4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements. This module is responsible for
14 ** generating the code that loops through a table looking for applicable
15 ** rows. Indices are selected and used to speed the search when doing
16 ** so is applicable. Because this module is responsible for selecting
17 ** indices, you might also think of this module as the "query optimizer".
19 #include "sqliteInt.h"
23 ** Extra information appended to the end of sqlite3_index_info but not
24 ** visible to the xBestIndex function, at least not directly. The
25 ** sqlite3_vtab_collation() interface knows how to reach it, however.
27 ** This object is not an API and can be changed from one release to the
28 ** next. As long as allocateIndexInfo() and sqlite3_vtab_collation()
29 ** agree on the structure, all will be well.
31 typedef struct HiddenIndexInfo HiddenIndexInfo
;
32 struct HiddenIndexInfo
{
33 WhereClause
*pWC
; /* The Where clause being analyzed */
34 Parse
*pParse
; /* The parsing context */
35 int eDistinct
; /* Value to return from sqlite3_vtab_distinct() */
36 u32 mIn
; /* Mask of terms that are <col> IN (...) */
37 u32 mHandleIn
; /* Terms that vtab will handle as <col> IN (...) */
38 sqlite3_value
*aRhs
[1]; /* RHS values for constraints. MUST BE LAST
39 ** because extra space is allocated to hold up
40 ** to nTerm such values */
43 /* Forward declaration of methods */
44 static int whereLoopResize(sqlite3
*, WhereLoop
*, int);
47 ** Return the estimated number of output rows from a WHERE clause
49 LogEst
sqlite3WhereOutputRowCount(WhereInfo
*pWInfo
){
50 return pWInfo
->nRowOut
;
54 ** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this
55 ** WHERE clause returns outputs for DISTINCT processing.
57 int sqlite3WhereIsDistinct(WhereInfo
*pWInfo
){
58 return pWInfo
->eDistinct
;
62 ** Return the number of ORDER BY terms that are satisfied by the
63 ** WHERE clause. A return of 0 means that the output must be
64 ** completely sorted. A return equal to the number of ORDER BY
65 ** terms means that no sorting is needed at all. A return that
66 ** is positive but less than the number of ORDER BY terms means that
67 ** block sorting is required.
69 int sqlite3WhereIsOrdered(WhereInfo
*pWInfo
){
70 return pWInfo
->nOBSat
<0 ? 0 : pWInfo
->nOBSat
;
74 ** In the ORDER BY LIMIT optimization, if the inner-most loop is known
75 ** to emit rows in increasing order, and if the last row emitted by the
76 ** inner-most loop did not fit within the sorter, then we can skip all
77 ** subsequent rows for the current iteration of the inner loop (because they
78 ** will not fit in the sorter either) and continue with the second inner
79 ** loop - the loop immediately outside the inner-most.
81 ** When a row does not fit in the sorter (because the sorter already
82 ** holds LIMIT+OFFSET rows that are smaller), then a jump is made to the
83 ** label returned by this function.
85 ** If the ORDER BY LIMIT optimization applies, the jump destination should
86 ** be the continuation for the second-inner-most loop. If the ORDER BY
87 ** LIMIT optimization does not apply, then the jump destination should
88 ** be the continuation for the inner-most loop.
90 ** It is always safe for this routine to return the continuation of the
91 ** inner-most loop, in the sense that a correct answer will result.
92 ** Returning the continuation the second inner loop is an optimization
93 ** that might make the code run a little faster, but should not change
96 int sqlite3WhereOrderByLimitOptLabel(WhereInfo
*pWInfo
){
98 if( !pWInfo
->bOrderedInnerLoop
){
99 /* The ORDER BY LIMIT optimization does not apply. Jump to the
100 ** continuation of the inner-most loop. */
101 return pWInfo
->iContinue
;
103 pInner
= &pWInfo
->a
[pWInfo
->nLevel
-1];
104 assert( pInner
->addrNxt
!=0 );
105 return pInner
->pRJ
? pWInfo
->iContinue
: pInner
->addrNxt
;
109 ** While generating code for the min/max optimization, after handling
110 ** the aggregate-step call to min() or max(), check to see if any
111 ** additional looping is required. If the output order is such that
112 ** we are certain that the correct answer has already been found, then
113 ** code an OP_Goto to by pass subsequent processing.
115 ** Any extra OP_Goto that is coded here is an optimization. The
116 ** correct answer should be obtained regardless. This OP_Goto just
117 ** makes the answer appear faster.
119 void sqlite3WhereMinMaxOptEarlyOut(Vdbe
*v
, WhereInfo
*pWInfo
){
122 if( !pWInfo
->bOrderedInnerLoop
) return;
123 if( pWInfo
->nOBSat
==0 ) return;
124 for(i
=pWInfo
->nLevel
-1; i
>=0; i
--){
125 pInner
= &pWInfo
->a
[i
];
126 if( (pInner
->pWLoop
->wsFlags
& WHERE_COLUMN_IN
)!=0 ){
127 sqlite3VdbeGoto(v
, pInner
->addrNxt
);
131 sqlite3VdbeGoto(v
, pWInfo
->iBreak
);
135 ** Return the VDBE address or label to jump to in order to continue
136 ** immediately with the next row of a WHERE clause.
138 int sqlite3WhereContinueLabel(WhereInfo
*pWInfo
){
139 assert( pWInfo
->iContinue
!=0 );
140 return pWInfo
->iContinue
;
144 ** Return the VDBE address or label to jump to in order to break
145 ** out of a WHERE loop.
147 int sqlite3WhereBreakLabel(WhereInfo
*pWInfo
){
148 return pWInfo
->iBreak
;
152 ** Return ONEPASS_OFF (0) if an UPDATE or DELETE statement is unable to
153 ** operate directly on the rowids returned by a WHERE clause. Return
154 ** ONEPASS_SINGLE (1) if the statement can operation directly because only
155 ** a single row is to be changed. Return ONEPASS_MULTI (2) if the one-pass
156 ** optimization can be used on multiple
158 ** If the ONEPASS optimization is used (if this routine returns true)
159 ** then also write the indices of open cursors used by ONEPASS
160 ** into aiCur[0] and aiCur[1]. iaCur[0] gets the cursor of the data
161 ** table and iaCur[1] gets the cursor used by an auxiliary index.
162 ** Either value may be -1, indicating that cursor is not used.
163 ** Any cursors returned will have been opened for writing.
165 ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is
166 ** unable to use the ONEPASS optimization.
168 int sqlite3WhereOkOnePass(WhereInfo
*pWInfo
, int *aiCur
){
169 memcpy(aiCur
, pWInfo
->aiCurOnePass
, sizeof(int)*2);
170 #ifdef WHERETRACE_ENABLED
171 if( sqlite3WhereTrace
&& pWInfo
->eOnePass
!=ONEPASS_OFF
){
172 sqlite3DebugPrintf("%s cursors: %d %d\n",
173 pWInfo
->eOnePass
==ONEPASS_SINGLE
? "ONEPASS_SINGLE" : "ONEPASS_MULTI",
177 return pWInfo
->eOnePass
;
181 ** Return TRUE if the WHERE loop uses the OP_DeferredSeek opcode to move
182 ** the data cursor to the row selected by the index cursor.
184 int sqlite3WhereUsesDeferredSeek(WhereInfo
*pWInfo
){
185 return pWInfo
->bDeferredSeek
;
189 ** Move the content of pSrc into pDest
191 static void whereOrMove(WhereOrSet
*pDest
, WhereOrSet
*pSrc
){
193 memcpy(pDest
->a
, pSrc
->a
, pDest
->n
*sizeof(pDest
->a
[0]));
197 ** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet.
199 ** The new entry might overwrite an existing entry, or it might be
200 ** appended, or it might be discarded. Do whatever is the right thing
201 ** so that pSet keeps the N_OR_COST best entries seen so far.
203 static int whereOrInsert(
204 WhereOrSet
*pSet
, /* The WhereOrSet to be updated */
205 Bitmask prereq
, /* Prerequisites of the new entry */
206 LogEst rRun
, /* Run-cost of the new entry */
207 LogEst nOut
/* Number of outputs for the new entry */
211 for(i
=pSet
->n
, p
=pSet
->a
; i
>0; i
--, p
++){
212 if( rRun
<=p
->rRun
&& (prereq
& p
->prereq
)==prereq
){
213 goto whereOrInsert_done
;
215 if( p
->rRun
<=rRun
&& (p
->prereq
& prereq
)==p
->prereq
){
219 if( pSet
->n
<N_OR_COST
){
220 p
= &pSet
->a
[pSet
->n
++];
224 for(i
=1; i
<pSet
->n
; i
++){
225 if( p
->rRun
>pSet
->a
[i
].rRun
) p
= pSet
->a
+ i
;
227 if( p
->rRun
<=rRun
) return 0;
232 if( p
->nOut
>nOut
) p
->nOut
= nOut
;
237 ** Return the bitmask for the given cursor number. Return 0 if
238 ** iCursor is not in the set.
240 Bitmask
sqlite3WhereGetMask(WhereMaskSet
*pMaskSet
, int iCursor
){
242 assert( pMaskSet
->n
<=(int)sizeof(Bitmask
)*8 );
243 assert( pMaskSet
->n
>0 || pMaskSet
->ix
[0]<0 );
244 assert( iCursor
>=-1 );
245 if( pMaskSet
->ix
[0]==iCursor
){
248 for(i
=1; i
<pMaskSet
->n
; i
++){
249 if( pMaskSet
->ix
[i
]==iCursor
){
256 /* Allocate memory that is automatically freed when pWInfo is freed.
258 void *sqlite3WhereMalloc(WhereInfo
*pWInfo
, u64 nByte
){
259 WhereMemBlock
*pBlock
;
260 pBlock
= sqlite3DbMallocRawNN(pWInfo
->pParse
->db
, nByte
+sizeof(*pBlock
));
262 pBlock
->pNext
= pWInfo
->pMemToFree
;
264 pWInfo
->pMemToFree
= pBlock
;
267 return (void*)pBlock
;
269 void *sqlite3WhereRealloc(WhereInfo
*pWInfo
, void *pOld
, u64 nByte
){
270 void *pNew
= sqlite3WhereMalloc(pWInfo
, nByte
);
272 WhereMemBlock
*pOldBlk
= (WhereMemBlock
*)pOld
;
274 assert( pOldBlk
->sz
<nByte
);
275 memcpy(pNew
, pOld
, pOldBlk
->sz
);
281 ** Create a new mask for cursor iCursor.
283 ** There is one cursor per table in the FROM clause. The number of
284 ** tables in the FROM clause is limited by a test early in the
285 ** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[]
286 ** array will never overflow.
288 static void createMask(WhereMaskSet
*pMaskSet
, int iCursor
){
289 assert( pMaskSet
->n
< ArraySize(pMaskSet
->ix
) );
290 pMaskSet
->ix
[pMaskSet
->n
++] = iCursor
;
294 ** If the right-hand branch of the expression is a TK_COLUMN, then return
295 ** a pointer to the right-hand branch. Otherwise, return NULL.
297 static Expr
*whereRightSubexprIsColumn(Expr
*p
){
298 p
= sqlite3ExprSkipCollateAndLikely(p
->pRight
);
299 if( ALWAYS(p
!=0) && p
->op
==TK_COLUMN
&& !ExprHasProperty(p
, EP_FixedCol
) ){
306 ** Advance to the next WhereTerm that matches according to the criteria
307 ** established when the pScan object was initialized by whereScanInit().
308 ** Return NULL if there are no more matching WhereTerms.
310 static WhereTerm
*whereScanNext(WhereScan
*pScan
){
311 int iCur
; /* The cursor on the LHS of the term */
312 i16 iColumn
; /* The column on the LHS of the term. -1 for IPK */
313 Expr
*pX
; /* An expression being tested */
314 WhereClause
*pWC
; /* Shorthand for pScan->pWC */
315 WhereTerm
*pTerm
; /* The term being tested */
316 int k
= pScan
->k
; /* Where to start scanning */
318 assert( pScan
->iEquiv
<=pScan
->nEquiv
);
321 iColumn
= pScan
->aiColumn
[pScan
->iEquiv
-1];
322 iCur
= pScan
->aiCur
[pScan
->iEquiv
-1];
326 for(pTerm
=pWC
->a
+k
; k
<pWC
->nTerm
; k
++, pTerm
++){
327 assert( (pTerm
->eOperator
& (WO_OR
|WO_AND
))==0 || pTerm
->leftCursor
<0 );
328 if( pTerm
->leftCursor
==iCur
329 && pTerm
->u
.x
.leftColumn
==iColumn
331 || sqlite3ExprCompareSkip(pTerm
->pExpr
->pLeft
,
332 pScan
->pIdxExpr
,iCur
)==0)
333 && (pScan
->iEquiv
<=1 || !ExprHasProperty(pTerm
->pExpr
, EP_OuterON
))
335 if( (pTerm
->eOperator
& WO_EQUIV
)!=0
336 && pScan
->nEquiv
<ArraySize(pScan
->aiCur
)
337 && (pX
= whereRightSubexprIsColumn(pTerm
->pExpr
))!=0
340 for(j
=0; j
<pScan
->nEquiv
; j
++){
341 if( pScan
->aiCur
[j
]==pX
->iTable
342 && pScan
->aiColumn
[j
]==pX
->iColumn
){
346 if( j
==pScan
->nEquiv
){
347 pScan
->aiCur
[j
] = pX
->iTable
;
348 pScan
->aiColumn
[j
] = pX
->iColumn
;
352 if( (pTerm
->eOperator
& pScan
->opMask
)!=0 ){
353 /* Verify the affinity and collating sequence match */
354 if( pScan
->zCollName
&& (pTerm
->eOperator
& WO_ISNULL
)==0 ){
356 Parse
*pParse
= pWC
->pWInfo
->pParse
;
358 if( !sqlite3IndexAffinityOk(pX
, pScan
->idxaff
) ){
362 pColl
= sqlite3ExprCompareCollSeq(pParse
, pX
);
363 if( pColl
==0 ) pColl
= pParse
->db
->pDfltColl
;
364 if( sqlite3StrICmp(pColl
->zName
, pScan
->zCollName
) ){
368 if( (pTerm
->eOperator
& (WO_EQ
|WO_IS
))!=0
369 && (pX
= pTerm
->pExpr
->pRight
, ALWAYS(pX
!=0))
371 && pX
->iTable
==pScan
->aiCur
[0]
372 && pX
->iColumn
==pScan
->aiColumn
[0]
374 testcase( pTerm
->eOperator
& WO_IS
);
379 #ifdef WHERETRACE_ENABLED
380 if( sqlite3WhereTrace
& 0x20000 ){
382 sqlite3DebugPrintf("SCAN-TERM %p: nEquiv=%d",
383 pTerm
, pScan
->nEquiv
);
384 for(ii
=0; ii
<pScan
->nEquiv
; ii
++){
385 sqlite3DebugPrintf(" {%d:%d}",
386 pScan
->aiCur
[ii
], pScan
->aiColumn
[ii
]);
388 sqlite3DebugPrintf("\n");
398 if( pScan
->iEquiv
>=pScan
->nEquiv
) break;
399 pWC
= pScan
->pOrigWC
;
407 ** This is whereScanInit() for the case of an index on an expression.
408 ** It is factored out into a separate tail-recursion subroutine so that
409 ** the normal whereScanInit() routine, which is a high-runner, does not
410 ** need to push registers onto the stack as part of its prologue.
412 static SQLITE_NOINLINE WhereTerm
*whereScanInitIndexExpr(WhereScan
*pScan
){
413 pScan
->idxaff
= sqlite3ExprAffinity(pScan
->pIdxExpr
);
414 return whereScanNext(pScan
);
418 ** Initialize a WHERE clause scanner object. Return a pointer to the
419 ** first match. Return NULL if there are no matches.
421 ** The scanner will be searching the WHERE clause pWC. It will look
422 ** for terms of the form "X <op> <expr>" where X is column iColumn of table
423 ** iCur. Or if pIdx!=0 then X is column iColumn of index pIdx. pIdx
424 ** must be one of the indexes of table iCur.
426 ** The <op> must be one of the operators described by opMask.
428 ** If the search is for X and the WHERE clause contains terms of the
429 ** form X=Y then this routine might also return terms of the form
430 ** "Y <op> <expr>". The number of levels of transitivity is limited,
431 ** but is enough to handle most commonly occurring SQL statements.
433 ** If X is not the INTEGER PRIMARY KEY then X must be compatible with
436 static WhereTerm
*whereScanInit(
437 WhereScan
*pScan
, /* The WhereScan object being initialized */
438 WhereClause
*pWC
, /* The WHERE clause to be scanned */
439 int iCur
, /* Cursor to scan for */
440 int iColumn
, /* Column to scan for */
441 u32 opMask
, /* Operator(s) to scan for */
442 Index
*pIdx
/* Must be compatible with this index */
444 pScan
->pOrigWC
= pWC
;
448 pScan
->zCollName
= 0;
449 pScan
->opMask
= opMask
;
451 pScan
->aiCur
[0] = iCur
;
456 iColumn
= pIdx
->aiColumn
[j
];
457 if( iColumn
==pIdx
->pTable
->iPKey
){
459 }else if( iColumn
>=0 ){
460 pScan
->idxaff
= pIdx
->pTable
->aCol
[iColumn
].affinity
;
461 pScan
->zCollName
= pIdx
->azColl
[j
];
462 }else if( iColumn
==XN_EXPR
){
463 pScan
->pIdxExpr
= pIdx
->aColExpr
->a
[j
].pExpr
;
464 pScan
->zCollName
= pIdx
->azColl
[j
];
465 pScan
->aiColumn
[0] = XN_EXPR
;
466 return whereScanInitIndexExpr(pScan
);
468 }else if( iColumn
==XN_EXPR
){
471 pScan
->aiColumn
[0] = iColumn
;
472 return whereScanNext(pScan
);
476 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
477 ** where X is a reference to the iColumn of table iCur or of index pIdx
478 ** if pIdx!=0 and <op> is one of the WO_xx operator codes specified by
479 ** the op parameter. Return a pointer to the term. Return 0 if not found.
481 ** If pIdx!=0 then it must be one of the indexes of table iCur.
482 ** Search for terms matching the iColumn-th column of pIdx
483 ** rather than the iColumn-th column of table iCur.
485 ** The term returned might by Y=<expr> if there is another constraint in
486 ** the WHERE clause that specifies that X=Y. Any such constraints will be
487 ** identified by the WO_EQUIV bit in the pTerm->eOperator field. The
488 ** aiCur[]/iaColumn[] arrays hold X and all its equivalents. There are 11
489 ** slots in aiCur[]/aiColumn[] so that means we can look for X plus up to 10
490 ** other equivalent values. Hence a search for X will return <expr> if X=A1
491 ** and A1=A2 and A2=A3 and ... and A9=A10 and A10=<expr>.
493 ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>"
494 ** then try for the one with no dependencies on <expr> - in other words where
495 ** <expr> is a constant expression of some kind. Only return entries of
496 ** the form "X <op> Y" where Y is a column in another table if no terms of
497 ** the form "X <op> <const-expr>" exist. If no terms with a constant RHS
498 ** exist, try to return a term that does not use WO_EQUIV.
500 WhereTerm
*sqlite3WhereFindTerm(
501 WhereClause
*pWC
, /* The WHERE clause to be searched */
502 int iCur
, /* Cursor number of LHS */
503 int iColumn
, /* Column number of LHS */
504 Bitmask notReady
, /* RHS must not overlap with this mask */
505 u32 op
, /* Mask of WO_xx values describing operator */
506 Index
*pIdx
/* Must be compatible with this index, if not NULL */
508 WhereTerm
*pResult
= 0;
512 p
= whereScanInit(&scan
, pWC
, iCur
, iColumn
, op
, pIdx
);
515 if( (p
->prereqRight
& notReady
)==0 ){
516 if( p
->prereqRight
==0 && (p
->eOperator
&op
)!=0 ){
517 testcase( p
->eOperator
& WO_IS
);
520 if( pResult
==0 ) pResult
= p
;
522 p
= whereScanNext(&scan
);
528 ** This function searches pList for an entry that matches the iCol-th column
531 ** If such an expression is found, its index in pList->a[] is returned. If
532 ** no expression is found, -1 is returned.
534 static int findIndexCol(
535 Parse
*pParse
, /* Parse context */
536 ExprList
*pList
, /* Expression list to search */
537 int iBase
, /* Cursor for table associated with pIdx */
538 Index
*pIdx
, /* Index to match column of */
539 int iCol
/* Column of index to match */
542 const char *zColl
= pIdx
->azColl
[iCol
];
544 for(i
=0; i
<pList
->nExpr
; i
++){
545 Expr
*p
= sqlite3ExprSkipCollateAndLikely(pList
->a
[i
].pExpr
);
547 && (p
->op
==TK_COLUMN
|| p
->op
==TK_AGG_COLUMN
)
548 && p
->iColumn
==pIdx
->aiColumn
[iCol
]
551 CollSeq
*pColl
= sqlite3ExprNNCollSeq(pParse
, pList
->a
[i
].pExpr
);
552 if( 0==sqlite3StrICmp(pColl
->zName
, zColl
) ){
562 ** Return TRUE if the iCol-th column of index pIdx is NOT NULL
564 static int indexColumnNotNull(Index
*pIdx
, int iCol
){
567 assert( iCol
>=0 && iCol
<pIdx
->nColumn
);
568 j
= pIdx
->aiColumn
[iCol
];
570 return pIdx
->pTable
->aCol
[j
].notNull
;
575 return 0; /* Assume an indexed expression can always yield a NULL */
581 ** Return true if the DISTINCT expression-list passed as the third argument
584 ** A DISTINCT list is redundant if any subset of the columns in the
585 ** DISTINCT list are collectively unique and individually non-null.
587 static int isDistinctRedundant(
588 Parse
*pParse
, /* Parsing context */
589 SrcList
*pTabList
, /* The FROM clause */
590 WhereClause
*pWC
, /* The WHERE clause */
591 ExprList
*pDistinct
/* The result set that needs to be DISTINCT */
598 /* If there is more than one table or sub-select in the FROM clause of
599 ** this query, then it will not be possible to show that the DISTINCT
600 ** clause is redundant. */
601 if( pTabList
->nSrc
!=1 ) return 0;
602 iBase
= pTabList
->a
[0].iCursor
;
603 pTab
= pTabList
->a
[0].pTab
;
605 /* If any of the expressions is an IPK column on table iBase, then return
606 ** true. Note: The (p->iTable==iBase) part of this test may be false if the
607 ** current SELECT is a correlated sub-query.
609 for(i
=0; i
<pDistinct
->nExpr
; i
++){
610 Expr
*p
= sqlite3ExprSkipCollateAndLikely(pDistinct
->a
[i
].pExpr
);
611 if( NEVER(p
==0) ) continue;
612 if( p
->op
!=TK_COLUMN
&& p
->op
!=TK_AGG_COLUMN
) continue;
613 if( p
->iTable
==iBase
&& p
->iColumn
<0 ) return 1;
616 /* Loop through all indices on the table, checking each to see if it makes
617 ** the DISTINCT qualifier redundant. It does so if:
619 ** 1. The index is itself UNIQUE, and
621 ** 2. All of the columns in the index are either part of the pDistinct
622 ** list, or else the WHERE clause contains a term of the form "col=X",
623 ** where X is a constant value. The collation sequences of the
624 ** comparison and select-list expressions must match those of the index.
626 ** 3. All of those index columns for which the WHERE clause does not
627 ** contain a "col=X" term are subject to a NOT NULL constraint.
629 for(pIdx
=pTab
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
){
630 if( !IsUniqueIndex(pIdx
) ) continue;
631 if( pIdx
->pPartIdxWhere
) continue;
632 for(i
=0; i
<pIdx
->nKeyCol
; i
++){
633 if( 0==sqlite3WhereFindTerm(pWC
, iBase
, i
, ~(Bitmask
)0, WO_EQ
, pIdx
) ){
634 if( findIndexCol(pParse
, pDistinct
, iBase
, pIdx
, i
)<0 ) break;
635 if( indexColumnNotNull(pIdx
, i
)==0 ) break;
638 if( i
==pIdx
->nKeyCol
){
639 /* This index implies that the DISTINCT qualifier is redundant. */
649 ** Estimate the logarithm of the input value to base 2.
651 static LogEst
estLog(LogEst N
){
652 return N
<=10 ? 0 : sqlite3LogEst(N
) - 33;
656 ** Convert OP_Column opcodes to OP_Copy in previously generated code.
658 ** This routine runs over generated VDBE code and translates OP_Column
659 ** opcodes into OP_Copy when the table is being accessed via co-routine
660 ** instead of via table lookup.
662 ** If the iAutoidxCur is not zero, then any OP_Rowid instructions on
663 ** cursor iTabCur are transformed into OP_Sequence opcode for the
664 ** iAutoidxCur cursor, in order to generate unique rowids for the
665 ** automatic index being generated.
667 static void translateColumnToCopy(
668 Parse
*pParse
, /* Parsing context */
669 int iStart
, /* Translate from this opcode to the end */
670 int iTabCur
, /* OP_Column/OP_Rowid references to this table */
671 int iRegister
, /* The first column is in this register */
672 int iAutoidxCur
/* If non-zero, cursor of autoindex being generated */
674 Vdbe
*v
= pParse
->pVdbe
;
675 VdbeOp
*pOp
= sqlite3VdbeGetOp(v
, iStart
);
676 int iEnd
= sqlite3VdbeCurrentAddr(v
);
677 if( pParse
->db
->mallocFailed
) return;
678 for(; iStart
<iEnd
; iStart
++, pOp
++){
679 if( pOp
->p1
!=iTabCur
) continue;
680 if( pOp
->opcode
==OP_Column
){
681 pOp
->opcode
= OP_Copy
;
682 pOp
->p1
= pOp
->p2
+ iRegister
;
685 pOp
->p5
= 2; /* Cause the MEM_Subtype flag to be cleared */
686 }else if( pOp
->opcode
==OP_Rowid
){
687 pOp
->opcode
= OP_Sequence
;
688 pOp
->p1
= iAutoidxCur
;
689 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
690 if( iAutoidxCur
==0 ){
691 pOp
->opcode
= OP_Null
;
700 ** Two routines for printing the content of an sqlite3_index_info
701 ** structure. Used for testing and debugging only. If neither
702 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
705 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED)
706 static void whereTraceIndexInfoInputs(sqlite3_index_info
*p
){
708 if( (sqlite3WhereTrace
& 0x10)==0 ) return;
709 for(i
=0; i
<p
->nConstraint
; i
++){
711 " constraint[%d]: col=%d termid=%d op=%d usabled=%d collseq=%s\n",
713 p
->aConstraint
[i
].iColumn
,
714 p
->aConstraint
[i
].iTermOffset
,
715 p
->aConstraint
[i
].op
,
716 p
->aConstraint
[i
].usable
,
717 sqlite3_vtab_collation(p
,i
));
719 for(i
=0; i
<p
->nOrderBy
; i
++){
720 sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n",
722 p
->aOrderBy
[i
].iColumn
,
723 p
->aOrderBy
[i
].desc
);
726 static void whereTraceIndexInfoOutputs(sqlite3_index_info
*p
){
728 if( (sqlite3WhereTrace
& 0x10)==0 ) return;
729 for(i
=0; i
<p
->nConstraint
; i
++){
730 sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n",
732 p
->aConstraintUsage
[i
].argvIndex
,
733 p
->aConstraintUsage
[i
].omit
);
735 sqlite3DebugPrintf(" idxNum=%d\n", p
->idxNum
);
736 sqlite3DebugPrintf(" idxStr=%s\n", p
->idxStr
);
737 sqlite3DebugPrintf(" orderByConsumed=%d\n", p
->orderByConsumed
);
738 sqlite3DebugPrintf(" estimatedCost=%g\n", p
->estimatedCost
);
739 sqlite3DebugPrintf(" estimatedRows=%lld\n", p
->estimatedRows
);
742 #define whereTraceIndexInfoInputs(A)
743 #define whereTraceIndexInfoOutputs(A)
747 ** We know that pSrc is an operand of an outer join. Return true if
748 ** pTerm is a constraint that is compatible with that join.
750 ** pTerm must be EP_OuterON if pSrc is the right operand of an
751 ** outer join. pTerm can be either EP_OuterON or EP_InnerON if pSrc
752 ** is the left operand of a RIGHT join.
754 ** See https://sqlite.org/forum/forumpost/206d99a16dd9212f
755 ** for an example of a WHERE clause constraints that may not be used on
756 ** the right table of a RIGHT JOIN because the constraint implies a
757 ** not-NULL condition on the left table of the RIGHT JOIN.
759 static int constraintCompatibleWithOuterJoin(
760 const WhereTerm
*pTerm
, /* WHERE clause term to check */
761 const SrcItem
*pSrc
/* Table we are trying to access */
763 assert( (pSrc
->fg
.jointype
&(JT_LEFT
|JT_LTORJ
|JT_RIGHT
))!=0 ); /* By caller */
764 testcase( (pSrc
->fg
.jointype
& (JT_LEFT
|JT_LTORJ
|JT_RIGHT
))==JT_LEFT
);
765 testcase( (pSrc
->fg
.jointype
& (JT_LEFT
|JT_LTORJ
|JT_RIGHT
))==JT_LTORJ
);
766 testcase( ExprHasProperty(pTerm
->pExpr
, EP_OuterON
) )
767 testcase( ExprHasProperty(pTerm
->pExpr
, EP_InnerON
) );
768 if( !ExprHasProperty(pTerm
->pExpr
, EP_OuterON
|EP_InnerON
)
769 || pTerm
->pExpr
->w
.iJoin
!= pSrc
->iCursor
773 if( (pSrc
->fg
.jointype
& (JT_LEFT
|JT_RIGHT
))!=0
774 && ExprHasProperty(pTerm
->pExpr
, EP_InnerON
)
783 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
785 ** Return TRUE if the WHERE clause term pTerm is of a form where it
786 ** could be used with an index to access pSrc, assuming an appropriate
789 static int termCanDriveIndex(
790 const WhereTerm
*pTerm
, /* WHERE clause term to check */
791 const SrcItem
*pSrc
, /* Table we are trying to access */
792 const Bitmask notReady
/* Tables in outer loops of the join */
795 if( pTerm
->leftCursor
!=pSrc
->iCursor
) return 0;
796 if( (pTerm
->eOperator
& (WO_EQ
|WO_IS
))==0 ) return 0;
797 assert( (pSrc
->fg
.jointype
& JT_RIGHT
)==0 );
798 if( (pSrc
->fg
.jointype
& (JT_LEFT
|JT_LTORJ
|JT_RIGHT
))!=0
799 && !constraintCompatibleWithOuterJoin(pTerm
,pSrc
)
801 return 0; /* See https://sqlite.org/forum/forumpost/51e6959f61 */
803 if( (pTerm
->prereqRight
& notReady
)!=0 ) return 0;
804 assert( (pTerm
->eOperator
& (WO_OR
|WO_AND
))==0 );
805 if( pTerm
->u
.x
.leftColumn
<0 ) return 0;
806 aff
= pSrc
->pTab
->aCol
[pTerm
->u
.x
.leftColumn
].affinity
;
807 if( !sqlite3IndexAffinityOk(pTerm
->pExpr
, aff
) ) return 0;
808 testcase( pTerm
->pExpr
->op
==TK_IS
);
814 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
816 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
818 ** Argument pIdx represents an automatic index that the current statement
819 ** will create and populate. Add an OP_Explain with text of the form:
821 ** CREATE AUTOMATIC INDEX ON <table>(<cols>) [WHERE <expr>]
823 ** This is only required if sqlite3_stmt_scanstatus() is enabled, to
824 ** associate an SQLITE_SCANSTAT_NCYCLE and SQLITE_SCANSTAT_NLOOP
825 ** values with. In order to avoid breaking legacy code and test cases,
826 ** the OP_Explain is not added if this is an EXPLAIN QUERY PLAN command.
828 static void explainAutomaticIndex(
830 Index
*pIdx
, /* Automatic index to explain */
831 int bPartial
, /* True if pIdx is a partial index */
832 int *pAddrExplain
/* OUT: Address of OP_Explain */
834 if( IS_STMT_SCANSTATUS(pParse
->db
) && pParse
->explain
!=2 ){
835 Table
*pTab
= pIdx
->pTable
;
836 const char *zSep
= "";
839 sqlite3_str
*pStr
= sqlite3_str_new(pParse
->db
);
840 sqlite3_str_appendf(pStr
,"CREATE AUTOMATIC INDEX ON %s(", pTab
->zName
);
841 assert( pIdx
->nColumn
>1 );
842 assert( pIdx
->aiColumn
[pIdx
->nColumn
-1]==XN_ROWID
);
843 for(ii
=0; ii
<(pIdx
->nColumn
-1); ii
++){
844 const char *zName
= 0;
845 int iCol
= pIdx
->aiColumn
[ii
];
847 zName
= pTab
->aCol
[iCol
].zCnName
;
848 sqlite3_str_appendf(pStr
, "%s%s", zSep
, zName
);
851 zText
= sqlite3_str_finish(pStr
);
853 sqlite3OomFault(pParse
->db
);
855 *pAddrExplain
= sqlite3VdbeExplain(
856 pParse
, 0, "%s)%s", zText
, (bPartial
? " WHERE <expr>" : "")
863 # define explainAutomaticIndex(a,b,c,d)
867 ** Generate code to construct the Index object for an automatic index
868 ** and to set up the WhereLevel object pLevel so that the code generator
869 ** makes use of the automatic index.
871 static SQLITE_NOINLINE
void constructAutomaticIndex(
872 Parse
*pParse
, /* The parsing context */
873 WhereClause
*pWC
, /* The WHERE clause */
874 const Bitmask notReady
, /* Mask of cursors that are not available */
875 WhereLevel
*pLevel
/* Write new index here */
877 int nKeyCol
; /* Number of columns in the constructed index */
878 WhereTerm
*pTerm
; /* A single term of the WHERE clause */
879 WhereTerm
*pWCEnd
; /* End of pWC->a[] */
880 Index
*pIdx
; /* Object describing the transient index */
881 Vdbe
*v
; /* Prepared statement under construction */
882 int addrInit
; /* Address of the initialization bypass jump */
883 Table
*pTable
; /* The table being indexed */
884 int addrTop
; /* Top of the index fill loop */
885 int regRecord
; /* Register holding an index record */
886 int n
; /* Column counter */
887 int i
; /* Loop counter */
888 int mxBitCol
; /* Maximum column in pSrc->colUsed */
889 CollSeq
*pColl
; /* Collating sequence to on a column */
890 WhereLoop
*pLoop
; /* The Loop object */
891 char *zNotUsed
; /* Extra space on the end of pIdx */
892 Bitmask idxCols
; /* Bitmap of columns used for indexing */
893 Bitmask extraCols
; /* Bitmap of additional columns */
894 u8 sentWarning
= 0; /* True if a warning has been issued */
895 u8 useBloomFilter
= 0; /* True to also add a Bloom filter */
896 Expr
*pPartial
= 0; /* Partial Index Expression */
897 int iContinue
= 0; /* Jump here to skip excluded rows */
898 SrcList
*pTabList
; /* The complete FROM clause */
899 SrcItem
*pSrc
; /* The FROM clause term to get the next index */
900 int addrCounter
= 0; /* Address where integer counter is initialized */
901 int regBase
; /* Array of registers where record is assembled */
902 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
903 int addrExp
= 0; /* Address of OP_Explain */
906 /* Generate code to skip over the creation and initialization of the
907 ** transient index on 2nd and subsequent iterations of the loop. */
910 addrInit
= sqlite3VdbeAddOp0(v
, OP_Once
); VdbeCoverage(v
);
912 /* Count the number of columns that will be added to the index
913 ** and used to match WHERE clause constraints */
915 pTabList
= pWC
->pWInfo
->pTabList
;
916 pSrc
= &pTabList
->a
[pLevel
->iFrom
];
918 pWCEnd
= &pWC
->a
[pWC
->nTerm
];
919 pLoop
= pLevel
->pWLoop
;
921 for(pTerm
=pWC
->a
; pTerm
<pWCEnd
; pTerm
++){
922 Expr
*pExpr
= pTerm
->pExpr
;
923 /* Make the automatic index a partial index if there are terms in the
924 ** WHERE clause (or the ON clause of a LEFT join) that constrain which
925 ** rows of the target table (pSrc) that can be used. */
926 if( (pTerm
->wtFlags
& TERM_VIRTUAL
)==0
927 && sqlite3ExprIsSingleTableConstraint(pExpr
, pTabList
, pLevel
->iFrom
)
929 pPartial
= sqlite3ExprAnd(pParse
, pPartial
,
930 sqlite3ExprDup(pParse
->db
, pExpr
, 0));
932 if( termCanDriveIndex(pTerm
, pSrc
, notReady
) ){
935 assert( (pTerm
->eOperator
& (WO_OR
|WO_AND
))==0 );
936 iCol
= pTerm
->u
.x
.leftColumn
;
937 cMask
= iCol
>=BMS
? MASKBIT(BMS
-1) : MASKBIT(iCol
);
938 testcase( iCol
==BMS
);
939 testcase( iCol
==BMS
-1 );
941 sqlite3_log(SQLITE_WARNING_AUTOINDEX
,
942 "automatic index on %s(%s)", pTable
->zName
,
943 pTable
->aCol
[iCol
].zCnName
);
946 if( (idxCols
& cMask
)==0 ){
947 if( whereLoopResize(pParse
->db
, pLoop
, nKeyCol
+1) ){
948 goto end_auto_index_create
;
950 pLoop
->aLTerm
[nKeyCol
++] = pTerm
;
955 assert( nKeyCol
>0 || pParse
->db
->mallocFailed
);
956 pLoop
->u
.btree
.nEq
= pLoop
->nLTerm
= nKeyCol
;
957 pLoop
->wsFlags
= WHERE_COLUMN_EQ
| WHERE_IDX_ONLY
| WHERE_INDEXED
960 /* Count the number of additional columns needed to create a
961 ** covering index. A "covering index" is an index that contains all
962 ** columns that are needed by the query. With a covering index, the
963 ** original table never needs to be accessed. Automatic indices must
964 ** be a covering index because the index will not be updated if the
965 ** original table changes and the index and table cannot both be used
966 ** if they go out of sync.
968 if( IsView(pTable
) ){
971 extraCols
= pSrc
->colUsed
& (~idxCols
| MASKBIT(BMS
-1));
973 mxBitCol
= MIN(BMS
-1,pTable
->nCol
);
974 testcase( pTable
->nCol
==BMS
-1 );
975 testcase( pTable
->nCol
==BMS
-2 );
976 for(i
=0; i
<mxBitCol
; i
++){
977 if( extraCols
& MASKBIT(i
) ) nKeyCol
++;
979 if( pSrc
->colUsed
& MASKBIT(BMS
-1) ){
980 nKeyCol
+= pTable
->nCol
- BMS
+ 1;
983 /* Construct the Index object to describe this index */
984 pIdx
= sqlite3AllocateIndexObject(pParse
->db
, nKeyCol
+1, 0, &zNotUsed
);
985 if( pIdx
==0 ) goto end_auto_index_create
;
986 pLoop
->u
.btree
.pIndex
= pIdx
;
987 pIdx
->zName
= "auto-index";
988 pIdx
->pTable
= pTable
;
991 for(pTerm
=pWC
->a
; pTerm
<pWCEnd
; pTerm
++){
992 if( termCanDriveIndex(pTerm
, pSrc
, notReady
) ){
995 assert( (pTerm
->eOperator
& (WO_OR
|WO_AND
))==0 );
996 iCol
= pTerm
->u
.x
.leftColumn
;
997 cMask
= iCol
>=BMS
? MASKBIT(BMS
-1) : MASKBIT(iCol
);
998 testcase( iCol
==BMS
-1 );
999 testcase( iCol
==BMS
);
1000 if( (idxCols
& cMask
)==0 ){
1001 Expr
*pX
= pTerm
->pExpr
;
1003 pIdx
->aiColumn
[n
] = pTerm
->u
.x
.leftColumn
;
1004 pColl
= sqlite3ExprCompareCollSeq(pParse
, pX
);
1005 assert( pColl
!=0 || pParse
->nErr
>0 ); /* TH3 collate01.800 */
1006 pIdx
->azColl
[n
] = pColl
? pColl
->zName
: sqlite3StrBINARY
;
1008 if( ALWAYS(pX
->pLeft
!=0)
1009 && sqlite3ExprAffinity(pX
->pLeft
)!=SQLITE_AFF_TEXT
1011 /* TUNING: only use a Bloom filter on an automatic index
1012 ** if one or more key columns has the ability to hold numeric
1013 ** values, since strings all have the same hash in the Bloom
1014 ** filter implementation and hence a Bloom filter on a text column
1015 ** is not usually helpful. */
1021 assert( (u32
)n
==pLoop
->u
.btree
.nEq
);
1023 /* Add additional columns needed to make the automatic index into
1024 ** a covering index */
1025 for(i
=0; i
<mxBitCol
; i
++){
1026 if( extraCols
& MASKBIT(i
) ){
1027 pIdx
->aiColumn
[n
] = i
;
1028 pIdx
->azColl
[n
] = sqlite3StrBINARY
;
1032 if( pSrc
->colUsed
& MASKBIT(BMS
-1) ){
1033 for(i
=BMS
-1; i
<pTable
->nCol
; i
++){
1034 pIdx
->aiColumn
[n
] = i
;
1035 pIdx
->azColl
[n
] = sqlite3StrBINARY
;
1039 assert( n
==nKeyCol
);
1040 pIdx
->aiColumn
[n
] = XN_ROWID
;
1041 pIdx
->azColl
[n
] = sqlite3StrBINARY
;
1043 /* Create the automatic index */
1044 explainAutomaticIndex(pParse
, pIdx
, pPartial
!=0, &addrExp
);
1045 assert( pLevel
->iIdxCur
>=0 );
1046 pLevel
->iIdxCur
= pParse
->nTab
++;
1047 sqlite3VdbeAddOp2(v
, OP_OpenAutoindex
, pLevel
->iIdxCur
, nKeyCol
+1);
1048 sqlite3VdbeSetP4KeyInfo(pParse
, pIdx
);
1049 VdbeComment((v
, "for %s", pTable
->zName
));
1050 if( OptimizationEnabled(pParse
->db
, SQLITE_BloomFilter
) && useBloomFilter
){
1051 sqlite3WhereExplainBloomFilter(pParse
, pWC
->pWInfo
, pLevel
);
1052 pLevel
->regFilter
= ++pParse
->nMem
;
1053 sqlite3VdbeAddOp2(v
, OP_Blob
, 10000, pLevel
->regFilter
);
1056 /* Fill the automatic index with content */
1057 assert( pSrc
== &pWC
->pWInfo
->pTabList
->a
[pLevel
->iFrom
] );
1058 if( pSrc
->fg
.viaCoroutine
){
1059 int regYield
= pSrc
->regReturn
;
1060 addrCounter
= sqlite3VdbeAddOp2(v
, OP_Integer
, 0, 0);
1061 sqlite3VdbeAddOp3(v
, OP_InitCoroutine
, regYield
, 0, pSrc
->addrFillSub
);
1062 addrTop
= sqlite3VdbeAddOp1(v
, OP_Yield
, regYield
);
1064 VdbeComment((v
, "next row of %s", pSrc
->pTab
->zName
));
1066 addrTop
= sqlite3VdbeAddOp1(v
, OP_Rewind
, pLevel
->iTabCur
); VdbeCoverage(v
);
1069 iContinue
= sqlite3VdbeMakeLabel(pParse
);
1070 sqlite3ExprIfFalse(pParse
, pPartial
, iContinue
, SQLITE_JUMPIFNULL
);
1071 pLoop
->wsFlags
|= WHERE_PARTIALIDX
;
1073 regRecord
= sqlite3GetTempReg(pParse
);
1074 regBase
= sqlite3GenerateIndexKey(
1075 pParse
, pIdx
, pLevel
->iTabCur
, regRecord
, 0, 0, 0, 0
1077 if( pLevel
->regFilter
){
1078 sqlite3VdbeAddOp4Int(v
, OP_FilterAdd
, pLevel
->regFilter
, 0,
1079 regBase
, pLoop
->u
.btree
.nEq
);
1081 sqlite3VdbeScanStatusCounters(v
, addrExp
, addrExp
, sqlite3VdbeCurrentAddr(v
));
1082 sqlite3VdbeAddOp2(v
, OP_IdxInsert
, pLevel
->iIdxCur
, regRecord
);
1083 sqlite3VdbeChangeP5(v
, OPFLAG_USESEEKRESULT
);
1084 if( pPartial
) sqlite3VdbeResolveLabel(v
, iContinue
);
1085 if( pSrc
->fg
.viaCoroutine
){
1086 sqlite3VdbeChangeP2(v
, addrCounter
, regBase
+n
);
1087 testcase( pParse
->db
->mallocFailed
);
1088 assert( pLevel
->iIdxCur
>0 );
1089 translateColumnToCopy(pParse
, addrTop
, pLevel
->iTabCur
,
1090 pSrc
->regResult
, pLevel
->iIdxCur
);
1091 sqlite3VdbeGoto(v
, addrTop
);
1092 pSrc
->fg
.viaCoroutine
= 0;
1094 sqlite3VdbeAddOp2(v
, OP_Next
, pLevel
->iTabCur
, addrTop
+1); VdbeCoverage(v
);
1095 sqlite3VdbeChangeP5(v
, SQLITE_STMTSTATUS_AUTOINDEX
);
1097 sqlite3VdbeJumpHere(v
, addrTop
);
1098 sqlite3ReleaseTempReg(pParse
, regRecord
);
1100 /* Jump here when skipping the initialization */
1101 sqlite3VdbeJumpHere(v
, addrInit
);
1102 sqlite3VdbeScanStatusRange(v
, addrExp
, addrExp
, -1);
1104 end_auto_index_create
:
1105 sqlite3ExprDelete(pParse
->db
, pPartial
);
1107 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
1110 ** Generate bytecode that will initialize a Bloom filter that is appropriate
1113 ** If there are inner loops within pLevel that have the WHERE_BLOOMFILTER
1114 ** flag set, initialize a Bloomfilter for them as well. Except don't do
1115 ** this recursive initialization if the SQLITE_BloomPulldown optimization has
1118 ** When the Bloom filter is initialized, the WHERE_BLOOMFILTER flag is cleared
1119 ** from the loop, but the regFilter value is set to a register that implements
1120 ** the Bloom filter. When regFilter is positive, the
1121 ** sqlite3WhereCodeOneLoopStart() will generate code to test the Bloom filter
1122 ** and skip the subsequence B-Tree seek if the Bloom filter indicates that
1123 ** no matching rows exist.
1125 ** This routine may only be called if it has previously been determined that
1126 ** the loop would benefit from a Bloom filter, and the WHERE_BLOOMFILTER bit
1129 static SQLITE_NOINLINE
void sqlite3ConstructBloomFilter(
1130 WhereInfo
*pWInfo
, /* The WHERE clause */
1131 int iLevel
, /* Index in pWInfo->a[] that is pLevel */
1132 WhereLevel
*pLevel
, /* Make a Bloom filter for this FROM term */
1133 Bitmask notReady
/* Loops that are not ready */
1135 int addrOnce
; /* Address of opening OP_Once */
1136 int addrTop
; /* Address of OP_Rewind */
1137 int addrCont
; /* Jump here to skip a row */
1138 const WhereTerm
*pTerm
; /* For looping over WHERE clause terms */
1139 const WhereTerm
*pWCEnd
; /* Last WHERE clause term */
1140 Parse
*pParse
= pWInfo
->pParse
; /* Parsing context */
1141 Vdbe
*v
= pParse
->pVdbe
; /* VDBE under construction */
1142 WhereLoop
*pLoop
= pLevel
->pWLoop
; /* The loop being coded */
1143 int iCur
; /* Cursor for table getting the filter */
1144 IndexedExpr
*saved_pIdxEpr
; /* saved copy of Parse.pIdxEpr */
1146 saved_pIdxEpr
= pParse
->pIdxEpr
;
1147 pParse
->pIdxEpr
= 0;
1151 assert( pLoop
->wsFlags
& WHERE_BLOOMFILTER
);
1153 addrOnce
= sqlite3VdbeAddOp0(v
, OP_Once
); VdbeCoverage(v
);
1155 const SrcList
*pTabList
;
1156 const SrcItem
*pItem
;
1160 sqlite3WhereExplainBloomFilter(pParse
, pWInfo
, pLevel
);
1161 addrCont
= sqlite3VdbeMakeLabel(pParse
);
1162 iCur
= pLevel
->iTabCur
;
1163 pLevel
->regFilter
= ++pParse
->nMem
;
1165 /* The Bloom filter is a Blob held in a register. Initialize it
1166 ** to zero-filled blob of at least 80K bits, but maybe more if the
1167 ** estimated size of the table is larger. We could actually
1168 ** measure the size of the table at run-time using OP_Count with
1169 ** P3==1 and use that value to initialize the blob. But that makes
1170 ** testing complicated. By basing the blob size on the value in the
1171 ** sqlite_stat1 table, testing is much easier.
1173 pTabList
= pWInfo
->pTabList
;
1174 iSrc
= pLevel
->iFrom
;
1175 pItem
= &pTabList
->a
[iSrc
];
1179 sz
= sqlite3LogEstToInt(pTab
->nRowLogEst
);
1182 }else if( sz
>10000000 ){
1185 sqlite3VdbeAddOp2(v
, OP_Blob
, (int)sz
, pLevel
->regFilter
);
1187 addrTop
= sqlite3VdbeAddOp1(v
, OP_Rewind
, iCur
); VdbeCoverage(v
);
1188 pWCEnd
= &pWInfo
->sWC
.a
[pWInfo
->sWC
.nTerm
];
1189 for(pTerm
=pWInfo
->sWC
.a
; pTerm
<pWCEnd
; pTerm
++){
1190 Expr
*pExpr
= pTerm
->pExpr
;
1191 if( (pTerm
->wtFlags
& TERM_VIRTUAL
)==0
1192 && sqlite3ExprIsSingleTableConstraint(pExpr
, pTabList
, iSrc
)
1194 sqlite3ExprIfFalse(pParse
, pTerm
->pExpr
, addrCont
, SQLITE_JUMPIFNULL
);
1197 if( pLoop
->wsFlags
& WHERE_IPK
){
1198 int r1
= sqlite3GetTempReg(pParse
);
1199 sqlite3VdbeAddOp2(v
, OP_Rowid
, iCur
, r1
);
1200 sqlite3VdbeAddOp4Int(v
, OP_FilterAdd
, pLevel
->regFilter
, 0, r1
, 1);
1201 sqlite3ReleaseTempReg(pParse
, r1
);
1203 Index
*pIdx
= pLoop
->u
.btree
.pIndex
;
1204 int n
= pLoop
->u
.btree
.nEq
;
1205 int r1
= sqlite3GetTempRange(pParse
, n
);
1207 for(jj
=0; jj
<n
; jj
++){
1208 assert( pIdx
->pTable
==pItem
->pTab
);
1209 sqlite3ExprCodeLoadIndexColumn(pParse
, pIdx
, iCur
, jj
, r1
+jj
);
1211 sqlite3VdbeAddOp4Int(v
, OP_FilterAdd
, pLevel
->regFilter
, 0, r1
, n
);
1212 sqlite3ReleaseTempRange(pParse
, r1
, n
);
1214 sqlite3VdbeResolveLabel(v
, addrCont
);
1215 sqlite3VdbeAddOp2(v
, OP_Next
, pLevel
->iTabCur
, addrTop
+1);
1217 sqlite3VdbeJumpHere(v
, addrTop
);
1218 pLoop
->wsFlags
&= ~WHERE_BLOOMFILTER
;
1219 if( OptimizationDisabled(pParse
->db
, SQLITE_BloomPulldown
) ) break;
1220 while( ++iLevel
< pWInfo
->nLevel
){
1221 const SrcItem
*pTabItem
;
1222 pLevel
= &pWInfo
->a
[iLevel
];
1223 pTabItem
= &pWInfo
->pTabList
->a
[pLevel
->iFrom
];
1224 if( pTabItem
->fg
.jointype
& (JT_LEFT
|JT_LTORJ
) ) continue;
1225 pLoop
= pLevel
->pWLoop
;
1226 if( NEVER(pLoop
==0) ) continue;
1227 if( pLoop
->prereq
& notReady
) continue;
1228 if( (pLoop
->wsFlags
& (WHERE_BLOOMFILTER
|WHERE_COLUMN_IN
))
1231 /* This is a candidate for bloom-filter pull-down (early evaluation).
1232 ** The test that WHERE_COLUMN_IN is omitted is important, as we are
1233 ** not able to do early evaluation of bloom filters that make use of
1234 ** the IN operator */
1238 }while( iLevel
< pWInfo
->nLevel
);
1239 sqlite3VdbeJumpHere(v
, addrOnce
);
1240 pParse
->pIdxEpr
= saved_pIdxEpr
;
1244 #ifndef SQLITE_OMIT_VIRTUALTABLE
1246 ** Allocate and populate an sqlite3_index_info structure. It is the
1247 ** responsibility of the caller to eventually release the structure
1248 ** by passing the pointer returned by this function to freeIndexInfo().
1250 static sqlite3_index_info
*allocateIndexInfo(
1251 WhereInfo
*pWInfo
, /* The WHERE clause */
1252 WhereClause
*pWC
, /* The WHERE clause being analyzed */
1253 Bitmask mUnusable
, /* Ignore terms with these prereqs */
1254 SrcItem
*pSrc
, /* The FROM clause term that is the vtab */
1255 u16
*pmNoOmit
/* Mask of terms not to omit */
1259 Parse
*pParse
= pWInfo
->pParse
;
1260 struct sqlite3_index_constraint
*pIdxCons
;
1261 struct sqlite3_index_orderby
*pIdxOrderBy
;
1262 struct sqlite3_index_constraint_usage
*pUsage
;
1263 struct HiddenIndexInfo
*pHidden
;
1266 sqlite3_index_info
*pIdxInfo
;
1270 ExprList
*pOrderBy
= pWInfo
->pOrderBy
;
1275 assert( IsVirtual(pTab
) );
1277 /* Find all WHERE clause constraints referring to this virtual table.
1278 ** Mark each term with the TERM_OK flag. Set nTerm to the number of
1281 for(i
=nTerm
=0, pTerm
=pWC
->a
; i
<pWC
->nTerm
; i
++, pTerm
++){
1282 pTerm
->wtFlags
&= ~TERM_OK
;
1283 if( pTerm
->leftCursor
!= pSrc
->iCursor
) continue;
1284 if( pTerm
->prereqRight
& mUnusable
) continue;
1285 assert( IsPowerOfTwo(pTerm
->eOperator
& ~WO_EQUIV
) );
1286 testcase( pTerm
->eOperator
& WO_IN
);
1287 testcase( pTerm
->eOperator
& WO_ISNULL
);
1288 testcase( pTerm
->eOperator
& WO_IS
);
1289 testcase( pTerm
->eOperator
& WO_ALL
);
1290 if( (pTerm
->eOperator
& ~(WO_EQUIV
))==0 ) continue;
1291 if( pTerm
->wtFlags
& TERM_VNULL
) continue;
1293 assert( (pTerm
->eOperator
& (WO_OR
|WO_AND
))==0 );
1294 assert( pTerm
->u
.x
.leftColumn
>=XN_ROWID
);
1295 assert( pTerm
->u
.x
.leftColumn
<pTab
->nCol
);
1296 if( (pSrc
->fg
.jointype
& (JT_LEFT
|JT_LTORJ
|JT_RIGHT
))!=0
1297 && !constraintCompatibleWithOuterJoin(pTerm
,pSrc
)
1302 pTerm
->wtFlags
|= TERM_OK
;
1305 /* If the ORDER BY clause contains only columns in the current
1306 ** virtual table then allocate space for the aOrderBy part of
1307 ** the sqlite3_index_info structure.
1311 int n
= pOrderBy
->nExpr
;
1313 Expr
*pExpr
= pOrderBy
->a
[i
].pExpr
;
1316 /* Skip over constant terms in the ORDER BY clause */
1317 if( sqlite3ExprIsConstant(pExpr
) ){
1321 /* Virtual tables are unable to deal with NULLS FIRST */
1322 if( pOrderBy
->a
[i
].fg
.sortFlags
& KEYINFO_ORDER_BIGNULL
) break;
1324 /* First case - a direct column references without a COLLATE operator */
1325 if( pExpr
->op
==TK_COLUMN
&& pExpr
->iTable
==pSrc
->iCursor
){
1326 assert( pExpr
->iColumn
>=XN_ROWID
&& pExpr
->iColumn
<pTab
->nCol
);
1330 /* 2nd case - a column reference with a COLLATE operator. Only match
1331 ** of the COLLATE operator matches the collation of the column. */
1332 if( pExpr
->op
==TK_COLLATE
1333 && (pE2
= pExpr
->pLeft
)->op
==TK_COLUMN
1334 && pE2
->iTable
==pSrc
->iCursor
1336 const char *zColl
; /* The collating sequence name */
1337 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
1338 assert( pExpr
->u
.zToken
!=0 );
1339 assert( pE2
->iColumn
>=XN_ROWID
&& pE2
->iColumn
<pTab
->nCol
);
1340 pExpr
->iColumn
= pE2
->iColumn
;
1341 if( pE2
->iColumn
<0 ) continue; /* Collseq does not matter for rowid */
1342 zColl
= sqlite3ColumnColl(&pTab
->aCol
[pE2
->iColumn
]);
1343 if( zColl
==0 ) zColl
= sqlite3StrBINARY
;
1344 if( sqlite3_stricmp(pExpr
->u
.zToken
, zColl
)==0 ) continue;
1347 /* No matches cause a break out of the loop */
1352 if( (pWInfo
->wctrlFlags
& WHERE_DISTINCTBY
) ){
1353 eDistinct
= 2 + ((pWInfo
->wctrlFlags
& WHERE_SORTBYGROUP
)!=0);
1354 }else if( pWInfo
->wctrlFlags
& WHERE_GROUPBY
){
1360 /* Allocate the sqlite3_index_info structure
1362 pIdxInfo
= sqlite3DbMallocZero(pParse
->db
, sizeof(*pIdxInfo
)
1363 + (sizeof(*pIdxCons
) + sizeof(*pUsage
))*nTerm
1364 + sizeof(*pIdxOrderBy
)*nOrderBy
+ sizeof(*pHidden
)
1365 + sizeof(sqlite3_value
*)*nTerm
);
1367 sqlite3ErrorMsg(pParse
, "out of memory");
1370 pHidden
= (struct HiddenIndexInfo
*)&pIdxInfo
[1];
1371 pIdxCons
= (struct sqlite3_index_constraint
*)&pHidden
->aRhs
[nTerm
];
1372 pIdxOrderBy
= (struct sqlite3_index_orderby
*)&pIdxCons
[nTerm
];
1373 pUsage
= (struct sqlite3_index_constraint_usage
*)&pIdxOrderBy
[nOrderBy
];
1374 pIdxInfo
->aConstraint
= pIdxCons
;
1375 pIdxInfo
->aOrderBy
= pIdxOrderBy
;
1376 pIdxInfo
->aConstraintUsage
= pUsage
;
1378 pHidden
->pParse
= pParse
;
1379 pHidden
->eDistinct
= eDistinct
;
1381 for(i
=j
=0, pTerm
=pWC
->a
; i
<pWC
->nTerm
; i
++, pTerm
++){
1383 if( (pTerm
->wtFlags
& TERM_OK
)==0 ) continue;
1384 pIdxCons
[j
].iColumn
= pTerm
->u
.x
.leftColumn
;
1385 pIdxCons
[j
].iTermOffset
= i
;
1386 op
= pTerm
->eOperator
& WO_ALL
;
1388 if( (pTerm
->wtFlags
& TERM_SLICE
)==0 ){
1389 pHidden
->mIn
|= SMASKBIT32(j
);
1394 pIdxCons
[j
].op
= pTerm
->eMatchOp
;
1395 }else if( op
& (WO_ISNULL
|WO_IS
) ){
1396 if( op
==WO_ISNULL
){
1397 pIdxCons
[j
].op
= SQLITE_INDEX_CONSTRAINT_ISNULL
;
1399 pIdxCons
[j
].op
= SQLITE_INDEX_CONSTRAINT_IS
;
1402 pIdxCons
[j
].op
= (u8
)op
;
1403 /* The direct assignment in the previous line is possible only because
1404 ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The
1405 ** following asserts verify this fact. */
1406 assert( WO_EQ
==SQLITE_INDEX_CONSTRAINT_EQ
);
1407 assert( WO_LT
==SQLITE_INDEX_CONSTRAINT_LT
);
1408 assert( WO_LE
==SQLITE_INDEX_CONSTRAINT_LE
);
1409 assert( WO_GT
==SQLITE_INDEX_CONSTRAINT_GT
);
1410 assert( WO_GE
==SQLITE_INDEX_CONSTRAINT_GE
);
1411 assert( pTerm
->eOperator
&(WO_IN
|WO_EQ
|WO_LT
|WO_LE
|WO_GT
|WO_GE
|WO_AUX
) );
1413 if( op
& (WO_LT
|WO_LE
|WO_GT
|WO_GE
)
1414 && sqlite3ExprIsVector(pTerm
->pExpr
->pRight
)
1417 if( j
<16 ) mNoOmit
|= (1 << j
);
1418 if( op
==WO_LT
) pIdxCons
[j
].op
= WO_LE
;
1419 if( op
==WO_GT
) pIdxCons
[j
].op
= WO_GE
;
1426 pIdxInfo
->nConstraint
= j
;
1427 for(i
=j
=0; i
<nOrderBy
; i
++){
1428 Expr
*pExpr
= pOrderBy
->a
[i
].pExpr
;
1429 if( sqlite3ExprIsConstant(pExpr
) ) continue;
1430 assert( pExpr
->op
==TK_COLUMN
1431 || (pExpr
->op
==TK_COLLATE
&& pExpr
->pLeft
->op
==TK_COLUMN
1432 && pExpr
->iColumn
==pExpr
->pLeft
->iColumn
) );
1433 pIdxOrderBy
[j
].iColumn
= pExpr
->iColumn
;
1434 pIdxOrderBy
[j
].desc
= pOrderBy
->a
[i
].fg
.sortFlags
& KEYINFO_ORDER_DESC
;
1437 pIdxInfo
->nOrderBy
= j
;
1439 *pmNoOmit
= mNoOmit
;
1444 ** Free an sqlite3_index_info structure allocated by allocateIndexInfo()
1445 ** and possibly modified by xBestIndex methods.
1447 static void freeIndexInfo(sqlite3
*db
, sqlite3_index_info
*pIdxInfo
){
1448 HiddenIndexInfo
*pHidden
;
1450 assert( pIdxInfo
!=0 );
1451 pHidden
= (HiddenIndexInfo
*)&pIdxInfo
[1];
1452 assert( pHidden
->pParse
!=0 );
1453 assert( pHidden
->pParse
->db
==db
);
1454 for(i
=0; i
<pIdxInfo
->nConstraint
; i
++){
1455 sqlite3ValueFree(pHidden
->aRhs
[i
]); /* IMP: R-14553-25174 */
1456 pHidden
->aRhs
[i
] = 0;
1458 sqlite3DbFree(db
, pIdxInfo
);
1462 ** The table object reference passed as the second argument to this function
1463 ** must represent a virtual table. This function invokes the xBestIndex()
1464 ** method of the virtual table with the sqlite3_index_info object that
1465 ** comes in as the 3rd argument to this function.
1467 ** If an error occurs, pParse is populated with an error message and an
1468 ** appropriate error code is returned. A return of SQLITE_CONSTRAINT from
1469 ** xBestIndex is not considered an error. SQLITE_CONSTRAINT indicates that
1470 ** the current configuration of "unusable" flags in sqlite3_index_info can
1471 ** not result in a valid plan.
1473 ** Whether or not an error is returned, it is the responsibility of the
1474 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates
1475 ** that this is required.
1477 static int vtabBestIndex(Parse
*pParse
, Table
*pTab
, sqlite3_index_info
*p
){
1478 sqlite3_vtab
*pVtab
= sqlite3GetVTable(pParse
->db
, pTab
)->pVtab
;
1481 whereTraceIndexInfoInputs(p
);
1482 pParse
->db
->nSchemaLock
++;
1483 rc
= pVtab
->pModule
->xBestIndex(pVtab
, p
);
1484 pParse
->db
->nSchemaLock
--;
1485 whereTraceIndexInfoOutputs(p
);
1487 if( rc
!=SQLITE_OK
&& rc
!=SQLITE_CONSTRAINT
){
1488 if( rc
==SQLITE_NOMEM
){
1489 sqlite3OomFault(pParse
->db
);
1490 }else if( !pVtab
->zErrMsg
){
1491 sqlite3ErrorMsg(pParse
, "%s", sqlite3ErrStr(rc
));
1493 sqlite3ErrorMsg(pParse
, "%s", pVtab
->zErrMsg
);
1496 if( pTab
->u
.vtab
.p
->bAllSchemas
){
1497 sqlite3VtabUsesAllSchemas(pParse
);
1499 sqlite3_free(pVtab
->zErrMsg
);
1503 #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */
1505 #ifdef SQLITE_ENABLE_STAT4
1507 ** Estimate the location of a particular key among all keys in an
1508 ** index. Store the results in aStat as follows:
1510 ** aStat[0] Est. number of rows less than pRec
1511 ** aStat[1] Est. number of rows equal to pRec
1513 ** Return the index of the sample that is the smallest sample that
1514 ** is greater than or equal to pRec. Note that this index is not an index
1515 ** into the aSample[] array - it is an index into a virtual set of samples
1516 ** based on the contents of aSample[] and the number of fields in record
1519 static int whereKeyStats(
1520 Parse
*pParse
, /* Database connection */
1521 Index
*pIdx
, /* Index to consider domain of */
1522 UnpackedRecord
*pRec
, /* Vector of values to consider */
1523 int roundUp
, /* Round up if true. Round down if false */
1524 tRowcnt
*aStat
/* OUT: stats written here */
1526 IndexSample
*aSample
= pIdx
->aSample
;
1527 int iCol
; /* Index of required stats in anEq[] etc. */
1528 int i
; /* Index of first sample >= pRec */
1529 int iSample
; /* Smallest sample larger than or equal to pRec */
1530 int iMin
= 0; /* Smallest sample not yet tested */
1531 int iTest
; /* Next sample to test */
1532 int res
; /* Result of comparison operation */
1533 int nField
; /* Number of fields in pRec */
1534 tRowcnt iLower
= 0; /* anLt[] + anEq[] of largest sample pRec is > */
1536 #ifndef SQLITE_DEBUG
1537 UNUSED_PARAMETER( pParse
);
1540 assert( pIdx
->nSample
>0 );
1541 assert( pRec
->nField
>0 );
1544 /* Do a binary search to find the first sample greater than or equal
1545 ** to pRec. If pRec contains a single field, the set of samples to search
1546 ** is simply the aSample[] array. If the samples in aSample[] contain more
1547 ** than one fields, all fields following the first are ignored.
1549 ** If pRec contains N fields, where N is more than one, then as well as the
1550 ** samples in aSample[] (truncated to N fields), the search also has to
1551 ** consider prefixes of those samples. For example, if the set of samples
1554 ** aSample[0] = (a, 5)
1555 ** aSample[1] = (a, 10)
1556 ** aSample[2] = (b, 5)
1557 ** aSample[3] = (c, 100)
1558 ** aSample[4] = (c, 105)
1560 ** Then the search space should ideally be the samples above and the
1561 ** unique prefixes [a], [b] and [c]. But since that is hard to organize,
1562 ** the code actually searches this set:
1575 ** For each sample in the aSample[] array, N samples are present in the
1576 ** effective sample array. In the above, samples 0 and 1 are based on
1577 ** sample aSample[0]. Samples 2 and 3 on aSample[1] etc.
1579 ** Often, sample i of each block of N effective samples has (i+1) fields.
1580 ** Except, each sample may be extended to ensure that it is greater than or
1581 ** equal to the previous sample in the array. For example, in the above,
1582 ** sample 2 is the first sample of a block of N samples, so at first it
1583 ** appears that it should be 1 field in size. However, that would make it
1584 ** smaller than sample 1, so the binary search would not work. As a result,
1585 ** it is extended to two fields. The duplicates that this creates do not
1586 ** cause any problems.
1588 if( !HasRowid(pIdx
->pTable
) && IsPrimaryKeyIndex(pIdx
) ){
1589 nField
= pIdx
->nKeyCol
;
1591 nField
= pIdx
->nColumn
;
1593 nField
= MIN(pRec
->nField
, nField
);
1595 iSample
= pIdx
->nSample
* nField
;
1597 int iSamp
; /* Index in aSample[] of test sample */
1598 int n
; /* Number of fields in test sample */
1600 iTest
= (iMin
+iSample
)/2;
1601 iSamp
= iTest
/ nField
;
1603 /* The proposed effective sample is a prefix of sample aSample[iSamp].
1604 ** Specifically, the shortest prefix of at least (1 + iTest%nField)
1605 ** fields that is greater than the previous effective sample. */
1606 for(n
=(iTest
% nField
) + 1; n
<nField
; n
++){
1607 if( aSample
[iSamp
-1].anLt
[n
-1]!=aSample
[iSamp
].anLt
[n
-1] ) break;
1614 res
= sqlite3VdbeRecordCompare(aSample
[iSamp
].n
, aSample
[iSamp
].p
, pRec
);
1616 iLower
= aSample
[iSamp
].anLt
[n
-1] + aSample
[iSamp
].anEq
[n
-1];
1618 }else if( res
==0 && n
<nField
){
1619 iLower
= aSample
[iSamp
].anLt
[n
-1];
1626 }while( res
&& iMin
<iSample
);
1627 i
= iSample
/ nField
;
1630 /* The following assert statements check that the binary search code
1631 ** above found the right answer. This block serves no purpose other
1632 ** than to invoke the asserts. */
1633 if( pParse
->db
->mallocFailed
==0 ){
1635 /* If (res==0) is true, then pRec must be equal to sample i. */
1636 assert( i
<pIdx
->nSample
);
1637 assert( iCol
==nField
-1 );
1638 pRec
->nField
= nField
;
1639 assert( 0==sqlite3VdbeRecordCompare(aSample
[i
].n
, aSample
[i
].p
, pRec
)
1640 || pParse
->db
->mallocFailed
1643 /* Unless i==pIdx->nSample, indicating that pRec is larger than
1644 ** all samples in the aSample[] array, pRec must be smaller than the
1645 ** (iCol+1) field prefix of sample i. */
1646 assert( i
<=pIdx
->nSample
&& i
>=0 );
1647 pRec
->nField
= iCol
+1;
1648 assert( i
==pIdx
->nSample
1649 || sqlite3VdbeRecordCompare(aSample
[i
].n
, aSample
[i
].p
, pRec
)>0
1650 || pParse
->db
->mallocFailed
);
1652 /* if i==0 and iCol==0, then record pRec is smaller than all samples
1653 ** in the aSample[] array. Otherwise, if (iCol>0) then pRec must
1654 ** be greater than or equal to the (iCol) field prefix of sample i.
1655 ** If (i>0), then pRec must also be greater than sample (i-1). */
1657 pRec
->nField
= iCol
;
1658 assert( sqlite3VdbeRecordCompare(aSample
[i
].n
, aSample
[i
].p
, pRec
)<=0
1659 || pParse
->db
->mallocFailed
|| CORRUPT_DB
);
1662 pRec
->nField
= nField
;
1663 assert( sqlite3VdbeRecordCompare(aSample
[i
-1].n
, aSample
[i
-1].p
, pRec
)<0
1664 || pParse
->db
->mallocFailed
|| CORRUPT_DB
);
1668 #endif /* ifdef SQLITE_DEBUG */
1671 /* Record pRec is equal to sample i */
1672 assert( iCol
==nField
-1 );
1673 aStat
[0] = aSample
[i
].anLt
[iCol
];
1674 aStat
[1] = aSample
[i
].anEq
[iCol
];
1676 /* At this point, the (iCol+1) field prefix of aSample[i] is the first
1677 ** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec
1678 ** is larger than all samples in the array. */
1679 tRowcnt iUpper
, iGap
;
1680 if( i
>=pIdx
->nSample
){
1681 iUpper
= pIdx
->nRowEst0
;
1683 iUpper
= aSample
[i
].anLt
[iCol
];
1686 if( iLower
>=iUpper
){
1689 iGap
= iUpper
- iLower
;
1696 aStat
[0] = iLower
+ iGap
;
1697 aStat
[1] = pIdx
->aAvgEq
[nField
-1];
1700 /* Restore the pRec->nField value before returning. */
1701 pRec
->nField
= nField
;
1704 #endif /* SQLITE_ENABLE_STAT4 */
1707 ** If it is not NULL, pTerm is a term that provides an upper or lower
1708 ** bound on a range scan. Without considering pTerm, it is estimated
1709 ** that the scan will visit nNew rows. This function returns the number
1710 ** estimated to be visited after taking pTerm into account.
1712 ** If the user explicitly specified a likelihood() value for this term,
1713 ** then the return value is the likelihood multiplied by the number of
1714 ** input rows. Otherwise, this function assumes that an "IS NOT NULL" term
1715 ** has a likelihood of 0.50, and any other term a likelihood of 0.25.
1717 static LogEst
whereRangeAdjust(WhereTerm
*pTerm
, LogEst nNew
){
1720 if( pTerm
->truthProb
<=0 ){
1721 nRet
+= pTerm
->truthProb
;
1722 }else if( (pTerm
->wtFlags
& TERM_VNULL
)==0 ){
1723 nRet
-= 20; assert( 20==sqlite3LogEst(4) );
1730 #ifdef SQLITE_ENABLE_STAT4
1732 ** Return the affinity for a single column of an index.
1734 char sqlite3IndexColumnAffinity(sqlite3
*db
, Index
*pIdx
, int iCol
){
1735 assert( iCol
>=0 && iCol
<pIdx
->nColumn
);
1736 if( !pIdx
->zColAff
){
1737 if( sqlite3IndexAffinityStr(db
, pIdx
)==0 ) return SQLITE_AFF_BLOB
;
1739 assert( pIdx
->zColAff
[iCol
]!=0 );
1740 return pIdx
->zColAff
[iCol
];
1745 #ifdef SQLITE_ENABLE_STAT4
1747 ** This function is called to estimate the number of rows visited by a
1748 ** range-scan on a skip-scan index. For example:
1750 ** CREATE INDEX i1 ON t1(a, b, c);
1751 ** SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?;
1753 ** Value pLoop->nOut is currently set to the estimated number of rows
1754 ** visited for scanning (a=? AND b=?). This function reduces that estimate
1755 ** by some factor to account for the (c BETWEEN ? AND ?) expression based
1756 ** on the stat4 data for the index. this scan will be performed multiple
1757 ** times (once for each (a,b) combination that matches a=?) is dealt with
1760 ** It does this by scanning through all stat4 samples, comparing values
1761 ** extracted from pLower and pUpper with the corresponding column in each
1762 ** sample. If L and U are the number of samples found to be less than or
1763 ** equal to the values extracted from pLower and pUpper respectively, and
1764 ** N is the total number of samples, the pLoop->nOut value is adjusted
1767 ** nOut = nOut * ( min(U - L, 1) / N )
1769 ** If pLower is NULL, or a value cannot be extracted from the term, L is
1770 ** set to zero. If pUpper is NULL, or a value cannot be extracted from it,
1773 ** Normally, this function sets *pbDone to 1 before returning. However,
1774 ** if no value can be extracted from either pLower or pUpper (and so the
1775 ** estimate of the number of rows delivered remains unchanged), *pbDone
1778 ** If an error occurs, an SQLite error code is returned. Otherwise,
1781 static int whereRangeSkipScanEst(
1782 Parse
*pParse
, /* Parsing & code generating context */
1783 WhereTerm
*pLower
, /* Lower bound on the range. ex: "x>123" Might be NULL */
1784 WhereTerm
*pUpper
, /* Upper bound on the range. ex: "x<455" Might be NULL */
1785 WhereLoop
*pLoop
, /* Update the .nOut value of this loop */
1786 int *pbDone
/* Set to true if at least one expr. value extracted */
1788 Index
*p
= pLoop
->u
.btree
.pIndex
;
1789 int nEq
= pLoop
->u
.btree
.nEq
;
1790 sqlite3
*db
= pParse
->db
;
1792 int nUpper
= p
->nSample
+1;
1794 u8 aff
= sqlite3IndexColumnAffinity(db
, p
, nEq
);
1797 sqlite3_value
*p1
= 0; /* Value extracted from pLower */
1798 sqlite3_value
*p2
= 0; /* Value extracted from pUpper */
1799 sqlite3_value
*pVal
= 0; /* Value extracted from record */
1801 pColl
= sqlite3LocateCollSeq(pParse
, p
->azColl
[nEq
]);
1803 rc
= sqlite3Stat4ValueFromExpr(pParse
, pLower
->pExpr
->pRight
, aff
, &p1
);
1806 if( pUpper
&& rc
==SQLITE_OK
){
1807 rc
= sqlite3Stat4ValueFromExpr(pParse
, pUpper
->pExpr
->pRight
, aff
, &p2
);
1808 nUpper
= p2
? 0 : p
->nSample
;
1814 for(i
=0; rc
==SQLITE_OK
&& i
<p
->nSample
; i
++){
1815 rc
= sqlite3Stat4Column(db
, p
->aSample
[i
].p
, p
->aSample
[i
].n
, nEq
, &pVal
);
1816 if( rc
==SQLITE_OK
&& p1
){
1817 int res
= sqlite3MemCompare(p1
, pVal
, pColl
);
1818 if( res
>=0 ) nLower
++;
1820 if( rc
==SQLITE_OK
&& p2
){
1821 int res
= sqlite3MemCompare(p2
, pVal
, pColl
);
1822 if( res
>=0 ) nUpper
++;
1825 nDiff
= (nUpper
- nLower
);
1826 if( nDiff
<=0 ) nDiff
= 1;
1828 /* If there is both an upper and lower bound specified, and the
1829 ** comparisons indicate that they are close together, use the fallback
1830 ** method (assume that the scan visits 1/64 of the rows) for estimating
1831 ** the number of rows visited. Otherwise, estimate the number of rows
1832 ** using the method described in the header comment for this function. */
1833 if( nDiff
!=1 || pUpper
==0 || pLower
==0 ){
1834 int nAdjust
= (sqlite3LogEst(p
->nSample
) - sqlite3LogEst(nDiff
));
1835 pLoop
->nOut
-= nAdjust
;
1837 WHERETRACE(0x20, ("range skip-scan regions: %u..%u adjust=%d est=%d\n",
1838 nLower
, nUpper
, nAdjust
*-1, pLoop
->nOut
));
1842 assert( *pbDone
==0 );
1845 sqlite3ValueFree(p1
);
1846 sqlite3ValueFree(p2
);
1847 sqlite3ValueFree(pVal
);
1851 #endif /* SQLITE_ENABLE_STAT4 */
1854 ** This function is used to estimate the number of rows that will be visited
1855 ** by scanning an index for a range of values. The range may have an upper
1856 ** bound, a lower bound, or both. The WHERE clause terms that set the upper
1857 ** and lower bounds are represented by pLower and pUpper respectively. For
1858 ** example, assuming that index p is on t1(a):
1860 ** ... FROM t1 WHERE a > ? AND a < ? ...
1865 ** If either of the upper or lower bound is not present, then NULL is passed in
1866 ** place of the corresponding WhereTerm.
1868 ** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index
1869 ** column subject to the range constraint. Or, equivalently, the number of
1870 ** equality constraints optimized by the proposed index scan. For example,
1871 ** assuming index p is on t1(a, b), and the SQL query is:
1873 ** ... FROM t1 WHERE a = ? AND b > ? AND b < ? ...
1875 ** then nEq is set to 1 (as the range restricted column, b, is the second
1876 ** left-most column of the index). Or, if the query is:
1878 ** ... FROM t1 WHERE a > ? AND a < ? ...
1880 ** then nEq is set to 0.
1882 ** When this function is called, *pnOut is set to the sqlite3LogEst() of the
1883 ** number of rows that the index scan is expected to visit without
1884 ** considering the range constraints. If nEq is 0, then *pnOut is the number of
1885 ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced)
1886 ** to account for the range constraints pLower and pUpper.
1888 ** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be
1889 ** used, a single range inequality reduces the search space by a factor of 4.
1890 ** and a pair of constraints (x>? AND x<?) reduces the expected number of
1891 ** rows visited by a factor of 64.
1893 static int whereRangeScanEst(
1894 Parse
*pParse
, /* Parsing & code generating context */
1895 WhereLoopBuilder
*pBuilder
,
1896 WhereTerm
*pLower
, /* Lower bound on the range. ex: "x>123" Might be NULL */
1897 WhereTerm
*pUpper
, /* Upper bound on the range. ex: "x<455" Might be NULL */
1898 WhereLoop
*pLoop
/* Modify the .nOut and maybe .rRun fields */
1901 int nOut
= pLoop
->nOut
;
1904 #ifdef SQLITE_ENABLE_STAT4
1905 Index
*p
= pLoop
->u
.btree
.pIndex
;
1906 int nEq
= pLoop
->u
.btree
.nEq
;
1908 if( p
->nSample
>0 && ALWAYS(nEq
<p
->nSampleCol
)
1909 && OptimizationEnabled(pParse
->db
, SQLITE_Stat4
)
1911 if( nEq
==pBuilder
->nRecValid
){
1912 UnpackedRecord
*pRec
= pBuilder
->pRec
;
1914 int nBtm
= pLoop
->u
.btree
.nBtm
;
1915 int nTop
= pLoop
->u
.btree
.nTop
;
1917 /* Variable iLower will be set to the estimate of the number of rows in
1918 ** the index that are less than the lower bound of the range query. The
1919 ** lower bound being the concatenation of $P and $L, where $P is the
1920 ** key-prefix formed by the nEq values matched against the nEq left-most
1921 ** columns of the index, and $L is the value in pLower.
1923 ** Or, if pLower is NULL or $L cannot be extracted from it (because it
1924 ** is not a simple variable or literal value), the lower bound of the
1925 ** range is $P. Due to a quirk in the way whereKeyStats() works, even
1926 ** if $L is available, whereKeyStats() is called for both ($P) and
1927 ** ($P:$L) and the larger of the two returned values is used.
1929 ** Similarly, iUpper is to be set to the estimate of the number of rows
1930 ** less than the upper bound of the range query. Where the upper bound
1931 ** is either ($P) or ($P:$U). Again, even if $U is available, both values
1932 ** of iUpper are requested of whereKeyStats() and the smaller used.
1934 ** The number of rows between the two bounds is then just iUpper-iLower.
1936 tRowcnt iLower
; /* Rows less than the lower bound */
1937 tRowcnt iUpper
; /* Rows less than the upper bound */
1938 int iLwrIdx
= -2; /* aSample[] for the lower bound */
1939 int iUprIdx
= -1; /* aSample[] for the upper bound */
1942 testcase( pRec
->nField
!=pBuilder
->nRecValid
);
1943 pRec
->nField
= pBuilder
->nRecValid
;
1945 /* Determine iLower and iUpper using ($P) only. */
1948 iUpper
= p
->nRowEst0
;
1950 /* Note: this call could be optimized away - since the same values must
1951 ** have been requested when testing key $P in whereEqualScanEst(). */
1952 whereKeyStats(pParse
, p
, pRec
, 0, a
);
1954 iUpper
= a
[0] + a
[1];
1957 assert( pLower
==0 || (pLower
->eOperator
& (WO_GT
|WO_GE
))!=0 );
1958 assert( pUpper
==0 || (pUpper
->eOperator
& (WO_LT
|WO_LE
))!=0 );
1959 assert( p
->aSortOrder
!=0 );
1960 if( p
->aSortOrder
[nEq
] ){
1961 /* The roles of pLower and pUpper are swapped for a DESC index */
1962 SWAP(WhereTerm
*, pLower
, pUpper
);
1963 SWAP(int, nBtm
, nTop
);
1966 /* If possible, improve on the iLower estimate using ($P:$L). */
1968 int n
; /* Values extracted from pExpr */
1969 Expr
*pExpr
= pLower
->pExpr
->pRight
;
1970 rc
= sqlite3Stat4ProbeSetValue(pParse
, p
, &pRec
, pExpr
, nBtm
, nEq
, &n
);
1971 if( rc
==SQLITE_OK
&& n
){
1973 u16 mask
= WO_GT
|WO_LE
;
1974 if( sqlite3ExprVectorSize(pExpr
)>n
) mask
= (WO_LE
|WO_LT
);
1975 iLwrIdx
= whereKeyStats(pParse
, p
, pRec
, 0, a
);
1976 iNew
= a
[0] + ((pLower
->eOperator
& mask
) ? a
[1] : 0);
1977 if( iNew
>iLower
) iLower
= iNew
;
1983 /* If possible, improve on the iUpper estimate using ($P:$U). */
1985 int n
; /* Values extracted from pExpr */
1986 Expr
*pExpr
= pUpper
->pExpr
->pRight
;
1987 rc
= sqlite3Stat4ProbeSetValue(pParse
, p
, &pRec
, pExpr
, nTop
, nEq
, &n
);
1988 if( rc
==SQLITE_OK
&& n
){
1990 u16 mask
= WO_GT
|WO_LE
;
1991 if( sqlite3ExprVectorSize(pExpr
)>n
) mask
= (WO_LE
|WO_LT
);
1992 iUprIdx
= whereKeyStats(pParse
, p
, pRec
, 1, a
);
1993 iNew
= a
[0] + ((pUpper
->eOperator
& mask
) ? a
[1] : 0);
1994 if( iNew
<iUpper
) iUpper
= iNew
;
2000 pBuilder
->pRec
= pRec
;
2001 if( rc
==SQLITE_OK
){
2002 if( iUpper
>iLower
){
2003 nNew
= sqlite3LogEst(iUpper
- iLower
);
2004 /* TUNING: If both iUpper and iLower are derived from the same
2005 ** sample, then assume they are 4x more selective. This brings
2006 ** the estimated selectivity more in line with what it would be
2007 ** if estimated without the use of STAT4 tables. */
2008 if( iLwrIdx
==iUprIdx
) nNew
-= 20; assert( 20==sqlite3LogEst(4) );
2010 nNew
= 10; assert( 10==sqlite3LogEst(2) );
2015 WHERETRACE(0x20, ("STAT4 range scan: %u..%u est=%d\n",
2016 (u32
)iLower
, (u32
)iUpper
, nOut
));
2020 rc
= whereRangeSkipScanEst(pParse
, pLower
, pUpper
, pLoop
, &bDone
);
2021 if( bDone
) return rc
;
2025 UNUSED_PARAMETER(pParse
);
2026 UNUSED_PARAMETER(pBuilder
);
2027 assert( pLower
|| pUpper
);
2029 assert( pUpper
==0 || (pUpper
->wtFlags
& TERM_VNULL
)==0 || pParse
->nErr
>0 );
2030 nNew
= whereRangeAdjust(pLower
, nOut
);
2031 nNew
= whereRangeAdjust(pUpper
, nNew
);
2033 /* TUNING: If there is both an upper and lower limit and neither limit
2034 ** has an application-defined likelihood(), assume the range is
2035 ** reduced by an additional 75%. This means that, by default, an open-ended
2036 ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the
2037 ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to
2038 ** match 1/64 of the index. */
2039 if( pLower
&& pLower
->truthProb
>0 && pUpper
&& pUpper
->truthProb
>0 ){
2043 nOut
-= (pLower
!=0) + (pUpper
!=0);
2044 if( nNew
<10 ) nNew
= 10;
2045 if( nNew
<nOut
) nOut
= nNew
;
2046 #if defined(WHERETRACE_ENABLED)
2047 if( pLoop
->nOut
>nOut
){
2048 WHERETRACE(0x20,("Range scan lowers nOut from %d to %d\n",
2049 pLoop
->nOut
, nOut
));
2052 pLoop
->nOut
= (LogEst
)nOut
;
2056 #ifdef SQLITE_ENABLE_STAT4
2058 ** Estimate the number of rows that will be returned based on
2059 ** an equality constraint x=VALUE and where that VALUE occurs in
2060 ** the histogram data. This only works when x is the left-most
2061 ** column of an index and sqlite_stat4 histogram data is available
2062 ** for that index. When pExpr==NULL that means the constraint is
2063 ** "x IS NULL" instead of "x=VALUE".
2065 ** Write the estimated row count into *pnRow and return SQLITE_OK.
2066 ** If unable to make an estimate, leave *pnRow unchanged and return
2069 ** This routine can fail if it is unable to load a collating sequence
2070 ** required for string comparison, or if unable to allocate memory
2071 ** for a UTF conversion required for comparison. The error is stored
2072 ** in the pParse structure.
2074 static int whereEqualScanEst(
2075 Parse
*pParse
, /* Parsing & code generating context */
2076 WhereLoopBuilder
*pBuilder
,
2077 Expr
*pExpr
, /* Expression for VALUE in the x=VALUE constraint */
2078 tRowcnt
*pnRow
/* Write the revised row estimate here */
2080 Index
*p
= pBuilder
->pNew
->u
.btree
.pIndex
;
2081 int nEq
= pBuilder
->pNew
->u
.btree
.nEq
;
2082 UnpackedRecord
*pRec
= pBuilder
->pRec
;
2083 int rc
; /* Subfunction return code */
2084 tRowcnt a
[2]; /* Statistics */
2088 assert( nEq
<=p
->nColumn
);
2089 assert( p
->aSample
!=0 );
2090 assert( p
->nSample
>0 );
2091 assert( pBuilder
->nRecValid
<nEq
);
2093 /* If values are not available for all fields of the index to the left
2094 ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */
2095 if( pBuilder
->nRecValid
<(nEq
-1) ){
2096 return SQLITE_NOTFOUND
;
2099 /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue()
2100 ** below would return the same value. */
2101 if( nEq
>=p
->nColumn
){
2106 rc
= sqlite3Stat4ProbeSetValue(pParse
, p
, &pRec
, pExpr
, 1, nEq
-1, &bOk
);
2107 pBuilder
->pRec
= pRec
;
2108 if( rc
!=SQLITE_OK
) return rc
;
2109 if( bOk
==0 ) return SQLITE_NOTFOUND
;
2110 pBuilder
->nRecValid
= nEq
;
2112 whereKeyStats(pParse
, p
, pRec
, 0, a
);
2113 WHERETRACE(0x20,("equality scan regions %s(%d): %d\n",
2114 p
->zName
, nEq
-1, (int)a
[1]));
2119 #endif /* SQLITE_ENABLE_STAT4 */
2121 #ifdef SQLITE_ENABLE_STAT4
2123 ** Estimate the number of rows that will be returned based on
2124 ** an IN constraint where the right-hand side of the IN operator
2125 ** is a list of values. Example:
2127 ** WHERE x IN (1,2,3,4)
2129 ** Write the estimated row count into *pnRow and return SQLITE_OK.
2130 ** If unable to make an estimate, leave *pnRow unchanged and return
2133 ** This routine can fail if it is unable to load a collating sequence
2134 ** required for string comparison, or if unable to allocate memory
2135 ** for a UTF conversion required for comparison. The error is stored
2136 ** in the pParse structure.
2138 static int whereInScanEst(
2139 Parse
*pParse
, /* Parsing & code generating context */
2140 WhereLoopBuilder
*pBuilder
,
2141 ExprList
*pList
, /* The value list on the RHS of "x IN (v1,v2,v3,...)" */
2142 tRowcnt
*pnRow
/* Write the revised row estimate here */
2144 Index
*p
= pBuilder
->pNew
->u
.btree
.pIndex
;
2145 i64 nRow0
= sqlite3LogEstToInt(p
->aiRowLogEst
[0]);
2146 int nRecValid
= pBuilder
->nRecValid
;
2147 int rc
= SQLITE_OK
; /* Subfunction return code */
2148 tRowcnt nEst
; /* Number of rows for a single term */
2149 tRowcnt nRowEst
= 0; /* New estimate of the number of rows */
2150 int i
; /* Loop counter */
2152 assert( p
->aSample
!=0 );
2153 for(i
=0; rc
==SQLITE_OK
&& i
<pList
->nExpr
; i
++){
2155 rc
= whereEqualScanEst(pParse
, pBuilder
, pList
->a
[i
].pExpr
, &nEst
);
2157 pBuilder
->nRecValid
= nRecValid
;
2160 if( rc
==SQLITE_OK
){
2161 if( nRowEst
> (tRowcnt
)nRow0
) nRowEst
= nRow0
;
2163 WHERETRACE(0x20,("IN row estimate: est=%d\n", nRowEst
));
2165 assert( pBuilder
->nRecValid
==nRecValid
);
2168 #endif /* SQLITE_ENABLE_STAT4 */
2171 #ifdef WHERETRACE_ENABLED
2173 ** Print the content of a WhereTerm object
2175 void sqlite3WhereTermPrint(WhereTerm
*pTerm
, int iTerm
){
2177 sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm
);
2181 memcpy(zType
, "....", 5);
2182 if( pTerm
->wtFlags
& TERM_VIRTUAL
) zType
[0] = 'V';
2183 if( pTerm
->eOperator
& WO_EQUIV
) zType
[1] = 'E';
2184 if( ExprHasProperty(pTerm
->pExpr
, EP_OuterON
) ) zType
[2] = 'L';
2185 if( pTerm
->wtFlags
& TERM_CODED
) zType
[3] = 'C';
2186 if( pTerm
->eOperator
& WO_SINGLE
){
2187 assert( (pTerm
->eOperator
& (WO_OR
|WO_AND
))==0 );
2188 sqlite3_snprintf(sizeof(zLeft
),zLeft
,"left={%d:%d}",
2189 pTerm
->leftCursor
, pTerm
->u
.x
.leftColumn
);
2190 }else if( (pTerm
->eOperator
& WO_OR
)!=0 && pTerm
->u
.pOrInfo
!=0 ){
2191 sqlite3_snprintf(sizeof(zLeft
),zLeft
,"indexable=0x%llx",
2192 pTerm
->u
.pOrInfo
->indexable
);
2194 sqlite3_snprintf(sizeof(zLeft
),zLeft
,"left=%d", pTerm
->leftCursor
);
2197 "TERM-%-3d %p %s %-12s op=%03x wtFlags=%04x",
2198 iTerm
, pTerm
, zType
, zLeft
, pTerm
->eOperator
, pTerm
->wtFlags
);
2199 /* The 0x10000 .wheretrace flag causes extra information to be
2200 ** shown about each Term */
2201 if( sqlite3WhereTrace
& 0x10000 ){
2202 sqlite3DebugPrintf(" prob=%-3d prereq=%llx,%llx",
2203 pTerm
->truthProb
, (u64
)pTerm
->prereqAll
, (u64
)pTerm
->prereqRight
);
2205 if( (pTerm
->eOperator
& (WO_OR
|WO_AND
))==0 && pTerm
->u
.x
.iField
){
2206 sqlite3DebugPrintf(" iField=%d", pTerm
->u
.x
.iField
);
2208 if( pTerm
->iParent
>=0 ){
2209 sqlite3DebugPrintf(" iParent=%d", pTerm
->iParent
);
2211 sqlite3DebugPrintf("\n");
2212 sqlite3TreeViewExpr(0, pTerm
->pExpr
, 0);
2217 #ifdef WHERETRACE_ENABLED
2219 ** Show the complete content of a WhereClause
2221 void sqlite3WhereClausePrint(WhereClause
*pWC
){
2223 for(i
=0; i
<pWC
->nTerm
; i
++){
2224 sqlite3WhereTermPrint(&pWC
->a
[i
], i
);
2229 #ifdef WHERETRACE_ENABLED
2231 ** Print a WhereLoop object for debugging purposes
2233 void sqlite3WhereLoopPrint(WhereLoop
*p
, WhereClause
*pWC
){
2234 WhereInfo
*pWInfo
= pWC
->pWInfo
;
2235 int nb
= 1+(pWInfo
->pTabList
->nSrc
+3)/4;
2236 SrcItem
*pItem
= pWInfo
->pTabList
->a
+ p
->iTab
;
2237 Table
*pTab
= pItem
->pTab
;
2238 Bitmask mAll
= (((Bitmask
)1)<<(nb
*4)) - 1;
2239 sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p
->cId
,
2240 p
->iTab
, nb
, p
->maskSelf
, nb
, p
->prereq
& mAll
);
2241 sqlite3DebugPrintf(" %12s",
2242 pItem
->zAlias
? pItem
->zAlias
: pTab
->zName
);
2243 if( (p
->wsFlags
& WHERE_VIRTUALTABLE
)==0 ){
2245 if( p
->u
.btree
.pIndex
&& (zName
= p
->u
.btree
.pIndex
->zName
)!=0 ){
2246 if( strncmp(zName
, "sqlite_autoindex_", 17)==0 ){
2247 int i
= sqlite3Strlen30(zName
) - 1;
2248 while( zName
[i
]!='_' ) i
--;
2251 sqlite3DebugPrintf(".%-16s %2d", zName
, p
->u
.btree
.nEq
);
2253 sqlite3DebugPrintf("%20s","");
2257 if( p
->u
.vtab
.idxStr
){
2258 z
= sqlite3_mprintf("(%d,\"%s\",%#x)",
2259 p
->u
.vtab
.idxNum
, p
->u
.vtab
.idxStr
, p
->u
.vtab
.omitMask
);
2261 z
= sqlite3_mprintf("(%d,%x)", p
->u
.vtab
.idxNum
, p
->u
.vtab
.omitMask
);
2263 sqlite3DebugPrintf(" %-19s", z
);
2266 if( p
->wsFlags
& WHERE_SKIPSCAN
){
2267 sqlite3DebugPrintf(" f %06x %d-%d", p
->wsFlags
, p
->nLTerm
,p
->nSkip
);
2269 sqlite3DebugPrintf(" f %06x N %d", p
->wsFlags
, p
->nLTerm
);
2271 sqlite3DebugPrintf(" cost %d,%d,%d\n", p
->rSetup
, p
->rRun
, p
->nOut
);
2272 if( p
->nLTerm
&& (sqlite3WhereTrace
& 0x4000)!=0 ){
2274 for(i
=0; i
<p
->nLTerm
; i
++){
2275 sqlite3WhereTermPrint(p
->aLTerm
[i
], i
);
2282 ** Convert bulk memory into a valid WhereLoop that can be passed
2283 ** to whereLoopClear harmlessly.
2285 static void whereLoopInit(WhereLoop
*p
){
2286 p
->aLTerm
= p
->aLTermSpace
;
2288 p
->nLSlot
= ArraySize(p
->aLTermSpace
);
2293 ** Clear the WhereLoop.u union. Leave WhereLoop.pLTerm intact.
2295 static void whereLoopClearUnion(sqlite3
*db
, WhereLoop
*p
){
2296 if( p
->wsFlags
& (WHERE_VIRTUALTABLE
|WHERE_AUTO_INDEX
) ){
2297 if( (p
->wsFlags
& WHERE_VIRTUALTABLE
)!=0 && p
->u
.vtab
.needFree
){
2298 sqlite3_free(p
->u
.vtab
.idxStr
);
2299 p
->u
.vtab
.needFree
= 0;
2300 p
->u
.vtab
.idxStr
= 0;
2301 }else if( (p
->wsFlags
& WHERE_AUTO_INDEX
)!=0 && p
->u
.btree
.pIndex
!=0 ){
2302 sqlite3DbFree(db
, p
->u
.btree
.pIndex
->zColAff
);
2303 sqlite3DbFreeNN(db
, p
->u
.btree
.pIndex
);
2304 p
->u
.btree
.pIndex
= 0;
2310 ** Deallocate internal memory used by a WhereLoop object. Leave the
2311 ** object in an initialized state, as if it had been newly allocated.
2313 static void whereLoopClear(sqlite3
*db
, WhereLoop
*p
){
2314 if( p
->aLTerm
!=p
->aLTermSpace
){
2315 sqlite3DbFreeNN(db
, p
->aLTerm
);
2316 p
->aLTerm
= p
->aLTermSpace
;
2317 p
->nLSlot
= ArraySize(p
->aLTermSpace
);
2319 whereLoopClearUnion(db
, p
);
2325 ** Increase the memory allocation for pLoop->aLTerm[] to be at least n.
2327 static int whereLoopResize(sqlite3
*db
, WhereLoop
*p
, int n
){
2329 if( p
->nLSlot
>=n
) return SQLITE_OK
;
2331 paNew
= sqlite3DbMallocRawNN(db
, sizeof(p
->aLTerm
[0])*n
);
2332 if( paNew
==0 ) return SQLITE_NOMEM_BKPT
;
2333 memcpy(paNew
, p
->aLTerm
, sizeof(p
->aLTerm
[0])*p
->nLSlot
);
2334 if( p
->aLTerm
!=p
->aLTermSpace
) sqlite3DbFreeNN(db
, p
->aLTerm
);
2341 ** Transfer content from the second pLoop into the first.
2343 static int whereLoopXfer(sqlite3
*db
, WhereLoop
*pTo
, WhereLoop
*pFrom
){
2344 whereLoopClearUnion(db
, pTo
);
2345 if( pFrom
->nLTerm
> pTo
->nLSlot
2346 && whereLoopResize(db
, pTo
, pFrom
->nLTerm
)
2348 memset(pTo
, 0, WHERE_LOOP_XFER_SZ
);
2349 return SQLITE_NOMEM_BKPT
;
2351 memcpy(pTo
, pFrom
, WHERE_LOOP_XFER_SZ
);
2352 memcpy(pTo
->aLTerm
, pFrom
->aLTerm
, pTo
->nLTerm
*sizeof(pTo
->aLTerm
[0]));
2353 if( pFrom
->wsFlags
& WHERE_VIRTUALTABLE
){
2354 pFrom
->u
.vtab
.needFree
= 0;
2355 }else if( (pFrom
->wsFlags
& WHERE_AUTO_INDEX
)!=0 ){
2356 pFrom
->u
.btree
.pIndex
= 0;
2362 ** Delete a WhereLoop object
2364 static void whereLoopDelete(sqlite3
*db
, WhereLoop
*p
){
2366 whereLoopClear(db
, p
);
2367 sqlite3DbNNFreeNN(db
, p
);
2371 ** Free a WhereInfo structure
2373 static void whereInfoFree(sqlite3
*db
, WhereInfo
*pWInfo
){
2374 assert( pWInfo
!=0 );
2376 sqlite3WhereClauseClear(&pWInfo
->sWC
);
2377 while( pWInfo
->pLoops
){
2378 WhereLoop
*p
= pWInfo
->pLoops
;
2379 pWInfo
->pLoops
= p
->pNextLoop
;
2380 whereLoopDelete(db
, p
);
2382 while( pWInfo
->pMemToFree
){
2383 WhereMemBlock
*pNext
= pWInfo
->pMemToFree
->pNext
;
2384 sqlite3DbNNFreeNN(db
, pWInfo
->pMemToFree
);
2385 pWInfo
->pMemToFree
= pNext
;
2387 sqlite3DbNNFreeNN(db
, pWInfo
);
2391 ** Return TRUE if all of the following are true:
2393 ** (1) X has the same or lower cost, or returns the same or fewer rows,
2395 ** (2) X uses fewer WHERE clause terms than Y
2396 ** (3) Every WHERE clause term used by X is also used by Y
2397 ** (4) X skips at least as many columns as Y
2398 ** (5) If X is a covering index, than Y is too
2400 ** Conditions (2) and (3) mean that X is a "proper subset" of Y.
2401 ** If X is a proper subset of Y then Y is a better choice and ought
2402 ** to have a lower cost. This routine returns TRUE when that cost
2403 ** relationship is inverted and needs to be adjusted. Constraint (4)
2404 ** was added because if X uses skip-scan less than Y it still might
2405 ** deserve a lower cost even if it is a proper subset of Y. Constraint (5)
2406 ** was added because a covering index probably deserves to have a lower cost
2407 ** than a non-covering index even if it is a proper subset.
2409 static int whereLoopCheaperProperSubset(
2410 const WhereLoop
*pX
, /* First WhereLoop to compare */
2411 const WhereLoop
*pY
/* Compare against this WhereLoop */
2414 if( pX
->nLTerm
-pX
->nSkip
>= pY
->nLTerm
-pY
->nSkip
){
2415 return 0; /* X is not a subset of Y */
2417 if( pX
->rRun
>pY
->rRun
&& pX
->nOut
>pY
->nOut
) return 0;
2418 if( pY
->nSkip
> pX
->nSkip
) return 0;
2419 for(i
=pX
->nLTerm
-1; i
>=0; i
--){
2420 if( pX
->aLTerm
[i
]==0 ) continue;
2421 for(j
=pY
->nLTerm
-1; j
>=0; j
--){
2422 if( pY
->aLTerm
[j
]==pX
->aLTerm
[i
] ) break;
2424 if( j
<0 ) return 0; /* X not a subset of Y since term X[i] not used by Y */
2426 if( (pX
->wsFlags
&WHERE_IDX_ONLY
)!=0
2427 && (pY
->wsFlags
&WHERE_IDX_ONLY
)==0 ){
2428 return 0; /* Constraint (5) */
2430 return 1; /* All conditions meet */
2434 ** Try to adjust the cost and number of output rows of WhereLoop pTemplate
2435 ** upwards or downwards so that:
2437 ** (1) pTemplate costs less than any other WhereLoops that are a proper
2438 ** subset of pTemplate
2440 ** (2) pTemplate costs more than any other WhereLoops for which pTemplate
2441 ** is a proper subset.
2443 ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer
2444 ** WHERE clause terms than Y and that every WHERE clause term used by X is
2447 static void whereLoopAdjustCost(const WhereLoop
*p
, WhereLoop
*pTemplate
){
2448 if( (pTemplate
->wsFlags
& WHERE_INDEXED
)==0 ) return;
2449 for(; p
; p
=p
->pNextLoop
){
2450 if( p
->iTab
!=pTemplate
->iTab
) continue;
2451 if( (p
->wsFlags
& WHERE_INDEXED
)==0 ) continue;
2452 if( whereLoopCheaperProperSubset(p
, pTemplate
) ){
2453 /* Adjust pTemplate cost downward so that it is cheaper than its
2455 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
2456 pTemplate
->rRun
, pTemplate
->nOut
,
2457 MIN(p
->rRun
, pTemplate
->rRun
),
2458 MIN(p
->nOut
- 1, pTemplate
->nOut
)));
2459 pTemplate
->rRun
= MIN(p
->rRun
, pTemplate
->rRun
);
2460 pTemplate
->nOut
= MIN(p
->nOut
- 1, pTemplate
->nOut
);
2461 }else if( whereLoopCheaperProperSubset(pTemplate
, p
) ){
2462 /* Adjust pTemplate cost upward so that it is costlier than p since
2463 ** pTemplate is a proper subset of p */
2464 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
2465 pTemplate
->rRun
, pTemplate
->nOut
,
2466 MAX(p
->rRun
, pTemplate
->rRun
),
2467 MAX(p
->nOut
+ 1, pTemplate
->nOut
)));
2468 pTemplate
->rRun
= MAX(p
->rRun
, pTemplate
->rRun
);
2469 pTemplate
->nOut
= MAX(p
->nOut
+ 1, pTemplate
->nOut
);
2475 ** Search the list of WhereLoops in *ppPrev looking for one that can be
2476 ** replaced by pTemplate.
2478 ** Return NULL if pTemplate does not belong on the WhereLoop list.
2479 ** In other words if pTemplate ought to be dropped from further consideration.
2481 ** If pX is a WhereLoop that pTemplate can replace, then return the
2482 ** link that points to pX.
2484 ** If pTemplate cannot replace any existing element of the list but needs
2485 ** to be added to the list as a new entry, then return a pointer to the
2486 ** tail of the list.
2488 static WhereLoop
**whereLoopFindLesser(
2490 const WhereLoop
*pTemplate
2493 for(p
=(*ppPrev
); p
; ppPrev
=&p
->pNextLoop
, p
=*ppPrev
){
2494 if( p
->iTab
!=pTemplate
->iTab
|| p
->iSortIdx
!=pTemplate
->iSortIdx
){
2495 /* If either the iTab or iSortIdx values for two WhereLoop are different
2496 ** then those WhereLoops need to be considered separately. Neither is
2497 ** a candidate to replace the other. */
2500 /* In the current implementation, the rSetup value is either zero
2501 ** or the cost of building an automatic index (NlogN) and the NlogN
2502 ** is the same for compatible WhereLoops. */
2503 assert( p
->rSetup
==0 || pTemplate
->rSetup
==0
2504 || p
->rSetup
==pTemplate
->rSetup
);
2506 /* whereLoopAddBtree() always generates and inserts the automatic index
2507 ** case first. Hence compatible candidate WhereLoops never have a larger
2508 ** rSetup. Call this SETUP-INVARIANT */
2509 assert( p
->rSetup
>=pTemplate
->rSetup
);
2511 /* Any loop using an application-defined index (or PRIMARY KEY or
2512 ** UNIQUE constraint) with one or more == constraints is better
2513 ** than an automatic index. Unless it is a skip-scan. */
2514 if( (p
->wsFlags
& WHERE_AUTO_INDEX
)!=0
2515 && (pTemplate
->nSkip
)==0
2516 && (pTemplate
->wsFlags
& WHERE_INDEXED
)!=0
2517 && (pTemplate
->wsFlags
& WHERE_COLUMN_EQ
)!=0
2518 && (p
->prereq
& pTemplate
->prereq
)==pTemplate
->prereq
2523 /* If existing WhereLoop p is better than pTemplate, pTemplate can be
2524 ** discarded. WhereLoop p is better if:
2525 ** (1) p has no more dependencies than pTemplate, and
2526 ** (2) p has an equal or lower cost than pTemplate
2528 if( (p
->prereq
& pTemplate
->prereq
)==p
->prereq
/* (1) */
2529 && p
->rSetup
<=pTemplate
->rSetup
/* (2a) */
2530 && p
->rRun
<=pTemplate
->rRun
/* (2b) */
2531 && p
->nOut
<=pTemplate
->nOut
/* (2c) */
2533 return 0; /* Discard pTemplate */
2536 /* If pTemplate is always better than p, then cause p to be overwritten
2537 ** with pTemplate. pTemplate is better than p if:
2538 ** (1) pTemplate has no more dependencies than p, and
2539 ** (2) pTemplate has an equal or lower cost than p.
2541 if( (p
->prereq
& pTemplate
->prereq
)==pTemplate
->prereq
/* (1) */
2542 && p
->rRun
>=pTemplate
->rRun
/* (2a) */
2543 && p
->nOut
>=pTemplate
->nOut
/* (2b) */
2545 assert( p
->rSetup
>=pTemplate
->rSetup
); /* SETUP-INVARIANT above */
2546 break; /* Cause p to be overwritten by pTemplate */
2553 ** Insert or replace a WhereLoop entry using the template supplied.
2555 ** An existing WhereLoop entry might be overwritten if the new template
2556 ** is better and has fewer dependencies. Or the template will be ignored
2557 ** and no insert will occur if an existing WhereLoop is faster and has
2558 ** fewer dependencies than the template. Otherwise a new WhereLoop is
2559 ** added based on the template.
2561 ** If pBuilder->pOrSet is not NULL then we care about only the
2562 ** prerequisites and rRun and nOut costs of the N best loops. That
2563 ** information is gathered in the pBuilder->pOrSet object. This special
2564 ** processing mode is used only for OR clause processing.
2566 ** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we
2567 ** still might overwrite similar loops with the new template if the
2568 ** new template is better. Loops may be overwritten if the following
2569 ** conditions are met:
2571 ** (1) They have the same iTab.
2572 ** (2) They have the same iSortIdx.
2573 ** (3) The template has same or fewer dependencies than the current loop
2574 ** (4) The template has the same or lower cost than the current loop
2576 static int whereLoopInsert(WhereLoopBuilder
*pBuilder
, WhereLoop
*pTemplate
){
2577 WhereLoop
**ppPrev
, *p
;
2578 WhereInfo
*pWInfo
= pBuilder
->pWInfo
;
2579 sqlite3
*db
= pWInfo
->pParse
->db
;
2582 /* Stop the search once we hit the query planner search limit */
2583 if( pBuilder
->iPlanLimit
==0 ){
2584 WHERETRACE(0xffffffff,("=== query planner search limit reached ===\n"));
2585 if( pBuilder
->pOrSet
) pBuilder
->pOrSet
->n
= 0;
2588 pBuilder
->iPlanLimit
--;
2590 whereLoopAdjustCost(pWInfo
->pLoops
, pTemplate
);
2592 /* If pBuilder->pOrSet is defined, then only keep track of the costs
2595 if( pBuilder
->pOrSet
!=0 ){
2596 if( pTemplate
->nLTerm
){
2597 #if WHERETRACE_ENABLED
2598 u16 n
= pBuilder
->pOrSet
->n
;
2601 whereOrInsert(pBuilder
->pOrSet
, pTemplate
->prereq
, pTemplate
->rRun
,
2603 #if WHERETRACE_ENABLED /* 0x8 */
2604 if( sqlite3WhereTrace
& 0x8 ){
2605 sqlite3DebugPrintf(x
?" or-%d: ":" or-X: ", n
);
2606 sqlite3WhereLoopPrint(pTemplate
, pBuilder
->pWC
);
2613 /* Look for an existing WhereLoop to replace with pTemplate
2615 ppPrev
= whereLoopFindLesser(&pWInfo
->pLoops
, pTemplate
);
2618 /* There already exists a WhereLoop on the list that is better
2619 ** than pTemplate, so just ignore pTemplate */
2620 #if WHERETRACE_ENABLED /* 0x8 */
2621 if( sqlite3WhereTrace
& 0x8 ){
2622 sqlite3DebugPrintf(" skip: ");
2623 sqlite3WhereLoopPrint(pTemplate
, pBuilder
->pWC
);
2631 /* If we reach this point it means that either p[] should be overwritten
2632 ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new
2633 ** WhereLoop and insert it.
2635 #if WHERETRACE_ENABLED /* 0x8 */
2636 if( sqlite3WhereTrace
& 0x8 ){
2638 sqlite3DebugPrintf("replace: ");
2639 sqlite3WhereLoopPrint(p
, pBuilder
->pWC
);
2640 sqlite3DebugPrintf(" with: ");
2642 sqlite3DebugPrintf(" add: ");
2644 sqlite3WhereLoopPrint(pTemplate
, pBuilder
->pWC
);
2648 /* Allocate a new WhereLoop to add to the end of the list */
2649 *ppPrev
= p
= sqlite3DbMallocRawNN(db
, sizeof(WhereLoop
));
2650 if( p
==0 ) return SQLITE_NOMEM_BKPT
;
2654 /* We will be overwriting WhereLoop p[]. But before we do, first
2655 ** go through the rest of the list and delete any other entries besides
2656 ** p[] that are also supplanted by pTemplate */
2657 WhereLoop
**ppTail
= &p
->pNextLoop
;
2660 ppTail
= whereLoopFindLesser(ppTail
, pTemplate
);
2661 if( ppTail
==0 ) break;
2663 if( pToDel
==0 ) break;
2664 *ppTail
= pToDel
->pNextLoop
;
2665 #if WHERETRACE_ENABLED /* 0x8 */
2666 if( sqlite3WhereTrace
& 0x8 ){
2667 sqlite3DebugPrintf(" delete: ");
2668 sqlite3WhereLoopPrint(pToDel
, pBuilder
->pWC
);
2671 whereLoopDelete(db
, pToDel
);
2674 rc
= whereLoopXfer(db
, p
, pTemplate
);
2675 if( (p
->wsFlags
& WHERE_VIRTUALTABLE
)==0 ){
2676 Index
*pIndex
= p
->u
.btree
.pIndex
;
2677 if( pIndex
&& pIndex
->idxType
==SQLITE_IDXTYPE_IPK
){
2678 p
->u
.btree
.pIndex
= 0;
2685 ** Adjust the WhereLoop.nOut value downward to account for terms of the
2686 ** WHERE clause that reference the loop but which are not used by an
2689 ** For every WHERE clause term that is not used by the index
2690 ** and which has a truth probability assigned by one of the likelihood(),
2691 ** likely(), or unlikely() SQL functions, reduce the estimated number
2692 ** of output rows by the probability specified.
2694 ** TUNING: For every WHERE clause term that is not used by the index
2695 ** and which does not have an assigned truth probability, heuristics
2696 ** described below are used to try to estimate the truth probability.
2697 ** TODO --> Perhaps this is something that could be improved by better
2698 ** table statistics.
2700 ** Heuristic 1: Estimate the truth probability as 93.75%. The 93.75%
2701 ** value corresponds to -1 in LogEst notation, so this means decrement
2702 ** the WhereLoop.nOut field for every such WHERE clause term.
2704 ** Heuristic 2: If there exists one or more WHERE clause terms of the
2705 ** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the
2706 ** final output row estimate is no greater than 1/4 of the total number
2707 ** of rows in the table. In other words, assume that x==EXPR will filter
2708 ** out at least 3 out of 4 rows. If EXPR is -1 or 0 or 1, then maybe the
2709 ** "x" column is boolean or else -1 or 0 or 1 is a common default value
2710 ** on the "x" column and so in that case only cap the output row estimate
2711 ** at 1/2 instead of 1/4.
2713 static void whereLoopOutputAdjust(
2714 WhereClause
*pWC
, /* The WHERE clause */
2715 WhereLoop
*pLoop
, /* The loop to adjust downward */
2716 LogEst nRow
/* Number of rows in the entire table */
2718 WhereTerm
*pTerm
, *pX
;
2719 Bitmask notAllowed
= ~(pLoop
->prereq
|pLoop
->maskSelf
);
2721 LogEst iReduce
= 0; /* pLoop->nOut should not exceed nRow-iReduce */
2723 assert( (pLoop
->wsFlags
& WHERE_AUTO_INDEX
)==0 );
2724 for(i
=pWC
->nBase
, pTerm
=pWC
->a
; i
>0; i
--, pTerm
++){
2726 if( (pTerm
->prereqAll
& notAllowed
)!=0 ) continue;
2727 if( (pTerm
->prereqAll
& pLoop
->maskSelf
)==0 ) continue;
2728 if( (pTerm
->wtFlags
& TERM_VIRTUAL
)!=0 ) continue;
2729 for(j
=pLoop
->nLTerm
-1; j
>=0; j
--){
2730 pX
= pLoop
->aLTerm
[j
];
2731 if( pX
==0 ) continue;
2732 if( pX
==pTerm
) break;
2733 if( pX
->iParent
>=0 && (&pWC
->a
[pX
->iParent
])==pTerm
) break;
2736 sqlite3ProgressCheck(pWC
->pWInfo
->pParse
);
2737 if( pLoop
->maskSelf
==pTerm
->prereqAll
){
2738 /* If there are extra terms in the WHERE clause not used by an index
2739 ** that depend only on the table being scanned, and that will tend to
2740 ** cause many rows to be omitted, then mark that table as
2743 ** 2022-03-24: Self-culling only applies if either the extra terms
2744 ** are straight comparison operators that are non-true with NULL
2745 ** operand, or if the loop is not an OUTER JOIN.
2747 if( (pTerm
->eOperator
& 0x3f)!=0
2748 || (pWC
->pWInfo
->pTabList
->a
[pLoop
->iTab
].fg
.jointype
2749 & (JT_LEFT
|JT_LTORJ
))==0
2751 pLoop
->wsFlags
|= WHERE_SELFCULL
;
2754 if( pTerm
->truthProb
<=0 ){
2755 /* If a truth probability is specified using the likelihood() hints,
2756 ** then use the probability provided by the application. */
2757 pLoop
->nOut
+= pTerm
->truthProb
;
2759 /* In the absence of explicit truth probabilities, use heuristics to
2760 ** guess a reasonable truth probability. */
2762 if( (pTerm
->eOperator
&(WO_EQ
|WO_IS
))!=0
2763 && (pTerm
->wtFlags
& TERM_HIGHTRUTH
)==0 /* tag-20200224-1 */
2765 Expr
*pRight
= pTerm
->pExpr
->pRight
;
2767 testcase( pTerm
->pExpr
->op
==TK_IS
);
2768 if( sqlite3ExprIsInteger(pRight
, &k
) && k
>=(-1) && k
<=1 ){
2774 pTerm
->wtFlags
|= TERM_HEURTRUTH
;
2781 if( pLoop
->nOut
> nRow
-iReduce
){
2782 pLoop
->nOut
= nRow
- iReduce
;
2787 ** Term pTerm is a vector range comparison operation. The first comparison
2788 ** in the vector can be optimized using column nEq of the index. This
2789 ** function returns the total number of vector elements that can be used
2790 ** as part of the range comparison.
2792 ** For example, if the query is:
2794 ** WHERE a = ? AND (b, c, d) > (?, ?, ?)
2798 ** CREATE INDEX ... ON (a, b, c, d, e)
2800 ** then this function would be invoked with nEq=1. The value returned in
2803 static int whereRangeVectorLen(
2804 Parse
*pParse
, /* Parsing context */
2805 int iCur
, /* Cursor open on pIdx */
2806 Index
*pIdx
, /* The index to be used for a inequality constraint */
2807 int nEq
, /* Number of prior equality constraints on same index */
2808 WhereTerm
*pTerm
/* The vector inequality constraint */
2810 int nCmp
= sqlite3ExprVectorSize(pTerm
->pExpr
->pLeft
);
2813 nCmp
= MIN(nCmp
, (pIdx
->nColumn
- nEq
));
2814 for(i
=1; i
<nCmp
; i
++){
2815 /* Test if comparison i of pTerm is compatible with column (i+nEq)
2816 ** of the index. If not, exit the loop. */
2817 char aff
; /* Comparison affinity */
2818 char idxaff
= 0; /* Indexed columns affinity */
2819 CollSeq
*pColl
; /* Comparison collation sequence */
2822 assert( ExprUseXList(pTerm
->pExpr
->pLeft
) );
2823 pLhs
= pTerm
->pExpr
->pLeft
->x
.pList
->a
[i
].pExpr
;
2824 pRhs
= pTerm
->pExpr
->pRight
;
2825 if( ExprUseXSelect(pRhs
) ){
2826 pRhs
= pRhs
->x
.pSelect
->pEList
->a
[i
].pExpr
;
2828 pRhs
= pRhs
->x
.pList
->a
[i
].pExpr
;
2831 /* Check that the LHS of the comparison is a column reference to
2832 ** the right column of the right source table. And that the sort
2833 ** order of the index column is the same as the sort order of the
2834 ** leftmost index column. */
2835 if( pLhs
->op
!=TK_COLUMN
2836 || pLhs
->iTable
!=iCur
2837 || pLhs
->iColumn
!=pIdx
->aiColumn
[i
+nEq
]
2838 || pIdx
->aSortOrder
[i
+nEq
]!=pIdx
->aSortOrder
[nEq
]
2843 testcase( pLhs
->iColumn
==XN_ROWID
);
2844 aff
= sqlite3CompareAffinity(pRhs
, sqlite3ExprAffinity(pLhs
));
2845 idxaff
= sqlite3TableColumnAffinity(pIdx
->pTable
, pLhs
->iColumn
);
2846 if( aff
!=idxaff
) break;
2848 pColl
= sqlite3BinaryCompareCollSeq(pParse
, pLhs
, pRhs
);
2849 if( pColl
==0 ) break;
2850 if( sqlite3StrICmp(pColl
->zName
, pIdx
->azColl
[i
+nEq
]) ) break;
2856 ** Adjust the cost C by the costMult factor T. This only occurs if
2857 ** compiled with -DSQLITE_ENABLE_COSTMULT
2859 #ifdef SQLITE_ENABLE_COSTMULT
2860 # define ApplyCostMultiplier(C,T) C += T
2862 # define ApplyCostMultiplier(C,T)
2866 ** We have so far matched pBuilder->pNew->u.btree.nEq terms of the
2867 ** index pIndex. Try to match one more.
2869 ** When this function is called, pBuilder->pNew->nOut contains the
2870 ** number of rows expected to be visited by filtering using the nEq
2871 ** terms only. If it is modified, this value is restored before this
2872 ** function returns.
2874 ** If pProbe->idxType==SQLITE_IDXTYPE_IPK, that means pIndex is
2875 ** a fake index used for the INTEGER PRIMARY KEY.
2877 static int whereLoopAddBtreeIndex(
2878 WhereLoopBuilder
*pBuilder
, /* The WhereLoop factory */
2879 SrcItem
*pSrc
, /* FROM clause term being analyzed */
2880 Index
*pProbe
, /* An index on pSrc */
2881 LogEst nInMul
/* log(Number of iterations due to IN) */
2883 WhereInfo
*pWInfo
= pBuilder
->pWInfo
; /* WHERE analyze context */
2884 Parse
*pParse
= pWInfo
->pParse
; /* Parsing context */
2885 sqlite3
*db
= pParse
->db
; /* Database connection malloc context */
2886 WhereLoop
*pNew
; /* Template WhereLoop under construction */
2887 WhereTerm
*pTerm
; /* A WhereTerm under consideration */
2888 int opMask
; /* Valid operators for constraints */
2889 WhereScan scan
; /* Iterator for WHERE terms */
2890 Bitmask saved_prereq
; /* Original value of pNew->prereq */
2891 u16 saved_nLTerm
; /* Original value of pNew->nLTerm */
2892 u16 saved_nEq
; /* Original value of pNew->u.btree.nEq */
2893 u16 saved_nBtm
; /* Original value of pNew->u.btree.nBtm */
2894 u16 saved_nTop
; /* Original value of pNew->u.btree.nTop */
2895 u16 saved_nSkip
; /* Original value of pNew->nSkip */
2896 u32 saved_wsFlags
; /* Original value of pNew->wsFlags */
2897 LogEst saved_nOut
; /* Original value of pNew->nOut */
2898 int rc
= SQLITE_OK
; /* Return code */
2899 LogEst rSize
; /* Number of rows in the table */
2900 LogEst rLogSize
; /* Logarithm of table size */
2901 WhereTerm
*pTop
= 0, *pBtm
= 0; /* Top and bottom range constraints */
2903 pNew
= pBuilder
->pNew
;
2904 assert( db
->mallocFailed
==0 || pParse
->nErr
>0 );
2908 WHERETRACE(0x800, ("BEGIN %s.addBtreeIdx(%s), nEq=%d, nSkip=%d, rRun=%d\n",
2909 pProbe
->pTable
->zName
,pProbe
->zName
,
2910 pNew
->u
.btree
.nEq
, pNew
->nSkip
, pNew
->rRun
));
2912 assert( (pNew
->wsFlags
& WHERE_VIRTUALTABLE
)==0 );
2913 assert( (pNew
->wsFlags
& WHERE_TOP_LIMIT
)==0 );
2914 if( pNew
->wsFlags
& WHERE_BTM_LIMIT
){
2915 opMask
= WO_LT
|WO_LE
;
2917 assert( pNew
->u
.btree
.nBtm
==0 );
2918 opMask
= WO_EQ
|WO_IN
|WO_GT
|WO_GE
|WO_LT
|WO_LE
|WO_ISNULL
|WO_IS
;
2920 if( pProbe
->bUnordered
) opMask
&= ~(WO_GT
|WO_GE
|WO_LT
|WO_LE
);
2922 assert( pNew
->u
.btree
.nEq
<pProbe
->nColumn
);
2923 assert( pNew
->u
.btree
.nEq
<pProbe
->nKeyCol
2924 || pProbe
->idxType
!=SQLITE_IDXTYPE_PRIMARYKEY
);
2926 saved_nEq
= pNew
->u
.btree
.nEq
;
2927 saved_nBtm
= pNew
->u
.btree
.nBtm
;
2928 saved_nTop
= pNew
->u
.btree
.nTop
;
2929 saved_nSkip
= pNew
->nSkip
;
2930 saved_nLTerm
= pNew
->nLTerm
;
2931 saved_wsFlags
= pNew
->wsFlags
;
2932 saved_prereq
= pNew
->prereq
;
2933 saved_nOut
= pNew
->nOut
;
2934 pTerm
= whereScanInit(&scan
, pBuilder
->pWC
, pSrc
->iCursor
, saved_nEq
,
2937 rSize
= pProbe
->aiRowLogEst
[0];
2938 rLogSize
= estLog(rSize
);
2939 for(; rc
==SQLITE_OK
&& pTerm
!=0; pTerm
= whereScanNext(&scan
)){
2940 u16 eOp
= pTerm
->eOperator
; /* Shorthand for pTerm->eOperator */
2942 LogEst nOutUnadjusted
; /* nOut before IN() and WHERE adjustments */
2944 #ifdef SQLITE_ENABLE_STAT4
2945 int nRecValid
= pBuilder
->nRecValid
;
2947 if( (eOp
==WO_ISNULL
|| (pTerm
->wtFlags
&TERM_VNULL
)!=0)
2948 && indexColumnNotNull(pProbe
, saved_nEq
)
2950 continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */
2952 if( pTerm
->prereqRight
& pNew
->maskSelf
) continue;
2954 /* Do not allow the upper bound of a LIKE optimization range constraint
2955 ** to mix with a lower range bound from some other source */
2956 if( pTerm
->wtFlags
& TERM_LIKEOPT
&& pTerm
->eOperator
==WO_LT
) continue;
2958 if( (pSrc
->fg
.jointype
& (JT_LEFT
|JT_LTORJ
|JT_RIGHT
))!=0
2959 && !constraintCompatibleWithOuterJoin(pTerm
,pSrc
)
2963 if( IsUniqueIndex(pProbe
) && saved_nEq
==pProbe
->nKeyCol
-1 ){
2964 pBuilder
->bldFlags1
|= SQLITE_BLDF1_UNIQUE
;
2966 pBuilder
->bldFlags1
|= SQLITE_BLDF1_INDEXED
;
2968 pNew
->wsFlags
= saved_wsFlags
;
2969 pNew
->u
.btree
.nEq
= saved_nEq
;
2970 pNew
->u
.btree
.nBtm
= saved_nBtm
;
2971 pNew
->u
.btree
.nTop
= saved_nTop
;
2972 pNew
->nLTerm
= saved_nLTerm
;
2973 if( pNew
->nLTerm
>=pNew
->nLSlot
2974 && whereLoopResize(db
, pNew
, pNew
->nLTerm
+1)
2976 break; /* OOM while trying to enlarge the pNew->aLTerm array */
2978 pNew
->aLTerm
[pNew
->nLTerm
++] = pTerm
;
2979 pNew
->prereq
= (saved_prereq
| pTerm
->prereqRight
) & ~pNew
->maskSelf
;
2982 || (pNew
->wsFlags
& WHERE_COLUMN_NULL
)!=0
2983 || (pNew
->wsFlags
& WHERE_COLUMN_IN
)!=0
2984 || (pNew
->wsFlags
& WHERE_SKIPSCAN
)!=0
2988 Expr
*pExpr
= pTerm
->pExpr
;
2989 if( ExprUseXSelect(pExpr
) ){
2990 /* "x IN (SELECT ...)": TUNING: the SELECT returns 25 rows */
2992 nIn
= 46; assert( 46==sqlite3LogEst(25) );
2994 /* The expression may actually be of the form (x, y) IN (SELECT...).
2995 ** In this case there is a separate term for each of (x) and (y).
2996 ** However, the nIn multiplier should only be applied once, not once
2997 ** for each such term. The following loop checks that pTerm is the
2998 ** first such term in use, and sets nIn back to 0 if it is not. */
2999 for(i
=0; i
<pNew
->nLTerm
-1; i
++){
3000 if( pNew
->aLTerm
[i
] && pNew
->aLTerm
[i
]->pExpr
==pExpr
) nIn
= 0;
3002 }else if( ALWAYS(pExpr
->x
.pList
&& pExpr
->x
.pList
->nExpr
) ){
3003 /* "x IN (value, value, ...)" */
3004 nIn
= sqlite3LogEst(pExpr
->x
.pList
->nExpr
);
3006 if( pProbe
->hasStat1
&& rLogSize
>=10 ){
3009 ** N = the total number of rows in the table
3010 ** K = the number of entries on the RHS of the IN operator
3011 ** M = the number of rows in the table that match terms to the
3012 ** to the left in the same index. If the IN operator is on
3013 ** the left-most index column, M==N.
3015 ** Given the definitions above, it is better to omit the IN operator
3016 ** from the index lookup and instead do a scan of the M elements,
3017 ** testing each scanned row against the IN operator separately, if:
3019 ** M*log(K) < K*log(N)
3021 ** Our estimates for M, K, and N might be inaccurate, so we build in
3022 ** a safety margin of 2 (LogEst: 10) that favors using the IN operator
3023 ** with the index, as using an index has better worst-case behavior.
3024 ** If we do not have real sqlite_stat1 data, always prefer to use
3025 ** the index. Do not bother with this optimization on very small
3026 ** tables (less than 2 rows) as it is pointless in that case.
3028 M
= pProbe
->aiRowLogEst
[saved_nEq
];
3030 /* TUNING v----- 10 to bias toward indexed IN */
3031 x
= M
+ logK
+ 10 - (nIn
+ rLogSize
);
3034 ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d) "
3035 "prefers indexed lookup\n",
3036 saved_nEq
, M
, logK
, nIn
, rLogSize
, x
));
3037 }else if( nInMul
<2 && OptimizationEnabled(db
, SQLITE_SeekScan
) ){
3039 ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d"
3040 " nInMul=%d) prefers skip-scan\n",
3041 saved_nEq
, M
, logK
, nIn
, rLogSize
, x
, nInMul
));
3042 pNew
->wsFlags
|= WHERE_IN_SEEKSCAN
;
3045 ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d"
3046 " nInMul=%d) prefers normal scan\n",
3047 saved_nEq
, M
, logK
, nIn
, rLogSize
, x
, nInMul
));
3051 pNew
->wsFlags
|= WHERE_COLUMN_IN
;
3052 }else if( eOp
& (WO_EQ
|WO_IS
) ){
3053 int iCol
= pProbe
->aiColumn
[saved_nEq
];
3054 pNew
->wsFlags
|= WHERE_COLUMN_EQ
;
3055 assert( saved_nEq
==pNew
->u
.btree
.nEq
);
3057 || (iCol
>=0 && nInMul
==0 && saved_nEq
==pProbe
->nKeyCol
-1)
3059 if( iCol
==XN_ROWID
|| pProbe
->uniqNotNull
3060 || (pProbe
->nKeyCol
==1 && pProbe
->onError
&& eOp
==WO_EQ
)
3062 pNew
->wsFlags
|= WHERE_ONEROW
;
3064 pNew
->wsFlags
|= WHERE_UNQ_WANTED
;
3067 if( scan
.iEquiv
>1 ) pNew
->wsFlags
|= WHERE_TRANSCONS
;
3068 }else if( eOp
& WO_ISNULL
){
3069 pNew
->wsFlags
|= WHERE_COLUMN_NULL
;
3071 int nVecLen
= whereRangeVectorLen(
3072 pParse
, pSrc
->iCursor
, pProbe
, saved_nEq
, pTerm
3074 if( eOp
& (WO_GT
|WO_GE
) ){
3075 testcase( eOp
& WO_GT
);
3076 testcase( eOp
& WO_GE
);
3077 pNew
->wsFlags
|= WHERE_COLUMN_RANGE
|WHERE_BTM_LIMIT
;
3078 pNew
->u
.btree
.nBtm
= nVecLen
;
3081 if( pTerm
->wtFlags
& TERM_LIKEOPT
){
3082 /* Range constraints that come from the LIKE optimization are
3083 ** always used in pairs. */
3085 assert( (pTop
-(pTerm
->pWC
->a
))<pTerm
->pWC
->nTerm
);
3086 assert( pTop
->wtFlags
& TERM_LIKEOPT
);
3087 assert( pTop
->eOperator
==WO_LT
);
3088 if( whereLoopResize(db
, pNew
, pNew
->nLTerm
+1) ) break; /* OOM */
3089 pNew
->aLTerm
[pNew
->nLTerm
++] = pTop
;
3090 pNew
->wsFlags
|= WHERE_TOP_LIMIT
;
3091 pNew
->u
.btree
.nTop
= 1;
3094 assert( eOp
& (WO_LT
|WO_LE
) );
3095 testcase( eOp
& WO_LT
);
3096 testcase( eOp
& WO_LE
);
3097 pNew
->wsFlags
|= WHERE_COLUMN_RANGE
|WHERE_TOP_LIMIT
;
3098 pNew
->u
.btree
.nTop
= nVecLen
;
3100 pBtm
= (pNew
->wsFlags
& WHERE_BTM_LIMIT
)!=0 ?
3101 pNew
->aLTerm
[pNew
->nLTerm
-2] : 0;
3105 /* At this point pNew->nOut is set to the number of rows expected to
3106 ** be visited by the index scan before considering term pTerm, or the
3107 ** values of nIn and nInMul. In other words, assuming that all
3108 ** "x IN(...)" terms are replaced with "x = ?". This block updates
3109 ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul). */
3110 assert( pNew
->nOut
==saved_nOut
);
3111 if( pNew
->wsFlags
& WHERE_COLUMN_RANGE
){
3112 /* Adjust nOut using stat4 data. Or, if there is no stat4
3113 ** data, using some other estimate. */
3114 whereRangeScanEst(pParse
, pBuilder
, pBtm
, pTop
, pNew
);
3116 int nEq
= ++pNew
->u
.btree
.nEq
;
3117 assert( eOp
& (WO_ISNULL
|WO_EQ
|WO_IN
|WO_IS
) );
3119 assert( pNew
->nOut
==saved_nOut
);
3120 if( pTerm
->truthProb
<=0 && pProbe
->aiColumn
[saved_nEq
]>=0 ){
3121 assert( (eOp
& WO_IN
) || nIn
==0 );
3122 testcase( eOp
& WO_IN
);
3123 pNew
->nOut
+= pTerm
->truthProb
;
3126 #ifdef SQLITE_ENABLE_STAT4
3130 && ALWAYS(pNew
->u
.btree
.nEq
<=pProbe
->nSampleCol
)
3131 && ((eOp
& WO_IN
)==0 || ExprUseXList(pTerm
->pExpr
))
3132 && OptimizationEnabled(db
, SQLITE_Stat4
)
3134 Expr
*pExpr
= pTerm
->pExpr
;
3135 if( (eOp
& (WO_EQ
|WO_ISNULL
|WO_IS
))!=0 ){
3136 testcase( eOp
& WO_EQ
);
3137 testcase( eOp
& WO_IS
);
3138 testcase( eOp
& WO_ISNULL
);
3139 rc
= whereEqualScanEst(pParse
, pBuilder
, pExpr
->pRight
, &nOut
);
3141 rc
= whereInScanEst(pParse
, pBuilder
, pExpr
->x
.pList
, &nOut
);
3143 if( rc
==SQLITE_NOTFOUND
) rc
= SQLITE_OK
;
3144 if( rc
!=SQLITE_OK
) break; /* Jump out of the pTerm loop */
3146 pNew
->nOut
= sqlite3LogEst(nOut
);
3148 /* TUNING: Mark terms as "low selectivity" if they seem likely
3149 ** to be true for half or more of the rows in the table.
3150 ** See tag-202002240-1 */
3151 && pNew
->nOut
+10 > pProbe
->aiRowLogEst
[0]
3153 #if WHERETRACE_ENABLED /* 0x01 */
3154 if( sqlite3WhereTrace
& 0x20 ){
3156 "STAT4 determines term has low selectivity:\n");
3157 sqlite3WhereTermPrint(pTerm
, 999);
3160 pTerm
->wtFlags
|= TERM_HIGHTRUTH
;
3161 if( pTerm
->wtFlags
& TERM_HEURTRUTH
){
3162 /* If the term has previously been used with an assumption of
3163 ** higher selectivity, then set the flag to rerun the
3164 ** loop computations. */
3165 pBuilder
->bldFlags2
|= SQLITE_BLDF2_2NDPASS
;
3168 if( pNew
->nOut
>saved_nOut
) pNew
->nOut
= saved_nOut
;
3175 pNew
->nOut
+= (pProbe
->aiRowLogEst
[nEq
] - pProbe
->aiRowLogEst
[nEq
-1]);
3176 if( eOp
& WO_ISNULL
){
3177 /* TUNING: If there is no likelihood() value, assume that a
3178 ** "col IS NULL" expression matches twice as many rows
3186 /* Set rCostIdx to the cost of visiting selected rows in index. Add
3187 ** it to pNew->rRun, which is currently set to the cost of the index
3188 ** seek only. Then, if this is a non-covering index, add the cost of
3189 ** visiting the rows in the main table. */
3190 assert( pSrc
->pTab
->szTabRow
>0 );
3191 if( pProbe
->idxType
==SQLITE_IDXTYPE_IPK
){
3192 /* The pProbe->szIdxRow is low for an IPK table since the interior
3193 ** pages are small. Thus szIdxRow gives a good estimate of seek cost.
3194 ** But the leaf pages are full-size, so pProbe->szIdxRow would badly
3195 ** under-estimate the scanning cost. */
3196 rCostIdx
= pNew
->nOut
+ 16;
3198 rCostIdx
= pNew
->nOut
+ 1 + (15*pProbe
->szIdxRow
)/pSrc
->pTab
->szTabRow
;
3200 pNew
->rRun
= sqlite3LogEstAdd(rLogSize
, rCostIdx
);
3201 if( (pNew
->wsFlags
& (WHERE_IDX_ONLY
|WHERE_IPK
|WHERE_EXPRIDX
))==0 ){
3202 pNew
->rRun
= sqlite3LogEstAdd(pNew
->rRun
, pNew
->nOut
+ 16);
3204 ApplyCostMultiplier(pNew
->rRun
, pProbe
->pTable
->costMult
);
3206 nOutUnadjusted
= pNew
->nOut
;
3207 pNew
->rRun
+= nInMul
+ nIn
;
3208 pNew
->nOut
+= nInMul
+ nIn
;
3209 whereLoopOutputAdjust(pBuilder
->pWC
, pNew
, rSize
);
3210 rc
= whereLoopInsert(pBuilder
, pNew
);
3212 if( pNew
->wsFlags
& WHERE_COLUMN_RANGE
){
3213 pNew
->nOut
= saved_nOut
;
3215 pNew
->nOut
= nOutUnadjusted
;
3218 if( (pNew
->wsFlags
& WHERE_TOP_LIMIT
)==0
3219 && pNew
->u
.btree
.nEq
<pProbe
->nColumn
3220 && (pNew
->u
.btree
.nEq
<pProbe
->nKeyCol
||
3221 pProbe
->idxType
!=SQLITE_IDXTYPE_PRIMARYKEY
)
3223 if( pNew
->u
.btree
.nEq
>3 ){
3224 sqlite3ProgressCheck(pParse
);
3226 whereLoopAddBtreeIndex(pBuilder
, pSrc
, pProbe
, nInMul
+nIn
);
3228 pNew
->nOut
= saved_nOut
;
3229 #ifdef SQLITE_ENABLE_STAT4
3230 pBuilder
->nRecValid
= nRecValid
;
3233 pNew
->prereq
= saved_prereq
;
3234 pNew
->u
.btree
.nEq
= saved_nEq
;
3235 pNew
->u
.btree
.nBtm
= saved_nBtm
;
3236 pNew
->u
.btree
.nTop
= saved_nTop
;
3237 pNew
->nSkip
= saved_nSkip
;
3238 pNew
->wsFlags
= saved_wsFlags
;
3239 pNew
->nOut
= saved_nOut
;
3240 pNew
->nLTerm
= saved_nLTerm
;
3242 /* Consider using a skip-scan if there are no WHERE clause constraints
3243 ** available for the left-most terms of the index, and if the average
3244 ** number of repeats in the left-most terms is at least 18.
3246 ** The magic number 18 is selected on the basis that scanning 17 rows
3247 ** is almost always quicker than an index seek (even though if the index
3248 ** contains fewer than 2^17 rows we assume otherwise in other parts of
3249 ** the code). And, even if it is not, it should not be too much slower.
3250 ** On the other hand, the extra seeks could end up being significantly
3251 ** more expensive. */
3252 assert( 42==sqlite3LogEst(18) );
3253 if( saved_nEq
==saved_nSkip
3254 && saved_nEq
+1<pProbe
->nKeyCol
3255 && saved_nEq
==pNew
->nLTerm
3256 && pProbe
->noSkipScan
==0
3257 && pProbe
->hasStat1
!=0
3258 && OptimizationEnabled(db
, SQLITE_SkipScan
)
3259 && pProbe
->aiRowLogEst
[saved_nEq
+1]>=42 /* TUNING: Minimum for skip-scan */
3260 && (rc
= whereLoopResize(db
, pNew
, pNew
->nLTerm
+1))==SQLITE_OK
3263 pNew
->u
.btree
.nEq
++;
3265 pNew
->aLTerm
[pNew
->nLTerm
++] = 0;
3266 pNew
->wsFlags
|= WHERE_SKIPSCAN
;
3267 nIter
= pProbe
->aiRowLogEst
[saved_nEq
] - pProbe
->aiRowLogEst
[saved_nEq
+1];
3268 pNew
->nOut
-= nIter
;
3269 /* TUNING: Because uncertainties in the estimates for skip-scan queries,
3270 ** add a 1.375 fudge factor to make skip-scan slightly less likely. */
3272 whereLoopAddBtreeIndex(pBuilder
, pSrc
, pProbe
, nIter
+ nInMul
);
3273 pNew
->nOut
= saved_nOut
;
3274 pNew
->u
.btree
.nEq
= saved_nEq
;
3275 pNew
->nSkip
= saved_nSkip
;
3276 pNew
->wsFlags
= saved_wsFlags
;
3279 WHERETRACE(0x800, ("END %s.addBtreeIdx(%s), nEq=%d, rc=%d\n",
3280 pProbe
->pTable
->zName
, pProbe
->zName
, saved_nEq
, rc
));
3285 ** Return True if it is possible that pIndex might be useful in
3286 ** implementing the ORDER BY clause in pBuilder.
3288 ** Return False if pBuilder does not contain an ORDER BY clause or
3289 ** if there is no way for pIndex to be useful in implementing that
3292 static int indexMightHelpWithOrderBy(
3293 WhereLoopBuilder
*pBuilder
,
3301 if( pIndex
->bUnordered
) return 0;
3302 if( (pOB
= pBuilder
->pWInfo
->pOrderBy
)==0 ) return 0;
3303 for(ii
=0; ii
<pOB
->nExpr
; ii
++){
3304 Expr
*pExpr
= sqlite3ExprSkipCollateAndLikely(pOB
->a
[ii
].pExpr
);
3305 if( NEVER(pExpr
==0) ) continue;
3306 if( pExpr
->op
==TK_COLUMN
&& pExpr
->iTable
==iCursor
){
3307 if( pExpr
->iColumn
<0 ) return 1;
3308 for(jj
=0; jj
<pIndex
->nKeyCol
; jj
++){
3309 if( pExpr
->iColumn
==pIndex
->aiColumn
[jj
] ) return 1;
3311 }else if( (aColExpr
= pIndex
->aColExpr
)!=0 ){
3312 for(jj
=0; jj
<pIndex
->nKeyCol
; jj
++){
3313 if( pIndex
->aiColumn
[jj
]!=XN_EXPR
) continue;
3314 if( sqlite3ExprCompareSkip(pExpr
,aColExpr
->a
[jj
].pExpr
,iCursor
)==0 ){
3323 /* Check to see if a partial index with pPartIndexWhere can be used
3324 ** in the current query. Return true if it can be and false if not.
3326 static int whereUsablePartialIndex(
3327 int iTab
, /* The table for which we want an index */
3328 u8 jointype
, /* The JT_* flags on the join */
3329 WhereClause
*pWC
, /* The WHERE clause of the query */
3330 Expr
*pWhere
/* The WHERE clause from the partial index */
3336 if( jointype
& JT_LTORJ
) return 0;
3337 pParse
= pWC
->pWInfo
->pParse
;
3338 while( pWhere
->op
==TK_AND
){
3339 if( !whereUsablePartialIndex(iTab
,jointype
,pWC
,pWhere
->pLeft
) ) return 0;
3340 pWhere
= pWhere
->pRight
;
3342 if( pParse
->db
->flags
& SQLITE_EnableQPSG
) pParse
= 0;
3343 for(i
=0, pTerm
=pWC
->a
; i
<pWC
->nTerm
; i
++, pTerm
++){
3345 pExpr
= pTerm
->pExpr
;
3346 if( (!ExprHasProperty(pExpr
, EP_OuterON
) || pExpr
->w
.iJoin
==iTab
)
3347 && ((jointype
& JT_OUTER
)==0 || ExprHasProperty(pExpr
, EP_OuterON
))
3348 && sqlite3ExprImpliesExpr(pParse
, pExpr
, pWhere
, iTab
)
3349 && (pTerm
->wtFlags
& TERM_VNULL
)==0
3358 ** pIdx is an index containing expressions. Check it see if any of the
3359 ** expressions in the index match the pExpr expression.
3361 static int exprIsCoveredByIndex(
3367 for(i
=0; i
<pIdx
->nColumn
; i
++){
3368 if( pIdx
->aiColumn
[i
]==XN_EXPR
3369 && sqlite3ExprCompare(0, pExpr
, pIdx
->aColExpr
->a
[i
].pExpr
, iTabCur
)==0
3378 ** Structure passed to the whereIsCoveringIndex Walker callback.
3380 typedef struct CoveringIndexCheck CoveringIndexCheck
;
3381 struct CoveringIndexCheck
{
3382 Index
*pIdx
; /* The index */
3383 int iTabCur
; /* Cursor number for the corresponding table */
3384 u8 bExpr
; /* Uses an indexed expression */
3385 u8 bUnidx
; /* Uses an unindexed column not within an indexed expr */
3389 ** Information passed in is pWalk->u.pCovIdxCk. Call it pCk.
3391 ** If the Expr node references the table with cursor pCk->iTabCur, then
3392 ** make sure that column is covered by the index pCk->pIdx. We know that
3393 ** all columns less than 63 (really BMS-1) are covered, so we don't need
3394 ** to check them. But we do need to check any column at 63 or greater.
3396 ** If the index does not cover the column, then set pWalk->eCode to
3397 ** non-zero and return WRC_Abort to stop the search.
3399 ** If this node does not disprove that the index can be a covering index,
3400 ** then just return WRC_Continue, to continue the search.
3402 ** If pCk->pIdx contains indexed expressions and one of those expressions
3403 ** matches pExpr, then prune the search.
3405 static int whereIsCoveringIndexWalkCallback(Walker
*pWalk
, Expr
*pExpr
){
3406 int i
; /* Loop counter */
3407 const Index
*pIdx
; /* The index of interest */
3408 const i16
*aiColumn
; /* Columns contained in the index */
3409 u16 nColumn
; /* Number of columns in the index */
3410 CoveringIndexCheck
*pCk
; /* Info about this search */
3412 pCk
= pWalk
->u
.pCovIdxCk
;
3414 if( (pExpr
->op
==TK_COLUMN
|| pExpr
->op
==TK_AGG_COLUMN
) ){
3415 /* if( pExpr->iColumn<(BMS-1) && pIdx->bHasExpr==0 ) return WRC_Continue;*/
3416 if( pExpr
->iTable
!=pCk
->iTabCur
) return WRC_Continue
;
3417 pIdx
= pWalk
->u
.pCovIdxCk
->pIdx
;
3418 aiColumn
= pIdx
->aiColumn
;
3419 nColumn
= pIdx
->nColumn
;
3420 for(i
=0; i
<nColumn
; i
++){
3421 if( aiColumn
[i
]==pExpr
->iColumn
) return WRC_Continue
;
3425 }else if( pIdx
->bHasExpr
3426 && exprIsCoveredByIndex(pExpr
, pIdx
, pWalk
->u
.pCovIdxCk
->iTabCur
) ){
3430 return WRC_Continue
;
3435 ** pIdx is an index that covers all of the low-number columns used by
3436 ** pWInfo->pSelect (columns from 0 through 62) or an index that has
3437 ** expressions terms. Hence, we cannot determine whether or not it is
3438 ** a covering index by using the colUsed bitmasks. We have to do a search
3439 ** to see if the index is covering. This routine does that search.
3441 ** The return value is one of these:
3443 ** 0 The index is definitely not a covering index
3445 ** WHERE_IDX_ONLY The index is definitely a covering index
3447 ** WHERE_EXPRIDX The index is likely a covering index, but it is
3448 ** difficult to determine precisely because of the
3449 ** expressions that are indexed. Score it as a
3450 ** covering index, but still keep the main table open
3451 ** just in case we need it.
3453 ** This routine is an optimization. It is always safe to return zero.
3454 ** But returning one of the other two values when zero should have been
3455 ** returned can lead to incorrect bytecode and assertion faults.
3457 static SQLITE_NOINLINE u32
whereIsCoveringIndex(
3458 WhereInfo
*pWInfo
, /* The WHERE clause context */
3459 Index
*pIdx
, /* Index that is being tested */
3460 int iTabCur
/* Cursor for the table being indexed */
3463 struct CoveringIndexCheck ck
;
3465 if( pWInfo
->pSelect
==0 ){
3466 /* We don't have access to the full query, so we cannot check to see
3467 ** if pIdx is covering. Assume it is not. */
3470 if( pIdx
->bHasExpr
==0 ){
3471 for(i
=0; i
<pIdx
->nColumn
; i
++){
3472 if( pIdx
->aiColumn
[i
]>=BMS
-1 ) break;
3474 if( i
>=pIdx
->nColumn
){
3475 /* pIdx does not index any columns greater than 62, but we know from
3476 ** colMask that columns greater than 62 are used, so this is not a
3477 ** covering index */
3482 ck
.iTabCur
= iTabCur
;
3485 memset(&w
, 0, sizeof(w
));
3486 w
.xExprCallback
= whereIsCoveringIndexWalkCallback
;
3487 w
.xSelectCallback
= sqlite3SelectWalkNoop
;
3488 w
.u
.pCovIdxCk
= &ck
;
3489 sqlite3WalkSelect(&w
, pWInfo
->pSelect
);
3492 }else if( ck
.bExpr
){
3495 rc
= WHERE_IDX_ONLY
;
3501 ** Add all WhereLoop objects for a single table of the join where the table
3502 ** is identified by pBuilder->pNew->iTab. That table is guaranteed to be
3503 ** a b-tree table, not a virtual table.
3505 ** The costs (WhereLoop.rRun) of the b-tree loops added by this function
3506 ** are calculated as follows:
3508 ** For a full scan, assuming the table (or index) contains nRow rows:
3510 ** cost = nRow * 3.0 // full-table scan
3511 ** cost = nRow * K // scan of covering index
3512 ** cost = nRow * (K+3.0) // scan of non-covering index
3514 ** where K is a value between 1.1 and 3.0 set based on the relative
3515 ** estimated average size of the index and table records.
3517 ** For an index scan, where nVisit is the number of index rows visited
3518 ** by the scan, and nSeek is the number of seek operations required on
3519 ** the index b-tree:
3521 ** cost = nSeek * (log(nRow) + K * nVisit) // covering index
3522 ** cost = nSeek * (log(nRow) + (K+3.0) * nVisit) // non-covering index
3524 ** Normally, nSeek is 1. nSeek values greater than 1 come about if the
3525 ** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when
3526 ** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans.
3528 ** The estimated values (nRow, nVisit, nSeek) often contain a large amount
3529 ** of uncertainty. For this reason, scoring is designed to pick plans that
3530 ** "do the least harm" if the estimates are inaccurate. For example, a
3531 ** log(nRow) factor is omitted from a non-covering index scan in order to
3532 ** bias the scoring in favor of using an index, since the worst-case
3533 ** performance of using an index is far better than the worst-case performance
3534 ** of a full table scan.
3536 static int whereLoopAddBtree(
3537 WhereLoopBuilder
*pBuilder
, /* WHERE clause information */
3538 Bitmask mPrereq
/* Extra prerequisites for using this table */
3540 WhereInfo
*pWInfo
; /* WHERE analysis context */
3541 Index
*pProbe
; /* An index we are evaluating */
3542 Index sPk
; /* A fake index object for the primary key */
3543 LogEst aiRowEstPk
[2]; /* The aiRowLogEst[] value for the sPk index */
3544 i16 aiColumnPk
= -1; /* The aColumn[] value for the sPk index */
3545 SrcList
*pTabList
; /* The FROM clause */
3546 SrcItem
*pSrc
; /* The FROM clause btree term to add */
3547 WhereLoop
*pNew
; /* Template WhereLoop object */
3548 int rc
= SQLITE_OK
; /* Return code */
3549 int iSortIdx
= 1; /* Index number */
3550 int b
; /* A boolean value */
3551 LogEst rSize
; /* number of rows in the table */
3552 WhereClause
*pWC
; /* The parsed WHERE clause */
3553 Table
*pTab
; /* Table being queried */
3555 pNew
= pBuilder
->pNew
;
3556 pWInfo
= pBuilder
->pWInfo
;
3557 pTabList
= pWInfo
->pTabList
;
3558 pSrc
= pTabList
->a
+ pNew
->iTab
;
3560 pWC
= pBuilder
->pWC
;
3561 assert( !IsVirtual(pSrc
->pTab
) );
3563 if( pSrc
->fg
.isIndexedBy
){
3564 assert( pSrc
->fg
.isCte
==0 );
3565 /* An INDEXED BY clause specifies a particular index to use */
3566 pProbe
= pSrc
->u2
.pIBIndex
;
3567 }else if( !HasRowid(pTab
) ){
3568 pProbe
= pTab
->pIndex
;
3570 /* There is no INDEXED BY clause. Create a fake Index object in local
3571 ** variable sPk to represent the rowid primary key index. Make this
3572 ** fake index the first in a chain of Index objects with all of the real
3573 ** indices to follow */
3574 Index
*pFirst
; /* First of real indices on the table */
3575 memset(&sPk
, 0, sizeof(Index
));
3578 sPk
.aiColumn
= &aiColumnPk
;
3579 sPk
.aiRowLogEst
= aiRowEstPk
;
3580 sPk
.onError
= OE_Replace
;
3582 sPk
.szIdxRow
= 3; /* TUNING: Interior rows of IPK table are very small */
3583 sPk
.idxType
= SQLITE_IDXTYPE_IPK
;
3584 aiRowEstPk
[0] = pTab
->nRowLogEst
;
3586 pFirst
= pSrc
->pTab
->pIndex
;
3587 if( pSrc
->fg
.notIndexed
==0 ){
3588 /* The real indices of the table are only considered if the
3589 ** NOT INDEXED qualifier is omitted from the FROM clause */
3594 rSize
= pTab
->nRowLogEst
;
3596 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
3597 /* Automatic indexes */
3598 if( !pBuilder
->pOrSet
/* Not part of an OR optimization */
3599 && (pWInfo
->wctrlFlags
& (WHERE_RIGHT_JOIN
|WHERE_OR_SUBCLAUSE
))==0
3600 && (pWInfo
->pParse
->db
->flags
& SQLITE_AutoIndex
)!=0
3601 && !pSrc
->fg
.isIndexedBy
/* Has no INDEXED BY clause */
3602 && !pSrc
->fg
.notIndexed
/* Has no NOT INDEXED clause */
3603 && HasRowid(pTab
) /* Not WITHOUT ROWID table. (FIXME: Why not?) */
3604 && !pSrc
->fg
.isCorrelated
/* Not a correlated subquery */
3605 && !pSrc
->fg
.isRecursive
/* Not a recursive common table expression. */
3606 && (pSrc
->fg
.jointype
& JT_RIGHT
)==0 /* Not the right tab of a RIGHT JOIN */
3608 /* Generate auto-index WhereLoops */
3609 LogEst rLogSize
; /* Logarithm of the number of rows in the table */
3611 WhereTerm
*pWCEnd
= pWC
->a
+ pWC
->nTerm
;
3612 rLogSize
= estLog(rSize
);
3613 for(pTerm
=pWC
->a
; rc
==SQLITE_OK
&& pTerm
<pWCEnd
; pTerm
++){
3614 if( pTerm
->prereqRight
& pNew
->maskSelf
) continue;
3615 if( termCanDriveIndex(pTerm
, pSrc
, 0) ){
3616 pNew
->u
.btree
.nEq
= 1;
3618 pNew
->u
.btree
.pIndex
= 0;
3620 pNew
->aLTerm
[0] = pTerm
;
3621 /* TUNING: One-time cost for computing the automatic index is
3622 ** estimated to be X*N*log2(N) where N is the number of rows in
3623 ** the table being indexed and where X is 7 (LogEst=28) for normal
3624 ** tables or 0.5 (LogEst=-10) for views and subqueries. The value
3625 ** of X is smaller for views and subqueries so that the query planner
3626 ** will be more aggressive about generating automatic indexes for
3627 ** those objects, since there is no opportunity to add schema
3628 ** indexes on subqueries and views. */
3629 pNew
->rSetup
= rLogSize
+ rSize
;
3630 if( !IsView(pTab
) && (pTab
->tabFlags
& TF_Ephemeral
)==0 ){
3633 pNew
->rSetup
-= 25; /* Greatly reduced setup cost for auto indexes
3634 ** on ephemeral materializations of views */
3636 ApplyCostMultiplier(pNew
->rSetup
, pTab
->costMult
);
3637 if( pNew
->rSetup
<0 ) pNew
->rSetup
= 0;
3638 /* TUNING: Each index lookup yields 20 rows in the table. This
3639 ** is more than the usual guess of 10 rows, since we have no way
3640 ** of knowing how selective the index will ultimately be. It would
3641 ** not be unreasonable to make this value much larger. */
3642 pNew
->nOut
= 43; assert( 43==sqlite3LogEst(20) );
3643 pNew
->rRun
= sqlite3LogEstAdd(rLogSize
,pNew
->nOut
);
3644 pNew
->wsFlags
= WHERE_AUTO_INDEX
;
3645 pNew
->prereq
= mPrereq
| pTerm
->prereqRight
;
3646 rc
= whereLoopInsert(pBuilder
, pNew
);
3650 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
3652 /* Loop over all indices. If there was an INDEXED BY clause, then only
3653 ** consider index pProbe. */
3654 for(; rc
==SQLITE_OK
&& pProbe
;
3655 pProbe
=(pSrc
->fg
.isIndexedBy
? 0 : pProbe
->pNext
), iSortIdx
++
3657 if( pProbe
->pPartIdxWhere
!=0
3658 && !whereUsablePartialIndex(pSrc
->iCursor
, pSrc
->fg
.jointype
, pWC
,
3659 pProbe
->pPartIdxWhere
)
3661 testcase( pNew
->iTab
!=pSrc
->iCursor
); /* See ticket [98d973b8f5] */
3662 continue; /* Partial index inappropriate for this query */
3664 if( pProbe
->bNoQuery
) continue;
3665 rSize
= pProbe
->aiRowLogEst
[0];
3666 pNew
->u
.btree
.nEq
= 0;
3667 pNew
->u
.btree
.nBtm
= 0;
3668 pNew
->u
.btree
.nTop
= 0;
3673 pNew
->prereq
= mPrereq
;
3675 pNew
->u
.btree
.pIndex
= pProbe
;
3676 b
= indexMightHelpWithOrderBy(pBuilder
, pProbe
, pSrc
->iCursor
);
3678 /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */
3679 assert( (pWInfo
->wctrlFlags
& WHERE_ONEPASS_DESIRED
)==0 || b
==0 );
3680 if( pProbe
->idxType
==SQLITE_IDXTYPE_IPK
){
3681 /* Integer primary key index */
3682 pNew
->wsFlags
= WHERE_IPK
;
3684 /* Full table scan */
3685 pNew
->iSortIdx
= b
? iSortIdx
: 0;
3686 /* TUNING: Cost of full table scan is 3.0*N. The 3.0 factor is an
3687 ** extra cost designed to discourage the use of full table scans,
3688 ** since index lookups have better worst-case performance if our
3689 ** stat guesses are wrong. Reduce the 3.0 penalty slightly
3690 ** (to 2.75) if we have valid STAT4 information for the table.
3691 ** At 2.75, a full table scan is preferred over using an index on
3692 ** a column with just two distinct values where each value has about
3693 ** an equal number of appearances. Without STAT4 data, we still want
3694 ** to use an index in that case, since the constraint might be for
3695 ** the scarcer of the two values, and in that case an index lookup is
3698 #ifdef SQLITE_ENABLE_STAT4
3699 pNew
->rRun
= rSize
+ 16 - 2*((pTab
->tabFlags
& TF_HasStat4
)!=0);
3701 pNew
->rRun
= rSize
+ 16;
3703 if( IsView(pTab
) || (pTab
->tabFlags
& TF_Ephemeral
)!=0 ){
3704 pNew
->wsFlags
|= WHERE_VIEWSCAN
;
3706 ApplyCostMultiplier(pNew
->rRun
, pTab
->costMult
);
3707 whereLoopOutputAdjust(pWC
, pNew
, rSize
);
3708 rc
= whereLoopInsert(pBuilder
, pNew
);
3713 if( pProbe
->isCovering
){
3715 pNew
->wsFlags
= WHERE_IDX_ONLY
| WHERE_INDEXED
;
3717 m
= pSrc
->colUsed
& pProbe
->colNotIdxed
;
3718 pNew
->wsFlags
= WHERE_INDEXED
;
3719 if( m
==TOPBIT
|| (pProbe
->bHasExpr
&& !pProbe
->bHasVCol
&& m
!=0) ){
3720 u32 isCov
= whereIsCoveringIndex(pWInfo
, pProbe
, pSrc
->iCursor
);
3723 ("-> %s is not a covering index"
3724 " according to whereIsCoveringIndex()\n", pProbe
->zName
));
3728 pNew
->wsFlags
|= isCov
;
3729 if( isCov
& WHERE_IDX_ONLY
){
3731 ("-> %s is a covering expression index"
3732 " according to whereIsCoveringIndex()\n", pProbe
->zName
));
3734 assert( isCov
==WHERE_EXPRIDX
);
3736 ("-> %s might be a covering expression index"
3737 " according to whereIsCoveringIndex()\n", pProbe
->zName
));
3742 ("-> %s a covering index according to bitmasks\n",
3743 pProbe
->zName
, m
==0 ? "is" : "is not"));
3744 pNew
->wsFlags
= WHERE_IDX_ONLY
| WHERE_INDEXED
;
3748 /* Full scan via index */
3751 || pProbe
->pPartIdxWhere
!=0
3752 || pSrc
->fg
.isIndexedBy
3754 && pProbe
->bUnordered
==0
3755 && (pProbe
->szIdxRow
<pTab
->szTabRow
)
3756 && (pWInfo
->wctrlFlags
& WHERE_ONEPASS_DESIRED
)==0
3757 && sqlite3GlobalConfig
.bUseCis
3758 && OptimizationEnabled(pWInfo
->pParse
->db
, SQLITE_CoverIdxScan
)
3761 pNew
->iSortIdx
= b
? iSortIdx
: 0;
3763 /* The cost of visiting the index rows is N*K, where K is
3764 ** between 1.1 and 3.0, depending on the relative sizes of the
3765 ** index and table rows. */
3766 pNew
->rRun
= rSize
+ 1 + (15*pProbe
->szIdxRow
)/pTab
->szTabRow
;
3768 /* If this is a non-covering index scan, add in the cost of
3769 ** doing table lookups. The cost will be 3x the number of
3770 ** lookups. Take into account WHERE clause terms that can be
3771 ** satisfied using just the index, and that do not require a
3773 LogEst nLookup
= rSize
+ 16; /* Base cost: N*3 */
3775 int iCur
= pSrc
->iCursor
;
3776 WhereClause
*pWC2
= &pWInfo
->sWC
;
3777 for(ii
=0; ii
<pWC2
->nTerm
; ii
++){
3778 WhereTerm
*pTerm
= &pWC2
->a
[ii
];
3779 if( !sqlite3ExprCoveredByIndex(pTerm
->pExpr
, iCur
, pProbe
) ){
3782 /* pTerm can be evaluated using just the index. So reduce
3783 ** the expected number of table lookups accordingly */
3784 if( pTerm
->truthProb
<=0 ){
3785 nLookup
+= pTerm
->truthProb
;
3788 if( pTerm
->eOperator
& (WO_EQ
|WO_IS
) ) nLookup
-= 19;
3792 pNew
->rRun
= sqlite3LogEstAdd(pNew
->rRun
, nLookup
);
3794 ApplyCostMultiplier(pNew
->rRun
, pTab
->costMult
);
3795 whereLoopOutputAdjust(pWC
, pNew
, rSize
);
3796 if( (pSrc
->fg
.jointype
& JT_RIGHT
)!=0 && pProbe
->aColExpr
){
3797 /* Do not do an SCAN of a index-on-expression in a RIGHT JOIN
3798 ** because the cursor used to access the index might not be
3799 ** positioned to the correct row during the right-join no-match
3802 rc
= whereLoopInsert(pBuilder
, pNew
);
3809 pBuilder
->bldFlags1
= 0;
3810 rc
= whereLoopAddBtreeIndex(pBuilder
, pSrc
, pProbe
, 0);
3811 if( pBuilder
->bldFlags1
==SQLITE_BLDF1_INDEXED
){
3812 /* If a non-unique index is used, or if a prefix of the key for
3813 ** unique index is used (making the index functionally non-unique)
3814 ** then the sqlite_stat1 data becomes important for scoring the
3816 pTab
->tabFlags
|= TF_StatsUsed
;
3818 #ifdef SQLITE_ENABLE_STAT4
3819 sqlite3Stat4ProbeFree(pBuilder
->pRec
);
3820 pBuilder
->nRecValid
= 0;
3827 #ifndef SQLITE_OMIT_VIRTUALTABLE
3830 ** Return true if pTerm is a virtual table LIMIT or OFFSET term.
3832 static int isLimitTerm(WhereTerm
*pTerm
){
3833 assert( pTerm
->eOperator
==WO_AUX
|| pTerm
->eMatchOp
==0 );
3834 return pTerm
->eMatchOp
>=SQLITE_INDEX_CONSTRAINT_LIMIT
3835 && pTerm
->eMatchOp
<=SQLITE_INDEX_CONSTRAINT_OFFSET
;
3839 ** Argument pIdxInfo is already populated with all constraints that may
3840 ** be used by the virtual table identified by pBuilder->pNew->iTab. This
3841 ** function marks a subset of those constraints usable, invokes the
3842 ** xBestIndex method and adds the returned plan to pBuilder.
3844 ** A constraint is marked usable if:
3846 ** * Argument mUsable indicates that its prerequisites are available, and
3848 ** * It is not one of the operators specified in the mExclude mask passed
3849 ** as the fourth argument (which in practice is either WO_IN or 0).
3851 ** Argument mPrereq is a mask of tables that must be scanned before the
3852 ** virtual table in question. These are added to the plans prerequisites
3853 ** before it is added to pBuilder.
3855 ** Output parameter *pbIn is set to true if the plan added to pBuilder
3856 ** uses one or more WO_IN terms, or false otherwise.
3858 static int whereLoopAddVirtualOne(
3859 WhereLoopBuilder
*pBuilder
,
3860 Bitmask mPrereq
, /* Mask of tables that must be used. */
3861 Bitmask mUsable
, /* Mask of usable tables */
3862 u16 mExclude
, /* Exclude terms using these operators */
3863 sqlite3_index_info
*pIdxInfo
, /* Populated object for xBestIndex */
3864 u16 mNoOmit
, /* Do not omit these constraints */
3865 int *pbIn
, /* OUT: True if plan uses an IN(...) op */
3866 int *pbRetryLimit
/* OUT: Retry without LIMIT/OFFSET */
3868 WhereClause
*pWC
= pBuilder
->pWC
;
3869 HiddenIndexInfo
*pHidden
= (HiddenIndexInfo
*)&pIdxInfo
[1];
3870 struct sqlite3_index_constraint
*pIdxCons
;
3871 struct sqlite3_index_constraint_usage
*pUsage
= pIdxInfo
->aConstraintUsage
;
3875 WhereLoop
*pNew
= pBuilder
->pNew
;
3876 Parse
*pParse
= pBuilder
->pWInfo
->pParse
;
3877 SrcItem
*pSrc
= &pBuilder
->pWInfo
->pTabList
->a
[pNew
->iTab
];
3878 int nConstraint
= pIdxInfo
->nConstraint
;
3880 assert( (mUsable
& mPrereq
)==mPrereq
);
3882 pNew
->prereq
= mPrereq
;
3884 /* Set the usable flag on the subset of constraints identified by
3885 ** arguments mUsable and mExclude. */
3886 pIdxCons
= *(struct sqlite3_index_constraint
**)&pIdxInfo
->aConstraint
;
3887 for(i
=0; i
<nConstraint
; i
++, pIdxCons
++){
3888 WhereTerm
*pTerm
= &pWC
->a
[pIdxCons
->iTermOffset
];
3889 pIdxCons
->usable
= 0;
3890 if( (pTerm
->prereqRight
& mUsable
)==pTerm
->prereqRight
3891 && (pTerm
->eOperator
& mExclude
)==0
3892 && (pbRetryLimit
|| !isLimitTerm(pTerm
))
3894 pIdxCons
->usable
= 1;
3898 /* Initialize the output fields of the sqlite3_index_info structure */
3899 memset(pUsage
, 0, sizeof(pUsage
[0])*nConstraint
);
3900 assert( pIdxInfo
->needToFreeIdxStr
==0 );
3901 pIdxInfo
->idxStr
= 0;
3902 pIdxInfo
->idxNum
= 0;
3903 pIdxInfo
->orderByConsumed
= 0;
3904 pIdxInfo
->estimatedCost
= SQLITE_BIG_DBL
/ (double)2;
3905 pIdxInfo
->estimatedRows
= 25;
3906 pIdxInfo
->idxFlags
= 0;
3907 pIdxInfo
->colUsed
= (sqlite3_int64
)pSrc
->colUsed
;
3908 pHidden
->mHandleIn
= 0;
3910 /* Invoke the virtual table xBestIndex() method */
3911 rc
= vtabBestIndex(pParse
, pSrc
->pTab
, pIdxInfo
);
3913 if( rc
==SQLITE_CONSTRAINT
){
3914 /* If the xBestIndex method returns SQLITE_CONSTRAINT, that means
3915 ** that the particular combination of parameters provided is unusable.
3916 ** Make no entries in the loop table.
3918 WHERETRACE(0xffffffff, (" ^^^^--- non-viable plan rejected!\n"));
3925 assert( pNew
->nLSlot
>=nConstraint
);
3926 memset(pNew
->aLTerm
, 0, sizeof(pNew
->aLTerm
[0])*nConstraint
);
3927 memset(&pNew
->u
.vtab
, 0, sizeof(pNew
->u
.vtab
));
3928 pIdxCons
= *(struct sqlite3_index_constraint
**)&pIdxInfo
->aConstraint
;
3929 for(i
=0; i
<nConstraint
; i
++, pIdxCons
++){
3931 if( (iTerm
= pUsage
[i
].argvIndex
- 1)>=0 ){
3933 int j
= pIdxCons
->iTermOffset
;
3934 if( iTerm
>=nConstraint
3937 || pNew
->aLTerm
[iTerm
]!=0
3938 || pIdxCons
->usable
==0
3940 sqlite3ErrorMsg(pParse
,"%s.xBestIndex malfunction",pSrc
->pTab
->zName
);
3941 testcase( pIdxInfo
->needToFreeIdxStr
);
3942 return SQLITE_ERROR
;
3944 testcase( iTerm
==nConstraint
-1 );
3946 testcase( j
==pWC
->nTerm
-1 );
3948 pNew
->prereq
|= pTerm
->prereqRight
;
3949 assert( iTerm
<pNew
->nLSlot
);
3950 pNew
->aLTerm
[iTerm
] = pTerm
;
3951 if( iTerm
>mxTerm
) mxTerm
= iTerm
;
3952 testcase( iTerm
==15 );
3953 testcase( iTerm
==16 );
3954 if( pUsage
[i
].omit
){
3955 if( i
<16 && ((1<<i
)&mNoOmit
)==0 ){
3956 testcase( i
!=iTerm
);
3957 pNew
->u
.vtab
.omitMask
|= 1<<iTerm
;
3959 testcase( i
!=iTerm
);
3961 if( pTerm
->eMatchOp
==SQLITE_INDEX_CONSTRAINT_OFFSET
){
3962 pNew
->u
.vtab
.bOmitOffset
= 1;
3965 if( SMASKBIT32(i
) & pHidden
->mHandleIn
){
3966 pNew
->u
.vtab
.mHandleIn
|= MASKBIT32(iTerm
);
3967 }else if( (pTerm
->eOperator
& WO_IN
)!=0 ){
3968 /* A virtual table that is constrained by an IN clause may not
3969 ** consume the ORDER BY clause because (1) the order of IN terms
3970 ** is not necessarily related to the order of output terms and
3971 ** (2) Multiple outputs from a single IN value will not merge
3973 pIdxInfo
->orderByConsumed
= 0;
3974 pIdxInfo
->idxFlags
&= ~SQLITE_INDEX_SCAN_UNIQUE
;
3975 *pbIn
= 1; assert( (mExclude
& WO_IN
)==0 );
3978 assert( pbRetryLimit
|| !isLimitTerm(pTerm
) );
3979 if( isLimitTerm(pTerm
) && *pbIn
){
3980 /* If there is an IN(...) term handled as an == (separate call to
3981 ** xFilter for each value on the RHS of the IN) and a LIMIT or
3982 ** OFFSET term handled as well, the plan is unusable. Set output
3983 ** variable *pbRetryLimit to true to tell the caller to retry with
3984 ** LIMIT and OFFSET disabled. */
3985 if( pIdxInfo
->needToFreeIdxStr
){
3986 sqlite3_free(pIdxInfo
->idxStr
);
3987 pIdxInfo
->idxStr
= 0;
3988 pIdxInfo
->needToFreeIdxStr
= 0;
3996 pNew
->nLTerm
= mxTerm
+1;
3997 for(i
=0; i
<=mxTerm
; i
++){
3998 if( pNew
->aLTerm
[i
]==0 ){
3999 /* The non-zero argvIdx values must be contiguous. Raise an
4000 ** error if they are not */
4001 sqlite3ErrorMsg(pParse
,"%s.xBestIndex malfunction",pSrc
->pTab
->zName
);
4002 testcase( pIdxInfo
->needToFreeIdxStr
);
4003 return SQLITE_ERROR
;
4006 assert( pNew
->nLTerm
<=pNew
->nLSlot
);
4007 pNew
->u
.vtab
.idxNum
= pIdxInfo
->idxNum
;
4008 pNew
->u
.vtab
.needFree
= pIdxInfo
->needToFreeIdxStr
;
4009 pIdxInfo
->needToFreeIdxStr
= 0;
4010 pNew
->u
.vtab
.idxStr
= pIdxInfo
->idxStr
;
4011 pNew
->u
.vtab
.isOrdered
= (i8
)(pIdxInfo
->orderByConsumed
?
4012 pIdxInfo
->nOrderBy
: 0);
4014 pNew
->rRun
= sqlite3LogEstFromDouble(pIdxInfo
->estimatedCost
);
4015 pNew
->nOut
= sqlite3LogEst(pIdxInfo
->estimatedRows
);
4017 /* Set the WHERE_ONEROW flag if the xBestIndex() method indicated
4018 ** that the scan will visit at most one row. Clear it otherwise. */
4019 if( pIdxInfo
->idxFlags
& SQLITE_INDEX_SCAN_UNIQUE
){
4020 pNew
->wsFlags
|= WHERE_ONEROW
;
4022 pNew
->wsFlags
&= ~WHERE_ONEROW
;
4024 rc
= whereLoopInsert(pBuilder
, pNew
);
4025 if( pNew
->u
.vtab
.needFree
){
4026 sqlite3_free(pNew
->u
.vtab
.idxStr
);
4027 pNew
->u
.vtab
.needFree
= 0;
4029 WHERETRACE(0xffffffff, (" bIn=%d prereqIn=%04llx prereqOut=%04llx\n",
4030 *pbIn
, (sqlite3_uint64
)mPrereq
,
4031 (sqlite3_uint64
)(pNew
->prereq
& ~mPrereq
)));
4037 ** Return the collating sequence for a constraint passed into xBestIndex.
4039 ** pIdxInfo must be an sqlite3_index_info structure passed into xBestIndex.
4040 ** This routine depends on there being a HiddenIndexInfo structure immediately
4041 ** following the sqlite3_index_info structure.
4043 ** Return a pointer to the collation name:
4045 ** 1. If there is an explicit COLLATE operator on the constraint, return it.
4047 ** 2. Else, if the column has an alternative collation, return that.
4049 ** 3. Otherwise, return "BINARY".
4051 const char *sqlite3_vtab_collation(sqlite3_index_info
*pIdxInfo
, int iCons
){
4052 HiddenIndexInfo
*pHidden
= (HiddenIndexInfo
*)&pIdxInfo
[1];
4053 const char *zRet
= 0;
4054 if( iCons
>=0 && iCons
<pIdxInfo
->nConstraint
){
4056 int iTerm
= pIdxInfo
->aConstraint
[iCons
].iTermOffset
;
4057 Expr
*pX
= pHidden
->pWC
->a
[iTerm
].pExpr
;
4059 pC
= sqlite3ExprCompareCollSeq(pHidden
->pParse
, pX
);
4061 zRet
= (pC
? pC
->zName
: sqlite3StrBINARY
);
4067 ** Return true if constraint iCons is really an IN(...) constraint, or
4068 ** false otherwise. If iCons is an IN(...) constraint, set (if bHandle!=0)
4069 ** or clear (if bHandle==0) the flag to handle it using an iterator.
4071 int sqlite3_vtab_in(sqlite3_index_info
*pIdxInfo
, int iCons
, int bHandle
){
4072 HiddenIndexInfo
*pHidden
= (HiddenIndexInfo
*)&pIdxInfo
[1];
4073 u32 m
= SMASKBIT32(iCons
);
4074 if( m
& pHidden
->mIn
){
4076 pHidden
->mHandleIn
&= ~m
;
4077 }else if( bHandle
>0 ){
4078 pHidden
->mHandleIn
|= m
;
4086 ** This interface is callable from within the xBestIndex callback only.
4088 ** If possible, set (*ppVal) to point to an object containing the value
4089 ** on the right-hand-side of constraint iCons.
4091 int sqlite3_vtab_rhs_value(
4092 sqlite3_index_info
*pIdxInfo
, /* Copy of first argument to xBestIndex */
4093 int iCons
, /* Constraint for which RHS is wanted */
4094 sqlite3_value
**ppVal
/* Write value extracted here */
4096 HiddenIndexInfo
*pH
= (HiddenIndexInfo
*)&pIdxInfo
[1];
4097 sqlite3_value
*pVal
= 0;
4099 if( iCons
<0 || iCons
>=pIdxInfo
->nConstraint
){
4100 rc
= SQLITE_MISUSE
; /* EV: R-30545-25046 */
4102 if( pH
->aRhs
[iCons
]==0 ){
4103 WhereTerm
*pTerm
= &pH
->pWC
->a
[pIdxInfo
->aConstraint
[iCons
].iTermOffset
];
4104 rc
= sqlite3ValueFromExpr(
4105 pH
->pParse
->db
, pTerm
->pExpr
->pRight
, ENC(pH
->pParse
->db
),
4106 SQLITE_AFF_BLOB
, &pH
->aRhs
[iCons
]
4108 testcase( rc
!=SQLITE_OK
);
4110 pVal
= pH
->aRhs
[iCons
];
4114 if( rc
==SQLITE_OK
&& pVal
==0 ){ /* IMP: R-19933-32160 */
4115 rc
= SQLITE_NOTFOUND
; /* IMP: R-36424-56542 */
4122 ** Return true if ORDER BY clause may be handled as DISTINCT.
4124 int sqlite3_vtab_distinct(sqlite3_index_info
*pIdxInfo
){
4125 HiddenIndexInfo
*pHidden
= (HiddenIndexInfo
*)&pIdxInfo
[1];
4126 assert( pHidden
->eDistinct
>=0 && pHidden
->eDistinct
<=3 );
4127 return pHidden
->eDistinct
;
4131 ** Cause the prepared statement that is associated with a call to
4132 ** xBestIndex to potentially use all schemas. If the statement being
4133 ** prepared is read-only, then just start read transactions on all
4134 ** schemas. But if this is a write operation, start writes on all
4137 ** This is used by the (built-in) sqlite_dbpage virtual table.
4139 void sqlite3VtabUsesAllSchemas(Parse
*pParse
){
4140 int nDb
= pParse
->db
->nDb
;
4142 for(i
=0; i
<nDb
; i
++){
4143 sqlite3CodeVerifySchema(pParse
, i
);
4145 if( DbMaskNonZero(pParse
->writeMask
) ){
4146 for(i
=0; i
<nDb
; i
++){
4147 sqlite3BeginWriteOperation(pParse
, 0, i
);
4153 ** Add all WhereLoop objects for a table of the join identified by
4154 ** pBuilder->pNew->iTab. That table is guaranteed to be a virtual table.
4156 ** If there are no LEFT or CROSS JOIN joins in the query, both mPrereq and
4157 ** mUnusable are set to 0. Otherwise, mPrereq is a mask of all FROM clause
4158 ** entries that occur before the virtual table in the FROM clause and are
4159 ** separated from it by at least one LEFT or CROSS JOIN. Similarly, the
4160 ** mUnusable mask contains all FROM clause entries that occur after the
4161 ** virtual table and are separated from it by at least one LEFT or
4164 ** For example, if the query were:
4166 ** ... FROM t1, t2 LEFT JOIN t3, t4, vt CROSS JOIN t5, t6;
4168 ** then mPrereq corresponds to (t1, t2) and mUnusable to (t5, t6).
4170 ** All the tables in mPrereq must be scanned before the current virtual
4171 ** table. So any terms for which all prerequisites are satisfied by
4172 ** mPrereq may be specified as "usable" in all calls to xBestIndex.
4173 ** Conversely, all tables in mUnusable must be scanned after the current
4174 ** virtual table, so any terms for which the prerequisites overlap with
4175 ** mUnusable should always be configured as "not-usable" for xBestIndex.
4177 static int whereLoopAddVirtual(
4178 WhereLoopBuilder
*pBuilder
, /* WHERE clause information */
4179 Bitmask mPrereq
, /* Tables that must be scanned before this one */
4180 Bitmask mUnusable
/* Tables that must be scanned after this one */
4182 int rc
= SQLITE_OK
; /* Return code */
4183 WhereInfo
*pWInfo
; /* WHERE analysis context */
4184 Parse
*pParse
; /* The parsing context */
4185 WhereClause
*pWC
; /* The WHERE clause */
4186 SrcItem
*pSrc
; /* The FROM clause term to search */
4187 sqlite3_index_info
*p
; /* Object to pass to xBestIndex() */
4188 int nConstraint
; /* Number of constraints in p */
4189 int bIn
; /* True if plan uses IN(...) operator */
4191 Bitmask mBest
; /* Tables used by best possible plan */
4193 int bRetry
= 0; /* True to retry with LIMIT/OFFSET disabled */
4195 assert( (mPrereq
& mUnusable
)==0 );
4196 pWInfo
= pBuilder
->pWInfo
;
4197 pParse
= pWInfo
->pParse
;
4198 pWC
= pBuilder
->pWC
;
4199 pNew
= pBuilder
->pNew
;
4200 pSrc
= &pWInfo
->pTabList
->a
[pNew
->iTab
];
4201 assert( IsVirtual(pSrc
->pTab
) );
4202 p
= allocateIndexInfo(pWInfo
, pWC
, mUnusable
, pSrc
, &mNoOmit
);
4203 if( p
==0 ) return SQLITE_NOMEM_BKPT
;
4205 pNew
->wsFlags
= WHERE_VIRTUALTABLE
;
4207 pNew
->u
.vtab
.needFree
= 0;
4208 nConstraint
= p
->nConstraint
;
4209 if( whereLoopResize(pParse
->db
, pNew
, nConstraint
) ){
4210 freeIndexInfo(pParse
->db
, p
);
4211 return SQLITE_NOMEM_BKPT
;
4214 /* First call xBestIndex() with all constraints usable. */
4215 WHERETRACE(0x800, ("BEGIN %s.addVirtual()\n", pSrc
->pTab
->zName
));
4216 WHERETRACE(0x800, (" VirtualOne: all usable\n"));
4217 rc
= whereLoopAddVirtualOne(
4218 pBuilder
, mPrereq
, ALLBITS
, 0, p
, mNoOmit
, &bIn
, &bRetry
4221 assert( rc
==SQLITE_OK
);
4222 rc
= whereLoopAddVirtualOne(
4223 pBuilder
, mPrereq
, ALLBITS
, 0, p
, mNoOmit
, &bIn
, 0
4227 /* If the call to xBestIndex() with all terms enabled produced a plan
4228 ** that does not require any source tables (IOW: a plan with mBest==0)
4229 ** and does not use an IN(...) operator, then there is no point in making
4230 ** any further calls to xBestIndex() since they will all return the same
4231 ** result (if the xBestIndex() implementation is sane). */
4232 if( rc
==SQLITE_OK
&& ((mBest
= (pNew
->prereq
& ~mPrereq
))!=0 || bIn
) ){
4233 int seenZero
= 0; /* True if a plan with no prereqs seen */
4234 int seenZeroNoIN
= 0; /* Plan with no prereqs and no IN(...) seen */
4236 Bitmask mBestNoIn
= 0;
4238 /* If the plan produced by the earlier call uses an IN(...) term, call
4239 ** xBestIndex again, this time with IN(...) terms disabled. */
4241 WHERETRACE(0x800, (" VirtualOne: all usable w/o IN\n"));
4242 rc
= whereLoopAddVirtualOne(
4243 pBuilder
, mPrereq
, ALLBITS
, WO_IN
, p
, mNoOmit
, &bIn
, 0);
4245 mBestNoIn
= pNew
->prereq
& ~mPrereq
;
4252 /* Call xBestIndex once for each distinct value of (prereqRight & ~mPrereq)
4253 ** in the set of terms that apply to the current virtual table. */
4254 while( rc
==SQLITE_OK
){
4256 Bitmask mNext
= ALLBITS
;
4258 for(i
=0; i
<nConstraint
; i
++){
4260 pWC
->a
[p
->aConstraint
[i
].iTermOffset
].prereqRight
& ~mPrereq
4262 if( mThis
>mPrev
&& mThis
<mNext
) mNext
= mThis
;
4265 if( mNext
==ALLBITS
) break;
4266 if( mNext
==mBest
|| mNext
==mBestNoIn
) continue;
4267 WHERETRACE(0x800, (" VirtualOne: mPrev=%04llx mNext=%04llx\n",
4268 (sqlite3_uint64
)mPrev
, (sqlite3_uint64
)mNext
));
4269 rc
= whereLoopAddVirtualOne(
4270 pBuilder
, mPrereq
, mNext
|mPrereq
, 0, p
, mNoOmit
, &bIn
, 0);
4271 if( pNew
->prereq
==mPrereq
){
4273 if( bIn
==0 ) seenZeroNoIN
= 1;
4277 /* If the calls to xBestIndex() in the above loop did not find a plan
4278 ** that requires no source tables at all (i.e. one guaranteed to be
4279 ** usable), make a call here with all source tables disabled */
4280 if( rc
==SQLITE_OK
&& seenZero
==0 ){
4281 WHERETRACE(0x800, (" VirtualOne: all disabled\n"));
4282 rc
= whereLoopAddVirtualOne(
4283 pBuilder
, mPrereq
, mPrereq
, 0, p
, mNoOmit
, &bIn
, 0);
4284 if( bIn
==0 ) seenZeroNoIN
= 1;
4287 /* If the calls to xBestIndex() have so far failed to find a plan
4288 ** that requires no source tables at all and does not use an IN(...)
4289 ** operator, make a final call to obtain one here. */
4290 if( rc
==SQLITE_OK
&& seenZeroNoIN
==0 ){
4291 WHERETRACE(0x800, (" VirtualOne: all disabled and w/o IN\n"));
4292 rc
= whereLoopAddVirtualOne(
4293 pBuilder
, mPrereq
, mPrereq
, WO_IN
, p
, mNoOmit
, &bIn
, 0);
4297 if( p
->needToFreeIdxStr
) sqlite3_free(p
->idxStr
);
4298 freeIndexInfo(pParse
->db
, p
);
4299 WHERETRACE(0x800, ("END %s.addVirtual(), rc=%d\n", pSrc
->pTab
->zName
, rc
));
4302 #endif /* SQLITE_OMIT_VIRTUALTABLE */
4305 ** Add WhereLoop entries to handle OR terms. This works for either
4306 ** btrees or virtual tables.
4308 static int whereLoopAddOr(
4309 WhereLoopBuilder
*pBuilder
,
4313 WhereInfo
*pWInfo
= pBuilder
->pWInfo
;
4316 WhereTerm
*pTerm
, *pWCEnd
;
4320 WhereLoopBuilder sSubBuild
;
4321 WhereOrSet sSum
, sCur
;
4324 pWC
= pBuilder
->pWC
;
4325 pWCEnd
= pWC
->a
+ pWC
->nTerm
;
4326 pNew
= pBuilder
->pNew
;
4327 memset(&sSum
, 0, sizeof(sSum
));
4328 pItem
= pWInfo
->pTabList
->a
+ pNew
->iTab
;
4329 iCur
= pItem
->iCursor
;
4331 /* The multi-index OR optimization does not work for RIGHT and FULL JOIN */
4332 if( pItem
->fg
.jointype
& JT_RIGHT
) return SQLITE_OK
;
4334 for(pTerm
=pWC
->a
; pTerm
<pWCEnd
&& rc
==SQLITE_OK
; pTerm
++){
4335 if( (pTerm
->eOperator
& WO_OR
)!=0
4336 && (pTerm
->u
.pOrInfo
->indexable
& pNew
->maskSelf
)!=0
4338 WhereClause
* const pOrWC
= &pTerm
->u
.pOrInfo
->wc
;
4339 WhereTerm
* const pOrWCEnd
= &pOrWC
->a
[pOrWC
->nTerm
];
4344 sSubBuild
= *pBuilder
;
4345 sSubBuild
.pOrSet
= &sCur
;
4347 WHERETRACE(0x400, ("Begin processing OR-clause %p\n", pTerm
));
4348 for(pOrTerm
=pOrWC
->a
; pOrTerm
<pOrWCEnd
; pOrTerm
++){
4349 if( (pOrTerm
->eOperator
& WO_AND
)!=0 ){
4350 sSubBuild
.pWC
= &pOrTerm
->u
.pAndInfo
->wc
;
4351 }else if( pOrTerm
->leftCursor
==iCur
){
4352 tempWC
.pWInfo
= pWC
->pWInfo
;
4353 tempWC
.pOuter
= pWC
;
4358 sSubBuild
.pWC
= &tempWC
;
4363 #ifdef WHERETRACE_ENABLED
4364 WHERETRACE(0x400, ("OR-term %d of %p has %d subterms:\n",
4365 (int)(pOrTerm
-pOrWC
->a
), pTerm
, sSubBuild
.pWC
->nTerm
));
4366 if( sqlite3WhereTrace
& 0x20000 ){
4367 sqlite3WhereClausePrint(sSubBuild
.pWC
);
4370 #ifndef SQLITE_OMIT_VIRTUALTABLE
4371 if( IsVirtual(pItem
->pTab
) ){
4372 rc
= whereLoopAddVirtual(&sSubBuild
, mPrereq
, mUnusable
);
4376 rc
= whereLoopAddBtree(&sSubBuild
, mPrereq
);
4378 if( rc
==SQLITE_OK
){
4379 rc
= whereLoopAddOr(&sSubBuild
, mPrereq
, mUnusable
);
4381 testcase( rc
==SQLITE_NOMEM
&& sCur
.n
>0 );
4382 testcase( rc
==SQLITE_DONE
);
4387 whereOrMove(&sSum
, &sCur
);
4391 whereOrMove(&sPrev
, &sSum
);
4393 for(i
=0; i
<sPrev
.n
; i
++){
4394 for(j
=0; j
<sCur
.n
; j
++){
4395 whereOrInsert(&sSum
, sPrev
.a
[i
].prereq
| sCur
.a
[j
].prereq
,
4396 sqlite3LogEstAdd(sPrev
.a
[i
].rRun
, sCur
.a
[j
].rRun
),
4397 sqlite3LogEstAdd(sPrev
.a
[i
].nOut
, sCur
.a
[j
].nOut
));
4403 pNew
->aLTerm
[0] = pTerm
;
4404 pNew
->wsFlags
= WHERE_MULTI_OR
;
4407 memset(&pNew
->u
, 0, sizeof(pNew
->u
));
4408 for(i
=0; rc
==SQLITE_OK
&& i
<sSum
.n
; i
++){
4409 /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs
4410 ** of all sub-scans required by the OR-scan. However, due to rounding
4411 ** errors, it may be that the cost of the OR-scan is equal to its
4412 ** most expensive sub-scan. Add the smallest possible penalty
4413 ** (equivalent to multiplying the cost by 1.07) to ensure that
4414 ** this does not happen. Otherwise, for WHERE clauses such as the
4415 ** following where there is an index on "y":
4417 ** WHERE likelihood(x=?, 0.99) OR y=?
4419 ** the planner may elect to "OR" together a full-table scan and an
4420 ** index lookup. And other similarly odd results. */
4421 pNew
->rRun
= sSum
.a
[i
].rRun
+ 1;
4422 pNew
->nOut
= sSum
.a
[i
].nOut
;
4423 pNew
->prereq
= sSum
.a
[i
].prereq
;
4424 rc
= whereLoopInsert(pBuilder
, pNew
);
4426 WHERETRACE(0x400, ("End processing OR-clause %p\n", pTerm
));
4433 ** Add all WhereLoop objects for all tables
4435 static int whereLoopAddAll(WhereLoopBuilder
*pBuilder
){
4436 WhereInfo
*pWInfo
= pBuilder
->pWInfo
;
4437 Bitmask mPrereq
= 0;
4440 SrcList
*pTabList
= pWInfo
->pTabList
;
4442 SrcItem
*pEnd
= &pTabList
->a
[pWInfo
->nLevel
];
4443 sqlite3
*db
= pWInfo
->pParse
->db
;
4445 int bFirstPastRJ
= 0;
4446 int hasRightJoin
= 0;
4450 /* Loop over the tables in the join, from left to right */
4451 pNew
= pBuilder
->pNew
;
4453 /* Verify that pNew has already been initialized */
4454 assert( pNew
->nLTerm
==0 );
4455 assert( pNew
->wsFlags
==0 );
4456 assert( pNew
->nLSlot
>=ArraySize(pNew
->aLTermSpace
) );
4457 assert( pNew
->aLTerm
!=0 );
4459 pBuilder
->iPlanLimit
= SQLITE_QUERY_PLANNER_LIMIT
;
4460 for(iTab
=0, pItem
=pTabList
->a
; pItem
<pEnd
; iTab
++, pItem
++){
4461 Bitmask mUnusable
= 0;
4463 pBuilder
->iPlanLimit
+= SQLITE_QUERY_PLANNER_LIMIT_INCR
;
4464 pNew
->maskSelf
= sqlite3WhereGetMask(&pWInfo
->sMaskSet
, pItem
->iCursor
);
4466 || (pItem
->fg
.jointype
& (JT_OUTER
|JT_CROSS
|JT_LTORJ
))!=0
4468 /* Add prerequisites to prevent reordering of FROM clause terms
4469 ** across CROSS joins and outer joins. The bFirstPastRJ boolean
4470 ** prevents the right operand of a RIGHT JOIN from being swapped with
4471 ** other elements even further to the right.
4473 ** The JT_LTORJ case and the hasRightJoin flag work together to
4474 ** prevent FROM-clause terms from moving from the right side of
4475 ** a LEFT JOIN over to the left side of that join if the LEFT JOIN
4476 ** is itself on the left side of a RIGHT JOIN.
4478 if( pItem
->fg
.jointype
& JT_LTORJ
) hasRightJoin
= 1;
4480 bFirstPastRJ
= (pItem
->fg
.jointype
& JT_RIGHT
)!=0;
4481 }else if( !hasRightJoin
){
4484 #ifndef SQLITE_OMIT_VIRTUALTABLE
4485 if( IsVirtual(pItem
->pTab
) ){
4487 for(p
=&pItem
[1]; p
<pEnd
; p
++){
4488 if( mUnusable
|| (p
->fg
.jointype
& (JT_OUTER
|JT_CROSS
)) ){
4489 mUnusable
|= sqlite3WhereGetMask(&pWInfo
->sMaskSet
, p
->iCursor
);
4492 rc
= whereLoopAddVirtual(pBuilder
, mPrereq
, mUnusable
);
4494 #endif /* SQLITE_OMIT_VIRTUALTABLE */
4496 rc
= whereLoopAddBtree(pBuilder
, mPrereq
);
4498 if( rc
==SQLITE_OK
&& pBuilder
->pWC
->hasOr
){
4499 rc
= whereLoopAddOr(pBuilder
, mPrereq
, mUnusable
);
4501 mPrior
|= pNew
->maskSelf
;
4502 if( rc
|| db
->mallocFailed
){
4503 if( rc
==SQLITE_DONE
){
4504 /* We hit the query planner search limit set by iPlanLimit */
4505 sqlite3_log(SQLITE_WARNING
, "abbreviated query algorithm search");
4513 whereLoopClear(db
, pNew
);
4518 ** Examine a WherePath (with the addition of the extra WhereLoop of the 6th
4519 ** parameters) to see if it outputs rows in the requested ORDER BY
4520 ** (or GROUP BY) without requiring a separate sort operation. Return N:
4522 ** N>0: N terms of the ORDER BY clause are satisfied
4523 ** N==0: No terms of the ORDER BY clause are satisfied
4524 ** N<0: Unknown yet how many terms of ORDER BY might be satisfied.
4526 ** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as
4527 ** strict. With GROUP BY and DISTINCT the only requirement is that
4528 ** equivalent rows appear immediately adjacent to one another. GROUP BY
4529 ** and DISTINCT do not require rows to appear in any particular order as long
4530 ** as equivalent rows are grouped together. Thus for GROUP BY and DISTINCT
4531 ** the pOrderBy terms can be matched in any order. With ORDER BY, the
4532 ** pOrderBy terms must be matched in strict left-to-right order.
4534 static i8
wherePathSatisfiesOrderBy(
4535 WhereInfo
*pWInfo
, /* The WHERE clause */
4536 ExprList
*pOrderBy
, /* ORDER BY or GROUP BY or DISTINCT clause to check */
4537 WherePath
*pPath
, /* The WherePath to check */
4538 u16 wctrlFlags
, /* WHERE_GROUPBY or _DISTINCTBY or _ORDERBY_LIMIT */
4539 u16 nLoop
, /* Number of entries in pPath->aLoop[] */
4540 WhereLoop
*pLast
, /* Add this WhereLoop to the end of pPath->aLoop[] */
4541 Bitmask
*pRevMask
/* OUT: Mask of WhereLoops to run in reverse order */
4543 u8 revSet
; /* True if rev is known */
4544 u8 rev
; /* Composite sort order */
4545 u8 revIdx
; /* Index sort order */
4546 u8 isOrderDistinct
; /* All prior WhereLoops are order-distinct */
4547 u8 distinctColumns
; /* True if the loop has UNIQUE NOT NULL columns */
4548 u8 isMatch
; /* iColumn matches a term of the ORDER BY clause */
4549 u16 eqOpMask
; /* Allowed equality operators */
4550 u16 nKeyCol
; /* Number of key columns in pIndex */
4551 u16 nColumn
; /* Total number of ordered columns in the index */
4552 u16 nOrderBy
; /* Number terms in the ORDER BY clause */
4553 int iLoop
; /* Index of WhereLoop in pPath being processed */
4554 int i
, j
; /* Loop counters */
4555 int iCur
; /* Cursor number for current WhereLoop */
4556 int iColumn
; /* A column number within table iCur */
4557 WhereLoop
*pLoop
= 0; /* Current WhereLoop being processed. */
4558 WhereTerm
*pTerm
; /* A single term of the WHERE clause */
4559 Expr
*pOBExpr
; /* An expression from the ORDER BY clause */
4560 CollSeq
*pColl
; /* COLLATE function from an ORDER BY clause term */
4561 Index
*pIndex
; /* The index associated with pLoop */
4562 sqlite3
*db
= pWInfo
->pParse
->db
; /* Database connection */
4563 Bitmask obSat
= 0; /* Mask of ORDER BY terms satisfied so far */
4564 Bitmask obDone
; /* Mask of all ORDER BY terms */
4565 Bitmask orderDistinctMask
; /* Mask of all well-ordered loops */
4566 Bitmask ready
; /* Mask of inner loops */
4569 ** We say the WhereLoop is "one-row" if it generates no more than one
4570 ** row of output. A WhereLoop is one-row if all of the following are true:
4571 ** (a) All index columns match with WHERE_COLUMN_EQ.
4572 ** (b) The index is unique
4573 ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row.
4574 ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags.
4576 ** We say the WhereLoop is "order-distinct" if the set of columns from
4577 ** that WhereLoop that are in the ORDER BY clause are different for every
4578 ** row of the WhereLoop. Every one-row WhereLoop is automatically
4579 ** order-distinct. A WhereLoop that has no columns in the ORDER BY clause
4580 ** is not order-distinct. To be order-distinct is not quite the same as being
4581 ** UNIQUE since a UNIQUE column or index can have multiple rows that
4582 ** are NULL and NULL values are equivalent for the purpose of order-distinct.
4583 ** To be order-distinct, the columns must be UNIQUE and NOT NULL.
4585 ** The rowid for a table is always UNIQUE and NOT NULL so whenever the
4586 ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is
4587 ** automatically order-distinct.
4590 assert( pOrderBy
!=0 );
4591 if( nLoop
&& OptimizationDisabled(db
, SQLITE_OrderByIdxJoin
) ) return 0;
4593 nOrderBy
= pOrderBy
->nExpr
;
4594 testcase( nOrderBy
==BMS
-1 );
4595 if( nOrderBy
>BMS
-1 ) return 0; /* Cannot optimize overly large ORDER BYs */
4596 isOrderDistinct
= 1;
4597 obDone
= MASKBIT(nOrderBy
)-1;
4598 orderDistinctMask
= 0;
4600 eqOpMask
= WO_EQ
| WO_IS
| WO_ISNULL
;
4601 if( wctrlFlags
& (WHERE_ORDERBY_LIMIT
|WHERE_ORDERBY_MAX
|WHERE_ORDERBY_MIN
) ){
4604 for(iLoop
=0; isOrderDistinct
&& obSat
<obDone
&& iLoop
<=nLoop
; iLoop
++){
4605 if( iLoop
>0 ) ready
|= pLoop
->maskSelf
;
4607 pLoop
= pPath
->aLoop
[iLoop
];
4608 if( wctrlFlags
& WHERE_ORDERBY_LIMIT
) continue;
4612 if( pLoop
->wsFlags
& WHERE_VIRTUALTABLE
){
4613 if( pLoop
->u
.vtab
.isOrdered
4614 && ((wctrlFlags
&(WHERE_DISTINCTBY
|WHERE_SORTBYGROUP
))!=WHERE_DISTINCTBY
)
4619 }else if( wctrlFlags
& WHERE_DISTINCTBY
){
4620 pLoop
->u
.btree
.nDistinctCol
= 0;
4622 iCur
= pWInfo
->pTabList
->a
[pLoop
->iTab
].iCursor
;
4624 /* Mark off any ORDER BY term X that is a column in the table of
4625 ** the current loop for which there is term in the WHERE
4626 ** clause of the form X IS NULL or X=? that reference only outer
4629 for(i
=0; i
<nOrderBy
; i
++){
4630 if( MASKBIT(i
) & obSat
) continue;
4631 pOBExpr
= sqlite3ExprSkipCollateAndLikely(pOrderBy
->a
[i
].pExpr
);
4632 if( NEVER(pOBExpr
==0) ) continue;
4633 if( pOBExpr
->op
!=TK_COLUMN
&& pOBExpr
->op
!=TK_AGG_COLUMN
) continue;
4634 if( pOBExpr
->iTable
!=iCur
) continue;
4635 pTerm
= sqlite3WhereFindTerm(&pWInfo
->sWC
, iCur
, pOBExpr
->iColumn
,
4636 ~ready
, eqOpMask
, 0);
4637 if( pTerm
==0 ) continue;
4638 if( pTerm
->eOperator
==WO_IN
){
4639 /* IN terms are only valid for sorting in the ORDER BY LIMIT
4640 ** optimization, and then only if they are actually used
4641 ** by the query plan */
4642 assert( wctrlFlags
&
4643 (WHERE_ORDERBY_LIMIT
|WHERE_ORDERBY_MIN
|WHERE_ORDERBY_MAX
) );
4644 for(j
=0; j
<pLoop
->nLTerm
&& pTerm
!=pLoop
->aLTerm
[j
]; j
++){}
4645 if( j
>=pLoop
->nLTerm
) continue;
4647 if( (pTerm
->eOperator
&(WO_EQ
|WO_IS
))!=0 && pOBExpr
->iColumn
>=0 ){
4648 Parse
*pParse
= pWInfo
->pParse
;
4649 CollSeq
*pColl1
= sqlite3ExprNNCollSeq(pParse
, pOrderBy
->a
[i
].pExpr
);
4650 CollSeq
*pColl2
= sqlite3ExprCompareCollSeq(pParse
, pTerm
->pExpr
);
4652 if( pColl2
==0 || sqlite3StrICmp(pColl1
->zName
, pColl2
->zName
) ){
4655 testcase( pTerm
->pExpr
->op
==TK_IS
);
4657 obSat
|= MASKBIT(i
);
4660 if( (pLoop
->wsFlags
& WHERE_ONEROW
)==0 ){
4661 if( pLoop
->wsFlags
& WHERE_IPK
){
4665 }else if( (pIndex
= pLoop
->u
.btree
.pIndex
)==0 || pIndex
->bUnordered
){
4668 nKeyCol
= pIndex
->nKeyCol
;
4669 nColumn
= pIndex
->nColumn
;
4670 assert( nColumn
==nKeyCol
+1 || !HasRowid(pIndex
->pTable
) );
4671 assert( pIndex
->aiColumn
[nColumn
-1]==XN_ROWID
4672 || !HasRowid(pIndex
->pTable
));
4673 /* All relevant terms of the index must also be non-NULL in order
4674 ** for isOrderDistinct to be true. So the isOrderDistint value
4675 ** computed here might be a false positive. Corrections will be
4676 ** made at tag-20210426-1 below */
4677 isOrderDistinct
= IsUniqueIndex(pIndex
)
4678 && (pLoop
->wsFlags
& WHERE_SKIPSCAN
)==0;
4681 /* Loop through all columns of the index and deal with the ones
4682 ** that are not constrained by == or IN.
4685 distinctColumns
= 0;
4686 for(j
=0; j
<nColumn
; j
++){
4687 u8 bOnce
= 1; /* True to run the ORDER BY search loop */
4689 assert( j
>=pLoop
->u
.btree
.nEq
4690 || (pLoop
->aLTerm
[j
]==0)==(j
<pLoop
->nSkip
)
4692 if( j
<pLoop
->u
.btree
.nEq
&& j
>=pLoop
->nSkip
){
4693 u16 eOp
= pLoop
->aLTerm
[j
]->eOperator
;
4695 /* Skip over == and IS and ISNULL terms. (Also skip IN terms when
4696 ** doing WHERE_ORDERBY_LIMIT processing). Except, IS and ISNULL
4697 ** terms imply that the index is not UNIQUE NOT NULL in which case
4698 ** the loop need to be marked as not order-distinct because it can
4699 ** have repeated NULL rows.
4701 ** If the current term is a column of an ((?,?) IN (SELECT...))
4702 ** expression for which the SELECT returns more than one column,
4703 ** check that it is the only column used by this loop. Otherwise,
4704 ** if it is one of two or more, none of the columns can be
4705 ** considered to match an ORDER BY term.
4707 if( (eOp
& eqOpMask
)!=0 ){
4708 if( eOp
& (WO_ISNULL
|WO_IS
) ){
4709 testcase( eOp
& WO_ISNULL
);
4710 testcase( eOp
& WO_IS
);
4711 testcase( isOrderDistinct
);
4712 isOrderDistinct
= 0;
4715 }else if( ALWAYS(eOp
& WO_IN
) ){
4716 /* ALWAYS() justification: eOp is an equality operator due to the
4717 ** j<pLoop->u.btree.nEq constraint above. Any equality other
4718 ** than WO_IN is captured by the previous "if". So this one
4719 ** always has to be WO_IN. */
4720 Expr
*pX
= pLoop
->aLTerm
[j
]->pExpr
;
4721 for(i
=j
+1; i
<pLoop
->u
.btree
.nEq
; i
++){
4722 if( pLoop
->aLTerm
[i
]->pExpr
==pX
){
4723 assert( (pLoop
->aLTerm
[i
]->eOperator
& WO_IN
) );
4731 /* Get the column number in the table (iColumn) and sort order
4732 ** (revIdx) for the j-th column of the index.
4735 iColumn
= pIndex
->aiColumn
[j
];
4736 revIdx
= pIndex
->aSortOrder
[j
] & KEYINFO_ORDER_DESC
;
4737 if( iColumn
==pIndex
->pTable
->iPKey
) iColumn
= XN_ROWID
;
4743 /* An unconstrained column that might be NULL means that this
4744 ** WhereLoop is not well-ordered. tag-20210426-1
4746 if( isOrderDistinct
){
4748 && j
>=pLoop
->u
.btree
.nEq
4749 && pIndex
->pTable
->aCol
[iColumn
].notNull
==0
4751 isOrderDistinct
= 0;
4753 if( iColumn
==XN_EXPR
){
4754 isOrderDistinct
= 0;
4758 /* Find the ORDER BY term that corresponds to the j-th column
4759 ** of the index and mark that ORDER BY term off
4762 for(i
=0; bOnce
&& i
<nOrderBy
; i
++){
4763 if( MASKBIT(i
) & obSat
) continue;
4764 pOBExpr
= sqlite3ExprSkipCollateAndLikely(pOrderBy
->a
[i
].pExpr
);
4765 testcase( wctrlFlags
& WHERE_GROUPBY
);
4766 testcase( wctrlFlags
& WHERE_DISTINCTBY
);
4767 if( NEVER(pOBExpr
==0) ) continue;
4768 if( (wctrlFlags
& (WHERE_GROUPBY
|WHERE_DISTINCTBY
))==0 ) bOnce
= 0;
4769 if( iColumn
>=XN_ROWID
){
4770 if( pOBExpr
->op
!=TK_COLUMN
&& pOBExpr
->op
!=TK_AGG_COLUMN
) continue;
4771 if( pOBExpr
->iTable
!=iCur
) continue;
4772 if( pOBExpr
->iColumn
!=iColumn
) continue;
4774 Expr
*pIxExpr
= pIndex
->aColExpr
->a
[j
].pExpr
;
4775 if( sqlite3ExprCompareSkip(pOBExpr
, pIxExpr
, iCur
) ){
4779 if( iColumn
!=XN_ROWID
){
4780 pColl
= sqlite3ExprNNCollSeq(pWInfo
->pParse
, pOrderBy
->a
[i
].pExpr
);
4781 if( sqlite3StrICmp(pColl
->zName
, pIndex
->azColl
[j
])!=0 ) continue;
4783 if( wctrlFlags
& WHERE_DISTINCTBY
){
4784 pLoop
->u
.btree
.nDistinctCol
= j
+1;
4789 if( isMatch
&& (wctrlFlags
& WHERE_GROUPBY
)==0 ){
4790 /* Make sure the sort order is compatible in an ORDER BY clause.
4791 ** Sort order is irrelevant for a GROUP BY clause. */
4794 != (pOrderBy
->a
[i
].fg
.sortFlags
&KEYINFO_ORDER_DESC
)
4799 rev
= revIdx
^ (pOrderBy
->a
[i
].fg
.sortFlags
& KEYINFO_ORDER_DESC
);
4800 if( rev
) *pRevMask
|= MASKBIT(iLoop
);
4804 if( isMatch
&& (pOrderBy
->a
[i
].fg
.sortFlags
& KEYINFO_ORDER_BIGNULL
) ){
4805 if( j
==pLoop
->u
.btree
.nEq
){
4806 pLoop
->wsFlags
|= WHERE_BIGNULL_SORT
;
4812 if( iColumn
==XN_ROWID
){
4813 testcase( distinctColumns
==0 );
4814 distinctColumns
= 1;
4816 obSat
|= MASKBIT(i
);
4818 /* No match found */
4819 if( j
==0 || j
<nKeyCol
){
4820 testcase( isOrderDistinct
!=0 );
4821 isOrderDistinct
= 0;
4825 } /* end Loop over all index columns */
4826 if( distinctColumns
){
4827 testcase( isOrderDistinct
==0 );
4828 isOrderDistinct
= 1;
4830 } /* end-if not one-row */
4832 /* Mark off any other ORDER BY terms that reference pLoop */
4833 if( isOrderDistinct
){
4834 orderDistinctMask
|= pLoop
->maskSelf
;
4835 for(i
=0; i
<nOrderBy
; i
++){
4838 if( MASKBIT(i
) & obSat
) continue;
4839 p
= pOrderBy
->a
[i
].pExpr
;
4840 mTerm
= sqlite3WhereExprUsage(&pWInfo
->sMaskSet
,p
);
4841 if( mTerm
==0 && !sqlite3ExprIsConstant(p
) ) continue;
4842 if( (mTerm
&~orderDistinctMask
)==0 ){
4843 obSat
|= MASKBIT(i
);
4847 } /* End the loop over all WhereLoops from outer-most down to inner-most */
4848 if( obSat
==obDone
) return (i8
)nOrderBy
;
4849 if( !isOrderDistinct
){
4850 for(i
=nOrderBy
-1; i
>0; i
--){
4851 Bitmask m
= ALWAYS(i
<BMS
) ? MASKBIT(i
) - 1 : 0;
4852 if( (obSat
&m
)==m
) return i
;
4861 ** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(),
4862 ** the planner assumes that the specified pOrderBy list is actually a GROUP
4863 ** BY clause - and so any order that groups rows as required satisfies the
4866 ** Normally, in this case it is not possible for the caller to determine
4867 ** whether or not the rows are really being delivered in sorted order, or
4868 ** just in some other order that provides the required grouping. However,
4869 ** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then
4870 ** this function may be called on the returned WhereInfo object. It returns
4871 ** true if the rows really will be sorted in the specified order, or false
4874 ** For example, assuming:
4876 ** CREATE INDEX i1 ON t1(x, Y);
4880 ** SELECT * FROM t1 GROUP BY x,y ORDER BY x,y; -- IsSorted()==1
4881 ** SELECT * FROM t1 GROUP BY y,x ORDER BY y,x; -- IsSorted()==0
4883 int sqlite3WhereIsSorted(WhereInfo
*pWInfo
){
4884 assert( pWInfo
->wctrlFlags
& (WHERE_GROUPBY
|WHERE_DISTINCTBY
) );
4885 assert( pWInfo
->wctrlFlags
& WHERE_SORTBYGROUP
);
4886 return pWInfo
->sorted
;
4889 #ifdef WHERETRACE_ENABLED
4890 /* For debugging use only: */
4891 static const char *wherePathName(WherePath
*pPath
, int nLoop
, WhereLoop
*pLast
){
4892 static char zName
[65];
4894 for(i
=0; i
<nLoop
; i
++){ zName
[i
] = pPath
->aLoop
[i
]->cId
; }
4895 if( pLast
) zName
[i
++] = pLast
->cId
;
4902 ** Return the cost of sorting nRow rows, assuming that the keys have
4903 ** nOrderby columns and that the first nSorted columns are already in
4906 static LogEst
whereSortingCost(
4907 WhereInfo
*pWInfo
, /* Query planning context */
4908 LogEst nRow
, /* Estimated number of rows to sort */
4909 int nOrderBy
, /* Number of ORDER BY clause terms */
4910 int nSorted
/* Number of initial ORDER BY terms naturally in order */
4912 /* Estimated cost of a full external sort, where N is
4913 ** the number of rows to sort is:
4915 ** cost = (K * N * log(N)).
4917 ** Or, if the order-by clause has X terms but only the last Y
4918 ** terms are out of order, then block-sorting will reduce the
4921 ** cost = (K * N * log(N)) * (Y/X)
4923 ** The constant K is at least 2.0 but will be larger if there are a
4924 ** large number of columns to be sorted, as the sorting time is
4925 ** proportional to the amount of content to be sorted. The algorithm
4926 ** does not currently distinguish between fat columns (BLOBs and TEXTs)
4927 ** and skinny columns (INTs). It just uses the number of columns as
4928 ** an approximation for the row width.
4930 ** And extra factor of 2.0 or 3.0 is added to the sorting cost if the sort
4931 ** is built using OP_IdxInsert and OP_Sort rather than with OP_SorterInsert.
4933 LogEst rSortCost
, nCol
;
4934 assert( pWInfo
->pSelect
!=0 );
4935 assert( pWInfo
->pSelect
->pEList
!=0 );
4936 /* TUNING: sorting cost proportional to the number of output columns: */
4937 nCol
= sqlite3LogEst((pWInfo
->pSelect
->pEList
->nExpr
+59)/30);
4938 rSortCost
= nRow
+ nCol
;
4940 /* Scale the result by (Y/X) */
4941 rSortCost
+= sqlite3LogEst((nOrderBy
-nSorted
)*100/nOrderBy
) - 66;
4944 /* Multiple by log(M) where M is the number of output rows.
4945 ** Use the LIMIT for M if it is smaller. Or if this sort is for
4946 ** a DISTINCT operator, M will be the number of distinct output
4947 ** rows, so fudge it downwards a bit.
4949 if( (pWInfo
->wctrlFlags
& WHERE_USE_LIMIT
)!=0 ){
4950 rSortCost
+= 10; /* TUNING: Extra 2.0x if using LIMIT */
4952 rSortCost
+= 6; /* TUNING: Extra 1.5x if also using partial sort */
4954 if( pWInfo
->iLimit
<nRow
){
4955 nRow
= pWInfo
->iLimit
;
4957 }else if( (pWInfo
->wctrlFlags
& WHERE_WANT_DISTINCT
) ){
4958 /* TUNING: In the sort for a DISTINCT operator, assume that the DISTINCT
4959 ** reduces the number of output rows by a factor of 2 */
4960 if( nRow
>10 ){ nRow
-= 10; assert( 10==sqlite3LogEst(2) ); }
4962 rSortCost
+= estLog(nRow
);
4967 ** Given the list of WhereLoop objects at pWInfo->pLoops, this routine
4968 ** attempts to find the lowest cost path that visits each WhereLoop
4969 ** once. This path is then loaded into the pWInfo->a[].pWLoop fields.
4971 ** Assume that the total number of output rows that will need to be sorted
4972 ** will be nRowEst (in the 10*log2 representation). Or, ignore sorting
4973 ** costs if nRowEst==0.
4975 ** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation
4978 static int wherePathSolver(WhereInfo
*pWInfo
, LogEst nRowEst
){
4979 int mxChoice
; /* Maximum number of simultaneous paths tracked */
4980 int nLoop
; /* Number of terms in the join */
4981 Parse
*pParse
; /* Parsing context */
4982 int iLoop
; /* Loop counter over the terms of the join */
4983 int ii
, jj
; /* Loop counters */
4984 int mxI
= 0; /* Index of next entry to replace */
4985 int nOrderBy
; /* Number of ORDER BY clause terms */
4986 LogEst mxCost
= 0; /* Maximum cost of a set of paths */
4987 LogEst mxUnsorted
= 0; /* Maximum unsorted cost of a set of path */
4988 int nTo
, nFrom
; /* Number of valid entries in aTo[] and aFrom[] */
4989 WherePath
*aFrom
; /* All nFrom paths at the previous level */
4990 WherePath
*aTo
; /* The nTo best paths at the current level */
4991 WherePath
*pFrom
; /* An element of aFrom[] that we are working on */
4992 WherePath
*pTo
; /* An element of aTo[] that we are working on */
4993 WhereLoop
*pWLoop
; /* One of the WhereLoop objects */
4994 WhereLoop
**pX
; /* Used to divy up the pSpace memory */
4995 LogEst
*aSortCost
= 0; /* Sorting and partial sorting costs */
4996 char *pSpace
; /* Temporary memory used by this routine */
4997 int nSpace
; /* Bytes of space allocated at pSpace */
4999 pParse
= pWInfo
->pParse
;
5000 nLoop
= pWInfo
->nLevel
;
5001 /* TUNING: For simple queries, only the best path is tracked.
5002 ** For 2-way joins, the 5 best paths are followed.
5003 ** For joins of 3 or more tables, track the 10 best paths */
5004 mxChoice
= (nLoop
<=1) ? 1 : (nLoop
==2 ? 5 : 10);
5005 assert( nLoop
<=pWInfo
->pTabList
->nSrc
);
5006 WHERETRACE(0x002, ("---- begin solver. (nRowEst=%d, nQueryLoop=%d)\n",
5007 nRowEst
, pParse
->nQueryLoop
));
5009 /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this
5010 ** case the purpose of this call is to estimate the number of rows returned
5011 ** by the overall query. Once this estimate has been obtained, the caller
5012 ** will invoke this function a second time, passing the estimate as the
5013 ** nRowEst parameter. */
5014 if( pWInfo
->pOrderBy
==0 || nRowEst
==0 ){
5017 nOrderBy
= pWInfo
->pOrderBy
->nExpr
;
5020 /* Allocate and initialize space for aTo, aFrom and aSortCost[] */
5021 nSpace
= (sizeof(WherePath
)+sizeof(WhereLoop
*)*nLoop
)*mxChoice
*2;
5022 nSpace
+= sizeof(LogEst
) * nOrderBy
;
5023 pSpace
= sqlite3StackAllocRawNN(pParse
->db
, nSpace
);
5024 if( pSpace
==0 ) return SQLITE_NOMEM_BKPT
;
5025 aTo
= (WherePath
*)pSpace
;
5026 aFrom
= aTo
+mxChoice
;
5027 memset(aFrom
, 0, sizeof(aFrom
[0]));
5028 pX
= (WhereLoop
**)(aFrom
+mxChoice
);
5029 for(ii
=mxChoice
*2, pFrom
=aTo
; ii
>0; ii
--, pFrom
++, pX
+= nLoop
){
5033 /* If there is an ORDER BY clause and it is not being ignored, set up
5034 ** space for the aSortCost[] array. Each element of the aSortCost array
5035 ** is either zero - meaning it has not yet been initialized - or the
5036 ** cost of sorting nRowEst rows of data where the first X terms of
5037 ** the ORDER BY clause are already in order, where X is the array
5039 aSortCost
= (LogEst
*)pX
;
5040 memset(aSortCost
, 0, sizeof(LogEst
) * nOrderBy
);
5042 assert( aSortCost
==0 || &pSpace
[nSpace
]==(char*)&aSortCost
[nOrderBy
] );
5043 assert( aSortCost
!=0 || &pSpace
[nSpace
]==(char*)pX
);
5045 /* Seed the search with a single WherePath containing zero WhereLoops.
5047 ** TUNING: Do not let the number of iterations go above 28. If the cost
5048 ** of computing an automatic index is not paid back within the first 28
5049 ** rows, then do not use the automatic index. */
5050 aFrom
[0].nRow
= MIN(pParse
->nQueryLoop
, 48); assert( 48==sqlite3LogEst(28) );
5052 assert( aFrom
[0].isOrdered
==0 );
5054 /* If nLoop is zero, then there are no FROM terms in the query. Since
5055 ** in this case the query may return a maximum of one row, the results
5056 ** are already in the requested order. Set isOrdered to nOrderBy to
5057 ** indicate this. Or, if nLoop is greater than zero, set isOrdered to
5058 ** -1, indicating that the result set may or may not be ordered,
5059 ** depending on the loops added to the current plan. */
5060 aFrom
[0].isOrdered
= nLoop
>0 ? -1 : nOrderBy
;
5063 /* Compute successively longer WherePaths using the previous generation
5064 ** of WherePaths as the basis for the next. Keep track of the mxChoice
5065 ** best paths at each generation */
5066 for(iLoop
=0; iLoop
<nLoop
; iLoop
++){
5068 for(ii
=0, pFrom
=aFrom
; ii
<nFrom
; ii
++, pFrom
++){
5069 for(pWLoop
=pWInfo
->pLoops
; pWLoop
; pWLoop
=pWLoop
->pNextLoop
){
5070 LogEst nOut
; /* Rows visited by (pFrom+pWLoop) */
5071 LogEst rCost
; /* Cost of path (pFrom+pWLoop) */
5072 LogEst rUnsorted
; /* Unsorted cost of (pFrom+pWLoop) */
5073 i8 isOrdered
; /* isOrdered for (pFrom+pWLoop) */
5074 Bitmask maskNew
; /* Mask of src visited by (..) */
5075 Bitmask revMask
; /* Mask of rev-order loops for (..) */
5077 if( (pWLoop
->prereq
& ~pFrom
->maskLoop
)!=0 ) continue;
5078 if( (pWLoop
->maskSelf
& pFrom
->maskLoop
)!=0 ) continue;
5079 if( (pWLoop
->wsFlags
& WHERE_AUTO_INDEX
)!=0 && pFrom
->nRow
<3 ){
5080 /* Do not use an automatic index if the this loop is expected
5081 ** to run less than 1.25 times. It is tempting to also exclude
5082 ** automatic index usage on an outer loop, but sometimes an automatic
5083 ** index is useful in the outer loop of a correlated subquery. */
5084 assert( 10==sqlite3LogEst(2) );
5088 /* At this point, pWLoop is a candidate to be the next loop.
5089 ** Compute its cost */
5090 rUnsorted
= sqlite3LogEstAdd(pWLoop
->rSetup
,pWLoop
->rRun
+ pFrom
->nRow
);
5091 rUnsorted
= sqlite3LogEstAdd(rUnsorted
, pFrom
->rUnsorted
);
5092 nOut
= pFrom
->nRow
+ pWLoop
->nOut
;
5093 maskNew
= pFrom
->maskLoop
| pWLoop
->maskSelf
;
5094 isOrdered
= pFrom
->isOrdered
;
5097 isOrdered
= wherePathSatisfiesOrderBy(pWInfo
,
5098 pWInfo
->pOrderBy
, pFrom
, pWInfo
->wctrlFlags
,
5099 iLoop
, pWLoop
, &revMask
);
5101 revMask
= pFrom
->revLoop
;
5103 if( isOrdered
>=0 && isOrdered
<nOrderBy
){
5104 if( aSortCost
[isOrdered
]==0 ){
5105 aSortCost
[isOrdered
] = whereSortingCost(
5106 pWInfo
, nRowEst
, nOrderBy
, isOrdered
5109 /* TUNING: Add a small extra penalty (3) to sorting as an
5110 ** extra encouragement to the query planner to select a plan
5111 ** where the rows emerge in the correct order without any sorting
5113 rCost
= sqlite3LogEstAdd(rUnsorted
, aSortCost
[isOrdered
]) + 3;
5116 ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n",
5117 aSortCost
[isOrdered
], (nOrderBy
-isOrdered
), nOrderBy
,
5121 rUnsorted
-= 2; /* TUNING: Slight bias in favor of no-sort plans */
5124 /* TUNING: A full-scan of a VIEW or subquery in the outer loop
5125 ** is not so bad. */
5126 if( iLoop
==0 && (pWLoop
->wsFlags
& WHERE_VIEWSCAN
)!=0 && nLoop
>1 ){
5129 WHERETRACE(0x80,("VIEWSCAN cost reduction for %c\n",pWLoop
->cId
));
5132 /* Check to see if pWLoop should be added to the set of
5133 ** mxChoice best-so-far paths.
5135 ** First look for an existing path among best-so-far paths
5136 ** that covers the same set of loops and has the same isOrdered
5137 ** setting as the current path candidate.
5139 ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent
5140 ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range
5141 ** of legal values for isOrdered, -1..64.
5143 for(jj
=0, pTo
=aTo
; jj
<nTo
; jj
++, pTo
++){
5144 if( pTo
->maskLoop
==maskNew
5145 && ((pTo
->isOrdered
^isOrdered
)&0x80)==0
5147 testcase( jj
==nTo
-1 );
5152 /* None of the existing best-so-far paths match the candidate. */
5154 && (rCost
>mxCost
|| (rCost
==mxCost
&& rUnsorted
>=mxUnsorted
))
5156 /* The current candidate is no better than any of the mxChoice
5157 ** paths currently in the best-so-far buffer. So discard
5158 ** this candidate as not viable. */
5159 #ifdef WHERETRACE_ENABLED /* 0x4 */
5160 if( sqlite3WhereTrace
&0x4 ){
5161 sqlite3DebugPrintf("Skip %s cost=%-3d,%3d,%3d order=%c\n",
5162 wherePathName(pFrom
, iLoop
, pWLoop
), rCost
, nOut
, rUnsorted
,
5163 isOrdered
>=0 ? isOrdered
+'0' : '?');
5168 /* If we reach this points it means that the new candidate path
5169 ** needs to be added to the set of best-so-far paths. */
5171 /* Increase the size of the aTo set by one */
5174 /* New path replaces the prior worst to keep count below mxChoice */
5178 #ifdef WHERETRACE_ENABLED /* 0x4 */
5179 if( sqlite3WhereTrace
&0x4 ){
5180 sqlite3DebugPrintf("New %s cost=%-3d,%3d,%3d order=%c\n",
5181 wherePathName(pFrom
, iLoop
, pWLoop
), rCost
, nOut
, rUnsorted
,
5182 isOrdered
>=0 ? isOrdered
+'0' : '?');
5186 /* Control reaches here if best-so-far path pTo=aTo[jj] covers the
5187 ** same set of loops and has the same isOrdered setting as the
5188 ** candidate path. Check to see if the candidate should replace
5189 ** pTo or if the candidate should be skipped.
5191 ** The conditional is an expanded vector comparison equivalent to:
5192 ** (pTo->rCost,pTo->nRow,pTo->rUnsorted) <= (rCost,nOut,rUnsorted)
5194 if( pTo
->rCost
<rCost
5195 || (pTo
->rCost
==rCost
5197 || (pTo
->nRow
==nOut
&& pTo
->rUnsorted
<=rUnsorted
)
5201 #ifdef WHERETRACE_ENABLED /* 0x4 */
5202 if( sqlite3WhereTrace
&0x4 ){
5204 "Skip %s cost=%-3d,%3d,%3d order=%c",
5205 wherePathName(pFrom
, iLoop
, pWLoop
), rCost
, nOut
, rUnsorted
,
5206 isOrdered
>=0 ? isOrdered
+'0' : '?');
5207 sqlite3DebugPrintf(" vs %s cost=%-3d,%3d,%3d order=%c\n",
5208 wherePathName(pTo
, iLoop
+1, 0), pTo
->rCost
, pTo
->nRow
,
5209 pTo
->rUnsorted
, pTo
->isOrdered
>=0 ? pTo
->isOrdered
+'0' : '?');
5212 /* Discard the candidate path from further consideration */
5213 testcase( pTo
->rCost
==rCost
);
5216 testcase( pTo
->rCost
==rCost
+1 );
5217 /* Control reaches here if the candidate path is better than the
5218 ** pTo path. Replace pTo with the candidate. */
5219 #ifdef WHERETRACE_ENABLED /* 0x4 */
5220 if( sqlite3WhereTrace
&0x4 ){
5222 "Update %s cost=%-3d,%3d,%3d order=%c",
5223 wherePathName(pFrom
, iLoop
, pWLoop
), rCost
, nOut
, rUnsorted
,
5224 isOrdered
>=0 ? isOrdered
+'0' : '?');
5225 sqlite3DebugPrintf(" was %s cost=%-3d,%3d,%3d order=%c\n",
5226 wherePathName(pTo
, iLoop
+1, 0), pTo
->rCost
, pTo
->nRow
,
5227 pTo
->rUnsorted
, pTo
->isOrdered
>=0 ? pTo
->isOrdered
+'0' : '?');
5231 /* pWLoop is a winner. Add it to the set of best so far */
5232 pTo
->maskLoop
= pFrom
->maskLoop
| pWLoop
->maskSelf
;
5233 pTo
->revLoop
= revMask
;
5236 pTo
->rUnsorted
= rUnsorted
;
5237 pTo
->isOrdered
= isOrdered
;
5238 memcpy(pTo
->aLoop
, pFrom
->aLoop
, sizeof(WhereLoop
*)*iLoop
);
5239 pTo
->aLoop
[iLoop
] = pWLoop
;
5240 if( nTo
>=mxChoice
){
5242 mxCost
= aTo
[0].rCost
;
5243 mxUnsorted
= aTo
[0].nRow
;
5244 for(jj
=1, pTo
=&aTo
[1]; jj
<mxChoice
; jj
++, pTo
++){
5245 if( pTo
->rCost
>mxCost
5246 || (pTo
->rCost
==mxCost
&& pTo
->rUnsorted
>mxUnsorted
)
5248 mxCost
= pTo
->rCost
;
5249 mxUnsorted
= pTo
->rUnsorted
;
5257 #ifdef WHERETRACE_ENABLED /* >=2 */
5258 if( sqlite3WhereTrace
& 0x02 ){
5259 sqlite3DebugPrintf("---- after round %d ----\n", iLoop
);
5260 for(ii
=0, pTo
=aTo
; ii
<nTo
; ii
++, pTo
++){
5261 sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c",
5262 wherePathName(pTo
, iLoop
+1, 0), pTo
->rCost
, pTo
->nRow
,
5263 pTo
->isOrdered
>=0 ? (pTo
->isOrdered
+'0') : '?');
5264 if( pTo
->isOrdered
>0 ){
5265 sqlite3DebugPrintf(" rev=0x%llx\n", pTo
->revLoop
);
5267 sqlite3DebugPrintf("\n");
5273 /* Swap the roles of aFrom and aTo for the next generation */
5281 sqlite3ErrorMsg(pParse
, "no query solution");
5282 sqlite3StackFreeNN(pParse
->db
, pSpace
);
5283 return SQLITE_ERROR
;
5286 /* Find the lowest cost path. pFrom will be left pointing to that path */
5288 for(ii
=1; ii
<nFrom
; ii
++){
5289 if( pFrom
->rCost
>aFrom
[ii
].rCost
) pFrom
= &aFrom
[ii
];
5291 assert( pWInfo
->nLevel
==nLoop
);
5292 /* Load the lowest cost path into pWInfo */
5293 for(iLoop
=0; iLoop
<nLoop
; iLoop
++){
5294 WhereLevel
*pLevel
= pWInfo
->a
+ iLoop
;
5295 pLevel
->pWLoop
= pWLoop
= pFrom
->aLoop
[iLoop
];
5296 pLevel
->iFrom
= pWLoop
->iTab
;
5297 pLevel
->iTabCur
= pWInfo
->pTabList
->a
[pLevel
->iFrom
].iCursor
;
5299 if( (pWInfo
->wctrlFlags
& WHERE_WANT_DISTINCT
)!=0
5300 && (pWInfo
->wctrlFlags
& WHERE_DISTINCTBY
)==0
5301 && pWInfo
->eDistinct
==WHERE_DISTINCT_NOOP
5305 int rc
= wherePathSatisfiesOrderBy(pWInfo
, pWInfo
->pResultSet
, pFrom
,
5306 WHERE_DISTINCTBY
, nLoop
-1, pFrom
->aLoop
[nLoop
-1], ¬Used
);
5307 if( rc
==pWInfo
->pResultSet
->nExpr
){
5308 pWInfo
->eDistinct
= WHERE_DISTINCT_ORDERED
;
5311 pWInfo
->bOrderedInnerLoop
= 0;
5312 if( pWInfo
->pOrderBy
){
5313 pWInfo
->nOBSat
= pFrom
->isOrdered
;
5314 if( pWInfo
->wctrlFlags
& WHERE_DISTINCTBY
){
5315 if( pFrom
->isOrdered
==pWInfo
->pOrderBy
->nExpr
){
5316 pWInfo
->eDistinct
= WHERE_DISTINCT_ORDERED
;
5318 if( pWInfo
->pSelect
->pOrderBy
5319 && pWInfo
->nOBSat
> pWInfo
->pSelect
->pOrderBy
->nExpr
){
5320 pWInfo
->nOBSat
= pWInfo
->pSelect
->pOrderBy
->nExpr
;
5323 pWInfo
->revMask
= pFrom
->revLoop
;
5324 if( pWInfo
->nOBSat
<=0 ){
5327 u32 wsFlags
= pFrom
->aLoop
[nLoop
-1]->wsFlags
;
5328 if( (wsFlags
& WHERE_ONEROW
)==0
5329 && (wsFlags
&(WHERE_IPK
|WHERE_COLUMN_IN
))!=(WHERE_IPK
|WHERE_COLUMN_IN
)
5332 int rc
= wherePathSatisfiesOrderBy(pWInfo
, pWInfo
->pOrderBy
, pFrom
,
5333 WHERE_ORDERBY_LIMIT
, nLoop
-1, pFrom
->aLoop
[nLoop
-1], &m
);
5334 testcase( wsFlags
& WHERE_IPK
);
5335 testcase( wsFlags
& WHERE_COLUMN_IN
);
5336 if( rc
==pWInfo
->pOrderBy
->nExpr
){
5337 pWInfo
->bOrderedInnerLoop
= 1;
5338 pWInfo
->revMask
= m
;
5343 && pWInfo
->nOBSat
==1
5344 && (pWInfo
->wctrlFlags
& (WHERE_ORDERBY_MIN
|WHERE_ORDERBY_MAX
))!=0
5346 pWInfo
->bOrderedInnerLoop
= 1;
5349 if( (pWInfo
->wctrlFlags
& WHERE_SORTBYGROUP
)
5350 && pWInfo
->nOBSat
==pWInfo
->pOrderBy
->nExpr
&& nLoop
>0
5352 Bitmask revMask
= 0;
5353 int nOrder
= wherePathSatisfiesOrderBy(pWInfo
, pWInfo
->pOrderBy
,
5354 pFrom
, 0, nLoop
-1, pFrom
->aLoop
[nLoop
-1], &revMask
5356 assert( pWInfo
->sorted
==0 );
5357 if( nOrder
==pWInfo
->pOrderBy
->nExpr
){
5359 pWInfo
->revMask
= revMask
;
5365 pWInfo
->nRowOut
= pFrom
->nRow
;
5367 /* Free temporary memory and return success */
5368 sqlite3StackFreeNN(pParse
->db
, pSpace
);
5373 ** Most queries use only a single table (they are not joins) and have
5374 ** simple == constraints against indexed fields. This routine attempts
5375 ** to plan those simple cases using much less ceremony than the
5376 ** general-purpose query planner, and thereby yield faster sqlite3_prepare()
5377 ** times for the common case.
5379 ** Return non-zero on success, if this query can be handled by this
5380 ** no-frills query planner. Return zero if this query needs the
5381 ** general-purpose query planner.
5383 static int whereShortCut(WhereLoopBuilder
*pBuilder
){
5395 pWInfo
= pBuilder
->pWInfo
;
5396 if( pWInfo
->wctrlFlags
& WHERE_OR_SUBCLAUSE
) return 0;
5397 assert( pWInfo
->pTabList
->nSrc
>=1 );
5398 pItem
= pWInfo
->pTabList
->a
;
5400 if( IsVirtual(pTab
) ) return 0;
5401 if( pItem
->fg
.isIndexedBy
|| pItem
->fg
.notIndexed
){
5402 testcase( pItem
->fg
.isIndexedBy
);
5403 testcase( pItem
->fg
.notIndexed
);
5406 iCur
= pItem
->iCursor
;
5408 pLoop
= pBuilder
->pNew
;
5411 pTerm
= whereScanInit(&scan
, pWC
, iCur
, -1, WO_EQ
|WO_IS
, 0);
5412 while( pTerm
&& pTerm
->prereqRight
) pTerm
= whereScanNext(&scan
);
5414 testcase( pTerm
->eOperator
& WO_IS
);
5415 pLoop
->wsFlags
= WHERE_COLUMN_EQ
|WHERE_IPK
|WHERE_ONEROW
;
5416 pLoop
->aLTerm
[0] = pTerm
;
5418 pLoop
->u
.btree
.nEq
= 1;
5419 /* TUNING: Cost of a rowid lookup is 10 */
5420 pLoop
->rRun
= 33; /* 33==sqlite3LogEst(10) */
5422 for(pIdx
=pTab
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
){
5424 assert( pLoop
->aLTermSpace
==pLoop
->aLTerm
);
5425 if( !IsUniqueIndex(pIdx
)
5426 || pIdx
->pPartIdxWhere
!=0
5427 || pIdx
->nKeyCol
>ArraySize(pLoop
->aLTermSpace
)
5429 opMask
= pIdx
->uniqNotNull
? (WO_EQ
|WO_IS
) : WO_EQ
;
5430 for(j
=0; j
<pIdx
->nKeyCol
; j
++){
5431 pTerm
= whereScanInit(&scan
, pWC
, iCur
, j
, opMask
, pIdx
);
5432 while( pTerm
&& pTerm
->prereqRight
) pTerm
= whereScanNext(&scan
);
5433 if( pTerm
==0 ) break;
5434 testcase( pTerm
->eOperator
& WO_IS
);
5435 pLoop
->aLTerm
[j
] = pTerm
;
5437 if( j
!=pIdx
->nKeyCol
) continue;
5438 pLoop
->wsFlags
= WHERE_COLUMN_EQ
|WHERE_ONEROW
|WHERE_INDEXED
;
5439 if( pIdx
->isCovering
|| (pItem
->colUsed
& pIdx
->colNotIdxed
)==0 ){
5440 pLoop
->wsFlags
|= WHERE_IDX_ONLY
;
5443 pLoop
->u
.btree
.nEq
= j
;
5444 pLoop
->u
.btree
.pIndex
= pIdx
;
5445 /* TUNING: Cost of a unique index lookup is 15 */
5446 pLoop
->rRun
= 39; /* 39==sqlite3LogEst(15) */
5450 if( pLoop
->wsFlags
){
5451 pLoop
->nOut
= (LogEst
)1;
5452 pWInfo
->a
[0].pWLoop
= pLoop
;
5453 assert( pWInfo
->sMaskSet
.n
==1 && iCur
==pWInfo
->sMaskSet
.ix
[0] );
5454 pLoop
->maskSelf
= 1; /* sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); */
5455 pWInfo
->a
[0].iTabCur
= iCur
;
5456 pWInfo
->nRowOut
= 1;
5457 if( pWInfo
->pOrderBy
) pWInfo
->nOBSat
= pWInfo
->pOrderBy
->nExpr
;
5458 if( pWInfo
->wctrlFlags
& WHERE_WANT_DISTINCT
){
5459 pWInfo
->eDistinct
= WHERE_DISTINCT_UNIQUE
;
5461 if( scan
.iEquiv
>1 ) pLoop
->wsFlags
|= WHERE_TRANSCONS
;
5465 #ifdef WHERETRACE_ENABLED
5466 if( sqlite3WhereTrace
& 0x02 ){
5467 sqlite3DebugPrintf("whereShortCut() used to compute solution\n");
5476 ** Helper function for exprIsDeterministic().
5478 static int exprNodeIsDeterministic(Walker
*pWalker
, Expr
*pExpr
){
5479 if( pExpr
->op
==TK_FUNCTION
&& ExprHasProperty(pExpr
, EP_ConstFunc
)==0 ){
5483 return WRC_Continue
;
5487 ** Return true if the expression contains no non-deterministic SQL
5488 ** functions. Do not consider non-deterministic SQL functions that are
5489 ** part of sub-select statements.
5491 static int exprIsDeterministic(Expr
*p
){
5493 memset(&w
, 0, sizeof(w
));
5495 w
.xExprCallback
= exprNodeIsDeterministic
;
5496 w
.xSelectCallback
= sqlite3SelectWalkFail
;
5497 sqlite3WalkExpr(&w
, p
);
5502 #ifdef WHERETRACE_ENABLED
5504 ** Display all WhereLoops in pWInfo
5506 static void showAllWhereLoops(WhereInfo
*pWInfo
, WhereClause
*pWC
){
5507 if( sqlite3WhereTrace
){ /* Display all of the WhereLoop objects */
5510 static const char zLabel
[] = "0123456789abcdefghijklmnopqrstuvwyxz"
5511 "ABCDEFGHIJKLMNOPQRSTUVWYXZ";
5512 for(p
=pWInfo
->pLoops
, i
=0; p
; p
=p
->pNextLoop
, i
++){
5513 p
->cId
= zLabel
[i
%(sizeof(zLabel
)-1)];
5514 sqlite3WhereLoopPrint(p
, pWC
);
5518 # define WHERETRACE_ALL_LOOPS(W,C) showAllWhereLoops(W,C)
5520 # define WHERETRACE_ALL_LOOPS(W,C)
5523 /* Attempt to omit tables from a join that do not affect the result.
5524 ** For a table to not affect the result, the following must be true:
5526 ** 1) The query must not be an aggregate.
5527 ** 2) The table must be the RHS of a LEFT JOIN.
5528 ** 3) Either the query must be DISTINCT, or else the ON or USING clause
5529 ** must contain a constraint that limits the scan of the table to
5530 ** at most a single row.
5531 ** 4) The table must not be referenced by any part of the query apart
5532 ** from its own USING or ON clause.
5533 ** 5) The table must not have an inner-join ON or USING clause if there is
5534 ** a RIGHT JOIN anywhere in the query. Otherwise the ON/USING clause
5535 ** might move from the right side to the left side of the RIGHT JOIN.
5536 ** Note: Due to (2), this condition can only arise if the table is
5537 ** the right-most table of a subquery that was flattened into the
5538 ** main query and that subquery was the right-hand operand of an
5539 ** inner join that held an ON or USING clause.
5541 ** For example, given:
5543 ** CREATE TABLE t1(ipk INTEGER PRIMARY KEY, v1);
5544 ** CREATE TABLE t2(ipk INTEGER PRIMARY KEY, v2);
5545 ** CREATE TABLE t3(ipk INTEGER PRIMARY KEY, v3);
5547 ** then table t2 can be omitted from the following:
5549 ** SELECT v1, v3 FROM t1
5550 ** LEFT JOIN t2 ON (t1.ipk=t2.ipk)
5551 ** LEFT JOIN t3 ON (t1.ipk=t3.ipk)
5555 ** SELECT DISTINCT v1, v3 FROM t1
5557 ** LEFT JOIN t3 ON (t1.ipk=t3.ipk)
5559 static SQLITE_NOINLINE Bitmask
whereOmitNoopJoin(
5567 /* Preconditions checked by the caller */
5568 assert( pWInfo
->nLevel
>=2 );
5569 assert( OptimizationEnabled(pWInfo
->pParse
->db
, SQLITE_OmitNoopJoin
) );
5571 /* These two preconditions checked by the caller combine to guarantee
5572 ** condition (1) of the header comment */
5573 assert( pWInfo
->pResultSet
!=0 );
5574 assert( 0==(pWInfo
->wctrlFlags
& WHERE_AGG_DISTINCT
) );
5576 tabUsed
= sqlite3WhereExprListUsage(&pWInfo
->sMaskSet
, pWInfo
->pResultSet
);
5577 if( pWInfo
->pOrderBy
){
5578 tabUsed
|= sqlite3WhereExprListUsage(&pWInfo
->sMaskSet
, pWInfo
->pOrderBy
);
5580 hasRightJoin
= (pWInfo
->pTabList
->a
[0].fg
.jointype
& JT_LTORJ
)!=0;
5581 for(i
=pWInfo
->nLevel
-1; i
>=1; i
--){
5582 WhereTerm
*pTerm
, *pEnd
;
5585 pLoop
= pWInfo
->a
[i
].pWLoop
;
5586 pItem
= &pWInfo
->pTabList
->a
[pLoop
->iTab
];
5587 if( (pItem
->fg
.jointype
& (JT_LEFT
|JT_RIGHT
))!=JT_LEFT
) continue;
5588 if( (pWInfo
->wctrlFlags
& WHERE_WANT_DISTINCT
)==0
5589 && (pLoop
->wsFlags
& WHERE_ONEROW
)==0
5593 if( (tabUsed
& pLoop
->maskSelf
)!=0 ) continue;
5594 pEnd
= pWInfo
->sWC
.a
+ pWInfo
->sWC
.nTerm
;
5595 for(pTerm
=pWInfo
->sWC
.a
; pTerm
<pEnd
; pTerm
++){
5596 if( (pTerm
->prereqAll
& pLoop
->maskSelf
)!=0 ){
5597 if( !ExprHasProperty(pTerm
->pExpr
, EP_OuterON
)
5598 || pTerm
->pExpr
->w
.iJoin
!=pItem
->iCursor
5604 && ExprHasProperty(pTerm
->pExpr
, EP_InnerON
)
5605 && pTerm
->pExpr
->w
.iJoin
==pItem
->iCursor
5607 break; /* restriction (5) */
5610 if( pTerm
<pEnd
) continue;
5611 WHERETRACE(0xffffffff, ("-> drop loop %c not used\n", pLoop
->cId
));
5612 notReady
&= ~pLoop
->maskSelf
;
5613 for(pTerm
=pWInfo
->sWC
.a
; pTerm
<pEnd
; pTerm
++){
5614 if( (pTerm
->prereqAll
& pLoop
->maskSelf
)!=0 ){
5615 pTerm
->wtFlags
|= TERM_CODED
;
5618 if( i
!=pWInfo
->nLevel
-1 ){
5619 int nByte
= (pWInfo
->nLevel
-1-i
) * sizeof(WhereLevel
);
5620 memmove(&pWInfo
->a
[i
], &pWInfo
->a
[i
+1], nByte
);
5623 assert( pWInfo
->nLevel
>0 );
5629 ** Check to see if there are any SEARCH loops that might benefit from
5630 ** using a Bloom filter. Consider a Bloom filter if:
5632 ** (1) The SEARCH happens more than N times where N is the number
5633 ** of rows in the table that is being considered for the Bloom
5635 ** (2) Some searches are expected to find zero rows. (This is determined
5636 ** by the WHERE_SELFCULL flag on the term.)
5637 ** (3) Bloom-filter processing is not disabled. (Checked by the
5639 ** (4) The size of the table being searched is known by ANALYZE.
5641 ** This block of code merely checks to see if a Bloom filter would be
5642 ** appropriate, and if so sets the WHERE_BLOOMFILTER flag on the
5643 ** WhereLoop. The implementation of the Bloom filter comes further
5644 ** down where the code for each WhereLoop is generated.
5646 static SQLITE_NOINLINE
void whereCheckIfBloomFilterIsUseful(
5647 const WhereInfo
*pWInfo
5652 assert( pWInfo
->nLevel
>=2 );
5653 assert( OptimizationEnabled(pWInfo
->pParse
->db
, SQLITE_BloomFilter
) );
5654 for(i
=0; i
<pWInfo
->nLevel
; i
++){
5655 WhereLoop
*pLoop
= pWInfo
->a
[i
].pWLoop
;
5656 const unsigned int reqFlags
= (WHERE_SELFCULL
|WHERE_COLUMN_EQ
);
5657 SrcItem
*pItem
= &pWInfo
->pTabList
->a
[pLoop
->iTab
];
5658 Table
*pTab
= pItem
->pTab
;
5659 if( (pTab
->tabFlags
& TF_HasStat1
)==0 ) break;
5660 pTab
->tabFlags
|= TF_StatsUsed
;
5662 && (pLoop
->wsFlags
& reqFlags
)==reqFlags
5663 /* vvvvvv--- Always the case if WHERE_COLUMN_EQ is defined */
5664 && ALWAYS((pLoop
->wsFlags
& (WHERE_IPK
|WHERE_INDEXED
))!=0)
5666 if( nSearch
> pTab
->nRowLogEst
){
5667 testcase( pItem
->fg
.jointype
& JT_LEFT
);
5668 pLoop
->wsFlags
|= WHERE_BLOOMFILTER
;
5669 pLoop
->wsFlags
&= ~WHERE_IDX_ONLY
;
5670 WHERETRACE(0xffffffff, (
5671 "-> use Bloom-filter on loop %c because there are ~%.1e "
5672 "lookups into %s which has only ~%.1e rows\n",
5673 pLoop
->cId
, (double)sqlite3LogEstToInt(nSearch
), pTab
->zName
,
5674 (double)sqlite3LogEstToInt(pTab
->nRowLogEst
)));
5677 nSearch
+= pLoop
->nOut
;
5682 ** This is an sqlite3ParserAddCleanup() callback that is invoked to
5683 ** free the Parse->pIdxEpr list when the Parse object is destroyed.
5685 static void whereIndexedExprCleanup(sqlite3
*db
, void *pObject
){
5686 Parse
*pParse
= (Parse
*)pObject
;
5687 while( pParse
->pIdxEpr
!=0 ){
5688 IndexedExpr
*p
= pParse
->pIdxEpr
;
5689 pParse
->pIdxEpr
= p
->pIENext
;
5690 sqlite3ExprDelete(db
, p
->pExpr
);
5691 sqlite3DbFreeNN(db
, p
);
5696 ** The index pIdx is used by a query and contains one or more expressions.
5697 ** In other words pIdx is an index on an expression. iIdxCur is the cursor
5698 ** number for the index and iDataCur is the cursor number for the corresponding
5701 ** This routine adds IndexedExpr entries to the Parse->pIdxEpr field for
5702 ** each of the expressions in the index so that the expression code generator
5703 ** will know to replace occurrences of the indexed expression with
5704 ** references to the corresponding column of the index.
5706 static SQLITE_NOINLINE
void whereAddIndexedExpr(
5707 Parse
*pParse
, /* Add IndexedExpr entries to pParse->pIdxEpr */
5708 Index
*pIdx
, /* The index-on-expression that contains the expressions */
5709 int iIdxCur
, /* Cursor number for pIdx */
5710 SrcItem
*pTabItem
/* The FROM clause entry for the table */
5715 assert( pIdx
->bHasExpr
);
5716 pTab
= pIdx
->pTable
;
5717 for(i
=0; i
<pIdx
->nColumn
; i
++){
5719 int j
= pIdx
->aiColumn
[i
];
5722 pExpr
= pIdx
->aColExpr
->a
[i
].pExpr
;
5723 testcase( pTabItem
->fg
.jointype
& JT_LEFT
);
5724 testcase( pTabItem
->fg
.jointype
& JT_RIGHT
);
5725 testcase( pTabItem
->fg
.jointype
& JT_LTORJ
);
5726 bMaybeNullRow
= (pTabItem
->fg
.jointype
& (JT_LEFT
|JT_LTORJ
|JT_RIGHT
))!=0;
5727 }else if( j
>=0 && (pTab
->aCol
[j
].colFlags
& COLFLAG_VIRTUAL
)!=0 ){
5728 pExpr
= sqlite3ColumnExpr(pTab
, &pTab
->aCol
[j
]);
5733 if( sqlite3ExprIsConstant(pExpr
) ) continue;
5734 p
= sqlite3DbMallocRaw(pParse
->db
, sizeof(IndexedExpr
));
5736 p
->pIENext
= pParse
->pIdxEpr
;
5737 #ifdef WHERETRACE_ENABLED
5738 if( sqlite3WhereTrace
& 0x200 ){
5739 sqlite3DebugPrintf("New pParse->pIdxEpr term {%d,%d}\n", iIdxCur
, i
);
5740 if( sqlite3WhereTrace
& 0x5000 ) sqlite3ShowExpr(pExpr
);
5743 p
->pExpr
= sqlite3ExprDup(pParse
->db
, pExpr
, 0);
5744 p
->iDataCur
= pTabItem
->iCursor
;
5745 p
->iIdxCur
= iIdxCur
;
5747 p
->bMaybeNullRow
= bMaybeNullRow
;
5748 if( sqlite3IndexAffinityStr(pParse
->db
, pIdx
) ){
5749 p
->aff
= pIdx
->zColAff
[i
];
5751 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
5752 p
->zIdxName
= pIdx
->zName
;
5754 pParse
->pIdxEpr
= p
;
5755 if( p
->pIENext
==0 ){
5756 sqlite3ParserAddCleanup(pParse
, whereIndexedExprCleanup
, pParse
);
5762 ** Set the reverse-scan order mask to one for all tables in the query
5763 ** with the exception of MATERIALIZED common table expressions that have
5764 ** their own internal ORDER BY clauses.
5766 ** This implements the PRAGMA reverse_unordered_selects=ON setting.
5767 ** (Also SQLITE_DBCONFIG_REVERSE_SCANORDER).
5769 static SQLITE_NOINLINE
void whereReverseScanOrder(WhereInfo
*pWInfo
){
5771 for(ii
=0; ii
<pWInfo
->pTabList
->nSrc
; ii
++){
5772 SrcItem
*pItem
= &pWInfo
->pTabList
->a
[ii
];
5773 if( !pItem
->fg
.isCte
5774 || pItem
->u2
.pCteUse
->eM10d
!=M10d_Yes
5775 || NEVER(pItem
->pSelect
==0)
5776 || pItem
->pSelect
->pOrderBy
==0
5778 pWInfo
->revMask
|= MASKBIT(ii
);
5784 ** Generate the beginning of the loop used for WHERE clause processing.
5785 ** The return value is a pointer to an opaque structure that contains
5786 ** information needed to terminate the loop. Later, the calling routine
5787 ** should invoke sqlite3WhereEnd() with the return value of this function
5788 ** in order to complete the WHERE clause processing.
5790 ** If an error occurs, this routine returns NULL.
5792 ** The basic idea is to do a nested loop, one loop for each table in
5793 ** the FROM clause of a select. (INSERT and UPDATE statements are the
5794 ** same as a SELECT with only a single table in the FROM clause.) For
5795 ** example, if the SQL is this:
5797 ** SELECT * FROM t1, t2, t3 WHERE ...;
5799 ** Then the code generated is conceptually like the following:
5801 ** foreach row1 in t1 do \ Code generated
5802 ** foreach row2 in t2 do |-- by sqlite3WhereBegin()
5803 ** foreach row3 in t3 do /
5805 ** end \ Code generated
5806 ** end |-- by sqlite3WhereEnd()
5809 ** Note that the loops might not be nested in the order in which they
5810 ** appear in the FROM clause if a different order is better able to make
5811 ** use of indices. Note also that when the IN operator appears in
5812 ** the WHERE clause, it might result in additional nested loops for
5813 ** scanning through all values on the right-hand side of the IN.
5815 ** There are Btree cursors associated with each table. t1 uses cursor
5816 ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor.
5817 ** And so forth. This routine generates code to open those VDBE cursors
5818 ** and sqlite3WhereEnd() generates the code to close them.
5820 ** The code that sqlite3WhereBegin() generates leaves the cursors named
5821 ** in pTabList pointing at their appropriate entries. The [...] code
5822 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract
5823 ** data from the various tables of the loop.
5825 ** If the WHERE clause is empty, the foreach loops must each scan their
5826 ** entire tables. Thus a three-way join is an O(N^3) operation. But if
5827 ** the tables have indices and there are terms in the WHERE clause that
5828 ** refer to those indices, a complete table scan can be avoided and the
5829 ** code will run much faster. Most of the work of this routine is checking
5830 ** to see if there are indices that can be used to speed up the loop.
5832 ** Terms of the WHERE clause are also used to limit which rows actually
5833 ** make it to the "..." in the middle of the loop. After each "foreach",
5834 ** terms of the WHERE clause that use only terms in that loop and outer
5835 ** loops are evaluated and if false a jump is made around all subsequent
5836 ** inner loops (or around the "..." if the test occurs within the inner-
5841 ** An outer join of tables t1 and t2 is conceptually coded as follows:
5843 ** foreach row1 in t1 do
5845 ** foreach row2 in t2 do
5851 ** move the row2 cursor to a null row
5856 ** ORDER BY CLAUSE PROCESSING
5858 ** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause
5859 ** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement
5860 ** if there is one. If there is no ORDER BY clause or if this routine
5861 ** is called from an UPDATE or DELETE statement, then pOrderBy is NULL.
5863 ** The iIdxCur parameter is the cursor number of an index. If
5864 ** WHERE_OR_SUBCLAUSE is set, iIdxCur is the cursor number of an index
5865 ** to use for OR clause processing. The WHERE clause should use this
5866 ** specific cursor. If WHERE_ONEPASS_DESIRED is set, then iIdxCur is
5867 ** the first cursor in an array of cursors for all indices. iIdxCur should
5868 ** be used to compute the appropriate cursor depending on which index is
5871 WhereInfo
*sqlite3WhereBegin(
5872 Parse
*pParse
, /* The parser context */
5873 SrcList
*pTabList
, /* FROM clause: A list of all tables to be scanned */
5874 Expr
*pWhere
, /* The WHERE clause */
5875 ExprList
*pOrderBy
, /* An ORDER BY (or GROUP BY) clause, or NULL */
5876 ExprList
*pResultSet
, /* Query result set. Req'd for DISTINCT */
5877 Select
*pSelect
, /* The entire SELECT statement */
5878 u16 wctrlFlags
, /* The WHERE_* flags defined in sqliteInt.h */
5879 int iAuxArg
/* If WHERE_OR_SUBCLAUSE is set, index cursor number
5880 ** If WHERE_USE_LIMIT, then the limit amount */
5882 int nByteWInfo
; /* Num. bytes allocated for WhereInfo struct */
5883 int nTabList
; /* Number of elements in pTabList */
5884 WhereInfo
*pWInfo
; /* Will become the return value of this function */
5885 Vdbe
*v
= pParse
->pVdbe
; /* The virtual database engine */
5886 Bitmask notReady
; /* Cursors that are not yet positioned */
5887 WhereLoopBuilder sWLB
; /* The WhereLoop builder */
5888 WhereMaskSet
*pMaskSet
; /* The expression mask set */
5889 WhereLevel
*pLevel
; /* A single level in pWInfo->a[] */
5890 WhereLoop
*pLoop
; /* Pointer to a single WhereLoop object */
5891 int ii
; /* Loop counter */
5892 sqlite3
*db
; /* Database connection */
5893 int rc
; /* Return code */
5894 u8 bFordelete
= 0; /* OPFLAG_FORDELETE or zero, as appropriate */
5896 assert( (wctrlFlags
& WHERE_ONEPASS_MULTIROW
)==0 || (
5897 (wctrlFlags
& WHERE_ONEPASS_DESIRED
)!=0
5898 && (wctrlFlags
& WHERE_OR_SUBCLAUSE
)==0
5901 /* Only one of WHERE_OR_SUBCLAUSE or WHERE_USE_LIMIT */
5902 assert( (wctrlFlags
& WHERE_OR_SUBCLAUSE
)==0
5903 || (wctrlFlags
& WHERE_USE_LIMIT
)==0 );
5905 /* Variable initialization */
5907 memset(&sWLB
, 0, sizeof(sWLB
));
5909 /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */
5910 testcase( pOrderBy
&& pOrderBy
->nExpr
==BMS
-1 );
5911 if( pOrderBy
&& pOrderBy
->nExpr
>=BMS
) pOrderBy
= 0;
5913 /* The number of tables in the FROM clause is limited by the number of
5914 ** bits in a Bitmask
5916 testcase( pTabList
->nSrc
==BMS
);
5917 if( pTabList
->nSrc
>BMS
){
5918 sqlite3ErrorMsg(pParse
, "at most %d tables in a join", BMS
);
5922 /* This function normally generates a nested loop for all tables in
5923 ** pTabList. But if the WHERE_OR_SUBCLAUSE flag is set, then we should
5924 ** only generate code for the first table in pTabList and assume that
5925 ** any cursors associated with subsequent tables are uninitialized.
5927 nTabList
= (wctrlFlags
& WHERE_OR_SUBCLAUSE
) ? 1 : pTabList
->nSrc
;
5929 /* Allocate and initialize the WhereInfo structure that will become the
5930 ** return value. A single allocation is used to store the WhereInfo
5931 ** struct, the contents of WhereInfo.a[], the WhereClause structure
5932 ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte
5933 ** field (type Bitmask) it must be aligned on an 8-byte boundary on
5934 ** some architectures. Hence the ROUND8() below.
5936 nByteWInfo
= ROUND8P(sizeof(WhereInfo
)+(nTabList
-1)*sizeof(WhereLevel
));
5937 pWInfo
= sqlite3DbMallocRawNN(db
, nByteWInfo
+ sizeof(WhereLoop
));
5938 if( db
->mallocFailed
){
5939 sqlite3DbFree(db
, pWInfo
);
5941 goto whereBeginError
;
5943 pWInfo
->pParse
= pParse
;
5944 pWInfo
->pTabList
= pTabList
;
5945 pWInfo
->pOrderBy
= pOrderBy
;
5946 #if WHERETRACE_ENABLED
5947 pWInfo
->pWhere
= pWhere
;
5949 pWInfo
->pResultSet
= pResultSet
;
5950 pWInfo
->aiCurOnePass
[0] = pWInfo
->aiCurOnePass
[1] = -1;
5951 pWInfo
->nLevel
= nTabList
;
5952 pWInfo
->iBreak
= pWInfo
->iContinue
= sqlite3VdbeMakeLabel(pParse
);
5953 pWInfo
->wctrlFlags
= wctrlFlags
;
5954 pWInfo
->iLimit
= iAuxArg
;
5955 pWInfo
->savedNQueryLoop
= pParse
->nQueryLoop
;
5956 pWInfo
->pSelect
= pSelect
;
5957 memset(&pWInfo
->nOBSat
, 0,
5958 offsetof(WhereInfo
,sWC
) - offsetof(WhereInfo
,nOBSat
));
5959 memset(&pWInfo
->a
[0], 0, sizeof(WhereLoop
)+nTabList
*sizeof(WhereLevel
));
5960 assert( pWInfo
->eOnePass
==ONEPASS_OFF
); /* ONEPASS defaults to OFF */
5961 pMaskSet
= &pWInfo
->sMaskSet
;
5963 pMaskSet
->ix
[0] = -99; /* Initialize ix[0] to a value that can never be
5964 ** a valid cursor number, to avoid an initial
5965 ** test for pMaskSet->n==0 in sqlite3WhereGetMask() */
5966 sWLB
.pWInfo
= pWInfo
;
5967 sWLB
.pWC
= &pWInfo
->sWC
;
5968 sWLB
.pNew
= (WhereLoop
*)(((char*)pWInfo
)+nByteWInfo
);
5969 assert( EIGHT_BYTE_ALIGNMENT(sWLB
.pNew
) );
5970 whereLoopInit(sWLB
.pNew
);
5972 sWLB
.pNew
->cId
= '*';
5975 /* Split the WHERE clause into separate subexpressions where each
5976 ** subexpression is separated by an AND operator.
5978 sqlite3WhereClauseInit(&pWInfo
->sWC
, pWInfo
);
5979 sqlite3WhereSplit(&pWInfo
->sWC
, pWhere
, TK_AND
);
5981 /* Special case: No FROM clause
5984 if( pOrderBy
) pWInfo
->nOBSat
= pOrderBy
->nExpr
;
5985 if( (wctrlFlags
& WHERE_WANT_DISTINCT
)!=0
5986 && OptimizationEnabled(db
, SQLITE_DistinctOpt
)
5988 pWInfo
->eDistinct
= WHERE_DISTINCT_UNIQUE
;
5990 ExplainQueryPlan((pParse
, 0, "SCAN CONSTANT ROW"));
5992 /* Assign a bit from the bitmask to every term in the FROM clause.
5994 ** The N-th term of the FROM clause is assigned a bitmask of 1<<N.
5996 ** The rule of the previous sentence ensures that if X is the bitmask for
5997 ** a table T, then X-1 is the bitmask for all other tables to the left of T.
5998 ** Knowing the bitmask for all tables to the left of a left join is
5999 ** important. Ticket #3015.
6001 ** Note that bitmasks are created for all pTabList->nSrc tables in
6002 ** pTabList, not just the first nTabList tables. nTabList is normally
6003 ** equal to pTabList->nSrc but might be shortened to 1 if the
6004 ** WHERE_OR_SUBCLAUSE flag is set.
6008 createMask(pMaskSet
, pTabList
->a
[ii
].iCursor
);
6009 sqlite3WhereTabFuncArgs(pParse
, &pTabList
->a
[ii
], &pWInfo
->sWC
);
6010 }while( (++ii
)<pTabList
->nSrc
);
6014 for(ii
=0; ii
<pTabList
->nSrc
; ii
++){
6015 Bitmask m
= sqlite3WhereGetMask(pMaskSet
, pTabList
->a
[ii
].iCursor
);
6023 /* Analyze all of the subexpressions. */
6024 sqlite3WhereExprAnalyze(pTabList
, &pWInfo
->sWC
);
6025 if( pSelect
&& pSelect
->pLimit
){
6026 sqlite3WhereAddLimit(&pWInfo
->sWC
, pSelect
);
6028 if( pParse
->nErr
) goto whereBeginError
;
6030 /* The False-WHERE-Term-Bypass optimization:
6032 ** If there are WHERE terms that are false, then no rows will be output,
6033 ** so skip over all of the code generated here.
6037 ** (1) The WHERE term must not refer to any tables in the join.
6038 ** (2) The term must not come from an ON clause on the
6039 ** right-hand side of a LEFT or FULL JOIN.
6040 ** (3) The term must not come from an ON clause, or there must be
6041 ** no RIGHT or FULL OUTER joins in pTabList.
6042 ** (4) If the expression contains non-deterministic functions
6043 ** that are not within a sub-select. This is not required
6044 ** for correctness but rather to preserves SQLite's legacy
6045 ** behaviour in the following two cases:
6047 ** WHERE random()>0; -- eval random() once per row
6048 ** WHERE (SELECT random())>0; -- eval random() just once overall
6050 ** Note that the Where term need not be a constant in order for this
6051 ** optimization to apply, though it does need to be constant relative to
6052 ** the current subquery (condition 1). The term might include variables
6053 ** from outer queries so that the value of the term changes from one
6054 ** invocation of the current subquery to the next.
6056 for(ii
=0; ii
<sWLB
.pWC
->nBase
; ii
++){
6057 WhereTerm
*pT
= &sWLB
.pWC
->a
[ii
]; /* A term of the WHERE clause */
6058 Expr
*pX
; /* The expression of pT */
6059 if( pT
->wtFlags
& TERM_VIRTUAL
) continue;
6062 assert( pT
->prereqAll
!=0 || !ExprHasProperty(pX
, EP_OuterON
) );
6063 if( pT
->prereqAll
==0 /* Conditions (1) and (2) */
6064 && (nTabList
==0 || exprIsDeterministic(pX
)) /* Condition (4) */
6065 && !(ExprHasProperty(pX
, EP_InnerON
) /* Condition (3) */
6066 && (pTabList
->a
[0].fg
.jointype
& JT_LTORJ
)!=0 )
6068 sqlite3ExprIfFalse(pParse
, pX
, pWInfo
->iBreak
, SQLITE_JUMPIFNULL
);
6069 pT
->wtFlags
|= TERM_CODED
;
6073 if( wctrlFlags
& WHERE_WANT_DISTINCT
){
6074 if( OptimizationDisabled(db
, SQLITE_DistinctOpt
) ){
6075 /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via
6076 ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */
6077 wctrlFlags
&= ~WHERE_WANT_DISTINCT
;
6078 pWInfo
->wctrlFlags
&= ~WHERE_WANT_DISTINCT
;
6079 }else if( isDistinctRedundant(pParse
, pTabList
, &pWInfo
->sWC
, pResultSet
) ){
6080 /* The DISTINCT marking is pointless. Ignore it. */
6081 pWInfo
->eDistinct
= WHERE_DISTINCT_UNIQUE
;
6082 }else if( pOrderBy
==0 ){
6083 /* Try to ORDER BY the result set to make distinct processing easier */
6084 pWInfo
->wctrlFlags
|= WHERE_DISTINCTBY
;
6085 pWInfo
->pOrderBy
= pResultSet
;
6089 /* Construct the WhereLoop objects */
6090 #if defined(WHERETRACE_ENABLED)
6091 if( sqlite3WhereTrace
& 0xffffffff ){
6092 sqlite3DebugPrintf("*** Optimizer Start *** (wctrlFlags: 0x%x",wctrlFlags
);
6093 if( wctrlFlags
& WHERE_USE_LIMIT
){
6094 sqlite3DebugPrintf(", limit: %d", iAuxArg
);
6096 sqlite3DebugPrintf(")\n");
6097 if( sqlite3WhereTrace
& 0x8000 ){
6099 memset(&sSelect
, 0, sizeof(sSelect
));
6100 sSelect
.selFlags
= SF_WhereBegin
;
6101 sSelect
.pSrc
= pTabList
;
6102 sSelect
.pWhere
= pWhere
;
6103 sSelect
.pOrderBy
= pOrderBy
;
6104 sSelect
.pEList
= pResultSet
;
6105 sqlite3TreeViewSelect(0, &sSelect
, 0);
6107 if( sqlite3WhereTrace
& 0x4000 ){ /* Display all WHERE clause terms */
6108 sqlite3DebugPrintf("---- WHERE clause at start of analysis:\n");
6109 sqlite3WhereClausePrint(sWLB
.pWC
);
6114 if( nTabList
!=1 || whereShortCut(&sWLB
)==0 ){
6115 rc
= whereLoopAddAll(&sWLB
);
6116 if( rc
) goto whereBeginError
;
6118 #ifdef SQLITE_ENABLE_STAT4
6119 /* If one or more WhereTerm.truthProb values were used in estimating
6120 ** loop parameters, but then those truthProb values were subsequently
6121 ** changed based on STAT4 information while computing subsequent loops,
6122 ** then we need to rerun the whole loop building process so that all
6123 ** loops will be built using the revised truthProb values. */
6124 if( sWLB
.bldFlags2
& SQLITE_BLDF2_2NDPASS
){
6125 WHERETRACE_ALL_LOOPS(pWInfo
, sWLB
.pWC
);
6126 WHERETRACE(0xffffffff,
6127 ("**** Redo all loop computations due to"
6128 " TERM_HIGHTRUTH changes ****\n"));
6129 while( pWInfo
->pLoops
){
6130 WhereLoop
*p
= pWInfo
->pLoops
;
6131 pWInfo
->pLoops
= p
->pNextLoop
;
6132 whereLoopDelete(db
, p
);
6134 rc
= whereLoopAddAll(&sWLB
);
6135 if( rc
) goto whereBeginError
;
6138 WHERETRACE_ALL_LOOPS(pWInfo
, sWLB
.pWC
);
6140 wherePathSolver(pWInfo
, 0);
6141 if( db
->mallocFailed
) goto whereBeginError
;
6142 if( pWInfo
->pOrderBy
){
6143 wherePathSolver(pWInfo
, pWInfo
->nRowOut
+1);
6144 if( db
->mallocFailed
) goto whereBeginError
;
6147 assert( pWInfo
->pTabList
!=0 );
6148 if( pWInfo
->pOrderBy
==0 && (db
->flags
& SQLITE_ReverseOrder
)!=0 ){
6149 whereReverseScanOrder(pWInfo
);
6152 goto whereBeginError
;
6154 assert( db
->mallocFailed
==0 );
6155 #ifdef WHERETRACE_ENABLED
6156 if( sqlite3WhereTrace
){
6157 sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo
->nRowOut
);
6158 if( pWInfo
->nOBSat
>0 ){
6159 sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo
->nOBSat
, pWInfo
->revMask
);
6161 switch( pWInfo
->eDistinct
){
6162 case WHERE_DISTINCT_UNIQUE
: {
6163 sqlite3DebugPrintf(" DISTINCT=unique");
6166 case WHERE_DISTINCT_ORDERED
: {
6167 sqlite3DebugPrintf(" DISTINCT=ordered");
6170 case WHERE_DISTINCT_UNORDERED
: {
6171 sqlite3DebugPrintf(" DISTINCT=unordered");
6175 sqlite3DebugPrintf("\n");
6176 for(ii
=0; ii
<pWInfo
->nLevel
; ii
++){
6177 sqlite3WhereLoopPrint(pWInfo
->a
[ii
].pWLoop
, sWLB
.pWC
);
6182 /* Attempt to omit tables from a join that do not affect the result.
6183 ** See the comment on whereOmitNoopJoin() for further information.
6185 ** This query optimization is factored out into a separate "no-inline"
6186 ** procedure to keep the sqlite3WhereBegin() procedure from becoming
6187 ** too large. If sqlite3WhereBegin() becomes too large, that prevents
6188 ** some C-compiler optimizers from in-lining the
6189 ** sqlite3WhereCodeOneLoopStart() procedure, and it is important to
6190 ** in-line sqlite3WhereCodeOneLoopStart() for performance reasons.
6192 notReady
= ~(Bitmask
)0;
6193 if( pWInfo
->nLevel
>=2
6194 && pResultSet
!=0 /* these two combine to guarantee */
6195 && 0==(wctrlFlags
& WHERE_AGG_DISTINCT
) /* condition (1) above */
6196 && OptimizationEnabled(db
, SQLITE_OmitNoopJoin
)
6198 notReady
= whereOmitNoopJoin(pWInfo
, notReady
);
6199 nTabList
= pWInfo
->nLevel
;
6200 assert( nTabList
>0 );
6203 /* Check to see if there are any SEARCH loops that might benefit from
6204 ** using a Bloom filter.
6206 if( pWInfo
->nLevel
>=2
6207 && OptimizationEnabled(db
, SQLITE_BloomFilter
)
6209 whereCheckIfBloomFilterIsUseful(pWInfo
);
6212 #if defined(WHERETRACE_ENABLED)
6213 if( sqlite3WhereTrace
& 0x4000 ){ /* Display all terms of the WHERE clause */
6214 sqlite3DebugPrintf("---- WHERE clause at end of analysis:\n");
6215 sqlite3WhereClausePrint(sWLB
.pWC
);
6217 WHERETRACE(0xffffffff,("*** Optimizer Finished ***\n"));
6219 pWInfo
->pParse
->nQueryLoop
+= pWInfo
->nRowOut
;
6221 /* If the caller is an UPDATE or DELETE statement that is requesting
6222 ** to use a one-pass algorithm, determine if this is appropriate.
6224 ** A one-pass approach can be used if the caller has requested one
6225 ** and either (a) the scan visits at most one row or (b) each
6226 ** of the following are true:
6228 ** * the caller has indicated that a one-pass approach can be used
6229 ** with multiple rows (by setting WHERE_ONEPASS_MULTIROW), and
6230 ** * the table is not a virtual table, and
6231 ** * either the scan does not use the OR optimization or the caller
6232 ** is a DELETE operation (WHERE_DUPLICATES_OK is only specified
6235 ** The last qualification is because an UPDATE statement uses
6236 ** WhereInfo.aiCurOnePass[1] to determine whether or not it really can
6237 ** use a one-pass approach, and this is not set accurately for scans
6238 ** that use the OR optimization.
6240 assert( (wctrlFlags
& WHERE_ONEPASS_DESIRED
)==0 || pWInfo
->nLevel
==1 );
6241 if( (wctrlFlags
& WHERE_ONEPASS_DESIRED
)!=0 ){
6242 int wsFlags
= pWInfo
->a
[0].pWLoop
->wsFlags
;
6243 int bOnerow
= (wsFlags
& WHERE_ONEROW
)!=0;
6244 assert( !(wsFlags
& WHERE_VIRTUALTABLE
) || IsVirtual(pTabList
->a
[0].pTab
) );
6246 0!=(wctrlFlags
& WHERE_ONEPASS_MULTIROW
)
6247 && !IsVirtual(pTabList
->a
[0].pTab
)
6248 && (0==(wsFlags
& WHERE_MULTI_OR
) || (wctrlFlags
& WHERE_DUPLICATES_OK
))
6249 && OptimizationEnabled(db
, SQLITE_OnePass
)
6251 pWInfo
->eOnePass
= bOnerow
? ONEPASS_SINGLE
: ONEPASS_MULTI
;
6252 if( HasRowid(pTabList
->a
[0].pTab
) && (wsFlags
& WHERE_IDX_ONLY
) ){
6253 if( wctrlFlags
& WHERE_ONEPASS_MULTIROW
){
6254 bFordelete
= OPFLAG_FORDELETE
;
6256 pWInfo
->a
[0].pWLoop
->wsFlags
= (wsFlags
& ~WHERE_IDX_ONLY
);
6261 /* Open all tables in the pTabList and any indices selected for
6262 ** searching those tables.
6264 for(ii
=0, pLevel
=pWInfo
->a
; ii
<nTabList
; ii
++, pLevel
++){
6265 Table
*pTab
; /* Table to open */
6266 int iDb
; /* Index of database containing table/index */
6269 pTabItem
= &pTabList
->a
[pLevel
->iFrom
];
6270 pTab
= pTabItem
->pTab
;
6271 iDb
= sqlite3SchemaToIndex(db
, pTab
->pSchema
);
6272 pLoop
= pLevel
->pWLoop
;
6273 if( (pTab
->tabFlags
& TF_Ephemeral
)!=0 || IsView(pTab
) ){
6276 #ifndef SQLITE_OMIT_VIRTUALTABLE
6277 if( (pLoop
->wsFlags
& WHERE_VIRTUALTABLE
)!=0 ){
6278 const char *pVTab
= (const char *)sqlite3GetVTable(db
, pTab
);
6279 int iCur
= pTabItem
->iCursor
;
6280 sqlite3VdbeAddOp4(v
, OP_VOpen
, iCur
, 0, 0, pVTab
, P4_VTAB
);
6281 }else if( IsVirtual(pTab
) ){
6285 if( ((pLoop
->wsFlags
& WHERE_IDX_ONLY
)==0
6286 && (wctrlFlags
& WHERE_OR_SUBCLAUSE
)==0)
6287 || (pTabItem
->fg
.jointype
& (JT_LTORJ
|JT_RIGHT
))!=0
6289 int op
= OP_OpenRead
;
6290 if( pWInfo
->eOnePass
!=ONEPASS_OFF
){
6292 pWInfo
->aiCurOnePass
[0] = pTabItem
->iCursor
;
6294 sqlite3OpenTable(pParse
, pTabItem
->iCursor
, iDb
, pTab
, op
);
6295 assert( pTabItem
->iCursor
==pLevel
->iTabCur
);
6296 testcase( pWInfo
->eOnePass
==ONEPASS_OFF
&& pTab
->nCol
==BMS
-1 );
6297 testcase( pWInfo
->eOnePass
==ONEPASS_OFF
&& pTab
->nCol
==BMS
);
6298 if( pWInfo
->eOnePass
==ONEPASS_OFF
6300 && (pTab
->tabFlags
& (TF_HasGenerated
|TF_WithoutRowid
))==0
6301 && (pLoop
->wsFlags
& (WHERE_AUTO_INDEX
|WHERE_BLOOMFILTER
))==0
6303 /* If we know that only a prefix of the record will be used,
6304 ** it is advantageous to reduce the "column count" field in
6305 ** the P4 operand of the OP_OpenRead/Write opcode. */
6306 Bitmask b
= pTabItem
->colUsed
;
6308 for(; b
; b
=b
>>1, n
++){}
6309 sqlite3VdbeChangeP4(v
, -1, SQLITE_INT_TO_PTR(n
), P4_INT32
);
6310 assert( n
<=pTab
->nCol
);
6312 #ifdef SQLITE_ENABLE_CURSOR_HINTS
6313 if( pLoop
->u
.btree
.pIndex
!=0 && (pTab
->tabFlags
& TF_WithoutRowid
)==0 ){
6314 sqlite3VdbeChangeP5(v
, OPFLAG_SEEKEQ
|bFordelete
);
6318 sqlite3VdbeChangeP5(v
, bFordelete
);
6320 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
6321 sqlite3VdbeAddOp4Dup8(v
, OP_ColumnsUsed
, pTabItem
->iCursor
, 0, 0,
6322 (const u8
*)&pTabItem
->colUsed
, P4_INT64
);
6325 sqlite3TableLock(pParse
, iDb
, pTab
->tnum
, 0, pTab
->zName
);
6327 if( pLoop
->wsFlags
& WHERE_INDEXED
){
6328 Index
*pIx
= pLoop
->u
.btree
.pIndex
;
6330 int op
= OP_OpenRead
;
6331 /* iAuxArg is always set to a positive value if ONEPASS is possible */
6332 assert( iAuxArg
!=0 || (pWInfo
->wctrlFlags
& WHERE_ONEPASS_DESIRED
)==0 );
6333 if( !HasRowid(pTab
) && IsPrimaryKeyIndex(pIx
)
6334 && (wctrlFlags
& WHERE_OR_SUBCLAUSE
)!=0
6336 /* This is one term of an OR-optimization using the PRIMARY KEY of a
6337 ** WITHOUT ROWID table. No need for a separate index */
6338 iIndexCur
= pLevel
->iTabCur
;
6340 }else if( pWInfo
->eOnePass
!=ONEPASS_OFF
){
6341 Index
*pJ
= pTabItem
->pTab
->pIndex
;
6342 iIndexCur
= iAuxArg
;
6343 assert( wctrlFlags
& WHERE_ONEPASS_DESIRED
);
6344 while( ALWAYS(pJ
) && pJ
!=pIx
){
6349 pWInfo
->aiCurOnePass
[1] = iIndexCur
;
6350 }else if( iAuxArg
&& (wctrlFlags
& WHERE_OR_SUBCLAUSE
)!=0 ){
6351 iIndexCur
= iAuxArg
;
6354 iIndexCur
= pParse
->nTab
++;
6355 if( pIx
->bHasExpr
&& OptimizationEnabled(db
, SQLITE_IndexedExpr
) ){
6356 whereAddIndexedExpr(pParse
, pIx
, iIndexCur
, pTabItem
);
6359 pLevel
->iIdxCur
= iIndexCur
;
6361 assert( pIx
->pSchema
==pTab
->pSchema
);
6362 assert( iIndexCur
>=0 );
6364 sqlite3VdbeAddOp3(v
, op
, iIndexCur
, pIx
->tnum
, iDb
);
6365 sqlite3VdbeSetP4KeyInfo(pParse
, pIx
);
6366 if( (pLoop
->wsFlags
& WHERE_CONSTRAINT
)!=0
6367 && (pLoop
->wsFlags
& (WHERE_COLUMN_RANGE
|WHERE_SKIPSCAN
))==0
6368 && (pLoop
->wsFlags
& WHERE_BIGNULL_SORT
)==0
6369 && (pLoop
->wsFlags
& WHERE_IN_SEEKSCAN
)==0
6370 && (pWInfo
->wctrlFlags
&WHERE_ORDERBY_MIN
)==0
6371 && pWInfo
->eDistinct
!=WHERE_DISTINCT_ORDERED
6373 sqlite3VdbeChangeP5(v
, OPFLAG_SEEKEQ
);
6375 VdbeComment((v
, "%s", pIx
->zName
));
6376 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
6380 for(ii
=0; ii
<pIx
->nColumn
; ii
++){
6381 jj
= pIx
->aiColumn
[ii
];
6382 if( jj
<0 ) continue;
6383 if( jj
>63 ) jj
= 63;
6384 if( (pTabItem
->colUsed
& MASKBIT(jj
))==0 ) continue;
6385 colUsed
|= ((u64
)1)<<(ii
<63 ? ii
: 63);
6387 sqlite3VdbeAddOp4Dup8(v
, OP_ColumnsUsed
, iIndexCur
, 0, 0,
6388 (u8
*)&colUsed
, P4_INT64
);
6390 #endif /* SQLITE_ENABLE_COLUMN_USED_MASK */
6393 if( iDb
>=0 ) sqlite3CodeVerifySchema(pParse
, iDb
);
6394 if( (pTabItem
->fg
.jointype
& JT_RIGHT
)!=0
6395 && (pLevel
->pRJ
= sqlite3WhereMalloc(pWInfo
, sizeof(WhereRightJoin
)))!=0
6397 WhereRightJoin
*pRJ
= pLevel
->pRJ
;
6398 pRJ
->iMatch
= pParse
->nTab
++;
6399 pRJ
->regBloom
= ++pParse
->nMem
;
6400 sqlite3VdbeAddOp2(v
, OP_Blob
, 65536, pRJ
->regBloom
);
6401 pRJ
->regReturn
= ++pParse
->nMem
;
6402 sqlite3VdbeAddOp2(v
, OP_Null
, 0, pRJ
->regReturn
);
6403 assert( pTab
==pTabItem
->pTab
);
6404 if( HasRowid(pTab
) ){
6406 sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, pRJ
->iMatch
, 1);
6407 pInfo
= sqlite3KeyInfoAlloc(pParse
->db
, 1, 0);
6409 pInfo
->aColl
[0] = 0;
6410 pInfo
->aSortFlags
[0] = 0;
6411 sqlite3VdbeAppendP4(v
, pInfo
, P4_KEYINFO
);
6414 Index
*pPk
= sqlite3PrimaryKeyIndex(pTab
);
6415 sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, pRJ
->iMatch
, pPk
->nKeyCol
);
6416 sqlite3VdbeSetP4KeyInfo(pParse
, pPk
);
6418 pLoop
->wsFlags
&= ~WHERE_IDX_ONLY
;
6419 /* The nature of RIGHT JOIN processing is such that it messes up
6420 ** the output order. So omit any ORDER BY/GROUP BY elimination
6421 ** optimizations. We need to do an actual sort for RIGHT JOIN. */
6423 pWInfo
->eDistinct
= WHERE_DISTINCT_UNORDERED
;
6426 pWInfo
->iTop
= sqlite3VdbeCurrentAddr(v
);
6427 if( db
->mallocFailed
) goto whereBeginError
;
6429 /* Generate the code to do the search. Each iteration of the for
6430 ** loop below generates code for a single nested loop of the VM
6433 for(ii
=0; ii
<nTabList
; ii
++){
6437 if( pParse
->nErr
) goto whereBeginError
;
6438 pLevel
= &pWInfo
->a
[ii
];
6439 wsFlags
= pLevel
->pWLoop
->wsFlags
;
6440 pSrc
= &pTabList
->a
[pLevel
->iFrom
];
6441 if( pSrc
->fg
.isMaterialized
){
6442 if( pSrc
->fg
.isCorrelated
){
6443 sqlite3VdbeAddOp2(v
, OP_Gosub
, pSrc
->regReturn
, pSrc
->addrFillSub
);
6445 int iOnce
= sqlite3VdbeAddOp0(v
, OP_Once
); VdbeCoverage(v
);
6446 sqlite3VdbeAddOp2(v
, OP_Gosub
, pSrc
->regReturn
, pSrc
->addrFillSub
);
6447 sqlite3VdbeJumpHere(v
, iOnce
);
6450 assert( pTabList
== pWInfo
->pTabList
);
6451 if( (wsFlags
& (WHERE_AUTO_INDEX
|WHERE_BLOOMFILTER
))!=0 ){
6452 if( (wsFlags
& WHERE_AUTO_INDEX
)!=0 ){
6453 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
6454 constructAutomaticIndex(pParse
, &pWInfo
->sWC
, notReady
, pLevel
);
6457 sqlite3ConstructBloomFilter(pWInfo
, ii
, pLevel
, notReady
);
6459 if( db
->mallocFailed
) goto whereBeginError
;
6461 addrExplain
= sqlite3WhereExplainOneScan(
6462 pParse
, pTabList
, pLevel
, wctrlFlags
6464 pLevel
->addrBody
= sqlite3VdbeCurrentAddr(v
);
6465 notReady
= sqlite3WhereCodeOneLoopStart(pParse
,v
,pWInfo
,ii
,pLevel
,notReady
);
6466 pWInfo
->iContinue
= pLevel
->addrCont
;
6467 if( (wsFlags
&WHERE_MULTI_OR
)==0 && (wctrlFlags
&WHERE_OR_SUBCLAUSE
)==0 ){
6468 sqlite3WhereAddScanStatus(v
, pTabList
, pLevel
, addrExplain
);
6473 VdbeModuleComment((v
, "Begin WHERE-core"));
6474 pWInfo
->iEndWhere
= sqlite3VdbeCurrentAddr(v
);
6477 /* Jump here if malloc fails */
6480 pParse
->nQueryLoop
= pWInfo
->savedNQueryLoop
;
6481 whereInfoFree(db
, pWInfo
);
6487 ** Part of sqlite3WhereEnd() will rewrite opcodes to reference the
6488 ** index rather than the main table. In SQLITE_DEBUG mode, we want
6489 ** to trace those changes if PRAGMA vdbe_addoptrace=on. This routine
6492 #ifndef SQLITE_DEBUG
6493 # define OpcodeRewriteTrace(D,K,P) /* no-op */
6495 # define OpcodeRewriteTrace(D,K,P) sqlite3WhereOpcodeRewriteTrace(D,K,P)
6496 static void sqlite3WhereOpcodeRewriteTrace(
6501 if( (db
->flags
& SQLITE_VdbeAddopTrace
)==0 ) return;
6502 sqlite3VdbePrintOp(0, pc
, pOp
);
6508 ** Return true if cursor iCur is opened by instruction k of the
6509 ** bytecode. Used inside of assert() only.
6511 static int cursorIsOpen(Vdbe
*v
, int iCur
, int k
){
6513 VdbeOp
*pOp
= sqlite3VdbeGetOp(v
,k
--);
6514 if( pOp
->p1
!=iCur
) continue;
6515 if( pOp
->opcode
==OP_Close
) return 0;
6516 if( pOp
->opcode
==OP_OpenRead
) return 1;
6517 if( pOp
->opcode
==OP_OpenWrite
) return 1;
6518 if( pOp
->opcode
==OP_OpenDup
) return 1;
6519 if( pOp
->opcode
==OP_OpenAutoindex
) return 1;
6520 if( pOp
->opcode
==OP_OpenEphemeral
) return 1;
6524 #endif /* SQLITE_DEBUG */
6527 ** Generate the end of the WHERE loop. See comments on
6528 ** sqlite3WhereBegin() for additional information.
6530 void sqlite3WhereEnd(WhereInfo
*pWInfo
){
6531 Parse
*pParse
= pWInfo
->pParse
;
6532 Vdbe
*v
= pParse
->pVdbe
;
6536 SrcList
*pTabList
= pWInfo
->pTabList
;
6537 sqlite3
*db
= pParse
->db
;
6538 int iEnd
= sqlite3VdbeCurrentAddr(v
);
6541 /* Generate loop termination code.
6543 VdbeModuleComment((v
, "End WHERE-core"));
6544 for(i
=pWInfo
->nLevel
-1; i
>=0; i
--){
6546 pLevel
= &pWInfo
->a
[i
];
6548 /* Terminate the subroutine that forms the interior of the loop of
6549 ** the RIGHT JOIN table */
6550 WhereRightJoin
*pRJ
= pLevel
->pRJ
;
6551 sqlite3VdbeResolveLabel(v
, pLevel
->addrCont
);
6552 pLevel
->addrCont
= 0;
6553 pRJ
->endSubrtn
= sqlite3VdbeCurrentAddr(v
);
6554 sqlite3VdbeAddOp3(v
, OP_Return
, pRJ
->regReturn
, pRJ
->addrSubrtn
, 1);
6558 pLoop
= pLevel
->pWLoop
;
6559 if( pLevel
->op
!=OP_Noop
){
6560 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
6564 if( pWInfo
->eDistinct
==WHERE_DISTINCT_ORDERED
6565 && i
==pWInfo
->nLevel
-1 /* Ticket [ef9318757b152e3] 2017-10-21 */
6566 && (pLoop
->wsFlags
& WHERE_INDEXED
)!=0
6567 && (pIdx
= pLoop
->u
.btree
.pIndex
)->hasStat1
6568 && (n
= pLoop
->u
.btree
.nDistinctCol
)>0
6569 && pIdx
->aiRowLogEst
[n
]>=36
6571 int r1
= pParse
->nMem
+1;
6574 sqlite3VdbeAddOp3(v
, OP_Column
, pLevel
->iIdxCur
, j
, r1
+j
);
6576 pParse
->nMem
+= n
+1;
6577 op
= pLevel
->op
==OP_Prev
? OP_SeekLT
: OP_SeekGT
;
6578 addrSeek
= sqlite3VdbeAddOp4Int(v
, op
, pLevel
->iIdxCur
, 0, r1
, n
);
6579 VdbeCoverageIf(v
, op
==OP_SeekLT
);
6580 VdbeCoverageIf(v
, op
==OP_SeekGT
);
6581 sqlite3VdbeAddOp2(v
, OP_Goto
, 1, pLevel
->p2
);
6583 #endif /* SQLITE_DISABLE_SKIPAHEAD_DISTINCT */
6584 /* The common case: Advance to the next row */
6585 if( pLevel
->addrCont
) sqlite3VdbeResolveLabel(v
, pLevel
->addrCont
);
6586 sqlite3VdbeAddOp3(v
, pLevel
->op
, pLevel
->p1
, pLevel
->p2
, pLevel
->p3
);
6587 sqlite3VdbeChangeP5(v
, pLevel
->p5
);
6589 VdbeCoverageIf(v
, pLevel
->op
==OP_Next
);
6590 VdbeCoverageIf(v
, pLevel
->op
==OP_Prev
);
6591 VdbeCoverageIf(v
, pLevel
->op
==OP_VNext
);
6592 if( pLevel
->regBignull
){
6593 sqlite3VdbeResolveLabel(v
, pLevel
->addrBignull
);
6594 sqlite3VdbeAddOp2(v
, OP_DecrJumpZero
, pLevel
->regBignull
, pLevel
->p2
-1);
6597 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
6598 if( addrSeek
) sqlite3VdbeJumpHere(v
, addrSeek
);
6600 }else if( pLevel
->addrCont
){
6601 sqlite3VdbeResolveLabel(v
, pLevel
->addrCont
);
6603 if( (pLoop
->wsFlags
& WHERE_IN_ABLE
)!=0 && pLevel
->u
.in
.nIn
>0 ){
6606 sqlite3VdbeResolveLabel(v
, pLevel
->addrNxt
);
6607 for(j
=pLevel
->u
.in
.nIn
, pIn
=&pLevel
->u
.in
.aInLoop
[j
-1]; j
>0; j
--, pIn
--){
6608 assert( sqlite3VdbeGetOp(v
, pIn
->addrInTop
+1)->opcode
==OP_IsNull
6609 || pParse
->db
->mallocFailed
);
6610 sqlite3VdbeJumpHere(v
, pIn
->addrInTop
+1);
6611 if( pIn
->eEndLoopOp
!=OP_Noop
){
6614 (pLoop
->wsFlags
& WHERE_VIRTUALTABLE
)==0
6615 && (pLoop
->wsFlags
& WHERE_IN_EARLYOUT
)!=0;
6616 if( pLevel
->iLeftJoin
){
6617 /* For LEFT JOIN queries, cursor pIn->iCur may not have been
6618 ** opened yet. This occurs for WHERE clauses such as
6619 ** "a = ? AND b IN (...)", where the index is on (a, b). If
6620 ** the RHS of the (a=?) is NULL, then the "b IN (...)" may
6621 ** never have been coded, but the body of the loop run to
6622 ** return the null-row. So, if the cursor is not open yet,
6623 ** jump over the OP_Next or OP_Prev instruction about to
6625 sqlite3VdbeAddOp2(v
, OP_IfNotOpen
, pIn
->iCur
,
6626 sqlite3VdbeCurrentAddr(v
) + 2 + bEarlyOut
);
6630 sqlite3VdbeAddOp4Int(v
, OP_IfNoHope
, pLevel
->iIdxCur
,
6631 sqlite3VdbeCurrentAddr(v
)+2,
6632 pIn
->iBase
, pIn
->nPrefix
);
6634 /* Retarget the OP_IsNull against the left operand of IN so
6635 ** it jumps past the OP_IfNoHope. This is because the
6636 ** OP_IsNull also bypasses the OP_Affinity opcode that is
6637 ** required by OP_IfNoHope. */
6638 sqlite3VdbeJumpHere(v
, pIn
->addrInTop
+1);
6641 sqlite3VdbeAddOp2(v
, pIn
->eEndLoopOp
, pIn
->iCur
, pIn
->addrInTop
);
6643 VdbeCoverageIf(v
, pIn
->eEndLoopOp
==OP_Prev
);
6644 VdbeCoverageIf(v
, pIn
->eEndLoopOp
==OP_Next
);
6646 sqlite3VdbeJumpHere(v
, pIn
->addrInTop
-1);
6649 sqlite3VdbeResolveLabel(v
, pLevel
->addrBrk
);
6651 sqlite3VdbeAddOp3(v
, OP_Return
, pLevel
->pRJ
->regReturn
, 0, 1);
6654 if( pLevel
->addrSkip
){
6655 sqlite3VdbeGoto(v
, pLevel
->addrSkip
);
6656 VdbeComment((v
, "next skip-scan on %s", pLoop
->u
.btree
.pIndex
->zName
));
6657 sqlite3VdbeJumpHere(v
, pLevel
->addrSkip
);
6658 sqlite3VdbeJumpHere(v
, pLevel
->addrSkip
-2);
6660 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
6661 if( pLevel
->addrLikeRep
){
6662 sqlite3VdbeAddOp2(v
, OP_DecrJumpZero
, (int)(pLevel
->iLikeRepCntr
>>1),
6663 pLevel
->addrLikeRep
);
6667 if( pLevel
->iLeftJoin
){
6668 int ws
= pLoop
->wsFlags
;
6669 addr
= sqlite3VdbeAddOp1(v
, OP_IfPos
, pLevel
->iLeftJoin
); VdbeCoverage(v
);
6670 assert( (ws
& WHERE_IDX_ONLY
)==0 || (ws
& WHERE_INDEXED
)!=0 );
6671 if( (ws
& WHERE_IDX_ONLY
)==0 ){
6672 assert( pLevel
->iTabCur
==pTabList
->a
[pLevel
->iFrom
].iCursor
);
6673 sqlite3VdbeAddOp1(v
, OP_NullRow
, pLevel
->iTabCur
);
6675 if( (ws
& WHERE_INDEXED
)
6676 || ((ws
& WHERE_MULTI_OR
) && pLevel
->u
.pCoveringIdx
)
6678 if( ws
& WHERE_MULTI_OR
){
6679 Index
*pIx
= pLevel
->u
.pCoveringIdx
;
6680 int iDb
= sqlite3SchemaToIndex(db
, pIx
->pSchema
);
6681 sqlite3VdbeAddOp3(v
, OP_ReopenIdx
, pLevel
->iIdxCur
, pIx
->tnum
, iDb
);
6682 sqlite3VdbeSetP4KeyInfo(pParse
, pIx
);
6684 sqlite3VdbeAddOp1(v
, OP_NullRow
, pLevel
->iIdxCur
);
6686 if( pLevel
->op
==OP_Return
){
6687 sqlite3VdbeAddOp2(v
, OP_Gosub
, pLevel
->p1
, pLevel
->addrFirst
);
6689 sqlite3VdbeGoto(v
, pLevel
->addrFirst
);
6691 sqlite3VdbeJumpHere(v
, addr
);
6693 VdbeModuleComment((v
, "End WHERE-loop%d: %s", i
,
6694 pWInfo
->pTabList
->a
[pLevel
->iFrom
].pTab
->zName
));
6697 assert( pWInfo
->nLevel
<=pTabList
->nSrc
);
6698 for(i
=0, pLevel
=pWInfo
->a
; i
<pWInfo
->nLevel
; i
++, pLevel
++){
6700 VdbeOp
*pOp
, *pLastOp
;
6702 SrcItem
*pTabItem
= &pTabList
->a
[pLevel
->iFrom
];
6703 Table
*pTab
= pTabItem
->pTab
;
6705 pLoop
= pLevel
->pWLoop
;
6707 /* Do RIGHT JOIN processing. Generate code that will output the
6708 ** unmatched rows of the right operand of the RIGHT JOIN with
6709 ** all of the columns of the left operand set to NULL.
6712 sqlite3WhereRightJoinLoop(pWInfo
, i
, pLevel
);
6716 /* For a co-routine, change all OP_Column references to the table of
6717 ** the co-routine into OP_Copy of result contained in a register.
6718 ** OP_Rowid becomes OP_Null.
6720 if( pTabItem
->fg
.viaCoroutine
){
6721 testcase( pParse
->db
->mallocFailed
);
6722 translateColumnToCopy(pParse
, pLevel
->addrBody
, pLevel
->iTabCur
,
6723 pTabItem
->regResult
, 0);
6727 /* If this scan uses an index, make VDBE code substitutions to read data
6728 ** from the index instead of from the table where possible. In some cases
6729 ** this optimization prevents the table from ever being read, which can
6730 ** yield a significant performance boost.
6732 ** Calls to the code generator in between sqlite3WhereBegin and
6733 ** sqlite3WhereEnd will have created code that references the table
6734 ** directly. This loop scans all that code looking for opcodes
6735 ** that reference the table and converts them into opcodes that
6736 ** reference the index.
6738 if( pLoop
->wsFlags
& (WHERE_INDEXED
|WHERE_IDX_ONLY
) ){
6739 pIdx
= pLoop
->u
.btree
.pIndex
;
6740 }else if( pLoop
->wsFlags
& WHERE_MULTI_OR
){
6741 pIdx
= pLevel
->u
.pCoveringIdx
;
6744 && !db
->mallocFailed
6746 if( pWInfo
->eOnePass
==ONEPASS_OFF
|| !HasRowid(pIdx
->pTable
) ){
6749 last
= pWInfo
->iEndWhere
;
6751 if( pIdx
->bHasExpr
){
6752 IndexedExpr
*p
= pParse
->pIdxEpr
;
6754 if( p
->iIdxCur
==pLevel
->iIdxCur
){
6755 #ifdef WHERETRACE_ENABLED
6756 if( sqlite3WhereTrace
& 0x200 ){
6757 sqlite3DebugPrintf("Disable pParse->pIdxEpr term {%d,%d}\n",
6758 p
->iIdxCur
, p
->iIdxCol
);
6759 if( sqlite3WhereTrace
& 0x5000 ) sqlite3ShowExpr(p
->pExpr
);
6768 k
= pLevel
->addrBody
+ 1;
6770 if( db
->flags
& SQLITE_VdbeAddopTrace
){
6771 printf("TRANSLATE cursor %d->%d in opcode range %d..%d\n",
6772 pLevel
->iTabCur
, pLevel
->iIdxCur
, k
, last
-1);
6774 /* Proof that the "+1" on the k value above is safe */
6775 pOp
= sqlite3VdbeGetOp(v
, k
- 1);
6776 assert( pOp
->opcode
!=OP_Column
|| pOp
->p1
!=pLevel
->iTabCur
);
6777 assert( pOp
->opcode
!=OP_Rowid
|| pOp
->p1
!=pLevel
->iTabCur
);
6778 assert( pOp
->opcode
!=OP_IfNullRow
|| pOp
->p1
!=pLevel
->iTabCur
);
6780 pOp
= sqlite3VdbeGetOp(v
, k
);
6781 pLastOp
= pOp
+ (last
- k
);
6782 assert( pOp
<=pLastOp
);
6784 if( pOp
->p1
!=pLevel
->iTabCur
){
6786 }else if( pOp
->opcode
==OP_Column
6787 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
6788 || pOp
->opcode
==OP_Offset
6792 assert( pIdx
->pTable
==pTab
);
6793 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
6794 if( pOp
->opcode
==OP_Offset
){
6795 /* Do not need to translate the column number */
6798 if( !HasRowid(pTab
) ){
6799 Index
*pPk
= sqlite3PrimaryKeyIndex(pTab
);
6800 x
= pPk
->aiColumn
[x
];
6803 testcase( x
!=sqlite3StorageColumnToTable(pTab
,x
) );
6804 x
= sqlite3StorageColumnToTable(pTab
,x
);
6806 x
= sqlite3TableColumnToIndex(pIdx
, x
);
6809 pOp
->p1
= pLevel
->iIdxCur
;
6810 OpcodeRewriteTrace(db
, k
, pOp
);
6812 /* Unable to translate the table reference into an index
6813 ** reference. Verify that this is harmless - that the
6814 ** table being referenced really is open.
6816 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
6817 assert( (pLoop
->wsFlags
& WHERE_IDX_ONLY
)==0
6818 || cursorIsOpen(v
,pOp
->p1
,k
)
6819 || pOp
->opcode
==OP_Offset
6822 assert( (pLoop
->wsFlags
& WHERE_IDX_ONLY
)==0
6823 || cursorIsOpen(v
,pOp
->p1
,k
)
6827 }else if( pOp
->opcode
==OP_Rowid
){
6828 pOp
->p1
= pLevel
->iIdxCur
;
6829 pOp
->opcode
= OP_IdxRowid
;
6830 OpcodeRewriteTrace(db
, k
, pOp
);
6831 }else if( pOp
->opcode
==OP_IfNullRow
){
6832 pOp
->p1
= pLevel
->iIdxCur
;
6833 OpcodeRewriteTrace(db
, k
, pOp
);
6838 }while( (++pOp
)<pLastOp
);
6840 if( db
->flags
& SQLITE_VdbeAddopTrace
) printf("TRANSLATE complete\n");
6845 /* The "break" point is here, just past the end of the outer loop.
6848 sqlite3VdbeResolveLabel(v
, pWInfo
->iBreak
);
6852 pParse
->nQueryLoop
= pWInfo
->savedNQueryLoop
;
6853 whereInfoFree(db
, pWInfo
);
6854 pParse
->withinRJSubrtn
-= nRJ
;