list of a SELECT statement) that may cause a malloc() failure. If
1184 ** malloc() has failed, the threads mallocFailed flag is cleared and the result
1185 ** code of statement pStmt set to SQLITE_NOMEM.
1187 ** Specifically, this is called from within:
1189 ** sqlite3_column_int()
1190 ** sqlite3_column_int64()
1191 ** sqlite3_column_text()
1192 ** sqlite3_column_text16()
1193 ** sqlite3_column_real()
1194 ** sqlite3_column_bytes()
1195 ** sqlite3_column_bytes16()
1196 ** sqiite3_column_blob()
1198 static void columnMallocFailure(sqlite3_stmt
*pStmt
)
1200 /* If malloc() failed during an encoding conversion within an
1201 ** sqlite3_column_XXX API, then set the return code of the statement to
1202 ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR
1203 ** and _finalize() will return NOMEM.
1205 Vdbe
*p
= (Vdbe
*)pStmt
;
1208 assert( sqlite3_mutex_held(p
->db
->mutex
) );
1209 p
->rc
= sqlite3ApiExit(p
->db
, p
->rc
);
1210 sqlite3_mutex_leave(p
->db
->mutex
);
1214 /**************************** sqlite3_column_ *******************************
1215 ** The following routines are used to access elements of the current row
1216 ** in the result set.
1218 const void *sqlite3_column_blob(sqlite3_stmt
*pStmt
, int i
){
1220 val
= sqlite3_value_blob( columnMem(pStmt
,i
) );
1221 /* Even though there is no encoding conversion, value_blob() might
1222 ** need to call malloc() to expand the result of a zeroblob()
1225 columnMallocFailure(pStmt
);
1228 int sqlite3_column_bytes(sqlite3_stmt
*pStmt
, int i
){
1229 int val
= sqlite3_value_bytes( columnMem(pStmt
,i
) );
1230 columnMallocFailure(pStmt
);
1233 int sqlite3_column_bytes16(sqlite3_stmt
*pStmt
, int i
){
1234 int val
= sqlite3_value_bytes16( columnMem(pStmt
,i
) );
1235 columnMallocFailure(pStmt
);
1238 double sqlite3_column_double(sqlite3_stmt
*pStmt
, int i
){
1239 double val
= sqlite3_value_double( columnMem(pStmt
,i
) );
1240 columnMallocFailure(pStmt
);
1243 int sqlite3_column_int(sqlite3_stmt
*pStmt
, int i
){
1244 int val
= sqlite3_value_int( columnMem(pStmt
,i
) );
1245 columnMallocFailure(pStmt
);
1248 sqlite_int64
sqlite3_column_int64(sqlite3_stmt
*pStmt
, int i
){
1249 sqlite_int64 val
= sqlite3_value_int64( columnMem(pStmt
,i
) );
1250 columnMallocFailure(pStmt
);
1253 const unsigned char *sqlite3_column_text(sqlite3_stmt
*pStmt
, int i
){
1254 const unsigned char *val
= sqlite3_value_text( columnMem(pStmt
,i
) );
1255 columnMallocFailure(pStmt
);
1258 sqlite3_value
*sqlite3_column_value(sqlite3_stmt
*pStmt
, int i
){
1259 Mem
*pOut
= columnMem(pStmt
, i
);
1260 if( pOut
->flags
&MEM_Static
){
1261 pOut
->flags
&= ~MEM_Static
;
1262 pOut
->flags
|= MEM_Ephem
;
1264 columnMallocFailure(pStmt
);
1265 return (sqlite3_value
*)pOut
;
1267 #ifndef SQLITE_OMIT_UTF16
1268 const void *sqlite3_column_text16(sqlite3_stmt
*pStmt
, int i
){
1269 const void *val
= sqlite3_value_text16( columnMem(pStmt
,i
) );
1270 columnMallocFailure(pStmt
);
1273 #endif /* SQLITE_OMIT_UTF16 */
1274 int sqlite3_column_type(sqlite3_stmt
*pStmt
, int i
){
1275 int iType
= sqlite3_value_type( columnMem(pStmt
,i
) );
1276 columnMallocFailure(pStmt
);
1281 ** Convert the N-th element of pStmt->pColName[] into a string using
1282 ** xFunc() then return that string. If N is out of range, return 0.
1284 ** There are up to 5 names for each column. useType determines which
1285 ** name is returned. Here are the names:
1287 ** 0 The column name as it should be displayed for output
1288 ** 1 The datatype name for the column
1289 ** 2 The name of the database that the column derives from
1290 ** 3 The name of the table that the column derives from
1291 ** 4 The name of the table column that the result column derives from
1293 ** If the result is not a simple column reference (if it is an expression
1294 ** or a constant) then useTypes 2, 3, and 4 return NULL.
1296 static const void *columnName(
1297 sqlite3_stmt
*pStmt
, /* The statement */
1298 int N
, /* Which column to get the name for */
1299 int useUtf16
, /* True to return the name as UTF16 */
1300 int useType
/* What type of name */
1306 #ifdef SQLITE_ENABLE_API_ARMOR
1308 (void)SQLITE_MISUSE_BKPT
;
1316 n
= sqlite3_column_count(pStmt
);
1319 sqlite3_mutex_enter(db
->mutex
);
1320 assert( db
->mallocFailed
==0 );
1321 #ifndef SQLITE_OMIT_UTF16
1323 ret
= sqlite3_value_text16((sqlite3_value
*)&p
->aColName
[N
]);
1327 ret
= sqlite3_value_text((sqlite3_value
*)&p
->aColName
[N
]);
1329 /* A malloc may have failed inside of the _text() call. If this
1330 ** is the case, clear the mallocFailed flag and return NULL.
1332 if( db
->mallocFailed
){
1333 sqlite3OomClear(db
);
1336 sqlite3_mutex_leave(db
->mutex
);
1342 ** Return the name of the Nth column of the result set returned by SQL
1345 const char *sqlite3_column_name(sqlite3_stmt
*pStmt
, int N
){
1346 return columnName(pStmt
, N
, 0, COLNAME_NAME
);
1348 #ifndef SQLITE_OMIT_UTF16
1349 const void *sqlite3_column_name16(sqlite3_stmt
*pStmt
, int N
){
1350 return columnName(pStmt
, N
, 1, COLNAME_NAME
);
1355 ** Constraint: If you have ENABLE_COLUMN_METADATA then you must
1356 ** not define OMIT_DECLTYPE.
1358 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA)
1359 # error "Must not define both SQLITE_OMIT_DECLTYPE \
1360 and SQLITE_ENABLE_COLUMN_METADATA"
1363 #ifndef SQLITE_OMIT_DECLTYPE
1365 ** Return the column declaration type (if applicable) of the 'i'th column
1366 ** of the result set of SQL statement pStmt.
1368 const char *sqlite3_column_decltype(sqlite3_stmt
*pStmt
, int N
){
1369 return columnName(pStmt
, N
, 0, COLNAME_DECLTYPE
);
1371 #ifndef SQLITE_OMIT_UTF16
1372 const void *sqlite3_column_decltype16(sqlite3_stmt
*pStmt
, int N
){
1373 return columnName(pStmt
, N
, 1, COLNAME_DECLTYPE
);
1375 #endif /* SQLITE_OMIT_UTF16 */
1376 #endif /* SQLITE_OMIT_DECLTYPE */
1378 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1380 ** Return the name of the database from which a result column derives.
1381 ** NULL is returned if the result column is an expression or constant or
1382 ** anything else which is not an unambiguous reference to a database column.
1384 const char *sqlite3_column_database_name(sqlite3_stmt
*pStmt
, int N
){
1385 return columnName(pStmt
, N
, 0, COLNAME_DATABASE
);
1387 #ifndef SQLITE_OMIT_UTF16
1388 const void *sqlite3_column_database_name16(sqlite3_stmt
*pStmt
, int N
){
1389 return columnName(pStmt
, N
, 1, COLNAME_DATABASE
);
1391 #endif /* SQLITE_OMIT_UTF16 */
1394 ** Return the name of the table from which a result column derives.
1395 ** NULL is returned if the result column is an expression or constant or
1396 ** anything else which is not an unambiguous reference to a database column.
1398 const char *sqlite3_column_table_name(sqlite3_stmt
*pStmt
, int N
){
1399 return columnName(pStmt
, N
, 0, COLNAME_TABLE
);
1401 #ifndef SQLITE_OMIT_UTF16
1402 const void *sqlite3_column_table_name16(sqlite3_stmt
*pStmt
, int N
){
1403 return columnName(pStmt
, N
, 1, COLNAME_TABLE
);
1405 #endif /* SQLITE_OMIT_UTF16 */
1408 ** Return the name of the table column from which a result column derives.
1409 ** NULL is returned if the result column is an expression or constant or
1410 ** anything else which is not an unambiguous reference to a database column.
1412 const char *sqlite3_column_origin_name(sqlite3_stmt
*pStmt
, int N
){
1413 return columnName(pStmt
, N
, 0, COLNAME_COLUMN
);
1415 #ifndef SQLITE_OMIT_UTF16
1416 const void *sqlite3_column_origin_name16(sqlite3_stmt
*pStmt
, int N
){
1417 return columnName(pStmt
, N
, 1, COLNAME_COLUMN
);
1419 #endif /* SQLITE_OMIT_UTF16 */
1420 #endif /* SQLITE_ENABLE_COLUMN_METADATA */
1423 /******************************* sqlite3_bind_ ***************************
1425 ** Routines used to attach values to wildcards in a compiled SQL statement.
1428 ** Unbind the value bound to variable i in virtual machine p. This is the
1429 ** the same as binding a NULL value to the column. If the "i" parameter is
1430 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK.
1432 ** A successful evaluation of this routine acquires the mutex on p.
1433 ** the mutex is released if any kind of error occurs.
1435 ** The error code stored in database p->db is overwritten with the return
1436 ** value in any case.
1438 static int vdbeUnbind(Vdbe
*p
, unsigned int i
){
1440 if( vdbeSafetyNotNull(p
) ){
1441 return SQLITE_MISUSE_BKPT
;
1443 sqlite3_mutex_enter(p
->db
->mutex
);
1444 if( p
->eVdbeState
!=VDBE_READY_STATE
){
1445 sqlite3Error(p
->db
, SQLITE_MISUSE
);
1446 sqlite3_mutex_leave(p
->db
->mutex
);
1447 sqlite3_log(SQLITE_MISUSE
,
1448 "bind on a busy prepared statement: [%s]", p
->zSql
);
1449 return SQLITE_MISUSE_BKPT
;
1451 if( i
>=(unsigned int)p
->nVar
){
1452 sqlite3Error(p
->db
, SQLITE_RANGE
);
1453 sqlite3_mutex_leave(p
->db
->mutex
);
1454 return SQLITE_RANGE
;
1457 sqlite3VdbeMemRelease(pVar
);
1458 pVar
->flags
= MEM_Null
;
1459 p
->db
->errCode
= SQLITE_OK
;
1461 /* If the bit corresponding to this variable in Vdbe.expmask is set, then
1462 ** binding a new value to this variable invalidates the current query plan.
1464 ** IMPLEMENTATION-OF: R-57496-20354 If the specific value bound to a host
1465 ** parameter in the WHERE clause might influence the choice of query plan
1466 ** for a statement, then the statement will be automatically recompiled,
1467 ** as if there had been a schema change, on the first sqlite3_step() call
1468 ** following any change to the bindings of that parameter.
1470 assert( (p
->prepFlags
& SQLITE_PREPARE_SAVESQL
)!=0 || p
->expmask
==0 );
1471 if( p
->expmask
!=0 && (p
->expmask
& (i
>=31 ? 0x80000000 : (u32
)1<<i
))!=0 ){
1478 ** Bind a text or BLOB value.
1480 static int bindText(
1481 sqlite3_stmt
*pStmt
, /* The statement to bind against */
1482 int i
, /* Index of the parameter to bind */
1483 const void *zData
, /* Pointer to the data to be bound */
1484 i64 nData
, /* Number of bytes of data to be bound */
1485 void (*xDel
)(void*), /* Destructor for the data */
1486 u8 encoding
/* Encoding for the data */
1488 Vdbe
*p
= (Vdbe
*)pStmt
;
1492 rc
= vdbeUnbind(p
, (u32
)(i
-1));
1493 if( rc
==SQLITE_OK
){
1495 pVar
= &p
->aVar
[i
-1];
1496 rc
= sqlite3VdbeMemSetStr(pVar
, zData
, nData
, encoding
, xDel
);
1497 if( rc
==SQLITE_OK
&& encoding
!=0 ){
1498 rc
= sqlite3VdbeChangeEncoding(pVar
, ENC(p
->db
));
1501 sqlite3Error(p
->db
, rc
);
1502 rc
= sqlite3ApiExit(p
->db
, rc
);
1505 sqlite3_mutex_leave(p
->db
->mutex
);
1506 }else if( xDel
!=SQLITE_STATIC
&& xDel
!=SQLITE_TRANSIENT
){
1514 ** Bind a blob value to an SQL statement variable.
1516 int sqlite3_bind_blob(
1517 sqlite3_stmt
*pStmt
,
1523 #ifdef SQLITE_ENABLE_API_ARMOR
1524 if( nData
<0 ) return SQLITE_MISUSE_BKPT
;
1526 return bindText(pStmt
, i
, zData
, nData
, xDel
, 0);
1528 int sqlite3_bind_blob64(
1529 sqlite3_stmt
*pStmt
,
1532 sqlite3_uint64 nData
,
1535 assert( xDel
!=SQLITE_DYNAMIC
);
1536 return bindText(pStmt
, i
, zData
, nData
, xDel
, 0);
1538 int sqlite3_bind_double(sqlite3_stmt
*pStmt
, int i
, double rValue
){
1540 Vdbe
*p
= (Vdbe
*)pStmt
;
1541 rc
= vdbeUnbind(p
, (u32
)(i
-1));
1542 if( rc
==SQLITE_OK
){
1543 sqlite3VdbeMemSetDouble(&p
->aVar
[i
-1], rValue
);
1544 sqlite3_mutex_leave(p
->db
->mutex
);
1548 int sqlite3_bind_int(sqlite3_stmt
*p
, int i
, int iValue
){
1549 return sqlite3_bind_int64(p
, i
, (i64
)iValue
);
1551 int sqlite3_bind_int64(sqlite3_stmt
*pStmt
, int i
, sqlite_int64 iValue
){
1553 Vdbe
*p
= (Vdbe
*)pStmt
;
1554 rc
= vdbeUnbind(p
, (u32
)(i
-1));
1555 if( rc
==SQLITE_OK
){
1556 sqlite3VdbeMemSetInt64(&p
->aVar
[i
-1], iValue
);
1557 sqlite3_mutex_leave(p
->db
->mutex
);
1561 int sqlite3_bind_null(sqlite3_stmt
*pStmt
, int i
){
1563 Vdbe
*p
= (Vdbe
*)pStmt
;
1564 rc
= vdbeUnbind(p
, (u32
)(i
-1));
1565 if( rc
==SQLITE_OK
){
1566 sqlite3_mutex_leave(p
->db
->mutex
);
1570 int sqlite3_bind_pointer(
1571 sqlite3_stmt
*pStmt
,
1574 const char *zPTtype
,
1575 void (*xDestructor
)(void*)
1578 Vdbe
*p
= (Vdbe
*)pStmt
;
1579 rc
= vdbeUnbind(p
, (u32
)(i
-1));
1580 if( rc
==SQLITE_OK
){
1581 sqlite3VdbeMemSetPointer(&p
->aVar
[i
-1], pPtr
, zPTtype
, xDestructor
);
1582 sqlite3_mutex_leave(p
->db
->mutex
);
1583 }else if( xDestructor
){
1588 int sqlite3_bind_text(
1589 sqlite3_stmt
*pStmt
,
1595 return bindText(pStmt
, i
, zData
, nData
, xDel
, SQLITE_UTF8
);
1597 int sqlite3_bind_text64(
1598 sqlite3_stmt
*pStmt
,
1601 sqlite3_uint64 nData
,
1602 void (*xDel
)(void*),
1605 assert( xDel
!=SQLITE_DYNAMIC
);
1606 if( enc
==SQLITE_UTF16
) enc
= SQLITE_UTF16NATIVE
;
1607 return bindText(pStmt
, i
, zData
, nData
, xDel
, enc
);
1609 #ifndef SQLITE_OMIT_UTF16
1610 int sqlite3_bind_text16(
1611 sqlite3_stmt
*pStmt
,
1617 return bindText(pStmt
, i
, zData
, nData
, xDel
, SQLITE_UTF16NATIVE
);
1619 #endif /* SQLITE_OMIT_UTF16 */
1620 int sqlite3_bind_value(sqlite3_stmt
*pStmt
, int i
, const sqlite3_value
*pValue
){
1622 switch( sqlite3_value_type((sqlite3_value
*)pValue
) ){
1623 case SQLITE_INTEGER
: {
1624 rc
= sqlite3_bind_int64(pStmt
, i
, pValue
->u
.i
);
1627 case SQLITE_FLOAT
: {
1628 assert( pValue
->flags
& (MEM_Real
|MEM_IntReal
) );
1629 rc
= sqlite3_bind_double(pStmt
, i
,
1630 (pValue
->flags
& MEM_Real
) ? pValue
->u
.r
: (double)pValue
->u
.i
1635 if( pValue
->flags
& MEM_Zero
){
1636 rc
= sqlite3_bind_zeroblob(pStmt
, i
, pValue
->u
.nZero
);
1638 rc
= sqlite3_bind_blob(pStmt
, i
, pValue
->z
, pValue
->n
,SQLITE_TRANSIENT
);
1643 rc
= bindText(pStmt
,i
, pValue
->z
, pValue
->n
, SQLITE_TRANSIENT
,
1648 rc
= sqlite3_bind_null(pStmt
, i
);
1654 int sqlite3_bind_zeroblob(sqlite3_stmt
*pStmt
, int i
, int n
){
1656 Vdbe
*p
= (Vdbe
*)pStmt
;
1657 rc
= vdbeUnbind(p
, (u32
)(i
-1));
1658 if( rc
==SQLITE_OK
){
1659 #ifndef SQLITE_OMIT_INCRBLOB
1660 sqlite3VdbeMemSetZeroBlob(&p
->aVar
[i
-1], n
);
1662 rc
= sqlite3VdbeMemSetZeroBlob(&p
->aVar
[i
-1], n
);
1664 sqlite3_mutex_leave(p
->db
->mutex
);
1668 int sqlite3_bind_zeroblob64(sqlite3_stmt
*pStmt
, int i
, sqlite3_uint64 n
){
1670 Vdbe
*p
= (Vdbe
*)pStmt
;
1671 sqlite3_mutex_enter(p
->db
->mutex
);
1672 if( n
>(u64
)p
->db
->aLimit
[SQLITE_LIMIT_LENGTH
] ){
1675 assert( (n
& 0x7FFFFFFF)==n
);
1676 rc
= sqlite3_bind_zeroblob(pStmt
, i
, n
);
1678 rc
= sqlite3ApiExit(p
->db
, rc
);
1679 sqlite3_mutex_leave(p
->db
->mutex
);
1684 ** Return the number of wildcards that can be potentially bound to.
1685 ** This routine is added to support DBD::SQLite.
1687 int sqlite3_bind_parameter_count(sqlite3_stmt
*pStmt
){
1688 Vdbe
*p
= (Vdbe
*)pStmt
;
1689 return p
? p
->nVar
: 0;
1693 ** Return the name of a wildcard parameter. Return NULL if the index
1694 ** is out of range or if the wildcard is unnamed.
1696 ** The result is always UTF-8.
1698 const char *sqlite3_bind_parameter_name(sqlite3_stmt
*pStmt
, int i
){
1699 Vdbe
*p
= (Vdbe
*)pStmt
;
1700 if( p
==0 ) return 0;
1701 return sqlite3VListNumToName(p
->pVList
, i
);
1705 ** Given a wildcard parameter name, return the index of the variable
1706 ** with that name. If there is no variable with the given name,
1709 int sqlite3VdbeParameterIndex(Vdbe
*p
, const char *zName
, int nName
){
1710 if( p
==0 || zName
==0 ) return 0;
1711 return sqlite3VListNameToNum(p
->pVList
, zName
, nName
);
1713 int sqlite3_bind_parameter_index(sqlite3_stmt
*pStmt
, const char *zName
){
1714 return sqlite3VdbeParameterIndex((Vdbe
*)pStmt
, zName
, sqlite3Strlen30(zName
));
1718 ** Transfer all bindings from the first statement over to the second.
1720 int sqlite3TransferBindings(sqlite3_stmt
*pFromStmt
, sqlite3_stmt
*pToStmt
){
1721 Vdbe
*pFrom
= (Vdbe
*)pFromStmt
;
1722 Vdbe
*pTo
= (Vdbe
*)pToStmt
;
1724 assert( pTo
->db
==pFrom
->db
);
1725 assert( pTo
->nVar
==pFrom
->nVar
);
1726 sqlite3_mutex_enter(pTo
->db
->mutex
);
1727 for(i
=0; i
<pFrom
->nVar
; i
++){
1728 sqlite3VdbeMemMove(&pTo
->aVar
[i
], &pFrom
->aVar
[i
]);
1730 sqlite3_mutex_leave(pTo
->db
->mutex
);
1734 #ifndef SQLITE_OMIT_DEPRECATED
1736 ** Deprecated external interface. Internal/core SQLite code
1737 ** should call sqlite3TransferBindings.
1739 ** It is misuse to call this routine with statements from different
1740 ** database connections. But as this is a deprecated interface, we
1741 ** will not bother to check for that condition.
1743 ** If the two statements contain a different number of bindings, then
1744 ** an SQLITE_ERROR is returned. Nothing else can go wrong, so otherwise
1745 ** SQLITE_OK is returned.
1747 int sqlite3_transfer_bindings(sqlite3_stmt
*pFromStmt
, sqlite3_stmt
*pToStmt
){
1748 Vdbe
*pFrom
= (Vdbe
*)pFromStmt
;
1749 Vdbe
*pTo
= (Vdbe
*)pToStmt
;
1750 if( pFrom
->nVar
!=pTo
->nVar
){
1751 return SQLITE_ERROR
;
1753 assert( (pTo
->prepFlags
& SQLITE_PREPARE_SAVESQL
)!=0 || pTo
->expmask
==0 );
1757 assert( (pFrom
->prepFlags
& SQLITE_PREPARE_SAVESQL
)!=0 || pFrom
->expmask
==0 );
1758 if( pFrom
->expmask
){
1761 return sqlite3TransferBindings(pFromStmt
, pToStmt
);
1766 ** Return the sqlite3* database handle to which the prepared statement given
1767 ** in the argument belongs. This is the same database handle that was
1768 ** the first argument to the sqlite3_prepare() that was used to create
1769 ** the statement in the first place.
1771 sqlite3
*sqlite3_db_handle(sqlite3_stmt
*pStmt
){
1772 return pStmt
? ((Vdbe
*)pStmt
)->db
: 0;
1776 ** Return true if the prepared statement is guaranteed to not modify the
1779 int sqlite3_stmt_readonly(sqlite3_stmt
*pStmt
){
1780 return pStmt
? ((Vdbe
*)pStmt
)->readOnly
: 1;
1784 ** Return 1 if the statement is an EXPLAIN and return 2 if the
1785 ** statement is an EXPLAIN QUERY PLAN
1787 int sqlite3_stmt_isexplain(sqlite3_stmt
*pStmt
){
1788 return pStmt
? ((Vdbe
*)pStmt
)->explain
: 0;
1792 ** Return true if the prepared statement is in need of being reset.
1794 int sqlite3_stmt_busy(sqlite3_stmt
*pStmt
){
1795 Vdbe
*v
= (Vdbe
*)pStmt
;
1796 return v
!=0 && v
->eVdbeState
==VDBE_RUN_STATE
;
1800 ** Return a pointer to the next prepared statement after pStmt associated
1801 ** with database connection pDb. If pStmt is NULL, return the first
1802 ** prepared statement for the database connection. Return NULL if there
1805 sqlite3_stmt
*sqlite3_next_stmt(sqlite3
*pDb
, sqlite3_stmt
*pStmt
){
1806 sqlite3_stmt
*pNext
;
1807 #ifdef SQLITE_ENABLE_API_ARMOR
1808 if( !sqlite3SafetyCheckOk(pDb
) ){
1809 (void)SQLITE_MISUSE_BKPT
;
1813 sqlite3_mutex_enter(pDb
->mutex
);
1815 pNext
= (sqlite3_stmt
*)pDb
->pVdbe
;
1817 pNext
= (sqlite3_stmt
*)((Vdbe
*)pStmt
)->pVNext
;
1819 sqlite3_mutex_leave(pDb
->mutex
);
1824 ** Return the value of a status counter for a prepared statement
1826 int sqlite3_stmt_status(sqlite3_stmt
*pStmt
, int op
, int resetFlag
){
1827 Vdbe
*pVdbe
= (Vdbe
*)pStmt
;
1829 #ifdef SQLITE_ENABLE_API_ARMOR
1831 || (op
!=SQLITE_STMTSTATUS_MEMUSED
&& (op
<0||op
>=ArraySize(pVdbe
->aCounter
)))
1833 (void)SQLITE_MISUSE_BKPT
;
1837 if( op
==SQLITE_STMTSTATUS_MEMUSED
){
1838 sqlite3
*db
= pVdbe
->db
;
1839 sqlite3_mutex_enter(db
->mutex
);
1841 db
->pnBytesFreed
= (int*)&v
;
1842 assert( db
->lookaside
.pEnd
==db
->lookaside
.pTrueEnd
);
1843 db
->lookaside
.pEnd
= db
->lookaside
.pStart
;
1844 sqlite3VdbeDelete(pVdbe
);
1845 db
->pnBytesFreed
= 0;
1846 db
->lookaside
.pEnd
= db
->lookaside
.pTrueEnd
;
1847 sqlite3_mutex_leave(db
->mutex
);
1849 v
= pVdbe
->aCounter
[op
];
1850 if( resetFlag
) pVdbe
->aCounter
[op
] = 0;
1856 ** Return the SQL associated with a prepared statement
1858 const char *sqlite3_sql(sqlite3_stmt
*pStmt
){
1859 Vdbe
*p
= (Vdbe
*)pStmt
;
1860 return p
? p
->zSql
: 0;
1864 ** Return the SQL associated with a prepared statement with
1865 ** bound parameters expanded. Space to hold the returned string is
1866 ** obtained from sqlite3_malloc(). The caller is responsible for
1867 ** freeing the returned string by passing it to sqlite3_free().
1869 ** The SQLITE_TRACE_SIZE_LIMIT puts an upper bound on the size of
1870 ** expanded bound parameters.
1872 char *sqlite3_expanded_sql(sqlite3_stmt
*pStmt
){
1873 #ifdef SQLITE_OMIT_TRACE
1877 const char *zSql
= sqlite3_sql(pStmt
);
1879 Vdbe
*p
= (Vdbe
*)pStmt
;
1880 sqlite3_mutex_enter(p
->db
->mutex
);
1881 z
= sqlite3VdbeExpandSql(p
, zSql
);
1882 sqlite3_mutex_leave(p
->db
->mutex
);
1888 #ifdef SQLITE_ENABLE_NORMALIZE
1890 ** Return the normalized SQL associated with a prepared statement.
1892 const char *sqlite3_normalized_sql(sqlite3_stmt
*pStmt
){
1893 Vdbe
*p
= (Vdbe
*)pStmt
;
1894 if( p
==0 ) return 0;
1895 if( p
->zNormSql
==0 && ALWAYS(p
->zSql
!=0) ){
1896 sqlite3_mutex_enter(p
->db
->mutex
);
1897 p
->zNormSql
= sqlite3Normalize(p
, p
->zSql
);
1898 sqlite3_mutex_leave(p
->db
->mutex
);
1902 #endif /* SQLITE_ENABLE_NORMALIZE */
1904 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1906 ** Allocate and populate an UnpackedRecord structure based on the serialized
1907 ** record in nKey/pKey. Return a pointer to the new UnpackedRecord structure
1908 ** if successful, or a NULL pointer if an OOM error is encountered.
1910 static UnpackedRecord
*vdbeUnpackRecord(
1915 UnpackedRecord
*pRet
; /* Return value */
1917 pRet
= sqlite3VdbeAllocUnpackedRecord(pKeyInfo
);
1919 memset(pRet
->aMem
, 0, sizeof(Mem
)*(pKeyInfo
->nKeyField
+1));
1920 sqlite3VdbeRecordUnpack(pKeyInfo
, nKey
, pKey
, pRet
);
1926 ** This function is called from within a pre-update callback to retrieve
1927 ** a field of the row currently being updated or deleted.
1929 int sqlite3_preupdate_old(sqlite3
*db
, int iIdx
, sqlite3_value
**ppValue
){
1930 PreUpdate
*p
= db
->pPreUpdate
;
1934 /* Test that this call is being made from within an SQLITE_DELETE or
1935 ** SQLITE_UPDATE pre-update callback, and that iIdx is within range. */
1936 if( !p
|| p
->op
==SQLITE_INSERT
){
1937 rc
= SQLITE_MISUSE_BKPT
;
1938 goto preupdate_old_out
;
1941 iIdx
= sqlite3TableColumnToIndex(p
->pPk
, iIdx
);
1943 if( iIdx
>=p
->pCsr
->nField
|| iIdx
<0 ){
1945 goto preupdate_old_out
;
1948 /* If the old.* record has not yet been loaded into memory, do so now. */
1949 if( p
->pUnpacked
==0 ){
1953 assert( p
->pCsr
->eCurType
==CURTYPE_BTREE
);
1954 nRec
= sqlite3BtreePayloadSize(p
->pCsr
->uc
.pCursor
);
1955 aRec
= sqlite3DbMallocRaw(db
, nRec
);
1956 if( !aRec
) goto preupdate_old_out
;
1957 rc
= sqlite3BtreePayload(p
->pCsr
->uc
.pCursor
, 0, nRec
, aRec
);
1958 if( rc
==SQLITE_OK
){
1959 p
->pUnpacked
= vdbeUnpackRecord(&p
->keyinfo
, nRec
, aRec
);
1960 if( !p
->pUnpacked
) rc
= SQLITE_NOMEM
;
1962 if( rc
!=SQLITE_OK
){
1963 sqlite3DbFree(db
, aRec
);
1964 goto preupdate_old_out
;
1969 pMem
= *ppValue
= &p
->pUnpacked
->aMem
[iIdx
];
1970 if( iIdx
==p
->pTab
->iPKey
){
1971 sqlite3VdbeMemSetInt64(pMem
, p
->iKey1
);
1972 }else if( iIdx
>=p
->pUnpacked
->nField
){
1973 *ppValue
= (sqlite3_value
*)columnNullValue();
1974 }else if( p
->pTab
->aCol
[iIdx
].affinity
==SQLITE_AFF_REAL
){
1975 if( pMem
->flags
& (MEM_Int
|MEM_IntReal
) ){
1976 testcase( pMem
->flags
& MEM_Int
);
1977 testcase( pMem
->flags
& MEM_IntReal
);
1978 sqlite3VdbeMemRealify(pMem
);
1983 sqlite3Error(db
, rc
);
1984 return sqlite3ApiExit(db
, rc
);
1986 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1988 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1990 ** This function is called from within a pre-update callback to retrieve
1991 ** the number of columns in the row being updated, deleted or inserted.
1993 int sqlite3_preupdate_count(sqlite3
*db
){
1994 PreUpdate
*p
= db
->pPreUpdate
;
1995 return (p
? p
->keyinfo
.nKeyField
: 0);
1997 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1999 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
2001 ** This function is designed to be called from within a pre-update callback
2002 ** only. It returns zero if the change that caused the callback was made
2003 ** immediately by a user SQL statement. Or, if the change was made by a
2004 ** trigger program, it returns the number of trigger programs currently
2005 ** on the stack (1 for a top-level trigger, 2 for a trigger fired by a
2006 ** top-level trigger etc.).
2008 ** For the purposes of the previous paragraph, a foreign key CASCADE, SET NULL
2009 ** or SET DEFAULT action is considered a trigger.
2011 int sqlite3_preupdate_depth(sqlite3
*db
){
2012 PreUpdate
*p
= db
->pPreUpdate
;
2013 return (p
? p
->v
->nFrame
: 0);
2015 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
2017 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
2019 ** This function is designed to be called from within a pre-update callback
2022 int sqlite3_preupdate_blobwrite(sqlite3
*db
){
2023 PreUpdate
*p
= db
->pPreUpdate
;
2024 return (p
? p
->iBlobWrite
: -1);
2028 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
2030 ** This function is called from within a pre-update callback to retrieve
2031 ** a field of the row currently being updated or inserted.
2033 int sqlite3_preupdate_new(sqlite3
*db
, int iIdx
, sqlite3_value
**ppValue
){
2034 PreUpdate
*p
= db
->pPreUpdate
;
2038 if( !p
|| p
->op
==SQLITE_DELETE
){
2039 rc
= SQLITE_MISUSE_BKPT
;
2040 goto preupdate_new_out
;
2042 if( p
->pPk
&& p
->op
!=SQLITE_UPDATE
){
2043 iIdx
= sqlite3TableColumnToIndex(p
->pPk
, iIdx
);
2045 if( iIdx
>=p
->pCsr
->nField
|| iIdx
<0 ){
2047 goto preupdate_new_out
;
2050 if( p
->op
==SQLITE_INSERT
){
2051 /* For an INSERT, memory cell p->iNewReg contains the serialized record
2052 ** that is being inserted. Deserialize it. */
2053 UnpackedRecord
*pUnpack
= p
->pNewUnpacked
;
2055 Mem
*pData
= &p
->v
->aMem
[p
->iNewReg
];
2056 rc
= ExpandBlob(pData
);
2057 if( rc
!=SQLITE_OK
) goto preupdate_new_out
;
2058 pUnpack
= vdbeUnpackRecord(&p
->keyinfo
, pData
->n
, pData
->z
);
2061 goto preupdate_new_out
;
2063 p
->pNewUnpacked
= pUnpack
;
2065 pMem
= &pUnpack
->aMem
[iIdx
];
2066 if( iIdx
==p
->pTab
->iPKey
){
2067 sqlite3VdbeMemSetInt64(pMem
, p
->iKey2
);
2068 }else if( iIdx
>=pUnpack
->nField
){
2069 pMem
= (sqlite3_value
*)columnNullValue();
2072 /* For an UPDATE, memory cell (p->iNewReg+1+iIdx) contains the required
2073 ** value. Make a copy of the cell contents and return a pointer to it.
2074 ** It is not safe to return a pointer to the memory cell itself as the
2075 ** caller may modify the value text encoding.
2077 assert( p
->op
==SQLITE_UPDATE
);
2079 p
->aNew
= (Mem
*)sqlite3DbMallocZero(db
, sizeof(Mem
) * p
->pCsr
->nField
);
2082 goto preupdate_new_out
;
2085 assert( iIdx
>=0 && iIdx
<p
->pCsr
->nField
);
2086 pMem
= &p
->aNew
[iIdx
];
2087 if( pMem
->flags
==0 ){
2088 if( iIdx
==p
->pTab
->iPKey
){
2089 sqlite3VdbeMemSetInt64(pMem
, p
->iKey2
);
2091 rc
= sqlite3VdbeMemCopy(pMem
, &p
->v
->aMem
[p
->iNewReg
+1+iIdx
]);
2092 if( rc
!=SQLITE_OK
) goto preupdate_new_out
;
2099 sqlite3Error(db
, rc
);
2100 return sqlite3ApiExit(db
, rc
);
2102 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
2104 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2106 ** Return status data for a single loop within query pStmt.
2108 int sqlite3_stmt_scanstatus(
2109 sqlite3_stmt
*pStmt
, /* Prepared statement being queried */
2110 int idx
, /* Index of loop to report on */
2111 int iScanStatusOp
, /* Which metric to return */
2112 void *pOut
/* OUT: Write the answer here */
2114 Vdbe
*p
= (Vdbe
*)pStmt
;
2116 if( idx
<0 || idx
>=p
->nScan
) return 1;
2117 pScan
= &p
->aScan
[idx
];
2118 switch( iScanStatusOp
){
2119 case SQLITE_SCANSTAT_NLOOP
: {
2120 *(sqlite3_int64
*)pOut
= p
->anExec
[pScan
->addrLoop
];
2123 case SQLITE_SCANSTAT_NVISIT
: {
2124 *(sqlite3_int64
*)pOut
= p
->anExec
[pScan
->addrVisit
];
2127 case SQLITE_SCANSTAT_EST
: {
2129 LogEst x
= pScan
->nEst
;
2134 *(double*)pOut
= r
*sqlite3LogEstToInt(x
);
2137 case SQLITE_SCANSTAT_NAME
: {
2138 *(const char**)pOut
= pScan
->zName
;
2141 case SQLITE_SCANSTAT_EXPLAIN
: {
2142 if( pScan
->addrExplain
){
2143 *(const char**)pOut
= p
->aOp
[ pScan
->addrExplain
].p4
.z
;
2145 *(const char**)pOut
= 0;
2149 case SQLITE_SCANSTAT_SELECTID
: {
2150 if( pScan
->addrExplain
){
2151 *(int*)pOut
= p
->aOp
[ pScan
->addrExplain
].p1
;
2165 ** Zero all counters associated with the sqlite3_stmt_scanstatus() data.
2167 void sqlite3_stmt_scanstatus_reset(sqlite3_stmt
*pStmt
){
2168 Vdbe
*p
= (Vdbe
*)pStmt
;
2169 memset(p
->anExec
, 0, p
->nOp
* sizeof(i64
));
2171 #endif /* SQLITE_ENABLE_STMT_SCANSTATUS */