4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle INSERT statements in SQLite.
15 #include "sqliteInt.h"
18 ** Generate code that will
20 ** (1) acquire a lock for table pTab then
21 ** (2) open pTab as cursor iCur.
23 ** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index
24 ** for that table that is actually opened.
26 void sqlite3OpenTable(
27 Parse
*pParse
, /* Generate code into this VDBE */
28 int iCur
, /* The cursor number of the table */
29 int iDb
, /* The database index in sqlite3.aDb[] */
30 Table
*pTab
, /* The table to be opened */
31 int opcode
/* OP_OpenRead or OP_OpenWrite */
34 assert( !IsVirtual(pTab
) );
35 assert( pParse
->pVdbe
!=0 );
37 assert( opcode
==OP_OpenWrite
|| opcode
==OP_OpenRead
);
38 if( !pParse
->db
->noSharedCache
){
39 sqlite3TableLock(pParse
, iDb
, pTab
->tnum
,
40 (opcode
==OP_OpenWrite
)?1:0, pTab
->zName
);
43 sqlite3VdbeAddOp4Int(v
, opcode
, iCur
, pTab
->tnum
, iDb
, pTab
->nNVCol
);
44 VdbeComment((v
, "%s", pTab
->zName
));
46 Index
*pPk
= sqlite3PrimaryKeyIndex(pTab
);
48 assert( pPk
->tnum
==pTab
->tnum
|| CORRUPT_DB
);
49 sqlite3VdbeAddOp3(v
, opcode
, iCur
, pPk
->tnum
, iDb
);
50 sqlite3VdbeSetP4KeyInfo(pParse
, pPk
);
51 VdbeComment((v
, "%s", pTab
->zName
));
56 ** Return a pointer to the column affinity string associated with index
57 ** pIdx. A column affinity string has one character for each column in
58 ** the table, according to the affinity of the column:
60 ** Character Column affinity
61 ** ------------------------------
68 ** An extra 'D' is appended to the end of the string to cover the
69 ** rowid that appears as the last column in every index.
71 ** Memory for the buffer containing the column index affinity string
72 ** is managed along with the rest of the Index structure. It will be
73 ** released when sqlite3DeleteIndex() is called.
75 static SQLITE_NOINLINE
const char *computeIndexAffStr(sqlite3
*db
, Index
*pIdx
){
76 /* The first time a column affinity string for a particular index is
77 ** required, it is allocated and populated here. It is then stored as
78 ** a member of the Index structure for subsequent use.
80 ** The column affinity string will eventually be deleted by
81 ** sqliteDeleteIndex() when the Index structure itself is cleaned
85 Table
*pTab
= pIdx
->pTable
;
86 pIdx
->zColAff
= (char *)sqlite3DbMallocRaw(0, pIdx
->nColumn
+1);
91 for(n
=0; n
<pIdx
->nColumn
; n
++){
92 i16 x
= pIdx
->aiColumn
[n
];
95 aff
= pTab
->aCol
[x
].affinity
;
96 }else if( x
==XN_ROWID
){
97 aff
= SQLITE_AFF_INTEGER
;
100 assert( pIdx
->bHasExpr
);
101 assert( pIdx
->aColExpr
!=0 );
102 aff
= sqlite3ExprAffinity(pIdx
->aColExpr
->a
[n
].pExpr
);
104 if( aff
<SQLITE_AFF_BLOB
) aff
= SQLITE_AFF_BLOB
;
105 if( aff
>SQLITE_AFF_NUMERIC
) aff
= SQLITE_AFF_NUMERIC
;
106 pIdx
->zColAff
[n
] = aff
;
108 pIdx
->zColAff
[n
] = 0;
109 return pIdx
->zColAff
;
111 const char *sqlite3IndexAffinityStr(sqlite3
*db
, Index
*pIdx
){
112 if( !pIdx
->zColAff
) return computeIndexAffStr(db
, pIdx
);
113 return pIdx
->zColAff
;
118 ** Compute an affinity string for a table. Space is obtained
119 ** from sqlite3DbMalloc(). The caller is responsible for freeing
120 ** the space when done.
122 char *sqlite3TableAffinityStr(sqlite3
*db
, const Table
*pTab
){
124 zColAff
= (char *)sqlite3DbMallocRaw(db
, pTab
->nCol
+1);
127 for(i
=j
=0; i
<pTab
->nCol
; i
++){
128 if( (pTab
->aCol
[i
].colFlags
& COLFLAG_VIRTUAL
)==0 ){
129 zColAff
[j
++] = pTab
->aCol
[i
].affinity
;
134 }while( j
>=0 && zColAff
[j
]<=SQLITE_AFF_BLOB
);
140 ** Make changes to the evolving bytecode to do affinity transformations
141 ** of values that are about to be gathered into a row for table pTab.
143 ** For ordinary (legacy, non-strict) tables:
144 ** -----------------------------------------
146 ** Compute the affinity string for table pTab, if it has not already been
147 ** computed. As an optimization, omit trailing SQLITE_AFF_BLOB affinities.
149 ** If the affinity string is empty (because it was all SQLITE_AFF_BLOB entries
150 ** which were then optimized out) then this routine becomes a no-op.
152 ** Otherwise if iReg>0 then code an OP_Affinity opcode that will set the
153 ** affinities for register iReg and following. Or if iReg==0,
154 ** then just set the P4 operand of the previous opcode (which should be
155 ** an OP_MakeRecord) to the affinity string.
157 ** A column affinity string has one character per column:
159 ** Character Column affinity
160 ** --------- ---------------
167 ** For STRICT tables:
168 ** ------------------
170 ** Generate an appropriate OP_TypeCheck opcode that will verify the
171 ** datatypes against the column definitions in pTab. If iReg==0, that
172 ** means an OP_MakeRecord opcode has already been generated and should be
173 ** the last opcode generated. The new OP_TypeCheck needs to be inserted
174 ** before the OP_MakeRecord. The new OP_TypeCheck should use the same
175 ** register set as the OP_MakeRecord. If iReg>0 then register iReg is
176 ** the first of a series of registers that will form the new record.
177 ** Apply the type checking to that array of registers.
179 void sqlite3TableAffinity(Vdbe
*v
, Table
*pTab
, int iReg
){
182 if( pTab
->tabFlags
& TF_Strict
){
184 /* Move the previous opcode (which should be OP_MakeRecord) forward
185 ** by one slot and insert a new OP_TypeCheck where the current
186 ** OP_MakeRecord is found */
188 sqlite3VdbeAppendP4(v
, pTab
, P4_TABLE
);
189 pPrev
= sqlite3VdbeGetLastOp(v
);
191 assert( pPrev
->opcode
==OP_MakeRecord
|| sqlite3VdbeDb(v
)->mallocFailed
);
192 pPrev
->opcode
= OP_TypeCheck
;
193 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, pPrev
->p1
, pPrev
->p2
, pPrev
->p3
);
195 /* Insert an isolated OP_Typecheck */
196 sqlite3VdbeAddOp2(v
, OP_TypeCheck
, iReg
, pTab
->nNVCol
);
197 sqlite3VdbeAppendP4(v
, pTab
, P4_TABLE
);
201 zColAff
= pTab
->zColAff
;
203 zColAff
= sqlite3TableAffinityStr(0, pTab
);
205 sqlite3OomFault(sqlite3VdbeDb(v
));
208 pTab
->zColAff
= zColAff
;
210 assert( zColAff
!=0 );
211 i
= sqlite3Strlen30NN(zColAff
);
214 sqlite3VdbeAddOp4(v
, OP_Affinity
, iReg
, i
, 0, zColAff
, i
);
216 assert( sqlite3VdbeGetLastOp(v
)->opcode
==OP_MakeRecord
217 || sqlite3VdbeDb(v
)->mallocFailed
);
218 sqlite3VdbeChangeP4(v
, -1, zColAff
, i
);
224 ** Return non-zero if the table pTab in database iDb or any of its indices
225 ** have been opened at any point in the VDBE program. This is used to see if
226 ** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can
227 ** run without using a temporary table for the results of the SELECT.
229 static int readsTable(Parse
*p
, int iDb
, Table
*pTab
){
230 Vdbe
*v
= sqlite3GetVdbe(p
);
232 int iEnd
= sqlite3VdbeCurrentAddr(v
);
233 #ifndef SQLITE_OMIT_VIRTUALTABLE
234 VTable
*pVTab
= IsVirtual(pTab
) ? sqlite3GetVTable(p
->db
, pTab
) : 0;
237 for(i
=1; i
<iEnd
; i
++){
238 VdbeOp
*pOp
= sqlite3VdbeGetOp(v
, i
);
240 if( pOp
->opcode
==OP_OpenRead
&& pOp
->p3
==iDb
){
243 if( tnum
==pTab
->tnum
){
246 for(pIndex
=pTab
->pIndex
; pIndex
; pIndex
=pIndex
->pNext
){
247 if( tnum
==pIndex
->tnum
){
252 #ifndef SQLITE_OMIT_VIRTUALTABLE
253 if( pOp
->opcode
==OP_VOpen
&& pOp
->p4
.pVtab
==pVTab
){
254 assert( pOp
->p4
.pVtab
!=0 );
255 assert( pOp
->p4type
==P4_VTAB
);
263 /* This walker callback will compute the union of colFlags flags for all
264 ** referenced columns in a CHECK constraint or generated column expression.
266 static int exprColumnFlagUnion(Walker
*pWalker
, Expr
*pExpr
){
267 if( pExpr
->op
==TK_COLUMN
&& pExpr
->iColumn
>=0 ){
268 assert( pExpr
->iColumn
< pWalker
->u
.pTab
->nCol
);
269 pWalker
->eCode
|= pWalker
->u
.pTab
->aCol
[pExpr
->iColumn
].colFlags
;
274 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
276 ** All regular columns for table pTab have been puts into registers
277 ** starting with iRegStore. The registers that correspond to STORED
278 ** or VIRTUAL columns have not yet been initialized. This routine goes
279 ** back and computes the values for those columns based on the previously
280 ** computed normal columns.
282 void sqlite3ComputeGeneratedColumns(
283 Parse
*pParse
, /* Parsing context */
284 int iRegStore
, /* Register holding the first column */
285 Table
*pTab
/* The table */
293 assert( pTab
->tabFlags
& TF_HasGenerated
);
294 testcase( pTab
->tabFlags
& TF_HasVirtual
);
295 testcase( pTab
->tabFlags
& TF_HasStored
);
297 /* Before computing generated columns, first go through and make sure
298 ** that appropriate affinity has been applied to the regular columns
300 sqlite3TableAffinity(pParse
->pVdbe
, pTab
, iRegStore
);
301 if( (pTab
->tabFlags
& TF_HasStored
)!=0 ){
302 pOp
= sqlite3VdbeGetLastOp(pParse
->pVdbe
);
303 if( pOp
->opcode
==OP_Affinity
){
304 /* Change the OP_Affinity argument to '@' (NONE) for all stored
305 ** columns. '@' is the no-op affinity and those columns have not
306 ** yet been computed. */
308 char *zP4
= pOp
->p4
.z
;
310 assert( pOp
->p4type
==P4_DYNAMIC
);
311 for(ii
=jj
=0; zP4
[jj
]; ii
++){
312 if( pTab
->aCol
[ii
].colFlags
& COLFLAG_VIRTUAL
){
315 if( pTab
->aCol
[ii
].colFlags
& COLFLAG_STORED
){
316 zP4
[jj
] = SQLITE_AFF_NONE
;
320 }else if( pOp
->opcode
==OP_TypeCheck
){
321 /* If an OP_TypeCheck was generated because the table is STRICT,
322 ** then set the P3 operand to indicate that generated columns should
328 /* Because there can be multiple generated columns that refer to one another,
329 ** this is a two-pass algorithm. On the first pass, mark all generated
330 ** columns as "not available".
332 for(i
=0; i
<pTab
->nCol
; i
++){
333 if( pTab
->aCol
[i
].colFlags
& COLFLAG_GENERATED
){
334 testcase( pTab
->aCol
[i
].colFlags
& COLFLAG_VIRTUAL
);
335 testcase( pTab
->aCol
[i
].colFlags
& COLFLAG_STORED
);
336 pTab
->aCol
[i
].colFlags
|= COLFLAG_NOTAVAIL
;
341 w
.xExprCallback
= exprColumnFlagUnion
;
342 w
.xSelectCallback
= 0;
343 w
.xSelectCallback2
= 0;
345 /* On the second pass, compute the value of each NOT-AVAILABLE column.
346 ** Companion code in the TK_COLUMN case of sqlite3ExprCodeTarget() will
347 ** compute dependencies and mark remove the COLSPAN_NOTAVAIL mark, as
350 pParse
->iSelfTab
= -iRegStore
;
354 for(i
=0; i
<pTab
->nCol
; i
++){
355 Column
*pCol
= pTab
->aCol
+ i
;
356 if( (pCol
->colFlags
& COLFLAG_NOTAVAIL
)!=0 ){
358 pCol
->colFlags
|= COLFLAG_BUSY
;
360 sqlite3WalkExpr(&w
, sqlite3ColumnExpr(pTab
, pCol
));
361 pCol
->colFlags
&= ~COLFLAG_BUSY
;
362 if( w
.eCode
& COLFLAG_NOTAVAIL
){
367 assert( pCol
->colFlags
& COLFLAG_GENERATED
);
368 x
= sqlite3TableColumnToStorage(pTab
, i
) + iRegStore
;
369 sqlite3ExprCodeGeneratedColumn(pParse
, pTab
, pCol
, x
);
370 pCol
->colFlags
&= ~COLFLAG_NOTAVAIL
;
373 }while( pRedo
&& eProgress
);
375 sqlite3ErrorMsg(pParse
, "generated column loop on \"%s\"", pRedo
->zCnName
);
377 pParse
->iSelfTab
= 0;
379 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
382 #ifndef SQLITE_OMIT_AUTOINCREMENT
384 ** Locate or create an AutoincInfo structure associated with table pTab
385 ** which is in database iDb. Return the register number for the register
386 ** that holds the maximum rowid. Return zero if pTab is not an AUTOINCREMENT
387 ** table. (Also return zero when doing a VACUUM since we do not want to
388 ** update the AUTOINCREMENT counters during a VACUUM.)
390 ** There is at most one AutoincInfo structure per table even if the
391 ** same table is autoincremented multiple times due to inserts within
392 ** triggers. A new AutoincInfo structure is created if this is the
393 ** first use of table pTab. On 2nd and subsequent uses, the original
394 ** AutoincInfo structure is used.
396 ** Four consecutive registers are allocated:
398 ** (1) The name of the pTab table.
399 ** (2) The maximum ROWID of pTab.
400 ** (3) The rowid in sqlite_sequence of pTab
401 ** (4) The original value of the max ROWID in pTab, or NULL if none
403 ** The 2nd register is the one that is returned. That is all the
404 ** insert routine needs to know about.
406 static int autoIncBegin(
407 Parse
*pParse
, /* Parsing context */
408 int iDb
, /* Index of the database holding pTab */
409 Table
*pTab
/* The table we are writing to */
411 int memId
= 0; /* Register holding maximum rowid */
412 assert( pParse
->db
->aDb
[iDb
].pSchema
!=0 );
413 if( (pTab
->tabFlags
& TF_Autoincrement
)!=0
414 && (pParse
->db
->mDbFlags
& DBFLAG_Vacuum
)==0
416 Parse
*pToplevel
= sqlite3ParseToplevel(pParse
);
418 Table
*pSeqTab
= pParse
->db
->aDb
[iDb
].pSchema
->pSeqTab
;
420 /* Verify that the sqlite_sequence table exists and is an ordinary
421 ** rowid table with exactly two columns.
422 ** Ticket d8dc2b3a58cd5dc2918a1d4acb 2018-05-23 */
424 || !HasRowid(pSeqTab
)
425 || NEVER(IsVirtual(pSeqTab
))
429 pParse
->rc
= SQLITE_CORRUPT_SEQUENCE
;
433 pInfo
= pToplevel
->pAinc
;
434 while( pInfo
&& pInfo
->pTab
!=pTab
){ pInfo
= pInfo
->pNext
; }
436 pInfo
= sqlite3DbMallocRawNN(pParse
->db
, sizeof(*pInfo
));
437 sqlite3ParserAddCleanup(pToplevel
, sqlite3DbFree
, pInfo
);
438 testcase( pParse
->earlyCleanup
);
439 if( pParse
->db
->mallocFailed
) return 0;
440 pInfo
->pNext
= pToplevel
->pAinc
;
441 pToplevel
->pAinc
= pInfo
;
444 pToplevel
->nMem
++; /* Register to hold name of table */
445 pInfo
->regCtr
= ++pToplevel
->nMem
; /* Max rowid register */
446 pToplevel
->nMem
+=2; /* Rowid in sqlite_sequence + orig max val */
448 memId
= pInfo
->regCtr
;
454 ** This routine generates code that will initialize all of the
455 ** register used by the autoincrement tracker.
457 void sqlite3AutoincrementBegin(Parse
*pParse
){
458 AutoincInfo
*p
; /* Information about an AUTOINCREMENT */
459 sqlite3
*db
= pParse
->db
; /* The database connection */
460 Db
*pDb
; /* Database only autoinc table */
461 int memId
; /* Register holding max rowid */
462 Vdbe
*v
= pParse
->pVdbe
; /* VDBE under construction */
464 /* This routine is never called during trigger-generation. It is
465 ** only called from the top-level */
466 assert( pParse
->pTriggerTab
==0 );
467 assert( sqlite3IsToplevel(pParse
) );
469 assert( v
); /* We failed long ago if this is not so */
470 for(p
= pParse
->pAinc
; p
; p
= p
->pNext
){
471 static const int iLn
= VDBE_OFFSET_LINENO(2);
472 static const VdbeOpList autoInc
[] = {
473 /* 0 */ {OP_Null
, 0, 0, 0},
474 /* 1 */ {OP_Rewind
, 0, 10, 0},
475 /* 2 */ {OP_Column
, 0, 0, 0},
476 /* 3 */ {OP_Ne
, 0, 9, 0},
477 /* 4 */ {OP_Rowid
, 0, 0, 0},
478 /* 5 */ {OP_Column
, 0, 1, 0},
479 /* 6 */ {OP_AddImm
, 0, 0, 0},
480 /* 7 */ {OP_Copy
, 0, 0, 0},
481 /* 8 */ {OP_Goto
, 0, 11, 0},
482 /* 9 */ {OP_Next
, 0, 2, 0},
483 /* 10 */ {OP_Integer
, 0, 0, 0},
484 /* 11 */ {OP_Close
, 0, 0, 0}
487 pDb
= &db
->aDb
[p
->iDb
];
489 assert( sqlite3SchemaMutexHeld(db
, 0, pDb
->pSchema
) );
490 sqlite3OpenTable(pParse
, 0, p
->iDb
, pDb
->pSchema
->pSeqTab
, OP_OpenRead
);
491 sqlite3VdbeLoadString(v
, memId
-1, p
->pTab
->zName
);
492 aOp
= sqlite3VdbeAddOpList(v
, ArraySize(autoInc
), autoInc
, iLn
);
499 aOp
[3].p5
= SQLITE_JUMPIFNULL
;
506 if( pParse
->nTab
==0 ) pParse
->nTab
= 1;
511 ** Update the maximum rowid for an autoincrement calculation.
513 ** This routine should be called when the regRowid register holds a
514 ** new rowid that is about to be inserted. If that new rowid is
515 ** larger than the maximum rowid in the memId memory cell, then the
516 ** memory cell is updated.
518 static void autoIncStep(Parse
*pParse
, int memId
, int regRowid
){
520 sqlite3VdbeAddOp2(pParse
->pVdbe
, OP_MemMax
, memId
, regRowid
);
525 ** This routine generates the code needed to write autoincrement
526 ** maximum rowid values back into the sqlite_sequence register.
527 ** Every statement that might do an INSERT into an autoincrement
528 ** table (either directly or through triggers) needs to call this
529 ** routine just before the "exit" code.
531 static SQLITE_NOINLINE
void autoIncrementEnd(Parse
*pParse
){
533 Vdbe
*v
= pParse
->pVdbe
;
534 sqlite3
*db
= pParse
->db
;
537 for(p
= pParse
->pAinc
; p
; p
= p
->pNext
){
538 static const int iLn
= VDBE_OFFSET_LINENO(2);
539 static const VdbeOpList autoIncEnd
[] = {
540 /* 0 */ {OP_NotNull
, 0, 2, 0},
541 /* 1 */ {OP_NewRowid
, 0, 0, 0},
542 /* 2 */ {OP_MakeRecord
, 0, 2, 0},
543 /* 3 */ {OP_Insert
, 0, 0, 0},
544 /* 4 */ {OP_Close
, 0, 0, 0}
547 Db
*pDb
= &db
->aDb
[p
->iDb
];
549 int memId
= p
->regCtr
;
551 iRec
= sqlite3GetTempReg(pParse
);
552 assert( sqlite3SchemaMutexHeld(db
, 0, pDb
->pSchema
) );
553 sqlite3VdbeAddOp3(v
, OP_Le
, memId
+2, sqlite3VdbeCurrentAddr(v
)+7, memId
);
555 sqlite3OpenTable(pParse
, 0, p
->iDb
, pDb
->pSchema
->pSeqTab
, OP_OpenWrite
);
556 aOp
= sqlite3VdbeAddOpList(v
, ArraySize(autoIncEnd
), autoIncEnd
, iLn
);
564 aOp
[3].p5
= OPFLAG_APPEND
;
565 sqlite3ReleaseTempReg(pParse
, iRec
);
568 void sqlite3AutoincrementEnd(Parse
*pParse
){
569 if( pParse
->pAinc
) autoIncrementEnd(pParse
);
573 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines
574 ** above are all no-ops
576 # define autoIncBegin(A,B,C) (0)
577 # define autoIncStep(A,B,C)
578 #endif /* SQLITE_OMIT_AUTOINCREMENT */
581 /* Forward declaration */
582 static int xferOptimization(
583 Parse
*pParse
, /* Parser context */
584 Table
*pDest
, /* The table we are inserting into */
585 Select
*pSelect
, /* A SELECT statement to use as the data source */
586 int onError
, /* How to handle constraint errors */
587 int iDbDest
/* The database of pDest */
591 ** This routine is called to handle SQL of the following forms:
593 ** insert into TABLE (IDLIST) values(EXPRLIST),(EXPRLIST),...
594 ** insert into TABLE (IDLIST) select
595 ** insert into TABLE (IDLIST) default values
597 ** The IDLIST following the table name is always optional. If omitted,
598 ** then a list of all (non-hidden) columns for the table is substituted.
599 ** The IDLIST appears in the pColumn parameter. pColumn is NULL if IDLIST
602 ** For the pSelect parameter holds the values to be inserted for the
603 ** first two forms shown above. A VALUES clause is really just short-hand
604 ** for a SELECT statement that omits the FROM clause and everything else
605 ** that follows. If the pSelect parameter is NULL, that means that the
606 ** DEFAULT VALUES form of the INSERT statement is intended.
608 ** The code generated follows one of four templates. For a simple
609 ** insert with data coming from a single-row VALUES clause, the code executes
610 ** once straight down through. Pseudo-code follows (we call this
611 ** the "1st template"):
613 ** open write cursor to <table> and its indices
614 ** put VALUES clause expressions into registers
615 ** write the resulting record into <table>
618 ** The three remaining templates assume the statement is of the form
620 ** INSERT INTO <table> SELECT ...
622 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" -
623 ** in other words if the SELECT pulls all columns from a single table
624 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and
625 ** if <table2> and <table1> are distinct tables but have identical
626 ** schemas, including all the same indices, then a special optimization
627 ** is invoked that copies raw records from <table2> over to <table1>.
628 ** See the xferOptimization() function for the implementation of this
629 ** template. This is the 2nd template.
631 ** open a write cursor to <table>
632 ** open read cursor on <table2>
633 ** transfer all records in <table2> over to <table>
635 ** foreach index on <table>
636 ** open a write cursor on the <table> index
637 ** open a read cursor on the corresponding <table2> index
638 ** transfer all records from the read to the write cursors
642 ** The 3rd template is for when the second template does not apply
643 ** and the SELECT clause does not read from <table> at any time.
644 ** The generated code follows this template:
648 ** A: setup for the SELECT
649 ** loop over the rows in the SELECT
650 ** load values into registers R..R+n
653 ** cleanup after the SELECT
655 ** B: open write cursor to <table> and its indices
656 ** C: yield X, at EOF goto D
657 ** insert the select result into <table> from R..R+n
661 ** The 4th template is used if the insert statement takes its
662 ** values from a SELECT but the data is being inserted into a table
663 ** that is also read as part of the SELECT. In the third form,
664 ** we have to use an intermediate table to store the results of
665 ** the select. The template is like this:
669 ** A: setup for the SELECT
670 ** loop over the tables in the SELECT
671 ** load value into register R..R+n
674 ** cleanup after the SELECT
676 ** B: open temp table
677 ** L: yield X, at EOF goto M
678 ** insert row from R..R+n into temp table
680 ** M: open write cursor to <table> and its indices
682 ** C: loop over rows of intermediate table
683 ** transfer values form intermediate table into <table>
688 Parse
*pParse
, /* Parser context */
689 SrcList
*pTabList
, /* Name of table into which we are inserting */
690 Select
*pSelect
, /* A SELECT statement to use as the data source */
691 IdList
*pColumn
, /* Column names corresponding to IDLIST, or NULL. */
692 int onError
, /* How to handle constraint errors */
693 Upsert
*pUpsert
/* ON CONFLICT clauses for upsert, or NULL */
695 sqlite3
*db
; /* The main database structure */
696 Table
*pTab
; /* The table to insert into. aka TABLE */
697 int i
, j
; /* Loop counters */
698 Vdbe
*v
; /* Generate code into this virtual machine */
699 Index
*pIdx
; /* For looping over indices of the table */
700 int nColumn
; /* Number of columns in the data */
701 int nHidden
= 0; /* Number of hidden columns if TABLE is virtual */
702 int iDataCur
= 0; /* VDBE cursor that is the main data repository */
703 int iIdxCur
= 0; /* First index cursor */
704 int ipkColumn
= -1; /* Column that is the INTEGER PRIMARY KEY */
705 int endOfLoop
; /* Label for the end of the insertion loop */
706 int srcTab
= 0; /* Data comes from this temporary cursor if >=0 */
707 int addrInsTop
= 0; /* Jump to label "D" */
708 int addrCont
= 0; /* Top of insert loop. Label "C" in templates 3 and 4 */
709 SelectDest dest
; /* Destination for SELECT on rhs of INSERT */
710 int iDb
; /* Index of database holding TABLE */
711 u8 useTempTable
= 0; /* Store SELECT results in intermediate table */
712 u8 appendFlag
= 0; /* True if the insert is likely to be an append */
713 u8 withoutRowid
; /* 0 for normal table. 1 for WITHOUT ROWID table */
714 u8 bIdListInOrder
; /* True if IDLIST is in table order */
715 ExprList
*pList
= 0; /* List of VALUES() to be inserted */
716 int iRegStore
; /* Register in which to store next column */
718 /* Register allocations */
719 int regFromSelect
= 0;/* Base register for data coming from SELECT */
720 int regAutoinc
= 0; /* Register holding the AUTOINCREMENT counter */
721 int regRowCount
= 0; /* Memory cell used for the row counter */
722 int regIns
; /* Block of regs holding rowid+data being inserted */
723 int regRowid
; /* registers holding insert rowid */
724 int regData
; /* register holding first column to insert */
725 int *aRegIdx
= 0; /* One register allocated to each index */
727 #ifndef SQLITE_OMIT_TRIGGER
728 int isView
; /* True if attempting to insert into a view */
729 Trigger
*pTrigger
; /* List of triggers on pTab, if required */
730 int tmask
; /* Mask of trigger times */
734 assert( db
->pParse
==pParse
);
738 assert( db
->mallocFailed
==0 );
739 dest
.iSDParm
= 0; /* Suppress a harmless compiler warning */
741 /* If the Select object is really just a simple VALUES() list with a
742 ** single row (the common case) then keep that one row of values
743 ** and discard the other (unused) parts of the pSelect object
745 if( pSelect
&& (pSelect
->selFlags
& SF_Values
)!=0 && pSelect
->pPrior
==0 ){
746 pList
= pSelect
->pEList
;
748 sqlite3SelectDelete(db
, pSelect
);
752 /* Locate the table into which we will be inserting new information.
754 assert( pTabList
->nSrc
==1 );
755 pTab
= sqlite3SrcListLookup(pParse
, pTabList
);
759 iDb
= sqlite3SchemaToIndex(db
, pTab
->pSchema
);
760 assert( iDb
<db
->nDb
);
761 if( sqlite3AuthCheck(pParse
, SQLITE_INSERT
, pTab
->zName
, 0,
762 db
->aDb
[iDb
].zDbSName
) ){
765 withoutRowid
= !HasRowid(pTab
);
767 /* Figure out if we have any triggers and if the table being
768 ** inserted into is a view
770 #ifndef SQLITE_OMIT_TRIGGER
771 pTrigger
= sqlite3TriggersExist(pParse
, pTab
, TK_INSERT
, 0, &tmask
);
772 isView
= IsView(pTab
);
778 #ifdef SQLITE_OMIT_VIEW
782 assert( (pTrigger
&& tmask
) || (pTrigger
==0 && tmask
==0) );
784 #if TREETRACE_ENABLED
785 if( sqlite3TreeTrace
& 0x10000 ){
786 sqlite3TreeViewLine(0, "In sqlite3Insert() at %s:%d", __FILE__
, __LINE__
);
787 sqlite3TreeViewInsert(pParse
->pWith
, pTabList
, pColumn
, pSelect
, pList
,
788 onError
, pUpsert
, pTrigger
);
792 /* If pTab is really a view, make sure it has been initialized.
793 ** ViewGetColumnNames() is a no-op if pTab is not a view.
795 if( sqlite3ViewGetColumnNames(pParse
, pTab
) ){
799 /* Cannot insert into a read-only table.
801 if( sqlite3IsReadOnly(pParse
, pTab
, pTrigger
) ){
807 v
= sqlite3GetVdbe(pParse
);
808 if( v
==0 ) goto insert_cleanup
;
809 if( pParse
->nested
==0 ) sqlite3VdbeCountChanges(v
);
810 sqlite3BeginWriteOperation(pParse
, pSelect
|| pTrigger
, iDb
);
812 #ifndef SQLITE_OMIT_XFER_OPT
813 /* If the statement is of the form
815 ** INSERT INTO <table1> SELECT * FROM <table2>;
817 ** Then special optimizations can be applied that make the transfer
818 ** very fast and which reduce fragmentation of indices.
820 ** This is the 2nd template.
825 && xferOptimization(pParse
, pTab
, pSelect
, onError
, iDb
)
831 #endif /* SQLITE_OMIT_XFER_OPT */
833 /* If this is an AUTOINCREMENT table, look up the sequence number in the
834 ** sqlite_sequence table and store it in memory cell regAutoinc.
836 regAutoinc
= autoIncBegin(pParse
, iDb
, pTab
);
838 /* Allocate a block registers to hold the rowid and the values
839 ** for all columns of the new row.
841 regRowid
= regIns
= pParse
->nMem
+1;
842 pParse
->nMem
+= pTab
->nCol
+ 1;
843 if( IsVirtual(pTab
) ){
847 regData
= regRowid
+1;
849 /* If the INSERT statement included an IDLIST term, then make sure
850 ** all elements of the IDLIST really are columns of the table and
851 ** remember the column indices.
853 ** If the table has an INTEGER PRIMARY KEY column and that column
854 ** is named in the IDLIST, then record in the ipkColumn variable
855 ** the index into IDLIST of the primary key column. ipkColumn is
856 ** the index of the primary key as it appears in IDLIST, not as
857 ** is appears in the original table. (The index of the INTEGER
858 ** PRIMARY KEY in the original table is pTab->iPKey.) After this
859 ** loop, if ipkColumn==(-1), that means that integer primary key
860 ** is unspecified, and hence the table is either WITHOUT ROWID or
861 ** it will automatically generated an integer primary key.
863 ** bIdListInOrder is true if the columns in IDLIST are in storage
864 ** order. This enables an optimization that avoids shuffling the
865 ** columns into storage order. False negatives are harmless,
866 ** but false positives will cause database corruption.
868 bIdListInOrder
= (pTab
->tabFlags
& (TF_OOOHidden
|TF_HasStored
))==0;
870 assert( pColumn
->eU4
!=EU4_EXPR
);
871 pColumn
->eU4
= EU4_IDX
;
872 for(i
=0; i
<pColumn
->nId
; i
++){
873 pColumn
->a
[i
].u4
.idx
= -1;
875 for(i
=0; i
<pColumn
->nId
; i
++){
876 for(j
=0; j
<pTab
->nCol
; j
++){
877 if( sqlite3StrICmp(pColumn
->a
[i
].zName
, pTab
->aCol
[j
].zCnName
)==0 ){
878 pColumn
->a
[i
].u4
.idx
= j
;
879 if( i
!=j
) bIdListInOrder
= 0;
880 if( j
==pTab
->iPKey
){
881 ipkColumn
= i
; assert( !withoutRowid
);
883 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
884 if( pTab
->aCol
[j
].colFlags
& (COLFLAG_STORED
|COLFLAG_VIRTUAL
) ){
885 sqlite3ErrorMsg(pParse
,
886 "cannot INSERT into generated column \"%s\"",
887 pTab
->aCol
[j
].zCnName
);
895 if( sqlite3IsRowid(pColumn
->a
[i
].zName
) && !withoutRowid
){
899 sqlite3ErrorMsg(pParse
, "table %S has no column named %s",
900 pTabList
->a
, pColumn
->a
[i
].zName
);
901 pParse
->checkSchema
= 1;
908 /* Figure out how many columns of data are supplied. If the data
909 ** is coming from a SELECT statement, then generate a co-routine that
910 ** produces a single row of the SELECT on each invocation. The
911 ** co-routine is the common header to the 3rd and 4th templates.
914 /* Data is coming from a SELECT or from a multi-row VALUES clause.
915 ** Generate a co-routine to run the SELECT. */
916 int regYield
; /* Register holding co-routine entry-point */
917 int addrTop
; /* Top of the co-routine */
918 int rc
; /* Result code */
920 regYield
= ++pParse
->nMem
;
921 addrTop
= sqlite3VdbeCurrentAddr(v
) + 1;
922 sqlite3VdbeAddOp3(v
, OP_InitCoroutine
, regYield
, 0, addrTop
);
923 sqlite3SelectDestInit(&dest
, SRT_Coroutine
, regYield
);
924 dest
.iSdst
= bIdListInOrder
? regData
: 0;
925 dest
.nSdst
= pTab
->nCol
;
926 rc
= sqlite3Select(pParse
, pSelect
, &dest
);
927 regFromSelect
= dest
.iSdst
;
928 assert( db
->pParse
==pParse
);
929 if( rc
|| pParse
->nErr
) goto insert_cleanup
;
930 assert( db
->mallocFailed
==0 );
931 sqlite3VdbeEndCoroutine(v
, regYield
);
932 sqlite3VdbeJumpHere(v
, addrTop
- 1); /* label B: */
933 assert( pSelect
->pEList
);
934 nColumn
= pSelect
->pEList
->nExpr
;
936 /* Set useTempTable to TRUE if the result of the SELECT statement
937 ** should be written into a temporary table (template 4). Set to
938 ** FALSE if each output row of the SELECT can be written directly into
939 ** the destination table (template 3).
941 ** A temp table must be used if the table being updated is also one
942 ** of the tables being read by the SELECT statement. Also use a
943 ** temp table in the case of row triggers.
945 if( pTrigger
|| readsTable(pParse
, iDb
, pTab
) ){
950 /* Invoke the coroutine to extract information from the SELECT
951 ** and add it to a transient table srcTab. The code generated
952 ** here is from the 4th template:
954 ** B: open temp table
955 ** L: yield X, goto M at EOF
956 ** insert row from R..R+n into temp table
960 int regRec
; /* Register to hold packed record */
961 int regTempRowid
; /* Register to hold temp table ROWID */
962 int addrL
; /* Label "L" */
964 srcTab
= pParse
->nTab
++;
965 regRec
= sqlite3GetTempReg(pParse
);
966 regTempRowid
= sqlite3GetTempReg(pParse
);
967 sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, srcTab
, nColumn
);
968 addrL
= sqlite3VdbeAddOp1(v
, OP_Yield
, dest
.iSDParm
); VdbeCoverage(v
);
969 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regFromSelect
, nColumn
, regRec
);
970 sqlite3VdbeAddOp2(v
, OP_NewRowid
, srcTab
, regTempRowid
);
971 sqlite3VdbeAddOp3(v
, OP_Insert
, srcTab
, regRec
, regTempRowid
);
972 sqlite3VdbeGoto(v
, addrL
);
973 sqlite3VdbeJumpHere(v
, addrL
);
974 sqlite3ReleaseTempReg(pParse
, regRec
);
975 sqlite3ReleaseTempReg(pParse
, regTempRowid
);
978 /* This is the case if the data for the INSERT is coming from a
979 ** single-row VALUES clause
982 memset(&sNC
, 0, sizeof(sNC
));
985 assert( useTempTable
==0 );
987 nColumn
= pList
->nExpr
;
988 if( sqlite3ResolveExprListNames(&sNC
, pList
) ){
996 /* If there is no IDLIST term but the table has an integer primary
997 ** key, the set the ipkColumn variable to the integer primary key
998 ** column index in the original table definition.
1000 if( pColumn
==0 && nColumn
>0 ){
1001 ipkColumn
= pTab
->iPKey
;
1002 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1003 if( ipkColumn
>=0 && (pTab
->tabFlags
& TF_HasGenerated
)!=0 ){
1004 testcase( pTab
->tabFlags
& TF_HasVirtual
);
1005 testcase( pTab
->tabFlags
& TF_HasStored
);
1006 for(i
=ipkColumn
-1; i
>=0; i
--){
1007 if( pTab
->aCol
[i
].colFlags
& COLFLAG_GENERATED
){
1008 testcase( pTab
->aCol
[i
].colFlags
& COLFLAG_VIRTUAL
);
1009 testcase( pTab
->aCol
[i
].colFlags
& COLFLAG_STORED
);
1016 /* Make sure the number of columns in the source data matches the number
1017 ** of columns to be inserted into the table.
1019 assert( TF_HasHidden
==COLFLAG_HIDDEN
);
1020 assert( TF_HasGenerated
==COLFLAG_GENERATED
);
1021 assert( COLFLAG_NOINSERT
==(COLFLAG_GENERATED
|COLFLAG_HIDDEN
) );
1022 if( (pTab
->tabFlags
& (TF_HasGenerated
|TF_HasHidden
))!=0 ){
1023 for(i
=0; i
<pTab
->nCol
; i
++){
1024 if( pTab
->aCol
[i
].colFlags
& COLFLAG_NOINSERT
) nHidden
++;
1027 if( nColumn
!=(pTab
->nCol
-nHidden
) ){
1028 sqlite3ErrorMsg(pParse
,
1029 "table %S has %d columns but %d values were supplied",
1030 pTabList
->a
, pTab
->nCol
-nHidden
, nColumn
);
1031 goto insert_cleanup
;
1034 if( pColumn
!=0 && nColumn
!=pColumn
->nId
){
1035 sqlite3ErrorMsg(pParse
, "%d values for %d columns", nColumn
, pColumn
->nId
);
1036 goto insert_cleanup
;
1039 /* Initialize the count of rows to be inserted
1041 if( (db
->flags
& SQLITE_CountRows
)!=0
1043 && !pParse
->pTriggerTab
1044 && !pParse
->bReturning
1046 regRowCount
= ++pParse
->nMem
;
1047 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, regRowCount
);
1050 /* If this is not a view, open the table and and all indices */
1053 nIdx
= sqlite3OpenTableAndIndices(pParse
, pTab
, OP_OpenWrite
, 0, -1, 0,
1054 &iDataCur
, &iIdxCur
);
1055 aRegIdx
= sqlite3DbMallocRawNN(db
, sizeof(int)*(nIdx
+2));
1057 goto insert_cleanup
;
1059 for(i
=0, pIdx
=pTab
->pIndex
; i
<nIdx
; pIdx
=pIdx
->pNext
, i
++){
1061 aRegIdx
[i
] = ++pParse
->nMem
;
1062 pParse
->nMem
+= pIdx
->nColumn
;
1064 aRegIdx
[i
] = ++pParse
->nMem
; /* Register to store the table record */
1066 #ifndef SQLITE_OMIT_UPSERT
1069 if( IsVirtual(pTab
) ){
1070 sqlite3ErrorMsg(pParse
, "UPSERT not implemented for virtual table \"%s\"",
1072 goto insert_cleanup
;
1075 sqlite3ErrorMsg(pParse
, "cannot UPSERT a view");
1076 goto insert_cleanup
;
1078 if( sqlite3HasExplicitNulls(pParse
, pUpsert
->pUpsertTarget
) ){
1079 goto insert_cleanup
;
1081 pTabList
->a
[0].iCursor
= iDataCur
;
1084 pNx
->pUpsertSrc
= pTabList
;
1085 pNx
->regData
= regData
;
1086 pNx
->iDataCur
= iDataCur
;
1087 pNx
->iIdxCur
= iIdxCur
;
1088 if( pNx
->pUpsertTarget
){
1089 if( sqlite3UpsertAnalyzeTarget(pParse
, pTabList
, pNx
) ){
1090 goto insert_cleanup
;
1093 pNx
= pNx
->pNextUpsert
;
1099 /* This is the top of the main insertion loop */
1101 /* This block codes the top of loop only. The complete loop is the
1102 ** following pseudocode (template 4):
1104 ** rewind temp table, if empty goto D
1105 ** C: loop over rows of intermediate table
1106 ** transfer values form intermediate table into <table>
1110 addrInsTop
= sqlite3VdbeAddOp1(v
, OP_Rewind
, srcTab
); VdbeCoverage(v
);
1111 addrCont
= sqlite3VdbeCurrentAddr(v
);
1112 }else if( pSelect
){
1113 /* This block codes the top of loop only. The complete loop is the
1114 ** following pseudocode (template 3):
1116 ** C: yield X, at EOF goto D
1117 ** insert the select result into <table> from R..R+n
1121 sqlite3VdbeReleaseRegisters(pParse
, regData
, pTab
->nCol
, 0, 0);
1122 addrInsTop
= addrCont
= sqlite3VdbeAddOp1(v
, OP_Yield
, dest
.iSDParm
);
1125 /* tag-20191021-001: If the INTEGER PRIMARY KEY is being generated by the
1126 ** SELECT, go ahead and copy the value into the rowid slot now, so that
1127 ** the value does not get overwritten by a NULL at tag-20191021-002. */
1128 sqlite3VdbeAddOp2(v
, OP_Copy
, regFromSelect
+ipkColumn
, regRowid
);
1132 /* Compute data for ordinary columns of the new entry. Values
1133 ** are written in storage order into registers starting with regData.
1134 ** Only ordinary columns are computed in this loop. The rowid
1135 ** (if there is one) is computed later and generated columns are
1136 ** computed after the rowid since they might depend on the value
1140 iRegStore
= regData
; assert( regData
==regRowid
+1 );
1141 for(i
=0; i
<pTab
->nCol
; i
++, iRegStore
++){
1144 assert( i
>=nHidden
);
1145 if( i
==pTab
->iPKey
){
1146 /* tag-20191021-002: References to the INTEGER PRIMARY KEY are filled
1147 ** using the rowid. So put a NULL in the IPK slot of the record to avoid
1148 ** using excess space. The file format definition requires this extra
1149 ** NULL - we cannot optimize further by skipping the column completely */
1150 sqlite3VdbeAddOp1(v
, OP_SoftNull
, iRegStore
);
1153 if( ((colFlags
= pTab
->aCol
[i
].colFlags
) & COLFLAG_NOINSERT
)!=0 ){
1155 if( (colFlags
& COLFLAG_VIRTUAL
)!=0 ){
1156 /* Virtual columns do not participate in OP_MakeRecord. So back up
1157 ** iRegStore by one slot to compensate for the iRegStore++ in the
1158 ** outer for() loop */
1161 }else if( (colFlags
& COLFLAG_STORED
)!=0 ){
1162 /* Stored columns are computed later. But if there are BEFORE
1163 ** triggers, the slots used for stored columns will be OP_Copy-ed
1164 ** to a second block of registers, so the register needs to be
1165 ** initialized to NULL to avoid an uninitialized register read */
1166 if( tmask
& TRIGGER_BEFORE
){
1167 sqlite3VdbeAddOp1(v
, OP_SoftNull
, iRegStore
);
1170 }else if( pColumn
==0 ){
1171 /* Hidden columns that are not explicitly named in the INSERT
1172 ** get there default value */
1173 sqlite3ExprCodeFactorable(pParse
,
1174 sqlite3ColumnExpr(pTab
, &pTab
->aCol
[i
]),
1180 assert( pColumn
->eU4
==EU4_IDX
);
1181 for(j
=0; j
<pColumn
->nId
&& pColumn
->a
[j
].u4
.idx
!=i
; j
++){}
1182 if( j
>=pColumn
->nId
){
1183 /* A column not named in the insert column list gets its
1185 sqlite3ExprCodeFactorable(pParse
,
1186 sqlite3ColumnExpr(pTab
, &pTab
->aCol
[i
]),
1191 }else if( nColumn
==0 ){
1192 /* This is INSERT INTO ... DEFAULT VALUES. Load the default value. */
1193 sqlite3ExprCodeFactorable(pParse
,
1194 sqlite3ColumnExpr(pTab
, &pTab
->aCol
[i
]),
1202 sqlite3VdbeAddOp3(v
, OP_Column
, srcTab
, k
, iRegStore
);
1203 }else if( pSelect
){
1204 if( regFromSelect
!=regData
){
1205 sqlite3VdbeAddOp2(v
, OP_SCopy
, regFromSelect
+k
, iRegStore
);
1208 Expr
*pX
= pList
->a
[k
].pExpr
;
1209 int y
= sqlite3ExprCodeTarget(pParse
, pX
, iRegStore
);
1211 sqlite3VdbeAddOp2(v
,
1212 ExprHasProperty(pX
, EP_Subquery
) ? OP_Copy
: OP_SCopy
, y
, iRegStore
);
1218 /* Run the BEFORE and INSTEAD OF triggers, if there are any
1220 endOfLoop
= sqlite3VdbeMakeLabel(pParse
);
1221 if( tmask
& TRIGGER_BEFORE
){
1222 int regCols
= sqlite3GetTempRange(pParse
, pTab
->nCol
+1);
1224 /* build the NEW.* reference row. Note that if there is an INTEGER
1225 ** PRIMARY KEY into which a NULL is being inserted, that NULL will be
1226 ** translated into a unique ID for the row. But on a BEFORE trigger,
1227 ** we do not know what the unique ID will be (because the insert has
1228 ** not happened yet) so we substitute a rowid of -1
1231 sqlite3VdbeAddOp2(v
, OP_Integer
, -1, regCols
);
1234 assert( !withoutRowid
);
1236 sqlite3VdbeAddOp3(v
, OP_Column
, srcTab
, ipkColumn
, regCols
);
1238 assert( pSelect
==0 ); /* Otherwise useTempTable is true */
1239 sqlite3ExprCode(pParse
, pList
->a
[ipkColumn
].pExpr
, regCols
);
1241 addr1
= sqlite3VdbeAddOp1(v
, OP_NotNull
, regCols
); VdbeCoverage(v
);
1242 sqlite3VdbeAddOp2(v
, OP_Integer
, -1, regCols
);
1243 sqlite3VdbeJumpHere(v
, addr1
);
1244 sqlite3VdbeAddOp1(v
, OP_MustBeInt
, regCols
); VdbeCoverage(v
);
1247 /* Copy the new data already generated. */
1248 assert( pTab
->nNVCol
>0 || pParse
->nErr
>0 );
1249 sqlite3VdbeAddOp3(v
, OP_Copy
, regRowid
+1, regCols
+1, pTab
->nNVCol
-1);
1251 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1252 /* Compute the new value for generated columns after all other
1253 ** columns have already been computed. This must be done after
1254 ** computing the ROWID in case one of the generated columns
1255 ** refers to the ROWID. */
1256 if( pTab
->tabFlags
& TF_HasGenerated
){
1257 testcase( pTab
->tabFlags
& TF_HasVirtual
);
1258 testcase( pTab
->tabFlags
& TF_HasStored
);
1259 sqlite3ComputeGeneratedColumns(pParse
, regCols
+1, pTab
);
1263 /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger,
1264 ** do not attempt any conversions before assembling the record.
1265 ** If this is a real table, attempt conversions as required by the
1266 ** table column affinities.
1269 sqlite3TableAffinity(v
, pTab
, regCols
+1);
1272 /* Fire BEFORE or INSTEAD OF triggers */
1273 sqlite3CodeRowTrigger(pParse
, pTrigger
, TK_INSERT
, 0, TRIGGER_BEFORE
,
1274 pTab
, regCols
-pTab
->nCol
-1, onError
, endOfLoop
);
1276 sqlite3ReleaseTempRange(pParse
, regCols
, pTab
->nCol
+1);
1280 if( IsVirtual(pTab
) ){
1281 /* The row that the VUpdate opcode will delete: none */
1282 sqlite3VdbeAddOp2(v
, OP_Null
, 0, regIns
);
1285 /* Compute the new rowid */
1287 sqlite3VdbeAddOp3(v
, OP_Column
, srcTab
, ipkColumn
, regRowid
);
1288 }else if( pSelect
){
1289 /* Rowid already initialized at tag-20191021-001 */
1291 Expr
*pIpk
= pList
->a
[ipkColumn
].pExpr
;
1292 if( pIpk
->op
==TK_NULL
&& !IsVirtual(pTab
) ){
1293 sqlite3VdbeAddOp3(v
, OP_NewRowid
, iDataCur
, regRowid
, regAutoinc
);
1296 sqlite3ExprCode(pParse
, pList
->a
[ipkColumn
].pExpr
, regRowid
);
1299 /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid
1300 ** to generate a unique primary key value.
1304 if( !IsVirtual(pTab
) ){
1305 addr1
= sqlite3VdbeAddOp1(v
, OP_NotNull
, regRowid
); VdbeCoverage(v
);
1306 sqlite3VdbeAddOp3(v
, OP_NewRowid
, iDataCur
, regRowid
, regAutoinc
);
1307 sqlite3VdbeJumpHere(v
, addr1
);
1309 addr1
= sqlite3VdbeCurrentAddr(v
);
1310 sqlite3VdbeAddOp2(v
, OP_IsNull
, regRowid
, addr1
+2); VdbeCoverage(v
);
1312 sqlite3VdbeAddOp1(v
, OP_MustBeInt
, regRowid
); VdbeCoverage(v
);
1314 }else if( IsVirtual(pTab
) || withoutRowid
){
1315 sqlite3VdbeAddOp2(v
, OP_Null
, 0, regRowid
);
1317 sqlite3VdbeAddOp3(v
, OP_NewRowid
, iDataCur
, regRowid
, regAutoinc
);
1320 autoIncStep(pParse
, regAutoinc
, regRowid
);
1322 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1323 /* Compute the new value for generated columns after all other
1324 ** columns have already been computed. This must be done after
1325 ** computing the ROWID in case one of the generated columns
1326 ** is derived from the INTEGER PRIMARY KEY. */
1327 if( pTab
->tabFlags
& TF_HasGenerated
){
1328 sqlite3ComputeGeneratedColumns(pParse
, regRowid
+1, pTab
);
1332 /* Generate code to check constraints and generate index keys and
1333 ** do the insertion.
1335 #ifndef SQLITE_OMIT_VIRTUALTABLE
1336 if( IsVirtual(pTab
) ){
1337 const char *pVTab
= (const char *)sqlite3GetVTable(db
, pTab
);
1338 sqlite3VtabMakeWritable(pParse
, pTab
);
1339 sqlite3VdbeAddOp4(v
, OP_VUpdate
, 1, pTab
->nCol
+2, regIns
, pVTab
, P4_VTAB
);
1340 sqlite3VdbeChangeP5(v
, onError
==OE_Default
? OE_Abort
: onError
);
1341 sqlite3MayAbort(pParse
);
1345 int isReplace
= 0;/* Set to true if constraints may cause a replace */
1346 int bUseSeek
; /* True to use OPFLAG_SEEKRESULT */
1347 sqlite3GenerateConstraintChecks(pParse
, pTab
, aRegIdx
, iDataCur
, iIdxCur
,
1348 regIns
, 0, ipkColumn
>=0, onError
, endOfLoop
, &isReplace
, 0, pUpsert
1350 if( db
->flags
& SQLITE_ForeignKeys
){
1351 sqlite3FkCheck(pParse
, pTab
, 0, regIns
, 0, 0);
1354 /* Set the OPFLAG_USESEEKRESULT flag if either (a) there are no REPLACE
1355 ** constraints or (b) there are no triggers and this table is not a
1356 ** parent table in a foreign key constraint. It is safe to set the
1357 ** flag in the second case as if any REPLACE constraint is hit, an
1358 ** OP_Delete or OP_IdxDelete instruction will be executed on each
1359 ** cursor that is disturbed. And these instructions both clear the
1360 ** VdbeCursor.seekResult variable, disabling the OPFLAG_USESEEKRESULT
1361 ** functionality. */
1362 bUseSeek
= (isReplace
==0 || !sqlite3VdbeHasSubProgram(v
));
1363 sqlite3CompleteInsertion(pParse
, pTab
, iDataCur
, iIdxCur
,
1364 regIns
, aRegIdx
, 0, appendFlag
, bUseSeek
1367 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
1368 }else if( pParse
->bReturning
){
1369 /* If there is a RETURNING clause, populate the rowid register with
1370 ** constant value -1, in case one or more of the returned expressions
1371 ** refer to the "rowid" of the view. */
1372 sqlite3VdbeAddOp2(v
, OP_Integer
, -1, regRowid
);
1376 /* Update the count of rows that are inserted
1379 sqlite3VdbeAddOp2(v
, OP_AddImm
, regRowCount
, 1);
1383 /* Code AFTER triggers */
1384 sqlite3CodeRowTrigger(pParse
, pTrigger
, TK_INSERT
, 0, TRIGGER_AFTER
,
1385 pTab
, regData
-2-pTab
->nCol
, onError
, endOfLoop
);
1388 /* The bottom of the main insertion loop, if the data source
1389 ** is a SELECT statement.
1391 sqlite3VdbeResolveLabel(v
, endOfLoop
);
1393 sqlite3VdbeAddOp2(v
, OP_Next
, srcTab
, addrCont
); VdbeCoverage(v
);
1394 sqlite3VdbeJumpHere(v
, addrInsTop
);
1395 sqlite3VdbeAddOp1(v
, OP_Close
, srcTab
);
1396 }else if( pSelect
){
1397 sqlite3VdbeGoto(v
, addrCont
);
1399 /* If we are jumping back to an OP_Yield that is preceded by an
1400 ** OP_ReleaseReg, set the p5 flag on the OP_Goto so that the
1401 ** OP_ReleaseReg will be included in the loop. */
1402 if( sqlite3VdbeGetOp(v
, addrCont
-1)->opcode
==OP_ReleaseReg
){
1403 assert( sqlite3VdbeGetOp(v
, addrCont
)->opcode
==OP_Yield
);
1404 sqlite3VdbeChangeP5(v
, 1);
1407 sqlite3VdbeJumpHere(v
, addrInsTop
);
1410 #ifndef SQLITE_OMIT_XFER_OPT
1412 #endif /* SQLITE_OMIT_XFER_OPT */
1413 /* Update the sqlite_sequence table by storing the content of the
1414 ** maximum rowid counter values recorded while inserting into
1415 ** autoincrement tables.
1417 if( pParse
->nested
==0 && pParse
->pTriggerTab
==0 ){
1418 sqlite3AutoincrementEnd(pParse
);
1422 ** Return the number of rows inserted. If this routine is
1423 ** generating code because of a call to sqlite3NestedParse(), do not
1424 ** invoke the callback function.
1427 sqlite3CodeChangeCount(v
, regRowCount
, "rows inserted");
1431 sqlite3SrcListDelete(db
, pTabList
);
1432 sqlite3ExprListDelete(db
, pList
);
1433 sqlite3UpsertDelete(db
, pUpsert
);
1434 sqlite3SelectDelete(db
, pSelect
);
1435 sqlite3IdListDelete(db
, pColumn
);
1436 if( aRegIdx
) sqlite3DbNNFreeNN(db
, aRegIdx
);
1439 /* Make sure "isView" and other macros defined above are undefined. Otherwise
1440 ** they may interfere with compilation of other functions in this file
1441 ** (or in another file, if this file becomes part of the amalgamation). */
1453 ** Meanings of bits in of pWalker->eCode for
1454 ** sqlite3ExprReferencesUpdatedColumn()
1456 #define CKCNSTRNT_COLUMN 0x01 /* CHECK constraint uses a changing column */
1457 #define CKCNSTRNT_ROWID 0x02 /* CHECK constraint references the ROWID */
1459 /* This is the Walker callback from sqlite3ExprReferencesUpdatedColumn().
1460 * Set bit 0x01 of pWalker->eCode if pWalker->eCode to 0 and if this
1461 ** expression node references any of the
1462 ** columns that are being modified by an UPDATE statement.
1464 static int checkConstraintExprNode(Walker
*pWalker
, Expr
*pExpr
){
1465 if( pExpr
->op
==TK_COLUMN
){
1466 assert( pExpr
->iColumn
>=0 || pExpr
->iColumn
==-1 );
1467 if( pExpr
->iColumn
>=0 ){
1468 if( pWalker
->u
.aiCol
[pExpr
->iColumn
]>=0 ){
1469 pWalker
->eCode
|= CKCNSTRNT_COLUMN
;
1472 pWalker
->eCode
|= CKCNSTRNT_ROWID
;
1475 return WRC_Continue
;
1479 ** pExpr is a CHECK constraint on a row that is being UPDATE-ed. The
1480 ** only columns that are modified by the UPDATE are those for which
1481 ** aiChng[i]>=0, and also the ROWID is modified if chngRowid is true.
1483 ** Return true if CHECK constraint pExpr uses any of the
1484 ** changing columns (or the rowid if it is changing). In other words,
1485 ** return true if this CHECK constraint must be validated for
1486 ** the new row in the UPDATE statement.
1488 ** 2018-09-15: pExpr might also be an expression for an index-on-expressions.
1489 ** The operation of this routine is the same - return true if an only if
1490 ** the expression uses one or more of columns identified by the second and
1493 int sqlite3ExprReferencesUpdatedColumn(
1494 Expr
*pExpr
, /* The expression to be checked */
1495 int *aiChng
, /* aiChng[x]>=0 if column x changed by the UPDATE */
1496 int chngRowid
/* True if UPDATE changes the rowid */
1499 memset(&w
, 0, sizeof(w
));
1501 w
.xExprCallback
= checkConstraintExprNode
;
1503 sqlite3WalkExpr(&w
, pExpr
);
1505 testcase( (w
.eCode
& CKCNSTRNT_ROWID
)!=0 );
1506 w
.eCode
&= ~CKCNSTRNT_ROWID
;
1508 testcase( w
.eCode
==0 );
1509 testcase( w
.eCode
==CKCNSTRNT_COLUMN
);
1510 testcase( w
.eCode
==CKCNSTRNT_ROWID
);
1511 testcase( w
.eCode
==(CKCNSTRNT_ROWID
|CKCNSTRNT_COLUMN
) );
1516 ** The sqlite3GenerateConstraintChecks() routine usually wants to visit
1517 ** the indexes of a table in the order provided in the Table->pIndex list.
1518 ** However, sometimes (rarely - when there is an upsert) it wants to visit
1519 ** the indexes in a different order. The following data structures accomplish
1522 ** The IndexIterator object is used to walk through all of the indexes
1523 ** of a table in either Index.pNext order, or in some other order established
1524 ** by an array of IndexListTerm objects.
1526 typedef struct IndexListTerm IndexListTerm
;
1527 typedef struct IndexIterator IndexIterator
;
1528 struct IndexIterator
{
1529 int eType
; /* 0 for Index.pNext list. 1 for an array of IndexListTerm */
1530 int i
; /* Index of the current item from the list */
1532 struct { /* Use this object for eType==0: A Index.pNext list */
1533 Index
*pIdx
; /* The current Index */
1535 struct { /* Use this object for eType==1; Array of IndexListTerm */
1536 int nIdx
; /* Size of the array */
1537 IndexListTerm
*aIdx
; /* Array of IndexListTerms */
1542 /* When IndexIterator.eType==1, then each index is an array of instances
1543 ** of the following object
1545 struct IndexListTerm
{
1546 Index
*p
; /* The index */
1547 int ix
; /* Which entry in the original Table.pIndex list is this index*/
1550 /* Return the first index on the list */
1551 static Index
*indexIteratorFirst(IndexIterator
*pIter
, int *pIx
){
1552 assert( pIter
->i
==0 );
1554 *pIx
= pIter
->u
.ax
.aIdx
[0].ix
;
1555 return pIter
->u
.ax
.aIdx
[0].p
;
1558 return pIter
->u
.lx
.pIdx
;
1562 /* Return the next index from the list. Return NULL when out of indexes */
1563 static Index
*indexIteratorNext(IndexIterator
*pIter
, int *pIx
){
1566 if( i
>=pIter
->u
.ax
.nIdx
){
1570 *pIx
= pIter
->u
.ax
.aIdx
[i
].ix
;
1571 return pIter
->u
.ax
.aIdx
[i
].p
;
1574 pIter
->u
.lx
.pIdx
= pIter
->u
.lx
.pIdx
->pNext
;
1575 return pIter
->u
.lx
.pIdx
;
1580 ** Generate code to do constraint checks prior to an INSERT or an UPDATE
1583 ** The regNewData parameter is the first register in a range that contains
1584 ** the data to be inserted or the data after the update. There will be
1585 ** pTab->nCol+1 registers in this range. The first register (the one
1586 ** that regNewData points to) will contain the new rowid, or NULL in the
1587 ** case of a WITHOUT ROWID table. The second register in the range will
1588 ** contain the content of the first table column. The third register will
1589 ** contain the content of the second table column. And so forth.
1591 ** The regOldData parameter is similar to regNewData except that it contains
1592 ** the data prior to an UPDATE rather than afterwards. regOldData is zero
1593 ** for an INSERT. This routine can distinguish between UPDATE and INSERT by
1594 ** checking regOldData for zero.
1596 ** For an UPDATE, the pkChng boolean is true if the true primary key (the
1597 ** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table)
1598 ** might be modified by the UPDATE. If pkChng is false, then the key of
1599 ** the iDataCur content table is guaranteed to be unchanged by the UPDATE.
1601 ** For an INSERT, the pkChng boolean indicates whether or not the rowid
1602 ** was explicitly specified as part of the INSERT statement. If pkChng
1603 ** is zero, it means that the either rowid is computed automatically or
1604 ** that the table is a WITHOUT ROWID table and has no rowid. On an INSERT,
1605 ** pkChng will only be true if the INSERT statement provides an integer
1606 ** value for either the rowid column or its INTEGER PRIMARY KEY alias.
1608 ** The code generated by this routine will store new index entries into
1609 ** registers identified by aRegIdx[]. No index entry is created for
1610 ** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is
1611 ** the same as the order of indices on the linked list of indices
1614 ** (2019-05-07) The generated code also creates a new record for the
1615 ** main table, if pTab is a rowid table, and stores that record in the
1616 ** register identified by aRegIdx[nIdx] - in other words in the first
1617 ** entry of aRegIdx[] past the last index. It is important that the
1618 ** record be generated during constraint checks to avoid affinity changes
1619 ** to the register content that occur after constraint checks but before
1620 ** the new record is inserted.
1622 ** The caller must have already opened writeable cursors on the main
1623 ** table and all applicable indices (that is to say, all indices for which
1624 ** aRegIdx[] is not zero). iDataCur is the cursor for the main table when
1625 ** inserting or updating a rowid table, or the cursor for the PRIMARY KEY
1626 ** index when operating on a WITHOUT ROWID table. iIdxCur is the cursor
1627 ** for the first index in the pTab->pIndex list. Cursors for other indices
1628 ** are at iIdxCur+N for the N-th element of the pTab->pIndex list.
1630 ** This routine also generates code to check constraints. NOT NULL,
1631 ** CHECK, and UNIQUE constraints are all checked. If a constraint fails,
1632 ** then the appropriate action is performed. There are five possible
1633 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE.
1635 ** Constraint type Action What Happens
1636 ** --------------- ---------- ----------------------------------------
1637 ** any ROLLBACK The current transaction is rolled back and
1638 ** sqlite3_step() returns immediately with a
1639 ** return code of SQLITE_CONSTRAINT.
1641 ** any ABORT Back out changes from the current command
1642 ** only (do not do a complete rollback) then
1643 ** cause sqlite3_step() to return immediately
1644 ** with SQLITE_CONSTRAINT.
1646 ** any FAIL Sqlite3_step() returns immediately with a
1647 ** return code of SQLITE_CONSTRAINT. The
1648 ** transaction is not rolled back and any
1649 ** changes to prior rows are retained.
1651 ** any IGNORE The attempt in insert or update the current
1652 ** row is skipped, without throwing an error.
1653 ** Processing continues with the next row.
1654 ** (There is an immediate jump to ignoreDest.)
1656 ** NOT NULL REPLACE The NULL value is replace by the default
1657 ** value for that column. If the default value
1658 ** is NULL, the action is the same as ABORT.
1660 ** UNIQUE REPLACE The other row that conflicts with the row
1661 ** being inserted is removed.
1663 ** CHECK REPLACE Illegal. The results in an exception.
1665 ** Which action to take is determined by the overrideError parameter.
1666 ** Or if overrideError==OE_Default, then the pParse->onError parameter
1667 ** is used. Or if pParse->onError==OE_Default then the onError value
1668 ** for the constraint is used.
1670 void sqlite3GenerateConstraintChecks(
1671 Parse
*pParse
, /* The parser context */
1672 Table
*pTab
, /* The table being inserted or updated */
1673 int *aRegIdx
, /* Use register aRegIdx[i] for index i. 0 for unused */
1674 int iDataCur
, /* Canonical data cursor (main table or PK index) */
1675 int iIdxCur
, /* First index cursor */
1676 int regNewData
, /* First register in a range holding values to insert */
1677 int regOldData
, /* Previous content. 0 for INSERTs */
1678 u8 pkChng
, /* Non-zero if the rowid or PRIMARY KEY changed */
1679 u8 overrideError
, /* Override onError to this if not OE_Default */
1680 int ignoreDest
, /* Jump to this label on an OE_Ignore resolution */
1681 int *pbMayReplace
, /* OUT: Set to true if constraint may cause a replace */
1682 int *aiChng
, /* column i is unchanged if aiChng[i]<0 */
1683 Upsert
*pUpsert
/* ON CONFLICT clauses, if any. NULL otherwise */
1685 Vdbe
*v
; /* VDBE under construction */
1686 Index
*pIdx
; /* Pointer to one of the indices */
1687 Index
*pPk
= 0; /* The PRIMARY KEY index for WITHOUT ROWID tables */
1688 sqlite3
*db
; /* Database connection */
1689 int i
; /* loop counter */
1690 int ix
; /* Index loop counter */
1691 int nCol
; /* Number of columns */
1692 int onError
; /* Conflict resolution strategy */
1693 int seenReplace
= 0; /* True if REPLACE is used to resolve INT PK conflict */
1694 int nPkField
; /* Number of fields in PRIMARY KEY. 1 for ROWID tables */
1695 Upsert
*pUpsertClause
= 0; /* The specific ON CONFLICT clause for pIdx */
1696 u8 isUpdate
; /* True if this is an UPDATE operation */
1697 u8 bAffinityDone
= 0; /* True if the OP_Affinity operation has been run */
1698 int upsertIpkReturn
= 0; /* Address of Goto at end of IPK uniqueness check */
1699 int upsertIpkDelay
= 0; /* Address of Goto to bypass initial IPK check */
1700 int ipkTop
= 0; /* Top of the IPK uniqueness check */
1701 int ipkBottom
= 0; /* OP_Goto at the end of the IPK uniqueness check */
1702 /* Variables associated with retesting uniqueness constraints after
1703 ** replace triggers fire have run */
1704 int regTrigCnt
; /* Register used to count replace trigger invocations */
1705 int addrRecheck
= 0; /* Jump here to recheck all uniqueness constraints */
1706 int lblRecheckOk
= 0; /* Each recheck jumps to this label if it passes */
1707 Trigger
*pTrigger
; /* List of DELETE triggers on the table pTab */
1708 int nReplaceTrig
= 0; /* Number of replace triggers coded */
1709 IndexIterator sIdxIter
; /* Index iterator */
1711 isUpdate
= regOldData
!=0;
1715 assert( !IsView(pTab
) ); /* This table is not a VIEW */
1718 /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for
1719 ** normal rowid tables. nPkField is the number of key fields in the
1720 ** pPk index or 1 for a rowid table. In other words, nPkField is the
1721 ** number of fields in the true primary key of the table. */
1722 if( HasRowid(pTab
) ){
1726 pPk
= sqlite3PrimaryKeyIndex(pTab
);
1727 nPkField
= pPk
->nKeyCol
;
1730 /* Record that this module has started */
1731 VdbeModuleComment((v
, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)",
1732 iDataCur
, iIdxCur
, regNewData
, regOldData
, pkChng
));
1734 /* Test all NOT NULL constraints.
1736 if( pTab
->tabFlags
& TF_HasNotNull
){
1737 int b2ndPass
= 0; /* True if currently running 2nd pass */
1738 int nSeenReplace
= 0; /* Number of ON CONFLICT REPLACE operations */
1739 int nGenerated
= 0; /* Number of generated columns with NOT NULL */
1740 while(1){ /* Make 2 passes over columns. Exit loop via "break" */
1741 for(i
=0; i
<nCol
; i
++){
1742 int iReg
; /* Register holding column value */
1743 Column
*pCol
= &pTab
->aCol
[i
]; /* The column to check for NOT NULL */
1744 int isGenerated
; /* non-zero if column is generated */
1745 onError
= pCol
->notNull
;
1746 if( onError
==OE_None
) continue; /* No NOT NULL on this column */
1747 if( i
==pTab
->iPKey
){
1748 continue; /* ROWID is never NULL */
1750 isGenerated
= pCol
->colFlags
& COLFLAG_GENERATED
;
1751 if( isGenerated
&& !b2ndPass
){
1753 continue; /* Generated columns processed on 2nd pass */
1755 if( aiChng
&& aiChng
[i
]<0 && !isGenerated
){
1756 /* Do not check NOT NULL on columns that do not change */
1759 if( overrideError
!=OE_Default
){
1760 onError
= overrideError
;
1761 }else if( onError
==OE_Default
){
1764 if( onError
==OE_Replace
){
1765 if( b2ndPass
/* REPLACE becomes ABORT on the 2nd pass */
1766 || pCol
->iDflt
==0 /* REPLACE is ABORT if no DEFAULT value */
1768 testcase( pCol
->colFlags
& COLFLAG_VIRTUAL
);
1769 testcase( pCol
->colFlags
& COLFLAG_STORED
);
1770 testcase( pCol
->colFlags
& COLFLAG_GENERATED
);
1773 assert( !isGenerated
);
1775 }else if( b2ndPass
&& !isGenerated
){
1778 assert( onError
==OE_Rollback
|| onError
==OE_Abort
|| onError
==OE_Fail
1779 || onError
==OE_Ignore
|| onError
==OE_Replace
);
1780 testcase( i
!=sqlite3TableColumnToStorage(pTab
, i
) );
1781 iReg
= sqlite3TableColumnToStorage(pTab
, i
) + regNewData
+ 1;
1784 int addr1
= sqlite3VdbeAddOp1(v
, OP_NotNull
, iReg
);
1786 assert( (pCol
->colFlags
& COLFLAG_GENERATED
)==0 );
1788 sqlite3ExprCodeCopy(pParse
,
1789 sqlite3ColumnExpr(pTab
, pCol
), iReg
);
1790 sqlite3VdbeJumpHere(v
, addr1
);
1794 sqlite3MayAbort(pParse
);
1795 /* no break */ deliberate_fall_through
1798 char *zMsg
= sqlite3MPrintf(db
, "%s.%s", pTab
->zName
,
1800 testcase( zMsg
==0 && db
->mallocFailed
==0 );
1801 sqlite3VdbeAddOp3(v
, OP_HaltIfNull
, SQLITE_CONSTRAINT_NOTNULL
,
1803 sqlite3VdbeAppendP4(v
, zMsg
, P4_DYNAMIC
);
1804 sqlite3VdbeChangeP5(v
, P5_ConstraintNotNull
);
1809 assert( onError
==OE_Ignore
);
1810 sqlite3VdbeAddOp2(v
, OP_IsNull
, iReg
, ignoreDest
);
1814 } /* end switch(onError) */
1815 } /* end loop i over columns */
1816 if( nGenerated
==0 && nSeenReplace
==0 ){
1817 /* If there are no generated columns with NOT NULL constraints
1818 ** and no NOT NULL ON CONFLICT REPLACE constraints, then a single
1819 ** pass is sufficient */
1822 if( b2ndPass
) break; /* Never need more than 2 passes */
1824 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1825 if( nSeenReplace
>0 && (pTab
->tabFlags
& TF_HasGenerated
)!=0 ){
1826 /* If any NOT NULL ON CONFLICT REPLACE constraints fired on the
1827 ** first pass, recomputed values for all generated columns, as
1828 ** those values might depend on columns affected by the REPLACE.
1830 sqlite3ComputeGeneratedColumns(pParse
, regNewData
+1, pTab
);
1833 } /* end of 2-pass loop */
1834 } /* end if( has-not-null-constraints ) */
1836 /* Test all CHECK constraints
1838 #ifndef SQLITE_OMIT_CHECK
1839 if( pTab
->pCheck
&& (db
->flags
& SQLITE_IgnoreChecks
)==0 ){
1840 ExprList
*pCheck
= pTab
->pCheck
;
1841 pParse
->iSelfTab
= -(regNewData
+1);
1842 onError
= overrideError
!=OE_Default
? overrideError
: OE_Abort
;
1843 for(i
=0; i
<pCheck
->nExpr
; i
++){
1846 Expr
*pExpr
= pCheck
->a
[i
].pExpr
;
1848 && !sqlite3ExprReferencesUpdatedColumn(pExpr
, aiChng
, pkChng
)
1850 /* The check constraints do not reference any of the columns being
1851 ** updated so there is no point it verifying the check constraint */
1854 if( bAffinityDone
==0 ){
1855 sqlite3TableAffinity(v
, pTab
, regNewData
+1);
1858 allOk
= sqlite3VdbeMakeLabel(pParse
);
1859 sqlite3VdbeVerifyAbortable(v
, onError
);
1860 pCopy
= sqlite3ExprDup(db
, pExpr
, 0);
1861 if( !db
->mallocFailed
){
1862 sqlite3ExprIfTrue(pParse
, pCopy
, allOk
, SQLITE_JUMPIFNULL
);
1864 sqlite3ExprDelete(db
, pCopy
);
1865 if( onError
==OE_Ignore
){
1866 sqlite3VdbeGoto(v
, ignoreDest
);
1868 char *zName
= pCheck
->a
[i
].zEName
;
1869 assert( zName
!=0 || pParse
->db
->mallocFailed
);
1870 if( onError
==OE_Replace
) onError
= OE_Abort
; /* IMP: R-26383-51744 */
1871 sqlite3HaltConstraint(pParse
, SQLITE_CONSTRAINT_CHECK
,
1872 onError
, zName
, P4_TRANSIENT
,
1873 P5_ConstraintCheck
);
1875 sqlite3VdbeResolveLabel(v
, allOk
);
1877 pParse
->iSelfTab
= 0;
1879 #endif /* !defined(SQLITE_OMIT_CHECK) */
1881 /* UNIQUE and PRIMARY KEY constraints should be handled in the following
1885 ** (2) OE_Abort, OE_Fail, OE_Rollback, OE_Ignore
1888 ** OE_Fail and OE_Ignore must happen before any changes are made.
1889 ** OE_Update guarantees that only a single row will change, so it
1890 ** must happen before OE_Replace. Technically, OE_Abort and OE_Rollback
1891 ** could happen in any order, but they are grouped up front for
1894 ** 2018-08-14: Ticket https://www.sqlite.org/src/info/908f001483982c43
1895 ** The order of constraints used to have OE_Update as (2) and OE_Abort
1896 ** and so forth as (1). But apparently PostgreSQL checks the OE_Update
1897 ** constraint before any others, so it had to be moved.
1899 ** Constraint checking code is generated in this order:
1900 ** (A) The rowid constraint
1901 ** (B) Unique index constraints that do not have OE_Replace as their
1902 ** default conflict resolution strategy
1903 ** (C) Unique index that do use OE_Replace by default.
1905 ** The ordering of (2) and (3) is accomplished by making sure the linked
1906 ** list of indexes attached to a table puts all OE_Replace indexes last
1907 ** in the list. See sqlite3CreateIndex() for where that happens.
1911 sIdxIter
.u
.ax
.aIdx
= 0; /* Silence harmless compiler warning */
1912 sIdxIter
.u
.lx
.pIdx
= pTab
->pIndex
;
1914 if( pUpsert
->pUpsertTarget
==0 ){
1915 /* There is just on ON CONFLICT clause and it has no constraint-target */
1916 assert( pUpsert
->pNextUpsert
==0 );
1917 if( pUpsert
->isDoUpdate
==0 ){
1918 /* A single ON CONFLICT DO NOTHING clause, without a constraint-target.
1919 ** Make all unique constraint resolution be OE_Ignore */
1920 overrideError
= OE_Ignore
;
1923 /* A single ON CONFLICT DO UPDATE. Make all resolutions OE_Update */
1924 overrideError
= OE_Update
;
1926 }else if( pTab
->pIndex
!=0 ){
1927 /* Otherwise, we'll need to run the IndexListTerm array version of the
1928 ** iterator to ensure that all of the ON CONFLICT conditions are
1929 ** checked first and in order. */
1934 for(nIdx
=0, pIdx
=pTab
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
, nIdx
++){
1935 assert( aRegIdx
[nIdx
]>0 );
1938 sIdxIter
.u
.ax
.nIdx
= nIdx
;
1939 nByte
= (sizeof(IndexListTerm
)+1)*nIdx
+ nIdx
;
1940 sIdxIter
.u
.ax
.aIdx
= sqlite3DbMallocZero(db
, nByte
);
1941 if( sIdxIter
.u
.ax
.aIdx
==0 ) return; /* OOM */
1942 bUsed
= (u8
*)&sIdxIter
.u
.ax
.aIdx
[nIdx
];
1943 pUpsert
->pToFree
= sIdxIter
.u
.ax
.aIdx
;
1944 for(i
=0, pTerm
=pUpsert
; pTerm
; pTerm
=pTerm
->pNextUpsert
){
1945 if( pTerm
->pUpsertTarget
==0 ) break;
1946 if( pTerm
->pUpsertIdx
==0 ) continue; /* Skip ON CONFLICT for the IPK */
1948 pIdx
= pTab
->pIndex
;
1949 while( ALWAYS(pIdx
!=0) && pIdx
!=pTerm
->pUpsertIdx
){
1953 if( bUsed
[jj
] ) continue; /* Duplicate ON CONFLICT clause ignored */
1955 sIdxIter
.u
.ax
.aIdx
[i
].p
= pIdx
;
1956 sIdxIter
.u
.ax
.aIdx
[i
].ix
= jj
;
1959 for(jj
=0, pIdx
=pTab
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
, jj
++){
1960 if( bUsed
[jj
] ) continue;
1961 sIdxIter
.u
.ax
.aIdx
[i
].p
= pIdx
;
1962 sIdxIter
.u
.ax
.aIdx
[i
].ix
= jj
;
1969 /* Determine if it is possible that triggers (either explicitly coded
1970 ** triggers or FK resolution actions) might run as a result of deletes
1971 ** that happen when OE_Replace conflict resolution occurs. (Call these
1972 ** "replace triggers".) If any replace triggers run, we will need to
1973 ** recheck all of the uniqueness constraints after they have all run.
1974 ** But on the recheck, the resolution is OE_Abort instead of OE_Replace.
1976 ** If replace triggers are a possibility, then
1978 ** (1) Allocate register regTrigCnt and initialize it to zero.
1979 ** That register will count the number of replace triggers that
1980 ** fire. Constraint recheck only occurs if the number is positive.
1981 ** (2) Initialize pTrigger to the list of all DELETE triggers on pTab.
1982 ** (3) Initialize addrRecheck and lblRecheckOk
1984 ** The uniqueness rechecking code will create a series of tests to run
1985 ** in a second pass. The addrRecheck and lblRecheckOk variables are
1986 ** used to link together these tests which are separated from each other
1987 ** in the generate bytecode.
1989 if( (db
->flags
& (SQLITE_RecTriggers
|SQLITE_ForeignKeys
))==0 ){
1990 /* There are not DELETE triggers nor FK constraints. No constraint
1991 ** rechecks are needed. */
1995 if( db
->flags
&SQLITE_RecTriggers
){
1996 pTrigger
= sqlite3TriggersExist(pParse
, pTab
, TK_DELETE
, 0, 0);
1997 regTrigCnt
= pTrigger
!=0 || sqlite3FkRequired(pParse
, pTab
, 0, 0);
2000 regTrigCnt
= sqlite3FkRequired(pParse
, pTab
, 0, 0);
2003 /* Replace triggers might exist. Allocate the counter and
2004 ** initialize it to zero. */
2005 regTrigCnt
= ++pParse
->nMem
;
2006 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, regTrigCnt
);
2007 VdbeComment((v
, "trigger count"));
2008 lblRecheckOk
= sqlite3VdbeMakeLabel(pParse
);
2009 addrRecheck
= lblRecheckOk
;
2013 /* If rowid is changing, make sure the new rowid does not previously
2014 ** exist in the table.
2016 if( pkChng
&& pPk
==0 ){
2017 int addrRowidOk
= sqlite3VdbeMakeLabel(pParse
);
2019 /* Figure out what action to take in case of a rowid collision */
2020 onError
= pTab
->keyConf
;
2021 if( overrideError
!=OE_Default
){
2022 onError
= overrideError
;
2023 }else if( onError
==OE_Default
){
2027 /* figure out whether or not upsert applies in this case */
2029 pUpsertClause
= sqlite3UpsertOfIndex(pUpsert
,0);
2030 if( pUpsertClause
!=0 ){
2031 if( pUpsertClause
->isDoUpdate
==0 ){
2032 onError
= OE_Ignore
; /* DO NOTHING is the same as INSERT OR IGNORE */
2034 onError
= OE_Update
; /* DO UPDATE */
2037 if( pUpsertClause
!=pUpsert
){
2038 /* The first ON CONFLICT clause has a conflict target other than
2039 ** the IPK. We have to jump ahead to that first ON CONFLICT clause
2040 ** and then come back here and deal with the IPK afterwards */
2041 upsertIpkDelay
= sqlite3VdbeAddOp0(v
, OP_Goto
);
2045 /* If the response to a rowid conflict is REPLACE but the response
2046 ** to some other UNIQUE constraint is FAIL or IGNORE, then we need
2047 ** to defer the running of the rowid conflict checking until after
2048 ** the UNIQUE constraints have run.
2050 if( onError
==OE_Replace
/* IPK rule is REPLACE */
2051 && onError
!=overrideError
/* Rules for other constraints are different */
2052 && pTab
->pIndex
/* There exist other constraints */
2053 && !upsertIpkDelay
/* IPK check already deferred by UPSERT */
2055 ipkTop
= sqlite3VdbeAddOp0(v
, OP_Goto
)+1;
2056 VdbeComment((v
, "defer IPK REPLACE until last"));
2060 /* pkChng!=0 does not mean that the rowid has changed, only that
2061 ** it might have changed. Skip the conflict logic below if the rowid
2063 sqlite3VdbeAddOp3(v
, OP_Eq
, regNewData
, addrRowidOk
, regOldData
);
2064 sqlite3VdbeChangeP5(v
, SQLITE_NOTNULL
);
2068 /* Check to see if the new rowid already exists in the table. Skip
2069 ** the following conflict logic if it does not. */
2070 VdbeNoopComment((v
, "uniqueness check for ROWID"));
2071 sqlite3VdbeVerifyAbortable(v
, onError
);
2072 sqlite3VdbeAddOp3(v
, OP_NotExists
, iDataCur
, addrRowidOk
, regNewData
);
2078 /* no break */ deliberate_fall_through
2083 testcase( onError
==OE_Rollback
);
2084 testcase( onError
==OE_Abort
);
2085 testcase( onError
==OE_Fail
);
2086 sqlite3RowidConstraint(pParse
, onError
, pTab
);
2090 /* If there are DELETE triggers on this table and the
2091 ** recursive-triggers flag is set, call GenerateRowDelete() to
2092 ** remove the conflicting row from the table. This will fire
2093 ** the triggers and remove both the table and index b-tree entries.
2095 ** Otherwise, if there are no triggers or the recursive-triggers
2096 ** flag is not set, but the table has one or more indexes, call
2097 ** GenerateRowIndexDelete(). This removes the index b-tree entries
2098 ** only. The table b-tree entry will be replaced by the new entry
2099 ** when it is inserted.
2101 ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called,
2102 ** also invoke MultiWrite() to indicate that this VDBE may require
2103 ** statement rollback (if the statement is aborted after the delete
2104 ** takes place). Earlier versions called sqlite3MultiWrite() regardless,
2105 ** but being more selective here allows statements like:
2107 ** REPLACE INTO t(rowid) VALUES($newrowid)
2109 ** to run without a statement journal if there are no indexes on the
2113 sqlite3MultiWrite(pParse
);
2114 sqlite3GenerateRowDelete(pParse
, pTab
, pTrigger
, iDataCur
, iIdxCur
,
2115 regNewData
, 1, 0, OE_Replace
, 1, -1);
2116 sqlite3VdbeAddOp2(v
, OP_AddImm
, regTrigCnt
, 1); /* incr trigger cnt */
2119 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
2120 assert( HasRowid(pTab
) );
2121 /* This OP_Delete opcode fires the pre-update-hook only. It does
2122 ** not modify the b-tree. It is more efficient to let the coming
2123 ** OP_Insert replace the existing entry than it is to delete the
2124 ** existing entry and then insert a new one. */
2125 sqlite3VdbeAddOp2(v
, OP_Delete
, iDataCur
, OPFLAG_ISNOOP
);
2126 sqlite3VdbeAppendP4(v
, pTab
, P4_TABLE
);
2127 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
2129 sqlite3MultiWrite(pParse
);
2130 sqlite3GenerateRowIndexDelete(pParse
, pTab
, iDataCur
, iIdxCur
,0,-1);
2136 #ifndef SQLITE_OMIT_UPSERT
2138 sqlite3UpsertDoUpdate(pParse
, pUpsert
, pTab
, 0, iDataCur
);
2139 /* no break */ deliberate_fall_through
2143 testcase( onError
==OE_Ignore
);
2144 sqlite3VdbeGoto(v
, ignoreDest
);
2148 sqlite3VdbeResolveLabel(v
, addrRowidOk
);
2149 if( pUpsert
&& pUpsertClause
!=pUpsert
){
2150 upsertIpkReturn
= sqlite3VdbeAddOp0(v
, OP_Goto
);
2152 ipkBottom
= sqlite3VdbeAddOp0(v
, OP_Goto
);
2153 sqlite3VdbeJumpHere(v
, ipkTop
-1);
2157 /* Test all UNIQUE constraints by creating entries for each UNIQUE
2158 ** index and making sure that duplicate entries do not already exist.
2159 ** Compute the revised record entries for indices as we go.
2161 ** This loop also handles the case of the PRIMARY KEY index for a
2162 ** WITHOUT ROWID table.
2164 for(pIdx
= indexIteratorFirst(&sIdxIter
, &ix
);
2166 pIdx
= indexIteratorNext(&sIdxIter
, &ix
)
2168 int regIdx
; /* Range of registers holding content for pIdx */
2169 int regR
; /* Range of registers holding conflicting PK */
2170 int iThisCur
; /* Cursor for this UNIQUE index */
2171 int addrUniqueOk
; /* Jump here if the UNIQUE constraint is satisfied */
2172 int addrConflictCk
; /* First opcode in the conflict check logic */
2174 if( aRegIdx
[ix
]==0 ) continue; /* Skip indices that do not change */
2176 pUpsertClause
= sqlite3UpsertOfIndex(pUpsert
, pIdx
);
2177 if( upsertIpkDelay
&& pUpsertClause
==pUpsert
){
2178 sqlite3VdbeJumpHere(v
, upsertIpkDelay
);
2181 addrUniqueOk
= sqlite3VdbeMakeLabel(pParse
);
2182 if( bAffinityDone
==0 ){
2183 sqlite3TableAffinity(v
, pTab
, regNewData
+1);
2186 VdbeNoopComment((v
, "prep index %s", pIdx
->zName
));
2187 iThisCur
= iIdxCur
+ix
;
2190 /* Skip partial indices for which the WHERE clause is not true */
2191 if( pIdx
->pPartIdxWhere
){
2192 sqlite3VdbeAddOp2(v
, OP_Null
, 0, aRegIdx
[ix
]);
2193 pParse
->iSelfTab
= -(regNewData
+1);
2194 sqlite3ExprIfFalseDup(pParse
, pIdx
->pPartIdxWhere
, addrUniqueOk
,
2196 pParse
->iSelfTab
= 0;
2199 /* Create a record for this index entry as it should appear after
2200 ** the insert or update. Store that record in the aRegIdx[ix] register
2202 regIdx
= aRegIdx
[ix
]+1;
2203 for(i
=0; i
<pIdx
->nColumn
; i
++){
2204 int iField
= pIdx
->aiColumn
[i
];
2206 if( iField
==XN_EXPR
){
2207 pParse
->iSelfTab
= -(regNewData
+1);
2208 sqlite3ExprCodeCopy(pParse
, pIdx
->aColExpr
->a
[i
].pExpr
, regIdx
+i
);
2209 pParse
->iSelfTab
= 0;
2210 VdbeComment((v
, "%s column %d", pIdx
->zName
, i
));
2211 }else if( iField
==XN_ROWID
|| iField
==pTab
->iPKey
){
2213 sqlite3VdbeAddOp2(v
, OP_IntCopy
, x
, regIdx
+i
);
2214 VdbeComment((v
, "rowid"));
2216 testcase( sqlite3TableColumnToStorage(pTab
, iField
)!=iField
);
2217 x
= sqlite3TableColumnToStorage(pTab
, iField
) + regNewData
+ 1;
2218 sqlite3VdbeAddOp2(v
, OP_SCopy
, x
, regIdx
+i
);
2219 VdbeComment((v
, "%s", pTab
->aCol
[iField
].zCnName
));
2222 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regIdx
, pIdx
->nColumn
, aRegIdx
[ix
]);
2223 VdbeComment((v
, "for %s", pIdx
->zName
));
2224 #ifdef SQLITE_ENABLE_NULL_TRIM
2225 if( pIdx
->idxType
==SQLITE_IDXTYPE_PRIMARYKEY
){
2226 sqlite3SetMakeRecordP5(v
, pIdx
->pTable
);
2229 sqlite3VdbeReleaseRegisters(pParse
, regIdx
, pIdx
->nColumn
, 0, 0);
2231 /* In an UPDATE operation, if this index is the PRIMARY KEY index
2232 ** of a WITHOUT ROWID table and there has been no change the
2233 ** primary key, then no collision is possible. The collision detection
2234 ** logic below can all be skipped. */
2235 if( isUpdate
&& pPk
==pIdx
&& pkChng
==0 ){
2236 sqlite3VdbeResolveLabel(v
, addrUniqueOk
);
2240 /* Find out what action to take in case there is a uniqueness conflict */
2241 onError
= pIdx
->onError
;
2242 if( onError
==OE_None
){
2243 sqlite3VdbeResolveLabel(v
, addrUniqueOk
);
2244 continue; /* pIdx is not a UNIQUE index */
2246 if( overrideError
!=OE_Default
){
2247 onError
= overrideError
;
2248 }else if( onError
==OE_Default
){
2252 /* Figure out if the upsert clause applies to this index */
2253 if( pUpsertClause
){
2254 if( pUpsertClause
->isDoUpdate
==0 ){
2255 onError
= OE_Ignore
; /* DO NOTHING is the same as INSERT OR IGNORE */
2257 onError
= OE_Update
; /* DO UPDATE */
2261 /* Collision detection may be omitted if all of the following are true:
2262 ** (1) The conflict resolution algorithm is REPLACE
2263 ** (2) The table is a WITHOUT ROWID table
2264 ** (3) There are no secondary indexes on the table
2265 ** (4) No delete triggers need to be fired if there is a conflict
2266 ** (5) No FK constraint counters need to be updated if a conflict occurs.
2268 ** This is not possible for ENABLE_PREUPDATE_HOOK builds, as the row
2269 ** must be explicitly deleted in order to ensure any pre-update hook
2271 assert( IsOrdinaryTable(pTab
) );
2272 #ifndef SQLITE_ENABLE_PREUPDATE_HOOK
2273 if( (ix
==0 && pIdx
->pNext
==0) /* Condition 3 */
2274 && pPk
==pIdx
/* Condition 2 */
2275 && onError
==OE_Replace
/* Condition 1 */
2276 && ( 0==(db
->flags
&SQLITE_RecTriggers
) || /* Condition 4 */
2277 0==sqlite3TriggersExist(pParse
, pTab
, TK_DELETE
, 0, 0))
2278 && ( 0==(db
->flags
&SQLITE_ForeignKeys
) || /* Condition 5 */
2279 (0==pTab
->u
.tab
.pFKey
&& 0==sqlite3FkReferences(pTab
)))
2281 sqlite3VdbeResolveLabel(v
, addrUniqueOk
);
2284 #endif /* ifndef SQLITE_ENABLE_PREUPDATE_HOOK */
2286 /* Check to see if the new index entry will be unique */
2287 sqlite3VdbeVerifyAbortable(v
, onError
);
2289 sqlite3VdbeAddOp4Int(v
, OP_NoConflict
, iThisCur
, addrUniqueOk
,
2290 regIdx
, pIdx
->nKeyCol
); VdbeCoverage(v
);
2292 /* Generate code to handle collisions */
2293 regR
= pIdx
==pPk
? regIdx
: sqlite3GetTempRange(pParse
, nPkField
);
2294 if( isUpdate
|| onError
==OE_Replace
){
2295 if( HasRowid(pTab
) ){
2296 sqlite3VdbeAddOp2(v
, OP_IdxRowid
, iThisCur
, regR
);
2297 /* Conflict only if the rowid of the existing index entry
2298 ** is different from old-rowid */
2300 sqlite3VdbeAddOp3(v
, OP_Eq
, regR
, addrUniqueOk
, regOldData
);
2301 sqlite3VdbeChangeP5(v
, SQLITE_NOTNULL
);
2306 /* Extract the PRIMARY KEY from the end of the index entry and
2307 ** store it in registers regR..regR+nPk-1 */
2309 for(i
=0; i
<pPk
->nKeyCol
; i
++){
2310 assert( pPk
->aiColumn
[i
]>=0 );
2311 x
= sqlite3TableColumnToIndex(pIdx
, pPk
->aiColumn
[i
]);
2312 sqlite3VdbeAddOp3(v
, OP_Column
, iThisCur
, x
, regR
+i
);
2313 VdbeComment((v
, "%s.%s", pTab
->zName
,
2314 pTab
->aCol
[pPk
->aiColumn
[i
]].zCnName
));
2318 /* If currently processing the PRIMARY KEY of a WITHOUT ROWID
2319 ** table, only conflict if the new PRIMARY KEY values are actually
2320 ** different from the old. See TH3 withoutrowid04.test.
2322 ** For a UNIQUE index, only conflict if the PRIMARY KEY values
2323 ** of the matched index row are different from the original PRIMARY
2324 ** KEY values of this row before the update. */
2325 int addrJump
= sqlite3VdbeCurrentAddr(v
)+pPk
->nKeyCol
;
2327 int regCmp
= (IsPrimaryKeyIndex(pIdx
) ? regIdx
: regR
);
2329 for(i
=0; i
<pPk
->nKeyCol
; i
++){
2330 char *p4
= (char*)sqlite3LocateCollSeq(pParse
, pPk
->azColl
[i
]);
2331 x
= pPk
->aiColumn
[i
];
2333 if( i
==(pPk
->nKeyCol
-1) ){
2334 addrJump
= addrUniqueOk
;
2337 x
= sqlite3TableColumnToStorage(pTab
, x
);
2338 sqlite3VdbeAddOp4(v
, op
,
2339 regOldData
+1+x
, addrJump
, regCmp
+i
, p4
, P4_COLLSEQ
2341 sqlite3VdbeChangeP5(v
, SQLITE_NOTNULL
);
2342 VdbeCoverageIf(v
, op
==OP_Eq
);
2343 VdbeCoverageIf(v
, op
==OP_Ne
);
2349 /* Generate code that executes if the new index entry is not unique */
2350 assert( onError
==OE_Rollback
|| onError
==OE_Abort
|| onError
==OE_Fail
2351 || onError
==OE_Ignore
|| onError
==OE_Replace
|| onError
==OE_Update
);
2356 testcase( onError
==OE_Rollback
);
2357 testcase( onError
==OE_Abort
);
2358 testcase( onError
==OE_Fail
);
2359 sqlite3UniqueConstraint(pParse
, onError
, pIdx
);
2362 #ifndef SQLITE_OMIT_UPSERT
2364 sqlite3UpsertDoUpdate(pParse
, pUpsert
, pTab
, pIdx
, iIdxCur
+ix
);
2365 /* no break */ deliberate_fall_through
2369 testcase( onError
==OE_Ignore
);
2370 sqlite3VdbeGoto(v
, ignoreDest
);
2374 int nConflictCk
; /* Number of opcodes in conflict check logic */
2376 assert( onError
==OE_Replace
);
2377 nConflictCk
= sqlite3VdbeCurrentAddr(v
) - addrConflictCk
;
2378 assert( nConflictCk
>0 || db
->mallocFailed
);
2379 testcase( nConflictCk
<=0 );
2380 testcase( nConflictCk
>1 );
2382 sqlite3MultiWrite(pParse
);
2385 if( pTrigger
&& isUpdate
){
2386 sqlite3VdbeAddOp1(v
, OP_CursorLock
, iDataCur
);
2388 sqlite3GenerateRowDelete(pParse
, pTab
, pTrigger
, iDataCur
, iIdxCur
,
2389 regR
, nPkField
, 0, OE_Replace
,
2390 (pIdx
==pPk
? ONEPASS_SINGLE
: ONEPASS_OFF
), iThisCur
);
2391 if( pTrigger
&& isUpdate
){
2392 sqlite3VdbeAddOp1(v
, OP_CursorUnlock
, iDataCur
);
2395 int addrBypass
; /* Jump destination to bypass recheck logic */
2397 sqlite3VdbeAddOp2(v
, OP_AddImm
, regTrigCnt
, 1); /* incr trigger cnt */
2398 addrBypass
= sqlite3VdbeAddOp0(v
, OP_Goto
); /* Bypass recheck */
2399 VdbeComment((v
, "bypass recheck"));
2401 /* Here we insert code that will be invoked after all constraint
2402 ** checks have run, if and only if one or more replace triggers
2404 sqlite3VdbeResolveLabel(v
, lblRecheckOk
);
2405 lblRecheckOk
= sqlite3VdbeMakeLabel(pParse
);
2406 if( pIdx
->pPartIdxWhere
){
2407 /* Bypass the recheck if this partial index is not defined
2408 ** for the current row */
2409 sqlite3VdbeAddOp2(v
, OP_IsNull
, regIdx
-1, lblRecheckOk
);
2412 /* Copy the constraint check code from above, except change
2413 ** the constraint-ok jump destination to be the address of
2414 ** the next retest block */
2415 while( nConflictCk
>0 ){
2416 VdbeOp x
; /* Conflict check opcode to copy */
2417 /* The sqlite3VdbeAddOp4() call might reallocate the opcode array.
2418 ** Hence, make a complete copy of the opcode, rather than using
2419 ** a pointer to the opcode. */
2420 x
= *sqlite3VdbeGetOp(v
, addrConflictCk
);
2421 if( x
.opcode
!=OP_IdxRowid
){
2422 int p2
; /* New P2 value for copied conflict check opcode */
2424 if( sqlite3OpcodeProperty
[x
.opcode
]&OPFLG_JUMP
){
2429 zP4
= x
.p4type
==P4_INT32
? SQLITE_INT_TO_PTR(x
.p4
.i
) : x
.p4
.z
;
2430 sqlite3VdbeAddOp4(v
, x
.opcode
, x
.p1
, p2
, x
.p3
, zP4
, x
.p4type
);
2431 sqlite3VdbeChangeP5(v
, x
.p5
);
2432 VdbeCoverageIf(v
, p2
!=x
.p2
);
2437 /* If the retest fails, issue an abort */
2438 sqlite3UniqueConstraint(pParse
, OE_Abort
, pIdx
);
2440 sqlite3VdbeJumpHere(v
, addrBypass
); /* Terminate the recheck bypass */
2446 sqlite3VdbeResolveLabel(v
, addrUniqueOk
);
2447 if( regR
!=regIdx
) sqlite3ReleaseTempRange(pParse
, regR
, nPkField
);
2450 && sqlite3UpsertNextIsIPK(pUpsertClause
)
2452 sqlite3VdbeGoto(v
, upsertIpkDelay
+1);
2453 sqlite3VdbeJumpHere(v
, upsertIpkReturn
);
2454 upsertIpkReturn
= 0;
2458 /* If the IPK constraint is a REPLACE, run it last */
2460 sqlite3VdbeGoto(v
, ipkTop
);
2461 VdbeComment((v
, "Do IPK REPLACE"));
2462 assert( ipkBottom
>0 );
2463 sqlite3VdbeJumpHere(v
, ipkBottom
);
2466 /* Recheck all uniqueness constraints after replace triggers have run */
2467 testcase( regTrigCnt
!=0 && nReplaceTrig
==0 );
2468 assert( regTrigCnt
!=0 || nReplaceTrig
==0 );
2470 sqlite3VdbeAddOp2(v
, OP_IfNot
, regTrigCnt
, lblRecheckOk
);VdbeCoverage(v
);
2473 sqlite3VdbeAddOp3(v
, OP_Eq
, regNewData
, addrRecheck
, regOldData
);
2474 sqlite3VdbeChangeP5(v
, SQLITE_NOTNULL
);
2477 sqlite3VdbeAddOp3(v
, OP_NotExists
, iDataCur
, addrRecheck
, regNewData
);
2479 sqlite3RowidConstraint(pParse
, OE_Abort
, pTab
);
2481 sqlite3VdbeGoto(v
, addrRecheck
);
2483 sqlite3VdbeResolveLabel(v
, lblRecheckOk
);
2486 /* Generate the table record */
2487 if( HasRowid(pTab
) ){
2488 int regRec
= aRegIdx
[ix
];
2489 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regNewData
+1, pTab
->nNVCol
, regRec
);
2490 sqlite3SetMakeRecordP5(v
, pTab
);
2491 if( !bAffinityDone
){
2492 sqlite3TableAffinity(v
, pTab
, 0);
2496 *pbMayReplace
= seenReplace
;
2497 VdbeModuleComment((v
, "END: GenCnstCks(%d)", seenReplace
));
2500 #ifdef SQLITE_ENABLE_NULL_TRIM
2502 ** Change the P5 operand on the last opcode (which should be an OP_MakeRecord)
2503 ** to be the number of columns in table pTab that must not be NULL-trimmed.
2505 ** Or if no columns of pTab may be NULL-trimmed, leave P5 at zero.
2507 void sqlite3SetMakeRecordP5(Vdbe
*v
, Table
*pTab
){
2510 /* Records with omitted columns are only allowed for schema format
2511 ** version 2 and later (SQLite version 3.1.4, 2005-02-20). */
2512 if( pTab
->pSchema
->file_format
<2 ) return;
2514 for(i
=pTab
->nCol
-1; i
>0; i
--){
2515 if( pTab
->aCol
[i
].iDflt
!=0 ) break;
2516 if( pTab
->aCol
[i
].colFlags
& COLFLAG_PRIMKEY
) break;
2518 sqlite3VdbeChangeP5(v
, i
+1);
2523 ** Table pTab is a WITHOUT ROWID table that is being written to. The cursor
2524 ** number is iCur, and register regData contains the new record for the
2525 ** PK index. This function adds code to invoke the pre-update hook,
2526 ** if one is registered.
2528 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
2529 static void codeWithoutRowidPreupdate(
2530 Parse
*pParse
, /* Parse context */
2531 Table
*pTab
, /* Table being updated */
2532 int iCur
, /* Cursor number for table */
2533 int regData
/* Data containing new record */
2535 Vdbe
*v
= pParse
->pVdbe
;
2536 int r
= sqlite3GetTempReg(pParse
);
2537 assert( !HasRowid(pTab
) );
2538 assert( 0==(pParse
->db
->mDbFlags
& DBFLAG_Vacuum
) || CORRUPT_DB
);
2539 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, r
);
2540 sqlite3VdbeAddOp4(v
, OP_Insert
, iCur
, regData
, r
, (char*)pTab
, P4_TABLE
);
2541 sqlite3VdbeChangeP5(v
, OPFLAG_ISNOOP
);
2542 sqlite3ReleaseTempReg(pParse
, r
);
2545 # define codeWithoutRowidPreupdate(a,b,c,d)
2549 ** This routine generates code to finish the INSERT or UPDATE operation
2550 ** that was started by a prior call to sqlite3GenerateConstraintChecks.
2551 ** A consecutive range of registers starting at regNewData contains the
2552 ** rowid and the content to be inserted.
2554 ** The arguments to this routine should be the same as the first six
2555 ** arguments to sqlite3GenerateConstraintChecks.
2557 void sqlite3CompleteInsertion(
2558 Parse
*pParse
, /* The parser context */
2559 Table
*pTab
, /* the table into which we are inserting */
2560 int iDataCur
, /* Cursor of the canonical data source */
2561 int iIdxCur
, /* First index cursor */
2562 int regNewData
, /* Range of content */
2563 int *aRegIdx
, /* Register used by each index. 0 for unused indices */
2564 int update_flags
, /* True for UPDATE, False for INSERT */
2565 int appendBias
, /* True if this is likely to be an append */
2566 int useSeekResult
/* True to set the USESEEKRESULT flag on OP_[Idx]Insert */
2568 Vdbe
*v
; /* Prepared statements under construction */
2569 Index
*pIdx
; /* An index being inserted or updated */
2570 u8 pik_flags
; /* flag values passed to the btree insert */
2571 int i
; /* Loop counter */
2573 assert( update_flags
==0
2574 || update_flags
==OPFLAG_ISUPDATE
2575 || update_flags
==(OPFLAG_ISUPDATE
|OPFLAG_SAVEPOSITION
)
2580 assert( !IsView(pTab
) ); /* This table is not a VIEW */
2581 for(i
=0, pIdx
=pTab
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
, i
++){
2582 /* All REPLACE indexes are at the end of the list */
2583 assert( pIdx
->onError
!=OE_Replace
2585 || pIdx
->pNext
->onError
==OE_Replace
);
2586 if( aRegIdx
[i
]==0 ) continue;
2587 if( pIdx
->pPartIdxWhere
){
2588 sqlite3VdbeAddOp2(v
, OP_IsNull
, aRegIdx
[i
], sqlite3VdbeCurrentAddr(v
)+2);
2591 pik_flags
= (useSeekResult
? OPFLAG_USESEEKRESULT
: 0);
2592 if( IsPrimaryKeyIndex(pIdx
) && !HasRowid(pTab
) ){
2593 pik_flags
|= OPFLAG_NCHANGE
;
2594 pik_flags
|= (update_flags
& OPFLAG_SAVEPOSITION
);
2595 if( update_flags
==0 ){
2596 codeWithoutRowidPreupdate(pParse
, pTab
, iIdxCur
+i
, aRegIdx
[i
]);
2599 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, iIdxCur
+i
, aRegIdx
[i
],
2601 pIdx
->uniqNotNull
? pIdx
->nKeyCol
: pIdx
->nColumn
);
2602 sqlite3VdbeChangeP5(v
, pik_flags
);
2604 if( !HasRowid(pTab
) ) return;
2605 if( pParse
->nested
){
2608 pik_flags
= OPFLAG_NCHANGE
;
2609 pik_flags
|= (update_flags
?update_flags
:OPFLAG_LASTROWID
);
2612 pik_flags
|= OPFLAG_APPEND
;
2614 if( useSeekResult
){
2615 pik_flags
|= OPFLAG_USESEEKRESULT
;
2617 sqlite3VdbeAddOp3(v
, OP_Insert
, iDataCur
, aRegIdx
[i
], regNewData
);
2618 if( !pParse
->nested
){
2619 sqlite3VdbeAppendP4(v
, pTab
, P4_TABLE
);
2621 sqlite3VdbeChangeP5(v
, pik_flags
);
2625 ** Allocate cursors for the pTab table and all its indices and generate
2626 ** code to open and initialized those cursors.
2628 ** The cursor for the object that contains the complete data (normally
2629 ** the table itself, but the PRIMARY KEY index in the case of a WITHOUT
2630 ** ROWID table) is returned in *piDataCur. The first index cursor is
2631 ** returned in *piIdxCur. The number of indices is returned.
2633 ** Use iBase as the first cursor (either the *piDataCur for rowid tables
2634 ** or the first index for WITHOUT ROWID tables) if it is non-negative.
2635 ** If iBase is negative, then allocate the next available cursor.
2637 ** For a rowid table, *piDataCur will be exactly one less than *piIdxCur.
2638 ** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range
2639 ** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the
2640 ** pTab->pIndex list.
2642 ** If pTab is a virtual table, then this routine is a no-op and the
2643 ** *piDataCur and *piIdxCur values are left uninitialized.
2645 int sqlite3OpenTableAndIndices(
2646 Parse
*pParse
, /* Parsing context */
2647 Table
*pTab
, /* Table to be opened */
2648 int op
, /* OP_OpenRead or OP_OpenWrite */
2649 u8 p5
, /* P5 value for OP_Open* opcodes (except on WITHOUT ROWID) */
2650 int iBase
, /* Use this for the table cursor, if there is one */
2651 u8
*aToOpen
, /* If not NULL: boolean for each table and index */
2652 int *piDataCur
, /* Write the database source cursor number here */
2653 int *piIdxCur
/* Write the first index cursor number here */
2661 assert( op
==OP_OpenRead
|| op
==OP_OpenWrite
);
2662 assert( op
==OP_OpenWrite
|| p5
==0 );
2663 assert( piDataCur
!=0 );
2664 assert( piIdxCur
!=0 );
2665 if( IsVirtual(pTab
) ){
2666 /* This routine is a no-op for virtual tables. Leave the output
2667 ** variables *piDataCur and *piIdxCur set to illegal cursor numbers
2668 ** for improved error detection. */
2669 *piDataCur
= *piIdxCur
= -999;
2672 iDb
= sqlite3SchemaToIndex(pParse
->db
, pTab
->pSchema
);
2675 if( iBase
<0 ) iBase
= pParse
->nTab
;
2677 *piDataCur
= iDataCur
;
2678 if( HasRowid(pTab
) && (aToOpen
==0 || aToOpen
[0]) ){
2679 sqlite3OpenTable(pParse
, iDataCur
, iDb
, pTab
, op
);
2680 }else if( pParse
->db
->noSharedCache
==0 ){
2681 sqlite3TableLock(pParse
, iDb
, pTab
->tnum
, op
==OP_OpenWrite
, pTab
->zName
);
2684 for(i
=0, pIdx
=pTab
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
, i
++){
2685 int iIdxCur
= iBase
++;
2686 assert( pIdx
->pSchema
==pTab
->pSchema
);
2687 if( IsPrimaryKeyIndex(pIdx
) && !HasRowid(pTab
) ){
2688 *piDataCur
= iIdxCur
;
2691 if( aToOpen
==0 || aToOpen
[i
+1] ){
2692 sqlite3VdbeAddOp3(v
, op
, iIdxCur
, pIdx
->tnum
, iDb
);
2693 sqlite3VdbeSetP4KeyInfo(pParse
, pIdx
);
2694 sqlite3VdbeChangeP5(v
, p5
);
2695 VdbeComment((v
, "%s", pIdx
->zName
));
2698 if( iBase
>pParse
->nTab
) pParse
->nTab
= iBase
;
2705 ** The following global variable is incremented whenever the
2706 ** transfer optimization is used. This is used for testing
2707 ** purposes only - to make sure the transfer optimization really
2708 ** is happening when it is supposed to.
2710 int sqlite3_xferopt_count
;
2711 #endif /* SQLITE_TEST */
2714 #ifndef SQLITE_OMIT_XFER_OPT
2716 ** Check to see if index pSrc is compatible as a source of data
2717 ** for index pDest in an insert transfer optimization. The rules
2718 ** for a compatible index:
2720 ** * The index is over the same set of columns
2721 ** * The same DESC and ASC markings occurs on all columns
2722 ** * The same onError processing (OE_Abort, OE_Ignore, etc)
2723 ** * The same collating sequence on each column
2724 ** * The index has the exact same WHERE clause
2726 static int xferCompatibleIndex(Index
*pDest
, Index
*pSrc
){
2728 assert( pDest
&& pSrc
);
2729 assert( pDest
->pTable
!=pSrc
->pTable
);
2730 if( pDest
->nKeyCol
!=pSrc
->nKeyCol
|| pDest
->nColumn
!=pSrc
->nColumn
){
2731 return 0; /* Different number of columns */
2733 if( pDest
->onError
!=pSrc
->onError
){
2734 return 0; /* Different conflict resolution strategies */
2736 for(i
=0; i
<pSrc
->nKeyCol
; i
++){
2737 if( pSrc
->aiColumn
[i
]!=pDest
->aiColumn
[i
] ){
2738 return 0; /* Different columns indexed */
2740 if( pSrc
->aiColumn
[i
]==XN_EXPR
){
2741 assert( pSrc
->aColExpr
!=0 && pDest
->aColExpr
!=0 );
2742 if( sqlite3ExprCompare(0, pSrc
->aColExpr
->a
[i
].pExpr
,
2743 pDest
->aColExpr
->a
[i
].pExpr
, -1)!=0 ){
2744 return 0; /* Different expressions in the index */
2747 if( pSrc
->aSortOrder
[i
]!=pDest
->aSortOrder
[i
] ){
2748 return 0; /* Different sort orders */
2750 if( sqlite3_stricmp(pSrc
->azColl
[i
],pDest
->azColl
[i
])!=0 ){
2751 return 0; /* Different collating sequences */
2754 if( sqlite3ExprCompare(0, pSrc
->pPartIdxWhere
, pDest
->pPartIdxWhere
, -1) ){
2755 return 0; /* Different WHERE clauses */
2758 /* If no test above fails then the indices must be compatible */
2763 ** Attempt the transfer optimization on INSERTs of the form
2765 ** INSERT INTO tab1 SELECT * FROM tab2;
2767 ** The xfer optimization transfers raw records from tab2 over to tab1.
2768 ** Columns are not decoded and reassembled, which greatly improves
2769 ** performance. Raw index records are transferred in the same way.
2771 ** The xfer optimization is only attempted if tab1 and tab2 are compatible.
2772 ** There are lots of rules for determining compatibility - see comments
2773 ** embedded in the code for details.
2775 ** This routine returns TRUE if the optimization is guaranteed to be used.
2776 ** Sometimes the xfer optimization will only work if the destination table
2777 ** is empty - a factor that can only be determined at run-time. In that
2778 ** case, this routine generates code for the xfer optimization but also
2779 ** does a test to see if the destination table is empty and jumps over the
2780 ** xfer optimization code if the test fails. In that case, this routine
2781 ** returns FALSE so that the caller will know to go ahead and generate
2782 ** an unoptimized transfer. This routine also returns FALSE if there
2783 ** is no chance that the xfer optimization can be applied.
2785 ** This optimization is particularly useful at making VACUUM run faster.
2787 static int xferOptimization(
2788 Parse
*pParse
, /* Parser context */
2789 Table
*pDest
, /* The table we are inserting into */
2790 Select
*pSelect
, /* A SELECT statement to use as the data source */
2791 int onError
, /* How to handle constraint errors */
2792 int iDbDest
/* The database of pDest */
2794 sqlite3
*db
= pParse
->db
;
2795 ExprList
*pEList
; /* The result set of the SELECT */
2796 Table
*pSrc
; /* The table in the FROM clause of SELECT */
2797 Index
*pSrcIdx
, *pDestIdx
; /* Source and destination indices */
2798 SrcItem
*pItem
; /* An element of pSelect->pSrc */
2799 int i
; /* Loop counter */
2800 int iDbSrc
; /* The database of pSrc */
2801 int iSrc
, iDest
; /* Cursors from source and destination */
2802 int addr1
, addr2
; /* Loop addresses */
2803 int emptyDestTest
= 0; /* Address of test for empty pDest */
2804 int emptySrcTest
= 0; /* Address of test for empty pSrc */
2805 Vdbe
*v
; /* The VDBE we are building */
2806 int regAutoinc
; /* Memory register used by AUTOINC */
2807 int destHasUniqueIdx
= 0; /* True if pDest has a UNIQUE index */
2808 int regData
, regRowid
; /* Registers holding data and rowid */
2810 assert( pSelect
!=0 );
2811 if( pParse
->pWith
|| pSelect
->pWith
){
2812 /* Do not attempt to process this query if there are an WITH clauses
2813 ** attached to it. Proceeding may generate a false "no such table: xxx"
2814 ** error if pSelect reads from a CTE named "xxx". */
2817 #ifndef SQLITE_OMIT_VIRTUALTABLE
2818 if( IsVirtual(pDest
) ){
2819 return 0; /* tab1 must not be a virtual table */
2822 if( onError
==OE_Default
){
2823 if( pDest
->iPKey
>=0 ) onError
= pDest
->keyConf
;
2824 if( onError
==OE_Default
) onError
= OE_Abort
;
2826 assert(pSelect
->pSrc
); /* allocated even if there is no FROM clause */
2827 if( pSelect
->pSrc
->nSrc
!=1 ){
2828 return 0; /* FROM clause must have exactly one term */
2830 if( pSelect
->pSrc
->a
[0].pSelect
){
2831 return 0; /* FROM clause cannot contain a subquery */
2833 if( pSelect
->pWhere
){
2834 return 0; /* SELECT may not have a WHERE clause */
2836 if( pSelect
->pOrderBy
){
2837 return 0; /* SELECT may not have an ORDER BY clause */
2839 /* Do not need to test for a HAVING clause. If HAVING is present but
2840 ** there is no ORDER BY, we will get an error. */
2841 if( pSelect
->pGroupBy
){
2842 return 0; /* SELECT may not have a GROUP BY clause */
2844 if( pSelect
->pLimit
){
2845 return 0; /* SELECT may not have a LIMIT clause */
2847 if( pSelect
->pPrior
){
2848 return 0; /* SELECT may not be a compound query */
2850 if( pSelect
->selFlags
& SF_Distinct
){
2851 return 0; /* SELECT may not be DISTINCT */
2853 pEList
= pSelect
->pEList
;
2854 assert( pEList
!=0 );
2855 if( pEList
->nExpr
!=1 ){
2856 return 0; /* The result set must have exactly one column */
2858 assert( pEList
->a
[0].pExpr
);
2859 if( pEList
->a
[0].pExpr
->op
!=TK_ASTERISK
){
2860 return 0; /* The result set must be the special operator "*" */
2863 /* At this point we have established that the statement is of the
2864 ** correct syntactic form to participate in this optimization. Now
2865 ** we have to check the semantics.
2867 pItem
= pSelect
->pSrc
->a
;
2868 pSrc
= sqlite3LocateTableItem(pParse
, 0, pItem
);
2870 return 0; /* FROM clause does not contain a real table */
2872 if( pSrc
->tnum
==pDest
->tnum
&& pSrc
->pSchema
==pDest
->pSchema
){
2873 testcase( pSrc
!=pDest
); /* Possible due to bad sqlite_schema.rootpage */
2874 return 0; /* tab1 and tab2 may not be the same table */
2876 if( HasRowid(pDest
)!=HasRowid(pSrc
) ){
2877 return 0; /* source and destination must both be WITHOUT ROWID or not */
2879 if( !IsOrdinaryTable(pSrc
) ){
2880 return 0; /* tab2 may not be a view or virtual table */
2882 if( pDest
->nCol
!=pSrc
->nCol
){
2883 return 0; /* Number of columns must be the same in tab1 and tab2 */
2885 if( pDest
->iPKey
!=pSrc
->iPKey
){
2886 return 0; /* Both tables must have the same INTEGER PRIMARY KEY */
2888 if( (pDest
->tabFlags
& TF_Strict
)!=0 && (pSrc
->tabFlags
& TF_Strict
)==0 ){
2889 return 0; /* Cannot feed from a non-strict into a strict table */
2891 for(i
=0; i
<pDest
->nCol
; i
++){
2892 Column
*pDestCol
= &pDest
->aCol
[i
];
2893 Column
*pSrcCol
= &pSrc
->aCol
[i
];
2894 #ifdef SQLITE_ENABLE_HIDDEN_COLUMNS
2895 if( (db
->mDbFlags
& DBFLAG_Vacuum
)==0
2896 && (pDestCol
->colFlags
| pSrcCol
->colFlags
) & COLFLAG_HIDDEN
2898 return 0; /* Neither table may have __hidden__ columns */
2901 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
2902 /* Even if tables t1 and t2 have identical schemas, if they contain
2903 ** generated columns, then this statement is semantically incorrect:
2905 ** INSERT INTO t2 SELECT * FROM t1;
2907 ** The reason is that generated column values are returned by the
2908 ** the SELECT statement on the right but the INSERT statement on the
2909 ** left wants them to be omitted.
2911 ** Nevertheless, this is a useful notational shorthand to tell SQLite
2912 ** to do a bulk transfer all of the content from t1 over to t2.
2914 ** We could, in theory, disable this (except for internal use by the
2915 ** VACUUM command where it is actually needed). But why do that? It
2916 ** seems harmless enough, and provides a useful service.
2918 if( (pDestCol
->colFlags
& COLFLAG_GENERATED
) !=
2919 (pSrcCol
->colFlags
& COLFLAG_GENERATED
) ){
2920 return 0; /* Both columns have the same generated-column type */
2922 /* But the transfer is only allowed if both the source and destination
2923 ** tables have the exact same expressions for generated columns.
2924 ** This requirement could be relaxed for VIRTUAL columns, I suppose.
2926 if( (pDestCol
->colFlags
& COLFLAG_GENERATED
)!=0 ){
2927 if( sqlite3ExprCompare(0,
2928 sqlite3ColumnExpr(pSrc
, pSrcCol
),
2929 sqlite3ColumnExpr(pDest
, pDestCol
), -1)!=0 ){
2930 testcase( pDestCol
->colFlags
& COLFLAG_VIRTUAL
);
2931 testcase( pDestCol
->colFlags
& COLFLAG_STORED
);
2932 return 0; /* Different generator expressions */
2936 if( pDestCol
->affinity
!=pSrcCol
->affinity
){
2937 return 0; /* Affinity must be the same on all columns */
2939 if( sqlite3_stricmp(sqlite3ColumnColl(pDestCol
),
2940 sqlite3ColumnColl(pSrcCol
))!=0 ){
2941 return 0; /* Collating sequence must be the same on all columns */
2943 if( pDestCol
->notNull
&& !pSrcCol
->notNull
){
2944 return 0; /* tab2 must be NOT NULL if tab1 is */
2946 /* Default values for second and subsequent columns need to match. */
2947 if( (pDestCol
->colFlags
& COLFLAG_GENERATED
)==0 && i
>0 ){
2948 Expr
*pDestExpr
= sqlite3ColumnExpr(pDest
, pDestCol
);
2949 Expr
*pSrcExpr
= sqlite3ColumnExpr(pSrc
, pSrcCol
);
2950 assert( pDestExpr
==0 || pDestExpr
->op
==TK_SPAN
);
2951 assert( pDestExpr
==0 || !ExprHasProperty(pDestExpr
, EP_IntValue
) );
2952 assert( pSrcExpr
==0 || pSrcExpr
->op
==TK_SPAN
);
2953 assert( pSrcExpr
==0 || !ExprHasProperty(pSrcExpr
, EP_IntValue
) );
2954 if( (pDestExpr
==0)!=(pSrcExpr
==0)
2955 || (pDestExpr
!=0 && strcmp(pDestExpr
->u
.zToken
,
2956 pSrcExpr
->u
.zToken
)!=0)
2958 return 0; /* Default values must be the same for all columns */
2962 for(pDestIdx
=pDest
->pIndex
; pDestIdx
; pDestIdx
=pDestIdx
->pNext
){
2963 if( IsUniqueIndex(pDestIdx
) ){
2964 destHasUniqueIdx
= 1;
2966 for(pSrcIdx
=pSrc
->pIndex
; pSrcIdx
; pSrcIdx
=pSrcIdx
->pNext
){
2967 if( xferCompatibleIndex(pDestIdx
, pSrcIdx
) ) break;
2970 return 0; /* pDestIdx has no corresponding index in pSrc */
2972 if( pSrcIdx
->tnum
==pDestIdx
->tnum
&& pSrc
->pSchema
==pDest
->pSchema
2973 && sqlite3FaultSim(411)==SQLITE_OK
){
2974 /* The sqlite3FaultSim() call allows this corruption test to be
2975 ** bypassed during testing, in order to exercise other corruption tests
2976 ** further downstream. */
2977 return 0; /* Corrupt schema - two indexes on the same btree */
2980 #ifndef SQLITE_OMIT_CHECK
2981 if( pDest
->pCheck
&& sqlite3ExprListCompare(pSrc
->pCheck
,pDest
->pCheck
,-1) ){
2982 return 0; /* Tables have different CHECK constraints. Ticket #2252 */
2985 #ifndef SQLITE_OMIT_FOREIGN_KEY
2986 /* Disallow the transfer optimization if the destination table contains
2987 ** any foreign key constraints. This is more restrictive than necessary.
2988 ** But the main beneficiary of the transfer optimization is the VACUUM
2989 ** command, and the VACUUM command disables foreign key constraints. So
2990 ** the extra complication to make this rule less restrictive is probably
2991 ** not worth the effort. Ticket [6284df89debdfa61db8073e062908af0c9b6118e]
2993 assert( IsOrdinaryTable(pDest
) );
2994 if( (db
->flags
& SQLITE_ForeignKeys
)!=0 && pDest
->u
.tab
.pFKey
!=0 ){
2998 if( (db
->flags
& SQLITE_CountRows
)!=0 ){
2999 return 0; /* xfer opt does not play well with PRAGMA count_changes */
3002 /* If we get this far, it means that the xfer optimization is at
3003 ** least a possibility, though it might only work if the destination
3004 ** table (tab1) is initially empty.
3007 sqlite3_xferopt_count
++;
3009 iDbSrc
= sqlite3SchemaToIndex(db
, pSrc
->pSchema
);
3010 v
= sqlite3GetVdbe(pParse
);
3011 sqlite3CodeVerifySchema(pParse
, iDbSrc
);
3012 iSrc
= pParse
->nTab
++;
3013 iDest
= pParse
->nTab
++;
3014 regAutoinc
= autoIncBegin(pParse
, iDbDest
, pDest
);
3015 regData
= sqlite3GetTempReg(pParse
);
3016 sqlite3VdbeAddOp2(v
, OP_Null
, 0, regData
);
3017 regRowid
= sqlite3GetTempReg(pParse
);
3018 sqlite3OpenTable(pParse
, iDest
, iDbDest
, pDest
, OP_OpenWrite
);
3019 assert( HasRowid(pDest
) || destHasUniqueIdx
);
3020 if( (db
->mDbFlags
& DBFLAG_Vacuum
)==0 && (
3021 (pDest
->iPKey
<0 && pDest
->pIndex
!=0) /* (1) */
3022 || destHasUniqueIdx
/* (2) */
3023 || (onError
!=OE_Abort
&& onError
!=OE_Rollback
) /* (3) */
3025 /* In some circumstances, we are able to run the xfer optimization
3026 ** only if the destination table is initially empty. Unless the
3027 ** DBFLAG_Vacuum flag is set, this block generates code to make
3028 ** that determination. If DBFLAG_Vacuum is set, then the destination
3029 ** table is always empty.
3031 ** Conditions under which the destination must be empty:
3033 ** (1) There is no INTEGER PRIMARY KEY but there are indices.
3034 ** (If the destination is not initially empty, the rowid fields
3035 ** of index entries might need to change.)
3037 ** (2) The destination has a unique index. (The xfer optimization
3038 ** is unable to test uniqueness.)
3040 ** (3) onError is something other than OE_Abort and OE_Rollback.
3042 addr1
= sqlite3VdbeAddOp2(v
, OP_Rewind
, iDest
, 0); VdbeCoverage(v
);
3043 emptyDestTest
= sqlite3VdbeAddOp0(v
, OP_Goto
);
3044 sqlite3VdbeJumpHere(v
, addr1
);
3046 if( HasRowid(pSrc
) ){
3048 sqlite3OpenTable(pParse
, iSrc
, iDbSrc
, pSrc
, OP_OpenRead
);
3049 emptySrcTest
= sqlite3VdbeAddOp2(v
, OP_Rewind
, iSrc
, 0); VdbeCoverage(v
);
3050 if( pDest
->iPKey
>=0 ){
3051 addr1
= sqlite3VdbeAddOp2(v
, OP_Rowid
, iSrc
, regRowid
);
3052 if( (db
->mDbFlags
& DBFLAG_Vacuum
)==0 ){
3053 sqlite3VdbeVerifyAbortable(v
, onError
);
3054 addr2
= sqlite3VdbeAddOp3(v
, OP_NotExists
, iDest
, 0, regRowid
);
3056 sqlite3RowidConstraint(pParse
, onError
, pDest
);
3057 sqlite3VdbeJumpHere(v
, addr2
);
3059 autoIncStep(pParse
, regAutoinc
, regRowid
);
3060 }else if( pDest
->pIndex
==0 && !(db
->mDbFlags
& DBFLAG_VacuumInto
) ){
3061 addr1
= sqlite3VdbeAddOp2(v
, OP_NewRowid
, iDest
, regRowid
);
3063 addr1
= sqlite3VdbeAddOp2(v
, OP_Rowid
, iSrc
, regRowid
);
3064 assert( (pDest
->tabFlags
& TF_Autoincrement
)==0 );
3067 if( db
->mDbFlags
& DBFLAG_Vacuum
){
3068 sqlite3VdbeAddOp1(v
, OP_SeekEnd
, iDest
);
3069 insFlags
= OPFLAG_APPEND
|OPFLAG_USESEEKRESULT
|OPFLAG_PREFORMAT
;
3071 insFlags
= OPFLAG_NCHANGE
|OPFLAG_LASTROWID
|OPFLAG_APPEND
|OPFLAG_PREFORMAT
;
3073 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
3074 if( (db
->mDbFlags
& DBFLAG_Vacuum
)==0 ){
3075 sqlite3VdbeAddOp3(v
, OP_RowData
, iSrc
, regData
, 1);
3076 insFlags
&= ~OPFLAG_PREFORMAT
;
3080 sqlite3VdbeAddOp3(v
, OP_RowCell
, iDest
, iSrc
, regRowid
);
3082 sqlite3VdbeAddOp3(v
, OP_Insert
, iDest
, regData
, regRowid
);
3083 if( (db
->mDbFlags
& DBFLAG_Vacuum
)==0 ){
3084 sqlite3VdbeChangeP4(v
, -1, (char*)pDest
, P4_TABLE
);
3086 sqlite3VdbeChangeP5(v
, insFlags
);
3088 sqlite3VdbeAddOp2(v
, OP_Next
, iSrc
, addr1
); VdbeCoverage(v
);
3089 sqlite3VdbeAddOp2(v
, OP_Close
, iSrc
, 0);
3090 sqlite3VdbeAddOp2(v
, OP_Close
, iDest
, 0);
3092 sqlite3TableLock(pParse
, iDbDest
, pDest
->tnum
, 1, pDest
->zName
);
3093 sqlite3TableLock(pParse
, iDbSrc
, pSrc
->tnum
, 0, pSrc
->zName
);
3095 for(pDestIdx
=pDest
->pIndex
; pDestIdx
; pDestIdx
=pDestIdx
->pNext
){
3097 for(pSrcIdx
=pSrc
->pIndex
; ALWAYS(pSrcIdx
); pSrcIdx
=pSrcIdx
->pNext
){
3098 if( xferCompatibleIndex(pDestIdx
, pSrcIdx
) ) break;
3101 sqlite3VdbeAddOp3(v
, OP_OpenRead
, iSrc
, pSrcIdx
->tnum
, iDbSrc
);
3102 sqlite3VdbeSetP4KeyInfo(pParse
, pSrcIdx
);
3103 VdbeComment((v
, "%s", pSrcIdx
->zName
));
3104 sqlite3VdbeAddOp3(v
, OP_OpenWrite
, iDest
, pDestIdx
->tnum
, iDbDest
);
3105 sqlite3VdbeSetP4KeyInfo(pParse
, pDestIdx
);
3106 sqlite3VdbeChangeP5(v
, OPFLAG_BULKCSR
);
3107 VdbeComment((v
, "%s", pDestIdx
->zName
));
3108 addr1
= sqlite3VdbeAddOp2(v
, OP_Rewind
, iSrc
, 0); VdbeCoverage(v
);
3109 if( db
->mDbFlags
& DBFLAG_Vacuum
){
3110 /* This INSERT command is part of a VACUUM operation, which guarantees
3111 ** that the destination table is empty. If all indexed columns use
3112 ** collation sequence BINARY, then it can also be assumed that the
3113 ** index will be populated by inserting keys in strictly sorted
3114 ** order. In this case, instead of seeking within the b-tree as part
3115 ** of every OP_IdxInsert opcode, an OP_SeekEnd is added before the
3116 ** OP_IdxInsert to seek to the point within the b-tree where each key
3117 ** should be inserted. This is faster.
3119 ** If any of the indexed columns use a collation sequence other than
3120 ** BINARY, this optimization is disabled. This is because the user
3121 ** might change the definition of a collation sequence and then run
3122 ** a VACUUM command. In that case keys may not be written in strictly
3124 for(i
=0; i
<pSrcIdx
->nColumn
; i
++){
3125 const char *zColl
= pSrcIdx
->azColl
[i
];
3126 if( sqlite3_stricmp(sqlite3StrBINARY
, zColl
) ) break;
3128 if( i
==pSrcIdx
->nColumn
){
3129 idxInsFlags
= OPFLAG_USESEEKRESULT
|OPFLAG_PREFORMAT
;
3130 sqlite3VdbeAddOp1(v
, OP_SeekEnd
, iDest
);
3131 sqlite3VdbeAddOp2(v
, OP_RowCell
, iDest
, iSrc
);
3133 }else if( !HasRowid(pSrc
) && pDestIdx
->idxType
==SQLITE_IDXTYPE_PRIMARYKEY
){
3134 idxInsFlags
|= OPFLAG_NCHANGE
;
3136 if( idxInsFlags
!=(OPFLAG_USESEEKRESULT
|OPFLAG_PREFORMAT
) ){
3137 sqlite3VdbeAddOp3(v
, OP_RowData
, iSrc
, regData
, 1);
3138 if( (db
->mDbFlags
& DBFLAG_Vacuum
)==0
3140 && IsPrimaryKeyIndex(pDestIdx
)
3142 codeWithoutRowidPreupdate(pParse
, pDest
, iDest
, regData
);
3145 sqlite3VdbeAddOp2(v
, OP_IdxInsert
, iDest
, regData
);
3146 sqlite3VdbeChangeP5(v
, idxInsFlags
|OPFLAG_APPEND
);
3147 sqlite3VdbeAddOp2(v
, OP_Next
, iSrc
, addr1
+1); VdbeCoverage(v
);
3148 sqlite3VdbeJumpHere(v
, addr1
);
3149 sqlite3VdbeAddOp2(v
, OP_Close
, iSrc
, 0);
3150 sqlite3VdbeAddOp2(v
, OP_Close
, iDest
, 0);
3152 if( emptySrcTest
) sqlite3VdbeJumpHere(v
, emptySrcTest
);
3153 sqlite3ReleaseTempReg(pParse
, regRowid
);
3154 sqlite3ReleaseTempReg(pParse
, regData
);
3155 if( emptyDestTest
){
3156 sqlite3AutoincrementEnd(pParse
);
3157 sqlite3VdbeAddOp2(v
, OP_Halt
, SQLITE_OK
, 0);
3158 sqlite3VdbeJumpHere(v
, emptyDestTest
);
3159 sqlite3VdbeAddOp2(v
, OP_Close
, iDest
, 0);
3165 #endif /* SQLITE_OMIT_XFER_OPT */