4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file implements a external (disk-based) database using BTrees.
13 ** See the header comment on "btreeInt.h" for additional information.
14 ** Including a description of file format and an overview of operation.
19 ** The header string that appears at the beginning of every
22 static const char zMagicHeader
[] = SQLITE_FILE_HEADER
;
25 ** Set this global variable to 1 to enable tracing using the TRACE
29 int sqlite3BtreeTrace
=1; /* True to enable tracing */
30 # define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
36 ** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37 ** But if the value is zero, make it 65536.
39 ** This routine is used to extract the "offset to cell content area" value
40 ** from the header of a btree page. If the page size is 65536 and the page
41 ** is empty, the offset should be 65536, but the 2-byte value stores zero.
42 ** This routine makes the necessary adjustment to 65536.
44 #define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
47 ** Values passed as the 5th argument to allocateBtreePage()
49 #define BTALLOC_ANY 0 /* Allocate any page */
50 #define BTALLOC_EXACT 1 /* Allocate exact page if possible */
51 #define BTALLOC_LE 2 /* Allocate any page <= the parameter */
54 ** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55 ** defined, or 0 if it is. For example:
57 ** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
59 #ifndef SQLITE_OMIT_AUTOVACUUM
60 #define IfNotOmitAV(expr) (expr)
62 #define IfNotOmitAV(expr) 0
65 #ifndef SQLITE_OMIT_SHARED_CACHE
67 ** A list of BtShared objects that are eligible for participation
68 ** in shared cache. This variable has file scope during normal builds,
69 ** but the test harness needs to access it so we make it global for
72 ** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
75 BtShared
*SQLITE_WSD sqlite3SharedCacheList
= 0;
77 static BtShared
*SQLITE_WSD sqlite3SharedCacheList
= 0;
79 #endif /* SQLITE_OMIT_SHARED_CACHE */
81 #ifndef SQLITE_OMIT_SHARED_CACHE
83 ** Enable or disable the shared pager and schema features.
85 ** This routine has no effect on existing database connections.
86 ** The shared cache setting effects only future calls to
87 ** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
89 int sqlite3_enable_shared_cache(int enable
){
90 sqlite3GlobalConfig
.sharedCacheEnabled
= enable
;
97 #ifdef SQLITE_OMIT_SHARED_CACHE
99 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100 ** and clearAllSharedCacheTableLocks()
101 ** manipulate entries in the BtShared.pLock linked list used to store
102 ** shared-cache table level locks. If the library is compiled with the
103 ** shared-cache feature disabled, then there is only ever one user
104 ** of each BtShared structure and so this locking is not necessary.
105 ** So define the lock related functions as no-ops.
107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109 #define clearAllSharedCacheTableLocks(a)
110 #define downgradeAllSharedCacheTableLocks(a)
111 #define hasSharedCacheTableLock(a,b,c,d) 1
112 #define hasReadConflicts(a, b) 0
115 #ifndef SQLITE_OMIT_SHARED_CACHE
119 **** This function is only used as part of an assert() statement. ***
121 ** Check to see if pBtree holds the required locks to read or write to the
122 ** table with root page iRoot. Return 1 if it does and 0 if not.
124 ** For example, when writing to a table with root-page iRoot via
125 ** Btree connection pBtree:
127 ** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
129 ** When writing to an index that resides in a sharable database, the
130 ** caller should have first obtained a lock specifying the root page of
131 ** the corresponding table. This makes things a bit more complicated,
132 ** as this module treats each table as a separate structure. To determine
133 ** the table corresponding to the index being written, this
134 ** function has to search through the database schema.
136 ** Instead of a lock on the table/index rooted at page iRoot, the caller may
137 ** hold a write-lock on the schema table (root page 1). This is also
140 static int hasSharedCacheTableLock(
141 Btree
*pBtree
, /* Handle that must hold lock */
142 Pgno iRoot
, /* Root page of b-tree */
143 int isIndex
, /* True if iRoot is the root of an index b-tree */
144 int eLockType
/* Required lock type (READ_LOCK or WRITE_LOCK) */
146 Schema
*pSchema
= (Schema
*)pBtree
->pBt
->pSchema
;
150 /* If this database is not shareable, or if the client is reading
151 ** and has the read-uncommitted flag set, then no lock is required.
152 ** Return true immediately.
154 if( (pBtree
->sharable
==0)
155 || (eLockType
==READ_LOCK
&& (pBtree
->db
->flags
& SQLITE_ReadUncommitted
))
160 /* If the client is reading or writing an index and the schema is
161 ** not loaded, then it is too difficult to actually check to see if
162 ** the correct locks are held. So do not bother - just return true.
163 ** This case does not come up very often anyhow.
165 if( isIndex
&& (!pSchema
|| (pSchema
->flags
&DB_SchemaLoaded
)==0) ){
169 /* Figure out the root-page that the lock should be held on. For table
170 ** b-trees, this is just the root page of the b-tree being read or
171 ** written. For index b-trees, it is the root page of the associated
175 for(p
=sqliteHashFirst(&pSchema
->idxHash
); p
; p
=sqliteHashNext(p
)){
176 Index
*pIdx
= (Index
*)sqliteHashData(p
);
177 if( pIdx
->tnum
==(int)iRoot
){
178 iTab
= pIdx
->pTable
->tnum
;
185 /* Search for the required lock. Either a write-lock on root-page iTab, a
186 ** write-lock on the schema table, or (if the client is reading) a
187 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
188 for(pLock
=pBtree
->pBt
->pLock
; pLock
; pLock
=pLock
->pNext
){
189 if( pLock
->pBtree
==pBtree
190 && (pLock
->iTable
==iTab
|| (pLock
->eLock
==WRITE_LOCK
&& pLock
->iTable
==1))
191 && pLock
->eLock
>=eLockType
197 /* Failed to find the required lock. */
200 #endif /* SQLITE_DEBUG */
204 **** This function may be used as part of assert() statements only. ****
206 ** Return true if it would be illegal for pBtree to write into the
207 ** table or index rooted at iRoot because other shared connections are
208 ** simultaneously reading that same table or index.
210 ** It is illegal for pBtree to write if some other Btree object that
211 ** shares the same BtShared object is currently reading or writing
212 ** the iRoot table. Except, if the other Btree object has the
213 ** read-uncommitted flag set, then it is OK for the other object to
214 ** have a read cursor.
216 ** For example, before writing to any part of the table or index
217 ** rooted at page iRoot, one should call:
219 ** assert( !hasReadConflicts(pBtree, iRoot) );
221 static int hasReadConflicts(Btree
*pBtree
, Pgno iRoot
){
223 for(p
=pBtree
->pBt
->pCursor
; p
; p
=p
->pNext
){
224 if( p
->pgnoRoot
==iRoot
226 && 0==(p
->pBtree
->db
->flags
& SQLITE_ReadUncommitted
)
233 #endif /* #ifdef SQLITE_DEBUG */
236 ** Query to see if Btree handle p may obtain a lock of type eLock
237 ** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
238 ** SQLITE_OK if the lock may be obtained (by calling
239 ** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
241 static int querySharedCacheTableLock(Btree
*p
, Pgno iTab
, u8 eLock
){
242 BtShared
*pBt
= p
->pBt
;
245 assert( sqlite3BtreeHoldsMutex(p
) );
246 assert( eLock
==READ_LOCK
|| eLock
==WRITE_LOCK
);
248 assert( !(p
->db
->flags
&SQLITE_ReadUncommitted
)||eLock
==WRITE_LOCK
||iTab
==1 );
250 /* If requesting a write-lock, then the Btree must have an open write
251 ** transaction on this file. And, obviously, for this to be so there
252 ** must be an open write transaction on the file itself.
254 assert( eLock
==READ_LOCK
|| (p
==pBt
->pWriter
&& p
->inTrans
==TRANS_WRITE
) );
255 assert( eLock
==READ_LOCK
|| pBt
->inTransaction
==TRANS_WRITE
);
257 /* This routine is a no-op if the shared-cache is not enabled */
262 /* If some other connection is holding an exclusive lock, the
263 ** requested lock may not be obtained.
265 if( pBt
->pWriter
!=p
&& (pBt
->btsFlags
& BTS_EXCLUSIVE
)!=0 ){
266 sqlite3ConnectionBlocked(p
->db
, pBt
->pWriter
->db
);
267 return SQLITE_LOCKED_SHAREDCACHE
;
270 for(pIter
=pBt
->pLock
; pIter
; pIter
=pIter
->pNext
){
271 /* The condition (pIter->eLock!=eLock) in the following if(...)
272 ** statement is a simplification of:
274 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
276 ** since we know that if eLock==WRITE_LOCK, then no other connection
277 ** may hold a WRITE_LOCK on any table in this file (since there can
278 ** only be a single writer).
280 assert( pIter
->eLock
==READ_LOCK
|| pIter
->eLock
==WRITE_LOCK
);
281 assert( eLock
==READ_LOCK
|| pIter
->pBtree
==p
|| pIter
->eLock
==READ_LOCK
);
282 if( pIter
->pBtree
!=p
&& pIter
->iTable
==iTab
&& pIter
->eLock
!=eLock
){
283 sqlite3ConnectionBlocked(p
->db
, pIter
->pBtree
->db
);
284 if( eLock
==WRITE_LOCK
){
285 assert( p
==pBt
->pWriter
);
286 pBt
->btsFlags
|= BTS_PENDING
;
288 return SQLITE_LOCKED_SHAREDCACHE
;
293 #endif /* !SQLITE_OMIT_SHARED_CACHE */
295 #ifndef SQLITE_OMIT_SHARED_CACHE
297 ** Add a lock on the table with root-page iTable to the shared-btree used
298 ** by Btree handle p. Parameter eLock must be either READ_LOCK or
301 ** This function assumes the following:
303 ** (a) The specified Btree object p is connected to a sharable
304 ** database (one with the BtShared.sharable flag set), and
306 ** (b) No other Btree objects hold a lock that conflicts
307 ** with the requested lock (i.e. querySharedCacheTableLock() has
308 ** already been called and returned SQLITE_OK).
310 ** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
311 ** is returned if a malloc attempt fails.
313 static int setSharedCacheTableLock(Btree
*p
, Pgno iTable
, u8 eLock
){
314 BtShared
*pBt
= p
->pBt
;
318 assert( sqlite3BtreeHoldsMutex(p
) );
319 assert( eLock
==READ_LOCK
|| eLock
==WRITE_LOCK
);
322 /* A connection with the read-uncommitted flag set will never try to
323 ** obtain a read-lock using this function. The only read-lock obtained
324 ** by a connection in read-uncommitted mode is on the sqlite_master
325 ** table, and that lock is obtained in BtreeBeginTrans(). */
326 assert( 0==(p
->db
->flags
&SQLITE_ReadUncommitted
) || eLock
==WRITE_LOCK
);
328 /* This function should only be called on a sharable b-tree after it
329 ** has been determined that no other b-tree holds a conflicting lock. */
330 assert( p
->sharable
);
331 assert( SQLITE_OK
==querySharedCacheTableLock(p
, iTable
, eLock
) );
333 /* First search the list for an existing lock on this table. */
334 for(pIter
=pBt
->pLock
; pIter
; pIter
=pIter
->pNext
){
335 if( pIter
->iTable
==iTable
&& pIter
->pBtree
==p
){
341 /* If the above search did not find a BtLock struct associating Btree p
342 ** with table iTable, allocate one and link it into the list.
345 pLock
= (BtLock
*)sqlite3MallocZero(sizeof(BtLock
));
349 pLock
->iTable
= iTable
;
351 pLock
->pNext
= pBt
->pLock
;
355 /* Set the BtLock.eLock variable to the maximum of the current lock
356 ** and the requested lock. This means if a write-lock was already held
357 ** and a read-lock requested, we don't incorrectly downgrade the lock.
359 assert( WRITE_LOCK
>READ_LOCK
);
360 if( eLock
>pLock
->eLock
){
361 pLock
->eLock
= eLock
;
366 #endif /* !SQLITE_OMIT_SHARED_CACHE */
368 #ifndef SQLITE_OMIT_SHARED_CACHE
370 ** Release all the table locks (locks obtained via calls to
371 ** the setSharedCacheTableLock() procedure) held by Btree object p.
373 ** This function assumes that Btree p has an open read or write
374 ** transaction. If it does not, then the BTS_PENDING flag
375 ** may be incorrectly cleared.
377 static void clearAllSharedCacheTableLocks(Btree
*p
){
378 BtShared
*pBt
= p
->pBt
;
379 BtLock
**ppIter
= &pBt
->pLock
;
381 assert( sqlite3BtreeHoldsMutex(p
) );
382 assert( p
->sharable
|| 0==*ppIter
);
383 assert( p
->inTrans
>0 );
386 BtLock
*pLock
= *ppIter
;
387 assert( (pBt
->btsFlags
& BTS_EXCLUSIVE
)==0 || pBt
->pWriter
==pLock
->pBtree
);
388 assert( pLock
->pBtree
->inTrans
>=pLock
->eLock
);
389 if( pLock
->pBtree
==p
){
390 *ppIter
= pLock
->pNext
;
391 assert( pLock
->iTable
!=1 || pLock
==&p
->lock
);
392 if( pLock
->iTable
!=1 ){
396 ppIter
= &pLock
->pNext
;
400 assert( (pBt
->btsFlags
& BTS_PENDING
)==0 || pBt
->pWriter
);
401 if( pBt
->pWriter
==p
){
403 pBt
->btsFlags
&= ~(BTS_EXCLUSIVE
|BTS_PENDING
);
404 }else if( pBt
->nTransaction
==2 ){
405 /* This function is called when Btree p is concluding its
406 ** transaction. If there currently exists a writer, and p is not
407 ** that writer, then the number of locks held by connections other
408 ** than the writer must be about to drop to zero. In this case
409 ** set the BTS_PENDING flag to 0.
411 ** If there is not currently a writer, then BTS_PENDING must
412 ** be zero already. So this next line is harmless in that case.
414 pBt
->btsFlags
&= ~BTS_PENDING
;
419 ** This function changes all write-locks held by Btree p into read-locks.
421 static void downgradeAllSharedCacheTableLocks(Btree
*p
){
422 BtShared
*pBt
= p
->pBt
;
423 if( pBt
->pWriter
==p
){
426 pBt
->btsFlags
&= ~(BTS_EXCLUSIVE
|BTS_PENDING
);
427 for(pLock
=pBt
->pLock
; pLock
; pLock
=pLock
->pNext
){
428 assert( pLock
->eLock
==READ_LOCK
|| pLock
->pBtree
==p
);
429 pLock
->eLock
= READ_LOCK
;
434 #endif /* SQLITE_OMIT_SHARED_CACHE */
436 static void releasePage(MemPage
*pPage
); /* Forward reference */
439 ***** This routine is used inside of assert() only ****
441 ** Verify that the cursor holds the mutex on its BtShared
444 static int cursorHoldsMutex(BtCursor
*p
){
445 return sqlite3_mutex_held(p
->pBt
->mutex
);
450 #ifndef SQLITE_OMIT_INCRBLOB
452 ** Invalidate the overflow page-list cache for cursor pCur, if any.
454 static void invalidateOverflowCache(BtCursor
*pCur
){
455 assert( cursorHoldsMutex(pCur
) );
456 sqlite3_free(pCur
->aOverflow
);
461 ** Invalidate the overflow page-list cache for all cursors opened
462 ** on the shared btree structure pBt.
464 static void invalidateAllOverflowCache(BtShared
*pBt
){
466 assert( sqlite3_mutex_held(pBt
->mutex
) );
467 for(p
=pBt
->pCursor
; p
; p
=p
->pNext
){
468 invalidateOverflowCache(p
);
473 ** This function is called before modifying the contents of a table
474 ** to invalidate any incrblob cursors that are open on the
475 ** row or one of the rows being modified.
477 ** If argument isClearTable is true, then the entire contents of the
478 ** table is about to be deleted. In this case invalidate all incrblob
479 ** cursors open on any row within the table with root-page pgnoRoot.
481 ** Otherwise, if argument isClearTable is false, then the row with
482 ** rowid iRow is being replaced or deleted. In this case invalidate
483 ** only those incrblob cursors open on that specific row.
485 static void invalidateIncrblobCursors(
486 Btree
*pBtree
, /* The database file to check */
487 i64 iRow
, /* The rowid that might be changing */
488 int isClearTable
/* True if all rows are being deleted */
491 BtShared
*pBt
= pBtree
->pBt
;
492 assert( sqlite3BtreeHoldsMutex(pBtree
) );
493 for(p
=pBt
->pCursor
; p
; p
=p
->pNext
){
494 if( p
->isIncrblobHandle
&& (isClearTable
|| p
->info
.nKey
==iRow
) ){
495 p
->eState
= CURSOR_INVALID
;
501 /* Stub functions when INCRBLOB is omitted */
502 #define invalidateOverflowCache(x)
503 #define invalidateAllOverflowCache(x)
504 #define invalidateIncrblobCursors(x,y,z)
505 #endif /* SQLITE_OMIT_INCRBLOB */
508 ** Set bit pgno of the BtShared.pHasContent bitvec. This is called
509 ** when a page that previously contained data becomes a free-list leaf
512 ** The BtShared.pHasContent bitvec exists to work around an obscure
513 ** bug caused by the interaction of two useful IO optimizations surrounding
514 ** free-list leaf pages:
516 ** 1) When all data is deleted from a page and the page becomes
517 ** a free-list leaf page, the page is not written to the database
518 ** (as free-list leaf pages contain no meaningful data). Sometimes
519 ** such a page is not even journalled (as it will not be modified,
520 ** why bother journalling it?).
522 ** 2) When a free-list leaf page is reused, its content is not read
523 ** from the database or written to the journal file (why should it
524 ** be, if it is not at all meaningful?).
526 ** By themselves, these optimizations work fine and provide a handy
527 ** performance boost to bulk delete or insert operations. However, if
528 ** a page is moved to the free-list and then reused within the same
529 ** transaction, a problem comes up. If the page is not journalled when
530 ** it is moved to the free-list and it is also not journalled when it
531 ** is extracted from the free-list and reused, then the original data
532 ** may be lost. In the event of a rollback, it may not be possible
533 ** to restore the database to its original configuration.
535 ** The solution is the BtShared.pHasContent bitvec. Whenever a page is
536 ** moved to become a free-list leaf page, the corresponding bit is
537 ** set in the bitvec. Whenever a leaf page is extracted from the free-list,
538 ** optimization 2 above is omitted if the corresponding bit is already
539 ** set in BtShared.pHasContent. The contents of the bitvec are cleared
540 ** at the end of every transaction.
542 static int btreeSetHasContent(BtShared
*pBt
, Pgno pgno
){
544 if( !pBt
->pHasContent
){
545 assert( pgno
<=pBt
->nPage
);
546 pBt
->pHasContent
= sqlite3BitvecCreate(pBt
->nPage
);
547 if( !pBt
->pHasContent
){
551 if( rc
==SQLITE_OK
&& pgno
<=sqlite3BitvecSize(pBt
->pHasContent
) ){
552 rc
= sqlite3BitvecSet(pBt
->pHasContent
, pgno
);
558 ** Query the BtShared.pHasContent vector.
560 ** This function is called when a free-list leaf page is removed from the
561 ** free-list for reuse. It returns false if it is safe to retrieve the
562 ** page from the pager layer with the 'no-content' flag set. True otherwise.
564 static int btreeGetHasContent(BtShared
*pBt
, Pgno pgno
){
565 Bitvec
*p
= pBt
->pHasContent
;
566 return (p
&& (pgno
>sqlite3BitvecSize(p
) || sqlite3BitvecTest(p
, pgno
)));
570 ** Clear (destroy) the BtShared.pHasContent bitvec. This should be
571 ** invoked at the conclusion of each write-transaction.
573 static void btreeClearHasContent(BtShared
*pBt
){
574 sqlite3BitvecDestroy(pBt
->pHasContent
);
575 pBt
->pHasContent
= 0;
579 ** Release all of the apPage[] pages for a cursor.
581 static void btreeReleaseAllCursorPages(BtCursor
*pCur
){
583 for(i
=0; i
<=pCur
->iPage
; i
++){
584 releasePage(pCur
->apPage
[i
]);
592 ** Save the current cursor position in the variables BtCursor.nKey
593 ** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
595 ** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
596 ** prior to calling this routine.
598 static int saveCursorPosition(BtCursor
*pCur
){
601 assert( CURSOR_VALID
==pCur
->eState
);
602 assert( 0==pCur
->pKey
);
603 assert( cursorHoldsMutex(pCur
) );
605 rc
= sqlite3BtreeKeySize(pCur
, &pCur
->nKey
);
606 assert( rc
==SQLITE_OK
); /* KeySize() cannot fail */
608 /* If this is an intKey table, then the above call to BtreeKeySize()
609 ** stores the integer key in pCur->nKey. In this case this value is
610 ** all that is required. Otherwise, if pCur is not open on an intKey
611 ** table, then malloc space for and store the pCur->nKey bytes of key
614 if( 0==pCur
->apPage
[0]->intKey
){
615 void *pKey
= sqlite3Malloc( (int)pCur
->nKey
);
617 rc
= sqlite3BtreeKey(pCur
, 0, (int)pCur
->nKey
, pKey
);
627 assert( !pCur
->apPage
[0]->intKey
|| !pCur
->pKey
);
630 btreeReleaseAllCursorPages(pCur
);
631 pCur
->eState
= CURSOR_REQUIRESEEK
;
634 invalidateOverflowCache(pCur
);
639 ** Save the positions of all cursors (except pExcept) that are open on
640 ** the table with root-page iRoot. Usually, this is called just before cursor
641 ** pExcept is used to modify the table (BtreeDelete() or BtreeInsert()).
643 static int saveAllCursors(BtShared
*pBt
, Pgno iRoot
, BtCursor
*pExcept
){
645 assert( sqlite3_mutex_held(pBt
->mutex
) );
646 assert( pExcept
==0 || pExcept
->pBt
==pBt
);
647 for(p
=pBt
->pCursor
; p
; p
=p
->pNext
){
648 if( p
!=pExcept
&& (0==iRoot
|| p
->pgnoRoot
==iRoot
) ){
649 if( p
->eState
==CURSOR_VALID
){
650 int rc
= saveCursorPosition(p
);
655 testcase( p
->iPage
>0 );
656 btreeReleaseAllCursorPages(p
);
664 ** Clear the current cursor position.
666 void sqlite3BtreeClearCursor(BtCursor
*pCur
){
667 assert( cursorHoldsMutex(pCur
) );
668 sqlite3_free(pCur
->pKey
);
670 pCur
->eState
= CURSOR_INVALID
;
674 ** In this version of BtreeMoveto, pKey is a packed index record
675 ** such as is generated by the OP_MakeRecord opcode. Unpack the
676 ** record and then call BtreeMovetoUnpacked() to do the work.
678 static int btreeMoveto(
679 BtCursor
*pCur
, /* Cursor open on the btree to be searched */
680 const void *pKey
, /* Packed key if the btree is an index */
681 i64 nKey
, /* Integer key for tables. Size of pKey for indices */
682 int bias
, /* Bias search to the high end */
683 int *pRes
/* Write search results here */
685 int rc
; /* Status code */
686 UnpackedRecord
*pIdxKey
; /* Unpacked index key */
687 char aSpace
[150]; /* Temp space for pIdxKey - to avoid a malloc */
691 assert( nKey
==(i64
)(int)nKey
);
692 pIdxKey
= sqlite3VdbeAllocUnpackedRecord(
693 pCur
->pKeyInfo
, aSpace
, sizeof(aSpace
), &pFree
695 if( pIdxKey
==0 ) return SQLITE_NOMEM
;
696 sqlite3VdbeRecordUnpack(pCur
->pKeyInfo
, (int)nKey
, pKey
, pIdxKey
);
700 rc
= sqlite3BtreeMovetoUnpacked(pCur
, pIdxKey
, nKey
, bias
, pRes
);
702 sqlite3DbFree(pCur
->pKeyInfo
->db
, pFree
);
708 ** Restore the cursor to the position it was in (or as close to as possible)
709 ** when saveCursorPosition() was called. Note that this call deletes the
710 ** saved position info stored by saveCursorPosition(), so there can be
711 ** at most one effective restoreCursorPosition() call after each
712 ** saveCursorPosition().
714 static int btreeRestoreCursorPosition(BtCursor
*pCur
){
716 assert( cursorHoldsMutex(pCur
) );
717 assert( pCur
->eState
>=CURSOR_REQUIRESEEK
);
718 if( pCur
->eState
==CURSOR_FAULT
){
719 return pCur
->skipNext
;
721 pCur
->eState
= CURSOR_INVALID
;
722 rc
= btreeMoveto(pCur
, pCur
->pKey
, pCur
->nKey
, 0, &pCur
->skipNext
);
724 sqlite3_free(pCur
->pKey
);
726 assert( pCur
->eState
==CURSOR_VALID
|| pCur
->eState
==CURSOR_INVALID
);
731 #define restoreCursorPosition(p) \
732 (p->eState>=CURSOR_REQUIRESEEK ? \
733 btreeRestoreCursorPosition(p) : \
737 ** Determine whether or not a cursor has moved from the position it
738 ** was last placed at. Cursors can move when the row they are pointing
739 ** at is deleted out from under them.
741 ** This routine returns an error code if something goes wrong. The
742 ** integer *pHasMoved is set to one if the cursor has moved and 0 if not.
744 int sqlite3BtreeCursorHasMoved(BtCursor
*pCur
, int *pHasMoved
){
747 rc
= restoreCursorPosition(pCur
);
752 if( pCur
->eState
!=CURSOR_VALID
|| pCur
->skipNext
!=0 ){
760 #ifndef SQLITE_OMIT_AUTOVACUUM
762 ** Given a page number of a regular database page, return the page
763 ** number for the pointer-map page that contains the entry for the
764 ** input page number.
766 ** Return 0 (not a valid page) for pgno==1 since there is
767 ** no pointer map associated with page 1. The integrity_check logic
768 ** requires that ptrmapPageno(*,1)!=1.
770 static Pgno
ptrmapPageno(BtShared
*pBt
, Pgno pgno
){
771 int nPagesPerMapPage
;
773 assert( sqlite3_mutex_held(pBt
->mutex
) );
774 if( pgno
<2 ) return 0;
775 nPagesPerMapPage
= (pBt
->usableSize
/5)+1;
776 iPtrMap
= (pgno
-2)/nPagesPerMapPage
;
777 ret
= (iPtrMap
*nPagesPerMapPage
) + 2;
778 if( ret
==PENDING_BYTE_PAGE(pBt
) ){
785 ** Write an entry into the pointer map.
787 ** This routine updates the pointer map entry for page number 'key'
788 ** so that it maps to type 'eType' and parent page number 'pgno'.
790 ** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
791 ** a no-op. If an error occurs, the appropriate error code is written
794 static void ptrmapPut(BtShared
*pBt
, Pgno key
, u8 eType
, Pgno parent
, int *pRC
){
795 DbPage
*pDbPage
; /* The pointer map page */
796 u8
*pPtrmap
; /* The pointer map data */
797 Pgno iPtrmap
; /* The pointer map page number */
798 int offset
; /* Offset in pointer map page */
799 int rc
; /* Return code from subfunctions */
803 assert( sqlite3_mutex_held(pBt
->mutex
) );
804 /* The master-journal page number must never be used as a pointer map page */
805 assert( 0==PTRMAP_ISPAGE(pBt
, PENDING_BYTE_PAGE(pBt
)) );
807 assert( pBt
->autoVacuum
);
809 *pRC
= SQLITE_CORRUPT_BKPT
;
812 iPtrmap
= PTRMAP_PAGENO(pBt
, key
);
813 rc
= sqlite3PagerGet(pBt
->pPager
, iPtrmap
, &pDbPage
);
818 offset
= PTRMAP_PTROFFSET(iPtrmap
, key
);
820 *pRC
= SQLITE_CORRUPT_BKPT
;
823 assert( offset
<= (int)pBt
->usableSize
-5 );
824 pPtrmap
= (u8
*)sqlite3PagerGetData(pDbPage
);
826 if( eType
!=pPtrmap
[offset
] || get4byte(&pPtrmap
[offset
+1])!=parent
){
827 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key
, eType
, parent
));
828 *pRC
= rc
= sqlite3PagerWrite(pDbPage
);
830 pPtrmap
[offset
] = eType
;
831 put4byte(&pPtrmap
[offset
+1], parent
);
836 sqlite3PagerUnref(pDbPage
);
840 ** Read an entry from the pointer map.
842 ** This routine retrieves the pointer map entry for page 'key', writing
843 ** the type and parent page number to *pEType and *pPgno respectively.
844 ** An error code is returned if something goes wrong, otherwise SQLITE_OK.
846 static int ptrmapGet(BtShared
*pBt
, Pgno key
, u8
*pEType
, Pgno
*pPgno
){
847 DbPage
*pDbPage
; /* The pointer map page */
848 int iPtrmap
; /* Pointer map page index */
849 u8
*pPtrmap
; /* Pointer map page data */
850 int offset
; /* Offset of entry in pointer map */
853 assert( sqlite3_mutex_held(pBt
->mutex
) );
855 iPtrmap
= PTRMAP_PAGENO(pBt
, key
);
856 rc
= sqlite3PagerGet(pBt
->pPager
, iPtrmap
, &pDbPage
);
860 pPtrmap
= (u8
*)sqlite3PagerGetData(pDbPage
);
862 offset
= PTRMAP_PTROFFSET(iPtrmap
, key
);
864 sqlite3PagerUnref(pDbPage
);
865 return SQLITE_CORRUPT_BKPT
;
867 assert( offset
<= (int)pBt
->usableSize
-5 );
869 *pEType
= pPtrmap
[offset
];
870 if( pPgno
) *pPgno
= get4byte(&pPtrmap
[offset
+1]);
872 sqlite3PagerUnref(pDbPage
);
873 if( *pEType
<1 || *pEType
>5 ) return SQLITE_CORRUPT_BKPT
;
877 #else /* if defined SQLITE_OMIT_AUTOVACUUM */
878 #define ptrmapPut(w,x,y,z,rc)
879 #define ptrmapGet(w,x,y,z) SQLITE_OK
880 #define ptrmapPutOvflPtr(x, y, rc)
884 ** Given a btree page and a cell index (0 means the first cell on
885 ** the page, 1 means the second cell, and so forth) return a pointer
886 ** to the cell content.
888 ** This routine works only for pages that do not contain overflow cells.
890 #define findCell(P,I) \
891 ((P)->aData + ((P)->maskPage & get2byte(&(P)->aCellIdx[2*(I)])))
892 #define findCellv2(D,M,O,I) (D+(M&get2byte(D+(O+2*(I)))))
896 ** This a more complex version of findCell() that works for
897 ** pages that do contain overflow cells.
899 static u8
*findOverflowCell(MemPage
*pPage
, int iCell
){
901 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
902 for(i
=pPage
->nOverflow
-1; i
>=0; i
--){
904 k
= pPage
->aiOvfl
[i
];
907 return pPage
->apOvfl
[i
];
912 return findCell(pPage
, iCell
);
916 ** Parse a cell content block and fill in the CellInfo structure. There
917 ** are two versions of this function. btreeParseCell() takes a
918 ** cell index as the second argument and btreeParseCellPtr()
919 ** takes a pointer to the body of the cell as its second argument.
921 ** Within this file, the parseCell() macro can be called instead of
922 ** btreeParseCellPtr(). Using some compilers, this will be faster.
924 static void btreeParseCellPtr(
925 MemPage
*pPage
, /* Page containing the cell */
926 u8
*pCell
, /* Pointer to the cell text. */
927 CellInfo
*pInfo
/* Fill in this structure */
929 u16 n
; /* Number bytes in cell content header */
930 u32 nPayload
; /* Number of bytes of cell payload */
932 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
934 pInfo
->pCell
= pCell
;
935 assert( pPage
->leaf
==0 || pPage
->leaf
==1 );
936 n
= pPage
->childPtrSize
;
937 assert( n
==4-4*pPage
->leaf
);
939 if( pPage
->hasData
){
940 n
+= getVarint32(&pCell
[n
], nPayload
);
944 n
+= getVarint(&pCell
[n
], (u64
*)&pInfo
->nKey
);
945 pInfo
->nData
= nPayload
;
948 n
+= getVarint32(&pCell
[n
], nPayload
);
949 pInfo
->nKey
= nPayload
;
951 pInfo
->nPayload
= nPayload
;
953 testcase( nPayload
==pPage
->maxLocal
);
954 testcase( nPayload
==pPage
->maxLocal
+1 );
955 if( likely(nPayload
<=pPage
->maxLocal
) ){
956 /* This is the (easy) common case where the entire payload fits
957 ** on the local page. No overflow is required.
959 if( (pInfo
->nSize
= (u16
)(n
+nPayload
))<4 ) pInfo
->nSize
= 4;
960 pInfo
->nLocal
= (u16
)nPayload
;
961 pInfo
->iOverflow
= 0;
963 /* If the payload will not fit completely on the local page, we have
964 ** to decide how much to store locally and how much to spill onto
965 ** overflow pages. The strategy is to minimize the amount of unused
966 ** space on overflow pages while keeping the amount of local storage
967 ** in between minLocal and maxLocal.
969 ** Warning: changing the way overflow payload is distributed in any
970 ** way will result in an incompatible file format.
972 int minLocal
; /* Minimum amount of payload held locally */
973 int maxLocal
; /* Maximum amount of payload held locally */
974 int surplus
; /* Overflow payload available for local storage */
976 minLocal
= pPage
->minLocal
;
977 maxLocal
= pPage
->maxLocal
;
978 surplus
= minLocal
+ (nPayload
- minLocal
)%(pPage
->pBt
->usableSize
- 4);
979 testcase( surplus
==maxLocal
);
980 testcase( surplus
==maxLocal
+1 );
981 if( surplus
<= maxLocal
){
982 pInfo
->nLocal
= (u16
)surplus
;
984 pInfo
->nLocal
= (u16
)minLocal
;
986 pInfo
->iOverflow
= (u16
)(pInfo
->nLocal
+ n
);
987 pInfo
->nSize
= pInfo
->iOverflow
+ 4;
990 #define parseCell(pPage, iCell, pInfo) \
991 btreeParseCellPtr((pPage), findCell((pPage), (iCell)), (pInfo))
992 static void btreeParseCell(
993 MemPage
*pPage
, /* Page containing the cell */
994 int iCell
, /* The cell index. First cell is 0 */
995 CellInfo
*pInfo
/* Fill in this structure */
997 parseCell(pPage
, iCell
, pInfo
);
1001 ** Compute the total number of bytes that a Cell needs in the cell
1002 ** data area of the btree-page. The return number includes the cell
1003 ** data header and the local payload, but not any overflow page or
1004 ** the space used by the cell pointer.
1006 static u16
cellSizePtr(MemPage
*pPage
, u8
*pCell
){
1007 u8
*pIter
= &pCell
[pPage
->childPtrSize
];
1011 /* The value returned by this function should always be the same as
1012 ** the (CellInfo.nSize) value found by doing a full parse of the
1013 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1014 ** this function verifies that this invariant is not violated. */
1016 btreeParseCellPtr(pPage
, pCell
, &debuginfo
);
1019 if( pPage
->intKey
){
1021 if( pPage
->hasData
){
1022 pIter
+= getVarint32(pIter
, nSize
);
1027 /* pIter now points at the 64-bit integer key value, a variable length
1028 ** integer. The following block moves pIter to point at the first byte
1029 ** past the end of the key value. */
1031 while( (*pIter
++)&0x80 && pIter
<pEnd
);
1033 pIter
+= getVarint32(pIter
, nSize
);
1036 testcase( nSize
==pPage
->maxLocal
);
1037 testcase( nSize
==pPage
->maxLocal
+1 );
1038 if( nSize
>pPage
->maxLocal
){
1039 int minLocal
= pPage
->minLocal
;
1040 nSize
= minLocal
+ (nSize
- minLocal
) % (pPage
->pBt
->usableSize
- 4);
1041 testcase( nSize
==pPage
->maxLocal
);
1042 testcase( nSize
==pPage
->maxLocal
+1 );
1043 if( nSize
>pPage
->maxLocal
){
1048 nSize
+= (u32
)(pIter
- pCell
);
1050 /* The minimum size of any cell is 4 bytes. */
1055 assert( nSize
==debuginfo
.nSize
);
1060 /* This variation on cellSizePtr() is used inside of assert() statements
1062 static u16
cellSize(MemPage
*pPage
, int iCell
){
1063 return cellSizePtr(pPage
, findCell(pPage
, iCell
));
1067 #ifndef SQLITE_OMIT_AUTOVACUUM
1069 ** If the cell pCell, part of page pPage contains a pointer
1070 ** to an overflow page, insert an entry into the pointer-map
1071 ** for the overflow page.
1073 static void ptrmapPutOvflPtr(MemPage
*pPage
, u8
*pCell
, int *pRC
){
1077 btreeParseCellPtr(pPage
, pCell
, &info
);
1078 assert( (info
.nData
+(pPage
->intKey
?0:info
.nKey
))==info
.nPayload
);
1079 if( info
.iOverflow
){
1080 Pgno ovfl
= get4byte(&pCell
[info
.iOverflow
]);
1081 ptrmapPut(pPage
->pBt
, ovfl
, PTRMAP_OVERFLOW1
, pPage
->pgno
, pRC
);
1088 ** Defragment the page given. All Cells are moved to the
1089 ** end of the page and all free space is collected into one
1090 ** big FreeBlk that occurs in between the header and cell
1091 ** pointer array and the cell content area.
1093 static int defragmentPage(MemPage
*pPage
){
1094 int i
; /* Loop counter */
1095 int pc
; /* Address of a i-th cell */
1096 int hdr
; /* Offset to the page header */
1097 int size
; /* Size of a cell */
1098 int usableSize
; /* Number of usable bytes on a page */
1099 int cellOffset
; /* Offset to the cell pointer array */
1100 int cbrk
; /* Offset to the cell content area */
1101 int nCell
; /* Number of cells on the page */
1102 unsigned char *data
; /* The page data */
1103 unsigned char *temp
; /* Temp area for cell content */
1104 int iCellFirst
; /* First allowable cell index */
1105 int iCellLast
; /* Last possible cell index */
1108 assert( sqlite3PagerIswriteable(pPage
->pDbPage
) );
1109 assert( pPage
->pBt
!=0 );
1110 assert( pPage
->pBt
->usableSize
<= SQLITE_MAX_PAGE_SIZE
);
1111 assert( pPage
->nOverflow
==0 );
1112 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
1113 temp
= sqlite3PagerTempSpace(pPage
->pBt
->pPager
);
1114 data
= pPage
->aData
;
1115 hdr
= pPage
->hdrOffset
;
1116 cellOffset
= pPage
->cellOffset
;
1117 nCell
= pPage
->nCell
;
1118 assert( nCell
==get2byte(&data
[hdr
+3]) );
1119 usableSize
= pPage
->pBt
->usableSize
;
1120 cbrk
= get2byte(&data
[hdr
+5]);
1121 memcpy(&temp
[cbrk
], &data
[cbrk
], usableSize
- cbrk
);
1123 iCellFirst
= cellOffset
+ 2*nCell
;
1124 iCellLast
= usableSize
- 4;
1125 for(i
=0; i
<nCell
; i
++){
1126 u8
*pAddr
; /* The i-th cell pointer */
1127 pAddr
= &data
[cellOffset
+ i
*2];
1128 pc
= get2byte(pAddr
);
1129 testcase( pc
==iCellFirst
);
1130 testcase( pc
==iCellLast
);
1131 #if !defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
1132 /* These conditions have already been verified in btreeInitPage()
1133 ** if SQLITE_ENABLE_OVERSIZE_CELL_CHECK is defined
1135 if( pc
<iCellFirst
|| pc
>iCellLast
){
1136 return SQLITE_CORRUPT_BKPT
;
1139 assert( pc
>=iCellFirst
&& pc
<=iCellLast
);
1140 size
= cellSizePtr(pPage
, &temp
[pc
]);
1142 #if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
1143 if( cbrk
<iCellFirst
){
1144 return SQLITE_CORRUPT_BKPT
;
1147 if( cbrk
<iCellFirst
|| pc
+size
>usableSize
){
1148 return SQLITE_CORRUPT_BKPT
;
1151 assert( cbrk
+size
<=usableSize
&& cbrk
>=iCellFirst
);
1152 testcase( cbrk
+size
==usableSize
);
1153 testcase( pc
+size
==usableSize
);
1154 memcpy(&data
[cbrk
], &temp
[pc
], size
);
1155 put2byte(pAddr
, cbrk
);
1157 assert( cbrk
>=iCellFirst
);
1158 put2byte(&data
[hdr
+5], cbrk
);
1162 memset(&data
[iCellFirst
], 0, cbrk
-iCellFirst
);
1163 assert( sqlite3PagerIswriteable(pPage
->pDbPage
) );
1164 if( cbrk
-iCellFirst
!=pPage
->nFree
){
1165 return SQLITE_CORRUPT_BKPT
;
1171 ** Allocate nByte bytes of space from within the B-Tree page passed
1172 ** as the first argument. Write into *pIdx the index into pPage->aData[]
1173 ** of the first byte of allocated space. Return either SQLITE_OK or
1174 ** an error code (usually SQLITE_CORRUPT).
1176 ** The caller guarantees that there is sufficient space to make the
1177 ** allocation. This routine might need to defragment in order to bring
1178 ** all the space together, however. This routine will avoid using
1179 ** the first two bytes past the cell pointer area since presumably this
1180 ** allocation is being made in order to insert a new cell, so we will
1181 ** also end up needing a new cell pointer.
1183 static int allocateSpace(MemPage
*pPage
, int nByte
, int *pIdx
){
1184 const int hdr
= pPage
->hdrOffset
; /* Local cache of pPage->hdrOffset */
1185 u8
* const data
= pPage
->aData
; /* Local cache of pPage->aData */
1186 int nFrag
; /* Number of fragmented bytes on pPage */
1187 int top
; /* First byte of cell content area */
1188 int gap
; /* First byte of gap between cell pointers and cell content */
1189 int rc
; /* Integer return code */
1190 int usableSize
; /* Usable size of the page */
1192 assert( sqlite3PagerIswriteable(pPage
->pDbPage
) );
1193 assert( pPage
->pBt
);
1194 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
1195 assert( nByte
>=0 ); /* Minimum cell size is 4 */
1196 assert( pPage
->nFree
>=nByte
);
1197 assert( pPage
->nOverflow
==0 );
1198 usableSize
= pPage
->pBt
->usableSize
;
1199 assert( nByte
< usableSize
-8 );
1201 nFrag
= data
[hdr
+7];
1202 assert( pPage
->cellOffset
== hdr
+ 12 - 4*pPage
->leaf
);
1203 gap
= pPage
->cellOffset
+ 2*pPage
->nCell
;
1204 top
= get2byteNotZero(&data
[hdr
+5]);
1205 if( gap
>top
) return SQLITE_CORRUPT_BKPT
;
1206 testcase( gap
+2==top
);
1207 testcase( gap
+1==top
);
1208 testcase( gap
==top
);
1211 /* Always defragment highly fragmented pages */
1212 rc
= defragmentPage(pPage
);
1214 top
= get2byteNotZero(&data
[hdr
+5]);
1215 }else if( gap
+2<=top
){
1216 /* Search the freelist looking for a free slot big enough to satisfy
1217 ** the request. The allocation is made from the first free slot in
1218 ** the list that is large enough to accomadate it.
1221 for(addr
=hdr
+1; (pc
= get2byte(&data
[addr
]))>0; addr
=pc
){
1222 int size
; /* Size of the free slot */
1223 if( pc
>usableSize
-4 || pc
<addr
+4 ){
1224 return SQLITE_CORRUPT_BKPT
;
1226 size
= get2byte(&data
[pc
+2]);
1228 int x
= size
- nByte
;
1232 /* Remove the slot from the free-list. Update the number of
1233 ** fragmented bytes within the page. */
1234 memcpy(&data
[addr
], &data
[pc
], 2);
1235 data
[hdr
+7] = (u8
)(nFrag
+ x
);
1236 }else if( size
+pc
> usableSize
){
1237 return SQLITE_CORRUPT_BKPT
;
1239 /* The slot remains on the free-list. Reduce its size to account
1240 ** for the portion used by the new allocation. */
1241 put2byte(&data
[pc
+2], x
);
1249 /* Check to make sure there is enough space in the gap to satisfy
1250 ** the allocation. If not, defragment.
1252 testcase( gap
+2+nByte
==top
);
1253 if( gap
+2+nByte
>top
){
1254 rc
= defragmentPage(pPage
);
1256 top
= get2byteNotZero(&data
[hdr
+5]);
1257 assert( gap
+nByte
<=top
);
1261 /* Allocate memory from the gap in between the cell pointer array
1262 ** and the cell content area. The btreeInitPage() call has already
1263 ** validated the freelist. Given that the freelist is valid, there
1264 ** is no way that the allocation can extend off the end of the page.
1265 ** The assert() below verifies the previous sentence.
1268 put2byte(&data
[hdr
+5], top
);
1269 assert( top
+nByte
<= (int)pPage
->pBt
->usableSize
);
1275 ** Return a section of the pPage->aData to the freelist.
1276 ** The first byte of the new free block is pPage->aDisk[start]
1277 ** and the size of the block is "size" bytes.
1279 ** Most of the effort here is involved in coalesing adjacent
1280 ** free blocks into a single big free block.
1282 static int freeSpace(MemPage
*pPage
, int start
, int size
){
1283 int addr
, pbegin
, hdr
;
1284 int iLast
; /* Largest possible freeblock offset */
1285 unsigned char *data
= pPage
->aData
;
1287 assert( pPage
->pBt
!=0 );
1288 assert( sqlite3PagerIswriteable(pPage
->pDbPage
) );
1289 assert( start
>=pPage
->hdrOffset
+6+pPage
->childPtrSize
);
1290 assert( (start
+ size
) <= (int)pPage
->pBt
->usableSize
);
1291 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
1292 assert( size
>=0 ); /* Minimum cell size is 4 */
1294 if( pPage
->pBt
->btsFlags
& BTS_SECURE_DELETE
){
1295 /* Overwrite deleted information with zeros when the secure_delete
1296 ** option is enabled */
1297 memset(&data
[start
], 0, size
);
1300 /* Add the space back into the linked list of freeblocks. Note that
1301 ** even though the freeblock list was checked by btreeInitPage(),
1302 ** btreeInitPage() did not detect overlapping cells or
1303 ** freeblocks that overlapped cells. Nor does it detect when the
1304 ** cell content area exceeds the value in the page header. If these
1305 ** situations arise, then subsequent insert operations might corrupt
1306 ** the freelist. So we do need to check for corruption while scanning
1309 hdr
= pPage
->hdrOffset
;
1311 iLast
= pPage
->pBt
->usableSize
- 4;
1312 assert( start
<=iLast
);
1313 while( (pbegin
= get2byte(&data
[addr
]))<start
&& pbegin
>0 ){
1314 if( pbegin
<addr
+4 ){
1315 return SQLITE_CORRUPT_BKPT
;
1320 return SQLITE_CORRUPT_BKPT
;
1322 assert( pbegin
>addr
|| pbegin
==0 );
1323 put2byte(&data
[addr
], start
);
1324 put2byte(&data
[start
], pbegin
);
1325 put2byte(&data
[start
+2], size
);
1326 pPage
->nFree
= pPage
->nFree
+ (u16
)size
;
1328 /* Coalesce adjacent free blocks */
1330 while( (pbegin
= get2byte(&data
[addr
]))>0 ){
1331 int pnext
, psize
, x
;
1332 assert( pbegin
>addr
);
1333 assert( pbegin
<= (int)pPage
->pBt
->usableSize
-4 );
1334 pnext
= get2byte(&data
[pbegin
]);
1335 psize
= get2byte(&data
[pbegin
+2]);
1336 if( pbegin
+ psize
+ 3 >= pnext
&& pnext
>0 ){
1337 int frag
= pnext
- (pbegin
+psize
);
1338 if( (frag
<0) || (frag
>(int)data
[hdr
+7]) ){
1339 return SQLITE_CORRUPT_BKPT
;
1341 data
[hdr
+7] -= (u8
)frag
;
1342 x
= get2byte(&data
[pnext
]);
1343 put2byte(&data
[pbegin
], x
);
1344 x
= pnext
+ get2byte(&data
[pnext
+2]) - pbegin
;
1345 put2byte(&data
[pbegin
+2], x
);
1351 /* If the cell content area begins with a freeblock, remove it. */
1352 if( data
[hdr
+1]==data
[hdr
+5] && data
[hdr
+2]==data
[hdr
+6] ){
1354 pbegin
= get2byte(&data
[hdr
+1]);
1355 memcpy(&data
[hdr
+1], &data
[pbegin
], 2);
1356 top
= get2byte(&data
[hdr
+5]) + get2byte(&data
[pbegin
+2]);
1357 put2byte(&data
[hdr
+5], top
);
1359 assert( sqlite3PagerIswriteable(pPage
->pDbPage
) );
1364 ** Decode the flags byte (the first byte of the header) for a page
1365 ** and initialize fields of the MemPage structure accordingly.
1367 ** Only the following combinations are supported. Anything different
1368 ** indicates a corrupt database files:
1371 ** PTF_ZERODATA | PTF_LEAF
1372 ** PTF_LEAFDATA | PTF_INTKEY
1373 ** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
1375 static int decodeFlags(MemPage
*pPage
, int flagByte
){
1376 BtShared
*pBt
; /* A copy of pPage->pBt */
1378 assert( pPage
->hdrOffset
==(pPage
->pgno
==1 ? 100 : 0) );
1379 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
1380 pPage
->leaf
= (u8
)(flagByte
>>3); assert( PTF_LEAF
== 1<<3 );
1381 flagByte
&= ~PTF_LEAF
;
1382 pPage
->childPtrSize
= 4-4*pPage
->leaf
;
1384 if( flagByte
==(PTF_LEAFDATA
| PTF_INTKEY
) ){
1386 pPage
->hasData
= pPage
->leaf
;
1387 pPage
->maxLocal
= pBt
->maxLeaf
;
1388 pPage
->minLocal
= pBt
->minLeaf
;
1389 }else if( flagByte
==PTF_ZERODATA
){
1392 pPage
->maxLocal
= pBt
->maxLocal
;
1393 pPage
->minLocal
= pBt
->minLocal
;
1395 return SQLITE_CORRUPT_BKPT
;
1397 pPage
->max1bytePayload
= pBt
->max1bytePayload
;
1402 ** Initialize the auxiliary information for a disk block.
1404 ** Return SQLITE_OK on success. If we see that the page does
1405 ** not contain a well-formed database page, then return
1406 ** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1407 ** guarantee that the page is well-formed. It only shows that
1408 ** we failed to detect any corruption.
1410 static int btreeInitPage(MemPage
*pPage
){
1412 assert( pPage
->pBt
!=0 );
1413 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
1414 assert( pPage
->pgno
==sqlite3PagerPagenumber(pPage
->pDbPage
) );
1415 assert( pPage
== sqlite3PagerGetExtra(pPage
->pDbPage
) );
1416 assert( pPage
->aData
== sqlite3PagerGetData(pPage
->pDbPage
) );
1418 if( !pPage
->isInit
){
1419 u16 pc
; /* Address of a freeblock within pPage->aData[] */
1420 u8 hdr
; /* Offset to beginning of page header */
1421 u8
*data
; /* Equal to pPage->aData */
1422 BtShared
*pBt
; /* The main btree structure */
1423 int usableSize
; /* Amount of usable space on each page */
1424 u16 cellOffset
; /* Offset from start of page to first cell pointer */
1425 int nFree
; /* Number of unused bytes on the page */
1426 int top
; /* First byte of the cell content area */
1427 int iCellFirst
; /* First allowable cell or freeblock offset */
1428 int iCellLast
; /* Last possible cell or freeblock offset */
1432 hdr
= pPage
->hdrOffset
;
1433 data
= pPage
->aData
;
1434 if( decodeFlags(pPage
, data
[hdr
]) ) return SQLITE_CORRUPT_BKPT
;
1435 assert( pBt
->pageSize
>=512 && pBt
->pageSize
<=65536 );
1436 pPage
->maskPage
= (u16
)(pBt
->pageSize
- 1);
1437 pPage
->nOverflow
= 0;
1438 usableSize
= pBt
->usableSize
;
1439 pPage
->cellOffset
= cellOffset
= hdr
+ 12 - 4*pPage
->leaf
;
1440 pPage
->aDataEnd
= &data
[usableSize
];
1441 pPage
->aCellIdx
= &data
[cellOffset
];
1442 top
= get2byteNotZero(&data
[hdr
+5]);
1443 pPage
->nCell
= get2byte(&data
[hdr
+3]);
1444 if( pPage
->nCell
>MX_CELL(pBt
) ){
1445 /* To many cells for a single page. The page must be corrupt */
1446 return SQLITE_CORRUPT_BKPT
;
1448 testcase( pPage
->nCell
==MX_CELL(pBt
) );
1450 /* A malformed database page might cause us to read past the end
1451 ** of page when parsing a cell.
1453 ** The following block of code checks early to see if a cell extends
1454 ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1455 ** returned if it does.
1457 iCellFirst
= cellOffset
+ 2*pPage
->nCell
;
1458 iCellLast
= usableSize
- 4;
1459 #if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
1461 int i
; /* Index into the cell pointer array */
1462 int sz
; /* Size of a cell */
1464 if( !pPage
->leaf
) iCellLast
--;
1465 for(i
=0; i
<pPage
->nCell
; i
++){
1466 pc
= get2byte(&data
[cellOffset
+i
*2]);
1467 testcase( pc
==iCellFirst
);
1468 testcase( pc
==iCellLast
);
1469 if( pc
<iCellFirst
|| pc
>iCellLast
){
1470 return SQLITE_CORRUPT_BKPT
;
1472 sz
= cellSizePtr(pPage
, &data
[pc
]);
1473 testcase( pc
+sz
==usableSize
);
1474 if( pc
+sz
>usableSize
){
1475 return SQLITE_CORRUPT_BKPT
;
1478 if( !pPage
->leaf
) iCellLast
++;
1482 /* Compute the total free space on the page */
1483 pc
= get2byte(&data
[hdr
+1]);
1484 nFree
= data
[hdr
+7] + top
;
1487 if( pc
<iCellFirst
|| pc
>iCellLast
){
1488 /* Start of free block is off the page */
1489 return SQLITE_CORRUPT_BKPT
;
1491 next
= get2byte(&data
[pc
]);
1492 size
= get2byte(&data
[pc
+2]);
1493 if( (next
>0 && next
<=pc
+size
+3) || pc
+size
>usableSize
){
1494 /* Free blocks must be in ascending order. And the last byte of
1495 ** the free-block must lie on the database page. */
1496 return SQLITE_CORRUPT_BKPT
;
1498 nFree
= nFree
+ size
;
1502 /* At this point, nFree contains the sum of the offset to the start
1503 ** of the cell-content area plus the number of free bytes within
1504 ** the cell-content area. If this is greater than the usable-size
1505 ** of the page, then the page must be corrupted. This check also
1506 ** serves to verify that the offset to the start of the cell-content
1507 ** area, according to the page header, lies within the page.
1509 if( nFree
>usableSize
){
1510 return SQLITE_CORRUPT_BKPT
;
1512 pPage
->nFree
= (u16
)(nFree
- iCellFirst
);
1519 ** Set up a raw page so that it looks like a database page holding
1522 static void zeroPage(MemPage
*pPage
, int flags
){
1523 unsigned char *data
= pPage
->aData
;
1524 BtShared
*pBt
= pPage
->pBt
;
1525 u8 hdr
= pPage
->hdrOffset
;
1528 assert( sqlite3PagerPagenumber(pPage
->pDbPage
)==pPage
->pgno
);
1529 assert( sqlite3PagerGetExtra(pPage
->pDbPage
) == (void*)pPage
);
1530 assert( sqlite3PagerGetData(pPage
->pDbPage
) == data
);
1531 assert( sqlite3PagerIswriteable(pPage
->pDbPage
) );
1532 assert( sqlite3_mutex_held(pBt
->mutex
) );
1533 if( pBt
->btsFlags
& BTS_SECURE_DELETE
){
1534 memset(&data
[hdr
], 0, pBt
->usableSize
- hdr
);
1536 data
[hdr
] = (char)flags
;
1537 first
= hdr
+ 8 + 4*((flags
&PTF_LEAF
)==0 ?1:0);
1538 memset(&data
[hdr
+1], 0, 4);
1540 put2byte(&data
[hdr
+5], pBt
->usableSize
);
1541 pPage
->nFree
= (u16
)(pBt
->usableSize
- first
);
1542 decodeFlags(pPage
, flags
);
1543 pPage
->hdrOffset
= hdr
;
1544 pPage
->cellOffset
= first
;
1545 pPage
->aDataEnd
= &data
[pBt
->usableSize
];
1546 pPage
->aCellIdx
= &data
[first
];
1547 pPage
->nOverflow
= 0;
1548 assert( pBt
->pageSize
>=512 && pBt
->pageSize
<=65536 );
1549 pPage
->maskPage
= (u16
)(pBt
->pageSize
- 1);
1556 ** Convert a DbPage obtained from the pager into a MemPage used by
1559 static MemPage
*btreePageFromDbPage(DbPage
*pDbPage
, Pgno pgno
, BtShared
*pBt
){
1560 MemPage
*pPage
= (MemPage
*)sqlite3PagerGetExtra(pDbPage
);
1561 pPage
->aData
= sqlite3PagerGetData(pDbPage
);
1562 pPage
->pDbPage
= pDbPage
;
1565 pPage
->hdrOffset
= pPage
->pgno
==1 ? 100 : 0;
1570 ** Get a page from the pager. Initialize the MemPage.pBt and
1571 ** MemPage.aData elements if needed.
1573 ** If the noContent flag is set, it means that we do not care about
1574 ** the content of the page at this time. So do not go to the disk
1575 ** to fetch the content. Just fill in the content with zeros for now.
1576 ** If in the future we call sqlite3PagerWrite() on this page, that
1577 ** means we have started to be concerned about content and the disk
1578 ** read should occur at that point.
1580 static int btreeGetPage(
1581 BtShared
*pBt
, /* The btree */
1582 Pgno pgno
, /* Number of the page to fetch */
1583 MemPage
**ppPage
, /* Return the page in this parameter */
1584 int noContent
, /* Do not load page content if true */
1585 int bReadonly
/* True if a read-only (mmap) page is ok */
1589 int flags
= (noContent
? PAGER_ACQUIRE_NOCONTENT
: 0)
1590 | (bReadonly
? PAGER_ACQUIRE_READONLY
: 0);
1592 assert( noContent
==0 || bReadonly
==0 );
1593 assert( sqlite3_mutex_held(pBt
->mutex
) );
1594 rc
= sqlite3PagerAcquire(pBt
->pPager
, pgno
, (DbPage
**)&pDbPage
, flags
);
1596 *ppPage
= btreePageFromDbPage(pDbPage
, pgno
, pBt
);
1601 ** Retrieve a page from the pager cache. If the requested page is not
1602 ** already in the pager cache return NULL. Initialize the MemPage.pBt and
1603 ** MemPage.aData elements if needed.
1605 static MemPage
*btreePageLookup(BtShared
*pBt
, Pgno pgno
){
1607 assert( sqlite3_mutex_held(pBt
->mutex
) );
1608 pDbPage
= sqlite3PagerLookup(pBt
->pPager
, pgno
);
1610 return btreePageFromDbPage(pDbPage
, pgno
, pBt
);
1616 ** Return the size of the database file in pages. If there is any kind of
1617 ** error, return ((unsigned int)-1).
1619 static Pgno
btreePagecount(BtShared
*pBt
){
1622 u32
sqlite3BtreeLastPage(Btree
*p
){
1623 assert( sqlite3BtreeHoldsMutex(p
) );
1624 assert( ((p
->pBt
->nPage
)&0x8000000)==0 );
1625 return (int)btreePagecount(p
->pBt
);
1629 ** Get a page from the pager and initialize it. This routine is just a
1630 ** convenience wrapper around separate calls to btreeGetPage() and
1633 ** If an error occurs, then the value *ppPage is set to is undefined. It
1634 ** may remain unchanged, or it may be set to an invalid value.
1636 static int getAndInitPage(
1637 BtShared
*pBt
, /* The database file */
1638 Pgno pgno
, /* Number of the page to get */
1639 MemPage
**ppPage
, /* Write the page pointer here */
1640 int bReadonly
/* True if a read-only (mmap) page is ok */
1643 assert( sqlite3_mutex_held(pBt
->mutex
) );
1645 if( pgno
>btreePagecount(pBt
) ){
1646 rc
= SQLITE_CORRUPT_BKPT
;
1648 rc
= btreeGetPage(pBt
, pgno
, ppPage
, 0, bReadonly
);
1649 if( rc
==SQLITE_OK
){
1650 rc
= btreeInitPage(*ppPage
);
1651 if( rc
!=SQLITE_OK
){
1652 releasePage(*ppPage
);
1657 testcase( pgno
==0 );
1658 assert( pgno
!=0 || rc
==SQLITE_CORRUPT
);
1663 ** Release a MemPage. This should be called once for each prior
1664 ** call to btreeGetPage.
1666 static void releasePage(MemPage
*pPage
){
1668 assert( pPage
->aData
);
1669 assert( pPage
->pBt
);
1670 assert( sqlite3PagerGetExtra(pPage
->pDbPage
) == (void*)pPage
);
1671 assert( sqlite3PagerGetData(pPage
->pDbPage
)==pPage
->aData
);
1672 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
1673 sqlite3PagerUnref(pPage
->pDbPage
);
1678 ** During a rollback, when the pager reloads information into the cache
1679 ** so that the cache is restored to its original state at the start of
1680 ** the transaction, for each page restored this routine is called.
1682 ** This routine needs to reset the extra data section at the end of the
1683 ** page to agree with the restored data.
1685 static void pageReinit(DbPage
*pData
){
1687 pPage
= (MemPage
*)sqlite3PagerGetExtra(pData
);
1688 assert( sqlite3PagerPageRefcount(pData
)>0 );
1689 if( pPage
->isInit
){
1690 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
1692 if( sqlite3PagerPageRefcount(pData
)>1 ){
1693 /* pPage might not be a btree page; it might be an overflow page
1694 ** or ptrmap page or a free page. In those cases, the following
1695 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
1696 ** But no harm is done by this. And it is very important that
1697 ** btreeInitPage() be called on every btree page so we make
1698 ** the call for every page that comes in for re-initing. */
1699 btreeInitPage(pPage
);
1705 ** Invoke the busy handler for a btree.
1707 static int btreeInvokeBusyHandler(void *pArg
){
1708 BtShared
*pBt
= (BtShared
*)pArg
;
1710 assert( sqlite3_mutex_held(pBt
->db
->mutex
) );
1711 return sqlite3InvokeBusyHandler(&pBt
->db
->busyHandler
);
1715 ** Open a database file.
1717 ** zFilename is the name of the database file. If zFilename is NULL
1718 ** then an ephemeral database is created. The ephemeral database might
1719 ** be exclusively in memory, or it might use a disk-based memory cache.
1720 ** Either way, the ephemeral database will be automatically deleted
1721 ** when sqlite3BtreeClose() is called.
1723 ** If zFilename is ":memory:" then an in-memory database is created
1724 ** that is automatically destroyed when it is closed.
1726 ** The "flags" parameter is a bitmask that might contain bits like
1727 ** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
1729 ** If the database is already opened in the same database connection
1730 ** and we are in shared cache mode, then the open will fail with an
1731 ** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
1732 ** objects in the same database connection since doing so will lead
1733 ** to problems with locking.
1735 int sqlite3BtreeOpen(
1736 sqlite3_vfs
*pVfs
, /* VFS to use for this b-tree */
1737 const char *zFilename
, /* Name of the file containing the BTree database */
1738 sqlite3
*db
, /* Associated database handle */
1739 Btree
**ppBtree
, /* Pointer to new Btree object written here */
1740 int flags
, /* Options */
1741 int vfsFlags
/* Flags passed through to sqlite3_vfs.xOpen() */
1743 BtShared
*pBt
= 0; /* Shared part of btree structure */
1744 Btree
*p
; /* Handle to return */
1745 sqlite3_mutex
*mutexOpen
= 0; /* Prevents a race condition. Ticket #3537 */
1746 int rc
= SQLITE_OK
; /* Result code from this function */
1747 u8 nReserve
; /* Byte of unused space on each page */
1748 unsigned char zDbHeader
[100]; /* Database header content */
1750 /* True if opening an ephemeral, temporary database */
1751 const int isTempDb
= zFilename
==0 || zFilename
[0]==0;
1753 /* Set the variable isMemdb to true for an in-memory database, or
1754 ** false for a file-based database.
1756 #ifdef SQLITE_OMIT_MEMORYDB
1757 const int isMemdb
= 0;
1759 const int isMemdb
= (zFilename
&& strcmp(zFilename
, ":memory:")==0)
1760 || (isTempDb
&& sqlite3TempInMemory(db
))
1761 || (vfsFlags
& SQLITE_OPEN_MEMORY
)!=0;
1766 assert( sqlite3_mutex_held(db
->mutex
) );
1767 assert( (flags
&0xff)==flags
); /* flags fit in 8 bits */
1769 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
1770 assert( (flags
& BTREE_UNORDERED
)==0 || (flags
& BTREE_SINGLE
)!=0 );
1772 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
1773 assert( (flags
& BTREE_SINGLE
)==0 || isTempDb
);
1776 flags
|= BTREE_MEMORY
;
1778 if( (vfsFlags
& SQLITE_OPEN_MAIN_DB
)!=0 && (isMemdb
|| isTempDb
) ){
1779 vfsFlags
= (vfsFlags
& ~SQLITE_OPEN_MAIN_DB
) | SQLITE_OPEN_TEMP_DB
;
1781 p
= sqlite3MallocZero(sizeof(Btree
));
1783 return SQLITE_NOMEM
;
1785 p
->inTrans
= TRANS_NONE
;
1787 #ifndef SQLITE_OMIT_SHARED_CACHE
1792 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
1794 ** If this Btree is a candidate for shared cache, try to find an
1795 ** existing BtShared object that we can share with
1797 if( isTempDb
==0 && (isMemdb
==0 || (vfsFlags
&SQLITE_OPEN_URI
)!=0) ){
1798 if( vfsFlags
& SQLITE_OPEN_SHAREDCACHE
){
1799 int nFullPathname
= pVfs
->mxPathname
+1;
1800 char *zFullPathname
= sqlite3Malloc(nFullPathname
);
1801 MUTEX_LOGIC( sqlite3_mutex
*mutexShared
; )
1803 if( !zFullPathname
){
1805 return SQLITE_NOMEM
;
1808 memcpy(zFullPathname
, zFilename
, sqlite3Strlen30(zFilename
)+1);
1810 rc
= sqlite3OsFullPathname(pVfs
, zFilename
,
1811 nFullPathname
, zFullPathname
);
1813 sqlite3_free(zFullPathname
);
1818 #if SQLITE_THREADSAFE
1819 mutexOpen
= sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN
);
1820 sqlite3_mutex_enter(mutexOpen
);
1821 mutexShared
= sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER
);
1822 sqlite3_mutex_enter(mutexShared
);
1824 for(pBt
=GLOBAL(BtShared
*,sqlite3SharedCacheList
); pBt
; pBt
=pBt
->pNext
){
1825 assert( pBt
->nRef
>0 );
1826 if( 0==strcmp(zFullPathname
, sqlite3PagerFilename(pBt
->pPager
, 0))
1827 && sqlite3PagerVfs(pBt
->pPager
)==pVfs
){
1829 for(iDb
=db
->nDb
-1; iDb
>=0; iDb
--){
1830 Btree
*pExisting
= db
->aDb
[iDb
].pBt
;
1831 if( pExisting
&& pExisting
->pBt
==pBt
){
1832 sqlite3_mutex_leave(mutexShared
);
1833 sqlite3_mutex_leave(mutexOpen
);
1834 sqlite3_free(zFullPathname
);
1836 return SQLITE_CONSTRAINT
;
1844 sqlite3_mutex_leave(mutexShared
);
1845 sqlite3_free(zFullPathname
);
1849 /* In debug mode, we mark all persistent databases as sharable
1850 ** even when they are not. This exercises the locking code and
1851 ** gives more opportunity for asserts(sqlite3_mutex_held())
1852 ** statements to find locking problems.
1861 ** The following asserts make sure that structures used by the btree are
1862 ** the right size. This is to guard against size changes that result
1863 ** when compiling on a different architecture.
1865 assert( sizeof(i64
)==8 || sizeof(i64
)==4 );
1866 assert( sizeof(u64
)==8 || sizeof(u64
)==4 );
1867 assert( sizeof(u32
)==4 );
1868 assert( sizeof(u16
)==2 );
1869 assert( sizeof(Pgno
)==4 );
1871 pBt
= sqlite3MallocZero( sizeof(*pBt
) );
1874 goto btree_open_out
;
1876 rc
= sqlite3PagerOpen(pVfs
, &pBt
->pPager
, zFilename
,
1877 EXTRA_SIZE
, flags
, vfsFlags
, pageReinit
);
1878 if( rc
==SQLITE_OK
){
1879 sqlite3PagerSetMmapLimit(pBt
->pPager
, db
->szMmap
);
1880 rc
= sqlite3PagerReadFileheader(pBt
->pPager
,sizeof(zDbHeader
),zDbHeader
);
1882 if( rc
!=SQLITE_OK
){
1883 goto btree_open_out
;
1885 pBt
->openFlags
= (u8
)flags
;
1887 sqlite3PagerSetBusyhandler(pBt
->pPager
, btreeInvokeBusyHandler
, pBt
);
1892 if( sqlite3PagerIsreadonly(pBt
->pPager
) ) pBt
->btsFlags
|= BTS_READ_ONLY
;
1893 #ifdef SQLITE_SECURE_DELETE
1894 pBt
->btsFlags
|= BTS_SECURE_DELETE
;
1896 pBt
->pageSize
= (zDbHeader
[16]<<8) | (zDbHeader
[17]<<16);
1897 if( pBt
->pageSize
<512 || pBt
->pageSize
>SQLITE_MAX_PAGE_SIZE
1898 || ((pBt
->pageSize
-1)&pBt
->pageSize
)!=0 ){
1900 #ifndef SQLITE_OMIT_AUTOVACUUM
1901 /* If the magic name ":memory:" will create an in-memory database, then
1902 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
1903 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
1904 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
1905 ** regular file-name. In this case the auto-vacuum applies as per normal.
1907 if( zFilename
&& !isMemdb
){
1908 pBt
->autoVacuum
= (SQLITE_DEFAULT_AUTOVACUUM
? 1 : 0);
1909 pBt
->incrVacuum
= (SQLITE_DEFAULT_AUTOVACUUM
==2 ? 1 : 0);
1914 nReserve
= zDbHeader
[20];
1915 pBt
->btsFlags
|= BTS_PAGESIZE_FIXED
;
1916 #ifndef SQLITE_OMIT_AUTOVACUUM
1917 pBt
->autoVacuum
= (get4byte(&zDbHeader
[36 + 4*4])?1:0);
1918 pBt
->incrVacuum
= (get4byte(&zDbHeader
[36 + 7*4])?1:0);
1921 rc
= sqlite3PagerSetPagesize(pBt
->pPager
, &pBt
->pageSize
, nReserve
);
1922 if( rc
) goto btree_open_out
;
1923 pBt
->usableSize
= pBt
->pageSize
- nReserve
;
1924 assert( (pBt
->pageSize
& 7)==0 ); /* 8-byte alignment of pageSize */
1926 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
1927 /* Add the new BtShared object to the linked list sharable BtShareds.
1930 MUTEX_LOGIC( sqlite3_mutex
*mutexShared
; )
1932 MUTEX_LOGIC( mutexShared
= sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER
);)
1933 if( SQLITE_THREADSAFE
&& sqlite3GlobalConfig
.bCoreMutex
){
1934 pBt
->mutex
= sqlite3MutexAlloc(SQLITE_MUTEX_FAST
);
1935 if( pBt
->mutex
==0 ){
1937 db
->mallocFailed
= 0;
1938 goto btree_open_out
;
1941 sqlite3_mutex_enter(mutexShared
);
1942 pBt
->pNext
= GLOBAL(BtShared
*,sqlite3SharedCacheList
);
1943 GLOBAL(BtShared
*,sqlite3SharedCacheList
) = pBt
;
1944 sqlite3_mutex_leave(mutexShared
);
1949 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
1950 /* If the new Btree uses a sharable pBtShared, then link the new
1951 ** Btree into the list of all sharable Btrees for the same connection.
1952 ** The list is kept in ascending order by pBt address.
1957 for(i
=0; i
<db
->nDb
; i
++){
1958 if( (pSib
= db
->aDb
[i
].pBt
)!=0 && pSib
->sharable
){
1959 while( pSib
->pPrev
){ pSib
= pSib
->pPrev
; }
1960 if( p
->pBt
<pSib
->pBt
){
1965 while( pSib
->pNext
&& pSib
->pNext
->pBt
<p
->pBt
){
1968 p
->pNext
= pSib
->pNext
;
1971 p
->pNext
->pPrev
= p
;
1983 if( rc
!=SQLITE_OK
){
1984 if( pBt
&& pBt
->pPager
){
1985 sqlite3PagerClose(pBt
->pPager
);
1991 /* If the B-Tree was successfully opened, set the pager-cache size to the
1992 ** default value. Except, when opening on an existing shared pager-cache,
1993 ** do not change the pager-cache size.
1995 if( sqlite3BtreeSchema(p
, 0, 0)==0 ){
1996 sqlite3PagerSetCachesize(p
->pBt
->pPager
, SQLITE_DEFAULT_CACHE_SIZE
);
2000 assert( sqlite3_mutex_held(mutexOpen
) );
2001 sqlite3_mutex_leave(mutexOpen
);
2007 ** Decrement the BtShared.nRef counter. When it reaches zero,
2008 ** remove the BtShared structure from the sharing list. Return
2009 ** true if the BtShared.nRef counter reaches zero and return
2010 ** false if it is still positive.
2012 static int removeFromSharingList(BtShared
*pBt
){
2013 #ifndef SQLITE_OMIT_SHARED_CACHE
2014 MUTEX_LOGIC( sqlite3_mutex
*pMaster
; )
2018 assert( sqlite3_mutex_notheld(pBt
->mutex
) );
2019 MUTEX_LOGIC( pMaster
= sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER
); )
2020 sqlite3_mutex_enter(pMaster
);
2023 if( GLOBAL(BtShared
*,sqlite3SharedCacheList
)==pBt
){
2024 GLOBAL(BtShared
*,sqlite3SharedCacheList
) = pBt
->pNext
;
2026 pList
= GLOBAL(BtShared
*,sqlite3SharedCacheList
);
2027 while( ALWAYS(pList
) && pList
->pNext
!=pBt
){
2030 if( ALWAYS(pList
) ){
2031 pList
->pNext
= pBt
->pNext
;
2034 if( SQLITE_THREADSAFE
){
2035 sqlite3_mutex_free(pBt
->mutex
);
2039 sqlite3_mutex_leave(pMaster
);
2047 ** Make sure pBt->pTmpSpace points to an allocation of
2048 ** MX_CELL_SIZE(pBt) bytes.
2050 static void allocateTempSpace(BtShared
*pBt
){
2051 if( !pBt
->pTmpSpace
){
2052 pBt
->pTmpSpace
= sqlite3PageMalloc( pBt
->pageSize
);
2057 ** Free the pBt->pTmpSpace allocation
2059 static void freeTempSpace(BtShared
*pBt
){
2060 sqlite3PageFree( pBt
->pTmpSpace
);
2065 ** Close an open database and invalidate all cursors.
2067 int sqlite3BtreeClose(Btree
*p
){
2068 BtShared
*pBt
= p
->pBt
;
2071 /* Close all cursors opened via this handle. */
2072 assert( sqlite3_mutex_held(p
->db
->mutex
) );
2073 sqlite3BtreeEnter(p
);
2074 pCur
= pBt
->pCursor
;
2076 BtCursor
*pTmp
= pCur
;
2078 if( pTmp
->pBtree
==p
){
2079 sqlite3BtreeCloseCursor(pTmp
);
2083 /* Rollback any active transaction and free the handle structure.
2084 ** The call to sqlite3BtreeRollback() drops any table-locks held by
2087 sqlite3BtreeRollback(p
, SQLITE_OK
);
2088 sqlite3BtreeLeave(p
);
2090 /* If there are still other outstanding references to the shared-btree
2091 ** structure, return now. The remainder of this procedure cleans
2092 ** up the shared-btree.
2094 assert( p
->wantToLock
==0 && p
->locked
==0 );
2095 if( !p
->sharable
|| removeFromSharingList(pBt
) ){
2096 /* The pBt is no longer on the sharing list, so we can access
2097 ** it without having to hold the mutex.
2099 ** Clean out and delete the BtShared object.
2101 assert( !pBt
->pCursor
);
2102 sqlite3PagerClose(pBt
->pPager
);
2103 if( pBt
->xFreeSchema
&& pBt
->pSchema
){
2104 pBt
->xFreeSchema(pBt
->pSchema
);
2106 sqlite3DbFree(0, pBt
->pSchema
);
2111 #ifndef SQLITE_OMIT_SHARED_CACHE
2112 assert( p
->wantToLock
==0 );
2113 assert( p
->locked
==0 );
2114 if( p
->pPrev
) p
->pPrev
->pNext
= p
->pNext
;
2115 if( p
->pNext
) p
->pNext
->pPrev
= p
->pPrev
;
2123 ** Change the limit on the number of pages allowed in the cache.
2125 ** The maximum number of cache pages is set to the absolute
2126 ** value of mxPage. If mxPage is negative, the pager will
2127 ** operate asynchronously - it will not stop to do fsync()s
2128 ** to insure data is written to the disk surface before
2129 ** continuing. Transactions still work if synchronous is off,
2130 ** and the database cannot be corrupted if this program
2131 ** crashes. But if the operating system crashes or there is
2132 ** an abrupt power failure when synchronous is off, the database
2133 ** could be left in an inconsistent and unrecoverable state.
2134 ** Synchronous is on by default so database corruption is not
2135 ** normally a worry.
2137 int sqlite3BtreeSetCacheSize(Btree
*p
, int mxPage
){
2138 BtShared
*pBt
= p
->pBt
;
2139 assert( sqlite3_mutex_held(p
->db
->mutex
) );
2140 sqlite3BtreeEnter(p
);
2141 sqlite3PagerSetCachesize(pBt
->pPager
, mxPage
);
2142 sqlite3BtreeLeave(p
);
2147 ** Change the limit on the amount of the database file that may be
2150 int sqlite3BtreeSetMmapLimit(Btree
*p
, sqlite3_int64 szMmap
){
2151 BtShared
*pBt
= p
->pBt
;
2152 assert( sqlite3_mutex_held(p
->db
->mutex
) );
2153 sqlite3BtreeEnter(p
);
2154 sqlite3PagerSetMmapLimit(pBt
->pPager
, szMmap
);
2155 sqlite3BtreeLeave(p
);
2160 ** Change the way data is synced to disk in order to increase or decrease
2161 ** how well the database resists damage due to OS crashes and power
2162 ** failures. Level 1 is the same as asynchronous (no syncs() occur and
2163 ** there is a high probability of damage) Level 2 is the default. There
2164 ** is a very low but non-zero probability of damage. Level 3 reduces the
2165 ** probability of damage to near zero but with a write performance reduction.
2167 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
2168 int sqlite3BtreeSetSafetyLevel(
2169 Btree
*p
, /* The btree to set the safety level on */
2170 int level
, /* PRAGMA synchronous. 1=OFF, 2=NORMAL, 3=FULL */
2171 int fullSync
, /* PRAGMA fullfsync. */
2172 int ckptFullSync
/* PRAGMA checkpoint_fullfync */
2174 BtShared
*pBt
= p
->pBt
;
2175 assert( sqlite3_mutex_held(p
->db
->mutex
) );
2176 assert( level
>=1 && level
<=3 );
2177 sqlite3BtreeEnter(p
);
2178 sqlite3PagerSetSafetyLevel(pBt
->pPager
, level
, fullSync
, ckptFullSync
);
2179 sqlite3BtreeLeave(p
);
2185 ** Return TRUE if the given btree is set to safety level 1. In other
2186 ** words, return TRUE if no sync() occurs on the disk files.
2188 int sqlite3BtreeSyncDisabled(Btree
*p
){
2189 BtShared
*pBt
= p
->pBt
;
2191 assert( sqlite3_mutex_held(p
->db
->mutex
) );
2192 sqlite3BtreeEnter(p
);
2193 assert( pBt
&& pBt
->pPager
);
2194 rc
= sqlite3PagerNosync(pBt
->pPager
);
2195 sqlite3BtreeLeave(p
);
2200 ** Change the default pages size and the number of reserved bytes per page.
2201 ** Or, if the page size has already been fixed, return SQLITE_READONLY
2202 ** without changing anything.
2204 ** The page size must be a power of 2 between 512 and 65536. If the page
2205 ** size supplied does not meet this constraint then the page size is not
2208 ** Page sizes are constrained to be a power of two so that the region
2209 ** of the database file used for locking (beginning at PENDING_BYTE,
2210 ** the first byte past the 1GB boundary, 0x40000000) needs to occur
2211 ** at the beginning of a page.
2213 ** If parameter nReserve is less than zero, then the number of reserved
2214 ** bytes per page is left unchanged.
2216 ** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
2217 ** and autovacuum mode can no longer be changed.
2219 int sqlite3BtreeSetPageSize(Btree
*p
, int pageSize
, int nReserve
, int iFix
){
2221 BtShared
*pBt
= p
->pBt
;
2222 assert( nReserve
>=-1 && nReserve
<=255 );
2223 sqlite3BtreeEnter(p
);
2224 if( pBt
->btsFlags
& BTS_PAGESIZE_FIXED
){
2225 sqlite3BtreeLeave(p
);
2226 return SQLITE_READONLY
;
2229 nReserve
= pBt
->pageSize
- pBt
->usableSize
;
2231 assert( nReserve
>=0 && nReserve
<=255 );
2232 if( pageSize
>=512 && pageSize
<=SQLITE_MAX_PAGE_SIZE
&&
2233 ((pageSize
-1)&pageSize
)==0 ){
2234 assert( (pageSize
& 7)==0 );
2235 assert( !pBt
->pPage1
&& !pBt
->pCursor
);
2236 pBt
->pageSize
= (u32
)pageSize
;
2239 rc
= sqlite3PagerSetPagesize(pBt
->pPager
, &pBt
->pageSize
, nReserve
);
2240 pBt
->usableSize
= pBt
->pageSize
- (u16
)nReserve
;
2241 if( iFix
) pBt
->btsFlags
|= BTS_PAGESIZE_FIXED
;
2242 sqlite3BtreeLeave(p
);
2247 ** Return the currently defined page size
2249 int sqlite3BtreeGetPageSize(Btree
*p
){
2250 return p
->pBt
->pageSize
;
2253 #if defined(SQLITE_HAS_CODEC) || defined(SQLITE_DEBUG)
2255 ** This function is similar to sqlite3BtreeGetReserve(), except that it
2256 ** may only be called if it is guaranteed that the b-tree mutex is already
2259 ** This is useful in one special case in the backup API code where it is
2260 ** known that the shared b-tree mutex is held, but the mutex on the
2261 ** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2262 ** were to be called, it might collide with some other operation on the
2263 ** database handle that owns *p, causing undefined behavior.
2265 int sqlite3BtreeGetReserveNoMutex(Btree
*p
){
2266 assert( sqlite3_mutex_held(p
->pBt
->mutex
) );
2267 return p
->pBt
->pageSize
- p
->pBt
->usableSize
;
2269 #endif /* SQLITE_HAS_CODEC || SQLITE_DEBUG */
2271 #if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM)
2273 ** Return the number of bytes of space at the end of every page that
2274 ** are intentually left unused. This is the "reserved" space that is
2275 ** sometimes used by extensions.
2277 int sqlite3BtreeGetReserve(Btree
*p
){
2279 sqlite3BtreeEnter(p
);
2280 n
= p
->pBt
->pageSize
- p
->pBt
->usableSize
;
2281 sqlite3BtreeLeave(p
);
2286 ** Set the maximum page count for a database if mxPage is positive.
2287 ** No changes are made if mxPage is 0 or negative.
2288 ** Regardless of the value of mxPage, return the maximum page count.
2290 int sqlite3BtreeMaxPageCount(Btree
*p
, int mxPage
){
2292 sqlite3BtreeEnter(p
);
2293 n
= sqlite3PagerMaxPageCount(p
->pBt
->pPager
, mxPage
);
2294 sqlite3BtreeLeave(p
);
2299 ** Set the BTS_SECURE_DELETE flag if newFlag is 0 or 1. If newFlag is -1,
2300 ** then make no changes. Always return the value of the BTS_SECURE_DELETE
2301 ** setting after the change.
2303 int sqlite3BtreeSecureDelete(Btree
*p
, int newFlag
){
2305 if( p
==0 ) return 0;
2306 sqlite3BtreeEnter(p
);
2308 p
->pBt
->btsFlags
&= ~BTS_SECURE_DELETE
;
2309 if( newFlag
) p
->pBt
->btsFlags
|= BTS_SECURE_DELETE
;
2311 b
= (p
->pBt
->btsFlags
& BTS_SECURE_DELETE
)!=0;
2312 sqlite3BtreeLeave(p
);
2315 #endif /* !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) */
2318 ** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2319 ** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2320 ** is disabled. The default value for the auto-vacuum property is
2321 ** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2323 int sqlite3BtreeSetAutoVacuum(Btree
*p
, int autoVacuum
){
2324 #ifdef SQLITE_OMIT_AUTOVACUUM
2325 return SQLITE_READONLY
;
2327 BtShared
*pBt
= p
->pBt
;
2329 u8 av
= (u8
)autoVacuum
;
2331 sqlite3BtreeEnter(p
);
2332 if( (pBt
->btsFlags
& BTS_PAGESIZE_FIXED
)!=0 && (av
?1:0)!=pBt
->autoVacuum
){
2333 rc
= SQLITE_READONLY
;
2335 pBt
->autoVacuum
= av
?1:0;
2336 pBt
->incrVacuum
= av
==2 ?1:0;
2338 sqlite3BtreeLeave(p
);
2344 ** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2345 ** enabled 1 is returned. Otherwise 0.
2347 int sqlite3BtreeGetAutoVacuum(Btree
*p
){
2348 #ifdef SQLITE_OMIT_AUTOVACUUM
2349 return BTREE_AUTOVACUUM_NONE
;
2352 sqlite3BtreeEnter(p
);
2354 (!p
->pBt
->autoVacuum
)?BTREE_AUTOVACUUM_NONE
:
2355 (!p
->pBt
->incrVacuum
)?BTREE_AUTOVACUUM_FULL
:
2356 BTREE_AUTOVACUUM_INCR
2358 sqlite3BtreeLeave(p
);
2365 ** Get a reference to pPage1 of the database file. This will
2366 ** also acquire a readlock on that file.
2368 ** SQLITE_OK is returned on success. If the file is not a
2369 ** well-formed database file, then SQLITE_CORRUPT is returned.
2370 ** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
2371 ** is returned if we run out of memory.
2373 static int lockBtree(BtShared
*pBt
){
2374 int rc
; /* Result code from subfunctions */
2375 MemPage
*pPage1
; /* Page 1 of the database file */
2376 int nPage
; /* Number of pages in the database */
2377 int nPageFile
= 0; /* Number of pages in the database file */
2378 int nPageHeader
; /* Number of pages in the database according to hdr */
2380 assert( sqlite3_mutex_held(pBt
->mutex
) );
2381 assert( pBt
->pPage1
==0 );
2382 rc
= sqlite3PagerSharedLock(pBt
->pPager
);
2383 if( rc
!=SQLITE_OK
) return rc
;
2384 rc
= btreeGetPage(pBt
, 1, &pPage1
, 0, 0);
2385 if( rc
!=SQLITE_OK
) return rc
;
2387 /* Do some checking to help insure the file we opened really is
2388 ** a valid database file.
2390 nPage
= nPageHeader
= get4byte(28+(u8
*)pPage1
->aData
);
2391 sqlite3PagerPagecount(pBt
->pPager
, &nPageFile
);
2392 if( nPage
==0 || memcmp(24+(u8
*)pPage1
->aData
, 92+(u8
*)pPage1
->aData
,4)!=0 ){
2398 u8
*page1
= pPage1
->aData
;
2400 if( memcmp(page1
, zMagicHeader
, 16)!=0 ){
2401 goto page1_init_failed
;
2404 #ifdef SQLITE_OMIT_WAL
2406 pBt
->btsFlags
|= BTS_READ_ONLY
;
2409 goto page1_init_failed
;
2413 pBt
->btsFlags
|= BTS_READ_ONLY
;
2416 goto page1_init_failed
;
2419 /* If the write version is set to 2, this database should be accessed
2420 ** in WAL mode. If the log is not already open, open it now. Then
2421 ** return SQLITE_OK and return without populating BtShared.pPage1.
2422 ** The caller detects this and calls this function again. This is
2423 ** required as the version of page 1 currently in the page1 buffer
2424 ** may not be the latest version - there may be a newer one in the log
2427 if( page1
[19]==2 && (pBt
->btsFlags
& BTS_NO_WAL
)==0 ){
2429 rc
= sqlite3PagerOpenWal(pBt
->pPager
, &isOpen
);
2430 if( rc
!=SQLITE_OK
){
2431 goto page1_init_failed
;
2432 }else if( isOpen
==0 ){
2433 releasePage(pPage1
);
2440 /* The maximum embedded fraction must be exactly 25%. And the minimum
2441 ** embedded fraction must be 12.5% for both leaf-data and non-leaf-data.
2442 ** The original design allowed these amounts to vary, but as of
2443 ** version 3.6.0, we require them to be fixed.
2445 if( memcmp(&page1
[21], "\100\040\040",3)!=0 ){
2446 goto page1_init_failed
;
2448 pageSize
= (page1
[16]<<8) | (page1
[17]<<16);
2449 if( ((pageSize
-1)&pageSize
)!=0
2450 || pageSize
>SQLITE_MAX_PAGE_SIZE
2453 goto page1_init_failed
;
2455 assert( (pageSize
& 7)==0 );
2456 usableSize
= pageSize
- page1
[20];
2457 if( (u32
)pageSize
!=pBt
->pageSize
){
2458 /* After reading the first page of the database assuming a page size
2459 ** of BtShared.pageSize, we have discovered that the page-size is
2460 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
2461 ** zero and return SQLITE_OK. The caller will call this function
2462 ** again with the correct page-size.
2464 releasePage(pPage1
);
2465 pBt
->usableSize
= usableSize
;
2466 pBt
->pageSize
= pageSize
;
2468 rc
= sqlite3PagerSetPagesize(pBt
->pPager
, &pBt
->pageSize
,
2469 pageSize
-usableSize
);
2472 if( (pBt
->db
->flags
& SQLITE_RecoveryMode
)==0 && nPage
>nPageFile
){
2473 rc
= SQLITE_CORRUPT_BKPT
;
2474 goto page1_init_failed
;
2476 if( usableSize
<480 ){
2477 goto page1_init_failed
;
2479 pBt
->pageSize
= pageSize
;
2480 pBt
->usableSize
= usableSize
;
2481 #ifndef SQLITE_OMIT_AUTOVACUUM
2482 pBt
->autoVacuum
= (get4byte(&page1
[36 + 4*4])?1:0);
2483 pBt
->incrVacuum
= (get4byte(&page1
[36 + 7*4])?1:0);
2487 /* maxLocal is the maximum amount of payload to store locally for
2488 ** a cell. Make sure it is small enough so that at least minFanout
2489 ** cells can will fit on one page. We assume a 10-byte page header.
2490 ** Besides the payload, the cell must store:
2491 ** 2-byte pointer to the cell
2492 ** 4-byte child pointer
2493 ** 9-byte nKey value
2494 ** 4-byte nData value
2495 ** 4-byte overflow page pointer
2496 ** So a cell consists of a 2-byte pointer, a header which is as much as
2497 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
2500 pBt
->maxLocal
= (u16
)((pBt
->usableSize
-12)*64/255 - 23);
2501 pBt
->minLocal
= (u16
)((pBt
->usableSize
-12)*32/255 - 23);
2502 pBt
->maxLeaf
= (u16
)(pBt
->usableSize
- 35);
2503 pBt
->minLeaf
= (u16
)((pBt
->usableSize
-12)*32/255 - 23);
2504 if( pBt
->maxLocal
>127 ){
2505 pBt
->max1bytePayload
= 127;
2507 pBt
->max1bytePayload
= (u8
)pBt
->maxLocal
;
2509 assert( pBt
->maxLeaf
+ 23 <= MX_CELL_SIZE(pBt
) );
2510 pBt
->pPage1
= pPage1
;
2515 releasePage(pPage1
);
2522 ** Return the number of cursors open on pBt. This is for use
2523 ** in assert() expressions, so it is only compiled if NDEBUG is not
2526 ** Only write cursors are counted if wrOnly is true. If wrOnly is
2527 ** false then all cursors are counted.
2529 ** For the purposes of this routine, a cursor is any cursor that
2530 ** is capable of reading or writing to the databse. Cursors that
2531 ** have been tripped into the CURSOR_FAULT state are not counted.
2533 static int countValidCursors(BtShared
*pBt
, int wrOnly
){
2536 for(pCur
=pBt
->pCursor
; pCur
; pCur
=pCur
->pNext
){
2537 if( (wrOnly
==0 || pCur
->wrFlag
) && pCur
->eState
!=CURSOR_FAULT
) r
++;
2544 ** If there are no outstanding cursors and we are not in the middle
2545 ** of a transaction but there is a read lock on the database, then
2546 ** this routine unrefs the first page of the database file which
2547 ** has the effect of releasing the read lock.
2549 ** If there is a transaction in progress, this routine is a no-op.
2551 static void unlockBtreeIfUnused(BtShared
*pBt
){
2552 assert( sqlite3_mutex_held(pBt
->mutex
) );
2553 assert( countValidCursors(pBt
,0)==0 || pBt
->inTransaction
>TRANS_NONE
);
2554 if( pBt
->inTransaction
==TRANS_NONE
&& pBt
->pPage1
!=0 ){
2555 assert( pBt
->pPage1
->aData
);
2556 assert( sqlite3PagerRefcount(pBt
->pPager
)==1 );
2557 assert( pBt
->pPage1
->aData
);
2558 releasePage(pBt
->pPage1
);
2564 ** If pBt points to an empty file then convert that empty file
2565 ** into a new empty database by initializing the first page of
2568 static int newDatabase(BtShared
*pBt
){
2570 unsigned char *data
;
2573 assert( sqlite3_mutex_held(pBt
->mutex
) );
2580 rc
= sqlite3PagerWrite(pP1
->pDbPage
);
2582 memcpy(data
, zMagicHeader
, sizeof(zMagicHeader
));
2583 assert( sizeof(zMagicHeader
)==16 );
2584 data
[16] = (u8
)((pBt
->pageSize
>>8)&0xff);
2585 data
[17] = (u8
)((pBt
->pageSize
>>16)&0xff);
2588 assert( pBt
->usableSize
<=pBt
->pageSize
&& pBt
->usableSize
+255>=pBt
->pageSize
);
2589 data
[20] = (u8
)(pBt
->pageSize
- pBt
->usableSize
);
2593 memset(&data
[24], 0, 100-24);
2594 zeroPage(pP1
, PTF_INTKEY
|PTF_LEAF
|PTF_LEAFDATA
);
2595 pBt
->btsFlags
|= BTS_PAGESIZE_FIXED
;
2596 #ifndef SQLITE_OMIT_AUTOVACUUM
2597 assert( pBt
->autoVacuum
==1 || pBt
->autoVacuum
==0 );
2598 assert( pBt
->incrVacuum
==1 || pBt
->incrVacuum
==0 );
2599 put4byte(&data
[36 + 4*4], pBt
->autoVacuum
);
2600 put4byte(&data
[36 + 7*4], pBt
->incrVacuum
);
2608 ** Initialize the first page of the database file (creating a database
2609 ** consisting of a single page and no schema objects). Return SQLITE_OK
2610 ** if successful, or an SQLite error code otherwise.
2612 int sqlite3BtreeNewDb(Btree
*p
){
2614 sqlite3BtreeEnter(p
);
2616 rc
= newDatabase(p
->pBt
);
2617 sqlite3BtreeLeave(p
);
2622 ** Attempt to start a new transaction. A write-transaction
2623 ** is started if the second argument is nonzero, otherwise a read-
2624 ** transaction. If the second argument is 2 or more and exclusive
2625 ** transaction is started, meaning that no other process is allowed
2626 ** to access the database. A preexisting transaction may not be
2627 ** upgraded to exclusive by calling this routine a second time - the
2628 ** exclusivity flag only works for a new transaction.
2630 ** A write-transaction must be started before attempting any
2631 ** changes to the database. None of the following routines
2632 ** will work unless a transaction is started first:
2634 ** sqlite3BtreeCreateTable()
2635 ** sqlite3BtreeCreateIndex()
2636 ** sqlite3BtreeClearTable()
2637 ** sqlite3BtreeDropTable()
2638 ** sqlite3BtreeInsert()
2639 ** sqlite3BtreeDelete()
2640 ** sqlite3BtreeUpdateMeta()
2642 ** If an initial attempt to acquire the lock fails because of lock contention
2643 ** and the database was previously unlocked, then invoke the busy handler
2644 ** if there is one. But if there was previously a read-lock, do not
2645 ** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
2646 ** returned when there is already a read-lock in order to avoid a deadlock.
2648 ** Suppose there are two processes A and B. A has a read lock and B has
2649 ** a reserved lock. B tries to promote to exclusive but is blocked because
2650 ** of A's read lock. A tries to promote to reserved but is blocked by B.
2651 ** One or the other of the two processes must give way or there can be
2652 ** no progress. By returning SQLITE_BUSY and not invoking the busy callback
2653 ** when A already has a read lock, we encourage A to give up and let B
2656 int sqlite3BtreeBeginTrans(Btree
*p
, int wrflag
){
2657 sqlite3
*pBlock
= 0;
2658 BtShared
*pBt
= p
->pBt
;
2661 sqlite3BtreeEnter(p
);
2664 /* If the btree is already in a write-transaction, or it
2665 ** is already in a read-transaction and a read-transaction
2666 ** is requested, this is a no-op.
2668 if( p
->inTrans
==TRANS_WRITE
|| (p
->inTrans
==TRANS_READ
&& !wrflag
) ){
2671 assert( IfNotOmitAV(pBt
->bDoTruncate
)==0 );
2673 /* Write transactions are not possible on a read-only database */
2674 if( (pBt
->btsFlags
& BTS_READ_ONLY
)!=0 && wrflag
){
2675 rc
= SQLITE_READONLY
;
2679 #ifndef SQLITE_OMIT_SHARED_CACHE
2680 /* If another database handle has already opened a write transaction
2681 ** on this shared-btree structure and a second write transaction is
2682 ** requested, return SQLITE_LOCKED.
2684 if( (wrflag
&& pBt
->inTransaction
==TRANS_WRITE
)
2685 || (pBt
->btsFlags
& BTS_PENDING
)!=0
2687 pBlock
= pBt
->pWriter
->db
;
2688 }else if( wrflag
>1 ){
2690 for(pIter
=pBt
->pLock
; pIter
; pIter
=pIter
->pNext
){
2691 if( pIter
->pBtree
!=p
){
2692 pBlock
= pIter
->pBtree
->db
;
2698 sqlite3ConnectionBlocked(p
->db
, pBlock
);
2699 rc
= SQLITE_LOCKED_SHAREDCACHE
;
2704 /* Any read-only or read-write transaction implies a read-lock on
2705 ** page 1. So if some other shared-cache client already has a write-lock
2706 ** on page 1, the transaction cannot be opened. */
2707 rc
= querySharedCacheTableLock(p
, MASTER_ROOT
, READ_LOCK
);
2708 if( SQLITE_OK
!=rc
) goto trans_begun
;
2710 pBt
->btsFlags
&= ~BTS_INITIALLY_EMPTY
;
2711 if( pBt
->nPage
==0 ) pBt
->btsFlags
|= BTS_INITIALLY_EMPTY
;
2713 /* Call lockBtree() until either pBt->pPage1 is populated or
2714 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
2715 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
2716 ** reading page 1 it discovers that the page-size of the database
2717 ** file is not pBt->pageSize. In this case lockBtree() will update
2718 ** pBt->pageSize to the page-size of the file on disk.
2720 while( pBt
->pPage1
==0 && SQLITE_OK
==(rc
= lockBtree(pBt
)) );
2722 if( rc
==SQLITE_OK
&& wrflag
){
2723 if( (pBt
->btsFlags
& BTS_READ_ONLY
)!=0 ){
2724 rc
= SQLITE_READONLY
;
2726 rc
= sqlite3PagerBegin(pBt
->pPager
,wrflag
>1,sqlite3TempInMemory(p
->db
));
2727 if( rc
==SQLITE_OK
){
2728 rc
= newDatabase(pBt
);
2733 if( rc
!=SQLITE_OK
){
2734 unlockBtreeIfUnused(pBt
);
2736 }while( (rc
&0xFF)==SQLITE_BUSY
&& pBt
->inTransaction
==TRANS_NONE
&&
2737 btreeInvokeBusyHandler(pBt
) );
2739 if( rc
==SQLITE_OK
){
2740 if( p
->inTrans
==TRANS_NONE
){
2741 pBt
->nTransaction
++;
2742 #ifndef SQLITE_OMIT_SHARED_CACHE
2744 assert( p
->lock
.pBtree
==p
&& p
->lock
.iTable
==1 );
2745 p
->lock
.eLock
= READ_LOCK
;
2746 p
->lock
.pNext
= pBt
->pLock
;
2747 pBt
->pLock
= &p
->lock
;
2751 p
->inTrans
= (wrflag
?TRANS_WRITE
:TRANS_READ
);
2752 if( p
->inTrans
>pBt
->inTransaction
){
2753 pBt
->inTransaction
= p
->inTrans
;
2756 MemPage
*pPage1
= pBt
->pPage1
;
2757 #ifndef SQLITE_OMIT_SHARED_CACHE
2758 assert( !pBt
->pWriter
);
2760 pBt
->btsFlags
&= ~BTS_EXCLUSIVE
;
2761 if( wrflag
>1 ) pBt
->btsFlags
|= BTS_EXCLUSIVE
;
2764 /* If the db-size header field is incorrect (as it may be if an old
2765 ** client has been writing the database file), update it now. Doing
2766 ** this sooner rather than later means the database size can safely
2767 ** re-read the database size from page 1 if a savepoint or transaction
2768 ** rollback occurs within the transaction.
2770 if( pBt
->nPage
!=get4byte(&pPage1
->aData
[28]) ){
2771 rc
= sqlite3PagerWrite(pPage1
->pDbPage
);
2772 if( rc
==SQLITE_OK
){
2773 put4byte(&pPage1
->aData
[28], pBt
->nPage
);
2781 if( rc
==SQLITE_OK
&& wrflag
){
2782 /* This call makes sure that the pager has the correct number of
2783 ** open savepoints. If the second parameter is greater than 0 and
2784 ** the sub-journal is not already open, then it will be opened here.
2786 rc
= sqlite3PagerOpenSavepoint(pBt
->pPager
, p
->db
->nSavepoint
);
2790 sqlite3BtreeLeave(p
);
2794 #ifndef SQLITE_OMIT_AUTOVACUUM
2797 ** Set the pointer-map entries for all children of page pPage. Also, if
2798 ** pPage contains cells that point to overflow pages, set the pointer
2799 ** map entries for the overflow pages as well.
2801 static int setChildPtrmaps(MemPage
*pPage
){
2802 int i
; /* Counter variable */
2803 int nCell
; /* Number of cells in page pPage */
2804 int rc
; /* Return code */
2805 BtShared
*pBt
= pPage
->pBt
;
2806 u8 isInitOrig
= pPage
->isInit
;
2807 Pgno pgno
= pPage
->pgno
;
2809 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
2810 rc
= btreeInitPage(pPage
);
2811 if( rc
!=SQLITE_OK
){
2812 goto set_child_ptrmaps_out
;
2814 nCell
= pPage
->nCell
;
2816 for(i
=0; i
<nCell
; i
++){
2817 u8
*pCell
= findCell(pPage
, i
);
2819 ptrmapPutOvflPtr(pPage
, pCell
, &rc
);
2822 Pgno childPgno
= get4byte(pCell
);
2823 ptrmapPut(pBt
, childPgno
, PTRMAP_BTREE
, pgno
, &rc
);
2828 Pgno childPgno
= get4byte(&pPage
->aData
[pPage
->hdrOffset
+8]);
2829 ptrmapPut(pBt
, childPgno
, PTRMAP_BTREE
, pgno
, &rc
);
2832 set_child_ptrmaps_out
:
2833 pPage
->isInit
= isInitOrig
;
2838 ** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
2839 ** that it points to iTo. Parameter eType describes the type of pointer to
2840 ** be modified, as follows:
2842 ** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
2845 ** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
2846 ** page pointed to by one of the cells on pPage.
2848 ** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
2849 ** overflow page in the list.
2851 static int modifyPagePointer(MemPage
*pPage
, Pgno iFrom
, Pgno iTo
, u8 eType
){
2852 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
2853 assert( sqlite3PagerIswriteable(pPage
->pDbPage
) );
2854 if( eType
==PTRMAP_OVERFLOW2
){
2855 /* The pointer is always the first 4 bytes of the page in this case. */
2856 if( get4byte(pPage
->aData
)!=iFrom
){
2857 return SQLITE_CORRUPT_BKPT
;
2859 put4byte(pPage
->aData
, iTo
);
2861 u8 isInitOrig
= pPage
->isInit
;
2865 btreeInitPage(pPage
);
2866 nCell
= pPage
->nCell
;
2868 for(i
=0; i
<nCell
; i
++){
2869 u8
*pCell
= findCell(pPage
, i
);
2870 if( eType
==PTRMAP_OVERFLOW1
){
2872 btreeParseCellPtr(pPage
, pCell
, &info
);
2874 && pCell
+info
.iOverflow
+3<=pPage
->aData
+pPage
->maskPage
2875 && iFrom
==get4byte(&pCell
[info
.iOverflow
])
2877 put4byte(&pCell
[info
.iOverflow
], iTo
);
2881 if( get4byte(pCell
)==iFrom
){
2882 put4byte(pCell
, iTo
);
2889 if( eType
!=PTRMAP_BTREE
||
2890 get4byte(&pPage
->aData
[pPage
->hdrOffset
+8])!=iFrom
){
2891 return SQLITE_CORRUPT_BKPT
;
2893 put4byte(&pPage
->aData
[pPage
->hdrOffset
+8], iTo
);
2896 pPage
->isInit
= isInitOrig
;
2903 ** Move the open database page pDbPage to location iFreePage in the
2904 ** database. The pDbPage reference remains valid.
2906 ** The isCommit flag indicates that there is no need to remember that
2907 ** the journal needs to be sync()ed before database page pDbPage->pgno
2908 ** can be written to. The caller has already promised not to write to that
2911 static int relocatePage(
2912 BtShared
*pBt
, /* Btree */
2913 MemPage
*pDbPage
, /* Open page to move */
2914 u8 eType
, /* Pointer map 'type' entry for pDbPage */
2915 Pgno iPtrPage
, /* Pointer map 'page-no' entry for pDbPage */
2916 Pgno iFreePage
, /* The location to move pDbPage to */
2917 int isCommit
/* isCommit flag passed to sqlite3PagerMovepage */
2919 MemPage
*pPtrPage
; /* The page that contains a pointer to pDbPage */
2920 Pgno iDbPage
= pDbPage
->pgno
;
2921 Pager
*pPager
= pBt
->pPager
;
2924 assert( eType
==PTRMAP_OVERFLOW2
|| eType
==PTRMAP_OVERFLOW1
||
2925 eType
==PTRMAP_BTREE
|| eType
==PTRMAP_ROOTPAGE
);
2926 assert( sqlite3_mutex_held(pBt
->mutex
) );
2927 assert( pDbPage
->pBt
==pBt
);
2929 /* Move page iDbPage from its current location to page number iFreePage */
2930 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
2931 iDbPage
, iFreePage
, iPtrPage
, eType
));
2932 rc
= sqlite3PagerMovepage(pPager
, pDbPage
->pDbPage
, iFreePage
, isCommit
);
2933 if( rc
!=SQLITE_OK
){
2936 pDbPage
->pgno
= iFreePage
;
2938 /* If pDbPage was a btree-page, then it may have child pages and/or cells
2939 ** that point to overflow pages. The pointer map entries for all these
2940 ** pages need to be changed.
2942 ** If pDbPage is an overflow page, then the first 4 bytes may store a
2943 ** pointer to a subsequent overflow page. If this is the case, then
2944 ** the pointer map needs to be updated for the subsequent overflow page.
2946 if( eType
==PTRMAP_BTREE
|| eType
==PTRMAP_ROOTPAGE
){
2947 rc
= setChildPtrmaps(pDbPage
);
2948 if( rc
!=SQLITE_OK
){
2952 Pgno nextOvfl
= get4byte(pDbPage
->aData
);
2954 ptrmapPut(pBt
, nextOvfl
, PTRMAP_OVERFLOW2
, iFreePage
, &rc
);
2955 if( rc
!=SQLITE_OK
){
2961 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
2962 ** that it points at iFreePage. Also fix the pointer map entry for
2965 if( eType
!=PTRMAP_ROOTPAGE
){
2966 rc
= btreeGetPage(pBt
, iPtrPage
, &pPtrPage
, 0, 0);
2967 if( rc
!=SQLITE_OK
){
2970 rc
= sqlite3PagerWrite(pPtrPage
->pDbPage
);
2971 if( rc
!=SQLITE_OK
){
2972 releasePage(pPtrPage
);
2975 rc
= modifyPagePointer(pPtrPage
, iDbPage
, iFreePage
, eType
);
2976 releasePage(pPtrPage
);
2977 if( rc
==SQLITE_OK
){
2978 ptrmapPut(pBt
, iFreePage
, eType
, iPtrPage
, &rc
);
2984 /* Forward declaration required by incrVacuumStep(). */
2985 static int allocateBtreePage(BtShared
*, MemPage
**, Pgno
*, Pgno
, u8
);
2988 ** Perform a single step of an incremental-vacuum. If successful, return
2989 ** SQLITE_OK. If there is no work to do (and therefore no point in
2990 ** calling this function again), return SQLITE_DONE. Or, if an error
2991 ** occurs, return some other error code.
2993 ** More specificly, this function attempts to re-organize the database so
2994 ** that the last page of the file currently in use is no longer in use.
2996 ** Parameter nFin is the number of pages that this database would contain
2997 ** were this function called until it returns SQLITE_DONE.
2999 ** If the bCommit parameter is non-zero, this function assumes that the
3000 ** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
3001 ** or an error. bCommit is passed true for an auto-vacuum-on-commmit
3002 ** operation, or false for an incremental vacuum.
3004 static int incrVacuumStep(BtShared
*pBt
, Pgno nFin
, Pgno iLastPg
, int bCommit
){
3005 Pgno nFreeList
; /* Number of pages still on the free-list */
3008 assert( sqlite3_mutex_held(pBt
->mutex
) );
3009 assert( iLastPg
>nFin
);
3011 if( !PTRMAP_ISPAGE(pBt
, iLastPg
) && iLastPg
!=PENDING_BYTE_PAGE(pBt
) ){
3015 nFreeList
= get4byte(&pBt
->pPage1
->aData
[36]);
3020 rc
= ptrmapGet(pBt
, iLastPg
, &eType
, &iPtrPage
);
3021 if( rc
!=SQLITE_OK
){
3024 if( eType
==PTRMAP_ROOTPAGE
){
3025 return SQLITE_CORRUPT_BKPT
;
3028 if( eType
==PTRMAP_FREEPAGE
){
3030 /* Remove the page from the files free-list. This is not required
3031 ** if bCommit is non-zero. In that case, the free-list will be
3032 ** truncated to zero after this function returns, so it doesn't
3033 ** matter if it still contains some garbage entries.
3037 rc
= allocateBtreePage(pBt
, &pFreePg
, &iFreePg
, iLastPg
, BTALLOC_EXACT
);
3038 if( rc
!=SQLITE_OK
){
3041 assert( iFreePg
==iLastPg
);
3042 releasePage(pFreePg
);
3045 Pgno iFreePg
; /* Index of free page to move pLastPg to */
3047 u8 eMode
= BTALLOC_ANY
; /* Mode parameter for allocateBtreePage() */
3048 Pgno iNear
= 0; /* nearby parameter for allocateBtreePage() */
3050 rc
= btreeGetPage(pBt
, iLastPg
, &pLastPg
, 0, 0);
3051 if( rc
!=SQLITE_OK
){
3055 /* If bCommit is zero, this loop runs exactly once and page pLastPg
3056 ** is swapped with the first free page pulled off the free list.
3058 ** On the other hand, if bCommit is greater than zero, then keep
3059 ** looping until a free-page located within the first nFin pages
3060 ** of the file is found.
3068 rc
= allocateBtreePage(pBt
, &pFreePg
, &iFreePg
, iNear
, eMode
);
3069 if( rc
!=SQLITE_OK
){
3070 releasePage(pLastPg
);
3073 releasePage(pFreePg
);
3074 }while( bCommit
&& iFreePg
>nFin
);
3075 assert( iFreePg
<iLastPg
);
3077 rc
= relocatePage(pBt
, pLastPg
, eType
, iPtrPage
, iFreePg
, bCommit
);
3078 releasePage(pLastPg
);
3079 if( rc
!=SQLITE_OK
){
3088 }while( iLastPg
==PENDING_BYTE_PAGE(pBt
) || PTRMAP_ISPAGE(pBt
, iLastPg
) );
3089 pBt
->bDoTruncate
= 1;
3090 pBt
->nPage
= iLastPg
;
3096 ** The database opened by the first argument is an auto-vacuum database
3097 ** nOrig pages in size containing nFree free pages. Return the expected
3098 ** size of the database in pages following an auto-vacuum operation.
3100 static Pgno
finalDbSize(BtShared
*pBt
, Pgno nOrig
, Pgno nFree
){
3101 int nEntry
; /* Number of entries on one ptrmap page */
3102 Pgno nPtrmap
; /* Number of PtrMap pages to be freed */
3103 Pgno nFin
; /* Return value */
3105 nEntry
= pBt
->usableSize
/5;
3106 nPtrmap
= (nFree
-nOrig
+PTRMAP_PAGENO(pBt
, nOrig
)+nEntry
)/nEntry
;
3107 nFin
= nOrig
- nFree
- nPtrmap
;
3108 if( nOrig
>PENDING_BYTE_PAGE(pBt
) && nFin
<PENDING_BYTE_PAGE(pBt
) ){
3111 while( PTRMAP_ISPAGE(pBt
, nFin
) || nFin
==PENDING_BYTE_PAGE(pBt
) ){
3119 ** A write-transaction must be opened before calling this function.
3120 ** It performs a single unit of work towards an incremental vacuum.
3122 ** If the incremental vacuum is finished after this function has run,
3123 ** SQLITE_DONE is returned. If it is not finished, but no error occurred,
3124 ** SQLITE_OK is returned. Otherwise an SQLite error code.
3126 int sqlite3BtreeIncrVacuum(Btree
*p
){
3128 BtShared
*pBt
= p
->pBt
;
3130 sqlite3BtreeEnter(p
);
3131 assert( pBt
->inTransaction
==TRANS_WRITE
&& p
->inTrans
==TRANS_WRITE
);
3132 if( !pBt
->autoVacuum
){
3135 Pgno nOrig
= btreePagecount(pBt
);
3136 Pgno nFree
= get4byte(&pBt
->pPage1
->aData
[36]);
3137 Pgno nFin
= finalDbSize(pBt
, nOrig
, nFree
);
3140 rc
= SQLITE_CORRUPT_BKPT
;
3141 }else if( nFree
>0 ){
3142 rc
= saveAllCursors(pBt
, 0, 0);
3143 if( rc
==SQLITE_OK
){
3144 invalidateAllOverflowCache(pBt
);
3145 rc
= incrVacuumStep(pBt
, nFin
, nOrig
, 0);
3147 if( rc
==SQLITE_OK
){
3148 rc
= sqlite3PagerWrite(pBt
->pPage1
->pDbPage
);
3149 put4byte(&pBt
->pPage1
->aData
[28], pBt
->nPage
);
3155 sqlite3BtreeLeave(p
);
3160 ** This routine is called prior to sqlite3PagerCommit when a transaction
3161 ** is commited for an auto-vacuum database.
3163 ** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3164 ** the database file should be truncated to during the commit process.
3165 ** i.e. the database has been reorganized so that only the first *pnTrunc
3166 ** pages are in use.
3168 static int autoVacuumCommit(BtShared
*pBt
){
3170 Pager
*pPager
= pBt
->pPager
;
3171 VVA_ONLY( int nRef
= sqlite3PagerRefcount(pPager
) );
3173 assert( sqlite3_mutex_held(pBt
->mutex
) );
3174 invalidateAllOverflowCache(pBt
);
3175 assert(pBt
->autoVacuum
);
3176 if( !pBt
->incrVacuum
){
3177 Pgno nFin
; /* Number of pages in database after autovacuuming */
3178 Pgno nFree
; /* Number of pages on the freelist initially */
3179 Pgno iFree
; /* The next page to be freed */
3180 Pgno nOrig
; /* Database size before freeing */
3182 nOrig
= btreePagecount(pBt
);
3183 if( PTRMAP_ISPAGE(pBt
, nOrig
) || nOrig
==PENDING_BYTE_PAGE(pBt
) ){
3184 /* It is not possible to create a database for which the final page
3185 ** is either a pointer-map page or the pending-byte page. If one
3186 ** is encountered, this indicates corruption.
3188 return SQLITE_CORRUPT_BKPT
;
3191 nFree
= get4byte(&pBt
->pPage1
->aData
[36]);
3192 nFin
= finalDbSize(pBt
, nOrig
, nFree
);
3193 if( nFin
>nOrig
) return SQLITE_CORRUPT_BKPT
;
3195 rc
= saveAllCursors(pBt
, 0, 0);
3197 for(iFree
=nOrig
; iFree
>nFin
&& rc
==SQLITE_OK
; iFree
--){
3198 rc
= incrVacuumStep(pBt
, nFin
, iFree
, 1);
3200 if( (rc
==SQLITE_DONE
|| rc
==SQLITE_OK
) && nFree
>0 ){
3201 rc
= sqlite3PagerWrite(pBt
->pPage1
->pDbPage
);
3202 put4byte(&pBt
->pPage1
->aData
[32], 0);
3203 put4byte(&pBt
->pPage1
->aData
[36], 0);
3204 put4byte(&pBt
->pPage1
->aData
[28], nFin
);
3205 pBt
->bDoTruncate
= 1;
3208 if( rc
!=SQLITE_OK
){
3209 sqlite3PagerRollback(pPager
);
3213 assert( nRef
>=sqlite3PagerRefcount(pPager
) );
3217 #else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3218 # define setChildPtrmaps(x) SQLITE_OK
3222 ** This routine does the first phase of a two-phase commit. This routine
3223 ** causes a rollback journal to be created (if it does not already exist)
3224 ** and populated with enough information so that if a power loss occurs
3225 ** the database can be restored to its original state by playing back
3226 ** the journal. Then the contents of the journal are flushed out to
3227 ** the disk. After the journal is safely on oxide, the changes to the
3228 ** database are written into the database file and flushed to oxide.
3229 ** At the end of this call, the rollback journal still exists on the
3230 ** disk and we are still holding all locks, so the transaction has not
3231 ** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
3234 ** This call is a no-op if no write-transaction is currently active on pBt.
3236 ** Otherwise, sync the database file for the btree pBt. zMaster points to
3237 ** the name of a master journal file that should be written into the
3238 ** individual journal file, or is NULL, indicating no master journal file
3239 ** (single database transaction).
3241 ** When this is called, the master journal should already have been
3242 ** created, populated with this journal pointer and synced to disk.
3244 ** Once this is routine has returned, the only thing required to commit
3245 ** the write-transaction for this database file is to delete the journal.
3247 int sqlite3BtreeCommitPhaseOne(Btree
*p
, const char *zMaster
){
3249 if( p
->inTrans
==TRANS_WRITE
){
3250 BtShared
*pBt
= p
->pBt
;
3251 sqlite3BtreeEnter(p
);
3252 #ifndef SQLITE_OMIT_AUTOVACUUM
3253 if( pBt
->autoVacuum
){
3254 rc
= autoVacuumCommit(pBt
);
3255 if( rc
!=SQLITE_OK
){
3256 sqlite3BtreeLeave(p
);
3260 if( pBt
->bDoTruncate
){
3261 sqlite3PagerTruncateImage(pBt
->pPager
, pBt
->nPage
);
3264 rc
= sqlite3PagerCommitPhaseOne(pBt
->pPager
, zMaster
, 0);
3265 sqlite3BtreeLeave(p
);
3271 ** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
3272 ** at the conclusion of a transaction.
3274 static void btreeEndTransaction(Btree
*p
){
3275 BtShared
*pBt
= p
->pBt
;
3276 assert( sqlite3BtreeHoldsMutex(p
) );
3278 #ifndef SQLITE_OMIT_AUTOVACUUM
3279 pBt
->bDoTruncate
= 0;
3281 if( p
->inTrans
>TRANS_NONE
&& p
->db
->activeVdbeCnt
>1 ){
3282 /* If there are other active statements that belong to this database
3283 ** handle, downgrade to a read-only transaction. The other statements
3284 ** may still be reading from the database. */
3285 downgradeAllSharedCacheTableLocks(p
);
3286 p
->inTrans
= TRANS_READ
;
3288 /* If the handle had any kind of transaction open, decrement the
3289 ** transaction count of the shared btree. If the transaction count
3290 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
3291 ** call below will unlock the pager. */
3292 if( p
->inTrans
!=TRANS_NONE
){
3293 clearAllSharedCacheTableLocks(p
);
3294 pBt
->nTransaction
--;
3295 if( 0==pBt
->nTransaction
){
3296 pBt
->inTransaction
= TRANS_NONE
;
3300 /* Set the current transaction state to TRANS_NONE and unlock the
3301 ** pager if this call closed the only read or write transaction. */
3302 p
->inTrans
= TRANS_NONE
;
3303 unlockBtreeIfUnused(pBt
);
3310 ** Commit the transaction currently in progress.
3312 ** This routine implements the second phase of a 2-phase commit. The
3313 ** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
3314 ** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
3315 ** routine did all the work of writing information out to disk and flushing the
3316 ** contents so that they are written onto the disk platter. All this
3317 ** routine has to do is delete or truncate or zero the header in the
3318 ** the rollback journal (which causes the transaction to commit) and
3321 ** Normally, if an error occurs while the pager layer is attempting to
3322 ** finalize the underlying journal file, this function returns an error and
3323 ** the upper layer will attempt a rollback. However, if the second argument
3324 ** is non-zero then this b-tree transaction is part of a multi-file
3325 ** transaction. In this case, the transaction has already been committed
3326 ** (by deleting a master journal file) and the caller will ignore this
3327 ** functions return code. So, even if an error occurs in the pager layer,
3328 ** reset the b-tree objects internal state to indicate that the write
3329 ** transaction has been closed. This is quite safe, as the pager will have
3330 ** transitioned to the error state.
3332 ** This will release the write lock on the database file. If there
3333 ** are no active cursors, it also releases the read lock.
3335 int sqlite3BtreeCommitPhaseTwo(Btree
*p
, int bCleanup
){
3337 if( p
->inTrans
==TRANS_NONE
) return SQLITE_OK
;
3338 sqlite3BtreeEnter(p
);
3341 /* If the handle has a write-transaction open, commit the shared-btrees
3342 ** transaction and set the shared state to TRANS_READ.
3344 if( p
->inTrans
==TRANS_WRITE
){
3346 BtShared
*pBt
= p
->pBt
;
3347 assert( pBt
->inTransaction
==TRANS_WRITE
);
3348 assert( pBt
->nTransaction
>0 );
3349 rc
= sqlite3PagerCommitPhaseTwo(pBt
->pPager
);
3350 if( rc
!=SQLITE_OK
&& bCleanup
==0 ){
3351 sqlite3BtreeLeave(p
);
3354 pBt
->inTransaction
= TRANS_READ
;
3355 btreeClearHasContent(pBt
);
3358 btreeEndTransaction(p
);
3359 sqlite3BtreeLeave(p
);
3364 ** Do both phases of a commit.
3366 int sqlite3BtreeCommit(Btree
*p
){
3368 sqlite3BtreeEnter(p
);
3369 rc
= sqlite3BtreeCommitPhaseOne(p
, 0);
3370 if( rc
==SQLITE_OK
){
3371 rc
= sqlite3BtreeCommitPhaseTwo(p
, 0);
3373 sqlite3BtreeLeave(p
);
3378 ** This routine sets the state to CURSOR_FAULT and the error
3379 ** code to errCode for every cursor on BtShared that pBtree
3382 ** Every cursor is tripped, including cursors that belong
3383 ** to other database connections that happen to be sharing
3384 ** the cache with pBtree.
3386 ** This routine gets called when a rollback occurs.
3387 ** All cursors using the same cache must be tripped
3388 ** to prevent them from trying to use the btree after
3389 ** the rollback. The rollback may have deleted tables
3390 ** or moved root pages, so it is not sufficient to
3391 ** save the state of the cursor. The cursor must be
3394 void sqlite3BtreeTripAllCursors(Btree
*pBtree
, int errCode
){
3396 if( pBtree
==0 ) return;
3397 sqlite3BtreeEnter(pBtree
);
3398 for(p
=pBtree
->pBt
->pCursor
; p
; p
=p
->pNext
){
3400 sqlite3BtreeClearCursor(p
);
3401 p
->eState
= CURSOR_FAULT
;
3402 p
->skipNext
= errCode
;
3403 for(i
=0; i
<=p
->iPage
; i
++){
3404 releasePage(p
->apPage
[i
]);
3408 sqlite3BtreeLeave(pBtree
);
3412 ** Rollback the transaction in progress. All cursors will be
3413 ** invalided by this operation. Any attempt to use a cursor
3414 ** that was open at the beginning of this operation will result
3417 ** This will release the write lock on the database file. If there
3418 ** are no active cursors, it also releases the read lock.
3420 int sqlite3BtreeRollback(Btree
*p
, int tripCode
){
3422 BtShared
*pBt
= p
->pBt
;
3425 sqlite3BtreeEnter(p
);
3426 if( tripCode
==SQLITE_OK
){
3427 rc
= tripCode
= saveAllCursors(pBt
, 0, 0);
3432 sqlite3BtreeTripAllCursors(p
, tripCode
);
3436 if( p
->inTrans
==TRANS_WRITE
){
3439 assert( TRANS_WRITE
==pBt
->inTransaction
);
3440 rc2
= sqlite3PagerRollback(pBt
->pPager
);
3441 if( rc2
!=SQLITE_OK
){
3445 /* The rollback may have destroyed the pPage1->aData value. So
3446 ** call btreeGetPage() on page 1 again to make
3447 ** sure pPage1->aData is set correctly. */
3448 if( btreeGetPage(pBt
, 1, &pPage1
, 0, 0)==SQLITE_OK
){
3449 int nPage
= get4byte(28+(u8
*)pPage1
->aData
);
3450 testcase( nPage
==0 );
3451 if( nPage
==0 ) sqlite3PagerPagecount(pBt
->pPager
, &nPage
);
3452 testcase( pBt
->nPage
!=nPage
);
3454 releasePage(pPage1
);
3456 assert( countValidCursors(pBt
, 1)==0 );
3457 pBt
->inTransaction
= TRANS_READ
;
3458 btreeClearHasContent(pBt
);
3461 btreeEndTransaction(p
);
3462 sqlite3BtreeLeave(p
);
3467 ** Start a statement subtransaction. The subtransaction can can be rolled
3468 ** back independently of the main transaction. You must start a transaction
3469 ** before starting a subtransaction. The subtransaction is ended automatically
3470 ** if the main transaction commits or rolls back.
3472 ** Statement subtransactions are used around individual SQL statements
3473 ** that are contained within a BEGIN...COMMIT block. If a constraint
3474 ** error occurs within the statement, the effect of that one statement
3475 ** can be rolled back without having to rollback the entire transaction.
3477 ** A statement sub-transaction is implemented as an anonymous savepoint. The
3478 ** value passed as the second parameter is the total number of savepoints,
3479 ** including the new anonymous savepoint, open on the B-Tree. i.e. if there
3480 ** are no active savepoints and no other statement-transactions open,
3481 ** iStatement is 1. This anonymous savepoint can be released or rolled back
3482 ** using the sqlite3BtreeSavepoint() function.
3484 int sqlite3BtreeBeginStmt(Btree
*p
, int iStatement
){
3486 BtShared
*pBt
= p
->pBt
;
3487 sqlite3BtreeEnter(p
);
3488 assert( p
->inTrans
==TRANS_WRITE
);
3489 assert( (pBt
->btsFlags
& BTS_READ_ONLY
)==0 );
3490 assert( iStatement
>0 );
3491 assert( iStatement
>p
->db
->nSavepoint
);
3492 assert( pBt
->inTransaction
==TRANS_WRITE
);
3493 /* At the pager level, a statement transaction is a savepoint with
3494 ** an index greater than all savepoints created explicitly using
3495 ** SQL statements. It is illegal to open, release or rollback any
3496 ** such savepoints while the statement transaction savepoint is active.
3498 rc
= sqlite3PagerOpenSavepoint(pBt
->pPager
, iStatement
);
3499 sqlite3BtreeLeave(p
);
3504 ** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
3505 ** or SAVEPOINT_RELEASE. This function either releases or rolls back the
3506 ** savepoint identified by parameter iSavepoint, depending on the value
3509 ** Normally, iSavepoint is greater than or equal to zero. However, if op is
3510 ** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
3511 ** contents of the entire transaction are rolled back. This is different
3512 ** from a normal transaction rollback, as no locks are released and the
3513 ** transaction remains open.
3515 int sqlite3BtreeSavepoint(Btree
*p
, int op
, int iSavepoint
){
3517 if( p
&& p
->inTrans
==TRANS_WRITE
){
3518 BtShared
*pBt
= p
->pBt
;
3519 assert( op
==SAVEPOINT_RELEASE
|| op
==SAVEPOINT_ROLLBACK
);
3520 assert( iSavepoint
>=0 || (iSavepoint
==-1 && op
==SAVEPOINT_ROLLBACK
) );
3521 sqlite3BtreeEnter(p
);
3522 rc
= sqlite3PagerSavepoint(pBt
->pPager
, op
, iSavepoint
);
3523 if( rc
==SQLITE_OK
){
3524 if( iSavepoint
<0 && (pBt
->btsFlags
& BTS_INITIALLY_EMPTY
)!=0 ){
3527 rc
= newDatabase(pBt
);
3528 pBt
->nPage
= get4byte(28 + pBt
->pPage1
->aData
);
3530 /* The database size was written into the offset 28 of the header
3531 ** when the transaction started, so we know that the value at offset
3532 ** 28 is nonzero. */
3533 assert( pBt
->nPage
>0 );
3535 sqlite3BtreeLeave(p
);
3541 ** Create a new cursor for the BTree whose root is on the page
3542 ** iTable. If a read-only cursor is requested, it is assumed that
3543 ** the caller already has at least a read-only transaction open
3544 ** on the database already. If a write-cursor is requested, then
3545 ** the caller is assumed to have an open write transaction.
3547 ** If wrFlag==0, then the cursor can only be used for reading.
3548 ** If wrFlag==1, then the cursor can be used for reading or for
3549 ** writing if other conditions for writing are also met. These
3550 ** are the conditions that must be met in order for writing to
3553 ** 1: The cursor must have been opened with wrFlag==1
3555 ** 2: Other database connections that share the same pager cache
3556 ** but which are not in the READ_UNCOMMITTED state may not have
3557 ** cursors open with wrFlag==0 on the same table. Otherwise
3558 ** the changes made by this write cursor would be visible to
3559 ** the read cursors in the other database connection.
3561 ** 3: The database must be writable (not on read-only media)
3563 ** 4: There must be an active transaction.
3565 ** No checking is done to make sure that page iTable really is the
3566 ** root page of a b-tree. If it is not, then the cursor acquired
3567 ** will not work correctly.
3569 ** It is assumed that the sqlite3BtreeCursorZero() has been called
3570 ** on pCur to initialize the memory space prior to invoking this routine.
3572 static int btreeCursor(
3573 Btree
*p
, /* The btree */
3574 int iTable
, /* Root page of table to open */
3575 int wrFlag
, /* 1 to write. 0 read-only */
3576 struct KeyInfo
*pKeyInfo
, /* First arg to comparison function */
3577 BtCursor
*pCur
/* Space for new cursor */
3579 BtShared
*pBt
= p
->pBt
; /* Shared b-tree handle */
3581 assert( sqlite3BtreeHoldsMutex(p
) );
3582 assert( wrFlag
==0 || wrFlag
==1 );
3584 /* The following assert statements verify that if this is a sharable
3585 ** b-tree database, the connection is holding the required table locks,
3586 ** and that no other connection has any open cursor that conflicts with
3588 assert( hasSharedCacheTableLock(p
, iTable
, pKeyInfo
!=0, wrFlag
+1) );
3589 assert( wrFlag
==0 || !hasReadConflicts(p
, iTable
) );
3591 /* Assert that the caller has opened the required transaction. */
3592 assert( p
->inTrans
>TRANS_NONE
);
3593 assert( wrFlag
==0 || p
->inTrans
==TRANS_WRITE
);
3594 assert( pBt
->pPage1
&& pBt
->pPage1
->aData
);
3596 if( NEVER(wrFlag
&& (pBt
->btsFlags
& BTS_READ_ONLY
)!=0) ){
3597 return SQLITE_READONLY
;
3599 if( iTable
==1 && btreePagecount(pBt
)==0 ){
3600 assert( wrFlag
==0 );
3604 /* Now that no other errors can occur, finish filling in the BtCursor
3605 ** variables and link the cursor into the BtShared list. */
3606 pCur
->pgnoRoot
= (Pgno
)iTable
;
3608 pCur
->pKeyInfo
= pKeyInfo
;
3611 pCur
->wrFlag
= (u8
)wrFlag
;
3612 pCur
->pNext
= pBt
->pCursor
;
3614 pCur
->pNext
->pPrev
= pCur
;
3616 pBt
->pCursor
= pCur
;
3617 pCur
->eState
= CURSOR_INVALID
;
3618 pCur
->cachedRowid
= 0;
3621 int sqlite3BtreeCursor(
3622 Btree
*p
, /* The btree */
3623 int iTable
, /* Root page of table to open */
3624 int wrFlag
, /* 1 to write. 0 read-only */
3625 struct KeyInfo
*pKeyInfo
, /* First arg to xCompare() */
3626 BtCursor
*pCur
/* Write new cursor here */
3629 sqlite3BtreeEnter(p
);
3630 rc
= btreeCursor(p
, iTable
, wrFlag
, pKeyInfo
, pCur
);
3631 sqlite3BtreeLeave(p
);
3636 ** Return the size of a BtCursor object in bytes.
3638 ** This interfaces is needed so that users of cursors can preallocate
3639 ** sufficient storage to hold a cursor. The BtCursor object is opaque
3640 ** to users so they cannot do the sizeof() themselves - they must call
3643 int sqlite3BtreeCursorSize(void){
3644 return ROUND8(sizeof(BtCursor
));
3648 ** Initialize memory that will be converted into a BtCursor object.
3650 ** The simple approach here would be to memset() the entire object
3651 ** to zero. But it turns out that the apPage[] and aiIdx[] arrays
3652 ** do not need to be zeroed and they are large, so we can save a lot
3653 ** of run-time by skipping the initialization of those elements.
3655 void sqlite3BtreeCursorZero(BtCursor
*p
){
3656 memset(p
, 0, offsetof(BtCursor
, iPage
));
3660 ** Set the cached rowid value of every cursor in the same database file
3661 ** as pCur and having the same root page number as pCur. The value is
3664 ** Only positive rowid values are considered valid for this cache.
3665 ** The cache is initialized to zero, indicating an invalid cache.
3666 ** A btree will work fine with zero or negative rowids. We just cannot
3667 ** cache zero or negative rowids, which means tables that use zero or
3668 ** negative rowids might run a little slower. But in practice, zero
3669 ** or negative rowids are very uncommon so this should not be a problem.
3671 void sqlite3BtreeSetCachedRowid(BtCursor
*pCur
, sqlite3_int64 iRowid
){
3673 for(p
=pCur
->pBt
->pCursor
; p
; p
=p
->pNext
){
3674 if( p
->pgnoRoot
==pCur
->pgnoRoot
) p
->cachedRowid
= iRowid
;
3676 assert( pCur
->cachedRowid
==iRowid
);
3680 ** Return the cached rowid for the given cursor. A negative or zero
3681 ** return value indicates that the rowid cache is invalid and should be
3682 ** ignored. If the rowid cache has never before been set, then a
3683 ** zero is returned.
3685 sqlite3_int64
sqlite3BtreeGetCachedRowid(BtCursor
*pCur
){
3686 return pCur
->cachedRowid
;
3690 ** Close a cursor. The read lock on the database file is released
3691 ** when the last cursor is closed.
3693 int sqlite3BtreeCloseCursor(BtCursor
*pCur
){
3694 Btree
*pBtree
= pCur
->pBtree
;
3697 BtShared
*pBt
= pCur
->pBt
;
3698 sqlite3BtreeEnter(pBtree
);
3699 sqlite3BtreeClearCursor(pCur
);
3701 pCur
->pPrev
->pNext
= pCur
->pNext
;
3703 pBt
->pCursor
= pCur
->pNext
;
3706 pCur
->pNext
->pPrev
= pCur
->pPrev
;
3708 for(i
=0; i
<=pCur
->iPage
; i
++){
3709 releasePage(pCur
->apPage
[i
]);
3711 unlockBtreeIfUnused(pBt
);
3712 invalidateOverflowCache(pCur
);
3713 /* sqlite3_free(pCur); */
3714 sqlite3BtreeLeave(pBtree
);
3720 ** Make sure the BtCursor* given in the argument has a valid
3721 ** BtCursor.info structure. If it is not already valid, call
3722 ** btreeParseCell() to fill it in.
3724 ** BtCursor.info is a cache of the information in the current cell.
3725 ** Using this cache reduces the number of calls to btreeParseCell().
3727 ** 2007-06-25: There is a bug in some versions of MSVC that cause the
3728 ** compiler to crash when getCellInfo() is implemented as a macro.
3729 ** But there is a measureable speed advantage to using the macro on gcc
3730 ** (when less compiler optimizations like -Os or -O0 are used and the
3731 ** compiler is not doing agressive inlining.) So we use a real function
3732 ** for MSVC and a macro for everything else. Ticket #2457.
3735 static void assertCellInfo(BtCursor
*pCur
){
3737 int iPage
= pCur
->iPage
;
3738 memset(&info
, 0, sizeof(info
));
3739 btreeParseCell(pCur
->apPage
[iPage
], pCur
->aiIdx
[iPage
], &info
);
3740 assert( memcmp(&info
, &pCur
->info
, sizeof(info
))==0 );
3743 #define assertCellInfo(x)
3746 /* Use a real function in MSVC to work around bugs in that compiler. */
3747 static void getCellInfo(BtCursor
*pCur
){
3748 if( pCur
->info
.nSize
==0 ){
3749 int iPage
= pCur
->iPage
;
3750 btreeParseCell(pCur
->apPage
[iPage
],pCur
->aiIdx
[iPage
],&pCur
->info
);
3751 pCur
->validNKey
= 1;
3753 assertCellInfo(pCur
);
3756 #else /* if not _MSC_VER */
3757 /* Use a macro in all other compilers so that the function is inlined */
3758 #define getCellInfo(pCur) \
3759 if( pCur->info.nSize==0 ){ \
3760 int iPage = pCur->iPage; \
3761 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info); \
3762 pCur->validNKey = 1; \
3764 assertCellInfo(pCur); \
3766 #endif /* _MSC_VER */
3768 #ifndef NDEBUG /* The next routine used only within assert() statements */
3770 ** Return true if the given BtCursor is valid. A valid cursor is one
3771 ** that is currently pointing to a row in a (non-empty) table.
3772 ** This is a verification routine is used only within assert() statements.
3774 int sqlite3BtreeCursorIsValid(BtCursor
*pCur
){
3775 return pCur
&& pCur
->eState
==CURSOR_VALID
;
3780 ** Set *pSize to the size of the buffer needed to hold the value of
3781 ** the key for the current entry. If the cursor is not pointing
3782 ** to a valid entry, *pSize is set to 0.
3784 ** For a table with the INTKEY flag set, this routine returns the key
3785 ** itself, not the number of bytes in the key.
3787 ** The caller must position the cursor prior to invoking this routine.
3789 ** This routine cannot fail. It always returns SQLITE_OK.
3791 int sqlite3BtreeKeySize(BtCursor
*pCur
, i64
*pSize
){
3792 assert( cursorHoldsMutex(pCur
) );
3793 assert( pCur
->eState
==CURSOR_INVALID
|| pCur
->eState
==CURSOR_VALID
);
3794 if( pCur
->eState
!=CURSOR_VALID
){
3798 *pSize
= pCur
->info
.nKey
;
3804 ** Set *pSize to the number of bytes of data in the entry the
3805 ** cursor currently points to.
3807 ** The caller must guarantee that the cursor is pointing to a non-NULL
3808 ** valid entry. In other words, the calling procedure must guarantee
3809 ** that the cursor has Cursor.eState==CURSOR_VALID.
3811 ** Failure is not possible. This function always returns SQLITE_OK.
3812 ** It might just as well be a procedure (returning void) but we continue
3813 ** to return an integer result code for historical reasons.
3815 int sqlite3BtreeDataSize(BtCursor
*pCur
, u32
*pSize
){
3816 assert( cursorHoldsMutex(pCur
) );
3817 assert( pCur
->eState
==CURSOR_VALID
);
3819 *pSize
= pCur
->info
.nData
;
3824 ** Given the page number of an overflow page in the database (parameter
3825 ** ovfl), this function finds the page number of the next page in the
3826 ** linked list of overflow pages. If possible, it uses the auto-vacuum
3827 ** pointer-map data instead of reading the content of page ovfl to do so.
3829 ** If an error occurs an SQLite error code is returned. Otherwise:
3831 ** The page number of the next overflow page in the linked list is
3832 ** written to *pPgnoNext. If page ovfl is the last page in its linked
3833 ** list, *pPgnoNext is set to zero.
3835 ** If ppPage is not NULL, and a reference to the MemPage object corresponding
3836 ** to page number pOvfl was obtained, then *ppPage is set to point to that
3837 ** reference. It is the responsibility of the caller to call releasePage()
3838 ** on *ppPage to free the reference. In no reference was obtained (because
3839 ** the pointer-map was used to obtain the value for *pPgnoNext), then
3840 ** *ppPage is set to zero.
3842 static int getOverflowPage(
3843 BtShared
*pBt
, /* The database file */
3844 Pgno ovfl
, /* Current overflow page number */
3845 MemPage
**ppPage
, /* OUT: MemPage handle (may be NULL) */
3846 Pgno
*pPgnoNext
/* OUT: Next overflow page number */
3852 assert( sqlite3_mutex_held(pBt
->mutex
) );
3855 #ifndef SQLITE_OMIT_AUTOVACUUM
3856 /* Try to find the next page in the overflow list using the
3857 ** autovacuum pointer-map pages. Guess that the next page in
3858 ** the overflow list is page number (ovfl+1). If that guess turns
3859 ** out to be wrong, fall back to loading the data of page
3860 ** number ovfl to determine the next page number.
3862 if( pBt
->autoVacuum
){
3864 Pgno iGuess
= ovfl
+1;
3867 while( PTRMAP_ISPAGE(pBt
, iGuess
) || iGuess
==PENDING_BYTE_PAGE(pBt
) ){
3871 if( iGuess
<=btreePagecount(pBt
) ){
3872 rc
= ptrmapGet(pBt
, iGuess
, &eType
, &pgno
);
3873 if( rc
==SQLITE_OK
&& eType
==PTRMAP_OVERFLOW2
&& pgno
==ovfl
){
3881 assert( next
==0 || rc
==SQLITE_DONE
);
3882 if( rc
==SQLITE_OK
){
3883 rc
= btreeGetPage(pBt
, ovfl
, &pPage
, 0, (ppPage
==0));
3884 assert( rc
==SQLITE_OK
|| pPage
==0 );
3885 if( rc
==SQLITE_OK
){
3886 next
= get4byte(pPage
->aData
);
3896 return (rc
==SQLITE_DONE
? SQLITE_OK
: rc
);
3900 ** Copy data from a buffer to a page, or from a page to a buffer.
3902 ** pPayload is a pointer to data stored on database page pDbPage.
3903 ** If argument eOp is false, then nByte bytes of data are copied
3904 ** from pPayload to the buffer pointed at by pBuf. If eOp is true,
3905 ** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
3906 ** of data are copied from the buffer pBuf to pPayload.
3908 ** SQLITE_OK is returned on success, otherwise an error code.
3910 static int copyPayload(
3911 void *pPayload
, /* Pointer to page data */
3912 void *pBuf
, /* Pointer to buffer */
3913 int nByte
, /* Number of bytes to copy */
3914 int eOp
, /* 0 -> copy from page, 1 -> copy to page */
3915 DbPage
*pDbPage
/* Page containing pPayload */
3918 /* Copy data from buffer to page (a write operation) */
3919 int rc
= sqlite3PagerWrite(pDbPage
);
3920 if( rc
!=SQLITE_OK
){
3923 memcpy(pPayload
, pBuf
, nByte
);
3925 /* Copy data from page to buffer (a read operation) */
3926 memcpy(pBuf
, pPayload
, nByte
);
3932 ** This function is used to read or overwrite payload information
3933 ** for the entry that the pCur cursor is pointing to. If the eOp
3934 ** parameter is 0, this is a read operation (data copied into
3935 ** buffer pBuf). If it is non-zero, a write (data copied from
3938 ** A total of "amt" bytes are read or written beginning at "offset".
3939 ** Data is read to or from the buffer pBuf.
3941 ** The content being read or written might appear on the main page
3942 ** or be scattered out on multiple overflow pages.
3944 ** If the BtCursor.isIncrblobHandle flag is set, and the current
3945 ** cursor entry uses one or more overflow pages, this function
3946 ** allocates space for and lazily popluates the overflow page-list
3947 ** cache array (BtCursor.aOverflow). Subsequent calls use this
3948 ** cache to make seeking to the supplied offset more efficient.
3950 ** Once an overflow page-list cache has been allocated, it may be
3951 ** invalidated if some other cursor writes to the same table, or if
3952 ** the cursor is moved to a different row. Additionally, in auto-vacuum
3953 ** mode, the following events may invalidate an overflow page-list cache.
3955 ** * An incremental vacuum,
3956 ** * A commit in auto_vacuum="full" mode,
3957 ** * Creating a table (may require moving an overflow page).
3959 static int accessPayload(
3960 BtCursor
*pCur
, /* Cursor pointing to entry to read from */
3961 u32 offset
, /* Begin reading this far into payload */
3962 u32 amt
, /* Read this many bytes */
3963 unsigned char *pBuf
, /* Write the bytes into this buffer */
3964 int eOp
/* zero to read. non-zero to write. */
3966 unsigned char *aPayload
;
3970 MemPage
*pPage
= pCur
->apPage
[pCur
->iPage
]; /* Btree page of current entry */
3971 BtShared
*pBt
= pCur
->pBt
; /* Btree this cursor belongs to */
3974 assert( pCur
->eState
==CURSOR_VALID
);
3975 assert( pCur
->aiIdx
[pCur
->iPage
]<pPage
->nCell
);
3976 assert( cursorHoldsMutex(pCur
) );
3979 aPayload
= pCur
->info
.pCell
+ pCur
->info
.nHeader
;
3980 nKey
= (pPage
->intKey
? 0 : (int)pCur
->info
.nKey
);
3982 if( NEVER(offset
+amt
> nKey
+pCur
->info
.nData
)
3983 || &aPayload
[pCur
->info
.nLocal
] > &pPage
->aData
[pBt
->usableSize
]
3985 /* Trying to read or write past the end of the data is an error */
3986 return SQLITE_CORRUPT_BKPT
;
3989 /* Check if data must be read/written to/from the btree page itself. */
3990 if( offset
<pCur
->info
.nLocal
){
3992 if( a
+offset
>pCur
->info
.nLocal
){
3993 a
= pCur
->info
.nLocal
- offset
;
3995 rc
= copyPayload(&aPayload
[offset
], pBuf
, a
, eOp
, pPage
->pDbPage
);
4000 offset
-= pCur
->info
.nLocal
;
4003 if( rc
==SQLITE_OK
&& amt
>0 ){
4004 const u32 ovflSize
= pBt
->usableSize
- 4; /* Bytes content per ovfl page */
4007 nextPage
= get4byte(&aPayload
[pCur
->info
.nLocal
]);
4009 #ifndef SQLITE_OMIT_INCRBLOB
4010 /* If the isIncrblobHandle flag is set and the BtCursor.aOverflow[]
4011 ** has not been allocated, allocate it now. The array is sized at
4012 ** one entry for each overflow page in the overflow chain. The
4013 ** page number of the first overflow page is stored in aOverflow[0],
4014 ** etc. A value of 0 in the aOverflow[] array means "not yet known"
4015 ** (the cache is lazily populated).
4017 if( pCur
->isIncrblobHandle
&& !pCur
->aOverflow
){
4018 int nOvfl
= (pCur
->info
.nPayload
-pCur
->info
.nLocal
+ovflSize
-1)/ovflSize
;
4019 pCur
->aOverflow
= (Pgno
*)sqlite3MallocZero(sizeof(Pgno
)*nOvfl
);
4020 /* nOvfl is always positive. If it were zero, fetchPayload would have
4021 ** been used instead of this routine. */
4022 if( ALWAYS(nOvfl
) && !pCur
->aOverflow
){
4027 /* If the overflow page-list cache has been allocated and the
4028 ** entry for the first required overflow page is valid, skip
4031 if( pCur
->aOverflow
&& pCur
->aOverflow
[offset
/ovflSize
] ){
4032 iIdx
= (offset
/ovflSize
);
4033 nextPage
= pCur
->aOverflow
[iIdx
];
4034 offset
= (offset
%ovflSize
);
4038 for( ; rc
==SQLITE_OK
&& amt
>0 && nextPage
; iIdx
++){
4040 #ifndef SQLITE_OMIT_INCRBLOB
4041 /* If required, populate the overflow page-list cache. */
4042 if( pCur
->aOverflow
){
4043 assert(!pCur
->aOverflow
[iIdx
] || pCur
->aOverflow
[iIdx
]==nextPage
);
4044 pCur
->aOverflow
[iIdx
] = nextPage
;
4048 if( offset
>=ovflSize
){
4049 /* The only reason to read this page is to obtain the page
4050 ** number for the next page in the overflow chain. The page
4051 ** data is not required. So first try to lookup the overflow
4052 ** page-list cache, if any, then fall back to the getOverflowPage()
4055 #ifndef SQLITE_OMIT_INCRBLOB
4056 if( pCur
->aOverflow
&& pCur
->aOverflow
[iIdx
+1] ){
4057 nextPage
= pCur
->aOverflow
[iIdx
+1];
4060 rc
= getOverflowPage(pBt
, nextPage
, 0, &nextPage
);
4063 /* Need to read this page properly. It contains some of the
4064 ** range of data that is being read (eOp==0) or written (eOp!=0).
4066 #ifdef SQLITE_DIRECT_OVERFLOW_READ
4070 if( a
+ offset
> ovflSize
){
4071 a
= ovflSize
- offset
;
4074 #ifdef SQLITE_DIRECT_OVERFLOW_READ
4075 /* If all the following are true:
4077 ** 1) this is a read operation, and
4078 ** 2) data is required from the start of this overflow page, and
4079 ** 3) the database is file-backed, and
4080 ** 4) there is no open write-transaction, and
4081 ** 5) the database is not a WAL database,
4083 ** then data can be read directly from the database file into the
4084 ** output buffer, bypassing the page-cache altogether. This speeds
4085 ** up loading large records that span many overflow pages.
4087 if( eOp
==0 /* (1) */
4088 && offset
==0 /* (2) */
4089 && pBt
->inTransaction
==TRANS_READ
/* (4) */
4090 && (fd
= sqlite3PagerFile(pBt
->pPager
))->pMethods
/* (3) */
4091 && pBt
->pPage1
->aData
[19]==0x01 /* (5) */
4094 u8
*aWrite
= &pBuf
[-4];
4095 memcpy(aSave
, aWrite
, 4);
4096 rc
= sqlite3OsRead(fd
, aWrite
, a
+4, (i64
)pBt
->pageSize
*(nextPage
-1));
4097 nextPage
= get4byte(aWrite
);
4098 memcpy(aWrite
, aSave
, 4);
4104 rc
= sqlite3PagerAcquire(pBt
->pPager
, nextPage
, &pDbPage
,
4105 (eOp
==0 ? PAGER_ACQUIRE_READONLY
: 0)
4107 if( rc
==SQLITE_OK
){
4108 aPayload
= sqlite3PagerGetData(pDbPage
);
4109 nextPage
= get4byte(aPayload
);
4110 rc
= copyPayload(&aPayload
[offset
+4], pBuf
, a
, eOp
, pDbPage
);
4111 sqlite3PagerUnref(pDbPage
);
4121 if( rc
==SQLITE_OK
&& amt
>0 ){
4122 return SQLITE_CORRUPT_BKPT
;
4128 ** Read part of the key associated with cursor pCur. Exactly
4129 ** "amt" bytes will be transfered into pBuf[]. The transfer
4130 ** begins at "offset".
4132 ** The caller must ensure that pCur is pointing to a valid row
4135 ** Return SQLITE_OK on success or an error code if anything goes
4136 ** wrong. An error is returned if "offset+amt" is larger than
4137 ** the available payload.
4139 int sqlite3BtreeKey(BtCursor
*pCur
, u32 offset
, u32 amt
, void *pBuf
){
4140 assert( cursorHoldsMutex(pCur
) );
4141 assert( pCur
->eState
==CURSOR_VALID
);
4142 assert( pCur
->iPage
>=0 && pCur
->apPage
[pCur
->iPage
] );
4143 assert( pCur
->aiIdx
[pCur
->iPage
]<pCur
->apPage
[pCur
->iPage
]->nCell
);
4144 return accessPayload(pCur
, offset
, amt
, (unsigned char*)pBuf
, 0);
4148 ** Read part of the data associated with cursor pCur. Exactly
4149 ** "amt" bytes will be transfered into pBuf[]. The transfer
4150 ** begins at "offset".
4152 ** Return SQLITE_OK on success or an error code if anything goes
4153 ** wrong. An error is returned if "offset+amt" is larger than
4154 ** the available payload.
4156 int sqlite3BtreeData(BtCursor
*pCur
, u32 offset
, u32 amt
, void *pBuf
){
4159 #ifndef SQLITE_OMIT_INCRBLOB
4160 if ( pCur
->eState
==CURSOR_INVALID
){
4161 return SQLITE_ABORT
;
4165 assert( cursorHoldsMutex(pCur
) );
4166 rc
= restoreCursorPosition(pCur
);
4167 if( rc
==SQLITE_OK
){
4168 assert( pCur
->eState
==CURSOR_VALID
);
4169 assert( pCur
->iPage
>=0 && pCur
->apPage
[pCur
->iPage
] );
4170 assert( pCur
->aiIdx
[pCur
->iPage
]<pCur
->apPage
[pCur
->iPage
]->nCell
);
4171 rc
= accessPayload(pCur
, offset
, amt
, pBuf
, 0);
4177 ** Return a pointer to payload information from the entry that the
4178 ** pCur cursor is pointing to. The pointer is to the beginning of
4179 ** the key if skipKey==0 and it points to the beginning of data if
4180 ** skipKey==1. The number of bytes of available key/data is written
4181 ** into *pAmt. If *pAmt==0, then the value returned will not be
4184 ** This routine is an optimization. It is common for the entire key
4185 ** and data to fit on the local page and for there to be no overflow
4186 ** pages. When that is so, this routine can be used to access the
4187 ** key and data without making a copy. If the key and/or data spills
4188 ** onto overflow pages, then accessPayload() must be used to reassemble
4189 ** the key/data and copy it into a preallocated buffer.
4191 ** The pointer returned by this routine looks directly into the cached
4192 ** page of the database. The data might change or move the next time
4193 ** any btree routine is called.
4195 static const unsigned char *fetchPayload(
4196 BtCursor
*pCur
, /* Cursor pointing to entry to read from */
4197 int *pAmt
, /* Write the number of available bytes here */
4198 int skipKey
/* read beginning at data if this is true */
4200 unsigned char *aPayload
;
4205 assert( pCur
!=0 && pCur
->iPage
>=0 && pCur
->apPage
[pCur
->iPage
]);
4206 assert( pCur
->eState
==CURSOR_VALID
);
4207 assert( cursorHoldsMutex(pCur
) );
4208 pPage
= pCur
->apPage
[pCur
->iPage
];
4209 assert( pCur
->aiIdx
[pCur
->iPage
]<pPage
->nCell
);
4210 if( NEVER(pCur
->info
.nSize
==0) ){
4211 btreeParseCell(pCur
->apPage
[pCur
->iPage
], pCur
->aiIdx
[pCur
->iPage
],
4214 aPayload
= pCur
->info
.pCell
;
4215 aPayload
+= pCur
->info
.nHeader
;
4216 if( pPage
->intKey
){
4219 nKey
= (int)pCur
->info
.nKey
;
4223 nLocal
= pCur
->info
.nLocal
- nKey
;
4225 nLocal
= pCur
->info
.nLocal
;
4226 assert( nLocal
<=nKey
);
4234 ** For the entry that cursor pCur is point to, return as
4235 ** many bytes of the key or data as are available on the local
4236 ** b-tree page. Write the number of available bytes into *pAmt.
4238 ** The pointer returned is ephemeral. The key/data may move
4239 ** or be destroyed on the next call to any Btree routine,
4240 ** including calls from other threads against the same cache.
4241 ** Hence, a mutex on the BtShared should be held prior to calling
4244 ** These routines is used to get quick access to key and data
4245 ** in the common case where no overflow pages are used.
4247 const void *sqlite3BtreeKeyFetch(BtCursor
*pCur
, int *pAmt
){
4249 assert( sqlite3_mutex_held(pCur
->pBtree
->db
->mutex
) );
4250 assert( cursorHoldsMutex(pCur
) );
4251 if( ALWAYS(pCur
->eState
==CURSOR_VALID
) ){
4252 p
= (const void*)fetchPayload(pCur
, pAmt
, 0);
4256 const void *sqlite3BtreeDataFetch(BtCursor
*pCur
, int *pAmt
){
4258 assert( sqlite3_mutex_held(pCur
->pBtree
->db
->mutex
) );
4259 assert( cursorHoldsMutex(pCur
) );
4260 if( ALWAYS(pCur
->eState
==CURSOR_VALID
) ){
4261 p
= (const void*)fetchPayload(pCur
, pAmt
, 1);
4268 ** Move the cursor down to a new child page. The newPgno argument is the
4269 ** page number of the child page to move to.
4271 ** This function returns SQLITE_CORRUPT if the page-header flags field of
4272 ** the new child page does not match the flags field of the parent (i.e.
4273 ** if an intkey page appears to be the parent of a non-intkey page, or
4276 static int moveToChild(BtCursor
*pCur
, u32 newPgno
){
4278 int i
= pCur
->iPage
;
4280 BtShared
*pBt
= pCur
->pBt
;
4282 assert( cursorHoldsMutex(pCur
) );
4283 assert( pCur
->eState
==CURSOR_VALID
);
4284 assert( pCur
->iPage
<BTCURSOR_MAX_DEPTH
);
4285 assert( pCur
->iPage
>=0 );
4286 if( pCur
->iPage
>=(BTCURSOR_MAX_DEPTH
-1) ){
4287 return SQLITE_CORRUPT_BKPT
;
4289 rc
= getAndInitPage(pBt
, newPgno
, &pNewPage
, (pCur
->wrFlag
==0));
4291 pCur
->apPage
[i
+1] = pNewPage
;
4292 pCur
->aiIdx
[i
+1] = 0;
4295 pCur
->info
.nSize
= 0;
4296 pCur
->validNKey
= 0;
4297 if( pNewPage
->nCell
<1 || pNewPage
->intKey
!=pCur
->apPage
[i
]->intKey
){
4298 return SQLITE_CORRUPT_BKPT
;
4305 ** Page pParent is an internal (non-leaf) tree page. This function
4306 ** asserts that page number iChild is the left-child if the iIdx'th
4307 ** cell in page pParent. Or, if iIdx is equal to the total number of
4308 ** cells in pParent, that page number iChild is the right-child of
4311 static void assertParentIndex(MemPage
*pParent
, int iIdx
, Pgno iChild
){
4312 assert( iIdx
<=pParent
->nCell
);
4313 if( iIdx
==pParent
->nCell
){
4314 assert( get4byte(&pParent
->aData
[pParent
->hdrOffset
+8])==iChild
);
4316 assert( get4byte(findCell(pParent
, iIdx
))==iChild
);
4320 # define assertParentIndex(x,y,z)
4324 ** Move the cursor up to the parent page.
4326 ** pCur->idx is set to the cell index that contains the pointer
4327 ** to the page we are coming from. If we are coming from the
4328 ** right-most child page then pCur->idx is set to one more than
4329 ** the largest cell index.
4331 static void moveToParent(BtCursor
*pCur
){
4332 assert( cursorHoldsMutex(pCur
) );
4333 assert( pCur
->eState
==CURSOR_VALID
);
4334 assert( pCur
->iPage
>0 );
4335 assert( pCur
->apPage
[pCur
->iPage
] );
4337 /* UPDATE: It is actually possible for the condition tested by the assert
4338 ** below to be untrue if the database file is corrupt. This can occur if
4339 ** one cursor has modified page pParent while a reference to it is held
4340 ** by a second cursor. Which can only happen if a single page is linked
4341 ** into more than one b-tree structure in a corrupt database. */
4344 pCur
->apPage
[pCur
->iPage
-1],
4345 pCur
->aiIdx
[pCur
->iPage
-1],
4346 pCur
->apPage
[pCur
->iPage
]->pgno
4349 testcase( pCur
->aiIdx
[pCur
->iPage
-1] > pCur
->apPage
[pCur
->iPage
-1]->nCell
);
4351 releasePage(pCur
->apPage
[pCur
->iPage
]);
4353 pCur
->info
.nSize
= 0;
4354 pCur
->validNKey
= 0;
4358 ** Move the cursor to point to the root page of its b-tree structure.
4360 ** If the table has a virtual root page, then the cursor is moved to point
4361 ** to the virtual root page instead of the actual root page. A table has a
4362 ** virtual root page when the actual root page contains no cells and a
4363 ** single child page. This can only happen with the table rooted at page 1.
4365 ** If the b-tree structure is empty, the cursor state is set to
4366 ** CURSOR_INVALID. Otherwise, the cursor is set to point to the first
4367 ** cell located on the root (or virtual root) page and the cursor state
4368 ** is set to CURSOR_VALID.
4370 ** If this function returns successfully, it may be assumed that the
4371 ** page-header flags indicate that the [virtual] root-page is the expected
4372 ** kind of b-tree page (i.e. if when opening the cursor the caller did not
4373 ** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
4374 ** indicating a table b-tree, or if the caller did specify a KeyInfo
4375 ** structure the flags byte is set to 0x02 or 0x0A, indicating an index
4378 static int moveToRoot(BtCursor
*pCur
){
4381 Btree
*p
= pCur
->pBtree
;
4382 BtShared
*pBt
= p
->pBt
;
4384 assert( cursorHoldsMutex(pCur
) );
4385 assert( CURSOR_INVALID
< CURSOR_REQUIRESEEK
);
4386 assert( CURSOR_VALID
< CURSOR_REQUIRESEEK
);
4387 assert( CURSOR_FAULT
> CURSOR_REQUIRESEEK
);
4388 if( pCur
->eState
>=CURSOR_REQUIRESEEK
){
4389 if( pCur
->eState
==CURSOR_FAULT
){
4390 assert( pCur
->skipNext
!=SQLITE_OK
);
4391 return pCur
->skipNext
;
4393 sqlite3BtreeClearCursor(pCur
);
4396 if( pCur
->iPage
>=0 ){
4398 for(i
=1; i
<=pCur
->iPage
; i
++){
4399 releasePage(pCur
->apPage
[i
]);
4402 }else if( pCur
->pgnoRoot
==0 ){
4403 pCur
->eState
= CURSOR_INVALID
;
4406 rc
= getAndInitPage(pBt
, pCur
->pgnoRoot
, &pCur
->apPage
[0], pCur
->wrFlag
==0);
4407 if( rc
!=SQLITE_OK
){
4408 pCur
->eState
= CURSOR_INVALID
;
4413 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
4414 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
4415 ** NULL, the caller expects a table b-tree. If this is not the case,
4416 ** return an SQLITE_CORRUPT error. */
4417 assert( pCur
->apPage
[0]->intKey
==1 || pCur
->apPage
[0]->intKey
==0 );
4418 if( (pCur
->pKeyInfo
==0)!=pCur
->apPage
[0]->intKey
){
4419 return SQLITE_CORRUPT_BKPT
;
4423 /* Assert that the root page is of the correct type. This must be the
4424 ** case as the call to this function that loaded the root-page (either
4425 ** this call or a previous invocation) would have detected corruption
4426 ** if the assumption were not true, and it is not possible for the flags
4427 ** byte to have been modified while this cursor is holding a reference
4429 pRoot
= pCur
->apPage
[0];
4430 assert( pRoot
->pgno
==pCur
->pgnoRoot
);
4431 assert( pRoot
->isInit
&& (pCur
->pKeyInfo
==0)==pRoot
->intKey
);
4434 pCur
->info
.nSize
= 0;
4436 pCur
->validNKey
= 0;
4438 if( pRoot
->nCell
==0 && !pRoot
->leaf
){
4440 if( pRoot
->pgno
!=1 ) return SQLITE_CORRUPT_BKPT
;
4441 subpage
= get4byte(&pRoot
->aData
[pRoot
->hdrOffset
+8]);
4442 pCur
->eState
= CURSOR_VALID
;
4443 rc
= moveToChild(pCur
, subpage
);
4445 pCur
->eState
= ((pRoot
->nCell
>0)?CURSOR_VALID
:CURSOR_INVALID
);
4451 ** Move the cursor down to the left-most leaf entry beneath the
4452 ** entry to which it is currently pointing.
4454 ** The left-most leaf is the one with the smallest key - the first
4455 ** in ascending order.
4457 static int moveToLeftmost(BtCursor
*pCur
){
4462 assert( cursorHoldsMutex(pCur
) );
4463 assert( pCur
->eState
==CURSOR_VALID
);
4464 while( rc
==SQLITE_OK
&& !(pPage
= pCur
->apPage
[pCur
->iPage
])->leaf
){
4465 assert( pCur
->aiIdx
[pCur
->iPage
]<pPage
->nCell
);
4466 pgno
= get4byte(findCell(pPage
, pCur
->aiIdx
[pCur
->iPage
]));
4467 rc
= moveToChild(pCur
, pgno
);
4473 ** Move the cursor down to the right-most leaf entry beneath the
4474 ** page to which it is currently pointing. Notice the difference
4475 ** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
4476 ** finds the left-most entry beneath the *entry* whereas moveToRightmost()
4477 ** finds the right-most entry beneath the *page*.
4479 ** The right-most entry is the one with the largest key - the last
4480 ** key in ascending order.
4482 static int moveToRightmost(BtCursor
*pCur
){
4487 assert( cursorHoldsMutex(pCur
) );
4488 assert( pCur
->eState
==CURSOR_VALID
);
4489 while( rc
==SQLITE_OK
&& !(pPage
= pCur
->apPage
[pCur
->iPage
])->leaf
){
4490 pgno
= get4byte(&pPage
->aData
[pPage
->hdrOffset
+8]);
4491 pCur
->aiIdx
[pCur
->iPage
] = pPage
->nCell
;
4492 rc
= moveToChild(pCur
, pgno
);
4494 if( rc
==SQLITE_OK
){
4495 pCur
->aiIdx
[pCur
->iPage
] = pPage
->nCell
-1;
4496 pCur
->info
.nSize
= 0;
4497 pCur
->validNKey
= 0;
4502 /* Move the cursor to the first entry in the table. Return SQLITE_OK
4503 ** on success. Set *pRes to 0 if the cursor actually points to something
4504 ** or set *pRes to 1 if the table is empty.
4506 int sqlite3BtreeFirst(BtCursor
*pCur
, int *pRes
){
4509 assert( cursorHoldsMutex(pCur
) );
4510 assert( sqlite3_mutex_held(pCur
->pBtree
->db
->mutex
) );
4511 rc
= moveToRoot(pCur
);
4512 if( rc
==SQLITE_OK
){
4513 if( pCur
->eState
==CURSOR_INVALID
){
4514 assert( pCur
->pgnoRoot
==0 || pCur
->apPage
[pCur
->iPage
]->nCell
==0 );
4517 assert( pCur
->apPage
[pCur
->iPage
]->nCell
>0 );
4519 rc
= moveToLeftmost(pCur
);
4525 /* Move the cursor to the last entry in the table. Return SQLITE_OK
4526 ** on success. Set *pRes to 0 if the cursor actually points to something
4527 ** or set *pRes to 1 if the table is empty.
4529 int sqlite3BtreeLast(BtCursor
*pCur
, int *pRes
){
4532 assert( cursorHoldsMutex(pCur
) );
4533 assert( sqlite3_mutex_held(pCur
->pBtree
->db
->mutex
) );
4535 /* If the cursor already points to the last entry, this is a no-op. */
4536 if( CURSOR_VALID
==pCur
->eState
&& pCur
->atLast
){
4538 /* This block serves to assert() that the cursor really does point
4539 ** to the last entry in the b-tree. */
4541 for(ii
=0; ii
<pCur
->iPage
; ii
++){
4542 assert( pCur
->aiIdx
[ii
]==pCur
->apPage
[ii
]->nCell
);
4544 assert( pCur
->aiIdx
[pCur
->iPage
]==pCur
->apPage
[pCur
->iPage
]->nCell
-1 );
4545 assert( pCur
->apPage
[pCur
->iPage
]->leaf
);
4550 rc
= moveToRoot(pCur
);
4551 if( rc
==SQLITE_OK
){
4552 if( CURSOR_INVALID
==pCur
->eState
){
4553 assert( pCur
->pgnoRoot
==0 || pCur
->apPage
[pCur
->iPage
]->nCell
==0 );
4556 assert( pCur
->eState
==CURSOR_VALID
);
4558 rc
= moveToRightmost(pCur
);
4559 pCur
->atLast
= rc
==SQLITE_OK
?1:0;
4565 /* Move the cursor so that it points to an entry near the key
4566 ** specified by pIdxKey or intKey. Return a success code.
4568 ** For INTKEY tables, the intKey parameter is used. pIdxKey
4569 ** must be NULL. For index tables, pIdxKey is used and intKey
4572 ** If an exact match is not found, then the cursor is always
4573 ** left pointing at a leaf page which would hold the entry if it
4574 ** were present. The cursor might point to an entry that comes
4575 ** before or after the key.
4577 ** An integer is written into *pRes which is the result of
4578 ** comparing the key with the entry to which the cursor is
4579 ** pointing. The meaning of the integer written into
4580 ** *pRes is as follows:
4582 ** *pRes<0 The cursor is left pointing at an entry that
4583 ** is smaller than intKey/pIdxKey or if the table is empty
4584 ** and the cursor is therefore left point to nothing.
4586 ** *pRes==0 The cursor is left pointing at an entry that
4587 ** exactly matches intKey/pIdxKey.
4589 ** *pRes>0 The cursor is left pointing at an entry that
4590 ** is larger than intKey/pIdxKey.
4593 int sqlite3BtreeMovetoUnpacked(
4594 BtCursor
*pCur
, /* The cursor to be moved */
4595 UnpackedRecord
*pIdxKey
, /* Unpacked index key */
4596 i64 intKey
, /* The table key */
4597 int biasRight
, /* If true, bias the search to the high end */
4598 int *pRes
/* Write search results here */
4602 assert( cursorHoldsMutex(pCur
) );
4603 assert( sqlite3_mutex_held(pCur
->pBtree
->db
->mutex
) );
4605 assert( (pIdxKey
==0)==(pCur
->pKeyInfo
==0) );
4607 /* If the cursor is already positioned at the point we are trying
4608 ** to move to, then just return without doing any work */
4609 if( pCur
->eState
==CURSOR_VALID
&& pCur
->validNKey
4610 && pCur
->apPage
[0]->intKey
4612 if( pCur
->info
.nKey
==intKey
){
4616 if( pCur
->atLast
&& pCur
->info
.nKey
<intKey
){
4622 rc
= moveToRoot(pCur
);
4626 assert( pCur
->pgnoRoot
==0 || pCur
->apPage
[pCur
->iPage
] );
4627 assert( pCur
->pgnoRoot
==0 || pCur
->apPage
[pCur
->iPage
]->isInit
);
4628 assert( pCur
->eState
==CURSOR_INVALID
|| pCur
->apPage
[pCur
->iPage
]->nCell
>0 );
4629 if( pCur
->eState
==CURSOR_INVALID
){
4631 assert( pCur
->pgnoRoot
==0 || pCur
->apPage
[pCur
->iPage
]->nCell
==0 );
4634 assert( pCur
->apPage
[0]->intKey
|| pIdxKey
);
4638 MemPage
*pPage
= pCur
->apPage
[pCur
->iPage
];
4641 /* pPage->nCell must be greater than zero. If this is the root-page
4642 ** the cursor would have been INVALID above and this for(;;) loop
4643 ** not run. If this is not the root-page, then the moveToChild() routine
4644 ** would have already detected db corruption. Similarly, pPage must
4645 ** be the right kind (index or table) of b-tree page. Otherwise
4646 ** a moveToChild() or moveToRoot() call would have detected corruption. */
4647 assert( pPage
->nCell
>0 );
4648 assert( pPage
->intKey
==(pIdxKey
==0) );
4650 upr
= pPage
->nCell
-1;
4652 pCur
->aiIdx
[pCur
->iPage
] = (u16
)(idx
= upr
);
4654 pCur
->aiIdx
[pCur
->iPage
] = (u16
)(idx
= (upr
+lwr
)/2);
4657 u8
*pCell
; /* Pointer to current cell in pPage */
4659 assert( idx
==pCur
->aiIdx
[pCur
->iPage
] );
4660 pCur
->info
.nSize
= 0;
4661 pCell
= findCell(pPage
, idx
) + pPage
->childPtrSize
;
4662 if( pPage
->intKey
){
4664 if( pPage
->hasData
){
4666 pCell
+= getVarint32(pCell
, dummy
);
4668 getVarint(pCell
, (u64
*)&nCellKey
);
4669 if( nCellKey
==intKey
){
4671 }else if( nCellKey
<intKey
){
4674 assert( nCellKey
>intKey
);
4677 pCur
->validNKey
= 1;
4678 pCur
->info
.nKey
= nCellKey
;
4680 /* The maximum supported page-size is 65536 bytes. This means that
4681 ** the maximum number of record bytes stored on an index B-Tree
4682 ** page is less than 16384 bytes and may be stored as a 2-byte
4683 ** varint. This information is used to attempt to avoid parsing
4684 ** the entire cell by checking for the cases where the record is
4685 ** stored entirely within the b-tree page by inspecting the first
4686 ** 2 bytes of the cell.
4688 int nCell
= pCell
[0];
4689 if( nCell
<=pPage
->max1bytePayload
4690 /* && (pCell+nCell)<pPage->aDataEnd */
4692 /* This branch runs if the record-size field of the cell is a
4693 ** single byte varint and the record fits entirely on the main
4695 testcase( pCell
+nCell
+1==pPage
->aDataEnd
);
4696 c
= sqlite3VdbeRecordCompare(nCell
, (void*)&pCell
[1], pIdxKey
);
4697 }else if( !(pCell
[1] & 0x80)
4698 && (nCell
= ((nCell
&0x7f)<<7) + pCell
[1])<=pPage
->maxLocal
4699 /* && (pCell+nCell+2)<=pPage->aDataEnd */
4701 /* The record-size field is a 2 byte varint and the record
4702 ** fits entirely on the main b-tree page. */
4703 testcase( pCell
+nCell
+2==pPage
->aDataEnd
);
4704 c
= sqlite3VdbeRecordCompare(nCell
, (void*)&pCell
[2], pIdxKey
);
4706 /* The record flows over onto one or more overflow pages. In
4707 ** this case the whole cell needs to be parsed, a buffer allocated
4708 ** and accessPayload() used to retrieve the record into the
4709 ** buffer before VdbeRecordCompare() can be called. */
4711 u8
* const pCellBody
= pCell
- pPage
->childPtrSize
;
4712 btreeParseCellPtr(pPage
, pCellBody
, &pCur
->info
);
4713 nCell
= (int)pCur
->info
.nKey
;
4714 pCellKey
= sqlite3Malloc( nCell
);
4719 rc
= accessPayload(pCur
, 0, nCell
, (unsigned char*)pCellKey
, 0);
4721 sqlite3_free(pCellKey
);
4724 c
= sqlite3VdbeRecordCompare(nCell
, pCellKey
, pIdxKey
);
4725 sqlite3_free(pCellKey
);
4729 if( pPage
->intKey
&& !pPage
->leaf
){
4746 pCur
->aiIdx
[pCur
->iPage
] = (u16
)(idx
= (lwr
+upr
)/2);
4748 assert( lwr
==upr
+1 || (pPage
->intKey
&& !pPage
->leaf
) );
4749 assert( pPage
->isInit
);
4752 }else if( lwr
>=pPage
->nCell
){
4753 chldPg
= get4byte(&pPage
->aData
[pPage
->hdrOffset
+8]);
4755 chldPg
= get4byte(findCell(pPage
, lwr
));
4758 assert( pCur
->aiIdx
[pCur
->iPage
]<pCur
->apPage
[pCur
->iPage
]->nCell
);
4763 pCur
->aiIdx
[pCur
->iPage
] = (u16
)lwr
;
4764 pCur
->info
.nSize
= 0;
4765 pCur
->validNKey
= 0;
4766 rc
= moveToChild(pCur
, chldPg
);
4767 if( rc
) goto moveto_finish
;
4775 ** Return TRUE if the cursor is not pointing at an entry of the table.
4777 ** TRUE will be returned after a call to sqlite3BtreeNext() moves
4778 ** past the last entry in the table or sqlite3BtreePrev() moves past
4779 ** the first entry. TRUE is also returned if the table is empty.
4781 int sqlite3BtreeEof(BtCursor
*pCur
){
4782 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
4783 ** have been deleted? This API will need to change to return an error code
4784 ** as well as the boolean result value.
4786 return (CURSOR_VALID
!=pCur
->eState
);
4790 ** Advance the cursor to the next entry in the database. If
4791 ** successful then set *pRes=0. If the cursor
4792 ** was already pointing to the last entry in the database before
4793 ** this routine was called, then set *pRes=1.
4795 int sqlite3BtreeNext(BtCursor
*pCur
, int *pRes
){
4800 assert( cursorHoldsMutex(pCur
) );
4801 rc
= restoreCursorPosition(pCur
);
4802 if( rc
!=SQLITE_OK
){
4806 if( CURSOR_INVALID
==pCur
->eState
){
4810 if( pCur
->skipNext
>0 ){
4817 pPage
= pCur
->apPage
[pCur
->iPage
];
4818 idx
= ++pCur
->aiIdx
[pCur
->iPage
];
4819 assert( pPage
->isInit
);
4821 /* If the database file is corrupt, it is possible for the value of idx
4822 ** to be invalid here. This can only occur if a second cursor modifies
4823 ** the page while cursor pCur is holding a reference to it. Which can
4824 ** only happen if the database is corrupt in such a way as to link the
4825 ** page into more than one b-tree structure. */
4826 testcase( idx
>pPage
->nCell
);
4828 pCur
->info
.nSize
= 0;
4829 pCur
->validNKey
= 0;
4830 if( idx
>=pPage
->nCell
){
4832 rc
= moveToChild(pCur
, get4byte(&pPage
->aData
[pPage
->hdrOffset
+8]));
4834 rc
= moveToLeftmost(pCur
);
4839 if( pCur
->iPage
==0 ){
4841 pCur
->eState
= CURSOR_INVALID
;
4845 pPage
= pCur
->apPage
[pCur
->iPage
];
4846 }while( pCur
->aiIdx
[pCur
->iPage
]>=pPage
->nCell
);
4848 if( pPage
->intKey
){
4849 rc
= sqlite3BtreeNext(pCur
, pRes
);
4859 rc
= moveToLeftmost(pCur
);
4865 ** Step the cursor to the back to the previous entry in the database. If
4866 ** successful then set *pRes=0. If the cursor
4867 ** was already pointing to the first entry in the database before
4868 ** this routine was called, then set *pRes=1.
4870 int sqlite3BtreePrevious(BtCursor
*pCur
, int *pRes
){
4874 assert( cursorHoldsMutex(pCur
) );
4875 rc
= restoreCursorPosition(pCur
);
4876 if( rc
!=SQLITE_OK
){
4880 if( CURSOR_INVALID
==pCur
->eState
){
4884 if( pCur
->skipNext
<0 ){
4891 pPage
= pCur
->apPage
[pCur
->iPage
];
4892 assert( pPage
->isInit
);
4894 int idx
= pCur
->aiIdx
[pCur
->iPage
];
4895 rc
= moveToChild(pCur
, get4byte(findCell(pPage
, idx
)));
4899 rc
= moveToRightmost(pCur
);
4901 while( pCur
->aiIdx
[pCur
->iPage
]==0 ){
4902 if( pCur
->iPage
==0 ){
4903 pCur
->eState
= CURSOR_INVALID
;
4909 pCur
->info
.nSize
= 0;
4910 pCur
->validNKey
= 0;
4912 pCur
->aiIdx
[pCur
->iPage
]--;
4913 pPage
= pCur
->apPage
[pCur
->iPage
];
4914 if( pPage
->intKey
&& !pPage
->leaf
){
4915 rc
= sqlite3BtreePrevious(pCur
, pRes
);
4925 ** Allocate a new page from the database file.
4927 ** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
4928 ** has already been called on the new page.) The new page has also
4929 ** been referenced and the calling routine is responsible for calling
4930 ** sqlite3PagerUnref() on the new page when it is done.
4932 ** SQLITE_OK is returned on success. Any other return value indicates
4933 ** an error. *ppPage and *pPgno are undefined in the event of an error.
4934 ** Do not invoke sqlite3PagerUnref() on *ppPage if an error is returned.
4936 ** If the "nearby" parameter is not 0, then an effort is made to
4937 ** locate a page close to the page number "nearby". This can be used in an
4938 ** attempt to keep related pages close to each other in the database file,
4939 ** which in turn can make database access faster.
4941 ** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
4942 ** anywhere on the free-list, then it is guaranteed to be returned. If
4943 ** eMode is BTALLOC_LT then the page returned will be less than or equal
4944 ** to nearby if any such page exists. If eMode is BTALLOC_ANY then there
4945 ** are no restrictions on which page is returned.
4947 static int allocateBtreePage(
4948 BtShared
*pBt
, /* The btree */
4949 MemPage
**ppPage
, /* Store pointer to the allocated page here */
4950 Pgno
*pPgno
, /* Store the page number here */
4951 Pgno nearby
, /* Search for a page near this one */
4952 u8 eMode
/* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
4956 u32 n
; /* Number of pages on the freelist */
4957 u32 k
; /* Number of leaves on the trunk of the freelist */
4958 MemPage
*pTrunk
= 0;
4959 MemPage
*pPrevTrunk
= 0;
4960 Pgno mxPage
; /* Total size of the database file */
4962 assert( sqlite3_mutex_held(pBt
->mutex
) );
4963 assert( eMode
==BTALLOC_ANY
|| (nearby
>0 && IfNotOmitAV(pBt
->autoVacuum
)) );
4964 pPage1
= pBt
->pPage1
;
4965 mxPage
= btreePagecount(pBt
);
4966 n
= get4byte(&pPage1
->aData
[36]);
4967 testcase( n
==mxPage
-1 );
4969 return SQLITE_CORRUPT_BKPT
;
4972 /* There are pages on the freelist. Reuse one of those pages. */
4974 u8 searchList
= 0; /* If the free-list must be searched for 'nearby' */
4976 /* If eMode==BTALLOC_EXACT and a query of the pointer-map
4977 ** shows that the page 'nearby' is somewhere on the free-list, then
4978 ** the entire-list will be searched for that page.
4980 #ifndef SQLITE_OMIT_AUTOVACUUM
4981 if( eMode
==BTALLOC_EXACT
){
4982 if( nearby
<=mxPage
){
4985 assert( pBt
->autoVacuum
);
4986 rc
= ptrmapGet(pBt
, nearby
, &eType
, 0);
4988 if( eType
==PTRMAP_FREEPAGE
){
4992 }else if( eMode
==BTALLOC_LE
){
4997 /* Decrement the free-list count by 1. Set iTrunk to the index of the
4998 ** first free-list trunk page. iPrevTrunk is initially 1.
5000 rc
= sqlite3PagerWrite(pPage1
->pDbPage
);
5002 put4byte(&pPage1
->aData
[36], n
-1);
5004 /* The code within this loop is run only once if the 'searchList' variable
5005 ** is not true. Otherwise, it runs once for each trunk-page on the
5006 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
5007 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
5010 pPrevTrunk
= pTrunk
;
5012 iTrunk
= get4byte(&pPrevTrunk
->aData
[0]);
5014 iTrunk
= get4byte(&pPage1
->aData
[32]);
5016 testcase( iTrunk
==mxPage
);
5017 if( iTrunk
>mxPage
){
5018 rc
= SQLITE_CORRUPT_BKPT
;
5020 rc
= btreeGetPage(pBt
, iTrunk
, &pTrunk
, 0, 0);
5024 goto end_allocate_page
;
5026 assert( pTrunk
!=0 );
5027 assert( pTrunk
->aData
!=0 );
5029 k
= get4byte(&pTrunk
->aData
[4]); /* # of leaves on this trunk page */
5030 if( k
==0 && !searchList
){
5031 /* The trunk has no leaves and the list is not being searched.
5032 ** So extract the trunk page itself and use it as the newly
5033 ** allocated page */
5034 assert( pPrevTrunk
==0 );
5035 rc
= sqlite3PagerWrite(pTrunk
->pDbPage
);
5037 goto end_allocate_page
;
5040 memcpy(&pPage1
->aData
[32], &pTrunk
->aData
[0], 4);
5043 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno
, n
-1));
5044 }else if( k
>(u32
)(pBt
->usableSize
/4 - 2) ){
5045 /* Value of k is out of range. Database corruption */
5046 rc
= SQLITE_CORRUPT_BKPT
;
5047 goto end_allocate_page
;
5048 #ifndef SQLITE_OMIT_AUTOVACUUM
5049 }else if( searchList
5050 && (nearby
==iTrunk
|| (iTrunk
<nearby
&& eMode
==BTALLOC_LE
))
5052 /* The list is being searched and this trunk page is the page
5053 ** to allocate, regardless of whether it has leaves.
5058 rc
= sqlite3PagerWrite(pTrunk
->pDbPage
);
5060 goto end_allocate_page
;
5064 memcpy(&pPage1
->aData
[32], &pTrunk
->aData
[0], 4);
5066 rc
= sqlite3PagerWrite(pPrevTrunk
->pDbPage
);
5067 if( rc
!=SQLITE_OK
){
5068 goto end_allocate_page
;
5070 memcpy(&pPrevTrunk
->aData
[0], &pTrunk
->aData
[0], 4);
5073 /* The trunk page is required by the caller but it contains
5074 ** pointers to free-list leaves. The first leaf becomes a trunk
5075 ** page in this case.
5078 Pgno iNewTrunk
= get4byte(&pTrunk
->aData
[8]);
5079 if( iNewTrunk
>mxPage
){
5080 rc
= SQLITE_CORRUPT_BKPT
;
5081 goto end_allocate_page
;
5083 testcase( iNewTrunk
==mxPage
);
5084 rc
= btreeGetPage(pBt
, iNewTrunk
, &pNewTrunk
, 0, 0);
5085 if( rc
!=SQLITE_OK
){
5086 goto end_allocate_page
;
5088 rc
= sqlite3PagerWrite(pNewTrunk
->pDbPage
);
5089 if( rc
!=SQLITE_OK
){
5090 releasePage(pNewTrunk
);
5091 goto end_allocate_page
;
5093 memcpy(&pNewTrunk
->aData
[0], &pTrunk
->aData
[0], 4);
5094 put4byte(&pNewTrunk
->aData
[4], k
-1);
5095 memcpy(&pNewTrunk
->aData
[8], &pTrunk
->aData
[12], (k
-1)*4);
5096 releasePage(pNewTrunk
);
5098 assert( sqlite3PagerIswriteable(pPage1
->pDbPage
) );
5099 put4byte(&pPage1
->aData
[32], iNewTrunk
);
5101 rc
= sqlite3PagerWrite(pPrevTrunk
->pDbPage
);
5103 goto end_allocate_page
;
5105 put4byte(&pPrevTrunk
->aData
[0], iNewTrunk
);
5109 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno
, n
-1));
5112 /* Extract a leaf from the trunk */
5115 unsigned char *aData
= pTrunk
->aData
;
5119 if( eMode
==BTALLOC_LE
){
5121 iPage
= get4byte(&aData
[8+i
*4]);
5122 if( iPage
<=nearby
){
5129 dist
= sqlite3AbsInt32(get4byte(&aData
[8]) - nearby
);
5131 int d2
= sqlite3AbsInt32(get4byte(&aData
[8+i
*4]) - nearby
);
5142 iPage
= get4byte(&aData
[8+closest
*4]);
5143 testcase( iPage
==mxPage
);
5145 rc
= SQLITE_CORRUPT_BKPT
;
5146 goto end_allocate_page
;
5148 testcase( iPage
==mxPage
);
5150 || (iPage
==nearby
|| (iPage
<nearby
&& eMode
==BTALLOC_LE
))
5154 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
5155 ": %d more free pages\n",
5156 *pPgno
, closest
+1, k
, pTrunk
->pgno
, n
-1));
5157 rc
= sqlite3PagerWrite(pTrunk
->pDbPage
);
5158 if( rc
) goto end_allocate_page
;
5160 memcpy(&aData
[8+closest
*4], &aData
[4+k
*4], 4);
5162 put4byte(&aData
[4], k
-1);
5163 noContent
= !btreeGetHasContent(pBt
, *pPgno
);
5164 rc
= btreeGetPage(pBt
, *pPgno
, ppPage
, noContent
, 0);
5165 if( rc
==SQLITE_OK
){
5166 rc
= sqlite3PagerWrite((*ppPage
)->pDbPage
);
5167 if( rc
!=SQLITE_OK
){
5168 releasePage(*ppPage
);
5174 releasePage(pPrevTrunk
);
5176 }while( searchList
);
5178 /* There are no pages on the freelist, so append a new page to the
5181 ** Normally, new pages allocated by this block can be requested from the
5182 ** pager layer with the 'no-content' flag set. This prevents the pager
5183 ** from trying to read the pages content from disk. However, if the
5184 ** current transaction has already run one or more incremental-vacuum
5185 ** steps, then the page we are about to allocate may contain content
5186 ** that is required in the event of a rollback. In this case, do
5187 ** not set the no-content flag. This causes the pager to load and journal
5188 ** the current page content before overwriting it.
5190 ** Note that the pager will not actually attempt to load or journal
5191 ** content for any page that really does lie past the end of the database
5192 ** file on disk. So the effects of disabling the no-content optimization
5193 ** here are confined to those pages that lie between the end of the
5194 ** database image and the end of the database file.
5196 int bNoContent
= (0==IfNotOmitAV(pBt
->bDoTruncate
));
5198 rc
= sqlite3PagerWrite(pBt
->pPage1
->pDbPage
);
5201 if( pBt
->nPage
==PENDING_BYTE_PAGE(pBt
) ) pBt
->nPage
++;
5203 #ifndef SQLITE_OMIT_AUTOVACUUM
5204 if( pBt
->autoVacuum
&& PTRMAP_ISPAGE(pBt
, pBt
->nPage
) ){
5205 /* If *pPgno refers to a pointer-map page, allocate two new pages
5206 ** at the end of the file instead of one. The first allocated page
5207 ** becomes a new pointer-map page, the second is used by the caller.
5210 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt
->nPage
));
5211 assert( pBt
->nPage
!=PENDING_BYTE_PAGE(pBt
) );
5212 rc
= btreeGetPage(pBt
, pBt
->nPage
, &pPg
, bNoContent
, 0);
5213 if( rc
==SQLITE_OK
){
5214 rc
= sqlite3PagerWrite(pPg
->pDbPage
);
5219 if( pBt
->nPage
==PENDING_BYTE_PAGE(pBt
) ){ pBt
->nPage
++; }
5222 put4byte(28 + (u8
*)pBt
->pPage1
->aData
, pBt
->nPage
);
5223 *pPgno
= pBt
->nPage
;
5225 assert( *pPgno
!=PENDING_BYTE_PAGE(pBt
) );
5226 rc
= btreeGetPage(pBt
, *pPgno
, ppPage
, bNoContent
, 0);
5228 rc
= sqlite3PagerWrite((*ppPage
)->pDbPage
);
5229 if( rc
!=SQLITE_OK
){
5230 releasePage(*ppPage
);
5232 TRACE(("ALLOCATE: %d from end of file\n", *pPgno
));
5235 assert( *pPgno
!=PENDING_BYTE_PAGE(pBt
) );
5238 releasePage(pTrunk
);
5239 releasePage(pPrevTrunk
);
5240 if( rc
==SQLITE_OK
){
5241 if( sqlite3PagerPageRefcount((*ppPage
)->pDbPage
)>1 ){
5242 releasePage(*ppPage
);
5243 return SQLITE_CORRUPT_BKPT
;
5245 (*ppPage
)->isInit
= 0;
5249 assert( rc
!=SQLITE_OK
|| sqlite3PagerIswriteable((*ppPage
)->pDbPage
) );
5254 ** This function is used to add page iPage to the database file free-list.
5255 ** It is assumed that the page is not already a part of the free-list.
5257 ** The value passed as the second argument to this function is optional.
5258 ** If the caller happens to have a pointer to the MemPage object
5259 ** corresponding to page iPage handy, it may pass it as the second value.
5260 ** Otherwise, it may pass NULL.
5262 ** If a pointer to a MemPage object is passed as the second argument,
5263 ** its reference count is not altered by this function.
5265 static int freePage2(BtShared
*pBt
, MemPage
*pMemPage
, Pgno iPage
){
5266 MemPage
*pTrunk
= 0; /* Free-list trunk page */
5267 Pgno iTrunk
= 0; /* Page number of free-list trunk page */
5268 MemPage
*pPage1
= pBt
->pPage1
; /* Local reference to page 1 */
5269 MemPage
*pPage
; /* Page being freed. May be NULL. */
5270 int rc
; /* Return Code */
5271 int nFree
; /* Initial number of pages on free-list */
5273 assert( sqlite3_mutex_held(pBt
->mutex
) );
5275 assert( !pMemPage
|| pMemPage
->pgno
==iPage
);
5279 sqlite3PagerRef(pPage
->pDbPage
);
5281 pPage
= btreePageLookup(pBt
, iPage
);
5284 /* Increment the free page count on pPage1 */
5285 rc
= sqlite3PagerWrite(pPage1
->pDbPage
);
5286 if( rc
) goto freepage_out
;
5287 nFree
= get4byte(&pPage1
->aData
[36]);
5288 put4byte(&pPage1
->aData
[36], nFree
+1);
5290 if( pBt
->btsFlags
& BTS_SECURE_DELETE
){
5291 /* If the secure_delete option is enabled, then
5292 ** always fully overwrite deleted information with zeros.
5294 if( (!pPage
&& ((rc
= btreeGetPage(pBt
, iPage
, &pPage
, 0, 0))!=0) )
5295 || ((rc
= sqlite3PagerWrite(pPage
->pDbPage
))!=0)
5299 memset(pPage
->aData
, 0, pPage
->pBt
->pageSize
);
5302 /* If the database supports auto-vacuum, write an entry in the pointer-map
5303 ** to indicate that the page is free.
5306 ptrmapPut(pBt
, iPage
, PTRMAP_FREEPAGE
, 0, &rc
);
5307 if( rc
) goto freepage_out
;
5310 /* Now manipulate the actual database free-list structure. There are two
5311 ** possibilities. If the free-list is currently empty, or if the first
5312 ** trunk page in the free-list is full, then this page will become a
5313 ** new free-list trunk page. Otherwise, it will become a leaf of the
5314 ** first trunk page in the current free-list. This block tests if it
5315 ** is possible to add the page as a new free-list leaf.
5318 u32 nLeaf
; /* Initial number of leaf cells on trunk page */
5320 iTrunk
= get4byte(&pPage1
->aData
[32]);
5321 rc
= btreeGetPage(pBt
, iTrunk
, &pTrunk
, 0, 0);
5322 if( rc
!=SQLITE_OK
){
5326 nLeaf
= get4byte(&pTrunk
->aData
[4]);
5327 assert( pBt
->usableSize
>32 );
5328 if( nLeaf
> (u32
)pBt
->usableSize
/4 - 2 ){
5329 rc
= SQLITE_CORRUPT_BKPT
;
5332 if( nLeaf
< (u32
)pBt
->usableSize
/4 - 8 ){
5333 /* In this case there is room on the trunk page to insert the page
5334 ** being freed as a new leaf.
5336 ** Note that the trunk page is not really full until it contains
5337 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
5338 ** coded. But due to a coding error in versions of SQLite prior to
5339 ** 3.6.0, databases with freelist trunk pages holding more than
5340 ** usableSize/4 - 8 entries will be reported as corrupt. In order
5341 ** to maintain backwards compatibility with older versions of SQLite,
5342 ** we will continue to restrict the number of entries to usableSize/4 - 8
5343 ** for now. At some point in the future (once everyone has upgraded
5344 ** to 3.6.0 or later) we should consider fixing the conditional above
5345 ** to read "usableSize/4-2" instead of "usableSize/4-8".
5347 rc
= sqlite3PagerWrite(pTrunk
->pDbPage
);
5348 if( rc
==SQLITE_OK
){
5349 put4byte(&pTrunk
->aData
[4], nLeaf
+1);
5350 put4byte(&pTrunk
->aData
[8+nLeaf
*4], iPage
);
5351 if( pPage
&& (pBt
->btsFlags
& BTS_SECURE_DELETE
)==0 ){
5352 sqlite3PagerDontWrite(pPage
->pDbPage
);
5354 rc
= btreeSetHasContent(pBt
, iPage
);
5356 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage
->pgno
,pTrunk
->pgno
));
5361 /* If control flows to this point, then it was not possible to add the
5362 ** the page being freed as a leaf page of the first trunk in the free-list.
5363 ** Possibly because the free-list is empty, or possibly because the
5364 ** first trunk in the free-list is full. Either way, the page being freed
5365 ** will become the new first trunk page in the free-list.
5367 if( pPage
==0 && SQLITE_OK
!=(rc
= btreeGetPage(pBt
, iPage
, &pPage
, 0, 0)) ){
5370 rc
= sqlite3PagerWrite(pPage
->pDbPage
);
5371 if( rc
!=SQLITE_OK
){
5374 put4byte(pPage
->aData
, iTrunk
);
5375 put4byte(&pPage
->aData
[4], 0);
5376 put4byte(&pPage1
->aData
[32], iPage
);
5377 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage
->pgno
, iTrunk
));
5384 releasePage(pTrunk
);
5387 static void freePage(MemPage
*pPage
, int *pRC
){
5388 if( (*pRC
)==SQLITE_OK
){
5389 *pRC
= freePage2(pPage
->pBt
, pPage
, pPage
->pgno
);
5394 ** Free any overflow pages associated with the given Cell.
5396 static int clearCell(MemPage
*pPage
, unsigned char *pCell
){
5397 BtShared
*pBt
= pPage
->pBt
;
5404 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
5405 btreeParseCellPtr(pPage
, pCell
, &info
);
5406 if( info
.iOverflow
==0 ){
5407 return SQLITE_OK
; /* No overflow pages. Return without doing anything */
5409 if( pCell
+info
.iOverflow
+3 > pPage
->aData
+pPage
->maskPage
){
5410 return SQLITE_CORRUPT_BKPT
; /* Cell extends past end of page */
5412 ovflPgno
= get4byte(&pCell
[info
.iOverflow
]);
5413 assert( pBt
->usableSize
> 4 );
5414 ovflPageSize
= pBt
->usableSize
- 4;
5415 nOvfl
= (info
.nPayload
- info
.nLocal
+ ovflPageSize
- 1)/ovflPageSize
;
5416 assert( ovflPgno
==0 || nOvfl
>0 );
5420 if( ovflPgno
<2 || ovflPgno
>btreePagecount(pBt
) ){
5421 /* 0 is not a legal page number and page 1 cannot be an
5422 ** overflow page. Therefore if ovflPgno<2 or past the end of the
5423 ** file the database must be corrupt. */
5424 return SQLITE_CORRUPT_BKPT
;
5427 rc
= getOverflowPage(pBt
, ovflPgno
, &pOvfl
, &iNext
);
5431 if( ( pOvfl
|| ((pOvfl
= btreePageLookup(pBt
, ovflPgno
))!=0) )
5432 && sqlite3PagerPageRefcount(pOvfl
->pDbPage
)!=1
5434 /* There is no reason any cursor should have an outstanding reference
5435 ** to an overflow page belonging to a cell that is being deleted/updated.
5436 ** So if there exists more than one reference to this page, then it
5437 ** must not really be an overflow page and the database must be corrupt.
5438 ** It is helpful to detect this before calling freePage2(), as
5439 ** freePage2() may zero the page contents if secure-delete mode is
5440 ** enabled. If this 'overflow' page happens to be a page that the
5441 ** caller is iterating through or using in some other way, this
5442 ** can be problematic.
5444 rc
= SQLITE_CORRUPT_BKPT
;
5446 rc
= freePage2(pBt
, pOvfl
, ovflPgno
);
5450 sqlite3PagerUnref(pOvfl
->pDbPage
);
5459 ** Create the byte sequence used to represent a cell on page pPage
5460 ** and write that byte sequence into pCell[]. Overflow pages are
5461 ** allocated and filled in as necessary. The calling procedure
5462 ** is responsible for making sure sufficient space has been allocated
5465 ** Note that pCell does not necessary need to point to the pPage->aData
5466 ** area. pCell might point to some temporary storage. The cell will
5467 ** be constructed in this temporary area then copied into pPage->aData
5470 static int fillInCell(
5471 MemPage
*pPage
, /* The page that contains the cell */
5472 unsigned char *pCell
, /* Complete text of the cell */
5473 const void *pKey
, i64 nKey
, /* The key */
5474 const void *pData
,int nData
, /* The data */
5475 int nZero
, /* Extra zero bytes to append to pData */
5476 int *pnSize
/* Write cell size here */
5483 MemPage
*pToRelease
= 0;
5484 unsigned char *pPrior
;
5485 unsigned char *pPayload
;
5486 BtShared
*pBt
= pPage
->pBt
;
5491 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
5493 /* pPage is not necessarily writeable since pCell might be auxiliary
5494 ** buffer space that is separate from the pPage buffer area */
5495 assert( pCell
<pPage
->aData
|| pCell
>=&pPage
->aData
[pBt
->pageSize
]
5496 || sqlite3PagerIswriteable(pPage
->pDbPage
) );
5498 /* Fill in the header. */
5503 if( pPage
->hasData
){
5504 nHeader
+= putVarint(&pCell
[nHeader
], nData
+nZero
);
5508 nHeader
+= putVarint(&pCell
[nHeader
], *(u64
*)&nKey
);
5509 btreeParseCellPtr(pPage
, pCell
, &info
);
5510 assert( info
.nHeader
==nHeader
);
5511 assert( info
.nKey
==nKey
);
5512 assert( info
.nData
==(u32
)(nData
+nZero
) );
5514 /* Fill in the payload */
5515 nPayload
= nData
+ nZero
;
5516 if( pPage
->intKey
){
5521 if( NEVER(nKey
>0x7fffffff || pKey
==0) ){
5522 return SQLITE_CORRUPT_BKPT
;
5524 nPayload
+= (int)nKey
;
5528 *pnSize
= info
.nSize
;
5529 spaceLeft
= info
.nLocal
;
5530 pPayload
= &pCell
[nHeader
];
5531 pPrior
= &pCell
[info
.iOverflow
];
5533 while( nPayload
>0 ){
5535 #ifndef SQLITE_OMIT_AUTOVACUUM
5536 Pgno pgnoPtrmap
= pgnoOvfl
; /* Overflow page pointer-map entry page */
5537 if( pBt
->autoVacuum
){
5541 PTRMAP_ISPAGE(pBt
, pgnoOvfl
) || pgnoOvfl
==PENDING_BYTE_PAGE(pBt
)
5545 rc
= allocateBtreePage(pBt
, &pOvfl
, &pgnoOvfl
, pgnoOvfl
, 0);
5546 #ifndef SQLITE_OMIT_AUTOVACUUM
5547 /* If the database supports auto-vacuum, and the second or subsequent
5548 ** overflow page is being allocated, add an entry to the pointer-map
5549 ** for that page now.
5551 ** If this is the first overflow page, then write a partial entry
5552 ** to the pointer-map. If we write nothing to this pointer-map slot,
5553 ** then the optimistic overflow chain processing in clearCell()
5554 ** may misinterpret the uninitialized values and delete the
5555 ** wrong pages from the database.
5557 if( pBt
->autoVacuum
&& rc
==SQLITE_OK
){
5558 u8 eType
= (pgnoPtrmap
?PTRMAP_OVERFLOW2
:PTRMAP_OVERFLOW1
);
5559 ptrmapPut(pBt
, pgnoOvfl
, eType
, pgnoPtrmap
, &rc
);
5566 releasePage(pToRelease
);
5570 /* If pToRelease is not zero than pPrior points into the data area
5571 ** of pToRelease. Make sure pToRelease is still writeable. */
5572 assert( pToRelease
==0 || sqlite3PagerIswriteable(pToRelease
->pDbPage
) );
5574 /* If pPrior is part of the data area of pPage, then make sure pPage
5575 ** is still writeable */
5576 assert( pPrior
<pPage
->aData
|| pPrior
>=&pPage
->aData
[pBt
->pageSize
]
5577 || sqlite3PagerIswriteable(pPage
->pDbPage
) );
5579 put4byte(pPrior
, pgnoOvfl
);
5580 releasePage(pToRelease
);
5582 pPrior
= pOvfl
->aData
;
5583 put4byte(pPrior
, 0);
5584 pPayload
= &pOvfl
->aData
[4];
5585 spaceLeft
= pBt
->usableSize
- 4;
5588 if( n
>spaceLeft
) n
= spaceLeft
;
5590 /* If pToRelease is not zero than pPayload points into the data area
5591 ** of pToRelease. Make sure pToRelease is still writeable. */
5592 assert( pToRelease
==0 || sqlite3PagerIswriteable(pToRelease
->pDbPage
) );
5594 /* If pPayload is part of the data area of pPage, then make sure pPage
5595 ** is still writeable */
5596 assert( pPayload
<pPage
->aData
|| pPayload
>=&pPage
->aData
[pBt
->pageSize
]
5597 || sqlite3PagerIswriteable(pPage
->pDbPage
) );
5600 if( n
>nSrc
) n
= nSrc
;
5602 memcpy(pPayload
, pSrc
, n
);
5604 memset(pPayload
, 0, n
);
5616 releasePage(pToRelease
);
5621 ** Remove the i-th cell from pPage. This routine effects pPage only.
5622 ** The cell content is not freed or deallocated. It is assumed that
5623 ** the cell content has been copied someplace else. This routine just
5624 ** removes the reference to the cell from pPage.
5626 ** "sz" must be the number of bytes in the cell.
5628 static void dropCell(MemPage
*pPage
, int idx
, int sz
, int *pRC
){
5629 u32 pc
; /* Offset to cell content of cell being deleted */
5630 u8
*data
; /* pPage->aData */
5631 u8
*ptr
; /* Used to move bytes around within data[] */
5632 u8
*endPtr
; /* End of loop */
5633 int rc
; /* The return code */
5634 int hdr
; /* Beginning of the header. 0 most pages. 100 page 1 */
5638 assert( idx
>=0 && idx
<pPage
->nCell
);
5639 assert( sz
==cellSize(pPage
, idx
) );
5640 assert( sqlite3PagerIswriteable(pPage
->pDbPage
) );
5641 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
5642 data
= pPage
->aData
;
5643 ptr
= &pPage
->aCellIdx
[2*idx
];
5645 hdr
= pPage
->hdrOffset
;
5646 testcase( pc
==get2byte(&data
[hdr
+5]) );
5647 testcase( pc
+sz
==pPage
->pBt
->usableSize
);
5648 if( pc
< (u32
)get2byte(&data
[hdr
+5]) || pc
+sz
> pPage
->pBt
->usableSize
){
5649 *pRC
= SQLITE_CORRUPT_BKPT
;
5652 rc
= freeSpace(pPage
, pc
, sz
);
5657 endPtr
= &pPage
->aCellIdx
[2*pPage
->nCell
- 2];
5658 assert( (SQLITE_PTR_TO_INT(ptr
)&1)==0 ); /* ptr is always 2-byte aligned */
5659 while( ptr
<endPtr
){
5660 *(u16
*)ptr
= *(u16
*)&ptr
[2];
5664 put2byte(&data
[hdr
+3], pPage
->nCell
);
5669 ** Insert a new cell on pPage at cell index "i". pCell points to the
5670 ** content of the cell.
5672 ** If the cell content will fit on the page, then put it there. If it
5673 ** will not fit, then make a copy of the cell content into pTemp if
5674 ** pTemp is not null. Regardless of pTemp, allocate a new entry
5675 ** in pPage->apOvfl[] and make it point to the cell content (either
5676 ** in pTemp or the original pCell) and also record its index.
5677 ** Allocating a new entry in pPage->aCell[] implies that
5678 ** pPage->nOverflow is incremented.
5680 ** If nSkip is non-zero, then do not copy the first nSkip bytes of the
5681 ** cell. The caller will overwrite them after this function returns. If
5682 ** nSkip is non-zero, then pCell may not point to an invalid memory location
5683 ** (but pCell+nSkip is always valid).
5685 static void insertCell(
5686 MemPage
*pPage
, /* Page into which we are copying */
5687 int i
, /* New cell becomes the i-th cell of the page */
5688 u8
*pCell
, /* Content of the new cell */
5689 int sz
, /* Bytes of content in pCell */
5690 u8
*pTemp
, /* Temp storage space for pCell, if needed */
5691 Pgno iChild
, /* If non-zero, replace first 4 bytes with this value */
5692 int *pRC
/* Read and write return code from here */
5694 int idx
= 0; /* Where to write new cell content in data[] */
5695 int j
; /* Loop counter */
5696 int end
; /* First byte past the last cell pointer in data[] */
5697 int ins
; /* Index in data[] where new cell pointer is inserted */
5698 int cellOffset
; /* Address of first cell pointer in data[] */
5699 u8
*data
; /* The content of the whole page */
5700 u8
*ptr
; /* Used for moving information around in data[] */
5701 u8
*endPtr
; /* End of the loop */
5703 int nSkip
= (iChild
? 4 : 0);
5707 assert( i
>=0 && i
<=pPage
->nCell
+pPage
->nOverflow
);
5708 assert( pPage
->nCell
<=MX_CELL(pPage
->pBt
) && MX_CELL(pPage
->pBt
)<=10921 );
5709 assert( pPage
->nOverflow
<=ArraySize(pPage
->apOvfl
) );
5710 assert( ArraySize(pPage
->apOvfl
)==ArraySize(pPage
->aiOvfl
) );
5711 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
5712 /* The cell should normally be sized correctly. However, when moving a
5713 ** malformed cell from a leaf page to an interior page, if the cell size
5714 ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
5715 ** might be less than 8 (leaf-size + pointer) on the interior node. Hence
5716 ** the term after the || in the following assert(). */
5717 assert( sz
==cellSizePtr(pPage
, pCell
) || (sz
==8 && iChild
>0) );
5718 if( pPage
->nOverflow
|| sz
+2>pPage
->nFree
){
5720 memcpy(pTemp
+nSkip
, pCell
+nSkip
, sz
-nSkip
);
5724 put4byte(pCell
, iChild
);
5726 j
= pPage
->nOverflow
++;
5727 assert( j
<(int)(sizeof(pPage
->apOvfl
)/sizeof(pPage
->apOvfl
[0])) );
5728 pPage
->apOvfl
[j
] = pCell
;
5729 pPage
->aiOvfl
[j
] = (u16
)i
;
5731 int rc
= sqlite3PagerWrite(pPage
->pDbPage
);
5732 if( rc
!=SQLITE_OK
){
5736 assert( sqlite3PagerIswriteable(pPage
->pDbPage
) );
5737 data
= pPage
->aData
;
5738 cellOffset
= pPage
->cellOffset
;
5739 end
= cellOffset
+ 2*pPage
->nCell
;
5740 ins
= cellOffset
+ 2*i
;
5741 rc
= allocateSpace(pPage
, sz
, &idx
);
5742 if( rc
){ *pRC
= rc
; return; }
5743 /* The allocateSpace() routine guarantees the following two properties
5744 ** if it returns success */
5745 assert( idx
>= end
+2 );
5746 assert( idx
+sz
<= (int)pPage
->pBt
->usableSize
);
5748 pPage
->nFree
-= (u16
)(2 + sz
);
5749 memcpy(&data
[idx
+nSkip
], pCell
+nSkip
, sz
-nSkip
);
5751 put4byte(&data
[idx
], iChild
);
5754 endPtr
= &data
[ins
];
5755 assert( (SQLITE_PTR_TO_INT(ptr
)&1)==0 ); /* ptr is always 2-byte aligned */
5756 while( ptr
>endPtr
){
5757 *(u16
*)ptr
= *(u16
*)&ptr
[-2];
5760 put2byte(&data
[ins
], idx
);
5761 put2byte(&data
[pPage
->hdrOffset
+3], pPage
->nCell
);
5762 #ifndef SQLITE_OMIT_AUTOVACUUM
5763 if( pPage
->pBt
->autoVacuum
){
5764 /* The cell may contain a pointer to an overflow page. If so, write
5765 ** the entry for the overflow page into the pointer map.
5767 ptrmapPutOvflPtr(pPage
, pCell
, pRC
);
5774 ** Add a list of cells to a page. The page should be initially empty.
5775 ** The cells are guaranteed to fit on the page.
5777 static void assemblePage(
5778 MemPage
*pPage
, /* The page to be assemblied */
5779 int nCell
, /* The number of cells to add to this page */
5780 u8
**apCell
, /* Pointers to cell bodies */
5781 u16
*aSize
/* Sizes of the cells */
5783 int i
; /* Loop counter */
5784 u8
*pCellptr
; /* Address of next cell pointer */
5785 int cellbody
; /* Address of next cell body */
5786 u8
* const data
= pPage
->aData
; /* Pointer to data for pPage */
5787 const int hdr
= pPage
->hdrOffset
; /* Offset of header on pPage */
5788 const int nUsable
= pPage
->pBt
->usableSize
; /* Usable size of page */
5790 assert( pPage
->nOverflow
==0 );
5791 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
5792 assert( nCell
>=0 && nCell
<=(int)MX_CELL(pPage
->pBt
)
5793 && (int)MX_CELL(pPage
->pBt
)<=10921);
5794 assert( sqlite3PagerIswriteable(pPage
->pDbPage
) );
5796 /* Check that the page has just been zeroed by zeroPage() */
5797 assert( pPage
->nCell
==0 );
5798 assert( get2byteNotZero(&data
[hdr
+5])==nUsable
);
5800 pCellptr
= &pPage
->aCellIdx
[nCell
*2];
5802 for(i
=nCell
-1; i
>=0; i
--){
5806 put2byte(pCellptr
, cellbody
);
5807 memcpy(&data
[cellbody
], apCell
[i
], sz
);
5809 put2byte(&data
[hdr
+3], nCell
);
5810 put2byte(&data
[hdr
+5], cellbody
);
5811 pPage
->nFree
-= (nCell
*2 + nUsable
- cellbody
);
5812 pPage
->nCell
= (u16
)nCell
;
5816 ** The following parameters determine how many adjacent pages get involved
5817 ** in a balancing operation. NN is the number of neighbors on either side
5818 ** of the page that participate in the balancing operation. NB is the
5819 ** total number of pages that participate, including the target page and
5820 ** NN neighbors on either side.
5822 ** The minimum value of NN is 1 (of course). Increasing NN above 1
5823 ** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
5824 ** in exchange for a larger degradation in INSERT and UPDATE performance.
5825 ** The value of NN appears to give the best results overall.
5827 #define NN 1 /* Number of neighbors on either side of pPage */
5828 #define NB (NN*2+1) /* Total pages involved in the balance */
5831 #ifndef SQLITE_OMIT_QUICKBALANCE
5833 ** This version of balance() handles the common special case where
5834 ** a new entry is being inserted on the extreme right-end of the
5835 ** tree, in other words, when the new entry will become the largest
5836 ** entry in the tree.
5838 ** Instead of trying to balance the 3 right-most leaf pages, just add
5839 ** a new page to the right-hand side and put the one new entry in
5840 ** that page. This leaves the right side of the tree somewhat
5841 ** unbalanced. But odds are that we will be inserting new entries
5842 ** at the end soon afterwards so the nearly empty page will quickly
5843 ** fill up. On average.
5845 ** pPage is the leaf page which is the right-most page in the tree.
5846 ** pParent is its parent. pPage must have a single overflow entry
5847 ** which is also the right-most entry on the page.
5849 ** The pSpace buffer is used to store a temporary copy of the divider
5850 ** cell that will be inserted into pParent. Such a cell consists of a 4
5851 ** byte page number followed by a variable length integer. In other
5852 ** words, at most 13 bytes. Hence the pSpace buffer must be at
5853 ** least 13 bytes in size.
5855 static int balance_quick(MemPage
*pParent
, MemPage
*pPage
, u8
*pSpace
){
5856 BtShared
*const pBt
= pPage
->pBt
; /* B-Tree Database */
5857 MemPage
*pNew
; /* Newly allocated page */
5858 int rc
; /* Return Code */
5859 Pgno pgnoNew
; /* Page number of pNew */
5861 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
5862 assert( sqlite3PagerIswriteable(pParent
->pDbPage
) );
5863 assert( pPage
->nOverflow
==1 );
5865 /* This error condition is now caught prior to reaching this function */
5866 if( pPage
->nCell
==0 ) return SQLITE_CORRUPT_BKPT
;
5868 /* Allocate a new page. This page will become the right-sibling of
5869 ** pPage. Make the parent page writable, so that the new divider cell
5870 ** may be inserted. If both these operations are successful, proceed.
5872 rc
= allocateBtreePage(pBt
, &pNew
, &pgnoNew
, 0, 0);
5874 if( rc
==SQLITE_OK
){
5876 u8
*pOut
= &pSpace
[4];
5877 u8
*pCell
= pPage
->apOvfl
[0];
5878 u16 szCell
= cellSizePtr(pPage
, pCell
);
5881 assert( sqlite3PagerIswriteable(pNew
->pDbPage
) );
5882 assert( pPage
->aData
[0]==(PTF_INTKEY
|PTF_LEAFDATA
|PTF_LEAF
) );
5883 zeroPage(pNew
, PTF_INTKEY
|PTF_LEAFDATA
|PTF_LEAF
);
5884 assemblePage(pNew
, 1, &pCell
, &szCell
);
5886 /* If this is an auto-vacuum database, update the pointer map
5887 ** with entries for the new page, and any pointer from the
5888 ** cell on the page to an overflow page. If either of these
5889 ** operations fails, the return code is set, but the contents
5890 ** of the parent page are still manipulated by thh code below.
5891 ** That is Ok, at this point the parent page is guaranteed to
5892 ** be marked as dirty. Returning an error code will cause a
5893 ** rollback, undoing any changes made to the parent page.
5896 ptrmapPut(pBt
, pgnoNew
, PTRMAP_BTREE
, pParent
->pgno
, &rc
);
5897 if( szCell
>pNew
->minLocal
){
5898 ptrmapPutOvflPtr(pNew
, pCell
, &rc
);
5902 /* Create a divider cell to insert into pParent. The divider cell
5903 ** consists of a 4-byte page number (the page number of pPage) and
5904 ** a variable length key value (which must be the same value as the
5905 ** largest key on pPage).
5907 ** To find the largest key value on pPage, first find the right-most
5908 ** cell on pPage. The first two fields of this cell are the
5909 ** record-length (a variable length integer at most 32-bits in size)
5910 ** and the key value (a variable length integer, may have any value).
5911 ** The first of the while(...) loops below skips over the record-length
5912 ** field. The second while(...) loop copies the key value from the
5913 ** cell on pPage into the pSpace buffer.
5915 pCell
= findCell(pPage
, pPage
->nCell
-1);
5917 while( (*(pCell
++)&0x80) && pCell
<pStop
);
5919 while( ((*(pOut
++) = *(pCell
++))&0x80) && pCell
<pStop
);
5921 /* Insert the new divider cell into pParent. */
5922 insertCell(pParent
, pParent
->nCell
, pSpace
, (int)(pOut
-pSpace
),
5923 0, pPage
->pgno
, &rc
);
5925 /* Set the right-child pointer of pParent to point to the new page. */
5926 put4byte(&pParent
->aData
[pParent
->hdrOffset
+8], pgnoNew
);
5928 /* Release the reference to the new page. */
5934 #endif /* SQLITE_OMIT_QUICKBALANCE */
5938 ** This function does not contribute anything to the operation of SQLite.
5939 ** it is sometimes activated temporarily while debugging code responsible
5940 ** for setting pointer-map entries.
5942 static int ptrmapCheckPages(MemPage
**apPage
, int nPage
){
5944 for(i
=0; i
<nPage
; i
++){
5947 MemPage
*pPage
= apPage
[i
];
5948 BtShared
*pBt
= pPage
->pBt
;
5949 assert( pPage
->isInit
);
5951 for(j
=0; j
<pPage
->nCell
; j
++){
5955 z
= findCell(pPage
, j
);
5956 btreeParseCellPtr(pPage
, z
, &info
);
5957 if( info
.iOverflow
){
5958 Pgno ovfl
= get4byte(&z
[info
.iOverflow
]);
5959 ptrmapGet(pBt
, ovfl
, &e
, &n
);
5960 assert( n
==pPage
->pgno
&& e
==PTRMAP_OVERFLOW1
);
5963 Pgno child
= get4byte(z
);
5964 ptrmapGet(pBt
, child
, &e
, &n
);
5965 assert( n
==pPage
->pgno
&& e
==PTRMAP_BTREE
);
5969 Pgno child
= get4byte(&pPage
->aData
[pPage
->hdrOffset
+8]);
5970 ptrmapGet(pBt
, child
, &e
, &n
);
5971 assert( n
==pPage
->pgno
&& e
==PTRMAP_BTREE
);
5979 ** This function is used to copy the contents of the b-tree node stored
5980 ** on page pFrom to page pTo. If page pFrom was not a leaf page, then
5981 ** the pointer-map entries for each child page are updated so that the
5982 ** parent page stored in the pointer map is page pTo. If pFrom contained
5983 ** any cells with overflow page pointers, then the corresponding pointer
5984 ** map entries are also updated so that the parent page is page pTo.
5986 ** If pFrom is currently carrying any overflow cells (entries in the
5987 ** MemPage.apOvfl[] array), they are not copied to pTo.
5989 ** Before returning, page pTo is reinitialized using btreeInitPage().
5991 ** The performance of this function is not critical. It is only used by
5992 ** the balance_shallower() and balance_deeper() procedures, neither of
5993 ** which are called often under normal circumstances.
5995 static void copyNodeContent(MemPage
*pFrom
, MemPage
*pTo
, int *pRC
){
5996 if( (*pRC
)==SQLITE_OK
){
5997 BtShared
* const pBt
= pFrom
->pBt
;
5998 u8
* const aFrom
= pFrom
->aData
;
5999 u8
* const aTo
= pTo
->aData
;
6000 int const iFromHdr
= pFrom
->hdrOffset
;
6001 int const iToHdr
= ((pTo
->pgno
==1) ? 100 : 0);
6006 assert( pFrom
->isInit
);
6007 assert( pFrom
->nFree
>=iToHdr
);
6008 assert( get2byte(&aFrom
[iFromHdr
+5]) <= (int)pBt
->usableSize
);
6010 /* Copy the b-tree node content from page pFrom to page pTo. */
6011 iData
= get2byte(&aFrom
[iFromHdr
+5]);
6012 memcpy(&aTo
[iData
], &aFrom
[iData
], pBt
->usableSize
-iData
);
6013 memcpy(&aTo
[iToHdr
], &aFrom
[iFromHdr
], pFrom
->cellOffset
+ 2*pFrom
->nCell
);
6015 /* Reinitialize page pTo so that the contents of the MemPage structure
6016 ** match the new data. The initialization of pTo can actually fail under
6017 ** fairly obscure circumstances, even though it is a copy of initialized
6021 rc
= btreeInitPage(pTo
);
6022 if( rc
!=SQLITE_OK
){
6027 /* If this is an auto-vacuum database, update the pointer-map entries
6028 ** for any b-tree or overflow pages that pTo now contains the pointers to.
6031 *pRC
= setChildPtrmaps(pTo
);
6037 ** This routine redistributes cells on the iParentIdx'th child of pParent
6038 ** (hereafter "the page") and up to 2 siblings so that all pages have about the
6039 ** same amount of free space. Usually a single sibling on either side of the
6040 ** page are used in the balancing, though both siblings might come from one
6041 ** side if the page is the first or last child of its parent. If the page
6042 ** has fewer than 2 siblings (something which can only happen if the page
6043 ** is a root page or a child of a root page) then all available siblings
6044 ** participate in the balancing.
6046 ** The number of siblings of the page might be increased or decreased by
6047 ** one or two in an effort to keep pages nearly full but not over full.
6049 ** Note that when this routine is called, some of the cells on the page
6050 ** might not actually be stored in MemPage.aData[]. This can happen
6051 ** if the page is overfull. This routine ensures that all cells allocated
6052 ** to the page and its siblings fit into MemPage.aData[] before returning.
6054 ** In the course of balancing the page and its siblings, cells may be
6055 ** inserted into or removed from the parent page (pParent). Doing so
6056 ** may cause the parent page to become overfull or underfull. If this
6057 ** happens, it is the responsibility of the caller to invoke the correct
6058 ** balancing routine to fix this problem (see the balance() routine).
6060 ** If this routine fails for any reason, it might leave the database
6061 ** in a corrupted state. So if this routine fails, the database should
6064 ** The third argument to this function, aOvflSpace, is a pointer to a
6065 ** buffer big enough to hold one page. If while inserting cells into the parent
6066 ** page (pParent) the parent page becomes overfull, this buffer is
6067 ** used to store the parent's overflow cells. Because this function inserts
6068 ** a maximum of four divider cells into the parent page, and the maximum
6069 ** size of a cell stored within an internal node is always less than 1/4
6070 ** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
6071 ** enough for all overflow cells.
6073 ** If aOvflSpace is set to a null pointer, this function returns
6076 #if defined(_MSC_VER) && _MSC_VER >= 1700 && defined(_M_ARM)
6077 #pragma optimize("", off)
6079 static int balance_nonroot(
6080 MemPage
*pParent
, /* Parent page of siblings being balanced */
6081 int iParentIdx
, /* Index of "the page" in pParent */
6082 u8
*aOvflSpace
, /* page-size bytes of space for parent ovfl */
6083 int isRoot
, /* True if pParent is a root-page */
6084 int bBulk
/* True if this call is part of a bulk load */
6086 BtShared
*pBt
; /* The whole database */
6087 int nCell
= 0; /* Number of cells in apCell[] */
6088 int nMaxCells
= 0; /* Allocated size of apCell, szCell, aFrom. */
6089 int nNew
= 0; /* Number of pages in apNew[] */
6090 int nOld
; /* Number of pages in apOld[] */
6091 int i
, j
, k
; /* Loop counters */
6092 int nxDiv
; /* Next divider slot in pParent->aCell[] */
6093 int rc
= SQLITE_OK
; /* The return code */
6094 u16 leafCorrection
; /* 4 if pPage is a leaf. 0 if not */
6095 int leafData
; /* True if pPage is a leaf of a LEAFDATA tree */
6096 int usableSpace
; /* Bytes in pPage beyond the header */
6097 int pageFlags
; /* Value of pPage->aData[0] */
6098 int subtotal
; /* Subtotal of bytes in cells on one page */
6099 int iSpace1
= 0; /* First unused byte of aSpace1[] */
6100 int iOvflSpace
= 0; /* First unused byte of aOvflSpace[] */
6101 int szScratch
; /* Size of scratch memory requested */
6102 MemPage
*apOld
[NB
]; /* pPage and up to two siblings */
6103 MemPage
*apCopy
[NB
]; /* Private copies of apOld[] pages */
6104 MemPage
*apNew
[NB
+2]; /* pPage and up to NB siblings after balancing */
6105 u8
*pRight
; /* Location in parent of right-sibling pointer */
6106 u8
*apDiv
[NB
-1]; /* Divider cells in pParent */
6107 int cntNew
[NB
+2]; /* Index in aCell[] of cell after i-th page */
6108 int szNew
[NB
+2]; /* Combined size of cells place on i-th page */
6109 u8
**apCell
= 0; /* All cells begin balanced */
6110 u16
*szCell
; /* Local size of all cells in apCell[] */
6111 u8
*aSpace1
; /* Space for copies of dividers cells */
6112 Pgno pgno
; /* Temp var to store a page number in */
6115 assert( sqlite3_mutex_held(pBt
->mutex
) );
6116 assert( sqlite3PagerIswriteable(pParent
->pDbPage
) );
6119 TRACE(("BALANCE: begin page %d child of %d\n", pPage
->pgno
, pParent
->pgno
));
6122 /* At this point pParent may have at most one overflow cell. And if
6123 ** this overflow cell is present, it must be the cell with
6124 ** index iParentIdx. This scenario comes about when this function
6125 ** is called (indirectly) from sqlite3BtreeDelete().
6127 assert( pParent
->nOverflow
==0 || pParent
->nOverflow
==1 );
6128 assert( pParent
->nOverflow
==0 || pParent
->aiOvfl
[0]==iParentIdx
);
6131 return SQLITE_NOMEM
;
6134 /* Find the sibling pages to balance. Also locate the cells in pParent
6135 ** that divide the siblings. An attempt is made to find NN siblings on
6136 ** either side of pPage. More siblings are taken from one side, however,
6137 ** if there are fewer than NN siblings on the other side. If pParent
6138 ** has NB or fewer children then all children of pParent are taken.
6140 ** This loop also drops the divider cells from the parent page. This
6141 ** way, the remainder of the function does not have to deal with any
6142 ** overflow cells in the parent page, since if any existed they will
6143 ** have already been removed.
6145 i
= pParent
->nOverflow
+ pParent
->nCell
;
6149 assert( bBulk
==0 || bBulk
==1 );
6150 if( iParentIdx
==0 ){
6152 }else if( iParentIdx
==i
){
6156 nxDiv
= iParentIdx
-1;
6161 if( (i
+nxDiv
-pParent
->nOverflow
)==pParent
->nCell
){
6162 pRight
= &pParent
->aData
[pParent
->hdrOffset
+8];
6164 pRight
= findCell(pParent
, i
+nxDiv
-pParent
->nOverflow
);
6166 pgno
= get4byte(pRight
);
6168 rc
= getAndInitPage(pBt
, pgno
, &apOld
[i
], 0);
6170 memset(apOld
, 0, (i
+1)*sizeof(MemPage
*));
6171 goto balance_cleanup
;
6173 nMaxCells
+= 1+apOld
[i
]->nCell
+apOld
[i
]->nOverflow
;
6174 if( (i
--)==0 ) break;
6176 if( i
+nxDiv
==pParent
->aiOvfl
[0] && pParent
->nOverflow
){
6177 apDiv
[i
] = pParent
->apOvfl
[0];
6178 pgno
= get4byte(apDiv
[i
]);
6179 szNew
[i
] = cellSizePtr(pParent
, apDiv
[i
]);
6180 pParent
->nOverflow
= 0;
6182 apDiv
[i
] = findCell(pParent
, i
+nxDiv
-pParent
->nOverflow
);
6183 pgno
= get4byte(apDiv
[i
]);
6184 szNew
[i
] = cellSizePtr(pParent
, apDiv
[i
]);
6186 /* Drop the cell from the parent page. apDiv[i] still points to
6187 ** the cell within the parent, even though it has been dropped.
6188 ** This is safe because dropping a cell only overwrites the first
6189 ** four bytes of it, and this function does not need the first
6190 ** four bytes of the divider cell. So the pointer is safe to use
6193 ** But not if we are in secure-delete mode. In secure-delete mode,
6194 ** the dropCell() routine will overwrite the entire cell with zeroes.
6195 ** In this case, temporarily copy the cell into the aOvflSpace[]
6196 ** buffer. It will be copied out again as soon as the aSpace[] buffer
6198 if( pBt
->btsFlags
& BTS_SECURE_DELETE
){
6201 iOff
= SQLITE_PTR_TO_INT(apDiv
[i
]) - SQLITE_PTR_TO_INT(pParent
->aData
);
6202 if( (iOff
+szNew
[i
])>(int)pBt
->usableSize
){
6203 rc
= SQLITE_CORRUPT_BKPT
;
6204 memset(apOld
, 0, (i
+1)*sizeof(MemPage
*));
6205 goto balance_cleanup
;
6207 memcpy(&aOvflSpace
[iOff
], apDiv
[i
], szNew
[i
]);
6208 apDiv
[i
] = &aOvflSpace
[apDiv
[i
]-pParent
->aData
];
6211 dropCell(pParent
, i
+nxDiv
-pParent
->nOverflow
, szNew
[i
], &rc
);
6215 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
6217 nMaxCells
= (nMaxCells
+ 3)&~3;
6220 ** Allocate space for memory structures
6222 k
= pBt
->pageSize
+ ROUND8(sizeof(MemPage
));
6224 nMaxCells
*sizeof(u8
*) /* apCell */
6225 + nMaxCells
*sizeof(u16
) /* szCell */
6226 + pBt
->pageSize
/* aSpace1 */
6227 + k
*nOld
; /* Page copies (apCopy) */
6228 apCell
= sqlite3ScratchMalloc( szScratch
);
6231 goto balance_cleanup
;
6233 szCell
= (u16
*)&apCell
[nMaxCells
];
6234 aSpace1
= (u8
*)&szCell
[nMaxCells
];
6235 assert( EIGHT_BYTE_ALIGNMENT(aSpace1
) );
6238 ** Load pointers to all cells on sibling pages and the divider cells
6239 ** into the local apCell[] array. Make copies of the divider cells
6240 ** into space obtained from aSpace1[] and remove the divider cells
6243 ** If the siblings are on leaf pages, then the child pointers of the
6244 ** divider cells are stripped from the cells before they are copied
6245 ** into aSpace1[]. In this way, all cells in apCell[] are without
6246 ** child pointers. If siblings are not leaves, then all cell in
6247 ** apCell[] include child pointers. Either way, all cells in apCell[]
6250 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
6251 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
6253 leafCorrection
= apOld
[0]->leaf
*4;
6254 leafData
= apOld
[0]->hasData
;
6255 for(i
=0; i
<nOld
; i
++){
6258 /* Before doing anything else, take a copy of the i'th original sibling
6259 ** The rest of this function will use data from the copies rather
6260 ** that the original pages since the original pages will be in the
6261 ** process of being overwritten. */
6262 MemPage
*pOld
= apCopy
[i
] = (MemPage
*)&aSpace1
[pBt
->pageSize
+ k
*i
];
6263 memcpy(pOld
, apOld
[i
], sizeof(MemPage
));
6264 pOld
->aData
= (void*)&pOld
[1];
6265 memcpy(pOld
->aData
, apOld
[i
]->aData
, pBt
->pageSize
);
6267 limit
= pOld
->nCell
+pOld
->nOverflow
;
6268 if( pOld
->nOverflow
>0 ){
6269 for(j
=0; j
<limit
; j
++){
6270 assert( nCell
<nMaxCells
);
6271 apCell
[nCell
] = findOverflowCell(pOld
, j
);
6272 szCell
[nCell
] = cellSizePtr(pOld
, apCell
[nCell
]);
6276 u8
*aData
= pOld
->aData
;
6277 u16 maskPage
= pOld
->maskPage
;
6278 u16 cellOffset
= pOld
->cellOffset
;
6279 for(j
=0; j
<limit
; j
++){
6280 assert( nCell
<nMaxCells
);
6281 apCell
[nCell
] = findCellv2(aData
, maskPage
, cellOffset
, j
);
6282 szCell
[nCell
] = cellSizePtr(pOld
, apCell
[nCell
]);
6286 if( i
<nOld
-1 && !leafData
){
6287 u16 sz
= (u16
)szNew
[i
];
6289 assert( nCell
<nMaxCells
);
6291 pTemp
= &aSpace1
[iSpace1
];
6293 assert( sz
<=pBt
->maxLocal
+23 );
6294 assert( iSpace1
<= (int)pBt
->pageSize
);
6295 memcpy(pTemp
, apDiv
[i
], sz
);
6296 apCell
[nCell
] = pTemp
+leafCorrection
;
6297 assert( leafCorrection
==0 || leafCorrection
==4 );
6298 szCell
[nCell
] = szCell
[nCell
] - leafCorrection
;
6300 assert( leafCorrection
==0 );
6301 assert( pOld
->hdrOffset
==0 );
6302 /* The right pointer of the child page pOld becomes the left
6303 ** pointer of the divider cell */
6304 memcpy(apCell
[nCell
], &pOld
->aData
[8], 4);
6306 assert( leafCorrection
==4 );
6307 if( szCell
[nCell
]<4 ){
6308 /* Do not allow any cells smaller than 4 bytes. */
6317 ** Figure out the number of pages needed to hold all nCell cells.
6318 ** Store this number in "k". Also compute szNew[] which is the total
6319 ** size of all cells on the i-th page and cntNew[] which is the index
6320 ** in apCell[] of the cell that divides page i from page i+1.
6321 ** cntNew[k] should equal nCell.
6323 ** Values computed by this block:
6325 ** k: The total number of sibling pages
6326 ** szNew[i]: Spaced used on the i-th sibling page.
6327 ** cntNew[i]: Index in apCell[] and szCell[] for the first cell to
6328 ** the right of the i-th sibling page.
6329 ** usableSpace: Number of bytes of space available on each sibling.
6332 usableSpace
= pBt
->usableSize
- 12 + leafCorrection
;
6333 for(subtotal
=k
=i
=0; i
<nCell
; i
++){
6334 assert( i
<nMaxCells
);
6335 subtotal
+= szCell
[i
] + 2;
6336 if( subtotal
> usableSpace
){
6337 szNew
[k
] = subtotal
- szCell
[i
];
6339 if( leafData
){ i
--; }
6342 if( k
>NB
+1 ){ rc
= SQLITE_CORRUPT_BKPT
; goto balance_cleanup
; }
6345 szNew
[k
] = subtotal
;
6350 ** The packing computed by the previous block is biased toward the siblings
6351 ** on the left side. The left siblings are always nearly full, while the
6352 ** right-most sibling might be nearly empty. This block of code attempts
6353 ** to adjust the packing of siblings to get a better balance.
6355 ** This adjustment is more than an optimization. The packing above might
6356 ** be so out of balance as to be illegal. For example, the right-most
6357 ** sibling might be completely empty. This adjustment is not optional.
6359 for(i
=k
-1; i
>0; i
--){
6360 int szRight
= szNew
[i
]; /* Size of sibling on the right */
6361 int szLeft
= szNew
[i
-1]; /* Size of sibling on the left */
6362 int r
; /* Index of right-most cell in left sibling */
6363 int d
; /* Index of first cell to the left of right sibling */
6365 r
= cntNew
[i
-1] - 1;
6366 d
= r
+ 1 - leafData
;
6367 assert( d
<nMaxCells
);
6368 assert( r
<nMaxCells
);
6370 || (!bBulk
&& szRight
+szCell
[d
]+2<=szLeft
-(szCell
[r
]+2))
6372 szRight
+= szCell
[d
] + 2;
6373 szLeft
-= szCell
[r
] + 2;
6375 r
= cntNew
[i
-1] - 1;
6376 d
= r
+ 1 - leafData
;
6379 szNew
[i
-1] = szLeft
;
6382 /* Either we found one or more cells (cntnew[0])>0) or pPage is
6383 ** a virtual root page. A virtual root page is when the real root
6384 ** page is page 1 and we are the only child of that page.
6386 ** UPDATE: The assert() below is not necessarily true if the database
6387 ** file is corrupt. The corruption will be detected and reported later
6388 ** in this procedure so there is no need to act upon it now.
6391 assert( cntNew
[0]>0 || (pParent
->pgno
==1 && pParent
->nCell
==0) );
6394 TRACE(("BALANCE: old: %d %d %d ",
6396 nOld
>=2 ? apOld
[1]->pgno
: 0,
6397 nOld
>=3 ? apOld
[2]->pgno
: 0
6401 ** Allocate k new pages. Reuse old pages where possible.
6403 if( apOld
[0]->pgno
<=1 ){
6404 rc
= SQLITE_CORRUPT_BKPT
;
6405 goto balance_cleanup
;
6407 pageFlags
= apOld
[0]->aData
[0];
6411 pNew
= apNew
[i
] = apOld
[i
];
6413 rc
= sqlite3PagerWrite(pNew
->pDbPage
);
6415 if( rc
) goto balance_cleanup
;
6418 rc
= allocateBtreePage(pBt
, &pNew
, &pgno
, (bBulk
? 1 : pgno
), 0);
6419 if( rc
) goto balance_cleanup
;
6423 /* Set the pointer-map entry for the new sibling page. */
6425 ptrmapPut(pBt
, pNew
->pgno
, PTRMAP_BTREE
, pParent
->pgno
, &rc
);
6426 if( rc
!=SQLITE_OK
){
6427 goto balance_cleanup
;
6433 /* Free any old pages that were not reused as new pages.
6436 freePage(apOld
[i
], &rc
);
6437 if( rc
) goto balance_cleanup
;
6438 releasePage(apOld
[i
]);
6444 ** Put the new pages in accending order. This helps to
6445 ** keep entries in the disk file in order so that a scan
6446 ** of the table is a linear scan through the file. That
6447 ** in turn helps the operating system to deliver pages
6448 ** from the disk more rapidly.
6450 ** An O(n^2) insertion sort algorithm is used, but since
6451 ** n is never more than NB (a small constant), that should
6452 ** not be a problem.
6454 ** When NB==3, this one optimization makes the database
6455 ** about 25% faster for large insertions and deletions.
6457 for(i
=0; i
<k
-1; i
++){
6458 int minV
= apNew
[i
]->pgno
;
6460 for(j
=i
+1; j
<k
; j
++){
6461 if( apNew
[j
]->pgno
<(unsigned)minV
){
6463 minV
= apNew
[j
]->pgno
;
6469 apNew
[i
] = apNew
[minI
];
6473 TRACE(("new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n",
6474 apNew
[0]->pgno
, szNew
[0],
6475 nNew
>=2 ? apNew
[1]->pgno
: 0, nNew
>=2 ? szNew
[1] : 0,
6476 nNew
>=3 ? apNew
[2]->pgno
: 0, nNew
>=3 ? szNew
[2] : 0,
6477 nNew
>=4 ? apNew
[3]->pgno
: 0, nNew
>=4 ? szNew
[3] : 0,
6478 nNew
>=5 ? apNew
[4]->pgno
: 0, nNew
>=5 ? szNew
[4] : 0));
6480 assert( sqlite3PagerIswriteable(pParent
->pDbPage
) );
6481 put4byte(pRight
, apNew
[nNew
-1]->pgno
);
6484 ** Evenly distribute the data in apCell[] across the new pages.
6485 ** Insert divider cells into pParent as necessary.
6488 for(i
=0; i
<nNew
; i
++){
6489 /* Assemble the new sibling page. */
6490 MemPage
*pNew
= apNew
[i
];
6491 assert( j
<nMaxCells
);
6492 zeroPage(pNew
, pageFlags
);
6493 assemblePage(pNew
, cntNew
[i
]-j
, &apCell
[j
], &szCell
[j
]);
6494 assert( pNew
->nCell
>0 || (nNew
==1 && cntNew
[0]==0) );
6495 assert( pNew
->nOverflow
==0 );
6499 /* If the sibling page assembled above was not the right-most sibling,
6500 ** insert a divider cell into the parent page.
6502 assert( i
<nNew
-1 || j
==nCell
);
6508 assert( j
<nMaxCells
);
6510 sz
= szCell
[j
] + leafCorrection
;
6511 pTemp
= &aOvflSpace
[iOvflSpace
];
6513 memcpy(&pNew
->aData
[8], pCell
, 4);
6514 }else if( leafData
){
6515 /* If the tree is a leaf-data tree, and the siblings are leaves,
6516 ** then there is no divider cell in apCell[]. Instead, the divider
6517 ** cell consists of the integer key for the right-most cell of
6518 ** the sibling-page assembled above only.
6522 btreeParseCellPtr(pNew
, apCell
[j
], &info
);
6524 sz
= 4 + putVarint(&pCell
[4], info
.nKey
);
6528 /* Obscure case for non-leaf-data trees: If the cell at pCell was
6529 ** previously stored on a leaf node, and its reported size was 4
6530 ** bytes, then it may actually be smaller than this
6531 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
6532 ** any cell). But it is important to pass the correct size to
6533 ** insertCell(), so reparse the cell now.
6535 ** Note that this can never happen in an SQLite data file, as all
6536 ** cells are at least 4 bytes. It only happens in b-trees used
6537 ** to evaluate "IN (SELECT ...)" and similar clauses.
6540 assert(leafCorrection
==4);
6541 sz
= cellSizePtr(pParent
, pCell
);
6545 assert( sz
<=pBt
->maxLocal
+23 );
6546 assert( iOvflSpace
<= (int)pBt
->pageSize
);
6547 insertCell(pParent
, nxDiv
, pCell
, sz
, pTemp
, pNew
->pgno
, &rc
);
6548 if( rc
!=SQLITE_OK
) goto balance_cleanup
;
6549 assert( sqlite3PagerIswriteable(pParent
->pDbPage
) );
6558 if( (pageFlags
& PTF_LEAF
)==0 ){
6559 u8
*zChild
= &apCopy
[nOld
-1]->aData
[8];
6560 memcpy(&apNew
[nNew
-1]->aData
[8], zChild
, 4);
6563 if( isRoot
&& pParent
->nCell
==0 && pParent
->hdrOffset
<=apNew
[0]->nFree
){
6564 /* The root page of the b-tree now contains no cells. The only sibling
6565 ** page is the right-child of the parent. Copy the contents of the
6566 ** child page into the parent, decreasing the overall height of the
6567 ** b-tree structure by one. This is described as the "balance-shallower"
6568 ** sub-algorithm in some documentation.
6570 ** If this is an auto-vacuum database, the call to copyNodeContent()
6571 ** sets all pointer-map entries corresponding to database image pages
6572 ** for which the pointer is stored within the content being copied.
6574 ** The second assert below verifies that the child page is defragmented
6575 ** (it must be, as it was just reconstructed using assemblePage()). This
6576 ** is important if the parent page happens to be page 1 of the database
6579 assert( apNew
[0]->nFree
==
6580 (get2byte(&apNew
[0]->aData
[5])-apNew
[0]->cellOffset
-apNew
[0]->nCell
*2)
6582 copyNodeContent(apNew
[0], pParent
, &rc
);
6583 freePage(apNew
[0], &rc
);
6584 }else if( ISAUTOVACUUM
){
6585 /* Fix the pointer-map entries for all the cells that were shifted around.
6586 ** There are several different types of pointer-map entries that need to
6587 ** be dealt with by this routine. Some of these have been set already, but
6588 ** many have not. The following is a summary:
6590 ** 1) The entries associated with new sibling pages that were not
6591 ** siblings when this function was called. These have already
6592 ** been set. We don't need to worry about old siblings that were
6593 ** moved to the free-list - the freePage() code has taken care
6596 ** 2) The pointer-map entries associated with the first overflow
6597 ** page in any overflow chains used by new divider cells. These
6598 ** have also already been taken care of by the insertCell() code.
6600 ** 3) If the sibling pages are not leaves, then the child pages of
6601 ** cells stored on the sibling pages may need to be updated.
6603 ** 4) If the sibling pages are not internal intkey nodes, then any
6604 ** overflow pages used by these cells may need to be updated
6605 ** (internal intkey nodes never contain pointers to overflow pages).
6607 ** 5) If the sibling pages are not leaves, then the pointer-map
6608 ** entries for the right-child pages of each sibling may need
6611 ** Cases 1 and 2 are dealt with above by other code. The next
6612 ** block deals with cases 3 and 4 and the one after that, case 5. Since
6613 ** setting a pointer map entry is a relatively expensive operation, this
6614 ** code only sets pointer map entries for child or overflow pages that have
6615 ** actually moved between pages. */
6616 MemPage
*pNew
= apNew
[0];
6617 MemPage
*pOld
= apCopy
[0];
6618 int nOverflow
= pOld
->nOverflow
;
6619 int iNextOld
= pOld
->nCell
+ nOverflow
;
6620 int iOverflow
= (nOverflow
? pOld
->aiOvfl
[0] : -1);
6621 j
= 0; /* Current 'old' sibling page */
6622 k
= 0; /* Current 'new' sibling page */
6623 for(i
=0; i
<nCell
; i
++){
6625 while( i
==iNextOld
){
6626 /* Cell i is the cell immediately following the last cell on old
6627 ** sibling page j. If the siblings are not leaf pages of an
6628 ** intkey b-tree, then cell i was a divider cell. */
6629 assert( j
+1 < ArraySize(apCopy
) );
6630 assert( j
+1 < nOld
);
6632 iNextOld
= i
+ !leafData
+ pOld
->nCell
+ pOld
->nOverflow
;
6633 if( pOld
->nOverflow
){
6634 nOverflow
= pOld
->nOverflow
;
6635 iOverflow
= i
+ !leafData
+ pOld
->aiOvfl
[0];
6637 isDivider
= !leafData
;
6640 assert(nOverflow
>0 || iOverflow
<i
);
6641 assert(nOverflow
<2 || pOld
->aiOvfl
[0]==pOld
->aiOvfl
[1]-1);
6642 assert(nOverflow
<3 || pOld
->aiOvfl
[1]==pOld
->aiOvfl
[2]-1);
6645 if( (--nOverflow
)>0 ){
6651 /* Cell i is the cell immediately following the last cell on new
6652 ** sibling page k. If the siblings are not leaf pages of an
6653 ** intkey b-tree, then cell i is a divider cell. */
6655 if( !leafData
) continue;
6660 /* If the cell was originally divider cell (and is not now) or
6661 ** an overflow cell, or if the cell was located on a different sibling
6662 ** page before the balancing, then the pointer map entries associated
6663 ** with any child or overflow pages need to be updated. */
6664 if( isDivider
|| pOld
->pgno
!=pNew
->pgno
){
6665 if( !leafCorrection
){
6666 ptrmapPut(pBt
, get4byte(apCell
[i
]), PTRMAP_BTREE
, pNew
->pgno
, &rc
);
6668 if( szCell
[i
]>pNew
->minLocal
){
6669 ptrmapPutOvflPtr(pNew
, apCell
[i
], &rc
);
6674 if( !leafCorrection
){
6675 for(i
=0; i
<nNew
; i
++){
6676 u32 key
= get4byte(&apNew
[i
]->aData
[8]);
6677 ptrmapPut(pBt
, key
, PTRMAP_BTREE
, apNew
[i
]->pgno
, &rc
);
6682 /* The ptrmapCheckPages() contains assert() statements that verify that
6683 ** all pointer map pages are set correctly. This is helpful while
6684 ** debugging. This is usually disabled because a corrupt database may
6685 ** cause an assert() statement to fail. */
6686 ptrmapCheckPages(apNew
, nNew
);
6687 ptrmapCheckPages(&pParent
, 1);
6691 assert( pParent
->isInit
);
6692 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
6693 nOld
, nNew
, nCell
));
6696 ** Cleanup before returning.
6699 sqlite3ScratchFree(apCell
);
6700 for(i
=0; i
<nOld
; i
++){
6701 releasePage(apOld
[i
]);
6703 for(i
=0; i
<nNew
; i
++){
6704 releasePage(apNew
[i
]);
6709 #if defined(_MSC_VER) && _MSC_VER >= 1700 && defined(_M_ARM)
6710 #pragma optimize("", on)
6715 ** This function is called when the root page of a b-tree structure is
6716 ** overfull (has one or more overflow pages).
6718 ** A new child page is allocated and the contents of the current root
6719 ** page, including overflow cells, are copied into the child. The root
6720 ** page is then overwritten to make it an empty page with the right-child
6721 ** pointer pointing to the new page.
6723 ** Before returning, all pointer-map entries corresponding to pages
6724 ** that the new child-page now contains pointers to are updated. The
6725 ** entry corresponding to the new right-child pointer of the root
6726 ** page is also updated.
6728 ** If successful, *ppChild is set to contain a reference to the child
6729 ** page and SQLITE_OK is returned. In this case the caller is required
6730 ** to call releasePage() on *ppChild exactly once. If an error occurs,
6731 ** an error code is returned and *ppChild is set to 0.
6733 static int balance_deeper(MemPage
*pRoot
, MemPage
**ppChild
){
6734 int rc
; /* Return value from subprocedures */
6735 MemPage
*pChild
= 0; /* Pointer to a new child page */
6736 Pgno pgnoChild
= 0; /* Page number of the new child page */
6737 BtShared
*pBt
= pRoot
->pBt
; /* The BTree */
6739 assert( pRoot
->nOverflow
>0 );
6740 assert( sqlite3_mutex_held(pBt
->mutex
) );
6742 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
6743 ** page that will become the new right-child of pPage. Copy the contents
6744 ** of the node stored on pRoot into the new child page.
6746 rc
= sqlite3PagerWrite(pRoot
->pDbPage
);
6747 if( rc
==SQLITE_OK
){
6748 rc
= allocateBtreePage(pBt
,&pChild
,&pgnoChild
,pRoot
->pgno
,0);
6749 copyNodeContent(pRoot
, pChild
, &rc
);
6751 ptrmapPut(pBt
, pgnoChild
, PTRMAP_BTREE
, pRoot
->pgno
, &rc
);
6756 releasePage(pChild
);
6759 assert( sqlite3PagerIswriteable(pChild
->pDbPage
) );
6760 assert( sqlite3PagerIswriteable(pRoot
->pDbPage
) );
6761 assert( pChild
->nCell
==pRoot
->nCell
);
6763 TRACE(("BALANCE: copy root %d into %d\n", pRoot
->pgno
, pChild
->pgno
));
6765 /* Copy the overflow cells from pRoot to pChild */
6766 memcpy(pChild
->aiOvfl
, pRoot
->aiOvfl
,
6767 pRoot
->nOverflow
*sizeof(pRoot
->aiOvfl
[0]));
6768 memcpy(pChild
->apOvfl
, pRoot
->apOvfl
,
6769 pRoot
->nOverflow
*sizeof(pRoot
->apOvfl
[0]));
6770 pChild
->nOverflow
= pRoot
->nOverflow
;
6772 /* Zero the contents of pRoot. Then install pChild as the right-child. */
6773 zeroPage(pRoot
, pChild
->aData
[0] & ~PTF_LEAF
);
6774 put4byte(&pRoot
->aData
[pRoot
->hdrOffset
+8], pgnoChild
);
6781 ** The page that pCur currently points to has just been modified in
6782 ** some way. This function figures out if this modification means the
6783 ** tree needs to be balanced, and if so calls the appropriate balancing
6784 ** routine. Balancing routines are:
6788 ** balance_nonroot()
6790 static int balance(BtCursor
*pCur
){
6792 const int nMin
= pCur
->pBt
->usableSize
* 2 / 3;
6793 u8 aBalanceQuickSpace
[13];
6796 TESTONLY( int balance_quick_called
= 0 );
6797 TESTONLY( int balance_deeper_called
= 0 );
6800 int iPage
= pCur
->iPage
;
6801 MemPage
*pPage
= pCur
->apPage
[iPage
];
6804 if( pPage
->nOverflow
){
6805 /* The root page of the b-tree is overfull. In this case call the
6806 ** balance_deeper() function to create a new child for the root-page
6807 ** and copy the current contents of the root-page to it. The
6808 ** next iteration of the do-loop will balance the child page.
6810 assert( (balance_deeper_called
++)==0 );
6811 rc
= balance_deeper(pPage
, &pCur
->apPage
[1]);
6812 if( rc
==SQLITE_OK
){
6816 assert( pCur
->apPage
[1]->nOverflow
);
6821 }else if( pPage
->nOverflow
==0 && pPage
->nFree
<=nMin
){
6824 MemPage
* const pParent
= pCur
->apPage
[iPage
-1];
6825 int const iIdx
= pCur
->aiIdx
[iPage
-1];
6827 rc
= sqlite3PagerWrite(pParent
->pDbPage
);
6828 if( rc
==SQLITE_OK
){
6829 #ifndef SQLITE_OMIT_QUICKBALANCE
6831 && pPage
->nOverflow
==1
6832 && pPage
->aiOvfl
[0]==pPage
->nCell
6834 && pParent
->nCell
==iIdx
6836 /* Call balance_quick() to create a new sibling of pPage on which
6837 ** to store the overflow cell. balance_quick() inserts a new cell
6838 ** into pParent, which may cause pParent overflow. If this
6839 ** happens, the next interation of the do-loop will balance pParent
6840 ** use either balance_nonroot() or balance_deeper(). Until this
6841 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
6844 ** The purpose of the following assert() is to check that only a
6845 ** single call to balance_quick() is made for each call to this
6846 ** function. If this were not verified, a subtle bug involving reuse
6847 ** of the aBalanceQuickSpace[] might sneak in.
6849 assert( (balance_quick_called
++)==0 );
6850 rc
= balance_quick(pParent
, pPage
, aBalanceQuickSpace
);
6854 /* In this case, call balance_nonroot() to redistribute cells
6855 ** between pPage and up to 2 of its sibling pages. This involves
6856 ** modifying the contents of pParent, which may cause pParent to
6857 ** become overfull or underfull. The next iteration of the do-loop
6858 ** will balance the parent page to correct this.
6860 ** If the parent page becomes overfull, the overflow cell or cells
6861 ** are stored in the pSpace buffer allocated immediately below.
6862 ** A subsequent iteration of the do-loop will deal with this by
6863 ** calling balance_nonroot() (balance_deeper() may be called first,
6864 ** but it doesn't deal with overflow cells - just moves them to a
6865 ** different page). Once this subsequent call to balance_nonroot()
6866 ** has completed, it is safe to release the pSpace buffer used by
6867 ** the previous call, as the overflow cell data will have been
6868 ** copied either into the body of a database page or into the new
6869 ** pSpace buffer passed to the latter call to balance_nonroot().
6871 u8
*pSpace
= sqlite3PageMalloc(pCur
->pBt
->pageSize
);
6872 rc
= balance_nonroot(pParent
, iIdx
, pSpace
, iPage
==1, pCur
->hints
);
6874 /* If pFree is not NULL, it points to the pSpace buffer used
6875 ** by a previous call to balance_nonroot(). Its contents are
6876 ** now stored either on real database pages or within the
6877 ** new pSpace buffer, so it may be safely freed here. */
6878 sqlite3PageFree(pFree
);
6881 /* The pSpace buffer will be freed after the next call to
6882 ** balance_nonroot(), or just before this function returns, whichever
6888 pPage
->nOverflow
= 0;
6890 /* The next iteration of the do-loop balances the parent page. */
6894 }while( rc
==SQLITE_OK
);
6897 sqlite3PageFree(pFree
);
6904 ** Insert a new record into the BTree. The key is given by (pKey,nKey)
6905 ** and the data is given by (pData,nData). The cursor is used only to
6906 ** define what table the record should be inserted into. The cursor
6907 ** is left pointing at a random location.
6909 ** For an INTKEY table, only the nKey value of the key is used. pKey is
6910 ** ignored. For a ZERODATA table, the pData and nData are both ignored.
6912 ** If the seekResult parameter is non-zero, then a successful call to
6913 ** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already
6914 ** been performed. seekResult is the search result returned (a negative
6915 ** number if pCur points at an entry that is smaller than (pKey, nKey), or
6916 ** a positive value if pCur points at an etry that is larger than
6919 ** If the seekResult parameter is non-zero, then the caller guarantees that
6920 ** cursor pCur is pointing at the existing copy of a row that is to be
6921 ** overwritten. If the seekResult parameter is 0, then cursor pCur may
6922 ** point to any entry or to no entry at all and so this function has to seek
6923 ** the cursor before the new key can be inserted.
6925 int sqlite3BtreeInsert(
6926 BtCursor
*pCur
, /* Insert data into the table of this cursor */
6927 const void *pKey
, i64 nKey
, /* The key of the new record */
6928 const void *pData
, int nData
, /* The data of the new record */
6929 int nZero
, /* Number of extra 0 bytes to append to data */
6930 int appendBias
, /* True if this is likely an append */
6931 int seekResult
/* Result of prior MovetoUnpacked() call */
6934 int loc
= seekResult
; /* -1: before desired location +1: after */
6938 Btree
*p
= pCur
->pBtree
;
6939 BtShared
*pBt
= p
->pBt
;
6940 unsigned char *oldCell
;
6941 unsigned char *newCell
= 0;
6943 if( pCur
->eState
==CURSOR_FAULT
){
6944 assert( pCur
->skipNext
!=SQLITE_OK
);
6945 return pCur
->skipNext
;
6948 assert( cursorHoldsMutex(pCur
) );
6949 assert( pCur
->wrFlag
&& pBt
->inTransaction
==TRANS_WRITE
6950 && (pBt
->btsFlags
& BTS_READ_ONLY
)==0 );
6951 assert( hasSharedCacheTableLock(p
, pCur
->pgnoRoot
, pCur
->pKeyInfo
!=0, 2) );
6953 /* Assert that the caller has been consistent. If this cursor was opened
6954 ** expecting an index b-tree, then the caller should be inserting blob
6955 ** keys with no associated data. If the cursor was opened expecting an
6956 ** intkey table, the caller should be inserting integer keys with a
6957 ** blob of associated data. */
6958 assert( (pKey
==0)==(pCur
->pKeyInfo
==0) );
6960 /* Save the positions of any other cursors open on this table.
6962 ** In some cases, the call to btreeMoveto() below is a no-op. For
6963 ** example, when inserting data into a table with auto-generated integer
6964 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
6965 ** integer key to use. It then calls this function to actually insert the
6966 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
6967 ** that the cursor is already where it needs to be and returns without
6968 ** doing any work. To avoid thwarting these optimizations, it is important
6969 ** not to clear the cursor here.
6971 rc
= saveAllCursors(pBt
, pCur
->pgnoRoot
, pCur
);
6974 /* If this is an insert into a table b-tree, invalidate any incrblob
6975 ** cursors open on the row being replaced (assuming this is a replace
6976 ** operation - if it is not, the following is a no-op). */
6977 if( pCur
->pKeyInfo
==0 ){
6978 invalidateIncrblobCursors(p
, nKey
, 0);
6982 rc
= btreeMoveto(pCur
, pKey
, nKey
, appendBias
, &loc
);
6985 assert( pCur
->eState
==CURSOR_VALID
|| (pCur
->eState
==CURSOR_INVALID
&& loc
) );
6987 pPage
= pCur
->apPage
[pCur
->iPage
];
6988 assert( pPage
->intKey
|| nKey
>=0 );
6989 assert( pPage
->leaf
|| !pPage
->intKey
);
6991 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
6992 pCur
->pgnoRoot
, nKey
, nData
, pPage
->pgno
,
6993 loc
==0 ? "overwrite" : "new entry"));
6994 assert( pPage
->isInit
);
6995 allocateTempSpace(pBt
);
6996 newCell
= pBt
->pTmpSpace
;
6997 if( newCell
==0 ) return SQLITE_NOMEM
;
6998 rc
= fillInCell(pPage
, newCell
, pKey
, nKey
, pData
, nData
, nZero
, &szNew
);
6999 if( rc
) goto end_insert
;
7000 assert( szNew
==cellSizePtr(pPage
, newCell
) );
7001 assert( szNew
<= MX_CELL_SIZE(pBt
) );
7002 idx
= pCur
->aiIdx
[pCur
->iPage
];
7005 assert( idx
<pPage
->nCell
);
7006 rc
= sqlite3PagerWrite(pPage
->pDbPage
);
7010 oldCell
= findCell(pPage
, idx
);
7012 memcpy(newCell
, oldCell
, 4);
7014 szOld
= cellSizePtr(pPage
, oldCell
);
7015 rc
= clearCell(pPage
, oldCell
);
7016 dropCell(pPage
, idx
, szOld
, &rc
);
7017 if( rc
) goto end_insert
;
7018 }else if( loc
<0 && pPage
->nCell
>0 ){
7019 assert( pPage
->leaf
);
7020 idx
= ++pCur
->aiIdx
[pCur
->iPage
];
7022 assert( pPage
->leaf
);
7024 insertCell(pPage
, idx
, newCell
, szNew
, 0, 0, &rc
);
7025 assert( rc
!=SQLITE_OK
|| pPage
->nCell
>0 || pPage
->nOverflow
>0 );
7027 /* If no error has occurred and pPage has an overflow cell, call balance()
7028 ** to redistribute the cells within the tree. Since balance() may move
7029 ** the cursor, zero the BtCursor.info.nSize and BtCursor.validNKey
7032 ** Previous versions of SQLite called moveToRoot() to move the cursor
7033 ** back to the root page as balance() used to invalidate the contents
7034 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
7035 ** set the cursor state to "invalid". This makes common insert operations
7038 ** There is a subtle but important optimization here too. When inserting
7039 ** multiple records into an intkey b-tree using a single cursor (as can
7040 ** happen while processing an "INSERT INTO ... SELECT" statement), it
7041 ** is advantageous to leave the cursor pointing to the last entry in
7042 ** the b-tree if possible. If the cursor is left pointing to the last
7043 ** entry in the table, and the next row inserted has an integer key
7044 ** larger than the largest existing key, it is possible to insert the
7045 ** row without seeking the cursor. This can be a big performance boost.
7047 pCur
->info
.nSize
= 0;
7048 pCur
->validNKey
= 0;
7049 if( rc
==SQLITE_OK
&& pPage
->nOverflow
){
7052 /* Must make sure nOverflow is reset to zero even if the balance()
7053 ** fails. Internal data structure corruption will result otherwise.
7054 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
7055 ** from trying to save the current position of the cursor. */
7056 pCur
->apPage
[pCur
->iPage
]->nOverflow
= 0;
7057 pCur
->eState
= CURSOR_INVALID
;
7059 assert( pCur
->apPage
[pCur
->iPage
]->nOverflow
==0 );
7066 ** Delete the entry that the cursor is pointing to. The cursor
7067 ** is left pointing at a arbitrary location.
7069 int sqlite3BtreeDelete(BtCursor
*pCur
){
7070 Btree
*p
= pCur
->pBtree
;
7071 BtShared
*pBt
= p
->pBt
;
7072 int rc
; /* Return code */
7073 MemPage
*pPage
; /* Page to delete cell from */
7074 unsigned char *pCell
; /* Pointer to cell to delete */
7075 int iCellIdx
; /* Index of cell to delete */
7076 int iCellDepth
; /* Depth of node containing pCell */
7078 assert( cursorHoldsMutex(pCur
) );
7079 assert( pBt
->inTransaction
==TRANS_WRITE
);
7080 assert( (pBt
->btsFlags
& BTS_READ_ONLY
)==0 );
7081 assert( pCur
->wrFlag
);
7082 assert( hasSharedCacheTableLock(p
, pCur
->pgnoRoot
, pCur
->pKeyInfo
!=0, 2) );
7083 assert( !hasReadConflicts(p
, pCur
->pgnoRoot
) );
7085 if( NEVER(pCur
->aiIdx
[pCur
->iPage
]>=pCur
->apPage
[pCur
->iPage
]->nCell
)
7086 || NEVER(pCur
->eState
!=CURSOR_VALID
)
7088 return SQLITE_ERROR
; /* Something has gone awry. */
7091 iCellDepth
= pCur
->iPage
;
7092 iCellIdx
= pCur
->aiIdx
[iCellDepth
];
7093 pPage
= pCur
->apPage
[iCellDepth
];
7094 pCell
= findCell(pPage
, iCellIdx
);
7096 /* If the page containing the entry to delete is not a leaf page, move
7097 ** the cursor to the largest entry in the tree that is smaller than
7098 ** the entry being deleted. This cell will replace the cell being deleted
7099 ** from the internal node. The 'previous' entry is used for this instead
7100 ** of the 'next' entry, as the previous entry is always a part of the
7101 ** sub-tree headed by the child page of the cell being deleted. This makes
7102 ** balancing the tree following the delete operation easier. */
7105 rc
= sqlite3BtreePrevious(pCur
, ¬Used
);
7109 /* Save the positions of any other cursors open on this table before
7110 ** making any modifications. Make the page containing the entry to be
7111 ** deleted writable. Then free any overflow pages associated with the
7112 ** entry and finally remove the cell itself from within the page.
7114 rc
= saveAllCursors(pBt
, pCur
->pgnoRoot
, pCur
);
7117 /* If this is a delete operation to remove a row from a table b-tree,
7118 ** invalidate any incrblob cursors open on the row being deleted. */
7119 if( pCur
->pKeyInfo
==0 ){
7120 invalidateIncrblobCursors(p
, pCur
->info
.nKey
, 0);
7123 rc
= sqlite3PagerWrite(pPage
->pDbPage
);
7125 rc
= clearCell(pPage
, pCell
);
7126 dropCell(pPage
, iCellIdx
, cellSizePtr(pPage
, pCell
), &rc
);
7129 /* If the cell deleted was not located on a leaf page, then the cursor
7130 ** is currently pointing to the largest entry in the sub-tree headed
7131 ** by the child-page of the cell that was just deleted from an internal
7132 ** node. The cell from the leaf node needs to be moved to the internal
7133 ** node to replace the deleted cell. */
7135 MemPage
*pLeaf
= pCur
->apPage
[pCur
->iPage
];
7137 Pgno n
= pCur
->apPage
[iCellDepth
+1]->pgno
;
7138 unsigned char *pTmp
;
7140 pCell
= findCell(pLeaf
, pLeaf
->nCell
-1);
7141 nCell
= cellSizePtr(pLeaf
, pCell
);
7142 assert( MX_CELL_SIZE(pBt
) >= nCell
);
7144 allocateTempSpace(pBt
);
7145 pTmp
= pBt
->pTmpSpace
;
7147 rc
= sqlite3PagerWrite(pLeaf
->pDbPage
);
7148 insertCell(pPage
, iCellIdx
, pCell
-4, nCell
+4, pTmp
, n
, &rc
);
7149 dropCell(pLeaf
, pLeaf
->nCell
-1, nCell
, &rc
);
7153 /* Balance the tree. If the entry deleted was located on a leaf page,
7154 ** then the cursor still points to that page. In this case the first
7155 ** call to balance() repairs the tree, and the if(...) condition is
7158 ** Otherwise, if the entry deleted was on an internal node page, then
7159 ** pCur is pointing to the leaf page from which a cell was removed to
7160 ** replace the cell deleted from the internal node. This is slightly
7161 ** tricky as the leaf node may be underfull, and the internal node may
7162 ** be either under or overfull. In this case run the balancing algorithm
7163 ** on the leaf node first. If the balance proceeds far enough up the
7164 ** tree that we can be sure that any problem in the internal node has
7165 ** been corrected, so be it. Otherwise, after balancing the leaf node,
7166 ** walk the cursor up the tree to the internal node and balance it as
7169 if( rc
==SQLITE_OK
&& pCur
->iPage
>iCellDepth
){
7170 while( pCur
->iPage
>iCellDepth
){
7171 releasePage(pCur
->apPage
[pCur
->iPage
--]);
7176 if( rc
==SQLITE_OK
){
7183 ** Create a new BTree table. Write into *piTable the page
7184 ** number for the root page of the new table.
7186 ** The type of type is determined by the flags parameter. Only the
7187 ** following values of flags are currently in use. Other values for
7188 ** flags might not work:
7190 ** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
7191 ** BTREE_ZERODATA Used for SQL indices
7193 static int btreeCreateTable(Btree
*p
, int *piTable
, int createTabFlags
){
7194 BtShared
*pBt
= p
->pBt
;
7198 int ptfFlags
; /* Page-type flage for the root page of new table */
7200 assert( sqlite3BtreeHoldsMutex(p
) );
7201 assert( pBt
->inTransaction
==TRANS_WRITE
);
7202 assert( (pBt
->btsFlags
& BTS_READ_ONLY
)==0 );
7204 #ifdef SQLITE_OMIT_AUTOVACUUM
7205 rc
= allocateBtreePage(pBt
, &pRoot
, &pgnoRoot
, 1, 0);
7210 if( pBt
->autoVacuum
){
7211 Pgno pgnoMove
; /* Move a page here to make room for the root-page */
7212 MemPage
*pPageMove
; /* The page to move to. */
7214 /* Creating a new table may probably require moving an existing database
7215 ** to make room for the new tables root page. In case this page turns
7216 ** out to be an overflow page, delete all overflow page-map caches
7217 ** held by open cursors.
7219 invalidateAllOverflowCache(pBt
);
7221 /* Read the value of meta[3] from the database to determine where the
7222 ** root page of the new table should go. meta[3] is the largest root-page
7223 ** created so far, so the new root-page is (meta[3]+1).
7225 sqlite3BtreeGetMeta(p
, BTREE_LARGEST_ROOT_PAGE
, &pgnoRoot
);
7228 /* The new root-page may not be allocated on a pointer-map page, or the
7229 ** PENDING_BYTE page.
7231 while( pgnoRoot
==PTRMAP_PAGENO(pBt
, pgnoRoot
) ||
7232 pgnoRoot
==PENDING_BYTE_PAGE(pBt
) ){
7235 assert( pgnoRoot
>=3 );
7237 /* Allocate a page. The page that currently resides at pgnoRoot will
7238 ** be moved to the allocated page (unless the allocated page happens
7239 ** to reside at pgnoRoot).
7241 rc
= allocateBtreePage(pBt
, &pPageMove
, &pgnoMove
, pgnoRoot
, BTALLOC_EXACT
);
7242 if( rc
!=SQLITE_OK
){
7246 if( pgnoMove
!=pgnoRoot
){
7247 /* pgnoRoot is the page that will be used for the root-page of
7248 ** the new table (assuming an error did not occur). But we were
7249 ** allocated pgnoMove. If required (i.e. if it was not allocated
7250 ** by extending the file), the current page at position pgnoMove
7251 ** is already journaled.
7256 /* Save the positions of any open cursors. This is required in
7257 ** case they are holding a reference to an xFetch reference
7258 ** corresponding to page pgnoRoot. */
7259 rc
= saveAllCursors(pBt
, 0, 0);
7260 releasePage(pPageMove
);
7261 if( rc
!=SQLITE_OK
){
7265 /* Move the page currently at pgnoRoot to pgnoMove. */
7266 rc
= btreeGetPage(pBt
, pgnoRoot
, &pRoot
, 0, 0);
7267 if( rc
!=SQLITE_OK
){
7270 rc
= ptrmapGet(pBt
, pgnoRoot
, &eType
, &iPtrPage
);
7271 if( eType
==PTRMAP_ROOTPAGE
|| eType
==PTRMAP_FREEPAGE
){
7272 rc
= SQLITE_CORRUPT_BKPT
;
7274 if( rc
!=SQLITE_OK
){
7278 assert( eType
!=PTRMAP_ROOTPAGE
);
7279 assert( eType
!=PTRMAP_FREEPAGE
);
7280 rc
= relocatePage(pBt
, pRoot
, eType
, iPtrPage
, pgnoMove
, 0);
7283 /* Obtain the page at pgnoRoot */
7284 if( rc
!=SQLITE_OK
){
7287 rc
= btreeGetPage(pBt
, pgnoRoot
, &pRoot
, 0, 0);
7288 if( rc
!=SQLITE_OK
){
7291 rc
= sqlite3PagerWrite(pRoot
->pDbPage
);
7292 if( rc
!=SQLITE_OK
){
7300 /* Update the pointer-map and meta-data with the new root-page number. */
7301 ptrmapPut(pBt
, pgnoRoot
, PTRMAP_ROOTPAGE
, 0, &rc
);
7307 /* When the new root page was allocated, page 1 was made writable in
7308 ** order either to increase the database filesize, or to decrement the
7309 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
7311 assert( sqlite3PagerIswriteable(pBt
->pPage1
->pDbPage
) );
7312 rc
= sqlite3BtreeUpdateMeta(p
, 4, pgnoRoot
);
7319 rc
= allocateBtreePage(pBt
, &pRoot
, &pgnoRoot
, 1, 0);
7323 assert( sqlite3PagerIswriteable(pRoot
->pDbPage
) );
7324 if( createTabFlags
& BTREE_INTKEY
){
7325 ptfFlags
= PTF_INTKEY
| PTF_LEAFDATA
| PTF_LEAF
;
7327 ptfFlags
= PTF_ZERODATA
| PTF_LEAF
;
7329 zeroPage(pRoot
, ptfFlags
);
7330 sqlite3PagerUnref(pRoot
->pDbPage
);
7331 assert( (pBt
->openFlags
& BTREE_SINGLE
)==0 || pgnoRoot
==2 );
7332 *piTable
= (int)pgnoRoot
;
7335 int sqlite3BtreeCreateTable(Btree
*p
, int *piTable
, int flags
){
7337 sqlite3BtreeEnter(p
);
7338 rc
= btreeCreateTable(p
, piTable
, flags
);
7339 sqlite3BtreeLeave(p
);
7344 ** Erase the given database page and all its children. Return
7345 ** the page to the freelist.
7347 static int clearDatabasePage(
7348 BtShared
*pBt
, /* The BTree that contains the table */
7349 Pgno pgno
, /* Page number to clear */
7350 int freePageFlag
, /* Deallocate page if true */
7351 int *pnChange
/* Add number of Cells freed to this counter */
7355 unsigned char *pCell
;
7358 assert( sqlite3_mutex_held(pBt
->mutex
) );
7359 if( pgno
>btreePagecount(pBt
) ){
7360 return SQLITE_CORRUPT_BKPT
;
7363 rc
= getAndInitPage(pBt
, pgno
, &pPage
, 0);
7365 for(i
=0; i
<pPage
->nCell
; i
++){
7366 pCell
= findCell(pPage
, i
);
7368 rc
= clearDatabasePage(pBt
, get4byte(pCell
), 1, pnChange
);
7369 if( rc
) goto cleardatabasepage_out
;
7371 rc
= clearCell(pPage
, pCell
);
7372 if( rc
) goto cleardatabasepage_out
;
7375 rc
= clearDatabasePage(pBt
, get4byte(&pPage
->aData
[8]), 1, pnChange
);
7376 if( rc
) goto cleardatabasepage_out
;
7377 }else if( pnChange
){
7378 assert( pPage
->intKey
);
7379 *pnChange
+= pPage
->nCell
;
7382 freePage(pPage
, &rc
);
7383 }else if( (rc
= sqlite3PagerWrite(pPage
->pDbPage
))==0 ){
7384 zeroPage(pPage
, pPage
->aData
[0] | PTF_LEAF
);
7387 cleardatabasepage_out
:
7393 ** Delete all information from a single table in the database. iTable is
7394 ** the page number of the root of the table. After this routine returns,
7395 ** the root page is empty, but still exists.
7397 ** This routine will fail with SQLITE_LOCKED if there are any open
7398 ** read cursors on the table. Open write cursors are moved to the
7399 ** root of the table.
7401 ** If pnChange is not NULL, then table iTable must be an intkey table. The
7402 ** integer value pointed to by pnChange is incremented by the number of
7403 ** entries in the table.
7405 int sqlite3BtreeClearTable(Btree
*p
, int iTable
, int *pnChange
){
7407 BtShared
*pBt
= p
->pBt
;
7408 sqlite3BtreeEnter(p
);
7409 assert( p
->inTrans
==TRANS_WRITE
);
7411 rc
= saveAllCursors(pBt
, (Pgno
)iTable
, 0);
7413 if( SQLITE_OK
==rc
){
7414 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
7415 ** is the root of a table b-tree - if it is not, the following call is
7417 invalidateIncrblobCursors(p
, 0, 1);
7418 rc
= clearDatabasePage(pBt
, (Pgno
)iTable
, 0, pnChange
);
7420 sqlite3BtreeLeave(p
);
7425 ** Erase all information in a table and add the root of the table to
7426 ** the freelist. Except, the root of the principle table (the one on
7427 ** page 1) is never added to the freelist.
7429 ** This routine will fail with SQLITE_LOCKED if there are any open
7430 ** cursors on the table.
7432 ** If AUTOVACUUM is enabled and the page at iTable is not the last
7433 ** root page in the database file, then the last root page
7434 ** in the database file is moved into the slot formerly occupied by
7435 ** iTable and that last slot formerly occupied by the last root page
7436 ** is added to the freelist instead of iTable. In this say, all
7437 ** root pages are kept at the beginning of the database file, which
7438 ** is necessary for AUTOVACUUM to work right. *piMoved is set to the
7439 ** page number that used to be the last root page in the file before
7440 ** the move. If no page gets moved, *piMoved is set to 0.
7441 ** The last root page is recorded in meta[3] and the value of
7442 ** meta[3] is updated by this procedure.
7444 static int btreeDropTable(Btree
*p
, Pgno iTable
, int *piMoved
){
7447 BtShared
*pBt
= p
->pBt
;
7449 assert( sqlite3BtreeHoldsMutex(p
) );
7450 assert( p
->inTrans
==TRANS_WRITE
);
7452 /* It is illegal to drop a table if any cursors are open on the
7453 ** database. This is because in auto-vacuum mode the backend may
7454 ** need to move another root-page to fill a gap left by the deleted
7455 ** root page. If an open cursor was using this page a problem would
7458 ** This error is caught long before control reaches this point.
7460 if( NEVER(pBt
->pCursor
) ){
7461 sqlite3ConnectionBlocked(p
->db
, pBt
->pCursor
->pBtree
->db
);
7462 return SQLITE_LOCKED_SHAREDCACHE
;
7465 rc
= btreeGetPage(pBt
, (Pgno
)iTable
, &pPage
, 0, 0);
7467 rc
= sqlite3BtreeClearTable(p
, iTable
, 0);
7476 #ifdef SQLITE_OMIT_AUTOVACUUM
7477 freePage(pPage
, &rc
);
7480 if( pBt
->autoVacuum
){
7482 sqlite3BtreeGetMeta(p
, BTREE_LARGEST_ROOT_PAGE
, &maxRootPgno
);
7484 if( iTable
==maxRootPgno
){
7485 /* If the table being dropped is the table with the largest root-page
7486 ** number in the database, put the root page on the free list.
7488 freePage(pPage
, &rc
);
7490 if( rc
!=SQLITE_OK
){
7494 /* The table being dropped does not have the largest root-page
7495 ** number in the database. So move the page that does into the
7496 ** gap left by the deleted root-page.
7500 rc
= btreeGetPage(pBt
, maxRootPgno
, &pMove
, 0, 0);
7501 if( rc
!=SQLITE_OK
){
7504 rc
= relocatePage(pBt
, pMove
, PTRMAP_ROOTPAGE
, 0, iTable
, 0);
7506 if( rc
!=SQLITE_OK
){
7510 rc
= btreeGetPage(pBt
, maxRootPgno
, &pMove
, 0, 0);
7511 freePage(pMove
, &rc
);
7513 if( rc
!=SQLITE_OK
){
7516 *piMoved
= maxRootPgno
;
7519 /* Set the new 'max-root-page' value in the database header. This
7520 ** is the old value less one, less one more if that happens to
7521 ** be a root-page number, less one again if that is the
7522 ** PENDING_BYTE_PAGE.
7525 while( maxRootPgno
==PENDING_BYTE_PAGE(pBt
)
7526 || PTRMAP_ISPAGE(pBt
, maxRootPgno
) ){
7529 assert( maxRootPgno
!=PENDING_BYTE_PAGE(pBt
) );
7531 rc
= sqlite3BtreeUpdateMeta(p
, 4, maxRootPgno
);
7533 freePage(pPage
, &rc
);
7538 /* If sqlite3BtreeDropTable was called on page 1.
7539 ** This really never should happen except in a corrupt
7542 zeroPage(pPage
, PTF_INTKEY
|PTF_LEAF
);
7547 int sqlite3BtreeDropTable(Btree
*p
, int iTable
, int *piMoved
){
7549 sqlite3BtreeEnter(p
);
7550 rc
= btreeDropTable(p
, iTable
, piMoved
);
7551 sqlite3BtreeLeave(p
);
7557 ** This function may only be called if the b-tree connection already
7558 ** has a read or write transaction open on the database.
7560 ** Read the meta-information out of a database file. Meta[0]
7561 ** is the number of free pages currently in the database. Meta[1]
7562 ** through meta[15] are available for use by higher layers. Meta[0]
7563 ** is read-only, the others are read/write.
7565 ** The schema layer numbers meta values differently. At the schema
7566 ** layer (and the SetCookie and ReadCookie opcodes) the number of
7567 ** free pages is not visible. So Cookie[0] is the same as Meta[1].
7569 void sqlite3BtreeGetMeta(Btree
*p
, int idx
, u32
*pMeta
){
7570 BtShared
*pBt
= p
->pBt
;
7572 sqlite3BtreeEnter(p
);
7573 assert( p
->inTrans
>TRANS_NONE
);
7574 assert( SQLITE_OK
==querySharedCacheTableLock(p
, MASTER_ROOT
, READ_LOCK
) );
7575 assert( pBt
->pPage1
);
7576 assert( idx
>=0 && idx
<=15 );
7578 *pMeta
= get4byte(&pBt
->pPage1
->aData
[36 + idx
*4]);
7580 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
7581 ** database, mark the database as read-only. */
7582 #ifdef SQLITE_OMIT_AUTOVACUUM
7583 if( idx
==BTREE_LARGEST_ROOT_PAGE
&& *pMeta
>0 ){
7584 pBt
->btsFlags
|= BTS_READ_ONLY
;
7588 sqlite3BtreeLeave(p
);
7592 ** Write meta-information back into the database. Meta[0] is
7593 ** read-only and may not be written.
7595 int sqlite3BtreeUpdateMeta(Btree
*p
, int idx
, u32 iMeta
){
7596 BtShared
*pBt
= p
->pBt
;
7599 assert( idx
>=1 && idx
<=15 );
7600 sqlite3BtreeEnter(p
);
7601 assert( p
->inTrans
==TRANS_WRITE
);
7602 assert( pBt
->pPage1
!=0 );
7603 pP1
= pBt
->pPage1
->aData
;
7604 rc
= sqlite3PagerWrite(pBt
->pPage1
->pDbPage
);
7605 if( rc
==SQLITE_OK
){
7606 put4byte(&pP1
[36 + idx
*4], iMeta
);
7607 #ifndef SQLITE_OMIT_AUTOVACUUM
7608 if( idx
==BTREE_INCR_VACUUM
){
7609 assert( pBt
->autoVacuum
|| iMeta
==0 );
7610 assert( iMeta
==0 || iMeta
==1 );
7611 pBt
->incrVacuum
= (u8
)iMeta
;
7615 sqlite3BtreeLeave(p
);
7619 #ifndef SQLITE_OMIT_BTREECOUNT
7621 ** The first argument, pCur, is a cursor opened on some b-tree. Count the
7622 ** number of entries in the b-tree and write the result to *pnEntry.
7624 ** SQLITE_OK is returned if the operation is successfully executed.
7625 ** Otherwise, if an error is encountered (i.e. an IO error or database
7626 ** corruption) an SQLite error code is returned.
7628 int sqlite3BtreeCount(BtCursor
*pCur
, i64
*pnEntry
){
7629 i64 nEntry
= 0; /* Value to return in *pnEntry */
7630 int rc
; /* Return code */
7632 if( pCur
->pgnoRoot
==0 ){
7636 rc
= moveToRoot(pCur
);
7638 /* Unless an error occurs, the following loop runs one iteration for each
7639 ** page in the B-Tree structure (not including overflow pages).
7641 while( rc
==SQLITE_OK
){
7642 int iIdx
; /* Index of child node in parent */
7643 MemPage
*pPage
; /* Current page of the b-tree */
7645 /* If this is a leaf page or the tree is not an int-key tree, then
7646 ** this page contains countable entries. Increment the entry counter
7649 pPage
= pCur
->apPage
[pCur
->iPage
];
7650 if( pPage
->leaf
|| !pPage
->intKey
){
7651 nEntry
+= pPage
->nCell
;
7654 /* pPage is a leaf node. This loop navigates the cursor so that it
7655 ** points to the first interior cell that it points to the parent of
7656 ** the next page in the tree that has not yet been visited. The
7657 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
7658 ** of the page, or to the number of cells in the page if the next page
7659 ** to visit is the right-child of its parent.
7661 ** If all pages in the tree have been visited, return SQLITE_OK to the
7666 if( pCur
->iPage
==0 ){
7667 /* All pages of the b-tree have been visited. Return successfully. */
7672 }while ( pCur
->aiIdx
[pCur
->iPage
]>=pCur
->apPage
[pCur
->iPage
]->nCell
);
7674 pCur
->aiIdx
[pCur
->iPage
]++;
7675 pPage
= pCur
->apPage
[pCur
->iPage
];
7678 /* Descend to the child node of the cell that the cursor currently
7679 ** points at. This is the right-child if (iIdx==pPage->nCell).
7681 iIdx
= pCur
->aiIdx
[pCur
->iPage
];
7682 if( iIdx
==pPage
->nCell
){
7683 rc
= moveToChild(pCur
, get4byte(&pPage
->aData
[pPage
->hdrOffset
+8]));
7685 rc
= moveToChild(pCur
, get4byte(findCell(pPage
, iIdx
)));
7689 /* An error has occurred. Return an error code. */
7695 ** Return the pager associated with a BTree. This routine is used for
7696 ** testing and debugging only.
7698 Pager
*sqlite3BtreePager(Btree
*p
){
7699 return p
->pBt
->pPager
;
7702 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
7704 ** Append a message to the error message string.
7706 static void checkAppendMsg(
7707 IntegrityCk
*pCheck
,
7709 const char *zFormat
,
7713 if( !pCheck
->mxErr
) return;
7716 va_start(ap
, zFormat
);
7717 if( pCheck
->errMsg
.nChar
){
7718 sqlite3StrAccumAppend(&pCheck
->errMsg
, "\n", 1);
7721 sqlite3StrAccumAppend(&pCheck
->errMsg
, zMsg1
, -1);
7723 sqlite3VXPrintf(&pCheck
->errMsg
, 1, zFormat
, ap
);
7725 if( pCheck
->errMsg
.mallocFailed
){
7726 pCheck
->mallocFailed
= 1;
7729 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
7731 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
7734 ** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
7735 ** corresponds to page iPg is already set.
7737 static int getPageReferenced(IntegrityCk
*pCheck
, Pgno iPg
){
7738 assert( iPg
<=pCheck
->nPage
&& sizeof(pCheck
->aPgRef
[0])==1 );
7739 return (pCheck
->aPgRef
[iPg
/8] & (1 << (iPg
& 0x07)));
7743 ** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
7745 static void setPageReferenced(IntegrityCk
*pCheck
, Pgno iPg
){
7746 assert( iPg
<=pCheck
->nPage
&& sizeof(pCheck
->aPgRef
[0])==1 );
7747 pCheck
->aPgRef
[iPg
/8] |= (1 << (iPg
& 0x07));
7752 ** Add 1 to the reference count for page iPage. If this is the second
7753 ** reference to the page, add an error message to pCheck->zErrMsg.
7754 ** Return 1 if there are 2 ore more references to the page and 0 if
7755 ** if this is the first reference to the page.
7757 ** Also check that the page number is in bounds.
7759 static int checkRef(IntegrityCk
*pCheck
, Pgno iPage
, char *zContext
){
7760 if( iPage
==0 ) return 1;
7761 if( iPage
>pCheck
->nPage
){
7762 checkAppendMsg(pCheck
, zContext
, "invalid page number %d", iPage
);
7765 if( getPageReferenced(pCheck
, iPage
) ){
7766 checkAppendMsg(pCheck
, zContext
, "2nd reference to page %d", iPage
);
7769 setPageReferenced(pCheck
, iPage
);
7773 #ifndef SQLITE_OMIT_AUTOVACUUM
7775 ** Check that the entry in the pointer-map for page iChild maps to
7776 ** page iParent, pointer type ptrType. If not, append an error message
7779 static void checkPtrmap(
7780 IntegrityCk
*pCheck
, /* Integrity check context */
7781 Pgno iChild
, /* Child page number */
7782 u8 eType
, /* Expected pointer map type */
7783 Pgno iParent
, /* Expected pointer map parent page number */
7784 char *zContext
/* Context description (used for error msg) */
7790 rc
= ptrmapGet(pCheck
->pBt
, iChild
, &ePtrmapType
, &iPtrmapParent
);
7791 if( rc
!=SQLITE_OK
){
7792 if( rc
==SQLITE_NOMEM
|| rc
==SQLITE_IOERR_NOMEM
) pCheck
->mallocFailed
= 1;
7793 checkAppendMsg(pCheck
, zContext
, "Failed to read ptrmap key=%d", iChild
);
7797 if( ePtrmapType
!=eType
|| iPtrmapParent
!=iParent
){
7798 checkAppendMsg(pCheck
, zContext
,
7799 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
7800 iChild
, eType
, iParent
, ePtrmapType
, iPtrmapParent
);
7806 ** Check the integrity of the freelist or of an overflow page list.
7807 ** Verify that the number of pages on the list is N.
7809 static void checkList(
7810 IntegrityCk
*pCheck
, /* Integrity checking context */
7811 int isFreeList
, /* True for a freelist. False for overflow page list */
7812 int iPage
, /* Page number for first page in the list */
7813 int N
, /* Expected number of pages in the list */
7814 char *zContext
/* Context for error messages */
7819 while( N
-- > 0 && pCheck
->mxErr
){
7821 unsigned char *pOvflData
;
7823 checkAppendMsg(pCheck
, zContext
,
7824 "%d of %d pages missing from overflow list starting at %d",
7825 N
+1, expected
, iFirst
);
7828 if( checkRef(pCheck
, iPage
, zContext
) ) break;
7829 if( sqlite3PagerGet(pCheck
->pPager
, (Pgno
)iPage
, &pOvflPage
) ){
7830 checkAppendMsg(pCheck
, zContext
, "failed to get page %d", iPage
);
7833 pOvflData
= (unsigned char *)sqlite3PagerGetData(pOvflPage
);
7835 int n
= get4byte(&pOvflData
[4]);
7836 #ifndef SQLITE_OMIT_AUTOVACUUM
7837 if( pCheck
->pBt
->autoVacuum
){
7838 checkPtrmap(pCheck
, iPage
, PTRMAP_FREEPAGE
, 0, zContext
);
7841 if( n
>(int)pCheck
->pBt
->usableSize
/4-2 ){
7842 checkAppendMsg(pCheck
, zContext
,
7843 "freelist leaf count too big on page %d", iPage
);
7847 Pgno iFreePage
= get4byte(&pOvflData
[8+i
*4]);
7848 #ifndef SQLITE_OMIT_AUTOVACUUM
7849 if( pCheck
->pBt
->autoVacuum
){
7850 checkPtrmap(pCheck
, iFreePage
, PTRMAP_FREEPAGE
, 0, zContext
);
7853 checkRef(pCheck
, iFreePage
, zContext
);
7858 #ifndef SQLITE_OMIT_AUTOVACUUM
7860 /* If this database supports auto-vacuum and iPage is not the last
7861 ** page in this overflow list, check that the pointer-map entry for
7862 ** the following page matches iPage.
7864 if( pCheck
->pBt
->autoVacuum
&& N
>0 ){
7865 i
= get4byte(pOvflData
);
7866 checkPtrmap(pCheck
, i
, PTRMAP_OVERFLOW2
, iPage
, zContext
);
7870 iPage
= get4byte(pOvflData
);
7871 sqlite3PagerUnref(pOvflPage
);
7874 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
7876 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
7878 ** Do various sanity checks on a single page of a tree. Return
7879 ** the tree depth. Root pages return 0. Parents of root pages
7880 ** return 1, and so forth.
7882 ** These checks are done:
7884 ** 1. Make sure that cells and freeblocks do not overlap
7885 ** but combine to completely cover the page.
7886 ** NO 2. Make sure cell keys are in order.
7887 ** NO 3. Make sure no key is less than or equal to zLowerBound.
7888 ** NO 4. Make sure no key is greater than or equal to zUpperBound.
7889 ** 5. Check the integrity of overflow pages.
7890 ** 6. Recursively call checkTreePage on all children.
7891 ** 7. Verify that the depth of all children is the same.
7892 ** 8. Make sure this page is at least 33% full or else it is
7893 ** the root of the tree.
7895 static int checkTreePage(
7896 IntegrityCk
*pCheck
, /* Context for the sanity check */
7897 int iPage
, /* Page number of the page to check */
7898 char *zParentContext
, /* Parent context */
7899 i64
*pnParentMinKey
,
7903 int i
, rc
, depth
, d2
, pgno
, cnt
;
7914 sqlite3_snprintf(sizeof(zContext
), zContext
, "Page %d: ", iPage
);
7916 /* Check that the page exists
7919 usableSize
= pBt
->usableSize
;
7920 if( iPage
==0 ) return 0;
7921 if( checkRef(pCheck
, iPage
, zParentContext
) ) return 0;
7922 if( (rc
= btreeGetPage(pBt
, (Pgno
)iPage
, &pPage
, 0, 0))!=0 ){
7923 checkAppendMsg(pCheck
, zContext
,
7924 "unable to get the page. error code=%d", rc
);
7928 /* Clear MemPage.isInit to make sure the corruption detection code in
7929 ** btreeInitPage() is executed. */
7931 if( (rc
= btreeInitPage(pPage
))!=0 ){
7932 assert( rc
==SQLITE_CORRUPT
); /* The only possible error from InitPage */
7933 checkAppendMsg(pCheck
, zContext
,
7934 "btreeInitPage() returns error code %d", rc
);
7939 /* Check out all the cells.
7942 for(i
=0; i
<pPage
->nCell
&& pCheck
->mxErr
; i
++){
7947 /* Check payload overflow pages
7949 sqlite3_snprintf(sizeof(zContext
), zContext
,
7950 "On tree page %d cell %d: ", iPage
, i
);
7951 pCell
= findCell(pPage
,i
);
7952 btreeParseCellPtr(pPage
, pCell
, &info
);
7954 if( !pPage
->intKey
) sz
+= (int)info
.nKey
;
7955 /* For intKey pages, check that the keys are in order.
7957 else if( i
==0 ) nMinKey
= nMaxKey
= info
.nKey
;
7959 if( info
.nKey
<= nMaxKey
){
7960 checkAppendMsg(pCheck
, zContext
,
7961 "Rowid %lld out of order (previous was %lld)", info
.nKey
, nMaxKey
);
7963 nMaxKey
= info
.nKey
;
7965 assert( sz
==info
.nPayload
);
7966 if( (sz
>info
.nLocal
)
7967 && (&pCell
[info
.iOverflow
]<=&pPage
->aData
[pBt
->usableSize
])
7969 int nPage
= (sz
- info
.nLocal
+ usableSize
- 5)/(usableSize
- 4);
7970 Pgno pgnoOvfl
= get4byte(&pCell
[info
.iOverflow
]);
7971 #ifndef SQLITE_OMIT_AUTOVACUUM
7972 if( pBt
->autoVacuum
){
7973 checkPtrmap(pCheck
, pgnoOvfl
, PTRMAP_OVERFLOW1
, iPage
, zContext
);
7976 checkList(pCheck
, 0, pgnoOvfl
, nPage
, zContext
);
7979 /* Check sanity of left child page.
7982 pgno
= get4byte(pCell
);
7983 #ifndef SQLITE_OMIT_AUTOVACUUM
7984 if( pBt
->autoVacuum
){
7985 checkPtrmap(pCheck
, pgno
, PTRMAP_BTREE
, iPage
, zContext
);
7988 d2
= checkTreePage(pCheck
, pgno
, zContext
, &nMinKey
, i
==0 ? NULL
: &nMaxKey
);
7989 if( i
>0 && d2
!=depth
){
7990 checkAppendMsg(pCheck
, zContext
, "Child page depth differs");
7997 pgno
= get4byte(&pPage
->aData
[pPage
->hdrOffset
+8]);
7998 sqlite3_snprintf(sizeof(zContext
), zContext
,
7999 "On page %d at right child: ", iPage
);
8000 #ifndef SQLITE_OMIT_AUTOVACUUM
8001 if( pBt
->autoVacuum
){
8002 checkPtrmap(pCheck
, pgno
, PTRMAP_BTREE
, iPage
, zContext
);
8005 checkTreePage(pCheck
, pgno
, zContext
, NULL
, !pPage
->nCell
? NULL
: &nMaxKey
);
8008 /* For intKey leaf pages, check that the min/max keys are in order
8009 ** with any left/parent/right pages.
8011 if( pPage
->leaf
&& pPage
->intKey
){
8012 /* if we are a left child page */
8013 if( pnParentMinKey
){
8014 /* if we are the left most child page */
8015 if( !pnParentMaxKey
){
8016 if( nMaxKey
> *pnParentMinKey
){
8017 checkAppendMsg(pCheck
, zContext
,
8018 "Rowid %lld out of order (max larger than parent min of %lld)",
8019 nMaxKey
, *pnParentMinKey
);
8022 if( nMinKey
<= *pnParentMinKey
){
8023 checkAppendMsg(pCheck
, zContext
,
8024 "Rowid %lld out of order (min less than parent min of %lld)",
8025 nMinKey
, *pnParentMinKey
);
8027 if( nMaxKey
> *pnParentMaxKey
){
8028 checkAppendMsg(pCheck
, zContext
,
8029 "Rowid %lld out of order (max larger than parent max of %lld)",
8030 nMaxKey
, *pnParentMaxKey
);
8032 *pnParentMinKey
= nMaxKey
;
8034 /* else if we're a right child page */
8035 } else if( pnParentMaxKey
){
8036 if( nMinKey
<= *pnParentMaxKey
){
8037 checkAppendMsg(pCheck
, zContext
,
8038 "Rowid %lld out of order (min less than parent max of %lld)",
8039 nMinKey
, *pnParentMaxKey
);
8044 /* Check for complete coverage of the page
8046 data
= pPage
->aData
;
8047 hdr
= pPage
->hdrOffset
;
8048 hit
= sqlite3PageMalloc( pBt
->pageSize
);
8050 pCheck
->mallocFailed
= 1;
8052 int contentOffset
= get2byteNotZero(&data
[hdr
+5]);
8053 assert( contentOffset
<=usableSize
); /* Enforced by btreeInitPage() */
8054 memset(hit
+contentOffset
, 0, usableSize
-contentOffset
);
8055 memset(hit
, 1, contentOffset
);
8056 nCell
= get2byte(&data
[hdr
+3]);
8057 cellStart
= hdr
+ 12 - 4*pPage
->leaf
;
8058 for(i
=0; i
<nCell
; i
++){
8059 int pc
= get2byte(&data
[cellStart
+i
*2]);
8062 if( pc
<=usableSize
-4 ){
8063 size
= cellSizePtr(pPage
, &data
[pc
]);
8065 if( (int)(pc
+size
-1)>=usableSize
){
8066 checkAppendMsg(pCheck
, 0,
8067 "Corruption detected in cell %d on page %d",i
,iPage
);
8069 for(j
=pc
+size
-1; j
>=pc
; j
--) hit
[j
]++;
8072 i
= get2byte(&data
[hdr
+1]);
8075 assert( i
<=usableSize
-4 ); /* Enforced by btreeInitPage() */
8076 size
= get2byte(&data
[i
+2]);
8077 assert( i
+size
<=usableSize
); /* Enforced by btreeInitPage() */
8078 for(j
=i
+size
-1; j
>=i
; j
--) hit
[j
]++;
8079 j
= get2byte(&data
[i
]);
8080 assert( j
==0 || j
>i
+size
); /* Enforced by btreeInitPage() */
8081 assert( j
<=usableSize
-4 ); /* Enforced by btreeInitPage() */
8084 for(i
=cnt
=0; i
<usableSize
; i
++){
8087 }else if( hit
[i
]>1 ){
8088 checkAppendMsg(pCheck
, 0,
8089 "Multiple uses for byte %d of page %d", i
, iPage
);
8093 if( cnt
!=data
[hdr
+7] ){
8094 checkAppendMsg(pCheck
, 0,
8095 "Fragmentation of %d bytes reported as %d on page %d",
8096 cnt
, data
[hdr
+7], iPage
);
8099 sqlite3PageFree(hit
);
8103 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
8105 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
8107 ** This routine does a complete check of the given BTree file. aRoot[] is
8108 ** an array of pages numbers were each page number is the root page of
8109 ** a table. nRoot is the number of entries in aRoot.
8111 ** A read-only or read-write transaction must be opened before calling
8114 ** Write the number of error seen in *pnErr. Except for some memory
8115 ** allocation errors, an error message held in memory obtained from
8116 ** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
8117 ** returned. If a memory allocation error occurs, NULL is returned.
8119 char *sqlite3BtreeIntegrityCheck(
8120 Btree
*p
, /* The btree to be checked */
8121 int *aRoot
, /* An array of root pages numbers for individual trees */
8122 int nRoot
, /* Number of entries in aRoot[] */
8123 int mxErr
, /* Stop reporting errors after this many */
8124 int *pnErr
/* Write number of errors seen to this variable */
8129 BtShared
*pBt
= p
->pBt
;
8132 sqlite3BtreeEnter(p
);
8133 assert( p
->inTrans
>TRANS_NONE
&& pBt
->inTransaction
>TRANS_NONE
);
8134 nRef
= sqlite3PagerRefcount(pBt
->pPager
);
8136 sCheck
.pPager
= pBt
->pPager
;
8137 sCheck
.nPage
= btreePagecount(sCheck
.pBt
);
8138 sCheck
.mxErr
= mxErr
;
8140 sCheck
.mallocFailed
= 0;
8142 if( sCheck
.nPage
==0 ){
8143 sqlite3BtreeLeave(p
);
8147 sCheck
.aPgRef
= sqlite3MallocZero((sCheck
.nPage
/ 8)+ 1);
8148 if( !sCheck
.aPgRef
){
8150 sqlite3BtreeLeave(p
);
8153 i
= PENDING_BYTE_PAGE(pBt
);
8154 if( i
<=sCheck
.nPage
) setPageReferenced(&sCheck
, i
);
8155 sqlite3StrAccumInit(&sCheck
.errMsg
, zErr
, sizeof(zErr
), SQLITE_MAX_LENGTH
);
8156 sCheck
.errMsg
.useMalloc
= 2;
8158 /* Check the integrity of the freelist
8160 checkList(&sCheck
, 1, get4byte(&pBt
->pPage1
->aData
[32]),
8161 get4byte(&pBt
->pPage1
->aData
[36]), "Main freelist: ");
8163 /* Check all the tables.
8165 for(i
=0; (int)i
<nRoot
&& sCheck
.mxErr
; i
++){
8166 if( aRoot
[i
]==0 ) continue;
8167 #ifndef SQLITE_OMIT_AUTOVACUUM
8168 if( pBt
->autoVacuum
&& aRoot
[i
]>1 ){
8169 checkPtrmap(&sCheck
, aRoot
[i
], PTRMAP_ROOTPAGE
, 0, 0);
8172 checkTreePage(&sCheck
, aRoot
[i
], "List of tree roots: ", NULL
, NULL
);
8175 /* Make sure every page in the file is referenced
8177 for(i
=1; i
<=sCheck
.nPage
&& sCheck
.mxErr
; i
++){
8178 #ifdef SQLITE_OMIT_AUTOVACUUM
8179 if( getPageReferenced(&sCheck
, i
)==0 ){
8180 checkAppendMsg(&sCheck
, 0, "Page %d is never used", i
);
8183 /* If the database supports auto-vacuum, make sure no tables contain
8184 ** references to pointer-map pages.
8186 if( getPageReferenced(&sCheck
, i
)==0 &&
8187 (PTRMAP_PAGENO(pBt
, i
)!=i
|| !pBt
->autoVacuum
) ){
8188 checkAppendMsg(&sCheck
, 0, "Page %d is never used", i
);
8190 if( getPageReferenced(&sCheck
, i
)!=0 &&
8191 (PTRMAP_PAGENO(pBt
, i
)==i
&& pBt
->autoVacuum
) ){
8192 checkAppendMsg(&sCheck
, 0, "Pointer map page %d is referenced", i
);
8197 /* Make sure this analysis did not leave any unref() pages.
8198 ** This is an internal consistency check; an integrity check
8199 ** of the integrity check.
8201 if( NEVER(nRef
!= sqlite3PagerRefcount(pBt
->pPager
)) ){
8202 checkAppendMsg(&sCheck
, 0,
8203 "Outstanding page count goes from %d to %d during this analysis",
8204 nRef
, sqlite3PagerRefcount(pBt
->pPager
)
8208 /* Clean up and report errors.
8210 sqlite3BtreeLeave(p
);
8211 sqlite3_free(sCheck
.aPgRef
);
8212 if( sCheck
.mallocFailed
){
8213 sqlite3StrAccumReset(&sCheck
.errMsg
);
8214 *pnErr
= sCheck
.nErr
+1;
8217 *pnErr
= sCheck
.nErr
;
8218 if( sCheck
.nErr
==0 ) sqlite3StrAccumReset(&sCheck
.errMsg
);
8219 return sqlite3StrAccumFinish(&sCheck
.errMsg
);
8221 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
8224 ** Return the full pathname of the underlying database file. Return
8225 ** an empty string if the database is in-memory or a TEMP database.
8227 ** The pager filename is invariant as long as the pager is
8228 ** open so it is safe to access without the BtShared mutex.
8230 const char *sqlite3BtreeGetFilename(Btree
*p
){
8231 assert( p
->pBt
->pPager
!=0 );
8232 return sqlite3PagerFilename(p
->pBt
->pPager
, 1);
8236 ** Return the pathname of the journal file for this database. The return
8237 ** value of this routine is the same regardless of whether the journal file
8238 ** has been created or not.
8240 ** The pager journal filename is invariant as long as the pager is
8241 ** open so it is safe to access without the BtShared mutex.
8243 const char *sqlite3BtreeGetJournalname(Btree
*p
){
8244 assert( p
->pBt
->pPager
!=0 );
8245 return sqlite3PagerJournalname(p
->pBt
->pPager
);
8249 ** Return non-zero if a transaction is active.
8251 int sqlite3BtreeIsInTrans(Btree
*p
){
8252 assert( p
==0 || sqlite3_mutex_held(p
->db
->mutex
) );
8253 return (p
&& (p
->inTrans
==TRANS_WRITE
));
8256 #ifndef SQLITE_OMIT_WAL
8258 ** Run a checkpoint on the Btree passed as the first argument.
8260 ** Return SQLITE_LOCKED if this or any other connection has an open
8261 ** transaction on the shared-cache the argument Btree is connected to.
8263 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
8265 int sqlite3BtreeCheckpoint(Btree
*p
, int eMode
, int *pnLog
, int *pnCkpt
){
8268 BtShared
*pBt
= p
->pBt
;
8269 sqlite3BtreeEnter(p
);
8270 if( pBt
->inTransaction
!=TRANS_NONE
){
8273 rc
= sqlite3PagerCheckpoint(pBt
->pPager
, eMode
, pnLog
, pnCkpt
);
8275 sqlite3BtreeLeave(p
);
8282 ** Return non-zero if a read (or write) transaction is active.
8284 int sqlite3BtreeIsInReadTrans(Btree
*p
){
8286 assert( sqlite3_mutex_held(p
->db
->mutex
) );
8287 return p
->inTrans
!=TRANS_NONE
;
8290 int sqlite3BtreeIsInBackup(Btree
*p
){
8292 assert( sqlite3_mutex_held(p
->db
->mutex
) );
8293 return p
->nBackup
!=0;
8297 ** This function returns a pointer to a blob of memory associated with
8298 ** a single shared-btree. The memory is used by client code for its own
8299 ** purposes (for example, to store a high-level schema associated with
8300 ** the shared-btree). The btree layer manages reference counting issues.
8302 ** The first time this is called on a shared-btree, nBytes bytes of memory
8303 ** are allocated, zeroed, and returned to the caller. For each subsequent
8304 ** call the nBytes parameter is ignored and a pointer to the same blob
8305 ** of memory returned.
8307 ** If the nBytes parameter is 0 and the blob of memory has not yet been
8308 ** allocated, a null pointer is returned. If the blob has already been
8309 ** allocated, it is returned as normal.
8311 ** Just before the shared-btree is closed, the function passed as the
8312 ** xFree argument when the memory allocation was made is invoked on the
8313 ** blob of allocated memory. The xFree function should not call sqlite3_free()
8314 ** on the memory, the btree layer does that.
8316 void *sqlite3BtreeSchema(Btree
*p
, int nBytes
, void(*xFree
)(void *)){
8317 BtShared
*pBt
= p
->pBt
;
8318 sqlite3BtreeEnter(p
);
8319 if( !pBt
->pSchema
&& nBytes
){
8320 pBt
->pSchema
= sqlite3DbMallocZero(0, nBytes
);
8321 pBt
->xFreeSchema
= xFree
;
8323 sqlite3BtreeLeave(p
);
8324 return pBt
->pSchema
;
8328 ** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
8329 ** btree as the argument handle holds an exclusive lock on the
8330 ** sqlite_master table. Otherwise SQLITE_OK.
8332 int sqlite3BtreeSchemaLocked(Btree
*p
){
8334 assert( sqlite3_mutex_held(p
->db
->mutex
) );
8335 sqlite3BtreeEnter(p
);
8336 rc
= querySharedCacheTableLock(p
, MASTER_ROOT
, READ_LOCK
);
8337 assert( rc
==SQLITE_OK
|| rc
==SQLITE_LOCKED_SHAREDCACHE
);
8338 sqlite3BtreeLeave(p
);
8343 #ifndef SQLITE_OMIT_SHARED_CACHE
8345 ** Obtain a lock on the table whose root page is iTab. The
8346 ** lock is a write lock if isWritelock is true or a read lock
8349 int sqlite3BtreeLockTable(Btree
*p
, int iTab
, u8 isWriteLock
){
8351 assert( p
->inTrans
!=TRANS_NONE
);
8353 u8 lockType
= READ_LOCK
+ isWriteLock
;
8354 assert( READ_LOCK
+1==WRITE_LOCK
);
8355 assert( isWriteLock
==0 || isWriteLock
==1 );
8357 sqlite3BtreeEnter(p
);
8358 rc
= querySharedCacheTableLock(p
, iTab
, lockType
);
8359 if( rc
==SQLITE_OK
){
8360 rc
= setSharedCacheTableLock(p
, iTab
, lockType
);
8362 sqlite3BtreeLeave(p
);
8368 #ifndef SQLITE_OMIT_INCRBLOB
8370 ** Argument pCsr must be a cursor opened for writing on an
8371 ** INTKEY table currently pointing at a valid table entry.
8372 ** This function modifies the data stored as part of that entry.
8374 ** Only the data content may only be modified, it is not possible to
8375 ** change the length of the data stored. If this function is called with
8376 ** parameters that attempt to write past the end of the existing data,
8377 ** no modifications are made and SQLITE_CORRUPT is returned.
8379 int sqlite3BtreePutData(BtCursor
*pCsr
, u32 offset
, u32 amt
, void *z
){
8381 assert( cursorHoldsMutex(pCsr
) );
8382 assert( sqlite3_mutex_held(pCsr
->pBtree
->db
->mutex
) );
8383 assert( pCsr
->isIncrblobHandle
);
8385 rc
= restoreCursorPosition(pCsr
);
8386 if( rc
!=SQLITE_OK
){
8389 assert( pCsr
->eState
!=CURSOR_REQUIRESEEK
);
8390 if( pCsr
->eState
!=CURSOR_VALID
){
8391 return SQLITE_ABORT
;
8394 /* Save the positions of all other cursors open on this table. This is
8395 ** required in case any of them are holding references to an xFetch
8396 ** version of the b-tree page modified by the accessPayload call below.
8398 ** Note that pCsr must be open on a BTREE_INTKEY table and saveCursorPosition()
8399 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
8400 ** saveAllCursors can only return SQLITE_OK.
8402 VVA_ONLY(rc
=) saveAllCursors(pCsr
->pBt
, pCsr
->pgnoRoot
, pCsr
);
8403 assert( rc
==SQLITE_OK
);
8405 /* Check some assumptions:
8406 ** (a) the cursor is open for writing,
8407 ** (b) there is a read/write transaction open,
8408 ** (c) the connection holds a write-lock on the table (if required),
8409 ** (d) there are no conflicting read-locks, and
8410 ** (e) the cursor points at a valid row of an intKey table.
8412 if( !pCsr
->wrFlag
){
8413 return SQLITE_READONLY
;
8415 assert( (pCsr
->pBt
->btsFlags
& BTS_READ_ONLY
)==0
8416 && pCsr
->pBt
->inTransaction
==TRANS_WRITE
);
8417 assert( hasSharedCacheTableLock(pCsr
->pBtree
, pCsr
->pgnoRoot
, 0, 2) );
8418 assert( !hasReadConflicts(pCsr
->pBtree
, pCsr
->pgnoRoot
) );
8419 assert( pCsr
->apPage
[pCsr
->iPage
]->intKey
);
8421 return accessPayload(pCsr
, offset
, amt
, (unsigned char *)z
, 1);
8425 ** Set a flag on this cursor to cache the locations of pages from the
8426 ** overflow list for the current row. This is used by cursors opened
8427 ** for incremental blob IO only.
8429 ** This function sets a flag only. The actual page location cache
8430 ** (stored in BtCursor.aOverflow[]) is allocated and used by function
8431 ** accessPayload() (the worker function for sqlite3BtreeData() and
8432 ** sqlite3BtreePutData()).
8434 void sqlite3BtreeCacheOverflow(BtCursor
*pCur
){
8435 assert( cursorHoldsMutex(pCur
) );
8436 assert( sqlite3_mutex_held(pCur
->pBtree
->db
->mutex
) );
8437 invalidateOverflowCache(pCur
);
8438 pCur
->isIncrblobHandle
= 1;
8443 ** Set both the "read version" (single byte at byte offset 18) and
8444 ** "write version" (single byte at byte offset 19) fields in the database
8445 ** header to iVersion.
8447 int sqlite3BtreeSetVersion(Btree
*pBtree
, int iVersion
){
8448 BtShared
*pBt
= pBtree
->pBt
;
8449 int rc
; /* Return code */
8451 assert( iVersion
==1 || iVersion
==2 );
8453 /* If setting the version fields to 1, do not automatically open the
8454 ** WAL connection, even if the version fields are currently set to 2.
8456 pBt
->btsFlags
&= ~BTS_NO_WAL
;
8457 if( iVersion
==1 ) pBt
->btsFlags
|= BTS_NO_WAL
;
8459 rc
= sqlite3BtreeBeginTrans(pBtree
, 0);
8460 if( rc
==SQLITE_OK
){
8461 u8
*aData
= pBt
->pPage1
->aData
;
8462 if( aData
[18]!=(u8
)iVersion
|| aData
[19]!=(u8
)iVersion
){
8463 rc
= sqlite3BtreeBeginTrans(pBtree
, 2);
8464 if( rc
==SQLITE_OK
){
8465 rc
= sqlite3PagerWrite(pBt
->pPage1
->pDbPage
);
8466 if( rc
==SQLITE_OK
){
8467 aData
[18] = (u8
)iVersion
;
8468 aData
[19] = (u8
)iVersion
;
8474 pBt
->btsFlags
&= ~BTS_NO_WAL
;
8479 ** set the mask of hint flags for cursor pCsr. Currently the only valid
8480 ** values are 0 and BTREE_BULKLOAD.
8482 void sqlite3BtreeCursorHints(BtCursor
*pCsr
, unsigned int mask
){
8483 assert( mask
==BTREE_BULKLOAD
|| mask
==0 );